-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlist_reverse.v
52 lines (47 loc) · 1.59 KB
/
list_reverse.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
(** Correctness of in-place list reversal *)
From iris.proofmode Require Export tactics.
From iris.program_logic Require Export total_weakestpre weakestpre.
From iris.heap_lang Require Export lang.
From iris.heap_lang Require Import proofmode notation.
Set Default Proof Using "Type".
Section list_reverse.
Context `{!heapG Σ}.
Implicit Types l : loc.
Fixpoint is_list (hd : val) (xs : list val) : iProp Σ :=
match xs with
| [] => ⌜hd = NONEV⌝
| x :: xs => ∃ l hd', ⌜hd = SOMEV #l⌝ ∗ l ↦ (x,hd') ∗ is_list hd' xs
end%I.
Definition rev : val :=
rec: "rev" "hd" "acc" :=
match: "hd" with
NONE => "acc"
| SOME "l" =>
let: "tmp1" := Fst !"l" in
let: "tmp2" := Snd !"l" in
"l" <- ("tmp1", "acc");;
"rev" "tmp2" "hd"
end.
Lemma rev_acc_wp hd acc xs ys :
[[{ is_list hd xs ∗ is_list acc ys }]]
rev hd acc
[[{ w, RET w; is_list w (reverse xs ++ ys) }]].
Proof.
iIntros (Φ) "[Hxs Hys] HΦ". Show.
iInduction xs as [|x xs] "IH" forall (hd acc ys Φ);
iSimplifyEq; wp_rec; wp_let.
- Show. wp_match. by iApply "HΦ".
- iDestruct "Hxs" as (l hd' ->) "[Hx Hxs]".
wp_load. wp_load. wp_store.
iApply ("IH" $! hd' (SOMEV #l) (x :: ys) with "Hxs [Hx Hys]"); simpl.
{ iExists l, acc; by iFrame. }
iIntros (w). rewrite cons_middle assoc -reverse_cons. iApply "HΦ".
Qed.
Lemma rev_wp hd xs :
[[{ is_list hd xs }]] rev hd NONEV [[{ w, RET w; is_list w (reverse xs) }]].
Proof.
iIntros (Φ) "Hxs HΦ".
iApply (rev_acc_wp hd NONEV xs [] with "[$Hxs //]").
iIntros (w). rewrite right_id_L. iApply "HΦ".
Qed.
End list_reverse.