@@ -76,15 +76,15 @@ def evaluate(self, real_df: pd.DataFrame, synthetic_df: pd.DataFrame) -> dict:
7676 y_real = real_df [self .target_column ]
7777
7878 # Handle categorical encoding only if it's a classification task
79- if self . task == 'classification' :
80- categorical_cols = X_syn .select_dtypes (include = ['object' , 'category' ]).columns .tolist ()
79+
80+ categorical_cols = X_syn .select_dtypes (include = ['object' , 'category' ]).columns .tolist ()
8181
82- if categorical_cols :
83- X_syn = pd .get_dummies (X_syn , columns = categorical_cols , drop_first = True )
84- X_real = pd .get_dummies (X_real , columns = categorical_cols , drop_first = True )
82+ if categorical_cols :
83+ X_syn = pd .get_dummies (X_syn , columns = categorical_cols , drop_first = True )
84+ X_real = pd .get_dummies (X_real , columns = categorical_cols , drop_first = True )
8585
86- # Align columns in case of different categorical levels between real and synthetic data
87- X_syn , X_real = X_syn .align (X_real , join = 'left' , axis = 1 , fill_value = 0 )
86+ # Align columns in case of different categorical levels between real and synthetic data
87+ X_syn , X_real = X_syn .align (X_real , join = 'left' , axis = 1 , fill_value = 0 )
8888
8989 # Model Training and Evaluation
9090 if self .task == 'regression' :
0 commit comments