|
| 1 | +# Parquet |
| 2 | + |
| 3 | +<web-summary> |
| 4 | +Read Parquet files via Apache Arrow in Kotlin DataFrame — high‑performance columnar storage for analytics. |
| 5 | +</web-summary> |
| 6 | + |
| 7 | +<card-summary> |
| 8 | +Use Kotlin DataFrame to read Parquet datasets using Apache Arrow for fast, typed, columnar I/O. |
| 9 | +</card-summary> |
| 10 | + |
| 11 | +<link-summary> |
| 12 | +Kotlin DataFrame can read Parquet files through Apache Arrow’s Dataset API. Learn how and when to use it. |
| 13 | +</link-summary> |
| 14 | + |
| 15 | +Kotlin DataFrame supports reading [Apache Parquet](https://parquet.apache.org/) files through the Apache Arrow integration. |
| 16 | + |
| 17 | +Requires the [`dataframe-arrow` module](Modules.md#dataframe-arrow), which is included by default in the general [`dataframe`](Modules.md#dataframe-general) artifact and in [`%use dataframe`](SetupKotlinNotebook.md#integrate-kotlin-dataframe) for Kotlin Notebook. |
| 18 | + |
| 19 | +> We currently support READING Parquet via Apache Arrow only; writing Parquet is not supported in Kotlin DataFrame. |
| 20 | +> {style="note"} |
| 21 | +
|
| 22 | +> Apache Arrow is not supported on Android, so reading Parquet files on Android is not available. |
| 23 | +> {style="warning"} |
| 24 | +
|
| 25 | +> Structured (nested) Arrow types such as Struct are not supported yet in Kotlin DataFrame. |
| 26 | +> See an issue: [Add inner / Struct type support in Arrow](https://github.com/Kotlin/dataframe/issues/536) |
| 27 | +> {style="warning"} |
| 28 | +
|
| 29 | +## Reading Parquet Files |
| 30 | + |
| 31 | +Kotlin DataFrame provides four `readParquet()` methods that can read from different source types. |
| 32 | +All overloads accept optional `nullability` inference settings and `batchSize` for Arrow scanning. |
| 33 | + |
| 34 | +```kotlin |
| 35 | +// 1) URLs |
| 36 | +public fun DataFrame.Companion.readParquet( |
| 37 | + vararg urls: URL, |
| 38 | + nullability: NullabilityOptions = NullabilityOptions.Infer, |
| 39 | + batchSize: Long = ARROW_PARQUET_DEFAULT_BATCH_SIZE, |
| 40 | +): AnyFrame |
| 41 | + |
| 42 | +// 2) Strings (interpreted as file paths or URLs, e.g., "data/file.parquet", "file://", or "http(s)://") |
| 43 | +public fun DataFrame.Companion.readParquet( |
| 44 | + vararg strUrls: String, |
| 45 | + nullability: NullabilityOptions = NullabilityOptions.Infer, |
| 46 | + batchSize: Long = ARROW_PARQUET_DEFAULT_BATCH_SIZE, |
| 47 | +): AnyFrame |
| 48 | + |
| 49 | +// 3) Paths |
| 50 | +public fun DataFrame.Companion.readParquet( |
| 51 | + vararg paths: Path, |
| 52 | + nullability: NullabilityOptions = NullabilityOptions.Infer, |
| 53 | + batchSize: Long = ARROW_PARQUET_DEFAULT_BATCH_SIZE, |
| 54 | +): AnyFrame |
| 55 | + |
| 56 | +// 4) Files |
| 57 | +public fun DataFrame.Companion.readParquet( |
| 58 | + vararg files: File, |
| 59 | + nullability: NullabilityOptions = NullabilityOptions.Infer, |
| 60 | + batchSize: Long = ARROW_PARQUET_DEFAULT_BATCH_SIZE, |
| 61 | +): AnyFrame |
| 62 | +``` |
| 63 | + |
| 64 | +These overloads are defined in the `dataframe-arrow` module and internally use `FileFormat.PARQUET` from Apache Arrow’s |
| 65 | +Dataset API to scan the data and materialize it as a Kotlin `DataFrame`. |
| 66 | + |
| 67 | +### Examples |
| 68 | + |
| 69 | +```kotlin |
| 70 | +// Read from file paths (as strings) |
| 71 | +val df1 = DataFrame.readParquet("data/sales.parquet") |
| 72 | + |
| 73 | +// Read from File objects |
| 74 | +val file = File("data/sales.parquet") |
| 75 | +val df2 = DataFrame.readParquet(file) |
| 76 | + |
| 77 | +// Read from Path objects |
| 78 | +val path = Paths.get("data/sales.parquet") |
| 79 | +val df3 = DataFrame.readParquet(path) |
| 80 | + |
| 81 | +// Read from URLs |
| 82 | +val url = URL("https://example.com/data/sales.parquet") |
| 83 | +val df4 = DataFrame.readParquet(url) |
| 84 | + |
| 85 | +// Customize nullability inference and batch size |
| 86 | +val df5 = DataFrame.readParquet( |
| 87 | + File("data/sales.parquet"), |
| 88 | + nullability = NullabilityOptions.Infer, |
| 89 | + batchSize = 64L * 1024 // tune Arrow scan batch size if needed |
| 90 | +) |
| 91 | +``` |
| 92 | + |
| 93 | +### Multiple Files |
| 94 | + |
| 95 | +It's possible to read multiple Parquet files: |
| 96 | + |
| 97 | +```kotlin |
| 98 | +val df = DataFrame.readParquet("file1.parquet", "file2.parquet", "file3.parquet") |
| 99 | +``` |
| 100 | +**Requirements:** |
| 101 | + |
| 102 | +- All files must have compatible schemas |
| 103 | +- Files are vertically concatenated (union of rows) |
| 104 | +- Column types must match exactly |
| 105 | +- Missing columns in some files will result in null values |
| 106 | + |
| 107 | +### Batch Size Tuning |
| 108 | + |
| 109 | +- **Default**: (typically 1024) `ARROW_PARQUET_DEFAULT_BATCH_SIZE` |
| 110 | +- **Small files** (< 100MB): Use default |
| 111 | +- **Large files** (> 1GB): Increase to `64 * 1024` or `128 * 1024` |
| 112 | +- **Memory constrained**: Decrease to `256` or `512` |
| 113 | + |
| 114 | +```kotlin |
| 115 | +// For large files with enough memory |
| 116 | +DataFrame.readParquet("large_file.parquet", batchSize = 64L * 1024) |
| 117 | + |
| 118 | +// For memory-constrained environments |
| 119 | +DataFrame.readParquet("file.parquet", batchSize = 256L) |
| 120 | +``` |
| 121 | + |
| 122 | +### Nullability Inference |
| 123 | + |
| 124 | +Controls how nullable columns are handled: |
| 125 | + |
| 126 | +```kotlin |
| 127 | +// Infer nullability from data (default) |
| 128 | +DataFrame.readParquet("file.parquet", nullability = NullabilityOptions.Infer) |
| 129 | + |
| 130 | +// Treat all columns as nullable |
| 131 | +DataFrame.readParquet("file.parquet", nullability = NullabilityOptions.Enable) |
| 132 | + |
| 133 | +// Treat all columns as non-null (may cause runtime errors) |
| 134 | +DataFrame.readParquet("file.parquet", nullability = NullabilityOptions.Disable) |
| 135 | +``` |
| 136 | + |
| 137 | +## About Parquet |
| 138 | + |
| 139 | +[Apache Parquet](https://parquet.apache.org/) is an open-source, column-oriented data file format designed for efficient data storage and retrieval. It provides several advantages: |
| 140 | + |
| 141 | +- **Columnar storage**: Data is stored column-by-column, which enables efficient compression and encoding schemes |
| 142 | +- **Schema evolution**: Supports adding new columns without breaking existing data readers |
| 143 | +- **Efficient querying**: Optimized for analytics workloads where you typically read a subset of columns |
| 144 | +- **Cross-platform**: Works across different programming languages and data processing frameworks |
| 145 | +- **Compression**: Built-in support for various compression algorithms (GZIP, Snappy, etc.) |
| 146 | + |
| 147 | +Parquet files are commonly used in data lakes, data warehouses, and big data processing pipelines. They're frequently created by tools like Apache Spark, Pandas, Dask, and various cloud data services. |
| 148 | + |
| 149 | +## Typical use cases |
| 150 | + |
| 151 | +- Exchanging columnar datasets between Spark and Kotlin/JVM applications. |
| 152 | +- Analytical workloads where columnar compression and predicate pushdown matter. |
| 153 | +- Reading data exported from data lakes and lakehouse tables (e.g., from Spark, Hive, or Delta/Iceberg exports). |
| 154 | + |
| 155 | +If you want to see a complete, realistic data‑engineering example using Spark and Parquet with Kotlin DataFrame, |
| 156 | +check out the [example project](https://github.com/Kotlin/dataframe/tree/master/examples/idea-examples/spark-parquet-dataframe). |
| 157 | + |
| 158 | +### Performance tips |
| 159 | + |
| 160 | +- **Column selection**: Because the ` readParquet ` method reads all columns, use DataFrame operations like `select()` immediately after reading to reduce memory usage in later operations |
| 161 | +- **Predicate pushdown**: Currently not supported—filtering happens after data is loaded into memory |
| 162 | +- Use Arrow‑compatible JVMs as documented in |
| 163 | + [Apache Arrow Java compatibility](https://arrow.apache.org/docs/java/install.html#java-compatibility). |
| 164 | +- Adjust `batchSize` if you read huge files and need to tune throughput vs. memory. |
| 165 | + |
| 166 | +## Limitations |
| 167 | + |
| 168 | +### Structured Data Support |
| 169 | + |
| 170 | +> **Important**: We currently don't support reading nested/structured data from Parquet files. Complex types like nested objects, arrays of structs, and maps are not yet supported. |
| 171 | +> |
| 172 | +> This limitation is tracked in issue [#536: Add inner/Struct type support in Arrow](https://github.com/Kotlin/dataframe/issues/536). |
| 173 | +> {style="warning"} |
| 174 | +
|
| 175 | +If your Parquet file contains nested structures, you may need to flatten the data before processing or use alternative tools for initial data preparation. |
| 176 | + |
| 177 | +### Android Compatibility |
| 178 | + |
| 179 | +> **Note**: Parquet file reading is **not available on Android** because Apache Arrow is not supported on the Android platform. |
| 180 | +> {style="warning"} |
| 181 | +
|
| 182 | +If you need to process Parquet files in an Android application, consider: |
| 183 | +- Processing files on a server and exposing the data via an API |
| 184 | +- Converting Parquet files to a supported format (JSON, CSV) for Android consumption |
| 185 | +- Using cloud-based data processing services |
| 186 | + |
| 187 | +### See also |
| 188 | + |
| 189 | +- [](ApacheArrow.md) — reading/writing Arrow IPC formats. |
| 190 | +- [Parquet official site](https://parquet.apache.org/). |
| 191 | +- Example: [Spark + Parquet + Kotlin DataFrame](https://github.com/Kotlin/dataframe/tree/master/examples/idea-examples/spark-parquet-dataframe) |
| 192 | +- [](Data-Sources.md) — Overview of all supported formats |
0 commit comments