Skip to content

Commit ee01ea1

Browse files
authored
Add SHermitianCompact (#358)
* Fix #356. * Add SSymmetricCompact. * More progress on SSymmetricCompact. * Extract out @pure triangularnumber and triangularroot functions, use to simplify code * Add similar_type overload * Speed up == overload * Generalize +, - overloads with two SSymetricCompact matrices by overloading _fill * More complete list of scalar-array ops * Make transpose recursive * Overloads for rand, randn, randexp * Add one, eye. * Add tests, fix bugs. * Bring up to date, fix transpose, adjoint, getindex, and setindex. * Address comments. * Address comment regarding ==. * Address more comments. * Change to SHermitianCompact.
1 parent e0d5f09 commit ee01ea1

File tree

6 files changed

+529
-1
lines changed

6 files changed

+529
-1
lines changed

src/SHermitianCompact.jl

Lines changed: 268 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,268 @@
1+
"""
2+
SHermitianCompact{N, T, L} <: StaticMatrix{N, N, T}
3+
4+
A [StaticArray](@ref) subtype that represents a Hermitian matrix. Unlike
5+
`LinearAlgebra.Hermitian`, `SHermitianCompact` stores only the lower triangle
6+
of the matrix (as an `SVector`). The lower triangle is stored in column-major order.
7+
For example, for an `SHermitianCompact{3}`, the indices of the stored elements
8+
can be visualized as follows:
9+
10+
```
11+
┌ 1 ⋅ ⋅ ┐
12+
| 2 4 ⋅ |
13+
└ 3 5 6 ┘
14+
```
15+
16+
Type parameters:
17+
* `N`: matrix dimension;
18+
* `T`: element type for lower triangle;
19+
* `L`: length of the `SVector` storing the lower triangular elements.
20+
21+
Note that `L` is always the `N`th [triangular number](https://en.wikipedia.org/wiki/Triangular_number).
22+
23+
An `SHermitianCompact` may be constructed either:
24+
25+
* from an `AbstractVector` containing the lower triangular elements; or
26+
* from a `Tuple` containing both upper and lower triangular elements in column major order; or
27+
* from another `StaticMatrix`.
28+
29+
For the latter two cases, only the lower triangular elements are used; the upper triangular
30+
elements are ignored.
31+
"""
32+
struct SHermitianCompact{N, T, L} <: StaticMatrix{N, N, T}
33+
lowertriangle::SVector{L, T}
34+
35+
@inline function SHermitianCompact{N, T, L}(lowertriangle::SVector{L}) where {N, T, L}
36+
_check_hermitian_parameters(Val(N), Val(L))
37+
new{N, T, L}(lowertriangle)
38+
end
39+
end
40+
41+
@inline function _check_hermitian_parameters(::Val{N}, ::Val{L}) where {N, L}
42+
if 2 * L !== N * (N + 1)
43+
throw(ArgumentError("Size mismatch in SHermitianCompact parameters. Got dimension $N and length $L."))
44+
end
45+
end
46+
47+
Base.@pure triangularnumber(N::Int) = div(N * (N + 1), 2)
48+
Base.@pure triangularroot(L::Int) = div(isqrt(8 * L + 1) - 1, 2) # from quadratic formula
49+
50+
lowertriangletype(::Type{SHermitianCompact{N, T, L}}) where {N, T, L} = SVector{L, T}
51+
lowertriangletype(::Type{SHermitianCompact{N, T}}) where {N, T} = SVector{triangularnumber(N), T}
52+
lowertriangletype(::Type{SHermitianCompact{N}}) where {N} = SVector{triangularnumber(N)}
53+
54+
@inline (::Type{SHermitianCompact{N, T}})(lowertriangle::SVector{L}) where {N, T, L} = SHermitianCompact{N, T, L}(lowertriangle)
55+
@inline (::Type{SHermitianCompact{N}})(lowertriangle::SVector{L, T}) where {N, T, L} = SHermitianCompact{N, T, L}(lowertriangle)
56+
57+
@inline function SHermitianCompact(lowertriangle::SVector{L, T}) where {T, L}
58+
N = triangularroot(L)
59+
SHermitianCompact{N, T, L}(lowertriangle)
60+
end
61+
62+
@generated function (::Type{SHermitianCompact{N, T, L}})(a::Tuple) where {N, T, L}
63+
expr = Vector{Expr}(undef, L)
64+
i = 0
65+
for col = 1 : N, row = col : N
66+
index = N * (col - 1) + row
67+
expr[i += 1] = :(a[$index])
68+
end
69+
quote
70+
@_inline_meta
71+
@inbounds return SHermitianCompact{N, T, L}(SVector{L, T}(tuple($(expr...))))
72+
end
73+
end
74+
75+
@inline function (::Type{SHermitianCompact{N, T}})(a::Tuple) where {N, T}
76+
L = triangularnumber(N)
77+
SHermitianCompact{N, T, L}(a)
78+
end
79+
80+
@inline (::Type{SHermitianCompact{N}})(a::Tuple) where {N} = SHermitianCompact{N, promote_tuple_eltype(a)}(a)
81+
@inline (::Type{SHermitianCompact{N}})(a::NTuple{M, T}) where {N, T, M} = SHermitianCompact{N, T}(a)
82+
@inline SHermitianCompact(a::StaticMatrix{N, N, T}) where {N, T} = SHermitianCompact{N, T}(a)
83+
84+
@inline (::Type{SSC})(a::SHermitianCompact) where {SSC <: SHermitianCompact} = SSC(a.lowertriangle)
85+
@inline (::Type{SSC})(a::SSC) where {SSC <: SHermitianCompact} = a
86+
87+
@inline (::Type{SSC})(a::AbstractVector) where {SSC <: SHermitianCompact} = SSC(convert(lowertriangletype(SSC), a))
88+
89+
@generated function _hermitian_compact_indices(::Val{N}) where N
90+
# Returns a Tuple{Pair{Int, Bool}} I such that for linear index i,
91+
# * I[i][1] is the index into the lowertriangle field of an SHermitianCompact{N};
92+
# * I[i][2] is true iff i is an index into the lower triangle of an N × N matrix.
93+
indexmat = Matrix{Pair{Int, Bool}}(undef, N, N)
94+
i = 0
95+
for col = 1 : N, row = 1 : N
96+
indexmat[row, col] = if row >= col
97+
(i += 1) => true
98+
else
99+
indexmat[col, row][1] => false
100+
end
101+
end
102+
quote
103+
Base.@_inline_meta
104+
return $(tuple(indexmat...))
105+
end
106+
end
107+
108+
Base.@propagate_inbounds function Base.getindex(a::SHermitianCompact{N}, i::Int) where {N}
109+
I = _hermitian_compact_indices(Val(N))
110+
j, lower = I[i]
111+
@inbounds value = a.lowertriangle[j]
112+
return lower ? value : adjoint(value)
113+
end
114+
115+
Base.@propagate_inbounds function Base.setindex(a::SHermitianCompact{N, T, L}, x, i::Int) where {N, T, L}
116+
I = _hermitian_compact_indices(Val(N))
117+
j, lower = I[i]
118+
value = lower ? x : adjoint(x)
119+
return SHermitianCompact{N}(setindex(a.lowertriangle, value, j))
120+
end
121+
122+
# needed because it is used in convert.jl and the generic fallback is slow
123+
@generated function Base.Tuple(a::SHermitianCompact{N}) where N
124+
exprs = [:(a[$i]) for i = 1 : N^2]
125+
quote
126+
@_inline_meta
127+
tuple($(exprs...))
128+
end
129+
end
130+
131+
LinearAlgebra.ishermitian(a::SHermitianCompact) = true
132+
LinearAlgebra.issymmetric(a::SHermitianCompact) = true
133+
134+
# TODO: factorize?
135+
136+
@inline Base.:(==)(a::SHermitianCompact, b::SHermitianCompact) = a.lowertriangle == b.lowertriangle
137+
@generated function _map(f, a::SHermitianCompact...)
138+
S = Size(a[1])
139+
N = S[1]
140+
L = triangularnumber(N)
141+
exprs = Vector{Expr}(undef, L)
142+
for i 1:L
143+
tmp = [:(a[$j].lowertriangle[$i]) for j 1:length(a)]
144+
exprs[i] = :(f($(tmp...)))
145+
end
146+
return quote
147+
@_inline_meta
148+
same_size(a...)
149+
@inbounds return SHermitianCompact(SVector(tuple($(exprs...))))
150+
end
151+
end
152+
153+
# Scalar-array. TODO: overload broadcast instead, once API has stabilized a bit
154+
@inline Base.:+(a::Number, b::SHermitianCompact) = SHermitianCompact(a + b.lowertriangle)
155+
@inline Base.:+(a::SHermitianCompact, b::Number) = SHermitianCompact(a.lowertriangle + b)
156+
157+
@inline Base.:-(a::Number, b::SHermitianCompact) = SHermitianCompact(a - b.lowertriangle)
158+
@inline Base.:-(a::SHermitianCompact, b::Number) = SHermitianCompact(a.lowertriangle - b)
159+
160+
@inline Base.:*(a::Number, b::SHermitianCompact) = SHermitianCompact(a * b.lowertriangle)
161+
@inline Base.:*(a::SHermitianCompact, b::Number) = SHermitianCompact(a.lowertriangle * b)
162+
163+
@inline Base.:/(a::SHermitianCompact, b::Number) = SHermitianCompact(a.lowertriangle / b)
164+
@inline Base.:\(a::Number, b::SHermitianCompact) = SHermitianCompact(a \ b.lowertriangle)
165+
166+
@generated function _plus_uniform(::Size{S}, a::SHermitianCompact{N, T, L}, λ) where {S, N, T, L}
167+
@assert S[1] == N
168+
@assert S[2] == N
169+
exprs = Vector{Expr}(undef, L)
170+
i = 0
171+
for col = 1 : N, row = col : N
172+
i += 1
173+
exprs[i] = row == col ? :(a.lowertriangle[$i] + λ) : :(a.lowertriangle[$i])
174+
end
175+
return quote
176+
@_inline_meta
177+
R = promote_type(eltype(a), typeof(λ))
178+
SHermitianCompact{N, R, L}(SVector{L, R}(tuple($(exprs...))))
179+
end
180+
end
181+
182+
@generated function LinearAlgebra.transpose(a::SHermitianCompact{N, T, L}) where {N, T, L}
183+
# To conform with LinearAlgebra, the transpose should be recursive.
184+
# For this compact representation of a Hermitian matrix, that means that
185+
# we should recursively transpose of the diagonal elements, but only
186+
# conjugate the off-diagonal elements:
187+
# [A Bᴴ]ᵀ = [Aᵀ Bᵀ] = [Aᵀ Bᵀ]
188+
# [B C ] [Bᴴᵀ Cᵀ] [conj(B) Cᵀ]
189+
exprs = Vector{Expr}(undef, L)
190+
i = 0
191+
for col = 1 : N, row = col : N
192+
i += 1
193+
exprs[i] = row == col ? :(transpose(a.lowertriangle[$i])) : :(conj(a.lowertriangle[$i]))
194+
end
195+
return quote
196+
@_inline_meta
197+
SHermitianCompact{N}(SVector{L}(tuple($(exprs...))))
198+
end
199+
end
200+
201+
@generated function LinearAlgebra.adjoint(a::SHermitianCompact{N, T, L}) where {N, T, L}
202+
# To conform with LinearAlgebra, the adjoint should be recursive.
203+
# Taking the adjoint of a Hermitian matrix is the identity, but
204+
# with this compact representation of a Hermitian matrix, care
205+
# should be taken that only the diagonal elements should be
206+
# recursively conjugate-transposed; the off-diagonal elements should
207+
# not:
208+
# [A Bᴴ]ᴴ = [Aᴴ Bᴴ] = [Aᴴ Bᴴ]
209+
# [B C ] [Bᴴᴴ Cᴴ] [B Cᴴ]
210+
exprs = Vector{Expr}(undef, L)
211+
i = 0
212+
for col = 1 : N, row = col : N
213+
i += 1
214+
exprs[i] = row == col ? :(adjoint(a.lowertriangle[$i])) : :(a.lowertriangle[$i])
215+
end
216+
return quote
217+
@_inline_meta
218+
SHermitianCompact{N}(SVector{L}(tuple($(exprs...))))
219+
end
220+
end
221+
222+
@generated function _one(::Size{S}, ::Type{SSC}) where {S, SSC <: SHermitianCompact}
223+
N = S[1]
224+
L = triangularnumber(N)
225+
T = eltype(SSC)
226+
if T == Any
227+
T = Float64
228+
end
229+
exprs = Vector{Expr}(undef, L)
230+
i = 0
231+
for col = 1 : N, row = col : N
232+
exprs[i += 1] = row == col ? :(one($T)) : :(zero($T))
233+
end
234+
quote
235+
@_inline_meta
236+
return SHermitianCompact(SVector(tuple($(exprs...))))
237+
end
238+
end
239+
240+
@inline _eye(s::Size{S}, t::Type{SSC}) where {S, SSC <: SHermitianCompact} = _one(s, t)
241+
242+
# _fill covers fill, zeros, and ones:
243+
@generated function _fill(val, ::Size{s}, ::Type{SSC}) where {s, SSC <: SHermitianCompact}
244+
N = s[1]
245+
L = triangularnumber(N)
246+
v = [:val for i = 1:L]
247+
return quote
248+
@_inline_meta
249+
$SSC(SVector(tuple($(v...))))
250+
end
251+
end
252+
253+
@generated function _rand(randfun, rng::AbstractRNG, ::Type{SSC}) where {N, SSC <: SHermitianCompact{N}}
254+
T = eltype(SSC)
255+
if T == Any
256+
T = Float64
257+
end
258+
L = triangularnumber(N)
259+
v = [:(randfun(rng, $T)) for i = 1:L]
260+
return quote
261+
@_inline_meta
262+
$SSC(SVector(tuple($(v...))))
263+
end
264+
end
265+
266+
@inline Random.rand(rng::AbstractRNG, ::Type{SSC}) where {SSC <: SHermitianCompact} = _rand(rand, rng, SSC)
267+
@inline Random.randn(rng::AbstractRNG, ::Type{SSC}) where {SSC <: SHermitianCompact} = _rand(randn, rng, SSC)
268+
@inline Random.randexp(rng::AbstractRNG, ::Type{SSC}) where {SSC <: SHermitianCompact} = _rand(randexp, rng, SSC)

src/SMatrix.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@ end
5353
end
5454

5555
@inline convert(::Type{SMatrix{S1,S2}}, a::StaticArray{<:Tuple, T}) where {S1,S2,T} = SMatrix{S1,S2,T}(Tuple(a))
56-
@inline SMatrix(a::StaticMatrix) = SMatrix{size(typeof(a),1),size(typeof(a),2)}(Tuple(a))
56+
@inline SMatrix(a::StaticMatrix{S1, S2}) where {S1, S2} = SMatrix{S1, S2}(Tuple(a))
5757

5858
# Simplified show for the type
5959
# show(io::IO, ::Type{SMatrix{N, M, T}}) where {N, M, T} = print(io, "SMatrix{$N,$M,$T}") # TODO reinstate

src/StaticArrays.jl

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -32,6 +32,7 @@ export MArray, MVector, MMatrix
3232
export FieldVector
3333
export SizedArray, SizedVector, SizedMatrix
3434
export SDiagonal
35+
export SHermitianCompact
3536

3637
export Size, Length
3738

@@ -110,6 +111,7 @@ include("MVector.jl")
110111
include("MMatrix.jl")
111112
include("SizedArray.jl")
112113
include("SDiagonal.jl")
114+
include("SHermitianCompact.jl")
113115

114116
include("convert.jl")
115117

0 commit comments

Comments
 (0)