-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcustom_dataloader.py
48 lines (41 loc) · 1.36 KB
/
custom_dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import glob
import os
import cv2
import numpy as np
import torch
from torch.utils.data import Dataset
from torchvision.datasets.folder import default_loader
class CustomDataset(Dataset):
def __init__(self, data_path, transform):
self.imgs_path = data_path
file_list = glob.glob(self.imgs_path + "*")
self.transform = transform
self.loader = default_loader
self.data = []
self.targets = []
self.class_name_list = []
i = 0
self.class_map = {}
for class_path in file_list:
class_name = class_path.split("/")[-1]
self.class_name_list.append(class_name)
self.class_map[self.class_name_list[i]] = i
for img_path in glob.glob(class_path+"/*.ppm"):
self.data.append(img_path)
self.targets.append(i)
i+=1
self.data = np.array(self.data)
self.targets = np.array(self.targets)
self.classes = self.class_name_list
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
path = self.data[idx]
#path = os.path.join(sample)
target = self.targets[idx]
img = self.loader(path)
if img is None:
print(path)
if self.transform is not None:
img = self.transform(img)
return img, target