Skip to content

Commit b831337

Browse files
committed
docs: update cs/quantum chapter2 and chapter3
1 parent 429487e commit b831337

File tree

10 files changed

+636
-1
lines changed

10 files changed

+636
-1
lines changed

.cache/plugin/git-committers/page-authors.json

Lines changed: 1 addition & 1 deletion
Large diffs are not rendered by default.
50.2 KB
Loading
37.5 KB
Loading
28.7 KB
Loading
145 KB
Loading
175 KB
Loading
95.3 KB
Loading

docs/cs/quantum/chapter2.md

Lines changed: 450 additions & 0 deletions
Large diffs are not rendered by default.

docs/cs/quantum/chapter3.md

Lines changed: 183 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,183 @@
1+
# 量子算法
2+
3+
## 量子傅立叶变换
4+
5+
### 离散傅立叶变换
6+
7+
将离散信号从时域转换到频域。
8+
9+
离散傅立叶变换:
10+
11+
\[
12+
\begin{aligned}
13+
&\{x_j\} \xrightarrow{\mathrm{DFT}} \{y_k\} \\
14+
&y_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{\frac{2\pi i}{N} jk}
15+
\end{aligned}
16+
\]
17+
18+
逆离散傅立叶变换:
19+
20+
\[
21+
\begin{aligned}
22+
&\{y_k\} \xrightarrow{\mathrm{IDFT}} \{x_j\} \\
23+
&x_j = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} y_k e^{-\frac{2\pi i}{N} jk}
24+
\end{aligned}
25+
\]
26+
27+
### 量子傅立叶变换
28+
29+
量子傅里叶变换(QFT)的作用是将量子态从计算基 \(\{\left\lvert j \right\rangle\}\) 转换到频域基 \(\{\left\lvert k \right\rangle\}\)。振幅序列 \(\{x_j\}\) 被转换为 \(\{y_k\}\)
30+
31+
\[
32+
\begin{aligned}
33+
&\sum_{j=0}^{N-1} x_j \left\lvert j \right\rangle \xrightarrow{\mathrm{QFT}} \sum_{k=0}^{N-1} y_k \left\lvert k \right\rangle \\
34+
&y_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{\frac{2\pi i}{N} jk}
35+
\end{aligned}
36+
\]
37+
38+
作为量子算符为:
39+
40+
\[
41+
\mathrm{QFT}\left\lvert j \right\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i}{N} jk} \left\lvert k \right\rangle
42+
\]
43+
44+
### QFT 的张量基形式
45+
46+
规定记法:
47+
48+
- 基态 \(\left\lvert j \right\rangle\) 表示为 \(\left\lvert \overline{j_1 j_2 \cdots j_n} \right\rangle\),其中 \(j = j_1 2^{n-1} + j_2 2^{n-2} + \cdots + j_n 2^0\)
49+
- \(\overline{0.j_1 j_2 \cdots j_n}\) 表示二进制小数 \(j_1 2^{-1} + j_2 2^{-2} + \cdots + j_n 2^{-n}\)
50+
51+
使用 \(n\) 个量子比特进行 QFT,共有 \(N = 2^n\) 个基态。QFT 可以写成:
52+
53+
\[
54+
\begin{aligned}
55+
\mathrm{QFT}\left\lvert j \right\rangle &= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{\frac{2\pi i}{N} jk} \left\lvert k \right\rangle \\
56+
\mathrm{QFT}\left\lvert \overline{j_1 j_2 \cdots j_n} \right\rangle &= \frac{1}{\sqrt{2^n}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_n}} \left\lvert 1 \right\rangle) \otimes \cdots \otimes (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2 \cdots j_n}} \left\lvert 1 \right\rangle)
57+
\end{aligned}
58+
\]
59+
60+
!!! note "Proof"
61+
62+
\[
63+
\begin{aligned}
64+
\mathrm{QFT}\left\lvert j \right\rangle &= \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} \exp(\frac{2\pi i}{2^n} jk) \left\lvert k \right\rangle \\
65+
&= \frac{1}{\sqrt{2^n}} \sum_{k_1=0}^{1} \cdots \sum_{k_n=0}^{1} \exp(\frac{2\pi i}{2^n} j \sum_{l=1}^{n} k_l 2^{n-l}) \left\lvert k_1 k_2 \cdots k_n \right\rangle \\
66+
&= \frac{1}{\sqrt{2^n}} \sum_{k_1=0}^{1} \cdots \sum_{k_n=0}^{1} \bigotimes_{l=1}^{n} \exp(\frac{2\pi i}{2^n} j k_l 2^{n-l}) \left\lvert k_l \right\rangle \\
67+
&= \frac{1}{\sqrt{2^n}} \bigotimes_{l=1}^{n} \sum_{k_l=0}^{1} \exp(\frac{2\pi i}{2^n} j k_l 2^{n-l}) \left\lvert k_l \right\rangle \\
68+
&= \frac{1}{\sqrt{2^n}} \bigotimes_{l=1}^{n} (\left\lvert 0 \right\rangle + \exp(2\pi i j 2^{-l}) \left\lvert 1 \right\rangle)
69+
\end{aligned}
70+
\]
71+
72+
由于 \(e^{2\pi i} = 1\),所以可以把 \(j 2^{-l}\) 的整数部分略去,得到:
73+
74+
\[
75+
\begin{aligned}
76+
\mathrm{QFT}\left\lvert j \right\rangle &= \frac{1}{\sqrt{2^n}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_n}} \left\lvert 1 \right\rangle) \otimes \cdots \otimes (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2 \cdots j_n}} \left\lvert 1 \right\rangle)
77+
\end{aligned}
78+
\]
79+
80+
!!! example "单量子比特 QFT"
81+
82+
考虑单量子比特下的 QFT:
83+
84+
\[
85+
\mathrm{QFT}_1 \left\lvert j \right\rangle = \frac{1}{\sqrt{2}} \sum_{k=0}^{1} e^{\frac{\pi i}{2} jk} \left\lvert k \right\rangle
86+
\]
87+
88+
对于 \(\left\lvert 0 \right\rangle\) 和 \(\left\lvert 1 \right\rangle\),有:
89+
90+
\[
91+
\begin{aligned}
92+
\mathrm{QFT}_1 \left\lvert 0 \right\rangle &= \frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle + \left\lvert 1 \right\rangle) \\
93+
\mathrm{QFT}_1 \left\lvert 1 \right\rangle &= \frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle - \left\lvert 1 \right\rangle)
94+
\end{aligned}
95+
\]
96+
97+
所以,单量子比特的 QFT 和 Hadamard 门等价。
98+
99+
!!! example "双量子比特 QFT"
100+
101+
双量子比特下的 QFT:
102+
103+
\[
104+
\mathrm{QFT}_2 \left\lvert j \right\rangle = \frac{1}{2} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_2}} \left\lvert 1 \right\rangle) \otimes (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2}} \left\lvert 1 \right\rangle)
105+
\]
106+
107+
对于计算基 \(\left\lvert 10 \right\rangle\) 有:
108+
109+
\[
110+
\begin{aligned}
111+
\mathrm{QFT}_2 \left\lvert 10 \right\rangle &= \frac{1}{2} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.0}} \left\lvert 1 \right\rangle) \otimes (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.10}} \left\lvert 1 \right\rangle) \\
112+
&= \frac{1}{2} (\left\lvert 0 \right\rangle + \left\lvert 1 \right\rangle) \otimes (\left\lvert 0 \right\rangle - \left\lvert 1 \right\rangle) \\
113+
&= \frac{1}{2} (\left\lvert 00 \right\rangle - \left\lvert 01 \right\rangle + \left\lvert 10 \right\rangle - \left\lvert 11 \right\rangle)
114+
\end{aligned}
115+
\]
116+
117+
### QFT 的量子电路
118+
119+
定义单量子比特旋转门:
120+
121+
\[
122+
R_k =
123+
\begin{bmatrix}
124+
1 & 0 \\
125+
0 & e^{\frac{2\pi i}{2^k}}
126+
\end{bmatrix}
127+
\]
128+
129+
构建如下量子电路:
130+
131+
<div align="center"><img src="/assets/img/CS/quantum/chapter3/qft_circuit.png" width="90%"></div>
132+
133+
执行过程:
134+
135+
1. 经过一个 \(H\) 门后,量子态变为 \(\frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1}} \left\lvert 1 \right\rangle)\left\lvert j_2 \cdots j_n \right\rangle\)
136+
2.\(j_2 = \left\lvert 1 \right\rangle\) 时,执行受控旋转门 \(R_2\),量子态变为 \(\frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2}} \left\lvert 1 \right\rangle)\left\lvert j_3 \cdots j_n \right\rangle\)
137+
3. 同理,执行所有作用于第一个量子比特的受控旋转门,得到 \(\frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2 \cdots j_n}} \left\lvert 1 \right\rangle)\)
138+
4. 同理,最后得到 \(\frac{1}{\sqrt{2^n}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_1 j_2 \cdots j_n}} \left\lvert 1 \right\rangle)(\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_2 \cdots j_n}} \left\lvert 1 \right\rangle) \cdots (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.j_n}} \left\lvert 1 \right\rangle)\)
139+
5. 最后再加一系列 \(\mathrm{SWAP}\) 门,得到 QFT 的量子电路。
140+
141+
QFT 的量子门复杂度为 \(\mathcal{O}(n^2)\)
142+
143+
!!! example "双量子比特 QFT 电路"
144+
145+
<div align="center"><img src="/assets/img/CS/quantum/chapter3/2qubit_qft_circuit.png" width="30%"></div>
146+
147+
## 量子相位估计
148+
149+
量子相位估计(QPE)用于估计给定量子态的相位信息。
150+
151+
### 基本目标
152+
153+
已知酉矩阵 \(U\) 和其本征态 \(\left\lvert \mu \right\rangle\),对应本征值为 \(e^{2\pi i \varphi}\),估计其中相位的值 \(\varphi \in \left[0, 1\right)\)
154+
155+
### QPE 量子电路
156+
157+
<div align="center"><img src="/assets/img/CS/quantum/chapter3/qpe_circuit.png" width="60%"></div>
158+
159+
#### 第一阶段
160+
161+
<div align="center"><img src="/assets/img/CS/quantum/chapter3/qpe_circuit1.png" width="60%"></div>
162+
163+
\(R_p\) 中,从下往上设量子态为 \(\left\lvert j_1 \right\rangle, \left\lvert j_2 \right\rangle, \cdots, \left\lvert j_n \right\rangle\),则:
164+
165+
\[
166+
\left\lvert j_k \mu \right\rangle \xrightarrow{\mathrm{C-U}^{2^{k - 1}}} \left\lvert j_k \right\rangle U^{j_k 2^{k-1}} \left\lvert \mu \right\rangle
167+
\]
168+
169+
因为 \(U\left\lvert \mu \right\rangle = e^{2\pi i \varphi} \left\lvert \mu \right\rangle\),所以:
170+
171+
\[
172+
\left\lvert j_k \right\rangle U^{j_k 2^{k-1}} \left\lvert \mu \right\rangle = \frac{1}{\sqrt{2}} (\left\lvert 0 \right\rangle + e^{2\pi i 2^{k - 1} \varphi} \left\lvert 1 \right\rangle) \left\lvert \mu \right\rangle
173+
\]
174+
175+
#### 第二阶段
176+
177+
\(\varphi = \overline{0.\varphi_1 \varphi_2 \cdots \varphi_n}\) 得第一阶段结束后 \(R_p\) 的量子态为:
178+
179+
\[
180+
\frac{1}{\sqrt{2^n}} (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.\varphi_n}} \left\lvert 1 \right\rangle) \otimes \cdots \otimes (\left\lvert 0 \right\rangle + e^{2\pi i \overline{0.\varphi_1 \varphi_2 \cdots \varphi_n}} \left\lvert 1 \right\rangle)
181+
\]
182+
183+
最后,对 \(R_p\) 的量子态进行逆量子傅立叶变换(IQFT),得 \(\left\lvert \varphi_1 \varphi_2 \cdots \varphi_n \right\rangle\),从而得到 \(\varphi\) 的估计值。

mkdocs.yml

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -162,6 +162,8 @@ nav:
162162
- 量子计算理论基础与软件系统:
163163
- cs/quantum/index.md
164164
- 量子比特与量子门: cs/quantum/chapter1.md
165+
- 量子测量与量子图灵机: cs/quantum/chapter2.md
166+
- 量子算法: cs/quantum/chapter3.md
165167
- Math:
166168
- Math: math/index.md
167169
- 概率论:

0 commit comments

Comments
 (0)