@@ -43,17 +43,17 @@ private
4343 lift₂ _∙_ g h x = (g x) ∙ (h x)
4444
4545 liftRel : Rel C ℓ → Rel (A → C) (a ⊔ ℓ)
46- liftRel _≈_ g h = ∀ {x} → (g x) ≈ (h x)
46+ liftRel _≈_ g h = ∀ x → (g x) ≈ (h x)
4747
4848
4949------------------------------------------------------------------------
5050-- Setoid structure: here rather than elsewhere? (could be imported?)
5151
5252isEquivalence : IsEquivalence _≈_ → IsEquivalence (liftRel _≈_)
5353isEquivalence isEquivalence = record
54- { refl = λ {f x} → refl {f x }
55- ; sym = λ f≈g → sym f≈g
56- ; trans = λ f≈g g≈h → trans f≈g g≈h
54+ { refl = λ {f} _ → refl {f _ }
55+ ; sym = λ f≈g _ → sym ( f≈g _)
56+ ; trans = λ f≈g g≈h _ → trans ( f≈g _) ( g≈h _)
5757 }
5858 where open IsEquivalence isEquivalence
5959
@@ -63,91 +63,91 @@ isEquivalence isEquivalence = record
6363isMagma : IsMagma _≈_ _∙_ → IsMagma (liftRel _≈_) (lift₂ _∙_)
6464isMagma isMagma = record
6565 { isEquivalence = isEquivalence M.isEquivalence
66- ; ∙-cong = λ g h → M.∙-cong g h
66+ ; ∙-cong = λ g h _ → M.∙-cong (g _) (h _)
6767 }
6868 where module M = IsMagma isMagma
6969
7070isSemigroup : IsSemigroup _≈_ _∙_ → IsSemigroup (liftRel _≈_) (lift₂ _∙_)
7171isSemigroup isSemigroup = record
7272 { isMagma = isMagma M.isMagma
73- ; assoc = λ f g h → M.assoc (f _) (g _) (h _)
73+ ; assoc = λ f g h _ → M.assoc (f _) (g _) (h _)
7474 }
7575 where module M = IsSemigroup isSemigroup
7676
7777isBand : IsBand _≈_ _∙_ → IsBand (liftRel _≈_) (lift₂ _∙_)
7878isBand isBand = record
7979 { isSemigroup = isSemigroup M.isSemigroup
80- ; idem = λ f → M.idem (f _)
80+ ; idem = λ f _ → M.idem (f _)
8181 }
8282 where module M = IsBand isBand
8383
8484isCommutativeSemigroup : IsCommutativeSemigroup _≈_ _∙_ →
8585 IsCommutativeSemigroup (liftRel _≈_) (lift₂ _∙_)
8686isCommutativeSemigroup isCommutativeSemigroup = record
8787 { isSemigroup = isSemigroup M.isSemigroup
88- ; comm = λ f g → M.comm (f _) (g _)
88+ ; comm = λ f g _ → M.comm (f _) (g _)
8989 }
9090 where module M = IsCommutativeSemigroup isCommutativeSemigroup
9191
9292isMonoid : IsMonoid _≈_ _∙_ ε → IsMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε)
9393isMonoid isMonoid = record
9494 { isSemigroup = isSemigroup M.isSemigroup
95- ; identity = (λ f → M.identityˡ (f _)) , λ f → M.identityʳ (f _)
95+ ; identity = (λ f _ → M.identityˡ (f _)) , λ f _ → M.identityʳ (f _)
9696 }
9797 where module M = IsMonoid isMonoid
9898
9999isCommutativeMonoid : IsCommutativeMonoid _≈_ _∙_ ε →
100100 IsCommutativeMonoid (liftRel _≈_) (lift₂ _∙_) (lift₀ ε)
101101isCommutativeMonoid isCommutativeMonoid = record
102102 { isMonoid = isMonoid M.isMonoid
103- ; comm = λ f g → M.comm (f _) (g _)
103+ ; comm = λ f g _ → M.comm (f _) (g _)
104104 }
105105 where module M = IsCommutativeMonoid isCommutativeMonoid
106106
107107isGroup : IsGroup _≈_ _∙_ ε _⁻¹ →
108108 IsGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹)
109109isGroup isGroup = record
110110 { isMonoid = isMonoid M.isMonoid
111- ; inverse = (λ f → M.inverseˡ (f _)) , λ f → M.inverseʳ (f _)
112- ; ⁻¹-cong = λ f → M.⁻¹-cong f
111+ ; inverse = (λ f _ → M.inverseˡ (f _)) , λ f _ → M.inverseʳ (f _)
112+ ; ⁻¹-cong = λ f _ → M.⁻¹-cong (f _)
113113 }
114114 where module M = IsGroup isGroup
115115
116116isAbelianGroup : IsAbelianGroup _≈_ _∙_ ε _⁻¹ →
117117 IsAbelianGroup (liftRel _≈_) (lift₂ _∙_) (lift₀ ε) (lift₁ _⁻¹)
118118isAbelianGroup isAbelianGroup = record
119119 { isGroup = isGroup M.isGroup
120- ; comm = λ f g → M.comm (f _) (g _)
120+ ; comm = λ f g _ → M.comm (f _) (g _)
121121 }
122122 where module M = IsAbelianGroup isAbelianGroup
123123
124124isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero _≈_ _+_ _*_ 0# 1# →
125125 IsSemiringWithoutAnnihilatingZero (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
126126isSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero = record
127127 { +-isCommutativeMonoid = isCommutativeMonoid M.+-isCommutativeMonoid
128- ; *-cong = λ g h → M.*-cong g h
129- ; *-assoc = λ f g h → M.*-assoc (f _) (g _) (h _)
130- ; *-identity = (λ f → M.*-identityˡ (f _)) , λ f → M.*-identityʳ (f _)
131- ; distrib = (λ f g h → M.distribˡ (f _) (g _) (h _)) , λ f g h → M.distribʳ (f _) (g _) (h _)
128+ ; *-cong = λ g h _ → M.*-cong (g _) (h _)
129+ ; *-assoc = λ f g h _ → M.*-assoc (f _) (g _) (h _)
130+ ; *-identity = (λ f _ → M.*-identityˡ (f _)) , λ f _ → M.*-identityʳ (f _)
131+ ; distrib = (λ f g h _ → M.distribˡ (f _) (g _) (h _)) , λ f g h _ → M.distribʳ (f _) (g _) (h _)
132132 }
133133 where module M = IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero
134134
135135isSemiring : IsSemiring _≈_ _+_ _*_ 0# 1# →
136136 IsSemiring (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₀ 0#) (lift₀ 1#)
137137isSemiring isSemiring = record
138138 { isSemiringWithoutAnnihilatingZero = isSemiringWithoutAnnihilatingZero M.isSemiringWithoutAnnihilatingZero
139- ; zero = (λ f → M.zeroˡ (f _)) , λ f → M.zeroʳ (f _)
139+ ; zero = (λ f _ → M.zeroˡ (f _)) , λ f _ → M.zeroʳ (f _)
140140 }
141141 where module M = IsSemiring isSemiring
142142
143143isRing : IsRing _≈_ _+_ _*_ -_ 0# 1# →
144144 IsRing (liftRel _≈_) (lift₂ _+_) (lift₂ _*_) (lift₁ -_) (lift₀ 0#) (lift₀ 1#)
145145isRing isRing = record
146146 { +-isAbelianGroup = isAbelianGroup M.+-isAbelianGroup
147- ; *-cong = λ g h → M.*-cong g h
148- ; *-assoc = λ f g h → M.*-assoc (f _) (g _) (h _)
149- ; *-identity = (λ f → M.*-identityˡ (f _)) , λ f → M.*-identityʳ (f _)
150- ; distrib = (λ f g h → M.distribˡ (f _) (g _) (h _)) , λ f g h → M.distribʳ (f _) (g _) (h _)
147+ ; *-cong = λ g h _ → M.*-cong (g _) (h _)
148+ ; *-assoc = λ f g h _ → M.*-assoc (f _) (g _) (h _)
149+ ; *-identity = (λ f _ → M.*-identityˡ (f _)) , λ f _ → M.*-identityʳ (f _)
150+ ; distrib = (λ f g h _ → M.distribˡ (f _) (g _) (h _)) , λ f g h _ → M.distribʳ (f _) (g _) (h _)
151151 }
152152 where module M = IsRing isRing
153153
0 commit comments