-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproofmode.v
1500 lines (1274 loc) · 47.1 KB
/
proofmode.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
From iris.proofmode Require Import tactics intro_patterns.
Set Default Proof Using "Type".
Section tests.
Context {PROP : bi}.
Implicit Types P Q R : PROP.
Lemma test_eauto_emp_isplit_biwand P : emp ⊢ P ∗-∗ P.
Proof. eauto 6. Qed.
Lemma test_eauto_isplit_biwand P : ⊢ P ∗-∗ P.
Proof. eauto. Qed.
Fixpoint test_fixpoint (n : nat) {struct n} : True → emp ⊢@{PROP} ⌜ (n + 0)%nat = n ⌝.
Proof.
case: n => [|n] /=; first (iIntros (_) "_ !%"; reflexivity).
iIntros (_) "_".
by iDestruct (test_fixpoint with "[//]") as %->.
Qed.
Check "demo_0".
Lemma demo_0 P Q : □ (P ∨ Q) -∗ (∀ x, ⌜x = 0⌝ ∨ ⌜x = 1⌝) → (Q ∨ P).
Proof.
iIntros "H #H2". Show. iDestruct "H" as "###H".
(* should remove the disjunction "H" *)
iDestruct "H" as "[#?|#?]"; last by iLeft. Show.
(* should keep the disjunction "H" because it is instantiated *)
iDestruct ("H2" $! 10) as "[%|%]". done. done.
Qed.
Lemma demo_2 P1 P2 P3 P4 Q (P5 : nat → PROP) `{!Affine P4, !Absorbing P2} :
P2 ∗ (P3 ∗ Q) ∗ True ∗ P1 ∗ P2 ∗ (P4 ∗ (∃ x:nat, P5 x ∨ P3)) ∗ emp -∗
P1 -∗ (True ∗ True) -∗
(((P2 ∧ False ∨ P2 ∧ ⌜0 = 0⌝) ∗ P3) ∗ Q ∗ P1 ∗ True) ∧
(P2 ∨ False) ∧ (False → P5 0).
Proof.
(* Intro-patterns do something :) *)
iIntros "[H2 ([H3 HQ]&?&H1&H2'&foo&_)] ? [??]".
(* To test destruct: can also be part of the intro-pattern *)
iDestruct "foo" as "[_ meh]".
repeat iSplit; [|by iLeft|iIntros "#[]"].
iFrame "H2".
(* split takes a list of hypotheses just for the LHS *)
iSplitL "H3".
- iFrame "H3". iRight. auto.
- iSplitL "HQ". iAssumption. by iSplitL "H1".
Qed.
Lemma demo_3 P1 P2 P3 :
P1 ∗ P2 ∗ P3 -∗ P1 ∗ ▷ (P2 ∗ ∃ x, (P3 ∧ ⌜x = 0⌝) ∨ P3).
Proof. iIntros "($ & $ & $)". iNext. by iExists 0. Qed.
Lemma test_pure_space_separated P1 :
<affine> ⌜True⌝ ∗ P1 -∗ P1.
Proof.
(* [% H] should be parsed as two separate patterns and not the pure name
[H] *)
iIntros "[% H] //".
Qed.
Definition foo (P : PROP) := (P -∗ P)%I.
Definition bar : PROP := (∀ P, foo P)%I.
Lemma test_unfold_constants : ⊢ bar.
Proof. iIntros (P) "HP //". Qed.
Check "test_iStopProof".
Lemma test_iStopProof Q : emp -∗ Q -∗ Q.
Proof. iIntros "#H1 H2". Show. iStopProof. Show. by rewrite bi.sep_elim_r. Qed.
Lemma test_iRewrite `{!BiInternalEq PROP} {A : ofe} (x y : A) P :
□ (∀ z, P -∗ <affine> (z ≡ y)) -∗ (P -∗ P ∧ (x,x) ≡ (y,x)).
Proof.
iIntros "#H1 H2".
iRewrite (internal_eq_sym x x with "[# //]").
iRewrite -("H1" $! _ with "[- //]").
auto.
Qed.
Check "test_iDestruct_and_emp".
Lemma test_iDestruct_and_emp P Q `{!Persistent P, !Persistent Q} :
P ∧ emp -∗ emp ∧ Q -∗ <affine> (P ∗ Q).
Proof. iIntros "[#? _] [_ #?]". Show. auto. Qed.
Lemma test_iIntros_persistent P Q `{!Persistent Q} : ⊢ (P → Q → P ∧ Q).
Proof. iIntros "H1 #H2". by iFrame "∗#". Qed.
Lemma test_iDestruct_intuitionistic_1 P Q `{!Persistent P}:
Q ∗ □ (Q -∗ P) -∗ P ∗ Q.
Proof. iIntros "[HQ #HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.
Lemma test_iDestruct_intuitionistic_2 P Q `{!Persistent P, !Affine P}:
Q ∗ (Q -∗ P) -∗ P.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". done. Qed.
Lemma test_iDestruct_specialize_wand P Q :
Q -∗ Q -∗ □ (Q -∗ P) -∗ P ∗ P.
Proof.
iIntros "HQ1 HQ2 #HQP".
(* [iDestruct] does not consume "HQP" because a wand is instantiated *)
iDestruct ("HQP" with "HQ1") as "HP1".
iDestruct ("HQP" with "HQ2") as "HP2".
iFrame.
Qed.
Lemma test_iPoseProof_specialize_wand P Q :
Q -∗ Q -∗ □ (Q -∗ P) -∗ P ∗ P.
Proof.
iIntros "HQ1 HQ2 #HQP".
(* [iPoseProof] does not consume "HQP" because a wand is instantiated *)
iPoseProof ("HQP" with "HQ1") as "HP1".
iPoseProof ("HQP" with "HQ2") as "HP2".
iFrame.
Qed.
Lemma test_iDestruct_pose_forall (Φ : nat → PROP) :
□ (∀ x, Φ x) -∗ Φ 0 ∗ Φ 1.
Proof.
iIntros "#H".
(* [iDestruct] does not consume "H" because quantifiers are instantiated *)
iDestruct ("H" $! 0) as "$".
iDestruct ("H" $! 1) as "$".
Qed.
Lemma test_iDestruct_or P Q : □ (P ∨ Q) -∗ Q ∨ P.
Proof.
iIntros "#H".
(* [iDestruct] consumes "H" because no quantifiers/wands are instantiated *)
iDestruct "H" as "[H|H]".
- by iRight.
- by iLeft.
Qed.
Lemma test_iPoseProof_or P Q : □ (P ∨ Q) -∗ (Q ∨ P) ∗ (P ∨ Q).
Proof.
iIntros "#H".
(* [iPoseProof] does not consume "H" despite that no quantifiers/wands are
instantiated. This makes it different from [iDestruct]. *)
iPoseProof "H" as "[HP|HQ]".
- iFrame "H". by iRight.
- iFrame "H". by iLeft.
Qed.
Lemma test_iDestruct_intuitionistic_affine_bi `{!BiAffine PROP} P Q `{!Persistent P}:
Q ∗ (Q -∗ P) -∗ P ∗ Q.
Proof. iIntros "[HQ HQP]". iDestruct ("HQP" with "HQ") as "#HP". by iFrame. Qed.
Check "test_iDestruct_spatial".
Lemma test_iDestruct_spatial Q : □ Q -∗ Q.
Proof. iIntros "#HQ". iDestruct "HQ" as "-#HQ". Show. done. Qed.
Check "test_iDestruct_spatial_affine".
Lemma test_iDestruct_spatial_affine Q `{!Affine Q} : □ Q -∗ Q.
Proof.
iIntros "#-#HQ".
(* Since [Q] is affine, it should not add an <affine> modality *)
Show. done.
Qed.
Lemma test_iDestruct_spatial_noop Q : Q -∗ Q.
Proof. iIntros "-#HQ". done. Qed.
Lemma test_iDestruct_exists (Φ: nat → PROP) :
(∃ y, Φ y) -∗ ∃ n, Φ n.
Proof. iIntros "H". iDestruct "H" as (y) "H". by iExists y. Qed.
Lemma test_iDestruct_exists_automatic (Φ: nat → PROP) :
(∃ y, Φ y) -∗ ∃ n, Φ n.
Proof.
iIntros "H".
iDestruct "H" as (?) "H".
(* the automatic name should by [y] *)
by iExists y.
Qed.
Lemma test_iDestruct_exists_automatic_multiple (Φ: nat → PROP) :
(∃ y n baz, Φ (y+n+baz)) -∗ ∃ n, Φ n.
Proof. iDestruct 1 as (???) "H". by iExists (y+n+baz). Qed.
Lemma test_iDestruct_exists_freshen (y:nat) (Φ: nat → PROP) :
(∃ y, Φ y) -∗ ∃ n, Φ n.
Proof.
iIntros "H".
iDestruct "H" as (?) "H".
(* the automatic name is the freshened form of [y] *)
by iExists y0.
Qed.
Check "test_iDestruct_exists_not_exists".
Lemma test_iDestruct_exists_not_exists P :
P -∗ P.
Proof. Fail iDestruct 1 as (?) "H". Abort.
Lemma test_iDestruct_exists_explicit_name (Φ: nat → PROP) :
(∃ y, Φ y) -∗ ∃ n, Φ n.
Proof.
(* give an explicit name that isn't the binder name *)
iDestruct 1 as (foo) "?".
by iExists foo.
Qed.
Lemma test_iDestruct_exists_pure (Φ: nat → Prop) :
⌜∃ y, Φ y⌝ ⊢@{PROP} ∃ n, ⌜Φ n⌝.
Proof.
iDestruct 1 as (?) "H".
by iExists y.
Qed.
Lemma test_iDestruct_exists_and_pure (H: True) P :
⌜False⌝ ∧ P -∗ False.
Proof.
(* this automatic name uses [fresh H] as a sensible default (it's a hypothesis
in [Prop] and the user cannot supply a name in their code) *)
iDestruct 1 as (?) "H".
contradict H0.
Qed.
Check "test_iDestruct_exists_intuitionistic".
Lemma test_iDestruct_exists_intuitionistic P (Φ: nat → PROP) :
□ (∃ y, Φ y ∧ P) -∗ P.
Proof.
iDestruct 1 as (?) "#H". Show.
iDestruct "H" as "[_ $]".
Qed.
Lemma test_iDestruct_exists_freshen_local_name (Φ: nat → PROP) :
let y := 0 in
□ (∃ y, Φ y) -∗ ∃ n, Φ (y+n).
Proof.
iIntros (y) "#H".
iDestruct "H" as (?) "H".
iExists y0; auto.
Qed.
(* regression test for #337 *)
Check "test_iDestruct_exists_anonymous".
Lemma test_iDestruct_exists_anonymous P Φ :
(∃ _:nat, P) ∗ (∃ x:nat, Φ x) -∗ P ∗ ∃ x, Φ x.
Proof.
iIntros "[HP HΦ]".
(* this should not use [x] as the default name for the unnamed binder *)
iDestruct "HP" as (?) "$". Show.
iDestruct "HΦ" as (x) "HΦ".
by iExists x.
Qed.
Definition an_exists P : PROP := (∃ (an_exists_name:nat), ▷^an_exists_name P)%I.
(* should use the name from within [an_exists] *)
Lemma test_iDestruct_exists_automatic_def P :
an_exists P -∗ ∃ k, ▷^k P.
Proof. iDestruct 1 as (?) "H". by iExists an_exists_name. Qed.
Lemma test_iIntros_pure (ψ φ : Prop) P : ψ → ⊢ ⌜ φ ⌝ → P → ⌜ φ ∧ ψ ⌝ ∧ P.
Proof. iIntros (??) "H". auto. Qed.
Check "test_iIntros_forall_pure".
Lemma test_iIntros_forall_pure (Ψ: nat → PROP) :
⊢ ∀ x : nat, Ψ x → Ψ x.
Proof.
iIntros "%".
(* should be a trivial implication now *)
Show. auto.
Qed.
Lemma test_iIntros_pure_not `{!BiPureForall PROP} : ⊢@{PROP} ⌜ ¬False ⌝.
Proof. by iIntros (?). Qed.
Lemma test_fast_iIntros `{!BiInternalEq PROP} P Q :
⊢ ∀ x y z : nat,
⌜x = plus 0 x⌝ → ⌜y = 0⌝ → ⌜z = 0⌝ → P → □ Q → foo (x ≡ x).
Proof.
iIntros (a) "*".
iIntros "#Hfoo **".
iIntros "_ //".
Qed.
Lemma test_very_fast_iIntros P :
∀ x y : nat, ⊢ ⌜ x = y ⌝ → P -∗ P.
Proof. by iIntros. Qed.
Lemma test_iIntros_automatic_name (Φ: nat → PROP) :
∀ y, Φ y -∗ ∃ x, Φ x.
Proof. iIntros (?) "H". by iExists y. Qed.
Lemma test_iIntros_automatic_name_proofmode_intro (Φ: nat → PROP) :
∀ y, Φ y -∗ ∃ x, Φ x.
Proof. iIntros "% H". by iExists y. Qed.
(* even an object-level forall should get the right name *)
Lemma test_iIntros_object_forall P :
P -∗ ∀ (y:unit), P.
Proof. iIntros "H". iIntros (?). destruct y. iAssumption. Qed.
Lemma test_iIntros_object_proofmode_intro (Φ: nat → PROP) :
⊢ ∀ y, Φ y -∗ ∃ x, Φ x.
Proof. iIntros "% H". by iExists y. Qed.
Check "test_iIntros_pure_names".
Lemma test_iIntros_pure_names (H:True) P :
∀ x y : nat, ⊢ ⌜ x = y ⌝ → P -∗ P.
Proof.
iIntros (???).
(* the pure hypothesis should get a sensible [H0] as its name *)
Show. auto.
Qed.
Definition tc_opaque_test : PROP := tc_opaque (∀ x : nat, ⌜ x = x ⌝)%I.
Lemma test_iIntros_tc_opaque : ⊢ tc_opaque_test.
Proof. by iIntros (x). Qed.
(** Prior to 0b84351c this used to loop, now [iAssumption] instantiates [R] with
[False] and performs false elimination. *)
Lemma test_iAssumption_evar_ex_false : ∃ R, R ⊢ ∀ P, P.
Proof. eexists. iIntros "?" (P). iAssumption. Qed.
Lemma test_iApply_evar P Q R : (∀ Q, Q -∗ P) -∗ R -∗ P.
Proof. iIntros "H1 H2". iApply "H1". iExact "H2". Qed.
Lemma test_iAssumption_affine P Q R `{!Affine P, !Affine R} : P -∗ Q -∗ R -∗ Q.
Proof. iIntros "H1 H2 H3". iAssumption. Qed.
Lemma test_done_goal_evar Q : ∃ P, Q ⊢ P.
Proof. eexists. iIntros "H". Fail done. iAssumption. Qed.
Lemma test_iDestruct_spatial_and P Q1 Q2 : P ∗ (Q1 ∧ Q2) -∗ P ∗ Q1.
Proof. iIntros "[H [? _]]". by iFrame. Qed.
Lemma test_iAssert_persistent P Q : P -∗ Q -∗ True.
Proof.
iIntros "HP HQ".
iAssert True%I as "#_". { by iClear "HP HQ". }
iAssert True%I with "[HP]" as "#_". { Fail iClear "HQ". by iClear "HP". }
iAssert True%I as %_. { by iClear "HP HQ". }
iAssert True%I with "[HP]" as %_. { Fail iClear "HQ". by iClear "HP". }
done.
Qed.
Lemma test_iAssert_persistently P : □ P -∗ True.
Proof.
iIntros "HP". iAssert (□ P)%I with "[# //]" as "#H". done.
Qed.
Lemma test_iSpecialize_auto_frame P Q R :
(P -∗ True -∗ True -∗ Q -∗ R) -∗ P -∗ Q -∗ R.
Proof. iIntros "H ? HQ". by iApply ("H" with "[$]"). Qed.
Lemma test_iSpecialize_pure (φ : Prop) Q R :
φ → (⌜φ⌝ -∗ Q) → ⊢ Q.
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.
Lemma test_iSpecialize_pure_done (φ: Prop) Q :
φ → (⌜φ⌝ -∗ Q) ⊢ Q.
Proof. iIntros (HP) "HQ". iApply ("HQ" with "[% //]"). Qed.
Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_not_pure_error P Q :
(P -∗ Q) ⊢ Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[%]"). Abort.
Check "test_iSpecialize_pure_error".
Lemma test_iSpecialize_pure_done_error (φ: Prop) Q :
(⌜φ⌝ -∗ Q) ⊢ Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[% //]"). Abort.
Check "test_iSpecialize_done_error".
Lemma test_iSpecialize_done_error P Q :
(P -∗ Q) ⊢ Q.
Proof. iIntros "HQ". Fail iSpecialize ("HQ" with "[//]"). Abort.
Lemma test_iSpecialize_Coq_entailment P Q R :
(⊢ P) → (P -∗ Q) → (⊢ Q).
Proof. iIntros (HP HPQ). iDestruct (HPQ $! HP) as "?". done. Qed.
Lemma test_iSpecialize_intuitionistic P Q R :
□ P -∗ □ (P -∗ P -∗ P -∗ P -∗ □ P -∗ P -∗ Q) -∗ R -∗ R ∗ □ (P ∗ Q).
Proof.
iIntros "#HP #H HR".
(* Test that [H] remains in the intuitionistic context *)
iSpecialize ("H" with "HP").
iSpecialize ("H" with "[HP]"); first done.
iSpecialize ("H" with "[]"); first done.
iSpecialize ("H" with "[-HR]"); first done.
iSpecialize ("H" with "[#]"); first done.
iFrame "HR".
iSpecialize ("H" with "[-]"); first done.
by iFrame "#".
Qed.
Lemma test_iSpecialize_intuitionistic_2 P Q R :
□ P -∗ □ (P -∗ P -∗ P -∗ P -∗ □ P -∗ P -∗ Q) -∗ R -∗ R ∗ □ (P ∗ Q).
Proof.
iIntros "#HP #H HR".
(* Test that [H] remains in the intuitionistic context *)
iSpecialize ("H" with "HP") as #.
iSpecialize ("H" with "[HP]") as #; first done.
iSpecialize ("H" with "[]") as #; first done.
iSpecialize ("H" with "[-HR]") as #; first done.
iSpecialize ("H" with "[#]") as #; first done.
iFrame "HR".
iSpecialize ("H" with "[-]") as #; first done.
by iFrame "#".
Qed.
Lemma test_iSpecialize_intuitionistic_3 P Q R :
P -∗ □ (P -∗ Q) -∗ □ (P -∗ <pers> Q) -∗ □ (Q -∗ R) -∗ P ∗ □ (Q ∗ R).
Proof.
iIntros "HP #H1 #H2 #H3".
(* Should fail, [Q] is not persistent *)
Fail iSpecialize ("H1" with "HP") as #.
(* Should succeed, [<pers> Q] is persistent *)
iSpecialize ("H2" with "HP") as #.
(* Should succeed, despite [R] not being persistent, no spatial premises are
needed to prove [Q] *)
iSpecialize ("H3" with "H2") as #.
by iFrame "#".
Qed.
Check "test_iAssert_intuitionistic".
Lemma test_iAssert_intuitionistic `{!BiBUpd PROP} P :
□ P -∗ □ |==> P.
Proof.
iIntros "#HP".
(* Test that [HPupd1] ends up in the intuitionistic context *)
iAssert (|==> P)%I with "[]" as "#HPupd1"; first done.
(* This should not work, [|==> P] is not persistent. *)
Fail iAssert (|==> P)%I with "[#]" as "#HPupd2"; first done.
done.
Qed.
Lemma test_iSpecialize_evar P : (∀ R, R -∗ R) -∗ P -∗ P.
Proof. iIntros "H HP". iApply ("H" with "[HP]"). done. Qed.
Lemma test_iPure_intro_emp R `{!Affine R} :
R -∗ emp.
Proof. iIntros "HR". by iPureIntro. Qed.
Lemma test_iEmp_intro P Q R `{!Affine P, !Persistent Q, !Affine R} :
P -∗ Q → R -∗ emp.
Proof. iIntros "HP #HQ HR". iEmpIntro. Qed.
Lemma test_iPure_intro (φ : nat → Prop) P Q R `{!Affine P, !Persistent Q, !Affine R} :
φ 0 → P -∗ Q → R -∗ ∃ x : nat, <affine> ⌜ φ x ⌝ ∧ ⌜ φ x ⌝.
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.
Lemma test_iPure_intro_2 (φ : nat → Prop) P Q R `{!Persistent Q} :
φ 0 → P -∗ Q → R -∗ ∃ x : nat, <affine> ⌜ φ x ⌝ ∗ ⌜ φ x ⌝.
Proof. iIntros (?) "HP #HQ HR". iPureIntro; eauto. Qed.
Lemma test_fresh P Q:
(P ∗ Q) -∗ (P ∗ Q).
Proof.
iIntros "H".
let H1 := iFresh in
let H2 := iFresh in
let pat :=constr:(IList [cons (IIdent H1) (cons (IIdent H2) nil)]) in
iDestruct "H" as pat.
iFrame.
Qed.
(* Test for issue #288 *)
Lemma test_iExists_unused : ⊢ ∃ P : PROP, ∃ x : nat, P.
Proof.
iExists _.
iExists 10.
iAssert emp%I as "H"; first done.
iExact "H".
Qed.
(* Check coercions *)
Lemma test_iExist_coercion (P : Z → PROP) : (∀ x, P x) -∗ ∃ x, P x.
Proof. iIntros "HP". iExists (0:nat). iApply ("HP" $! (0:nat)). Qed.
Lemma test_iExist_tc `{Set_ A C} P : ⊢ ∃ x1 x2 : gset positive, P -∗ P.
Proof. iExists {[ 1%positive ]}, ∅. auto. Qed.
Lemma test_iSpecialize_tc P : (∀ x y z : gset positive, P) -∗ P.
Proof.
iIntros "H".
(* FIXME: this [unshelve] and [apply _] should not be needed. *)
unshelve iSpecialize ("H" $! ∅ {[ 1%positive ]} ∅); try apply _. done.
Qed.
Lemma test_iFrame_pure `{!BiInternalEq PROP} {A : ofe} (φ : Prop) (y z : A) :
φ → <affine> ⌜y ≡ z⌝ -∗ (⌜ φ ⌝ ∧ ⌜ φ ⌝ ∧ y ≡ z : PROP).
Proof. iIntros (Hv) "#Hxy". iFrame (Hv) "Hxy". Qed.
Lemma test_iFrame_disjunction_1 P1 P2 Q1 Q2 :
BiAffine PROP →
□ P1 -∗ Q2 -∗ P2 -∗ (P1 ∗ P2 ∗ False ∨ P2) ∗ (Q1 ∨ Q2).
Proof. intros ?. iIntros "#HP1 HQ2 HP2". iFrame "HP1 HQ2 HP2". Qed.
Lemma test_iFrame_disjunction_2 P : P -∗ (True ∨ True) ∗ P.
Proof. iIntros "HP". iFrame "HP". auto. Qed.
Lemma test_iFrame_conjunction_1 P Q :
P -∗ Q -∗ (P ∗ Q) ∧ (P ∗ Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.
Lemma test_iFrame_conjunction_2 P Q :
P -∗ Q -∗ (P ∧ P) ∗ (Q ∧ Q).
Proof. iIntros "HP HQ". iFrame "HP HQ". Qed.
Lemma test_iFrame_later `{!BiAffine PROP} P Q : P -∗ Q -∗ ▷ P ∗ Q.
Proof. iIntros "H1 H2". by iFrame "H1". Qed.
Lemma test_iFrame_affinely_1 P Q `{!Affine P} :
P -∗ <affine> Q -∗ <affine> (P ∗ Q).
Proof. iIntros "HP HQ". iFrame "HQ". by iModIntro. Qed.
Lemma test_iFrame_affinely_2 P Q `{!Affine P, !Affine Q} :
P -∗ Q -∗ <affine> (P ∗ Q).
Proof. iIntros "HP HQ". iFrame "HQ". by iModIntro. Qed.
Lemma test_iAssert_modality P : ◇ False -∗ ▷ P.
Proof.
iIntros "HF".
iAssert (<affine> False)%I with "[> -]" as %[].
by iMod "HF".
Qed.
Lemma test_iMod_affinely_timeless P `{!Timeless P} :
<affine> ▷ P -∗ ◇ <affine> P.
Proof. iIntros "H". iMod "H". done. Qed.
Lemma test_iAssumption_False P : False -∗ P.
Proof. iIntros "H". done. Qed.
Lemma test_iAssumption_coq_1 P Q : (⊢ Q) → <affine> P -∗ Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.
Lemma test_iAssumption_coq_2 P Q : (⊢ □ Q) → <affine> P -∗ ▷ Q.
Proof. iIntros (HQ) "_". iAssumption. Qed.
(* Check instantiation and dependent types *)
Lemma test_iSpecialize_dependent_type (P : ∀ n, vec nat n → PROP) :
(∀ n v, P n v) -∗ ∃ n v, P n v.
Proof.
iIntros "H". iExists _, [#10].
iSpecialize ("H" $! _ [#10]). done.
Qed.
(* Check that typeclasses are not resolved too early *)
Lemma test_TC_resolution `{!BiAffine PROP} (Φ : nat → PROP) l x :
x ∈ l → ([∗ list] y ∈ l, Φ y) -∗ Φ x.
Proof.
iIntros (Hp) "HT".
iDestruct (big_sepL_elem_of _ _ _ Hp with "HT") as "Hp".
done.
Qed.
Lemma test_eauto_iFrame P Q R `{!Persistent R} :
P -∗ Q -∗ R → R ∗ Q ∗ P ∗ R ∨ False.
Proof. eauto 10 with iFrame. Qed.
Lemma test_iCombine_persistent P Q R `{!Persistent R} :
P -∗ Q -∗ R → R ∗ Q ∗ P ∗ R ∨ False.
Proof. iIntros "HP HQ #HR". iCombine "HR HQ HP HR" as "H". auto. Qed.
Lemma test_iCombine_frame P Q R `{!Persistent R} :
P -∗ Q -∗ R → R ∗ Q ∗ P ∗ R.
Proof. iIntros "HP HQ #HR". iCombine "HQ HP HR" as "$". by iFrame. Qed.
Lemma test_iNext_evar P : P -∗ True.
Proof.
iIntros "HP". iAssert (▷ _ -∗ ▷ P)%I as "?"; last done.
iIntros "?". iNext. iAssumption.
Qed.
Lemma test_iNext_sep1 P Q (R1 := (P ∗ Q)%I) :
(▷ P ∗ ▷ Q) ∗ R1 -∗ ▷ ((P ∗ Q) ∗ R1).
Proof.
iIntros "H". iNext.
rewrite {1 2}(lock R1). (* check whether R1 has not been unfolded *) done.
Qed.
Lemma test_iNext_sep2 P Q : ▷ P ∗ ▷ Q -∗ ▷ (P ∗ Q).
Proof.
iIntros "H". iNext. iExact "H". (* Check that the laters are all gone. *)
Qed.
Lemma test_iNext_quantifier {A} (Φ : A → A → PROP) :
(∀ y, ∃ x, ▷ Φ x y) -∗ ▷ (∀ y, ∃ x, Φ x y).
Proof. iIntros "H". iNext. done. Qed.
Lemma text_iNext_Next `{!BiInternalEq PROP} {A B : ofe} (f : A -n> A) x y :
Next x ≡ Next y -∗ (Next (f x) ≡ Next (f y) : PROP).
Proof. iIntros "H". iNext. by iRewrite "H". Qed.
Lemma test_iFrame_persistent (P Q : PROP) :
□ P -∗ Q -∗ <pers> (P ∗ P) ∗ (P ∗ Q ∨ Q).
Proof. iIntros "#HP". iFrame "HP". iIntros "$". Qed.
Lemma test_iSplit_persistently P Q : □ P -∗ <pers> (P ∗ P).
Proof. iIntros "#?". by iSplit. Qed.
Lemma test_iSpecialize_persistent P Q : □ P -∗ (<pers> P → Q) -∗ Q.
Proof. iIntros "#HP HPQ". by iSpecialize ("HPQ" with "HP"). Qed.
Lemma test_iDestruct_persistent P (Φ : nat → PROP) `{!∀ x, Persistent (Φ x)}:
□ (P -∗ ∃ x, Φ x) -∗
P -∗ ∃ x, Φ x ∗ P.
Proof.
iIntros "#H HP". iDestruct ("H" with "HP") as (x) "#H2". eauto with iFrame.
Qed.
Lemma test_iLöb `{!BiLöb PROP} P : ⊢ ∃ n, ▷^n P.
Proof.
iLöb as "IH". iDestruct "IH" as (n) "IH".
by iExists (S n).
Qed.
Lemma test_iInduction_wf (x : nat) P Q :
□ P -∗ Q -∗ ⌜ (x + 0 = x)%nat ⌝.
Proof.
iIntros "#HP HQ".
iInduction (lt_wf x) as [[|x] _] "IH"; simpl; first done.
rewrite (inj_iff S). by iApply ("IH" with "[%]"); first lia.
Qed.
Lemma test_iInduction_using (m : gmap nat nat) (Φ : nat → nat → PROP) y :
([∗ map] x ↦ i ∈ m, Φ y x) -∗ ([∗ map] x ↦ i ∈ m, emp ∗ Φ y x).
Proof.
iIntros "Hm". iInduction m as [|i x m] "IH" using map_ind forall(y).
- by rewrite !big_sepM_empty.
- rewrite !big_sepM_insert //. iDestruct "Hm" as "[$ ?]".
by iApply "IH".
Qed.
Lemma test_iIntros_start_proof :
⊢@{PROP} True.
Proof.
(* Make sure iIntros actually makes progress and enters the proofmode. *)
progress iIntros. done.
Qed.
Lemma test_True_intros : (True : PROP) -∗ True.
Proof.
iIntros "?". done.
Qed.
Lemma test_iPoseProof_let P Q :
(let R := True%I in R ∗ P ⊢ Q) →
P ⊢ Q.
Proof.
iIntros (help) "HP".
iPoseProof (help with "[$HP]") as "?". done.
Qed.
Lemma test_iIntros_let P :
∀ Q, let R := emp%I in P -∗ R -∗ Q -∗ P ∗ Q.
Proof. iIntros (Q R) "$ _ $". Qed.
Lemma test_iNext_iRewrite `{!BiInternalEq PROP} P Q :
<affine> ▷ (Q ≡ P) -∗ <affine> ▷ Q -∗ <affine> ▷ P.
Proof.
iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ".
Qed.
Lemma test_iIntros_modalities `(!Absorbing P) :
⊢ <pers> (▷ ∀ x : nat, ⌜ x = 0 ⌝ → ⌜ x = 0 ⌝ -∗ False -∗ P -∗ P).
Proof.
iIntros (x ??).
iIntros "* **". (* Test that fast intros do not work under modalities *)
iIntros ([]).
Qed.
Lemma test_iIntros_rewrite P (x1 x2 x3 x4 : nat) :
x1 = x2 → (⌜ x2 = x3 ⌝ ∗ ⌜ x3 ≡ x4 ⌝ ∗ P) -∗ ⌜ x1 = x4 ⌝ ∗ P.
Proof. iIntros (?) "(-> & -> & $)"; auto. Qed.
Lemma test_iNext_affine `{!BiInternalEq PROP} P Q :
<affine> ▷ (Q ≡ P) -∗ <affine> ▷ Q -∗ <affine> ▷ P.
Proof. iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ". Qed.
Lemma test_iAlways P Q R :
□ P -∗ <pers> Q → R -∗ <pers> <affine> <affine> P ∗ □ Q.
Proof. iIntros "#HP #HQ HR". iSplitL. iModIntro. done. iModIntro. done. Qed.
(* A bunch of test cases from #127 to establish that tactics behave the same on
`⌜ φ ⌝ → P` and `∀ _ : φ, P` *)
Lemma test_forall_nondep_1 (φ : Prop) :
φ → (∀ _ : φ, False : PROP) -∗ False.
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_forall_nondep_2 (φ : Prop) :
φ → (∀ _ : φ, False : PROP) -∗ False.
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_forall_nondep_3 (φ : Prop) :
φ → (∀ _ : φ, False : PROP) -∗ False.
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _). done. done. Qed.
Lemma test_forall_nondep_4 (φ : Prop) :
φ → (∀ _ : φ, False : PROP) -∗ False.
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ); done. Qed.
Lemma test_pure_impl_1 (φ : Prop) :
φ → (⌜φ⌝ → False : PROP) -∗ False.
Proof. iIntros (Hφ) "Hφ". by iApply "Hφ". Qed.
Lemma test_pure_impl_2 (φ : Prop) :
φ → (⌜φ⌝ → False : PROP) -∗ False.
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" with "[% //]"). done. Qed.
Lemma test_pure_impl_3 (φ : Prop) :
φ → (⌜φ⌝ → False : PROP) -∗ False.
Proof. iIntros (Hφ) "Hφ". unshelve iSpecialize ("Hφ" $! _). done. done. Qed.
Lemma test_pure_impl_4 (φ : Prop) :
φ → (⌜φ⌝ → False : PROP) -∗ False.
Proof. iIntros (Hφ) "Hφ". iSpecialize ("Hφ" $! Hφ). done. Qed.
Lemma test_forall_nondep_impl2 (φ : Prop) P :
φ → P -∗ (∀ _ : φ, P -∗ False : PROP) -∗ False.
Proof.
iIntros (Hφ) "HP Hφ".
Fail iSpecialize ("Hφ" with "HP").
iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.
Lemma test_pure_impl2 (φ : Prop) P :
φ → P -∗ (⌜φ⌝ → P -∗ False : PROP) -∗ False.
Proof.
iIntros (Hφ) "HP Hφ".
Fail iSpecialize ("Hφ" with "HP").
iSpecialize ("Hφ" with "[% //] HP"). done.
Qed.
Lemma demo_laterN_forall {A} (Φ Ψ: A → PROP) n: (∀ x, ▷^n Φ x) -∗ ▷^n (∀ x, Φ x).
Proof.
iIntros "H" (w). iApply ("H" $! w).
Qed.
Lemma test_iNext_laterN_later P n : ▷ ▷^n P -∗ ▷^n ▷ P.
Proof. iIntros "H". iNext. by iNext. Qed.
Lemma test_iNext_later_laterN P n : ▷^n ▷ P -∗ ▷ ▷^n P.
Proof. iIntros "H". iNext. by iNext. Qed.
Lemma test_iNext_plus_1 P n1 n2 : ▷ ▷^n1 ▷^n2 P -∗ ▷^n1 ▷^n2 ▷ P.
Proof. iIntros "H". iNext. iNext. by iNext. Qed.
Lemma test_iNext_plus_2 P n m : ▷^n ▷^m P -∗ ▷^(n+m) P.
Proof. iIntros "H". iNext. done. Qed.
Check "test_iNext_plus_3".
Lemma test_iNext_plus_3 P Q n m k :
▷^m ▷^(2 + S n + k) P -∗ ▷^m ▷ ▷^(2 + S n) Q -∗ ▷^k ▷ ▷^(S (S n + S m)) (P ∗ Q).
Proof. iIntros "H1 H2". iNext. iNext. iNext. iFrame. Show. iModIntro. done. Qed.
Lemma test_iNext_unfold P Q n m (R := (▷^n P)%I) :
R ⊢ ▷^m True.
Proof.
iIntros "HR". iNext.
match goal with |- context [ R ] => idtac | |- _ => fail end.
done.
Qed.
Lemma test_iNext_fail P Q a b c d e f g h i j:
▷^(a + b) ▷^(c + d + e) P -∗ ▷^(f + g + h + i + j) True.
Proof. iIntros "H". iNext. done. Qed.
Lemma test_specialize_affine_pure (φ : Prop) P :
φ → (<affine> ⌜φ⌝ -∗ P) ⊢ P.
Proof.
iIntros (Hφ) "H". by iSpecialize ("H" with "[% //]").
Qed.
Lemma test_assert_affine_pure (φ : Prop) P :
φ → P ⊢ P ∗ <affine> ⌜φ⌝.
Proof. iIntros (Hφ). iAssert (<affine> ⌜φ⌝)%I with "[%]" as "$"; auto. Qed.
Lemma test_assert_pure (φ : Prop) P :
φ → P ⊢ P ∗ ⌜φ⌝.
Proof. iIntros (Hφ). iAssert ⌜φ⌝%I with "[%]" as "$"; auto with iFrame. Qed.
Lemma test_specialize_very_nested (φ : Prop) P P2 Q R1 R2 :
φ →
P -∗ P2 -∗
(<affine> ⌜ φ ⌝ -∗ P2 -∗ Q) -∗
(P -∗ Q -∗ R1) -∗
(R1 -∗ True -∗ R2) -∗
R2.
Proof.
iIntros (?) "HP HP2 HQ H1 H2".
by iApply ("H2" with "(H1 HP (HQ [% //] [-])) [//]").
Qed.
Lemma test_specialize_very_very_nested P1 P2 P3 P4 P5 :
□ P1 -∗
□ (P1 -∗ P2) -∗
(P2 -∗ P2 -∗ P3) -∗
(P3 -∗ P4) -∗
(P4 -∗ P5) -∗
P5.
Proof.
iIntros "#H #H1 H2 H3 H4".
by iSpecialize ("H4" with "(H3 (H2 (H1 H) (H1 H)))").
Qed.
Check "test_specialize_nested_intuitionistic".
Lemma test_specialize_nested_intuitionistic (φ : Prop) P P2 Q R1 R2 :
φ →
□ P -∗ □ (P -∗ Q) -∗ (Q -∗ Q -∗ R2) -∗ R2.
Proof.
iIntros (?) "#HP #HQ HR".
iSpecialize ("HR" with "(HQ HP) (HQ HP)").
Show.
done.
Qed.
Lemma test_specialize_intuitionistic P Q :
□ P -∗ □ (P -∗ Q) -∗ □ Q.
Proof. iIntros "#HP #HQ". iSpecialize ("HQ" with "HP"). done. Qed.
Lemma test_iEval x y : ⌜ (y + x)%nat = 1 ⌝ -∗ ⌜ S (x + y) = 2%nat ⌝ : PROP.
Proof.
iIntros (H).
iEval (rewrite (Nat.add_comm x y) // H).
done.
Qed.
Lemma test_iEval_precedence : True ⊢ True : PROP.
Proof.
iIntros.
(* Ensure that in [iEval (a); b], b is not parsed as part of the argument of [iEval]. *)
iEval (rewrite /=); iPureIntro; exact I.
Qed.
Check "test_iSimpl_in".
Lemma test_iSimpl_in x y : ⌜ (3 + x)%nat = y ⌝ -∗ ⌜ S (S (S x)) = y ⌝ : PROP.
Proof. iIntros "H". iSimpl in "H". Show. done. Qed.
Lemma test_iSimpl_in_2 x y z :
⌜ (3 + x)%nat = y ⌝ -∗ ⌜ (1 + y)%nat = z ⌝ -∗
⌜ S (S (S x)) = y ⌝ : PROP.
Proof. iIntros "H1 H2". iSimpl in "H1 H2". Show. done. Qed.
Lemma test_iSimpl_in3 x y z :
⌜ (3 + x)%nat = y ⌝ -∗ ⌜ (1 + y)%nat = z ⌝ -∗
⌜ S (S (S x)) = y ⌝ : PROP.
Proof. iIntros "#H1 H2". iSimpl in "#". Show. done. Qed.
Check "test_iSimpl_in4".
Lemma test_iSimpl_in4 x y : ⌜ (3 + x)%nat = y ⌝ -∗ ⌜ S (S (S x)) = y ⌝ : PROP.
Proof. iIntros "H". Fail iSimpl in "%". by iSimpl in "H". Qed.
Lemma test_iPureIntro_absorbing (φ : Prop) :
φ → ⊢@{PROP} <absorb> ⌜φ⌝.
Proof. intros ?. iPureIntro. done. Qed.
Check "test_iFrame_later_1".
Lemma test_iFrame_later_1 P Q : P ∗ ▷ Q -∗ ▷ (P ∗ ▷ Q).
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
Check "test_iFrame_later_2".
Lemma test_iFrame_later_2 P Q : ▷ P ∗ ▷ Q -∗ ▷ (▷ P ∗ ▷ Q).
Proof. iIntros "H". iFrame "H". Show. auto. Qed.
Lemma test_with_ident P Q R : P -∗ Q -∗ (P -∗ Q -∗ R) -∗ R.
Proof.
iIntros "? HQ H".
iMatchHyp (fun H _ =>
iApply ("H" with [spec_patterns.SIdent H []; spec_patterns.SIdent "HQ" []])).
Qed.
Lemma iFrame_with_evar_r P Q :
∃ R, (P -∗ Q -∗ P ∗ R) ∧ R = Q.
Proof.
eexists. split. iIntros "HP HQ". iFrame. iApply "HQ". done.
Qed.
Lemma iFrame_with_evar_l P Q :
∃ R, (P -∗ Q -∗ R ∗ P) ∧ R = Q.
Proof.
eexists. split. iIntros "HP HQ". Fail iFrame "HQ".
iSplitR "HP"; iAssumption. done.
Qed.
Lemma iFrame_with_evar_persistent P Q :
∃ R, (P -∗ □ Q -∗ P ∗ R ∗ Q) ∧ R = emp%I.
Proof.
eexists. split. iIntros "HP #HQ". iFrame "HQ HP". iEmpIntro. done.
Qed.
Lemma test_iAccu P Q R S :
∃ PP, (□P -∗ Q -∗ R -∗ S -∗ PP) ∧ PP = (Q ∗ R ∗ S)%I.
Proof.
eexists. split. iIntros "#? ? ? ?". iAccu. done.
Qed.
Lemma test_iAssumption_evar P : ∃ R, (R ⊢ P) ∧ R = P.
Proof.
eexists. split.
- iIntros "H". iAssumption.
(* Now verify that the evar was chosen as desired (i.e., it should not pick False). *)
- reflexivity.
Qed.
Lemma test_iAssumption_False_no_loop : ∃ R, R ⊢ ∀ P, P.
Proof. eexists. iIntros "?" (P). done. Qed.
Lemma test_apply_affine_impl `{!BiPlainly PROP} (P : PROP) :
P -∗ (∀ Q : PROP, ■ (Q -∗ <pers> Q) → ■ (P -∗ Q) → Q).
Proof. iIntros "HP" (Q) "_ #HPQ". by iApply "HPQ". Qed.
Lemma test_apply_affine_wand `{!BiPlainly PROP} (P : PROP) :
P -∗ (∀ Q : PROP, <affine> ■ (Q -∗ <pers> Q) -∗ <affine> ■ (P -∗ Q) -∗ Q).
Proof. iIntros "HP" (Q) "_ #HPQ". by iApply "HPQ". Qed.
Lemma test_and_sep (P Q R : PROP) : P ∧ (Q ∗ □ R) ⊢ (P ∧ Q) ∗ □ R.
Proof.
iIntros "H". repeat iSplit.
- iDestruct "H" as "[$ _]".
- iDestruct "H" as "[_ [$ _]]".
- iDestruct "H" as "[_ [_ #$]]".
Qed.
Lemma test_and_sep_2 (P Q R : PROP) `{!Persistent R, !Affine R} :
P ∧ (Q ∗ R) ⊢ (P ∧ Q) ∗ R.
Proof.
iIntros "H". repeat iSplit.
- iDestruct "H" as "[$ _]".
- iDestruct "H" as "[_ [$ _]]".
- iDestruct "H" as "[_ [_ #$]]".
Qed.
Check "test_and_sep_affine_bi".
Lemma test_and_sep_affine_bi `{!BiAffine PROP} P Q : □ P ∧ Q ⊢ □ P ∗ Q.
Proof.
iIntros "[??]". iSplit; last done. Show. done.
Qed.
Check "test_big_sepL_simpl".
Lemma test_big_sepL_simpl x (l : list nat) P :
P -∗
([∗ list] k↦y ∈ l, <affine> ⌜ y = y ⌝) -∗
([∗ list] y ∈ x :: l, <affine> ⌜ y = y ⌝) -∗
P.
Proof. iIntros "HP ??". Show. simpl. Show. done. Qed.
Check "test_big_sepL2_simpl".
Lemma test_big_sepL2_simpl x1 x2 (l1 l2 : list nat) P :
P -∗
([∗ list] k↦y1;y2 ∈ []; l2, <affine> ⌜ y1 = y2 ⌝) -∗
([∗ list] y1;y2 ∈ x1 :: l1; (x2 :: l2) ++ l2, <affine> ⌜ y1 = y2 ⌝) -∗
P ∨ ([∗ list] y1;y2 ∈ x1 :: l1; x2 :: l2, True).
Proof. iIntros "HP ??". Show. simpl. Show. by iLeft. Qed.
Check "test_big_sepL2_iDestruct".
Lemma test_big_sepL2_iDestruct (Φ : nat → nat → PROP) x1 x2 (l1 l2 : list nat) :
([∗ list] y1;y2 ∈ x1 :: l1; x2 :: l2, Φ y1 y2) -∗
<absorb> Φ x1 x2.
Proof. iIntros "[??]". Show. iFrame. Qed.
Lemma test_big_sepL2_iFrame (Φ : nat → nat → PROP) (l1 l2 : list nat) P :
Φ 0 10 -∗ ([∗ list] y1;y2 ∈ l1;l2, Φ y1 y2) -∗
([∗ list] y1;y2 ∈ (0 :: l1);(10 :: l2), Φ y1 y2).
Proof. iIntros "$ ?". iFrame. Qed.
Lemma test_lemma_1 (b : bool) :
emp ⊢@{PROP} □?b True.
Proof. destruct b; simpl; eauto. Qed.
Check "test_reducing_after_iDestruct".
Lemma test_reducing_after_iDestruct : emp ⊢@{PROP} True.
Proof.
iIntros "H". iDestruct (test_lemma_1 true with "H") as "H". Show. done.
Qed.
Lemma test_lemma_2 (b : bool) :
□?b emp ⊢@{PROP} emp.
Proof. destruct b; simpl; eauto. Qed.
Check "test_reducing_after_iApply".
Lemma test_reducing_after_iApply : emp ⊢@{PROP} emp.
Proof.
iIntros "#H". iApply (test_lemma_2 true). Show. auto.
Qed.
Lemma test_lemma_3 (b : bool) :
□?b emp ⊢@{PROP} ⌜b = b⌝.
Proof. destruct b; simpl; eauto. Qed.
Check "test_reducing_after_iApply_late_evar".
Lemma test_reducing_after_iApply_late_evar : emp ⊢@{PROP} ⌜true = true⌝.
Proof.
iIntros "#H". iApply (test_lemma_3). Show. auto.
Qed.
Section wandM.
Import proofmode.base.
Check "test_wandM".
Lemma test_wandM mP Q R :
(mP -∗? Q) -∗ (Q -∗ R) -∗ (mP -∗? R).
Proof.
iIntros "HPQ HQR HP". Show.
iApply "HQR". iApply "HPQ". Show.
done.
Qed.
End wandM.
Definition modal_if_def b (P : PROP) :=
(□?b P)%I.
Lemma modal_if_lemma1 b P :
False -∗ □?b P.
Proof. iIntros "?". by iExFalso. Qed.
Lemma test_iApply_prettification1 (P : PROP) :
False -∗ modal_if_def true P.
Proof.
(* Make sure the goal is not prettified before [iApply] unifies. *)
iIntros "?". rewrite /modal_if_def. iApply modal_if_lemma1. iAssumption.
Qed.
Lemma modal_if_lemma2 P :
False -∗ □?false P.
Proof. iIntros "?". by iExFalso. Qed.
Lemma test_iApply_prettification2 (P : PROP) :
False -∗ ∃ b, □?b P.
Proof.
(* Make sure the conclusion of the lemma is not prettified too early. *)
iIntros "?". iExists _. iApply modal_if_lemma2. done.