-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
280 lines (257 loc) · 13.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""Train Tiny-YOLOv3 with random shapes."""
import argparse
import os
import logging
import time
import warnings
import numpy as np
import mxnet as mx
from mxnet import nd
from mxnet import gluon
from mxnet import autograd
import gluoncv as gcv
from gluoncv import data as gdata
from gluoncv import utils as gutils
from gluoncv.model_zoo import get_model
from gluoncv.data.batchify import Tuple, Stack, Pad
from gluoncv.data.transforms.presets.yolo import YOLO3DefaultTrainTransform
from gluoncv.data.dataloader import RandomTransformDataLoader
from gluoncv.utils import LRScheduler
from gluoncv.data import batchify
def parse_args():
parser = argparse.ArgumentParser(description='Train Tiny-YOLOv3 networks with random input shape.')
parser.add_argument('--data-shape', type=int, default=416,
help="Input data shape for evaluation, use 320, 416, 608... ")
parser.add_argument('--batch-size', type=int, default=16,
help='Training mini-batch size')
parser.add_argument('--dataset', type=str, default='coco',
help='Training dataset. Currently support ONLY COCO.')
parser.add_argument('--num-workers', '-j', dest='num_workers', type=int,
default=4, help='Number of data workers, you can use larger '
'number to accelerate data loading, if you CPU and GPUs are powerful.')
parser.add_argument('--gpus', type=str, default='0',
help='Training with GPUs, you can specify 1,3 for example.')
parser.add_argument('--epochs', type=int, default=200,
help='Training epochs.')
parser.add_argument('--resume', type=str, default='',
help='Resume from previously saved parameters if not None. ')
parser.add_argument('--start-epoch', type=int, default=0,
help='Starting epoch for resuming, default is 0 for new training.'
'You can specify it to 100 for example to start from 100 epoch.')
parser.add_argument('--lr', type=float, default=0.001,
help='Learning rate, default is 0.001')
parser.add_argument('--lr-mode', type=str, default='step',
help='learning rate scheduler mode. options are step, poly and cosine.')
parser.add_argument('--lr-decay', type=float, default=0.1,
help='decay rate of learning rate. default is 0.1.')
parser.add_argument('--lr-decay-period', type=int, default=0,
help='interval for periodic learning rate decays. default is 0 to disable.')
parser.add_argument('--lr-decay-epoch', type=str, default='160,180',
help='epochs at which learning rate decays. default is 260,280.')
parser.add_argument('--warmup-lr', type=float, default=0.0,
help='starting warmup learning rate. default is 0.0.')
parser.add_argument('--warmup-epochs', type=int, default=2,
help='number of warmup epochs.')
parser.add_argument('--momentum', type=float, default=0.9,
help='SGD momentum, default is 0.9')
parser.add_argument('--wd', type=float, default=0.0005,
help='Weight decay, default is 5e-4')
parser.add_argument('--log-interval', type=int, default=100,
help='Logging mini-batch interval. Default is 100.')
parser.add_argument('--save-prefix', type=str, default='./results/',
help='Saving parameter prefix')
parser.add_argument('--save-interval', type=int, default=1,
help='Saving parameters epoch interval.')
parser.add_argument('--seed', type=int, default=233,
help='Random seed to be fixed.')
parser.add_argument('--num-samples', type=int, default=-1,
help='Training images. Use -1 to automatically get the number.')
parser.add_argument('--syncbn', action='store_true',
help='Use synchronize BN across devices.')
parser.add_argument('--no-random-shape', action='store_true',
help='Use fixed size(data-shape) throughout the training, which will be faster '
'and require less memory. However, final model will be slightly worse.')
parser.add_argument('--no-wd', action='store_true',
help='whether to remove weight decay on bias, and beta/gamma for batchnorm layers.')
parser.add_argument('--mixup', action='store_true',
help='whether to enable mixup.')
parser.add_argument('--no-mixup-epochs', type=int, default=20,
help='Disable mixup training if enabled in the last N epochs.')
parser.add_argument('--label-smooth', action='store_true', help='Use label smoothing.')
parser.add_argument('--optimizer', type=str, default='sgd',
help='Control the optimizer (SGD / Adam)')
args = parser.parse_args()
return args
def get_dataset(dataset, args):
if dataset.lower() == 'coco':
train_dataset = gdata.COCODetection(root='./data/coco', splits='instances_train2017', use_crowd=False)
else:
raise NotImplementedError('Dataset: {} not implemented.'.format(dataset))
if args.num_samples < 0:
args.num_samples = len(train_dataset)
if args.mixup: # is broken now. do not try
from gluoncv.data import MixupDetection
train_dataset = MixupDetection(train_dataset)
return train_dataset
def get_dataloader(net, train_dataset, data_shape, batch_size, num_workers, args):
"""Get dataloader."""
width, height = data_shape, data_shape
# stack image, all targets generated
batchify_fn = Tuple(*([Stack() for _ in range(6)] + [Pad(axis=0, pad_val=-1) for _ in range(1)]))
if args.no_random_shape:
train_loader = gluon.data.DataLoader(
train_dataset.transform(YOLO3DefaultTrainTransform(width, height, net, mixup=args.mixup)),
batch_size, True, batchify_fn=batchify_fn, last_batch='rollover', num_workers=num_workers)
else:
transform_fns = [YOLO3DefaultTrainTransform(x * 32, x * 32, net, mixup=args.mixup) for x in range(10, 20)]
train_loader = RandomTransformDataLoader(
transform_fns, train_dataset, batch_size=batch_size, interval=10, last_batch='rollover',
shuffle=True, batchify_fn=batchify_fn, num_workers=num_workers)
return train_loader
def save_params(net, epoch, save_interval, prefix):
if save_interval and epoch % save_interval == 0:
net.save_parameters('{:s}_{:04d}.params'.format(prefix, epoch))
def train(net, train_data, ctx, args):
"""Training pipeline"""
net.collect_params().reset_ctx(ctx)
if args.no_wd:
for k, v in net.collect_params('.*beta|.*gamma|.*bias').items():
v.wd_mult = 0.0
if args.label_smooth:
net._target_generator._label_smooth = True
if args.lr_decay_period > 0:
lr_decay_epoch = list(range(args.lr_decay_period, args.epochs, args.lr_decay_period))
else:
lr_decay_epoch = [int(i) for i in args.lr_decay_epoch.split(',')]
lr_scheduler = LRScheduler(mode=args.lr_mode,
baselr=args.lr,
niters=args.num_samples // args.batch_size,
nepochs=args.epochs,
step=lr_decay_epoch,
step_factor=args.lr_decay, power=2,
warmup_epochs=args.warmup_epochs)
if args.optimizer.lower() == 'adam':
opt_name = 'adam'
opt_param = {'wd': args.wd, 'lr_scheduler': lr_scheduler}
elif args.optimizer.lower() == 'sgd':
opt_name = 'sgd'
opt_param = {'wd': args.wd, 'momentum': args.momentum, 'lr_scheduler': lr_scheduler}
else:
raise NotImplementedError(f'The optimizer {args.optimizer.lower()} is not implemented.')
trainer = gluon.Trainer(net.collect_params(), opt_name, opt_param, kvstore='local')
# metrics
obj_metrics = mx.metric.Loss('O')
center_metrics = mx.metric.Loss('BC')
scale_metrics = mx.metric.Loss('BS')
cls_metrics = mx.metric.Loss('C')
coef_metrics = mx.metric.Loss('Cf')
# set up logger
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
log_file_path = args.save_prefix + '_train.log'
log_dir = os.path.dirname(log_file_path)
if log_dir and not os.path.exists(log_dir):
os.makedirs(log_dir)
fh = logging.FileHandler(log_file_path)
logger.addHandler(fh)
logger.info(args)
logger.info('Start training from [Epoch {}]'.format(args.start_epoch))
for epoch in range(args.start_epoch, args.epochs):
if args.mixup:
# TODO(threshold): more elegant way to control mixup during runtime
try:
train_data._dataset.set_mixup(np.random.beta, 1.5, 1.5)
except AttributeError:
train_data._dataset._data.set_mixup(np.random.beta, 1.5, 1.5)
if epoch >= args.epochs - args.no_mixup_epochs:
try:
train_data._dataset.set_mixup(None)
except AttributeError:
train_data._dataset._data.set_mixup(None)
tic = time.time()
btic = time.time()
mx.nd.waitall()
net.hybridize()
for i, batch in enumerate(train_data):
batch_size = batch[0].shape[0]
data = gluon.utils.split_and_load(batch[0], ctx_list=ctx, batch_axis=0)
fixed_targets = [gluon.utils.split_and_load(batch[it], ctx_list=ctx, batch_axis=0) for it in range(1, 6)]
gt_boxes = gluon.utils.split_and_load(batch[6], ctx_list=ctx, batch_axis=0)
sum_losses = []
obj_losses = []
center_losses = []
scale_losses = []
cls_losses = []
with autograd.record():
for ix, x in enumerate(data):
obj_loss, center_loss, scale_loss, cls_loss = net(x, gt_boxes[ix],
*[ft[ix] for ft in fixed_targets])
sum_losses.append(obj_loss + center_loss + scale_loss + cls_loss)
obj_losses.append(obj_loss)
center_losses.append(center_loss)
scale_losses.append(scale_loss)
cls_losses.append(cls_loss)
autograd.backward(sum_losses)
lr_scheduler.update(i, epoch)
trainer.step(batch_size)
obj_metrics.update(0, obj_losses)
center_metrics.update(0, center_losses)
scale_metrics.update(0, scale_losses)
cls_metrics.update(0, cls_losses)
if args.log_interval and not (i + 1) % args.log_interval:
name1, loss1 = obj_metrics.get()
name2, loss2 = center_metrics.get()
name3, loss3 = scale_metrics.get()
name4, loss4 = cls_metrics.get()
logger.info('[E {}][B {}], LR: {:.2E}, {:.1f} S/s, {}={:.3f}, {}={:.3f}, {}={:.3f}, {}={:.3f}'.format(
epoch, i, trainer.learning_rate, batch_size / (time.time() - btic), name1, loss1, name2, loss2,
name3, loss3, name4, loss4))
btic = time.time()
name1, loss1 = obj_metrics.get()
name2, loss2 = center_metrics.get()
name3, loss3 = scale_metrics.get()
name4, loss4 = cls_metrics.get()
logger.info('[E {}] {:.1f} sec, {}={:.3f}, {}={:.3f}, {}={:.3f}, {}={:.3f}'.format(
epoch, (time.time() - tic), name1, loss1, name2, loss2, name3, loss3, name4, loss4))
save_params(net, epoch, args.save_interval, args.save_prefix)
if __name__ == '__main__':
args = parse_args()
# fix seed for mxnet, numpy and python builtin random generator.
gutils.random.seed(args.seed)
# training contexts
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',') if i.strip()]
ctx = ctx if ctx else [mx.cpu()]
# network
net_name = '_'.join(('yolo3', 'tiny_darknet', args.dataset))
args.save_prefix += net_name
# use sync bn if specified
if args.syncbn and len(ctx) > 1:
net = get_model(net_name, pretrained_base=True, norm_layer=gluon.contrib.nn.SyncBatchNorm,
norm_kwargs={'num_devices': len(ctx)})
async_net = get_model(net_name, pretrained_base=False) # used by cpu worker
else:
net = get_model(net_name, pretrained_base=True)
async_net = net
if args.resume.strip():
print(f"Loading weights from {args.resume.strip()}")
net.load_parameters(args.resume.strip())
async_net.load_parameters(args.resume.strip())
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
net.initialize()
async_net.initialize()
else:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
net.initialize()
async_net.initialize()
print("model loaded")
# training data
train_dataset = get_dataset(args.dataset, args)
print("dataset loaded")
train_data = get_dataloader(
async_net, train_dataset, args.data_shape, args.batch_size, args.num_workers, args)
print("dataloader done")
# training
train(net, train_data, ctx, args)