-
Notifications
You must be signed in to change notification settings - Fork 213
/
Copy pathapp.py
145 lines (111 loc) · 4.89 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
load_dotenv()
api_key = os.getenv("GOOGLE_API_KEY")
if not api_key:
raise ValueError("GOOGLE_API_KEY environment variable is missing. Please add it to your .env file.")
genai.configure(api_key=api_key)
##Function that reads the pdd goes through each and every page
def get_pdf_text(pdf_docs):
if not pdf_docs:
return ""
text=""
for pdf in pdf_docs:
pdf_reader= PdfReader(pdf)
for page in pdf_reader.pages:
text+= page.extract_text()
# Optionally wrap the above block in try-except if needed:
# try:
# pdf_reader = PdfReader(pdf)
# for page in pdf_reader.pages:
# text += page.extract_text()
# except Exception as e:
# st.error(f"Error reading PDF '{pdf.name}': {str(e)}")
return text
##Function that breaks text into chunks
def get_text_chunks(text):
# Adjust chunk size and overlap as needed
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
return chunks
##Function that saves the data we got from conversation to local(here), generally stored in data base
#converting into chunks -> storing data in faiss vector
def get_vector_store(text_chunks, embedding_model="models/embedding-001", store_dir="faiss_index"):
"""Create and save vector store from text chunks.
Args:
text_chunks: List of text chunks to embed
embedding_model: Name of the embedding model to use
store_dir: Directory to save the vector store
Returns:
None
"""
if not text_chunks:
st.warning("No text to process. Please check the PDF content.")
return
try:
embeddings = GoogleGenerativeAIEmbeddings(model=embedding_model)
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
# Ensure the directory exists
if not os.path.exists(store_dir):
os.makedirs(store_dir)
# Save the vector store index in the directory
vector_store.save_local(store_dir)
except Exception as e:
st.error(f"Error creating vector store: {str(e)}")
#Function to give the prompt and ask the bot to act accordingly, giving the gemini model
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGoogleGenerativeAI(model="gemini-1.5-flash",temperature=0.3)
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
##Function for user input, question
#give the question-> do a similarity search on all the faiss vectors-> go with converstional chain-> response from chain
def user_input(user_question):
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
# Check if the faiss_index file exists before loading
if not os.path.exists("faiss_index/index.faiss"):
st.error("FAISS index file not found. Please process the PDF files first.")
return
new_db = FAISS.load_local("faiss_index", embeddings)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain(
{"input_documents": docs, "question": user_question},
return_only_outputs=True
)
print(response)
st.write("Reply: ", response["output_text"])
##Main Function for streamlit app
def main():
st.set_page_config("PDF Wizard")
st.header("Chat with multiple PDFs📄")
user_question = st.text_input("📎Ask a Question from the PDF Files")
if user_question:
user_input(user_question)
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Done")
if __name__ == "__main__":
main()