|
| 1 | +# 量子算法 |
| 2 | + |
| 3 | +## 量子傅立叶变换 |
| 4 | + |
| 5 | +### 离散傅立叶变换 |
| 6 | + |
| 7 | +将离散信号从时域转换到频域。 |
| 8 | + |
| 9 | +离散傅立叶变换: |
| 10 | + |
| 11 | +\[ |
| 12 | + \begin{aligned} |
| 13 | + &\{x_j\} \xrightarrow{\mathrm{DFT}} \{y_k\} \\ |
| 14 | + &y_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{\frac{2\pi i}{N} jk} |
| 15 | + \end{aligned} |
| 16 | +\] |
| 17 | + |
| 18 | +逆离散傅立叶变换: |
| 19 | + |
| 20 | +\[ |
| 21 | + \begin{aligned} |
| 22 | + &\{y_k\} \xrightarrow{\mathrm{IDFT}} \{x_j\} \\ |
| 23 | + &x_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} y_k e^{-\frac{2\pi i}{N} jk} |
| 24 | + \end{aligned} |
| 25 | +\] |
| 26 | + |
| 27 | +### 量子傅立叶变换 |
| 28 | + |
| 29 | +量子傅里叶变换(QFT)的作用是将量子态从计算基 \(\{\left\lvert j \right\rangle\}\) 转换到频域基 \(\{\left\lvert k \right\rangle\}\)。振幅序列 \(\{x_j\}\) 被转换为 \(\{y_k\}\) |
| 30 | + |
| 31 | +\[ |
| 32 | + \begin{aligned} |
| 33 | + &\sum_{j=0}^{N-1} x_j \left\lvert j \right\rangle \xrightarrow{\mathrm{QFT}} \sum_{k=0}^{N-1} y_k \left\lvert k \right\rangle \\ |
| 34 | + &y_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{\frac{2\pi i}{N} jk} |
| 35 | + \end{aligned} |
| 36 | +\] |
| 37 | + |
| 38 | +作为量子算符为: |
| 39 | + |
| 40 | +\[ |
| 41 | + \mathrm{QFT}\left\lvert j \right\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i}{N} jk} \left\lvert k \right\rangle |
| 42 | +\] |
| 43 | + |
| 44 | +### QFT 的张量基形式 |
| 45 | + |
| 46 | +规定记法: |
| 47 | + |
| 48 | +- 基态 \(\left\lvert j \right\rangle\) 表示为 \(\left\lvert \overline{j_1 j_2 \cdots j_n} \right\rangle\),其中 \(j = j_1 2^{n-1} + j_2 2^{n-2} + \cdots + j_n 2^0\)。 |
| 49 | +- \(\overline{0.j_1 j_2 \cdots j_n}\) 表示二进制小数 \(j_1 2^{-1} + j_2 2^{-2} + \cdots + j_n 2^{-n}\)。 |
| 50 | + |
| 51 | +使用 \(n\) 个量子比特进行 QFT,共有 \(N = 2^n\) 个基态。QFT 可以写成: |
| 52 | + |
| 53 | +\[ |
| 54 | + \begin{aligned} |
| 55 | + \mathrm{QFT}\left\lvert j \right\rangle &= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i}{N} jk} \left\lvert k \right\rangle \\ |
| 56 | + \mathrm{QFT}\left\lvert \overline{j_1 j_2 \cdots j_n} \right\rangle &= \frac{1}{\sqrt{2^n}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_n}} \left\lvert 1 \right\rangle) \otimes \cdots \otimes (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2 \cdots j_n}} \left\lvert 1 \right\rangle) |
| 57 | + \end{aligned} |
| 58 | +\] |
| 59 | + |
| 60 | +!!! note "Proof" |
| 61 | + |
| 62 | + \[ |
| 63 | + \begin{aligned} |
| 64 | + \mathrm{QFT}\left\lvert j \right\rangle &= \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} \exp(\frac{2\pi i}{2^n} jk) \left\lvert k \right\rangle \\ |
| 65 | + &= \frac{1}{\sqrt{2^n}} \sum_{k_1=0}^{1} \cdots \sum_{k_n=0}^{1} \exp(\frac{2\pi i}{2^n} j \sum_{l=1}^{n} k_l 2^{n-l}) \left\lvert k_1 k_2 \cdots k_n \right\rangle \\ |
| 66 | + &= \frac{1}{\sqrt{2^n}} \sum_{k_1=0}^{1} \cdots \sum_{k_n=0}^{1} \bigotimes_{l=1}^{n} \exp(\frac{2\pi i}{2^n} j k_l 2^{n-l}) \left\lvert k_l \right\rangle \\ |
| 67 | + &= \frac{1}{\sqrt{2^n}} \bigotimes_{l=1}^{n} \sum_{k_l=0}^{1} \exp(\frac{2\pi i}{2^n} j k_l 2^{n-l}) \left\lvert k_l \right\rangle \\ |
| 68 | + &= \frac{1}{\sqrt{2^n}} \bigotimes_{l=1}^{n} (\left\lvert 0 \right\rangle + \exp(2\pi i j 2^{-l}) \left\lvert 1 \right\rangle) |
| 69 | + \end{aligned} |
| 70 | + \] |
| 71 | + |
| 72 | + 由于 \(e^{2\pi i} = 1\),所以可以把 \(j 2^{-l}\) 的整数部分略去,得到: |
| 73 | + |
| 74 | + \[ |
| 75 | + \begin{aligned} |
| 76 | + \mathrm{QFT}\left\lvert j \right\rangle &= \frac{1}{\sqrt{2^n}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_n}} \left\lvert 1 \right\rangle) \otimes \cdots \otimes (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2 \cdots j_n}} \left\lvert 1 \right\rangle) |
| 77 | + \end{aligned} |
| 78 | + \] |
| 79 | + |
| 80 | +!!! example "单量子比特 QFT" |
| 81 | + |
| 82 | + 考虑单量子比特下的 QFT: |
| 83 | + |
| 84 | + \[ |
| 85 | + \mathrm{QFT}_1 \left\lvert j \right\rangle = \frac{1}{\sqrt{2}} \sum_{k=0}^{1} e^{\frac{\pi i}{2} jk} \left\lvert k \right\rangle |
| 86 | + \] |
| 87 | + |
| 88 | + 对于 \(\left\lvert 0 \right\rangle\) 和 \(\left\lvert 1 \right\rangle\),有: |
| 89 | + |
| 90 | + \[ |
| 91 | + \begin{aligned} |
| 92 | + \mathrm{QFT}_1 \left\lvert 0 \right\rangle &= \frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle + \left\lvert 1 \right\rangle) \\ |
| 93 | + \mathrm{QFT}_1 \left\lvert 1 \right\rangle &= \frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle - \left\lvert 1 \right\rangle) |
| 94 | + \end{aligned} |
| 95 | + \] |
| 96 | + |
| 97 | + 所以,单量子比特的 QFT 和 Hadamard 门等价。 |
| 98 | + |
| 99 | +!!! example "双量子比特 QFT" |
| 100 | + |
| 101 | + 双量子比特下的 QFT: |
| 102 | + |
| 103 | + \[ |
| 104 | + \mathrm{QFT}_2 \left\lvert j \right\rangle = \frac{1}{2} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_2}} \left\lvert 1 \right\rangle) \otimes (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2}} \left\lvert 1 \right\rangle) |
| 105 | + \] |
| 106 | + |
| 107 | + 对于计算基 \(\left\lvert 10 \right\rangle\) 有: |
| 108 | + |
| 109 | + \[ |
| 110 | + \begin{aligned} |
| 111 | + \mathrm{QFT}_2 \left\lvert 10 \right\rangle &= \frac{1}{2} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.0}} \left\lvert 1 \right\rangle) \otimes (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.10}} \left\lvert 1 \right\rangle) \\ |
| 112 | + &= \frac{1}{2} (\left\lvert 0 \right\rangle + \left\lvert 1 \right\rangle) \otimes (\left\lvert 0 \right\rangle - \left\lvert 1 \right\rangle) \\ |
| 113 | + &= \frac{1}{2} (\left\lvert 00 \right\rangle - \left\lvert 01 \right\rangle + \left\lvert 10 \right\rangle - \left\lvert 11 \right\rangle) |
| 114 | + \end{aligned} |
| 115 | + \] |
| 116 | + |
| 117 | +### QFT 的量子电路 |
| 118 | + |
| 119 | +定义单量子比特旋转门: |
| 120 | + |
| 121 | +\[ |
| 122 | + R_k = |
| 123 | + \begin{bmatrix} |
| 124 | + 1 & 0 \\ |
| 125 | + 0 & e^{\frac{2\pi i}{2^k}} |
| 126 | + \end{bmatrix} |
| 127 | +\] |
| 128 | + |
| 129 | +构建如下量子电路: |
| 130 | + |
| 131 | +<div align="center"><img src="/assets/img/CS/quantum/chapter3/qft_circuit.png" width="90%"></div> |
| 132 | + |
| 133 | +执行过程: |
| 134 | + |
| 135 | +1. 经过一个 \(H\) 门后,量子态变为 \(\frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1}} \left\lvert 1 \right\rangle)\left\lvert j_2 \cdots j_n \right\rangle\)。 |
| 136 | +2. 当 \(j_2 = \left\lvert 1 \right\rangle\) 时,执行受控旋转门 \(R_2\),量子态变为 \(\frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2}} \left\lvert 1 \right\rangle)\left\lvert j_3 \cdots j_n \right\rangle\)。 |
| 137 | +3. 同理,执行所有作用于第一个量子比特的受控旋转门,得到 \(\frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2 \cdots j_n}} \left\lvert 1 \right\rangle)\)。 |
| 138 | +4. 同理,最后得到 \(\frac{1}{\sqrt{2^n}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2 \cdots j_n}} \left\lvert 1 \right\rangle)(\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_2 \cdots j_n}} \left\lvert 1 \right\rangle) \cdots (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_n}} \left\lvert 1 \right\rangle)\)。 |
| 139 | +5. 最后再加一系列 \(\mathrm{SWAP}\) 门,得到 QFT 的量子电路。 |
| 140 | + |
| 141 | +QFT 的量子门复杂度为 \(\mathcal{O}(n^2)\)。 |
| 142 | + |
| 143 | +!!! example "双量子比特 QFT 电路" |
| 144 | + |
| 145 | + <div align="center"><img src="/assets/img/CS/quantum/chapter3/2qubit_qft_circuit.png" width="30%"></div> |
| 146 | + |
| 147 | +## 量子相位估计 |
| 148 | + |
| 149 | +量子相位估计(QPE)用于估计给定量子态的相位信息。 |
| 150 | + |
| 151 | +### 基本目标 |
| 152 | + |
| 153 | +已知酉矩阵 \(U\) 和其本征态 \(\left\lvert \mu \right\rangle\),对应本征值为 \(e^{2\pi i \varphi}\),估计其中相位的值 \(\varphi \in \left[0, 1\right)\)。 |
| 154 | + |
| 155 | +### QPE 量子电路 |
| 156 | + |
| 157 | +<div align="center"><img src="/assets/img/CS/quantum/chapter3/qpe_circuit.png" width="60%"></div> |
| 158 | + |
| 159 | +#### 第一阶段 |
| 160 | + |
| 161 | +<div align="center"><img src="/assets/img/CS/quantum/chapter3/qpe_circuit1.png" width="60%"></div> |
| 162 | + |
| 163 | +在 \(R_p\) 中,从下往上设量子态为 \(\left\lvert j_1 \right\rangle, \left\lvert j_2 \right\rangle, \cdots, \left\lvert j_n \right\rangle\),则: |
| 164 | + |
| 165 | +\[ |
| 166 | + \left\lvert j_k \mu \right\rangle \xrightarrow{\mathrm{C-U}^{2^{k - 1}}} \left\lvert j_k \right\rangle U^{j_k 2^{k-1}} \left\lvert \mu \right\rangle |
| 167 | +\] |
| 168 | + |
| 169 | +因为 \(U\left\lvert \mu \right\rangle = e^{2\pi i \varphi} \left\lvert \mu \right\rangle\),所以: |
| 170 | + |
| 171 | +\[ |
| 172 | + \left\lvert j_k \right\rangle U^{j_k 2^{k-1}} \left\lvert \mu \right\rangle = \frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle + e^{2\pi i 2^{k - 1} \varphi} \left\lvert 1 \right\rangle) \left\lvert \mu \right\rangle |
| 173 | +\] |
| 174 | + |
| 175 | +#### 第二阶段 |
| 176 | + |
| 177 | +由 \(\varphi = \overline{0.\varphi_1 \varphi_2 \cdots \varphi_n}\) 得第一阶段结束后 \(R_p\) 的量子态为: |
| 178 | + |
| 179 | +\[ |
| 180 | + \frac{1}{\sqrt{2^n}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.\varphi_n}} \left\lvert 1 \right\rangle) \otimes \cdots \otimes (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.\varphi_1 \varphi_2 \cdots \varphi_n}} \left\lvert 1 \right\rangle) |
| 181 | +\] |
| 182 | + |
| 183 | +最后,对 \(R_p\) 的量子态进行逆量子傅立叶变换(IQFT),得 \(\left\lvert \varphi_1 \varphi_2 \cdots \varphi_n \right\rangle\),从而得到 \(\varphi\) 的估计值。 |
0 commit comments