diff --git a/content/tutorials/numpy_integration/elevation_3d.webp b/content/tutorials/numpy_integration/elevation_3d.webp new file mode 100644 index 0000000..d6de0be Binary files /dev/null and b/content/tutorials/numpy_integration/elevation_3d.webp differ diff --git a/content/tutorials/numpy_integration/fractal_landlab.webp b/content/tutorials/numpy_integration/fractal_landlab.webp new file mode 100644 index 0000000..2951234 Binary files /dev/null and b/content/tutorials/numpy_integration/fractal_landlab.webp differ diff --git a/content/tutorials/numpy_integration/fractal_numpy.webp b/content/tutorials/numpy_integration/fractal_numpy.webp new file mode 100644 index 0000000..1e602dc Binary files /dev/null and b/content/tutorials/numpy_integration/fractal_numpy.webp differ diff --git a/content/tutorials/numpy_integration/fractal_numpy_abs.webp b/content/tutorials/numpy_integration/fractal_numpy_abs.webp new file mode 100644 index 0000000..05c0063 Binary files /dev/null and b/content/tutorials/numpy_integration/fractal_numpy_abs.webp differ diff --git a/content/tutorials/numpy_integration/grass_numpy_integration.qmd b/content/tutorials/numpy_integration/grass_numpy_integration.qmd new file mode 100644 index 0000000..1655b02 --- /dev/null +++ b/content/tutorials/numpy_integration/grass_numpy_integration.qmd @@ -0,0 +1,291 @@ +--- +title: "Using GRASS, NumPy, and Landlab for Scientific Modeling" +author: "Anna Petrasova" +date: 2025-10-01 +date-modified: today +categories: [NumPy, raster, terrain, intermediate, Landlab, Python, hydrology, matplotlib] +description: > + Learn how to integrate NumPy arrays with GRASS tools + on an example using Landlab modeling framework. +image: thumbnail.webp +other-links: +- text: "Intro to GRASS Python API" + href: "https://grass.osgeo.org/grass-devel/manuals/python_intro.html" + icon: link +- text: "Check out new xarray-grass interface" + href: "https://github.com/lrntct/xarray-grass" + icon: link +format: + ipynb: default + html: + toc: true + code-tools: true + code-copy: true + code-fold: false +engine: jupyter +execute: + eval: false +jupyter: python3 +--- + +# Introduction + +This short tutorial shows how to integrate NumPy arrays with GRASS tools to create a smooth workflow for scientific modeling and analysis in Python. + +Specifically, it demonstrates a complete workflow: generating a terrain surface in GRASS, importing it into [Landlab](https://landlab.csdms.io/) (an open-source Python library for running numerical models of Earth-surface dynamics), running an erosion model, and then returning the results to GRASS for further hydrologic analysis. + +With the [grass.tools API](https://grass.osgeo.org/grass-devel/manuals/python_intro.html) (introduced in GRASS v8.5), tools can now accept and return NumPy arrays directly, rather than working only with GRASS rasters. While native rasters remain the most efficient option for large-scale processing, NumPy arrays make it easy to connect GRASS with the broader Python scientific ecosystem, enabling advanced analysis and seamless use of familiar libraries. + +::: {.callout-note title="How to run this tutorial?"} + +This tutorial is prepared to be run in a Jupyter notebook locally +or using services such as Google Colab. You can [download the notebook here](grass_numpy_integration.ipynb). + +If you are not sure how to get started with GRASS, checkout the tutorials [Get started with GRASS & Python in Jupyter Notebooks](../get_started/fast_track_grass_and_python.qmd) +and [Get started with GRASS in Google Colab](../get_started/grass_gis_in_google_colab.qmd). + +::: + +![](logos.webp) + +# Generating a fractal surface in GRASS + +First we will import GRASS packages: + +```{python} +# import standard Python packages +import os +import sys +import subprocess + +# for some environments, this path setup can be skipped +sys.path.append( + subprocess.check_output(["grass", "--config", "python_path"], text=True).strip() +) + +# import GRASS Python packages +import grass.script as gs +import grass.jupyter as gj +from grass.tools import Tools +``` + +Create a new GRASS project called "landlab". Since we will be working with artifical data, we don't need to +provide any coordinate reference system, resulting in a generic cartesian system. + +```{python} +gs.create_project("landlab") +``` + +Initialize a session in this project and create a `Tools` object we will use for calling GRASS tools: + +```{python} +session = gj.init("landlab") +tools = Tools() +``` + +Since we are generating artificial data, we need to specify the dimensions (number of rows and columns). +We also need to let GRASS know the actual coordinates we want to use; we will do all that by setting +the [computational region](https://grass.osgeo.org/grass-stable/manuals/g.region.html). Lower-left (south-west) corner of the data will be at the coordinates (0, 0), +the coordinates of the upper-right (nort-east) corner are number of rows times cell resolution and number of columns times cell resolution. +We chose a cell resolution of 10 horizontal units, which would impact certain terrain analyses, such as slope computation, and certain hydrology processes. + +```{python} +rows = 200 +cols = 250 +resolution = 10 +tools.g_region(s=0, w=0, n=rows * resolution, e=cols * resolution, res=resolution) +``` + +## Creating a fractal surface as a NumPy array + +We will create a simple fractal surface with [r.surf.fractal](https://grass.osgeo.org/grass-stable/manuals/r.surf.fractal.html). + +{{< fa wand-magic-sparkles >}} The trick is to use the `output` parameter with the value `np.array` to request a NumPy array instead of a native GRASS raster. {{< fa wand-magic-sparkles >}} +This way GRASS provides the array as the result of the call: + +```{python} +import numpy as np + +fractal = tools.r_surf_fractal(output=np.array, seed=6) +``` + +::: {.callout-note title="NumPy arrays in GRASS version < 8.5"} + +Directly passing NumPy arrays to GRASS tools and receiving them back is a new feature in GRASS v8.5. +If you work with older versions of GRASS, you can use +[grass.script.array](https://grass.osgeo.org/grass-stable/manuals/libpython/grass.script.html#script.array.array): + +```{python} +import grass.script as gs +import grass.script.array as ga + +gs.run_command("r.surf.fractal", seed=6, output="fractal") +fractal = ga.array("fractal") +``` + +::: + +Now we can display `fractal` array e.g., using matplotlib library: + +```{python} +import matplotlib.pyplot as plt + +plt.figure() +plt.imshow(fractal, cmap='terrain') +plt.colorbar(label='Elevation') +plt.title('Topography from r.surf.fractal') +plt.xlabel('X-coordinate') +plt.ylabel('Y-coordinate') +plt.show() +``` + +![Fractal surface generated with r.surf.fractal displayed using matplotlib](fractal_numpy.webp) + +We can modify the array: + +```{python} +fractal *= 0.1 +fractal = np.abs(fractal) + +plt.figure() +plt.imshow(fractal, cmap='terrain') +plt.colorbar(label='Elevation') +plt.title('Modified topography from r.surf.fractal') +plt.xlabel('X-coordinate') +plt.ylabel('Y-coordinate') +plt.show() +``` + +![Modified fractal surface](fractal_numpy_abs.webp) + +# From GRASS to Landlab + +Now, let's use Landlab's modeling capabilities to burn in an initial drainage network using the +Landlab's [Fastscape Eroder](https://landlab.readthedocs.io/en/latest/generated/api/landlab.components.stream_power.fastscape_stream_power.html). + +Create the `RasterModelGrid` specifying the same dimensions we used for creating the fractal surface. +Add the terrain elevations as a 1D array (flattened with `ravel`) to the grid's nodes under the standard field name "topographic__elevation". + +```{python} +from landlab import RasterModelGrid + +grid = RasterModelGrid((rows, cols), xy_spacing=resolution) +grid.add_field("topographic__elevation", fractal.ravel(), at="node") +``` + +Run the erosion of the landscape: + +```{python} +from landlab.components import LinearDiffuser +from landlab.components import FlowAccumulator, FastscapeEroder + +fa = FlowAccumulator(grid, flow_director="D8") +fsp = FastscapeEroder(grid, K_sp=0.01, m_sp=0.5, n_sp=1.0) +ld = LinearDiffuser(grid, linear_diffusivity=1) + +for i in range(100): + fa.run_one_step() + fsp.run_one_step(dt=1.0) + ld.run_one_step(dt=1.0) +``` + +Extract the resulting NumPy array and visualize it: + +```{python} +elevation = grid.at_node['topographic__elevation'].reshape(grid.shape) + +plt.figure() +plt.imshow(elevation, cmap='terrain', origin='upper') +plt.colorbar(label='Elevation') +plt.title('Topography after erosion') +plt.xlabel('X-coordinate') +plt.ylabel('Y-coordinate') +plt.show() +``` + +![Eroded fractal surface with Landlab](fractal_landlab.webp) + +# From Landlab to GRASS + +Now we will bring the eroded topography back to GRASS for additional hydrology modeling. +We will derive streams using the [r.watershed](https://grass.osgeo.org/grass-stable/manuals/r.watershed.html) and [r.stream.extract](https://grass.osgeo.org/grass-stable/manuals/r.stream.extract.html) tools. + +{{< fa wand-magic-sparkles >}} The `Tools` API allows us to directly plugin the NumPy `elevation` array into the tool call. {{< fa wand-magic-sparkles >}} + +```{python} +tools.r_watershed(elevation=elevation, accumulation="accumulation") +tools.r_stream_extract( + elevation=elevation, + accumulation="accumulation", + threshold=300, + stream_vector="streams", +) + +``` + +And visualize them using `gj.Map` on top of shaded relief: + +```{python} +tools.r_relief(input=elevation, output="relief") + +m = gj.Map(width=400) +m.d_rast(map="relief") +m.d_vect(map="streams", type="line", color="blue", width=2) +m.show() +``` + +![Streams derived from eroded topography in GRASS](streams.webp) + +Now if we want to store the eroded topography as a native GRASS raster, we can use +[grass.script.array](https://grass.osgeo.org/grass-stable/manuals/libpython/grass.script.html#script.array.array) +to create a GRASS array object with the dimensions given by the current computational region. +Then we copy the NumPy array and write the raster map as GRASS native raster. + +```{python} +import grass.script.array as ga + +# Create a new grasss.script.array object +grass_elevation = ga.array() +# Copy values from elevation array +grass_elevation[...] = elevation +# Write new GRASS raster map 'elevation' +grass_elevation.write("elevation") +``` + +::: {.callout-note title="What about N-dimensional arrays?"} + +For 3D arrays, you can use [grass.script.array3d](https://grass.osgeo.org/grass-stable/manuals/libpython/grass.script.html#script.array.array3d) package. + +For N-dimensional arrays, check out the new [xarray-grass](https://github.com/lrntct/xarray-grass) bridge developed by [Laurent Courty](https://github.com/lrntct) {{< fa rocket >}} +::: + +Let's visualize the new GRASS elevation map with streams by setting its color +scheme to `srtm_percent` and rendering it in 3D using the +[grass.jupyter.Map3D](https://grass.osgeo.org/grass-stable/manuals/libpython/grass.jupyter.html?highlight=map3d#module-grass.jupyter.map3d) class: + +```{python} +tools.r_colors(map="elevation", color="srtm_percent") +elevation_3dmap = gj.Map3D() +elevation_3dmap.render( + elevation_map="elevation", + resolution_fine=1, + vline="streams", + vline_width=3, + vline_color="blue", + vline_height=3, + position=[0.50, 0.00], + height=5600, + perspective=10, +) +elevation_3dmap.show() +``` + +![Resulting elevation with streams in 3D](elevation_3d.webp) + +And now let's augment it with [Nano Banana AI](https://nanobanana.ai/): + +![AI edited landscape](thumbnail.webp) + +--- + +The development of this tutorial and the `grass.tools` package (developed by Vaclav Petras) was supported by NSF Award #2322073, granted to Natrx, Inc. diff --git a/content/tutorials/numpy_integration/logos.webp b/content/tutorials/numpy_integration/logos.webp new file mode 100644 index 0000000..7e298f9 Binary files /dev/null and b/content/tutorials/numpy_integration/logos.webp differ diff --git a/content/tutorials/numpy_integration/streams.webp b/content/tutorials/numpy_integration/streams.webp new file mode 100644 index 0000000..cdc8b40 Binary files /dev/null and b/content/tutorials/numpy_integration/streams.webp differ diff --git a/content/tutorials/numpy_integration/thumbnail.webp b/content/tutorials/numpy_integration/thumbnail.webp new file mode 100644 index 0000000..6869cfa Binary files /dev/null and b/content/tutorials/numpy_integration/thumbnail.webp differ