|
| 1 | +from fast_llm.config import Field, FieldHint, FieldUpdate, check_field, config_class |
| 2 | +from fast_llm.engine.base_model.config import BaseModelArchitectureConfig, BaseModelConfig |
| 3 | +from fast_llm.functional.config import ActivationType |
| 4 | +from fast_llm.layers.common.config import NormalizationArchitectureConfig, NormalizationConfig |
| 5 | +from fast_llm.utils import Assert |
| 6 | + |
| 7 | + |
| 8 | +class SSMDimNames: |
| 9 | + model_dim = "model_dim" # Model dimension (D) |
| 10 | + state_dim = "state_dim" # State dimension (N) |
| 11 | + conv_dim = "conv_dim" # Dimension of the conv1d input in mamba layers |
| 12 | + inner_dim = "inner_dim" # Inner dimension after expansion |
| 13 | + dt_rank = "dt_rank" # Rank of Δ |
| 14 | + inner_proj_mamba = "inner_proj_mamba" # Inner projection dimension for mamba |
| 15 | + inner_proj_mamba2 = "inner_proj_mamba2" # Inner projection dimension for mamba2 |
| 16 | + x_proj_dim = "x_proj_dim" # X projection dimension |
| 17 | + head_dim = "head_dim" # Dimension of the mamba2 head (P) |
| 18 | + conv_kernel_size = "conv_kernel_size" # Kernel size of the conv1d in mamba layers |
| 19 | + qk_heads = "qk_heads" # Number of QK heads |
| 20 | + v_heads = "v_heads" # Number of V heads |
| 21 | + |
| 22 | + |
| 23 | +@config_class() |
| 24 | +class SSMArchitectureConfig(BaseModelArchitectureConfig): |
| 25 | + _abstract = False |
| 26 | + |
| 27 | + # Normalization |
| 28 | + normalization: NormalizationArchitectureConfig = Field( |
| 29 | + default_factory=NormalizationArchitectureConfig, |
| 30 | + desc="Configuration for the normalization layers architecture.", |
| 31 | + hint=FieldHint.core, |
| 32 | + ) |
| 33 | + |
| 34 | + expansion_factor: int = Field( |
| 35 | + default=2, desc="Expansion factor for Mamba blocks.", hint=FieldHint.core, valid=check_field(Assert.gt, 0) |
| 36 | + ) |
| 37 | + |
| 38 | + state_size: int = Field( |
| 39 | + default=16, |
| 40 | + desc="State size for Mamba blocks.", |
| 41 | + hint=FieldHint.core, |
| 42 | + valid=check_field(Assert.gt, 0), |
| 43 | + ) |
| 44 | + conv_kernel_dimension: int = Field( |
| 45 | + default=4, |
| 46 | + desc="Conv kernel dimension for Mamba blocks.", |
| 47 | + hint=FieldHint.core, |
| 48 | + valid=check_field(Assert.gt, 0), |
| 49 | + ) |
| 50 | + |
| 51 | + # Layer parameters |
| 52 | + add_bias_linear: bool = Field( |
| 53 | + default=False, |
| 54 | + desc="Whether to use bias in SSM layers", |
| 55 | + hint=FieldHint.core, |
| 56 | + ) |
| 57 | + |
| 58 | + dt_rank: int = Field( |
| 59 | + default=None, |
| 60 | + desc="Rank of the Δ projection matrix. If 'None', will be set to ceil(hidden_size/16)", |
| 61 | + hint=FieldHint.core, |
| 62 | + ) |
| 63 | + |
| 64 | + chunk_size: int = Field( |
| 65 | + default=256, |
| 66 | + desc="Chunk size for Mamba2 blocks.", |
| 67 | + hint=FieldHint.core, |
| 68 | + ) |
| 69 | + |
| 70 | + n_qk_heads: int = Field( |
| 71 | + default=32, |
| 72 | + desc="Number of QK heads for Mamba2 blocks.", |
| 73 | + hint=FieldHint.core, |
| 74 | + ) |
| 75 | + |
| 76 | + n_v_heads: int = Field( |
| 77 | + default=32, |
| 78 | + desc="Number of V heads for Mamba2 blocks.", |
| 79 | + hint=FieldHint.core, |
| 80 | + ) |
| 81 | + |
| 82 | + activation_type: ActivationType = Field( |
| 83 | + default=None, |
| 84 | + desc="The MLP intermediate activation type. Default: SiLU for gated MLP, GeLU otherwise.", |
| 85 | + hint=FieldHint.core, |
| 86 | + ) |
| 87 | + |
| 88 | + def _validate(self) -> None: |
| 89 | + with self._set_implicit_default(): |
| 90 | + if self.activation_type is None: |
| 91 | + self.activation_type = ActivationType.silu |
| 92 | + if self.dt_rank is None: |
| 93 | + self.dt_rank = -1 # set to -1, it will be overwrittem in ssm validation |
| 94 | + |
| 95 | + super()._validate() |
| 96 | + |
| 97 | + |
| 98 | +@config_class() |
| 99 | +class SSMConfig(SSMArchitectureConfig, BaseModelConfig): |
| 100 | + """Configuration for a Structured State Space Model (SSM) layer.""" |
| 101 | + |
| 102 | + normalization: NormalizationConfig = FieldUpdate(default_factory=NormalizationConfig) |
| 103 | + |
| 104 | + debug_ssm: bool = Field( |
| 105 | + default=False, |
| 106 | + desc="debug_ssm", |
| 107 | + hint=FieldHint.optional, |
| 108 | + ) |
| 109 | + |
| 110 | + dt_min: float = Field( |
| 111 | + default=0.001, |
| 112 | + desc="Minimum step size for discretization", |
| 113 | + hint=FieldHint.core, |
| 114 | + valid=check_field(Assert.gt, 0), |
| 115 | + ) |
| 116 | + |
| 117 | + dt_max: float = Field( |
| 118 | + default=0.1, |
| 119 | + desc="Maximum step size for discretization", |
| 120 | + hint=FieldHint.core, |
| 121 | + valid=check_field(Assert.gt, 0), |
| 122 | + ) |
| 123 | + |
| 124 | + dt_init_floor: float = Field( |
| 125 | + default=1e-4, |
| 126 | + desc="Minimum value for initializing dt", |
| 127 | + hint=FieldHint.core, |
| 128 | + valid=check_field(Assert.gt, 0), |
| 129 | + ) |
| 130 | + |
| 131 | + def _validate(self) -> None: |
| 132 | + """Validate configuration parameters.""" |
| 133 | + |
| 134 | + super()._validate() |
| 135 | + Assert.geq(self.dt_max, self.dt_min) |
0 commit comments