|
| 1 | +import torch |
| 2 | +from torch import nn |
| 3 | + |
| 4 | +from torchts.nn.model import TimeSeriesModel |
| 5 | + |
| 6 | + |
| 7 | +class ODESolver(TimeSeriesModel): |
| 8 | + def __init__( |
| 9 | + self, ode, init_vars, init_coeffs, dt, solver="euler", outvar=None, **kwargs |
| 10 | + ): |
| 11 | + super().__init__(**kwargs) |
| 12 | + |
| 13 | + if ode.keys() != init_vars.keys(): |
| 14 | + raise ValueError("Inconsistent keys in ode and init_vars") |
| 15 | + |
| 16 | + if solver == "euler": |
| 17 | + self.solver = self.euler |
| 18 | + else: |
| 19 | + raise ValueError(f"Unrecognized solver {solver}") |
| 20 | + |
| 21 | + for name, value in init_coeffs.items(): |
| 22 | + self.register_parameter(name, nn.Parameter(torch.tensor(value))) |
| 23 | + |
| 24 | + self.ode = ode |
| 25 | + self.var_names = ode.keys() |
| 26 | + self.init_vars = { |
| 27 | + name: torch.tensor(value, device=self.device) |
| 28 | + for name, value in init_vars.items() |
| 29 | + } |
| 30 | + self.coeffs = {name: param for name, param in self.named_parameters()} |
| 31 | + self.outvar = self.var_names if outvar is None else outvar |
| 32 | + self.dt = dt |
| 33 | + |
| 34 | + def euler(self, nt): |
| 35 | + pred = {name: value.unsqueeze(0) for name, value in self.init_vars.items()} |
| 36 | + |
| 37 | + for n in range(nt - 1): |
| 38 | + # create dictionary containing values from previous time step |
| 39 | + prev_val = {var: pred[var][[n]] for var in self.var_names} |
| 40 | + |
| 41 | + for var in self.var_names: |
| 42 | + new_val = prev_val[var] + self.ode[var](prev_val, self.coeffs) * self.dt |
| 43 | + pred[var] = torch.cat([pred[var], new_val]) |
| 44 | + |
| 45 | + # reformat output to contain desired (observed) variables |
| 46 | + return torch.stack([pred[var] for var in self.outvar], dim=1) |
| 47 | + |
| 48 | + def forward(self, nt): |
| 49 | + return self.solver(nt) |
| 50 | + |
| 51 | + def get_coeffs(self): |
| 52 | + return {name: param.item() for name, param in self.named_parameters()} |
| 53 | + |
| 54 | + def _step(self, batch, batch_idx, num_batches): |
| 55 | + (x,) = batch |
| 56 | + nt = x.shape[0] |
| 57 | + pred = self(nt) |
| 58 | + return self.criterion(pred, x) |
0 commit comments