diff --git a/CMakeLists.txt b/CMakeLists.txt
index c473e2c0..250cba63 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -73,17 +73,20 @@ set(headers
src/sceneStructs.h
src/preview.h
src/utilities.h
+
src/ImGui/imconfig.h
-
- src/ImGui/imgui.h
+ src/ImGui/imgui.h
src/ImGui/imconfig.h
src/ImGui/imgui_impl_glfw.h
- src/ImGui/imgui_impl_opengl3.h
- src/ImGui/imgui_impl_opengl3_loader.h
- src/ImGui/imgui_internal.h
- src/ImGui/imstb_rectpack.h
- src/ImGui/imstb_textedit.h
- src/ImGui/imstb_truetype.h
+ src/ImGui/imgui_impl_opengl3.h
+ src/ImGui/imgui_impl_opengl3_loader.h
+ src/ImGui/imgui_internal.h
+ src/ImGui/imstb_rectpack.h
+ src/ImGui/imstb_textedit.h
+ src/ImGui/imstb_truetype.h
+
+ src/tinygltf/tiny_gltf.h
+ src/tinygltf/json.hpp
)
set(sources
@@ -97,12 +100,12 @@ set(sources
src/utilities.cpp
src/ImGui/imgui.cpp
- src/ImGui/imgui_demo.cpp
- src/ImGui/imgui_draw.cpp
- src/ImGui/imgui_impl_glfw.cpp
- src/ImGui/imgui_impl_opengl3.cpp
- src/ImGui/imgui_tables.cpp
- src/ImGui/imgui_widgets.cpp
+ src/ImGui/imgui_demo.cpp
+ src/ImGui/imgui_draw.cpp
+ src/ImGui/imgui_impl_glfw.cpp
+ src/ImGui/imgui_impl_opengl3.cpp
+ src/ImGui/imgui_tables.cpp
+ src/ImGui/imgui_widgets.cpp
)
list(SORT headers)
diff --git a/README.md b/README.md
index 110697ce..de3d67a0 100644
--- a/README.md
+++ b/README.md
@@ -3,11 +3,226 @@ CUDA Path Tracer
**University of Pennsylvania, CIS 565: GPU Programming and Architecture, Project 3**
-* (TODO) YOUR NAME HERE
-* Tested on: (TODO) Windows 22, i7-2222 @ 2.22GHz 22GB, GTX 222 222MB (Moore 2222 Lab)
+* Alan Qiao
+* Tested on: Windows 11 22H2, Intel Xeon W-2145 @ 3.70GHz 64GB, RTX 3070 8GB (Dorm Workstation)
-### (TODO: Your README)
+

-*DO NOT* leave the README to the last minute! It is a crucial part of the
-project, and we will not be able to grade you without a good README.
+# Introduction
+This project demonstrates a relatively basic implementation of a CUDA path tracer where the final image is displayed through OpenGL. The project offers a naive path tracer that implements the Light Transport Equation for Lambertian diffuse materials, specular transmission, specular reflection, and Fresnel Dielectrics.
+
+The camera model simulates a pinhole camera, with support for adjustable depth of field and stochastic antialiasing. The camera can be moved using the middle mouse button, rotated with the left mouse button, and zoomed in and out with the right mouse button.
+
+Objects in the scene can be specified in two ways.
+1. Basic geometries.
+ 1. Currently, only cubes and sphere are supported.
+ 2. Each geometry can be supplied with a different transformation.
+ 3. Geometry materials support diffuse coloring, a different specular color for optional reflection or refraction with custom index of refraction, and any combination of these. Colors cannot have alpha channel.
+2. GLTF Meshes
+ 1. Currently, only `.gltf` and `.glb` files with embedded textures are supported.
+ 2. The mesh as a whole can be transformed by specifying a custom transformation.
+ 3. Meshes must consist only of traingles as primitives. Vertex position, normal, and uv information is required for correct rendering. Only diffuse shading with textures is implemented. Transparency in textures is supported.
+
+To execute the path tracer, call the built executable in the command line with the commandline argument `address/to/your/scene_name.txt`. Examples of the expected format for scene files can be found in the included demos under `scenes/`.
+
+# Background
+Consider taking a picture of a park with a camera. Light from a light source, such as the sun, shines on objects like trees, flowers or grasses. Some light is reflected by these objects into the cameras lens, and the camera captures the light it detected pixel by pixel into a picture.
+
+Path tracing is a computer graphics rendering technique that tries to simulate this idea.
+Path tracing tries to get an acccurate representation of how light would illuminate objects, both directly and indirectly, by tracing paths of light as they travel through a scene. Instead of following light rays from the light source, rays are traced backwards from the camera into the scene.
+
+For each pixel in the rendered image:
+
+A ray ("camera ray") is shot from the camera into the scene.
+If this ray intersects a surface, the intersection point becomes a new starting point.
+From this point, a new ray ("bounce ray" or "scatter ray") is shot in a random direction based on the material's reflection properties.
+This process is repeated, bouncing off surfaces, until a predefined depth or until a light source is hit.
+Each bounce gathers light (or color) from the objects it interacts with. The gathered light values are combined to calculate the final color of the pixel.
+
+### Naive Path Tracing
+In "naive" path tracing, every time a ray hits a surface, a single random bounce direction is chosen. This is the simplest method that would capture shadows and colored colored reflections from other objects in the scene. Because it only traces one path per ray, each iteration of naive path tracing can be rather noisy. This noise can be reduced by averaging the results of multiple samples per pixel, but there can still be some artifacts that are difficult to eliminate even with many samples.
+
+#### Advantages:
+
+1. Physically Accurate: Path tracing can produce images with photorealistic qualities, capturing complex lighting interactions.
+2. Unified Model: Instead of separate algorithms for shadows, reflections, and refractions, path tracing offers a unified approach to handle all these effects.
+
+#### Limitations:
+
+1. Noise: Naive path tracing can produce noisy images, especially in areas with indirect light.
+2. Computationally Intensive: Achieving noise-free images requires many samples, making it computationally expensive.
+3. Poor parallelization: Even though rendering is embarassingly parallel, it is difficult to leverage the full potential of GPU rendering enabled by CUDA programming as naive path tracing reuses the same gemometry data across threads and iterations, but these buffers are often too big to fit into shared memory. Furthermore, there are a lot of kernel calls, but each call tends to do relatively little work. Lastly, in a complex scene, there can be a lot of branching that results from the unified nature of the model, resulting in many idle threads.
+
+# Features
+The base path tracing loop is exactly as described in the background section. For a specified depth and number of iterations, the path tracing keeps sampling up until the specified depth and averaging the results until the total number of iterations are reached.
+In a single cycle, the path tracer first generates rays from the camera, one per pixel. Next, each ray is tested against the entire scene for intersection with the closest object. Then, for each intersection, the color contribution from that surface is accumulated and a new ray is generated based on the material properties. The process of computing intersections and scaterring the rays repeats until either a light is hit, at which point the ray returns a final color for coloring this pixel, or the max depth is reached, in which case black is returned as the color for this pixel. These returned colors are then accumulated into the current rendered image, average for the number of iterations, and the final image displayed to screen.
+To leverage parallel computing capabilities, this loop is split into four kernel functions: generate camera rays, compute intersections, shade and scatter rays, and gather the ray data and update the image buffer. This way, kernels of different sizes taking different data can be launched to more optimally compute for the distinctly different tasks.
+
+
+This is what the base path tracer produces for a cornell scene with a single square light and diffuse sphere. There's a shadow of the sphere on the floor, slight imprints of the colors of the walls and a sheen from the light.
+
+## Path Tracing Loop Optimizations
+The first of optimizations that could be made are to the loop itself. Splitting up into 4 kernels allows for some work in between the kernels to reduce the number of threads needed at the next stage.
+
+For this section, we will be experimenting with the following two scenes:
+
+
+On the left is the open box demo. It consists of 5 diffuse cubes for walls, 1 Fresnel Dielectric glass cube, 1 reflective mirror cube, 2 diffuse spheres, 1 emissive cube as the light, and a Seele mesh with 23079 triangles. There are a total of 30 materials, consisting of 6 geometry materials and 24 texture materials.
+
+On the right is the closed box demo. It has all the same components as the open box demo exept that there is one extra diffuse blue cube wall behind the camera.
+
+By default, both scenes are rendered at 800x800 resolution with trace depth of 8 for a total of 10,000 sample iterations.
+
+### Early Ray Termination
+If a camera doesn't intersect with the scene. That ray will simply return the color black. Similarly, any rays that failed to reach a light after `MAX_DEPTH` bounces should also return black. The last kind of rays that would terminate early are those that hit a light before max depth is reached. All of these early terminated rays can be easily distinguished by setting `remainingBounces = 0`. This means we can launch the kernels in the next iteration without these rays as they all already have their final colors. We can't simply discard these rays from memory as we still need to accumulate their color.
+The solution is to partition the rays buffer by the condition `remainingBounces > 0`. By placing all rays that have terminated at the back, we can launch a kernel with `num_active_paths` threads.
+
+
+Figure 1: Number of paths remaining with stream compaction for early ray termination with respect to path tracing depth. Two cornell scenes that are identical except one box has an open face while the other is fully closed are used. Number of active rays hits 0 on the 21st path in both scenes as the max depth is 20.
+
+As seen in this graph, the effect of stream compaction with partitioning is most prominent after a few bounces with diminishing returns. In the open box case, this makes sense because as the rays bounce around more, there is a greater chance that it bounces out the open face into void and thus get terminated for no intersection. In the closed box case, the effect of stream compaction is much smaller as rays are trapped in a box and will certainly collide with a surface. Notice, however, that there is a nearly linear trend in the number of rays terminating in the closed box case, suggesting that about an equal number of rays hit the light in a given pass. Another interesting observation is that most rays actually fail to terminate by the 20th bounce and so nearly 90% of the rays shot are actually wasted in the closed box case.
+
+### First Bounce Cache
+In a simple model where the camera always generates the same rays for each pixel, that is, a ray extending outwards from the center of each pixel in the camera's viewport, the first bounce of any sample iteration would always hit the same objects. As a result, we can cache this ray to save one iteration of intersection computation.
+
+
+Figure 2: Time required to render each frame in the closed box scene with respect to the number of rays generated by the camera. The lower the Time/Frame the better.
+
+It turns out that first bounce cache creates a negligible improvement even as the number of rays that are cached increases. One possible explanation for this is that the cost of computing intersections in a scene with relatively few geometries is small enough that it is not much greater than the cost of copying a cached buffer to the intersections buffer in memory. Perhaps with an even more complex scene there would be a more significant effect, but for the closed box demo, the improvement is negligible.
+
+Furthermore, this technique inherent conflicts with other camera based features like stoachastic antialiasing and depth of field adjustment. Thus, this technique was not used in the final implementation.
+
+### Material Sorting
+As there is a single shading kernel that is responsible for shading all the different materials, there is inevitably a lot of branching that occurs as a result of threads calling different device functions to shade for different materials. Since CUDA schedules threads in warps, it may be possible to reduce the idle time from branching by sorting the paths by material so that there is a higher chance an entire warp would have threads all calling the same branch.
+
+
+Figure 3: The effect of sorting rays by material before shading in rendering the closed box demo and the open box demo. The lower the Time/Frame the better.
+
+It is clear from the graph that the cost of sorting rays by material significantly outweighs the benefit of branching reduction. This makes sense as modern GPUs have much better performance with some branching and even if threads are idle, the time of computing a new ray direction and shading in each branch is so small that the idle is still significantly smaller than sorting, which tends to be a very expensive operation even with GPU parallelization.
+
+## Base Naive Path Tracing
+For basic path tracing, how a ray is colored and where it is scattered next is dependent on the properties of the material it intersects, and this is simulated by the light transport equation. The three most basic forms are diffusion, specular reflection, and specular transmission. The following images showcases all these shading scenarios.
+
+
+
+The leftmost cuboid features both specular reflection and specular transmission with an index of refraction of 1.55, intended to simulate glass. The middle cube has only specular transmission with an index of refraction of 1.55. The rightmost cube has only specular reflection, and is intended to simulate a mirror. The top sphere is a diffuse sphere with a grayish-white diffuse color.
+
+### Diffusion
+A diffusive material diffuses light in all directions with equal probaility. This creates the matte looking texture that we see in most rougher opaque objects. The color of light diffused depends on the color of the material, and to some extend also the influence of reflected light from other nearby materials.
+This is most obvious on the diffuse sphere in the middle, where reflections from the walls and the light can be seen lightly on the edges of the sphere, while the base color of the sphere, a grayish white, is still visible overall.
+
+### Specular Reflection
+Specular reflection describes the mirror-like reflection of light. That is, when light hits the surface, it is reflected in the exact opposite angle relative to the surface normal. Since light coming from the same direction always bounces off in the same manner, we get a consistent reflection of incoming rays, and hence the mirroring proprety.
+
+ In code, this is simply implemented as the reflection of the incoming ray across the surface normal, and the color is simply the color of the incoming ray influenced by the color of the material itself. (Yes, you can make a blue mirror here by specifying a specular color)
+
+ The rightmost cube is a mirror with a white specular color, so it just reflects light coming to it. On the faces visible, we see the influence of the floor, the back wall, and the green wall. The bit of black reflects the lack of light from the void outside the box. We can also see some light reflected on the floor to the left face of the mirror cube that comes from the mirror reflecting direct light from the light source.
+
+### Specular Transmission
+Specular transmission essentially describes refraction through a uniform material. When light enters a medium that is denser, it bends slightly towards the surface normal of the incident surface separating the mediums, and when it enters a medium that is less dense, it bends away from the surface normal. This results in the bending effect we see on a stick that is half-submerged in water.
+
+For this implementation, specular transmission is simulated using snell's law to calcualte the bending of the ray. Unlike reflection, transmitted rays pass into the object and then out from the other side, hence the name transmission. The incident ray color is influenced by the specular color of the transmissive material similar to specular reflection.
+
+This can be seen in the middle cube, where we can clearly see the floor and wall behind it, but there is some slightly distortion to the position of the wall corner. We also see some red light from the left wall that passes through the cube, showing on both the left and right face.
+
+### Fresnel Dielectric
+In reality, when light strikes a specular surface, some of it is reflected and some of it is refracted. The Fresnel equations describes this ratio of reflected light to refracted light. The full set of equations describes much more than just transmission to reflection ratio, but for this purpose we are only interested in teh transmission and reflection coefficients.
+
+In this implementation, when a ray hits a dielectric surface, there is a 50% chance that it will be sampled using specular reflection, and 50% chance that it will be sampled using specular transmission. The color, or intensity, of the new resultant ray is then attenuated by the corresponding coefficient to account for the correct ratio of influence. However, since on any iteration only either of reflection or refraction is sampled, the effect of each ray is doubled so that when averaged out across samples, the effect would be the same as taking both a reflection and refraction sample on each iteration.
+
+This can be seen on the left glass cuboid. While it is slightly difficult to see the different between this glass cuboid and the center transmissive cube, the light reflected on the red wall gives a more obvious indication that reflection is also happening.
+
+### Further Improvements
+The additional performance cost of implementing these different shaders is relatively small as each sampling function takes about the same amount of computation, and the branching time from four brief branches isn't too noticeable. Compared to the most basic cornell box with one diffuse sphere, the extra geometries introduced a mere 6ms additional rendering time per frame.
+
+One major limitation of this implementation though is that the exact sampling code can also run on the CPU, which means that the parallel architecture of the GPU is not leveraged at all beyond the parallelization benefits from the Path Tracing Loop. In fact, there is little room for improvement to the sampling functions themselves as they are just solving a few simple equations. A more thorough, but definitely more useful change, especially with a sufficiently complex scene, would be to separate the shading kernel into several dedicated kernels, one for each type of material. This will resolve the impact of branching. However, it is also unclear how effective this would be given the expensive cost of material sorting discussed earlier.
+
+In terms of additional sampling methods, two methods that would increase the photorealisticness of the simulation greatly are microfacet sampling and subsurface scattering. Microfacet sampling allows for the simulation of materials with various roughness, which would allow the simulation of a much greater variety of real-life materials. Subsurface scattering on the other hand would improve the realisticness of materials like skin, where some light can pass through and be visible as a change to the surface color of the material.
+
+## Camera Effects
+While pinhole camera with an infinitely small aperture is not possible in the real world, we can simulate some realistic effects as well as improve the quality of our render by tweaking the way we generate rays from the camera. These changes are often computationally inexpensive but can make dramatic differences in the output.
+
+### Stochastic Antialiasing
+Aliasing describes the jagged edges that result from the fact that pixels have area and thus can't perfectly represent an edge between two surfaces. This can result in the diagonal stairscase outlines you sometimes see in certain video games, or, in cases where the primitives sampled are small enough relative to the pixel size, the complete omission of some detail or even gaps. This is caused by the camera always shooting out rays form the center of a pixel, causing the region in between two pixel centers to be missed. Take a look at the closed box demo rendered without antialiasing below on the left.
+
+
+
+There are rough edges at corners of the walls and around the contour of Seele. These jagged edges are the result of these pixel samples only select either of the two intersecting materials as the color of the entire pixel.
+
+Another interesting and jarringly artifact is the gap straight down the middle of Seele's face. This particular model of Seele has a rather abrubt height change towards the center line of the face to represent the protrusion from the nose arch. It is clear from the wireframe on the right that from a front view, there are only a few very narrow traingles that account for most of the elevation change. This can result in a very unique situation where the sampled ray intersects with her face exactly on the edge between the triangles that define the two sides of her nose bridge. It happens that neither triangle considers the ray as in bounds and thus it passes straight through the mesh to the back wall, and returns the blue color of the wall as the pixel color.
+
+All of these artifacts can be solved by stochastic antialiasing, which is a very simple technique that jiggers the positions within a pixel from which a ray is generated between different samples. Using a uniform jigger, we will sample the entirety of the pixel with approximately equal weighting given enough samples. This way, the averaged pixel color would be a blend of the colors of all surfaces within the pixel, resulting in a smoother transition and elimination of a rays unexpectedly tunneling through meshes. Below is a side by side comparison of the render without aliasing from above and a render with antialiasing to illustrate the difference.
+
+
+
+The additional computational cost per ray of stochastic antialiasing is just taking two uniform samples between [0, 1] and adding it to the position of the ray. Again, this cost is negligible compared to the other more expensive parts of the cycle, and performs similarly to a CPU implementation. (The parallelization of ray generation on GPU is certainly faster than sequential generation on CPU, but this difference is not a result of antialiasing implementation)
+
+### Depth of Field
+Real cameras have lenses that focus light through a finite-sized aperture on the the receptors on the camera's film plane. Lenses can only focus on a single plane, and as a result objects that are further away from the focus plane will appear blurrier. This bigger the aperture, the greater this effect. In practice, objects do not have to be exactly on the plane of focus to appear in sharp focus. There is actually a region of focus, which is called the lens' depth of field.
+
+For this implemention, this effect is simulated using the thin-lens approximation, which specifies a simple set of equations to calculate where a light ray would focus on the focal plane based on the angle and position at which it passes through the lens. For each ray generated, we simply transform it by how it would bend given where it would pass through the imaginary lens. The refractive properties of the thin less would effective create a cone that pentrates through the plane of focus, where a circle of rays coming from beyond the plane of focus would focus onto a single point on the lens, causing all their rays to blend into one, resulting in the blurry effect.
+
+Below we demonstrate some renders with different combinations of focal distance and lens radius.
+
+
+
+
+The computational cost of depth-of-field is a bit more noticeable. For the closed box demo, it adds on average 4ms per frame. This cost is independent of the focal distance and lens radius used. Perhaps the primary cause of this noticeable computational increase is that the thin lens equation involves divisions, and divisions are notoriously expensive arithmetic operations. Unfortunately, this division value cannot be cached as each ray uses a different divisor. Similar to antialiasing, the CPU implementation of this function would not be different.
+
+## Mesh Rendering
+While spheres and cubes are great primitives to start with, they are very tedious to work with for constructing more complex models. Mesh based models, which are commonly used in CAD software for modeling pretty much anything from people to objects, are constructed from many interconnected triangles. The primary benefits of using triangles are that they are small to store, can approximate a smooth surface very well given enough suffiently small triangles, and for any point inside a triangle, its position, normals, and uvs can easily be interpolated using just the three vertices. Thus, any renderer isn't complete without support for mesh rendering. Since mesh rendeirng is much more difficult to implement and debug, this project only supports one rather particular format.
+
+### GLTF Mesh Loading
+GLTF is a newer standard for storing meshes that can conveniently hold vertex, normals, uvs, and even material and texture data in one file. It also has support for animation, armatures, and other features commonly used in 3D animations, but those are not used in this implementation.
+
+Mesh loading is done on the GPU side with help from the TinyGLTF library for decoding the binary `.glb` format and json `.gltf` format. For each model in the file, we traverse iteratively through the models in every node and load its primitives into memory as a buffer of triangles. Each vertex of the triangles stores its position, normal, and uv. Once a mesh is fully loaded, it is linked to a geometry by specifying a starting index for its primitives in the buffer, and a count of the number of primitives to indicate the end of its occupied segment in the buffer. The path tracer can then interact with these triangle primitives by checking for intersection and then shading through its normal pipeline. The cost of checking mesh intersection is enormous. More details on this will be discussed in the Bounding Volume Hiearchy section.
+
+### Albedo texture mapping
+
+For more intricate models, it doesn't make sense to just specify a single material for each primitive. Within the space of a primitive, there can be a blend of colours or heterogeneous speckles, like realistic human skin. To faciliate this level of detail, a commonly used technique is to create a square image known as a texture and sample from the texture for the color to apply for a given mesh-ray intersection. Each vertex in a traingle records a 2D vector called uv, which is a normalized coordinate for sampling a texture. Furthermore, using barycentric interpolation, the exact point to sample on a texture can be computed for any point on a triangular primitive.
+
+In this implementation, each Triangle struct contains the three vertices and their data as well as an index to the relevant texture to sample. When a triangle is selected as the intersecting object, the shader then will look for its uv to extract the relevant color from the referenced texture, and shade it using diffuse shading.
+
+The outcome of GLTF mesh loading and albedo texture shading are demonstrated below in two scenes involving one and three Seele models respectively. Both scenes have two 4800K light sources acting as diffuse lights for portrait photography and a white diffuse box on the bottom for flooring.
+
+
+
+
+In terms of performance, most of the time is spent on the overhead cost of loading the textures from GLTF file, which is done on the CPU side by looping through the set of materials and associated textures to load them into memory buffers. The textures are then copied into GPU memory using CUDA dedicated texture objects. These objects are optimized for hardware level texture sampling, which makes the cost of sampling a texture for diffuse shade not too different from directly passing a diffuse color vector from global memory. Thus, while the start time has increased, the actual rendering time per frame does not change significantly between texture sampling and direct shading.
+
+### Bounding Volume Hierarchy
+While naively looping through all the geometries in the scene works for simple scenes like the cornell boxes, this approach no longer works once meshes are introduced. The Seele model in open box and closed box demo as well as the single Seele demo consists of 23079 triangles. Naively iterating through all these traingles to test for intersection would take an extremely long time compared to checking 5 - 10 basic geometries in the basic cornell scenes. This clearly does not scale well as the three Seele scene, which is still a relatively simple scene, has 73788 triangles, and thus 73788 checks per ray generated.
+
+To reduce the number of checks required for finding an intersection, one option is to use a Bounding Volume hierarchy. The basic concept behind this is that each mesh is contained within an axis-aligned bounding box, which is then recursively subdivided into smaller bounding boxes containing less primitives. Each subdivision occurs along one axis so that all child bounding boxes remain axis-aligned. Axis-alignment allows a box to be specified with just two coordinates of opposing corners, thus minimizing the memory footprint required to define this structure. Depending on the BVH construction method, the number of checks required for finding an intersection between a mesh and a ray can be reduce to at least $\log(n)$, where $n$ is the number of primitives in the mesh.
+
+In this implementation, the surface area heuristic is used to determine the cost of making a division. For each subdivision, the axis is split into 8 bins, thus performing 7 checks for potential split and picking the one with the least cost. This implementation typically results in a shallower hierarchy, thus reducing the number of bounding box checks, but in turn may increase the number of primitive intersection checks in a leaf bounding box depending how sparsely the primitives are distributed.
+
+The construction of the BVH was done on the CPU because recursive subdivision does not work well on the GPU. While it is technically possible to implement parallel recursive construction using stacks and some careful controls, the complexity of avoiding undesired concurrent writing to the same memory buffer slot, maintaining the recursion stack, and recurisve sub-kernel launching makes the speed improvement insufficient to justify the extra implementation time. In fact the BVH construction for three Seeles took approximately 2 seconds, which is acceptable considering that this is a one-time initialization cost.
+
+For BVH traversal on the GPU side, this is implemented as a pseudo-recursive traversal using a stack. Each bounding box that the ray intersects is pushed into the stack and then its children boxes checked until a triangle is intersected or all intersecting bounding boxes have been tested.
+
+
+Figure 4: The render time per frame for the three Seele scene and a single Seele scene with and without BVH. Both scenes have the same number of lights and non-mesh geometries for equal comparison. The lower Time/Frame the better.
+
+It is clear from the graph that the performance improvement from using BVH is significant, and the impact becomes even more prominent as the number of meshes increase. In both the single and triple Seele scene, the render time per frame for the BVH implementation was about 30ms, but the naive intersection algorithm scales linearly with the number primitives, taking about 500ms for one Seele mesh and about 1550ms for three Seele meshes. Compared to a CPU implementation of BVH, the per ray traversal performance would not be dramatically different as the same recursive process would be performed to check for intersection.
+
+### Further Improvements
+The current support for mesh rendering is limited to a very particular format. For GLTF based models, more general support can be achieved by setting up the option to read material properties and thus shade a mesh with a uniform material with varying roughness, specular properties etc. Another additional feature would be to support importing textures directly from image files. This would allow support for gltf files without embedded textures and open up the option for supporting other file formats that do not support embedded textures like classic obj files. Texture mapping could also be expanded to support other kinds of maps, such as normal maps.
+
+In terms of performance, a stackless implementation of BVH could increase performance even further for even more complex scenes. The BVH could also be expanded to take other geometries so that sufficiently complex scenes consisting of other basic geometries could also benefit from less intersection tests.
+
+Furthermore, the memory footprint of the current mesh implementation can be improved by storing a separate buffer of vertices and have triangles store pointers to these vertices instead of copies. This can potentially reduce the memory footprint of a mesh dramatically as each vertex in a connected mesh can be shared by multiple triangles. For example, most vertices in the wireframe of Seele's face shown in the Antialiasing section are shared by 4 or 8 triangles, which means the memory footprint can be decreased by approximately 6 times.
+
+
+## References
+* Physically Based Rendering 3rd Edition [🔗](https://pbr-book.org/3ed-2018/contents)
+* "How to build a BVH" - JBIKKER [🔗](https://jacco.ompf2.com/2022/04/13/how-to-build-a-bvh-part-1-basics/)
+* TinyGLTF [🔗](https://github.com/syoyo/tinygltf)
+
+## Model Attributions
+* Seele - Stygian Nymphs: 神帝宇/Mihoyo [🔗](https://www.aplaybox.com/details/model/lUlYznLigW7V)
+* Seele - Stygian Nymphs New Years Outfit: 神帝宇/Mihoyo [🔗](https://www.aplaybox.com/u/359396473)
+* Seele - Herrscher of Rebirth: 神帝宇/Mihoyo [🔗](https://www.aplaybox.com/details/model/4a70Pb6y7VaC)
+* GLTF Box: Cesium [🔗](https://github.com/KhronosGroup/glTF-Sample-Models/tree/master/2.0/BoxTextured)
+* Monkey Textured: Three.js Tutorials [🔗](https://sbcode.net/threejs/textured-gltf/)
\ No newline at end of file
diff --git a/external/include/stb_image.h b/external/include/stb_image.h
index b9b265fa..323a5ec4 100644
--- a/external/include/stb_image.h
+++ b/external/include/stb_image.h
@@ -1,5 +1,5 @@
-/* stb_image - v2.06 - public domain image loader - http://nothings.org/stb_image.h
- no warranty implied; use at your own risk
+/* stb_image - v2.28 - public domain image loader - http://nothings.org/stb
+ no warranty implied; use at your own risk
Do this:
#define STB_IMAGE_IMPLEMENTATION
@@ -21,17 +21,20 @@
avoid problematic images and only need the trivial interface
JPEG baseline & progressive (12 bpc/arithmetic not supported, same as stock IJG lib)
- PNG 1/2/4/8-bit-per-channel (16 bpc not supported)
+ PNG 1/2/4/8/16-bit-per-channel
TGA (not sure what subset, if a subset)
BMP non-1bpp, non-RLE
- PSD (composited view only, no extra channels)
+ PSD (composited view only, no extra channels, 8/16 bit-per-channel)
GIF (*comp always reports as 4-channel)
HDR (radiance rgbE format)
PIC (Softimage PIC)
PNM (PPM and PGM binary only)
+ Animated GIF still needs a proper API, but here's one way to do it:
+ http://gist.github.com/urraka/685d9a6340b26b830d49
+
- decode from memory or through FILE (define STBI_NO_STDIO to remove code)
- decode from arbitrary I/O callbacks
- SIMD acceleration on x86/x64 (SSE2) and ARM (NEON)
@@ -39,177 +42,86 @@
Full documentation under "DOCUMENTATION" below.
- Revision 2.00 release notes:
-
- - Progressive JPEG is now supported.
-
- - PPM and PGM binary formats are now supported, thanks to Ken Miller.
-
- - x86 platforms now make use of SSE2 SIMD instructions for
- JPEG decoding, and ARM platforms can use NEON SIMD if requested.
- This work was done by Fabian "ryg" Giesen. SSE2 is used by
- default, but NEON must be enabled explicitly; see docs.
-
- With other JPEG optimizations included in this version, we see
- 2x speedup on a JPEG on an x86 machine, and a 1.5x speedup
- on a JPEG on an ARM machine, relative to previous versions of this
- library. The same results will not obtain for all JPGs and for all
- x86/ARM machines. (Note that progressive JPEGs are significantly
- slower to decode than regular JPEGs.) This doesn't mean that this
- is the fastest JPEG decoder in the land; rather, it brings it
- closer to parity with standard libraries. If you want the fastest
- decode, look elsewhere. (See "Philosophy" section of docs below.)
-
- See final bullet items below for more info on SIMD.
-
- - Added STBI_MALLOC, STBI_REALLOC, and STBI_FREE macros for replacing
- the memory allocator. Unlike other STBI libraries, these macros don't
- support a context parameter, so if you need to pass a context in to
- the allocator, you'll have to store it in a global or a thread-local
- variable.
-
- - Split existing STBI_NO_HDR flag into two flags, STBI_NO_HDR and
- STBI_NO_LINEAR.
- STBI_NO_HDR: suppress implementation of .hdr reader format
- STBI_NO_LINEAR: suppress high-dynamic-range light-linear float API
-
- - You can suppress implementation of any of the decoders to reduce
- your code footprint by #defining one or more of the following
- symbols before creating the implementation.
-
- STBI_NO_JPEG
- STBI_NO_PNG
- STBI_NO_BMP
- STBI_NO_PSD
- STBI_NO_TGA
- STBI_NO_GIF
- STBI_NO_HDR
- STBI_NO_PIC
- STBI_NO_PNM (.ppm and .pgm)
-
- - You can request *only* certain decoders and suppress all other ones
- (this will be more forward-compatible, as addition of new decoders
- doesn't require you to disable them explicitly):
-
- STBI_ONLY_JPEG
- STBI_ONLY_PNG
- STBI_ONLY_BMP
- STBI_ONLY_PSD
- STBI_ONLY_TGA
- STBI_ONLY_GIF
- STBI_ONLY_HDR
- STBI_ONLY_PIC
- STBI_ONLY_PNM (.ppm and .pgm)
-
- Note that you can define multiples of these, and you will get all
- of them ("only x" and "only y" is interpreted to mean "only x&y").
-
- - If you use STBI_NO_PNG (or _ONLY_ without PNG), and you still
- want the zlib decoder to be available, #define STBI_SUPPORT_ZLIB
-
- - Compilation of all SIMD code can be suppressed with
- #define STBI_NO_SIMD
- It should not be necessary to disable SIMD unless you have issues
- compiling (e.g. using an x86 compiler which doesn't support SSE
- intrinsics or that doesn't support the method used to detect
- SSE2 support at run-time), and even those can be reported as
- bugs so I can refine the built-in compile-time checking to be
- smarter.
-
- - The old STBI_SIMD system which allowed installing a user-defined
- IDCT etc. has been removed. If you need this, don't upgrade. My
- assumption is that almost nobody was doing this, and those who
- were will find the built-in SIMD more satisfactory anyway.
-
- - RGB values computed for JPEG images are slightly different from
- previous versions of stb_image. (This is due to using less
- integer precision in SIMD.) The C code has been adjusted so
- that the same RGB values will be computed regardless of whether
- SIMD support is available, so your app should always produce
- consistent results. But these results are slightly different from
- previous versions. (Specifically, about 3% of available YCbCr values
- will compute different RGB results from pre-1.49 versions by +-1;
- most of the deviating values are one smaller in the G channel.)
-
- - If you must produce consistent results with previous versions of
- stb_image, #define STBI_JPEG_OLD and you will get the same results
- you used to; however, you will not get the SIMD speedups for
- the YCbCr-to-RGB conversion step (although you should still see
- significant JPEG speedup from the other changes).
-
- Please note that STBI_JPEG_OLD is a temporary feature; it will be
- removed in future versions of the library. It is only intended for
- near-term back-compatibility use.
-
-
- Latest revision history:
- 2.06 (2015-04-19) fix bug where PSD returns wrong '*comp' value
- 2.05 (2015-04-19) fix bug in progressive JPEG handling, fix warning
- 2.04 (2015-04-15) try to re-enable SIMD on MinGW 64-bit
- 2.03 (2015-04-12) additional corruption checking
- stbi_set_flip_vertically_on_load
- fix NEON support; fix mingw support
- 2.02 (2015-01-19) fix incorrect assert, fix warning
- 2.01 (2015-01-17) fix various warnings
- 2.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG
- 2.00 (2014-12-25) optimize JPEG, including x86 SSE2 & ARM NEON SIMD
- progressive JPEG
- PGM/PPM support
- STBI_MALLOC,STBI_REALLOC,STBI_FREE
- STBI_NO_*, STBI_ONLY_*
- GIF bugfix
- 1.48 (2014-12-14) fix incorrectly-named assert()
- 1.47 (2014-12-14) 1/2/4-bit PNG support (both grayscale and paletted)
- optimize PNG
- fix bug in interlaced PNG with user-specified channel count
+LICENSE
+
+ See end of file for license information.
+
+RECENT REVISION HISTORY:
+
+ 2.28 (2023-01-29) many error fixes, security errors, just tons of stuff
+ 2.27 (2021-07-11) document stbi_info better, 16-bit PNM support, bug fixes
+ 2.26 (2020-07-13) many minor fixes
+ 2.25 (2020-02-02) fix warnings
+ 2.24 (2020-02-02) fix warnings; thread-local failure_reason and flip_vertically
+ 2.23 (2019-08-11) fix clang static analysis warning
+ 2.22 (2019-03-04) gif fixes, fix warnings
+ 2.21 (2019-02-25) fix typo in comment
+ 2.20 (2019-02-07) support utf8 filenames in Windows; fix warnings and platform ifdefs
+ 2.19 (2018-02-11) fix warning
+ 2.18 (2018-01-30) fix warnings
+ 2.17 (2018-01-29) bugfix, 1-bit BMP, 16-bitness query, fix warnings
+ 2.16 (2017-07-23) all functions have 16-bit variants; optimizations; bugfixes
+ 2.15 (2017-03-18) fix png-1,2,4; all Imagenet JPGs; no runtime SSE detection on GCC
+ 2.14 (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs
+ 2.13 (2016-12-04) experimental 16-bit API, only for PNG so far; fixes
+ 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes
+ 2.11 (2016-04-02) 16-bit PNGS; enable SSE2 in non-gcc x64
+ RGB-format JPEG; remove white matting in PSD;
+ allocate large structures on the stack;
+ correct channel count for PNG & BMP
+ 2.10 (2016-01-22) avoid warning introduced in 2.09
+ 2.09 (2016-01-16) 16-bit TGA; comments in PNM files; STBI_REALLOC_SIZED
See end of file for full revision history.
============================ Contributors =========================
- Image formats Bug fixes & warning fixes
- Sean Barrett (jpeg, png, bmp) Marc LeBlanc
- Nicolas Schulz (hdr, psd) Christpher Lloyd
- Jonathan Dummer (tga) Dave Moore
- Jean-Marc Lienher (gif) Won Chun
- Tom Seddon (pic) the Horde3D community
- Thatcher Ulrich (psd) Janez Zemva
- Ken Miller (pgm, ppm) Jonathan Blow
- Laurent Gomila
- Aruelien Pocheville
- Extensions, features Ryamond Barbiero
- Jetro Lauha (stbi_info) David Woo
- Martin "SpartanJ" Golini (stbi_info) Martin Golini
- James "moose2000" Brown (iPhone PNG) Roy Eltham
- Ben "Disch" Wenger (io callbacks) Luke Graham
- Omar Cornut (1/2/4-bit PNG) Thomas Ruf
- Nicolas Guillemot (vertical flip) John Bartholomew
- Ken Hamada
- Optimizations & bugfixes Cort Stratton
- Fabian "ryg" Giesen Blazej Dariusz Roszkowski
- Arseny Kapoulkine Thibault Reuille
- Paul Du Bois
- Guillaume George
- If your name should be here but Jerry Jansson
- isn't, let Sean know. Hayaki Saito
- Johan Duparc
- Ronny Chevalier
- Michal Cichon
- Tero Hanninen
- Sergio Gonzalez
- Cass Everitt
- Engin Manap
- Martins Mozeiko
- Joseph Thomson
- Phil Jordan
-
-LICENSE
-
-This software is in the public domain. Where that dedication is not
-recognized, you are granted a perpetual, irrevocable license to copy,
-distribute, and modify this file as you see fit.
-
+ Image formats Extensions, features
+ Sean Barrett (jpeg, png, bmp) Jetro Lauha (stbi_info)
+ Nicolas Schulz (hdr, psd) Martin "SpartanJ" Golini (stbi_info)
+ Jonathan Dummer (tga) James "moose2000" Brown (iPhone PNG)
+ Jean-Marc Lienher (gif) Ben "Disch" Wenger (io callbacks)
+ Tom Seddon (pic) Omar Cornut (1/2/4-bit PNG)
+ Thatcher Ulrich (psd) Nicolas Guillemot (vertical flip)
+ Ken Miller (pgm, ppm) Richard Mitton (16-bit PSD)
+ github:urraka (animated gif) Junggon Kim (PNM comments)
+ Christopher Forseth (animated gif) Daniel Gibson (16-bit TGA)
+ socks-the-fox (16-bit PNG)
+ Jeremy Sawicki (handle all ImageNet JPGs)
+ Optimizations & bugfixes Mikhail Morozov (1-bit BMP)
+ Fabian "ryg" Giesen Anael Seghezzi (is-16-bit query)
+ Arseny Kapoulkine Simon Breuss (16-bit PNM)
+ John-Mark Allen
+ Carmelo J Fdez-Aguera
+
+ Bug & warning fixes
+ Marc LeBlanc David Woo Guillaume George Martins Mozeiko
+ Christpher Lloyd Jerry Jansson Joseph Thomson Blazej Dariusz Roszkowski
+ Phil Jordan Dave Moore Roy Eltham
+ Hayaki Saito Nathan Reed Won Chun
+ Luke Graham Johan Duparc Nick Verigakis the Horde3D community
+ Thomas Ruf Ronny Chevalier github:rlyeh
+ Janez Zemva John Bartholomew Michal Cichon github:romigrou
+ Jonathan Blow Ken Hamada Tero Hanninen github:svdijk
+ Eugene Golushkov Laurent Gomila Cort Stratton github:snagar
+ Aruelien Pocheville Sergio Gonzalez Thibault Reuille github:Zelex
+ Cass Everitt Ryamond Barbiero github:grim210
+ Paul Du Bois Engin Manap Aldo Culquicondor github:sammyhw
+ Philipp Wiesemann Dale Weiler Oriol Ferrer Mesia github:phprus
+ Josh Tobin Neil Bickford Matthew Gregan github:poppolopoppo
+ Julian Raschke Gregory Mullen Christian Floisand github:darealshinji
+ Baldur Karlsson Kevin Schmidt JR Smith github:Michaelangel007
+ Brad Weinberger Matvey Cherevko github:mosra
+ Luca Sas Alexander Veselov Zack Middleton [reserved]
+ Ryan C. Gordon [reserved] [reserved]
+ DO NOT ADD YOUR NAME HERE
+
+ Jacko Dirks
+
+ To add your name to the credits, pick a random blank space in the middle and fill it.
+ 80% of merge conflicts on stb PRs are due to people adding their name at the end
+ of the credits.
*/
#ifndef STBI_INCLUDE_STB_IMAGE_H
@@ -218,10 +130,8 @@ distribute, and modify this file as you see fit.
// DOCUMENTATION
//
// Limitations:
-// - no 16-bit-per-channel PNG
// - no 12-bit-per-channel JPEG
// - no JPEGs with arithmetic coding
-// - no 1-bit BMP
// - GIF always returns *comp=4
//
// Basic usage (see HDR discussion below for HDR usage):
@@ -231,13 +141,13 @@ distribute, and modify this file as you see fit.
// // ... x = width, y = height, n = # 8-bit components per pixel ...
// // ... replace '0' with '1'..'4' to force that many components per pixel
// // ... but 'n' will always be the number that it would have been if you said 0
-// stbi_image_free(data)
+// stbi_image_free(data);
//
// Standard parameters:
-// int *x -- outputs image width in pixels
-// int *y -- outputs image height in pixels
-// int *comp -- outputs # of image components in image file
-// int req_comp -- if non-zero, # of image components requested in result
+// int *x -- outputs image width in pixels
+// int *y -- outputs image height in pixels
+// int *channels_in_file -- outputs # of image components in image file
+// int desired_channels -- if non-zero, # of image components requested in result
//
// The return value from an image loader is an 'unsigned char *' which points
// to the pixel data, or NULL on an allocation failure or if the image is
@@ -245,11 +155,12 @@ distribute, and modify this file as you see fit.
// with each pixel consisting of N interleaved 8-bit components; the first
// pixel pointed to is top-left-most in the image. There is no padding between
// image scanlines or between pixels, regardless of format. The number of
-// components N is 'req_comp' if req_comp is non-zero, or *comp otherwise.
-// If req_comp is non-zero, *comp has the number of components that _would_
-// have been output otherwise. E.g. if you set req_comp to 4, you will always
-// get RGBA output, but you can check *comp to see if it's trivially opaque
-// because e.g. there were only 3 channels in the source image.
+// components N is 'desired_channels' if desired_channels is non-zero, or
+// *channels_in_file otherwise. If desired_channels is non-zero,
+// *channels_in_file has the number of components that _would_ have been
+// output otherwise. E.g. if you set desired_channels to 4, you will always
+// get RGBA output, but you can check *channels_in_file to see if it's trivially
+// opaque because e.g. there were only 3 channels in the source image.
//
// An output image with N components has the following components interleaved
// in this order in each pixel:
@@ -261,14 +172,50 @@ distribute, and modify this file as you see fit.
// 4 red, green, blue, alpha
//
// If image loading fails for any reason, the return value will be NULL,
-// and *x, *y, *comp will be unchanged. The function stbi_failure_reason()
-// can be queried for an extremely brief, end-user unfriendly explanation
-// of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid
-// compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly
+// and *x, *y, *channels_in_file will be unchanged. The function
+// stbi_failure_reason() can be queried for an extremely brief, end-user
+// unfriendly explanation of why the load failed. Define STBI_NO_FAILURE_STRINGS
+// to avoid compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly
// more user-friendly ones.
//
// Paletted PNG, BMP, GIF, and PIC images are automatically depalettized.
//
+// To query the width, height and component count of an image without having to
+// decode the full file, you can use the stbi_info family of functions:
+//
+// int x,y,n,ok;
+// ok = stbi_info(filename, &x, &y, &n);
+// // returns ok=1 and sets x, y, n if image is a supported format,
+// // 0 otherwise.
+//
+// Note that stb_image pervasively uses ints in its public API for sizes,
+// including sizes of memory buffers. This is now part of the API and thus
+// hard to change without causing breakage. As a result, the various image
+// loaders all have certain limits on image size; these differ somewhat
+// by format but generally boil down to either just under 2GB or just under
+// 1GB. When the decoded image would be larger than this, stb_image decoding
+// will fail.
+//
+// Additionally, stb_image will reject image files that have any of their
+// dimensions set to a larger value than the configurable STBI_MAX_DIMENSIONS,
+// which defaults to 2**24 = 16777216 pixels. Due to the above memory limit,
+// the only way to have an image with such dimensions load correctly
+// is for it to have a rather extreme aspect ratio. Either way, the
+// assumption here is that such larger images are likely to be malformed
+// or malicious. If you do need to load an image with individual dimensions
+// larger than that, and it still fits in the overall size limit, you can
+// #define STBI_MAX_DIMENSIONS on your own to be something larger.
+//
+// ===========================================================================
+//
+// UNICODE:
+//
+// If compiling for Windows and you wish to use Unicode filenames, compile
+// with
+// #define STBI_WINDOWS_UTF8
+// and pass utf8-encoded filenames. Call stbi_convert_wchar_to_utf8 to convert
+// Windows wchar_t filenames to utf8.
+//
// ===========================================================================
//
// Philosophy
@@ -281,15 +228,15 @@ distribute, and modify this file as you see fit.
//
// Sometimes I let "good performance" creep up in priority over "easy to maintain",
// and for best performance I may provide less-easy-to-use APIs that give higher
-// performance, in addition to the easy to use ones. Nevertheless, it's important
+// performance, in addition to the easy-to-use ones. Nevertheless, it's important
// to keep in mind that from the standpoint of you, a client of this library,
-// all you care about is #1 and #3, and stb libraries do not emphasize #3 above all.
+// all you care about is #1 and #3, and stb libraries DO NOT emphasize #3 above all.
//
// Some secondary priorities arise directly from the first two, some of which
-// make more explicit reasons why performance can't be emphasized.
+// provide more explicit reasons why performance can't be emphasized.
//
// - Portable ("ease of use")
-// - Small footprint ("easy to maintain")
+// - Small source code footprint ("easy to maintain")
// - No dependencies ("ease of use")
//
// ===========================================================================
@@ -321,13 +268,6 @@ distribute, and modify this file as you see fit.
// (at least this is true for iOS and Android). Therefore, the NEON support is
// toggled by a build flag: define STBI_NEON to get NEON loops.
//
-// The output of the JPEG decoder is slightly different from versions where
-// SIMD support was introduced (that is, for versions before 1.49). The
-// difference is only +-1 in the 8-bit RGB channels, and only on a small
-// fraction of pixels. You can force the pre-1.49 behavior by defining
-// STBI_JPEG_OLD, but this will disable some of the SIMD decoding path
-// and hence cost some performance.
-//
// If for some reason you do not want to use any of SIMD code, or if
// you have issues compiling it, you can disable it entirely by
// defining STBI_NO_SIMD.
@@ -336,11 +276,10 @@ distribute, and modify this file as you see fit.
//
// HDR image support (disable by defining STBI_NO_HDR)
//
-// stb_image now supports loading HDR images in general, and currently
-// the Radiance .HDR file format, although the support is provided
-// generically. You can still load any file through the existing interface;
-// if you attempt to load an HDR file, it will be automatically remapped to
-// LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1;
+// stb_image supports loading HDR images in general, and currently the Radiance
+// .HDR file format specifically. You can still load any file through the existing
+// interface; if you attempt to load an HDR file, it will be automatically remapped
+// to LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1;
// both of these constants can be reconfigured through this interface:
//
// stbi_hdr_to_ldr_gamma(2.2f);
@@ -372,18 +311,59 @@ distribute, and modify this file as you see fit.
//
// iPhone PNG support:
//
-// By default we convert iphone-formatted PNGs back to RGB, even though
-// they are internally encoded differently. You can disable this conversion
-// by by calling stbi_convert_iphone_png_to_rgb(0), in which case
-// you will always just get the native iphone "format" through (which
-// is BGR stored in RGB).
+// We optionally support converting iPhone-formatted PNGs (which store
+// premultiplied BGRA) back to RGB, even though they're internally encoded
+// differently. To enable this conversion, call
+// stbi_convert_iphone_png_to_rgb(1).
//
// Call stbi_set_unpremultiply_on_load(1) as well to force a divide per
// pixel to remove any premultiplied alpha *only* if the image file explicitly
// says there's premultiplied data (currently only happens in iPhone images,
// and only if iPhone convert-to-rgb processing is on).
//
-
+// ===========================================================================
+//
+// ADDITIONAL CONFIGURATION
+//
+// - You can suppress implementation of any of the decoders to reduce
+// your code footprint by #defining one or more of the following
+// symbols before creating the implementation.
+//
+// STBI_NO_JPEG
+// STBI_NO_PNG
+// STBI_NO_BMP
+// STBI_NO_PSD
+// STBI_NO_TGA
+// STBI_NO_GIF
+// STBI_NO_HDR
+// STBI_NO_PIC
+// STBI_NO_PNM (.ppm and .pgm)
+//
+// - You can request *only* certain decoders and suppress all other ones
+// (this will be more forward-compatible, as addition of new decoders
+// doesn't require you to disable them explicitly):
+//
+// STBI_ONLY_JPEG
+// STBI_ONLY_PNG
+// STBI_ONLY_BMP
+// STBI_ONLY_PSD
+// STBI_ONLY_TGA
+// STBI_ONLY_GIF
+// STBI_ONLY_HDR
+// STBI_ONLY_PIC
+// STBI_ONLY_PNM (.ppm and .pgm)
+//
+// - If you use STBI_NO_PNG (or _ONLY_ without PNG), and you still
+// want the zlib decoder to be available, #define STBI_SUPPORT_ZLIB
+//
+// - If you define STBI_MAX_DIMENSIONS, stb_image will reject images greater
+// than that size (in either width or height) without further processing.
+// This is to let programs in the wild set an upper bound to prevent
+// denial-of-service attacks on untrusted data, as one could generate a
+// valid image of gigantic dimensions and force stb_image to allocate a
+// huge block of memory and spend disproportionate time decoding it. By
+// default this is set to (1 << 24), which is 16777216, but that's still
+// very big.
#ifndef STBI_NO_STDIO
#include
@@ -393,120 +373,164 @@ distribute, and modify this file as you see fit.
enum
{
- STBI_default = 0, // only used for req_comp
+ STBI_default = 0, // only used for desired_channels
- STBI_grey = 1,
- STBI_grey_alpha = 2,
- STBI_rgb = 3,
- STBI_rgb_alpha = 4
+ STBI_grey = 1,
+ STBI_grey_alpha = 2,
+ STBI_rgb = 3,
+ STBI_rgb_alpha = 4
};
+#include
typedef unsigned char stbi_uc;
+typedef unsigned short stbi_us;
#ifdef __cplusplus
extern "C" {
#endif
+#ifndef STBIDEF
#ifdef STB_IMAGE_STATIC
#define STBIDEF static
#else
#define STBIDEF extern
+#endif
#endif
-//////////////////////////////////////////////////////////////////////////////
-//
-// PRIMARY API - works on images of any type
-//
+ //////////////////////////////////////////////////////////////////////////////
+ //
+ // PRIMARY API - works on images of any type
+ //
-//
-// load image by filename, open file, or memory buffer
-//
+ //
+ // load image by filename, open file, or memory buffer
+ //
-typedef struct
-{
- int (*read) (void *user,char *data,int size); // fill 'data' with 'size' bytes. return number of bytes actually read
- void (*skip) (void *user,int n); // skip the next 'n' bytes, or 'unget' the last -n bytes if negative
- int (*eof) (void *user); // returns nonzero if we are at end of file/data
-} stbi_io_callbacks;
+ typedef struct
+ {
+ int (*read) (void* user, char* data, int size); // fill 'data' with 'size' bytes. return number of bytes actually read
+ void (*skip) (void* user, int n); // skip the next 'n' bytes, or 'unget' the last -n bytes if negative
+ int (*eof) (void* user); // returns nonzero if we are at end of file/data
+ } stbi_io_callbacks;
+
+ ////////////////////////////////////
+ //
+ // 8-bits-per-channel interface
+ //
-STBIDEF stbi_uc *stbi_load (char const *filename, int *x, int *y, int *comp, int req_comp);
-STBIDEF stbi_uc *stbi_load_from_memory (stbi_uc const *buffer, int len , int *x, int *y, int *comp, int req_comp);
-STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk , void *user, int *x, int *y, int *comp, int req_comp);
+ STBIDEF stbi_uc* stbi_load_from_memory(stbi_uc const* buffer, int len, int* x, int* y, int* channels_in_file, int desired_channels);
+ STBIDEF stbi_uc* stbi_load_from_callbacks(stbi_io_callbacks const* clbk, void* user, int* x, int* y, int* channels_in_file, int desired_channels);
#ifndef STBI_NO_STDIO
-STBIDEF stbi_uc *stbi_load_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
-// for stbi_load_from_file, file pointer is left pointing immediately after image
+ STBIDEF stbi_uc* stbi_load(char const* filename, int* x, int* y, int* channels_in_file, int desired_channels);
+ STBIDEF stbi_uc* stbi_load_from_file(FILE* f, int* x, int* y, int* channels_in_file, int desired_channels);
+ // for stbi_load_from_file, file pointer is left pointing immediately after image
#endif
-#ifndef STBI_NO_LINEAR
- STBIDEF float *stbi_loadf (char const *filename, int *x, int *y, int *comp, int req_comp);
- STBIDEF float *stbi_loadf_from_memory (stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp);
- STBIDEF float *stbi_loadf_from_callbacks (stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp);
+#ifndef STBI_NO_GIF
+ STBIDEF stbi_uc* stbi_load_gif_from_memory(stbi_uc const* buffer, int len, int** delays, int* x, int* y, int* z, int* comp, int req_comp);
+#endif
- #ifndef STBI_NO_STDIO
- STBIDEF float *stbi_loadf_from_file (FILE *f, int *x, int *y, int *comp, int req_comp);
- #endif
+#ifdef STBI_WINDOWS_UTF8
+ STBIDEF int stbi_convert_wchar_to_utf8(char* buffer, size_t bufferlen, const wchar_t* input);
#endif
-#ifndef STBI_NO_HDR
- STBIDEF void stbi_hdr_to_ldr_gamma(float gamma);
- STBIDEF void stbi_hdr_to_ldr_scale(float scale);
+ ////////////////////////////////////
+ //
+ // 16-bits-per-channel interface
+ //
+
+ STBIDEF stbi_us* stbi_load_16_from_memory(stbi_uc const* buffer, int len, int* x, int* y, int* channels_in_file, int desired_channels);
+ STBIDEF stbi_us* stbi_load_16_from_callbacks(stbi_io_callbacks const* clbk, void* user, int* x, int* y, int* channels_in_file, int desired_channels);
+
+#ifndef STBI_NO_STDIO
+ STBIDEF stbi_us* stbi_load_16(char const* filename, int* x, int* y, int* channels_in_file, int desired_channels);
+ STBIDEF stbi_us* stbi_load_from_file_16(FILE* f, int* x, int* y, int* channels_in_file, int desired_channels);
#endif
+ ////////////////////////////////////
+ //
+ // float-per-channel interface
+ //
#ifndef STBI_NO_LINEAR
- STBIDEF void stbi_ldr_to_hdr_gamma(float gamma);
- STBIDEF void stbi_ldr_to_hdr_scale(float scale);
+ STBIDEF float* stbi_loadf_from_memory(stbi_uc const* buffer, int len, int* x, int* y, int* channels_in_file, int desired_channels);
+ STBIDEF float* stbi_loadf_from_callbacks(stbi_io_callbacks const* clbk, void* user, int* x, int* y, int* channels_in_file, int desired_channels);
+
+#ifndef STBI_NO_STDIO
+ STBIDEF float* stbi_loadf(char const* filename, int* x, int* y, int* channels_in_file, int desired_channels);
+ STBIDEF float* stbi_loadf_from_file(FILE* f, int* x, int* y, int* channels_in_file, int desired_channels);
+#endif
+#endif
+
+#ifndef STBI_NO_HDR
+ STBIDEF void stbi_hdr_to_ldr_gamma(float gamma);
+ STBIDEF void stbi_hdr_to_ldr_scale(float scale);
#endif // STBI_NO_HDR
-// stbi_is_hdr is always defined, but always returns false if STBI_NO_HDR
-STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user);
-STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len);
+#ifndef STBI_NO_LINEAR
+ STBIDEF void stbi_ldr_to_hdr_gamma(float gamma);
+ STBIDEF void stbi_ldr_to_hdr_scale(float scale);
+#endif // STBI_NO_LINEAR
+
+ // stbi_is_hdr is always defined, but always returns false if STBI_NO_HDR
+ STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const* clbk, void* user);
+ STBIDEF int stbi_is_hdr_from_memory(stbi_uc const* buffer, int len);
#ifndef STBI_NO_STDIO
-STBIDEF int stbi_is_hdr (char const *filename);
-STBIDEF int stbi_is_hdr_from_file(FILE *f);
+ STBIDEF int stbi_is_hdr(char const* filename);
+ STBIDEF int stbi_is_hdr_from_file(FILE* f);
#endif // STBI_NO_STDIO
-// get a VERY brief reason for failure
-// NOT THREADSAFE
-STBIDEF const char *stbi_failure_reason (void);
+ // get a VERY brief reason for failure
+ // on most compilers (and ALL modern mainstream compilers) this is threadsafe
+ STBIDEF const char* stbi_failure_reason(void);
-// free the loaded image -- this is just free()
-STBIDEF void stbi_image_free (void *retval_from_stbi_load);
+ // free the loaded image -- this is just free()
+ STBIDEF void stbi_image_free(void* retval_from_stbi_load);
-// get image dimensions & components without fully decoding
-STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp);
-STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp);
+ // get image dimensions & components without fully decoding
+ STBIDEF int stbi_info_from_memory(stbi_uc const* buffer, int len, int* x, int* y, int* comp);
+ STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const* clbk, void* user, int* x, int* y, int* comp);
+ STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const* buffer, int len);
+ STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const* clbk, void* user);
#ifndef STBI_NO_STDIO
-STBIDEF int stbi_info (char const *filename, int *x, int *y, int *comp);
-STBIDEF int stbi_info_from_file (FILE *f, int *x, int *y, int *comp);
-
+ STBIDEF int stbi_info(char const* filename, int* x, int* y, int* comp);
+ STBIDEF int stbi_info_from_file(FILE* f, int* x, int* y, int* comp);
+ STBIDEF int stbi_is_16_bit(char const* filename);
+ STBIDEF int stbi_is_16_bit_from_file(FILE* f);
#endif
-// for image formats that explicitly notate that they have premultiplied alpha,
-// we just return the colors as stored in the file. set this flag to force
-// unpremultiplication. results are undefined if the unpremultiply overflow.
-STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply);
+ // for image formats that explicitly notate that they have premultiplied alpha,
+ // we just return the colors as stored in the file. set this flag to force
+ // unpremultiplication. results are undefined if the unpremultiply overflow.
+ STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply);
-// indicate whether we should process iphone images back to canonical format,
-// or just pass them through "as-is"
-STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert);
+ // indicate whether we should process iphone images back to canonical format,
+ // or just pass them through "as-is"
+ STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert);
-// flip the image vertically, so the first pixel in the output array is the bottom left
-STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip);
+ // flip the image vertically, so the first pixel in the output array is the bottom left
+ STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip);
-// ZLIB client - used by PNG, available for other purposes
+ // as above, but only applies to images loaded on the thread that calls the function
+ // this function is only available if your compiler supports thread-local variables;
+ // calling it will fail to link if your compiler doesn't
+ STBIDEF void stbi_set_unpremultiply_on_load_thread(int flag_true_if_should_unpremultiply);
+ STBIDEF void stbi_convert_iphone_png_to_rgb_thread(int flag_true_if_should_convert);
+ STBIDEF void stbi_set_flip_vertically_on_load_thread(int flag_true_if_should_flip);
-STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen);
-STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header);
-STBIDEF char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen);
-STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
+ // ZLIB client - used by PNG, available for other purposes
-STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen);
-STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
+ STBIDEF char* stbi_zlib_decode_malloc_guesssize(const char* buffer, int len, int initial_size, int* outlen);
+ STBIDEF char* stbi_zlib_decode_malloc_guesssize_headerflag(const char* buffer, int len, int initial_size, int* outlen, int parse_header);
+ STBIDEF char* stbi_zlib_decode_malloc(const char* buffer, int len, int* outlen);
+ STBIDEF int stbi_zlib_decode_buffer(char* obuffer, int olen, const char* ibuffer, int ilen);
+
+ STBIDEF char* stbi_zlib_decode_noheader_malloc(const char* buffer, int len, int* outlen);
+ STBIDEF int stbi_zlib_decode_noheader_buffer(char* obuffer, int olen, const char* ibuffer, int ilen);
#ifdef __cplusplus
@@ -524,33 +548,33 @@ STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const ch
|| defined(STBI_ONLY_TGA) || defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD) \
|| defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || defined(STBI_ONLY_PNM) \
|| defined(STBI_ONLY_ZLIB)
- #ifndef STBI_ONLY_JPEG
- #define STBI_NO_JPEG
- #endif
- #ifndef STBI_ONLY_PNG
- #define STBI_NO_PNG
- #endif
- #ifndef STBI_ONLY_BMP
- #define STBI_NO_BMP
- #endif
- #ifndef STBI_ONLY_PSD
- #define STBI_NO_PSD
- #endif
- #ifndef STBI_ONLY_TGA
- #define STBI_NO_TGA
- #endif
- #ifndef STBI_ONLY_GIF
- #define STBI_NO_GIF
- #endif
- #ifndef STBI_ONLY_HDR
- #define STBI_NO_HDR
- #endif
- #ifndef STBI_ONLY_PIC
- #define STBI_NO_PIC
- #endif
- #ifndef STBI_ONLY_PNM
- #define STBI_NO_PNM
- #endif
+#ifndef STBI_ONLY_JPEG
+#define STBI_NO_JPEG
+#endif
+#ifndef STBI_ONLY_PNG
+#define STBI_NO_PNG
+#endif
+#ifndef STBI_ONLY_BMP
+#define STBI_NO_BMP
+#endif
+#ifndef STBI_ONLY_PSD
+#define STBI_NO_PSD
+#endif
+#ifndef STBI_ONLY_TGA
+#define STBI_NO_TGA
+#endif
+#ifndef STBI_ONLY_GIF
+#define STBI_NO_GIF
+#endif
+#ifndef STBI_ONLY_HDR
+#define STBI_NO_HDR
+#endif
+#ifndef STBI_ONLY_PIC
+#define STBI_NO_PIC
+#endif
+#ifndef STBI_ONLY_PNM
+#define STBI_NO_PNM
+#endif
#endif
#if defined(STBI_NO_PNG) && !defined(STBI_SUPPORT_ZLIB) && !defined(STBI_NO_ZLIB)
@@ -562,9 +586,10 @@ STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const ch
#include // ptrdiff_t on osx
#include
#include
+#include
#if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR)
-#include // ldexp
+#include // ldexp, pow
#endif
#ifndef STBI_NO_STDIO
@@ -576,19 +601,42 @@ STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const ch
#define STBI_ASSERT(x) assert(x)
#endif
+#ifdef __cplusplus
+#define STBI_EXTERN extern "C"
+#else
+#define STBI_EXTERN extern
+#endif
+
#ifndef _MSC_VER
- #ifdef __cplusplus
- #define stbi_inline inline
- #else
- #define stbi_inline
- #endif
+#ifdef __cplusplus
+#define stbi_inline inline
+#else
+#define stbi_inline
+#endif
#else
- #define stbi_inline __forceinline
+#define stbi_inline __forceinline
#endif
+#ifndef STBI_NO_THREAD_LOCALS
+#if defined(__cplusplus) && __cplusplus >= 201103L
+#define STBI_THREAD_LOCAL thread_local
+#elif defined(__GNUC__) && __GNUC__ < 5
+#define STBI_THREAD_LOCAL __thread
+#elif defined(_MSC_VER)
+#define STBI_THREAD_LOCAL __declspec(thread)
+#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 201112L && !defined(__STDC_NO_THREADS__)
+#define STBI_THREAD_LOCAL _Thread_local
+#endif
-#ifdef _MSC_VER
+#ifndef STBI_THREAD_LOCAL
+#if defined(__GNUC__)
+#define STBI_THREAD_LOCAL __thread
+#endif
+#endif
+#endif
+
+#if defined(_MSC_VER) || defined(__SYMBIAN32__)
typedef unsigned short stbi__uint16;
typedef signed short stbi__int16;
typedef unsigned int stbi__uint32;
@@ -602,7 +650,7 @@ typedef int32_t stbi__int32;
#endif
// should produce compiler error if size is wrong
-typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1];
+typedef unsigned char validate_uint32[sizeof(stbi__uint32) == 4 ? 1 : -1];
#ifdef _MSC_VER
#define STBI_NOTUSED(v) (void)(v)
@@ -615,23 +663,27 @@ typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1];
#endif
#ifdef STBI_HAS_LROTL
- #define stbi_lrot(x,y) _lrotl(x,y)
+#define stbi_lrot(x,y) _lrotl(x,y)
#else
- #define stbi_lrot(x,y) (((x) << (y)) | ((x) >> (32 - (y))))
+#define stbi_lrot(x,y) (((x) << (y)) | ((x) >> (-(y) & 31)))
#endif
-#if defined(STBI_MALLOC) && defined(STBI_FREE) && defined(STBI_REALLOC)
+#if defined(STBI_MALLOC) && defined(STBI_FREE) && (defined(STBI_REALLOC) || defined(STBI_REALLOC_SIZED))
// ok
-#elif !defined(STBI_MALLOC) && !defined(STBI_FREE) && !defined(STBI_REALLOC)
+#elif !defined(STBI_MALLOC) && !defined(STBI_FREE) && !defined(STBI_REALLOC) && !defined(STBI_REALLOC_SIZED)
// ok
#else
-#error "Must define all or none of STBI_MALLOC, STBI_FREE, and STBI_REALLOC."
+#error "Must define all or none of STBI_MALLOC, STBI_FREE, and STBI_REALLOC (or STBI_REALLOC_SIZED)."
#endif
#ifndef STBI_MALLOC
-#define STBI_MALLOC(sz) malloc(sz)
-#define STBI_REALLOC(p,sz) realloc(p,sz)
-#define STBI_FREE(p) free(p)
+#define STBI_MALLOC(sz) malloc(sz)
+#define STBI_REALLOC(p,newsz) realloc(p,newsz)
+#define STBI_FREE(p) free(p)
+#endif
+
+#ifndef STBI_REALLOC_SIZED
+#define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz)
#endif
// x86/x64 detection
@@ -641,12 +693,14 @@ typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1];
#define STBI__X86_TARGET
#endif
-#if defined(__GNUC__) && (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET)) && !defined(__SSE2__) && !defined(STBI_NO_SIMD)
-// NOTE: not clear do we actually need this for the 64-bit path?
+#if defined(__GNUC__) && defined(STBI__X86_TARGET) && !defined(__SSE2__) && !defined(STBI_NO_SIMD)
// gcc doesn't support sse2 intrinsics unless you compile with -msse2,
-// (but compiling with -msse2 allows the compiler to use SSE2 everywhere;
-// this is just broken and gcc are jerks for not fixing it properly
-// http://www.virtualdub.org/blog/pivot/entry.php?id=363 )
+// which in turn means it gets to use SSE2 everywhere. This is unfortunate,
+// but previous attempts to provide the SSE2 functions with runtime
+// detection caused numerous issues. The way architecture extensions are
+// exposed in GCC/Clang is, sadly, not really suited for one-file libs.
+// New behavior: if compiled with -msse2, we use SSE2 without any
+// detection; if not, we don't use it at all.
#define STBI_NO_SIMD
#endif
@@ -665,7 +719,7 @@ typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1];
#define STBI_NO_SIMD
#endif
-#if !defined(STBI_NO_SIMD) && defined(STBI__X86_TARGET)
+#if !defined(STBI_NO_SIMD) && (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET))
#define STBI_SSE2
#include
@@ -675,44 +729,46 @@ typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1];
#include // __cpuid
static int stbi__cpuid3(void)
{
- int info[4];
- __cpuid(info,1);
- return info[3];
+ int info[4];
+ __cpuid(info, 1);
+ return info[3];
}
#else
static int stbi__cpuid3(void)
{
- int res;
- __asm {
- mov eax,1
- cpuid
- mov res,edx
- }
- return res;
+ int res;
+ __asm {
+ mov eax, 1
+ cpuid
+ mov res, edx
+ }
+ return res;
}
#endif
#define STBI_SIMD_ALIGN(type, name) __declspec(align(16)) type name
-static int stbi__sse2_available()
+#if !defined(STBI_NO_JPEG) && defined(STBI_SSE2)
+static int stbi__sse2_available(void)
{
- int info3 = stbi__cpuid3();
- return ((info3 >> 26) & 1) != 0;
+ int info3 = stbi__cpuid3();
+ return ((info3 >> 26) & 1) != 0;
}
+#endif
+
#else // assume GCC-style if not VC++
#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
-static int stbi__sse2_available()
+#if !defined(STBI_NO_JPEG) && defined(STBI_SSE2)
+static int stbi__sse2_available(void)
{
-#if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__) >= 408 // GCC 4.8 or later
- // GCC 4.8+ has a nice way to do this
- return __builtin_cpu_supports("sse2");
-#else
- // portable way to do this, preferably without using GCC inline ASM?
- // just bail for now.
- return 0;
-#endif
+ // If we're even attempting to compile this on GCC/Clang, that means
+ // -msse2 is on, which means the compiler is allowed to use SSE2
+ // instructions at will, and so are we.
+ return 1;
}
+#endif
+
#endif
#endif
@@ -723,14 +779,21 @@ static int stbi__sse2_available()
#ifdef STBI_NEON
#include
-// assume GCC or Clang on ARM targets
+#ifdef _MSC_VER
+#define STBI_SIMD_ALIGN(type, name) __declspec(align(16)) type name
+#else
#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
#endif
+#endif
#ifndef STBI_SIMD_ALIGN
#define STBI_SIMD_ALIGN(type, name) type name
#endif
+#ifndef STBI_MAX_DIMENSIONS
+#define STBI_MAX_DIMENSIONS (1 << 24)
+#endif
+
///////////////////////////////////////////////
//
// stbi__context struct and start_xxx functions
@@ -739,58 +802,67 @@ static int stbi__sse2_available()
// contains all the IO context, plus some basic image information
typedef struct
{
- stbi__uint32 img_x, img_y;
- int img_n, img_out_n;
+ stbi__uint32 img_x, img_y;
+ int img_n, img_out_n;
- stbi_io_callbacks io;
- void *io_user_data;
+ stbi_io_callbacks io;
+ void* io_user_data;
- int read_from_callbacks;
- int buflen;
- stbi_uc buffer_start[128];
+ int read_from_callbacks;
+ int buflen;
+ stbi_uc buffer_start[128];
+ int callback_already_read;
- stbi_uc *img_buffer, *img_buffer_end;
- stbi_uc *img_buffer_original;
+ stbi_uc* img_buffer, * img_buffer_end;
+ stbi_uc* img_buffer_original, * img_buffer_original_end;
} stbi__context;
-static void stbi__refill_buffer(stbi__context *s);
+static void stbi__refill_buffer(stbi__context* s);
// initialize a memory-decode context
-static void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len)
+static void stbi__start_mem(stbi__context* s, stbi_uc const* buffer, int len)
{
- s->io.read = NULL;
- s->read_from_callbacks = 0;
- s->img_buffer = s->img_buffer_original = (stbi_uc *) buffer;
- s->img_buffer_end = (stbi_uc *) buffer+len;
+ s->io.read = NULL;
+ s->read_from_callbacks = 0;
+ s->callback_already_read = 0;
+ s->img_buffer = s->img_buffer_original = (stbi_uc*)buffer;
+ s->img_buffer_end = s->img_buffer_original_end = (stbi_uc*)buffer + len;
}
// initialize a callback-based context
-static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, void *user)
+static void stbi__start_callbacks(stbi__context* s, stbi_io_callbacks* c, void* user)
{
- s->io = *c;
- s->io_user_data = user;
- s->buflen = sizeof(s->buffer_start);
- s->read_from_callbacks = 1;
- s->img_buffer_original = s->buffer_start;
- stbi__refill_buffer(s);
+ s->io = *c;
+ s->io_user_data = user;
+ s->buflen = sizeof(s->buffer_start);
+ s->read_from_callbacks = 1;
+ s->callback_already_read = 0;
+ s->img_buffer = s->img_buffer_original = s->buffer_start;
+ stbi__refill_buffer(s);
+ s->img_buffer_original_end = s->img_buffer_end;
}
#ifndef STBI_NO_STDIO
-static int stbi__stdio_read(void *user, char *data, int size)
+static int stbi__stdio_read(void* user, char* data, int size)
{
- return (int) fread(data,1,size,(FILE*) user);
+ return (int)fread(data, 1, size, (FILE*)user);
}
-static void stbi__stdio_skip(void *user, int n)
+static void stbi__stdio_skip(void* user, int n)
{
- fseek((FILE*) user, n, SEEK_CUR);
+ int ch;
+ fseek((FILE*)user, n, SEEK_CUR);
+ ch = fgetc((FILE*)user); /* have to read a byte to reset feof()'s flag */
+ if (ch != EOF) {
+ ungetc(ch, (FILE*)user); /* push byte back onto stream if valid. */
+ }
}
-static int stbi__stdio_eof(void *user)
+static int stbi__stdio_eof(void* user)
{
- return feof((FILE*) user);
+ return feof((FILE*)user) || ferror((FILE*)user);
}
static stbi_io_callbacks stbi__stdio_callbacks =
@@ -800,507 +872,866 @@ static stbi_io_callbacks stbi__stdio_callbacks =
stbi__stdio_eof,
};
-static void stbi__start_file(stbi__context *s, FILE *f)
+static void stbi__start_file(stbi__context* s, FILE* f)
{
- stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *) f);
+ stbi__start_callbacks(s, &stbi__stdio_callbacks, (void*)f);
}
//static void stop_file(stbi__context *s) { }
#endif // !STBI_NO_STDIO
-static void stbi__rewind(stbi__context *s)
+static void stbi__rewind(stbi__context* s)
{
- // conceptually rewind SHOULD rewind to the beginning of the stream,
- // but we just rewind to the beginning of the initial buffer, because
- // we only use it after doing 'test', which only ever looks at at most 92 bytes
- s->img_buffer = s->img_buffer_original;
+ // conceptually rewind SHOULD rewind to the beginning of the stream,
+ // but we just rewind to the beginning of the initial buffer, because
+ // we only use it after doing 'test', which only ever looks at at most 92 bytes
+ s->img_buffer = s->img_buffer_original;
+ s->img_buffer_end = s->img_buffer_original_end;
}
+enum
+{
+ STBI_ORDER_RGB,
+ STBI_ORDER_BGR
+};
+
+typedef struct
+{
+ int bits_per_channel;
+ int num_channels;
+ int channel_order;
+} stbi__result_info;
+
#ifndef STBI_NO_JPEG
-static int stbi__jpeg_test(stbi__context *s);
-static stbi_uc *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
-static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp);
+static int stbi__jpeg_test(stbi__context* s);
+static void* stbi__jpeg_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri);
+static int stbi__jpeg_info(stbi__context* s, int* x, int* y, int* comp);
#endif
#ifndef STBI_NO_PNG
-static int stbi__png_test(stbi__context *s);
-static stbi_uc *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
-static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp);
+static int stbi__png_test(stbi__context* s);
+static void* stbi__png_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri);
+static int stbi__png_info(stbi__context* s, int* x, int* y, int* comp);
+static int stbi__png_is16(stbi__context* s);
#endif
#ifndef STBI_NO_BMP
-static int stbi__bmp_test(stbi__context *s);
-static stbi_uc *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
-static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp);
+static int stbi__bmp_test(stbi__context* s);
+static void* stbi__bmp_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri);
+static int stbi__bmp_info(stbi__context* s, int* x, int* y, int* comp);
#endif
#ifndef STBI_NO_TGA
-static int stbi__tga_test(stbi__context *s);
-static stbi_uc *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
-static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp);
+static int stbi__tga_test(stbi__context* s);
+static void* stbi__tga_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri);
+static int stbi__tga_info(stbi__context* s, int* x, int* y, int* comp);
#endif
#ifndef STBI_NO_PSD
-static int stbi__psd_test(stbi__context *s);
-static stbi_uc *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
-static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp);
+static int stbi__psd_test(stbi__context* s);
+static void* stbi__psd_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri, int bpc);
+static int stbi__psd_info(stbi__context* s, int* x, int* y, int* comp);
+static int stbi__psd_is16(stbi__context* s);
#endif
#ifndef STBI_NO_HDR
-static int stbi__hdr_test(stbi__context *s);
-static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
-static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp);
+static int stbi__hdr_test(stbi__context* s);
+static float* stbi__hdr_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri);
+static int stbi__hdr_info(stbi__context* s, int* x, int* y, int* comp);
#endif
#ifndef STBI_NO_PIC
-static int stbi__pic_test(stbi__context *s);
-static stbi_uc *stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
-static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp);
+static int stbi__pic_test(stbi__context* s);
+static void* stbi__pic_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri);
+static int stbi__pic_info(stbi__context* s, int* x, int* y, int* comp);
#endif
#ifndef STBI_NO_GIF
-static int stbi__gif_test(stbi__context *s);
-static stbi_uc *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
-static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp);
+static int stbi__gif_test(stbi__context* s);
+static void* stbi__gif_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri);
+static void* stbi__load_gif_main(stbi__context* s, int** delays, int* x, int* y, int* z, int* comp, int req_comp);
+static int stbi__gif_info(stbi__context* s, int* x, int* y, int* comp);
#endif
#ifndef STBI_NO_PNM
-static int stbi__pnm_test(stbi__context *s);
-static stbi_uc *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp);
-static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp);
+static int stbi__pnm_test(stbi__context* s);
+static void* stbi__pnm_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri);
+static int stbi__pnm_info(stbi__context* s, int* x, int* y, int* comp);
+static int stbi__pnm_is16(stbi__context* s);
#endif
-// this is not threadsafe
-static const char *stbi__g_failure_reason;
+static
+#ifdef STBI_THREAD_LOCAL
+STBI_THREAD_LOCAL
+#endif
+const char* stbi__g_failure_reason;
-STBIDEF const char *stbi_failure_reason(void)
+STBIDEF const char* stbi_failure_reason(void)
{
- return stbi__g_failure_reason;
+ return stbi__g_failure_reason;
}
-static int stbi__err(const char *str)
+#ifndef STBI_NO_FAILURE_STRINGS
+static int stbi__err(const char* str)
{
- stbi__g_failure_reason = str;
- return 0;
+ stbi__g_failure_reason = str;
+ return 0;
}
+#endif
-static void *stbi__malloc(size_t size)
+static void* stbi__malloc(size_t size)
{
return STBI_MALLOC(size);
}
-// stbi__err - error
-// stbi__errpf - error returning pointer to float
-// stbi__errpuc - error returning pointer to unsigned char
-
-#ifdef STBI_NO_FAILURE_STRINGS
- #define stbi__err(x,y) 0
-#elif defined(STBI_FAILURE_USERMSG)
- #define stbi__err(x,y) stbi__err(y)
-#else
- #define stbi__err(x,y) stbi__err(x)
-#endif
-
-#define stbi__errpf(x,y) ((float *) (stbi__err(x,y)?NULL:NULL))
-#define stbi__errpuc(x,y) ((unsigned char *) (stbi__err(x,y)?NULL:NULL))
+// stb_image uses ints pervasively, including for offset calculations.
+// therefore the largest decoded image size we can support with the
+// current code, even on 64-bit targets, is INT_MAX. this is not a
+// significant limitation for the intended use case.
+//
+// we do, however, need to make sure our size calculations don't
+// overflow. hence a few helper functions for size calculations that
+// multiply integers together, making sure that they're non-negative
+// and no overflow occurs.
-STBIDEF void stbi_image_free(void *retval_from_stbi_load)
+// return 1 if the sum is valid, 0 on overflow.
+// negative terms are considered invalid.
+static int stbi__addsizes_valid(int a, int b)
{
- STBI_FREE(retval_from_stbi_load);
+ if (b < 0) return 0;
+ // now 0 <= b <= INT_MAX, hence also
+ // 0 <= INT_MAX - b <= INTMAX.
+ // And "a + b <= INT_MAX" (which might overflow) is the
+ // same as a <= INT_MAX - b (no overflow)
+ return a <= INT_MAX - b;
}
-#ifndef STBI_NO_LINEAR
-static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp);
-#endif
-
-#ifndef STBI_NO_HDR
-static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp);
-#endif
-
-static int stbi__vertically_flip_on_load = 0;
-
-STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip)
+// returns 1 if the product is valid, 0 on overflow.
+// negative factors are considered invalid.
+static int stbi__mul2sizes_valid(int a, int b)
{
- stbi__vertically_flip_on_load = flag_true_if_should_flip;
-}
-
-static unsigned char *stbi__load_main(stbi__context *s, int *x, int *y, int *comp, int req_comp)
-{
- #ifndef STBI_NO_JPEG
- if (stbi__jpeg_test(s)) return stbi__jpeg_load(s,x,y,comp,req_comp);
- #endif
- #ifndef STBI_NO_PNG
- if (stbi__png_test(s)) return stbi__png_load(s,x,y,comp,req_comp);
- #endif
- #ifndef STBI_NO_BMP
- if (stbi__bmp_test(s)) return stbi__bmp_load(s,x,y,comp,req_comp);
- #endif
- #ifndef STBI_NO_GIF
- if (stbi__gif_test(s)) return stbi__gif_load(s,x,y,comp,req_comp);
- #endif
- #ifndef STBI_NO_PSD
- if (stbi__psd_test(s)) return stbi__psd_load(s,x,y,comp,req_comp);
- #endif
- #ifndef STBI_NO_PIC
- if (stbi__pic_test(s)) return stbi__pic_load(s,x,y,comp,req_comp);
- #endif
- #ifndef STBI_NO_PNM
- if (stbi__pnm_test(s)) return stbi__pnm_load(s,x,y,comp,req_comp);
- #endif
-
- #ifndef STBI_NO_HDR
- if (stbi__hdr_test(s)) {
- float *hdr = stbi__hdr_load(s, x,y,comp,req_comp);
- return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp);
- }
- #endif
-
- #ifndef STBI_NO_TGA
- // test tga last because it's a crappy test!
- if (stbi__tga_test(s))
- return stbi__tga_load(s,x,y,comp,req_comp);
- #endif
-
- return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt");
+ if (a < 0 || b < 0) return 0;
+ if (b == 0) return 1; // mul-by-0 is always safe
+ // portable way to check for no overflows in a*b
+ return a <= INT_MAX / b;
}
-static unsigned char *stbi__load_flip(stbi__context *s, int *x, int *y, int *comp, int req_comp)
+#if !defined(STBI_NO_JPEG) || !defined(STBI_NO_PNG) || !defined(STBI_NO_TGA) || !defined(STBI_NO_HDR)
+// returns 1 if "a*b + add" has no negative terms/factors and doesn't overflow
+static int stbi__mad2sizes_valid(int a, int b, int add)
{
- unsigned char *result = stbi__load_main(s, x, y, comp, req_comp);
-
- if (stbi__vertically_flip_on_load && result != NULL) {
- int w = *x, h = *y;
- int depth = req_comp ? req_comp : *comp;
- int row,col,z;
- stbi_uc temp;
-
- // @OPTIMIZE: use a bigger temp buffer and memcpy multiple pixels at once
- for (row = 0; row < (h>>1); row++) {
- for (col = 0; col < w; col++) {
- for (z = 0; z < depth; z++) {
- temp = result[(row * w + col) * depth + z];
- result[(row * w + col) * depth + z] = result[((h - row - 1) * w + col) * depth + z];
- result[((h - row - 1) * w + col) * depth + z] = temp;
- }
- }
- }
- }
-
- return result;
+ return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a * b, add);
}
+#endif
-static void stbi__float_postprocess(float *result, int *x, int *y, int *comp, int req_comp)
+// returns 1 if "a*b*c + add" has no negative terms/factors and doesn't overflow
+static int stbi__mad3sizes_valid(int a, int b, int c, int add)
{
- if (stbi__vertically_flip_on_load && result != NULL) {
- int w = *x, h = *y;
- int depth = req_comp ? req_comp : *comp;
- int row,col,z;
- float temp;
-
- // @OPTIMIZE: use a bigger temp buffer and memcpy multiple pixels at once
- for (row = 0; row < (h>>1); row++) {
- for (col = 0; col < w; col++) {
- for (z = 0; z < depth; z++) {
- temp = result[(row * w + col) * depth + z];
- result[(row * w + col) * depth + z] = result[((h - row - 1) * w + col) * depth + z];
- result[((h - row - 1) * w + col) * depth + z] = temp;
- }
- }
- }
- }
+ return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a * b, c) &&
+ stbi__addsizes_valid(a * b * c, add);
}
-
-#ifndef STBI_NO_STDIO
-
-static FILE *stbi__fopen(char const *filename, char const *mode)
+// returns 1 if "a*b*c*d + add" has no negative terms/factors and doesn't overflow
+#if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) || !defined(STBI_NO_PNM)
+static int stbi__mad4sizes_valid(int a, int b, int c, int d, int add)
{
- FILE *f;
-#if defined(_MSC_VER) && _MSC_VER >= 1400
- if (0 != fopen_s(&f, filename, mode))
- f=0;
-#else
- f = fopen(filename, mode);
-#endif
- return f;
+ return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a * b, c) &&
+ stbi__mul2sizes_valid(a * b * c, d) && stbi__addsizes_valid(a * b * c * d, add);
}
+#endif
-
-STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp)
+#if !defined(STBI_NO_JPEG) || !defined(STBI_NO_PNG) || !defined(STBI_NO_TGA) || !defined(STBI_NO_HDR)
+// mallocs with size overflow checking
+static void* stbi__malloc_mad2(int a, int b, int add)
{
- FILE *f = stbi__fopen(filename, "rb");
- unsigned char *result;
- if (!f) return stbi__errpuc("can't fopen", "Unable to open file");
- result = stbi_load_from_file(f,x,y,comp,req_comp);
- fclose(f);
- return result;
+ if (!stbi__mad2sizes_valid(a, b, add)) return NULL;
+ return stbi__malloc(a * b + add);
}
+#endif
-STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
+static void* stbi__malloc_mad3(int a, int b, int c, int add)
{
- unsigned char *result;
- stbi__context s;
- stbi__start_file(&s,f);
- result = stbi__load_flip(&s,x,y,comp,req_comp);
- if (result) {
- // need to 'unget' all the characters in the IO buffer
- fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR);
- }
- return result;
+ if (!stbi__mad3sizes_valid(a, b, c, add)) return NULL;
+ return stbi__malloc(a * b * c + add);
}
-#endif //!STBI_NO_STDIO
-STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
+#if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) || !defined(STBI_NO_PNM)
+static void* stbi__malloc_mad4(int a, int b, int c, int d, int add)
{
- stbi__context s;
- stbi__start_mem(&s,buffer,len);
- return stbi__load_flip(&s,x,y,comp,req_comp);
+ if (!stbi__mad4sizes_valid(a, b, c, d, add)) return NULL;
+ return stbi__malloc(a * b * c * d + add);
}
+#endif
-STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp)
+// returns 1 if the sum of two signed ints is valid (between -2^31 and 2^31-1 inclusive), 0 on overflow.
+static int stbi__addints_valid(int a, int b)
{
- stbi__context s;
- stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
- return stbi__load_flip(&s,x,y,comp,req_comp);
-}
-
-#ifndef STBI_NO_LINEAR
-static float *stbi__loadf_main(stbi__context *s, int *x, int *y, int *comp, int req_comp)
-{
- unsigned char *data;
- #ifndef STBI_NO_HDR
- if (stbi__hdr_test(s)) {
- float *hdr_data = stbi__hdr_load(s,x,y,comp,req_comp);
- if (hdr_data)
- stbi__float_postprocess(hdr_data,x,y,comp,req_comp);
- return hdr_data;
- }
- #endif
- data = stbi__load_flip(s, x, y, comp, req_comp);
- if (data)
- return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp);
- return stbi__errpf("unknown image type", "Image not of any known type, or corrupt");
+ if ((a >= 0) != (b >= 0)) return 1; // a and b have different signs, so no overflow
+ if (a < 0 && b < 0) return a >= INT_MIN - b; // same as a + b >= INT_MIN; INT_MIN - b cannot overflow since b < 0.
+ return a <= INT_MAX - b;
}
-STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
+// returns 1 if the product of two signed shorts is valid, 0 on overflow.
+static int stbi__mul2shorts_valid(short a, short b)
{
- stbi__context s;
- stbi__start_mem(&s,buffer,len);
- return stbi__loadf_main(&s,x,y,comp,req_comp);
+ if (b == 0 || b == -1) return 1; // multiplication by 0 is always 0; check for -1 so SHRT_MIN/b doesn't overflow
+ if ((a >= 0) == (b >= 0)) return a <= SHRT_MAX / b; // product is positive, so similar to mul2sizes_valid
+ if (b < 0) return a <= SHRT_MIN / b; // same as a * b >= SHRT_MIN
+ return a >= SHRT_MIN / b;
}
-STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp)
-{
- stbi__context s;
- stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
- return stbi__loadf_main(&s,x,y,comp,req_comp);
-}
+// stbi__err - error
+// stbi__errpf - error returning pointer to float
+// stbi__errpuc - error returning pointer to unsigned char
-#ifndef STBI_NO_STDIO
-STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp)
-{
- float *result;
- FILE *f = stbi__fopen(filename, "rb");
- if (!f) return stbi__errpf("can't fopen", "Unable to open file");
- result = stbi_loadf_from_file(f,x,y,comp,req_comp);
- fclose(f);
- return result;
-}
+#ifdef STBI_NO_FAILURE_STRINGS
+#define stbi__err(x,y) 0
+#elif defined(STBI_FAILURE_USERMSG)
+#define stbi__err(x,y) stbi__err(y)
+#else
+#define stbi__err(x,y) stbi__err(x)
+#endif
+
+#define stbi__errpf(x,y) ((float *)(size_t) (stbi__err(x,y)?NULL:NULL))
+#define stbi__errpuc(x,y) ((unsigned char *)(size_t) (stbi__err(x,y)?NULL:NULL))
-STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
+STBIDEF void stbi_image_free(void* retval_from_stbi_load)
{
- stbi__context s;
- stbi__start_file(&s,f);
- return stbi__loadf_main(&s,x,y,comp,req_comp);
+ STBI_FREE(retval_from_stbi_load);
}
-#endif // !STBI_NO_STDIO
-#endif // !STBI_NO_LINEAR
+#ifndef STBI_NO_LINEAR
+static float* stbi__ldr_to_hdr(stbi_uc* data, int x, int y, int comp);
+#endif
-// these is-hdr-or-not is defined independent of whether STBI_NO_LINEAR is
-// defined, for API simplicity; if STBI_NO_LINEAR is defined, it always
-// reports false!
+#ifndef STBI_NO_HDR
+static stbi_uc* stbi__hdr_to_ldr(float* data, int x, int y, int comp);
+#endif
-STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len)
-{
- #ifndef STBI_NO_HDR
- stbi__context s;
- stbi__start_mem(&s,buffer,len);
- return stbi__hdr_test(&s);
- #else
- STBI_NOTUSED(buffer);
- STBI_NOTUSED(len);
- return 0;
- #endif
-}
+static int stbi__vertically_flip_on_load_global = 0;
-#ifndef STBI_NO_STDIO
-STBIDEF int stbi_is_hdr (char const *filename)
+STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip)
{
- FILE *f = stbi__fopen(filename, "rb");
- int result=0;
- if (f) {
- result = stbi_is_hdr_from_file(f);
- fclose(f);
- }
- return result;
+ stbi__vertically_flip_on_load_global = flag_true_if_should_flip;
}
-STBIDEF int stbi_is_hdr_from_file(FILE *f)
+#ifndef STBI_THREAD_LOCAL
+#define stbi__vertically_flip_on_load stbi__vertically_flip_on_load_global
+#else
+static STBI_THREAD_LOCAL int stbi__vertically_flip_on_load_local, stbi__vertically_flip_on_load_set;
+
+STBIDEF void stbi_set_flip_vertically_on_load_thread(int flag_true_if_should_flip)
{
- #ifndef STBI_NO_HDR
- stbi__context s;
- stbi__start_file(&s,f);
- return stbi__hdr_test(&s);
- #else
- return 0;
- #endif
+ stbi__vertically_flip_on_load_local = flag_true_if_should_flip;
+ stbi__vertically_flip_on_load_set = 1;
}
-#endif // !STBI_NO_STDIO
-STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user)
+#define stbi__vertically_flip_on_load (stbi__vertically_flip_on_load_set \
+ ? stbi__vertically_flip_on_load_local \
+ : stbi__vertically_flip_on_load_global)
+#endif // STBI_THREAD_LOCAL
+
+static void* stbi__load_main(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri, int bpc)
{
- #ifndef STBI_NO_HDR
- stbi__context s;
- stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
- return stbi__hdr_test(&s);
- #else
- return 0;
- #endif
-}
+ memset(ri, 0, sizeof(*ri)); // make sure it's initialized if we add new fields
+ ri->bits_per_channel = 8; // default is 8 so most paths don't have to be changed
+ ri->channel_order = STBI_ORDER_RGB; // all current input & output are this, but this is here so we can add BGR order
+ ri->num_channels = 0;
-static float stbi__h2l_gamma_i=1.0f/2.2f, stbi__h2l_scale_i=1.0f;
-static float stbi__l2h_gamma=2.2f, stbi__l2h_scale=1.0f;
+ // test the formats with a very explicit header first (at least a FOURCC
+ // or distinctive magic number first)
+#ifndef STBI_NO_PNG
+ if (stbi__png_test(s)) return stbi__png_load(s, x, y, comp, req_comp, ri);
+#endif
+#ifndef STBI_NO_BMP
+ if (stbi__bmp_test(s)) return stbi__bmp_load(s, x, y, comp, req_comp, ri);
+#endif
+#ifndef STBI_NO_GIF
+ if (stbi__gif_test(s)) return stbi__gif_load(s, x, y, comp, req_comp, ri);
+#endif
+#ifndef STBI_NO_PSD
+ if (stbi__psd_test(s)) return stbi__psd_load(s, x, y, comp, req_comp, ri, bpc);
+#else
+ STBI_NOTUSED(bpc);
+#endif
+#ifndef STBI_NO_PIC
+ if (stbi__pic_test(s)) return stbi__pic_load(s, x, y, comp, req_comp, ri);
+#endif
-#ifndef STBI_NO_LINEAR
-STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; }
-STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; }
+ // then the formats that can end up attempting to load with just 1 or 2
+ // bytes matching expectations; these are prone to false positives, so
+ // try them later
+#ifndef STBI_NO_JPEG
+ if (stbi__jpeg_test(s)) return stbi__jpeg_load(s, x, y, comp, req_comp, ri);
+#endif
+#ifndef STBI_NO_PNM
+ if (stbi__pnm_test(s)) return stbi__pnm_load(s, x, y, comp, req_comp, ri);
#endif
-STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1/gamma; }
-STBIDEF void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1/scale; }
+#ifndef STBI_NO_HDR
+ if (stbi__hdr_test(s)) {
+ float* hdr = stbi__hdr_load(s, x, y, comp, req_comp, ri);
+ return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp);
+ }
+#endif
+#ifndef STBI_NO_TGA
+ // test tga last because it's a crappy test!
+ if (stbi__tga_test(s))
+ return stbi__tga_load(s, x, y, comp, req_comp, ri);
+#endif
-//////////////////////////////////////////////////////////////////////////////
-//
-// Common code used by all image loaders
-//
+ return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt");
+}
-enum
+static stbi_uc* stbi__convert_16_to_8(stbi__uint16* orig, int w, int h, int channels)
{
- STBI__SCAN_load=0,
- STBI__SCAN_type,
- STBI__SCAN_header
-};
+ int i;
+ int img_len = w * h * channels;
+ stbi_uc* reduced;
-static void stbi__refill_buffer(stbi__context *s)
-{
- int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen);
- if (n == 0) {
- // at end of file, treat same as if from memory, but need to handle case
- // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file
- s->read_from_callbacks = 0;
- s->img_buffer = s->buffer_start;
- s->img_buffer_end = s->buffer_start+1;
- *s->img_buffer = 0;
- } else {
- s->img_buffer = s->buffer_start;
- s->img_buffer_end = s->buffer_start + n;
- }
+ reduced = (stbi_uc*)stbi__malloc(img_len);
+ if (reduced == NULL) return stbi__errpuc("outofmem", "Out of memory");
+
+ for (i = 0; i < img_len; ++i)
+ reduced[i] = (stbi_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is sufficient approx of 16->8 bit scaling
+
+ STBI_FREE(orig);
+ return reduced;
}
-stbi_inline static stbi_uc stbi__get8(stbi__context *s)
+static stbi__uint16* stbi__convert_8_to_16(stbi_uc* orig, int w, int h, int channels)
{
- if (s->img_buffer < s->img_buffer_end)
- return *s->img_buffer++;
- if (s->read_from_callbacks) {
- stbi__refill_buffer(s);
- return *s->img_buffer++;
- }
- return 0;
+ int i;
+ int img_len = w * h * channels;
+ stbi__uint16* enlarged;
+
+ enlarged = (stbi__uint16*)stbi__malloc(img_len * 2);
+ if (enlarged == NULL) return (stbi__uint16*)stbi__errpuc("outofmem", "Out of memory");
+
+ for (i = 0; i < img_len; ++i)
+ enlarged[i] = (stbi__uint16)((orig[i] << 8) + orig[i]); // replicate to high and low byte, maps 0->0, 255->0xffff
+
+ STBI_FREE(orig);
+ return enlarged;
}
-stbi_inline static int stbi__at_eof(stbi__context *s)
+static void stbi__vertical_flip(void* image, int w, int h, int bytes_per_pixel)
{
- if (s->io.read) {
- if (!(s->io.eof)(s->io_user_data)) return 0;
- // if feof() is true, check if buffer = end
- // special case: we've only got the special 0 character at the end
- if (s->read_from_callbacks == 0) return 1;
- }
+ int row;
+ size_t bytes_per_row = (size_t)w * bytes_per_pixel;
+ stbi_uc temp[2048];
+ stbi_uc* bytes = (stbi_uc*)image;
- return s->img_buffer >= s->img_buffer_end;
+ for (row = 0; row < (h >> 1); row++) {
+ stbi_uc* row0 = bytes + row * bytes_per_row;
+ stbi_uc* row1 = bytes + (h - row - 1) * bytes_per_row;
+ // swap row0 with row1
+ size_t bytes_left = bytes_per_row;
+ while (bytes_left) {
+ size_t bytes_copy = (bytes_left < sizeof(temp)) ? bytes_left : sizeof(temp);
+ memcpy(temp, row0, bytes_copy);
+ memcpy(row0, row1, bytes_copy);
+ memcpy(row1, temp, bytes_copy);
+ row0 += bytes_copy;
+ row1 += bytes_copy;
+ bytes_left -= bytes_copy;
+ }
+ }
}
-static void stbi__skip(stbi__context *s, int n)
+#ifndef STBI_NO_GIF
+static void stbi__vertical_flip_slices(void* image, int w, int h, int z, int bytes_per_pixel)
{
- if (n < 0) {
- s->img_buffer = s->img_buffer_end;
- return;
- }
- if (s->io.read) {
- int blen = (int) (s->img_buffer_end - s->img_buffer);
- if (blen < n) {
- s->img_buffer = s->img_buffer_end;
- (s->io.skip)(s->io_user_data, n - blen);
- return;
- }
- }
- s->img_buffer += n;
+ int slice;
+ int slice_size = w * h * bytes_per_pixel;
+
+ stbi_uc* bytes = (stbi_uc*)image;
+ for (slice = 0; slice < z; ++slice) {
+ stbi__vertical_flip(bytes, w, h, bytes_per_pixel);
+ bytes += slice_size;
+ }
}
+#endif
-static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n)
+static unsigned char* stbi__load_and_postprocess_8bit(stbi__context* s, int* x, int* y, int* comp, int req_comp)
{
- if (s->io.read) {
- int blen = (int) (s->img_buffer_end - s->img_buffer);
- if (blen < n) {
- int res, count;
+ stbi__result_info ri;
+ void* result = stbi__load_main(s, x, y, comp, req_comp, &ri, 8);
- memcpy(buffer, s->img_buffer, blen);
+ if (result == NULL)
+ return NULL;
- count = (s->io.read)(s->io_user_data, (char*) buffer + blen, n - blen);
- res = (count == (n-blen));
- s->img_buffer = s->img_buffer_end;
- return res;
- }
- }
+ // it is the responsibility of the loaders to make sure we get either 8 or 16 bit.
+ STBI_ASSERT(ri.bits_per_channel == 8 || ri.bits_per_channel == 16);
- if (s->img_buffer+n <= s->img_buffer_end) {
- memcpy(buffer, s->img_buffer, n);
- s->img_buffer += n;
- return 1;
- } else
- return 0;
-}
+ if (ri.bits_per_channel != 8) {
+ result = stbi__convert_16_to_8((stbi__uint16*)result, *x, *y, req_comp == 0 ? *comp : req_comp);
+ ri.bits_per_channel = 8;
+ }
-static int stbi__get16be(stbi__context *s)
-{
- int z = stbi__get8(s);
- return (z << 8) + stbi__get8(s);
-}
+ // @TODO: move stbi__convert_format to here
-static stbi__uint32 stbi__get32be(stbi__context *s)
-{
- stbi__uint32 z = stbi__get16be(s);
- return (z << 16) + stbi__get16be(s);
+ if (stbi__vertically_flip_on_load) {
+ int channels = req_comp ? req_comp : *comp;
+ stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi_uc));
+ }
+
+ return (unsigned char*)result;
}
-static int stbi__get16le(stbi__context *s)
+static stbi__uint16* stbi__load_and_postprocess_16bit(stbi__context* s, int* x, int* y, int* comp, int req_comp)
{
- int z = stbi__get8(s);
- return z + (stbi__get8(s) << 8);
+ stbi__result_info ri;
+ void* result = stbi__load_main(s, x, y, comp, req_comp, &ri, 16);
+
+ if (result == NULL)
+ return NULL;
+
+ // it is the responsibility of the loaders to make sure we get either 8 or 16 bit.
+ STBI_ASSERT(ri.bits_per_channel == 8 || ri.bits_per_channel == 16);
+
+ if (ri.bits_per_channel != 16) {
+ result = stbi__convert_8_to_16((stbi_uc*)result, *x, *y, req_comp == 0 ? *comp : req_comp);
+ ri.bits_per_channel = 16;
+ }
+
+ // @TODO: move stbi__convert_format16 to here
+ // @TODO: special case RGB-to-Y (and RGBA-to-YA) for 8-bit-to-16-bit case to keep more precision
+
+ if (stbi__vertically_flip_on_load) {
+ int channels = req_comp ? req_comp : *comp;
+ stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi__uint16));
+ }
+
+ return (stbi__uint16*)result;
}
-static stbi__uint32 stbi__get32le(stbi__context *s)
+#if !defined(STBI_NO_HDR) && !defined(STBI_NO_LINEAR)
+static void stbi__float_postprocess(float* result, int* x, int* y, int* comp, int req_comp)
{
- stbi__uint32 z = stbi__get16le(s);
- return z + (stbi__get16le(s) << 16);
+ if (stbi__vertically_flip_on_load && result != NULL) {
+ int channels = req_comp ? req_comp : *comp;
+ stbi__vertical_flip(result, *x, *y, channels * sizeof(float));
+ }
}
+#endif
-#define STBI__BYTECAST(x) ((stbi_uc) ((x) & 255)) // truncate int to byte without warnings
+#ifndef STBI_NO_STDIO
+
+#if defined(_WIN32) && defined(STBI_WINDOWS_UTF8)
+STBI_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char* str, int cbmb, wchar_t* widestr, int cchwide);
+STBI_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, const wchar_t* widestr, int cchwide, char* str, int cbmb, const char* defchar, int* used_default);
+#endif
+
+#if defined(_WIN32) && defined(STBI_WINDOWS_UTF8)
+STBIDEF int stbi_convert_wchar_to_utf8(char* buffer, size_t bufferlen, const wchar_t* input)
+{
+ return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int)bufferlen, NULL, NULL);
+}
+#endif
+
+static FILE* stbi__fopen(char const* filename, char const* mode)
+{
+ FILE* f;
+#if defined(_WIN32) && defined(STBI_WINDOWS_UTF8)
+ wchar_t wMode[64];
+ wchar_t wFilename[1024];
+ if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename) / sizeof(*wFilename)))
+ return 0;
+
+ if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode) / sizeof(*wMode)))
+ return 0;
+
+#if defined(_MSC_VER) && _MSC_VER >= 1400
+ if (0 != _wfopen_s(&f, wFilename, wMode))
+ f = 0;
+#else
+ f = _wfopen(wFilename, wMode);
+#endif
+
+#elif defined(_MSC_VER) && _MSC_VER >= 1400
+ if (0 != fopen_s(&f, filename, mode))
+ f = 0;
+#else
+ f = fopen(filename, mode);
+#endif
+ return f;
+}
+
+
+STBIDEF stbi_uc* stbi_load(char const* filename, int* x, int* y, int* comp, int req_comp)
+{
+ FILE* f = stbi__fopen(filename, "rb");
+ unsigned char* result;
+ if (!f) return stbi__errpuc("can't fopen", "Unable to open file");
+ result = stbi_load_from_file(f, x, y, comp, req_comp);
+ fclose(f);
+ return result;
+}
+
+STBIDEF stbi_uc* stbi_load_from_file(FILE* f, int* x, int* y, int* comp, int req_comp)
+{
+ unsigned char* result;
+ stbi__context s;
+ stbi__start_file(&s, f);
+ result = stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp);
+ if (result) {
+ // need to 'unget' all the characters in the IO buffer
+ fseek(f, -(int)(s.img_buffer_end - s.img_buffer), SEEK_CUR);
+ }
+ return result;
+}
+
+STBIDEF stbi__uint16* stbi_load_from_file_16(FILE* f, int* x, int* y, int* comp, int req_comp)
+{
+ stbi__uint16* result;
+ stbi__context s;
+ stbi__start_file(&s, f);
+ result = stbi__load_and_postprocess_16bit(&s, x, y, comp, req_comp);
+ if (result) {
+ // need to 'unget' all the characters in the IO buffer
+ fseek(f, -(int)(s.img_buffer_end - s.img_buffer), SEEK_CUR);
+ }
+ return result;
+}
+
+STBIDEF stbi_us* stbi_load_16(char const* filename, int* x, int* y, int* comp, int req_comp)
+{
+ FILE* f = stbi__fopen(filename, "rb");
+ stbi__uint16* result;
+ if (!f) return (stbi_us*)stbi__errpuc("can't fopen", "Unable to open file");
+ result = stbi_load_from_file_16(f, x, y, comp, req_comp);
+ fclose(f);
+ return result;
+}
+
+
+#endif //!STBI_NO_STDIO
+
+STBIDEF stbi_us* stbi_load_16_from_memory(stbi_uc const* buffer, int len, int* x, int* y, int* channels_in_file, int desired_channels)
+{
+ stbi__context s;
+ stbi__start_mem(&s, buffer, len);
+ return stbi__load_and_postprocess_16bit(&s, x, y, channels_in_file, desired_channels);
+}
+
+STBIDEF stbi_us* stbi_load_16_from_callbacks(stbi_io_callbacks const* clbk, void* user, int* x, int* y, int* channels_in_file, int desired_channels)
+{
+ stbi__context s;
+ stbi__start_callbacks(&s, (stbi_io_callbacks*)clbk, user);
+ return stbi__load_and_postprocess_16bit(&s, x, y, channels_in_file, desired_channels);
+}
+
+STBIDEF stbi_uc* stbi_load_from_memory(stbi_uc const* buffer, int len, int* x, int* y, int* comp, int req_comp)
+{
+ stbi__context s;
+ stbi__start_mem(&s, buffer, len);
+ return stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp);
+}
+
+STBIDEF stbi_uc* stbi_load_from_callbacks(stbi_io_callbacks const* clbk, void* user, int* x, int* y, int* comp, int req_comp)
+{
+ stbi__context s;
+ stbi__start_callbacks(&s, (stbi_io_callbacks*)clbk, user);
+ return stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp);
+}
+
+#ifndef STBI_NO_GIF
+STBIDEF stbi_uc* stbi_load_gif_from_memory(stbi_uc const* buffer, int len, int** delays, int* x, int* y, int* z, int* comp, int req_comp)
+{
+ unsigned char* result;
+ stbi__context s;
+ stbi__start_mem(&s, buffer, len);
+
+ result = (unsigned char*)stbi__load_gif_main(&s, delays, x, y, z, comp, req_comp);
+ if (stbi__vertically_flip_on_load) {
+ stbi__vertical_flip_slices(result, *x, *y, *z, *comp);
+ }
+
+ return result;
+}
+#endif
+
+#ifndef STBI_NO_LINEAR
+static float* stbi__loadf_main(stbi__context* s, int* x, int* y, int* comp, int req_comp)
+{
+ unsigned char* data;
+#ifndef STBI_NO_HDR
+ if (stbi__hdr_test(s)) {
+ stbi__result_info ri;
+ float* hdr_data = stbi__hdr_load(s, x, y, comp, req_comp, &ri);
+ if (hdr_data)
+ stbi__float_postprocess(hdr_data, x, y, comp, req_comp);
+ return hdr_data;
+ }
+#endif
+ data = stbi__load_and_postprocess_8bit(s, x, y, comp, req_comp);
+ if (data)
+ return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp);
+ return stbi__errpf("unknown image type", "Image not of any known type, or corrupt");
+}
+
+STBIDEF float* stbi_loadf_from_memory(stbi_uc const* buffer, int len, int* x, int* y, int* comp, int req_comp)
+{
+ stbi__context s;
+ stbi__start_mem(&s, buffer, len);
+ return stbi__loadf_main(&s, x, y, comp, req_comp);
+}
+
+STBIDEF float* stbi_loadf_from_callbacks(stbi_io_callbacks const* clbk, void* user, int* x, int* y, int* comp, int req_comp)
+{
+ stbi__context s;
+ stbi__start_callbacks(&s, (stbi_io_callbacks*)clbk, user);
+ return stbi__loadf_main(&s, x, y, comp, req_comp);
+}
+
+#ifndef STBI_NO_STDIO
+STBIDEF float* stbi_loadf(char const* filename, int* x, int* y, int* comp, int req_comp)
+{
+ float* result;
+ FILE* f = stbi__fopen(filename, "rb");
+ if (!f) return stbi__errpf("can't fopen", "Unable to open file");
+ result = stbi_loadf_from_file(f, x, y, comp, req_comp);
+ fclose(f);
+ return result;
+}
+
+STBIDEF float* stbi_loadf_from_file(FILE* f, int* x, int* y, int* comp, int req_comp)
+{
+ stbi__context s;
+ stbi__start_file(&s, f);
+ return stbi__loadf_main(&s, x, y, comp, req_comp);
+}
+#endif // !STBI_NO_STDIO
+
+#endif // !STBI_NO_LINEAR
+
+// these is-hdr-or-not is defined independent of whether STBI_NO_LINEAR is
+// defined, for API simplicity; if STBI_NO_LINEAR is defined, it always
+// reports false!
+
+STBIDEF int stbi_is_hdr_from_memory(stbi_uc const* buffer, int len)
+{
+#ifndef STBI_NO_HDR
+ stbi__context s;
+ stbi__start_mem(&s, buffer, len);
+ return stbi__hdr_test(&s);
+#else
+ STBI_NOTUSED(buffer);
+ STBI_NOTUSED(len);
+ return 0;
+#endif
+}
+
+#ifndef STBI_NO_STDIO
+STBIDEF int stbi_is_hdr(char const* filename)
+{
+ FILE* f = stbi__fopen(filename, "rb");
+ int result = 0;
+ if (f) {
+ result = stbi_is_hdr_from_file(f);
+ fclose(f);
+ }
+ return result;
+}
+
+STBIDEF int stbi_is_hdr_from_file(FILE* f)
+{
+#ifndef STBI_NO_HDR
+ long pos = ftell(f);
+ int res;
+ stbi__context s;
+ stbi__start_file(&s, f);
+ res = stbi__hdr_test(&s);
+ fseek(f, pos, SEEK_SET);
+ return res;
+#else
+ STBI_NOTUSED(f);
+ return 0;
+#endif
+}
+#endif // !STBI_NO_STDIO
+
+STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const* clbk, void* user)
+{
+#ifndef STBI_NO_HDR
+ stbi__context s;
+ stbi__start_callbacks(&s, (stbi_io_callbacks*)clbk, user);
+ return stbi__hdr_test(&s);
+#else
+ STBI_NOTUSED(clbk);
+ STBI_NOTUSED(user);
+ return 0;
+#endif
+}
+
+#ifndef STBI_NO_LINEAR
+static float stbi__l2h_gamma = 2.2f, stbi__l2h_scale = 1.0f;
+
+STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; }
+STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; }
+#endif
+
+static float stbi__h2l_gamma_i = 1.0f / 2.2f, stbi__h2l_scale_i = 1.0f;
+
+STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1 / gamma; }
+STBIDEF void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1 / scale; }
+//////////////////////////////////////////////////////////////////////////////
+//
+// Common code used by all image loaders
+//
+
+enum
+{
+ STBI__SCAN_load = 0,
+ STBI__SCAN_type,
+ STBI__SCAN_header
+};
+
+static void stbi__refill_buffer(stbi__context* s)
+{
+ int n = (s->io.read)(s->io_user_data, (char*)s->buffer_start, s->buflen);
+ s->callback_already_read += (int)(s->img_buffer - s->img_buffer_original);
+ if (n == 0) {
+ // at end of file, treat same as if from memory, but need to handle case
+ // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file
+ s->read_from_callbacks = 0;
+ s->img_buffer = s->buffer_start;
+ s->img_buffer_end = s->buffer_start + 1;
+ *s->img_buffer = 0;
+ }
+ else {
+ s->img_buffer = s->buffer_start;
+ s->img_buffer_end = s->buffer_start + n;
+ }
+}
+
+stbi_inline static stbi_uc stbi__get8(stbi__context* s)
+{
+ if (s->img_buffer < s->img_buffer_end)
+ return *s->img_buffer++;
+ if (s->read_from_callbacks) {
+ stbi__refill_buffer(s);
+ return *s->img_buffer++;
+ }
+ return 0;
+}
+
+#if defined(STBI_NO_JPEG) && defined(STBI_NO_HDR) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM)
+// nothing
+#else
+stbi_inline static int stbi__at_eof(stbi__context* s)
+{
+ if (s->io.read) {
+ if (!(s->io.eof)(s->io_user_data)) return 0;
+ // if feof() is true, check if buffer = end
+ // special case: we've only got the special 0 character at the end
+ if (s->read_from_callbacks == 0) return 1;
+ }
+
+ return s->img_buffer >= s->img_buffer_end;
+}
+#endif
+
+#if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC)
+// nothing
+#else
+static void stbi__skip(stbi__context* s, int n)
+{
+ if (n == 0) return; // already there!
+ if (n < 0) {
+ s->img_buffer = s->img_buffer_end;
+ return;
+ }
+ if (s->io.read) {
+ int blen = (int)(s->img_buffer_end - s->img_buffer);
+ if (blen < n) {
+ s->img_buffer = s->img_buffer_end;
+ (s->io.skip)(s->io_user_data, n - blen);
+ return;
+ }
+ }
+ s->img_buffer += n;
+}
+#endif
+
+#if defined(STBI_NO_PNG) && defined(STBI_NO_TGA) && defined(STBI_NO_HDR) && defined(STBI_NO_PNM)
+// nothing
+#else
+static int stbi__getn(stbi__context* s, stbi_uc* buffer, int n)
+{
+ if (s->io.read) {
+ int blen = (int)(s->img_buffer_end - s->img_buffer);
+ if (blen < n) {
+ int res, count;
+
+ memcpy(buffer, s->img_buffer, blen);
+
+ count = (s->io.read)(s->io_user_data, (char*)buffer + blen, n - blen);
+ res = (count == (n - blen));
+ s->img_buffer = s->img_buffer_end;
+ return res;
+ }
+ }
+
+ if (s->img_buffer + n <= s->img_buffer_end) {
+ memcpy(buffer, s->img_buffer, n);
+ s->img_buffer += n;
+ return 1;
+ }
+ else
+ return 0;
+}
+#endif
+
+#if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_PSD) && defined(STBI_NO_PIC)
+// nothing
+#else
+static int stbi__get16be(stbi__context* s)
+{
+ int z = stbi__get8(s);
+ return (z << 8) + stbi__get8(s);
+}
+#endif
+
+#if defined(STBI_NO_PNG) && defined(STBI_NO_PSD) && defined(STBI_NO_PIC)
+// nothing
+#else
+static stbi__uint32 stbi__get32be(stbi__context* s)
+{
+ stbi__uint32 z = stbi__get16be(s);
+ return (z << 16) + stbi__get16be(s);
+}
+#endif
+
+#if defined(STBI_NO_BMP) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF)
+// nothing
+#else
+static int stbi__get16le(stbi__context* s)
+{
+ int z = stbi__get8(s);
+ return z + (stbi__get8(s) << 8);
+}
+#endif
+
+#ifndef STBI_NO_BMP
+static stbi__uint32 stbi__get32le(stbi__context* s)
+{
+ stbi__uint32 z = stbi__get16le(s);
+ z += (stbi__uint32)stbi__get16le(s) << 16;
+ return z;
+}
+#endif
+
+#define STBI__BYTECAST(x) ((stbi_uc) ((x) & 255)) // truncate int to byte without warnings
+
+#if defined(STBI_NO_JPEG) && defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM)
+// nothing
+#else
//////////////////////////////////////////////////////////////////////////////
//
// generic converter from built-in img_n to req_comp
@@ -1314,97 +1745,167 @@ static stbi__uint32 stbi__get32le(stbi__context *s)
static stbi_uc stbi__compute_y(int r, int g, int b)
{
- return (stbi_uc) (((r*77) + (g*150) + (29*b)) >> 8);
+ return (stbi_uc)(((r * 77) + (g * 150) + (29 * b)) >> 8);
+}
+#endif
+
+#if defined(STBI_NO_PNG) && defined(STBI_NO_BMP) && defined(STBI_NO_PSD) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) && defined(STBI_NO_PIC) && defined(STBI_NO_PNM)
+// nothing
+#else
+static unsigned char* stbi__convert_format(unsigned char* data, int img_n, int req_comp, unsigned int x, unsigned int y)
+{
+ int i, j;
+ unsigned char* good;
+
+ if (req_comp == img_n) return data;
+ STBI_ASSERT(req_comp >= 1 && req_comp <= 4);
+
+ good = (unsigned char*)stbi__malloc_mad3(req_comp, x, y, 0);
+ if (good == NULL) {
+ STBI_FREE(data);
+ return stbi__errpuc("outofmem", "Out of memory");
+ }
+
+ for (j = 0; j < (int)y; ++j) {
+ unsigned char* src = data + j * x * img_n;
+ unsigned char* dest = good + j * x * req_comp;
+
+#define STBI__COMBO(a,b) ((a)*8+(b))
+#define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
+ // convert source image with img_n components to one with req_comp components;
+ // avoid switch per pixel, so use switch per scanline and massive macros
+ switch (STBI__COMBO(img_n, req_comp)) {
+ STBI__CASE(1, 2) { dest[0] = src[0]; dest[1] = 255; } break;
+ STBI__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
+ STBI__CASE(1, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = 255; } break;
+ STBI__CASE(2, 1) { dest[0] = src[0]; } break;
+ STBI__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
+ STBI__CASE(2, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = src[1]; } break;
+ STBI__CASE(3, 4) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = 255; } break;
+ STBI__CASE(3, 1) { dest[0] = stbi__compute_y(src[0], src[1], src[2]); } break;
+ STBI__CASE(3, 2) { dest[0] = stbi__compute_y(src[0], src[1], src[2]); dest[1] = 255; } break;
+ STBI__CASE(4, 1) { dest[0] = stbi__compute_y(src[0], src[1], src[2]); } break;
+ STBI__CASE(4, 2) { dest[0] = stbi__compute_y(src[0], src[1], src[2]); dest[1] = src[3]; } break;
+ STBI__CASE(4, 3) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; } break;
+ default: STBI_ASSERT(0); STBI_FREE(data); STBI_FREE(good); return stbi__errpuc("unsupported", "Unsupported format conversion");
+ }
+#undef STBI__CASE
+ }
+
+ STBI_FREE(data);
+ return good;
}
+#endif
-static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y)
+#if defined(STBI_NO_PNG) && defined(STBI_NO_PSD)
+// nothing
+#else
+static stbi__uint16 stbi__compute_y_16(int r, int g, int b)
{
- int i,j;
- unsigned char *good;
+ return (stbi__uint16)(((r * 77) + (g * 150) + (29 * b)) >> 8);
+}
+#endif
- if (req_comp == img_n) return data;
- STBI_ASSERT(req_comp >= 1 && req_comp <= 4);
+#if defined(STBI_NO_PNG) && defined(STBI_NO_PSD)
+// nothing
+#else
+static stbi__uint16* stbi__convert_format16(stbi__uint16* data, int img_n, int req_comp, unsigned int x, unsigned int y)
+{
+ int i, j;
+ stbi__uint16* good;
- good = (unsigned char *) stbi__malloc(req_comp * x * y);
- if (good == NULL) {
- STBI_FREE(data);
- return stbi__errpuc("outofmem", "Out of memory");
- }
+ if (req_comp == img_n) return data;
+ STBI_ASSERT(req_comp >= 1 && req_comp <= 4);
- for (j=0; j < (int) y; ++j) {
- unsigned char *src = data + j * x * img_n ;
- unsigned char *dest = good + j * x * req_comp;
-
- #define COMBO(a,b) ((a)*8+(b))
- #define CASE(a,b) case COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
- // convert source image with img_n components to one with req_comp components;
- // avoid switch per pixel, so use switch per scanline and massive macros
- switch (COMBO(img_n, req_comp)) {
- CASE(1,2) dest[0]=src[0], dest[1]=255; break;
- CASE(1,3) dest[0]=dest[1]=dest[2]=src[0]; break;
- CASE(1,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=255; break;
- CASE(2,1) dest[0]=src[0]; break;
- CASE(2,3) dest[0]=dest[1]=dest[2]=src[0]; break;
- CASE(2,4) dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1]; break;
- CASE(3,4) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255; break;
- CASE(3,1) dest[0]=stbi__compute_y(src[0],src[1],src[2]); break;
- CASE(3,2) dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = 255; break;
- CASE(4,1) dest[0]=stbi__compute_y(src[0],src[1],src[2]); break;
- CASE(4,2) dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = src[3]; break;
- CASE(4,3) dest[0]=src[0],dest[1]=src[1],dest[2]=src[2]; break;
- default: STBI_ASSERT(0);
- }
- #undef CASE
- }
+ good = (stbi__uint16*)stbi__malloc(req_comp * x * y * 2);
+ if (good == NULL) {
+ STBI_FREE(data);
+ return (stbi__uint16*)stbi__errpuc("outofmem", "Out of memory");
+ }
- STBI_FREE(data);
- return good;
+ for (j = 0; j < (int)y; ++j) {
+ stbi__uint16* src = data + j * x * img_n;
+ stbi__uint16* dest = good + j * x * req_comp;
+
+#define STBI__COMBO(a,b) ((a)*8+(b))
+#define STBI__CASE(a,b) case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
+ // convert source image with img_n components to one with req_comp components;
+ // avoid switch per pixel, so use switch per scanline and massive macros
+ switch (STBI__COMBO(img_n, req_comp)) {
+ STBI__CASE(1, 2) { dest[0] = src[0]; dest[1] = 0xffff; } break;
+ STBI__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
+ STBI__CASE(1, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = 0xffff; } break;
+ STBI__CASE(2, 1) { dest[0] = src[0]; } break;
+ STBI__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } break;
+ STBI__CASE(2, 4) { dest[0] = dest[1] = dest[2] = src[0]; dest[3] = src[1]; } break;
+ STBI__CASE(3, 4) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; dest[3] = 0xffff; } break;
+ STBI__CASE(3, 1) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); } break;
+ STBI__CASE(3, 2) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); dest[1] = 0xffff; } break;
+ STBI__CASE(4, 1) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); } break;
+ STBI__CASE(4, 2) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); dest[1] = src[3]; } break;
+ STBI__CASE(4, 3) { dest[0] = src[0]; dest[1] = src[1]; dest[2] = src[2]; } break;
+ default: STBI_ASSERT(0); STBI_FREE(data); STBI_FREE(good); return (stbi__uint16*)stbi__errpuc("unsupported", "Unsupported format conversion");
+ }
+#undef STBI__CASE
+ }
+
+ STBI_FREE(data);
+ return good;
}
+#endif
#ifndef STBI_NO_LINEAR
-static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp)
-{
- int i,k,n;
- float *output = (float *) stbi__malloc(x * y * comp * sizeof(float));
- if (output == NULL) { STBI_FREE(data); return stbi__errpf("outofmem", "Out of memory"); }
- // compute number of non-alpha components
- if (comp & 1) n = comp; else n = comp-1;
- for (i=0; i < x*y; ++i) {
- for (k=0; k < n; ++k) {
- output[i*comp + k] = (float) (pow(data[i*comp+k]/255.0f, stbi__l2h_gamma) * stbi__l2h_scale);
- }
- if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f;
- }
- STBI_FREE(data);
- return output;
+static float* stbi__ldr_to_hdr(stbi_uc* data, int x, int y, int comp)
+{
+ int i, k, n;
+ float* output;
+ if (!data) return NULL;
+ output = (float*)stbi__malloc_mad4(x, y, comp, sizeof(float), 0);
+ if (output == NULL) { STBI_FREE(data); return stbi__errpf("outofmem", "Out of memory"); }
+ // compute number of non-alpha components
+ if (comp & 1) n = comp; else n = comp - 1;
+ for (i = 0; i < x * y; ++i) {
+ for (k = 0; k < n; ++k) {
+ output[i * comp + k] = (float)(pow(data[i * comp + k] / 255.0f, stbi__l2h_gamma) * stbi__l2h_scale);
+ }
+ }
+ if (n < comp) {
+ for (i = 0; i < x * y; ++i) {
+ output[i * comp + n] = data[i * comp + n] / 255.0f;
+ }
+ }
+ STBI_FREE(data);
+ return output;
}
#endif
#ifndef STBI_NO_HDR
#define stbi__float2int(x) ((int) (x))
-static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp)
-{
- int i,k,n;
- stbi_uc *output = (stbi_uc *) stbi__malloc(x * y * comp);
- if (output == NULL) { STBI_FREE(data); return stbi__errpuc("outofmem", "Out of memory"); }
- // compute number of non-alpha components
- if (comp & 1) n = comp; else n = comp-1;
- for (i=0; i < x*y; ++i) {
- for (k=0; k < n; ++k) {
- float z = (float) pow(data[i*comp+k]*stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f;
- if (z < 0) z = 0;
- if (z > 255) z = 255;
- output[i*comp + k] = (stbi_uc) stbi__float2int(z);
- }
- if (k < comp) {
- float z = data[i*comp+k] * 255 + 0.5f;
- if (z < 0) z = 0;
- if (z > 255) z = 255;
- output[i*comp + k] = (stbi_uc) stbi__float2int(z);
- }
- }
- STBI_FREE(data);
- return output;
+static stbi_uc* stbi__hdr_to_ldr(float* data, int x, int y, int comp)
+{
+ int i, k, n;
+ stbi_uc* output;
+ if (!data) return NULL;
+ output = (stbi_uc*)stbi__malloc_mad3(x, y, comp, 0);
+ if (output == NULL) { STBI_FREE(data); return stbi__errpuc("outofmem", "Out of memory"); }
+ // compute number of non-alpha components
+ if (comp & 1) n = comp; else n = comp - 1;
+ for (i = 0; i < x * y; ++i) {
+ for (k = 0; k < n; ++k) {
+ float z = (float)pow(data[i * comp + k] * stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f;
+ if (z < 0) z = 0;
+ if (z > 255) z = 255;
+ output[i * comp + k] = (stbi_uc)stbi__float2int(z);
+ }
+ if (k < comp) {
+ float z = data[i * comp + k] * 255 + 0.5f;
+ if (z < 0) z = 0;
+ if (z > 255) z = 255;
+ output[i * comp + k] = (stbi_uc)stbi__float2int(z);
+ }
+ }
+ STBI_FREE(data);
+ return output;
}
#endif
@@ -1436,249 +1937,261 @@ static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp)
typedef struct
{
- stbi_uc fast[1 << FAST_BITS];
- // weirdly, repacking this into AoS is a 10% speed loss, instead of a win
- stbi__uint16 code[256];
- stbi_uc values[256];
- stbi_uc size[257];
- unsigned int maxcode[18];
- int delta[17]; // old 'firstsymbol' - old 'firstcode'
+ stbi_uc fast[1 << FAST_BITS];
+ // weirdly, repacking this into AoS is a 10% speed loss, instead of a win
+ stbi__uint16 code[256];
+ stbi_uc values[256];
+ stbi_uc size[257];
+ unsigned int maxcode[18];
+ int delta[17]; // old 'firstsymbol' - old 'firstcode'
} stbi__huffman;
typedef struct
{
- stbi__context *s;
- stbi__huffman huff_dc[4];
- stbi__huffman huff_ac[4];
- stbi_uc dequant[4][64];
- stbi__int16 fast_ac[4][1 << FAST_BITS];
-
-// sizes for components, interleaved MCUs
- int img_h_max, img_v_max;
- int img_mcu_x, img_mcu_y;
- int img_mcu_w, img_mcu_h;
-
-// definition of jpeg image component
- struct
- {
- int id;
- int h,v;
- int tq;
- int hd,ha;
- int dc_pred;
-
- int x,y,w2,h2;
- stbi_uc *data;
- void *raw_data, *raw_coeff;
- stbi_uc *linebuf;
- short *coeff; // progressive only
- int coeff_w, coeff_h; // number of 8x8 coefficient blocks
- } img_comp[4];
-
- stbi__uint32 code_buffer; // jpeg entropy-coded buffer
- int code_bits; // number of valid bits
- unsigned char marker; // marker seen while filling entropy buffer
- int nomore; // flag if we saw a marker so must stop
-
- int progressive;
- int spec_start;
- int spec_end;
- int succ_high;
- int succ_low;
- int eob_run;
-
- int scan_n, order[4];
- int restart_interval, todo;
-
-// kernels
- void (*idct_block_kernel)(stbi_uc *out, int out_stride, short data[64]);
- void (*YCbCr_to_RGB_kernel)(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step);
- stbi_uc *(*resample_row_hv_2_kernel)(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs);
+ stbi__context* s;
+ stbi__huffman huff_dc[4];
+ stbi__huffman huff_ac[4];
+ stbi__uint16 dequant[4][64];
+ stbi__int16 fast_ac[4][1 << FAST_BITS];
+
+ // sizes for components, interleaved MCUs
+ int img_h_max, img_v_max;
+ int img_mcu_x, img_mcu_y;
+ int img_mcu_w, img_mcu_h;
+
+ // definition of jpeg image component
+ struct
+ {
+ int id;
+ int h, v;
+ int tq;
+ int hd, ha;
+ int dc_pred;
+
+ int x, y, w2, h2;
+ stbi_uc* data;
+ void* raw_data, * raw_coeff;
+ stbi_uc* linebuf;
+ short* coeff; // progressive only
+ int coeff_w, coeff_h; // number of 8x8 coefficient blocks
+ } img_comp[4];
+
+ stbi__uint32 code_buffer; // jpeg entropy-coded buffer
+ int code_bits; // number of valid bits
+ unsigned char marker; // marker seen while filling entropy buffer
+ int nomore; // flag if we saw a marker so must stop
+
+ int progressive;
+ int spec_start;
+ int spec_end;
+ int succ_high;
+ int succ_low;
+ int eob_run;
+ int jfif;
+ int app14_color_transform; // Adobe APP14 tag
+ int rgb;
+
+ int scan_n, order[4];
+ int restart_interval, todo;
+
+ // kernels
+ void (*idct_block_kernel)(stbi_uc* out, int out_stride, short data[64]);
+ void (*YCbCr_to_RGB_kernel)(stbi_uc* out, const stbi_uc* y, const stbi_uc* pcb, const stbi_uc* pcr, int count, int step);
+ stbi_uc* (*resample_row_hv_2_kernel)(stbi_uc* out, stbi_uc* in_near, stbi_uc* in_far, int w, int hs);
} stbi__jpeg;
-static int stbi__build_huffman(stbi__huffman *h, int *count)
-{
- int i,j,k=0,code;
- // build size list for each symbol (from JPEG spec)
- for (i=0; i < 16; ++i)
- for (j=0; j < count[i]; ++j)
- h->size[k++] = (stbi_uc) (i+1);
- h->size[k] = 0;
-
- // compute actual symbols (from jpeg spec)
- code = 0;
- k = 0;
- for(j=1; j <= 16; ++j) {
- // compute delta to add to code to compute symbol id
- h->delta[j] = k - code;
- if (h->size[k] == j) {
- while (h->size[k] == j)
- h->code[k++] = (stbi__uint16) (code++);
- if (code-1 >= (1 << j)) return stbi__err("bad code lengths","Corrupt JPEG");
- }
- // compute largest code + 1 for this size, preshifted as needed later
- h->maxcode[j] = code << (16-j);
- code <<= 1;
- }
- h->maxcode[j] = 0xffffffff;
-
- // build non-spec acceleration table; 255 is flag for not-accelerated
- memset(h->fast, 255, 1 << FAST_BITS);
- for (i=0; i < k; ++i) {
- int s = h->size[i];
- if (s <= FAST_BITS) {
- int c = h->code[i] << (FAST_BITS-s);
- int m = 1 << (FAST_BITS-s);
- for (j=0; j < m; ++j) {
- h->fast[c+j] = (stbi_uc) i;
- }
- }
- }
- return 1;
+static int stbi__build_huffman(stbi__huffman* h, int* count)
+{
+ int i, j, k = 0;
+ unsigned int code;
+ // build size list for each symbol (from JPEG spec)
+ for (i = 0; i < 16; ++i) {
+ for (j = 0; j < count[i]; ++j) {
+ h->size[k++] = (stbi_uc)(i + 1);
+ if (k >= 257) return stbi__err("bad size list", "Corrupt JPEG");
+ }
+ }
+ h->size[k] = 0;
+
+ // compute actual symbols (from jpeg spec)
+ code = 0;
+ k = 0;
+ for (j = 1; j <= 16; ++j) {
+ // compute delta to add to code to compute symbol id
+ h->delta[j] = k - code;
+ if (h->size[k] == j) {
+ while (h->size[k] == j)
+ h->code[k++] = (stbi__uint16)(code++);
+ if (code - 1 >= (1u << j)) return stbi__err("bad code lengths", "Corrupt JPEG");
+ }
+ // compute largest code + 1 for this size, preshifted as needed later
+ h->maxcode[j] = code << (16 - j);
+ code <<= 1;
+ }
+ h->maxcode[j] = 0xffffffff;
+
+ // build non-spec acceleration table; 255 is flag for not-accelerated
+ memset(h->fast, 255, 1 << FAST_BITS);
+ for (i = 0; i < k; ++i) {
+ int s = h->size[i];
+ if (s <= FAST_BITS) {
+ int c = h->code[i] << (FAST_BITS - s);
+ int m = 1 << (FAST_BITS - s);
+ for (j = 0; j < m; ++j) {
+ h->fast[c + j] = (stbi_uc)i;
+ }
+ }
+ }
+ return 1;
}
// build a table that decodes both magnitude and value of small ACs in
// one go.
-static void stbi__build_fast_ac(stbi__int16 *fast_ac, stbi__huffman *h)
-{
- int i;
- for (i=0; i < (1 << FAST_BITS); ++i) {
- stbi_uc fast = h->fast[i];
- fast_ac[i] = 0;
- if (fast < 255) {
- int rs = h->values[fast];
- int run = (rs >> 4) & 15;
- int magbits = rs & 15;
- int len = h->size[fast];
-
- if (magbits && len + magbits <= FAST_BITS) {
- // magnitude code followed by receive_extend code
- int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits);
- int m = 1 << (magbits - 1);
- if (k < m) k += (-1 << magbits) + 1;
- // if the result is small enough, we can fit it in fast_ac table
- if (k >= -128 && k <= 127)
- fast_ac[i] = (stbi__int16) ((k << 8) + (run << 4) + (len + magbits));
- }
- }
- }
+static void stbi__build_fast_ac(stbi__int16* fast_ac, stbi__huffman* h)
+{
+ int i;
+ for (i = 0; i < (1 << FAST_BITS); ++i) {
+ stbi_uc fast = h->fast[i];
+ fast_ac[i] = 0;
+ if (fast < 255) {
+ int rs = h->values[fast];
+ int run = (rs >> 4) & 15;
+ int magbits = rs & 15;
+ int len = h->size[fast];
+
+ if (magbits && len + magbits <= FAST_BITS) {
+ // magnitude code followed by receive_extend code
+ int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits);
+ int m = 1 << (magbits - 1);
+ if (k < m) k += (~0U << magbits) + 1;
+ // if the result is small enough, we can fit it in fast_ac table
+ if (k >= -128 && k <= 127)
+ fast_ac[i] = (stbi__int16)((k * 256) + (run * 16) + (len + magbits));
+ }
+ }
+ }
}
-static void stbi__grow_buffer_unsafe(stbi__jpeg *j)
+static void stbi__grow_buffer_unsafe(stbi__jpeg* j)
{
- do {
- int b = j->nomore ? 0 : stbi__get8(j->s);
- if (b == 0xff) {
- int c = stbi__get8(j->s);
- if (c != 0) {
- j->marker = (unsigned char) c;
- j->nomore = 1;
- return;
- }
- }
- j->code_buffer |= b << (24 - j->code_bits);
- j->code_bits += 8;
- } while (j->code_bits <= 24);
+ do {
+ unsigned int b = j->nomore ? 0 : stbi__get8(j->s);
+ if (b == 0xff) {
+ int c = stbi__get8(j->s);
+ while (c == 0xff) c = stbi__get8(j->s); // consume fill bytes
+ if (c != 0) {
+ j->marker = (unsigned char)c;
+ j->nomore = 1;
+ return;
+ }
+ }
+ j->code_buffer |= b << (24 - j->code_bits);
+ j->code_bits += 8;
+ } while (j->code_bits <= 24);
}
// (1 << n) - 1
-static stbi__uint32 stbi__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535};
+static const stbi__uint32 stbi__bmask[17] = { 0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535 };
// decode a jpeg huffman value from the bitstream
-stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h)
-{
- unsigned int temp;
- int c,k;
-
- if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
-
- // look at the top FAST_BITS and determine what symbol ID it is,
- // if the code is <= FAST_BITS
- c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
- k = h->fast[c];
- if (k < 255) {
- int s = h->size[k];
- if (s > j->code_bits)
- return -1;
- j->code_buffer <<= s;
- j->code_bits -= s;
- return h->values[k];
- }
+stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg* j, stbi__huffman* h)
+{
+ unsigned int temp;
+ int c, k;
+
+ if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
+
+ // look at the top FAST_BITS and determine what symbol ID it is,
+ // if the code is <= FAST_BITS
+ c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1);
+ k = h->fast[c];
+ if (k < 255) {
+ int s = h->size[k];
+ if (s > j->code_bits)
+ return -1;
+ j->code_buffer <<= s;
+ j->code_bits -= s;
+ return h->values[k];
+ }
- // naive test is to shift the code_buffer down so k bits are
- // valid, then test against maxcode. To speed this up, we've
- // preshifted maxcode left so that it has (16-k) 0s at the
- // end; in other words, regardless of the number of bits, it
- // wants to be compared against something shifted to have 16;
- // that way we don't need to shift inside the loop.
- temp = j->code_buffer >> 16;
- for (k=FAST_BITS+1 ; ; ++k)
- if (temp < h->maxcode[k])
- break;
- if (k == 17) {
- // error! code not found
- j->code_bits -= 16;
- return -1;
- }
+ // naive test is to shift the code_buffer down so k bits are
+ // valid, then test against maxcode. To speed this up, we've
+ // preshifted maxcode left so that it has (16-k) 0s at the
+ // end; in other words, regardless of the number of bits, it
+ // wants to be compared against something shifted to have 16;
+ // that way we don't need to shift inside the loop.
+ temp = j->code_buffer >> 16;
+ for (k = FAST_BITS + 1; ; ++k)
+ if (temp < h->maxcode[k])
+ break;
+ if (k == 17) {
+ // error! code not found
+ j->code_bits -= 16;
+ return -1;
+ }
- if (k > j->code_bits)
- return -1;
+ if (k > j->code_bits)
+ return -1;
- // convert the huffman code to the symbol id
- c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k];
- STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]);
+ // convert the huffman code to the symbol id
+ c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k];
+ if (c < 0 || c >= 256) // symbol id out of bounds!
+ return -1;
+ STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]);
- // convert the id to a symbol
- j->code_bits -= k;
- j->code_buffer <<= k;
- return h->values[c];
+ // convert the id to a symbol
+ j->code_bits -= k;
+ j->code_buffer <<= k;
+ return h->values[c];
}
// bias[n] = (-1<code_bits < n) stbi__grow_buffer_unsafe(j);
+ unsigned int k;
+ int sgn;
+ if (j->code_bits < n) stbi__grow_buffer_unsafe(j);
+ if (j->code_bits < n) return 0; // ran out of bits from stream, return 0s intead of continuing
- sgn = (stbi__int32)j->code_buffer >> 31; // sign bit is always in MSB
- k = stbi_lrot(j->code_buffer, n);
- STBI_ASSERT(n >= 0 && n < (int) (sizeof(stbi__bmask)/sizeof(*stbi__bmask)));
- j->code_buffer = k & ~stbi__bmask[n];
- k &= stbi__bmask[n];
- j->code_bits -= n;
- return k + (stbi__jbias[n] & ~sgn);
+ sgn = j->code_buffer >> 31; // sign bit always in MSB; 0 if MSB clear (positive), 1 if MSB set (negative)
+ k = stbi_lrot(j->code_buffer, n);
+ j->code_buffer = k & ~stbi__bmask[n];
+ k &= stbi__bmask[n];
+ j->code_bits -= n;
+ return k + (stbi__jbias[n] & (sgn - 1));
}
// get some unsigned bits
-stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg *j, int n)
+stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg* j, int n)
{
- unsigned int k;
- if (j->code_bits < n) stbi__grow_buffer_unsafe(j);
- k = stbi_lrot(j->code_buffer, n);
- j->code_buffer = k & ~stbi__bmask[n];
- k &= stbi__bmask[n];
- j->code_bits -= n;
- return k;
+ unsigned int k;
+ if (j->code_bits < n) stbi__grow_buffer_unsafe(j);
+ if (j->code_bits < n) return 0; // ran out of bits from stream, return 0s intead of continuing
+ k = stbi_lrot(j->code_buffer, n);
+ j->code_buffer = k & ~stbi__bmask[n];
+ k &= stbi__bmask[n];
+ j->code_bits -= n;
+ return k;
}
-stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg *j)
+stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg* j)
{
- unsigned int k;
- if (j->code_bits < 1) stbi__grow_buffer_unsafe(j);
- k = j->code_buffer;
- j->code_buffer <<= 1;
- --j->code_bits;
- return k & 0x80000000;
+ unsigned int k;
+ if (j->code_bits < 1) stbi__grow_buffer_unsafe(j);
+ if (j->code_bits < 1) return 0; // ran out of bits from stream, return 0s intead of continuing
+ k = j->code_buffer;
+ j->code_buffer <<= 1;
+ --j->code_bits;
+ return k & 0x80000000;
}
// given a value that's at position X in the zigzag stream,
// where does it appear in the 8x8 matrix coded as row-major?
-static stbi_uc stbi__jpeg_dezigzag[64+15] =
+static const stbi_uc stbi__jpeg_dezigzag[64 + 15] =
{
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
@@ -1694,217 +2207,234 @@ static stbi_uc stbi__jpeg_dezigzag[64+15] =
};
// decode one 64-entry block--
-static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], stbi__huffman *hdc, stbi__huffman *hac, stbi__int16 *fac, int b, stbi_uc *dequant)
-{
- int diff,dc,k;
- int t;
-
- if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
- t = stbi__jpeg_huff_decode(j, hdc);
- if (t < 0) return stbi__err("bad huffman code","Corrupt JPEG");
-
- // 0 all the ac values now so we can do it 32-bits at a time
- memset(data,0,64*sizeof(data[0]));
-
- diff = t ? stbi__extend_receive(j, t) : 0;
- dc = j->img_comp[b].dc_pred + diff;
- j->img_comp[b].dc_pred = dc;
- data[0] = (short) (dc * dequant[0]);
-
- // decode AC components, see JPEG spec
- k = 1;
- do {
- unsigned int zig;
- int c,r,s;
- if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
- c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
- r = fac[c];
- if (r) { // fast-AC path
- k += (r >> 4) & 15; // run
- s = r & 15; // combined length
- j->code_buffer <<= s;
- j->code_bits -= s;
- // decode into unzigzag'd location
- zig = stbi__jpeg_dezigzag[k++];
- data[zig] = (short) ((r >> 8) * dequant[zig]);
- } else {
- int rs = stbi__jpeg_huff_decode(j, hac);
- if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG");
- s = rs & 15;
- r = rs >> 4;
- if (s == 0) {
- if (rs != 0xf0) break; // end block
- k += 16;
- } else {
- k += r;
+static int stbi__jpeg_decode_block(stbi__jpeg* j, short data[64], stbi__huffman* hdc, stbi__huffman* hac, stbi__int16* fac, int b, stbi__uint16* dequant)
+{
+ int diff, dc, k;
+ int t;
+
+ if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
+ t = stbi__jpeg_huff_decode(j, hdc);
+ if (t < 0 || t > 15) return stbi__err("bad huffman code", "Corrupt JPEG");
+
+ // 0 all the ac values now so we can do it 32-bits at a time
+ memset(data, 0, 64 * sizeof(data[0]));
+
+ diff = t ? stbi__extend_receive(j, t) : 0;
+ if (!stbi__addints_valid(j->img_comp[b].dc_pred, diff)) return stbi__err("bad delta", "Corrupt JPEG");
+ dc = j->img_comp[b].dc_pred + diff;
+ j->img_comp[b].dc_pred = dc;
+ if (!stbi__mul2shorts_valid(dc, dequant[0])) return stbi__err("can't merge dc and ac", "Corrupt JPEG");
+ data[0] = (short)(dc * dequant[0]);
+
+ // decode AC components, see JPEG spec
+ k = 1;
+ do {
+ unsigned int zig;
+ int c, r, s;
+ if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
+ c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1);
+ r = fac[c];
+ if (r) { // fast-AC path
+ k += (r >> 4) & 15; // run
+ s = r & 15; // combined length
+ if (s > j->code_bits) return stbi__err("bad huffman code", "Combined length longer than code bits available");
+ j->code_buffer <<= s;
+ j->code_bits -= s;
// decode into unzigzag'd location
zig = stbi__jpeg_dezigzag[k++];
- data[zig] = (short) (stbi__extend_receive(j,s) * dequant[zig]);
- }
- }
- } while (k < 64);
- return 1;
+ data[zig] = (short)((r >> 8) * dequant[zig]);
+ }
+ else {
+ int rs = stbi__jpeg_huff_decode(j, hac);
+ if (rs < 0) return stbi__err("bad huffman code", "Corrupt JPEG");
+ s = rs & 15;
+ r = rs >> 4;
+ if (s == 0) {
+ if (rs != 0xf0) break; // end block
+ k += 16;
+ }
+ else {
+ k += r;
+ // decode into unzigzag'd location
+ zig = stbi__jpeg_dezigzag[k++];
+ data[zig] = (short)(stbi__extend_receive(j, s) * dequant[zig]);
+ }
+ }
+ } while (k < 64);
+ return 1;
}
-static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg *j, short data[64], stbi__huffman *hdc, int b)
+static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg* j, short data[64], stbi__huffman* hdc, int b)
{
- int diff,dc;
- int t;
- if (j->spec_end != 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG");
+ int diff, dc;
+ int t;
+ if (j->spec_end != 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG");
- if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
+ if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
- if (j->succ_high == 0) {
- // first scan for DC coefficient, must be first
- memset(data,0,64*sizeof(data[0])); // 0 all the ac values now
- t = stbi__jpeg_huff_decode(j, hdc);
- diff = t ? stbi__extend_receive(j, t) : 0;
+ if (j->succ_high == 0) {
+ // first scan for DC coefficient, must be first
+ memset(data, 0, 64 * sizeof(data[0])); // 0 all the ac values now
+ t = stbi__jpeg_huff_decode(j, hdc);
+ if (t < 0 || t > 15) return stbi__err("can't merge dc and ac", "Corrupt JPEG");
+ diff = t ? stbi__extend_receive(j, t) : 0;
- dc = j->img_comp[b].dc_pred + diff;
- j->img_comp[b].dc_pred = dc;
- data[0] = (short) (dc << j->succ_low);
- } else {
- // refinement scan for DC coefficient
- if (stbi__jpeg_get_bit(j))
- data[0] += (short) (1 << j->succ_low);
- }
- return 1;
+ if (!stbi__addints_valid(j->img_comp[b].dc_pred, diff)) return stbi__err("bad delta", "Corrupt JPEG");
+ dc = j->img_comp[b].dc_pred + diff;
+ j->img_comp[b].dc_pred = dc;
+ if (!stbi__mul2shorts_valid(dc, 1 << j->succ_low)) return stbi__err("can't merge dc and ac", "Corrupt JPEG");
+ data[0] = (short)(dc * (1 << j->succ_low));
+ }
+ else {
+ // refinement scan for DC coefficient
+ if (stbi__jpeg_get_bit(j))
+ data[0] += (short)(1 << j->succ_low);
+ }
+ return 1;
}
// @OPTIMIZE: store non-zigzagged during the decode passes,
// and only de-zigzag when dequantizing
-static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg *j, short data[64], stbi__huffman *hac, stbi__int16 *fac)
+static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg* j, short data[64], stbi__huffman* hac, stbi__int16* fac)
{
- int k;
- if (j->spec_start == 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG");
+ int k;
+ if (j->spec_start == 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG");
- if (j->succ_high == 0) {
- int shift = j->succ_low;
+ if (j->succ_high == 0) {
+ int shift = j->succ_low;
- if (j->eob_run) {
- --j->eob_run;
- return 1;
- }
-
- k = j->spec_start;
- do {
- unsigned int zig;
- int c,r,s;
- if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
- c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
- r = fac[c];
- if (r) { // fast-AC path
- k += (r >> 4) & 15; // run
- s = r & 15; // combined length
- j->code_buffer <<= s;
- j->code_bits -= s;
- zig = stbi__jpeg_dezigzag[k++];
- data[zig] = (short) ((r >> 8) << shift);
- } else {
- int rs = stbi__jpeg_huff_decode(j, hac);
- if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG");
- s = rs & 15;
- r = rs >> 4;
- if (s == 0) {
- if (r < 15) {
- j->eob_run = (1 << r);
- if (r)
- j->eob_run += stbi__jpeg_get_bits(j, r);
- --j->eob_run;
- break;
- }
- k += 16;
- } else {
- k += r;
- zig = stbi__jpeg_dezigzag[k++];
- data[zig] = (short) (stbi__extend_receive(j,s) << shift);
+ if (j->eob_run) {
+ --j->eob_run;
+ return 1;
+ }
+
+ k = j->spec_start;
+ do {
+ unsigned int zig;
+ int c, r, s;
+ if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
+ c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1);
+ r = fac[c];
+ if (r) { // fast-AC path
+ k += (r >> 4) & 15; // run
+ s = r & 15; // combined length
+ if (s > j->code_bits) return stbi__err("bad huffman code", "Combined length longer than code bits available");
+ j->code_buffer <<= s;
+ j->code_bits -= s;
+ zig = stbi__jpeg_dezigzag[k++];
+ data[zig] = (short)((r >> 8) * (1 << shift));
}
- }
- } while (k <= j->spec_end);
- } else {
- // refinement scan for these AC coefficients
-
- short bit = (short) (1 << j->succ_low);
-
- if (j->eob_run) {
- --j->eob_run;
- for (k = j->spec_start; k <= j->spec_end; ++k) {
- short *p = &data[stbi__jpeg_dezigzag[k]];
- if (*p != 0)
- if (stbi__jpeg_get_bit(j))
- if ((*p & bit)==0) {
- if (*p > 0)
- *p += bit;
- else
- *p -= bit;
- }
- }
- } else {
- k = j->spec_start;
- do {
- int r,s;
- int rs = stbi__jpeg_huff_decode(j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh
- if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG");
- s = rs & 15;
- r = rs >> 4;
- if (s == 0) {
- if (r < 15) {
- j->eob_run = (1 << r) - 1;
- if (r)
- j->eob_run += stbi__jpeg_get_bits(j, r);
- r = 64; // force end of block
- } else {
- // r=15 s=0 should write 16 0s, so we just do
- // a run of 15 0s and then write s (which is 0),
- // so we don't have to do anything special here
- }
- } else {
- if (s != 1) return stbi__err("bad huffman code", "Corrupt JPEG");
- // sign bit
- if (stbi__jpeg_get_bit(j))
- s = bit;
- else
- s = -bit;
+ else {
+ int rs = stbi__jpeg_huff_decode(j, hac);
+ if (rs < 0) return stbi__err("bad huffman code", "Corrupt JPEG");
+ s = rs & 15;
+ r = rs >> 4;
+ if (s == 0) {
+ if (r < 15) {
+ j->eob_run = (1 << r);
+ if (r)
+ j->eob_run += stbi__jpeg_get_bits(j, r);
+ --j->eob_run;
+ break;
+ }
+ k += 16;
+ }
+ else {
+ k += r;
+ zig = stbi__jpeg_dezigzag[k++];
+ data[zig] = (short)(stbi__extend_receive(j, s) * (1 << shift));
+ }
}
-
- // advance by r
- while (k <= j->spec_end) {
- short *p = &data[stbi__jpeg_dezigzag[k++]];
- if (*p != 0) {
- if (stbi__jpeg_get_bit(j))
- if ((*p & bit)==0) {
- if (*p > 0)
- *p += bit;
- else
- *p -= bit;
- }
- } else {
- if (r == 0) {
- *p = (short) s;
- break;
- }
- --r;
- }
+ } while (k <= j->spec_end);
+ }
+ else {
+ // refinement scan for these AC coefficients
+
+ short bit = (short)(1 << j->succ_low);
+
+ if (j->eob_run) {
+ --j->eob_run;
+ for (k = j->spec_start; k <= j->spec_end; ++k) {
+ short* p = &data[stbi__jpeg_dezigzag[k]];
+ if (*p != 0)
+ if (stbi__jpeg_get_bit(j))
+ if ((*p & bit) == 0) {
+ if (*p > 0)
+ *p += bit;
+ else
+ *p -= bit;
+ }
}
- } while (k <= j->spec_end);
- }
- }
- return 1;
+ }
+ else {
+ k = j->spec_start;
+ do {
+ int r, s;
+ int rs = stbi__jpeg_huff_decode(j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh
+ if (rs < 0) return stbi__err("bad huffman code", "Corrupt JPEG");
+ s = rs & 15;
+ r = rs >> 4;
+ if (s == 0) {
+ if (r < 15) {
+ j->eob_run = (1 << r) - 1;
+ if (r)
+ j->eob_run += stbi__jpeg_get_bits(j, r);
+ r = 64; // force end of block
+ }
+ else {
+ // r=15 s=0 should write 16 0s, so we just do
+ // a run of 15 0s and then write s (which is 0),
+ // so we don't have to do anything special here
+ }
+ }
+ else {
+ if (s != 1) return stbi__err("bad huffman code", "Corrupt JPEG");
+ // sign bit
+ if (stbi__jpeg_get_bit(j))
+ s = bit;
+ else
+ s = -bit;
+ }
+
+ // advance by r
+ while (k <= j->spec_end) {
+ short* p = &data[stbi__jpeg_dezigzag[k++]];
+ if (*p != 0) {
+ if (stbi__jpeg_get_bit(j))
+ if ((*p & bit) == 0) {
+ if (*p > 0)
+ *p += bit;
+ else
+ *p -= bit;
+ }
+ }
+ else {
+ if (r == 0) {
+ *p = (short)s;
+ break;
+ }
+ --r;
+ }
+ }
+ } while (k <= j->spec_end);
+ }
+ }
+ return 1;
}
// take a -128..127 value and stbi__clamp it and convert to 0..255
stbi_inline static stbi_uc stbi__clamp(int x)
{
- // trick to use a single test to catch both cases
- if ((unsigned int) x > 255) {
- if (x < 0) return 0;
- if (x > 255) return 255;
- }
- return (stbi_uc) x;
+ // trick to use a single test to catch both cases
+ if ((unsigned int)x > 255) {
+ if (x < 0) return 0;
+ if (x > 255) return 255;
+ }
+ return (stbi_uc)x;
}
#define stbi__f2f(x) ((int) (((x) * 4096 + 0.5)))
-#define stbi__fsh(x) ((x) << 12)
+#define stbi__fsh(x) ((x) * 4096)
// derived from jidctint -- DCT_ISLOW
#define STBI__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \
@@ -1944,81 +2474,82 @@ stbi_inline static stbi_uc stbi__clamp(int x)
t1 += p2+p4; \
t0 += p1+p3;
-static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64])
-{
- int i,val[64],*v=val;
- stbi_uc *o;
- short *d = data;
-
- // columns
- for (i=0; i < 8; ++i,++d, ++v) {
- // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing
- if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0
- && d[40]==0 && d[48]==0 && d[56]==0) {
- // no shortcut 0 seconds
- // (1|2|3|4|5|6|7)==0 0 seconds
- // all separate -0.047 seconds
- // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds
- int dcterm = d[0] << 2;
- v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm;
- } else {
- STBI__IDCT_1D(d[ 0],d[ 8],d[16],d[24],d[32],d[40],d[48],d[56])
- // constants scaled things up by 1<<12; let's bring them back
- // down, but keep 2 extra bits of precision
- x0 += 512; x1 += 512; x2 += 512; x3 += 512;
- v[ 0] = (x0+t3) >> 10;
- v[56] = (x0-t3) >> 10;
- v[ 8] = (x1+t2) >> 10;
- v[48] = (x1-t2) >> 10;
- v[16] = (x2+t1) >> 10;
- v[40] = (x2-t1) >> 10;
- v[24] = (x3+t0) >> 10;
- v[32] = (x3-t0) >> 10;
- }
- }
+static void stbi__idct_block(stbi_uc* out, int out_stride, short data[64])
+{
+ int i, val[64], * v = val;
+ stbi_uc* o;
+ short* d = data;
+
+ // columns
+ for (i = 0; i < 8; ++i, ++d, ++v) {
+ // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing
+ if (d[8] == 0 && d[16] == 0 && d[24] == 0 && d[32] == 0
+ && d[40] == 0 && d[48] == 0 && d[56] == 0) {
+ // no shortcut 0 seconds
+ // (1|2|3|4|5|6|7)==0 0 seconds
+ // all separate -0.047 seconds
+ // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds
+ int dcterm = d[0] * 4;
+ v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm;
+ }
+ else {
+ STBI__IDCT_1D(d[0], d[8], d[16], d[24], d[32], d[40], d[48], d[56])
+ // constants scaled things up by 1<<12; let's bring them back
+ // down, but keep 2 extra bits of precision
+ x0 += 512; x1 += 512; x2 += 512; x3 += 512;
+ v[0] = (x0 + t3) >> 10;
+ v[56] = (x0 - t3) >> 10;
+ v[8] = (x1 + t2) >> 10;
+ v[48] = (x1 - t2) >> 10;
+ v[16] = (x2 + t1) >> 10;
+ v[40] = (x2 - t1) >> 10;
+ v[24] = (x3 + t0) >> 10;
+ v[32] = (x3 - t0) >> 10;
+ }
+ }
- for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) {
- // no fast case since the first 1D IDCT spread components out
- STBI__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7])
- // constants scaled things up by 1<<12, plus we had 1<<2 from first
- // loop, plus horizontal and vertical each scale by sqrt(8) so together
- // we've got an extra 1<<3, so 1<<17 total we need to remove.
- // so we want to round that, which means adding 0.5 * 1<<17,
- // aka 65536. Also, we'll end up with -128 to 127 that we want
- // to encode as 0..255 by adding 128, so we'll add that before the shift
- x0 += 65536 + (128<<17);
- x1 += 65536 + (128<<17);
- x2 += 65536 + (128<<17);
- x3 += 65536 + (128<<17);
- // tried computing the shifts into temps, or'ing the temps to see
- // if any were out of range, but that was slower
- o[0] = stbi__clamp((x0+t3) >> 17);
- o[7] = stbi__clamp((x0-t3) >> 17);
- o[1] = stbi__clamp((x1+t2) >> 17);
- o[6] = stbi__clamp((x1-t2) >> 17);
- o[2] = stbi__clamp((x2+t1) >> 17);
- o[5] = stbi__clamp((x2-t1) >> 17);
- o[3] = stbi__clamp((x3+t0) >> 17);
- o[4] = stbi__clamp((x3-t0) >> 17);
- }
+ for (i = 0, v = val, o = out; i < 8; ++i, v += 8, o += out_stride) {
+ // no fast case since the first 1D IDCT spread components out
+ STBI__IDCT_1D(v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7])
+ // constants scaled things up by 1<<12, plus we had 1<<2 from first
+ // loop, plus horizontal and vertical each scale by sqrt(8) so together
+ // we've got an extra 1<<3, so 1<<17 total we need to remove.
+ // so we want to round that, which means adding 0.5 * 1<<17,
+ // aka 65536. Also, we'll end up with -128 to 127 that we want
+ // to encode as 0..255 by adding 128, so we'll add that before the shift
+ x0 += 65536 + (128 << 17);
+ x1 += 65536 + (128 << 17);
+ x2 += 65536 + (128 << 17);
+ x3 += 65536 + (128 << 17);
+ // tried computing the shifts into temps, or'ing the temps to see
+ // if any were out of range, but that was slower
+ o[0] = stbi__clamp((x0 + t3) >> 17);
+ o[7] = stbi__clamp((x0 - t3) >> 17);
+ o[1] = stbi__clamp((x1 + t2) >> 17);
+ o[6] = stbi__clamp((x1 - t2) >> 17);
+ o[2] = stbi__clamp((x2 + t1) >> 17);
+ o[5] = stbi__clamp((x2 - t1) >> 17);
+ o[3] = stbi__clamp((x3 + t0) >> 17);
+ o[4] = stbi__clamp((x3 - t0) >> 17);
+ }
}
#ifdef STBI_SSE2
// sse2 integer IDCT. not the fastest possible implementation but it
// produces bit-identical results to the generic C version so it's
// fully "transparent".
-static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
+static void stbi__idct_simd(stbi_uc* out, int out_stride, short data[64])
{
- // This is constructed to match our regular (generic) integer IDCT exactly.
- __m128i row0, row1, row2, row3, row4, row5, row6, row7;
- __m128i tmp;
+ // This is constructed to match our regular (generic) integer IDCT exactly.
+ __m128i row0, row1, row2, row3, row4, row5, row6, row7;
+ __m128i tmp;
- // dot product constant: even elems=x, odd elems=y
- #define dct_const(x,y) _mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y))
+ // dot product constant: even elems=x, odd elems=y
+#define dct_const(x,y) _mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y))
- // out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit)
- // out(1) = c1[even]*x + c1[odd]*y
- #define dct_rot(out0,out1, x,y,c0,c1) \
+// out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit)
+// out(1) = c1[even]*x + c1[odd]*y
+#define dct_rot(out0,out1, x,y,c0,c1) \
__m128i c0##lo = _mm_unpacklo_epi16((x),(y)); \
__m128i c0##hi = _mm_unpackhi_epi16((x),(y)); \
__m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \
@@ -2027,22 +2558,22 @@ static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
__m128i out1##_h = _mm_madd_epi16(c0##hi, c1)
// out = in << 12 (in 16-bit, out 32-bit)
- #define dct_widen(out, in) \
+#define dct_widen(out, in) \
__m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \
__m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4)
// wide add
- #define dct_wadd(out, a, b) \
+#define dct_wadd(out, a, b) \
__m128i out##_l = _mm_add_epi32(a##_l, b##_l); \
__m128i out##_h = _mm_add_epi32(a##_h, b##_h)
// wide sub
- #define dct_wsub(out, a, b) \
+#define dct_wsub(out, a, b) \
__m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \
__m128i out##_h = _mm_sub_epi32(a##_h, b##_h)
// butterfly a/b, add bias, then shift by "s" and pack
- #define dct_bfly32o(out0, out1, a,b,bias,s) \
+#define dct_bfly32o(out0, out1, a,b,bias,s) \
{ \
__m128i abiased_l = _mm_add_epi32(a##_l, bias); \
__m128i abiased_h = _mm_add_epi32(a##_h, bias); \
@@ -2053,18 +2584,18 @@ static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
}
// 8-bit interleave step (for transposes)
- #define dct_interleave8(a, b) \
+#define dct_interleave8(a, b) \
tmp = a; \
a = _mm_unpacklo_epi8(a, b); \
b = _mm_unpackhi_epi8(tmp, b)
// 16-bit interleave step (for transposes)
- #define dct_interleave16(a, b) \
+#define dct_interleave16(a, b) \
tmp = a; \
a = _mm_unpacklo_epi16(a, b); \
b = _mm_unpackhi_epi16(tmp, b)
- #define dct_pass(bias,shift) \
+#define dct_pass(bias,shift) \
{ \
/* even part */ \
dct_rot(t2e,t3e, row2,row6, rot0_0,rot0_1); \
@@ -2092,84 +2623,84 @@ static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
dct_bfly32o(row3,row4, x3,x4,bias,shift); \
}
- __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f));
- __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f( 0.765366865f), stbi__f2f(0.5411961f));
- __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f));
- __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f));
- __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f( 0.298631336f), stbi__f2f(-1.961570560f));
- __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f( 3.072711026f));
- __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f( 2.053119869f), stbi__f2f(-0.390180644f));
- __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f( 1.501321110f));
-
- // rounding biases in column/row passes, see stbi__idct_block for explanation.
- __m128i bias_0 = _mm_set1_epi32(512);
- __m128i bias_1 = _mm_set1_epi32(65536 + (128<<17));
-
- // load
- row0 = _mm_load_si128((const __m128i *) (data + 0*8));
- row1 = _mm_load_si128((const __m128i *) (data + 1*8));
- row2 = _mm_load_si128((const __m128i *) (data + 2*8));
- row3 = _mm_load_si128((const __m128i *) (data + 3*8));
- row4 = _mm_load_si128((const __m128i *) (data + 4*8));
- row5 = _mm_load_si128((const __m128i *) (data + 5*8));
- row6 = _mm_load_si128((const __m128i *) (data + 6*8));
- row7 = _mm_load_si128((const __m128i *) (data + 7*8));
-
- // column pass
- dct_pass(bias_0, 10);
-
- {
- // 16bit 8x8 transpose pass 1
- dct_interleave16(row0, row4);
- dct_interleave16(row1, row5);
- dct_interleave16(row2, row6);
- dct_interleave16(row3, row7);
-
- // transpose pass 2
- dct_interleave16(row0, row2);
- dct_interleave16(row1, row3);
- dct_interleave16(row4, row6);
- dct_interleave16(row5, row7);
-
- // transpose pass 3
- dct_interleave16(row0, row1);
- dct_interleave16(row2, row3);
- dct_interleave16(row4, row5);
- dct_interleave16(row6, row7);
- }
+ __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f));
+ __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f(0.765366865f), stbi__f2f(0.5411961f));
+ __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f));
+ __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f));
+ __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f(0.298631336f), stbi__f2f(-1.961570560f));
+ __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f(3.072711026f));
+ __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f(2.053119869f), stbi__f2f(-0.390180644f));
+ __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f(1.501321110f));
+
+ // rounding biases in column/row passes, see stbi__idct_block for explanation.
+ __m128i bias_0 = _mm_set1_epi32(512);
+ __m128i bias_1 = _mm_set1_epi32(65536 + (128 << 17));
+
+ // load
+ row0 = _mm_load_si128((const __m128i*) (data + 0 * 8));
+ row1 = _mm_load_si128((const __m128i*) (data + 1 * 8));
+ row2 = _mm_load_si128((const __m128i*) (data + 2 * 8));
+ row3 = _mm_load_si128((const __m128i*) (data + 3 * 8));
+ row4 = _mm_load_si128((const __m128i*) (data + 4 * 8));
+ row5 = _mm_load_si128((const __m128i*) (data + 5 * 8));
+ row6 = _mm_load_si128((const __m128i*) (data + 6 * 8));
+ row7 = _mm_load_si128((const __m128i*) (data + 7 * 8));
+
+ // column pass
+ dct_pass(bias_0, 10);
+
+ {
+ // 16bit 8x8 transpose pass 1
+ dct_interleave16(row0, row4);
+ dct_interleave16(row1, row5);
+ dct_interleave16(row2, row6);
+ dct_interleave16(row3, row7);
+
+ // transpose pass 2
+ dct_interleave16(row0, row2);
+ dct_interleave16(row1, row3);
+ dct_interleave16(row4, row6);
+ dct_interleave16(row5, row7);
+
+ // transpose pass 3
+ dct_interleave16(row0, row1);
+ dct_interleave16(row2, row3);
+ dct_interleave16(row4, row5);
+ dct_interleave16(row6, row7);
+ }
- // row pass
- dct_pass(bias_1, 17);
-
- {
- // pack
- __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7
- __m128i p1 = _mm_packus_epi16(row2, row3);
- __m128i p2 = _mm_packus_epi16(row4, row5);
- __m128i p3 = _mm_packus_epi16(row6, row7);
-
- // 8bit 8x8 transpose pass 1
- dct_interleave8(p0, p2); // a0e0a1e1...
- dct_interleave8(p1, p3); // c0g0c1g1...
-
- // transpose pass 2
- dct_interleave8(p0, p1); // a0c0e0g0...
- dct_interleave8(p2, p3); // b0d0f0h0...
-
- // transpose pass 3
- dct_interleave8(p0, p2); // a0b0c0d0...
- dct_interleave8(p1, p3); // a4b4c4d4...
-
- // store
- _mm_storel_epi64((__m128i *) out, p0); out += out_stride;
- _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride;
- _mm_storel_epi64((__m128i *) out, p2); out += out_stride;
- _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride;
- _mm_storel_epi64((__m128i *) out, p1); out += out_stride;
- _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride;
- _mm_storel_epi64((__m128i *) out, p3); out += out_stride;
- _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p3, 0x4e));
- }
+ // row pass
+ dct_pass(bias_1, 17);
+
+ {
+ // pack
+ __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7
+ __m128i p1 = _mm_packus_epi16(row2, row3);
+ __m128i p2 = _mm_packus_epi16(row4, row5);
+ __m128i p3 = _mm_packus_epi16(row6, row7);
+
+ // 8bit 8x8 transpose pass 1
+ dct_interleave8(p0, p2); // a0e0a1e1...
+ dct_interleave8(p1, p3); // c0g0c1g1...
+
+ // transpose pass 2
+ dct_interleave8(p0, p1); // a0c0e0g0...
+ dct_interleave8(p2, p3); // b0d0f0h0...
+
+ // transpose pass 3
+ dct_interleave8(p0, p2); // a0b0c0d0...
+ dct_interleave8(p1, p3); // a4b4c4d4...
+
+ // store
+ _mm_storel_epi64((__m128i*) out, p0); out += out_stride;
+ _mm_storel_epi64((__m128i*) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride;
+ _mm_storel_epi64((__m128i*) out, p2); out += out_stride;
+ _mm_storel_epi64((__m128i*) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride;
+ _mm_storel_epi64((__m128i*) out, p1); out += out_stride;
+ _mm_storel_epi64((__m128i*) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride;
+ _mm_storel_epi64((__m128i*) out, p3); out += out_stride;
+ _mm_storel_epi64((__m128i*) out, _mm_shuffle_epi32(p3, 0x4e));
+ }
#undef dct_const
#undef dct_rot
@@ -2188,22 +2719,22 @@ static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
// NEON integer IDCT. should produce bit-identical
// results to the generic C version.
-static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
-{
- int16x8_t row0, row1, row2, row3, row4, row5, row6, row7;
-
- int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f));
- int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f));
- int16x4_t rot0_2 = vdup_n_s16(stbi__f2f( 0.765366865f));
- int16x4_t rot1_0 = vdup_n_s16(stbi__f2f( 1.175875602f));
- int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f));
- int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f));
- int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f));
- int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f));
- int16x4_t rot3_0 = vdup_n_s16(stbi__f2f( 0.298631336f));
- int16x4_t rot3_1 = vdup_n_s16(stbi__f2f( 2.053119869f));
- int16x4_t rot3_2 = vdup_n_s16(stbi__f2f( 3.072711026f));
- int16x4_t rot3_3 = vdup_n_s16(stbi__f2f( 1.501321110f));
+static void stbi__idct_simd(stbi_uc* out, int out_stride, short data[64])
+{
+ int16x8_t row0, row1, row2, row3, row4, row5, row6, row7;
+
+ int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f));
+ int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f));
+ int16x4_t rot0_2 = vdup_n_s16(stbi__f2f(0.765366865f));
+ int16x4_t rot1_0 = vdup_n_s16(stbi__f2f(1.175875602f));
+ int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f));
+ int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f));
+ int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f));
+ int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f));
+ int16x4_t rot3_0 = vdup_n_s16(stbi__f2f(0.298631336f));
+ int16x4_t rot3_1 = vdup_n_s16(stbi__f2f(2.053119869f));
+ int16x4_t rot3_2 = vdup_n_s16(stbi__f2f(3.072711026f));
+ int16x4_t rot3_3 = vdup_n_s16(stbi__f2f(1.501321110f));
#define dct_long_mul(out, inq, coeff) \
int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \
@@ -2217,7 +2748,7 @@ static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \
int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12)
-// wide add
+ // wide add
#define dct_wadd(out, a, b) \
int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \
int32x4_t out##_h = vaddq_s32(a##_h, b##_h)
@@ -2277,70 +2808,70 @@ static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
}
// load
- row0 = vld1q_s16(data + 0*8);
- row1 = vld1q_s16(data + 1*8);
- row2 = vld1q_s16(data + 2*8);
- row3 = vld1q_s16(data + 3*8);
- row4 = vld1q_s16(data + 4*8);
- row5 = vld1q_s16(data + 5*8);
- row6 = vld1q_s16(data + 6*8);
- row7 = vld1q_s16(data + 7*8);
-
- // add DC bias
- row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0));
-
- // column pass
- dct_pass(vrshrn_n_s32, 10);
-
- // 16bit 8x8 transpose
- {
-// these three map to a single VTRN.16, VTRN.32, and VSWP, respectively.
-// whether compilers actually get this is another story, sadly.
+ row0 = vld1q_s16(data + 0 * 8);
+ row1 = vld1q_s16(data + 1 * 8);
+ row2 = vld1q_s16(data + 2 * 8);
+ row3 = vld1q_s16(data + 3 * 8);
+ row4 = vld1q_s16(data + 4 * 8);
+ row5 = vld1q_s16(data + 5 * 8);
+ row6 = vld1q_s16(data + 6 * 8);
+ row7 = vld1q_s16(data + 7 * 8);
+
+ // add DC bias
+ row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0));
+
+ // column pass
+ dct_pass(vrshrn_n_s32, 10);
+
+ // 16bit 8x8 transpose
+ {
+ // these three map to a single VTRN.16, VTRN.32, and VSWP, respectively.
+ // whether compilers actually get this is another story, sadly.
#define dct_trn16(x, y) { int16x8x2_t t = vtrnq_s16(x, y); x = t.val[0]; y = t.val[1]; }
#define dct_trn32(x, y) { int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); x = vreinterpretq_s16_s32(t.val[0]); y = vreinterpretq_s16_s32(t.val[1]); }
#define dct_trn64(x, y) { int16x8_t x0 = x; int16x8_t y0 = y; x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); }
// pass 1
- dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6
- dct_trn16(row2, row3);
- dct_trn16(row4, row5);
- dct_trn16(row6, row7);
-
- // pass 2
- dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4
- dct_trn32(row1, row3);
- dct_trn32(row4, row6);
- dct_trn32(row5, row7);
-
- // pass 3
- dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0
- dct_trn64(row1, row5);
- dct_trn64(row2, row6);
- dct_trn64(row3, row7);
+ dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6
+ dct_trn16(row2, row3);
+ dct_trn16(row4, row5);
+ dct_trn16(row6, row7);
+
+ // pass 2
+ dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4
+ dct_trn32(row1, row3);
+ dct_trn32(row4, row6);
+ dct_trn32(row5, row7);
+
+ // pass 3
+ dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0
+ dct_trn64(row1, row5);
+ dct_trn64(row2, row6);
+ dct_trn64(row3, row7);
#undef dct_trn16
#undef dct_trn32
#undef dct_trn64
- }
+ }
- // row pass
- // vrshrn_n_s32 only supports shifts up to 16, we need
- // 17. so do a non-rounding shift of 16 first then follow
- // up with a rounding shift by 1.
- dct_pass(vshrn_n_s32, 16);
-
- {
- // pack and round
- uint8x8_t p0 = vqrshrun_n_s16(row0, 1);
- uint8x8_t p1 = vqrshrun_n_s16(row1, 1);
- uint8x8_t p2 = vqrshrun_n_s16(row2, 1);
- uint8x8_t p3 = vqrshrun_n_s16(row3, 1);
- uint8x8_t p4 = vqrshrun_n_s16(row4, 1);
- uint8x8_t p5 = vqrshrun_n_s16(row5, 1);
- uint8x8_t p6 = vqrshrun_n_s16(row6, 1);
- uint8x8_t p7 = vqrshrun_n_s16(row7, 1);
-
- // again, these can translate into one instruction, but often don't.
+ // row pass
+ // vrshrn_n_s32 only supports shifts up to 16, we need
+ // 17. so do a non-rounding shift of 16 first then follow
+ // up with a rounding shift by 1.
+ dct_pass(vshrn_n_s32, 16);
+
+ {
+ // pack and round
+ uint8x8_t p0 = vqrshrun_n_s16(row0, 1);
+ uint8x8_t p1 = vqrshrun_n_s16(row1, 1);
+ uint8x8_t p2 = vqrshrun_n_s16(row2, 1);
+ uint8x8_t p3 = vqrshrun_n_s16(row3, 1);
+ uint8x8_t p4 = vqrshrun_n_s16(row4, 1);
+ uint8x8_t p5 = vqrshrun_n_s16(row5, 1);
+ uint8x8_t p6 = vqrshrun_n_s16(row6, 1);
+ uint8x8_t p7 = vqrshrun_n_s16(row7, 1);
+
+ // again, these can translate into one instruction, but often don't.
#define dct_trn8_8(x, y) { uint8x8x2_t t = vtrn_u8(x, y); x = t.val[0]; y = t.val[1]; }
#define dct_trn8_16(x, y) { uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); x = vreinterpret_u8_u16(t.val[0]); y = vreinterpret_u8_u16(t.val[1]); }
#define dct_trn8_32(x, y) { uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); x = vreinterpret_u8_u32(t.val[0]); y = vreinterpret_u8_u32(t.val[1]); }
@@ -2349,37 +2880,37 @@ static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
// 8 bytes to each scan line!
// 8x8 8-bit transpose pass 1
- dct_trn8_8(p0, p1);
- dct_trn8_8(p2, p3);
- dct_trn8_8(p4, p5);
- dct_trn8_8(p6, p7);
-
- // pass 2
- dct_trn8_16(p0, p2);
- dct_trn8_16(p1, p3);
- dct_trn8_16(p4, p6);
- dct_trn8_16(p5, p7);
-
- // pass 3
- dct_trn8_32(p0, p4);
- dct_trn8_32(p1, p5);
- dct_trn8_32(p2, p6);
- dct_trn8_32(p3, p7);
-
- // store
- vst1_u8(out, p0); out += out_stride;
- vst1_u8(out, p1); out += out_stride;
- vst1_u8(out, p2); out += out_stride;
- vst1_u8(out, p3); out += out_stride;
- vst1_u8(out, p4); out += out_stride;
- vst1_u8(out, p5); out += out_stride;
- vst1_u8(out, p6); out += out_stride;
- vst1_u8(out, p7);
+ dct_trn8_8(p0, p1);
+ dct_trn8_8(p2, p3);
+ dct_trn8_8(p4, p5);
+ dct_trn8_8(p6, p7);
+
+ // pass 2
+ dct_trn8_16(p0, p2);
+ dct_trn8_16(p1, p3);
+ dct_trn8_16(p4, p6);
+ dct_trn8_16(p5, p7);
+
+ // pass 3
+ dct_trn8_32(p0, p4);
+ dct_trn8_32(p1, p5);
+ dct_trn8_32(p2, p6);
+ dct_trn8_32(p3, p7);
+
+ // store
+ vst1_u8(out, p0); out += out_stride;
+ vst1_u8(out, p1); out += out_stride;
+ vst1_u8(out, p2); out += out_stride;
+ vst1_u8(out, p3); out += out_stride;
+ vst1_u8(out, p4); out += out_stride;
+ vst1_u8(out, p5); out += out_stride;
+ vst1_u8(out, p6); out += out_stride;
+ vst1_u8(out, p7);
#undef dct_trn8_8
#undef dct_trn8_16
#undef dct_trn8_32
- }
+ }
#undef dct_long_mul
#undef dct_long_mac
@@ -2396,15 +2927,15 @@ static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
// if there's a pending marker from the entropy stream, return that
// otherwise, fetch from the stream and get a marker. if there's no
// marker, return 0xff, which is never a valid marker value
-static stbi_uc stbi__get_marker(stbi__jpeg *j)
+static stbi_uc stbi__get_marker(stbi__jpeg* j)
{
- stbi_uc x;
- if (j->marker != STBI__MARKER_none) { x = j->marker; j->marker = STBI__MARKER_none; return x; }
- x = stbi__get8(j->s);
- if (x != 0xff) return STBI__MARKER_none;
- while (x == 0xff)
- x = stbi__get8(j->s);
- return x;
+ stbi_uc x;
+ if (j->marker != STBI__MARKER_none) { x = j->marker; j->marker = STBI__MARKER_none; return x; }
+ x = stbi__get8(j->s);
+ if (x != 0xff) return STBI__MARKER_none;
+ while (x == 0xff)
+ x = stbi__get8(j->s); // consume repeated 0xff fill bytes
+ return x;
}
// in each scan, we'll have scan_n components, and the order
@@ -2413,352 +2944,431 @@ static stbi_uc stbi__get_marker(stbi__jpeg *j)
// after a restart interval, stbi__jpeg_reset the entropy decoder and
// the dc prediction
-static void stbi__jpeg_reset(stbi__jpeg *j)
-{
- j->code_bits = 0;
- j->code_buffer = 0;
- j->nomore = 0;
- j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = 0;
- j->marker = STBI__MARKER_none;
- j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff;
- j->eob_run = 0;
- // no more than 1<<31 MCUs if no restart_interal? that's plenty safe,
- // since we don't even allow 1<<30 pixels
-}
-
-static int stbi__parse_entropy_coded_data(stbi__jpeg *z)
-{
- stbi__jpeg_reset(z);
- if (!z->progressive) {
- if (z->scan_n == 1) {
- int i,j;
- STBI_SIMD_ALIGN(short, data[64]);
- int n = z->order[0];
- // non-interleaved data, we just need to process one block at a time,
- // in trivial scanline order
- // number of blocks to do just depends on how many actual "pixels" this
- // component has, independent of interleaved MCU blocking and such
- int w = (z->img_comp[n].x+7) >> 3;
- int h = (z->img_comp[n].y+7) >> 3;
- for (j=0; j < h; ++j) {
- for (i=0; i < w; ++i) {
- int ha = z->img_comp[n].ha;
- if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0;
- z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data);
- // every data block is an MCU, so countdown the restart interval
- if (--z->todo <= 0) {
- if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
- // if it's NOT a restart, then just bail, so we get corrupt data
- // rather than no data
- if (!STBI__RESTART(z->marker)) return 1;
- stbi__jpeg_reset(z);
- }
+static void stbi__jpeg_reset(stbi__jpeg* j)
+{
+ j->code_bits = 0;
+ j->code_buffer = 0;
+ j->nomore = 0;
+ j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = j->img_comp[3].dc_pred = 0;
+ j->marker = STBI__MARKER_none;
+ j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff;
+ j->eob_run = 0;
+ // no more than 1<<31 MCUs if no restart_interal? that's plenty safe,
+ // since we don't even allow 1<<30 pixels
+}
+
+static int stbi__parse_entropy_coded_data(stbi__jpeg* z)
+{
+ stbi__jpeg_reset(z);
+ if (!z->progressive) {
+ if (z->scan_n == 1) {
+ int i, j;
+ STBI_SIMD_ALIGN(short, data[64]);
+ int n = z->order[0];
+ // non-interleaved data, we just need to process one block at a time,
+ // in trivial scanline order
+ // number of blocks to do just depends on how many actual "pixels" this
+ // component has, independent of interleaved MCU blocking and such
+ int w = (z->img_comp[n].x + 7) >> 3;
+ int h = (z->img_comp[n].y + 7) >> 3;
+ for (j = 0; j < h; ++j) {
+ for (i = 0; i < w; ++i) {
+ int ha = z->img_comp[n].ha;
+ if (!stbi__jpeg_decode_block(z, data, z->huff_dc + z->img_comp[n].hd, z->huff_ac + ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0;
+ z->idct_block_kernel(z->img_comp[n].data + z->img_comp[n].w2 * j * 8 + i * 8, z->img_comp[n].w2, data);
+ // every data block is an MCU, so countdown the restart interval
+ if (--z->todo <= 0) {
+ if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
+ // if it's NOT a restart, then just bail, so we get corrupt data
+ // rather than no data
+ if (!STBI__RESTART(z->marker)) return 1;
+ stbi__jpeg_reset(z);
+ }
+ }
}
- }
- return 1;
- } else { // interleaved
- int i,j,k,x,y;
- STBI_SIMD_ALIGN(short, data[64]);
- for (j=0; j < z->img_mcu_y; ++j) {
- for (i=0; i < z->img_mcu_x; ++i) {
- // scan an interleaved mcu... process scan_n components in order
- for (k=0; k < z->scan_n; ++k) {
- int n = z->order[k];
- // scan out an mcu's worth of this component; that's just determined
- // by the basic H and V specified for the component
- for (y=0; y < z->img_comp[n].v; ++y) {
- for (x=0; x < z->img_comp[n].h; ++x) {
- int x2 = (i*z->img_comp[n].h + x)*8;
- int y2 = (j*z->img_comp[n].v + y)*8;
- int ha = z->img_comp[n].ha;
- if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0;
- z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data);
- }
- }
- }
- // after all interleaved components, that's an interleaved MCU,
- // so now count down the restart interval
- if (--z->todo <= 0) {
- if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
- if (!STBI__RESTART(z->marker)) return 1;
- stbi__jpeg_reset(z);
- }
- }
- }
- return 1;
- }
- } else {
- if (z->scan_n == 1) {
- int i,j;
- int n = z->order[0];
- // non-interleaved data, we just need to process one block at a time,
- // in trivial scanline order
- // number of blocks to do just depends on how many actual "pixels" this
- // component has, independent of interleaved MCU blocking and such
- int w = (z->img_comp[n].x+7) >> 3;
- int h = (z->img_comp[n].y+7) >> 3;
- for (j=0; j < h; ++j) {
- for (i=0; i < w; ++i) {
- short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
- if (z->spec_start == 0) {
- if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n))
- return 0;
- } else {
- int ha = z->img_comp[n].ha;
- if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha]))
- return 0;
- }
- // every data block is an MCU, so countdown the restart interval
- if (--z->todo <= 0) {
- if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
- if (!STBI__RESTART(z->marker)) return 1;
- stbi__jpeg_reset(z);
- }
+ return 1;
+ }
+ else { // interleaved
+ int i, j, k, x, y;
+ STBI_SIMD_ALIGN(short, data[64]);
+ for (j = 0; j < z->img_mcu_y; ++j) {
+ for (i = 0; i < z->img_mcu_x; ++i) {
+ // scan an interleaved mcu... process scan_n components in order
+ for (k = 0; k < z->scan_n; ++k) {
+ int n = z->order[k];
+ // scan out an mcu's worth of this component; that's just determined
+ // by the basic H and V specified for the component
+ for (y = 0; y < z->img_comp[n].v; ++y) {
+ for (x = 0; x < z->img_comp[n].h; ++x) {
+ int x2 = (i * z->img_comp[n].h + x) * 8;
+ int y2 = (j * z->img_comp[n].v + y) * 8;
+ int ha = z->img_comp[n].ha;
+ if (!stbi__jpeg_decode_block(z, data, z->huff_dc + z->img_comp[n].hd, z->huff_ac + ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0;
+ z->idct_block_kernel(z->img_comp[n].data + z->img_comp[n].w2 * y2 + x2, z->img_comp[n].w2, data);
+ }
+ }
+ }
+ // after all interleaved components, that's an interleaved MCU,
+ // so now count down the restart interval
+ if (--z->todo <= 0) {
+ if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
+ if (!STBI__RESTART(z->marker)) return 1;
+ stbi__jpeg_reset(z);
+ }
+ }
}
- }
- return 1;
- } else { // interleaved
- int i,j,k,x,y;
- for (j=0; j < z->img_mcu_y; ++j) {
- for (i=0; i < z->img_mcu_x; ++i) {
- // scan an interleaved mcu... process scan_n components in order
- for (k=0; k < z->scan_n; ++k) {
- int n = z->order[k];
- // scan out an mcu's worth of this component; that's just determined
- // by the basic H and V specified for the component
- for (y=0; y < z->img_comp[n].v; ++y) {
- for (x=0; x < z->img_comp[n].h; ++x) {
- int x2 = (i*z->img_comp[n].h + x);
- int y2 = (j*z->img_comp[n].v + y);
- short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w);
+ return 1;
+ }
+ }
+ else {
+ if (z->scan_n == 1) {
+ int i, j;
+ int n = z->order[0];
+ // non-interleaved data, we just need to process one block at a time,
+ // in trivial scanline order
+ // number of blocks to do just depends on how many actual "pixels" this
+ // component has, independent of interleaved MCU blocking and such
+ int w = (z->img_comp[n].x + 7) >> 3;
+ int h = (z->img_comp[n].y + 7) >> 3;
+ for (j = 0; j < h; ++j) {
+ for (i = 0; i < w; ++i) {
+ short* data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
+ if (z->spec_start == 0) {
if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n))
- return 0;
- }
- }
- }
- // after all interleaved components, that's an interleaved MCU,
- // so now count down the restart interval
- if (--z->todo <= 0) {
- if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
- if (!STBI__RESTART(z->marker)) return 1;
- stbi__jpeg_reset(z);
- }
+ return 0;
+ }
+ else {
+ int ha = z->img_comp[n].ha;
+ if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha]))
+ return 0;
+ }
+ // every data block is an MCU, so countdown the restart interval
+ if (--z->todo <= 0) {
+ if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
+ if (!STBI__RESTART(z->marker)) return 1;
+ stbi__jpeg_reset(z);
+ }
+ }
}
- }
- return 1;
- }
- }
+ return 1;
+ }
+ else { // interleaved
+ int i, j, k, x, y;
+ for (j = 0; j < z->img_mcu_y; ++j) {
+ for (i = 0; i < z->img_mcu_x; ++i) {
+ // scan an interleaved mcu... process scan_n components in order
+ for (k = 0; k < z->scan_n; ++k) {
+ int n = z->order[k];
+ // scan out an mcu's worth of this component; that's just determined
+ // by the basic H and V specified for the component
+ for (y = 0; y < z->img_comp[n].v; ++y) {
+ for (x = 0; x < z->img_comp[n].h; ++x) {
+ int x2 = (i * z->img_comp[n].h + x);
+ int y2 = (j * z->img_comp[n].v + y);
+ short* data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w);
+ if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n))
+ return 0;
+ }
+ }
+ }
+ // after all interleaved components, that's an interleaved MCU,
+ // so now count down the restart interval
+ if (--z->todo <= 0) {
+ if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
+ if (!STBI__RESTART(z->marker)) return 1;
+ stbi__jpeg_reset(z);
+ }
+ }
+ }
+ return 1;
+ }
+ }
}
-static void stbi__jpeg_dequantize(short *data, stbi_uc *dequant)
+static void stbi__jpeg_dequantize(short* data, stbi__uint16* dequant)
{
- int i;
- for (i=0; i < 64; ++i)
- data[i] *= dequant[i];
+ int i;
+ for (i = 0; i < 64; ++i)
+ data[i] *= dequant[i];
}
-static void stbi__jpeg_finish(stbi__jpeg *z)
+static void stbi__jpeg_finish(stbi__jpeg* z)
{
- if (z->progressive) {
- // dequantize and idct the data
- int i,j,n;
- for (n=0; n < z->s->img_n; ++n) {
- int w = (z->img_comp[n].x+7) >> 3;
- int h = (z->img_comp[n].y+7) >> 3;
- for (j=0; j < h; ++j) {
- for (i=0; i < w; ++i) {
- short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
- stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]);
- z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data);
+ if (z->progressive) {
+ // dequantize and idct the data
+ int i, j, n;
+ for (n = 0; n < z->s->img_n; ++n) {
+ int w = (z->img_comp[n].x + 7) >> 3;
+ int h = (z->img_comp[n].y + 7) >> 3;
+ for (j = 0; j < h; ++j) {
+ for (i = 0; i < w; ++i) {
+ short* data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
+ stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]);
+ z->idct_block_kernel(z->img_comp[n].data + z->img_comp[n].w2 * j * 8 + i * 8, z->img_comp[n].w2, data);
+ }
}
- }
- }
- }
+ }
+ }
}
-static int stbi__process_marker(stbi__jpeg *z, int m)
+static int stbi__process_marker(stbi__jpeg* z, int m)
{
- int L;
- switch (m) {
- case STBI__MARKER_none: // no marker found
- return stbi__err("expected marker","Corrupt JPEG");
+ int L;
+ switch (m) {
+ case STBI__MARKER_none: // no marker found
+ return stbi__err("expected marker", "Corrupt JPEG");
- case 0xDD: // DRI - specify restart interval
- if (stbi__get16be(z->s) != 4) return stbi__err("bad DRI len","Corrupt JPEG");
- z->restart_interval = stbi__get16be(z->s);
- return 1;
+ case 0xDD: // DRI - specify restart interval
+ if (stbi__get16be(z->s) != 4) return stbi__err("bad DRI len", "Corrupt JPEG");
+ z->restart_interval = stbi__get16be(z->s);
+ return 1;
- case 0xDB: // DQT - define quantization table
- L = stbi__get16be(z->s)-2;
- while (L > 0) {
+ case 0xDB: // DQT - define quantization table
+ L = stbi__get16be(z->s) - 2;
+ while (L > 0) {
int q = stbi__get8(z->s);
- int p = q >> 4;
- int t = q & 15,i;
- if (p != 0) return stbi__err("bad DQT type","Corrupt JPEG");
- if (t > 3) return stbi__err("bad DQT table","Corrupt JPEG");
- for (i=0; i < 64; ++i)
- z->dequant[t][stbi__jpeg_dezigzag[i]] = stbi__get8(z->s);
- L -= 65;
- }
- return L==0;
-
- case 0xC4: // DHT - define huffman table
- L = stbi__get16be(z->s)-2;
- while (L > 0) {
- stbi_uc *v;
- int sizes[16],i,n=0;
+ int p = q >> 4, sixteen = (p != 0);
+ int t = q & 15, i;
+ if (p != 0 && p != 1) return stbi__err("bad DQT type", "Corrupt JPEG");
+ if (t > 3) return stbi__err("bad DQT table", "Corrupt JPEG");
+
+ for (i = 0; i < 64; ++i)
+ z->dequant[t][stbi__jpeg_dezigzag[i]] = (stbi__uint16)(sixteen ? stbi__get16be(z->s) : stbi__get8(z->s));
+ L -= (sixteen ? 129 : 65);
+ }
+ return L == 0;
+
+ case 0xC4: // DHT - define huffman table
+ L = stbi__get16be(z->s) - 2;
+ while (L > 0) {
+ stbi_uc* v;
+ int sizes[16], i, n = 0;
int q = stbi__get8(z->s);
int tc = q >> 4;
int th = q & 15;
- if (tc > 1 || th > 3) return stbi__err("bad DHT header","Corrupt JPEG");
- for (i=0; i < 16; ++i) {
- sizes[i] = stbi__get8(z->s);
- n += sizes[i];
+ if (tc > 1 || th > 3) return stbi__err("bad DHT header", "Corrupt JPEG");
+ for (i = 0; i < 16; ++i) {
+ sizes[i] = stbi__get8(z->s);
+ n += sizes[i];
}
+ if (n > 256) return stbi__err("bad DHT header", "Corrupt JPEG"); // Loop over i < n would write past end of values!
L -= 17;
if (tc == 0) {
- if (!stbi__build_huffman(z->huff_dc+th, sizes)) return 0;
- v = z->huff_dc[th].values;
- } else {
- if (!stbi__build_huffman(z->huff_ac+th, sizes)) return 0;
- v = z->huff_ac[th].values;
+ if (!stbi__build_huffman(z->huff_dc + th, sizes)) return 0;
+ v = z->huff_dc[th].values;
+ }
+ else {
+ if (!stbi__build_huffman(z->huff_ac + th, sizes)) return 0;
+ v = z->huff_ac[th].values;
}
- for (i=0; i < n; ++i)
- v[i] = stbi__get8(z->s);
+ for (i = 0; i < n; ++i)
+ v[i] = stbi__get8(z->s);
if (tc != 0)
- stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th);
+ stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th);
L -= n;
- }
- return L==0;
- }
- // check for comment block or APP blocks
- if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) {
- stbi__skip(z->s, stbi__get16be(z->s)-2);
- return 1;
- }
- return 0;
+ }
+ return L == 0;
+ }
+
+ // check for comment block or APP blocks
+ if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) {
+ L = stbi__get16be(z->s);
+ if (L < 2) {
+ if (m == 0xFE)
+ return stbi__err("bad COM len", "Corrupt JPEG");
+ else
+ return stbi__err("bad APP len", "Corrupt JPEG");
+ }
+ L -= 2;
+
+ if (m == 0xE0 && L >= 5) { // JFIF APP0 segment
+ static const unsigned char tag[5] = { 'J','F','I','F','\0' };
+ int ok = 1;
+ int i;
+ for (i = 0; i < 5; ++i)
+ if (stbi__get8(z->s) != tag[i])
+ ok = 0;
+ L -= 5;
+ if (ok)
+ z->jfif = 1;
+ }
+ else if (m == 0xEE && L >= 12) { // Adobe APP14 segment
+ static const unsigned char tag[6] = { 'A','d','o','b','e','\0' };
+ int ok = 1;
+ int i;
+ for (i = 0; i < 6; ++i)
+ if (stbi__get8(z->s) != tag[i])
+ ok = 0;
+ L -= 6;
+ if (ok) {
+ stbi__get8(z->s); // version
+ stbi__get16be(z->s); // flags0
+ stbi__get16be(z->s); // flags1
+ z->app14_color_transform = stbi__get8(z->s); // color transform
+ L -= 6;
+ }
+ }
+
+ stbi__skip(z->s, L);
+ return 1;
+ }
+
+ return stbi__err("unknown marker", "Corrupt JPEG");
}
// after we see SOS
-static int stbi__process_scan_header(stbi__jpeg *z)
-{
- int i;
- int Ls = stbi__get16be(z->s);
- z->scan_n = stbi__get8(z->s);
- if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n) return stbi__err("bad SOS component count","Corrupt JPEG");
- if (Ls != 6+2*z->scan_n) return stbi__err("bad SOS len","Corrupt JPEG");
- for (i=0; i < z->scan_n; ++i) {
- int id = stbi__get8(z->s), which;
- int q = stbi__get8(z->s);
- for (which = 0; which < z->s->img_n; ++which)
- if (z->img_comp[which].id == id)
- break;
- if (which == z->s->img_n) return 0; // no match
- z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return stbi__err("bad DC huff","Corrupt JPEG");
- z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return stbi__err("bad AC huff","Corrupt JPEG");
- z->order[i] = which;
- }
+static int stbi__process_scan_header(stbi__jpeg* z)
+{
+ int i;
+ int Ls = stbi__get16be(z->s);
+ z->scan_n = stbi__get8(z->s);
+ if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int)z->s->img_n) return stbi__err("bad SOS component count", "Corrupt JPEG");
+ if (Ls != 6 + 2 * z->scan_n) return stbi__err("bad SOS len", "Corrupt JPEG");
+ for (i = 0; i < z->scan_n; ++i) {
+ int id = stbi__get8(z->s), which;
+ int q = stbi__get8(z->s);
+ for (which = 0; which < z->s->img_n; ++which)
+ if (z->img_comp[which].id == id)
+ break;
+ if (which == z->s->img_n) return 0; // no match
+ z->img_comp[which].hd = q >> 4; if (z->img_comp[which].hd > 3) return stbi__err("bad DC huff", "Corrupt JPEG");
+ z->img_comp[which].ha = q & 15; if (z->img_comp[which].ha > 3) return stbi__err("bad AC huff", "Corrupt JPEG");
+ z->order[i] = which;
+ }
- {
- int aa;
- z->spec_start = stbi__get8(z->s);
- z->spec_end = stbi__get8(z->s); // should be 63, but might be 0
- aa = stbi__get8(z->s);
- z->succ_high = (aa >> 4);
- z->succ_low = (aa & 15);
- if (z->progressive) {
- if (z->spec_start > 63 || z->spec_end > 63 || z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13)
- return stbi__err("bad SOS", "Corrupt JPEG");
- } else {
- if (z->spec_start != 0) return stbi__err("bad SOS","Corrupt JPEG");
- if (z->succ_high != 0 || z->succ_low != 0) return stbi__err("bad SOS","Corrupt JPEG");
- z->spec_end = 63;
- }
- }
+ {
+ int aa;
+ z->spec_start = stbi__get8(z->s);
+ z->spec_end = stbi__get8(z->s); // should be 63, but might be 0
+ aa = stbi__get8(z->s);
+ z->succ_high = (aa >> 4);
+ z->succ_low = (aa & 15);
+ if (z->progressive) {
+ if (z->spec_start > 63 || z->spec_end > 63 || z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13)
+ return stbi__err("bad SOS", "Corrupt JPEG");
+ }
+ else {
+ if (z->spec_start != 0) return stbi__err("bad SOS", "Corrupt JPEG");
+ if (z->succ_high != 0 || z->succ_low != 0) return stbi__err("bad SOS", "Corrupt JPEG");
+ z->spec_end = 63;
+ }
+ }
- return 1;
+ return 1;
}
-static int stbi__process_frame_header(stbi__jpeg *z, int scan)
+static int stbi__free_jpeg_components(stbi__jpeg* z, int ncomp, int why)
{
- stbi__context *s = z->s;
- int Lf,p,i,q, h_max=1,v_max=1,c;
- Lf = stbi__get16be(s); if (Lf < 11) return stbi__err("bad SOF len","Corrupt JPEG"); // JPEG
- p = stbi__get8(s); if (p != 8) return stbi__err("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline
- s->img_y = stbi__get16be(s); if (s->img_y == 0) return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG
- s->img_x = stbi__get16be(s); if (s->img_x == 0) return stbi__err("0 width","Corrupt JPEG"); // JPEG requires
- c = stbi__get8(s);
- if (c != 3 && c != 1) return stbi__err("bad component count","Corrupt JPEG"); // JFIF requires
- s->img_n = c;
- for (i=0; i < c; ++i) {
- z->img_comp[i].data = NULL;
- z->img_comp[i].linebuf = NULL;
- }
+ int i;
+ for (i = 0; i < ncomp; ++i) {
+ if (z->img_comp[i].raw_data) {
+ STBI_FREE(z->img_comp[i].raw_data);
+ z->img_comp[i].raw_data = NULL;
+ z->img_comp[i].data = NULL;
+ }
+ if (z->img_comp[i].raw_coeff) {
+ STBI_FREE(z->img_comp[i].raw_coeff);
+ z->img_comp[i].raw_coeff = 0;
+ z->img_comp[i].coeff = 0;
+ }
+ if (z->img_comp[i].linebuf) {
+ STBI_FREE(z->img_comp[i].linebuf);
+ z->img_comp[i].linebuf = NULL;
+ }
+ }
+ return why;
+}
+
+static int stbi__process_frame_header(stbi__jpeg* z, int scan)
+{
+ stbi__context* s = z->s;
+ int Lf, p, i, q, h_max = 1, v_max = 1, c;
+ Lf = stbi__get16be(s); if (Lf < 11) return stbi__err("bad SOF len", "Corrupt JPEG"); // JPEG
+ p = stbi__get8(s); if (p != 8) return stbi__err("only 8-bit", "JPEG format not supported: 8-bit only"); // JPEG baseline
+ s->img_y = stbi__get16be(s); if (s->img_y == 0) return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG
+ s->img_x = stbi__get16be(s); if (s->img_x == 0) return stbi__err("0 width", "Corrupt JPEG"); // JPEG requires
+ if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__err("too large", "Very large image (corrupt?)");
+ if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__err("too large", "Very large image (corrupt?)");
+ c = stbi__get8(s);
+ if (c != 3 && c != 1 && c != 4) return stbi__err("bad component count", "Corrupt JPEG");
+ s->img_n = c;
+ for (i = 0; i < c; ++i) {
+ z->img_comp[i].data = NULL;
+ z->img_comp[i].linebuf = NULL;
+ }
- if (Lf != 8+3*s->img_n) return stbi__err("bad SOF len","Corrupt JPEG");
-
- for (i=0; i < s->img_n; ++i) {
- z->img_comp[i].id = stbi__get8(s);
- if (z->img_comp[i].id != i+1) // JFIF requires
- if (z->img_comp[i].id != i) // some version of jpegtran outputs non-JFIF-compliant files!
- return stbi__err("bad component ID","Corrupt JPEG");
- q = stbi__get8(s);
- z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err("bad H","Corrupt JPEG");
- z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err("bad V","Corrupt JPEG");
- z->img_comp[i].tq = stbi__get8(s); if (z->img_comp[i].tq > 3) return stbi__err("bad TQ","Corrupt JPEG");
- }
+ if (Lf != 8 + 3 * s->img_n) return stbi__err("bad SOF len", "Corrupt JPEG");
+
+ z->rgb = 0;
+ for (i = 0; i < s->img_n; ++i) {
+ static const unsigned char rgb[3] = { 'R', 'G', 'B' };
+ z->img_comp[i].id = stbi__get8(s);
+ if (s->img_n == 3 && z->img_comp[i].id == rgb[i])
+ ++z->rgb;
+ q = stbi__get8(s);
+ z->img_comp[i].h = (q >> 4); if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err("bad H", "Corrupt JPEG");
+ z->img_comp[i].v = q & 15; if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err("bad V", "Corrupt JPEG");
+ z->img_comp[i].tq = stbi__get8(s); if (z->img_comp[i].tq > 3) return stbi__err("bad TQ", "Corrupt JPEG");
+ }
- if (scan != STBI__SCAN_load) return 1;
+ if (scan != STBI__SCAN_load) return 1;
- if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode");
+ if (!stbi__mad3sizes_valid(s->img_x, s->img_y, s->img_n, 0)) return stbi__err("too large", "Image too large to decode");
- for (i=0; i < s->img_n; ++i) {
- if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h;
- if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v;
- }
+ for (i = 0; i < s->img_n; ++i) {
+ if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h;
+ if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v;
+ }
- // compute interleaved mcu info
- z->img_h_max = h_max;
- z->img_v_max = v_max;
- z->img_mcu_w = h_max * 8;
- z->img_mcu_h = v_max * 8;
- z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w;
- z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h;
-
- for (i=0; i < s->img_n; ++i) {
- // number of effective pixels (e.g. for non-interleaved MCU)
- z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max;
- z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max;
- // to simplify generation, we'll allocate enough memory to decode
- // the bogus oversized data from using interleaved MCUs and their
- // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't
- // discard the extra data until colorspace conversion
- z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8;
- z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8;
- z->img_comp[i].raw_data = stbi__malloc(z->img_comp[i].w2 * z->img_comp[i].h2+15);
-
- if (z->img_comp[i].raw_data == NULL) {
- for(--i; i >= 0; --i) {
- STBI_FREE(z->img_comp[i].raw_data);
- z->img_comp[i].data = NULL;
- }
- return stbi__err("outofmem", "Out of memory");
- }
- // align blocks for idct using mmx/sse
- z->img_comp[i].data = (stbi_uc*) (((size_t) z->img_comp[i].raw_data + 15) & ~15);
- z->img_comp[i].linebuf = NULL;
- if (z->progressive) {
- z->img_comp[i].coeff_w = (z->img_comp[i].w2 + 7) >> 3;
- z->img_comp[i].coeff_h = (z->img_comp[i].h2 + 7) >> 3;
- z->img_comp[i].raw_coeff = STBI_MALLOC(z->img_comp[i].coeff_w * z->img_comp[i].coeff_h * 64 * sizeof(short) + 15);
- z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15);
- } else {
- z->img_comp[i].coeff = 0;
- z->img_comp[i].raw_coeff = 0;
- }
- }
+ // check that plane subsampling factors are integer ratios; our resamplers can't deal with fractional ratios
+ // and I've never seen a non-corrupted JPEG file actually use them
+ for (i = 0; i < s->img_n; ++i) {
+ if (h_max % z->img_comp[i].h != 0) return stbi__err("bad H", "Corrupt JPEG");
+ if (v_max % z->img_comp[i].v != 0) return stbi__err("bad V", "Corrupt JPEG");
+ }
+
+ // compute interleaved mcu info
+ z->img_h_max = h_max;
+ z->img_v_max = v_max;
+ z->img_mcu_w = h_max * 8;
+ z->img_mcu_h = v_max * 8;
+ // these sizes can't be more than 17 bits
+ z->img_mcu_x = (s->img_x + z->img_mcu_w - 1) / z->img_mcu_w;
+ z->img_mcu_y = (s->img_y + z->img_mcu_h - 1) / z->img_mcu_h;
+
+ for (i = 0; i < s->img_n; ++i) {
+ // number of effective pixels (e.g. for non-interleaved MCU)
+ z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max - 1) / h_max;
+ z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max - 1) / v_max;
+ // to simplify generation, we'll allocate enough memory to decode
+ // the bogus oversized data from using interleaved MCUs and their
+ // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't
+ // discard the extra data until colorspace conversion
+ //
+ // img_mcu_x, img_mcu_y: <=17 bits; comp[i].h and .v are <=4 (checked earlier)
+ // so these muls can't overflow with 32-bit ints (which we require)
+ z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8;
+ z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8;
+ z->img_comp[i].coeff = 0;
+ z->img_comp[i].raw_coeff = 0;
+ z->img_comp[i].linebuf = NULL;
+ z->img_comp[i].raw_data = stbi__malloc_mad2(z->img_comp[i].w2, z->img_comp[i].h2, 15);
+ if (z->img_comp[i].raw_data == NULL)
+ return stbi__free_jpeg_components(z, i + 1, stbi__err("outofmem", "Out of memory"));
+ // align blocks for idct using mmx/sse
+ z->img_comp[i].data = (stbi_uc*)(((size_t)z->img_comp[i].raw_data + 15) & ~15);
+ if (z->progressive) {
+ // w2, h2 are multiples of 8 (see above)
+ z->img_comp[i].coeff_w = z->img_comp[i].w2 / 8;
+ z->img_comp[i].coeff_h = z->img_comp[i].h2 / 8;
+ z->img_comp[i].raw_coeff = stbi__malloc_mad3(z->img_comp[i].w2, z->img_comp[i].h2, sizeof(short), 15);
+ if (z->img_comp[i].raw_coeff == NULL)
+ return stbi__free_jpeg_components(z, i + 1, stbi__err("outofmem", "Out of memory"));
+ z->img_comp[i].coeff = (short*)(((size_t)z->img_comp[i].raw_coeff + 15) & ~15);
+ }
+ }
- return 1;
+ return 1;
}
// use comparisons since in some cases we handle more than one case (e.g. SOF)
@@ -2770,658 +3380,730 @@ static int stbi__process_frame_header(stbi__jpeg *z, int scan)
#define stbi__SOF_progressive(x) ((x) == 0xc2)
-static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan)
-{
- int m;
- z->marker = STBI__MARKER_none; // initialize cached marker to empty
- m = stbi__get_marker(z);
- if (!stbi__SOI(m)) return stbi__err("no SOI","Corrupt JPEG");
- if (scan == STBI__SCAN_type) return 1;
- m = stbi__get_marker(z);
- while (!stbi__SOF(m)) {
- if (!stbi__process_marker(z,m)) return 0;
- m = stbi__get_marker(z);
- while (m == STBI__MARKER_none) {
- // some files have extra padding after their blocks, so ok, we'll scan
- if (stbi__at_eof(z->s)) return stbi__err("no SOF", "Corrupt JPEG");
- m = stbi__get_marker(z);
- }
- }
- z->progressive = stbi__SOF_progressive(m);
- if (!stbi__process_frame_header(z, scan)) return 0;
- return 1;
+static int stbi__decode_jpeg_header(stbi__jpeg* z, int scan)
+{
+ int m;
+ z->jfif = 0;
+ z->app14_color_transform = -1; // valid values are 0,1,2
+ z->marker = STBI__MARKER_none; // initialize cached marker to empty
+ m = stbi__get_marker(z);
+ if (!stbi__SOI(m)) return stbi__err("no SOI", "Corrupt JPEG");
+ if (scan == STBI__SCAN_type) return 1;
+ m = stbi__get_marker(z);
+ while (!stbi__SOF(m)) {
+ if (!stbi__process_marker(z, m)) return 0;
+ m = stbi__get_marker(z);
+ while (m == STBI__MARKER_none) {
+ // some files have extra padding after their blocks, so ok, we'll scan
+ if (stbi__at_eof(z->s)) return stbi__err("no SOF", "Corrupt JPEG");
+ m = stbi__get_marker(z);
+ }
+ }
+ z->progressive = stbi__SOF_progressive(m);
+ if (!stbi__process_frame_header(z, scan)) return 0;
+ return 1;
+}
+
+static int stbi__skip_jpeg_junk_at_end(stbi__jpeg* j)
+{
+ // some JPEGs have junk at end, skip over it but if we find what looks
+ // like a valid marker, resume there
+ while (!stbi__at_eof(j->s)) {
+ int x = stbi__get8(j->s);
+ while (x == 255) { // might be a marker
+ if (stbi__at_eof(j->s)) return STBI__MARKER_none;
+ x = stbi__get8(j->s);
+ if (x != 0x00 && x != 0xff) {
+ // not a stuffed zero or lead-in to another marker, looks
+ // like an actual marker, return it
+ return x;
+ }
+ // stuffed zero has x=0 now which ends the loop, meaning we go
+ // back to regular scan loop.
+ // repeated 0xff keeps trying to read the next byte of the marker.
+ }
+ }
+ return STBI__MARKER_none;
}
// decode image to YCbCr format
-static int stbi__decode_jpeg_image(stbi__jpeg *j)
+static int stbi__decode_jpeg_image(stbi__jpeg* j)
{
- int m;
- for (m = 0; m < 4; m++) {
- j->img_comp[m].raw_data = NULL;
- j->img_comp[m].raw_coeff = NULL;
- }
- j->restart_interval = 0;
- if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) return 0;
- m = stbi__get_marker(j);
- while (!stbi__EOI(m)) {
- if (stbi__SOS(m)) {
- if (!stbi__process_scan_header(j)) return 0;
- if (!stbi__parse_entropy_coded_data(j)) return 0;
- if (j->marker == STBI__MARKER_none ) {
- // handle 0s at the end of image data from IP Kamera 9060
- while (!stbi__at_eof(j->s)) {
- int x = stbi__get8(j->s);
- if (x == 255) {
- j->marker = stbi__get8(j->s);
- break;
- } else if (x != 0) {
- return stbi__err("junk before marker", "Corrupt JPEG");
- }
+ int m;
+ for (m = 0; m < 4; m++) {
+ j->img_comp[m].raw_data = NULL;
+ j->img_comp[m].raw_coeff = NULL;
+ }
+ j->restart_interval = 0;
+ if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) return 0;
+ m = stbi__get_marker(j);
+ while (!stbi__EOI(m)) {
+ if (stbi__SOS(m)) {
+ if (!stbi__process_scan_header(j)) return 0;
+ if (!stbi__parse_entropy_coded_data(j)) return 0;
+ if (j->marker == STBI__MARKER_none) {
+ j->marker = stbi__skip_jpeg_junk_at_end(j);
+ // if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0
}
- // if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0
- }
- } else {
- if (!stbi__process_marker(j, m)) return 0;
- }
- m = stbi__get_marker(j);
- }
- if (j->progressive)
- stbi__jpeg_finish(j);
- return 1;
+ m = stbi__get_marker(j);
+ if (STBI__RESTART(m))
+ m = stbi__get_marker(j);
+ }
+ else if (stbi__DNL(m)) {
+ int Ld = stbi__get16be(j->s);
+ stbi__uint32 NL = stbi__get16be(j->s);
+ if (Ld != 4) return stbi__err("bad DNL len", "Corrupt JPEG");
+ if (NL != j->s->img_y) return stbi__err("bad DNL height", "Corrupt JPEG");
+ m = stbi__get_marker(j);
+ }
+ else {
+ if (!stbi__process_marker(j, m)) return 1;
+ m = stbi__get_marker(j);
+ }
+ }
+ if (j->progressive)
+ stbi__jpeg_finish(j);
+ return 1;
}
// static jfif-centered resampling (across block boundaries)
-typedef stbi_uc *(*resample_row_func)(stbi_uc *out, stbi_uc *in0, stbi_uc *in1,
- int w, int hs);
+typedef stbi_uc* (*resample_row_func)(stbi_uc* out, stbi_uc* in0, stbi_uc* in1,
+ int w, int hs);
#define stbi__div4(x) ((stbi_uc) ((x) >> 2))
-static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
+static stbi_uc* resample_row_1(stbi_uc* out, stbi_uc* in_near, stbi_uc* in_far, int w, int hs)
{
- STBI_NOTUSED(out);
- STBI_NOTUSED(in_far);
- STBI_NOTUSED(w);
- STBI_NOTUSED(hs);
- return in_near;
+ STBI_NOTUSED(out);
+ STBI_NOTUSED(in_far);
+ STBI_NOTUSED(w);
+ STBI_NOTUSED(hs);
+ return in_near;
}
-static stbi_uc* stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
+static stbi_uc* stbi__resample_row_v_2(stbi_uc* out, stbi_uc* in_near, stbi_uc* in_far, int w, int hs)
{
- // need to generate two samples vertically for every one in input
- int i;
- STBI_NOTUSED(hs);
- for (i=0; i < w; ++i)
- out[i] = stbi__div4(3*in_near[i] + in_far[i] + 2);
- return out;
+ // need to generate two samples vertically for every one in input
+ int i;
+ STBI_NOTUSED(hs);
+ for (i = 0; i < w; ++i)
+ out[i] = stbi__div4(3 * in_near[i] + in_far[i] + 2);
+ return out;
}
-static stbi_uc* stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
+static stbi_uc* stbi__resample_row_h_2(stbi_uc* out, stbi_uc* in_near, stbi_uc* in_far, int w, int hs)
{
- // need to generate two samples horizontally for every one in input
- int i;
- stbi_uc *input = in_near;
+ // need to generate two samples horizontally for every one in input
+ int i;
+ stbi_uc* input = in_near;
- if (w == 1) {
- // if only one sample, can't do any interpolation
- out[0] = out[1] = input[0];
- return out;
- }
+ if (w == 1) {
+ // if only one sample, can't do any interpolation
+ out[0] = out[1] = input[0];
+ return out;
+ }
- out[0] = input[0];
- out[1] = stbi__div4(input[0]*3 + input[1] + 2);
- for (i=1; i < w-1; ++i) {
- int n = 3*input[i]+2;
- out[i*2+0] = stbi__div4(n+input[i-1]);
- out[i*2+1] = stbi__div4(n+input[i+1]);
- }
- out[i*2+0] = stbi__div4(input[w-2]*3 + input[w-1] + 2);
- out[i*2+1] = input[w-1];
+ out[0] = input[0];
+ out[1] = stbi__div4(input[0] * 3 + input[1] + 2);
+ for (i = 1; i < w - 1; ++i) {
+ int n = 3 * input[i] + 2;
+ out[i * 2 + 0] = stbi__div4(n + input[i - 1]);
+ out[i * 2 + 1] = stbi__div4(n + input[i + 1]);
+ }
+ out[i * 2 + 0] = stbi__div4(input[w - 2] * 3 + input[w - 1] + 2);
+ out[i * 2 + 1] = input[w - 1];
- STBI_NOTUSED(in_far);
- STBI_NOTUSED(hs);
+ STBI_NOTUSED(in_far);
+ STBI_NOTUSED(hs);
- return out;
+ return out;
}
#define stbi__div16(x) ((stbi_uc) ((x) >> 4))
-static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
+static stbi_uc* stbi__resample_row_hv_2(stbi_uc* out, stbi_uc* in_near, stbi_uc* in_far, int w, int hs)
{
- // need to generate 2x2 samples for every one in input
- int i,t0,t1;
- if (w == 1) {
- out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2);
- return out;
- }
+ // need to generate 2x2 samples for every one in input
+ int i, t0, t1;
+ if (w == 1) {
+ out[0] = out[1] = stbi__div4(3 * in_near[0] + in_far[0] + 2);
+ return out;
+ }
- t1 = 3*in_near[0] + in_far[0];
- out[0] = stbi__div4(t1+2);
- for (i=1; i < w; ++i) {
- t0 = t1;
- t1 = 3*in_near[i]+in_far[i];
- out[i*2-1] = stbi__div16(3*t0 + t1 + 8);
- out[i*2 ] = stbi__div16(3*t1 + t0 + 8);
- }
- out[w*2-1] = stbi__div4(t1+2);
+ t1 = 3 * in_near[0] + in_far[0];
+ out[0] = stbi__div4(t1 + 2);
+ for (i = 1; i < w; ++i) {
+ t0 = t1;
+ t1 = 3 * in_near[i] + in_far[i];
+ out[i * 2 - 1] = stbi__div16(3 * t0 + t1 + 8);
+ out[i * 2] = stbi__div16(3 * t1 + t0 + 8);
+ }
+ out[w * 2 - 1] = stbi__div4(t1 + 2);
- STBI_NOTUSED(hs);
+ STBI_NOTUSED(hs);
- return out;
+ return out;
}
#if defined(STBI_SSE2) || defined(STBI_NEON)
-static stbi_uc *stbi__resample_row_hv_2_simd(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
+static stbi_uc* stbi__resample_row_hv_2_simd(stbi_uc* out, stbi_uc* in_near, stbi_uc* in_far, int w, int hs)
{
- // need to generate 2x2 samples for every one in input
- int i=0,t0,t1;
+ // need to generate 2x2 samples for every one in input
+ int i = 0, t0, t1;
- if (w == 1) {
- out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2);
- return out;
- }
+ if (w == 1) {
+ out[0] = out[1] = stbi__div4(3 * in_near[0] + in_far[0] + 2);
+ return out;
+ }
- t1 = 3*in_near[0] + in_far[0];
- // process groups of 8 pixels for as long as we can.
- // note we can't handle the last pixel in a row in this loop
- // because we need to handle the filter boundary conditions.
- for (; i < ((w-1) & ~7); i += 8) {
+ t1 = 3 * in_near[0] + in_far[0];
+ // process groups of 8 pixels for as long as we can.
+ // note we can't handle the last pixel in a row in this loop
+ // because we need to handle the filter boundary conditions.
+ for (; i < ((w - 1) & ~7); i += 8) {
#if defined(STBI_SSE2)
- // load and perform the vertical filtering pass
- // this uses 3*x + y = 4*x + (y - x)
- __m128i zero = _mm_setzero_si128();
- __m128i farb = _mm_loadl_epi64((__m128i *) (in_far + i));
- __m128i nearb = _mm_loadl_epi64((__m128i *) (in_near + i));
- __m128i farw = _mm_unpacklo_epi8(farb, zero);
- __m128i nearw = _mm_unpacklo_epi8(nearb, zero);
- __m128i diff = _mm_sub_epi16(farw, nearw);
- __m128i nears = _mm_slli_epi16(nearw, 2);
- __m128i curr = _mm_add_epi16(nears, diff); // current row
-
- // horizontal filter works the same based on shifted vers of current
- // row. "prev" is current row shifted right by 1 pixel; we need to
- // insert the previous pixel value (from t1).
- // "next" is current row shifted left by 1 pixel, with first pixel
- // of next block of 8 pixels added in.
- __m128i prv0 = _mm_slli_si128(curr, 2);
- __m128i nxt0 = _mm_srli_si128(curr, 2);
- __m128i prev = _mm_insert_epi16(prv0, t1, 0);
- __m128i next = _mm_insert_epi16(nxt0, 3*in_near[i+8] + in_far[i+8], 7);
-
- // horizontal filter, polyphase implementation since it's convenient:
- // even pixels = 3*cur + prev = cur*4 + (prev - cur)
- // odd pixels = 3*cur + next = cur*4 + (next - cur)
- // note the shared term.
- __m128i bias = _mm_set1_epi16(8);
- __m128i curs = _mm_slli_epi16(curr, 2);
- __m128i prvd = _mm_sub_epi16(prev, curr);
- __m128i nxtd = _mm_sub_epi16(next, curr);
- __m128i curb = _mm_add_epi16(curs, bias);
- __m128i even = _mm_add_epi16(prvd, curb);
- __m128i odd = _mm_add_epi16(nxtd, curb);
-
- // interleave even and odd pixels, then undo scaling.
- __m128i int0 = _mm_unpacklo_epi16(even, odd);
- __m128i int1 = _mm_unpackhi_epi16(even, odd);
- __m128i de0 = _mm_srli_epi16(int0, 4);
- __m128i de1 = _mm_srli_epi16(int1, 4);
-
- // pack and write output
- __m128i outv = _mm_packus_epi16(de0, de1);
- _mm_storeu_si128((__m128i *) (out + i*2), outv);
+ // load and perform the vertical filtering pass
+ // this uses 3*x + y = 4*x + (y - x)
+ __m128i zero = _mm_setzero_si128();
+ __m128i farb = _mm_loadl_epi64((__m128i*) (in_far + i));
+ __m128i nearb = _mm_loadl_epi64((__m128i*) (in_near + i));
+ __m128i farw = _mm_unpacklo_epi8(farb, zero);
+ __m128i nearw = _mm_unpacklo_epi8(nearb, zero);
+ __m128i diff = _mm_sub_epi16(farw, nearw);
+ __m128i nears = _mm_slli_epi16(nearw, 2);
+ __m128i curr = _mm_add_epi16(nears, diff); // current row
+
+ // horizontal filter works the same based on shifted vers of current
+ // row. "prev" is current row shifted right by 1 pixel; we need to
+ // insert the previous pixel value (from t1).
+ // "next" is current row shifted left by 1 pixel, with first pixel
+ // of next block of 8 pixels added in.
+ __m128i prv0 = _mm_slli_si128(curr, 2);
+ __m128i nxt0 = _mm_srli_si128(curr, 2);
+ __m128i prev = _mm_insert_epi16(prv0, t1, 0);
+ __m128i next = _mm_insert_epi16(nxt0, 3 * in_near[i + 8] + in_far[i + 8], 7);
+
+ // horizontal filter, polyphase implementation since it's convenient:
+ // even pixels = 3*cur + prev = cur*4 + (prev - cur)
+ // odd pixels = 3*cur + next = cur*4 + (next - cur)
+ // note the shared term.
+ __m128i bias = _mm_set1_epi16(8);
+ __m128i curs = _mm_slli_epi16(curr, 2);
+ __m128i prvd = _mm_sub_epi16(prev, curr);
+ __m128i nxtd = _mm_sub_epi16(next, curr);
+ __m128i curb = _mm_add_epi16(curs, bias);
+ __m128i even = _mm_add_epi16(prvd, curb);
+ __m128i odd = _mm_add_epi16(nxtd, curb);
+
+ // interleave even and odd pixels, then undo scaling.
+ __m128i int0 = _mm_unpacklo_epi16(even, odd);
+ __m128i int1 = _mm_unpackhi_epi16(even, odd);
+ __m128i de0 = _mm_srli_epi16(int0, 4);
+ __m128i de1 = _mm_srli_epi16(int1, 4);
+
+ // pack and write output
+ __m128i outv = _mm_packus_epi16(de0, de1);
+ _mm_storeu_si128((__m128i*) (out + i * 2), outv);
#elif defined(STBI_NEON)
- // load and perform the vertical filtering pass
- // this uses 3*x + y = 4*x + (y - x)
- uint8x8_t farb = vld1_u8(in_far + i);
- uint8x8_t nearb = vld1_u8(in_near + i);
- int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb));
- int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2));
- int16x8_t curr = vaddq_s16(nears, diff); // current row
-
- // horizontal filter works the same based on shifted vers of current
- // row. "prev" is current row shifted right by 1 pixel; we need to
- // insert the previous pixel value (from t1).
- // "next" is current row shifted left by 1 pixel, with first pixel
- // of next block of 8 pixels added in.
- int16x8_t prv0 = vextq_s16(curr, curr, 7);
- int16x8_t nxt0 = vextq_s16(curr, curr, 1);
- int16x8_t prev = vsetq_lane_s16(t1, prv0, 0);
- int16x8_t next = vsetq_lane_s16(3*in_near[i+8] + in_far[i+8], nxt0, 7);
-
- // horizontal filter, polyphase implementation since it's convenient:
- // even pixels = 3*cur + prev = cur*4 + (prev - cur)
- // odd pixels = 3*cur + next = cur*4 + (next - cur)
- // note the shared term.
- int16x8_t curs = vshlq_n_s16(curr, 2);
- int16x8_t prvd = vsubq_s16(prev, curr);
- int16x8_t nxtd = vsubq_s16(next, curr);
- int16x8_t even = vaddq_s16(curs, prvd);
- int16x8_t odd = vaddq_s16(curs, nxtd);
-
- // undo scaling and round, then store with even/odd phases interleaved
- uint8x8x2_t o;
- o.val[0] = vqrshrun_n_s16(even, 4);
- o.val[1] = vqrshrun_n_s16(odd, 4);
- vst2_u8(out + i*2, o);
-#endif
-
- // "previous" value for next iter
- t1 = 3*in_near[i+7] + in_far[i+7];
- }
+ // load and perform the vertical filtering pass
+ // this uses 3*x + y = 4*x + (y - x)
+ uint8x8_t farb = vld1_u8(in_far + i);
+ uint8x8_t nearb = vld1_u8(in_near + i);
+ int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb));
+ int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2));
+ int16x8_t curr = vaddq_s16(nears, diff); // current row
+
+ // horizontal filter works the same based on shifted vers of current
+ // row. "prev" is current row shifted right by 1 pixel; we need to
+ // insert the previous pixel value (from t1).
+ // "next" is current row shifted left by 1 pixel, with first pixel
+ // of next block of 8 pixels added in.
+ int16x8_t prv0 = vextq_s16(curr, curr, 7);
+ int16x8_t nxt0 = vextq_s16(curr, curr, 1);
+ int16x8_t prev = vsetq_lane_s16(t1, prv0, 0);
+ int16x8_t next = vsetq_lane_s16(3 * in_near[i + 8] + in_far[i + 8], nxt0, 7);
+
+ // horizontal filter, polyphase implementation since it's convenient:
+ // even pixels = 3*cur + prev = cur*4 + (prev - cur)
+ // odd pixels = 3*cur + next = cur*4 + (next - cur)
+ // note the shared term.
+ int16x8_t curs = vshlq_n_s16(curr, 2);
+ int16x8_t prvd = vsubq_s16(prev, curr);
+ int16x8_t nxtd = vsubq_s16(next, curr);
+ int16x8_t even = vaddq_s16(curs, prvd);
+ int16x8_t odd = vaddq_s16(curs, nxtd);
+
+ // undo scaling and round, then store with even/odd phases interleaved
+ uint8x8x2_t o;
+ o.val[0] = vqrshrun_n_s16(even, 4);
+ o.val[1] = vqrshrun_n_s16(odd, 4);
+ vst2_u8(out + i * 2, o);
+#endif
- t0 = t1;
- t1 = 3*in_near[i] + in_far[i];
- out[i*2] = stbi__div16(3*t1 + t0 + 8);
+ // "previous" value for next iter
+ t1 = 3 * in_near[i + 7] + in_far[i + 7];
+ }
- for (++i; i < w; ++i) {
- t0 = t1;
- t1 = 3*in_near[i]+in_far[i];
- out[i*2-1] = stbi__div16(3*t0 + t1 + 8);
- out[i*2 ] = stbi__div16(3*t1 + t0 + 8);
- }
- out[w*2-1] = stbi__div4(t1+2);
-
- STBI_NOTUSED(hs);
-
- return out;
-}
-#endif
-
-static stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
-{
- // resample with nearest-neighbor
- int i,j;
- STBI_NOTUSED(in_far);
- for (i=0; i < w; ++i)
- for (j=0; j < hs; ++j)
- out[i*hs+j] = in_near[i];
- return out;
-}
-
-#ifdef STBI_JPEG_OLD
-// this is the same YCbCr-to-RGB calculation that stb_image has used
-// historically before the algorithm changes in 1.49
-#define float2fixed(x) ((int) ((x) * 65536 + 0.5))
-static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step)
-{
- int i;
- for (i=0; i < count; ++i) {
- int y_fixed = (y[i] << 16) + 32768; // rounding
- int r,g,b;
- int cr = pcr[i] - 128;
- int cb = pcb[i] - 128;
- r = y_fixed + cr*float2fixed(1.40200f);
- g = y_fixed - cr*float2fixed(0.71414f) - cb*float2fixed(0.34414f);
- b = y_fixed + cb*float2fixed(1.77200f);
- r >>= 16;
- g >>= 16;
- b >>= 16;
- if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; }
- if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; }
- if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; }
- out[0] = (stbi_uc)r;
- out[1] = (stbi_uc)g;
- out[2] = (stbi_uc)b;
- out[3] = 255;
- out += step;
- }
+ t0 = t1;
+ t1 = 3 * in_near[i] + in_far[i];
+ out[i * 2] = stbi__div16(3 * t1 + t0 + 8);
+
+ for (++i; i < w; ++i) {
+ t0 = t1;
+ t1 = 3 * in_near[i] + in_far[i];
+ out[i * 2 - 1] = stbi__div16(3 * t0 + t1 + 8);
+ out[i * 2] = stbi__div16(3 * t1 + t0 + 8);
+ }
+ out[w * 2 - 1] = stbi__div4(t1 + 2);
+
+ STBI_NOTUSED(hs);
+
+ return out;
}
-#else
+#endif
+
+static stbi_uc* stbi__resample_row_generic(stbi_uc* out, stbi_uc* in_near, stbi_uc* in_far, int w, int hs)
+{
+ // resample with nearest-neighbor
+ int i, j;
+ STBI_NOTUSED(in_far);
+ for (i = 0; i < w; ++i)
+ for (j = 0; j < hs; ++j)
+ out[i * hs + j] = in_near[i];
+ return out;
+}
+
// this is a reduced-precision calculation of YCbCr-to-RGB introduced
// to make sure the code produces the same results in both SIMD and scalar
-#define float2fixed(x) (((int) ((x) * 4096.0f + 0.5f)) << 8)
-static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step)
-{
- int i;
- for (i=0; i < count; ++i) {
- int y_fixed = (y[i] << 20) + (1<<19); // rounding
- int r,g,b;
- int cr = pcr[i] - 128;
- int cb = pcb[i] - 128;
- r = y_fixed + cr* float2fixed(1.40200f);
- g = y_fixed + (cr*-float2fixed(0.71414f)) + ((cb*-float2fixed(0.34414f)) & 0xffff0000);
- b = y_fixed + cb* float2fixed(1.77200f);
- r >>= 20;
- g >>= 20;
- b >>= 20;
- if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; }
- if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; }
- if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; }
- out[0] = (stbi_uc)r;
- out[1] = (stbi_uc)g;
- out[2] = (stbi_uc)b;
- out[3] = 255;
- out += step;
- }
+#define stbi__float2fixed(x) (((int) ((x) * 4096.0f + 0.5f)) << 8)
+static void stbi__YCbCr_to_RGB_row(stbi_uc* out, const stbi_uc* y, const stbi_uc* pcb, const stbi_uc* pcr, int count, int step)
+{
+ int i;
+ for (i = 0; i < count; ++i) {
+ int y_fixed = (y[i] << 20) + (1 << 19); // rounding
+ int r, g, b;
+ int cr = pcr[i] - 128;
+ int cb = pcb[i] - 128;
+ r = y_fixed + cr * stbi__float2fixed(1.40200f);
+ g = y_fixed + (cr * -stbi__float2fixed(0.71414f)) + ((cb * -stbi__float2fixed(0.34414f)) & 0xffff0000);
+ b = y_fixed + cb * stbi__float2fixed(1.77200f);
+ r >>= 20;
+ g >>= 20;
+ b >>= 20;
+ if ((unsigned)r > 255) { if (r < 0) r = 0; else r = 255; }
+ if ((unsigned)g > 255) { if (g < 0) g = 0; else g = 255; }
+ if ((unsigned)b > 255) { if (b < 0) b = 0; else b = 255; }
+ out[0] = (stbi_uc)r;
+ out[1] = (stbi_uc)g;
+ out[2] = (stbi_uc)b;
+ out[3] = 255;
+ out += step;
+ }
}
-#endif
#if defined(STBI_SSE2) || defined(STBI_NEON)
-static void stbi__YCbCr_to_RGB_simd(stbi_uc *out, stbi_uc const *y, stbi_uc const *pcb, stbi_uc const *pcr, int count, int step)
+static void stbi__YCbCr_to_RGB_simd(stbi_uc* out, stbi_uc const* y, stbi_uc const* pcb, stbi_uc const* pcr, int count, int step)
{
- int i = 0;
+ int i = 0;
#ifdef STBI_SSE2
- // step == 3 is pretty ugly on the final interleave, and i'm not convinced
- // it's useful in practice (you wouldn't use it for textures, for example).
- // so just accelerate step == 4 case.
- if (step == 4) {
- // this is a fairly straightforward implementation and not super-optimized.
- __m128i signflip = _mm_set1_epi8(-0x80);
- __m128i cr_const0 = _mm_set1_epi16( (short) ( 1.40200f*4096.0f+0.5f));
- __m128i cr_const1 = _mm_set1_epi16( - (short) ( 0.71414f*4096.0f+0.5f));
- __m128i cb_const0 = _mm_set1_epi16( - (short) ( 0.34414f*4096.0f+0.5f));
- __m128i cb_const1 = _mm_set1_epi16( (short) ( 1.77200f*4096.0f+0.5f));
- __m128i y_bias = _mm_set1_epi8((char) (unsigned char) 128);
- __m128i xw = _mm_set1_epi16(255); // alpha channel
-
- for (; i+7 < count; i += 8) {
- // load
- __m128i y_bytes = _mm_loadl_epi64((__m128i *) (y+i));
- __m128i cr_bytes = _mm_loadl_epi64((__m128i *) (pcr+i));
- __m128i cb_bytes = _mm_loadl_epi64((__m128i *) (pcb+i));
- __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128
- __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128
-
- // unpack to short (and left-shift cr, cb by 8)
- __m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes);
- __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased);
- __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased);
-
- // color transform
- __m128i yws = _mm_srli_epi16(yw, 4);
- __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw);
- __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw);
- __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1);
- __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1);
- __m128i rws = _mm_add_epi16(cr0, yws);
- __m128i gwt = _mm_add_epi16(cb0, yws);
- __m128i bws = _mm_add_epi16(yws, cb1);
- __m128i gws = _mm_add_epi16(gwt, cr1);
-
- // descale
- __m128i rw = _mm_srai_epi16(rws, 4);
- __m128i bw = _mm_srai_epi16(bws, 4);
- __m128i gw = _mm_srai_epi16(gws, 4);
-
- // back to byte, set up for transpose
- __m128i brb = _mm_packus_epi16(rw, bw);
- __m128i gxb = _mm_packus_epi16(gw, xw);
-
- // transpose to interleave channels
- __m128i t0 = _mm_unpacklo_epi8(brb, gxb);
- __m128i t1 = _mm_unpackhi_epi8(brb, gxb);
- __m128i o0 = _mm_unpacklo_epi16(t0, t1);
- __m128i o1 = _mm_unpackhi_epi16(t0, t1);
-
- // store
- _mm_storeu_si128((__m128i *) (out + 0), o0);
- _mm_storeu_si128((__m128i *) (out + 16), o1);
- out += 32;
- }
- }
+ // step == 3 is pretty ugly on the final interleave, and i'm not convinced
+ // it's useful in practice (you wouldn't use it for textures, for example).
+ // so just accelerate step == 4 case.
+ if (step == 4) {
+ // this is a fairly straightforward implementation and not super-optimized.
+ __m128i signflip = _mm_set1_epi8(-0x80);
+ __m128i cr_const0 = _mm_set1_epi16((short)(1.40200f * 4096.0f + 0.5f));
+ __m128i cr_const1 = _mm_set1_epi16(-(short)(0.71414f * 4096.0f + 0.5f));
+ __m128i cb_const0 = _mm_set1_epi16(-(short)(0.34414f * 4096.0f + 0.5f));
+ __m128i cb_const1 = _mm_set1_epi16((short)(1.77200f * 4096.0f + 0.5f));
+ __m128i y_bias = _mm_set1_epi8((char)(unsigned char)128);
+ __m128i xw = _mm_set1_epi16(255); // alpha channel
+
+ for (; i + 7 < count; i += 8) {
+ // load
+ __m128i y_bytes = _mm_loadl_epi64((__m128i*) (y + i));
+ __m128i cr_bytes = _mm_loadl_epi64((__m128i*) (pcr + i));
+ __m128i cb_bytes = _mm_loadl_epi64((__m128i*) (pcb + i));
+ __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128
+ __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128
+
+ // unpack to short (and left-shift cr, cb by 8)
+ __m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes);
+ __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased);
+ __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased);
+
+ // color transform
+ __m128i yws = _mm_srli_epi16(yw, 4);
+ __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw);
+ __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw);
+ __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1);
+ __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1);
+ __m128i rws = _mm_add_epi16(cr0, yws);
+ __m128i gwt = _mm_add_epi16(cb0, yws);
+ __m128i bws = _mm_add_epi16(yws, cb1);
+ __m128i gws = _mm_add_epi16(gwt, cr1);
+
+ // descale
+ __m128i rw = _mm_srai_epi16(rws, 4);
+ __m128i bw = _mm_srai_epi16(bws, 4);
+ __m128i gw = _mm_srai_epi16(gws, 4);
+
+ // back to byte, set up for transpose
+ __m128i brb = _mm_packus_epi16(rw, bw);
+ __m128i gxb = _mm_packus_epi16(gw, xw);
+
+ // transpose to interleave channels
+ __m128i t0 = _mm_unpacklo_epi8(brb, gxb);
+ __m128i t1 = _mm_unpackhi_epi8(brb, gxb);
+ __m128i o0 = _mm_unpacklo_epi16(t0, t1);
+ __m128i o1 = _mm_unpackhi_epi16(t0, t1);
+
+ // store
+ _mm_storeu_si128((__m128i*) (out + 0), o0);
+ _mm_storeu_si128((__m128i*) (out + 16), o1);
+ out += 32;
+ }
+ }
#endif
#ifdef STBI_NEON
- // in this version, step=3 support would be easy to add. but is there demand?
- if (step == 4) {
- // this is a fairly straightforward implementation and not super-optimized.
- uint8x8_t signflip = vdup_n_u8(0x80);
- int16x8_t cr_const0 = vdupq_n_s16( (short) ( 1.40200f*4096.0f+0.5f));
- int16x8_t cr_const1 = vdupq_n_s16( - (short) ( 0.71414f*4096.0f+0.5f));
- int16x8_t cb_const0 = vdupq_n_s16( - (short) ( 0.34414f*4096.0f+0.5f));
- int16x8_t cb_const1 = vdupq_n_s16( (short) ( 1.77200f*4096.0f+0.5f));
-
- for (; i+7 < count; i += 8) {
- // load
- uint8x8_t y_bytes = vld1_u8(y + i);
- uint8x8_t cr_bytes = vld1_u8(pcr + i);
- uint8x8_t cb_bytes = vld1_u8(pcb + i);
- int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip));
- int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip));
-
- // expand to s16
- int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4));
- int16x8_t crw = vshll_n_s8(cr_biased, 7);
- int16x8_t cbw = vshll_n_s8(cb_biased, 7);
-
- // color transform
- int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0);
- int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0);
- int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1);
- int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1);
- int16x8_t rws = vaddq_s16(yws, cr0);
- int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1);
- int16x8_t bws = vaddq_s16(yws, cb1);
-
- // undo scaling, round, convert to byte
- uint8x8x4_t o;
- o.val[0] = vqrshrun_n_s16(rws, 4);
- o.val[1] = vqrshrun_n_s16(gws, 4);
- o.val[2] = vqrshrun_n_s16(bws, 4);
- o.val[3] = vdup_n_u8(255);
-
- // store, interleaving r/g/b/a
- vst4_u8(out, o);
- out += 8*4;
- }
- }
+ // in this version, step=3 support would be easy to add. but is there demand?
+ if (step == 4) {
+ // this is a fairly straightforward implementation and not super-optimized.
+ uint8x8_t signflip = vdup_n_u8(0x80);
+ int16x8_t cr_const0 = vdupq_n_s16((short)(1.40200f * 4096.0f + 0.5f));
+ int16x8_t cr_const1 = vdupq_n_s16(-(short)(0.71414f * 4096.0f + 0.5f));
+ int16x8_t cb_const0 = vdupq_n_s16(-(short)(0.34414f * 4096.0f + 0.5f));
+ int16x8_t cb_const1 = vdupq_n_s16((short)(1.77200f * 4096.0f + 0.5f));
+
+ for (; i + 7 < count; i += 8) {
+ // load
+ uint8x8_t y_bytes = vld1_u8(y + i);
+ uint8x8_t cr_bytes = vld1_u8(pcr + i);
+ uint8x8_t cb_bytes = vld1_u8(pcb + i);
+ int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip));
+ int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip));
+
+ // expand to s16
+ int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4));
+ int16x8_t crw = vshll_n_s8(cr_biased, 7);
+ int16x8_t cbw = vshll_n_s8(cb_biased, 7);
+
+ // color transform
+ int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0);
+ int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0);
+ int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1);
+ int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1);
+ int16x8_t rws = vaddq_s16(yws, cr0);
+ int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1);
+ int16x8_t bws = vaddq_s16(yws, cb1);
+
+ // undo scaling, round, convert to byte
+ uint8x8x4_t o;
+ o.val[0] = vqrshrun_n_s16(rws, 4);
+ o.val[1] = vqrshrun_n_s16(gws, 4);
+ o.val[2] = vqrshrun_n_s16(bws, 4);
+ o.val[3] = vdup_n_u8(255);
+
+ // store, interleaving r/g/b/a
+ vst4_u8(out, o);
+ out += 8 * 4;
+ }
+ }
#endif
- for (; i < count; ++i) {
- int y_fixed = (y[i] << 20) + (1<<19); // rounding
- int r,g,b;
- int cr = pcr[i] - 128;
- int cb = pcb[i] - 128;
- r = y_fixed + cr* float2fixed(1.40200f);
- g = y_fixed + cr*-float2fixed(0.71414f) + ((cb*-float2fixed(0.34414f)) & 0xffff0000);
- b = y_fixed + cb* float2fixed(1.77200f);
- r >>= 20;
- g >>= 20;
- b >>= 20;
- if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; }
- if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; }
- if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; }
- out[0] = (stbi_uc)r;
- out[1] = (stbi_uc)g;
- out[2] = (stbi_uc)b;
- out[3] = 255;
- out += step;
- }
+ for (; i < count; ++i) {
+ int y_fixed = (y[i] << 20) + (1 << 19); // rounding
+ int r, g, b;
+ int cr = pcr[i] - 128;
+ int cb = pcb[i] - 128;
+ r = y_fixed + cr * stbi__float2fixed(1.40200f);
+ g = y_fixed + cr * -stbi__float2fixed(0.71414f) + ((cb * -stbi__float2fixed(0.34414f)) & 0xffff0000);
+ b = y_fixed + cb * stbi__float2fixed(1.77200f);
+ r >>= 20;
+ g >>= 20;
+ b >>= 20;
+ if ((unsigned)r > 255) { if (r < 0) r = 0; else r = 255; }
+ if ((unsigned)g > 255) { if (g < 0) g = 0; else g = 255; }
+ if ((unsigned)b > 255) { if (b < 0) b = 0; else b = 255; }
+ out[0] = (stbi_uc)r;
+ out[1] = (stbi_uc)g;
+ out[2] = (stbi_uc)b;
+ out[3] = 255;
+ out += step;
+ }
}
#endif
// set up the kernels
-static void stbi__setup_jpeg(stbi__jpeg *j)
+static void stbi__setup_jpeg(stbi__jpeg* j)
{
- j->idct_block_kernel = stbi__idct_block;
- j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row;
- j->resample_row_hv_2_kernel = stbi__resample_row_hv_2;
+ j->idct_block_kernel = stbi__idct_block;
+ j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row;
+ j->resample_row_hv_2_kernel = stbi__resample_row_hv_2;
#ifdef STBI_SSE2
- if (stbi__sse2_available()) {
- j->idct_block_kernel = stbi__idct_simd;
- #ifndef STBI_JPEG_OLD
- j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd;
- #endif
- j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd;
- }
+ if (stbi__sse2_available()) {
+ j->idct_block_kernel = stbi__idct_simd;
+ j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd;
+ j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd;
+ }
#endif
#ifdef STBI_NEON
- j->idct_block_kernel = stbi__idct_simd;
- #ifndef STBI_JPEG_OLD
- j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd;
- #endif
- j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd;
+ j->idct_block_kernel = stbi__idct_simd;
+ j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd;
+ j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd;
#endif
}
// clean up the temporary component buffers
-static void stbi__cleanup_jpeg(stbi__jpeg *j)
-{
- int i;
- for (i=0; i < j->s->img_n; ++i) {
- if (j->img_comp[i].raw_data) {
- STBI_FREE(j->img_comp[i].raw_data);
- j->img_comp[i].raw_data = NULL;
- j->img_comp[i].data = NULL;
- }
- if (j->img_comp[i].raw_coeff) {
- STBI_FREE(j->img_comp[i].raw_coeff);
- j->img_comp[i].raw_coeff = 0;
- j->img_comp[i].coeff = 0;
- }
- if (j->img_comp[i].linebuf) {
- STBI_FREE(j->img_comp[i].linebuf);
- j->img_comp[i].linebuf = NULL;
- }
- }
+static void stbi__cleanup_jpeg(stbi__jpeg* j)
+{
+ stbi__free_jpeg_components(j, j->s->img_n, 0);
}
typedef struct
{
- resample_row_func resample;
- stbi_uc *line0,*line1;
- int hs,vs; // expansion factor in each axis
- int w_lores; // horizontal pixels pre-expansion
- int ystep; // how far through vertical expansion we are
- int ypos; // which pre-expansion row we're on
+ resample_row_func resample;
+ stbi_uc* line0, * line1;
+ int hs, vs; // expansion factor in each axis
+ int w_lores; // horizontal pixels pre-expansion
+ int ystep; // how far through vertical expansion we are
+ int ypos; // which pre-expansion row we're on
} stbi__resample;
-static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, int *comp, int req_comp)
-{
- int n, decode_n;
- z->s->img_n = 0; // make stbi__cleanup_jpeg safe
-
- // validate req_comp
- if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error");
-
- // load a jpeg image from whichever source, but leave in YCbCr format
- if (!stbi__decode_jpeg_image(z)) { stbi__cleanup_jpeg(z); return NULL; }
-
- // determine actual number of components to generate
- n = req_comp ? req_comp : z->s->img_n;
-
- if (z->s->img_n == 3 && n < 3)
- decode_n = 1;
- else
- decode_n = z->s->img_n;
-
- // resample and color-convert
- {
- int k;
- unsigned int i,j;
- stbi_uc *output;
- stbi_uc *coutput[4];
-
- stbi__resample res_comp[4];
-
- for (k=0; k < decode_n; ++k) {
- stbi__resample *r = &res_comp[k];
-
- // allocate line buffer big enough for upsampling off the edges
- // with upsample factor of 4
- z->img_comp[k].linebuf = (stbi_uc *) stbi__malloc(z->s->img_x + 3);
- if (!z->img_comp[k].linebuf) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); }
-
- r->hs = z->img_h_max / z->img_comp[k].h;
- r->vs = z->img_v_max / z->img_comp[k].v;
- r->ystep = r->vs >> 1;
- r->w_lores = (z->s->img_x + r->hs-1) / r->hs;
- r->ypos = 0;
- r->line0 = r->line1 = z->img_comp[k].data;
-
- if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1;
- else if (r->hs == 1 && r->vs == 2) r->resample = stbi__resample_row_v_2;
- else if (r->hs == 2 && r->vs == 1) r->resample = stbi__resample_row_h_2;
- else if (r->hs == 2 && r->vs == 2) r->resample = z->resample_row_hv_2_kernel;
- else r->resample = stbi__resample_row_generic;
- }
-
- // can't error after this so, this is safe
- output = (stbi_uc *) stbi__malloc(n * z->s->img_x * z->s->img_y + 1);
- if (!output) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); }
-
- // now go ahead and resample
- for (j=0; j < z->s->img_y; ++j) {
- stbi_uc *out = output + n * z->s->img_x * j;
- for (k=0; k < decode_n; ++k) {
- stbi__resample *r = &res_comp[k];
- int y_bot = r->ystep >= (r->vs >> 1);
- coutput[k] = r->resample(z->img_comp[k].linebuf,
- y_bot ? r->line1 : r->line0,
- y_bot ? r->line0 : r->line1,
- r->w_lores, r->hs);
- if (++r->ystep >= r->vs) {
- r->ystep = 0;
- r->line0 = r->line1;
- if (++r->ypos < z->img_comp[k].y)
- r->line1 += z->img_comp[k].w2;
+// fast 0..255 * 0..255 => 0..255 rounded multiplication
+static stbi_uc stbi__blinn_8x8(stbi_uc x, stbi_uc y)
+{
+ unsigned int t = x * y + 128;
+ return (stbi_uc)((t + (t >> 8)) >> 8);
+}
+
+static stbi_uc* load_jpeg_image(stbi__jpeg* z, int* out_x, int* out_y, int* comp, int req_comp)
+{
+ int n, decode_n, is_rgb;
+ z->s->img_n = 0; // make stbi__cleanup_jpeg safe
+
+ // validate req_comp
+ if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error");
+
+ // load a jpeg image from whichever source, but leave in YCbCr format
+ if (!stbi__decode_jpeg_image(z)) { stbi__cleanup_jpeg(z); return NULL; }
+
+ // determine actual number of components to generate
+ n = req_comp ? req_comp : z->s->img_n >= 3 ? 3 : 1;
+
+ is_rgb = z->s->img_n == 3 && (z->rgb == 3 || (z->app14_color_transform == 0 && !z->jfif));
+
+ if (z->s->img_n == 3 && n < 3 && !is_rgb)
+ decode_n = 1;
+ else
+ decode_n = z->s->img_n;
+
+ // nothing to do if no components requested; check this now to avoid
+ // accessing uninitialized coutput[0] later
+ if (decode_n <= 0) { stbi__cleanup_jpeg(z); return NULL; }
+
+ // resample and color-convert
+ {
+ int k;
+ unsigned int i, j;
+ stbi_uc* output;
+ stbi_uc* coutput[4] = { NULL, NULL, NULL, NULL };
+
+ stbi__resample res_comp[4];
+
+ for (k = 0; k < decode_n; ++k) {
+ stbi__resample* r = &res_comp[k];
+
+ // allocate line buffer big enough for upsampling off the edges
+ // with upsample factor of 4
+ z->img_comp[k].linebuf = (stbi_uc*)stbi__malloc(z->s->img_x + 3);
+ if (!z->img_comp[k].linebuf) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); }
+
+ r->hs = z->img_h_max / z->img_comp[k].h;
+ r->vs = z->img_v_max / z->img_comp[k].v;
+ r->ystep = r->vs >> 1;
+ r->w_lores = (z->s->img_x + r->hs - 1) / r->hs;
+ r->ypos = 0;
+ r->line0 = r->line1 = z->img_comp[k].data;
+
+ if (r->hs == 1 && r->vs == 1) r->resample = resample_row_1;
+ else if (r->hs == 1 && r->vs == 2) r->resample = stbi__resample_row_v_2;
+ else if (r->hs == 2 && r->vs == 1) r->resample = stbi__resample_row_h_2;
+ else if (r->hs == 2 && r->vs == 2) r->resample = z->resample_row_hv_2_kernel;
+ else r->resample = stbi__resample_row_generic;
+ }
+
+ // can't error after this so, this is safe
+ output = (stbi_uc*)stbi__malloc_mad3(n, z->s->img_x, z->s->img_y, 1);
+ if (!output) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); }
+
+ // now go ahead and resample
+ for (j = 0; j < z->s->img_y; ++j) {
+ stbi_uc* out = output + n * z->s->img_x * j;
+ for (k = 0; k < decode_n; ++k) {
+ stbi__resample* r = &res_comp[k];
+ int y_bot = r->ystep >= (r->vs >> 1);
+ coutput[k] = r->resample(z->img_comp[k].linebuf,
+ y_bot ? r->line1 : r->line0,
+ y_bot ? r->line0 : r->line1,
+ r->w_lores, r->hs);
+ if (++r->ystep >= r->vs) {
+ r->ystep = 0;
+ r->line0 = r->line1;
+ if (++r->ypos < z->img_comp[k].y)
+ r->line1 += z->img_comp[k].w2;
+ }
}
- }
- if (n >= 3) {
- stbi_uc *y = coutput[0];
- if (z->s->img_n == 3) {
- z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
- } else
- for (i=0; i < z->s->img_x; ++i) {
- out[0] = out[1] = out[2] = y[i];
- out[3] = 255; // not used if n==3
- out += n;
- }
- } else {
- stbi_uc *y = coutput[0];
- if (n == 1)
- for (i=0; i < z->s->img_x; ++i) out[i] = y[i];
- else
- for (i=0; i < z->s->img_x; ++i) *out++ = y[i], *out++ = 255;
- }
- }
- stbi__cleanup_jpeg(z);
- *out_x = z->s->img_x;
- *out_y = z->s->img_y;
- if (comp) *comp = z->s->img_n; // report original components, not output
- return output;
- }
+ if (n >= 3) {
+ stbi_uc* y = coutput[0];
+ if (z->s->img_n == 3) {
+ if (is_rgb) {
+ for (i = 0; i < z->s->img_x; ++i) {
+ out[0] = y[i];
+ out[1] = coutput[1][i];
+ out[2] = coutput[2][i];
+ out[3] = 255;
+ out += n;
+ }
+ }
+ else {
+ z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
+ }
+ }
+ else if (z->s->img_n == 4) {
+ if (z->app14_color_transform == 0) { // CMYK
+ for (i = 0; i < z->s->img_x; ++i) {
+ stbi_uc m = coutput[3][i];
+ out[0] = stbi__blinn_8x8(coutput[0][i], m);
+ out[1] = stbi__blinn_8x8(coutput[1][i], m);
+ out[2] = stbi__blinn_8x8(coutput[2][i], m);
+ out[3] = 255;
+ out += n;
+ }
+ }
+ else if (z->app14_color_transform == 2) { // YCCK
+ z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
+ for (i = 0; i < z->s->img_x; ++i) {
+ stbi_uc m = coutput[3][i];
+ out[0] = stbi__blinn_8x8(255 - out[0], m);
+ out[1] = stbi__blinn_8x8(255 - out[1], m);
+ out[2] = stbi__blinn_8x8(255 - out[2], m);
+ out += n;
+ }
+ }
+ else { // YCbCr + alpha? Ignore the fourth channel for now
+ z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
+ }
+ }
+ else
+ for (i = 0; i < z->s->img_x; ++i) {
+ out[0] = out[1] = out[2] = y[i];
+ out[3] = 255; // not used if n==3
+ out += n;
+ }
+ }
+ else {
+ if (is_rgb) {
+ if (n == 1)
+ for (i = 0; i < z->s->img_x; ++i)
+ *out++ = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]);
+ else {
+ for (i = 0; i < z->s->img_x; ++i, out += 2) {
+ out[0] = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]);
+ out[1] = 255;
+ }
+ }
+ }
+ else if (z->s->img_n == 4 && z->app14_color_transform == 0) {
+ for (i = 0; i < z->s->img_x; ++i) {
+ stbi_uc m = coutput[3][i];
+ stbi_uc r = stbi__blinn_8x8(coutput[0][i], m);
+ stbi_uc g = stbi__blinn_8x8(coutput[1][i], m);
+ stbi_uc b = stbi__blinn_8x8(coutput[2][i], m);
+ out[0] = stbi__compute_y(r, g, b);
+ out[1] = 255;
+ out += n;
+ }
+ }
+ else if (z->s->img_n == 4 && z->app14_color_transform == 2) {
+ for (i = 0; i < z->s->img_x; ++i) {
+ out[0] = stbi__blinn_8x8(255 - coutput[0][i], coutput[3][i]);
+ out[1] = 255;
+ out += n;
+ }
+ }
+ else {
+ stbi_uc* y = coutput[0];
+ if (n == 1)
+ for (i = 0; i < z->s->img_x; ++i) out[i] = y[i];
+ else
+ for (i = 0; i < z->s->img_x; ++i) { *out++ = y[i]; *out++ = 255; }
+ }
+ }
+ }
+ stbi__cleanup_jpeg(z);
+ *out_x = z->s->img_x;
+ *out_y = z->s->img_y;
+ if (comp) *comp = z->s->img_n >= 3 ? 3 : 1; // report original components, not output
+ return output;
+ }
}
-static unsigned char *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
+static void* stbi__jpeg_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri)
{
- stbi__jpeg j;
- j.s = s;
- stbi__setup_jpeg(&j);
- return load_jpeg_image(&j, x,y,comp,req_comp);
+ unsigned char* result;
+ stbi__jpeg* j = (stbi__jpeg*)stbi__malloc(sizeof(stbi__jpeg));
+ if (!j) return stbi__errpuc("outofmem", "Out of memory");
+ memset(j, 0, sizeof(stbi__jpeg));
+ STBI_NOTUSED(ri);
+ j->s = s;
+ stbi__setup_jpeg(j);
+ result = load_jpeg_image(j, x, y, comp, req_comp);
+ STBI_FREE(j);
+ return result;
}
-static int stbi__jpeg_test(stbi__context *s)
+static int stbi__jpeg_test(stbi__context* s)
{
- int r;
- stbi__jpeg j;
- j.s = s;
- stbi__setup_jpeg(&j);
- r = stbi__decode_jpeg_header(&j, STBI__SCAN_type);
- stbi__rewind(s);
- return r;
+ int r;
+ stbi__jpeg* j = (stbi__jpeg*)stbi__malloc(sizeof(stbi__jpeg));
+ if (!j) return stbi__err("outofmem", "Out of memory");
+ memset(j, 0, sizeof(stbi__jpeg));
+ j->s = s;
+ stbi__setup_jpeg(j);
+ r = stbi__decode_jpeg_header(j, STBI__SCAN_type);
+ stbi__rewind(s);
+ STBI_FREE(j);
+ return r;
}
-static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp)
+static int stbi__jpeg_info_raw(stbi__jpeg* j, int* x, int* y, int* comp)
{
- if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) {
- stbi__rewind( j->s );
- return 0;
- }
- if (x) *x = j->s->img_x;
- if (y) *y = j->s->img_y;
- if (comp) *comp = j->s->img_n;
- return 1;
+ if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) {
+ stbi__rewind(j->s);
+ return 0;
+ }
+ if (x) *x = j->s->img_x;
+ if (y) *y = j->s->img_y;
+ if (comp) *comp = j->s->img_n >= 3 ? 3 : 1;
+ return 1;
}
-static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp)
+static int stbi__jpeg_info(stbi__context* s, int* x, int* y, int* comp)
{
- stbi__jpeg j;
- j.s = s;
- return stbi__jpeg_info_raw(&j, x, y, comp);
+ int result;
+ stbi__jpeg* j = (stbi__jpeg*)(stbi__malloc(sizeof(stbi__jpeg)));
+ if (!j) return stbi__err("outofmem", "Out of memory");
+ memset(j, 0, sizeof(stbi__jpeg));
+ j->s = s;
+ result = stbi__jpeg_info_raw(j, x, y, comp);
+ STBI_FREE(j);
+ return result;
}
#endif
@@ -3437,81 +4119,82 @@ static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp)
// fast-way is faster to check than jpeg huffman, but slow way is slower
#define STBI__ZFAST_BITS 9 // accelerate all cases in default tables
#define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1)
+#define STBI__ZNSYMS 288 // number of symbols in literal/length alphabet
// zlib-style huffman encoding
// (jpegs packs from left, zlib from right, so can't share code)
typedef struct
{
- stbi__uint16 fast[1 << STBI__ZFAST_BITS];
- stbi__uint16 firstcode[16];
- int maxcode[17];
- stbi__uint16 firstsymbol[16];
- stbi_uc size[288];
- stbi__uint16 value[288];
+ stbi__uint16 fast[1 << STBI__ZFAST_BITS];
+ stbi__uint16 firstcode[16];
+ int maxcode[17];
+ stbi__uint16 firstsymbol[16];
+ stbi_uc size[STBI__ZNSYMS];
+ stbi__uint16 value[STBI__ZNSYMS];
} stbi__zhuffman;
stbi_inline static int stbi__bitreverse16(int n)
{
- n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1);
- n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2);
- n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4);
- n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8);
- return n;
+ n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1);
+ n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2);
+ n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4);
+ n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8);
+ return n;
}
stbi_inline static int stbi__bit_reverse(int v, int bits)
{
- STBI_ASSERT(bits <= 16);
- // to bit reverse n bits, reverse 16 and shift
- // e.g. 11 bits, bit reverse and shift away 5
- return stbi__bitreverse16(v) >> (16-bits);
-}
-
-static int stbi__zbuild_huffman(stbi__zhuffman *z, stbi_uc *sizelist, int num)
-{
- int i,k=0;
- int code, next_code[16], sizes[17];
-
- // DEFLATE spec for generating codes
- memset(sizes, 0, sizeof(sizes));
- memset(z->fast, 0, sizeof(z->fast));
- for (i=0; i < num; ++i)
- ++sizes[sizelist[i]];
- sizes[0] = 0;
- for (i=1; i < 16; ++i)
- if (sizes[i] > (1 << i))
- return stbi__err("bad sizes", "Corrupt PNG");
- code = 0;
- for (i=1; i < 16; ++i) {
- next_code[i] = code;
- z->firstcode[i] = (stbi__uint16) code;
- z->firstsymbol[i] = (stbi__uint16) k;
- code = (code + sizes[i]);
- if (sizes[i])
- if (code-1 >= (1 << i)) return stbi__err("bad codelengths","Corrupt PNG");
- z->maxcode[i] = code << (16-i); // preshift for inner loop
- code <<= 1;
- k += sizes[i];
- }
- z->maxcode[16] = 0x10000; // sentinel
- for (i=0; i < num; ++i) {
- int s = sizelist[i];
- if (s) {
- int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s];
- stbi__uint16 fastv = (stbi__uint16) ((s << 9) | i);
- z->size [c] = (stbi_uc ) s;
- z->value[c] = (stbi__uint16) i;
- if (s <= STBI__ZFAST_BITS) {
- int k = stbi__bit_reverse(next_code[s],s);
- while (k < (1 << STBI__ZFAST_BITS)) {
- z->fast[k] = fastv;
- k += (1 << s);
+ STBI_ASSERT(bits <= 16);
+ // to bit reverse n bits, reverse 16 and shift
+ // e.g. 11 bits, bit reverse and shift away 5
+ return stbi__bitreverse16(v) >> (16 - bits);
+}
+
+static int stbi__zbuild_huffman(stbi__zhuffman* z, const stbi_uc* sizelist, int num)
+{
+ int i, k = 0;
+ int code, next_code[16], sizes[17];
+
+ // DEFLATE spec for generating codes
+ memset(sizes, 0, sizeof(sizes));
+ memset(z->fast, 0, sizeof(z->fast));
+ for (i = 0; i < num; ++i)
+ ++sizes[sizelist[i]];
+ sizes[0] = 0;
+ for (i = 1; i < 16; ++i)
+ if (sizes[i] > (1 << i))
+ return stbi__err("bad sizes", "Corrupt PNG");
+ code = 0;
+ for (i = 1; i < 16; ++i) {
+ next_code[i] = code;
+ z->firstcode[i] = (stbi__uint16)code;
+ z->firstsymbol[i] = (stbi__uint16)k;
+ code = (code + sizes[i]);
+ if (sizes[i])
+ if (code - 1 >= (1 << i)) return stbi__err("bad codelengths", "Corrupt PNG");
+ z->maxcode[i] = code << (16 - i); // preshift for inner loop
+ code <<= 1;
+ k += sizes[i];
+ }
+ z->maxcode[16] = 0x10000; // sentinel
+ for (i = 0; i < num; ++i) {
+ int s = sizelist[i];
+ if (s) {
+ int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s];
+ stbi__uint16 fastv = (stbi__uint16)((s << 9) | i);
+ z->size[c] = (stbi_uc)s;
+ z->value[c] = (stbi__uint16)i;
+ if (s <= STBI__ZFAST_BITS) {
+ int j = stbi__bit_reverse(next_code[s], s);
+ while (j < (1 << STBI__ZFAST_BITS)) {
+ z->fast[j] = fastv;
+ j += (1 << s);
+ }
}
- }
- ++next_code[s];
- }
- }
- return 1;
+ ++next_code[s];
+ }
+ }
+ return 1;
}
// zlib-from-memory implementation for PNG reading
@@ -3522,240 +4205,283 @@ static int stbi__zbuild_huffman(stbi__zhuffman *z, stbi_uc *sizelist, int num)
typedef struct
{
- stbi_uc *zbuffer, *zbuffer_end;
- int num_bits;
- stbi__uint32 code_buffer;
+ stbi_uc* zbuffer, * zbuffer_end;
+ int num_bits;
+ stbi__uint32 code_buffer;
- char *zout;
- char *zout_start;
- char *zout_end;
- int z_expandable;
+ char* zout;
+ char* zout_start;
+ char* zout_end;
+ int z_expandable;
- stbi__zhuffman z_length, z_distance;
+ stbi__zhuffman z_length, z_distance;
} stbi__zbuf;
-stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z)
+stbi_inline static int stbi__zeof(stbi__zbuf* z)
{
- if (z->zbuffer >= z->zbuffer_end) return 0;
- return *z->zbuffer++;
+ return (z->zbuffer >= z->zbuffer_end);
}
-static void stbi__fill_bits(stbi__zbuf *z)
+stbi_inline static stbi_uc stbi__zget8(stbi__zbuf* z)
{
- do {
- STBI_ASSERT(z->code_buffer < (1U << z->num_bits));
- z->code_buffer |= (unsigned int) stbi__zget8(z) << z->num_bits;
- z->num_bits += 8;
- } while (z->num_bits <= 24);
+ return stbi__zeof(z) ? 0 : *z->zbuffer++;
}
-stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n)
+static void stbi__fill_bits(stbi__zbuf* z)
{
- unsigned int k;
- if (z->num_bits < n) stbi__fill_bits(z);
- k = z->code_buffer & ((1 << n) - 1);
- z->code_buffer >>= n;
- z->num_bits -= n;
- return k;
+ do {
+ if (z->code_buffer >= (1U << z->num_bits)) {
+ z->zbuffer = z->zbuffer_end; /* treat this as EOF so we fail. */
+ return;
+ }
+ z->code_buffer |= (unsigned int)stbi__zget8(z) << z->num_bits;
+ z->num_bits += 8;
+ } while (z->num_bits <= 24);
}
-static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z)
+stbi_inline static unsigned int stbi__zreceive(stbi__zbuf* z, int n)
{
- int b,s,k;
- // not resolved by fast table, so compute it the slow way
- // use jpeg approach, which requires MSbits at top
- k = stbi__bit_reverse(a->code_buffer, 16);
- for (s=STBI__ZFAST_BITS+1; ; ++s)
- if (k < z->maxcode[s])
- break;
- if (s == 16) return -1; // invalid code!
- // code size is s, so:
- b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s];
- STBI_ASSERT(z->size[b] == s);
- a->code_buffer >>= s;
- a->num_bits -= s;
- return z->value[b];
+ unsigned int k;
+ if (z->num_bits < n) stbi__fill_bits(z);
+ k = z->code_buffer & ((1 << n) - 1);
+ z->code_buffer >>= n;
+ z->num_bits -= n;
+ return k;
}
-stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z)
+static int stbi__zhuffman_decode_slowpath(stbi__zbuf* a, stbi__zhuffman* z)
{
- int b,s;
- if (a->num_bits < 16) stbi__fill_bits(a);
- b = z->fast[a->code_buffer & STBI__ZFAST_MASK];
- if (b) {
- s = b >> 9;
- a->code_buffer >>= s;
- a->num_bits -= s;
- return b & 511;
- }
- return stbi__zhuffman_decode_slowpath(a, z);
+ int b, s, k;
+ // not resolved by fast table, so compute it the slow way
+ // use jpeg approach, which requires MSbits at top
+ k = stbi__bit_reverse(a->code_buffer, 16);
+ for (s = STBI__ZFAST_BITS + 1; ; ++s)
+ if (k < z->maxcode[s])
+ break;
+ if (s >= 16) return -1; // invalid code!
+ // code size is s, so:
+ b = (k >> (16 - s)) - z->firstcode[s] + z->firstsymbol[s];
+ if (b >= STBI__ZNSYMS) return -1; // some data was corrupt somewhere!
+ if (z->size[b] != s) return -1; // was originally an assert, but report failure instead.
+ a->code_buffer >>= s;
+ a->num_bits -= s;
+ return z->value[b];
+}
+
+stbi_inline static int stbi__zhuffman_decode(stbi__zbuf* a, stbi__zhuffman* z)
+{
+ int b, s;
+ if (a->num_bits < 16) {
+ if (stbi__zeof(a)) {
+ return -1; /* report error for unexpected end of data. */
+ }
+ stbi__fill_bits(a);
+ }
+ b = z->fast[a->code_buffer & STBI__ZFAST_MASK];
+ if (b) {
+ s = b >> 9;
+ a->code_buffer >>= s;
+ a->num_bits -= s;
+ return b & 511;
+ }
+ return stbi__zhuffman_decode_slowpath(a, z);
}
-static int stbi__zexpand(stbi__zbuf *z, char *zout, int n) // need to make room for n bytes
+static int stbi__zexpand(stbi__zbuf* z, char* zout, int n) // need to make room for n bytes
{
- char *q;
- int cur, limit;
- z->zout = zout;
- if (!z->z_expandable) return stbi__err("output buffer limit","Corrupt PNG");
- cur = (int) (z->zout - z->zout_start);
- limit = (int) (z->zout_end - z->zout_start);
- while (cur + n > limit)
- limit *= 2;
- q = (char *) STBI_REALLOC(z->zout_start, limit);
- if (q == NULL) return stbi__err("outofmem", "Out of memory");
- z->zout_start = q;
- z->zout = q + cur;
- z->zout_end = q + limit;
- return 1;
+ char* q;
+ unsigned int cur, limit, old_limit;
+ z->zout = zout;
+ if (!z->z_expandable) return stbi__err("output buffer limit", "Corrupt PNG");
+ cur = (unsigned int)(z->zout - z->zout_start);
+ limit = old_limit = (unsigned)(z->zout_end - z->zout_start);
+ if (UINT_MAX - cur < (unsigned)n) return stbi__err("outofmem", "Out of memory");
+ while (cur + n > limit) {
+ if (limit > UINT_MAX / 2) return stbi__err("outofmem", "Out of memory");
+ limit *= 2;
+ }
+ q = (char*)STBI_REALLOC_SIZED(z->zout_start, old_limit, limit);
+ STBI_NOTUSED(old_limit);
+ if (q == NULL) return stbi__err("outofmem", "Out of memory");
+ z->zout_start = q;
+ z->zout = q + cur;
+ z->zout_end = q + limit;
+ return 1;
}
-static int stbi__zlength_base[31] = {
+static const int stbi__zlength_base[31] = {
3,4,5,6,7,8,9,10,11,13,
15,17,19,23,27,31,35,43,51,59,
67,83,99,115,131,163,195,227,258,0,0 };
-static int stbi__zlength_extra[31]=
+static const int stbi__zlength_extra[31] =
{ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
-static int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,
-257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0};
-
-static int stbi__zdist_extra[32] =
-{ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
-
-static int stbi__parse_huffman_block(stbi__zbuf *a)
-{
- char *zout = a->zout;
- for(;;) {
- int z = stbi__zhuffman_decode(a, &a->z_length);
- if (z < 256) {
- if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); // error in huffman codes
- if (zout >= a->zout_end) {
- if (!stbi__zexpand(a, zout, 1)) return 0;
- zout = a->zout;
- }
- *zout++ = (char) z;
- } else {
- stbi_uc *p;
- int len,dist;
- if (z == 256) {
- a->zout = zout;
- return 1;
- }
- z -= 257;
- len = stbi__zlength_base[z];
- if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]);
- z = stbi__zhuffman_decode(a, &a->z_distance);
- if (z < 0) return stbi__err("bad huffman code","Corrupt PNG");
- dist = stbi__zdist_base[z];
- if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]);
- if (zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG");
- if (zout + len > a->zout_end) {
- if (!stbi__zexpand(a, zout, len)) return 0;
- zout = a->zout;
- }
- p = (stbi_uc *) (zout - dist);
- if (dist == 1) { // run of one byte; common in images.
- stbi_uc v = *p;
- if (len) { do *zout++ = v; while (--len); }
- } else {
- if (len) { do *zout++ = *p++; while (--len); }
- }
- }
- }
+static const int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,
+257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0 };
+
+static const int stbi__zdist_extra[32] =
+{ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };
+
+static int stbi__parse_huffman_block(stbi__zbuf* a)
+{
+ char* zout = a->zout;
+ for (;;) {
+ int z = stbi__zhuffman_decode(a, &a->z_length);
+ if (z < 256) {
+ if (z < 0) return stbi__err("bad huffman code", "Corrupt PNG"); // error in huffman codes
+ if (zout >= a->zout_end) {
+ if (!stbi__zexpand(a, zout, 1)) return 0;
+ zout = a->zout;
+ }
+ *zout++ = (char)z;
+ }
+ else {
+ stbi_uc* p;
+ int len, dist;
+ if (z == 256) {
+ a->zout = zout;
+ return 1;
+ }
+ if (z >= 286) return stbi__err("bad huffman code", "Corrupt PNG"); // per DEFLATE, length codes 286 and 287 must not appear in compressed data
+ z -= 257;
+ len = stbi__zlength_base[z];
+ if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]);
+ z = stbi__zhuffman_decode(a, &a->z_distance);
+ if (z < 0 || z >= 30) return stbi__err("bad huffman code", "Corrupt PNG"); // per DEFLATE, distance codes 30 and 31 must not appear in compressed data
+ dist = stbi__zdist_base[z];
+ if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]);
+ if (zout - a->zout_start < dist) return stbi__err("bad dist", "Corrupt PNG");
+ if (zout + len > a->zout_end) {
+ if (!stbi__zexpand(a, zout, len)) return 0;
+ zout = a->zout;
+ }
+ p = (stbi_uc*)(zout - dist);
+ if (dist == 1) { // run of one byte; common in images.
+ stbi_uc v = *p;
+ if (len) { do *zout++ = v; while (--len); }
+ }
+ else {
+ if (len) { do *zout++ = *p++; while (--len); }
+ }
+ }
+ }
}
-static int stbi__compute_huffman_codes(stbi__zbuf *a)
+static int stbi__compute_huffman_codes(stbi__zbuf* a)
{
- static stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
- stbi__zhuffman z_codelength;
- stbi_uc lencodes[286+32+137];//padding for maximum single op
- stbi_uc codelength_sizes[19];
- int i,n;
+ static const stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
+ stbi__zhuffman z_codelength;
+ stbi_uc lencodes[286 + 32 + 137];//padding for maximum single op
+ stbi_uc codelength_sizes[19];
+ int i, n;
- int hlit = stbi__zreceive(a,5) + 257;
- int hdist = stbi__zreceive(a,5) + 1;
- int hclen = stbi__zreceive(a,4) + 4;
+ int hlit = stbi__zreceive(a, 5) + 257;
+ int hdist = stbi__zreceive(a, 5) + 1;
+ int hclen = stbi__zreceive(a, 4) + 4;
+ int ntot = hlit + hdist;
- memset(codelength_sizes, 0, sizeof(codelength_sizes));
- for (i=0; i < hclen; ++i) {
- int s = stbi__zreceive(a,3);
- codelength_sizes[length_dezigzag[i]] = (stbi_uc) s;
- }
- if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0;
-
- n = 0;
- while (n < hlit + hdist) {
- int c = stbi__zhuffman_decode(a, &z_codelength);
- if (c < 0 || c >= 19) return stbi__err("bad codelengths", "Corrupt PNG");
- if (c < 16)
- lencodes[n++] = (stbi_uc) c;
- else if (c == 16) {
- c = stbi__zreceive(a,2)+3;
- memset(lencodes+n, lencodes[n-1], c);
- n += c;
- } else if (c == 17) {
- c = stbi__zreceive(a,3)+3;
- memset(lencodes+n, 0, c);
- n += c;
- } else {
- STBI_ASSERT(c == 18);
- c = stbi__zreceive(a,7)+11;
- memset(lencodes+n, 0, c);
- n += c;
- }
- }
- if (n != hlit+hdist) return stbi__err("bad codelengths","Corrupt PNG");
- if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0;
- if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0;
- return 1;
-}
-
-static int stbi__parse_uncomperssed_block(stbi__zbuf *a)
-{
- stbi_uc header[4];
- int len,nlen,k;
- if (a->num_bits & 7)
- stbi__zreceive(a, a->num_bits & 7); // discard
- // drain the bit-packed data into header
- k = 0;
- while (a->num_bits > 0) {
- header[k++] = (stbi_uc) (a->code_buffer & 255); // suppress MSVC run-time check
- a->code_buffer >>= 8;
- a->num_bits -= 8;
- }
- STBI_ASSERT(a->num_bits == 0);
- // now fill header the normal way
- while (k < 4)
- header[k++] = stbi__zget8(a);
- len = header[1] * 256 + header[0];
- nlen = header[3] * 256 + header[2];
- if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt","Corrupt PNG");
- if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer","Corrupt PNG");
- if (a->zout + len > a->zout_end)
- if (!stbi__zexpand(a, a->zout, len)) return 0;
- memcpy(a->zout, a->zbuffer, len);
- a->zbuffer += len;
- a->zout += len;
- return 1;
-}
-
-static int stbi__parse_zlib_header(stbi__zbuf *a)
-{
- int cmf = stbi__zget8(a);
- int cm = cmf & 15;
- /* int cinfo = cmf >> 4; */
- int flg = stbi__zget8(a);
- if ((cmf*256+flg) % 31 != 0) return stbi__err("bad zlib header","Corrupt PNG"); // zlib spec
- if (flg & 32) return stbi__err("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png
- if (cm != 8) return stbi__err("bad compression","Corrupt PNG"); // DEFLATE required for png
- // window = 1 << (8 + cinfo)... but who cares, we fully buffer output
- return 1;
-}
-
-// @TODO: should statically initialize these for optimal thread safety
-static stbi_uc stbi__zdefault_length[288], stbi__zdefault_distance[32];
-static void stbi__init_zdefaults(void)
+ memset(codelength_sizes, 0, sizeof(codelength_sizes));
+ for (i = 0; i < hclen; ++i) {
+ int s = stbi__zreceive(a, 3);
+ codelength_sizes[length_dezigzag[i]] = (stbi_uc)s;
+ }
+ if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0;
+
+ n = 0;
+ while (n < ntot) {
+ int c = stbi__zhuffman_decode(a, &z_codelength);
+ if (c < 0 || c >= 19) return stbi__err("bad codelengths", "Corrupt PNG");
+ if (c < 16)
+ lencodes[n++] = (stbi_uc)c;
+ else {
+ stbi_uc fill = 0;
+ if (c == 16) {
+ c = stbi__zreceive(a, 2) + 3;
+ if (n == 0) return stbi__err("bad codelengths", "Corrupt PNG");
+ fill = lencodes[n - 1];
+ }
+ else if (c == 17) {
+ c = stbi__zreceive(a, 3) + 3;
+ }
+ else if (c == 18) {
+ c = stbi__zreceive(a, 7) + 11;
+ }
+ else {
+ return stbi__err("bad codelengths", "Corrupt PNG");
+ }
+ if (ntot - n < c) return stbi__err("bad codelengths", "Corrupt PNG");
+ memset(lencodes + n, fill, c);
+ n += c;
+ }
+ }
+ if (n != ntot) return stbi__err("bad codelengths", "Corrupt PNG");
+ if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0;
+ if (!stbi__zbuild_huffman(&a->z_distance, lencodes + hlit, hdist)) return 0;
+ return 1;
+}
+
+static int stbi__parse_uncompressed_block(stbi__zbuf* a)
+{
+ stbi_uc header[4];
+ int len, nlen, k;
+ if (a->num_bits & 7)
+ stbi__zreceive(a, a->num_bits & 7); // discard
+ // drain the bit-packed data into header
+ k = 0;
+ while (a->num_bits > 0) {
+ header[k++] = (stbi_uc)(a->code_buffer & 255); // suppress MSVC run-time check
+ a->code_buffer >>= 8;
+ a->num_bits -= 8;
+ }
+ if (a->num_bits < 0) return stbi__err("zlib corrupt", "Corrupt PNG");
+ // now fill header the normal way
+ while (k < 4)
+ header[k++] = stbi__zget8(a);
+ len = header[1] * 256 + header[0];
+ nlen = header[3] * 256 + header[2];
+ if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt", "Corrupt PNG");
+ if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer", "Corrupt PNG");
+ if (a->zout + len > a->zout_end)
+ if (!stbi__zexpand(a, a->zout, len)) return 0;
+ memcpy(a->zout, a->zbuffer, len);
+ a->zbuffer += len;
+ a->zout += len;
+ return 1;
+}
+
+static int stbi__parse_zlib_header(stbi__zbuf* a)
+{
+ int cmf = stbi__zget8(a);
+ int cm = cmf & 15;
+ /* int cinfo = cmf >> 4; */
+ int flg = stbi__zget8(a);
+ if (stbi__zeof(a)) return stbi__err("bad zlib header", "Corrupt PNG"); // zlib spec
+ if ((cmf * 256 + flg) % 31 != 0) return stbi__err("bad zlib header", "Corrupt PNG"); // zlib spec
+ if (flg & 32) return stbi__err("no preset dict", "Corrupt PNG"); // preset dictionary not allowed in png
+ if (cm != 8) return stbi__err("bad compression", "Corrupt PNG"); // DEFLATE required for png
+ // window = 1 << (8 + cinfo)... but who cares, we fully buffer output
+ return 1;
+}
+
+static const stbi_uc stbi__zdefault_length[STBI__ZNSYMS] =
+{
+ 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+ 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+ 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+ 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+ 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
+ 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
+ 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
+ 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
+ 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8
+};
+static const stbi_uc stbi__zdefault_distance[32] =
+{
+ 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
+};
+/*
+Init algorithm:
{
int i; // use <= to match clearly with spec
for (i=0; i <= 143; ++i) stbi__zdefault_length[i] = 8;
@@ -3765,119 +4491,125 @@ static void stbi__init_zdefaults(void)
for (i=0; i <= 31; ++i) stbi__zdefault_distance[i] = 5;
}
+*/
-static int stbi__parse_zlib(stbi__zbuf *a, int parse_header)
-{
- int final, type;
- if (parse_header)
- if (!stbi__parse_zlib_header(a)) return 0;
- a->num_bits = 0;
- a->code_buffer = 0;
- do {
- final = stbi__zreceive(a,1);
- type = stbi__zreceive(a,2);
- if (type == 0) {
- if (!stbi__parse_uncomperssed_block(a)) return 0;
- } else if (type == 3) {
- return 0;
- } else {
- if (type == 1) {
- // use fixed code lengths
- if (!stbi__zdefault_distance[31]) stbi__init_zdefaults();
- if (!stbi__zbuild_huffman(&a->z_length , stbi__zdefault_length , 288)) return 0;
- if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) return 0;
- } else {
- if (!stbi__compute_huffman_codes(a)) return 0;
- }
- if (!stbi__parse_huffman_block(a)) return 0;
- }
- } while (!final);
- return 1;
+static int stbi__parse_zlib(stbi__zbuf* a, int parse_header)
+{
+ int final, type;
+ if (parse_header)
+ if (!stbi__parse_zlib_header(a)) return 0;
+ a->num_bits = 0;
+ a->code_buffer = 0;
+ do {
+ final = stbi__zreceive(a, 1);
+ type = stbi__zreceive(a, 2);
+ if (type == 0) {
+ if (!stbi__parse_uncompressed_block(a)) return 0;
+ }
+ else if (type == 3) {
+ return 0;
+ }
+ else {
+ if (type == 1) {
+ // use fixed code lengths
+ if (!stbi__zbuild_huffman(&a->z_length, stbi__zdefault_length, STBI__ZNSYMS)) return 0;
+ if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) return 0;
+ }
+ else {
+ if (!stbi__compute_huffman_codes(a)) return 0;
+ }
+ if (!stbi__parse_huffman_block(a)) return 0;
+ }
+ } while (!final);
+ return 1;
}
-static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header)
+static int stbi__do_zlib(stbi__zbuf* a, char* obuf, int olen, int exp, int parse_header)
{
- a->zout_start = obuf;
- a->zout = obuf;
- a->zout_end = obuf + olen;
- a->z_expandable = exp;
+ a->zout_start = obuf;
+ a->zout = obuf;
+ a->zout_end = obuf + olen;
+ a->z_expandable = exp;
- return stbi__parse_zlib(a, parse_header);
+ return stbi__parse_zlib(a, parse_header);
}
-STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen)
+STBIDEF char* stbi_zlib_decode_malloc_guesssize(const char* buffer, int len, int initial_size, int* outlen)
{
- stbi__zbuf a;
- char *p = (char *) stbi__malloc(initial_size);
- if (p == NULL) return NULL;
- a.zbuffer = (stbi_uc *) buffer;
- a.zbuffer_end = (stbi_uc *) buffer + len;
- if (stbi__do_zlib(&a, p, initial_size, 1, 1)) {
- if (outlen) *outlen = (int) (a.zout - a.zout_start);
- return a.zout_start;
- } else {
- STBI_FREE(a.zout_start);
- return NULL;
- }
+ stbi__zbuf a;
+ char* p = (char*)stbi__malloc(initial_size);
+ if (p == NULL) return NULL;
+ a.zbuffer = (stbi_uc*)buffer;
+ a.zbuffer_end = (stbi_uc*)buffer + len;
+ if (stbi__do_zlib(&a, p, initial_size, 1, 1)) {
+ if (outlen) *outlen = (int)(a.zout - a.zout_start);
+ return a.zout_start;
+ }
+ else {
+ STBI_FREE(a.zout_start);
+ return NULL;
+ }
}
-STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen)
+STBIDEF char* stbi_zlib_decode_malloc(char const* buffer, int len, int* outlen)
{
- return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen);
+ return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen);
}
-STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header)
+STBIDEF char* stbi_zlib_decode_malloc_guesssize_headerflag(const char* buffer, int len, int initial_size, int* outlen, int parse_header)
{
- stbi__zbuf a;
- char *p = (char *) stbi__malloc(initial_size);
- if (p == NULL) return NULL;
- a.zbuffer = (stbi_uc *) buffer;
- a.zbuffer_end = (stbi_uc *) buffer + len;
- if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) {
- if (outlen) *outlen = (int) (a.zout - a.zout_start);
- return a.zout_start;
- } else {
- STBI_FREE(a.zout_start);
- return NULL;
- }
+ stbi__zbuf a;
+ char* p = (char*)stbi__malloc(initial_size);
+ if (p == NULL) return NULL;
+ a.zbuffer = (stbi_uc*)buffer;
+ a.zbuffer_end = (stbi_uc*)buffer + len;
+ if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) {
+ if (outlen) *outlen = (int)(a.zout - a.zout_start);
+ return a.zout_start;
+ }
+ else {
+ STBI_FREE(a.zout_start);
+ return NULL;
+ }
}
-STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen)
+STBIDEF int stbi_zlib_decode_buffer(char* obuffer, int olen, char const* ibuffer, int ilen)
{
- stbi__zbuf a;
- a.zbuffer = (stbi_uc *) ibuffer;
- a.zbuffer_end = (stbi_uc *) ibuffer + ilen;
- if (stbi__do_zlib(&a, obuffer, olen, 0, 1))
- return (int) (a.zout - a.zout_start);
- else
- return -1;
+ stbi__zbuf a;
+ a.zbuffer = (stbi_uc*)ibuffer;
+ a.zbuffer_end = (stbi_uc*)ibuffer + ilen;
+ if (stbi__do_zlib(&a, obuffer, olen, 0, 1))
+ return (int)(a.zout - a.zout_start);
+ else
+ return -1;
}
-STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen)
+STBIDEF char* stbi_zlib_decode_noheader_malloc(char const* buffer, int len, int* outlen)
{
- stbi__zbuf a;
- char *p = (char *) stbi__malloc(16384);
- if (p == NULL) return NULL;
- a.zbuffer = (stbi_uc *) buffer;
- a.zbuffer_end = (stbi_uc *) buffer+len;
- if (stbi__do_zlib(&a, p, 16384, 1, 0)) {
- if (outlen) *outlen = (int) (a.zout - a.zout_start);
- return a.zout_start;
- } else {
- STBI_FREE(a.zout_start);
- return NULL;
- }
+ stbi__zbuf a;
+ char* p = (char*)stbi__malloc(16384);
+ if (p == NULL) return NULL;
+ a.zbuffer = (stbi_uc*)buffer;
+ a.zbuffer_end = (stbi_uc*)buffer + len;
+ if (stbi__do_zlib(&a, p, 16384, 1, 0)) {
+ if (outlen) *outlen = (int)(a.zout - a.zout_start);
+ return a.zout_start;
+ }
+ else {
+ STBI_FREE(a.zout_start);
+ return NULL;
+ }
}
-STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen)
+STBIDEF int stbi_zlib_decode_noheader_buffer(char* obuffer, int olen, const char* ibuffer, int ilen)
{
- stbi__zbuf a;
- a.zbuffer = (stbi_uc *) ibuffer;
- a.zbuffer_end = (stbi_uc *) ibuffer + ilen;
- if (stbi__do_zlib(&a, obuffer, olen, 0, 0))
- return (int) (a.zout - a.zout_start);
- else
- return -1;
+ stbi__zbuf a;
+ a.zbuffer = (stbi_uc*)ibuffer;
+ a.zbuffer_end = (stbi_uc*)ibuffer + ilen;
+ if (stbi__do_zlib(&a, obuffer, olen, 0, 0))
+ return (int)(a.zout - a.zout_start);
+ else
+ return -1;
}
#endif
@@ -3894,43 +4626,44 @@ STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char
#ifndef STBI_NO_PNG
typedef struct
{
- stbi__uint32 length;
- stbi__uint32 type;
+ stbi__uint32 length;
+ stbi__uint32 type;
} stbi__pngchunk;
-static stbi__pngchunk stbi__get_chunk_header(stbi__context *s)
+static stbi__pngchunk stbi__get_chunk_header(stbi__context* s)
{
- stbi__pngchunk c;
- c.length = stbi__get32be(s);
- c.type = stbi__get32be(s);
- return c;
+ stbi__pngchunk c;
+ c.length = stbi__get32be(s);
+ c.type = stbi__get32be(s);
+ return c;
}
-static int stbi__check_png_header(stbi__context *s)
+static int stbi__check_png_header(stbi__context* s)
{
- static stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 };
- int i;
- for (i=0; i < 8; ++i)
- if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig","Not a PNG");
- return 1;
+ static const stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 };
+ int i;
+ for (i = 0; i < 8; ++i)
+ if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig", "Not a PNG");
+ return 1;
}
typedef struct
{
- stbi__context *s;
- stbi_uc *idata, *expanded, *out;
+ stbi__context* s;
+ stbi_uc* idata, * expanded, * out;
+ int depth;
} stbi__png;
enum {
- STBI__F_none=0,
- STBI__F_sub=1,
- STBI__F_up=2,
- STBI__F_avg=3,
- STBI__F_paeth=4,
- // synthetic filters used for first scanline to avoid needing a dummy row of 0s
- STBI__F_avg_first,
- STBI__F_paeth_first
+ STBI__F_none = 0,
+ STBI__F_sub = 1,
+ STBI__F_up = 2,
+ STBI__F_avg = 3,
+ STBI__F_paeth = 4,
+ // synthetic filters used for first scanline to avoid needing a dummy row of 0s
+ STBI__F_avg_first,
+ STBI__F_paeth_first
};
static stbi_uc first_row_filter[5] =
@@ -3944,1098 +4677,1480 @@ static stbi_uc first_row_filter[5] =
static int stbi__paeth(int a, int b, int c)
{
- int p = a + b - c;
- int pa = abs(p-a);
- int pb = abs(p-b);
- int pc = abs(p-c);
- if (pa <= pb && pa <= pc) return a;
- if (pb <= pc) return b;
- return c;
+ int p = a + b - c;
+ int pa = abs(p - a);
+ int pb = abs(p - b);
+ int pc = abs(p - c);
+ if (pa <= pb && pa <= pc) return a;
+ if (pb <= pc) return b;
+ return c;
}
-static stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 };
+static const stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 };
// create the png data from post-deflated data
-static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color)
-{
- stbi__context *s = a->s;
- stbi__uint32 i,j,stride = x*out_n;
- stbi__uint32 img_len, img_width_bytes;
- int k;
- int img_n = s->img_n; // copy it into a local for later
-
- STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1);
- a->out = (stbi_uc *) stbi__malloc(x * y * out_n); // extra bytes to write off the end into
- if (!a->out) return stbi__err("outofmem", "Out of memory");
-
- img_width_bytes = (((img_n * x * depth) + 7) >> 3);
- img_len = (img_width_bytes + 1) * y;
- if (s->img_x == x && s->img_y == y) {
- if (raw_len != img_len) return stbi__err("not enough pixels","Corrupt PNG");
- } else { // interlaced:
- if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG");
- }
-
- for (j=0; j < y; ++j) {
- stbi_uc *cur = a->out + stride*j;
- stbi_uc *prior = cur - stride;
- int filter = *raw++;
- int filter_bytes = img_n;
- int width = x;
- if (filter > 4)
- return stbi__err("invalid filter","Corrupt PNG");
-
- if (depth < 8) {
- STBI_ASSERT(img_width_bytes <= x);
- cur += x*out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place
- filter_bytes = 1;
- width = img_width_bytes;
- }
-
- // if first row, use special filter that doesn't sample previous row
- if (j == 0) filter = first_row_filter[filter];
-
- // handle first byte explicitly
- for (k=0; k < filter_bytes; ++k) {
- switch (filter) {
- case STBI__F_none : cur[k] = raw[k]; break;
- case STBI__F_sub : cur[k] = raw[k]; break;
- case STBI__F_up : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break;
- case STBI__F_avg : cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break;
- case STBI__F_paeth : cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0,prior[k],0)); break;
- case STBI__F_avg_first : cur[k] = raw[k]; break;
+static int stbi__create_png_image_raw(stbi__png* a, stbi_uc* raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color)
+{
+ int bytes = (depth == 16 ? 2 : 1);
+ stbi__context* s = a->s;
+ stbi__uint32 i, j, stride = x * out_n * bytes;
+ stbi__uint32 img_len, img_width_bytes;
+ int k;
+ int img_n = s->img_n; // copy it into a local for later
+
+ int output_bytes = out_n * bytes;
+ int filter_bytes = img_n * bytes;
+ int width = x;
+
+ STBI_ASSERT(out_n == s->img_n || out_n == s->img_n + 1);
+ a->out = (stbi_uc*)stbi__malloc_mad3(x, y, output_bytes, 0); // extra bytes to write off the end into
+ if (!a->out) return stbi__err("outofmem", "Out of memory");
+
+ if (!stbi__mad3sizes_valid(img_n, x, depth, 7)) return stbi__err("too large", "Corrupt PNG");
+ img_width_bytes = (((img_n * x * depth) + 7) >> 3);
+ img_len = (img_width_bytes + 1) * y;
+
+ // we used to check for exact match between raw_len and img_len on non-interlaced PNGs,
+ // but issue #276 reported a PNG in the wild that had extra data at the end (all zeros),
+ // so just check for raw_len < img_len always.
+ if (raw_len < img_len) return stbi__err("not enough pixels", "Corrupt PNG");
+
+ for (j = 0; j < y; ++j) {
+ stbi_uc* cur = a->out + stride * j;
+ stbi_uc* prior;
+ int filter = *raw++;
+
+ if (filter > 4)
+ return stbi__err("invalid filter", "Corrupt PNG");
+
+ if (depth < 8) {
+ if (img_width_bytes > x) return stbi__err("invalid width", "Corrupt PNG");
+ cur += x * out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place
+ filter_bytes = 1;
+ width = img_width_bytes;
+ }
+ prior = cur - stride; // bugfix: need to compute this after 'cur +=' computation above
+
+ // if first row, use special filter that doesn't sample previous row
+ if (j == 0) filter = first_row_filter[filter];
+
+ // handle first byte explicitly
+ for (k = 0; k < filter_bytes; ++k) {
+ switch (filter) {
+ case STBI__F_none: cur[k] = raw[k]; break;
+ case STBI__F_sub: cur[k] = raw[k]; break;
+ case STBI__F_up: cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break;
+ case STBI__F_avg: cur[k] = STBI__BYTECAST(raw[k] + (prior[k] >> 1)); break;
+ case STBI__F_paeth: cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0, prior[k], 0)); break;
+ case STBI__F_avg_first: cur[k] = raw[k]; break;
case STBI__F_paeth_first: cur[k] = raw[k]; break;
- }
- }
-
- if (depth == 8) {
- if (img_n != out_n)
- cur[img_n] = 255; // first pixel
- raw += img_n;
- cur += out_n;
- prior += out_n;
- } else {
- raw += 1;
- cur += 1;
- prior += 1;
- }
-
- // this is a little gross, so that we don't switch per-pixel or per-component
- if (depth < 8 || img_n == out_n) {
- int nk = (width - 1)*img_n;
- #define CASE(f) \
+ }
+ }
+
+ if (depth == 8) {
+ if (img_n != out_n)
+ cur[img_n] = 255; // first pixel
+ raw += img_n;
+ cur += out_n;
+ prior += out_n;
+ }
+ else if (depth == 16) {
+ if (img_n != out_n) {
+ cur[filter_bytes] = 255; // first pixel top byte
+ cur[filter_bytes + 1] = 255; // first pixel bottom byte
+ }
+ raw += filter_bytes;
+ cur += output_bytes;
+ prior += output_bytes;
+ }
+ else {
+ raw += 1;
+ cur += 1;
+ prior += 1;
+ }
+
+ // this is a little gross, so that we don't switch per-pixel or per-component
+ if (depth < 8 || img_n == out_n) {
+ int nk = (width - 1) * filter_bytes;
+#define STBI__CASE(f) \
case f: \
for (k=0; k < nk; ++k)
- switch (filter) {
- // "none" filter turns into a memcpy here; make that explicit.
+ switch (filter) {
+ // "none" filter turns into a memcpy here; make that explicit.
case STBI__F_none: memcpy(cur, raw, nk); break;
- CASE(STBI__F_sub) cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); break;
- CASE(STBI__F_up) cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break;
- CASE(STBI__F_avg) cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); break;
- CASE(STBI__F_paeth) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); break;
- CASE(STBI__F_avg_first) cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); break;
- CASE(STBI__F_paeth_first) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],0,0)); break;
- }
- #undef CASE
- raw += nk;
- } else {
- STBI_ASSERT(img_n+1 == out_n);
- #define CASE(f) \
+ STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k - filter_bytes]); } break;
+ STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;
+ STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k - filter_bytes]) >> 1)); } break;
+ STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - filter_bytes], prior[k], prior[k - filter_bytes])); } break;
+ STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k - filter_bytes] >> 1)); } break;
+ STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - filter_bytes], 0, 0)); } break;
+ }
+#undef STBI__CASE
+ raw += nk;
+ }
+ else {
+ STBI_ASSERT(img_n + 1 == out_n);
+#define STBI__CASE(f) \
case f: \
- for (i=x-1; i >= 1; --i, cur[img_n]=255,raw+=img_n,cur+=out_n,prior+=out_n) \
- for (k=0; k < img_n; ++k)
- switch (filter) {
- CASE(STBI__F_none) cur[k] = raw[k]; break;
- CASE(STBI__F_sub) cur[k] = STBI__BYTECAST(raw[k] + cur[k-out_n]); break;
- CASE(STBI__F_up) cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break;
- CASE(STBI__F_avg) cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-out_n])>>1)); break;
- CASE(STBI__F_paeth) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-out_n],prior[k],prior[k-out_n])); break;
- CASE(STBI__F_avg_first) cur[k] = STBI__BYTECAST(raw[k] + (cur[k-out_n] >> 1)); break;
- CASE(STBI__F_paeth_first) cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-out_n],0,0)); break;
- }
- #undef CASE
- }
- }
+ for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \
+ for (k=0; k < filter_bytes; ++k)
+ switch (filter) {
+ STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } break;
+ STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k - output_bytes]); } break;
+ STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;
+ STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k - output_bytes]) >> 1)); } break;
+ STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - output_bytes], prior[k], prior[k - output_bytes])); } break;
+ STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k - output_bytes] >> 1)); } break;
+ STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - output_bytes], 0, 0)); } break;
+ }
+#undef STBI__CASE
+
+ // the loop above sets the high byte of the pixels' alpha, but for
+ // 16 bit png files we also need the low byte set. we'll do that here.
+ if (depth == 16) {
+ cur = a->out + stride * j; // start at the beginning of the row again
+ for (i = 0; i < x; ++i, cur += output_bytes) {
+ cur[filter_bytes + 1] = 255;
+ }
+ }
+ }
+ }
- // we make a separate pass to expand bits to pixels; for performance,
- // this could run two scanlines behind the above code, so it won't
- // intefere with filtering but will still be in the cache.
- if (depth < 8) {
- for (j=0; j < y; ++j) {
- stbi_uc *cur = a->out + stride*j;
- stbi_uc *in = a->out + stride*j + x*out_n - img_width_bytes;
- // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit
- // png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop
- stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range
-
- // note that the final byte might overshoot and write more data than desired.
- // we can allocate enough data that this never writes out of memory, but it
- // could also overwrite the next scanline. can it overwrite non-empty data
- // on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel.
- // so we need to explicitly clamp the final ones
-
- if (depth == 4) {
- for (k=x*img_n; k >= 2; k-=2, ++in) {
- *cur++ = scale * ((*in >> 4) );
- *cur++ = scale * ((*in ) & 0x0f);
+ // we make a separate pass to expand bits to pixels; for performance,
+ // this could run two scanlines behind the above code, so it won't
+ // intefere with filtering but will still be in the cache.
+ if (depth < 8) {
+ for (j = 0; j < y; ++j) {
+ stbi_uc* cur = a->out + stride * j;
+ stbi_uc* in = a->out + stride * j + x * out_n - img_width_bytes;
+ // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit
+ // png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop
+ stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range
+
+ // note that the final byte might overshoot and write more data than desired.
+ // we can allocate enough data that this never writes out of memory, but it
+ // could also overwrite the next scanline. can it overwrite non-empty data
+ // on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel.
+ // so we need to explicitly clamp the final ones
+
+ if (depth == 4) {
+ for (k = x * img_n; k >= 2; k -= 2, ++in) {
+ *cur++ = scale * ((*in >> 4));
+ *cur++ = scale * ((*in) & 0x0f);
+ }
+ if (k > 0) *cur++ = scale * ((*in >> 4));
}
- if (k > 0) *cur++ = scale * ((*in >> 4) );
- } else if (depth == 2) {
- for (k=x*img_n; k >= 4; k-=4, ++in) {
- *cur++ = scale * ((*in >> 6) );
- *cur++ = scale * ((*in >> 4) & 0x03);
- *cur++ = scale * ((*in >> 2) & 0x03);
- *cur++ = scale * ((*in ) & 0x03);
+ else if (depth == 2) {
+ for (k = x * img_n; k >= 4; k -= 4, ++in) {
+ *cur++ = scale * ((*in >> 6));
+ *cur++ = scale * ((*in >> 4) & 0x03);
+ *cur++ = scale * ((*in >> 2) & 0x03);
+ *cur++ = scale * ((*in) & 0x03);
+ }
+ if (k > 0) *cur++ = scale * ((*in >> 6));
+ if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03);
+ if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03);
}
- if (k > 0) *cur++ = scale * ((*in >> 6) );
- if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03);
- if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03);
- } else if (depth == 1) {
- for (k=x*img_n; k >= 8; k-=8, ++in) {
- *cur++ = scale * ((*in >> 7) );
- *cur++ = scale * ((*in >> 6) & 0x01);
- *cur++ = scale * ((*in >> 5) & 0x01);
- *cur++ = scale * ((*in >> 4) & 0x01);
- *cur++ = scale * ((*in >> 3) & 0x01);
- *cur++ = scale * ((*in >> 2) & 0x01);
- *cur++ = scale * ((*in >> 1) & 0x01);
- *cur++ = scale * ((*in ) & 0x01);
+ else if (depth == 1) {
+ for (k = x * img_n; k >= 8; k -= 8, ++in) {
+ *cur++ = scale * ((*in >> 7));
+ *cur++ = scale * ((*in >> 6) & 0x01);
+ *cur++ = scale * ((*in >> 5) & 0x01);
+ *cur++ = scale * ((*in >> 4) & 0x01);
+ *cur++ = scale * ((*in >> 3) & 0x01);
+ *cur++ = scale * ((*in >> 2) & 0x01);
+ *cur++ = scale * ((*in >> 1) & 0x01);
+ *cur++ = scale * ((*in) & 0x01);
+ }
+ if (k > 0) *cur++ = scale * ((*in >> 7));
+ if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01);
+ if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01);
+ if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01);
+ if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01);
+ if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01);
+ if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01);
}
- if (k > 0) *cur++ = scale * ((*in >> 7) );
- if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01);
- if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01);
- if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01);
- if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01);
- if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01);
- if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01);
- }
- if (img_n != out_n) {
- // insert alpha = 255
- stbi_uc *cur = a->out + stride*j;
- int i;
- if (img_n == 1) {
- for (i=x-1; i >= 0; --i) {
- cur[i*2+1] = 255;
- cur[i*2+0] = cur[i];
- }
- } else {
- STBI_ASSERT(img_n == 3);
- for (i=x-1; i >= 0; --i) {
- cur[i*4+3] = 255;
- cur[i*4+2] = cur[i*3+2];
- cur[i*4+1] = cur[i*3+1];
- cur[i*4+0] = cur[i*3+0];
- }
+ if (img_n != out_n) {
+ int q;
+ // insert alpha = 255
+ cur = a->out + stride * j;
+ if (img_n == 1) {
+ for (q = x - 1; q >= 0; --q) {
+ cur[q * 2 + 1] = 255;
+ cur[q * 2 + 0] = cur[q];
+ }
+ }
+ else {
+ STBI_ASSERT(img_n == 3);
+ for (q = x - 1; q >= 0; --q) {
+ cur[q * 4 + 3] = 255;
+ cur[q * 4 + 2] = cur[q * 3 + 2];
+ cur[q * 4 + 1] = cur[q * 3 + 1];
+ cur[q * 4 + 0] = cur[q * 3 + 0];
+ }
+ }
}
- }
- }
- }
+ }
+ }
+ else if (depth == 16) {
+ // force the image data from big-endian to platform-native.
+ // this is done in a separate pass due to the decoding relying
+ // on the data being untouched, but could probably be done
+ // per-line during decode if care is taken.
+ stbi_uc* cur = a->out;
+ stbi__uint16* cur16 = (stbi__uint16*)cur;
+
+ for (i = 0; i < x * y * out_n; ++i, cur16++, cur += 2) {
+ *cur16 = (cur[0] << 8) | cur[1];
+ }
+ }
- return 1;
-}
-
-static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced)
-{
- stbi_uc *final;
- int p;
- if (!interlaced)
- return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color);
-
- // de-interlacing
- final = (stbi_uc *) stbi__malloc(a->s->img_x * a->s->img_y * out_n);
- for (p=0; p < 7; ++p) {
- int xorig[] = { 0,4,0,2,0,1,0 };
- int yorig[] = { 0,0,4,0,2,0,1 };
- int xspc[] = { 8,8,4,4,2,2,1 };
- int yspc[] = { 8,8,8,4,4,2,2 };
- int i,j,x,y;
- // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1
- x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p];
- y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p];
- if (x && y) {
- stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y;
- if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) {
- STBI_FREE(final);
- return 0;
- }
- for (j=0; j < y; ++j) {
- for (i=0; i < x; ++i) {
- int out_y = j*yspc[p]+yorig[p];
- int out_x = i*xspc[p]+xorig[p];
- memcpy(final + out_y*a->s->img_x*out_n + out_x*out_n,
- a->out + (j*x+i)*out_n, out_n);
+ return 1;
+}
+
+static int stbi__create_png_image(stbi__png* a, stbi_uc* image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced)
+{
+ int bytes = (depth == 16 ? 2 : 1);
+ int out_bytes = out_n * bytes;
+ stbi_uc* final;
+ int p;
+ if (!interlaced)
+ return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color);
+
+ // de-interlacing
+ final = (stbi_uc*)stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0);
+ if (!final) return stbi__err("outofmem", "Out of memory");
+ for (p = 0; p < 7; ++p) {
+ int xorig[] = { 0,4,0,2,0,1,0 };
+ int yorig[] = { 0,0,4,0,2,0,1 };
+ int xspc[] = { 8,8,4,4,2,2,1 };
+ int yspc[] = { 8,8,8,4,4,2,2 };
+ int i, j, x, y;
+ // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1
+ x = (a->s->img_x - xorig[p] + xspc[p] - 1) / xspc[p];
+ y = (a->s->img_y - yorig[p] + yspc[p] - 1) / yspc[p];
+ if (x && y) {
+ stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y;
+ if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) {
+ STBI_FREE(final);
+ return 0;
}
- }
- STBI_FREE(a->out);
- image_data += img_len;
- image_data_len -= img_len;
- }
- }
- a->out = final;
+ for (j = 0; j < y; ++j) {
+ for (i = 0; i < x; ++i) {
+ int out_y = j * yspc[p] + yorig[p];
+ int out_x = i * xspc[p] + xorig[p];
+ memcpy(final + out_y * a->s->img_x * out_bytes + out_x * out_bytes,
+ a->out + (j * x + i) * out_bytes, out_bytes);
+ }
+ }
+ STBI_FREE(a->out);
+ image_data += img_len;
+ image_data_len -= img_len;
+ }
+ }
+ a->out = final;
- return 1;
+ return 1;
}
-static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n)
+static int stbi__compute_transparency(stbi__png* z, stbi_uc tc[3], int out_n)
{
- stbi__context *s = z->s;
- stbi__uint32 i, pixel_count = s->img_x * s->img_y;
- stbi_uc *p = z->out;
+ stbi__context* s = z->s;
+ stbi__uint32 i, pixel_count = s->img_x * s->img_y;
+ stbi_uc* p = z->out;
- // compute color-based transparency, assuming we've
- // already got 255 as the alpha value in the output
- STBI_ASSERT(out_n == 2 || out_n == 4);
+ // compute color-based transparency, assuming we've
+ // already got 255 as the alpha value in the output
+ STBI_ASSERT(out_n == 2 || out_n == 4);
- if (out_n == 2) {
- for (i=0; i < pixel_count; ++i) {
- p[1] = (p[0] == tc[0] ? 0 : 255);
- p += 2;
- }
- } else {
- for (i=0; i < pixel_count; ++i) {
- if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
- p[3] = 0;
- p += 4;
- }
- }
- return 1;
+ if (out_n == 2) {
+ for (i = 0; i < pixel_count; ++i) {
+ p[1] = (p[0] == tc[0] ? 0 : 255);
+ p += 2;
+ }
+ }
+ else {
+ for (i = 0; i < pixel_count; ++i) {
+ if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
+ p[3] = 0;
+ p += 4;
+ }
+ }
+ return 1;
+}
+
+static int stbi__compute_transparency16(stbi__png* z, stbi__uint16 tc[3], int out_n)
+{
+ stbi__context* s = z->s;
+ stbi__uint32 i, pixel_count = s->img_x * s->img_y;
+ stbi__uint16* p = (stbi__uint16*)z->out;
+
+ // compute color-based transparency, assuming we've
+ // already got 65535 as the alpha value in the output
+ STBI_ASSERT(out_n == 2 || out_n == 4);
+
+ if (out_n == 2) {
+ for (i = 0; i < pixel_count; ++i) {
+ p[1] = (p[0] == tc[0] ? 0 : 65535);
+ p += 2;
+ }
+ }
+ else {
+ for (i = 0; i < pixel_count; ++i) {
+ if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
+ p[3] = 0;
+ p += 4;
+ }
+ }
+ return 1;
}
-static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n)
+static int stbi__expand_png_palette(stbi__png* a, stbi_uc* palette, int len, int pal_img_n)
{
- stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y;
- stbi_uc *p, *temp_out, *orig = a->out;
+ stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y;
+ stbi_uc* p, * temp_out, * orig = a->out;
- p = (stbi_uc *) stbi__malloc(pixel_count * pal_img_n);
- if (p == NULL) return stbi__err("outofmem", "Out of memory");
+ p = (stbi_uc*)stbi__malloc_mad2(pixel_count, pal_img_n, 0);
+ if (p == NULL) return stbi__err("outofmem", "Out of memory");
- // between here and free(out) below, exitting would leak
- temp_out = p;
+ // between here and free(out) below, exitting would leak
+ temp_out = p;
- if (pal_img_n == 3) {
- for (i=0; i < pixel_count; ++i) {
- int n = orig[i]*4;
- p[0] = palette[n ];
- p[1] = palette[n+1];
- p[2] = palette[n+2];
- p += 3;
- }
- } else {
- for (i=0; i < pixel_count; ++i) {
- int n = orig[i]*4;
- p[0] = palette[n ];
- p[1] = palette[n+1];
- p[2] = palette[n+2];
- p[3] = palette[n+3];
- p += 4;
- }
- }
- STBI_FREE(a->out);
- a->out = temp_out;
+ if (pal_img_n == 3) {
+ for (i = 0; i < pixel_count; ++i) {
+ int n = orig[i] * 4;
+ p[0] = palette[n];
+ p[1] = palette[n + 1];
+ p[2] = palette[n + 2];
+ p += 3;
+ }
+ }
+ else {
+ for (i = 0; i < pixel_count; ++i) {
+ int n = orig[i] * 4;
+ p[0] = palette[n];
+ p[1] = palette[n + 1];
+ p[2] = palette[n + 2];
+ p[3] = palette[n + 3];
+ p += 4;
+ }
+ }
+ STBI_FREE(a->out);
+ a->out = temp_out;
- STBI_NOTUSED(len);
+ STBI_NOTUSED(len);
- return 1;
+ return 1;
}
-static int stbi__unpremultiply_on_load = 0;
-static int stbi__de_iphone_flag = 0;
+static int stbi__unpremultiply_on_load_global = 0;
+static int stbi__de_iphone_flag_global = 0;
STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply)
{
- stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply;
+ stbi__unpremultiply_on_load_global = flag_true_if_should_unpremultiply;
}
STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert)
{
- stbi__de_iphone_flag = flag_true_if_should_convert;
+ stbi__de_iphone_flag_global = flag_true_if_should_convert;
}
-static void stbi__de_iphone(stbi__png *z)
+#ifndef STBI_THREAD_LOCAL
+#define stbi__unpremultiply_on_load stbi__unpremultiply_on_load_global
+#define stbi__de_iphone_flag stbi__de_iphone_flag_global
+#else
+static STBI_THREAD_LOCAL int stbi__unpremultiply_on_load_local, stbi__unpremultiply_on_load_set;
+static STBI_THREAD_LOCAL int stbi__de_iphone_flag_local, stbi__de_iphone_flag_set;
+
+STBIDEF void stbi_set_unpremultiply_on_load_thread(int flag_true_if_should_unpremultiply)
{
- stbi__context *s = z->s;
- stbi__uint32 i, pixel_count = s->img_x * s->img_y;
- stbi_uc *p = z->out;
+ stbi__unpremultiply_on_load_local = flag_true_if_should_unpremultiply;
+ stbi__unpremultiply_on_load_set = 1;
+}
- if (s->img_out_n == 3) { // convert bgr to rgb
- for (i=0; i < pixel_count; ++i) {
- stbi_uc t = p[0];
- p[0] = p[2];
- p[2] = t;
- p += 3;
- }
- } else {
- STBI_ASSERT(s->img_out_n == 4);
- if (stbi__unpremultiply_on_load) {
- // convert bgr to rgb and unpremultiply
- for (i=0; i < pixel_count; ++i) {
- stbi_uc a = p[3];
- stbi_uc t = p[0];
- if (a) {
- p[0] = p[2] * 255 / a;
- p[1] = p[1] * 255 / a;
- p[2] = t * 255 / a;
- } else {
- p[0] = p[2];
- p[2] = t;
- }
- p += 4;
- }
- } else {
- // convert bgr to rgb
- for (i=0; i < pixel_count; ++i) {
+STBIDEF void stbi_convert_iphone_png_to_rgb_thread(int flag_true_if_should_convert)
+{
+ stbi__de_iphone_flag_local = flag_true_if_should_convert;
+ stbi__de_iphone_flag_set = 1;
+}
+
+#define stbi__unpremultiply_on_load (stbi__unpremultiply_on_load_set \
+ ? stbi__unpremultiply_on_load_local \
+ : stbi__unpremultiply_on_load_global)
+#define stbi__de_iphone_flag (stbi__de_iphone_flag_set \
+ ? stbi__de_iphone_flag_local \
+ : stbi__de_iphone_flag_global)
+#endif // STBI_THREAD_LOCAL
+
+static void stbi__de_iphone(stbi__png* z)
+{
+ stbi__context* s = z->s;
+ stbi__uint32 i, pixel_count = s->img_x * s->img_y;
+ stbi_uc* p = z->out;
+
+ if (s->img_out_n == 3) { // convert bgr to rgb
+ for (i = 0; i < pixel_count; ++i) {
stbi_uc t = p[0];
p[0] = p[2];
p[2] = t;
- p += 4;
- }
- }
- }
+ p += 3;
+ }
+ }
+ else {
+ STBI_ASSERT(s->img_out_n == 4);
+ if (stbi__unpremultiply_on_load) {
+ // convert bgr to rgb and unpremultiply
+ for (i = 0; i < pixel_count; ++i) {
+ stbi_uc a = p[3];
+ stbi_uc t = p[0];
+ if (a) {
+ stbi_uc half = a / 2;
+ p[0] = (p[2] * 255 + half) / a;
+ p[1] = (p[1] * 255 + half) / a;
+ p[2] = (t * 255 + half) / a;
+ }
+ else {
+ p[0] = p[2];
+ p[2] = t;
+ }
+ p += 4;
+ }
+ }
+ else {
+ // convert bgr to rgb
+ for (i = 0; i < pixel_count; ++i) {
+ stbi_uc t = p[0];
+ p[0] = p[2];
+ p[2] = t;
+ p += 4;
+ }
+ }
+ }
}
-#define STBI__PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
+#define STBI__PNG_TYPE(a,b,c,d) (((unsigned) (a) << 24) + ((unsigned) (b) << 16) + ((unsigned) (c) << 8) + (unsigned) (d))
-static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp)
+static int stbi__parse_png_file(stbi__png* z, int scan, int req_comp)
{
- stbi_uc palette[1024], pal_img_n=0;
- stbi_uc has_trans=0, tc[3];
- stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0;
- int first=1,k,interlace=0, color=0, depth=0, is_iphone=0;
- stbi__context *s = z->s;
+ stbi_uc palette[1024], pal_img_n = 0;
+ stbi_uc has_trans = 0, tc[3] = { 0 };
+ stbi__uint16 tc16[3];
+ stbi__uint32 ioff = 0, idata_limit = 0, i, pal_len = 0;
+ int first = 1, k, interlace = 0, color = 0, is_iphone = 0;
+ stbi__context* s = z->s;
- z->expanded = NULL;
- z->idata = NULL;
- z->out = NULL;
+ z->expanded = NULL;
+ z->idata = NULL;
+ z->out = NULL;
- if (!stbi__check_png_header(s)) return 0;
+ if (!stbi__check_png_header(s)) return 0;
- if (scan == STBI__SCAN_type) return 1;
+ if (scan == STBI__SCAN_type) return 1;
- for (;;) {
- stbi__pngchunk c = stbi__get_chunk_header(s);
- switch (c.type) {
- case STBI__PNG_TYPE('C','g','B','I'):
+ for (;;) {
+ stbi__pngchunk c = stbi__get_chunk_header(s);
+ switch (c.type) {
+ case STBI__PNG_TYPE('C', 'g', 'B', 'I'):
is_iphone = 1;
stbi__skip(s, c.length);
break;
- case STBI__PNG_TYPE('I','H','D','R'): {
- int comp,filter;
- if (!first) return stbi__err("multiple IHDR","Corrupt PNG");
+ case STBI__PNG_TYPE('I', 'H', 'D', 'R'): {
+ int comp, filter;
+ if (!first) return stbi__err("multiple IHDR", "Corrupt PNG");
first = 0;
- if (c.length != 13) return stbi__err("bad IHDR len","Corrupt PNG");
- s->img_x = stbi__get32be(s); if (s->img_x > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)");
- s->img_y = stbi__get32be(s); if (s->img_y > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)");
- depth = stbi__get8(s); if (depth != 1 && depth != 2 && depth != 4 && depth != 8) return stbi__err("1/2/4/8-bit only","PNG not supported: 1/2/4/8-bit only");
- color = stbi__get8(s); if (color > 6) return stbi__err("bad ctype","Corrupt PNG");
- if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype","Corrupt PNG");
- comp = stbi__get8(s); if (comp) return stbi__err("bad comp method","Corrupt PNG");
- filter= stbi__get8(s); if (filter) return stbi__err("bad filter method","Corrupt PNG");
- interlace = stbi__get8(s); if (interlace>1) return stbi__err("bad interlace method","Corrupt PNG");
- if (!s->img_x || !s->img_y) return stbi__err("0-pixel image","Corrupt PNG");
+ if (c.length != 13) return stbi__err("bad IHDR len", "Corrupt PNG");
+ s->img_x = stbi__get32be(s);
+ s->img_y = stbi__get32be(s);
+ if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__err("too large", "Very large image (corrupt?)");
+ if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__err("too large", "Very large image (corrupt?)");
+ z->depth = stbi__get8(s); if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16) return stbi__err("1/2/4/8/16-bit only", "PNG not supported: 1/2/4/8/16-bit only");
+ color = stbi__get8(s); if (color > 6) return stbi__err("bad ctype", "Corrupt PNG");
+ if (color == 3 && z->depth == 16) return stbi__err("bad ctype", "Corrupt PNG");
+ if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype", "Corrupt PNG");
+ comp = stbi__get8(s); if (comp) return stbi__err("bad comp method", "Corrupt PNG");
+ filter = stbi__get8(s); if (filter) return stbi__err("bad filter method", "Corrupt PNG");
+ interlace = stbi__get8(s); if (interlace > 1) return stbi__err("bad interlace method", "Corrupt PNG");
+ if (!s->img_x || !s->img_y) return stbi__err("0-pixel image", "Corrupt PNG");
if (!pal_img_n) {
- s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0);
- if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode");
- if (scan == STBI__SCAN_header) return 1;
- } else {
- // if paletted, then pal_n is our final components, and
- // img_n is # components to decompress/filter.
- s->img_n = 1;
- if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large","Corrupt PNG");
- // if SCAN_header, have to scan to see if we have a tRNS
+ s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0);
+ if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode");
+ }
+ else {
+ // if paletted, then pal_n is our final components, and
+ // img_n is # components to decompress/filter.
+ s->img_n = 1;
+ if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large", "Corrupt PNG");
}
+ // even with SCAN_header, have to scan to see if we have a tRNS
break;
- }
+ }
- case STBI__PNG_TYPE('P','L','T','E'): {
+ case STBI__PNG_TYPE('P', 'L', 'T', 'E'): {
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
- if (c.length > 256*3) return stbi__err("invalid PLTE","Corrupt PNG");
+ if (c.length > 256 * 3) return stbi__err("invalid PLTE", "Corrupt PNG");
pal_len = c.length / 3;
- if (pal_len * 3 != c.length) return stbi__err("invalid PLTE","Corrupt PNG");
- for (i=0; i < pal_len; ++i) {
- palette[i*4+0] = stbi__get8(s);
- palette[i*4+1] = stbi__get8(s);
- palette[i*4+2] = stbi__get8(s);
- palette[i*4+3] = 255;
+ if (pal_len * 3 != c.length) return stbi__err("invalid PLTE", "Corrupt PNG");
+ for (i = 0; i < pal_len; ++i) {
+ palette[i * 4 + 0] = stbi__get8(s);
+ palette[i * 4 + 1] = stbi__get8(s);
+ palette[i * 4 + 2] = stbi__get8(s);
+ palette[i * 4 + 3] = 255;
}
break;
- }
+ }
- case STBI__PNG_TYPE('t','R','N','S'): {
+ case STBI__PNG_TYPE('t', 'R', 'N', 'S'): {
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
- if (z->idata) return stbi__err("tRNS after IDAT","Corrupt PNG");
+ if (z->idata) return stbi__err("tRNS after IDAT", "Corrupt PNG");
if (pal_img_n) {
- if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; }
- if (pal_len == 0) return stbi__err("tRNS before PLTE","Corrupt PNG");
- if (c.length > pal_len) return stbi__err("bad tRNS len","Corrupt PNG");
- pal_img_n = 4;
- for (i=0; i < c.length; ++i)
- palette[i*4+3] = stbi__get8(s);
- } else {
- if (!(s->img_n & 1)) return stbi__err("tRNS with alpha","Corrupt PNG");
- if (c.length != (stbi__uint32) s->img_n*2) return stbi__err("bad tRNS len","Corrupt PNG");
- has_trans = 1;
- for (k=0; k < s->img_n; ++k)
- tc[k] = (stbi_uc) (stbi__get16be(s) & 255) * stbi__depth_scale_table[depth]; // non 8-bit images will be larger
+ if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; }
+ if (pal_len == 0) return stbi__err("tRNS before PLTE", "Corrupt PNG");
+ if (c.length > pal_len) return stbi__err("bad tRNS len", "Corrupt PNG");
+ pal_img_n = 4;
+ for (i = 0; i < c.length; ++i)
+ palette[i * 4 + 3] = stbi__get8(s);
+ }
+ else {
+ if (!(s->img_n & 1)) return stbi__err("tRNS with alpha", "Corrupt PNG");
+ if (c.length != (stbi__uint32)s->img_n * 2) return stbi__err("bad tRNS len", "Corrupt PNG");
+ has_trans = 1;
+ // non-paletted with tRNS = constant alpha. if header-scanning, we can stop now.
+ if (scan == STBI__SCAN_header) { ++s->img_n; return 1; }
+ if (z->depth == 16) {
+ for (k = 0; k < s->img_n; ++k) tc16[k] = (stbi__uint16)stbi__get16be(s); // copy the values as-is
+ }
+ else {
+ for (k = 0; k < s->img_n; ++k) tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * stbi__depth_scale_table[z->depth]; // non 8-bit images will be larger
+ }
}
break;
- }
+ }
- case STBI__PNG_TYPE('I','D','A','T'): {
+ case STBI__PNG_TYPE('I', 'D', 'A', 'T'): {
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
- if (pal_img_n && !pal_len) return stbi__err("no PLTE","Corrupt PNG");
- if (scan == STBI__SCAN_header) { s->img_n = pal_img_n; return 1; }
+ if (pal_img_n && !pal_len) return stbi__err("no PLTE", "Corrupt PNG");
+ if (scan == STBI__SCAN_header) {
+ // header scan definitely stops at first IDAT
+ if (pal_img_n)
+ s->img_n = pal_img_n;
+ return 1;
+ }
+ if (c.length > (1u << 30)) return stbi__err("IDAT size limit", "IDAT section larger than 2^30 bytes");
if ((int)(ioff + c.length) < (int)ioff) return 0;
if (ioff + c.length > idata_limit) {
- stbi_uc *p;
- if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096;
- while (ioff + c.length > idata_limit)
- idata_limit *= 2;
- p = (stbi_uc *) STBI_REALLOC(z->idata, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory");
- z->idata = p;
+ stbi__uint32 idata_limit_old = idata_limit;
+ stbi_uc* p;
+ if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096;
+ while (ioff + c.length > idata_limit)
+ idata_limit *= 2;
+ STBI_NOTUSED(idata_limit_old);
+ p = (stbi_uc*)STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory");
+ z->idata = p;
}
- if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err("outofdata","Corrupt PNG");
+ if (!stbi__getn(s, z->idata + ioff, c.length)) return stbi__err("outofdata", "Corrupt PNG");
ioff += c.length;
break;
- }
+ }
- case STBI__PNG_TYPE('I','E','N','D'): {
+ case STBI__PNG_TYPE('I', 'E', 'N', 'D'): {
stbi__uint32 raw_len, bpl;
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if (scan != STBI__SCAN_load) return 1;
- if (z->idata == NULL) return stbi__err("no IDAT","Corrupt PNG");
+ if (z->idata == NULL) return stbi__err("no IDAT", "Corrupt PNG");
// initial guess for decoded data size to avoid unnecessary reallocs
- bpl = (s->img_x * depth + 7) / 8; // bytes per line, per component
+ bpl = (s->img_x * z->depth + 7) / 8; // bytes per line, per component
raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */;
- z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, !is_iphone);
+ z->expanded = (stbi_uc*)stbi_zlib_decode_malloc_guesssize_headerflag((char*)z->idata, ioff, raw_len, (int*)&raw_len, !is_iphone);
if (z->expanded == NULL) return 0; // zlib should set error
STBI_FREE(z->idata); z->idata = NULL;
- if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans)
- s->img_out_n = s->img_n+1;
+ if ((req_comp == s->img_n + 1 && req_comp != 3 && !pal_img_n) || has_trans)
+ s->img_out_n = s->img_n + 1;
else
- s->img_out_n = s->img_n;
- if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, depth, color, interlace)) return 0;
- if (has_trans)
- if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0;
+ s->img_out_n = s->img_n;
+ if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0;
+ if (has_trans) {
+ if (z->depth == 16) {
+ if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) return 0;
+ }
+ else {
+ if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0;
+ }
+ }
if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2)
- stbi__de_iphone(z);
+ stbi__de_iphone(z);
if (pal_img_n) {
- // pal_img_n == 3 or 4
- s->img_n = pal_img_n; // record the actual colors we had
- s->img_out_n = pal_img_n;
- if (req_comp >= 3) s->img_out_n = req_comp;
- if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n))
- return 0;
+ // pal_img_n == 3 or 4
+ s->img_n = pal_img_n; // record the actual colors we had
+ s->img_out_n = pal_img_n;
+ if (req_comp >= 3) s->img_out_n = req_comp;
+ if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n))
+ return 0;
+ }
+ else if (has_trans) {
+ // non-paletted image with tRNS -> source image has (constant) alpha
+ ++s->img_n;
}
STBI_FREE(z->expanded); z->expanded = NULL;
+ // end of PNG chunk, read and skip CRC
+ stbi__get32be(s);
return 1;
- }
+ }
- default:
+ default:
// if critical, fail
if (first) return stbi__err("first not IHDR", "Corrupt PNG");
if ((c.type & (1 << 29)) == 0) {
- #ifndef STBI_NO_FAILURE_STRINGS
- // not threadsafe
- static char invalid_chunk[] = "XXXX PNG chunk not known";
- invalid_chunk[0] = STBI__BYTECAST(c.type >> 24);
- invalid_chunk[1] = STBI__BYTECAST(c.type >> 16);
- invalid_chunk[2] = STBI__BYTECAST(c.type >> 8);
- invalid_chunk[3] = STBI__BYTECAST(c.type >> 0);
- #endif
- return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type");
+#ifndef STBI_NO_FAILURE_STRINGS
+ // not threadsafe
+ static char invalid_chunk[] = "XXXX PNG chunk not known";
+ invalid_chunk[0] = STBI__BYTECAST(c.type >> 24);
+ invalid_chunk[1] = STBI__BYTECAST(c.type >> 16);
+ invalid_chunk[2] = STBI__BYTECAST(c.type >> 8);
+ invalid_chunk[3] = STBI__BYTECAST(c.type >> 0);
+#endif
+ return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type");
}
stbi__skip(s, c.length);
break;
- }
- // end of PNG chunk, read and skip CRC
- stbi__get32be(s);
- }
+ }
+ // end of PNG chunk, read and skip CRC
+ stbi__get32be(s);
+ }
}
-static unsigned char *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp)
-{
- unsigned char *result=NULL;
- if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error");
- if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) {
- result = p->out;
- p->out = NULL;
- if (req_comp && req_comp != p->s->img_out_n) {
- result = stbi__convert_format(result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
- p->s->img_out_n = req_comp;
- if (result == NULL) return result;
- }
- *x = p->s->img_x;
- *y = p->s->img_y;
- if (n) *n = p->s->img_out_n;
- }
- STBI_FREE(p->out); p->out = NULL;
- STBI_FREE(p->expanded); p->expanded = NULL;
- STBI_FREE(p->idata); p->idata = NULL;
+static void* stbi__do_png(stbi__png* p, int* x, int* y, int* n, int req_comp, stbi__result_info* ri)
+{
+ void* result = NULL;
+ if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error");
+ if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) {
+ if (p->depth <= 8)
+ ri->bits_per_channel = 8;
+ else if (p->depth == 16)
+ ri->bits_per_channel = 16;
+ else
+ return stbi__errpuc("bad bits_per_channel", "PNG not supported: unsupported color depth");
+ result = p->out;
+ p->out = NULL;
+ if (req_comp && req_comp != p->s->img_out_n) {
+ if (ri->bits_per_channel == 8)
+ result = stbi__convert_format((unsigned char*)result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
+ else
+ result = stbi__convert_format16((stbi__uint16*)result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
+ p->s->img_out_n = req_comp;
+ if (result == NULL) return result;
+ }
+ *x = p->s->img_x;
+ *y = p->s->img_y;
+ if (n) *n = p->s->img_n;
+ }
+ STBI_FREE(p->out); p->out = NULL;
+ STBI_FREE(p->expanded); p->expanded = NULL;
+ STBI_FREE(p->idata); p->idata = NULL;
- return result;
+ return result;
}
-static unsigned char *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
+static void* stbi__png_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri)
{
- stbi__png p;
- p.s = s;
- return stbi__do_png(&p, x,y,comp,req_comp);
+ stbi__png p;
+ p.s = s;
+ return stbi__do_png(&p, x, y, comp, req_comp, ri);
}
-static int stbi__png_test(stbi__context *s)
+static int stbi__png_test(stbi__context* s)
{
- int r;
- r = stbi__check_png_header(s);
- stbi__rewind(s);
- return r;
+ int r;
+ r = stbi__check_png_header(s);
+ stbi__rewind(s);
+ return r;
}
-static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp)
+static int stbi__png_info_raw(stbi__png* p, int* x, int* y, int* comp)
{
- if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) {
- stbi__rewind( p->s );
- return 0;
- }
- if (x) *x = p->s->img_x;
- if (y) *y = p->s->img_y;
- if (comp) *comp = p->s->img_n;
- return 1;
+ if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) {
+ stbi__rewind(p->s);
+ return 0;
+ }
+ if (x) *x = p->s->img_x;
+ if (y) *y = p->s->img_y;
+ if (comp) *comp = p->s->img_n;
+ return 1;
+}
+
+static int stbi__png_info(stbi__context* s, int* x, int* y, int* comp)
+{
+ stbi__png p;
+ p.s = s;
+ return stbi__png_info_raw(&p, x, y, comp);
}
-static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp)
+static int stbi__png_is16(stbi__context* s)
{
- stbi__png p;
- p.s = s;
- return stbi__png_info_raw(&p, x, y, comp);
+ stbi__png p;
+ p.s = s;
+ if (!stbi__png_info_raw(&p, NULL, NULL, NULL))
+ return 0;
+ if (p.depth != 16) {
+ stbi__rewind(p.s);
+ return 0;
+ }
+ return 1;
}
#endif
// Microsoft/Windows BMP image
#ifndef STBI_NO_BMP
-static int stbi__bmp_test_raw(stbi__context *s)
+static int stbi__bmp_test_raw(stbi__context* s)
{
- int r;
- int sz;
- if (stbi__get8(s) != 'B') return 0;
- if (stbi__get8(s) != 'M') return 0;
- stbi__get32le(s); // discard filesize
- stbi__get16le(s); // discard reserved
- stbi__get16le(s); // discard reserved
- stbi__get32le(s); // discard data offset
- sz = stbi__get32le(s);
- r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124);
- return r;
+ int r;
+ int sz;
+ if (stbi__get8(s) != 'B') return 0;
+ if (stbi__get8(s) != 'M') return 0;
+ stbi__get32le(s); // discard filesize
+ stbi__get16le(s); // discard reserved
+ stbi__get16le(s); // discard reserved
+ stbi__get32le(s); // discard data offset
+ sz = stbi__get32le(s);
+ r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124);
+ return r;
}
-static int stbi__bmp_test(stbi__context *s)
+static int stbi__bmp_test(stbi__context* s)
{
- int r = stbi__bmp_test_raw(s);
- stbi__rewind(s);
- return r;
+ int r = stbi__bmp_test_raw(s);
+ stbi__rewind(s);
+ return r;
}
// returns 0..31 for the highest set bit
static int stbi__high_bit(unsigned int z)
{
- int n=0;
- if (z == 0) return -1;
- if (z >= 0x10000) n += 16, z >>= 16;
- if (z >= 0x00100) n += 8, z >>= 8;
- if (z >= 0x00010) n += 4, z >>= 4;
- if (z >= 0x00004) n += 2, z >>= 2;
- if (z >= 0x00002) n += 1, z >>= 1;
- return n;
+ int n = 0;
+ if (z == 0) return -1;
+ if (z >= 0x10000) { n += 16; z >>= 16; }
+ if (z >= 0x00100) { n += 8; z >>= 8; }
+ if (z >= 0x00010) { n += 4; z >>= 4; }
+ if (z >= 0x00004) { n += 2; z >>= 2; }
+ if (z >= 0x00002) { n += 1;/* >>= 1;*/ }
+ return n;
}
static int stbi__bitcount(unsigned int a)
{
- a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2
- a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4
- a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits
- a = (a + (a >> 8)); // max 16 per 8 bits
- a = (a + (a >> 16)); // max 32 per 8 bits
- return a & 0xff;
+ a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2
+ a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4
+ a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits
+ a = (a + (a >> 8)); // max 16 per 8 bits
+ a = (a + (a >> 16)); // max 32 per 8 bits
+ return a & 0xff;
+}
+
+// extract an arbitrarily-aligned N-bit value (N=bits)
+// from v, and then make it 8-bits long and fractionally
+// extend it to full full range.
+static int stbi__shiftsigned(unsigned int v, int shift, int bits)
+{
+ static unsigned int mul_table[9] = {
+ 0,
+ 0xff/*0b11111111*/, 0x55/*0b01010101*/, 0x49/*0b01001001*/, 0x11/*0b00010001*/,
+ 0x21/*0b00100001*/, 0x41/*0b01000001*/, 0x81/*0b10000001*/, 0x01/*0b00000001*/,
+ };
+ static unsigned int shift_table[9] = {
+ 0, 0,0,1,0,2,4,6,0,
+ };
+ if (shift < 0)
+ v <<= -shift;
+ else
+ v >>= shift;
+ STBI_ASSERT(v < 256);
+ v >>= (8 - bits);
+ STBI_ASSERT(bits >= 0 && bits <= 8);
+ return (int)((unsigned)v * mul_table[bits]) >> shift_table[bits];
}
-static int stbi__shiftsigned(int v, int shift, int bits)
+typedef struct
{
- int result;
- int z=0;
+ int bpp, offset, hsz;
+ unsigned int mr, mg, mb, ma, all_a;
+ int extra_read;
+} stbi__bmp_data;
+
+static int stbi__bmp_set_mask_defaults(stbi__bmp_data* info, int compress)
+{
+ // BI_BITFIELDS specifies masks explicitly, don't override
+ if (compress == 3)
+ return 1;
+
+ if (compress == 0) {
+ if (info->bpp == 16) {
+ info->mr = 31u << 10;
+ info->mg = 31u << 5;
+ info->mb = 31u << 0;
+ }
+ else if (info->bpp == 32) {
+ info->mr = 0xffu << 16;
+ info->mg = 0xffu << 8;
+ info->mb = 0xffu << 0;
+ info->ma = 0xffu << 24;
+ info->all_a = 0; // if all_a is 0 at end, then we loaded alpha channel but it was all 0
+ }
+ else {
+ // otherwise, use defaults, which is all-0
+ info->mr = info->mg = info->mb = info->ma = 0;
+ }
+ return 1;
+ }
+ return 0; // error
+}
- if (shift < 0) v <<= -shift;
- else v >>= shift;
- result = v;
+static void* stbi__bmp_parse_header(stbi__context* s, stbi__bmp_data* info)
+{
+ int hsz;
+ if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') return stbi__errpuc("not BMP", "Corrupt BMP");
+ stbi__get32le(s); // discard filesize
+ stbi__get16le(s); // discard reserved
+ stbi__get16le(s); // discard reserved
+ info->offset = stbi__get32le(s);
+ info->hsz = hsz = stbi__get32le(s);
+ info->mr = info->mg = info->mb = info->ma = 0;
+ info->extra_read = 14;
- z = bits;
- while (z < 8) {
- result += v >> z;
- z += bits;
- }
- return result;
-}
-
-static stbi_uc *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
-{
- stbi_uc *out;
- unsigned int mr=0,mg=0,mb=0,ma=0, fake_a=0;
- stbi_uc pal[256][4];
- int psize=0,i,j,compress=0,width;
- int bpp, flip_vertically, pad, target, offset, hsz;
- if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') return stbi__errpuc("not BMP", "Corrupt BMP");
- stbi__get32le(s); // discard filesize
- stbi__get16le(s); // discard reserved
- stbi__get16le(s); // discard reserved
- offset = stbi__get32le(s);
- hsz = stbi__get32le(s);
- if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) return stbi__errpuc("unknown BMP", "BMP type not supported: unknown");
- if (hsz == 12) {
- s->img_x = stbi__get16le(s);
- s->img_y = stbi__get16le(s);
- } else {
- s->img_x = stbi__get32le(s);
- s->img_y = stbi__get32le(s);
- }
- if (stbi__get16le(s) != 1) return stbi__errpuc("bad BMP", "bad BMP");
- bpp = stbi__get16le(s);
- if (bpp == 1) return stbi__errpuc("monochrome", "BMP type not supported: 1-bit");
- flip_vertically = ((int) s->img_y) > 0;
- s->img_y = abs((int) s->img_y);
- if (hsz == 12) {
- if (bpp < 24)
- psize = (offset - 14 - 24) / 3;
- } else {
- compress = stbi__get32le(s);
- if (compress == 1 || compress == 2) return stbi__errpuc("BMP RLE", "BMP type not supported: RLE");
- stbi__get32le(s); // discard sizeof
- stbi__get32le(s); // discard hres
- stbi__get32le(s); // discard vres
- stbi__get32le(s); // discard colorsused
- stbi__get32le(s); // discard max important
- if (hsz == 40 || hsz == 56) {
- if (hsz == 56) {
- stbi__get32le(s);
- stbi__get32le(s);
- stbi__get32le(s);
- stbi__get32le(s);
- }
- if (bpp == 16 || bpp == 32) {
- mr = mg = mb = 0;
- if (compress == 0) {
- if (bpp == 32) {
- mr = 0xffu << 16;
- mg = 0xffu << 8;
- mb = 0xffu << 0;
- ma = 0xffu << 24;
- fake_a = 1; // @TODO: check for cases like alpha value is all 0 and switch it to 255
- STBI_NOTUSED(fake_a);
- } else {
- mr = 31u << 10;
- mg = 31u << 5;
- mb = 31u << 0;
- }
- } else if (compress == 3) {
- mr = stbi__get32le(s);
- mg = stbi__get32le(s);
- mb = stbi__get32le(s);
- // not documented, but generated by photoshop and handled by mspaint
- if (mr == mg && mg == mb) {
- // ?!?!?
- return stbi__errpuc("bad BMP", "bad BMP");
- }
- } else
- return stbi__errpuc("bad BMP", "bad BMP");
- }
- } else {
- STBI_ASSERT(hsz == 108 || hsz == 124);
- mr = stbi__get32le(s);
- mg = stbi__get32le(s);
- mb = stbi__get32le(s);
- ma = stbi__get32le(s);
- stbi__get32le(s); // discard color space
- for (i=0; i < 12; ++i)
- stbi__get32le(s); // discard color space parameters
- if (hsz == 124) {
- stbi__get32le(s); // discard rendering intent
- stbi__get32le(s); // discard offset of profile data
- stbi__get32le(s); // discard size of profile data
- stbi__get32le(s); // discard reserved
- }
- }
- if (bpp < 16)
- psize = (offset - 14 - hsz) >> 2;
- }
- s->img_n = ma ? 4 : 3;
- if (req_comp && req_comp >= 3) // we can directly decode 3 or 4
- target = req_comp;
- else
- target = s->img_n; // if they want monochrome, we'll post-convert
- out = (stbi_uc *) stbi__malloc(target * s->img_x * s->img_y);
- if (!out) return stbi__errpuc("outofmem", "Out of memory");
- if (bpp < 16) {
- int z=0;
- if (psize == 0 || psize > 256) { STBI_FREE(out); return stbi__errpuc("invalid", "Corrupt BMP"); }
- for (i=0; i < psize; ++i) {
- pal[i][2] = stbi__get8(s);
- pal[i][1] = stbi__get8(s);
- pal[i][0] = stbi__get8(s);
- if (hsz != 12) stbi__get8(s);
- pal[i][3] = 255;
- }
- stbi__skip(s, offset - 14 - hsz - psize * (hsz == 12 ? 3 : 4));
- if (bpp == 4) width = (s->img_x + 1) >> 1;
- else if (bpp == 8) width = s->img_x;
- else { STBI_FREE(out); return stbi__errpuc("bad bpp", "Corrupt BMP"); }
- pad = (-width)&3;
- for (j=0; j < (int) s->img_y; ++j) {
- for (i=0; i < (int) s->img_x; i += 2) {
- int v=stbi__get8(s),v2=0;
- if (bpp == 4) {
- v2 = v & 15;
- v >>= 4;
+ if (info->offset < 0) return stbi__errpuc("bad BMP", "bad BMP");
+
+ if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) return stbi__errpuc("unknown BMP", "BMP type not supported: unknown");
+ if (hsz == 12) {
+ s->img_x = stbi__get16le(s);
+ s->img_y = stbi__get16le(s);
+ }
+ else {
+ s->img_x = stbi__get32le(s);
+ s->img_y = stbi__get32le(s);
+ }
+ if (stbi__get16le(s) != 1) return stbi__errpuc("bad BMP", "bad BMP");
+ info->bpp = stbi__get16le(s);
+ if (hsz != 12) {
+ int compress = stbi__get32le(s);
+ if (compress == 1 || compress == 2) return stbi__errpuc("BMP RLE", "BMP type not supported: RLE");
+ if (compress >= 4) return stbi__errpuc("BMP JPEG/PNG", "BMP type not supported: unsupported compression"); // this includes PNG/JPEG modes
+ if (compress == 3 && info->bpp != 16 && info->bpp != 32) return stbi__errpuc("bad BMP", "bad BMP"); // bitfields requires 16 or 32 bits/pixel
+ stbi__get32le(s); // discard sizeof
+ stbi__get32le(s); // discard hres
+ stbi__get32le(s); // discard vres
+ stbi__get32le(s); // discard colorsused
+ stbi__get32le(s); // discard max important
+ if (hsz == 40 || hsz == 56) {
+ if (hsz == 56) {
+ stbi__get32le(s);
+ stbi__get32le(s);
+ stbi__get32le(s);
+ stbi__get32le(s);
}
- out[z++] = pal[v][0];
- out[z++] = pal[v][1];
- out[z++] = pal[v][2];
- if (target == 4) out[z++] = 255;
- if (i+1 == (int) s->img_x) break;
- v = (bpp == 8) ? stbi__get8(s) : v2;
- out[z++] = pal[v][0];
- out[z++] = pal[v][1];
- out[z++] = pal[v][2];
- if (target == 4) out[z++] = 255;
- }
- stbi__skip(s, pad);
- }
- } else {
- int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0;
- int z = 0;
- int easy=0;
- stbi__skip(s, offset - 14 - hsz);
- if (bpp == 24) width = 3 * s->img_x;
- else if (bpp == 16) width = 2*s->img_x;
- else /* bpp = 32 and pad = 0 */ width=0;
- pad = (-width) & 3;
- if (bpp == 24) {
- easy = 1;
- } else if (bpp == 32) {
- if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000)
- easy = 2;
- }
- if (!easy) {
- if (!mr || !mg || !mb) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); }
- // right shift amt to put high bit in position #7
- rshift = stbi__high_bit(mr)-7; rcount = stbi__bitcount(mr);
- gshift = stbi__high_bit(mg)-7; gcount = stbi__bitcount(mg);
- bshift = stbi__high_bit(mb)-7; bcount = stbi__bitcount(mb);
- ashift = stbi__high_bit(ma)-7; acount = stbi__bitcount(ma);
- }
- for (j=0; j < (int) s->img_y; ++j) {
- if (easy) {
- for (i=0; i < (int) s->img_x; ++i) {
- unsigned char a;
- out[z+2] = stbi__get8(s);
- out[z+1] = stbi__get8(s);
- out[z+0] = stbi__get8(s);
- z += 3;
- a = (easy == 2 ? stbi__get8(s) : 255);
- if (target == 4) out[z++] = a;
+ if (info->bpp == 16 || info->bpp == 32) {
+ if (compress == 0) {
+ stbi__bmp_set_mask_defaults(info, compress);
+ }
+ else if (compress == 3) {
+ info->mr = stbi__get32le(s);
+ info->mg = stbi__get32le(s);
+ info->mb = stbi__get32le(s);
+ info->extra_read += 12;
+ // not documented, but generated by photoshop and handled by mspaint
+ if (info->mr == info->mg && info->mg == info->mb) {
+ // ?!?!?
+ return stbi__errpuc("bad BMP", "bad BMP");
+ }
+ }
+ else
+ return stbi__errpuc("bad BMP", "bad BMP");
}
- } else {
- for (i=0; i < (int) s->img_x; ++i) {
- stbi__uint32 v = (bpp == 16 ? (stbi__uint32) stbi__get16le(s) : stbi__get32le(s));
- int a;
- out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount));
- out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount));
- out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount));
- a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255);
- if (target == 4) out[z++] = STBI__BYTECAST(a);
+ }
+ else {
+ // V4/V5 header
+ int i;
+ if (hsz != 108 && hsz != 124)
+ return stbi__errpuc("bad BMP", "bad BMP");
+ info->mr = stbi__get32le(s);
+ info->mg = stbi__get32le(s);
+ info->mb = stbi__get32le(s);
+ info->ma = stbi__get32le(s);
+ if (compress != 3) // override mr/mg/mb unless in BI_BITFIELDS mode, as per docs
+ stbi__bmp_set_mask_defaults(info, compress);
+ stbi__get32le(s); // discard color space
+ for (i = 0; i < 12; ++i)
+ stbi__get32le(s); // discard color space parameters
+ if (hsz == 124) {
+ stbi__get32le(s); // discard rendering intent
+ stbi__get32le(s); // discard offset of profile data
+ stbi__get32le(s); // discard size of profile data
+ stbi__get32le(s); // discard reserved
}
- }
- stbi__skip(s, pad);
- }
- }
- if (flip_vertically) {
- stbi_uc t;
- for (j=0; j < (int) s->img_y>>1; ++j) {
- stbi_uc *p1 = out + j *s->img_x*target;
- stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target;
- for (i=0; i < (int) s->img_x*target; ++i) {
- t = p1[i], p1[i] = p2[i], p2[i] = t;
- }
- }
- }
+ }
+ }
+ return (void*)1;
+}
- if (req_comp && req_comp != target) {
- out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y);
- if (out == NULL) return out; // stbi__convert_format frees input on failure
- }
- *x = s->img_x;
- *y = s->img_y;
- if (comp) *comp = s->img_n;
- return out;
+static void* stbi__bmp_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri)
+{
+ stbi_uc* out;
+ unsigned int mr = 0, mg = 0, mb = 0, ma = 0, all_a;
+ stbi_uc pal[256][4];
+ int psize = 0, i, j, width;
+ int flip_vertically, pad, target;
+ stbi__bmp_data info;
+ STBI_NOTUSED(ri);
+
+ info.all_a = 255;
+ if (stbi__bmp_parse_header(s, &info) == NULL)
+ return NULL; // error code already set
+
+ flip_vertically = ((int)s->img_y) > 0;
+ s->img_y = abs((int)s->img_y);
+
+ if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large", "Very large image (corrupt?)");
+ if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large", "Very large image (corrupt?)");
+
+ mr = info.mr;
+ mg = info.mg;
+ mb = info.mb;
+ ma = info.ma;
+ all_a = info.all_a;
+
+ if (info.hsz == 12) {
+ if (info.bpp < 24)
+ psize = (info.offset - info.extra_read - 24) / 3;
+ }
+ else {
+ if (info.bpp < 16)
+ psize = (info.offset - info.extra_read - info.hsz) >> 2;
+ }
+ if (psize == 0) {
+ // accept some number of extra bytes after the header, but if the offset points either to before
+ // the header ends or implies a large amount of extra data, reject the file as malformed
+ int bytes_read_so_far = s->callback_already_read + (int)(s->img_buffer - s->img_buffer_original);
+ int header_limit = 1024; // max we actually read is below 256 bytes currently.
+ int extra_data_limit = 256 * 4; // what ordinarily goes here is a palette; 256 entries*4 bytes is its max size.
+ if (bytes_read_so_far <= 0 || bytes_read_so_far > header_limit) {
+ return stbi__errpuc("bad header", "Corrupt BMP");
+ }
+ // we established that bytes_read_so_far is positive and sensible.
+ // the first half of this test rejects offsets that are either too small positives, or
+ // negative, and guarantees that info.offset >= bytes_read_so_far > 0. this in turn
+ // ensures the number computed in the second half of the test can't overflow.
+ if (info.offset < bytes_read_so_far || info.offset - bytes_read_so_far > extra_data_limit) {
+ return stbi__errpuc("bad offset", "Corrupt BMP");
+ }
+ else {
+ stbi__skip(s, info.offset - bytes_read_so_far);
+ }
+ }
+
+ if (info.bpp == 24 && ma == 0xff000000)
+ s->img_n = 3;
+ else
+ s->img_n = ma ? 4 : 3;
+ if (req_comp && req_comp >= 3) // we can directly decode 3 or 4
+ target = req_comp;
+ else
+ target = s->img_n; // if they want monochrome, we'll post-convert
+
+ // sanity-check size
+ if (!stbi__mad3sizes_valid(target, s->img_x, s->img_y, 0))
+ return stbi__errpuc("too large", "Corrupt BMP");
+
+ out = (stbi_uc*)stbi__malloc_mad3(target, s->img_x, s->img_y, 0);
+ if (!out) return stbi__errpuc("outofmem", "Out of memory");
+ if (info.bpp < 16) {
+ int z = 0;
+ if (psize == 0 || psize > 256) { STBI_FREE(out); return stbi__errpuc("invalid", "Corrupt BMP"); }
+ for (i = 0; i < psize; ++i) {
+ pal[i][2] = stbi__get8(s);
+ pal[i][1] = stbi__get8(s);
+ pal[i][0] = stbi__get8(s);
+ if (info.hsz != 12) stbi__get8(s);
+ pal[i][3] = 255;
+ }
+ stbi__skip(s, info.offset - info.extra_read - info.hsz - psize * (info.hsz == 12 ? 3 : 4));
+ if (info.bpp == 1) width = (s->img_x + 7) >> 3;
+ else if (info.bpp == 4) width = (s->img_x + 1) >> 1;
+ else if (info.bpp == 8) width = s->img_x;
+ else { STBI_FREE(out); return stbi__errpuc("bad bpp", "Corrupt BMP"); }
+ pad = (-width) & 3;
+ if (info.bpp == 1) {
+ for (j = 0; j < (int)s->img_y; ++j) {
+ int bit_offset = 7, v = stbi__get8(s);
+ for (i = 0; i < (int)s->img_x; ++i) {
+ int color = (v >> bit_offset) & 0x1;
+ out[z++] = pal[color][0];
+ out[z++] = pal[color][1];
+ out[z++] = pal[color][2];
+ if (target == 4) out[z++] = 255;
+ if (i + 1 == (int)s->img_x) break;
+ if ((--bit_offset) < 0) {
+ bit_offset = 7;
+ v = stbi__get8(s);
+ }
+ }
+ stbi__skip(s, pad);
+ }
+ }
+ else {
+ for (j = 0; j < (int)s->img_y; ++j) {
+ for (i = 0; i < (int)s->img_x; i += 2) {
+ int v = stbi__get8(s), v2 = 0;
+ if (info.bpp == 4) {
+ v2 = v & 15;
+ v >>= 4;
+ }
+ out[z++] = pal[v][0];
+ out[z++] = pal[v][1];
+ out[z++] = pal[v][2];
+ if (target == 4) out[z++] = 255;
+ if (i + 1 == (int)s->img_x) break;
+ v = (info.bpp == 8) ? stbi__get8(s) : v2;
+ out[z++] = pal[v][0];
+ out[z++] = pal[v][1];
+ out[z++] = pal[v][2];
+ if (target == 4) out[z++] = 255;
+ }
+ stbi__skip(s, pad);
+ }
+ }
+ }
+ else {
+ int rshift = 0, gshift = 0, bshift = 0, ashift = 0, rcount = 0, gcount = 0, bcount = 0, acount = 0;
+ int z = 0;
+ int easy = 0;
+ stbi__skip(s, info.offset - info.extra_read - info.hsz);
+ if (info.bpp == 24) width = 3 * s->img_x;
+ else if (info.bpp == 16) width = 2 * s->img_x;
+ else /* bpp = 32 and pad = 0 */ width = 0;
+ pad = (-width) & 3;
+ if (info.bpp == 24) {
+ easy = 1;
+ }
+ else if (info.bpp == 32) {
+ if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000)
+ easy = 2;
+ }
+ if (!easy) {
+ if (!mr || !mg || !mb) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); }
+ // right shift amt to put high bit in position #7
+ rshift = stbi__high_bit(mr) - 7; rcount = stbi__bitcount(mr);
+ gshift = stbi__high_bit(mg) - 7; gcount = stbi__bitcount(mg);
+ bshift = stbi__high_bit(mb) - 7; bcount = stbi__bitcount(mb);
+ ashift = stbi__high_bit(ma) - 7; acount = stbi__bitcount(ma);
+ if (rcount > 8 || gcount > 8 || bcount > 8 || acount > 8) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); }
+ }
+ for (j = 0; j < (int)s->img_y; ++j) {
+ if (easy) {
+ for (i = 0; i < (int)s->img_x; ++i) {
+ unsigned char a;
+ out[z + 2] = stbi__get8(s);
+ out[z + 1] = stbi__get8(s);
+ out[z + 0] = stbi__get8(s);
+ z += 3;
+ a = (easy == 2 ? stbi__get8(s) : 255);
+ all_a |= a;
+ if (target == 4) out[z++] = a;
+ }
+ }
+ else {
+ int bpp = info.bpp;
+ for (i = 0; i < (int)s->img_x; ++i) {
+ stbi__uint32 v = (bpp == 16 ? (stbi__uint32)stbi__get16le(s) : stbi__get32le(s));
+ unsigned int a;
+ out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount));
+ out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount));
+ out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount));
+ a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255);
+ all_a |= a;
+ if (target == 4) out[z++] = STBI__BYTECAST(a);
+ }
+ }
+ stbi__skip(s, pad);
+ }
+ }
+
+ // if alpha channel is all 0s, replace with all 255s
+ if (target == 4 && all_a == 0)
+ for (i = 4 * s->img_x * s->img_y - 1; i >= 0; i -= 4)
+ out[i] = 255;
+
+ if (flip_vertically) {
+ stbi_uc t;
+ for (j = 0; j < (int)s->img_y >> 1; ++j) {
+ stbi_uc* p1 = out + j * s->img_x * target;
+ stbi_uc* p2 = out + (s->img_y - 1 - j) * s->img_x * target;
+ for (i = 0; i < (int)s->img_x * target; ++i) {
+ t = p1[i]; p1[i] = p2[i]; p2[i] = t;
+ }
+ }
+ }
+
+ if (req_comp && req_comp != target) {
+ out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y);
+ if (out == NULL) return out; // stbi__convert_format frees input on failure
+ }
+
+ *x = s->img_x;
+ *y = s->img_y;
+ if (comp) *comp = s->img_n;
+ return out;
}
#endif
// Targa Truevision - TGA
// by Jonathan Dummer
#ifndef STBI_NO_TGA
-static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp)
+// returns STBI_rgb or whatever, 0 on error
+static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int* is_rgb16)
+{
+ // only RGB or RGBA (incl. 16bit) or grey allowed
+ if (is_rgb16) *is_rgb16 = 0;
+ switch (bits_per_pixel) {
+ case 8: return STBI_grey;
+ case 16: if (is_grey) return STBI_grey_alpha;
+ // fallthrough
+ case 15: if (is_rgb16) *is_rgb16 = 1;
+ return STBI_rgb;
+ case 24: // fallthrough
+ case 32: return bits_per_pixel / 8;
+ default: return 0;
+ }
+}
+
+static int stbi__tga_info(stbi__context* s, int* x, int* y, int* comp)
{
- int tga_w, tga_h, tga_comp;
- int sz;
+ int tga_w, tga_h, tga_comp, tga_image_type, tga_bits_per_pixel, tga_colormap_bpp;
+ int sz, tga_colormap_type;
stbi__get8(s); // discard Offset
- sz = stbi__get8(s); // color type
- if( sz > 1 ) {
+ tga_colormap_type = stbi__get8(s); // colormap type
+ if (tga_colormap_type > 1) {
stbi__rewind(s);
return 0; // only RGB or indexed allowed
}
- sz = stbi__get8(s); // image type
- // only RGB or grey allowed, +/- RLE
- if ((sz != 1) && (sz != 2) && (sz != 3) && (sz != 9) && (sz != 10) && (sz != 11)) return 0;
- stbi__skip(s,9);
+ tga_image_type = stbi__get8(s); // image type
+ if (tga_colormap_type == 1) { // colormapped (paletted) image
+ if (tga_image_type != 1 && tga_image_type != 9) {
+ stbi__rewind(s);
+ return 0;
+ }
+ stbi__skip(s, 4); // skip index of first colormap entry and number of entries
+ sz = stbi__get8(s); // check bits per palette color entry
+ if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) {
+ stbi__rewind(s);
+ return 0;
+ }
+ stbi__skip(s, 4); // skip image x and y origin
+ tga_colormap_bpp = sz;
+ }
+ else { // "normal" image w/o colormap - only RGB or grey allowed, +/- RLE
+ if ((tga_image_type != 2) && (tga_image_type != 3) && (tga_image_type != 10) && (tga_image_type != 11)) {
+ stbi__rewind(s);
+ return 0; // only RGB or grey allowed, +/- RLE
+ }
+ stbi__skip(s, 9); // skip colormap specification and image x/y origin
+ tga_colormap_bpp = 0;
+ }
tga_w = stbi__get16le(s);
- if( tga_w < 1 ) {
+ if (tga_w < 1) {
stbi__rewind(s);
return 0; // test width
}
tga_h = stbi__get16le(s);
- if( tga_h < 1 ) {
+ if (tga_h < 1) {
stbi__rewind(s);
return 0; // test height
}
- sz = stbi__get8(s); // bits per pixel
- // only RGB or RGBA or grey allowed
- if ((sz != 8) && (sz != 16) && (sz != 24) && (sz != 32)) {
+ tga_bits_per_pixel = stbi__get8(s); // bits per pixel
+ stbi__get8(s); // ignore alpha bits
+ if (tga_colormap_bpp != 0) {
+ if ((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) {
+ // when using a colormap, tga_bits_per_pixel is the size of the indexes
+ // I don't think anything but 8 or 16bit indexes makes sense
+ stbi__rewind(s);
+ return 0;
+ }
+ tga_comp = stbi__tga_get_comp(tga_colormap_bpp, 0, NULL);
+ }
+ else {
+ tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3) || (tga_image_type == 11), NULL);
+ }
+ if (!tga_comp) {
stbi__rewind(s);
return 0;
}
- tga_comp = sz;
if (x) *x = tga_w;
if (y) *y = tga_h;
- if (comp) *comp = tga_comp / 8;
+ if (comp) *comp = tga_comp;
return 1; // seems to have passed everything
}
-static int stbi__tga_test(stbi__context *s)
-{
- int res;
- int sz;
- stbi__get8(s); // discard Offset
- sz = stbi__get8(s); // color type
- if ( sz > 1 ) return 0; // only RGB or indexed allowed
- sz = stbi__get8(s); // image type
- if ( (sz != 1) && (sz != 2) && (sz != 3) && (sz != 9) && (sz != 10) && (sz != 11) ) return 0; // only RGB or grey allowed, +/- RLE
- stbi__get16be(s); // discard palette start
- stbi__get16be(s); // discard palette length
- stbi__get8(s); // discard bits per palette color entry
- stbi__get16be(s); // discard x origin
- stbi__get16be(s); // discard y origin
- if ( stbi__get16be(s) < 1 ) return 0; // test width
- if ( stbi__get16be(s) < 1 ) return 0; // test height
- sz = stbi__get8(s); // bits per pixel
- if ( (sz != 8) && (sz != 16) && (sz != 24) && (sz != 32) )
- res = 0;
- else
- res = 1;
- stbi__rewind(s);
- return res;
-}
-
-static stbi_uc *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
-{
- // read in the TGA header stuff
- int tga_offset = stbi__get8(s);
- int tga_indexed = stbi__get8(s);
- int tga_image_type = stbi__get8(s);
- int tga_is_RLE = 0;
- int tga_palette_start = stbi__get16le(s);
- int tga_palette_len = stbi__get16le(s);
- int tga_palette_bits = stbi__get8(s);
- int tga_x_origin = stbi__get16le(s);
- int tga_y_origin = stbi__get16le(s);
- int tga_width = stbi__get16le(s);
- int tga_height = stbi__get16le(s);
- int tga_bits_per_pixel = stbi__get8(s);
- int tga_comp = tga_bits_per_pixel / 8;
- int tga_inverted = stbi__get8(s);
- // image data
- unsigned char *tga_data;
- unsigned char *tga_palette = NULL;
- int i, j;
- unsigned char raw_data[4];
- int RLE_count = 0;
- int RLE_repeating = 0;
- int read_next_pixel = 1;
-
- // do a tiny bit of precessing
- if ( tga_image_type >= 8 )
- {
- tga_image_type -= 8;
- tga_is_RLE = 1;
- }
- /* int tga_alpha_bits = tga_inverted & 15; */
- tga_inverted = 1 - ((tga_inverted >> 5) & 1);
-
- // error check
- if ( //(tga_indexed) ||
- (tga_width < 1) || (tga_height < 1) ||
- (tga_image_type < 1) || (tga_image_type > 3) ||
- ((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16) &&
- (tga_bits_per_pixel != 24) && (tga_bits_per_pixel != 32))
- )
- {
- return NULL; // we don't report this as a bad TGA because we don't even know if it's TGA
- }
+static int stbi__tga_test(stbi__context* s)
+{
+ int res = 0;
+ int sz, tga_color_type;
+ stbi__get8(s); // discard Offset
+ tga_color_type = stbi__get8(s); // color type
+ if (tga_color_type > 1) goto errorEnd; // only RGB or indexed allowed
+ sz = stbi__get8(s); // image type
+ if (tga_color_type == 1) { // colormapped (paletted) image
+ if (sz != 1 && sz != 9) goto errorEnd; // colortype 1 demands image type 1 or 9
+ stbi__skip(s, 4); // skip index of first colormap entry and number of entries
+ sz = stbi__get8(s); // check bits per palette color entry
+ if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) goto errorEnd;
+ stbi__skip(s, 4); // skip image x and y origin
+ }
+ else { // "normal" image w/o colormap
+ if ((sz != 2) && (sz != 3) && (sz != 10) && (sz != 11)) goto errorEnd; // only RGB or grey allowed, +/- RLE
+ stbi__skip(s, 9); // skip colormap specification and image x/y origin
+ }
+ if (stbi__get16le(s) < 1) goto errorEnd; // test width
+ if (stbi__get16le(s) < 1) goto errorEnd; // test height
+ sz = stbi__get8(s); // bits per pixel
+ if ((tga_color_type == 1) && (sz != 8) && (sz != 16)) goto errorEnd; // for colormapped images, bpp is size of an index
+ if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) goto errorEnd;
+
+ res = 1; // if we got this far, everything's good and we can return 1 instead of 0
+
+errorEnd:
+ stbi__rewind(s);
+ return res;
+}
+
+// read 16bit value and convert to 24bit RGB
+static void stbi__tga_read_rgb16(stbi__context* s, stbi_uc* out)
+{
+ stbi__uint16 px = (stbi__uint16)stbi__get16le(s);
+ stbi__uint16 fiveBitMask = 31;
+ // we have 3 channels with 5bits each
+ int r = (px >> 10) & fiveBitMask;
+ int g = (px >> 5) & fiveBitMask;
+ int b = px & fiveBitMask;
+ // Note that this saves the data in RGB(A) order, so it doesn't need to be swapped later
+ out[0] = (stbi_uc)((r * 255) / 31);
+ out[1] = (stbi_uc)((g * 255) / 31);
+ out[2] = (stbi_uc)((b * 255) / 31);
+
+ // some people claim that the most significant bit might be used for alpha
+ // (possibly if an alpha-bit is set in the "image descriptor byte")
+ // but that only made 16bit test images completely translucent..
+ // so let's treat all 15 and 16bit TGAs as RGB with no alpha.
+}
+
+static void* stbi__tga_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri)
+{
+ // read in the TGA header stuff
+ int tga_offset = stbi__get8(s);
+ int tga_indexed = stbi__get8(s);
+ int tga_image_type = stbi__get8(s);
+ int tga_is_RLE = 0;
+ int tga_palette_start = stbi__get16le(s);
+ int tga_palette_len = stbi__get16le(s);
+ int tga_palette_bits = stbi__get8(s);
+ int tga_x_origin = stbi__get16le(s);
+ int tga_y_origin = stbi__get16le(s);
+ int tga_width = stbi__get16le(s);
+ int tga_height = stbi__get16le(s);
+ int tga_bits_per_pixel = stbi__get8(s);
+ int tga_comp, tga_rgb16 = 0;
+ int tga_inverted = stbi__get8(s);
+ // int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits - unused (useless?)
+ // image data
+ unsigned char* tga_data;
+ unsigned char* tga_palette = NULL;
+ int i, j;
+ unsigned char raw_data[4] = { 0 };
+ int RLE_count = 0;
+ int RLE_repeating = 0;
+ int read_next_pixel = 1;
+ STBI_NOTUSED(ri);
+ STBI_NOTUSED(tga_x_origin); // @TODO
+ STBI_NOTUSED(tga_y_origin); // @TODO
+
+ if (tga_height > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large", "Very large image (corrupt?)");
+ if (tga_width > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large", "Very large image (corrupt?)");
+
+ // do a tiny bit of precessing
+ if (tga_image_type >= 8)
+ {
+ tga_image_type -= 8;
+ tga_is_RLE = 1;
+ }
+ tga_inverted = 1 - ((tga_inverted >> 5) & 1);
- // If I'm paletted, then I'll use the number of bits from the palette
- if ( tga_indexed )
- {
- tga_comp = tga_palette_bits / 8;
- }
+ // If I'm paletted, then I'll use the number of bits from the palette
+ if (tga_indexed) tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16);
+ else tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), &tga_rgb16);
- // tga info
- *x = tga_width;
- *y = tga_height;
- if (comp) *comp = tga_comp;
+ if (!tga_comp) // shouldn't really happen, stbi__tga_test() should have ensured basic consistency
+ return stbi__errpuc("bad format", "Can't find out TGA pixelformat");
- tga_data = (unsigned char*)stbi__malloc( (size_t)tga_width * tga_height * tga_comp );
- if (!tga_data) return stbi__errpuc("outofmem", "Out of memory");
+ // tga info
+ *x = tga_width;
+ *y = tga_height;
+ if (comp) *comp = tga_comp;
- // skip to the data's starting position (offset usually = 0)
- stbi__skip(s, tga_offset );
+ if (!stbi__mad3sizes_valid(tga_width, tga_height, tga_comp, 0))
+ return stbi__errpuc("too large", "Corrupt TGA");
- if ( !tga_indexed && !tga_is_RLE) {
- for (i=0; i < tga_height; ++i) {
- int y = tga_inverted ? tga_height -i - 1 : i;
- stbi_uc *tga_row = tga_data + y*tga_width*tga_comp;
- stbi__getn(s, tga_row, tga_width * tga_comp);
- }
- } else {
- // do I need to load a palette?
- if ( tga_indexed)
- {
- // any data to skip? (offset usually = 0)
- stbi__skip(s, tga_palette_start );
- // load the palette
- tga_palette = (unsigned char*)stbi__malloc( tga_palette_len * tga_palette_bits / 8 );
- if (!tga_palette) {
- STBI_FREE(tga_data);
- return stbi__errpuc("outofmem", "Out of memory");
- }
- if (!stbi__getn(s, tga_palette, tga_palette_len * tga_palette_bits / 8 )) {
- STBI_FREE(tga_data);
- STBI_FREE(tga_palette);
- return stbi__errpuc("bad palette", "Corrupt TGA");
- }
- }
- // load the data
- for (i=0; i < tga_width * tga_height; ++i)
- {
- // if I'm in RLE mode, do I need to get a RLE stbi__pngchunk?
- if ( tga_is_RLE )
- {
- if ( RLE_count == 0 )
- {
- // yep, get the next byte as a RLE command
- int RLE_cmd = stbi__get8(s);
- RLE_count = 1 + (RLE_cmd & 127);
- RLE_repeating = RLE_cmd >> 7;
- read_next_pixel = 1;
- } else if ( !RLE_repeating )
- {
- read_next_pixel = 1;
+ tga_data = (unsigned char*)stbi__malloc_mad3(tga_width, tga_height, tga_comp, 0);
+ if (!tga_data) return stbi__errpuc("outofmem", "Out of memory");
+
+ // skip to the data's starting position (offset usually = 0)
+ stbi__skip(s, tga_offset);
+
+ if (!tga_indexed && !tga_is_RLE && !tga_rgb16) {
+ for (i = 0; i < tga_height; ++i) {
+ int row = tga_inverted ? tga_height - i - 1 : i;
+ stbi_uc* tga_row = tga_data + row * tga_width * tga_comp;
+ stbi__getn(s, tga_row, tga_width * tga_comp);
+ }
+ }
+ else {
+ // do I need to load a palette?
+ if (tga_indexed)
+ {
+ if (tga_palette_len == 0) { /* you have to have at least one entry! */
+ STBI_FREE(tga_data);
+ return stbi__errpuc("bad palette", "Corrupt TGA");
+ }
+
+ // any data to skip? (offset usually = 0)
+ stbi__skip(s, tga_palette_start);
+ // load the palette
+ tga_palette = (unsigned char*)stbi__malloc_mad2(tga_palette_len, tga_comp, 0);
+ if (!tga_palette) {
+ STBI_FREE(tga_data);
+ return stbi__errpuc("outofmem", "Out of memory");
+ }
+ if (tga_rgb16) {
+ stbi_uc* pal_entry = tga_palette;
+ STBI_ASSERT(tga_comp == STBI_rgb);
+ for (i = 0; i < tga_palette_len; ++i) {
+ stbi__tga_read_rgb16(s, pal_entry);
+ pal_entry += tga_comp;
+ }
}
- } else
- {
- read_next_pixel = 1;
- }
- // OK, if I need to read a pixel, do it now
- if ( read_next_pixel )
- {
- // load however much data we did have
- if ( tga_indexed )
+ else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) {
+ STBI_FREE(tga_data);
+ STBI_FREE(tga_palette);
+ return stbi__errpuc("bad palette", "Corrupt TGA");
+ }
+ }
+ // load the data
+ for (i = 0; i < tga_width * tga_height; ++i)
+ {
+ // if I'm in RLE mode, do I need to get a RLE stbi__pngchunk?
+ if (tga_is_RLE)
{
- // read in 1 byte, then perform the lookup
- int pal_idx = stbi__get8(s);
- if ( pal_idx >= tga_palette_len )
- {
- // invalid index
- pal_idx = 0;
- }
- pal_idx *= tga_bits_per_pixel / 8;
- for (j = 0; j*8 < tga_bits_per_pixel; ++j)
- {
- raw_data[j] = tga_palette[pal_idx+j];
- }
- } else
+ if (RLE_count == 0)
+ {
+ // yep, get the next byte as a RLE command
+ int RLE_cmd = stbi__get8(s);
+ RLE_count = 1 + (RLE_cmd & 127);
+ RLE_repeating = RLE_cmd >> 7;
+ read_next_pixel = 1;
+ }
+ else if (!RLE_repeating)
+ {
+ read_next_pixel = 1;
+ }
+ }
+ else
{
- // read in the data raw
- for (j = 0; j*8 < tga_bits_per_pixel; ++j)
- {
- raw_data[j] = stbi__get8(s);
- }
+ read_next_pixel = 1;
}
- // clear the reading flag for the next pixel
- read_next_pixel = 0;
- } // end of reading a pixel
-
- // copy data
- for (j = 0; j < tga_comp; ++j)
- tga_data[i*tga_comp+j] = raw_data[j];
-
- // in case we're in RLE mode, keep counting down
- --RLE_count;
- }
- // do I need to invert the image?
- if ( tga_inverted )
- {
- for (j = 0; j*2 < tga_height; ++j)
- {
- int index1 = j * tga_width * tga_comp;
- int index2 = (tga_height - 1 - j) * tga_width * tga_comp;
- for (i = tga_width * tga_comp; i > 0; --i)
+ // OK, if I need to read a pixel, do it now
+ if (read_next_pixel)
{
- unsigned char temp = tga_data[index1];
- tga_data[index1] = tga_data[index2];
- tga_data[index2] = temp;
- ++index1;
- ++index2;
+ // load however much data we did have
+ if (tga_indexed)
+ {
+ // read in index, then perform the lookup
+ int pal_idx = (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s);
+ if (pal_idx >= tga_palette_len) {
+ // invalid index
+ pal_idx = 0;
+ }
+ pal_idx *= tga_comp;
+ for (j = 0; j < tga_comp; ++j) {
+ raw_data[j] = tga_palette[pal_idx + j];
+ }
+ }
+ else if (tga_rgb16) {
+ STBI_ASSERT(tga_comp == STBI_rgb);
+ stbi__tga_read_rgb16(s, raw_data);
+ }
+ else {
+ // read in the data raw
+ for (j = 0; j < tga_comp; ++j) {
+ raw_data[j] = stbi__get8(s);
+ }
+ }
+ // clear the reading flag for the next pixel
+ read_next_pixel = 0;
+ } // end of reading a pixel
+
+ // copy data
+ for (j = 0; j < tga_comp; ++j)
+ tga_data[i * tga_comp + j] = raw_data[j];
+
+ // in case we're in RLE mode, keep counting down
+ --RLE_count;
+ }
+ // do I need to invert the image?
+ if (tga_inverted)
+ {
+ for (j = 0; j * 2 < tga_height; ++j)
+ {
+ int index1 = j * tga_width * tga_comp;
+ int index2 = (tga_height - 1 - j) * tga_width * tga_comp;
+ for (i = tga_width * tga_comp; i > 0; --i)
+ {
+ unsigned char temp = tga_data[index1];
+ tga_data[index1] = tga_data[index2];
+ tga_data[index2] = temp;
+ ++index1;
+ ++index2;
+ }
}
- }
- }
- // clear my palette, if I had one
- if ( tga_palette != NULL )
- {
- STBI_FREE( tga_palette );
- }
- }
+ }
+ // clear my palette, if I had one
+ if (tga_palette != NULL)
+ {
+ STBI_FREE(tga_palette);
+ }
+ }
- // swap RGB
- if (tga_comp >= 3)
- {
- unsigned char* tga_pixel = tga_data;
- for (i=0; i < tga_width * tga_height; ++i)
- {
- unsigned char temp = tga_pixel[0];
- tga_pixel[0] = tga_pixel[2];
- tga_pixel[2] = temp;
- tga_pixel += tga_comp;
- }
- }
+ // swap RGB - if the source data was RGB16, it already is in the right order
+ if (tga_comp >= 3 && !tga_rgb16)
+ {
+ unsigned char* tga_pixel = tga_data;
+ for (i = 0; i < tga_width * tga_height; ++i)
+ {
+ unsigned char temp = tga_pixel[0];
+ tga_pixel[0] = tga_pixel[2];
+ tga_pixel[2] = temp;
+ tga_pixel += tga_comp;
+ }
+ }
- // convert to target component count
- if (req_comp && req_comp != tga_comp)
- tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height);
+ // convert to target component count
+ if (req_comp && req_comp != tga_comp)
+ tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height);
- // the things I do to get rid of an error message, and yet keep
- // Microsoft's C compilers happy... [8^(
- tga_palette_start = tga_palette_len = tga_palette_bits =
- tga_x_origin = tga_y_origin = 0;
- // OK, done
- return tga_data;
+ // the things I do to get rid of an error message, and yet keep
+ // Microsoft's C compilers happy... [8^(
+ tga_palette_start = tga_palette_len = tga_palette_bits =
+ tga_x_origin = tga_y_origin = 0;
+ STBI_NOTUSED(tga_palette_start);
+ // OK, done
+ return tga_data;
}
#endif
@@ -5043,171 +6158,260 @@ static stbi_uc *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int
// Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB
#ifndef STBI_NO_PSD
-static int stbi__psd_test(stbi__context *s)
-{
- int r = (stbi__get32be(s) == 0x38425053);
- stbi__rewind(s);
- return r;
-}
-
-static stbi_uc *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
-{
- int pixelCount;
- int channelCount, compression;
- int channel, i, count, len;
- int w,h;
- stbi_uc *out;
-
- // Check identifier
- if (stbi__get32be(s) != 0x38425053) // "8BPS"
- return stbi__errpuc("not PSD", "Corrupt PSD image");
-
- // Check file type version.
- if (stbi__get16be(s) != 1)
- return stbi__errpuc("wrong version", "Unsupported version of PSD image");
-
- // Skip 6 reserved bytes.
- stbi__skip(s, 6 );
-
- // Read the number of channels (R, G, B, A, etc).
- channelCount = stbi__get16be(s);
- if (channelCount < 0 || channelCount > 16)
- return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image");
-
- // Read the rows and columns of the image.
- h = stbi__get32be(s);
- w = stbi__get32be(s);
-
- // Make sure the depth is 8 bits.
- if (stbi__get16be(s) != 8)
- return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 bit");
-
- // Make sure the color mode is RGB.
- // Valid options are:
- // 0: Bitmap
- // 1: Grayscale
- // 2: Indexed color
- // 3: RGB color
- // 4: CMYK color
- // 7: Multichannel
- // 8: Duotone
- // 9: Lab color
- if (stbi__get16be(s) != 3)
- return stbi__errpuc("wrong color format", "PSD is not in RGB color format");
-
- // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.)
- stbi__skip(s,stbi__get32be(s) );
-
- // Skip the image resources. (resolution, pen tool paths, etc)
- stbi__skip(s, stbi__get32be(s) );
-
- // Skip the reserved data.
- stbi__skip(s, stbi__get32be(s) );
-
- // Find out if the data is compressed.
- // Known values:
- // 0: no compression
- // 1: RLE compressed
- compression = stbi__get16be(s);
- if (compression > 1)
- return stbi__errpuc("bad compression", "PSD has an unknown compression format");
-
- // Create the destination image.
- out = (stbi_uc *) stbi__malloc(4 * w*h);
- if (!out) return stbi__errpuc("outofmem", "Out of memory");
- pixelCount = w*h;
-
- // Initialize the data to zero.
- //memset( out, 0, pixelCount * 4 );
-
- // Finally, the image data.
- if (compression) {
- // RLE as used by .PSD and .TIFF
- // Loop until you get the number of unpacked bytes you are expecting:
- // Read the next source byte into n.
- // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally.
- // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times.
- // Else if n is 128, noop.
- // Endloop
-
- // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data,
- // which we're going to just skip.
- stbi__skip(s, h * channelCount * 2 );
-
- // Read the RLE data by channel.
- for (channel = 0; channel < 4; channel++) {
- stbi_uc *p;
-
- p = out+channel;
- if (channel >= channelCount) {
- // Fill this channel with default data.
- for (i = 0; i < pixelCount; i++, p += 4)
- *p = (channel == 3 ? 255 : 0);
- } else {
- // Read the RLE data.
- count = 0;
- while (count < pixelCount) {
- len = stbi__get8(s);
- if (len == 128) {
- // No-op.
- } else if (len < 128) {
- // Copy next len+1 bytes literally.
- len++;
- count += len;
- while (len) {
- *p = stbi__get8(s);
- p += 4;
- len--;
- }
- } else if (len > 128) {
- stbi_uc val;
- // Next -len+1 bytes in the dest are replicated from next source byte.
- // (Interpret len as a negative 8-bit int.)
- len ^= 0x0FF;
- len += 2;
- val = stbi__get8(s);
- count += len;
- while (len) {
- *p = val;
- p += 4;
- len--;
- }
- }
+static int stbi__psd_test(stbi__context* s)
+{
+ int r = (stbi__get32be(s) == 0x38425053);
+ stbi__rewind(s);
+ return r;
+}
+
+static int stbi__psd_decode_rle(stbi__context* s, stbi_uc* p, int pixelCount)
+{
+ int count, nleft, len;
+
+ count = 0;
+ while ((nleft = pixelCount - count) > 0) {
+ len = stbi__get8(s);
+ if (len == 128) {
+ // No-op.
+ }
+ else if (len < 128) {
+ // Copy next len+1 bytes literally.
+ len++;
+ if (len > nleft) return 0; // corrupt data
+ count += len;
+ while (len) {
+ *p = stbi__get8(s);
+ p += 4;
+ len--;
}
- }
- }
+ }
+ else if (len > 128) {
+ stbi_uc val;
+ // Next -len+1 bytes in the dest are replicated from next source byte.
+ // (Interpret len as a negative 8-bit int.)
+ len = 257 - len;
+ if (len > nleft) return 0; // corrupt data
+ val = stbi__get8(s);
+ count += len;
+ while (len) {
+ *p = val;
+ p += 4;
+ len--;
+ }
+ }
+ }
- } else {
- // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...)
- // where each channel consists of an 8-bit value for each pixel in the image.
-
- // Read the data by channel.
- for (channel = 0; channel < 4; channel++) {
- stbi_uc *p;
-
- p = out + channel;
- if (channel > channelCount) {
- // Fill this channel with default data.
- for (i = 0; i < pixelCount; i++, p += 4)
- *p = channel == 3 ? 255 : 0;
- } else {
- // Read the data.
- for (i = 0; i < pixelCount; i++, p += 4)
- *p = stbi__get8(s);
- }
- }
- }
+ return 1;
+}
+
+static void* stbi__psd_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri, int bpc)
+{
+ int pixelCount;
+ int channelCount, compression;
+ int channel, i;
+ int bitdepth;
+ int w, h;
+ stbi_uc* out;
+ STBI_NOTUSED(ri);
+
+ // Check identifier
+ if (stbi__get32be(s) != 0x38425053) // "8BPS"
+ return stbi__errpuc("not PSD", "Corrupt PSD image");
+
+ // Check file type version.
+ if (stbi__get16be(s) != 1)
+ return stbi__errpuc("wrong version", "Unsupported version of PSD image");
+
+ // Skip 6 reserved bytes.
+ stbi__skip(s, 6);
+
+ // Read the number of channels (R, G, B, A, etc).
+ channelCount = stbi__get16be(s);
+ if (channelCount < 0 || channelCount > 16)
+ return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image");
+
+ // Read the rows and columns of the image.
+ h = stbi__get32be(s);
+ w = stbi__get32be(s);
+
+ if (h > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large", "Very large image (corrupt?)");
+ if (w > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large", "Very large image (corrupt?)");
+
+ // Make sure the depth is 8 bits.
+ bitdepth = stbi__get16be(s);
+ if (bitdepth != 8 && bitdepth != 16)
+ return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 or 16 bit");
+
+ // Make sure the color mode is RGB.
+ // Valid options are:
+ // 0: Bitmap
+ // 1: Grayscale
+ // 2: Indexed color
+ // 3: RGB color
+ // 4: CMYK color
+ // 7: Multichannel
+ // 8: Duotone
+ // 9: Lab color
+ if (stbi__get16be(s) != 3)
+ return stbi__errpuc("wrong color format", "PSD is not in RGB color format");
+
+ // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.)
+ stbi__skip(s, stbi__get32be(s));
+
+ // Skip the image resources. (resolution, pen tool paths, etc)
+ stbi__skip(s, stbi__get32be(s));
+
+ // Skip the reserved data.
+ stbi__skip(s, stbi__get32be(s));
+
+ // Find out if the data is compressed.
+ // Known values:
+ // 0: no compression
+ // 1: RLE compressed
+ compression = stbi__get16be(s);
+ if (compression > 1)
+ return stbi__errpuc("bad compression", "PSD has an unknown compression format");
+
+ // Check size
+ if (!stbi__mad3sizes_valid(4, w, h, 0))
+ return stbi__errpuc("too large", "Corrupt PSD");
+
+ // Create the destination image.
+
+ if (!compression && bitdepth == 16 && bpc == 16) {
+ out = (stbi_uc*)stbi__malloc_mad3(8, w, h, 0);
+ ri->bits_per_channel = 16;
+ }
+ else
+ out = (stbi_uc*)stbi__malloc(4 * w * h);
+
+ if (!out) return stbi__errpuc("outofmem", "Out of memory");
+ pixelCount = w * h;
+
+ // Initialize the data to zero.
+ //memset( out, 0, pixelCount * 4 );
+
+ // Finally, the image data.
+ if (compression) {
+ // RLE as used by .PSD and .TIFF
+ // Loop until you get the number of unpacked bytes you are expecting:
+ // Read the next source byte into n.
+ // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally.
+ // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times.
+ // Else if n is 128, noop.
+ // Endloop
+
+ // The RLE-compressed data is preceded by a 2-byte data count for each row in the data,
+ // which we're going to just skip.
+ stbi__skip(s, h * channelCount * 2);
+
+ // Read the RLE data by channel.
+ for (channel = 0; channel < 4; channel++) {
+ stbi_uc* p;
+
+ p = out + channel;
+ if (channel >= channelCount) {
+ // Fill this channel with default data.
+ for (i = 0; i < pixelCount; i++, p += 4)
+ *p = (channel == 3 ? 255 : 0);
+ }
+ else {
+ // Read the RLE data.
+ if (!stbi__psd_decode_rle(s, p, pixelCount)) {
+ STBI_FREE(out);
+ return stbi__errpuc("corrupt", "bad RLE data");
+ }
+ }
+ }
- if (req_comp && req_comp != 4) {
- out = stbi__convert_format(out, 4, req_comp, w, h);
- if (out == NULL) return out; // stbi__convert_format frees input on failure
- }
+ }
+ else {
+ // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...)
+ // where each channel consists of an 8-bit (or 16-bit) value for each pixel in the image.
+
+ // Read the data by channel.
+ for (channel = 0; channel < 4; channel++) {
+ if (channel >= channelCount) {
+ // Fill this channel with default data.
+ if (bitdepth == 16 && bpc == 16) {
+ stbi__uint16* q = ((stbi__uint16*)out) + channel;
+ stbi__uint16 val = channel == 3 ? 65535 : 0;
+ for (i = 0; i < pixelCount; i++, q += 4)
+ *q = val;
+ }
+ else {
+ stbi_uc* p = out + channel;
+ stbi_uc val = channel == 3 ? 255 : 0;
+ for (i = 0; i < pixelCount; i++, p += 4)
+ *p = val;
+ }
+ }
+ else {
+ if (ri->bits_per_channel == 16) { // output bpc
+ stbi__uint16* q = ((stbi__uint16*)out) + channel;
+ for (i = 0; i < pixelCount; i++, q += 4)
+ *q = (stbi__uint16)stbi__get16be(s);
+ }
+ else {
+ stbi_uc* p = out + channel;
+ if (bitdepth == 16) { // input bpc
+ for (i = 0; i < pixelCount; i++, p += 4)
+ *p = (stbi_uc)(stbi__get16be(s) >> 8);
+ }
+ else {
+ for (i = 0; i < pixelCount; i++, p += 4)
+ *p = stbi__get8(s);
+ }
+ }
+ }
+ }
+ }
+
+ // remove weird white matte from PSD
+ if (channelCount >= 4) {
+ if (ri->bits_per_channel == 16) {
+ for (i = 0; i < w * h; ++i) {
+ stbi__uint16* pixel = (stbi__uint16*)out + 4 * i;
+ if (pixel[3] != 0 && pixel[3] != 65535) {
+ float a = pixel[3] / 65535.0f;
+ float ra = 1.0f / a;
+ float inv_a = 65535.0f * (1 - ra);
+ pixel[0] = (stbi__uint16)(pixel[0] * ra + inv_a);
+ pixel[1] = (stbi__uint16)(pixel[1] * ra + inv_a);
+ pixel[2] = (stbi__uint16)(pixel[2] * ra + inv_a);
+ }
+ }
+ }
+ else {
+ for (i = 0; i < w * h; ++i) {
+ unsigned char* pixel = out + 4 * i;
+ if (pixel[3] != 0 && pixel[3] != 255) {
+ float a = pixel[3] / 255.0f;
+ float ra = 1.0f / a;
+ float inv_a = 255.0f * (1 - ra);
+ pixel[0] = (unsigned char)(pixel[0] * ra + inv_a);
+ pixel[1] = (unsigned char)(pixel[1] * ra + inv_a);
+ pixel[2] = (unsigned char)(pixel[2] * ra + inv_a);
+ }
+ }
+ }
+ }
+
+ // convert to desired output format
+ if (req_comp && req_comp != 4) {
+ if (ri->bits_per_channel == 16)
+ out = (stbi_uc*)stbi__convert_format16((stbi__uint16*)out, 4, req_comp, w, h);
+ else
+ out = stbi__convert_format(out, 4, req_comp, w, h);
+ if (out == NULL) return out; // stbi__convert_format frees input on failure
+ }
- if (comp) *comp = 4;
- *y = h;
- *x = w;
+ if (comp) *comp = 4;
+ *y = h;
+ *x = w;
- return out;
+ return out;
}
#endif
@@ -5219,209 +6423,217 @@ static stbi_uc *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int
// See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/
#ifndef STBI_NO_PIC
-static int stbi__pic_is4(stbi__context *s,const char *str)
+static int stbi__pic_is4(stbi__context* s, const char* str)
{
- int i;
- for (i=0; i<4; ++i)
- if (stbi__get8(s) != (stbi_uc)str[i])
- return 0;
+ int i;
+ for (i = 0; i < 4; ++i)
+ if (stbi__get8(s) != (stbi_uc)str[i])
+ return 0;
- return 1;
+ return 1;
}
-static int stbi__pic_test_core(stbi__context *s)
+static int stbi__pic_test_core(stbi__context* s)
{
- int i;
+ int i;
- if (!stbi__pic_is4(s,"\x53\x80\xF6\x34"))
- return 0;
+ if (!stbi__pic_is4(s, "\x53\x80\xF6\x34"))
+ return 0;
- for(i=0;i<84;++i)
- stbi__get8(s);
+ for (i = 0; i < 84; ++i)
+ stbi__get8(s);
- if (!stbi__pic_is4(s,"PICT"))
- return 0;
+ if (!stbi__pic_is4(s, "PICT"))
+ return 0;
- return 1;
+ return 1;
}
typedef struct
{
- stbi_uc size,type,channel;
+ stbi_uc size, type, channel;
} stbi__pic_packet;
-static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest)
+static stbi_uc* stbi__readval(stbi__context* s, int channel, stbi_uc* dest)
{
- int mask=0x80, i;
+ int mask = 0x80, i;
- for (i=0; i<4; ++i, mask>>=1) {
- if (channel & mask) {
- if (stbi__at_eof(s)) return stbi__errpuc("bad file","PIC file too short");
- dest[i]=stbi__get8(s);
- }
- }
+ for (i = 0; i < 4; ++i, mask >>= 1) {
+ if (channel & mask) {
+ if (stbi__at_eof(s)) return stbi__errpuc("bad file", "PIC file too short");
+ dest[i] = stbi__get8(s);
+ }
+ }
- return dest;
+ return dest;
}
-static void stbi__copyval(int channel,stbi_uc *dest,const stbi_uc *src)
+static void stbi__copyval(int channel, stbi_uc* dest, const stbi_uc* src)
{
- int mask=0x80,i;
+ int mask = 0x80, i;
- for (i=0;i<4; ++i, mask>>=1)
- if (channel&mask)
- dest[i]=src[i];
+ for (i = 0; i < 4; ++i, mask >>= 1)
+ if (channel & mask)
+ dest[i] = src[i];
}
-static stbi_uc *stbi__pic_load_core(stbi__context *s,int width,int height,int *comp, stbi_uc *result)
+static stbi_uc* stbi__pic_load_core(stbi__context* s, int width, int height, int* comp, stbi_uc* result)
{
- int act_comp=0,num_packets=0,y,chained;
- stbi__pic_packet packets[10];
+ int act_comp = 0, num_packets = 0, y, chained;
+ stbi__pic_packet packets[10];
- // this will (should...) cater for even some bizarre stuff like having data
- // for the same channel in multiple packets.
- do {
- stbi__pic_packet *packet;
+ // this will (should...) cater for even some bizarre stuff like having data
+ // for the same channel in multiple packets.
+ do {
+ stbi__pic_packet* packet;
- if (num_packets==sizeof(packets)/sizeof(packets[0]))
- return stbi__errpuc("bad format","too many packets");
+ if (num_packets == sizeof(packets) / sizeof(packets[0]))
+ return stbi__errpuc("bad format", "too many packets");
- packet = &packets[num_packets++];
+ packet = &packets[num_packets++];
- chained = stbi__get8(s);
- packet->size = stbi__get8(s);
- packet->type = stbi__get8(s);
- packet->channel = stbi__get8(s);
+ chained = stbi__get8(s);
+ packet->size = stbi__get8(s);
+ packet->type = stbi__get8(s);
+ packet->channel = stbi__get8(s);
- act_comp |= packet->channel;
+ act_comp |= packet->channel;
- if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (reading packets)");
- if (packet->size != 8) return stbi__errpuc("bad format","packet isn't 8bpp");
- } while (chained);
+ if (stbi__at_eof(s)) return stbi__errpuc("bad file", "file too short (reading packets)");
+ if (packet->size != 8) return stbi__errpuc("bad format", "packet isn't 8bpp");
+ } while (chained);
- *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel?
+ *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel?
- for(y=0; ytype) {
+ switch (packet->type) {
default:
- return stbi__errpuc("bad format","packet has bad compression type");
+ return stbi__errpuc("bad format", "packet has bad compression type");
case 0: {//uncompressed
- int x;
+ int x;
- for(x=0;xchannel,dest))
- return 0;
- break;
+ for (x = 0; x < width; ++x, dest += 4)
+ if (!stbi__readval(s, packet->channel, dest))
+ return 0;
+ break;
}
case 1://Pure RLE
- {
- int left=width, i;
+ {
+ int left = width, i;
- while (left>0) {
- stbi_uc count,value[4];
+ while (left > 0) {
+ stbi_uc count, value[4];
- count=stbi__get8(s);
- if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pure read count)");
+ count = stbi__get8(s);
+ if (stbi__at_eof(s)) return stbi__errpuc("bad file", "file too short (pure read count)");
- if (count > left)
- count = (stbi_uc) left;
+ if (count > left)
+ count = (stbi_uc)left;
- if (!stbi__readval(s,packet->channel,value)) return 0;
+ if (!stbi__readval(s, packet->channel, value)) return 0;
- for(i=0; ichannel,dest,value);
- left -= count;
- }
- }
- break;
+ for (i = 0; i < count; ++i, dest += 4)
+ stbi__copyval(packet->channel, dest, value);
+ left -= count;
+ }
+ }
+ break;
case 2: {//Mixed RLE
- int left=width;
- while (left>0) {
- int count = stbi__get8(s), i;
- if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (mixed read count)");
-
- if (count >= 128) { // Repeated
- stbi_uc value[4];
- int i;
-
- if (count==128)
- count = stbi__get16be(s);
- else
- count -= 127;
- if (count > left)
- return stbi__errpuc("bad file","scanline overrun");
-
- if (!stbi__readval(s,packet->channel,value))
- return 0;
+ int left = width;
+ while (left > 0) {
+ int count = stbi__get8(s), i;
+ if (stbi__at_eof(s)) return stbi__errpuc("bad file", "file too short (mixed read count)");
+
+ if (count >= 128) { // Repeated
+ stbi_uc value[4];
- for(i=0;ichannel,dest,value);
- } else { // Raw
- ++count;
- if (count>left) return stbi__errpuc("bad file","scanline overrun");
-
- for(i=0;ichannel,dest))
- return 0;
- }
- left-=count;
- }
- break;
+ if (count == 128)
+ count = stbi__get16be(s);
+ else
+ count -= 127;
+ if (count > left)
+ return stbi__errpuc("bad file", "scanline overrun");
+
+ if (!stbi__readval(s, packet->channel, value))
+ return 0;
+
+ for (i = 0; i < count; ++i, dest += 4)
+ stbi__copyval(packet->channel, dest, value);
+ }
+ else { // Raw
+ ++count;
+ if (count > left) return stbi__errpuc("bad file", "scanline overrun");
+
+ for (i = 0; i < count; ++i, dest += 4)
+ if (!stbi__readval(s, packet->channel, dest))
+ return 0;
+ }
+ left -= count;
+ }
+ break;
}
- }
- }
- }
+ }
+ }
+ }
- return result;
+ return result;
}
-static stbi_uc *stbi__pic_load(stbi__context *s,int *px,int *py,int *comp,int req_comp)
+static void* stbi__pic_load(stbi__context* s, int* px, int* py, int* comp, int req_comp, stbi__result_info* ri)
{
- stbi_uc *result;
- int i, x,y;
+ stbi_uc* result;
+ int i, x, y, internal_comp;
+ STBI_NOTUSED(ri);
- for (i=0; i<92; ++i)
- stbi__get8(s);
+ if (!comp) comp = &internal_comp;
- x = stbi__get16be(s);
- y = stbi__get16be(s);
- if (stbi__at_eof(s)) return stbi__errpuc("bad file","file too short (pic header)");
- if ((1 << 28) / x < y) return stbi__errpuc("too large", "Image too large to decode");
+ for (i = 0; i < 92; ++i)
+ stbi__get8(s);
- stbi__get32be(s); //skip `ratio'
- stbi__get16be(s); //skip `fields'
- stbi__get16be(s); //skip `pad'
+ x = stbi__get16be(s);
+ y = stbi__get16be(s);
- // intermediate buffer is RGBA
- result = (stbi_uc *) stbi__malloc(x*y*4);
- memset(result, 0xff, x*y*4);
+ if (y > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large", "Very large image (corrupt?)");
+ if (x > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large", "Very large image (corrupt?)");
- if (!stbi__pic_load_core(s,x,y,comp, result)) {
- STBI_FREE(result);
- result=0;
- }
- *px = x;
- *py = y;
- if (req_comp == 0) req_comp = *comp;
- result=stbi__convert_format(result,4,req_comp,x,y);
+ if (stbi__at_eof(s)) return stbi__errpuc("bad file", "file too short (pic header)");
+ if (!stbi__mad3sizes_valid(x, y, 4, 0)) return stbi__errpuc("too large", "PIC image too large to decode");
+
+ stbi__get32be(s); //skip `ratio'
+ stbi__get16be(s); //skip `fields'
+ stbi__get16be(s); //skip `pad'
- return result;
+ // intermediate buffer is RGBA
+ result = (stbi_uc*)stbi__malloc_mad3(x, y, 4, 0);
+ if (!result) return stbi__errpuc("outofmem", "Out of memory");
+ memset(result, 0xff, x * y * 4);
+
+ if (!stbi__pic_load_core(s, x, y, comp, result)) {
+ STBI_FREE(result);
+ result = 0;
+ }
+ *px = x;
+ *py = y;
+ if (req_comp == 0) req_comp = *comp;
+ result = stbi__convert_format(result, 4, req_comp, x, y);
+
+ return result;
}
-static int stbi__pic_test(stbi__context *s)
+static int stbi__pic_test(stbi__context* s)
{
- int r = stbi__pic_test_core(s);
- stbi__rewind(s);
- return r;
+ int r = stbi__pic_test_core(s);
+ stbi__rewind(s);
+ return r;
}
#endif
@@ -5431,344 +6643,547 @@ static int stbi__pic_test(stbi__context *s)
#ifndef STBI_NO_GIF
typedef struct
{
- stbi__int16 prefix;
- stbi_uc first;
- stbi_uc suffix;
+ stbi__int16 prefix;
+ stbi_uc first;
+ stbi_uc suffix;
} stbi__gif_lzw;
typedef struct
{
- int w,h;
- stbi_uc *out; // output buffer (always 4 components)
- int flags, bgindex, ratio, transparent, eflags;
- stbi_uc pal[256][4];
- stbi_uc lpal[256][4];
- stbi__gif_lzw codes[4096];
- stbi_uc *color_table;
- int parse, step;
- int lflags;
- int start_x, start_y;
- int max_x, max_y;
- int cur_x, cur_y;
- int line_size;
+ int w, h;
+ stbi_uc* out; // output buffer (always 4 components)
+ stbi_uc* background; // The current "background" as far as a gif is concerned
+ stbi_uc* history;
+ int flags, bgindex, ratio, transparent, eflags;
+ stbi_uc pal[256][4];
+ stbi_uc lpal[256][4];
+ stbi__gif_lzw codes[8192];
+ stbi_uc* color_table;
+ int parse, step;
+ int lflags;
+ int start_x, start_y;
+ int max_x, max_y;
+ int cur_x, cur_y;
+ int line_size;
+ int delay;
} stbi__gif;
-static int stbi__gif_test_raw(stbi__context *s)
+static int stbi__gif_test_raw(stbi__context* s)
{
- int sz;
- if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return 0;
- sz = stbi__get8(s);
- if (sz != '9' && sz != '7') return 0;
- if (stbi__get8(s) != 'a') return 0;
- return 1;
+ int sz;
+ if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return 0;
+ sz = stbi__get8(s);
+ if (sz != '9' && sz != '7') return 0;
+ if (stbi__get8(s) != 'a') return 0;
+ return 1;
}
-static int stbi__gif_test(stbi__context *s)
+static int stbi__gif_test(stbi__context* s)
{
- int r = stbi__gif_test_raw(s);
- stbi__rewind(s);
- return r;
+ int r = stbi__gif_test_raw(s);
+ stbi__rewind(s);
+ return r;
}
-static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], int num_entries, int transp)
+static void stbi__gif_parse_colortable(stbi__context* s, stbi_uc pal[256][4], int num_entries, int transp)
{
- int i;
- for (i=0; i < num_entries; ++i) {
- pal[i][2] = stbi__get8(s);
- pal[i][1] = stbi__get8(s);
- pal[i][0] = stbi__get8(s);
- pal[i][3] = transp == i ? 0 : 255;
- }
+ int i;
+ for (i = 0; i < num_entries; ++i) {
+ pal[i][2] = stbi__get8(s);
+ pal[i][1] = stbi__get8(s);
+ pal[i][0] = stbi__get8(s);
+ pal[i][3] = transp == i ? 0 : 255;
+ }
}
-static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, int is_info)
+static int stbi__gif_header(stbi__context* s, stbi__gif* g, int* comp, int is_info)
{
- stbi_uc version;
- if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8')
- return stbi__err("not GIF", "Corrupt GIF");
+ stbi_uc version;
+ if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8')
+ return stbi__err("not GIF", "Corrupt GIF");
+
+ version = stbi__get8(s);
+ if (version != '7' && version != '9') return stbi__err("not GIF", "Corrupt GIF");
+ if (stbi__get8(s) != 'a') return stbi__err("not GIF", "Corrupt GIF");
- version = stbi__get8(s);
- if (version != '7' && version != '9') return stbi__err("not GIF", "Corrupt GIF");
- if (stbi__get8(s) != 'a') return stbi__err("not GIF", "Corrupt GIF");
+ stbi__g_failure_reason = "";
+ g->w = stbi__get16le(s);
+ g->h = stbi__get16le(s);
+ g->flags = stbi__get8(s);
+ g->bgindex = stbi__get8(s);
+ g->ratio = stbi__get8(s);
+ g->transparent = -1;
- stbi__g_failure_reason = "";
- g->w = stbi__get16le(s);
- g->h = stbi__get16le(s);
- g->flags = stbi__get8(s);
- g->bgindex = stbi__get8(s);
- g->ratio = stbi__get8(s);
- g->transparent = -1;
+ if (g->w > STBI_MAX_DIMENSIONS) return stbi__err("too large", "Very large image (corrupt?)");
+ if (g->h > STBI_MAX_DIMENSIONS) return stbi__err("too large", "Very large image (corrupt?)");
- if (comp != 0) *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments
+ if (comp != 0) *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments
- if (is_info) return 1;
+ if (is_info) return 1;
- if (g->flags & 0x80)
- stbi__gif_parse_colortable(s,g->pal, 2 << (g->flags & 7), -1);
+ if (g->flags & 0x80)
+ stbi__gif_parse_colortable(s, g->pal, 2 << (g->flags & 7), -1);
- return 1;
+ return 1;
}
-static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp)
+static int stbi__gif_info_raw(stbi__context* s, int* x, int* y, int* comp)
{
- stbi__gif g;
- if (!stbi__gif_header(s, &g, comp, 1)) {
- stbi__rewind( s );
- return 0;
- }
- if (x) *x = g.w;
- if (y) *y = g.h;
- return 1;
+ stbi__gif* g = (stbi__gif*)stbi__malloc(sizeof(stbi__gif));
+ if (!g) return stbi__err("outofmem", "Out of memory");
+ if (!stbi__gif_header(s, g, comp, 1)) {
+ STBI_FREE(g);
+ stbi__rewind(s);
+ return 0;
+ }
+ if (x) *x = g->w;
+ if (y) *y = g->h;
+ STBI_FREE(g);
+ return 1;
}
-static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code)
+static void stbi__out_gif_code(stbi__gif* g, stbi__uint16 code)
{
- stbi_uc *p, *c;
+ stbi_uc* p, * c;
+ int idx;
- // recurse to decode the prefixes, since the linked-list is backwards,
- // and working backwards through an interleaved image would be nasty
- if (g->codes[code].prefix >= 0)
- stbi__out_gif_code(g, g->codes[code].prefix);
+ // recurse to decode the prefixes, since the linked-list is backwards,
+ // and working backwards through an interleaved image would be nasty
+ if (g->codes[code].prefix >= 0)
+ stbi__out_gif_code(g, g->codes[code].prefix);
- if (g->cur_y >= g->max_y) return;
+ if (g->cur_y >= g->max_y) return;
- p = &g->out[g->cur_x + g->cur_y];
- c = &g->color_table[g->codes[code].suffix * 4];
+ idx = g->cur_x + g->cur_y;
+ p = &g->out[idx];
+ g->history[idx / 4] = 1;
- if (c[3] >= 128) {
- p[0] = c[2];
- p[1] = c[1];
- p[2] = c[0];
- p[3] = c[3];
- }
- g->cur_x += 4;
+ c = &g->color_table[g->codes[code].suffix * 4];
+ if (c[3] > 128) { // don't render transparent pixels;
+ p[0] = c[2];
+ p[1] = c[1];
+ p[2] = c[0];
+ p[3] = c[3];
+ }
+ g->cur_x += 4;
- if (g->cur_x >= g->max_x) {
- g->cur_x = g->start_x;
- g->cur_y += g->step;
+ if (g->cur_x >= g->max_x) {
+ g->cur_x = g->start_x;
+ g->cur_y += g->step;
- while (g->cur_y >= g->max_y && g->parse > 0) {
- g->step = (1 << g->parse) * g->line_size;
- g->cur_y = g->start_y + (g->step >> 1);
- --g->parse;
- }
- }
+ while (g->cur_y >= g->max_y && g->parse > 0) {
+ g->step = (1 << g->parse) * g->line_size;
+ g->cur_y = g->start_y + (g->step >> 1);
+ --g->parse;
+ }
+ }
}
-static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g)
-{
- stbi_uc lzw_cs;
- stbi__int32 len, code;
- stbi__uint32 first;
- stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear;
- stbi__gif_lzw *p;
-
- lzw_cs = stbi__get8(s);
- if (lzw_cs > 12) return NULL;
- clear = 1 << lzw_cs;
- first = 1;
- codesize = lzw_cs + 1;
- codemask = (1 << codesize) - 1;
- bits = 0;
- valid_bits = 0;
- for (code = 0; code < clear; code++) {
- g->codes[code].prefix = -1;
- g->codes[code].first = (stbi_uc) code;
- g->codes[code].suffix = (stbi_uc) code;
- }
+static stbi_uc* stbi__process_gif_raster(stbi__context* s, stbi__gif* g)
+{
+ stbi_uc lzw_cs;
+ stbi__int32 len, init_code;
+ stbi__uint32 first;
+ stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear;
+ stbi__gif_lzw* p;
+
+ lzw_cs = stbi__get8(s);
+ if (lzw_cs > 12) return NULL;
+ clear = 1 << lzw_cs;
+ first = 1;
+ codesize = lzw_cs + 1;
+ codemask = (1 << codesize) - 1;
+ bits = 0;
+ valid_bits = 0;
+ for (init_code = 0; init_code < clear; init_code++) {
+ g->codes[init_code].prefix = -1;
+ g->codes[init_code].first = (stbi_uc)init_code;
+ g->codes[init_code].suffix = (stbi_uc)init_code;
+ }
- // support no starting clear code
- avail = clear+2;
- oldcode = -1;
-
- len = 0;
- for(;;) {
- if (valid_bits < codesize) {
- if (len == 0) {
- len = stbi__get8(s); // start new block
- if (len == 0)
- return g->out;
- }
- --len;
- bits |= (stbi__int32) stbi__get8(s) << valid_bits;
- valid_bits += 8;
- } else {
- stbi__int32 code = bits & codemask;
- bits >>= codesize;
- valid_bits -= codesize;
- // @OPTIMIZE: is there some way we can accelerate the non-clear path?
- if (code == clear) { // clear code
- codesize = lzw_cs + 1;
- codemask = (1 << codesize) - 1;
- avail = clear + 2;
- oldcode = -1;
- first = 0;
- } else if (code == clear + 1) { // end of stream code
- stbi__skip(s, len);
- while ((len = stbi__get8(s)) > 0)
- stbi__skip(s,len);
- return g->out;
- } else if (code <= avail) {
- if (first) return stbi__errpuc("no clear code", "Corrupt GIF");
-
- if (oldcode >= 0) {
- p = &g->codes[avail++];
- if (avail > 4096) return stbi__errpuc("too many codes", "Corrupt GIF");
- p->prefix = (stbi__int16) oldcode;
- p->first = g->codes[oldcode].first;
- p->suffix = (code == avail) ? p->first : g->codes[code].first;
- } else if (code == avail)
- return stbi__errpuc("illegal code in raster", "Corrupt GIF");
-
- stbi__out_gif_code(g, (stbi__uint16) code);
-
- if ((avail & codemask) == 0 && avail <= 0x0FFF) {
- codesize++;
- codemask = (1 << codesize) - 1;
+ // support no starting clear code
+ avail = clear + 2;
+ oldcode = -1;
+
+ len = 0;
+ for (;;) {
+ if (valid_bits < codesize) {
+ if (len == 0) {
+ len = stbi__get8(s); // start new block
+ if (len == 0)
+ return g->out;
}
-
- oldcode = code;
- } else {
- return stbi__errpuc("illegal code in raster", "Corrupt GIF");
- }
- }
- }
-}
-
-static void stbi__fill_gif_background(stbi__gif *g)
-{
- int i;
- stbi_uc *c = g->pal[g->bgindex];
- // @OPTIMIZE: write a dword at a time
- for (i = 0; i < g->w * g->h * 4; i += 4) {
- stbi_uc *p = &g->out[i];
- p[0] = c[2];
- p[1] = c[1];
- p[2] = c[0];
- p[3] = c[3];
- }
+ --len;
+ bits |= (stbi__int32)stbi__get8(s) << valid_bits;
+ valid_bits += 8;
+ }
+ else {
+ stbi__int32 code = bits & codemask;
+ bits >>= codesize;
+ valid_bits -= codesize;
+ // @OPTIMIZE: is there some way we can accelerate the non-clear path?
+ if (code == clear) { // clear code
+ codesize = lzw_cs + 1;
+ codemask = (1 << codesize) - 1;
+ avail = clear + 2;
+ oldcode = -1;
+ first = 0;
+ }
+ else if (code == clear + 1) { // end of stream code
+ stbi__skip(s, len);
+ while ((len = stbi__get8(s)) > 0)
+ stbi__skip(s, len);
+ return g->out;
+ }
+ else if (code <= avail) {
+ if (first) {
+ return stbi__errpuc("no clear code", "Corrupt GIF");
+ }
+
+ if (oldcode >= 0) {
+ p = &g->codes[avail++];
+ if (avail > 8192) {
+ return stbi__errpuc("too many codes", "Corrupt GIF");
+ }
+
+ p->prefix = (stbi__int16)oldcode;
+ p->first = g->codes[oldcode].first;
+ p->suffix = (code == avail) ? p->first : g->codes[code].first;
+ }
+ else if (code == avail)
+ return stbi__errpuc("illegal code in raster", "Corrupt GIF");
+
+ stbi__out_gif_code(g, (stbi__uint16)code);
+
+ if ((avail & codemask) == 0 && avail <= 0x0FFF) {
+ codesize++;
+ codemask = (1 << codesize) - 1;
+ }
+
+ oldcode = code;
+ }
+ else {
+ return stbi__errpuc("illegal code in raster", "Corrupt GIF");
+ }
+ }
+ }
}
// this function is designed to support animated gifs, although stb_image doesn't support it
-static stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, int req_comp)
-{
- int i;
- stbi_uc *old_out = 0;
-
- if (g->out == 0) {
- if (!stbi__gif_header(s, g, comp,0)) return 0; // stbi__g_failure_reason set by stbi__gif_header
- g->out = (stbi_uc *) stbi__malloc(4 * g->w * g->h);
- if (g->out == 0) return stbi__errpuc("outofmem", "Out of memory");
- stbi__fill_gif_background(g);
- } else {
- // animated-gif-only path
- if (((g->eflags & 0x1C) >> 2) == 3) {
- old_out = g->out;
- g->out = (stbi_uc *) stbi__malloc(4 * g->w * g->h);
- if (g->out == 0) return stbi__errpuc("outofmem", "Out of memory");
- memcpy(g->out, old_out, g->w*g->h*4);
- }
- }
+// two back is the image from two frames ago, used for a very specific disposal format
+static stbi_uc* stbi__gif_load_next(stbi__context* s, stbi__gif* g, int* comp, int req_comp, stbi_uc* two_back)
+{
+ int dispose;
+ int first_frame;
+ int pi;
+ int pcount;
+ STBI_NOTUSED(req_comp);
+
+ // on first frame, any non-written pixels get the background colour (non-transparent)
+ first_frame = 0;
+ if (g->out == 0) {
+ if (!stbi__gif_header(s, g, comp, 0)) return 0; // stbi__g_failure_reason set by stbi__gif_header
+ if (!stbi__mad3sizes_valid(4, g->w, g->h, 0))
+ return stbi__errpuc("too large", "GIF image is too large");
+ pcount = g->w * g->h;
+ g->out = (stbi_uc*)stbi__malloc(4 * pcount);
+ g->background = (stbi_uc*)stbi__malloc(4 * pcount);
+ g->history = (stbi_uc*)stbi__malloc(pcount);
+ if (!g->out || !g->background || !g->history)
+ return stbi__errpuc("outofmem", "Out of memory");
+
+ // image is treated as "transparent" at the start - ie, nothing overwrites the current background;
+ // background colour is only used for pixels that are not rendered first frame, after that "background"
+ // color refers to the color that was there the previous frame.
+ memset(g->out, 0x00, 4 * pcount);
+ memset(g->background, 0x00, 4 * pcount); // state of the background (starts transparent)
+ memset(g->history, 0x00, pcount); // pixels that were affected previous frame
+ first_frame = 1;
+ }
+ else {
+ // second frame - how do we dispose of the previous one?
+ dispose = (g->eflags & 0x1C) >> 2;
+ pcount = g->w * g->h;
+
+ if ((dispose == 3) && (two_back == 0)) {
+ dispose = 2; // if I don't have an image to revert back to, default to the old background
+ }
+
+ if (dispose == 3) { // use previous graphic
+ for (pi = 0; pi < pcount; ++pi) {
+ if (g->history[pi]) {
+ memcpy(&g->out[pi * 4], &two_back[pi * 4], 4);
+ }
+ }
+ }
+ else if (dispose == 2) {
+ // restore what was changed last frame to background before that frame;
+ for (pi = 0; pi < pcount; ++pi) {
+ if (g->history[pi]) {
+ memcpy(&g->out[pi * 4], &g->background[pi * 4], 4);
+ }
+ }
+ }
+ else {
+ // This is a non-disposal case eithe way, so just
+ // leave the pixels as is, and they will become the new background
+ // 1: do not dispose
+ // 0: not specified.
+ }
+
+ // background is what out is after the undoing of the previou frame;
+ memcpy(g->background, g->out, 4 * g->w * g->h);
+ }
- for (;;) {
- switch (stbi__get8(s)) {
- case 0x2C: /* Image Descriptor */
- {
+ // clear my history;
+ memset(g->history, 0x00, g->w * g->h); // pixels that were affected previous frame
+
+ for (;;) {
+ int tag = stbi__get8(s);
+ switch (tag) {
+ case 0x2C: /* Image Descriptor */
+ {
stbi__int32 x, y, w, h;
- stbi_uc *o;
+ stbi_uc* o;
x = stbi__get16le(s);
y = stbi__get16le(s);
w = stbi__get16le(s);
h = stbi__get16le(s);
if (((x + w) > (g->w)) || ((y + h) > (g->h)))
- return stbi__errpuc("bad Image Descriptor", "Corrupt GIF");
+ return stbi__errpuc("bad Image Descriptor", "Corrupt GIF");
g->line_size = g->w * 4;
g->start_x = x * 4;
g->start_y = y * g->line_size;
- g->max_x = g->start_x + w * 4;
- g->max_y = g->start_y + h * g->line_size;
- g->cur_x = g->start_x;
- g->cur_y = g->start_y;
+ g->max_x = g->start_x + w * 4;
+ g->max_y = g->start_y + h * g->line_size;
+ g->cur_x = g->start_x;
+ g->cur_y = g->start_y;
+
+ // if the width of the specified rectangle is 0, that means
+ // we may not see *any* pixels or the image is malformed;
+ // to make sure this is caught, move the current y down to
+ // max_y (which is what out_gif_code checks).
+ if (w == 0)
+ g->cur_y = g->max_y;
g->lflags = stbi__get8(s);
if (g->lflags & 0x40) {
- g->step = 8 * g->line_size; // first interlaced spacing
- g->parse = 3;
- } else {
- g->step = g->line_size;
- g->parse = 0;
+ g->step = 8 * g->line_size; // first interlaced spacing
+ g->parse = 3;
+ }
+ else {
+ g->step = g->line_size;
+ g->parse = 0;
}
if (g->lflags & 0x80) {
- stbi__gif_parse_colortable(s,g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1);
- g->color_table = (stbi_uc *) g->lpal;
- } else if (g->flags & 0x80) {
- for (i=0; i < 256; ++i) // @OPTIMIZE: stbi__jpeg_reset only the previous transparent
- g->pal[i][3] = 255;
- if (g->transparent >= 0 && (g->eflags & 0x01))
- g->pal[g->transparent][3] = 0;
- g->color_table = (stbi_uc *) g->pal;
- } else
- return stbi__errpuc("missing color table", "Corrupt GIF");
+ stbi__gif_parse_colortable(s, g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1);
+ g->color_table = (stbi_uc*)g->lpal;
+ }
+ else if (g->flags & 0x80) {
+ g->color_table = (stbi_uc*)g->pal;
+ }
+ else
+ return stbi__errpuc("missing color table", "Corrupt GIF");
o = stbi__process_gif_raster(s, g);
- if (o == NULL) return NULL;
+ if (!o) return NULL;
+
+ // if this was the first frame,
+ pcount = g->w * g->h;
+ if (first_frame && (g->bgindex > 0)) {
+ // if first frame, any pixel not drawn to gets the background color
+ for (pi = 0; pi < pcount; ++pi) {
+ if (g->history[pi] == 0) {
+ g->pal[g->bgindex][3] = 255; // just in case it was made transparent, undo that; It will be reset next frame if need be;
+ memcpy(&g->out[pi * 4], &g->pal[g->bgindex], 4);
+ }
+ }
+ }
- if (req_comp && req_comp != 4)
- o = stbi__convert_format(o, 4, req_comp, g->w, g->h);
return o;
- }
+ }
- case 0x21: // Comment Extension.
- {
+ case 0x21: // Comment Extension.
+ {
int len;
- if (stbi__get8(s) == 0xF9) { // Graphic Control Extension.
- len = stbi__get8(s);
- if (len == 4) {
- g->eflags = stbi__get8(s);
- stbi__get16le(s); // delay
- g->transparent = stbi__get8(s);
- } else {
- stbi__skip(s, len);
- break;
- }
+ int ext = stbi__get8(s);
+ if (ext == 0xF9) { // Graphic Control Extension.
+ len = stbi__get8(s);
+ if (len == 4) {
+ g->eflags = stbi__get8(s);
+ g->delay = 10 * stbi__get16le(s); // delay - 1/100th of a second, saving as 1/1000ths.
+
+ // unset old transparent
+ if (g->transparent >= 0) {
+ g->pal[g->transparent][3] = 255;
+ }
+ if (g->eflags & 0x01) {
+ g->transparent = stbi__get8(s);
+ if (g->transparent >= 0) {
+ g->pal[g->transparent][3] = 0;
+ }
+ }
+ else {
+ // don't need transparent
+ stbi__skip(s, 1);
+ g->transparent = -1;
+ }
+ }
+ else {
+ stbi__skip(s, len);
+ break;
+ }
+ }
+ while ((len = stbi__get8(s)) != 0) {
+ stbi__skip(s, len);
}
- while ((len = stbi__get8(s)) != 0)
- stbi__skip(s, len);
break;
- }
+ }
- case 0x3B: // gif stream termination code
- return (stbi_uc *) s; // using '1' causes warning on some compilers
+ case 0x3B: // gif stream termination code
+ return (stbi_uc*)s; // using '1' causes warning on some compilers
- default:
+ default:
return stbi__errpuc("unknown code", "Corrupt GIF");
- }
- }
+ }
+ }
+}
+
+static void* stbi__load_gif_main_outofmem(stbi__gif* g, stbi_uc* out, int** delays)
+{
+ STBI_FREE(g->out);
+ STBI_FREE(g->history);
+ STBI_FREE(g->background);
+
+ if (out) STBI_FREE(out);
+ if (delays && *delays) STBI_FREE(*delays);
+ return stbi__errpuc("outofmem", "Out of memory");
+}
+
+static void* stbi__load_gif_main(stbi__context* s, int** delays, int* x, int* y, int* z, int* comp, int req_comp)
+{
+ if (stbi__gif_test(s)) {
+ int layers = 0;
+ stbi_uc* u = 0;
+ stbi_uc* out = 0;
+ stbi_uc* two_back = 0;
+ stbi__gif g;
+ int stride;
+ int out_size = 0;
+ int delays_size = 0;
+
+ STBI_NOTUSED(out_size);
+ STBI_NOTUSED(delays_size);
+
+ memset(&g, 0, sizeof(g));
+ if (delays) {
+ *delays = 0;
+ }
+
+ do {
+ u = stbi__gif_load_next(s, &g, comp, req_comp, two_back);
+ if (u == (stbi_uc*)s) u = 0; // end of animated gif marker
+
+ if (u) {
+ *x = g.w;
+ *y = g.h;
+ ++layers;
+ stride = g.w * g.h * 4;
+
+ if (out) {
+ void* tmp = (stbi_uc*)STBI_REALLOC_SIZED(out, out_size, layers * stride);
+ if (!tmp)
+ return stbi__load_gif_main_outofmem(&g, out, delays);
+ else {
+ out = (stbi_uc*)tmp;
+ out_size = layers * stride;
+ }
+
+ if (delays) {
+ int* new_delays = (int*)STBI_REALLOC_SIZED(*delays, delays_size, sizeof(int) * layers);
+ if (!new_delays)
+ return stbi__load_gif_main_outofmem(&g, out, delays);
+ *delays = new_delays;
+ delays_size = layers * sizeof(int);
+ }
+ }
+ else {
+ out = (stbi_uc*)stbi__malloc(layers * stride);
+ if (!out)
+ return stbi__load_gif_main_outofmem(&g, out, delays);
+ out_size = layers * stride;
+ if (delays) {
+ *delays = (int*)stbi__malloc(layers * sizeof(int));
+ if (!*delays)
+ return stbi__load_gif_main_outofmem(&g, out, delays);
+ delays_size = layers * sizeof(int);
+ }
+ }
+ memcpy(out + ((layers - 1) * stride), u, stride);
+ if (layers >= 2) {
+ two_back = out - 2 * stride;
+ }
+
+ if (delays) {
+ (*delays)[layers - 1U] = g.delay;
+ }
+ }
+ } while (u != 0);
+
+ // free temp buffer;
+ STBI_FREE(g.out);
+ STBI_FREE(g.history);
+ STBI_FREE(g.background);
+
+ // do the final conversion after loading everything;
+ if (req_comp && req_comp != 4)
+ out = stbi__convert_format(out, 4, req_comp, layers * g.w, g.h);
+
+ *z = layers;
+ return out;
+ }
+ else {
+ return stbi__errpuc("not GIF", "Image was not as a gif type.");
+ }
}
-static stbi_uc *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
+static void* stbi__gif_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri)
{
- stbi_uc *u = 0;
- stbi__gif g;
- memset(&g, 0, sizeof(g));
+ stbi_uc* u = 0;
+ stbi__gif g;
+ memset(&g, 0, sizeof(g));
+ STBI_NOTUSED(ri);
- u = stbi__gif_load_next(s, &g, comp, req_comp);
- if (u == (stbi_uc *) s) u = 0; // end of animated gif marker
- if (u) {
- *x = g.w;
- *y = g.h;
- }
+ u = stbi__gif_load_next(s, &g, comp, req_comp, 0);
+ if (u == (stbi_uc*)s) u = 0; // end of animated gif marker
+ if (u) {
+ *x = g.w;
+ *y = g.h;
+
+ // moved conversion to after successful load so that the same
+ // can be done for multiple frames.
+ if (req_comp && req_comp != 4)
+ u = stbi__convert_format(u, 4, req_comp, g.w, g.h);
+ }
+ else if (g.out) {
+ // if there was an error and we allocated an image buffer, free it!
+ STBI_FREE(g.out);
+ }
- return u;
+ // free buffers needed for multiple frame loading;
+ STBI_FREE(g.history);
+ STBI_FREE(g.background);
+
+ return u;
}
-static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp)
+static int stbi__gif_info(stbi__context* s, int* x, int* y, int* comp)
{
- return stbi__gif_info_raw(s,x,y,comp);
+ return stbi__gif_info_raw(s, x, y, comp);
}
#endif
@@ -5776,331 +7191,400 @@ static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp)
// Radiance RGBE HDR loader
// originally by Nicolas Schulz
#ifndef STBI_NO_HDR
-static int stbi__hdr_test_core(stbi__context *s)
+static int stbi__hdr_test_core(stbi__context* s, const char* signature)
{
- const char *signature = "#?RADIANCE\n";
- int i;
- for (i=0; signature[i]; ++i)
- if (stbi__get8(s) != signature[i])
- return 0;
- return 1;
+ int i;
+ for (i = 0; signature[i]; ++i)
+ if (stbi__get8(s) != signature[i])
+ return 0;
+ stbi__rewind(s);
+ return 1;
}
static int stbi__hdr_test(stbi__context* s)
{
- int r = stbi__hdr_test_core(s);
- stbi__rewind(s);
- return r;
+ int r = stbi__hdr_test_core(s, "#?RADIANCE\n");
+ stbi__rewind(s);
+ if (!r) {
+ r = stbi__hdr_test_core(s, "#?RGBE\n");
+ stbi__rewind(s);
+ }
+ return r;
}
#define STBI__HDR_BUFLEN 1024
-static char *stbi__hdr_gettoken(stbi__context *z, char *buffer)
+static char* stbi__hdr_gettoken(stbi__context* z, char* buffer)
{
- int len=0;
- char c = '\0';
+ int len = 0;
+ char c = '\0';
- c = (char) stbi__get8(z);
-
- while (!stbi__at_eof(z) && c != '\n') {
- buffer[len++] = c;
- if (len == STBI__HDR_BUFLEN-1) {
- // flush to end of line
- while (!stbi__at_eof(z) && stbi__get8(z) != '\n')
- ;
- break;
- }
- c = (char) stbi__get8(z);
- }
+ c = (char)stbi__get8(z);
- buffer[len] = 0;
- return buffer;
-}
+ while (!stbi__at_eof(z) && c != '\n') {
+ buffer[len++] = c;
+ if (len == STBI__HDR_BUFLEN - 1) {
+ // flush to end of line
+ while (!stbi__at_eof(z) && stbi__get8(z) != '\n')
+ ;
+ break;
+ }
+ c = (char)stbi__get8(z);
+ }
-static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp)
-{
- if ( input[3] != 0 ) {
- float f1;
- // Exponent
- f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8));
- if (req_comp <= 2)
- output[0] = (input[0] + input[1] + input[2]) * f1 / 3;
- else {
- output[0] = input[0] * f1;
- output[1] = input[1] * f1;
- output[2] = input[2] * f1;
- }
- if (req_comp == 2) output[1] = 1;
- if (req_comp == 4) output[3] = 1;
- } else {
- switch (req_comp) {
- case 4: output[3] = 1; /* fallthrough */
- case 3: output[0] = output[1] = output[2] = 0;
- break;
- case 2: output[1] = 1; /* fallthrough */
- case 1: output[0] = 0;
- break;
- }
- }
+ buffer[len] = 0;
+ return buffer;
+}
+
+static void stbi__hdr_convert(float* output, stbi_uc* input, int req_comp)
+{
+ if (input[3] != 0) {
+ float f1;
+ // Exponent
+ f1 = (float)ldexp(1.0f, input[3] - (int)(128 + 8));
+ if (req_comp <= 2)
+ output[0] = (input[0] + input[1] + input[2]) * f1 / 3;
+ else {
+ output[0] = input[0] * f1;
+ output[1] = input[1] * f1;
+ output[2] = input[2] * f1;
+ }
+ if (req_comp == 2) output[1] = 1;
+ if (req_comp == 4) output[3] = 1;
+ }
+ else {
+ switch (req_comp) {
+ case 4: output[3] = 1; /* fallthrough */
+ case 3: output[0] = output[1] = output[2] = 0;
+ break;
+ case 2: output[1] = 1; /* fallthrough */
+ case 1: output[0] = 0;
+ break;
+ }
+ }
}
-static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
-{
- char buffer[STBI__HDR_BUFLEN];
- char *token;
- int valid = 0;
- int width, height;
- stbi_uc *scanline;
- float *hdr_data;
- int len;
- unsigned char count, value;
- int i, j, k, c1,c2, z;
-
-
- // Check identifier
- if (strcmp(stbi__hdr_gettoken(s,buffer), "#?RADIANCE") != 0)
- return stbi__errpf("not HDR", "Corrupt HDR image");
+static float* stbi__hdr_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri)
+{
+ char buffer[STBI__HDR_BUFLEN];
+ char* token;
+ int valid = 0;
+ int width, height;
+ stbi_uc* scanline;
+ float* hdr_data;
+ int len;
+ unsigned char count, value;
+ int i, j, k, c1, c2, z;
+ const char* headerToken;
+ STBI_NOTUSED(ri);
+
+ // Check identifier
+ headerToken = stbi__hdr_gettoken(s, buffer);
+ if (strcmp(headerToken, "#?RADIANCE") != 0 && strcmp(headerToken, "#?RGBE") != 0)
+ return stbi__errpf("not HDR", "Corrupt HDR image");
+
+ // Parse header
+ for (;;) {
+ token = stbi__hdr_gettoken(s, buffer);
+ if (token[0] == 0) break;
+ if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1;
+ }
- // Parse header
- for(;;) {
- token = stbi__hdr_gettoken(s,buffer);
- if (token[0] == 0) break;
- if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1;
- }
+ if (!valid) return stbi__errpf("unsupported format", "Unsupported HDR format");
+
+ // Parse width and height
+ // can't use sscanf() if we're not using stdio!
+ token = stbi__hdr_gettoken(s, buffer);
+ if (strncmp(token, "-Y ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format");
+ token += 3;
+ height = (int)strtol(token, &token, 10);
+ while (*token == ' ') ++token;
+ if (strncmp(token, "+X ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format");
+ token += 3;
+ width = (int)strtol(token, NULL, 10);
+
+ if (height > STBI_MAX_DIMENSIONS) return stbi__errpf("too large", "Very large image (corrupt?)");
+ if (width > STBI_MAX_DIMENSIONS) return stbi__errpf("too large", "Very large image (corrupt?)");
+
+ *x = width;
+ *y = height;
+
+ if (comp) *comp = 3;
+ if (req_comp == 0) req_comp = 3;
+
+ if (!stbi__mad4sizes_valid(width, height, req_comp, sizeof(float), 0))
+ return stbi__errpf("too large", "HDR image is too large");
+
+ // Read data
+ hdr_data = (float*)stbi__malloc_mad4(width, height, req_comp, sizeof(float), 0);
+ if (!hdr_data)
+ return stbi__errpf("outofmem", "Out of memory");
+
+ // Load image data
+ // image data is stored as some number of sca
+ if (width < 8 || width >= 32768) {
+ // Read flat data
+ for (j = 0; j < height; ++j) {
+ for (i = 0; i < width; ++i) {
+ stbi_uc rgbe[4];
+ main_decode_loop:
+ stbi__getn(s, rgbe, 4);
+ stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp);
+ }
+ }
+ }
+ else {
+ // Read RLE-encoded data
+ scanline = NULL;
+
+ for (j = 0; j < height; ++j) {
+ c1 = stbi__get8(s);
+ c2 = stbi__get8(s);
+ len = stbi__get8(s);
+ if (c1 != 2 || c2 != 2 || (len & 0x80)) {
+ // not run-length encoded, so we have to actually use THIS data as a decoded
+ // pixel (note this can't be a valid pixel--one of RGB must be >= 128)
+ stbi_uc rgbe[4];
+ rgbe[0] = (stbi_uc)c1;
+ rgbe[1] = (stbi_uc)c2;
+ rgbe[2] = (stbi_uc)len;
+ rgbe[3] = (stbi_uc)stbi__get8(s);
+ stbi__hdr_convert(hdr_data, rgbe, req_comp);
+ i = 1;
+ j = 0;
+ STBI_FREE(scanline);
+ goto main_decode_loop; // yes, this makes no sense
+ }
+ len <<= 8;
+ len |= stbi__get8(s);
+ if (len != width) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); }
+ if (scanline == NULL) {
+ scanline = (stbi_uc*)stbi__malloc_mad2(width, 4, 0);
+ if (!scanline) {
+ STBI_FREE(hdr_data);
+ return stbi__errpf("outofmem", "Out of memory");
+ }
+ }
- if (!valid) return stbi__errpf("unsupported format", "Unsupported HDR format");
-
- // Parse width and height
- // can't use sscanf() if we're not using stdio!
- token = stbi__hdr_gettoken(s,buffer);
- if (strncmp(token, "-Y ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format");
- token += 3;
- height = (int) strtol(token, &token, 10);
- while (*token == ' ') ++token;
- if (strncmp(token, "+X ", 3)) return stbi__errpf("unsupported data layout", "Unsupported HDR format");
- token += 3;
- width = (int) strtol(token, NULL, 10);
-
- *x = width;
- *y = height;
-
- if (comp) *comp = 3;
- if (req_comp == 0) req_comp = 3;
-
- // Read data
- hdr_data = (float *) stbi__malloc(height * width * req_comp * sizeof(float));
-
- // Load image data
- // image data is stored as some number of sca
- if ( width < 8 || width >= 32768) {
- // Read flat data
- for (j=0; j < height; ++j) {
- for (i=0; i < width; ++i) {
- stbi_uc rgbe[4];
- main_decode_loop:
- stbi__getn(s, rgbe, 4);
- stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp);
- }
- }
- } else {
- // Read RLE-encoded data
- scanline = NULL;
-
- for (j = 0; j < height; ++j) {
- c1 = stbi__get8(s);
- c2 = stbi__get8(s);
- len = stbi__get8(s);
- if (c1 != 2 || c2 != 2 || (len & 0x80)) {
- // not run-length encoded, so we have to actually use THIS data as a decoded
- // pixel (note this can't be a valid pixel--one of RGB must be >= 128)
- stbi_uc rgbe[4];
- rgbe[0] = (stbi_uc) c1;
- rgbe[1] = (stbi_uc) c2;
- rgbe[2] = (stbi_uc) len;
- rgbe[3] = (stbi_uc) stbi__get8(s);
- stbi__hdr_convert(hdr_data, rgbe, req_comp);
- i = 1;
- j = 0;
- STBI_FREE(scanline);
- goto main_decode_loop; // yes, this makes no sense
- }
- len <<= 8;
- len |= stbi__get8(s);
- if (len != width) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); }
- if (scanline == NULL) scanline = (stbi_uc *) stbi__malloc(width * 4);
-
- for (k = 0; k < 4; ++k) {
- i = 0;
- while (i < width) {
- count = stbi__get8(s);
- if (count > 128) {
- // Run
- value = stbi__get8(s);
- count -= 128;
- for (z = 0; z < count; ++z)
- scanline[i++ * 4 + k] = value;
- } else {
- // Dump
- for (z = 0; z < count; ++z)
- scanline[i++ * 4 + k] = stbi__get8(s);
- }
+ for (k = 0; k < 4; ++k) {
+ int nleft;
+ i = 0;
+ while ((nleft = width - i) > 0) {
+ count = stbi__get8(s);
+ if (count > 128) {
+ // Run
+ value = stbi__get8(s);
+ count -= 128;
+ if ((count == 0) || (count > nleft)) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); }
+ for (z = 0; z < count; ++z)
+ scanline[i++ * 4 + k] = value;
+ }
+ else {
+ // Dump
+ if ((count == 0) || (count > nleft)) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); }
+ for (z = 0; z < count; ++z)
+ scanline[i++ * 4 + k] = stbi__get8(s);
+ }
+ }
}
- }
- for (i=0; i < width; ++i)
- stbi__hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp);
- }
- STBI_FREE(scanline);
- }
+ for (i = 0; i < width; ++i)
+ stbi__hdr_convert(hdr_data + (j * width + i) * req_comp, scanline + i * 4, req_comp);
+ }
+ if (scanline)
+ STBI_FREE(scanline);
+ }
- return hdr_data;
+ return hdr_data;
}
-static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp)
+static int stbi__hdr_info(stbi__context* s, int* x, int* y, int* comp)
{
- char buffer[STBI__HDR_BUFLEN];
- char *token;
- int valid = 0;
+ char buffer[STBI__HDR_BUFLEN];
+ char* token;
+ int valid = 0;
+ int dummy;
- if (strcmp(stbi__hdr_gettoken(s,buffer), "#?RADIANCE") != 0) {
- stbi__rewind( s );
- return 0;
- }
+ if (!x) x = &dummy;
+ if (!y) y = &dummy;
+ if (!comp) comp = &dummy;
- for(;;) {
- token = stbi__hdr_gettoken(s,buffer);
- if (token[0] == 0) break;
- if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1;
- }
+ if (stbi__hdr_test(s) == 0) {
+ stbi__rewind(s);
+ return 0;
+ }
- if (!valid) {
- stbi__rewind( s );
- return 0;
- }
- token = stbi__hdr_gettoken(s,buffer);
- if (strncmp(token, "-Y ", 3)) {
- stbi__rewind( s );
- return 0;
- }
- token += 3;
- *y = (int) strtol(token, &token, 10);
- while (*token == ' ') ++token;
- if (strncmp(token, "+X ", 3)) {
- stbi__rewind( s );
- return 0;
- }
- token += 3;
- *x = (int) strtol(token, NULL, 10);
- *comp = 3;
- return 1;
+ for (;;) {
+ token = stbi__hdr_gettoken(s, buffer);
+ if (token[0] == 0) break;
+ if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1;
+ }
+
+ if (!valid) {
+ stbi__rewind(s);
+ return 0;
+ }
+ token = stbi__hdr_gettoken(s, buffer);
+ if (strncmp(token, "-Y ", 3)) {
+ stbi__rewind(s);
+ return 0;
+ }
+ token += 3;
+ *y = (int)strtol(token, &token, 10);
+ while (*token == ' ') ++token;
+ if (strncmp(token, "+X ", 3)) {
+ stbi__rewind(s);
+ return 0;
+ }
+ token += 3;
+ *x = (int)strtol(token, NULL, 10);
+ *comp = 3;
+ return 1;
}
#endif // STBI_NO_HDR
#ifndef STBI_NO_BMP
-static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp)
+static int stbi__bmp_info(stbi__context* s, int* x, int* y, int* comp)
{
- int hsz;
- if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') {
- stbi__rewind( s );
- return 0;
- }
- stbi__skip(s,12);
- hsz = stbi__get32le(s);
- if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) {
- stbi__rewind( s );
- return 0;
- }
- if (hsz == 12) {
- *x = stbi__get16le(s);
- *y = stbi__get16le(s);
- } else {
- *x = stbi__get32le(s);
- *y = stbi__get32le(s);
- }
- if (stbi__get16le(s) != 1) {
- stbi__rewind( s );
- return 0;
- }
- *comp = stbi__get16le(s) / 8;
- return 1;
+ void* p;
+ stbi__bmp_data info;
+
+ info.all_a = 255;
+ p = stbi__bmp_parse_header(s, &info);
+ if (p == NULL) {
+ stbi__rewind(s);
+ return 0;
+ }
+ if (x) *x = s->img_x;
+ if (y) *y = s->img_y;
+ if (comp) {
+ if (info.bpp == 24 && info.ma == 0xff000000)
+ *comp = 3;
+ else
+ *comp = info.ma ? 4 : 3;
+ }
+ return 1;
}
#endif
#ifndef STBI_NO_PSD
-static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp)
+static int stbi__psd_info(stbi__context* s, int* x, int* y, int* comp)
{
- int channelCount;
- if (stbi__get32be(s) != 0x38425053) {
- stbi__rewind( s );
- return 0;
- }
- if (stbi__get16be(s) != 1) {
- stbi__rewind( s );
- return 0;
- }
- stbi__skip(s, 6);
- channelCount = stbi__get16be(s);
- if (channelCount < 0 || channelCount > 16) {
- stbi__rewind( s );
- return 0;
- }
- *y = stbi__get32be(s);
- *x = stbi__get32be(s);
- if (stbi__get16be(s) != 8) {
- stbi__rewind( s );
- return 0;
- }
- if (stbi__get16be(s) != 3) {
- stbi__rewind( s );
- return 0;
- }
- *comp = 4;
- return 1;
+ int channelCount, dummy, depth;
+ if (!x) x = &dummy;
+ if (!y) y = &dummy;
+ if (!comp) comp = &dummy;
+ if (stbi__get32be(s) != 0x38425053) {
+ stbi__rewind(s);
+ return 0;
+ }
+ if (stbi__get16be(s) != 1) {
+ stbi__rewind(s);
+ return 0;
+ }
+ stbi__skip(s, 6);
+ channelCount = stbi__get16be(s);
+ if (channelCount < 0 || channelCount > 16) {
+ stbi__rewind(s);
+ return 0;
+ }
+ *y = stbi__get32be(s);
+ *x = stbi__get32be(s);
+ depth = stbi__get16be(s);
+ if (depth != 8 && depth != 16) {
+ stbi__rewind(s);
+ return 0;
+ }
+ if (stbi__get16be(s) != 3) {
+ stbi__rewind(s);
+ return 0;
+ }
+ *comp = 4;
+ return 1;
+}
+
+static int stbi__psd_is16(stbi__context* s)
+{
+ int channelCount, depth;
+ if (stbi__get32be(s) != 0x38425053) {
+ stbi__rewind(s);
+ return 0;
+ }
+ if (stbi__get16be(s) != 1) {
+ stbi__rewind(s);
+ return 0;
+ }
+ stbi__skip(s, 6);
+ channelCount = stbi__get16be(s);
+ if (channelCount < 0 || channelCount > 16) {
+ stbi__rewind(s);
+ return 0;
+ }
+ STBI_NOTUSED(stbi__get32be(s));
+ STBI_NOTUSED(stbi__get32be(s));
+ depth = stbi__get16be(s);
+ if (depth != 16) {
+ stbi__rewind(s);
+ return 0;
+ }
+ return 1;
}
#endif
#ifndef STBI_NO_PIC
-static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp)
+static int stbi__pic_info(stbi__context* s, int* x, int* y, int* comp)
{
- int act_comp=0,num_packets=0,chained;
- stbi__pic_packet packets[10];
+ int act_comp = 0, num_packets = 0, chained, dummy;
+ stbi__pic_packet packets[10];
- stbi__skip(s, 92);
+ if (!x) x = &dummy;
+ if (!y) y = &dummy;
+ if (!comp) comp = &dummy;
- *x = stbi__get16be(s);
- *y = stbi__get16be(s);
- if (stbi__at_eof(s)) return 0;
- if ( (*x) != 0 && (1 << 28) / (*x) < (*y)) {
- stbi__rewind( s );
- return 0;
- }
+ if (!stbi__pic_is4(s, "\x53\x80\xF6\x34")) {
+ stbi__rewind(s);
+ return 0;
+ }
+
+ stbi__skip(s, 88);
+
+ *x = stbi__get16be(s);
+ *y = stbi__get16be(s);
+ if (stbi__at_eof(s)) {
+ stbi__rewind(s);
+ return 0;
+ }
+ if ((*x) != 0 && (1 << 28) / (*x) < (*y)) {
+ stbi__rewind(s);
+ return 0;
+ }
- stbi__skip(s, 8);
+ stbi__skip(s, 8);
- do {
- stbi__pic_packet *packet;
+ do {
+ stbi__pic_packet* packet;
- if (num_packets==sizeof(packets)/sizeof(packets[0]))
- return 0;
+ if (num_packets == sizeof(packets) / sizeof(packets[0]))
+ return 0;
- packet = &packets[num_packets++];
- chained = stbi__get8(s);
- packet->size = stbi__get8(s);
- packet->type = stbi__get8(s);
- packet->channel = stbi__get8(s);
- act_comp |= packet->channel;
+ packet = &packets[num_packets++];
+ chained = stbi__get8(s);
+ packet->size = stbi__get8(s);
+ packet->type = stbi__get8(s);
+ packet->channel = stbi__get8(s);
+ act_comp |= packet->channel;
- if (stbi__at_eof(s)) {
- stbi__rewind( s );
- return 0;
- }
- if (packet->size != 8) {
- stbi__rewind( s );
- return 0;
- }
- } while (chained);
+ if (stbi__at_eof(s)) {
+ stbi__rewind(s);
+ return 0;
+ }
+ if (packet->size != 8) {
+ stbi__rewind(s);
+ return 0;
+ }
+ } while (chained);
- *comp = (act_comp & 0x10 ? 4 : 3);
+ *comp = (act_comp & 0x10 ? 4 : 3);
- return 1;
+ return 1;
}
#endif
@@ -6114,151 +7598,210 @@ static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp)
// Known limitations:
// Does not support comments in the header section
// Does not support ASCII image data (formats P2 and P3)
-// Does not support 16-bit-per-channel
#ifndef STBI_NO_PNM
-static int stbi__pnm_test(stbi__context *s)
+static int stbi__pnm_test(stbi__context* s)
{
- char p, t;
- p = (char) stbi__get8(s);
- t = (char) stbi__get8(s);
- if (p != 'P' || (t != '5' && t != '6')) {
- stbi__rewind( s );
- return 0;
- }
- return 1;
+ char p, t;
+ p = (char)stbi__get8(s);
+ t = (char)stbi__get8(s);
+ if (p != 'P' || (t != '5' && t != '6')) {
+ stbi__rewind(s);
+ return 0;
+ }
+ return 1;
}
-static stbi_uc *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp)
+static void* stbi__pnm_load(stbi__context* s, int* x, int* y, int* comp, int req_comp, stbi__result_info* ri)
{
- stbi_uc *out;
- if (!stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n))
- return 0;
- *x = s->img_x;
- *y = s->img_y;
- *comp = s->img_n;
+ stbi_uc* out;
+ STBI_NOTUSED(ri);
+
+ ri->bits_per_channel = stbi__pnm_info(s, (int*)&s->img_x, (int*)&s->img_y, (int*)&s->img_n);
+ if (ri->bits_per_channel == 0)
+ return 0;
- out = (stbi_uc *) stbi__malloc(s->img_n * s->img_x * s->img_y);
- if (!out) return stbi__errpuc("outofmem", "Out of memory");
- stbi__getn(s, out, s->img_n * s->img_x * s->img_y);
+ if (s->img_y > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large", "Very large image (corrupt?)");
+ if (s->img_x > STBI_MAX_DIMENSIONS) return stbi__errpuc("too large", "Very large image (corrupt?)");
- if (req_comp && req_comp != s->img_n) {
- out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y);
- if (out == NULL) return out; // stbi__convert_format frees input on failure
- }
- return out;
+ *x = s->img_x;
+ *y = s->img_y;
+ if (comp) *comp = s->img_n;
+
+ if (!stbi__mad4sizes_valid(s->img_n, s->img_x, s->img_y, ri->bits_per_channel / 8, 0))
+ return stbi__errpuc("too large", "PNM too large");
+
+ out = (stbi_uc*)stbi__malloc_mad4(s->img_n, s->img_x, s->img_y, ri->bits_per_channel / 8, 0);
+ if (!out) return stbi__errpuc("outofmem", "Out of memory");
+ if (!stbi__getn(s, out, s->img_n * s->img_x * s->img_y * (ri->bits_per_channel / 8))) {
+ STBI_FREE(out);
+ return stbi__errpuc("bad PNM", "PNM file truncated");
+ }
+
+ if (req_comp && req_comp != s->img_n) {
+ if (ri->bits_per_channel == 16) {
+ out = (stbi_uc*)stbi__convert_format16((stbi__uint16*)out, s->img_n, req_comp, s->img_x, s->img_y);
+ }
+ else {
+ out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y);
+ }
+ if (out == NULL) return out; // stbi__convert_format frees input on failure
+ }
+ return out;
}
static int stbi__pnm_isspace(char c)
{
- return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r';
+ return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r';
}
-static void stbi__pnm_skip_whitespace(stbi__context *s, char *c)
+static void stbi__pnm_skip_whitespace(stbi__context* s, char* c)
{
- while (!stbi__at_eof(s) && stbi__pnm_isspace(*c))
- *c = (char) stbi__get8(s);
+ for (;;) {
+ while (!stbi__at_eof(s) && stbi__pnm_isspace(*c))
+ *c = (char)stbi__get8(s);
+
+ if (stbi__at_eof(s) || *c != '#')
+ break;
+
+ while (!stbi__at_eof(s) && *c != '\n' && *c != '\r')
+ *c = (char)stbi__get8(s);
+ }
}
static int stbi__pnm_isdigit(char c)
{
- return c >= '0' && c <= '9';
+ return c >= '0' && c <= '9';
}
-static int stbi__pnm_getinteger(stbi__context *s, char *c)
+static int stbi__pnm_getinteger(stbi__context* s, char* c)
{
- int value = 0;
+ int value = 0;
- while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) {
- value = value*10 + (*c - '0');
- *c = (char) stbi__get8(s);
- }
+ while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) {
+ value = value * 10 + (*c - '0');
+ *c = (char)stbi__get8(s);
+ if ((value > 214748364) || (value == 214748364 && *c > '7'))
+ return stbi__err("integer parse overflow", "Parsing an integer in the PPM header overflowed a 32-bit int");
+ }
- return value;
+ return value;
}
-static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp)
+static int stbi__pnm_info(stbi__context* s, int* x, int* y, int* comp)
{
- int maxv;
- char c, p, t;
+ int maxv, dummy;
+ char c, p, t;
- stbi__rewind( s );
+ if (!x) x = &dummy;
+ if (!y) y = &dummy;
+ if (!comp) comp = &dummy;
- // Get identifier
- p = (char) stbi__get8(s);
- t = (char) stbi__get8(s);
- if (p != 'P' || (t != '5' && t != '6')) {
- stbi__rewind( s );
- return 0;
- }
+ stbi__rewind(s);
+
+ // Get identifier
+ p = (char)stbi__get8(s);
+ t = (char)stbi__get8(s);
+ if (p != 'P' || (t != '5' && t != '6')) {
+ stbi__rewind(s);
+ return 0;
+ }
- *comp = (t == '6') ? 3 : 1; // '5' is 1-component .pgm; '6' is 3-component .ppm
+ *comp = (t == '6') ? 3 : 1; // '5' is 1-component .pgm; '6' is 3-component .ppm
- c = (char) stbi__get8(s);
- stbi__pnm_skip_whitespace(s, &c);
+ c = (char)stbi__get8(s);
+ stbi__pnm_skip_whitespace(s, &c);
- *x = stbi__pnm_getinteger(s, &c); // read width
- stbi__pnm_skip_whitespace(s, &c);
+ *x = stbi__pnm_getinteger(s, &c); // read width
+ if (*x == 0)
+ return stbi__err("invalid width", "PPM image header had zero or overflowing width");
+ stbi__pnm_skip_whitespace(s, &c);
- *y = stbi__pnm_getinteger(s, &c); // read height
- stbi__pnm_skip_whitespace(s, &c);
+ *y = stbi__pnm_getinteger(s, &c); // read height
+ if (*y == 0)
+ return stbi__err("invalid width", "PPM image header had zero or overflowing width");
+ stbi__pnm_skip_whitespace(s, &c);
- maxv = stbi__pnm_getinteger(s, &c); // read max value
+ maxv = stbi__pnm_getinteger(s, &c); // read max value
+ if (maxv > 65535)
+ return stbi__err("max value > 65535", "PPM image supports only 8-bit and 16-bit images");
+ else if (maxv > 255)
+ return 16;
+ else
+ return 8;
+}
- if (maxv > 255)
- return stbi__err("max value > 255", "PPM image not 8-bit");
- else
- return 1;
+static int stbi__pnm_is16(stbi__context* s)
+{
+ if (stbi__pnm_info(s, NULL, NULL, NULL) == 16)
+ return 1;
+ return 0;
}
#endif
-static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp)
+static int stbi__info_main(stbi__context* s, int* x, int* y, int* comp)
{
- #ifndef STBI_NO_JPEG
- if (stbi__jpeg_info(s, x, y, comp)) return 1;
- #endif
+#ifndef STBI_NO_JPEG
+ if (stbi__jpeg_info(s, x, y, comp)) return 1;
+#endif
+
+#ifndef STBI_NO_PNG
+ if (stbi__png_info(s, x, y, comp)) return 1;
+#endif
+
+#ifndef STBI_NO_GIF
+ if (stbi__gif_info(s, x, y, comp)) return 1;
+#endif
- #ifndef STBI_NO_PNG
- if (stbi__png_info(s, x, y, comp)) return 1;
- #endif
+#ifndef STBI_NO_BMP
+ if (stbi__bmp_info(s, x, y, comp)) return 1;
+#endif
+
+#ifndef STBI_NO_PSD
+ if (stbi__psd_info(s, x, y, comp)) return 1;
+#endif
- #ifndef STBI_NO_GIF
- if (stbi__gif_info(s, x, y, comp)) return 1;
- #endif
+#ifndef STBI_NO_PIC
+ if (stbi__pic_info(s, x, y, comp)) return 1;
+#endif
- #ifndef STBI_NO_BMP
- if (stbi__bmp_info(s, x, y, comp)) return 1;
- #endif
+#ifndef STBI_NO_PNM
+ if (stbi__pnm_info(s, x, y, comp)) return 1;
+#endif
- #ifndef STBI_NO_PSD
- if (stbi__psd_info(s, x, y, comp)) return 1;
- #endif
+#ifndef STBI_NO_HDR
+ if (stbi__hdr_info(s, x, y, comp)) return 1;
+#endif
- #ifndef STBI_NO_PIC
- if (stbi__pic_info(s, x, y, comp)) return 1;
- #endif
+ // test tga last because it's a crappy test!
+#ifndef STBI_NO_TGA
+ if (stbi__tga_info(s, x, y, comp))
+ return 1;
+#endif
+ return stbi__err("unknown image type", "Image not of any known type, or corrupt");
+}
- #ifndef STBI_NO_PNM
- if (stbi__pnm_info(s, x, y, comp)) return 1;
- #endif
+static int stbi__is_16_main(stbi__context* s)
+{
+#ifndef STBI_NO_PNG
+ if (stbi__png_is16(s)) return 1;
+#endif
- #ifndef STBI_NO_HDR
- if (stbi__hdr_info(s, x, y, comp)) return 1;
- #endif
+#ifndef STBI_NO_PSD
+ if (stbi__psd_is16(s)) return 1;
+#endif
- // test tga last because it's a crappy test!
- #ifndef STBI_NO_TGA
- if (stbi__tga_info(s, x, y, comp))
- return 1;
- #endif
- return stbi__err("unknown image type", "Image not of any known type, or corrupt");
+#ifndef STBI_NO_PNM
+ if (stbi__pnm_is16(s)) return 1;
+#endif
+ return 0;
}
#ifndef STBI_NO_STDIO
-STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp)
+STBIDEF int stbi_info(char const* filename, int* x, int* y, int* comp)
{
- FILE *f = stbi__fopen(filename, "rb");
+ FILE* f = stbi__fopen(filename, "rb");
int result;
if (!f) return stbi__err("can't fopen", "Unable to open file");
result = stbi_info_from_file(f, x, y, comp);
@@ -6266,36 +7809,111 @@ STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp)
return result;
}
-STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp)
+STBIDEF int stbi_info_from_file(FILE* f, int* x, int* y, int* comp)
+{
+ int r;
+ stbi__context s;
+ long pos = ftell(f);
+ stbi__start_file(&s, f);
+ r = stbi__info_main(&s, x, y, comp);
+ fseek(f, pos, SEEK_SET);
+ return r;
+}
+
+STBIDEF int stbi_is_16_bit(char const* filename)
+{
+ FILE* f = stbi__fopen(filename, "rb");
+ int result;
+ if (!f) return stbi__err("can't fopen", "Unable to open file");
+ result = stbi_is_16_bit_from_file(f);
+ fclose(f);
+ return result;
+}
+
+STBIDEF int stbi_is_16_bit_from_file(FILE* f)
{
- int r;
- stbi__context s;
- long pos = ftell(f);
- stbi__start_file(&s, f);
- r = stbi__info_main(&s,x,y,comp);
- fseek(f,pos,SEEK_SET);
- return r;
+ int r;
+ stbi__context s;
+ long pos = ftell(f);
+ stbi__start_file(&s, f);
+ r = stbi__is_16_main(&s);
+ fseek(f, pos, SEEK_SET);
+ return r;
}
#endif // !STBI_NO_STDIO
-STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp)
+STBIDEF int stbi_info_from_memory(stbi_uc const* buffer, int len, int* x, int* y, int* comp)
+{
+ stbi__context s;
+ stbi__start_mem(&s, buffer, len);
+ return stbi__info_main(&s, x, y, comp);
+}
+
+STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const* c, void* user, int* x, int* y, int* comp)
+{
+ stbi__context s;
+ stbi__start_callbacks(&s, (stbi_io_callbacks*)c, user);
+ return stbi__info_main(&s, x, y, comp);
+}
+
+STBIDEF int stbi_is_16_bit_from_memory(stbi_uc const* buffer, int len)
{
- stbi__context s;
- stbi__start_mem(&s,buffer,len);
- return stbi__info_main(&s,x,y,comp);
+ stbi__context s;
+ stbi__start_mem(&s, buffer, len);
+ return stbi__is_16_main(&s);
}
-STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int *x, int *y, int *comp)
+STBIDEF int stbi_is_16_bit_from_callbacks(stbi_io_callbacks const* c, void* user)
{
- stbi__context s;
- stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user);
- return stbi__info_main(&s,x,y,comp);
+ stbi__context s;
+ stbi__start_callbacks(&s, (stbi_io_callbacks*)c, user);
+ return stbi__is_16_main(&s);
}
#endif // STB_IMAGE_IMPLEMENTATION
/*
revision history:
+ 2.20 (2019-02-07) support utf8 filenames in Windows; fix warnings and platform ifdefs
+ 2.19 (2018-02-11) fix warning
+ 2.18 (2018-01-30) fix warnings
+ 2.17 (2018-01-29) change sbti__shiftsigned to avoid clang -O2 bug
+ 1-bit BMP
+ *_is_16_bit api
+ avoid warnings
+ 2.16 (2017-07-23) all functions have 16-bit variants;
+ STBI_NO_STDIO works again;
+ compilation fixes;
+ fix rounding in unpremultiply;
+ optimize vertical flip;
+ disable raw_len validation;
+ documentation fixes
+ 2.15 (2017-03-18) fix png-1,2,4 bug; now all Imagenet JPGs decode;
+ warning fixes; disable run-time SSE detection on gcc;
+ uniform handling of optional "return" values;
+ thread-safe initialization of zlib tables
+ 2.14 (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs
+ 2.13 (2016-11-29) add 16-bit API, only supported for PNG right now
+ 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes
+ 2.11 (2016-04-02) allocate large structures on the stack
+ remove white matting for transparent PSD
+ fix reported channel count for PNG & BMP
+ re-enable SSE2 in non-gcc 64-bit
+ support RGB-formatted JPEG
+ read 16-bit PNGs (only as 8-bit)
+ 2.10 (2016-01-22) avoid warning introduced in 2.09 by STBI_REALLOC_SIZED
+ 2.09 (2016-01-16) allow comments in PNM files
+ 16-bit-per-pixel TGA (not bit-per-component)
+ info() for TGA could break due to .hdr handling
+ info() for BMP to shares code instead of sloppy parse
+ can use STBI_REALLOC_SIZED if allocator doesn't support realloc
+ code cleanup
+ 2.08 (2015-09-13) fix to 2.07 cleanup, reading RGB PSD as RGBA
+ 2.07 (2015-09-13) fix compiler warnings
+ partial animated GIF support
+ limited 16-bpc PSD support
+ #ifdef unused functions
+ bug with < 92 byte PIC,PNM,HDR,TGA
2.06 (2015-04-19) fix bug where PSD returns wrong '*comp' value
2.05 (2015-04-19) fix bug in progressive JPEG handling, fix warning
2.04 (2015-04-15) try to re-enable SIMD on MinGW 64-bit
@@ -6436,3 +8054,46 @@ STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int
0.50 (2006-11-19)
first released version
*/
+
+
+/*
+------------------------------------------------------------------------------
+This software is available under 2 licenses -- choose whichever you prefer.
+------------------------------------------------------------------------------
+ALTERNATIVE A - MIT License
+Copyright (c) 2017 Sean Barrett
+Permission is hereby granted, free of charge, to any person obtaining a copy of
+this software and associated documentation files (the "Software"), to deal in
+the Software without restriction, including without limitation the rights to
+use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
+of the Software, and to permit persons to whom the Software is furnished to do
+so, subject to the following conditions:
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+------------------------------------------------------------------------------
+ALTERNATIVE B - Public Domain (www.unlicense.org)
+This is free and unencumbered software released into the public domain.
+Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
+software, either in source code form or as a compiled binary, for any purpose,
+commercial or non-commercial, and by any means.
+In jurisdictions that recognize copyright laws, the author or authors of this
+software dedicate any and all copyright interest in the software to the public
+domain. We make this dedication for the benefit of the public at large and to
+the detriment of our heirs and successors. We intend this dedication to be an
+overt act of relinquishment in perpetuity of all present and future rights to
+this software under copyright law.
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+------------------------------------------------------------------------------
+*/
\ No newline at end of file
diff --git a/external/include/stb_image_write.h b/external/include/stb_image_write.h
index 59052f9c..52536579 100644
--- a/external/include/stb_image_write.h
+++ b/external/include/stb_image_write.h
@@ -1,5 +1,5 @@
-/* stb_image_write - v0.98 - public domain - http://nothings.org/stb/stb_image_write.h
- writes out PNG/BMP/TGA images to C stdio - Sean Barrett 2010
+/* stb_image_write - v1.16 - public domain - http://nothings.org/stb
+ writes out PNG/BMP/TGA/JPEG/HDR images to C stdio - Sean Barrett 2010-2015
no warranty implied; use at your own risk
Before #including,
@@ -12,29 +12,67 @@
ABOUT:
- This header file is a library for writing images to C stdio. It could be
- adapted to write to memory or a general streaming interface; let me know.
+ This header file is a library for writing images to C stdio or a callback.
The PNG output is not optimal; it is 20-50% larger than the file
- written by a decent optimizing implementation. This library is designed
- for source code compactness and simplicitly, not optimal image file size
- or run-time performance.
+ written by a decent optimizing implementation; though providing a custom
+ zlib compress function (see STBIW_ZLIB_COMPRESS) can mitigate that.
+ This library is designed for source code compactness and simplicity,
+ not optimal image file size or run-time performance.
BUILDING:
You can #define STBIW_ASSERT(x) before the #include to avoid using assert.h.
You can #define STBIW_MALLOC(), STBIW_REALLOC(), and STBIW_FREE() to replace
malloc,realloc,free.
- You can define STBIW_MEMMOVE() to replace memmove()
+ You can #define STBIW_MEMMOVE() to replace memmove()
+ You can #define STBIW_ZLIB_COMPRESS to use a custom zlib-style compress function
+ for PNG compression (instead of the builtin one), it must have the following signature:
+ unsigned char * my_compress(unsigned char *data, int data_len, int *out_len, int quality);
+ The returned data will be freed with STBIW_FREE() (free() by default),
+ so it must be heap allocated with STBIW_MALLOC() (malloc() by default),
+
+UNICODE:
+
+ If compiling for Windows and you wish to use Unicode filenames, compile
+ with
+ #define STBIW_WINDOWS_UTF8
+ and pass utf8-encoded filenames. Call stbiw_convert_wchar_to_utf8 to convert
+ Windows wchar_t filenames to utf8.
USAGE:
- There are four functions, one for each image file format:
+ There are five functions, one for each image file format:
int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes);
int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data);
int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data);
- int stbi_write_hdr(char const *filename, int w, int h, int comp, const void *data);
+ int stbi_write_jpg(char const *filename, int w, int h, int comp, const void *data, int quality);
+ int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data);
+
+ void stbi_flip_vertically_on_write(int flag); // flag is non-zero to flip data vertically
+
+ There are also five equivalent functions that use an arbitrary write function. You are
+ expected to open/close your file-equivalent before and after calling these:
+
+ int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data, int stride_in_bytes);
+ int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data);
+ int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void *data);
+ int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data);
+ int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality);
+
+ where the callback is:
+ void stbi_write_func(void *context, void *data, int size);
+
+ You can configure it with these global variables:
+ int stbi_write_tga_with_rle; // defaults to true; set to 0 to disable RLE
+ int stbi_write_png_compression_level; // defaults to 8; set to higher for more compression
+ int stbi_write_force_png_filter; // defaults to -1; set to 0..5 to force a filter mode
+
+
+ You can define STBI_WRITE_NO_STDIO to disable the file variant of these
+ functions, so the library will not use stdio.h at all. However, this will
+ also disable HDR writing, because it requires stdio for formatted output.
Each function returns 0 on failure and non-0 on success.
@@ -58,69 +96,145 @@
writer, both because it is in BGR order and because it may have padding
at the end of the line.)
+ PNG allows you to set the deflate compression level by setting the global
+ variable 'stbi_write_png_compression_level' (it defaults to 8).
+
HDR expects linear float data. Since the format is always 32-bit rgb(e)
data, alpha (if provided) is discarded, and for monochrome data it is
replicated across all three channels.
+ TGA supports RLE or non-RLE compressed data. To use non-RLE-compressed
+ data, set the global variable 'stbi_write_tga_with_rle' to 0.
+
+ JPEG does ignore alpha channels in input data; quality is between 1 and 100.
+ Higher quality looks better but results in a bigger image.
+ JPEG baseline (no JPEG progressive).
+
CREDITS:
- PNG/BMP/TGA
- Sean Barrett
- HDR
- Baldur Karlsson
- TGA monochrome:
- Jean-Sebastien Guay
- misc enhancements:
- Tim Kelsey
+
+ Sean Barrett - PNG/BMP/TGA
+ Baldur Karlsson - HDR
+ Jean-Sebastien Guay - TGA monochrome
+ Tim Kelsey - misc enhancements
+ Alan Hickman - TGA RLE
+ Emmanuel Julien - initial file IO callback implementation
+ Jon Olick - original jo_jpeg.cpp code
+ Daniel Gibson - integrate JPEG, allow external zlib
+ Aarni Koskela - allow choosing PNG filter
+
bugfixes:
github:Chribba
-
+ Guillaume Chereau
+ github:jry2
+ github:romigrou
+ Sergio Gonzalez
+ Jonas Karlsson
+ Filip Wasil
+ Thatcher Ulrich
+ github:poppolopoppo
+ Patrick Boettcher
+ github:xeekworx
+ Cap Petschulat
+ Simon Rodriguez
+ Ivan Tikhonov
+ github:ignotion
+ Adam Schackart
+ Andrew Kensler
+
LICENSE
-This software is in the public domain. Where that dedication is not
-recognized, you are granted a perpetual, irrevocable license to copy,
-distribute, and modify this file as you see fit.
+ See end of file for license information.
+
*/
#ifndef INCLUDE_STB_IMAGE_WRITE_H
#define INCLUDE_STB_IMAGE_WRITE_H
+#include
+
+// if STB_IMAGE_WRITE_STATIC causes problems, try defining STBIWDEF to 'inline' or 'static inline'
+#ifndef STBIWDEF
+#ifdef STB_IMAGE_WRITE_STATIC
+#define STBIWDEF static
+#else
#ifdef __cplusplus
-extern "C" {
+#define STBIWDEF extern "C"
+#else
+#define STBIWDEF extern
+#endif
+#endif
#endif
-extern int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes);
-extern int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data);
-extern int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data);
-extern int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data);
+#ifndef STB_IMAGE_WRITE_STATIC // C++ forbids static forward declarations
+STBIWDEF int stbi_write_tga_with_rle;
+STBIWDEF int stbi_write_png_compression_level;
+STBIWDEF int stbi_write_force_png_filter;
+#endif
-#ifdef __cplusplus
-}
+#ifndef STBI_WRITE_NO_STDIO
+STBIWDEF int stbi_write_png(char const* filename, int w, int h, int comp, const void* data, int stride_in_bytes);
+STBIWDEF int stbi_write_bmp(char const* filename, int w, int h, int comp, const void* data);
+STBIWDEF int stbi_write_tga(char const* filename, int w, int h, int comp, const void* data);
+STBIWDEF int stbi_write_hdr(char const* filename, int w, int h, int comp, const float* data);
+STBIWDEF int stbi_write_jpg(char const* filename, int x, int y, int comp, const void* data, int quality);
+
+#ifdef STBIW_WINDOWS_UTF8
+STBIWDEF int stbiw_convert_wchar_to_utf8(char* buffer, size_t bufferlen, const wchar_t* input);
+#endif
#endif
+typedef void stbi_write_func(void* context, void* data, int size);
+
+STBIWDEF int stbi_write_png_to_func(stbi_write_func* func, void* context, int w, int h, int comp, const void* data, int stride_in_bytes);
+STBIWDEF int stbi_write_bmp_to_func(stbi_write_func* func, void* context, int w, int h, int comp, const void* data);
+STBIWDEF int stbi_write_tga_to_func(stbi_write_func* func, void* context, int w, int h, int comp, const void* data);
+STBIWDEF int stbi_write_hdr_to_func(stbi_write_func* func, void* context, int w, int h, int comp, const float* data);
+STBIWDEF int stbi_write_jpg_to_func(stbi_write_func* func, void* context, int x, int y, int comp, const void* data, int quality);
+
+STBIWDEF void stbi_flip_vertically_on_write(int flip_boolean);
+
#endif//INCLUDE_STB_IMAGE_WRITE_H
#ifdef STB_IMAGE_WRITE_IMPLEMENTATION
+#ifdef _WIN32
+#ifndef _CRT_SECURE_NO_WARNINGS
+#define _CRT_SECURE_NO_WARNINGS
+#endif
+#ifndef _CRT_NONSTDC_NO_DEPRECATE
+#define _CRT_NONSTDC_NO_DEPRECATE
+#endif
+#endif
+
+#ifndef STBI_WRITE_NO_STDIO
+#include
+#endif // STBI_WRITE_NO_STDIO
+
#include
#include
-#include
#include
#include
-#if defined(STBIW_MALLOC) && defined(STBIW_FREE) && defined(STBIW_REALLOC)
+#if defined(STBIW_MALLOC) && defined(STBIW_FREE) && (defined(STBIW_REALLOC) || defined(STBIW_REALLOC_SIZED))
// ok
-#elif !defined(STBIW_MALLOC) && !defined(STBIW_FREE) && !defined(STBIW_REALLOC)
+#elif !defined(STBIW_MALLOC) && !defined(STBIW_FREE) && !defined(STBIW_REALLOC) && !defined(STBIW_REALLOC_SIZED)
// ok
#else
-#error "Must define all or none of STBIW_MALLOC, STBIW_FREE, and STBIW_REALLOC."
+#error "Must define all or none of STBIW_MALLOC, STBIW_FREE, and STBIW_REALLOC (or STBIW_REALLOC_SIZED)."
#endif
#ifndef STBIW_MALLOC
-#define STBIW_MALLOC(sz) malloc(sz)
-#define STBIW_REALLOC(p,sz) realloc(p,sz)
-#define STBIW_FREE(p) free(p)
+#define STBIW_MALLOC(sz) malloc(sz)
+#define STBIW_REALLOC(p,newsz) realloc(p,newsz)
+#define STBIW_FREE(p) free(p)
#endif
+
+#ifndef STBIW_REALLOC_SIZED
+#define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz)
+#endif
+
+
#ifndef STBIW_MEMMOVE
#define STBIW_MEMMOVE(a,b,sz) memmove(a,b,sz)
#endif
@@ -131,268 +245,587 @@ extern int stbi_write_hdr(char const *filename, int w, int h, int comp, const fl
#define STBIW_ASSERT(x) assert(x)
#endif
+#define STBIW_UCHAR(x) (unsigned char) ((x) & 0xff)
+
+#ifdef STB_IMAGE_WRITE_STATIC
+static int stbi_write_png_compression_level = 8;
+static int stbi_write_tga_with_rle = 1;
+static int stbi_write_force_png_filter = -1;
+#else
+int stbi_write_png_compression_level = 8;
+int stbi_write_tga_with_rle = 1;
+int stbi_write_force_png_filter = -1;
+#endif
+
+static int stbi__flip_vertically_on_write = 0;
+
+STBIWDEF void stbi_flip_vertically_on_write(int flag)
+{
+ stbi__flip_vertically_on_write = flag;
+}
+
+typedef struct
+{
+ stbi_write_func* func;
+ void* context;
+ unsigned char buffer[64];
+ int buf_used;
+} stbi__write_context;
+
+// initialize a callback-based context
+static void stbi__start_write_callbacks(stbi__write_context* s, stbi_write_func* c, void* context)
+{
+ s->func = c;
+ s->context = context;
+}
+
+#ifndef STBI_WRITE_NO_STDIO
+
+static void stbi__stdio_write(void* context, void* data, int size)
+{
+ fwrite(data, 1, size, (FILE*)context);
+}
+
+#if defined(_WIN32) && defined(STBIW_WINDOWS_UTF8)
+#ifdef __cplusplus
+#define STBIW_EXTERN extern "C"
+#else
+#define STBIW_EXTERN extern
+#endif
+STBIW_EXTERN __declspec(dllimport) int __stdcall MultiByteToWideChar(unsigned int cp, unsigned long flags, const char* str, int cbmb, wchar_t* widestr, int cchwide);
+STBIW_EXTERN __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, const wchar_t* widestr, int cchwide, char* str, int cbmb, const char* defchar, int* used_default);
+
+STBIWDEF int stbiw_convert_wchar_to_utf8(char* buffer, size_t bufferlen, const wchar_t* input)
+{
+ return WideCharToMultiByte(65001 /* UTF8 */, 0, input, -1, buffer, (int)bufferlen, NULL, NULL);
+}
+#endif
+
+static FILE* stbiw__fopen(char const* filename, char const* mode)
+{
+ FILE* f;
+#if defined(_WIN32) && defined(STBIW_WINDOWS_UTF8)
+ wchar_t wMode[64];
+ wchar_t wFilename[1024];
+ if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, filename, -1, wFilename, sizeof(wFilename) / sizeof(*wFilename)))
+ return 0;
+
+ if (0 == MultiByteToWideChar(65001 /* UTF8 */, 0, mode, -1, wMode, sizeof(wMode) / sizeof(*wMode)))
+ return 0;
+
+#if defined(_MSC_VER) && _MSC_VER >= 1400
+ if (0 != _wfopen_s(&f, wFilename, wMode))
+ f = 0;
+#else
+ f = _wfopen(wFilename, wMode);
+#endif
+
+#elif defined(_MSC_VER) && _MSC_VER >= 1400
+ if (0 != fopen_s(&f, filename, mode))
+ f = 0;
+#else
+ f = fopen(filename, mode);
+#endif
+ return f;
+}
+
+static int stbi__start_write_file(stbi__write_context* s, const char* filename)
+{
+ FILE* f = stbiw__fopen(filename, "wb");
+ stbi__start_write_callbacks(s, stbi__stdio_write, (void*)f);
+ return f != NULL;
+}
+
+static void stbi__end_write_file(stbi__write_context* s)
+{
+ fclose((FILE*)s->context);
+}
+
+#endif // !STBI_WRITE_NO_STDIO
+
typedef unsigned int stbiw_uint32;
-typedef int stb_image_write_test[sizeof(stbiw_uint32)==4 ? 1 : -1];
-
-static void writefv(FILE *f, const char *fmt, va_list v)
-{
- while (*fmt) {
- switch (*fmt++) {
- case ' ': break;
- case '1': { unsigned char x = (unsigned char) va_arg(v, int); fputc(x,f); break; }
- case '2': { int x = va_arg(v,int); unsigned char b[2];
- b[0] = (unsigned char) x; b[1] = (unsigned char) (x>>8);
- fwrite(b,2,1,f); break; }
- case '4': { stbiw_uint32 x = va_arg(v,int); unsigned char b[4];
- b[0]=(unsigned char)x; b[1]=(unsigned char)(x>>8);
- b[2]=(unsigned char)(x>>16); b[3]=(unsigned char)(x>>24);
- fwrite(b,4,1,f); break; }
- default:
+typedef int stb_image_write_test[sizeof(stbiw_uint32) == 4 ? 1 : -1];
+
+static void stbiw__writefv(stbi__write_context* s, const char* fmt, va_list v)
+{
+ while (*fmt) {
+ switch (*fmt++) {
+ case ' ': break;
+ case '1': { unsigned char x = STBIW_UCHAR(va_arg(v, int));
+ s->func(s->context, &x, 1);
+ break; }
+ case '2': { int x = va_arg(v, int);
+ unsigned char b[2];
+ b[0] = STBIW_UCHAR(x);
+ b[1] = STBIW_UCHAR(x >> 8);
+ s->func(s->context, b, 2);
+ break; }
+ case '4': { stbiw_uint32 x = va_arg(v, int);
+ unsigned char b[4];
+ b[0] = STBIW_UCHAR(x);
+ b[1] = STBIW_UCHAR(x >> 8);
+ b[2] = STBIW_UCHAR(x >> 16);
+ b[3] = STBIW_UCHAR(x >> 24);
+ s->func(s->context, b, 4);
+ break; }
+ default:
STBIW_ASSERT(0);
return;
- }
- }
-}
-
-static void write3(FILE *f, unsigned char a, unsigned char b, unsigned char c)
-{
- unsigned char arr[3];
- arr[0] = a, arr[1] = b, arr[2] = c;
- fwrite(arr, 3, 1, f);
-}
-
-static void write_pixels(FILE *f, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad, int expand_mono)
-{
- unsigned char bg[3] = { 255, 0, 255}, px[3];
- stbiw_uint32 zero = 0;
- int i,j,k, j_end;
-
- if (y <= 0)
- return;
-
- if (vdir < 0)
- j_end = -1, j = y-1;
- else
- j_end = y, j = 0;
-
- for (; j != j_end; j += vdir) {
- for (i=0; i < x; ++i) {
- unsigned char *d = (unsigned char *) data + (j*x+i)*comp;
- if (write_alpha < 0)
- fwrite(&d[comp-1], 1, 1, f);
- switch (comp) {
- case 1: fwrite(d, 1, 1, f);
- break;
- case 2: if (expand_mono)
- write3(f, d[0],d[0],d[0]); // monochrome bmp
- else
- fwrite(d, 1, 1, f); // monochrome TGA
- break;
- case 4:
- if (!write_alpha) {
- // composite against pink background
- for (k=0; k < 3; ++k)
- px[k] = bg[k] + ((d[k] - bg[k]) * d[3])/255;
- write3(f, px[1-rgb_dir],px[1],px[1+rgb_dir]);
- break;
- }
- /* FALLTHROUGH */
- case 3:
- write3(f, d[1-rgb_dir],d[1],d[1+rgb_dir]);
- break;
- }
- if (write_alpha > 0)
- fwrite(&d[comp-1], 1, 1, f);
- }
- fwrite(&zero,scanline_pad,1,f);
- }
-}
-
-static int outfile(char const *filename, int rgb_dir, int vdir, int x, int y, int comp, int expand_mono, void *data, int alpha, int pad, const char *fmt, ...)
-{
- FILE *f;
- if (y < 0 || x < 0) return 0;
- f = fopen(filename, "wb");
- if (f) {
- va_list v;
- va_start(v, fmt);
- writefv(f, fmt, v);
- va_end(v);
- write_pixels(f,rgb_dir,vdir,x,y,comp,data,alpha,pad,expand_mono);
- fclose(f);
- }
- return f != NULL;
-}
-
-int stbi_write_bmp(char const *filename, int x, int y, int comp, const void *data)
-{
- int pad = (-x*3) & 3;
- return outfile(filename,-1,-1,x,y,comp,1,(void *) data,0,pad,
- "11 4 22 4" "4 44 22 444444",
- 'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40, // file header
- 40, x,y, 1,24, 0,0,0,0,0,0); // bitmap header
-}
-
-int stbi_write_tga(char const *filename, int x, int y, int comp, const void *data)
-{
- int has_alpha = (comp == 2 || comp == 4);
- int colorbytes = has_alpha ? comp-1 : comp;
- int format = colorbytes < 2 ? 3 : 2; // 3 color channels (RGB/RGBA) = 2, 1 color channel (Y/YA) = 3
- return outfile(filename, -1,-1, x, y, comp, 0, (void *) data, has_alpha, 0,
- "111 221 2222 11", 0,0,format, 0,0,0, 0,0,x,y, (colorbytes+has_alpha)*8, has_alpha*8);
+ }
+ }
}
-// *************************************************************************************************
-// Radiance RGBE HDR writer
-// by Baldur Karlsson
-#define stbiw__max(a, b) ((a) > (b) ? (a) : (b))
+static void stbiw__writef(stbi__write_context* s, const char* fmt, ...)
+{
+ va_list v;
+ va_start(v, fmt);
+ stbiw__writefv(s, fmt, v);
+ va_end(v);
+}
-void stbiw__linear_to_rgbe(unsigned char *rgbe, float *linear)
+static void stbiw__write_flush(stbi__write_context* s)
{
- int exponent;
- float maxcomp = stbiw__max(linear[0], stbiw__max(linear[1], linear[2]));
+ if (s->buf_used) {
+ s->func(s->context, &s->buffer, s->buf_used);
+ s->buf_used = 0;
+ }
+}
- if (maxcomp < 1e-32) {
- rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0;
- } else {
- float normalize = (float) frexp(maxcomp, &exponent) * 256.0f/maxcomp;
+static void stbiw__putc(stbi__write_context* s, unsigned char c)
+{
+ s->func(s->context, &c, 1);
+}
- rgbe[0] = (unsigned char)(linear[0] * normalize);
- rgbe[1] = (unsigned char)(linear[1] * normalize);
- rgbe[2] = (unsigned char)(linear[2] * normalize);
- rgbe[3] = (unsigned char)(exponent + 128);
- }
+static void stbiw__write1(stbi__write_context* s, unsigned char a)
+{
+ if ((size_t)s->buf_used + 1 > sizeof(s->buffer))
+ stbiw__write_flush(s);
+ s->buffer[s->buf_used++] = a;
}
-void stbiw__write_run_data(FILE *f, int length, unsigned char databyte)
+static void stbiw__write3(stbi__write_context* s, unsigned char a, unsigned char b, unsigned char c)
{
- unsigned char lengthbyte = (unsigned char) (length+128);
- STBIW_ASSERT(length+128 <= 255);
- fwrite(&lengthbyte, 1, 1, f);
- fwrite(&databyte, 1, 1, f);
+ int n;
+ if ((size_t)s->buf_used + 3 > sizeof(s->buffer))
+ stbiw__write_flush(s);
+ n = s->buf_used;
+ s->buf_used = n + 3;
+ s->buffer[n + 0] = a;
+ s->buffer[n + 1] = b;
+ s->buffer[n + 2] = c;
}
-void stbiw__write_dump_data(FILE *f, int length, unsigned char *data)
+static void stbiw__write_pixel(stbi__write_context* s, int rgb_dir, int comp, int write_alpha, int expand_mono, unsigned char* d)
{
- unsigned char lengthbyte = (unsigned char )(length & 0xff);
- STBIW_ASSERT(length <= 128); // inconsistent with spec but consistent with official code
- fwrite(&lengthbyte, 1, 1, f);
- fwrite(data, length, 1, f);
+ unsigned char bg[3] = { 255, 0, 255 }, px[3];
+ int k;
+
+ if (write_alpha < 0)
+ stbiw__write1(s, d[comp - 1]);
+
+ switch (comp) {
+ case 2: // 2 pixels = mono + alpha, alpha is written separately, so same as 1-channel case
+ case 1:
+ if (expand_mono)
+ stbiw__write3(s, d[0], d[0], d[0]); // monochrome bmp
+ else
+ stbiw__write1(s, d[0]); // monochrome TGA
+ break;
+ case 4:
+ if (!write_alpha) {
+ // composite against pink background
+ for (k = 0; k < 3; ++k)
+ px[k] = bg[k] + ((d[k] - bg[k]) * d[3]) / 255;
+ stbiw__write3(s, px[1 - rgb_dir], px[1], px[1 + rgb_dir]);
+ break;
+ }
+ /* FALLTHROUGH */
+ case 3:
+ stbiw__write3(s, d[1 - rgb_dir], d[1], d[1 + rgb_dir]);
+ break;
+ }
+ if (write_alpha > 0)
+ stbiw__write1(s, d[comp - 1]);
}
-void stbiw__write_hdr_scanline(FILE *f, int width, int comp, unsigned char *scratch, const float *scanline)
+static void stbiw__write_pixels(stbi__write_context* s, int rgb_dir, int vdir, int x, int y, int comp, void* data, int write_alpha, int scanline_pad, int expand_mono)
{
- unsigned char scanlineheader[4] = { 2, 2, 0, 0 };
- unsigned char rgbe[4];
- float linear[3];
- int x;
+ stbiw_uint32 zero = 0;
+ int i, j, j_end;
+
+ if (y <= 0)
+ return;
+
+ if (stbi__flip_vertically_on_write)
+ vdir *= -1;
+
+ if (vdir < 0) {
+ j_end = -1; j = y - 1;
+ }
+ else {
+ j_end = y; j = 0;
+ }
+
+ for (; j != j_end; j += vdir) {
+ for (i = 0; i < x; ++i) {
+ unsigned char* d = (unsigned char*)data + (j * x + i) * comp;
+ stbiw__write_pixel(s, rgb_dir, comp, write_alpha, expand_mono, d);
+ }
+ stbiw__write_flush(s);
+ s->func(s->context, &zero, scanline_pad);
+ }
+}
- scanlineheader[2] = (width&0xff00)>>8;
- scanlineheader[3] = (width&0x00ff);
+static int stbiw__outfile(stbi__write_context* s, int rgb_dir, int vdir, int x, int y, int comp, int expand_mono, void* data, int alpha, int pad, const char* fmt, ...)
+{
+ if (y < 0 || x < 0) {
+ return 0;
+ }
+ else {
+ va_list v;
+ va_start(v, fmt);
+ stbiw__writefv(s, fmt, v);
+ va_end(v);
+ stbiw__write_pixels(s, rgb_dir, vdir, x, y, comp, data, alpha, pad, expand_mono);
+ return 1;
+ }
+}
- /* skip RLE for images too small or large */
- if (width < 8 || width >= 32768) {
- for (x=0; x < width; x++) {
- switch (comp) {
- case 4: /* fallthrough */
- case 3: linear[2] = scanline[x*comp + 2];
- linear[1] = scanline[x*comp + 1];
- linear[0] = scanline[x*comp + 0];
- break;
- case 2: /* fallthrough */
- case 1: linear[0] = linear[1] = linear[2] = scanline[x*comp + 0];
- break;
- }
- stbiw__linear_to_rgbe(rgbe, linear);
- fwrite(rgbe, 4, 1, f);
- }
- } else {
- int c,r;
- /* encode into scratch buffer */
- for (x=0; x < width; x++) {
- switch(comp) {
+static int stbi_write_bmp_core(stbi__write_context* s, int x, int y, int comp, const void* data)
+{
+ if (comp != 4) {
+ // write RGB bitmap
+ int pad = (-x * 3) & 3;
+ return stbiw__outfile(s, -1, -1, x, y, comp, 1, (void*)data, 0, pad,
+ "11 4 22 4" "4 44 22 444444",
+ 'B', 'M', 14 + 40 + (x * 3 + pad) * y, 0, 0, 14 + 40, // file header
+ 40, x, y, 1, 24, 0, 0, 0, 0, 0, 0); // bitmap header
+ }
+ else {
+ // RGBA bitmaps need a v4 header
+ // use BI_BITFIELDS mode with 32bpp and alpha mask
+ // (straight BI_RGB with alpha mask doesn't work in most readers)
+ return stbiw__outfile(s, -1, -1, x, y, comp, 1, (void*)data, 1, 0,
+ "11 4 22 4" "4 44 22 444444 4444 4 444 444 444 444",
+ 'B', 'M', 14 + 108 + x * y * 4, 0, 0, 14 + 108, // file header
+ 108, x, y, 1, 32, 3, 0, 0, 0, 0, 0, 0xff0000, 0xff00, 0xff, 0xff000000u, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); // bitmap V4 header
+ }
+}
+
+STBIWDEF int stbi_write_bmp_to_func(stbi_write_func* func, void* context, int x, int y, int comp, const void* data)
+{
+ stbi__write_context s = { 0 };
+ stbi__start_write_callbacks(&s, func, context);
+ return stbi_write_bmp_core(&s, x, y, comp, data);
+}
+
+#ifndef STBI_WRITE_NO_STDIO
+STBIWDEF int stbi_write_bmp(char const* filename, int x, int y, int comp, const void* data)
+{
+ stbi__write_context s = { 0 };
+ if (stbi__start_write_file(&s, filename)) {
+ int r = stbi_write_bmp_core(&s, x, y, comp, data);
+ stbi__end_write_file(&s);
+ return r;
+ }
+ else
+ return 0;
+}
+#endif //!STBI_WRITE_NO_STDIO
+
+static int stbi_write_tga_core(stbi__write_context* s, int x, int y, int comp, void* data)
+{
+ int has_alpha = (comp == 2 || comp == 4);
+ int colorbytes = has_alpha ? comp - 1 : comp;
+ int format = colorbytes < 2 ? 3 : 2; // 3 color channels (RGB/RGBA) = 2, 1 color channel (Y/YA) = 3
+
+ if (y < 0 || x < 0)
+ return 0;
+
+ if (!stbi_write_tga_with_rle) {
+ return stbiw__outfile(s, -1, -1, x, y, comp, 0, (void*)data, has_alpha, 0,
+ "111 221 2222 11", 0, 0, format, 0, 0, 0, 0, 0, x, y, (colorbytes + has_alpha) * 8, has_alpha * 8);
+ }
+ else {
+ int i, j, k;
+ int jend, jdir;
+
+ stbiw__writef(s, "111 221 2222 11", 0, 0, format + 8, 0, 0, 0, 0, 0, x, y, (colorbytes + has_alpha) * 8, has_alpha * 8);
+
+ if (stbi__flip_vertically_on_write) {
+ j = 0;
+ jend = y;
+ jdir = 1;
+ }
+ else {
+ j = y - 1;
+ jend = -1;
+ jdir = -1;
+ }
+ for (; j != jend; j += jdir) {
+ unsigned char* row = (unsigned char*)data + j * x * comp;
+ int len;
+
+ for (i = 0; i < x; i += len) {
+ unsigned char* begin = row + i * comp;
+ int diff = 1;
+ len = 1;
+
+ if (i < x - 1) {
+ ++len;
+ diff = memcmp(begin, row + (i + 1) * comp, comp);
+ if (diff) {
+ const unsigned char* prev = begin;
+ for (k = i + 2; k < x && len < 128; ++k) {
+ if (memcmp(prev, row + k * comp, comp)) {
+ prev += comp;
+ ++len;
+ }
+ else {
+ --len;
+ break;
+ }
+ }
+ }
+ else {
+ for (k = i + 2; k < x && len < 128; ++k) {
+ if (!memcmp(begin, row + k * comp, comp)) {
+ ++len;
+ }
+ else {
+ break;
+ }
+ }
+ }
+ }
+
+ if (diff) {
+ unsigned char header = STBIW_UCHAR(len - 1);
+ stbiw__write1(s, header);
+ for (k = 0; k < len; ++k) {
+ stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin + k * comp);
+ }
+ }
+ else {
+ unsigned char header = STBIW_UCHAR(len - 129);
+ stbiw__write1(s, header);
+ stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin);
+ }
+ }
+ }
+ stbiw__write_flush(s);
+ }
+ return 1;
+}
+
+STBIWDEF int stbi_write_tga_to_func(stbi_write_func* func, void* context, int x, int y, int comp, const void* data)
+{
+ stbi__write_context s = { 0 };
+ stbi__start_write_callbacks(&s, func, context);
+ return stbi_write_tga_core(&s, x, y, comp, (void*)data);
+}
+
+#ifndef STBI_WRITE_NO_STDIO
+STBIWDEF int stbi_write_tga(char const* filename, int x, int y, int comp, const void* data)
+{
+ stbi__write_context s = { 0 };
+ if (stbi__start_write_file(&s, filename)) {
+ int r = stbi_write_tga_core(&s, x, y, comp, (void*)data);
+ stbi__end_write_file(&s);
+ return r;
+ }
+ else
+ return 0;
+}
+#endif
+
+// *************************************************************************************************
+// Radiance RGBE HDR writer
+// by Baldur Karlsson
+
+#define stbiw__max(a, b) ((a) > (b) ? (a) : (b))
+
+#ifndef STBI_WRITE_NO_STDIO
+
+static void stbiw__linear_to_rgbe(unsigned char* rgbe, float* linear)
+{
+ int exponent;
+ float maxcomp = stbiw__max(linear[0], stbiw__max(linear[1], linear[2]));
+
+ if (maxcomp < 1e-32f) {
+ rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0;
+ }
+ else {
+ float normalize = (float)frexp(maxcomp, &exponent) * 256.0f / maxcomp;
+
+ rgbe[0] = (unsigned char)(linear[0] * normalize);
+ rgbe[1] = (unsigned char)(linear[1] * normalize);
+ rgbe[2] = (unsigned char)(linear[2] * normalize);
+ rgbe[3] = (unsigned char)(exponent + 128);
+ }
+}
+
+static void stbiw__write_run_data(stbi__write_context* s, int length, unsigned char databyte)
+{
+ unsigned char lengthbyte = STBIW_UCHAR(length + 128);
+ STBIW_ASSERT(length + 128 <= 255);
+ s->func(s->context, &lengthbyte, 1);
+ s->func(s->context, &databyte, 1);
+}
+
+static void stbiw__write_dump_data(stbi__write_context* s, int length, unsigned char* data)
+{
+ unsigned char lengthbyte = STBIW_UCHAR(length);
+ STBIW_ASSERT(length <= 128); // inconsistent with spec but consistent with official code
+ s->func(s->context, &lengthbyte, 1);
+ s->func(s->context, data, length);
+}
+
+static void stbiw__write_hdr_scanline(stbi__write_context* s, int width, int ncomp, unsigned char* scratch, float* scanline)
+{
+ unsigned char scanlineheader[4] = { 2, 2, 0, 0 };
+ unsigned char rgbe[4];
+ float linear[3];
+ int x;
+
+ scanlineheader[2] = (width & 0xff00) >> 8;
+ scanlineheader[3] = (width & 0x00ff);
+
+ /* skip RLE for images too small or large */
+ if (width < 8 || width >= 32768) {
+ for (x = 0; x < width; x++) {
+ switch (ncomp) {
case 4: /* fallthrough */
- case 3: linear[2] = scanline[x*comp + 2];
- linear[1] = scanline[x*comp + 1];
- linear[0] = scanline[x*comp + 0];
- break;
- case 2: /* fallthrough */
- case 1: linear[0] = linear[1] = linear[2] = scanline[x*comp + 0];
- break;
- }
- stbiw__linear_to_rgbe(rgbe, linear);
- scratch[x + width*0] = rgbe[0];
- scratch[x + width*1] = rgbe[1];
- scratch[x + width*2] = rgbe[2];
- scratch[x + width*3] = rgbe[3];
- }
-
- fwrite(scanlineheader, 4, 1, f);
-
- /* RLE each component separately */
- for (c=0; c < 4; c++) {
- unsigned char *comp = &scratch[width*c];
-
- x = 0;
- while (x < width) {
- // find first run
- r = x;
- while (r+2 < width) {
- if (comp[r] == comp[r+1] && comp[r] == comp[r+2])
- break;
- ++r;
+ case 3: linear[2] = scanline[x * ncomp + 2];
+ linear[1] = scanline[x * ncomp + 1];
+ linear[0] = scanline[x * ncomp + 0];
+ break;
+ default:
+ linear[0] = linear[1] = linear[2] = scanline[x * ncomp + 0];
+ break;
}
- if (r+2 >= width)
- r = width;
- // dump up to first run
- while (x < r) {
- int len = r-x;
- if (len > 128) len = 128;
- stbiw__write_dump_data(f, len, &comp[x]);
- x += len;
+ stbiw__linear_to_rgbe(rgbe, linear);
+ s->func(s->context, rgbe, 4);
+ }
+ }
+ else {
+ int c, r;
+ /* encode into scratch buffer */
+ for (x = 0; x < width; x++) {
+ switch (ncomp) {
+ case 4: /* fallthrough */
+ case 3: linear[2] = scanline[x * ncomp + 2];
+ linear[1] = scanline[x * ncomp + 1];
+ linear[0] = scanline[x * ncomp + 0];
+ break;
+ default:
+ linear[0] = linear[1] = linear[2] = scanline[x * ncomp + 0];
+ break;
}
- // if there's a run, output it
- if (r+2 < width) { // same test as what we break out of in search loop, so only true if we break'd
- // find next byte after run
- while (r < width && comp[r] == comp[x])
- ++r;
- // output run up to r
- while (x < r) {
- int len = r-x;
- if (len > 127) len = 127;
- stbiw__write_run_data(f, len, comp[x]);
- x += len;
- }
+ stbiw__linear_to_rgbe(rgbe, linear);
+ scratch[x + width * 0] = rgbe[0];
+ scratch[x + width * 1] = rgbe[1];
+ scratch[x + width * 2] = rgbe[2];
+ scratch[x + width * 3] = rgbe[3];
+ }
+
+ s->func(s->context, scanlineheader, 4);
+
+ /* RLE each component separately */
+ for (c = 0; c < 4; c++) {
+ unsigned char* comp = &scratch[width * c];
+
+ x = 0;
+ while (x < width) {
+ // find first run
+ r = x;
+ while (r + 2 < width) {
+ if (comp[r] == comp[r + 1] && comp[r] == comp[r + 2])
+ break;
+ ++r;
+ }
+ if (r + 2 >= width)
+ r = width;
+ // dump up to first run
+ while (x < r) {
+ int len = r - x;
+ if (len > 128) len = 128;
+ stbiw__write_dump_data(s, len, &comp[x]);
+ x += len;
+ }
+ // if there's a run, output it
+ if (r + 2 < width) { // same test as what we break out of in search loop, so only true if we break'd
+ // find next byte after run
+ while (r < width && comp[r] == comp[x])
+ ++r;
+ // output run up to r
+ while (x < r) {
+ int len = r - x;
+ if (len > 127) len = 127;
+ stbiw__write_run_data(s, len, comp[x]);
+ x += len;
+ }
+ }
}
- }
- }
- }
+ }
+ }
}
-int stbi_write_hdr(char const *filename, int x, int y, int comp, const float *data)
+static int stbi_write_hdr_core(stbi__write_context* s, int x, int y, int comp, float* data)
{
- int i;
- FILE *f;
- if (y <= 0 || x <= 0 || data == NULL) return 0;
- f = fopen(filename, "wb");
- if (f) {
- /* Each component is stored separately. Allocate scratch space for full output scanline. */
- unsigned char *scratch = (unsigned char *) STBIW_MALLOC(x*4);
- fprintf(f, "#?RADIANCE\n# Written by stb_image_write.h\nFORMAT=32-bit_rle_rgbe\n" );
- fprintf(f, "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n" , y, x);
- for(i=0; i < y; i++)
- stbiw__write_hdr_scanline(f, x, comp, scratch, data + comp*i*x);
- STBIW_FREE(scratch);
- fclose(f);
- }
- return f != NULL;
+ if (y <= 0 || x <= 0 || data == NULL)
+ return 0;
+ else {
+ // Each component is stored separately. Allocate scratch space for full output scanline.
+ unsigned char* scratch = (unsigned char*)STBIW_MALLOC(x * 4);
+ int i, len;
+ char buffer[128];
+ char header[] = "#?RADIANCE\n# Written by stb_image_write.h\nFORMAT=32-bit_rle_rgbe\n";
+ s->func(s->context, header, sizeof(header) - 1);
+
+#ifdef __STDC_LIB_EXT1__
+ len = sprintf_s(buffer, sizeof(buffer), "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x);
+#else
+ len = sprintf(buffer, "EXPOSURE= 1.0000000000000\n\n-Y %d +X %d\n", y, x);
+#endif
+ s->func(s->context, buffer, len);
+
+ for (i = 0; i < y; i++)
+ stbiw__write_hdr_scanline(s, x, comp, scratch, data + comp * x * (stbi__flip_vertically_on_write ? y - 1 - i : i));
+ STBIW_FREE(scratch);
+ return 1;
+ }
+}
+
+STBIWDEF int stbi_write_hdr_to_func(stbi_write_func* func, void* context, int x, int y, int comp, const float* data)
+{
+ stbi__write_context s = { 0 };
+ stbi__start_write_callbacks(&s, func, context);
+ return stbi_write_hdr_core(&s, x, y, comp, (float*)data);
}
-/////////////////////////////////////////////////////////
-// PNG
+STBIWDEF int stbi_write_hdr(char const* filename, int x, int y, int comp, const float* data)
+{
+ stbi__write_context s = { 0 };
+ if (stbi__start_write_file(&s, filename)) {
+ int r = stbi_write_hdr_core(&s, x, y, comp, (float*)data);
+ stbi__end_write_file(&s);
+ return r;
+ }
+ else
+ return 0;
+}
+#endif // STBI_WRITE_NO_STDIO
+
+//////////////////////////////////////////////////////////////////////////////
+//
+// PNG writer
+//
+
+#ifndef STBIW_ZLIB_COMPRESS
// stretchy buffer; stbiw__sbpush() == vector<>::push_back() -- stbiw__sbcount() == vector<>::size()
-#define stbiw__sbraw(a) ((int *) (a) - 2)
+#define stbiw__sbraw(a) ((int *) (void *) (a) - 2)
#define stbiw__sbm(a) stbiw__sbraw(a)[0]
#define stbiw__sbn(a) stbiw__sbraw(a)[1]
@@ -404,57 +837,57 @@ int stbi_write_hdr(char const *filename, int x, int y, int comp, const float *da
#define stbiw__sbcount(a) ((a) ? stbiw__sbn(a) : 0)
#define stbiw__sbfree(a) ((a) ? STBIW_FREE(stbiw__sbraw(a)),0 : 0)
-static void *stbiw__sbgrowf(void **arr, int increment, int itemsize)
+static void* stbiw__sbgrowf(void** arr, int increment, int itemsize)
{
- int m = *arr ? 2*stbiw__sbm(*arr)+increment : increment+1;
- void *p = STBIW_REALLOC(*arr ? stbiw__sbraw(*arr) : 0, itemsize * m + sizeof(int)*2);
- STBIW_ASSERT(p);
- if (p) {
- if (!*arr) ((int *) p)[1] = 0;
- *arr = (void *) ((int *) p + 2);
- stbiw__sbm(*arr) = m;
- }
- return *arr;
+ int m = *arr ? 2 * stbiw__sbm(*arr) + increment : increment + 1;
+ void* p = STBIW_REALLOC_SIZED(*arr ? stbiw__sbraw(*arr) : 0, *arr ? (stbiw__sbm(*arr) * itemsize + sizeof(int) * 2) : 0, itemsize * m + sizeof(int) * 2);
+ STBIW_ASSERT(p);
+ if (p) {
+ if (!*arr) ((int*)p)[1] = 0;
+ *arr = (void*)((int*)p + 2);
+ stbiw__sbm(*arr) = m;
+ }
+ return *arr;
}
-static unsigned char *stbiw__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount)
+static unsigned char* stbiw__zlib_flushf(unsigned char* data, unsigned int* bitbuffer, int* bitcount)
{
- while (*bitcount >= 8) {
- stbiw__sbpush(data, (unsigned char) *bitbuffer);
- *bitbuffer >>= 8;
- *bitcount -= 8;
- }
- return data;
+ while (*bitcount >= 8) {
+ stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer));
+ *bitbuffer >>= 8;
+ *bitcount -= 8;
+ }
+ return data;
}
static int stbiw__zlib_bitrev(int code, int codebits)
{
- int res=0;
- while (codebits--) {
- res = (res << 1) | (code & 1);
- code >>= 1;
- }
- return res;
+ int res = 0;
+ while (codebits--) {
+ res = (res << 1) | (code & 1);
+ code >>= 1;
+ }
+ return res;
}
-static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, int limit)
+static unsigned int stbiw__zlib_countm(unsigned char* a, unsigned char* b, int limit)
{
- int i;
- for (i=0; i < limit && i < 258; ++i)
- if (a[i] != b[i]) break;
- return i;
+ int i;
+ for (i = 0; i < limit && i < 258; ++i)
+ if (a[i] != b[i]) break;
+ return i;
}
-static unsigned int stbiw__zhash(unsigned char *data)
+static unsigned int stbiw__zhash(unsigned char* data)
{
- stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16);
- hash ^= hash << 3;
- hash += hash >> 5;
- hash ^= hash << 4;
- hash += hash >> 17;
- hash ^= hash << 25;
- hash += hash >> 6;
- return hash;
+ stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16);
+ hash ^= hash << 3;
+ hash += hash >> 5;
+ hash ^= hash << 4;
+ hash += hash >> 17;
+ hash ^= hash << 25;
+ hash += hash >> 6;
+ return hash;
}
#define stbiw__zlib_flush() (out = stbiw__zlib_flushf(out, &bitbuf, &bitcount))
@@ -471,249 +904,782 @@ static unsigned int stbiw__zhash(unsigned char *data)
#define stbiw__ZHASH 16384
-unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality)
-{
- static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 };
- static unsigned char lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 };
- static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 };
- static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };
- unsigned int bitbuf=0;
- int i,j, bitcount=0;
- unsigned char *out = NULL;
- unsigned char **hash_table[stbiw__ZHASH]; // 64KB on the stack!
- if (quality < 5) quality = 5;
-
- stbiw__sbpush(out, 0x78); // DEFLATE 32K window
- stbiw__sbpush(out, 0x5e); // FLEVEL = 1
- stbiw__zlib_add(1,1); // BFINAL = 1
- stbiw__zlib_add(1,2); // BTYPE = 1 -- fixed huffman
-
- for (i=0; i < stbiw__ZHASH; ++i)
- hash_table[i] = NULL;
-
- i=0;
- while (i < data_len-3) {
- // hash next 3 bytes of data to be compressed
- int h = stbiw__zhash(data+i)&(stbiw__ZHASH-1), best=3;
- unsigned char *bestloc = 0;
- unsigned char **hlist = hash_table[h];
- int n = stbiw__sbcount(hlist);
- for (j=0; j < n; ++j) {
- if (hlist[j]-data > i-32768) { // if entry lies within window
- int d = stbiw__zlib_countm(hlist[j], data+i, data_len-i);
- if (d >= best) best=d,bestloc=hlist[j];
- }
- }
- // when hash table entry is too long, delete half the entries
- if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2*quality) {
- STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality);
- stbiw__sbn(hash_table[h]) = quality;
- }
- stbiw__sbpush(hash_table[h],data+i);
-
- if (bestloc) {
- // "lazy matching" - check match at *next* byte, and if it's better, do cur byte as literal
- h = stbiw__zhash(data+i+1)&(stbiw__ZHASH-1);
- hlist = hash_table[h];
- n = stbiw__sbcount(hlist);
- for (j=0; j < n; ++j) {
- if (hlist[j]-data > i-32767) {
- int e = stbiw__zlib_countm(hlist[j], data+i+1, data_len-i-1);
- if (e > best) { // if next match is better, bail on current match
- bestloc = NULL;
- break;
- }
+#endif // STBIW_ZLIB_COMPRESS
+
+STBIWDEF unsigned char* stbi_zlib_compress(unsigned char* data, int data_len, int* out_len, int quality)
+{
+#ifdef STBIW_ZLIB_COMPRESS
+ // user provided a zlib compress implementation, use that
+ return STBIW_ZLIB_COMPRESS(data, data_len, out_len, quality);
+#else // use builtin
+ static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 };
+ static unsigned char lengtheb[] = { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0 };
+ static unsigned short distc[] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 };
+ static unsigned char disteb[] = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };
+ unsigned int bitbuf = 0;
+ int i, j, bitcount = 0;
+ unsigned char* out = NULL;
+ unsigned char*** hash_table = (unsigned char***)STBIW_MALLOC(stbiw__ZHASH * sizeof(unsigned char**));
+ if (hash_table == NULL)
+ return NULL;
+ if (quality < 5) quality = 5;
+
+ stbiw__sbpush(out, 0x78); // DEFLATE 32K window
+ stbiw__sbpush(out, 0x5e); // FLEVEL = 1
+ stbiw__zlib_add(1, 1); // BFINAL = 1
+ stbiw__zlib_add(1, 2); // BTYPE = 1 -- fixed huffman
+
+ for (i = 0; i < stbiw__ZHASH; ++i)
+ hash_table[i] = NULL;
+
+ i = 0;
+ while (i < data_len - 3) {
+ // hash next 3 bytes of data to be compressed
+ int h = stbiw__zhash(data + i) & (stbiw__ZHASH - 1), best = 3;
+ unsigned char* bestloc = 0;
+ unsigned char** hlist = hash_table[h];
+ int n = stbiw__sbcount(hlist);
+ for (j = 0; j < n; ++j) {
+ if (hlist[j] - data > i - 32768) { // if entry lies within window
+ int d = stbiw__zlib_countm(hlist[j], data + i, data_len - i);
+ if (d >= best) { best = d; bestloc = hlist[j]; }
}
- }
- }
-
- if (bestloc) {
- int d = (int) (data+i - bestloc); // distance back
- STBIW_ASSERT(d <= 32767 && best <= 258);
- for (j=0; best > lengthc[j+1]-1; ++j);
- stbiw__zlib_huff(j+257);
- if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]);
- for (j=0; d > distc[j+1]-1; ++j);
- stbiw__zlib_add(stbiw__zlib_bitrev(j,5),5);
- if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]);
- i += best;
- } else {
- stbiw__zlib_huffb(data[i]);
- ++i;
- }
- }
- // write out final bytes
- for (;i < data_len; ++i)
- stbiw__zlib_huffb(data[i]);
- stbiw__zlib_huff(256); // end of block
- // pad with 0 bits to byte boundary
- while (bitcount)
- stbiw__zlib_add(0,1);
-
- for (i=0; i < stbiw__ZHASH; ++i)
- (void) stbiw__sbfree(hash_table[i]);
-
- {
- // compute adler32 on input
- unsigned int i=0, s1=1, s2=0, blocklen = data_len % 5552;
- int j=0;
- while (j < data_len) {
- for (i=0; i < blocklen; ++i) s1 += data[j+i], s2 += s1;
- s1 %= 65521, s2 %= 65521;
- j += blocklen;
- blocklen = 5552;
- }
- stbiw__sbpush(out, (unsigned char) (s2 >> 8));
- stbiw__sbpush(out, (unsigned char) s2);
- stbiw__sbpush(out, (unsigned char) (s1 >> 8));
- stbiw__sbpush(out, (unsigned char) s1);
- }
- *out_len = stbiw__sbn(out);
- // make returned pointer freeable
- STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len);
- return (unsigned char *) stbiw__sbraw(out);
-}
-
-unsigned int stbiw__crc32(unsigned char *buffer, int len)
-{
- static unsigned int crc_table[256];
- unsigned int crc = ~0u;
- int i,j;
- if (crc_table[1] == 0)
- for(i=0; i < 256; i++)
- for (crc_table[i]=i, j=0; j < 8; ++j)
- crc_table[i] = (crc_table[i] >> 1) ^ (crc_table[i] & 1 ? 0xedb88320 : 0);
- for (i=0; i < len; ++i)
- crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)];
- return ~crc;
-}
-
-#define stbiw__wpng4(o,a,b,c,d) ((o)[0]=(unsigned char)(a),(o)[1]=(unsigned char)(b),(o)[2]=(unsigned char)(c),(o)[3]=(unsigned char)(d),(o)+=4)
+ }
+ // when hash table entry is too long, delete half the entries
+ if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2 * quality) {
+ STBIW_MEMMOVE(hash_table[h], hash_table[h] + quality, sizeof(hash_table[h][0]) * quality);
+ stbiw__sbn(hash_table[h]) = quality;
+ }
+ stbiw__sbpush(hash_table[h], data + i);
+
+ if (bestloc) {
+ // "lazy matching" - check match at *next* byte, and if it's better, do cur byte as literal
+ h = stbiw__zhash(data + i + 1) & (stbiw__ZHASH - 1);
+ hlist = hash_table[h];
+ n = stbiw__sbcount(hlist);
+ for (j = 0; j < n; ++j) {
+ if (hlist[j] - data > i - 32767) {
+ int e = stbiw__zlib_countm(hlist[j], data + i + 1, data_len - i - 1);
+ if (e > best) { // if next match is better, bail on current match
+ bestloc = NULL;
+ break;
+ }
+ }
+ }
+ }
+
+ if (bestloc) {
+ int d = (int)(data + i - bestloc); // distance back
+ STBIW_ASSERT(d <= 32767 && best <= 258);
+ for (j = 0; best > lengthc[j + 1] - 1; ++j);
+ stbiw__zlib_huff(j + 257);
+ if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]);
+ for (j = 0; d > distc[j + 1] - 1; ++j);
+ stbiw__zlib_add(stbiw__zlib_bitrev(j, 5), 5);
+ if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]);
+ i += best;
+ }
+ else {
+ stbiw__zlib_huffb(data[i]);
+ ++i;
+ }
+ }
+ // write out final bytes
+ for (; i < data_len; ++i)
+ stbiw__zlib_huffb(data[i]);
+ stbiw__zlib_huff(256); // end of block
+ // pad with 0 bits to byte boundary
+ while (bitcount)
+ stbiw__zlib_add(0, 1);
+
+ for (i = 0; i < stbiw__ZHASH; ++i)
+ (void)stbiw__sbfree(hash_table[i]);
+ STBIW_FREE(hash_table);
+
+ // store uncompressed instead if compression was worse
+ if (stbiw__sbn(out) > data_len + 2 + ((data_len + 32766) / 32767) * 5) {
+ stbiw__sbn(out) = 2; // truncate to DEFLATE 32K window and FLEVEL = 1
+ for (j = 0; j < data_len;) {
+ int blocklen = data_len - j;
+ if (blocklen > 32767) blocklen = 32767;
+ stbiw__sbpush(out, data_len - j == blocklen); // BFINAL = ?, BTYPE = 0 -- no compression
+ stbiw__sbpush(out, STBIW_UCHAR(blocklen)); // LEN
+ stbiw__sbpush(out, STBIW_UCHAR(blocklen >> 8));
+ stbiw__sbpush(out, STBIW_UCHAR(~blocklen)); // NLEN
+ stbiw__sbpush(out, STBIW_UCHAR(~blocklen >> 8));
+ memcpy(out + stbiw__sbn(out), data + j, blocklen);
+ stbiw__sbn(out) += blocklen;
+ j += blocklen;
+ }
+ }
+
+ {
+ // compute adler32 on input
+ unsigned int s1 = 1, s2 = 0;
+ int blocklen = (int)(data_len % 5552);
+ j = 0;
+ while (j < data_len) {
+ for (i = 0; i < blocklen; ++i) { s1 += data[j + i]; s2 += s1; }
+ s1 %= 65521; s2 %= 65521;
+ j += blocklen;
+ blocklen = 5552;
+ }
+ stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8));
+ stbiw__sbpush(out, STBIW_UCHAR(s2));
+ stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8));
+ stbiw__sbpush(out, STBIW_UCHAR(s1));
+ }
+ *out_len = stbiw__sbn(out);
+ // make returned pointer freeable
+ STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len);
+ return (unsigned char*)stbiw__sbraw(out);
+#endif // STBIW_ZLIB_COMPRESS
+}
+
+static unsigned int stbiw__crc32(unsigned char* buffer, int len)
+{
+#ifdef STBIW_CRC32
+ return STBIW_CRC32(buffer, len);
+#else
+ static unsigned int crc_table[256] =
+ {
+ 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
+ 0x0eDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
+ 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
+ 0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
+ 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
+ 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
+ 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
+ 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
+ 0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
+ 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
+ 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
+ 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
+ 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
+ 0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
+ 0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
+ 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
+ 0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
+ 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
+ 0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
+ 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
+ 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
+ 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
+ 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
+ 0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
+ 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
+ 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
+ 0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
+ 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
+ 0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
+ 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
+ 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
+ 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
+ };
+
+ unsigned int crc = ~0u;
+ int i;
+ for (i = 0; i < len; ++i)
+ crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)];
+ return ~crc;
+#endif
+}
+
+#define stbiw__wpng4(o,a,b,c,d) ((o)[0]=STBIW_UCHAR(a),(o)[1]=STBIW_UCHAR(b),(o)[2]=STBIW_UCHAR(c),(o)[3]=STBIW_UCHAR(d),(o)+=4)
#define stbiw__wp32(data,v) stbiw__wpng4(data, (v)>>24,(v)>>16,(v)>>8,(v));
#define stbiw__wptag(data,s) stbiw__wpng4(data, s[0],s[1],s[2],s[3])
-static void stbiw__wpcrc(unsigned char **data, int len)
+static void stbiw__wpcrc(unsigned char** data, int len)
{
- unsigned int crc = stbiw__crc32(*data - len - 4, len+4);
- stbiw__wp32(*data, crc);
+ unsigned int crc = stbiw__crc32(*data - len - 4, len + 4);
+ stbiw__wp32(*data, crc);
}
static unsigned char stbiw__paeth(int a, int b, int c)
{
- int p = a + b - c, pa = abs(p-a), pb = abs(p-b), pc = abs(p-c);
- if (pa <= pb && pa <= pc) return (unsigned char) a;
- if (pb <= pc) return (unsigned char) b;
- return (unsigned char) c;
-}
-
-unsigned char *stbi_write_png_to_mem(unsigned char *pixels, int stride_bytes, int x, int y, int n, int *out_len)
-{
- int ctype[5] = { -1, 0, 4, 2, 6 };
- unsigned char sig[8] = { 137,80,78,71,13,10,26,10 };
- unsigned char *out,*o, *filt, *zlib;
- signed char *line_buffer;
- int i,j,k,p,zlen;
-
- if (stride_bytes == 0)
- stride_bytes = x * n;
-
- filt = (unsigned char *) STBIW_MALLOC((x*n+1) * y); if (!filt) return 0;
- line_buffer = (signed char *) STBIW_MALLOC(x * n); if (!line_buffer) { STBIW_FREE(filt); return 0; }
- for (j=0; j < y; ++j) {
- static int mapping[] = { 0,1,2,3,4 };
- static int firstmap[] = { 0,1,0,5,6 };
- int *mymap = j ? mapping : firstmap;
- int best = 0, bestval = 0x7fffffff;
- for (p=0; p < 2; ++p) {
- for (k= p?best:0; k < 5; ++k) {
- int type = mymap[k],est=0;
- unsigned char *z = pixels + stride_bytes*j;
- for (i=0; i < n; ++i)
- switch (type) {
- case 0: line_buffer[i] = z[i]; break;
- case 1: line_buffer[i] = z[i]; break;
- case 2: line_buffer[i] = z[i] - z[i-stride_bytes]; break;
- case 3: line_buffer[i] = z[i] - (z[i-stride_bytes]>>1); break;
- case 4: line_buffer[i] = (signed char) (z[i] - stbiw__paeth(0,z[i-stride_bytes],0)); break;
- case 5: line_buffer[i] = z[i]; break;
- case 6: line_buffer[i] = z[i]; break;
- }
- for (i=n; i < x*n; ++i) {
- switch (type) {
- case 0: line_buffer[i] = z[i]; break;
- case 1: line_buffer[i] = z[i] - z[i-n]; break;
- case 2: line_buffer[i] = z[i] - z[i-stride_bytes]; break;
- case 3: line_buffer[i] = z[i] - ((z[i-n] + z[i-stride_bytes])>>1); break;
- case 4: line_buffer[i] = z[i] - stbiw__paeth(z[i-n], z[i-stride_bytes], z[i-stride_bytes-n]); break;
- case 5: line_buffer[i] = z[i] - (z[i-n]>>1); break;
- case 6: line_buffer[i] = z[i] - stbiw__paeth(z[i-n], 0,0); break;
- }
+ int p = a + b - c, pa = abs(p - a), pb = abs(p - b), pc = abs(p - c);
+ if (pa <= pb && pa <= pc) return STBIW_UCHAR(a);
+ if (pb <= pc) return STBIW_UCHAR(b);
+ return STBIW_UCHAR(c);
+}
+
+// @OPTIMIZE: provide an option that always forces left-predict or paeth predict
+static void stbiw__encode_png_line(unsigned char* pixels, int stride_bytes, int width, int height, int y, int n, int filter_type, signed char* line_buffer)
+{
+ static int mapping[] = { 0,1,2,3,4 };
+ static int firstmap[] = { 0,1,0,5,6 };
+ int* mymap = (y != 0) ? mapping : firstmap;
+ int i;
+ int type = mymap[filter_type];
+ unsigned char* z = pixels + stride_bytes * (stbi__flip_vertically_on_write ? height - 1 - y : y);
+ int signed_stride = stbi__flip_vertically_on_write ? -stride_bytes : stride_bytes;
+
+ if (type == 0) {
+ memcpy(line_buffer, z, width * n);
+ return;
+ }
+
+ // first loop isn't optimized since it's just one pixel
+ for (i = 0; i < n; ++i) {
+ switch (type) {
+ case 1: line_buffer[i] = z[i]; break;
+ case 2: line_buffer[i] = z[i] - z[i - signed_stride]; break;
+ case 3: line_buffer[i] = z[i] - (z[i - signed_stride] >> 1); break;
+ case 4: line_buffer[i] = (signed char)(z[i] - stbiw__paeth(0, z[i - signed_stride], 0)); break;
+ case 5: line_buffer[i] = z[i]; break;
+ case 6: line_buffer[i] = z[i]; break;
+ }
+ }
+ switch (type) {
+ case 1: for (i = n; i < width * n; ++i) line_buffer[i] = z[i] - z[i - n]; break;
+ case 2: for (i = n; i < width * n; ++i) line_buffer[i] = z[i] - z[i - signed_stride]; break;
+ case 3: for (i = n; i < width * n; ++i) line_buffer[i] = z[i] - ((z[i - n] + z[i - signed_stride]) >> 1); break;
+ case 4: for (i = n; i < width * n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i - n], z[i - signed_stride], z[i - signed_stride - n]); break;
+ case 5: for (i = n; i < width * n; ++i) line_buffer[i] = z[i] - (z[i - n] >> 1); break;
+ case 6: for (i = n; i < width * n; ++i) line_buffer[i] = z[i] - stbiw__paeth(z[i - n], 0, 0); break;
+ }
+}
+
+STBIWDEF unsigned char* stbi_write_png_to_mem(const unsigned char* pixels, int stride_bytes, int x, int y, int n, int* out_len)
+{
+ int force_filter = stbi_write_force_png_filter;
+ int ctype[5] = { -1, 0, 4, 2, 6 };
+ unsigned char sig[8] = { 137,80,78,71,13,10,26,10 };
+ unsigned char* out, * o, * filt, * zlib;
+ signed char* line_buffer;
+ int j, zlen;
+
+ if (stride_bytes == 0)
+ stride_bytes = x * n;
+
+ if (force_filter >= 5) {
+ force_filter = -1;
+ }
+
+ filt = (unsigned char*)STBIW_MALLOC((x * n + 1) * y); if (!filt) return 0;
+ line_buffer = (signed char*)STBIW_MALLOC(x * n); if (!line_buffer) { STBIW_FREE(filt); return 0; }
+ for (j = 0; j < y; ++j) {
+ int filter_type;
+ if (force_filter > -1) {
+ filter_type = force_filter;
+ stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, force_filter, line_buffer);
+ }
+ else { // Estimate the best filter by running through all of them:
+ int best_filter = 0, best_filter_val = 0x7fffffff, est, i;
+ for (filter_type = 0; filter_type < 5; filter_type++) {
+ stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, filter_type, line_buffer);
+
+ // Estimate the entropy of the line using this filter; the less, the better.
+ est = 0;
+ for (i = 0; i < x * n; ++i) {
+ est += abs((signed char)line_buffer[i]);
+ }
+ if (est < best_filter_val) {
+ best_filter_val = est;
+ best_filter = filter_type;
+ }
+ }
+ if (filter_type != best_filter) { // If the last iteration already got us the best filter, don't redo it
+ stbiw__encode_png_line((unsigned char*)(pixels), stride_bytes, x, y, j, n, best_filter, line_buffer);
+ filter_type = best_filter;
+ }
+ }
+ // when we get here, filter_type contains the filter type, and line_buffer contains the data
+ filt[j * (x * n + 1)] = (unsigned char)filter_type;
+ STBIW_MEMMOVE(filt + j * (x * n + 1) + 1, line_buffer, x * n);
+ }
+ STBIW_FREE(line_buffer);
+ zlib = stbi_zlib_compress(filt, y * (x * n + 1), &zlen, stbi_write_png_compression_level);
+ STBIW_FREE(filt);
+ if (!zlib) return 0;
+
+ // each tag requires 12 bytes of overhead
+ out = (unsigned char*)STBIW_MALLOC(8 + 12 + 13 + 12 + zlen + 12);
+ if (!out) return 0;
+ *out_len = 8 + 12 + 13 + 12 + zlen + 12;
+
+ o = out;
+ STBIW_MEMMOVE(o, sig, 8); o += 8;
+ stbiw__wp32(o, 13); // header length
+ stbiw__wptag(o, "IHDR");
+ stbiw__wp32(o, x);
+ stbiw__wp32(o, y);
+ *o++ = 8;
+ *o++ = STBIW_UCHAR(ctype[n]);
+ *o++ = 0;
+ *o++ = 0;
+ *o++ = 0;
+ stbiw__wpcrc(&o, 13);
+
+ stbiw__wp32(o, zlen);
+ stbiw__wptag(o, "IDAT");
+ STBIW_MEMMOVE(o, zlib, zlen);
+ o += zlen;
+ STBIW_FREE(zlib);
+ stbiw__wpcrc(&o, zlen);
+
+ stbiw__wp32(o, 0);
+ stbiw__wptag(o, "IEND");
+ stbiw__wpcrc(&o, 0);
+
+ STBIW_ASSERT(o == out + *out_len);
+
+ return out;
+}
+
+#ifndef STBI_WRITE_NO_STDIO
+STBIWDEF int stbi_write_png(char const* filename, int x, int y, int comp, const void* data, int stride_bytes)
+{
+ FILE* f;
+ int len;
+ unsigned char* png = stbi_write_png_to_mem((const unsigned char*)data, stride_bytes, x, y, comp, &len);
+ if (png == NULL) return 0;
+
+ f = stbiw__fopen(filename, "wb");
+ if (!f) { STBIW_FREE(png); return 0; }
+ fwrite(png, 1, len, f);
+ fclose(f);
+ STBIW_FREE(png);
+ return 1;
+}
+#endif
+
+STBIWDEF int stbi_write_png_to_func(stbi_write_func* func, void* context, int x, int y, int comp, const void* data, int stride_bytes)
+{
+ int len;
+ unsigned char* png = stbi_write_png_to_mem((const unsigned char*)data, stride_bytes, x, y, comp, &len);
+ if (png == NULL) return 0;
+ func(context, png, len);
+ STBIW_FREE(png);
+ return 1;
+}
+
+
+/* ***************************************************************************
+ *
+ * JPEG writer
+ *
+ * This is based on Jon Olick's jo_jpeg.cpp:
+ * public domain Simple, Minimalistic JPEG writer - http://www.jonolick.com/code.html
+ */
+
+static const unsigned char stbiw__jpg_ZigZag[] = { 0,1,5,6,14,15,27,28,2,4,7,13,16,26,29,42,3,8,12,17,25,30,41,43,9,11,18,
+ 24,31,40,44,53,10,19,23,32,39,45,52,54,20,22,33,38,46,51,55,60,21,34,37,47,50,56,59,61,35,36,48,49,57,58,62,63 };
+
+static void stbiw__jpg_writeBits(stbi__write_context* s, int* bitBufP, int* bitCntP, const unsigned short* bs) {
+ int bitBuf = *bitBufP, bitCnt = *bitCntP;
+ bitCnt += bs[1];
+ bitBuf |= bs[0] << (24 - bitCnt);
+ while (bitCnt >= 8) {
+ unsigned char c = (bitBuf >> 16) & 255;
+ stbiw__putc(s, c);
+ if (c == 255) {
+ stbiw__putc(s, 0);
+ }
+ bitBuf <<= 8;
+ bitCnt -= 8;
+ }
+ *bitBufP = bitBuf;
+ *bitCntP = bitCnt;
+}
+
+static void stbiw__jpg_DCT(float* d0p, float* d1p, float* d2p, float* d3p, float* d4p, float* d5p, float* d6p, float* d7p) {
+ float d0 = *d0p, d1 = *d1p, d2 = *d2p, d3 = *d3p, d4 = *d4p, d5 = *d5p, d6 = *d6p, d7 = *d7p;
+ float z1, z2, z3, z4, z5, z11, z13;
+
+ float tmp0 = d0 + d7;
+ float tmp7 = d0 - d7;
+ float tmp1 = d1 + d6;
+ float tmp6 = d1 - d6;
+ float tmp2 = d2 + d5;
+ float tmp5 = d2 - d5;
+ float tmp3 = d3 + d4;
+ float tmp4 = d3 - d4;
+
+ // Even part
+ float tmp10 = tmp0 + tmp3; // phase 2
+ float tmp13 = tmp0 - tmp3;
+ float tmp11 = tmp1 + tmp2;
+ float tmp12 = tmp1 - tmp2;
+
+ d0 = tmp10 + tmp11; // phase 3
+ d4 = tmp10 - tmp11;
+
+ z1 = (tmp12 + tmp13) * 0.707106781f; // c4
+ d2 = tmp13 + z1; // phase 5
+ d6 = tmp13 - z1;
+
+ // Odd part
+ tmp10 = tmp4 + tmp5; // phase 2
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ // The rotator is modified from fig 4-8 to avoid extra negations.
+ z5 = (tmp10 - tmp12) * 0.382683433f; // c6
+ z2 = tmp10 * 0.541196100f + z5; // c2-c6
+ z4 = tmp12 * 1.306562965f + z5; // c2+c6
+ z3 = tmp11 * 0.707106781f; // c4
+
+ z11 = tmp7 + z3; // phase 5
+ z13 = tmp7 - z3;
+
+ *d5p = z13 + z2; // phase 6
+ *d3p = z13 - z2;
+ *d1p = z11 + z4;
+ *d7p = z11 - z4;
+
+ *d0p = d0; *d2p = d2; *d4p = d4; *d6p = d6;
+}
+
+static void stbiw__jpg_calcBits(int val, unsigned short bits[2]) {
+ int tmp1 = val < 0 ? -val : val;
+ val = val < 0 ? val - 1 : val;
+ bits[1] = 1;
+ while (tmp1 >>= 1) {
+ ++bits[1];
+ }
+ bits[0] = val & ((1 << bits[1]) - 1);
+}
+
+static int stbiw__jpg_processDU(stbi__write_context* s, int* bitBuf, int* bitCnt, float* CDU, int du_stride, float* fdtbl, int DC, const unsigned short HTDC[256][2], const unsigned short HTAC[256][2]) {
+ const unsigned short EOB[2] = { HTAC[0x00][0], HTAC[0x00][1] };
+ const unsigned short M16zeroes[2] = { HTAC[0xF0][0], HTAC[0xF0][1] };
+ int dataOff, i, j, n, diff, end0pos, x, y;
+ int DU[64];
+
+ // DCT rows
+ for (dataOff = 0, n = du_stride * 8; dataOff < n; dataOff += du_stride) {
+ stbiw__jpg_DCT(&CDU[dataOff], &CDU[dataOff + 1], &CDU[dataOff + 2], &CDU[dataOff + 3], &CDU[dataOff + 4], &CDU[dataOff + 5], &CDU[dataOff + 6], &CDU[dataOff + 7]);
+ }
+ // DCT columns
+ for (dataOff = 0; dataOff < 8; ++dataOff) {
+ stbiw__jpg_DCT(&CDU[dataOff], &CDU[dataOff + du_stride], &CDU[dataOff + du_stride * 2], &CDU[dataOff + du_stride * 3], &CDU[dataOff + du_stride * 4],
+ &CDU[dataOff + du_stride * 5], &CDU[dataOff + du_stride * 6], &CDU[dataOff + du_stride * 7]);
+ }
+ // Quantize/descale/zigzag the coefficients
+ for (y = 0, j = 0; y < 8; ++y) {
+ for (x = 0; x < 8; ++x, ++j) {
+ float v;
+ i = y * du_stride + x;
+ v = CDU[i] * fdtbl[j];
+ // DU[stbiw__jpg_ZigZag[j]] = (int)(v < 0 ? ceilf(v - 0.5f) : floorf(v + 0.5f));
+ // ceilf() and floorf() are C99, not C89, but I /think/ they're not needed here anyway?
+ DU[stbiw__jpg_ZigZag[j]] = (int)(v < 0 ? v - 0.5f : v + 0.5f);
+ }
+ }
+
+ // Encode DC
+ diff = DU[0] - DC;
+ if (diff == 0) {
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTDC[0]);
+ }
+ else {
+ unsigned short bits[2];
+ stbiw__jpg_calcBits(diff, bits);
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTDC[bits[1]]);
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits);
+ }
+ // Encode ACs
+ end0pos = 63;
+ for (; (end0pos > 0) && (DU[end0pos] == 0); --end0pos) {
+ }
+ // end0pos = first element in reverse order !=0
+ if (end0pos == 0) {
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB);
+ return DU[0];
+ }
+ for (i = 1; i <= end0pos; ++i) {
+ int startpos = i;
+ int nrzeroes;
+ unsigned short bits[2];
+ for (; DU[i] == 0 && i <= end0pos; ++i) {
+ }
+ nrzeroes = i - startpos;
+ if (nrzeroes >= 16) {
+ int lng = nrzeroes >> 4;
+ int nrmarker;
+ for (nrmarker = 1; nrmarker <= lng; ++nrmarker)
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, M16zeroes);
+ nrzeroes &= 15;
+ }
+ stbiw__jpg_calcBits(DU[i], bits);
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTAC[(nrzeroes << 4) + bits[1]]);
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits);
+ }
+ if (end0pos != 63) {
+ stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB);
+ }
+ return DU[0];
+}
+
+static int stbi_write_jpg_core(stbi__write_context* s, int width, int height, int comp, const void* data, int quality) {
+ // Constants that don't pollute global namespace
+ static const unsigned char std_dc_luminance_nrcodes[] = { 0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0 };
+ static const unsigned char std_dc_luminance_values[] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
+ static const unsigned char std_ac_luminance_nrcodes[] = { 0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d };
+ static const unsigned char std_ac_luminance_values[] = {
+ 0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,
+ 0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,
+ 0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,
+ 0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
+ 0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,
+ 0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,
+ 0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa
+ };
+ static const unsigned char std_dc_chrominance_nrcodes[] = { 0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0 };
+ static const unsigned char std_dc_chrominance_values[] = { 0,1,2,3,4,5,6,7,8,9,10,11 };
+ static const unsigned char std_ac_chrominance_nrcodes[] = { 0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77 };
+ static const unsigned char std_ac_chrominance_values[] = {
+ 0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,
+ 0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,
+ 0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,
+ 0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87,
+ 0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,
+ 0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,
+ 0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa
+ };
+ // Huffman tables
+ static const unsigned short YDC_HT[256][2] = { {0,2},{2,3},{3,3},{4,3},{5,3},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9} };
+ static const unsigned short UVDC_HT[256][2] = { {0,2},{1,2},{2,2},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9},{1022,10},{2046,11} };
+ static const unsigned short YAC_HT[256][2] = {
+ {10,4},{0,2},{1,2},{4,3},{11,4},{26,5},{120,7},{248,8},{1014,10},{65410,16},{65411,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {12,4},{27,5},{121,7},{502,9},{2038,11},{65412,16},{65413,16},{65414,16},{65415,16},{65416,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {28,5},{249,8},{1015,10},{4084,12},{65417,16},{65418,16},{65419,16},{65420,16},{65421,16},{65422,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {58,6},{503,9},{4085,12},{65423,16},{65424,16},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {59,6},{1016,10},{65430,16},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {122,7},{2039,11},{65438,16},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {123,7},{4086,12},{65446,16},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {250,8},{4087,12},{65454,16},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {504,9},{32704,15},{65462,16},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {505,9},{65470,16},{65471,16},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {506,9},{65479,16},{65480,16},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {1017,10},{65488,16},{65489,16},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {1018,10},{65497,16},{65498,16},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {2040,11},{65506,16},{65507,16},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {65515,16},{65516,16},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {2041,11},{65525,16},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0}
+ };
+ static const unsigned short UVAC_HT[256][2] = {
+ {0,2},{1,2},{4,3},{10,4},{24,5},{25,5},{56,6},{120,7},{500,9},{1014,10},{4084,12},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {11,4},{57,6},{246,8},{501,9},{2038,11},{4085,12},{65416,16},{65417,16},{65418,16},{65419,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {26,5},{247,8},{1015,10},{4086,12},{32706,15},{65420,16},{65421,16},{65422,16},{65423,16},{65424,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {27,5},{248,8},{1016,10},{4087,12},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{65430,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {58,6},{502,9},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{65438,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {59,6},{1017,10},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{65446,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {121,7},{2039,11},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{65454,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {122,7},{2040,11},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{65462,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {249,8},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{65470,16},{65471,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {503,9},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{65479,16},{65480,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {504,9},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{65488,16},{65489,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {505,9},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{65497,16},{65498,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {506,9},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{65506,16},{65507,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {2041,11},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{65515,16},{65516,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {16352,14},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{65525,16},{0,0},{0,0},{0,0},{0,0},{0,0},
+ {1018,10},{32707,15},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0}
+ };
+ static const int YQT[] = { 16,11,10,16,24,40,51,61,12,12,14,19,26,58,60,55,14,13,16,24,40,57,69,56,14,17,22,29,51,87,80,62,18,22,
+ 37,56,68,109,103,77,24,35,55,64,81,104,113,92,49,64,78,87,103,121,120,101,72,92,95,98,112,100,103,99 };
+ static const int UVQT[] = { 17,18,24,47,99,99,99,99,18,21,26,66,99,99,99,99,24,26,56,99,99,99,99,99,47,66,99,99,99,99,99,99,
+ 99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99 };
+ static const float aasf[] = { 1.0f * 2.828427125f, 1.387039845f * 2.828427125f, 1.306562965f * 2.828427125f, 1.175875602f * 2.828427125f,
+ 1.0f * 2.828427125f, 0.785694958f * 2.828427125f, 0.541196100f * 2.828427125f, 0.275899379f * 2.828427125f };
+
+ int row, col, i, k, subsample;
+ float fdtbl_Y[64], fdtbl_UV[64];
+ unsigned char YTable[64], UVTable[64];
+
+ if (!data || !width || !height || comp > 4 || comp < 1) {
+ return 0;
+ }
+
+ quality = quality ? quality : 90;
+ subsample = quality <= 90 ? 1 : 0;
+ quality = quality < 1 ? 1 : quality > 100 ? 100 : quality;
+ quality = quality < 50 ? 5000 / quality : 200 - quality * 2;
+
+ for (i = 0; i < 64; ++i) {
+ int uvti, yti = (YQT[i] * quality + 50) / 100;
+ YTable[stbiw__jpg_ZigZag[i]] = (unsigned char)(yti < 1 ? 1 : yti > 255 ? 255 : yti);
+ uvti = (UVQT[i] * quality + 50) / 100;
+ UVTable[stbiw__jpg_ZigZag[i]] = (unsigned char)(uvti < 1 ? 1 : uvti > 255 ? 255 : uvti);
+ }
+
+ for (row = 0, k = 0; row < 8; ++row) {
+ for (col = 0; col < 8; ++col, ++k) {
+ fdtbl_Y[k] = 1 / (YTable[stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]);
+ fdtbl_UV[k] = 1 / (UVTable[stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]);
+ }
+ }
+
+ // Write Headers
+ {
+ static const unsigned char head0[] = { 0xFF,0xD8,0xFF,0xE0,0,0x10,'J','F','I','F',0,1,1,0,0,1,0,1,0,0,0xFF,0xDB,0,0x84,0 };
+ static const unsigned char head2[] = { 0xFF,0xDA,0,0xC,3,1,0,2,0x11,3,0x11,0,0x3F,0 };
+ const unsigned char head1[] = { 0xFF,0xC0,0,0x11,8,(unsigned char)(height >> 8),STBIW_UCHAR(height),(unsigned char)(width >> 8),STBIW_UCHAR(width),
+ 3,1,(unsigned char)(subsample ? 0x22 : 0x11),0,2,0x11,1,3,0x11,1,0xFF,0xC4,0x01,0xA2,0 };
+ s->func(s->context, (void*)head0, sizeof(head0));
+ s->func(s->context, (void*)YTable, sizeof(YTable));
+ stbiw__putc(s, 1);
+ s->func(s->context, UVTable, sizeof(UVTable));
+ s->func(s->context, (void*)head1, sizeof(head1));
+ s->func(s->context, (void*)(std_dc_luminance_nrcodes + 1), sizeof(std_dc_luminance_nrcodes) - 1);
+ s->func(s->context, (void*)std_dc_luminance_values, sizeof(std_dc_luminance_values));
+ stbiw__putc(s, 0x10); // HTYACinfo
+ s->func(s->context, (void*)(std_ac_luminance_nrcodes + 1), sizeof(std_ac_luminance_nrcodes) - 1);
+ s->func(s->context, (void*)std_ac_luminance_values, sizeof(std_ac_luminance_values));
+ stbiw__putc(s, 1); // HTUDCinfo
+ s->func(s->context, (void*)(std_dc_chrominance_nrcodes + 1), sizeof(std_dc_chrominance_nrcodes) - 1);
+ s->func(s->context, (void*)std_dc_chrominance_values, sizeof(std_dc_chrominance_values));
+ stbiw__putc(s, 0x11); // HTUACinfo
+ s->func(s->context, (void*)(std_ac_chrominance_nrcodes + 1), sizeof(std_ac_chrominance_nrcodes) - 1);
+ s->func(s->context, (void*)std_ac_chrominance_values, sizeof(std_ac_chrominance_values));
+ s->func(s->context, (void*)head2, sizeof(head2));
+ }
+
+ // Encode 8x8 macroblocks
+ {
+ static const unsigned short fillBits[] = { 0x7F, 7 };
+ int DCY = 0, DCU = 0, DCV = 0;
+ int bitBuf = 0, bitCnt = 0;
+ // comp == 2 is grey+alpha (alpha is ignored)
+ int ofsG = comp > 2 ? 1 : 0, ofsB = comp > 2 ? 2 : 0;
+ const unsigned char* dataR = (const unsigned char*)data;
+ const unsigned char* dataG = dataR + ofsG;
+ const unsigned char* dataB = dataR + ofsB;
+ int x, y, pos;
+ if (subsample) {
+ for (y = 0; y < height; y += 16) {
+ for (x = 0; x < width; x += 16) {
+ float Y[256], U[256], V[256];
+ for (row = y, pos = 0; row < y + 16; ++row) {
+ // row >= height => use last input row
+ int clamped_row = (row < height) ? row : height - 1;
+ int base_p = (stbi__flip_vertically_on_write ? (height - 1 - clamped_row) : clamped_row) * width * comp;
+ for (col = x; col < x + 16; ++col, ++pos) {
+ // if col >= width => use pixel from last input column
+ int p = base_p + ((col < width) ? col : (width - 1)) * comp;
+ float r = dataR[p], g = dataG[p], b = dataB[p];
+ Y[pos] = +0.29900f * r + 0.58700f * g + 0.11400f * b - 128;
+ U[pos] = -0.16874f * r - 0.33126f * g + 0.50000f * b;
+ V[pos] = +0.50000f * r - 0.41869f * g - 0.08131f * b;
+ }
+ }
+ DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y + 0, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
+ DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y + 8, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
+ DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y + 128, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
+ DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y + 136, 16, fdtbl_Y, DCY, YDC_HT, YAC_HT);
+
+ // subsample U,V
+ {
+ float subU[64], subV[64];
+ int yy, xx;
+ for (yy = 0, pos = 0; yy < 8; ++yy) {
+ for (xx = 0; xx < 8; ++xx, ++pos) {
+ int j = yy * 32 + xx * 2;
+ subU[pos] = (U[j + 0] + U[j + 1] + U[j + 16] + U[j + 17]) * 0.25f;
+ subV[pos] = (V[j + 0] + V[j + 1] + V[j + 16] + V[j + 17]) * 0.25f;
+ }
+ }
+ DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, subU, 8, fdtbl_UV, DCU, UVDC_HT, UVAC_HT);
+ DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, subV, 8, fdtbl_UV, DCV, UVDC_HT, UVAC_HT);
+ }
+ }
+ }
+ }
+ else {
+ for (y = 0; y < height; y += 8) {
+ for (x = 0; x < width; x += 8) {
+ float Y[64], U[64], V[64];
+ for (row = y, pos = 0; row < y + 8; ++row) {
+ // row >= height => use last input row
+ int clamped_row = (row < height) ? row : height - 1;
+ int base_p = (stbi__flip_vertically_on_write ? (height - 1 - clamped_row) : clamped_row) * width * comp;
+ for (col = x; col < x + 8; ++col, ++pos) {
+ // if col >= width => use pixel from last input column
+ int p = base_p + ((col < width) ? col : (width - 1)) * comp;
+ float r = dataR[p], g = dataG[p], b = dataB[p];
+ Y[pos] = +0.29900f * r + 0.58700f * g + 0.11400f * b - 128;
+ U[pos] = -0.16874f * r - 0.33126f * g + 0.50000f * b;
+ V[pos] = +0.50000f * r - 0.41869f * g - 0.08131f * b;
+ }
+ }
+
+ DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, Y, 8, fdtbl_Y, DCY, YDC_HT, YAC_HT);
+ DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, U, 8, fdtbl_UV, DCU, UVDC_HT, UVAC_HT);
+ DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, V, 8, fdtbl_UV, DCV, UVDC_HT, UVAC_HT);
+ }
}
- if (p) break;
- for (i=0; i < x*n; ++i)
- est += abs((signed char) line_buffer[i]);
- if (est < bestval) { bestval = est; best = k; }
- }
- }
- // when we get here, best contains the filter type, and line_buffer contains the data
- filt[j*(x*n+1)] = (unsigned char) best;
- STBIW_MEMMOVE(filt+j*(x*n+1)+1, line_buffer, x*n);
- }
- STBIW_FREE(line_buffer);
- zlib = stbi_zlib_compress(filt, y*( x*n+1), &zlen, 8); // increase 8 to get smaller but use more memory
- STBIW_FREE(filt);
- if (!zlib) return 0;
-
- // each tag requires 12 bytes of overhead
- out = (unsigned char *) STBIW_MALLOC(8 + 12+13 + 12+zlen + 12);
- if (!out) return 0;
- *out_len = 8 + 12+13 + 12+zlen + 12;
-
- o=out;
- STBIW_MEMMOVE(o,sig,8); o+= 8;
- stbiw__wp32(o, 13); // header length
- stbiw__wptag(o, "IHDR");
- stbiw__wp32(o, x);
- stbiw__wp32(o, y);
- *o++ = 8;
- *o++ = (unsigned char) ctype[n];
- *o++ = 0;
- *o++ = 0;
- *o++ = 0;
- stbiw__wpcrc(&o,13);
-
- stbiw__wp32(o, zlen);
- stbiw__wptag(o, "IDAT");
- STBIW_MEMMOVE(o, zlib, zlen);
- o += zlen;
- STBIW_FREE(zlib);
- stbiw__wpcrc(&o, zlen);
-
- stbiw__wp32(o,0);
- stbiw__wptag(o, "IEND");
- stbiw__wpcrc(&o,0);
-
- STBIW_ASSERT(o == out + *out_len);
-
- return out;
-}
-
-int stbi_write_png(char const *filename, int x, int y, int comp, const void *data, int stride_bytes)
-{
- FILE *f;
- int len;
- unsigned char *png = stbi_write_png_to_mem((unsigned char *) data, stride_bytes, x, y, comp, &len);
- if (!png) return 0;
- f = fopen(filename, "wb");
- if (!f) { STBIW_FREE(png); return 0; }
- fwrite(png, 1, len, f);
- fclose(f);
- STBIW_FREE(png);
- return 1;
+ }
+
+ // Do the bit alignment of the EOI marker
+ stbiw__jpg_writeBits(s, &bitBuf, &bitCnt, fillBits);
+ }
+
+ // EOI
+ stbiw__putc(s, 0xFF);
+ stbiw__putc(s, 0xD9);
+
+ return 1;
+}
+
+STBIWDEF int stbi_write_jpg_to_func(stbi_write_func* func, void* context, int x, int y, int comp, const void* data, int quality)
+{
+ stbi__write_context s = { 0 };
+ stbi__start_write_callbacks(&s, func, context);
+ return stbi_write_jpg_core(&s, x, y, comp, (void*)data, quality);
+}
+
+
+#ifndef STBI_WRITE_NO_STDIO
+STBIWDEF int stbi_write_jpg(char const* filename, int x, int y, int comp, const void* data, int quality)
+{
+ stbi__write_context s = { 0 };
+ if (stbi__start_write_file(&s, filename)) {
+ int r = stbi_write_jpg_core(&s, x, y, comp, data, quality);
+ stbi__end_write_file(&s);
+ return r;
+ }
+ else
+ return 0;
}
+#endif
+
#endif // STB_IMAGE_WRITE_IMPLEMENTATION
/* Revision history
+ 1.16 (2021-07-11)
+ make Deflate code emit uncompressed blocks when it would otherwise expand
+ support writing BMPs with alpha channel
+ 1.15 (2020-07-13) unknown
+ 1.14 (2020-02-02) updated JPEG writer to downsample chroma channels
+ 1.13
+ 1.12
+ 1.11 (2019-08-11)
+
+ 1.10 (2019-02-07)
+ support utf8 filenames in Windows; fix warnings and platform ifdefs
+ 1.09 (2018-02-11)
+ fix typo in zlib quality API, improve STB_I_W_STATIC in C++
+ 1.08 (2018-01-29)
+ add stbi__flip_vertically_on_write, external zlib, zlib quality, choose PNG filter
+ 1.07 (2017-07-24)
+ doc fix
+ 1.06 (2017-07-23)
+ writing JPEG (using Jon Olick's code)
+ 1.05 ???
+ 1.04 (2017-03-03)
+ monochrome BMP expansion
+ 1.03 ???
+ 1.02 (2016-04-02)
+ avoid allocating large structures on the stack
+ 1.01 (2016-01-16)
+ STBIW_REALLOC_SIZED: support allocators with no realloc support
+ avoid race-condition in crc initialization
+ minor compile issues
+ 1.00 (2015-09-14)
+ installable file IO function
+ 0.99 (2015-09-13)
+ warning fixes; TGA rle support
0.98 (2015-04-08)
added STBIW_MALLOC, STBIW_ASSERT etc
0.97 (2015-01-18)
@@ -722,7 +1688,7 @@ int stbi_write_png(char const *filename, int x, int y, int comp, const void *dat
add HDR output
fix monochrome BMP
0.95 (2014-08-17)
- add monochrome TGA output
+ add monochrome TGA output
0.94 (2014-05-31)
rename private functions to avoid conflicts with stb_image.h
0.93 (2014-05-27)
@@ -733,3 +1699,45 @@ int stbi_write_png(char const *filename, int x, int y, int comp, const void *dat
first public release
0.90 first internal release
*/
+
+/*
+------------------------------------------------------------------------------
+This software is available under 2 licenses -- choose whichever you prefer.
+------------------------------------------------------------------------------
+ALTERNATIVE A - MIT License
+Copyright (c) 2017 Sean Barrett
+Permission is hereby granted, free of charge, to any person obtaining a copy of
+this software and associated documentation files (the "Software"), to deal in
+the Software without restriction, including without limitation the rights to
+use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
+of the Software, and to permit persons to whom the Software is furnished to do
+so, subject to the following conditions:
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+------------------------------------------------------------------------------
+ALTERNATIVE B - Public Domain (www.unlicense.org)
+This is free and unencumbered software released into the public domain.
+Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
+software, either in source code form or as a compiled binary, for any purpose,
+commercial or non-commercial, and by any means.
+In jurisdictions that recognize copyright laws, the author or authors of this
+software dedicate any and all copyright interest in the software to the public
+domain. We make this dedication for the benefit of the public at large and to
+the detriment of our heirs and successors. We intend this dedication to be an
+overt act of relinquishment in perpetuity of all present and future rights to
+this software under copyright law.
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+------------------------------------------------------------------------------
+*/
\ No newline at end of file
diff --git a/img/BVH_render_time.png b/img/BVH_render_time.png
new file mode 100644
index 00000000..6ae53409
Binary files /dev/null and b/img/BVH_render_time.png differ
diff --git a/img/basic_cornell.5000samp.png b/img/basic_cornell.5000samp.png
new file mode 100644
index 00000000..3e681cb1
Binary files /dev/null and b/img/basic_cornell.5000samp.png differ
diff --git a/img/basic_demo.10000samp.png b/img/basic_demo.10000samp.png
new file mode 100644
index 00000000..ee7d66cd
Binary files /dev/null and b/img/basic_demo.10000samp.png differ
diff --git a/img/basic_demo_closed.10000samp.png b/img/basic_demo_closed.10000samp.png
new file mode 100644
index 00000000..460292ab
Binary files /dev/null and b/img/basic_demo_closed.10000samp.png differ
diff --git a/img/dof_1.5744samp.png b/img/dof_1.5744samp.png
new file mode 100644
index 00000000..37fdeb6c
Binary files /dev/null and b/img/dof_1.5744samp.png differ
diff --git a/img/dof_2.5872samp.png b/img/dof_2.5872samp.png
new file mode 100644
index 00000000..e4b5dfe9
Binary files /dev/null and b/img/dof_2.5872samp.png differ
diff --git a/img/dof_3.5813samp.png b/img/dof_3.5813samp.png
new file mode 100644
index 00000000..18b8b1ce
Binary files /dev/null and b/img/dof_3.5813samp.png differ
diff --git a/img/dof_4.5078samp.png b/img/dof_4.5078samp.png
new file mode 100644
index 00000000..b43d9cbf
Binary files /dev/null and b/img/dof_4.5078samp.png differ
diff --git a/img/first_bounce_cache_on_rays.png b/img/first_bounce_cache_on_rays.png
new file mode 100644
index 00000000..8e5a9947
Binary files /dev/null and b/img/first_bounce_cache_on_rays.png differ
diff --git a/img/no_antialiasing.10000samp.png b/img/no_antialiasing.10000samp.png
new file mode 100644
index 00000000..ff1e4257
Binary files /dev/null and b/img/no_antialiasing.10000samp.png differ
diff --git a/img/seele_face_vertex.png b/img/seele_face_vertex.png
new file mode 100644
index 00000000..8bf258c7
Binary files /dev/null and b/img/seele_face_vertex.png differ
diff --git a/img/seele_portrait.10000samp.png b/img/seele_portrait.10000samp.png
new file mode 100644
index 00000000..ec720dc5
Binary files /dev/null and b/img/seele_portrait.10000samp.png differ
diff --git a/img/seele_scene.10000samp.png b/img/seele_scene.10000samp.png
new file mode 100644
index 00000000..48464300
Binary files /dev/null and b/img/seele_scene.10000samp.png differ
diff --git a/img/shading_cornell.10000samp.png b/img/shading_cornell.10000samp.png
new file mode 100644
index 00000000..c9f53c70
Binary files /dev/null and b/img/shading_cornell.10000samp.png differ
diff --git a/img/sort_by_material_on_scenes.png b/img/sort_by_material_on_scenes.png
new file mode 100644
index 00000000..c8590dbe
Binary files /dev/null and b/img/sort_by_material_on_scenes.png differ
diff --git a/img/stream_compaction_depth.png b/img/stream_compaction_depth.png
new file mode 100644
index 00000000..1eadd920
Binary files /dev/null and b/img/stream_compaction_depth.png differ
diff --git a/imgui.ini b/imgui.ini
new file mode 100644
index 00000000..5b69491a
--- /dev/null
+++ b/imgui.ini
@@ -0,0 +1,10 @@
+[Window][Debug##Default]
+Pos=60,60
+Size=400,400
+Collapsed=0
+
+[Window][Path Tracer Analytics]
+Pos=60,60
+Size=339,157
+Collapsed=0
+
diff --git a/scenes/basic_demo.txt b/scenes/basic_demo.txt
new file mode 100644
index 00000000..6f2f3dfe
--- /dev/null
+++ b/scenes/basic_demo.txt
@@ -0,0 +1,182 @@
+// Emissive material (light)
+MATERIAL 0
+RGB 1 1 1
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 10
+
+// Diffuse white
+MATERIAL 1
+RGB .98 .98 .98
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Diffuse red
+MATERIAL 2
+RGB .85 .35 .35
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Diffuse green
+MATERIAL 3
+RGB .35 .85 .35
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Glass
+MATERIAL 4
+RGB .1 .1 .1
+SPECEX 0
+SPECRGB .9 .9 .98
+REFL 1
+REFR 1
+REFRIOR 1.55
+EMITTANCE 0
+
+// Mirror
+MATERIAL 5
+RGB .1 .1 .1
+SPECEX 0
+SPECRGB .98 .98 .98
+REFL 1
+REFR 0
+REFRIOR 1.55
+EMITTANCE 0
+
+// Matte White
+MATERIAL 6
+RGB .85 .81 .78
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Diffuse blue
+MATERIAL 7
+RGB .35 .35 .85
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Camera
+CAMERA
+RES 800 800
+FOVY 45
+ITERATIONS 10000
+DEPTH 8
+FILE basic_demo
+EYE 0 5 10.5
+LOOKAT 0 5 0
+UP 0 1 0
+FOCALDIST 5
+LENSRADIUS 0
+
+
+// Ceiling light
+OBJECT 0
+cube
+material 0
+TRANS 0 10 1.5
+ROTAT 10 0 0
+SCALE 3 .3 3
+
+// Floor
+OBJECT 1
+cube
+material 1
+TRANS 0 0 0
+ROTAT 0 0 0
+SCALE 10 .01 10
+
+// Ceiling
+OBJECT 2
+cube
+material 1
+TRANS 0 10 0
+ROTAT 0 0 90
+SCALE .01 10 10
+
+// Back wall
+OBJECT 3
+cube
+material 7
+TRANS 0 5 -5
+ROTAT 0 90 0
+SCALE .01 10 10
+
+// Left wall
+OBJECT 4
+cube
+material 2
+TRANS -5 5 0
+ROTAT 0 0 0
+SCALE .01 10 10
+
+// Right wall
+OBJECT 5
+cube
+material 3
+TRANS 5 5 0
+ROTAT 0 0 0
+SCALE .01 10 10
+
+// Glass Cube
+OBJECT 6
+cube
+material 4
+TRANS -2.5 0 -2.3
+ROTAT 0 17.8 0
+SCALE 2.1 8.6 2.1
+
+// Mirror Cube
+OBJECT 7
+cube
+material 5
+TRANS 3 1 -3
+ROTAT 0 -17.5 0
+SCALE 2 2 2
+
+// Sphere
+OBJECT 8
+sphere
+material 6
+TRANS -2.8 0.7 -3.4
+ROTAT 0 0 0
+SCALE 1.5 1.5 1.5
+
+// Sphere
+OBJECT 9
+sphere
+material 6
+TRANS -2.1 2.3 -2.3
+ROTAT 0 0 0
+SCALE 1.5 1.5 1.5
+
+// Seele
+OBJECT 10
+mesh
+../scenes/gltf/seele_light.gltf
+material 3
+TRANS 0 0 0
+ROTAT 0 0 0
+SCALE 5 5 5
\ No newline at end of file
diff --git a/scenes/basic_demo_closed.txt b/scenes/basic_demo_closed.txt
new file mode 100644
index 00000000..f5a9fe1f
--- /dev/null
+++ b/scenes/basic_demo_closed.txt
@@ -0,0 +1,190 @@
+// Emissive material (light)
+MATERIAL 0
+RGB 1 1 1
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 7
+
+// Diffuse white
+MATERIAL 1
+RGB .98 .98 .98
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Diffuse red
+MATERIAL 2
+RGB .85 .35 .35
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Diffuse green
+MATERIAL 3
+RGB .35 .85 .35
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Glass
+MATERIAL 4
+RGB .1 .1 .1
+SPECEX 0
+SPECRGB .9 .9 .98
+REFL 1
+REFR 1
+REFRIOR 1.55
+EMITTANCE 0
+
+// Mirror
+MATERIAL 5
+RGB .1 .1 .1
+SPECEX 0
+SPECRGB .98 .98 .98
+REFL 1
+REFR 0
+REFRIOR 1.55
+EMITTANCE 0
+
+// Matte White
+MATERIAL 6
+RGB .85 .81 .78
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Diffuse blue
+MATERIAL 7
+RGB .35 .35 .85
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Camera
+CAMERA
+RES 800 800
+FOVY 45
+ITERATIONS 10000
+DEPTH 8
+FILE basic_demo_closed
+EYE 0 5 4.9
+LOOKAT 0 5 0
+UP 0 1 0
+FOCALDIST 5
+LENSRADIUS 0
+
+
+// Ceiling light
+OBJECT 0
+cube
+material 0
+TRANS 0 10 0
+ROTAT 10 0 0
+SCALE 3 .3 3
+
+// Floor
+OBJECT 1
+cube
+material 1
+TRANS 0 0 0
+ROTAT 0 0 0
+SCALE 10 .01 10
+
+// Ceiling
+OBJECT 2
+cube
+material 1
+TRANS 0 10 0
+ROTAT 0 0 90
+SCALE .01 10 10
+
+// Back wall
+OBJECT 3
+cube
+material 7
+TRANS 0 5 -5
+ROTAT 0 90 0
+SCALE .01 10 10
+
+// Left wall
+OBJECT 4
+cube
+material 2
+TRANS -5 5 0
+ROTAT 0 0 0
+SCALE .01 10 10
+
+// Right wall
+OBJECT 5
+cube
+material 3
+TRANS 5 5 0
+ROTAT 0 0 0
+SCALE .01 10 10
+
+// Glass Cube
+OBJECT 6
+cube
+material 4
+TRANS -2.5 0 -2.3
+ROTAT 0 17.8 0
+SCALE 2.1 8.6 2.1
+
+// Mirror Cube
+OBJECT 7
+cube
+material 5
+TRANS 3 1 -3
+ROTAT 0 -17.5 0
+SCALE 2 2 2
+
+// Sphere
+OBJECT 8
+sphere
+material 6
+TRANS -2.8 0.7 -3.4
+ROTAT 0 0 0
+SCALE 1.5 1.5 1.5
+
+// Sphere
+OBJECT 9
+sphere
+material 6
+TRANS -2.1 2.3 -2.3
+ROTAT 0 0 0
+SCALE 1.5 1.5 1.5
+
+// Seele
+OBJECT 10
+mesh
+../scenes/gltf/seele_light.gltf
+material 3
+TRANS 0 0 -1
+ROTAT 0 0 0
+SCALE 5 5 5
+
+// Cage wall
+OBJECT 11
+cube
+material 7
+TRANS 0 5 5
+ROTAT 0 90 0
+SCALE .01 10 10
\ No newline at end of file
diff --git a/scenes/cornell.txt b/scenes/cornell.txt
index 83ff8202..3d424629 100644
--- a/scenes/cornell.txt
+++ b/scenes/cornell.txt
@@ -42,10 +42,30 @@ EMITTANCE 0
MATERIAL 4
RGB .98 .98 .98
SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Glass
+MATERIAL 5
+RGB .1 .1 .1
+SPECEX 0
+SPECRGB .98 .98 .98
+REFL 1
+REFR 1
+REFRIOR 1.55
+EMITTANCE 0
+
+// Mirror
+MATERIAL 6
+RGB .1 .1 .1
+SPECEX 0
SPECRGB .98 .98 .98
REFL 1
REFR 0
-REFRIOR 0
+REFRIOR 1.55
EMITTANCE 0
// Camera
@@ -58,6 +78,8 @@ FILE cornell
EYE 0.0 5 10.5
LOOKAT 0 5 0
UP 0 1 0
+FOCALDIST 5
+LENSRADIUS 0
// Ceiling light
@@ -112,6 +134,22 @@ SCALE .01 10 10
OBJECT 6
sphere
material 4
-TRANS -1 4 -1
+TRANS 0 4 -1
ROTAT 0 0 0
SCALE 3 3 3
+
+// Glass Cube
+OBJECT 7
+cube
+material 5
+TRANS -2.5 0 -1
+ROTAT 0 17.8 0
+SCALE 2.1 8.6 2.1
+
+// Mirror Cube
+OBJECT 8
+cube
+material 6
+TRANS 3 1 -1.5
+ROTAT 0 -17.5 0
+SCALE 2 2 2
\ No newline at end of file
diff --git a/scenes/gltf/Box.gltf b/scenes/gltf/Box.gltf
new file mode 100644
index 00000000..72131173
--- /dev/null
+++ b/scenes/gltf/Box.gltf
@@ -0,0 +1,181 @@
+{
+ "asset": {
+ "generator": "COLLADA2GLTF",
+ "version": "2.0"
+ },
+ "scene": 0,
+ "scenes": [
+ {
+ "nodes": [
+ 0
+ ]
+ }
+ ],
+ "nodes": [
+ {
+ "children": [
+ 1
+ ],
+ "matrix": [
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ -1.0,
+ 0.0,
+ 0.0,
+ 1.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 0.0,
+ 1.0
+ ]
+ },
+ {
+ "mesh": 0
+ }
+ ],
+ "meshes": [
+ {
+ "primitives": [
+ {
+ "attributes": {
+ "NORMAL": 1,
+ "POSITION": 2,
+ "TEXCOORD_0": 3
+ },
+ "indices": 0,
+ "mode": 4,
+ "material": 0
+ }
+ ],
+ "name": "Mesh"
+ }
+ ],
+ "accessors": [
+ {
+ "bufferView": 0,
+ "byteOffset": 0,
+ "componentType": 5123,
+ "count": 36,
+ "max": [
+ 23
+ ],
+ "min": [
+ 0
+ ],
+ "type": "SCALAR"
+ },
+ {
+ "bufferView": 1,
+ "byteOffset": 0,
+ "componentType": 5126,
+ "count": 24,
+ "max": [
+ 1.0,
+ 1.0,
+ 1.0
+ ],
+ "min": [
+ -1.0,
+ -1.0,
+ -1.0
+ ],
+ "type": "VEC3"
+ },
+ {
+ "bufferView": 1,
+ "byteOffset": 288,
+ "componentType": 5126,
+ "count": 24,
+ "max": [
+ 0.5,
+ 0.5,
+ 0.5
+ ],
+ "min": [
+ -0.5,
+ -0.5,
+ -0.5
+ ],
+ "type": "VEC3"
+ },
+ {
+ "bufferView": 2,
+ "byteOffset": 0,
+ "componentType": 5126,
+ "count": 24,
+ "max": [
+ 6.0,
+ 1.0
+ ],
+ "min": [
+ 0.0,
+ 0.0
+ ],
+ "type": "VEC2"
+ }
+ ],
+ "materials": [
+ {
+ "pbrMetallicRoughness": {
+ "baseColorTexture": {
+ "index": 0
+ },
+ "metallicFactor": 0.0
+ },
+ "name": "Texture"
+ }
+ ],
+ "textures": [
+ {
+ "sampler": 0,
+ "source": 0
+ }
+ ],
+ "images": [
+ {
+ "uri": ""
+ }
+ ],
+ "samplers": [
+ {
+ "magFilter": 9729,
+ "minFilter": 9986,
+ "wrapS": 10497,
+ "wrapT": 10497
+ }
+ ],
+ "bufferViews": [
+ {
+ "buffer": 0,
+ "byteOffset": 768,
+ "byteLength": 72,
+ "target": 34963
+ },
+ {
+ "buffer": 0,
+ "byteOffset": 0,
+ "byteLength": 576,
+ "byteStride": 12,
+ "target": 34962
+ },
+ {
+ "buffer": 0,
+ "byteOffset": 576,
+ "byteLength": 192,
+ "byteStride": 8,
+ "target": 34962
+ }
+ ],
+ "buffers": [
+ {
+ "byteLength": 840,
+ "uri": "data:application/octet-stream;base64,AAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AAAAAAAAAAAAAIA/AACAPwAAAAAAAAAAAACAPwAAAAAAAAAAAACAPwAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAgD8AAAAAAAAAAAAAgL8AAAAAAAAAAAAAgL8AAAAAAAAAAAAAgL8AAAAAAAAAAAAAgL8AAAAAAACAvwAAAAAAAAAAAACAvwAAAAAAAAAAAACAvwAAAAAAAAAAAACAvwAAAAAAAAAAAAAAAAAAAAAAAIC/AAAAAAAAAAAAAIC/AAAAAAAAAAAAAIC/AAAAAAAAAAAAAIC/AAAAvwAAAL8AAAA/AAAAPwAAAL8AAAA/AAAAvwAAAD8AAAA/AAAAPwAAAD8AAAA/AAAAPwAAAD8AAAA/AAAAPwAAAL8AAAA/AAAAPwAAAD8AAAC/AAAAPwAAAL8AAAC/AAAAvwAAAD8AAAA/AAAAPwAAAD8AAAA/AAAAvwAAAD8AAAC/AAAAPwAAAD8AAAC/AAAAPwAAAL8AAAA/AAAAvwAAAL8AAAA/AAAAPwAAAL8AAAC/AAAAvwAAAL8AAAC/AAAAvwAAAL8AAAA/AAAAvwAAAD8AAAA/AAAAvwAAAL8AAAC/AAAAvwAAAD8AAAC/AAAAvwAAAL8AAAC/AAAAvwAAAD8AAAC/AAAAPwAAAL8AAAC/AAAAPwAAAD8AAAC/AADAQAAAAAAAAKBAAAAAAAAAwED+/38/AACgQP7/fz8AAIBAAAAAAAAAoEAAAAAAAACAQAAAgD8AAKBAAACAPwAAAEAAAAAAAACAPwAAAAAAAABAAACAPwAAgD8AAIA/AABAQAAAAAAAAIBAAAAAAAAAQEAAAIA/AACAQAAAgD8AAEBAAAAAAAAAAEAAAAAAAABAQAAAgD8AAABAAACAPwAAAAAAAAAAAAAAAP7/fz8AAIA/AAAAAAAAgD/+/38/AAABAAIAAwACAAEABAAFAAYABwAGAAUACAAJAAoACwAKAAkADAANAA4ADwAOAA0AEAARABIAEwASABEAFAAVABYAFwAWABUA"
+ }
+ ]
+}
\ No newline at end of file
diff --git a/scenes/gltf/monkey_textured.glb b/scenes/gltf/monkey_textured.glb
new file mode 100644
index 00000000..fc24782d
Binary files /dev/null and b/scenes/gltf/monkey_textured.glb differ
diff --git a/scenes/gltf/scene_dome.glb b/scenes/gltf/scene_dome.glb
new file mode 100644
index 00000000..e832c002
Binary files /dev/null and b/scenes/gltf/scene_dome.glb differ
diff --git a/scenes/gltf/seele_center.glb b/scenes/gltf/seele_center.glb
new file mode 100644
index 00000000..7cecd5c8
Binary files /dev/null and b/scenes/gltf/seele_center.glb differ
diff --git a/scenes/gltf/seele_left.glb b/scenes/gltf/seele_left.glb
new file mode 100644
index 00000000..2e15a29a
Binary files /dev/null and b/scenes/gltf/seele_left.glb differ
diff --git a/scenes/gltf/seele_light.gltf b/scenes/gltf/seele_light.gltf
new file mode 100644
index 00000000..5c6a5fb2
--- /dev/null
+++ b/scenes/gltf/seele_light.gltf
@@ -0,0 +1,1935 @@
+{
+ "asset":{
+ "generator":"Khronos glTF Blender I/O v3.6.27",
+ "version":"2.0"
+ },
+ "scene":0,
+ "scenes":[
+ {
+ "name":"Scene",
+ "nodes":[
+ 0
+ ]
+ }
+ ],
+ "nodes":[
+ {
+ "mesh":0,
+ "name":"\u767d\u5e0c1.0_mesh"
+ }
+ ],
+ "materials":[
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u5934\u53d1",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":0
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u8863\u670d",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":1
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u8896\u5b50",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":2
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u76ae\u80a4",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":3
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u889c\u5b50",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":4
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u978b\u5b50",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":5
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u978b\u9970\u94c1",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":6
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u8863\u9970\u94c1",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":7
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u5934\u9970\u94c1",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":8
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u8863\u9970",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":9
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u88d9\u8fb9",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":10
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u8896\u9970",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":11
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u5934\u9970\u82b1",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":12
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u80cc\u5e26",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":13
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u8138",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":14
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u7259\u9f7f",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":15
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u820c\u5934",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":16
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u53e3\u8154",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":17
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u7709\u6bdb",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":18
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u773c\u767d",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":19
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "doubleSided":true,
+ "name":"\u773c\u775b",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":20
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ },
+ {
+ "alphaMode":"BLEND",
+ "name":"\u8868\u60c5",
+ "pbrMetallicRoughness":{
+ "baseColorTexture":{
+ "index":21
+ },
+ "metallicFactor":0,
+ "roughnessFactor":0.5
+ }
+ }
+ ],
+ "meshes":[
+ {
+ "name":"\u767d\u5e0c1.0",
+ "primitives":[
+ {
+ "attributes":{
+ "POSITION":0,
+ "NORMAL":1,
+ "TEXCOORD_0":2
+ },
+ "indices":3,
+ "material":0
+ },
+ {
+ "attributes":{
+ "POSITION":4,
+ "NORMAL":5,
+ "TEXCOORD_0":6
+ },
+ "indices":7,
+ "material":1
+ },
+ {
+ "attributes":{
+ "POSITION":8,
+ "NORMAL":9,
+ "TEXCOORD_0":10
+ },
+ "indices":11,
+ "material":2
+ },
+ {
+ "attributes":{
+ "POSITION":12,
+ "NORMAL":13,
+ "TEXCOORD_0":14
+ },
+ "indices":15,
+ "material":3
+ },
+ {
+ "attributes":{
+ "POSITION":16,
+ "NORMAL":17,
+ "TEXCOORD_0":18
+ },
+ "indices":19,
+ "material":4
+ },
+ {
+ "attributes":{
+ "POSITION":20,
+ "NORMAL":21,
+ "TEXCOORD_0":22
+ },
+ "indices":23,
+ "material":5
+ },
+ {
+ "attributes":{
+ "POSITION":24,
+ "NORMAL":25,
+ "TEXCOORD_0":26
+ },
+ "indices":27,
+ "material":6
+ },
+ {
+ "attributes":{
+ "POSITION":28,
+ "NORMAL":29,
+ "TEXCOORD_0":30
+ },
+ "indices":31,
+ "material":7
+ },
+ {
+ "attributes":{
+ "POSITION":32,
+ "NORMAL":33,
+ "TEXCOORD_0":34
+ },
+ "indices":35,
+ "material":8
+ },
+ {
+ "attributes":{
+ "POSITION":36,
+ "NORMAL":37,
+ "TEXCOORD_0":38
+ },
+ "indices":39,
+ "material":9
+ },
+ {
+ "attributes":{
+ "POSITION":40,
+ "NORMAL":41,
+ "TEXCOORD_0":42
+ },
+ "indices":43,
+ "material":10
+ },
+ {
+ "attributes":{
+ "POSITION":44,
+ "NORMAL":45,
+ "TEXCOORD_0":46
+ },
+ "indices":47,
+ "material":11
+ },
+ {
+ "attributes":{
+ "POSITION":48,
+ "NORMAL":49,
+ "TEXCOORD_0":50
+ },
+ "indices":51,
+ "material":12
+ },
+ {
+ "attributes":{
+ "POSITION":52,
+ "NORMAL":53,
+ "TEXCOORD_0":54
+ },
+ "indices":55,
+ "material":13
+ },
+ {
+ "attributes":{
+ "POSITION":56,
+ "NORMAL":57,
+ "TEXCOORD_0":58
+ },
+ "indices":59,
+ "material":14
+ },
+ {
+ "attributes":{
+ "POSITION":60,
+ "NORMAL":61,
+ "TEXCOORD_0":62
+ },
+ "indices":63,
+ "material":15
+ },
+ {
+ "attributes":{
+ "POSITION":64,
+ "NORMAL":65,
+ "TEXCOORD_0":66
+ },
+ "indices":67,
+ "material":16
+ },
+ {
+ "attributes":{
+ "POSITION":68,
+ "NORMAL":69,
+ "TEXCOORD_0":70
+ },
+ "indices":71,
+ "material":17
+ },
+ {
+ "attributes":{
+ "POSITION":72,
+ "NORMAL":73,
+ "TEXCOORD_0":74
+ },
+ "indices":75,
+ "material":18
+ },
+ {
+ "attributes":{
+ "POSITION":76,
+ "NORMAL":77,
+ "TEXCOORD_0":78
+ },
+ "indices":79,
+ "material":19
+ },
+ {
+ "attributes":{
+ "POSITION":80,
+ "NORMAL":81,
+ "TEXCOORD_0":82
+ },
+ "indices":83,
+ "material":20
+ },
+ {
+ "attributes":{
+ "POSITION":84,
+ "NORMAL":85,
+ "TEXCOORD_0":86
+ },
+ "indices":87,
+ "material":21
+ }
+ ]
+ }
+ ],
+ "textures":[
+ {
+ "sampler":0,
+ "source":0
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":1
+ },
+ {
+ "sampler":0,
+ "source":2
+ },
+ {
+ "sampler":0,
+ "source":3
+ },
+ {
+ "sampler":0,
+ "source":3
+ },
+ {
+ "sampler":0,
+ "source":3
+ },
+ {
+ "sampler":0,
+ "source":3
+ },
+ {
+ "sampler":0,
+ "source":3
+ },
+ {
+ "sampler":0,
+ "source":3
+ },
+ {
+ "sampler":0,
+ "source":4
+ },
+ {
+ "sampler":0,
+ "source":5
+ }
+ ],
+ "images":[
+ {
+ "bufferView":4,
+ "mimeType":"image/png",
+ "name":"\u767d\u5e0c\u5934\u53d1"
+ },
+ {
+ "bufferView":9,
+ "mimeType":"image/png",
+ "name":"\u767d\u5e0c\u8863\u670d"
+ },
+ {
+ "bufferView":58,
+ "mimeType":"image/png",
+ "name":"\u767d\u88d9\u5e26"
+ },
+ {
+ "bufferView":63,
+ "mimeType":"image/png",
+ "name":"\u5e0c\u513f\u8138\u84dd"
+ },
+ {
+ "bufferView":88,
+ "mimeType":"image/png",
+ "name":"\u773c\u775b\u84dd"
+ },
+ {
+ "bufferView":93,
+ "mimeType":"image/png",
+ "name":"\u8868\u60c5"
+ }
+ ],
+ "accessors":[
+ {
+ "bufferView":0,
+ "componentType":5126,
+ "count":2030,
+ "max":[
+ 0.13393649458885193,
+ 1.6081249713897705,
+ 0.08124861866235733
+ ],
+ "min":[
+ -0.14080588519573212,
+ 1.3230922222137451,
+ -0.19198106229305267
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":1,
+ "componentType":5126,
+ "count":2030,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":2,
+ "componentType":5126,
+ "count":2030,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":3,
+ "componentType":5123,
+ "count":7038,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":5,
+ "componentType":5126,
+ "count":2187,
+ "max":[
+ 0.28718164563179016,
+ 1.3557287454605103,
+ 0.2467499077320099
+ ],
+ "min":[
+ -0.27608856558799744,
+ 0.7817787528038025,
+ -0.2713286876678467
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":6,
+ "componentType":5126,
+ "count":2187,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":7,
+ "componentType":5126,
+ "count":2187,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":8,
+ "componentType":5123,
+ "count":8409,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":10,
+ "componentType":5126,
+ "count":2122,
+ "max":[
+ 0.55363529920578,
+ 1.2538588047027588,
+ -0.0050970036536455154
+ ],
+ "min":[
+ -0.5536351799964905,
+ 0.9324911832809448,
+ -0.10847450792789459
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":11,
+ "componentType":5126,
+ "count":2122,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":12,
+ "componentType":5126,
+ "count":2122,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":13,
+ "componentType":5123,
+ "count":6060,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":14,
+ "componentType":5126,
+ "count":1248,
+ "max":[
+ 0.3476201593875885,
+ 1.3857455253601074,
+ 0.0753975659608841
+ ],
+ "min":[
+ -0.4132169187068939,
+ 0.04515039175748825,
+ -0.10003461688756943
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":15,
+ "componentType":5126,
+ "count":1248,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":16,
+ "componentType":5126,
+ "count":1248,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":17,
+ "componentType":5123,
+ "count":5079,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":18,
+ "componentType":5126,
+ "count":670,
+ "max":[
+ 0.14590981602668762,
+ 0.9263655543327332,
+ 0.0635731890797615
+ ],
+ "min":[
+ -0.14590981602668762,
+ 0.1252705603837967,
+ -0.11614029854536057
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":19,
+ "componentType":5126,
+ "count":670,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":20,
+ "componentType":5126,
+ "count":670,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":21,
+ "componentType":5123,
+ "count":3060,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":22,
+ "componentType":5126,
+ "count":993,
+ "max":[
+ 0.16525812447071075,
+ 0.2021685540676117,
+ 0.08110662549734116
+ ],
+ "min":[
+ -0.16525807976722717,
+ -0.001383876777254045,
+ -0.16539043188095093
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":23,
+ "componentType":5126,
+ "count":993,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":24,
+ "componentType":5126,
+ "count":993,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":25,
+ "componentType":5123,
+ "count":3450,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":26,
+ "componentType":5126,
+ "count":68,
+ "max":[
+ 0.09364328533411026,
+ 0.12247958034276962,
+ -0.003217206336557865
+ ],
+ "min":[
+ -0.09364327043294907,
+ 0.07571453601121902,
+ -0.024254927411675453
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":27,
+ "componentType":5126,
+ "count":68,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":28,
+ "componentType":5126,
+ "count":68,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":29,
+ "componentType":5123,
+ "count":204,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":30,
+ "componentType":5126,
+ "count":7332,
+ "max":[
+ 0.22110073268413544,
+ 1.3336013555526733,
+ 0.1899968534708023
+ ],
+ "min":[
+ -0.48219984769821167,
+ 0.8135356903076172,
+ -0.20598602294921875
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":31,
+ "componentType":5126,
+ "count":7332,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":32,
+ "componentType":5126,
+ "count":7332,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":33,
+ "componentType":5123,
+ "count":17523,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":34,
+ "componentType":5126,
+ "count":472,
+ "max":[
+ 0.0065904841758310795,
+ 1.5797866582870483,
+ 0.03439880535006523
+ ],
+ "min":[
+ -0.1104675680398941,
+ 1.4616508483886719,
+ -0.07424759864807129
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":35,
+ "componentType":5126,
+ "count":472,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":36,
+ "componentType":5126,
+ "count":472,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":37,
+ "componentType":5123,
+ "count":1299,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":38,
+ "componentType":5126,
+ "count":273,
+ "max":[
+ 0.2759479582309723,
+ 1.2246865034103394,
+ 0.01555640622973442
+ ],
+ "min":[
+ -0.27594804763793945,
+ 0.9898963570594788,
+ -0.18900804221630096
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":39,
+ "componentType":5126,
+ "count":273,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":40,
+ "componentType":5126,
+ "count":273,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":41,
+ "componentType":5123,
+ "count":594,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":42,
+ "componentType":5126,
+ "count":267,
+ "max":[
+ 0.2691710889339447,
+ 0.8558884263038635,
+ 0.2380455732345581
+ ],
+ "min":[
+ -0.2691710889339447,
+ 0.7428877353668213,
+ -0.26760780811309814
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":43,
+ "componentType":5126,
+ "count":267,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":44,
+ "componentType":5126,
+ "count":267,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":45,
+ "componentType":5123,
+ "count":702,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":46,
+ "componentType":5126,
+ "count":253,
+ "max":[
+ 0.3476202189922333,
+ 1.2853813171386719,
+ 0.0774092823266983
+ ],
+ "min":[
+ -0.4499795436859131,
+ 1.0251684188842773,
+ -0.10191703587770462
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":47,
+ "componentType":5126,
+ "count":253,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":48,
+ "componentType":5126,
+ "count":253,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":49,
+ "componentType":5123,
+ "count":879,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":50,
+ "componentType":5126,
+ "count":134,
+ "max":[
+ -0.054985903203487396,
+ 1.605372428894043,
+ 0.05563882738351822
+ ],
+ "min":[
+ -0.15126736462116241,
+ 1.4805811643600464,
+ -0.07545735687017441
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":51,
+ "componentType":5126,
+ "count":134,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":52,
+ "componentType":5126,
+ "count":134,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":53,
+ "componentType":5123,
+ "count":540,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":54,
+ "componentType":5126,
+ "count":102,
+ "max":[
+ 0.49774906039237976,
+ 1.1502575874328613,
+ -0.05722491070628166
+ ],
+ "min":[
+ -0.49774667620658875,
+ -0.10640505701303482,
+ -0.9779912233352661
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":55,
+ "componentType":5126,
+ "count":102,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":56,
+ "componentType":5126,
+ "count":102,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":57,
+ "componentType":5123,
+ "count":294,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":59,
+ "componentType":5126,
+ "count":1005,
+ "max":[
+ 0.09013598412275314,
+ 1.5349878072738647,
+ 0.0682196393609047
+ ],
+ "min":[
+ -0.09013598412275314,
+ 1.3427268266677856,
+ -0.0642099380493164
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":60,
+ "componentType":5126,
+ "count":1005,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":61,
+ "componentType":5126,
+ "count":1005,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":62,
+ "componentType":5123,
+ "count":5196,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":64,
+ "componentType":5126,
+ "count":210,
+ "max":[
+ 0.01525755226612091,
+ 1.3856453895568848,
+ 0.050281260162591934
+ ],
+ "min":[
+ -0.01525755226612091,
+ 1.3691253662109375,
+ 0.02549009770154953
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":65,
+ "componentType":5126,
+ "count":210,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":66,
+ "componentType":5126,
+ "count":210,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":67,
+ "componentType":5123,
+ "count":1200,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":68,
+ "componentType":5126,
+ "count":277,
+ "max":[
+ 0.014709665440022945,
+ 1.3788082599639893,
+ 0.04437603801488876
+ ],
+ "min":[
+ -0.014709665440022945,
+ 1.3694894313812256,
+ 0.0071363383904099464
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":69,
+ "componentType":5126,
+ "count":277,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":70,
+ "componentType":5126,
+ "count":277,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":71,
+ "componentType":5123,
+ "count":1650,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":72,
+ "componentType":5126,
+ "count":273,
+ "max":[
+ 0.016971968114376068,
+ 1.38872492313385,
+ 0.05151454731822014
+ ],
+ "min":[
+ -0.016971968114376068,
+ 1.3665648698806763,
+ 0.01748351939022541
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":73,
+ "componentType":5126,
+ "count":273,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":74,
+ "componentType":5126,
+ "count":273,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":75,
+ "componentType":5123,
+ "count":1200,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":76,
+ "componentType":5126,
+ "count":466,
+ "max":[
+ 0.0686001256108284,
+ 1.4588124752044678,
+ 0.052438534796237946
+ ],
+ "min":[
+ -0.0686001256108284,
+ 1.4112156629562378,
+ 0.017897846177220345
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":77,
+ "componentType":5126,
+ "count":466,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":78,
+ "componentType":5126,
+ "count":466,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":79,
+ "componentType":5123,
+ "count":1926,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":80,
+ "componentType":5126,
+ "count":203,
+ "max":[
+ 0.06689267605543137,
+ 1.450745940208435,
+ 0.03766728565096855
+ ],
+ "min":[
+ -0.06689267605543137,
+ 1.3983581066131592,
+ 0.006054033059626818
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":81,
+ "componentType":5126,
+ "count":203,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":82,
+ "componentType":5126,
+ "count":203,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":83,
+ "componentType":5123,
+ "count":984,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":84,
+ "componentType":5126,
+ "count":212,
+ "max":[
+ 0.05652977526187897,
+ 1.443263053894043,
+ 0.035077836364507675
+ ],
+ "min":[
+ -0.05554359406232834,
+ 1.412532925605774,
+ 0.024384761229157448
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":85,
+ "componentType":5126,
+ "count":212,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":86,
+ "componentType":5126,
+ "count":212,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":87,
+ "componentType":5123,
+ "count":624,
+ "type":"SCALAR"
+ },
+ {
+ "bufferView":89,
+ "componentType":5126,
+ "count":306,
+ "max":[
+ 0.041229844093322754,
+ 1.4394193887710571,
+ 0.006068587303161621
+ ],
+ "min":[
+ -0.041229844093322754,
+ 1.401142954826355,
+ -0.012167368084192276
+ ],
+ "type":"VEC3"
+ },
+ {
+ "bufferView":90,
+ "componentType":5126,
+ "count":306,
+ "type":"VEC3"
+ },
+ {
+ "bufferView":91,
+ "componentType":5126,
+ "count":306,
+ "type":"VEC2"
+ },
+ {
+ "bufferView":92,
+ "componentType":5123,
+ "count":1326,
+ "type":"SCALAR"
+ }
+ ],
+ "bufferViews":[
+ {
+ "buffer":0,
+ "byteLength":24360,
+ "byteOffset":0,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":24360,
+ "byteOffset":24360,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":16240,
+ "byteOffset":48720,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":14076,
+ "byteOffset":64960,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":535792,
+ "byteOffset":79036
+ },
+ {
+ "buffer":0,
+ "byteLength":26244,
+ "byteOffset":614828,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":26244,
+ "byteOffset":641072,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":17496,
+ "byteOffset":667316,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":16818,
+ "byteOffset":684812,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":699230,
+ "byteOffset":701632
+ },
+ {
+ "buffer":0,
+ "byteLength":25464,
+ "byteOffset":1400864,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":25464,
+ "byteOffset":1426328,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":16976,
+ "byteOffset":1451792,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":12120,
+ "byteOffset":1468768,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":14976,
+ "byteOffset":1480888,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":14976,
+ "byteOffset":1495864,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":9984,
+ "byteOffset":1510840,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":10158,
+ "byteOffset":1520824,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":8040,
+ "byteOffset":1530984,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":8040,
+ "byteOffset":1539024,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":5360,
+ "byteOffset":1547064,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":6120,
+ "byteOffset":1552424,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":11916,
+ "byteOffset":1558544,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":11916,
+ "byteOffset":1570460,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":7944,
+ "byteOffset":1582376,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":6900,
+ "byteOffset":1590320,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":816,
+ "byteOffset":1597220,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":816,
+ "byteOffset":1598036,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":544,
+ "byteOffset":1598852,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":408,
+ "byteOffset":1599396,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":87984,
+ "byteOffset":1599804,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":87984,
+ "byteOffset":1687788,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":58656,
+ "byteOffset":1775772,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":35046,
+ "byteOffset":1834428,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":5664,
+ "byteOffset":1869476,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":5664,
+ "byteOffset":1875140,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":3776,
+ "byteOffset":1880804,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2598,
+ "byteOffset":1884580,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":3276,
+ "byteOffset":1887180,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":3276,
+ "byteOffset":1890456,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2184,
+ "byteOffset":1893732,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1188,
+ "byteOffset":1895916,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":3204,
+ "byteOffset":1897104,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":3204,
+ "byteOffset":1900308,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2136,
+ "byteOffset":1903512,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1404,
+ "byteOffset":1905648,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":3036,
+ "byteOffset":1907052,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":3036,
+ "byteOffset":1910088,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2024,
+ "byteOffset":1913124,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1758,
+ "byteOffset":1915148,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":1608,
+ "byteOffset":1916908,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1608,
+ "byteOffset":1918516,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1072,
+ "byteOffset":1920124,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1080,
+ "byteOffset":1921196,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":1224,
+ "byteOffset":1922276,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1224,
+ "byteOffset":1923500,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":816,
+ "byteOffset":1924724,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":588,
+ "byteOffset":1925540,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":37096,
+ "byteOffset":1926128
+ },
+ {
+ "buffer":0,
+ "byteLength":12060,
+ "byteOffset":1963224,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":12060,
+ "byteOffset":1975284,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":8040,
+ "byteOffset":1987344,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":10392,
+ "byteOffset":1995384,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":126510,
+ "byteOffset":2005776
+ },
+ {
+ "buffer":0,
+ "byteLength":2520,
+ "byteOffset":2132288,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2520,
+ "byteOffset":2134808,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1680,
+ "byteOffset":2137328,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2400,
+ "byteOffset":2139008,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":3324,
+ "byteOffset":2141408,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":3324,
+ "byteOffset":2144732,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2216,
+ "byteOffset":2148056,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":3300,
+ "byteOffset":2150272,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":3276,
+ "byteOffset":2153572,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":3276,
+ "byteOffset":2156848,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2184,
+ "byteOffset":2160124,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2400,
+ "byteOffset":2162308,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":5592,
+ "byteOffset":2164708,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":5592,
+ "byteOffset":2170300,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":3728,
+ "byteOffset":2175892,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":3852,
+ "byteOffset":2179620,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":2436,
+ "byteOffset":2183472,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2436,
+ "byteOffset":2185908,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1624,
+ "byteOffset":2188344,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1968,
+ "byteOffset":2189968,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":2544,
+ "byteOffset":2191936,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2544,
+ "byteOffset":2194480,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1696,
+ "byteOffset":2197024,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":1248,
+ "byteOffset":2198720,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":20643,
+ "byteOffset":2199968
+ },
+ {
+ "buffer":0,
+ "byteLength":3672,
+ "byteOffset":2220612,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":3672,
+ "byteOffset":2224284,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2448,
+ "byteOffset":2227956,
+ "target":34962
+ },
+ {
+ "buffer":0,
+ "byteLength":2652,
+ "byteOffset":2230404,
+ "target":34963
+ },
+ {
+ "buffer":0,
+ "byteLength":136533,
+ "byteOffset":2233056
+ }
+ ],
+ "samplers":[
+ {
+ "magFilter":9729,
+ "minFilter":9987
+ }
+ ],
+ "buffers":[
+ {
+ "byteLength":2369592,
+ "uri":"data:application/octet-stream;base64,T8fdvZu5uT85QAO9fQ/OvcAgvD8VQei8ynzMve/+uz/KScK8ZEjUveSFuT8QZOO85kbavemWtz8JjNa896DkvZ7Atz9IhwS9k8XbvRxStD/3V5G8gMHXvT6HtD/pCIC84jTSvQ+8sz+z7BG8ULjkveDrtT94le+8ZCrcvccMtj/1fr+8onHavSAutT+Ln6C8zIDgvXfhtD8y87u8zd2/vWSnvz/ej6u8sxfNPc+auT94+9m8j2/LPZD/uz8S/sW8QszTPR4bvD+9qvG8EzvZPZeyuT9i1Ai9ea7aPQegtz826Ay9E5XNPZKctz8l+eO8Afe9PXvjsz/LJbC8K37GPVyYsz94kMu85TWtPXiDsj9KTFe8/fzHPQbKtT+FVti8F6nWPb6QtT9rJwS9GGO/Pfekvz9pWaq8pzPEPWd6vD8PlLS7+33JPY2CvD+Pgbm8LYDKPZRuuj+GnLe8+X7GPTVTuj/moee7z5u4PXdhtT85wmK8Kt+5PWKFtT8ep467ac7DPfmNtz8hCvC7J5nEPXjPtz9RqaG88pS/PVAqvj+Qp4q7q4O6Pc2Zvz8jt227GWO/Pdynvz9gWaq8mwLGPcorvj+rTrS8eZeuPSmdwT9n9+C6beCtPcJDwz8GjH+8KdB7PfhAsj+y/kI8c5iYPXv2sj9S+Ws7V5+VPe0Psz9UN6c5wGE5vS83sj8/xQY9iTFivZ67sj/DPuo8l3JZvevjsj+XTO48mzmDPVNysz8etAU9p+95Pe+tsz+sWBg9xqmKPd7ctD/3gww9+IaUPSd+tD+AZ+E8N0lJPUe3sj+kDSw9YJdaPeoSsz9CgCQ9cpdjPbzVsj90ohg9lwOAPeKEsz9dKss8lwOAPeKEsz9dKss8cpdjPbzVsj90ohg9mzmDPVNysz8etAU9hNtcPTPtsj81PAg9Hv9KPdmbsj/pgiY9qqVIPbWxsj8Gkx09dfFnvNXYwz9PwIA915XvugDtwz8NzIQ9J4gCulVPwT9NIZY9pPxavBJNwT9oWJA9UCGgO4Fjuz+tZaY9p4w3O+rjvD+u2qU9okB3PPTzvD+RPZ09bzt2PFx4uz8C7J09tMh1PN4Vuj/Ls5g9IsbzO8XzuT8PO589BISaPHDGuT9RF4s9MtN4PKI0uj9LupI9o81xPHyLuz8xJZk9T3erPAaWuz9XjY89GC2HPGT8tj+UhHk99Kl8PKd+uD96/Yg9psyKPC6HuD/TY4U9E0cTvM3lvD8HUZ89+zW5u2Vcuz9/Ep89LJDwum3quT/IYJo9gE1ePKLQtz9F4oo9to8NPBeytz+C1YY90ItYO5u+uD/CZ5A9zwEqPNC8uD/e/ZQ9CJASvLzuuT8/NZA9XGl0vIJkuz+GzZQ95O7NOxeytz8/F4Q9L6vyuqu5uD/w/ok9CVCrPJOiuz/WNYg9xLGbPK7XuT/vR4U9JgSNPFiWuD+6M4I94bzMvNlMwT/Ag4U9HsDPvI/Uwz9mgWw9iNiivPDnvD/VhpQ9eC6du7LxuD/JW4k98+Q6vJDnuD8YaIQ9lMiVvCbruT+hF4k9L/m9O8c8tz9Z9Gs9YofPuUWstz/TOng9AwTqOsTDtz/gYHw9hNUEPFT5xT9vU1A9TQ9JPFvqxT/rCUY9EPiOPNvIwz/X4G89AmowPP3Ywz83aX89UmAPvSfVwz/4XE89qaj4vH4Nxj9G0Sc92b0DvdDHwz/UhFM90sOEvdW/tj9TIuI8d0p/vT0jtT9+VNY8SEiNve8MtT+ehMY8/b2WvbOmtj9tIsQ8ThdhvRWLsj/ktMU8DkRovQ6Csj+q4t88wGE5vS83sj8/xQY9DkRovQ6Csj+q4t885WCwPKK5vD8hC5E9b8B4PATgtj9Y5Hg9lXyXOjKwvj9ow6I9l9lZPE1KwT8dVY49eUBmPIXJvj9GTZo9UyE5vLyxvj/ah5w9qvm4vBKivj+F85E9jpPHvHdduz/VqYs93GfmvGDsvD/eY4k9SbSMPZXquT/sBfc8dYB+Pfmquj94sTU9hs+JPfnxuz/Okys9+qgHvUkmwT/93Gs9OeMBvdc8wT9wrXY950MdvSQowT9Zrmk9RGABvQmOvj+CDYc9b+EJvcsivj/FTXk9zqHSvDVmuz+yzIE9XUT6vA35vD+OsH49zeeivCT8uT8xs4E9NBVbvJn2uD+yZ349EDvSujuwtz8OlnM9MPbEuxc3uD+u7H89AZf8u+lBuD89tng975SAujREuD8pPoM9EcIhu5AFxj9MYVg9TY6IPEb+tz8JnIc9PFR9PNTzuD+lr5A9xcCQPG8Dtz8sAn09yaubPNsctz9uKHk9j9C1PF5mtj+KGGc9sncRPQnyxT9DbBg9PQ0kPV7sxT+T1Ao9TfJEPabPwz+WdCI9+wssPSvcwz+ntj09i13FPDD8xT+VsTw9VDsBPSXUwz/Tslo95L2tPPlVwT+WwYE9teO0PKGhvD/bXYg92y21PM4fvj/qXo49EvC9PNMKvj9eb4g9GeKEPYS6vT84jy89F+ZzPa70uz/3jEI9aZlsPaSBvT9OrU49/fhgPTQMvz+3slM92DxLPXlkwT9X7049jkNkPc50wT+LHCw95qt6PcVEvz+GqzA9/S/NPDVKwT8VKX49W64dPc1hwT/AMGo97knlPHNgvj+iE4k9pDQEPfeRvj8EooE9EvC9PNMKvj9eb4g9uHFGPU1XvT8wumw9TuM2Penxvj9OWHQ9RGYovc3qvD8J3HM9/WYMvQ+4vD9sXnc9YHILvXuFuz+S/HE9M+cjvbmJuz9Xbm495VYbvUZFuj9mSGU9hoYJvdhPuj+TqWg9B/wAvfTMtz8EDEM9bjL1vOLCtz+zX0c9NQLTvA4ytz+3Ezo9d7MnvctMuT9lhU09u8wQvV48uT9MoFs9cEEGvSljuD9KH1E9O8cSvcZquD9SLEk9b+EJvcsivj/FTXk9k4gmvU1cvj8JoXU9YtLqvHjPtz/eF0g9qQEEvWZFuT9Vrl0946L7vClxuD9C/FE9wGuWPVBBtj/Q2AM9sN+jPRn7tT8tXsA87i6UPZyFtD/JqYI8xomgPXkJtj+8HiU8dTCdPdgDvD8GSxU99A+yPW8bvD+yvs08W+WyPensuT+HJq08xCCfPRkAuj/TaA09sF2bPeZmvz/q8uM8nL+PPe5Yvz+kxRg91nGBPdJ3wT+cJxw9bLSQPcZrwT+3JeI8jgCYPdLovT8Aaxk9XHOoPZD2vT87rOM82WStPaaotz/yAbE8cwSzPfQwuj8cqno7NA2qPb3Etz+SwdA7lA2vPTwQvj/jm/07sBumPVNzvz+P3xM8G/U+uy6gxz9Cnhs9vr+sO6mYxz+uaxY9f1SLPFt9xz+/7Aw9NtEivQRAxj/53/08G38Bvaqixz/GUqo8WWTVvBmZxz+v8Ns8qdSzvPtqyD92SIo8V5XHvE6EyD9ghFs8y1yOPZL2tT85MT48qOiIPWXqtz+USOE8t05dPWWCuj98fEk9x8lTPYfZuz84yGE97+WbPcTftz9r9gQ9mHmzPSpWvD/mCds71Z06PQf3xT8phAE9quxjPVwCxj+OhsU8n3CDPULgwz/qfuE8tXVfPYfewz/xbRY9GWGEvSmvuD/EhgQ9zlCbvT2juD+8xtU86asNvSDkyD+LPfM6h6IuvQplyD9+jDs7smMkvaG1yD+IDxe8uP6nvJuLyT+ruAi8irMlvbcEyD8T5FI8OBIBvV7QyD8ihfA7z5ybvT6Wuj/lJuU8VQ5+vc+Muj/5kxc95oHOvdjBuj9wjHa83F/LvVLavD+ja3m8Il23vcHQvD+Fa5C7GFC7vXO1uj9GWsW7COGTvWVusT+3kg48bYWpvfSAsj+0sD46p2ulvcTHsj/95yg7XKexvQAWtD+Ge9O67nW4vXnGsz+Qk6e7MivFvaCDtT+wxC+81VO5vXfFtT/XPrC75CfPvdsquD89bmu8++i8vbdmuD++Od+7hm+7vXiSuj9+hD48Qry3vY7FvD+k6048/Qa4vWZcuD/zjjw8tfqyvbNtuD9VH9a7GFC7vXO1uj9GWsW7m6umvYBitj9TFl+7z5quvWEStj+l90U8z0iXvdTRtD++O2g71g2fvbeMtD/m83k8ozprvFkPxj9cLVI98AbHvEkKxj9N1j09oHhOvImdxz9OThc9fhapvIeTxz8CQwc9EjSGvMCFyD+cAbU8pCqBvFM7yT9yGo47O0envHVPyT+T1UC5NXc1vC6byD+bMcQ8b/tpu1imyD/pdc482RM2vMpRyT/ByBA8uA69OjCPyD+Fuso8QaspPEeAyD8UTcM8q3TsPPJ3xz98sdA88VCZPPeEyD8SyYs8Poivu3hRyT8kPAs8/imOOx4EyT+iUYY8Pw8EvBK2yT8ScQ+8OK4dvKZ6yT/F76c6cO6wujuQyT9cMjo7RxxhPRWIxz8gHFy5BlliPfN8xz/hsim80p2NPcXYxT+GD0a8hw+KPdnkxT/XA1c6ZL45Pf1vxz8zqJk84vhUPbJzxz+g4w08OeyAPSTmxT+yBEM8kD2NPc3mwz/YEKA8pmqSPeDewz+mvTU8vZmfPSmKwz8yQiC2tRcPPXh3xz/9oMY8mogLPaqQyD/uGFY815cqPWufyD/OWwO7tD0lPemYyD9DwR+8XVuDPLk6yT8WAhg8XES3PAQ8yT+ka8w7PCDMPDKLyD+Aan489m0hPbeEyD+0Tpo7FEOLumTryT8/9B27bAfWPEFIyT9V60K6NW/iPPM/yT+0xxm8TwhEPJ24yT8/piK8cJUsPI+vyT+HMAQ7hEwNPBwkyT/g2ho8K3zIuCfyyT+ydgO83nRSvQaIvj8tWkw9pt9Mve9+vj/LTVc9JxNJvfMFvT8OJls9J1hNvcYMvT+mg1E9Sd6avc2QvD9uEvc8AAZyvQ9evD9q5CU9dahgvVlfvj9vjzI9kEBLvVdZwT9ZrD49kEBLvVdZwT9ZrD495h8vvUY3wT9Z0EY9x4lzvXdivD9QDCI9bxM9vW/KvT/O9T49ONRUvXxSvD+8oy09O9ecPfx4wT/LBhw8wmk1Pc6Gsj8kcDQ9mAWBvR15uj9XpQY9GWGEvSmvuD/EhgQ9VQ5+vc+Muj/5kxc9+yaTPXtQsz9qvvc7c5iYPXv2sj9S+Ws7KdB7PfhAsj+y/kI85WqsPabJtz/E+zI7tjanPS/dtT+w0U07OFJxvSHssz+k3N08smB8vYajsz875dQ8/feJvYApsz8zpq88fF2BvaJQsz9O0308VCK9vVR5vz9g5CO8oH+vvdtRvz/5XyG7/feJvYApsz8zpq881g2fvbeMtD/m83k8z5quvWEStj+l90U8DmauvVQovz99Rlc8b5FgvQ6Wvj/08TU9DsCVvVv8vj/w8AA9stGKvRKGwT+do/w8rZWfvcq1wT8egF08HnCLvf48xD9rf288GIh2vQFIxD9n2uk8tQxVvSWNxj9LAaw8PLRjvTg6xz9dFZk77Q07vXgcxD+Y9yQ9XKmpPTsOtD9Jpu277r2rPckRtD8Ej9a5m1eePdBTtD/8UK87abe5vXt8uj/iGVG8tfqyvbNtuD9VH9a7m6umvYBitj9TFl+7S+qkvViWuD+nB8W7ttqYO7m4tz/3rH891Udxu6W/uD/DfoQ9Ro82vAoAuj9PpoU9BkF9PAGFuz8zGI89bzt2PFx4uz8C7J09ibx5PPkluj+fMI09tMh1PN4Vuj/Ls5g9aLSBPOIFvT85pIw9iDybPGcftz8KVnQ9iDybPGcftz8KVnQ9j9C1PF5mtj+KGGc9yaubPNsctz9uKHk9j9C1PF5mtj+KGGc9uTZ4PDTbtj/mWHI9ttqYO7m4tz/3rH89PFR9PNTzuD+lr5A9jgR+PFz4uD/0poc9euaHPAH7tz+SZYE9B9pvPcLesz9kCxw9YJdaPeoSsz9CgCQ9lwOAPeKEsz9dKss8hNtcPTPtsj81PAg9N0lJPUe3sj+kDSw97i6UPZyFtD/JqYI8xomgPXkJtj+8HiU8BLuKPVzztz8ArBM9QSOHPfBdtj+7FQ89cwSzPfQwuj8cqno7ITWpPWsnuj/6FIY6NA2qPb3Etz+SwdA7fFeGPZ2jvT8CR7A8CASHPYcuvD9rDqc8ppGjPcFovD8ssQg7mtGgPSm0vT+CVYE7ppGjPcFovD8ssQg7SSixPc5cvD+Spjq8cwSzPfQwuj8cqno7qQa0PRhQuj+CCSW81oSvPaq5vT8l8kC8qqVIPbWxsj8Gkx09yHCRPVhnsz9THTg7KdB7PfhAsj+y/kI8V5+VPe0Psz9UN6c5yHCRPVhnsz9THTg7+yaTPXtQsz9qvvc7KdB7PfhAsj+y/kI8zTOtPdT8tz89lyS8qQa0PRhQuj+CCSW8cwSzPfQwuj8cqno75WqsPabJtz/E+zI7tjanPS/dtT+w0U0717OlPevatT/+S9S72xSBPTD6tD/3HBQ91zSbPS5mtD9gktO6m1eePdBTtD/8UK87mwLGPcorvj+rTrS8+33JPY2CvD+Pgbm8LYDKPZRuuj+GnLe8J5nEPXjPtz9RqaG8zTOtPdT8tz89lyS817OlPevatT/+S9S7z5u4PXdhtT85wmK8XKmpPTsOtD9Jpu271zSbPS5mtD9gktO6aLSBPOIFvT85pIw9okB3PPTzvD+RPZ09o81xPHyLuz8xJZk9MoaDPJmhuz9dt4Y9MtN4PKI0uj9LupI9k1uGPEYyuj/4w4Q985pzPNRkuD9XUoE99Kl8PKd+uD96/Yg9GC2HPGT8tj+UhHk9zqHSvDVmuz+yzIE9FJcXvCsBvT9YpYU9XUT6vA35vD+OsH49Ro82vAoAuj9PpoU9ibx5PPkluj+fMI09BkF9PAGFuz8zGI89AkV2PHAJvj8vMYU9HPANvG7+vT8AU4M9aLSBPOIFvT85pIw9JgSNPFiWuD+6M4I985pzPNRkuD9XUoE9GC2HPGT8tj+UhHk9k1uGPEYyuj/4w4Q9xLGbPK7XuT/vR4U9CVCrPJOiuz/WNYg9MoaDPJmhuz9dt4Y9Ro82vAoAuj9PpoU9eC6du7LxuD/JW4k9CJASvLzuuT8/NZA9292nu9QBuT/3wIQ9zeeivCT8uT8xs4E9NBVbvJn2uD+yZ349L/UGOzLHtz8wkng9L/m9O8c8tz9Z9Gs9AwTqOsTDtz/gYHw9/8IQuvJLuD+TcIA975SAujREuD8pPoM9iDybPGcftz8KVnQ9uTZ4PDTbtj/mWHI9j9C1PF5mtj+KGGc91Udxu6W/uD/DfoQ9jgR+PFz4uD/0poc9euaHPAH7tz+SZYE9ttqYO7m4tz/3rH89teO0PKGhvD/bXYg9EvC9PNMKvj9eb4g9iEoJvNVquz/psoc9NrmhvdTHsj9N5bS6COGTvWVusT+3kg48p2ulvcTHsj/95yg7GaqrvU47tD8QvRC8XKexvQAWtD+Ge9O61VO5vXfFtT/XPrC7QuiyvTsdtj9uDFa8Pe23vY9YuD+Ptle8++i8vbdmuD++Od+7QuiyvTsdtj9uDFa8B/i4vdfqtT+NGoC8GaqrvU47tD8QvRC8Pe23vY9YuD+Ptle8K37EvQRguD+zEKu8K37EvQRguD+zEKu8GFC7vXO1uj9GWsW7abe5vXt8uj/iGVG8l3JZvevjsj+XTO48ThdhvRWLsj/ktMU8wGE5vS83sj8/xQY961M5vSFfuj94+lA9hoYJvdhPuj+TqWg9YHILvXuFuz+S/HE9/LJFvdSiuz+SQ1M9YtLqvHjPtz/eF0g9B/wAvfTMtz8EDEM9NQLTvA4ytz+3Ezo9/WYMvQ+4vD9sXnc9J1hNvcYMvT+mg1E9d7MnvctMuT9lhU09O8cSvcZquD9SLEk946L7vClxuD9C/FE9qQEEvWZFuT9Vrl090sOEvdW/tj9TIuI8m6umvYBitj9TFl+7z0iXvdTRtD++O2g7d0p/vT0jtT9+VNY8bxM9vW/KvT/O9T495h8vvUY3wT9Z0EY9ZIFbvfB/wT/EwR09ZIFbvc1Jvj++GRs9CthovWRbuz9G9xo9ONRUvXxSvD+8oy09gdhpvTJ3vD+HiBM9mAWBvR15uj9XpQY9OyuJPWE9uj9M7aA8CQ9yPYCzuT+Hz+08y1yOPZL2tT85MT48PHZaPQ3Ouz+UTgg9fF2BvaJQsz9O0308OFJxvSHssz+k3N08RlqpvW/ivD+jpfW7QtufvaEmvz/gQF27abe5vXt8uj/iGVG8S+qkvViWuD+nB8W7GWGEvSmvuD/EhgQ9S+qkvViWuD+nB8W7XyWEPY+kuT/Mmxs9KWZsPZ1cuT8T0ys91BMVPaYfvT9wm3w9TxQDPakEvT//dog92wooPSq5uz9ggG499IsyPVnVuj+ibV49yWQlPfO+uj/H7W093REVPRebuz/KuIA9zT87PbtRuT9Hzjc9plpCPUVhuT/7V0I9VelUPQ+uuD/zKBg9TxQDPakEvT//dog93REVPRebuz/KuIA9jGcAPTmOuz997Hc9/enRPGXqvD9blIM9yWQlPfO+uj/H7W09RngTPbSiuj/lwGY9plpCPUVhuT/7V0I9RtRGPfRuuT+XSDU9VelUPQ+uuD/zKBg9Pe23vY9YuD+Ptle8AU3GvQnjuj+93Lm8ITWpPWsnuj/6FIY6dN5TPdVhvT9SuhQ98luovfXmwT8Z4Nm6AZf8u+lBuD89tng9EDvSujuwtz8OlnM9L/UGOzLHtz8wkng9/8IQuvJLuD+TcIA9292nu9QBuT/3wIQ9L/m9O8c8tz9Z9Gs9uZkyPVsPuj/mE1w92JAmPZj1uT/SrVA9uZkyPVsPuj/mE1w9rm87PaYouj9pQko9FFilvV5Lwz85WIG8zd2/vVCqvz/Zj6u8NA2qPb3Etz+SwdA7P1ePvQVYxD+eBtw61BMVPaYfvT9wm3w9Zss8Pdttuj9wtlM92wooPSq5uz9ggG490CVwPYmltz8n4fo8ZbZRPXIvuT8hGC49HKiePXu1vj+hjrc7XIuFPYrDvj9Hmag8IJWtPRPbvj+U7jy8GWO/Pdynvz9gWaq8O/FQPSeEvj8r5Rg9cbyVvRJSxT/fuYI5mTuSvd2HxT9X0FS8LoVjvZ5Gxz+9XyC8aqP7PTebuT+/RQi8Za4HPgCXuT8Eoqm8vNP7PRIAuT9TKOy7uVPaPVf+uT+Tz1+6MDrjPeVluj9giIQ75UbTPUqTuz/3zzE8KYHJPesTuz8wrks7eAyoPW48vz/F8Bw8vmOwPTVwvz9pgZs8llSfPVB7wT/uv6I8O9ecPfx4wT/LBhw8aqP7PTebuT+/RQi8lOrwPVfYuT9e3iS7N2zrPWt3uT+isM67ovj3PUUxuT8Qtiu8MDrjPeVluj9giIQ7lOrwPVfYuT9e3iS7aSnwPbPyuD8Hw9a46QvdPR4puT+CdR08n3CDPULgwz/qfuE8kD2NPc3mwz/YEKA8bLSQPcZrwT+3JeI80k3JPRAquj9D0pM8i9+5PcLfuz/8GL8885vIPSTJvD9Ok2485UbTPUqTuz/3zzE8vmOwPTVwvz9pgZs86cyePTdBvz8mD988pmqSPeDewz+mvTU885vIPSTJvD9Ok248RJy8PbJfvD+T5cE7Za4HPgCXuT8Eoqm8Za4HPgCXuT8Eoqm8ovj3PUUxuT8Qtiu8vNP7PRIAuT9TKOy7eAyoPW48vz/F8Bw86cyePTdBvz8mD988i9+5PcLfuz/8GL88RJy8PbJfvD+T5cE70k3JPRAquj9D0pM8KYHJPesTuz8wrks76QvdPR4puT+CdR08uVPaPVf+uT+Tz1+6aSnwPbPyuD8Hw9a4N2zrPWt3uT+isM67mTuSvd2HxT9X0FS8POCvvVwowz/53aC7vZSlvYe4wz9ScJW8mTuSvd2HxT9X0FS8cbyVvRJSxT/fuYI5UiTHvXXKwD/UKE68zh2+vUtqwT/8q9G8MInavbdKvj+LFVu8/XLevRLuvj+ujb28UMa/vZMswD/ZD6W4/ggHvu9+uD8rp1293HUDvnMwuj/VSVW9lgYKvmC8uT+ufju9xgkMvvkSuD9X/ka9t1wFvt4etT+ghkO9iQ30vUKhsz+TKDG9w9MCvqBYtT+GT069hg4HvrAWtz8qh1y9xcIKvs13tj9LuUm9ydf2vfkXvT+ExQS9xcH0vfOwvD84zMu8w9UDvvfhuj+/dwq9x/QEvkBGuz8kySm9HnCLvf48xD9rf288kAmmvVclwj8qMBM8pKbOvRiOvz8D8wa9uTwJvpNMuT+bDx69J7kKvt3Stz/weCq9L9cIvtkutj8kIjK9AekEviYotT8AKDe9t1wFvt4etT+ghkO9dUnqvQRqvT+wPi69k1z6vcvDuz/zIkW9vZSlvYe4wz9ScJW8P1ePvQVYxD+eBtw6mTuSvd2HxT9X0FS8zh2+vUtqwT/8q9G8UMa/vZMswD/ZD6W4kAmmvVclwj8qMBM8pKbOvRiOvz8D8wa9MInavbdKvj+LFVu83HUDvnMwuj/VSVW9/ggHvu9+uD8rp129J7kKvt3Stz/weCq9uTwJvpNMuT+bDx69iQ30vUKhsz+TKDG9AekEviYotT8AKDe9w9MCvqBYtT+GT069L9cIvtkutj8kIjK9hg4HvrAWtz8qh1y9dUnqvQRqvT+wPi69xcH0vfOwvD84zMu8w9UDvvfhuj+/dwq9k1z6vcvDuz/zIkW9b+EJvcsivj/FTXk93nRSvQaIvj8tWkw9Zss8Pdttuj9wtlM9ZbZRPXIvuT8hGC492wooPSq5uz9ggG49jGcAPTmOuz997Hc9jGcAPTmOuz997Hc9RngTPbSiuj/lwGY99IsyPVnVuj+ibV49RtRGPfRuuT+XSDU9zT87PbtRuT9Hzjc9VelUPQ+uuD/zKBg90CVwPYmltz8n4fo82JAmPZj1uT/SrVA9rm87PaYouj9pQko9WZkSPemEvT98JnM92wooPSq5uz9ggG49/enRPGXqvD9blIM9SbSMPZXquT/sBfc8OyuJPWE9uj9M7aA8y1yOPZL2tT85MT48SbSMPZXquT/sBfc8SbSMPZXquT/sBfc8ITWpPWsnuj/6FIY6OyuJPWE9uj9M7aA8wmk1Pc6Gsj8kcDQ9wmk1Pc6Gsj8kcDQ9M12fvJhuzT+94Bo8qZUkvArXzT8i4hs8E6b+uzTUzT/7oXQ8E6b+uzTUzT/7oXQ8wCeRvNUuzT/3O3w8kAe1PLLvzD/Chia7X5IOPVCdyz8X4Xq8pVfJPEpJzD8maSm6FK+nujO3zT+Gku87mdVxObjIzT9QWUI8WMdkvHBtyj/YQiQ86tA+vNLuyT+E4oY7ICqXvDIeyj+5IGk6R5fFvNDMyj9vwbo7DQkBvFyMyT+j6O26vZY/vJSpyT+SZW27PAC/uyYvyT+KHie8t6ofvAAizD9tzKY8nSN5vId7yz8XPZM8MJa/vDMyzD99WFA8cgHQvB5tyz9jhxk8iTeDvGftyj9hs3U8Y8cjPLVjzT/9Chw7W9s6PKZ7zT/0sqw7EBqmPBTUzD8Dk3S7kAe1PLLvzD/Chia7P1cZu3eczD/WEJ88P1cZu3eczD/WEJ88E6b+uzTUzT/7oXQ8mdVxObjIzT9QWUI8FOtuOyqxzD87KIU80rG3vN2Ryj8GeEK7AzTwvIRFyz9pfmE6frtsvGLhyT+kK8O7pMzbvMCmzD8TKd07yzP4vAnXyz9ElVg7W9s6PKZ7zT/0sqw7S5tiPKuazD8NixM8X5IOPVCdyz8X4Xq8qZUkvArXzT8i4hs8M12fvJhuzT+94Bo8t6ofvAAizD9tzKY8P1cZu3eczD/WEJ88pVfJPEpJzD8maSm6X5IOPVCdyz8X4Xq8EBqmPBTUzD8Dk3S7Y8cjPLVjzT/9Chw7S5tiPKuazD8NixM8FK+nujO3zT+Gku87FOtuOyqxzD87KIU8pMzbvMCmzD8TKd07nSN5vId7yz8XPZM8yzP4vAnXyz9ElVg7iTeDvGftyj9hs3U8WMdkvHBtyj/YQiQ8AzTwvIRFyz9pfmE60rG3vN2Ryj8GeEK76tA+vNLuyT+E4oY7frtsvGLhyT+kK8O7DQkBvFyMyT+j6O26PAC/uyYvyT+KHie8e2q5vcsUxD9hOme93sePvar3xj9rqoC9MmmXvYKxxj+GyDO90Om5vetjrD+Y8lu94Fi9vU46rD+VmEi9G/mxvQToqz9ETTS9nSexvUsErD+E8zm9QKzFvbAyrT9C1IC9GXLKvXLKrD+HrF29k6rkvRjPsT/9yai91KHnvfRMtD9TS7K90Gr6vadmsj8lAIO9mz3wvTdTsD/r14C9odDkveD0rj/GfXm9ZjLbvfPGrz8e2py982HRvRJUrj8vlI+9crHXvTy5rT/4sGy9yx38vS83tT/len29psrnvYddtz++e669tKrivQ/iuT8KKKa9Y2fzvar2uD9gkmm9JjbGvYeMsT9d0hC+oMLSvUt7sT+rTgG+4cTHvTN2rz8US/+9xDy8vZeCrz/HyAy+z8DWveu0sz9dZv+9VG3JvWHLsz/U1hG+Xtq0vWfcsT8Z/Bm+xCauvSXgrz+R4BO+a8q1vfs9tD9uNR2+aqbEvJT3sj/kZjm+3GulvApLsD/Bcy++F1WUN2u+sD/plzC+M5dkOuFPsz80tTm+wDmCvAQ5rj80iSC+OLLKusGtrj+klyC+SbipvJfqrD/rvxC+JHAFvOeZqz/nVgq+ubI7vJverD+nnxS+sg2Iu1gfrT9QeRO+8rP9vAA3rj9O+hm+cnknvYJVsD9kDim+M8lFvV0Zsz95eDK+6/wWvISyyj/eudS8XGuGuMe9yj9Ujse8CXOGuKlpyj8Lh4a8jkYwvKtvyj9goIq8Pw8EvBK2yT8ScQ+8K3zIuCfyyT+ydgO8hQD9vIJSyj+2lgq9gkXBvCWpyj9UTDG9mq6cvBOtyj+jGe+8b4A8vPfoyj84cTm9VVeGuE/7yj81oDK99amyvCRUyj8QFJi8uP6nvJuLyT+ruAi8UsoGvbvzyT82qq+8zd2/vVCqvz/Zj6u8CgjSvZkrwD+OuS+9AWu2vXWbwz/U5AC9FFilvV5Lwz85WIG8VE1rvRPYxz+hjo28LoVjvZ5Gxz+9XyC8mTuSvd2HxT9X0FS8o+WWveE5xj+gQ7i8vTmpva6Cvj8ndu29EcihvbPlwT/CeNO9E8u8vZNNwT/N17G9IRrJvWAEvj/FFce9tTg6vcK1wj+shAG+NIRtvU1Avz/+fgi+E+lHvaCIvz92Jw6+MKSsvOvzvz+/ZRa+vZievHQHwz/94ge+M+wnvdO/xT9eKee9OctuvU9oxT/VZ9S9VAuDve1Owj9eae29MG+LvOTvxT+wuPG9JTcEvdPXxz/PJ8m9uxhHvbSfxz/5wbm9IvpYvIsLyD/hOtG96lHEvDiPyT9+Kaa92zgevV1PyT+sbJq91xckvDOfyT8vOqm9MJfPvF2Nyj/7pHS9nWqGvJuZyj99NIC9tQjCu6eOyj9C/oK9ubRavaEEvD/QEB2+gqmCva2Guz+vWhW+/Ke1vXmAuj/ADwO+zLXZvQVvuj81btm9BW/CvX5Jtz+PNQy+vrqmvcoDqz8wmLS9WXu8vdcUrD+HScm9GEW8vfkarD8n/7+9UMu0vbMzrD91v829TzXNvdtGrT/HTNa9+HzCvc1trT8mbeG92b7OvRlGrz+Pn/K9kpHcvVJLrz/4et+9u1fgvclArz+Cz8m9tOXOvZ1MrT94jMW9dqquvZzItz94TRe+Ri2YvTUfuz9vZQ++JIWJvSf6vj9JiAK+nsGVvRUExT9PlLi9fGt9vQJXxz9S35+9AKCZvVYGsD8wiB6+cwGHvQVIrj/ZIRS+AEaQvUIJsD/X+CG+HxuYuJMUwD+LZxe+B+30uMcqwz8NAQm++i+GuGb6xT/PS/K9sDiGuB7yxz8YGdK9UESGuA2XyT8KDqm9UliGuK+hyj8kE4K9i2lQOvBFtz/v1ze+IeravKH/tj/BWTe+zhOtvQaExD8SeJq99BNKvTsVyT/T6Ye9AjsIvQQ8yj/e4Vq9lZjivU5XsD8VXTq9QeDmvRiNsj9bnTO96dfSvdLKrT9F9Dm9OPjHvVLnrD9hOjW9SvPavQLVrj8PzTq9eeSxvS7zqz+SnCe9pSCpvaDSqz9/Ixy9B0u7vTNCrD/w3S69fInmvbhmsT+yi+W94DbUvUpZsT+5cfy9o2jsvXnLsz+Ssee9JhfovS8Itz8KSuO94bKpvReftD+91yS+E1CVvZkqtT8FrCi+q1uNvTJtuD8X9SG+YOCjvQASuD/Rcx2+F1rsvdRysT8qSMq9+LDzvf1Itz+VTcC9TyH0vTnjsz/Av8a9/XnpvWULuj/F1bC9O3bZvdyLvT9+uJq9gmDXveB6wD9zMW29Cb7PvabFwD/WEY292SJvvT44yD8sFw+9R09jvQmxyD+y8lK9ht8ovRe0yT9kcCu9cNAxvZVGyT8HFuC8ux7jvZLMvD+9rVC9+WLHvE2QvD+AByW+zzjevKLVuT8wKS++oc/GOWIYuj8CRTC+pJghuVjLvD+kTya+Eyd7vcTIuD8WLye+lVtjvdgDuT+Sryi+nXlbvWFjtj8l8TC+3VEovYThyD/ZslS8smMkvaG1yD+IDxe8flBrvRZbqT8ZUdO9YOWTvbzsqj/j/u69h3qVvYf4qj9XTOi9QIyPvQ46qz97fPa9HvGrvb4GrT8XpgW+acihvRs9rT9Z0Qm++6WyvSEIrT8VrPq9VJOVvZhPsj9m4Si+hqmivY4jsj+nhCO+fQ/OvcAgvD8VQei8rL7jve6/tD+8/ie9XAXXvU9iuD8UiQq9V0oDvV3pqz9wFQO+B/Evvec/rT+pKRO+F8Y7vS0YrT8vLg6+YKMuvTanrj9GyB++0tU+vf2wsD8qMiy+hnxhvaBvsD991Sq+GXZJvS2Brj//DR++m5UdvdxQrT8ZwRK++T98vQrytT+4zi6+M8lFvV0Zsz95eDK+CutvvZ6xsj+7gDC+ay8Qvtu9sz+dsKS9r3UOviKhsz/VGre9QZUNvuX3tT/Hq7m9sUcPvrLLtT/UE6G9tw0Jvvitsz+E/cO9YzMLvr0nsj8pNK+91WEGvvBAsj8bmLi95/QEvlYQsT9cWKW9C0oDvrw0sT/4pqm9WUkEvgkEsT/N0Jq9Smz5veRCsD+VkZW9NyoIvspjuD93Gq+9wTUHvkQKtj93i8m90Kb6vQSiuD8iUMK9V18IviD6tz+XjJO97Hb8vbdruj+tCKC9i4/8vbK9uT+9Moa9Dk3ovZJfvT8jMIq9pTDbvYaWvT/kz6K9Cb7PvabFwD/WEY29gmDXveB6wD9zMW29U7jrvYmXuj9QYrW9GwULvgYjsj/uAqG9CgjSvZkrwD+OuS+9t4jjvTQCvT/n8V69wTUHvkQKtj93i8m9tw0Jvvitsz+E/cO9ay8Qvtu9sz+dsKS9sUcPvrLLtT/UE6G91WEGvvBAsj8bmLi9GwULvgYjsj/uAqG9C0oDvrw0sT/4pqm9WUkEvgkEsT/N0Jq9Smz5veRCsD+VkZW90Kb6vQSiuD8iUMK9V18IviD6tz+XjJO9i4/8vbK9uT+9Moa9U7jrvYmXuj9QYrW9pTDbvYaWvT/kz6K9t4jjvTQCvT/n8V69CgjSvZkrwD+OuS+9Cb7PvabFwD/WEY29t4jjvTQCvT/n8V69pTDbvYaWvT/kz6K90Om5vetjrD+Y8lu9nSexvUsErD+E8zm9eeSxvS7zqz+SnCe9B0u7vTNCrD/w3S69OPjHvVLnrD9hOjW9QKzFvbAyrT9C1IC9lZjivU5XsD8VXTq9QeDmvRiNsj9bnTO91KHnvfRMtD9TS7K9k6rkvRjPsT/9yai9rL7jve6/tD+8/ie9psrnvYddtz++e669XAXXvU9iuD8UiQq9tKrivQ/iuT8KKKa96dfSvdLKrT9F9Dm982HRvRJUrj8vlI+9SvPavQLVrj8PzTq9ZjLbvfPGrz8e2py9fQ/OvcAgvD8VQei8O3bZvdyLvT9+uJq9pSCpvaDSqz9/Ixy9cnknvYJVsD9kDim+M8lFvV0Zsz95eDK+hq0jOhcysz+giTW+F1WUN2u+sD/plzC+sg2Iu1gfrT9QeRO+SbipvJfqrD/rvxC+8rP9vAA3rj9O+hm+OLLKusGtrj+klyC+JHAFvOeZqz/nVgq+zZmHvUY2sj8SJCq+0tU+vf2wsD8qMiy+YKMuvTanrj9GyB++hOZdvVtLrj+vMRm+Qlp+vYYZsD9w1CS+gaiOvdBwtT8FTSi+m5UdvdxQrT8ZwRK+F8Y7vS0YrT8vLg6+V0oDvV3pqz9wFQO+Xtq0vWfcsT8Z/Bm+oMLSvUt7sT+rTgG+z8DWveu0sz9dZv+9a8q1vfs9tD9uNR2+xCauvSXgrz+R4BO+4cTHvTN2rz8US/+9acihvRs9rT9Z0Qm+QIyPvQ46qz97fPa9h3qVvYf4qj9XTOi9+6WyvSEIrT8VrPq9flBrvRZbqT8ZUdO9bmisvZjdtz9tLRK+F37NvTtRtz9Hou69KbVBvScItj/weym+UMu0vbMzrD91v829vrqmvcoDqz8wmLS9GEW8vfkarD8n/7+9u1fgvclArz+Cz8m92b7OvRlGrz+Pn/K9+HzCvc1trT8mbeG9tOXOvZ1MrT94jMW94DbUvUpZsT+5cfy9F1rsvdRysT8qSMq9TyH0vTnjsz/Av8a9+LDzvf1Itz+VTcC9k61JvUvbuD9wvCK+CryHOae3uT+AzSu+oRcsOaAktz8kbjO+q1uNvTJtuD8X9SG+E1CVvZkqtT8FrCi+Qlp+vYYZsD9w1CS+hOZdvVtLrj+vMRm+gaiOvdBwtT8FTSi+zZmHvUY2sj8SJCq+UKupvWoEsj8J4xy+Mticvd4GsD+TBBq+UKupvWoEsj8J4xy+VJOVvZhPsj9m4Si+AEaQvUIJsD/X+CG+cwGHvQVIrj/ZIRS+Mticvd4GsD+TBBq+SvPavQLVrj8PzTq9ZjLbvfPGrz8e2py9YuDbvKCMrj+ZPfO950d+vM4YrT+Blte9//qFuE9hrT8E+9e9qxiJuDzfrj8Lpfa93PZdu/7yqz/dJMG9kNYdvYq9sj+ZnRe+Qp0GveU+sD93lQq+6LqGuJ5qsD9XjAu+RzmTtwvRsj8GMhq+F37NvTtRtz9Hou69Xbm9vXDnsj8G77S9hm6wveH6sj81E9m9XjHKvb3bsj9i+Xa9FMLVvQR8tz9P4rG92WXPvRzbtD/izG69Xbm9vXDnsj8G77S9bmisvZjdtz9tLRK+q1uNvTJtuD8X9SG+ewiIvUefsj+jygO+ql2tvYetsz/yTjK9F37NvTtRtz9Hou69r566vRUotz8PoBK9ksPTvXUeuj8+8Ka9va3SvU2xuT+PBGG9C0C2vceMuT+AuQS9xLKWvVSFrT/uBYO9LTydvapdrT9ja3a9ILeJvRMJrD9PeTy93TqevUJQrT+ST1C9pHGwvQAIrz8Zg2O9efifvQmurz8K0EC9r5mWvR2srT+PJUK9ILeJvRMJrD9PeTy9pHGwvQAIrz8Zg2O93TqevUJQrT+ST1C9th6pvUYGrz9NaJe9sgCfveAjrz+Zhqq9BXk3vTPCrD9FXsm9QO05vb78qz8i56C946kCvSHnqj9KqZK9knB1vQttsD9lNvu9fqNLvf1prj98eOi9FzpgvXDdrj8zQuq9IoqOvWFYrz93VcS9wS9mvQdrrT/FCa699uukvOQEqz9wJbC9II+wvHD+qz8dAMO9a6/xvIH1qz8NK8C9M03HvOBJrT+LPt29IukivUcQrT/SwtW9nrKjvVcjsT/k5s+9BcKkvY5XsT9HAzy9vre9vUGgsD8Gtm29ecmyvc66sD8dWam94UmnvTPosD+LIcC9vre9vUGgsD8Gtm29XjHKvb3bsj9i+Xa9ILeJvRMJrD9PeTy9r5mWvR2srT+PJUK9JvCNvaugrT9F/VW9ILeJvRMJrD9PeTy9JvCNvaugrT9F/VW9xLKWvVSFrT/uBYO9efifvQmurz8K0EC9Nu6RvfPxrz8y5269sgCfveAjrz+Zhqq9JvCNvaugrT9F/VW9Nu6RvfPxrz8y5269BcKkvY5XsT9HAzy9Rj6RvbW6sT+BuXe9Rj6RvbW6sT+BuXe94UmnvTPosD+LIcC950d+vM4YrT+Blte90laovL0Trz8SD8e9lGNkvEuErj/ZRsG9YuDbvKCMrj+ZPfO91KCTvCFnsD+ZPrO946kCvSHnqj9KqZK9QO05vb78qz8i56C9BzYbvXRHrT/rY529wS9mvQdrrT/FCa69iX4gvdfbrz9kK6a9xHSpvILGrD/5zLe99uukvOQEqz9wJbC9AFfjvEd5rD/Tz669xHSpvILGrD/5zLe9II+wvHD+qz8dAMO99uukvOQEqz9wJbC93PZdu/7yqz/dJMG98qKIuIqIrj/1IMK90laovL0Trz8SD8e9M03HvOBJrT+LPt29pRGlvEX8rj+4Yrm91KCTvCFnsD+ZPrO93PZdu/7yqz/dJMG9sbeIvaHdsD/4VLG902oxvbZ3sT8GXKK9C47mvLPosT+uAmy9L3FDvB1gsT8qaYO990iBvF2ZsT+aDaO9pG+LuNRfsD/kVLW9hl+KuKFYsT/eHaS9YuDbvKCMrj+ZPfO9X00NvVQYrj9tK6q9pRGlvEX8rj+4Yrm9YV46vafrsj8Gmoq9qqY6vQSKsj/n8VW9bpxlvfOhtD/CvDm91OeQvV47tD/mP2i91OeQvV47tD/mP2i9K5WJvaHntT/Fs1y9ql2tvYetsz/yTjK91OeQvV47tD/mP2i9iX4gvdfbrz9kK6a9FzpgvXDdrj8zQuq9BXk3vTPCrD9FXsm9BzYbvXRHrT/rY5293VeaveozuD94rSy9K5WJvaHntT/Fs1y946kCvSHnqj9KqZK9r566vRUotz8PoBK9wjPQvXIOuz8LJ9m9C0C2vceMuT+AuQS9+Tqdvc59uT9dnva8/XnpvWULuj/F1bC9wjPQvXIOuz8LJ9m9F37NvTtRtz9Hou69+LDzvf1Itz+VTcC9O3bZvdyLvT9+uJq97Q/DvS8Svj+0Gca9SzS1vRvIvT98cVO95e7IvQtXvT8yyJS9Qfu7vdhGvT/Xjc28Qfu7vdhGvT/Xjc28AHOhvVPuuz/z6eK87Q/DvS8Svj+0Gca95e7IvQtXvT8yyJS9ksPTvXUeuj8+8Ka9wjPQvXIOuz8LJ9m9hm6wveH6sj81E9m91OeQvV47tD/mP2i9wS9mvQdrrT/FCa69IoqOvWFYrz93VcS9nrKjvVcjsT/k5s+9nrKjvVcjsT/k5s+9nrKjvVcjsT/k5s+9hm6wveH6sj81E9m91OeQvV47tD/mP2i9knB1vQttsD9lNvu9iX4gvdfbrz9kK6a9X00NvVQYrj9tK6q9fqNLvf1prj98eOi9IukivUcQrT/SwtW9AFfjvEd5rD/Tz669a6/xvIH1qz8NK8C99uukvOQEqz9wJbC9knB1vQttsD9lNvu9k61JvUvbuD9wvCK+bpxlvfOhtD/CvDm9CryHOae3uT+AzSu+90iBvF2ZsT+aDaO9L3FDvB1gsT8qaYO9TdmWstZNsT95L4i9hl+KuKFYsT/eHaS9//qFuE9hrT8E+9e93PZdu/7yqz/dJMG98qKIuIqIrj/1IMK9yeuRPdfexj9LwYC9lEq5PffZwz8EMWe9khqaPeVmxj9OcjO9LZKsPbS9qj9jFiG9ldi6PY1jqz+rMD69dEO3PS6Gqz99Xk69J4jEPXzfqz94V069G7q9PQUdrD9bx2u9/GjzPRklsT/F/X69hETXPXcosj/ODK291VjUPWYxsD+Dy6K9azvpPd4Zrz+wPHi9+X/OPW6Brj9UXZW9b4jdPUq4rT8UbWy9x7XSPUbErD/hnF69TrnGPXcZrT+r7oa94OT1PUYHtj+G0na9da/UPZsrtz+0OK297rjXPVlZtD8q+q69hdz2PWtHsz9OQH69UiPwPSfBuD8Skmm9MPrRPebTuT/dAaq9OFe+PddXrz+NPAe+itrFPYasrz/b1fi9SYfNPS1bsT8yp/y9z0XFPZSKsT+kqw6+QPTRPSIvsz8r4v29ZHfFPbxMsz/kyRC+pt2qPXy5rz+KBA6+ZUmrPRzksT/K8Ba+wbmnPaAptD+Wihq+R/nWPP4Usz+ibTe+aeelPEBAsD/l2Sy+Qu+5Ot6srj+cTiC+XzGBPD0wrj+3fh2+UFsDPAaQqz+5jgi+j6uoPDvZrD+XWAy+zpk5PObWrD8QKBK+a9uDO7sbrT8zkBK+BdH8PCIlrj9QShS+3IonPbA7sD+gIyS+2bhFPamDsj9gci2+W4EuPG5Zyj9W+Yu8+1YVPLiryj9MhdW8TwhEPJ24yT8/piK8IAfDPGCYyj+BIC69vcL/PFhfyj9OxQq94lqdPIqiyj9g9ey8GDE7PPzFyj+u8Di9F2CzPHsyyj+2Mpq8NW/iPPM/yT+0xxm8YKQHPcvqyT/ArbC8GWO/Pdynvz9gWaq8beCtPcJDwz8GjH+8BA+3PfOUwz/q2wC9E8bPPbcWwD9HuS+9FEyZPQ4qxj8uSLe80p2NPcXYxT+GD0a8BlliPfN8xz/hsim8gxpsPVLzxz9wOZC8kgGoPRuGvj/Pu+69Z+7GPc4Cvj9Hlca9wG66PRc9wT801rK9Fn6ePTzmwT+94NS9rqltPaFCvz/Zfgi+Kxs6Pfi4wj9PdgG+cIdMPdurvz+ReA++uvCgPOo5wz9fVQq+nSmyPGowwD9iyRm+U96CPe1Owj8sae29UEVuPWBoxT++Z9S9B2YnPWTAxT9KKee912KKPH3wxT+XuPG9Ft0JPXDoxz8lJMm9rsRMPd63xz8zvbm9dOFWPMkOyD9PNtG9OJIjPVhpyT+QEpq9cp3LPLimyT9y1qW9be2/PFgKyD9b9dK9tpGFPOR+yj8TW369EyLRPEluyj+rL3G9GAUiPFKsyT9LFam9N7m9OzV/yj/rsoK9dECEPTuduz/DUBa+bsVcPQ8NvD+ybB2+ijnXPVhjuj+BCNm9wPu2PWKKuj/wmAO+mae+PYcftz/IDgy+MGi8PV79rD+zVce9XdioPVINrD9mkrm9cgm9PVPsrD9tr7+9iVe2PQ8trT8c2cu90LDYPQlirz+mt9q92HPKPXdvrz8pauu9N3LBPScyrj+wwty9nY/LPQISrj9O4tC9jyTPPVb4rT8XSMO98IjdPaVurz+1GMa9J0KmPQHQtz/yzha+DLWXPaoYuz9nHw++iZiJPRf6vj86hgK+B4ORPesLxT/3Jbu9YY99PW1Pxz/Z3p+933SAPWIXrj+krgy+K3GTPXL1rz8nMxm++1OEPQL2rz+reBy+NLf2PDQstz+lJDa+swyqPTNvxD8bJJq9SRtQPTgByT99zYe9xCwLPec9yj+lhFi9Gx/YPYJerz+0ATm9hxXdPfbpsD8NVTS9/GjzPRklsT/F/X69azvpPd4Zrz+wPHi9PuvAPbQhrD++4TK9RkPKPeYPrT/E0ze90pzRPSYQrj8ZDTm9b4jdPUq4rT8UbWy9tHS5PWeHqz/UFC29OfTPPWT3sD8pR/i98LHiPdbzsD/Mx+K92ZHoPYI0sz+K7Oa9RPTjPUnQtj8mfuO9HUSfPZRutD8WuiG+g9+aPb0ZuD8Pvxy+/+yKPVhiuD88wR++gHyJPcVItT8+PiW+gZTpPRQUsT8Ch8i9yTXwPfgtsz9ebca9MCntPWAItz+uTsC9B4zjPRX0uT+d1bC9tJLRPbd+vT+wppq964XVPUFfwD8uMW29MlXGPbWtwD9nCY29d7VvPUBRyD+9Rg+9pABiPXykyD8H51K9ksssPYnIyT/hNyu9ocAzPc1ryT9lHeG881vgPSbBvD9wrVC9Sd7NPMrQvD/PbSi+Io7qPC02uj/Q/zC+HGRiPRgEuT9TOSe+kld3PQS/uD8rCiW+N9lZPXBitj+FpCy+tD0lPemYyD9DwR+8wS0pPTvSyD9kIFm83NChPVRyrD91jeq9FGKUPWCHqz+KqN696yOkPaqRrD9cpOa9W4ObPRh+rD/SZ+29ShuiPQ1yrT9TNAG+INmrPfgorT8yr/i9vLWxPUuJrT9YKe69JeqFPWFBsj8pRSW+Jr2cPXwYsj+lJSC+R3zIPabdvD/pBdC8yY/dPb3ltT906Ry9hdz2PWtHsz9OQH69YWTePQUGsz/S8iu9uAbaPaFxuD/WlhC9GHAvPdgarT+Arwu+HasCPZ66qz/LEfm9N3I6Pb7urD8ZRga+RiNJPcVorj+UGxi+y2NhPaVWsD9gnyW+Ths/PXSYsD8cbCe+BUkuPeaPrj8uRBm+Ih4dPaYwrT8+sgu+1Gd4PU7vtT+cHCu+2bhFPamDsj9gci2+FItvPRxbsj9r+Cy+J4YHPoSKtD+wtbS9piYJPqZSsj9Xl7C9x4wHPukfsj+UNZ69SX8FPqdTtD+eNpy9ky0BPivHrj+beZ+9G0YHPk1psD8YL6m9PwUCPpKIsD/cGra97277Parirj825aW9XNACPpiRsj+XxsC9t+j0PQ38rT82TpS9AW/xPfMSrj8Za5a9bl7yPacLrj/C94y9eyTkPV6QrT8Q7YW9oR3/PUattD/cEMa9UEoDPtLLtj8wMbC917zzPVBPtz9ELsW9g6L3PVt8uT9uvaS9qdsAPjuYtj9iLJW9sEvzPT4puT/EGIm9zI3mPepovT+EmI+964XVPUFfwD8uMW29MlXGPbWtwD9nCY29k7fTPetkvT/m36W9lbnmPdfruT8yDrq9d8QFPphdsD8WJ5q92M3/Pafcrj/2/JO9r7/ePTz4vD8LiWi9E8bPPbcWwD9HuS+9eyTkPV6QrT8Q7YW9XNACPpiRsj+XxsC9oR3/PUattD/cEMa9SX8FPqdTtD+eNpy9x4wHPukfsj+UNZ697277Parirj825aW9PwUCPpKIsD/cGra9d8QFPphdsD8WJ5q92M3/Pafcrj/2/JO9AW/xPfMSrj8Za5a9bl7yPacLrj/C94y9eyTkPV6QrT8Q7YW917zzPVBPtz9ELsW9qdsAPjuYtj9iLJW9lbnmPdfruT8yDrq9sEvzPT4puT/EGIm9r7/ePTz4vD8LiWi9k7fTPetkvT/m36W9MlXGPbWtwD9nCY29E8bPPbcWwD9HuS+9k7fTPetkvT/m36W9r7/ePTz4vD8LiWi9dEO3PS6Gqz99Xk69tHS5PWeHqz/UFC29LZKsPbS9qj9jFiG9G7q9PQUdrD9bx2u9PuvAPbQhrD++4TK9Gx/YPYJerz+0ATm91VjUPWYxsD+Dy6K9hETXPXcosj/ODK29hxXdPfbpsD8NVTS9yY/dPb3ltT906Ry9YWTePQUGsz/S8iu97rjXPVlZtD8q+q69da/UPZsrtz+0OK29uAbaPaFxuD/WlhC9MPrRPebTuT/dAaq9TrnGPXcZrT+r7oa9RkPKPeYPrT/E0ze90pzRPSYQrj8ZDTm9+X/OPW6Brj9UXZW9tJLRPbd+vT+wppq9R3zIPabdvD/pBdC83IonPbA7sD+gIyS+5+VAPVh1sj/9Cyy+Qu+5Ot6srj+cTiC+BdH8PCIlrj9QShS+j6uoPDvZrD+XWAy+a9uDO7sbrT8zkBK+UFsDPAaQqz+5jgi+Ch+HPdsSsj8ItiO+Ths/PXSYsD8cbCe+Bol8PUADsD+IHx6+hZpdPeoprj9BrBG+BUkuPeaPrj8uRBm+R0CIPc9ctT8v5SK+N3I6Pb7urD8ZRga+Ih4dPaYwrT8+sgu+HasCPZ66qz/LEfm9wbmnPaAptD+Wihq+QPTRPSIvsz8r4v29SYfNPS1bsT8yp/y9ZUmrPRzksT/K8Ba+itrFPYasrz/b1fi9pt2qPXy5rz+KBA6+vLWxPUuJrT9YKe696yOkPaqRrD9cpOa9W4ObPRh+rD/SZ+29ShuiPQ1yrT9TNAG+FGKUPWCHqz+KqN69T6+sPf2xtz9bZwe+jr/NPScptz91Mdq912NDPfcCtj+P6CW+XdioPVINrD9mkrm9iVe2PQ8trT8c2cu9cgm9PVPsrD9tr7+98IjdPaVurz+1GMa9jyTPPVb4rT8XSMO9N3LBPScyrj+wwty92HPKPXdvrz8pauu9gZTpPRQUsT8Ch8i9OfTPPWT3sD8pR/i9yTXwPfgtsz9ebca9MCntPWAItz+uTsC9a+BKParCuD+eOB6+/+yKPVhiuD88wR++/+yKPVhiuD88wR++gHyJPcVItT8+PiW+hZpdPeoprj9BrBG+Bol8PUADsD+IHx6+R0CIPc9ctT8v5SK+Ch+HPdsSsj8ItiO+gQmkPUn6sT+uihm+/a2WPYf0rz/nixS+gQmkPUn6sT+uihm+JeqFPWFBsj8pRSW+33SAPWIXrj+krgy++1OEPQL2rz+reBy+/a2WPYf0rz/nixS+0pzRPSYQrj8ZDTm9+X/OPW6Brj9UXZW9As3aPH18rj8weOi9aTN8PCn+rD/wYNG96whWOxTfqz/K4b+9tzUGPWQvsD933QS+KXIePZmgsj9ARhO+pVjIPSVqsj9GgrO9jr/NPScptz91Mdq9ciuwPdj0sj/XENO9kwbOPXO5tj8drXG9l7/SPYpttz+S4rG9HMTPPQeutD9YebW9vbLIPV5AtD+sh3S9T6+sPf2xtz9bZwe+9BiIPQ+Rsj8QeP29/+yKPVhiuD88wR++8F65PbT8tj/NnxK9Tny1PWXStD8NMCK9jr/NPScptz91Mdq9pVjIPSVqsj9GgrO9pnzOPfSPuT9OBGG9oZnPPX4Huj8Z8Ka9aVe/PQEJuT8LngS95jCUPS/vrD9PKHO93Q2QPUvVrD/J/IG9dJKCPYkCrD/LyUO9lb6bPfNxrj+7U0m9dJ+jPSEgrj8MHGq9JgKSPTnwrD+KCle9FO6MPSXRrD/55ke9dJKCPYkCrD/LyUO9HbypPTJPrj/DXZi9JgKSPTnwrD+KCle9dJ+jPSEgrj8MHGq9WYGgPa3Hrj+tt6i9i245PQTaqz9Px5W9SU81Pa2crD9k8Lu9DTQCPWbDqj+0O4q9D/d0PRdmsD8X0+y9eCtJPdxQrj+hE9m9zdeNPVQ5rz/lFLi9Ob5dPerKrj/mv9q9nOdkPUQ9rT8qzaG9EJGvPBbbqz97Ibu96/mjPPnhqj/SSqm9ybDwPP3Mqz+iGra95GMhPXTorD+OWMi9ykDGPGsqrT+no9O9gG+jPRIJsT8ci8a9XZKzPTvCrz/5uHC9WXukPZBdsD9YnEC9cCWnPdOzsD/Zu7u9i5y7PUIXsD8nS6m9XZKzPTvCrz/5uHC9sAXCPRwwsj9BYne9agytPXjdsj9LwDG9sAXCPRwwsj9BYne9FO6MPSXRrD/55ke9dJKCPYkCrD/LyUO9cwKJPXAfrT/u6F69cwKJPXAfrT/u6F69dJKCPYkCrD/LyUO93Q2QPUvVrD/J/IG9lb6bPfNxrj+7U0m9VBaOPfi2rj8ZUHO9WYGgPa3Hrj+tt6i9VBaOPfi2rj8ZUHO9cwKJPXAfrT/u6F69TW6QPYCMsD9uOni9WXukPZBdsD9YnEC9TW6QPYCMsD9uOni9VBaOPfi2rj8ZUHO9cCWnPdOzsD/Zu7u9hUCnPO8Grz+Z27+9aTN8PCn+rD/wYNG96j5iPPB0rj+8Vry9As3aPH18rj8weOi9NoeSPIpisD/z2K29i245PQTaqz9Px5W9DTQCPWbDqj+0O4q9/YcUPVhArT+3AZS9n/MfPYXDrz9scZa9nOdkPUQ9rT8qzaG96/mjPPnhqj/SSqm9anGoPMKprD9Lq7C9iVbiPEpZrD+4DKa9EJGvPBbbqz97Ibu9anGoPMKprD9Lq7C96/mjPPnhqj/SSqm96whWOxTfqz/K4b+9hUCnPO8Grz+Z27+9ykDGPGsqrT+no9O96/yjPEvtrj+A07K9NoeSPIpisD/z2K296whWOxTfqz/K4b+9wt8wPXNasT8plZq9q3OIPZyFsD8lP6m9q3OIPZyFsD8lP6m9uXBDPB1gsT8maYO9BlrmPK/qsT/ABmy91zGAPHuXsT89Mp+9NoeSPIpisD/z2K29As3aPH18rj8weOi9qcYMPTQArj+HkKC96/yjPEvtrj+A07K9VNY5PYXIsj/p2YS9S6g6PQSKsj/J8VW9V9mQPQSYsz+vsWG9dfl/Pe/Xsz9Z9Uq9+ZWJPaHntT+Xs1y9V9mQPQSYsz+vsWG9V9mQPQSYsz+vsWG9agytPXjdsj9LwDG9SU81Pa2crD9k8Lu9Ob5dPerKrj/mv9q9n/MfPYXDrz9scZa9/YcUPVhArT+3AZS9+ZWJPaHntT+Xs1y9CR2VPY9Ptz8r6j+9DTQCPWbDqj+0O4q98F65PbT8tj/NnxK9Tny1PWXStD8NMCK9XgbOPT6kuj8wUMW9zl+cPaI+uT+lNPa8aVe/PQEJuT8LngS9B4zjPRX0uT+d1bC9MCntPWAItz+uTsC9jr/NPScptz91Mdq9XgbOPT6kuj8wUMW9arvCPbUQvj8cGca9tJLRPbd+vT+wppq9eRjIPWKmvD88cVO9HLnGPRdPvT8RyJS9XL3IPabdvD/pBdC8JP2gPffruz/yIeK8XL3IPabdvD/pBdC8arvCPbUQvj8cGca9XgbOPT6kuj8wUMW9oZnPPX4Huj8Z8Ka9HLnGPRdPvT8RyJS9ciuwPdj0sj/XENO9V9mQPQSYsz+vsWG9zdeNPVQ5rz/lFLi9gG+jPRIJsT8ci8a9ciuwPdj0sj/XENO9ciuwPdj0sj/XENO9D/d0PRdmsD8X0+y9eCtJPdxQrj+hE9m9qcYMPTQArj+HkKC9n/MfPYXDrz9scZa9iVbiPEpZrD+4DKa95GMhPXTorD+OWMi9ybDwPP3Mqz+iGra96/mjPPnhqj/SSqm9D/d0PRdmsD8X0+y9a+BKParCuD+eOB6+dfl/Pe/Xsz9Z9Uq9uXBDPB1gsT8maYO91zGAPHuXsT89Mp+96whWOxTfqz/K4b+9//qFuE9hrT8E+9e98qKIuIqIrj/1IMK9wvgMPT3Pwj+qYg2+1SyyPEkKwz8JGAy+XEjEPFAEwD9CiR2+XjoZPbfGvz8fIR2+9xb5PPXFxT/sB/a9qOiYPNXwxT8l1fO9be2/PFgKyD9b9dK9dOFWPMkOyD9PNtG9u70gPed1vD+qqy6+Z9HOPFKhvD+XUi++1+LRPNIOuj+c+Dq+ZpAdPaTbuT8HAzu+bZY1PT3qtj+PAz2+qWtQPVd1uT+drDa+GZEJPcZEtz91m0G+piPUPGoEtT+ZUES+AgEFPRPbtD+lJUC+jcUVOsa6sT+ltTy+hBxJPG8asz8++EG+XB0WPO4isz83GEG+azZ6PH4Lsz+VVz++ZmZQPRx9vz/NkBi+zVJAPdWWwj+32Ai+xmosPfyZxT9ctu+9Ft0JPXDoxz8lJMm9c15aPU83vD9JfSq+yq7KPLdrtz+NxEG+efWWPNULtT+vlkS+xmosPfyZxT9ctu+9qOiYPNXwxT8l1fO9dOFWPMkOyD9PNtG9Ft0JPXDoxz8lJMm9ZmZQPRx9vz/NkBi+XEjEPFAEwD9CiR2+1SyyPEkKwz8JGAy+zVJAPdWWwj+32Ai+c15aPU83vD9JfSq+Z9HOPFKhvD+XUi++qWtQPVd1uT+drDa+1+LRPNIOuj+c+Dq+bZY1PT3qtj+PAz2+yq7KPLdrtz+NxEG+AgEFPRPbtD+lJUC+efWWPNULtT+vlkS+XB0WPO4isz83GEG+azZ6PH4Lsz+VVz++jcUVOsa6sT+ltTy+HnCLvf48xD9rf288abe5vXt8uj/iGVG8CthovWRbuz9G9xo9mAWBvR15uj9XpQY9dahgvVlfvj9vjzI9b5FgvQ6Wvj/08TU9kEBLvVdZwT9ZrD49x4lzvXdivD9QDCI9AAZyvQ9evD9q5CU9AAZyvQ9evD9q5CU9x4lzvXdivD9QDCI9D0lFvS5PwT8w9Ek91wRCveuduz/ziFs961M5vSFfuj94+lA9U/qMPSf/uT/mAh49SbSMPZXquT/sBfc8hs+JPfnxuz/Okys9BLuKPVzztz8ArBM9O9ecPfx4wT/LBhw8bLSQPcZrwT+3JeI85oHOvdjBuj9wjHa8AU3GvQnjuj+93Lm83F/LvVLavD+ja3m85CfPvdsquD89bmu8K37EvQRguD+zEKu8MivFvaCDtT+wxC+8B/i4vdfqtT+NGoC87nW4vXnGsz+Qk6e7bYWpvfSAsj+0sD46NrmhvdTHsj9N5bS6GaqrvU47tD8QvRC8COGTvWVusT+3kg48U/qMPSf/uT/mAh49BLuKPVzztz8ArBM9QSOHPfBdtj+7FQ892xSBPTD6tD/3HBQ9B9pvPcLesz9kCxw92bhFPamDsj9gci2+3IonPbA7sD+gIyS+5+VAPVh1sj/9Cyy+2bhFPamDsj9gci2+5+VAPVh1sj/9Cyy+Ths/PXSYsD8cbCe+F46jPaassj9uvC68zQOePYH6sD9evjW8sruGPT6jsT8UaiE6J2mKPUo4sz9l+bA6ah3DPeGNtD9TauK8gVa7PZhYsj8Qb/W8hlqxPcBrsj8UBri8Lda3PZOhtD9bgKi8QZquPc5NsD/zhfG8XanBPby5sj9buyS9slu0PYeVsD+A8B69hk2YPZKkrT/y2tG8sP2ZPeKprT8v7f+8uX2KPZtnrD+UF7G8wyCiPWDOrj+LW+W8blWnPZb8rj8xChK9DPTRPWaRuD9rzQq9BCfMPddXtT/i6Rq9jq3IPe90uD+XpcG8QRo/PZQmqz+N6UY8+E5APcHYqj/ZEAA8PbIuPQd9qj9V0lQ8W0QuPYKbqj8ewHU8tOGOPQt8tT/c2dY7LeqnPY/0tD8Lhuu7LSWpPa0PuD+Cw/66+125Pa4juD/wM4a8+OtWPTRaqz8eyAQ7TJxOPbfSqz+nLxQ8nOvEPdjLvD/tNpa8XL3IPabdvD/pBdC8fnqnPWqOvD8Ghco72Z60PV63vD/3yRW8RN+tPYCSvj/yga+7GWO/Pdynvz9gWaq8IiAWPcAQqj9ur5w8Dw+UPTZIrz8UUSK85iKBPRDwrz/rbYs6mUOHPVmbrT/Gu/i7ncmbPUHnrj8Tw6a8oNWMPZh5rT/GfoG8QyBzPcVHrD9wWHG7wHt6PQ9OrD+tfA68hc1wPWUFrj8lJkI7QSRnPav/rT+bKq+85iKBPRDwrz/rbYs6yogqPWqbqj+BZSY8W0QuPYKbqj8ewHU8IiAWPcAQqj9ur5w8blRdPYuXrD+VD747XGJYPSq4rD80HWi83cU2PdkHqz+j3nM7pTpIPf7Iqz/LS727TJxOPbfSqz+nLxQ8QRo/PZQmqz+N6UY8ZaJ2Pb3Drz/CT/W8sruGPT6jsT8UaiE6kkWAPZhYsT8x3wu9FUmFPW46sz9+ohO9J2mKPUo4sz9l+bA62YiOPX3ztT/frxG9tOGOPQt8tT/c2dY7iIqYPWmquD/FBAi97iKQPfgWuD94+EU8tOGOPQt8tT/c2dY72YiOPX3ztT/frxG9xDagPe7vuz8dOQK9D52RPW1lvD+5QKw8D52RPW1lvD+5QKw8tBGpPQGlsD9iyru8kkWAPZhYsT8x3wu9ZaJ2Pb3Drz/CT/W8ncmbPUHnrj8Tw6a8oNWMPZh5rT/GfoG8QSRnPav/rT+bKq+8XGJYPSq4rD80HWi8wHt6PQ9OrD+tfA68pTpIPf7Iqz/LS727+OtWPTRaqz8eyAQ7+E5APcHYqj/ZEAA83cU2PdkHqz+j3nM7yogqPWqbqj+BZSY8PbIuPQd9qj9V0lQ8IiAWPcAQqj9ur5w8tBGpPQGlsD9iyru8FmOWPYLLrT/mWry8miegPZgarz/msb28gAOvPXBdsj9PlMm8FUmFPW46sz9+ohO9/f60PRm9tD+NVsq82YiOPX3ztT/frxG9iIqYPWmquD/FBAi9z8a4PfgfuD8pKca8S/u5PY/nuz/S/8e8xDagPe7vuz8dOQK9z8a4PfgfuD8pKca8DPTRPWaRuD9rzQq9XL3IPabdvD/pBdC8z8a4PfgfuD8pKca8S/u5PY/nuz/S/8e8/f60PRm9tD+NVsq8gAOvPXBdsj9PlMm8XanBPby5sj9buyS9BCfMPddXtT/i6Rq9slu0PYeVsD+A8B69tBGpPQGlsD9iyru8miegPZgarz/msb28blWnPZb8rj8xChK9sP2ZPeKprT8v7f+8FmOWPYLLrT/mWry8uX2KPZtnrD+UF7G8hlqxPcBrsj8UBri8tBGpPQGlsD9iyru87iKQPfgWuD94+EU8hc1wPWUFrj8lJkI7blRdPYuXrD+VD747woaIvT6jsT+dPSA656aevcc7sT/T4De8TdGjvevtsj+T5zC8kPiNvc9Asz8viK06L6y0vQatsj8cLcC8dXzBvbh0sj8leva8Z0bOvQTptD/YauK8VLy7vdjitD9E4bC8UPe7vQfwsj+eNCC9dXzBvbh0sj8leva8xRa1vSCbsD/i1vO8byWuvc7WsD+5XBy9i06YvRTkrT9BJP28HUqYvX7zrT8YJ9e8Yq6CvdR7rD9lALG8hL2kvUc7rz/3tRG9sJOlve8Lrz88QOi82WPOvVyPtT89Hxm9XAXXvU9iuD8UiQq9TqnWveZOuD8ipsG8Nk0svauzqj/ZWiQ8JBFBvWcQqz/SkJo7oIM7vSA7qz+tFkA8AJEpva20qj8A5Hc8YS2ovZkztT+uh+u7M3mLvWqOtT8Ckdc76TzFvZBBuD9kjY+8JWipvUYtuD8uLve609pXvXKWqz9VwHC6yntKvaXoqz+CmRQ83fjTvWuPuj+Xyae8fQ/OvcAgvD8VQei8qgirvddduj9b0g47abe5vXt8uj/iGVG8Jx8LvUcxqj+kIaM8ZhSVvWB+rz9tgyK8fFSBvSrxrz9yaYQ6+iSevT0irz/QJae8t0KGvbuurT8psti7lMuMvWd5rT+BJHe8WxdxvT54rD/FH1+7voN2vWpirD9g9w281OVmvSYLrj8hWqq8Xm9vvd4Urj8FdVg7fFSBvSrxrz9yaYQ6AJEpva20qj8A5Hc8wushvWTHqj+LsA88Jx8LvUcxqj+kIaM8pYFVvdPnrD8TtF28Fe9bvRfXrD8pHMc7yntKvaXoqz+CmRQ8k4FDvWcLrD8hAs+7K7wwvQ1Rqz89C7I6oIM7vSA7qz+tFkA8G0p6vTDirz/TG/W8NZGHvW46sz+PohO9T66Cvd18sT8Z2Au9woaIvT6jsT+dPSA6kPiNvc9Asz8viK06M3mLvWqOtT8Ckdc7CsyOvXAItj8OsBG9M3mLvWqOtT8Ckdc7zmaQvY4juD/Hwkw8u82YvWLHuD/8BAi9CsyOvXAItj8OsBG99XmgvWHxuz9UOQK9EZqTvbhBuj//jIk8JOKRvdtfvD+guKw8cBmfvWVcuj8qHwW9G0p6vTDirz/TG/W8T66Cvd18sT8Z2Au9t8CrvUfmsD+S5ry8+iSevT0irz/QJae8lMuMvWd5rT+BJHe81OVmvSYLrj8hWqq8pYFVvdPnrD8TtF28voN2vWpirD9g9w28k4FDvWcLrD8hAs+709pXvXKWqz9VwHC6JBFBvWcQqz/SkJo7K7wwvQ1Rqz89C7I6wushvWTHqj+LsA88Nk0svauzqj/ZWiQ8Jx8LvUcxqj+kIaM8t8CrvUfmsD+S5ry8xRa1vSCbsD/i1vO8DRKfva9Xrz/PCcG8Wx2VvScarj9vSr683fjTvWuPuj+Xyae83F/LvVLavD+ja3m8zd2/vVCqvz/Zj6u8NZGHvW46sz+PohO9fN6vvbeesj/caMq8CsyOvXAItj8OsBG91EK1vVf+tD8KV8q8u82YvWLHuD/8BAi9YAq5vQo+uD+nKca8CRq8vZsTuj/8FMe8cBmfvWVcuj8qHwW9fQ/OvcAgvD8VQei8fQ/OvcAgvD8VQei8XAXXvU9iuD8UiQq9YAq5vQo+uD+nKca8YAq5vQo+uD+nKca8CRq8vZsTuj/8FMe8UPe7vQfwsj+eNCC9fN6vvbeesj/caMq81EK1vVf+tD8KV8q82WPOvVyPtT89Hxm9byWuvc7WsD+5XBy9t8CrvUfmsD+S5ry8DRKfva9Xrz/PCcG8hL2kvUc7rz/3tRG9i06YvRTkrT9BJP28Wx2VvScarj9vSr68Yq6CvdR7rD9lALG8t8CrvUfmsD+S5ry8L6y0vQatsj8cLcC8zmaQvY4juD/Hwkw8EZqTvbhBuj//jIk8Xm9vvd4Urj8FdVg7Fe9bvRfXrD8pHMc7/LJFvdSiuz+SQ1M9JOKRvdtfvD+guKw8/r2nvWqOvD/rncw7gT66vSrpuz9PAMi8gT66vSrpuz9PAMi89XmgvWHxuz9UOQK9VMRgPLAvwT/Bn2s9EfANvHBywT9YC2I9tKCyPDzqwD947mg9bOEJvdeWwT8H51A9kEBLvVdZwT9ZrD49NMpFvxjTLz53eBw/iEx3v3glRj4EhC8+Jadlv3pMMz7Uts8+8boovz/Huj3PGj8/OFQ9v6abLz5xnyY/xwZAvzKBFT7pHiU/P2hMvz6Tcj6dsA0/dOZLv2PBdT7OEw4/aChMv5i+fT750gw/6/pLv9jdQj7G0BI/S4JQv4w2ST6Vvws/Q7ZNv07UYz67VA0/bmJNv5R3aT50Ow0/UB52v6ZOQD4q7U0+NZZBP/yW/7w6Uic/t8BKPxxSuDyrLxw/ubVHP9EepzsyKCA/RihBP6q8lrzO8Cc/fro6P5KteryTFC8/JQYwP5gu3bx+wDk/d9skP19UbD1gS0M/Z4YlP1nphD2IlEI/gzInP8xutD24ikA/zwYiP00TAzpJM0Y/dQooP/H4QjyFGkE/l69IP857tj3TSh0/RKtsP65cXD3zOcE+p1l8PxNLnT2rTBk+orV9P+QmS7xHFQg+GDxxP/UeJ70wF6o+5M9lP9PE4L7AmRm9slVTPwkvcr64LQM/9bZnP2zBLL5Mysc+vWJ8P2VLJr4bHSc9l8ltPx5TMD6k7ac+f7VbP8SpaD4Fous+8tduP9pXVz5rjZU+GJt4P4uQMT4j1ic+KypfP/RzmT6tdcY+CdleP6S/zD6G5JI+qPxLPmwjbr+bzZ2+d7/ZPlvEXb8TMYa+XTeWPnCgZL9Qo66+6XvOvtCkm7xFNWo/dQPYvv5EWL3UtGc/rdaUvqZ++z0w63I/89U4P00SBb+wyOk+jt0EP2y0Wb7Z8VM/WPMPP2KEHr6L808/7hxIP20iC798npw+QLMEP6x2F79eER4/Zd4CP8CvlL6wFE8/lhERP/GhAb99ZCY/dWX3PiB3XL/CeyG+9XT3PrVyXL9SfSG+ye6LPhDab792Il++2c/XPgT/ZL/zeRi+ENIRPoXyc7+vEIm+vY19PiRVd7+RfJQ9HgVnvJQMdb+6+JO+5QmZvo/I2D4R71o/13DOu/Q6AT9U+1w/6+trvL4hqj7lbHE/L82bvvWpkT68umg/VaW9PQee771ZIn0/Q2X3PEmfmj36Jn8/RcUuP8KFSTxwCDs/hy3DPmEnwr34a2s/vWrLPrjegL5V62E/P50rPdRkxL6jLGw/kvJgP6O5a75kHtY+ySgTP8Epdb4HT0g/N14ZP31MRL4qA0c/QgJaP782Gr6CiQA/fhFnP8xpL77xMMo+ldYvP/Wijr5E2Cs/Ur1lP1y2Zr64NMI+SuuvvvnGGL2LOXA/fL/KvipNgr5F3WE/A+e7vsDO5r4wTlA/ksC5PSu1Fb8uXE4/iSOIvo12Lb9iiS8/kQSlvlHPFr9Asj0/ixhRPjI77L5yBl0/ik4Cv1HeA7+YijA/s5DgvuA6gb5QzVw/L2XuvqY+O79GFv8+wOkGv5DWJb+l0ww/L919P5FT/b2hrRQ98qd8PzWkI76JH6c8LYd7P1eiJ774QLU9/V3+vjKdgj5MW1Q/yj8Dv5khzD7NqEI/H5f2vtxvtL1rN18/btuEvhT6Cb/XJU0/vNvuvrC3JL+FXxs/T4gXvzlhBr9rkxw/C4NivsbwVr+0Af4+KLWEvkKcQL/GBxs/nYHzvbXgK79pQzs/vy6ZPmqQKj9d3S4/IWqTPnCeJD9sqzU/qd3GPpS63D7hfVA/Q46VPrPQ8z6+U1Q/E1bOvvsv2z4hFE8/Qg7tvlxNIz/Nih0/U4QRvw8yuz4vrjw/XlmovoHaPb6YD20/Nv2JvmXVq70El3U/R+TyvhGkH74izF0/xnILv/WvR74gzVA///l6vi73cb9b+Vy+pMB5vj8Nb79/Coa+G9v5vTsce7/MIhu+nwb/vr5uQb7Uplg/J8BsP2rChr0O2b8+9AyPvjRFVb/QbPQ+etWaPe76YD5p/ng/G0jSPj1Wnz46ZVs/nZrwPhFeQj6Xr1w/+HKovuQ1DT4hKG8/bCDuviHxwT2wU2E/6wRCv/Hlnb4GLBM/I7Qvv3edJr7KdjU/WQlwP5OZBL4+KaU+XwswP4pZYL5GMjE/Qj8UP2D3wr2aR08/h9QavwB9UD6fGEU/qgBCv1p2Uz5xcR4//0y3vsrsgD7zLGY/v5VAv5tYBjxBpig/O4A5v/Pzjr1HhC8/B9xevwT5175bv4E+i6VivyExf74A+Mg+xw5Lv8Y8C79cPIw+Mhgkv53EL79mqq8+FGrivtMGVL+RPLA+RMjUvpyTNb9WwxE/FPwKv01JP7+5QMQ+wDRAvvtrGb9yOEc/FQA8PfvDLj/dsTo/c/llP5upaL1aCd8+QifgPovds76J3VM/SA3RPiFX/b42YUQ/9NJYPxVnkb2m4QY/al2+PnFHA7+iGEY/YokBP7HyID80Kxc/4ea/PsfKEz/ftDk/McMDPy9h0j6Qo0A/FJkZPwSj8D5xuyU/RwKlPo+fJT+L6TA/DmTOPsqvxT4taFQ/WM4YP0NEaT658EQ/Aax4P3/kv72JiF8+y0JYP8GUfz0dDwg/eFHvPsvzUr3M7WE/g3IUP7oVpj1/h08/NJUjP1HEoL3K40M/y5syPxB2Pj3/Ajc/T+kxP+FMLz4gyDI/LEkbPxt7oT4C0zo/UCgjP0i4kz726zY/PhcqP9TjRz7krjg/8kqVPnBubD5yom0/qR3PPnPujz6xyF4/y+iEPpAXIj5l4XM/0gYAP9enFz7Ea1o/lYsovlz4Pj459Hc/ztsJPwyOl7ySqFc/x2fVPv6t+j1SlWY/wuHHvm74oL1K02o/dS0QvgiKjr2f0nw/K/YbviBjQ77dQHg/xvnNvp4TP75fc2U/eZG2vpGOnr6FpmE/YOoVvnXcl74fl3E/E5D3vnrWKb+vLhI/EEd7vq9MIL/gdD0/CD9bvpaQM7/2CC4/pI8Av1u+3b7lnD8//OSSvl8Rx75rIWA/pVeXvnXqAb8lM08/5J/0vocaDL+t6i8/pLzBvQ+qDz75Tnw/9L3Bvojzjj0bSmw/MqmkPIDx9L6pvmA/+3/qveWDwL5cZWs/LqotvRkR0r5cNWk/A8MRP6DBJL5yYU4/nONmP85Xu77AAms+ytBHP7ZdH789Emm9emdlP9he2r5Nf/u9yXgpPyeANzsu3z8/TwVwP2SFuD0y+qs+/WtsP7Y9rL1amL8+QrEaP3Zv6L1w5Uk/KIlXP6Qisz5TUNI+ogYeP9OtZT7MC0E/wtEgP9iIkj5ZNzk/KwVHP7pokz7MKA8/lUkrP0WwUD789TY/3H5WPx3QkT5Ibu4+cpxzPxtcYL5irFw+5qtqP1Rf5b1sZsQ+0cNkP8aQoL7UZ6S+lTNlP/Sebz5PDcI+Kt9dP1r7iT4r79Y+DqSSPNs8Tz+WORY/0wo5PosKSj84QBY/mfqAPp70UT9wgwM/bWjxvsk7Hj8hBiE/N3azvgX3ST8WNQE/z5bmvl7LRz8OCt4+eTi2vrgHXT9MF7c+VZpZvtfZXj+fR+M+3itoP6Qeh772JKg+D1YuPzj2177jPRk/qfrrPgTTvL5KpE4/W6TyPmHrRL5M/Fs/IQYhP7qfGr68OUM/DMF3Pwe/7Dy/DIA+N2TDPh0hFT+Wtzc/XlMWP7CTGT/YHAs/Qv8uPwhzxD5B8h4/+NUGP0+uxz6QW0E/GirevqfaX75wwF8/lJMVv7fxH75e30s/x0ubvnG6bz/liTQ+YRzxvldhWD8sVoE+wWPwvtXaXT8q9Sw+4yJ1vkDgZz8jCrM+HZiqvlXeTj81ufg+mqh9vpI1ZT9igL0+5R8iv7l2vr0+r0Q/8DEFv+tsBb6qD1g/CPgxvyll9zxX2zc/Vd9fv266CT6pl+4+Dz1wv34w/z3T+KQ+yZh4vyPHmL0ePWg+Jqsiv2VXjr0X30Q/Y0wlvx1dXL2H/kI/AK4ovwSXkL1IuD8/WJgxv7NmKr16Ejg/yEgvv/Pkcr2m9Tk/E4Mwv0xZhryfXjk/7Ocqv/0dp7umlz4/ckIov2fP3jrF70A/WQEqv1TxMDx3YT8/MSFvvzeANzu3yLY+xaFuv7GlFz4jKKk++V1tv+PFT74kLqE+ecp0vw3Bir60TuK9OZp4vwXImL0/JGg+LqRgvxBT1r4Pnm++cMtRvyiH+L4K9Zu+koEgv/y7Mb8n77S+OO8rv4n9KL/ePay+w8llvsFyKT/dFzc/DGvvvlPVGj+8BSU/NB80vgR9Tz8GBw8/bUq9vkz+Rj+WTgI/Tcavvl1/XT8SF7s+y+KJvtVlbD81/Is+m2AYvh7gcz+zyYc+a90CvhEDZj9GCdc+2EEtPbamZj+3E90+tvIsvkAqdD/tjn4+EjDMPevqZD9ucN8+HqROPgfWZD+V88w+ZcaaPuaVQD8g3BU/eyZTPsruWj8udfM+xhOMvNYBdT+gKpQ+9AGrPXX/cD88Uqc+27M3vr8NbD/Yj68+LaoCvjVZeT8FmD8+OyjcvQkScj+wO50+sU4eP6gQRT9l/iE+R5oYPyf4Qz+2A3g+3KNEPyXrFT+oj4Q+8DFIP19MFz8Xp0o+9Dv5Pm9OPT+sEu4+uhwNP5oSRz+U1Zo+3t89PyqvFD99xqs+1gtQP3i05D75lb8+OyFmPx5cuD7meH8+scJWPx0A0T5iUrg+JSdxPvcHPT9bxCE/afOZPizJXj/Gxcc+7H7hPgJWZT/cFXI9ttTWPgxUYD91enI+h7+OPRHhXT+e4fw+0A1cPuW2bz/hE44+X5yzPaUuTz+RrxQ/2RvaPn7rXz/Mvmw+6yASvuQNcj+p0JU+IUiUPuqrcz+zCc490xyYPuIKYz96JLU+RGVIPo18bz8loZY+/3rhPQQJdz9Iz3M+4oWNPawGZj8W6d0+IfJ9PJsveD8UkXo+zetlv5TPiDzq+uA+vFhDv6h/lT23ZSQ/1D1Fv7QZnr3R/SE/fWppv8NS473LcMo+fh8wv5NCCzwhxjk/9moJv3/xsL0q21Y/R5esvtZIjL3HYHA/hMQyv+/PJj5RbzI/xMMyv3TpJj6SbjI/cEygvpobJ73E53I/biFBvl6zjL6tXHE/7u24vspM0b2vR20/XqG2vqwubr70oGc/edZlP3l0hD5DerY+C4t9vaZ6db/xxY2+UitjP8SxDL56U+G+tvprP+pUsD3oiMG+Oil4P0jdAr5pula+oZAeP0J5p76dtDY/UsseP+cdxb6T8i4/sHcbP45czb46kC8/mE8jP+wlyr10hEM/VvgfPzFpvL2weEY/vp2evkG7lrsSZ3M/ys7ivg/47b1lk2M/WkrTvu1JVL899sC+aCervtQ4X79aIre+1xtfv9NLaj4jD94+NWpkv/n3KD5gNNc+ptIPv7RvQb5yL04/5konvxbFXL7yvzk/xOYovyuqS77egzk/7tVrvyZIZT6A36I+iHYPv9CrrTsmBVQ/UWs4v8q0FT6jkC0/Pug4vxWalz6l/x8/sg1hv45eqz6Aua0+3pZLvwPF2j7/M9w+9kckv7Dd6D7vFR4/itQLv10jLD/kv/8+nGwav/fJRz8ZdCg+cn0cv0i6xz5KRzA/KqAfP6H7Qb+NB0W+zVJHPxfu3L70ROk++XsgP29KGb4ovEM/CW1Ev1J6lL3tHiM/IW3wPfdhe770Vna/hLAwP/7R3rtlPTm/L1IWPzIFEr5V+ku/sSsIv42FTr/+yoM+gQonv0l4K781dLU+03tCv+lEGL/PjYY+Hlt/P7oUjLxw5ow9bZ5/P5t2YLxuRVg9BbN/P2Y277sRNEQ9qdR/P8vPiDxQTgQ9ced+P0L2ubwZgbc9JvdqP9n2yj4WOKu8L/hqPxTyyj4QNKu8AJhdP+YtAD/TVMG7AJhdP+YtAD/TVMG7fY7XvvMEZ7/Ombs9TVDxvqiYYL/K8Lg9sSsIv42FTr/+yoM+h7d+P70oyz2Wb048ROt+P2j6uj1nSB08uqN3P7eegD5ocwq9m9tSvxzz6D7mTa2+7DUqv3B5NT9VC3G+eFJEv40NDT/cfqi+gO4Gv0EBVz+TzgS+ZtrbvrhFZj8aRqW9qztbv5L2hD4DgOS+/Yldv4gLQj5fg+2+fKpsvyoMzz3WNLy+gnViv/5ZNT7R4Ny+3asBPzhzTr0HWly/3asBPzhzTr0HWly/0cNkP8aQoL7UZ6S+g0xEv1ZkqromUyS/QENCv5JT/Ls3tya/eF9Wv0xXyr3pnwm/m4NevxsZ4rzsxfy+JVn9PmxOBD5y/Vu/bUVVv5P57b13cQq/WuR9v2dRFr3oR/u9LHxiv09SuDygY+6+4YNPvwqgmr0KqRS//QCtvmDRcD9cN/i8WNkuv4K5fD1fUTq/PAI6v0Z6pT0Bqy6/y/Ezv/xp7z2ZnDO/QcM0v1Y2LD9laGI+f4wrvwVUNT/ZOmM+VoMNvxQTTj+Iqlw+NS1zv9PgHD5WeIu+LHxiv09SuDygY+6+l+R9v7HoFb0lSPu9CVt8v1/sKz5ccxO8gPNyv+mgmj4svLg9xmZcvye5AD6iYPy+hERYv0brsT7pVNC+KJZdvzPJ8D6LOTA+41FSv0YjBj8JFWY+TZQrv7bMob1N6Ty/kE4vv9l8Lr3rPDq/QLQ5v6GiNL0Y2S+/wS0rvzvljDwNTT6/NS1zv9PgHD5WeIu+xmZcvye5AD6iYPy+GDoiv45FNr1etUW/R+gmv71goTzmCkK/O1YivxgQPr3wlkW/Uy5+v6vXAT195+q91rt+vxrRPD0xN7S9VPZ9v3ppszxU9v29TPx8v9tlqjoJrRy+JxV/v0w0IjzsCKy9pJ17v9v1ZD1HzzO+tVh/v1zGMb0UQWg9vhp6v1qOAr59My8+RId3v4NsOL7NCTk+AGovPhioaDySMHy/hB0FPo+bEb41NHu/EkkMPpJQyb2oVXy/JzQ8PovgGD5AuHi/o0PYPSmvMj5hnnq//QYSPqtKHbwnX32/07OMPZtUpb6PpXG/RQu1PagZYr5op3i/i/MwuwHwyb1mwH6/BSr+PfEuED5Rc3u/ND6kPfZTHz4lDHy/Se1APf7sUT7ARXq/S8klPm74wj28cXu/lSJGPt8Rvz0jBnq/uaI0PbbV+D062n2/NMsUPukoMT5vYXm/MK1MP2T+FT80YAe+rrFSPzFCET/MLdQ8aSNKPx+zCz/vqo++EpNIP435Hj/af7c8GK5UPu5jWT7vcnS/tph3PlECxz59mmO/E8JWP+MP6T7Vx5g+DuBPPx/FAD/qjZc+YV5YPzqD3j4GSJ8+HrxYP2S57z4EioE+kZZZP+mnzz4cLaw+76qTvTVj1D7vM2i//q/HvYFnyD6wP2q/b9IAviT03z6G8mO/56txPevNjD5LqnW/+zw9PRXWpz7AkHG/n/MwPLtJvz4qcm2/Uy3UvHyGuj6uUG6/40OYvmnxMD3BKnS/6I6XPOB7hb7zGXe/fOAgPrUZFbxpz3y/AAQ1P0EMIT+wUqU+ckYmP6E6Mz+z3Jc+VT82PyDaHD8ouK8+iXxLP1FV6j4N+cs+9xlKP1z88D6qt8k++0ZiPyylbD6cLdA+q8ZeP/A9bD7i4N4+Ckh9Pybmez2u2wY+lyNvP+nLwzyUVLY+MLYmPw7lgzx/O0K/paoyP8pR/DwaLDe/KwhwPZr/9L6ZSWC/36c1P6QRlD24bTO/6FJOP2vHDz2/Rxe/NFVOP3TEDz2hRBe/2uh4P/xEWLs/T28+ZRRXP/F6Lr1qaQq/j0IyP5DX+D72Mge/4lY6P3Ua7T4EdQG/MYoiP9w2DT+aeQq/noTePrQ+iD7lQ1y/E1rePib2kz7daFq/OPfqPjNEPj7Va16/jCT3PkSJAT6V2V2/UQ2ePqIyEz/i90G/0V6cPvgQGj+96Dy/OyeRPmMJKj+kEzG/HIsAP/+zHT0aK12/ARoBP9LixzuuDl2/GlrAPtm1wD6UzFi/WICoPoDJ9j7n30+/v5GxPudU5z5halK/hZjOPq+0uT4/C1e/kqNiP9tH8j2jP+a+hLAwP/7R3rtlPTm/ittYP6Qsgz4eY+6+fIVaP3tzhj4+Wea+MYs8PxhThb1SXSy/P88sP8mVB72zrjy/Mu9FP/kskLrqWSK/vi5RPx9efr2TtxK/CD08P862873+zSq/ntZCPyYeBb5vryK/NT9HPzGrD750rBy/UitjP8SxDL56U+G+ptJAv+QYFbzXXyi/q9RSv9iyJr1c1hC/UQ1VvwdnCD0grQ2/HNROv1P3F73ejha/r89UP1d5pz5UF+a+o8tNP+l2vD73M+++uftVP0UfML7IcgW/dSVbP2GkNL2h2AO/ZRRXP/F6Lr1qaQq/QrhWP1w20z62+bW+tvprP+pUsD3oiMG+L1IWPzIFEr5V+ku/dDI0P0Wpor63oiI/DlW/PrAcCb/c3UE/GaTsPkXTmrzl9mI/UxDpPv7P1Txi12M/A/8RP1r0G75spE4/V9ZQPwvWcL0NTBM/mr4/P4yKjr3LrSg/I1I1P3eMl7y/pzQ/3cyfvph6Wb+wwtk+MMSxvlIwWr9bS8g+2mSOvr7FZL++VbQ+Odidvv503r5fpVg/JHGMvr1OEL86c0c/IH6bvmKd/r6EDFA/hLePvjeoxL7ZLGE/gNoovsVDKL8CQjw/QJ1qvvD1L793cjA/VK9qPwydBD4nfsE+qCVuP48kEz4a2Kw+o3RuP0AuDD7Rlqw+Ckh9Pybmez2u2wY+euxUP+Jfy70y1Qu/O/hRv3BCrb3/1xC/weZSv+XRVb0GfhC/8ONhvxy3rz5Uz6Q+jLZRPqpI/T4lN1i/rIgfPjrPEz9aLU2/FDswPgexED+Qik6/gJxmPjxjAD/G11W/CNmKPql7zD6xMWC/PR78PVxNJz8YMD+/YTCOvqLqSb+bZQw/H6CHvpRgUb/4wgI/HlFbP6BJHTq6CwQ/ynNoP0cAkT2iaNM+MUhYv+qXxj5Dqbw+hGFrvy/fiz5qyZA+RDhkv9eo8byPeOe+kiZav93L5j7wFIg+GaTsPkXTmrzl9mI/f+GHPsDiBL90/k8/A/8RP1r0G75spE4/F9GvPtQNHL9l6DY/F7JIPkcFH7+oPkI/LXxbv6L7VL2OFwO/HB5Dv9jj0L33pyO/8XpTv1lMlb1IDQ+/004vv/hLpr3uZDm/a3VFv3EF57wHxSK/fu09v+3GGz8gLpA+wfZFv8/2FT/Wa3g+8ykcv3HgPz9xo4M+Uv1EP4TWIz5nSB4/r85HP7HeID605xo/A3ZEP5CoKD53nx4/MmkrPsumRD+rMx6/21UBPodaRz8rUR2/QjrSPmwXJz/X/iK/bXQGP3DWFz8iNxy/IihQP85L2T7i+8u+DydGP86X9D7FvtS+ihJnP8BKvT4+smE+edZlP3l0hD5DerY+uhjCvhGmOT+WJRO/3bSmvYxtVD9GVg2/Oh40vlhzRD+12B2/GJTjvgqtJz8VcBy/OvQ8P/2uJT4sric/wIFBP6bxMD44qSE/6sQ+P3C3Lz719iQ/chU6PyHPFT4Kxis/+gAvP9tnxD7R8x4/1gtQP3i05D75lb8+UgJHP55mkz5NLQ8/S+02PznUBT5D8C8/MyItP/OvQz6GHjY/V4kyP1C9Iz781zI/Boo5P4UnCz5E6yw/GbwpPy/ZgT7XTjQ/FQonPy9vcD6Dcjg/+h9mP11guD7Ifn8+XJomP/aVAT9r3hC/QGMjPxeg8T4RtRu/XT4Zv3SvJT/MqvG+T0StvfFYbL9/57++NjCVvjm/Zb+VkKm+WWA2vrPgbb+RyaW+PnJnv4buuL7U4Gm+e/dkvxW8xb7GA2e+9KRiv89M2b7OdkK+x6Biv82O3r7xXCm+OSBSv81nA7/QToC+lH1Qv65mB78Eb3S+Xkgvv28xJ7+roaW+hD8gv7i5Nb8RUaW+IdLzvm01Ub8XM6a+SJMJv3anSL/hVZ++wfZFv8/2FT/Wa3g+P09XvyNEBT86nxY+QthQv7/KET/KO869wfZFv8/2FT/Wa3g+fu09v+3GGz8gLpA++lZZv6TG+D4/rlQ+fX9Kv9LOGD8TbAm+X9dSv9gN3j6/Irs++zpRvyoMEz+RXjo9SL9Sv/Eo0T6L1sk+iSRFv1GpMT72Jx2/d1w7v9Ts2j5w1Ae/V7xzv1cajz6jJ/691RJxv+ZtIz3cDqu+DNwYv7XGDL+EgRW/vY8fv5r1Nr9jgaK+9mbmvj8k+b7TsT+/LJ8nv/Z7TL69nTq/X/9xv0qHlr4PsRC+xdhRv1QNET8UoKs9JTJWvwR56T5DSps+34xmv0uwsD7UUYc+IgJUvw9lBT/2cVO+dpRLv3fJ2j58ONw+S+dJv08byz5ke/A+uTA2v+MiKD+/Rn++ABh2v8f2Rj7s/Ec+eVF7v6bHurzRiUE+E7Juvz6Kn77Pfjs+8CRZv/rEAb8MMB0+oQVkv77p175ixi0+l9Mxv31vJT/VzKG+coEwv4P/DT8je+6+80xRP3FNAb+KkI2+SBxNP1gqCr+MTYS+sWxVPw6f2r7aTLO+3D1XP2auBb+dORK+w9NPP4LNDb98Iz2+D2lOPykhDr/3/lC+7ANWP5xJDL/tpui8d4NNPwS0F7/jXoe9drptP3CDor5Mt0Q+ln95P3tQfL3Hd1w+YzN1P2ZHA75CsIM+w61nP73/v75zuE0+f3goP6DJIj9Rb84+c9JLPzFx6D57y8w+uSVDP1n/AD8N+c8+t81xP+nPGT7bgpU+gzNqP37ldz4WeKU+madKP9dXHL+beJw8uG9EPzMaJL+wFow8HgJYP5cdBr9Flu49TjlcP7pA+77Rug0+47iPPgllXb5XZG+/s63lPuSoAr72c2K/w5Fmv0yIn73m3tq+Q3xev3WFuL05CPm+SmAZvwAQvjtb9ky/MNejvqGsSz43Im2/W9ajvs7FSz4BIW2/DhWuvpvo6j4yJ1K/Cq6YvoEH3z5AbFm/zzK5vrt9ET83MT2/nUOxvlNnGT97yji/AyezvkKkIT/SJzG/Z+hdv2gSx7zs+/6++26/vg1nAz+xwUW/7pi7vjwfBD8hMka/T+4cv/rcV737zkm/fmQZvxYNvjs380y/Sq7pvgSChD2lLWO/mfZ4v7Yhn71dxWC+ZCF8P6Xz2z3PKAu+3itoP6Qeh772JKg+VQtwP6uaBL6AHaU+nYeFvm2Pcr+xcD2+nYeFvm2Pcr+xcD2+nYeFvm2Pcr+xcD2+lSXmPmHfML/w8hA//5abvpXAcz9XtAS9c00Rv/hrNj/0JNM+ohviva3vfT/zx349QJmIvcyFdj9Eu4U+VpiIvSeEdj96x4U+cHDjvltJ0j7J1Us/QWMvPx7JBj853wA/8V1HPy2oAz+v57c+dEc2P3PKBT8PFvA+XNWrPRe7fT+g89K9EIKEPQIkez/PMDu+gDflvhY/Q7/q/u4+cEawvvO7YL9FcKo+3zL1voM2XL/+ZzM+XVMiv92tJb9RrNg+1Pakvi9Dar8RUXg+9d/tvqUFYr/1d4s91ordvkqvZL9mCfk9lcaWvlOriT7Dw2o/j/kOvzYl5L0oblI/RA87v8McGj6FeCo/2GopvxMS4b4zdxs/PO8UvxmMFr8g1w8/jnIGPttKdT+wMoK+JciHPetCbD9lM8K+/eR7PbHDXT8K1/2+zFL8uwddUj/e3xG/GxDhPVhB+D57Hl4/GhXhPdtG+D7dHF4/pE8Nvk27tj5UhGw/nz3ZPoPGCz8E7zg/FBLdPgwhCz8GSTg/bvcUv6KQT78Hb4G9B5o0v2UFL7/JRj8+A0MKv+pdV78hJcI8aC47v+Qfnz7Bdhs/IjJSv88XYr41wQY/L+MRP6vzCT+Z0B4/x1USP1yUCT/WuR4/aNcBPQXaSj/98xu/9S+IPdioML8tfji/AAPHPm+1876o9Em/Sw3LPohO676Yb0u/8TCqvdOXP79Kcyi/pqkQvyvcRL+iCJm+1+sgv5h7Qr/ifiq+jgQVv7cKRr95NIC+80/tvuHVRr9IXtq+Bvntvk5zRL9TJeK+ZaOQvlZKSb+Zqwy/o12tvsHVSL91/gS/5n4cP/ilPb5V+ES/ziMsPwKp6Dz3Vz2/ZLAuP8AFzj5kOxy/7ZgtP8cJCj/Hsv++M1IXP2xcLj8GPN2+rHsQP/ciOD8NaM++Ky7/PmUdWD/rCEq+BZ0DP3YGVD/HW2S+jtnwPqJyWz9QiFa+anfzPplFXD+hgDu+T8zqPt2cXj+FfTu+KhJVv3ClDT/Lzgi9ojowv1yNNj894ge+HjU0v3uQNT+geRw9pmeivek1a78R/cW+8MvqvoVzYr87E669uitLvSEmer+eq1O+UDq0PrH+Vb+Tm9e+ys/TvuZtUr/sZMi+yWYlv2FvQL+ieQe+myNUvzppq76mrOW+zfFpv/srS72rWM6+aB18v92QMb5RNu+7mX9tv48Vv75oD747IRxcv+Nc/r5JqvG934pAv92jAr9ogtW+5SUivy5EKL8FGdG+S6hCvyAgH79y0EC+s4t+v88mZD3Wwbk94Y5wvz/k0D0bKqe+4GtzvzaZVT5TSGq+GUV5v2e4Lz6aZRk+pW9Xv6/EaL7l5Pq+Trtnv/stUL4rFL++AX9WvxeB0b7s+ri+iLAwvxi71r459ha/PCRav9+GSbwO8QW/oCxUv+DiRz0Hsg6/0gMqv22rgL5YQTS/glsDvwjK575Arjq/+X9Gv8bjcj338SC/7E3ivVQ+KL5+7nq/6twgvqpLE79Pe02/o25FPagoD7/23lO/ceIlPTl/N76LpHu/Rb5jvGRfOr99dy+/pZYyPniONr+o0y2/MPeIvmLnQL/4uxm/TbZRuvNENr+0wjO/jEFYO5C3Ob/FMTC/nDB/Pre6LL972TG/Hox9vmqNOb/qlSS/V8l2vsvVF79DqUS/rT9GvlTKg76pW3K/ZkVhveDkez8TxC0+5RunPI8Mej/nglo+1/MOvYWsbT8/ZL0+4S2QvT0BbT8lKL4+27M3vr8NbD/Yj68+IfJ9PJsveD8UkXo+0pDGvoDraj8cXrE9s8B5vgo+eD/ppmg8GaI0viJyeT/Lvg4+21+YvR8pfz9uQQK9xqQSPfi6fz8TH+u8m7lJvqWUYz9dqNM+4yJ1vkDgZz8jCrM+rgPHvpWQXz/YX5Y+N2NrvzLgiz5bvZA+R+huv8H3hj6I93k+roldv1VDyT5VIJ8+O0pYv8mZxj7wnbw+a70Uv2n3Nz/vo8M+8ykcv3HgPz9xo4M+wfZFv8/2FT/Wa3g+2ulBv7+zFj9iiJA+hx8xvw1Twz7U7By/RQ83v09I2z52bw2/BgFNvyq6yT5Y9ua+1jJWv2bQtT7HdNW+eqLBvrK/+T69akm/iL8Nvzs+2T7dbDe/qnHXvriC7T6Kkke/7w9Yvjmf+j6PmVi//kz7vetMCD/WaFa/1fuYvoIRJD/vAzW/1YcCv05wGz96ABy/KZUVv0/n3T7PpC+/b0XpvSM1ID90iEW/Sl+FvkVYRT//zhS/Y0nXvgWgRD8ISfe+YcbUvaOLRD8G3CG/qMMxvusyYj+Iqt6+0d+xvrIqXD8dV7++dy87vf2vYT8KifC+23p+vvSfcz/z1zi+kVl1vRZFdz/3+IC+MMUxve8ydz98OoO+6q/Wvitg6T6m/Ui/Ki0Pv8Jj6D7ulDG/ibMwv7YTxz5bOBy/ilxUv1JksD63COG+lqBJvxb/kj6Hkgu/i1/UvqrEXb+xiY6+SaMBvz8UTr8tQp6+NwEvv0h5Or/JMDs9STkWvjxfSr97OBi/1gMwvzCpHb9b9MS+IZ2+vt/CMr/pgxy/a2cyv7z62r6QYBO/pUZevy5g0L6lP5G+wlhlv9V60r6Oiiy+ceBOv1vdFb8YiIW9MvNDvy+roj5dQw+/Yq0mv3265T4auBy/XIwWv7WOzz4FKzO/lxYqv0LhCz8riQK/IhYcvwYMNT+lP7e+JhcnvxD4Ar9YDQ+/+AUTv28tM78hZtm+jXf6vpn6C78b8y2/iOimvX4M/j4SSF2/2+GUve0aCj9wv1a/orPIvMzXID82EEe/0J8JO0ptRD/VKyS/L+6nvG3qXz8N9Pe+nJi7PLY4dT+siJK+mEkdPCU1Lz6BNny/OoIvvjO7Yz6zs3W/d9NGv/vLCj/aMKS+f+v+vg2mWD9WC0K+QPbIvtFXaz9meem84d1lv+XUa74HDsA+XmFjv4Tam70F/ec+XqlTv3GNB78eW0I+D5Myv/O5M7/juhI+4Uxiv0UTv75GLZA+oQ/avg73Zb8rL909ZkKLPdAmfL8WmyK+l7gSv/drT7/6GPs99uZdv1bDZL5EQOS+Kr1Ev6hQTb5EjBu/ZIFiv8MlwrwASO6+6I9gv2rmHT4nzui+sRciv8oEAT13+0W/EHzOvt2yGT7sFWe/cAQDv5vIwz0okVq/U5civ5D0vz724Sy/+9Rxv4Seib7+mkC+LuVrv2SuYT5gyKO+Ae93vwYmQr2XXXq+7wplv6Inrz7MC5O+MZZxv28mgj7Fx1i+XIxrv6AkyD5gEcc8EtFmvyg5uD59xHW+ilETv74kTj/4URI+PnoWv98aTz9C7mu6As/7vmB4Xj+vMF09KAwHv/7FVD95BzQ+3ql3vy8iQT6K2yw+ax8Wvppz6j6gd2C/Fokwvo3jwz5RXmi/yP8QvV4ftD6xdm+/yL2OvZol4D62eGW/EsL3voITwT4MKkq/xxGavtIxvT7tD2G/DnaNvhNqGj7Q/HK/sEnwvkwPTj976bk+wWPwvtXaXT8q9Sw+kLPIvmJQWr9dsLC+GhT0vn/VS7/yub6++n4tv/uuOL8guBG+zFFnvkbRQL/HJx6/qCEav6RnH78t4/++YuW7vgl8Hb8UoTK/gDc9v44DG7+1C5e+e9wFv65LZr49e1K/c1pCv8JrmL7fKxS/iEx3v3glRj4EhC8+rL5dv+dJ6jweb/8+P5h4v9f2wjyxS3M+WXSTvWtDWr8WgQS/FrSVvc/PUL/F6RK/Q/qpvolKVb/2cuK+rTd4PfZcLb+GuTu/GwfwvKxj7r4db2K/ncwqvvJ2+r4VKFu/8k9zvia0Pb9IxiC/Zo8TPm4TQr9k0SK/ej8Dv6QkJD4/7le/rT9GvlTKg76pW3K/MOvRvqQUHb4NK2a/ksB7v0+oxr34+hy+QnJnv4fMO74TocW+SLltv42QID7pL6y+v0V4v/mccz6kI1u9dY0xv/tBmr6ThCe/YIpIv8FWCL+CFqS+VcvuvuVIHb+r6iK/pxcGvz73RL/GL7u+/UR2vqvcRL+ToBe/gV9Cv7RkJr+oSwQ9pp3RvmRdXr+55o6+T8tSv/7a7D4HP6i+ULU/v7BqRT4uUiK/cyEhv3b58z4QIx2/ut5iv00Z5D7rJgI+DDhZv2n+BD+DPM69fypmv4jAyD6kXkc++D9svxO0vz7U8bi97SpVv14iyj5qzsa+EtFmvyg5uD59xHW+XIxrv6AkyD5gEcc8lF80v+ACBz+GF/O+y/9nv2Gq177TDRO9qeZuv/QDhz7X9Xk+ebFuv7y3jz7nKWk+p0JpP9/aRr4rDro+63ViPzPLgT5EZsg+10hqPxtHvz3ev8g+aI9iPzoIrL6KBKU++KtNP+PxAj8DD5w+F/RNPzf/8j4m1rY+vQM2PwT1KT+CXG0+Oyc1P6nQJz8lBYc+UK0NP7hSTD9m03M+ydBVP2DT776dgpM+aiNSP402Br9rBmg+xiFTPzOGDL8QRQs+bw9bPxEP/L72OSM+gqxyP3lDoL6XoG89sq5oP/1qzb4kqOg9Y5l0P21llb6IoDQ90Lh5P35gYb5Mnwk7BK5oP2Rqzb7k2+g9gqxyP3lDoL6XoG89vTkDP+mFWT+J7fw90BGDPh0kdT8DeQc+EUehPlrXcD8oTgA+u8kFP5VmWD8FVeM9Co80P5+wMj+Oi/09aiY2P1XgMD9V+QI+CGN8P0yMKD7zq/o84fV/P2K6jTy9K0u7e99/P8dK6jwGRVi8PBN5PzA7aD72NjQ9gBp+P655tr3VKam9sRZ/P8M3Tb0n3Iq9CDJTP15bjzx9nBC/oF57P4U/Br5V4Qu+HiJXPw6mBz+5quk9PZdXPyX7Bj8iaec9btRsP7eLvT5Cpqw9I9VsPyx/vT4SRK09MzdBP5I8Er3WsCe/CbBtP9Iznr77CVM+kbAUPpo4ez9zIQE+BZTDPSOL6D4RwmI/6v5MPotHnblX0Xo/opd/vGUGAT6m7X0/xbI/vWpcET8KY1I/g8V+PUReKj+9aT4/iq56PSxiIz+mdUQ/XSaGPdFPMj+E6zY/bkmMPWkyND+S/TQ/Zx6WPXkyFT9qLk8/U26uPrzMZj61qmk/aEaDPt9N4D4OkVw/Qso2PrGqMz8gizA/FbYzPl6pQj99EyA/U6RwPqHsDz/o+0o/tItfPoQ4Wr7By3M/98gUPm+qTj8LbhI/rOkVPhEgUT9W0g4/fZUHPvW+VD8zTAo/GflSP8w3Wj7aWQY/l2dUPx7mPz4QmwY/Ch1cP5vByr2sOwA/Vsk/P9jMCL7SFSY/CpY8P9RD1D4yxgg/j8A+P8tezT7JZgg/8JQiP7mzFz+nsP0+94z1Ps3iRD/kUNg+7wH+Pli4QD+3ft0+nuEgPwnYFz/z0wA/2RzNPglwUj9CNs8+qElOP9q/nb4GdgE/dKpLP4Rwir5EzAo/incYPktOjb5FFnM/wnQBP8tdSD/izLk+MMXxPgJdTz92BrI+vAgMP5VOQj86yrQ+M71VP9vbyj6YlsM+Vp9XP1Rwyj5bl7s+1L8wP3svID8A3bk+Hfo1PxN7Gj99/7g+br1iP+dJTD6RodY+w69hP50YYj6AmtU+FEBkP70obT2e8OU+YphKP6EAfL5fQQ8/R/YTPoHzir6KmXM/vA8cvUiDor7lkHI/dBmVvY92U76hyXk/WcvQPhEOnr5J+1s/isInP9w6Er3UJ0E//5PjvssCB79kXTm/jaC4vuzJQ7+qrQi/xz4jv1l9WT2SukS/cE0Ov9qnT74xYE6/OXBKvyJhkL6UFAu/oNtOv/Ks8b4XfbS+4oMvP9Bpbz7sfDA/uCc9P292LT7Y9SY/bnEsP6hB8T6FxBE/dnkWPwRyKD+g/vA+BnQpP44yCD9mLAc/L9JsPwaXvT6fpKw9I9VsPyx/vT4SRK09QKwtvHipRL8w3iO/SVPBPZwiOL8PMzC/6ERYPVABPb97Iiy/YHU1PYvCSb/QKR2/P7fAPRKNN7980TC/KY5TvoJs5b5iql6/AzIIvns6NL8KlzK/DeQlPdFoMr+UTDe/pEmuPYXc6L6d8mK/Lepnv1k7ob4u85C+jxNnv5YSuL4rSnK+LYJNvwGq675jF8K+1W5uv60Mj74D/24+ay5+v9y20b1vN3i9N3dovyHpM77gp8I+xhRnv1UOuL6SRHK+CoYovwvQ8743PxW/cAQDv5vIwz0okVq/cRAXvyLq87762ya/ZfU1v66Sh75a1CY/Lepnv1k7ob4u85C+/fBUv4xoEb62Xgk/glp7v1RXNT5WDYs9IFxzv9+r4D0uo5Q+71Rxv+LctT3aqKQ+BOHJvmeLSr9bW+++nQwgv7mlOr8cl46+NHf4voTvU79fBZC+TWJCv5Wu2L70Ff0+7blev/Ys1r6llYU+LWIiv7ufPL4/NUA/brwVv+3cRr4smkk/vcgUv8pOTb4t50k/artev2Qu1r5viYU+TWJCv5Wu2L70Ff0+ticzv19+H78t5rK+VUksv//SHL/cONS+3AwSvyJuRb9Nl5C+q4EEvx5cUL8kHoe+xdjOvkcaX7/LVY6+U0YTv3uQDr8PXhm/uM4qvrRSOb/mXiu/qt0mv3xNJr8JWsi+zqMkv90JLL9c9ru++25BvzCAJ7+w8/08liupvQ8tRr+5qyC/3sqQvZZDSr+P4Bu/OvegvWJVSr/tiRu/5I+xveHsPr+kFim/TxeVvVJFRL95TCO/RORQv4J6E7+/MUS9KKAqv551Qr5ajTg/dkMov2qFJ75TVTw/ifdVv4iG6b4AeJy+Yc45v87bCL99pd2+qcRiv+EL1b4wVVK+1W5uv60Mj74D/24+i7UzPxAm0T4ZWRU/nT46P0bAnT6O7hw/0M5gPzhOez6VPdI+f5NwP06weryA266+wsRvP5Oz2b3B9Kq+wsRvP5Oz2b3B9Kq+23hMPxK3RD6G+RE/MC98P9ROrz2xxxg+DGl1PxuVB71gv5C+Zs1gP9tmez5CPNI+MC98P9ROrz2xxxg+UoxUPy/2wj3nlgw/yEF8P0uPIDy8LS4+2EF8P+nrHjzHLS4+XN50P8nNTDwZM5W+IM09vz0x6r5TZfs+wRIwv0Cm977skQo/JJbWvs2Uyb7ScFE/Mq5Vv4KB4r4Q76c+gaAJPbfDA79BUVs/ezDGvg6tBz7Xl2k/WzzIvg0oCz42B2k/mmXIvubpFT57k2g/aK+pvtxvxT2TRHA/Xpg7PXLON76skXs/mVnvPrhRBT5I1l8/R7zlPvregD5hhVs/SubyPhsrOj66f1w/oG9+P/1J6ryVUNq9QgR8P8jVGr29uS++8+98PzwvELsY6B2+tR30PEXTmjww138/Clh1vXiMdb60Dng/8Dd8PyKClb1Inx6+D4F2P/OOZL1AK4e+Cw1+PzlBz72FxI+9HZd7P0QhLL5HSJ29/VtCv42ty75Q3gM/fu/Yvm6F674Bwkc/g/+QvVph8r58xGA/s0zIvrpDTr88seO+3fkpvr7Qe7+W8Y69xHF5vVeIYr+RcOw+7VKwvQrxD7+mjFI/2KVfveW3Y7/qP+g+pBl2Pzo3Tb1bp4q+dafuPgI+Xz3wDmI/IeXUPsUbr73PyWc/SpqTvmBXZL89UrI+Izf6vvwiK7+fgw+/7WMcv/Tta7vVrEo/gO1ivubHHL/EQkI/GOlivtvEHL+LRUI/7WMcv/Tta7vVrEo/bP4uP1xVyr2JITk/eZk0P9CFNL5ZvC8/znlqP+7Gfj0/A8u+IpZkP9Bbwj3QVeG+ESNtP+Yg0j1xmrm+ig1xP4PNzD05nKS+NbzWPtMetr5G0FU/y1v6PnmPnr6ZwlA/vKBrPwqsTz5HHau+irTkPu5kN76PZ2A/IAR+v2/V3j3CxXW9GLo4PZ/o5r7yMWQ//XilvcYYz742NWk/5INRPxTVmr4+K/o+wQZcP2Dtmr5J8NI+dKpLP4Rwir5EzAo/YphKP6EAfL5fQQ8/CbBtP9Iznr77CVM+189ZPzbGwL5yp7s+iNV0v+8GPT5d1Gc+kjh5v6+xED44BDg+2j59v6Ikfb21yQe+LO4nvbWvP75sQXs/HSPbPUqh573O4Hw/EDx4v8rSeD6bFNm8kjh5v6+xED44BDg+glp7v1RXNT5WDYs9IAR+v2/V3j3CxXW9OjlzP9WPID1xdp6+ZUhzP0chUj0ZMJ2++25BvzCAJ7+w8/087PJAv5nYkL5N3Bc/Q348v8GtmL6nfhs/heRQv7B6E78iyUO9RORQv4J6E7+/MUS9mYRNv62f676tGcK+GuZlv1cBkb7rWKw+UP1av1z2qr4Xtco+U49avwDosL6Ab8c+GY9Uv9eEzb708MU+9mlWvy82xb6iY8Y+91VMv8ip776tJcI+/M1Gv3wt/b464cc+AXpFv5Qg/77Spco+u7c/v+95Br/l2M4+cSNlP0NdqT31WeC+5xmNve1ycb7lJ3i/EYEUv2M2Sr/wq0s+u2JlO9G+kr4hQnW/xHF5vVeIYr+RcOw+3fkpvr7Qe7+W8Y69n0qdOQt/f7/saYC92KVfveW3Y7/qP+g+nHl6PxeXIb6omgg+nHl6PxeXIb6omgg+nHl6PxeXIb6omgg+NBc2P9s6Lz8coiO+0aZaP2LyAT9iCui99i05P9m0MD/m5Iw826QOP75GVL9zojS9zm8TPx/hUL86RE+9O8ipPqM2Xb+42MG+DeUhP2qvRL8xjMq9g2LdPpGdTb9W0NG+I4tPP2gVLr4Hag+/lvFQP3BQGr5eyw6/o3E9P1tDvr48hA+/gc83P5tQzb7zoxG/q1UwP0h4/L4zCgi/8KEpP3KbCL+ViAa/mYtNPyloE78t5x0+uZYRPxXnLb/Yd+2+/PB9P2julj34utK9ttpXP50Zrz254Qe/HT9XP1EOvjvskgq/YURWP+pe5bt7FAy/Hap7P1fFOj71z5E8D5RlPymAJj6Pr9K+tq1DP51i+b60T9i+PTpiP9HB177OllC+3vBwP5TzSr53IYy+/10tP+zkg75ycDC/iPBTPw4zIr3nOg+/YBFRP28JtTxJoRO/19rKPua8A7+uqUK/z+LyPnk1i77AV1a/HCEyP0oTA7oo3Te/C/wpPjY9W74obXa/hXVgPousGr+9HkS/nFrCvdCmOL/2oy+/2Yj0PR9ZOL94+i6/p2H2PWNiM788BjS/WFO4Pj5fO7+3GRS/1E/rPeBbPr/ynyi/ZRwnvrUDM79yKzK/bCWkPhKYPL/kaxi/gFqTPoDJJL+NhzW/EZ3ePWVwjL6CmnS/Lxb7Pd/naz9jrLw+8B3BPQNAfD/XgBE+en5IPlp7bz9koJY+iWczPoIBfD+Ch4W84PiiPpTFcD9lTvM9PC8QPgCVej/RERg+W3y/PVidfj/wizm9Q3BbPusWZT+Yccg+0xyYPuIKYz96JLU+YeO2Po4iXT9X6rU+8tduP9pXVz5rjZU+CdleP6S/zD6G5JI+2CJhP0AmyD6xEIs+aLx0PxJhgz7fnBE+0lY9PwTAHD/QDY8+3KNEPyXrFT+oj4Q+R5oYPyf4Qz+2A3g+9zgHP1bsQj8SasA+fvgzP9z7yz7Vzxa/o59ePwAAsz7tfLK+uOBaP1TewD6zhra+9bcvP1fh2j7emha/LucaP6Ps3D5qSSu/o/LfPsOVAj++lz2/z28BPxTm8j5leji/HXXxPfOIET8Hb1C/fsA5Pjl8AD9Lf1i/NKoTP8pY2z6LDTK/v6UHP+bjDz/IkyK/yn2XPhxFIT950je/qWEDPuD9Jj8+PD+/kIKkPrHNPT9L0Ba/DtryPsD1PT9oi/K+f5zEPIzrQz93qSS/aeugPkS7ZT99kJ6+3PBSPu5TYT+N7dq+6YcFPkP2SD/9CBu/ydfFPV+cdz9PcXC+VstdPkzodj9v0xq+iVTBPPB4aD/sENa+bSzUPZ9EeT80xU++TeAZP6Q0yz64lDG//gXwPnVBzz7X+0i/9RhgP6T1pj6Sura+8n85P6IWqj4bkxq/afdGP2wMZD6RqBa/L2jkPhUkSr+Ltde+8z2uPrhBVr8rdNu+9awXP9cuSr9FmyK+b+/rPYIoQL/Ajia/Tr46P/qiDr/5Jsu+bzQjPw1HBb/+YhG/gPjePsDdML/tuxO/VGQePzkxK7+XGtO+QGU6PyiOJr9B+1y+MW9ePz0v6r701kG+aCUzP1r5bT7n7Cy/JbUkP0afyT6mDyi/hs0YP+LQzz5oLDG/hwYzP93zDz+Y8+G+uWIkP3CLMT81Oqe+69wDP8j7N7+BJu++2D8WP1oCDL/F1Ri/J+OlPmIfE78ZYkC/uIFePhnr/D0W4He/vPNKP+r7Bz+DCJm+kDoEP1yjVj97FDK+sZSpPgzUcD8KTpW91cdXP2dqa77/Ffk+YbtaPyUOIL7Ts/0+tcxaP81OHr44vv0+Y6NWP89th74W+vM+fJJHP4vf+r7Oucc+WChOP+v8x75WWuQ+VzNTP/uTp74I4es+u0hSPxkvsL4q3eg+G8pAP1/cFL8al50+JVI3P46EnL6uoyC/akZRP6a+rL73/u6+gpZpP6QETr2W6c++eH9aP5hVMD7Izfu+K+8lP+zDDz3Au0K/4RgoP5SAij5tOzS/y3IHP6lOrzyyKVm/hyW3PkgGozzQAW+/h2NwP4slhr6hDGS+rdJ4Pz0IV705sWq+UN9zP5dcMT7nAIC+emtrP55npD7Au2e+9/pwP7ezjD6dm0i+vfRuP6Kotz5l7+u7aVlcP5aYwT5gf66+YccYP3sOSz/iNvg94TkeP2c7ST/S6h688wUAP1yQXT//Ye480pYBPzEzVT8iYWU+MJ15P+SZPz6Ai/Q9Yu8nPpPQ4j4do2G/PxxAPqYInz74jG6/ZiXRPspXlz5LE12/b7ANPxhCmj5Cxka/RNWUPjSi3z1MWHO/ttTWPgxUYD91enI+QBniPj0HTj8HD8s+tW32Pj89TL/P6Lm+FBb/Poz4Rb/qwsi+wD44P2InMb+6yWW9Azo0Pp5ySr/CERa/dmuWPl65N7/UoSG/X1UEP3ZSPb8pvNy+I+hNPws6Fb+77+u9+Zy+PuhDmL7pEWG/QEcQP5x9ar69Lku/egJoP6dT0j3M6tE+0alfP4eN5LySrPg+kv5dP+0odr1uH/0+LhRcPwZIrr3U8QA/4CpkP9nilD11KuU+F0kMPujWUb96Yg6/O1TjPSFZV7/PeQe/BCC4PlgTWL87r8u+7K8hPv4UO7/PASq/7yupPpAwDb8NFES/nwQnvhPLAr+XEVi/L60tvSEEOr+diy+/WyjkvadWQr8pLiS/J4EXPxD83D1wf0y/EZ3ePWVwjL6CmnS/p0q7PnsZM74aA2q/pUl1P2byBT7YXIK+vHp2P85O0b11DYC+cuh7P6k9Gz3GLTI+E593P7ZNLz4ayj8+I5dCPwStHL9xi1++aTxpPxoOq75BSne+764nPwTvy76AYSS/TcWRPtG0Or8mQx+/GHtCP0q4jb0QhyW/YmrvPjznXr9C9Ru+Gteju2DqVL+kIQ6/T4EoP6yfLr/mE6M+tnYQP7wfRb/rbJg+DJw/PzItLj4pFyS/GTpvP6pnkT4h2Vu+r2NFP8+9qj4V3wq/LO5sP3ZWrj7pxym+Y4FyP0tbgD7/SEw+mwhyP8e3Zj5X9XA+n1hoP959vT4S9Uq+vfRuP6Kotz5l7+u7aVlcP5aYwT5gf66+Yl0uP/dA5D4BsBS/0gJAP8c+zT7fqwa/xzN0P4Ipbb7dYUM+nJVOPxLiBb/WfIw+bWJxP1UwOz7Cio4+A750P9RUgz7TnRE+uOiEvRJgX78h5ve+89B2v9xoM72RC4Y+de1yvxbbTr7kH3g+u4Jzv1mRT76QL24+azF2vwMGcD3GHIk+1xZNv4LuDT900WY+NDxtvy2QgD66J48+eVNlv4LouT7xOYM+9uI8vxlbJz94Ciw+8awYvy8OSz8TT/w9Q/sOv73zUj9FkcI9iLvhvrizZD8bjrE9N+5uv/GBlb4y61U+U2ltv/jhp76Lazg+EIprv9hxt76AMiI+SJJrv2X1ub4PgRU+6FRtv4eBsb7MBBI+Zwltv3dqr74C0iI+cFNvv2oVqL5nVgo+xDBvv7hKrr6gEtg9Uwdtvwp2r76V0CI+6FRtv4eBsb7MBBI+7zI2v1JVMj8LWbk9Lu47vyFkLD+KyrI9LhUtv49XOz/Gg689lVBIv+TRHT9uZrM9jjVQvxZ8Ez+DgaY9SJN5v1p+TD4hhsk9JZl4v1LqYj4k3LU91419vz0f2j29abM94TJ+v5AZnj1a57c95sV+v6/whb0E5JQ95Eh/v49JnbmM/Jg9kD9/v5+JW7zgaZo9top+v1mQoL2/3ZM9W5d+v8pBz72nAN48uQ5/vyT5Qr1tBpI9Ie9fvz019D4bTK893bNfvxmr9T7X+qA9m9pvv8KZrD5MCb09Obpxv+P8oT7/j7o9X815v5wXVb441Ik9sMd4v7ZYV75chdq9eJYyvuf99j7JwFs/+juKvtDLKj0GQ3Y/h/8yvr4ZMz8XXDE/oz8ovvIMND8mDjE/i2A/vr4aKj+/Ozk/JDpFvvrDJD+tnz0/SzRivo18ET9y6Eo/GH7DvnJxYz6jq2U/IDydvi9gBT/C4Es/QcubvtGwDD8PL0c/GKFWvsySOT9//Cc/lspUvpQ0Qj9FFR4/blKHviYQ6b0DLHU/ea02viO+TT/7UxE/1pZDvq7ATT+EQhA/I5M2vsG8UD9aAA0/yqo/vwPwlr0apyg/7f1ZvyRjsr1XWwQ/AjFJv4oFIz729Rg/yFFIv07gXD55hxU//HI4v7P12T6hIgw/uvY2v6sd2D6LxQ4/Yh8Vvx1lKz8i/Os+sH//vpBpMz8bfQI/r3sEv0r3Nz9l1O0+8VgjvwJiHT+vWu0+ES/9vhuONT/SowA/RYtQvzSClb4aSQA/nik9v8J/ir4o+x0/ihRZvuU5fb4TCnI/CcPKvoGcSD8bDvU+jn/3vttBPj9J2ew+i5nsvpbHOz+NL/8+6FtFv07F9T4iVdY+82kZv+2RJz9Z+Os+xawpvy5OID+OOdI+4w9Fv/KBAD/s38k+aCFcv/0iaD5EL+o+a4tXv7sEoT7+c+A+4ndOv9PEwr0NYRU/JI4gv6QJcb4REj4/XNQJvlkzor5cW3A/5wrgvhpfcr5MEl4/TgDgvtBhcr7IFF4/HUcYv/qCN7ryyE0/6EXJPlOeQb/G3QW/A+sBPweQD78AeSe/5H1PP1OYfzwF5BW/80w5P+plXb7+vCe/JYdYP8Yci74FEOu+f8lIP9YvDr9UeI2+LP4Sv5YMgD4Pk0c/q1MUvyEHXz4fEEk/xo35vq+0KT/bfBE/bR0KvysuAT81jCw/9R0Kv3qYDz+MvyA/m9pvv8KZrD5MCb09grlxv80Aoj6BlLo9pP3UPS8tQb+I3CW/SE8vPO7qM7/+Fza/b44gPHl/NL+bhTW/TqmAPhaEKr9pyDO/PTtwPrGs674oMFu/qXliP1uvsL6ggaC+CXhwPxFJIb77Apy+0as+P1ky976D1Ou+62d3Pz4k7L0XHms+xPd/P8RzkzvKB3m8TIx9P4TbCr4q/9S8EhVyP9VtOL6Tp4o+fP81P6c01b7MFBG/JisWPwWCAr+EGSG/rrMHPxx8rjxYAVm/peFiPwb0Rr4DSdc++BVWPz7RfL7Bqvo+CXhwPxFJIb77Apy+qXliP1uvsL6ggaC+Jbh8P7muFD2NIB8+YwN+P/jp+z2tGZW8kMt1PxYfyb3h/oU+7I8gP0/WRL8pXP69cWAjP8pAQL+8kC2+CVkyP3+6NL/5jQI+MntEP+C5y76aqgA/vglNP5h1BL94RZo+GkRGPyRGEr/5AIs+WnpGPwz7/L4GbMk+qlUyP7e9NL9NkAI+NdkzPxUkLb9quWK+GkRGPyRGEr/5AIs+vglNP5h1BL94RZo+MiUJP21vNb+4BOu+NIEEP4iDTr97BZK+jbUQP+VXQ7/Oc6C+zdvVPt/fW78NwZe+S84LP2wkGr9TGRW/zft6PiTjNr9/yCe/76wdPyn1Lb8AF8y+l5AfP9nOJ78aUdq+fnYdP/AGPb/HkI2+UucQPgc1Rb/eKR+/+NIePhGxQb/qnCK/0eEYPht6Rb9IXB6/MxsePn+EPb9ggCe/oXQPPt6vPb//ISi/ZiYjP1S+EL/mCga/9o1aP+oryb7O9K4+6FRFP+ziib5AyxM/5jYGP+QCBb8Mtyy/tqdTP4xO/L7h5oq+9o1aP+oryb7O9K4+sNpjPzNUjr70+bg+yBJFP1tXnb6wNQ8/sNpjPzNUjr70+bg+qEo2v9NrBj+oou4+Jfclv2J5GD+t1/I+qT5sv8Dgrz4+fTI+Z7NtvykzZj1l6Lu+Z7NtvykzZj1l6Lu+xP1tv9DMQz1aC7u+VblKv7GEiz7/5gs/ly5wv2deSz49GpE+dAdvv+lN8zzdrra+cUduvwfWIz1rDrq+qT5sv8Dgrz4+fTI++KN4v4ULPj2ZF28+PTVNvxda0z3YwRY/+KN4v4ULPj2ZF28+ly5wv2deSz49GpE+GNhxv3wFIz0aqKa+wxIiPw2y/b4vPhg/7R0yP6vb8b71gwo/DAFePrGDz77CWmM/EKJRP1KZ5r46KrY+2fWovXddDL8rC1U/8zScPtaMNT5TiG8/PqGUPtCLKD46U3E/SQygPiN3+j2sJXE/dBg3vm86NLzX23s//5jZPs8oSzuLumc/S3UFvwKabj6rKFI/PpoIvwaiBT5A6lU/josKv4IQNj49Z1I/M3h7v05uI71+ZDu+U0R+v0xP87xT/+W9q458vyjxa7uVVCe+RpRLvj41ojyy1no/ubp7v3Uxmb1FyCm+1fN0v2wudr2MkZG+yvt9vwo9zr1flJi9ZI57v5pmKr5u8ae90Ik0P2Wd1b63vhI/NfUwPA89ob5o9XI/Pn8KP2Z4y76lvz0/poAKP11ty76SwT0/cTqUPpxcYr9Hp7u+S1abPk3Ccr9UR7+9lmGyPcOJcL/teKk+9S3QvgDTjT67314/1X10v2dKYb0TJ5W+r0EMvypzkzwHHFY/9hAIv61z6L3V41Y/GMoyPorga7/zw7E+SyfcPnKZNr8asQ2/fm4TP7BECb+Z+h0/bzMRP3r2ZD0VWlI/bzMRP3r2ZD0VWlI/rxUMv/HHqb70vEQ/FxEMv1LKqb61v0Q/X44Xv3np6r1+N0w/01xnv9uU7j0t4tK+pPBkv+qv8j1f7dy+9Vdmv3p36T1Hpte+0uJov+7G3D2CUM2+WWIev690Mb5GK0Q/ousAv7uSib4hM1I/Lb1ovwS54j2Gk82+bK/UvkpnBL69gGY/c/EWvuPUTb5m63c/eXd+P7Qv3T3Pzoi8HAOaPRna7r7UnWE/d33qvfzVo74Pw3A/D+xCv/tHkr4g+BQ/IoMgv8sMcb4cGz4/nik9v8J/ir4o+x0/Hs45v4Y0QL7Payk/gxVXv2tkiL5Z3PE+X815v5wXVb441Ik9DoF+PzNnXj3xEb89MTF8P29qLz6VMF28GvF7P0ZLnTw6ijQ+OZxEPSnXNL4urXs/ds7VvK3BZL7ecHk/9kt7P9oTQz5UUC+8eXd+P7Qv3T3Pzoi8YwN+P/jp+z2tGZW8MTF8P29qLz6VMF28K2hzv60nID3GVp2+6whyvw33fT36vqO+bxhBPxledr7UYhw/BGM/P4hiEL4gJSY/0as+P1ky976D1Ou+gF49P6aIBb0hECw/4T5YP/2TuL6qjMo+jIZVPwUvu77TgNM+3dNRP+Rd0b6XbM0+CMpVP5zr074vgLk+2f5AP4XY/b5LuNw+I5VJP2mB6r5kNdM+LQg/P2jn/77JIeE+N3g2PwNDCb9qhOc+I7Blv4XE0z1lztu+ARSuPc1Hf77m9Xa/n7WiPrGib7+HhBo+cTqUPpxcYr9Hp7u+ji2yPU2KcL9Peak+hf96v+gAGr6N1gE+hf96v+gAGr6N1gE+hf96v+gAGr6N1gE+ZQZFPkbyFD99TEq/gGUqO/ThGj+l1Eu/dFiXPWpvDz+aMlO/5jJmPn6fDD8zCE6/I3IXPhyGJj8ctz6/u4lbvIGqLD8B+Ty/6YcFPkP2SD/9CBu/f5zEPIzrQz93qSS/xwpTPtmfCD+I91G/xr6fPfElBD8UWFq/2AI8PTFRzT5kOGq/xjdePn+BuT54DGi/qBjVPrwSAz0YoWi/mG6/PnUqlj6uP2G/3vZoPq3cFz4EYXa/lXJbPl6xIb5qw3a/ksfhPqgHt77RwFK/6NuKPU7W+r46f16/1VLSPQ4Dxb5y0mq/0BkvvmOg1r11zHq/nP/ZPtkHGL8lwy6/4cuqPrhICz8pFkW/54KiPt8lFT/Nij+/Qx6UPjJNMT8yKSm/kIKkPrHNPT9L0Ba/xl+pPorQ9z4hZE+/PJMpPWyyXT4XtHm/u6sLPY6KW72he3+/ynQgviwaLb8ESjg/kwYOvoqdLb9LwDg/G5McvvxXPb+tySc/RcYpvuOiP7/yWCQ/yJ5WvmxaD78sM00/yAFrvn8TEL/oSUs/Fnc6vuUwFr8CAUo/FNY4vpzLEb+HSk0/2QNWvl98AL8d3FY/UolWvmglCL9lDlI/qbxwvkb3or7mGms/Js1ZvvWH0r4y6mI/P/SIvtTCoL0N2nU/8ot1vhPkP75s23M/nAyCvgS9dD7u7G8/tXKGvni74z3MXnU/+EddvnqTxT7WmWU/rUdQvgkbzT5ptWQ/fNU8vtIN9T6Uwls/IH1MP+HVFL/haB6+dxJXP7J+Lr1lbAq/Cpy3vvTunL4WuWE/jjm6vgGAnb56FmE/NZk6P9Zvn75RFRw/YGBnP6ASlL7EfKE+zttWP1b/f77sMPc+Q9trPwJoxL207MC+I69wP/Df6b3hWKS+I69wP/Df6b3hWKS+Q9trPwJoxL207MC+0tw0v4DLbj7QDis/HJFAvx/6YL67Bx8/HCAkv2dcsb4aUC8/eel/vxZgobwlt408mfZ4v7Yhn71dxWC+l3t+v3dJ2b0sJcI8fKpsvyoMzz3WNLy+c6Zov785kr6ov5u+yVVov7oIpr5umIi+FRJjv1x3HD34nuu+s0lav35/t7t9uwW/BRpjvzK/nz236ei+toNMvwO9Ab5vhha/lropv+Vcfr7ByTS/WRsIv4MOxb7eI0G/I7G0vuug7b6N+0+/w+h3vlhRCb+a+U6/A1K4vdixHr9pjUe/kRR7vVGbI7+QRUS/q59vPfj/9L7vSWC/DfOwuwVpMb9+jTi//wHNPlzLIb6oEWc/2YO6PnxqCb7Y62s/S2GyPrnZLL2nt28/sHK7Pp39hzxBMG4/CLW1PqnWozzyR28/6PVAPwbjvjx5ICg/6PVAPwbjvjx5ICg/6PVAPwbjvjx5ICg/EZ3ePWVwjL6CmnS/RLA2v/KEQL5gwSy/nwQnvhPLAr+XEVi/dPE/P4z0V775jiA/wVBMPxi6a77Hig4/TgwvP8+kG77HszY/RbQkPz/KXb5E+Ts/Cq5hP6Y/T77KW9o+u5thP2uok75isL8+NoRQP7Cpdb7aOAc/RAdKP+sDI76l2hc/mMNfP/8/sb45fK4+v2JuPxL8mL5Uz1U+1RhmPwUeyb7wK0c++PtaP9XT3L7E15I+AVRZP6FbBL8bROA9Il5WP5QS7r7rJJM+s3VgP3Muzr6QjYY+lJFhP27h3r6EIz0+6utvP9i1c70i+a8+OOZvPw7QVb4ZNY8+/o1OP8B2x72oKRU/sAVKP3nU/77p37Y+fp5DPz3CCr8bDrM+P3QUP+P/T7/bh3Q9KKM8PzMbGb/pX6E+mecrPwVudL6vlTM/rYVLP7AzM763rxQ/YQRQP0bZCr7XHhE/ADlVPyIUv73upQs/dd9QP9GH1r60+8s+PoNZP84ipr7+09Q+5kVhPy/LTD2B3PE+GvF7P0ZLnTw6ijQ+M0dfP6eV/zzl8/k+HDJTPzoYYrwYoxA/11NTP23ACj4XQww/8tduP9pXVz5rjZU+/vfxPruVYb9DzEy8EbxGP+UObb4cGBY/u6w9P05TJ74gwyY/hrZPP33zm74dbv8+jnxaPw9brb572Mo+RoBXP9Jb4L7yYaE+Vc9RP8Wgw76wndo+c49QP/kRA79raos+Ubltv+AJuT4LPaw9le1wv1a8pz7Lzqo9Mv91v3Rthz4GH6c9o5Ufv75+Rj8k1849TIYavwMKSj8fouc925IIv74CVz95l8w9zUdgv/a18z6wFJ097b5gvyPF8T6raKI9zzY7v2kvLT+ExLE9Y0tMv28rGT+CQZM99EFNv39yFz8UQq09fewzv0MNND9GU9o9uJ93v5jNdz71DZw9f/B6v1yaOz6Z/Zg9ilh6vyRgRz5vpps9ioB7v00oMT5JXY89F5x8v+ZnHj5D4Ec9RY57v8iuOj556Aw9tL19v1DBBj7oP4K86yV9v0sYET4fxTq998V9v25bsT0L9cq9tL19v1DBBj7oP4K8RY57v8iuOj556Aw91Cx9vwuN0z1ufdm9JyR9v9lYbD3Jswy+9WVKP4jzMLwRuhw/KCLMPs6ym756fV2/USDWPpIhgb7PZF+/XoacPtqD5L4PTle/XoWnPhCk276Gi1e/ZpFLPg2tGL+KFke/V0QpPhSOFb/Vaku/RVgXPjCVMr+QejO/vLUiPspJSb+p2hi/Q/MsPs01Wr9FYv2+/7AqPhHcX78bQem+dcYxPsHzZL+rG9O+cpg/PvKJY7/gLNa+uSEbPuGDar+yGb6+P3QUP+P/T7/bh3Q9/vfxPruVYb9DzEy8W+dXP1vNiL7hr+4+y+9OP19fvr6zsOk+k71WPyiVuL4x2tA+c+vkPuoNIL6ydmG/vzvqPpAa670DvGG/QYj2PjxuRb2LB2C/qLr2Pi6nRr2X+F+/xU/+PvLsnrzbIV6/GIaFPSp+tzuKc3+/wrKbPjvOiLyr1nO/kVwBPyR117zlzly/FGYiv/1m3j3j7kO/ei8vv8HT7z2CPzi/P+HLvoMvXT2/a2q/GIaFPSp+tzuKc3+/wrKbPjvOiLyr1nO/vmFFv23eJD7ruR2/EOxiv7YDST5Jota+ZH5Vv9vQaz65YAC/n9ZGv3YgYz4W6ha/3JZkv9talT7yka++8edpv4isej6MF6a+REdhv26hxT55uI2+bG5fv3mwzj5HfYy+jPFev6WE2D6GQIC+AfpfvxGo1z4HvXS+j1NevwFN3j5aCHW+NoRQP7Cpdb7aOAc/dehXPyrbiL79o+4+Y1A6Pw4HPb7hFSk/agFLP+0pWL5eTRI/LcRTP6xBkb7cUvg+vc01v/ehML4FvS4/n3pLv6ElW741XRE/vI5Bvz7pRL53JiA/au84v/XTK76+uSs/Zbs5vzGDc74QVCU/Tuoov7DZkL5aNTI/V15rv4V3jb5jT48+8S8pv+kFX74W2zc/arhfv05Jrr5jqrG+8upev099m77x+8W+EZ1Pv+HI1L7Q1tK+qQNZvxmO176JOaW+YstQvyBUE7/3WXU9KsVNv/u7BL83WZU+ljpCv7cZEr8R0qA+b11dv82//b4+Hqe9OYRbvxiW/74+Lf89lCxzv3oNj75Wdg++P5h4v9f2wjyxS3M+MD1Iv/Hf+r0bYxw/FcvWvgQnZ78wFr+931oyv/k8K7/StYQ+u8U/vybuHL+okIA+Q8Yev3ibR79E7a89du4+v7gQXL7laSE/0Jgtv7bFYL7UjzM/O2s9v4gX6r3XtCk/hR5Bv8JaPr7uKyE/wNNKv1Ws+r7uaro+NrtZv9ievr78Nb4+0Ml8v6M9Hz4ieeC8iEx3v3glRj4EhC8+3blPv4GtnL30VBQ/CW1Ev1J6lL3tHiM/krWEvopgc7++Yi6+w89Fv9/1aL60tBc/hmo7v2f+Mr6PjCg/f89WvwrYob7UqeI+wM5KvwO6nL41JQc/JGdPv0SU8L7lcrM+BhFIv4TE4r7C+eA+aL1Ev2HXFL8Gwog+PxtsP0rDwj7xFIw9QK1nP8I31j4L5p095xVzPyIXnT4w7IQ9v17vPguOWz+eWVs+ls79Pu7qVz/cE1Q+y8O8PrzyaD+eckI+c2pYPxvBBj9UKLo9U6VdP265/D48JKg9xTdDP6+UIT+LMhE+lD85Pz6tLT9K8wE+u+IpP9inOT+T6Ds+CmwfP6oqQD8cA2I+nlB1P4LKjj5j0IA9twB7PydrOD53laE9abN5P5z9VD42tZU9zSB5P1jwXz7H1ZI9z3Z+P4p80D0O1yM9/Fx+Pyj40z0Uuzi9YXR+P2o/4D1BF+I7/Fx+Pyj40z0Uuzi9J1x8PwaWED64kbq9B1p6P4+STz4N2069YXR+P2o/4D1BF+I7lLt9P58PYD2h0fe9dvp9P0C3UT0of+q93rV9P0A/gryMrAe+obl7P19JHT6S4se9PmGdvp+W6L4WDla/e5nbvj3Gfr4rUF6/QzbPvoGUmL5kUV2/SqurvgrR3r5y6FW/lsAsvoMWG79FC0e/1QANvuBIHb9a4ka/ZfWoveecML8YHTi/QgiKvV+QPb/9Liu/xspDvXp4TL8njRm/ct01vaFpUL/kORS/cqLWvIoDWr/DBAa//ZP2vKeMWL/EUQi/A+PHO/28ZL/o4+W+mMvWvpAnZ7824r69/rSEvnpfc78xfC6+zwFKvwrphr54DQ4/oGc1vwdKnb4znSI/Jd01vwUCvL4gtBk/39g9vxaxzr68KQk/mB4Ev48w972lFVk/Vd9fv266CT6pl+4+hGFrvy/fiz5qyZA+aKXyvr5D4L0CrV+/4XHsvkbCF74D4F+/Efb5vp3UGr16NV+/iVD6vqu0Jr2RE1+/Spv7vpn9Kb38s16//P2HPCrw6ztF9X+/1pAPvleTqbyGan2/8jkAv3ZCC7ydj12/MzdBP5I8Er3WsCe/BTpBP785Er2ZrSe/CDJTP15bjzx9nBC/PFYNP/gXlT3roVS/WCyHPGup6Dtt9X+/iqoPvruSqbydaX2/z3dcPzsmkz6Voda+twpyP2xlVT59JoC+81JCP4okUz5REx6/aT08Px/hnD4pwRq/4/huP0h8nz5A9jW+qz5zPxnamT5Vxqm97hFlPzn1yj6sVFK+4jFoP6gmsz4Y7W++pdxZP+Gu6T5R+IS+OYRVP9CR9T5RlIu+1pdMP4uMCD+u342+8f5JvyDnhr4CEg4/Zbs5vzGDc74QVCU/9y83v3DFab5kASk/F0dFv87xNL6GwBw/gsdGvzzpc77OWBU/8+tNv6NYtb7oN/Q+nOdlv/9AXL5jcsQ+eLJMv4e0t70wAxg/QydQv8iser3AMhQ/hE5vvlpUwTsX6Hi/hE5vvlpUwTsX6Hi/v48Bv+KVsjwauVy/Ku9rvMVEmr5BE3S/mYfaPfb4pL5wzXC/uz1GPDZusL4CTXC/mTGZPhUWjL7EA2q/BtiQPmfhKb5y13G/Iek7P4YdYj8tBz4/wqNZPxbbQD//FFo/xv0/PxJqYj+xhj8/l1hpP0loOz9kXGk/EktCPx+TeD+xNEQ/5Al4P6VrRj+Mu30/KLg8PxCLcD8D0EA/zqpvP//pQj/K83Q/9kNAP/zIdT88MUM/kE5NP0T4Pz+caWI/Cd5AP6wUWj/iAD4/SKhZP4HqOz8+GmI/iGk7PzVTaT+2hT8/plhpP7mrQz98unY/ym9BPw5qdz9lckY/AMR9P5LOQD/irW8/r7Q8P7qDcD/CMUM/e09NP3dLMj8sCWA+mdM5Pwg6Sj5wtj0/XB9mPsISNz98fng+oaBAP/ZDlD5hUjw/DJiYPgg9Oz8+sIs+0XpAP7KBhD4iby0/dF1IPsAkKT+I4TM+YXEwP/h7GT4wKjU/ZNIvPmsMIj/YGho+8DYjP8g32z1WmTk/jG/APvpiOz8yVbA+SyA9P0QusD4x0JU9nObVPjS/mj18Qcs+QBaiPR7GzD6eDDI/MKfEPkCJLz/GFcc+yF8uP8CdvD5f0TE/2v+4PsbdLD9Ih9c+IXMtP55e0T6EDzE/HAfOPhtoNj8qycI+G2g2PyrJwj6EDzE/HAfOPp4MMj8wp8Q+orM0P6zfzD7E6y4/cEnWPnglMT9cF9Y+Afm6PqQ0Wz4m+8c+WERdPqQAyT6YMYU+y7u6PuxSgz6TNco+OJ63PgH2yT4MVak+gVnZPjBjqj4IPtY+6Gy5Pkfk0z6Ev8c+3JzKPrZnxj72luo+WFHDPgso5D6oc8U+uf7dPiwsuD4/Auc+pBK2PiBd9D5UMd0+jGXqPpDe0D75gu4+CJrPPnWvuz6wXKc+niS9PhRStj45ub8+2H/FPuf8zD6gg94+4NnGPkCB3z4Xf8M+GETUPsKlyz4w2tM+b/yzPkwzxT72XbE+TJG0Pgu0wz4ovd8+nRG9PmjU1D678Os+3Ge1PnOC7j4mq8I+IejwPpAOzz6/06w+nn6APsoVrj7AJFU+MleuPpBGpT78ibI+xEbRPncxrT4qb88+PtCqPnS0wj6Zg7A+1ATpPiBDrz5syN8+E2OxPmxf4D5l/tE+1PkwPq5m1T4kEC8+Rx3dPryvWj5PdNU+mLJcPvCFoT4E/0s+OpWoPlAYIj4Pl6Q+VKhOPq8I/j0gA7E++MPPPYA/vD7hRb894Cq3PlEw4z2uD6s+zciAPSCwyj4HP5E9zjfKPjHQlT2c5tU+Bz+RPc43yj5qhuQ+vBqoPtY4yz7kh+o+oZ/JPmQJmz77rtg+3IeEPs082T5YVpo+yO66PkQemT7y6qw+sHyWPuaRpz76DbM+OxmkPiamoz7xZR4/zEyhPiSAFz86dqA+ARUaP3hOkz5Fn58+jDJ7PnLfoj6Y0no+pKqZPuiJdz4hIaI+6umTPtDUmz6QD5I+ZhGiPkI/sz5CQJ4+INOiPvJhpj7KT8I+paKpPmiUzj6UbK0+WF3fPkJArj6sitg+2oyrPtrG1z6d9bE+lrHZPvUOxz7U1DI+QWTRPhyW3j4zU9I+mPjTPvhvzj6Grek+yofQPqru6T4j+M8+4GHyPv578D6EliU+3Vz8PjDVHD6QhQQ/CFQ/Pge0/D7gYUo+f6LiPqgJKz7WAO0+cJlTPhCv4z4kaoI+4NrpPoBrpz532OQ+XDiYPgUZ6T68BJc+vd8UPx79hz7RWBM/DFWZPoF7Dj8+BZA+JAkKP9pXhj5uFQQ/KABvPovhCj84OGE+KTwQP3CJfD6ez+g+ZOOBPuDX+D7At3k+T3XwPuQnlT7bT/Y+bHOTPgUZ6T68BJc+jDEIPzS7lj5LzQI/VtiMPpRsjT5EN5s+fzKWPgzrnj7gMJE+7LipPh/ziT7o16Y+vw+HPszmsT7isIw+5NOzPoaNgj5k3so+BdyDPkw1yz4i/4Q+CMHSPogwfj6cGLo+0a+FPhITvD7tuYQ+xKDEPoi9gD4gkMM+0NSbPpAPkj7675E+4F2OPuHxhT66uss+8j+JPpAzvT7HDYc+hCLFPq1rLD8SobE+CfovP5IIrT7rNzc/SBW1PhyWNj9kOKY+YTYdPy6tjj6o4iI/LEmGPrwDKD9q+ZE+51MjP14QmT7xERk/oAxlPrTLEz/MZXM+r84NP+zAWT7dDBM/iGBMPvX2Fz9o/II+s7IdP7wfdz6Z1Cw/qCOgPpcfMD/ulIY+rWs0PxjMlz7lJSc/yG1bPvg0Iz+QIUc+fAzGPrhxCz45Qs4+cFgKPkIy2z6wNwk+Pr2cPmCEED71E6Y+0D/hPSY4rT7QKPY9LemwPgDFwT1YAa4+qBGzPVkZKT80/bI+NsshPwCxrT5UqxM//JWmPhCxDT/k8p8+uaooP4R+pj5uhis/RIBzPqiPAD80Shc+4UAEP3SwDj6Wzgs/qAIuPtNMBz80uTg+XHIcPui+pD6tTAg+ho6dPr8NoT4AEH49ISCXPrAGjz3ik5Y+4GkrPZBnpz6wvQ89JICbPsDpvT0ldqU+CJqWPQ6/Gz5qL5I+lQ42PtBFmz5x4ms9RPpdPrFNmj3I4EA+BhHJPeRgVj6d85M9DO1sPl8ktDxqhbE+EsKjPEjVpj4A4cM84AqoPhFW4zyA7J0+kKSkPLr1mj5IG8c88IGNPv88DT007ZI+r10aPfShez4+P0w92E6EPgvV7T14aoY+D14LPpjsbz5sBc09qKCSPr1Riz3yB4s+NxurPeiNcz7lm209+iibPoQNrz0YXqE+KZNaPSJtqz46z5g9ur6vPsjuuj48SzA+z/OvPsj+KT6SXrw+YC4JPurpsz6s/wM+K9u3PoDm0z0PnbY+YON6PUHwsD4AUlQ9MVy9PpDW2D0sYcU+sAvfPWGIvD7wYY89IH/JPriS3T3KWNQ+uFHaPZIA6j5oMfg9I0DfPljswD1wW8M+CAuOPchbzj5Q+7Q9ahK8PqApAj1Ia7w+IAFVPXJUyT6gC2w9nrYGP+i4mj1Kswk/MJljPaVnFj+Qfps9n5EQP9Doxz1F9Ps+INnjPZJAAz+4L8A9RgwLPxD38T0JpQ8/lO4ePmE4Ez8wkRI+t+sZP/B+/D37KfE+SKr0PWO+7z7oKrY9jGj7PmBceD1xqv0+kFYuPd/83j6I2ZI9EDvjPqCUiT1L5eU+oFy8PYcY9z5IA5g9xejIPtBxOD3G3eg+4GRiPflp7D5AVBM93v/XPqDGBD1oVdg+wOVpPd4y1T4QX5c9hnLKPpA8CT0xe4E++riGPqabhD7ULIg+z4WBPqCulj4ldn0+Yp6VPveQMD6ARYY+j25UPjgzkj6Lh3c+6JmGPjaahz5sDWs+NpqHPmwNaz4xe4E++riGPo0IVj4wmpU+mGx8PrSQkD7cSWQ+2L6YPjS6Gz8c1C4+pyMsPyCh3j43jvg9Ha90P7vxrj3fNnc/KxLzPU8xcj/Aszk/5q2yPvpiOz8yVbA+Vpk5P4xvwD6r0DQ/LG6UPrCONz/yQZ8+GJi1PVj7wz70+ag9GI/CPlUXkD0Qw74+chdhPagVvj6XyfA9AA4qPu24AT4I9zM+VReQPRDDvj46z5g9ur6vPoQNrz0YXqE+F2YhPmzwTj6ISnM+lEaEPqeTTD6kqW4+HQhkPpD4Sj4kDT4+ABItPjLHYj54+As+o2OBPrT8Ij4mGI4+GNr5Pbx1hj7oUK09OZqTPhirOD72lT8/3nahPhhfPD8cmKQ+8Bk5P3gSqT79Sqc9hH9xPr1Riz3yB4s+5ZttPfoomz5d/oM9bI6LPhZuwT4wvuA+DFi6PpQO1j4GbbU+dPzLPkbP3T5QFbs+CD7WPuhsuT6E2Nk+Mo7JPkfk0z6Ev8c+mKLcPsIytj4qq9E+wI/qPiqr0T7Aj+o+I/jPPuBh8j7Kh9A+qu7pPiP4zz7gYfI+yk/KPoz/6z7BysE+qDnhPjNT0j6Y+NM+t7jWPhQc1j6pMtQ+UG3gPtMuBj7IeGQ/yXcJPkU7Zj/vHOo9ryFkP7TI9j0xRGY/0A0NPhVkZz+4zt89veNgP/zg3D31FF0/qp4MPlveXD8a3AY+KnNfPwdB5z1I/lQ/nUjwPZQuVT9GzuI9cUlZP0t4Ej4UlE4/mpQSPveDUT/ryPE9Wg1RPxlw9j3GY04/68jxPVoNUT9VF9A9EItQPwdB5z1I/lQ/1PDNPU0gVD9v9NE9orJNP6wCBT7L1Wc/fjf9PVytXz8TtQQ+jhdiPyI17T0qqV8//pxCPSTwcz/PS0U9v2RzPzylQz2PRXo/OIHpPHaCZT/u0Zs8GithP/YkMDxDWF0//DTuPN9EZD/X+iI9xa5pP8y2Ez2mKWo/ABoFPmj9YT/8GDM96fJuP82uOz0Fl24/h8OyPUw0TD8Sh6w9oNdPPw6hqj1+qVM/s+qzPa3rVz8sLNg9mv9XPytp5T3aFFs/TijEPZQRWz/GptU9YWBdP3U98T1jf10/ZBRdPsJXVz/UwmM+ZXJXPyLHYT7e4Vk/vd5aPsrCWT9nnF4+gkNcP7L4WD5GTVw/sGJXPuF5Xj/yAFs++kteP4orVT7vl2A/9tJ8Psu6WT/nNnE+MSNXP0c2gD6cI1c/xn5wPvVYXD9Hn10+MWFcP5RQXT6b8lk/9ppePnlHVD/YqXA+elJUP2QUXT7CV1c/CMpVPncWXj+wYlc+4XleP4orVT7vl2A/svhYPkZNXD8RLlY+uuxbP6yuVj6RmVk/vd5aPsrCWT8GbbU+dPzLPvyJsj7ERtE+b/yzPkwzxT7/BrU+ENTRPu8eeD5PNVw/YAF0PhgbXj9ZTrI+NO/gPpmDsD7UBOk+E2OxPmxf4D5cd7M+elbaPp31sT6Wsdk+rMtcPsYHYj96DGA+j1ZiP8wBXD7KYWM/LXdrPrLTXj/vwF0+G39ePzF+XT4YRGA/0zVmPnaNYD9oq1c+vzJXP6rpVz4ydFQ/nYxwPhflWT/ryfw8+Ni9Pq3d9jwEPsc+aFriPITMvT6jyQU9tteyPquz2jyqgLM+e77mPKgAqD6yoRs9IOqmPnizRj1aoZg+5/wUPQLwlz6EE7Q+0p9nP7OeuT6kDGg/Kk2zPqMpaj8HdrU+KnlkP5HLvD7It2Q/kcu8Psi3ZD8I51M9gseHPg/QfT3w24g+OYyjPtNPbz+bP6U+wMBvP1R2oT5DSHE/lH6IPkCKWj+7ooM+C+1aP9zFgj4tC1k/fyiJPrmJWD+b1oQ+tDdfP8H2hT6iH18/pOiEPnhxYD8V7IE+8AJXP6WeiT63XFY/RayHPoNXXD/XyoY+3OhdP3C2hD6BD14/lU2EPtSjXD+77KM+miZoPxfbrz7neWg/NS2sPiHfaz/Z86Q+QUprP/R1lD6Z7lo/nz2TPqppVD+LPZs+BFNUP8eymj40XFo/piCYPkcKYD+uNZY+JGleP4GenD6XAl4/6umbPtQDYj834BM+8phVPyWuIz7m6VQ/O/wlPq4SWD+ESCY+Gx9RP5J5qD7FIW4/7n6kPoiFbT80xLM+GHldP955sT62TVk/XXu1PrvPYD/h8LI+iMpkP/uBoT74EGU/4fCyPojKZD8Rxhs/2JqlPtKnGT/wKqs+tK/8Pm5SoT4/GvY+YLWiPqCmAj9i3K0+cocFP7Rctj76DgI/NN62PoVg/T7U864+l6oIP7DtxT6azAg/SuzCPqmhDT/kasw+Pxr2PmC1oj6FYP0+1POuPtMv+T6swLA+sMvwPqyOpD76DgI/NN62PvjGAD9i2Lk+mswIP0rswj4/qQo/hGLDPqmhDT/kasw+B3a1Pip5ZD/1fL4+TgNhP51I8D2ULlU/PdcnPgQBTj+XAiI+NJgWPqjTcD7nf18/wgluPuCkYD8eZGs+0K9gP92FbD4ek18/MhpuPlEoXj+1+Gk+yhBiP2NFBT8w8Lw+NKIEP6ROwD5jRQU/MPC8Pl7bBz/sprw+9SwYPijs2z2mYM09MD8XPkbO4j1xSVk/T65JPqgy7D1IwwE/gnOePgteED8iUK0+tmUIP4RDpz4GuCA/6NOyPqN1GD/4D7E+Ecf6PVJGTD+AnxE+PUNMP6n31D3wTUs/9E26PQQVST81QCk+JbJLP2xaWT5QHMc9w/NSPrBFiz3YuYE+gMJZPcmrTz9InLU9Hy1WP3BZpT2Ivk8/sPrDPffpRD9A+q09uJBDPyglxD3+1Ts/AM+9PWmrPj948Z49VOQ0P9A0YT3OpTA/sJWQPaWjLD8wDXU9YvgwP0B+Nj3Jq08/SJy1PWoUSj/g0b893epJPyj5sT1n8U4/oE2uPbiQQz8oJcQ9ahRKP+DRvz3u6kk/YJnXPag0Qj+g4eY9xEMgPwDVOD1iTiQ/oLX3PC4BKD/Yp5w9yQM5P7AD5z33dTA/cFfPPfinND9QpaY9/tU7PwDPvT3OpTA/sJWQPZI7LD/o/7U9UG0oPyC+kzz4pzQ/UKWmPVfQOD8w9oU9Hy1WP3BZpT2oxeA8ZR1iPx4XFT07fl8/JT8iPYxnYD/DKEg9mPFSP5KzkD3kfFE/u9KSPSv6Uz/5SEo95C9VP7Dniz3kMFg/JsVHPZNWWD/+8HM9xvFbP6EsPD0nXFs/6C5JPZufXj8g8Ss9EYpdP3SaRT7oNZ09RKhSPfQb/j7vy5k8+kf/Pii6rjyYi+A+gGZQPTT83z4HREg9GMcMP/ePhTzUgQw/lEyOPYWKGT+ZfzQ9WiwZP2oyoz2aIws/ev60PAspMz8GuKA81yUuP0ZFHD3Y8i4/yxIdPXl0Mz8B3y09AmM9P2b1Tj2hzEY/JPAHPcuRPT83bNs8gQk4P97oIz2gODg/PE0mPQjMIz8HI3Y9Q2QkP4JTXz19Ays/qFMePbB0Kj+Vfbc9wvzdPihlsj2EXPk+r0B0PNI1Fz+q8VI9ss8vP4HrSj0jMjQ/sDlHPYI2OT/Qt0U9NDA+PwHfLT0CYz0/1T+IPK4jIj/3zJI8RTwpPz2c2D5gM1g/KxTRPsUgUD+SXdk+K85QP8771z7bXl4/Ub7IPhgJXT9eS8g+2QpWP4s21z4udmM/qdvJPs7/Yz842NM+ADxuP/K20j43jnA/B37MPhCycD84Z8w+JaNuPx3lyD5gOnk/j47LPtpYdT+V084+7Ex1P9IdzD7MCHM/JQbRPvbIcj/mydU+tp9oP1JDyz5nOGk/uhPMPvZebD9dw9Q+kfJrP4RngT46iVQ/CEyJPtHkUz/iVzw+2/1SPwaFMT7JzFU/jBVFPtbHTz849kw+FHZRPzj2TD4UdlE/e6RBPmYVUj+sWDw+yehQPyqnLT4RYlI/+SwvPnm+Uj9u3yM+TilTP05DJD7YZVg/4ls4Pjp0Uj8ceDU+5q5RP5p7SD55S00/SdlCPpktUT+mtlQ+cI5OP0NTFj5iElo/N+ATPvKYVT87/CU+rhJYP0NTFj5iElo/Q1MWPmISWj+dSPA9lC5VPzfgEz7ymFU/pyMsPyCh3j6uRxE+4cNoPzV/UD+wW4Q+AhBTP1RcdT4PY1Y/8H93Pg9jVj/wf3c+/WhUPygFhT5mhFc/BHgrPjM0Vj+A3P49EK5YP1z5LD7xuFQ/4J9iPkBqVz9MO2U+PsxWPzyYnD7wplc/RPKlPgg5Uz/sS6Y+tklRP9yKnT785Fg/gMGuPpoFVj+cF68+8G1aPz4juT7K+1g/qP+EPvioVz+wv4w+PUVSP1iFjT5qFVE/bBuWPpm3Vj+ygZQ+Cg9WP9AARz7I0lc/eJ5IPvSHVj8ceis+ZoRXPwR4Kz7bGVo/tJV3PtsZWj+0lXc+D2NWP/B/dz5Aalc/TDtlPiReWj8UnWU+XfpPP+AUpj4bEE0/JCiePvAWVD/I6q4+VtNNP3TQjT7pgEw/vAyXPsjSVz94nkg+IcxZP5SeST4zNFY/gNz+Pa2ISj6KBmk/EW5SPjnFaj9a8EI+ETpsP1X2PT7eWmo/qdw0PlyQYT+HpTE+aeRbP/gcOD5mEmE/aJE9PlotZD9cWDc+jQ1lP5J5RD7YKGc/+Kk6PoFeaD+Halo+uHRsP97kRz4xtW0/zsVfPgxYbj+o/Es+QEtvPwRxTj6pFnE/uvdgPnL9bz8S210+djhyP1nBTz6BX3M/G4FYPiHNdD/yRFA+Q511P0XzUD4CSXg/9MJdP1x1HT9d3Vk/EbcOP24zZT//zxE/dslvP2gzdD+JPXE/8JdyPwVSdj9LhHU/ezN2PxZtdj9diGk/SKhxP88RbT9ClG8/huVXP+utZT+AC1I/7l9dP+T5XD80+Fs/CeJgP1lBYz89J2U/kEtoP2lSXj/Qf2s/j1NkP19Ebz9KJGk/IEJsP6rWWj/7MFI/paRPP9vEUT8vak8/0yNFP2TmWj9ypUY/e7wgPz27UD+WdiY/LCtVPx7/IT8cfls/hPMdP30JWT8lzSs/OUJOP2cPJD/LPEk/I2UbP7PSTD9eExo/cm9WP4+nHT+V1kM/YCD4PqfqLj/ZsOY+Di80P/WB3D4axCs/XcXqPspQJT9b09Q+7Ns5P8lYzT4a3zM/aqbLPpzeQT+Y3bs+kYxAP3xFxz6iYT0/3/jCPqhyOj9cHts+lGxBP94d8T4wgz0/OC0EPxRBOD/oaHE/xMbcPiUEcz/UhtM+9TB4P3wJ1T4WM3Y/BFHfPuj2ej9yUOI+a0h8Pwaf1j5RMm0/0jTwPoSfaD9UEuk+EqNvP5Cf5T4bTGc/wPHdPjTZZz/89dI+qdh0P3pu6T64AXs/VKHxPlZhcz9AqPM+ysRtP9PBLj8D7mE/DQAtPz2AaT/x1B8/fNJxP7HtID9Vh3Q/e8AIP1xyeD8XVgk/gV11P6GFFD9YxW8/ZvQTPwL1Oj+fdyc/LClDP0oNHT+Vn0w/ELIkP8R8RT9e8i8/XRY3PwGKDT+sxDA/YhAcP/uxLT9gxxc/L/clP/X2Cz9VwTA/ArsCP4+mPj8uxQU/4/pDP5HtDD+8ljw/TvAVPzHQOT+Gr/c+IENHP8z0+z6XdUs/0LQEP3FXQz+UKOs+IqpQP5wU7j7LTVQ/0GX6PoJUTj96buE+2A1fP9bE6j5+/Vw/OgPjPqhWWz+Y19k+DwkjP2lWIj+N8CY/1TwnP8ssMj+jBjM/UYc9PycHOz+TNSo/vxs+P0F+Jj9VlnA/kpQoP7E2aj/K+ik/5F9rP0voJj+8w2k/5/spP403ZT+oVic/BDFkPwDKJz+pwF0/GLErP/5hXz9ZFjA/17FhP3i5LD8BCGc/nX8jP4xMOD+c/Co/WP8rP3IUND/NTCA/uqRKP2XDEj8UBlE/zGIKP6ioEj8FblE/S5MOP2s6Wj9tVxA/AItQPxE2ID/ydwM/7iYsP7gZ9j4iUzY/dNTpPvfKQD9IHuA+aR1NP4p32D4Z5Fo/nBbUPrHC/T7ZJh0/iJwGP2/2Jz/DDVQ/NgIZP//MWD9g5AE/AmJiP3gN8j7n4Wg/pMVhP2U3Zz8e+lo/7bxtPwPdaj/VdXA/jEpuPyhFaz8y5mY/T893P3IqdT9I+Ho/kjt4PyQmdD8A23E/hestP0rTWD+85yg/jV1WP7Q6MT+MLFE/YaA4P76fRj9uixo/JNBAP1IsFz9ozz0/DeEcP+NwMj+OISA/24Y1PzGYMz/MdFs/X0U+PyKoSj+NCjg/foVUP82QRj/OEUE/nYJQP/g0Nz9iu1s/jngqP5fEVT+i7Ck/inRrP4eXBz/q7GA/OfIEP7+4aD8oePo+cJRwPyxs/j4+6Vw/mrM6P6N3Gj+ppBY/71UPP2rAID+v6wc/TboVP/XbEz/AlQw/aLAZP9rHLj//Axg/UkYsPyr/Dj8nzTI/zjV4P5q2/z7ZQHo//g8AP8CSFz+dE2c/g00ZPyxHZD/DSRo/KyNlP981GD81smM/gSEbP51XYD+Vthg/kNheP9S6HT+ygGE/EVITP21YRz8FiBY/8GpJPwNbaT+gNDw/9HBmP7b2Uj8QJGc/+RRIP/kw4z4XDFo/Me/xPkLtUz9divM++G9WP92z9j6Hokw/Gt4AP2YLRD/TTwQ/lGdGP2JK/D6iJk4/NsvtPqFMUz/sihE/AFc2P8k4Bj9sdzs/vvkJP38WPz8wnHM/9nqXPpp4bz+AtJc+mYJtP+DZhj7ninI/JA2GPqdaaz9O7Jk+QNtyP4KqqT7O/28/3C6sPhJPdj/csbg+Xfl0PxhBuz4uy3c/TDq6PiB8eD+uEsQ+x4BsP7BjYz6nk2g/DkqIPhoaZz9suWM+0jZyP+yCYT4VyGw/tJkzPsvWcj+4TTE+Qx1uP4gl/j3aj2g/IEf6PYiBaj+43Ys93A9wP+gHjj3FU2c/5EkyPjPAdT+AZKo+HlN3P/B5hT1sdnQ/yI/4PYOjFD5eY2M/qtUXPpDZZT/Vyw8+XvNmP5z4Cj6sxGQ/78sZPpeuaD/XaRQ+UXdpP3GpGj5+OWs/T1oYPhCUaz+N7Bo+zNRsPzLLDj5OkGA/m1QEPqE9Yj+s4Pc9lIVfP6CmBj4CuF0/lq+LPgBYZT8A/4Q+yRJlP/7Vgz6A6WA/jgeLPrJdYT+ug+M9ya5cP7q8+T02zlo/XlYvPkbaaj+RRjU+XhFsP4wVNT7DoGw/r7svPpw4bD8rFyo+jNhrP3tLKT7msmk/ldOOPkIGdj/HE5E+VVF0P3efmz6043Y/MCyXPpd0eD8fR5M+TzFyP7UZnz50QnQ/2JqVPrAebz+u8aE+kzpxP30kJT7/oms/FTkkPh7CaD9Fnow+EDt3P8Hgkj4ZZXk/lN6XPvegaz9weaQ+EMxtP0HzOT4172w/owSFPqSOXj8sYoA+QsZbP9O/jD7s3Fg/KLqOPlVdWz/mdJE+9MNgP2iRjT6NDGI//rSJPlbvYD86dpA+tmdeP/bskT6TyGI/0094PqexXT9AioI+Bl1eP14UhT7B8WA/umaCPnsjYj9Yy30+jt9fP00vcT4xw1o/u0KHPnzwYj+Ci4U+fLljP2QGij5e9WQ/otFtPrbbXj8teGE+qkhhPxyVWz4QWl8//fVqPpxjXD++aG8+go9hP3ujZj76CWM/9idxPr7vYz//6nE+N09lPyeibz6UvWU/paBrPuG4ZD/y0XI+UkRmP5BlYT59aVk/0qtRPpBmXD+eBnw+ASVZP+nvZT5gkmY/gZRoPgpmaD8fR2M+ODJnPwgEWj5Y22Q/US1iPvJcYz+JB2Q+sBRlP+APXz4VK2Y/EcZfPoFsYT+rzFQ+IT9jP6m/Tj7YZGE/dO5GPryzXj9Zw3U+6ERWPxFShz5trlI/fCuKPk+iVT+mJ2w+raZXP+Wacj5H6Vo/w54GP5VISj+iY/8+GmlRPyidFD/Xzzo/soEMPwWLQz+lLhk/3wpMP50tFD+2MFM/PPRtPgjJXj8abXU++tRdP+f/dT6MnWA/KCh1PpRqYz/iIHE+axFhP1TGHz5zhWs/RpkdPjbBZz8CKpw+rOZhPynrlz5nZWM/7xqUPvV1Yj8iqZU+hyZgP37Ikz6IXGQ/CD2jPqzIXD9ljJ8+kJlfPxZolz4vol0/oYSZPqaZWj9IwLg+sHReP73HsT4OL2Q/YkuvPvolYj+tFgg+lpNcP40q4z0IbFo//if/PRADWT/bo/c9jXBeP16Csz69bVo/MSewPtHbVz99CKo+mJtfP20cET4fWls/ChDFPd37Wz+5pws+/IxXP3CU3D2SQFc/QIT4PexLVj+pvQg+tFVVP/2jpz6mm2g/ZMqnPjAPaT9t/aQ+OYBqPwGnFz4QXGE/8ukRPkHlXz+vlxY+3WxfP4V3GT5ZJGE/E/AbPkZDYj+dTKw+oVlpP9v8pz56GGo/yy+rPtpWZz/1uao+aVZmPww6oT6+FGY/si+hPgJkaD8kuZw+ZSlpP/kxpj7GuWE/MLmhPoRmYz8WTKQ++pBjP0fjqD7OOGU/mtCkPnhCZz84o5Y+XMZlP8sTmD7ZwWQ/3PKZPp9aZT+ZS5o+61ZjP63anT7BgWQ/x0qsPlCoYz9QGBQ+GJhdP6mGDT5PXF4/EOutPmzOZT85naw+9IlkP5M3sD4aiWg/J4a0PhWLZz8T8Bs+RkNiP4V3GT5ZJGE/FEEcPkgVYT9t/aQ+OYBqP8kipT7EPmk//aOnPqabaD+vlxY+3WxfP7mqHD7uJ18/9bmqPmlWZj/JIqU+xD5pP13DpD6FKGc/UBgUPhiYXT9OnBw+PWVdP4IcpD6pQGU/OZ2sPvSJZD9ZNkM+yvNgP3k/Pj7pN18/kJ5CPlAZXz+eQzk+27RhP1JJPT4BpV0/KXg6Pu4kYj+WljE+WrthP1UxNT4icGA/wsIpPkg0YT8tQjE+lrReP+KuPj7wpWA/srg/PjP+YT/rjTo+KA1hP0xRlj4CZGQ/yxOYPtnBZD84o5Y+XMZlPyUHTD50fGA/h4pJPu1FXj9xrZY+kVRiP5lLmj7rVmM/eESVPhutYj+p2ZM+ZIphPyUHTD50fGA/nzshPgCNXj/zVi0+QEVdP9p0ND4MrVo/qtc9PrMpWz8z3Ts+hCtcP5ZfRj5Vplw/cLRDPjBiWz8CKpw+rOZhPx2TNT5d/l8/N409PmzsXj8YfCo+wcRbP20aKz7OSlo/u0ghPugSWj//lxs+1TxbP/+XGz7VPFs/QUocPtN5WD9tHBE+H1pbP/+XGz7VPFs/z9maPhTnZD8WTKQ++pBjPww6oT6+FGY/n8ibPqbuZj8yORU+MjtXP0FKHD7TeVg/JLmcPmUpaT+5pws+/IxXP843wj1kI1g/qb0IPrRVVT+BJhI+XhRVP14Spz3ZbFg/zjfCPWQjWD8KEMU93ftbP6geqT0l91s/TBqjPTS9VD/zyL89toBUP2L28j0CgFM/blDbPYXtUz9diwY+MRhTP12LBj4xGFM/I/UOPlu2Uj97Mn8+8rVjP6fnhT6AK2U/l5GCPswHaD9gIHg+x+ZmP2JLrz76JWI/+DWiPsBBYz/Cwik+SDRhPzNqHj6BQmE/uM0UPirmYD+4zRQ+KuZgP7jNFD4q5mA/9dcLPlVcYD//lxs+1TxbP5VJHT7ik2I/LUIxPpa0Xj8dkzU+Xf5fP4FDKD4EymI/+OEwPkaYYj/rjTo+KA1hP7n/OD6rIGI/srg/PjP+YT/5MaY+xrlhP9I1qz7Op1Y/u0ghPugSWj+dKp8+TMFSP58eKz6VLWo/G5woPkIFaz9s6SE+fIBqP3XHIj5szmk/XAJQPjHeXj8lB0w+dHxgP4eKST7tRV4/Xd1ZPxG3Dj/0wl0/XHUdP24zZT//zxE/SPh6P5I7eD/UC3I/Ci1zP87+cD82sXQ/zxFtP0KUbz9diGk/SKhxP+T5XD80+Fs/gAtSP+5fXT+G5Vc/661lPwniYD9ZQWM/aVJeP9B/az89J2U/kEtoP0okaT8gQmw/j1NkP19Ebz+H3lo/OGtMP2qHTz9YdEs/t2lQPyB9VT8Phls/TVNVP2TmWj9ypUY/L2pPP9MjRT+E8x0/fQlZPx7/IT8cfls/lnYmPywrVT97vCA/PbtQPyXNKz85Qk4/Zw8kP8s8ST9eExo/cm9WPyNlGz+z0kw/j6cdP5XWQz9gIPg+p+ouP9mw5j4OLzQ/yVjNPhrfMz9b09Q+7Ns5P5jduz6RjEA/aqbLPpzeQT98Rcc+omE9P9/4wj6ocjo/XB7bPpRsQT/eHfE+MIM9PzgtBD8UQTg/FjN2PwRR3z7oaHE/xMbcPuj2ej9yUOI+hJ9oP1QS6T5RMm0/0jTwPhKjbz+Qn+U+G0xnP8Dx3T6p2HQ/em7pPrgBez9UofE+VmFzP0Co8z7KxG0/08EuP3zScT+x7SA/PYBpP/HUHz8D7mE/DQAtP1jFbz9m9BM/gV11P6GFFD9ccng/F1YJP1WHdD97wAg/AvU6P593Jz/EfEU/XvIvP5WfTD8QsiQ/LClDP0oNHT+sxDA/YhAcP10WNz8Big0/+7EtP2DHFz9VwTA/ArsCPy/3JT/19gs/vJY8P07wFT/j+kM/ke0MP4+mPj8uxQU/MdA5P4av9z4gQ0c/zPT7Ppd1Sz/QtAQ/cVdDP5Qo6z7LTVQ/0GX6PiKqUD+cFO4+QE1FP7CO8z5+/Vw/OgPjPtgNXz/WxOo+glROP3pu4T6oVls/mNfZPo3wJj/VPCc/DwkjP2lWIj9Rhz0/Jwc7P8ssMj+jBjM/kzUqP78bPj+SlCg/sTZqP0F+Jj9VlnA/yvopP+Rfaz9L6CY/vMNpPxixKz/+YV8/AMonP6nAXT+oVic/BDFkP+f7KT+NN2U/eLksPwEIZz9ZFjA/17FhP51/Iz+MTDg/nPwqP1j/Kz9yFDQ/zUwgP7qkSj9lwxI/FAZRP8xiCj9Lkw4/azpaP6ioEj8FblE/bVcQPwCLUD+InAY/b/YnP8MNVD82Ahk//8xYP2DkAT8CYmI/eA3yPufhaD+kxWE/ZTdnPx76Wj/k+Vw/NPhbPwniYD9ZQWM/1XVwP4xKbj/tvG0/A91qPyhFaz8y5mY/PSdlP5BLaD+Y3HQ/TItyP7znKD+NXVY/hestP0rTWD+0OjE/jCxRP2GgOD++n0Y/bosaPyTQQD+OISA/24Y1Pw3hHD/jcDI/UiwXP2jPPT8xmDM/zHRbP40KOD9+hVQ/X0U+PyKoSj/NkEY/zhFBP52CUD/4NDc/YrtbP454Kj+XxFU/ouwpP4p0az+Hlwc/6uxgPznyBD+/uGg/KHj6PnCUcD8sbP4+PulcP5qzOj+jdxo/qaQWP+9VDz9qwCA//wMYP1JGLD9osBk/2scuPyr/Dj8nzTI/2UB6P/4PAD/ONXg/mrb/PoNNGT8sR2Q/wJIXP50TZz/DSRo/KyNlP981GD81smM/lbYYP5DYXj+BIRs/nVdgP9S6HT+ygGE/EVITP21YRz8FiBY/8GpJPwNbaT+gNDw/gspmP9aFTT8Phls/TVNVP46wZj83iFU/ECRnP/kUSD8x7/E+Qu1TP/kw4z4XDFo/XYrzPvhvVj9iSvw+oiZOP9NPBD+UZ0Y/Gt4AP2YLRD/ds/Y+h6JMPzbL7T6hTFM/7IoRPwBXNj/JOAY/bHc7P775CT9/Fj8/mYJtP+DZhj6aeG8/gLSXPjCccz/2epc+54pyPyQNhj4AAHQ/3BSvPoC2cT8oQKQ+AmJuP1TLpj6qnXE/hpKxPqdaaz9O7Jk+Ek92P9yxuD5d+XQ/GEG7Pi7Ldz9MOro+IHx4P64SxD6nk2g/DkqIPseAbD+wY2M+GhpnP2y5Yz4VyGw/tJkzPtI2cj/sgmE+y9ZyP7hNMT5DHW4/iCX+PdwPcD/oB449iIFqP7jdiz3aj2g/IEf6PcVTZz/kSTI+eAp1P4KrpD7edXY/oB2wPmx2dD/Ij/g9HlN3P/B5hT0gfHg/rhLEPqrVFz6Q2WU/g6MUPl5jYz+c+Ao+rMRkP9XLDz5e82Y/7zcaPm+PaT8xYBk+vM1nPyEBEz4Ks2g/jdIVPqw7aj9xqRo+fjlrP09aGD4QlGs/jewaPszUbD8yyw4+TpBgP5tUBD6hPWI/oKYGPgK4XT+s4Pc9lIVfPwD/hD7JEmU/lq+LPgBYZT+OB4s+sl1hP/7Vgz6A6WA/urz5PTbOWj+ug+M9ya5cPz2BMD5ZE2s/xNIwPitLbD9B8zk+Ne9sP3tLKT7msmk/KxcqPozYaz+V044+QgZ2PzAslz6XdHg/d5+bPrTjdj/HE5E+VVF0P/xwlD4AqHA/j5KSPq7fcj9g/J0+PRp1P7KFoD6CvnI/2JqVPrAebz+u8aE+kzpxPxU5JD4ewmg/fSQlPv+iaz9Fnow+EDt3P8Hgkj4ZZXk/cHmkPhDMbT+U3pc+96BrP6MEhT6kjl4/LGKAPkLGWz86dpA+tmdeP/60iT5W72A/aJGNPo0MYj/mdJE+9MNgP/bskT6TyGI/0094PqexXT9AioI+Bl1eP1jLfT6O318/umaCPnsjYj9eFIU+wfFgP00vcT4xw1o/gouFPny5Yz+7Qoc+fPBiP2QGij5e9WQ//fVqPpxjXD8clVs+EFpfPy14YT6qSGE/otFtPrbbXj97o2Y++gljP75obz6Cj2E/paBrPuG4ZD8nom8+lL1lP//qcT43T2U/9idxPr7vYz/y0XI+UkRmP5BlYT59aVk/0qtRPpBmXD+eBnw+ASVZP4GUaD4KZmg/6e9lPmCSZj8fR2M+ODJnPwgEWj5Y22Q/4A9fPhUrZj+JB2Q+sBRlP1EtYj7yXGM/q8xUPiE/Yz8Rxl8+gWxhP6m/Tj7YZGE/dO5GPryzXj9Zw3U+6ERWP6YnbD6tplc/pidsPq2mVz/lmnI+R+laP6Jj/z4aaVE/w54GP5VISj8onRQ/1886P7KBDD8Fi0M/pS4ZP98KTD+dLRQ/tjBTPzz0bT4IyV4/Gm11PvrUXT8oKHU+lGpjP+f/dT6MnWA/4iBxPmsRYT9Uxh8+c4VrP0aZHT42wWc/AiqcPqzmYT8p65c+Z2VjP37Ikz6IXGQ/ZYyfPpCZXz8IPaM+rMhcP73HsT4OL2Q/SMC4PrB0Xj9iS68++iViP/4n/z0QA1k/jSrjPQhsWj80Z+09TG5cP1bVAz5Sy1o/XoKzPr1tWj99CKo+mJtfPzEnsD7R21c/uacLPvyMVz8TYg4+jnNZPwoQxT3d+1s/26P3PY1wXj9AhPg97EtWP3CU3D2SQFc/qb0IPrRVVT9kyqc+MA9pP/2jpz6mm2g/bf2kPjmAaj+vlxY+3WxfP/LpET5B5V8/AacXPhBcYT+Fdxk+WSRhPxPwGz5GQ2I/yy+rPtpWZz/b/Kc+ehhqP51MrD6hWWk/9bmqPmlWZj+yL6E+AmRoPww6oT6+FGY/JLmcPmUpaT/5MaY+xrlhPzC5oT6EZmM/R+OoPs44ZT8WTKQ++pBjP5rQpD54Qmc/yxOYPtnBZD84o5Y+XMZlP9zymT6fWmU/rdqdPsGBZD+ZS5o+61ZjP8dKrD5QqGM/qYYNPk9cXj9QGBQ+GJhdPzmdrD70iWQ/EOutPmzOZT+TN7A+GoloP60WCD6Wk1w/bRwRPh9aWz8nhrQ+FYtnP4V3GT5ZJGE/E/AbPkZDYj8UQRw+SBVhP8kipT7EPmk/bf2kPjmAaj/9o6c+pptoP6+XFj7dbF8/uaocPu4nXz/1uao+aVZmP13DpD6FKGc/ySKlPsQ+aT9OnBw+PWVdP1AYFD4YmF0/ghykPqlAZT9dw6Q+hShnPzmdrD70iWQ/eT8+Puk3Xz9ZNkM+yvNgP5CeQj5QGV8/nkM5Ptu0YT9SST0+AaVdP5aWMT5au2E/KXg6Pu4kYj9VMTU+InBgPy1CMT6WtF4/wsIpPkg0YT+yuD8+M/5hP+KuPj7wpWA/6406PigNYT/LE5g+2cFkP0xRlj4CZGQ/OKOWPlzGZT8lB0w+dHxgP3Gtlj6RVGI/mUuaPutWYz94RJU+G61iP6nZkz5kimE/JQdMPnR8YD/zVi0+QEVdP587IT4AjV4/nzshPgCNXj+q1z0+sylbP9p0ND4MrVo/M907PoQrXD9SST0+AaVdPwIqnD6s5mE/HZM1Pl3+Xz83jT0+bOxePxh8Kj7BxFs/bRorPs5KWj//lxs+1TxbP7tIIT7oElo/QUocPtN5WD//lxs+1TxbP/+XGz7VPFs/bRwRPh9aWz8MOqE+vhRmPxZMpD76kGM/z9maPhTnZD+fyJs+pu5mP0FKHD7TeVg/MjkVPjI7Vz8kuZw+ZSlpP7mnCz78jFc/E2IOPo5zWT/ON8I9ZCNYP4EmEj5eFFU/qb0IPrRVVT9eEqc92WxYP6geqT0l91s/ChDFPd37Wz/ON8I9ZCNYP/PIvz22gFQ/TBqjPTS9VD9i9vI9AoBTP25Q2z2F7VM/XYsGPjEYUz8j9Q4+W7ZSP12LBj4xGFM/ezJ/PvK1Yz9gIHg+x+ZmP5eRgj7MB2g/p+eFPoArZT9iS68++iViP/g1oj7AQWM/M2oePoFCYT+4zRQ+KuZgP/XXCz5VXGA/9dcLPlVcYD+VSR0+4pNiP4FDKD4EymI/HZM1Pl3+Xz8tQjE+lrReP+uNOj4oDWE/+OEwPkaYYj+5/zg+qyBiP7K4Pz4z/mE/+TGmPsa5YT/SNas+zqdWP7tIIT7oElo/G5woPkIFaz+fHis+lS1qPyUHTD50fGA/XAJQPjHeXj+Hikk+7UVeP9Mt+z5HjgA/yCQDP5z7Az8b1O4+zLYPP+uo4j5wtAs/GXMHPxBC8D4NjAw/Wkr2PlggEj8EpeA+aVYWP5DQ5j4nMss+gbQXPzzc1j6Kdxw/4j7CPlwhKD+ci7c+sMAjP3IzpD7yCCo/yOysPuffHj92460+tf8tP/LNpj7J9Dc/HjOgPgIsNj86558+AoNIP+Tzoj7cDkE/oaCkPgdhQj+9/J4+VHBAP7ha1z55kAY/ODDxPrbW9z6VDQM/xMfnPiC4Dj9gDdg+HxDAPlIKEj8347Q+NgYxP6J6qz70Mjo/djW5PZbrXT83U6E9LNVdP0rvmz0Rx1o/Ft+wPeyJWj+oqcU9gEplP9UJqD2eKGU/ea2kPUoJYT9VL789dCZhP+eMyD2UbGk/2LmpPZZ7aT+bPMU9f3htP2IuqT00TG0/M4y7PSw/cD/iBKY9JfdvP8kfrD2EsHI/uwyfPddQcj9dwZY95jt0PwahnD1QbXQ/ZyuPPTaRdT/mysg+SnNPP/1Kpz2Ef3E+D4FTPrDinD4HKTg+bPGhPouHdz7omYY+iEpzPpRGhD42moc+bA1rPo0IVj4wmpU+j25UPjgzkj5hjBg+AdBsP6ImGj5/g24/GOuLPvjZaD4OFIA+XK2jPif3ez7gKq8+v50gP2QqnT7pDCA/aAWePgEVGj94TpM+fGUmP5z1qT6NCEY9TrNQP+6Ujj2g/04/ceJrPUT6XT6sWDw9GCNSPrFNmj3I4EA+r10aPfShez6x9+I8BP5wPkgbxzzwgY0+Zk+CPAgJiT6QpKQ8uvWaPhLCozxI1aY+x7yOPKYKpj5vZnQ87POYPl8ktDxqhbE+v50gP2QqnT58ZSY/nPWpPptaKj++TLQ+7X8sP7iVvj5Rgy0//grJPixigD5Cxls/owSFPqSOXj8sYoA+QsZbPyxigD5Cxls/LGKAPkLGWz9AioI+Bl1eP5l/JD7qdyU/ww0oPkNJLD+amD4+3gMsP//QPD4llSU/UU3pPT3HGz8H0O89m4IkP7NACz4ZZSU/xF4IPmBaHD//k/89QBgsP6Bt1T29HiQ/IHzoPV4wLD86VxQ+a9g3P1oPDz6jaTg/x9UoPnxlPj82rAk+eLMyPzKOAT4u4zI/XYvWPRghED9BvM49voMbP3dI8T35oxA/CAV1PlUXRD/C2mg+uURFP7FPgD4IIkc/3PWCPqpDRj8L7EE+oz4dP0YlJT6KzBw/UG4rPiicET826As+uD0RP7JLVD6a0kI/hXtlPrgeQT+uKAU+rUwEPxS06T3h6wM/1m82PvwSBT9WDBc+QqoEP+Z2Hz7y7/s+q1v9PQA38z7GUow+pRBIP9R9MD7DLTM/YvlDPmufMj8X1j0+LRY6PwQCHT4bvDM/aeItPkvNOj+nzE0+ahM/PyMWQT7h7z8/ntFGPnW9aD9QiUs+QNxlP1wCQD4EcGc/D19WPudWbD+ho1U+10FtP555WT7PaW4/WI9LPj3/aT8uPE8+8KZnP30GVD6x92o/c55RPhk3aT85gE4+pvJqPxgIUj50I2w/kuhFPvQVZD+vCTk+u3FmPwN3QD6UvGI/G585PiicYT/1DzI+RKVlP4i6Lz6oVWA/6UYoPtgPZT9XB3A+w/VoP+bOXD6lPWU/RpdXPgh2aD/It2c+8o5rP6KZdz4CoGY/mRBjPhy2YT9W01U+pnsFP8dnkj5FKhg/LqyDPkgxGD9OtIM+YHgdP4WUjz5ncR4/TWaMPt4dJT+GHIM+fLUjPw/ygj6iRik/PfCJPm/UKj+bO4I+JeYtPxKjhz4mUS8/XvGEPt7JMz+Pw4A+EP0yP3Jvfj6/Czc/vECBPpqOOD+3RXk+Gv08PxpuED66tSw/0ZQdPhUeOD/RPhY++QUzP9FAlD6PfxI/RDKEPtaOEj/I75U+wtwKPwbahT4z7Qo/Nh2JPk7sAT+kqZY+hd8BP3uIlj6WefM+PZ2LPvSG8z5L53M+qPxrPyldej4cs2w/zm+APppbaT9L53M+qPxrP2Yvez6sqGk/ll5rPuJ4bj+GWmM+/2twPyKraz5GW3E/jNlyPsqIbz/LZWM+wsFyPzqwXD5OrnE/QplWPtLgcj8tW1s+1bRzP3sWVD6KWHQ/ixlRPtC5cz80oUk+npV0PzQuDD6vWiU/7YIRPqyOLD8o9Eo+mPoRPwjKTT4DXzk/6IJaPvQ2Pj+amD4+3gMsP8MNKD5DSSw/mX8kPup3JT//0Dw+JZUlP7NACz4ZZSU/B9DvPZuCJD9RTek9PccbP8ReCD5gWhw/oG3VPb0eJD8H0O89m4IkP/+T/z1AGCw/IHzoPV4wLD9aDw8+o2k4PzpXFD5r2Dc/x9UoPnxlPj8yjgE+LuMyPzasCT54szI/QbzOPb6DGz9di9Y9GCEQP3dI8T35oxA/sU+APggiRz/C2mg+uURFPwgFdT5VF0Q/3PWCPqpDRj9GJSU+iswcPwvsQT6jPh0/NugLPrg9ET9Qbis+KJwRP7JLVD6a0kI/hXtlPrgeQT/qzP09UXgKP+3p5D0u+QY/E+8wPpNXCz9GehE+/vMKP8ZSjD6lEEg/1H0wPsMtMz9i+UM+a58yPwQCHT4bvDM/F9Y9Pi0WOj9p4i0+S806P6fMTT5qEz8/IxZBPuHvPz9QiUs+QNxlP57RRj51vWg/XAJAPgRwZz+ho1U+10FtPw9fVj7nVmw/nnlZPs9pbj8uPE8+8KZnP1iPSz49/2k/OYBOPqbyaj9znlE+GTdpP30GVD6x92o/GAhSPnQjbD+S6EU+9BVkPxufOT4onGE/A3dAPpS8Yj+vCTk+u3FmP/UPMj5EpWU/6UYoPtgPZT+Iui8+qFVgP0aXVz4Idmg/5s5cPqU9ZT9XB3A+w/VoP8i3Zz7yjms/opl3PgKgZj+/718+4HljP5kQYz4ctmE/fdBzPuLKZz9OtIM+YHgdPy6sgz5IMRg/x2eSPkUqGD+FlI8+Z3EeP01mjD7eHSU/hhyDPny1Iz8P8oI+okYpPz3wiT5v1Co/mzuCPiXmLT8So4c+JlEvP17xhD7eyTM/j8OAPhD9Mj9yb34+vws3P7xAgT6ajjg/t0V5Phr9PD8abhA+urUsP/+T/z1AGCw/0T4WPvkFMz/RlB0+FR44P+rM/T1ReAo/rigFPq1MBD+rW/09ADfzPkQyhD7WjhI/0UCUPo9/Ej8G2oU+M+0KP8jvlT7C3Ao/Nh2JPk7sAT+kqZY+hd8BPw+Zlj5SnPs+Ol2KPsiv+z78Pn8+ezFqP/w+fz57MWo/KV16PhyzbD9L53M+qPxrP0vncz6o/Gs/WYt3PqrSaj8iq2s+RltxP4ZaYz7/a3A/ll5rPuJ4bj+M2XI+yohvP8tlYz7CwXI/OrBcPk6ucT9CmVY+0uByPy1bWz7VtHM/exZUPopYdD+LGVE+0LlzPzShST6elXQ/7YIRPqyOLD80Lgw+r1olPyj0Sj6Y+hE/v2NQPh27Cz8Iyk0+A185P+iCWj70Nj4/boZ7Pizvoj5W01U+pnsFP9ZvNj78EgU/Zi97PqyoaT97iJY+lnnzPj2diz70hvM+wLhfPhCtTz/BtXE+HdJPP571Vz5YYU8/9yWCPpQnUD8J04k+ioJPPwIAAQAAAAMAAgAAAAQAAwAAAAUABAAAAAgABwAGAAsACgAJAAwACwAJAAkACgAEAAUACQAEAAEAAgANAAsADAAGAAcACwAGABAADwAOABEAEAAOABIAEQAOABMAEgAOABYAFQAUABgAFwAUABUAGAAUABgAEgATABcAGAATABAAGQAPABwAGwAaAB0AHAAaACAAHwAeACEAIAAeACQAIwAiACUAJAAiAB0AIAAhABwAHQAhACcAJgAkACMAJAAmACoAKQAoAC0ALAArADAALwAuADEAMAAuADQAMwAyADgANwA2ADYANwA5ADsAOQA6ADoAOQA3AD4APQA8AD8APgA8AEIAQQBAAEMAQgBAAEQAQwBAAEUARABAAEgARwBGAEkASABGAEwASwBKAEAAQQBNAE4AQABNAEUAQABOAE8ARQBOAFIAUQBQAFMAUgBQAFQATwBOAFUAVABOAFYAUQBSAFcAVgBSAFgASQBGAFkAWABGAEwASgBaAFIATwBUAFcAUgBUAFIAUwBFAE8AUgBFAFsAPwA8AFwAWwA8AE4ATQBdAFUATgBdAGAAXwBeAFQAYABeAGMAYgBhAGYAZQBkAGcAZgBkAGoAaQBoAG0AbABrAG4AbQBrAHEAcABvACsALAByAEkAcwBCAEgASQBCAFEAVgB0AHYAPgB1AHcAdgB1AHgAdQA+AD8AeAA+AFsAeQB4AD8AWwB4AFUAegBgAFQAVQBgAHsAegBVAF0AewBVAEYARwBLAEwARgBLAFoAWQBGAEwAWgBGAH4AfQB8AIAAagB/AGgAgQB/AGoAaAB/AH8AgwCCAIAAfwCCAFsAgACCAHkAWwCCAIUAhAB6AHsAhQB6AGAAegCEAIYAYACEAGAAhgCHAF8AYACHAGEAYgCIAFsAXABqAIAAWwBqAIcAigCJAF8AhwCJAIsAiQBiAGMAiwBiAGcAZACMAD0AZwCMAGcAPQA+AHYAZwA+AFMAUACNAI4AUwCNAI4ARABFAFMAjgBFAFAAUQB0AI8AUAB0AI0AUACPAJAAjQCPAI8AdACRAJEAkACPAJQAkwCSAJUAlACSAJYAZQBmAJcAlgBmAJYAlwCVAJIAlgCVAGYAZwB2AJgAZgB2AFgAmQBzAEkAWABzAJoAcwCZAJsAmgCZAHcAmgCYAHYAdwCYAJ0AfgCcAJ4AnQCcAKEAoACfAKIAoQCfAKEAlACVAKAAoQCVAJcAZgCjAKQAlwCjAKYAowClAKcApQCjAJgAmwCjAJcApACgAJUAlwCgAJ8AqQCoAJ4AnwCoAKwAqwCqAK0ArACqAKwArQCuAK8ArACuALIAsQCwALUAtACzALYAtQCzALcAfwCBALgAtwCBALIAuQCxALsAugC0ALUAuwC0ALwAMAAxAL0AvAAxAL0AMQC+AL8AvQC+AMIAwQDAAMMAwgDAAMYAxQDEAMcAxgDEAMQAxQDIAMkAxADIAMsAwgDKAMwAywDKAMQAyQDNAM4AxADNAGQA0ADPAIwAZADPANAAZABlAJYA0QDQAGUAlgDQANMA0gBpANQA0wBpANMA1ADVANYA0wDVAHwA2ADXANkAfQCdANoA2QCdAMIAwwDbAMoAwgDbAMIAywDcAMEAwgDcAN8A3gDdAOAA3wDdAMcA3wDgAMYAxwDgAG4AawDhAOIAbgDhAOUA5ADjAOUA4wDmAOcA0wDWAOgA5wDWAOoA6QDiAOEA6gDiAO0A7ADrAO4A7QDrAPEA8ADvAPQA8wDyAPUA9ADyAPcA9gD1APEA8gDzAPAA8QDzAPkA7QD4APwA+wD6APgA/AD6APoA+wD9AP4A+gD9AP4A/QD/AAAB/gD/AD0AjAABATwAPQABATwAAQECAVwAPAACAWoAXAACAWkAagACAQMBAQGMAM8AAwGMAAQBAgEBAQMBBAEBAdQABAEFAdUA1AAFAQIBBAHUAGkAAgHUANUABgHWANYABgEHAegA1gAHAQgBAwHPAAkBCAHPAAgBCgEFAQUBCgEGAdUABQEGAQMBCAEFAQQBAwEFAdAACwEJAc8A0AAJAdEADAELAdAA0QALAZMADQGSAJYAkgANAdEAlgANAdEADQEOAQwB0QAOAQgBCQEPAQoBCAEPAQkBCwEPARABCwEMARIBEQEHAQYBEgEHAQoBDwESAQoBEgEGAQ8BEwESARMBDwEQARYBFQEUARcBFgEUARoBGQEYAd4AGgEYARwBGgEbARcBHQEWAR8BHgEYASABFAEVASEBIAEVAR4B3QDeABgBHgHeAB8BIwEiASQBHwEiARkBJQEfARgBGQEfARMBJgERASEBKAEnASABIQEnAScBKAEpASoBJwEpASMBKgEiASYBEwErAQwBDgErARABDAErASwBJgEqASoBJgErASsBEwEQASYBLAERASoBIwEnAScBIwEfASUBJwEfASwBKgEpAS8BLgEtATABLwEtATIBMQHpAOoAMgHpADYBNQEzATgBMwE3ATkBOAE3ARoA3ADLAB0AGgDLACMAzgDNACIAIwDNACMAJgA6Ac4AIwA6AR0BHAE6ASYAHQE6AR0BFwEaARwBHQEaARoBFwEUARkBGgEUASUBGQEUASABJQEUASUBIAEnATIAOgA0ADsBOwA6ADgBNgEzAT4BPQE8Ab0AvwDMAMoAvQDMAL0AygDbALwAvQDbAEEBQAE/ASAAHQDLAEIBIADLAB8AIABCAUMBHwBCAUQBbABtAEUBRAFtAEYBAAH/AEcBRgH/AEQBRQEsAC0ARAEsAHAARgFHAW8AcABHAUkBSAHsAO0ASQHsAEoBcgAsAEUBSgEsAG0ASwFKAUUBbQBKAW0AbgBMAUsBbQBMAW4A4gD6AEwBbgD6AOkA+AD6AOIA6QD6APkA+AAxATEB+ADpAO0A+QBNAUkB7QBNAU8BTgE0AVABTwE0ATEBMgFOAU8BMQFOAU0B+QAxAU8BTQExAVEBTQFPAVABUQFPAVABUwFSAVEBUAFSAeQAVQFUAecA5ABUAdMA5wBUAdIA0wBUAVABNAFWAVMBUAFWAdIAVAFTAVYB0gBTAVQBUgFTATUAvgAxAC4ANQAxACkAKgBXAVgBKQBXAT8BQAFYAVkBPwFYAfwAWgH7AF0BXAFbAV8BXgFWAFcAXwFWAF8BVwBUAGABXwFUAEIAYgFhAWIBZAFjAWEBYgFjAUIAYQFlAWkBaAFmAXQAawFqAXQAVgBsAWsBdABsAW4BbQGNAG8BbgGNAG4BYwFkAW0BbgFkAWcBbwGNAJAAZwGNAHIBcQFwAXEBcgFzAXQBcQFzAXcBdgF1AXgBdwF1AXsBegF5AX4BfQF8AX8BfgF8AXkBegGAAYIBfgGBAYMBggGBAX8BhAGBAX4BfwGBAXMBhQF0AYgBhwGGAYsBigGJAY4BjQGMAY8BjgGMAYwBkQGQAY8BjAGQAXIBkgF1AXUBkgF4AZQBkwGJAYoBlAGJAYEBhAGVAZYBgQGVAZcBgwGBAZYBlwGBAYMBlwGYAZkBgwGYAZgBmwGaAZkBmAGaAYYBnQGcAYgBhgGcAaABnwGeAaEBoAGeAaIBoAGhAaMBogGhAaYBpQGkAaIBowGkAaUBogGkAakBqAGnAawBqwGqAagBrgGtAa8BqAGtAbIBsQGwAbUBtAGzAbYBtQGzAbABsQGzAbQBsAGzAbkBuAG3AbgBugG3AbwBuwGqAb8BvgG9Ab8BvQHAAcEBvwHAAcQBwwHCAcUBqgGrAcYBxQGrAcUBxgHHAcgBxQHHAcIBwwHIAccBwgHIAa8ByQG1AbYBrwG1Aa8BrQHKAckBrwHKAacBqgG7AaoBywGsAc4BzQHMAc4BzAHPAdABzgHPAc8B0gHRAdABzwHRAdEB0gHTAdQB0QHTAdcB1gHVAdYB2gHYAdUB1gHYAdMB3AHbAdQB0wHbAd8B3gHdAeIB4QHgAeMB4gHgAeYB5QHkAecB4gHjAegB5wHjAesB6gHpAewB6wHpAe8B7gHtAfAB7wHtAfMB8gHxAfQB8wHxAfcB9gH1AfgB9wH1AfEB9gH3AfQB8QH3AfsB+gH5AfkB+gH8AX0B+QH8Af0B7wHwAf4B/QHwAf4B3QHeAf0B/gHeAfQB9wH/AQAC9AH/Af8B9wH4AQEC/wH4AQMCAgIBAvgBAwIBAu0B7gEEAgMC7QEEAgYC2AAFAggCBwKmAKUACAKmAAsCCgIJAgwCCwIJAg8CDgINAhICEQIQAhMCEgIQAvcA7gDrAPYA9wDrAAgCpQCbABMCCAKbABUCFAIRAhICFQIRAgkCBwIIAgwCCQIIAhgCFwIWArAAsQC1ALYAsAC1ALkAuwC1ALEAuQC1AOoB6wHkAeUB6gHkAQECGQLZARoCAQLZAQECGgL/AacBqAHLAawBywGoAa8BrAGoAaoBpwHLAX0BfgEbAvkBfQEbAvwBHAJ8AX0B/AF8AVEBHQJJAU0BUQFJASACHwIeAiECIAIeAiICvAGqASMCHwIgAh8BJAEeARABDwELAWYAmACjAIUAewCCAIMAhQCCAIkAigCIAGIAiQCIAF4AXwCJAIsAXgCJAMABugG4AcEBwAG4ASECHgK8ASICIQK8ATMANAAvAC8ANAAuAK8ArgC0ALoArwC0AOAB4QHsAekB4AHsARUCJQIkAhQCFQIkAgoCCwImAicCCgImAiQCJQINAg4CJAINAicCJgIWAhcCJwIWAlgBVwEeAB8AWAEeAEMBWQFYAR8AQwFYAZABkQGTAZQBkAGTAZsBnAGdAZoBmwGdASkCHQIoAncBKgJ2AccAxADOADoBxwDOAB0CKwIoAkEAQgB3AHUAQQB3AHgATQBBAHUAeABBAHgAeQBdAE0AeABdAJoAdwBCAHMAmgBCAJsAmACaAIIAewBdAHkAggBdAKkApACjAKYAqQCjAKkALAKoAC4CLQLZANoALgLZAKAApACpAJ8AoACpAAYCLwLYAAYCMAIvAqkApgAsAiwCLgLaALgAqgCrAIMAuACrACUAIgAaABsAJQAaAKIAnwCeAJwAogCeAJ0AngCoANoAnQCoAMkAyADAAMEAyQDAAM0AyQDBANwAzQDBABoAIgDNANwAGgDNADECfwF8ATICMQJ8ATECMwKEAX8BMQKEATQClQGEATMCNAKEATUCMgJ8ARwCNQJ8ASwC2gCoAAUCfQDZAAYCBQLZAH4AnQB9AH0ABQJ8AAYC2QAtAjACBgItAi8C1wDYAHwABQLYAN4AGwEaAd4A3wAbAegA4wDkAOcA6ADkAOMA6AAHAVEBUgErAh0CUQErAjgCNwI2AlUBOAI2AuUAOAJVAeQA5QBVAUgBSQEdAh0BJwAWAScAHQEmADsCOgI5Aj4CPQI8Aj8CPgI8AkICQQJAAkMCQgJAAkYCRQJEAkcCRgJEAkoCSQJIAksCSgJIAkICTQJMAk4CQgJMAlECUAJPAlICUQJPAksCSAJSAk8CSwJSAk4CVAJTAkICTgJTAkkCSgI7AjkCSQI7AkUCRgI8Aj0CRQI8AlUCTQJCAkMCVQJCAj8CVwJWAj4CPwJWAlgCRwJEAlsCWgJZAl4CXQJcAl8CXgJcAmECYAJeAl8CYQJeAmICYAJhAmMCYgJhAmMCZQJkAmICYwJkAmQCZQJaAlsCZAJaAjYCUgFUAVUBNgJUAWYCKAIrAmkCaAJnAmoCaQJnAmgCbAJrAmcCaAJrAmsCbgJtAm8CawJtAnICcQJwAnMCcgJwAnYCdQJ0AncCdgJ0AngCdwJ0Am0CbgJ5AnoCbQJ5AnsCegJ5AnwCewJ5An4CfQJqAmcCfgJqAmsCbwJ+AmcCawJ+AmsCbAJuAm4CbAJ/AoECgAJyAnMCgQJyAoMCggJ4AoQCgwJ4AnkCbgJ/AoUCeQJ/AoUChgJ8AnkChQJ8AnUCgwJ0AokCiAKHAowCiwKKAocCjAKKAo4CjQKKAosCjgKKApECkAKPApICkQKPApUClAKTApcClgKUApUClwKUAo4CmQKYAo0CjgKYApgCmQKaApsCmAKaAhEB5gAHAeMABwHmAKkBnAKuAagBqQGuAecB6AGdApwC5wGdAp8CngL8AfoBnwL8AZ4CoAIcAvwBngIcAqQCowKhAqACpAKhAqcCpgKlAp8C+gGoAvoB+wGoAqoCqQKjAqQCqgKjAqkCqgKlAqYCqQKlAhwCrAKrAjUCHAKrAqICrQKrAqwCogKrAq4CGwIqAncBrgIqArECsAKvArQCswKyAjIAtQI6AIUBtgJ0AboCuAK3ArsCugK3Ar4CvQK8AroCwAK/ArgCugK/AsMCwgLBAsQCwwLBAsUCwgLDAsYCxQLDAsUCxgLHAskCyAK7AsoCyQK7AskCygLLAswCyQLLAsACzgLNAr8CwALNAssCxALBAswCywLBAs8CzQLOAtACzwLOArsCyALRAtMCuwLRAtIC1QLUArkC0gLUAtcC1gLDAsQC1wLDAtYC2ALGAsMC1gLGArcC2QLKArsCtwLKAsoC2QLaAssCygLaAtwC2wLUAtUC3ALUAtoC1wLEAssC2gLEAtwCvgK8AtsC3AK8At0CzwLQAsYC2ALHAuAC3wLeAuEC4ALeAuQC4wLiAuIC5gLlAuQC4gLlAugC5wLlAuYC6ALlAucC6ALhAt4C5wLhAukC3wLgAuoC6QLgAuoC7ALrAukC6gLrAusC7ALtAu4C6wLtAvAC7wLuAu0C8ALuAvIC8QLvAvAC8gLvAvIC8wLxAvYC9QL0AvkC+AL3AvoC+QL3AvgC/AL7AvcC+AL7Av8C/gL9AgAD/wL9AgEDAAP9AgIDAQP9AgMD+wL8AgQDAwP8Av4C/wIFAwYD/gIFAwcDBgMFAwgDBwMFAwsDCgMJAwwDCwMJAwkDCgMNAw4DCQMNAwwDCQMPAxADDAMPAw4DEQMPAwkDDgMPAxQDEwMSAxUDFAMSAxQDFwMWAxMDFAMWAxoDGQMYAxsDGQMaAxgDHAMWAxoDGAMWAxsDGgMWAxcDGwMWAxwDHQMTAxYDHAMTAxMDHQMeAxIDEwMeAyEDIAMfAyIDIQMfAyEDIgMjAyEDIwMkAycDJgMlAygDJwMfAykDKAMfAx8DJwMiAysDIwMqAycDJQMsAyoDJwMsAycDKgMiAy8DLgMtAzADLwMtAzMDMgMxAzQDMwMxAzQDLwMwAzMDNAMwAzcDNgM1AzgDNwM1AzsDOgM5AzkDPQM8AzsDOQM8Az8DPgM5A0ADPwM5A0EDPQM5Az4DQQM5Az8DQwNCAz4DPwNCAz4DQgNEA0EDPgNEA0UDQgNDA0YDRQNDA0cDRANCA0UDRwNCA0UDRgNIA0kDRQNIA0UDSQNKA0cDRQNKAzoDOwNLA0wDOgNLAzgDNQNNA04DOANNAw4DDQNPA1IDUQNQA1EDUwNQA1YDVQNUA1cDVgNUA1kDWANXA1QDWQNXA1oDEQMOA08DWgMOA1wDWwNNAzUDXANNA0ADXAM1AzYDQAM1A0ADNgNdAz8DQANdAz8DXQNeA0MDPwNeA2EDYANfA2IDPAM9A2MDYgM9A2QDYwM9A0EDZAM9A2UDZANBA0QDZQNBA2UDRANHA2YDZQNHA2cDZgNHA0oDZwNHAxIDaQNoAxUDEgNoA2oDXQM2AzcDagM2A2sDRgNDA14DawNDA2sDbANIA0YDawNIA/8CAANtA24D/wJtA28DBAP8AnADbwP8AgADAQNxA20DAANxA3MDcgP5AnAD/AL4AnQDcAP4AlUDUwNRA1QDVQNRA1kDVANRA1IDWQNRAw0DdgN1A3cDDQN1A3gDDQN3A3sDegN5A3wDewN5A1YDVwN1A3YDVgN1A1cDWAN9A3UDVwN9A04DTQNPA3gDTgNPA08DTQNbA1oDTwNbA1sDTAN8A38DfgN4A3cDfwN4A04DeAN+A4ADTgN+A4ADgQM4A04DgAM4A4MDggP0AjQD9gL0Ai8DNAP0AoQD9gI0AzEDhAM0A2oD9QJeA10DagNeA2sDXgP1AoUDawP1AmsDhQOGA2wDawOGA2oDNwODA/QCagODA/YChAOFA/UC9gKFA4YDhQOEA4cDhgOEA4MDNwM4A4EDgwM4A4gDLgODA4EDiAODAwcDCAOIA4EDBwOIAzwDiQNLAzsDPANLA2gDaQOKA4sDaAOKA2IDjAOJAzwDYgOJA0sDjgONA4kDjAOLA4oDiQOLA4oDjgNLA4kDigNLA44DigNpA48DjgNpA0gDKANJA0kDKANKAykDZwNKAygDSAMmA4cDJQOGAzIDkQOQAzEDMgOQA4QDMQOQA4cDhAOQAyUDhwMsA5ADkQMrAxIDHgOPA2kDEgOPA5QDkwOSA5MDlQOSA5YDDAMQA5cDlgMQAwsDDAOWA5gDCwOWA5YDlwOVA5MDlgOVA5YDkwOUA5gDlgOUA5kDYQNfA5oDmQNfA5oDeQOZA4gDmwMtAy4DiAMtA24DnAMFA/8CbgMFAwUDnAOdAwgDBQOdA/oCcwP5Ah8DIAMpAygDJgMnAyMDIgMqAw0DeANPAygDKQNKAyUDJgNsA0gDbAMmA50DmwOIAwgDnQOIA6ADnwOeA6MDogOhA6QDowOhA6EDpQOfA6QDoQOfA40DjgOPA6YDjQOPA6MDqAOnA6IDowOnA48DpwOoA6YDjwOoA3UDfQN/A3cDdQN/A5ADKwMsAywDhwOQA/QCggMvAy8DggMuA6sDqgOpA6wDqwOpA64DqgOtA68DrgOtA7ADrgOvA7EDsAOvA7MDsgOwA7YDtQO0A7QDtQOrA7gDtAO3A7kDuAO3A7wDuwO6A70DvAO6A7oDuwO+A7gDugO+A6oDqwO1A60DqgO1A6oDrgO/A6kDqgO/A7IDvwOuA7ADsgOuA7cDtAOsA6wDtAOrA74DtgO0A7gDvgO0A7oDwQPAA70DugPAA7kDwQO6A7gDuQO6A7MDsAOxA8QDwwPCA8UDxAPCA8cDxgPDA8QDxwPDA8kDyAPGA8cDyQPGA8oDyAPJA8UDwgPLA8wDxQPLA84DzQPMA8sDzgPMA9ED0APPA9ID0QPPA9MDzQPOA9QD0wPOA9cD1gPVA9gD1wPVA9UD2gPZA9gD1QPZA90D3APbA94D3QPbA98D3APdA+AD3wPdA+ID4QPfA+AD4gPfA+QD4wPZA9oD5APZA94D2wPlA+YD3gPlA+ID6APnA+ED4gPnA9YD1wPpA4YDJQNsA/QC9QJqA+wD6wPqA+0D7APqA/AD7wPuA/ED8APuA+8D8gPuA/QD6wPzA/cD9gP1A/QD9wP1A/QD8wP3A+sD+APzA/YD+gP5A/UD9gP5A/oD+wP5A/4D/QP8A/8D/gP8AwEEAAT8A/0DAQT8AwQEAwQCBAUEBAQCBAQEBgQDBAEEBQQCBAAEAQQCBP4D/wMHBAgE/gMHBOsDCQT4AwwECwQKBA8EDgQNBBAEDwQNBAwECgQPBBAEDAQPBBMEEgQRBP4DEwQRBBQEEwT+AwgEFAT+Aw0EDgQRBBIEDQQRBAkEFgQVBAkEFwQWBBgEBwT/AxkEGAT/AxgE+AMJBBUEGAQJBKQDGwQaBKMDpAMaBKQDnwOgAxsEpAOgA6YDHAR7A40DpgN7AxoEHQSoA6MDGgSoAxwEpgOoAx0EHASoA54DnwOlAx8EHgSaA18DHwSaA3wDeQMRA1oDfAMRA1sDfANaA3kDmgMeBBEDeQMeBF8DYAMfBBkE/wMgBCEEGQQgBCQEIwQiBCIEIQQgBCQEIgQgBCsDKgMsA0wDWwNcAzoDTANcA3sDTAONA3wDTAN7A40DTANLAzkDOgNAA0ADOgNcAwQDAQMCAwMDBAMCAwEDBANvA3EDAQNvAyUE4wPkAyYEJQTkAykEKAQnBCoEKQQnBCkEKwQoBC4ELQQsBC8ELgQsBDIEMQQwBDUENAQzBDMENAQ2BDIEMAQ3BCwEOQQ4BDIENwQ5BDMEOgQ1BDYENAQ7BDwENQQ6BD4EPQQ0BDUEPgQ0BDwEPwQ+BDUEPAQ+BEIEQQRABEUERARDBEYERQRDBEcERgRDBEEESQRIBEoEQQRIBEIESQRBBEAEQQRKBEsEQARKBE4ETQRMBFAETwQtBFIEUQRMBFMEUgRMBC0EJwRQBFYEVQRUBFAEJwRXBFgEUARXBFgEVwRVBFYEWARVBE8EUQRSBFkETwRSBE8EOQQsBC0ETwQsBDIEOQRPBFkEMgRPBEQERQRaBFsERARaBEsESgRcBF0ESwRcBEgEXgRcBEoESARcBFwEMQQyBF0EXAQyBFoEOgQzBFsEWgQzBF8EMQRcBF4EXwRcBGIEYQRgBGUEZARjBGYEYQRiBGcEZgRiBGQEZQRoBGoEaQRoBGcEbARrBGYEZwRrBG4EbQRqBGgEbgRqBHEEcARvBG8EcARyBHEEcwRwBHYEdQR0BHcEdQR2BHgEdwR2BHsEegR5BH4EfQR8BIAEcQR/BIIEgQR9BIEEfAR9BIMEfASBBIQEgwSBBHEEbwSFBHgEhwSGBHcEeASGBIoEiQSIBIoEcwSLBIwEigSLBHgEcwSKBIcEeASKBIEEggSNBHkEjwSOBHsEeQSOBHgEjgSPBHMEeASPBIgEkASKBJAEiASRBJAEhgSHBJUElASSBJAEkwSGBGwElwSWBGsEbASWBJoEmQSYBJsEmgSYBJMEnQScBJAEhwSKBJsEngSaBJwEnwSWBKAEOwQ0BD0EoAQ0BKEEnwScBKIEoQScBKUEpASjBKYEpQSjBKQEqASnBKMEpASnBD0EPgSpBKoEPQSpBKkEPgQ/BKsEqQQ/BKIErQSsBKEEogSsBLAErwSuBLEEsASuBEwETQRTBG0EbgSyBLMEbQSyBLUEtASGBLUEhgS2BLoEuQS4BIYEkwS3BL0EvAS7BL4EvQS7BMEEwAS/BL8EwAS9BL4EvwS9BMAEwQTCBJkEwwSYBDgEOQQ3BCwEOATEBMUEkASRBJwElgSXBMUEkwSQBO0D6gPwA/ED7QPwAwkE6wPsAxcECQTsAy0ELgQqBCcELQQqBMYELwQsBMQExgQsBHMEcQSABIsEcwSABMkEyATHBMoEyQTHBM0EzATLBNAEzwTOBNME0gTRBNQE0gTTBNUE1ATTBNgE1wTWBNkE2ATWBNsE2gTYBNkE2wTYBN0E3ATUBNUE3QTUBOAE3wTeBOEE4ATeBOME4gTeBN8E4wTeBOYE5QTkBOcE5gTkBOkE6ATmBOcE6QTmBOcE5ATqBOsE5wTqBOwE6QTnBOsE7ATnBBQDFQPtBO0E7gQUA/AE7wQUA+4E8AQUA/ME8gTxBPQE8wTxBPUE8gTzBPAE9QTzBPME9ATvBPAE8wTvBO4E9gT1BPAE7gT1BPcE9gTuBO0E9wTuBCADIQP4BPkEIAP4BCQD+gT4BCEDJAP4BP0E/AT7BP4E+QT9BCkD+QT+BPgE/wT9BPkE+AT9BP8E+AT6BAAF/wT6BP8EAQX8BP0E/wT8BAQFAwUCBQUFBAUCBQgFBwUGBQkFCAUGBQQFBgUHBQMFBAUHBQwFCwUKBQ0FDAUKBRAFDwUOBREFDwUQBRIFEQUQBRQFEwUPBRUFFAUPBRYFFQUPBREFFgUPBRQFFQUXBRgFFAUXBRkFFwUVBRYFGQUVBRsFGgUYBRcFGwUYBRcFHAUbBRoFGwUdBR4FGgUdBR0FGwUfBSAFHQUfBRAFDgUhBSIFEAUhBQoFCwUjBSQFCgUjBekEJQXoBCgFJwUmBSYFJwUpBSwFKwUqBS0FLAUqBS4FLQUqBS8FLgUqBTAFJQXpBOwEMAXpBAoFJAUxBTIFCgUxBQ0FCgUyBRMFDQUyBRQFMwUNBRMFFAUNBTMFFAUYBTQFMwUYBTcFNgU1BREFEgViA2MDEQViAxEFYwNkAxYFEQVkAxYFZANlAxkFFgVlA2YDHwUZBWUDZgMZBWcDIAUfBWYDZwMfBe0EFQNoAzgF7QRoAzMFOQUMBQ0FMwUMBToFNAUYBRoFOgUYBR4FOwU6BRoFHgU6BT4FPQU8BT8FPgU8BdwEQQVABdQE3ARABT8FPAVCBUMFPwVCBdEE0gREBUQF0gTUBEAFRAXUBCYFKQUsBS0FJgUsBSYFLQUuBSgFJgUuBUYFRQXoBEcFRgXoBEgFRwXoBEsFSgVJBUwFSwVJBUYFKgUrBUUFRgUrBUYFTQUvBSoFRgUvBUgFJQUkBSMFSAUkBSUFMAUxBSQFJQUxBTEFSgUhBU8FTgVHBUgFTwVHBU8FSAUjBVAFTwUjBSMFCwVRBVAFIwVRBVMFzwRSBQYFBAXPBNAEBgXPBFQFCQUGBdAEVAUGBTMFNAXOBDkFMwXOBDoFVQXOBDQFOgXOBDoFOwVWBVUFOgVWBc8EUwUMBTkFzwQMBdAEzgRVBVQF0ARVBVQFVQVWBVcFVAVWBQwFUwVRBQsFDAVRBQUFWAVRBVMFBQVRBVgF4gTjBFEFWAXjBBIFEAUiBVkFEgUiBYsDWgU4BWgDiwM4BVkFjANiAxIFWQViAyIFXAVbBYwDWQVaBYsDjANaBVkFIgVbBVoFWQVbBVoFWwVdBTgFWgVdBR4FHQX+BB0FIAX+BCkDIAVnA/4E+wQeBVcFVgX8BF4FCAUJBV8FXgUJBVQFVwVfBQkFVAVfBfwEAQVXBV8FAAVeBfcE7QQ4BV0F9wQ4BWIFYQVgBWAFYQVjBWUFZAXqBOQEZQXqBOQE5QRmBWUF5ARmBWUFYAVjBWQFZQVjBWUFZgViBWAFZQViBTYFNwVnBWgFNgVnBUwFSQVoBWcFTAVoBVgFBQUCBWkFWAUCBWsF3gRqBWwFawVqBW0FagXeBOIEbQXeBPkEKQMgA/4E/QT7BOgEJQVIBf4EIAUpA/wEOwX7BB4F+wQ7BVgFaQVtBeIEWAVtBXAFbwVuBXMFcgVxBXQFcwVxBXQFcQVuBXUFdAVuBVsFXAV2BV0FWwV2BXIFcwV3BXgFcgV3BXgFdwVdBXYFeAVdBU0FRgVHBU4FTQVHBV8FAQUABQEFXwVXBc8EBAVSBQQFBQVSBXsFegV5BXwFewV5BX8FfgV9BYAFfwV9BX8FgQV6BX4FfwV6BYAFfQWCBYMFgAWCBYUFggWEBYcFeQWGBYgFhwWGBYoFhwWJBYsFigWJBY4FjQWMBY8FjgWMBZAFjwWMBYkFkAWMBXkFegWBBYYFeQWBBX0FfgWRBZIFfQWRBZEFfgV6BXsFkQV6BZIFhAWCBX0FkgWCBYcFigV8BXkFhwV8BYkFhwWIBZAFiQWIBY0FlAWTBYwFjQWTBYwFkwWLBYkFjAWLBZUFgwWCBZgFlwWWBZkFmAWWBZwFmwWaBZ0FnAWaBZkFlgWbBZwFmQWbBZ0FmgWeBZ8FnQWeBaAFnwWeBaEFlwWYBaIFoQWYBaIFpAWjBaEFogWjBacFpgWlBagFpwWlBaoFqQWjBaQFqgWjBa0FrAWrBa4FqwWsBa8FrgWsBbIFsQWwBbMFsgWwBbYFtQW0BbcFtgW0BbcFtAW4BbkFtwW4BboFrgWvBbsFugWvBbwFsAWxBb0FvAWxBb4FuQW4Bb8FvgW4BVYFOwX8BM8EOQXOBOwD7QPABcAFwQXsA8QFwwXCBcUFxAXCBcQFxQXGBcgFxwXBBcoFyQXIBcsFygXIBcgFyQXHBcEFxwXMBc0FygXLBc4FzQXLBc0FzgXPBdIF0QXQBdMF0gXQBdQF0gXTBdUF1AXTBdgF1wXWBdkF2AXWBdcF2AXaBdkF1gXUBdUF2QXUBdsF0AXRBdwF2wXRBcEFzAXdBeAF3wXeBeMF4gXhBeQF4wXhBd8F4AXiBeMF3wXiBdEF5gXlBecF0QXlBdwF0QXnBegF3AXnBeYF5AXhBeUF5gXhBd0F6QUWBN0FFgQXBNAF2wXrBewF0AXrBeoF6QXdBcwF6gXdBe0FcQVyBe4F7QVyBe0FcAVuBXEF7QVuBUsF7wV2BVwFSwV2BXIFeAXwBe4FcgXwBfAFeAV2Be8F8AV2BW8FdQVuBTYFaAXxBfIFNgXxBewESQVKBTAF7ARKBTEFMAVKBUkF7ATxBWgFSQXxBTYF8gU1BewF9AXzBdAF7AXzBfcF9gX1BfYF9wXzBfQF9gXzBQAFAQX/BDEFIQUOBTIFMQUOBUsFXAUhBUoFSwUhBVwFIgUhBQ8FEwUOBRMFMgUOBd0E2gTbBNwE3QTbBNwEQwVCBUEF3ARCBboFuwX4BfkFugX4BSkEKgT6BfsFKQT6BSkE+wX8Bf0FLgQvBP4F/QUvBAEGAAb/BQQGAwYCBgUGBAYCBgEGBgYABv4FCAYHBgEGBwYGBgUGAgYJBgoGBQYJBgwGCwYEBgQGCwYDBgIGAwYNBg0GAwYOBg8GCQYCBg0GDwYCBhIGEQYQBhUGFAYTBhYGFQYTBhcGFQYWBhkGEAYYBhoGGQYYBhIGEAYZBhAGEQYbBhgGEAYbBh4GHQYcBiAG/QUfBh0GIgYhBiMGHQYhBv0FIAb6BSYGJQYkBvoFIAYnBigG+gUnBicGJgYkBigGJwYkBh8GKQYhBiIGHwYhBgcGHwb9Bf4FBwb9BSkGHwYHBgEGKQYHBhMGFAYqBisGEwYqBhgGGwYsBi0GGAYsBhgGLQYuBhoGGAYuBv8FLQYsBgEG/wUsBisGKgYvBjAGKwYvBi0G/wUxBi4GLQYxBjQGMwYyBjcGNgY1BjQGMgY4BjkGNAY4BjwGOwY6BjcGPAY6BjgGPgY9BjkGOAY9BjoGQAY/BkEGOgY/BkQGQwZCBkMGRQZCBkQGQgZGBkkGSAZHBksGSgZJBkcGSwZJBk4GTQZMBlEGUAZPBkQGgARSBlQGTwZTBlMGTwZQBlUGUwZQBlYGUwZVBkQGVwZDBlgGSgZLBloGWAZLBl0GXAZbBkYGXQaMBIsERgaMBFgGXQZGBkoGWAZeBlMGXwZUBk0GTgZgBmEGTQZgBmEGYAZKBkYGYQZKBlwGXQZiBmIGYwZcBmIGWAZaBmYGZQZkBmIGWgZnBmkGaAY9Bj4GaQY9BmwGawZqBm0GbAZqBmgGbwZuBmIGXQZYBm0GagZwBmkGcgZxBm8GaQZxBgsGcwYOBgMGCwYOBnUGdAZvBnEGdQZvBngGdwZ2BnkGeAZ2BnoGeQZ2BnsGegZ2BnwGDQYOBn0GfAYOBnwGfgYPBg0GfAYPBn8GdAZ1BoAGfwZ1BoMGggaBBoQGgwaBBh0GIwYcBoYGhQZBBj8GhgZBBocGWgZLBocGiAZaBokGZAZZBogGigZaBo0GjAaLBo4GjQaLBpEGkAaPBo0GjwaQBowGjQaQBo8GkgaRBmsGbAaTBggGBgYHBv4FlAYIBpUGYwZiBm8GaAZpBpUGYgZkBu0DwgXDBcAF7QPDBcEF3QUXBOwDwQUXBPoFKgQuBP0F+gUuBC8ExgSUBv4FLwSUBkQGRgaLBIAERAaLBJcGlgbJBMoElwbJBJoGmQaYBhsFHAUfBRwFGQUfBZ0GnAabBp4GnQabBpwGoAafBpsGnAafBqEGnwagBqIGoQagBp0GngajBqQGnQajBqYGpQakBqMGpgakBqYGqAanBqkGpganBqoGqQanBqsGqganBq4GrQasBqoGqwavBq0GqgavBrAGngabBrEGsAabBp8GsgaxBpsGnwaxBrIGnwahBrMGsgahBqMGngawBrQGowawBrQGqAamBqMGtAamBrUGpQamBqkGtQamBqoGtga1BqkGqga1Bq4GtgaqBq0GrgaqBq0GrwasBrkGuAa3BroGuQa3Br0GvAa7Br4GvQa7BrcGuAa9Br4Gtwa9BsAGvwa7BrwGwAa7BsIGwQa/BsAGwga/BsQGwwbBBsIGxAbBBsYGxQbDBsQGxgbDBsUGxgbHBsgGxQbHBscGyQbIBogCygaMAocCiAKMAssGXQFbAcwGOQE3Ac0GzAY3AdAGzwbOBs8G0gbRBs4GzwY3AdMGPgE8AdQG0wY8AdIAVgFoAGkA0gBoAFYB1QaBAGgAVgGBANUGLgG4AIEA1Qa4AC8B1gatAKoALwGtANYG1wauAK0A1gauANcGswC0AK4A1wa0ANoG2QbYBtgG2QbbBnABkgFyAVYCVwJAAkECVgJAAlACUQJTAlQCUAJTAt0G3AZcAl0C3QZcAh0CKQJIAewASAEpAuAG3wbeBt8G4gbhBt4G3wbhBuIG5AbjBuEG4gbjBuMG5AblBugG5wbmBuUG6AbmBuYG5wbpBuQG6AblBpMAlADgAN0AkwDgAJQAoQDGAOAAlADGAKEAogDFAMYAoQDFAMUAogCcAMgAxQCcAJwAfgDAAMgAnADAAH4A6gbDAMAAfgDDAOoG6wbbAMMA6gbbAOsG7Aa8ANsA6wa8AOwG7QYwALwA7AYwAO0G7gYvADAA7QYvAC8A7gYzACoBKwEiASsBDgEkASIBKwEkAQ4BDQEeASQBDgEeAQ0BkwDdAB4BDQHdABMBEQESAfYA9AD1AHcCeAJzAnACdwJzAngCggKBAnMCeAKBApYClwKQApEClgKQAnwChgJxAnICfAJxAnICgAJ7AnwCcgJ7ApsCmgKSAo8CmwKSAnkDegOZA+0A/AD4APEG8AbvBvQG8wbyBvcG9gb1BvgG9wb1BvsG+gb5BvwG+wb5Bv4G+gb9Bv8G/gb9BgIHAQcABwQHAwcABwEHBAcAB/kGBgcFBwcH+QYFBwoHCQcIBwsHCgcIB/UGDQcMB/gG9QYMBw8HDgcNB/wGDwcNBwgHCQcQBxEHCAcQBxIHBwcFBxMHEgcFBxQHDgcPBxUHFAcPBxcHFgcSBwoHCwcYBxkH9gb3BhoHGQf3BhwHGQcbBx0HHAcbBx0HGwceBx8HHQceBx8HHgcQBwMHBAf/Bv0GAwf/BiIHIQcgByUHJAcjBycHJgcgByEHJwcgByoHKQcoBysHKgcoByoHJgcnBykHKgcnByMHJAcrBygHIwcrByEHIgcsBy8HLgctBzAHLwctBy0HLgcsBywHIgctBzAHMgcxBy8HMAcxBzUHNAczBzYHNQczBzgHNwc0BzcHMwc0BxQHFQcWBzkHFAcWBzwHOwc6Bz0HPAc6BzwHPQc+Bz8HPAc+B0AHPwc+B0EHQAc+B0IHQAdBB0MHQgdBB0IHQwdEB0UHQgdEB0YHRQdEB0cHRgdEB0YHRwdIB/kG+gb+BgYH+Qb+BvsGSQf9BvoG+wb9BksHSgcABwMHSwcABwcHDwf8BvkGBwf8BhUHDwcHBxIHFQcHB/0GSQdLBwMH/QZLBxIHFgcVBxcHEgcTBwIHAAdKBzsHTQdMBzoHOwdMB00HTwdOB0wHTQdOB04HTwdQB1EHTgdQB1IHUQdQB1MHUgdQB1YHVQdUB1gHVgdXB1sHWgdZB1wHWwdZB1oHWwddB14HWgddB1kHVwdVB1wHWQdVB18HXgddB2AHXwddB18HYAdhB2IHXwdhB2IHYQdjB2UHZAf1BvYGZQf1BmQH/AYNB/UGZAcNB2YHDAcNBw4HZgcNBzkHZgcOBxQHOQcOBxwHZQf2BhkHHAf2BhoHZwcbBxkHGgcbB2cHaAceBxsHZwceB2gHEQcQBx4HaAcQB2sHagdpB2wHawdpB28HbgdtB3AHbwdtB3MHcgdxB3QHcwdxB3cHdgd1B3YHeQd4B3UHdgd4B3sHegdvB3wHewdvB38Hfgd9B4AHfwd9B4IHgQdrB2wHggdrB4EHhAeDB3AHgQeDB4UHfgd/B4YHhQd/B3sHfAeHB4gHeweHB4MHhAeJB4oHgweJB30HiweAB2kHageMB40HaQeMB48HjAeOB5AHjweOB5EHjweQB5IHkQeQB5IHhQeRB3QHeAd5B3MHdAd5B5UHlAeTB5gHlweWB5QHmgeZB5MHlAeZB50HnAebB54HnQebB5kHmgebB5wHmQebB54HlgeXB50HngeXB5MHnweVB6IHoQegB6MHogegB6IHnwehB58HogeVB6UHpAejB6AHpQejB6gHpwemB6kHqAemB6sHpweqB6wHqweqB6cHqAetB6oHpwetB7AHrweuB7EHsAeuB7IHsQeuB7MHsgeuB7IHswe0B7UHsge0B7UHtAe2B7cHtQe2B7gHtwe2B7kHuAe2B7gHuQe6B7sHuAe6B7oHvAe7B3EHcgdvB3oHcQdvB74HvQdtB24HvgdtB3YHwAe/B3kHdge/B3AHgwd8B28HcAd8B3wHgweKB8EHfAeKB78HvQe+B3kHvwe+B8MHiAfCB3cHwAd2B8UHxAevB7AHxQevB8cHxgfEB8UHxwfEB8gHxgfHB8kHyAfHB8gHyQfKB8sHyAfKB88HzgfNB9EH0AfMB9QH0wfSB9UH1AfSB9YH0gfTB9cH1gfTB84H0AfUB9UHzgfUB9YH1wfYB9kH1gfYB9oH2QfYB9sH2gfYB9sH3AfaB2sH3gfdB2oHawfdB4EHcAfeB2sHgQfeB4EHggffB4QHgQffB4QH3wfgB4kHhAfgB2oH3QeOB4wHageOB48H4QeNB4wHjweNB5EH4gfhB48HkQfhB4UHhgfiB5EHhQfiB6oAuAAuAS8BqgAuATQBLQEuAdUGNAEuATAB4wfWBi8BMAHWBlYBNAHVBtYG4wfXBokH4AfkB+UHiQfkB8IHwQeKB4gHhwfCB+YH0QfMB8sHygfnB+gHywfnB/gC+QJyA3QD+AJyAy8GBQYKBjAGLwYKBgwGBAYFBi8GDAYFBtYE1wTgBOEE1gTgBLMFtQW2BbIFswW2BT4FawVsBT0FPgVsBa4B6gfpB60BrgHpB60B6QfrB8oBrQHrB5wC7AfqB64BnALqB50C7QfsB5wCnQLsB/QBAALzAYlQTkcNChoKAAAADUlIRFIAAAQAAAAEAAgCAAAA8H+81AAAAAlwSFlzAAALEwAACxMBAJqcGAAAACBjSFJNAAB6JQAAgIMAAPn/AACA6QAAdTAAAOpgAAA6mAAAF2+SX8VGAAgsdklEQVR42uz9WZMtS3YeiK213GPcQw7nnDvVrQLQIAmiykgRAMkHmUnW1k8yvbSIBtD6jWIbWz3IZP0oM7GtzVqiABpJNAEChapbdzpTZu4pJve19OAxeMQecud4Ms8Jf7iWN8/OvWN7eLivb61vfR/+0c//FBEBQEQAgKAeDMMhIoCC3UtuMERk8M63eZddg3e9FR96f9nzPgj3emHjGMc4xjGOcYxjHOMYxxMcOAAAbQQ8AoBxjGMc4xjHOMYxjnGM4yMEAP/0F3/WC/E/cgAg+98H/f8dYcA4xjGOcYxjHOMYxzg+AQDggnPBfUH8MwcAcvB9dn/rEQmMYxzjGMc4xjGOcYzjowIA//wXf8YjAAAADwDwCADGMY5xjGMc4xjHOMbxsQKAtgLg4vttAEBNQOzgwbMFAHLtVIyrYRzjGMc4xjGOcYxjHJ8KAKg7gLGJkmXYEcso7jVPDQDArnYFulnoPwKDcYxjHOMYxzjGMY5xfEoAoNX/aQEACfbDdGGE5wkA5Pgr3D1BOJKAxjGOcYxjHOMYxzjG8REBgD/6xZ80kS76QTA1RYAuvN5FENoXQDtp0cG/Pm4ofbPQ3wX6/rdovsK+9/kwlYH9QAWe1HWOYxzjGMc4xjGOcYzjSQOAgRVACwB6yfWbAAAfAwwcBp4OABCRNj4e4B/vKzwLACC4FwGMAGAc4xjHOMYxjnGMYxw+APj5n+4L1ofUmhsCgO2o+ukAgOaqcPB6P4xuKgOHA+jHDq+35lkGcGuEAeMYxzjGMY5xjGMc4zgWAOyjl/QwwE0AwGA8MQCA26+/OQB47Njam+dDnKsRA4xjHOMYxzjGMY5xjOMQADj65c8FABzZAIBeoH+naYQn99VGDDCOcYxjHOMYxzjGMY67A4DDkel1GOBRAMAdRT+BEeg27/FIsTXj7os7+ppHDDCOcYxjHOMYxzjGMQKAXaE83iolvo0B/KD/URx27wEAHBdSb/cHP2hsfevv9cjXOY5xjGMc4xjHOMYxjucGAI7mvh+FAR4XABwTJePhl7H3vQ9igG2R0CcLAB7zOscxjnGMYxzjGMc4xvG0AcA/8wAA30OUynU/MT9ooH+DKLlfzRhGwy1cEWr0QBnAawk4uiAADPgIwGbf9XA/qm/+dSfaGQHAOJ7IkH2r0ae69Zf6w67efXvgaAc4jnGMYxzj+AgBAN/T2z01ANDG931DX9l+TQMS0PuTm4YOjwEA9n76DmCAIrLrW4wAYBwfHwCQA0/lrp1vXy8N3vAZHJ+mcYxjHOMYxzMEAPfYBPxUAUB3Qu8z9/WqBAM7sB4byr3bvjd5fACwy7d4+K1HADCOpxr6Hw2te3YdNwvob/p6kg8+M+PjOY5xjGMc43h8ANCei3KrJuCnBQBuau67809kV3EAPxwAwO3o3w/0tzDPju/II6VhHM8h9D8eAMi+KuYNAYDaW5GARwQMIwYYxzjGMY5xjADgUQEAbP3FPgAwjMv5Ab/v9QDAew1ufeUhSoERAIzjIwMAcj+ROBLc6P3VgwTrIwAYxzjGMY5xPDIAuOvZ/gSbgOFAQLxvWprzXvZTawYY4BoAcGtl1QMx066gZPdHdD3NIwAYx/MJ/T8AALjhQ0rwQJyhEQOMYxzjGMc4HhIA/OHv/8m9HIRPGADI1oG6IxbfDtC35VD7nHvyPhGhaaQ+AADg9uKqxxob7wuDsCdxNAKAcTyb6H8AAITvJ3CHg8/pjvff88A8fM/AiATGMY5xjGMcIwC4VZDhHepd2n7wBS1YRDU40UWklQd1v98lKyTHA4DbTuz1MqB+oLCf+DQCgHE83UD/TgBg74N3sx6Afe+vPlgcPgKAcYxjHOMYxwOcLvdLAYKDRmAfDgDsfuU9ZQ3xRtPiaQqx9794x6CqP+24E9HxB7sv43iM0b+/RwXix9tc3OOwcA0dTkRIuifFHvwu9csEYVDHQxEREEREF+7X/yoogm626mxFk7YAQRQBkBbe7xTS9a9n+4vsnMmD9oIIABZ48G6elceDrxk6+JtxfCzIHN0aE+ERWI7jvs4abycTknFdjQBgBAB7pqX/iTdy55XbXZX/uSMA+EjP9WOizGswwCNQWbzoXLzPRS/UxubH+ufmB+Qmgu9F3uL15dOuwFUQ0Ipgrw6Agijul/UnumqA4AA4DZ5ZRmg/sf0l3VDPdDDPbVuRbD2Q192R+zlodwqC8XiQf5SHPeJ9tcqMYxx7TqJx3xgBwAgAdk3L1sc9KADYjrpGAPDMAvobB3O3AgA7A9Od73mT8HT3UoRj/fXquLRfN2ML4nh6ww2nDeX7W5CLePy4p8UVLujv4njxn8EdYmK9QsBek7Lrwf+eCGzHVnRbYIY3X29+XLi9TY0n+kexrRzkoN5No2Icj3wi4HO4znE5PQsA8Is/2XM3b3n/PigAOBID3GP0/8hrXe5ybSMAGAHA/a1tufXmsP3o7cxNigi0PUXi2Au0XQqo/5ybH7xljkB1BQAAgYZxf5vOp2HnT/uaW1Ok7p5tve/KzKH76Omb7QwEx7P8We8nOFiWIuxIbmPc//yPA/ygF4bPEKiM42EAwM4Dj57cA/NQM/n0vuBI+/n4AcDNg/6bBvT4YR9AZmZmADZiWIy1Fpr+GV/gSymFboD7QSEqRxOqf+1aAhok4OXjCdEn4Agitmq5HZzo74cK8YE3nFZW+GE3tJaI1cIeB7H6a2k8yD++7WW8pyMAuPv1jABgBAD7o/8PFHQ+TZojPuK3HrP+H3/ofx0A2ONo++DLYGciH9qMox9n9y63SZm7/1ZmXRR5Ua4BjSAyMwAhIgDt7EAT9AsLzVcUagJpZgZCHYVpECQIWiG1r3fwALnGCn78vb25DS6but/fdr62qhnHqIrd1y436MTwPncs6H8Ue0ovx18D5kHif6wDPLdzAT/4lTDujhLHfeO5AYB76gEYAcCHBQB8xGtGAPAxhf63BgCPthJ6cbP454ULOFhERMRyVVWFsUVZ5swGkAFEsA33/evl7R4AFzRzr82Xu49m2+W2mf0LI9KEGlERKUKtUSsVEAGiIiIiVdMnhABIyMKQSE0kgINJx6MmBHsHpwyOUQeWHg0A9PsfWpQoH2QfG8cD7zP1egY0Y9w/jgeAIuO+MQKADx90PkEMsK12MgKAcdx1rbK3sdJN1gkd9/zedK22/bH7GfDCICylMWVVVWW1bj6li9pFRDAQsO31Nv9Up/+lGft2Idc/ICIi2LySuwoD1n3DTvjHNRBg3ejrtICwGSoM0jBIkGLqhiKiwfwMrMF3Wg3uiv7rP5FhOQQfBwAMUIdfohkP8o8n6O9uKIZBmqbTTXZZluU4O+O4w1GFN9mXxn3jowYA1wKDT6YZYE/ghR3Rtj3kGWU7/TaOpzyuBVp03+twqxm0k43vxZqC5MFLRHAJb0QU8XtSXUDQ87Q+3K46kK+p378Ltbe+MHZ/KCIEyMwiwmyBTcVFZfKi2iCAAmRSg0mtw3SwIsLMYrn9cxERW9ku/pddV97DDI0A7rB4rUTtNvkWl+m3g0uqOwqauoFSWqlAUaAoVkpprZUKlFJEmogItR9Vu5aE+hf1NddcI8dc6skW7aEYwdA5ZIgARYQUDozM2kmgrtn3KFB3WP1pV91p3MSeZsymASuuHQCUGPvP/vEfC7uHjv7df/p/ltWSHfhFARRhIIVgazDskLHbW8YxRv/b2w4N0z2H85vjLvGpAgB4GpKgHxQA9KIlxN3193E8d2BAD7gOe3TeVuMSO2FKQkRrLRGJiEs2+/x4YUSSlgxj3cG//5kdwIDuqwmJiCPAkKcjKQgijIjWtZKKtVyacmOq3NpKbGWbCN6p8HQRfz+mr7jy/8m7Kj68zzRwxdaTIb3of+93xOaLAAKKPyXSWAVIj/ZKAECgGGyNiEARESEqCpRSsZ4hIpHWOtAqJHL8IpIGEnSfrKitPLiv50oP26kTz0OwqVYIIwoA1cRuUIDb0AUPBPTIt3QoP1qkaNzcPnzoJkgCLAwE8oe//2eIKGIbbIx//pf/stkcSBQLa8CKULmHsWa7HVVjHsenAgD857q/l44AYAQATx4ADALxR9yJd37u+FQ8331wmBE5EgAcluXet3U2Lp51AIaI1ioXhTe/xy5AB+te3xYBQIjFuBe7tJ9SiIyA1sreK3ScGefOK9IEx0Qow1DVvdgKM1eFzSqzcnGGtSJVWVaZLQtmFlLC6Jj6LlLfjiPdl2Iv9nUwBoeOWdxmtQcxffN6h0kE2j6EhgLUqoL2kEOtguNH/wf3Ldntuu2oRwRIRC2biIi0ShQFWocIGoCItKKAtNIqcuwiRARF2MiVojA2/crcBPQd76hBgO4u1wZnHoOogwF0HQAQfxLwRsD1OFrjuMt9iAMeQQS4sbtGlj/6+X/drlJmIGJmqDj7d3/1P4IoJisMRCFLQUQALEyjw+t46h14nEcAMAKAowDA42KAZwQAxgfj2eyD+zKpwr1Qno4DADfvBtlmlnMrXOM9bsLs+lzJMHfBMXNhl8vVOyJAYQR9Mn0lImDBCPdY8o3+phUrYMW2BH1CRAXYApLawxbZilg2xm5ELCIwgDCyGBFjbG4rFrGasAeWUATQD0ChX2qw4tLb0PD1AXh73thRdMAribSv6eXae0JDJGK93YnBMwjbvjW1jUD3/837EPrv4F+h39vbVAncd1HtGmnAFClKtQ61CrUOAp1oHWodKApIQRvxYxOXI5IgNsV3blBBd4Xc/wp0xJaIHpPHlXEOhpW326/GXe5D7FmuRCiCBGjpj37xx43LnkUMROpqoYj86vv/9d3l3yEoRm7s71BJyFKO7cIjANj5OG+Vi6/NBYwL6RMGAI8OA3av3fsAALcRAj/4ueOD8Qx2wAMAYDs2okPLA2+UbhHhhjguFpowt0nsNmng+g+ttSJsuaiqPC9WFiqnZy/GMrOILc0aLIhgqDQzCJeCMjDQdQ8vYyccqgBd6AkAijWiQiTHBWKwFthyhaAEbBOF8vZ7DlPRezOL1G4gbfi7BzXtbpftAwByWKUNpl1ZwJ80hwe8t+Z+80NbalB+h0D9r+jXQCwiMpv2o3vfiHDnlxKRBh4gokKBuiBAkVahUoFWsdZBAxJCpVTdYADKUbVlwNGCngSTbBkX7LBjE5BerwjcNwYYt7gPM7i+o6xR/cE/dACAAEth1a5AIhBBBvnzv/yXIAoAGFlECISIRMZZHI+/ewEA41bwSQEA4J1n/IfFAPcKAOBeed7jg/GkNz7ec4P2ScXfVk5R+tG/EGBLZWHPoErVKIOYWcBazotytdksTJWzGBGxtmKw1lrLhtkAE4BFVIgiTFqH6A3v+ZQmE6+aUFXVXw0VAJCFNho2xhioGCoBZltT8NuQ2F0fI7CVzpOLYRBMbx0b1P+Zd50rPJj/gSaPC6a7qNp5hClFRIJB/WJyrxQnGoRNWcDxalqE4JcLej0JddNw6yxmXWODYe/aqJUk6goa+4Jp7G1NyNACA6WU+wqKiOLwLAyjKJwEQaSUdt3DiGq7RwKH/Jy9pafBGr7WyXjEAM9iB0MkK+gWRqjCf/wP/sumaIZQm+IJgAYwIgLIgMFf/OV/63YPQu3a8ccKwJMMwR/ngdrJ/5E9GEBuRGodx8cPAJwfJ3xsDcH4YO8/PhhPd8O1R9zqPVyg/Z+0O9Iaeq23wWjbCWCEjcktV2WZVcXa2MKY0tjSGCNcibQymu6YV25oFRBpUoFSgeOaMzGC2hFJE2ITuaJtIkJ0nCLrJHpEkJkZpNHq8RL/3OS5hf3KiaskgGP4dN21+2ardeziXVHpDs0fL/pHQVJYc+uJNIKqKfUYgCKg1jnYsZaAhEVqopeIbTUu2ipDW2xxjHzy74t0PwNaZGFmCx1+YGYBYz1c4UkmtcYFXTt106ypoF80QETCAEERKCKVJvM0OdHBhDBA3QG5RqvU9SvzgXxH19rhffT2Em1EC+4OA8Zd7rF2MWEiYlAiFlA+O/37P/viD9yjxExIVW0LACyCjgvknqnv3/zl92/+NwFLhFZGCeknG6t8WADQbg54OLkw7gCfNgAAgL4I5qcGAPbL6iGM5nnPZiNGe1wtfIt+fXTo35nX9n9ZK+pU1hRFucrLpeXS2qqSylprTGmtBcssjIBIgAJKKSJSpJUKgiAiFWitncEWomJuBWTqYNFX8hlcYds+28YHIshsgK21lbEle8MPKF0MiiwiTvKWEZGcghBi06YszXfsnpQm0CRGcOF7TdFpjMBa8SIREfTiZ+hS8q2VmPP91aiJSLAhzygC0q6pQRNqpL2hLXLb/NGioObjyHuWPaDo8v694oAwM9Y/GOv0TZmFjTdv1vGpHCSwPSc1R89pmoPbyoZrxQYdBpM0nEfhlAKtdUhEpJR7GUGtLloXYBAHy2/QgAFbzKwWFO2T/bl7N8s4HmYbIwEjqAEYUP7o9/+MAJmNQmTQIrZ5jlqDbQ1g6iYBNH/9d//vq/VrxFEG9JMFALvPwVYqod3lbr4VjDvAJwAAoM8tbmHAxyEJuh3WN3TcMSv2kWy1jDtC9jakQ8SGzdJjqItHWaFeFNf78/Y9EZEtNDIuLoPu0szCbErOK7PZbFZsispkbCpjXYIfRCyDCAgAEGqtokAnQRBprZXqNOmFsDvmScFu2gn7zHv/K7dpb+en6/R7jM2ZrbG5tZbZQNMmW/sPCAMAkVYUEYAFy2yYTUBRk9K2zYvZRcztNLoOWlUH+YSKVBBorZ2WEUOnhFOTmwVbKpGj8iBbN1hKAHLViUboRjxLL40QKKWJtNaaNILU5QJuQnyqqTidr0J/WrDvJ1DH2e1Nb9cPyTCYhr74aVMlMMwMbJmNwwwsxv0swNJnHLUYs9X/1xBpHWoKlNJKx4FOtA5UkASkgHRtYUZIVM9zJ+FKBCBejWWHr5l/2dTviK7FUvGw3SHyh0kAffyjDshECRiS2tzDWc2AIIGIwO/9Z//FND53q3T/CUUileOSiQhCKJj/za/+58XmNYCAqOa5IBTTfIrbOxyhyCKxsFb4tJoGBqmWJ8xokgPH0C74fcjx/RaD7ileEtk51XLk9Y9jBABPGgMcLYM9AoBnDAB21G0Eh5LzwArQgm06TXukjr4co7fq0ToZ9zZXbWwpIsJFWeZllVkurK0cq6e0uTGG2dShFYCTuCTSSEopFQSRCiKtNZHGmjNDvai0BgBMMHAGIOylcHoRWpvvB08DR0S4MoVdmaK0NdEIUABRMdTynlDzZ1QSz8IwQsTSVGWxYTZEOomnWmtma4xF4cpaRzh2DcrtY0VEAFSrZ4ZhHCdIWmqPInIKPG1jrv8Vmm9kRcRaa9ywlbUVuEYIFGBbR+pECJqoVuDRWmmtURF0ZsDoVFN3BhDST5Ur6Bp/t0N/8Lg0W8tqB+4SEWDLzMCGma011lZ1nUXK2swB2xvHwMIg7l4oR3YCRRQq0poircNAR1prrXUQhEoFhKFoV0BQbW90w+vlfXHSdgFh5++3/7ZvHzbudfd6Hg0841iRYrduCQCEgiD4x//gXzS0QDr4TtCE8iKMRJqlBFTr7P1f/e3/C9A6JhgiMXNLS3M/CyMRsRTYeOE9TQDQPXZPrrZxSGZ6V3R+zwDgXjBAv8dyBAAjAPjYAYCHd0cA8IEPwu0VuC93Io7EvTsPVt/lQTTjfm9BwMuiEbSs8Y7Y3TTRSkuR7B1CQgKWmY1UxuZlmRXl2tqKjWG2lcmMKVlsm+YXsK4BVOtQqyCKEicO4xpAGahmwvQTw96j17pK4c54jqTOwXuJQNdwLI7aTkQi1piyrIqyzI3NXFpdNTG66yJgBMuVAhERreLp5CwMY0SsqmKzXhqbIeIkPQ3CGElAtHBZZ7+tqarK2BIsG1MiMBAykPPW1SoMw0gHkRPyES8V3ZKCWsTSNB7Ut6Jr6rXGsnF0KVvkzIabNgkRdDc01Jp0GASB65FwKXM3w1vrq/tNW9JRjRr/PmrQIBzhXd0idTadSZxEq+du5movjlPlZFqZ2drKVQmYGcS4+9J8CgEhImqOHTRydQ+ldKCTIAiCYKa1VipSSqFSqAiAGR2S2btJ+y3j26mQYwDADvQzmIVx3PiIIyTueHwowtqCKEBA+4e//ycCFiECLEH0cfsotXUAwDoX8Osf/s3bi78RYZAAydQGIyCIxGyJyFpumk+eMgC41oYFn8fp9gCD7hZBeS0B2zBgBAAjAPgwAOCeYYB/7A0MiPYlzEYA8Nhb5P4ytNPQhG1VyusAAPIOboOIgKgm279TxFPYESdFoKanmLLarPNFUS2MzZnZGNPwQBjFthR2pRQihioOwjgMY1ROf1M1BCR0n9tZ0qJyqkHQGuLW1Brbbu/bX4EEALll1LTfi0UhsLVVWWVltTGmFKcWIgQARKrJK4fCYK0V4MpkYioASpOTNJmDIgAgtnmeb7IrkSqO5kkyhYFqDTIKMHNVlVmWmXLTJPvBYYBAJ3Gaogrq6+/S/+ggyq7wZfBNa1DEzOJ6J2wlxhpTWq6srVgs1P4JQDogVERaqzgIAgp03YoA6M8zeG0SdXuuDIPdQW+A/5uW+ERS05/aP3S2TTzsJeGGfuNXeGxLvhKwzTDGlCzG+S6jGARyNmokgCQIikgTRkoFoUp0GIZBTEGotCYi1WRw3VTDUGGpqxQ5dhnJ4bzyAF7u2hivN10bx7WxF4trAAIQBu2eEVG/89N/fjb7SdP5gwIVQrBvYyTSzCUiiihEATTCiKi6v8Lq3/z7/96BjWbHEAUK0AnpalfefKoA4MhGVbzLBz0Qxeh4ALDvAuS4Hra7YICdn4B7vQXHmGcEAM8QA3gAYKBMIjd6IMeH4aG2SLzGgtfP0+/aAWUnACB2OvedgRRjCwxUu+LBs+YVYSPGmLIyeVUVVbHOi43ljbXWSIMZsGa/IAu5tl0dhzrSyhF7CCl00aGIIGkRQRJgcZUEaHL8g+6CQ9MzJGzUipzOH7T5J2QuizIvynVV5SymZuUThcEsCIJAR4pCRAWEImhtVRV5Ua3EVFrFs9kp6bhGMqayRjb5RVGuwiCapOdIoaPjD68WWUSqqlwtr0y5cRKiiEgqDIM4TWdaheIiG6olhlrK036mL/msdBGnXeRJ7og1tuCqLKtNDQzq2kvNAtKkgjAKgghV5PqqW6Gk9kOpkQhycTFsUed3nsG9thB0ykLYv4/kfx2SIVPI/8H68Y01AGC5YubKWrGl5YKtEQYFgTCJCCkHsUihckUPFSSKQicYRaSVUkiaqAaiAwu2Lbc1Gnw1RPQ7B67dGN2OOu5jtzjXrFOMxbo4KYIELIyvXvz2Tz//A/eAI6q6/X7/Dtp0CLB/E90vGwzAgvTn/+H/LlCxewaa/EL7lD09IPdIzbWPDQDwZvGG3KSIQDefxoYCul0BGAOeEQA8CQBwPxvHFgXoBvvL8yo7PjMAgDuiK/BlYvoZx533widBDlK5XFcAfAkaci6bAEBSp+SZK2NLY4rF6kcnzVmxtbYSqXO0zpRKAbVajUop1CoJJrUFLOmWyuLoPbX/F3aKPSg8iBE9+63dmX7vN7wdRCKqJvpnY1zovzC2RBYLFlEpCsIwiaNUq4iIEJUgtWlqFlPky3yzAOA0OY3TGQDVmAFYGMsqXy5fo6IkOo2jCSjYZ+AlIgQ2Xy3XmytmWz9uqIJwmiSpCqIuMy2DW9qdjK5juH2NH1ULUvuHwkiNxqgFK2KNraqqsmVhbF77Jzh0BEqpQAdhoJMwjIMgZBTynH37gWz9oX0AQJ6nGLoyggMkfvSA3R7JAwyA3EN6HrBpe6nJ21Ca7gg04szejFuZho11zdMiTM2yQVREGkghBEoFWmulAqUDFURxEDtxoT2LqukNxb5wLeG12cfuTwQ934xxM7zhQUUsrNuV4GL2rz7/+ednP290P5noemp+w/cTZ2lXLyc0wFGd429u969++F/fXfwKgEECQOauGVyeXo/HE5TXvBsAONhmfTwAOJwzopvHRU2GAq8DAOMDPgKA5wsA6qYcOZwJuHatDxyBxhV5XwCgJfkcWJmths+u/W5vsNIk+N2hCwDgbF8dt6SsNkW2yvKrothUpgC0bW8rABhhBEVEWgdKqYACRS7SCpxqp5Wui9RXFvISS71I8c7Ik/spZEJUxpR5sc6LVVlmgEwCRKSCOI7TIEy1ChAVAXIjtunAjAM25eYyy5dKBenkLAzTxmaoERm0vFy9L80yCqfT9IUj9O8/jRiYq6JYb67KMq93EtRRmCTJRIeJa+FtQg6GLQFTgpopVKsJ7UirM0lH5gEA2xDwRUSBCNiqKquqqExWmdKYXMB5nJGiSKsgCFOtNelIqQBReTyZnkzeTq5/04KsELEyGfS7rmF/W60CtA4+cLcMGEHEUg11lAMD7u60wAOw1hsFAGRrbFlVJTPXZg+2qt+HEZVCRIWEirSKtQ7DII6CKAxjpRSgGsT6fs7Y78o4XP3wz4VmdkYAcKtjFhQzi2IHohBRBP7gH/6xp7iliZiZkcQZAB+I/t0iIdKuaVhEEAPmkohEFFIlXBcZgOTP//JfiRiQANCCKAuCKE/jfJc7zegTBwAAtbrTjb7VLn+P3lbDdwUA0NMGxREAjADgIwQAbvnyFgrf0/A3AoBHBQDb0T/tmfmBsRcdd99dUMVSWajKKsuL1aa4rKqqqgq2FbMFJxkJRIACTESArvsypkAHQUSoiEhB51PbxnCqlmSpd2ILWEek1P1SATaHNLm+Au6+AXmM//7c9KkybWspAABoR4PJsnWWL62taU5ElIRxFCU6TLUKBMmX3GnDBacmyWzy9fvSFFqHk+lLwlDAitgm72hIqKzyq6sfUNHp/AtFAWPn8uv3V/i8EVvkRbbIi6WbIgQdhGmSTHVY84tcFcXfZ1oI4UozKLy9CtzLHADovhFJK3vq/sSxepzTma1KUxZltalMzmxELIAgaq0iCkKt4jCIgiBQSvmCqiT+EUu9mhKRokApRUJGjK0FkSyDNHlc2j68B1n2fqsA100g0utO7p/DPXhZtxHbypjKWtdVzJYE2TYXqREpUGGkoziahnEShjGSFkK32BrtI2hyxh0G2KF3tMP7otdPP+6HtzmlhImoxfL/5Pf/lKBNFtTsHRAiCl22Yv95bRp44HOBtIglgkbqRyM59d5GbBTkV9/9LxdXvwJQAJZd388zjv6fAQC4hu15HDVoGwAMMMCdAUA9kyMA+HQBAHipOY8v+yy32Tts0PsexfHA25vh2F4nvOdfB9R/BwD6ui2t003vPfcIk0u7bTU5UUBEQGEBZmvsxlT5JrvcZEs2udNdEZG6xdM1rWLQsqiBVK06jzV5vTZykt4lICJt1WiHqqN1nIptcGk934lWR7/5dha9BHBrK+tjAEf6r6osL1zobwAZhIIgjKIkiWfKXTb2M75CrZ6g49OjgIjNVm8qrqJ4HkcnRCRSuaqCIAOLJrBGFqsfy2I1n38RxjNkFBIHexxjpP65oY442wEWk2eL9XoJUlkQJK0oTOJZEk9RK1QEjfYoomrvNaIwKBTTiAXVVkeItpkBamVYXeW6zmtuLTrrxbgAzGJNkVemMNXGKbQKICASBkEQxVGqwigIAhB0ZYHWQ6D5NGnqLQgASinCCLG9fgQAZitQGbbA1jvmubEAU1CXntp0O4tYkloEdouL3Bi0Odjj2kgQLVh3Sda62J2ZDYrkVVaZgisjYkWwbgNFComiIIjCNAzjIJoEOkYIiJRobFzeeg+oq4RY6MSanDiuu+tt6M/MSKAAB3KrtOvB/xQahWs6DQqIwrr3RgEIw26nBRRBhCg4/fnf/y/ARfBYAceNek8dzXu2dLZ+MGvM1mhh1best1qaX9aG4iIVYlArz3auAiyivnv75z+8+Y+DXeiJndF43V/hkzoBaznpPat+L63uVg9JX6cOt+O3m2TKBpM5VvZGADACgB1AfAQAh7Y/lN16bdyIe3Kf9eE5y2IX8qNPle51biCSuwUe4bV+dRtPs1jmUsCsN1d5vjK2qqqiMgVXpePBuxZJpZSiAJTuNYnuXOmE7hsMLqk9pHdlbkS8poUt2yzHtIFhq2vz+ybxj83pTgAEQoCmMvkmW+T52loLjbBPEk/iaNLo4KuOceSZHDSdBlz/ktHaIlu9E4Rkchbo1BUi2vZWFCBgBqqKzcXVd3E0mc2/ICFnLaTqkhogIlhuAYD7FBK2XJkqXyzeWzbuiFMq0GGaxGkYxnUhouYu1yRml7P0zixXanBep9pfcd2+tHt/YkaqNZfq788AgGwZwZiSTVWWeWUKa61Y4/oTgiAKdKRUEAShosA1AwwM49qPViog1K2/b2N+DMycJqciIlKJIEu53ly6/62P+Tpoc2E9OJflfhGj7kNArqeFEUSQiFzJZaDPg6BQhAEELLOxVV5VRVnlFVtmo1gjirOfQBUFQRxH00k8oTDWKvQWTF2/cB/RAh5pA5NGqQausw+jawCAPKMM7s1ODNQoFgCiMEGIiQiJQ30SRZG1FpECnUTh9GT2GYCuKf5oQbSLxRGbxx+50f0czCLXzy9YBAWgBUCg2OQXF1ffFeUKUbRKJ8mrF2dfgYRY/7lrJ2hJX9Q3FmAR+cu/+Z/yarVlKjcCgJufgHiNXOm+pt7D6nb7Mvd7UcEhAHAkBhgBwCcPAPzI5lMDAEdO1ice+tPRGQ7HGxhE/8O8xeAdpJcmdz0AnWMr9AjNViyLKav1enVpTM5S2aowpnZiAgCttSNGOzH+updXnCpio2wj5D5g4JTeF1KsFWP6cSH38/TKmyFiACRpSDiVb/s1AADN8dy+G7aWPYhYlvl6s8iLleVSo0al4ngSR2mkY0QUr7fV19cfwC0AcI22wGJMuVm+VUE4mZ4jBujhrqYNm50W4dXld8YWJ7MvdDiBhjGvAFuVTO4r/TtOCzMbWyyW76sqQxAgJajDIJ4m0zCe+H0RiG3KmZtgWDVTQQ6W9Cec9ucse824HlRgEbGoAQBrH67K2sqaktlYsMaYWtqy1hINtQpBUaul46VjxREzWnPiNl+OKNPJKwTtjFcBwILxUZmrA7CUq9WV5cLldD0CWNtlzl5ZoMvmktORauYZodE2BdvaP7uozpjSsjHlpqoKa4p2ZSrSoQrD+CSKp0k8DcOYUIsg1E7ONTCrKzwijEDkmdEKbqP3HTfCe6JvaL/4LDfVumokNJ+9/Ps/+z96OL9j8bV7RQ2SiQCgNedqnLyUp/mjGyEgQXRlJbK8+Y+//J9Lc8VO36C/gWBt8EwMBGwQOY1f/d5v/+eeKqhbSBYZGzDJxpb/9q/+B2iIHyKP47wrx6+Hfln1aYnTDzp9r5k62adit/ud6YYxTL0PyzAtdUOdUBwBwCcNALZx6rMt494CA+ywwNjlEvpJPxg7AcDBDqeOCTOM8lFgZ3tTfYjaJglPTSq7S2uLVKUpyqrYbN4aY6qqMLa01oJlpZRzUdUq1DpUSlPP7ZKchox/hG/n9LZCfFKwHVVLP9PfQAuwLbOlH5iSn+7tTxq14p5tJC1iyypbby6KcsPMhFopHUfTJEkCHbvITIFLV4uI8soIO3K00ma1WYpyk60vknjm9H+8RCP3I2wq8+XV8oconM7mn7WRukJxPbgNAOCWJ9PQchgA2BSr5UVerFGBCBIqpYIwnk7SaWuP0GYlm1S6dS3aAJDEJ155BB1fq2tWA9U5ADdNvYhKNdGz+CQeNzVNUxOzZTau7SEvrvJiY4xxhl0VWxEhVEqDUoGi2szBvZO7Oe2dclqN5CI6CaeTM8KAoMZgLd2/vqeO0E9grVUgFduyWq/W7y2Xqm69INfQOygLuAVJ5OvA9h+QroG47op2vRBijbWV84Njk1s2IpYAlQp0EMfhSZLMJuk8DGMEVYvk9trZWyOFHeH+oCbQrTq6Pov50SVWRMT+k3/4x4TacfcB2FW6vHU+QALYIATjyRWoWuCq5vxUSAwS/fqH/8/bi/8ktVhW01EqPXdtAG62U0sYiDhbEESSl2e/+7Mv/tAvCLTlvsrkv/zuX+f5pqoqJPEocA93L+Qm0wr9XfrpAoBGXO7Ai48CAHyzuEu2AcDgcLmdOtAY/Y8A4LkDgNvkGw4CgPGR2A0AjtE34G0lnEHzk/Qi46ZlVrrMGWpmy5JXZZblV2VVVCYzxiBbZgDSWodKqVAFTo9fsGV1A4JqE6U9GUSX0QfbfWKXqAMvITeM/mFLOn0AHtoCQqeT0zR0Oln7NjBtr6qJFeo+1zxfbfKrolwxGyKtVZQkkySeKArbkH27CrHT+6wOQBXVpQa2q/WVrbLZ9EwFsfegs0cSqHk4YquLyx+sqU5ffOVQBwATsNTJfmiziT4vv2UHWVutl5dZsSAQp3pCpON0niYzIt2woSwQalJaTSfxFEExkss9A7ACtU3F2RWStr8Z9LSh6xdug9r6ziKLiAUmVlAXajirlnm+LsqlsZVwXX+oEYYK6huK5OT/G0xh3W0EAKWC2fRcURRQYOtkKrX32uUIm/5px0zyoSBXJltvLquqUEq1mKWLINEiaA9fcS0VD8o3Ia4/S4hBOvszscymrLKqKky1NqZ0PlCISqswTWfTyWkUn4ZhjKhIUBDFfYSiAeeg62/pi/N2MP4GAOBj6K1iIBGrScLg5Be/+39qYe0ukf5W2p8RleWCMHSdu/2SV9crUpni3/2n/0e7sK2nOYservASB8goIPUjo2vQKCAKSQKdJPE8ic61UgDwzQ//1qnlArC1VhqDwuamPAUAcFid5gOvGfYfCpRmteP15YJ+fHV72+BetW23g+/+w1kOVxJo6xAZg5+PHAAcI8nyqQGA55+deioAYOuuNOInbejvFQSIyDpSOHJNWcnfFUVmbGG54sqAUC3KSYHWGrWjVhMiWlu3TnZZEPKzm51Se6vGCAAW/GC99+2oXxn3yf3bsZGf1e6Sc71Zatv4WkFP8UJ/lxi+LMqNZUugwzCKo2mSTLQKRNCXbvS+SBeC707/9wHA5dWbQOFket5OVEteIgHGmpqMKMxQ5uurqx+ns9Pp7AUziViF4gCAaiZti+JFCsTUprnVZnWVZ0vXQoCIwhQls+nkRKn6KzNIqCbz2SvVWGsZMRrDQU0D+sqVO5/Qbb0v5P5Eue5b7FmtCbdYjgHF2mqTXWX50toKag4GILjucPFVRNvYDhGZjVLITCezLxSFSA2aalk0DdV+6051m48RIyIspTHVan0JwG55OKlHpVTTLEF91NrVjkAIRRjLFst50NqK2LIsC1OU5cYJYbEYIgiDWRrOJsmLSeqQgOv+9Z4Xv18ZZdudYwjJupDoRvstPsf9UICJ1e/+1v/+dPYKpK4LebPHW3un6/VHp+TZrAj0CGz2b37zrxfLNxZs20ACwAQWgEACQCPC/SwD1BQOUYCWawoNInHTpowoBmrtMhHpMv1Sm/Rhu/3eVLbyITEAwNPz5Bno/NB1wOnGUf4+94BrqERyAEQdcyPaSgUdO//j+EgBwMei4SA3nYXtqG4c+wDAtecE78lzCPDADqqOYpkAbWmyTX5lTA4oYsQYw1Ln6YkoIKV10GZnQcgItxKTDeu6Ezv3g/jaCBMsAylQYRgHOibShCF0vP/6R2m6j1vxnvZbM3YyHa3nqyMXlVWWF4uGv17X+pEFUSyIp+7XxWfu7C/LfLW5KIoNS0mkozBNk3kUpo06JwGAsC/gwvtOza7tGJ22JtVC+6hsVV4t3sZxPEnnggRsXbjfZm0ZYcAIunj/G0CZn3yuVdLyBwBAoTDsiBXEuY41favIkuWr9eaK2SCIAAJQlEzSZBYEUa1sA8GL86+RAR31HGybufceRtULdHYtwkH36qDERDtqAs4grm2TaD/BOpDmBDcB2Ni8qkqByqkJEZEX5zESA0eADGCcfXEUTtLkhVIKHQuop72zQ+PPhWWM4CahAZnOlgEKu14tLhAtIEut7i9e/ngYDyhQhhka0NWq0zZwj0RsWeZlsalMVpnccCUMCsNYp0kynU5O4/Qk0AmJ4+9RG3zsdIRwK6Ztyj8CAOy4j88UCYgwUIBiRfif/uL/6hSfeuZcXX2sRtptk4DT3mUGIrDWuhQGM//FX/2r1gmizpU4plz3mUSqI8i14BaQXRjKQIC24ZNjXXxAUUAiDKKYrDBo8kuvsC+D8KHP5WOQ5Ac4B73Q/5aB/o1VgGS3qChdN6t7kICMAGAEADsAwEek4HazjWa/DOg4bgAArpUBbTP0tWonszGltdUmf8PMguAkO1ksSk0QJ1Raa0d9aQNcZ7HESG3/axOLu1SZPpmeIgQ1U7xmqruOT0fSpcNrpmkP3rFOms65nuFrHWHW5307PyJiWYwxxXpzZcQ0aV1yc1OZfLm6KIqNe4c4TifpSRRFRCTcCgExoq8lDyJ1D8D2lHeUABCq1ZOc2RYWxTrLribpLApTICXWeEEkkTCjyxiSSIWKxFK+uVit3k4mL5LJedsxTAKNrcHu3aJ5ATkUURWrbHNZmdLpq4IoHabTyUkQBABguTw/+RlRqGAH77zXhoswULHcH690U9OaRnfyrA0kgC1+GiLaxjmhYxw1X9wZxhmbrzeXgjUbB4WdxguAAQAALSLIlpGSeBYGE61DBDoYFvu52G04Z11btrG55Xy5uWov1ceTjpLUArk20HSzal3zO4pTpG3kRNkYk1VZWRZVtbKmcN8o0Ol0cjqNXqZp7eQgQNjXv2o/ffiAN9pfzy6wu935YkEQtEIWK3/4iz/rtWcMVyl7zcHiWz0gWeEAsPzzf/8/WiiFGESRkPPtYgQBg0AAGrCq38F/9AZCkGhBAmzgOqMAsJJYoHJVAiY7YHo85XP56awTbz530OX5hhn9m0YXbQZhcPLynk8Z7JPXYgAfAAy2xDH4+dgBAO+I1Z47EtjZUN90uhyLlcfVP9gvdsnGiduVtmwTEFztWToWATSdmdYWxpbGFEWZMZu2ybJNaw0GkRbpGC8AHIWnTtZTqaCx66Jb3TLp7+/tBoo3PLTcg8Rt8aH5LXJt/MkAuFj9BiESkrLKrxZvN9mFgEXQaTKfTudaBV7HcBcidFJICNhroa55RIP6cGNf0LjwohJrsnxlTDlJ51rrwR+QACOh5wno4k5jzPLye1BwcvIlUQjAfhx5GAo6hCaEdaBZXJbZBsQAEAsF0WQ6mYVhzMxhkM6m5wpCEUayCEGtcwN3T0zeONPMu9JgtulLaVGBiDi9qU3+ozRmAn6IXAMqscw0m57HekaoGZkaFAw9UwjsswhkCwZ0s8HM1tpKVsvVlWMKQdNk4sFR8t+/AU40DBJq8abSiCmKrCiyssqZKxEhxEjFcTSfTV+myYlWsetVBtJ142kdRLbhbBce+YZxx6O1re/+xPde99hpwKo22QX8J7//xwTK+75tg35XEBVRAKbtFXaL7mL5/S+/+V+YLEL9e7oDRfxjTdLdBQAc4OJfn8JHXwmEDrzPwO6m9+TerZmwDWZ2Wnf7UY1v9TVI9B6cf9wVDg1Ay3ME6iMA+HQBAGy39h7OTm3pD4xj92bh7Q7ip2ldhtVtWHXOFd2RhsYWIjYvllVVOSWWOuJsalC+W5ZnyYQAFIWThhLjungRCbZoFTKI+Qg6Xfxrm6IGAGBbrrSNa3cGN43ajycw6hjnLg5GEEYAnRU/GuGrxY9Xy9fWWgBK03Q6OQ2DCJqU+SAtTU00vy/lD63QZ+8OeQBAyNoqy1cAPEnnjsSyHZBtp8OZOVtfrtcX8/nLOD1jEMXuOeJ9j8lOPMDMAibPN5vVpaPEgKAKJrPpaRBEIlWgZ6fTF22KlEj56+qBNr7DAKCvxiO+L3XH/BULogRMZbLNZslSOmqQ43v4uj0imMQzrZIgiBpSR0s089P/uC8wGjpIILmGXWbjICCzKcsyK956k0ZNoNl5EXiowMkGKU9Pho3J8yrP89yaTWVKIgagSMWT9DyNz5NkqsOUHNrx2VMoCi0IMSjoZV7wPjK+T3QfbkAXgCgAAKwA1B/+/n9V3yySWmygJtq5SpE0TCFx/e7O7e3f/If/FpDZJe+JwRrsKZiNGOABAcBub68+T/UWAKAukd2biMhukZK7AYBDeHsXABjVQkcA8JHvL/uFrse4H3YG0zXxptXXd0ksF31Ya1kqy5vV+rIlkTNz0wYqW/swEYZRlIRBolTQkOC7GoJq6Tei/Ki8DwCaG4k9uZgbbawH8n5uefhuZf2PEESCxu+J2oQ9qqqq3rz/m8X6Mq8uETBJprPJeRQlzXRpsNw5WTWyfS3Zqb8Xy3Y2smdaLL77D1VVluWrIAiSeLqlU94L5VuOlosdra0Wl99rrafzL1FpYEtCHp2FfZeDwRS1TOXmbW1lyuXVG8slAQooHU7nk1mgI0BOorMkPiPCrez4oxJSuQnvr+ty8RhZDIjIYkVsUa7LfC1SCSkERUQsZWsLIFKJqDiaRuFcq1q00Xe72xXi7G6WZSBEQenUZtz9YggAK8vZ5dWPlksAIFStCFJzswhBAQCL8QwZ3FciRAEsi6rMi3VVbiqTO8H7gHQQRFrTNH01nbwKdKqUAiFGRmISxbVeqihQ7cXvbEy/2618IjuztNR5J/GFoB1p5w9+8S9QQFiTEoEKhEQUonUOd7UmFZq6I4Xw3/z7f0lEVrrOXQILoJ7nAYF3P18e8+7vdfb11+fRHZK8tU09dBzV1tzuDACGM7wHAMBojToCgI8QAxyp1ztG/y1lGTynXsbuXHeGtcxlXqwrkzXEnlr4BTwmg/uN6+I9mf1MKZcq63H96/82S3RARN6ODvfFbXKE8yLjMZEfNKmdAQCoWRy1VRMyiiNHue9i3l/9eHH5w6Z4awHiKJ7PXkZhjBhYa51BEDIiKtMlg3lXoqqlOfEuZML+UUXepl+UmzLbpOlUBfHOzHpjPoWeoKFz6oXN8n1eXM1mnwfJTERQOvjhk5v3gaXBDapMvrh8bWzhwmJNyXz2IggCRpik52EwVSDe19xxRx4HnO8rBu47R/uuYXy5/sYY0xhRawd6hRHJighCkMTzQKeaBia7uHW+Sj/338Ykg/biPoKVrqHC+QAYmxfFpijXfsTffDvVe6xACVgWhSgspSmLvFhn+Rq4AmCtNZHWKkiT0/n08yicI5IQECsLlogARUEniPkwZZwPH3ZIbaVmhQkASFlhDQBMlgT/8Bd/BmybqottzK2p8QBu50f+v//h/0aorRP5QQuCznbQl6t6bmcE3tNB8xj3/Shn36MAgCvU4mC13zR+2PesXFvBvu7YwmtNe/Zt4NftuiMGGAHA84cBIwA4ctJalji0nJ9mpyjL3MlZFmXWxJRthrgOYcNg6kQ8ibRSqj4j2SuzdsyfbhuioVeRNBzxnkev52iDwy1+TzOWT6+H47RNt5ADAgBbINVADWQRJiBEZa1drt6/vfjNJn/HYHQQzKbnSTzFLR9fp3zPuB36+yY+13BWRWzb4IfSMcizfGGrYjY9Awr25f6bAKUDbO5vy3yzWr2JwjidfSZIiKi4YwEdYHv7jHlXDnJyn5XJF8v3VZkBsIAKwzidvIiixNrqZP5ZoCcurj2M6B4OBmyVdHY+EdsIqr8+hRjBcr5avzM2R1SEGpARFDMrjdZawnCSnkY6vva569+ymm3vI2TqwxXX5t4yl9oWavd8iYixRV5cZfmy7YxHCETEqcK3tCUE5ZRtLBdZvsiLlSmzBqWrMIjCMA6DNNBxEp8GQUQ6di3nTSWH93TEPnsAgAjCJGCIFFtAcjsSMwQEVpj+6T/6vwiTsEZVijOdcB2/NfNHEOWHd3/9mzd/IV3VCUVEPbPi8325dMkHuelH2foeAQC4863H65JHcvDryO0AwDGH18F/l2f9PI4AYAQAd9piRgBwo52o9V2q2AoUV4u3zKVzMoJei2qd+EdU89kLRRGC3o6WsHYg6mKUdnF6geChKHDQfTUI66+N4weUyqMBgJ8lImaubTUtaKWYq012+frtN+tsyZCTVpPJfDo5dTMAfYX7+me2rXeyv/p2pvwPxK8196muC5OIXa0vBOxscu7EB/0iQ9toUZNa0LSscWf+ZZhWyx+tKU5OvqAwYWYtOAAqg2z9AAA0vQ2CTowVkcUuLt+WxQYI2UoYpOn0LI5DETyZfaVVpBC2jcB23/rdJe8HwgDir8Y2nPXWc/O3ogAtqDraq6psuX4LYJzBMDPXZR8M4vAkCqeqZ8Iq18bKntTPAJEO1JN4Kw2P3re0hSmyfFGUawAm0vV9F2qRQD0bQoDMzFyVDglYNm4BBEEUhWkUTogUqmA6OY9U2pH3sLMxvlfY9oFjDhHu9284yqFyjbzOcPyP/tGfArdwmpxOlIBFUEhimf78L/8bC4ygRSwpdA4bzM/OfUlufoPkkW/0tbvnIV2kIwCA0K5DYfdpJbeIN/YfTHL0K48FEiMGGAHAxxr4yrhSbxv3Sz8QF2Zm5neLXzsaT6NvXXtepsm51gFCQKRB0B1v26IuHfdgrxWdbOX+naiCasQoh+u5Hw8dFSDucvaVw+fBQBHVCXQzMxGhQJav3r3/zWL1vZFcUTyZnU0mMyISBicasz0bjYYgDAgwgyNsl0Y+b5124vF/iNksVm+0CqeTs9YWt/vqDeEqTU5DSoiIEfJileULJIOWGKnMV8vFm8lklkxfcMcA4u0TbksdtftGzkqMnUsRCrBdLC6zbIEK2QrqYD59EccpkZ5Pv3RdIgCgYHcd4IEAwKDX9trtoon4O6X8Bj6Jo/u0MvDMxtiirJZllbdOC+5fk3iWBHOlVD86H5iFQSsfBE3ta/uaASw4Q4ZG7rb5V9mGBwBgnTKCiGVTVVlZrS1XvTJaa55A0rpZA5s8X+flsqoK1+ihtQ6DSKuYgjBUQRROomQe6ISAEZS/6u47uv1A+3ktvQ+trTgRMVtEEmEgt9LxD37+X2Gtv9SaAGjH/2Eo/uJ/++8YQMAQBu71dSCJ9hmeU086guRDjzAO6sPbBPrrv3xfFdffD+9pwcvxUf6BFxyR4JKj79Hz9vIbAcDHDAB499Jm9YmTeu5hH68zi47r/Hb5dwhOl1pP0tNAT5xOgpPmFLAA4nxMXWusRadpXWdcOg8KjwLUj/4JejzyeheT63ZVusmBdAMAIHsNU9xeb03x9t03F1ffWS4RMUpPTk7OFGlrZSv47p62vqGPHyd15kFb1sItABiudwZBodaSzNpisXoXR+kkPYdhkr7uykjDeRydEAYCVgiYOcuv8uKqvjDLl4sfUXg+/wJ1IE7Z3rNd889OC87ooJtJJzPaFhxEnK0BC3CxXq3XV0ZKEAUUz2cncZyGYTxNP3dvsi+yfyAA4K8EkmPOS/D8H3pNIE58v75rwK1+CIs1Jje22GSLRtTVnqRfBYHresfDsKR9SJtaXC+4b/VARXjb2HWfFbFT8nFrm5ktl2W1zPI1ACgQC+j5S1g3R4hIwmWVZ/kiyxciCMBBEKHSQRCFQapIK6VmyWdaa63CfjnrwLZ9Y9b0B9snRUkt6CmNt67UiQmsfXmJ1R/+/F8AkEBFGDtLZvfY/oe//Z/yYsEoxKqO+D0/r4/x4PigAGCfHj+QH/2T3PLatgHA0GFweDzdW2LuvgEA3KTNd2wIfv4AoFsuH9If5I77Dh7xsnGB3n6j8cOsA+mHTsSGj9oHu2VIILxjl3xI7WE5EPkxdGkhH6W4Iq8wIjEjgBUEBWJREYBcXf34+u3fFNUKScfpbD47VRRCLWHUae+QgAXrHwQ1k6Rx+9oVJNVQwRNTMk4XFWqSFbr6Q00BagohJFyUm1W2StNpHE2gScC7S3KvD3Q0T180ZKT6PLNcrtYX1lYIuRUqslW2ej+ZvtDpjFyYC5UjNjQup+gU4oXBpTmJGk160YBm5/kkInmx3qwu2ZYsjKiSyVmazGbTF3E0Q9BuztuAFX1FfDiSVYJ7wugbxC6yF4fcemWKtZWxeVllRZEJVNP0ZRzNevqPHiB8rLCsgwQs1piyrNZ5sXJVPidR35L7m8lna22RX2bZ2tgCAJQKFOlAJ0EQ6TAiolCFgZ4k8bxtOPZtExCR0Rm3OP17GXQfOg5h/yI/sByh3bmW3GHKzilWEEKBkjD43/3+f4miPTyvBM3/7z/8N082bOLbBKy3AwCPxfDZt0tsVYw7RwvZTupLX653t0DZcSl/ue2c7OT8DOuEgtRoGct2iuTmRCCEHfTOp4PGRwBwTwAAnl/uX274zIxr9JYA4Nrovw8V8MituVuHuySTFT7cFiM7o/9hkLrNTRJCRBbjQjQBSwBZuXr99per1Y8MHAbpyfxFmKQgfsq/TcfWZmH+pxxxZrQAQNBrAO2fzuzLuTR9BZLlq7zKJ5NZFKYtI9/l1xGFMJxOTwJMBnu9BVMUWVZcus5ga+3q6i0QzuafKRW05QUiEFaATERVVQCQUuhbom47G0BPKtQys7FVvl4V5ZqZAShN5lF8+urlV6GKobYdIGRoa/UD94MjMYDXkYxbq/iW/XM3BwDNad0F92KtzYr3m3X+8sVPXBEGEREUi7kzf+CWeVnG3soX4LJaLRYXKBUjN0Kxurm/ghgwm7xYb7LLqioFrEZyekGBTqIoVYoQaTo5D9SUKPBiKe46BMhCFygf6cn4YfbzXZGfz+0mhc7ZXAmYMEj+0T/4PwtjA5Xlb37zrxerH0CCATB+IqE/PdJie6To/1oA0E/84546lL9R420+62HO6IMAgAfH960BwLba3ggAPk4AAPvcMe60NTx0kIpHv3hcozea25ZoIUcCgO3o4ZjNUWC3t9Sta7J3BADIu0tG7BKfrpmVkRSU1fLy6s3bq1/bKiPS8+mrSXoKqjVkbcytvL3Yf5L6E3KAAjH4J/bCaNWEtrZ9z1bOH9isVktGmE5mWsf93KoAQBKfxtFcwY7MlgVztXjNYhCtCK7WF/lmcXb6uYomnsSQBSAiIAxFxMrGfVERdNQv5zvW6EEN149CsYLWWmurTbYs8xWwMLAKpufzV5+//C0B5ShJGhUwA6HbtG6EAZxk+7ar7k0AwGExotssyAF3nxlERCn9MFYkNwvOuO0WcFQ9rn0hkFGgXBeL9eaC2SgVuOUHjReBtVVl8qJcV3lmbIUChEoFYaCjMIyDIFQUReEkjidERKgBVGMn7GpTfr873cQC4lE39l0KiX7rdlOjqD3C7Hzy2d/72X/eYpu/+Kt/Za1xUdpHBADuK2H3qABgKKQL+9KgcoSrzOOIFMvB9EQNRKlfSTsmnXEjDaIRAHy0AODA+NAbltx89x8BwK1neHcD4vEBxPGbY08FyF9v8kDn/e7ov6Uh1eu8lkPpJYeg4SZVVbHavHv3/jdZcckIcTQ5nZ6rIAbQbTwk9bCtnJEPALaifzgMAFruBLMjH7MCdMIyIgJgbG3kVfcbkHBl8uXyKoqSZDJvyw5O6x3RapXOpi8VaI8jJ37Bt7TZan0BbBi5suXq6m0cRsn0lSuDCFgAo0AZMWEwDYIoL1bWVoiuYRRaYahGDrKTPR3EUiLCbPIi26wuAS2wEMXnpz99+eJrJ7g+WEUOAwwskLc9p5pm2R5j5C5coLuuQy/x7399X7XT8chbnZkPAgA8wOnKSigCCO7CpJXWraqiMpm1Ji8unfJPY3kmIrbM8qJaFEXGYolIkY6iJIlnWkWImCanzk2sXRjbfgv7AduHxwD7plcEupYAYAYFoFGqk9kXf/9n/wdmMDb7t3/1PwjSExT9fHYdgHyLoL8Xz8jOY4t2BbteHv3DAgDYKgJsAQB0LUxDmmuTxbvBLrFPC2EEACMAeAqh/+GVJ+MavRcAcKPo/8C+fC0XE65v6LxnUoRv6TpY58NIUYjJAgBX5Sa7er/8frV+b2yRhMl09iqOJi40R1RO+RvQdBFMo+7nPH23GzSPAADQUgjaXs+AIvdWzGyk7L8nIdu8WG82qzSdxenUp1W4nOt08iLUM2ykDHuBspCAZZRNdlkVK0a2wpvFJZginr8MgshZH4hYEjJSajUNggAArK0sV8ylV6BQnnVxHVb6l9piABFbVsVyeQV2w0II0Yuzn7568bNAawbjXnX4lN0ZRPal8W8jULhPT5bkPvaTTvsFREApspYb2IMfal/1hb+aH0xrEGG4xXUiIsC83rwvyoWF2rCiZfkzc7ZeZPkVSwVAhEEcx3E001orCtLkLNCJ1rrtkxncRCd4qnbPAz4lemdD8JNAoERUrqu/+UdUoFiMUsoaISIDFRE9Nb+vZwQA+D4ibw8AIO+Kc/a8683q2zcIxxBvcuB2F++9XmAPZdcHMEcbA+8FDCMAGAHA08EAx1QAxtV5i0m+0X50VwDwwKH/ofBO9p/E4vmqAtoiu7pcfL/YXJRlRkSTyXw2PSMitlgzmJFdCnybyySkdk6SF5jSwYCsU9Z3OfhQRURouaq4Yjb9AJfAmvXqythyNj/TYdrKO7q7GYWT6eQFCBIII5AMHdagTsxXi9WPzqy0Klbr1SKMomRy2oqZuoz+2cnXRNr1a4qIMXlZrTfZAoCJqG8IRb6qqfs6CpCRHW+amReL17asUBhAz2c/+fKL326UaI46a71ztBZidyKtHlsD72U9340t3ZQjQLVlAURkll348JG31h7Tt8lq97YCIXRHhogQCIhiBpZyXVzkhRM4IlcWIAJjTJlvNptlWW0ArdY6DtIomkRhQhilyYnWMRFBrSbcdQk7Z4z9VMAPU+Ddvx5s06mvXEwpgkjsvA4VkECJEFghJAOiPj0K0EPN/84N4TCFjLwncSv635kp2GvjdV+J/yNMx/c+v54nPex0CObO7UD25PUPaArhCAA+QgCw24Bp/+J7AlvDLWxHxnHXEPnW0QgfuT/uUGN4iDt7awDAAsbYPFsvLi5/yIuFEEZRMp3MAx37ZGVflsff1lsU4U/MHk3Pw9NJiKgkmM/PnFGr5WK1vqi4GKT/AYCrcrF4q4NgMjtVKmLPOAFBzaYvgyBy3Q5CrQiY+CkiR2Rab95l1RIAjCnXywUpTicvCMOmhZEA+HT2MyKNxDX3iUFEWKrV+l1ZrRDRwQAvr4ytw7GIq5y0QacCssuLyyy7IgSW4GT25RevfhoEgc/5OQYDuCZj575EpD2mzYcBAB6hRbbKEdi/NnFX+4Eef0c56076/bGUL7LkEB0QkRFblnleXBXlGhGJNBGJVEW5Wa1WVbkAIAUqSSZxnAY6UpSmk9MgCAj10R3AD5osuGU6qb2JzJaIXDGtljlCK1xjXddfcT8VpE8QAByQ9dwVwOwglza3a9CxRtdEtz0AcO+En7sAgH6kXtcBkHslDhoChuNboXBrSscw7OMFAAdWwZMMUseV90QBwEAGlI7e0B/maNz7Naz0zgbrKaaLiLFFll8u12+z9YUxJgzjZHISR4mQM8Wl7qq3JA63Ir9a/aahSosLjhGxlUM5sPUTkan45dnnhKEwAYDlfLl+a6QETwbeXYkti8XibTqZJJM5QNtdKgAUR7M0PgMUEgYJnIMpMzfSq/X1s/uJ4Gr5HUplmDabRZUv09l5ECTtJVlbncy+jnRYzxuKF+hXebFZrd84by+vnNIl6f3qB7IFZMEAUTab1XLxFsGixNP0i88+/zrU+oZFABQxlcmWy8XJyamiCFHfQl7zIUQR+gCgCSyEAO3AXOyDbALN5bFboR6UFdiSAbEgChonBK/f2hljV6YwUmTFpSPIAUBVZevNosxXLFaTCqM0iSdhGEf6JI4mSgXgCYbeah4+FAAQROcIJo4FVFvFiQKsGAIAJnF1gBCeGgFo/2p/apBAaHeUfCQAoMG5I0Pq/77otilCbq/J+2luvncA4GxYam3TOwGALgZoHswRADx/AHBvD2SzOu5sKHb9Dtt+ouPJjuvvcULkrS3m2I3saX4jx+r2u37ZBdAuHhV07AbLRZEvs83FenWV5ysIgjSZJvFUqaBT4ax7hdHTu+z5eSGitS2vgxvv5ADZziZfKYWMsN5cAoDlYkDUqWsFSARONBPOTr5SFBOwCAOgteZy/W2rtFPHXqxQqixfZVk2nc6CKHHowkVpcTRLk1PExoAM7HbbW3u7LRgEXZnNavNORKqq2GRXkY7i9AQImVkhMfN0choFJwoHVfJ68quqWGRvrC2IdNseTUKNpiS1QkatshCiAsJsvVov3gBXhEkYnn/xxddRFAkQghbFAIzswlNpoBd56vJOfIkqtpVZrTcXYZAm8anWoTsU2Vm0AoMgEUGftfXE99s2Me+Zf1mioH1M+0C09+ReC8hvtCdckzLijkFnOS/K1SZbuKjEST8V2dKyQcQ0mkZxqnVIGE0nZ4FOEFEp5W6sBc/FzF34obLhQzA/r++POoxJvQJcF5bBlkHb/dnHHgrxn5fe9x0Z/139inoLpm//gnvu4zDQ39Wdf1cA4GfKaHtdgRKw+/5Quvq1//NOILFj3fYXgxx59CMOTRg9itE4RgBwGwBwZEeX+GmnEQA8OgCAh+uCeqCv0xp7kTShv7P3QgFBdFFU40UgIkBgbGlNluXLzepyvV6ISJJGSXrqsvUi2ISttjmz1WDtCyOSL3hvEFWanMXRFEFD7XJQZ8vX2TtrbWUycLKavY2bEQIkSxhO0lPn/0Xiohxkther3zSZ9Y4mL6Zari4BYDabA4WNsS6LqPn0VRDEANBIzRwqqdWqL2iXq7eWK2az3iyQJYhSHUaIWEuCQnB2+oUC6iuiNJENVAx6k11m+fu2SdTfHgbSQM4TzTHIy3y1uHoLFgijKJy9/OwnSTwRdMewU5CkYaIOUaQVHgUGEDBZvsiLBaKaTc9DmgBIy2J3knlOg/95HAytS4AQAAEay/nV4q0Fe3byBUjUCkwiooAhUT5ysC6OAcL6Bvkp/91Bz12OhlqOSZwFuDBbJ1dVVdk6e29tkRfZer00NgtJhUESJzMVBoGO0+QswEgpBaCIkNmgECkAOVwgPAAA7uIIKTsRcn8DPBDhkeHOnpl2hfuI8Dgldn7mUj+3AwCIOGg2awGAj8duCwDu4ezbVwFoBbgOZEtrqSJ2jvL22iN7BAAjAHhSAOD4dq5biIGO434BwHDCn2zoX2PFhtnuXTqJCDIiMQCLkKASsYDCbAqzLou1KTer1VWe53EcJ5O51roL/WslTRwYe7l0bPMEuK2VRTBN5kl8CqIQUYBdCrPlm1qhq9WvqqpyWdvBc+NsobTWaXJGGHSGxHX2175ffuOp69Q3wl281uF0ftZdHts4OplOXjAzUWsXsH33vHOIEdAyoOV8tXlnrS2qTblZhfEkiGIiDSxEYA3OZy8inQ5OUC8xz4xQlpt19t5hIRf8tFST5vWOQG2RxAqi0gBQZavF1XuyIhAEOnn54st0eoqKXPQvhK3IknfxDtTViT0RMWKL8nKTXRKFSXQax6kC1Xa7Pnrf7f2u8FrpyAJfXn0PWDqYRxRi3YnLACDA5FYCM5FjqhBsudFtZaDlDueCvxJAGPtiuOxkggRluX59tfyuyDdVVSqgKJxEURJFkVZJGr8IgkAp1crICiEisoDe+6H4AIfFnQCA67Rx3xeB1A7J2ue7FJ909O9Wvs9z7kUpnRUA7rmJxwCAGwf629ZacIgC5AXxQojo8EDfP1P6B9De2H0EACMAeGoA4NatvaPIzwdAAp0SyJ5H/knJxUpraNScBK5MSr3XMJCy1pbVOisuRapNti42GQBMJpM4Thio1Tj3TExRxPG22UECImCp6vICkILg9OSFosSLhFwAZAEIWRA0oLVC7y7/2nkqbfHjFREpitLkJKDQ0X6aLtI61f1u8esWANRGvwLrzWVRZEkyjdM5tCJCjCezLwKdslS+PuYB+M3MLjEpBJvsojAbY8pivUSloyhRKmiPsUAn8/Tl9o1wCWARl/6Eis0mu6jMeisD2vF3kRHACIkIkg6AbZGtivWmKo2ABGrSYgClNKMlZ8/M3PJeWg0ZZKeepACwMGWWvy+rFaJK4tMonOle47U8o23Em70u6mUUtsJSLZZvBApEFYXzQCdKBa5y5f5QATb9Bjx8T3AKtnwvAKAFY4M0ZKMNoOrKDwEAWiuGy+Xi/cXFN4W5UCChSuNoniSJ0tF08oowREQihQhGDGFAe553L0Q7Uj9abvqCo7UR2/cREQFFVVUURRZFkdYxSJ100Eg1QCK5bwuIjy7632Mbf/A+N3drCwDQVghxGAA0ism3D/33J9QOyIC6h33H12Jw1uZd+80eFtDdAcBwqY8AYAQA9wIAbqfvOY4PCwMQnqJjtOxcmZ0xmVPS5L6tLrMgltV6tXkHwFVV5ZuViMRxHCUTt6s64y1PwpIQFCKyGJ9THUfTOEgURQxIRChcW6h6wpqIyOBsgNhFBnm1Wax+JNI9qcvmgwh1mpyEwQTF7fXumm3rcvX26lfOIsAPoBfLd9ZWJyfnKkicxo4IpuFskp43gi29vNHuY5MR0Lrg0oqwFKvNO8O2zNdlVSTxVOuw/XNCfTp91dLQuzcR7me5yIJZrt5bLobiPw0XCF01ho0gAikAIMAqL7LloqoqQFGk5yc/OT15RVohsl+B6R+bRCCN7QAh6ErKTfauMhkAReEkjmYaA0R8ZhZITduJC9ld1Ohsp7BR5q+qzNgiL1YAwFII62n6QqlIa+0U6D350b3pyTsDgOEbivgNxAhCQl7OklBErC2Xq4vLy++K/BKFA6WiZBYnk0Cn08kLRREpJlDCrlEH9ig23sOVH5kNPRIAAACzGJtdrt4g4iQ9DYMptUu3Q8IyHnw7AYAH624FAGTYCsx9MVC4TtzGT+LcBQD4MfdR1R4v678NDJjF1y1t/VJGADACgKcPAI7co3Hn7jAuuMcPrBmejWGcyN5MkrtCCwyClsssX1jOqqrIsqwo8yRI0zRFrRoGSxuberVaISRxFrYiOElPonAakAuI2yei5uQQqb4kMwFakrpn6+3Vr0A0KUZU1rZNBbXef5JMk+gUxRBp5i54at5Q3lz+naN5dJlvYy+v3gW1AGjg2moJ9cnkpVLhVsva/k2fCcnhI0dgsKv1u7LKra2KIlNKBUHSSHyCiJxOXwV6WO7wKOau1MAWEBGz/Covlq73FxoalfviTnm1LQ4QaStMgFWemdKu1guWQqtoPv389OSzIAqd5fCgk5KI3PW3sy6CgmS5XG8uLRciNgzSJJ4rFQkDPre8a92dgbVNLyJasHVTCTjRVctS5cUqL66a5aGE1Wx2qigi0qrnz+A/RPfZA9CfV7cYLKJ2CW9rjVIahFgMO2cxYBAUkeVqcXnx7Sa70FiCoiSeRvE0iuL59EvgiFSveb39Ip7h0YMf0IMT8AA5pZ2Hymwulj8gCkIUx5MonCgK3QNNdTuNfmiBIH6Gbl++iD3e3+U/JgDolqh3Bh0LAEg61hA0WyWJMVX9RUh5eZbrC1Y3BAA7ZEBHADACgDsCgOP3ady5NYwL7sNuyk9OHk5aIRfs7XGe7EYjvVnzcSuzXm8umU1VFZvNRmsdx3EQBNgIEToIQKhdnlJEANnJywRBFEczRZEguc0PnQeqiGO8WOmnoJqsjWMioSUiqszm3eI3WqWA5UABHYTCMJlOTkECQOs0+10Tp0bV5E3l9cUvHRXHRdIAYKvi6upyMpnE6cwFgiB6mpzE0cxXj2km5ID6jZMzV1bEfQXmcrF6Y4XLcmOMiaJEKYWoXCvwJJqlyQmAGmgBWRAF1NamiciIQdBZcVlVpbG5/0A722BrLZG2tqYqKRVYMcBSVRYMXV2+FcxB1DR9dXb2KkmnDgP4B20dGXvK+q1DU8X5JltZzkUqAD1JzqNoIiJPTZf94M7ZcnjqugpbEJLBHuzob1VVWVtk+YKl9DhmPEteKgq0Dg/aJN9NBWiH2mm7pYsFQSBmQhQC64QyUYwIgBAoslyuNlfLt9/lxRWLicJEKZUmJ7P5F2E03Xm9j9CP1G8ehaMLDm42eJVfZfnSMdO0iqMwDcPUUbMQiR9ejerZGX61/bs10HrOAGD7AD0CAwwbeZktsyl5fbV4B8CIwfn88yicWmuIQIT25cJGADACgCcCAOQmGwFuv/kIAD5s9P+EAcCQSckoIqLaJkJEATbGlNWyqoqiXBdFZq2NoigMYyJCpVEApI6KanGYVkLIchikaXKiVFgHYY6D7vJ2KMh1ts/Xme4xK1BAFAEz88XVr4QEIQI0jqnSmgkEOkniOWEEaEGUQqljJkSSjsPz+uKXWoeuFuF41evNpSnKZDKNIkdhsoGenExegqgmI95qvwAiHuRAO1ZpncYVkdXmx8pwZdaVKbWKHAAgUYAGWZ2dfqYobmL9mqTOgAJcU889JV8hrKosyxfG5s0vXcswMAK7kF2c/ZlqKgOoKBAjb15/J5iTUByenZx/OZ1O/VqE6wDWWHcVO683h/vcNZQ2z/KVqwMgqiSex3r6fLnXnomYDABeY0QFlo3lbLF8h7VICCELogqDNAwTRYFSwaBUdWcA0FtFff50vZI76a2OYEeOG1Y3xFsodZWvs8W777L1jwiGVDCfvZif/CSJZwDAXXh0a9+AWwKAPgw4JoclImLE5MWyKJdNZ6pO4nkUTkkISR6BArR9gD5NSMC7ov+PCQAMHmG6ZgEpActsK5MV5aooMkEF6Dio+tXZVwihd/CNAOD5A4A//P0/ObCSPkTeiXd8uuBxBmHXv4b3fC2S3Q/kRxNPi4inod7MQ9+hUJoeMU/lEMdKiL/AnNxn1x/J4NFq6yq8FRHgrLzKixUAF1leVRURRFGktRZBx8V3LH9mRpKWqo42mE5PtIqJvObR+tjeF5bty6oiA2yyq6x465Q9GylMarszp+mLOJg0byJ+3rGldVqRtxf/yXHxHX4Aa5arSxGbTs90GKEwM8yTV1E49a7zmAcWB9kpxwKqqmqx+UEEqypzdRKlkCBwhY+T2ddKIUJIYJuM+4Gw1WWzqixfZNUam2NegeJmaTsFVSLdvhVzGYUzMfT69d+xWRMoUvHZ+Vfzk1dKNXUbdDpLIlQnoZvsvrTSQIXZuKQ4MyBiGMRxdKIopCazLk069rk/X/46FOGiXFdVXlYbIWk7cZlZURTHE0WR1qGrZVHvPayQgq6NGNrWw5uChH0pT97NVK5vnYhkm4vLi2+z7AqsCVQ4n706Pf2CwtR9O+UkUIjaWM163Gh6bGUd3JOeABFrbLnZLA2UzcPOYTBN4lNCBUDknQz+k/hcfCqOzB/5p9sdlf79+GRwdLqFceQb+AVkaAu35JewbnNhR38daYtmQ04jIyBn1WK5eu+6pOodGQ0JJPH5JD11aRcroPotXocBwLVxWvtU0g61ojsZIDCKEyMGECuNkSWBGiOaZwMApBYzf0QA8PFgAO5vUtvSYINdYPsZdnm/8XHxvQ/bFBEKt9l0ZgEAC1xWq7LMKi5FJMuWIqIpCIKASBMRojRiMspF9o7iHwXzKJxqEqUCx09og+lbHcyCiJXli8U3jWlo6xggRCCCaXwWRRNkaZKyuwGACL+++JsGACAAmCJfra/CMEynJwCEKGEwnSUvdm3c2w+UDLZ+7AMAF74slm+MzQ1bZiYCAuXUikRsGr9I07mwa2q8/lxspEh5XSyy/KqNB4i0YzS5EJDZEJHrdUZUzDxJT8Twjz/+qig2AQJgOD/97PzscyQNqpZCcoWLGrxxl4FzRw4oKst8tXnT9l53GMCluKyjjvkB2TN+Olp3MGYGEGaTm/UmWzS4C1t5K0VRHKdaJYSBQmj9gLlB11sZmfsBAIJDBcz2uUACY13jO2Wbq/fvvlmt32motI5Pz346n38RBGHdFCHAVMO/o+WAHgkAQC0iKSK2MsU6X7AYAIMQiUgQBEl8SkQKdP1i0AAgYOA+1Cc/FQCwReQ7EgDg0Mdw+2IeGAA0XP/mFGvKcWiNKVf5lTOKaWFkvR8ynp18RRg5kw13ND0PAADAzIFSIsJorZWLq787O/ntgPQY0AAA/tEv/mRf/PCBrqhXidv20L4tAMAjXnP9DvusN8TWGsaT55O+IgcKIjuet9TxFn2SkhG8Z2WSILdLVNxJy9Lkb8pyU5SbstoAsOGqLEulFJHW5EQSm+ZRoRpICE0m8wAjpULPq6fdlPkOUFwAMCtXm/yNiGqzgADkVIPS5CQK5oiKamuqvRUAY7N3V99pHbpOXwDIN4s8X6fpLIgS1xw8Tb+MVAzI+9nYu59TroXmsDuhURCxKNarzRsRsdaKWKLQpd7dGXY6/6rN4gxIWTuBkJtOCybLF1m+BGBEAdCI6OJ+5lYdCIkIRAMaa+Xs5CtjzI8//G2xfo9ECHoye/Xq5VdKh44CJFxfcBOzopPLUc3lWBBj8uXqPSlu+Vfz6SutEhICtAjagv2oALZTrUU3FWQ5X60vLBeu6uVLqYrYKJxE4TzQcbNHWaybT9Cvrd3bc933594OERmEmZVSzHa5urp4+6u8WCiQOJqen36ZTM51EAPUELqNtpt3ZtoiWTxkWn3fY1VTTUQkK9fr7C1A7XnnHqgknjWlgGG8RZ/Mfn7Lm7JHIXSL4oIHY3TxmjrwXpbH4E32ASHlaRlba4lIhK21ebHYFGuknl4CCCFZa/B8/rnWUXvxjorTSkR0U7MLWn9YAGBFNJEzpaksv734O6X5dPYzp6UxjqcNAPoElTsAgLsoTnwMJdGmK3V4Jg22CRbrHu6qqsIwZGatNdhRNNpfOWwBncmXJ/1GlVnlxbqsNi7Xa4yxYohAqUAhNSiLEFG5GJFhPjtTlDiqT6Pqg15Hae8O3vwGiLX8fvkbhzqcbTBgCaCJKAwmaXJaS1bXto67AQAirouL9eaiM3sSXC3eWVtNZudaawBSFJ3NPt/iKR123e7MtgcbjsvrM8LV4gfLhQtZGo352hr5dP5TrXXTCHH4hOjcDAQJUDbZZV5cueSWOBXPpg7GXFsdK6UAgNmE4XyWvqjs6vUP32SrCwIRFaTJ+auXX+kgqo1+m/Zr1eNROFa6BaXZirHZavOu9Q+wVk5mXygKNWqW6mN4vlzgiwNiSd0aQaQt50W5Wm8uWs0rF0O7yU+TkyicEQGJavwcxEkPMbJnpXQ/AMBfco30FnrSWG3sQgxmsbx89+5XVXGhAdP47Pz863hyTk0rvh9+bZlGPzQA2IcBel+yKLJF9qYpebl1zmGQxtGsxl0o0PjljQDg1oNuAAC63MR9BRhHAgD0bT1AsVRZfpXlC5fDcjkpAKiTGaBYzIuTLwgjRwVwyZSe3JznfOxr4h1sPr4RALjrfUdhJ3tVcfn+8htEPDv52VgBePIAYEtS99EBwEeV9nY66zsgMhtj8rxYltUGiV0428ShwenJ5xqDTzHYP0g54yYPJMAitizzTX7hYlNmduI5qHSj068bmXxBVJNoHuhJ65rUMjJ7rLdGz/4uzehZuVptfkQMGtJRLeQfBtNJeo5A7uC/DgDA++W3TjnU/bkxZnn1VuswnZ5orZlhknyWRglAbTN0EzRVA4Bt6zQhcEUAABZRrcQkEQBAFM4n6Vljc8YH6ubs7SoNRcfmxXKZXQHwwBcTUTFYlI4gxAyzycswTCubv/vx++XVDwrFoppMXn726idREJuGZYQEJNCE+Og3y4IiZnYWxS0dS8RO08/DMG7Eiz6O3UZ27rcMtfk0S7XevK/Muu6+bUqRrriUxmdJOCUi2wjONjE6KpQb7vlHAID2WfPOGvQ6FwEACYTBQrW4evv+3W9MtdKo0+TF9ORlEs+CKHWJAAWCQiIExB+IPTuolvi7Ca2Ly6y4dKuamWtCmlASz5N47jrfXXc7fqQOwY8AAJqNejcAGHxcv63l8SoATQWDANjYIssXRbludy1n+tGSWpUKpvGJk/CqbeZE1c1Lcg0A8KP5LU3YRwUABAKiLNjKbK6W3xGFZ/Ofahpzmk8ZADDcPPqHGxp+fXLuYNbpzTRJKWOLstrkxbJ7YIUATdPkxgB6mr6K9UTAfGpFgL0AQAiQbe3RK8aUxmZ5sXB5NZEuidhmOtvEubOFClVYE3y81ovWYXEwz238elP5SCP2cvFtS2dHtIiBiIRBnCZnhEGT9kNN0ASgOwCACL+++CXpgKAGAHm+WS8vJ5N5lEwAKAzSefKZOxVuqC8+7KlodVqgad66XHxnbN7SM5xQj2PRnMy+iHTk8VD3AgCnx9rytRyyysrVOnsPYACo1QZlZkECrgBIqcCRgoj0fPolIhowb15/u3n/g1LWWhWn5198/pMgTAHQMBORS1T37XI6LQsAKIr1Jr8QsU5Wz1o7n74KgkTJg+uyf6Dov7sLXd8hgYjkxSLLF45/BZ5lbxKfRuGEMABPsP9WAFgOAwAfqDbXVv8siFD7ZxAA69pHDI1U797/cHnxHduNJpok59PZ5+nkhAKXTSQE7Qh1HwIDoPdtuk5T65rVBfPyar1537Ue1Q6D4DYlpYLbzvNTD/SPjJgfDADsJvk8NADYPs5q2k9jNZMXy7xYspQi6MR//BcrpQjD+eREUdxUuqQ1mmgTFgyd/LRPgIQnAwD8hbHavMvy90R0Nv+dEQDUy+af/fxP9szXhwMA0iOT3eRGHSs8sutPPlaau3Ti9ASIaExpbVVUi6qq2rvdnBnsNGpqIiAEpydfkuzgpXy6AKBR17FcltW6IZSr5q9ss9NiO7Egej450yoWJMdtUIjOlshL/KN46unuAqh15b1hG4aI5Ga53ryvo6ja9QrDYDKJZkEQM3N7T7kDGDsAALN9e/VLpaJa9IjNerMwRZlOZ2EYIwTz9IVWSasteNON2zV91ju+oC9UJ4hZvsiKy7aL10WKRMRsJul5Esywo1ft3fcF2HVs1323zK7ZtKqy5eo9oGl0UWsqiEMFDRGImTmJT9Nwbggt8OWb7xZvf0MIViSMpl99+TtRnAKQ2zCdFCkiiRhE3S2Yhi2WF8useI+IbAnJMnMav4jj6UeqStGtKAXIzK2IKiMYUxbluqzWLu8IyG7bIYxn03NFoeveY7a3YEowHjoLBmUqn8ljXULTWw8oViGJMIMIYVluLq5+2Fy+NrZEFaTJyWz2Kp2eqkCLWC3BI0SZ1wIAaDp6GcWxOoWhqBZlta5KS6qlbBkRy0xJdJqmc0/J6mMDADv1LeABiUBeJnXX6h3UAx4aAPjQsDKbolzlxQYACLWArd0khdpOpjBIJ9FcKdf1XiOEdvOUfpUM+kWAJwUAWklDBvXu8q8REqDs5fx3n7va1ccLAPo78g1PRTninXf/yUef4RbhwhSVyaoqd3BfxLbBU93QBqrLRArN52eKkk9TMMuLKYcQkbnKi+WmXHmU33aLY0/qBERkNvlMI9UuWt3WSQRMRMzWBc3bjvRSK/7fmEDsPuLd4pv2emrUoVQSnTrRTyJiC45h5KzE1B4Z0Koqrza/QQwczqmqYrF8F1CQTk+IqBP/AYW3pGl3H9rmjjr+qMKrxQ8sJVsSsI4/42Y7Ciez5MW1LWLc2iN4VRR3qjEAS7HeXFZm3ZqyAbhDTtAx3whFRJNKonOnXGlRri5+uHrzjdjSgkTB+Zc/+TqKp9YDP+SoVWAQVasN6loRGKUo1uvsbc2BAWbmNDmbRKfPfXsZ6Bs2txTbBd+/L3VVx3KZF8u86J4md2ZP0tMwmBIrRLxFeWQvABCkHSamNcBmbB43K316WCv25XZLKjh78/rb5eI1SBXpIJmcz+efJfEJUc85+JHjjL7nRvONgFpcXdpik11UnDvUD0JE5EoBzhIkVNFHBgD23YLHBQDQF/vHPS1ScncPYP83/nd03NR1cVkUeSPt32xXrRAWIgjF8SQNT1ww4JrTmnXVvpXtkkfXAYBdPWyPWQFopCyY313+jVLRJDlPwsknqGtyJADorKR35tUefEfzKEB0kxt8JAzYlyt85ojQC1KFABsHV0HAqqqKssqqqnAhVDuvrQail7R2gSyL4DR9EQYTANIEj+Ac+fDzg9ccG90uVu+bRLVggni+UrlZZvmyke1vo392kjKO2w1AcTSNwilhsE8e7n7nsy36u4p/US7Wm4u+9h1F4XQWv9wfS4l3bECr6rgpr7JsJcQkisWYcr1eL8MwTiZzAD5Jv9YqIiXC2vkf3OF7iYV+5w8KiCrKVVa8bxyIiYQZyan3nM5/qkgLGAX61mcnS3GxfN0IHHFTLWkeCVeWIdQqnsYvnGEQg10vV6+//1u0qwJNqOZff/V7YTIFFEIlIg2LFhh7yebGH0CyarneXCK2C6uWZG282DoiynPPyF67Yl147RITRZkxmmYRYhikUTh1jark+3wJCaGIBbQk6p4SQztLwdJ6D9WJkuYhJ0IRWWWLN+9+nW3ei9hQJ7PJy5PTV1FyAgDK7aykAFg1vGoAYGRqigwMqPCaybnLUbpr6xNmk+XrdfG+Eb310sNio3CSJmeEEQD7+m/eJfVUX57IucD3va82OmzNF+yrEfL1cf9eSy9ypUK8GfVgEM37Nav291sGwHUhSESY7aZcbLKrhp6qnOq/ZwtjnC9Nmpyk0cxFETt7k1oW5UAFqK4Yb02FwwAHAQA+wsKwbC6ufoMo0/RVEk7H0L+eetcDsJ284y2PnicMAOB4DNAme54pAPAxd3dGIWLdf1kT9RjA2KKs1lVV1AyKZn/o+S41zIpmBqhzLY3mIOixUJ5T5r5/N69RifG1S5xVgtsc2zyNy3+UZZYVl4XJiFysb5t8f0v0J7YQhnEST7WOXeywL4C7zwxH05jlTMqstVfL7wCgJf9A3fh7qkAffo62TnRcbN5WJhMEsChgs/VlWZZpOgnjVATPZ18rClgqwsDViO+wm0utqtmfJRa73rw3dtOoLtbBtbXVfPp5oFMXoNWqFTfEzHVUR7JYvjN2g41GHkAHepUKrLCITOKTKJgDABCCcJmv3v347TJ/y1AFNPv6Jz+PkhRQFNQ2X6707OWC0e+1KIpsnb310t42jV9E4bRx63OUMPl4q29DqrRroM/NZrNZClSuaIaISTwP9ETVAlC1Y51tU5LH5gtvhAG65WelrUc1gq/SoDMkZhbizery9ZtvNsUVoknCZH7y2en8S61SB/kQEWsWkysBkQOBAGzBKggeGADsCEyZTVatiyKvqkJp9J9AgSoMplE4DcMYAFSn7Yj9C7w3/cr7zfrfLwDwhPM+MADYCQYAOsldfyoa008AIQFTlMus3Bhb1n9Yd9732p8AKNBJHM3axqp91Mp2Txs8WbXlYn8qjqQAPRwGaO9UWa2X67eIMknPYz0bKUA9ANCtTvnwAGDABDhuQ79Rjy883wJQV9qWVj1GMZs202yBy3JTVmtjS2FEqlOnHtunDfppIHvnEm9xNIujuWo0455XCLJlJ35tr1WrUtItuWY2msAEbJYvimyJiI4n6QqqvpkaAE0np1olRJqaguq+a7xH9bcGAFgHY5BgvbnI8sumXxaYGSGYpOdRmB60dNgt4fx++W0t6G5BoLq6eEtE89mZCoNAT6fxmd9Adp8AoI6WhVDlxTovL3xg5i4pDNJJ8sK9+FYAAN29MIxI7FRHt5CkcowpALZW5tPPAx0LknCFQGyqd2+/e3/1Gwt5qGc/+fIfzKZnVoBB3DFP4Lvsda4FVoCIinK12rxzjlIiVkTS+EUUTUhQCNiK0vQx9AYfBAB1AwDUMJxRrK022aKslkopYQUAOoAoOA/D2FOrFKfvd1PVqZtmEFwNpyM9I5D01D/ZAihiKd5ffvvu/XemWiukUM9enH81m79QFDEgoEUUEgIgC6KRDkf5DwcAWsExw2h5s1pfWK5aqlLzvZiZAz2ZTs4II0RBArDs7AKFkYgA2e8j+igBgCv3+dH/gXAfjgYAjkd2iwrAAZi6nR9UQEas86WpqgLQNNG/FqigVvpn1xHOYmbJaaATrSMQalM5ewCA7HyytgGA3yrwoQCAdXxX5rfvf00KROx08iINT8bQfzcAaDEAA+6PqB4pgKOb7eY3IAI9Bwwg+/Q02llq1LLrrUoYKpOX1drYfLtE6E0s+3tck1itU8VxNE/iOULYvoyelUX81nI96tb3aYtdhgMRNuWirNbWVq5CyszOSbHpmRZrJQqTNDkj0spt73LgJl47kzdm/HeWDihs5WLxKwcLG6RHUTCfpKco4hbMcUESAoC15t3i11qHwihgbZVdXLxN02kymQPAyexrDQGSeGXoOwOARpORQJxHmGMwb/L3zqKyl4QUOTv5mlB5OvG3YgHVYMOu1u+MLV0A5M+tckaSzFql0/QlKQRBFiuAxHK1eP3d618yFBFOfvazfxgls1rVFEVElAcFXTTp9zxUZuP8AVr6+zR9FYaxMJBCZv6kOnDaCokQOuHUrLgUsQgBAERREgYTReG+suQR25TcfG205GZXLELkDiS4tmYrIiJKU1UVF4sf373+RiQHoEly8uL8i3RyTjoWsWDrSpDDAAe4zvu/yPGOyNjfEmUrkyMAaMRusnd5sXIWAQAGUTnlAGsrEZxPPw+DCSI2BlJQ4666McMCqA+7Zu7F33dnInJn6H8kAPCuYp8e6J38rbrDndH39Kxbm5iNzfJiXZms3luEXLNvw/jn1lYFhObpC62j7nTwfEIHmf59LZRdF81RAODIEO5+loeICPC7i791pfs0fpFGszH03wsAGgzQyz0NHE9GAPChQls/pe3LvZW2KMpVWW18WUn/YW6zO/0/JBFbP/mioyhJ4jlh0OU/5JlVAPY7+B66+21dxV/0IqYoV+ti2fSeunmTxr3IiuB0chboCaKQKGda5PpNnezMNof7iKfnhstSiMlKrXAPebFcZ69dA6vjKYXBNI5OAh3i9WLzMuANV1V+sfpOqcAdM/nmarNZzWYnQZQC0Mn0J62YmosM+Oac9T5vdccZ42SVinK1yS96h6iQ5cIFKE5752YTKK5JFxu/ZVctMcvVW8tVe12tcI1bANba2eRlpBMAFGIWAhYgWC0vvv/uPxlZx3r69Ve/F09OW/3KRhtULAiiQgZQNWx3H+HCXAAWrpVwJslnLtuNH7/4rmxFvU1VDZ0LdVWUy6Jc1XsaYxgmUThRKtC1ncJNWwZv7Buw3cXhaM3SmIy6XIxhFhEgNNXm7ZtfXa3fiy0UUhKfnJ9/HSfnoa4xOSMpQKfB0HAw8IZI5kYbSJsA8sqStfsHMEKWLfPyirkE0M78tT0amE0SnyTxOaHqMuJbor0fVeh/VwAwWJC459puBgAO9wC06h0WTFnmRZmV1XrQg+6/zJ1fiJjEJ2EwC5sdvgV4ItIKu10LAHxa9dEAYN/zeM9RmSAyc2Xy5fo7EUUE0/RVHEzG0L8BAD//02659zAADh6zB+qavxUAgCM8vz5Wmf+mJb8p1VlbFeU6qxYgGgAaN2/qz2cv0GqYP43kOooIRuE8jc+6+9vsgM8eAHRrSa4BAM4Vy/UtSbHJrkonlwEKAGqii5BABZbT5CwKZ0opZiYMAC1zvcNy08cySFUe9+jcNIAmQOv8aK3hy9r6V7m+Lq3iJD51zgNHCEVD09hXb/SVWS02TdhtzXJ1KWJns1NUQRhM0/hcIXrMbLgnAOAdjU1HuwCv1m9cer7ls4nYQE/ms1fXArx9aKd2b3AFNBFCZXi9Xq8sF03bcRuNUVsNmEavlNKNrR4BIbDN8sV33/51ZZZRMP3Z178fRhPHaHKXqrCmg0PTWFrX3xiQoCjW6+x9HeIyiNiT2RdaJdviOR8jABi0mbqenIZrjQLA1trKZJvNkhSLCEKQJidax4RKHRSBvUmgv8Ns2NVqdrVxg8uztkxrtz+01QBQnOWLN2+/Xy/eAJQa1OT0yxenr+JgihS6t1XXeUXdU/QP/YTRsA7ACAjEYjfZ5Sa7QGIQ5cR2XYxorYRhGAaTMEidP0N9XwQ/4Pp8cGOvWwKA7RipBgAH3+9mAGC7vA8AIlzaMi9Wldn49vFt80kXCYiGpp6mdagAG6902f64fbGZ97telXunBzDfIJa759jMqWIsV2+L8kqpiJlPZl88d6mr+1zm/8wBgK1U6DYAgEehgtzcAeCGGR24ZVHv8cP8bedwaEQbXW5SwDROXoZIg5P9qQWeuRU22fld2/q16wqK40kSnyjR7hjz2//5Sc7PvmVw3f3dLb7mixUyW2PKdfneGiEiR/gBacqjbKaTF1olRNhslV3bShOYtoKq3eZ49HNzmwDa+SvlxWK9eUsUtmd7mpw4a1W53k9AWpt3RAZQAJLll6t8UesLVdlyeRmGcZzOiPRs8lmoonaVOg0KgRtTVrYBAAw79cWCIFBeLBsnXWxvqXME0zrcRQU/CHiIhbWIkBKwLTlKACCvNuvNJaAZcOfabu84OomjOYhCFEECFkQBwmK9+fb7/1hUl4lOf/LTn8dRKkK246zXAaXLnjqlV8Sa5lRW63X2tsE2VkTm0y8DHX+szqyH1sNWrOSWmeUyyxfG5u7+hWESBnFAsW+o9ygAoN5nqFHcr7XXACxYhWhFBIGIrDWr1bv3774p8itQRmM6m3x2cvp5GE+hIXAOgldfSfZWebejOnyaz3JawG1Tsy3LfLl+7e2X3Hw0MRut0iSexvFUGFpDtw9FUdsn84r3dD37DH2vOw23F+H9AICdaMcdTCxVVi032ZUDbG6baiP4wTJjCwAwnZ6EeoaoVG0S3wrIQkP0AhFoIgGAHR2hXQ/PYH5oCyrwUfGDPBAFyHJ5cfVdMw98dvKzoCa8jWMbADTw18/k8QcDAHJcJu/OAOCpyu35tB9mttbmZukEPWuTKYA2N9nP93fmqV2fQO9mUrMn6SSex9GsyZFj7UdbAwnrwq/nAgCOYLkMD8uWbwAAKCYvVuvNgoLaGwGEXKMhW0jTWaQmRNR2CNQoq2nD9T+iEUrbcX6LHMADN1uHFhhBAzCLvbj6tdOzBwAAE+j5dHLuLezDT5NrGHAxrkXUzPb95bdcS0xwma83m1WazqJkplU4TT9rmwpcm6xzR757BaC7KeJmWBDRCRwtVt8bU2tZEGlhFCgmyWdhmGpUN6omMxAS71AbExJl8mK53ly1fLkmJiNEFBJr7enp1woCQCtMrgufFAqgqfLvf/PXef4uCM5/+rPficKJYVQebY9dpQQVCErjJ+0Y2kWxzssrt6JERFEwSc+DBs59nPn/3oFSJzj28GHqxHNVZXmxtly438/iz7XW1FBxbn08tcUrXwDANaX47s4eIwj9v/XUq2oxWWRBYovIUl0tXl+++64qV6RQ6ej09Kez6WdBELSh0T4AMEjK3hoAeC4N/it3xLhWZLl+U5RXROSViGuXDGaOo2kSzxXFHzZx1spjDZu+PigA2HWL7h8AtJG6tbYyq1W2BjSIAzocNVJ10HL9kSQKp45BV6OVzhOmU4HrC33KtQCg5zZwewDwUAmFyuSL1fcIgTNefHn2n+EY/e8DAN4S97NxwFgv3nvrsu+yC13nX//Rkn2BO+0O+B5PXPZ+F2gn2tUwMUQEQbdkEmurymSr9QURA2jY72u4e6esXT90s5sjACkQZtAqTpJpoNOmVUAeet7295TflLJ1LQcMBhsTwFDs32fEMnLrSURErbwaMzv3XMIQ5MZ2VzsdHwc76a5nCq89cprIuP5SZblZrt8qVfcqhDSZpDOiYEfS6BpQVINAC3Jx9ev2IMlXi8JsZvOXWutp9HkYJt578oDzencs53eVNRAdqqq4WP2GyHWoExFZW0XhbDp5oYD6Ac2te+zEWSRl+VWWL1wyvr0PRGEjlz6bTl64sE+ksSdDIVRFmb/+4VfZ6hsVnn711d9LkykzCFIrVYQIPceDJjRAxLJab7IrQAMAzJDE88QZhKEQK0AGIaZKWCv8dM8wa42xeVlmxpZWZJKeBkHiSOrYJSxl8Lg9XJ+Av8ys56vY7bcoZbl5f/HjcvED24JIR/Hs5PTL6eQMULtSYkula5u4XIW2teSD66uICFsFX7ou/bFzZNXiavHa6VM1VHLqggE2cTRN4vNQaUHyXGKagnOXUJP72hYeiPHfK8L0usV2TObB0B93RiB+2g0RjwEAXUXLE1gbjMKURbnMi2WjIVYn+51BjYht28DaQgEAzNJZEJ50ILM3A1t+l00c6NVju5iwKY4Nz6l9sTUfMYcPEl+hrNZvinLttmhm8/Ls733E/iq3AAB/sjNHPrBLbE+sBwEAvHNxyK6r2t7OcM+W/TxusJOpQuEBSxsRjDAzG5NvsquamcM42BHwegos98WLCQCIABnDIA2DSRBEjzlje672mMrSkU3euHNz32mS0i4tETE2K8pNZbLuJGYVx0mgk4CCduHf3EhOrgMAe/NG+wDAoBDHKGzl/dWvXfQPAMI4T1+EYXzcPe1doUuFMkpVFYvV94jKBcHLq7dKqXR6AkAv5j8jUo8PAETs1eZ1VRXgEXIA6HT+k4B0/wy7k8iGBSaiAQZwMZlSQd3/nb6Iwmkv8YziJImqKnv/5oery+/CIPnyq78XTaZsEYAAbU0gqTetJu/rjJ9RELEsN1m+YDGuyWc2eRnoKRIj1/PMCCDqY+8N2A3MvMUv1lbGlovNG0RMkzNn0YDoZubuiYwbYQAcJHQ8DNDYSjjFMJO/ff/t8uotS6lQz6YnJ2e/nSSJCDrTFWjMv7k2bEISV+n1bRCuuZiDwZZcVysQRGYktrLO3uXFJQAQaVcEYGaAmjjKzJPksyhKqBVI8FTz7zfIezjGfw8c3h4A7E3iHAAAw4yMKzCC3d3vK65zD43N8mKZVevmZdxuTa1x4aCgJCJxNE2CqdaR7Ut7HwgetgBArzzrMsK09fqnBgCMWOf/5SgPxphX578L8Clpqx3eLP75L/708DpogoxOeP4eAUD7+FwLAPangZ83AHBfwbbSPcAgKIICxph8vblkMe5gaPNDt0TC9d/WB0kazqJwonUkjE4OAgAaS6nHBAA3VZe6tmKAOz9rEDG7VecOLWPKymyyfImITuiTFEThVFEQBAkCuc5gJGHmw2mb2wIAPLDgrwUAQrDJLjfZlcsGAUAYTGbJGSLViZpr7mkr7yBNohoZJc9X6+w9ACDasixXy3dpMo2SaRhMTyafb2tSPRAAcLpLrdBnXm0amnItZe3o8pF2XHCf7XYHRniDOopyud5cAjAzEHXJ/tqFIH1JqNpV0apvKU3GmKs3375//xsdhF9+/XtRMhMRFkAYBhn1c02d62xRrIty4xqRRfB0/hNFGoBIAEks8AfkXn/47VIEQdXMdZHCbMoqL6sliD6Zf6ZUIAwK72cR3qIO0JNpBrCCvluIIAPa9eri8v0PWXaBYgSn5+efnZx+FgaTOoYjQJa2ZZykNefe+bjdFAActUNLHe6bolpcLV4jilKBZxVf+0WKVMwQR/M4moVB4h4EXdMCuY4zm560/nl9p+j/fhORXh24SzLepPNtX33JL9ogyoD/IwOBoO0e3HoVoRYRAWttmRfLTauIVUvSSXOsN+4zqFzuoNX5iVSqKCaiffWEA4nDrfpA6+01TMg+WQBwufi2hUlapbPJqxEADAHAAQzAPQfAe4uqOwCwO/qHGwYWzxsAdI8Hiog1xhTlypiSxXj5ADkY/dP+Hd0SETO0pP84nqThvOWyP/L5fd2+eeRZewsAID6adS8oytV6c0mKpcnAud7ZSKdKNVEGYbNKCcXuSwHtvytyGADAbirU9U3YLnas2FwuvsFakl+0SmfJKaK+UaDjCPeM3eXlxWKTXbldNC+yLF9OJ6eBDqfp562M2sMAgOE6EUJHxQYAC7JavyurFdT9LZYIwuDEAZ5jcpxHPo91XA6cF4ssXzhiNwCL83YVFlFpfJbEp86Gr75gVS8VF8Ytrt68+eFXOgw+/+p3wnje7nXO4nfg4VBLK6K4nuC8WLIYEYmjWRhMFel2BbZyfp/saJn6DGi5dLbKSgUns68U6UGJ/w55q9v4BrR7S0OIIQBARkDDKEjELMZU6/W7129+LSYTwDievnrx03T6wnWWA1oQp7Cl3IZTt4EhOxx4PAagm0+skzR15SwRtJyvNm+KYo2otA6ZDaJCUCylS6w6mBpH0yicRjr1bNR3Tubte4S6PWcrmr5DBCSD8OaGAGA7gdXt5C7vvPdbt30MyD4BrP9lwVpb2rIyqzzPAZkIuKknNBK0zVw53TlEZgMA0/gs0BOtopbce4BTtJ37aLpQYAsA7J4fW6dp8EkBgNJWq82PDTMKp+mLQKefgLzyzQHAdlzCOx7hewUAe0P/TwgAODNL10aGiCy2KJdZvqiLVqAclAefanwTANCpTQshWUSMo5M4PKHBpvxYPQC3Sq3dAwAQRlJNJg4JUKytqqrY5O9ANClwQuxxdBJFCRGQqPY4tF6zJt0kTQU71IcQrim4DRPY1+pOXK3fVWbVJH6q2eSLSEc37Z53AMB6v1yt35RVDgDMZrV5BwCzyTkAnM9+qlTQaIo/YONNm3xqNyISNMzGFovVjy4fT0QiGKpwNnnZNDzcAwCwIqSQrQAAEq83V3lxAaBFrDvRndGvVvE0/aw1Q6j1NAjrUJ4AjM2Wl6/ffoNKffHlz4JoAqL8tcFeKFMTgaCuAzgXT2NKAVvbTQCJ4KfM/t9ety4TyVIZU26yKxYzn36uVYL1vvcB9itPOwjrwAhIATKzi6qsOLkxW5ns7Y+/Xm8uAUuEYJK+fHn+Ux0mRITEbHc4QeyTCdoZg96u+VKEQVHb30JEArzJLlfrd0SaULseFd9q0H2atVUUTZJgHgaTXdmB2zAIhtR/uudQhLYqtDcJVXeUr7G1eHP3ZS8AEPfK3Ra/QgK2qvJNuSrLzPn4ttX7vnGlvzCYGUAoTaexnigVIBKCEpHa7AThWgJBn3K5g/3vz5JPJTp8Tu2c1UcQlSlMvtq8adtUnM3isxM3/wAAgPerBd57MpiO2ehx90fvoQw9pw6PRoVNimKdF2uXWRHxH/V2p+D9b4I7nyWfUKhVHIVpTWu5Q1bmLmOffNvRvbU3axruTscm+YGIFtiYvKzWRZm15dQ4moVBqhrRlUFu49ZSg7QrAXYMj6sTHjm4sVacX1y+VhqdWEeoZ2k6b4OP/fd3W+O5rgC0iaj3l9+4tLfYYr251GEaxRMUeHnyW86w6bEAANimTE8CRlgYlus3lrNmloiE57PPA530kSHeFtAKIwvX4loCLCKrzffGcAvFibQjAqXxizSattV8Ea7ZsUQiQgrFVHmWvX/7PSO/+PzLKJy1JkpdAlI6CnLrIgwA1lZZvqhMJiJnJ18QRogoRpRmkU/zCJPh0y0kqraLtmwqs1pvrs5OvtJ1BQwf8koOYQDqWws2IUhrz2LF+V4TbNZXr1//XVlcKQSt0vPzr2fTV6Q1NuS32i8C6zYSqHsDdqft7qEbR4gbuygklxnRSGyMWWevy3KjVLS1LXXnFADEcRzqmVIBkXaotc5D3c0nBFAGdJ0PCgBkz4HbAQBEZOjs7XatH+wd00KAbExl7KYoN6VtayziNHxaVZ/BtNdXYjnQSZrOnKpHLWDdCwOu3w9bDts2HcNfaP7tb0hBNwMAj+MrlVWLTXbVftYkeTkCgL0AwN9QWgAwLEt9QACw69Of/40UALDgov8lS+mSmgMDLxffHwhAD/yT+8MonMbRXFEIwFsaZ3LrDM3DJdIOhPVHvOFetr2I2ZSrTXYFwEopEB2GSR36uwPG2YF5FItjyBZHF4vvAQB01BHmy9UPjicGAIGOJskrwGMI4jsAgBD4XjNv3/+SiASh3KyKch0lszBKJ/FpGp44EfTD4kX3gIo9T2tu+vMsiKlsZTbr7C0RADgJSDONz5L4BHFbC+jGAUfjK9wLNPNqvVpfCFSN74FL5BtFycnkJVHQ57ahs1yqiWFsi3xz+f61kerFyy+DKHFm2x0GkNoNoMYAjVEACBpbVCZzXKzz058AkIagveOfcvTv/7Kh2rMAG5NfLX94Mf/a1akeLNd45IaGvCO/Rv45i85y++Lb5fI7Y0qFYRyenJ9/PZnMUOnOlL3uf6gfbTUU9bq2mQqPXP8AgIykwGV1RQCRGeqK6Dp7lxcLXxoIUbx4rrNnDoM0DBIn0NQcL3JrnxDfh/iDA4B9c1xPPncIYS8AEEJEtzqYrWuqttbm5qosy+6tWiTWaXpCK+spItSw28MgjaMZUdAKwfmX1Io1y3UcffTse7352aH3D33FzycIAETk3eIbl0h1O/Zs8pnW4XOQNf8QAMD3PbEwXEAPBACO9IiuqdhbF/AR3MiqyrNqVRvcNM9qLSbds/2TwTfen/vxfykiOElPo2AOQEgMlrf9IB84W3ZHAIC3esMBBhBENMbkxSI3SxGrVCSsJunclUQaRoZsC3feE3/xOADgYQ9fwHQnAKiq6mrzbVsdniQvtYrqPtQ+Tdy3Wd0ze8gobfpfGN5f/S0AMUiVX1VVlUzPtA6n8WeRjgQ1gX1QAOCfEC0AQBYLwsxVVSw2PxABQeCei0hNZtNzRH13ANAebB7kFgZcrn8sq1Ur3E6kra1E7Dz9PAwm7nB17HxXvwMirpNzLGCqbLNaXBa2Ojt7GUfTLV1jsMDkaBVN0lchsuOqmWy1fnd28jNFmh6Dp/dsUiftvbYOQdXepFzlWRyne5Kvj7bFdc8v1sJi2CXXOwqNEyKzlcnfvf12uXgNUCgKZrNX52dfhvHco411klO0WwJO7ogB3DTuIy46RF6Uq01+YYxRSkRU82unEMqNJaWrVCgHA5QKCINb7J8ycKZ/AgDgQMja6f1LYzReVy9x1/7GpS3LalOWWWvs09p4tfJiwu5d7SAhW284UgkH89mLlnY1oBI1zN6uNLEzrmszLO1LjgYAvJMU9MEBgHv/t1d/27hYICLOp58rCj8Bh/U7VAB8PLCDoyb33ORHt48Rn8Ep2HpMMaiGjt8K/4sxJjdXRZn5j65f5tt+SKTjttJgR/AfzIbxwpPwZRjGSil/uo7hAj6ZxP+NYYBTsRAwyqXMmj83Nrtcvaldk0Un8bwxkHrAMeipAjhq5re3RSsIaNG76ZbN+8tfKkqQrAjG4UmSzFxx86BalBx+3t2bF9VmsfoehQBgsXynlJqkc8TgdPa1QkS8a6LxRluEf0SJWFOJsVVeXBlZK9QN+Y1P5z/VSC7zbkEUiAi5fP293EcBvrj8jiVHDBClrc4rik4mn7f4iohcP5zL13YTxbYsy8XyvbX25OQkiCYg6PqYlXeRvmFFw/RAZltWq+VmdX72OYLGVhdmHPsXj29T/SFgyd6nrO0Sdm3liMgMIo42ZNebi3cXPxSr9wI2pPjk9Kv52RdOY4eISEjECgmgqDoswz0biHhMpFs8njsq8ArIXQZztVpfWC6MmC4n3fOmrPfeOp/AHAbTOJpoHTf28x5ndVfTNu843WoWUPvnbad+891oW9d/R9AvO7IMx0wRIiJYF5E7/e4OdMlA5dM/bf2vIMzGGJObdV6saixHAODcuCxC0Mb6e3L2tSwsCaXJLAxmRNRcCezQD70+PtlRLW+JQAph1xqT40vZj/bctSkVAkdjg8ouFst3bqN2S3E2+SpUwbg9HgUA7M697AkBgKcIA5z82WBbkVr1A9vdipmLYp3lC1JdrrHe+Ni0E7PT8MulW9q+Fv8ZdlmlOhljaT57FaqQiEQeo+HmiQCAVn+Nub4XIlKZ1eXyQmlnpxA486BHLAUOm6huCgC6uLCOHrA0V+vNe9f7G0VpHE2Py7EdAgDtg7naXGTFe4XamHKxvIjjeJLOw2CaRC800cF19LAAAABMZcuqqMy6MGvlDlAiETubfBEHcf0QISBLwwi6HwAAaJn5avHa8JowcIklRLFW0nA2Sc8cfm+6I7qcdB3KAzDbqirW67XlKk6nSTJx3O7WCnCb8dy2c7AURVUFQXS7TOonCAD2PUoffMfjXvDkNijbho+IIMzL1bs3P/66sisAiPTs1cufpLOXAYa20Ymvu1/qBPN2QHbtbn8zkQAGFGAF1DqUiRhjy1V2ZQy3TrREmplbNzPpuqe65pkknruOdiKCWv1CAdp+e4BYqMPfnbr4/tnX08/ZF594YED1fBuuESEcfCiK4rqXrNdf50zD63N88E8umrLWcmFMkRcrIwYhIMXWSkOmgpa177L+9aeT4wJYxKAJDxiEZuk80BNFYdPdi3eJxQ/8rXTOekMAIE8sB+GBlnovXWfv8mLVUicQ5WT29UOn/D4SADDoBHgoAOBlRq/bp+S2G9mHCnn9bEDdgerkBVmqvLhy7nRe4t+PEXkfAHBFPa8OAERkrSBKJwDMOJnMw2CKiI7N/IGi/+uPQ1+n57Yn1nYfqm3apsmpExTlarX5EVEpFcTRLNAJkW76Sh+PIXBk9L8zcLF1YyErIAZgscv1D9ZaItBqksQnWgXMjHTtN5JrAb8wvL/6tRWjkMoqy7J1mk61Ck7nP1EUKzxsSor3u3J6uhMOJjOUVVEU68pskLosbxLP03DeBN/iHfP3c0kM4FQRF6vvra0UJQ69i4hSap68IoyaHk1qQYsL8RvahjCLtWa5WVpbpek0CCJXJaCdiocEXj83WGBrrVJq5LA+CwxyCGl7RYAmQHEcGyJQIiJoDJu3b75dXv4omKPAJDp/8fJnUXriTCPc5tmWm3RNKOp97sEd9cYAAACwTW8JERGLEcTF6nVZrZxBnkPjzMaTrGkvRpgNSIgk1haIKo6mYTBRKtA6ZItEIMA1bhdibHAHAG7Xw13nzH5Oy7EAALvdmTqzBdjO4vkJOGfJJ7WpFooAoG3jeK7xmCCitVVZbSqTl+UGkFEF1orz9HS7hzuym54uoyjqUBPYFm4xM4KKo1mkIyLdlvSPT/bfIvrf/69HVRceOUjz2hgYkZwFWMP+dwFVXSUemK6OAOCaO+z3BjA8JgDAJ7K2bn0AuFp9m6JglKJYF+WKxUDn92H9/H2zmOn4mSTU7WaRxPMonCnS9KhUn1sAgEEK4RhG4PXroYn72REpLWBRLparN0Q6CmdxNNMqQhEitCAI9JhUihtt04Op8JjEwKDy8sKl/xUFaXIW6LR9VeM8cBRe8hF+nbVjsCJvL/8aUKPAJrti5jSZKRWcn/4WAKgamj4aABju7yJSmTLPN8bmLIVSDQsZ1NnsC1cN3yI/3MNVCde7VWU2i9WP7oFt1PdMHJ1OkhfYT5g5oXo/xYigWExpqzzfMHMUJWEYtiHO9hogb+EIIosFAEI1AoDniAH8x63utRP/6eu4/gyCQqAoKxZvX/9qtXxDIAHS6dnvzk/OwjCB2pBViMhTNblRoucGmQIrbjX2GpnqXLWCdfa+rJYA5KyCsfYGts0Z52egTFP0qEl0hGEUpYGOtA4RdMvP9ilAjs/jNwXti3234/Xtf/J3BgviSyr5h8jwDVmg1vbvIL2INDpejKhczZnZiljLRZZtjN04PwdPYM1CV6tHYXTxPSATEbLU/wvQ/MDMPJ99rihQKvSkEfiOO9s25we2wo7tM/o48s8HkGUffAUL5v3ltwMAcDb/LYUw9lBdDwD23eMRABzz1Vr1En91slR5sXTMP0JtrR3k8vvyXofbaWiQ9hCRMIijcOpUF1Dkw2X9Hw4AXL8kGAG5Dk+ttZvyYr250DqeTV5qHTcUeUAUK4+tqn4XAGC9yqZlc3H1GyJAVC31vxad5BsAgJb07w8SNGLfXf61QABs8+wKSE/SeRzNJ8krl1w56EiK971y0JeZcyQ6a+1m45zyivrgRLS2ctovTjCABO97oxBEcrLupbm6uPwuCCIAIgJmViqYTz/XELFUPgAYfK5jDwuwMaYsSxEJw9Al9ffJ+LZSoQ0YEBCFNPYAPCcA4PPrOnQnYKGls3dUGSSAjmqCDHx58eP7199Y3hBQEs1Pz34ynZ0DaQJ2QanUIelN93w8cutmQBFpXH67LHhbXs6rbJO/s7Yi0q4UsB2buZ6Hdqdp81+uaICoiHQYpK4soEgPGOq7aT94ZMVjCL38PfmwgF77CXUzrhAqYnbdfWy5YjbMYG253lwJVEopl7An0s7R2RlR+e8pdQsBuR9qVhWjqhMKDEBJPFEq1CpUKgSvnxARmeuUxy3MfXeeRIPoeddR1cvIHO1782hxmjDUDnFOwsECuwpAY5NMRHQy/QmBq7ON4zoA0D4hfjrtcQHAc8Rq0hWYGkUXZi7MpihXlgtPClq298dmm9gNABw7yPEsa9tasY2M/TwMJlpFrYAgHZz5x8IG90gBunZhNBblaEGU2DI3m9X6zSR9EYVTRWEj7+iv5EdVA7hpobbvL4OG2d3ZvLxcby6IdKCTSXreykf6YeIxSGnn9SBQZfLL5a9BlLFFvlmEcRpHs+nkRaCmLn0iXS7wMQAAeEYz2GiVbjarLFsrDYYrUk5sQ+bpqzBI3ZalgO7xHOK6sowiAKRF7NXyx8osiUIiEEFmE0cnk+TcYSToqxh1VOCmd9Cp/pVVgYhaayLaxgAEwECOXSBSN326axhL2MdkYZ4OBrAgW5QYJGmr62h7DyMJsmJidI4BRARFuXn75vvl4nsQS0Sn0xfnZ18G4VyAGuddGewYR+z/ePzWLY0vAPVaLGqITvT/Z+9Pwy3JsqtAcO99zOzO900+e3iMGZEx5BAZkcoUkhApUiNSSSgzUqlqIQRIQiAQRUvFrIYqUQXU2E0XTX101fd111dNl0BCEkLQQgghBEhoyIzIzMiIyCFGDw8f33hns3P26h/HzK7d8d03uT/3fPdHfpHP37vXrtk5++y199prSaK2P9gZxO2ig80sADBk1Y/aI/ghV2NK5VI9DMpGykQkZqLq7GPQ6Bbzw8G73gGZEmnHguFwrCJ7E5/2AhDVxKLX6W4Bjli9HGeG1dWTl/JmPqdTy1z4gv5bm8wyOSV+ITWMg7Vary2HYdlIScTMPThQDDWHdQzNov3QhBHY8QQA3pc9Ubu1c8WnUv72lqJGrbKWg4STF82nAOVs2iJ0PmQAsIch4LvlwEM+eMqp1E8cJ/1uvAlwbqOYRQTNzFNGbGK8BijNVPbMrOZ9ixBBtVorRY2UvJg3WOfCgNtfAzuiBTyeqDGgpEjipNvu3liqXwqDsuFiAWkor+kp9bcbHe4LAFBGgrfW7rSvAo4pbNRXy2HNG9AWZWTyQah9AAACe4oL4PqDjo37tcaKmGi5fkE4DIS9AsdRA4CsvjgFAPgzvj/otNs7xhiIU/SFmEhqpUa5tFQYAubDusJcFC8fLFE4PwyQE4GMlGrVVe8lJ6MjH8NRH+Zc3ENVFc45x8y+iVHEAFJ46Pm8Sl52PTm67jpIQhn7P00NhTwAGM55Z7QOrw2VrQGob2pClW273b5580072GDSkGvLyxeay6fDqEyKwhgxLwwA5uyImf3/XIQqS2FH/hVku73tOO6D3Bhph4iI7AQwkMLAm+aFMM9o9RWuKCobCZkDI6GXGfVDXEMqTjpMz34IZ/wLzpYOz0j2ufZGen98ZR2Fl6pV1U7vFjPnNf5crT813M1CK2fbPNfqKIIcb/VTtAIAAOVarRFJzRjj8/7cvYuZobmxV85xpbliYNit4jaOk/c0DHD8AEA2JKapRUbsBtutd/xFeeZVvXq6EtXny5WeAIDxMDGeKNxhFaC76eSzdjCIO3HSI9LisFGhcs+jEp/5blRM3OehXEDhFZhypdwMTIkYuQja8H3SBgvfufLYbQcARAoXJ61We311+SJzGLDJqxfD6czZ1aDDj0qjHzQ/zk6WCYcVDiYodfubg7hNpOVSs15eHT5Kb93ILnWi3e2JjO3rvBhJ4DjptDq3gKTd3QzFlCoN4mCt+WBGSSfIHOfmIwEAvnbuU2F1YGan8c7OFoCgJHHSFmJCYBhLjQvGGEcI2J++cih2xf50IXAuw6+MOO63OtcyAOCLTPVaZZWK7YLR55hLHHouEwBnVVXF5OmMUKERD8kKnCScphTuBAPc1QCACkrQxbQMhYEPAaXeW6ypQLwnhxCcszs7N9ZvvQXtC1G1tHx67f5SddnjxzmHhf+X7GTfddtiMnEEM0hzcaoCG4dy9S0CEwngEtvtD1qJ7eWQBtmY82TSmItfZ4qWOi7vUzi2JkRvhMmUShVm9nL4w59PuwmCYqI/sDZxmiTJoNC4oNR0yCMTBZGmtirpdHLWDsDEqADlAgCaJvrDb0d5mU/IMoW+k1+tNI2JjIReRSD74jIh9DdFzn+ah8+IfMsE34kXKUsVji1MRQ67AQA6UpP43UI0EdHA9nfaVzIQHRDbpcaFyJSUaB+O1F9xAKCYIoy5mu/xE3ypYK+Z1h1AkHt6uVQBgEY4P0M5Nu3FnW5/M51BgeyJq5eXClIGG4X5tABTyOIrK1IpLZei+pjl0/E/BRdL6IsMEMxNmIteaZQ4tdre2dlaWT5jpJrrSMzf8GPyeaMjpEe78KbggTSVHwr8+XYSMQaDTrt7k0jDoNGsnmIm3nOPB2PSXmlC4FMOMBG1e9cGg57TuNNpRVG5UqnUq2eisJ532EXkdlKAdOSnmqdQne5Wu7dTq9Zj25EsHWlWTodhmUbGIY4wknS66914RzgiViCJwqVKeSmUIP8KUw/OYl6iqshSPDNN+2uobiFjJ/rJGXa3IoGpEW9UupSdf/LI82BOqfhKYEri3vWbb/Q7G4zEsCw1zq2sXIzKjaEOtaTtBc7UJX0gyUpC432AotTHXsIXFSPncLdmgsVOba+/NYg7nE3xZnmtFhL02ap3Ygqn4VhaMT2K5tybGZUUGTs/xj7XpLdpOnIAwAIfQ3M2v+8AUIHEmys7KUsuzO2BECsAlKJmqVTyDY0FXQhmJGmYTPTnpvvjs1WTCf2o6aQu0CDa3y8cfqFNfJkMIJiN7S9nC0yABOBTS5eES8p6AgAWAgBI1/nBBgDuUQCg/jx28H1AhfVtfUc61PmBUNpMtETB3j8hZ/mj2Cf12mH12kopqg910+4VAFDoUO/SkZysgwKaqLM2LpVKRDIkx+9GhZqrn33kC29WTyAHAJr5m25sXmGBiDRqZyIT7evaZgIAYqgDEW1sv0FEie13u+1qpVEuV+vV04GpZGdDylm9XQBgJOyAcoNMGsTd7Z31IAiMEac9X2xrVJbLpSVNyaBHeoU+fXedwXactFTJEwOq5ZVqqZ7nWCMuRjykeo903hle98PQZEGxcDbzmGLJyRl2b2CA8ThQKH6Ty2rhvpaUcl1I1UEM97tbN268MehvMblytLS29kCtfirrAzCTYYGqy/2kCuqWU+p9+Vk/JqI1BxuMLe/CchViBzhmQ2CQDuKdTnfTZ8NjBFeo8VWtYuNiWptaCjcHNOH2sK/OdvE92fMGmdnRyBiDgAo2ZxNPLWsO5Lcrp/0Ydpp9hHNJwNFS84xwiZmyh8IHWTOznsVu78NzKD2y+9m0SHUftzNMDQEAMTGccxtbr3tw5ZEzAA8AiFVPAMCuAODQJIA8EN8zGf24A4C8VgsA6iui6lwyiDuDQReUZNBzz7KeM9Y2+WF2dVKvLwWmatIqI5lUEeyuWNCLzwTvIjSJbNSymP2nkBVsTEikCucHNAlGFujAjJK278zCmzzD8sc/SHY63Q1mrpRWy+X6VHLXvgFA9m/EQjfXXxOR/qBlra1UG/XKWq26WsDwmDtDzoe+WkbCDg/lrZxzm5s3E9uv1epx0vKDdwJaXb7EzCImY8scZSSBWEo2ti77lWYMR2G9Gi2JmLEaWFHLaBzmZdBLJmqTYwAg//l+n/7J61iHwVHSvDIHlE7fGlVLDINAuWC4K6q2u75xY2fzbdVYOGw2z62snotKNUDyyeC8Rw1AZLqF0xgAGCn88ch/j6xenQUAxouARKSqie1s79zi4UrWLA/OfQN0NDVHgSgr2bBcMfU3xV0yKqRBxaNzNNZJEWtJYWt6Xr5m3QkArMg/Ok/3h3ZdrETkYHKJz7y5AbAhNBunjVQIJghZ1YoE88n2ezwv9rH2eA7nx4eqfedmY1aGOWP89lBtJVNZ6Mfb7c5NgCXVkoKqXV1+6MQFbK8AgIukYV8hPQEA+UWmIm5CAOK42+ltZJO4RmGLI00HW9VpbHUWS81TQVBmCnw7mEloOGZ0jwEAXryQ4Kej0rOKjSoxIzeLYdmltZ2fcAXS9rFYe3k8VbhW+4YiDoNKtXzKBEJOc9PZwwEAYF+K3th6HeBef4fZVOu1eums7zVl9WlMI9YfxV0qRB6M1Mvzb72zs9Vu3axVmwPXliAEnFFq1s9HUcXP9h0xRCEicqRx0u50N9JUg0y9thYG5bF5uBH5PK8Nkj1dFkqnPydIC+NaKlkulelZnWCAew0DjBUChj7xwupgmK2qMUYzPRm/I/u97Zs33xx0N0GuFDZWT9/XaJwmkkwlRpk5E5uZXiafDwCKI/XFAMKKbLXm/+opl5r6XmTVmaxhC1W11N/YvErstZGMMWEa5ArfOnc7zpL+4cTwGKmGspm6sftGC3QGBKkFH0ZwkWYdey38JnlgMOMNBXCq1kvQCEeVcrNaaTIbIs4sjYtp1e711tEywQEBAOb/ftFlRfazbnkKACjendsFAMDsnNvcuawaiwR+/YiIc8naysPeF/Uk+uwJANDYANNeK5r+ZJvIwPbkRHgsy/8AJNUf8NXZLOIUC/9jDi97W9IA50oCpajmfay8dITnDKSpLe6WMYD9AQBecJkVpJazrkiqxIr52f8wxGfXsMCQ3BGuq8xSfvihg2Sn1d5gRrN+PgxLnt+ijveuBz+DAsTswZJ1g62dy865/qATReWoVF6u3y8csqQAIOu93DEAkE3eOGbT73e3Nq8aDkyZrGMxSopGZdVrARUmiY/uOtP72e1t9vot/3HVylIpajAFROSV2vNiisNQ1Qc6pVTGBVbD5AR5/hPDxzo2nrwOGA8L+auvwakttDx9TW1cDt/ZjY1r21vvqOsxc71+Zu3U/VHU9EI9zqf+WaF9siA3WeMvggGf6I83J4edgeIsQXFusCi9gGJwU9ZsVrgXxz3rYlU7plDkj84s29YxC7CpiTiYGDPR1IzcmgvjxabQWyjOFXDhNOcx8RwAzepqEISBKfuMnwqTyiLsB6DzNGBsuJl20fNZ6OgcS8GnqvHMYRzphC7LNLWo3c+aWSSRowYAKbEsY5jd2vyy11rNH5a19vTaCQA4AADY3xDwbnr/i+gQH8sHBiFWB3h7r0HcyTuYk8UbAUH2igHUZ/9EqkrVylKlvJSJnY2EMyHcPXnAnmYA9pw054AhU1pMa+QzqCDTMcBuF3Cb7rOO3BJ0e+v9QbdSblTLq4ZJVUnMbtWaPQCAfLLWaX9z+53E9uO4X600giBaWbqfSYRGRC1vi8jDzN4jABYF2Dm3vXmt32tV6xUnQqSkLJDV5fv8kL7gaJ9gruoDoDfY6vW3vE3HcvO8kcgHACloA+T84HyiOnU51Zm5/tQfyviwysmpdo9hAM1Txkw8PiAilzHRc803kwFdqwhC021v3Lr1dr9zC6SlqLp66uF6fVUk9NYYyAaLicdnUfYBAObEUkFO1Cwm65K1atkLCuWlB4UDnLXxIO7GSTebfEuxsS+rSWZDVrzy8dq5gLGfbLNwsPqrCvMNl/6TIp0ABtSRSFCKaqVS1UjIzCJhMTamzwiETKKDeQQOoYD+aYqu0f7Xj0/BizNaExYHU97EYUq0Gc00Fry8OxOIcm0fb7O4sfU6DelhqUTs6tL9Wdg8iZa7AQBKtbeLi+koAMD8RXOcU1sA6A7a3f4mMzzVDMqgRERUc7nfPG7KXoNRahDIQaXcLEV1yYrZXiCMiiSBu2aoBUcfPgCQt0gswLAFIggvqIDBhxawZldKxpiUcdxvdW4IB/XaWikoQYVFHYj3M/09CgAKquQ+JR0k2632eq+/A3C10qhWmpXSGoBAeNqAxG0EAIXap78tXsO719ne3LxSqVRUwCaC04ClWT8rQek2AABfCFAiIlEMur3NOOkTabWyUikvQYVIC9gJY46wXvSzCACGa4AxBntG18mCau4nr7syJAK+ckyqSZq+y4AQZGQbuIzMkwqfQxw5YoiIiwcbG+9sb72t2geFjeaZtZX7ypWmP6D8nxQDR2GqZKj8kWOAIh1oEgDopGzPZKsfknroptUZZYYqiZhcxGbEvqZ4xAKq8SDu9votIGFmD7CLhbDi9HAWG8bP09klzrHsP1UBIlYoe0uyKCxHUUU4yIrKOTdpWLnP8vuZuCLVYWL2Z3dOmprI+w8unD31bXfJZIqVe9nzqT2ybuff9qMGAErkNN7YuuwtU/MricJ6s3oqDcJ0YgS2AADIBJVYdstaDgwAaPYg+TE91QZxuz9oWcRFZ19PSyi6/aUW3+PW6DPz/sJ/Q5XCoOJl/s1EhcCHEuY74Gh7bAEAgFSOjZzXZGDBYXsRHDkA8A5lnOtJI+n1Ov14s1ZdLZfq4qfNlFVcbnpycACQs9JbneuDuNPpboVhqRRV67W1KGgQ404NAEwmGT5+pztLSW1ya/01csoRWOpilBX12lopavLRqwDlYcrbFDjn+oPNOOlCzfLSWW8KVsDnIwAgp10VKUD5GqBpAEAmblEhaJwAgHsJCXC5VH384W9l0d/9zM8GgY/2QdbPhG8pe9zoPc6BFI5ClIh6ne2bN98c9LcAjsLq6trFRuO0L1QzT8zyZlxCR9j1hBoRCKJxzk1RZnTcshoCsiImH9kqUAyG5cXhn2RDXHlSr2qdS5xzsW155f6hgI8n33KaCjLz6LvpZFqczRynUvHLjWXmgMmIiJ/iLYqEzkmpR39hjLmas314EhgcXtI/nnwvyMXPCw+zAQBmhNA5Sla7mzEfGQAgJU5sd7t1Q8T3yvz0BVcrK9XIe0SeOAHPBQA54i/aFk7WJodFLBkezAeEj3f0GJsONlzGxzaZfY/C9frb/UFrWHVI+5LzPebmp3zjliWsHIWVSrkRBKX9NgcPM0+VGf90bDfSmFvKXiLRqJbFuNDy0a7PNDxBiB3BqLhB3Gq1N+rllXKpXnCI1Cnn60K3Zdg78iN4udC416LZ2H7Nqe12u6VyLQzNUu2iMSGTmOFZOHWOkI9k7U3kFv6puoIlkCLZ2rjVbV8tVepUDmElZI3KS43SSmaMOqVgeWhPM+3LZfiTybp+v9/t2c1m7T4/rZFxaou6VRjLGHTmaT2SG03IBI009/Xucbg8gmHBI2kXz469gLDn0hhK2Ybqh0rZzdBfnyXKniYlRCTkS0V835n3nzn1sFd8ZsHvff6nSSJCPjk+FPLPUq7h18+uGQA2Nt7a3rrhbJeI6vVTp04/EJWaqaceBQCIHXPKNWIdr2SnCdPkY9qLofnCZaCJjVAExjxPOzUn3yrifr8XJ13vCemHhsvlMiEQMUEQeNnuVDFMxJAZS1UPI2flfS3dfa9P3se5PDepwIF3Dd12DACCUVaQxnG31blRVI4CeKlxJgyqQqQkxO5EBnQmAMjXRxrgcm/C/QCA+TPjOE4AYIjLR7QIpNAxAju1ne6G08Fo6r/I1tPZH2om8gktB41KpWakpIo7IvKjux3Mx99Se666/3EFANldTbNJaLtzM076y7WzYVgazSB5X/dkOgDw39Rau7XzprU2sXGpXDMmXG3eRxlTRY4BAPDbwRUugIV67dbGrdfEsKlXhEsMgvLa0gURmTyARhVODn8eAFDr+lutdSJaWb4gbHjK7cLoEuUFKWEnAOB4AID0geZriZnzQA1llsIkGAvIEqbPgAkCx7HfX5yqOeP06iP3n3/a20cyGQCffvkfMweOrCGTZ/yFwjNnCjMjtWoAxlB/0L1543K3fQNko6i+eurBevP0cKA2v+UMEfFc/+KX9g5is+7PAkiA95JlzqUZ8wKJKbwtt/oBg1RCgzwqk5G6u28bQGdlAkeMAaYrsS6OrCZWJi9+LmPPQp93AwAg9u5M2zs3EtsZ+6YrS/cZiYSgZE4AwDwAkN8y5TQ6LAIAJofYJlYSL7bU7tCDKVTyikggNfwCE0liu96HNWX8Z69R4eG9AYDinEp6VyHGhM3qijFhxi/kIun/aA/mWUF2YsMc/1TjIABgcokWh9uOMjESImWoJ8gOBp12d71SblSjpUOxeyuO5eXDtfmNipPOTvvqYDAgonK1UoqW6pXVvEVg5rmz3dYOQL6dPGnYxcnNm69buxlVayZqEAJCslQ9F0XlqZtmqnrJAZL+8bcCtJ90292bzfrZICgH7B0JZHJdDYPtbuoZk8n9qE4u08HcRu4WwDBbooSOQjdiFkVbxHgaHhGJGgBioKpK3n6OPQVRJ9URJ5ldI1bluHT2A6dWHxSIZsfQW9d/b33zLSKn7GUrfetvJN9iHm6NETMBiBhyLt7aurZx6w2nfeZSY/n86bX7wzC0GE6hCBtVNUOK2vDSeTYGOAAAmJoALAoAeHSlo6jiP3yvIUFozEtEcOgZ/96+vk7hTY2nzqOXtyCtnyezkL0zCHCk3/1osxfwzY3XjeFCa4iIdG3lYS9lsd/Zua8MADDiDs3DbZbrjSwMABbM7HFnV8yMs5yKZ6r/ToN4p9PbECFCAHLTNtWeAEBmRELGsy9zPmIU1mrVFUOSWabvz+Bwny83Z5Zg1L7xeG4hnRL79iorNH2h3h4A4LGoI8dCzrmtnStMZql5JvRs8sOplNBUAACg3b0xiDv9fjcMwzAM69WzUVjL84nZdgp8RI9yDgBwBSk9BtqdzfUbL5XrzbC6zBSqarVcq5VWaJ6j3CFePAqS52Bmi8S6fqu1tbpyUcC5JtXUZzE2hLcgzJ4ykXkvAADMWAw8CQBonkzh4azJ2URtFhELxyTECasnlogjFagnpUNFmcQ4qEzTagMROYgY5GnvWvOh+y98gMWzmQXAZvutN6/8nm8v+N5C9j7jX3Z6nqcMdhBm5kFn58b11zv9DSaUq+fuu/iABGVVMtlYbaoEUOiPDXn5MxbWIQknYK8YYFxIdwJfFZK8Odwhb7U2vpYmiYI5Vx7CB7gPNB57Rz/lUJJ1z9yWfab+dDxH5hYHAKp6a+P1IIhyVrYfzjy9+ijlVsH3bqHkkAFApsC1JwCwpxrhcRH7H83+x53t+vF2r7+ThWBkg/zFv+W9AAAZWbRZE8BIWIrqUVQlcE65VtVs8vJ2nLsOu0Xe7OLlmD3BqZXCfYUznpph3Da1JWhaoRrE7Xb3eqN2LgprctgPOj+E8p0L0o2ty9b2rUuisGRMuNS4T9jkN8Gvwb0behwEyGHsbBMMVTVyIpAQ9ZPBrWufA7lSfY1NRBCCO738wAIA4Ei+hRKpamx3AlOJTGl0/HEP++7eBQDY4/28MwBgjkyng3BGEDUkqk7JGFYv0qVqjQkdpT7xU+0aASg7g4jYEdGTj3xTOVojsgCzOCL39tWXr298gZmJLSEcbXGM+UyPaMtQgRzvZ9UcKZTg7Pr65a3NywlpuVQ/d+ahan0td7L332WkuwI+DABA++4DyFxr4amVKSo0BAzNGpGfcieZOZ+BNkM8P/pJh1SJy5qQfOABv+kAgO9Y1f8OAwBr7eb2G8aUigCASE+tPOYF2ZTYj3SeZP+0KwUo31pHDwDu8PMYE+LNcnooa7uzGSddEYEyi3POjRl77REAyNiHerXQwJS94I9/NynMetK+xj33t/NnJSIjBwB4doZ9h59jkbsv2H/MwlxP1ttRyXDY2H7LGLPUuCBsjggA5KqafhxwffMta2OFK0XVMKg0G2fHuAoTMiB8dM9xVwCQs4AMsyO9dfP1XudaVGmGlQaRMGipeiYMywvvGz68e8suVetVa/uloOqTsGlEoPSvdMaq4920R76SAcBtoADpbOpL4ZL8xcARs0I49JKXeWxPZe8xPjyTc9CZgg888TEiIbL5t7y2/vI7N17MmkupvQmyabTR+DaqI0uUKe6Tn0sWZsCRsHOOWbvdrXeuvzaIO0bCc2ceaS6fhZKI5A6EPsPOMcDBKEDzd9mi2YLOxwBDrJJpaEm2TjKu/whCwKTT/Eh1P3c4Hv+QgwKhmafMwfeLX2n7PaeOAgDc7mTAAdb1tnauGFPyYowpedWEy437UrzFJwBgLgAYyQ8m1annA4BFsy4+bj5fY95+vnAISnY6m3HSFw6IiNhmMRx7rNZNAQDFj4vCarWyYiTyq3Y0veapF3lEZ7Au8vYzAcCx6QCMulHeRQDAd6KUKY67nd6tWuVUFNYO9XNnAABS55KtnStJMmAjpbBcLi2VS01DoscJALBirEGXRXO0utu3rr3MAdeWzwgZgGvV5UrYPFIAMMMrh73WBME4jVkRBMH899fRoHoCAPb+gA5xCBiLXQxGTw2CkEABYWZlx+qH+V2jdrFcLvf7nTjpKmIiIgRRWC2Vqs36+VMrD5MWneOZGdc3Xnv72qdT1xdOa/mGeGiKNwoAcvOpsduluaIAGRYA6vVzO/3OtRuv9no3Cby2cv/ptfvZRGNF9KII5qzXAQDA3iShZwGA4eUVLAAm8WHxOr3XQfrtChobs2g5o0cfz06+pyATQ7N+/9D2xaj8KN1ZADBp2kj7vJ59nhq9wVa3t5mrsfubU62sVMsrKQAQOpEBnQcAijKg+wAAvGfVmmMFxZDVBpDYXru97TjJhPwJYCgT2xlfcD8AAEC1slSKGkxSnA+TGanhUbe2dcG3xyTD8lg8Rx2NwoU4jj0tyDvYAQDUETa23qyUG9XyqZzlslv2eSAAQIw47rY6twaDjgmD0ETN+vkgiFI3UEqrgKn5KB259vzsDgARMTJ7Uj+y4nUYY7a33vnCoL9RW71oOGA2paheL6/cxg7AELFDSF0qtkiacMqwljkMZ703AcChVxaP2jUSi21SMAUkA2jw9BN/qN3dfuPtT1nXI2IWSwgdWCipVc4+/vDvB4gpnLF5U8d3VRUJFH2mUrt79eU3/m0qPpFKYQqxg2YgHOlmlPS0mgQAQ1FLlxvuOuS6mipkk8Gtm5e3Wm8BrlY+e+bsI5VyM4+gQ5veaStNcJDHt7i0/FwMMPVdxD8aGbvPUoiWU4tEYw59hniOPu9uF4GxYtn8XKHYZco6D7tv9kIath8Z0HsOAKTdj+3Wdeu6hXAogGvUzpRKNSgFHDi2JwBgHgDIH6VyJgGEcZOIkVFRjFtPH+u8P/PTLaZ6Xu04cy8HmAfJTqe7kVN9ihPle0m5pvD+AUjaxg3CsFQOGlEUZb0pPsrtsUu6X4zpjkaMiryd6bB0A5d51INJZPT0PU7yoFMGXr1fztSqzxhmwFBye5covP80cfyhwxGYJE56rc61pcaFwJSERiQ+DuWGaK4pgSGNYbtzYxB3rI2DIBKRleYDLJmzjrcKumN0r/HBpFG87g9ydZDWzo0b11+sNpfLtVMMAniteSll0xW0enReo/KQv1TKVvJDlrPXTzEJKCoVygy9Vz5mLeyifK2/vOwn2LUC6r/KqDzr3sqf2d3gI42Qk0UQhi41Lj5y6UMCwwxHeP6lX1RJfPxTcpS4D7/nPwUbBQs7VmY2yrlEvWZGRcjun/aS7c9/+Vf3l8CNm0WCKOUgoRhtAHKkxpjE2q2ta+u33rDaMVw/ffqRlZWLJgCcen0tH+GLdramIAQ8Jls56zRZbP2MGd5NqSvpjMU/CZvnvxZRKtfDigMTok9yGMl34Ssf9azL9Aip4yW2O5zX+bWhSDa2Lov4xJWJlJmttWsr94cSpV4B4k4AwCIAYEqWQAWb+uIpRbtQ/4+R3n9moMujAVHTGoGKsvYGm/1BWzgCJTQqq7zHc3fW4C+JSBRWS1E9lNDbid9mAKATsmJmlGuU3qv814qUSSUAYhhwTEHh6R9fADBttBe3AQBMA43zSpVgds5t7rxOJKvLl5iiQ/V4xmSty+9fRbK5/RbAqjYIomplpVxqEozQ0Ll+guB3rAAAKbFL+m+9/byjwdLSpSCIiGipeiYIIh6pCc7X2z6SL7WX2sGUTG7ywvhYclgnUrHZRIfDAwCH4YW85wzMB0ZDfHrtoUtnP8DKAEgEZD/7hX+x075ujPHA7+ue/eMCgjA08gx7FkcIMoui3DxemAENPvPFn7eI913BnUorn3CtYbABWZ8qdTrb12683uttMWFp6YHz5y4ZYwBOvQvYARA2CsfMZlir4jHdvMMCAKOtv8MHAKPn8Wzgdyh6D3O7+jM6nLvEpaMxBt0PAJh2tXcSAFg32G69w2wyaO0AFqHl5qXAF3MhJwBgIQCQjRBNtnLSn4+R3nYDgsdF79/n+rk2gqrL/iM1GOr2N+OkxcxQQ6wH22xjg1km5wBEYa1aWc7K57ctCR6+plq+e96Xf5TDW8SkvhAEIj+17DsDpCa11UCRMXlXAIBi5jG15ifIu+oHcoic+EQuHtWTlUtH6lyy3Xp7uXnRmJKvMh6eBtQ4AMgZPgq3vvmaf24iwVLjXBBEPlAeOwBAUzCAgEXYQm9cf3Vz67V682Kl1iRFpdyslZb9s87X9vEGAFSkc4xOLh50Nd627D8DszwvMxq16dgfAJiVIe1lPhj7e5R+JL1ZP/Pwxa817NmhKkKOoElyffuFt669xs5+4PHvCstLxsExkRjORUIpEQ2U1bvS+iL729eev7n16j6oXGNNrWlhp9jHZiXykv9WwSawrre+fnlr/R0l1Ktr588+HJVrzssDKYRgFWLYO4Vl3YDxEHqoAGB60aq4uA4FDMseRxEOPb0eq0DNYggWn+DtzBPmAIDbKQm9YKbV6+/0BhuF3ppjNlFYrtdOp/J9JwBgYQAwfnOFRtSBigBggTbQ8dGKGWupp2odPvvv9DYS22byMg5Dtc/9hphx7X+fUpeiejlaIhLDOlpeP+oMGJMAoBhZ0koVkPpBynDcWcHkRS1YxQFiFGR8n3i4Bo41AJgWPafkKFOa/rs0cPcEAGblE+kbO2B9681m/XQY1EVI4bLOzOGcQ2Pl/zwhds5tbr8FOJGgFDVq1WXP8ipSgO4cAKBdmgBZ1RDC7c7GO29/LojCxvJ5kYBVVhrnmUwmoE7M7JBmP7fzANtjiw9z/+S4l//3AQAOeJDNxVrzy0/Yx3fMAUBgqu999FsZjikkVlU1EkIMXA/QT738T5TcUw99Q6VyXgyBAlKIEFIxK0+kTHwTgJk/+6V/miQJ2Oy176cTZ3HRDmxCG3Q4YwNh+AljoU5r+8r1LydxNwpqD1x6MqpUrXOGTV4FAKnx2kXDqIUDAwBeMCs9CgCwmLoR7ylATft2iwGA/ch33hkAcDsdIRdc/8zc6tyyrqNKvqXmYUCl3KiWV3M7dm8WdgIA5gGAycmSvC6VSmUdCADc4dOroM6WaqsJB5aSdmfDuh4zEwSAwmbB8xBoP/m8V7W8Ui7Xj34JYmY6O/20Hl5nLqCb/V8HgP1dAhljBGpBIDYqEOQicR5kLw4Ajt7gDLNzjvFfmDMVcBAAMEvEenLL+GtLNN7aubLSfMAYA1Jhw9lCPXQAUByAs7a/3XpHlUSkXj0dRVUBY1Sy8I4CgLFHxjoBAAAlQ9bad658oTu4sXLqUhhU4XS1cVE4JHb+grNJ+uN1gO3xPD52AECnCHRifqfljgIA2osczfSwqUyGODCV9z76hxiOEDAzkcAk3trRkhi4dvfy5179twMbf+37fyAyJfVNNhARObFw4l1LARYJPvX5f8xirfJeZQrnAICp0d77oTKzwgUsXv2ZA/Q67RvX3+x2b4kE586+a2n5vCoVRgAwhpyL9/kIAADNAhh7BQAzz7uFZD15XjwfLY9OPBeeCjPGho/zb3R4+v18qAFnPDNkPl6hSb2PzeaVokaLqjKbSrlZLa8MLdVPAMBeAYBm6zsHAKO+v4tQ/I+XVswYDxvQVm8zTjoiwmScJtnPxyX/9wcAMkFlqVYbpagxFHGDme97eDjl0oVi4thlKNiXeggAnCNSq0IkpSCEsFOokhB7DlNRqea4dgBmwYAJtZ+jBgDTNo7XngL01vblWrURhUtGglw5/PDuJ5Q4d8nJy/8AkqS33XpHJGJGs34+MiVAITxispOz7TM1njv6TEcxQDrE7xzx1vaNq9c+21w+XautkWKpei40pWLPYKxyeUwOsAWB4vE8SMY0zpR2leItJqaHUgiYRQFa5EHvswlAREai9z76HYYBMEHyrikDRAougfpq49988f/QJHn2Pd/ZKJ9nZsdCXs1KoE6YwWxi1/3cF37pwIaDmHofJojy6iAAAhHnrDGBA2BIiJO4f/PGWzs77xDR2sr9a2uX2ESpuB9rPgE8s3e6N1GQPRiE3U4AMOsI2PP7+FLpHAAwPv18WJWCwwcAY3qjEzCA76AKmd8165tvTCLeanmtUm5KQe7lBADMAwBTZWXzaJ5SR0bu4KFs9dubRGSTACIC2HZna+C6o5NS+85jxwFAqqRGplxqlKJ6pqbCNEO27zDq4lOoPnPvhitGJiFWWCJihao6sHOOVPsal0tRJYgoiBLLopIdA0OPFVn0xt2ejtAiM4jTAcDBSt0YrwBNBwB+HRYGAJzbaF1ebl40EkkmV3Wo1uWpD2IxOfMAoD/Y6XQ3iEQ4WGqei0wIaNEKkArS4NnfHhcAkF6bkghbRS/uXH77s6Bkbe1iIKVaqVkuNXOSVT7xf/zDFBXVgXDAROFoH8eYUddkQXp+SpGuK8Vev9jsIeC9crv3o2IH2CisvffR7/BYnSBi1MNjACqGFEIOHFjt/M5nf9o5/fB7PxaaJoeROgnYuYwIRCRfeuvXtjs3fRCVQwp6Y02YAnoBwPD016HajyFSkFXVzfWb6+tvKDqN+vnTpx6pVKo0ZBBNtwg4CACYNsh7mDMAe2XPT/Prm8vC53nyndDp8X8yddjVRnTifY4LADjUc2o/WRdI1zffEEmlP/PgUK+eLUVVGWZESuATI7BdAUDhlJ2UqLu7AUDKgxQOFEmnuxknHQ4MlEGukA3LvpS1RwBAHpsqpeUi8+ewK7szd7KbKcOXN4g1ux4iUq9SClVyzlmbWKdM6gjggQwG3Y1qEJ45/2CShEhIRKYDgNkVLF/nds4RpX8OgI8KkE8k4oV55bz6eNgAYPFxF4zBsMFgIGEQmEqWAfiBe0PsBIemUu+Qaekz5ytkffMNIhKhMGjUa2uGhCAgBz6mAMAvmxGTMiVSSGD6rv/OO1/udq9V66er1WY5rDUqy+y9/GjXYdzjBwCmPfrjCQBkIg7KXHnN3G81bzbuAwDQdBnQvXKo9iYDmtId2VWjpScf/pbUX0hZRFRsyrQTk8ulEFGctH73xX/syAnoa97/fYGp6PDbKoAXvvCzVpnZCCVE5uBBz+9uZp6BATiV+Mnae0OJPyIh6bZu3bz5an/QNkHt3NknGo0Gj3PUMYUCdGAAQDMkpO4wAJiGw3d9/+y8H7ad97dz53aSj7ZYtggAyEtFdxoAvCYSZQXcNBlp1s+HQVnG49LJaxoAmJz9LVZx8sdcXO6y/wTotn9bZgsnqeoCK5J2Z9O6PlMq+LOXMDGHupOlwX7GS7laWaqWGrexODqOy4eCp6T+aVp27CVhDDlfEVZfE7LslGwcO2vjfgK17JRgDQ92dh6+YJ599F23tpfeWu8rAiHji0lExLDe6iiVwUbBPb7gGqaqxDYKVsIwBDAY9BwlR2bNvah9+pxTZ+EEcSYHVKaVuAq2bgCLYgANNnfePLX0IB3JUPgI3cily4AhBCWQbmy9yczMplyqV0przPCWQzngL0x63Nl9PT28OIYofCqZQDc2r9689VpkgubqOSFea94nYpiZ1HspDUnqBTxDx5Zgc1xfmJ/JLbahpnhcLMYwPsi4JB8wbqT7GnJ67cFL597nFTM9DCAizCCOJoP133vp55U4KjXCMHzkwtc2aqeIyGry+S//c+ecptqgB4yHe0jmsiqAFtEUM6uDYe73Oxsbb7d2bhgO1k4/vLp6gUVVdegWSmlYMKmhQUoSysPF6P6iw6pMT5Zp0unEQ0ICPCtFnFHpxx6ZvHvFubv6EmQ0SNqLKu5e9a9mplV3PLFWhrXx1s4VEUkRLVkiUdW1lQdNVopNC7pzDRlPAMBokpsBgOK0ymwAcFzkPmmCS+MdAEhE4ZhE4VrtW6DEr4ai1deBMbkyGyiLUYBrlVU/UnmkX9Zl1dmxnns+9OlJnBAmUlUFK4PYiPOhyyqxOjgk/aTXdg4CtY6tUI+7DlQ9Ff+RDz/2iW94Jomrf+enX3jjbSI2JTaWHZEKhNgRKXOg2U3wc2NExACzMpsn3/Wtkal+4Y1fJ2JVp9QZDAZETAasRxE6jhEAmMiNKPOcJkfKJINkx0gYmcpR52oO6THGSspgZmvjnfZV/7watTNhUB0/7QpNmmMKAACT2aUpo99vv/3Ol5zdaa6ejUx1uXY+DKpEKqwY2mljIpM4AQAnAGD3N/ezcB5Cv//x75bUnTcgTgTGc4Eoq76nlRfWECZhDDpXf+cL/6xebhJCYk2SuBRVFd5whkQYcAco/y96c8Y6J7mxjzqI4WGRQkFItnc2NtevOGvX1u5bPX1JGURaiNi53NAwWszGAIcEAKbV6HV2gj6s3POBAMBhCXEeOgCgKV0XPvg6WWCrjnDF7yAAiONuq3MjI3KzF9dS1VOrD5nsutJx1qOavfzKAABTvYFnL6Y7rvmT236RiFg44dBp3GrfADkfqb18216X3JydCGUxBKBWXS6FTTr6Vp0b5TYMtSB8XcQpEWmq4UzMIGFVy/Bw2UITOKeDJO5sJYlzZClQx8HWoFtZCz/+0Qd/6Lt+35mLS43E/B//++/8/X91OaRVQyURQSCMhEb05uDLQkxC3gCVwgfve3alcckvnpdf/xXhgFjbnQ3hgEYPk2MPAPYamEimDpBBWOD56MpQtRtbl9eWHzJHLAirTFCi4SAUlKnT3ewPtj0DuFm7LwqC8SXOmFhaxw0AsFBO3lOA3772xnb7jWptuV5bqZVXatEpb3iQ8Rb4BAAcNQCYm8rfWQBAB2wCZMtGP/D4J4aymAKBqCoXMnjlXIrHGTJOKO6989nX/r0BqSFB0XAw32W+Unm0TYCpwTDtGFNqXO05Wqo66G7dvHF5EHeX1+47dcZ7hCswJqgwVAjV/ceNA42HTccAY9U3LugjHXUeOFNmdH+0Up6ThdwGADD8VhNGJXcWAECo3VnvD3ZyW72c23xq9aGiRrkcmqTePQcApqp/eseHceNY7G7bcRwAQJb9pyUN3wFwalvtW6AB5UTndMUcBAAUOGYIxJCq1qrLUdDgQ+b6z6yIIOUdjQTcguyj5ix/JUcmECg5J2BnE9vvIOnH/SRm20usc3HirDTwVc9c+ok//ZEPf/ACNvuw4b//ty/+7f/np5UfTWIXiMAIM1gAZYITYaWUmS3ZzV9qXHzk0oehzBx6resvvflvrA463W1vlsmsWef8DmCAowYAI7sAAiAdqyFD7BNWdkD+7Awd7ThEDgCgZJgAKNPG5hUWR0RRWK1Xz6Se2GJUNSUqyb6PrtsEAAhiYcUwKxE5gFut7bdvvshkVlZPEwVnlx+UnPyjSiLHql15AgCOGQDY5SM8sI/C6nse/RYoEwmLAyAQ+KJHxqjPAQCxhRrDzsEM+m+/+MbvpGGblGAk++LOqYwvzsN3OJ5lu6ZMnvyTu/ymUhkOg7i9sX6l1do8tXbfqbP3KxOry+gWzAWt0Lm1g73irn3Koc7M/kevahYAOKworLv7DOxpHR4RfNrzVgImRsDvKACwcJvbb3sfGyAhEo8BVPX02sMnAOCQAIAndk/XozieqhrIcy9i9TMAO63roIQpBLDf7J921fvPa//EIOzZ2GXPFamCvOOYeygzKzklMGfqRgprwE7JxbBJvNND3/Zdp0s9ctqLe1EleuZ9Z3/8Rz/69R99VyUqbW607Xr/3//GF/72/+cFiR+gOFIDMWoMaypzpkIsEjhYZlIyAmFxTz/xMUbg8/6cgPfCKz/vNGYWB3/SKN8OVS7ceQAwPoEHqDAzjL1x683Taw8epTzZiIufBwA+FCpjffMtImVGo3aulPJ/UouM4wcAZh5yDmAhVvLUg9gmb77zSr+7WVterpTrpxoPGGOG6YHwCQC4pwHAglS9fXKBlFgIzzz5MYL48ScHw+KgmadxVoNUJhEhIrAyUoUfAJ/+ws85EMgyRcQuzwiZoTo5BMSHGwAnpl/yTynanyO7ntSuOI77O5vXdrbXl5bPnDp7PxnxveUcAORjAKNPszg+dDwAQP5r4CMFAIsdKPtP6yc0A/eNG/dqBDb9zt8pAOCAW5uviYhIoGrzDQjw2vIDhk8AwL4AgGb7Nm8Ozt4qx5H/kwKATFERcNudW845Fhyg9j8GAMay/xHmj2FSPUxZz8UBQC5mqgSwpsiElBSkUNuP41hd4vpWLffj1gCtdtIH0fvfvfwTf+abv+nbn1g9uzLotDUub97s/sN/8K9/5ldvKC+XeGlgicly5LUXQTCSxXwwMQszPfXot0emTJRrrTrAsCS3tt58651PAZS7XRbGYb+CAECBVg8LJbBIcDD5vz0AAJDHg5oBgNeYDTOvLN0v8E+QVR2zoOAAcGd1HnY7EVOFU8ldqFSv37q6tfmqRKXVlfON6vnIRClxmzwH9AQAHAkS2+sYwB0FAGO/vKgdElPQaKw8eukjIMcUghJfZmJmgP2JyRkWyClAbAiqBqGygtxnvvRLai2lQwUpumYySMlsR6GVjKkAoCDwgpzNP9QAINKM0qkubm3e3Ny62VxdW147F5nIEavL3biHiaBOYIBDBAAL+qvkb7LX8psc5tbYf1Y9B7VOE04d+2U+uj1+DAHA+tarY65NzMZI2KyfMwWe0gkAOHQAcHwVtUdMf9m2WtuxdphKzAAlqprN7DL2XNccBwBZS5Fr1eUorJk0C0HWzz1aQqcbkbPMXNvgkLZxna/nwllVVWvjOI5dPx6oqir63f4AtvPYu2p//o9/9Xd934cbp8tkq51etyHRWze3/tZ/8Ruf+t2NMDpNUlLAgphZjDMElyizF5AmZj576t3nT7+X2Xkt3lRYOqtSrO+88ebbz4MsiVE4kzZnjDIduENydwAAGh+/Q+HZKVMgR//1U6wIFoISK9zG1uvMRri81DgbGgGGqCyXNTmC2thhHktpvuWIBZnOL/r9/pXLn6PA1Zprq6sPhlIREJOS8KGUG08AwNQbuIim+50DALMuew+nmC93P/3kd0OZ2YBipgBp4i+p0Ega9DTzklchtcQBjIr1bEAWff3y7262rhDBEdKZ4QJt9cj8UjAnEgIwRlS1SPNQIn+iAaTWdjsbm1s3SrX62uo5CSJkhQuZAQD8TVsg9zo4AMB+k+yF3n8BwHAUzLQpt2Wm8Cgf5oLR/dyBO/BKnNvceZ05TCVY4DwAqJQbldJanl3oiQDo2Gr54Hs+MVoGGHW9LgCAWTBajmXt3zP+RST736Td2bJuQJIW/gEeDVb7ngGQIgT3mj8pl2PYeTigsOPiAEALdmbO1/5JAVI4n/X308ChsFZ7ttsa9NjZh8/Rj/zx93/vJ99/+pE14eogFtWyEH/m37z8n/8P/2H77Wq5ViUqO+cAE3CsIiIC51TTdPaB+z6w2nyMiDiltheFgAIiC5YXXvo5x5bARMIMViZ2vgh99MSSOwsAhtPAk+mRVwHyN20SCI0ChsP5+hZqSIigZJzGmzuvE3hl6T4jZfapP/yIwt0DAJSJlTI1KiJDBHXJjWtvbnXfrjeWy7VTK/X7jQqxZcMMBp8AgNsGAGgxV747BQAWfR9fUTLGvO/R7wKMiDpNhAOQKwz+egDg8lDMbATkyAkpMhHqNESyqurzL/1iJrYdCNl91F8P5QliSEMas0pUIaMEpM7vpKr9XruzvU5R2FhaC8NSLv+fO0LotFRhAbbnQhytBbj1B8IAdzMAyE+xr0QAwIzMCEyZw2plqRQuG8YJAJi+Wj701Ccmo3Zhzc11v5t7JN++UygTnymyfRwKHhxkW+1bTgfCkRf82Zfc57iVBOAygBEQkXBUKdfLYW3fG2yWrpm/WjN+VzkPhQCIrKqKRGBLwqQgUiVWtS7pWmvtwMZxFxwqgQTE2mkPYmxfutj8ie988JOfeNfyY2e5VFJnCCFr1O2H/+t/+6t/9x++VKs+uFRfUuOsHTgbAM4TQ9JQrtqsnHv0od9HKAHggFUtc+hVeLMH5JgNsf30Sz9/1IthrBE5WW6fUfnbvU45P33Za35evLCii8r8lVnk18r+t4uHx4n3xhrY/tbOZZForXmfcEjsvEk2Fc774516jsWoQvYJ2m7funX95ahULy2dWmk+YJRSFhDz3WIGfFcBgOkJ/W5p/UGSpL0+xFnX7HiYmvsSv2bxgb08v8fGF0+//+ypR/c/NpZJTqdTsxQSEbF9/uVfgDKxA1xmWnekp+r0st1o/MFE+Ml1fuCci+O4090UCcrVeqlUgRIzG55WSUwbCDRJUJlGHVmQN7+nTs4i9/Agd/twOT+L4u3J8yLbZV9BQQxA7AY77eu+/F9cU83K6SiqZHePR//j5JUBgBnZ/90BAKhodFVUoiQiEsWg3Vl3zkla+9+33r9MZuz+40SEILXqchCU96riMgsA5BWOYbkI0/e8/02FHzQGs7cEYMfO2STubvfbnT7AgQlUVQXMbddD0nvfQ+GP/LGnvvOb3rVyXx0GHJYpMC4mjhrXX9j8iz/5G//x5c2wdLFZrlqFEQsGNHA6YGYRJhcQ6zOPP+fbDiwAsyqxeHHVlAKkqsawKl259vmrW583R4zA714AMOkXdkQAgJmdUxFWhTK6va1ef0s4Wm2eNybI8h5ini62fRcBACG2mly5/HnnemFj6ezpJwJiKBvJWxrHc3LpHsQAhypve/gAgGBALh9GApAOikBSwRxyzPz0Ex9nDUkGhGA/wYmViv5zuVkkJYNB96VXf1VVxdzmUxWzH9yUYvwId9E555J+v2+h5XK1VCqR7yrO0IcZRd3z5SMX8WPZUwcPRzx/fNQAYOY6n1DkRFF7+ivk1R20uv3NIv/nBAAstAq/6snn5vqi88K58p3rAChTOuQ6JNsoEcDEbnvnGsgxczb1u9eNOhMAAOz17IWDamUpDCv7UnEpkLN5epro93ZG06KsepTR2liJyBBbdsxQYmUlTcjZdnun294mFyVGmBGKs1Y7SXJuBX/xTzz6x/9P74vOlSGGGRwKNCAFh9Hv/eIbf+rP/Mo2X2gsrbCUDIuSM8Y55xTMFABsRJ9+/JMMPwCg/v47QCRStb5KJEKq6ml5AL7w5q+2+5tHHZhuMwDIa137zm/Sh46Cj878Hct84D6mQzqtqMq6uf2Oc0mjvlaNljw6zqeT7xIAMLVO4acS2QG31t9ubb/aXHoAJji9/JCyGswZAzgBAIcCADC2xQ7V3PogAGDWRrbMATN5TqOI+HkSLy0lYADPPPU9nEpcyt4DhWPmtPwPKeg0EHMIJID57Bd/XmEBEOVNgNtzqmLG45s+/1D8K4CsTXrxAHBRFHku0Jjy9dj9Wkw+8tABwL6zdj7YW/GRbrRi6MvKSZ62/ZUVxNr9jUHc8dTuTHKQiOQEAOwKAD4xkZGkS00wDgDmRj4cfZyas0eNwua5C1J5+aTV3vBevyDHDNVJ2az9gYH0DjGzcFCrLgem4j93L0ZOmJ4LZsmXx19jAMCN/JVSSh5RIg2MOGXAse3H/Xar3+0lSuosgkAGfXUuiVabne//9gv/2Y8+e/bR8+kzLiVEQrESN3Sg/9vf+53//v/xCpuL9UrThYFLyAROAlYLwALEbNaWH3zg3FcRgSVDVpL713h6CRU3ob/nL7/+K53B1rEEAHsQFy+un4ljcj9LK9UJ0UVXy8RH7PkTc41/ZnKEja3XiahZP+8FQD2wzFA0H2PG5FhuNOpTAlA6Uynt3vaNKy+WSqUz5580QR1wpqD+N+OJnZwQhwYD+Ei87XYdLdh7LggDssYYZ4nFi+F4Y1wA+sxTn5T0NBRvMrr3yJRtJrbpYvV+wgj8uNQX3/i1du8Ws0CzcD+6yI+SwTx1LHhmDaJ405Q1sXGSJEQUBIExhkmGQw7T8vvikpirHoMjAwD7nwM5IgCwm4rOou+fmbd+RUUwbLauOU2KM/cnAGA/AKBopCeYYgx8/BICFGVAKJvTStQOvX69A24qi7nvbzCyQ73SDlNYqy6HQTVlvMiekPcCAIBGbAupIO7JzLnCjxLISKSJs0hsL263+33bxqCvcSUQdWYw6KzU3Me+8ez/+c+898EPPsLCNFAKAwrgB2ZAjtb5r/21X/+5X2rV6g+WKoETHSQwBOaEIMwBlMtR8J5H/zDDKNlUXsmk10Ak+ch1xrNyGSFPiPTy9c9e3/jSUa+fOwoA9jNGvFcAMA0G7LPupUzW2q2dN5nNcvNSKEH2tXC3AYD8cfAYACBS5+jG9Zfizub5S08ElQvMiTo2Q3+ikybAkVcoj262/mBJ2xRsnDHdKVW2YSXCB578HlLvozKsaOzxnYcuv2OEVZ+yOOdev/LvtnZusmAymBTHhO44ACgUCMg77znnVNU5B1JjjDHGX63JKIuZzRlPYsIDJL77BgBHQdc5AQB3LPIAuLn1lshQzSUbwT8BAAcAAGN5yZ3VeZ0diShTLRxquagmO91Na2MfTPfO+5+6N2lM8p/J1GsrgakQiZCjafZ4e4oXIxQgpJbsY2EXcBl7gbKFDgCimvS3+n0bx7GqTRLXZxsjjlXP1+Lv/+iFP/ZDT7/rw49wlWigFBolEnLkCNZxpdF+deM//yv/4Td/j4LwdDmKkCTWkJIlInGiTMz60Pnfv7p8HymIHRsiiLJmBxjycQhVJVZf1vJqP15waWA7n/vSrxy13OfeAcCBzoZJ5dw9YYD8iR8MAOw548mHy51LNrYuGxOuLT/Aw6SZjzHgn35DlIkV6b7MAIAPZgBtt29s3fh8c+Xc8qmnWDmXnT3BAEf9dIri0XJbYcDeHh8zqapwqLD+TMmFJZ5+4jkpAku2TGafqnGFGYCM05nKhrY6N7745q8XuJ05NZBvCwCgBTWdiqzU1PHdX6GqxwAsJCJMIqO/NvnnB84r9gcAcLDlhD2eGrzw4tj1Psz8viMUoGOZpx1pqFHVW9tvSlrAKjYBTgDAbsv62VEAIKNGIccfAIzBAK/42eu3eslOLrCQMX+QrYz9Zf9UVPz0mj9RVBU1xMo83Ud5kcRl+O4Y+fkoYskuQ4YdLiYlgqq1Lu5ttOJ+r42eSlrT7wwGSyV97g+u/pUfff/9v+9xrobUs84YDiAOaXdWCU4//69u/In/8rft+implcOg6bQHdgwiBzUEa8TQM+/+JAsA64dsmL2ty1Dsn42oair6CSEkROSxgScFEemnXvmFewwAzKiTLVogTOcLJ7h2i6356aoaCxVMsssbJNvtzka1slIrLXvFTxRocsf+FBmZnxmzGcqHZJhlMOheeft3SkHl1PmnorCmo3KrC7CATs6MPUTJWS852EY7UgCQN4qZlcgQhDghMh94/LmshEHeZHR/jCbPHWJmRa/dvdnpbjrngiDqxdvd3macdNXb/6Zs1Twa3E4AMPE0GfmRNDU4+WvLr9YBqcIew2QsIB5tAkyWMI4ZAODd3hzTgsM+7vC+HYjHL2AqpvqKAgDOuY3WZZFglOWhAC9Vz5wAgHsaAGS6n/6kV9Vef6fX32ITZswfV8jdcQDDryz7ZiZItbIURVUmyQvgC6+thQDAGNc/rWsy+XwacMIMqI277dbm9vaWJaLEmMglpFYoCPp/8L3Lf/mPPvHhb36EVhuqoZQUEDZMiU2lmiXUVvtf/L+/9FP/25W4e6FeJssRnGVxCoYmvgwWRvX3P/JtlLqJhS6zq0l/4oUsxB9vUE0RgpDJJgHyiKSffvmf3J6j604DgIVmgkfNOA8OABY6/wAVEZf5fqxvvU5Eq8uXAg61YPdLx3Ozz95NUwEAAGZhsUrBrauvdHduLK893Fi7ONEfx24dlZMz4xAAAB2mXPphA4BifpCZYDz1rm8vheU88ivifdX+iYhe+NLPe56M75F6Z1wqOPDk02vFMnk+P307AUABGaNwJE3XAxzbOB4D0FD087gBgMVFQg/rNw8dAEwCy3lP5CsBAFhrN9tvM4XEmvEO2NOSTzoACwEAKSzlLPW/Dbq2e13qyBSaswM7q5fkFYv+YKfb2/TNoIz3f6AYCBYelhKZSPan95+l9crMWf4BRzCjUJ5ZlEhVDZMjpK4WbIUhEAigLKRkAOfa29e2t1vdgbUSixBD+jauV/Ghd1f/3Pc9+U3f9u7wQoWcKJcFlkIDE5BnEPUTcEm24v/mv/73P/2vOIpORUQaGWutL+EIA2oM49n3fFIRE9LSVzbsm3ZU8jmEOUlugfDqrLUvfPnnmIIcaioxMchLmN7GfHHuit2/GOjkO8wKx4Xa/1g055nok+YgDV7klwvvKcROHTZ2XmWS1aWHzV1/bEwRBgXAABsh4nb75o2rL9WqzTNnHtegaoi9eZOnfGTEJzeZqJwcEkf/vO5Ixj8emTOFYvhsuxI1nnrkW/ceB9zYfPDl689fW//S6P7aj39CFjHuzILM0nSMDT7paIjLz9zMg4dpRvZ/YDnjw4zqU9LxCaOx0Vg9+TT5CAaLT17TH2VhOA1KJk5a7e761F9dqp4Jw9LE3T7BAAUAMFaV8eQT2XN8PnIA4P2JxgawPJ3Bb+BB3O70bglHIDcLH++rnpUyfwBnpOQVP/cRiF1GO87vrXcvHS355E9hqPAjDBJisDiALCX97c7W5k6nHbehYgKF0wHrci35rq8+/4PPPfnVX/2gOVcmNhQaMo44IEfEoYoVVkqIJGq/efMv/OSnf/dzVROsVqOw1485IlGXqAMgkAtnnjx36r0syuJsoj71L9z5kUHkefUJTf/Qzwk8//IvACBWMKuKmAQqLIuQ4O9xADBHem/erts7APB7CaQEXt96FRqurVy6hwEAiTCTs/0rl18EBufOPR5WTwGcY86c8w3owUWWTl53IwDIeAPIxHbwzFOfhCPm/UWD1Ab45dd/udfrqbjJptPiGGAxecejlaHMAcBYnUInolzadAXmZPmHDQBoASbkHgHABAxYAADsaVWfBJb9PmlowaESSqYfb3Z72ycAYD9Bc3QIGDn1/LgBgAnhhVzy3yeZiON+p3dLROhAtf8pAIDZeKuBMCiVonoYVvIJp8UDTZHTP1r1zwMo8mFlCBMpiwMJAANSdooYFv3W+k630xkkXU2ElTR2zpUI3/DB5Z/8gfd/9Te+i5ciCoREyPhTTRAETEaVBG2yokHpzd+68SN/6T9s71wIyw2iIOHEggJyRCTONOtnH3ngG5md05hZVJ0Ydch7L8j5SAvfTgxdgVmff+lnAYAD4oRIoBIIHex5HQcAMP2dZ+XVswHA9HfmGXo8ewUAzKSOYbweOa9vXl5bvcBs7n7ViOnWYAxPnFM4urVxubX1+urqfY3VdxEFzI6LnqzMDjB8clTfXQDgcJ4OABGGirICMEwfePzjmUbnnt6HmR1RwIwXv/zPB3EHyjBWYBYDAJgWQ4oA4M7cpVGiDqb4UY5K1c0yATh6ALDH77V7XwUTEXsqcXTfalcn4WXPz3q0A8A77RvW9af+6nLtfBAEJwBgDgB4roiD810thLtiHUOZAvT77U7vFlPIzCDn6V+HBQC8wKWRUrlUC4OqZ2nKHmNQkdMvGJP1JAj7cQU/Y6CqbAjiWFlUkzhOejud/nbf6iBJkp5wGPc0URcTJV/9WO0v/cCz3/Ht7zaXKpQNX0GInSFDIEdGODDaj8UJEX7jZ77wA3/9N083n45KVXCoCSkrBwO2rCxPPfCN1eoaU2hdX8kyG4jvumTOxLwvluGQC6Sf+9IvW9d1gM/OhHB718+uH7f/1GSaMOhCACDfd6ODAcUBr8MBAH5QHgCE1MFpX7gkhu8J2bjx5ClH1MIKlV7cunbls+WotHbuSRM0mZ0Usv8sWcExiWz3XN1uTP/xeAEAvwyyerYR0g88/rF9HCKsgACsr7z6673Bph8vscpmeidhDgzgsQAylTR4227UBFMfk7EOhWDHR+5ofjihexIAjKkeTQAAPvRrOIkwBwEADrS+9aZMK8kCWG1cNCY4yft3AQC5HendBQAAgE1iu+3uVWgoIgfI/qenT564EgaVcqnh9f79bx4EAFDWBFAmgfrmQF5W95O1SjACxNbF3db2lo1d13XbZI0GwKDvEtL4q99V/Ws/8Pg3fdfTpYt1gpCAhImhTGKVXEAhkxEipcSRJdcZ/C//3Wf/5v/3s+dPfbAclVVMrDBIvJRbLVx56pFv8x/tHMCOiJVdGvYOSBEZNgEESJ5/5WecN6MlNcQEc9s4QEdaTzpcADDWVZj6CPbeAeB0BjFjO/h5gDsHAHAEZpkjAECJRCEiMez1tz/vbKu+dP/Syv0ejpoMAADqfZlOjucj2EFFAfjD7fUdVgdACcYzX4Vcpbz6xEPfuA/VOAEp05cv/8ZO62bO/NH96LvvEjFu872aNqqLsZmlIh3oDgEA2p8NS7GuPwEAaDgbicV9UU7mAY4q5fOU7yEAIKxvvpFpgI7/8lrzPhFzAgBmrrxnn3quCKwKCcSxAwCZRnLR9guJulb7hsKKCJRBA6JgX28/CwCwcFApN6Ow5lMlj5T2al2eTrtOiS+a/kRSq+L0Sqzrt9ZtMugOrBINBokaDAadWK2YzkefXPuJH/qqb/zoRb6wTDCORUoJS4DEV6EcwaqURYhEKSYC6/bmX/9Lv/u//PNXL178qmYlGljD6g88BbBWO/vuBz6akECtQyIiLr3HjsQzoOxBn5+mo8Ai8sIr/0wR20wT41gS0A+CAfYGAKbSh3w5spA2jc1g7BMAjGfeED9rLnf+PvPhvduIHZgDGQizgml7+/rGrS+Xy8unzz4qQYkyPdACADigw+jdnqkf/CvfZkewQ3s0fjAGgCH+wOOfZOb9Of62Oje+fPnfOzCxIxjDyCD3gcLOYQCA/d+uqQCAaIpVKGVKHXcIAOztxo7eVZ4jqrN3tSLc5gX8lfPKWrUMQBkbW29O3aeqemrp0gkAWAgAeE6wX+IFofDjhWJHJwGgarfaN73dLwtUY6IAcJki7IEAgP+ggKJyuVaKalmVGrlk2/5KOIULUz9E62EAg4iVVRV2MOi1NzasiweWQI4lTiDt3oDFfuQDS3/rT77n2W95TBplskziNBAxhsgRk1qICeCExRIRKIRaGnQHV9e//Qd++XNftOfve7ZabYqDc07EsCUXKDj64KPfWZJSQomCidQR+8tjNkqJP8kOvGsxLJOxfvrFn/PkIhEhdcx3i3LxzIOkkM0fCgAARuSnDgsAgIhVHfNQqNveSQx2OABAR8oWRclCOIKA/TTwIG5fe+cLhtzqmYdqtdNKIZAMRWNTJ+97EgDchoIO7sT3OrRH45DOOZWC6lOPfjszE9u9zgAQ6fMv/wLIaTp9AlbMCW4L9T0Pyv7HYdyxTLRt9DUmuFyIV8MfFLz5jjkAmGnmM0vMdKEiy8nryACA37Yb22/MAgCnl+8v7L6Tx3H3AoBM8ZPyNpDadmcn1hazYYaqEgJfqD644Vf+5/XySimq5Ra/mdeYG11VC0GXLNwMszpmhlf7gTPCDNfrtNudrVarJQgswYhatX21FdGPPnPqx/7Y41//DffRmYjiGgkQOBYBAoaSAXFCCB3DMFPiyBgaWMLOO8+/84f/9H987RounXtfvdK0Cq92ohAALKiY+pMPfTMbQUpVEiIVEYBZEigDKNoPHwQAMBvvF/b6O7+9sfUGSQnAHaWgHGcAAD/5l0vHHgoAgApL3klTZtE7aR2PQ4kho9ZFI5U8ZbASg5jZwW1svNXdulJdObu2+gg4IrKGGcosKEjB3HuFOtC9+To0/pgSE4lh+/S7n2MOQYPUSnJv6xAvvPRzKmmjGMB8aL048VF2eY58xLvsKwcA5KiJTwDAcQxkaQk2fVIOWN96fSoFSFVPLz8wOnd08jhGo8YzTzxHRDwqw7LHYsPtuKfqyff5KCrQ7mzEybaRSmb4hVx8bYGtOi/wigSqymSqlaVKVN/lXTJij2R6PrlsS/Yf+TCiUwmErYMaDkgckRiQaiIRqerGravtrc3YIhENTaCgQTKoRvj6J2t/6Yff/zXf/DitMFlPDy+ROATM6iDM3rmGQxckJiFowG4AsTzY/tm/8zv/2U+/rd2ls6ceqVZWFAkrC5sEMaMKSkSgzjz52DeUo5UiAgJct7+507re7t6wrkskUVg7s/pkvbaSk1oZBFaiIFMFNUAy/87DEYsjBGD7/Es/XwD0ROMdHqcU3i5/gNuQUU2hQOSM/yL8zrP/lAUkPAEAhvZAY049u0Y63SW9ONKazUI/PAgAyNP3grgWuVQOyAoZQAbxzrV3vhAJL597NKo0DYZXsgBD/W48P0YVajEPlw69H3fRQT+sxH3/b3q4uvj5+hEO3v/4dxCi/VGA3rn1wrUbr4P6zIEH10R0qDNOMxLZjGI65hc2ti/oTvsJ3C2he7Ynw0kGeSdfhU4veykL55KtnSvZc5H8VwAXmOpK4+zJTbsXAACG0ZRA2uluDOKOiKTy8unFL86CnpcIMYMQVMrNcrk+X3d5TLPFBw4dJUFqTv3nmNgwqRjjexjiQEJiO5utrfXNrW7Sd4ooFFjXE2pWBn/06x74gU8+/r6vuS84VSUbkLEUsJqBJBUSJesosEoRG2VS4pCYESuDCVuXf+u1H/6pFz/1pT7LqQdX74dUAjCEDMMiYIjCihDAqpaZvC8SiXja9IjhWl4a4YQpIqJqtPzkY98AnaX2Nju1K1gfg+T5l/8RkSMy/hOGNpkQYtWMon1PAICZNyO9t+MAQAF432UROQEAewIA/njItX0AMFSIiQOn/evXX096W9Xm+eXVi14+QjzSEj0Ose42AIBJ82MM/0FuCwA4nL1zmACAwUrlaPmpR/8gpUMxe16eL37pX8Z2J433ZDKXej7qsJMDgLEbckgA4N4rneIEANztAMAnV9bGO+3rBQO+fMlrKWo0KmsnN+1eAgBCpJ3eRq+/JSLe86vIql8gn5nXyvMhG0CtulwJm9nY8fw8dhwAUKHqn8n/a/pLAlFRcgQ1xsANujubnZ3WVm/QR59BziSa2IjxbV+z8rf/1Iff/XX3c7VMZGEMgoARMwMcsoKISRWhMhsYB2ZROBtIr7Xx+s0f+4u//asvrgP1teYDlWgpKpUsbAQGhww4ZiEDVtWR82mYMPn5hKHjMnvcxSQgJS8PqsJsHrr47OrSg0TE7AAwG8ABZqaBjhryXQyAGUp44eV/kpL5yDIFHrunSYibLstyrwIAGaZiUFULP4bBAcvoDMCuAOA4Bm6ZcPM4UgAwltz6u8osRNjavrFz63IYVc5ceJRNmUgNGU9F2+2Av+uO/ynzDP5WEE1aEM7Lcw5pCPVAO2VayD0sAJBqYTVqpx+9/yN+0YhR6N46AJ9++WeGKxBy2wDArCU6CwDMsnGRPb7/VwIAOEn6jy8AIIqTXrt7c+yo8QdNpdyslZZPbtpdDwCKxbxub7vbXzfGpGW7TOo7yzhl0SU0+9CrlJZr5YZPGmbt/TFZT8EI0zE/WXNDX4ayISUYGGifkm6r09ppd3p9Gyd9LUmcxKx9UPz73736k3/6Q9/0LQ/ibI1cQOKEmExAcJRyK5VFlBJmJjYsjkhImTSmnZ1/8F/95n/zT9/Y2C6XKqfOLp+VUk1sZARcUoVhNeyciFFk0xSi/hYScT6t5vEKK3znOmVAsoMGIqJImAKQze6YPvvEcwD7+j2RyGxjLyZVNzpQgeCFV34aIII4tszs75doSJzcqfNmgdz0cADAWPZPRB6VJepUNQgCQ5wPnMwGAHfHETUhBn/oBwONTRVnye4w6wUoSeJb1151rnPq7LsqzTOkjn1axLrApd1d2cA8ADDvS07ciDsCAHT2zT5c6OsAFhI15888cf7Uk4BjDvdBAXr+lZ9RVSIeNjNvd92BpwlZjv/hLO/bxdT/7pmE+Cvqy95LAGD4f/uDVm+wNVoFTv+9VlmdT+E+ed1FMwAEoB9vd7obIuJVMwHeC+9/HgDIFVFKUb1SXsrEQGZygscAQH4NrOkoAmRol6vkGH7SUtn2++1W3O1sDNrbycCIBES9uM2U/L7HVv7Wn3n667/1XXy2SQOLgFhKBEtGyFmQYSHAQSAJUcgUCIHAwnFCsr3zwhe+98+/+G9f7ISllXpltdFcLUdV0UCYFeBIxBmjRg0Y4mCZiWBAjin0w9P5EKQyCTjHP7lbGZECzOTHG8SrA7EoKz3z1PcACXPIjDlWDGndnwSUMIW+cwfWqzdevnrz8yJsFWJYHRti4oTI3MFAQwVOzkRWdNBUKF1CWSmuKGzsnLPWikgQBH4AIAfA/pDOzEGPMwCY8AkamprxER8Mw492QE4YZSYmhbISNm+909q5vLRyYfnUI0TEcJQ2AN3xCXp3EACMdQVpXGfpDmf/E4fUwZ1uBWQN4Zknn4Mar8y2jwbVp176RxlcTyfBDhUG7Jm8fgIADg6oTtLEYwkAUh+b3mCr199h5smso15dK4e1k5t21wMAZnZAb7DV7qwHgWeJ5Jr6Wpj/oAVYQFMAQB4ly6VGtbKsqgJlNnMAwISmZ7EDoCSc/V9HpKoaECHu9Xutfr/XHSTxQGMZDChOrCPt/KH3nv6rf/ZDX/sNl3C6ygkTBJWERdSyqCEAkjCzsgooTdlDJiWyILVkbn32n7z4A3/zi2/eEhM0K+VGLVotVxuUag2FChFCQMzMKoZswoYBUlWRnOVPkJQlUShLQ5mgZJhtZlScGSeBGQQDigmhYX76ied8H4ZFC+MBY8/SEQyc11my2QBx+tQ++8V/bl2PkOdhfGcDzRgAoMOzMh3L/ocfJOScGwwGRBSGoZ9yGQMAxDAjd2Y/d+noivETN2eOw86RAgACoGQMa7qcoUwqHADodFs3r38xCiunzj0qQcnwPmyqjn9mMJ3eUwQAY6SsWeGXbnsHQHe7u4cLABzYsDJFTz/+XV4ADUiYea8Y4NMv/0yB+UNHYHK3yNbeHQDMvrBZekG42xb/yesrAgB0+5v9QSv7x2FvgNk0amciUzq5aXc9AAAwcO3tnVvGsO/JZmWVyanfPQOAtPZPJorKlfKyz4C9JOCc03FI3hh9Z6/rn0r7kwIqpM4l3e2NuN/vxwNrXcLWgnpWnev+wQ/U/7s/+8Gnv+kxaYj2VYxRNhw4JkPqnX2JHBEnREQGRIagCJgQwJEMduzGl//Hn/zC//XXrgzieqO6EgZ1qZYqZjUC25ACDZgMCZSFKSBNSAWGGMikzURIAYgw4LXwKDv5FNn9hFIut+odfJmEGLkrtxeXfPaJjxFJrsc67VEyiyUwqRnt3uRPTV55/V91++t31h74dgKA4sIF6WAwsNaGYRiGoV9L+cTeYQGAI83FjxUAIBjxMgFMgAqx9wuPk+T6O68nSXvt9AO15lki4hTfHqO4d3sAwFhyP01q9vgDgIM+Dt+ffeyhP1ArrTGzL7IUJgv3AAAmofUiKOuIAACN8gb3fj27hrt7EwncKbGEk9deAUCntz6IOxMdACWSZv18ZMKTm3ZXAgAfpJhZVZ1zW523iAJfgFYdq/3ThO7ZogAgZ/6EQaVSbqZqsmlahvkJXH6XlDV/H6V0GkEYAgz67U5rs9XegWUAHCBW10aCQe/rHl/6G3/uAx/51vt5raRxidiJAbGQlgiOOCESEl+ICgmWyJGwkogICVM/Ide+/PLnfvjHv/h7L/eCaK1cLpugHgVLQRSWA0MSsAYpt9WJGs1YPZyykXwyoMTiCT8qYlxujJqaOsJn//4/0qQfqccNgQ2TI5fOBKdcoI/NjZNeqEsBw8glRFUglI5MCBEpuRde/jm9cwH38ADA9KJyDgDGFm6cDPr9fhAEpVLJl/+pINmRPhM5aPnzKwgAEKdLNp1jh5erdcQbN660tq/WGyurZx5hDg2hMNZyDwAAzFiE4xQgR0OHckP8FQoASELD73v3xzLxAqV9+cn4IWBmVgWTyb1rblv2X8AAwxZEsbWF3Tx6Z6zzEwBwAgCOFQBwRGYMAGColadEsty8GLA5uWnz9vuzT35iMiLIjCN8/gF/eOdWQYuGBKQ77asFzg+Nin7ueUv62VPPYGE2UDYB16JTnm9drI4oE+uwCFSIqnkRRV3ArAlxKOxARCTsrIgoBt3t9c3N9UFiE8AYgpjYWZsMHr1f/usffP8f/qNPcbPsnGNvwcVMzMQEMJSEmcRP6hITiEQDx/A6oiG0ha1rv/wPX/2Rv/fK9mZlaXkt4nK5VA1M1ZiA2YgISQCwGaFLzcy9csOpqaJHcypGvkXAJCDLFHnqzgeefE6QDmns4nWjKFTApfBxIKJB3Pv8l3+Z2Hm/D2JwKtZhiOBbBFxoxeR+bYeRf3gLTy7WwBJ1oZi9JIXIhktH1W+YoF4VRwsQgNQm7V6bmcvlahAESNGeL2BLnr8dnP9zBwP3WLQ5tOc1PXDlapasaZqbYXXSTrd78/qrgaEzFx4LwhoDBOG0j4fRCu484fy7DgMU45gvZOSCs1nHaUpemP6C5uXtsbyQ95WnDqdZssI5MkPeFCEzMxXF2BhFxYV8X8ii60SIHWtKdyROffGM0gee/J50fCtNI7AbACgWKISZN9tvvPbWfzzKh7ifOtqe1m1x6GssZM0FYCeMoJPXbQYA6f/dbl9xzo3uR0/fcKtLDxq+BwwcebEf3iMAIK9LqR82bXVuOh3kR8KE6OdeAYAymyy0G5CDcrWyVIlqY7E+DXlORUzhc7ODU5QUIqQwxlhlYQcDMmwT22u3b91qdwfdPhFECBp3RYzGX/vYyo/+kfd+57fdHz28RAMmsRQwkZCmUuWFJ5Ap8RgwHAUhJeAAYGJ7y21u/Jc/8eL/9C+vOa2dWlnlsFwN6qVShSkiiOewZm4EWHRfMfYBAIa/IClNyPcuPvjkx1WVOfSin9mHBGN4gFN9Rhn7oCI7qJ90X/ryLxGJt+r029snASBLVPDZSdm3h7H8YIx3lVZhZmLnnFvfeevMykP7AABjGZXzs9u5m4n/pup6vV4/6VcqtVKplKohETFANEx0Dl7+v+OB+yhaAbMAwHChYRQAMJIkuXHjrX7n1pnz76o3z7KX1/ItL743JgHmAID0Xx3BmxgWAcAYXqVM1gxSBAD7TPqnRo8UJzP7huRItQI88n95eAoIii20hQ4DZUcwhtmBAecrQURSDZpPPvpRZuPNR+bIGMz5FldvvXTt1ktH/Bz3AwDG7VxmrltMgwR8AgBOXscWAGzuXC5UhO89ADBrk97zAABgoXZnI0460+LXPgGAD/pEQhAx5JwrRfVqZdmfBHkCOqbrn1dHcnFPf0qKUSIy0ERUCEji/k671dreTtqJswoExsS2Bxc/ejH8mz/y9HPf+z4sl1hAEIKBURKkIp5ErC7PXx2TEQNPKDIBkZIC3Ga6Rje63/eDL//8f7heK52qVZdMNaxHzVLUYA4IXh+JU+HzhRPinFtSSF0XAwAZiQiACKkSU0DsSqb8nse+M9uTOud5jWGA/DFRYRSBSF5/57e2dq4A6k3KeDiI7PW2XWoQfnjbzKfp/i2ttdutt1cbl4xZvAOAqfWz3DQ6/2UlYmiSDNrttolKtVrNGKOqTHl1E7lqxz0AAKamJkcMAGiC+qIAt3Zu3bjxxaXmmbWzjzEzOxL/Fjz++GZTX+4WAFC88+MAIA99eQdgrBc6G63lxuf7TEzzIYRhkNdiWUGJhCnwAWEKDJhRpJe5FTXPgWRm1TTOPPPkx6Ahccxkhl+clRDMfPDMqp4wmd7QN69+an3rjdv8NPcHCXY702m35z5GCTsBACev23yOwPMCNnfenCARfCUAgMN57RsA0GGrHIzkmg6gVOBpSzjiNDnHbknFQkuIeThJXIrqtepKeuanToqTJyUVimcO4vNPFwhZAlgCJEi6O53WTrvV7Q+QhBTY2HWtJgr7rvPRj33Pe/7I97579ZFTBCIyCGIWARl2zgOA9Dj038jr/XOQypYHAdgKiNwW3Fv9W/YPf/9nfuOF3nJ4utJcDYIgKteb1RpxoI589u+PpTFB6PmPbNhglykAYO5iHE4DE5EYqGNmI+SefuLjuVEAwF65dc5jmcwL0/8WR4iIrHcNAweq1nC+WqR4Hh+i4p6SAcXMxtp4p32lXFqplZYWeH+eAwCGtUwFsziAmQ2Ttbbd3lHYan05iqJ0yqJQfKXCA7o3AMBRHgy7Zj/pIZEkgytXX2TF2XNPRuWagfj4UAQAu3Hf724A4Lk3zrkiAAhYpsKzQwQAY2UFfxm5sBiLAmAKAAg5gMcq/VN7m8XLk5m7mlm8JHP+7NzK0qWHLnxtgffvDQ2xwBBwscBBr779H7Zb145/WoChdsOif76bL8QJADh53dZzJHOGpfWt1wsewCcA4C4HAFnuxb3+Tm+w4ZN1KIPcoSQVzGAKvX9wFNZq1SVmwzpygBWIKGPKCYD4NjVImThhI+oG2ul2Wt3tQbdjOw5smHtxl6n/wGn68e9+9/d+/3tPPXKKhCEhA8wEcUxKYOKI4AggVmJkMwBgMlYkYAETq4Mw6xXwre1Pd7/lhz/1mVfdcnOtVlmTKKyEy9Vq1bGEFCDz9iqU9GTauil6ymY9jcKBnh6uWEzFgr22ihMRdcj+3DGbgM37H/844EQCVcuihHDWSABjKJg9+nFaYOIqWJ5/6Wf8IHPW3PATngER+WmBQ1uETFACsLnzJrNp1k9HprK/7TdFM6pwew1Tp9Nqt9u1ZqNSqeW/MCZrldc+7xb332MIAGh0GEZVb958fWf7+sraAyurlwyyqZt0HSql9hd3PQAY6UEV5vv9TfBCCwCMfxGUZepXnowDuff5gR4fEwBVXd98Y7l53piSb8WoY2OMDvuBlFPjppIb88sTmsd1caQGQdphgPnAUx9n5KEG8/XfJlL/4aJ+5fV/3e1vHP90wfc2aTiTM/yyu7JGi5jtBACcvO7cOZKqAM0CAKp2bfmhuxwAYE+dutsMAI7qAYO0P9jx5g75mT0tIu8LAFDKFw+DSr22YtKGrwA6Rk0uCuTlI79E6tsRDGuUBnGv197u9W0viZ2ojXsdsmTbTz9U+rOfeO93fOuDp9+9zFwhCEUxcUhiUjaHUzKiqpIuY89v5+xkFmYmE4CEbc8OrgW8fuXTmx/5oc++eZVXyiv15VMBlyqN5UpUFmcSE5issevL/9PKY2NZCwpWqSMAYCxDnU/VgNdiAiMTZYJ6dr4S0Qef/Hh2TAbTRD/HMMCUeYD0r1ihhsWPLAYvvPKP0yWRPk2MfanDWYoMwK1vvmVMWC2vRFFV9jtk7CY2rU/CfEKvSby1tRWGYX2pKRL4fwIgOQE3v0Vytx66dwoATNbvx7ZGp711/fqXgqh06b73TlDIJh2X7zUAkN8Qa621lhlRFHmSZE4E2g0A4OBMrrwDkCS9nfZVZl5qXGAOjTHFYnXephj/LvMAwJTHpAxWxxwQ4aELX7OydAEwaX+SLUGYjap6MDDrkjMSoskbmy+99i/7g51jDgDSYkRegEinkIaT3zMIt+M3+QQAnLyOOQA4tfLwXavatGD9/Z4DAI40SXrt7k1mZgoVdvTRT1zmXr8wGZALg0q9tpaNuwkRJuNdWkUX5FODpBZQYahatXHS6bUH7cEg7jsio63BQNF++Jz81J946ju/+7HG+SXS0DGzWJGABAQiNs6QEDgVFsnLSEDKgmWQsAjEsBNCD/EXWe3n//nmt/7l37t+C0v1lWplLQortdqpUlgxocCJcOCdkinL/jHUfh6XgRvPuscAwIyK6UwA4GtmXkwjO0ty94BKWH/PY38o1wLata7GINXxz/KogFNrsLTh/vlXf2UQt3ItoPSbHt4QMBE5oB9vtzvrxpilxjmRyOzXcmuKpqGXOiElZzvtnX6/v7yyZqLSpDVYvvpz6vPde+gezh7eOwAoTrUWNKOcMNtEr9744qC3dd+lp0qVVR6hGk46Lt9DAKCI9omcc0mSOJcEQRCGoSGTu/5NlkUOTrRDcYanyJFTSlx7e+cGsRM2lfJqGNSM4UnnlrE6xdglycxwp8xwEEOGBVB+5snvJhJQzCzQ0GfzoEQ4WkBBwQsb+ENKPvOFX3CaHK8dN9IwLKgted4pD1f74tWNEwBw8jomAMCRrm++kU513rMAgI6uD3DsAMDA9rdb10RIJMiEO1yRZ3lQAMAITLVeW8mYPyl7vXjU5YcTEbG4VAEDjqCMxMaDbqc16DtylJB1LtnS7dj2H16t/PUffv8nv+fB8gNVspGqiLHEIZGQgpAQiQYiQqSOWEgBo775MMxOmAnCxhCHsBvav2biwW/+42sf+68+tb4TrJpqZfV8pVyrVlaiqGmglgIYEevz1RHCEon/Ch4A0Kw8xv+Rzs3+5x35GQWoMJLLSAlOMMRPP/GJdDh4mMFPfy6p+h5kUuip0A0wKcOP7WuXf3tr521mOdy8P8+IunG7073FbGqVU6WoTiQyhYdW3CMz9f4FNNQ5ycSs/C1N+r3Wzla5XG40l/18yfBIHsULecZ2AgD2BwAK+5pJFazCDJWNnSsbt149tXr/0ulHSeF98WhRY+C7GwAM9TQB55LBYACgVCpFJspr7cUgcEQG0o6Gb6sOg2Sn090Ap2GhWloyphYEgZHhcELeb5x6PTJXt15JhBxAzzz1nA84wqFiIBKkRES2fu5otxVanAGQ51/52QVV1+44AMhn3ooAYOxOTvJgTwDAyes4nCCcVjjZwq1vvmGMubcAABY4aA4JADzz5MdzVuVIODhq6+9UucXnpuzlmVV1a+dKXnlaTO9fp1VL/U98YSbIfwhwJJVqvWlMCfB+uFnS7xXuFKmDV1rJTgQCZ0mYYDXpaH/Q2drpq4stcZl7NOi0t+qB/uQfe+LH/+wz5v4aSFgpFbL3pBYwswERi58qIwgzC+D17Qwz4Cu8ZIgdGQMx3L+leIcHwU//96//yX/wwqAXVMNKrXFfs1KvVVeCqCISkZ9pY0lpP7zLshipQ2MXWc+Cp/aU9siQQjobGPgzJvUGHh6Wi+xy7JoiAhCjn//Sr/XjTbCoqmGvB+rHAACQCKuqVyWatYDHhoryrdVLdrZ3bgaBCFcb9VUjkexr4ykT68g4KTP7mWgA5OzO9iaYlpaWJCin7KlxJ09MFOdOjtt9BNDxNeZBMoMGg8Hlq58pSenspScDU/Emg4ZT+X/l3IgNd1X2P35DxjtRYPFqywUMkCSDXq8ThmGl0mCSbOI8U0RmMbfD952UXbe32eu3iEhEAKcqpagWBuUwLIkE/szKLcl9j9EwKRWsIXkADbyGb+ockmXAhoTJPP34d4nko0cyY5XMsQLw4ENFA//On375Z46xgRTGENfIIevU32pNc/vAMKlaEU/dDHIjhjGH4zymFWwxPTA4iVEnr6NYxeK9hjxn2mpra/smD21bfNYnAAPu1OpDd+k6LBaFj/SguWMAIMu3Ui0nEVG4ndZNRVyML/sGAKlQtAyLx4CJwmqlXA+CMoHTedzh92XLjtk4WBFfh2YSJy5RiLhO3Gn1+/1uzzo3gNOBDLatPV2Kf+J7n/jhH3rfyvtWyCpBKCQC+3OGFOTV68RQWjzmdA0Pny4DykoUGUqUwiqZHepvUtIjS//Tf/Glv/q/fzaOucZBWDt7evlMtbYcmLJwSCTKqc68qjLLrgCgiAH8b+tCGABzZlhnU4PSAyYKgve9+2Pp+ASbRStkQwwgs6/QkZgXv/iLiR2kPgbqH7rX0DT+eM6ihs6p4BH5Q86nCC6O+9utG8wwJqyUm+VoicgDtT33GSYBwHBHKXrddq/XqTcbYanCbIqS50UAMJF1nRyuB8UAvg8AwBhxzl299oV+e2vt7KP1xprvMklKn/PLeFY3gO+uuzEyiwKWzABkmBe6pNfrxXG/Wq2WSjUmMYW9r0y3BQCkUsud7lZ/sEXku8GOiKzVSnkpDKpRVPY+2UWTckmDlQLww10+FBSGXBmACFdKq+9+8CPMDBhmt+/8PGPPC4tr9zdf+vKvYQZX7LgBAC0Yfvnxa1gHIAwNZQ0WPwghIqp2qhoSs+TO8ePf9wQAnLyOEACwMqDU7W90e1tpKEgHCH3XToh0dfkBcxd7N98ODs4cAHDUV4Bs+hYkAtJ2Z30Qd4wxE4qf++sADAO0T/MCUy2XalFU9dk/FXT9/Z8oK1iYmcn6xJphQ0ISd3tb673OoK0dhyAQ14o7fWp/30ce+p//1kfqT5xODakgZABJiJgcZ2RiHx+JyKSolZigXkuUiEkTQkiGCAECYW5r7zVhoV71L/zo83//l193FiFTpbLWWF5q1s9VoyUmA5hhDSbPE3lPxWmmqbdsDH0xpkOFiVnhybTVU4MI/MGnnttD+X8WZJl29LJY58LPffGfOe35VEbUgPy08VAHqVDdn7XTOMuQrLW6uf1WGIYiQRhUKuVlpiDLCPdz+RkA4LFkyw767dZ2FEWVRtOYUFUFU2DKhO7nCQA4BADgCAKfDsJBdrZvbtz4cr1+ZvXcg8IheW8O5F01vicBAOX8lQIXKEkGrdY2sTYby4GpZN12GiMrHumLma2C2HW6G/1Bm5nBajhSVWv7AEqlWrW8EkXlXDOUSCSt1sMRDIn/j/SC0wdpAw7e/cA3VsrLXlGAKCCOc+r/rDgz43BhEVJVQ4ZYX3z1XwyS3jFjAM0DAEWxu1QK1rpef6tcroVB1mYhJTLMmmtVj9Z9+AQAnLzuyEsZALa2r1rXF8mlwE2+Q40JlxoXZP/7kY/Znj2S6+Fnnvy4L5/QKM1jgvDAR/P10oxnkOy02jeMKY2SfxYHAHMqNCCSMKiUS41SUPEHf/bpw+DlREMWB4BV1KtQq8T9fj/eaa33ewOXWAribR3Eah8+5f7+T33zN3/v+5jZEZvAkkKJRZXIAsQKDy+GNzB1yvUe9AzJKug2hHEsoCAkvk6ddWsk2KEf+FOf+Ue//gYlLuIwClZW1lYbzTMVs0QcpaViUgCuqJrP+1/fExbElM+H7Q8AgCyRCBtFcnbl0Uvnn1lAWW/q450uxOHnAQAWY53SZ1/5RYVVEqGESIgYymJI1TEFLDr7YC5ODyNRt7n9hkgkQlBTqy6HQZVIRIj3Uv4vikeNAIDsxrKi3doGXL2xxEGYen6p8+KfOWVqVPbnJPs/NBjgCJyOm8MR7CC+dvXzQnz+0hMmqAIslI8G6T0DAEZaeZnPdD5ekg879fv9ndZGuVxaaZzyjUAeigoccACAF0RoGWB27c5mf7DDJiB1zIaZrbXW9lWpUV+plJvGlPz2ERrqEUFFjAO80CWEw3K5/sDFD1ZLDb/fc+ZPlvqPjZnJDCSQrQqmlCAE8VjiUy/97F20FwpcqczHHVDVpN/r9rbjpLuyfCYKq8wsEvg+wXhdo2jVMgUAnESqk9cRvhxAjI2ty77kP7kCgyBq1i7IQbnyfGy27VECgMk0TmaUSA8Tw2U2Uont77SvGmMwXeB5nwDAe9MCHJhytbIUSqmgFJlm/1kirhwADiLMSEiZ4eJ2u7fdag06sfQCi9gmW9RaMfJ/+bFnfuzP/gG5r0a9mDQkGYCZNE7PEbXpHfNZm7fjJcrwQJrTDav1METEoiRXKWnDEb9N3/knf+efffpWSDZEqVqJastnGpUzjdKqmCidKFDySjua1WOQztDueWXrtOee16q9YNzUEewUA8zrABAxvE3YM49/t4hAQ2J7KBig6CTKDDC98PLPIbvbLFZddmOR9wRmLBMVX0RMnG613jAmFBGoKZWq5VKTM281w8Nkadfsvzg3yToEuul9c5oM4l6/U66WyqWqSOCc+j4YgYvMq4Iv9clpepgYILORABFDCFZvXX+90752+sK7a41TCmGojI+93gsAYLh9sg4AFYzAU/qN6vb2en/QWl1aq1aWVfPFPFYAPshpOu+55Kr0SgKKe/2dXn/bE4E8ax/gJEmsJqSu2ThVKTeDoGyyKjWENO4989RzgamALFMAcoYMkarXI/bNjLSlwZn8/9wzML9P/shA4H38iFTVvvTlX4mTrtJxJhzMBQD5A1VN1Ha6m+3OTWPCleVzYVAxJsx1tMZMzWeth7vRq+TkdTfEsbRa57PHze23JiGo/0kUVuvVM+agq4+P1bbdSwHlMAHA4b+UhBmqqkh22tcBJxwRa+ZiewgAIAWCplwpN0tBpeh/meaVWfZvGBBVodCp0SS2ydbmTmd7Z2ATCge9xDpNVsrdH/j4E3/uJ37/xScukjKgECsOpEQYAEzqSJidJcqMvfxlQ9LHBs6kP5Fq5PhIyduk2zRIiBTvDP6TH/r0v37+moopC0XVpUZ9qVE7Xw3XyBBQCSh16UolPyl1LRViFPNO7NoQ2A0AFN5oH9IWgPfpS2U6vuo9HweY2BHM3t/KwyUZ/aErqv/6gc7nP/9P/EeArAj54mWWtc+5HXAghdvauSwS+AyjFNUr5UbmLwYoGeZFNt7YvITPIIfcHoaAkiSJux0YKdeqxoSei8LMjrQ4b5q3iU4AwFEAAAKTJuDAz/u22hs333llaeXc2umHHBsGSXEf3FsAIN+YUlAN9jqzfvUmSbKxeZXUnj51IQyqVtWM3oG9Y4CFVCzg58FUs6KG+EDa6291utsivsvvy9UWgLVxkiRhWGo2VsthRSQgCQD+0JPfA4DEtzVYGIBCI5aEvOyP9yyXzE5k+qtQD0mr/sUU2vMv5aXXf7nba4nInB6hHLuNMFs3jeGc6/a2travE1GpVDq1fJEk8FMBY+cKZlKA7sZtcvI67hEsNf2cAACTi7AUNWqVtQN0APhYffGJa7v7AQCxA7C9c0PRT0WXWf2w116uZR4AEI4q5WapVGMd7yp4gX+QE0DYgVVZJUHS6Wy0NnZ6HSjHrhfrYJk6f/q7H/5Tf+WrLz77OLlg0IMxSaDpdTpYY0FqiUEpY9ilqXOa/afpXLqk2LOQIiYmtmS3CNeURci4y/3v+MFP/epnbxJRmcNas1Gu1Bql1XrpAgIxLnTs9YM4lXD2vgGe/pNl/Fm6nFaqZufuPOs+ythPfCtAZ/zr7FMkyzOESENj3v/4x3f9o4UBQFprY2ZVywJ/qDObT7/8M0SOEPpbDaSD4HPeXokVbnP7bUl5BBJF5VqpKRIWdiBnMHQ/AGA4Y0PKin6/66wtVyoSRj5vMMyezZWX/ye09k4O0cMEAD65ZKjXxmXmQWKvXn7RCJ0591hQqvuHKdn4+L0HADywTzPcrJuXNwGIqNfZ3ti4Wa/Xl5dOgwMaqu/RZMltATzAC293iIjDsAnpdX6s67U6N4isH94lIiKrLnA6GAx6zBxF5SAIRIIgCD767I86ApMhYZ+sq/OSTmk/EMrEmm3PjEKQZcUg2RXkAGAKP/Olf5okPRYvQZZA5W4BAJMxPEeA/rb0eq1ev91tb4SRqTfOhGEUBiWRyPujp8HtBACcvG4zAGDxpzaAzZ3LftKysAJTvkK51KyWV/cOAPjYfvd7DAAQEbU6NxPbY+/JApc7Ro0eKvsBAL7wUyk3yqUlAkvK+RHl1Hw3BQBQA2sosdb1uq3N7W530CcT99xgkAwi9H7oo2f+2k985MLXXkKlzHFFjUNiDQupU7ZCliCwDqKiFp5QmombZkxwzkptvomOVOyfuso77HZsR0PQ+q3kk3/y+d96YZ2IwtA06iu1Wj2sNKtyVsSAjUCIJBW/Q6FCLGmKPHyGWQ8dGe1or89lJMvPkgNgSho+DwDAgGJfsWOlZ576nl3NgPcIADQlRGVvCzjPBcoMwhJCCLLpvPX0dxdLg3Zn3brYq4kFplorNY0JvTCrwuZ2vCw0gSTHX2Omv0UAAMA7f3W73agUlKKKSOCQnaMozimfAICjBQBE5CBECrIBh0RkCRs33mhvXl8983B96YwnfAtkKHB4NwOAqVZ0OQBwpOkgHXIXPyVHW5vX272tM6cvlipL6mBmTALkAe/gJ6tX6VHN27OUiTUzEcVu0O3tJLbrJZ6ZDYuqY+dcHPedc1EURVEE4MOPfvvpU0+CxEnWTNCUyjh8oAhyo/GiUBjSacJd6htg+uwrv5SgC5XhFPWMmCjHdCOM9gEY/nzJRZzjuNvvtnZat5S1XK7XqkulqGpMKX9YeZSbkAG9S3fKyev4x3AmckqmAACsFxjM9HwVQKW8XC2v3F0AYEYl5QiFBfjZp54bi1myQNSYdomzddYZueVWxqlIlEw/3u72Nr3+iS/lFriYsmCiTwhAAz8PSqSZ55RhdaXKcqW8RETkbCrtZ0hJwNYAorAGhizbfrzT22xvbfQ71pDlxPYGRO0//MHl/+EvftX9f+AJUypZkAnKAAkLOUvqiDQNnp6Jk2Xk7DsYQxn97MjkgHyLg5nYMDrEV8g512fuhVde737ixz/14hfbal3EQXN5Jag26uWlStAQqigLETEZPz0wHMDiqUPiGGHFKQqtAM6HGvMsUx0TO4+qU1Gmabc7HwMo6kShSIofnRmAn3lmAzg/CXB65f5L5z6Ui+4xQ1Wy/yu7DnOTYtdT2b9ubn358tXnHaUOAAIv5ijO25P5AWGfbEMsJb3+Vpy0oYbYRlG5bJaiqLLXhFJp3FinmGkVkIz2+11VLdfqQx3DkeU+ll2xHpcE4l7CAKwZt409DZwZQLvdvnX9lXplefXcIzBiVJTVDKvFKcDLBzMK8fq45DfThjIx9/eHmz3dE+novypL0u+t33wzDMOVtUsSRmmritQQZ+wZJsZepDZ43w/OQVjUqQ7iTrd7S4wjlEgca6SIWdHHgPpWCWGpUgrNhx7+lurqpZJZSsQKIj8MIESAcyzijyVANIJJoCwypsKVSYtAQAlIRALFgJkJoSP3mVd+DvBaZwnBpBgAPOe5HD88MLMPnPuOWxv3er2d7SsWGpaCUliulJdKUdPbY3AxXmXi2nM1306QwMlrT6kwaES+fLiQHOnm9tueMzKZN1fKy5XS8r14bh4mHtgfANjDNs6JE16KAeR8PcpSb2v7phglEl9nHXNVXCj7J1JV7xnMuWqNBKpaKTcq5SZTwFCv7qNEhgE2ok5JQ4mTxLVaN9ubnYGzljDg9iC2oN5HHqv9t3/+gx/85vt5rUquQlFIMOQhJhE5C7iUGDA2scBM5Px4GRFRQazT636yb0FjnbCNQGwrCXv84svxH/+Ln3n5tQ1Sjjiq1FeWm42oshwFZYMy1Gg65D7u0TiKAWZ6Fal6m14quN44IgOoc8l265oXSlpbuX8sd9W9A4BhDYzBDGjAor6sKKBn3/M9VBCf9kXWuVY7c5oA81bc1VuvXL35YprqMysrQ5FKgiIQUUcscKT9frs32MpL9fXqWjmsevG7vW6/orT2yMHvpYBUDVOSJHHcD4IgLFd8zfUEANwZAJAu0uESZuY4jq9f/RK5wZkLj4XlBsACArnMToRmHEXHDgCMBorFAEBBCZSIBD7Rx/bWrY3N6ytrpxrNcyl+ZjZMqjDGWDg/5r6Xzh7v48EpK8Ew4MsW3d5mr7+tKSVS1TBbhcBaa+OBxklQLptKKVD6qgf/YFQ/V6+fc8zETGqIE6ZIKIEGNoBRUoJwzmmhQilxpN6fUWPw8uv/utvf9PGNSL3AWyG67v5cjsGOnq4u4rLEK9VXEGKGcy6O43b3Zqu1GQRRqVKuVpqRqQdBQDBep9j7Uabei6nDzwkAOHkdDgCgKZ2lMQBgCqmjfgUAgMPZR3MAAA4viLOf2JDMBwpAp3dzEPeMYaghIpDLcsGxDoDudtSp9/oFnJcuVtVSVKlHqwgEwsIOcD4DFwc1CiDgZNDeuHHzaq8fWxIE1NU+29a7H2j8vT/39Ec/9m5aqVIPGkVMAYuQL/kBpI7hcimhtN6WSYUTM2HUxY19KmmAAbMnpt8k7ZABDZT6eP3V5Dt+5Pdef3tDNAoQNBurlXqtXF6uREtMAatxEJIsRYbw6GCijpRshpfkH1DKLEkpQ47UK+SoOk4o2dq+HgiBEqZwuXk+CCJVndPJkdGTbI4uUGrJwY5Gk/uAg/c/8V3D/euZ+mQXwQCz9EDHj1UQhAFn3eAzX/hn/kDyCZyS8SoiXvXDwsVxt9Pd8mhNVRu1U1FYk1022C5ey+MAQPNWjBLBl/8rlQoHYbFFcAIAbj8AKNpd58yTjfWr25tvnT5zqb58SYmNCrFlHmG5+LGB45nWTCaa8zdW5rpVqCn4mJbSCNVavXnzzTjpnjv3cFRpksKnuYaHZn975PXtCwBkA1TenYqIWjvvOOcQkFGxvn4kJvW0GgziOHbiKuV6EFWE3LOXPlJffqRUrotIQoEQM2LmIBENHCBcNI4kIhZBsXHHTCTK9qUv/HIc95VzeTEvNpCRf7zo2WLP5U5v6unqIlr4yr4JkAtzW2vbnfXtneskplwuR0FYKS9HYd2Qt2HSVKCJc0nWEwBw8jo0ADAReMcBQMYEvqcAgB7x+/OzTz1XHFJcGADQwpxOFTFWySstCoeqth9vd3vbxrAqCQdZ+Z8WZ5gXQqqPPi5zmdVSqVIKm0FQJgGRCoOZFSCoqBNFt/3OzVan3d4BWQc7oK6Azq0G//e//HUf/64n9EJANhSnZIRIoVGKSVhTe9oiYEqNZodXDoDFUEqzEWKAQazsQmIFrlDUZ7D2rDjuvOO+7vs//fIXbwYSRqZUL1fLS6fq1VpYXjGu5OkJ/lTJj9j0WgonrhKIwGCSolUt01ALCKrKMETKonHiBvFON94yZJi5WT9vTChikCoj7i75miYNM9dFBgNI83EFSi256ImHvqFaXsnOF0BD4niho3AxAFCMHcx48+pvrW9czTr7qaWxIbZQ5watzo08dtRra6FpEqnZTTJozkc7ms7/8ZVLa20v7oVhWCqVxr6LDJ2Vp9eqTwDA4QKAsZwsWzPo97tX33mpGpVPX3gKJhAHMmQyID1aNz1ar/SDA4Bdy//5nxQBQHoWMFjhR+u77a1b19+q1BprZx4QDn2RJZC00pGP5R0BABh/dpliL0HIarK5/VaAUJnAltSArRArMZGqdUm/A+ukUpEwLAcRkfy+h76pufaYk6qBFcXAkHhWJLncODydvRk2k/0IUOC0+8IXfimfkWAKAOelhMizp8AKJ3NpisepDzBrOJ7GpI45Y3kpk4LarY3t1rU47ler9VIpLJeWo7ARSuCPHmYBsyIxMzuoJwDg5LVoHJsbwcYpQGOViBMAcNQAYHEMkFrpeN00p/2tnavGhMNhVrisCBcUrXkXiqQIxChSGXxl5nJpqVppqiiDhNgwW1giF7DTeHDr2tvbna2BI5FBny3cQEl/7D99z9/9G9+CsyFbX0MmGCaK2TFxQHDE7Gu5mZa/DldbgRngBSuyJJiJBJJpULKDuwVqsUTqBmxJ3+p/zfd96ne/vF4LglDCZm01LDeq1WatckpMRGrUpdnjsMI/Ie7JGJnEytKUbP9k/6pgYXVOHZLt1jsKKxww83LzkjGGQV4SmyQ9yPOpu30DACiJgbMiJp/fT5jKQvqBJz9BZImCTF/PTJN+2icAKDCLTMCksGTotbd+a2PnSqpLSkSMOGnvtNZT2R/SSnmpHK0yM4uy7vnUnAMAckIUOR0MespULldT8k8hYEka7niWWt8JADgKAFAIQSkkTdTeuPqa7W+unXm03FhjKJEExOqlY4bNPV54Pup4ZXjju2q0sZ6bZzuywiFIiRSW1m9cbndunjpzf7N5NnEwJmR1ICsieS904T7A/m4R1EdRcMACh4ur71LX2mm988bOW+LYERuOrZpA/GUZtc4lvXjQZUPlsG5K1VDCDz74tWGwHC7fx8wCERHAqRjSQjfDO3ekXydgEIl7/qWfs5qWFQD4XkQW6Ni51HBwV/XlYzMMsEuH340OkwgB7Ilw3Onu7Gxf7w52yuVqqVJmNo3KWihlH7480XXuWMgJBjh5zVmQY9WZWYFlVwCwVCkv78sJ+Bitz9sFAGg4qjjbA3g/B55/KsrwXAhQfGvjShAIUwgA5EaVYeYMg8qsKlfxHUpRrVZdTX9oPAPbBqIu7rW2tzY2thLb6atFwIntEfW/8/3n/sbf+e73f+R+abWIWEsqxjgbGxVylsQQLCFz9WLOp3uRicOkPx9a7BiQZZYUMxATE8mA3C2EMWuAgWNlXBt83ff/x9996UZEEphytbHaqC6VKs1KZSUM6uLYgV0+qzr1rC5U20fuyZj6pwIkxJok/dhutztbwpGyNqtrgSlHUZlSOyQSCRUDKlSw5rjn+qphcdlMXlP6xAFiCBtVYokJoRA9/cRzkgoOCpBIoeG+e7ayEAYAUcDqRATkADimz77yS63+9cGgl9hOEJQJAu4TjDpZW72PYAIBQI5SJHTA1L/4XAAkSZIkgyiKoqg8+TuG+AQA3BEAkK5mgJmF2EFbO5vrN77QbJ5ZOfsIs2Fl717HI05wfDxZzsrTr2rWQTgBANKgOsz/GIY47nauXP2iMXz+wmMmqIA9AHApUWTIPJycxuNDMbRnpiK5fLl+/pH7Psws1tre1uv/7ou/qASGCFkIMQW+6AESiuNev+1cUgrLYa0acckY84GLHw7Kp2pLj7JYMDMchioi6dRHum4QiSS3Nt568+rvpW3EtBuUUuTJz6GxyToDcpcAgJm7Iy++jpmFGfZbgJTIusHW9s3W9jqXXLVaN1SqV9fCsBKKJ2jxYalCnby+MkN0sTs7FwC8BbiMBpL/phLJAQDA8V6fOMyYMQsAzPEf3o8WntfcULhW+4bTQV7pV9Ui6T8f5J2V/U80uMnz+40xqlSKKvX6km/mCpHFIAjJukF3c3Nnc6Md93vQiN3A9hz1vubBlf/1f37uia9/t0bqtgbGWYosB8zqSEHKRDGxziKEj6htjGj+gAQEQwCRL1q3Hb0jGjAZKHFg3OXOt33/7/z6izfFuDLq9Xq93GhWonpYXauZhoqBSweIwSNpypywWmwFjKblSJKBdf2d1k2nsXNOuNSsn61UaiLimT8pn1WtiBSVheYAAMr57uO4MU1B0n/yo8Bgr+SdXqooET37xHMFiLvYml4AAIwahOWAUgD36Zd/9ubWa0QiEjAZRcwUEseN2oXAVAwrvCKnUEHx8HAAgJ+iE6EoKovI1PxsVpg7AQBHBwCm7uhkMLh+7WVhPXfxSQpr4iYBwHxLOD4e33EPWypzLU/7flljBMzi/elY0dq5df2d11fWTp0+c3+iITML5Y3QOQZhh3M3AAsOiARkH730+5caZ0iNVy9wiPvrr/67L/5CGiSNZVSVnGFxUBYlJ4PBIBm0mblSa1aCeiLOsHzgwocq9dOl+gUJSqxKxMrkjw+QM6nuGqBybf1zV29+KVHfFYkJIbFjkqyJxFntf3YBizEVBgiOqd8QMzsU6ZRM6vWySJnUQeG67Y1bW1eZUa1VwqDMVKpWGlFUJhg5JArxyesEAMxKexxhEgDkK7ZSXiqXlsz+l9nxWJ842pN/HwBgzxiAmRyIiLr9zV5/x5iUbp7ZPbrUMIuVeVbUmAkAiNTH3FLUqFaWRIRYoWzIuaS1sXNzq90ZDBK1lkMaUEJJcrrZ+/t/9ds+/oMfQr1KCTF1EcfkeZwCQkIQUkupdcDwywFe98xXyczQTz19SCkjCCTEjhVEFrQObAuXiQj9gI2h9eQ/+RO/9cu/czliU5aoVG3U63WpNpvh6XK04gisUErNg8cAwGSMLpzkOSAR3xJRAqD9QbvV3rDUs4PYOa1EzXptpVKpCZfYjBGaee4+HM/+fdLgMFnKwgg2YDAJSHMkkBrrknn6ye9kDvfQ5loAAAipUsDsVJU5JI4JqUjUv/ntvz9wHeGoMHUgRLqydD/BDzWm64lHOi8LZVfTAQAYpH5+zlobRZExxqum5DLnNKqifQIAbhsAmLqnSBWgrc13tjdeO3fxifLSBUpcTg0//gBgryO5RaOJYhU/o3Szr7QJG7X21tU3Wp0bZy88UmucAVgol8/HzLh0SHcjY9LZZ5/6BCt8pq7kxHuqwG3demmnc+vFK7/th8Fydp+nGipbjYOkv5O4Qblcq1YrDiISGIJS8KFHPhrVLlbKNWWGciBpCAUANoZMO77+8qu/puTzWnaAV/7xvmmZ14fxqGARADC+vY/jNhlxCvMqcnk/MxB2BCgNuq2bG286dCu1pSisAFytNEvhklnosZ9ggJPXoQGAsQBYLi1VSsvmQEvszq9P6B6vYY8BhZ954jmf+xZqEvNuQc6iLo5jjz5FHupgFiLIIO62u1dFIu/FqDr9QlNFFh6vJLGyZhHJDyR5b3aGOkbZ1GvVZTHEqmQksb3e9s3O5ua67cVEIRhhkvT7xMlf+uTjf/Ovfb159LwMIiRgsSoD8WksHJEjKpxnY3dzFI35DjgRpZKRfhSYmWCJmbQHvQpWYVGOxAZEQlvBD//gv/t//ebrAXGJokajHlbrpahZq5wqlxpEgfelR1Z6wYiypD+lM+vfbPzO/wmTDlk0zCCnmux0N/u9jWQwSJIkCEpLjTOV6nJoQmYmWZROU6gI0lRL0TEhS51b8Rq6jYKZebVx6eH7P+yntymtqCE7uWVUFjb9BULCFM5vApAwQxjOMTGEBOySf/Vb/zcVA7YBQkfpB5WimjcM986CXgZE5k1CTz/IHUa+dfr4lECqqnEcG2PCMBSRTC17eL7yiJj6yaF4O44ZJeZR1oonAgVgSzyIuzff/myzudw8+zillWH1tI+sVMK7IUO+I99rbHsWLOQwH1PLOJmQR89UIqLBYHD1rc+T6MWLj5nyEjHIDcU6ikLDvk4MwMxIiLVoDpOHssLBwayOOC8iCKhSWnvika8nhN5rRdkxlRkDFQMgZOlsvZbY/m++8k9VQiEIvGmDIXEAE6za0KGbdPuhMeVqjcNIhRgSwJDIM5e+urr8UFRZJmaxCiah0IllChPbfuGVfyoSKsMbsY9TrRbRMdstzB4nnI9ZSGAM0kBlEO+s33orsd1arRmFVS94XY6WKlHNF5WUU6EzJod0ONgDCULmNnBsOiEnrztenZmVWBaLleQIBN7YfoNSrZF8VNIMjcAq+6AAHWbBYvHXAtONMj2hmlMUXuT39wcAZAatc7T+hDyDTmy83XrbD/6qKmaTSwSqE27znI4RpJ7Pyp5dQkKqYkIj1cqacABxxqHX39za2txutWLYUhi13RY7BXrf8XXn/u5f+MjDX3uRTAlaocBCjWhCATR2wkqsBJeS25nHyv/jjyEdDDBgZlUvA0HwpWQl3YbeYDIURQSQE3CZNsOf+vHf/jv/4mU4qnJQrjertQabcqO+Wo5WmMMM7XGRX4QRZcn8dJRiau7l2qDGd1EcNI57/Xi73dmI41gtatWlpeZquVwnNsxMCpJFFXVmplA8BAAyDSJOf6tUMsSALFM6CPDsez7h5wGYoalupgcAttD8cSLiHITm+UMjbTE4BlSMUVEmIru18fLvfun/p0qGONFEQgLCkqmkpr8wLEipzwxRMxtJzwQA3tDXbx+f/eTyeZ6lFgQBERUHDIoGTCcA4A4CgLy0KcTERpHcuvaqHeysnX8iqDTEYRQA5Dv0mFSPFpFsxm4dgCkAoNBVJx+6Ozu3rl9/vRRVLt7/BKRERJTq5OQ0fe8RpsyiKazlqQekSQvn4oG3t9xW75TOzN5hgIxXLHj/E9/N/3/2/jRMkuy6DgTPve+Z+R5b7lmVWTtqQQG1YSEIgAAEiqRICiAIQhSbWlpkq0WRFNVSt0T1cDhNtb7uGUqckahtWupuSZ/mk9QiQIAgwUVcAXABiaUW1JK1b1mVe8biu5u9d+/8eGbm5h7ukRGZkVVZhYgfZCEyItzd7Nm999x77jmFrhg8wRCL98JkGeJIrDfCpPDti0996cRn1TDDQFK1TGJICEaEhMT4dDQaDESk1qhHlWpwEycDQhSzuffYNzVX7jImJlKnYsmGkeAff/3fR7YixAHVCM3mj+GyCtlymOVr7EnZuq/IhkQkGfTXNs4Mhuv1er0S1wF2pI3qYtU2ARhj8p7ujFlcGKfsAYC9mLxlCJ1+3AKqXO+8HFrJea3IeXThaqVVry29Xudq1wDA1aYAbQkAZgduntUhCPcgd0IpRCEyve3VjZeJPHMcdJpDTin+ZDn9lFvLU2hGVYvqKpC+AvG91lhoxHVVhUt77Y1z7YvraddQBJOkgwF49O3vav6vf/Od93/LW9Csa181ilitt2KUIR6qQALKHKSDteFcAFDcEsq9olQBE6y1YAAR+DV1a7BEiMJuJ1KPZPlf/p0Hf+oXH0+81Khi6/VqY8HGlXq8Uq8vMFUkW6gL6TZztShPAEjLwv8EZP227D1pDHJKcM6Nknavv9ofdNM0MRwvLx5caO1jigqd0GmGyw4wgM5oH+q4lsKUG8emP1UYTGbuYMwqUNVmdeXOWz8kEjBBSBi+RAljVQqSHduRA1KlwAJijgGnw/bvPvzvnDqhhDUO0486N+JqzZC9547vjWzFqzzy5GfK2PVyAEAuLe/D7VMVkTRNrbXW2oIeMAEAaOwsuwcAXl8AAKBoQnfaF1fPP72y76bGynUQ5exeARhzIa5ZADBJleQtfkZ5mn62GQCUX0VELp55eaP90vK+4/v23+pULLHCFz7iuWcCTY+vZ2Vi4nJpqYBAo/G3lEH+1hve16wfYEQYrxzkIZGVhAKW8ARSKDzIdFef/MMTnwVgYHy+16OZUngEiPdpMhykoySO42q9JsxMMFp1jIiJPRljuNK494YP2NpyZCuq9MyLn+8N2zCaDypp5gWnyyrgN28GX1oK47U9VDLnPGfNCzFJOryw+uJguN5otOKoJoZI2XClUW1aUyUlpa2ER/cojnsxeTsAoHj0wiLKRvek957IZHy98fofVyutZnX59XqOdovZx68fAKBt37YyHYQVPpfHDO5L6A/XhskqIS5uYcb731T9FzXlpDxi5qRbvEMTDMeZAFRsc7FSE6Tt0aB7cWNj2IVxiabJaMSUfPf9tZ/6iXe86/3H/FKNRw2KfGDpiHBGxTYpeSPsSDTj2IwTu0B1HlVGwEwKVYgBKWAySODPiawzFDZSo+QiAfOI/8PPPv0j/+cTkkRVaFxrNRsLwqZeWWk2lomMCmUbqLTVHCfIgObOVpKN6YNYN4v34vyg073g/LDb7aiXhdaBxaV9sa0ZjkUkBwBEMNvhihWqo5tHEJuD+GYAMO8xCO8223KGKzZ4oHRg+fgNR9+VSwPZMkoMPnHMFpqK5y0H7qJKZBiaqpCkw/X1x772/BcNjIg48kTEGi20DlVs/LbbvtuaGICqefnsH19ce0HyJfIdBayMQVT6MQ8VEecSgKMoMmOJ2wkAUKS+PQDwWuabbGanm2VbCeQBStP0/JknYlvdf+QtYDNGCyUp3jcEANisLjVrk2oGANic0ohBRDpIT59+fJB0rrv+7np9vwuTRxFiKXaIC0wlm6WLp0JMZjo2IcxKhGpl8c5b/jRyeYMw5Q8tD2aIOoJRzSYzrOygDGJ4QcSQ7vCib5//42c/F7aVUoBZSC0VhsfOp8lwOByAtVKvWVMhY9U7A6PWVsmKtZGpVG3dcLVabRpjkqQ/SgbZCLPQti4uWvgsuwEALqdTeLUB8zwsR5rdFCXv3er6q73e+Wq1Wq0uKauqWlOtRo1K3Ahd2zmUjL2gtwcAtgMAaEweY6jqevtV79N8B0AyZV5VIopsbbFxYA8AzHh+rwQAbJZ9KEbMqgj8/tKeHBI/Wtt42dpqKFVFXb5fFbqeMvONlkVRxs05pkASAaAQAltrFyqtZOS6nY3OaDBMHIzvaRejtTtvif7pj9794e+7B606hgoTKSwiIc+Zq2dQ9yf12VX2M2YO8PMKTQFzIP2H0pUZCpHz7DcAgmWIggmphzQ+989e+As//3gyNItxzTbiSqMJ5ThqLLQOkdhMfIOp3I+c+bpjgbZs1D5uhqXpsNO7oJoOBoNubyOKogMrxxYX9kM57OFOtqvJ0KVTziwAgJmEvHkAAHPIo5k/LinUZKLa4CCmoYL9S8duOPoOkBJiwBGRCDMHtwcTeEE0/8Eg9WqsOM/M8MO1c49+9YUvKKtoarjqfRpxVKku1WvLb7/5T9loMTQMiEiUHjrxH4V40pp3uxOAybCiHpqmI+99FFWMMeXKoLzZUPaX3fJ19752OUDPBgCqQmrEeHWrqyeH3fNHj95FtabR6X2YS9lsvc4UoNJHo6nINgkA5tWjZTmg8bKKCUSg7saZ049GUXTd9fdyVCUxQSgp/4NjvdTpxDOWAoN4JTKsEwSTfUs3Hj/yboIrDUJtSBlERiQpN/mKmYDAW5CAVcnCp0SRauK7vfVXvvTM5zRX7TQg5XHYJPXOuXQ0St2oUqlwXMlQOpMRa6IaQ9jGxtiqbcZRg0hHycAYzgVJdy3TX6sAAJfW/jbknRjLqp7VeO/WNk6122ca1VpcbSnHCg+gHreqlQWvmLRZnGkfsQcG9gDApU6CspAoZH3jtOiQyOTaJ6aIDMx2pXX9tQcArq0Mf0kAMO4GTVWBpeeWJNsKKBghXNjKrnXOOD9kiok1sP/LWp+b+wFTnNTcbEvCNdVgjEtKZKyyEaRD7rlBPxkB3HYX4NJDrdH/9Fdu+aG/dF/l1kWMKmosyIMJnklIkRIBnj3DQEVFLZMDs06MnsefbOZlI6hCovAzykSikLOQdaWI2AoJQ+EUXv7wP5772N8/0UvsIiq20arVKt7ayNb31Y+4YC3MeYYOPRPOnA14fpLItOpUicW5ZJT0RknXuaTXb49Gg3pt+cD+6xu1pgrnUbag4DNx1k+73OQ0pRA1bRwmm066TPyyIzLQTEU7TDMQNolJCVbhgrfO/Xd8gjLKhTNc9d4TFc5NnLkyz3i3HkwQYrbqB72LT/7Bs78BJhEwCKxwaaO2v1pZuPe2bzXRPiKjmgbSshI/8uQveiVALgMATAkHee+H6ZCZ47haJgfzBEwaP0d7AOC1BwCbjzepumDgB9/rr188+9zhgzfVlg6JhF7BGwYAbC7lMVtJbHa7KKy6FofT5zsShgiG4PX8mefX1l/at+/Y/oO3qrCQhC1PgpEcBkwwPbGJz5mNMcEUtRpHb77hXtK6ihB5kBAqqn5KA6C4b0QqImxUJYMHCs8KZYiyDXtJJOLRWXviT578L4AoZ+wdZs63jKCq6n06StywT7GNK3VjjIMyDBFZsmqsZcNsmaFiFa5ZXc6FCjB3QfbNAwBwCe9zzQY+IFX1lqxzyfrG+V7ntIkq1VqTbKTqnXON+nI1XiIG65gkNtlV3MMAewBgZwBgo33O+S6Rye1EJwLF/sXjNM+R+irLb8k1XPRvEwBsDlKYCQACO5DGrlUKUKBvjpLORu+C4QqxVzGKNNSeAa5NvdZUr4jDvm+RujLX2LxM9+JG6gZugFTVDCM3am9YbPz1jxz7mf/uXSt3HoBhkAFZNQJlEoUwyEATDVaP4bU5gqRgLRugaSHpQJJlyM0BOnTWM2dQgZwTaTOREDNZMSMeMQyf+PX2h//mw92ubVSWKpVK3KgAPtLGwvLhvMhkzc9ieahd7lBO0F7z+YCIECFJ+53uKpEfJYNOp03EK8uHlxcOWFPTMJbIXI5AQVaDKCCxbWpWzMlMegkAkM8O5mAAQWj2qwbNvlCYE5kcDwjUiEit1rj7lu8EWJEQGLDjteA5My0lQLwhTZyMNp76/ad+jYi8imVDpJrAVhv12uI7bv9obBc9u8wvSC3IQe3Z1WdPnf26wl3GDgBPXDZNkqFTieNqkP6cqZXEm56jPQDw+gIAQEUyV+BBMrxw+ulmfXH5wHElS5N+1W8IAICt3DxmA4CiBRMe6kKuaiL+sLiRO/nK45J2r7/urlpzH4B6vG/fwvUHVm4jIjXB8k/8DP4Pl2Na2cmxxOKFImWqKkaEikhSEjg2mLCNF9KUELnA7dGEYDMwQIZUIX5j45kvP/VrHqr5/lHOUQr6Mywi3iXJcKCaRrWmjStCzohRImMq+WVMCRWQLDQPRRyVatYrKiXyvEazAtmM8HutOQcLKEx0mZkYqp6Vvfft9rmN9tk4juJKPWAAVYpsvV5rMlsDE8bwpYdFX6dnZ+/rjQQAsuc2d24fjjq9wYXcUbQ8AYCqP7B00+sHAN4YmfzyAUC4GaFtiVI2Lfg/qm51/bRyIewYXsIh84SSeQCgaM+UJgAqmQimkE/S0ShNvPeUeiiSNjnyo+97d+sf/M133v7+48oMjSn2MApfUUpJoOqJWcizhPrSK2zmIwM1IIUnLedDHp+ScnQO7DMARAJlWMgA/gLQAYyyUeNYGd4r+IUvrH34R09c6NnFuBHZeq0aiYmiqNKqHQqypg6ZSOUYAMDn0ng8u/hWDooZ3rtR0hsM26LDXq87HHUrtnX40PFatWm4ospE5NWRMo2vXrhzHBpm2wcAPHZEwxjjlU7CPACwueRVCMGO7bsLaKAEcPDTUTioCf9qydx75/fmikAZACCaKsY2HWvvOhtP/+FTv+Y1ISIrLNaqT8jE9crCN7/9L0ZsoVYmRPYZECV58LFPF2zmHSRCGeshInP+GjKzrVQzSvQsraQ9AHCtAQABWNQTmK2X5OKFFyVJV/bfGFcbbyAAUBb33BEA2KwKWm5ya65SzMwO2muvnjv1tDF03fF7iMwDd/2AVQIlTFWYFAApe8qj6ARnL8vQJc2DrOkjGbHHEPkSycfknSPZHKDYQLw1UJBIpg4hAIRTdrGFOnLdc890eqceOfWV/FMbZmaFiCiHASmpd+lg4EdJ1KjYStUqe7KsQiyCKGwleZ8yc62yvxbXmDlHI5l5CLZeeNg5AMA15xw8mxEkxf5D5vyo3nGve259/VRcMXGlTqYiUEBYK/VaK4pqk9aHewBgDwBsP4SOWYPOpxudUyG8KMLeoIdaYhVxBxZvmVfoX21g8EYCAGMRDNKwGruNljBNJQ8BKZzROGi0CUm7eyZJh9baQmJv8i9IxqEvNYiFYBSOYTjkGgZgVFP2TOokHfU2XDd1KqmxRiWFH6WdB27e94//u/vf/x3HsNKEWITuvvUQAkwQ5g/17tzlV81Z2XmzfKrTD8oAkBAy+xslIWZN4V4FDwUWJAwCPMTBNs78ydr7/ptHL6xWm81mbCtRxCJUrTRb9QWm2ElQ58ja/5oLyOQb7ppl7sDYyUTlKXjoisgo6XV7a8ySJEm/1/HeLS4eXVnZX7F1kVIXLf+w2x8xb3osZ+4I6hYSXVlHHBPucpecLWwxkWDm++78CMEG2k9hjkYKEQR4Y9UovJJhhbJunHn0j5771by2YLBC1ChuP37v9UffJ7ZuVVlZKLQNwt8zxXjhoSd+QQuPZ/Ihw2UvKhkNacqqolhmMUQifjjsO5VqtWptrKpBjKyMNrbwdH6jFNCzb9YbDQZkF121DAwCUcQ77XRXNzZOryweaC4cFvZQYh0r17wRZEBp6wgw7yMIKOgbTD2zwYyF2SpIvDt3+sV2+6WF5qGDh299191/2RC8GxLHBAFrpo02HiDwlYjlbwHlcv+Q/ACykoI4RFFVVVIMBmvD4Zk/evpXjRfhWAkW3mfDnrzdLs4Nh8Ph0FYrlVo9xCUDo5ppT4etZlIv4q2p1WuLlbg1Wcjm8WCia1SiuJRN2jF/ErtTIKG6K1eTt3hSZq2NFTKLhS5qoWkmou3O+Y2N09aaWqMhsGECIyKVuNGoLDBHAUV7KIf5TdgDy1bD98SBvpEBAG3xwGdcREBEVjsvq85emNy3dNMlfQCyLvYln4s5f0euoXTN029tIrbwdgFAobZ5yTlAuQfmoUHWPaD5Ydpvd88G4f8QgkPLp3grm9d/w9UkwyCP0E9lgiiJB496nXZ7MHBJEsFaw33vPfnFBfy9H3j73/iv74qPN21UgzUpJCLAu0AqHx+yogu1GQAoz0B+43itEAVl/vBEDBhRIlZyPcg5UAJvYCWsFCPxiOLVx9fe95dOvLRqVuLFiok4tkQU2XqzthjZmkhJYZRJc/mYPJhmagkqoVXvChaviKTpsNNdJfaqOhz2B8OuKg4fOLawuJ/JhsZ6sWWqdCXpYUIMpNzb2sIcYBoAbBsDbFEZKOTQ/tuv338fsWeQVxCFg2SNOiGomExKXISI+quP/cHT/0VEQCkrBVQgRu8+ft/Rgx8gExminJlQNIKFKAoCtYCcePZ3e+kGyAe/CaNWNGWKRNMgATL98GvJRVVFxPX7fY5stVrP0+EeAHjDAADKxsukqoNBd3X1VMVW9h08BjaqamCK6dk1AwAujQEuAwBMuj2Gi5RJ3wiF0SKlw9GpU08PhxeXDlz/ne/7SaYaJIV6Bx+zKfvi+lKn/2pgACAYucQAYIbQKPgGACDW0AwhxeqFE6fOPvbixkmGA3PoAgTkH7Hx3oNkNBoNev0osvVmg4z1XsO4ICxoIazqiC/ERipxM4pqwUMwh0zBHrngdjJohxH4dQIAc88Qz36JsTD3pkjOKt77bq+9tn4qijmqVIMOODN7n1ajer26bEyUVw5elbK5N7OoL67kXo28BwBmBm2+FADYv3zzJQGAvDHP16Z6iTf1GmQ7mfnKAUB2C71mMcKAEp+0u2dD77ao/sMwdyYAUFUhKXyvYmYhAZgVXgbk+p1evzMYJjIgjgix02FD5b/66K0/9de+6Ya7l1AxQKRWiRjWa6oAE9LsvRKBZKtB+EwAMNG8sZCpbk0MvajuJMBkYhHhzJZMPFt3Yvjev/LwM6d4obZojI3jSEisxs3GSi1qZvKXnHc7AoVmwgoKGQDQDLGE13Uu7Q/WUtcjipxLur21JElq1eahg8frlcXcPoyJSMRlgAE6b/nvMgBAkZi2AwAwR09QdgoAgmQQ44G7PgYliAHrROGusWpKhp1LDFk/aj/z7G+82HmZPTlSUmEGwLVo6X33/AVr6zIeIHglAolKaP8LEYk6aEycfu3xTyuH5XajqpYRFhZ1vJ6euX3RmN4WmscyHPaTdFitN+O4WrT/pyLX9jqhe8nvNQIAPDmizFsb5Fy6vn4mHfX2HzpeiZsuUEtyruOW/exrBwCg8BbcAQCYNggbe4ELghFWIH/zRvvc+bPPgXH00B0feNdfc94bBdiE6W3Bm5KrCA9z1i9SggGskjNBYIBsdkODIZkIEW+svzQanvny81+ACiFWTdUYE37EsEDViySj0aBPpHG9aeM4z1lQVRjrVUhd2F/KL6OpVlq1asvAZoYJk17pBd1xnhzTptOzs2v1GgCAmS/EOl1C5a5wubme8+3OhY3OmSiycbWR73JkMbxeXa5Wm8W1ZWbVDApgvovc3tceAAjRxKuubrxY7AUVSqBhOLAFANituv8qjDSvsPG/xdXaHQCgm3Tlgk5c5tMoIp3uOeeHzLYoRmcsM00EjnFkDIHGgInEmf7gwmq3209JRVOwcaKK5DvvPfSzP/X+u99zSxCKIFtRk5K1SJ2SQB0phfJ5eos3qPds92ROcrbVeFJmJlW4C3BnQDWQAxgsajw5i5rFU933/uVHH3lRFmsrVRt5ywbMZBvxQr3WIsRhN9dDM7kk0s3pNh+Jjvd9k7TT668zW+9HSZIMhj2XyvLygf0r1xkTM0g1X47JOl4TcPDK0wNtcguaGGVvOycJ5hjobAEAVAEs1g/desP7mVmCIpQBOZDhwjmYPUF19cKjX37+t+DFUcowgFiyFFU/eO9fJNuwWvFIwWokBsSRMnQSPQcQZQT+wcd/gRAJj8KBnaJTBwCAEvkndI7TNOn21m0c1+sLTGbaIo2y5ZmdWJTvpcDXFADk5Uug22mvu9bunF9c2t9qHvBqAHepGc7reNcuj1B7SQAwIULgVcMmT55uZfXi6bMXTtSrB77jAz9RsfvIsCXnVW3ueZ15bG/egZ9Tyu+k8PV5yg8LA56ImFnhLVkRAYSZXFheyDasVIfr7c7JLz37W1bgSVhUlMgagRpiACJOvR92u6oaV6u2Ws3IhPmbL65GKcByHFVr0YIxhtmWrrmq6lTcG/8W6a4AgHl/R3dp1zEX+NjybedL1lnmQlgLVnV+o31+feNstRbZuMEMqFUlUEKkcbTQqq2oMLFoJspNoekTTJf3wtQ3GACgeYFAJqpeYWUhubj+UukZHAOAQAG6ah33a6S+v+LPdf9dHx8DgLzo5Eu3lDDlMB847ara77cHowvMNggzlSYAc1MwkQlazgCU1LIjFZ+6i2vn0tRDVChNSVXSGuT/+Hvv/q9+9D1o1jURtWBiZQYl5FUNkdPwXqCB9hMAABcJTbcpgFOu/sfyoAZQyEV1Z5QjhTVeYQDrAaNpSqv+O/7KY3/w9cFC67qIPKKIhAyhbhfqtX3MnHWLc93PwhzRI4w/x61izizVKPGj3uCCcwmzDabr/UHXcLRv5ejiwoHAklQpzWIog2GhobK7/aE5MGAnAGCO7vjchJebBjBw310fUzX5TrmoKikbK14UYCF0Tz36lRd+25F36ZCZmSIBLVSX3n3398V2WQiqRMapt5bFK+WbhcVDrvl6OgM4u/bEK6cfFULYWiaGCgyNNc7Dx8kaXRIkrtHpbAzT4cLCUhxXJxd/tWxyxzu+IXsw4OoCgOzE5ls3+fNEo9Fwff2VKKosLR0lE4s4kxGE5FqaAGxzFLDtKzMfAKgYUOqViahZW7j95g92Op0/+vIvdXovLS4tffg9P67ErDHDK3tDY4NzuQoAIGCA0BcIgkJh7AymsAaQ3VOiYFDDEKfWKNKkM+y8/IfP/IaqMkQ8hGCMmQhfXtJhb5gklUqlUquBbRAbYYjAlpQqTGh1BbOBStyoxM3YVHJSO22eL18yIO+44HgNAUC5LzPvzYcKvvCqV+dX1850++fjajWKKgAzWZB4PyKiql2sNZYjtiIBrQmTERFQoFTthb49AFAO11yKFWMAMNkOeMMBgNcH6M4GAMh0/bdTlGi5EvI+Xdt4xRgTJB0zHfe5kULyOji/xKTkRDDop51uu+ecsHjH8OpidT/2rYd/5mf+9MJ9xzASFaYohWomppllJ1E4Vquc5kZRkntZbSntv1nrcwIAkIpmyqfuPPQ8YKEEIlAKS2IMhLnt/s6PPPa/f7FTrR6uRjERCaexqURcr1UXItsMyWkcIkulc55u85Y/KSu894O00x9sGGNU1fvRYDBIhoNqZfHwwRuCunwAAOJBOem/vHA2x8lrF5FAyC87AADzMMA8zqtCiBQaiabvuvsHVNOgBURqxXj2JFBlYpXuma9/6YXfEw+nAyJimFrUqlZa1sZhzMXKnkHKDCcTzby8jYeUEOVPowvU/aee/93+YE3YA1BhHk+rtDj2RCReLVOSDNc3VqNKZWFhiciQZFEq3BCfM7LeTNV/Wan2jQ4AUDKjzQ4lsfd+o302GY0WFw/E1Ub4gYIQMf+Dv44XZBce9rkUIGUmUSInIJb7b/8oMyvo5Vee+9rXPztKzhw5csu3vOOvizKDiB2X2uQyt+i/kvyXP8LsO93VaqVpTS3UAKrEIJCDciYTTqKkrFbhWEl80l5/+o+e/R14N15dzSiXnHW1nEuTYTLswXC9scA2njwhXMiJBhgQfO6ZuRI34qjBHDOZzepA86wed603c6m4umsJYLZUXabRkKM/ghfnkourZ9uDc/VaK47jvJESKTwkYVtdbB1miYhFWVWCvf20GtXe1zcABqCZQUGma+UMAKxuvDzzsbo8ALDzp/KNPaG6EgAwye0mhdJG57TzQ2YOwuoB/c+8j4VuQ0EZBHlRR86Ner3VZOTdyLODU0X/gSP1z/78+45+8E6qRCoxPJMleJ+rjzmSXK0FwgaqOkPLaEuu/+zSP2ADT2CBKtxF1bMEC44hBBp5I2SNjIyF/zf/z+f++399tto8XLVWCAYMZvK+UTtQqy4S2QAlsqyRXefx/CS/TArAqUvTdKNzxlqGxkQkrt/rd5KRW2jtP3jwiOEIMExWRLK5dtZellJyQuZGfNUYohlPYtsAoHg+Z2AApS0yjaoS7AN3fax48kkBsCNvNFLj07WTXzzxCyICcQ5apbrQqNE4aqPKSvO6m6/7prFquJCySnCI4ETFMFuRhChCpiroRDwhLrckXzn3yLmLT6mM28MFBsi9SEncqNNdS5JkYWl/HFcJzLmDkikBgB1W/9d02tvmGvcbDADAgMLCkhKxiAyG7W5nvVprNlrLYVR1bQOAXcAA85aAsz+uEcgd2nfn0YO3QyrWpKNUH3rs8y+//Ecapd/2LT/SahwngopDXgWW5N7mpPXLSqUKfunUl9faLwAU0k1oshw78sD+lWMkkSINHovhThmFIxe6LUIqLlk99dDDr/6hZBy/sXoPc6ZJ7H0K5/v9HoBao27jWjGBzGnrGQCYxDOZgGk1XqxWm1nrR+mq3e+dtfrnndu5maLU+9/Gu8lH3BBmDtMAEZem/uL5V4auXa1VqpWGgMJVJPIiYri2tHiIlUM4JQa8zFJY2vt6c2OAbQGAwmVwdePFonILEpShxlOhlaXj84UHZHt1/0wrozcGANBtpObLBgC0+XI6P1pvv2oMEUWAiGfFiCiajCkyedGlUPoHudFoMOh0RmniVT1575KlePi/fO+df/3vvxuHm5BFsY4dwBEcQKLqSX1JlDIFbKZZT3O6/luvASjPjIkEwJ9Tv0rEoMAlDX0l0ZGhiv/K5y585G88Lnx8odH03hMrU8ySNur7q5UFHw5lsKGnzCM5v9RTx12dS/qj/ihdL2pW51y/01WP5eUDKytHmTk4IpTf4Rj7FhqFJR1O3dHmww6kcDP+y5b/POEXNmF8u71OVaCcEukDd/65kiGAFEig33n5i4//AgARR8EnAWSVFpaOWdADd3yvZLT+1IKg7ANZgMQIC4mqIU6hNpcScoQYVIi+S+gvqpDCP/rM57z35dWF8KG8ajLsra2fr1arSysHg4ITqYRMFgqpEgAgbHfCdm2H7TcdAAA0pyNn0UJER27Y21glw63FfYarmVG0MshfqwDgSjHAPBnQEF+IwWLuuf17AunWqAhHg97qH371s+sbz9WatQ+/929UogViV7DszNjvYjcBwENPfrLMsA/yZ1n7OTT0czoKgRv1fXcc/0BoNoX8YVQ3Nk7/0RO/YAlOpRCoCCK/QesHbCAkaTIcdJ1zjVarWmmKuMLHsDAyI1ZBYP9nBud5CwyNeH8UVay1Y1mFjBb1+gCAnb/ALACgNBsSlCYABUZiMqI+GfTPXzg18r1Go2bjWtiAU6WwvAc1+xauZ6oowkxmzx9gDwDMAAChdAx12Vr7pVDuZyaqGFOAVpaOXzIrbfkD8yLVNQkAlFFSft9mRqZ33vV9m9L5bIn3suhh+GGTgS0NjZNO74xzCSEKLgyYXPEUyTbGVJUZIog4SmkUCSURGUl7vc6g3RWQGDf0KUvy0Xsan/6/3arfehuZoyoW5ImC2zurBi8oPy7rSx8DmKRZTC1vhu8Ew+JxSWoysSDlzORLA8PFKJT8WaQXEVkVyvIHsZISFCLPneh8x59/pD84WG0sITLqhSEMU4mWmo3l3LTOCHzBzSnlgJBPSaBOJHGddue8MRHBEHsA6TDtdDaY7YH9RxdaK8xRtlahnHdZ/BaF+5bynTtGklNHhYhybX6dUxpOnKWQk+d2HGeVlRxMEiAVU3/b7X+mXPozKCGhUf/8qS89/MqDgAg0MtXsjZE50LruluPvazQOhUJ/h6WtLzUPJOt/5qqCqv7BE5/xZChYkgMQPXfxtPOD/ftvjGKGGoWwmGDdcIWDFhQy25tg0k7Dz5tDvvOqQoLS3naGWkWk222nSX9hadlGLUBIhdn4sXfHjrUsdgW68KZHZrdQWGHUmo9qTemFFGoeuOP7ABFiJUcSQUfexGvnXvrSlz8p3L/79g/ffNM3O0ZFvVIESgiRUSiJIJh+I8/iWjRHtj6G5Xa7ql/tvPDCq4/w5ImWS2U+VbU2vvX4u1q1gyFsCvwXvvzPEh+qVR8gTU7z8UQmWFY5Fe/9aNBzSVKv16Naq7Cy8fBZRFIu5Ozy91D4OTrvqVZdqFaahuM8Rs0QupFigFB0x0qrt3M793IZ9c1r0iDI33P2f510+73za6eEBvV6PTJx4QqnqiDPqC0uHGYyIM8SCXsVsKHgJUzgbAF0L1S9CQEAzclTXDrPWqYAqerqxotjckdeBSkBysuto8zx/O7zNZMJd9Z13aq7s9PnfQIATLZsZ7+QhzKZrG7ORq6kimHaa3fPG0MF+z+IsutYcD2XXwxxNlJOjLIqa5p0O73OaJSol4oxXTdoYvgfvv/Gj/zMDXr4EMyN4BFJBSLIdW5IgRKFZtYn22HhRaQeFFgbwmGjGcSAqD9D/jwQKZhMyI2ixlCqUue1090P/dmvnT7VXFo6KoiFRgw1RBW70KwuEzJXM0DJmELVJ4+JUGFQCrBzvje6OEp6zIW8BobDbq/TNlw9dPB4q7nIbEXytYqp+calAMCVsYBmCHrmZ2AHAGDrjuPsvjIH+wi+7sCdRw7cnTXclZUEQkque+HEF5/8nCGIpkwVE1njY2H39uP37jv4HsMxA56Ydvzpy2tIEjbjAz9ERIg18cmjz/yKgBgeMP3Bxvpa21Tk4P4bmdl7jx3IfW4DAOxSuNoDANuqWkqdzAAAhsP+cNCp1OrV2mImBTYRc99sAADjdQgUDhs5IsK+xRtuvO49gFM1XgaqMRtE4ET9E0/+yXPP/ObA9L7jPT/RXD5miYTA4pnBECVDQkHluXiytgkAiqE/IK+ce/TcxacFluF2BADC9mpQZrvu0B31+sGXT32tN9zY6J6U3AqyZFFMk2lLvU9Hg8FoMKg3G5Vak8iIuDDWcyolOtBmlW7JNwSoWmlWKw3mmMCFr1wxex87qU/12kkn6J1vNACQf0ZPQt1ue3X9tKdhrd4wphKk2IJNkKoyxUuLRwiWkYYjEbwCxs7xuucQ9g0KALKxP421Oi6uv0AwRRiZAgDGVK75j749avprAwDKYXLmCxXGXoVjXwg97e4Z54fGGIBD+79ofuSdFRRbv7m/FYh1MEza3c4w7ZFwZOzQXTwS40v/6G03fHxBzCI1b4JGxAynEBIR1rK3PI1NvspXE5dn6WzynU2BWMADBHcGblUQynLAKMgG3MIpRj79ru/56tcfqzSWjxtiR4lRw3Cs0WLjYCVuBqv5oolDRCJZH4sIWVpVk6S9dveskOT/RAAPe91urx3Z2pHDN7aay6oqslUOmJPvILsjDKKzqxnJnIw3hX7ZHQCQlQVy/53fYyj2mhARqQ27fRvnT/z+U59hUU8M1ogMs2W2bzty18qh99ioFShDSiC9kpQRFIcyO4sw93/lzEPn118UKDOnaXL+wqtekgMHr49sHdkCouxS8t0bfL9eAGDcBU+8G3Y3VLXZWmYb5VJp1woAwHgot2sXIYiy595fUOFA6YlMdPdtH2FmVcMKDxWkpGC2xH4wHH7lS7+6sfGkq/lvfe/frdZbqhIRiyQRV4TEgEQkKKHNAqQ8/y1lQ7mXzzx4Ye1ZqBFOWc3OJgAQQvD1MwwvArKkwmnSHrmhlzQTU86LUQBhjYo0U27waTIaDEbDXq3eqtQazEySYQRfTKQ3peRs2zXPgM4JwVSr1WplOZMeyqUIOKvnw3/rFB7bsX65vs7RY+yGRoXSBSOVdmdtdeMUjNSbLQbl69QkIsSOUVtZOJJvjoSDzapaOLKz7kXFbzgAUK77i6+Lay+NS39lkCiYWFXoDQAA8jSitDs7PDuuLd551ydm1mde8/qxxKYpmiJhN04560wMhhvd3sUoijTTsSna/xmyz2ADwRCHATqRKtMoHW5sbPSGXQYpqergnqPm8//s7YvvXSJrUL0RpqnekldQCiF4Qh5GAVbJdyp1U/7YytiLMG3PziACfPAiBmmgAGl6CnpRtcIUKk5FJOBINSWNgeQv/9Djv/z53kLrhpgiIQmf2hLXK0vN6rIqZXmOA7PIl8BVeNsGlPYH7d6oHQjjxgTtVBr0NrrdbrWycN2Rm2u1RkAOGc1LdQfwRvTqhcqsL06YchrS7BzsAACUb9g0ACCtRfW7bv1OVWW2qikAUm5vvPSHj/1nj9SniTHGWgutENF9N967tP/d1lYIhtU68haTgpw7r7VKACB7aB977tdGrgcQsdtY76y3z3oa3njsXkIwvyOGbLkkugcArvXqv6inhSBek0E7HQ1qjUUT10KgKRRhX3tL4KsNAJD5M2btf0tG1YUPfd8d3xuexOJFvcCSV1XLRiM6d+rUH3/lsyLdm258221v+dYoigmeiEhU2ZiST1bBnt8OAAgf+szFZ06d+zrBOIyIzFQhuE0AAPJBelghYdObhAfDtujIqwY/YO/TLIVxkMamAABUVb0k/UFv0Kk1G/VagyTo/3hlItEtavQAYEIdk+ljqtZrS3HUsibKRPQFBCPjVa5t6VbPfdFrDQCEDqCo9769cXGje5ZjqlQbzEzKIhK2sBQuovrC4hGjFiREErapVBWGriSa73290QAAzyp5uQiBF9deCA4fRQWh2YgAi81D1tR25w3uUmCdzC9T1KZd+drZk1EGABNV2kwAUPoYuRGSGi/D1fWT1lqACUY0mfVRRYkBJhWFM+QN2X46WOsOBukG0pTIsHY+9u4Dn/zHd8ptEUmD4iWJV6ARe69SREOG+hkfVSf/J+WnQWdTU8YT3vHEILcOyAcL6k/Dr5LGEAUbsY4p6LmQc95W+N/87It/91+8Wo1vqlQjKHtOjSNmVOJWq76f2ZJ4IRAZJV/0MIq3G6Yone6Fdv9iHMdMscKrehHpdDZGg0G9tnTdkZur1Yb3jogzdCt0GfONq6QCVAYA068yYzJw6bVy2QwAGCr8wF0fJTJE6hQGSqj4pLO69sSfPPVreU1uDWuszXfc/p7myt1MFSKCUM7lvexCXCY+qWoYzgvJQyd+KTQd0jQ5d+7lXrrWarWOHLxdlaDBh1SYdyVq7AGA1w0AIHd8E68+HSaDjokq1VpLicsAYBtIb5dv4kztzLJDxRVfB89UERLRlIhIOETLB976vaKOiOBBMMoKEvEs8IasjVREDeiJE48+eeLXe+b8h9753x48cAfIK8EqZQHWivh5rawtEhifX3/25OmvEZFTH+r4ywAAgCNUwwiayYgwsYOSwlliUdcddFI3AMR7HZtU5nMABG1ph8Gw0+/3qtVao7WYwRvVwpR0aunIgDwK7zBTykTqvScylbhRrSxaE/GmDmhpG5u2Nm67tgDALK8AE+p/EhJyzq2tn+10L1RrkYmqhivKQhqQkah6YyorretQsAZUsz9KexSgPQCQjQRX118WSqFMGT2MNfdob9YPVKLG7KY7yVUt9He9Ur9az+gmAIDC2ReztAVINBSyzOShUOoP13qD85GtqgT5PJ+TR31gATGHzGQECvHEwnDDYbLe7iYuVXKi6aIZ/aNP3PLf/NxNZBW2orZJ9rCiQl7hkszIBcBY3JOhWi7oJ0r5sM67OTvm2s0TR6F875WFPCvgz0HOQSMHshAlEMNHzAYqhgW/86mTP/jTL1k9UuGqtx5gIwDHltFqHIy4AZKMEcqUk4kRzINUoUKgdL191rkhR3E+1oRzSae7MRili419Rw4fj6JK9mAog0T85VGbrhYMKBUcMwAAEekEYWkMvbYPAAwhstW33f5dqgSwkDA8O7u+9ugXH/9M0JiDAQnZuFaNGu992w+auMUMcR6wSg4Q0hiXo5IhU1Aniy+sT734hY3+WQKTyvrGufbGBar4arV+cN9bgpnDrhZkEzZMu1vpvkH1+19LADB2OvduONhQ1Xp9QTkiRqn63A7C3M1LPV88f7eecfKqxIFvrWGSeP9dH4VWAqLOjaGMqhpQqiCIBalhRJQO+g8/+HtnTn89te0PfNN/v7S836mPRNiEvkA0q/e/ZV4kB+UHT/wioB7KzCrMSIvt5G0CAFKVnEyfTQBKvrz5Sq4fun5/sMEMJ569EpFHcCukAAbUQ1WHvW5/0I1rlWajZWDK73+KDsTKEpb5adoSOGzNqarhqFqtV22DOZIp6wDSrUkv8hr7AOyk+i9fXiUmFeagysCjYdLeODsYXKjWa2RiMpaIJFVkWgspq11ZPgKNsuDLfHV6WXtf1zQAmNMmECKz0TmV+hGQBYZw5MPP12vLtXhx1qvxPMrNa5UQrxUAewkAsBnEBwCQ7UoxiSSd3gWRBLDBDbH081IQ+7Khp/qQPAbdXnc0GmofQuqHdxwyn/mxm9/yV45woyrwBEvmkFCdleGg7EgFbEoAgHEZYWCzmM0kAMiEL4jUnYK/QKgABFGQqmUiEuvghavxI79y/rv/9nOpO1yzZK3xalW9VQPWamW5WVuCWjYYL5MZhkg4l9mml8j6xtmha1ejuocnMiokLul019LELywdPHLgeOCGqmJsYi9Gke7wM+9Q73neQZlVuE8p4k/8WcksMJVQnntsDQDCoZlSAbrjlg/Xq/uAsFnOEcmFi4//4ZO/wqrwqsYSvI3qlirvvPX99X13G8ncOlOFIQ434DKrrPG2SfbpVImZv/b4p5SJ4ZNkeObsK0l6vrGwr1qtrjRv9t6zUagB+eBnv4sAYLeC1BtdvvO1hQC5WYdIkvZ9msRx3UYV5TIReTto6qoCgF0ui7wyBR18VQOjSO65/XusqYC8Cmdye56FQKQG5IRAaUwVZ8QKQKbbvvAHX/rsIDlH0fBPv//vRrWaIXbOWeOVqBDsmzcT31zHPvzEpwE4dWxIRKBkpkmG21gCzlhAPOamQqAGkNBVNiBViPiR7/X7HZArzOzHJBbDwYZcRIb99mDQr1QqzWaLyRYfR2iykQEC4DFdEwf7sGwZGlCliKNatRlHdWY7wRe9hBiAzgthr1NBN838KaSQg7lv4FSpYNjvra+fGiXtWqPONlI1xhgRCVlPNWWqLi0eIthJY4q9qPWNAAA2t/+5tAYgAHf6Z5N0ADA0RQaTOfSLq5XFRm3l2viAZT+Ba2h8FZaAaV7hKJusfINbSrgfHtrtXUxdL/dCFyAAgEyrMfgvBlU1wIHTJBkOuoPhwMHKUBNI//vfceD/+gd36D0V8hZVqCHSg7BNiFFyWSgt4IRmvr/jCn6bHfHNasKbyT+IIR7+lOoawaoA4okBS7AMcKoSWTz9+bVv++vP9f1ig5qGxZM1UCJjQRzVFhoHcktInx9ELUa3AjCz84N252zqRmyrrNnnS4eDbrebjHDo0NGV/QctWdVc2xUeGpwRdYelvJYLa94dADD+m5u1R8rNb85d3PMtZC1nvm0CgIqtvO32jwIOpCpsiJNB++lnf+WV9VdSCJMoieF6zVYd6MMP/JByJUQPEVjN5PwCxLqMKiuIDEqmPQdVr8SjpP3Es79GZCG6unZ6o7tmozSq1FvNg43KUiEVGnp4VwMAXHnVvgcAtuiklmc4xbkNYvPqk2TUM6YSV2owXDhDTwGAOZSzNxIAEEIuRCMs0f1v/QjUZI+gCisLOwDkI1UPw4B4YZAwg9QyC3mcPvXyY1//1X4yOH7D3Xfd+WGOiNiqOCIlVmYOYa1w1d2Cqnd+/flXzjyoKkqx6IhgOXPa2iEAyISXtdCqhwbJN80t3rRQGEx80umdCR36EKiVQKSkAJvMA1ho2Ov2e+24Wqk3W5ZsPgHQqQkAZZ41E98uc3+zxOFSIqpEK9Vq3Rg71bt6YwGAqep/fK6ClYSSqqj6fn+4fvEVtRJVI2YGOK8cCID33prqQusAU8TIpuh7AGAPAITmam94cTjqAYCmKoGqxyHCRKbZahx8vSv+a6PQnxMS6R13fyL09csV2DighEYmiQoDIBbWbAbn1I+STn+wlnkc5nZURf5TCiUUAaxI1PnBqN3tjySFi1KfplEs/+lH7/j4Dx1EnbUaERxikWiZ+TDEgEdQo6rEAm9nU/93XvdkPhEkYXjNWuQ5AhRyRtM1MgY+m8BqLKCYxIv3qPLTv7b6HX/7+V6yUq/XDQkDKoaImC2Rb1QO1aoLAg8aq+ZlQ4CgmQl4GZ5bPUmkEVeCqgOr9AfdbqdPqBw6dHR56QCDZbxCG7il2A7m2Vwmlr8js0jDu9Uv3dTa14KvVebB0BxNUiGQgKgYnTOBQXrnDX+qXl+CxgQHNuKHG6vPfOnJXwqHU1gqiEzUBPy9N79vZd89SnkVpwSIwpNWwSNorJoSRYBTeEI02wYqfwIUPjTtsuFM6fF5/IXfHIxW2XPqhq+++lJcMRy5atT8wLt/jBAx22de/N3u8LyIFLOycAQyOUXYksvYzp5inaE+uZcIr0Yqmrra4yGAS0fe+7hSMSaa2TrJIe5MNildpTc84bGtRJPsCxkXiDRdUAY+jxKTFfQYjaByK3mxT6r3v/UHVNOyy2bRQAkcRwPKl3pzkZbMxBDPP/HHTz/5Bak07r7rg8evvwsMYSYC1BuQWqh6KyxKjjwza6Ygh/wJZZBToYee/PQWQGj7CW/rOBaGAKFaDZ8oSZLhaM35YeFolhW0lDkcAxCnyaDf67bjimk0Fw1HpQkAG2jo4Exp+MyB9NlVZRWAK3GjVl0wJp55zMqa3TK3+thZhJ+3S7DTTGHmHPWSZVvJFFKk2+60N06r7UfVlpI1lJGmijlAJW4t1A8EAKdMm/0T9r7eNNV/6V8y/k9xLDUcidJEbjBa7w/WsqJOcqNVZSLyku5fvplgSkvD137hPq15umUL6IoBwLve+gnMkP8fs9XzZV9ClioAIJV0MFwfJYNctlJLjZzA8mRGEEZQI5Rqv9/pdkcDclDrE5cePVj78j95+9EPt8gL2MKIqpJ4VI6DmxBSjDKcFwwaVXftDgWuf7D6ygbBrAwanYdeALGoMFUUI2KGEYhRFkr08794+r/++6f6uq9pK1ytqneknskGxFmJl1r1JVUQ25BEy5E6XMzU9dc2XlGKMuk3gMT3er3hYKCwRw5fv7hwgNlAVHRi2Xf78XdHkXoXAcB2iqqyBNO89FAkWlW1zPe89ePkHbH1IFbXufDMF098xiopkxKYbYUZtmaI33X7xyqNg4GsbFjElxuKAjCxVzG5sdHYUGzmc6WqhnLsNubys8A/9NTn4IeArK2fX107G9dNo7Lw/gf+fC06Fjp/xtCDJz7pBMEmjJlFinei+UbHTjHAXrZ7/QGAqgYAYKPI2ri01v86A4BSAZeh1fJ709yWdWI6kat3FdaI2VoXBGpYGeTjqPW2t3ybeGTIeaIIHj/+gf4eiPIiEhY9M1Tv8MhXfu3Fs19fWjx87zu+q1Y7qMZFJJk2pjIzQ0RVwaxqQEmWxXNheCK6uHbqpTNfel0AQGbEPljzMgi2N+MrwJm/FSmTaH/Q7ne7JrKt1oI1sdOx01lRDc8sr6e48lnWQ8b2jE21EjfjqJorCPFUF0BViNSX6Kw8/3hcNgCYu0swZ/dga8NHnn5YVJzv9dcurp2q1CK2lcwMB1GYKTknABr1pVrUKt3ZWb40e19vIgAg4GDDNwUAyrd7CgAAINYMb4vsW75hGwDg2unWb65Gdue9bQEA/tyWxZwGqR+E1ViQqqSut9FbVfWFaH3hbFWE7Mz6REVZfZJ2h91Rv+dUAE2k97bbD/7xv3l7/WYriBlGTMKaCpRpGdFRsAbZHyq7m+x0mUkUczRYQl+BJN+yYg818BfgzwffqSAkBYjAMDPE+y790595/ud+9Wwq+xqVZa6G9jaT+GB9oEr7Fo8TKRHJuLehnKsWENEo6a5vnCYishGUQQ7gfnu11xvGUfPI4esbzaVQ/QPIGth0OcX6VUILV/CnLm0TpqpE4kM+FSZSUj104ObrDt7PIIEX4rR99rce+j/YUBDi4QgrrRssWQeF4J1v/Rixyd0nhNSCUmQsoHwagChz2czWM2jywZjY+jW56jAh8vCKlBCxpF858Vk1omn/5Esv2gpXGzY29Q9+0497R0SGWQCbuu7Xn/kM1IaEXTJVLWYCO81Ve7ntdQQA40a7+NQ5x8ZYG+c3ka4dADC/u0zlT1FKCTkgN6pK2ThUiYFbrn/vYusoAEVKqOQuuTQPAGwuZ4mIDfqdjT/8o8/226/Qin3/e368amtsFBAOtStRcFP2Sqz5AJA8QASjcIT4oROfVvjXCQAg+H/1+qteRuPwQiZDAmzC/yfxw+Gw0103xiwsLFpTDWtygIiEjrhsoRC6aSlfAJvPe4WZK/FCNV40Yz2ciQMmJVomX+6x2eKI7lRCYUvqI21+D6RwPlldPdcfrtUaFTJxeUGCEAXtqcXWQUtxKX7uRcU3OQBApvGBMeqePOD94dpguF6MCgsAEDoIK0vHQ4t2cuAv1xhFZ4s2P8/tYu8KMCgDgKL3j8xml4lFQAAzfKj+h6N2p9/OxBxCkZp7phAZJSEGadgVpmxW0Ov0uwOhJFUxOvrwNx//1f/9fmqNYCPEgPGajsgRuIn4KMiAnKofOzdtv/SfyNcKosnUHOSfSBBas6yiRAYkkC7caagHkxgwscKrKo/gq6Z3bvQjP/bE7351yPHBWlSFqSgnliPv1RJEwGwX6gejqJrlfsoE4EnzuQVjMOy0u6fBltmKh2UBuN1ZTftDtvXrjt5Yq7ZMFKkqRIPB5OaPPqUMsUXK32Zl/7oAgM3jpnB3FImSzV0wPTy9/Y4/G9k64ACkvbXfevB/gxJzzHCLizeyJRIDAEbYs4i//+2f4KAYla/ohXQpIkRR2Y46nwNg08Rt/GVIVUWVoZGHEKcEI+q+9PX/1Irr51dPr144W2sgbi7de8N79x95D2nwXGBmUfivP/k5kVTg83YmmANUZppcENzUApzbObuWexdvvoQ0EwBAvfdeAWOiggRSnOcwu6IQZF4PCtAsnlj5X3W6f6sSLB0zEny2Z0n33/nx0pNCZd29KZwMwGRmCFRw+sPCEhFZNiB/5uzLX/2T33BJr3l44T3v/GEiZmZCakhzh6zsmBcK7wXjKHHJo099lnJu/abG9G7qc88EAOFlvCS9wQXnhtlKQGYMGS6yGQ+IRsNOdx2QVmspjuqqFC6JAW3WBt3y/XhmW3CdRRxg46jRqLSsjTUbL2jh1zYpw0DXzEN0SYyheRwjJUmG6cULr4xkvdZagEaU6TVRoBmLOGuqS81DJTnUPQDwpgUAkue3iQUAHrshhVjUH2wMRqt5X6+MolnVLy8eM1zZ9Yb61S79L9m/2DWtt00AoFA8CKE8AACExsNwtLHRWy2a/cwcJHtBXgVgQ4YJHuJZQWQS79Le+sawJyJe0gqlf/W77vqHP38PmZEVkvqQWQAJ8vdUOaS8EhoeeSqdXPm9jCtBJcCkXAj9hNmGEBEMyQDuVcAJMSMVQwwvIBaDUfrKU8Mf/FuPPvFiFDcP1LjmkYKNERARcyCac6O6WI33EadElLnQhUUlCeaRvj9od7oXYCyFV2RPXgbdTrD6Onz0WKO+DLIiAgr8dR1zUehyAMA2i/vdFQbdah+ghMvm/naAmywaLi+8MfHb3vJR9fLii7/75KmvedKYY8DV6iv1eFlJLdgjIVRJnRKraqveiuzCvqVbFluHAYHQ5qol9OugnBOBNlX/JOM6QECIhIRIVY2X/tce+8/9dHDq1BMRbGt5XxxV33v/D9cq+72DIYERUQdAYR8+8aliuKEZnbGoumgPAFzjQ4ApTJ3fKQmijaE9mW9ATQAAjH1dX1MAoAqizPmv9AxSQRTJY3suL0YkGWTQ4GgrnipxfPdtH8l/zIVnJKg4lDbpZTMAGDdZgm4BoEQRQY2FuKdOPPjUE1+IatV77vkzK9cfN2KhKQkxTHgqmEjVewqj0UzqXTweeepzoqO5ambzHgDdnQlAicCp3qfd/vmAAaYe2PF3RJNk2O6sMaPVWopszakwI1PE1mkAIDSXnFCGXrkQviehStyoVlrWVsL3RfxWvgc7DPCywxblrgCAQuZfVQed9vmLL1JMtcZS6C1CbQCTALxPG/WVeryYG1TvAYA3MQCYtQHM2diwAACDYbs/XAu/MQUAAFlsXWdN9Wo26Xf5a5tH+ioCgFL0YQ3jAFIoqXfr7dNCrmhLeO+L7cbM6ouVoKQCL9777qCfDPsibuiTgy35h3/x7X/hf7xz2O9Vq0gr3nLCMWPohTxjEdERzTRjLClKTl4CMnMjmc6JLTqr+i//XBZbh+rOk98AkVpDXsV4hspA2ZvP/+a5H//Z51bXGrXaPjUV9kqkwh5kbaCGqzEcLbWOEAwbAB7M2TULCUz8YLjR668bq0qRChF7Ehr1N7ob/ThqHjl2Q63aQi6IQeEQkyktPY9zGSkLdsAdn0+1z47z1TAIm6ekvnWDSkhD3Q9YUOp92qwfZtWN/pm1iy/AVoQSw5bUGnULyzcRAPbsrWSCEnAIm9aZf0WQ8yOie+74uCGICHMskuT9eJ30FZ+u/gGokIERdUSqZAID+PFnP5Om6fra6VPnn240F+q1RY7iP/3OnwBbIqOajqt51qee/53ecANqFEmpjRqmUDsNKHup7vUHAEV3ViQIevEcRrLOieR0ld5q0fuffNUx2cwrE2kGUEJvzeRMkkzZ2VvTevtbvit/KKYfDVWaBNKyeQJQuCuKuvBzYqXiY0Q6GCaPPvjFU68+pHH3Wz74t5Ya+7w6IwEqCFNMAFi9FhrwQsQCefiJzzoRQ68PAMg/VyYj5tyw21vzMion7JzjacAhfqsbDbu9DVW/uLjCNi40HMoAoFDS27L6z5GRKoDCfVmFms3FWtRSBTPnJs07AABlxaqrAwC2qFVo8w8ElloQEu+0z59fO1VvNOI4DqTQzARTNSiELrYOW7J7IfFNDACkdOioCC/gYp++KPGHo05vsFoCAFya7ctC82hkK7tRvl8tADCO2Jv5HlsV+rtEAXr33d+/RdGmmt8M0sFwoz/YYOZg9ZWvz6pXIYqIlBlQCVd/NEqHw/5g2HHinRvdtmL//U/e+/ZP3MgKYweAM7GqFXIezHAO0Y0S1RkKDTLNmnXrL1mh6uwLMp0Lx4ki778SQx3knPp14liJiVJ4gUATIa//+ude/L9/8lSMA1F1MaaK+NSxMIzR0MgNcdksNA/EpknsgzRETgIOM0rpD9rd3hpHzMpOxYAYNOhtdNu9SnXh6JEbqvWmAAQjIlzsUTCVLM+KDxqWw2TmaZlXys/8/msAACaHFTrr/dAUACCwwok3xEJE1Xi52z+/tvY82IKVEZFhiC4vHMvICqqhTsloPpnfWlCOciocXIQNiaped+j+Ays3ERlkDbOg7OlmAIDyQ69WxBH7oASauv4jz/6yJvL8qUc07S8uHIjjygNv+dDKyjd5FoJhUtHElLaUvvLEJ4kUGil8mAPkRKC9HYBrPSfNejjGckBFWpp3g14bAFBarA+14IQ4ZhlvB+JZWUJRVZr1A7fe8D5DFqWpeiGjQXmzzVPKzCpm08tnS188VdcGtxMojCVRhpKxFy+ef/hrn+u1z/Kiftv7/7axMROBEhGJqCLqJKzxkWc2ClbVx57+3NANmAzPNmkmP+fJpR0m7LkAQAlBwU2zICPiur2LqRuVDkAheclEKgIiSgb9dmfNWruwsEgmChiAFeUfLrctN60HcKGDmQMMAjI/+AA6qrZeqzUNV4iyrtOsw7ZTLuhu7QBshVQxQw9amU1AMj71Fy+c7CfteqOhbErbwBywZWRri439OUlhb/f3GwkATNxuBjBK2t3+xXkAoNU4EkfVnZTvr0Wnf/rE5ptXl9W7uJoAIHSVBCyarm28EpbAshGzeCFRJTIMCCgiSo06VR156Xb7aToSP/Su+547Wp/+X+5deOchTSO2I0LChih2UPEqBgpaEHsdg4Q8g6A+J4IbaEb5yiDB5pBdnBuafaWLArPU+8/yO+Si+vNEDFMBRClB4uCtuzD8kZ987pe/nsR6qBnHqiRgA5cP16MsKSJVMQeXbzQ8rtFDUAKgSHr99eGwTza/YjCkftjd6HcH1tSvP3ZzpVklxKGjAzApFJ5IBbpJXIFLT4ls7nNdawAg33WdvjeTiYrKAACT+utJ2tvonFJjjKoxFSZbjWrVSlOIDchrWNgOxjIZeAj/XVwXYuSvFvTaVRU3XHff/sXbSklt/ggennyU/aSxIsm5i8+fuvBIe+306fMn4wrVW0vM9oP3/qW4fhhCxKmKATmoJcq0/5Tw0BOfyjzR1BHZKf7Pjp7WPRnQ1xsATKPZawQAhEI/iiJVZbJRVIlsjYjVc2Qr1Wotsk1rrYhYU63XFoiyDZm8M8J5d19ybCycRXuFMuW9+akEmW/ETgCAMDfWTK9GHGlMkZAjMa+cfPaph3874eT22997y23vIMQqqapnBbEKK1QJRklCCnjwif+siBViwK8LAAhmVeEuB0Kqh1el3uBcmqbhF4PVfXZxMq0MkNBoNCh2gslEAG/WxtF80iu0uSYes7nKhy1IrIbrHJu4Vl2IbH0+J153eB1wlQEAlc/J5BQlnD2CUDrqnz77LMWo1psBUAXkw8xQqxi1qofjOJ419dr7ejMDgMnDwwCStNPpXZgHAJr1w5W4hulffK0r/i2zQiaIlunOv7Znmd5995+bWV4U98YH3U+XbHROFUtvxeJvdk0JRsWRWOOHI78+THmUDJINyOjPvXPlP/7Dt+t1kVAdsWNxZEQMsRGoQlURIToKVIkUmCNyTzM64ltkVVUlWGHPIIgHRQBBBWqCwj6JQs6JrrEYsAWngCBVMdR9cvBtf+Op516xcXWlTpZi61OX25+ZzLk9e4nRYvP6StxUcUwxKC0uo5Kut0+nMgpXjMQIwHCjfqfb7sZR88j1tzTqCyTqyQKCsoJqFvRDc6OwEZg4qZuNrMsd95kLpjMxwNa+AZf1JJdbj1quxidLqyntQqiAOPwoq/r+cHUw3CAyRJ4oYorrtUVr42y5eudBn8YOFYBG9731z4Zdi5y8K5mIGEmQGSZW8pkBMxGJZ2U68exvdgbnXn31qSTtN1oNW63eunLDTXd8f+Rt7lEpE4R+ElYWkq89/mnAK8WgNDhpZO5zFAoIFnFEdmvi7MwCaLeW4YQUaoK5kjKgJixjfKPtGEy4oMySq5pfVM2uvcYadkqXkW1kTqYSgNQRGYEh9ZUovvst36UIms2lkrEkvMvMfpMO71Q7rfRaMuf9zBWs4Bk/KYKMPxPWOF2iT3z9D196+Q9GcedD7/nb+5YPpmKMCkcC9aoxcaqqDCPqQPTQE58S4tCA3/xAbNEumxfH5sWNcMfHbaLJP0s07einiv5gdThqlzQKOagDFT1+EQwGvX53I4pMY3HZkA2mIiDRYIOgRtnnkIMBbN4SnlmvlBKxqmocx414f4B/uU5oYUEzPq55G0K3NwrYTtF2GZFnak+MciqUBBJV6BCJk25v4+KFFyvNaiWupeKD7JKBEViQi6Nqs7o/32w3QgJS1j0k8GaKw1MAwCDjQcjkZo7f6L2UDycLDJCdq3ptsVbZn2t+jKdq80HrvG7gziL3XDXda6xhNwEAMHvMChHtJxv9wUZp3Oyn4DvDkzWjxA/SxPX7fWlr0vub37Lysz9/j12JlCvELhS0QAq2Si4zDDD7YfZnwGgLkQTd+cUGoAYIXgYIvrQSoq0/D38BVIMVsACqiSemkw91vv1vPLvaWWrYpjHGC4g9KVjZe59TfsMvqCFdWbyZKbQuTFFXOxleWH3JmEjJBGU7ZlHVQb/fW2/Hcf2662+o1ZfDyN6PtzunfKlkDgCQS86JtgMAdh7xL2cOkOWfbQAAVlJ1SlbVECdrG6ckk922zLZRX7A2FgFnEhw7rkuDBoeykgqzUZX77vh+Ii3GIYqUiKA2/w9WH2gPUYAHw3T4xLO/sd45d/bc0424EddrNqq89/bvri/dFcT+yqzocREGH7xsHjrxGSCcEwXKXCDe/imf5eC7SwAAAGmggxfTGJp8c9/AAAAzpUsuCQDG5lxXAQAYEglUHdH77vi4IVKiTFFHg6ktSvMBbAkAtlX9bwEAQmbdpKgVtsg8sxVxRBqZartz8Stf/fXVjRejmvu2D/wkcTUyBBVWEHtPINLQD3j1zIkza4/n41N+7QBA6W8WJMNcH2niT/UH6/3BGowtZBs0wJWglyqqqoNBr9vtxpVoobVckPhNVohLoLsWYXAbgXpCF6XQ4DagRn0lsvWgzT3VjrmSGD7/um0xJdvqr85fmwnfySwzk2S0tnqqO1xvtlrhCgcQG06yiDSri9XKQvgVAYGUxYAEe19vZgAwrjkD3df7dL3zcvHDRVc6C3TC+5aPh/hTDAc2+ZlcOirvXpG0WwBglwzCAgVoRulGJOJDqaSKC6svEykz++yx9+P2fyjy2Ity4pxLknZvjdK1n/zW6/7B//staDRQURivJOQiTz7Yxmd0D1Njex0Qg6GixDLX6XbuDvD8ZrByUVyOfY0V6jfIvQxuCTsGQZ36lEz88G/3PvJ3nxq5pVbcAJOwMZI5UxoEfmcWtUNaXWgeieMKw4i4Io8mbri28TKzhYGqssTEKVSHw15ntRNFtSPX39RqLnsvxhgnnmBodq7fDACwma+idKUA4OphgGwuUbYxnvOKOSVJhaDCqet3eufCamBo/DNbyjkAFFyNdorIhUA+7AkwAHiA77vr+4Lo6rhOIkdE5CNVJfYAVLKW3gun//jC+gsnTz7VH52rNZdr1WZkW996/19VWwluRuGDTAMAVQrCBawPPvEZZB9TWE0Op8s07ktMNuan5F2YABi1Qf1WKcumCveNBgFkHFy3GALodq58MZ/JjBS3mWq2BwA8hDWw9P1wsPaee37IZmAjcM25HMlLo9rxgG5K4nOqlz/vHPq5BbfPR155M7v0lgVKKsTqBYb45TPPP/LQr2wkzx0+cNsH3/e3jFcvEhEUXomIlQgKeuL53+0PL5akh6YrycuIaVsf57wWp1mZpPwD469B2un11ylXUgoD8wIDkEIE/X6/312Lq43W4hIzQ5SCYRspPIh0c+k/bxg7+U0u4oYBqfrINpqNfcaYcgYYf6ItXeRndqEuUVaU5s7b9JifPFY0+Xml1E8kVXS7nXMXXjKx1JsL4jmAWyLNfKa9W168gbPVQxhwmK7sVc9vbgAwKeMB7/1a+6XywStvZylhZfF4FkPG+qGvfRt+119xlwzCNgOA8gMcglqSDNbbr4buRe5wLlPRSkQcJBlS37XTwcmf/uDKT/2L+6hhwAI24okV0BQmUxdlsLIXc9CYA0FsbnxjLhcA5H8h3GwFCCyilAEAJoGQ9Ch9Caj4mAwb8QP2EdT9+i9c+OF/+KLQ0ZaNAFYxBJfpnHphtuFVnEjwffHeHzpwI2mUD3yNqk/dcHXjFeaYSAXMkFCspq7fXtvwztxw/Nbmwj5FKT3PD7AFAAjzgO0AgKwptqnmfr3mAJQtkV8ikwlAKsFJFEC/307chqo26iuRbTBPqOdlKVx3SgESgcn9v9QQiFjF3H/Xx1R9Zh1CEhjPnFlGSGAjKOCVH33mkxud9VdefZysW1rYJ1H83lv/9NKBd4skPB5JiIcWBubjCYAqEXkZPvLULwOBD+YLUaDQ0Ao9iyu4EXRlAZcViUXFQ4NLMSu+ARcMZDq46kwAUIo52LLTfNUAgCpDlXU47JP6d7ztY7FdNMg0wi4JAEoB02x+Qd7ynGz1TjP93KLuZ4YImIScusgQQx0pvDzx7NcfPPHvlMzxI7e/74EfpXwdnyEBAyjp48/99nDUKa3A7j4AGHffsdV8ZhYACE8rlGiYbHR7a0EeAxOFi4IpGNyPeu1Ov1Ot1xYWVkiyUENE8EJEU8yfwBvcURcgdDFUfcVWqpXFOGoUJ3BSeO0yqTuXLKt3ox7RgrMUAID32l4/f379xeZCy8b1MBMO4w5lEnEL9QNx1CisrPe+3nwAYGb7Pz9uWZ/04voL8yKwEpYXjhGi4mi9ttX/Zb/WLvfdaF6e+qa3/fnNsVKCRXxmxGg7vXPDUSBkG6cOOUO9fK1TIY900GuPeud+8sPL/9PPvxVLMWCAoTDIGQCkPoysMwUeE8HeAFQytWnaov0/38l5xhUuAYBSg5PBkAHcSYCViaxHShiNYOy//ecX/u6/fbViD9UrTEIjJaOIVB08q2XmfJaN0OJS1WqludA4RCQiakwkkqZpurp+0sYRMh6/A5hBqRu019Zdykevv2F56VDQg5cwlM/O4vxYP/aFnA0AsMkoYCYAeL0wwBYAoPyKko3gSYDU9bv986pUry7HcTbRpgIy5T2nHTt9QvIrxTnhRYiUObrnjo9l69cwWZ3kE2glmwbAiMhq5/SLp/74ldNPdrrnqpVKvbVEhj90zw9X4oMwqiQm1/eYAgDZjJ4ValX9MFk78fzvAR4agYRIxBuQEAEaOu70ukScwMENm/YCBnkmQyrfaBhAZkRf3aRdu30AsFURfwUAIBcO8CLiRJM0Td7/jr/CgMCECjJb3i1IQSUAMDlx2i0AMMYAPPZwZGIVN3ZFFhKjwmz7if+Vz/+/+r2THC/82W/5e42Fg0bVq2OvzKysYH3s6d8Y+f7cjt3OCd/BnX5mI39rAEDZbsX4F0M9wUxOBcAo6fQHGyoUCIShHAeQ7QezEef7/Xa32200Ws2FFpGBBG8GH/SWim3gMEKZBwAKvfypJdpiA0FEWKUSt8LsVLWItHrlUeIqf2nYAA7nNDAE3Gj46rkXRm5jaWlZMtsWDgCAmb33K63rmJmyMStdMz5oe19Xfhw4hJDxpCvj8HBJp3g2ACjYYgpaXjzOZIlIRHOsuDmk0Nad5u2J81/ewZvaPeCr8VI85xPMngBkl9YHPWbd6JwOLBdV9SVDnPLfF8IgGfTXX/nr37z4j/7tnVKvsnVqSBPhVAOvk5AqLCll3HCzn+wBhSe1gMtMnq8QAEzrQhOUwQoy8H3oOcgQTIhidUMRMSP9l//wzE//wsVadaluKgISEUMMUXKQKFgeFyii6AvrytKx2FYBDxhVTf1gdf0kM1OmEeQD6BB1nfWN4cAdPnRs/6HDClOoS+Tlg8y8u9MEV9FLTWV5goPOs2Wed2kDbGcAQGk256cMAAyRE3F+0O6eBdCo7Y+jFpuJhYGMtDCtBba9YKIK8iq5TzCDYEm9qtaqrbtu/vZwa8WDDcibPMOGfhQ9+9IXLqy/8tIrD3o3rC+tVCutCPGHvulvEmImARzn9Y3q9ASAg8VbUDcXAslDJ34JUKhReOacRKflpd45FRbNaF7uCgaQUDXCN+rL/cG6hxAsEZH6b6ikI7Nj8MT5nZAXfq0BwLiDK+LjqDVK1kdpW2De/fbvr5hWKPe5FAYnHp/ZTLMZFKD574S382ZLosusqqTiQcoZwGavYFrvrP767/+vqevWKivf+cH/R61SUyQibMjDQIWePfn7nd65MDS+whzIE1XmzLc+FwDMUXPSouj0UCIaDrvDUc/LYIq6EBwzldinbjQatNvrtUa91VokMoEhOY2+NvsQz8IAmLMfnHVMxMdxtV5btqaarwVjjsX1NfEVuiWlNOeJVYVVqdttnzr7RKUWNRv7Qv8xs+CAUfiF+lIcLQSSJeBLra89GPBmAwAYdyu4vGq/uv4CJlvS2WMCArDYut5wnPfj5uk64DIBwE6ZCHNEF3Z8bXbpdG9FAQrvdZR019bPmDjKQpRkBi+sY+UygL26dnf9HTf2f+vf3Kk3L5N4NQmJQarqCZQSWVWXGbAqw9SJD4Gr44KXdXZGvWSwopkAgIBMKhIUiP7nCRuAFROxpEgE4v/53z/70589U28cqJsqqcAPSaspayQkxkDUgIrJYzmV7l86TpStvSVuuLrxElOcb5oTkTLI+aTX3hgNdf++6w4dOpLr4hVENN3i7lI4/QUcmp0QNpcWIiib4e3YIXh3c8MWAAD5inDxP70M19unVbXVOFiJm1nbPruXHKr2bBVsHi14ywkAgfM5ADMk8PID9njLDR9s1JfCdwjGS5qVUNks3n7tif90cfXUhbUXrEFjaX8cNR44/r59R95rFI58RJnwOTYBABQrR5TBM4IByYNPfCZggOz7QmxUFa8XAAjY+9bj76lV9j3/ypd6/TVPCZH5xhTW2KyxVe5L0OzxGm0u/a8eAFhqHb7p2LdAE4IdpGtfeexTJPqee/+i4WrRQwm95G0AAGxeAr4s/SeZ8Rd9dsIJxqso5WQ5IbXpH3zl3z9/6kGjrrFw6CMf+J+VhAlAKPKw1nnhxVe/KjCziftXDACEpv/aTgBAUUxQoeiVpP12byOTFCtd9lxKlMT5Xq/T63Xq9WZrcSEApCLqFi4Bsr1Pttl5PUjlZBMCGEW62DgYR1Vmu/26/zWDB1Nu6GFtOtcZl4xhpapKZ8+92O6eaS0umqgScmjo74YPvtQ4Yq1FkBEfX889APDmAAD5WB48WT1LtpYpaPdOpa4/3esMAlOkrfp1lbhWOhJbnQ3Sq33mze5cm6sNAACoCsF2hucHw04uxOski2S+ELgIBM2RT6s4+5V/eeviB1coAawHK4YeMBAFUgExeS/WKINS2KOwy6pKaoAUFAEAuWnT3+3cDyrFaZncjCTKRD/9Ba/nDVdgqyIJSHiQ/rN/8Oo/+PSarR5oWuuDmaIG43ZiZnghVDJNmHzxN0SfKIoYZmnhiCo731vdKARSbchepFbVd9urvW66f9+RI0euY7aByK6c6diIuLFkbSlJBXPOLDFcotM4o7SQbFOKUNrR2uYcQEpF+ZUf0UCC3QwAyrOuzAQHcH603n6ViJr1Q3FUCxr/BDtRr1A++xZcBlUmQ1/kWUXFEgduvyFRUrrnzo+yWOV8J1h9IO0IMTO+8JV/eebccyPpLlSXqo0lY6I/df8PU+WA0RRsjFdf+AfP0Fcp2sphZOkZ4okfPvFpAFALGuUqUpe4+FcRAEDvvOnbqpVlIv/UC7/TG64XwqB7AKAMAGZOaV4rADB+3fvv+t5wPg2pV/rqk59SQT2u3X3bd5c5P4FqXvoTW6zB7QrrVEqLxcJ5hgjCQkH2SglCAo2IxXv/23/0jy+svSCE5aUD3/4tP2PUk0KVmAUkD534jNCcN7ztHDihTTQvw88FADOvVSFGnEWlfI5Hw7TX67dFk0DIGb/zYtDnpd/v9vrteq3RaC0YyvVtxlpA0/2mme3/mcG8RJDIzg4JNepL1UqTyJbe87YY81eCBLaIz8VGyvT3hZg00DeQrZUbIgEoHY5ePPWYx2B58bDPkGzuS622WWtW4kVmcqKGZjySe19vVgAQrD/7yYV+/+KE9kmmJkUgrVcO1qotAKVRGN4oAGDXCn3aCQVo/EiKnlt7nikGSdhYyva6SCxDvYAiISibQW/1B95O/59/fzuMp6rAsdqUUoaQwhMzxGvG8CPYBZgjOR6bpP3sVO2nzPlhzVZ+A2eTVcEgD7dB/kU1C8QVJaWRUz/6tz976n/4TxcajUNxRCTBlCDoD5hyQ308zxVfiE9ZG1tTUyRJ0heRXNzN5/0eA/Wd9bVeb7S8dPD66242bJ2ibKFw6Zs9a4i/ZXE3ezl4JgbY2hxgl5pAOun/Nd2sgrLChy6aiHaGZ5ORtOoL1UozTG+8Tp/aS8nSbSufTVUDQUADokT2vjs+ygyVCEEVNKwEqCGbfu6Pfu7ChZcNYbG1nyrVCqIPvOMnNKpUhEAJkXFQQLjov8FsXVcZkId/+dTDFzaeQ+6DZoh8Jp8qmWMrpV5NpoxCork6p8BM3PEyjlQA8JotpufijOX+R0Y3Crqo4bduPvqulcVj4d0+e/IP2t1TAgPyQRhUVWGKG0d7ktuvIRThsIgF8lAKllj7l286dui+nIFCAJ568fO9wUUhXWkdvfn6b1IhhpRur5FNySC3vtLCC2xWNU/jspIcNJCwbf6HkqnfffSZz6WuD41AI0EE8iwG5AFSMcSeQQvN644cuLsaLzONoParT/7Hl04+0eufs1H1Q+/7H44s3zjyzoDZqFH3tROfUhjlMTFmetC/BW6ZRfeXsvIMl0QDZTYxYH6c2VzFZqggdf1Ov+19qkiNMaoUdiEAUUJ4hHuddr/fbTQazeZSWBOaQCzB1zyreGSS8T9rDWy2Q8j4XyNba9VWoqiaE+W3SLc7k1XlS1ApaKcFTbkCy+gCCoA32hdePfN4rVZpNvcrG9VU1UQcAc57v7J0jMjkkmXjWKcaCgy/BwbeWKW/kOTnn7PuM2dLvXmFhmJinqTDdvdVDjOu4gApMbOAatWFenWFxvyL6cNA26BxbvuL5zWRdrXPEmgFNNltpS3agXpZEwBN0+Fa91QocFH4Pop6SyzCygLLoi6OMXrll/7O9ff+4CKUECm8B8STN2IzniRBPYfVKYqPg2qzH0m9gramMgqb39BcVwAdDJ/VagOmShIpHA38f/7nr/zEv32lEh+J2Sgsk8/K98l8pqqsE/0YIsNsI1sholHS8z7NBYLG5GGCdDfWu93h0uL+644ej+O6eJXcF3O7aG+XAMC8IP4a7wRP1e4SJkhqVFXhUtdb72y0mkvVapNzP2C/qVG0KwBg8hFUAZFmaWaxdfi249+sYgoDTlU1ZNTqp37jf2wPzlUr9aXFQyq2Etc+9I4fLyzwCMaRJ1LK1zO3QfVjwIE8NHrsmV9O/Ug1fGQm0iA6rsIgX2S14PKTK3+Hb3klOxMACAnUGKLgXxEGekyRwktunMwSKRIi26zvf8uN74cGOXM8/vwvD9MR1AAS1kmZWdTteQ+/DgAg3CwNRzHbyb7vro+HtfVizbfTO/fsy3+o6onsfXd+D2vgzioJiIyH37QclXU1ymbAM3IMpyp5qxVMZFTTcESzVhDoxVe/tLr2anDQC/pRmTFT/kezolM46IRm8FjdYv3IbTd+8KGnf2m9ffrsuSdGbhTFzT/17h9dWbmV1DHDKB555tecH3h4A7MbAGBiw+xKAMB8m2cPmJHr9/rrXtIsjASHwUAGCi0Pl/b73X6/32q16vWFQGcvtnsLfnPpw/KWVcUMS8fiF0PEiNjUqq04WmCypYI4g/flIcZuhfydZO4Z1Vi4UKQZxcC59NSZF9rdkwuLB+JqS8QRIgYAR0SVuNVs7BcJ0XJsKbAnDfRG7f2TQHm8AJADgHITXVXDXp3zyXr75LhIy0TfiYjAhtkuLxzLUTTR5m2BqwIAduWLtwYSuo23uvVnuAQA6PVX+0ln0jtGSIL5jAqxgTGG+irH6xd/7/97PLqjQswgqCSkABPIqDhSKEckHuSUDlB0dOayb+4UtqPPYaCB6y+AZFL/oEz+3w8l/TrbBVAdNtY0IebP/58v/YWff5Urh2KKQA5CoBRqSmZbY16mGesAMgBjjLUxkx0lPe+9MSbYy4VWqzEVlaTdXu93uo36vptufIu1sWZS8FSMCLYIS+PC/coAwEwk8Dr6A0zV7kFRSYUBpL67vnF+sXWwUqmFIjhzvN/0qa4GAEDOiAjV+713foKRdU4zXSCNeoPzn/m9n0olXWwdrNcW1dC7b/32xZW3EVHkoUZ9qKiD3qNq6d5tvTFpOdCdlYXw0JOfVGHhtPAyzJZihIklqIUWJYKIEEyoqKZwc0ETYiXkYqOBIKtKpYKJWQHyC83DNx97P2dMBhaRR57+ZOqD+ylUhZnzVgvl7TTswYDXagKQ5ahgHaXq77/r+0JNGc6HeLBRqHF+8PUnf9UTDi3fdOORBzyJKhn1gBHWMte8XAzPAwCqnigKYvYiY4NbgBUj59InX/wvSZKU6q2AUAMcTbMGlRJPeg6EyZiqKjzDqLrecL0SN9rtC2cuPpXKaKV1ZN/+Gxu1A3HUhPNkZDjq7t4EYBoATMHm7Z/qTUywsooIAer8cL1zESGMZHidFWEhGKRI01G323Y+bTUXKpUGJi6UBl3gkl4TldpM2w2zZQyg6lWpHrfqtQVj4hyTIHgR5rY/vBkDTDnHbaryL7lMueNAMSGAoUys6j2RHY0GL7z8IMgtLh6CsQAMDJEP85PlxetDts0n2RTi+OUmsa1/bS/6vRYAQCistYwBQKEBWshxqaqIX914YbPFIWf/Kvv33VZQE8PMqqxMOBMAbLvA2Jl6z24BCZ3zJmneT+4UAISLvrrxss87E/mnzeyURcQggpE0BifpD71VfurnDpulWIxwDIhomrU9IF6JQ09exaFyG1Ed0GkMoBk14bKeOJsDgApIlJWU1SeSPsgUkVkWGwWPlod+/dxHfuoZ4SPNmNNUIiHPQhlfInOJK1+EMAEIE1pmNiYKUdK5Yd5cyajuTArlwbDTXmvHcfWWm+6K47oKPIJxiZ9RhdP04ZsJACaK1+wXNrPZtgIAM+VBX5chQCnTAIBzo+GoX63GhmvInsy5La8rAQBTn4Uns3VonQK+Wdv/luPfwkHak5WcEYNTL331tx753ypsF5evj03Mtv7B+/4qmxobZYiIkDECDcCzZOrDl3xLlkMBlzmInV19+tUzj4fnQsirMEOZoaGTq644pflAU4t9xHkAQMWGMYLXzAIts1QjT8K1yvKdN/+psrEiM772xKeKeZaQqjCRcmgWigG5vTnAazgB8Kpk1Ibe+Tve+gnRlGDDSSMyIAflsLJy8tzvvXT62fve+p21+BA0Jh6yRmOC+RQG2BIAFNFexAXfpcJE8+vPfMalQb2eiZ3KWFhXBZNQwRlQYLRlWregwp+RRIM7TLd3UUS6vfWL6y8QmZWV6xdbRxeaR2px3am4ZOBlUDgqjN//1nLAhXXipuaJFAFk/s9sWfdf4qGm3Pjc+cFGd13VF9oAgQgUupgi4lzS6Wwo3PLyPkI8ZgoplbYpZr+NecE5D/Ey9Z4JEUhEXBw1m43liOM8khThcbaz+GsPAMbpL1SB6pg5KCZtrF04efbRZnOh2lghUhXDBgYkmlhTX2wdnhxvhX26ywtWO9Ie2fu6mgAgSBsHdMpm8vZknNuL689NMBt14uiuLN9WsupRzBJPv4Ku/+5+8Xbiz/Y1fS8TAIQLd/7iCxzZkvCwh1pD3qmwsjIZQ8y2Kmuf/lv7b/7uJqpKsVFOxMP4ILuS1R0Utj15SavXk6cZ1f/WIw+6xFnJf4gBr0aRekqeVx6RbSnX4IVsfO5rq+/64Yd9ui9uVIwjJaikQhRRJCKFRE/5QpOM+ZfMmfiA934qBDMIJMNhv722bk39phvfUq02lbhUqctUHaxUavnoJQDAjB6W8uRk4NIAALMk+V8zUaDNQ2rnUucSay2zLRZ0CuZP0TuU3QIApc4Sjy+PiBLUBJa9ev/AXd8HbwjOKVTVRO4Ln/93z258eam21GgdVEPve8tHmstvUzJWhwAYRuB1Ok1esvr3zDb0+YpiK+iHPPjEp4MyqmbTyrDOotZ48YaIRIKmlpZsgDYDgGwaxgoi9YV7umjQywNww3Xv2rdwayG6kp9VefDEL4JZRII2axY6MxFVQywq4L0s9RpNABgQQyQeD7z1e6dMo0N3WcWQKJHxfuNLX/+Faq21tHDklmPfTKICDhSPcRO6/BCVgMHUiSVS770xUdG5EDXPvvx73f65oHqpAjZEnkE+cH4ynS7JlA2IDGmiymUrw7CfBYgQ52skqsL94VqS9lbXzgwGF8g2Duw/Wq/uO7h8kzKTJt3excKGcvzgb00nn1XcSynBXAYAKD1uNN/plsrI3PnBeuciSEJZP6b3ICwa+dFo1OmuRpFpNZeYYxEJgJ8ywQMTZAOK4r7sclrooG8uIMqbZqGHWiTx8LsL9X2VuJH/at5TECIOYmVz8uzOCugrqKVKVowZRlVHxOro5KlHu/2ziyuHK3E9bNaRKJF6SZcWjkS2UVpy0IAYd3Vh6dq3U3gTAoD83I7vpI5vAav6C2vPBuPtiXljrii1uHCjNdVsFhcqujkA4Nqs+y8PmeRC5JcLAET8+YvPm7hSBgAGxsOrkgEBwlGcir/3WO/T/+QgHapqDDIOwXnXh3UxERbyBCaIUnyL2nooSLIwo3m8CRyvHe8AmGIcgsB5IIEYJBcgLyBahq3BGVgzeKX9zh/46vm1paVGQ8R6eJLUSpzTVXmzOkGo/ot0W4DIfGcrZBMhgMkm6bC9flG8uenGtzTqywH2lFruMl0Kc3nCq7Mj4JYAYGLgtT21lu0DgCmp/l0HACJp2J8uOO6lRYvMdo0n389uA4DQKjBKKcCqCNTkVvPgW46/D46JLRFdXH/id/7oX3Wls2/xsLH1OGp+6N6/JpXYqjHkVUgIFuomLixv8y0xh23dDAGSkJAQ64XVF18995jzCTN5hULC4waNslp8Wsx4DAaKCQCBRYQYKtaAQGlpN04feOvHxwc+Z/8TqcJ+7fH/qBTciRxTJYpqSdpRsco+Gx3A7gGA1+bLqzJAhHvv+h7KeDVhgBMoIkKIFSmrqliC66enT7zwZQB33fxt9UpLSMJCsHLR6Z8U1Rl3T3hTJztLrmAdjnpPvfCbMrmsGo5lWCj3AY8ACrHEIjqeLZAU/LEJu3dlhQvYW4U6/dP9wfrGxpnEDSrR0sr+Iwu1Q83WEVYMRhcC8XcCAORjLpkPAHhio3SCWFgAgCmO0Haq/y3CZimIZWlt5Pr9wUbYByhF1nFJPRx2N9rr9Xq12VgsFqyLGiYYDHsf1gnM5ug3+U6mQuY4AQXlnALkR1yp11px1GRYVU8EGccQmp2P6HUQBMsZaAQoqVEhl3aee/EhGLe8fCyItnGQNFAvxCsLhwxXp4zPhHbxveveHOA1AwDZDkAgu7LZdCeogLsX11/IuD3iytA3PCALC4fjqJWrgNAWE4BdrL93pe6/vKJ/i/O6AwAwGvU3Oqc4ilUKO0lRAnuFYXiQJWcipKv/8vuX/8xPLBJEIyYjIKjP7BOJSJGSsoKJm6hcDyGQmxC1uxIAQAQJNrKsYU9RCdLT0QmyDUQNpZikgm7y/u//46dfsIuNBUOUKiCeiDigTKGywGLGQddyppTC3zGHQ4ZIA5okotSNOusbSeKOXX/zyvJBFRbiyTaIlLvyxVmcKdO5FQDYjARKg62tnimaW/HPtIIujucuKQJlNzkkSBEfWuBEHKixRWGa4wFIVmHw7gAAFISHfJ6T63h4h+A4liVv4VuOf/NS7RjBW3a//+B/ePKV36tEC82lfRE3KnHzA/f9qLK38EqRqhoVT/PM/GT+Ey45hcwVcSoT/QhCrmGyLQTWR578rIiHGgSVoBnJeBoAZK4DTACM2qzSgm829t12w4eAsfNx0VkMunuC9KEnPg02EA8giuJm7cha+yWmSOEAybxm97LUa/UVR/W7b/0zWftKQ7lWaKUbRcIUQZwqQa3o8MGnPg2Oarb+1rd8u4ohdiQsYUl3ZhiZuwTsQ959+MSnRDwAFVYjUMNBSSMsiBvkusaZ06ZCcjY5SJDvoOtEs1k1W8EXQ+wJkegoTYbnV59Zb18U9Y3m/pXWkbjaWmgeSkZrgfPNipkWnnJpAEBli7ftAIAJRsHOoo0WHzD8R+r67d5agG2b0IJXpX6/3e11lloLlVqzKNnzvbLIcOS995IWuwGTb7I81ZFNo4ApkdCsMBJxluJ6rVWtNEkNEUk+Grk2y0FVpeDu6nFh9eTps08tLO2vNRpeTViPISKPtB4vNeorhRZIJiiHqzcE2MMArwUACFZ6U6VMaZYvqxsv52a1vuSvx2RYlWrVRrN+OBsJFdTHWQDgMjxGX/fSf0oOCDs5nVsBgH6/0xucI2tUTHgCgzxZ6FNGbBxzqnywdv53f+7Y4r0VqJFqygqVYODmwEFSnQGnSlS5Caae4fFpSrZcSq9o9kcXZc7QPoNTwMCN0vQxa2OYKqEBjjUxH//BP/79R/qt5sHIxAJvXCbY4hjWs2DM3M5mrKKTcTbfA5YiH3CJzem6nYuD/vDQwRsO7L8+QAIfiLck81j+5VWnzWvpit0BAOMhQwkAkCpAW0CC3QIAeRItLIozmZz8n7JhrY7bZlS2By4DAOTsoN0FANln1YhYVZ0qEwwBtxx9Z6N28PTJz3/xiU8PvV+q768vHmBQvbb47rf/1YjUgAjw7Fisx7yL7+fr/oZ1Gs0cIWCJVOBJmdgFfaSMvJHtTRKxf+yZ/zJK2sFTDxP13DQAyOGrqjIRmM3bb/s4M0BOhUywVIYIaWghEyqBC3Tm4nOnzz/sFQzUqyt33PRhVQXrwyc+Xb41ewDgtfm6/86PA1A1RB4kQUxzqiMbvklCIYo9/PQvORkSmesP33No363ZVjoJCjZOmWk5HwAAePKF3+kPL0INAOEUanJFKikGd0KgfJo5tS4M8gXPZzKOBws8Pz7nQswWosO0ffrciW7/oiBaWViJ60tLzaORrSrcFgAAs6wbrgQAXHERUGzMS4ABQ9fp9zte0vyb+dthJWUR6XbXR4P+4uKijWtAaIukgBBFtWrLGDsc9pwfliVBC15EKYbP8JwItvTBH4BgiIPknQ3FdL22UK20gkvANSibQ6qK3E6BfPCWUOdfPPngIG3v238d2yq8BKXaoB250jpiTKyZsY8BiZDu9vRijwh0dQFA1sYiE3phzDYjM4PLvIkcFUinfzpJkjJfDkHUkTXwUFYWb8zWCULEKx2I14kCtDspdOZWwM4AwJRrbKBJKeFi+2TQNAQ51oxu6MPulpEInFpK1X7XrRv/6p/cgGWjlJIRFYEQMeeaPsHQzyBqSnSUBWAKOGLOvddxa7/8zVBIhdtWDJc19/pVgEkgjATdxzQyZCqwS0grWsFP/9iJf/XrZ5ut/RUix0wK9sFQlhQcPmJ2TxTb2bsKc43iFLY7q/1Of//y0aNHjrOJQzmo2URD5lR/On3/5s2UM57UpShi23YYyFYOeNzfmnxpLffVeP6U4DIfbe81m+PTzJAqZaAiWQ+7SNJFqU07fH6mAMaYAkTT1mfFKsJa++Sot3GxezLiaGnhSKW6QobvveEDBw/cL6SMBGCvBDJGxSNTTQE5lSin8Bb8flva6pMpEd9Z2GCa65V/R1UYYNDoldNPrLdfTfyg/Lhk4lfBaJW4Hh+46dgDETVD1ahigiL8DFsGwBB5wqPP/rpL+mHecnDpxhuOviPUi0+/9IVu/wKgXplYWFFMJJhZVb4xE6Fk0UACMYsYJKCMbV5w/DRvb2yx4xSec1PIfR7Zf8fh/XeXq7ptVaXiVPXBpz4r4GoU33Pbd6qqUhQidz4E4LyM9JmQVMYnJEPq4QmRQB9+4tOhRgelgLns68PzGxOZGYXmIgoAken2Lp45/3RvuMZU2b/vSFxZWlg4YlTK+u755NCV44OUmikGs3FCQL4zvb2mov2EFs1u5OnBsD0Ytj389BXI14HW1s47P1pcXI6jRiYqAIg4Y6JmY9m5NElS0UEQg8oanJkf1lTrZoLrVc4LY8NgGM6Xf9jW67XF2MSUWUuEx3laaeCq1/qbUuHm1bggZsWKdm/jxZe+XG9UW4tHBJaDXBVBxNWqrWZ1X1ijKquyqeTCr7n4hgrMxEnQbWxU0mV1Wve+tkh1s4rizAUsuCox2OSMdiot+I7nOr3+hWGyISLBL2VSQ4SJdHnhFmNMNk0S4rmx9Grz3HiL8L915Tav63/pccrmfvEWE4Dwp71359dfDmuvIi4wTgGIOoJxpJGxwiB0/n8/tv8939fSmIgE7DMAkHedC/0Ziq+HbQGcUYDmUFwUc0auZdBWBgBKwkG1kcCAOw13XqMKcdNLhY3+8r8+89d+7pnYLtbrTRLvSCHKWvSiudw0xaUsDCn/EhGGIfaDbmdjo9OoL99w/GZjKgTOS1jeSraZpofLl66wL0kK2qbF2KZidxMAoHk/uQsP/OQIewsAEJS5y7cGJRmQKwYAOhctS3ZNLmw8t75+epC0q5WFhcUD1i5EpvLNd/35Sm0/yIe5sxBKpJ0oa/mTyzq1WjgZa065yUS0LqUQWupa5ssegWURPkLO0JneeSr9CWLyIsJiS9uimTVU+dSNf0tEDX/tic8wfChYj+6/9eiBe8bLwU98JlPFAkg1GLsGt+ZQXBYetN9ACYyUJetNqDoVe9tN71uoHyQya+2Xz689PxxteEk1s4fQWZbPFBrpxGI4Xlm68brDdxlUvPe5nP8OAACJUfbPvPjF3uic91hZPHLj0W/OfpcEGoe1JVVDnJa3AoJKDwmUIiV55MRnRUcqlg0A9W4zBfeKAMBUZFN4zvWsRN1658zZ8y8mybBSqSwuXb9/+WYTllTFl8/5VHAoY4BJADBV5G0LAKDkorhLBS76g/Yg6Yq6clwyJnjDI0mGG+11VV1cWLJxJXwYVfU+tTZuNpYBJEnifeL8MF+g0jAlmLrqpeTCMwEAqxAZERgTKiaz0FiObJBiUyIWD+LMjnCKF3H1xgTTSo46mcI0k4JnFRF56ZXHO70zyytH40qN2YqAyHuQiOxbPGy4kv9JcZpH/sB1hBRe8jwjB9G81D9nArAHAF47AFB6ILm8yzsYtvvD8yLCUMFY8h8S1O38Yut4HNXy/Guu9ueaF6t3+uxc6SjyUkXjNAAonsA0HW50zpANrPdxuSNQUlECqJKKf9t1G5/8pzc2D5LEYBOU4CTr5hCBgo6gV7Yc3QJmIWIfWkpzAcD2PrPJSeWswVUKIj5leQqGQS1Nm0T01d+++H1/7xlxcb1aFTbhzWSFPiA6Hdq2o/NQ/BjDDPvtbmfdmsaNx2+vVBuT6wSX9vwqv/q2TsaWtzMrQ3cCJbfvDLBrE4C5f2dayX4eAMiu204BQLbklh3veQCgRB/UMxefurj2MoB640Cj0WJTrdvme+7+YY44KHXkTklR8EvKiuBSd7/k/EDIhMz8Nioimarpsr8mYwGQnBHO8ChkXpQmoCeXEFex4xv0ezYDAFU1pI7ka4//kiEBWECHlm86duTecPBEcG71iVfPPU5EgrFGU765QcgNhr/BUlhBbAMRxVHzrbd+KyHKVzC1nGxUtTM4e+7is6NkPVcWRiVeOrjv1oX60eJXQs+F82XfzZmgLI21ub/k4Ynoocc/LVAivunYu5dbRzItztwWyhgKcqKBgTNuryir0umLj505f4JgFT7Y1DKbYAy/0/u7BQDI/TeQS95kNR8RpdK7cPHV1fXTzg+a9X1HDt0eVxYL2dAiPmeymeXLUuiEKm3RcLvkp9j1Y1yoA42STqffLkScmGxuFCBENBwO19dXbWQWF5aMiQIXSDRR9ZFt1Wr1StxQJeeSdve08yPDMYBcp5VmxRCemgwHsTuDQvJOlEkErNyot2rVpVIZkEGgQtj0amSELYYA2aRacuXrvEMDwBJ3uu1nX/xyZM3K/iNsaszsfapkRJNa3GjUDjCTiAKeyEp5oEMKzfS7eUYCoqlG2Kzdsz0A8NoAABPMQ4IoRf5Qc6j/y3VRkva7vVdDshNxgfqv6hmZj2G9tq9ePbB5SvYmKfQvo19cBgCb8f1wtNEfbGjmDihjETH1LtToWlW38fN/qfXRv7YPBlpxhZpLWdcyK0LMAY4OQiEMFgbcFQGAsehn6MCFDmSf3dMwVqjJo6rG0fNfXP/un3ys11moVYwRO4rBzmVq1JOkmsAgnNRVpJkrp2M9UNLRMO2218X5Y9ffurBwUNlMimRs2/R3R4dmi/tKUhbB3c7rbmchOHwS2u1wv+mFZr+TmQBgq6HGFgAgnxvMAQDj9n9o1z1/6qFO70yFq82FI5ExcWXh5kN3Hb/+Q4WWHzNDBMyi7sL6S2fOP+n8EMrLi8dvPPqObC0NNj8Jopo5QlyKArTp/ISNqHzhMiNykKiGjcysBp/4MKyBFM4G3mf7vsTe50OszZ0tUr/WO//Myd83GQGMlhuHbj723lBkBdX5rz/92dQNlZhzi7FAAQoenIXyyTfOl1cypMH/VVUb9cU7bvz2nO61mZuB3G+BCln9gopTOhUSbNrGEv47+GJFQrDiRg89/ctCYDIP3PG9os5wJJKtnodVkExlMl8HD2shAB5+6tMqwbUqPCs8drO6rAQ/L2aV5boFqhrkeEEkw1Hn/MWT7c5559ziwsHDB2+Jo0ZpyqSh3C8+8/YBwA6r/10iwCiHGYuqDkfd/qjnZZTN7mBy+X8lMoNBr91Zs9YuLixZWw2ZV8Sp+kZ9X722zGRAXjx5SdbaLxEYsMw8vthjDc008BI3S4WSKCCB8gNjiUhdSkRxdaFVWwl+PFQyRJ+ot65mh2hqOzM4IkzeSSEiEnIqp88+t7r6dHPhQLO5X0gMIgmh0o+WF683JlYV5uCdoh6aMcg5aMUwgXl2AirvEO8BgGsDAGStKzOd/5UJ8D5d7zwvEgydPLFATanZL5FtLLaO5RRc3SkAeAM0tvRyIM1sAEBEnd7ZJBnmMzfJZfIRptLCGKq/bd/gN/7Z8fqNFUlSqmu2OhAETHKSopIjVDW6njgq1pVo/tOyFQVo9vOmAKmMKD0Ba8FV+CacO/Ok+54ff+rkKipR1VorDBZ47y0KbdTcj6awXN0GAECupybJqNvtDgdy5PDxlQMHoUanS9IdAwBMkrOxU3UgypuOuvUjp1v8/fn+MrsS32e3VbYCAJgY1Mrlv/AYAICUZLaSQ3H1ROTpk380SjfqcWth4Sg8Gs2D77nrE7ayoErGkIgDSdhkPHnm0QtrzwYCNxuoOmZ7zx3fCyFiD2VVw8apkCqBXFABv4wImQ15ghFsaRM96+NOXr2gxBL0M8JTqapCMhMAhL/w6tknT68+EewzibDUPHLzsfcr0jCLJSKvePjEJ4WEJQJ5Cus8YQNBjcIR8TdaAguTZqhhiOHo7W/5WK4ZUGx9zFCFyqdDZs7tZtWwSOU3P+BZjJ3XBRACCSsSP3rk2c8BvK959OZj7xV1hCgTn/U+t3cI5yNbEgDAZL/6+P8V+soAxBMbiHiCBfmdFjrbAQD5TENVA8U7IEnfH2ycu/BSt3uBwEtLRw/uv8maWmamqxqKaZ1XmM4BANuiUV2FZF9QfcIf7486g2HbS5pJOQmxyTQDVH2/3+1025VKpdVcYmamWNR5PzKmsm/pBkNh/UZUNRW3uv5SAHK5SjVvyl8zAUCGOZnhVFTV5k4scdRcaB0IomHFstY2+y27kiZKLYmMK0vF3lau5RDwdTIcPf3M74Nkef91JqqwxGpSlYiRxHG9UTtAJERWc96ikIYGpZNeu72xsnxk05L6jLJ+DwC8xgCgmHUrBxMAAy487HmqggqiHSLu4vozyPQSNFO9IyryoKruX7615Gn4pshTeqWfYkwBmvCXUTl34QVrbTEBIPXQUMtYwCGKUur99J9t/vDfWvHG2EjADqrqpYBcAEBGkRIfRrwfYxm4wOCXKwAANFE3cgrfhb6iUVPFMFXcq4Pv+W+f+OozXI2jOI4Ba6DOOWIlZSKSvLucuZ9uoi7MAwCh+leRXrvT7Xb37b/+yOEbC22NCR9YCCuEdgYALh1PLwUAipi/xd+cWoPbDhHoTQIACpKMjvcfQpIr+x6QYtjvPH/6j1Vcs3G41lqGaKN28P1v/yEiEeKiwgNwYe3Fl898NXghZarV2SYo7rvre5GpHFZEJN8M1tJYYLsRMiPxj0WByhxfZQjKDkcTlT0ZkKjLdIcmjISmAcBzJ7+02jllMqDujuy/68iBu9moqkIjQJRY1T9y4lcUSaj4AxsKYxfvb6xEWPgrQw0grHz/XR8DSVj/mKqBiy3wGW373Go339ANnc+05Hs1ucs1Pw4oMrtGAT/05C+GdubtN36wXt2Xh/fAvPFlenfhuKTwDz/5S6qqkjFsVCUvBPXyAADmw4BMvRvlECSFcuhG+9zF1Zf6g7U4qh3cf0urdciYwDQNkpBanhBOKLlpQfa77NJfd7WwU4CKWgTAIOn2BxuKVJWCOAmRBodgEen3271+t16vN+oLGRITEUmWFo7V45aoy581BSRJ+2udc/lOsJagJs8EAFmXNC+zhER96p1GUSX016OottA8gLAiK8psBLO3/DdTvHYRA9B4X7fUuip7LQrOnn/pzPkn40p93/JRpSjwMBnwfrS0eCSytQC6iEhElUWFAay1T4q4laUbcpW5Ld4z7QGA1xIAFCXUBAAIFCDwOHPRZBhUf+7i08ZQ4YRdRNFQkXqfrizdFNn6m7WUv3wAUCwRFjnGe3f+4vO2Ui1syQMAAODJgRhChxa7v/hz1x19ewPKoARWVSTn1IlS+G8GMexx2GpWIIgH7CYZ0G08R+MeAE1/X7zKk1S9G+yBCB38nR/5rX/3+xuNarNSqShFKiTkLTy80RJBP2//8/ZDEjNUXK/Xa691l5cOHLv+ZrYVBMclmIKEU7zEPAxwSQAwN4xuEwBsiQFkE8+qeLl5lu+7tQJQvn1TgXXqNXIAgKsKALI/S9ktCYaZEL249tKZ1RORxq2V45VKTQmLjSPvfusPkqZkKiIJM0OcWnro8V9UZaF8nVrDupKE93z/nZ8AkG+9cx6YLqMDIYVgYuCgBQ5r1kjOK8tcPY3G4tn5013GpjMAADyUT7zwm/2kE/aEAX3rrd9aiZZC5ziXd2Qir0oPnvhkQX8HMJ60f6MlsLynGK6zIbrvju8jMrm/Mpeqf19ko+mye9PoJtjZlCV6pp/0uSIK2T56cJVeb5964dUvC/mFyqFbb3xvbqoagUfINo+1WF8JOKQ/Wn/ihd80YcdOJWiAXraR0twR//goTtZYygqXJXI1ou7C6strayd9Ooyrrf37j7ca+2FsEB7FLL5oeai7dVKZvQp/1QBAENUpvagMR91Of70QJi9cfr338G6ju5Gko2ajVavViCIoiw6NqSwvXm80bA4gx0LkfToYdnqjdhgj5OtGUvQaZvmFjbMViXrvvfdxHIdtb8O1heYhY6yq8FgzmmaPq65CqkDukzOlBVQecRNRmqZPP/cnqe8uLx+q1pczorIQ4KKo1qjtLw9esjhPemH1JUD2LR9nNXsA4FoFAEaZ5gEAjIF/duwubDwXuJRhFRg5wRIAUaTqG7X99dq+11ms4ioX+judXs4AAAqfpkm7d1IpGgtQqA8UgjByTXz/I2+v/Pw/P2Kq7I0a75V9eU6nmf69BdVQPQYlIbDkzzHrlQCAUhhVUcfDJ7X5ADHUKKX+F//Fo//dP35Gbb0SxYZrTAmEHMggFH1Tnk3YeiU8vzgmM0JmDIf98+fPtWr7b7zhtkpcV1URZrJCMpUmC+eEy5kAyASlaJw2ZO7SyWYSCObsA2x+9S0BwNjG64qr/+k7PVOP8rUBAJiU0AnsYQrbLl6eO/nlxG3UbaOxdL21Fmr3L9547x0fY69qRQksSkQPPvlZh5QE4zo79wENswujuO+uT6gqsYfGqumuSBDkUkLj4pILdfPSQzJ9f3MhyBmXnYRgHn7ys54cvCOyAb3k77ysvmyIU1F66IlPERHUgEfQqNQn/gZMYwzy4Vzdd+fH8iXgouuvMzv9xYkuulbZ7QgVYSF/vuOySbwSmAievH3p7FfPrj9vlY4ffWDf0k3ZiHx8AMI8ymX6GKxr7dPPvfJlnlhauPwSZx4A0Ex/d2wJUi7Ei4qNmQfD9sXVV7rtM967Wn3f8vKxRmuZ///s/Wm0JFlyHgaa2b3usW9vyz2zcqm9qruqugE0QB6SWkBiIfZuoMEzQ0KQSHGZGVLkzEAjzRGHkkZHPCQGGoojkRxS4kDDEclGAw0IIIEGAYgAsXZXVVcvtXQtub98+bbYN/d7zebHdffwiPCIFy+X6kIjH85BZ70X4RHuft2ufWaffR8RCS6S9DlS5Ge1zfLBAoBk1MFdB8dcxd74YDTuOm2ASKQ85riH4bjdb1ke16rrni66+r4Ng0bttK/ybv4IwTF3ou56EA6Go84oHBBRoj2Qnj9J34eUQigTgLU2GI2tcKlYUcoLOfQoVy1valVAsKktA5e3dx4gAEiPiEztWZFQGxIBMx8cbm/vvOblCvW1CwoUgHH7tbVhpbyVz1ViChBEYwBgmu1ta+1a/YyOBJQeAYAPLgAAUhil/iQY9Qyj6Jp6b294J36UNIqZEm1HT8Tmc5VK6fRcofbhJOiLZDcXUDcfxgjNKisTP/b8JxM1DwfzBag9uDMOhpFIsYhLLxwPmBFEIQV7f/fPX/jj/34JGJEYJCJdAYp7/JJEk9VjSnuAHiSMCwGYmMWsDgAoOqKIYLwvioA1oAusmCyAR2/90rt/6seuHowAFfnawzhSLM+q5+NOiiRDIARoEAVFh2bYbB4Q+xfPP1ksVpA0ADGbOSoqp7rSNH2PF3CfMCP2wXRzHFaZDXDZg8ARFf3F6kOZ5JyEiiMPfRr4iN9zdoiW+UuZeP1kJElpXVF2st/RKCcbMxi2bmy/BiosF9dLhQ1GKBdP1Ionn7/87YjAFDimxLvXf6szuJvQh5ZU/l54+vuBFWIsAY70QM1HsuYEjhJuT76ws1dDEgH4whs/4x5Td/VeePL74/kYSuWvGGe3/PLrn0JEBoViI3X26JgJFcFZmPEDdeL8WlX6ne+BaFQ5v/TMpW8HgGt3fuegeQOIIGbJv/j0J3Gq/L9Cyh71CVP+D0JZxWnKaAclAqxCSIIsCB6TmXgGg/nKVz874oGG3ItPfLcQOtF0YGtAxVkgxV0p7vYO3775aw98aWZx8Z3P9Xz0n1Qc3Hx5p9/qHF7vDw6tQLFUa9RPl4tbWvnTLKYIUyAigOV4KcaWjjgTPxeoOj7EVTpRL01dEyvS6e2Gpp8AQkf4QbYWMAzDXmcPEav1daVyEdRHv1E/qUC72n9ssBjPTULQ7u4yBxYiAcQJoywVJFUcH2zMLQQAMbbXbSlPl4pVpTwLVozUayc8XXTtICISSRdrZCbTuQcYsHBHi5sAmfujMApYAkUEYRi+/d7nxmGzWj1ZLDeY2SNlBQEDEVyvnidyphyTPoAxQbN9q1RsFHKNZI+YHwXM2pWSttWj1P+BxQdK3dY4nUk8gDUiAtJ0+X9WGwGFRkG7N7iT6OzFPpgCQK4LBABrtSta60VV1CNX49fiB1crp95fByBVJAUrvN++oZEijXORSH/NibISjMVu5Huf/jtPnntGWcWkDLJTuXax2ApoBAOggXLgnwVUkErBAY4PANx2yACIQAjOWZYZgSCGiezbvdcO/sxf+fzNzol+f0+Tp5TCREHMqRildJ2XGH7NZMqunUqAgNw82B0NwwvnnqrXNxRpdjQfsYkfTcxJnZydBVmlhL0IACSOASsBgDl/u4XpNS5LteetwR4eAFj0JY8FAGZfH+tXAGZ3NtIAwPk4RRhASNjc3vlyq3tT+16tfNbTeUbaWn9Co/7w49/m3C5EpDPYfuf6v4nmB3Ch1bzLlD1dev7xb4tLrbCaCtC9AgCn6b4YAMRW0DBtKSqM8MrrP5PE4bwuPHv5O6aXHM10xoDk1dd/SsQSkQUEcU474qRCBdwTKkuz/3tzMHzAS+7I28EAABowJEFC/cJTP+AE9RnwtTc/HbLxSDMzIjzx2L9bLtQXoK0VPmQaAEytWREXYSaDBPEI7+QIaIXjnTLFAfvXL/8Djd63fPiHPKo4SXX3Ak5pxrotMzSjL739Cw8fAERP35zKUWIWnqTsYK1tdW62mvvBuC0C5erJcnWjUtr0tY6F12SRtlXmclpA+Hm4S24GACSeyiLS6u1ZHoJbT+gazkJCxpggHHS7nVwuV600nCgKMxe8cqW8HrEdSMWpeWylwsYJDbEErp0yNR88reXqJpfiN3IwGvT7vUKhUCzUHN8PQJeL67lcITkJ96EQWbzjEa2e+9svaMEIcnRYRgCrUe237tzYfpWUv75x3s1MK+XAj60WN/O5WnKJnH2sseNm+wait16/ELmDzV2ZpXHpkRPw+wkACOb4PzPWqCgUmn67dzMadYsmbTjRYHB3v1a+4HvFIxXejwtfPzgA4LjHiToALs6ioIiEdtzs7URSgMiOFJHQE0EB2/5zF3P/+O9eqjQCYFG+kyOMTAcRRUCjsICgdwq8NYi86BGQYwCQIAE8+nsmtX8n+yBChIAIVgBRFIL4iDLaD/79v/IrX3zvdKd7O095IXTeBYTo9P5nBHZm7uL0fB7NhSEFwL3uQafd3do8f/rkJaU8EeHIT4SzfAOmGq+pydFly+tIedDMBYoCAjTfdXLqJJBFBDoOAIDYRfFB9qpW7H/N/2kRAJja+KNeFi+puSYZk+v4RO0uRmvtje3fHg67Xi5fq5xCpbQqbqxdAssfeuJ7PEIjRhC++NZnmG3M6acllWNHqa9VTlw++0fujdSxUoo18XNdBgAizdCMpjYLqlfe+HQShMu59acu/VFJ9bCmx7OclKQCkle+8lPuTGPudaSLT4QCobBCpOMHrIe7uc6vq+nm/jyz3IJ4BCxiXnz2B0i0iJCQEL7yxqdkYigtpcKJJx/7o4l6z1z9fj7CZNk+zAKAKPufhGISm6C4xBTCDYvHtz7FcFM2HPzWl/4xA/3RF34UlafECU8ayZIhevn1Tz1wNaeZR1HFAGC+mhf3nWO1KxIA6Axb40GzfXjb2IABStXNRv1UqbCuQEHUWHOUIVxgNYjv4569LFeYQ0QiTJaD/nA3sEbEurtG5HRg0YJ0u80w6JVL9XyxJs5G01K1sp7PlYETnX5AdPsRISgWMxp3B+Ou5XF6GUA8/pTeRxz4j17D0ut3hsNeuVwrFuoAzMjCqlau5/wqwKzL9dQk1QLIez9bRmr8YO75FcJIW5nCMHz32ueH4/1a7UyxtJ48EYSBsKrVz2qcTOEzoLHjVveGsbzZuEik3WBAogi0NErjo+z/YQEASYFYjP2qYwAwQ52dknF3lVYbNjtXk7Jbol/vRubc51RKWzmvvsTl6UF1AB6UP8CR80ur7nd4VAfAzT4i4jgcdkf7yGJBHJVl4qJKqCggGf3Zb9v4c//xRa06HgqoUBEBswAiWCcVgkxCBr1nIv1gISABjvUF7wkAxBYBqXat8gA0AEgw/q//y1f/h1/Krfnefuu21uRanMIMQoKTpGcpYXQmOLv/b1CIiAbDTrt5WCqsPXbhSU/nEb3YGyHCmu4tczUtBsiYAz5yHcwL9idOJinrVjnyBqe+iCw//lFNgIfrBLk6ESgLos2aiB3jezreiiA7tzum4ahz487nbBjkC/Vq9YxAmPOrjdpZsObFp78XRazIbuvNW3ffcII/JOi4QwsCHAGwqzG99OwPxlCFH5wMWRYAWEZvk/nidzwFYV994zPJNayXTlw+9y2Oie7eOJWVqqg/BmiI8PNf+gySWOBYWlsEQhBv+oF9sCWQB7n6jvxcBhIwCoiIXnjyB9JOa1959xeHQT+5NET44Se/JwlcWTeClqXHWQO+kZFcqqeHqAADQZXIQ4GQU7+Oav+JHbsoIrBifv1z/52vvY889b35/DqCB8iIaGW+P6lffv1//toBgGkJdncWyAzU6e0Eo97h4Q02IXm6Wj1Rrp4u5RuaJqVox1RZBAC+tmLe0zMA07EdwRjTH+4HNkjcA0kAUVlBlqDXObDGVKqNnF9I5nrr1VOafAaOLTjEad3EGkocBKPusMUSMJuJVJ1TwSNMCyFwPIhMAtbaVvvA2FGjvqVVERQAMFiolDd8r+TEl9ItmiMBwP1sHEclUgJWA4ZE6uBw5/r27/m6tLZ5HgiZWWNBYWjEFAvr5Xw9+XQrYGzY6lwXhEbljOcVhCPiL6bGC+8tOi0Pv49+7gEAuAlgBwCSgZBJNSp15Q/b74mISJgUTeLNDRERRBcK5XLhtAg//A7AB2sBrAQAnIbPMGj3Rs2EMkgStZIFkUgrNEXs/Phff/Lf+tY1QwO2gVaGxMZGfRyLGQuqIniXpsrSMl8JW3zdMLVFJCNiUb1WgBSQds5G5NEv/LO3/tr//fb62pXdvTcEKQeeRC8UEeGl5mIxPxJxSmAs/hMLEYVm2DzYJ8xdufR8sVCxNnJUpYnfZxxcYsJPagaA7wELJpaFs28hTFe9J8O7R603lKwsfzEMeH+MgR84AEhjgBW/JEZKmk7sUu03r+0efJUAa7UTfr7EDKXCVqW8QQJPXfy3ldLGhF95918IiaN6EQiIB2gWdQDcVSYQRHzhyY8nUjAPJ7M6NgBI3tUZ7L1z8zcQ0Y3K1SsbV87+0Yn2vFAaAwhqoHHEHEKL4L/yxj936Dd6HMRDmhgIfvAwgBzrQznKD/j8qW/cqD8WS/5YEby5+7m9g2tutswCk8BHnvnEEibPivdx7p4S8rRJiHMhIyuskKwj/UcTviQIHjMgWqcrqsQEwL/72j/2cpVqvv7s5T+BAgZkvjshol5985892Gs+f25pADCNAXC6DxAtHoUUsD1s3TLBoHWwDRgqL1+unaxVThfyZYpstiJJnKQJsJwI9PCy/CUtptnwJQQYOjxtrekN9gIbJBLSTqRORIwdtVpNQqnWGp4uAzCzyfnVarmBoKZNAJN6P4nI2AyGo35oBg4DICIzOISQbgXYeOzH0WCCYHTYuk0K1+qnBXKkolfWShs5vxw9O6LmRS+yni+8n41jYeiIVc6EEYGJ0Fr46nu/ORrHkwCACjQBWwhF1Gb9fNyHZEZi5oPme4iqkK8VCw3HVIw29VXjQ/ZyegQA7iM+0HRrOu4AkIr5PxGNYor/k/JFaXWvGztmDpKHLFnhRCSsAGCjcWXpjMeDun0PmcL6gA6PH3v+k5PLxAgA/dF+f9xNlCImchAufJjwyin+R//ww6dOI/EBAylhIBYLjkPttIAEGdUFcKqrkWWL8/86ig2/EAAIxEajQujWhLWivPyN39n7/v/DK8q77PmwvfuOp7TiyEEwmm3CqWLndHyZVhWeDs6u8yQQtg4PRkN76bGna9UN9xfDoFDmz2Wa8b/Kvn6PN36e4i+YHSV/v2AAWM2Y7EgAkMCAVb5hsiRIkC0w8/Xbnx+ODz3l12vnlJ8D4FLhZDHfUGiVyiny+sNdUBGPXwQVRD64mce3ceddoWHmxy98a7W09kBdSPi4IUxSAwCU+s9bu6/fPfyKG3phlvXG+QsnvyGRlnIYgFL/BgWR85f4gAGL+uJbP21tVJB2iAqBAC09AGmFBx5PZcHxs/v7Ee8hUvmcpJgi9rBz6/r277maK5BCkcvnvrlWPp25jBNtlukbtDhKpBo7Mxw8BMUYK8y69JejAV/DFLtlYTQKjAQSDnq337r+u0C0Xn/s0qlvZIyMxuLF7KSl6OXX//mDymB4wUPndPoS+V3AyIwlnuKd8Jck5tgJqICH7c5uMBq027ctB/lcpVw72SifzOcqIs7ZAFKWBZn9XspMzR+GCsd8qy1rIkKi+VTQSGJM2BvsGROIG/BGUYAiyAjBqNftNH3fr1QbinIAYK2tVtYLfjXZnV33wzUBkufamHFn0ArNwN1rpRTzBHElc7GxgGZ02QfD9mHrTrFQqtVPg2inDWqtrdc2c6qM08yr1TYFuQc8kLkOUYAF49oEI2gERsSDw+0b2y+Tzm1sPKYoJ2CT7aJW3Mrni8ziBsSZ+aB5zZFD6tUzirQDABALNC09i0fJ/fsEAAg1kCJUcflfzQfo9ERvf7g/HB8m9Mtpa9dofmajcQVBL8SVkr3qjnRuXbkz8MH6mTgBO5IJIrb724ENIra9QGIC726SDTt/4VtP/Uf/1UWPA8x3ASwIATqnbYg9R4GpQPqC4w3Metm4gdJVZv9SLi4i7IwxhVCUAiBiAgPdG8NP/Lnf22ufqlZy+51bAxMo9DWE0WwYyxKoNGfKQzP3jwAV2oPD/V53eP7skydOnGErsVNP5gmwU5+giQiPZbyXyveqHZxptR/JvHpzk8GLWgfJzMDXCgDAQurRJA3l+fibuhdT8j6rUYBc8iECINQf7t+880WRsJArFitbWnkiWKuc1qqkkbSmUTiSyEfBPTIMAKBokU66uCEAFGHQhCLw0rMfT/nlPfgs61g1jDQGeO/2bze727F1Ijz+2B+uFE44AkbiPpu8Pm7FYqKp7BJQY8dfevvnRSAmlzNmUzJWyfjlQWOAo6k+S4CBMH30+e9j62amlUAIokUw5P6Xv+qmZi2DQsZ8wX/m4ncuSgrjIEhJ/FnSJJmZXHK6Ma77ENE2wEOybAmjRBGEVTLX4YIVACs0DDmW0ctf+TSQUghPnvsjpcoGiE76n7FBGL/6+s89KKlsxuxhazcrMhN8Yx4LZaoDu6R2OOr0+s3hqN1u3SWAQrneqJ+slLYU5QHZHUGhirO544nivT8AYK54gW60FlELchAM+4O2gTEAuLK9xugmdnutcb+XKxbKlTqhL2K1zldLG4QaYnZo8pmUkNkRrQ36g/Yw7EFEmtdJ+X+mX6oA412MW+29bme/WmnUKlugtBs/YIZG+WQuV0ycDY6zL8gizszqACByaocEHzKIcsQmY8zbV393OG7VaydLlY14YpDAGi9XKZcaCrTLVJj5sHXdHbBRO6vIXxkAPPp5HwAAuT45oUZn+oFRE2Be/GeyfpDDcNzu3UxRsl1G6ua/Iy2seuWxJXZgDH+wGjj4sef+FDO7Hh8BWmv2mldRx/ZYkY4EIKIVEJEcdX7u7zx35SNFEIO5MYhlEhIANJHNFgsCgz7Jep0YATga/00BgLhRcNQMQAoAAFoQEkL0PEepwIBsb/gX/8Ir/+uXShuNchAO2p0dpTwUYMC4sjV1O6cRIS6xqYn6zgTDfmdv7+7JjUvnzj7u3E6FHX02u4w0PQPA8QTwcdPoWafkRYNQifPjbEIfX7q4FDaXn/K9AwB+aHJA0x8qmYmgqxpOfXoWAIi7MRm/nzmUG/9ye8n23de7/R1EVSrW84UaiO95XrlQQ5UjVMAWVOz25dCoIIC14iu0S5JOdr0vtMTK87znH/+TD9qKnFcEAE4vMr3IMaIOm9fe+iULo6gfQpEGaELCdosqDRiIyEkMOuPbWHVBidg3rv6rQdB21xYZUvXC45b2H+C83epyQ9mvfOHpT6AwokdgeOLlzIL06uufAhAQxWQdXPrIMx+fCibxA4iMqUcVF9mBZQCApBUTG7i6eV8ReeO9XxgF4/jlFiEPGG40rpw/+VIcl6xEhkcwHm5/4b1fU6R9lX/xie92TQAincjnAYZffvuzQTh4MI8zZa/JeQCQtAUcvzz9YhuR6Kxzmzts3WIO+r1et3/XsjTqJ0qFjVp1S6tcZI/FU6JAiJNB0vmDP9g4Jpgamp8xNknAz8wFQgYAAhX3amA8HnSGewrQWguKElFpIzzuNvujfrW2ni9WmAFZ8rlKudCI6D2Tj0JgiScflCAzh/1BaxD03EPq6GRuri9ptripA5FQSEQUMx8e3ByOeo36RrF4ghQ42VlmXq+d9HVFwKaF9ZJIhFN+Z3LMsL8MAKR3XQESMNHzy+gGHw5bd67fetnzcpubj7H4AIRkFYgRrlVOerro6hEhh832Dae51KidJ/Tc/IyIHKVa9ujngwMAKDXZiEjMzAetd9MCoEnCgqCQLDPXyud8r7aggPv7HgAs3EcYFwIA1zwlIBEJTHDYvqqVD8iCiplJSFRAAkS6x/Ch88G//CdPg2dZQtIGkKP0FhnE/R+BCOYvi/gLfO/nkl3XsqFIyyBqwwglHhyIEE0Pax8UiKcgYEDvJ//zL/9n/2N3a2sLaNhq3tRaxxUvEGuyyj+LI0tE6o12ICJCodG4c3CwX8xVnrj8nKI8CAlmU5gYp2BGOt2MMQDPfK6IHH/7yS5OJHaJ84wglAUogrMrN8m7HGfryOcW37+B4AwYECejkk76VaJMl+prW4muhYrnSYiUFQEUBSTCIhAE4zu7XxkOm8rT5eKml8sTaV/XCn4JgIWUUgvL9kftGVaEEBTQGDh34cxH12sX0ijugasDJW3QVQOE4KtvfsotAQdiX3r640fnScmqjmagKTEfFeQvvfULxo6s02KLdJmMK8LFmbeNNGrAieiLsGOH4+Jc/LhXSVZZbAiaJVRKJVcABCma7balwtaTj/2xOczGDlAJ0MuvfxqJkZFIMVsQ9ZGnvh+AAANC3ympIQlJlMvOX1inszz5dzTypJz+cQRl3VSxeyVYBO+we/Xqzc8RiQVMjLEAAEQhCbM9sfHU2a3nRdwIHZNAKOPf++I/NRCQwMee/2Gly1He6cSjEIWxN9j76vVfF4osMshhG+T72JemVKdmGP8cIZxkTU24ImnaDDOTQmGNErY628xBu3PY7x8opdbqpwqF9XJlC1ERMIECiOhADimBqMiHG6eIKIsM0WfKOituusv9QJas3hiKT37THx2ORiOLYbLREDCIDsNxt9O0PG6sndCq6PKkemVLUR7Api8XSlp3jgFQUEbjXn/QshA6AI8siSmYy4YZmaLhdUHE8Xh8d++GwGitdjpfWgPX1pNQRDbr5zXlOfL/4eX71OKQvlA9OWYgTy2iJMom8qDJNqqQEHEcBu+89zth0CpXT5YqG8KoUACI0fhesVrcAgBENsKHrZvujdXyiZwuAHksY0TFzCr2LIVj1Gm+NnLGX0cAYJb/AwCAitAj0o7Ak7rKNLO0KN7WO707gelO74MU2WsIAUCx0CjkNlMAwHlZSGR8viAyPMSfe+PHHtNobHEH4PlPOljvrmB/1OwN9hA8IhIImSMbcKXICvUh+Js/Uv/f/qVNCCySAY+FGS2AcgVC57UrhFXwTgF6DhWs9kUyr8u0MB8hUF50iCicL1/9l/vf+aO/na9fyOWp07rLMlLKAwBrj25ez91dBtAuDXNda0Rl7OjgcJsD9dSTHy4XGsLEIIsmmBMAMGlYz2bkCyyBH2z9aSkAmPoTy/KvsQoAgPdbFXRK7cfl3DMAIMFvRhKWtpCAkYnMhZuBY0ip4IswQK+7t3vwThj0fT9fqmwhYi5f9VTOV74xppCvCNIiadFlAMCla46ircD1rF965vumS7+JRyw9oGt4PAAAyC9/5dMOZTOCRvXCk993ZHoEsXhI4hSWRtSuEffamz8jIoxC7BIFESbAydSEMJISEWEWQj3taS0rBovj6iU7qskEgLGjM7CgJrAiUddCxL74zMcJ1BLpHgH72ps/H0qgQJiRCEXsE+f+cKV0AkQDGlDkGilJ+yUDALjo41xdJy2auCocyxq6Yg2CD2hu3vnCXvO9NBhOujSiDAkh+CxjInVy/cmTm08S5pgZ0Hz+yz81tn2w9sNPf1vBP6FVPmL/O+0gEhF59Y1Pi5DgRB6RASJjh3vK+7MAwJSEfAIAZv4KKTt6YSKwiBQE497gDjO3mgeD0aGn/VrtVKm4Vq1sxqZ+mHKmk0mNUDCNLo4bzeYL2zMH4YVVrlX3o1jtTfqDw9G4JyRurkajdiKhQTjqtA89P1+vrSMqEfS9fLW0OWETpSoLk28blcMkCAeDQTe0XYQcACcyKe5rWggTAODOsddvN9s7KLC+flbnKpqUawL4lG/UT0ZVI3RzUMn0RcaFTVTsjlUVpgVHSORBY0OAqOcjKPv7N+7c+Qoqf33rAiIS+ihWCJm5Xl73vBwIHXS2mY2DbKVio5SriwBjtjzMaiv+EQB43wAAZa2uqPzRH+4Px/vzCAGAtfbdmN/m2uOT3ceFvPf5Ls0l/Q8Kbxx3JgE/9vwPRZ6LgFbsQfOa5VCrPKIIWCbFdgRAGgm1Ul7wr//7U1sfynMIiBYdT5QjABCxBcSCvgCqnLQFFj4Xi9r70ThyqgqILKgQiQnJz4kNcaQ//gO//Nq76+tr9eH4YDRouZq9a+LEqmcZe3YW99olMR6AAedgIAIA7c5+t908d+bp06fOI/jM7BxV5vWPJxWgOd75pNMaJ2QrjAQsVUla9EbMnvFd7bOy80VZQVKTF/S7H3YTYAkAcH2ApKxOAswsIswMihynFgDsdJeGmff33+l0dgSCnF8tVrYQ0c+VfJVnGSPrcqnKoBZ6CywIIQmjNAo0DgNAAJx78dnvcxRGB7Ydi+bBFR6Ot35C2/vSV3/RpeYAoFXuw1e+W5RNVxSmaVecVXWgJJWMct/Ij1a98sanonlHCBA8QXJztBTdOxYhQs3iRlrtdOq2ZGe951WXEjKPlFgAxBMSgogMc2LtiTMnXgB0WFItvLzIe80bN+98XjiZuZdibu2py38MrWdx7IIGoXYZNixgiqcL/5PKlgJrkFT8RmIELWCu3v7dw9btxIfOCZggMkSqjdEZRoOhoD0v98zlbyXUhsPXr/6rbn+n6NcAgAjPnHxuo3YJQScCoyL21Tc/BaA4lnRwjogCvMTwLjP7zwyVsVlEqpFIaSydnTY5nJawPgbD9jjoGGMOm3eCoOd7hVp9s149Vcqvs4wRdMSEgYRnxUjCMsvzTFsoHpePnnEdFuS5tBgiTSk7T0ATAdh2/64xThhUi4RuUxOx/UGn1+uUy9VKuS6CzGa9fk6RHyPGrAtIKHGv3piw07vLbJLzSszCLIgClXaxsDY8bO4NBrvKy6+vX8j5JYjNRiqFeiFfj+umklykjELBAmP740e1qE09DwDiGyTj8fjd678bml69cbJYWmcGVwBmZsujUmFDBEbj5iTLBFqvnnPPgpWMWPcIAHxQAMASchZHQHQcdNq9m9Ph2m1GgYhC0IDhWu2KIj/52/3uuQ9A4uJrBwC+6bkfTK/Ru/tvAimN2qXy1o20glVKt4LwY0/RZ/7HM+ALkwAQWRuLcgoAx8NnCvzL4Hypjty+nXnA7GOi0kT0aE8QgrwPQswAOfql/+H1P/efXD139lJog1b7jtJI4kWZHMgiPy/n3JOFCpx+nDbGeJpAqNdvtQ73KqWtK5efJ1QAmgFcbYxkykJ1PvWc2fbiVoCdqR7xwrlyvGcAAMfjXFLq37w8oV3uy/v+Y4AjAQCkZK0BIAxDACBPKxXXEtgRqZ1iFI3G3YODdweDfRFbKmzly3XmoFBY14qYhQSKhfqSDsBiAACJCWXkNcyIiEwhsffScx8HCUHI7dwwYZY/NAAw4QlPPQh7h+/e2HnFJZeMUPDKz138dtBzmvTIs2nrVM9xQgGKexo2AbTGmC++/bPuZlmY8M6JFaAFUSwGMdJpWUGN+74AQArGY6qHIIln2YtPf59T1o+NdSn78rpvDvbV1386HsG0AAoRXnjyB+OkDUiBZUacKIfNYoBY7SeR+HTZjOtFREVaErYAQG9e/ZXh+HBScRAkomgePUWqcWtbgRIwgu4FqCjHaKy1SEyinG7mh574bkUFwMA1EJDky2//chD2AJyTYuS7CEsdrzMzvqmC9IJUikCO1OtEBIdOJQm/Qp3eTmj61tqDg9vGjgv5Yr12qlG94Hle9ExGNWmYn7WYnMdqACDTx3dpIrjSjh5dJ5oSP01jgM5gNwgCAJMQo0UsM/f67cGws9Y4kfNLLEHRXysV15xOIiIwSwIDHP8uWupCCIAooQ17/QPLY8f8SW9nCakmGZ0Mw+H+/q2x6fr5ysbaBU/nAIDFIKh6Zd3TkUkwMytF1nI2Ajkiqq8qWpBGWAl1Km1uKCJ37r7dbL1NOr+xddmZdSpAQWW4q6iYz5UHw5aAIfQcwtmsX46kCt1Y89xkwwop3iMA8CABQIQBpgGALL4PyZSPseOD1ttEeuJvw0ZYkWIAIvSYbaV0KpevJA9+qgzEy/P7h8cLehgqZCu93vkAxK0v3D14S1ArFAZCFAEmVG4jGXL4E39u64f+YpnHljx2zlzAjAJMQGhBNAAA1dg7RQLHAAAzg7+ISTUBosl8AvKFrBvA7V4b/1uf+CzB5WKBDjoHxowUEYISsGxBstSWY7EzpozmSxI4FKIASxCOWod3QLynnvimQr7IDJFAMDLJERfazp2ze4sFmya/pg0vHuyCWNVmOPXBrhQ0lZGsPLU8w5V8XzDA1C6bSQFyk23OClosDwYDBpvLFZTvxaaA8SQxCgIxc7N9u9vZGY+biFitnPPynjFcLq0p8llMKVdzu69dtKYXAYA4iQQgwDARORFEcsIyz/1AJOtCgbB+WD7BWZX7dGi7fuflvfZVV+tlhKJfefaxb2MyiziFWc2KhMRthD1EmUjcxMPEAuaN935lOOrGybcICVqNxCJRATsqgcel9BW21XtZcoyAnMiYyJSNFOiXnvk+QCuskWxckl+k7euaHupLb/98EA6iQwkB2hee+V4UiG+9QSIHjTBTaS5t3RULr7nOg0CI4DlkxRB+8a3PMIcMHgALGCISx9NkQdCOAUQgjCAcKee4hIbia8VxbwDQgngohgievfwdvl9IWhC7zXdv7bwaPUoMKlvBZsE6wwVFtaxnBGneCCxzvTFR1BiJtW3AWt5v39AIo9Go2bxjeZTP1dYbp9cbF9zMwyRHjCkuU+PyeGwAsAI1XI6V9iVc9qklwTEsQGHmTm/HcDIMQA42sw3bnX1mrtXXfS9vLa7XzhB5aXJzdJMnAAAoNWfJHDY7dwVC5sS9L6UGFb/M/edo2N09uAEYloub9cYZACAiFqNR16snEPWkzYLLFSLu11NyvqGUVL5czLcgg2H32vXfZglq9Uu5YgkAXNc35DEAFPJrQdgPw2GcWdp66Zyb74qM4QGOzwV6BAAeLAAgRARUinwi7aZ4M+PH7G2wvN96K+KDRTRmnigvCyFSIV8rFTbds5/0XecBwHz3++tPHQi/+blPCka0XMN2v/mOoNbkyqOIwkoYtOqHZqOqfvXvnas/7Uj/ju/PyAIRe9VGwUKdY69MkMzyHue5iGIxxXKscWQkBQRgEPw8tEf/3v/u13/384WtjbVxGO4f3vT9vCtcsRhxbEeUTACQOaYVG4GpSAlb4OBwZ9hvX3rswxtrZxGVtVZQATJO6SvLfGRgnC6OTjTmYWaEjrKq9ZzlV3DcELnQUQvnMqDo9ZY52ikzymMfdAyAmR0AiE3cWEyv1xuNx6VSJZ/PR0OVMWGa41gfmtFB81qve8Dc0ypfq54FRcxQzDeUUoVCBWLfnDRgm4JMvGiDjzrsCMqluSKCyAwKKeIhfeTZPwUSxCk1PZToetTPOzf/Tau/42ZwXQfg2cvf5nRmVs1kppIOA0IJIyiyCwBx1XRBCsLuV7762ZQ0ELNVbrzV1dRjrLz6EPDxVp0VQGISEqaIwEwMADmv8NzjfzKZ2YBEfsdVN+YuaSTFA1ZEXn395wXCpJS4Xj1/4fSLRMQW4udLCS4AAEn6NaH7Y5zFukTQvP7eL42DPruLTEaYiDSzQQJh0EQiYiPdQwBkIrLi5KdCB3ed/ZaNiuiR9r9CRtQiHDU94oHgV9/4mSglco2s1cTyZ/0wBJe4ori/zZP+5zPFiK0zIVm5xeSNg15vsAcAw1G3eXhHwBTy5Y21i/XqKSIv6W3GsQ3vrc+ZvllHdQCOV65L15qnR4Gd4quLHrbb3w1tAM5qM0rf2ZpRq33g6Vy1tqaUyvn1SrExU8uPcUsMyVhS7WtlbdAdHIRmKIJpO0v3mpgOFJH0er3OYfsaEa2vX8wXau7LgDW+V65VT8BEoJMTNdL5GRB5QAWvmQJE0gRQoITQ2uC966+MRnvaq6yvn2MEEle+sczG8woIytgBMyuVE7HV8gmPck7qEFAUICPcxzzAo58HAwCQfELlcJrj/0xTCrMX02H7PbYBghIIWVRUcAPlzDoV5ay1G40rREomAjbx2BUlKhD3VVn/ml3JY37NCQBAgdAGre5NK6iQEUkIhEkBig5MyN/zYvG/+VsbsIFgSWiMQmAkLncwoAggAKP/BKAHEUnjWOJ7FKuCuqJIHMiIAFRkAWbp7/xXn/9//VRnvXLC83LNzp4J+wgeADGbyBpwwu074uZNd+HdBBF0e83D5t567eTlix9CIBEk0lbEOew44vKchhTx0RsJZ5WHZ2/essrJyiFyafklqX/LdPYPaSurRDhvkWvsonO7f3nQGdLwvQMAAWDT6/Va3U61ViuXq6Ao4ktMthAAQGbbGzXb3Z1uZ5fA5vKVQnGDSNcqJ32lASLpJ4UgMlETmlo/slDzTiEyWyIFIMyMSFGlQUjAgNtqAF585gdR+IFSgI6HBN6+8evtwa6zAZoAAEf8zuY4LqsFT4QFidwCc53WCBVAmNTav/zOL4yDgaNmSpx9Lu0APBgAAKIErGNmxTNk8PyT36VVJB0oIiDaqSLCbEiZEl11G4wwvvLGTwlZEi+RSf3QE9+lUXO0wUyyXZQs/ZlI119NcBSAIAyG7bev/yozO58BR1YUsUjA1lGDgK2ouETt5MxSl4UZKRrkjVoBEvu1g1DCuRel9Ice/x6YjAH8tAgLug6GXaYqAJGmaZYg74IZ2VSXYAHpf0oLCCWqLjsHKJf9OxbKYNTsDvc98jrdw15vT0TyucqpE5cqpRMJnd2JNBzp77PIvveh1N7S+evcDEDMy49cvYJw2OvvGbYo0fUSQWEzHg+6vXaxVC2Xqsy0Vj+l0JuWuo6r4zhFmHFHICLmsNXdZTHWWlCToTVIiJTsrAxZRJrt7XZ3N+eVN06cV1QgQEAWY8ulRiFfI0jmdlBwof5EZkhP1P3vs1qEBlAr5nDv4Nbu7puIsr5xgfxCbHBmHYvX0yXLQ3GlPYByac33Ko6lNrGoyyrrPAIA7x8AAIVKRwAAPMGZEXycTyBd+t7t3x2N2wAAEgpol9ZPMjfRgFwrXfD9QiyrwDgBusd7/Pn3eUsAP/bsD3KkwQxB2Gt27wgqhUyALFrIokYw40K+9w//j1c++ifz4AkKoBqDRQgoUsxy/VMgpBD8p0B8QL5HACBOgSxqXCIikAdAwBZY/8v/6c2/+v+8Xime8T2RQHYPb3iej+C5KU+JphEAgOYrK0vurvNAAOQwDHf3birxn336W3yvwGwi9j+iQmFmhcQgQrNCn4w0f8y5JoNkYYApXdEj7aviMcJ7BADTvH9gNtZaRHDM+HkbvMx4PXNq0aEmofz+AEAyAXlEUz4bAEw8qiyH4+Hdu3dL1VJjfQ1VjtnR/dMy1eIAwEHn1rDf6vV2lcJCsZEvNHJ+pZLfjIjXAIAWGRHJxqWt+ew/8+ITwDTFUObkTQgwJFEvPf2JI4QEHyYYePv6r3UHhwlFpOAXnrn8J6KQOgsAln9DFlFIYaJ7E2XzQrFthRXChO7i6DEs8sU3f95y4OakkQxEnYfVVYCOmytYRBUrGMrzj3+XR56LQhQ5pdoJGpk6a555Gp2EIgC89tZnjLCIdacnIi8+/X3EGrSbj5JoX8sCANHRRBC8uIsSHjRv39j5nAiw02hgUKAAQwBimEjHukFzK0IKYzMjly7H9ZR47TECiCKBGRtXEePwQKW8/vj5P+JW6VvXfnU46lo3LIR2oqmzqMOIklXXwLktM9sTYA7/Jy9z2b9LQy0AiAsR7t+MSLLXui4Sasx3O3vd/i6CzuVKF049W8jX3f2yEAGqWdz1NQIAmdn/dMYsiUWHA9KDYac3PHTDr/GQLgkH/UFnMBzWa5v5fLGQr5fyjVgDAyZjJOjeJTMYIKpegekPDoOwZ0Wh2Jhh5VSSOWlWE0EYhgcHNwdBq1Q5tdY4Ra5tDiGyNKpnPF0EsADofNWPegB5qsMjs3fk3lrfKOT67b1h6/qNLwj3KtWTxcoWcmx0jYYtEBGisjZkZEQlrNYaZwDAAYCUENcsBngEAN4fAOBK/jEA8BEUEKZnzTOWhzjWEA+Gzf5wX4Qn9jVxWxViP8FS4UQhX3HKBzP6jZChEb+w+fkgAMC9iL48QADwQ1EdFMw46HeGu9FMXqyUpxQNTOcbHsP/6ccfK5zToq2jLYJEUQijAWxAMeCdBdUAjCqcUbsyY8zXsX14jv1PUfGLWbRCBCYiIjAEQDd+defj/+kXRZ3Pacss3c6BDceoPACIyT9JCqgWhle3AQNz/LJ4d0EUe3C43e+PL55/fnPjbEwdo4wJt5SB4j3V6XlREyD99vmPIJllGQHA/PKdb6W5LcF5XkVZGiuWIDQjBKU0KvKm7hBNcZBQZn+zBEotuQ64GotgSTcgaWTHWwggOnnWKeqtWA5G/d27t72cv3XiPPrahYJ522cRZot77bf7vcPxqK11vlLZ0n6xmG/k82UQVAkv19FDjy8YNiNoPaEQCAFGRtEEBjh3+sQzJzaeRHF9AI6K5ZCLlyJHLDX0AFjExtk5wdSUOS03lsr801vXfq0/3EsEJX2v+NyVb3di8w+gz7AYtiaWuogiEIAUBMavv/3ZUdgnmvQDE3EVApnAMCAAVtP6zdOnmVrD8XSvK/8DMqFuVM+cP/0hJUWBcZR8u7w/vZ5jw93Zc0zNQwujiNzceeWg/Z6N5PxJICh41ecv/3FC36AAgAYRx+pBdrgo/tAw2r3izOnqrd9pdW4t7Xg8wB9nmKqYLYL+8FPfqchHkdbgxrvXX2E3BYEC4iXTorCohOu6XtOablk3fTmomyH/4MIhUSEmi5YsB+3utvMAOTzcDkbdUHHFX794+kOezguCJYsCJCikEBOOCkm008Ei46q0sdf9JPpHCnzNWwGkLwUiCNhOpzU23fhobp8EYdPpNFlMvbZJymvUznnKFzHTQqipU6PYYMG4iEEIijEcDJvDUccKUhR8XCPIbS42Ud0Zj4e7B9esHa+tXyhX1lBAWAuMfJWvl0+6OY24pw7pXC3b7YTTT+iMX9vCaYq09NxUl8Px3xgBrLHB7Vtv9ge3dL5UX7sAogXCKeatImSJ9eJso/aYRgLAyLdkflNORX5a8H3mI+AjwHCvAAARFWKOSBP66Zic3kMnroiRjQkIk7Hjdv+qsCMBxzM2kactIihEAua1+hNRK9XxIcmAeA8qEf/gdQZoIQCIlXawPzjsj5vkaLgsSgsLWvRUuP3f/sipP/6jJ1ArKIYxuT9yrpkAANDgXQDMAzIAJyaQs2O+sw3eBA8AAAK6mCuoCBABCdADBePXW//BX335S/uNovZAPGMGh+1tT+cJlGP/w7RJxHy0TY9bRfW/OLt1hd5+v3Owt7feOP3YhScJXR1OpZmR7qaqKCN5MADguBhg/mXLAUBK4o2YOapvADGb8XjEEnheztM5iMf80uWiqTBNKzJzjnspjtgRM8CGpAO+ACCSZmbnfISIwMBmvH3nhjVy+tx5P1dwL4s0AaayfwEQZrl7+HanvWdNP1+oVsobQH6ltOV7BQB4aAAgmj1yGhUK2dpQUd73889c+TZnbOmG85JpPERxnAdmInI3C1Nee7RiqpH5gjev/spgtMeg3Cl7nv/c5e+6p/2Lj7sY0PUQLTi+EJEWCEF8ROsaCOOws7P31YPWTUDmZK4gqlMip/S1IFabiSbARFSkjCnCGtAgcqm48fiFPwpAFA2JeWA5LhG510wDgKQiNX+OyGAc/Y9FJLS9r7zzy8Jo0bi4QaJeevL7iASUElbRLVU21vZxiejkdA7b27fuvmyMcb7CgPZ9AACO5yMimiIVoxef/gEA+fLbvxiasRUHsfEIE4BZSs/9AID5BHqpSoxogXAcdFq9PaUUMh4ebodmAOLlcrkLZ17Ke3mng5Q8L3HGEGGwZLJr/hm5N8b/sbU4spsAUyeOCMYGnf6uta725tJOZjHWYLu1ly/45fJaPlcr5deVmtq55pseTnaAmRNmmogZDDuDYTs68YgyoZidV4BFVIiK2fQHrYPmLSE8tfW4p0tIIYgGNjm/VC1tpoS83KMSyx6I0ESsZRLM571r0i2g5es/W7wIXN9D9g9v7u6+iVpV6+c8XaDI9ECiJ9eJhsf5QK1y2ld5h5qWbbucXbZdAQAcbzr8EQAA9Ag9Ip9Qz0j1TxXRpitNIMRiDtvvsTGkYl8UdCJVTEQOADDb9fplJwaaLAnnQvP7HAAcL1ZNAYBm+5aRABkdlrJgNWojfLJ057N//5nS2QoAQ8G43ivKzFNArCrknXNd2gkAyFrzjpE4/ScVPSOK3MSZaERAIJ/Z0DD82//Xl3/ys7pQbvhgLNhO727A4gsyOO8cC7EPisx5bSbCYalfTkC7+6vl8c7d2x4Wn3z8hUKhxFYQPcOsUo3jFD8n00/gHgHA/cCAzNcv+A5E5BQkwBgejfrGBr7vd3p3NtcuETmdEwtTMEmSS5SMkc0YGGcW9ZNf3vPjtNBJnnkaGKATfp0kCgxizfbtq6NgdPL0uVK57iBBugOehGMHDIbDXrN9q9O9IxKWSpuFUl1E6tVznvaTTN0BgGMbIU2fAs1uGBE/281XIjIgC2tCXa1sXjz7LRRxAGLBrKhnRUgh27Q2pUkGOp1y31Iq0eye5S7L6+/90mjcFOfDxVgolJ659Cfuo4DFx70+0WnGRXGMBTR5ItVCAPDe7d9od5rMAanUTIUzeZ1yEEtmPKIT9HT+uce/PSGYOdSBoKy1amIEFpcqp5ff3HB2CgBYQFAm4vzY1776aWa0wG7yQSO98NT3aFQMhIgkxGSIyOWskfyaeIjqS29/JghHbp4YSAPahNb/sLdegUimVkSU+ICG2dYqpywHg2HTNYWitYfhoriXDl/uLYu2I1fRjxpfsjoAWPwaIQAQtN3+7mDcI/SBzeHerZDHQCrnFy6e/YivfGfmndTOpwLCIgXA4wOA1VP/eWXSeQAQl29cXsKI2B+1R+Mus7GR3Y2b08XhsD8YHJZL9WKxUquc1lRyztOZ/s1pzeh030lEev39cTCcmEPHxXwisNY6dUVms394sz/cz/uNjY2LSiMIEbCIlIpr5UKNOdksEiGm7N5vstGkxT3vEwAAgGJAxF7QunrtCyDDQulEsdygqM+Tat8JuZoCAJRLa3ldjYlz8aj+YgAwl3ZNvu0jAPAgAICKJYB8QDXDPpwHAGkBKwBo926HQTdaEgjJzgIAhE4hFGqV056zqwKKCm3xYnj/E/Gv1Q9+83OfjIm/sHvwVdI+sitKASKSR53R+NufHf2Dv3uFCVUOSfPEIjby/IhsgDl3DlUNOYzEHWJJ6aNrkNH4L4JTnfOIGMBTDDlgJiWv/cw7P/LX3/HzlzyyghwMO51+R2lfCRgxkziVKtSlFT+zAEDqRqGIyGHzbq87uHzh2fXGWaXQGGNFYSzc7QIHIy1o+t1D2XsmD+N5DJB5wCM7DymxmonRaVL3YgZm0+/3Qu5rnRuODtcbF5UinJ7Ym7EASwMAgCOmAuD+VIxggU1SlOxPRfzksWeX9Iqg2GDn7vV+v7u1eaa6tklEIpMNPikMTwT3mFvtu93+Xq93l4hqtVO5QtkYs16/6ARDEwAQjcQd98FGifRGZ38tELuVgQIRBHHkEBtrvqOnC8898R0o2lnUAZi4S85iiQgS+SZH9BIIY8uqI9bnfPLxpbd/3tiRYSaFaGlr/YmzJ55NwY+HBQMSvZ14zTj1YYPgi9jJeFY0Q6zT3R93g9zLmMNxMDQmELAAYuwoDMfW2nyhtlY97XCCYzSxBNEbk2vFU58iaS1OoSx1pvQsq2Wntg8AaF578+cDHgtDpDDLUMpXn778nZqMGz7jWKMs7jtbAPnC6z9rxQIwomaU2MAOnaXAw956EdFaq5UF8RhDYU0KxXCinIOxijzjwubSFAAAXLINRoVhTL8x29p5Bq5nQgVEBHbqsVZQOt29gAcIHgfjg8MdlhGiyvmlC2df8P08WCMUzbOiIph4tixbuHSceHWfICFtE5FktCnQxYjY7u2FZmCEHTOQBBCFGfq95ng8rtfrpWK9Wj6LKAlldGEocC1uN1VsQSnFYNqd3dD04wa4ndxhCR0pyGnn37n7nuFupXK6Xj1DihERLBBRrbzp6fz0KXDiup0JAJJWwPS+w6sAABSY4Q5ZEY8JUcZor1//wni4q3S50TgVu8nGvtIkwhiNJxHm/FKlsLngQ7O34CmzsCPWvxzZ7HoEALIBgHL0hKkZoVgQN2M4za3Y4fiwP9wTy4nDRkIBcmRLJwZaLpyMk6UHrsDx+xAA7Oy94eWKk4Y4kYAJ7PBv/EDuT/+lM+yh5yGQnY7lHDOCAsh9iBUSM4COTQAWVlamsv/oUI5hw4BalGZCUh5a4hsHf+bPfu61va2SL56XD8PxXuumh3kUcOp7031lSgGAaCUtIm5Eegskg0Fvb3+7Vjn5+MUPIfiJimjqIIkyAD0gAJDxCJCsVODP/En06d1B0gAgMiIlsFastd1uKwh7IQ89z6tVTvp+HgUQtVOdmw/NkNLeXv5ljvv7I3dHBzxSGXP6mMmRJ60Aa83uneudXmttc2t9/YzWnmtkR4E+K6YH4aDVvtvt7QdBS2u/VjtN2hdjN9YuTTgAkR8qwNGrOXuROfWhmYpR4gnAaEGUy30TKgVbISIUIdQffvr7EIywQhWpzqNw4uDjJgGcpke849rlHap0scT940tv/1wQBEIoYBTgC099D2HuwQ0l8xEYIOHDuBOKfNMkmbJNhAsBGEVS1ryMJJwaMk6kS6NGJXgTytDEjsCmWgEC1g0COh0bngCAlMPxwtOxEBOTBIA7wztv3/gta1hEAC0RKVAvPf1xEgIMiTzrNHwgjIr9QkD4ylc+5XSQrFB8jkzoJWfxcAFAJNZkkSyIZlACRokWHCDkMLpqEaljUUK5CgBIT2WkOgDZgtCJh9dcEpbhERZVdVFZCQ9bNwEAyA9GvYOD2woEFOXylfOnnvM8P8G0goxTsstL22T3kfcvr/TPU2KSBMgNbqVNJ2P3RnvY3hEYGwERIeFoBRrpdg5JSbVSX6s/5nsFZLGQZgnOQiyW6HEAgGjrRmQZN1u7LMGk9c0smIysKBQBoXHQ3T14RwS3Nh7L5WvghL5IPKXr1VPzsweLBsDS4lLTKkCSLfZyVDvRiighjRSgPTi4urvzFmpVq53K+eUpqVOaEnUmokbtPGQrzCyrwc2fVJZZ3iMAcFwAgICeAwCIesYkcR4AIDrDdgXAJBCaQat7Y6biHMXSaNoKEdRa7RIoSnlf4O/3CY5jFyO++blPxveAdw++qv2CGOuKYYTaKChI+6f/1uaVb6gZrXNgQFuXvQDGSZWb45Eh5D+a5P0TL5vljOTJLXTsf0AkIBKFqBUwgpWf/Tuv/2d/v+s31n20iDIcNrvDkUZAy4zA0wYNSXxn5HgWbZH9JDIzKbA23N29ay0/feWlUnHN0SLjacuETcRRriGy/ELfB4fsCAyw5PiJPn3q7cQT/oPb4MEY0+7sj4Oe1oBK53PFYqFGoInIcgDgI0kylTWzP81zZB8GBsgUR4dMPWlhVwJ2A6DWoOXR3Z1rvV6nUls7cfKs1j6ISoY455MGd+T+4LDXP2x17giPfa9ULm+Rp/NesVTYjLgKsTVMhKyOG75TXz3dPo6Nd4CILHDEsiB2ugTOnkwEkVgkVJJXSn3oqe91ruaOPRLTV5WAQbKx7r7b4Y4duV5541MAwEAEFpFefOr7RRTMzcM9jJ9U91aSQIxkHFE+HiCmREpr4SKZH7iM24AiVtADNE6Nx2Xe8YcqAAA2k1wwI3DRIkiDIgzEbKKZIoTPv/4/i6BlATFEWpE+f/KlrepFpUVYRUkXTegKe81rN+6+SuK+pAYggkgPlMU87OvPaJEJEUA8QBOTc1zhQ83VyBcG80lWJNlaQXPvWz4Ru2qqFIE0tC58IqK1QbN7mxE06uGwe3i4jShEulRunNp62lOJqRCzmJgrD8cN26vcl8zXzISyRQBgkTaIK+gYNp3unuWxiLgOmBCgpTAIur3DfK7YqG/VKmcWadfOAACX2Sd66SBuqHqHOQCIKIVOuYvFEGqIhsq41d5rde7kcoX19Qta5QFAExhjSvlaubQ2bekdnywvu9AxBWhShr8HLSAGQMsayRKMxu33rr5KOM4XauXyVmLb5wbxGYgkQgIiUq+dcmex9DNlBgNkAYCZ1bu6lvEfaACQupguB1NKFeYBAABYiAzmk3LnjIEdij1oXhUwiwAAkbLWrNUukc5NZ/z8+3py+94BgOFgv3lVeQVkx6e3FgGC8JlL/DP/4Aw18kKhQkgGq5PAEYUt1OA/GQEAjMZGQUDgSACQ1GFAEFABWC1ezmqrBcO3dv/kj752a3SmUvS0pYD7reZNTXktngHLYOcY/zx3LWgmwkqku+KccWy712m2Dk6uXzx/7nGXMjrzL6UwSawVCABYwCMv8X0PkXCqhL9qTyDxvp0HALFYBBtjDg53x0FHeZTL5Xw/X8o3FOXjgrG7cxZl1v0uaqJNyzVMXkCY+X3u4cpkXlhnUTdPIU0/7SJiTHjr9nvDQadW3zh18kLsbEmJs9IcSQlExNrwsHU7NMNObxfYFgu1QqEBiiqFjXyukmhiunVDUZP6+BSg1P6WGqsQiueqpwzg2AkWxqMO7GzxrAMGnpd7/snvInFBigCMMCsqWBvGGODI0gUnMkEpLRF+9c2fZhRXu9pqPH725AvvW/CfsR1N5tSnM3uOsvaYqR8XclJcnajkr6aKjmCiRASUeyUzE/oCYboTIk7a112CWQBAy3oayGwp1buAV9/8dGBNaAOwWnuilFKALz3xgy6OICNEbRx06cg7N3+j3d9zLCjn0UsEFLlG4MPOFZzAKMlUVzNFPnEXOXnWFga/VWg/DwkAJCQWFGAGRLQ8anV3gDQgD3vdZvMOACuVazROnNy8hKABCBLPtTgbXlCyxRV31uVigigZ6f7yaJHiK+JMBV0QjAm7vX2B0FobjZKDEpHhoDccDqrV6nrjQj5fTyWzPJfoACJa4dkFLwQAoe11ugeRUYwiEjAMpICts5wLAYgZ9g6uDUbtemOzUjrpkSMfamvDtdpp38uLQGLJvMouEGkOidwvAIhGgcFKeOv2m73eLT9frFdPI/kAjBH1384AgGKhUcjX3GO42NRydjZvMQCYEx97BACOaBBPQC+KCHpEeaXzDgBMmfFlXfmEseYKLO3e7XHQWQQA3H0pFhql/AkLksi9iBztGfWB/pFjDgF/83M/5IR7Q+4fNm+j9giiOpkl4mDwE3+m9j1/uY5WhBhJAEGYE8nVCQBQG+BtOighgijaCfpHAGBRjSUFAIRiMp/2QTQqDb3WP/ibr/3tn7Hr1S1B0GA7/W4w6hCigJZYsXh6t+a5uzULAFyyiwIKxZhgZ/+OUvj05T/kad9xHOOjMaKTv05U/OnIBXH/AGBRNFnyWUsBAIJQaMZ7+7dG47af9/L5IiJWCic8z4/VpiNzSRFCySisuqExmabgLwEA94ABFmcWnDlD5rSqGECEwnB0a/vtYb9fq2ycPHuBiFDQMoAiZtZICFamt2cHAMbjYad/ezQMesMdAlUpr+VyNQt2vXpWKR8RRCxHfBJWgPcLAKZEJJKtHTmVIBCIIEWWcxQV+CNBmGg3iYscBCB4onHxzIkPoeQFXMveSyREF1znJKmIi+5ggyD44ju/gIhOUf6lpz+RWop0/AV8X6PDiVRL6h+SFO1SpPzUcnKaHulWj1BE6Oco/0Bi4cjWIOLeTC88FEGMZAHTn3IEAHCNGgkd8LAYvHXtX3f6h6ENrTGe5yEpDfjiE9/t6YIFqxwfzVFRRQTxy+/8wjAcKECXQyMBM2MEYd+PrVeimCnIlLB0JDLEZARNEe5a1g5KPxeYoQpwvAQonTkf9Xg5iyuKxp5QGBjEG452+8MeaZ8Iet39dusuEiilNhtPrDVOEimGqPCfKTM6owO+euViCQAQzO59ZUaLxHRyrpjFEEnrwGDQG4yaLhcXEUZWKGxp2GtaG65vnK3XzxEoAGfvxTyN0ZIWN4NMEqxUNBoM273hIQBbUQrF/QNJkOP9EXLjoL+z91UR2di4VMqXkkfVo1K1WlfkIyMjH0kfTQCATPqkTpqbj6u7ZkWQgKzb6LnZ2tnefhWVqlfP+rkSkasYTwBAogjke+VyaV0I01X8uS889Z8WMr19Ft7fRxjgKAAw1VlVuqhVAVYAALGoo0VUyBaAhuP93mB35kYIOMCLTq9WRDYaVwh9C0JCgAGD/oMFAD72/CcdwaE/2u8MDjVGnXFFMBRzpjL6tb93Kfe0gjFLzqB1E1fgRhJBPEEGtCjA+ix5RRBfmF0xUuL24hHl/yj2CgACIqASrRE0M1/7zWs//JffG+XO5nyjDALy3sE1z/OA8wKhTCxLcEZlcW5oLxVe3VghggMA+6273W73sVPPbm2dBSAbZ/8KZSab4dVM4x/4Q0GLm8Jp3YO4oBgJy8RXRkh0aAbbd2+MTbdUKvl+HoVKxbojRCZyn7HXpiz+Nll/4oUAYP43zqOUFghu0IKAKCg4KZw7nSIgUfF+RjYcXb/9Trffa9S2Tp8+pyhyhYsGaSexmJ3UqSCgKAbDLAfNq4jY7TRHQVORX6ufUOR5ulStbC6kOgAebxlgqi/pbtCsW+pEOMLl9MeteKVZwlr7WvuKPGS0PA7CASIg6FJh6/LFF5HLAm6ST0RCRBRLQPjVq7/aGx84aEEgsS0xPORm6LE+IhbdB3vcGHfcFqobQY6/m4nDHU/IA050CCyC55a0k0YBZES5uff6nd3XQ8vjYKSVp7UmomKu+MyV70ABchQfJ0EDSkRe++pnjNjFbPgHu8Vm/9B0XdMxy1NhBFNfb6oEkBomwRk/viX7ZlJhvZ+NdkHqTNFeItTq3wytaK2ZzaDXOji4ScqSzp3eematdkZiFqsrGWcogU5M1iBr8GBaeXZiq4X3uDFPC8/MuFhmadIQAA9GvW5/HxQzR21qRuAg7HcP83n/xImnc37VQSPlhqTAzeNS1oqIL93kweT+qN0fHCJZR8ObGHtH9jIBKN1q7Tc7N32veHLrinPTQwErQbW0lc9VYlVuTkaejuoAJOtHUEBSMlDpzsB0Oo7p7F+BEjCu1oGIo2D4zrXfYRkXvPVabQ0pykxYAgSV4gGyBalVt3wqzixmmBoMWDoQPCV+JUf0rh79pPYAntvXRETpolKlmKcgQpndJIoDkU3nSCbot3u3AG1aKSgZKouqimDWa4+TLsTO6McvUD6gRPxr9ZMAAOgOdweDTqR8QkRKBib4Sy/q//PfPSl5RGEXZShEIQsSxTlBA+IhhOBdAfLAOas5KjkdeckUTPR7gBGIFJMi1GIIh6O/+Nd++3/93bVKxUPSSrg/PBwOu0Tatc6de85cun8UAIiKVUwoQTDcu3unkK8/ceVFrbwJACCJ5wc+UABg9kmZUdqJhx8mPAoRZDPevnNtGHaKpVqhkAOAYm4t5xfdhpdO63HpCc1bAs83tZc3AeYE+FcCAHG5C11/33FPRRDAIuuxGdy+816v16tU1s+ePa+Uds3c6BumAED6aATIIMYO251dZtNu7wVhN+eXq7UNBJXPVcul9cVfBo+3BlDmxvjgAQMAmtqBoloIGESMRwsi6jBb+cgzPxANxJIWCUF8QPPq6z9lISpRpgHAjKfew8lI6VhveejPHTJCzgmexD0HPd/WEJGpuQtxjmkshJ3h7bev/pvABuPxGIByfl4TEdELT39cMUR9CUdkEgKAL7z100bcwNLXAgCk5lvSgS6ano/ssiBCAbF8VpZTZgbPJ/OXR5F/7gUAzFHn3SmYg/Y1VDln9zMcHO4fbBOy5+VOn3iqWjnjxO5mSD7pRkdkZn8UAMAVKr6yzEKB5yOw4Ex7KhsAMNv+qDUad42wsywnBcI4GvbHw15j7fTm+sUIxLFFVBxroWQ9R/P6FmytGYzbw1FvfgUxs1KuYR7ePbzVH7QatZP16ikCVuhbMb7OVUqbznM31XtcCQDAROBhebxdpK0pwgRilSLD9sbtL3Y6254ur6+dRPLjZHH2PjJCqbhW8CpZAAAyP/oRAHioAIBUTntlgkKcVGeShBOCXCJ9wQBkw8Fh+73IcjG7O4cAUi2d9XLVdDljwd1SX5fXHz/2/Cfd43LQvOGGCxGUW9Z56P7S3zh75jtzbl6ICchaCcmt7ugRwbha5l+OuuGI4J6u5QDASX/KxCpYEJCU4ZwQKg5e/pVrf/rHbnrF00WtiY0R02redtm/IzkkooEzCn2Lsn9IbEdIEQhL0GztjwfjK499uFbbdMwfpwJLcU88vaN8YABAdibkorpjs0XFeREx9uad90ZBu1Kp+LkCoZ/zCoV8NeFAr34WMwAgU8VilSbAIv+URfBDhIHQzYNibCnrUlg245u33m0P2vXa5tlTF0hrw0TCEziUpebMgoQiQP3R3eFwaMyo2bzNEpYKG6VyDREL+Xqx0IAFEXzR+Ndy5915ABDpVcdpX5ICHFdmNDYxmZ+CddkawbRGsoi89NzHFQize3YYQL/8+qdioVd0AEDE4hFL40ifgSWvv2elhfuTaZvhCKV/M6kSOfXDRPCeACKhYSLiCHAJRDJBXlI6QhYkYSBBfvX1nwqMDU0QBqZUyBORUvqFJz+hkSL5f1d7ZkTEV9/8tHW+6R8kABCtWJ6w/ohoSX4+z3VeMDOAD6rGdgQAEAKAQbDfHxyiKiAikm23D7qH20ih8kont55u1E9F8kdIVoTmqEqZCqEZp3QfW0E6fs4AgMUnyKnCp4R23Ou3QjOwYJHRUcestYN+h4BPn34mn6tEg7wT38CsCsx0kE4iRmjHg2EnCPtuHsA1AWKw5HIvGZtwe+erpGBr/VLBL4B4zrq44Fcq5TURAdFIgk68bOULsgKtNEMbyiEHYUJgVAiA+4c3bm9/WSm11jjleZX4AccZRisj5HPVSmEt9UG4aEfj6ccn8gh6BAAeFAAAFhFSvlIlRUVnFb9AgmzaCoAR0CAqMeF+6600RXxerByRfK9cqZwB0ROx6d/PFf17BADWmmb7hoCNvNCUHofBs+cG//L/fQ5OFIQsCgIEUT8cVTJ4B2JBFKgyeKezlvdiQnAEACYvFkWIaDEfCvit/p//K7/5r7+8Va/kkZUH3Bt3+t0DpXJsASmMs/95z6OFFl1xxZoJPEAzHg92d3c3aicvXngKUDNoEXeTeVo37QMFACYPy9wXIKco71SMFKCx4+0719q9w1qtVigUACDnV4uFmvOKSgigK3n6zvmCZcbr1UJ2dva3ZBNl17YWDWLjUGvDMNy+/U530K3VN8+eeYxIsYWJIRQiIBPMZt5IWsCKZWZ72LkBoMfjfqt9ExGr5ZO5fBERC/m1YqE2t8Fk/KQJoAsBQDTFO1v4d++9fwAwdZExRY5PWP7pTxdEYiL94pPf71JbRBUEo9fe/jk3f+wO8tFnPrEouUmdCL1fW8PDwQDZAIBSkwbOjJmIWATfvPorg2EL0EZ3G9QLT31PZEXMJGIVaAALaEDRy1/6KUHsjzrhKMzni77vI/gffuo7fMpHaqSpbemVN34qrjR/zShA0xdaEsdDZHGEOiIiorh1fgQAmFYEOloAcfqYqyo/Jkt9unkY94SFAI0AtTrbIYeIylWgR/3Dg8M7SjNh7sTGk/XGSaUoaX8Bior9B+YIJxKf5gPL/ufD7MLLOzccnBR9ACAIxt3hngVLAswGSaygDcLxoF2ubJ48cVFYR/cVOW4Oy3IQnkqY2LDpdPctj0SsCEbzZkQYt1sFsdvf3zu8VirUN9cfU6AiJV/hRu2s1h6IFrATI96VcVF600lGzlIHyVhdCQAgdNwsHI277139nOCoVGyUS6cEFUUPBKdYxMAIinKNyklYKAQULU6bKrukRTtmfIKXbh+PAMARHQBAASSlylqVQLyUGGNG6Io3enFu7i4darbeYidpM6dQguikz5SAbdQvK5VzinNfr4n+wlX4jc9/EkWsDVr9O2IsEVkQBgzC7v/pjxX/8n9zEoVACfBI2HOWMNP1ImFB8k8K1TBJ6I9c3onzV7zjCBEqEqWNRSX027/03n/4f7mui6c1Gg1C2m+3tl3twAmfiVginXb7isNWhgZilAnFPToCZAl2D7Zl7D3zxEuFUpkt2oj/kBT+JwAgE3e+nwBgGrzSog5AmsZqTLC9c7XbOyw3SoV8TSwX8uVCvu5MJe8hEMMCRU6JrR7SU24zEj33AwAENMSmsDGPH8fD3q3b7/ZH/UZ94/Spxzwvb6y7u1ZSeV7k85DS0GBBx08bjlqd/j6R7veavcFdIl2vnvV8XwhLubVCvroKAEhfGaGFACDNAqLYviBReZrMAd9THXSmiAWTmc5YUCOq+zn+hnJuwWuVCxfPfZQZAMze4dWbu1+Y7F7TAOD4yxYf7Po/Cmnct3XLVNCn2PDIeQV4ADC27Tfe+VfMIYjnZoMFAhJFhJXSiSvn/jAAARq0SkSUZhH64ps/P+bhaDQYDoe5XCGfLxBRo3Lu0plvcK1kNxbpbs3XuAOw4Cq73pkDANZa1wDRWi9eopNfLwAAuELV/xi67wsAACTWtuhIq8j7hzeIKDJjBu5091vNHV8jYW7rxOONxikhTIB6/EhGJcIUq2eWbYIPegdYEQBk1oO6g+Zo3EUUZiMkAERCwaA7NuGZU1cK+brTR0rLTy1+vqY6DK73Oxr1+4OWwFgEAciKALLGSVQxwvuHN3uDg82185XyhhuMQWHfK1Urm/E2zRZwxSUpOLWVZFkFz8fnFDyIJtcNADHzjZuv9Uc7ni7UqmeV8hIJhPRacuzZjdq5BOktmgBmnHLeTK/5ea3nRwDg3gGAIKmC1mUEZy0XERwYkxRoTiyOVeL30u1dHwddiETDZ6UjEJHQYwnL5dP5XMMtmD9wAOCbPvxJEAzNqNW56SrHjBCyWG7/4n9+7rnvqjIGAIasArGOFBnFKbaChAKCjP5lwHw8KUpwZEEnEf+JdMdYtALSoAhZoBv86b/y27/3ynqllAdkj9XIDrutO1oVBWxM/uEsx1Newv6PYispkLDXbx4e7p/bevLUqUugiG2UOs8BADrSefdh3ZiYp7gIAKQfgJlcMDSj7TtXm52DWq1WrpZEMOdXi7mqUp7rwCYmsstTghnnq6lZtwUdgMxLtAQDHA0AEICRiJiNiCB4vX5zZ+ft8XhcqW6dPXfRUzlrXC+aEXgKhEimYJHY0DTbt9wMdLt919gukV+rnNKeZ0FqpS3fK8V3Yfb7TzuYHp33plsQaXWIpAOQBgD3IjWAGbSrpJyfHg+I9jzQLGOP/A89+d1EGoDfvfE7ze72BMA9IAAwj0yOD2nuYU7g/nNgJ5OKRGDFXN/+vWb7prtBAuzmKIhIwBB7gBaRLp79lnr5LFhGFJAQUe0337l697UwDPuDFoKqlNdEsUb14pUfImVd78gNW4nY1776mdBahR8sADDZBy0bY6wNEVFr7ZKnrFwcF8gdHj1EO51dHRsAIGJaPGcSN4SQhC0YO+z295mZyMmecru52+8faDKeqm5sXKnUT5CK4QQRcnyoxZNs+DDCP+GqT/m0NLNbSJ3+XhD2AMAIK6UUeNaM+v1OsdA4sflYbKfqqgOKI+MLmr+sE93kWHUXQSFwb9gajjow2TociLUiym0oYzO+u3dVwJ7cvJT3yiKiyBce16tnc7HaeqpruoJNOMZjFSn3gGky6pwgGMzowQsQisj+/rWdva8qheXyyUK+mtYMTAMAa8PN+mNElD7aKhhgahhA0nJLjwDAvQCA6K/MRL7WZVBFl526mzWjAjQlTc6YAIDheH/Q33Pe8PMsIBEgQgBUlKvXL329svyP6gB86IcQaDTu9wZ3HLhnsAZwPdd++Scfw4uamECHYEFAoYRACoBALAALaAQGQvEej9JxRgBK6WDFdxazOgAp8TEgsqSYFJrxr//s23/+b9wpFM7mPU8ENENnsB+MeopyKQCQHAmdQHss3KniBw/TE64xKCFBsKa/u7ed16UnL39E6QIosiYS/aTJOvxgAQCYmnlPSxDKTKNjHAzu7FxvdvYba7ViqULoK6VK+TWlvETAZBJbZemmMg0Alni4yFFNkqNNAGRJQjjZpTrdgzu33wttv14/c+bsJUW+WPdwsyvtL+LUpqpHPB51ur1DpVRgxq3WDmCoVa5SOYHas9Zu1M4o5cM0IXhC/cR5kHREPpxSmp8czURmtg8AAKRT7cm/ndIFR/t9VPmbXBHO69JTl79VGL741s9xXF5zgOEjT3/83tetzN7u2HgV5hdSwmFYmo4/QAwwc8DMXlRUU7i9++XdwzcBhFkQ0UaMIHYMOgBOfSFbKZ26cu6PkMRCIRK+/NXPmCDsD5rW2lJ1U2sfLH/DMx9P9EZiACBfee/nhuPxwwYAiwpbqSQGZzoA0SoSZmZjArYWEf1cjkhn5P0MgvMjsLioqD9H+zl2YpRJkZ/5AkTaigGh4bjV6zejxUaagA8Od3q9fa3JU9WtrYu1xiaRjtjtVqKZB57zsYq/LcpDuFkJAJiTSpulAOFURcaV4Y0dtnt3Q7YAbqackOx4GBhjtjbOFQvr6eU920COQ/2MRzhMWiHAbDv9ZhD2IyYGcyLBF5ttY6u3d9C8VSrWT65fQFROvzinS9XKumsCHBcApEs5Md0oXSaYX8mppg1L7PImg3H3+o1XBEe5XKNS2kiaAIlqiIgIeiyjzfqlmYGWOW/gWcms2a891QR4BADuHQC4EqfSRdQlBF8BLim3udQ/Heksj7vdm8YETuwr1dVJLWwkZm7UL2tV/IMIAD72wg+zlXHQ6/Z3XAecNPZG4z/0uP3n/+AElYpMASkGEA4JtUUhIAS2AJHSP2CBcxei5IYFUAFydENZpYzaZwFAVHAkAgRBskoxqbtfvvkf/tUvvLt/ouYXUHwPyEJw9+CGhwVSLIKu+8PMGqMEPRMAuILmtIqCkzkLO73DbvPw8vkPra2dEQARdD7nIETAEzIZ0DJqx/sBACQO5ZNPnM6ZZkP5aDTY3rna7Bw2GrVKrQoAhLlKaUuT56Z+4yOzpPqq6U1lkpzBFEl6PrGbjdRzm9Z9A4DJAKtlVkSH+3d3dt+1PG6snTl19rIGjw0yWCQb3V+aIh3NS/C7q9rp3DEmQMRxGLSbNwEkVygWixugNDNv1s9q8jkRoJs+hXsGAMgTITkHAFwHwM1W3jsAmN6n00ysiZuYCKbMvwAI0CKiEq21PzL9uOAXIYT76gAcI/bLkpQuheR4LkGH46CCY+uZ3j14Y3vvyxDzgB06UoAcpYPxfcTQso+IgJZYEcqLT34iklDE8OU3fpbZDkf9brdZrq/n8hUlXCmcePLCH3MKtsnJvnH1X/RHfToO++XBAgD3TVLodAoAuCTGmiAIAmZWWudyTlcn+sKRLpBgRn9wpZHfe8n+IUsGNF3+n2TG5AOwgOl09wIboDVAigFYTLu5Mxw2ibTvVxuNi41GQ2tfRCjWHVbZRmySORx8n9F+EkWjXx0BANKT/RD5WnKnvz8M+2CNa16AAjQ0HHVyfnVz/YLr+DnljBnDoxQASMre7gqqWE2BAMBw0OsfBmE/eQCtCMaic4jKiDlo3ur1DzbXLlbKmwSMoEw4rFfP5HJFkiUUoIwkcAYARKHzCAAw+f4oTghUECEw4dXrnw9MU1OpVjvlebnUNDPHR54AgHnXi0whIMasze4RALh/AICRIQQBgCqQV0XwKeb0LgQAyX4Xda50t3ctCAYCNgEAkDBjiYXJNQEKha1ifuuBav0vOpZ8oK4/fuOHPwkinf7uOBx5IkLKgLFh7+//SPVbf7SuCh4oBrJgSCBEcdxKD8Qmqtjin0ZVX8KBcKMZ4KSUYvMVZ3QjaEFpEc+SAatts/Nj/7eXP/ubBZ2rFglJtFK6M9gfDFse5UTEQsRcVHFvznUA5ncFFFdQiTxToxEiNMYEu3u3S37xycvfqP1KyGNi34JV0z3B+JFmXqh6ce8No1XUY5JGR5oCJCLO6SkefiCQUACElGLoDTt37txs9Q7q66VKuYaQYzG10mnP89ITXZk1+0xF0fks4eg+QOKvFBvWzACDTCQQYRImQgRgZk6qjA7UiQnv7t7aO7hhwW5unj95+gJaHWlQxONcUWiIm8LTtgYCRCIijIHpdnp3FOVQoNtrDvr7FqRc3igWakIIljfWHoPF9tXLTeDnKqkya5wMAAAhW2bjqlBJE2Dug6aElmIvQ3Z1+plG85Hp0UprMgLN8j4BgHt7Uvi4AVQDmBgAUPzvpBWmJZkwQbp99wu7B28vbxzMIQ8LzmsJUURyXv7py3/8i2/+LwwiYsKxbbZ28vl8tXoSFHDIH33uhxSIsCHlWRBBeO/mbzR7tyl24F7UlTgW6Em/a/msv1qwTGys9x9lmSzGmDAYcTD2iyU/V4iaWi4OE2XZhK3oqSnHefFCAJMUqrOvE4m1QbtzwDKOnmIhlqB5uD0Ytn2VV7q43ji7vnYatUqaAFHDgNJ1liTtpjmkmmA4ztr2KfO8cEFSENlaz3XIZvwBphECMYfd4d543Hc4nwgQMQhMEA4atbOV0kYSMDNUz0ngCGoTiYjlUbuzy2CZAdFGwt/OUNw6C+HunZ1r2lMnNi4qlVPkWcs5z6+Ut1zXK2lEOCsGFqMW+wOksdx0E2bCLktuzUxj1HGHRIQIDYc7u1cPDt/L6XypUsvn1xCSotikbsjMa/UzRN78PXGDWzONMhGWeSeclOP74mngRwBgWYCdyFcIAimtqwqL6aSLcaq4M2MPnxxkNDwYjO8KI6BNjYhEMm6EnmO4aa1r1SdSosCSii34AUzcHxQgwW964YdBwr3mTQLFYFFBaOVMpfez/4+Tm8/mGYh8C8BgtICNCowz0o7+eVDlI4b/cFL4j+6NIkQUVKjRCFgm4eBf/JO3/tqPb1fzl/IegyVBINK7e2/76KGiewYATiATUTEHne5Bv3dw+cKH1xvnWNAKxvLyvGQjvM/SzpINeLF8pM2sMUeC7kxEkDhfiOBg2L5161pv1K3VC5Vq3e1S1eIpz8tNZwDZAAAybMWODQCmMABmq7ZP/yZV9eRor5M431VKMbMCFZrBnZ3rB+3bAHDmzFObG6dEhG16B+V0FS3dAk4DDNcBaHfvGBMQaRsG7c5+MG4DqUp108uViCinc5XSibhasJDTnFn4yQQAmVfYDVY6i6h0WWJKlBqmxVZRojnF2EUp+c+vYwAA9zFLEL/fxkL+kBKJmgiTu8By0Lxxffv33EVd8cDxbSNXcEJkYS1gCNAxRFDEWm53dm0Y1NZOK88Twcun/tBG/ZSTUrCCiHJt+/P77evLc/17AAAzY+XHBQDz4RxZbGjC8diYUbFY1H4RlWK2kQmAzNPl8f6X5bFejwsIZYky8jgYdPr7Ti45on+w2dvfNuGINHqqulY/21g7TUSeImZJGgszYXzGaX5xe5MzAcAqJxXp7C3gMWaaoEWqnTzsdluWxxGDlAgARqORply9fibvFxbVL9y878JrmzDFxA5Hnd6whSjuIyTyHuHYHcx0e82D5u16dbNRPy2MSiMzF3PlYmE9mb6N7AiTXscKwF5k/hvKAgAwAQbJrtJsb9/eft0jlS+WyuWTCJ7AeEZJfA4AzFZzZlShsveCRwDgvgFA0gRwuu1KlTxddqoM05edlwMAa3rt3o3p/gxGJjkAIqCUchlLtfqYpwuZs0xfx47OePHMN5ASBO3CtyUOhsMf+jD++H+7xQWNCpBELKDQ/E4kYhFF/EtIhaMFr6K8EJ1zOwCAJgAFCkT5EvKdN/f+1H/wW7vjx0sKSYkm1Eb3gla7v++RGyFiG5dUVQzm0gBg3p4GEgK0kAhaHu7evVrK1x+/9A1aFQQZRBsIFKhFlMSVZwDukay8XD9+kvRL8n2YRKOwFVZKGWEFqt9r3dx+dzAe1uqFcqXmvkMp3yjk6kkiHtEcE/XP40gbrQ4AYJoOtBQATEVYAjeXRs4e1bHIiHS/e3h7+9ogaJLyL5x/olZdZ6tYTHpkBxMe50x3mNPXGURgGHS7vV2tiogYjPuHrTvAY9K5SmWTPJ+IioVa0WsImOUAYH6FpER+lnDGxO0x1lpm9n3f8X+OjIPJlXVNAEfpgRTJZ8FtONZCnJzX/cwAfDB/UgvYLUuFGIHnO7tv7Ox/xYIkvmmrH5Yi4inHnJBI+Z5ZiBAFrXC/1+y19xuNE16pIWI9pBef/ASpqL/HAHf23riz//ryVgMv/Q0sxQz32QGYvBKQmcMwDAZ9YVMqV7Wfj6jf0ZjmDAbAe8775961Aj/K7f1Z1h8u1yQiEdvuHQRhV8QyuiEMMHZ0cLgdBn3SOU3ltfq5zY3TSsUesTLphKRyTZqDGss8bmVaXnDqaiAf9TjOVcSz/QHcJSIADsyo2ztkCVyXHlHYiLFBtXyqWKhk9q4nTJhFHe9J7ksi0uvvjcKe21AAaDJlBAQA1tr9g5tBODix+Vg+X2ZmEUuA9epZrX1IK5mmtqflm4vgMh5pmtg9AwCSFwxHrRs3XwMZe365XN5SXgGj75yy+2TTqJ11M2ALodlcWwBS8m7zH71is+sRAMiGfI5AS3mtq6j8iPjg7tW8ROH8IC+b/dabEGngWgBA0IKBMBKpRARWGIulzWJ+6w+aahNeOvcRAAbUCgnIG0vojff+yX984Zu+vyrE6BmwCkTAFZvRpiIECTIKQ+5xQP8IADCx/UJQDgmQJVbaA9ICiCPzX/4nv/X/+wyWNjc0A5BHECpWd5pfBcyrCKOz25YSKthyAJDUfpxmKLBtde72WvtPXPzGev20FUBQAlZI1MIndnVVQz4qn6ZjAQBkcVy3tHyke32iwuDOrtM92L5zbRQOy5V8uVJTSjFD0V8rFhoEbONWcvx9eHmiuFICNK3JsKhJDYuUQ6emjycdm/hmiXPzRbLNg93d/auBGeZy1fPnHs8XKiKRCAWhTq5U1uBa1LxLEYEEkQ7aN0QsQg5EOt3dXr+pSbxcuVhcc63/SmkjrytJuzCLoLzQHcyxh5eXsZ0e2Xg8JiLf9+fJP5yR0sU9B3HJluuexyztZTjsXgCAyAerA/AAUn9iBJ/ZIAqix2zirFW+8MZPG45Z0WBAvOPqipKzHCJ2847gmDzoPClIEEajfnPvVr5QqG6cFQYN+KHHv9P3C07SSiBsdnfevfWbLoG7b03TDDatmwxZ1ClaAgBU5FCBic2cs+Ezw/Go1yXFpVpd6QJbQGIU109Jr0lcGuLkOKZgM5XXKWgxVfxLzSzNaCe4nd6KaXfuGjvguPWLbI0d7x/shGaglPJ1rV49u7lxWmsda+pOpIRdMdmpvsxggMzqdJLiL9QYSd3zlZSFCJe+ONLuDMJ+u3cAYESUq3CbcOh75XJxXWsvHmSfudrLAUCy+wARheGoOzgwNkgXldILMAxGO3evF0rF9cZZBM9xsvNeuVxaT3hlEIu2rVJgmp17zuhg83zGlt7OxuPBjVuvmbCp/XKpuOXlSkiusjYLALTOLd4HJRMqpwUe5j/60c9xU6gpJXFgJC/FAkqsmXi2xDM36iQi7c67lseu8O8AAKAVkShiAxApYVR+rl6+BLN+mvj1jdnw7LmXtAXte67GP7Th6XL71//R5dxjWkBQW7AaJCbOpvSuIp01DMB/EiB/1MZJk+uoEAiZNCll0VjSiunGqzd/+Ed+b0yXdbGoGUSsIr/XafbGez7mnMjjDNqGeByEJLP8ryL6uJsitVZ4dHfnWsGvPn3lY9rLMwhbQhKOrX8fOACYTqkfEAAQktjnAgC6vdb2naujcFAsF6rVuhP6zPu1cmGDBARCUDOlqSwPgaN47UswwHIAAAvEQ2G+nysagRM1CWPM3t0brdZOCFyr1s6cvqIoL2KsGEStKBdPlvN8N5whqgbRdFkuCIed3h2l8ygQBKODwx2BMQoXimuFYo2RiXStcjKninEHYGZTwWV3HSMp93m7wcR2xwEAYBkMe56f931//rALRlYTLhOxDEH8pEGxcH0eX6VEnMov8P0BAMq6NiBf6xAac+ecjI9998ZvtTrbQEoiNUNXQKLlVL3FBqqCEx5zVOcjQEExxrYOtoNxZ/P0JVIFFPFV4cNPfBdGA+vWCr765qcn0ebBXqkkI886LC1fDun8FAWdhQYyWAxG42G/5fmqXFpDpRkiMX5H31sh+4fV1IGOdYMnACCpCKCkS+PRy4yM2t0dY0ZxW0AQ1Xg8bLZ3grBPRJ6qbtTPbW2ec1OzUzMGHD3IFhBnmozTgtQyL3x3HwBgJdaQINGk1tDrNwfDJipKVVJVubjpa49IpdACLt+/pkMZxtKfEoTD/qBlxbj/TO25rnNC7c5ed3DQqJ8sFdYFrCu31csnPS8vjKQimqtARKKbxIrMeVuEqRcQzjnh8KKSresPWBtu33mz378N5JdKW16upJRKRuziB9zWKqc9LzdnAwexE9zs57o9+hEAuM/wnPEwJP1YFBClVEmpCqJKGk08XzDJeMqwP7w7Gu3NrxZXuBERpTQICdhG5XHl5f5AdWnw/JkPEWkSjbmcEtMcj779afOP/rvHsGAUISgGVsIGSQOwgKDEpCsEBC0wQv8pgNzRAEAQEAARCEARIAkp4xEQqm73r//Yr3/ml0ul+haIJgUADCHu7l/XWscpb2oujSdK4YyUsm6ZBQDRAIAICnfadzvtgysXP7KxfkZAMSeifpKO8rMLZVUVoGMU77KqL4uzFoH5BNcVdVrtve07VwMbFEv5Wn2N0Bewni5Wi1tO658oUl2YHQCYZ+bgUQBgxjl1+itNNVsjVRBa8nHzv2dRFDswtNut/b1bw1EPgdc2zm9unCAiZrEcMFhPFwn1rEoG4pK2AyIy23Z3lzlw1a9ma2c46hMxM1fK6/lC1QmzrFfPut0xTT+Yk4HLgAFpFZcZyuC076bY0IzGg3yhpLVGzBByXVjJRrAC+4c3NjfOgih6oADAzQAgEKBkUoCmZ5JXAQDJWxjgawgA0iO/UZHvS1/9X6y1iGBBELTjODrzhCOfx/kKuogFSEgmKfV050sj1O8fHO5f29g4U6iedOakH37qBzzyEUIRK+B//s1/CtP+WatkY0d/Q0zReKaPuQJPcWrNuxWOiFE8tDIaDIb9dj6XK5WrQF7mF3+ojP9F700rgschJX0uJIzDoN0f7jstfBFxiX4QjvYP7lgeEVFOVzbXLq/VzymdZLc4XWmaT0GmoO+KAABXy7xXX+qxjA8icrd3MAy6DvGKKGvDvN8oFsueyiWGACvvX5TIfiTM++Go0x81YeJIk6BFYhDhoNk+YOa1xqbWeefNrFWpVl5H8GKpwNT+llxMXsmcPotfygsBALMgt1o7t3e+orXO52qFQoO0T8CZACB+I6wCAFzBLvVxxymlPfrJ0gHjFABwd4dUQakqoU6aAIw8W5fJAgCh6bV7NyEyvoB49bKjpogIkXI2wOXCmXyhceR2/3UFAB47/RJoIkBNnoAZjdt//9/b/OM/WoO8UooBA2HCiUIgpadIEZTAGP1nAfTCCDIZAEBAFBRUJCRIGrRm61myn/vsl/+jv/aOyT/haUCjUCkSGg32e8M2kEJQwgEQJt5JqRyLhZAk08lcxc+1MIPw6O6dG+V87crlj2rPd9oFVoSSWcC5IJsp+3hvrYC5qEFT0o3HAQAA4M6o2drZuXszNON8KV9vbCIoJCHMVUtrhD4iEhiRiWBWYiyQjXPuFQAslgddBgCyrLkRAMSag4O9vf1ty2Pfy5/YOlso1RAJ0I7DPpGX86rOpyfm7sWHounZrLmbMBg2h6OO1r6I7fU7zdZOQvOt1jZyfkkIkXGtfhYRI1fw1AFXCOYLogazpIMU8zgYMnMhX0JFRwKA9GSJCAvSQetqtXzK03maksKYX4XHW7gUx1wCeOnZjyMwCEl0EehoEdj4MHOTi7x6Z+lhgAQRIRUlBiL41tVfGQybEZ+KGMSL+sKIwo4IdDwaDjIQ6ol3EkTEwlRKqEbBYHf7rXwut751hUkTcCm3/sylf4fQSdzCy2/9lAgfDwDQChcRU2P90zn/kQAgImzOxTFEtBCJ5Q/7/fGwWygUcoUKKjXTJ4m021e+p/ec/S8wJnMAADMEBsFjCfqj5nDUcRP5LqgS0Wg82D+4Y+yQCPJ6bWvjsY36KaVUunDj8um0I+nii5rqAxwTACRvpOMYI7iNLFZRYxQ+6Ny1HLo9jpm1ylfKGwo9REkBAF71UZpIZ7r1xe3ewdgM486txMbMBCTMHAajZvugUqkUC7WE4VmvnvB1MXHzdC4uM2Jxi/oAqbAiWeWSdKllCgCgCIMdjvrXb7xCYJVXrFQ2lfISiacEAFTLp3w/D4BHBS5ZBAAic5ZZuQv4A1Vavk8AAAA2LQSEguQpVVFYjNctAUQO6ksBAIhIp3vNmBEgJ3RB92+n9uG4Q4joe+Vy+Wwy7YP49X+z8LFzLyH4iJa0Z214InfwT3/i8umnc+JbnyKcTcKCgOIk8zwnpSeuuI4j9D60OA+JBwDcv1z5nxAUWKUIc0AS7rR/9C/+2ivXzleLJQyJ2CJqsbzTvEpEGoQFEdWM/k/SuFwMADBORxgRW83dbmv/iUsvNBpnLUdjYQyk0CKwBX1cFaAl8p2rpDtJE+CYAIAYmQTarb3b29eMDIuVcqW6ppQSRmu5XKwVCzVXa8k0XknqlMdmAS0FAFnvohlN1cmEbqqrkmAShTAaDe5s3+gPOkTk54pbm6fz+byINQKt7jZqtVa/oFGhCIlixShOUXaiD+04NoiIcfHAnSyzbbZvEREAjcfD/cPbzEZ7COIx2EZ9y9MFIQQLG2vnEQFEzZ/pUfd0FQAgYnk46mut87miU6iebxcsAgBuvHF3/+21+jmt8+5uLFo+9wAAklP4yDMfh2RLjs2QAZzhBmaKSwpC2oLjWFnF+4ABmM3r7/yisWOX+juyEziKd9yxWtJ+WVZvTuohSE4S1OnKCRgA1IIAYFAO7r477nfWT1zxShUSQoCPPvv9KARCQuZzr/8zRDVVa0iZORwvoCdpKE4L+6bSU1p1V85OrBFBkFCEjRkMe8Nhv1gsFoq1tFoOpqzejnU9ebIUU+XARd9ZiBZo19CE9pN5AYnB9PoH46AfsdhFA1kBOwqCvYNt4CEiFvza6Y3narWaVl7MfomiSpz8paM9LcxupoeAlwOAKQS3xCgv634llFcRq0ABUGCHvf6hkUDEArAxplY5m4ul4WI2Ba/+KMUbq7jpF0ZudXeNHQIAR8Ltkco6IgLbXr85CsbVyrrWTvPA5Px6ubDmcNSUKmjW/pLZDRAE59GW7gMkaj+JeuPEvZGZAJ0bwK3t1/rdfS9fKJc3c35pTu8uAgCx1trRYX8RAIAMxYtHAGBlACBkwaYBACApVdaqDEKrAwCn2Nvt3hgH3bgxG7lcJ2UaiEcKmbleeyKWTf+D0QG4dPajABrRoi6MRq3veNb+xN88W1zPg28AAFI14xT29gAtkBN+q4B3buK6myUuKaiJ2XmVgAYQJUpLjhyi+P/8xG/87X8YlhqXNImYSBtsOOr0+k1FnsCYQYuIwmzboHmglmrRsqAiFpZgb+e6pwvPPvEtmMtb40RmGTHDSnpBRZ+y4uDRHYAZ/JDwl7LqRlMfxOjGAFyS64kIgBtelHbr4Nb2u1ZMpVYrlgtEPom2YnNeqVaqT/QJXTUo2qJcuE+eFpKMOxs9aLN8HqEjSqDZkZomXRoRJ5shgsLIyVyyCLIFRczca+/evbsTmlCRX61Wa9WG9nNhOB6YTmj6ns7VK6e1KojYqMSMMuN9m7jZijABpWUxOr3d0PQVFYKwc7B/cxyyVnnlRYzweu2EmwAu+rVSYc3VBrKcSvHI/DUtyiHTSt/MgkLGDnu9TqlY8/P5Kct6XKXghCK817qGiJv1x2KmKa9iWTD7heeSJoUMoAAEQb/49PcisQggkYBBVMIUK72QiFWYUMMZWYSS6SuavnSpK4ns5DgFrIMWTnshuompUXV3qCg6LxyrTmctiRKcJdLMkDDAARiAX3/nX42DlrBmZKQYACy4aIuc3RYBKoz9ZWYoUnEVnBCRwfZahwcHbzdqp6sbZxkQES9uvbRZv4KKhM3n3/qUm+qeZOruUeXFQ7oLCy7ZHiPIM0s6e/QcEQnSeypOzW8IIU25odnQDIeDYDTIl4qFfAnjrlr0AqFEznIVAMCrgZPMA2b0AWRZoszM1gbdwQFLYK112pQiSKSHo/bu/g2BMSIWvPXTG0+t1TeQCFG5cEoWBYGIOKop0iTQHYGweFKtx6nnHQXus+IYM5Rmp42HwaDdv+PKHwDsq3K5tJ7qGEgCGxYhAZLlcthy2LopIhzX5iYeQWKttcNRH4QK5RKRJiFHs/F1PrXL8EyBaYGZ4yxMinerNM7MSMQjaAJojNk7uLrffM8jVa6cyBeqgopSZsAAUCzUioWGFUlu5BIMwNHoV7Rfz3z5FJnkHt3u/uBhAEw/J1EUdTZzoBGV0nVCL+omxUt9kspndwBoFBwO+nei7YksTIueR/kDKAAolk4Vco0/ONcdL57/iMdoSAmQDrZ//M+e/vY/s6k9Ac+pDXJWCNMALMiACrEB+tQSAACM4EaO2Drtf0ASBUA59PT133zvf/MXfreVf6agkdgnFLIIgN3e/mjcR0QAY0XF0/rHAACJXgEA99uHzfbO5fMvbm6cteAxMzIC8urVleNqgxzZQEilGpRV7U0HnSS5IRHptA9v3nnLWltf28gXtKICi4iAUl611PBVLqnuuxJLnAUmbu2S/OdyACA4V/7P7O6kQnamm2+0tcfKRQwWGBUIABgBIhoNuvt7tzvdJgDn/FKjsVEolp3jTKffQgWlYqOYq3ue75gcke54tHtl1qjShpcyGre7vUOllOVwb397HPQ9XdDKRwVBEPi+X6tuoVYiUs6tFws1AHClgqOr++kgNS9jR5P1yWwJiJlHg+7YjKuVNaV0egx6FcMjl+6nAUCy/RyxdnHB/jmdLjkODAp/w3M/zBIQagaJJRSBmREF2AMMQHyAiD8dzWE7g/DUuOEE24hbBsJsnFwgIBP6zAzoZBnUDEad5AFzXz2p8CVORgQRtw0RWQwRgWjAUADfuvpr/cFhnI4go7h6EtLCVHMhAMBFT/FUzXuGSpecezAa7tx9U6E+ee4ZQk9EEQYfeeoTqBhR3dj+3J3Dq/FMAk0K/4Kr6/TPZk6pFTV3UrgouiHNvHhRqh3bAAsYE/b6nfG4Xy6tFcvl6KkUlQWkVyz/H6vjuhgSLNAeiHksCoBH425v0EGy1jqFNHaLazjq7O7fRApJVCG/dnLtqUZ9i8itGxP7SGAsTBeVsedgPGXfuhQzKjWsfH8beVz2ml/AjNzpHwZh3z0IhXw5pytKqRRITnzBeKXZkunnhclaazvdPWYWZGslNYssABAEQRAEWmudyytARJXzi+XCxqSNLwIumZuzjDwSAMCsnsRsqu0GABI8cNC+dWfnTY+wUForFBpAWuGE3M8I5XytkK+nq3GPAMD7DwBcNEgDABAk0qRqSvnOECBVeJoUjDIfjtAMut2bsWpt1JFDRIHJhI/bhnL5tVJhK5YA+fpnAeHl8x8lAcXeEPlM4e4v/PdPlx/PKWJUdh4ATInTO0tgvQW6ASKRcfiMhWrkVqsAjZBzAGBBDcpHURL0/vKf/8VfeXmztL6mrRJLREziAUCzfZvZDQmxFcUS6ET2cdUOAAAQAVoJ9nevaVV85vFvIdRMCkVSBY8Vq073I9BHIsK4qLhCmd2GuJSC6dpSp9u8fevdwA5rjYaf93Je2c0DAFKluOZ5eeSZzSQhFlOqQLUspq+oCDQ/EjoPAHDaWsZhgETnhwSMCTqd/b397dD0FXnl0ma5UvE8jxk6vbtClkhXyuuFXJ0wh2QTrRUkjgyYUipd8X+KiBuGU4hozLjd3QE0xphma7c/bHkqr1Xez+eMHQVBUMhXqpV1IRSRWnEr55ezAMDKj5PMX0lxqvBiBVla7QOtqViuK6UjUES4ysqLpY/tXusaAGysXVRAHJdnF6vTzB1qgYqeG4UUsQTy0tM/iChAiTkGJfjTVdPeu/mb7e52/EZOnHQhlhICAOBQKSXsXzz/YqN6wbnwInrAbvpGkCS5iVNzIDLBABmTOYxEmiWARFVJlHuOopkwtML0+nu/NBq3I50T0CwGkWPllmWV9WOAqGkAkPEouSqDEAkYMXu7Vwf9vVPnn8nnagiKxTxx7psblfOWzHhw8OWr/9rtghYmE1cK6LgOlDPfMz1ieWRoc6SHIwGAu+lK6fiplyAIOt1WEHartY1Sseay/1QrICNoR9UDxHTSR8dM8ZfU/ufVyabj0iTn6/YOAzuIhwGSHYG6vf1mewdkRMov+idOrT9eW1snAdcHiMvtYmOQnLYjzGpYpTKdGQGD+8j+ZyzJ5u+70zawNuwO9o0diSAIVcobvvYdlSlB7Mu3uSUAAFAQ9DDsdbp3HUMgadC5zcjZR1hrvXzOEZMAuFE7m8wiQ2KUhrP5Bi1Q6E4DAIZMtn1qX5CJkEO7t3d7+8uAYc6vViongHTCDHHveQQAPiAAwF1ATgEARIWqqFWR0GOkzI5xVpUSRKTVuyomFLGJJVIUB+I6BYICIAu40bhE6CXjAfGM0NepD8BTZ77BEhDqgTHfdKX3k3/vChVIK1DarAQAvHNAhdQDIYAY30Sn5iPk9H8EABGUB4CWDGj1lV9563v/91+pNl7Iaw9tGHkuWm053Dt41/MKjMzMCCphtK+yJSS1EEQkgmGvubN//fKZj2xunhNRic9UnCgfDwCsWKnNiv6c1RaYKdhwVgcgOmyv397efmcUDGuNzVxetFdCVk7RtpCvFws1ZHQdDyORuhFJhlnG8m+7yCF40XaVVfJ0F0ol42LJsnF30w2ljQbd/b3tbu+AweTzpbXaSd/PI+ZCMwhMO7CBUl6h0CjlG1prcMZegFErg+Y5tQntkpXSzOCK1v3B4WjctRweHO6Mgx4i+n61WKgA2uGwb2xQLjXKpboQWms3aue0yrl96D4BgEyz+h1/hk3YbO6VSqV8sYqYGqejKQeDJfuEAwCIuN54LAIAC27WfGLKmZXqqRjMiEiCH3nm41H/JCs3+8Ibnw4tz6+GRG1G4kyIrXjKTeCy71Wee+LbXNRF8QGMiABomXjxLHxepuIPiXBapolj3pEwYGgGb7z7i9ZadsbJSbqJ1sUWJBExiPpBWbvz4nFcR2NVAiQkqNrdnbvbXzlx8kp9/ZwVZOYc6I88+71WTDAevPbuL7qEOFICdR4ngktlNBcCgKw+xkoAYJI4Lj6vGcDm/jMYjVvd3d5g78TGlVKpGn+kShNt3VOcyDiudA2TBv0CJdkFrliwiNoez8iSCANENYLu4NDySMRt9kYEAQjYdnuHrd4uS6CVX86dOr11uVKuIyqJO9LRcG2Ui/Cyeko6Xq0k/UnLa09zC4Oyy/PICJ6ADcJ+b9BiMQBQKa/ldCnWomAFCEDO2WBZor8o5IlzAVOt/s543I/bhhZSyhPMbIwBRUp5TsYjn6uUChsIiRDfghkAWMl6MottH695nsRVEeiP2tt33ghtS+lipXJGK3+m1lAs1Eq5RwDggwIAAEBSTiZIea3LivLTACDS+J/PCpL12+3fDsZOsSoDAEA0BkAitla76Omi83MEAKKv53kAfPzMRxBJI/Xt+Mf+ZP5Hf2xLaSIthGYBBcgVcZUgIyjwLwN6GQDAOX+lbwkBALFCyiljUXe6f/HP/uovv33yRHXTgBCHwr4GYItB2G93t1HlkISZhRHQqGkjlaMLQqIRmCHcv3sDEZ974t/Wvsccl+Um8XoiFbo0zh6vA7D6EPCSIyCq2LRIhqPerdvv9gft+tqW59t8roqoWMByUMyVq8XNdHUtrqviDM8nu5SywhTmIi3/9FumX0NpVQdEdB7OBGDBGjNuNXeah3fGZujpfKO6VS5XAMgyh7Y3GPRAkVKqVNgolRuavIRKHnM/IHZdTV+rCDUpQAsM4iHJaNxtd3YEwoPD3SDsAkAuXynk6rlcbhwMBoMei6lVN4qFsgW0NjyxdilWyIYHBQAk8Um1PA4GnU6r0Vj3coUpx4AUWSilZLcMAGzWH0PMAAAzOcZCX2HJmO90iTsJfvTZHwLgpEKfkKkE+ZUvf8aicaa5C48ch1eSya2Jozz6vlctnT9/+sVI3gRZGGNKBkx6RImEYwYGsAiKGQAY0QMARPvl9355OGo7MVOnH4fo4LEl0rGZBsbHeOjW7o4WZcESCwkx0NgMbt94pZgvb559ziU9SuiJsx8tlTaR9Jfe/SVjA+vadDIZDadjdiRpaQdp0XGcWdhU5Tg7KRdIuigpi1w3VDcYtjvdg+G4eXLz8Xy+REQu2M59QxSR6S+00PE3LSq1HACsWEdPwkiqxSqjYNDt7yIqa21CBBLLiHjY3h2MDiyHGvLVwqkzp57MFQta61iKOpo8nfcFWwYAIO2vcJ9V/4w7n7zAAQBhBWgQsdM9GJuu2xzXaqeU8mKRCYaj9O6WUg0jxB6yaXVuc9RUmEh1u/9kjsI4kSbSzKZRO+2pQhzeoxZE9sa4FANMF6HSvcQJRyg2YYRRMNi5+9X+8K7y/HL5tKcLTt71PgGAldkXL1ABeoQBjo0B3K1xsZEor72ywiIjRU6F8Ziiy+anH7SErEhB2G73blKsTr4EAJTLZ/O5WqrS8fWsCoqPn31Ri7KotB/8w/907aP/boWRNYEi11LJZIpz0mOV3FORkkAyA5DcAMT4niqQEMgDVOwxoEcEv/lPXv2Rv75dOHGlTCiWNREDodWA3O3tB2GXQScDZMyuSrFS9h97wmlSMBy0du5ef+z0M6dOPkGkQ2tpYh3Mqxwwc8NdhRy2NIOkVV4msZRNEAxubb/T7R1UauvlaoVAEBWIsjDO+41qoU6ggGwMKhgUTSj3K3yreRX/1UOw4MwLaFK0Q7TWuuYaMxMAs+n2d+/u3hoO24RULq3Xa5ue54nYwASD0YG1VpC09iulrVKxPqUrMgFpMsO1nQEARkApZa1td2/3B83D5h2W0Arn/HK1sp7zS9ba4agzHHURsVE76XkeI4kJtzauwErzuMfqAMQbhQ3anT1ErFXXgbxZ3gtOeR8uXIVs99vXEXGjdiHxAlu0/HhJwpThWuqoO0QQfvTZPwVoXFYHAA4JMPMX3voZZgYhRqaYnz8jY+qOTKlnxG29jCxMCkEEECILRgD8yDM/mAjwTaT0ly3aONaTy7A7X3nz1w13GRzfjIk0cBifpuKJKghTSgVr9QT6ngGAsLPOYgXagrDI7t23Rt3m5rknCsUNESHg9fKFS+c/wghfeeez46AfKWzKZBncMwDg1c5rZowm/XZaHmDTtxgUklhrR6Nhq3NnNO6c3Hy8UChFhL3pVR2PEBwNABZl/+kDHgkAIq5IfChHF5mfuO3098fBwEnlOGzp1G8NhwcHt0dhT8DmsFAunDl1+nIxVySaSMwl/ruLJr4WgeXjZ/lHZOHp1D/uNls3DgagjAn64/3xeAhAa9UzRNqJUjiCX7o1nVS1j/5UoaRAw0i9/sE4bFlOP7MTFYpE+tMNYOT8Urm4RSjpdXfPACAem483CJa5VJJFIDDB/v61Zuc6KiiXT+f8SjzXHv2UctViofGgAcCjJsA9AoDp2ydAnlIlpUuCXmIAxZACAFNg24UaJWIE7GH7GrJNuNAzAABBuXzDjQGkBAYZkb5eLzo+fupFRNSg1k/AT/6t9dNPeY5y47ky3oK2JoK4ayv+kxiNdE4DgKhOi9E/XJREBFLAVobN7/7Bf/PG7jNrtZyAIcPkRoNFGzs8bN1WCp04TLJ/HBsAAAFwc/92YPjZKx/zc0UEzwgT8Hy79rgAYPU+QBJDSY4HAGL2PwTB4Natd1rtvWq9Vl/bshKQ+IAiYrUqVMprSnJIYUSsJxCZ0FLnW7pTS38pMJhLYWV58I29YLLRhVI4GrT39ncOD28zcM7PN6oni4UaIBsOxuNhaPpGmAi1KtSqG4VChdBLI/W4/I8AwmApmhyd2C6mipcayfYHhwfNmwfNuwAhAJMqbm6c9nRBBI0JBsPmaNTxdL5WO6GUcgDgxObjy0U5VwQAs3ZIAswsNjg4uF0sVcrVdWGaX3i8AinFWnPQuYGI69XzRGpFHssqQ8BIwFaINErw7BN/ouDXEl0Ol8i+ff23293b7glPysOccQXc8zUrysHIIMrJb7miY2q+BbX2yqU1X1e0KhULtUq5QZjLPBdjx/uHV9vdO8Nx09pASAmTgxNOy1/EahJh7apBAm50BEWcagQ7qPOwI/qEssKMqImAGfab2629d+v1x9ZPnInKwui9+PT3k+IvvvUvg3AgwkIRAKB7ikeLNB0XZfMLnWyPmseNIwkkPQEH+Eej4WHr9mjcObX1RKlcENbTiDo9t3PElp+ejs0cl88YAMsgYGK6Bp/oTaGk306Gg27vgGVsbZhUXgiQQYLx8ODwVshjAEbwq8Wz509fzudKWuuZCZ0lSXPayPbBJf0ZAGCmVG+jxe9gAA2G7d7wEIDrlZOezougAkxLV8+XP46EASpqZkbs08PWLQC2wumGnmOEuilMIg0ASnnW2nr1lJtGmIwbZbUyl7Sgpy+sxAkgztg5JaWiMAza3d29w7dFwlL1RM6rk4L3HQA8wgBHAADO+HME7kiVtC4DeRTpgbrNJXMSIAIAABYA293bgWmTwAwAiBYYqAhOoK5Xzub8srUWJtzjr1MAcPnE86gREZ+8nP/JHz9VO2XBSfk6Iu/8jYjaphaQAAznniGhiPmTAICo/DYJvAIeKGbOjyEsevLZ/++Xf/S/ONjYulRARrbIyAiKERGH4363v0M67wa0Y4owwUTmDLM32hQAIEAgCYPR3d1bW2vnzp95BoUsagAiMFkAQI6qtd1DwsAwpwJEsmL5P9JItja8c+fdvf1bxWJ589TZcTjS6EtkyUa18rqni4hWRJwfgkv6HaEzmUvL7F1k1lmnZjxmDLaOCwAcBUhIwIrYZmtnb/fGOOghqmplvVE9obUeh6PAjsfjYdLq8fx8tbJeyNdQovxAQOFkAMPpLZMwUQTcEzn2iRaHoBeawc3tL7W7ewKGkDwvV6+fyvkld1JhGHa7d40d5nOVUmkTNQJEHYBFfnCrVHyTq5QUHdl5cgqISK9zMBy3hPHk6Ys2nkCZuRcz8iBz8RHnAMBC5JmZSxxpNeWS40b57JXzHwMgJAuiAQ2LeuUr/8wJO7pxdkzmOhakmOmVJqhS034usBASIANPntlontj1c+zMEzp1eHKjLwiUmHknFKaYkeIBGHDbc+TqIE460ymB0oPctzAzcxV0V9y6NYyousPe7u0veSp35vzzpJWwsmQKuvjiE9/98pufsTxGZBFcwYToGMAgLn7PALPZ1694QeYekDTLGQk1i+kPWvsHN40dn9i8XC41kj7enFHrMgCwJPtfwgiCuUF8nGGiAiTdpynKIvAoGPSHhyKW2Uy8GsUK0HDQOWxtBxIiYgFzpfzJM6eeLBQKRJAIUiWH4yyT2iiQsjzQpH/qAyhLSFQoEuUUcc8yd3o7o6CP7K2vn9Dgub5ZwoNFnLVoPAoACAAmfQAhHAz6veEdJO0y/qRJkjKfiRQaACjnF8vFzZRf24MBAPGLcbIMYsFQY0y7u3t4+O7YjIrFtUJxgxQkjUcSKOTvHQDMG1w+AgAPCgBE2xMLqLzn1RB8AO06V0sBAAAQIovAYHQ4GN1FnpZBxwkjKDIAFSoUTxZy9cyA+fUGAC6deFKRj4j/zkdrP/5f1/N1JWIJbCrx5dnyv2sOCIB3AtRGur4y3YKJujMEKAqRiH2PxsDt4bd/4jeud86VC6BBCDwSQHEjh7bZvikioJx/E0/bfk1N/qUq5ZKEsPjBIwJpt3bGo8HF899UrW9ZGyIqYIOgSCXizRLXSKJx80jfjY8l/7RSsz2OwhnhlaZ2LIWsAAMGQgt7O+/euvt2rlA7ceas4R6ID6IImdmU841ScQOAU6rnGRXfZKFPXGxkIT9kmS4Qx/8z3T1gEIIpEYxIz5EFSDPYYNi5e/dqq7srgvlcaa1xslAoGrGjUW8c9AGAGRCU8sjzCvXauu8VRSLVeTcxOrWjz21yzMmpsStoje3g1vYbre42ABBSPleqVU9qrxD7/9kwHLfbdywH5fJGqbiGiAyEIpvrF4SR1DStZQGrZ/5aJSkLp7AvAguKWDk8uI1ggezGxmWOU4GE/7NiQ8kY0+rcUMqrVv7/7P1psC3blhaGjTHmzMzVd7s9Z5/+nHtfVw2qvsqyLcuBAFkSRiEjjENCFkJGBiQjYYUJlyUZuSyjkIWNgpAlJCAMJiQEMg4ThMBygBABVFFVr1699t777umb3a29+iYz5xzDP2ZmrlztXvvcc27zfPaPqvP2XXutXDNnjjm+Mb7xfXtaFd9Igph9T7QkJICigH78q/8UieZk+J6mpvfNj/5qVuXiN0eV2eI8WLj+tb4Aa+7OBofCDZ/4OnE/T0dh90giZzkfERnDL198L56eHtz44VJ1102BIyskIyvUG0VE1HZ0wVVXIq+xbhsz/k3rk5pnO3o/Dke9i84Lw6Od5q1Kua509vTx/FjI7J3J5Yi4OifeYIi72HBbAtVzOcF68r0IDsbtMOq7QWFmdn0iEQGRXu+iNzxFsAKoqVzxdm/eeFCu1BmBiJAly4C3uchNLYuNoMulL/NL5DoPBJd0bBLXrdiMO91jQbPfeg+AKdFMQwCy600bkNfPyCVkAXJfn9kOhp3IDl0B1ZUL3cR/qh2cGCq7ta1XDwOvnK+1pUO7dmHCe14am6/Uss46ACIyHnaen31kbU97pVp1j3QhhT0EAMzmoHV/yzJQCgDmnL/WvPgdALhCzHfxapHQ6BgNSEpVPVWDxFaW7AoF3tkipzp1ythRd/BUIEarECXTJ8j/CWEBwFiQVv2eO2F/sJVA8d7BewSKfP/3/hMHv/9/XfICYAkJVMr+Xw0AkgdsGQAsbXERRNSilJCQ8gHhr/z5b/2h/91FYf8g0BZYFBIJIXssxnB00X2mlHIAQESQ5/qSG+23KJ/mCpvT42flYvXBvZ8m7buurkrGEyWtSdh0iM0C6LT+sdDVvapI6NUAQFp2ISAxDAqUI12A2IuLl89efA+Jrt+6G9uI0E+rmzbwS43KXm5uUlYCgHwT4E0BgPy7ZZ3fZD0ZXdQWRk0gYtudl8cnT+J4otCv1/bq9QZpmkwmoZlYjh3GIyLPU7Xaoe8XtCpIWhpPCipEeRmHPKxPyXzkzGXcfonjycPnX5+EFwJISIViqVE/UE6oSgiQmU0YTobDU8tRrXJQKNYQEZXnK79eO3B0l5UA4FKKzoJWSep5zAAQx9H52fNS2StVGr6u8vyu3t7+Noomg9ExItar1yk3SPBmgq8opMQd/ce/+k9R2sMBgBfn335x+i0roq4eDdd1nN7sD6/FNXLF4+cThfvZY5i6zWdbiIistRedk/OT7+zuvdfcv4WoBAyxm4jAlenFQrNipcz/2/hea95/0zxcRr8kUMzxYHTe7Z2G8XS3ea1W3dFeUdjNXwlbTMvw+e4ZzLUcX7dMvjCjPNeT3AgA3LBKd3Aam0miCs9MkIiFM3O3dzacXIgIoRdQoRzs3zi6XyiWAcCFbUSP0byto9oNhcvCQZMOeyFtPhlzZX4zmfaGk26zdk1TGUmQreukM669v5v9RvJz1YwSxdPBqGPs1EHcfBs/7eonfGtm9r1yrbpHoBYAgJMAyYPqy6U1cBMAyP58Oh68OP9oOm0r8uuNA+2X3LWnFSVzuPNgG8nsdwDg7WGAtQCAAQCUrmhdRfBmheDVp0zqXJ6I1JtO/wlzRELMJl/+zxcyiIgRisHcJMAPLAC4u//A06QC/4/9/pu/6XeUARhoIkwIdu1EGQkAgcSgjkC3VmX/C5aTWpDEUwQIxv9nf+df/uWPblUaBbBWgShQACiGAHk0bY/GXc/zLKwo/8Mq/g8QLsyZuQGv4ajT63Tu3Pjy3u4DQGNFJYMEyLks1jWD8qOHGTXZScBGy8aKV6qrLkbRJYJg+hWSWToLloDBeoPuq4fPv2HY3rz9FQMDRQWQQMSCGN8vFINGwSumJXm1AFTmpzNXAABY71C2FgPwMmUIZxcgxMyZoDIihpP+8aung8G5AFSqzXq1qbU2bKbTcWgnRGCtACqtKQjKtWrT07ORwVSqL2GDpEoOnPd4R1SJjyxHIgnHNIyGj158fRIOACwpVSiUmvVrCsuZ6rwDAONJfzQ6F7H16mFQqAIAkS4WKqVCapAJdpsxCbiMkJb6UOJ03LvovCLf7jRvB34lVbDJAMDlOgOIICJhNBoMT5VS1fKh1sGGvPqqo8yYcGiSF//U1/4nmY4TIn7r+//1eNpbuSxbpmufFQCgNVey6iJfJ1FeGm9dXeXN4thwPHz1/Jue5x/d+lHlBSJWIaAgr+14bFWnf411uOzGrRbkufzug3LZm7XRcNTv9k7iaNys7dQb17UXOPVbSuF0/j3JJYi47Y66FACs+KtsSy/5dWCiN6itjXqDY8Oxq00AJ5VCp198fPY0iieM7AH5WKsU92/euOcHATiPSwtC+MlMY1KaE8uVVmAdAMiltpxVoKyN2r1nKLDbupeNMs80JK4GAGYWk5kfghD0hhfTsJfo8zKn/XZiIJCpMwhyg9SuCeDr0mxc2LXOlgDb9gBg+cVpMZGEZDoevWp/PBkdA3n1xoEXlOdW8h0A+NwCgGTSV4gKSlUVlS4DAG6dRcQJ2fFg/DKKB8iSd5tZiOHOEIARdhr3Cb0fcBWgB4f3tKeKtdKf/9/f/vLPBAIG0dUD7NpjJQMA+gao5hIAWNIn1h4IxaiRzPkHp//YP/0rUPuar61YRLAk4EZzLUTnF4/J05mA4EaTrzkm6LztKAjY9tlzhNKX7v8DnldVGo0TkWVBkjQU2jR7TmrJKQx4jQ7AVhhABFdkIYyCwMgzowOWybj38OHXx2Z87eg+aXRyDdaI0qiQAr9WLTbmewuYXeeyNsvCtVGqjHapmehyBSVvsjan7p/onQAiGjs6b794dfpKAReCUqO+5/klQBNGw+l0CEqLCItojzwdVCu7xUIdkYicCDcu2PSkeg4ZxkvL/+LkedmdLtbaTvflq9MPDA5ACEiVivWd5nUrClEhZl4wwGxGw0447YpIvXHo+WWnC1Up7xT8evIFl+LCuoRvnStC7sUCMff655Owiz7s77znaMM8yzkw1bHe7HUKADANe71Rm4hqxWu+H2S1jddLWJdyROR0RvPHvvrbPPI4lVb49od/bTwdbeOPtk2u9jbAwJtQ9XkDHYAF6DVrSCYCiGSMefbsO2baa+zcae3dIiGLkRbN84QH+bSkpy/zGcArd3KEAMANVhpj+oOz/qAdR+NaudFsXfe9cr5FJiJEWYkX8/4Ar1d424DB1uyP2YxTlh+PJ53xpONKS0l2y0yomTmKp6ft58ZOiIjEL6pqqdi8dfOB0gEjEyWk4bwP12sDgKusAPEmmwfKF7zcyk/jfr93vtu6pZTa5rZuBACyQKFBRCO2PzyLzITZiCQGNQBkQQhM4hCa2NVL4JerlT3gdFbEhV9OSXQA22OADU9QOifG48nopPNkNHgOSler+36hkg1PM66mAK1bogwA2GSKaQ4AzGcP7wDAFULxRgBgAbXWDYUlIZUlTrzmaeLZoyTTsD+cHDvlq2xbzN9cIfQQlYGoVr5Z8Bs/2Cwg/PLN+6RVq1X7S3/8/v4dC2CSGvncwNYCC4gBCMGAvgmqATO9BFqxsxEFNGMpVuDh8L/8k7/2C/9hUKo3QazzyBSwbAEBhpOL4bSttZ8pumwAAOuY2SiAJNPpqH3+Yq/5pZs37hEWANmKOAHQuZoTcVb2YIkRtGtNMhsiSqX0r3QS85YAYC6siPMnsiJIoEbDi4dPfnUSDfYO7hbKHoiPoEAEyDJzoKs79f1sciuT+pHcSOjSNfPKUL4KKqwNdkvyQanwVkp1QEZm0x+cnZw9nYbjYqFcrbTKhRqgmYSjUTQmAgQW0Ijo+34QBL5XLhUbbt43D+REZDbhysk8q8zKqISI7uMIlAj2Bufnnce98SuWKQAhUb22X6scAJCkvj/kujtiDcfD4UUc9kWw3rimghIRkUC1vB/4FQRmwe2dgLcAAMBR1L54OY46pXJtt3VXk7bWAiXz8jAzsrk0yshw1J7EIwCulw59v7hlceJyglpiW2sB0CWtX3vwG0uFJiA7L6cPH/2t7uAEFCJfkghuHytXuP9+PopPb4wFtPRNXWvr7PRZr/0MNNy+99MafdSI1swSX5kZa3y6Gf8ngkML0pwJw5vR2Mlw1O0PzqaTYbXUaDWOiuUGu/A1s9tzOD93bYSX5+4LRd8N0nDr50fnGSaY6vpzb3BqOAYw1lpEhQIsBoSU8kbjTvviZcSRIkWiA1VpVA9v3riHpDntmC0DgHWXt64ftS7hXk70sxHbLY8n19O2Nh5Pep7nOe/z9fJRlyGPRIJ9Eb4ywnjSm0y7Vjgtq2W9AkxtwhQRud83atc8FaTHinUiv/kOwOK5f7nTTtLu5iST5NTyVabh5KTzZDR4acRUqwdBseaOgDcCAOYH5N4BgE9U0FkHABAVUUWpCpC/IKyyahNnnGErIt3BU7FhQgHKbbBZLALtkKfS1Xrl5g+wBigA4NfuvB8UC9f36n/+P7hb2R2jhKCdkIHZDAAAY1R3WNeIYX4IFeeTDQUkMQUxa9/0fu//4hd/+aMbpQDIaCRB1owxW2Ax5xePUWOiD2AZ5jWn02r92qc9FYggJNvpnk5H4/u3f6rRaDnzc9fGnQmGyMzGBVGMnZyevbp2eAvEc83KTF3kDW7pVQCAGBkNA5BFIKE4HHz8+Ov9yXmzda1SrSvlJV8dRUR5vt+qHOQnmAEcULFZC3jNNfPC0bLSITh/iq/EAAt6Do7uDwCAZjS4ODl9Ph71iPx6rVmptpTC2IThdBDbyBILoyJCTxc8PwjKgVcLvGKWZzCs0N9EROCElZ8dXQk+ZBSxw0m/3T7pDV9E0mMwhB6Rv7dzM/Cr6c1VTtMjIVSLGBv1B2exGSJ6zfo18osAoAAbtRue8pOD6upOwKuVSVhEJJoOLjonVkV7+3c8LLl5j3TwEXM2lpcfCYPh2SQeEFE5aJSKzS0vcisAkAgHuWcb7h79xG7zgUDsGB0fPf5b3eErxhUGw28lE08NfWBtNF+d136yB/aNndDzgWuRuD8a9V89/47Q9PDa10rlQwWIkNdLmdtIbyoEXb2IdbXG94xhmGJaTOarKDSD0ag/GnbHo46v/d39O5Xq7sI0lHvS84qiOWbO5gwU1zYiltg+67L/+cySndxWb3QiYpmZSFsbIxgAAtEK5aJz0hu2hawIaigVVKnVPDi6fo8F836Vb7xwuLIglUXFS+9+5s7rYri1cfvi5cH+TRFyM9wrheO2wADLYIasS7b6Lx2ZKk2GXbVVpUbgDiv6ACbwa9XKDnCm5AZ5K8nV8eqysYTcSUcATJI0q8MwPO08HQ6fWxsXK3vFciMHAFhE9pv3tuwq5AEAJEOqsjKFfQcA3hQAQHIRI1CqSrpIaTdpAwBIneYsgBqOj8PpxZw4Sm4a2DFBQIhIGzH1ys3Ar/0gA4Cf+PJXlad/7Hbt3/ujd0qNKUgMmsUywjoOCSdWPxijvsuqSryQV+D8vfOAKCYilI9+9dU/9/seTbyDkorRKJXwuVGQp+GgPzhBFSQ2vZYXDvVUuHtlAkNZtkWgWKYnp89Lfv3B3Z8oFErGmCQq4yKocAYokQ1Pz58c7txRykuDFM+TGt9gWgMrkjG27rOiePzw4Td645NKbafZ3EXSGauSQCFis35TI6WNrZn+D6JY2JwAbQ8AGFa9VVb4n43HUYIEouno9Ox5t3cGALVyq9Fo+b5vGSbT/nDadY8TkpBSWmutdeBXS8W6yhtIA0ku1qc+xotr5Rx6PEIRmUwmZ+1n3f6ryI4ZYgaL4HlB6aB1Q6nAiSMBaGcjnSvySRRPe/1jy1OlgkbjmvKKbjik1bilUGcAYHPhZxsAkIzKM/R7r6ZhhxXu79xX6OVM768sOzOYtCfTHiIieLuNozd9ioi7LIV4uPP+7cMfs5AY533n478xmJxakE8HALyFZ+3N17y3SbUXx5MQAcRaPn7x0WD4wi+V79z5OWQUsZRoZfLKVtJrI4G3kYOu6yDlNKMJEQUZERVqBhuG4/FkOBp2xqMzRNXaudlqHRJpNw2fIYcFd7ytPtdpP6xJsgBXm2Xn3cFmD687+9OVHo7ak2iUKYxBwgVCEREbn168CKMxgyBohTpQpf2dWwcHN/MqQK+9+Os6z0u/p82vh5wXbyqlnTlEakBmjhGJSGfY4PW2mVMgTUd+E6aNkBoMzydRLyXG2Mx9Od80cLYAIthqXNNUSMYGEv+lnJT4fDdgSwCQohFxAMB1G6IoOrl4Nhw+tTYulHdLleYyAFi3FAu/zAMAybGA3gGAtwgAEBMvF10lVUb0aH4GldfUjFyWFZvhYPBkrog5JwckTu1aKU8g9vxGtXT9B9kI7L/7G76KyvvtP733e//gvvJH4AmwBcXzvUaeQ1Mg6wHAQvYPgh6QWFSaw//r//GDP/Nf+rqhA0SInU2YFdYscnbxMRGh8gA5G//N5+t5luE6AOCeyNiMjk+e3L7+Q9cO7iN4TsOB0BeI5+pzwq56FNpxu/P0sPXARaJtAvFrZyQLFBoQQrau6oFx+PHjb5wOnpXKjVZzT6uCO0kTAqVQvbLneQUSJvLT7H9GvlwtPr3qDs4MtHOoNwviFjjxfl01JJAzdHQc36h9/vzi4iw2YalYq9d2C4UCIsZxOIn7YRgSEYNVSvk6IK0YoVpslYJqnuvvuLb59CsHACjrozqJISIwYdTpXhy3P4rNWMAAOZIPFMuNVuNIiZd4VyEiWaewJBK7lgkzT8Nxf3DCMPG9Sr12HbUSQRLebT5I5ajnAMDm3Gt2xieipbl77Yatrb1oPx+GZ8VifW/nHgogkk1k7a8AANxy9cftadhBVCK417j1pgOTZM2WvfrR/Zv/kEDs6nDf/OivjcNe9oI3qj50edcCtuhgvAkk8EZVgOaaZpBz9kUA6PbOTo6/Yym8devnyl7dEmuYG8FMAcAKM6PPMPuHTSR7cuTvDACkxQZB0AAQxZPx+GIyGQz7F7GZ7uw92Ns9cBhgZt6y4SPWV/pxfRMHVlrZwCUUI0ooyNIbHFtr87ZWrleD4MXh4Oz8ZWQjd6cU+j5Wj67dbO4e5Sey8l2dN/1ztcnwTOE6b1jGDMxGaz8vg3PFJzK5ZU6KzcEAF7cZScRc9J8zGxElEqfZf0IHSkt7hOiJxNXKfsGrQaaYB7Bo7LpUl9mAAZYBACYzBhxF0fHFs+HgqbVRUNopVZpKqVQbw4rIQfO9dSzQdwDgMwIAKUUNBUShGEZQqqxUTdBToNbvVCeIjAIGwXdguNf/0FqbBwC5YS0GAGdCiogxy07jrlbFH1gA8A//+A/5Gn/+n73+M791j3gIJEgMEs9ysIUiCmJq4RKJ9x5S0ZmopWy7PABQTrY9RERQw1eD3/O7f/np8JbngwICEDTiXjCY9EfTM0RFpGfcrHn1z3WjGClllgE0SExE3d5ZOJ586d7PlktVIMXMmXyhK+Eg2Uy80nJ0fP6ECA53HrzdDY1AVgjQYlJkdTFYJEZUbMOHj7911nupA29v93pRl8QNxRK6IFMutSqFOiz5BmRvvp73Tyt/v0yZyEMUkpnkVvoRRAIiltHxanjQOz9+9XQaDQOvXK20qtU6KmDmSTQaTzu5qr+vtaN26VKxGvjV3BE2R1tyRZ0shxAAEdHg3BLIqXD0+ufnZ0/Gk56j2zJGAAbBr1cPq5Wd2dBY2j4WsYkrJDIIMeB40h0OT4BNodgs1w5cH0MB7jYfUIqpBGjDHPDS3lvIJIhF0qeG2Exenj4xMi4Wans7dwEsAM0n7rO8ky+zngnDcW986u7RXuPWxtxi9fDMxm8k6ROuSsXiD9//x7MT95e/+5eMiecrrZ/VAfYGmPr5YLJw0rylQvtsuAVQ0Maxffr0O1HUbu7c3tt7TzEJMs24jsCLU+9rCwpXWrcM4OUT6FxetQkCLdgGwxrvBVyya1RKOdmrKApH404YDXv9tokmtfq1a9fue57vyD+puYwjf9DcThPt+nhzFKl1XslLvBHMs4TpksQxO2tEGEXavecAWiRO1JnTsXgQ3R+c9brHjM6ljhR4igq3rz/Y2b9mkpZIUoBPmehvMeNf7ut+WpB87fWICCMNRq+m0SRrAuSTOtfRdWMAAFAIKpXyLoAQaBErKMJORjm1Fs3RtRdkP9YBgOXQx0g2ik8unvS6T2MZF4s71couKFKAmWvycgdgBflntrsYAGyOB7Wg2+uIaPOKtD/QvPK3vfOcG4AgKq11jaAsKTl8qWOA806FgKiZ48HoOAo7SCKcJAxu1G3eEEC7PVAo7pSL1+YTKs7c5b/wAOA3/eSXfI/+2L/+4P5P1MH2QJGgQVRiDRJcAQDkTuVM1BIQLatYQJD/5l/+7r/9C2de6z4iC1gWctI8jNAdnETxUCnPCqIs6kNvPuTyAIBAjJ22z16WS427t37c8zwAcmFGzd4qkSRzzgCDyelgdL63c8entwvyXPvJjRc7yXxMAyIKP3n+7ePzh6j93d2DUrEi84IYpaBWKzWT4S2Q7QAArJEQ5MvKpQnNY8F/TcQV2rWInYaDl6+eDPpdBF2r1UrFWqFQAIBpFEbxaGqGjlGqvaLneUQMAAWvVizUtdaZzP/CpKMIEynnfpQMECZB3ENEY6fDUe+8/WI46qIYpVRkp0jMICh+q3lQLJYz1laaa0mi4pfrMzDDcHQxHp8RcLG0W6ruZsfV/s6D5FuTZEMjmzfefPF8BgCyp0YEw0n/pP1cKDzYuxP4dWaLSKlr0loAsC4TjaJJb3zq/r1bfxvzSUkDtBAEP/reb3VlMAb4le/8ReaZVv2n0AF404DhM663ZQAAhRDZijk/e9XpPGKEu3d/tuCVAAASUgSnWogEb3IUWDZK+ggigZDLbpNxqjUKpxvMg7OcbBY6SEsS9MD1AUbjbhiP+73OdDoql2u3brxHqpgM/ScT/5jN426s/tDKkv9K4jgBLgjnX3q/SECAR9PBZNp1oVvAOonAtHpNve5xZ3CqSLs31+grKd++c79e2xX0GIQwM3u5fGj+sntNr7fxPnFn7HUAgOvhW8Bp2BuOz3hG+1F5RlB6heRUN+rVfd8vum4qg4BQokaIahkAwGVEoGUlJYdJHADo957FMg6CZrWyi1opwLQrYg5a998BgM85ABARJKV1TWFFSIHQKtF6nI//AqAAeBp1R8NjligbfclOZBF2zvGISOgDMKpio3prlXfhD0IPB3/zz75f8fD/8m99+fBOUamRoAIVG4vOnndVR+VyAJALVcqwZyIQmvzC/+Zv/Fd/c6e6s4cQMSlhDZaZwYg56zxGrZIJXZbl8v/KoLYwWueGQ8bTTqd9fOPaDx3s3SXSjgqStngsomJkBS4R15Gdnpx9TESHOw+I3vIjyQKkGICA2RIhMrNSijl69uyj4/OHluJW86Be2xFJJmIdPC365WplV6PzKcOrAABYJWN6CQBQiwe/suAql5ZQWROft49fnbwAlkqlWi5XC0GJSMfWhNFgOO2IiCKPtOd5SilFRChQCKqlYgNRJwshM+3LVOUzZyGMmLJFFQAYK6NRu33xcjTuWWuVUoCxtaFbBU3FVvNIq0Dp1PNYdM49nmf2NOAEsO1geDGZnBFRtbJfKLeSLoHQ/s4D2Jr6v8JGdAEAZJKjg+7F4AUqOdx/4KnKQri5lAW0MJ8dx9P+8MR1gVqNm0TqTSfiCcnHU/6PffmfdM8OA/z9b/2F5XT2iwMAPvtInQMAjmuOk2nvyZNvkrJ7B+/XajdICMSmHoUzmfyrr7Nc2hTKqRIBAAiTa51l0fLSsgtvzEnnC0YKUzV6F+Gn4WA87UfxeNDvjkb9crlydPResVB3aVJ2v1LmpxKxDhWsL3yvAABr2sVbad3My/hIt/8qyTggZguuTS1gQbSIPb94MZr0nf0ZACjwPCrevf3VSqPFgpm0EK753O1MMyj3+nX+LbjyFi2wI7IfC28XAGRND2ttt/98Xgsos9yZ+cY4YFAIKtXKXrYHnBEbpJMe2c3dEgAsbI6FDkC/9yziie/X6rV9BwAgpwL0lgBA0qiBdwDgNXee8wFIbj2Q0hWlygh+XiGGN4U+RBSWuN9/asx0RvRyYoZOcCQVxCMsELERqFeOfK+a6mTADxJ9C3/bf+dBqxT8kX/jhw+vM+mQkZ2kjIJlAJBWlAnzACBdvmxsmGZQQShmkNAbDrr/4r/wV591/gFfi6cRULNV7vEfR72L4bHvF5DFyOXmXzBPvM4ZgSGw7fdfTKeT9+/8XLW2l3HYBWzKg0RGQBZNyrCdxN1292Snca3k1996+V9AkAQVsmSij2LN+cWzpy+/azis1PZ2d3cRkS0BIbNBVIEuVoo13yu7i3frszoebSsbspoCRDOJZcpmoN3/5ITNy9Nw9PLF48FgEASFarVeKBR8r2AZp1FvNL6wLn1XFASB53mulqlQl0st3yvPYrJYpxLIMMuH8p/LnEzjGRMOR/32xfF0OrYcaq0B2FoDaJgNg/heqVE/8P1CNn+WnSsLyDA7M6yNu72TMOx45NXq17xCHZBFrEZ/p3kzzYowPyG0clVX2YiqROQOSMCikIgYE3Y7x53RcVAqHu19Jasi5Lb0IgDgjUI9xoS9wXEGABDpTVX4FuwXCNRP/dBvT3nC8kvf/AvpqMYXDgB81hE2HZ5PNhWLQmBka+3J8cPB8Gmh3Di68RMaiig8I7oQZrWoN7LUzjIie+qzqRsEH8mIAIInELvRS6fJSVufyrQBA6Byu8jZBTq940k4Gk0uTMzj0WAwbAfFwtG1+9VyE0Q57o1zAEzEW+bV2BbcSFagH+TXkARdeARm6SOKETMctY2JrACBs6dVKRggY6Oz85eTcOgp7eKABz6Jf/+9HyqU6gIEIkg076tzaW2e1s28bS2/y2nAXX0b+U3LTK2pPTEA9frH07i/8F1S7/YEAGTyEo3akef5rkqCJGIZ8oyv5fYOy6UAwAXMTEouDqPjzpNB/3lox75Xrdf3UHuz0Thr9nZeEwCk4+zvAMBbBABuCNixgEgFWtcIA8xpiiy/HmBRlm0wfhGH/WRAlCiX+jMICRhEElZKISMUC41y4VruvP4BAgB/4Df/cKOqf///6sH+QQyedZMygkwrWr45AMACGM8DAEoKobO1J0BkAjvBZ9959bv/4C9N6Mc0ThUKEYn1mUHEnvWfu8wpm0PaBgBkug3pBxIAs43PTh+Vi+X37v6Dnl9iC5nfW1Y4YQQSAhbG6NX59wXosHlXKwVbOf5+EgBAQCKsUIjBIiphM+wdP3z63VC6hVJlb+eWUoqZgRRbQLLAWK/tl/yqsyaYjdZtjNpbTgPPKSzJQrFZZZ/ihJKstZ3u6fHJSxQoFsvlUjUIAkSMrZlM+6OwBwCkPK19z0OtE1WHYlApFZpK6Tx0znF+MH8NCiQbO47jeDjq9btnw9GF69gQaQBjIGaOXHsk8MuN+oHWftYucGbyCa5INUBndsiMAGBM1Om9DKN+wSvV6ofKr7gaQMmv1qp7ma3Buho8rB8+y/yYBcABAACIpoP2xcthdFEoVa/vfdk9FEiywcBrs/Nc1gFAtq3G7Q0A4KqQYDGnZ/mZH/mdLnUThF/89f88Q9pfrAD32QKVbJ9kPShgBgAkEab+8PTVi29p3680r+833ne+1kTADIKMCCjqNQSptrzF1hpjjOcpIm850m7jQMzbAABCFMjX51ytZjzpDcZdEZmOx/3eGREdXb/fbOxng3ruXVPyDK2pfNOqr7l6nPVSRVHMq6qlC6UJ2eJgejaZDIh8NwzA1pFIHRhAY6PTsxfGTgg9hSKMBJ5Wxdu3v1Rr7bNNC49L7Nb125Ve4+YuJb5buUhfdl689maTdN4XwnA6GB27yLzwZd2aiIgzuxSxxUKjXGohgjBl9OM3AgDcRwIqE8WnF097g2dTM/K9cq22r7Wf1H0IwZr91v18vWPl07c9AHB9pDlU+W4CeOv4vZLS5/oAwkCklSorVU0dXTf0qmaTACIUxp3R8FjEOnqIO5czDmTiAi7J8cpIrfo9RX4mlp1d2xceAPzRf+Znmi367b/rsN4QUIbRICrAvK/HDAAIAsoaAAAIiDP1CpFk+RTZqf27//WHf+jfOaHiPS2xtbFHnogShiienPefe14x3xC8tExCuV62YJLnofBk2r9oPzs6fHB08MOoNDv2ILnq+2LFqjc6HY7PELxru3cV+nwZ5/sTpiBJMuqc4kVEcDrtPHn0q6O4h17h4OCmpwru6ySzsIqKfrlW2kH0AAwuHWuuh7vSL2ZjTOeFbIAW+jYJRSdJnZF4NBq8evViMh4EhXK5XA08X2stIpEJB5O+tSEAKI9839fadeKYJWpWr/leRYQWdDBkESIm990pNkTxpD/q9gedyajHbLQmTMR7TMyxk4dD8ArlSqOykzWOEZEg1UVFx9C1AKSUB0IsEQA7ocXYTDrdYxMPCkGlWjsgr+wuoFHZKxZq2fO/fWI3v6k4NwFMADwcnF30TwTjeuN6tbiHoNyMwetV0BExjqe9wTEjI8tO81bKqnrjO5aB4Wd/9H+WBwDyxYx1n3mnIt8BSJ8wRhLgILKTZ0+/HsWDUnX3+sFXPV0Sy44nKMhuNDavV/NmPQGYmdl2+6/q1X2lfERAJHHNX0Y3ZE+f4FvPczjz/PtEJHQ46Y3GXQAwUdTtnDDz/t6N/d07+V5BlpBfJQOmrBWwTdV/M1IiASIyYrv9ExFrrUWywgigATjzGJmGw/P2CXPkpOQUoEJfUenW3fcr5SYJObGiTGj/UiC9TpNnrQoTv74x39vBAFkHQABUt/8yMpOFzmoeADhTMPeCZv2G53lOcilZDVytBQQb7YHzg9HJQDCAAKUA4MXUDBwA8LwguZ4MACw8s68FAGaKQCh5Xtk7AHAVAAAMK6wVE9s1RKUrSlUI/WUAkNNRyCr3qe+QxN3uY5FYRNLZnvT1runqIAEAoRaRcuV64NURlYhJO/k/EADg//Hz/73GLv7D/2jTD5AgAi1sBQlWAgAgBMYMAID/PmBhBgAWCjMJZEew/Kf+xK/+3/6ip4t1Za2IVRCAoIh0R6dhPHRB02kCXBUAJEKZgAJxt/NiGg4e3PmZRuWaOL2L9C4utKyNRK9OPibF1fJ+tdhyYtVvYXlprn4sSYBDADbhRw+/3h+9YI1H197zvEoSHJFFLIEK/Eq90lRUAOB58YRZ1F4X968IAGixWZGOrMUmOj150e1eEFGl3CpVikQAQMZE03AwjoZEoHTB8wIA4/kKRItIEBTLxV2F3sKxnReBdg3ZTODVsonjuN/vXvTPptOhk/vUSIiKJTTCiGLFAJCng1KxXi7X0/Ed69IF1+QRERDr8mylPPddrLUp3YgcALBmWCrWK9UD9HxnOlGvHgZBKUvQrzoAkAcA6QQwgTXnF8/HURcI9nfvaVV01+kajtvAjOWz3Jj4YvDCgbTd+s2sdvvmwy7Dz/zo78j6Ib/4rb+QGUR8sc+TTxEPLI8qOeKNiBBoRI5FTl897g8eofIbjRu7zTuemqkVuwVP3uQTewOv8ZDCKAoHo2PfLwReQ2tNpFw3nF83+08NGWedsUztMW8ySKgFYTQ5H037JGRs1O2cTKfTVvPw8OCm75VTU3beJmOe/6+0Kk+7QvafX2oFTnRcRzzpD85EbDKeIZohRlRi2U0TDkf9Tv9ELCulkrjKqFXx3v0v16q7VrKRbl5Qt1t3dlzWd1ld7Z6lQbj5ZHq7AGBh7nkyHQ7GZyLiqK15AJBZB2TmPOVSs1RsAiClHeMEDa3xBl538Y5OvA4AdPvPQzv0vXK9fqC1P1sNNgc7D9LU4h0A+DwDAAYA1EWtG0BBZgnMiw/y8igwikh38MTGI3Ad+zkDv9mciUvbAMAv1CulAwSdtB8Qs5HiLzYA+G//43+ouU9f+qGy9gDQAopQMrq0Ity40Z4FADCD5jRjNjh7NkQQkXD0B37/3/u1hw9EBZrHRgBBk4Blc959RloJCbJiZpF4QYx/Bf9nUX2FnINMbCZnp488H798/3+gVZFIu/5szkgYHTdEkCfx8Lz7mMQ7aN33vEDk7Wf/AA4AMBIafv701087H1qAnYM7lVIdABgsAAEjIjLYZu3ATSZkrulOQSgju39yAODqTLRork4iVsB0OmfnZydxHJVK5WKxGPhlVBRzPA1HUTQWsESkPc9R8B3jn21cLe8XgvoGZ3t2mysxALKWzWQyGg77/clZGE6YrdbazaGKsEuGENEKC2NQKlfK9YJXQlAsJt+yd+bNzFCv7PlemVALxL3+qZWxtVbYkaoljqad7jGbSaVSL1f2QXuIiCwOALgbtFkBmtbG7kUAwHH06uTjqRmUq9Vm7ZbWAUpSVXKiY9tkjQs/1pp2/7m7iW8aAMiCn9JP/fDvIIc6mH/52/9FYsyT+qV/0WVAVya4r5H1XubBtNJmW8QiEViS8fDi1YvvAZpq42Cv9Z7GAMmuuiPJWPA2n7vN1eauTYyJusMzQC4V656q+Fp/kvu7AADcUD5R6h+Z+WqlCd9o2hmFXWEFlgeD89HgvFhoXLv+oFbdc/4embHUawGA1RnzSlrpklVLkkRme6Y3Oo/MANDLFGxcZAYWB1TanfPR5BwYiTSioFgNPkrh3ntfKVf2YdYN3maWZlsYsxRgabvD6W13AJLLVqAsWGZ2rsCuqwPz5sTZLSZyg152b+ceotPlwBnRd1UTYB0AyCg3rlWezBamAOCs86zTe/YOAHz+s/8k1ckaYiiudozJFBODLmjVQlXIVzMzzrGABVEATrrX0YScnB2Nps+n4276GsrK/2n7MXE7RVCIygg3a7e1KuYpQCK0TXPycw0Anv03v7FYwmrL0x4DOplqgLlpZ7fVOXFPTNX9AaIZAHATwEKAqaOT+EI2EvHFPv3e8e/5Vz6e8vsCUxLN7FjcOA0H/ckZUiYOgxsoQJnm+kwn3o2QAhEiop2ML9qd59Xy7vv3/vuI4izAXLRdOIlFpN1/Mo1Chf7hzp2Uvf0mK3+5Bm5iHANorCgRDEAdH3/06OUvWwxbu/eatQPHWwdEFqNJscVKsVIp721zVZmYA62XQ84AQ97p3V0SJgo8yrVf3BtG09F5+2Wv11VKlcuVQlByVPvYjIfTPrNB0r5f8DxPKUQhJGFmQr9W3dMqWHmUOn0hyEn+J0T/QXsa9iMbCWQ635wiNwVCjLHLmKvVRqlYc9WjnG1HeqCKLhYrxUJVk86aDEZMu/fU2hhREaAVCMOw23sC1lRqO6VSi8hHFGaz27qnyJvhfphxxmYnvaw8oTPnJkFRIiLICAoBpuHg1fFD1lG1VGvW7iil0xRa5mVAtzp9MxPZi+5jh/1a1SNPl9bLlV4thyNQLAJoAQBBA+Ptm187aHyFmduDR4+f/yqDIVLWiNIo1gpuRVFYHJ7eWvRwHdBax0RadmLe/CnLr9+KMX3FToJjr8wb3qWdS0BBa4x58eLj6ehpsbZfrO3ulG8pIlcCUDmd6U/eAdj8E0WTSTyKzRiEisVKya85galkIhz10jbLUlhaVgvFHKsQ1++TzEBmPO2MJz0RsYLRpNe+OFYKd5o3Dg/uBqrghm6ZDSO5MKfYnfUozrdwfTl/WRl8fSeB1lSREzkyK8gSDkbnhmOX7qeJbCJmwMzW2ov2q2k8daNTAKBQkH1Fhbv3vlSv7VmhLDaqhMKAy5aLuROEr/AErzw32WZCDithwEKVymnhv4mmWYKmCSwIMtJw1B6HF9l0R1b7zwM8RET0mKNKea9YqM2pfWyOAKsKYSQrAw7Z2Jx3js96H9g4Ul6hWb+uPJ1dMEt00Hp/GXWvWwcRdmdrqiczm0pMBgDSiJOCSeRPQK77/08MMDvLUoVuRqcYyYLa82tAVQQPAAjY2QIIWAXIkA9QOL9l4n7/qbWhgEHQC+zf2XMBymmjFYv75eLBDEKIFoi+6CbB2Pv2b9SadIBEoign4LMOAGTEHojAew+omAIAAVagxKIoIBDNQGJBYfSf/Ie/9J/8OT+o7gkbsJSl+73ReRxPgMRVnTdEsQ0AAFABMgp3Ok8n0/7N61853PshR/7JAMDCqRPZ6Kz9CEnKxd16eTdXvn0z2T9z8qGJ8h2n2SopJTzqn3zw/b87kX61dri3c8e1yFPdegCgkl+ulJtZJ+TS+LthGGABAEDOgB0StQyVr2ZZG/f63YuL0zAa+35QLtW11kpLbMbhNI5sBGiU9l32D87DBY2NuVbZcw5fbpSeSLlFmAkOJlR/YWsnk+Fg3B2N+lMzZo7FzZ2zyYYlHGZjZhGxDIVCqVZtujmtbIUVakeOQlTFQq0QVJXyYDZ8tggAnApTGIYXnUdgTa2xVyq1BD2Fwmz2du5TxqdHRknMgOeSG9lUn0vGYwDY9RNFhqP2+cUzVVAFXdxt3RVJ3EY2U4DWZcxJHkl42v7QBbh6ebfgNy+lEm1lYwwAYEWyLrwQsol5p3l7POlE8Tid2UZEsNYSeps7GBs+eqWG77oE/crHBV7h68Ob6ABsXvYESwrwfAcgCUsEzNxuv2iffagLpVK1Va3sV7xd8sQZYjg8vPCl3gJbA0U4NJNpODImItJa65Jf9bzAqfG45s/i4+C+zvzQfB4ApIO/vGZUF5McGhEAJtP+ZNpniRjIxnH3/FVsxuV668b1L5eCGrBlULMubvK3vIUM7qL2/3pAsloEAtkFTGJkRAijSW94RkSO/T8rQKR+I2E0OT8/MTZKqT6sURMopOC9+z9SLrXcBL9rgOR5Mks5Om1f/t+AwNMW8SYMsHyaLK/S1VXFsjjM7uwLo2FveJJOTeQip8xaAQBA5ItYrf169VqiDJ5H0WsAwEo90JUAAFHZ2LS7r44vvifWkA4atWva95xQlYhYGx/uvrc9ALDJt3gHAD4NAJAdnZz0XlhQK11BVSEsOMjNCcIUhchzN24R2Q6Hz6N4IGBdbW4hmiUbBlQaAaBZu6tV4Mg/uWGALzIAGH30jwAyEimltELIFQBwLgDNZTlABBImAACUU3BGi4CWEQl90YCkIRY7GP7zv+dvf/Dsrg5YLGkn7sYS26jdO0Y1ixSABkSvDWQCgkut3uQEQWum52cPlVL3bv9ko3YUGU44fyTLJizDaac/OEOSavmwUqjn/Mmv9EMbD1TH9VTJIDKiBVGgwmn/ww/+xtBcFMv7h4d3CALLjCnzHgACv1QttjyvmGclXRp8nbbpyg7s0itp/mCAVHGfx5PB+flxf9AlomKx6BdKnudF0TQ24ygeA5DW2vN9Ny+VHeHGmN3GHc/zFbI1IKSS1AYsijiPTPfJURyOx8Nu72w6HcdmYiQWiBksiyUiBSrlhpJkdSGiUqlaKlYyOJQyiQmFfa9cLDQUBUTJyGC+7ugAwFnnsbUxkU4BwKR98ZiEa42DUqkhzn7Imv3dBzMWoNMRlyXShWy49ew6USLCYAmUMVG3f9zpvixWq0W/2mrcYGZX+N9M8tmYB5MV0+5+bEUhikbdWm8GvK4ivj5hZQSdtycTK9XyfmhGYTQiwlTBSZw+Wo6psi7x/WSB6Q0BABc3Pv1R4HQd8nl/HgDMfqaT3tOn37E8qdT3/EJ1r3GLSBEox3NbRvZvR7MFRdjY6SQaR9EUSQh1uVDzvfLMSYM5/Trp45/jZM/5Bi4CgNVPTabwA0JAMgm740lPnOWWjbud09G4VyyWD/Zu7bSui5QRTFIyRthuMDiLBnJpxrxRLtMBj2QGptc/jc3UyTrl2oOcmGZYGI17F91zFkOAiMm0IomnvcqDez9cqzWsSRJf1z2FeQJS2tS9gn/LcrK77rRap/6Z7TILqwsQr2Ecloh7snVfitledJ+t1AICAJt49YhyBVex9eoNX/vZvV4EACtzNdkMABIbUDa23Xvx8ux7KEw6aNQPVKICZBGV53mNytEyAFi3CHMAIBeA3gGAtwIA0sHO9F5YEUQqab8OFICQAwALop/5HZ1/99gMe70niQtK6meVSUfOwpoQkbZgi4VGpXgtRwGCL5ws3jIA+EcF2fMUkat9SlZnxcXQw4KUPGOuA6C/BCpwAGDG/icS8cAT1MjWfvx3nv8L/+oz9m8IR1lFnARHYXcwvHCtt1y7k64CAFwfCAhwNL7o9Z5XK63b13+qVKpZk2YhyAuhU0SeHX9Xa62UqlevF/2StaLUaxBqaXMlMTOZy3Yt2/jhR3/ndPy4GDSvHX1FobbMgIlCJRF4ulAtNT1dWoj4W17b0st4VUaiXL9SgZMWTab0ur322dkrYyOlqFgsKS9gieN4YjlMRu219oMiEeWHQ6wxShf2d24IkxvBEREhd1JSasbOsYkGg06vfzGdji2G1pos9UcBEFTKy6Y1OLUcLhZLpVJJKz9DBZnsD1vYadwgIiLKNfeVKw+kBwkaMacXj5zpm7tlk8mo13mKKPXG9UKxgqiEUEx8sPeeQ7aOwS8iiQENLmaTvIb7kkgVJpRWtPH0vPtsNO2Uq616ebcQ1Je416+RARMAnHUeMhshRWB2mw8uVTi5FAPM+FoJQ4kTNRgiIq2UN50OkRgFk0YZfRoh700BgE8he97i9Mo+ffH3iCQcP3n64XR8irpQa+0qKu7WbygCB8xXNou27upc/ifzKvsSm8lkMox46opt5VKj4JUJU2S4JJKbJeKcqxzRnB0kL1fZM+pLKo5JACDI4/FgFF0kXVMbDwedbu/M9/3dncP93QdaBa5XnMnF5Gei1qzDJvffeVo2ranvWiLNHBOptDZheoNTZmPFzORKU89BBgHgbu+i37vI5n3dBxGRVuX3H/xoIahCQrZRGQBYF6i3PY1kG3Ehyp2cnFJxZLkHtkzreg1fkcz2i8AyICJedF/GdgrzdFz3uZz6QpKQk70uBPVGdd9K6gUm8yyg+YHgHBKjnAdCfhtwBgDE8nHnyen5Rw4A1Gv7nl/Ivr7nBY3KNfcpm5VAIXHtFnCyCc6+fn6tEx8AgJS/9g4AvFkA4CoCvvbqpMuQa2LnIsxaAICIZ53vIQugWQcAsmIHkTYQtWrvKyoAWPyB8HJwAMB4PhIl3VsiSnUMN9YeMJ4DALPQ7gEhEgIhqPg//T98+0/+pZJX9dAawxaFnKxSt/8qtsZxjrKxsA3HGAFmZ8yMK5IWBjq9p1E42Gneun30YwmphrPoznkz+Uk0Pu98TOgT6f3mLSLtaDBXXzpaX0uzCF4SbpDZgta+NdPHj37lVfe7WlWObv5QQL4V50xuXIDTKqhXdjxdWMlHei0MsAgA3AGcEhYtoiIBZnPefnXePgEATX6xXACFxkTGThksIhLqIAi0Um5aI7lZIiCkte/pQrWyqwATg252jDDtBB8m036ne9rrn4XRkNmQMwVCylr5iEjuIUcvVQvRQRAUiyVPB6m7lkrGcQQQVbnU8IMygZ5lD5JYmWa5vgMAFuxJ+2H6SwKA8bjf774ggkbzyA9KKQCwh7v3sxsqCQBQMC8mmK4jZamcG4lP9qTTGhALQMIYR/3TzhNBWwiqjdo1pfz8JoRtDH0WWjrkSq+qPzoZT7oApBQ267fVxjAkuLI3te7ViWRW2qywAKC1F8exQsrk2BMPqTXO2SulZlb+10uSlXXy3uvgB8v2HY9PCwYsf0pei9rNCxKAnLePT48/IO3VWi0gvd+8rTBQSjEbAXojAGDj6+eSq9hMptNxaMdJQoa6Uqx7ukSpGXku8RJgt/Fz2c2sNr8WALg95vL4bMzXCST1J6cmmopYIbRGoum41zthM6rX9hvNo3r1mlYFFIuIjLyQ/c8IbIneMizFUtq6ZJ49E8IMSrkGiEoLh+P+4IzZpDkiYZb6Occ3NuftV8NRX5GaFcJJQKhU2HvvwY94uiCEzCZ16uWFyJDF6oU7ruASJ+B1jmBLrQBecuZaPIU/ofHfrLefSoKOxhejaQ9mhB/K/RssZP2QRABqt3HbSSotf/qCN/B8y2YFALBgSSgDAM/PPrroPgG2rgOgvSBDLA4ArJu6WfiNnWH61QAg3wF4BwA+OQZgAOS5ECQiDErphqdLgh4AKES7FQAQADWeHk8nHSfk5eSAlgEAACAoBwDKhf1y8QBRMcc/IBQgUoAoSqk0IiPOBYIVxw8iAsbgfRnITylAktD00UeFDEhoZdD7nf/09x73bmk/FCfGAqCErIHTzkPtBykL0IUevWFUK5lOnj2ElJ00xkSdziMAOjr8yt7OXREUsSDaZTMpYTQ5unqj08HonFAjqsOdB5e2VtdX1HB9FmWFFUDi/kjoMduXL7755OwbhP7R0deKfjEWdiw2AUAwviqUS63Ar6SNSFzPOBSSKwGAxbEKC5JJ78dxeHzybDDsKoUKte/7rKwjsAKAUh4pz/d9Z1GUQWT39X2/4GnfWlut7BMRcwziCViWMIqm7d6z0WgYhRNrY2ajlHJiPq5CIyKoEYEQFYKbzWelVBCUAr/orMQytbgseyDRtVpLq4BFEVrXZknJ6Jz0l+YOrSUAMOp0eyeapNm66QfFZJRwDgDwouLE0jGDsjz4yPk6E7IMR+2Ti6fFckGrQqN2w3392etZVpJVVvYcIPO7EAHA2IYXvScMWiM16zc85a1pQslVNzYiWmuIyI0rQE4eAfLj49s1Ft5SB+CqQ8ArgIdstT6r2ylXSYNS3sh8uTzlKjA4kyMEkGkUvnjyrdgOC+V6sdpExr3WXUSFYN6+/YLk1LLdWrExZhx14jgWiAGYxC8WaoFf1poAVGaX4XZy0nzLPSArOwDzJXmYWbMzE2kR4VSCYzjtTKOeFYPgAYvYuNdvj0cXnhfs7d7Ybd0s6HI6VbX2pqzxj6fUdnDbZU2cMVnlWoviFIHCaCxoRDCrOotLCFgQJTaT8/ar6XRMRACkAInIcowQNGrX7t/9GoMmxZkOWzo2lglicgoAaL7Sf7W7y0nWtOz3kn8BLHRm3hBa5tTf17qqXBSPesOz1KdlEQCkd4cRFZE2dlyv3CgG5XXXsBoD8KxBTTkqWh4AWGufHn+rPzoFY/IAwF2n7/v18vVtAECeXy7ATp1mHgBI3o3iHQB4swBAEB3wFgGgiudXnSq9u80Jp3/FTVwcBb7oPUS2ycgo5MaKci7sqS+YYjaNhutG/iD84PTj3+zCDRGRRgAhXCDkbNUBcDM4qAhEMVKEWFD8q3/lg3/p58d+fRdtJILiGoIskzAcjI6Vp1Oy9yxVXd3PFUDEPL8u02RExMm02+0+C/zKnRs/Viy0Ms2KZSsDZvPq/JEgeIo8r7hTu5mLRPxGAIA7/FgQgISNIo/FvDr5/vMX3wghunH0tUpQY7TCzp8sFkFEVS02KuWmO2byV5LXMM7/Zp3ty4ZgnUEgC8LMJBCGk5PT58NRRymllOd5ihRHNnIi+kop3/fTCRjIHLucKpbWvu/7JrbGxsaOLbtur2Uxk8k4nI5jGwkjIua2E+dOFwJCBOV4Jlpr3w9839fKz5eysvkERAx0uVioq4QRtLLaJLld5ITC7OnFIxFLqTTQcNDuD85Iye7OXc8LgEWUBjb7rbvunHBeY+ugHQBguldzlJ48yzkBAJ3ei4v+caVaJ9IOAOSr7MsDBtk+35DCuoZJFIUXvUcMpFHXq4e+X3yNmvfCeH3a73ZF2ez3kiXKBNkMgHN2A3nL3Mc3CwAufTQuv5hVnYftzJVdUpUEMQYmIBFxAIDSOuLx6ZNe54kK/Er9EBF360eKCopIxL5lDDBL/fPJXxxPx9OOMVNBDxEJ2FoJ/FKpWFPKQ6Q8HYhgDgCs7AAsGHVlRZmsv8cObQII8jAcTqZdtrECtIIMGI66g+GFNVGturO/d6tW3SFMuqybm04LAGBdMr1BNd8NNeX0DCyiinjSH7SdMbnYRGuOE4xnnRvAZDo4PXvBEhMRcjJNyGKEveuHD25cvw9ADASYTqzNXTbPXxVtBgC8hd8XAG3+80/yjKz5RMi8Gt3cdndwGsVTETvfbeBUNCKr2yoALgSVaml3Q9d0BQZYAgAOhDAyJs0BiuPw2cm3h9M2xFYpXatf8/yCAx4WxI2Erf3EVQDAGdOCzMHRdwDgrQAAFLSUIXMnBmoFED3HAlqhBLoJAAgAdvpPxE6zJsCC2uxCE4DZVMuHQbGRqIt+wRVdMXr0jyT4BoCUoCJgBEFAuxIAZDnZCgoQAaAWTYAeiAIb/5t/4L/5a39vt1AJyBhQvhFjGZTARf8FiwF0rMo4S57WSjHMAYAZqiNQADwYHff6p/Xy7p0bP+n7pYwdOF8/FhGJoulp7wmRJpBCUG1UDhAYRMt6KZXXAAAiIqBFBIFB6Pzi2eOnf38qk/3de436LqLi2LLiNBfkwK81q/vzJvBJz3QdAHgNDJBlbw4ATIaDs/OXk2mfiJRGIXFdIBb0PM/3PKUU24QPBsAsKnP3zArqAGw4dlWcqZkMh/04nDCzMGovuXGZv5srzzOIK9V7OvD9gq99pZTnBYBepgydThxiSgFCrQrVclORn8seMO8DsEQGEACyNj7rPHYAAIWs8HDQHgzPScne7j2tfWBBpUXsXvOOK0NmdbjVt1cIM93PVARwob0uImDN+cXTUdgtV5oA3Krfy9x/kzlggc0VptW7TkjAMvPJxUdEmgQa9Wu+V17zyKyOTXk95eX/NON4cOLa5h6NbKAlz7DcNn6vof1sHhd+g0PA+W/32jhkm97Cuo5BtqT5VmbSAWB2ieNw3H/57FsMcaG2WyxURWSndcNPlanmP33zt7gyBShf980LQFhrpmF/POm4mWAA7ciNxWKlEFQQdDpktW7RZsdHNr6FsliPSBt3VhBANIJJEIgNe/1zA1MibZkIxETTfq89mQ4LxfL+we1W7ZoHAaTywQsZcOoKtKD/s1YMZ4PDrtP/kSQtYDelysjd3omxoRV2JX8RSToAYFAoqTiM2uftl0iu54CzFZbg3u0faTWP0tLXHExiTDj9+atNKhRrwv6ykOi6LboOA9iNRhOvMQOQ85Sc7YTh5GIyHbrxM5kNHAozABphV+5xWs/K2nCvec8Nns1kdjZjgFUAwOWLJM7ACMIwfHH2nVHYkcgopWu1Iy/wMwAgYg+cE/CVAMDSC94BgE8BAIgIgVgQBCJdV7qiEkJB+ihtBAAiggjTqDcavpwxf1bZTaT64MoVLHZ23kvZEF9wACBPfwujIIoj/4MsSxBkAqCzs9DZaaF3C6iRZv8IhIAaFDP5ZL3B087/9H/+d9rhHQ9BJFagrCEhFGtOOo90MncvCx3hFWIRaW3Pkf6z/NgdKmK53386Gvfq9Rt3bvykJkBUDDQfUpkZhGy788yYSEAjcKN+UPLrwFZwMdhdiUebJe5JfV2QBJCtVYpYxv3zD578ysicVkoH1w/vI2jLxilFuqSgQJVao6nIz8nbbasAPXfNwAIkgujc3NjdREJhBkz4bWhFMLKm3+93z55FJgJlQTGAoCIipclztX2FGnLTMIneX/o1M7xkhMXEk2gymnSn07Hz7vWUD0JaGRByYCOfYRBR4JeL5bJWPqKHjjmWzic4IDqz23QpAqtGbTfwS9YK0XwmJ4uFWRLO+uYs4dnFE8cGA9DW2sHgZDTuauXt7d6iRDYUReRg594cQR8v0Y9fwsYEwCyIJGCV5emT59/wAr9UrJcKO8WgnO3qZB3o8pMVZXUoZICTs48QFRFUiruFQgPQUpLwq2VJlrddWd/6OaENiqWZit8bFFXYfM1vdQxgqZOTJyAltpRJFBUAAAU4tvHL5x9MpyfkVar1HQWqXtv1/JpCmU2ngUFEYUK6cma25cLmGHQAgMwcRsPhqOPcFjkVSlfgVUo7QVBKqzNq9j1TEa200SewUvV1latr9ns34BubaX/cjuIxEQk4yeFoNBr0u2dKS6t+2Kxfr1WuYaI/kNQOsuFaC5JxAh2aVYC8ZhOqhFmQ5wwkPlZpcjzn4EsCMdtO75lNhV6EFaEVpEwJAIWRpH1xPOi3mVghOfMCQRGIPVV7785PVKq7DEBComw2l5XMN89FobViSun1y+YXXLr/F5oAS5y3Wda6DedqnSKFMabbf84g6UyFWSACZZNg7t/V8n4xKOdLDzkvp/knPc3bMJ0DyV8VI6AYZCXIg8lFu/N8NGnHkfGVX2vsaa+Y5AkIyLLbupu+TT77FEgNv1Y8LzmLjzX56ycC6u9+ltc8X+MXEcKC9uuoCiCkgADFbqcFJCLd3sciwjJNHMEcrziNUUkCw5hh0UrlVuBXfgAWE+XlbxEQZAUighYRQXlibUr8hQU5GleJXwYAohAJAYtMIekChPKt/++z3/vzz6B4QHbKzBq1iDKMUdzrDc+I9CoAoNalIKgS/dC055sAABtHFxcPAaBWv37nxk84ZVAGUCj5ajERhCY8PX+olOvjQKtxLdAlFM4Mel47+cisDRPPL7EGRFuKefr9j36xM3lBunjz6H3PK5rYCgogU0oIblUOg0IRQKfLK9s4X64EAJxACMg4l0leRbMp5ziOO93z9sUr4ZDBEgEoREVaa6V04BVyOj+JdXGSV88dnMTMk2g0mQ6nYZ9jw8wFP/A8L7NUJNHMxogREWMMABFRoVAoFuu+V0n9JRytSDXqe45Ul+p78GQ6Go67SBZENxo7viqlJX87R8ZgWW7rp/NtbDk67zxN76y21vb7x+NJz9P+bus2aZXdtf3W3Qx8MmyawcA5q0fOF/6RSMACYxwOX5x+4BcKvleqlvcDr5jn9S7kplcBAODGzE7OPyD0SXHg1WvlvayVuU3i+3oAYJt3vhwArEz4PlnJ/7VhwNsDAGuaBplMIebTgsQiTMASnJ48b3cfWRvv7BwprwgWdlrXtQpSWSolW0wDpx71byTbSMhL0+kojIaxmSCioMKkEcWlYr1UbGbz4gDogMqcuxqtahnJ6gnObOKFtGILjjAzGJ5P4qGIOB4dM8fTSbd3EYbTWq3SbBzuNK55mPiRG0mycwui1MzfEIA1zkkGrYr2tJQHJ03pLH7OJPJYhLDTPY7sEEAzG0SFwrlyklPMY5bo7Px4NL5wVW0SRAQiMkaKher793+iENRT0ywCNoygcZZqM8KlRySkKkDbV5bXAYA39aSs+qukNtHpvTAcL00a2MVqKyoRKRXr5UIzf9eslQVd120AgAVRIE428NX5x2E0Go7OLBtFfq2+63uJ8p4QvgMAXxQMsAAAED2ta6iLCJ7zsN8eAEzGZ9Oo4xpTy32A1OGBSCXTcdqv1is3k8GlL7ISKMrJbwZEsCyskASEgQTET+SVVpWiMwAA+iaqZgIASCGJKI0KAAswDf+LP/7NP/7/LFmNnjWCINYpn/n94fMwjtJar+T6gJtqlskIF+ayLhZEjOJx+/xRoVCq1W4cXfsKcn6IivLeMZNo1O4+IvQBGMQ72Lnhygyf/P7lvc1RiMFaUdrC82ffeNL+FgLeuPW1wK8ZEyffiJycpCoHlWpl15FPFoLg+p8ZNljZK8hRiVjEEqiMbj6dTs/bJ4P+mZWhASEFijzlac/zPM/X5GVmWPmavSDlEmKOOQ7DyWg8nE7HgKwRPC8o+EXfKyQOHRZEgGPDCMzMbIHQ8/xKuUbkU6qGXgjK5UKd0HPsM0gnAlErtiAQGztpd85azWue5ztNqoRfi+AknlY6cyG72E8AHEbjTv8FpDxUa6XXezWZ9gO/tNu6iYpWAoBlC7BVtf8VU6HiuD0i41H7pP2kWC5rVWjUjjzlLSC6bfyqVhkPOwMUOTn/AEiTAKLab92FK3Jy3gYAuJQqk5fnW/m5bwsAyCY1odfu+60tnMvqL4gyZ52bbZ6k9MDCCNPp5OmLb0+j82r1oFLbEcZKsV4utgSsSv5KWWbcOAea1/TMH3VX6gi5ef3MhgkAjInHk04YDUBpcOY4IiLWwYBCUHNAxSWSjtKzvM4z77DsepDX3XdEFNAAYDkcjtqTeJgUCBgR0cZhf9AeDDsFv1itNPZ3b5dLLXfwi1gnKp91ZdPIYBc6zBvuOK8wX1vWGyVm0x2+sjZ2yGQhMqRKemw5Pj15NI1DREQgYKtQCQJzXC1fe+/9H/OxasESgCAqlEzpIf+Jy3TQpfT6E/FKtlEdXX5Bdj28lV0dA9BgeDqJegsky2XfGyJCVNba/dYdRMpqHMumPRsAgOsQJ3JtbN1tOr74fhzHw1E7NlOtglp91ynOAbCQQpad5q30E7MvsgkAiGTZ4jsA8CkBAMS8Z01SNlWqrHUNyM8a9OsBQJ4iK9bawfCRtXZFDpYbBXZ6oIiKkZu1+1r5X3wKUPu3gGUQBAOCIImEJwCmpNUlaJ6lOzkAIKIIUQsSKmQCGoa/8K//yl//1l2LkTIRC4ogGjFiz7uPlQqc+tvVAUCuE8oCAMNRuzc4rtd293fv79SOmB07PHfeJJerx3Gn23+B4CHZUmGnVtqBjCCERPLaexGXM0IE1W+/+u6jvxXhdG/3QaN6wCKZeSoBEumCLtaqO4he9uczALotAFg05nTjdK5Cn3Y/klR+MOidnr2K4kFshwIh6oLvF3zf19pT5CnlZeW3jJubVbOYGcCEJp5Ox9NwFJuQ2Witg6BY8ispv99tFrbWTWADACilANAPytpZbiELq0Z9z6di5u2VGrGZ2bfAtClMSKBydbskNSfS68HSbH0m02Fv+Gom3hfHvd7JdDosFEo7zRsOADgp8YOde7Navmv5yWpBnuVR9cU2PduL7rPhpB8USojebuNm+k154SFaZ2m5OjlDBW46AuTl2feU8hxVYKd+W2sv48i+dhabocTXewe6tP+wbmQF597kUofgqyb6gp9mMAWY5/3nP91Nl7hZalxoXgsAQMz25fHDXv8jUuXm7k1FHlhoNa95KpjrNSG/8WtezolzAyGJ34210XjSH4cjQHYDQiptaolgqVj1vYqnCyA2sTqeX4H8LF3+cF3nd5HUbhLSkRkMz6N4ImLFEcRJmM1kEg4655GZViq1g/1bzeo1BZlWKSNiFklcVMyWess9xrguweVUEhdHo/44OhXBmWctuowwMy0GRDHR+OT0+SQeEhEJubyBiKyVVuPgzp0fC1TZYQBHUqI3zYi7PAAkX5OuBAMuHUpefrcwGvaGrzJVfgACMHPINX2CXHBu1G76uoDImQNdrrGTe8znAcDyLXYksdBOO73nYRgOhueWp1oVa/Vd5QVOI8hZQ+7Wb2YAIL2edwDg8wQA2BWdJR9FRUTpitZVpKJT4+JcCWABAIgwok4VFxlRj0bPnFj5egAgwpToeSD7/k6tck1kRW78hQIA5/8jiXmm7mwVK0QUFAIRYIE1mZYgo7oNqgZIjvGIigACQAEN9mX39/8r3/vO6ZcM9zwBK8zMZGkUXgwnXafzeCUAQEQimDJKMUnRxHb7r6bhoFE/ONx7v1LYSVTeMDGmSek0BsRvD56E4YhIA3Crdi0zuQRgRO/qTsBz9eBZLGAkBdFk+O3v/e2xOas3rjd3bhOjFUOomVkrFBHfK1aLLd8vZdcAa1TYrpj0UEaRAiF29UK27YvTs/Pnxo6NTC1Y7XuFoBoEgVY+kc4SL3eyWiOIiMppNFlr4zAMx5Pe1EytjRFRa7/olYMg0FozKAAGZmBhSwAgZJQCRQUnLEugmKFUrPpe1VcFJx/vRDNEFKIwG0RkR4JKSncOtygWhNT3JzulXDl//f2aAYDxZDAYn2ToLo7jbvdlFE0zAOC4ttbaa3sP8k6TyfmNm062xQ6Ak38VYRO+PP4AtecHQanYLBd2Fo7YFKBm0oFb5Wdps0cE4eTsIyH3vJlG9abvF5NkKX8c8tUQ7SdJlPO2rK8HABZMZDcE022uM59TXlXu801l0mn3bGUhY/GVIkJCFmy3137x8usWuFo/rJR3CbgQlGvl3TQwJAIMb9DbGNckxCyIlEjspX5bAICD4dlkOgBgpbwkXhGCELAREd8rFQs1XxfSA0XNmunzzprrAECm/eVGZRDBGlDKE7HD8dlo3HVcXGdQAECWw/Gw2+ueIcrO7lGzfqNa2lGg8ppjiJLx+9VVEq88AFgIAJleMwCdtR+5saUlf2JyzCVmVoDTcHh6/sSYkN08G4NCLcixlWt7t27d+g1KPIuxApUW8/nTBwCZ3tEWLZHNHYm1jQVm0+49tdamDKtFADCLKo5vXTooFWrumEhT6iWt0ssAgIhVoESkOzqeTofTcDgad40NXQdAeUEakMkBACKVzFy565fEr2bh68wAgOA7APCpA4CZ2ZyIFREiP9UCAgDi9P6v2tI4O4JFEDGM+sPhc1i2v8gzAlKjMac60Ko/IPRg1QDMFwUMoLR/CyORFYkZfC2RGIU+O7yMwAJrkq0cAHARUQMAkBJCQR5+8/k/94e65+ZI7MhjiNkgolh7fPEYEbXOV6kvKXXkAYAk2j7kAIAxUbf7jFGa9WsHrXspmZJx0ZPbGOGTs4+BlEIqBOVW7UAkUZh5PZeTdQAAwTN2+uTh33/R+7hSah4c3EdUYtmpXgIDoEVU9XKrVKxnzYr5PUqpxdVVAQARoM08Ka2LMfzy1aN257lAZDgERX5Q9AvlcqHqWFhZZiYiSCKMjhzvIvV4MhgO+6ENnfqE53nFQtX3g4QshGwFE+cdEQQm0trz3JUgIjOUS7Vioe6lAj5OuBcVZMY6jIm+TU5hRtJ/qBwZF2XFhDqscrqZAwDZ6zMAUCxWW80DJEoU4mYdgNlxsnb4dQ1VNrtl4bR73H7o+zWtqV7Jq/TkSbr8msk3CxC2O09ijgFIgZRLrVKxmbO9AxFG0OvY9usYF5vFT+EymawtKECbPvfthctPx/Nr5bfbIEm0DAAUKESZxuHHj381jHtKFfd2bznoWy3v5hOgdZX15TfO5xlXHwp3eIPcs5n0yiwAQBj3R+MLa+OkrI7K6YS6i2HmwC8XCzWtg8ze2/F25nZRptW2GMMwa6ICAAITEbPT27KjcXc07jJHSilGItQMggImGne7p9PpuFJu7O4cNRqHAQUimFnXcXpwbAkAsqd8HQCAnHK/CHd6LxksM0BCNJp9H2ZWSrlbPA27p+fPQhMREYlrIxAiRgZuXXvv4PA9Db4Q5hQs5FNPCRhWadytVU/aotCQT5rdsHWvfzyNh5kJ9Cy6ybISEZaK9WppJ8PAKTNnebtT/qFaBgAkJGLPuk9EcBr2h6N2bCLfK1drzXkAwDu1W0rpDAAAgDC8AwCfIwAgAkIOAMisNiYApLyapyoOWPIm/xacnyYXZm73PiBZdRcdBkhN2Z18OYupFI8KxeYX+lbiv/G7vnLUDH7Djzd+6ueqUOF4EpHnKUWZ2ytsqLbqmzkAQIIaSCMS2PGv/b8/+IN/rBjrorZGCUZsADCKRxe9Y88LLMQktGW7P08BSqosqfzTNBx3Lp75hXKjfrDXuBN4NUYmYBQSnJv3Gk7bvf65o7PXK3vloJbGJib5JNRJWoSMHL189eTpq2+AwqPrX/ZUgcEmOuKcHIfFQqVebqXU/wVKD23fi8gZ0buclVy8cccwkrANnz77qNs7YYxELHl+UCgVCsVioZo2LhGc8+tsrdysIYfRZDDoTyYjJCGiQlApFku+V3DSnCwm7d8ws4CQ+/GUX6+0fK+EqBAo4/nMWz0oZqMUMic+NU5aC3KsrZWoLBH2Sj1EN8IAAIDJdNgfHadnDMVx6ABAqVRrNvZTAKA0qWb9Zs5JYE2VWpZvOs+zilkEz9ofT6Oe71eIdLN6pHUAuWLeaiW77QJI4nuNajA6GYU917NGVLut2wg6Me1KDFXXP1N8BapM5og880d7O8n6csnkNWQHN3VO3iYw2JykLW2e1VfishMAeH786LT9oVKq1brlBUUB61OhWTtA1IgyY0Kvq8jC6iHgq3Z4UhlZWgauiMrauD86i+Kh2/+5xxyYjavGebpcKTe19okIICnCI8lcE2AeWDq792T2INPzdoV2Sv5kGg6G47YxUyISUiRkXaXAxsNBezjqIKpqrbnXulGvtUA8EXTjvwCcSv3ixmx1bprW0cdXh37hVKfYm8T9/uBEkIBTnidpF1eTDg+RCCqQybR33n4Vm9BxmBEVgyKhmONb1750/ejLKmdF9BkBANr+GckS4g2tgHzSTMKMFEbD3vBkCQAsTsFlNhE79ZtaB8wmjfxydQAgCjA0YW/wwhiOzbDXPxNgzyuXqy2tdR4AtJK4PZvAFk50PBe0kt4BgM8OBBAjL4jMiiCpoudVCYPZYOHanazyAAAAL/ofiwmTu5ifA05ekZIbQSWegCqo128T6vw4wRfrzuLRzlc9ioMg/h//UO3/9H++yeU4ilVQwiRSy0YvsBwAEETQCiQAAIwnf/bf/caf+GtHnm88K+KkkpkGYXs8GRCREzTPRNy3OV+TWACz+TkCGY66/d7LSm2nVjnYa97SVGZkQKPFS5myzEhs4fj8O0jaxeu95h1f+UnxJkEK64xj1gbBtDu8CAD63VcfPvyVEOLDg5vlQgOAwLLFRBICUQpeqVrZ9VSFxbgEbp7QQiutbdakDvkDIilmCwAziEg47T999vF4+oIhBkIdVMvlSuAXPc9DSSpneXWLxPIJJbbRaDQcj4cAoLVfKBQLQSmV92GE5IwTZBbjVD5JvHp9p+TXFfmu3JVxYefl+TFb9kz6E9lmhjjuemaqgmLTfogsYINVd4fz/xVZxtGoN3zl5DgY0Jio03kRx2EeAIDoUrFYKe0rJyeMKj2WNsMwmp8LTAydTIzH599kEL9QRFZ7zduZWzhiPugv3mG5bIDPTeQjCgtOwove6FylQlJ7O3cQtQgTaAAWXNEiz+dYG/LUZRNQZ7WxnGevTSjXwOm8veL8MahmAXcbdLEOrs/ktrc7PuYr6K+NavLC9p8I/6T65aNw+PHjX7QcVUr7teYBIgKbol+vVnbdHlsJALao6G+CHyt8c4WWp1bm2PmCsZ30BqfWhkp5ADPxSnePWAyzqQR7hULJ8/yZmGk+JixshqRhT7jYMZt7foyd9AZtY6fu+6IiK+haB9E0HPbOzHSsisH+3tFO64ZHZTFCGUeb1vi3yMw0N4/zF8y5cqFeEVhhypT7250nhmOCGYUppU5hXlOIBMJocHL63NhIyMl3Kkna2ni0f+/64fsInuM3IwnJZ5kfXLqr8wnxhnmAPAAQUtbGZ52HuYYt5aIcz7pXiBZQoa2VDgO/lqvRrLyuOXHchXiFLIgyiaa9wSlgNJ2OB8Nzy6ZYbBbLNaXUfAfghlL+OwDwOf+xOQX2VHtXkApaVxSVUgtRtRoAIIN4AO6vErWY4fg4CnuufpGEppn6CALGks5xIXiIKBBXyncCv5yd8gt91y8AAPjKjZ8xDKKhYLr/7r+891t+Z9NYUQVBZmYmcYL1C/TlpCRIal/0PiIDEqDjLvosmi4Gf/Bf++hvP9rzMfTYcfKMZfWy/YHnFYkcid9uLiguyIagIpRkaINBnCVTb/ByOrqoN28Fhdr1nbuIHoISiCVVynaCmKEdn549UUqh0mzswd5djXre6pg2FxTz5fZZWEOVdIVYgBDAmPHkO49/aTi6qDcOd3euM4gwClhgIdKIorVfK+04WkiiGrrkuDy/WZcBGGXc01w1l5xkZzodb/vDs2cvvjOedAQiVH65XC9X6o7xn55kSWKXnFiUCM5Za6MoikxICgK/6HkBpLZfLBFJAgHcOG+l3PQoUEop0k60Yd0aLiABvkwG59LtkQ3YLda3nQAfCgBNpv3B8BRSY6/QhL2LFyY0pWqtUd8j1G7KuejXK+Xma/d/0gSLUWga9s7aj0j5vu8XC/VKcWddgrXADs8TwNYkcOx4PiISRsP+4AzQMGgFstO8Q0QgTo0xpVGBukIUcKOlQgImEXN0QTARY5kJz8+4HJcl4tsXcq70Pp+kJCp4eSdk/X7bpCa0fadlw9UxowdkDD98+fX++JVHxVbrhvICp7ez27xB6GU55WebFCYTWcCAtje4CKNh0pgldL57bJ0honMJxEJQKRXrnldwATM/Mj5nLeeogIlHyqwgnZr9GUcHIiJm0x2chtEwcwrP8nVjoul0POqfhSauVVut5lGzfugacY4H4nIC52+Y+gMII5Bka8tZ9pkfxs0/yxYskcaZDDFbjC46JwIgEIslRJt2OxnJCieiw8ysFE7D8dn5yygaO0YoiEqHCtS1gwdH194j9CklRlqwRIQsrrO9vhr1iYv/699nGySwQSMoe0GWq3X7x7GN3FDZcgyflYdSE9/dxm2Ncz5uq2cVQHJaArMZUJe7D0dnk2kfgCbTQX9wwmLL5WahVFfKYwkJiiwGUVqzzu2i8xel0kC5r5MIec1Dj83Z/zsA8Em7VLky3FzagOhpXUFddppg2esXhdeSQuEihbs7/NhGFsC4jIgpCQXu/uZLvc4ULPArldI1QYRk6F++WCuJ7x39lFY+ko3D4U9/Ff70f3TX+uATIhmxabzDNBsQZ+ySDu9jRbybCOio/wgIyucpHX/77F/6w89eTWpFcibZDILjaNAdHGtdcJoMC6Jp6wBAxsYGUnNtfSEQe37xCGzU2L2lVeH6zn0iP636u7qyJmIL2L54HpuxM4sr+MVG7TBzBb8iAJh7gTuKnPEAgbI2fvzs11+ePy2XaoeH1xMNO2sJXJccRLBW3SkHlayqncZcWiPlCbkaySzxzWpjmDWLkZ1UIIgybE7PH704/q6xAyTx/Fqt2ioUE1acy+1y35oFLMx4LJw1rF27nLOVsUBomXm3cY0wQERAIVQCDIkKqtomkVpZOoLVnB/eMvleMwZA40lvMDxNxycTAGAjW6xU8wCgFDTKpcYG78ztLoNFcDw973RfkvI9zysVm+VCcx3lYHk8dPNHJ3seGQCiaNLtv0oBADbrN5zSqNNNWi7bb64Ez6YdhACtCLhNwsyCokknJl3IcxXcKyboV6egvLX8Fd/kdW64/m120cKxRBYBoD149eTlrxNgrXZYKNU0gQgGfrFW3ktc2D/LH1p4VBkMAPcGx3EcAwBpnxkQBdikMYFZIgAoFVrFQlOR54omSVo/cy8Rl26vFCbKa0W4wCtixpN+f3xMWEgHhyjh5bNiMYP+xWh8AcD1xv7ezu1aeRcZLVgASgtArhvplCI5GTNL+7HZAFJ6qFMeAyzkyogoYIaT/jjsAiuROJMJWigVuwYpAMdmcn5+NpkOkFhEHGFSxAp7N288uLb7HqIAaUzglt08q/amMMAbaQVsBgAuOA9HZ8NJd1Xk51yWphBRSMTYZu2o6JWctPRmOmVOjGsm9OyoR6fnD5VCZp5MB4PhOUtcqez7hSqRQ5WglLI23mne0Ut+C67eTDlpoPxXfgcAPgsAAKvEZEmpMnk1Qn8BAGTPYC6kLDDQpDd8xmbEzJn/F4LKK4HO5FKcIzhTs3ZTeUWYcS+/UBSgrx3+TIxCvgqno91C///zZ79Uvl/WngHLwoDCgIlEowgiCyi3nk6zRaH/HggCKdAeCIDSMOW//uce/pE/Zdj3AknSTGvguP0QyCoVILqR7a2m0/IAAJIRUnL1dpbp8enDghfUm0eIeH3nS6muv6RW6tpCLCKvTj4irVx8r5aa5VILGRFt6gw/NwawdQmQEBHYiggQKsHzi1ffffyL2guOrj/wPM9aK4wsRiE5AFAsNGqlZkobTbihmVDxtgGXU3mcdIOCkAiSGEA/jqPHL75x3vmQkQF0qVhuNm/mTZcJ0E0TZvYIDJk8Nuf2t4J59e5GdV+R56sgTXkNOJ0tmuuNXLU2aWEFWXM7DLCJpePYWcNpbzA8RRIWRIEwjrrd5w4A1Gu7ijx36joAcNUDbwEAIAozH59+nzFGUNqjRvWmp4rblAS2AQMyG5WGOI47vafu+NGoa5VrwWyI7ZLFWaNt6g4rSjaVEKIwcBSPC14lk9+dayx8zgDAmv3z1gHA9u+TPYArzQeSX1pAlJjt9x/9/WnUC4J6o3WAoAgAwDSq132v/KkAANqssuVqBMkBnGhl2PGkO5kOmQ0RAOhMJyfxbRQrEANAwW+Uik1PF9xmhtyAQj74ZI9xznov+1zKiq/jsDsYXqS6YYKosj9HxCiaDoYX41GHSO/uHO00bxQKDcKMV0MAZEVIuY/i5edaZjxLWn7w3VmW1FZQmM3JxTMiEghBdNaSdTF/6dRja22n2x6O2oAxAOU2jb59/SvXDu4JKmREsimcsCs7hM7/GOAtYoBPDgAszJkKx2bc7r5Y18XNNVuS/VYuNFMW3AxNXXbBc8e6tfHZxcekPBSYTAfd3onSUCjtFYtlRAHQLoYHfrlaPtBLY2bvAMDnGwAwAKFYBkAqaF0nVVoJADbeCInNqD96jiwCltkSei64zXw2F5sAWAjqpdJ1AAC0IJRqjH5BVIC+euOnYieaZgjkxZ/6w7d+5p/cw7JALMgCYjHHWwYW1wEQUYkZYvAVEAWEgAEQg9IyDP/9n//WX/7FHQnAQ7DWINJ0OrnoPVHaT9NfyZtnrT1ZCWfdgMRQxjqZHwAIo16786xebhUrOwBwc/+HssCabQghGY56vcFLJEL0RGyzelQKymkjklLe5+XqEMu7x0lSE1oQisLxtz/8u8N4cPPoge+XnPCEq2k5PZyiX6pV9hA9Zs48EFwlaXsAkNY2EFCJ02hCdtYNGrDTP/3o8S9NzYkggQStxmGtuodu1Nj1u4GdjlVmqpBJ8WSNe0CTo9+owK+Ugoani+D8y4SyihSj8wOyV3hu8XLd6KV1sGsSPrXhvzoAMAr7g+GpoAsNMI3CTu85h7ZUrVWrO5o8Ry4oF5qlYh02xYhLdwWRcMzmtP0RC2rtM5uDvQcKvcvUnGh2SlxGnkkpQGwtX3QfM5KI1agr5Z2iX00EIi+bccwrSOKqXZcsLLK15vzi2eFuajSmUo4ZKAFLRFdKiNepDF1VnWYbEAWLQ7GbXrD159Jlh9G2QCLfHMi49U7Jzo0CC6mTs0evTr6HipqtG75X0QQisValZu26S3PlKs/dmwIAqQKbTU2CBZGyUR9hZeyoPzwxdkpECArcUMp8P9OReaqVVuCXEfwESIBFIUItEKdGHwKphl829J8RSBARLBARA0VmcNF5gZqFk0Q8FUpSAIQs4XTYH7TDaBQUC7vNu3s7e1qVwOL8eJJrrbATDE3DFC/h6rnXZ+dIhgdGYX80vnAzx3PlSUIRK5ZTXgq5TrgxZji66HRPWWKttXDWeaC7N76627qjFKaOlkljYeEeZUMIWeh7S8pXW2IAWCMSmu8AiCCzOWk/zFwg80/TfH5PrmYvgnuO67jd9SxRdsHayHkQAct40h8MT5GgVNkLgmImPoso9fJ+4FdWfkQ2gZD9232pvL9EahpwKQB49/OaKesqAJBwIghYhAV9pWuky2npZAk24EKcnxNOuOg9BhkzM4CAqCSzh0WCQNIcAADkevVLWusvohUAfvXmT1tRQoaMNw1P/pf/w/K/+kduq1YBkEFiEAaxwAiAIJxF8wSaC4L3PpACJAZNqMBT8UnvD/2+7/z6yW1WESV1Dun1j6fxOJedb3f8z/i1lHZtEgCAKIPR6XDUrtf2C4UaIR7tfc2KqNR4xbVZLcjx6UNBg6iItLXxXvNOkNL7AFxCa91s1lXDn6BiZk0Mlj989Osn3Sf7uzdrlSaiMLtcW7MYIvC9cr24o1P8k3GoRGRlhXjZEAAlH/hQgAiFLVjLWmtEePHq+89efd3AUEApFezu3igE9URPI6X9IAqQcloxbn2Sj2D3cej7hYJfJyIi5VhAM4oCK1Kc6jDM+mIqJZ1zTqF1ZQUItuOYMsI2bJzlii8Jw5xf5qcBACA3ADeORp3BMxDtTqkFadE3BQAAwBo573xfSLnmVSGo1Kp7M8FH2a6SzbK85dJk1AIAgzlrPz3YuZfKVc1cC77Q5udXWpbXBgAbgArOKc3l3GqtScyqCMbR6OGTXw2jbqm6X68eIiIBMJtW/dDTJRJi/FSJQNlFOjUoF1jSDqR1gyKOvi9ge/2TMBrMQ0TKuo4ZTGU2IlgpNwK/5ntFEXGex7MhB9cdTXomeVtfTke8EFGEVGzG3d6J4SQ/JiIG51Pm7hAx82TUGY461phKuX6wf7Na3ifynKUYADhPEkhUgCg/QrYMAFbt/6RHwQjd3ivLxtowN0bM7Eb2bdpLz8lPi8hw1L3onFgbaq2ZGYAArZLCzaP3D/buExEIAZqchcji9lvZSd4QzV6D8bilKNBKDJAVy/PsnXbnieFwHQCAmRJ0whmuV64VgnJiGL9RogOWKEAgNI063cGp5wVs4vFkOBydEVG5tqd1wd0NRCVG9nZuOd2q1Yf+7NpmM3sWVgKAd9n/26j9IyQdvLkEgFNIjOKYXFWtK5kl8IZIvVSLwWnUHY2eO0IsWyS1GgcmzzB4AlGhsF8u7ifH7xen/A8A+P6df5BsEspt3Hn/2vQ//5Pvl2+UQBGAEbGO/pTYWErsxAoSwAxa9F1UvgMACMTIvQ9e/e7f97SDD5SKwLIRAIDzi4csytk3un4lyeXa/3kAkMvPGBhFbKf30tiwVt3x/Yqvy/vNW0Ca8v0gtEbsq9MPMaEGKWZzbe9BOryVDBgBwDZKoCtnAEAxspyfP//wyTfK9cZB88i1EROLKxBNCADl4n6lWE0pqpx2P5zH7VoAMJclzGwSE6BpOQZRIMQw+vjRN9uDD93XLhZqrZ3rWhXcR6BkZiuMiILuVBMAp1InwgZEN+oHgSq5SeV1j0dKvbWITjAH5wXjsqCM+WQ6u9EWlrvDvLJgw7ks81IAAHMaFK6A5+x+EgpQHgA4ClC5Vq9WWmoeAKTtjdeJ2iKCLOOo1x2cIiqlVKXYKBWbW56ac8m60Or1z4qRhGyh3X0iYl2y4pHXatxwAyGkQCxcOou0So2Ic7maiIhhc37xaL913zFxZ4yONNVb89Zvdwj4szt58MpH1eXbZq4LipxMFipkQf3s1XfOzr+vvUKrcaS8skIRkcDza5VDBZhXs3kbFd/NSC/R9Jwp8/DCHo7NeDhux3Hosjd0HUtI5m4RPSfNgU7UgblSbgR+RSkfhFRW7yeSmfJjZhmesbpn/V43cjyZXgxHPcHEDT3rdrI4a0NkYwa9bm945gdUrewc7t8tFWrEaoErMnfXZyptNB9/FhLxmV5qZKf94bGTR3MlHklkFtx8qk3ljCEdbmYAmExG5+1XVsYOOCGLEBKUbhw9OGjd1aRYEJSTZ12x095IznElD+BLH5fVHP1clbQ/PB5Peyt9XeYxADoYFvi1WnnHOdMtcLLXAYC8t8xJ+zEAE5FYHk/6/eFp4JdK1ZbWhSRhYGk2Dj1dmontbgcAlp0BYLUa77ufNxOG1wAAB7LZCpAqKlVVVMgXDpLXuOqn0HJCn/3PXv+RtbFA7ObuFiqD+aTIGSIZMK3aA60KqdH7F6cD8OVbP8uCWpSIeB5D/Ow//Tfv/vhv3UXFkCpKAkjCNkn8d5M5HgQt/nXEKqMWJgZRhL/8V777h/5ojLUDzxoRMYzM8auT73t+CdARx42Q2ky5WQAALgpnTQAUshxedF4BcLW26wWl3eqtcqFixVmoUEpM55jNSftjEXRRtVyo16oHItZViK8UNFfK0guY8bj/3Q9+WRRfu3bXUwURy8yAKnG2Ygn8UqN+jYRSL8+5zH5zopBEsXxJnRFJmBlBi8hw1P7g4d8b2xNCheDt7lwrlRsIgXsZOk/k9MTKCB5WuOhXi8UygvY8D1EhCwADpj2vuZIn54phiz8LJP4FPJ0YMwPmWsCy0Umetsy1aMFcEpf/0xwAAIBJFPY7iwCAAIuFRrnUIMk6QrJB/HvllTiI/OLkISqnNW5btVue58P6afJ1vP8Ney8dglQMtj84nYbDrKmy07xFpNzsrzsxZYN1l6xLRuc40IajdvfhXvMuoZc+LJy1LPCK1JfPw3DwldZ82+v8RMCAFjaSe0acVOJwcvHwya9G8aRe3a9U99JXc7XUdNhydcr+hrKO9bKhvCCdMRvWQiRwHc7kDJyGg+HozBlyuakhV4yYrxck/2YGz/MqpT2lPE0agFYyfzIMsBQBSESiuNftnaHSwIKKGEClhmJAYhiQKYz6/UF7PBkWCoVqqbG3e6tUaHpKgcykhLaUWlpWB3Lf8azz1LLJIqfkB53nTB5nfB4RCaNB++I4isZIoAANCxBqLN44vHu4ex+Vdo/fGtHqN5xurkvfr5SorXsTBWjBjieDwfgsK9jNv8ZmL3ZwjpHBwk79ZqB9kyuybgMAXD/z5Oyh5wXudgyHp8Nht1SqFCs7Dl0oUIWgUinv5vWaPwEAePfzWQEAsSKAntJlTeV0PgczIaBkondN4cnl+pPwYjo5c9xpaxf5rtmtT9oAoAzEleJhqbgDor5YwA+/dOtnAQiFUIEiNsPez3wN/vSfvC8NQSGJWURIifMFE0ZMNC9ZBEFQ/EOiXUYCURFjAeyf+IW/92f++kG5VlSGGYEtxXZ43n6mPD8lTFoLojbKFKKAK1dnITXV4CKBGIViM+l0Xyrl1eq7QP7N/S8rQAZCEuQ0yCo9HHV6w5MsClRLO5XyjohVgPny2zbkrcWhImEkiePo+49/7bx/fPP63ZLfsCCWOVOQRbKaglb1unM+Tm2rMeVBrrb9Sg/UnOiE5E6LxEANAeDFqw+eHn/d4sSKlIK9g/0bWpWstQ7jUsKvTB4KR/cvBOVioa61l3FY57sfmcboTB8DUvm8/BOSLdq6Ss9Cor+BXbOMAbYGALwyDVsJAERkGkfrAEC12Fg40Tdfg8s/8lUoA/Hp+SNAhSgIvNf6EuImgfltJCnXfXUAnkS9Xv8cUQEYEWk1bvq64BKX11WKXDCgICvm7OIjJeXd3UNneJ6/+M+b3NnVKQ1viNIjuPl61mtb0cJrFKAFEQAlxMgW+cmTb3QHzzWVmzuHWhU0agEr1uy27ijlzTXQPpWakzs4F1X83e5FBcjATJQU1FNhWTsaX0zDAbPJttnMzT1nL5BY9jIT6Xql6XlFBK2UNyOTEDmJ7kwOyPVMYN4bJIrC3vDMzRKkf6iTlgWwRaeZBuPxeDA8j8JBoVRsNvYOdh4UvBII5vWFGYiWTDDy7Yi0oyu54khiPN/tHzNHWTc4K6DkefDzua8T+IraFyeTaR/J9TEYgDxVubZ3Z2/npucVM5rritRo8ffEALRmP6+bPVuT7y64VcIWfmpzJf+Fgr0DAGE47Q5fJhFwUdaZ85MAiB4oAGtqpeuloJhv1W4AAPmKVWSmvcFLt9TWyHhyPBqNKpWaX2wks+Ms9ephEJQkN3OyAQC4E/IdAPjsAADkuzSCCJhk5u7/K1X1dA02AoCVAB4ABGy7+5H7h8Or87d41qQiUogoqCzHO/X3FAX5WPQFAAAPbv0cInqWjBYAg6zKcvbnf+HG+7+pAgowRnHuW8Jg2cX0jA0qoFDvsXdAYsDz2AR02v1dv+9Xvnt+v+hbZcGpvE2m/e7wRHm+mzG9tMKXT/3TmKog51WEAuG02+ufFYJKpb4vIjf2nAQQJ4m3AABb4OPzh8CIKilwtmo3in7pSoW6NExT2r/2RITQOkHrV6cPHz77ZqO+v7tzBACWXVSwLvdGgUbloFiobNZoW06URYRQBEgEnTumiCVQKf+H4jB89PzXznrfEYgYis29663KYcHfKQU1UsAWEJXlcaf3EgCKxXIhKHsUKPJTAW9ngbzi6VoufrtizDqWlAXZkIqt+pp8xYTsSiXVfDGVxpNef3SafXoURZ3eSxtH1VKzUmuS8lwLvuhXK+UdxxrKfEDnhyxprt5PM61Ax0MQkakZnbdfKI8AdDEo1SqHOZ+HN1iRFWFNaA2bs/ZDUNqRg2ulVqmwm3CinUj/WpUeWnNEcQ6jCgBba846j4hor3kvLYFQDt3N6Zm8dgL6WQEJ2WJI4u2UVGlzLXlWJEbb7V48O/514bBSv14utrK/DLxCo7yf6u7PUrTMJ/GtHxtyyUadlcOFAMBKPBi2p+HA7SMLjnlPeSp8tgOzGMgMxUK1WKj5uqAULQinzNfU5+SDmHk4uZhML1zzgYhFlDPKyGtLMJvRuDccdKNoWiwWW82DveaNwKu5YVALmLle5N0A8sJxK096hw2ieHTRf5WF0HS2Pt85mYmNZl8ZAIyJ+v3+YHSOEiFZEGJQvl/ab968tn9P6YLzuiEiYQXImU3i6qbUmlCwpV5QfjQrYfNzDnZSvg9Dy35BS+WhvOeXNYbPu4/c0Mvyc5FG4GzWWQFwMahVywcohgE3diow20gObY6mnclkiGSZgZkHg5PpdFit7OhCidAXsMiyt3MXERAz4hCvAgCAODemnOxVfIvj1+9+8o9XrsQ+DwAAxGWATrycfKVrigqOcJjJWENWNlhZPAILQog0np5PJ22BCERlvmBLDA5xuhyKAoFYe7Va5RBEQ6qYshAfPofAAB/c+Wlg0RKwIFHIpMzE/vS9wZ//z96DIAbynAkeQAwG505+BgFCVRLvNhKA0gze9//6w3/+D5+F1aOqtrGRAMQC9Ubnk2kXlc6e6g0LkQ/Q8wCAs6I4CkzG5/3BRaXcKlVbDgBk01pZVLJgX55+RJQEWbF8uP9Ao75ickkLlQynK4Ikw3H3m9/7JQC5efMOoW852VuJmjViKag1qi1hmg+UWzZVCViIgAHFupwLlWgGOxqdfffh3xmbcwRUVLh+7StH+18VESJfQRb4EFGc7t48dSeZ5GakdccAr9BL4TWJCy94Ia/DAKu45p8aAEiS2iiKLrov2MTLAKBa2SUBRGXBLhxmC2/s9KTTrghk2juDyUV/dO7KjeVCvVLee7MZZE7uDN14yfHph6B0Mr7Gam/ndkoBElS0TVdhWdk2DwCMDc87T4lop35Haz1fvoWVk4gbEtDPv0HK+gSdX2t/btrn+ZXPCHL5LNCR5WIzffbqO93+q6BYa9VvEgARgGgQWyrWy6VW2mdLuzd02VTV5k7Um7hfMj/En6cvGo7Gk+5k2ocZq4fSuj5mDLf0zznL5gGoUtoJgqJSGgA0KfdLlwrn4tvcTFFWYM5khRCRQAwLUeYvLtbG03A87F6EdlwsFvd3bzbrNwu6ypzIpgEhAAGR5Vjj5m3gxECdpYBt905jM86Hyrzfdh4A5C+bCKy140m/1+vGZgJo3RHmYelw//ZO86any3kjDjdl8do1/u1DRA6YpVMHilL5ywUvy8sBgLuxJ+0PF7phCwAgS+XTSKt26jec4sr6A3TuEXP3uT86iU3oWg3Wxv3+qTFRpdz0iiX3+kAHjdp1FMnJ0ubJHu8AwOcTDKwAAC5XB/JIVzWVrwQAHAZA0Cxxv//Ycpj5b656LkREXFAC0cym3rjlqcoXaQj4/s2fRkSNxEwgMSmPQWN49hf+7f0f+cerICKa0KKIETEEKtG5FYREBovAf4+UD9oDG//7/9rX/+zfuFY9KGgJrWXNYJlfnj1UHiF4zmZvU/a/mt2IqSlYatbNdjg4G417jfp+UGoymwwAuAlj17KZmkG7+8qpwolg0a82q/sriexbxMFM682dClpw/M0PfmU46hwe3CyXqlZAGEFih1KcQdhu65avNAC5S7oSAEAUYCWCDJYAhRWDINvHL75+2n4eSgcJqoUbX3r/Z3yvqhgSVzKXB+BMqHupw5UA2Q3HwyoAsK6uz0tOHJt1/T8dAJCk6ZNpPwMAzByGk07vmE1cLjXr9RYpz11nMajUKvup7sfiyiyshovyefVGV0p8df4IyLrecb1yUCo2l4DTJ8UDWTXLvdXLs+8qCoQSL6VW45an9GufQJngRiZJaTk67zwl0q3aDd8P8ofxOgDwA/FDlyHzNwwAHJ0sT2UBAGEkYER5ef7k+OwDC7xTu+kXSpoARQuyWG41jpTSSnnWxq5y+QY7Tpeuz1Len1pmyuY/4SiejMbdMB7P4lVK9888UnLaO5xWXtCBUhBVq+6VC02lvEylZyYZmYRZtuIhWWPCi+4zN4Pr6DoolCrhzjiNiGitnU66/eGZjcJisbK/e7vVONKqTICc5hlEiQsVI2hc7gBQrkAYA+g4nnRHx07sKCeilfwhJRwSmnV9c8wTERtFUX/UGQwvFFkCRvBIFw93bu/t3Pa9GqBBxLTetI7yR2+sA5lrU1hrk6tFpXAFAMj/5FvEafUkKxvZl6cfuNu9HgDMgi0RWWubtQPfqy5QkhbK/5nDnBOrsGLO2o+UcnbLaEzU75+K2HJ5xysE1goRlYNqpbizcBkMKwAAwBz2eAcAPg8YwKl+ifCsVQVIqqx1lbCwAABgvg2+XKR3/3c4fBXFPQEL6wVh0/2JijwW4wXVWvlGnieZ+WYm7cTP2/K9f/Pn0qRZmBnER4yskR99EP+lP3NLqojEYFDYICBrJpOYgSXeyChY+DJQIJ5ge/pP/GO/eq5+NChEwBGIYavieNruPlbaB9GAZkthsvkYlhpAQkqdZNvtv4rDSbN13Q/K1tplAADAr84/NmwzalC1eFAr1z9JBBRBInCSms+PP3j8/INafWevdQ1RGetkHqwLVChULjUq5Z3NBZi1tHhAAC0illkrsVYsK+Tooxe/0mm/DKFPoO9e+5EbR18BKrEVFuuRyiImAAAaUJTXJ15IZ1dKNV8dAMCCaMNbSKSummxRdtLkAYCITKfjbv/ExlGp2Gg0dlwHAAACr9SqXl8HjRZWI6MD5kmroR2fXTzJErj91j2l/Hmm75vKlbPjk1+cfkdRgCiInkicr9Nngxyv9+bMLGJdB0CT12xc93QplRfCVe0g/gE9XegTbOArAICFMOgSChRxuvJPjr8zHp0V/Hpz57oCRYCoyFrra69evYbgAcYAmNsbn8lSrTOXoCXpZ2DmaTwYT3pxHCYZMymV2lfnWf4wx7Z30DR2p2nBr5aKVa2K+aaBe3GquGBJYWSk03vBHNk53bm5SQxHEVag2NrRuD0ankfRpFJu3ji6XyvfcB6xKQYgRgBJfOmX9UOyPoCLD53ByygeMYNz6V5cmaR8PkdWgRmtnK2Y8WTY7ZwKRApFWCnyrx082G3d8XQRkHNz0rKuI7HNibMNHs68K5mTycicatxaAJBvAjj+ZBaQRezx+ccsEaG/2i59NvmdEfq54FdrlcP8lPDS9yJEcdotbjTccHTRfaK1zwwiEseT4fCCiCqVXVAgggqwXGqUCztLwnQgiwv4DgB87gAAANh01CbrzzACgO95TcJAUCXPaTqfKZBSfGWx+5RYkgtZjgeDJyyRMM5ev7A9kj4euaaiMaZZu+MFlWzIOBU0k7xy2ucLAFiwRKSYBCG2qMlY8ZXt/KV/6/Brv62AqMBal4QDhmBIUAG7ijcBCgRfEeVBED78Wyf/zL/Y9g8faAhRjBWxFkbji9G0jeilSsZX9gPKNKFFEs1+sabdecpid5o3Pb9gzMoOgH159n0rRqkAEZmjncbNold7jWQlX/xwSvqDcfub3/tFIrpxdJdUwMwolIZ4JkClgp3mEaIiWe/JutaKyHkMS4xCAFEURdF4MDi76L9oD04QjO+1vnr/JxvlA2MBCBmFKHUiTOtwic1ZLh1I4AGtKMyvAwnbnRnbyB3Km6j0b5lvEYAzPsAcAAARFYajTu94AQAgoqcKrcZ1t4BZvSovXz2vEigiiDwb6ROSwehsMLpIz2/ab932yAOATK0in3m89iGR1UFdUvXq7Puuu4XoAZha+dCJZC+N827ZacnPAFhrrbFhu/tMoW42Dn2vqgBTi4a1kh1fpHMj53W9zX6WK045IMpmYLw24SIHwCTlMZrnxx92es8Bpdk8KugaArtUkjkqBa1KeceJG7ritLzlcWBZZ2FKAmuIQ5gJYaYGiESaRVji3uA4isZEOvVuT8rhWffS0WkW+lQwR0eJAEApL/BKgV/yvZIby1OACU0IcTQdTqM2Mxi2My3pHNJIa0ZEqEWEJZpMOsN+28Rhq3Z9/+BGpbIP4rkiNLNxbYE86pjbQMxuisD53V70XzlEvUCOSuXdeJ5YnBOuScamYRpNLi6Ow2gYaGWtKKV3W7cP9x4EfhWQRayiYN1w3dbG9rPgP38crBDpZ+YwDJVSWvvbAABY4e/ubrTt9l+Owx6hvxK7zqvGUVLYst5u61a+v71EQE0MUkQso9sA7eGorVTgXhzHk/G4q5QqlVruNiFiudQqF5r5UDYv17Zg9PuOAvT5wgCJ7WtqLp5KAymta0qVEZXzLU1n4ud8VPKiQIiY+JmIENFo9DKM+sy8DgC4/4+pKQCI8rxivXLEoGH9kPHnaO2+dOPnLDEROU9atiQQEvnRNH7/zvCv/bn3pGkRCQQEDErqhM0CwgKIgOA/MLqoi9Ff/Y++9W//B43S7g7YENkaFLHc7r40dowqAAAWk01TLXNFNmT/iEoSyz2LqGwcnV88UZp2GreVp40xN/e/nBGU3aNohF+dfUgEmQjDwe5dn8pXTVZSneaU/AMQ28nHj7513j8+3LtVrdSte+yd9JBj8wpVys1qcRdRFnQkLg3BecMvFmV5cnz+jCQ6Pnk6jHsCXC0c/vCXf9pzFFUBQRASBQlCReEUCtAGIjskfjdrLRs/WdFobSK17M74FhI7zDoAuRmADAC8tLEpFurN5m4GABTq3dYtZMx8QBf0cJazGScb505oRjg5+9hRIIh00a/Wqgfkhonm/OTfYJmcEKXdfRlGA0QE0EphsVArF5q5cilcKZHNjSwnACCKJxe951r79cpOsdDKff1lQdgvXgdgfaLMb+fj5FIAkCt426QIJWLBdgenp+ePx9N2ubLbqBxkQ59EFMfxXuumVsVLL/vqAAbXAYC5yttl64YIzIlvYJbkubEVYURUUTwajI6NnSKoebnnrA8gaZqNDDYDADk4TcmUlwgi+l4x8AqeLhEhogaww3E78GqxmUTxyLBdgMeuVO9IAulUD6CAQDweD0f9M2ulXts52L9Vq+yBeK4OJUjzRsKY5cdOaCHtwlF3eDKZ9nk+gch0kFIiEOTSBWdjzCjkwoggMEedzslkdEFELJFWpYO9+zvNW4FXc0GG1OwuLNIPXnOjru7kuHWeTEYiUiiU5uUBeGX2v1BKy+f640m70z9J8dKKpyMTq3D2Tk5FvFm/4USWs+vJjwS4Wqyjk4mIAJ1dPEJM5kCYTRRNw3DgeV6h0EiV06BWuRZ4ZRG7QgaUMKv1ArspF/e57gXvAMDnCwAwJkkQAxJVtFch9C8BAHNvl0z9IijL8XD42FrJq4rN/6EAuC2EiESorbW1yrWg2ADn3bm1zuRn1AE4+lkmBQAKhdGQaBuDr7RRYqan/9nPH/3k7yhCTBwgCVi2SlAQ0Aq4aV0B0TfR2wHf/ul/51f+4794Lah6EkeOmWmtOT5/qP1CCpQYLM97K14VAAgimig8az8OgqDVuElaOQCQva17FCfR+Lz72BkAIxhr8HD/3hUngJdutlgAe3z++OMn36lU6wf7t5x8NTM7vy2XBRa8SqOyp1QAwAyEa/gYK4wFZtk/MVhlVAQcR+MPv/+NXvTKA2rt3nn/zg8TKBbFyOSqRzDTgpgHV7whv2FcpOisI71sGdSWfLveTCX16gBAshmA+SFgjKJxp/fSRHGxWG029jMAAEAHO3dy/OkVwCkTQcrcDJxxDCMz8/HZh5h2wxuVG0FQcvXy/Dpcal15acXamehlKf5o2usPTrJKdqlUqZUO1l3/ugp05qHmFAuyPoC1dhqOOv0XSnnFoNKoHebkSiyInp9q/yJSgGjNDr/qjMqbkg2VlZdEApajl+cPzy+ekMJG9brnFV3S5VIc3yvVK3tOuuS1dteb+V4bvu9ykRjBy3qVbldH8aTXP7cSpY/kwunAIumAO+YFfygl2tlsmjZ5RixYngCQsNKalFJalVkmhsXlhZDXmGeW1N0gO3QEgVBbDqeT/nh0IbEtFuqHh/cq1V0ghYz5fkum7JybkEnS3MhO250Xghnq4PkJIl4uEyZnGSdjyswgCCDxYHjR65wixcysqLjTPDrc/1IxaIBTHUkv4+2Ygs0pgU6n4zAMK+UyKS8/5rSNjHLW3WIEY8LTi8dZj2dJDBQsCIEBoczMB1iqld1CUM8DkkybKJ0omElsC9DJ+UeolQKVAYA4mvi+7/nlrM/QatzWiWGom/TFOXJRIrcl7wDA5xMDMAqxygCAuxcMiFTQukboCamtAYBmtqRYWAHAaPQijEYr2SspAABmRhKCwLk/+V6lUrnuAKejGKVOgIKgPl8L9+DWz4EQSYykDSbzpgSAAlHMP3w//H/934+ghqyA4hiERCGAAwDktNCEDtE/BLR/9H/7S3/xbx6VywHEE0EExiiatHtPUBWJQMAys4LMFIa2zP6XAUA0nZx3HpeK5UbNAYBoGQC8OP2IISbSiIoAC0G1Vt17PUkEFzW0UsI4nna++9Evxzy5cfSe0pqZ0D32KfmHAeuVvUqhCcDCismkjge8MsLONOwkcztGYHHCiqNO5/uPf22EbRF949pXbt+6R1aliQFZiFFiAsXkoVhEyVP8Z/ZbaVl74TI227YvX+eGc2LVyO/nFQDEUbFQazZ2SQXuRGHmw937OQlCXAUA8kUp1yJIZjettaftD5F8Z3W027irtY9sxSkEpx2nTwgAMoPelCVswjjq9p+lc5MesznYu08ri7Mb3jQ9tIQwFT8lRDHGTKbD7uAlEWkK9nfv5McPfgA6AJcl6PzWEmVa81hxXqwmSz4cM/689/z47GEY9yulnVL5QGEM4BjYaG1crbRKQQuAF1y6Pj9AK8MAaQYvkDD+BZGcJ65Tnp1Me2EcGjtNzRwpvz4pChURUajdiboAGPJmYc7sPKFUoSB4KRE/63+mJXN25RtO+wnWjXIJMqISy+GkNxh24ziuVho7e0et6vVMUjlB0eAELpLvmxq9IwAMxyfDcOguYwEAZBSX3GGXeCsnIASc5FHCRYkn/YvuyzAaISilvN2do73W/VKxOfNGeEN6WysBQOZbHMfhoN8vl8t+UNwAAJaDXt61XUgxm+PzR4CRS4yWAYCIIFm2Sb/F+fgWgmq9vJ81sR0AyME/pVQSxkXEWOn0H7khE2YjYqN4auPYLxRQBZmfzE7zjkIXsRlSpLHwnIqws3oFegcAPvNAna+po5vuT+i5gE5ZwQoABlpXFBW2BADZYH12362NB8OHzMkec0SfXI+IXbIMot0kgPtltXLP931E5chFDhh8HmVA3z/62ZzhbqK34KxyjRiy4//q3zt48JsL4Ogm1gAigGJgYnSMEwKA4EdA4A/+y3/vv/21G6WyxihC+f+x96exsmRbehi21to7IjJyns5457o1vFf1+rG72S3TzWaTDRo0JEMGJMMGaECCbUoyDMsw5NkWYRqmTQsGYQimJcOUQVuEJUL+YcP+YdmwKVAtNnvg69fvdXe9qrp15+HMQ56cMyL2Wv6xIyIjx5N57rlDPd78Ubh17zmZkRF7r72+tb71fWwQ908eadSJ1rNc2mKe1weksW2WaAGDAv1Bq3VxWCxWK+UmoALG3Y1P034xMzDA3vGXNvu3v1sv3/Jdf3EJcMnQJIkYFECBkAdfP/lxu3u0Vb+TL1dEUBhZoqRqxQBQcGqVch1j46SUkS+zirApzhFBix9QAEALI4hB0KdnR0+e/2EoHYbcxx/9qWZzSzEJUFYALlshnt+EBYJx8WnZyO/y4LXAHJeRUWil/sbihCnbPqYVE6zJ2tv8n+8POikAAIBhGJxf7EWjYT5Xqte2kFy74I0JdzY+TTRwAGZsy0hoJu6wiGJkAA6j4WnrBQAQOADcrH+UKM+a1b/OimJB2QsLgtHpxTObMhKRQFgt3fEcP8PmXwQkcLYaZ+UyEgMNAcPdXue8/0IrF4B24v3FiRe1WYHK9V1HBfR6nYFFt4KW/1gKrpKgISQURsNXx49OW8+0cmqVXVSesu5FKIhI6JZLG5pcBWggmkSAdN3PghZs4Tn7d7YukElPaW7zEEGxBGHUH456g1FXKZXO3Gcr0ItO01RSZmpIdOqDZjmoU0mqDenWRdEkHF/maBT0et2L0aBT8BrNjRvVypajc/HXj6mXykbyVKjewunTthUjgoyXmc0yTQrvJ+4nSWZKGNL6FwCbKLho7fW65wBAyqlUd3d3vl90m0jGElCB7OKQKQ2C12EEJVzWWOkoioL2xRkiFitNRCSIALSQkBBCZJCWHwTp4LKIHJw8mtkps4MHCbwRQFRa63JxW4FKBgyiKIqQgVGIlNauMCJFIgQAg1Gn0zuyTqfMzBwEowEiOm4uKyDbrN5TSokwohaJgEiEUbJCk3FzIJ00zYr2JgAA4pIwxo/Nmnd+yNffWkJr73s6eYJAREWlC0CaBNLEjHFeKZYxbaal+4U5Ggy7o9EBGxCI0M7zIqXki6wnNBEhEgjlvErBb1qjHjtUAMjWiuQ9AwC3fg3Gg/ZJnYYVGjbEwyD4lc9H/7e/dx9zIMwIAmKAFYMQIyAAIhgG5wcS0n/lX/6tn734KOehZmGJRoZPz5+rZEDCwIQizboAAAA4tnmDTvek2z+tlJv5fJVIi+Hdje8BEXBkI+koGh6ePlLKSS2Em9VbrnIXn9y8vCIoJiIlrw6/ffbqgZ8rbW3eREVWUiB1MSQCMdyo3Mx5/pS681TwzZw9Ca3CsB0hQCExTKhf7T/aO3gQyAAh9/3PfrFc3QATF5aSoGMm7yRdOoN1qejnmgWMidD8GgBgeTp1ZUrGRAcAAEZRaAGA7xVrtS2aAQALFI1o5r5lqwh00T4YBB0AIFCe55eL25Dhyq82Zkor33DKZBXh0dljitvWKGLyfqOUb8zj6M/HElkAAOP5vzEAOO0+c508Im7W79l6MwAQaoFwtU7OdWKA5S2UxbKz1wUA3sKLswhtHCVYAOC0c3h8+qQ3OKuU6/lCA4x1xo15EVq51XITwc06AyRpLr1NAPDaJS5DFO8aY6JR0OsNOgJhuptSAh5kDLYmtwYuOWLgMtOSrNMt2dkqVPZWWxsBY0wYjbrt09Fo5Lq5SnWzVt0ueGUiDWKsV2P8zooswQmAD06fSuKhk44HZADAzNWSspoTkjGIsKVmIhIZti4Oz1snpCIQ3ajd3Nr8tJJvIDhIBiBCIQZUCl9zDc8AgPjOGGM6nYtBv7OxuQPkEjCiSvn6BmSRM3dW4sn2Z1rd/eGwP0lbnTias40gimUfsVbZtX72djJQTGQiZhSltFIqlY1CxHbvaDjqCCEJMUfGhFE4IiLteCkNIe+XC3bMiTABcmjv/xiNZwBABqF/AADvNQAAQaS81kVUrsrQbzJpD49zGFvpSwusljqhwJiw3X5ueJQd/AZRSElHCDJBg5Td1vXqHaR8PAeIjGAZSu9ZB+Cz2392CpTb+VGODCpCIeTT/9/f3r3xax6EAp6GMCZQokkAQKSEPgs68F/8l/7hfutOzkVkZOSRCVun+5rADuamHuBLSxE8joxzAYAQiHTae6OgW65s5/wSogKW7Y1PRUShsT3zg8MnIfes/g8Aa/Ka9dskU6fXcinDjAwFIKJ0BsdfPvgdAd7d+tR1XcFYLRES8xoU9rxCvbSdreHNftlU04Di4RWBOKYbFBAk5uj5s4eHp49CGHi6/MUXfybvFYBRcFw/m3rnJfTfSwHA7I9NFf5nccLcas3KJ826AGDdBDFVjsPBsH3RPZwGAMHAd0vV6qZS3iwAWG7XmtyQJNtAExo4OnuUPoVyoennqlM2T4tvXXrfaOl9jr8dSdzctLCTmZOPTvrj6DZrNxagjoVgG9MqI8l4Etpwp9s+bj/JeXlE1aze1jpmTE1oqC1OxN9yE2AV1aPJbXhpJWYRV2dF9LBsWy3o7Ywtt7NdNRFBlpDDg5MnJyePlatqlR1UnqVTJv1V4+pCtbydxsxY9QsBhGimAXvtAGDKvevSHb0oZGUDmpXeD8NgFAy6g5MM/8dkOhvLhqrnPDXOSrtk3VHmF60zOpsImTEtRBmO+sNhbzDsGGPyfrlS3izna7l8mWK2SVL6EhAxB+dPLFM05R3F90147gKLU9spdwibfEdih77andPT01dETEL56vad7c8r+U0AQIiISJAMGAV4LdtqCgCIyGAwODp+sdncyuebLFGc06czu0vrStkmTHdw0uu3k/24rANgH4dFDuXCZs4rWJTOHImJoigiItIaAJVy4iAJcnj8iBytkRIB0zCMRlprrdyUcVQp7braRUQBAokQtZ3ZyHZl0mbAPABgDSY+AID3BADEbAoLAAAdpQta+QjOWGILp8tqUy6/Fg+kKv69/slweGRL+MzphpUpVSjbOLREMt+rFwo3kn8OEZz3EwD8pye3nBXSIQgNIjKpYBD+s38G/tbfaYARcJCjxKjFULyyjQL86OIQ/vl/5fe7wS3XscUz7AzOB922prEScMIxWFbemxqGywIAABBDzHzRes4Sliu7Xi4vgkW/XizULImQACKJDk8fM0e2ZokCfq6cDADMBwDZlvHUP4mJtNZBOPzm6Y9PL142a9vV8pZgEpLYirspAhHBRn3Xd4pZRYJZTvlYyc46Txm2YxXAosgb9NuPnvxRq78nILXijU+//0suesYYQdCkGMy6B3m60JGnmu8ToXYRJW5xYsrLk7BFRejLaBVXBACZAvBCABCY6Kz1ahEAINIZIwVamtulrXAJTHjSeiqCRFokbFTuaO3Zsy179C7BAHYhXQoAAEDZVDDOCcQYc3j60N5qIrLyuLXKTcfJZQ27LwUAmY/mRDwbJDKdbvuw9cjPFTQ55dJW3q8kk1VEalFS+15YBKwiO7uoQrnouywKXIueF4mdR1rdSYDtp6QVkBg8ACCAHSk5O98/PPm2P+xUyptergLIGmMZe0JhA3m/Uiw0MmIABghThTtY+DWvDgBmXOFWnT6f6nKkm0Uo1s+xh2nSYpVB0Ol2LwCjlFi/vPCxyFNyHgBY3v6NoyVRPO415fwlYgbDXrd7IWBcVztuPufmi4V63i1p5VmGnhg+bj+PC8yTFlcoixAmwTyf5tQf19Yeh6P2wcFTRAbCanl3e/N+rbClUAMwquvRHsnURLIaCRRF0cHRI085zc17tj5HRIwMEkOFuRhgCsyISG943uu30lbJovCb0mgtJPNz5XKhYZkcIoajcDQaEGntukrpNLMPzeD0/Dk5rpWFFZEoClgirbVNGBCV43jlwi5hOk8iwAQxC3xC9nY8AzABAFBEPgCA9wsAgH0sAoIApHReqSKCYzkUkzMAywAAJLYAIubs4ikJGw4AEIQA2coNJUs6m/wQIrDBWu2e1rkx3BVCer8WQwwAMlXDGACQiVVBwgg9v/c7f3ez8rkCAIgEEAUIWSUAwAHZ3XsO/+X/1k9H0S3tGhaFQocnzwjQGqZYefUrAIAparsYMia8uHiOCKXSDcfLIWKtdDPnuOkPRzI6OHmcFG8QhauVnZxbsW3KecwZmKrKTFWMBMLDk+dPXv6RctydjXuu60YcR+G4I4mAwn6uXKvuWpmj5AyTeTWz8YBR0mSIkFwifX766vHTPxqaDpG+deOzm7v30aAgCBKwsDJkFACvNUab6jpP1bYZOUttn2LFrZa1LJM3fcsAYBLIxUdUQgGK3zkwQev8VRAOfLdUqWxonbMAgDnabn6SEaei5XZ1Ng1HNIzU6R71hhc2aWMOtpufYXwSTFQfFwAAmgecFvIWFIh1lU5aU3x09oQ5UspJoLIp5bf8XPlSAJD9lCwAsLYVtgPQ7XVeHn+d94uOchXlGvVdhxyx05RrJxbXY1B1NaGbJZXm1TtX6wKAy2Zdln8EzfTlWIEaRcPD48cnrZdEVK/eAEUAoBEwjrLAzI3abcdxrS+4Taok5cbMvzNXBABTkvaXxAScEDie193KoNCxbwAlIVhEZDBsdQctAE5czyEZW18p+19+7hAuXweUFoPjRUhp7k62kRsE/dGwH4QDBJXL+a6bU+TYnJKIyGoLUla9FLIAYO5lC86JinHeaUUjSPqD1tHRvshAkGqVzc36/UZll1AnukCvm3BMRpKxDAAbOGu96LZPt3c+dTwfYhsKI5iOWs6XAbXeDimQG4w6F52DzGzVtBzW1FaNlRsMbdRvIGobCcVEo0GftOPm/HSS3jC3uwdB2AdFtnghIsaEAkYplQLjQr6e9+rJ6LikDLRMVjdxAdl/TQVIPwCA9w4ApJpNAKR8rcuWIWkBQCbhGR/6cfUL5+toDUedbvc5YhwpspNIKSbM9B4JAFxdLpa2ASiZARgPcL53ACDbAQAgYIyACAwKDMLgX/6n9b/+P69DToARMLJUHLCqmpGGqPr0ce5f+Nf+iOW2cgFImTA6OnlC6Krxrl6q+TPh0TgXANhBKwzD0cXFS9K6XL6plEKUevlWzskTWS6+Ojx7EpphHDgYAXizeU9RjjLDkdkqzpIkwDYBR1Hv62//UW/UbtZvVsobImINZdIkHlEAdKO2m3MKqZJ6hoALU+giHvyNqWSAqEDM3v6jF/tfRTIo+81P7v9ioViT0FglA9AkhCm0eO2yaOIDIJSVBmJc/R2usUA7lTDRimf54sqfJEL+OAUAjAlPz18Go76fK1cqG1q76WxfBgDE62GuIFI2V0OUkOX49JFNVERQTLS9+SlJVq4EV7mxK940K22UTe4PTh5ZQS27Z4nAc/KV0tZa2fYsABBCicxg2H+29ye5vJ9zCoiqWb9t3c2SMu3bPtWWzADMpXFfdR3Ovz/rP8SrBPrkWcQdgIlyKQsitrrH+8cPB4PTcnm7WKhFDAQRERE4ACAYOVSqVTdE4Lqp//M7ACsAAFr+BKc0fLK+tpMwAIwJzlr7DCMRAbD+7nOo/2uByQUq3ZxmE3ECKDThHGfLwxyrNkmSMaBQaKJgOBqNBgLGcV3XdZVytHZRGIAYJr5dqtmTNG2ys2FmpgNAU7hTxCBpZg6jwfHxizDqC0K9utOo3aoXN5XylFLrmoJPGoEtoncyYqyJt/fy242NW6XqljFGxfKpuAgATKbRMY8rDIenFy+mjB2W7NZU6KlZvWmTdWQ0HPR7F0jaL5RjvzYRlvD49CmiIgeQ0zmKrLswikiltOs5BQsAbI1/JqWbDwCy//sBALyPACB5RqQ8R5cRvZi9MgYAPGepZ9L0KbWAs7OHAmFm6hdS14h5TQBkNpXyR65TtKD3faQAfS8GAJlCUboVDTGIAodBdrbP/6O/swvbjDbpN1aYQMXgd0gPHjT/yv/gZ6jvADBqPD45iMxQkUMrH4dz6ZhZAGBZ8kE4bF/sazdXKu0QERHVyzc8VUAKAYgZTi4eB1FonzEBMvPO1icIDiUGhLP1+LkTuskCCl8ePnzx6mf5fHFr4y4AAaG1/rWQAwCIIOdVKuVNkrFd62TFndPUP4WbcU+TdBQOnj378qT1QhC2d+7fvfmJNhhZKStQDCZBpwqFBa+eiE9igOmkfxUWyutnV4vTOH79DkDmIzhDAYq/H3N01no1HHRzXqlSbTjanwEA4z2/xBUhJShH0ei8/RzQsYeKJq9Ru5Uq3IkYEs3Xh/izXl32Gg5OHsXEcRrj2I3aHTU9774iAIiBje0AjILh4xc/1a5TyJWVUvXqbVflbF15CQC4LuOhRRSdqXT82md/r+t9psZ1XgcAxEVTAUQMOdg/fnJ8/MhxvHp9F9GxKviaPCISZGaolpqeW0zX6dsCAHP2b5Y/MfdJzZXxgTmMkbh2E0ZDaxeQtZRKRXtmL2/5pEFWiHnOlchsJT6dBBgzUuJuQMJZiq2FTRiFozAcGWOItOu62vEAgGLayZS+JGVhj93dHBs7zjYBEiUusBNomgW0VkHYPzs96PXPgbBW3a6WturVHc/LkyyS2+YlHa0FGICnjrMwDF+9+tpxnM3tT4BQwxi/ZR0wZw8UO/5rZf2MCU9az9J/WQ4AsiMitdINx8mJGDBgOOh1W0q7fqEcozKAweis0z2xhjyZfN1kUR8zNGq3HeWArS9m7HESkrd8AADfXQBAAAYYQStV0E4RQQmpbM1rIvqmFQHG1Kgku2hN2L3o7NkWkQjPAIDxs076SOJ69VJhE22BBsJV9Dne6v36/p1fk/h7TAAAVkhGIgYPCLQD2Pq7/7PqL/0lLajic4UZwQHQwAJ988d/tPmv/rVHRt1QCgH54Ow5R6JUbJgy1QSYV3GhSwEAAIOY4bDf7Rw7XqFY3EwBQE4XrdMkMx+3XoRmONbBMLy7/T1LTJynlXkJABiOOn/y4B8G0Wh3627eyzOQbeSIoNV9txPA1cqW75QBIsRYgiDxD4YZAEBj6QCRXrf95PlPB8MWgvvRJz/cam4Bi0RoleAsvgAWa6Qg81LkZDDu8sRr9iycCwDmRu0FMqAL33lphR6maDbWiAoWfLu1Es3sLHt/cJEFACLmrPVq0O94brFWbWrHt935KAq2m5/YiZFUmZsWMxaMPZvBGYXti86e2GIkS96vFPJNK3tlQADYzv0sv/5VUzRJ6wccS4yD6gfHF+3TNMsh0sxBvXLTc8pLWo3ZeU3rZjD1gCy1MQhHj57/BAjLhRoRNcq3XDdvq28Rw1pcxiWL59KvP/Wg51pWL9LYXRFULCo0Xh8wWBUEWjJMOukBAArQgEFUyCJiQFGrc3Jw8LA/OK9Ut/J+OdGrUYhx8RbBrZU3ldJvpkuzEgCYNQyeLPHCIr2gxCpeGCnbZLdLSMQYDjq981HQSWwTUhlNnAUPs7nj7J/TPHuiFyETOGECALCMK/RjVk98BwgtOScWKTLCxhhjDBEppRROX2e2sZBmtwBgAQAluiXjuo8tT8ZFSga2PxABOgLheeuo024xmFpjq+xv1Cs7vluYPwy9FADAXMFo5sSGWZgBUUyEp2eP2xenN27/KTfnEQtwbInDQMlq4Km3tTOBJGxEIYkx5vj88boAABEL3obvF+2tisyofXHquLlCqQ7AgIqZj04fW0XmrIpSqo5l38p1c5XSDcsUAAJhymrAp8Od2STvAwD4DgEAhWiAhYmU7zglIAdRzRIOpwHAWOIzcfICY2V8Op0XUTS0rlY4btJONwEQNBKLgAEuF276Xn0sBvp+dQDu/Nq88SwWUoKgRgIKHHADjP7pP2v+5t8sIYEoBYzIAjHdAqUtP/r92v/of/VqpLcdNKedw0HUR9EadeZYmOv+O595HzdGcUYbQWDQP+t0z71cpVRsIiKRrlW2c04hLb0ct56FJogjOImJ8Nb2Z2lfNZbXGLNfJsobaWgwogCHZNSjlz85PH5cLJY3GneJyBgzTugpFqj2tN+obBO5qZK3dUvJUNLBCGowKJolre5Q6/zwyfOfDk3H8Quff/JnqoW6CQMg5DhP5un6k8CiPN+ALErl58b3JcnB3BxrUTI0YzxMSeXv3RiB2SuxgtS2A5AOYYvIRfuo0zl1Hb/RuKGUYzUlxECjdtN1fRIWQSGZxSfZG5IK4V90D4ejjn1/RCz52/l8Me0hLjf+uI7kjIMgOGu/SIXMiIgRSn6lmNuK8wMAEB0XM0DNRSPxmcqSeo1Z+BRFwbO9bwbDVqVSV+SUizvFXA0wSvT7cPkCe90087VvT7aWOavGswoYuPR5zcrJz+g7rZVYw/KPiNeVBHtHL05PHivlVBu7TEoJoDCiAxRXmBzyy6UNOy4Z20SwSrmtUxaErwlall//irhu+d9P0T+Y2fBwOOp0uy1BzsqhQlYzPtMAWWFqheeeQQu/Kck8qyxA4ey9TXQ/xW6Z9AVj+zA1GeQnDkTKCgnAHOhiSaqIyBCDpW7v7PTsAAVq1Y1SudGo3PLdPMZOusyA8woTnNkvC+WVs2PZ8TUwdnqtvf2vdnfuFcu7IoJixRHN1KUyzuw+w0mhBA5OvslWRpdaB6QYifxcsZRvMDMyhkGv0z133GKhVAYAJD0Yti+6Lwnd+NxPDqmMJocGDIr+ju8XEGnuCpnV8s7e+ez/Jr2CiW5qkpJ+AABv78UwU1mL8b2ntE/KR1SpHujUGMBl8Z9BtIm67e6+QMAcs8Umf0ay2owIGpBJu9XSR5BaDVhJ0MQbOM0W3i8AYO+OAiWRQxqAqVI9+w//dr1wT5GjMUhMT+yWb5v/5B94f/1/e9HHDc+Bg9ZeZIYkmoFwPPzFl0b/SwEAsAz6Z73+hZerFAsNVIQC9eqNnOPHU/9heHLx0sgQrFU7GK1yW/V7AARCNn1ZcmKlDXdUDorpD87/+MHvCge7WzdzboWRjbAdLEbEuPbDWCo2S341Q9CnWVyBYgcDrBcJg6iDw2fP9/5IoJ/3t7//+a/6rm/ZHJkiGQPAignzigAALpMmXN4HmAsA1sp13kRVcqZYazTqSDgIBuedV1kVpnbn+OLi2NG5RnMnpQABY7W8k8sVLMkepuxzJu+JATvLb0Tw8ORp0tRjAKiXbzmOZ1NtFAMJi+PNAQA7B5wV/hdCMLCz8XFKkBirdk5SG6fvYQIA4seOijl6dfTo9PxlrbKttc77tVppO7UKXi47+/ZfixzuFokSrg4AVhTxXDF1XkWudO7725oCAJBwf9B5dfRNv9uq1DZzhRpwBIwCISnHEqCNCXNuoVTYINK2XjvZZc06MeFaAGC14f71kv7lPzPPRMyW/MWYaBh2Wq1zpYWZlVJ2MzJHmeuc1ZSUzLCBmvt90w7Awu81hwUX6/qPaSorWKwQKJkvsEbplcQxdkHcTs/KpFQZ9gfti/PzyAS1aqNYaOw0P0FQhMgipNhCwbnPmnEZAMiURZLbKDQK+y9ffVMoFJobnyDZxilPzVdkAUBaFEM2iCoBAN9O7cfZOz8LAERko3YbESWSYNTtdM9zfiVfLKEiE8lp6xlzYPvzSb5usr0aG+Lq1TuO44hcsvay/5vtAHwAAO9hE4CnFgyKMAhopX2t8kDOFQCAPUAFjAJstV8GUTu1A7N1lpQYPIkBCEGxRDm/XsrfkAQYi+XFJB2G9xEAIIBBUoC2yUjohNz5a/917y//lbxxWEVKkFBj/GXP+R/8v92/8X8YDHEDnejk4oCjIbBiUmoctXnFw2DsvjEPAPR7p4Nhx8tV8oU6ERFg3q9Viw1bnwjD0cnFy4gHKe7I+5VaaTfBXtFctbVsjLNCX1YE6uHzHx+cPC4X6lvNHRAyxCLIzCozn+c4fr20bZVYshgglSwQwwCEEiH5kRkRgYno1d7TV4d/zDCslLc///RXXV2OTBB38CVNQdcQ/FkdACzP0lK10BUnAdYFAIvf0KxbGV1cMTXWnziIhmetF1kA0O2dt1oHhKq5cdN18gCkEESwWtnKeSULAJaYIaSpGCOA0N7xV1qPiRbN6p14GSSW42uRptaHPSIi5529IBjaEheRy8hgeKN2V6scpKKemXbEVPqb/WqJe874Nh6fvnhx8KBe23LcPLDsxrhimZrNugBg0Vqday+91n1b3sha1A0gGacscwHDKo7mV1A9Wv69MjrFsW/D3vHD07M97UC9esMQIAsCAyqbGdun7elCqdggcmJ5loRckTpmzJiuXH496w/lr3uwTeolpLedrVQQZ9YqIigDAQGMgkG3dx6GA0Em0pYalNV5s2q/qaj/kq+fGcxdCgtx2eE1m7IT4PzSCdKl6yfVmrMnYPrnqSmFLH152O+1Lo6DsF+rN29uf7/gbpJiNgBxw8RkGb+rCEtYbDDZ7AUUinh0dPRsMLzY3fnCyXloVGITniVXZHdT4pzDBoAsMJgLAGCGjgsTFCBlzGir8amIkUiCoN3pXOQLFb9QBlRhNDxrPbNgOEORzS4tRkQit169MSn0uYxMOMH54SnXyA8A4L0EAAR2ZFdElC4qVUArUwO4bgfA6sYKGOag03lhOBz3VzMAwM7+Jqs09gQI2WzWv5+4doqwQiQAkUyv7B0DgMmiO6NoQxGiAgOOiCFHjNy61/r//B8b0PCAFSABGgACQTiHv/9/N//GvxuGunnWPoxkaKODwQnlAlg4A3A5AIjZL5MAQClFgH6uWC3u2B5rZHonrX1jwpSoUCo2K4XNDNKSyUCbjbOMqCJmhQgsvUH7j7/9beFoZ+tu3isaMJwwAgkwlUsq52uFfD3tM9p+dFbjOVX9t9pBkZFnTx8enf9McFQp3v7B939NKzQxvV/sJBKwEVuKxlUz7LUAwJJEbS4ASErjCwEAzNH3pKse/GtURpeUS4koiEan5y8ykMwMR52zsz0Eqjd2cl4JgAgEACrlTT9XJRnfxqkSFMlkj8ieW8dfI2l7QjPIRu2uQ47lCCmU5SpAVwYA2RuOKJ3ecafXiucWSNu/L+UbxUIjFR6eJ1gGkBFfz56L2a9/1nr15OUfV8pNP18Ww7tbn9OYKWfWStzXB4Sve2peymRb9FsG5AoJ7rqcohXfP916yeQokhAidofnB0eP+t3zSrmu/CpBZJMOa56VMstdJ18uNImcrMIVTAjRqGu5/4vlJmmttZ1ZVxNDAgkAmP6x1F7HKjwaDk5OXwiFII5SSimVKk4mLRSeVdWc1J4mlMvpT5cCgKmCfVZFdOImk1plv8dPTRb+k71wWzqy9yocDTvdi36/U683PrrzKxpcOzwgYCAZh5tK6C8FAFO/Yi/g7Hz/+PjZRuOjUq0BQpogK88aU3NhGneJGBKyG3P/+MFy6tfcTpTAqFn5BFGQsds96fe7xVLNK5QQnOOzR1E01NrNfKiyHueJSgeQcLGw4efK0xgjoWcsAQBTAwCZUYEPAOC9wACZ1pOkcBnR07qsKGe5LTNNgEsi1biUxtgfng6HB5PjvxPAVWIqIBGhCAhEjipXq3fHcUwSh2DEbHB7+wDg16cjC2Ga0wgJGFIM6HiCyuDR/+vfqt/7ZReAQBkAZbWApC3/13/7+G/+BybyNgSGo6CHpBV5gQlUhu4/mbvg8uw/CwDGXU6WXvdkOOrm/KqfrxGRQhKRneYnNsM5OXsccshsp40EAKrlG0W/knU5yH7VDC2JSQiEDIgt3z589pPD0yflQm1z45Y9YOwJgmgsRx9Rck6+XNxMhNhnDjxOmNkcj22FgXn45Muj9reE3Kzc/fx7v2ozJhOJdkgktP6RmWMp/uKXnsdZkuXrAID0dycRxTQAgAUOqZnj4W0DgFT8J81fIw5Pz18wR4kupwmD/sn5ngBXy1t5v4KoiABYfL9UKe2ks6qLhsItQCLSBowx4eHJt0q7FusyyGb9jkY9VUqH65MBhRntQgAYDNvt3pExoW1228WWcwvV8jaCI7NDvpdV31NNFWZud04fv/xxPl8sFBoEaqN+31FquXfSdVGAXqeiPOt7vfpVXTocvOgyrl2PKFlvRkgl3WaTGrcx8vHps4vzY0BTrDSBNIqxygQp7cF+ddcpVoqbGZErySwhhDVnddbXlaeVN2+2QowzfWmBOZr0kEULWQexiIPRaBCEfUAzGg3GcXgO5Jjw9rLFnXG2h3DpOTXzjXFZVWtqeSwFALOoMttJmHa2tvJ0qOKUAoA5anfOer32jd27t7a/iC2EhQCi9HOzXhDLHeWz7KDMY4JW9/Tk8GnOK23u3FXKyTif8ywAgERpMY1LIrJ/+A2qdTtRSmDUKH+ktSuRubg4DIKgVK66fjkyo+PTx3bEK+11xMbAcevesoOhUbuplGuLu+lQhC302jryCgBg/szPBwDwPgIA0EqVlPYFlS2jZE4HvnwGIF20QgLm/PyJwCgp/LP90IxwM49tK0SRgjAaNiqfaKcswuO8PyECvUMK0K9nI1Sm5GwQHcZAgYMRASlyYDjs/4v/HP3Vv5oH8MFDIIFQwFDYw//n//7of/n3Iie/OxidhRyC8kiUQDQRQ1bhgMqcSIoScy7FcK97Mgp6fr7m52uIqJAAYLv+qR2t2D/9xlbi7VAUMG407rixKiKNidFzAhyTEBsg0oxRf3Dx5de/zWBubt12c3m2DT5WAIxkBAiFRKScbxQLtYzkP2eV/lMChv2I4XD44NEftfrPAXiz8ennn/wqIrIJWUgpgIwXuhFboeH0bjBcDgDSlTqV+lwNW86qAC0Kx6s4iF2aHr0mV37qpIy1JgAOTx5lnD6MiYLjs1eRGVWKjVKhicqOZwCi2mx+ZKXWLZRaCFDZunGZyAyOz15o7abnwXbzftxYBKLVrBXWSohnZUwAIAyHJ63nkUQaNQBbCTxm2KjdcpzcpaWFef+Ytu+x0289fPq7ruuWy5sEzkbjnt1Kc7PAq33ZddfD6oZc2RU7+6+Lcp0lKkCz/I15Q8Arjtiufn+M1Vwfz2+wQUQhHAX945Pnvc55rpD381URY71OlUJmUMoRMYhijBQLtaJfj8WjMK1Z4rV6BawF1OdTsEiywnxzLaVp9samKnNj843JKfwwHLGEYdTvdM4ZQwSVYKRpMlsqE3e5OJUs6GDgdd66ueo9KPPvD6JikFh/QlJpYDMY9vqDi5vbP6yVNpEkth6jaSi18nKdvmm9Yfdo/ymIbN2867lFNCrtOmanCybeP5lHstvq6OSxIK8VIizeq5R2c27RjIbti6MgCsu1LdfLn7aeheEoGQiJmMfVtGwc0JBr1Hfn+eNNXN5SACCzJKUPAOC9AgCQ4auBKFK+1kUgJyuPu9LJlY7SJXIaIqbVec5hkMhGCU7wh4WZARlBE1odDtGqUCrdSrSA2BqEvVtzgKQDMHOSGRAHSBAYQTGQaMBoEKmtrfP/6N/fdKsknhdrsxkYdtT/9/98+K//O/1i6X5/dDYIe+T4CjRLuG7paDzzlASpcfkfgCPT750GYT/nVwv5uiBYALDRuEcCBszp2Z7hwEg8/aPJadbvqhicqctzLAFAxRQ9ffnlwdGjol/d3NgVQSBkjjBGjTFiy7uVUrGulDem545zDrILJRZ/IOn1Lr55+Mfd4MAI3Nz84uP7XyhAExEAkBLhABKjYkH7B8wQXuXSCs2ibsDqPYFL86q5Hz3XJmmJ1PcbAgBTb5WKzR0cPxEI0xXFJjw9PwzCfsEvV0qbpOOpQWDZ3vwUWdKJ3kvp+53eYW/QTXU5gbFZv61ACYnVnLVkmDcx9DzZoDB7R9+Cihm6aROgXGgW8nU7+L76HAVJWmRlEeyPug+f/g4A1Ou7mpxyaauYq1mSySJJ2fUdc9fMlWS9pWt/fpbVs27BfrLjPwEA5q7w62oIzNZ6kSXxa4eT1ov2xSlzlC+UUDsWnYrYBa+tLo6dAK6VdzzXF5nI3q4LpVwLAFhuuJYdX8lKf047rsRVurFnYlqdSbq4HEWjIOyOgn4YDQAAMp59s/tiUfia0gmFDO9/gevlkuFamNLgnpejT/w8zuj025UoCMxsu9NWGohAiZjhqE+Yu7n1kbU/XwCuljPgx1gxkfhMClvh8PjgWRQOy81mpbxraT1ToliLAIA9Jc/bLwaj7sIdv8DsWQRzXr5c2OJgdH62zyDVxq6gnF88t410Is0cZciPabYXkWg/Vy0WqlkAsGjy+AMA+K4CALHTUZnkFjztFIlyiaDtGk0ANqA0sgHAyHbXQ9PudY+MCbNT9ekqYjYWAIiInRVk5mJxJ+dVUmm+dzsBvAwAiIgGNEhgdQMMCKEWPVLH/4+/Ufv8L+VEOwguSMSAUVd+698//2//b06q5e/3w4t+2CHHVawZTGYg+lKSKE9H1XkAoNc9CaOBBQCJrxsTOqQQgI0RY0KGENERMQW/XCneoNTeeIHsaNrfsTr9/bD302/+4ygKdjdu5gsVNiDMgmwNX5PvwfXyDT9XRrHleRuX9fg9GdMBkW6v/c2D3x+YowjU/Tu/evvGpyQgho0wEQDyWFuask2DqwOA2eC1YuY01TGYxRJTgidpw3cRVHhjAGCBgCyipeDbOd3u8KjTPUu/FzOfnR+Ogo7n5GuVbe069oDRpJr1jxRgyt5ZDgBs21o7viXUAlDBL5ZyW4hoLZazDe5r3bBzxpXOOy97wwuN2h579oB3dL5W3iLSSTIkcxfPPJV9W8ZgIxhGgwePf9sYU29s51zfRGq3+SkAWNO9tQDA23+tLgM60+EBu3js/88FAJBIUq7e3LiqozBMmF4xKkQDRgEyMkN0cvas3+6go10/T6wBo2QWTQDILgARQXZqtQ1H51KAtzwsLB7Cft2zaq5a/xIXwrQjPVt+ntSOHPN/AIDGcpxofeuyaC07MxAEw2HQHwW9KZnOuSF3XjCkVF3+SgBpHMcQpw/JeTd7PgCIMSGIGE5p7kBoZ5wEnGDULRWbzepOIlusskF8yWLI4CvObg2KoRcHYtqnhxetY6PNvTu/7KDO6JLNAoBYmzid3AChTu+gN7xYEwAIiCtgNmq3OQhOT18prSv13XbvJAh7AqEiL2kKhYm2nrIteZEQWdUqNx3HjZ2LFxyySwHAdIvgAwB4bwFA5gFZR7C8deaaAQCwRBQBEdkgqYxNhKj+4EW/3wXgtOuVjhvFKwQMoZMsMwHyauVbCDkkhmS06b2gAE1IDQBYR4+MaDGKiCbnYtD7K/+8+p/+1ap4Gl0CIIk46tGP/8Pzv/LXXpXKPwjC7sXoNKd8W5CYKf/PekZOOq7x5KmZ6jYQiqCJhv3ueRiOcvlKvlABAOuAo7UrDIjIEgbRyL4RgVMqbJbyRQCdvtVCb0ghFmFkhfh8/+un+z8r+NXdjTuk0RgjIgRKMIr/AGHerVTLO8nsLxIRsGRVF8UayIN7dvHswbd/MMCWlsrHH/3yja27URTaoMMoGmRK73/uYNa8a6YVqdjX0g3ITsfO5qOvaQ8M1zcITwJGYp1+EBqOOuedV/HJihxGfNE97w3OcsqrVXa16xA4ghEKbDc+tQAvFoOaaUnbi1egDIRRFB2fP1XKSe9A0a8X8mUQbSd7XjM9Wic7NL1++6J7mBT2LAsIAbhRu+Nqz/KaRISBZifbcJoiNObLWsGrh89/NOifVGvbrlcE0dv1O5o8QU4zHsbXMt662n1YrtR0tY7ENHVnbBUy7ghZjk3WjYiEU+PeFZtgV+h0TQvRjr3zaBQOTs6eRFGktXYcL3U7SmUuici2BbR2q+UbCp2pbDirVgwZnZa1rnMRvFkO7EmmzuC1Xwpw9V9cYioXSWRMNAoGxoz6oy5AZDn0ApqIUMCS64Bs/4HRNnhjIXCemzsiYoYTjGm3MHMPeUrvPzUdm7lvnO08LPmClv6aSWcVUZxwE2Cjdsshz8a59AqTFTXN7ZksBk0n4un+iqKo0z05PTvwc3pz4zNyNDLONgltoLDxc2x+DErAdHvnnf7xEoGQmV6EvU4GgI3yR1E4PDvfV9qrNbbOO6/CMLQGL5O/m5pGW7sC2WjcTURaVlUBXr0D8OH1Dl9j82Y7tk4iwGlqi5RzdRVQpa52Vo1q2spwARd0tlLS6j7lMGAJMD4KMR0pyUwDI5ECIYEo59aLpS1hlRzHBkS/4yHgRZXatCJii0pENApgc+fit/+DLShrcAtAgRGOhvjtbw3+8n/nmefeFeF+2CHSYLRQOirECwAAz2l9zgEAJMgAZKJhr3NmTJjLV3J+KbXA1NoFO/tlRqEJ4lBoYKNxxyEHgLTWiYQ5LiLpIiIDhVH3y29+rxe0dpq3C4WKPfWBJTFbETGAKPXyTt6vxGPBVjcgCe5s7GUDoHN69vjbR38QQVug8sX3/lPN6m4S40iEAThrmLUEAFw5vixS/V93va2oCnrlROcaAQBDwnsRCqP+Set5CgAiI+1eq9c9cZRbrWy5nk+gBBkFthsfWwUnRr7MSIEHw+5F9zBFp8xcLW37uWLa2rsypr+C+spwODhrP09pY+mGLRe38rlyYi4rS0wJMushO+cnzPzi4MuTkyfV2nbOLyvymuUdRxcgAwBWxwDXF9znvD+yzF2uV6MkJekpZUuY9kFPOTqtOGr8mgbDs59i6fJEmiE6Oz8YDNsiorWbsWiITVVjtzsRBAdJmtWbRBYDpKoGOMNa4bdi2DehQ3U1ALD6AluS/QOAhceW3mZhHgAYYwwP+4POYHghYghdIi0IqbJQNlBnkWH6r/bQTCFZPNkVoy+V6oqkZ99Y92LaYDH5CnypXKxkRSNEMFWFMsYU/Xq1uLHiPN7SbgDYmVoSAOBev31w+MzRVK/fzOUrJLQIAGRz8bjTRDIcdc4u9tLq6aV6/Im0q4hgo7hrotHp+V4uVy5Xm6cXL6wE3ORTkMlSruS8SqnYXGUbfgAA32EAMF57YgV3GQDJdXQZybFNgLQblpT81gQAwMaYTucZM7NEMCPUYaeBY0lQiKW3yuXbrpsfm4K9uzGARQBgrPgrhGmYRlQgKjAnf+evV3/ln/FyuSoQSyBhT57/rP9f+G88B9jWgMNoBIQgHuAoKY9xJsPg2QL2osKGzckAYC4AINJ2ZkBr1yqOhtEwNIGlBomJtjc/tUUm2wrPev3O37GkD04efvv0p4VcYXvrFqIFbSZDQ2IUcJ1Co7KbFm+sXD+lThBCzKLIOzp++PDZH4TYz1Hp+5/9RrlUZ4NIgmmFGDmreTpTsVg1NVwy6csIa0WoqwGD1wcYVwM2S05BSMS/D08fWwBgC2PdQbfbOUShamUr5xcsAACAzfp9jZSyBZAXqsEIYau9F0QjEWM95BmkWb7pubmsBtHyAaPryphFJIqC4/PHaWURUdmqRt4vlfINBAfF8HTWMk1SnwsAROT4/PnTFz+pVpvFYpNIVwrbea842dObv8aW5FurrMklleO5/7SIQ4K83kK0QoGLfldEbD9QKTVLAWKEufd20cW/TsYwrtYThmHYau9FUWSzrszZky3ixMMtSjm1yg2UmQWQRNq3k8pMMX8uBQDJT/L08124X2jujy2Jk9kKtK1Vx+oesf4SMLPhoNdvDYYXYuM9GGtHAECJsGaYIPDZMXGVKvmkmtEMuOBbLDBiW+HJZAtJ9lMQ0eqlKtS1yo5DTrY7MRs5l6ZW06175igMw4Ojx2EwRNI3b32uUS8HAPZW2G4tIAdh77T1au4lLQYAbJ9SOVcHxvPWgV8oMJpROEREpRQkUv2ZJkzqfsC1ym2tvFWImh8AwM8HALAeS4yCoIny2ikmACAp/iJPHX+rnMhWQqrfPxwMz+L3SWDAHACAaPNJzy0VCju2IvMONUAhOwMwu8GmmgC2nGBEgkH4y38q/Lv/1gZtFpwc8iAI2tR+Fv4z/9VnodnwCCNjIjQMDkG4CADEn3hZPSMNmjaoReGg1zkTMZ5f9nMlVDEAcBwPgVhMaIIoChKsEu40PrMTGAgOKba9P5geKbPvr0TESPCzh7970T3ebd4tFWsskTBiLJJgUvuVWuWm7xbjaqsQoGJmsFYRbM8M9/Tw22+f/+MR9B2o/PCLv1DMN5BYBChWaxZmnisBt1ybedHw5SqZd1YpaDkH+gqJ+HWNHb8mAEjFQC1qjYT3jx+kRVBm7o/6nfaRGC6XGoV8xZb0UKBZv+2QJ4jxob74PhiQw+NvibQg23KeEd6s3na0u/oo5LrAYMkeYeaDk29mAQAAN6u3tfaS1ImVUoviWvJ9KVMDFisE9O2T33a9Qr22o5RTzm8W/cpsjrIse5OJkcHZSvbrPPdFzJ8V7+elntnpryuIA0UURVEUaK2JNNF0lrnWp6/7xOeIQhLEj6l7NAh6Nq3MZvbZGG5L0SKilFOv3kSxlmFj/5pJaLEIAOO663OVisOl5f/0x2YoiLTWNSwEADAWDtKxmoelfsW6q3EASZgzxgTdwXmne8YSWAwQt1oSL47Jh4XJ2Kt1JABtqcQJu3U278fXiJ9TACBFgIgohvN+rVKoT2Xbq4+DZxZAfKmKIIyig6Nn3c4ZKr5x4xdyTi7ruZaNnCkAyBrOjEb9s/bLJQtvHlBBEUOkPe1jRL3+Rb5YCLgXRkxEiQLSVH7P9mYo5dTKt6wC46Xb8AMA+DkAAPav7TwGA5LytS4TOpOUkJQLtE4HwBaIEdsXLyPTnyIAZyVB45IHKUJtOMjnd32vjkm+8c4AwPfv/rkF5ZMJtqv9SzZAKKNhpPzO/+l/sfPDv1jOl0hG4bANo33zn/kXHwdmy1UMACGHAnqS7DgBAAhmDdDniCdk0hpkZhMG/d4pM+fypZxXTLTPteM4IGg4Ck1gTGh/PgoHt7Z+wZbrFHmx8fJMkdiWeWzd5/j8xYNnf+i67q3NT7RSEYcJRCFEw2AQ0eohKlBxnTfp4CBrY9iyko6Pnn7z/PcYuy6WvvfZny9VNkhABBAByQgjJAWkdQHA3HAztjNbSl9Zpcm+bsK0bsZzXcDgEgDAsQV1JHx08hhoHLiHw36rfchRWCzUS8W6Uo4AEUqjfMNx/KQSsBAIIWIkvH/0lXb8tKTEHG1V76a+M2852BmQ4/PHKW8hiWUa0ZQLm3m/BgnXdoGEYva5jFOf2GcgGD18+jsRh/XqDdfN+W6lUtrUE6c7L+5E0aUVzSs/9+td53PfLdvdQkQwjIjGmCAYEpHr5jLD3hOB69ILmN0mq2QPs/ShVNHFmOD4/NncJkM6ooroJGr6Rqt8vbJj10MyJGAurQ7MVtZf/zUFANbt/Fyh1bDgHB+3fZZfA2O20CDpCWVMEIT9/uBiNBqhtadKOC32DmfJPynGhmTSDiYl+QkwO3c+Kzs7N+nPgoeYnQixWSkR2SaAJlWr3HIyxafJzHu+z3dma9PspRqJTk73W629AIZ3bn6Rd2tzAUCCAcYdAPvOQTA4br9QgCsm4pmivrAJOYzCcJTLV4FMynlLF38CcdMhci4VN32vOndS61L4IZnXBwDw3QAAMfaWOIoLIDpKlxXlUjng1Dh8XQCQavkbMzpvv1AgtgMwixjtLDiRsjKgjvbLhdtAWqzAzruaAVgCAKYScbBOemDE8GgU/lO/RP/O/+6WagZ+6PY60eAo+s/91x6Pwl3CiICZ2SDZ2aPlAGB5RSnbNjViAcA5c+T5RT9XGgMA7QJAZMIoGtqQhwIs0VbtvlJKa9eOcM1NgExytBgY/ck3v9fpHW02b1WLWwKRTaqS8WgWMWKgXNqIrYVj0xBijhAAJBaWOt57/PDVjyIYaMx//tmvV0rbBpEgnQmL87BEPnYqQ6LV3RkXjEa92Qr0ionX8mHBa9jkSx1ns4SQ0/MXoQnSjtZoNLi4ODbhIJcvl0objnIFCElqha2cV0KMG4GMvChTjIQPT75ROsccxfuCebt2Z9IP7u29GLndOR4EnRQD2HIvALBRW82bWnuW/DNLflOwbEYTBYYmfPTsx8PgolRo5vNFBHd7465GPW/pLk8Wea1M/VrWySrUuCULPmv/zBg3AZh5NBoYYwqFkhAmetJy7WB7xa9oSwnMcNHZHwaDKcp4JllhREWkEY0VBtWqUK1s6nhkPOWtySTNY04N7c0eSNdaDFuS/S+aV57ikilQGVNbJSKMDMDWSdRArPOWmn8LiWUKRVHQ67eHwz6SQURIUo3MkAYliuBzui4EMlezazEAoCkAEGceGI9zKIUIDiCLicrFnaJfugza8eKtlJUKEALFEHa67aOjhwPTKxabt3a+NxMishgg1ghKiyxhNDy4eL4mAIgHC6NwFI2GRFq7eVaiACdnr9NDPyYAG2M2GvfiOy9EON3TWo4BPgCA7wgAgHGsEmJkQFFAAGIEEJV1BLOWIK8DACDjEDwKWt3+KQmzRNMEkwQAWCIQgiNi/Fw9n9+y6/B1hEOuGQBYUs2U89RYRjMyiCIRuvrs//JvfvTRr4MbuUFHHR1F/6V/5dFouKkossI4BimWYcpUC8YUoNSgben9zQAAMQIchZ3uGYpxcwU/V0rgvnIdLwUAtuyBAq6bK+U2tNZau0mznrJBIc777R+Q272jLx/8Y631ja27hC6SxAAgbp0bRARWG41bDnmxyRdQLItuEAWQ+HD/6bev/kBk4KjiZ5/82WplW0RAFBGxjJLbyFam5koAgGblQVeP45OVmPWO0kudhtedN3hziYKVs7Tf/aJ30h+10yJQGI7a7ZNw1NNuvlLZ0tpFUEhS9Kvl/EZKKphSAcqGgzAcHZ09SYyW4vn47eb99OBZhed9Xb4Hdhh0NBq2unvMnBHgs1ZQUi01Pbc8V/L/EuTPgogjjp69/LrVeZH3K+VSHVFtN+9bw+Nsy2XdK7+04rsuFe01O0hzuRDZIeDs8R+Go36/XyiUHMebugmzt/FauF5zufJZryVExRwenb60MqCzn5Vp56rYmlyM51arpQaRil0LRWZkat76gXQdAMDagMzl/S8cIciIPk1U+jkVfo6dgzipJgKApRpmcXUaATKPyTAzs50gDw0Pur0LS1/JSl1PjWRkstLJSpzQkg5AOk+c7QCQ9SQitJJQKJDzCpXC5iQLiOZhy0UFQcq0JqyojukPOgcHj7vBWalcvbn1A1e5iwGATAVqY0avzh/b3H3h2uMJfSQRYY4QkY0Z9XtKOeQ6oMAhbx5S4hTWOjpfrWxlykg8W4Vc0qD7AAC+WwDA0u4tABh7wgiSKmhdJHSS0R27hWm28Hc5ALDcb2QA6HSPgtEFkknG7QRg2htYKW2ngRGxUrqJyrXI/L0GAGnNlZkVEwkFo9N/4dcr/92/tYkRw6j01cPzf+lf2zNhk8AYDgURSNlNO2E2npypgitF/DEFSJgBMwCglPPyiEopJYKu4yFiCgBsaHYdP+9Wcrlc4n4yAQDG8SgBAE+e/+zl0Tdbjd1qaUuQJaEAC5iELIuFXKlS2LYew7Hgq33OTAR4sP/kyd6PIuk5TvHzz36jVNiKxCDGh4R1Js8OHmUcyMcAaTkAiNk+y2gqE3YH9icvpe6skLBKFrFcGQOsm/he5efFGvHGK607vOj0Ty0AsMdGu30SDLuk3Uply3F8IE3Aea9cLW5A7OMLi2RAAWA06p93XhFZuWtEREVeo3pzKolcV8jyagmQrdpGEZ+0noigxNZ7lt7tAHDeK5eKmzBH8XMJdGTbQ0PEQML9o2d7J1/7Trle20TEjdpHXjJXAJOOPyvyNLKL5HUq/a9/4s4u13EtdlIGdPxlWQyH5xfnnpvL58uZUeAlCdNKDYcl6yG708fGG/HRZVIPrM7gsD/ozDWyTT2A014oADEHOadaKacYIJPpssC1Wlm/JgCYt04WGvaRgGQoLhMAADIWVHNmA8ZKIJNks3jqNDkTKCulT0t6SMlyovSdhQSMMaNB2B0M26GJEHERIRambRDWAAAZQGIEjLCyhGcCB4A3a3ftIHtKSZrpkF8CALIQVERGQX/v1eP26ChfKNza/mHO8RctdUaQBF1Z50Hm4NX54/SgnFt1Svx2JrolzGzCaDRsOTqnvBwqT9Pc9D0VADTl4o7r+vGbMFJys2ReKJg1BPgAAL5rAABAlAUAdqtaAICUd3Qe0aOJoZ31AUAyAyBMiCAQdtr7RnpZKwCAVEgz8Qa2MyqMjuOXSrfgDcjlvQYAmDeLE9MZETBiEg3AMgqb9fbf+1t3S5+XuaN+9x8d/w//xjHLJnEQcqhipRsSnENqnyh44Bz4MVWWSP8mjAbdbhtAPC/v5wq2AwAAWrtaOaOgbyT2WAYWXxccN58vlhxyMu+Wzo0xoopiagQOw/bPHvyWiWR3577r5NiEaeDjVFeeZbN229EFwMiIitmiIsgERMcvH36z/wcA3by3+/n3/ozrVhDJWIotCgmnU0ezGuGXcYJ5qj6UeDFCJvfCBYAB0lC7ymteZ4CTauic43ZaTQ/fajScbfFPuCaJIOIwHJxfvLRNIUBmA93BRbtz7Chdrew4ThEp5shu1u5bwZzlr/7g1JqLCcZepKV8w89V5/7wIo7N9Q0Bx5Wti/bBYDRg6AtbyRdCNIiOiDSqOzldWJlFTdnbG0XByfnxs/0fa5WrVZuum6+VdgrTDNo4FXuTPEZa3tG6dDh+OeRYsm6TGVAlts0HZIzp9s7DUVCt7JBOpVdVyjSYe53xR0z6i70GyJn/Dkdnj0Qsa4Wn6h1pHyCd6QIAgMjTpUp5Q8dZIMaH2ngqYIrHtajBuKrb9OQv0tzvOKuCn6jUX4JJLsMPJLQGNTHVyJ+6bEQkobVWbHaYLQuYO4Oz4bAfRoEgZ9lB80D13C1AComZZcGKooS3JmjtgeOkf7t233GcTKaLy9fV/HuWyOoDcBAM9w+fXnRe+IXq9vbHebeOIojGmvBApiIDiZba+NEbfnXyIJXuyXgVLxvytkXWMBgOei3t+jm/QrSQJcUIJCyCzeodRJuexALQE89/AfNzXQDwhoPhh9cqAXM8v8rZf0VL3tZKFZQuCCoFqUssIZnMO9AUW2T+J1otGDA2thsedHrHYgYCJrPlRWRsC0BEhI6AYTbF/GY+tyWxsYv1GHHSYeI3DQxiADD3Y+baXqIAA5KRSAD47H/ylxv/3L96x5jcv/fvPf3b/24LqIomiiSKq+OEKMQgs4qfiDg3ZV0EAOz1hOGo22sBgOf5OS9v0Zud608BQMJlBY88L1cuFcvJj02c0DbacvKMj86eP3zyo3Kp3qzfQpKkDyzMEZFmEJGwkGvUStvxES7CqNEYRFJMzw9+9mLvp6EMyvnd73/2K45TAVAiTBR7TMSWN6sCAJ7Uo+UlWdpyALBuWF83MV0EAN5t+EvdXoQwikan588FAVgAWRgHQfeifYQClfK2lyumrfDtxidqBRvg/cNvUYFCbSSyfL5KqZHzSqsnFq9Zq5776vXPOv1z5iCza+x5rwq5UslvEhFzJKSWA5XsQrK7+Ozi+NneT5i5UqmXio2iXy96jcluwltoX9LVPis7yHup5g9M8v6nLiCZoBVE7A8652dHjdqu4+cxqS+mWD1TTZ/RyV0TAKwLDIZBt9s/NsZkmwPZIDOJAeK/9Jx8ubhpeY8ZtUSYrMWaxYk+LzIOW/H6s9dz6Zm3hGJ3KdVt0ezQfBNcms0mOSk60JorlmY7ZuOyiwmDcBSxLRAqALCpQBAMB8M+c2DPjqysEwCA6Fq1KaK0ch1ybWIxMwKOIiGghIZFuD88H41GtWrTd8pZTbAVvsv8Myh9B2NGB0fPjk8f+YXK5ubdkr+t0E7YqUxANlO+b/HXYXl5/M1aAGDcjx12B4O+5+X8fHUKZkw/dxPl/WrRryPSXGMBmQQAr9MB+AAA3nMAMMkCwrTplwHhs52uxQAgpXUwAkZB2Ov3DkWQJbB/HRtCixKIxtm0KCSJQm7W7yEVAMM4R5VEkezNK4TOAQBTKemUQhwjIyuIQiIKTHDn5vDv/PUfOBX87/8bT3/yU0BygdEk5XNBpmSIKs0rpi2HZwDAbAy1ogoiYsKo22uJiOf5Xi5PpO27EZFWXhj1jUDMFmTjgFfI10rlCtmQijTpNcgpABAIHz7+yenFq63NmwW/CWjEcCLUE4JYpUjeqN5ztC9gEBwQI7G4Ouy/evD44McCw0btzif3/wyCp5RmZsQkGbWD3kkQv6zfMm1JPWnBOFtfpNXqxyvlHOs2/d+y+ucqPQETA06yLqHGBIfHj+P8DRmEgmh0fnHAUVgqNv18NVZINLy98alOzIA5e/Bk0jVmPjz5Bkln5vmoXt7NOf47+b6MsW7JKBqetJ5DxsfXAgAiLSbaaNxTysmcrEsSoCzBF5m5O2g/efmTUdAtFevFQl2h3mreV3iFkuG1YAC+7nMClh7b2dsVAWiACIDCMDw8fJb3i9XGLjPHA0ZEmXKvgXkUo9RvdUX5rBUpcNkEehR0zy5epuoWWrvGmLnmAAneiwDIdQr1ynaqizfbAV8KAF5rpmWVKtel77/c5+sKAMBOEVymmrX6iqWZ62QAsGLkU3JwU0n8WLNuTBkdn2LJv9LCCDEe6ogHYZmjVChzBQHQufuOpi5PxBwdv3h1/JXvF3y/dnPrC4prEDHgmS1Rjd3lWV6dPMhod/IKAMAgKmYeDjqj0dAvFHJekTm1+jEwR1EQq+UdTe48SEMQew3BBwDwc/TCqSMqBQDCgJRznJLVAkoX5KScw8RRuAQAAMaoNRUF6vcOB6Mzm8obY7dbupysHlGcuIqIIq9SuTeuECV6xG9BHQi/uPsbDDIFAFK+Xeb7S+ZfdRQFQOI6KuDz/95/fusv/ub2f/Pf3H/xQkQMgcMgwIaEIjQE82PoCgBg0rUXGQDCMOx22wLGdXK+XyAi6wQMAFp5kRkYicvhHIWKnWpls1SuoBAAAaGVEkrrowBgRAHwYNT66sHvAOLW5m2tcoCcpNwRgyAqAvRz5Wphx+aCbGwcVQyyt//Nq1c/CTDYbn5y7+4vapWXuMWRkWWk1ZmCc1vqPINKeUGOAvPgxHS74ArhacXOwDuMejze7FMG7+bg6AmQpKYTRqLz1lEwGhTylWKhRtohIo7M9ubHGikzEDnn0QQmOjl/CKiSI4SAzUb1TjoP+q5eBuTg+GskbWt+SZ3X7g6uFnfzfoUlWoFjTVPPtzfsPHv1s27/sJCvVcqbiLjT/HQKALyVzs8bBwAT6zwp8U4R7YhYBJnh5PTVcNDeufkpoaZExiF2Yk1ct2b3TjIcyq9Jr19YlBIC5F7/7KJ7nJEdU5NV4TEGEBFrksgcuU6xUt5S4E4JlKWmrdfSu1g9779C+3ve8hsvm1mjhkW/OPfHVvETWIweZ7/RBFac9mUDNUN5T08uNfYZZCa6LC6iSkYS43Y3Qyxind1Qq4GBuf2NuKB+erb3bP+nubyfcys3t79Q5BGkpkg8I3oRAwBruvLy+KuUjb348JoDAHrdljFRvlB23VzKcZud3UfEQr6a92vWcXmGZZDchBmrnCkM8AEAfBcxAE89I4sBQDmqqHQBwUklgKx+wCxBcVkBIqntxmDA5qtg2r2XUdABUYCG2Z7HYIlA9veUIgBEUIaDnN8o5W8CmrdsD4yf3/lzgnApAEhbn0gC4mLEgIwuGBPcbob/43/28//13z95/KqvRaGQEUbhJJGarm1covuZERvOejTERmBR1O22mdl1Xd8vKKVQ4rq+ItfwMAUAUTjQ7NVrO8VS1Y5/2BqwdfNNwoQl0/PB0aOnL35SKjYbzV0QsqxG26+MAQPL1sZ9B734qQgJM4l7uPftt3u/Txjt7nz/1p0fUuQm8YonWu1igC6h+ixNbmZr/MsAwLyfvCKDYl0A8JYxwKymR0Jg4ISzQSLm4OgpkEkBAIO0O6eDfttzC5VyUzkuAIjhneZ9q9i95CAchv3zixeCRETGGEQBMRuV+47jvKMAF5eyGGj/+EskFwASIhAjOtYrqpCvlvwtXEiBXpi1iJhhOHy1/+i0/dhzipXqrueoRuWuoz1KjvbVaTavl/pfZ8NhhUSHYGL/TLELqNM53z98tLP9UbnUYJNM29tB/8VCOpzpKb0JZ+40tRoMWxfto1hkZrLzM9sHSP/edfK1ygahN58DvViubv2ziqemTVZ8XivrWV398pZk/2s+DlrhMsapeSaISba0PyExxJbAEgu2JvbeihfcNJV0CYwoEYNkAABE02UbarW2AKAwAFnp7Xbn9OHzH7meVypVN6r3c15F4QR/1crpZoVW01x878gCAMqIruJcNlqmKIbCUafTQqRCQvRdSAESbNR2Vcz3iP9m0cSO4AcA8HOFAXh2YaMIg9JFrYuEHkwbuUyLsizvQFraXszvkCR/wKjVemzNZAGtYCCkRCABg6CIlDASUWRGterHji4kI8XpNn/DMwBzAUC2XzdFWGeMSDQBMtiCeiDQ/s9+f+ebc/P8LFCsga2uacyOmAIAieshLbY6p1lJNQBOAUCv1zHGTAEARFTkRmZgkosdDi5cKDQbNwrFCgHacWQUFqQsAEBwItN/+OTHJxfPtzc+LpTKIsJRjDpiFxU0+VytUrqJLAAkECJrETg9e/rk8Y8GMLh94/O7t34I4lqmV9otiRcHyYLiyuqp+VUAACycH7jOnHvRAN+blr9cfNKnq45IGFEJSevisD9qo4yl8Xr9i36vTUTVyobj5kFIONhufKyUs7QMxv1Rr93dZ0CQeGAIBTZr78YFLHvfGOHg+OsEAETJc9e2C2+M7G7et+LlayW+KCaS6ODwxd7Jn2inUCo2fd9vlm7lvGLyozxZ4X4vzr1FHYmpv1/BSSOzPUXHTxwRAIIgePbiy3yuuLNzH8FhiRAUoSRl1gXDiHOOpEXrfzx8f7XEujs8b3eO4yuhObz5VPcTURFqloA58txSpbihlGvPIetYMstLvI59Cqu/5ywAWD3BervZP82L7VOXwbP6FtNNgHFPCWGmD2//hkgzsxUaotWOj8kK+jLZzaUBOes5YDX9iJl7/dbDZz8mjcViZbN+N59riIhKXMltzs0ZOYrs5P3e0VdKOdZUZ3UAwCbsdFpaO4Vi2ap0LKow5pxipbyZ5hXMBkBlmmMz+xHnbpYPAOA7+WKYH/1IeVqXCT07GkeJOE22CXA5BcjKgMb8Ik4FpgCAZdjpvIiiCImZGWOzDmEWIjQcKnIJNQAJBIROtfQRarT2Wam06BsHAJm83G5u28ZeHIsJAVixjkBQjJFuo5wDcTqhSEjACBRvXRSeV/6fc9CmE8Zpaj6rmYCoQhN0u+0oijzPy+cKSqnUSdECAE7MRPq9c18XNxo3/Xw6A2C5OyoGALbJAqrdPX709A8iGe5uf6a1ayQCxrT8b+9Gs3LTc0tIwoZQAElaJ/s/e/TbBkZ37/zCrd0vItYalRHRhFafOM4CSJL2KywFAHzpoZKpRMJkO3X52cyrxfRrbghcl9znom+0eIHGldpkqpUMSK9/1h2cocRw1AiPgl6nfQ4A1cqG6xUQlHBQr9723cKCMmf8Nxe9o+6gRaSBhS0fl2WneT+pP72zVyTR8ekTIJUInsZnpyV4iEijcmu1QYUxALDyhSLm9OLk6as/YKRSaaNcrJS9zVKxfmkR8Z1n/6sAkkXkutkFKYJEaVxSzNHB0eNu5/zGzme+X43nfICBZIWkluHyeZtVhvvndwzS4NkbtVsX+6g0CqdKkZOEZtuvQKJ4poUZtNaV0qarPRzbOfFa+fqVAf8UE2atev/Ec18fJ6TvMBWu13mr2WrObJdjuu6TqnBmIcFE93vCZ0ASHn/WfWKJWk7sVDNVjDMwv7iYGYLHRefIJAAAhlgLqNdvPXjyI6WxVK45VNzauKfImWqdGZApWwa7CPePH8wCgLmTA1kAEIWjXq/teTk/XwYAMYxo048JHU9ErBS3XKeQtlxS/s8i0e0PAODnGwDEwwCoHaekKC+oACAtkM2ygBbmJ7F0T6w/nrZ2bfoujGx6F52XzCwQIWhEFAxAlIjEfwMKSRBUaPql/A0/XwfRSPIWJoAXAgDI6BBPxUerJo4oEZOIoBilFHqGDDEbEGWn/mNszbPl/zkFbxxrZqwBAAp+MSVsTAMAxm73qOBWNpu3cn55DAASZoiwsnCNmQ+Pnr48+KNCqVKv3kJUkTGYqBYAGRTyc9VKfjNutpKA0b3u6bdf/VYLOndvfO/O7T9NooGFFQJElHifpaNRSjlGkCCa0lfJmpNfeq5kzpNZ+bxpADD5/6vUGuGyOujVGwKLypNX3MjzDqGs1GZiM8lZ4/pB2L7onophe7oIQhD2O+1zY0ylsuG6eUWOcFCr3Mp7RWEkBSb7RTJ4YO/ggdKuQAhiQFyGkAC3Gx8T0bsJbclJE3J4ev7CHn7MLBLGE6viWuGfcqFZzNUWk8zmpCxGbP2Zu4POoxe/PwhGxWK9XKxV/EattA3fBQAwr9K/DAMs8vTNVOLH1O1u7/T5s682Nz5uNHeMCMVk0GhG8zH+FF68K9f35cD5PxmbYNiPIgNmOLpodfeQdVqCmcQA8UhoRhI+Hk4tFSo5r0jkwDxK9Js6kCYBwOr590KHr5VhwJQ53ewTXNlGYw4AmBH/oUXffZGdyEwWwplFi2bRcxlX3CdMiKd9TqYnXhaVqya/lIAIQqwcBYNh95vH/xhJSuWaqwo7W58k3iOXA4CDk28tBWhFAGALHGEwHAy6npezYm6W5Jm6GKU30HVzlcL25GlLALYJ8AEA/BMLAAyI0rpsxUAR8QoAwFL201H7cfk/aQUgy2DY6g334/DMiCSIwGyBPQAAkqC4SBIEo836F+ToeEu+jQ7Avd+Y+nqpW+1lQhlkRKyGuoLxXo1/i5My2ELHUUwhuExUbqztF8wLoByx6fe7o2DguX7BLyJiqgRqdztbxj5HwbDrUGFz61bOK2QBAErsmm4P7NB0nz79o1Z3f6N50/c3hAwzA8c6KtY0p1zcLPk1S+oi1oPexZc/+62etG/tfnH33g/ZaCKySizWcmUmTNOiE312RuLS8ylLCZinHTRzHMr8zHT1z31DLYLrShQWVLAmjitGOD1/EXHIzHZhGyPti6MwGpXKNc8taJVjiaqlzYJbj2F3vP1ier1NkUVStQoCCQEdEQEJdxqfZQDAdc6qXv4SzRQYE52cvbJF3IhNWtmNcztwEDifL1byOxMOcXO8rqbXKgGKmCAKv3nxk3Z/33dLjfquRtqtf58UZ0zUaW4n6i0qBPHKlf7pv89UCtWlvhkpcZkEoih68vQniHjn7i8DKQIhFiIySEpi5XUrNRZ/VqIVvfr1L3LsXuQvYSu72S8lYkajUbu7Z3UYiSij+kBioizjOSM5zyLiaL9crLtOYXykZQocaQFseX98rf27eta+vH+y6P5c2jFY6xqm300oWTmz7H9ZABXgyvfndconq4CY1WO1/cn+4OLhsx8LmGKp6jr57eZ9h7zJRMokATkCIOu0zQhhaBXMbLXBALJkJh8WfagxJgpHo9HA9wva8SbneiPLfrQ4oVRs+m5lwT2YcD+8BAMYFkyzf8j+YfF5be1gP7zeFwwwflg21UTP0WWiXEbKOSsoAuno/Nonc6rcJTIY7Hf6B4QOWG8yW6eGSEQQNNjhMVaAkaML5fIugE4pKlMkzOsdDMDP7/3GvNCzEAAIYbarnuoUpXNmkwCAYYHsmnU0nKcIxEsAgBHu97vDUd/zvEKunAIASASVLJgwJhwNOp4ubWzezHkFOyeQdADAEnYZiAQ6vaOnz34ayWCzeUs5pZTUMVZMA9mu3lJYFA1kMBp1vvzqP24FZ7tbn3780Z8SyFupRI2Qejcsr3lfGQBk0NdcDMArhPTp+/zm6nlv2kN03frKRe+kP2rbzNgeHt3O2XDU9/OlQr6ilAMAOafYqOxOfw9EExPXmJn3Tr9VyhERhIitxLVwpgNw/eOql75CNienL0jFjqES+1NLFLFScVkXUYDV1sa9xPSEF8AVmtaMF0DE0EQvDh/snXztucVmdcd13Wb1nqc9yy5IRhVluRzh+3AMLHfcQ8QU7M2NilPbjSNzcvZi//Dxndu/UK3dYGZig6g4yYln7slYXnZaPmuR8zeut/6z1I5Uh4A5Go56ne6RMSIYJdpQMMtOzFBNYl6Ko718rujnytav/i3Mpa2yu/kyI/nV3+E6AUDGcWwxAKC3nPfDpWfS+rB5CQAA5Hyh7LmFZvVO3ita/3VbSssAgHS+hQ1IGA5PL17EfTOORcMvBQDMPBr2oyjI+YVUhC1x70lvODPT1sZdFLVKIBrn+vMs7a2R0wcA8HMFAMBVqqC0j6CEcNLw9HUBwLiJx0G3d9IfngFktWGsqq/FIYSICCoyo0Jhp+BvCQSxHgknpJi01HJ9zYG1AcDcoSWYbN3avMGmEws/eDEAsIygrEpXch/FCA+Hw/6g7TluIV/JAoBxTUtMFAWjQS/nlDe3bnluHoWSK2ERsUZrQgo4ODh6sH/wrePnm/UbANq6DaRWZQDgkFur3SYAYgqC4Otv/kFreLS7/fH9u7+K4DAoQElcCmSGs7WQnb9C4r5WsWZJsL4UGPD11ubfz1cQDk7ae/ECEDDC/UF70O94rp8vVLV2ERFZ7Wx8NCUNEVvaARBRFEX7Zw8tAAA2tpUEbHY3Po31xWXaPeAtNIKH4eD8Ys9y/QHASJR47qQKgzEAqFd3co6fCAThgoGNyQyVkQiM8FHr5aMXP1LKbVZ2fL9UyjcqhWaqRmKDpgJ8d6toVeAx1bWfV/ye81tTRO20aNjtXzx++qNiqX7n9p9GRDBMOG6STg5ZzokG1xEHLj+EAMCACYJRq/3KeqUT6axbWcpqyA6qYlyvEmbwc8VSsUni2BCXpccsl49cpRL/OpWFdRP3RYDq9QHA3NWIc+wy1rVMfgt1/8v31KX7WkT6g4tHz/9QwPj5Us4rNqu3c07BihDYiQVEsVL9jCwxZU4MSBD2zi72YkPiSQAwlwRkQTVzNBz0ADjnF4h0ol6IiV9H/MWLfrWQr8+jEvHSuyYfAMDPMQBASoI/UOoIlgIAmGABwRV4y9MyPqJYRt3BwXBwSpY4AEKkmFmEkQREYfwCQV0q7Lq6NK4pp9I4tkJ9ff4AYwCQ+KPFAAAlBgAyL+BeKo2EQotiZ7KxM26UyFP/OgsAUtAfBMNur+U4TrFQJaJU4joLAMJwNOp1835tc/O26+YsABBESjetkJAKR53nr37S6RwVypvl0qaISFLissqhIibvVqrlHQAwUfDo4e8eXDzerH3y6fd+VYmHqAwIETOzyswbwWJ2/ryz/3oC9GIksKCyGFc6YVYy+edy/4vIweljhhAgHogcDHq93rlWbt6vOJ6LqAjUduMjovkDcIwQhqPj86cx5owHysGE0c2tT1dwQn1TJfC944dKKUvksHskwTkksTal7YZjuVAv+fXLSEo0vZGBBaHVOf362T9Ehlp128/XlFCimsrWAmvJWfhOX7QIA2T/mxHEXDQKPCcZQoGIzaOnfxCM2rdv/VKh2AQggogAZyduL4sG5toX/FR8NiBhODprv7Jmq5PErYlsBuMISNm74TqFcqmpwMvSW5co679eAn2VpP91AMBrABXiiUC6SNuU16n98/UJLvF17KBlVK502fT6rccvfiJgcn4x75crxY1yfkPEZLX549zdChyxIKIBc9E+GgQdCwCybsEWAMA81yARZDPq9TqO43m5fJo2ZH/YBr2N2l0iTckADuNKqDueIsj4ggvOBwDLHUU+AID3FwAwiFVao5zVAgJF1wgAACMQbT0BbAZveNAbHo/6ncTqi8faoHETABC0iKBWleItRf5YMDrjJHv9FKB0gEYwrnUBm7mOXZfKvEAiIJCUl+jS2I1jc67k4MwAgKneQhQFne4ZEZXLNUI9FwAEwXDU65aKzc3N206ifJKNqWyAEfqdk+f7Pw2jfr1+18uVRJglSgGACDJzo7zj+wU2+vHjH+2d/qxWvPn9L37dBV+QmVkpZcBYueWpr5Y50d82AFglsRg73S6mO/98AQM6bj0Loh6KthltGIad7hkK+rmS5+cQHEWwUb+viWByktuuHSMShL3TixcJABA7cYtCO8178+Tk6C0AABHZP3kkIqQxHcKJq/I2PwNRyrFfwffy1cL2VOa3fFGlliD9fvfLZ/+JCYelQr1U2dSiNur3Xa1Twvn7un4W6YLLlN/tFACYlIWeyikpKzNydPxi/+Bn1crWjZs/BHG0CoEV0Oz4Jq9FqHitsJ64+U5dAyNE0eik9dySf2ZCVgwgE5dK+2eVzrcZYxqVG67rISp7hMGYL/Sm8O3rT/eu8m6vAVRoLsBb65BevVHwpgHALPEmVkZagJwWAQA/VyoX6pXCduJEFmXembJioAbM4fETiVOiaQ+vRQAAGCMz7Pe7uVze9fx4PwoBRgI6ETmVUr7h5+q2RZ8CAJhxN5rDDMTxp0M8wW+/JsPkKPAHAPDdAAAYP9QJACACKEiO1mWFeSHMKmVPjQJf6XgemydaJo/hUW9wPBycImJy7CCzYWYiRYQiQKgNh66TrxTvCCprM2wP98T347oBwIRfL6UyPrjocLrsCuZrIS8QMYAs5SbOJhASKg5NnMTMxoTd3rmIVCp1Ug4KzQKA4bAf9HvVytbGxi2lvMTzCxLrImBmI3J08PDo7BEiNjbvaeUaDsWMpZcRUVFuo3qbUF68+vrJyz8s5Oo/+MFfzGs3MggUawLGCG8cTeLvPiUvOFvSuQ4AAFOq7TDnU8ySX2RYm6nynUUC1O4fd/qnaPvOwiLS6Z6bMPJzJc/PExEBbjTuaYznb9LRfvv0GGAYXJy3D+20iQUAAJxzio3KzTc9VL3kNYx6Zxd7M96cBie6UmQvu1G56TheUufgReL3U2KRwBJE4TfPfrc3OPXdQrVxU6Oul28UcqUkCTBvhx1+BYC06O+zlTwrgwMJ1WeuSs8sALD/EgTBg29/j2V0/6Nf8fObsRTYpP/3OJ1Zc/tcYbtNPYiMgI8BAFAUBKOz1guGadg2SY7CRD7SImEHgBEFRZdLDc8tWwK3HeJEVNdOdZtNONcy4r10Buk1gcTyKswCxc9VCv/pYntfAICtFuE6HQBLASJQNzY/m2Tkx8vMgCiIaYqMvHfwABUtAgDzdYAYg7A7Gg3z+ZLSudjRQkjseDERMxNgo3YnHtmKwSrOZDKX9C1n2D6ctAI+AIDvLACw/U9BEWExgKR1ydFFBHem7vMagDyjEDp28UNkGXY7R0HUnuSMxMBSaRSjkcSYqJjf8P2dGH9b13bUInKNJsFJB2BCouASALBa9n9pRWQhAMgi/qwvGAAwiJio129FUVSu1LV2UWjCc9eSEfvdaDioVbebzZuoPJX80zitYRmawasXP+sMDnNeuVTdsiHDKsSkCVClsFkqbJ4eP3/49PdHEv7iD/9SzWsyjgC99Cy3ACBtdywy6uL52blcV4s2+z6TOui4/GCYqW7+3MKAQdg9bx1YnMYgIjgYdAb9bi6X9/2q0kiA9epNTxWS8r8kD5QBSEjOW3vDsG+nKlHIjpWX8o1yfuPSEvibewUmOm29NBym5qBJK2AcfSxHljmqFnd9vzgLACbJKpQFD0YEDTPzk4Mvj88eucot13bzXrGYb9SKjYTdi+8QAq27XBPFMLbTHbayksSQhfwoTA3JM29CgKGJ9vcf7R99udm8c/PWLwFoEaMAE3/4hX5/K9iQrb0BGeeH6FQdywbLUTQ8PX8OpDJxnrIlA1vXZ2ZEW0xVqa4xgPbdUrlUJ7KdAfWGosFyoforA4C1gMRlp9t8GJBR6F8bAMyqvb1TAEDL11s2bnR7509f/MSAKeTLXq6IAjc2v5+RpBq/QzI+FVml2oPjB5A0mpZc88Q1MA6GF8zG94ukvJT0CMmMikLt58qFfD1xWuDZ75UBBnLpRktiRWwP+gEAfPcAwEwJO3l+qMjXuqgolzkC7G+97hhAWvtPsnYW1iyjQf94MDq3E4ZEJDIpi49kT6ha7a6ji8KEFLcRUjxwnQAAJmYAlgGA9UPkfACQTZgSws/4CJwFAJC04UTMoH8xGo0q1YYFALPBq9ttSzSsV280GreAtMKx6XecqTB2hhd7r/5kGLbLxQ3Xr8VtGsMixnI8mHm7cdeMzJ988zuDoPPp/V/Z3fqImYVRNIsITYRLBqC0cjy/1r5ehf56lvulAGC2urnWQbI4dL5ZNZglB/yCQ52H4ej0/GU8lAYigmE46Pc6Wrv5fI0UaHIq+Q0/V7EWHqSse58SMSCaKdo7eEA6qRAz2g5AudAs5TaZonUu5hpzW21w1O62+sPTqePNjtyl6R0iEkEh1ygWKiRWPDfLgVHZpZjOvCJKxKAERGTv7MnzvZ8qUH5xo1Le8LTbrN3UmLKAzGyxLuO8+6Z9ElaVAU32LDJH9lC3qClpAiwBAGpGwkuAUZCHw+6XX/99zy3cvfdP+X4DwShJs0BO3Q95Ru1nNtN6zW0SU5xlTPDLrMNxc9JqL150DowJk3EFNdOp4IRGpGJ15riVBMyRqwvFfMN1/YRytt5hsdwg7Lo0ed5Y9j/7KJcBgCVD0lPknzewX9YGAHPX5IoA4MnzP2TkYqHi5Ypi2AKAKRqePetFBNEA6EiCg5NvcT4A4EXXIAYGwwsAyedLSG5c7EiKMgic88rF/GY60DWFQOZhm0XDcvEwQAoAkjzkAwD4eQAAyX9dxy0pzMca368NANIhYMvdt9m/NQizfzYm7PeORmFLRADsIsF0OBgStg/pfK18AyEnwoBRmmRedwcgrZGnUy9rvn+2ACor6CsvKpjO+/nxkWw33nDQGQz6lUpVW0mTZCY6xjCCne4xRtBo3KrXdhLNu2yCDiLSar14sf9NYIJm86bj+AAMRrOMEB3BiMDJOV6ttPPtoz85Ovt6o/HJ59/7FSIyEQqECE5C+1kecGmF5bNuYr3SQZWVe1+gTLcuG2GBvjsuEBG6pgNs/XfhRTWtkMPj0ydJrsPMEJpgOOgJciFfcxwHhIr5asmv2yFOQWTm1MregOwdfZNx/I0dLiuFnaJfypzcK32Da2NMIwNAr9du9/eYrXLL2KkqywVHRCISA1v1e1rrGBuIRjIZYb6Ja0YBBoMCIK5AeN47/urJ7wKYglet17YAaLN+J+e4KDox/06t1OPVlclj3iwA4GVLaLbZZesrEUfGNvS11rbOPZV5ZIcX0+4KgmKJEAVEAzKJE2D08NE/7rWfbWx8tnvjTykZMwnnNQHm7vSFPh7Lv9Tyc27RJ9rTJYqis9ZTBkwFr1KFqLQ3kp12SG+RvS3MUPTLhXwtbp1j3OGGcaOY3rT867rzwa+T9E/WcSbifEZBnCc/iFYHP28iob+2O5x4hkwNlqSbhYE63dOnL/6QFBSKFdfJG2N2N77vKGS2It0mfTc0CjCumAzD4en5M1SxYbmdXFqSftiqvTHhcNRXDrlOzjqIpeEOUYnhWmU35xREQktRu7TZvoQrmP4hTf3BcoGWAgCJeQ0fcu/3CwBAMmYar+RYNluUKji6nsS3dABVDBgAPbUkrryFYwxgJ7Ik6g2O+sNTOweASLYbwMykBEGDaJZRubjrug1rBSASO7G8vwBAJhSaaVEzHXh1g5hpADAa9geDXqlUcty8BQDx2SNWtBHanSPFutG4UatuE7qATIAMMfwCIcOjw8PHh6dPyNH1+m5c7zSR7XoDGWCnWd3qdQbfPP49rZxf/sXfzLmVuHQB4ZKKzorknxUC+iLtheuSDV1X/ZPmXzrOr2i+Wx/EudsjZHN08tAmMVabIuJwMOixRIV8RWuXiHy3VC1uoYBg+uDiRD9kc3j6eLJiRwBQK+3kvcKb179fqB7IHAUmOD1/xhBjFbsRBKdF7hVqEWnUbnnaS7BBTARfomIuJqbVdobtr578zijo5XS+XttyHK9e2S3mKsDWX1bsfbMvA2a1QuabrnTSvGaX9QwxJowiNojoOI5lSU36gmFWCjoMB66bSwqKcQaMiPZNWxeHDx//jiLv+5//pqcK9u6mopm277TEJ2H5rM6V19U4faE5DrsiEobDVvsw4lHa5UjYXDR1VemdUUqlfyZQruMXChWX/CTJyzhJg1y7DOgSAPB61f2Vqv5zAVi2eTIXSF9f9g/vxE9j0UxC3GtCezRDq73/Yu9LQl0sVR3HM8ZsNT7OOW7SHUpaHEKUWPmKmGE4OGu/tEWZVIP7cgDAo+Gwr13HdXIAlMYxi10LuUqp2CQhEcMIi4lbl2OAWQAAk3qgHwDAdxEASFLySEeBiXKOUyN0JudOeXL9TPcQ1kcAlIp72j7AYHQ2GJ2hQcEAQTObWBUUlFKKmZXyyuWbiAqErimGLAYAMKOlddXca/6WG3/QmgAgZqYiiEgUjrrddqFQ8nL5LMXI5j3GSLtz5IDbaNyoVrYIXaQkrABZABCE3ZevvjlvvyqUaqXyhhhmEDvTS0RGImBpVm5/9fXvD4KLH3z/1zaaN0dhrFscmySs1gHIpIrrBu4VZf7XPRiWhcKlRk5vs4NxxRR/+RcPOTw8fqSULf+zCDKYIBiGYZjL5V03h4hgaLt5z7p6cbyobE7Do2h00nqRqYbGtIdG5UYirv8OAED6EUdnLyIzSMUr0ipaluSjkAShWtzOeSU71Ze0yJcYZIKIQQFENYiG3zz+7Xa/7WmnWtnI+2Uw+sbWRwQKkhZcGjcSsqK8xve6fgAwgcw54siMRiPlaNd1bRrHyBopTVlSjnskkZih65TiGxLnK2g9JQgwYvPNw9/p9fdu3vrTO5ufkUA20MdDipNTBIuuf95swJtaV0YwMsOz1l7Eg1T4P6VCZcybYAr3xs53HNM5qsWGnytb/XUbJK0l2ZsuBLzpufNULY2WXYNk1/xyOuXUBfMCQx9672gj432UMG0gpTQAgCAeHD84OnmiyCuW6kqhCNbLN0v5coyTgUWQkYVRjQ3yuDNodQcn4yjEMlu8mD1ZwmDIHGnHU8rJyoza7K1W2nFdH0wklDZC8QMA+AAAUgwgGQGoODiT5zgVAn9KWJJxPg/t6gAgkzoSOmHU7w9PwuAiXl+JDhsiEWr7iZ5fLea30CoUIcP18WnnAICpg3ytwv88NXSeH/uuBACAlIhwFHa6557n5/1iPE0U/xwiYhRF7c6JR/lGY6dS3rTyjtknx4Ld/umr/a/7g/Nqfcf1CsAmdSoBIERlzMgE8GLvj+7e+qWP7v4Cc5Q2X4SRiFii1QHAlQ5sWj1ILXj/ZWOFiygrcmXk98ZkLq/l4Lf7fP/kkZWuj9XowERRFASB1uR5BSLiyGw1P9FE9kizkx72NQx7pxevMlpVYpVSmtWbOafw5m8LLcmBREyn3+70DuY+vaRioWzSVvTLxfyWiuWwAiJ3Xn+cJuZbWIBUaMyDp//won2OKJXyRrnUAKCt6l3H8eyvEyhBXhMNrueLtM76v+R+ihgTBf1+38vlXddlIIWYCBRO6JiJSHd4WvTLCG4mj+d0RhyNMiAnFy8eP/6H5fL2/ft/1qM8ACCZmAZKMlUdf20gTa+5wBJZBUISY4JO93Q46owTu2maR6wUxyBZrhTBOD3K+zU/V/a0n2KGyeGi71jqvyJAzdL9lw9Tzbvg98Iee73bbhtoKdOM0WYkBszTlz/udE+0ypXKDaXQGKmVt0p+PZkvsiqcFgCY1GXiuPUs4jCFmhnRqmX6XVE4EhHteFOcTEQs5EqFfB2ASJhxrHawiuzeEqfwGQAw4QnwAQB8t5oA8TLDlNBlELR2SkoVBR37U7Z7KWKEVFr4mGqqrx11OaZKZlsBxozavZdg2HAAAMxCSoRRKW0xA0tYKX/kOsXUF+zatvMXd3/DHveTm5zmHeRzEkpK7RWQ5ka3rMLPVRO7MQBARAYUMb1uWynl+z6Sm/asCQSAjDGd7mlOFer17XJpg0hTxgNCEJj55PTF8enTgHv1+m2tXTGRPdFtB5xID4fdg/1n+Vz+F774DSLX3vSs4M9qifKbiO/LK4K0NNni7xwAuF4ssX/yKKvIziDMPBqNlELXzStyQEyjdsdVbvp9Uou3fnB+3j627DVEFFsYYKlXb/hu8fqGuddOiBM6CmeO0mkhSEil7kWDmO2NTxVmZ+PmiN9PxTs75Pvts985bx2zhMV8rVLeVEpVCjvlQi1bG15zJbzZDsCyBJpNGI16vZ6fL7puThDTx50MWsVNHubg1dG3u9vf06izKmHjTzFARN1R56tv/4EJ+9s3f/F283sigGhdHi1NgoVVtiQ+qbZ+iRrvohHG1993dm6YObpoH4VRX8BIZj4yNWRNw+/Y3z7BQrZghCgK3WK+4ftFMJbMCkSXIsD3NvW/HHgveASrMH++e6l/tuSXPe4RkQ2EHD558QeDYVuRU6k2bMWBQ7p181PkCbScNhNE0IDZP/yGtJPKiK1iOWwBAABox8uStkXQUW6ltKm1JyIKMIq9lkwKWS+FAVMXMAUAJjVAFwKAZLLzAwB4TzGAcLIKMQEAqBA9x6kReoyQdi9TsVqYR5G4QiEy8QYmALB8chBnMDrtD4+BI2Zm68GFrMgVYQQtGOScRqG4Y7VEARlBXc92ngUAiMoO/y0HADPffP6BRLBeJW8RALDDiPYEAuDBoAciOS9vY0eM/oUBKIqibu/U16VabadcaqQm4bZNYZ0E9g4etjtHBoN6/SaRFg6EFaIgibAjEp6e7PW6/V/64W8WCgUAzQaUspN/uEJR850AgNVrrsuvjVZfykveiq8p8K2vhrEssh+ePbE2qBk0CFEUiIjn+Tbta1Ru5pw8zAxvnLVfDYKewtiJwwIAMdyo3fTd4vr383Xvf7buZdvr5529/qibPWKnAAAAEGmOwo3GPU/7af1ysoc+vd/jtFWIJXi6/+Xp2V5o+q7K1eu75LjlXL1e3ko+ka6r03Xt+HOKAyCCKDwKBr1er1iquG4u2+jNCOcTIl70ji46B7ubP9C2fcQqFmRANCJkNR+AmdST5z89PX6g/eoX93/NdYoiQopTAGCHhuduIn5XdhxoQJSdAhcxvf5Zr9+2nujZaGzp/hCTMM0kqlQZwMkoVMiXC/m6AvUWhoDfFQBY5Gnz8539w5gdMOk6wmoYtZ+/+pP+4MLRXrlSj1eF0M7WJwrSDsBEiLBytIcnD7UugBgGMy3XK3M9gEUMRyZQSpFykreKjatL+Vrer021EbIA4FIMsAoAAABmFhFms/hNPgCA9xgJAKIIAyDFjCARAdSOU1GYT5RjxlEuAwBgsbfVagAAVFrIj0UjRQNAb3gwGp5ZVGmnge3bIxIIsUS18j3t5lN10TcEAMimyzytXcWTBYC5AGBa2v+aqjuWj8GJsykCcBiGUTjKOTnSmkjHYQjHAKCoa5XqRhYAJAkADoPOy70Ho6DHFFYqO0QEEoKQCAJGirzOxfHB0auP7/7yrRvfA4zYxHZuViHURELqHQKAlQ6qWabazAXzmhuGaP6Cflfq77TmTwsDnlw8D8MwFmcUlFjshI0xSimlHAColbd8p5zeIEyKnXvHjwUjIm2roQzGyk0067c8nb8+HwBa87kAJpYFg6DXau8xmJRQm6oAjTsAQChQKlZL/qalpjBHSRt9wYnICpBRQJBPLw72Dh70+udKOaXSRqFUAwM7Deu3zVNaou8VAJhQGbaFHAkHg36/PyhXatrNxc8alECYaYmowAwPjh7Xqs2Cv4mWTzxZyGdmhDgitPunD779R4Dhjd0fbm9+oiD2QEXEzNuulc3zugfMZTeZF/9AxAj9fm8YXIzCITOnez7r0pj9oFjriUjEEOZERGAkIq4qlktNz8uBAfwuJEGLL3KBilcWyAnReu/8XQdFMM2KFrroHx0cPRoM2zkvXyxVYxEtge2N7yEiTbgTYjJbCa32Xr/fRqUJcC4AsG7rkzdPmJklUkoBjgUTNXmemy/kq0Q6pWjOleuYW7rKOpotBwA2/ps4UTMiYmUIsxMgHwDAdw4AAIAAalVUqkjoTpnkTBpIvxYAmIiocTbPIJolaPf2TDAQEZYwsackIhTWAkE+1/DzG7aKdG0qQBkAMDFNuxgAUIoUFgW118mFFgMAALbDRmQztjAYuspVjkOkbWouyCIYhmGvf1bUtXKlWSk3LQAYn16Mnd7Z3uED5ggdLuS3kATYxAbEiEE43Hv5qFio/cLnf05rzUwIjkCY1XC9jM57LYH+dYb/aO6oymRoWxsALLisddWE3jYAiJ++iYBUq7s/HA1ETAoAAIg5SDQfFSLmvWqttAkARgRJFMQScq+OvrXHjT2Ekt/lrcYdT+dn5P+u/fnSkvp/fDCiOjz5NhaqYwNAE8cnGyICQmAlYnY3PkVQgJHdPsuKtaIBI2AE4FE4fPLqj1sX+4iY86vlyjZBtFG+nferlu8+WbSjdx7oM0Y/NBXHWIJerzsYDSvlugUAcS2frD6JEIERDML+8dmjzcanjvbsKL+wEjBE9s4wA6BhGyWMRA+f/Kjbfe7kdu7f/dM5r6zSQIrRkiHghWriC1fDajKgcsm2TYB92u5iIYmiqN07Ho76qVMSZP0sM0JJaVZnWaNpQ4A5QnDKxWrBq2ZdGt/eAY+LIuNiYboV9t2s/PFyAPBzmv1D1t5eRNjAUevxeWt/OOoV8qV8oWqPWhGzu/U5ZLTUwDbfUIwgS3Rw9CCtts6SDmI1M5E0jlnLIFu2QUUZUVrw3VIhXyV0BcK0EpG2pxak9TyFb68MADIL7AMA+C4AAATkhAKU6AIhEFJO67KiXEYJeqySN2uRcZUxADGIKh0GGE8FADBH/d7xKGwBALMRMIocESAiYWQJy6V7rlO0J9S1AYBMOT89LdDuRpRJrI8wW+nMkkTXSvRTefLMxqN5Q8OU2cOcjqmZMAIA7ToKKT66EEB0GI36vbOiVy2VNirlTUKdkLms9Ae3WnsHx99qXUBHvFxRIYkYBgOgEaLj44Ner/dLX/yFarUeRWxd3ABXnRxaf0Hw6tnz0qG6N0gNyn7u1Mk6S9FZLpL1prnyy1+9/kl32BERIwGiAjaCZCVBESU+ToS3mp8lFPnE4wrMq8OvlXIQUQyPO04sm82P7MzA1SuIS+/n8rwhc8IZRNXpX3QGB8zj/TjlgIOKRFDEbDfvK+XYj+OFOWVsnZHK80UcPj/4k+PTfRMNvVyxVt11tVPKl0vlTWIXIQKa7TjRe+MTPHbCQlRsRp1OOwijcq3uuq4t8nCisWCHASKJ9o6+BQy2G58lT5mytXD71WwaLYYR1Wnr1ddPfttVulT95OPbPwQAJYxEAmaJuEIyfPw6QzjL1smYazS5IJfsot6o1e4cM5iMJcLELk6dm7IWEFPvrUkV8vWCVx5rbhAKIwFzpo38Gj3t9Xw2aM6/j4/5y8DDqtfz/uT982Q5Vlona2GAMAxfHX3V7bWjoFMsb+T8AgpZ6tt24248RJfIgCJbZa0wZNk//jp182SOsol+Vo13UVIOpBAFGPN+rZirEBFPygelKrQG5LLvyJMVtAkBXEmc7rL+Xzb7TyvKgDKV/X8AAO/zy8wzaENwtS4S5bPY0i7atQoN64UwARsMRQQ46PQOg7AbrzUiBWP5mUK+6fubgHxd9db5AMBinvHlYTa15TcGAKbff8ajXhI4IABgAYBytAUAVtHVAoBe97TkNUrlRrWyRahTxhUiRiY4PHp6ev48ny+TQ4720+8VcdgfdI+PXu00P/r041+06sKLTR94FaPEaz/Ir3AQ0nqB/vLPzS76dTn616jicoX1Fkb9s/Y+M4jlcMedLs6OgKPwRv0TR2WZzZABALGhDcRdKdnauO+Q8+Y7GwtTmoTnY4h0yKOz1p4dBZ769dTKyh5vzeptz8vbx2enhmmBkFQSmMR+5RcHX55dHPV756S8Rn03nysww+7GXSJXYWKcOaHjQfwuewFThk2p7AOyGbXbF5HhSr3hOE4KAIg1krGShWE4Ojp5DITbzU8cUrM3J20UICMCg+iQu3/y4B+FwQVi5eOPfrlYqDuYjFnQIs0QnvVhuGpIWXX/Jk5ti7cqYRgOu72zQdCbLXCkqy5rNje142K6FICfKxbyVYe8jME8A1ASSTg1Z1izgELXtCpw+SDTvLtEy6PNe1L1f2MAYKxwjSKDQefw7Em31xIzLJY3XM8nUAyCArMAQAEaI0TQ6h53+ueW4pAV3s0usFkAMJalIs1gCJSfK+f9skaVrqjZktyifZfB24ssuqfZ/x8AwM/HK57lwInFBqKUKihdsFO2NiXgZQn32nnIgqtRIhxbanA06B8Pg5YVDQLABMdKyGar8QO8PsLx1AwAwSyBhy6JZVcDABOHRGa2OtlmWWdKyMASSOWJODK2okkQm9VbABCZoNs5SQDABqEb196AEDEI+6/2vx0ML1w/52hPazdZCmx4tH/4CoF/8Omvl/INOzE8b9hrSuqE3gQGWOw1tjZF5NJ1+jrUoEUZxrqdimtDtIsjrk1Sjs+eGGbLaUnqOik/1QIAaNTueNrLjKxRJJG1AU5ERC0WRTG8vfmxjimDbxQArJLTEKKcXhwMw3YmieTsMZYCgEpxq1ioTeI3XoAujAVL9na9PPxZd3BxfnZIRJVys1CsE0izcjuXy899CkbwCt9qfRnQ5anerK0vmmh4fn6GpKqNpkPO7DsbML3+Wau9T5S/sXEva5SbYht7fwQVGCBENgDK7B09evbsp67rlsu37935RQUoJErAINOCK5xVkHzTACC+z8viNjGAQNi6OB4FXQArlJp1SRsvMNtWmgrsGb0gclWuWKh7OpfmeVPhPaEb0Zo75WrD97SkpPX6+3HxiPBby/vxagWFpYnObNsEjQgwt7rHF+2Di86RAixXtkgrAiUIcwGABXuRRPuH3wApCwDYEmYkuzaykqCY4fKlaQkBS84rFfJVpRySLKRc3TZnaq/xFQHA9AAAfKAAfVcwgKX4Z4BlXqsCkmNLxskAAM2d9b9ClJ57tMVaQxzZA5pl1OkdDUcXiJRm/7ZrsVH7HqJ6gwDA6j1PZv98+ffhK96IKV5sRoh6RnEpURS19KS4KklIoGIxEwQLAGwHoFiqxzMASXkJSIbD7rO9rwyHjqPyftnedABSKGcXx63OabO2/endX1GYYzBAhPMVA+hS5YcrL8epVfL6w7tLjk2a89GvdVxd2hG7ro7B4kSfl94KOr94HphhtqSddgDSCfh61Xp7ja865NFB7CEQ81Dt7uDI7Gx98hYAwPKEOLta+qNOu7vPkFDmEvpc6gZg/6/o18ulDSvQkZQJlyj/jnkvLw6+GoX90/M9jsJ8vlyr7SCqit8olzZSm7yJ9SD2pskVvtcbyIpiAGAETTg4PztVjq41NjXqmXIjBybYO3ioHWjW7mWsHjiTnah43BCVRGLPfMNsePTH3/y2cFdh/vadP10vbVjFKVGz9+GKYlBXBUKr1LbTroT9pmTAdHun/cEFYCSglwHsSQyQVmrtHzQ5eb/iO3lERHTsLH5i44qIwhwtrlhfMwCYMvtct2BxmSzv28/+rz6YOHedLJCd5SkAICJG5Pj06WDUOm8duG6uWt4SBBQCQhTYqt9Rykt/1zr1ElFggr2jb5TyiGLi3WTuMW6xZmSmxoVYQSLAnFfyc2XH8eysuUiYrh/G1WfraQkAGCf9CwCAvbYpD7gUA3wAAO/9CyHhAlnvQgSXKEfKR9CQeKgrq4E2jm80Wb6ZiRKL8hycr6IZn8KW6pOAgf7wdDg4hbjPjIxQLtx2Hd+OuV/Pl7dGYLGt49KguajrsNy2YwUkNClfg9NFzXkAICk7GbYAACzXeQwAzsq5Rr5QrVY2lHJSu0pBbndO908eihjP83NeHoCYIxEJo9HJ6b7jurtbH+9ufCSGBMCO/L6hKtHyc31xB2Ddyh8tv3qa/nRe6ylPXecKAOC67uGaQAhjF+7BsN3uH4EQSGjpbSktwaZ0iFgpbhS88ooAYHf7UwXOutezrurIpbX/9A8GwuPTFwyGmUXMVDnNWtgCgKv9Ru2GRjcz0c6XXowFABGPTs8OwqCvta7Vbmi3qBhvbH2cGffkKQj65ilAiyqaU7wUSQFAOOqdnx17fr5Sa+rEczH9msxRb9RqXRwC8mbj08yYR5ajqNJSxTgVMAAAx63nj5781NWUy+98cu+XXOUgGJmj3sBL03paP4CYtTbFov1om0Wx4q0gKOj2zi/aRxjLHVEydoIAlLG35KnbmLXVFDHA6Dp+sVC3gCoeII4BKtqp9DXz3fUAQNI8n2h8XSMAeJ0YdS0AIL0wvmI0WbQgpwtHaVQJzPDo5Oko6J23DkrFer5Qg0TAhwA3qrd00vbJpubd3ulF95hIIwqIFghFrOLJ2JzVQohMtTU7akKu45eKTaUcZEkqFBMAIHv99vkyXtoEuB4A8OH1nQIA8aOOl4copBxRjsiRSVdgu0LsmTI/fb08PuNca6yYHZqYTYkIoWaJDA/P2g+EFRFVi/cd7QOJgLk+H4CP/vyiL7NK9v/aAGBcSEikAGTu/kwxQHxaxGmGAVLJDRUGQXASANAs5CuV6oaOm/sEAEaik9NXrd5+FAWlUkWRY+kQkQna7fP+oLu5caNS2t6o3TQmBNGTcp9vCAMsO8DWuasrHYSXO9asdmhlzni1ZknyTR+KS0AsMTIzn56/sCwgFDISxZWnjJBDzsnXyzcy9WwKTHB4+tCWz60eDqIS5EsBwLoc3CvMAAgJxhDXIKIBuWgfjaKeBQApjS1RxYsPVWbY2bqvJ/XOZoJdsgit0B0AM+8dPzAStTtn7Ysjpalc3ir4TURoVG8WcoVF5+u7o0HPeFrZmg3DcNA+Pz/NF0ulSt0CgPE5gBEzvzz8mrRDgNuNj4nmcqVoKo4zMwiBSCCjL7/5/XB4Dip/e/eLzfouKV5lNvQ1McB1DVun6kCJPAWDojAcdbonQTiIeGRb1QlxX2YnuJJpTiIaT5HZArAwlotVP1ci9DAjNHSNvgGX7Tta+jevA+DfSfY/5/teCwBYBKQh08C/6J20O4fdXqvdOW7Ub7pewWoGoCIUmAUARhAw2j/8VjDuDiW9ypQ3FneTLIkoG0DSnMFxvGK+4Ti5lHVjK7VzjYRFJJXpvOxQm17AGZb/VPbPqRHYBwDwXQcAY5F7QQACdJA8QhcREa0K5QJxC7ys5H8Z7Mj8jWKJiOJ3jvWjwTE8ACAkRlLWgiY29LwmAPCbcBkbMpv9r+7pe2kATUUk5gGABfOImZuf7r0pABBGo173rJrfzPvlSrmptWsBgIhEHB6fPO8NzoZhr1rZIgIRFAgHg97p+XHBL9Vrm/ncRrWyBcA03c9dQ2j8TSSy10iKWDKUua4h0fpkuHcFAJIMDajV3h8GfevBMSE6geN32G18kl3qgQkOTr4l0kQkhuOiLwJHoQUAs2M5Vz0SriD/SlkNfhEMw8FJ55UFAFM1XctgR8QoirY27nvaT7lPyzsA6fM9On8ahqNhMDg4ekQKfadSr98konKxWs5vLJ6ZeTcdgEV3lZl73fN2u1UsVwqlKqEe91CEAHkY9g9PHyrlVYq1kr85Q8/jbFZkhfABSBgRQERCiY6OXz179hPX98r+9u0733fdHLLMeLjwEnR9pbv3+uoucZamMsVyRGG2UqejzqDdH5wbiWzJ1orqJtdJU2VUtDTNhHiWGg6gkNY536sWCmUSyAqMvtE4kFzo1Qmc77b2f32dw3X9JXDeCY7M0eHp80iGZ6cHUdCvN25p12PmtAOwWbudpQABgKAKTffw5AmRa5dY0tKnFFQwMwpPCQOmnSIiKvn1Qr6a6ogYkIyh4Zxlv6L8nR1c/gAA/sl5McxZ2IKE4AFqigtDtIiRkTQNcPVzfMEWJkvEYWYrzJ02q4m0tVQfE+OtMPc1AoCkvjUx7DyV0tjvOOvse1UAoKbG/FcBAGOOYEbg3GZvAJwFALXCVt4vl0uNLAAIotHh0dMw6ofQLfibRCyCkRm22mejoNes3szn3GrptpsrA4BCg6IFs9HnLUkZWr4KrReg5Zo+ehEAWGN4d33+ErzxIVohK1QPQL1hu9M7YssEEUlXNUNMkmGOdhufZfXLZwAAWsBgwuDGzmdTHYBJlaS3AQAyrjchoiMip+0XQTA0xswdX7F9xlr5TtEvp363CzYdT8G8k9aLMAqCaHR08iQIBy4VG/VdL1dgE+xufOoonYmHvET5/m1VRrMKY+N2JTO3L056vU6pUs0XK1kAAAAk+rz7sjs4QVTV4m7Rr8TizZMZqi0ZJoJxIoJsIFUziczwqwe/Nwparipv3/58o7oNQArN3Mc6S8qfNZ1Zff/OWSKyaOfS0jhAmYc4Xgkhj3rDi27vNDZgSetSk8ycbEkVYxMNjGcnkC0zM++X8l7Z0bnrpUvz0vtGkzyuVeLnisI+KcXuDfmiLLpLi31a3iwACMPR/skjIDk8fOYqqtRvKaWYI2C0+hwzHQBi5FcHD5EMkUZhe2zb7ZP22ayTSUI2k8lJJ3Icr1bcscLNNlwL4aJlnxV7gctk6BIAQNmHGL/DAgBgRxo+AIDvXuq/IHe31mAsCtFBUii21RnNXzxWGm66/L9SJ3OsqGa5QxiJYOxBhkyghBEIBUJLDQJQgKGwQqQV2EarAoA/PzesrKszlJ0jnOi+4fwUZ1YzLtmfZu6VpLW2uEgg0w/DZjCIKgzDTve8UmgU8tVKseE4vpHI2pIPR+2j4xcMHMEwl6sQCnA0GPRO28d+LlctbxG5m827DnpWsy8xZL7+GvwKgfgqRlHzrvCKU4avnaC/WbWfq+z3sWy5HLeeGRMKEEuQAS2YshR26h9p7SarkUbR4PD0oSZHkGyf0K43Y8yNre8h4rr6/Svql9NV36c/6l509sdsWqtsbWGzGEU+i1TK5aK/jSmTe37FPu0tkOUCtXqH/cEFi5xf7LVaB552K9XdQrEKoqqlzWKuimRSdnn6u1d2THxDOZMxptXaGwx6lcpWLl/WRJl6hIRh+PLwa9JIpBuV277rL1nnWTnjeIExgggTnrb2Hz76sSaTL+7cv/eLPnlCkUWb1t4oUxfnSx/uaxr50XX0BzgdBycxJmh3TvqDDiob9pWFWxlC6dh3OTMzkD0vwEpAuo6f96u5XCGDf2x7ITbpoPk1e74uQ73lAHIesKc3Giff3fToIhaAZrAMexZB2wtCxM7grN05FzPaP36ez+fLxS371KwJAKLarN3VWmeY0xIxvDr8qeMWETTLiBlQ4nHzmBcAAMh2Ni+V5E9lo1C4Wr7hu/nLc7t5a3tmEy3qtPP88j/HFG1mZjbMbKVipnxyPiCB79QrU9MhS3nF5EwkSHT6FxUWs3s4GSNYf/8uKNws4vqbRG57aqVNyVKlMJgXXA/+4N6fn5uOX9cBPAUApqTfZkPeawMAJwxHne55tbiR96vlQtV185bnLYzD4cXR8QtQkZA42gdgjoJWpxWEg1q16eiC1rpZ+8jTnogIGBvLriVAX5/+/SUHyWs/uHcjZ7nuZa+rHpPlwYvIeWdvOOqlACAjNhf/WLN6y3cLyYAgWUKIJsfOnCScZjFGbmx9Oq8GMKfW+HoAbL2XgfD0bC8yIyMMwATKtsjANs9YoSJgvLH5yaWawmkSb+/MRe+k128JwGBwdnj8DBHLxY1qbRtB+16xXt6yrDzbIUnhx3sR5jNrJoqi8/NXo9GgWt3O5ctqrFkpItgfnB+dvdCuAwBbjY+W+jzQlJ9JvMyEDHMEwVcPfjwYHivJ7e5+vt28KSTamhYi2pngpQBgCZA2a+5qWroaL6/4pu+UpuYiAoqjKOwPuu3OIanYpjHTOqMEQyIzp530rMIbgSAiMxBpP1fMeaWYK5V0tVIxogWRiq59bbyZePjdBgDWJjXdzul2Ob14OQqGg+HF2flhuVT18xWlHDHMYABYod5sfmQlttIwEkp///Ch4+ZTk0Fmi4qJiCwAYIlsezZpbGaojAZ2tu4vV5NbAgAuPWvmAoB0CNgCAGYedwAQPgCAnxsAwJNmjYiKZOmCySTusWj/VQPQNX0VXgJU5vz4L3z0F6b62lce6l1WmUaYIdOvWkGZAgBTV4iTpgiIKgxH7d5pvbid96ulfMXzfOvaLYyd7un52atB2MkVS47SCqXdu+h2uznXLRTrSjki5sb2FwpUYtnDc4VQrvX+vBEDrNe4vDfdMXizwOCyAz6W9h+Gg1b7MOJwSlkiRb/18m7eK2UBwNHZI4UaMm5QiMKR7G5/uqRCcH2qR2s/x/POUX/UTizA0nOUEYDQtc3uneZ9rXWG4DH/UjNTntDun3a6JwAQRcHB0ZMg7OT9SrN5V1EOQTaqtzy3gImKX0Zh6d3r4WWjXBiG5+evgmBYq297uRgA2PvGhs66z/v9NioNjLsbHymlliTEaWFignDMCMAG4fjs1eMnf+gpyuc2b979Ip8rIQoBT5TDhexCmbfal8XJdX1bU8exFSrZi/ZjmGyTLHOGAxOctV5GUQAAQhGCl6T+akI4NZnpZDApKSilniqljDGOzpeKzZyTS3WrMpID8vpCSe8VAFhH9vSdAoD4Vqc8ewagiPno9DEAXLQP+4NOpVx3vYLVKBQRREOgNhr3HHLS/iozn1w8DYKAdPxYma0aLBCoeCYYgCVijuwgATNkQ3feK1fK2zNMuYUwYO4PLPmt1QEAs7Gf8gEA/NwAAJgzHiRJ4Fp0NmZy1fG6kmuKPwtWKU6QdDLyuPPJO0gyBwMg4y989BfeQIJLc+/U1UJqxhV8ypN4GiTYjwlN0Ome1vI7xWK16Jc9z2cQETGRnF8c9Nqnfe4UilWFYMLRefc8CIKN6oby8iICEu5u/lChLKn9v+tAfD0t7/U7Em+25X1dAGDuRkon/2w2b0eBzy9eDsP+1JhsagBeLW0WcxXbaCOhQdA7Pn9KgBYApMmiGNjZ/ExdxZjvzQIAROwN2+edfestkmmms50rAgCFeqt+RyknHSBeDgDsNkwBADOfnu21e69cJ9+of+TnyoCmXGhWC1sCJhbwvnxWab31+Tqdt4kOQDA6OXsVRUG9seN6pQwAgFE0Ojh6QKSVUsVCrZzfWLIIUw5P1orBHhgMIowGwy+/+f1gcOIof2v3863mHQBWKCLGlhlmnBZXHAJelcwzCcBmRw6uAuyzQp+Z/6VRNDg+fSYQCiM59sjRAExEdj2Alf4k4dhkXSEisNjBdHuRAqGwKhWbxVzFLl07FfdGd9CbBwDvW6V/vXMnnQNJPbkYdBB2j0+fAcDZ+b6IlCtNrXVG2CcSQze3vmcFDREFgA3Ii1dfebmiZdgmAAAAWJMNRMIitgOAAkY4GRc0AERoSoXtYq6y+hmxCAbMtRnO/NOEHugHAPBPFAbILIQ00K1XeF20rxdnCuutmIVrnuZ39Beepz+4Px8ArGvsNVkgo+n3oSt6o6QFfpGZHgXOwQksGJmg0zmv5jeLxbgDwCDMbIw5OX01GnZG0vfzZQLpdM87vU4u51eKdVTaRpwb21/QvOg8j3F0DQ/suh1PXx8AXGPF6F0mxFOXpRAjiSB29GAG3ekddAet2VhvzxvfLdTLOwwEyCQwCAbH508JlF3JtjSVAQAI1031WXmBLfzcSIKTs5dBNMi6aWb8DglYtur3HMdf/v5j4u80AIDe8Oz4+CkQVoo3atVtexu2N+87ShGIiLIz9EsH6N8SOyjb5xQREwaHx09FuNG8kfMKachigHb3sNM/tWzjRu1OzskvoUTOBQBjjSBGAWj1T3721W87Shy3+endXy4UCrYkg8K2NTrlOL4KAEiHfS9NNV5PU2j5neSsibuds2cGCwMAAwGdOsxQ4qGdmifYzC+hdCbNN1viEWaJFHnV4pafK8/478SkoCWqQUue17vJL967Sv/a8VwErRSJfRC2hjIKumE4Ojl75Tp+ubJBNG4N2Sd8Y/MToriCwECDUeu8tWeVgoRRIEyBn9aaQDGzkYiZwabXYDJWEkpM1Kjd9t38oudrQKZ2xJI+wJIFky65qTEANmABgDFGhD8AgJ8nALAwaAgsagDjaqvr0mMdF3aYZS2ksagDMKYG2YpPqm2TBQATQmxrA4DVnQhXFexL6f6zqD3zXlklUBTBiMNO57zoNyvFWrFQybkxAAjD0enZQRBdGAi9XNFEwdnZcRCFG81tR7mCJGKA1e2d7825G9ecNL8PAf26KvF8TVd5PYng4mlKzoZmBj0K2mftvdS+dMotC0Ft1+8AaQGjADMAwJIYlCAQCDPc2PzsTeb3V3+OjNy6OOyP2szRxJJOCPoEWC/f8HPlpZfHqRmC/f/zzlGvf0YCjBREg8Pjp6Ogm8/VNjfuaOUKR5vNu572J5l779dLRKJwcHD4DBGaGzdzXiEd/4gkern3M+06FgBsNj92SE2kuZc903SSOGJQAiJoEL559KPWxUsNTqNy7+69jxV5SJJhAS0ZRrwEAKwIA7KrZbU4xov2KSKyRHF1BhROOaWIZopExJjw6OQpS4CIkLgB2BVIRDbnsytzkoCqYncwAUAWxnJpI+/XSCB2yoxPrysPALwbP4rvOgCw5YOxiBZQGI2OTh5r7fYHZ2fnx8VCrViqxU+TJab/Cd3YvE+kRZABBMz+4SMiQEUAIAYYwvQ5auUSYgIAoti+EzlZMDZwq+3NuyQLRQWSnu1EOg4Le1YLj7mpzvAHAPBz/EptmxduXlnvvF6YhS/bdbIWAJi4nmyuTimtdLWCSAoA0o0Rb7YrAYBVnG7m6uWnt3h5pT8lY2X8DiesAERUZEyne1r4/7P3Z02SJEmaIMbMIqpqp9/ucedVVVlVWdXd07PdPYNZYLFLeATRAIudoSX8RtASFiDCIwg7i5nBXH1UV1WelVfcfh92qqoIMx5EVUxMTc3c3N08IjLT7aEqMsLcXE1VhIU/5o+/r7G9ubbdaXfjuCUi1to0HZ2dvT7pv+x01ohoMOj1B+eNZmetu1NQnNlurD1aa2+G+qS3Vjj/gQGDt9UxuDq3flH2E5SiyUi2f/gtEHox0Mn7iADowdYHQPFMB6AAAOV6w4e7H19jaP7qlIMrq5WLyGB8cd47sDYtR3IRgNFpOyqNwuvt++3WRkh4m0bXbmyUvNglABydvRqn58jCCFb49Gz/4mJfRXpv+4NmYwPErHfvd5tbZZZG7+bqz9LBy1ffRFG0u/ckjpq+AzDOB68Pv1I6RkQ34KFg2RmGMLdw31xE2AIRXYxPfv/H/6AVR9h6/71fbW08QMRSOnPx4bTsOlku86DaYsqVDActTKkeKUCn7ejIdf4XMTgtF85N//XBtyI2jhtlT4BLKGJhmoaBQm7Y1BHNRUQsR1G0vnY/0g0iXeoj8/X2xU+P078qACBTWmHIF73D4egcgE7Pn4+G6cb6bqPV9rYqDgAAy73djxLVYSSW4f7htwxWqajgyDEjohVTMBIpcp0Cw7m1uRsLDuaICIDXO/eajY6CaF5HcfH47zJIoCL/P9nR5d+zGGudzzoDgFMgvQMAP/wXzl/2sAAbvGN1Lqn9Um6tTn9HATcEXAsArprQ1AGAxanMdAVrcqFVHaVLAYD/WQcArLUX/eNGtLG9sbvWXY+iprWW2WTj9PT8ZS89biQdlPz47FzEbG7sxXGLwQojSL6z9VG70RaR0hqWV8V9n3eQz2tJX3Vo8hoH+Uqu/4dSgStWmRCgKabZUO0ffeXazaGQi9cwubfxAemGQhGRLBsfnH8PXCi3oEx0MBYDgLm63UvrtV830QFEzDk/Pn2W5yMAEsgFtHMyRiz6+a3m9tbaPS/yM72z3G+d6gAg4uHpyzS7ICELlkFGo97B4bdAdnP98Xr3ASE04vWttQdIFtEC6DLPe4eEgEQkHfdfvPw6SZJ799/XKvFTvP3B6WnvJSoNAK2ks7X2yDsAXDEeKhTr8mUEFoTvXn75/OWnDZ20GjsffvjnSdIkYKdlftnkZW1Cw7XZz/IA4CbwvpJ9S6HsYx2/rvwXwxC4KyAPR6ej8cVg1FdKISIRMfO0+rtFYCn1uPwEsOvNdtrdJO5GUUykS/9XXB2Q5uXXz/X24w+8MFTAGysCoC0PXu1/paOmWNk/+gpEb2/d13HiKPIoYDBHVppUErcAha0wc2aHRIAYgZCwQbLCkaBxuy8AAKm1VqFTBCKBXASFURFsbTxOdOK1QZcvGNU6ghV+jnU6oRUAgIiWuQIAmK07Cu4AwI8MA3CZ2k8e65z+wHxtMrner74sob/sU+awleq6HAIA+Oc/++9my58i0/ne3G4AhdXVKwUUgutXSsJ8y3UApNCKRhGxwoNBjyR+sPOw091RSoExVngw6j8/+GMctUnxYNAfj9O1tY1mq+Q/CImMH+58EumkdACA2ejwDiS4dJOT+9LEdDmu9vV9NG9fDnXBfZvQBpyH5XDYPx++ElEAE83pkqugNrp77XjLZW8Xg9Pe4DUgs6AfFCbAOGrvbDxY0vjjeg/6BkP5DEDH58/TbMjsFBpNmem6rhkxmyf3fwtF+XbR5/hddnT+dDQeI7AT12KTH568GGen7cb69u7PIoqEze7Gh41GA4RcHwCFBFewaK+xvH0Jxys0u/8f989fHXzVSNr373+gVCSsSDEzvDr5kzGZQg3Aa6173c6GE6mcRwV0jGN/90K9GrechBWIAOIoG3365X9OR/tAyeN7v3zvyS9Q2CIpRORMSC+ZsF529253JueqsxwWLKEurhnd0KcZjYaD9DjLxq7VVig4T0xhK5+LIgKkHKWk1VxvNrqNqD0j2bcgRq1gIVV+y9X7dLctrgBXSoiXLDRM+/MUnlxC2OudXQxfE8ZZ1js4eNVqr3W7m5pUUTos2qqoVdyIGyJi2eT5iMVQITkgIDmILvo8CIRxsU8ht1aYDcrEg4eZAfTuzkNFcSEeNa0C5L+mE5C9Uh+gDgBwefRzpfhlrXU1I2brtdjvMv4fD/zFSzfIUon71TMkWdH+vUJAIJkPAHwgXkhmovl5/y0CgOp2JXQ1e7eZmXkw6o/H4/fv/XJ9Y4sAUchwPhj3Xh5+oVTEbAaDQZIka+vbofKjWH7/4W+CYvB1Kn+rO5jfjlzm6r7Ou2YEVq7/8pkiijHZ0flza4UhLyinYp3INQA14/b22nvOP/jFwdciuXMw9TromlSrud7t7EyTH27l+V4dyBWHU3903hscGLbhWBuRLgk+9v7exxGphdfD4TbZP/k2N8YBABRgNheDk7OLV1GUbG6+34o7hNjtbK23d/w1EAhfq8F6k/UfDnWUCH9ikjK4ONo//LrT3tzbe0+pyJ33xoxfHH1TVOXZ3t/5MI7al8WBKhelQq0REQQlIhbw5Pz5Z1/8lygSTe1fffSXa+vbBGjYaiCmG1HypkeQbzH+XK8g4rdM6QlgGInZDEfnF71DJCHUDo4Kcln1LzoDnt7pn4LldHfrZ42otcg3r+77XmO9vT0A8E4UmCBUPCt9eY3wyemLLB+Rii4uDi8uTtfWt9rtdcfYQkSGIofWKk6ihMVmWcacIToVtXJJwMTewfkHI2nLuVgWsXu77yvsOM2oifyoUMXLonZBVtKm5YT/q/8ZBMzJ5vIzyszWmwDcAYCfLmCYV7mfzptnh1JWldAvubDnsdlrZECXpQAR3iSJIVjBwe/hu2tBFyJizMPxYDA8++j+X65tdBVqsZDbbJz3Xx9/CwDj8RgAOt1uFCWFPaEAIiZxa3fzvaAk8C4ymK9aD779hPt2h4xXK5M3w3Xhw9PnWT6yYlz2X9a5FaKg0MOdXyFZIXx98CWzQ5vCzEpFAEyku63Ndmvr6lqKb2idALARPjl7npm08FQVdid0wa+w5v7exwuNriaoyX3m6+NvjLUg1jIgMACPs9Hr4+9QpNve3Vx/QETC/HDXWSk7SuHKsPT19BYqfQBG6J3t7x9+s7G+u3fvCWHi6MgXw8OT89dKRQAglu/vfRRRgiggWsAut/4nMIBQO58jRLRGELWF7NsXX7x69Zki6LYe/eaXf0VEBIVH0mUkO7rZbbntzsAlwKNM6ycUO3fPmU1vdFLCgIYb+iyLr4yICgufCkQE0IIMbFnMw3ufzABvCtDY7XYA3lah562ornmPTvcQe8Ozs4sXWjdE7NHxS2PM+sZWHLdcr0ZEGKxSCoAi3YiUzvI0z9OJ0mtRNGQEFo52th5FUcMRvaw1xyevut31Vtwlir1qmbeEcyYDszehsvxm06zFwv+VPoD7FQESmNQWmY0V9gMAd6+fSqL/llj+1wYGtQt+Nnu8gQ/AcgBgXgPhGjKahSjQdGHPC/QSFEodzDxKh/3B2ft7v9na3gZWKJyLHY5O90++M4YBoNFoxElTBJ0ZoQMA7dbGRuce0WTDh/5H71hid9PMfiXZ2EJ5x9UceKs1Aisb2ROJm4vhaa9/wFBxoSYisLl5/OC37mdfHXxmZfJ9HUIgUN3OTru1QQJvCyvOlRULzuyTi/3h6NgNAaMwMxdWnqWsXivpXvaIJ99u/+RbYy2gEVswcQ3n+ydP87SfRGs720/iqAGSb3YfdtqbHpzf9v1ZrNI7CwAuTl4cnXy/sfFwd/cRQMFRefrqUyIQJIXUaLQ21x+5FFNYzXVYnI8BnIu7Qw7CBY9oZPp//Pz/l2VnIslHj/7s/sMPUCyizOFu0sIi90p2zeoT1jmzCjR9snh5WYuociu5GfYGR2k6UEr5ErIH5C68i+tEAVub39/7eURRReTU/zJvzRG+YYkZieUBwNvxB3hbHVRv/mUFj8++zfORUsl4PDw6fhlF0frGDpEuAYAVBCJNqOM4EbZ5nlqbO+knIvCW0JGKO63dRtJFscIKyRbaUBaUdn+urn8R7yS9aPnNpmuF+FudaGOYS0zf5Cn+T1H+t7mVwgHgLvF98wW+2+60XIok3xYAuEYldF5XPPynKQAQCl9eYihDOBMEafns/+YAIDhegg6AEABZMVk2Pj8//eD+r7e29wiUtZZBDo+/PesfIKokbkZRBKQQFDMjsMuGmo217fWHPkec5wT81gHArZ4Bt095ejv3c/rYmPi25pweHn9vnZ7DRA+0kCjZ3njUSLoidv/wWwYRsa5zJQhuRq3T3u42N27je804Z18/IUvTwUnvpZt1dl0OhtLxQHh97X63uXXZo5y0TV4ff2M4B2AHANynnfYOzs73Y9RbW49bzQ0kQaEH27/QCgXf5iYqBUmmAIAInhx/f3L2bHfnw82tXcRIRMbj/sH59yUtgTvtzY3OvbL2rC6TBatGwqJ2IIRFP1VASAQZzf7Rs6+++dtmRDra/NUv/iZpdDTmFaOu+YkmXWl/3YIj+JUT2bLwXz1Zy7OtUCYVEmE0dtQfnAyGZ6gccUgzG1eUIdIIGjBlo7Y3HzaiBCSeBmY873xhLG7F2wMAP+yh4eI5Mo5N/+jkO2ceMhicn5zut9tra+ubAOQoQI7TrynSOlak0zxlMZMYIjmCAkIRbDc21zq7WKwNFkGEyDkDMBvECMC7ZEjwZ7Qgbr5o9mm6jA35Ekb1xA5FpuYHwqXi3+m7EMzGsJ0u/yPAj5n9Y+EtAs47ADD3tlz1PsyyH2soQB4ATG0ArDyMpYZBL5VBvTYAgBkfgGkAAAySZeOLi4tH2x/t7N4HABTK7fj7V38UkThqOLdCK+y4uaq88Gajs7X2KOgwvHPl/3fhdWvw4w10VAOxEfT9Kz44eZblI8c9CNanGzqEdmsHEUfjM2YjCASK2TgNE0TnV7p5y7Hv+pLnPnM9Pn8+TgeeXOFKdMysENa6u4vNbiulgWevP0PlTDPQx4fR+Pz10QslebO5vbP9CEEJZ3ubHzWbbRRmUW6W+vYOhiU9XIoOAMPx0XdnF8/2dj/e3Np1GX9vdHZ68QqcyYPYbmdvvb1VCEbJlSadaIKaQgDgOgkiOWSffvG3g/4zreIHD/7s8aNfCbNCe9leoJsA7NsXM6B5n1KsnJkWijAiKpKJrr8ICgkIsZg065+c7gukhFpEoQIAdo9mb/vjiCKBvDJcXnvNBd1oOsmrTQ1rz9SrAwBayXp+4+H38gITIlrBs4tno3GfVARiT8/2B4P+xvpuq9N1An2FZBOhpsjJfeY2g4A+5CiIAJDEnc2N+07R33XYEMVaSwQiysGNgAKE0xdGTkVtHgAgmXujKhjAdwbCHwmz3oLUxMxsmNlWNaPdx/1oMcDbAgAK3q3U66pI4Lb36bz7443wlgksIjIXABSOjJcwIJcAAHRVS+RFN3QWAxRpBTIKl+NZkufp2fnR452f7ew8dm97efDtKD1DUEnSdCJ01hbjnm6AGAg1qXtbPwtuwmqHgH/or6lhxx/ibQmXd4DuuDe86A0OrBi3nsqkVolYAG43NrWOB8MLa1NUGlicUhAAEOlOa7fb2lipD8CtvPqj84v+vhvu960tZwYsTE8efLzM1Tr+0NNXn+tYiaBY9vP3hvPjk5ej9EyrZHf7g7jRBc4bUWdv6xGwAKkiOXjjUR0FHG+kSECFRMRaOdj/qj8+ePTwN+3WhlLKmOzZ669QFZQnFNjaeK/daBecBGSSqwmCTRoOyKV9lWGrQawoGgxP//GP/yvykKLuJ7/833Y722ANkszbblf4jVccAr76I7lJ4stBNUfN/mU4LsJAIiKQp9lwODofj/vr3YetVktB7NYhEYFomMLtDHPIYAvO71AQZjahvPoMALyVOLBqqmT9pw3T/snZc6VjABDOXu8/Q6TtrQc6jpgNcBFaUWmFBR1XsHqTAVhT1G3fa0ZdQAYwjIAQARtH8WcLSBKSD30HqWwCqMUyoBWNoNq3zXaEQgqQf0OZ/bPhXIRDIQFfWqA7ALDq9f9DGaqeF1h8oeGWegjz7k9FlPbtAICp5H5FAGAmiFSMw9gLBbiqw9n50d7aw3v3PkJUuRkenX+fpUYppXU8dRmKCm8BVNYO33/wF8LFOfDuiJffpAK6ut8bzoX/IDFADQGuGO0yh2fPcjMQdqRkdOKEIsicrbV3EKPh6FwkZ0AUcFYAAKAw7rS219qb17gV82mstMLv67dzatKTs6fW2pIPI56pAqwe7P1C09zKsd9uIpaZn+9/riINokGsIBhmDQgAveHJ8ekzRLXRfdxd3yERYbO78aTV6E4YOLjscr12YlTN/4Rcgc5V4j0AePXy87E5efjgk25nS8SysS8OPgcdgZBAjgL3t3+utS5qCjMyqZdev5RiqwAMokUE0AjHwA5B8vOXXzx98Q8x0ebGRx999E810nSZfC4AuK4s7Fs2/nMZ/6SOwxaQARGAQvoTgRJxvrFlQQuLu6cgcgyQgKdqw491SWE4NuqXLuNS33EWA6wKAKzOD2Q1CcqlugU1OEro6Pz7cTogFQFgll283n+21t1c6+4IEKApubTCgA4AADDDRJyDiNzx2m6sr7d3/LVMW444PQaprarMpyhTeD/rAMBU32YZAMDlyzKzmML2y60ucvC+fKwoP1YVoFUBAJIVx/nbTuhv+EAro0dvGAAseEPIcFOAgRPwnAZoUCGiBYdKKOm1skoGVbW3A8+vqWQu9ANmEGNM7+IojlrbW/cF2No8y8YCVlGilAqDSLj+rLXvPfjEjQWX345q77FHeTdP0IPiAU3fWXlj++RS+gcsMiGiG37+u/C66O33RmfMxsmN+/VsOW03d+I47g8KADDJVIgIom5nq9NYnx4sfjeAnxCSgJAUXUF7cvFqOO67RSuMSBbRjUqyEwLyHslhrc4N5wGAsAI0qRm/PvxKq4YfJHD4GREzM3r1+inDoJls7Ww/iSixYtvN7lbnfml3BQKEiCxZsb3ns+xWBQAKLwIp0mthBKA8T5+/+KOx4yePfpW0u5qTQX56ePwdkS6+F4ufMUUUK0g3WNthsBJGYQYhw/k/fv6/ptmrmNbef++fbG2/TwICOYIiIoHc3Z+rJuhXLxBcARiscCMHQ1ZXeL/3ow2cg4sZD+fnbcQptFuXihKRRnKv8ttSsQXCVLIwrJi5h24TAQRT/lN4ZhUA7F17ueJOjqhQNABI2cIydvji8Is46oAgoL3oHZ2enuzuPGw0GoKTJ1KMAmMhJ+j2eFFWYytIETW3Nh9o1ABcyzoO6VgLZrhrMQCXjb6KDJQtmQI+N6po/ZX/ScFCMm56sFA2Wrg8r84C8rKq6FGxCCAC1OvVcmB7F1YHuPxxVYuUAtTtv6C32UYPpBlnDQcvMXKtNY+v3bYkk8ubbtHw1F7GubSWoOZbk3uUfuT1t65k/BbfnUgxM16d0jPtiVF8IweQQkJOhavCWKmDoD/yPP2sthJR/GWxbmUxEgjkaDm41LlFqwmVxgGAyucLFsqYc4QpahbHagFA+Ktnx+/ctc0DACJi2PYujpSKdrcfMzNLnue5020sbERKqVNEAUJmJsD1tb1uc2u65DlHDrU8GFZUIXsLfYZVnOXX5qa/QyDBPes06x+ePgdgWwZ6DwBajc0kafYH58yZYBFzXRZCoNa6bgiY3sx1XuF+MhY1bwCHafvj0/P+4YSMjgZRESAAb2++34has6txuiMYCeSnvYPe4EBR4kOTBwAs2cnZ0fn5Kx219naeNJJ1ABEr97YfJ1ELMZwGXuXKCRP9eWeJMCKiM4EWxjRNnz7/HaJ98ug3cbOLlp/tf4XEPk3stNe7nT1kDLVornFgVGKX+BcjkT7t7X/2+f+CZNrNB7/4xV9rapOyBCysdETMfKXnfr0ddAObuZXsX553GeHfBPefKpXakqJtmNkIlxatXObsSERax1EUFa4C0w/lEvsIIUAu2wKBqTHi6gy8bjt0XO96nBcqOQAgrJDkfHDU6x8RRkpTlg2Pjl8z2+2t+1GUSJDElHmmTzidfCe5WV6EaK2z1Wmsu/H6m6+rqgxUCeQq57OVSXttXtW/SB4KDJk7o0MRuSy5X3YMoNaGIkjHxWeHC3Z98CHoN0HQECulEQnD8WX/v5k5T9O06MZc4izOdS2UZdYPzxaqhWp9YOxcFbugbB5W0Odx3+cLv1btWeI4JtTIVM0qp+nlXFJglFKEmgrTuokcFsxazSxcnDIRzqHyzkz6UcgipOrCkXuI5FPz0vRWlkkSKh2z8CArvs5vf/bfzmb/10g4VgUA3AUsBoVTf8kTAFAUhESYudc/Zub7ex+KiOXMGOO6k4hqch57nh8jAtzb+jBJookFoGiXMdxyIH6j8oiXHvzzZEZXJT96274B10ocDQDsHz81NrWSAWiAIhdkYxuNTqu53uufOJcibxeAQkS629m6HgC48jDrtYbmw9iU2fHh8ffM7L6FG5p3xJ6NtUed5nptEubnYVxkf3HwtTFjpaIJUZD9r+BxNtrf/xZQut3djfV7iiJhbrfWtjr33WkQmhCvFvI5tv3cCFh6EjsAMBoPnj77XRRFj+7/Omq2iOX54WeuqYOorM13tp404w6sggdYOR6KhNUCkTbGfPP8H/aPPtMYPbz3yeMnfy5gEYySyF0tgaqUYC7dhjeZRVnuZ1e1f+3sT/lMaHH5qij6lHOZLvUv/gxSe3ZoraMo0lor1Ijo9V4m+UOt0NMqAcAPTgWIJ8mc6IzH+4dfE0ZKKQEzTvtHR/uNVmtjfQ8Rgev69lx4+VrxG5Ob8frG+i6JDtVgL+0FzV+ZVDv4MS9BdNXo4GOndGktCDMbY4y1LLnfvJfRQpYCAJVlyYGhZBgiKr+ikrc5UOVBgoi1IMzGcp7nWZoNmA0Au77YnNwpgkUE1JukGS6v5cUJ+nLYZsE5qBbUy+s+nGd/BfMld2DaYMq1HPO6SyqSAXdwVD4BEQvbCiEiF3+i0v0aFOCEvqiojEjT4UXQtdOCaZNipYlUvqzMAoawZcFICAQo000MnMwAVEi6Vy0beBn+m2f/s7tl0dKZlujwAKA/OMnz7MH9j0CUsSNHHnXhxj0VH5Jcv/je9mNNXVK+L8Yg2jXi4cf4WqZ/dzuZ99sxDlt42YyoXH1L0IiossYPYkFrvdbd7Q9Orc0ZLKJTAVIEiKg67c211vYKK/orNEQL+7zCaMG+PvwSABicxjY76W5m027tbK3dm1+awrIbZl8cfMEMRFSpJRTDsmyOTp6NhkdRo7u980FMTURg5gfb78VRB9CEDdA3lcYIEJZjuOxmAIaD3tMXf9Bav/fk13HcyvP09fE3pAvteGvtowe/VIVVObvve3O44vuT7EQMRUBoaHq/+8O/AbmIqP3zX/yLbnePJCdQgChgCaZ6sPNFSN8gYF5xyXnZaSJ/Hvt6vyv2u6TN0TYEwVE1GEGVNUSfYGkkpXQSxUopIu24cbNHzGw97ycGAHhWBRsRL4bHZ+evtGoiIkt+0Ts8vzjd3LzXbq+LeClNnmINeFRAKGLdsbu19rCVtJmrmda8+xYyRubw/nn5FR7k0xguKsaCOZbbzMkl+4yqMlW8qgPX/eZSa6SYZvQUl9lFyIWamLXWSTlLbobD0UXFHKm2yltpeYUw2+Wg1+5wTufCleH+yTsZL0/Nocr1oJnHylc8+2p2XygtVb9La1oWNN96goJPo5klXe2lhNN3JXWHCLXWOonXHAEVAzqxiAAKlp9MU7n+FLUoaAi49TCb4HmcPEVXXgkAoPIKVkMBmqUeLTj5qjJ/Ik6NeDg6G49H9/beUxRn+chZO/kVTwTWWhC1sbHTjDpKRf7BCDuqwNTU2rXOv1sRhn8X+PTXc2O9biJy6wdqMTjO+dHJU8NpEBnZhf+N9d3RaJCbcQgAFBIAdTtbl4no3/SJ3/yruXgmhMen342yga/tFdFfwHlgV4ZbRKSYh/EEepGXR5/mxnkgVDiXxc8OR2cH+3+iSK91H3U7O4gIaDfb293OXngCvTGTDRTyJGY3FMHMvYuTpy8+bTabTx7/SkXt4WD/rH/slA0BINKNe9sf+Krk9RBL5RjAieY9WwZQBJZBrEV9cvry0y//TUKm2Xr0q1/+i1g1CUCQSb0JHYLbiSfLH9U1ACAMdGFOU/iwWpuzdXnQ5BmVxIdZQu2EFCECABEpraNYR1rH0/TrydDwrOfMKmYAfliFf19NLG7I/sm3zAZBAwqzOTj63jLv7jzWOnY3fZIJEZYDe+WR6kreQq1md729FySdNpRmrt048wEAzSvxhp2BsFEQUikCxc+CM2Zt7jT+Ga/jF3GTcpuIFFPW5QJmNsxGwDJbZiMiuUnzPAW0RK7ITuWIBV7ppCjPL5zjfXbJ7b1qNjLNIOJZzFDLgPeVbJSpF8y0QIPrN+HbavOEYLPbBfcHpmVmynuF4X8iqOL/fc1eKAwdbm4h+L5UAQOzUMoPMomIUpFSEaHWOnEIwcEDAPLcoWISPZCpxbI4ggiIqHWkVKQocbeqcveK9eMpQCExZrl1QNP/sUoAADNjADRBPHJJwQ9AREbj3nDY29q812h0siwLFh8rFbFVG92tZqNT3lYG0c6JcNb69K2/lpR0vV6l+YY5+u0DkjdUUUPEo7Nng3EvmLxkhyfXutvGcJr1SwBQqF0opHZra621eZsuYDdK/ScpDigA6I2PznoHRVk7/C2Mj/Z+oZSaVMoDAODsMlwF6uXh55mxmorwF8TlYrbecLq//3VuxnG8trfzIZFCYmB8uPuBUonnVPiayq03BKaHgB0AODs/ev7i9+129/F7f4YQPXv5uyRJBCIEi4jdzk63ueUTGvfEbwgASgxAQDa3SATI7u6hhfzLb/7+/PQrBP1g7zfvPfmtq1C4e/7ug/ybA4Da4mWl6m/E2PLFzL6E6X1aw3yxtgIannwRaa11pOJwPrh265WjdT8VABDS83wkTLP+/vFTrRJAQZTxePj64Nu17lZ3bbcg90vw7AgrWEJEFIKw3tq834ia4Z1kcHf/ylX82Q7A9BvqZ43CfNel/pbZcl7iyaJ9FA6VQpVusbLZv6BejsxWILc2vxgehoXn4BpKzsakLumoPirsG9StYZqXXgcSq4guJ5YqQPJZ5mztu67AUf9QRKyabO2psQQEDhJ3drmsg0BegHUKpaDUrwepqV/XohREFGD/1upRy1IbAQCrMvSuWu8K6hPzUCja445qXv558mJAInJ3g4vrR98IQlQAxfSXg81izexDrOVtlgyXcH4VFSVJ0oyjZkTJNFGqjGO/+eh/D4G6js+8USpggC4L5LLaouzMkSILCu3F+3mythwA6HY3Ws01Y0XAEgiARrRR1FxrbTaSLgohKikxnI965cijXWlgvb5859V5ule+nmt/7ALg8YPQCQ1p7oNx/+xi30rm6ysALJYbjU6kG6PxhZ84dz9IRLFq7W4+vEYWe6UU/3o+A17exJPgM5sdnTy1NmcItM8Bmfne1odx3HA4YaKIUmbP/m9eHHyR28wBAHdEFV/dcVqAGeSid3R29kqraGvrcbOxTkQsZqO7s97eKycuqDbhu/l6XgSDy+/CzCenr5+/+OPWxvb9x5+k6ejo9JskbrMgiBWR7c33m3HTrQsGwFJr8nr7dxJYBADIIjsSamk8REi2n1787h//jaZBrDc/fP+/6q7vIgsgE9GqWmqXrrfFn3NrPmI071eERP+cbZ6nImKlWu4Ns4oQA2BwkHsGQgiJSUDrSGvtBwMqNyqsAi4JAH4oQW/JkOgyeGZzcvEqzYaKYgFmNr3+0fnF6c72vSTuFtUEmlSUFZLjuZXK/c7/CxpJd2vt3kyCWHiu15K/F9zPKT3+oGBfp+85JSrKAALWkWmstZlJZwk/M6oyFACalYzLs5ASsSLW2IzZjsfD3IyI5gFLp44KZZuqRp5kwSjqYvgxX1l1YSig6qMRy76G7ZP1MqG3YtPiz2XGX9SdeUrA1xHeAYDRTM6guQGNZuNbhcni5twqVYYrRrDJzG5tjArvIReKZBO9KkTlmgFuTsBVHBCRULu/dOQumu48FMerF+OZ9Cc5pEiFSsf+17kFNpPgYavZIdJFK8O1xFHhJx/+N0WMg3pItCQGWBUAqCS7kyA+HwD48d/wqWT5sN+/aDRazdZaIYYITBC1m1udZjuOGyjkZjjAT2eLdr4kALrInITrBQCnZeNWlegvk/TfxufDVXTZr3fCvePnoh+oOjl9kZpRcMEslpVK2q2N0fisqEY49yu3Lmz8+P6HM46kt3IkX3W9OYtNJDsxtoPo+OLpaDx0ekfutHbv31571Gy2EVVlmnbaN42fvf7CcK5JoSIUCr29XJvOClubv379J8tZu729s/2IJAbFYuHh7kdaNRy/DkSvHGBfsk1KAGA5Pzp6/er15ztbD3Yf/OzsfD/NRwqVkEUhZnN/9+NIFaxchqqe4JKhoOI1UYyCITpyv4tIBMhGgMQSP3/1zYtn/yHWze76xx9++GcooEGQtP/wxefWtffXvGG42g+c0qO4GQYoC0xUW+/3+VnOeTHli1DjUl/8zeVgY54UtwJUSkdRFKnYncdQKmj5TGvJGYBbekC3VGC6JG4Eo//GjF8dfRtFCQgKsLXpwdH3ALS78xAhch0ACSCWAwCO9+8PaDb23vbjSK2V67lClOXwAc1h/NfIgM7+1LxhX/elrIiAtdbmxli3tFBKncqJ9oswKITZ3A5WJA8vYjMe9fsXArkvxgeJXdUMxCXrwZCA55Rj5WieN0wMgYPBbNq68IJthZLn6tNcklXcmVhOJ9iQh+OAlkPxpe8EwzShQ6gq717mx1FIoSnTXAV15Xn/vuJSl9kvC+J58Y6pJnlh6TjLQaqSzWCWWyUlmymMb77pUfAbsWxFyqRvQEQMUrqOOqa9CrsKdXt5MsMTdgN8Z6/w2mNT/OvHT/65CCpV4E4nk++ccWFmIKN22rqi0H9pGCq2E0h9v5WltAGfEuwvBViKkUYnyOgMZcKhXn+Xc5sN+qdK6W5nG4AYUoJoa+NRM+5Mc7NWVrmpPPjrU/Y9X3nVB8nUU+P66epl0rJlOhLzvv61gco8VaKb12O88wMi9von54MjBuumyVERswGgtfbGaDSyPPYVGtewYzaP9n6xQj7AbQ8HD4Zn54MDa0XQCBt3hANAp72+2XlcUH1KL7wSOU+u4fn+54ZzhYRKQzlzXxz/7PastcLn58fnFy+11jvbHzYbXQBAwfX1zbXWNoguunVYIwY6iZuINFOzmWwuUG4mwc03e8HTmoKQ72QGHYCDg+9evPry4b0P1rYfHJx8G6sWEIBYALI2f3jvVxq1gPWd2QUdnius57CUhZOxMPf3KWeffv5v0sE+RN2P3v+n97YfF3GgzDhdR9jbt9lSktZ/wrSP2MqROV/2OTirsDmLyqZpuNUBAGE0kBn3spbFBB9YofzK4vx+QaJWCwYU6SSKtIq1UgBAZeGwIKoF9jpl9l8VMJ03d3jZLV2VnCisKB4ioqvOaobcCp5dvMjyEZJ263U8PDk4ebHW3e10tx2mra04ArCXExTB9c5up7G5zHecyfJxFi3Uri6f3ZbZP4XjH4zsktTcZsYYZmuhvh5ct3ImZxn7aR5ZlprrwhMiW9EsaW6Gg+Hp7Oj5nGJ8aE8xJYCDLvEmnHfxFXp9CJDmHOUWAASKW1WaoOUTKo41FUa+gy4u/hd1ZCIhdJRLd0QSESqiyd+gBDPBvgIwldQKEqg5i4SudHqGN2R+UVXNmpSHcwKMrECV95NmEu6acnllNhWmbQqhbqBlZhqe6ivdQb178QTIYgWdIrT+/NE/RxQWo8hJ+6GnRQb9CHVpRutFf6902NReluO/hqV9X3b1AxyVS3L5RymqZUWkkWxyngHQ+tpWFCWMVgERNnyqd6ut25sPv95Spb+2QnkbVavbHlleoVpOWPQyZnw+OBqN++AFW4BFsN3o5iazNi1zfXYkP2a+HgBYIYC50ucbM359/FQAnN+t2+8OWj+5/8uQOASlgUB4PjkAQERE2svauIDuu7pAmKaj16+/ETCd1s7W1iNS4NoFD3Y+jHTTWQgvI60zq6HpvprTsXZ/cGBg3qqeBQDW2tf7f3p98PXj+z9vdLfO+q8jSgQFAZg5iqLdrQ9JvF3U1caBLt9Wk08ODlEhC3h28eLLL/+9Unmjde+XH/1V3NxQTCDW1S4L/ijqEqXz9S7sZq8FWelct4QFv9rfBFfsL4r+EzXPenLCvCHRK3yNOtVwjYqItNaxTpRSClTYfHdVtNnHOiu0slz2fwkAmB+3Ldz2iws3X0Qcpr2Ts1daawBwXI7Ts9fD0cX21sNG0mGZTBHNJlhSst26rc1Oe1OjnhH/XcYHAOenREWOWz59YgBARp5SZXFFaWMzl/17rr+3l7oUNAbXjBx0zBRcaTaPDWTnFwcA4EqWZXG9WAbMTpWBKzliKZ1sA/VPKTMlmhG0re7HguEswXecREsWEWEjIplJefIyzCwyVUWe1OaLCn3s/9JBL0+W838u5GsIA38DtagsMrUBuJpbLn2khoEoeKY8v7Y4EfgP/2zd8xUCZPe9lo6oXDv166n1lVR5cYSsrYHOI+wsk29M6UR99PivXAdAJlMRhXNbSDAK/7PyueHjCUDPJWI4MxGTA5gbOLfZ0l5crGB1Rtsd/wLWFS2YGUBvbd7TKiEim+V5alrtBhIBEGEMIm5F3FzVfunK9JXn4W5yMi//EVekDK4wh7jtCtZN7ZDO+yf94WEJAKw7+WLdBADmrFyBAqQQUWwBAG5pNuM27s/R2bNRNiAisU6LGhz9/cn9Xxbfzuf9ng4k5Pq5zw4+tzZXSgUVGghZQAgKgZn5+ORVb3AYR+3d7feiJHbEgLXW7lpn13mQXXUFejkjQPb2oqSKyvHceVkuVcXcD4LK8/zlqy8Pj797/9GvIdZpPiIghsLxs9vZ2OjcKyfS8NLnMi/lrQmV1amqqQxYGBnh++9/9+rw93HU2N761Qfv/Rmy8y0Rl3iE1NKr7vjVbV5esHTrOn41eiPhO63NM2vyPM2tYeZJ0j/ngKz9ItPGsYUQ3pUAAJS8EURSSkUqdtYBvnIZprlCSEJLnP3L3Exa0f1fWSeh9P8y1qjXJ18iKiQFwiJizHj/8GkURVsbD7SOrTBKaEaLM4ejBdBbGw+TuF2ZpVnaB5qmMQ9NMuYSSIcAAMuWXSnhz9baPM99gusEUirV8Uoq77sQtTSk2piwEDwUYmK90Ykj+jsd+lKQPhRCLbqaTsKWJ3EVfWHUT4vOpv7+KXiKmju/ih6IscxM5fwDiJunN2DZt3kFkUgX1tkqcnEeEVGpaXo6yJyaFzKGzgkCNJvQXykzqc3+qwVclllPsRk7EZ4GqBjqgfoY5eeFmE1ZGnMl8Kn2JuO1o2u9kzHUDFtzKANdJylxTQAw9fcfPvpnXhfWz5x5xKamxY/CTo1bZA4AVL8/4RXVMKs3pXCQhtpphAlUQEQ2uQiur+0kuqmddpIzHwHhnK3NtXYMKl1YMNQRuW619j/tbnNTDMC3gyGucUN+BONuYeJS/C+o1I56g/3RaODLJyKiUBORiOUivSgc5cTyw92fvwEK0Ko+RxjPhwe94bGzo0JgVCSMCPxg50OtG1PlAVAi4vJmAWtFXhx8bkymdUwwYUiHzn1+GnicjfYPngJk6917G5v3nHWatfbBzs+iSCGisxb2t25JRbmS/GMBaMLdCpoAtb2dyXuEsnz87NlnF/399x//dmQHgITg6Zl2a+1Bq7leQAdWU4Som+2CyZBS3eEhlkXpPO39/ot/l2engJ1f/vyfbazv+USkEKJDy8W01RtyEL8JR0hE/BCeH+Iqm7RorU1Naq01nBfFSMJ5sHDxZZR3KVz/12kCFEuahUi5VkCiI+/yM62zoSo47N2Rab4JAAi6oXgxPD6/ONBRQ4SFGQDG6cXh0fPNjb12axMRGdzzFW+2MEtH7rQ311q7c66klvkw+55aq6+i3h88/SpitGCNMZlJjTGu6l8x9nJTDTCxeoDptFsWQ9zlGggMLoqCPb54XiwboZK1WBDow3aoW4Euh3HrjZmRININRYlWTaLY+VogilDZkWZxd6PwMjMmz/M0z43NrDVeJhKkSO+1UlprVb4Iyz8QoXKC9Cp8TAx16pAyI7JZ3gX2409YTXanhhYk5HFIbfWElspY5smITdqtIXmJJRNhY7PyPczMeZ5jMdIyVf4GZEHlcabHlrMzUe7BIaKdO4kwVbi57LjneaKXYTmpUoVfUGuoaad/9Phv/Dbz5t1+11U82B0SqsCAcoZYVb6Pu/SiQzTH471u55P/PkEDFp3UgCsqFMwzkbXOejPqRFGiVRKSUIsNIcIWlLukwgWA51durphIXddI613Id9/AQfWuDb0tC36EAPn4/OU47TkA4EQ/XSEEgMs4yE5A1gOAVbVTbhsAgNAo7x2dPBV0Z50R0Egilh/sfhDrbsGtn24CuNviOgDGZEpFzgoglGKc7D5GIjYsJycHF71XrWZ3a+txpJtECiRba+2ur+2VLgS8wAoq1M8J/QH9AMCkG8Bqbo7uh3RLClCajb7//g/D8ckHT/7sfHSsdIIgQAIszHxv633nWTZJUOpmDK7/XAJu6JREvRCIZSVHB8++/O6/RIrXOo8/+vBvoihBNxYFlkAhiiBXYt27gAHmlP+Lmx6KPlmbW2vH+diN+QoC4tRsYqWc6eSSGGG1AKA225vUsNlJs6PWOtZRHDd04X0xJb7xg4hv18AMIphbe3jyFalGIY5pcwA4PXudZqOd7QdatYq2fJCuTTFySdjYSLd2Nh4olQQrhOekdjVZPiOQ0ByR0Cl7Jp8S+GFfFpPnaWZy5qmLLJ54OZTp5R2XBADznsXC6VsgQmOy897rIhNBBtHM7Jd9wfFjAxJ3OmsRxcIIShefSSQMITGbmQEFLBuTGZsZk5k8y/M0JNEV1uYq0jrSKk50opQiBUopRVHJ9J4S0imfEc5krDRdmb4klygxf00hZja/r+/p1a394D6HDM+FO2JKSE1qa0N+ithNOyhFaTYYDE9YsmLGDJWQlE0Amh4PgGUAwHLhgpbB7VMIZ2kAEL5jqrP980d/w+hHH7hEolOjzVPcowCqqhInOdNjKFUFl1KwCVoeOD2oUZT/iVyhiIgcy1jAOnYagdrc2EvijqIEACKl2E7aTIURg4iApQJIqGnZ3dUE4sV80Hf2AFg8n7ByeHBLwxWrSqCrQ4qMSNIfXZz39pkNEDIbKCl3nupTGPaBklUPAd9+NkeA/OLgKzfmhWRBtHNk2dl41Ew2QtnQqbo+spsBcDKgBf7x1MZwAJRRylT74OBPgLKx/qjT3kYEBBCxD3Z+EcexG6hz/gILcsrKXClLqqhRXE+RmhcyAIsBQNHNAEizwbff/WOa999//Ovz4amOEldzcxzCR3u/UJSEFuDLA4CryvWGhyKIBrGCJmf79be/Pzn5Uuv48aP/6v7ez0gQMEcUFF0wAWAySPDuYIDZTDpQDjEiYoSttcYYay1zLrioGB8m97PDjrUAAJamANVgAKcjHnDZHbdECBWQ1jqJGlEUaaTKNN6P7+U21Fn/sD84JhUDuCFQY+z48OhlI2ltrO8iKkfWrSv8u/zFolCntbve2Zrv+MFLrLR5qUhYe7YwUWCUsgSeGbYl3X9ayTewAYZyrsMvIbswobw0t6kAABFvy4rMeZqNxmmvnGMUFuNCE4PudraItFIKgEBKkWWxqpShZ3EbxxiT5SZL01Ge58aYwuhax1EUaRVpHZMuavlKKSnI28pL18+qiM6iOJhjzVHe9yuEnVkrt+l7OBUMsSz0uEIbXbbLAiubeQVZmfO8vAfCdPfPtXwRjaTj8bDoTIowGWTxpgReMr5iPAJzhq1rw+PtFm2pggq4HgD85cf/51xGF73DIokXQvKqfzA9hI4LHkA45e3GRMrlouq/BgVO1DOT2i5ld8XXEnXla2tbcdTWKiGMiQgnptYY8peKbocT2iM3GECe4DGV1tykkrp0bhryRy+DfavPm6+nKvPmh3ev+kVWeH98hlcOkYtzvrTWSiG1YL32g3+aTt/g2kPAb6tS6DbC+eDoonfo9woQAst6e2e9e78g2BSSuNM9PeZnrz8znEdKAyny4hglmHf9XAYRRkJkNscnLwfD01ZrbXPzkdaaRCOZdrKzsb7rrK78LNSlDXf3nu9ffvb+w186m45Q4GzuSvbybSUAGKf9r7/5OyvZg70Ph3aklEIhpzkQR4lzRA60j7w68IrX9iwznkAxGwEajQe///LfcnamdPuTj//rbmdXRAAzEA1AgIZACfIt14Z5gUj/Mjdh0m1n47x7jTHOg8Kdu6X+3aJ0KmB4Y+2hvhJxRn8NlcO76DwDOFHQKIqSqKG1jlUc9gHeJO3nDQxuIcooGx0cfaejBqLL/w0A9AcnF73jzY37jaSDKCKqTvzHV39tI+qsdXdj1ahI4tYmJaH4z4xACs/7OuytrEhCkR9jcpc8QK03nKAEV15L95+XwF0K8uuWa/jdrQiCKFLgBhKmdVcFVKEF6WR3rM1tlucmtemoqO6LKdYk6ihKdNyMoiiKIk/mKY1ZokrGyQtVHMPuDQVfbkGNf87SkssSX7zs/YVx9AygWmpofh5Xfpk4XBR6hBDRihmOzqUYorCmRALBJfEsXJztI60sS7lilVZK3FiXf06KbvjPfvs/CiKLNWZ83jtgzog0kZ521rDLxB1EDNTTiuDohMZrigSFzKiq+BDDZG7MW8Th5sZWEm9oFYuICvi+oaVZyWLy3hbCQCKicNIcNGIUqCuFxavOWNRl/7fE21/d8T6ndLfw7Vdbsrde1Z6EE3vl6yxzRId+Xc53dP59mo2tmFLfphJ9plSAXPvrrRzwV3/wAoSDce/0/IW1edEcQ0LhdrKxs/lYivCrRSxgsNcErPCz158xG6WUkwEt9igCEQH7k0ZAFIIFgFE6PDj6HsFub73Xbm0CMoHi3Dx68EuFVP72ZfMVEfnm+d+99+i3GhpINlAFobn0XN/KkCIIjMa9r/70X1QE6509joCIkJWgoGC3u77e3itI/0JOXWBGumS5btL8sYQ5gNaCjQQZWRjp8PzZn776j4Sm23348c/+JtZdwJyZ3fokiArKxPVn0ZaJEJMAtaRFqwvmLsV3M5eZMa5yKWK9tk8lzZqn9eR5GnRZknElGdAFRcqK6Hv5KMnpeLurinWSJEmik7DO9Qb39e0WkkQEiE7OnqXZGAtXhEL88fjkpeV0e/NxFCXMBkBPWYpOy6GKyFp3t93aIIGKfM08ADAnF6cZW1mZBQAsxhiTZpnlDLzZlniKfHXfearG4htV09m4LFhVHGEQwXHKBTKEOBQvhtBzDVmERawFm+d5lo+zLMuy1GRja61CrZSKokiRjqJI61jrWEeRUp56SgQIgMwsLhiCLVP5SYeWseA+VU55mtlZl6WYCEv3SWYx9qyK19TzZfBXXlfFv+pWunT949TqLWtYxo56/RMjma8xhYCf5PIsfBkMUJc3cjlmTWFnA+rkYi8FADARDK22zoow+89++z8Gn855nuYmtTYfjc+KgihVzCawLLVTcCM4fMAVrzIIZwYEiAiQBcilTaGeUTgPZC1ub92Pqal17K5kcQviGnKW8yoTNwnWy7TSlr/UxfNw85yuL437rh5AtTr95chj5bJrE/oFX+qHPiKcc3p0/ILFiuTMgIqckRZI7lsB7uvf3/soomRl/gxzhCwv3efVz5RF77fWvjr6gpmKRpwwABhj3nv05wollNEIUZaAffb6MyumHIkWz0EMO7Bl89AAgBU+OT3oD467jc767hPNMWnFkm917q+1dwQglBmtrKvK2nN/Pj5/2esfffDozwuLRCBAM2vEhihOeBRQOeMtRDQCADwanH/97X/SUTNpRY1kDREBtYBBoe21B83G+pWahIvv86JcubK1hVgMgnLlPQD47sVnz179Q0L6/oN/8vjxx8BCQohCKA6z1dwxAYbVdcZmtHdmjyvH8p943GDBo7U2d1QfU2r5yxRdG+ZxZAPWWWUQsD5pKB/8zb/1os+ZtCm4OD+TKE6SZiOKlYpgvlpfrTnM8oG67qGsSgbUg2cG0MDiYA4IpfnZwcmLKIpAlAuAIsqY8cHRs057rdvZIdLMptCnmnIaAgBXCjFxtL69voOoXAYvpY2FmnxrrtbypyZ6w3yFg9s7hcYd0ddYm+XjPM+MsNfzqRb+y7ynXEjh8r5y4y4UEQqTwunafyk0I0WEdAC5yCPL6oAVsWyMGY/GgyxLTTa01jragqIoiuIkabrWk6Iy4yesZK7zK+7VFV633m5XAP16+UClKbdE3ryosTBzxHgAEw5TidOWyM1omPZyM/KK83729eYZ/6W3KxyrC/Yq+sA+aY0UlzeF6LDOKG0BYMB/9pv/6/Rts16IjZmJlLWG2Rg7uuidCFnHUasxAhPyrmYQqHkiRm682FHwy7aAdk6BhTGyEBFZW4hbb20+UNiK4wZKWYGbEeIITc5qA2stfwCmDbBulKgFfgLzGmqzFn2zJ8El449zcqOrIMulhMxnTXymFg2L/MD5rtdone8ff2dsCsBWipI/sAVSKBxqVd3b/TCi5FavbQEGuMZzcQO+p72X/cG5QKHvSYDM5sG9XyS6WQQYooCDVwUApTVVEZ6CFe7ptsWs6ijtHxy+AMm3t5+0W5tO66UZdbbWH5PG2bR4Ac4Ukd7o5Oj42fsPf6MpAiAWQRIUqlBi/FwUS1nOL0ebzs6Pvn/2d1HcaHbacdQSEaSIJQdLj+595MaKwuL9m4GyxUglK+ezSaRzGX3+5X86P39OqvWbX/yL7tp9AaMBWRCBb8p6We6Qrq3azoLDwidIxHGUHeGnVGvwq3SS9y97S6dQzgIAcOsPqAIA3PUrpChKWkkjjhuegDov1/eMlGu3Sa9LN5rbMXDnb1GeFxCxAlogPTx+bsEU2i9s3Ka+6J0Nhmdbm7tJ3C3zWvTGCEEWQohobb69/rDZ6HjfuoBRXNXyn5ZrnCW2IaJY8H69qjyeLCNYa7NsnJncCchakFDQMwSZFQAQYtvrrYcK5FPF54tvSYaV/uDLCIAI2MwMs3ycpmmep2maGmNQQKkojhtRFEVxEsex1rGb1q24HtmgCq7mNjFkDsRdfdK/zFlmb/YbSS7JmENB+XKxTSX3M5uiaBo7dwuBfJyn47RftH7D3+x6NWRr73Pd9YROU9eUaa6crcHlFEjSJ9vT8xtSmeqeW2/y7/nrT/71nMDEHmJ6x3VjsrPBvrV5KYOo/Gg/iiuzqaBQQb5FGAARhwGcKbF7WqKUQtFbmw8i3SLUSgfW617EY04FBWrthOeHzrmS0ksYUiyz3GfMq5cCxFcdH1zcKKh408yz4y043AhXOpaW4p/98BVCEdQovzg6+Z5FIZUmLMJAAWmNUCzv7XwQq8ZNKiJL8euuVWleAACGae/49Kn7dsygkKyY7Y0HTrNv4gAQCPCHACB0f8SAO1FUoid4AAH4+PSgNzhoJeubO480kRMav7/1JIpbrraxJB4WkcG49/rwyyePfpWoDjAiEYtxesmVZV8IpUFIAUJEOT559fzl73WUtLvrWjdcVodaWsnG9vr9Ig7MAICr7tAlg37FiRMhcjwfYcUIadb7xz/+LyY7XVv/8OMP/ipqJCKiRTnto9kFcAPeHfvyatXrviLbFw4uB9m/MZm1NmdbHKg4SXz9ARwWZWfDSIV/71pTcDkAWFmKPzu+6Y8F5EBGxsNdZhHRFDUajVbS0Dqe7fqutisIqxSH4MJhyul9iYPr6qz38qx/HMcxADFnIghAxg6Pjw+UUltbuwjRJBlB8bRb581HRNZKs9Ha7N5HVOXxzaV8As9SenxuHAKAyRgGSyHwX0SWIg8zwnmeZlmW20Lis5Z2MovHqOCVrfKEcna/MGN2AeXoEZIwW2vGeToajwdpNkrTgRHLzKR1pJNG3G42Oo1Gyw3vQlFDoUKWXhAJhGtWiB/JDdR7ZGGbazVGold92RXd8FnzNU8b8YnlrBYtgJ8wZveenNPcpGnWNybzPxtaAs8ChmvhbVoyFISdW5TLE605f8/hOOJSAOBvfvOv6wo/5JrmAracYQcs9TqYbW5Go/FFno9K1zcigUDGVRUYANnFi2KKwPFbS2FQERFR62tbWrW0SrRSiELYADSIogARlREuUQTVdgAQVG2snC3/U4GepXK20eI6yZz7znO2yrz/nU3ZKzqqyw4bzJHcmv0tcywq66qkIJOECWuyk1mqz/y5rhWDgesNMd/8MpwSzovDL0TEOm6GZAQRkEwK3jcGALV2UbU5/VUBwCKaWTnz8PTVp4hK0DhNOUEGxg8e/rkX/p/aWYxLAIDJpESZLCIipung8OSVNcON7cdr7Q1Hzmk3Wjsb70E5NlCIKzMHanQ1r8F48OLgD7Hqvv/wlwSKQYgIxTnq1No7TWRAXS56dPT0+as/glY72w+B0KER5mxr471uaz0EALeTeM17KkSKrRUEVWqDRAB8fP768y/+PaHd3fvVh+//1iWphDiZy6KVUO9qBuyqe5yL3nSo7eNGezNrXL3f96+DwhvOZv+zYWTe8NzEBiFsONwOAAg+bbL8hKZYyxMGCJcXJuIGA1pJo9Fo1I4DVdr0S3eEbtejxjfrRGy5C8zL46+9OqS1qaviDYanZ+fH62tb7dZ6kNOoUKBTqYK9plWyvrbbjDvTtGa1hN5/lRrEWACAyY9hgTazLDPGGDaXkhxmEMWNSuCzZdciKXI8ewZERQLMTCguU0rTUZoNx+Nhno6szREx0jqJu3GSRI1mo9FQOiLSXndfZMqUauKwW2c5eJXn7j6WbzXRXxUAuNRkbRoi1hQop0kQxd/nbB3LPTf9Bc+0XJBcthRknl9N3X2biqXTHzt3oj3oYFPtWe+dyMtLVWEJxqvgTOeTl5tF4l9/8q+XDEAioigqB9Hc37DldJz2hsOLQGpKAkM1QhallAURsf5RiUinva11HEetIDgiFBaLONHtwYJXCgv1+yckVH8IBX+euol1in7XWP1eVGRxkr2Ar18BCQuuofadlVYDLVbLAlX5EB3YeofirYK1xX5eMH2/pIXTmwEAq20CDNLeee8ZM3nBO0HXOSEABkI2dm/ng0Q3V6bfP8cuiubYzl+5A8BCRCwoYM8Hry96p8zsGnoMgmAe7/1WKRV2AHyGymI8AIBgNAgFKjOjvvTr4pSI7Q/Pj0+ft1qdza3HMSYIZCF/vP1zreOi1jVR9VmUJ2XGfPfi75WKPnr0Z8XoGyFKlRMfXrYnNKIQM+8ffvPy8Asg2tl9rJRiY4nImOze7i/acasYSUa+rUUl9eBZgFyX2R//IkKoLeCL559///QfdNT4+c//em/rkbXixh68L9XyU9Tzd5lUTG0CpqnzzRGPowSsS8LyPM9sVj5oDEtZrsjqhg4B5dLLqwUA8wDYLbCfqmpCMrkemS06unaBz2kcflUUJXHcbjS1jpVSIdJ+M/n9VSNqSNsTVqTg7PzVxfBU6xgEWSyAEUERe3j0EpC3Nu9p1YDp3jKRdlSikuNEjaS7tbbr975n/4bZ2PwOQE0l1c8PuOw/TUeu8A9XFHsNaPqrWDAVSn2puigiYo3J09Gol46GNh8Yzo21RDqOG42klSTNJGlEUUSohRSgEim+rUK0MwBpmn1+PRrP5T912wDgqszrxU+qBk54TSqsyvK4AJXZ8TjtZfmwFLtXZcHaQuDrt2TD51r3bcq5ogp3XR2H6xXt5hyLbIzJssxaq7WO44YLO74VP6eIPf3c/+rX/6rya3CqVDPx+yTy/VwIm02IKALGpKPxxTjtAxoiQlCMBEIKi8zJWouoGkmn0WgrSohUMHJOXpDV/dlP/c6r6AfIW2ZFbWF6cDBcDbXDZyT1C/SqhPvlD+DZ77Ug75nK9aXaW7ikZTZDlCpdlpUDABrJOQJqrVWpcj09EuD0RuhKG+Oq/3rbRlrX5M6KPjz7LstHZU5mPYfNbTBm3tt8L45bKwcAENh8XKcDsHh0WBBI0qz/+ujbcpyIUBHb9IOHf+5MdgF5ilsfAABN5eCjKoLahKpICrhmmMSwPTh8lmUXW5tPOu0tRWTFrDW2tjbviS2pvWXdPZTrrWwuk/NJ/+lF//TJg08S1SS8bDqlCgDk5f6nLw++ihvtjc17SimxxS99dP/Xyvlf1iVtK6NgFTdHpqueUMCYIgsnLvshoLTk4y+/+Yejk6fdztYvfv7P2nHHgaXJgA5eEkAu3V81k0JcCF+wq6eALRTWnci6zUKWv8fG0yVGn7dNtPNCVkbtYf8WAUD4sdPJ1qLqcnGgOClqAE1Rs9lsJK1IqUuFK26iG7sSJBAm6ONx//DshVIKgIWJmQFzAMiy7OjkRbez3u1sTWLFxKRTBSxfiqPmZndHUdOZfAf2rp5ObOflRjM3xwKAFXTjdk7dP8/TPM8ZrozPV3XfpvJ+8l+KiW2WZblJR8PeaDQQYwWsJlSo40azkbSSRlvFCaEuKvF+7yMH1T+2EgyT1IHPq5WwKrHqx+JcMQsAEB1NNyw/sYgdZ+dZljEbt1a972+dthsHSKBeNPMmecscdkZYPVksNzfpqyNbA/lwOByPx4jYaDSajZZSUUDExfmOe1UA8D9cJeuteKxUB94BkNkaO86ykbFjdiJKELWa60ncLqzppno0KBIWGhHAIqpS7EkgmKCqBQOMMG3N4EMMVWtscp0m1AwxdOI0XKt7c1UxoqtO19ZOPizZ0wijSWCDCE7S3sGARDtF4cirNoHXdqwfd5blKjrXTNzf7ssZlx6fPsvZMpvAmlp5AHBv6/04bq2sMleR/cIVJ6D+gRq2Ivb5/pcQuEsiyv3tj5KohYqYDUEkExlQYrBPX33KbJzySXCFXMpcCJDyokChjziDHQ77p6cvlG7s7T7SOnaTfQ93P4iiBBi9JOgCTQMAYAuvj78dpmcP937RjNvFCMGcrH3qTjICIzN/+/wfDo6/anf2NjZ3QQjd76Z4b+dnkcK5M0IryzRlRrzYHTg27DJLmRVYZkbIxsNPP/8Pmek92PvFe+//plBc8CHQr5Ppianl993U4SSFvoRgQYEXsIbZcu4KThWWf1BnkdnDggEEOJCGg6LeWaPzXYUBbxIAzDMoRaQZLyEfgacQi4h4jaBIJ81GoxE1Ckp3HXNgeS7QbSS4QfbvFkB+ePoyy0eEERJb6w70XETOL07HWX9n675WjWlSAU+GUwnFQrPRabfWY9Wc+IiLLMH/IZgjMyViBVW58PywL/gapbeHm5X1dNyzlWzhKVDK5W8pFr61eZrn+Wh47py5EDFWcRw34jiJdRJHDRXFQMo5eAMUKogMRAKhoLnrDZbx/Doy5TNCNz/O7H9OB8DdQmY2WT4cDnssGSlB0BBYwZaG0xjKWk49apQZFdqaAvHluh0zNi8L/vXS2g0z+5l7NlmeZoNRT0SiKGm0W3GUVNJdL6MffP4cBsdff/KvZidXLsWUOFXIwcBNiQM3aXE4jEh7/2D/rxX3nsmlg2YxSvmWIoReP5X5s0pnJPzCbonQzDiFCxmXHiEroQnN+9gwzF3aGlumM+Cbm1cdHfMdnvLmKwQ3y+W8BKNYawcMPHKr3HCaZ/yB9S5C81e5LAC+q62sL/WkcJJOZfngtHcQFBImkxuXAoB5nP55jwblijrf1xgCFhLJBTQgH50/HY16IWFxq/twrbPOgFSIW0gtAAjoOixBuuYoAYiqUOEsAy6QWGvPLw57F4ebO0+6nW3FaCFt6a2d7Xvu/bXa9tXDmPm0d3Bw/PTRvV90WxsoDISXenUVAEDE5Pynp//x9PzZ2trj7toWIrHNiGh9ba/bvk/CE47w7TA0Kl3g0FnCHUs+LXO8R0JkEUY4O3751dd/pyL6+ON/vr52DxwFokyqStsXmsexXnBXK9l/EZeCsmtmjOXcKfxAOTLkdfTKD+G6liZyMbY0sQGagxZqyvC1Q5xvDAAEhRKp9S4NMUDFzokEFWqtdTNuJkniWuL1K2ppkYkbdgDmnCAirBDxvPe6NzoJRmKMq5Iym8Ojl41Wst7ZLb9cwT8mglKNRCFpa3l7c6/ZWEOrnJ2q+3YeMZRgoPItqBKffTBxEp9ZbtN0ZIxxPSjEYgDDHy/uzzNLon7Sd56GzDKp/wTmiVhrTTpOs5HJUmNzsEZrp9ujk7gZRQmigkIYSjlTL9eKRHIeeOJoY6XqPE86KjJvt84Z4sRlOgBSu7/Cyvfb8iO6KgybbST6g5g5G6eDLB+GqzSEnSHXP/wnL2BVu9ccTuPLDMgW9PfckimWO+mwN37ZlyYqrKwdiSbP03E67mfZWOu41e4mSQtIF7kxAgCXVGGeCcU0rwPwr8LlvYpOU3XLXKmwsXwF3ZOUVjLRPzvWU1uGrECOeROxtVOztZ8zL+LMbtTFHQY/ilRdQXLVRlXVz4iIQFGioziKoijSWivwzQEqhxFLeEYYKoosEXN5foLLS2KA21Bo8RGZLZCC1IzOzg/HaU9ElELAqEwreXfjUZK0r/r5czn9866frtgpkoW/3JUHSMbj8f7Jt6hAbCHg0+1sbHbvE0QARrxfOihHwK34APirIqido5o+OIFykx4cfq+U2t15HEUJiGJr7m09aSRrCCDF8HFaqolXMwOXxw9HF9+9/Ickbn/w6LeFIClQRbNo0k7BCNC4r8DMWWY+//r/Mxqfb26+12x3QEggV6h3tt5rRK0iS5vKyZZdhEve/KkZmym6F4tUtYMdVU+QXRr9/MVXT198em/v8Ycf/LUCLWKorIwU7gve9awWiIo4dUIIBADClMs5IgtYK2KtdW5E1loWcQXdIO+v6cTWxqhZw+LLKk2r0vVffdoxQ8KuYoCw+FGKtKgoiuI4TnSiKAomtXjBjl7G6Gcl551bA8P0Yv/4uyhpOJqf3/IIPBieXlycb25uxUm71I4rqv6BeBcDq621e+3WxjxxkuD3YigXXt5DFeZDiGhFcpOmaTrOhj6wIOLkPvsiLobmrDhPCnPxhN7iHtTEVkxETEH1cXPPiqKCQEsREYUK/e7SOLDWqmsxyfyM/8odgB/iq7YAGjptVSCKqy55EOhaMMZk4+zUWrs4e/TqlEGKjLNGuQEhx3otu9DsYlIwLUqiyl9bRQrfvWetu0scE4GIDEYnTubBmLHLkYT8/BXP+q+TgJBiZpuPXJeJtGo0Wu3WhpRs5OB8lEqHObjOKwKAOWBxAQa43ZB9Pd7krS7c25tFu0aVK4yetUoaN4BDYAMjTK3iRpLEcRxFUUSqjGvkfUAric48Q7EKRqp7rLx8N+A2lsekpMeIJBbywaB/cvYCSADIUXyB1d7OB4lOrhqgV0LpwWs9Wd+OY7DW2ldHXzNYEVQIAMQMjx9+rCQKU2oPAJ7uf8ZsiLRCChrWM3LFtQAAAQB6vdOz8+P19Y21zp5Smtm2Gp3t9YcESsqEcWptyBQEEpE8z7/87j/FUePRg49b8ToCzwMAha87TQQd+4OLP3z+/0ay65vvNxtt91Ni4fG9j5VSpV3ANYeAr9NlmlrtVLMNhQW0gJuzNF/+6e8ueicfffAXO1tPin6UL+Xi1TBwyO7zL2YeZ5mxWZ6npQ/7hI3pg97yu6xStFkiwcV3J/u/EgCY3Pyy++kxABFpFTfiOHLurTNdwVkd58V6uCsCAQRiDaf7x88BrWDR5Sv2OwBIfnyyDwCbm9tIMQCI5cD/S5wGF7DaWN9txV3v87MgmDsAMB2xMcjPhAFYzHg8Ho4HRYqME1WcYJVQmP3XPZorWGouPlKdhEnhz2XZzc4ppUp+V2gBMSGJLr0Zb0Ul74f1WlBXDdqGE8aaBWE2ltOCas4GMZoIoy267a6vxeUzCpclhco5wZ/DajqFaBBQEOJuZ12pWBjdDC4AuTI/MxO5KeSwdMLD0XmW9621hSUuu4TNxX8PJMBr6LEZj8YXo0FfRJrNbqPTVTrCYlaEphmzU3Oby+ROiwAA3E6z9c0H7mUq6PNWZCWZnj26KkJ1SxZvVl7jmfftroooJryOsi8mInZialicXQpRa+3AgHY0IUBERX5GinDOJRWTjov7IaGE3Jwa9u0GypLSVmIVLmoAw+z84Oh70mW8YLy/90FMHUDzZhY23mxLuoSvyNcJRex3Lz5XShiQ0CIkzGZ3+/1W0pl6KEKAbJif7//RCX4r1P4pewIr1HnzBcq5AsDW4OnZfm6GuzvvJXFLhNnanY0H7eYWAAFmCJFXIJ1ClVQMQxsrLw6/6PfPdrYfbK+9pwhYkNRl35pZGA+Pv/vu2T8g4vrWk0bSQrIoWpF+sPNz5xdWxkG7fOJ17SeyDNgTy86TDYAA1Tg7/eabP4BEP/vZnyVxu6BEl2MAizWUwg64y0GLDgMAIOfWjtNhmqbGZFYYcapm6Qui88PIMuQK+UGfI7W2o+UtmiSL3sFgouEIKIIOBiRRNCFVBlz5ivTCPLXBVXY4GQXy3uDgvH+GiESamQXZrQoANnZ8ePi6211rt9YRFbMnajIAEGn3N42ku9bdjamxjH2eHzv2JVL/lQ2zgDXGXPTPjTGIU8J3FiS8OQjkNx7yJdn/TQCAzOiGe/W86bwSw04FTSANL94viEs91h8Tg39BIlRnKAnO9A2AQJDtKDXjNBt4lpqXrIA5GlO1udkC+/lJ0u8qHhPSkPuDSuKmU7IBcFaWVFe2QAA3l+ySf+vaywxydvGKZeyv2f29gC2Ec4K0R0TydNgfnGXZKImSdmcjSlqISnAiFTp9AzlYLVPjOksBgHAelwEBZ8M9vmtBfF61O0x8bxI055FquJyBq8jQ3nr+d8VAcCkAqD1pZoenGdnDzYmFHoNrASilYp04glCstJ8hrm1QzP6lYL3GUNh0u3bqXy5cdaWyrgMAlfvgzAFyzgfDs7OLFwCwt/NhM9oANG8sQN8QAAgyovKKdUDSH58en7wWBBQm0oKw0d3rNrd87dxVBB0H9/vXf3A9hGsAgFLNj9I0PTp+2W51NzfuuXfGOt5Zf5+Iir5CyCGRac0NAWY4PHm2f/p9q7X2aO9XiU5EZBEAkOJjrbVff/e3x6dPI91c23yYxE0kC4zdzs5G+97kl+IMgXL+cO28h7KUnd9CDy+HpVkQxLpJKkEAMOfnh69ePN/afbi789AzradPL1gIV6ikcjMAMLO1dpyPx2mam9Tv2qm4V9Zo55wI8751PSnxSvWIdzBfCb94Hb+RK9xrROeVo1xd0RWPYxW7AgogE5HniszTg76dvjcbY14dfSWCSqGIErFu4NHp9g2G5/1+b2fnHqkEhUr/X0BQ4H08We/uPE5U28HmeXzXS9M+CzbP89FoMM5SAPHOyhX8OVt9W1Ic86p3tVZX0HfXS6nECQcJZLJ/aSnEG56z8uPO8i8FAJOpp6n7UAjwMwKzyc0oz8dpNpjzSYSIbkgpDIahCff04uQKzCsdPCgoUzpaJiVJ0ow6RJpQOyWbsJ9Q9IzRXzAWurdohJFAl5OxgAiZ7Z+dHwCyVnEgqglCyOzEEpQRViCW8+FwMB6di2Cz2W531oG0ICjUYFmo0iThmcM3TPoXAYD/IWxgBWXCCrvOvQfetSVaMYUJsg3yD/NmAGACH0NzSlcrnG0NY7URP1EKm+MIRnOC0fW0Zi/phCxRaaDasDVvXjlsCzjmq6NFuoGBKIp0vbRoAC0AYNrSfKZnB9Nt1jcBAIClQtKtgAEXIAhjAEDMBPSt5veXygEtCRQd15wACzIl2FHePzp+4fqnjozbbHS21x8TUeiihcBW+OmrPzCIJlWMWJF3RV1UcvP+UJ55eXFxNhr3tjZ3kriLSGzN7saTVnPNUdjDhzULAESkN7j4+vk/NJvtR/c+bifrAOCwSr2LQpnyXvSOXu5/enz+OtLtre2HWsVIggJ7m+81Gp1Ls/wrPcG51X2WSzsAUwR9IAR2Vi8q0iKCYF6+fGbF7O0+iqLm5EjjUItzzuNgLNNSdogoTUfDdJhbg8X8ZzlUZ2X2m4iIwvp6/3SqFKql/agAwIJkrrbjUWYegUePkJsEcBILjhTkeUF1NkZXlgpd5gcdH/r04qQ/3FcqYc68TnnJybHHJ/tRFK1v7IigQu1af4DINici97Z724/jqFmSpO2s+B4sVEBydH9r7WjcGw6Huc1db2ReB352/cyCixUCAP9TXnbGc9ODg9vlXjSLfutCAc60dPgnm/3XYi1PznEeFLlJR1k/N6PSboL8AOKsEdOl2i1hB4AZJj4YgTaDCCZxO4k7RNoJ2Pii0EQVPRgyngN6izBIQFLQCVggPTp7hqCVUiLCDG4woOhvACMXBN10PByOelk2VpFut9YbSVtIuW4EMCpQdsqmky9b7VcEAOVHzA7d4rsMAHBKQpGuHT2n+fRSW2zAql51zd+H4Wn+++fp9lzzPszTLa0GUJhzVBDCXEYTlsXxubtOeCL9rpzPgNaxLmYGiEijnkTGCcN4AUFrKRfuSx/0VY20Jt5SAS3EcX6IgJkBFSA7VakZaZdlf8vNAcCVO0IT12cGIEFI08H+yffuPxGFKLY2f3zvVwrJZZ9uunQWAEDp+boYAEzYk2hcfQQATA4XvROBfHvrgdPGbsTNrbUHJY1yJp8uB47df6aZ+fLpf1ZK3d99b6NzD+rcEib3XMgZFR1fPN8//Prk9HWzsb6xeZ9QExECP9z9WGu9AABcKuW0/Pvrr3Dm/AiQDKM4YSW0DEqjiM2y7OL8qNHstFodL8ruaV31PTcuHrvr5GTGpNloPB5bmzl4ztNmAlNsohLeL1xX1UtfvCV/XACgWvGp1I9IphzfEVQ5uYEatSuUeMHQWonA5QPd0mJBDAAnvZfj8djVMpiNpxYg4mjcOz8/3draSeI2l/5ALgFihrXuerOxrjHxyTqzcahgeW94BrCcp2k6Ho8zMwaAUC0QEZllnv/nnKmMqxFrl08PFhyvM78RvSal98eYXRshc+xK5OQf5a6ZUYRnY0yWD7N8kHM6pTJSqqVVwtSCdK5CaihT/2KOxdjc2Su5Qnsr7hJpwriS7nqxk4rOZml2UWPzWiorMoJiEEBzfnFg7NgVDQGNM1W0hZte0VwVNoNBfzQeiNg4brTXNhGVy5qc7u3M/uIl4O7VAUBdzrpgld46NehSucwZqs+8H7jadfoZQpgjrLkAdM4T4pxjCXGjyu78uIZX+sCynoHzCl2Vzn6tlm2pXDvJYjSR8xprxE03M6CRQgy9EAAEafx1Y/pVw6tryhORMPrWtpNZFLFACBIDlmUzULjQm+bmAKBWM+Q6Q8CTrjUDaEHO8/TV0deec+nO4PvbH0UqnvzSCQD4lMFqirxvdC0AqFPHKuiU7pkyQ5aNe/3Tbmuj3V1zckCb3b1uZ8uVS+pS4cl/WoZvX/y+Pzzttjee3P+l1rFPqia9XSzQqtLIFoTw26e/GwyPzi8O263N9Y17hJEi1Cp6sPNzKCYj+MoV/SWS+2Xeg1LtlpSJu0Wli6k1V04Sywj5cGzFxHGj8GTgkq5GWJOaCEGRi3Ce58N0OEqHTjSj4DIQ1pbiQgAwfwfOVWN7RwQb3syrFJ4OyQZcqk5jmI54RlAxGyhSFEqiRqx14SIs18llr9QBMAwvXv9eqcRtGWYjoN08CbM5OT0goq3NvQLqu1qA4Mb6bjtZQ4gQUSD3+NOFjnJR4eW/XUyapsPxIE1Taw1qhYjeqWZp5mqV/LNaAFBxI71Wjj6hAFz6IW9A/eld7gAgCiA7r7dBelbm/ZOY7BL3mebSFEcgZPsEyGGyLEuMmgPodmtDq4bzQXKfo0DN5B4UEHsk+F1uj5tQKQimOEXk29eC3OufpNmgrHBxqDZhBQmYiPI0Gwz6aTYiokbSane7DFSoCXGpPI4MsKx28E0AgFzK4Z7NC1fbD6ok4pfWk25+3ixffZkHAC79+3cNAMz55FD0Y8JTrJYJGRTCtJBWqSOOU9mBiAAXAc5RYJM4jqIo0Uk4ULWM0VgIxG8PABRTv0XqX2D9QmWrVJVByssroasWg2/DOfiKAACcP5eIPN//vAyREZAFxp31x61Gd6L0J1SoANUBgEr+6oudValmISTPkrTMPBwO82y8vrGlVQNJUOje5s+0jpHshMQpIYMIAEAhWeH946fPX3+50d2+v/1Rq7kROuNOfdNyztIwfP/873v9k17/uNvZXlvfIUwQZGN9d721F8r/h1s4pOLMeQB8pUcwTwY0DNYiIp40IiRoigXGpWEzMhrK7dh5wRQNK7cOa+OkEBSWRdlgPMhM6tBEBXhPSVMLVsjN5TzromLK4lGfH9Nr1rIgqEP5O1DIJ7gp1akmQPDnEmURIWqtW0mrNGWfWi0rV2vPrbzc/4MDkC77FxFFICK5zY6OX29ubLca3SIJQ6Wpsb621YzbIeYvxHnLMaHQ93fB8TTOsnE6TPOxtcaCGyegyXRvcea45knNrqw72q6Toy/TqZjHIVl6VeOsiBbMURG8lrTgD0PFfzFsdjm6MVmWj/I8FbAV/eXCmlCsiAon0d1icxOJOP3ytP5S+M6WT43a7XaMXaVUOC1QqjBLKK1TWxAJHO4QQJWujegZSQVZrmQNicgwPRuOT1BFyAowEyn8NyZjA2DT0Wg0HtgsBaXXuhtx0hJCssggjEU8Jiky4RnDskWpZtV1qxYAvLO48Eo5+k/2dRsOu5cCiVmeWBjLpJaeWcgNAhERkVJRFEWx0lqVL0A/ZIMCglTb82JvfTod/3iSXS1VTXljmcq7s1BLlQ9wrQwR++zVnwBzxMgNnRKoTru70X6CYMriMiKAFeN8ADRFhXR3OH7KImIFCUERumjraELlfBJjaVzFTowoz/N+vx9FqtvZJiKQvNnY2Nl4VMyaIhcNX1BelgfBCZDaXv/si6//odFo7O4+2Fp/T5NnLyj2by7Ri4gYO3766tOzi/3B4Hx7/XGrs6EUAsDu9ofNqCuQe7Qw567RJVW+RZ2ry3sItWAgrOhXD05Xy3JJkh9MQggnAYLKGRuTDYfDYTpkYCLyreTwqCNZXIyQa0eh2kR5/r2UH2V8Lkk0ONUHCB3lpRAojKOoGTcdZzI0LWIEEqqImcychry4JOFBdW7HL4++JGy4kv9kRwv3+qd5btc3trSOAQCFmlGn015PkuaUdM80PU8Yy3l0W4qkiX/UTsnH2PFg1B+Px9Yaxpqh59k4SbKgECk3fy4LE+tlc+u7PKSSKNuJvNVUn79iwsWCxo7zbJTlfRTrBs9EvJQ5Q0WIyVVqWBAxz3NrrYhoQlCkKA6Wk6sqOlMLJNKt5pqiWDvaJ6rVfl+G0ohRoGBjInhr5zS76A0OFUUAJOR0thzMsG6/WMF8cNobDpghTpJ2u5skDeGJeH/Af3FtCrSwIqbDDwsA1IGbu433ZgBAfaoz7+MZL782hwTcRWoqXoqiOI7jKNJaI6LGKaP4eXJACwaArpfWz9Pqvuqnvd1K/7yAhVK4nLAgku2NTk7PXgNoosICWaw8uf8rl1NXAIDhPFJxSDiZHkLlkhMMFSJsydIp9NoEQQTH42GWZa1WJ0kSAmUN7249aDXXHT+yuIGMqKCo8YASNkCS5/lnf/pbY7Lt7d297Z83ogYWSghKKuV8RkAcjE5eH317fPoyz0dbaw9anQ03ZPb4wScaNSA7VsaVAABeXplb9rlcdS0ZZgqOW89TctS18J3W2jRNe8NzZnZUDm+UPntxpdnTbQEA+OELTN9wHwPAbB8gfL5OG4RAxXGcJEmik0pLbaYSeYkB5bx4MsxHRyffFPIpTv5fCFAxj05PT5uNdqvTFJFItRBos7sXx41SKQXA77VpiUSY5Z4BMDOSOJ3Z4bBvhV3R1PeTF3TLffY/5z23BwB+qPWdt/1y5TmakfaXsG+PiMZkeZ6m+UWhZRwAg1B0NfwDM4tYa8WYzLJBRK21otjp7iNKwTUFRhQRtd7dQ4xcPVEp5Twc4BaoVrZoEJdMIQFBIBRhNJKene8TeRVmJ8OQu7E0BGVsNh71R6OBiCSNVrvdjaIYQTHPitGzr54wrmYd3gGAu9dSj2Cm9YmLAcAsEqjs6ioSKD8RSx0JrXUcN5pRrLUOHMfK90u1dMTIAEBCs5DgqgY6KAGuwBXcw+VXKd5yYuQpQGXnkQA5N8NXh98QaVt2M9nIk/u/9LolxR0W8/TVp1ZMpGL3OQrJi6wVZAALqJxPCjIbhRpEEQirMhf3mTEhM1ubj8djQmk22i5YRzre3XxIFE9ARVAId8pkiDY38Kfvf3fRP9za3Lm3+7N2sl7arLJXVBRGQhEgFnNw8v1geHZ08szafGfjUaO1JoLW2g8f/QWgIadqOl8FyHPacLlEf37hcAXAwK/n6qoWcoqo5ZkqeZ4PBoNhOgawpRYXOh/N2dUWSpbTFVP/K6VTt+Si+EMBABUMANMDi+7hWhFgRlCNJEniZiOO3XpesERn7HUvaZVfDE5Pzl44UjIzF7akgP3BRZ7n7c5aErcFLAptrz1oNtuIarrGX7NSKoYG/n9H2Wg47KfpeGoRzonPC52k3y0AcJd+zG7tWbsGEYugi8kz5jwfpVk/NyNXzGbvJg9VF3MPHpz/o7E5WEEE1EqrqJidJQJwih2MQp32hqKGxpiIANC6BeloZTz5tBU2ASqLP6TGWXbZPwGQQCqMwFhY9iIDgDFmOLgYjXqodKvVajXXlNK2dCXzk8GlU1i443jmz9dZje8uAICF87V3AOANP4J5FMyrAoB5ZapiuKbk9xV0ZAaF6HsCTkrIj+nMiPRPBnSWB/o1a0wqi4qnS1FvoZy/st+L6JLjiV8bKkA2Jnt5+Cf/ry4PuLf1fpK0oezsgxBL9uz1F1aM83kAlqKM4WUWPAXFSX5y5t7g5EE8s8uPDDKzIGRZlqWDOI4byZo7A7qdnc3uHpRT11AVQSIRK0AvD75/9vIPG+s7D+5/tN7eAdEgNvTERVACOUic5f1XR1/neXp8+pyZd7YfxVELALbW7nXb95GsMIoIzk9L5wGAeepPV00s5lnDLlL0RwyVpCsuZsxmmI5Ho4GbywTyhh71klJzhn3lhhF7dWVF+rHE1CoGCP+XfVgrW5AoQqgbSdKIGlEUzY5tLLANXnxKHpx8P04Hhf4gKsfbsTa96J1FcdxqrWkVi5WN7k6nvekRdZmSs3cqnZ4XJwgMARz3rD8ajsdDK9apH1ay/3mvci9i/XaZI1d9e0gg7FzdZR3zTnlfSkCCCRvNucywMXY8TnvW5uUxLcjFYqj4+BaJL7O11tjMWuuq+FGkldJA2uXxLBaBRFAQNtfuETbcKVOyGbmcHWUFWGlBrGjZTKzcwszBqSH2h/vGjkF0UUATcQRHl95Yzvq90zxPEbHT3Ww0WkQKhBhppqF3iRQKXjeleKcBACwxSnu3Fd8WElg+Ikw9xOkpyHllKgFwpHIWggK4oybSKo6iKI5jNzNQcoQmmaUXkqtkUUtedp3mzLQRwRLqLosSu7eX+vvA5GVAXdx0Ueb4/Plw1AsyQ95cf9xtbYQfYm3+7PUXDFYpBUCzgqQMggJr3d1OYx0RczN+ffTMNQQIVG3BkkGAJTcjY0wjaek4ERGx8HD3A60bXl7JEZOgdL0FIBYZjvqf/unfah1vrt9/fP9nhA1CcWMMReh0Gl5CF8OT0/Nno3R8cvoKAXa2H0RxS6y5v/1xs9FmZkSFKCB2LszznaVqZ6xe13/qPcs8dMKb7EqPTwqVT5sNh8M0HYkIKprNpgGAYFap/XJDpTsAsCoMMCtTWNjvzFZJREREUdRIkmbcdNzIBa7Pi+Oef/83z/9OR4kmZwIAgiQieZoNh/1GK2k0GgRRuZdVbUgJf/XEtw7A+e4Z5uGoPxj0rDW+8D85Gjy3x2EJXpjgFL+xmoivJHNdrPJXOc5+qp2rpar+1aKeiFLK2txaOxqf5SZ1UNOX4YWV03uo8oXEGpPnec5cqIZEOinUscjNt1Aj6cZRy42wOx1Pv3jKixFEsUIEQISBkg+ulAJUSKS47H9yHwgHw5M067mqprsZCJkAOTHPLBv3+ie5GWsVra1vR1EC4MTBqJRZt2GNP6D90Mxmv759zbsOAO5eP3QAMKUrEk7r4nTIEHRbRAgDba+J+oqIFEFFBBE1Kq11HMfOgVgppVHXnknLJO6zqVt1NE2W+pzFAOA2sv+5hl/zJGhdJl2WW6ScpT4b7Pf6Ry4jJyKxZmPt0XpnqxYAaIpqa42IqtPeXGttaopc7Sc1vddHzwQ5rI5MyaUhAFv3AoCk2UIhZtNO1na2H4DEExJA4VPlPkoBcG74D1/+2ywfb23u3d/7sBWvIyK6ZNEpOLmhXqH9k6ep6Q2H/ZPTV1rH21v3lYrE8vsP/kIRuzXmsotlAMDUHaar0WMIrqZSMvWYpv++uACZbBARyTkfp8PxeGxMVqb+EihUwEyKH26Z1RMqfsJsn0s3bnmel50xnt5QxaP3kZCBACIVNxqNJG7q6UrHPP2leQZYhuHZ63+MosQN27ghYAAeDS+EVavVItI7Gw+SeK3SDq36H00m+8HZArpXmuf9wUWep4JSWI4QloXhKbIZACAV325+iJPaSvybPOZ+2rMry2b/lbp1nqf9wSmgcdX3gq5TDqmLWO8MA8CWDefGGGuMQaV0aZNXek0ot7SajfU4amuVMDNS2CkKuQnCCMKkkIMsmW4DAAAAcGDzSoV/2UVvXymFqKzNS0IUCIAw5/m43zuy1pKO1zd2VBS7a1NQfMfAcZ0q+X0dGr8DAHevdx45eL9MZ68W7kMSsOLMgAUALFSnfwLVrUL2axKpgSKlIp1EURSX3sOuSBzq0y8ln3rZWxZk8FfVib9qxXdVQ8Ao4CT53eFNxfGsz4cnF/3XzMxQ2Bqst3fW1/ZQwM0JoIDhuQAAEYWp2WxvtB9EUSQunxAS5NwMev2z/vjc07RCgWf3l9YKMzMb0ipSMaKy1t7feZLEHe8K6SRTyk6rcl7NXz/9x8Pj52vdjYcPftZp7ZIAoSAqFnFzvQhsxTx79SchOxycn50fxlFjc+ueUqrT3NrqPlHkhhSdoZuVq1SaFxTMcZq5tOqtVIUlApaZ8zzvDXt5ngNwMYOGuGBWWYRrv8S1s/ZaAHCXNi1E72Vd3Nmoh3ZF5Y6dqugzAEASN5uNhp8Pvkbjhdl8//Iz0gqFy7lJZW2epmkUJbs7D5tRR+sYRQOiQO7z/kp5xYsncrl4xvl4PB4PxwM3dI6I3mUCZzZXiYpl3iqtDdt3qPKdBQAKhBksSJ6PBsMzwMyL8ZcL1QvzF3VxJwCam0xMTqS11lEUoyqGd117FgC0ihuNllZNtx1KJrBf/LZQRJvoikpo4lRuolVq1rvdGVCYHfVfjDHnw4NSwdYiKmMMKQbRIPl4POoPzoxNG0l7bX0HSEM5T19i7Lnj+0EaMyt8CN7M5w4A3L3eUHJ/RV8CDM+2qR9HERE3EjQtTVhEmVAiYzJkBhNdUQBwfQCnIBRHjUYce2fZZRJowWp9evlEXC6byq/8oLwl5poHAN6/TMQiRimP9w+/FckBCFCB2LXW9sb6Pa/IGQIAhdo3c913JNIIenvrXkO1HIQQQSTrKPvM5mz4uj/oeT/FMHi5sGWtWJsrhYhKUQyYa9W+t/24LJGS8yIoppSBnYn0/vHzb5/+QxK3tzbvPbj384giEFtolZAII4gYTp/vf0mkL3pHvf5JI2ltrN9DBRudhxvtnXJB2sLl7YpUE6wrqi/4+wVDnNdJtYUcPDI2G4/Hg/FAJiwmfxBOLcWQ0FZZ5GFTbjrBWpYaNA8AXAUD/DhlQGvDpodnnv1PE2HBySNDxIIn4/7JCgFoipIkaSUtx4QEmEvDqMwZF+9kzMwgNVma9ZpxV5EmIgG21uq4qZRCRoXkRuoZSM10RP3clnvOgmCMGYxGo3RoOffi6Awl78ItvRlO5EKu/7wZs9umhM39/J+mV9fyAIDzzNjxcHQ+XcP24+DWtbvcOW6MyU3GuQFArXWkE621UODZJQhAzUY3jppKJSAYYkUMfrUbbULhYCytMF9zQCJ08J1OoG/4/Us/LyFHPWU2w1F/ZI4RYgXOEdW7CNtsdNEb9ozJkmZrY30HSJVizh7JB6bqxWRObQWTZrJ/CQ/lmwOAH7Mes7utXokMgO4qCiuPC1DL/p+TQSu4WlS1INOiQG4kSHCiDkRa60RHjbjpkAAR1REwplpsE/r4fE292Tm82XTf/yXBD+K0IAb7/OWnQijIKBpRmo3Ozvr7hdGVaCFjTPZ8/8uCBoCMojWCEUOkAWijs7ve2Q3kQaafvNBofH588cprhLu83wVH9/gM5wSqGDBAZEg7zb2ttV0U8B4FIhYkRsoRFTOnafrHr/5dZtK93ccPd3/ZTBLgYtrYiiECERxl/f3D7xDV+fnxYHTUam9027uE9t7WL5pJC6bp1DQX/l0vcaclPyeYzZiTWFdaRlz0xFkky8f9/sUoGxEhEM0k664LPvGpnf52ssLQuqq4MUvL/rFmXQEvjmC+7ZSDB65KAoKe6BzrpNlsNqKG8ywPEOaUZkhtpKowiMSyiPgJn+m3cSmsPgnhZQlGI4rlfJgOh8N+ZrKpy8YaMaIw4/d07eVl5e5et50gTS88JBDPRy9L7OxV+MoR3jzNRnme5Wbk5DhLZy7FzA5G+rzLWmuy3BgjgkpDFEWESus4OFgFQEc6SeKO1rECD3Hnxqt5wGy1ccNnNcUsuEwlNc7zL8vH572XihJQxGwAgBkUIEiejvoXw1NruNlaW1vbRBU5sWywLIXqz0RCw4mBlbdd+eaA17goDy53V6+Jan5yAOAOxL81ALDwdVUAwFgTtkp7ba8ZDMCinPewTqIoasZJFBXjRDNqP1NRQ7A+rantD8wV4pAfSuJCgHh48s1g3AcSFO1qNB8+/MR1AwAISM56x6fnLxEl0P8u1JebjbWdjQezk75ByY9FJE1HZ/3jLO+JCGJUxvrJ4/MCQUQkoIzpP9z9Ray7hSOBQ32BRYA18umf/v1Z73hne++Dx79txi0sJRcAY4EMAL5/+RmDJVDHJ6/SdLS2vt1urYPYh7sfJ1Gj7G8U5X+cGEzKam7saoDEzP0sqNs8HPYHg4ERUxS6sCazZ8Cy1Dq7UO8AwDsBAEKPsFoA4GOK699RKQOlUDcajXajPfFPvEwgqDagle2CsK4P8/xQ/aNh5vF4OBiP8jwVEVQYilPxjLYVTcADVmAqwJ2qx7t4kjtqDaIrqHMouQEAInacj9NsaG0OyJ6FUgg8AKCwk+k0JjPGZHkKLEqpSMdRFCkVIURExGJEckcKWl/bVkojRIjqhpXZ21hOwXR+Yb1SrHlCAOwPD8b5UGNswYpYx2sQkdGw1x+ciGCz1Vlb2yCMTLkXvFFx7cXPJP0Fa9f3Uma37R0AWLSgXb8mvFkCOUJ0t9dXDgCWzwzmbdTF+7/ut9RMD4sIFmcTahXHURRHjVhrrZ0vIBLM1cyehwQq76zFCSua+qWFiePV9ObnfxoNxscHJy8QhShmNiL2w4d/LkA++X6x/6fcDJ22MwAgKiJtre002+vd+5FuzvJbJsPTYoGUMOZmcHz6wohhZtKqlHhSLlaKCLMhIsSINLLJtW7c3/5Ik3JkUClZQFTIwOEX3/7H47ODZqO9s3Xv4b1f6aLPQ8JICgzn3734g44Sk+cnpy+z3G5t7SRJE1ie3P+1pmiSfYidyNCWjz6I9XTNaLPy46e8qizLesPeeDwEECIVAleReb/3DgC8s0hgqgMw+we/ntxMpIgodAQDUUiNqNFsNuO4Ef5UqBI7z/K8EsEq1bF5MtAu4zHGnPdP8zw3JiciN3QefkLoN1eOe12yAu8AwDtSJJ1+HGzBMe8xsH6zWT5Ms2HOeeXHrbDPVq3N8zw3eQaCRKS1jqLEaftMVjVDp72mVdNJ/gAwCQU9omtZed7aQpqywS6dDtyf02zQHxyijopKlgCzAeTxqH9xcQbA7c5Wt7sGQrb8duWIswQJTGkCQNp3yItsqByGJIwFLKKUe5xnnZHuAEDt03OjhMb3s0QsUTT/yLx73RQA3CQ/mNcZmOIdzuHu11br3XMmISLSTmpAJ3Ecx1qXHCHyTMGpn6V6cb3aMtvqKEC0XEK/bOrpm4mz/zQc914dfetklIm05dGHD/4JYCnECfTdy39ksO6fsXSMRVRb3fud1iYRcWCjWwd+CrZVmg9PLg4dlsCZVE/EMojCGMAolVibN5L27sYH5LwkCz5LoSZBKvrq+/98cn5oc7Ozff/xw08SnahSGRZRLkbnh8ffIkbW2tOzV8bK1tZeHMdi+cn9XyvUwUHBs6l2sGyud57wksfS4t1RUkhFkN2rP+qPRiNrcyKSYrSagqKvzPkVs7/93QIAc4/bn0BeGGIAwSnNtEorgLzRkudKC0RR0koaSdIkohvewLChGv6iMl3jzGbj8Xg8HrNL/mgKM/jhy8opcGn2fwcA3j0kYAGAkQIEaMGy5fF4PDY2c43FKd837wBh83ScGWOIKIniKIq0ngy8lmOv3EjWkrijVSLAVDhUzjN5mLs6Fki43kJyU9P/FwEGPj1/jihAMSCDdUMvdjS+uOgdg2B3bafR6hYy1haQHFfKOJ8cv789hxkAAExJAWJr8yRpt1sbxLGofDDo52aAiNZa15b3njx3AGD+goa8mFAMSizXuHF3r+u97BUX1ZWoQYXJEcrioOCHhlEExPFNCBEjrSOdNOLYdwZcc2CWO7u8Q/BVmwDXSxCv9/lTX4Elt9mz118o5Yg9imX8wcN/UgwKIwjj96//XoAAiKAwUyTS3eba1vrD0uEccBFQ8R1kSvP+4elLyxPGcGELwM7HlwnQfb6IGDPe3Xzcbm0p1AXGkIKrg6S/ef6PvcHJ+fnh5vrDbmfjvQe/BsZCcgGz719/aW0aRYlJzf7xC631+vo9TUqA33vwKzUlHcuzmmsQUG5WAgBk/gE2Z6mU5FAAJGHm0WgwGAxSkxa3jiYTc0Re7lPmpP63GNLvAMAq9mY5E+xA3fRIB8zvDFhrCVCpYjI49AoIR4FrSxizd7gy4xQCAGvtYDwYjQbGGCe/PqtEZEFc3A5GwGvJSHe1/3cw45cZUCoWLKISBstZbobD0YUrXU/BQkfLFDAmG2dpbjIAiJSOdBxFiVJlU0i4lMxX7VY30msOFYBlTzQqNTMhCMuXA4A3s36C8ffwtxOQDIYn4+xUUYKorE0BCIGHw95F7wRRumtbzcYaY9ElU0UHwIKicJ7et1zCr8PMSdxuNtY0xlDyZlM76vWPJud3Iah6RRGLnxoAYGQS5Qr/rhrqENiPy2jmXb7/V8se1BV100sbgalo4Xl4LpGrl8sohagRkYgiajifgcRJEXvdbqoekwV9CKH+EF0RALiVWI9heo65Nc9efyalio61+YeP/4JAuSzWsP3+1e8AlabIA+a11ub62p5CXUg9IC/8vhz6qY3H/YvhcZanAOzFnZxUghUGtkpFiMqdMdamD3d/nkQdKVlGhfEQyMuDb3vD45OTl3HU3t259/DeJzEmApaImLPvX38KoJXC8WB4fH4Yx3pt7V6kIhR+eO9XiqiK61acxfJVn0VVLapEViwmy8aD8SjPc2bj0JZMSWaFZl7zTL7eBAC4U2m8OT4v8KagmgkIxRiMiKsg+uJr4YHIGMdxp9mK48YyTdF56mSV7SAi1to0HTm6v5NZDntKJdKoLaVdkv3fpf7vGgAIHj0KIotlzrJ8ME6HIUfFtWFL2qFkWZZnI2sYAJIkieNYa106AGg3DezwZLu1HumWooZCDNYMTv9qmSWevf0dWgEAyCBKgHIzPO+91DoupU6N4/1f9I4Q1Vp3u9FsA4AHACSTLN+CI/GTK3j5U8MpGrWaGw3dJooAoLxXDECpGZ1dvCrdtaWsXt0BgCWWOCIJZAjqvft/tbP1/rNXvzs8/eZu8/8IIhfPJOIkNaWCWZ+ysNzlxiUBgFBHWiuloiiKo0aklKtklHaGE1kMf3B6zs9C0aMg+eZ3pQwmIt+9+qyUGhAAeO/BJ5qUC/BWzHcv/tEJO7g3dDsba63tWDdLtqIske+S73IySJYND09fM5sp33jnAF2ISCCiArJiAVE92vuZwrgseAiRBpLe8Ozg6Nvjw1cG8t3tx08e/aZBbURkydJ8+Pr4OzdUPOr3Ti4Omq3O+touArfi7s7GB6TCaL5aEiDd7DO9wD8I2CzLRqPBKBtZa13Vv5LGiQgWAlZTcDgI5vBmAMCdZ+pKAED5XzirC1RYXCMC8mzRwbWSlIrajWaSNLUqrPQu4ZjNwADhiV6PtXaUjYbDfpqmRYwLZpeni6+1gwRzU/+77P9dSoqqvFZmZgRr8ywfjNM+Tlrr6BVp3DBAmmdZNrZskijWKoqixNX1y/aRYjat5oZWiVIJoXLWb1gGLCmFMF2CWwJLqYjvuTr32y2ceQDgz3cGEbH9wamxQ8QIUYAFkAeDXn9wLmLXuluNZkfE6TAU9X4FE6A1iZk0GVwkjLWOG7odRZGXyyuPBhRhY8cnFy+0jl0VG0Aj2jsAcOlCt4haxBBFD3Y+ubfzc/f3f//Z/3wXBW6jHHhLmzOoMlZKm/VFXMZJEyA8vQAkVBT1F68mE0jFTxFqImpGscMDTk3I7dgpJLDcF5+Rw37rT4wA4KT//KJ3SgKMLIIfPvwEUbmYZTj97sWnWpNIobO5tfag29r0yR4GyKEuQCs/wOTOD/eDqTk/Pz9N7bhU5lWuIeDFB4kASCGiyex6e2Nz7ZGf0HBhkSH//uUXg975ycWrna0nH77/F+2449p6L/e/GdmBViKsBr3zi8FZp7vdanYIcWttt9u8jxROUAmsksdyEwAwCeK5zcbj4Wg0ymxBlwpHkz3d3wmuQ1XgX6az/zsA8APCABNFoHnaoFPxzU/ZumdhWaOOoqTV7GitSdWnelN6JiHtB8FlJQ589ofDNBsUvEkq7QgAy3DrEhqEenJRvSXGFMPhrmX0zgCAcNKDmcfmfJwOfdXZ/T2QuAVjTJamqTFGRJIkaTRaxWgvKQB25X4AarfWI2xoHU9LEhdDLy6IISKz62IxIjJO6dhe25dwVbnHZFat4nzMBMTD0elo3COMATMXAcdp/+z8kAjW13bjpAWFXiqGGvTh4TjZCkUtnxpJN4nbGjXMNEAsWAUqy/vnw31C5Zx2ECOUXO58AGbSfSzve3gTsdPc/vjD/x0AixCJ/O3n//Mb2WNSAujJAgj2npd9vSuKXPKaN0vgzCZrfY6Cg0eWeVhC1dIaAJAggnOrUkqpJI7jOI6VdnY8Fa2YcFTAiwYsSJ5C7aBba3rOqxAYAN0fnh6dvywybzBP7v+592nvDc8PT586NxZAu9bc21jbdPDAKxiEMpqL/dTC2DccnZ71Dg0zi/UaowBcSEmAIkQisja3Nn9871exjhAjYQRkRGE2T19+NsrSo6Ovu+2dx49+sbX1IYpFgWf7XwmPgbSInJ2dZPm4u7bRiNsi9uH2L+M49hXWWRW2MDeCRcZti4awF3eBZgCShYCMZIXT3Pb6x3me+35IYDnpC/y43K1ejUfvvDN1xlNsCgaE/7lQ2Id/mlTM2QzY5UY+XvlYRFKhSdSDhHKkhDRSq9VpJo3CHQ9AphoCHkiLi12laZczc00Hw94oHfjlVxuHA9NGnMalVeR5d669rYQ+gHww7QdYiHuW2p3WlXsyO87yQZYPp86yshUsYk2WZ3lqjFFKxVESx40ZQzpqNddcyR9BA1oIFPSn88yaAPUuLJXpWh6VF1no7TAbAIWIxo7OLw5QRSJCCjjPslH/vH9MpLudzUarZQVD7VQitwGVnwAOZs8IACKdNONWpJuIekGuMkz7w/Gxowk50tHC8+gnCQD8ChMxjoXmEhok+Se//FcA4qQzAOzff/b/fAMbcqJTj8ZJkXqIMr1L75wKrgsAAgvh6aQEl8/+J0+Nqhp54A1Qiio1REoppRpxM47jRhQrFVHIi8XJfOcsHqj5jfh2ugEIEaAZpf1XR18jKkRB1u89/KSMWfTtiz8C5gCkAJvtrY32RqQTKUKbdy/HyvTSpeuZmYmoPzq76B0aYX8Iebaoy3Xc6WKMsfnoo/f+plAEkhxAC+Pz/d8b4YOj75Htztb7rc52RIptPjI9AhBU1tqz8yMR6XY2oyhJdLy39VHJnsTFpfol9HnqYMPcYe5JEWgmk1MA4ICN4Xw47A/GA2sLVFD6xEyq+768uhAAyIKk83oAYPmk9uoA4Cf6qiuBhzIVxXsQkQQXJElT1Xd20EFIIEma7XY71lGAtGQ22IEIg0VEY7LecDAaDQxbp4ZQuxK8z1f5oOetw7vs/22msNN3vtD1h0Is2ENuRlQikJthmvXH+ZBICyvADICsMAE6IZosT7MsszaPdCNJmlEUUUEJK/IZYdVpb2rdIFeNRhGxCvSccFQ/m/SuAQACYiimk4mUtYaImIVRhoPDPE+FkISYTZqe988vUKtuZz1pNoXRFRMroT7sA/gvq1Ujjptx1FKgFjv7isgo7w2GJ8Xkzx0AmLlBbsbXuSQoj31FAJE/evwv1juPHCpFJGH8+8//pzeDyD2C9OKv3lbpLvW/0pF5ea1blsrJFqz/qpOloPNF9KVXEHFIgFARUazi2NGDdEEQKvvyNabCs+oZXodeZmzObnuY2K3D3I6fvfwjqoSIFaiH939FIIjKCn/34g8F34lle/NJp9V12T8BOgX9cqPxVa/T3YHB+PTs/JCRC3NEAOcM4LewUhEz52bwaPfXzXhNwHqJtGev/pCDOTs/GgyOtjYedzvbDd0EsSMzUoCMnGWm1z8l1O12N4qijc699c7u9AW8MRVg3/We1WgnB3ryPO8PzobpUMAgRb74ymynH1nNbVwm9X8zACDMa+8AwDUAQHCXxLuukkypAM07NdygMAAgsCNqxyputVqNOPE/yFC1MxcRC3YwGAwGPWNyQSbSpTbRog7P9KD5Xfb/ToOBYGZ0KjPJzShNh2k2EJpY+QoWtB82aZaPsixDVHHUjCKldVyYDwZdqU5rVymlVCQMai4jVGZLbLVn9zsCAFAAkQQMCElZQxQBRBymvcHoRCmFLCgwGJ4N+seEcXd9K24kxbA+ooUahYnQSVMEW821JO6457KE9gn3Rmdp1oPJ/L29BnnkR9wBYABVFv4FSoVyJCHUf/HL/945AoiQEIvA33/2f38jmATL/hErpZglHHxBnMyI3EXM6wGAOs/569bEi180nZKj1NsLuJAgxQMm1O6VKB3HcRQlpcnAnMsOOgMVjdHFqX+tAdm1E1OG/PvnvwciIg1AD/fe19ARyC2kL/a/ATTCaqNzb6O740v+oWfCNQBAWexHIugNj88vjmzhPE/lx9ryt5AT9gHmJw9/oymxNtcUWUah9LuXX4zGvZOTp83GxvbWvVg1QQwXwdeOx9k47RPGrVYrUri3+bNGozOd/bwdG5DgVEYBsJwPxoPBoGetdQe0p4JA1d4Lr1ryvwkA8Mbe19tTdQDgLsJdAQAEf652ABAxFCGo/GuR3rGIYESq0Wg1k4brfQGWnA2wAMBs0jS9GFzkec7Agf4o+WRgNupeBgDuzrJ3IRGCip9MyDgQscaYsRmk6QjJrQSfrgiAzvORS/0Jo2az7Ur+IkikvXJDHDUaSZcopklxE+eMhBULqTSGe+chk4QVFgRC5tx1SwDkbPBKGAUsCYxHvX7vkFB317ejuOmAtz8fZ1yxlbW51gSgG7oVJR2llCtV02QgZ66sp4g9vngZTAbD9fiTP+IOgJQ+XwAgSFZYub/55Uf/h1bSLcmUyoIBwDcGAIoUX7m5DQHr+/tYC9DvXld62ekjZyUYwAdRQCGZ7Aue8ej0a8+naqH9cJIkiU601hT092t7Pm/pyGQr8PzVH1giJNAqIpBG0hVO03ycGgtgOs31ze4DrRszB8xNXhNRuf7o5KJ3zMwWrOf/OJpQkeug4jzrdra2Np4gMDAiaZbx968/TfPs+Ph7BWp793GECREhCYO2Nh2PM8spQtRsNhXKo71PnHhCMBoktyRjP3dtFaMO5U0UGefjXv90OB4iilIRADBMyfpMi3vODTMrBwAczL3dAYC3CACgOhvgM3QMp03mlQ/c+H4zTuK44a1OXAhyxl7DYT8zmdNBhukuJUOVm1im/vPWHt5l/+9kUoThAIC1WW6GvdFpaS+NiOJkbVAgy0yWj5hZkY7jOI4bzgKmDJukVJTE7ThqK9ChIq1fV36ot9L3+0FIBcwCAClYdSICRDQYno3Tc1QRAY/T/tnpkUborm/HjYYVReI9pmQy2QVuysJtMQPMzWSz2dgQJEcuIIHl0j/eP/nOMWOnfWzuAMBUwq1ELJKU2b+Ndes3P/8/IgmKIUyszUApEbltAOC3jdOgFLHD0Xma9YRVs9mM46aGGFEXI1+lR8Hd67oxboVvLkiKZcLkDU0EqbbcQpWT0MULV9qPKEriOIqiRtRQSmlSFWef2Vj5pl7FZT998Y8OnSqV7G0+TpK2WLA2fXX4jRHzaPfXSRy7ieEidQnG64P7SRWEMF++TaZn9KU3PL7oHeechyeKP7qINLLkeX5/76NWcwPL+v3TV7/PxRwfv0pHFzu77zUb6ySEiEJozDjLjLU5ADUaDSL9/v1fldwGvzFt3bVhKP6w6L7V5OO8IPX3PyIAImJsdjG4GKVDa42T0SgcLRiobphyPgC4Gj9nmQOYcS7tJ/zZxUIudxSgqwCAKVb0vKr/ksvVhR0unPsQhZyAQUSqoGog5iZN0zQzKbMtKcVQDiHIPHGnuqr/na3vO53LegwpwgL5OB+MxgOXbLg81cVSBhmPx3maMXMziXWcRFEEgfi1tZbZdDu7SbxGrADZC475pN8vAEeVmROa3umh/ymNrOAriAAI5WbYGxy4Nogx2enpvoisr+/GccyutxGoY7lvKoQloxUBABk77c04apVCGl4bZoLQ5oV0ETk8+wZRBaeYhP62P3UA4BZiSf4hRALMhdU//eT/guiUf0CEUSu2CAC3PQNQrAABAEnt4PziQCn0ulpEutlYayQdErqLm28U3+PVnIYdAGCA2XrYrJwozDqycmE0pkE5jlAURbHSSkXOkBjKiU/nD3Dp5S0ptnN5IHBJsMQ5D5+9/gJRIooe7v3SBTgibcwYFRFEPvv3/UdXDcKpGzILAGR+As2eDenGyHr9o7PeEQBYsBU7UiIiYGsEUT28/3GkYvf5vf7R4fn+Re/o/OxFu7u1s/XICSwTUc65MWytBeAkabbi7oO9DyuxshYA0FQLaLXyoMVjNmL6g4t+v5/mI+9IPSvJVyFXiPA8usWlKXht+r48AKhcmJfi5VLa7w4A3AQABIPd1dx+dtfP3sDQlHB2gwd2e07KX7ltxWwYZJpgNnn5sDZrqFILAO6G2d6RNRXWJnyLlRks5Gk2HKf9QLxBgJCNBYA0HaXZGBEjHSdJ4oj+IkWJhISaja6KGhrdAMDExsuL9xcWOkVLgQNI+QNGTeVXc3cVmW1/cOyE/60Znp+fpdlgbX270VqHCSk/3DgshOUTsQCgVaPTXNeq4U5ez54tmSC0OJ6LyNH5t9Nl4rsOQF1654T/XcX2L3/z32NB4cCK4dzffXrbHYBiRGOcXvRGJ1SIVToiUCGym8TddqNDGN9FzzcH7q8MAGD+fpkCBn7z26CYN4kpUvxZITqHAaWUVirRSRRFWmuFVPbiaQFJffH110XeOTFCyAk+MEiaDg6OvlMaH+19QkQoIILgxpmEgUqBAvHfiAr8MOWyPCWEv1AVR8rxGOXBwNHZd2k6ZjaAbKWYjVGAjKQAESXnvJ1s7G6977bPaHzx+uR5mg4OT76Oksb2xvualALlUIQDAIgYx/FG597m2j2pZlVcVyqbgJp5AABlBoxNRv1rn5eCUuFonI/7g4tROvA2rkLox7+mKq9lt2n+USq19eObAwC78BSoAIB5H3snA3pDAFC732ulOWvMyKd7dGUrwFckxLtJOLAXKvr7B4dceWp4mdoPL4o2d683DgCstcZkI3NmjHFFhpLLIgBgbJqN0yzLAKCRNJMkca1IxMjNACOqdtKN46aiJGABzRL9BUoL27A4zWW7vBIf5s3yvVNDwFNlMiYBOxqfjtMLZ3DWuzgbjnqd9lqz2yXSIBrFht+LBEBNPlAE2631ZtQpk/6pSn/olrPIR0jk8PxrwiRoKfyEAcC03r+X2NNc5BZConc3P3h8/8/d7S5Hb8mZT/THh19+8/9d1aKpLYG42DpOz4ejEyJXtmQR5ZRMfMrQSNZazXUQZzhb/Y5Oaqryi+7KLW/2dTVT1TAQVM5mv07YSnCiKwWolIrjOIljNzPgwEDts66rr9RYUM0zHp7+KQYAAc0yfvHyc0R8/OATVQbu2gzYZxIMBW1xVeuQ2ZyevR5lPQvCbPyRIGARFFAkwNam7cba7uYTADLGvD7+wjDvH36Xm/He5nvNZhtBWUAR60xtHMraXnvUbW/45uniFgoGhAfX+7lUBb94A4u3TCofGQEwQsQgOae9wUV/cJHZPCIVZlozhx/OOZBkwXqbPT4ZECdiAySQAQBCzGiFicDZI/K8U+Qyzi4Guu+y8Hp8MnoXSeblHDjn/uAsAAh2b02LQOroWxUXOUSnI26dhm/ppD5FQBV2p6Z/fL7Wy3dU1be7WgQJhb2/UIC+VMklRmNMxuN+/5yUEaRQU64w88rGeZ4TURI34jh2A0hlZhnFUSNJWhEmiAqR2NEr5p2OuLKvdqWjpFY08yZU6qq6xmTOHrNsdDZ4oVSkWPcGr3u9QdJobaxvg9Jlim8LD/ugT46owJokXms0Wooir9hzVdJyCefy0/7L8uA2vpT2U5YBLdjzpd4/AhoriKiQAUH95Sf/EkEJmHC+CpktwOvjL14ffnYbC9f/JyPk+eiif1i6PfMcmyoVR61Wc720ra2skvCh8PSauAvE72htb3FaHPYEpiK7CAEoihwSaESNKIqcpWdlbGD5uFlrAjpJF1ghiWtJlaNLalZgpEoCAZ9qLFQov6rcJHKep8dnryyPM8sAoNxdodB5gGw+UpRsrN03edYfnTDy2fnB6fmL9fbO1sYTcJoKYv0kMSLe3/6gmXSua7fHSx4b0x9OE7yHPBoNznpn4yxFBFB0WfUL55SjrgYASgd0d99c+cPXgnNknSQtRck4OzVWiFSFELIQAOCVrmfihXL3ql9CcA0AEJqR1yP/EvwXnaVCl5DdOCNzzm63VJeuVAq9iAwSCdhCFBnuLHzf5suZwtbliCTCzCbLh/1RD0kCKmbRUracjcfDLMsQsdnoxHGslPKSDMwQR41Wc5OIpn/Fot7OqgpAtQfZpblyqLNyQyWVarxlASoOvov+vhGjQEbD/vnFCRJtbu6gipzXnjtoJucjUSH5z9hubcRRy3f1rwcA3Jstp6e91yEAKEt4PzEAME/vn7GQ23dN53/6yf8JQBUT6QH5hwSE8Kvv/11vcLBCXD67+IyY0/PnROTmkl25pZQ7nGweESHSjaTTSNaJqGy81my52fbuXTRcOZ5c+p2XJEDhUYw40dMIn93sn72aEBFp1JHWURQl7n+oMBlwpl2+rj8Z/rtiTCnNRFwNWIOQ89m9/GcFEJXgJQH66u5mLEjj9OL0Yt9a43SBijuKCMgIEYIWyPI83+zej6Pm8ekLUDQY9A6O/xRF0d72R1o3FHjhBadqB4/2fhHr5nUBM18pDgQMLgBEY7Pz/ulgMMhtrrV2+tDLAIB5dIvFsHPqU9ilcVxyTN3VIbOgyC8/+u/ayTqifn74u/3DP826TqwUANzFq8sxwDwAsAADTKpaMjePmXGSLsgGrpYsM4S94mEBobBIgQwRScQgamYmunuOb2uRSJHBwIRd4wczRDg3o/7glNH4CStm4wY/rM1H42GWjbXWSdJMYqcMO+lYtlubkW4hKl1Yhi0Vdt4iAJihwbiVrK6dxM6E3KLJOUhPh6OziKI8G5+d7xuLm5ubUdJwrjiVK/SXFFHUSNpx3ECIbhIA/ednef9ieAyFmlxe2klduePxI+gA1Ov9MxIiIgMidFvbP3//vykKccWIesECIkEh+P1X/688z1a4M51aVmC1DcPsfDQ+d8K6DhGKYNC7KSxUEZXDBu3mjhOP98YQBWNvus/lnIwLfaq71zsLAGR2XM/9a30sqKC7yYktohAVRVqpqHQc01p7NaFF5X+sT8TLWqAodLUKYma/gJebMbjkbX6m+Ur72hmQZXn/9GLfmNTIBDAjIpF2Gy3LMhF7f+fDXv94mA6M4aOT79Ps4v7eh41ks5jLKGoEFgAe3/s41u1bTf3LB1GM+LuUbJwOz3pn42zoEF35oUE9ooZGj0uQ/i8HACKFfC0jFzBPFJIBIMX0Z7/8lxqRKHIFxb//7H+aHV+4tmzfHQBYaUQCFADCxSnXlBxQmLsF5B+/60FIwBKJBUHQVKBlCc+XynorbemE6E6u+s2l+7UFYwsyqQ+KEz43xmbDtGc596o+ZQRmy2Y0GmRZRkSNRiuJG6W2jwIwIthsbCRxV5FmsYhIUik++lNG3vwdqF3z0/HE+xyLQA4SXS/MzEZdK6CJ8nx80nuhtZbcnJ+fjPNBu7PV6XRc9l95Ot69vRl1k7ijVFSpC9+Eue3ySV8oLH+j/AQ7AH5jAIDXQiJGi0yIvNF59NF7/5tCWE9QyBtvASIgA+PqXcACVy93afnR2QuttQNqzKacCZawJed5Y1B0NqJmo+vM4RxCUICVBbRa2H33urX1jwvqJeHo8BxiWKAMwwUFExERFBE5MOA6A5HSLrl0Xj919DCek066BichSTBFg0sIONC8RHmqFnLVxLEYKFROMPdicJzZlNk4PQoFikhbcDq/Yuyw09hsNtbPL17nLCenL897rzbXH25u7LlR+zIWW2Z478GvYt2cfK9S7PB6iX7ly1ZSZxEhpYzNer3exeDM2XsRqfD2FtOW0wBgnrMST276UgAgDBG+SCZM7nch0K8/+m/bjQ1hjZKDaCH520//b4JU+/mLtT7vAMAbAAAzm8vnENP/Os0rrIMBUlrlQDCVMcs3Ez+hXhJ+sCSfO2udu+f4ppPgUkm8RpvL2txkg9G4B8ppPvk1wMycjsZpNgSAZrOdxA1PWXG5Squ5Gem2M7WFiePEuyLtuhgABGMPQITWWiSLEF270F750gyAIoPR4TgfaqTexWl/cJY0Omsb2461URR6vMQnCqJYK53GRiPpunIVTPfWbnInL4aHxo79Ee9vwk+wAxDo/Zc2rG6kCRH/8tf/EhHdyIorojMWQVOYAFkBWlilCUAw9udlWXk4Oh/l5yKoKLGcFjiVWJjKHMBLqYivDvrIC0DNRjfSDUSlUft1FoCfO9+AH9LhPZvVTahcBK7mUkSHICmcnhNF/7NUHPlERBGpKEqiKIp1pLV2RiE+TV8geF+uKPSFhNX641492FE5KI+Iajg+P+/tZzZjNgIWGREUKF3cBDYi0m1uGTse5+nFxcnxxdM4ju9t/dyR7hwAQETO+cmjX2uKim8dBjuRGwOAYCBbCEmsmDRNLy7OxvkYAATDoI8lIbE0WnJ/N3HbneosVYr6ixNxxtljjBG0iCAV3Ehh+Pj9/3qt80DEIgAiiACL/O7z/4cRu4QX/R0AWGUB6+oxZKrWOIvTZ03Bpu4/KBYzvf1BmABtWOh17eupswZyQSVMCu/EJ97Oayr7Lxu7zFmWj0bjnuuLsjOfRRERK5xl2Xg8FraNVkH4KQwiGIRVs9lOonWlCYCREZEQJ/PolcUGABZkVfFhtQDA8dNYUrakFHqlhxuk/lCSMNnYca9/gIhpNjo7PSAVrW/uKBWVXI/iqgqyBlkA3U7WkrjtLqOE0Dasml0jGLofOTp/VpxozFNL46cGAMqp36re/2b34YeP/wVgDqAQ4f/P3p+1SZJd14Ho3vvY6EO4R0SONaNQqKrMAlED2N2S+pOu2GqNEEgUQErffbk/6/bTfbmvFCZC7NZtSiL1aaAoEqgCiBpQBaCGrKwcI3wezM3O3vdhm5mbTxEeER5DZtp5IAuRET4cO8Nae1iLBK1egekDsJB2CAKjvPPBjza4PYuqPohoedTuPBCSvFcBgETiAmhI14RCLi37KWRz0p/rg6+HO47jqXDkrHlweRCf9Fg5zTgHLsXcxcs8RQMEqVfAFB8sibzmB0fx7hcRNfpJrQYcx3dcz0u7h4uigYuujdpLhGjyBamk+kCAfgS4fAyCmqfFQByBeBh1e73WOBmJWOAEhMA4WdMCMbODjmP8xEbDaHjn/idAo+2tr9SrW5gOQXQ98q9efpEw6xda8nj4GKuleKZPr0nmXr/VHXSTJEFDOs1SqN/I6/qmzQCChRcSOIpf78EEQPslUg6ACBy/9dofZYssq14lFnZ+9dv/MBzvbRCslARgnZju4rwtegNnHflLkRAe/cRLq30oFW53G/Vrl+ovB0Hgul7hNwkAWv1bdx++PxpPAKOse4TL53guC4ZxplXM2ngSD0fjroglAkTDDAzWoJMkSRyPoiSy1gZB4HsVxyHgtOvDcwPfDw0FjvExsxYp3Ai57D0s6hmeMQGY1+RZIAB5hoqZx5OW726pltGJCQBySqeT7nDPcgzJeL/1MI6j7Z2rjueJmFzzVK9da2MDaAGr/lYYqC2AqPVvnmyZ4//rZdqnfyIiDzufOY6TBb/yuqwnsgk4lyGf6v3f/C4himjNTKpcJkQiieJ+7WFKwTVt1gSAczVSfa7jqDcc7wMGgEm2wgiAAS3ItG9DtUqygrypqdu8BYxYYQSgwK95Xmgo7T0vx8UmAHBoEiBDkTO1H8Uimuz8lSXIYKGNGACEUUQI0XEcz3ie52lmIHccm/kT1k4/PcbSHpUDm4CndWsHTGbhX49TK6yfRyDOaoG6DzpfIoq1Fgo66CRkISZxiAxznAjcffDZKGpVgu1Lu08T6NEMiG6jutOsX1OBI1nus7XCb2FWDWkhHEXF0xkAoijq9jvjcZ8xra5CRCsztVCImAn8ywEE4BiS2AfY9+qMffPm2yAGcyUxFMhaAHuD+x9/+p9PsMKlJADHOH/mJmQZ54fFEt91CMDB2ALB1itPv/js30XwBMckU6fq3D0K0rITATE//+iH1saIBgCVQpQP8VwIgLXWWjuJO3ES5Y84jQeTiNg4mozHY2Z2XTesVjQbTGCYwXMrnhsa4zvps+ZlkUTMewsL9wsv83pfvMrolLbJ3Mpf8OqycRx3+3e2G88QuQByQgLA2baKxu3hpAfAg05rNNwPa7thVYX8afbzWAX69fBSEAQgJKL12zYXg16qxXck0Q4R2et+qsBPAXBWcw6PLQGwIIiCnN7c6e2Zfm0jMAFxkKxvGq+9/E9XOGVO5zD/VwNogTeaASgcxxjHVlrdzwx5mfiPrHlAr1RTKdT/iIjr+r5X870qCS3uTxEQYm0PwnQz5/xkfhU+4VfyATGGMyAAa0TQ1/y1uRr07HtJaitm0HEcJ/T9tEYI04wBgyAata/KgDUXoxQLixAXePjBY7lLAM7ITR5+eLX693v9hxZsITzJBCxoRNAACUFibav9oNO54xlv99JzXuAjGI36X24+Ww1rUuijlNny+/wOm7tgFm03Zhu1CVQam2QymQzGg75W/Ovr0BQZz9lFk6yK/RyhAX3Ol1pEABJEV0QQCNDmBYMkcHnna89d/4YIAxIAoBAACCQgRsCCOIDJux983yIBMEmx+U+yPiss9ATP3/fHS1mUY50HrWrvsKywJ0sZLjnWtO9DMM0CFR8WkXn9ld9HaxBRHTayDHn2MPM1j0b/9va9v7239+uSv53aNQQFYJMLhGB2eijj4jiOxlEvseMcCeSdviKSJMloMkhi6/th6Aeu6+Zh8sDbVfEIANAzQDuODsAbF/OynlqaCCMisyBiYget9t1m47rrhAd/fEZAnu+rzhVvmW1qmJC2jo07vS9d8sejXqf70LhOo3nFGDcrvyHIdB2QhciphA3PrWz0G09D+wwYJ8Nu/07eV5CDusc5A6CUl4gMebvbz13e/SoKD4btvc6t4ajj+/7l5ivbjacABMQA2vMiAIjInBC5zBYAhpPWcNTNREvsAcGYBQC6qqGbiw0l1gqCqVTqoVvNqBEUGgMwEUh9lEgtVM3CRprpQHhiT/bTJwAn5QArPp4shQLLWaUAa6AXgIg847mu6/u+67pZ9zCh5E2zBWRfsPhdmrIsHKAHR4aWfKQDCMOyH9t2b7/T+5IBcudgZBFCEVRpcgEYDDsPHtwCm+zsPlupNhDRECCa65e+EnhVFqEpmrcr3pRnv2CxqXoG/We2CWiZh6N+t9+Pk2iaPKFMDEIY5nwhZFnt9hEJABfmUURAjDYXAVoQ1DSjfjERfvO1PyDxUqinGR5k1XVUNRgQQjT39z/8/N57BhPtnspNA/Jk95woUPHcYFTf4pIBnNLpIUc6WxBVrifVvlOCpy8SBs1XX/jHSAkJsqWUA0yrBGdkCVK9MnAEkp+9/8OsTajsPdvwKLbvo8qIiSUCPdwAILHROOrFySh3800F/hEAIEmSKBrFkxGSWw0rruuLiEp8GvIDv+q6vsahSdZy5LhQeKBY+MqsQrQ27U0XY6W317pdCZvV8BKCA2gPqIk/gAAoo7AgCKS9mv3B3iQeShJ3uw/jONq9dA2Nk5bLMiJlCqSWfa9eCRtFNZcNEoDcnDua9PqDB4sE4PGWAUUAefrKa1d2v5o52pAwAtpMqixNC6jY7XkRgLz9FwCYk4edz4zxEWUpJlsldjuLP2gZMaBilREAeW7F9wPHBPr71kZxMk7seDzuk0nVY1ynGgZbnlcBSW1B8zc6NoMsCcBmCQAfDQ4fpBc+i7NzPJrqxoqIMJKmBch1XddzHM/zPMc1xmjfEgFqgPzQHFEhOr4KiMgR53mexuQOu4Lc6t7r9h5o9EdEsmYATTIIC0ZR9ODBZ8lkWNu6vLV91UHSDMAzV192jSera35mPz8f8JGKuTgAGE9GnU5nGA2x2OlbqPhPMkvIYvyWjg/95wlA9owklRqzab8vCRIhAL554ztsQSWIhA0RaBsogpt+U30xcUTsOx/+sSavRZgRDMzUmC0jAKknlCbN6chfpBwnJAArjzVDnuVJykLJkpAIVYKdGy/+b/kiQlZ5KKP1hUiycE8BWyQjIvLzX/2E2Ra9d8qxOdyf9l+lJXlUDHjbyWQ8jgaqIzLXAMogUTQajYcIFIZV3/VUCA4AHBN4btV1QyKYzemtPHAuYBxwevgwAzCCJ5DkCpATOxr07wvYRu0Zx/FUC0g9uY5IAKa/wmBEMIrbw1HHQafTvTsadhuNXT+octafmU+Ug+R71TDYKvgxb3KB5C/LCN3egzjpFbbeE0EAuOLvvPri/04Ys0UwqBcWo2Q10FaEQAiJD9TPPgMCkCLp3mh/HLWJvLyFd5VP8GFQkJYuhYJMkEK73MOPCxIueY1aGun3vWq1umXELzKWspQTVusMnOkqX0ESaDVMXoDc83LReeWAdsJqKFpkGrZXbSxdVcYYx3i+63qe53me4zgEeTuKWbqMi5O2miqsr65DB5+Emo7o9O+1u3cInURY/f4AiDElANba/f07g+F+ENab29c94+lp/dy1m4Y07U0AgIVPlfskHKDECgAERoU1CtJ7tj/s9fvdRHL/BIHZLouVfOKYuH8aa8/+uPDaqbpjelCoF8qbN94GABASQcA47wbOsgEZqyEREQTDIO9+8AMAYExrTJ2pJPyMLUDuPFoSgItIGjCFQcwiBMJgEIjMG6/+QbpYGAGzxcyoLntZQC1/DcycoRkRf/6rP02SuLQB3jj6h1zSkAGwkJwHYomGo15ix5rP1y3JYAkQgCdJPBqNkiTx/TAIAmMMgUo4UCVs+F61YOU7g+uW+ntcBPSfXzFpypSn8SMiYGuQRE9fREzs5GH7tjGmHm77XgORC4p2eCwCgACSsCBxr/+QZRKPo3b7ru+79a1LhK4FyQ3piRyXXN+rZXVHjOhsfGtMPYDB7rW+QLSFig/JglOPLwEQkbdufhdASAyiMLMQmCwmJ9MSBQtABbWfsyYAuTFZIrzfvuU4ji6UnKwX0fbaBGAGMBTKD2xef5ZFLrmwps0iqdWfu46/VdktlGXzoo3FE84BLt484JEIQAH6L3xBKt7oGWFIg725drS2CpPveZ7nhV7ouq7BYh0/FbH+MbqaCocXrM8/tRlX61H2Wl/0BvcFTbaR0yyWCLKVXn+/1bnruP5W42o1qOo2eeH67xCKIB9AAGBlss7k/6qdEiIynoy63e54PFT9PEE4sFVgRV7v6HC5aDAnaX8o5CeAiCB4gFZEPPK/ceNbkphpVRIyCKU9AUJpFZAiP06tBRHxvV//u3E0FJohEisIAObeQFkJUEkALtbpwSgi4qBh5rduvq21XiyRMQ5bQBJmS2SKDgDF80FVYrXg+t7DX92+/96FDRU/csGmOYXfYoGl7tkkSUbjdpxEOTDg1MbBiE2Gw34UT1zXDYLAdX1gzSG4lbChuv65rLDWTej7581Iqfi4XNCnqXoGsyoCoI7miGSBrY1bnc+NMYRBJdwOvbBo6rJOCZBORR7LSNswkERkON6PJj0R6bbuW0majUuELhithDREAEAuGd/b8r2a0mYiyopQNgn98//LyA/3P1O5p4UA7uPbA0CAb9z8fWHHUJIwEqWmJNPZ0TgWWoBDZZVOPQMghIPh/mjcAlC9Tlss7FlvcawsBpmW/SkoUbKLMQJlmD7VGy0A+qKeF4tIxdsOw6oaU5dCoo/EFb5qxS08OJwDsjNJJyz+UGAh7pPLP6eAlRmEDJHjOIEbeJ7nu57jOJpuSkWrCpeHnPIi0pAPIgqQiHR6dzvd+4xAkob/c2YSRaOHrTucJNWty416Xdugv/LU1ykHwshLCcbSSzrN9rIIIxgBgGgyGY/H/UE7ZpvCblxm4VyYXDlpxf8SAjDnIpwGydAVmABw6DZf+9o/FUHCJNXJBsdyTOho46/ifhBHdclEADVYiJat+flH32eLRGTBYqqcloX5UWAmA4DFD1Y2AZ8c9yydw6NPLyJCwprtYRL42nP/oF69QgAAlsFN00Fgs6DAjNVrUQw+M9KxCN5P3//jLNhUpo5PRAAYlz4zrboiAY4mvSgaAk9sdiyLWCARkSiKx2M19gqDINAd6Tqh54WOCRx0AFANH1AtwMUw2aVk4+x1/dcZtnAwUkHtWkE2ACWStLqfIThEju/VqpVtsIzgIPGhZauFmHrGhdI8g0rGU5wMe4P7iDgajfq9e/XaduDXGUlF5LQhyiU38Ot5y29WaCeFUquTngSFhjXVgOL99q2c2zwpBOCl5/5evXolDzgWJCm0vYkRnWknwLyawdkRAH0kFuK91hcqvDVn1TYFEyejg1mob947LO/RzAzqkpx15IRB/T5q1W3PrSyKApXjIgICwLXbAFY+zWITVWFNpqceZYK5qSmwTF0/VU2IAIkcIjLGaAOx1gjlJgNz6kCntqL0mEsAHAFod2/3+u1M+T7PgXJipdW+Nxr2qrXtRqMB4gDyi0+9jsCgv3MYASgewkAmF3u21o6iYb/f74/6iJKW3iGsr+V8bNw/BwQLWZyZRJ9itWuXX71++euzT4FQS70hRvBF4owAkIhkPQBUvMze+fAHqdojJiBOvhpTL2GeT/iUBOCUCMCsD+BRAgdCCvtIwDX+N176fa37Aowlbw6GtH28SP7nkCJKAuIKsQi8/5v/EE265a2xEWi7ONV5dnQ8Hg5HHcBE6wgy0APj8XAymVhOAr/q+64xBhjDoOG5IZFnpraPImmxogLT+ZDEBd+nywhAavilEOh+6xPX9YkcBFMJtw15qmu0zhW0SABEBFkECQmsjfqDluUIONnff2AcbGxdAnLSxIsIoUPkVPyq51bVMyEViiARwc0RqtThOLv1MJF4v/1ZHn17UgjAmzfeJoHcMSezLeS891cb0ZiZ0nKgc2wCxkHUHo7aGSSyInn+ned841aVTBws4z0rSmizfzKrwgyZYoNOnUE0JOyYSiVsqJVd7l5cRnTO/eJfNehAx4IceInMh5xn/luggO/1Xp+padHNtVjNn5d6652SFsQTOca4rhu4nu+HjuO4xjkB9KcDFny2pnXXF+z2EHr9h/vdB+nmEkNghUTAGQx7rf07YaXRbG4RBgL2xad/BwUEHASWBQKwFP2nXQGUqgBNJuPeoD8aDRJJ0FD2r3MVULJGw7eccJ2IFLwJsHhTMoD56vN/d6t6zWikP/tnESRkmYbtASRNnCI4IqkFhM6z/iEg/uy9P1bXlJwr5sKjhxEALs+TzRKAoyK2DDI6BDGAeePVPyABlBQlWWBEUTUVIqNqVqteiQQBhMEAxoDOz977YzXZLMcGCUAe+2eJR+NeNOmnGq6UdvknyWQ8HieT2HXdMAwd3xF2Aq/uOaFjfBEx0xObp/FHwqVXyYFdWxdllhSf0ExxJookD/c/I9cjIgAOg6bn1vJ6B2JXweGRMgBqcKZv2h/sTeIukdfv7o+jXrNxybgB5KcoEaETBlu+U8nNfRfVETaBJ9XeSjLDK4p50up8XhQaKoa9zpMAFGteC0tKK8/0QarFtH5cvX2NhUSNb1Xj/40b33LAtyDd/pcf3fpvBgwjGKC8aanwFnnz2TyMTo3NZ1IEadDPgmyQABTkL9LQPiMAcLt7m1mluGMAKBCAY/C/Q0HSQdYbq4mEILquU6mHjcW2gaXaRFnXAeTL/QmMABWv4SM2DePm8B8uJwHLnvj8B+ODIk/TF8H5z7nAKFC0si3NIBvNDPieF3qh53kOGSLK2wYEoWBcbQuvTtn3yZtkzIzkqOi/ycEKSd3Bw073rgWZSpEisiTt1gMQajS2jetYG3/lmTccKPZOgepno8Ayic9CNT9RYif9frfX6yRJIqSNN7AA/bNzbUXNz8J1e6zSfwAQA8CSWRbkqQAtvn/r699Vc+ncBWLZ8+ZFjFf4VyvsIFkAEab3f/N/TlK/oVRnWW8mkQTRHM+trByncy7hdKEJIYmFtEv+qcs3r11+Rbv/j5qt0qrrTGIbAPC3X/yPTu9WtuhQJFnl9XEa4xG9emYd+ljlOHPZwPxsZ46Hk1406eV7WjCxVqIoiqIREQVBxXc9RHFMzfcDz61Mj80ZM8HpCZOHbB6JiSoYsNi80ixrekTmeK/7ZV4H77mVWrC99L5btUim/usytdDQE5FRRuP2cNQ2BuM47rZbQRBWq1XRjyGOcpGav+t5weIbnUYK1II1kJrGRnbQ7e0VA8pZcce5qgAVO6ln4YgWF2IxsaWMDkCsABnRBiXH+N945VsIhgAsJAD40w9/qNrUgRN+/Wv/fKFIEUR4NURyNKk9i1NTPrxRAoDFXmxGGI3bo3ELgNT8q6jbc3TovxTu0/oEYBUN0INARAJ/q+LVidzsF+0sDeCiF8naZgUlATgUvp/whMADAPoiSVinJZegSADWcV4s/nn6IsxM6GhawHXUYsDVBmLVFVW2P9V0A1nUtF0al1rtNaYXJA+H/b3WZ4zZ4S5MRHE0Ho8n1WpIjitin7v+O0YUu0uhbodRpkV06odQvIEgU/kcj8fa7DudDcJDyfYKG0tZZ7GtqgNBtgwGUNRNnIhYYkRExrde+yMQrfFgBGM5JqIlHGC24GchPWERUdgFSBBRX/ydD36kKWlGUbF/teA5huNmOTZ8LgFCwSOcmYnS9cNgBJgEf/fr31N3GhCztP7tMA6AzDZb/Mhs3/3wh7NXG5+OBuLjF/jXrWeQEhJiRiK1sgIGtDwejjqJnWSV7iAisU2Gox4z+14QBIFDhpkqwXbohYgmTcxKcScuDzE8Qk9HRJgTIhIhIswtb63lCfcHQ4VY6DphJaw76C39dgd/37k8jPLnRKJW5y4RIGK3204mUaPRJMcBtQVAQTS1YNtzgyL4OQMCoNhvEHVG43Zhx10MAgALakqpX4NFJNbGbU0CFLwkmYCFDSJd2XnhqSuvq18JCQihMP23d/8/gd8AA6Fbu/HiP5nTJcgW98qUZWbqNi0KyoDFBkuAeE4OJRFud2+JWEQ3K8WXA7rRj04ADs4PrIBHy6CJ2ouIoOdWwqDmGS8VUmRZiu8XakLsE9gEtgkCcDbjgH2x8vezdpCjv5k6JkKmVGCFABCR0DHGEFHg+IHn+76v/zMNRGlUUXJ771TDikEM0lJbrmX5DY16k4AdjjsP9m4hYiIJkWploI0TInA839q0BCh/F31lpSVLWn4BACC2416v0+12Y7ZEKj8wjSkIHgT9l/3TIQl3PuwFs7uKhR0xLGIRHMwUgVXgRWBCGGqfnLp9HZUApEWDqrXHBBhrk9UvPvqJtRbAWhBEgyxkWLhsBr0QgKkQ7dLaBkYUZCSiF575X5q1awaI0YrgkU0JhbSxMs+oI5jbD/723sMPAIx2iRSdWc8rZnxhAe4s1sy8xq0eYjppYsVhGQ2GbZYJAOkBxTwZj4ZRPDYU+L4feK4IVsJtz60QkdFAZ1oYCbMY6VGF/pD1OqswtVZYKA1IhCeTYX+4Z22MiI4J6rVLxhgSWqVMfRT0Dww4HD8cjTtEXpIk3d6e53n1Sk2d5hVkh0GzFmzPRZ9PiQDk5l855OgM7luOChZgF4wA5JmmFPySkgBHhBkZwVELKitgEEQk9Bo3vvqPlcGSiKh/AwKzvPPB9wUdArh+5eWnLn89J7gyo1m7MsaWG9cXDibaOAGYi1lGdtDt3TPGhWnGCo5VC3soAVhlFLBmHiDlJLmPabWy7RkfyMlV1WezOnn4n8oYz+KUXuA5WfODrVUaNEf1lyLX2XrNLCIgNGc/HASB67oo02KbTEDtqEFEAgAU1mTCKOo+3P8iERaxQIhghBMAJsdl5mcuf83zAmCrNf0Fw2PJPgAX/2MUDVutvWgyFlToryVDdHDIv7h7Z39HcifgVTeEXbi2lycQrF4MAoICCQkRwQtP/71m7ak0gwexJgFyk4d56J8Bu5WH+RTwidot61W01/ni0y/+ck5luDwTzvkgghjBzfO0eU+XFTKIRPjGK98VSAyQBT6GJbmm39V80yAzokiC6Pz0ve+fbx54lWvHBUf/abSFMQNazAhxHA1G+6kmrxHmZDKZjMdDthPPrVYqASKGwbbv1YicdD8y5/n5VeDtUdybGg/KisZFSI3qnMQOuv0HzIku8nr1iudV9GReeqKu+u6FJ5JiM/3ziZ10el8SgYgZDHqJjeq1LcdxmNOX8tx6PdxenOcpAUiNUDaZAshFS0Xsw87tQj35RSIAszRAWxbQgpBwnvdHTFX8EdF1g9e++k+JHBEAsCJIZNLoAsLt++/fe/grC7EB9/mn39rZen7xua4S3ZtebKkqKIAY9Y3bYAlQ0fNLtWMBuD24F8cRkQPA0wjccc7HNQkAHeO4zAFc/lBycA8AlXDLc6sOOoUSIMrvlaIC6cVziyvHCWnAkiWzuiFk5ngtLEdZ2CNo0xZkyREnEbmOUwtrvu+7rmvI1V7+WWOBdXNcug0RhUG6vXud7kMLqFYxCEAEQCiWr+4+FwZbU1VcWQwcqr2LJEnS6bW7vU5sbZ6yYJBDVYbnPjHOSC1BTgBW3Vh2vQ2VdQUmiAbZEvr12u5Lz/59xfcFRydG8ACTlb1AsOLCQM3NitpCIaJIQuICsDoovPPBj6xNiIgxLWUuxznv8AwOzklEEDmvv/IHZKywQ0KILKJP7ThHgQgYABFSOaBPbv9Vu/tlmssDQLLCSOQeUJ17qtD/USAA0x2WN6GCoOVxp/clkaMYzspkOBrEcUxEoR+4jlcJdxT6Z7r46pO1TG6YpwD00UL/hRJHyd18gYwAiwjzpN29J2KTJBGRrfrlamVbxBpw8nkgWesrs/a05LdWZl3SHT6YxEOVeuv1On7ghUEtX2+uE9ZrVwyQ9j4tTTptnABkYfQUfd3b/9QYc0EJQBH9axKAkUmoUBQkCF6zcf2Fp343C8mncYWsUii1JPzbX/+JtZNEwADefOn3fLdZrAxWuQK1p4F57wyVK85lQ7TSLn1ajKdIAFgm9/c/c5wAEbP2Xzw1AnDSQzNjYobI0ZrR4i+4rh/4dY+CrGM7bwwoLjsoA3+PHEo4bGHMNQ/MwVlIbbapGP2lfMnijNKozPRaZTwy/WVmZhZGQ1SpVOq1RhiGBhELMpR5rvzAkhianuradYOm1fmi1dvXKiACw5yQY4ClWbvc2LqiDQ9LTRJQiMFG0aDdaY1GAyFMIfKCs++qpghemK/Fec7fdBE38+qU5uzPGUTVPsUAGUOvv/w9Eat1/xq/Z06I3NkKgQPXg9DCSV5so0qtoACQ0YK4tx/87f29D0VQkKgMBJxzyFTbczm/dHJRhzdvvJ3rYmeuT8JHPrhzzg8iem/qkpB33vsREGe29BqNtqedEzi0Ru6CAF9eoQ4sDJnqEopIkoy7/XuIQuSJxJM4Go4H1towrAZuJQzqvlczxk1v6mlHpSjclKx48oLr+q+J/mGapLQ2q0211ra7twA4imIArlZ2a9VtLbUgmfnbdb57RgDSW4OtICJw/KD9ueN4ADAYdCwn1Uotq+ZARKxVLgduyGzzLrJV32KzAZFCMxjfb32iyo0XNANQDBCKSJz0f+eVb1X9q4Cxfr68TFA1+wAZwIK4+tiJHaaIhP7mgx8CgCAR8zdvvs0IWQFPno5Mv/CKswCzg4CFHdUuIAFO2+9OTgA4K5JRfI8AdjTu9kZ7jhPkzl/HeCSnSgAKz8jmN0SO2LJSH8xYVgJAvlf33KrnkCG3oItiN+h1V45zJwAWJD83iyq6S35dS8exePwd4jlgtfVntkdIK2mstUoGjDHbjZ16ve4ZTxip0Fm4EOlfTgC0F1Z3JYs8bP12MB4ACYHJdU4xwWee+ppBBxZMM9Boh1nc63U63fbETowxah+mcYbDzLxmj4bcFnfh4k+fQmakdfC5j7OqTdMImcZZxBCIMc43Xv62Sr4AwNTSVXKh5JTAH74eZoSAOHUZxlzjBfOiSsAEwRPhd9//EUN5GlyE8H+SB2UEYkLHoeB3XvkXIkACSMypXA9n9+ARhknD2AggCA5KogW7ekT87L1/A+hkRrMzN8t5EYD1aMCpy9QulppM39sKEgNQkozb3duO5wI4YpPhqDceD13XD8Ja6FfCoO4Yn9BPpfy1HI9tWkBUMDAvftlHMSO3QAD0DEuB1n77MwCI49jaOAhq9eoVz/NEEMEBjItzuw4BsDBTni0MSDCOuoPhQyLP2ng47Hue57p+GswSJwiqgdcgEG2eXLW0ToEAMKOmWJE5ftj5zBg/k8S4kCVAWQMA1GsNEfPy8//AgHYOGb1tGbOjJBXx5PwdtQM4nnR+/tG/RxQA8+Izr1yqv5ZMI1i5M7kdDoe//uLPNZQI8xr56X7zXe/mS9/Sj1YQYNk4AQCBuNN9GHNERIhirT6YWKOSJ6MBy+Od670CrUJms+bEmNFck0uy6CfXdhwSp1ppuG5A6JXGYY9woJBWZgBmCUCGKmaFjXMZ5mkrv1rRHT2cqPcWpo7VGrCkRr25s33JgFECkAp1pn9CeU5g9nPmGYO8+hkBOOG43bnXi1oopASACDCBp6+/4qSaV8XPA8w8Hg/3O3tRFAGyKufklU4MMqsQKjlzWAE1pIgAMpvl+bTDOoHzItYpVBCxSAr433z1j9LILrBmOLMPqMTFgrgLJR/z2Zt5AjBTRyQK+wDjtG+CHYNWj25GtHbyi4/+tNxc57mvpw5EKkuNz177+qXmy4BMGZ9P1wY4KMnRCUBacCJMuRIogGRNBfzOBz8BjEGcs/GTeaQIAC+9i/VMGk86/cGecR0RieNoPOonCYdBJQiCamXbc6tEXoaF03AFFIILyILTWMyj3Yg/SwCy81NIYNLrP7QcJ8k4imLHoa36lWplJz24YT7Riohadn4ASsljx1rBqD/p9h5YjgAoigaWEz+oEjl6RHturRJuG8Cs1hRhhV33qRKAJIn3up8a42eL6uLJgGbRCAbAeq1BGLz4zN9BnBaJCh0iQkwi//Gv/9/16hVtGPj6V/+R6+4QWABU5oBgvrj/7v29Xx+4gVl9bYQdREZ03rzxnayNmJA5DbAh7XdvffrFXx1j82QeDVYvxXE8bHdvu26YO/YVfu0MVDLW7AnO1VRwnRNz1geKWawwVcKm79UcxyuiRliwnSrSsKJSanlbn9lhegpxoEV1OTzJkiUAIoo5yQ59bG5tX965rPFxZAIAIc4ALopWoGEBrWa2VMUmdSWuzEmrd2cw7lphQh9AgOHpqy+4xgMyU0sEwslk2Oq2e/0OM6vJCx8i14OrgAgW9PdXbb8jFswgIgtYYUeJE4FYUEZj37r5hyKC4ArEIKrcX6RwsL4r4ookwIG/PPuvvcHdL+78MrZ9ywhCgHEuEQNZOcQjYUH6SG55QMCYxHGN//WX/3meMD8D9oHgCCTvvv9jQQsADIZSXSBbxKbHACjL5ICP/KVW7+KNEYDi55zzbLYwo4SeQ3lAGY07/cGe45AIjkaDcTRyHAr8aq26E/h1Y3ylXloFXhAmlgzmPgbN91OknnuWpR3A7KgAcX94L44jZoiGAzBUr+02ti4hGj2rmdkAFmVwDyhzneEYKGBVcBIAZTIZdod3DTrW2kkSkUHPDVEIUQz5tWDXGFN85SK8OVWim7+pBZkkrX6/OxeEgoK7zqr9VdiJp5YBWFABSn/iGO/Gi/9IRBzHQXQQjOAYJZDUQW0qWyaMX9x7Z6/1qUUgEM1pvvnKvyR0MtNyAMCff/BjTqkPHSBriAiqrSsiSBbYN8a+/urbaZqCXaYYAD/85D8MR52jbqRinANREoHMPMJVAlAoeDib/PipEIDibhFBBJclAUgQTeBv+V7FgFuoh+OsPWPqUZdjMnhk3VseUQJwVhhrAw8UERLd3VYMOjs7O9v1XcwjO5TFXVLr2zwnoBkNPmCTWuFx1Nnr3GUGIhbBp6+84hrPavUtWOZkOOy3O61xPNbmKtXg4GnX+9EIQG6XuxpwH4MlpQcyI4OYlAyxPPfUNy81n0cwLCqYvSh0Joc9IznKE1z5ywSWwRCRFidInv8AI8LRpLff+Xy//VnCk+L5UI6NbkNrhVxjXn/l97M6HOf0wb+DNMmjPO988ANto2cwRT2ADJ04JxSNOB6lOUsCsKTqTwQEyUzRv3pvD4btcdR1HGcymYzG/SRJwjCsVpphUPW9mogRBs3Ii3CRAJCs89UemVGIXqOQYea8p1xExlFrNO4B0GjUY+Zadaexdcl1Q7YCmKldsQjSkQgApehUOOPJg+HDcTwgwDiOrSSeF6hxjQhWK83QrRfn/CzVz/LCbAuiDrO5idMFIgCz0V87JxYpYrUyqJCXYWNcQ54xPiJaGyU2SpJJal4DQmIUu7/58u87jptKjDO++6sfqFagtkYf6IDLiAYw0QYDEf0rufnVfxr4FQACMUj8zgc/OI7y+awDswXZb98CAGNMXtJwtvvzaARg9bwt79/KCplSRJbK0zKLSK2643s1A472ZuQSiikQndr4lej/cUUeGyAAabGsFWtt4PlXdp6q1WogondBocXNziPPQ2rhiCGOouje/meIcnXned+rg1hAw5JE0aDTbfeGPS1cVCoLaRXcwdL+uAlwfwRsB0AMqN1+qghRr15R2Z8puyZRP4SFT3Lq+y67UFGRSp55yK5kFRKQh93PPr39N6ruV47NogQiYIZG/dqLz/wdB8kezv02885EhlnV9nC//fknt/8GEVT8I0PYmhOzJ5SQPnZC48zunbkYc7b39FSZQsY4jvrDB2ryNYlHw2GfyAmDytbWTuA1EA2i0XiIVleq4O+RZC4fwYgVZ1HTFEcA2tG43R+0jTGj0SiKRrVabbvxjOdVMhIluep0MeO9HgHgHEBakEncHwz39XdUxdG4HgqL2MBvVis7BvC8JI9zAsDIe63PqSBHUSzGPioBSAHqxlWAitxaCbEwICUkTmYHRgfCWKMtHSSgKhZff+lfuG5as/vuh3/CzEiJ5qkPbMVgZBWRtQBGU3MW0AAK03bjylee+buI8JvP/1unf0fYQeKjf1POxbAjO2h37mjLyCwBOLOilw0SgOWvU1CfJb3RM7bAzFCrNn2nguA+Kmbj5bhQHEDS1lJBFmtt4NauX70a+pU5t7V8fa7ZkpsDIwY7Hg+DoIZgCCW2436/r82+Kbsg5yh7H88E+heOYjEWE0Qh0dam8LWXviWCSIkIEBFbFTDFjADgNPw/I6yUaext/FOmFT6USwYhGKAIrZNBRRxPWr/86D+CwbIE6HSuALp2+dXrl15FBiKypy/NtNAYAz//1U+stRYSADKgShiaJz+RrMXcimVcSUTPESIvTng2P5w3RsfJoNvbI+Ik4Uk8iqLIGFMJq83GNc+taj13Vusw1QlYWtL52IT/LdhCnDFVKp/E/W7vnuv6o9FoOOr5XmV353ol3BZO4z4CDNPulHR+1nT+ymT1QQiYk97gfpJMINWmS1zXz/UbG/UrhL7BqWhE8ZOfzfzofySStLu35z7AxSIAi59eCNWrEtACELLNhf+XnQUpISNBAIto1N+kVrksEHd7D4zx8jS0MCIlqw4UC7GDXtGKKxFQbKr9JZnczTHz0UV8v5iagWmNEBzcjHJOZOCg3onZA3eu55iK506qupjVd4pYZKxWdsKgkbchwmzbcZkEKDnAKiSRtTVZAJCJrdcbVy9d9d2Atf0HBeYyjamUziE0QMQa41tmRZ3W2tFo1GrfHYxHqPZemBd3HvXQw1zvfE1CwoBHbABgraKRNM7lkbDr+t94+VsscWpKwAaAM/c1ykorp4gh34lTLSOwq2bruE9WsmkozkNqm4Cc1jD88td/GseRBTFQVgGdRpiQLu08+/z1/yn11SQ+7S4ARNAce876AOCdD74vQgi5MinNgZX14f6qXJxdYXR14QgAp4IliMaCJHbYHewjJUmUDIdDEfF8U60069VrjuMganMiTKXJMsfARcLzKAp9HoIS0YAgM5PB8WTQ7d51XXc8Hg9HPUTc3bnW3Hqamecaf0mmfggHEIA5PVYSzFSGVPxnP5WPZwZgIjVBgsBvVMJmLoBRBHhnubp0JUTJqDe4r50Pi5jqSL2m0/212R6A3AB4OjtpBY4wC6kCCSbCZunUpciZUBPKjEDCYJxm9Wq7ewfJIri5wmbeWLP6ok31hTQECIbYCmDsoKOyhLMeXsd4KqlG1WQybndvOY63RKv7ghKANf+22CrABb1FKciGznV+g4h4nlf1m47jIbgl6C8pwfoEIM+Va5C6UW9e3b1OqbC9ZEGOLASC8zr7c1ghiycxiCPIAnaSJK32/X6/z5IYclNt0GzpHnCgrxNxXE8hNBfylFWQZfYrGQGLmMYvUGIE982bfwgsiK5IDMgIrsAEwUk/QKFzd5EApCfnSgJwAiCYZsn1cKa5GBVz/OFv/tNo0lFtt9JA8DRQAhEh4jde/rYBzLrm8PT3uZG05UDT/vTF3Z/f3/+4IP/ARyr+Oaz6bn4/Lr7ywaUgZ0YA8q2tXiiTybA7fIhooygaj8cGyfO87eb1wK+r9ayKUWpP6rSdUqBgnzjzlR+DNFre35zpwiMSWBu1encIxFrp9dvMyVZ9e6f5rHZFa/0PUlp2mFkqH+R+sGiuQpJ2Vlgbd/v3tKo8F5NUoO+YoF67QqKm1wbOKeWSx1ijZNQf3pOpC8RFIgDFVMXsNCkoJKJcqLj4C4tQFS1MjAQWxyCuQbAC1aA+jvoAIDDJMeVhcmNcUAURAJM+RTVMwUTYyT/F8fp0VUMKEXv9/UncVdZYLH+fLrZHkgCs1A/V3ZL9Tm7VhKn1GzMRgYVqpREEVQR3boWU43gH5SrcfIRHi2d/ZxyuGqS7Jo0dICKB9nVZa4nM1cvXtipNyjLpR4kgFjAHWWHT7rX323eiKDJOare5JGCx8PmzZX+kB7Qxh+w8siuoMhdIRK+/8vvaELVUmTTT/sciASiyrJwhHMsQaiV/W4japuoOwvjJ7f/c7t3Nrq7SPfC09poFJuFv3vzXgCySgLiAp+vISwKMWvfFIlY9gBHpw0/+fDDcRxRERz/Vwfn2IqCfBWpzP89DbDN7Nt+565SCnNali0s+eQ49J3F/NO5amQyHwziOXdfd2tqp+ttqG5q10BQ5W3ocpmL/hRaCx6l8zhbklbO7YNLr7ycwBEu9fjtJksAPd3euh8FO+mup8HRRyDgt7j8KAVDVLDsa94ajVpZyQUSblTmY0G9Wg63M/PS80H+KckVkEHVG4/287Bzm1bHWJQAzGYxTKgEqoD017ZLs9Ld6IhiQFSVAKiImatVGgkKMYjPcn8v+HNq/r/5fqQ5dKmjNJpUTBEvkJMImbbORY6gAEZEFKyLt7h3midqzFcP/2SScfU38yQnAQQVCknqRcFF6tqDRTgBEEAs7gV+vhFsFUaCSA5wRAVjE+scTBl34q0VAvxYBKDSxzTsNF7wF0kwuIgqDACOL53jPXH/ONd7sGjsEjOqJmS45MDEPH7YedjptQTbGFbFgnGnf6lSzC/OjoPiplhKA7AjO1ck2dngeEnSQ8e/e/H8hSirVTyxMBcH+Ga5F6YGUCigVCQAJaB3lpoCgXsMzPQCIn3/513udL5hZSIQJU+HW0jjsVCKpAEwCT13++tVLrxzmn70pAqAPHbXlQy2okcGSfPzJf+kP7+l1ryDmgMNnPQJQ/Nd50l6U4Lw4BEDD21E0GEStOBmOhyO2EoZhfetSGGwZ9LT5qUibYUH8UbOUj2XbTC4NrHACgFUcyRgzGPRG42EQeM2t69XKjhYIQaYER1OBqZQmHTBFiwRA0WVio27/nmCuO0QoaZA6DOq1YDuXK8jrf85lkhRxdYf7k6QNYnKVpItLAJ6AaEsi1kPicdJrd+6q/D+cQKngMQOm2aEsjhPUKpcRHJPWIMzXgxY2fzmOPOGP/rzNMIoUfFNejgkcJ82t5vUr1wlcYGFiAj3meA7iZBZghZkRspJ0h+2H+/fH46ExxhiTGQXI2h/sSIRnze8rqyMmy39Y2DVUq269/Pw/UnyRX2gLy0PrB1DF7oCMiCVyLFhV5zzYr+CABZhZMeqfz5hGTz8FkaC8+/6PnrTz8Hy3khCAZST75qt/CMAkhqdFcqm6ymyY+TQ/DXIcx7/86P9kEABmcJEmACBiiuG/vARcYXMeVGI7U+aRst+sRwiyUo25ap+5qtRNRDDXPZCzrsLMMS17hfGk1x/ujUaDyWTium7ghY2t3dBtLh6AWYhzyfnwqJ/zGpAqzmoO/bXGSasER/FgMNw3xo2jQXfQcRyvUb9Sq25rV25avjFLCw+G/tO4CU7TpGo4Y0WG0d0oitSwlZkwq7wKg0bFaxCpc7YInWfHhXKPRJLe4H4cR3N9lYeFgOmAq6QkACd5KqmTXKv/ZRxHxphZ+cuSA0DuD2DIr1W3iz3ZxYqFEvqXBKB45xW9irNaIL525fpOY6cYJ9QmlCwNNRUJRTQgJCIMNrGTB/sP+v1uwonjUB51Ppvg6KbO1bnqSkmjmysyQsCAhjlBklp4/cVnf5cgJLCqEAoAmApESoYIjyP1lpVOKW+fNv5q5NUCI+I7H/yArTmqulo5ThImZGQHXWb78gt/v1a5rK6XwghoszpYKbK40xsG2bKDxMzS6d/65Iu/1l52XTBWhCB3BrAWUIu/1Rw3bwQqQEa0IoBirU2SBAD0wkVEA7iUAJzwYFzzYloo/AORBIzDVsiItXY8GXT7e1E0EBHH8ba3LlUqdUKPpGjThrMVkrKMTT0Ogj+wUKyVO/6qlGK398BxnDgZ93o9IqpVG83GVdcJU9xuRfnRUQkAFPIzqWwoc8xxt38HABANc6K+dVr8X69ect3QgIYmj1MhssFJS3PUhPcf/sZ13cNqVpcTgMWnUBKADTybmKP99i1j3MX28JIGFGRSbeBv1YLtvHytJACnTQA20jNwNpGh4oGeI/yZOhzLxjjPXH22Uqnkv6H6nlOtKiEBS0TAAmgY7H734V7rwWg0cBzHcTzGVJEDIBcpfzQe96wbN+T3wXLWLdMSvvz3EemNV38fwWGJHXSZYyKTMByvqiB7NFy4SJBEAAwYYLYg5p0Pv5/dQ6Uo8FkxS5SsiRFE4K2bb2t7rv7fVHZPzGl3BWTrMKUZQiiSANBvPvvL3uCepugsCBGxFYFc0oTz8D8p+M/KeBJmhX2TyWQymSCi67qqmXOAG+7GCcAi6iqesdrZoiF8RhGxzNzqfBnF48lkbIwJw3qzvuu5oYhBcAjskdDCY6P4qf+dd0sbwISFDEbRoNu/Z4wRsb1+N0mSWrXRbFzxvRqIlpZNb4o5r+WDJyevEZpzUuuN9sdRl4hEMhsyEQCuhLth0ICpXCQeaDh7RvekBbn/8DcqNH+oZMUBZ29JADa4oG1/3BqNO8b4hZ7jJw6PLj0QdX6ICNFFFGttJWxW/eaqeEA5jscBHoPU8GJEBwrqzvplObaVoPrMM8946C+obAGBYRAAYGYkiiaDuw/u9od9IXRQBdEVK6RS5efRDL2ZXbbGrkEAsNl9CWkY1SIJSvDGjW8DgFHnDkPHOLGKlcqaH9cPo7mVRJiIfvb+D9W8jBEeFaL1GOD/9KFgAkIiWA2rr3zln6RRmBT3i6Lqs+kNyKkIY55uUttNEULmTIDLClKS6d+TySrTNM2lqlksdjweTyZjIvL9MEf/B4R+T48ArJ7/1OksYYmTYbt7ezQesoDnBc36bhhspSI2hbD3moj/cQqT2Tn9d0EkiOOoN/hSlRtGo8FoNKpWq42ty9XKjgiCIAFoJ4meJ0ciAHOUQ+efmfd7t4oiENqmwgzbjacMeZDJCmVCQ+cMNS3Iw9ZvHRMW/JeO87HmA4glATgmcGEG4L3u5wCZgSjQKr/lxx6Mzp1W2ZklmTqQo0u2Ub/ioAez8d2SA5yEAzzms2co22vAsd1u7Fy79JQhylWDZhYeQMxxq/1gr7UXJZExxhjXAOa55vV6TpbX6F8Qjl34CRW+95I/ERJmMOQBx0jWsmMoIfRef/ltQEYEYcKj68QjQjZ7s544LEJo7eQXH/0pzBb4luOMiHRK+mw68ZK89dofIQCzna0sP5sTI7WEm4pBiehn+/CTvxhHHSszYpcgLmCc8VUgdCwm2u4ZJ5PRaDSZjL3AD4LANd7Bwv+ncSquR5lQy5kmcX+/dWccDYxBz99q1ncDvw5AWt1EoL5gB5lhP66n+lJnOmttt3+HOTEGoyjq9Xqe7243r9Srlwh9a63JFAXys65IANaszi++NQmMJoP+8B5l5o9ZDsoJg7p6jSEBMxs4z/qfQszFjiajTv+261QAQCRebAIuCcBZj9G40xs/MBRk4f8nkQAspQF5SjfTbXS0QSLwK7Vg+zx0UctxcYHLATE8O6fJY+XS9tXd5i4RoRbRImcK97Y76D7Yu9cf9RX6AzARIZNGPglSGYe8rPOibqUUZxc3F5ER4dVSyzOxIph6pIhWgAAYRtEKKCLz+ivfLvCco27DXAt4aoujgd4U/WNi2QEURFEv9nKcDbRCFOTUdQ2RAQwRvfHqH6ghV76uROAMegCKNABS107Jyj4TATMYP/jk87+OkzGIAYwZIWv8ZUTDFgEtgjOJR4PBIEkSPwjCMHSMmXNjPUcCMJe9RBRmHEStVufLyWTiGL9W26rXdlwn1CuPpNjvCwUV8unt+bhei7ne/9wUMnMmw2+stf3BHjPU6/Vm/RnXDVX2hwTmWsW07v8ABrj47sXiUmTbHbbiZJAFK7X+BwO/FvgNY9xCu7C+I5+japnGUvvjznC0T+SkLsjHDZ7OCd+VBOC4wIWTve4XAEzk6fMoQe0cEMlIqq5U3VS2WbvqGG/WYLgsEjgtSnbxY0urxElzs7k5BTdic+XS1Wa9manuWkCO4nivfb/V2rc2JtdBNDk21RrTtFxg6tp7EQlAUVEnA08zxoKz6H/V+axKL7k/QK6/nM0nJ44JX3/1W4pI+JjLYdpDrEannf7D33z+X/P+BJ35chue8T7K0lyc+d7g01dev3rpa5lSLZ4ZAdBMEZHJWpAp8/DRQ5+xEAba73z+6ZfvCkxAXAAWYBA0DoxGo16vBwBhWA3CELPE08yBsKwCZLOn3AHovwjRRHA4arXadxIbG3J2tp+qhA1VZkTQfqW8tAlydfmLfDifKgHQwuDBsB1NOsYYETMcdkfjYbVa3W48Va3s6JoVEQFtJ0+rN2E26r+OvHXx3RHFTuJW/0tERNRySI0iUTXc8b2aJqZSO6P0lc8RpTCAYY5744daApfpXhyNAMxny0sCcMIRx1Fr8BmhP6sjXo6iyFSmVktMaEQMogROPQzqmnorWDuVHOB4RwOsmrpNEYDTJhL5PXqAhHOxapmZfce7vHOtXqkjouV4MB7s7+8P476IOOjMqEwIoiRCRjjzzkxlti+iF9UqAjDHqw+OReV8KbsjZ4R3GYEIwMJO87mvPPW/oCTH8AGYNe4BEbvfuv/Zvf+ixmRWCLBE/+dAAERik7ku5o8eBd64+R2V/kRwBCaIDpyJXoWujaw9RCGFEUgAUHW6yGg6DgSMiH33V3/CEme1QDQcDgeDHgBXKrWwWkEVrmUQYJJpDHjx3Diz8H8O5XUMR3ut9r3Exq7j7e5cD4MtRBcAhMGkfdh5BQuTmKLw8QFv+tjgirwsMI+7j8fjQfTAGANso8m41+sFQdDcul6vXoZZqUABNjAVPzgqAZh9dxuNBoPJAwQPspQpAPhevVrZyT3XMk05VL2m83sKKQF40P7UGF8kXmUEdgwCAGUJ0FGnT8QqnuiP7sZxrEE1a+MS/c8pT+XnV1GXTRNttWrTc6t5d6C2BxQUgVhEiBxmEYKyhnizt9exF+p5yY8WI23pZcDgO34YhsaYaDIaRiNr02OxGA4syj4cKV/8eDyvpS+LiBasgw4zf/O174oIiDGUCJOgEUhADJIgS6YfPy1LyOs3AIwBA2ABkBEetD69dedvSg5/YVEXCbx54zsghjAGMSrLg+gUMkWYS7tumgNg4epMLwjWRmRgAhJGxgTBAeDffvlX7e6XAsCSDAfRcNAlgnq94fth2vDDqVfu0gqQg71gN7clWSmNVocwkohlTrr9e91eizmpVbcb9Wu+V2NmWpJpedwE/o8yjcoGhZERnGgy7Ay/cNBDxDiOe/02IjYblxv1K4RhCvvTOZJCnRUedf1rWixvnGVOWt3PEQyYXLedPLdS9beM8S7e00DAOIptd/CF5seyFN8BVq204odZMIhYWBN0VBKAtfZ/nnkBAAsiYvfbt1SHGAr5lCe+oGXKARbvkmntpjiVsOF5FSrkQ4W0wV+votQXRpNU5QosCcAcpACZas8LsCBjKnKvtjIyJydawApHdTJ+TAhAbicJgCIJkSuW3/r6dxWWkYAFMcZhZgAhYAZanKvM5TedZCHea3/+6e13AKDcphdzWBB1u3/r5ncQVfQEGFPX3lwSFBG0qWOzHGDRqk8b8BkYwRGxhtAmhAYs2PGk8+Fv/n0c29GoNxj2HDfcqjc9183L9wwCMzOgFmkU30hzAqdEAGBZEkBLWxMBa6P99q1oMhamrfpOs75ryJXpAQUHEIAnCf1Pv7gVEEi6vQcWJg65STIZDHrRZNzY2mk2rvjeFsjMsiE4vupd0YBMXzOa9PqDPSEEoIxmUBhsVf3GBXwiWiUxigeD4UNEN4NYxyMA0/9prSUMALkkAOuS1zzzzgjDUWs4ajuOk2dStAowXa5PfNRJsfvS+yDXYNEZM8YFcYxxCV3HJdfxNYu9vq91OR5LApAHDucIQF7LXvxUc7JoxcB/IeQ/h0Ue8+e1ggMIoS8w0aDGtcuvXtu9qZIxFtL4XFEqPvOOzWcVcx1uRHiw/9vP77yr8nnlRruwNxeAQWRE88ar30Y0+mx5qsBTpHlcrNg5jUECrF52BGwREQEtM1vEd9/7QRzHg0EniuJKpVarVcgxyAYRBRIAynSrBIEAZfGV4XSq/4sl14XWGhHBSdxr9e5FkzGh2W5erfpN7b2eM8leGnF4omJbWaJJ0yYwGrfHUVsx6HDY7Q961Wp1u3GtVr3MduHJwvHVAosiE9qX2B7csdYSgaQ0g32vWvWbRM4FfCK63rrDB3EymluTxyIAlDWs2ubW08aYkgCsS8JUqBgRY7bt7q0chcw2ADyBGYDFr8wZUDNLYydElCWkioEiVCmAWrXpUZg3CZQZgM1iypPM51n6DxRB/CIHgEK1T2oUgACrGwQXLuMLHbE+jXm2Ag6JWt4QORZUk0TeuqmFQJSJtGjfzkzsPxOWSek7AArBXuvzz+78VP81ES6L/i/sQESWCYLrmPAbr/wzAERJEJxMGFEQp7q6G3zTefMKnmJoRgAQJFeDQZYnP33/h1E0GAwG1tpabatSqRA5IEhgLSACAU7145feC2vqwZ+EABS/3cQmcdLvdO8xs+uGW/Vd1/EddNQCITWfmo1eP5nof84smVGiSW846ugCieOo128bY3a2rzbqV4TTe9/g/BF0THSCMwLQk7jf7j9ANLnzlwET+Glf4oHy0Oc5VG8mD3UdiIuWE4AsJZXiLpZ4t/lVkrIHYN0jQPJ5H8fDbv9OriD7xI+lrahcmD0qTmZuDjAt4pw6QWpPmHFMZauyTeSUBOA08PRFeJ2jvtG0pCfVZZv3xlp0xlVIWrh+sPCCcgH1/k91nhmQwKr6eKaJYQ2YS83nn3/6m8ys1f9ZXfhc7H8K6TSCu9f+9PM77yqvKDp0luMCns8ixGiJCBkd43/jlW/lSyy3ddOHfkr0Q5eN3gWMDABGXAGrxWcTjt99/wejca/f75Pxt7Zqruu75L/56veArSC9+8G/yTcEIlrgxQzAaTtOzKHYmCfDUSua9KyVStisVKqGfEREzu87lNStoyQAM8U/LFGndx8REQzLuNvtJjZubO00t657bpWZkdJDvjhFJ0lc5wCDGfZ7txX6IxprYwPoe/Uw2NKg5IXMAFgAut/6TeY2a/NI9JEIQNaZiYgWgCxPrm5/TURKAnD4AsrrVZQD9MetaNJBNFrNUviFJxOqrtKi4QJ9mqYCdENCoZYjOyA4swtIEDHwtzy36pJbrsDHMQ60zkW4ysl8ngDkkZ456L/0fQt/cqEJwOZ3KQKJbklCZEYAMSgMwG/d/EMAITJsAYmFScGUEgDm6Tzr/99rf/r5nZ+JCKvEu1gDZbXexd59hMyJASMijuN+4+V/AeIq3wOYuiydBg1YQgCEUBIAA8aOo+Tdj37c6+9NosRxvNpW3fMcg96br3wHGEUESd754PvCDpJkvN0y0uKmPj0CUGTjIpJI0hvcj+ORiKlVm0EQIrgkSy7BVSYnByj/PGYooujaLkJC0OneFYhBHEDuD1qj0ahaqTW2rtYql5jBIT12KG8Z3whZUvyW2Ml+93ZWXIAk7HmB7225Tnhh1QhFLDM/aH/qOKlm0fEIQCHkypoHvtx8AbEsAVqbRGqBioh90P4cEXNTIZg1wHoiacCM/k9hzeXJOyocByyCOQfQjSfACA6iYWZjkDkRwWplO/CrJGWm5ckkAAe9VDH8zwh5RNCkK02Wvt2TnE0q3sQFIVEGMG/e+DaIm9oDZ773OdGa0fuH+O6DT+88+KXeQ4zAzC4ZPRvLRX4xiR+ytgGAhqV1E7x18+28Li4H0MXu+ROOomwLMwshMyOYTIfEgjiRbf30vZ/0+i2biO/79XrdGJ/QvPnqHwA4KCyCAvG7H/4YALLeMbSQIDjFDICG/9eUgzxG7K/4k5ijdvcOInpuLfQC1/WFMStqnQkrLH6eg8+fY1s7PSrHvgU7HHWiSU8h+Hg8HAx6juNtN6/WqtuGPJwRF95YCjTHb/1xK5oM8hWKLJWw4Xt1tYXJvVIu2g6exON2/44xrgiKxMVut/UJwNwPHRM0qpcAShWgNRgYImrYDMBYO3nY/dQxvqaQcm3QQhLgyYyEzXOA3JF04ecZ6E+PV8w0QG3eTZiqLSXYbO56VCkXYUkADuAAeunq+jPToqBHruXudNuHtB4h03+U1D0ZCIB3tp5/4Zn/CbKQfwYTi9KfKfrf33/42b3/IuxoIkHdBtJKh/KyuKgEAABINAQogGzFIJAB26w/95Xn3hTrATKBBSHVdd3IyCv+c284ZgYhQAYhlviT2391d++Tbm+fmWthJaztkGGD3huv/EuSgJmNIzYRRPzZB/9GFfYYjAAjIgJJduPk6b5TIgD5fzCztXa/dwsRa9WmixUiRytadU/l0D/9b0PC0x6AddD/Y0wARGCc9AbDNhEgmiSZ9HodZq43drbrV12nombtIHnP9/y5fbzoau7RZm2837uNiEQA4ACw74TVShPEzR/cxSwBGo17/fGeEoC8CuiI9wgDOOohoNMY+Fu1oFESgPVPgfT0ieL9fr9rjIF5qXspof8avwOrjaumQi7ZsYtBENT8y7n1qQjrZoYnO5r7ODGBTakSrRLcKNfJoQCRBN688XY2b3mDhCA4KFajcYzQ6t359Iu/KmfsMbrXhNB/4+Y/E3YQDIoFUDM30IINAAAhQFsUhpobWeh92mmjEFxJOKeHuYC4SAmIAY7HtvXLj/5Tf9Tpd1tEbqVWC6s1AkMEb736PXX3BmQiYhFgfOfDHzAKAqGkH+q0O84zaxrKbhwCgMSO9rq3XAyqlYbrVNREFtICVzxe1P/Rx0Ur2F+en7EJogExke0PRvtZHbXtdtuTSVKvN5pb14Ogkut+mtk81cYGJoPxYDhqKZZDdA25lbDhkl9M8mRa5OcMNYuJCEbYb98CSFQDVJskAZKjoM15gyZEqYZXQq9a9gCsDzWYkQD44f5nxpg5sZGSAGyQABTiRggAO/XrRE6B13JpDlASgNUE4InW2tswAUBSAQ0LMp603v/1n5eT+RgNBLCIDnP8zdf+KIVfU8NUEhE17l1QC53fX4Xg97SUiMDEkDiIgg5LQujEwI7gcHDr/U//a2846Hf30HGazWY1qCIYEXzjxvcQEcQyMxHaBMgACCkBKOjPbrjfd2ntjV76RKTtMokdtjv3wDjN2q5jglzkGlNHAjptx/RHggAsFE2lt7blqDvoiFiVGhsO+8NhPwyrze2rtbCJaGzCiNrYIRufNhFhTvZ7d7JCfxDBMKgHft2ZumJrVPHcVByLelPFpEciSbt7JycAKenO/IDXRmhUzAyI2K3add8JoXQCXjNSAkCMMI66w9FebltbBK9l8c8JCUDWm5KufjVZY+atymXPDQr81ZbVxiUBgNU1RSUB2AgBICEAK4QiMBq3P/jtfyx9Th7DnYgJgiti37qpMABJQIu7EJmZidw1N5qmArJmXxA0WtJtkR2A2IDH+H//9f8xGfY8pzocDo3vbTcvBW6gvaG/e+O7wigwQfAEEgQPydpEm4B/yJhH/dkCblbxs0gAZjU/wAoBWhuP2t0vHePXa1ccE0DaNp1toAxTlgRg0TYhYRFIBsN9y5Fe3OPxsN/vG4M7O1e2alcRHBUnJtpw42/6eJiJaDQZ9Yd38gIY1/WrftMxQW5NkMePzut5LRIA/UnMUad3n0hxv83W5zFQkNoAp3/YqF9TD+aSAKy71hlhONobR31VlVqwB4cnngDAge50h/7O/EGsjcJVvxn4WwUdq0O74MvxKHGATfkSlARgswTAgBGYCDqTePDLj/8v3blaC1JO2mOxB9M2bq1TJ8Ovv/wdIlfvNguAYACtQEwQCthD0f+SXUkOg3VEmAgs/Mef/h+hu9Xt7Y9H3bDS2GpechwHwUOZfPOV/ydgYsUAToTROGitRbUkQ37ngx8K5VF/PkwHfWM7Q4SEeDIZ93pfGvIb9WtETo6LckODBbnhJ/TwKbQxKJRnEUVNrTgZ6FTEcdzttkWk0dhuNq66ppZVdaW6wxufOg0jDqL2cLRvjJv5/tar/lZxIWVJgPPHFXOdJ6O4Nxi2lY7mnW9HIQDT0omcABjyt+qXDRgoMwDrPxVGfrD3W9fVojHUJtdZdFsSgFWTsE4J0JLAMCLWgm3fqxf2hpzVBVCOs7ktHg1fgieNAGj58zjqfPDbPwcAC4lmPku9/8fp4VshLbxAFkR67aV/5Ln1KRoTg8SZHtRB+0tbfosnvBVxDVpBhyjmyXDwyZ//j/8vyJbluLa13aztELlCwMz/86vfFUFhIybO3SdEQNggTjMARQJwVlsjiaKo279TC3YCv6EBqWyDpNX/DFOl/zP2Sr/AYR3MddiGk240SWOm1kb9QS+O4zCoNBtXqpVLICa1J59V/tng7Olr3m994jiprZBjKpWw7pKfG8jkaauL89RyhNMf70WTUaapOIPmj0gAcq0aDINGJWxot0NJANaikSJJLFG7cwfRNQaZc1C7Vmz7SSIAS2djrVkq+vDlrcC1oOl7jUxdAQrqJeV4cgFrOU6bACBikkS/+OhPU5iICBgjm5JoPTZwDZEYYwASJoP6Q3jr5u8DGACLELBEiOqOdFCyrYifpn1cYIQESSYRD/rv/fzXf9lrtSxCY/dyPayQeIIgIt985V8BANOERAAwYTDG6EUgYI0BEToDAjAXdgVglsl4kvSH92rVS76pEVGxPSbdOlkUNs9LlwQg/+4iEk16/XFHG/qYYTTuDgaDwA+r1cZW7bLrVAjAFrBBUTp2gx8sSkad3pdEntbXBH69FmzlUiLFurUL8tQK5UC2M7zPzFr8k9GA9Q3LZipTcgKwVb/sOmFJAI72MPZ7t5Nk4jgec3JUaFsSgPUJwOxBDL7j16vXsuXrlGuyBKxQ+s6ePgEQtO++/yfpnUGGOXGmWofleDyuNlswZdf6eyOCb732PRAGMQQsNA3JL0cJC7H/HEglknzyxX/t9B90Ond67Z4bBs2dq4HriSAYQKa3Xv4ekrViDMQCRvVCp8uS0jddJACnmgFGFGvtcNIbjva3G88YcGcVPqZiA4XPwMUegCeQJM+dDCJiOer098nozHAUjfr9vjGmWm3UqtuVsKnK+4wF6pV5Dm52AgfR/nDU1QSO59YCv14wGJ1qiqzjw3AaOYrVdJSttXvdL4xx8wyAEoC1330JAbDW7m4/h+hqI01JANYa1tr93mcATtYJN9WzLwnARghA7qWQcV/MLSR3t1/ICUAmVV6OJ5oAlBzgtAnAz97/ASKlrquCBFLW3T1253Ze06LNhY6Iml3KWzffBkA1edCe4JVweZYA5Gd4Evc/+vzPe6Nhp31/OByG1cpW85LjucgGUJDhrRvfQzaIEYhhMigxgEBKA5CMtYIIDiD/7P0frEBIm2JBxaYyZubReDCcdLYb1xCNAcM8o0pZoENS+J9T+PgEBilmVwgyx/1xK04iDf9ba7u9lk24Xm8EYb1e2SV0AQVZ8nqh3DJCOdim0FQivN/+jNBDikWwXrvkmEDL34sEYJ0VtbgLTuk8zAv9kyRpD24TeVljTm47u379TxFxsYhYay/vvghAuj5LAnDoFKJAMo46w1E3k/4tlSg3whnmFjFnG2wmw8WcXNr5qibpnmCt1XKU4xQ341s3/pXKwAuRoPzigz+1PCmn5slcDyJUq+68/Pz/wyDbtEVTvd5A2zQV8iJjXgovYkUYkYA8wPjd939iJZ5M4lb77jge1Ws7zeaOMS5YBi00uvE9tWIFTOYQVcGJTJVJnbv7H3xx7z1GtTOjzVaBWhBERLZEjgVhTsZRbzjav9R4HnFe77uo/rf4T0/UKlksmgIAACMiItwf703iMYIRiElgMOwNxsNKWK3VmpWw4Tl1EUQWpOVdv8cgeIUHoU5BCBgjeHEybPW+JHIQTeDXQ7+JwrA59bnNqlHlbsQiIASj8f5o3CusOs5+cx38OdebyiIG0RI5O/Vnp5m0kgAcSgAAbbd/L0km2lGuc1cSgE0TgOWHqYjd3X6xJADlKMep3eX2m6/9UQrgQD65/Tetzq1yWp7g9SAA8NaNPySwQiTCJJjmAdTKV1XaZKYfkbNz++cf/ZCZR6PBfuuetbDV3KnXq0QeCTAzAL7xyh8hxSAOyiQVf091ypcSAGKUn773QwYwmCuZbKwWlBFErAGHUZiTVucLRGxuPWtgWmx9gMLPE04AFi3DAWAU90bjbk4Momg06LUdP6hVG7Xqru9V2aKq/hcNv05IAApLl7MiGRHBQdQejVuIxnXCaqWZl76ccHdsnAAUeFRa4WZB9tu31GhiQwQAEcUYf7v2VEkAjhAhAOC91ufq+532J5XZ8DMkADvNr+Qi0CUBKEc5Nn6Rv3HzO1qLa4Xfff9HJdN+kteDkBDw6y9/xyXPggAICTKq8iCqFiEJFSqSGRGBvMSOfvnrP40t9weddnufDOxsXwqDJgCjsKpDvvnqHwEmWukNAGjVY5iL1qcZ4lECgIzws/d/qAoQWSFoslk3GAsWgPfbtwCcnebTALQod7uq/nud2vHHO3wghDlsTZJJf/ggFdgRG8dRf9ATsfXaTr22Wwm3hQlRWKwBLILMkxOARU7CMtnv3gNgIqdaaXpuBYCQ4STP6tQyAFOZzowA2L3W55n21FJMfxwC4Lpho3JtOmMlATiUAFgbtTpfGOMXGFhJAE6bAEynuiQA5SjH6Z5yNr5y6aXRqD8YPcw8Yku7vSdxaPMuCV2/9OrTl28qHEdmIcqPaBFBzmu2EVEQzcSOfvnrf5ckcau71+sNPJ92tq+4ru8ggRiBRATeePUPQAiAEAWQ2ZKboh3mgv5b9kZTU9if/+on1k5EkAisBaINXr4owoy81/q0XrvsudUsQkyLyH4V1n8i8UDm8pt6RKQoczjqRpOuolhro9F4GEWjamWr2bgWBluELjMgCoHGUmlTBECrMzLqmAo0DSedwXAP0fW9aj1s5oHzA6Tk1knpnE4r8IxRl4hYiNvdOwdi+qMRAOXqvteohzvTz18SgENmEWE07ozG+4hu1odR6tCfLgGAtA2oJADlKMfpDhFBsiCkFzMiihBiudGeYDYI1kGn4jdf/so/1DWSg4H8hBZOsZQBY8H2hnd++8V/TxL7sHVvOOqHQX1n55LrGmY2avUK5vVXvoNoRGIywhYRDWBCQiKWCHlW/iUnAFojdOf+r+48fF8kyX6BNrj+iWg46RryiYDII0GRZKpnWl70q84NlW0iYVbZbhlH/eGoo4TQ2ng0GozGfc/zmlvX67UrRJQ7fRmcem9tZJLz2DkRMSeImAi3Ol8iWgS/Xmm6TphDC0aaIwBH9XHbeOnXIqSMOWp37xR3RA6Kjk0ARGy1cil061O99ZIAHEYAuN25xzLJyaWIlOGx0ycA+bqfLwEq2Vc5yrG5gSKJFlWLqPZieew/6VceslzefvHZ628ikkgC4gKyMKYssYieCO7c//Deww+HUb/ba41G41p9u7G17Tok7BAwCInIG6++jWRT2oAsbJASPeYNOCKWl5zokuMQRHnnvR8zWCFDstlIEFtrBR0yov0H5eVyJMxqQQCACCbxcDgcCEQAxMxxPOr1emSkVm006k/53lYq9KfNHixEhpk3msyZwmhGHkf9wXAfEcOgUfHqBcw2L+JykMjV2S6GYhVTIpNW50so5MQ2QgC2atc9E5QEYN0Rc9zqfEHkACQADkBSEoBTIgBLibWI3W684CCVBKAc5TidzUhKA4iczIMpRnDLqXliUR0Av/KVf1gJdtPAP6f6ngJWvQJUphBJPvj0LwbD1mjcbXf2WUxzq1Gr1YgcYTWTICR+/eXv6YlNwIychmktOC4x82qYkcNxEbHvffx/xzZKlEOcrIx7lu2AiBAkIC4RiXBehrH0biqvnrmlwixgkHkyGLYTO9Z/sjbu9btxHNeq9a36lWplJxVbYiYimBZ8bWw+GdXNOkXPMced3l2RGMFvbF1xyeTIYVFN5KIRAP2PmKNO7+5GCQCISHPrWQedvOG4JACHjCiJOv1bBiuAExEjEhfMU8qxQQLA2VakkgCUoxxnNabOppkY/ExtbjmeMFRnVf0mt4YQMAgsAIACDMKG0LUyfLD/8d0HH0U86vb2B4OBIbfZ3AmCgIiQUZAApeJuv/qV3wMA1Q5CFiEEISQ2QCLCimnEANqlBCD3pQaQn773A0ESSAzgxmRABZBYUxqLkvBzoL+Iz84LI14k9K91/I4FHo07k3igQVKVUu33h2HoV8LGVu266/oAAJJOncHUXW6DU5epxKYPMOao278HwIHfrPrbiPpPpNnOuSbyi0MAitmJcTzsDe5vnABsN54zYEoCsJx75exQRBgBgQbje1EU6XypAIKGQsokwGYJgF48xV2Xn7bNracddAp7oKxOXutAzMdqS5qS5JejHOWYOTeQrTHm9VfeRgSrUVVgBNLwrVgCTH7x4Y8TtNEk6Xf2RlEUVmuNRtU1ATIiigU0gE9def1y80VM71JHBAGTWVWT9RgqgrYRA8A7H/woR3sAJncuK0NCp3lZUwEos054/nAYYDzpDEctIgcRrSRxHPW6LWPcem0rDLar4S6ggBSt1OSEWpwHfk5OhFXOlcip+buu684tErW3K96MB3OAA5qGN/7507wK8nDUHUedAjqCHHNqMVXR4WsZK5ghACJWu1i3G88omkq/XUkAFmmAPgxNDnb7d6y1RCRiSwJw9gRARPIlWx70RyUApV1uOcpRjnUiBXpWWAGD8NTlG1cvvWoTJAIgTP0wBVGoN9r7+NO/YLTDYb/b3kuEt7Ya9douohb2IIEgOK/f+LZoFqCgEI90vAPcgrhICYD59Mv/sd/+IgtnIpFhVmyEcyCpHJtaICJ5LVZ6cReeKUbJsNffR0pNrKyNur0OM9fr9Vp1O/AaRB7O3vUEp1RMlYbPJzzsdB8Sse81Kl6diPKvUGgSWAv9wxkmAfRjEJGIWLCD4f4kHm6KACim9dxKrbqrDh6p5VhJAOZIWB5mZoQ4HnX794hIy9dyO4ajuDGXY10CkIcW5hp05jjrXFiiHCtOk+L5VfKAcpSjHCvR//TWl9hz6je/+k8RDKAlMhr/YmAE79Pb/+Vh5zYADAa9VvuBZ7z69lY1bJKwEKrBk0F449XvgJCARURhFEGChAgBkI8u764lQMKoZUJ/+/G/jeNYI7gqQkPkMCdETtm/fkrANLuRUzKQLxbmuDvcY9HGSGstjka90XgYBpUwrNYql0OvCsAgLiPnK+wUwv9FroKjuNUftImoUb/mkg+rQ4frLJizJABa5COCjPBw/xNjMI/fn5gAgEoA+V7VwDQfUhKARViJAFYJwGC4P466NCuBXBKAsyQAUCgBKgnAMQgAAJRZk3KUoxyHon8AIMGvvfAPqv6uCAIwEiM4jBMS78NP/6w/6rLE3d7+sN9B4+7uXPN9F8QlAMnUIN945buGOFPyJBHRwL8B1GKgo51jjGQ05U5KKgDg3fd/JGhZcQypla9KQBrJlSbLcWo4NQeHncFDbfxFFGttHEe9ftd1vFqtVgl3qpUdEhAp4u/TMk7OkhI2EW537yDaMNgO/LpGu1e93aEE4GzR/zSLZUEe7H/sOkFuqXZyAmBtvN14ziU3q7AAAFsSgBn6pZ0iSgASSfbbtzWzmRX/YFkCdEoEIE+/LO66Rv0pl9xFtlDOY0kAylGOchzvvltBAEBtoRW7k0nrKn758U8mNonjqNW+Gw0nQeA3d3ddtwasVlpgEB3jff2lbyOKkEU2qigFqAW06UF0rBi99iVrE4JewfSz938okiB4TFZEHAQAwxyX98IpI1TJ0Xx/3I6TvqStvTZJkl5/H8RUq9VKZasaXjLkiQiKzIkLn1L4H4AsyCTuDUdtEalXr/mOWyz+0dBt3mV7cdD/HDQSQQuy3/7EGHdTBEAf3E7zeQcpfxfE0gl4CQFIewBijvbbt40xeQljPrMlAThVAjC39+rVK37m4pG3CpTNAGsSgLIEqBzlKMfC+aDS+7SEALzyXUQUsACCZMbR4P3f/pmFeBINeu3OeDyq1Os725fIAIKLjBYEUSru7qtf+T0CYGTW6n+wsy2/ua7/EYZyBsRckCdFM4Px3kef/nsQTyASCABFK5DKzPAp4X7thc0v6MlkOBg91CWDKEmS9Acda+NK2PB9txLuBv4WIpJgwdT5tIE1x2zb3duIWAm3i3ZXMNvBvIDoLgT6z4ogLABNeNjp3iXyMrC+gQyA6/r16jW10VAEK1JmAGYXeobvERFHca8/eIBYEoDzJQBcDa+EXrVIAEr0f/gUl03A5ShHOVajDZhWAU2PYoLkjZf/FaILOBHGe/sffbn3HjP3+91+d08Ems1mWK0juoQGs7LY61duXNu5AUDp5UgC4gBwwTJMAIDkGD0AWd5ASAWFABApEes9aP3q1t2/VS8qRCEpFaJPlwDYrHnX2rg/2EvsmMgRsQA8GAyGo0EtrIbVuuuE1colBw2AMMvcAznNB8TDSX84agmb7ea1TOxy5Te6UARARNQgAcAimvbgThxHMBVE2UATcOBv14KtTDsL0xq/kgAUCCIi5jwM+uPWeLKP4BUk6qGUoTx7AlAJLodemK34x776f9W5c7TNWMqAlqMc5ViPAExPY2R56fl/sFW5wsy37v/0YefzxA732/vJsO+4la3tpueHBgnRRbYiyIBv3fgOsDFoGUidwlAEkcHkYiOkrwwrGg8OPA2NwETtKdJuYOHcN0CQ33n/+wguA+KsuHs5NksAhLI8ACej0WAU7xFWEBKROJqM+/2u7wT1WkNIKoH2/mrtDQBAWgx2yqiamfe6nyNivbbrmKqZvUnnoMXFywCglrQBWuZkr/u5COYJtI3IgNar1zzjEblaU5c+3JIAzE6Z0XIpRt5rfY4oRJ7OfjFFsGy6y3ES9L98lwIAiBOEXtW79JiFdtYD6OUoRznKcSIAVwQ9jOl/Z9ZXVn8yVXcRTBU/CZg5iqL2/p0kSSqNemNrxyFfb0NNwyLDm69+d+5dSONldMrHtRBgjIggrsDk15//VW9wL8WBCMgEYKth49rOS66/9Ztb/y1JknIxHHv96MNlQBYbx1FveNtQoP+aJOP+oCNMtdqW7xpjmrXalgGjyaHsb8/CWNDauN27Va9ecV3/UCPzVQTgHGGGiEV0AKwyGa2tmhVdzbDD/IekFUBrxsBBLcBmWVBZAjSzIHKTC04kebj/meM4KwhAif7PiAAgGsdxGpVrs/vkkY/0lCU65ShHOc6REmgckRk0VM/MRABAKqlpbdQfdDqdFiLuNHbD+pZDhpkAQBiQuB5c/dpX/lewNHNukxquAp8yjqK05CfHRmmHwL29X8fJsFF/ul7ZQRYAFIJ3P/wTtQsoxwkIJCZiEbHTvWs5UnF9EdsfdKIoqlZqYVh1HK8S7DqOR2lnMJ8hsOY4GXV7e83GVUMBgM2bfR8dAqC5Mmut3e/d2iwBYOZLO887OJXK1a7XkgDMLXTRWMgo7rY7dz3Py7Upy/rCcyEAOna3nstbtEsJoHKUoxzlOCK2wNkzdtoQqbXdRGStBWAiZzIZt9v7w1Hf9/3t5m4QBACUqi9w6vNFRMAmSwioJ+zZQSgSEVGXVskEQEXrp4VJP4wBEIHbD39558FH5d19MlxEIiyEg+F+NOmop6xIqvrvuX6lUjHGD7xGGGzp7Z4Wa83ab53m57R77U+3G88Y8nMrp0O/18UkAEmStPpfrCIA6hWwBgGYeWUR2d1+rugAUBKApQ8gnfFW/8vJZOg43sIZWob/z5QAIKK19nLzhWJXwCP0CFaXGspFOHTKUY5yPGl4LoNl2c8otR8CQUA7GIy6vQdxHFcrW9vb23oJChOBiIjv1W589R8jojBrXfeyQ0yOqvZz1KG6QIgkIkpd8tImRkEUZAKQwaT14W//UxkzOslS0UcpwjHH7e5tY4xiJE7GvV5XkGq1Ldc1vteohrs4s8DOjhOK2IetT3abL2Z188wMsyJUjwQBQACOk6jdvweFyr1ZEsVrEIAZjCQivh/Wq1eULmcsgsoegOUcQATv7f+aiIicBXoAJQE4RwIwq9b6JBMAXHydcpSjHOVYD/RMjZlEBEwaJuz29nq9PpFsbW1XwpoxBsFjBoMsAs9ce+ty8yVEK2Ahky0pntUFzcdTP58RYVZdnoTRoDCCCCPibz7/L+3efcBE0C2LLddDn8uXiggzQq9/P7FjRCQijpNevx2zrVa2fN93nTAMtgwFNAv9zwxVW44QDBFlIXNBNHnz8ZoE4HxBRU4AosmgO9wrbCg4OQEIg3oYNLUHoJghKQnAEoQaJ9Fe95Zj/EVuUBKAMyAAxX2oBOBS43lEzLfBI1SOdTqRBlxKJMpRjnKUY72DSO93LQQCRonjUae7Pxr3PLfSbG67Tug4jjAhIxKLyCvP/5NKpQqgDbisaLvY7Htcn69jfqHsHMWFGgkAwI8++Yv+aB8AcsmgchyLAKAW/4xGveF4z3E8ESsiw2F/OBpUwmoYVhFNJdj2vZrB+WV2Ztc0cwJgiIoA4SCcsHgvnzuiyBHmaNzrj1tzn21tAsCLPxSRMGiEQbOgjJSK3ZcEYMmyGIweDsYdY9zi3tCWqdIB4PQIwNIGAERkZiUAc2v30Z6FEzUBr/PdS2JQjnKUYxX6h4JIC47Hw053bxwNgkptu3kpLfsRNKBdcc7rr/w+kccyLpYlaCfu7GmT1+GcxffSYHPeuZf9kH796V/2xl+wJcbEQY+5VAg9PgGwkCRJktl+MSKORoP+oOc6XrVaNcb1vXol3AZBlCUR97MJ2DGzRv0BUGUuD+4EuIAEIMM2Mhr3BlF7ltOelABUKzuBv0WSY6eSAKzcBrTX/o1g6iLBnDeylATgfAiAZgCI4GRNwJvR1z8e0D94HJ0GlASgHOUox5EJACOAqFhnXqYv46i/v/8gSZJGo1Hb2s4LX9m6BhMQ8+bNb4sIiFGHYASjIuUEsRDN1nuknOH0VYC0A3gezCHinfvv37n/gSCoHzFy2QBwfAKg7r/9wYM4iYwxojKgvZ6IbG1tua7rmEol3DXkAFs1fIBM/6dQgn9GbXuZkibIYaYQF5kADEed4aS7WQJQr17xvApJ/iC47AFY3ADCSMyTew9/EwY1ANJs1wEzW47jEoBVM7mEHojIpcazmWaFcvrHanGml6Xg6m29pKlOZwrTc0HmXoeOzAdKU7BylOORgfIHQ5bZX1P/dGIUAEAgAmEEErA2Hg46rU5bCHZ2dirVLVTHXhEQl4AB5I0b3yOUtJxa3XZJAEDLCRgFIDX81Xg8o4rGTEsxhBGQAdKe3Q1NBCFxJjbPAEYLkwbj1kef/AUAAzKImwnRaMujffrK1wHw9v33kKxlB1AMYLmi0kUiRISaLbHqFSWGwPZG+5O4r+X11sa9XmcSR7VqPQgCY/xKsOs6gQCTsAgVl2RReOrcy+sP/Z0L8AlZlX+6w9Yk7s/t9BVzuJRZ8VycWgR3t57RIur5b10SgCJ9FDKTuN/u3HFdPzc2LwnA+RIAa+2V7edz5pql+R4vAiBLTh9aex7X+P2SAJSjHE8cScjOijTqj4hWABEJII7HvX6r1287jrO9cy0IaohCYhSvq6rmGzf+NUgMAJhZCFF6CKdgwkKaIVcV0NwvVrUHVT5ytkRnMzALEZiFCDMOgIgsYN95/08U66t5cFawBABy46t/v+I/JRB/+MmfjcZ9eFwsZTa1WoqOv9m/YZwMu709MkzkMCfDUW88HrquX63UiJzA3wr8OqErwCSpWugjSgDOlwbkPlQA3OrdtxwtPpp1CEChXt0ogkVExwRblctLv11JAGZmk5H6gwfRZFAwYS4JwDkTgCRJru1+JbtCHjkCcGjpEa6aET7wdWmN2SwJQDnK8YSj/xz0AwqyBvDZxoP91oMoGnlB7dKly46poFX5fNGeYAP4xo3vgVgEw5IguACsoX5EIEn7fbUJWGEHMxNNAbcGlVP4wghoNyoNlJckJSJARCzy7gc/LMjEEYA6eCIivnnjO4iEkjBQq/vpp7d/LpIgOuWhVxSYtyC5OwQzk3Bn8NByrFM6mQz7gw4RbdW3Hccj9KqVJpGXMUApXiIXsElvVfZszazamX28+61PjFFeygp7jpgByH+uTBgDf6sWbM+9kb5aSQCKzEkS4Xb3djY7LGIKEKskAOdDAJg5zwAUTitaG9qeL9A//oysTwBSDexDQh1SEoBylONxO09n6+DnGooYUPX7iciCgCBKMhy2W+22gG1s7dS2djTuSELMjEgMgARv3vwuWAYgEKv1NoiKqvP3ktxMgAittcaYrGWOsrIfQARr2RgDYIWd2XDHyQ5cRLAgxIgoTO98+MfpBKT1SJB3Oj771DcuN19CFgAS4oftTz//8h0oMwCzcFDECmHaaMcAKNGkNxy1IDOJ63RaLLZWrbuuT+QEfj3wt0AQCtZUeTFYAVbhxfy+F4wAYK7Je3fvY88LdH0eRgBWQQMGYABHAUKtcjlwK4tfv+wBmB/jeNjt3zHG1+IfTaeUBOB8CQCRs1O/XvS1XgG4ZaMbGM9xFtYnAFL4vrRwnJUEoBzleLzR/+J+L3IAC2I0PssMhqyNe529fq9Nnr+7cyVwA0SEqTo4irCh4Buv/kuBBMERy4hIYAUdwLyihvMTMu0EKAiuZ5UkDEBskYzCGthsDwAii1D+mu9++AMR1NoldSxLw5/gNbYuv/j0/4rEyIJIifCnX/5Vu3ubmYs+P084AdDVxEgpE2ACtN3+PQ0hM3O/3x1Ho1q1HgQVAHBMpVppErqQNpQDAwLKxScAB87AOZYA6QYRa+VB5zeuE4igSJyq9S8nAEvC/yJC5IjYnNwy807zaQe9RfJTEoD5MYg6o3E7p0ezk14SgPMhAJ4XbIVXF7YrrrgYNsjILxABWDyYVpUAHXbFSrnfy1GOxwO6zYnt5MohRQ6gFTIAkmt9hkG1sbvrkG9SEQHKYD2GTuXmS/8EEZkhC34JkcleinPikZ2QFoAQEQCZOU8CgBCgRUS2mBUOoWzOJqDwavLuhz8UQRERJAIAjEFcABGIHRN84+VvIzhagISMDPDxrb/oD/aUO5VNwDqNjOoIMX1A46g7GrcRjYidTMa9ftf3tfSfmLkaXvH9qrAaMTAi5gTgkVDo1ib4C/gs4mTU6t92jC+CAMnqDMBSNUX9YRr4zxqLnZ3m0wULsJnUR0kAZuhUd/ggTiINYegDKExxSQDOiQC4FW1hKRxYvJC6PbYzLl6oWShek3xgWKIkAOUoxxN3eq4o+Mkdeee2PwkIIXMSDUftzj7LyK+EO83rxvjMeeOmAACys7N99StP/c8K/RGNSAKARGQFFc3r6yd2PI7646gXx9E47oyjfpyMAITQrYZXXnjuJkoFQYQdwFjLhBA5dQ7YEAcgIUYGkPd+/f+LJiMAW4hrat6eEPGNV76bigUJCSQGSAhanS8+uf3XVgCJSZ702zwjANlFY1kIrY36wz2toZrEg16vA0DbzR1EFDG+V62E2wgkIiZr+GYEIlqKqi9gHuBkPjyn9SAQcTTu9Md7RI4I5iI0RyEAusVIQSyieG6tVt1dtc5LAjAzd+3BHWttNu8kEheAZkkAzoUAkOv4zdpVdfooqthuaNFeGAKQNcxlEhwz9f2rCMDia6YhwJIAlKMcTx4BmOcASGwnw3671+sJQaXqIJrm1nWN/QsTIxNIrXLl2WtfD90mgEXwAGMABPHETADg7t5Hdx98KCKzRwQzalkQWpiKfpKAiLjG+carvy9MSImwo/xhgz7Bqi506947D/Y+VWyjev+5EjyAvHnjbdUjQhadH+1dTsT+/Fd/cuA98oQSAAAgQQDojfYmcRfRWGt7g4dJktQq274fIqLrVEN/O1VJQUFOgam2g180ArCqvKfwfS/Kztbui/5gbxR3EI0u5qMSgMznK4dJHPjNogfwnNtSSQDSYUEA+OH+Z47jpBWTx3ScXVuXpSQA681PRmHXehyZ4N0i0sVDqcbST0mrP/1aF9U6r59D/6USfpj9/2XffbZNpYAMDqFWJdYvx5FxJ8BFzJs/xhOez7aFeVFw9dvKfxM5FXBMvXsR9X/aSdzpPhiNhm4QAEa+7zfqzxABMlqwxK4x5vL2S89ceVUjjlpFjIhCyd0HH915+CukhC0d9R7UAKTrbH39a/+7isQgMwAwMoDJAE3qvHlA2jL7HeQMaCIYgQmAQYSfvvcDRGEwgEKirw8kAOK+8PSbO83nckMoTQLkeYx33v++ADE+6RmAaQ+JpAU8IjKxk27/tjGutXE06g/GozCshpWqQcdQpRI2idL1UDwNdB2WJVXHJipENLFJu3trOqMHdagfZKiacQBmTprVpz3PW4VESgIwXb7MyX77luM4Iup7IiUBuCAEoFrZMSDr/P7RCYDMQZwDw07p6x+bAPDCPx6AqHiZqcqK3c4lAShHSQAe3+DUzDmALPnezx9NFotFKyIoCDAednu99sQmtVotsX3PC7Zq1x10mDlt4TWmWX/2ueuvq4Pvw9Zv7+z9KoqGaEBrCYiAmQUdOuqJIQYoAnFE7Fs3/xAAQF8Mcw+vomokriYSqM0JiCBMSJIlIvAXH/7YiogkQqmKUeYUCWGwc/Or/9BamRWLQxUPBbTvvv9jQbmYheDngP4LBICZe6OHlmNroziZDAY91/XDoGKMcZ1qGDQNefmklgRgs2NiJ93+newqz7trjk8ARGyz+rTruiUBOPyQjeNRp3dXCUBBTvgkk1ASgI0QgEq1cmntkwVn3gMLB9yyZ8OrLx44ioHIoSuAD1wbxVT+ESNtM/bgB3zg2bkucVw5NhzBeiSa/x5tlJaF//W4yAoFERFF0FGwTixgkiQeDlvDXp9cAzRyncAYd6t22YFQIMkAtzS3nnnhmd9FNoB868tftLqfxgJIrLWvhej4McBA6gurC+PNG2/PYf11wv/pwUXIVkVFrdrAI+Int//7fvtLAIskVhBBKYoeg+atm99hZkJXRNKeYLSpKxk4AskXd3/xoPXbJ5kAiFjGJdfQcNIZjVsATmJHvV4HAOq1puN4juMFXsN1KoDTLvPibfWotP9e5CM0SkaD0cNsPxxc8nBQBUPeSShid+rPGuOuxA8lAcgJwDjqDEdt9TjMnZmPXvRREoDjE4BFjV4AcF2/Xr2mShIayMktHg8nAIc9G1nvzDqUCRxaqc/zL7gpR8x5lapVH7UkAOU4yeV08DpfunPLsZGLaW6/I0/l6dREHBG1pAdQQDBOxp3uw/F4DDgOqoFLYbXS8NyqCBqgLLylR6v32kvf/u3n/zmOo3HczY+RgjRQUigpPjLEzCORAPTWze+KMAAjOpkvGBzagoWIIgmCJ5CAGMAYwEzi3i8//jMAJiJmBUlZtbSYt77+3fwLqpwlqJJ9AmQytVOY/Oy9fytPahNwhv5nbgZhYIk7vS+JKEkmg2E3SZJabct1PMcJQr/puVUBJmEAozdIkQCUsf+TQ6NB1BtHnbUJAB24a1ICsLv13AFytyUByAMt3OneT+wwKxm0AKAOKScA/WU50AYIAJHT3HqaUsQsefhqEffDCrQNyyL6RyIAJyR/fAiuOv7aWKYNvJwDlASgHCdE/yUBOONpX5UP1FptbbsEQREhIyLIVsbRoNt+aCEhJ3L9wDVOvfKsFm3naBiyeG1OJIQJzQTEgawcOU+DH+/+0r+1QoBiAAViEOetm2+rEBCCEbCFw/yQF0tPeCEkYeaff/BjwdReAFMVGqsk4ZuvfSeTG1IbMskSEfni1BoievdXP2S2T+CKzXJKMyFkZAEy/eHDaNJBNP1BK4qiarXuewEAVSs7nlNXRwi1WtNpm5afpVqv5Tj+ZkeU7nBvEg9hquBJxyYA6S9xsrv1HKJZ9TolAcgDLfbh/mdZd4vq/+CxegDWBbslAVhFAOaQBDPvbj9nwMms8tJDfyn0X3yPFb2zaeRn5o3OE2DRqps+P7XhsC91MAcoCUA5Tob+VZH6gAusRP8bnvZFArBEyRsRES0z23jYb/f7Paax8YzvVQxSo3LNGJdVhRMcESuQIBpiIzARMiYzEEdkC2hSPR/MkaKSgaPDuxSXA7nADKC2RPjWje+JSFaQo33AcCgTQASt3ReRdz740fRm0Gp0nhB6gMnXnv+9arBL6AgkuegQIjJbIqN543w5f/z5X/QH7SftJFzqHKcEIOao279HRKNxfzDohUEtDENE43v1MGgiEKAloSIynIqHlt1Bm3g4e90vmZPUSk/sAcD9kL2HqXuAtfGlxvMHEImSAKQj5rjV+VxzJSKIaLP/KAnAORMAa+NLO1/JCcA6rWO8BlCmAz/Z5sbRdIYOrjVaezUu4QAlASjHcZEoLluB5RI61YCUHMwNEAjUcpfIMidx1GrtxZM+yyisVR03QHa26pc944kIAwqkshYGiNlq8T2kMfIsGUCWgUQwk3g/SWKHmcEYw5wQkQgqoHnhqd/dbjyrdUuakcii9SsAChjAWMM1Ism7H/4EcCLsqbGAkAiTQRCxV3a+9uy1twAtMyMSgisQiwiRlkMgps5fJCKM0u5/8cmtvynXVbao7GC4n9jhZJL0h3uG/Fq1jsZxKahVdxEcEclsExBAcpWqabD54inrP2o4lh+0P4fcS/sEBABS4S201l5qPHuAmlBJANIRJVFv8GWqyihIxMwHyzCVBODUCYBeTdbGl3dfJNG6QwbQWA4d+h4Hb551SnRODf2f0SQvljyV6K0cRyQAqyhouYTOAqjNCa2kGQBBEdF2TBYZjQeDzn6cjMkFL3AdxwHrNrYuEXnIohatAAxiKD1UQWvxs0NCK2GMCAthpibEmaMQHiO9U2QVWcsWAsbIzhs3v1Psx807u1bgGAAxAhYR3nnvh4KYfUhAzCVQoVG/+tJzfy9brvmbamZ1WvyJ2ksMwECC/O4H33/S7uVVBGA07oyjHnMyGLaTJKnXG45xBaniNwN/K9MIQkRtNE8fVrHu/6I6K+MjcVhpCdCD9qdadp5p8tIxCEC+W1XO/nLzuYOKhc6XAMwFGM4gj7xorKA/GcfDwWg/b/xV+nXKCPjJpARH6wFARMuT3eZXSAxmKelcE3rpKzKsgixnNuhCnSwATEtUA0oAV46DLs7lpQIb2kyLxS1PZgnB4omXW31NTcEFM3c/EULh7P4iSJJJf9DudjtgYt91XNdFdH2vFgYNAwQAjLJ0ks/PmAmI8M1XvycwMeBkfQ5igCxkLcJ5aZCQQWZwGeKff/gj5gTR0U5iIYNpBT816tdefObvHJxJgNRAICFBIVUU5Xfe/76AYRQRa8DkRqpCj3xF+9y6yrebsKo8ZUongoDW2rjT+xKAxtFgNBpUKjXfqxA5ruNXK5cu1Pp5fM8BK+g8bP2ayANIRHQ1poX+R5xt/Ssi4tDdCYNqSQCWM6TiGESdcdTLuVdJAC4IAQBtZNl+QQlA9vho1SuuXOgbe5qHvhtdsJOlJADlOA5QW7aJTvFSuKglBOdGAIpIa46MCQMZjKJBp9vq9bquJ2HoEznGuGFQd0yI4LjGWJvkwdoLQwAEgF+/+S0HfWQHwIIxzJYEGaVYuK+/jiwM7kef/1l/0MrzEkROIkwCiIQIb954+2Dor8RVQT8AMjMRifDHn/xlf3xHhIQYWZRdEFEiiQHzOK2rKQEoxD2FAQmYeTjam8TDOI76g57neZWwaozruZXAb8wJyJQE4PRwkQXcb3+SuVmbghDlcWZbX6dRveI6/oUmAGe/kpa+aXf4ILETEZsRgEM+2GpdPD4MBZYE4AgEABGTZFIoATqEACzclzT3mOau0pMZvV1c3F8SgHKcHECcYJusSzDyF34yCcDcbM95/63qCBKx4/Fwf38/tn3PoyCoEAGAEwZbrhMSutlOn9cRIjl39KYizvTWjT9CiQGEEQFsFtrHTNVHf9kCGAB45/0/AbSaldKafpXwz1zG9NY4OAMg+S8QEbMFQKTkp7/8CSJaYBUIzWaeHo/jcZmQFIPKMmVjPO4Px3vW2tG4LyKVsOo4judVAm/bMb7M3ndz4lHl2OiT4r3Wp0ROFoaGYxCADEGl9HVn6yqhcxEJwEWTjWv1vxSxmQfw4UtcvRiLXfCHotuSAKxBACwsROuZeXf7hdzivrA+VxKAwhqjw4jyRSMAdKzPs9LWrCQA5djMvt0oQC8i26Kk4JNMAFaJfhaZgAZE+v1uu7cPmPi+67sOIiL4vl/xvar2a5oURstiBuC871xGNMz8wlO/u9N8NpPpnKM62rOb/vCXH/9fcTIUsAiuljWr/7EB8Zzt1772v4mIAUiEicwqypQrgYqwliFpidE7H/6xgEUwAJQbF+Qyl4/6WKz4RxRhUr8IQBGG/uhuHI+Gw+EkHlUrW54XeF4QeA3HhEvRf3kSntJIJNlv3zLGZGHomWr+o5FsNCLWcytbld2DEcWTTABmvuCD9qdElH+wQz9eSQDOhgAgouN4mRFYCh10UxxKANJT6xBdnaMu8pM8NTrb6S0JQDk2if5LAnB6t+Ec+i8GO6Z9awDxZNzptIajntCkWgs8E6jATuBt+36I4CCiQVSF+zkCcEHE2jPpUnnj1T/QRuRZgc6pPTCCiWzvl7/6d4AJkIcMaviliqICk7du/BEAkxj9dna9M02vD53V337x37v9e8yMU3V8g8iPx+28jACgtVahDgDE8ajbvxNF0WjcV91Px/FC/5IhDwlI5jd+SQBOb4yTfq//sODhNT0BjkEAmJNqZTt0tw5+hSeaAOSGssz8sPOJMb4CUFijNqksATobAgAAvlevhNta8ZnpRcj6BGDueS382kmM3i4O7i8JQDnOhgCsLLE4HgEoS4BghTZLsVxbzVnH43Gv34rjifHYDxwHPQBghjDYUqkWTHH0FEAUrZry6T3XEg7tQBVm3m288MIzvwuACKrxD5ktQEoDBCbvvP+nIsyYWiCrKYGun2++9l11FKaspZVxTdyfZhhQEgb62fs/LFbLi2oMPeK381wnyXRRMRiHbMJk0DLvtz5NkmQ0GhiHqpWa74eeW3fNFqKgJETOOiaA5dgIHh4nvf5gH5bV/h1dgwsBkmrlUujWD65neaJLgPJ5sTbe790i8kQEINGw8al9tpIArELGPFfBpiPwt5QAFKD/+gQAzmm26QJMb0kAynHsZYRHXM0nXU5PJgFYBGo6A5yJV2q7U5JMhqPuYNAXscZjz/MIXGZ2HMd1KoG/VSRmeWALFnLU5z69IpCZgrEIfvO172UgHjKpftCsBTPfuvOzvc6nAlbAE2AHKS/Qfevm2/kVgKiRI3NA10RGpRiRUmswQQARonc//DFLBOKqvtAmDEAv1LqaJTOCAoxAYHg87nf6d0b9EQDUajUiJwyagdfALAWDuORiLRsATumJ9aO90Wig+v35Oj829RKx9eq1wK3of68SQXmMCcDhkap8KSfJpNX/oiQAF5MAhEEzDBo5AThiCdC5IHK6GNNbEoByHHPY2XrfjROAUgb0YAIgAin+QplMxt3e/ng8MA66PhnjIhoUdkzFMWHohQti5znYxbwEKBUSlXMPullEh9GqqMPXv/aPXacKkNUmoUVwLDCIQeKfvvdvAEhSZ9+pG/G1yzevX3oVAEEISUQSEBeQETlzeF/OAUSSXGY0NwQAk7zz3g8Bcp8ZyP77MSQAaf0VkBX7sPWb8XhskygMakEQuE69Em4jEOXpIwDUucKZntSSA5zGvnjQ/oKIM/A5bUk/Hk62Nm5uPe2ZQLWzVh3hZ0EAlJ1rpz+ABWRhc14LCBGZRYiRUYMBFjiOo27/TiG9eNrk5CQZxjn+wBcShh6TABR/nj0FqVWuel6lgA9w6d9o/9YaJVinhPWP9r6rVtfBHQtHJQDZq/GB81IygSc47gRq8TP9n4unHx2JcQJQuaKW7et5dWOcweXptQ2CevqB6tzweDzsdPcmcc9xMQwqiK62LRnyfa/mOpXZZ3S62k2bmor8syHiG6/+gaq6aS+vtupakPd+86eTicoEMYgRYAMCAK4Jv/7yP4fNGU4h4m+/+B/t7m0Am8X+cxxGIoKUgBCDAbQkdMGnNF9IBpA5rZ4q3qeqAhRFg732Z+PxOPDrvu/63lYlrBF5ICntLIv+z3IkwvvtzxC1v4VEYjiKdnnWv67/jQDAEu3Wv+o4SnflHAmASmqa3BQQAPZan1/aef78dgsIAXL6eYRwMhn2BvfPkABsBOE9KQSgXr3muuFRCMDZo//j3DrnTQDkSXP7LsdyAlCA7EsJAKzX0jT7y+W6msH6i/mNYt2/pjetCFLq3ymAIMlg0Ov29sZRt1qtBkEtL1BxTBD4VccJ0oqOFd29F/IK0zMn96Ky37z5rwUmanqKrOifo8ng/d/8mfqCJWIVtqIworx1419l/sEbQf9p18HPf/UnlscIHgAoStGPl+uyw4GlFBeNXuZIZk4GSsQSuizx3QcfjUex67pB4AVBLfAajuOBZN+uJABnTQCS/fatExMAyndWYqMrzZcOFRE6CwJQ+FipvO6D/Y8v73ztHM8gRiFJbcPB0GjcHgxbOQGAzSe5TgOVrtltfNFowJEJwFbtuuMEmUF9GiJaRgDO/mjePAE4Xuzn6ARANrrHy/GoE4CVaH5uoa+A+wfs6id9gS3tTBWRoqdS2sCqjr8oiDJJ4nb74WDwAIkrYT0IatbGemg4puJ7NdcJFKgBAM46o19w0KZKD0KGBETkrde+DewTWMX0jIJI73zwI+aYkShrCVCzXsf4v/Pyv1Djro1/rnc//CEza52CapWmjIsdpATACCMSX8gplQX969nlly8tICToD/Ye7n8GYqrVuprHhUFTWAt+Zi6FkgCczYg5bndvZ7N9DAKQR21SD4HERtd2Xsoi7+dHAGblzFJtsjgZem79HAmABTap5wgkwvut24DJ3Bba3NI/AIifvBboMScAANCoP+U43qwMKC6+1mG7hTb9+U/0gpt3VtJFezQCUI4neeDiGcGHbaGjE4ADFuwThP6Lkj7pLMkMJhYykObu7Wg0aPfuj6Ou5zq1ap3Iye0pK17D8SqO42nsX2FxfllffLiWzwMDCiQkUA0uf+353zMo6oVERO988KPcxIAEABMrxgCJ8Ddf+54IkyBv7ouqOYAKBP38Vz8WiEFIBJGssJN+WDAiSRZkvdAEYC4kpMQy23JMaOJkfPf+x0mS1GpbxhjPrVQrl0BSHdaSAJzLmNhxp3e3KE6Yyd2ui/6z5yXM6Z9f2f5K5ih83jKgukCVADAD0fk22eQZAEEkRtlrfa5c/zQhb5kB2AwBWNr+u/pophxu4MY+P50BoC8JQDkuGgFYus5p4RI6Ihl4rJbikuDrKjYlM1NqBQDF2rg/aLfbLYae74eVsAFCgImIiGDg16p+UzPVWtudZRIQ4NHoy8yCgAiGrFUFT3jzxneQQQhF5MNP/sN4PARkERFiEkJEAASwr33tW57jG3BE7KYIAGaeCYgEQgLJLz76tzaRTJaURZAIRFAgRnAflRU4IwKrrlLAAECC7f79VudLz62Goe+5lcBvGPKKjUAFXlQ2+57RiJJRb3B/DgutqUY1S/lYq+mMcbdr13ICsHL9n0kPAOZ7GICYBcASOee3Q4BRTAoIkVEe7n+i6ksrglwbwbslATgmAWhuPW2MO0cAeOZFeAUBoCLK2MhJdkH76vKDABmlJADlWAv9H0AA1l/nJyYAj9VqzOdhTYSqlaiSJsbHvf5+t7cvEtfqoevUiEjEApABE/hV36sv3ssHq3xctMGAKIxIiUSILgmI2J3mCy9c/zuAya27f/tg/1dadi/oQNadgkg7zaefv/67kNqZrev5tc4T0xcUESFgZiJz98EHXz74QETtAlgEszKkHDY8MhRUJDX9VSOFKBrd2fuY0K3Vao7jBV7DdWqAEYCTe0Tol7343/RxGqO4Nxju5wh+9v8e/sRT7WCcNgP4XrUe7hQ7WM6LAMzRABhH3SCogDjnN9tpBiAnA/vtT5Q2LRCAk/CB05b7fFIIwHbjGUKXZkXuFgiAOQD9PzZAf0MEoET/5SgJwCnCr/Xj07nadxSN2p0H/cG+65pavUroi1giRxgddMJgy3UDRauFqc4rf+SRIQDIImgAAThhNJmgc6N+NZoMRuNeZgutMn2i93LoV1998Z/odLEFzFU8N3J2iqG0u5pToM8kyD//1b9hm7sCI4Asbea+CEturv4nD/8Xyz9III6jTu/+aNzxwyoRVcNLrlMhIgLJXThyAoCIJPykipWf9RhEndG4DUAAiRbxr0/siw1FWW8MhUGjFmwXGMU5EQDNo2WL0jAne+1PzrUDOI24ZIASE+b9zm8RTSGKzCcmAEe/BEsCcAgBmB5xKlFcfIVVBsDnSQBUMG7VRbUpOTndXDPcFoq97CUBKMdRCcChhkolATjgMj7MjxZhoVC7P+x1ug/HUdf33Wq1Cmww5fHkUVgJm1o0m1mgTB9Q3kCcx2svtoQdWLAARKKGu9PFkhYuk8H8SBdWEEJEb954GxFItFPYCEwANiP5oLgfkTC1Xkpn2GZuwd3B/V9/9l8B7Po12WdPOBcJwJz6JwCATQaDQaf/hecGbuCH/o7nVVT1P30MKCSQl5bpCryYsqeP3+iPW+OouykCgGgq4XbF2zpYAxTOTAVIP4cFYYv7nd9e3n1pfSZ9sBn1qtP2gNdP22LSJADGPGl372QHbpFPH1X/eiWWPRY+puMdATDTcHZA9udQwY/zOcsWjjPeaX7FTPEKLotWmvyJM9KRAP1JzPaOBG1wGe6XotWiHA7013q71OFGpkcDMp+3Nktp/HTOtDuN8OEBZ8HsFqC1zzpdvTL9PRQQpJPumEdjXRXbfOdOG2atuoYsHGsBgNAVEdXuBES2ttvdb3UfCERB6Ff8ms48IlobOyaoBduuUxGwizPzCGUp84qdxaeT50xI0iJhRBQkYAsABPjKi/+oEm4ZRRHEwg4i29Pmx9oZLAZQRUj9SdL68Dd/nnACmbWRECDbTGhFCtFDgqwew4A54xmGuQsGBYCtlXgcDUetiLu+V6mE255bIzSAIiIIRGXj77mO3ujhJB6L2MIxwusQzrlQgkImRFOvXvGdEFHUg+vcfAC00VZfihGiSRuAfG9rUwTgmEd2gQBMbNTt38svr/MmALBO5H5q6rHwa0W5iYu9k+dAKefWd8cjAHq7MMLFbNJdRP9HIgCyggDgoQQAGJZEEs4ffedJ53Kc0WyvAOUryn7WbwxOCQBvJpYgj9a6WrTyLR7FDqbS0iq3qo2YasXKYpNk3O7s9fot40IYhr4bMDMRiBjmxHWqlbDhkisi2vg7d6Q/BgSg0DLBJKTmvmQgX00uhV9/5Z8ROigJkUmEDRiRhM/iuyu4V6+A3MUIEeG9j/9dFI9FEiJiTjvQ8p4BAAIxApOzVA2aIwAK6yUtbZIkGg+Hw+H4geM7nlurVpqeV8lXFFsx+EgSy8dmtHp3EztBlEJEUtYM/y/8xAKA2gAXBKzM+RAAyKqARJARHux/vNv8qjHm4hCAKBn3BveztutiNP28CAAcmvrJeN5JPicd63udfNCK+WERyaNf6xOAuZW93pwcH4zgesj+8FfGedAveJwVLmLxKAQg202nm/c4YBdPJVxLAnCmAw/d2wsEgI/6fBfrW2gDe+6QyyX78OdDABYir2n4piBbPCUAiBqRBREZDFut1sPI9sIwDNyK4zjMqYIH88QxlWplxzEhSpJ30M2VZj2iBKBYvJTPj9adk2jTrSA6iMAsb918G7RBVUwiTISpe88pt6jmBmGIKIyAVsQSadeyVnnJYPTwV5/850I5Vl5EgABQUBE9i9OVcYoZNBCm0qaImEST0WhgZRjL0DW1WnXbdcN0Ic36/pbo/9wIQP9La+PZi1LWUQFaNAISQRG7u/2CRh8QnQMO1TNtAmbkB/u/ubzzVcSNEYC1a1UL2pEoRQIwjkf94YONEgBeHUijze15CwUEnEeJpgGAmRlYPzx3BgRg5fwUqt+m33EVAdC/KRKA1TUMG5pzoBmdzaPg/rnii/SjcmH1Eh57GSzhAJzGEpYRgHPAEMVtilgUoCwZwBmh/4P39mZXwlTt/qwIQM4BzpIAzFb85/axmMvFzFUoaVw2sVGn+7DX3wOSaq1iyEMBIkodfJKkHjb8cCuNhjCoQN3cTfdoAbU5ApATRW1UzX7CBgyIISMaVg/8+qsv/GODQoQAaEV7f08d/acHNpIIq9QqCAHa7LEaRBFIBB0RsTb5xUc/Sf+GiQwwx4goQohn0USbLcL0vXIxH63mt9bG0WA8msS8b1y/Xr3iuj6Cw6lcDICoLhOW6P/cCYBKfhUIgBy9CohFUCC5tP2SAbkoBEDFiWKW/fYnO81njfHPlgDgUoRLIAUCAAsEgE8AlBf/9qg5geVnx5yxWk4AEE0WRIcVHOAMwP2aBGDpbPDSnmAROYAAAIAsJwCbPnYzrL+iiHplAc9y3L/sr+Tg3kFZ+QtLkgAAkFUTLhAAPpeDviQA5wv9V+x/Omwl8AmeuJxsH8rR19WZEgCeAeXLBQwWqjF5PB62e/vjqOt6FAYVwgAhAQBmFhEt+nccjwEBLSIiU25A++jis6UlQBZERLRTAoHICAmJABEhAjO/deMPKdM1Z9RIhwPIkvYHn+a2STMAqQipPiBCR8ACxiAOiFGCoE0CgvTOez/MJU8ATF4vdKprUEljkWdmM4wWEgCKhoPhqO95ZsLDWu2S79byCQcU9ZAuNpeXJ+YFIQBZQGEtAlBIvTIzIMru9osGJOu/PVcnYCIjwswJI+21fru7/SKirN8cc+KkJ66603SmT0wA1syVb14VtHjNOI5nrU1d1lPbtaUP/tCPenG6/tcgAEK53ckJi3+Wh5WE5lYdr9gUh7TwrojuLykBEjiA0KbpclxcBjOhRhbBjA0u9ACcD+AuS4DOHf3Pbn46ylnKx3ziKCQngRSyxrvMoP8zW1eMi/47+nmmjUyF24QVQQ6GnU5/L7GjwA9930c0KPonzAzVStNza3rWWRAiAsuZQc2qmM6jSgD0J8yswX5EJCIAICJkEbGBV7nx4rdIyDicxbNFBHVG5ZSfb36BZg8xP8Qw+6dcyAiztCr+7cc/ieM4+5yAZE9N7ny63pahfxARJDuJkl6/4xhvknQa21cIA0KDpMRLgy8a+zePipP0Y0wAkmQyuwLX1PadegbnBMB1/Ub9KT1JzpkAIApnxeoTHrQ7d3eaXyGiM+wBOFUCcLRWuc0NKnYtA4DnVlgSa222IA5+9o+Kvi+fAQGQGaCOBxf2HJUAzKgzLbT8HkEFCGDp6ywlAPqTC0UAlkKokgCcCwE4WW8iHxyFmjm0T58AnNe6smBXxU1m2yGs9okmyaTXb/cHbcA4DEPXC4EVSloAcJ2q7215xgXIa4oYLBjjAEgu5pZrtD9yG2cJAUidj6211hhjyFG9GgQPJUGkb7z8bUO+oTGIqyd9Fm5HZGI87Qs3R/+srcCQpQWy/4sirCF/RAcARBJE55Mv/rLVvau6K6dJ2Hh2YmmRX3E8GQ37VtgPQ4GJ7zWJtMMk60TnKU7Q+uGSAJzX6A4fqArQMQhAvgC0mg6AK2GzEu5m/TZ8vkZgmSoWy4POR4T+duMZIufoBACLYZ78J7wCN80Zxz4WBIAW3pfzp+6YwHXdaDJSSbLTVrc8syFiDyUAeuuvJAAHAvpcXUdR0QEoXPBA4sTr6qan2QBOY/lTqrbejlgEVI8EAShlQM8d/UPaM3NCZRI+4JSe0yM/AwJwXutqFQFQUFVsDGDmyWQ86LUHUcc4EIahIS//fRHre1uBv+Wg6smIBVRZxtkgzlRc8rEgAGhFBDhJEmZ2HIfQIDGCB2j1d9688bYIqwMMo8V0fvRFkE/5WptrAkYSXdQk8v9n78+/ZEmu9DDw3mu+xJ7r25faUAWgADQbaI50hsORNCNySElkd6Ob/U/qsBeyySNKonhESnM4JEUs1SgUgNpeVb0999gj3O3e+cHcPczX8IiMzJf56gXOQeXLjMXDzNzs++7yfQAKKdRR+N9Y7SoCFlqkCH72yf8I4rLVXHsR6L+cAHDAej6ZBvNxo9HRNHO9rkMuCUS9wrLwQRIxLRYFd/Gbx6U9BpPD2XxiE4CaMqAZAmC2lG7npu+1jYeDKSsqm9PLIQBKAzOHJ2dfEzl7vYcbXWNYX6zFLHIt8cejgKjp7Gw8PVll9a/RG2D8HYzXWAjgJAwvsWqyyVIlB+CSeBt32jfGk7NkvplDEhC6FjczVQCLG9tvLw77qHs77q6KMwClsGZpny7yYiRrNPXWxDMJmpcNDX9Fj8GiHdxiTWgISSpO9gZxv/6P6B7Jk85NHuq86pIVXhLV2AgZWJWI1gFnGfPXhcoCJYI8kdKiCFLsf8CiTT2L1sF40h8PzwKYusrxfZ/IYQZTTa510PR3W37LdADb8jhE18OAqTpsbFfRpMcQEXGugyAIENF1XUWO0UgliSp83n34t7dab5PiaJ9b1EBGvraMEuv0m25dWhBPTMAQOIgiwBd/DMYxdUMN5We//ktE0hBGRgFABNoU25zHUdhingRWpZlRNDFvzhzq2XQ8nXie5/pNIiIicxllK/8N6K+5b1wQ8TZGYLlqFy7vmSyGoyKamW9sv03kADCjbbr36giAEMyDwdng+Xb3vu/4zBe63qrfWjgpjSIQpvH0aDobpMW8ltrrrkwAjK87MyNqESFylFJhGBoHYuZwJaCcJwDMYbdzIwz1PDgjcrQWAFYofD1KfaoIwN7O27HJV6xlLhTrRkOGAEjBvkYA5RH6RdVkrYG6ggRgsSTeEIA3B1XB7keVB/yqOcx1+wHgnBxgkwRgvVPcEq23zZKzEbhoU9IS6slwdDYeD1HNfd93lI+oYuUGJGx4btPzGgb9Zy7pugCyMgKQFqsoiNAx62kwD8PQ933HcUAQiUEUAKCEiEqYbt98/97ND4mIOTS5AqWUUq7pW4WoIgBFBIQAOWIFAFGHbkQ/uAYqOD/6j7wCkJlBGfGmn33854io42oiBXE3CNJ6K1CD5BFImgOAiATBbDobI2LDb5HrIKJVI/6GAFxdAgDZZrk1CIAAwP7WA7PVCCkSTno8Xg0BMH0qRydfiOD+7jskF7ralr8z26hK1GD0ItTTJHuSriTh8gNyCQFI74zJ8cDmIxBd32sHwQyQRSSd+lkZKBsC0GruOao1mrxE1CaeZFjHNSIAha7GMQGIwCyKgJD5n0UAVAYmZAYfV1nL+ajVJRKAEse+kiCq2PLuCxHYV0gA8EIB3JtHncHn3HKqQQBgRTGDdQF0rv3lMgnAeWojE89ayMn72HJAIgiC82B0enYchGNSgec1XMeLGToJo+83fa+jyENK2yZcNzn2PAEo80QzuWjkCCuHYTicDF3XbzQaxpLW3tEoinNTupc6sw5pd/v+W7f/S5MEIBEREkQBbXyHDIZBxLhP92IJAAAKo4AmdARN64L8/JO/MHqgAhrBoHBkBLU6IYmrfUqxoNnztQ6mszEz+77veA2D/m2GALm81hv0/8ofmyIAiKiUu9O5GzUEI5FU1ZVckgxoCNOj46eIaMDchS24Wm/LiyOFQfC0/5RlHlPkDRCAoq7lVMk+ALRbu77XZQ4n09NQz1fNABQRAN7buU/iCsyP+08Q3ZIL5iu5/ksJAADsbr8Fpu7ToH9YlP5bHcDK3okLIqD11nJl1AqqMhXp3oQLyABwJSHhAgJQ0Cd3CSh86Rd+wwQuY9g5Wfkld4QUz9bS/eEcvU8oqTtrZQ6wgXW1tqSEjf4h7fJrlQOBKfqfTAf9/hnLXDnsey1EQVTG58t1mr7XcV0/ik/HXU020r1G9f01CcCCODEQITMPh/2AdbvddV1XGBSCFiCFiYUtCDokSWVUZr40CEWfjCL8o+/+PYe6SgFLiNJYGCBGZUIB1FYdPMfyS+SJBMEREUAejA8+ffRvEVHYQeLYUTisV96dR/9ZLGiaehNNT+YwCIJ5MHU8z/MaSilDO0XExl12PPsN+q/eGS7Hei9NADgu2lyZAACA77W7zf1k2Rgx0FdMAAKenZw9RcSdrfsOOhfTb173DRMjMHMCHZ99XXSY0bLoF1UuI04vmgwBoF7nhqOaCmE8PxtP+gltWDYspQBUa723c99BT0SOzp4i6dhYl68LASgLzu1sPUTECgIQ9e8WDt2KHr0lBGB5lLQQ6FeI969OAMp3rmwVEIsIluaU5JJvtzcc4Cqhf8pMAJai/LKt5nziByjZrXKTNKCObOj6BCBTR05xk2gSmhWRMOTB8HA8HjouKIWO4yEKMxERCHles+F3lHIhkewQRMpohl7j/vhq9A9xBmA6HQ/Go2az2Wy2CZXJVguBMJAy+XCHCEwxTT6pboRTjfUNiCsQEpFpp/7Bd/4/i1QTCyJEBTkX/9URHJYZojIJBxUdT/jL3/5zrefJ+VvH3rU+AUjuIAEm4dlsFoQzImq0OkSUKBEZApAMYDIdCt6g/9eKAIhIs7HVaexcFQJgvk8ocHz2BaG7s3XfQXcNBrxBOJIhAEenX5pCfKsOZ+lJxGsQgCS94KhGu7Xtkg8A02A8HJ0AhtVhlTyIzz2Huu1932kiUsDz0/4zIz/3GhCA7d4DB8kuAcI4nFNFAIQ2enlVQH+jDy4BTlTJPVIEgJmpdKKvAgF4wwEuauvjdHQwd3QVEIDK6gheb7ku5QCpD71EDrB2CZDOvHNyzZFhp2gdzOfzwfAsDAPHDU21OqAGQQCH0Gv4bddt2lg/CnVbqvNxGbfe9Pn4KgmArV6qAMNwfnp6Cop6vW3HcUCLsTow4hwCoXFThoUnQEFoLJLjhAARGUxIUQAIWROo73/nv214OwJz48h7ebciAnNI5AgTkiAb0qh//slfi3A8y7IGB6ggACYJQAJhOJ/OxkDUaLQcx4Pyon9TAvQm9l+2bssIwMVxgNHsbDI9TRMAKYJtyzMAzcZ2y+uZ69QgCrAi4H4ZGQARCXh2NniOqHa27l8M6VyfAByfPbJqDfmcx1CRN2Qi7OAwh4jouZ1ea8d8ylzPB8NDlrk1QxVBgmwpkV3p3m7utvwOMyPSJOjHikDX4kGZS7XwCm9177ukEgJAFri3GwBiY/NzbvcLI+6VCMCF15hKKd5KqoAMARDRSQb8DQH4VhKAMvSf3dkEAIEtLbKV8D2fb/r5lRCANZqAGaGCsQgwEYThfDjqD4cD13cA567yiByRAABElKMaLa/run4+ypMg49iT9RrLN5f2TSUNAIgk3O/3x+NxZ6vXaLQIFUSSIGLMj6M+YAIym1m6mdj6GQCEyBRWaUZAcARYQVTxj8jffee/bjX2L+3bI5KIICgBbZqPjYWwiHzyxb+ezUdah0SmHXNlH54KAmDSJxIGQRCEEvp+03Vd24XAXu3J+n+D/l9LAiAi7eZ+02ubFJkhAFWHxyVkABBxzqOz/kGvc8d1FbLa9Dhi0TFQrk1GIBx1AAPA8dlnAM6FEgADKBNY327tNt0uRI6PPBwdBeEofrnJEjjlakKSCM/ZwygIbX/P99sKUAQ08Gn/yVWN95cSABLIuXrxdvue4zh2QyuVEwApbaJdAf3nCIB1g+G5dpZzE4AC4PWGALxB/9biKET/VH6EsLWxrE0ASiuCShPrmWfGi/hyCEC8jdRF/5BuXViMJgoAzGaTfv80CKftRjPAqTG1RTF7Gntup9nYdiKvqKTaJ4b7arGbwXX2+oVl9T9mtMNw/vLly0ajsbW7o5SrQ3aIxCj1YCxnjIoEapzF5gnKct0SRgBRAqxQg7gg4b1bv39z750L7wEQAtQJaopLlYBEhEhQfvarv4iFvzWIi7Ta0VxGAEw2jZn1fKY5IMfxvEYsLch58GfmIvP7NxZg+aWba+6/JAIAC+X+NTMA3fZN32maLKIGqSZ7l0EAhDAI+2f9k63uTddtImtGUiuU7EMsoVVw+PHKStJ2PSAhyuHJF0SOYKQUySCIC/iXAEqsJ5FhiTFy4bpxVKPdvOEqMoJ9BDCanU5nkX6/iEbwAeflX6uwXzYqodnfeis6V0jNg8lg9Dyq+WMwdutxoP2KlgPZAbBkV2q3dn23ly6op8TiwGx21gQXjFuFqg+VHAxcvvgrwgP1t4nquELhvpP+5QKBSByhxGhhaIvK2iOyEcyNZcDQ3jHJAqPxNWyGkLwxFMtvgJDa0LBkXWVFcjEdKVkrCbDaHlJMBhLXwkj+ZfObynlenHGwWvCBqHpKT8fDk/4xorQ7zdlsZIKvACCChE6j0fa9ruW7tABbrxnkym5ogkBsTM1QxAyYwPzo6GA+D3f3b/tew0y3CF8CwOp1b7x3/+8CACIgi5iLisL2SUANE0/cDQ4MIgnjkxcfvTz5lJGRpaK+K6PPYzvKJdAic3nMoTFUJiLXdZVyC6E/xI6/b6ImhcxnaQ9A5pmbXaiTYDAaH9sTnbajLUb/saawspnDdu+Og571cnrFJUAa5Ojka0Tc6t70lFd9QfnBLU/arkoAoOi8lMOTL1A5ZuTLCAAKrN5IVPx8z221mzcUAptWIcRpMBqMXkLS0Y8KYHmPRLFiZu8hIhmdNUYejU9DPY4VTsV8X9NidTWTA4UZ8IbfazV21yYAJgK6KlKvOAMKdwdbU2W9raHwEyuJAUOmz1j0BRMArFjcZSGTGpHdc13YeZTdrzsB4NwYp2P/qjQKAikgu2zNr88Blt93lm15VkvrKhAAicL8yCJoqVISz2aTyWgwmUzQUa2WPw+GSvmRJ5ig57YafpvIAwAiyFvXvuYEAJGZhQREoYTGiGo0GhwcPut2drZ29xK+l6RELnRYTED0x9//YwAE0IgOMxOhMNl3kpHxqQgYrXyLRm+lEZ2f/fovrPZ6qk8A7IvJu6oZAiAijuMopYzoZ1mA9U3lTx0CUHicXSwBmI9Gk8M1CIBtgWoIwO72PQWuveyr1uclEICAg7PBY2bY3b7noGNkcaubaFclAPWnhFN3Ji4nALiahPzSc9H3uu3mHgoLRtJdoYRng6fJ/NX8IoUEYLt3zyXPbGQaZD6fDscHsOgzMxEOFlHXhQAgIqHX69xGsutvSMFCANQiAHn0r2p+4tobZcSv7GvexCFaZq9zvQjAKnhO1lsh30oCUBD7z9046pwrcBWgXyoNVLYe7PeyUf8F6LXUXVeFUCCGgyyEaEJXBCIynQ77g1M9n/u+77fd+XyK4ArMEBWh57qNht8hcmwNltcShyWANb9yRATB0aAdEgAK58HBy29CwFs377h+ywh8ZqbpQg2CRBjB+cH7/63vtZnFdBgzSpxtTrx6zOa5qZKhxfsjwv/1q78wOYGay5JjS2NTHGsf+pEuLYfMzMxE5DhOYvhVSADeoP/6BKBi9K4sAQBgEbW7fU+BineeV00ANIjmyVn/uYjsbD10yU0a9s99wGcJQJ1ZWZUAFF0i1T6pCipi263dht8jAQYEFBLQIMPRQRBOOGqH4lJRyyICEP+gRHS3s++rTnJiicjR8WPlRKWHyVe+6I7VzREAk7LAna37iLiEAAhlCvTrYKDzE4DoTezI6+VF2jhDAGKzuYsgAFixssvKolYP6Er9r29L2n1rCECmBIvyU5A+EjbLAWBVs7DrQgDKv3vUimrUxhBR62A8Hg+HfZaw2WwITBCRyDNnra9ayvUdxzMOjDH0x4sHuK+SAOTHjRFIEISQmFmYg+Hw+Oz4ZPfG3W53S5CMctIlEgAGACQRVt95+P/odW6KAAmZtoG4K4MMkt74+ahMLZmojz79Z8xBKHX1N+0KtESINjn0Tfg/YghERl7WdJO/Qf8bJwAZ6rXZ8ZwG4+H4IEcAlnpPZRsAiJzt3h2SpMpmSYnMhRMARpjOTgbDI6XUdvueUh7AqycAiZxwFQGwgX5eW2YtAsAMvc4Nz2uRgBajdQCMMJuNRpPDJFwEtYvIbQJgBmNn6y6JwcSiQTiSBDWnkY71jvSVvSHT350QRWu9t/M2Rgsmyp/GBIDMqWwmyFYTqXl/Ftz2slaFLsrF7lPm66NkbxPhDAEwrYdF28baV4jVK7u6jCpSbVof2ckbApCfCLYmNn2/YDZUYXYJ0HVGeVk/ANTOHPIyRmF10uIizfoKCUDuOhfIQGKvLq2Dfv90NB64ntdqN8NgAGDU1rWLTd9veW6bCEW0EScQBhR+LYv+q3dR4+plJD6Z9Xx++vLZc99v3rzztlJKCwDQZRIAU5KUfMTN3ffu3/6hiCmXhVgy25y/G/5cEBIITc0qM//8k78QUkv3qyTenxAASGvRRuI/URU4EjmI+Ab9XygBuLhRPQcBSP3SUY1uZ9/oCtiNlK+MAGiQo5NHBnTu9R4SudW3+iWUAFlTXk4AuIo2CdbsCc6elyK41b2tlKuAtIgRO2MUrXV/+Cxyb2au06lTSABEZGfrPqGLIuZbapDJ9NSkF6KOEEbAsMJT7MoQAIoP3dnezru1CUBxDVUZPrfQ88Vskcs/eEVSlOYAF08AcCmRLnnE6JPl3MhO1goQvLboH6wG62r0by0brjjnCn3B1m0JqHrO0kYX3Hxy8twEANFoFs3n07Ozk1DPm82G13Bn8wGKY67fd3u+4yvlxhqUGcTJ11TXf50ASjT9sUkvBweHn6NujMeDe3ffbXS6IZsTFgHZqrYvQCobVKdJwuRxnS3u9u6+de//BqKQhFkTUdSLLpz8vImHRlTCBKhJUAv+6vO/CgK99HtlfCfsEqA0AZBIdSp+w/xO+Ab9n4cAFJ4vdbD1So9ZODGNoOckAA2/12ruJFf76glAKOHRySOz/e1vPUgEqsow7iU0AecJAJBCxFoEACO8VTvgmyrhUuR2OzeJyPjaAor5QURGk6N5MDQeh+U3LZWF1hKxv63uXULXIWJmE3gKeH7af5IkAUyxUI4AXBVdIGvJEgAgKM2Tve33bL2jLAFI6jUJyywUSnH4BVshrtFkXJ9RiAgKSIKtRecbAC6MAJQ1q2STkhEBOBcHkOpQ2bebAKRUlcWac7uKFNM5zBSSSDogV1il6xuEFTYvVRxxl0MASjXsKcLxs9nk9PQYSVotPwhnRAziIaJSru91PK+BDJbEe6KxxPWzka8NAWCMeqbDMDw+/k3L3Tk6POxt7ezeeIDKKPcTCRjbs8shANbZtyiNUMr5W9/9x0b/J3maMU7iTTm4L1qckUALeID6Z7/+y6WjylatHwloKFCDSG6lPJpK9sM36H89ApDaIQmNK8XlEIBE07YsplZBAFrNbd/rJSblS++jCycAAc9Ozp6an29svx2316wwdpuTAS0mAAenX0R15DUIgMTyvci0ehUQuY7fad0khcjAEEUFzDPmwWg4fiGiSvoP8tWzZEM9RAHxALnTuuV5HnKS1gQgenn0mVIKxEHSMcegQrj2yjlAGQEgcmL9ojBDAEDiI5ZKq59xxQD/xtTyK9f5OjSgkgAwh/lJvCACUPLVckaVLDZ/PieG+7bKgJbp/avMMpMs+i8mAIu1R5H/Ca68RNeRBiqs1bwaBKDg+YioQZhDU/RPCnzfYZkTgQJXRHyv4zptpRwzxIgSq/1wfTmH14wARIScVSDzo9PPm6rbPz4CgDv333caPmtMZGrssrTCcdq4Pn2C/iPbZWFC6bXvv/vWT1AaAppAIygA1Bs2KolABVKohT796v+M6z1Kh7QOATDLzKB/4UwpnUS58TeP1QlAkQw32ZvD1SMAUTy31dwxLaZ1z5VNEYAyAZNZODkbPAfgXuuW77UTIn7usVvl5UKMbF9bXG1vMgCPUNGCT9twJS0FkMKQyIYwZNsDFhAng4RYRJr+fqvZNYH/jASfFjgbPtE6iD0gqP6Stdq92XNbnfYNksihXiGKSMDh2eBxLBGgL+ScPdfuCChcSACAkMPZ3s67ZCKd8b6YaIAm04SIGRVBFNh4R66sBfTPH1TLfCtr6uOWbhYBjaxFxGz/6Q1D1m1dyiv/1IloGkcCXBU70vJRx5Ww3TUnDJj3NCyO/QtVr8MyNTPjd2EXNGZ1QrOrsVTwZ3WSUL68eWN8INutHtdGmoeOvj6JSDRA8SbCKAIQBrPBYDCdjj1fCQSOA4hKASrq+F5Teb5lYZZ1eH294VdyXIrpxEEl0dQhg7Cejydn4XyIIZ2evtjfe3vnxh1m1oIArLIjs4IwzqbvsBDEQaTf/94fml8oIBHmyDZHEJE1kDJ+BRub0I8/+1ez+TjZwIUQRAFqESF2kURDSMAgjhAyaJRFa3Lyg6WEYdf/YAaqvgH6K525cSWYGClFBZiYRVzcrW2kMhOxlpI9NhWoNfA16UEicpjnW627rusmma5XXwI0DYenZy+IYLtzx3Wa5m0vFf0XNSwuJwBSEL9ZTgBSAc4sASByuu2birzkLEpka4yYy3h6PJ3140WgViIAsfYLIeJ27x4tvCEEEZFgPO5P5yeIipnNwrg6/n/LCECwt/N2KQFYhP9VEZy4DAKw8WGs4gCZHoDLIgCroP+lX6QKFy7jALhSZLeMElwHGoAlsYxi9H9e9wnkepO4GTuUmgRgXQ4gRUqpya67OOYN9kxqqVGYcZE7nY1HZ8MzZm62HM0Tx/FEEMFt+U3XaRI5bM0R5dbkt4EAmOCoiIiEAITgaAxBcDo/Gw0Ofbd19PKx73Xv3H/Pcf1ARyr4V4gAACZGwn/wgz8FENbokHBcqCzCaV63sZ4EIvzdV/9uMDy0khImuINE0PC3bu59MJ4evTj4lEFl6HtSE2HEqSqiG28IwNoEQIQZwUHKjOJFDGnAwWn/G1OeXYcAJAFfETQ/ICrm+U7nvuM4ljPAKyAAbPsujednw9EhIu507juOt6HR2wwBMMN0ePIFKoKYYaOUznGGAKAlf2b+RIDCmEsCRJPhKG+rd9ucbRlyZn4O9SxuBa518GUIAERioLLVvauUMhEFjGwpRUTOBs9YQgQFGIpcoX3BJgA2FDTjo3Wwv/sOAhGApAiAVf8TF/+kPFxk83eqXMreWuUEnCkBSjSdNkwAih1/V+1lXIMA1Fj662Qmr2HTcKrEUUQQVBLwW0yEkCDQurikDgGA0jzABRCAoo+jde7R4u9j2nlBotSoAf7Zj1bMoR4PhuPxWPkIOEMUpVxE5TrNhtN2HD+yto1fTkWL89tR+o+JCYqIZkYimgeDk+GJI/NJfzqfje7d+67f6qFSgTAKYa4czfSqvSICAFG5BbKw+smHf2LparAkaiqMgNpQnc3c2wiRFTF4g/HTLx//f4Up0LNO8+adm+/3OnfFkARQTw8/evbyE04nt5Ptq5oAvEH/ax1SKCLMzKxBkYMV9uqvngCYDICJ/4rIje2HaWuwyyYAEeRNEhAvT74SmBO6e737SrlR7wrhOQ7g9dF/bvKKCABwJqueIgDWsZIhANGrNJblAXyv3WnvRbV66emJUo3Mg9GLUE/rn3rWBJtyfwUA3eae57VAUIARUTjSCNIcDkcHLKGINrErgxteuS1AlESWYgLAHO7tvI3gELAhAEZDIukAFiwohrYZG1Y0+a2/g+Nl7koLBWKUomcysLCEJLwJAoAl5Hk9JZMoN1V4U5b5B9Mm0D+kartj2dDo/a84A8gSMCqM/VszgjUcTCUrJZUe+RU4QF6egjdMAOKCnNU5gGnlKimFAl6IhdmXiAKCggDCej4bDAbzYOq3/JD7ihoAQETd5q6jGjbqrVhO35Lwv32jCQEAz2az8ehASGQ6Pz053N2+t3vjvoCKozb58P+rJABxsbUSiRLjf/CDPzVk27QoIIJxDRMJhR2kzREAJlNaAqgBwOgRJRu1IAgDgjDzL3/7z+2eBLvBN1Pi+IYArPFIxlZEVBS8ljAMmZlc55IJQBHcX0oAoqtyVGOrvW8/c+mhv8kegPzHMPPLk89JIYja6z2Me9W5jg7uxqH/UgIALOYIXDwnI51hEQBM2x8mBCDJAFg4LTojWo2dht9N1yBZUp4oIGoyO57Ozhgk37RX4+uajmLylN/t3IS0Hg6LJnTnwWAwOkRETmoErwAQikaPdR792wQA8i3CFQRA1vUB2PBNfq4G64LLKyIAItpogKIZw3MRgDLDr7XFTGo1mq8Y9K2v7XgdCUBB34XNwSLdW8LKdVGLAGyIA1w5AqBLm3UE4wR1IoNg/H0RSHMYzEb9fp+IvKaa6xGBAoBuZ9+BJhGZYpX0OMTlQ98msGWNQFT9LwTCoHl+2n8CADyfjfsDhXT/wY+U77OOsQgV4IRXmgFAkVDQARTTOCui/+AH/ySSDGJC4ngbkQ1mABIx9MSEmDlAaADOQFwk0aIRHAR9fPrkyyf/0YTHjNJ/ajdLW4O9Ef85D/oHAARCYRGZzWYA4Piemy4tvqCBzRAA079ZQQBSqE/EVJg3G9str5MRQqxOAlwsAdBaH5x9johKvN3tB2aXZGQRVLB+M2I90FF8Jln5EbYJADIlogRVGYD4mMyE0ARzDQO5luJu+6brNJLin8yImSkP9WQ4Pgg5WI8AmNQLsOztPIwMzUSQUmi4P3w5n0/RiT9UFlHYV9UVEBMAW78yTQC230lMzpMZjOx1CgnABRY4baR/mle6s/IEYDFNLAwCrAW0iMaYxGYIgAjX27+w6ELPqWN4EQSgLg24niVABYZfmWUv8aQs7gupWmNZk2ypHP9lYk2WCMmFEYB17rrFq8oIgNkM8/cUiwiH88l0Mh4CcQhjx3GIPADotvdd8kUiJ2BmLVggYm3Wlx2RfV31qXI8UJn/MPN0fjadnYjW0/5wOp3evfN2p3ebyWFm4FCRay2tlAbGq+oBiHPvIZCLEpq7SVHr9z747wA1Ikos97c0vbbiBxMSGwf5hF0ABsJOHLiI1tNHn/6V1tretexQTlkGoI4E5JuHLbiUEABACWfz2Wzm+J7neRmkekUIQFoAJgJOvc4dTzVWusgLJAAiOgzDo/7XiNj0ur3OrajmkhBxjUzaGgQAUmaT2dMkRwBkkQFAUAmyLz41kROGICKgpGKFoYBR6HeUD8vsJwajgyAcrQ40FxkAFN7uPVDkiHFkT/gGgTCxzIajE5Z5XAKbCiG8moSAiWUuCECqrFnrYH/n3QToZOKgiGi3/65OAF6VINK6HCA9Q6YOTUQLaNBhgt42RQBkAwZGXDnmXPhNV5+V2sYcV50AFGj+GPSfGN6BpXkVTShLYQAiGd7C2H8F5hZcroSeowEbWP8FeSrDeHml2UddltkjkJwwEACEYTganATBzHXdOU+Uw4R+t33TJTc6KUQBsoGtqZ7QlDYIFJZqvMYEgBFAmwoZHs/748mZAhyPTieDYbezf+vuO4QOi6NBExkJJluj5tUTALA6qRCRGUlpEPrJh39q3LuMNzAim/aGzXMAjpiAdT1MRKwRAJ4f/ubZ4a81cBlk4nRzKkmNG+rNI7+Gk18KsujpaCgizU5XkWPrhl3cMK6RAbAdLWIT2IcKVhPYvFgCEATByfAxouo0tpuNHcTY4UJQrTyS6xOA3IgsIwCLQSQGS2tfKu7lZQeUDne2Hipy4vOKEZzEx9v+5XD8MnYEW2lBRw5fqAhY2s2bDb9rZMUQHBFBYonMAWAeDEaT4zzDuQIEIGEygJEoQp4AJLHPiAAgqtS3kJXS8VeNAFDRU2XRJJ2ZIRZz87OEyDoBSsbv4rwEQEgIVxw3Pg8BsNbhqguxysexMEh2fQhAyu46umEQ7axjeUS/igBktEFT4IaS4EBNArCqs/irIQDZM4uAmefz+Ww0DMIQXWYZO47TbOz6XhcRY6E2WZRqQErADXFxUEZ6jtdpsW0APCEQMAfh8HR45JIK5uOzk2MH6N79H/nNJrMAukaG26GF7VccdXrFBMD0AIhQfEki7AAGBOrHP/ipMAEGCJ6A3ngGwJT+myQDkmmUMkl7RkTWOJq+/PTL/0PQhPFg6f5WQQDecIDqeEeUBGBAgul0OhoN2o2m32obtQB7xVaD3ksjANY+GREAZt7beVcBrnRhm2wCtitbzPBO58eD8QkAbXduuU7TDDTlqnI3TwDSwv922DjG3Cr50+HxI6WUiYYbWxxamMBD4axnjtJUlgC4cPQVub3OXbPF5Ey4bOsHMlpA1mdxgn2r51VEE3qmkKnht1qN/XRPSepxOnzGoQCG8eEWO1bype7CNoixyxiS36OkCEDmNkBQRv8nai9ZzMTlw/qlVso2QjKFszWHmqGyGcA0ADCHpv7HrnRPw+iqxRM3hceHU6wvUYYBy0vUeI1NI58HWLU5mIufs/JifnWEATOndWHsP6l2SwWeU34Xkt+U0iPJ1YS/UBdIinbhopaAOv4A6wiDRp/IOapAJdcvCFnR50hjEYlFNIhCgjCQ8eQkmM2EJNBnruPtbj8gckxYgZmp5AZY9dy/LkS07Igx5r7xMJonxHby4od6dNR/7KgGcHh2/EwHvLvz1u7NW0AuaEBEA6ArmNsVhKeI+OPv/3FC/DbrA1D+ocY5ERnl57/+a5bAJPoKe5Yyk/UG4lffgmktCgZQJiRthlGDIJAAn5wcicj21p7nOGZ9WjT1QjMAT2JwyHEdf4XPre0DACLiuv5W6/aqV7jxDAAbo1mDbw6PvxLSALTTuWs0QDmWYX5VBCCJMSfPPTx+ZOCj8QDOEIBCf/IKAgCZoH78ZM9tddu3FhHuRdpRZeZbRJ/2nxocn5eCKVWzEW2i+yZNKSJ722/FnmKFyycYjo601swMyIIm+KHwcp2A6xAAuwcgje4W9T9ElJ6GiyMAqwHfwimrKACr3LyKgRFzCLJoANgIAUjU5SSd/bQW/8YIgBXJWBKnqZgMrpqhc0GtyyoZKiMAqWq3xOouK0yRMwAqJwCp0VpSEYSlBmGXRwBsrstV9CBDAPLoH+Kov4gQqtl8Ohwdh2HoO/6Mj3Z67znKJxWIKELFEoAoKgdq58UjV7IUrYwAxLjfgH4jWWeWIYaiT84eI6ISdzB6ORycdfwbd++/47g+Q2T6a6wCoPzGvHrglUWo3dj+3rt/T0QioZ7LIAAojALhF9/8+9PBcyFBVMwh4nLdlDcEoM5ZYxMAw+sQ0UBTEZlMRoPBoNPptFs9Fe0bSfP3lSYAvtfuNvdfLQGIBOwTr9nD4y9NSnS3e08p91URAMilVOxG6cPjR6RMEU+KAFSEPzPl8hkCUMgZGn633dyvQwAQZTA6nM8ntlN6lP2vMuvRBgabkWfmrc491/UrBmk274/Gp4IQ5Td5kUEs6il85QTAzd4PMQGICyQ2SQCKJ7dKCrOufEqm87v+gQRFzQAi2Q7gtNbNIudeea9h3nlpUV5SzIHPSwCKxoRXJQCF832ebMAlNw2bekhIszVL718tGl3MtympyMoTgMzqPT8BgJwpcTkBuBB74FoEQFJ2GcY8hJkl6t9d2HmOJ4PR+AyEmi3f95pKuUQOCJJC5hBEma04V4q2ZkX1Iq2C14wAxLNs44HYc4ZJgz4dPBbRjuPNxqPj4+cI6sHdH/V6vZnWZgFjfCbmxu3qFkgZMT9EfHjnh/s73xHRAGrDVUAlxNJUBP3s138uggxKRDuEprekerW8IQCF80hSfJrEhSoL1WCW4PDwUETv7990lI+RouNVJgAL7NRsbLX97VdGABIMGjsTkYg+PPvG/Gmvd5/IuXwCUNT7W0oAJG4GjzIAhEvCluUZgCyGYG43d5uN7YQA5E5Esi8sCMej8anp0wWhpOG4JI4SI+ZYIoCIhLHbuem5zcqNXo3Gh5PgLCrcMnIHhFAkYfTKCAATi50BsBeEAoAiArA2+qdCAlBvla5DANbgAItXRQRAZyzAcgSguvo/a/S7FP3nW5HWgHclWZG6SYA8iapBAGphjvxMXRxQs9E/pNMvCdVc9CNVq9FJpKTIIoCSKfSvnqbC23x1h+D6a2AtXSADOvPziektUdDuIkjgOyeDhjoI9GQymUxGjuPMw6Ob++8ROUocgTnjIpGIiAKZEqD1+ynTcrTXkgCIhIiOMfwywvlEdNx/oXmmlArD8PToaRiGezsPb9x4QKRCZhEkIlrMuNh9SVeZCGkIFLgmQveTD/8ocgDQXN4TtcnHJ1/868m0bzAYIjGzCQC+MfpdmwCUbFaRAxGCA8D94UH/pN/d2tna2gFBXJi6SjwXV4UAxLHjxT877RtNt7sy4byAJmA0mCPg4OTssVmj5yAAa434MgJgD+vB0ZfKQUl7p6GYE5fLmttsiJxRCkqCZzYB6HXuVMDx3EhKf3gQhGPzXaJVKJQiAMnvoxVKgCEARX5AjK1Wt+nvVuNd5vlwehCEMxCKqAsVwPGNnjCpVMY5CYApikgTgJroP0G6Zb7LKzTprgprGKwys+zGVFdRMeIArJlZQJNw7FxTX+2+WG++CP1TbTS/JgGo4ABQo5XNjtRyjdkqowSXRgAy6D9zydFqF0JFKRlWweptU+oSgOU0oDAJsAkCAGsbYpRW/OcIAMQNlfbnCcJ8Nh6NRmE4bzQarVbLcRpmMElM8SpqESJHRAswESXf3m72fY0JQMXwRqGlqJUCiGg4OpzNB4IuKTg7eTkZ95tu797977meB6CS7to4CW9O5FSzb9IacdXGgRGQja6GKKS/9f0/AgAVVwJd3IMEhPg/f/xXRGSqrKq27zfof30CYLyrFyWCIvzs+SNE58atO67TELGzf1eZADAAMYfbvXteZFP4KgiANa7ErEUklNB4ggDA/tYDRLU6AVh3uAsIQCZESElR0NHJV4hi58pNB1gdBJYhACnQbAiAEBgXyfYtpfza7jkwmfYn01MBbROAxQ+LEVogaRFN5IgICoM4ALC7fb+8ZIVM20AQTkfjY80zk21I5Izqon9ZK9yeJwASWRgsfg/KXEYBATBW0lFphAFJCTZSy04ySi9XWYU21IP3NQhAonGU25sqqqhLCICEIlJIACB9u1XfXJwK/6+g/V9CAKh+ViQ3HatwuNy7rUgAUhzgokuAOC1XVYH+bYMLO8FVZ14k8tVeFAUxLAfrpakA5LUIQEU50IUTALtK3SBXzeF4MhmNBwqh3W43Gi1CFzAA8c38sgSIwmDH1UQtalfOtQKuSwlQ5qrKiLoIzIPR6fDAUw6imk6HR0ffONC8d/973e4Wi9GQQpWumUGRfF79qhIhFkEExyjp/eTDnyIiMvDFQ+6PP/2f5uEYgIxLAEgg4uepxxv0vx6PTe7HyIFBSEATYX9wfHJ8sLN7Y3trX0smqHQNCMDO1kOX3FdMAOyBnuv5af+JGbIcAcB66dSNEACqxg/94dMwDAXTZ2GV/Dnbu0QFAUjwsev63fYty7q5UDhv8U8RFAkGowOtAxE0Wj12LVAeTC+ugVERgBBLuLv1kGLh0TICwAyhnownJ1prwFBW3eGQ154jyGcA6hAAsVzADDxSZEVGaSliTEd5N04AqiFOfNJZdtElJfXLCYAAxwRAk4DlYy0MKYnHovMVc7fMAv3LwmdtPQJQpxm0eGuuyANkbpOLIABLIdE5H5FOvGDRt06h/6jmJy5WXO3sMYUxkYD1JROAjGjdJrMBUuPJCwoXO/4iwXw+H40Gs9nMb7S6nZbjOFEMCDyCQAxhEgXARqkyiUogXZQowtUnAOn5jSiVSQJoHRydPVemLkbrw8PHzLC/++DWzfuAjkH/zKxiVUBc9FNeD9gay4PGFyzujz/8HxCdi+4B0Hr+0W//lcY5ADmoRGsAFNSp8tQ30H+N2RR7012UZhA6LKHA/OmTrwnV7TsPXLehBUU0LZqergEB2N1+x8GVYcxmCYDpU4yuexpMh+MX5g97PROKRg2sAF8tAbAbghHUaPp8Npum9P6X4Ejr0CojAMmRKQRAjUaj3byRKH7mCAClBzC6vP7wmdZzERQIlhMAc56RgDgATCgg1Gnd9LyKrBAJIykQ0bP5cDQ+FoSVZUA3SwBk8XUWTcBFBMDoG0VoiWJRV6TyCHJx5boVcr4Q4SBMWnWLCABENWNYDxuVEgBkvSAVtQgAFt0ycXgvZbR8sQRgdQ6QfWeKea/tgbA2AbhoucZSh9qFlbVadLdnWzKo/gjHxpYrEIBSDgD6IgnACjRAarSJ5wVkZ7PZcNhn5lar0Wx2jVKCCe6SoEgIoDhGuBQF6U3eYGPn/XWRAa0gACJsAAozD4aHIUyJHNZwdvp0Mpl2/K17999VTsvUXmkRRFSRzW1kS4LC1wi8xhwgyiH9wQ/+BFZr2Vrn8YtP/lxAMWoAQjaw1ejVFNRAVvgDvHlk0H8SWAQABlx40gkhYr///OXBs5t7t3o7t0CUEAKHcIUJgN04CkBaB/s731ndXKuKAKx5t8RXT5OgPxgeIorvbXWbu4jCSMKAxCSUjGz5mNb6NoWHoYXgOQcDKD18MJuNxtND64CsWfzAmRIgu22OxDVPEGJh7LZvNrzOauOJPJ/Px9NDrQObTpSqdhBbE2GUQ1Sz0Wp5NzNO5gtJ7Ej2J9JsHU/OprMT+8jHOBseVSIVX+f5ITIa9+JUvemCGBBzuLf1kNBDkiRBsShTIURLMb0U8W+AVm5oP4qugcswqog2RsjV/bViFhjPM+2/8eIukX8FhEUWzn5HSnQ/k3nHGt+lxC6Kc6h9STmQOck423LNZbg/x0OxkJfW7uS4qIM0W/MTbxlRBddCjSAK/yfWFpjux6jBaLgghLOQsJb89gU1Kv2qu4ELcutmMqT+5g1peYZyaUgskEAwLe6mYdcUSjEzERncpjmcTEajyZiIuu2O7/vpzrnF9k2Fexvi6rvFdUdknAgLJrNg7DtJEBGYeTg9mc1HDhIiToeDw7NnDjUfPvhhq9UNeVF5m6goJmcXXEtnNBZBENXw/Q+/8w8RFIoAaKFEQwZJVi4NijWpABGRCYAZ5ctv/tPp8KlIKCRkAnng3L/1/ZPTL8/GEyRBCkHcKC1HoSn0ffMo5EL5/S0pooy3DjTjzHr2/JvPNc0fPPgQHIeZkRER7R3vonmrMQKzwCdb8eKsPWLeLdFzO73W3jroa1MEAGIVoKjgUuvB5HAejA0B6DR2EJERhAFQk1CsBpAnAKs6/i4lAFRxgiLibDYaTQ5iAlB46JZ/uJUByPsDGFwuItudu67TWvUYEdD94fMwnAPyAtaXbaDIKcl2IQBylNtr3y7TdY47ulgECR2B2XB0Mg8HII6INtmGyF344uTPCK1AeAEBQFRaB3tbDxX5mQRIdJYvCICqmOirRwCq7qMSAmBhJtO2tB4BKEDT1rLHFdA/1CUAtVFmwd3H1dh32crkFQkAbhDDlVX8F8WtVST6iSruAK5T1bbsmxYRANvB95wEAGq0F9fevwsM72yX9PLAk4k8USrAQRAGwXg8nE6nnud1Op1EE9nSUcAKXoW43m5x7UOythBQZjqEaTo/Hs0GilwCCMLR8eFRoIM7N9/a2blD5BrFVdM7YUxtraPw2hEAWy2QAejH3/9DAEB0kCXmuGj8d/WaDZPALA4iIGvBn3/yFxFxBXRQKcQfvP+PHCQR/Nlv/ykgCytEMQmBDdrQftsIACfF6MygcNY/ffr885s37m/t3mWAyBjpihGAvPBdkuokomZju+l211gPG8wAgO2IjigvT740Fq0Nf6vtb0VbgBhtNbg6BGA+Hw/HL9ciAJkSII5wGEeSnaa/RER2eg+U8lc6QMy89ofPgnC6SMHX6LjFSC9PmVKiXue243iZ8L9l2Rb/BhQgaz07GzwTEWZWSrGECCrpki+LZKxxwJS91gpYLggAc7jbe1BKAJDsfoBoLioH6ioQgIprk1iTtZoAMLNxAEDWdvtvfQJQpPxTkP4q405ib0bn5gCVNCDLAdbTTq0RSJe8pe7G0T8UtX0b99kI/VsixWUJybqwO7mhrOBEui+zdpPGOnJAUE8StJQARJ9MJR8hCEmhtqSowng6Go1GKNBsNhsNU/QPIJg4Y3DperCPJLys+/4KAakI/WRnlhGd8eRsMHnpOA1FLofzo+Pn89ms296/e+9tRa7pWyUiLUKQyjbD9atcZ0RkjmWLMARx7t38wc29982tYMr0IqGs1QNkkcSdBlKRx/Cnj/7tcHJihpxImOEnH/5UBBxEEfibz//VPBhF0B+C+Fx+QwDqEoBkA2arAcABxTB/+vh3IsGDe98jr6XFSKJL7IkUnQgXTwD0af+rmgQAFpr7YmLuW93ba0gAwWYzAGZMzYWGEh6fPUJwELHp77b8Trz9Rsok0TSgKLhQAlB69CetdfP5tD98aueBU2MtCBWBsjQBAAABjewAcEIAmHl366HjNFY6FsyUT2an48mJAeKAjKDqhG1ANMauJe3Wvu+1Ei0Re0MHIASVsAtDOaazwWh8aIINi+bj4rXDy/9acKEp9dLk5Ytri3sAouiKmA73B4r8oqCpUT2NCEAd9F93ha2qboQ1i5iX8rcFAYBy+XZT/S8iwPNo1WFK07OIAGAB4IrH2Qw4FWJNyDRqZ7+LSEUh2JqpgBICALJyzdlKBGBjuG2Z2k+qLQQRkZwoCbC4tGwwIvU2XFeC08xOOQFYMk1p77nVOIBFp+o6A2Ss7qo8swXNjUBEHLdWIEEQhsNRfz6fel6j1Wi6rk9ECISWGXAhAchJ/VzQmX+lmQAjiIhK1LAjA2ABgPl8ejZ+Ggmnahj0DwbDge+379x+t9Pe1tpsQSjCRCoW/cR8ucK1eNjnKaOpCSEQ+vH3/wQwjBUkk2+6xrcz9lIRYAEMfv7rfyEiQkjCAIpIfv97PzWpXkR89Pg/HJ09IRKtgYiYtXH9fPOo3pHyQu0L5CkOiExGx988+c3tG291d28yuBEQgiSdfkkEIBQ+OXtkm9XaBKDo2y0IAADtdu+Uy71cCgFgZNARXTYaoCdnX5trajX2Gm4LETmO+ycEAAvsLTZIAKrC/4lGZ6inZ4NnKS3/qDuk5Eow3fLIC0yCAoyaxBXRSJJg6N2ttyump+RAIBEdhOPB6GUxAcgcxpJtciUiYGk2eu3WrrDKYMSk9H9BBuLNejw5Gk9idzAS07u1+spalwAkob2oF890uD8k9DLoP8JOVv2P1JAAyk5gxXVu5JEInhZcD5eRE4mrqEvbAIRFNDOjBJn6n5oEgFMQs0D2R6KGVH0+ArAmBygqBCLYXBMeyQq0bQ0At7hjytF/rJSoFgTArFJSNXwP6iYB8u7RUFCveF4CACX9AKsSgJJttpwA2GU/KLP5fDjqA0Cj0Wg0GgodiO3DzMkUyaNm5CkRY8OvyykVvLocQIMAsAIjjL1YxKHw8emXBv0TO5PJ8enpqQLcvfFgb/duoqqegbZJ/4CCa0YAEt9oA8oBgAQBgx9/708QHWZNZBpzTW80rb4vmW01cp/45W/+heZAiJERgBG8m3tv37v1o2gKMABxkgKhRFiJ+Y0iUCWFK6j1i7YwFCFQoMOnT34zDadvPfih0/C1AEfnIlvhgFdAAGKRnyVNwOZprtPcat9cc51vlgAka3rO4/7gwPy707rhO03DvZAABFHYZAMS2SKLA2yKAOQjfSmsmYDpgKdng2eZm395c2uyuFiD1d238HiK61WUUtu9h2ucCSIShJP+8LlVt1MMLlEiFaA8YkBU2727hJ7JaSbIg6IdhE0ggTk0HgIGoPcHL0IesYaoEk4uJNiQMVDL/ynJAOxuP0SKCpliCy2TTVrU/xSh/2Lrt0slAFDFJQsbNy0CQCK6igBImK//AQAukP/H3OelOqejgsKs4EzRRdo8LX7rGoX4tJJHWPXBVv+4LQshk9QCtWsDOMbiiZdUHJoQkcjJoP/idYiZkn2bDvFSupVYRxdGyDbFAWBNd7BiApCx+IVMG4NdwYjIwKPRaDobO47TaDR8r0lxHCfyiiYC5koCcJmNQleUAzAaTzQTWYygD3M4mJwG4QhRKXGDYNg/OZ5r3urduHH7gVIua1EmoIZsf7XESu96itVwPAjCGCIrItjq3nvn3n9hSZjQukEJjeiY8/dXn/3L+XzGgAhzE+kDcX/y4R8DxJ3CICDqF5/8OUeFVQLiCoSJL9ubR30CsIiQAk5Hp18/+Whv5+H+7XcBYB5y3L8umXLQiyZaofBp/xvr4nWhEr2FAxMCgM3GbsvrmSbbVW+0jREADaJAmI3uIR2cfm2+BhF12zdNfVJCABIscBUIgIb5af9ptkS+NgEwoTiD2BCRIWvD6TqNrc6d9Q6EIJydDZ5ULD5LxBKtsKJVQCy83bvvqAYgR4H8GNCbKrcE9C8Gh1Fg1h8eMGvmMGqzq5MOORcBSAHEmAAoFGAOd3YeEmYJgFX/Q0kRSxH6X+eaN3XDR5OyKgGIejmyBMA0bSMiCDOHAhp0mIT/E1hTTQAo9vyyhg4ScaWScbM0ptZB5LyiKOTKI1xzHpMnUx0SeE4CsKzyB0zpv4X+M2VsmO5Nrnw3XoKzc8U/8dPlVRMATlugSPG9Krlu4Pg3pHAeBKPxIAgC3/cbjYbn+PHFCiIhYpg2VY3pLsfo/9Jw/1UnAOkpQFNxPp6Np7MzwgZBqINwcHY0nU39xta9e++5jSbryMaEFjracN1bVGMiREb4CBQoUMZa7icf/tSE/C1zA1qjB8CcDI+f/+Ll8ZeMABAqUGYkf/LhHwk7gEwiYniCguH44HeP/g8A1oDKHNT8JgFQMYVSFH2zRUf4yTefjCcnbz/8PdXqxactIZqgy5UgAPn231Q2HpE57HXu+E4TkRg1rRi43BwBkEjex9wJh/0vhKPobK9zyyUXgICUUb6rJACr7cXrEYDFEYuoYX5y9iQZ2boEID6cklx8pPiOWerpe61u+3bKC77IyrfwTAj1/Gz4jbGrqMayRiLTBPXj+hnTphT02nddp508QUCLrXKVDjEmHEDzbDh+qXUQ3RipwCQvPe/rEwPTfUGACdiNeFQkDwpaohKgiJ6JjVxfYwKwQPwZAgAACMIcomiWOVgNLeZAKooEYPpTye76lYiAAZQLn2N5j+YqBOBCOEDlwFLhpWbHZzUOUIMAlG9fie+bjf4XyV87VbVpAlAwU6sSgBrDtaIuUCUBgFQZbz6PgYiz+Xw0HohIo9HwPM8hl1AZkVzjOWNqJgo/m7Kz+W0nAPmaw5me9PsnykEFyMyj4cloMPTc1s07DxutbSICQYk81LS9bK87ARDRCpRAgODGzb4gIj/58E9M/D72HpH1egBAlObpR7/7l4wsTEhAggD63Qd/d6tzCxGQTTQH44/Qj198fHD8OSOTqMSW4Q3UX4MAKKR+/+zZ84+3Wrs3774voEIUFI4JQEar70oQgLwYKCJqnu9tv+MgiZBECvuXSABMz1DyLxIC4IDlbPCYAQEYhXudB0opFeUTiW1PNpQkABNbkKyTASjHbZTHARgnKxEUADHoo9PPkzbZOMxpKH4kghm/A6fwPabbzOPoLEeoNNK0bno77dZ2YUmJoKUHHxljpdCe5uBs8MyIcmIcHogGPqUjgunSgtQ4NBu9VmMPgCguH6yu6U/k9oNwNJ6eaD03owTICC4ICoRRh4OlInK+FAEJ5kQJjRo6CjPv9N5Syo2fYDmIRUoIBIS2Q3DGWzftApgmTojV2CXbhcnrnNyrLGq2gm+2Od2iIsJ0AKNokwTIfQUWsoOa+Wh0Fv1DkfV1grtSKzxq0S448ZZJwdSxOn6FQGfJVdEyJFdW81P0cab+ThE6sdsXgTX+Gaml5XqsqTRRCdcqF/LK08v8bbuUA6TCZesahAly5v6yNIjSTp4EAsDMk+loPp+7rmsq/hGRiBayjLnpuJJwaYUtZXVDsbJbr6y50FxP9ISAg5Ozx0opEMchGPdP+oMzQvfW3Xe6nR1ENMWk+e/yuoamNciH7/43LX9XAei6sX8bTUYvIdAs7kef/rMwDExi27CLh7f/9v7eHQQvEQhCjAwHzAtPzr756sn/Zda1BiFBiLZ7ow7kMiCsHgm+9mi/yFc7Cs4SWcMIAIKCJPDom19Np8cP7v1+u7ulRbSIMvVXqaM/X1VxUevq+PRL05aZGGpldCDSjWFRgYBS/k7nrum/fwUZgIQAIKKIjgmAPhs8FUFBBtZb3YdXhwAswv8VBIChtOzenolyAhAnBIg5bDf3282ttIOVHRhmTOcEbA4Q6vnZ4Il1JYujPVGJMVC4jAAgKmbe3b6PoIgcES2ChCJVzSVJT20wn0/Gk1OB0JjAax0QkTGDRJTz+wMUqNsKWKFoMkmuMgIQS6ZkCQDUkItBWe+gKlsSXPYFReScBEAQCAoIgDGJy32FbAYgTQBSxT+wqPunWgQAwASm1ioEuirovypqVPIVqglAdcGPfcvH+8wC/S/tX1+RAJQOskCd6h0u4+254pyNEwDO1k9a6B8Rha3SHcQgCEajEZJ4nuf7vkIn8TZZbJiSVaG5qrBo/V20EPqcgxUjgCmEIK3Dg9NHSikiQsT5eNQ/PRGm3f27Ozu3HMdjzgSbKtw8Xh+gSax+8oM/RCYhligdXbHziZ3JQyQzvCLw9dOfH55+mVRuiOhO+8YHb/8dBFeYkDI9MITE5hdhOPvod/8S424WljmIBynNpW9dZqC4/J0FkRjE1HGZakARJqBh/+jrp7/a7ty8d+99VF6oRUhAQ6ocEMGOtV8CAYgPZV64m5QQgKRL2HEa221TYY46qiJ7pQTASACdDZ4a3CM63Nl62+wgRv6/jADEs7hBAlBV/xNDfCXIhyefLQiAFED//BwkyegMAYjAaBxlYQ677Vu+146AVxp0GgIgIpguCorfkkI9jQmAikYoku5J8dQIZRZtQuZEbLd2G97WYigwrGxypeSzmMPJtD+ZHSOiMCExILMmBALUAhpXXHArPiICkMgoFRGARf1PZvYzVvYlHEByM1KYvliiZydYVQrFsDIyRgvbGV8w808RsTMARQQAGAWts9mCp0WS/6gqrjzde5kQ19IUUg0OwPWg9eUzBIbVG/rKWpvjPYTSpCLq+oVE8ZOUYWxVfT7n4C3Z+rHKfFw1AciB8rWrgIoJgPG/y7JNayFGbgCIzDydToNw5irH9T1XOXHkbFHDabv82mN73QnAYlRwIwSAy8IlzDKdH49mp4QukcPh9OToiAPd7ezdvvsOoAJIYs/w7SEAGgIF3k8+/Gks/sMxvseyABAisibAkAiZGQARlED480/+CoAZCRkQgUj9re/+Y0SyKovAyjAIiAsYmCpfzbOPfvs/RT1xkCoXMUcGooJv9yMet6QgLRKoREER/vLrj4L56cN7v9fu7AE6AWsUnUN9l0lg+OjkUTxxEQGAqA6lsAQoyg94bqvb3F+7236TJUAUCxcGHJwNnpq/a613t98hVIiojPnFhRGAdOk/l9b/AIA45glExKAPT74wN2o1+k9hoFwSwDaxIopi5My81b3jua1oLtOVJ2JTzKwMDhsCcDr4GoQQHFLIHNoEoMJIy/4Us2Xs77ybPn1LgZdJGkQqoOQIzAbDwyAcm99fLjIjk3YwBMCIAi2akiXbAFDY+2FtBEVc0fKur1h6KEtzHZXQqt6ixgJtSgZLWsoQABBmiQyAsfiOL2txJQXIuND+X9pfXkIArNK114sAFH4RWv1qbA9Rc0pHGSrHNbF/QAIgi4cXwGJEjIJANWQ0o2SgLE8ClCXuMppChRzgPKqgFTNr0H9+L7WHgkUb9D+bzTQHnuO6rmsSg9l341TJkJmIKx8RlXrrKgtQ1iAAiRdkerJM33ko4IhAEA77wxeKfCIIQx6eHs1mgd/s3rv7tnIaCfb9VoX/k7Xaa9/+zlt/FykUNgZzVHkvmCSrbfvFv/zkr7WEACQkpm7iw/f+ge/2RCR+DlgEQOwsYhwmnH30yf8syBK9DwqTMrKr3/rWYCtYbtf/iFIOMJ+evfzm6cftRvfBgx8p8liUqJDSUumXPISMfHTydTp1wzYByAtDmz81/F7b375CBECDBMFkMHpu4tZaBwkBMG0ueQKQvPY8BKCk8TdHACKZLccgXUTUEh6dPCK1SBnb90+m9ibJthdWAXG0E+g4n2AIwD3X8ReObmLX5+AiNpwpfkXTAzA76X+FiMCu53lBOI9Xg16FACjNs53eA5daiIplvjxsH/cHm15hrYOz4QvNoRm0OOJYpeuCsgLwrUkAzHcxQkACSWyPEJWUL4DCMcnH+Gt3fa8Kd7COe1WlMiknwC4mAGEiAFqy16d6R9OOv0mmiypafpcTACnGf/Ui6Hy9TpG1rjwJ3XGC/oUUqciXSpDMbRg/LeNQnhILSqn+F0ONqFSsqEeF8/NagwBErKeqFqhwAaTZdp0xNCpqqVWXtxQQAZQgDMMwJAVKKYeUCQqksrIL+yq4Vui/Lg04JwHIlRFDbgUyAIVheHL2tVLKcTyt9aB/PB1NXad549b9TncniVKbKHjmml979GmqtP/gB3+mtaaFv1xpziD2DQAAAlEC+pef/DOGSK1BREjAVf7vfe8foYSCjkH8dgpBJARxY9W+EKLjWxDxP3/8T+NORYcxAAASh1mIvr0coDB8ICJm3TJPv3j0y1BP7tz6YGf7JgsxEKBGHaWzXsn6ZeTD42+IuEy7PEMA4oJz1W7tNt1utNRAVjXcwL/9/X+yahCimgAwwnQ6HI5fmN8ZAqBM+LZAyT5FAAojtUsmu2C66hAASoLHDDIYPQ+CSZI7ThMAlVtbnCEAqa1BouA9EQEwc6zCWQIik7hXxgbL/FPz7PjsESIiuJ7rM7Pm0O4wzug/lqx+hSieavU6d0zMuKIJ2OwmC+1/ZGEkcgIeDoaHLIGpazKdAKZD+iKliG0C4CUVUIiIgrIwA05J2r+SR3XJRDUBQElvVaCrCAAwsNYcIOvC+h877JQGXBQvhiz6zzdJlxGAJNJcEZbeUCfAlcgMrNgrTBb8j/pQ412REFGRi+QCqQT6J/GFOs5fleCb6wJuLN0o0r/h6rVt+3YX887SMeT0P9IFjYYpWV0NSXFjoANmVuZBsQEILIr+bZ8TuB6VPytzgHOWAJXPBS1mQPi0/0wkMAfHZDzs988c9Hd2b+/t3pFo2BUzI3Eh3XqtH2gKyn/84T8hFGRmrAYtkrwEwQHUv/ztP9daI5JIKOgYwZkfvf/fO45HYmYTFyBPTDNAMs4YbR2gE+e1xy8+Ojj+PA0Z+VurDhRjMAuiRhUNkbHdyemz5y9+57mtt+7/La/ha80MRMCIgEjAnJyMG+yuWfrQICenTwHn8VnANp4pvMVMG0C3fduPVY/XywBshgAY7mRI7WR6NhofmiCxlnBvK0UAyBZ+2zwBoOqDOUMAAACQZsHpYHgIkOr9rQaU0RGV1taIKnlIIglUFADY7t7P5KmxxN/GBovmVNM8Ozn7RkATOp7bVMqfzgZEFNf8F1Sl5wLeUUkZAOxuPVTo1N/nrO4OFOR5MBiNTzTPiSg2itcbkXcsBKCrEwBVFH2HTSju4dr3SCYTUggo6xAA4Li+U5g5ygDkDYBFROXWgyxafo0yLCUlT3k1JLuSrZiyWj3NF8kBLvoAW8efeAXmat3UjISgUDmKTOOvityXV3lPmwAUlWBZYlzVSYALIwAViqVl7xznP1MEYJFlxWgbFBFmbbaDBfSP23ztDiiskvt8TThA/gg+BwEoACKT6dl8doLgAvB0MhoMBsjY6e3funlXOQ0AU8gedZchwlLu+no9WASJqOG3v/fO31PgGByf27QX+yqzsULWAPDxZ//zPBiZe18pFYYhEblO44fv/0NjzCNkc7xFTwszE6GIRvAEQot3RR0Iv/vy34xnA+bA7of5dqL/7PllHW2aJ188+jgIh7f23rmx904SaQUhQG3E9l4JAWCEwfBlEJq1gQDhUgJgcHSvc8el6EA5PwFYGd9kCICRIBxPTifTY2YGoJCD/e13MwRgcQ5smAAUZ08KCcACMqIT6H6//1wsBXqUyIUqA0ytgH0VAQBRAEAKHcfpNG9HJrvLosXWiRidfKGenvYfs8yJHIearebOaHIEiedAfObZ1xmjs0VoB1EMCW43d5uN7ZXQvz2GiDKenIynRymAnljrIa+XCogsb4sLG1IEwBZpje25qQYBgHWlmjeSGchkAGycLfnFUJMAAIeROGw5AbCgvII0WSLIlkuVEwCuIABFsoQFUOOVjf46NKCM0qzzDZAl2pfRIeWR44LQQn/pPARACnpFFrPGsjQJUJsAUH4NLJ4fX0NtvwKwkxWSzlHZiVAb/RugSUSUQH9ZqProGhHo14YArC4DuhoBmAbj/vCFg0TkBMGsf3bMgTQbW3fuvU3KRaS03S9++whANIxKqb/13T8iIaRQV2ovIkaGYp989m/Gs2NE1EIKWQM6SMzhH/zgz2IqlVkDRpaeFncbotV8DCCKQAMgQCRJBAQ/+9U/RXSustPcxU0KFNX0xvSJEOXo5PHTZ1/6vn/v9vvN5i5YaRYzU2C8ktbtrjkPAZgHg+HoEIwqNISW9EsVAdjq3ndjycTLyAAkn8HpoCbF1fMa+GzwWGsR0cwhYWN7645SSqU34WTLXwi0yTkJgF2SXqL/I5QOjUdyk8x82v8qksgHSepuq2RASaJTNiewbecQGt5Wq7mz9FxPY0Sj+EisgzCcnw2/MaDwxs53zV+Pz76I1e4wUytsRSnSNcSIiOgod6v9IC4XXlEvFsWoAA3HB5Np3y49MiVJaMT5gAS4usm48jhme92bj9A62N/5DqKKndfjnGvE3xL9VsrxFqxxyq5YM7c6dCu8uUwXc+nZnMN2BvMZAqB1IBBgJBBUoHSe3S+EhNB0SlDS/kHKCpoWlhtyRQbgfD0AV58GrPRaglSNpkqRH0ZUjiKPlFuy8rN5qoqyurwka+5b0KIfAIp9vuzyRWHI7ATVRUQFLQGYlg8qWfQigmmr72K+EV8wM8vCBAMt0w9IkqsFWycAACiMxiX/XV6bZoBz4iQQjeQYsYf4+A2Y+eT0qXKQgUDDoH80nYxb/s6de++6XrMI6H/roL89jD/58KeLm1eMhLztDKARHQP+RfjZ4W+evfwkbqIz5doC4j68+6P9nXdFEnmPzYzkrz77l0EwBVBGdTQ+W43bgOEk5pxlDUaIhV6DGSk6oCNZWxA1C/qPvvmZ1tLr3Lh7+7uImDg6x5sDCr6y82sWTvrDF1baJ6sClEaYAuCIBPtb78REUSzliQvLAFQQAPMvDWL0jACAOXRUa6t3Wylld/curBkvhACUxP5zBCAxkxKR47NHkQVDfB6uRwCSfLQ5tJr+drOxXaEjUtYsy4I6nAZBMBg/ERHl4P72B+b9j04emY5q5jCecs7CjkURbVIfz8K01b3ruy0RvSoBiDiAIAAPRs/nwSiP1NPYkda+jTNN2PUIgCo6h3ApMF1i9XCBhzqirEAAkmkV1ixzEV2LABi5W0JEZUxj7Kb2jJ7AygQACjjA9SQA56UBGZ8v6w8EpAiVUi6gggLZJVw2blKRCighABBljaDU6LdCEnQNAmBvOKUEAHQetGc4QFS/K6n6xkzzWJ0TLp/OekMAcjhJeGF3YzJC+PLky8Sxp392PB6PfNW9ffetZrMNce3ot8r2q/rx4+//sWXvhcImN6KjUBSbqhIAgP7w2Wdf/wfEVIuniLSae99/978WQUQyUeoN7p+I8OXTf3988gQATE4gDhkGCF6SUgDQIG5yqdca/eejJwZgamFEeXH42dHxU0X+/bvfa7d28nsVCsCra54uJACF9CY5sn2/2W3cLMNOF0sAEg4QXRkLIiGCBjk4+szgUa0D3+tu9W4TUUbe5yIzAMsJQFSDi4DxkdwfPQ2C2aLB0Y6tF4PUtDFTUfSOiJr+dsPfqjh3ULiwuEAz6HAahuHZ6CtCJyYABMCA4XQ6Gk+PMr2DJX3AkbEXomgtndZeq7kXNwWsFvkW0UQOM4sEw/GBqWU8d1x8XQIgBHFUO6mWs15YpY+0xnG1oX1Zlsd0VyQAiKmn2ujftIshYlSDjihYUCiVL57eOAF4hSVAq69MXm/RFuw5QqgcQoXKiW28FwJgtddY8ZpZKgpUVAtUVw4Iyqv2CbLZiaSMJ1pI2f15UfBTJihkNe/qpPInQf/2Ilxy59q2Hem0zDUkABdFDNIxGiNoQYgwnh4NJ6dKuQrUZHjS758qat29977faBERAJah/zcEIOX2JSr28DLZAJ7NBx9/9r/EUv2JSD8Tub//vX8kggiOiCBxTCE28CABIRRWSPpk8Pjzr/5/RIpRI5skgLbakDDNTK4xAcjv9kamEQiG44PHTz/RWnrdvTs3P3AcP735vHoquxIBMOH1rd4tj9rnuew8AViyyxQSgAS7MwoAHxx9QeRorcNw3mxsbfVuEyqK2yzM3WKWuR2G3gQByK9jgkSGF8AmAIJkp5VHk8PpbMCWLVQZAYjaesoIQFQDEz2z1dht+NtrwA4WDIPJbDYbTh8r8pUj2523lfINEDcpCwQSCMvyPhlRPyIQQdfxuu376y0Xu0Na69lg9FLzPN0HnGQJ1nnnDAFIPk7rYH/nAyKKyhUKCIAd/selEYILjUCszQGWEgBTaCEcsITModGXtAiAKe7npKspXvIqRv95r7TiYVlKANJXzxdBACRp1NkEAVhlgvjcxw/GOkvKoH9Cx6B/qNHyXCT3BlV5gFLEUKYLlGoItg2z7Mkue1U5AYgI6koEIPNZMfTPmJzY65Yr0H/Kcfm1JQDrMIEKMSsRIXKms/5g9MxRTUScTkb90xNmvHnzra3tm0o5WutU4/UbAgCAiL//vT+y6/eM2DyCSiR6hJGU/OzXfyUSImKMnZQIo+BPfvgnEFvIIzhxa+9mLo/iaiLGCP785sv/bTw5Sf6uBZAAGYiEma+vcVi+/sIOAoowkRLhL5/8cjg6dl3/zv67W92biE76pnj1bdNzPT0bPM+U+JcTANJ6tr/7DgmVZfLPQwBK95c8ATCeowyRSbuIPjz+0hAArYNWc7vXua2M9ghlbfPsq41bLjZMAJJmpYQARCayqGKfSAUAk+npeHoUEwCByJsz/55sx6vyBCB1eDN02nsNf7tiYip02Waz0WQ6Gk9fEjme52x17znYFIyyt7P52WR2IqKFHcEpgltNACJLQuatzj3Pa60NcRKx1DCcjiaHmufpO1AACAV5FSBVWPRsfklEYRje2H3f7vyzCQAsJG6q4GJ+CnhDgGAT/QB1CYBAKDoU0IYAFOAkFtvDQWLFSYiEAmqNzHkIQOFz1skAGEWM2i9cOgvVYlk1yEBVT0viyxH7dikb/TOSWbpUT/OoLJpVuGwAoESBpJ4wqOEAtQkAItpZhaxGwrkJQA7rU01ulsSSvjUEAFbxD65wKdFBODkbPFPkIWIYzM5ODnUIO7v39/ZvEznMQoBW9WARHf02tf8mXMgmAEnpv+nTFQFSWlj94jf/zPyeAUVEIYAowOAnH/5UFkZ1RpnbAdSbraBU0R2OjAGCJ6B/9uu/SDYWIQEg5OstGVS5tqPFeTp8+eT5b5jDTmvvzq3v+I4PkRSbpcZxrQiACIoEezvvKsD1oP8GCIB9ZVqi3qwwnJ+cfY2oDAFot3Z6ndvGBccmAPHlyoYIAJUgOrIsoihRyzGuUjYBCPWsP3yiDR1HAVZGPKcImMpSApBcXKe953tbFXNTpgspCPP5dDQ+m0wOHYfIUd3WjYa3AxRVbWqtj0+/QjI5h9Cuxkl5FVt7NCJqrbvtG83Gztobn/Uzz2aT8fRI89xuQojaKmoTgLIYbZKfCXVwY/d9TPs6o8SgFtUS9J9pb4oRyXqp1nyzVPStScq+RZ3SjowRhI2qE8UnYwIgOmQJRXSeACz0uJCTxl8DRpNn2hmqMg6QIQBQ7QZVjwNAWZNZWQAbc8JJ5zge6myOlZRgSYo89dqo8sdFRTb6jzepYvs8qnVVJXsF6GoCw5AB3+WFW+UioYXroWC3Fl1MADg/BwybyMystLu+duroUv8uKBy5IAhO+l8a9A8i/dOj2XTe6uzfufOW43giYHyseTHOstIUvJYEIFYB+kO7BCiqG4ggBAnjL37zz1gCs3qZQgeazJqIdrbuvXX7vwQAJNOMSxYS3cxIxhcjAELx7q6FkPi4//jR4/+U3vPxmqoGVaN/o/DDEjx+9qvB5Fgp5+6N97d7d20T66QdVUSMXOur+i4Bz077z2pnAICItnsPKFKkpI0TgJJtGIUy0CUiuNG/ZrPJYPQUAMIwZOZ2a6fXvaUAjYbMqyUAyf8TUfTiuHycOTw+exTRAxAAp+zUj/XvqwhAHIVyup19z+2sNDfmcGWQMJyfnL4AnAnOEVxH+Tvde6gcEDSIP9Tjs/7zClXRZLeKCACQiLiu323fjijQShtflP9PftAIznh8PA36LEEUoU8CirW76UsJQJz6twjAIiFTSACyaNsCnRn5PLpgP6mSQo7Kw5vPSQDAsmcGBRgX/ygBq0iMMGleXwxXer6yGQCjM1u3ZbngCYhY6j13wQRg0+dK6fNJInCP5BI5pFwTWeDo8ilacsvoKC25jJJaoPIkQC1h0NwmVocAFG/VGQKQ2kDy46ardwZLFZQhJV9bi9q9IQBVYSaUMOSzwWMhVIAg0j85nk6nvte9e/8d12uZw52IYh+l0o97QwAW0pwxwjElN4gqFqJRLDNTDfiTD3+aqPibkiERUYqYeXO7nREm0iJCpIQxKsAWMqzjt1/+L6PxFDBAEmHnmk7g0vC/FhlNjh4/+5hZb7X3b9/4wHUbOfe66Ic1nHRfIQFwXb/TuqUAjSPYejRg8wRgOh0PJ09Zi7Gt7bT2tnq3SaLmmNw32QgBKBMABUnVj0YEYNFbZhEAQTg8+Sw+JAwBqD6WuJgACCJF24Qir9Pec9QK9TYJDNMgOgyPjp8ghYJTRT6h2u49UOQBmoUqInI2/Io1ModVmh5ibn4yHc+aw53eW67TWH1HicqfkmC8ABPIYHQ4CwdgSwrGgLIOkEoxh0sjAEkfyqryZ/WatPK19UWZgQLIlW+ujQmAFpGYAMytUmmVDqYmBEAJoQn/o72P4KLBPVfMI2UEII8gVyYAZSshP/7m3dIbGV6t06XgaRRpoSnl+EQE6BqOFRUFYZQiKnhPZCgpNqpDACBJHyGvQgByNMBuauKyFqhFAWSped9qBGBR8V/kmc1piEnWRXEZOHtDAGquZBEZTQ5nsxEohwQG/ePZaKSc5q3bb7c7PREEJiJgkMg85w0BqMoAxEcZExL/9tG/HY4OojoTnAm7iGQEgj587+/7XsfscImaCKJiFqIN9gAAYtKluThuDG5AJC0IyCHP/+a3f319b4uy1FYyUwEEjx//ejg+cl3n1o33ep07hK6IptTSFYgtra4aAaiQAfW9rXZrlwSshn61slHpqgQgJ15u/x418NHJI9NaZDIAW+0bve6N/AlevmMsmQCu2ncKOoCtTzLnB0VyKIuamcgQ4MXhb4mAQJm+KOYQSBX4NMXwKKYBZShKe253q3t3ET4vR9WQ1khFECAM9PzgxdfK0UIBAPhOu9e+pxwfUBM45gpCPTkdfJ0oDCA4IhglFk1mwzqPTR8tALVanZZ/U4AJFYs2mQHTX7tq7NMMyOnga+ZwcU+ixHZq6wbaLc3vMAxv7H0HRMWK9QDgmAItBKPlSgVQO40s+WLvay4t4WCs5AxSDeYQkUGbwmsRbTqARXRSdJ4JEizwGbhEZPJFS05olLwBk7WWeekWnLjjxQBuMdhrqydtAFKYBVA2+HE7UARAax8wApQIBDNoFAJkESEhQYeUT8oVwni5Rodx2TjUWJYm8p1/h+KIfh5nm9h5SoJTSqWBBOp4O3D1eWx7RJSdFvneqvr32prrIfY9eC35QGLVlivQTUTfHQMBRSIrr3kwGAwPlXJFZDoZDM+GRLS1e29/7ybGop8iJvb/pvd3MdJmMB1Sv/e9f2zAtAgrIOOCKiJfPfn50dkXRurHYDghEUEF5HvND9/7B0m5KONCpT5yosUEr5uIgikKojJRQmYgAhHWCZYVhcYUDASAEZ04/A+xlBNEXBtJGAkDEHp++unzl5+HPEBQ8TEiRC4R+V676e96XjMIpsPxi9l8IsIi2qyodGGwJKYoRbB1IT1k9flQemDr9iJryEaiLccDRFChhER0Nnj25PlvRLjbvnH71juOahErWJTsyhVZxiKiQZvi+Xg0MNHntes4kuFqNW60/E468L+ymtNFEQBmDsMQALbaN7qd/U0RAF6CEooEQIsIANBC/yehBKf9x0E4AYg4QPSXVQnAIpymfXe7170FUJYshwxuyrCCMJy/fPkIZY4+IKLCRrt5s+F3SSEwCAYgLgC8PP6tIgcAkICZTaRcRJOKPNvtKyRUAEDkbPceYIZfogivJZEJDMD94bP5fBrVVtm4AVNKf2VDET0hNxpEFBoZUHCsVR4RABACooxSuKn8Wx1pnS/iAlwNQ+sLvadiqCblQpIQAM1Bsvbs/TQdcVcIRn2SMiShAD+VE4A0tKhPAADztlObAvo1ewmSp1USgAU+rnv4R/pgmcouc3QhuY5qoFKc3osMAcgHp+utSU7ea1k/wOJmx3UJAJR3NFW/qg4BqBQIWwnWr8UBigjAa8MBGAVKXEtFomBz8gOBE+jZ0cnXylPIKgxG/dMTBKfd2b95657jeJGADDMilKF/+Lb6fyEKM/qu+8P3/8jgSGZWgELIzE9f/s2Lo9/FdAsttC0A6icf/rEIEOi4F2hRkxODn6if2BRfLToKSn1sAACZtdG6iSdLKzDonNg0cRuFIkvDA0CLEKFjblVhV2BmUhAISiC0Li8UdgAZKQRxRfjXn/6vs3AUnUFkWIBKrj8TioJcnWp62cTywahKiEEx+s+tdozRPJleR0HUHD5++nF/+NLz/Lu3vtvt7JMo46Rsr+crTgAynCoeW93r3PGdZkIyIZZgeZUEIBR9cvY1c2gIACKuQgBw1V0/PXNUvLGnZVLIxIwXpUGLH8az4+H4AAyjFkmvSEjJILBUEICIPgO3Gjvt5o06xxJC+g5HEQaW4ODgyzAYoQeOaijltho7rcZNJI4vSDMDABydfk6ozIcaCxJEkahhm+0bkogQSAR7nVuu04pLx877QMRQz86G37CWRYdFRdV4yVTm1fqjEqCdD5KACiyYGSEomwDwQtn6sm/ppQSgfBCkIFKS3FFRzRUDAHOYZADKBi0aHCIiDyNmS+nUFBcvQs50iWYNpCokXKoJwKZ3ymUEYD1Ly5qVXYZuSb6oiZCUUj6SK7kgVnzcZNt/NdRVIipqDJCS8CRmCRhUUzIuCl7IeQlAPKRS8g54LjS/PgEoTHK+BhyAo8rVwhnBOBisTDW/CIzGx9NwAEB6Phv1T4IgbLW379x53/M85sLivW91728GvwoErtP80fv/fYwfoijM109/fnj6pSX2j8biFxGZ5Ucf/APXaSqTmcfk3SIPJYOj46piGk1ffPH4P4ThLO3mWzzziKKU9/5bf6fh7UavFwAwbgMYxsFjZiYyFQYKUMd0wOAiDUISRUglyfxEBd5oao7NW+PJ2ZMvn/zHCOuzITCayNEQkJAd488ImmWy9IjIgAR2ZbjEismyCvoH6yXIzEopERkMD5+8+NU8DHe2b9668Z5DbRIS0Lae1RVZw3kCYPe1WuO5kJvb2brroJfLsawm57pBAgAAEBMAZg5DHTiouu0bnfbeMgKAa2z5tcL/i0+i+A+FBEAJ0DwYnA0fmxsgiqeYcScssGGT5QSg3dxrNfaWHkuZEqDkVgn17PDlZ/N5nzylvDaBQnBu7n3HFNiICGBU8zOevpzO+rFBQSqUbn627z2DC32/3W7cWlyFqf8xBZ8rQn8BRnAAONDD/uBFjET0olVg9ToQe3I1hxYBcOItL9JbJFLGvY9zHTOXSgCWfiBWaJ5IPiJiryU0PQAQig5NBiBPAJI4CqBSSkUJE1IZfFh6V5lFIllYX58DpAiAwKYcbc5LDM7PBKJioUVQKpUwEUnQPylX0IFFY8biaZZ0cr7xg8DSFivc/KgUjksZTE8Qvyx2WE5mZzmaL+rhWfqqagKQvrz8+9Aq4H711WVJF72mvQFSAv2TvSLq5p3O+sPRkVJ+GE5PT19yIL7bvfvwLdfbgqwfraTL3Kujud+CB4bAPqDe337n4d0fmyi7wfFPX370/PBzERFCACYhES2kjM6mq5wfffcPDTQ32T/DxIysHGOQtAv/zW//VRD2ARvmbRlQIFSgSjI/DKJQGACJUHhO6P/wg/9OKS8RAsJFUpeT1AQsNPLNwQGJiYG1kBBAiBRzAEDm6cwym/d//fn/amBoXKZCjIJAKOGirzIX0Y9DV5TAWUZGYxJVr62/BP1D0oQtSX0mB189/tVw/LLht/dvvNXr3EHwTO+fmbWrE/6PppLDo34xAUhDfPPtaG/nvjIOP5IAvFdXAmTqzwIOTvvPtA60DjgMlHJ6nZvt1u5FEgAqDshmQstx5DiSNE5wP0aGqQAQ6unp4OuofgZQWIFKla8UZQCiKckzhLoEIK9QjgAsiKh5fvTis8nsGD3leF2HXAG8tfc+iMs8Vw6xloRsnA2eaj1bIHKjxRmvDPMciLWATI5sf/cdAxOTqv3zAGBjZDgPBmfDbwhd02BgH7TLQXnOyDO+Mfjm3gdJ85XlbYxJBiBDAC6fA1DNTyuuBbJb4dkcGCnjBQCRgEUDa80ze9kk9eXxoaJIuUQOgpOW7obixt9UqDhV7SNoP59XJgCrRNZXwPclbyglG1+FnV/xOinJJGRvDk4V/5DylNNAJAayYzAFyrYlqBqr9DetnvWCdy7F6IYDWATAnHi8hApmBo4ltxiWJAEuhQCsTgPSS+F1bAYoPJozOzAG4Xg0PtYQgKazsxez2azh7dy7/07Db4mkCkUsf6tiF8VvIwGIT/wff/9PEyQjAs8PPnl68IkJaQuEiMoUB2lAB5UI//73/hgREJE1UtTty4igY3/7p4d/8/zlZ0ZTPcbWWEfaRUQTucyByecjokR7lyaiXuf+u/f/AKEhEMRtx5Rx4I6oQsRlOBb1NgVMFFOCRVr64PjTxy8+sqokkr2LEKEs2A/pOpbMfpjE/kWkwpl4ieyPUKLt0R89/ebpxyKyt3N3Z/e+53ZRE5JxaMa4LusKrWcRfXj2VQUBsGet4ffarV3jwWUqIGJBhVdKAOZ6fjZ4rnUgeh6GYSEBSOv/4Bo7fWXlTxEBkERbKC4XSfR/CJOTniU8Ov3clAABkJgbDzmzMqz4GRtxxqIWDWDRNgFYwYYJo0NUgI9e/G48fime43k9clwAuLX7QeQYYup8SAs7iBIEg+HoKOrERTF1PoBa2CrIi7MNpkan2dhtNrZAVCJEsEY5UMyvGARNink4fj6bDyDtHLwckWP2sDFzhIiI7u7Ww/gKMckAxBJAxtGZOOtJhOk3vNiAdBkByPtmFKUCJH/ApAkAM4cCLDxPmq1zBAAZgZSryFsI/0deWhUV+ak/IUgFAajmAParUk8rAoIrUP96of0y9rqUANjXX/EmOQKAVuzJiUv/KX9aFxloFMwCldTox9poWfJTuX6sHm7kRXGxPSMsdcG0sD0ydZIAFQQAiroUzhfdr/1klOx08OtEAKpKcxFNe5ijeT6enGieMPPZ6dFsOlDYuffw/VazB6IEQkx03Ir27ayXItYOfLw+6F8QUSn1ex/8YYJhhpPD33357xBJJGQkImIOSZTB9wqw4bc/fO8fAIAp1mdmIkQkE1n/7Rf/+3g6AAxEUAhNJx6BJF2zlSUxCNEzlYgAuSwBosSziZE1JPtv3fu9ve13wNgUotExB4UsjADKZCYXu5M5OCI+YHScSaFoYET86sl/Pjr7JtL7iI4zQmQA5VKj2Wz7XsdRDURkmc/m4+l0GPCUme3kg3UzRiVq8T9pFePUAgIgIiLho28+Gk1etlu72707O1t3TV97ovp/BQmtTQCsYh67xH9xS3abu77XtWiViOAaF79hAjALZ/3hCwmDUM+01ko5W91breaO7cq2Zn6kZM6Ktm6ChLHGPskJASCihf/XAv1H+amjs89BI5I2eqSW/FkaDdQmAO3mfr5Hc1kGIIqECevjl58OBs/QJb91AxUBwM3d7yqMRHuEo84EZkDh6fxsODpKZONNJjepCzIwPdpcoiSvs7N1n9CNo8wmRbiyJTiixB9BAMwM/dFjrQOjXFmXAJi3Isj0ChM5vtfrtG6IaER3UeVsvKVVnAfItfleHQJQ8NeCPIDkCcDi9gZmDlk0SJAhANETGBmB0FGOD6RAUjA02xLKKyQB6piCZZIARUiasQTHl2Ju4JWqes5JABbEO7dc833pMcaNKKgiH8kVy21tEYgqiPRjIYy2DOYKckTx2rZnQSq3ZbGoSz66zyjLHIItcGHdT6sQgAxjWYEAwIWIAmFOhNqqBXptCEDFLivCk+nZPBiJ6P7ZyWjcd5T/4N73Gs2uCBA6pjzaHOWFyavlO9u3IwPwww/+vudsmdp8AfjFJ38Z37mIiMwhkRM1AICHxD/+/h9HihgL9WcUxo+/+BdGLJGImDWiMCgkNrpiiJHHU8W5LBCAOHEMXomEoIjZQHYAABVJZIcgJEK99t77b/9dYSfWBQJEQhZr30drmzKlMnHpGGhjLvzxp/9yHs5N5iGUgIQQpel3v/fOPzQNijl3M8jJVCBzOJ1Ov3zy74JwqpkRFSMgL7IfKxEAY0SLIggKiY9Ovn728lNEvLn/oNXY77T3jCCKSXeYAa8Tjb1MYgnAB6ePjEFTPO+QT5gYULTV3if0MVWmu84etmECMA2mg9FLCYMgnGqtHeVv9W5cWQJg1f+QqSE7HTziUAsEwgqUBnEskZzIicbU1ZQRgHjtckIAqs8X8/I4J0LWpbJoPjn8vH/6jbjY6t4GJEDZ337fVZ4x+EAgBolSRYxI3B+8nAcjADaKQCa6v6gSo0XQy3CAVuNWq7mV9IcRrdM+K5I0L0XUZR7MRpPnWuvM4CCqBL/WTC8gqk7rlue2ERHEAQwXhBgUKuN1hTlBlWyWc3MEgArfqpoAZJ+whACILT4loFGAJdA6gFgANJV+EUPgFDmuIgfQ1YAOJvXlnM0/1CYAsOgG5mpgXdgKfC4CsCKwKHof4xfB9QlA0fzZmQ2yMC6avcVxm6gUgss5PdbCnE8uFsDx8kgpNWWWBxf0Y5yDANRPAliFRuckALDMEyB3jG26GSDd1ZDhAK8LASiMNIkIENF0djYcnRDBZDzun70QVHdufWd7+yaiEiYBjWCCS3aZRLFeX/G29q14oAj/+Pt/rMwRo+jnn/xlKEzCCYpIwrFmr/7Jh39qcDZFMh0AAB9/9q/mwShqyyYtrHI13Bz1F8X9weUZiUQsyFaN1EROXBwqELmMmflCRN7uPHj34X+RpH1yfM/uIcGYt5gWAvnFb/7K/JUxAHEJtKLW7333HwKAcR22gp6YWTB23ZF52uPnvzg4+YKZBR0BVoAVGY8qPWVRBBrBmQeTr5/+bDQ53end7nS2uu3bihpRPhwZsRToXwEC8LVhJmUEwCjUu67ba96wVf/XaP9dmwBAkhWKrwwR0QiwzGeD0fhQaz0PpiJslwDFsvBJceEqAy1kp6jqEAAriJWMy0IAFCC2kZKoGcA8YzB6OQtOhVFAIwqCW3LoCKOOVdLt033hysSiO62brcZOuUsxlPj/RNMZ8nxw/NXZ0VfiYaO3j+ARYK933/c6KFwEJhyW2WD0PAhmZg+K2IURCDLuxZHqOcXSBLy3/Q6iQkzMjzfzGE1eTiZjwHlcP+EAcNy1rK1FTwtH29hm2L4PfXe33d5S5CWYwSojVqiU8VYUKqmujmOx9kHFWAUEa9yoi3eymjtTk0hSZnAbt2aaF6QQkmTwX5y30cDCEnAYCARpykHGvgRBkfKIHCQn2TgWjV8ZhJgCf7nKcuPhEL8irwpaDdBL8zzltfsVWL/+7GQ0eZLXxhtOnsAUV5wnkYJUS3QmucQAQKR8pRSqRhTytz5bMpnmomFBytZ9FSKqCuMwKn5CqaNzJsFSMlORKKqY45BitmNxgKXvn+9DKN5Dl8QaLqAbuMI0neFapAK45KhLulGjBRvHX2NFWhYdDkdHDOPZZH588gTAu3Pr7Z3t22DKuI3xpTGLTQPBJdeDy4Mg1zPMX1z4xMigYau3+50H/y8R/uh3/4I50IAZA6kk8nX3xg/u3PwusgOgkYRBHRx//vWzn60H1zZEYMK44Vjef/v/2W3tR0yPQtSOkP3dkUBz1GnKJMAIiPSfP/6LhCEYl4nd7bffvvtjBZ5ICACGJ8TNDAKAQpiOgEhCkL745j+cDZ8lVRgZ9cUlx0qcsjBBJmES0UdHXx4df0FEN2+8J6S2uneVOIAWiRKKpBSv0kODPj7N9AAAADADUghiMswiIp3WnabX3Mxq2BQB0CKAMpmezSanYRjOgymAOI7bbd9ot/aiaO6ilPYyCMAiHZ8jAJn23+RunM7OhpMXsXkT5wlAtHxZhAyKKiMApHne69xu+ttrnCmxuXI4PPn65OBL7ejm1i3DYluNvU77RqxBBLE2ziLmHYTjs8FTRCUSpLlHdJ1RdAJN6T+2mltNfz8p4NngUTWaHE6mfas9Jc9zxBrVRN8qKgQ0pUrt5k3PbdrGzPUJAFg+XOkNmg10XuPQykg3JkA/QwAyVd3FBCCLiVOgfFECBJqZQUKTAbAlgEhAA4IQkUPKQfJy6H8BwtJ4U5eBCqtCo6r7c6k5wBqR+7znxjmyNJn3LyMAua+PlAlm5421AMyAe6hcAIqDCNEKXKGVNVvTz4ULMlbii5frygSg6OtDmS4tZ+JhVrS+jABUcYBqQdhl62S5IwGulCqqQQCuOAcoJwD5pnCT+lbAAQAMxwdBMOFQjk6eaq13t+/dvvWA0Ndi6k+4KDC3PCD6bSsEYgRihcSO487nc6ORL7Tw+ogSSgTMICJ/8OGfAQYkSghFws+/+k/98XPAAMR5Vd/A9NEJIQEjuITu7333f0BEYYWkk7Jh06hMUcpCTMiCEb54/O/Pho9BHIGA0GMOEVWrufW9t/8+ICMjo06UkazCp2xFGbOeTCbfPP+Po+mR4QxxJ0CBc2U1AYhMqkUhhfNp/8mz306mR3u7Dxp+12tstRo7yAowtG6Qq9i7rkEfnUQlQJZuUhJkIURhhkaj1W7ul6lCvTICYBjYYHgYzoehns9mMwBxXc8mAOlT6mIJQIrtpQ2/MgTA9rDQOjjufxG9BAuqkOsRAAAAzfOt7p2Gt7N2+EEgHJ4+OXz5qaawvX3TcYx/uNrbfo8WWzOlY2mEKMPxwWR6mkbeZIeWY8s9JnJE9Fb3oUNtJL3R9UwAYXIlSY4CIIxK9VJbkt0cSXFTO7Yae81GD1FFc2cunjFi80IZAlCwWQgVKfTzpg56rmyOLDgXbZGZVDdwaWUFSygiwoHWQQyn2CYAJvyvlA/l+jOp8nEr3rwWAYCl7mCFHG8pAaiB00rVe9LvkzE+o3q8othBIqVkxYCoiBwkF5VL5MRbBKZfIVlnOuvKuJAQpsF0Pg+Q6QYuJwBg5YVLFxVaPHM55l50eK+mCpqjmqtygEyCtFhzeYVUwPUnAFCSNbZutJTSi0kMjCfHk9kJChwdHYZ63mpuPbj3gaOacTNLkk/mtFzHBm7w144AMAnF3TFRdpERjOhnWv8XW83Odx78VyAuYHBw8umLo88EAi0KI6GRV7V8iMHk2wMTs/e9zg/f/4cipsQ/UiWKC3hMLUpSBYQ//+TPNYgCZQUIHMDAVDoxM6EroJFCYXxx+EV/+Hg6G2rRVvAREwn1RDOUmY25Z6EYaDpWmLGswQWk4fD5wSenp88dx7mx/y4zd7p3fNUwZppJ8uFqLlebACQlQHEzZ1wRBG673fXc9qskALnyLIyPKDnrP9cc6GASzGaC4Hl+p3Wj3dqFlPjPhZYAZdG/9U9CRIFsB7BNAETg6PRzgTD9whwBiAsz0gRg0XlpVPxXJwBkB4AFwvHZi8OD34UybvZuON6WETC6sfO9+CYSI1oafzQl99Vg9My4GifCsSLZanhzKzJzw9/qNO/FBGBTx18I4CDiZHrcHz4jFdmTpWocY+0gw0ZM0zAAKaVEdLOxG2sopaLaBgohiZEAInSEVPGxJMbihC/yPMhvUpxOEVTFfa0XFuIwEtECOiEAEM3monBcUEXRaPLMWxOk1E7yYVq04s15XJHu0ZQS+ZfS2vqVtxKsC/3Nk0tLj9IZmLX391QPuiXNKSJW7N91lC+kxByNUr09pt65ID9QoArFmfVj553MbxjB9gcoywMUl2+lrkovj7vXIABm1XHuu6OAwEY4QCqEUcEM6/KB66wKyssyAIhkAiUiEobB2eApofT7J9PZ0FW9tx5+4HkNYdNCtpARTKtZyAr3y7eIA7AGBMG42xURhaSwoxQ67R6HEurpPJwiOgDaVGsKw6siAObEFyQAMrpDCkQEf/z9n8aqIcxaGbhsHQcKRTNCGAa/+uyvtTgEOjplTAMD6U7zzvsP/yskYda//fJfT+dDYcd8hNUUIQnqACMfgoQ6shJL6FNeXaoOASCi0fDg4PDz8eRkb+/tht9C1ew2bhBF5cew8FSW60IAkq9v+jNbzZ2G39kU+t8kATDA7OTsMTPrYDKfToHQ91qtzl6nsXMVCQCqdMweEUGYBuMns6BfqECS8l1aEIBUlNFUsyAqzfNu+1bT361A+ZBVWVY2MhMOJ+PDgxe/C/SZ39rxWvuISAh7Wx8gKkRtHYpRmS6BYmalMAin/eEz5jAxjrZaGHW8pBwRUQq1lu3eA9dpXVC8IQgmZ4NngmMQlYv0m1YEUzgYlRuI6HZrv+HtKOXadfyZ2HmGAGS2hkTLjBYTdCFMgAvqIngpAeDs4S2FCQpDAIC15rlwKCIqSrixBiQhIEc5LpKH6LAFxcocGNK1H1wImNar+qiD4MuA+9JXLW1Nz3tv5UFJLR0qs4qsy7LQPxA5pHylHCAPQXHpV87aJ1njU2zInEPJnIH7GU+xTEVQ0RcsaQsuSYhVpQIykvJFlgUJoMlwgJT7RLkpRI1aIMrT1Mp5rLEQUcoIwBWnAfkMphW8FwBMDMiZ9Wn/GYEMhmfD0ZGixoN732s1exwZPC0qf2zT3/V6b15vApDI1euYMTEbvXxRIJDVABARVMphjgQ3I+l/0OvJNW72iyCK2XAQvOS2/vH3/9jIfdqdsiLaZDAQPIHwbz79F0EQmpIn0w8NAEha2CFClrmpnhChhS8vCohS6VRnAgNiIzCTDXAiBoIZUYTlPQCCSofD5y8/Ozt76XvN/f37Qui7uy1vC4ABeUGMrxsBSBJNjmptd/cQ3A02K28yAyAEx6dfiWA4H8+nU1RkCEDb347FxTZFAKiwpjxB+SmwaP0ekSTBCgUEAIVxFpwOxs+SDTSfChCRhYoLZ4/tuCiftA46LSOBuoQAZP60QGaiZ5P+8xefBMGR2+g22jcJFRHt9N5TyqaALILGDTc5bhFxPDkZTQ4t0E9W+YSOubhrNjLfa/c6dzeKkk3JmumXJBGczgaT2WEQjiF2I041a3KiY0Ct5k7T3ybyEgHT7ITGBIBIIbhCmFdXLCIAAJeSDbBTAaXVsVlfp1IsDqKZQ+GAJTQeYeY5jITgKscl5ZumrjQBgHw5uG3QW5Sv4BwBAMnHSiuLRtYgAGuh/7rYbCUV2hIaiQlftdF/GjPV3TYz87LYDoqNojmuwU2jbUk3X5bC4qIFUAzEq7IQBZ5SEFlHW9cQL8sKAgBQQQPqjeQSCpHcbsaNdQUOIMVTeS3UgeIIgiXgGIX/eTw5mc7608notH/kkH/39vvd3jYAmZ5CAR1LQpvKb0EsVvykZU3/rzH6T9eUKkZG4ngAQwQH457/RVVMtK7IAFzWAigKMFP38qr4owgSKZEwES0Uoffe+r9vtW/ZikCR/BAiaA2KhpOT3335bwBZswOoSYDINeqlAAQYCidSyBx5GkRNvZrSOCqhARo0okI2+MTQBmak5VoIGfzJ2B99fXDwzXQ+uLn/nu/7QI1WY9/BiM/EWknmHrmKy6yaAIjoTnu/5XUBVIUq1CvMAAADHJ59iewE88F8NlaO5/qtdmt30wSAyuMgubqdxbKjiP8VEwCM/MJENM9PBp9nMgCWXYWVAQBImnHzBIA5bPr7nfZeDlUvkGiJpGm8R4ieTkcvD34zm7xQbrPRuaXIUcrd7j1wnUZsiZW7TwgTO4zB6HkYTEW0iI4imLAov7OSAIqZe507ntvdbJQqRkgEwESkQwx5NJ4cz4IzRCH0o7UNoTCZnaLT3mv6Rjs1BPFsuGAYmsEQZh6JFKHHcTuH4WZWVG8h4Uq55syLaF9jXI8ApEwAMhMqHIpo4UBAx7ZOYL4ykUtOw2hOc7zMcqXhlmet7dBUnwAs5wCwVB2oDrivLO+hCnBfDESKkgtLUKZg0gMcM3zgaAGTIpeUh46boP90iqQut0zirFQIbNMSsSQcLyrMs4LFb5YlAS6aACzugKXyUOfKA5T+xozPeQhA4QVcNQKQl/vOxODRiIOBFuHZfDSZHo/H437/EETt779988ZdM58G2ZnFhjEIRCTBYg+K1XxOrv+DsXRBxvaryUYrQqKSAyhGwKYiV5BQTHW7Y2y/EBFEJTL8l05mIPF5MHmJ5NxBVD/+/k9FOK4FIhJTfKgNY/zFb/9SAwuDwgijm6dpEaRIhTP+4pEhMWIkOpQrMMtcTxIfsZlAXQKAAqFMnzz7ZDA4ara621s3WDzfb7Wb+8iCxLEoFscTdxXXawkBiIoXtNZ7Ow8d9DZLtjdJALTIUf8RaBUGw+lk6Li+3+y0mjtXkAAgKkmlCyK9ILNGD05+g5E7duS0ZV2t1CAAJhQWNry9budmInFTCF/SKCVV56oEpsHk5cvfTMZPgLx2945yHUK317njey0RRZRXP2QGQVAiiBSEYTgavdQcaAmTs4MA42p7AAAiz3yi57Z7nXubYseYyl4lW0yEmZjDUE+ms7N5MDQ0jEEz81b3ru/1Fn3bmNaPl1jdn4RFEBWhS+SUEYDk+TEByCj2bPboiobXOjnWIQAa0nKQIsxzENY6ENAUx1OFUJFPyiHVjNF/WTC4mgDYKKqcAKSRdAUBIFit5KasCThZNpxOry8PN9ZwFihIoeZ7f4FRkJmFEcxoOw4qH1AZzURc+OOsHLE2MVcqTaNwbnYIKmU9S5IAko/9laNwLs3tFBKAWFM4N8zLAvzI1bHJsiMHS7pWrPen5MZ5jQkAFJf+A4JCK7sb6NlgeDKZ9vuDAxHc7t29festItQCRowBUEggFmzBaG1QAQ6GGj4nrxkNKCUAgmRhGKN1wwgKMNMEbMEGgYVSO2sobRu4tO9FST0gJI1/DAA//t6fIXHURM6oUDSYElx9ePLlN89/ycgG6GuhWImEGUGYAAWAFTjGLyyOUhud0IVhrW30m7aw5aQ4ahUZUDSehi+OPjs5eaZ5emP/Xcf3gkBvd+97jkJwInFbIUCDQJBRruBaLSMAkWqTyN7O2w469kC9EgJQjP5FmAGPTr8CwmAymM0mrut7jXar2Wt7N+IlL+nRx5r7Xcm3pfzPGOfe0AqxCUaR/kXlCWb0f4CBFDKICxienH0VhqG5E6xPT3OACNOzmaOoJzf6oNDI3rtOZ6t7O5bcgUzyS+zj0FaxMZuFaf4Lpi9Pvjk7/R2i9Hq30esQYLu1327ugzhGqxQAEoes/CRNJkeTaV9gZvFy4wwQmB5cQwCQmLXa6t62kgB8MedgqsBd83weDOfzacPfdpTrOB5ExEzA1AVZQ2fIwGIAEQkdUA6me2IW5dRiJdFoNWORtTeIRLBlGQpka1jFOko5vlgWERARCWIPYDZGiQAkqJTTJOULRl51VNRtmaEBmUKgkoL+gm7ggkr2OgowNaBUjBepLoxfBtzrYr6cb1nkBCyRJQUKMAubJnVQ6DYVuajUArefr2Qlw82UUVLOUcTM+owZoM6tseRPmWr71TgAlJR4WS0ERSU+kE18VeUB4h2vkAmU+9ly9X6S6/2QFU81K2MpeBXQPy+7f1LoXyjyfsEouzuaHAxHx/2zQ82q275x5967hCpJyeakEZLk18UiIy65X18VIMtkMOwyTow07kUIl17eda+AMtig277z/lt/J7aTEwUoQkLCIr/45C8B2MgE8SKjfskXmYA7ESZSwqFGxFBPHz//5WA07LZ3e9u3QMjzmp3GNohKNhk7z3BlOefh8ZexEdiCNJqp0Vrf2n0X0lKTV4gAAIgWMARgPu7P51PPa7h+q9nodhu3TDRWIQCgBo5LmV8ZATAZAAJlNGcX+58QIp4OHhkfA2vpZGX+ygmAiTw5IrrhdzutW/mCP8kc8yZNUUgAODg8eXxy9GsA7nZvqUaPQCG4N/bei1O3UStS2SQh8HD8YjYfiwSISmutFMaKQIbrq0QEwvc6ndYdIhBWgCGRw9q0+KjKuN16d3OcnIninSVA0F5naQIAFHUAx3KuaCdnXhUBgJxXQAl8KSYAhvpbBMA0AGiWOcS2A4ykyFdOk5TLFvnJc4BqArA0D7AUMK3CATZNAAQv4GhJzEMi/ilAinwkl5wGIiXSYbUJQPXIVKa5i7sCEl0gXY8AQB6xV7bkluYBEkJYRgBsDoDLZLuLfDDWJgAEBc3f154AQFGjW8aczrZ8NpYUDAb9vxiOjvvDFxw4zdb2g3vfIcdPaFKmd/zKCiO+KgJgN9wbArD0RHgNRs9UBJkqIABT0sOAWlA9O/zt85e/Y5iA0OVYmBW2nSQEQESIkFkUEkvw4uCLw+Ovkdz9m3cJXUKv1dxpuE07ylBf2OrqEACrnkoB8I3td8t8Eq4QARAEQwB8v+k12gC0v/WQiGKBwhUyALzk7lqPAESxfwGiyMM4ZRmGqAbjJ9NZ32oZwdw6FOCk2oQL69tExPMandYDUgA16DJmvjqLoX0ng2eHL/+GZdZp7TmtPYdcBrmx/YFSkb+vUopzHWxoDR1zeNp/LKC1DuKWLxMzC0wfv8k6ma+w1Xngun40nlHHbXgBR2EK9iGoCLnaPb55zS9J98UTmQxAUjJ0rQgAWKXbNQgAhwKahBEVkKccn5QfqbnZBCBTBJXmAJUEYAUOYDxiVxrPmith+YG6IdyfLjGy4+KCgsYLHIRQOUo1DfoXK8xMRfWslePA63GA4s5USZZKMZRJ88BzEoCC9YBFb26ZRi8IQL47f0EAiq5BqsjV8hiEReTWJABwxT0BWApWb7TXRYUck9np6dmz/uBE68B3d996613XaQmjBnGMd0gq/bKgvhXNvuWH9YrjfMWahu27prDbPvk9ctX9ft0JQDwO/OPv/0mi+q+iNgb3Z5/8j3EmJEoCXPT1aJCcuXJ0SgqDAiUwB1CIOJ2dfv30o/ks2N662epsiYjrtFuNXQcdJEnv0ledABydPEpvmIl6IRHRbveB5ZR6VTMAgjAbnQXBrNFouX5LRG5sv2MIgPGeZRSSJW0AXOvWqksAgDBuvsGEACzCxol4fxRMpen8ZDB6ZnucVROAFDBCTNx5RWR3610iR+qp62A6MipIovlsePDi2c+0jNutbb91ixxXRLa7Dzy3TaZyDuI9vXy3Zg4Ho+ehnpk8QLLHxf67CoCIIPIEaN0yzQysQTnCGw39IygDUjPipPWWXvrJMQGwS4BEJE8AMuBjpYNqPWJQMwlg9zckBABRIQsAC2jRHEkAMaNoRiZyXKelVAuVYqCkmCrFAaBQHTL2B4g7AYrA1nIOELdhbIoArBhRW4UAWASyQAMq338ssgCxwojKUY5PTgPJTbJPaL3zSntxeQW/ldfOj3aJiP6i2zWe+kwss+iFUo8DVJkDpG0ilnOAAgJg1l4lAcCqhVTnFl55z7r6BCCjp2S16ZAV6+FQT47Pvur3z+bzuac6b731Xc9rmBpoRIxa11KBFUnQPwDQ+gT7GvsGlPg5QkaDiwTy2QDzBAXXPQPAGlAB/vj7P1WA5vwi0Azq0eP/cDp8ooUABVkjibC66LnLEIBkXtgYuUZdKwwAj198fHz2pOlt7+7fAQARbPrbLW8LEaPq/+sQ/q8kABHYMQRgw7vK5ggAaJGj0y8FySYAALC/9RYiJTWG5yMAVE0GFgTABn91CIDEXlokHM5P+l8WKwBEBz9bDpc20jIl2o65ijCc7+98Rym/rODVHk1MZPCTQxpBRIajk2dP/jPrvtdot7r3yXERVaux1W7eBtFEpBlIRQdqUYguEs9hmZ8Nv9FaA6TAd9x3r+KCItjdejv+J4poBHeplc9qID4pAravsPAjip68eJVSCC6QUybSSkJFXYq1wMFGMgPpfoCq3k2LACS1pxqQRbNwwBwCh0YxzVGe47aQfIi6hTAfuDX4igpq/SUhAILWVVVygPxopIAvXvzGujooKdHXWnwpW60y6YCMmy4Mw3GU00TlE7qxa7hJi+lSXLvCiuKyzUBEaLlLQGodGrxegwCALeu6OgeAfFtwngAsVogsAeKFbcE1CMCFcIBUpNBqcSG5EsDOrvxZjExuVxTm/vDp4cnTyXTkq+7DB+/7jQ4iMZs+Vc4J10Y3stXse57vKyvdBVeNAGSuTUQMARBJBZIjNfHXjgAwuCjhTz78ExJhBCLFGpD4Z7/+KxFmBCKCEAGDrNj6xcxIEqGyNltTP2KaXYAIh+ODr57+Shj29u8r5QKQ6zR7rT0EJ3IgQLiaqv81CUDsnIYGSBecv1eEAIgIAxgCMB0eB+Gs1ew5XjPJAER6jzUIQGXlD1WnAvIEABFNvQIuNILiQiATOSZK9CURXcYQgPr9r4Ngkj8daxCApB4dRYJe54Hv9ipngFPCO3ZNJ6GIjMf9l09+OQ1eKtfrbL+lnKZ5/72t9xSBCAIqwBByxhlJqJI1kAIR0To4GzzhSBHIkEsyFrwmCYCgAMOmv99u7puyGaMWt6mwLsCioCjRXV0ggAKUX0rcTUF2BQGg2HeV100ClEzXakOhoQr25QlABAFlYQHGOmQOgeeMpMh13AapJpCbrHzD0wqdv3IFIWIHgG0OgPV6gpcjlFeK+/P7Rk5VhvPvbbRxo2OeUZARlXIa5DQJXQFCEhCKii8zk2gvWlyhRqWaAxS/0PJCyaxDuy14gU6KK4ikThIASlMWhRxgcS6sxAHyPKQeAdg8B8gQACvoe00IgAgAjCdHLw+/Gk/OCL179z7otfcEkZlNvWh+JzeR0WjllJb1bZIDXE3fANtoL58BYE7E+yMPsNePAJhYFaL8wXf/zAT+BUIi+MVv/pqZRbRJfSDjpcloFrn/IkdtY4giLPNvnv5Nf3Tc27rTbvUAAMHtNLd8t4ckcQl3AVbebBXNph4a5Pj0q7ISIGa+tfuuZTRxxQiAkbAwBGAyOAr1vNXsKL+NAvtbb0eaLZH1w5Im4NqNvysQABP+LyQABkoKR+IqgCGCO54eTcYvM1G0ZG7SBCALkkwVkGlsbfq77dY+CJXqnZuoTAGjioLfk8ng4OmvJtNnqKi7964hAAC803vLVY2KTRetQyIqghcKwsnZ4Akg2xmARJ+L0DNNydu9+4p8QEZwRDZZA1RMJ+JO6MLRTv0zfjkBAioiR1ClG+fLCUBh0+GK3GbV3oD1CIApATINAKxDzTNkjcpXjq+cFirPTnlBouqci9mT5IGgLMBfBNcYLNnWijzAhdOAGmCrPLRf8k5cUk1OSkQSzcqEAKAQEJLyyfEVNRIRqgQo1eTDgotRXTEPEJNASMHnpHCucCJEdNYhGMraiNMEYGUOUOgYXUAAYg5QjwAkV2vtXedOAsCq5gxXhwAsX2PJARf/YjobHB5+1h/1EfHWzfe2t24ZFZRkzeTTVqYFrupGuoAkwBV85Cs2DcYyxbUJAUgeryUBENIi+MN3/0Gz0TVr5NOv/s/B6ABAgyJmIDEZJFPNIZe5/pP6tKhjk5lIjo6+eXb4mec2d3bvGkcjBHe7c0ORZx15rwMBQFRaB7d2v1NkBHI1CAADiMjR6ZcMOB0eWwQg1QSMSK+WACQAPQp4GwIQHfOOmKYXUKEe9/tfs4T1CMDiwkUQUQM4pvvW93q97l37oFwo3SYHH0khARDQiDifTo6efzwYf8Mgvf13lOqSYgBqN/ebptANoLDHwHRBxJQREMG0Cszmg9H0mVXZb6TOtLFHMOHkdvNmq7G3oJtUoG25LgEgW/1wlZgu2sIXBIjkICqbAJgq2GICcC7/0csjABEQsQiADoNQT11CchqO2yHlMTgZveQF+Ulz0XxBiNk9axCAUg6wZNAq3bzOzx6XQn+oby7GqeGKrPFAkeMq1UTlAzpRjkUgabMpsheruAbGlZMApQTASGaVTQGyhrxwe0ESIEcAVuMAWZKJ5yMAmSRAbQKwYQ6QJwDRLFxhAmCPEoeTFwef9QdHGmRv5+1bt94ylT9J0BoAEgPRRQoBN653JEtj7RvZVzce/C7ecFhC4cTP3hw0YFUBRZ0siNfeA4HNaYTdRu+Dd/7fAHB4/Oibl/8JhBgTew0UCRnpEnwMCglAHMNVBHo+nz56/LN5MLmx98DxGsKKJWw2ep3GjgmexpHy4je/LgTAQDCjB3Nz551Yxv3CmoBrxAMKwCqYni8th2ePGHA0OpBQN1vbrusjqr3efTQQPN7e4yqgwoOzTstv6S8tlcDotI5D/lF3V4z+gcgRRqLEFdgwLRcAGBmERqOnk+kpExPTolASGVlE2GoCzt5JibYmCDmO023fI3TKEWXGSZQWwAWZBSWcnRx8cXb26Zwnvf3vuF4XQQnMWv5up3ULIvHnJedU4v9nLm86Gw9HXwE4i2tgnSw1QQBxdrcfKvIRSTgAURfeDVdWWrMYn6yLuNEAJXQMqbBAMKC1fWQsljZ+MFdv/bnY0pJWYBEQYSEBzQjAeqaDqYh2vBa5PqkmogtCFJ1bZdA84dgLdJWt/V0UAhXEqjP5hDpYqgK0rXU4FhpmU5lqUDUWz+z4KMCCgBzBU15I+qDTcJQH5MuizpUq1mcN27GqtScisbRr1bBZXfuSRA2K8gCpWbMahVMqWEbkOxOGqL7IsiQA2HASCly8ShZSaoiWdSNIflDwIrMBpZ531tfb1HbIRes+Q+zByjsxkBKOvH5RIaMDonVwcPzpydnzkHlr697d2+9HERMuRKa2ke0FQriLPS5wNQqRr33iReiSEkeqBCRE4STRQRCIiFJKKZUQgFQHTg2R0KsF9XPebcb5K5kyItVsNsfjMUe2M5fBwcpym8nBwoAEoBEIUAk8P/jdwdFX7fZOd+smM4M4SMF2+46j2ki6Ivx/ZR8aZDB8qXkSq7RDbNwkRA5zaGRAN9uAkSIA9ZyflhAALTAaHYAOm61dQwB2u/eIVI4AQGEG4FIIQFwFJESkrA4/RnTZHK5C4+nRePRCoy4iAALMJYeljicpKh7ote/6XjfbdLg00slRlbaEs+HJ46OTT6dBv7l9r9XaN9EICWF/910wfKbUQDN7F0EsDDoYPZ/PhyJaRBM5II7ATEQhChExYNPf7rRuiQiRKtQnudwH5vcLQkfQJSLb6DuhAXQtCUAEziKXBg7DYAZaKweV1yblA7kCtGhwz8V3EwJgnI/t+oq8RyzGsqFSiuN5JSBVUbq9+uqJJQNS6H+dpIGkC3wj1EuRhSQk7ROolHKVaoJyAB2rJo2gvHY5nguuFbUtJ2xQKhSWBfqJGTYUazTpQgKQKx+SUuJdfJGltg8p32iUZQmElQlArYHdeFswymUSAEqH3grr9VPnGmgFnoBmERA97D97cfjlTAe9zo17995X1KiUqHodCEAZrq1DA+y+Z2EA1CDKwH2EyNEWwWHmIJwHQaCUcl3XoP/8kCY+jNcp3G/lCZPyekSw6gWQWSeE5xUSAHMjRKpEqASYBKfTk6+++RUA7N+4A+QyAyL6XqfT2CZSlurddVJnZYT+4IVNAOweANf1t9t3YNPpi40RAC1CAAenX4Yso9EBsm62dj2vAUCvkADE8eNSAhD3ki4IQHwBGITjs/7njEAxQovyfQYxVBEAQ6PJVG51Wrea/l75gOasdUzwRjOCAJJwMB68fH7469n81Gvudjq3yVGKXOF5t3Wv0eiYMA8vYQBZk21m3R99HczH1lKLXKaJwIzTdve+63QuazdfcU0LxQ0AiWCRRNVZ154AgBgh+nA6D6ZKket6yu0AOQIO2JqVpkubJB8hLpCKL+IACQRMaoGKoDzXBFXGsnz1uUwuhYrv5eU8oUr3PWOZFGfMGIVEtEnlCZCjGsp1SbU42T1sa+2UnjRliHoZBF+RBhSOdgESTSL6pe3CxmZO0r8sdAcrzGwUXGGVMGiZLcBqBOBcHOB1IwD2LWB3/ZqlK4TEYtQdRsMXT5//NtRzv7H98P73HbfJLAiqVFrtkgjAxRKDPCGvQwDyOzMJmsoo4/ph+xvOZrP5fI6Ivu87jgNxoX8m+XAd639SniHpzccELmOcwJcjhFtEABa4SMeBSxFRgCD68bNf9QdH29u3m40Ox6VuvfZd3/ET6c/Y3PV6zI2xWRgMXwbhBIpUgBp+p+1vJxruG2sC/klJD8DaBCDQ4Wh0RMKt9p7JAOx07l4RApDtAxYCQkRCUHHAnsRiwC9PfkVEpQSg9KSM+jYQlEDQbGy3m/cBdZ3YfPIbESEGQQDh6fjkycHH8+lLx+10u3eV6yE5ILOmv99u3oxiRVRIoAvCFXHlrtI87Q++CYIAkBk0ABO4MZYiQXCdxnb3bajd+HgpN8oCe8UNAMUEAAq13189AYDKTgCrmp9Zh1PNgaM81/XFaSEoc3eg1e4cKVnF4H4VAgC2KGScocqWA61BAwpjw0unNU7WLYH7aaBPdeCd5CQ+DPQXQdGhWUvKaSjHR+UDUdzsq4rWPGX3GV7NsqpeuQsvzQNYf9Bl70NSJOSadoAqQOFrcQAoaQaoWD/FH71Kr05aSG7prb36vY8p/ceL8AfIEAAqYJuJM4XJRMXqzIgoFM5Pv37y0TgYN7ythw++63lb9vMLOcBVDYrK2vuwHdGvicWTuv+kHZFRkk5f1jIPJtPpFACazbbruuadM5Kp1zT8Xz2S6aozfTm+v5UlQKBBwBS+ozhCg9Gzrx9/0mh0trZuaFGmM8p1mlutW4Ac7wpSJgF0TQiATmL/ZnDard2W1wFQIuEGq4A2RgAYAEUSAqBAWu09x/EQ1Xb7jlLO5ROAqJw9QwBQECj+DQGqNAEARBXv8/ji+CNEXIkAgLEQonjLVtp1Wtvdty0tHSyKz2cpgSEADEIIs/ng6cvfjkffKHR62w88rwtEAqHvNLut+xkCEK+n0kSAfY8x6/7gq3kYxLpAQLE9AqDSHOz0Hvju9iZ9ANZPEKj0VqUQUVDFSyuCsKI5U7BEy4SAzrlVbZYAQNKQqrUOp0iinIajmqJMUYq1wIuKf2yxyIWaUDpynPEAglqaMHVKXEoD2xj1qRdOq7mPVJ0wf/aEt60kKi4DU6DKlACJCHMIIgiKlO+4DVS+IBpH1WiUY+9Pq35vKQEo66LKiSnZ45z2CSmvm5eaHMBamRWfW+IQXLoMCtcAQ7lDsGCVI3J97lGGDC6cAKQNwsAyXN84AQAr3FqAhyTjeskoxHryzeNfTGZ9If/thz9oNbeYneiAjRgL5tM+ry72v0kmsCkCQMLCjigT+IgEgWez0WAwIHIajUaj0SIikaQNTmDRgL1azuGKAM2sarYF/TORvktDzxUEQEQECVGJaAIB0V8/+WgyGe3t3nVcP2Bt7o5e94avWnGYFa9d/Y+BCsPRQYYAxCND3fbNhtsQIUTeYB/w5gnAPAxGoyMHoQYBKEDDmyEAEuuj5wlAnAEwsANRIZKpJ0ki9xzX4Ryefqr1LLnDbQJgAD0C5wLki7ItI+QvjLvbDx3VrJoGa3DsA5KZCSEIZi+OPuuffY7Avd5tv3kDiACEdbC79a4il0gxiO0qlj05CixgABFEQOvwbPi15rmIZg4VOiZ3gYgaQtdpbHXeMnHnVxjyz+8OUTM3OSYDkIC8hAAke0oqD4C82W1rLQKQhSOJY1fMyjgiABw4jhNFpoVMrY9FAKCsT9SuDzHiMOVgUWw0VhSfXkUGdPOPbFGQlPLD0uHNpCGMjTdzyMyI6JjYPzWJlMTOyhC3CliFc6p4EAiLJ5exetKLxXBrpAJqcgDT2ZG0iWf6AcrWwFo8kEsCDyLF8uoR6LXmkmtyADiXNuiaBMDi3BdLAKzfRgGdvOS/cGgkK5SET55/cjp4jNS4f/f73fa+SV4ZqGRi/2aHT5+uaAb3apOAFQzFVi0BSnnKmiEhFiZEJRAiynQ6PTh65DlbrVan2Wwq5ZodREUHqLmtFp97fQlAoct7Ynew2VKTda8KNbCJ2BIwIvf7zx8//bTT6XW7N7QgyxwRPbfbbe4marclcdVrQADGk5PZfJAQgDgDwyK4s3XfJbXAlpuKq/7Bh39WuBTWLgG6+gTAxI/juCMRqYQAIAqI4si0AIbjl6PJyzoEALJFuhqAUAGIwxL22nca/nYe2sbbdFFOQJLEuoRheHj21cnRb0BmrfZus32HlIeIrOfd1h2/0TNlOwnQSS2Q2GwrVriLOWUsM8oaWILh5MlsNmUJAUIiDxFJFACEEnRbt1vNnYsmAFEpS8l+ndF/NKINiArIJXISXCigRRuMwmkCwBxRvqtOABI9StEaAJTrGjNaBiFQsWODmOqEVLQ1B6EW9vVx8cbCXrGoHHzBAVYwtOILWxHF/QC1CcDiVpActuZQM4doun4d34wwoJJFgCBqFYgPQgZSFdHHcnwnq3EAgJzQJ5cPv5S/KqptYGsZlBMAWEUbtC4HECwrW8oTgGiJLoIUF0gAaLV1m7rKV0QAsoZfDACHh18cHD9C8m/uv7W3cx+RWFKmjZYXkh3+RwaE608ACkaykgDklw3jQtNXmEhpEBXOJy8OP1XYbbR6rVbLdX1TfIJ23/zlRsc3DrWhxMi8qND3kr5lCQEwSuYgDCiCCMLTrx5/HMz13t4+kqdBRDSC22vteV7TyghGP1w7AjCdnU1nQ+YwKf4hIs1zQn9n676DBBtvAjYEIL8azkkAFEi7s28IwFbrtuO4V5wAgCIQR6EwuHErDM/mw9PBoyoCIHG+VSgThOOobM0R4VZzp928UQh2Mwp9i+s3hUaExCAiJ4PHBwe/Yj32/G6n90DIVygo4rndTueWaUa0CUBmaAoNfe2sH8tsMHoeBKOQZ6ZBwiGFiJoBEXe33lXkXcLGVLpMC6RgWEgRRgQAkh4ADhMCYF54cQQAYtfetQjAAoWkCICR0xIBFiIi5aLyBZSARlAQEYDMiG2GACwWZCU8kmys94I4ABWeQisSAJvfRNepdcChxljzRykfiIAIxIlvIV5sGgmCp1KRiurAZE5qsyqjIrhwGo4MoUnKO32t8SgmAAtzCVouuSPnIACQ7wmO5HilrEeCyCKx9QlA5V5RnwBArliL6xAASPcXXSgBKAj/CwKwA3hy8vjpwW9A4f7O2/u7b6MiYTRagYCMsVFK+kiKa1fkdSAANWRAsTBBao08JlOMKMJeoE8PDx6JbjT8bmdr2/d9NCAsI5x1nTlABQHIh/9fIQEwyqRJxptIMQfHx08Pj7/sdW/4jZYG06MMnrPVbW3FwEll2gCulwrQbN4fT/o2AQAAJO609nxvG3nzlCYqAcrTrzUIgIgcnn0VBJPR6Mglt9XecRyPhHqdW47jZyrPCmeGl99aVBP9Z1EjxbE9Weh4GAFQIgcAEdyoqkQwEQkWkZP+oyAcRd1U4gCGyCKMYDzC4nrrKNCOnPEJEiBEUkrtbr2bBOON8W3qOyJnrl+DkJieL2Hg4fDw8OVvg/kLcpvdrfvktZU4IKHj+Fu9h9mbuYZJh7HzsCuXNE+H45PZ9FBEiICwiaCAAh1Ks7Hdaz8EnIGo5PoL7XsvbMNSRfEbIlKOagBFe4EwM4eZzTpfAnTOMse8RkedLHDebT7+aM68A8cmbUQOKlcQERTWQJC2Z3Ny9sfvXCQYWlIOnhp5qJkNqE8DVl8zSc1ePbSXHGAiEnUNIxtMFIahNqkVp+E6DdP1G7eXkAlLF3Yur3+SlBkIpFYRl9XeGC/Ssu9bgEvSK9y0AdhWR8jVxTZF/gDWc+yxraENKizFrmnWeHIyRLExRQXMq+IA9VoCyrTuNmQUeA4CICn3EnLieYhN6EhI3FD6o8PnB78Jwun2zv0be28r1U4iOZnJyp+zSXLYqFyY8leTCkZQV6HXayPZADshUFToAgAiZJT/HUENAFqPjw6/nkwmTX93a/t2o9FQKcQSmXUkG/W1gJaFkfWKEqBl2zCW8auNn/giwCgYh25ReD7vf/P4d6Rga+sWKNODyQDUaew0/G5p2OfaNAFrRDUPxv3xCxFEVMwhopA4rWbP9zqRtVS88W6qOfs8BCA1sloEAA5OH83n4/H42CW33dlVyiWhbvum6zasmTAF2lT2QbxpAhA5AZvTixc9AIYAYNQH7MbCMsnLlYj0h09nwXFsqagEAtQmRsuY2wtERGjxeyCMpRtku/vQc9v2JhKTioWmO+Li+Yys4oivFp5O+gcvfz2ZPv3/s/enTZIkSZYgxswietltfsWZR2Ud3XV17+z0AoT/sUQggAYL/EQQiDAzRNMztEMLWmCOnWOnq7uq8qrMuDz8NLfbVEWY8UFU1fQ0N4/wiIzILv9QFenupq4qKgc/5sfvodKD4WfkdzUqYLFiD0c/q+j1Mmz9Sm4z8HW9AW5wxHK8XJyvNhNmVpRL7IuIDAafaxUUh5qZXXfUO10Y1JJuywCAp5WfZWeZmeXjAQCFK9jKQeWmKJEGUmmF4K0BwI4qwRtXA2q3wW8ZGrW9jpYe4obAtFrpEptaeiGLNcYYAFJK+UEPyCf0BIrpVdp3YhSW7S1PJLvO2maRHOTbf2c/AJBjgLwSVdX+a+kHKOGWvdzBmusAnKY8dmZPszaVskE17MafbyoMusPrcj8zh3cAAKCs/lmcY+g2W5f8Z5OsFi/P/riKr7vdo0cPfhqEQ2HM6MJYeV87AEC+YyBoQHZkoQ8yWnpbAFB4pw4nuTFwieK0Tp/Y+dXFi9V6oSg6OnwUdgY6C7Aac/8fNQBoqwB8UAAgd1gRdkvDnJ9/N7k5H45Hgd9h0CwxovLI60ZHSqmKdt3H9ZryBzcmnq5epfoyiAAcer0o7CmK3lFLxjsAAOvFYnUV6KDTHSvlKVC9znEFAECxANf0t+TuAKAqANoIACAPWFONoAoAENcTXFBZWm9ububfFbkByJJFV5J3Cla8GwWzpCNq980oHHXDB0XXwOKn6suVkUk0AAtYYTTJ+uziD8vFt1ZMt/dppzt2yRsry2H3p76Xdhhjqvy3b1yeZR+3Xmlgeb58PVs+U0ohBG5pibAfDnvRw9q74He9Kkja3jgzVAAAMLNw/BEBgPyHDuds/WhRCSJiaicnQNhixVrL63P+YvIc/9tggNws7N3tere8hcIEqEmFcuN1GjqaEJmNSTaW2fMCz+8or4OguKD3nxUB2m+msd6138jUk+A16wbefdk2iFUNULDhLZOAhapBWAvZRio3vIOTs485gLQ9f+lDtjWsf0MuEMDdgOteH3ybM3gnMNhKUuanKgEKAlug1AqUmA3H8cvTL2fr007Yf/z4V2F4wAzMhkjvAwAq1QbElPyeTSGsFlE+7HjprgAAkUQ4U1bRaXoABKyZTF9NZ5cg3mj8aDg81EhSQg4/NgDwhsHiuwQAlQiKAR2BUAER0Xx+/vLVN77v9wcjABD0AI0IdoNBGAyL87ZANf/Ivpww3fX8peMyE4EI9sJxGPRcMrrI2b5nFaA7AgBsvnuA88k3m9Vyub7eDQC4YB3Z+OdaAAC1/Wc9+t9+kzBXTSoCgDxD7wAAoY+IDOSirlxantmcX//eFWhYYkLtAAAzI+Z80NQ6II/ABCE1aUp9x0CrYNj7TEjlLq01UfPttpVt4054wDpq+9X1t1fX/yAYB/6jXv8AyUNQDJtu+CAKDqBkbw6FgKbtPKM8/ZynnPMgY7k4my1fEhFBpJQSsNba8eBT5wvGTnUN1e2eR2+dRyvNzMLLpQwAKO0TOZRlswqA/dgAQJHA6qBpNglBtedrXRFUys2UQrBVf5TmsK+UbM6jj1sOV77drelet0Nqm7a3hmsN4yzWJBtrrdJhEHaVFyFop/lT+GXa9x5u2VN5R4mg8rK2/yDXb8D3gAGacJ0ThC06gLbPK2m+z7tggCoAaMcAGd1opznaO+kJLjXx1yqljYUCbjOE3j5gi/UF3RbFZv05Rf6TIGhkcQ1eYpLXp99Ol8+VDp9+8ssoGAvoPPcvkOQF5OJG1wYAiqe5O6hAnAzOBy4S+iaVAUcoZ7ZFpx13BSNmPjufXJ8m1o7GTw4PHiEiSVEDR9oqt/+oAEDtke8fAFSOS2fIoIlYNi9ffrVcT0fDY+UHTr3NfWTce+wEZorvCz7aL2uTDABYIhLBce+x1n7lhf6wAKD1/Qni2fXXq8V8Hd+EuhN1R0opBaobHfl+lEtJMjZ4K94dAOyX/k+1FLDSBFwDAEjoIaoqAGAE5MvJV5ZXAMQSg2hkATRuN0mtQwRkWwfI0v8Z45/IxXA86v/E01EWOks9l8mFlmVyXsMoIpYQmXk2O31++h8JN6SGw/6J9jpAyMyeDsaDn6S4GctRZXtsmrp9iWPPb7seHdQRkcXqbL46JSIETahZTBgMetFDRG97xr8bg7DSoYV11LitPhQBgFs/Hx0AqIT+2+i/LIvUxtmQGlHH3U++ympcoFKatjhRyxeX9ljtzvnvtwz603He9aI4V01u+CCbOFnZxHh+FIR9pbuIVFT8LKb/225mh1P9XoEpcmP+uGFKlGVb96QD3YoBHPVfCCs9JzswQB7W7tQG5ZYeZYs74zbBWwDA7mm/Nwa4PaPfAgAaMuhtF3QWRdk2tX8FQJruB4sTGkSLWEUCxr4+ezaZfQ8knzz+bad7iKhYUuUDRcC5mpxQIwCoAZpi0pRFCEQLxD9WAJCZm0vhAYXZzBYX11evkiTpdI4ePfk8bQLM/BMQ033baWq9Z3HMDwEAtD/p/YTajK2rGBHREpJMp69Oz77tdPvdzih9HYgiEupOr3MiYArWvx+lNFO+kTLz9fwlM7soUatw1Dsu0P25qFP3YQEAt8WcXX61XM5jMwtU1O2MUCuN1AmPMwAATgKoFDg2YYAaAKDdO2ojAMgIA1T8Q9lvEmTEYje+Tk+GnSiQC8WyCGy+Op0vX4vYtHmXxem0IBYWGKe+01Kb0DkAGPQeh/446++uappvu/Qyc0EXnYsIAbKY9ebmuxf/ic2VonAwfKh1HxWBkOX4+OAXjmvENV5Ve2zqjhhqyr0hETgMMFu8VkqBKGcg1e88DvxBWZOH732rai6JCFXmJwMo5Svtp/QtsMzMdvMRAYA8EVvg/CCRdj3iDJjj5TZqRH6yVWxZSwoYTf0A0CJFv5sR1FAQeDMwsHdyvaDldfv8SbOhWcYaEcXyJl4yG639IBhqv6so5DTDR7tvrGBK3xa4t7rNtx63uEfJ4s0xAFToQBVn6Ma0/c4gW94MA+zsHpH9AUBht7J4lwzirRhgdzy0M+nLzd93sqf3BgDI9QUhIrG9vHx+ef29kc3Tx38x7H0iqHLrbkUkYrkp+sk31abGZwHAzIFOnLqD5Vgp/VEDgGKfbj4IrrqCSE65D1mIFMtmNr+6vnq1Xq/DaPD0yU9J+wDkjohcR9Lt2zlr9+MKKvcHAPVxe58AoO3eNKo4Xr08/dLY1XBwRJ6fJjqZEXEQHXtemOvbwkf+5SgMrgLgksm97kHkDbKXyGmccL8yoPcJAFBen3+1XM4TOw91pxMNUSsF2I1OcgCASLZorVLL7DXqvt+6o1baf9sAQEEbdgsAsnBfExGiV2dfGLu+mn5t7SYPzdlJANVSZZWDLbsTclWCMBx3o+OMbINCdscwkwADATIyEoiAjeP189e/m8+/C7TqdQ/98IhUKGJZkkHvcegPs7dALQnm3QE3pXm7bHzcvxOzmi1eWd4QETN7utvrHGsViQg47Tl4D4SQ5lGyAkp5SoeEmhFJxHJSAgDIIPThA4Cc9kOknQUbADjPXgCgzBtgRyhZIYdU8sFFEn8h9WsbF36TEkgTBVbulIW9c7apXgMsUuzaAUAqk4quqd3aTby0idGeH4VDFXQBfERVbZKRrdV3QSTn9p7I2iKS26PMfWxuuam/Fnk3BmjmKyMXKwD7AIByH8VeAKCllNHWOlJ3+kwvgi7gatpSXLy7Z09wjaV6BwDQpo1YmJ/cvHs4UbU7UIAa1WnyP0AKUDhRiJOry/OLrxNZPXj40/HwKYBCUFLyv2IWRJK7AIBs5qN1Uz1OFlqFH3sFIF/COdvHkZMJMq3lVBXMLlZXlxcvVuuF7w+ePP6iEw2Y2VXyU32k1CuzFJBUSHQfNQAoHmRtLgrvAQC0yRxrVABycfXs6vq03+8HUd+KwYw+7XvdfnTgUjAph+2j/2Jmvpy+dLwPRK/fPQp0IFIvPd2bF9i9A4A/LpdLw4tARTkA6HUeZDYNbwAAMrkeeVsAkCYSWwAAABJqROW4QEKYiwMiqqvpP8TJ3KXkWwAA5j6LefiVEoRcGwCD9qJB9ykoQlQgJJBs7602/grQCgIyWkIQADZsT6++ur74nUbu9oZh9Bh0R4FlMVFw0O+euKvZ/ZYlscrGtCQEJIIMkFvJKlDWblabq+X6gkgJY7dzFHgj1Op+KUBt+1SpCVgKyTZBRiDSSoeEXrovW2vtsgQAsit8aADADR1lhhUIBEoTUWoPh8VyBztbgHsEAIVHqLoKtLf87tdWvrcRT9MEwJZdYa/bSAGAQOpwx2azWVmz8f3I9/va65COxNHehFLRrQK1zGUKSbA2N4gB9ga6cvvkKU/C5sZlLoX4LkTG5sHcyQXCkqtA4XfYsWyRpcK2r92P7OMQnJEJ9wEAUJmc6dNhRtdsKgjkCW+8bWFWDdVbMMBOd4Xmle7ycG1bh4gA3hkAFDKv272UgVAsAymx8fL67PT7tVkNRscnJz9VFFqIEbxsu96qLTmpq3r8x7fciYAoYzc3s5fj4VOi+5EX/KEAQCqfnQH4rKN0Wwd2ryleTy+uni3m14qCJ09+0ekdCANYICIB6w421yRdedEMRcLChw4C6gDAgijA+iHYBmzeMwDY2ncKgKjEzp+9+D0RjobHFkSQHQBAxE74IPT8dOHQR+bH3I4AzNXsldtkorAfBmMSrpjQ5zzt+4m72pyAm3QrcPd2ZgVeX3y5Ws8tb3wKO1GfPB8A+tFB4PeyvB5Wiz7lHbNpwu3k/1S34RQwUBrwZxF23jy4hQS0PS1QAQCCJtKC2nlL5RQgRLVYXcyWz5iNAkxl2pFvi2m2FYDs5fGg+6kf9kEobxFurwBgnlLKRJ7j65vTVy/+k1KrMOz4/c98CoRQwProjYc/A2AL29tOTX/hfibKZj2ZLZ8haADo9h6GwfA9mAC4U7EySQoBCgkq5fmofAQFyGJMDgCK+ERVTsFCBPY2mYOa2GLzBgd1R09MG8HTEj96qAIiQkQrTY6MLE7StRrol32jbk0J13uCWz4CjR95Azywzxt+A6zYxlNymxaDRTDxZm02sQ78IBgqv4/kCXoktBO43rL5cC2iJWmeD9jCbS2F19uMZDrB0+9zS3x/WxGg8NOGAkKjcbVTByqLpWDtvUsVmeCOeJorx0LjG2SRuk1YLktQ0SAqvq8qFipa3e7VDEC1qgXtqoq0AIDmfaMdAJT2isKQMiCV2kyxMJMlWS1PT79ZxXO/F3zy5Ne+DCxx40tH4ErxeWtojdhWGnEBMUtyef394fhzjz4W/k/rdlSuA5WGlIEEYgSdxPPXZ39cLueI6vGjXw76IwC19cp01EGpvujdTsMfbkyJnNGJIQecBbMtrO9Lxbl9f5l1rvRcuStbB0nSGb8NdpGF2VxcvZjNL4eDsfI9KyyCBAJAgd/rhWMXT2ZVX4KP+cvF9EbMZPrCfWfUfaSU964rG61OwHcFACLMgK8vvlyuZiLWV34U9lArRDXoHDoJ/JQt/+4AQO6Y+GYAAAnBA9JEnlNUyNL3XpxML2/+CADWJik1s8Whs81k230z9Efd3iNCDcggCtC2h9Honic/ygXMfHH54tl/ZLkKgigcfeZTJKiQhJPkaPxzrUInZJQ3d95rIG6NiRer88SsWDZHo18idYA27xoGUGGGVARbnGwrqYA8z7nYiDHGLkEE0iaNlp6t9wgASkkOqXhfpOYSQJ4ij0gL1tUhC3EFVw2YdgMAaOoNvaUnuPEB36Ig8LbhvlT9m7N3Wqy2QZ5cSIcIkvVmYeLE87wg7Htel3QkoBmoBQC0W0/Vp3fNqOsNspVV1o1sAUCt5aNZHnRHEeCNAUA78Kv1BO8NABq7gYuXa/FObshkF2zC3gwAVHLB285vJ7tR0nFuyP1XAiO5HwCQBWQi4BJDjnYiImDs2el3N4vXfif49MlfeToEIBZsRn3NE2NXkzoiWhFAmc3PlPK60SF9TDKgzaus2LdTXMKMLMAgnjXTs/Mv5/Mponp48pPh8JHbSRAUM2fD2FAi/ngBAAAU9QHrM3zHIXi/AWhhIaexvgVJC1mo3NqxbBRpFJ4vLl+dftfrd4KoDwBWDKICtoR+tzMKdFQ4Ee4tI/4DvigREuLNZrVYXQ37J5rIFfreEwC4fQ8tpKp2AwBkq7UfhT2llFAzAGjEFTuCwLcHAIVfLwGAwncQQRH5QCprxFSIAqBFkvPr37PEzCbdrwsHZCN6buCZCDlHrcDvZnIEsjPRmZ6QKYJHGyfzF9//p9Xme1/rYPy57/VFRJEHsul3nnTC43Sn45QX94YBd+vyRcvxYnW22lx2o+Ne55ET43/XU7SacnVJfVfHRE9pH5XvLMnEJsauhA0AuwrLBwIAoKxiRIVIRJFGFRBpQFWJ/vM5VgMAkDNDsCF831kEKMf0xZaAxqm7pxrjPZ0PO324yjI1iFjR6k4dOcBu1vPNZq19L/A7QTAmHSCFNpP2y7Ldza9pV+jfeDMlULfP+Ai09AagNI58c6i3W8B+P+AH0KzjWQcA1RpLAwZgEYR9MIDUzpS6h0MjAIAiX+jtAEDjDHdD4YJv12WIiM5jsR4kId4tEnSeU3UAkD0dpRlosCKskKzl89M/zWZn0XD44MFnGiMEn0EImzWX8gSXE40QLBVPmnY5AVFMdrW+Wa6uR4MnivyPCAA0SZqWnRAdoMoe3zpaoNmcX30zn11Yi4fjxyfHnyF5xZb7LK/3jwIAiIgQKnh/AKCwWaTFN8ZsVQoKMKYKMZiYxenLb5Gk0xsQabfw3dwPg34nGoFNfUjvVxbzh6sACCIxCrMBYERPI+WCp+8PAOxCAhkAQHRVy/raw1cXXy5XMxLW2g+DrlKKSPe6h57u5BKtLudRtwJ4AwBQ7iUofbOiLbQnAABx9qsekc68gVOTrOni+8XqQsQi2xwA7H491TQSKMtxt/ukGx21C1dhJdnpyLWZokl8fvqHy8l/1SRe/2kUHQOyBh/QBH5/1P88pzwCsjABCLUMbxvnrxU1oHWEdWuTTTydLU6PD/6C7rFkfNt9VqaBAwAMWukAleescBoBQFso+d4AQFoE4Ea1K9LaVxQAKqjVZ6tBWK2PM90TmyPCVlGg5gAOuIwH5PbY97bfrJjcNYbXdxt/5Iau5bxJSgSQN6ulTdagSHudqNMn1QdUIJoRVEYoYyyti9Kcb4n72x5z2weyHwAo9quVcgRNpZiCP0Dh4rnPQMN7b8AA7nlsvhCwLgPKUJMBaesFxzYTsXYAsK1sIDe2kzdI7rToAuWcd7xNNnS312lbsUvEGmNSYh45SS5otId7EwBQ3ivygNI6sWjgQss1TC5fXF2fhZ3gwfHnXjAAErZEgILNgLBY1ELJWyaal5iTsAPA5WY2X15GYb8bHcJHxaKo2zQUi4EAmDJsMx4sI4hNLq6/mk3PrcXh4Ojk+AsizwoSkeuEQSrWBqunw8cIAEQkYy2SW/rZTpkJS6hUc7xtH77HADTPaBRNhxDJZMDbaaolZjGbX8SxieNlGHaCIEIUwxYzODfsP1TkozDRx037qQ21WAukrLAGsIhaXNHjBwEAbRUA4a3sceo6m+3MbQCg2znwvW7Fo+EtAYBso+odAKDwHcFGAAAAUBpiRPCINConLqlSURFUxs4vb76yNhGxTgn0TmtDGF17lae7vd5TRf6tsNVB4bReluaHzHz6+rvn/9ajDQRH/d5j1EqDzwgkfDT+S7ckuMnTcT8XKqcU3vJbYjWSAItYay0REQbv2gy4ImqU24EhuX8QKV9rH0gDMJv4gwUAW1+I0qAqT0dKeQKUNaFCrvmzAwCk/40lf65be0Mroq11GFDRCYW76Ng0RmA7cvxvtF1xHvhWNggEsGLW62USr5Uiz/P9cOj5A0BPWBVuCfNxzh71fk6RNgDQvu4aSgE5DChT3vO33+oW3O4RxlT/QYEOVFgg3JAXbxIGxV1Gwq134uobdZCQ9s5WBxOhblqXfqzsU9Yiq9omKtDe+8vWWmMMM2uticgBgPbA6A0BQGHiuV4LJvSYWTlgBiTCN9fn19evSKuTBz8Jgy6CZwlErK6M1G2KUgygyodkAUehsZvJ9BWhHvSPFfn48QgAQc3VuH5G5NG/q+SzbK6uvp8tztbrda87Ojn5ieeP8qlCUucZ8o8CANhi3klEVEabNMYwglKqCADqYqD3BQCK20IxqGXkOF5v4vlqPSMlwoComE0cx0QUBBGRNpwQEQqJ2MDvdzsHIKiwVBj8EVQA0jQAbxsh3gO1KVUB2utN5xSgsulJXtB0TcCOAuR5QRh0tdaIqggASkcvviEAkEJKJtvm04we5ZsdYX7aYNVZdjcAUBktO0BUiCrjq/H19NvVZgLAYE0VADTFJeUNixSKIxr2+5+EwTC7B25/6tQyzAEAF4LHyeyr7/41JVeo+73BJyqICH1EhZwcjn6qKHRB/G02wK0AoK0CgIjCCtC4qFqBMnajtbbveEN0C6DaROuSwaAACMnTKgRFAOwqAGyTDw0AuAmQ5Ym3oRRqz9MRpk7GUv3fMgCoUEQcAKgotOzoDa0YhN2GAVqzue0Z4l11gDZC2r5GWuWPWJBclgdFkIRNst4skyRWSivtB2EvCEcsGkQjUvlgIwuWJO2mfJtpQNVMJN/1WRpVTbHAzCntjm+BAbjl9ZVfNze0oCDXcUsJjt7NsbhpXtU6AcqNEHxXALBHuF9LlLJZr9ci4nme1joP/RsnBgkIvRUAYCy9WmfgjUjAuJhdXVy+UKiPTk6CcIjkMYMzZnGch/2fWmoxfb4fGrGL5UViVv3uQ88LQPBjzKY2vd9t+t8xyxGYmSfT59ObV+vNPIxGR0efRt0DEMxXMNWkBeqv/aMDALnYVxEA5MJfxhhG1tonokpJ6l0E0xnvH4t3AsCLzWyxnGSpfGI2Lr3IDL6vHfknVykE4GH/oVKBm9k/DuWf4sLMIn4GUO9H23QLAG6HAXsAgLPLr5arGbNxTcDkaQWqE40Dv+dQtRBWw803AgDb7vVWAKCKkVYloCwWB6R0fQcqvEyYRRcAAKzWV5P5NwAgJsl30rau38oJygjELhURB+HBoPsEkVrtzMoZUwErjCQEyAlvvnv575aX/+B7YWf42O8egWgiDcCD3qPAG5ZBTqkwvw8GaG8ccHbxOlcvdUoe77puXLd4K59kpMhXOnSFC2ZjzTwHAK3z+cMAAAiEKvCCcNu7kuf+a3GYgKWafFvKB2gKxRqzp+Uq+T3AANhX3/Oej/xUzA6ZABDY2mS9WcbxxvN8UoHv94KoD+iDaAuQpwNJwGl6CuxovqedOcd9fxvuVhBo9Xmo+QPAfl0BdWdo2OkN1w4AWuoA1XpUAzFs9+Nz/XBx/HW3YVceB+WeAIBUY2gRsTZZrVYAEASB1hoAXPp/h3W381S+FwDgInsUAZbFcjq5OrNmMz447g9OSJM1hGTBKiBh5DvtttzAkk/VLZfxdLG8CoNBJzwghSqlZHw0PQA7KHnCmKp0MCrUljfz5cXV5bPVehFEweH4ab//SFDnpTZNVAv9kVF2pMk+liEqqJZR4e2LGJskG/K01r6CUpMDNvhJ3GOMK1vyD9kk2VzPztxyy27NWmsRFTN7npcFMAQACCoIoigcFcF5yt36MZgANBQ03sOjVQHArgO7FQCk/5kDAGuTQAf7AAAoCOu+BwAgCAS7AQBknQA+Kj8rAggAAaKwOZ/879YKWMNsGgFAG++ZiZV46ULTwaj3uVI+1Iej8iIklfRhCwCkUBIx59e/P3v2/w0Uhr2TcPCpsy0DgG501I2OSy2mhWaLWwO13cte0BNICkWJrMVq70zwWwGApnDNOToRKqVDUFrEMhtrltZuMBW4kw8HAFTNpwAQiHSovWg7i8W51uwCAOUMXxkA3IYB2gBAMSLMDAruENRCeyr9FkbQrmVeafNreBAkQRHheLNaJEmslCIdBGHfC4eAAQgBOFEshIr3SKaRteWUC2WWSbteJArfBQA0h+OlqD8XJ+P9mn25ZOBQyTIUYv02EpfkeC/dvljqWTpGAMu3AID2ibcfBmgAAMVDpjxzOP9b7kel8Kzo3doeIxariLngIwDE8Xq1WiGi7/tBELhuWpTmzM62d+KeAMC2i5Ex3iwn16/ieD0aHPTHR4o8Fp+IrRUk1/OTdr63dTi0+QOVeyUljuOb5Smi7XWe+L4G8TC10OaPhQe06zjLpMOEEYWW68vz8y9X64Xv+YfHT/v9B4ABomIGhbZ2ppRW5Y8FAFBxGjCzMYaTWAe+1r5rDHhfACCfhGx5M53eJLIg0u4nzMbdKjPnBDxmdg1+vh92wkPCADBxp79jNDn6549ABjQLadAlJaDMlXpX8dXf/PJ/LG7Gt5zTKAWnhpJhpOsBOL9+Nptfio09L4jCntY+IgZ+r9c9FHE2ewAFhvptOyjtWINUyA0Xov+tEFDFbgwROZUKUeX2AJIymnDXVCog1UXS6JK1xFZ4ubqeLf4EFgQ2CB4Au2CiUKjiOnFQJGUsIChQ2tqk333cjQ63wXpN7rDY0uBagR2rh1Uynb9+/tW/CJV4fhQe/aWiLgIDsIg9Hv/GFYsRPNddVu+RSM9LxqLxJxSpk+2Jvfe7JnapP20rvKS0ygEAWzNnuwGwtyDpjC1zXwi7sb+xeOe8bRXNJqT2FAVK+1CK7JuKALmoa1krphC/ciWUL4cIu8LBaqROctsRu7VXu2M60q2IPT/IOV01/0h6HggjCQqAMEqyXi/Xq6Xva/J6YWes/a6ABiEAxbvu5g6UpCa+d7Pq4j4FgTrVPou9ahUesASqws5PExoVOlBhhlQOlTbsV0yE1zVhC4ZKbd5wpeugtJkEUwsSqI1GTRGoNC1lV08w1NuCs9ppfg/O2FE57csUTJnlcp5sVp6n/bDreR4RFXVCG1dB3Q+4FQaj1KMfyPsd3Q5GIAwEkMSrq+vX6/Wy2xkcHT4mraFInKt1+u676lCcpxIAAFoRSdhOps8UYBgMo3CYSalQ9k4/xGRqpeU3s/uQxjGxgojKaXVwMj89/2q+uCKtDw+ejkaPtYqspKT/Cl4qqhR+XOF+UdKj0GurXA+AMCGBSKq4L8CrxQ1pHQZ9TPOE7zyHXiRhOog1m59t4pnWoRPhhZo+KRFlYlxKRDrRsOMP833yx5H1/8G/8G9++T/yPun/2mFIgpVDRQQuJs9vpufAiecFnaivtQ8Agd/rdg6yzUXeBgBAwehxe0hArsTXAABQQCCdMa6FEIB2AgBxRQClAqQQyScUQk+ABZnt5vL6W7YzEQUYiwiIJiJn45xPzbp/jUVLTETESCLW093x4HMEL+Oyl/JeuaK5AzrOMCobdbOJp3/66l8onpLyo5NfeaqHAEQQx+uj8S8C1XE9AIgIiGntv90GvPjeK7ymD+mr6CGCsG3CI1K+Im8LAJIl2w2gKVYA3gMAuM0PuAoAnPWvViEpbzcAgDofo5i1xSxxKzsyx8UDtPjTBgvGOpDYQYR4s1OqMuXq36zYFecp7dQ4Q0BECAVtEm8Wq/Xc8zzU3agz9MKhgBZ2aSESVDWZy1vgR5Ext1+fJ+/GS9T0+03rsTnCw1ooX8iCc1t1C3ZxwPbyhdizIXg7eaQ1X9DSEtAMANq2qeaH3dWrkOYR89BfwBKRpFwomySbzXIVJ2vf9zudjvKCbPBpx2u6GwAoPFTpUpXcP2KyWU5vrtfLmR9GR0cPlfYRKRc8eBsAUDzRBAwALuPJcjXxyOtEYyfPXYj7P2gAQOWFKdi07oSERKwh9OLN8vzqy/n0CgAOjh71+yedaGyFCq9JcFtoKm1THzsAyJL6LCLClNpsgQaATbyM18uw0/N0KMCqFEy9hzdJFkQkuZq8UErlCYKda420CrudgcbgzwDgngHAHZqAC4uPBCouPCIgIpc3L6azC7Gx1n4n6is/IAHf6/S6h1kFgTP9+1sBwC0J4ML2RrAt2m6do7Z0IJefynLGxUu1AgAAQh9VqChCFAQtwA5Vz5ev5/M/AWiBDQiJKEyzOTZzEC/2nqYHiQUBoGKzy6j/RegPU1nr9IMq3+tQuKRkmmrAI6KwxM++/1/W09+j0p2Dv/CjA8Wpnm4vOOx3H1lBlxHMAE/DEcUg2NLv/yEtLdr9HURE8hwAcBjMJktj1whmFwXo3QCAnZFxAwBwFYCdAAAL5bXtnZeKANtTsIQBdufv62HcrbqfbxR53J5fr7yFxtGzIACco4L0lzlJVtPNykX/XtB54Ac90IGwO1HIpvoedCc/jIzhSDtHbNeQNuOlpg9IyYV3V4SHNWmgbZ5PdgAAuBUD3NoMUPpgW0MwtDoE70AjzX8Im3HvXQGAI9ZvJd5Te9dUV3W5nK8WMwCJok4UdpVSmXBC2XW4NSjhPXeDLbUpT//z9j/dTE42y+nN5Wa1DIJwdHDiBxEDUkb+fOuNicD5fSEA4DpZzBYXiBJ5g040IlIub/XBEqkb9f4rOqfFV8NAwEYIzHpxNXkxnZxbjMfDh6PR48DvofKZU5ZL5ub5Y3D8Ld5ziXiMbollMQkQoEynV8DcHx66FPv7AQCuASBdAqTmy9fr9VJrvRUkbdgyjVNgF8Fed+x7PVdm/zMAuE8A0CQDSrcce+iScNUdT0QuJs/ny0ubrDwddTsD8nwFqJQ37D/ckpn3rQDQ7sivcAQ1AADcNrNjDvALAAAgbySQHDNk3xDnjaGAAkURkd7uDswiydX0KzYLAGJOZa0KftRcW5lcnOJOO58lDr3j8fATAdeN5KqRlC0SyttltolSdvI7YkEmk78/ff5vtQYdfR4OHnjgA2lABmtODn4p6AGyuAu2sBc4D/uyRZWtK9US2dB73PDb/hzVAiNCpTMAAMzGJitjVw4A7Jz47woAtBweVfuhdgAATRtiKwZoBgDNseDucPY2GHALrrhj9F9mEDVK6OSS1YxbZmp6kNh4s7ox66XSCCqMumO/cwAYZKKXBAA2VbqsAgDBerqZSqWNjAK8Q1LpViSwmxrEhfibGiLtXRiglvjkOiF+d+RdxAAtRKBtzYFLrRO7MECaly00BRUhbPswtmKA0grlPZSF8gnvzphMCT4PI4WRJZ7NbuL1WmvV6XTDMCTUjLkq+c7i237Rf8M6QgFpCLJFxCbxbH69Wsy11oeHx9qLiJR1pqAIAHt2/bZm7nPePwMam0ymL4gAUfXDI88LnXhd3lF5LyD/XQOAdOvLqtxug8gH1oIgotnMb2bP55OrlV0MeseD4UGv84BIMygAUKUJVn0pH6nhV2XuCZVJdKnNFnIST27O/SjqdQ/ydq/bPEnvJ9R0TH1GTpLNZPpC6zBPj+6eeFqFg/4xidraEf45+n9nAIBuP/NaAAAAnF78abG6ErtxJRvyfI0EAAejT9KDBiFVOLxvAJCluqme/k+DiepFqNJgKlhsLRZEAtGkukS+UsjsSGkGAFabq+n0mxwpISrH/nfzu2lN2vxozPzFFDOP+k+j4Cj9BVKNLjZYqE2KCAmL4Dp5/fXX/1zJkvRh/+BzpK4rLgiujoa/1ioEIAaLqFCaU1mSGs5bV7532KnirFFqZmjZIPCe9o1WOUhsDhldNQQEUWlFASgXYVsTL43dIMTvGQDsLAJQQ0bz7QBAPvi2lBndEwO01gFqv4l3PRjuKgpEdWiKUEmaFkcVgdnGm9VNsp4phaRDLzqIekeAHohm3iJ89/G6zH86o/buYcCd++GtlZbtrGgaepflrUcbjfKgICKNKWG29eldu8MGf2jaZRCW6ZASFid2S9N/s0dYJSxtbwu2t+8sLLtPpVa9/wJ5xlo7n1ys400Yhr3BUGu/nBIqoZEcf9bmLb/BKmiwLEURY6c3l4vFQvveeHTo+2HKxd+iVs496ncurF3UHXEio0yrzeVyNUFUnWjQ8YeFfl/JbuiDqwNwmflTzHrk0b9Lq7mzTAg5WV7fPF/Nbmab60Fn2B0cdztHvtdJNb7TrH9eqG/LpuOORMmHDwBqvuYIKCJ2tZgtl7P+8CDwe26JIcv7cdQSAUS2QjfzF8bESnmtsmPZCe8aGnvdQ093Vdkj9c+x+w8HAACo3k3IIAjnl9/NF5fGrj0ddLsD0iEJMJujg580ygvwvtE/7FDMzG0BUnZSCQBso4nKRbb7fisAQBAvZwFlmf5EBEXsdPr9JpkUNyhH4LHQymTNzjkiIgSPJQ798aj/aYofELf9xE35B2GEFK9jIotvvvufk9k3Wvd6B18ob+x861k24/5Pfa9PpAXjXEKrfIim8Mc53qd9NgIA4Dh5252w4KncFujLO12JO6I0zkqB5KP2lFJ5BSAx6x8WAEBZVpWkCgAYQGU9ALitL2FdBrQ1IswjPJbG6GobPeMOkvqdglp5y8FpllSv3Upx8qc0aGRkQRRCdNH/ejX1NQH5XjiM+idCETIi0rYnNBvzOv9nNwBolC3CNxyx7UdusaStJeB3FQSwgaPfwJBpeO9VDFDxhajRgVpnzj4+wQ6rYDlEbScm2QbUh3UJ1IYkfeNbSONtsAgKmAHAmPX15MKauN8bdno9VJ4rsToixP7B/T6/dqsDMRKIsYvFbDa9Up4/Gh54YUSoiizBQvJbcg+7W6Pkhp+igGBiltP5uYjVKux1D30V1G/tQ4+ruBT9p2uDkUhDZs1pOL66/ma9nM2WN52g1x8f9jtHvj9glrSqX4bQ9VXOLfHHrTvcBzJI9QgkN9m1vJpcXhLRYHSYqumLIL6P9+4YrYi8MZvJ9IXnRa6Wy9xc08vZ1J4O+tEBQEme5M8A4B4BwP/5TltbU/QPqSw00dXk+c303NiVVmGv10flkZDlzfHBzxB0tvakstjeEgA4Ej+WQ/wsqN0XACCi1CaYMAH5WkUApJQnIiiJE3RnWU3nrxM7Z+ayv10OaqlyVmXhHSMqQh9JCPWg/4mneyAK0BZ1P+sxiqRiQKgQLNiX1393/f3/6nvUHXzu9R8BKEQUy93OuBc9dgdwUbKzMQJ2WTEnv42IOQCQD3el5QlZQURBItTk+YQKUJhNYlY2+WEAQCMGYKC6Wb0DAKgCpTwHAHLGf9YGcFsgWAMArclUvJWhfmf/2vt6iSRbcneL/E4eLzICg/B6OV0tb7QHiKEfjaLeIVKEoK3gFmhRKpylSv5jdNcH2GNm8J0KAkUpmFrwVcIABbxUi3drkX2mw8NQUmm+3R8AAAi20KFIOi9igEpSvAUD1AHAFn9JYUgbMUAOXxsBQFH3c08AkF8KRRBltVpcTy6YzWh00Ol0FXlGSmoNt7hf3/7qaf8riAiwXa0Ws/kNAxwcHPl+WCKhlmm41CSLBA04ofVGLZvrm+eIQqQDv9cJx1SrG3zgeuo1J+nsnp0dpACgEeHp/PVsejZdXPmqMzw87ATjMBy55KM7XvNukDzrd2vk8REDgDTxLwiEBMv55fTmuj8Yd3ojRJWVR+//HGya8xZRGeHF6ixJNk5uK4+dilO+MMNJkdeLhlqFf47+3z8AoB3eN3UAgIIMMp2fXl69sjbW2u/1+kBao7a8ORx9gaCRRESc58k7BQAFO8ldACCLuaiY6q4AACLtOgHc2UMCNlNpTcxqHU/WmxsWk3LohQRsjclj8z/NzEgJgoeoEDSz7XZPep1jBF/AADCITj3MeSsotM12iACTQhGCi+X3r/7wz31tg86TcPw5QghoQEhkc3LwS0IN6AGg000pnBzblJy7VQcAEJEAlfKkaY19GPRQrJwHbotAUA4AIAEzx8ncJmvAGOUHBgA57moEABoVkO8AQCHclULAh/UDpiEQrMqPcpul1M44leu5+NswwF3HrfREZT315hMURbJ4lhFYOInj9WZ5Q8QA4EcHYe9EqZ7TS3EAwL3N/AgkaVYdlZ3vHfdN7d+hJlAMcFvj11JPcDo5bSrTUZUHLV6nElLXe8HL4WM5AyquI6hB6ie7E1vezWRHEeDtAUD1D2XhfgUAwC3KZoQojrSJkiyWN9fXFyAyHh1GfWeVqFwCZHuLLTB45/5QjV12TJtSNxdAvF5MZxM2SW980okip1ENAAjKkUgbAQAX8HLjHTTORMNqtblYra+UUsJBvzfydAdT9suHHkthUTsSy1tr7uZhgRSI2MVyOpm+WMwulFKD0XGvexSGAxCPEAU59cHNu7HR+aj/OAGA8wMRBnQe0qiA7fnl9ybeHB49CaKuiLBF5ZTVMqvTd1u+EYxtPJ2/IqKMTKFq5att/hSAw2DQDUZ5hdy5NPwZALxTAFAMCPiW6N8twkJ0Mp9PL66/SczKo7DbG5LnAwBwfDj6gkjdji12rUHaI/pPI3unEuA44rWP5MJqanveu9whVREAIxB7CFqpANJAbduKhwKWN4mZ38xeo2wcjZ4RnDMX25TMkPbfF4hArgcAQQGgUmrQ+0yrTjq/Xc26wL2WivMLA4FYBBNfff3l3yKf62jYGf8adOglaAkAzbj3aRAOiq1R5RCzFFCyTYwxRETK00qxZOwpLHRtI0mLCse7zxxA2991o6ooIO05vT8RMckiMUtXAdgV4r/LJuBC/ETFDU64cKCRItKEfrEHAMralzlPow0AbJ1T2/P6OzjZe8S4vPdv7rHX7BpqqWOWbBEjy0Yhm3i5Xs2dpbIfjYLooVJdIM3skLmGhtZVagn679zbgHcfrltrAruUXrM3XLjnpsx3vS07/Ujt4tjGcpHd16zQgaDuUNH0BvMo39U8oAEAVC/LIBUM42KXFOVSSVStcElymu7WCfwAkRVCSdASKDbx9dXZbD5RHh0cPex0RtAy5oXo/M2Ed3an/ynzNGVAsfHm5uYmtqY36Pe7gxQ6VeSwCtcttQ3wPsEyirj2L2HA1ebaUf8R0fc63eiQ7k/uk+9yhO9/NcpG0oX50OQwKIxExGKQNSKuNpOrm2/Ws5WVuN8f9gePo2BEWjsaoZSNS97lsfVmmyS+JZCwBVcEESFJYxB0Opso68307PxZNxgeHD3S2md2rUcu/OG7+7q0noN1USkR6zg81/PnzJyqHYoGWVd6tHKNbxEJg0Hk9ZTy9jtE8MNvz9gROfxQqKYNALQucGre4MRtTsvl/Pzq6zhZ5gAAEcUkh+PPPwwA0FQBuAUAKACtyCf0s2wlZ/PbqfSI5cQlnEAIFeVcoNV6sli/FrGZyV6pnk6oEYnZdjuPe53jLCuBLbN5yw9J6Zq8+vabf7tZf6VUt3P0C9IDxYSKBGyoR8PhE/dQBQOOShZfXFjPNkmSREQ8PySiVBBI0tNXsj/9gcHurYEakXYAwI2PSRZxsvhAAUAx+EAi0ooCJJ23x1QU3G4BANmMKqqCtgIAuIOn2z6qQXuCgTLw5ttOzULTOTOBiFgCFI6N3Zh4yZIAQBCOwuiIvD4jgugUB0KDlEfTmfyGrxvbT5dbh6udEW5bxsLWSyXQ2BlcAwBZT381rK8l7HkXBtjPHwB2aoO2DktJbTObpam0kS1k+jMyExcVb3nrO1beCkiQMb+gArCL5fXk+vVyOe91R0cnTzwvkHJGoeW9vLHyJrdH/7nTJ1o285vJer0Ou53BYICotkb1hbCJKu6cxbpHY98VZuZiYEAUIgqwMMTJYja/0l7a59CNDgK/9/ECgLKdghZIFGpmjpPZ9c3L1eIqjk232+/2R/3uifY67IoDmevl+8pbvQ0GeMMoNldLK54aVnJkyGfnLzbx7HD4oNs/QNAsNrPRBUar4J2bzhoTX89fZjRjdr2UlZfCTgYCEVH1o5Gnu3u/tT8DgB8aAADIFgAov9MZoUvN3g0A3CX6fzsA0H6RQu5cSAQJvUIRAHID4JxxZMVsrymUik5wMpl9w5IIE4jZHrZpLZJc44Gnu+P+TwDQAQyX9mMs7dG5dDEAMFsEUECvz/7L69P/jyYVjb7wOw9IdIphWI4Of64ohLJFSHE8LViXXGW2Sby21gZBqkiTS4JWYP2HEfdv61NuqB0AUMpzKhAfCwBwRmB5BaBOsqoBgOZAra0ZoBUGNH72Ls91r0d/yTY7jQKtezUOv1rhmMU6dVcA1kGvEz3S3pBJMVfN0tO+i2r0fw+vGOUWxatbdZbysmH5I+2AoUrHb5EGQm6yFpZqc0gDY6eStL7VIAya/QFaGoJhh45qwSalLC/GwCUn3Qq4FZE0zt/ONAYgJ3OPYoiIATZJPJ+8mkyvEWU4PhwNj4n8gl+7lDlUjSz6N6wDNIqZIKIgAwuLXc0X89U8iqJ+f6i1Znt71FJksRXK7xVfPUGnKI2Z2wAKs7mavCAiEAI0ioJ+74RQYerG84ECgCJnMq1wYvXxGYBEAzCIJGZ5ffNdvNrMl5dB1B/0DweDh57u5N7YtSZpua/Hv28YgG8JAAo7IQMomxbgOI6Xr17/SSl8ePSZH/ZcxYnyzvxqgeSdhLnL+Ga5mmba/7ZSMXDyy7krhe/1Bt0hgtfoFPlnAPDeAEB1jdOOmIB5Ha9eX3y5iRee8rvd8RtVAO7C/r8bAKhcpwQACul/hAbNciL0iHxBlXWMbY8TcOoNKrsfsAiKmYnUYvV6tT4TsJaxQJB1r5xQkTAK2GHvkyg4EsoWMdochFQpQEIoFgVQZBW/+sMf/t8+xjp42Dv8HDEQUgqQ7WbQf9oJT4TKIWNxkWdNh8zWJJvNZuP7vvYCInXrdNzHWemuOso7rlncm4pTyDVdICoHANzpGyerZDMHjHPE9eEAgOKvIZCQqlQAbgMA0CYSv08pYN/MPb4T2k/bdbY9nbS12gAWV39ijtkm1mzYrAQS3+uEvRPtjRlDABAggtTkMnO7hEp4VHL2fYt3XbCk3YUEpGx3Uh18bMRpu9wVioF4YevASmGn+b2zNL7Zdhb+1gLNtoIQu7tksS8GaL75uo5tFck4phBKKSWUZlUUAdvp7OL66uVms+71hodHjz2/4/iBLrGY8jAb6iF0xxC37e1zIV1COcBwr369XCwWMx34w+FYKYW819XLkne1TxTOuPTcSxcPzRav42Tu1E4BwPe6vc4xs0HaIXP5gQKAykHm+gmFMTHrxfLVejGfzi611sPDk0542O0cCisRS0QO7BW5ryWDoB8u8HtHoWRx4uQA4HrycnJz0e32T8afkOe7TAJlvEhGfvcAwF7PTys7XrExxjUt5Jh50Dl0yq2VgfqRAYD8lFfwsQMAFgCIzfrV2R/iZKlQ9/ojrUIhBGsORp8hkjTVN8u5nDsDAAHCkn5ZmlYXeSsAUPpDaerII/SceFzm+ZWnMNNSAINN9yZGRAIga5Pr6bfCm22iS6w7xrJMuwfAWofj/hdC6X/m51NRpyJboswMBIKMCcy/+vpfJcvvUY1Gh1/o4ICBFKJIonU4GvycVIOUUGFYGRGZ2VqzXs0AKOr0lNJ7Behlj/p3uXMQZgFyUa5EZR4OOQBwmmKJWSebucAGxO7SN3gHAKAS7JI0n4Pp3wViJEWBUh7cAQDsqgO0AIA9SgE7YED5RTeqZO4FGHZ3UxY73cECC7MlYGvWJllb3qDEpMNudKg7J4QBuwBGCDgbPKkijaJc4L0froVGW2l7olqIwem+JM0H5G4AADtqQS0YAKV22VrAXbsNzgFA0R+gdgNlZ+LdJsG7YUDplrg+OGnIm6p+FZab2/YtC6GbBEmyuDx/fjO9VL53dPh40B8qFaQeCbnRb20h7GjL3h8J5H3PBT1WyjTfXP+urFfL9WKpNXX6A8/znAgjV4+//ZZOwzChOOdU0K7NbBMvp/NXTryOCEB0r3uoVQBAgJbkA/X9pfKoUuoXJLUcFllIEhMvF685Xk0mZwx2NH7Y6Y6i4MBVv1vOpn8kACCVlGDAxKxfn3+TJJsHh5/0Bsd5wwm9J/0fQcRVMpsvLpXyQEggcdxpRC+1SJLURNWxgDwdDLtHLstXsi2XHZYFHx8AYLy9AvCuDen2AQClvamlCTjdkWITv3z9D5t4rsnr90akAqfdPR5+RtQGAHZDT9q9Fe4CAFXi0JsCgNRpx7FNglR3DBVWXeuJiGzmJZyepujN589Xm6u6vnuqvUMaEa21/e5Jp/OwaEef2VhWQkkWQWBEFAZzcfHfXnz/v2qPBsPP/O4ToMCZm4jdHB78Rer12LIsFQoiWhAxZr2a2dhGvb52fdtVN4CywZnQfWWI989+VeYMQSYBgVprX+u0B9TYzWY1zQEAgTtnaxSmd6MCtD8AAABJAUDgei4qLKB2APDGGKAxTJWib8atn70dAIB9g1GV4sXFijCLYbPmZMVmI2BJ6yA6CIJj1F0RlYp6MQAKIgoTlkMiaUs13P+7ZmiKJmSL9GpPilyvA7QL5Ddn4ktzAHknUOFKmF6T9eTKyoCyrUALCGHHOki/U+1GaJLBSenrvMe8LYXpiAjCNc5L+ghWGIBn04vJ5cvVejkYHhwcP/a9nkslEmBxnmOZ+NRwoNyyBLjlu3mBqEL5Y0RkkHizXq1WRNTpdHwvSI8qlkbjyHID5c5tqtj469j/mbDrzfyFtQmC51SyAm/U7YwE2ElOf5gAoDmxWLCi2x49jEbW0/kLYZ7dnG02i35/HPUOu50j3+um0t6uAJ4RgQpjKx+G/JHc915U3B3SLUIIp7Pzi6tngfYfHH/hh72COaK8l+hfAOBmcWF5k4ZnzrJNbA4Ainu1sBp0x1n6H4o1zx9TDwDjXhvOu64MvAUAKKcGUQQAYxOfnv9hubpxAEBpH5QWk4wGn2rlC6U4j6TumEvvHwCUmoApl5rCfNdASrdztulTax2i8hE8VwQomZJwnqbHbOoDItlkfTN7aXkt2Ve+BlI5IFQiohQO+p97Xihcghau2SDzg0Rm4zztCRHAxPHF13/8t5ZfhZ2T6OAvkCJgJCLgVaf7YBA9lFYFTyIwiGiRhE2ymq2XyyDq+50OgsrnpSr7Xzb4qrZSO+554tLWHRMEQaVGYCRIWvvOCEzEWjab1Q3L6oMHAMygXAUAUYFrCJGtHvluANAw/mUovj8MYNhmg9652GtLvUjSdKm7HcNiJFlv1jOxsSIm7XnB2IuOyesJOw6ecsFWRv9AIMESO/qNK9r8pi+96ntVLvjUvg+2ksbd4diVD10RADS+/XqTbvpmc/bRHubQyMLYLCJU5AJV+4uQW9rDskhuizCK53br/ZTQpqPuZ2L5CLmIJ9pkOb0+vbw6Jd8/PHwy6B94CAa8dFu2bpJYIrLW5lmV/as9+0ySAgCoXIcZxJhks14rpYIgUEoRKieCTkSNlZ87AIA828tb0SQEWsc3i+UFokdE1ia+1+tEY2eWIgz4Xijw95L+L7WIFBwVBex8/srYeDG7WCxnXhAdHjz0/WEUjhFUKqVdll7Nx/ZNrb4+UAxQLz6XAAAkL8++XW9mo97xePhYeWHBbE4Y30mIWc5jiuXk8ual1jpriHfRvwDoIgBwNfxQ97qdg0ywtTREfwYA7wIA/F/2OPNuBQACLIhk2JxffTWdXRKofm+kvcABgGH/E08HoFKZpwLf61Yh4zcFAAw184jyn6jIgBYAQOrG5TYLZJeqEbDWWq1C0hGCR6RFBDPifxmklrZvwnC2fLZcX7qMlKvPOk2G1K8AFSIaZs/zD4c/R1RcCw4gYwExArGwCCATMsrm2bf/4Xr6n0l1+w//CrFL6CEAQQKkT4a/FKqRhjP8Q2AAwCKBWLOeL+dz7Xeifh9rggD30h/3xpF/HmTsAwBY7Ho5+WEBAGSkxh0AQMQykFK+ViGiwhRM0tsDgGLCdc9bFYQ8UbobyN1eImjj3OdOrlTc1AnEyvZUEELLbMUm8fLS2gRAPF/5QV+HR6QPGAldYQx1Zn9LIgLEiPpOAObONYoWik4FAzSK+TVjABegtBKIpO39NmOAliJAnoQuxUCynf8KMLNNaO4Jbu9ItuWmw4ZyQelxpfQsBdWnVqfkkgWBMBA69gJmyUsSmM4uLq9OF5vZaHh0ePBQe1H6ZjkrblBqKSrW5FphO7Ao3N0IrMhQz+G3G3MGy2zjONaAqJXSWpNODxSqll9yofrGWGqvqAstiGJJLq+/V8qJI1sR2+s88L0+gWV8W3z87qJ/qFmmOACwnb1CTkaWRWbrc7tZxqvZdHamPG84fhJF/U54iKARMW3ydiViqEnN3BZzfFwYoAUApH2Gq/Xk2emXvqLR8NGw/1CQAIVSIA0WLKJChns/BnM1AhFZb5aLzQWR7zKYiIrZZNgMCz6qzMzD7pGne9t9o7B3/RkAvCMAsH9cx5TZ76UvOGszdRUAa8319Ozi+isCNegfKu0LKRHb6xx3g1Eq/wS2bL93OwWobNlYmWgEzTL/deRALg3mEEI5zKWyRrj7P+XOCSuCBGyFjSEAz49ADQgUIAE4Oo5yM50QbdFdpZCxuLz6gwBnaQ6TdbujEIKQRgUAicS96KTffVw0uykaDCM6Y69ACSfCCi2CTCbffv+nf02QdIdfeP2nAD6iQjJgktHwi8AfOOacQOJcxrJTZ8uaUChxslrMpmhNNHqotEutIgEgKIFEWl1CaJ/A6K0m6C6DEgIAQkWktRcgsIhYjjerG8vLvAcgxU71JOd9A4A6qzgHLUUwkHcKAgAqn1RAGKDkKrQNGKAceEkRczZvIsXghmWvO6ea7pPsIidIy/6VdWdyBRJQmVknkPrTGUCF4tK0DFbAoNls5ldxslIKta90MFLRA617gB6KKt5J7n2bUUizRVd4/DqafTM51MI84X0CxIrhRp6Uq+GlNhEn3mEWVocBUHMKq2ejq/4AVczQQOLPk4VWyvhtK/NfdQzIywWF5GudDmSxcRDc6xObB4SFulDa7YEgyAJKiZibq9Pzq1eE+uDowXDkSMNUyRyXQ3OuMV+a1QeaxI7Kx0MLACDAYpnXWsvMLtnveS4iR2iRq6qIYu0T8GUDnhOlUIDni8tNfKNU4F5Q4A860Sg9RhkQkcViy7F711Zoui2Uv2vdrdJk6DZGw6xdXRrAcrLe3GzieRIvb67PSEG3d9jvHYXhyFc9hm2RJwVjH7F71G6xgTSIr6WW8h+hCF/cPJtcvwi9wfHxZzroKidYUjtB7u8QtIgawDH7SYiZ4fL6mwyOSq1EgOB6V1AAyNPRoHO8Y4P9WN5j25SzIAq2GUkLVW/4Sr6vuEW8CzBwVwAA5CLRGgAAZkRi5sns7PzijwA06B+mFQCxYTDsRwcgRApExJZG5/0BgG1upgQAKlcohe/uwGMHTo0RTrQXaG9AKsqvkAp6CmequlABAADAdnU1+Q5RsSRuF3bNbUaMrzRbJCILjEiD3oMoOCjGi0guWiJEAWSEADi2ggRMgBt7/fUf/zZePVPBg9GDvxQINBELEVvf64xGnwMAoueWWdNyYgAQGy8XN5vVoj96oLwg78hRiC5X3TShac/g6R1kZLfqOoRKKY+UhyTAwpKsl5MPCgBQQbWwGjmRVjoi9AvKs80AoIYB2gFAJcDlvV6ElMzf7nz0NyVp+LYrp+vapgo+FgDErjeLi3gzV0ppD3Q49KOnoHqurC+IyLpM523YDdJB2FPXAnlnBgvfrCDQAACaMMD+ACDduApuwfVgvQIV6hQjF5XWH7+pA0GaigkVAFAaipJlQUsdYDs3pIxgij5ljACE4hRCXYFXmBlJAEQBMYKxq8nF6c31ud/pnzx8FARdEBKkWqtVIRxlC9CgoY/7WTfsCQBKzrUizCattCiVVSlbAUAFZO7os893mMoOgATr9XyxugJxqnskIr3Ooac7rlsmLaFkfQJv//WuAQCJxxgTemwT102xiefLxZXlZD49T8ym2xn2BodRdBj4vVzpddtYgruisR8BAGj6nWxugDJ29ez0j/F6Nugfnxx9JkoT5Ob077YD2I25BYmT+XR2rrXeqnVV+QjkfoKI3ego9DrwHqnF7xkAiABi6XCxICUDkB8OAOwFA4oAIGfa5QcYg8zmF6/P/igi/d6BH0RCqQHhqHfCFgC5WIN7ewAg0AwAsME6gIpb9p4AALJOAACwSWySFWmlvb7n9RECISSBAqMyTaszVuR3SESW6/P5/JRQZexPAbTO+YLQy963EKlR/zPf62fvwnkOaBesu4YBFGsFSYCIDGyeP/8Pl6f/XpE3fvhb7T0QsE7dCzgZDX8W+B0iHwAyZhGLpG0GxaRgsp5NJ2fd/mGncyDkAgWirfPxHaL/d/bVAGAQyAGANKy3ZrOeWLuQAgDIOxnePwCozIHCAW9FBJTWukMYtgGA+sUrqqC3AwBojr/fOd0/Lexi2xksLhZxzhYggAaTOF5ertZTRPED7UcjHT0g/1DYRYGKRQhqMrV1waL9AGcj36lJ0OaWjNf+GAAzdSBoiiYbpTyLOTP31NRQHGgCACKli2d50Ko0UIOCUIVLxg2gCOskJa6WAnZhAK7dJBSy/jYrPqi0f1dEgQI0Th02Wc3PXn+33CwPDh+MDx9qrdlSmnxJTyUp3xVB2p7bFNnjrjpAcZ7IHQGAy/0jChERUcE7sqHhvs77L/6Vyk8rAMBVwBAlTlazxanjlLo8m+91+r0DcKWzTHUoLV3fR+LmXQMASKvQRpiQeLNZLZcXwGa+uFksr6Mo6g8eRtFhFA5AdB5HNvAh/7EAgBIgnM0vXl18q5EOx0+HgxNBKryadzcmuUi6MNJ0/sqYOGffNU175wsmvtfpdY/L9ucf61fTebf1IUTcihdzWcX+BwcAtyIBRpFt9FwDAPPF5enrfxCRXvdAh52UKw/qePyJk8hkIMeD32+j2AKAZkT1RgAASsSSFgAAKZ0AQbkNxVqTxHMB9ryuHxwghY5xuJUEFYK0YkCFcHD7t86u/h4s586OIhZEuZQMABB6jMCc+HowGnxCRKUDzLGMKNOWtkCggNBIPJl9//zLfwNw3R39NBz8wuX7iQh5E4ZHw/5TEREgQIOoUNwpiVms6ay5wcSL6eSlIn8wfEJKOXYgACMjIjYGo9B6jmwpH3vvGS2IX1rxRhoPoYekUxUgsMB2s56YZCmQEFTT0j8oAIAs2uHcCQVRkddRFDkAwOhMD3YBgKYEcM0iqj3/3ZbvvFWw/40qOdwyQyhviAdgJcDIKHGyuFzNbkRzFCjlD7z+E/QOQFyhSyFiySVq3/tRO5IadZJPaVYg7zkat2j4QCtmw/aUfyPGKIhzcbmZtklkrPAWGEqvmGr9A+0YQOraZZXB2Q8DNPccYwN0sQAgrJAEwDiLIwIgIms2l1fPryfnvgpPHj0NBwNizcyI264tW4Jk28Ayp7RV/xy2rovGV1n1rM5oRcVzMI913I6dRf+7guyWBcht8KCa+0cU4OnsteWNI46673ejgzDspR1xKHkFoPUx71gZuDcAgNt+p2wEUopLqkyLNo7Xs8UZAa5XN9PpldZ6dHgU+If97gNHJc9nJvx4vmQfAJDtXeWJKvzq9VeL1YWno0cPfhoGg1wz+R0H2CxZs37CyfXN90oFWbjbOPOVU6rtdY4DHRXbI398AKDyHdcIVPzlHZb2HwoAgMybibf6P9tkyWI5efnqv6FwpzfWQY8y99yj8ecZDYMKTvX7AoCWYaaa2ne21Qq2AACqrYB2AJCnmRFF2FprkoU1G+2Fvn9AXo8wwNQaDCoyBlzeIVmQEBOzuJk/E0aWWIQBVOr7KwmhEvRc9sLaZNh/3I2OskF18bpJ/0EoYskqt9CQklUyffbH/yVZf62icef414RjBEukUZjFnBz8iiilmOf62dkhYbO2MwJeTyYvzSYejp4GYceI2085e9dNw493S7u+0Uqy9Qbu/MxDp8eaAwARkCTezJJ4lgOAkpzrDwcA8gmfJTgtiAVUyuuA6uYlICrc5raOhHwbAJB9W6CQb9+t+C0wAGHTyQ5AKsc8IpLKaiGjMBCSrOP5xXoxAbJe6Hmepzs/U8EAMAAGEC3o1MO2K7cY2Retl+6YcNx7476za/Ju4wVpwgCQDRHWuTf5BbNkA1OD5GvF+E8aYZgDAAUfQ25KPFPZeEPqAABKtOPSU7f0BAtsmdkl+dTqdYQEbNbBrFAIZb2aX12cvVgn8eDg8PjBY6V9FrU9TrLemDLUsZUKQENAX6Go4S16/zUAkFKYsl64bQUjb+qtiJe3t9oXkRi1AYA6YnfR/3ozXSyvCH1AV2DEIAi60QnlGagMADTXBGuJszerDLyhBVgVAGBxIoJQYtbT+QsCZc3y+vqckUfDk6gz7EZHijqp0JNzXP5xfsnuCgCW+W8ivE6WL179EWQTBaOHJz/1vGDb/vOOo+t8fi42V4vldW5F1w59yffCXniYu6z+2F5eRYeKUwXrfOPKN2RQBC1y2x8IAHCLnHmboy2dVav19MXLvwNOou5IBz3SnuuLcgCAC/7t++8nzVGabLWMsRQWlFLTteLAvgCgssMCiLXWmmUSr5RSXjDQwZhUD0FvpYmzvEs2fNsrsyCSIKv56nSxvEJElhhEo1gRyyhOxsQ5tqBYUHQw+EJ7nczRdls2QUUiQjaz80CbwObl9//h5uo/ovKiw9/4/hNFKQoSWR2N/tLzPFctwYKHMRRuGxEFNsvpZDY56w6OBsMjK8Vx4x8m+r9NrtkBAFJenmMTjtebmX3/AMApR5XbH4uROmOqfZKrAAkbVwFA3SP0tnPYqQemUraqMRVNzQqSzfnsO4GBejanMbvP+6qz5VL029Uq7BIANs1DQ2xXZ+vZNSvrB6JVVwVPde8JiWJGQC9HEds/RKqaIpW7xh78xjv4fgIytxoqt5YC2j+yDRCpVhxoqAUVAQBQoTOSK2mn+hPVk/oNVaaq6gg3zPzC1MWmyiEWWoe3qu0ALDGiItHGbpJ4Or367npypZX36OnPB+MHgiwibLFcRsiLANyQMpcqsMndu6rx8G4MUGUuVUIzWz/vb3UbyHuxCj8t7bq7lxgBxHZ1ffNSKc89EbNR4IdhpxMeNLGu292s39of4C2OBKlFt8BAJJCY9XT1WgGKWV1fnydm0xscdDqjKDgKg37qqJP3s330/JE3AAD1nIWcXz+/mrzwSB2Mn3R7R54OsRRWvisKaFHo/HL6HACK7b8VhJDxGvSgc6hVCGkbsfoRAwAR4C0McDkFBsuuVOgAQOPXBwQAKrsVFR5ys1k+f/lfxcZhZ+iFfVSaRAkkR+OflVMdbwsApIHkc28AoEgaobRYA2DZJIskWSCK5/e0P9b+AaLObbQRVCpAVpbML0qmKNRXk+/iZJUW/bNsTfZZIfQVYCJJNzrq9U4QFJbKqgxAgEhOSI6BxADJ9eSr777711pWKvpJb/xzIh9IwBIhd8LDQf84q8q56DPly1K+CJEJZLNaTC6eKe0fHD8FCjOxoAaByPcT/e8ABQip4jWRRtJbAADJZj1L4ilIkimgI9TNNt8vAMg9//KsrXDMbBFJ+T2lu4CB61TO5ptNO4CzHvd8XkHJZ6Deqypvlre7qzZOg7pOy3VyMpijSme0RwZgBCY2yeZ8OTsTYC/ytfY9/5HX/UIQUUjYAxIAg0IAJMiuB2D/Mx73t0PYGzjtBgM7+PS1n7b1B++S6i8CgDRUrlJx6rpDnAWBkjeYNsz/Zi1RrlctCg9g67n/Nmna7HVkq5Krj5n6QKf5EmTmeD2bTF5Ob14xb3qDh4+e/jwMOswgTIKEYATAKapBBgBymYcmANAwkm8AACrvqw4AKgvzLptMPiaIu+YuFStCzHa2utjEKyISIIEEgJBp0D/WKoAyh7YZD9y2YNqL8NVLvd2pIPUKAFiYLJ+LWLI4vzlbrG/CznA4OPK8fq9z7CqBeZkuNTT8EWKAHQCgoWKZJOsXZ18lm7nvRydHn3lBX5HGQtj97gGAJGZ+PTvfFuebAIArkgV+tx8dZD/6cQCAiiFgaTHZnB8Isl4vE7PxdBAEkVKKISsYYpUx9Z4BwG4MUAUA6aEuFCeLF8//i+U47PT9aASkSBSgORz9tIAF3xYASGGrKev9Z8o8mcR2HQDUdlaqXYSKD0muHk0gxlqztHYlkijlKX3gBQdadR0X30WB6eFRdq1yDW2y3WLNdPo8MXHOBRdB549NqBFRo7YgInY4fBR4Y1d+INLMrAAZAZCImREsoyfCIAncfPnV3ybzb7Q+6B9/ofVjS+Bhqo15NP6Z1j4RZfq7qXhT7n3AYAmQEzO9/m4Zr4+PP9d+z50arhXBNSvnA15AX/fTTNYuecF153YRQRBIC+yOAuRnmU4bb6bx5uaDBQBpoMMxWwOIOhgo3QXyXPGvEQC4G26kEWMLLV7eUuajxguv/ok2+Ncc82V1MMi8OZGFYxHLy/PF6gyVBL4m0Tr6xO/9BJGAFaDiNL6kNIIB5ShhOfGvWiotuxNW/7MpzqlNg+bMfQstBwSr5LgdBltNP5VyDrsWCGLF0oFr2fRGKo7UQAUAALMRsczsRDm27pu5MAXswADNukDZ2HIFlNbEQBvGv04LZmYAETar9Wx683I+fWnNWpN3+PAXB4ePSfmudzw3jc5TObItExFzybGwCQBsx+0dAYA9drZ99p+6Zn0xsLAKEUCSJLmePyf0Bayr7wKYwBv1OmPM6r37bnd4x7hQqq0L9wkAhATsYnm5NktE2Sxms5sLz/MH44ee8rvdB1pFWeOvErFCoqSUcfuQPL/eEQCo7k5udUyn16eXXysyg87J+OCR8iLMHDFyAFBQqHsnGGC5Pl9ulo07QGE2ku/7nXCs0c+9C0TMx48BWgGA272siEJYb+bX15ci3O8ddLtdrX0rsGUMljHA+wcA+2CArU+TY20aY148/98260XUHwadMQC55zkYfoqoMu9D2ndvkTSzWwtwKP+dUvrf0eK3xHlqTEw4G2BoQBGlRVUsGBOItYkxS+EYrAFFpDzPO9DhCWFAjv1Zbr7kgrJT6j+OKUxi5snkpZEb4VTVxAnGCVhCTaQRSHANog9HP9Xar+627qlZgNNjz5J9/vrfXT77j1pjd/xp1P9LAXSCb4ASBv1x/wmI81Up1+BKB5+dLc6mFy8PDh5Go4fCmgAYmzNGnC3Xtk3qHvP9bUcVogJURKSUlzXzmXiz3KwmAKs0z4HsbA1qG6qFd+kEXFsjnFUAEICFjUnWSiH5Y/IGGpWg2qb1MjpEAxcQmwPKGinoh+DCupjPSYRlepG5ZHDuzckciyCYTbI+jZeXosiPkEBp/7Oo/zMBXaTSNVb83gxM7hXhsezeA0tOZ9IYCu9XEOA8/VyT2mxPtZQiQo4rylEZSpfs9EAkVzxha63lzdX0y6PRXxD65Q/WCg7VrgAu3I2gQImtkWJFW1Gyy4sDkkUAClPdJ3H/x/neK8wswk5UerOeTS6fz6enxi4EpNs/fvD4p53wyCV9ON3AeJtrr40zAtQt1pps11gqbJ6mMNiVSyv7UVuCo6jyRAVm/xsFEI0zF52UNohmNO5O5suzOFm7ohyDEFoR7HcfevnB0b5GKi0BOzL9d9sJ3khLgNPPMogCZAZYrC43m5VCiTerydUrQDsaPwrCbhQehEEfxAdggSS3/aqvwR8HBigxHbdFNixUdVJUICLGJC/Pv07W1x55B4efhd0Dve1UzCfA/ufvHV6lE/8BICPm4vqbHKGVEqoi2TeJhPq9A0938+84+tCPgwXU1Pibft+KsNjJ1av5/NL3wtHwuNsbAXmImImXIKPQO9bquxUA7Lt/OQCAiMaYVy//62I5CTv9sHvg+OWIOB58kv27ZdNtwLzb3HwbAHAbbR0AZJO3AQCkKfC7AwC2SZwsQDbIwshEWqm+Fx17/ihlAZXTopylnre5f2EiYhZENGZ+Mz2zHLvMXL42AFgp5cbKWquVdzj+Iq2cCGY7KzoAwMwkhACseL559v3f/y3JlYrGveP/jqWnyUsPVzBHo098rwdIzLYgOpkBiWxnSczi/NWXvh8dnPwEVNimCiF7BOjv4YvAAQBNOt8vTBKvNstrgA2ifHgAIH3FwolJVkSkwhHpURsAaM4UNlE1WnYKecvKzN12E5J0qLHcnutQKrIwgliUxCTLeH1h4xmpRHukwEf/02j8C2EEIAIt5eSH7BnZvx102ZkA5SJjpJ7J3oErdops1rq3WwoIDY22ab48bT0SsRm2B0RgFiRmi4RgzHodXy43Zwf933qeEiZXhc4aqe8AADIhK679pq0cB41SjKlXsliX+ADkLPpHERtvlrPpn64np8JLsYYwOjz+yeHJJ0ieCwgkzW9znmuXHWsQm5KOcgsAaJwAOQa4rdpTI2S8OQBoDdwLneIoYuNkMZtfkYJ0bJERMQoHgd+nJiBdD/QL713uCwDcus9Q42YlSsDk6f+1mc0WF0TESXxz89rEq05v3O8f+l4vCkeK/EzPmlPds6YF+CMDAPU+6WwyMAAKo4BdLmenZ18DrCO/e3j8uR8O3MAUDv07JeDuBgCIgBk2dj6dnRHptDiTBv35DaTyz5Hf7XXHlKb/t/qhP46yzW4AEK8XV1cvN/EsCvsH40dRpyeuEfRjBAC5Jh2LeXX6u/ns3AvCTv/EqQAR0bD/OOMjvjUAkCr7P6MEqEq01AAACCsK/fsAABFRCNasE7MESbZnMPmefxh2HiL4+wCA8t+188XVcnnBzEiQz34R6yoArnJiOY7C0aD/JB0GYcnCd5dLc9ZAhMZ68df/8K/N4g+MFBz/ZSf8jIQENQCzbDpBb9j7LOuAoLrwi+OgG7GT86/Wq/nRyU/97sha66wNsJI3eu+hf002KlUvRVBEOvUBAAA0JlltltciK0RJ04ofDADICCMsNk6SlacQwwPljRVQGwCAujRNM1d7BwyoxydvCwzy9VJ3JatEkA5hChA46wOOk3hh4omYG5GNCrSHGr3Po8GvkXKnJK5Gb4Xc6+3pzPtAAm0p4ZSzV64D3NoivAcvSCp7RCX4rqOIFEyiyT13ttl3cQUBtLyezH5vjQDh0ejnnuqkIn2CgElxckJTbwPXzATyTEYj5qk3JStQjnaYqvoIISpmQOGMhscAYs16cv1iMnlp40sAtoBR98HDRz/rhIcMCKho2z2QtTGklL+3AQAgYhtLOg0zai9097bH6P6XEmAE39rNdPHSETTTfAEkCMFwcKKUAsE9rYXvUD17OwCQF5Op5UPCqDRYAwLmenYKaMDyYnE9m18Efufg8DFgGAbDKBy4+U90C/z+0bCAuB0AbPd2IcvxxeWL6fw1ofQ6hwcHT7Uf5Y2ad5f/vxsAcK07jHA1eSZiXSqTOS76YGYglhBVLxyGQa8Y93+0pg17LYEMALAxZjq7mM1eE0inezgcHXtB1+2w+Vy1wOodR1n4N7/+v+6xkd2+eeUAwHJyfvHH6c2p8vxO/0ipgFADQL93FPiDHXLXTUUFuH8AUC0tUSZT2AoAAMCKEAjbTZwsEIzTfiZAAgHVC6OnWg8YSAGWjZyomL8UASJiZqWUS96I8NX198wxZxk1pJRuj4pINBGIIMum0znqdx8V6+yF7COKoMdsNVxM/nD6/b9Cs8TOo/H410gdi0jOA97GB8MvgrCTT8RqU2n27PP56fXZ94PhyeDwUwEgIAYpqTsK/kBdVlRJKAJAypjK1GZFWUni5fJC7JJQRDh1cmiIhX8oAMAIbM0mMSuPFEWHyhtq9BioDQDsiFPbVtNdMwctQqI7hgcbSw1bZcmsDSbVPmIGMGI38WYpdiZmJmw8n5F8pZ50D//aiCJhQOW8k0qruylj0GiNVH+o1oSmvIlq6pa5XqGFCMDdmoObMQC23mcV8lHmJYeorIijhbAFhQJAzInljUmWs9UzttDpHHaCR0oLiE7HShJMh7rU/FCMd4vUGszU7revm9uiru3MzD2ws21ZBKwr8jAbAQvMm810tbyYTF6YZAaSWBsHwcH48Cejg8+0F1lrnXUZgmJwQT+7xQTIZVZYEzUOC5RwlCYWUCpImv9ol3r322KA+8EGLlRyFYDVerJYXaR8Cedagxj64ygcbF2x7rJlvQcAAAXhkCpkczUiZCuyWF0lyRpFkng+uX7JIgdHT7QfBd4oCkeIigSwSE9FTlvBf6QAoLjNSrMVDILQaj09u/jOmDmhd3T0Sad7RKQBmN6w9/dN2oVjG9/MnjsPKAASSfI+rjz9D0Ba+4PomEhn/rh2K+P+Y4z+8xfHzJvN8vr6lTVTIt3rP+gODhX5WWI3D2LftVlnAQDctpfxrQDApVpZzOXVN9dXz8jTvd4R6YhQi0ivOw6D8X6bXSlu3hsAVHuCy5LGVEz/Y/lSBdUIbIswXJoqMXMEk+vooxgGFQSPgughUIhshVQx/Eor3ukFS/GrWx7LxdVscYoEwhrASEqyZUFQ4DkNaRERsv3Oo040zC020suLKxogWQFSMc1+/w//T1q+tOSPTn7lBU8ZhEAhotjY98Px6AtEbkrek0tkkpL1enn5+o8EePzo5+R1CFRmIVw8NXdF5/ed8YK2PRxBISIq7UCmEAKymM1qccV2gSgg5sMAANk/LDv6sjUrNhulFEUHyhs7AFBaTrsBwG0w4C1KhwJ7lHdqDWTVZlnGPFPMIqKE2SyTZMHxEuwScaOUAhLyHnfHvyUMmC1DgGCQuNJZKHgvr+lN9ZHKQ52HlJWUfLUfYC8Y0PBTbL3P0rsmAS6KwyKDEDKybIxdL9fn63hCgAA47H+uVUcpJQICBkELGELNLISNTsZZqwZICXiUnX0rRQAp48Jc8TbbKrP6cKZ8x5JsNtfzm7PZ9CqJpwJLAYOiBkefHR58EQXHLvMgkkGjLaeIi3CrvBHxLe+3hgEEi9nVPRb1rRigKB79zmCAG9jErG+mp04R1xU5BRJPd7vRoYv57rpq7jH5encAACKMoJ1I2Dq+Xi5nmohNcnnxPcsm6h70+4eogig88HVfwCrI+08kN+v8EVcAiptzpWiTt8Uz8+XVy+n0FNAGwfD45HNPd1I/n9L0fKcAAOfr6/XmutDKxU5NJKM6u3tWnWjQDUa1ssCPGQC4d2etWS2nk+sXgBsAPR5/FvSGClVqvfoDAoDbHoB3pOsFLAixmJub52eX3xBBr3eivI6L0qKo1wmPaxYzu4I8KcWneCcAgIggWI3+AbC88+Sh4W4AAADMlu0qMUsHANKCAxhrWOtR1PtEe0PklOKx9cEhzPLlUrTpzszFEACur79PzALRY7BpkxwYYSIlCL4rAgiCiD0cfe55YXGnxhRQgogoUAbsq/P/cP2nfw+06Bx80hn/NVtFiAgKKTF2czD8Igy6zje+cB3KbSyRWBiuLr6dT09PHv6s238oSMBSP1yzEfsht1bH/wFCQr211OZ4OT9nu0CywCk99AekAG2r3uKkm1jEGLOw1njkAMChRsWgt4PsDjbGO/zF8vl3X9zBHYFyeeiqGUQLAoBpc6dY4XWynoFZIyZgNhpj9DTQsDP+a6A+gAa2rmKmQDI3HxKRrDT3rnuaZV9gUIkzuBrQ53bPjR/ZXQdoxADFOkCjaW4KMTmJk6Xl5WxxhqgcNWjc/4mnu2lbLFKxNTxt1GYsKg4V8Uxm9cCNACDvsy3sBlwBAEX0y8zOjtfY1WJ5s1qcLhbn1sxtEguyEBJ1Hj/5eWfw1MMIRDEyihAoZha0lFunl+ow1DSA9tb5nI+wlD1CbsEATVpJO1Dmu8AABQNHWa6vV+uJC7MQFItBxE54GAb9XO4ZUeAD+2qkAHHW+4uIq2S6WE4Uokgyn18tZhe+H43Gj/ygr72hVgGRJmEkyU/VHcKm7xkA3Lu/ZGWCklQBQPHvrteL16+/M3aJwqODp8PRo0yFhSlTIbkL8GtlXe7GkNPleZwsswiHs+tzISOgFAW93lBDWDGPl/14ax9xBUDIms1k+no+PVPKEnXGh5/5nR4BOhp2NoXeSwR1RwCwa5NCsU63ZL549ersDwDc651ov4ugSIFW4aD3OKN52b1SvAUBqS0AqETwqTOuZHaPWaDfmP6vAYAaI2gXALBmaewKwbifoiJgsdYK6CA66USPEcIcAKS6h5gSZtyBSkR5Cj/vimNYXV68YIkFSSlkZrGcsxsVRXmeI/C7w/4DVDrXYs9a8lhYgWVSvLYX3/zDvwTzEoLO8OT/SDgGNACEaJk5ivqj/tMCAMCKShcKE+nF/Oz1qz8OeqODh38BFIA11VW6dTZ4j2u1/uoBHP9HCLPOZnEAwJo5KUbXJPFDA4AsDkRmRjAsiUmWItYjD8PDQgXgzgCg5u9zSwxx701F2dOJbFWhUq1/EUBmkMTYdbKeSbJSxCAbjYzEFnvh4Gd+5xMwyOiJGMK0LdVVwZpmVqPZ9u5N5K78iv1+H6vxYoGnxHC35mBuvIfGftPCzsk51QoZ42SZ2Jv58jWKO+8pig4Cv69VVM7rb9PwmLKJG6ym3T5QZTo1/I4U/XSLj1zxKUtLChJPp69vbl5tVjfMc2CbtuEqHXUOnjz9ta+OUMhgggTEKvOKFkdAajRZ45rej7ttFN4NABq9AgDaP1j+ZZSWZo9i4vTO1CDec3tBxMQsp7NzpFRSzwVaYdCPgpFL/xeavH+QTDVD+zjWw3Gb1QQSNtPZawAgYJOsri6fM8J4/Cjwe34wDIMxZjz47QTOBGeFkRt8SH4MX4Um4PJ5naf/hQTs9eR0cn0GaEjgweOfR50DZiaBHCzV88rtiKXZW+bWySkk55d/0lo3yV+6EEgQVRj0OtEQGSsatT8OCaCWBgCH3lQcr84v/xRvbjQpLxweHHyqggCFaCu4jB8sAGjcp0hEKNs6F6vzV6//3tqk0znyw74izwmAHB18viMyaQwubgUAQNtUOgAQZBrhewCAsp59FQBUVkUdAAgKIqVSPLrf7X1O0HcepZS12nDmS1IIaCjlHVG6aBG8OJ7czF5yZpRE4jlbAAAgIhDtRB5IQb/zyA8DROWCWgRwoqIEwBYUxDGZV8//3ezyP1lYRQe/7HR+jWRFLEIAyMzx0cFPfC/KM6uVl+5gKMvm9Yu/j9erB49/7XVGyLZKjUVufXGuF+2+LNnbg+DUYpMUoQaltmkM3ixmZ2wXHx4AEGZAMJbjxCwJhEirIAUAgmob3mUy9rfGENWYjG7JZN8XAGhM/+d/0zr6gWVhI3YVb9bWzjwk4hjQCKyRPK/702DwMxLt6lfO8ZdQcrTc+EfTSnebjMkdjvz9+dxtlklc58XlMX21KwC5hrQbegl2YIBaEYBFkJmNXVkzmy8vEAXSZnce9B5qPUBURG5NJ9m26ZLHwGIQ1La+X7d92AMAZFWOZs5Sun2xCHJiltP568n0xWZ1pZAdgx9ZGJTvD4ejJ+ODT1F1QAg4VgQAwkKYRgMNy3Y7FITVJuzUppp3576xnLtoI3Q1AoBShQf5jnvCvWAAO1ucG7sWLF182H2USX9SpWHsQwYAnC9cNtPlhTGxJrJJfDM5W8c3YTgejsfaG3ajI488ZiOKiVXJ6wMtAAhTXTblRwYAQLZJ4jxKYhYQnZjV69d/ipM5AEc6PHn8c+V1RCymYTcX1P+qx0RtquDtG2DLPLe4ubp+QaRzVk+euMkDfa39XndMGJJUI/53V0L5QACAWFxvZueXfxK7JFCd/slg/Fh7PjDWAAC/6/nbCgBuexiuLDGUBMRHtCCyTibPT/+biVcdfxx2R0A+KbA2ORr/QoEIoesPK4R21JhKKTW81tLANYev8jex2v5bkL4uAwnCxugfiu5CyMyJMUu2m1Q4j1ItHUKwhoW9bvdh0HnC4gEAKSFRzOxy9MLFv0KlWNml50EtVhfT+XmWf8rEIp0iECoEhSTW2qgz6HePQbTL7hCmjX2pF5uIACySF19++f/yk2sTHB4e/hZ1n8kDAA0CbMNgMBw8FWR006tgXpb2boIokJvr59eX344GD0Ynv8isDFLhHRErLqBh1RDot+gx30vWfzs4JM4HAEkjkhAiKBc7IsTT6XOwa1IMYrYS0S153Hu7z+arFfRw2KVqjOWNsSsAUEgqOvLVIZESVACEYvPP1LfCutsO7xNk7PGYdwUGjKKgJFKU29A6bglbEBFjl8nmGpzgKWwAWCwDoeo87g5/JeAJelSU+LntVvntd2RMJXSa0zO7wsYGK9wW56wSuXzLO899QkqkIFsJ/bciXZLR8UVQUCGKGBEBUEasSW4Ss5gvL4gYRQMYQd2LHns60NrLs79ZdbTRPqKhfFS8n6LzQDo+JK6LN1fiT/v8kAmcFiEQMDMrJAaMk9nNzevZ5MU6vgEwgEzpX0mU7vb7Tw8OPvW9MaKXCrqnWJ0LZSUsVWYqukPbdLutxJkFYNAya1Aq/ywxglh2AAAEFlYAnHkqthwhb4oHZDu1tmtd0BH7Zbm+XK3mW7TPCADdzigM+rClCTXLKVKhWYVdlXpH33NzdLgjoJDbKme5KQ4gIltEEkZxjsKL5SQxS2RUBIv52WR6Tso7PHoSeMMwOiDyMRUq5buGRfe10f9QcCKvKhYrAK7okQqnCs2m15fX31veKPAG44eD0ZFWnghiBgUZMs7Au/zamNXN7NQpnWTfM6m2W0o9oG7nINS9H5Pc504lOswr5GKFgWfTq8nke5BE6XAwetIbHBGqYmz63vAP/s2v/tmt8cE+ACBt4GCriNbx/NX575arm47uRb1DVIGr/x6OfuqkLcuMPWrdAT8QAJBWALYAIOXPIAEwgrBFZva8Yaf/uVJDAHJM+sIZ7FomaUd0iyTXk5ebzQxBbT10sraYtMlVhEEORk8Dv8tiFGoQcpUEBiGLIgRsjTf/07f/8/Lyd4aC0dHPgvALBuvIAMIJKTgaf6YodCzhvO0mJ5w4AGDixauXf48Cjz/5K/LDtFghW0tXcJZPRWaw0K1nxhvITZY/khvAcREAgKJtO4eNZ/MXYJeIQmT20dJ5nwBAOLG8sbzOAUCgjxC1IFYAANTYmcWhuF8M8MaVgS2ZzW1w7NjbFsSwWW42N2IWKi1WGTAJEkt43B//VqmhWGeJse3ylyxZ3s7opbdLnd7qV8q3BWYtQVIh3K8AgNtyxq5zQFBKdp6FrmIksO4vMIqIJGYar5fz1SkAO8KPK3j2uw99r0Ok6rOjnZPKpeisOWLmrdNwQXBdshAye4MswsCGiMTyajO5mZ5OZy9MPAexmpBS6A6gGL2Do8PP+t3HqEJXcwQAAiWQFG6g6FfeIjxaOGDbqzr21oA17csqBMdSYHlJC3Ma0ID4Ita9CBHEvUPN3TthoXO6amKemOVsfpENBYNoAevpqNcdEwa5EHuGZm8HALCHkO7dIpJ2GFA0scrPeQYAoDiZLVZXIKQQk3h+efXS2vX44EkUDsLo0Pe6aaoR5Q0C8R8HAKg0AOSiSSJijVxcPJ8vz5FtEHQPjj4Nop7DgZRhvPcTVS42k9X6pnB2E4DJCGkAwFp1+r0DBd6PSfHz1hWUAwDD5urq5WJ+Smh9fzA6/DSMhimfOSvpvLcv/Jtf/bNbQ4SdDcFU3GRJAAEMJy9O/265vvaV3+sfkU7Dx/HgM8cMuxUA1H1/2gCAIDXl7LEOD94FAKCUtIMsCYDf6X4WBg8E/aI/eZo1x9bcdr5OLK+uJ6fC1qlTZ7ap6QbtfJStTbqd0aD3IL1d0YBOZpvIojWE1nCIs8U33/7+nyuZe4Ong9GvUfnAnpBFRJuYQf9w0HvAYtKjwgnqZ+qCDIJkFcPri6+n18+fPv5lNHrkiEYZBlBSzfvue2C8nWTelsqVs5UAlUuf583fbDaz+SvmuQIh5F27DPJ72LeLAIDFCCfMseU1ANUBAGXBFu+xGOkNjreWR34D2dB8VF37NTMjC4AIWGYjSWzimTVzQoMoQIgGAGPxB52D3yo6VrBl7jlGtbSivmLl4f6P+6YhfVsYUKAwleWDwLZe0XFjRAOyY+C4+eDCdNdNZHixWkxmiz856iNhSAQA1OscebrrqV6q35/bbYKlLeRpkmCWJjQiIi2G08AoyFlIncu1JYgoFjSC4Hq5uLq8fDGfvU7slJAJA0QmAAICAlBh1DseDD/rdkYIgYiQYmRXEXYV0QbcIij1AZSKRkk7BtgNA9J24nLgmvOIWqJ/i+hynHxx/dXxwU/dv9/s7L5tVyxtI8v15Xozc7o3qdM22F7nOAy6ItiYOKj8rYpIXek8Lb/ZbfB5T1EJlUBdlncSxWxuZq+EDIkHbK6vXyzXs27UGwxPSPX63WOlPCd0gWSLJSy3LujNVv6HF+jvmAHUJAGUdxKu1vOz82dspig4HD4cjB86W1nEnFjyPlLLzOZy+hLAOAOoQkbDAmgXOHU7B4Hfpw+uO/19AAA2HCer88s/JfGEADudk9HBU+1HrnMrVTx7jwigAAB2xgf7xW0MFhDFWnt68fezxblCGg4foAoJNYsZdB/7fqew0dCOA7bqXN2SY3Zrv/TLTdH/WwIAEWFOrF3lAEBEgFTO2GFJ2KLnH3R7nyN1UWngnGJOiCJINfKAyjN8kPqjyWI5WSzOEZUVU5leiIpQsVgRORw/CXQv17dBcjKlBNY57rB4m29+/8/N8kuro8HxX3repyDICkREAxLRaPBAq8iZtm4N11xGiJkUI+vV5urF8/8y6o4PH/8WyRdrtjlJaCL/FHh+9zZB69z98qGFoEAppzSVxo42ns1fWbPQxAhWwDbKgL57AFBzQhVrrXUAgGUDAAq1Ck8C7xBRpQBA0hCH27eYeib7Dtq6bx40V2kkmBqtFf7NjMwssTVrGy/ELBASIrBiCBGALY0HR7/xg4MktiAeKXQZwSzXueXYtEVSb3JstPuD7tjr6LYxaWwXLlvrNaWl99CoAXB0GkRGwMQKMKDwar26nky/5sQQEelQa40UBH4vCoeaukgpIOciaaSmuFKJg7HKa8oVgQrVjFLAUVLzYGZK24YSNslyfX15/f18/lrMUiETASMgKEBNpA1DGI0Gg4eD8eOQegDsPB/Sxqct6uNyFL5FXOUMPaRlh/IINvdU5AI+wnsCgObXt538TuLQGGOURkcHItLt9gh3gwFlu8xtri1OFrPFqdvuJBX6F9/rdjsj56yUv/R9UjBuNeVrrUDaruHuewMAmWJ96dloubpexzeISKyXy8vpzWvS/sHhQ9Jh6A+dgLhCcRXvXCYlJb0W+gp+rACg2F5efINWRIFi5subs5vJS8WxIv/w5LOw6+YDqoKl+nsILC3Yi6tvtfZzA+BCOYtExNPRoH/sTNx+HOn/uwKAxXJyef2d8BIAB4PPhsNjrX1KTTC5AMXfx/jgP/31P2v+AbwRErCAaK2VV5e/m8/PUHg4fKS8DqFm5l73OAz6+9h2NgCAGpEj1a9E+KEAgLsBt1kzMzMw6l73J2FwIs6YlsVRnlKXX6ysZoKcS0qYauWCnF/+yXKqusPMW6U/0iBIRJbjbudg2H8MbAEZRBNlhyUjiWILonl2/fvvvv4XRBvsPOqPf0MqEiSViXUEQTAePmFLRMAZ6BRJ+widzRmzefb9fwKzOHn8T8KoXzS0IgcAkEH0D7Pk0uNfIWIFAAAns9nrJLnxtBVxbRLvvgdgDwAAbKw1IInlWCRBRALlAACRdgchFdKc3A4AoKamx297nvF+n+ZyvlBc+t/FcE70E+KViWdsZyBrTeB6fpBt4g/7h3/te8domEExoBLGmo67cxiw8C6bmJF5jz0dkNv+XGHvkopcBu4EANsQs9x36yzAERHBS5k2nPYkxMlqMT+bzr+xMSOKF0Re0FHSUZ7qRGPf6wr4gJLX2Sv9rPUO6TIG2DoQF7+fYQnJ7k3ygANJKC1QaBRGMmI3s9n51dXz1fJcOAZkEkYCUEAUEoYAClTQ652Mxo89L1Dig5jMG8imczstLFA+erUhb1IvqQAAqJgk8T4AIH8xtQrAjgWSdkFcTb4fDz5z6IttU9iNb1aP4vLiTnm289XVJp4jKnfouHHrBMdR0M0k3Xh3EaDuHV4GAG0V3XtYeOXuVRe6KwBOzHo2v1BKgQWTrCaTZ4lJBqMHYafve71ONCb0REThVvYny1ZtAQDs1BffM9O0B0Xwh4r7m2a3k0NgTMzm9dn3m821Eul0DsZHn3hBKCku2kpRvwdp+XWynC1OlfKEi3Q+YmZSIkz97kmgI6cF9I+nApDLrFvL15PT2ewFYIKgx4df9HuHRISYytzkl3pPAOBvfvN/a85A7KdJXFw/zIygUKwFObv842z2Qqzp94+131fkMUg3HFesrKTMB7w1+i8rRqXyZ5XoH3a1B5QbcO8IAIxZCsdZOiTVWUNEQAuCYjCWxNcPeoNPSHUFKfPWpTyDIkAF3xwqJpPywoiwubp+ZW2CiJKe35yT9RHIDfXB+Inv9RCtCBJpp3+aCFOCjnTEMPvyj//Szr83hMOTX+ngsRXxSIsgoWHmg9GTMBi6U18QUn0uAREXQzBpNbn+7vL0j6PR5wcPPkPwLKfOyWllHE0ar9TjtHuKrUs5OdiauOUkMSLl0ufuqREFxSwWF6vVhactAFBWKH+/AKBJnpyZbcwcs42FDAgRKN05DvRxCQBkoSHvTMDfpTT35udZTYaAS0s+r/kgi7DYxNilXS2B5wgbAiAQRmMAkA57R7/R/gkbi0AAhGKcZmg503jLc926J8pOHsid8E+JdC6Un6Y7x1+a4vstm7wYY1WbhjlTwUsrIZatWa8uryZ/MGtmiZXvRZ0BUgeA+tHI9/qe7nAa+mNmMS5NGuG2PBm4DGAKy6EhnEYuGn6hcm4+KILCSTyfz1/ezE7X62uxK52OFSKiKI0qINXx1CAMOxt7+fjhP0EINDnVp1QQOa+UClhEKQX+VRoSt8fK1SJM3XDNBfS0w/ABpQ4AajExZ7sfEyhj14hC2AWwt3D6EfBuVl8Zd1S2Ua8x68niBaFOeVBCgOzrbic6VKj3zIDfurJamoDfdqukGnJmQERlOV4sr43ZkJA18WJ+tlhNwqg/HD5ghF7nOPB7xY0RhJDY5kkrLp8WbypLXQEAH0Zl4Jbo37qoQOxsNrm8fIYQK/DG4yfh4EApVRk0gFwM9B1+zdeT9ebGqRQKJIXQRYkkvtcbdk9c3e9HoPV5JwCAAiJgTHJ++Xy5eKU0CgTHx1/0uiMCdOC9GP3De5FCKgEAKKvU3ak5OM8CEhEzzxan5+d/sGbT7R764ZBQA6GvOoP+sbDKRfHcHN8WO4VSmYB2AFAY7rsCANUQ/b8FANg+uFOcsNYwI3Y7vU+C6BjEI9JViatyAjuP/omI7VbYODGLyeTM2sSpm7ltTkRIbQFAEHTHw8dOJtT5+AKSQSZLIshGSMv17Kvnv/83SNd+72H/8LcAIQAIKZQYhQK/MxoeE/r5MKZVKksEJGCAMInnL5/9nU94/ORXQdBn0S6njkIALFiKDyVt8dsVW991TqdOZ9Ccxc8BACLKFgDYzeZmNnvpaZdStR8MALDWxCwb4ViQCwDgiCh1AqYy+5lbEvDtx/muksC+Dny1v0eVAGibTyKbJlaNQGLNerOecLLRuNapOK1JiNAbDQ/+SutjawBRGETYalSMJTryPrXBO6ZR4e6Byx6Vz1RHqK0gUJ9dWdQorYqZgkxp7t8gook3i8WLyfxPyWrBzJ7fC6Ke0j0BRKFR70j7XceKzo/Yys3vqAOUYUyJ5IM12o9URMfT0DPZrCbT6enN9KWJZyAJY5IZWBKSJvKVNwzCoRdEQRDOl6cPDn+jKKAs7suQvdnGsi3jDKV2I9n3Rd8iXAGNskhFC7Y2kVAUV6Bga+1k9vxo9AmID2hAtOvdumU321c21BbeqdNqixfLySqeKeUJJGzTlE03OgqCjtuQ0+SLiFPLSUsE+x3fhQGhWghyD/tkDQAAA1g2m81iE8/dL6xmV9P5OSo1PnikvZ7nhbmtgSoiZwJhcFET5K3z92t51vIiPxwAwGk7Bxm7uTh/sVpeEEIYDEcHT72omzaVFgEA8ntg3NwsT40xAIyomE0x/hHBXnccef18Zv7jaQLOAcBms359/k0ST7RHpPoHR592w0EmXr9dcQ7fvoc2Cfwffvs/NZdWZa8gaftZJ0eTnUar9eT09d8l8SKKxmF0iMpJhaqD0RNCX8BmGfHC1BZCRIa6ejGhQA0AbB189wMAZSX4uwAAd/CwxCZZC69hazaccTCRCBksGxYroL1H/eFTlJDIz9ACQTlvLZkMNYLz7MRSqkkoSW6msytrE6etl3YDo8vUk6up9XtHvc5hih4FBBABjDCwAktInKj1qy//7fLmvxr0Ro9+pf1PGInBKiYCBLRROBj2T0SQCBiyexBFAgYSRCS0r19/s7j89vjxb/rDR0iBtZYQyLkAFdUMXQGL73k9O2H41FugmDEldG5riFQEAABMwCZZTm6+08oQaoC40QfgwwQA+QepmPwrceK5HQDQrYHsXTNbNbsHrrUiEAALGGsWq/UMzFQxIhnXGAog7B/3D/57VH2wAixZVwwyGi3EJYrqvQGAPV7HnY0Otx8sTJsaDGgGALktQDHBUwjc3eaQiIhJ1uv49eTm2816ygkQ6qg7ijpDKwpE9bqHgd/XynP8byJgcXZamHtxlf8KF7WJoKG3QSrxheNUyFYep8xMZTObvryZfj9fnIJdkjApV6kEQGHUqLu+P+pEh2HQ01rP5t+jopODXyr0xUEgAiuixEUAiCgM1m2AFrZmMpVSCW7VNptBFG4di9vqALswQEGEKoekRTWn6rFoxVxOvna6dghO3ZWch90tJ+7dEak7KSyvryenpAvKcgBh0O1EYxB3hnFB1Y1vg/wVDXhu3w/uZ5Ok0hpBYRSS9Wa2XM2IQMByvLm5Po3NejA8CrujwB+E/lBRJLBBVGo7t5kxnSaltD3uEqXYkfhvrHi0+6i8z4C1FQBwPiEZV+v569ffKtgAy3D4qH/wSJR27AMqAE5EFOF3HXCfXX+rlIcojmSZyRgKAPveoNsZUerqhP+oegByALBaz0/PvhS71lp7/sHB8eNAd1AyGeVU5RbyAte7xgDVCsAuANCk715MFGGKMkUEN5vF6dl/XW8WQdSJgiOlQ9fZNh5+guBVoE3RRqhKdM55MlKNy10kwQXYlO/WgkDVjC85kTeE3Klqt/kFZIS5VIXa8saalXCc75hlTlF6ylqLAtTtfeaFD5Xy04gHVYF8V9pDOKN9V8cfabm+nFyfOW9gV1dJlXowSEUVgcajh77up9clEmBhANDsTDRRbpZn3//Dv9TJC+k9Hh//9wIeEYlYAuXatR+cfK4oQrQMmAbKjlWJImgU6uXy6tmz/zzyu4ef/I3yNBsRQMIcfkmpsnHfoRtVgGKeShPOon8k0q4HwNHHAQ3b+Pr6GcJSaQTmTLy8pqmP97YhOvV2KFNQUquyTALIcmzNkiVJfwdZMenOQ987BvIdnrFg9wju75ixLs6xO2KeYomnJIqFTKwBANBYjoXjeHVlzI0SduNAAoyW/ePO+K98HKfrdFvKc9OGt4Z9lQbMN5tOt2cB2wzsuGZOclsAhJwJqkjzYYZGWAMmaRyWy+c7f3AAt305VroV3mxuFotXq9Wz9WJqDPu+HwY9PzpUFBhWvc5h1BkgulrflurgHJdkm8Mu3XORJOP+rdJGz8L+A9YRznJzXOdF4K6dqpBpSeLZzeTlzdW3680NwEYYtbIgiMRCCKiJxt3uYadz5IdDIp7cfA0Ax+PfEJHaslmk7F1VGlvOmi6qOakG6SS5bc5zpabR/jZ5xxQScahVRARQSwqoaLW5WC6nhwdPSUIRk+8wu+PDoror7OQFuYOHLZBK73++OI/tkiC1C2Rmzws74VirTtOivvfUxl1rh6XSk8stFcNrRlmv54vVlSIPUYndTK7PVptJGPSHw2NQuhOOw2DoJP+zqCgPRRCpOWEvcMfK8z0F9ALceKk3Fi0mqCZIEZlTwq2rKLJrgTm/ejGfXyixmvzDo0+DztjhQcq8RwrPfm+ns1MfdW817ccQtLyeTF/l+j8iCQAROZ8i04se+X7oAG1GosYfDgO4N6AyE2pBJBHzZsSk3QAgTRNbBsDp4ury/BvChMnrdh4MR498rTCli2/dWd8bOmoAAMX8xzZokFZqR5rNSlWcrQN/xqxPL363XFx7QdiNTpT2iQhYhv0nioJK4FXUcm4DAFAg0W4XCJVMpIsrsPYi7wEAsF2z3RQBwFbHMNvXrRVrrR8cRv2feHqcxX9YFHXOb5MRQKgR5IkIKbienK5XszT6326mypF9AQhEHYwfejp0u6rjAzEDomJmATC4evGnf7c8+zuD8eDkp2H3ZwCaAZw2sFjT7Q773SMiX8SiojRQFhRgBqvIA16/ePG79ezy5NGv+qMnTugxjULy7rR3N0HLOdXKEenEkZxPggMAiEhg2JrJ5LnwVOlUgYmZK3WAewYA1bRrNaWNYq2NmdfMhtkgCQqQkIqOA/9hDgCK7b/3BwDe6kBqAwDofJaBQeJ4fWXMFGUNyGSFSQFaVIPw4K+1fwzWTfq8K+bNA5TbIQHuqahItcvyfmdGqQ6goJIsTP/NxMJEYDO3IwNAwDbnV+RpV2PXq+VNbK7ni+82i6nZGKV1GA38aKR0j0gT+r3u2Pe6VlgpJZaxYBqd2Q6kQKSupdMQaqMTbHWbpGUWd0ijsAg60xIhJgsobG2yiReXV9/Mpl8nm0siIiIURahFUJCZlPbDbufTXu84CocIhCo+v/xaER0MfkFaOZ4GFO6zPqSZ9FMzAIB2+dRykNQS6N8CAHZhACc3nPHx0rcWx+vp/NVo8ERrX8SiEIBCBIFEdgfELHsWIbOEmnGM2VT7n6TgME1ROAiDfrGF7F1igDsDgNzKIPNY2PZUCKKxyfXkpVIeKQYLq+VkOrsUsQcHJ74/ULrX7YwQPQBTBQCuct4GAO7Fx+D+9qW3cS2hMgAgErbKCfXlpDgTx2fn3yfJVANE4WB48MQL+0Wl18IZJ/f+yIiYH9EMmJjlbHHmAICLWPJfI4HR4Iljc+UstQ+g15oLB/ebo5FbAQAAiGURuLo5nd28RIhBRf3+w/7gJPD0NiH2QwGAhg4YvpujUNrVyuKsbZnjF6//br64CrTX6R4rHTriyqBz7Hs9KfB8ZEcMDgVuqDN5LTfyViWAtgCgQvnI3MfS2Uotm0KdAgQ7AEDxyvmKZgawLKQ6vZ/4wSNADzOJ+jqqydONFQyQvQ4AtNeTU5NsmA1zgVGAikg7Yp+nw+HgWKsgV4pARGZCUMbGqOzN+vz57/+NNq9V96h/8k+BA1ZIbDNmAo+GJ1F4gIiCjKCYGQWBEECsZa1gOj09ffkPg2jw4Ok/Ya2VM/RhAbQVAHDvs7apS7w0UE0AgJnNzc1LNhNSTFmy9p0CgHooWf1bbIxdsY1FEkg534gsuvMwDB4JKgUqvyuuPv4+G+VePh77H0j5nkCF/8wnvU0F5ok5MWZq1pfCcwQGtGxRe8hq0B39d+idAGAq+ibb2t02fsXm+t5uMbXbD3iUnb/fYLEuOwU6K0O1JQJlddEiXTCLOQU5rbwLpDU3R90BEhFrTLxeTxbz781mslhd2MR4uhuE3SDqKx0xaAGvGxx2Oj1FRVk9LlI7KgRoaWLFuBXAmLIWISOYoaQiMHmDLAkBEEtMyIldzxeXV6+/Xi6eGb4GAoUKCBE8ImJQRF1U/mD0pNd7GOguac0Sn1//AS2Oep8Ffk+TxwUev4gASvn9cr4TpsID0v6iy7pJjUnNHb0f6YO3Toz2OoCDbY6EJGjsYjJ9EUX9TnhMRABGLBEpEXNrQhnr8KatIudaArM4bzL9XsTVZ9JBCLwoCg6U8kSsY9U2ZbcZ3zmNuC0BgVvpCyn3bwlZsLPFObNxuX8Re3V1miSrbnfY6w+V7nWjY63D1GEtBwDFpgW65xT+OwIAt2ZVdoxmDQAgp1GZ2GwiLec3l1ffocQaw9H4Yad/hG5KFIwp3wUAyACd5Da3QrjeTJer67wdtNixGeho0HsgAi7L/gEAAHR3gijMCJggeNV8430DAGv57OL7zfoCJPG8fn/0pNcda60+CADgqsqlJuDGh2mrWrrGDiGBxHV8vzr7w83s1Fe60z3WXuRwYTcch/6w0gTcmPetAwCAErGn0Ee7Tf9XtT7L6f/K6tunAiCSHuGWV9ZsXBOwo7UVKwDFzQ4siCD5427vU9QDJD+NewosXCkrnVNWvS+uVTf2xm6ms3OTrJhTXE3EIkjoExGSmIQ7nf6gf0SonDkxAAkrAGA2KLRRydnL/212+u+B4+6jX3eCL6wLXSDR2hdrROThyU8IAyGb0kkFGQQRmIUA2cYvTn9n5hdPP/uroP8AhEQcxBdq1YfDWzN2+y0t2B3wFQFASoUFBjaz2amJr5CsShUGXccYVdKK97vMCrTaPHB3CQ8LnJhkwZKAWMcVLgCAh0BeagKQpUILFyzdcwtNZV8k0LbjSvs41OnAafiJjMzGrpPNpdiZmKWIIAIpBhqE47/2wqdi0lA7z/0X2wqLBGvHDmrUG9mlF1zrH6jNNm4ECTvNDXcf59xWGi3djGXElD9DQACUNfQzszE2Xm+uZ4vvN6uL9WIuxpJSUWcQdI6QQufgw8aOBg/8YOCy/oWBZ0mF67etBUUAABX9omw/z1tC8yw7IZIQI3MWHCMLcBIn85vZs+urr9brM2uWioQEmDRopSQU9Eh1vKjTiR70uoe9ziEAMZvl+mq+fE0EB8OfIYQICjBOLUwy4CEZNrblO5QyP4SkhseQ29/dDjoQN6KIttOt6fczxAbp/puY2XR+Nup/qpRKKyeImZaR2gdGNs+u4gNCVt5mBcibeL5YnYJoIJWppqpOMAiDYW4Hdn8Z/Xu+jttzsjdOCsUKrtaT1WaC4CkUETufXS9mV6jV+OBEeWHgDzrhIQARGChnH25d7z8OAJA2IRQ0EhzrNT9VGYiZLceTq7PV4pRAfK8/PvrEC/tpAbK66bXd3puzg9IcR0HJ7WZxZuw6Pe8KB4WIDDqHvtcry77xDwgAHF0iAyrurt78fvYAACiW43hzdvGtSWYgSRge9EePOtFQqdyG9YcBAP/3PGSpaR00A4B6einLarOjhrm3O1u8fnX2R2QbRuMg6ikKEDHy+1FwAAB5G4DctkyyUMrF0FvbL8HyMG0rOA3Rf+EPNUb/DYvElbdcTMNs2G4sr4UNbI21seLVkp1exAxWMOw+DbufkIogg+M5BzoHAFkRDSq177wsBcCL5dViNXHnfqrBlyrepF9sodMdDPpHkGWREVI5cGG2yAtz/aff/ysvfi7BweHx/wExYhAkziKDuN87HPQeYq6uAMTMGcMfCHE6e3364r+MBgcnT/+pRUU2UxkG/kE3Xsqjf0QUSvuAUexs9srEl4QWEd4zAChf09EqrNi1MUuxBkmcWgiBIKOKHkThIwcAoOCHy9iwv6RZzNsxQIlk8vYl6bq0kOvLBGsNz836SszMJEvUjMojDILhX/nRT8AKkWYLgIagVgcrh6c1oEF3PF93UaGQ7npgM9yxUbhq8yeOSG9TxrMkBAjACa/X6+vpzbfxcrJZL60YHYSBN4iiQ1Q+omKwwl43Og7D0NNBOksLPcSp8g9W/jo3nvN5YthpEFFaLdi21JNiSb2EDCJau5pcfX15+bvV+nUijCjEogiVRxY8D3vi94Jg3Oked7uHvh9q7bGROF5NJn8g1EcHvwIg12VUrJHmYTGXiZ+VvHX+gCTVF+GYD3TL69uDDlQIuFFgn99PvVGAmDk2s+nstdIw6H6uFIIoEUFyQsPamRvsmI15d6lIo8ZocVGkvcUs5mb2LPspOQAQ+J1uOCby82Uu95wI5/v4TXKvsugYSAKJxNPZ6/QMZYyT+WRyxibuDw47vR5gp9c9VKSJNIqt1B7fmzzivZ0Id+0NQIFcESRPGQoyAJZEwxQzb+L5xfkzMTMSGAyf9EcPgTQiKsDy0SZ7ZOjeEgCgiDmfPHeahI6GkP+D0B/1jhF10Yjgh36VaR3VggXQCt7qNvYBAMy8mN9c3zy3yRwBOp2D3uBxGHa09radXD8IACgnxmylBFrboQpztVzXc2VmAasAGXm9uXn+6u+NXYfBoBMNSQVEpJU37D4p5X4alkYDT3frulXAA8UbapT+TLMyTeuuEQBg1ZcIXRkuBwAgSeWWXG292vdpwdgY1GFv+AsvGDixfMwYRa5ML4TFRVhXFSxMKZ7Oz9abBVgUsDkXCBEVee4cNVaGg6Ne9zADG8xAIgoZRDhR5vTV/z57/v8TiHuHP+n2fyHgsQUkJkBAZjbHh596ulOGH5LLSgjEz5/958386uln/zTqn4jlHQDgHU/frTpeCoCcLyZh1vjByLJcvNpszhEMIpSazitJ8HsVAmoDACiJ5bVJlpJavDGDzXoAHnSix4J+nkduWWAN63Fv1Qu+FwBQLk8zALAkSXJj1pc2viFlSaNFrTu/6Y1+KbEgKhCNYKCpToTo8ucCeWfo3vvsXrnbWir3Ltm7W6oQgnWb5+3obtEXsnPzRYHErNab2Wz25WJxHq+WIqjI6/TGfnRAKiTxENFa1lr3eoe+E8sDC2IRFGzz2a6ghIKm8fzeoTSaJviLomokwqjQguU4WU2Xzy6uf7den0qyImEGtKCU8oi0Ip/0Qdh72A0fhpEfBn0iQkbmeLm+ni9fDns/9b0o5aJkWxAA8Za3w/l0JUmLF2WP4ZSSl/9O+b0X8lO4QwirlRHUEO8Ur8Ny6wQwvLiafK+U1+88CoIu2y35KlM1Se1O69fJ+W+32gVs71wsEa03s8XqzLk9GnZ4ErudUeQPi4NT+7vvHwk0rxcF2+jfTYmb2QvmtIou1i7mV7P5le+HB4cnqDxfjzvRGMAgIgnlgezHCgDeQMagBgC2Qc5Wp4ss2On8fHL5HMVo8k+Ovwi6QwZyA17WWZH2uP8NAYALal3I5JLojPbi6jvH9M5dktw/onDUC0fle5AP4NXYRDbXk9Ojg88QEfneewDSx7QgJGitmVyfLxevrdkgSdQ9HgweBkGklP4hAcD/8Nv/R9NJVqy3lvKIJZ+WUqOVg6laOHa3vonnL8//Yb26CfxurzvWqiMIzHw8+sL5F5anHlUO6AaL3woAkDpjpx7kEOxyBS6tivqAVwAA81rKAMCRm13IWSgLCDMDM0sY9T8LO48QOw4aFBWPHGe9nDApDidKVk7RqK2NLy5fWk4EDAg5GKCUEkbXlsfM1vLR4ePA7yEiI4MQMwmDWEMerc3kT3/3t2C+o7A/Pv4/CYYIHksMaBUSABP6x0dPEfR2KmPaEyxgFcLk5sXFq9/3ukcPnv4lUIDouOrclMbYkRR6+9C/9NIdAHDRf54fJYHV8nS1ek1oFQJiQZ70nQGAlvI0iwiKSczcmjVkoWEZADwR9OoAYPdI3v2A4Z0AgG79VAUAiDBgHK+v4uWFtTfK06BCP/w8OPwNma4GSQRIHFuOi07eeQ9AfY+763l5N71/3LOvYFeCvw5VCnb3SLBtBHf42VPKmtVyeXZ98/fL5VW8ihkhCDt+2I/8Y8/vpbr4Iokxo+GjMOgV++SQhG1a6srS6s5CyzTdj2RUgfJtZyQWEdGuGsKi0LroKt5MJ1fPLq++WiavrCyVQrGM+P/n7s9/JcmSdDHMzI7vsd8t96zKqu7qZaa7Z96sIEWKxKMEEpQAkiBBQD9JggRSevz7KFEC9AQS0EYO35vp6e6prjUrt7vGvrqfY6YfjruHu4d73LiZWZUlJTDT3Zn3Rvhyjh37zD77PiQiQM+hnucP/Ohe1LnfCiJFrkOuDXHIeD787+8f/znbEhrGkNt7CdlhMCGpvKO8wF/BAFmvpvSXJMUct/yyCgLn0GTFUNmY1dJ+YfszNgkE2TfLYqazi8RMCf1+9wkRIRDbSqeglMd+apQlM4uz9GcaRuwKHWUBEm3i0eQVkZWBBoUgIr7XDoP+ln1U6Jh9n+6q/C4hETKKwWI5Xm2GikIARpFEL4Y3lyLm+Oie64V+2A+8HqKLaAjAiKJMVezDNpp/ODCwFwDYfoJlVSVJfD18sVxeO0iR3z86+dj1/bz5XwQAdqORvE8AUExwLQAwoEeTl3kNN3MlTwCcXue+S14h2H8vQ8l3XtCsr8bfIeLJ0RMRqxf4ltiyGQBs/0Lr5PrqVbwZsYkBoN273+s9cF2XSP2IAEAhNm1dRYr7v3zecImsT2Ktf2yWY8zm5cXvlsuh6/rtaOA6LVSktb539FmpPyW0OwgINSo9VE336wHAHcr/hZIM7rpkMwICWZE+Zm302gKA7WATEUk+zsuwBekKWNCwYQZ/0O7+1HH6go4CLLaA6wBA6hls1YFy4kqahZt4NHltjBERtgNnIjn7BQUFNAse9R8FfifTClDCJBArUIni8fkfLr/7vwno3tlPgvCXidbWxphQiEgn3Gp1B/17IJhNgxCIA8DMjCRgNq9e/1avRg8f/cbr3VOghJEl/l4BAGNuwlq3fLPsPys8QFZ2ktXyfLk8/+AAIM10RSfJRJt1VghkQQCWXQBAZbsozsZbUN4p+6fbHIjuCgAAADARXsar8Xp14eBaKHT9o869f5tjJehTqjlNmNWtK82ldKlL1e+kKkN84JOneseiaicTpel5NrLGd/KzijpTecY6NzjfKFCG55vN6Hr0T5vlzXoxJ0RyW+3WA9c/QeUQEbO1czJh0An8nqM822NM9aDEETFEJNbMLsv20hH8BkACZTMvS/5JfzcdzxMXATheLRaj+e9vhl+yHgMnSEZIDJOF94T9wD9ttR60W6d+0PY8D4WIjVU/ZYmF08l1RCWQIChb/jdgp2ZjBNeSfIoXXyC5NczjFkjtJJXjsJLBm6I4dRMGaHK4l8LXZQC1FgOQiFnHo/nyGoHardPA6wEKGyvuxvlhJAWXjB1KGFdLWnUYoMiwZVHL9dVqPbaVVESFAiKm3Tr13FblCt++5Pz9YIDq7SOKmCRJJvMXjopYYkLPJJvZ/Hq1HEdRu9e7B0Ct9n3XCVKYimwESeD/bwBAvgEBABvirRSUjjIedrZzbT2SQUQU4nK5OL/8apMMI7c16D1u9+6hUgTCLIROMdrnUy8k7w0AMFo5c8lLpYbj0eQ7RJUV/o0diVHK73ceUyoujDtSfh/sT5zMJ4trIup3nyBaa4n3NgOAmA/cpVshjleXly85mYkwg+n1H/d691KJ5GxW4scBAGrCU2HMiOpZBwicjQEoALYl6tdXv1vOLtFR7ejU91rW/eqo+8RRXrawCxYzVQ+vSu1XSeYYvCv7U1EHSi+0yjuo6QAg1r5y4XyZopAAs7Y2wCJGZS2SCuRIcxoCBLKlca01iRO2n3i9n6MEgJqs2RknhAiCrLLMtKgosptEQsokTpJkMn7FLMwmU55GxHyQwNLc1aB/z/WjTHKUWCugBAzEor/56v8E488x6PZP/4qwa0Q7ClkScBQaDayOjh76XoSosrdDee5MCubTN2+e/12v9+Dso19b/isDUeEQMmAwTeuKSTDKO6zmIgG9nGSTbTFbKwArAZR/9WpxvVp+p9CgFTepEcLh9+haVpf9Z/VOYMPrJF5YsJTmiFZF3qAb3vNbj5W4WVTdfqY5OD7uOfUriOuut2yRAyJyITCJiIBRYozMF/NzMENQ4Dhn7dO/VuqYGdgACVlaFqRjECR1mkvY4EBUNBipq1zdgaO8k1/W06+3qwKkHJEko6BgruOeahoRCOY1AkYUSksJzHqzWl/c3Px2vRhu1nNSvhO0/OCBH96jdCoy7ToaYzqdbhj0sBSwuJrKI5cvOzeI1QyMaIW52CpbI5Id0QdCgQQFCAHZiBCCYl4uZq+HN5/PFy8SXgBqQkhdbMll8En1WtGDTuteFN3zvFCRqxCZNRIrzib8bI8RcxRk9j32GtIOV5KACjl+m+JXlzHvImS7SmuHg7P4Wu9wX+rWi8keb5XZGOvJePraajF1Wmc2SYWdlSnZQHZ13KV54txmS9li0/kWEDGGk9HkBZEDglZvDYU9p99qdWz5/5aAUOfbs3u+HAgY3kJQKOP1aUtbEjHj6Wsrb82GCHi9mkyml4ByPHjiBH7gHfte10IFpRQYzsVC+G0DchMx+IBI8n5klxtXQvPTrBQ3a5CkAAhd3Xw3nn2LJmmFD46PP/b9AFAJIYpByTnSh5B/bnmQDfebMyaYwRXQSbKazi8yIXJtJVwBKPC7UXCkPhhpi4vqiABKhBElNvFw/MJxgn772FGt9wVFagm6IiJMcbI4P/8adMIYo6jB8ZNu75QArUnuh7JFw7/60/9N7VosG9fXU4BKeY9AKkGT9VJZ9Pn1F4vZG0ATtY49t0XKZ+Z++57vt3LblKJA/l7kvFXQr1P9f0sAAIC1G7U4n3gbAIDKgZE2v0CzQdEG3E7v5M8d54gBgU0mH65ExBJ1aokQFcUSzKRsNvFyNrliNsxScBa28wCegDEcC9Pg6HHgt4GQ2YYMn3nNRKObb8+//j/7tAn6j1rd3zAwGodJA4hCAjGkgtOTRwiOpKKBuHXhVeDA5ruv/n61Hj18+pt2957m/LEWxX0r109QHh692wItQLTtt5U1WIkon4rOOgC4WlwvF88tACgvhB8YABgUYbOOk5nNZmwT4P0CgN0HS1J/FO0+/9qHUPr1OgAAmCBJshjNl8+R505wNDj5K3IfsvjMLIIq85XirTtpzQl6yBvYO+F4R/H+AgCAfSIHdRR/UXmvj7NKvwLFyACCIsioHAKZLebnw6u/Xy6v480K0HODbqvzE+WeAAkBAmsAICI2EIatIAg8L8j5fkUG5l7WO5c1ZzIHD2BOLcYZxTA4QMLMhOwg6WQ1mTy/Hv5+MXtFFCNpFKOZkBQjCHiOGnS6P2m3HkdRx3VCIgcpSVWC2HKctn0SA1IAbKb2sTffgtlZvw3UnewXazFASUm5DgPkCKHUWUKuTY6yLKFITEKRZDJ7Y3iFqKKwF/h9BKcGWDYndvuDXjbeQIhilTHtnS1W1+vNIp2KTlvO2I7OXNdP8/uiR2fDXMT+rOJt2wV8l6Bk29pqOn+TJOucF856PZ1exvG6FQ067SPlB63oBMHLpQvetvZPu3nYW93LBwUAUHU2oDJITpL49fkXq/jKBTruP+sPHqFSICSEBAyc15KlsEHeJwAonvIMiASL5XC9mebpkNUcMyY5HjxVyqcPVuvPTw8umGTTMp7O5pdE3nHvPqH3vvLvJhtgEVivF+fnXxMbxpjAOTp52u4cE6AdkKuzpfrBAMDeFXkoy5bFSlgUyZQ3k+fj4XNjVu1O3/H7BD6ItFv9KBxINnJx4LLcDwCg7PyVmczXAIC62d9GAGA7vPUAAKWhi0cCGoEARZjEJAYhaP+s1fkpi2P73mlSK8SkoUGYMa+0Fg8k+1freDYenhOh3WMiAkrliS8iaGEQdXL80HEjRDRGUDzDG0TFkrz46l9uhv/ghlH77Neuc6YTEAQkQ4QEyMy97lkU9oAs55gElYgoFM3sgMznw1cv/3WvNbj/9M8MKCIC5jz1z0toXDGQfoc/5d48VZB9DgDyVYEEJLhaDVfz5wQaiT80AGCdLBK9LEoQpi+XtwBgV0PQvI0yQ4k7URtTdguoe7J/y0XJAcAW66IxsE5mrxfLlw46vdPfRL0/14yGyRZtFeZc/93JjdKA57t3OfZGJ65N0Rp9BrAJOVDKHBI0YHENk6QMEEZWIJKMx9e/HY2/Xq9jSTbKDdyoH7Yfee4Zg2/nhlXaLWClVBS1W1Fv2+rI9NP2qMWXojEhCMHWqhYZhEUUURoZbF+CBEXYbObjF5dv/mGxeSEqJiJKGTRC6GpxHO+k3fvkqP8Tz227DhGgCApbnQBGsYIeUvv0KjZqu2SqXVnSpmOlZoAhrXCU5gfy39rZI4w1b7Ze3W4X7Flp1Epyv4mns8WlxWyd1kPP9fO5uDqzgrsBgDzfLaQgJGISvZrMXiEqAsnxbxT2Ar9nZd9Kc3Q7AOBAIsH74Avx/iaAXZlxspjOLpRSaVdNNvPZeL68cZQ7GDxxHC+MjgK/Y0nYhYOP3+64qAMAb+dkvP+J8cEw4/B0u8Qiw4xhSPmXC7Ho+eLm8vpbzTMPovsPftqOThhEUAGAQimUTL5HALDNbpFEZDj5riSGnv3/k8EnAqwAa/p7P0TZ2z6L/HtYwIC4s9XVJp4B0EnvyY5t1PsEALaSzgCL+eT66hsEZtAK/JN7H0etHqbA/8cAAOAg4m2TznEmgmEfdxpAF6vri+sveD32Wx0/OiZoEbLvB53oYVNLoWmL2mfUlP0XX2GRmXOb9v9tAIDSI2cXAABYKe5qB8DuWRQANMKEwowsMugd/wZVDwgxZbRrYAVkAIgbQ2eqLLFbrVysxvPpdSYllJoV2OQXwQVglgREnRw/8tyIAa1gBQogqsXy+fPP/xulF17/rNP9cwYUAKWMZNm8Ul6/d6YcH1Kplu15SQYFzOtX/7iZvXn85J953TPLY4ZM3CZHYgYMFk0b3g8zlepbBDkAyFhkiLhZDRfzb5V8SABg+T/MidZLbZYAjIWGj4jJAQCCq0BV6qbmffQl95Re9n/+FkIUjMm20s5gjJ4up1/GZh76j08e/Jvinhq9NsZFASLI5H2aVDu4BEEOnsSQxp8/DACg3Bp2ateqAUNCyCjgGDQihgQARTEIbJJkPLr53Xj4+Wa5QhV4fuhGR2H4EToDQCTrkZKa7woAeJ7Xinqu62UdFS7cVH0mXenooxCLzpVtMXcHINJGjNIMoIQcMOv1zfXoy+Hoj/HijY8bx3EYwQgo8kTEgOu6x/3+Z73esygY2EDKDEixjeRpuGMBYAGN4MB2Zq1wnZU3wttmIOSSzQIHwIAGeFaGQCS1DwpyQbb9MKDh27NSA7KtZ4mILf8neqGU67lRO7pfTlzsUy+cnDuDm1A2atizRDPlRAHQ8+VVvJnbWCpi7DLpd58SOtXHkg7RvVMwe+f4zLthmVMXPCMiw/HL4kEWb6az6Y3huNc9iaITcrxWeGqdglTWCxLCwwzKD0jC9mEJeucHxe8RAORk/TQ4Z6vIAgBj/9HEl9fPF6tLbVb98MHp2ceu17JZpkqpipCP4he2zPsVvGYilRYaEJn5evSlUn7mQ5qeuWHQi4ITKm/qSk3z+85xcy9R264wgMzxaPLaQvrj7tPiJb3j9dQsD7bCDDKe3IxHLxCYgR0MTu9/FIQdFAAiy7T4MADgr3/1v61tTjU10ZpG5XYBgIjEyfzy5o/r5Y3juWHrzKEWoEHEk96nBamZOyR8DeQfy8SF9wsA8rE5ZDEmMWZVBgBFfWLaYUmlAzIIwInWQK32z6P2p0yu/W2FBlhxWeOsrqHBFcXo3BF5vphM55d5Lzilv4MSUgCMJEYLkXN29AjdAFGECYVMbNDV3734bzeXvzMg/Xt/4rgfAW3YoFJKgOxz9L3WoH/GouxojIgQOUY0MLqkluub53/8f3RbZw8+/TWhb4lA2ZOhTOWmOpe2XwVvz+ov/EqDClDmByxg/w8RVbIezabfkGxICYAuNIi+RwBQ6Tkhi4Bh2ehkaXhjyeL5leQAwIseEXq2OZ5PPTLecu8H9eUa0vrDbzyV+9wBAMCJ3lzNF8+Ncgf9X7UGfwLoaa2NJgJUKJmTaR5Sa6XfdueuuKkzIDWOZDUJ4k5c4pKAz201DuuDUROYbJbOSlADGkQlhoXn88nXlxf/GC+vxAC6vhv1/NaDwL8H1GbRCK4IMIoCARHkRARbrU4r6hI5iAIg6YR9NvR/W0lVtpVuSFBAgAQcQEYUEaMFkJEIjEmW65vL87+fjr8QvkaXXMdRIMBC4giSlsD1TlrHH5/0PvXdgVIuM7Ox1Mk4lfdGXWCocxbSiheT9y8aDLDYZLkHFzFARRF/dySgCQbsUN3qvdsar6f+87lQczG5HKCIxMlsMntt/6IdnfpeF3ZEbTmj9pVb0HJrZ6BYKSgavxheDccvHesHxza/4jDotsL71c5DdSSPv6ck4q5qYwAA4rBoIpovL9brhVIuABiToCST8c16M/X9cHB0DzAIg77vD6zsKQkXFDLeci7z++sAvEvsPSzebrlwDDsYUhCANvHy4vyPiZmLmPsnn3Xbp6iUvZoUAOSbi24NkO/Qq0hdktCICPBw/A2RJ2Ky8V8BNP3OY0WBQviAACDbYpTqbwEuVlfL1Vgp1/fDTnCvoGWE72+bZAkgWxlJHo4uZtNzBMMgntM5OXviB5EFAATAILdSwb9fAFC5gYrDfF0CV2ndViXwAEBM8nr4+Xz6SinVbt9XToQogHza+6wEKrC58F97/zvs/3xovkI9l1s+7T0AgMqDQGGDmBLwEEEEGbQkBgbHp39NbleMBnBsaS0n/nJDfpzv5O2JQnZJEQAsluPZ/IZFIygSkMJhYKfEbPXl7OSZpxwjJEgoxCLr+M2LP/43ZC6N6w+O/w2FXQEQiAVcR6GlKPS6p2HUK3E/SJjBERRlzp//fjZ8cfrkF8fHTwyjoEotP/LcugwACmXvBsdWbAyI27O+rrST1v4JsaASS+TozXg6+fpHAAA0m5U2KzZJZdkUAMBDRUETnZpBQAh/wEOo+fPzcSURE+vl1/P1UILjs+O/pOgeimc0o1BO3hXh7YzmnaXf0rK3MDasjTrSc3NnYLvBUfaAUuGdGCKCwtaDKbWe4FWyGY9HX9wM/ynezIXZ9wI3PPOCj8jtI5EoRxkQNLZ1YnV+CNF33Chsu0EAQlnnnG3BLI8qBsyevk21js5opVYNGoseBT3gZLl68+LV/7CYfoF6HHiEDgorBIeUr4UJXdc57XQ/bfc+joJja0XJxigQYQ1kZ1F4m21bsWNkzgBh4aHJ/uePAlz0/syHcUvyoFCHfOpbAZXMvqkVUMx69hgFlBFIWma1wmtIaSV+uRoROSBOv/tQKb9h0x1MDccahSIRIYJMOl0vVsPlaqSUAlHC1lJa9zqPXKdVAQC1WwO/h5jwdi0Ci6Bmi0tFrsVXzHq9Gs2mQ0DT6536Yd9RQRScETpIqYKzrei8Y//ze84v3+kJ0z44UsD4dXckIqPx5Xj8nTZL1wmfPPil67WUUiZzXC4aBucAQCSd0Xy/SyIvXyZ6OZ2/QXQBQCSxAICZjwcfExFJ/Uv5wSZfLSYBAAPCzMPxN4iolNuKBr7q4PdCBKA8FwYArfV4eLFYXjAnQCr0+0cnjzw/REmp5D8WANAQRmt5jZUSC5XolZa7InI9+fZq+CWBdFqnymsTOQi63/nYCgEVo1ih7kb7tq5gJTMudrcIagEANZSZM92hHQ7lWwMAAhBUAhoAxH4+iNYxiBv1/jRsfwSiRKysm9SoiG6fBu0iZtzi+xRkpxiAOZu12loUW6drlhjEeXDyMSgHSXGirPLP5OYfX377f0FK2scftYK/MKINs+M46awZgDHm5PSBo0Igx5IyGVChpRdLvJq++PbvfNd9+PQ3rtsScOwtUFl6gt+hb7vTvSWoUwFKnQDKAEAp1wIAkbWrwMoR/MAAICWPSWL0kmVjAUDFIgAM5AAgoxzs8Kcz/uePoUC1jUpmmSy+GC1u/MFPT47+CtwOggOMwIIsOazNAwimalG7s54HAYM9Oiq3tQJuH47chqwtF7MgRsQGANBJpXjj1fjm6nej4eebZOo6ged33PChFz4iagOASd0AMokMUSAaJQHgVufEDyKHFBRMr/IHknZasJQNU6XYnWf/Ba8xRKXZiIhCMLyZza9fvfz/TOefAy1dRb5yHLJMchcl0ux6/qB7/Gmn9djzItcJWBSbxMI2A0YpZDEINh01JpMfJWBGEN4i/ELRupxklw2eK8KpeUMmGyXn23rLu3JQNWk97UxOF5Bno0BQpUSYX1KmpG428Twr/1MrPAr8QZHesL+WX7yDmu9DqeuOGkSlzXI8eVNM1oTBc/xO63422yb5b1lwVWk4oNzeGWsQ13pvSMAOgDLr2eKqcHgZoxfj0WWSbMKw1eufsgRROAi8HtKWIKRAMgBAP2L9z7e8MLqtH1HoAOwEXoIk2Zy/+SZOJkavW9Hg4b1fIrlExQRG8sTGFNz3tqnV+24CCMF8cbOJZ2nhH7QFe4r8fu8BfVC5/0LAt6OJsFoP54shkYOI3fY9l/yil/Z7pAAhom3bMLPWejx6s1hciWgktxUd9wcPXN9L31QdBeiH6ZDUA4DqPm+Od4UfplxwOstjWCFOFufn1783ybrln/jtAaELotvR/TDoFFPeAnOyKVnPAxbtIIISYLA1JwL1QwGAkrBcHrEEGNBBFBDNDCRs3LPB0a9IBoxsH449aZoAQAUFZgsirbXb0E+Ak+n1ajNiA9n226bLRCCiwMSG6PT4qe+EIsiCxIK4ePHtfze7+XvjqaOzv1B0n5GUaEFAcAkQUAOq46PHqHxEIwgADgoIagKFEl9efT05/8PR2Z+enn0k5DAAM1td8KoIcTGDeZ8LOnvvZP/PBjirPZwCAICNQ/JhAYDWc+ZYWJeKHwgotwMAwS2R80fSpE5fYjJezL5eLIfte39xdPRrAyETkZVcYsnnhhkEBeyeLqpQN6QRcqcIW3+DewFANTUsfqbl6CunjAqMvX4CvVicX13+fjr61myW5Dp+2PdbTx3/PqJCckRAhIGFSDFISmEQEjDtaOAHrqO8rSAdFdr0woBMAlxjMgDF4hnKts9pAAUSRnbQQXGE16PpV89f/evV+I+IK8chch1C16OAyDHoOqrvu8et9uNW90Hgd9JCiQG2OmyGs6o8IwpbUdFSsZkJwAja/5I/VUZATpsYdbF6a7a1Xdip/ls2EH/AZDCUh4OLb7n4K8VndRsAqK46K2Eg9tZTQuV6NDlnmCN4ItJtP/C9dpb9U5MKUNGzrJhec3MroFDZERFcrUfL9TWiQqsngSjsdDunruMDY/GrERVDyWK55sR+3wDgTt2Ayey11gkRiYCIZolXy+FyPiOiXvfUDzrKaYfhsUOpX4QtWlkMwAg/bgBQ0x29NQLTbXGZKiINZUzFYlaL0es33yi10Sbpd+/dO/uFMDKCwnwVbd+qKRZhgHJp+vdxDBCgsV9kgIfjF4U0OhU66HcfuG5YtAv4QBjAIDoiGkBpSUaT7wDIypX2u48crFgXv7dGGWbzGMaYJNGT8flyeSViSHmd9lmne2oBAGKq3PahAMD/rrJYG2T+c1TaWKkt+s5Y3RgAWK/nr67/YbUZh2670zpD5TOY0Ou1o9PK2K4gARtByCafynl2je1XVReoJC6SJ/250VgT+7+Qs3Lp81PiHQnkAAAzI7CGd7M90IrmOwBgNDN6nc6nfvcnopV1EWbUhSZA9vxxe9m5jBoB1lWMhIiY9WQ6Wq3HkIqRYxHwkBBbpxtwj4+szQpao8BYv3r5+b9cLf4Ynnzc6f8FsyegGVwFgqgANYA4qnU8eAyK7WFjeerM7KFK4vHzL/9Hw5vHz/4yaB1l5u5M4gDqcgh7j3WHHT84QgCgTAbU1h4QhZP5bPg1whIc2SlC0Pba3hM1Ms9v0q8XFDEoRjjRZsES7/j+WD6FdoP7XvRYkZ9jpNJmLOviZyoht1J934I7W3+YkYAhTYAkpIEQBIwmIpPcjMa/N0ncefA/7Qx+JqwUKjaOEua6FJzunEzUTuKKAtwfr1ILrZ27y0kFyIIEwmS3T/FzRIQAAYUFiIhl4yIk8WI8eTm6+nw6+w4RHacTtrp+9ES5RyzuNpikRQS7/ghEg1AUtTw3cBzPsoCygMDFG0wjqmRD83bviGOr0SSwdSFAh0SEY3Jc0cgYC4nWPB9/9+LVfzudfuX7RJiwcVzXU8pV2HactvIGYeusHT6Owq7nhnl33u4UKs0f2ydVpebXdaWqPBxORz5SCgfcQsrnCqqpS+gra7LqGlZLOrKtgGKhwb70rb9ezX6XHK1soyvLOp5M5s8VBbbactT9hMgB1JYdVKPUdFvyV7EOyL4LbJUwvVqzGU1fKKWyY8CIYOB32sE9EUYyqcZrzaRxGYTs+wGGt9WEr3lH29qZ1aXddijmizdxslTkG2EUQDFxMptMLrRet9rHYXTiOn6rdd9RwZY/8EO1MT94r0C2FkYV5Cblp1r8CAcMX958OZmeM6w8p3f/7Fm7dbITALdlju3LuuMEMB12SxafGdbj6SvYCtoyomtMcnL0DMGhxmkcaBgM+x7KVVa2WCjW0+n8gtBFlDA4avkde1gbEAWUWZW9p62x7SFDvF4NR6/W6zEAOyrsdE/bnRPH81LvJvhgGKkGANTeSWE5Se1y2tJUpCDUgGxM8uLi7xeLK98J2+0T8lqIosAf9B5XCO6ClArPl3uau6a/UBb9zMHTNuqVFvBt47/vDQCUjrJStRsFjBhB5Z/0j3+F2DfCCh0jsWKC0ugWl+b+s9E0FG5e32KMmcyuk2RjjLEoPMtsQAEKKRExxoDQ8dF932uLiAIENPPx5y+/+r+uedm7/1Er+DOjHUPaujAiKJvFRlG3071PlEl52Cgv4EAyHr58/eIf+v2H9x79qTg+ACtQtpxIHwgAWHckUszJcjb8EmTxwwMA+9ZIWMCwWeu0dyRV/k8JAIS5l8KtAOCHrGYpQEMaBUhIAwIysWEgvX4zGn1ORL37/7wz+MwYRoOoHNQpAChXJfmQ17mfq53Vm6sJYspDLVooFN6pAanURyUlI6dEkdSf2zAAEwgjOEgsazbrxeJqOPx2On4e6ykq33MjLziNwkeO0xZSLGRneGxdTcAIp/sOSTw3DIOW5wV51277HGxFHKVYrGUQEYMAdp4HEa3bNxQ6gYAsJMIKlVIM883N+Prr65t/HU++FJy5rkrYNdj2vTY4fuD1I/9hFJx22ke+11GuR+QwAxdEe20cyPn9UKNXU8zLG06HMiGHpFSt3z78+jI8V4Ex1kOOXQBQC0WKMKCmFbBvONhObEk6LyhyOfw9oiJ0AONO66HrdiSvLoDJnYMPKIdzEwYolo0EhZmXq5v1ZkoKc9tXFnM8eEIYWBvgIl12X17HNQOXB8UxPKgtupMeKEAuusEsN9PVcpJTmwBATDJf3CwXE+U63c6J47VC/ygKByCWJW5++GbmB0QCtQCgLPmwe7+UbFYv3/xjnCyQuBX2jwdPo/BoJw2TckaRDgC800F7EAAo7XrXCTvtMxCVAQA8vM373jFAuiVIXd18i2jnAbgd3Qu9Vj5xnqm0vW8VIADWHK8Xo9Gb9WYkIr7XbndOcgDwwwChAwEA1Bi4VNOOcvzFCtJKFYC25UMwby7/MJ2+8Iha3TPldW19pdd55Dph2foScwBQfRO3eH6lvndbu+tbsv+7AAAAFGbWxqzYbAi05TbQbQCg2u01zIBIXvvoTwPvsQa0Nf6y4dpuTKdClrCVqij426U6oXG8ns5G2qyNMbZvYIfLkYURrMIaswZx7h0/dpS1khFU5ur1//vixX/ntu63j/5EqZZGAXGIgASIPJFEa3108ijwuxk4yScjAU18/uofZqPXD5/8qnP8lAjEAKAyIOmw4NYr9HsBAHYmsw4AACfz6ehL5BU45oMAAGRTBAA7i9CKoojj3/NbTxSFO/uOd6Ds7mZ8i+G8+vul0pvaEtARlSHOk1QAADYEMBt/uY5fIfn9h/9h0HqMJmVRI0uu39dczb0dABSeldSwunc+s2IIlamIAIqWvAPB2+IFAwGyAmRmFLa+ZgiKwMTxbDZ+fX31+Wz+HRD6Xtf1Iy84iYInTIEAWZ8NEkLQ2bSovVBGEkd5rajv+yERWWKMnX1ERSKGrIBnNkGbm5XYfWp1Y0UMMKKiFBOIASDFIKyRHC2r9fzy4vXvRpM/ahkqWHkESZJodMkZ+N37vncaBMed8F7kH/mO6zgOg1Ip25CyEp0YkIqcJRQRSU3Sb7LEhXd9ZCuWvYVGpRSr9Y2zHFzrF8bFen+Bcgk1f1/+8OwyTN2ygeaLMYgKRK03V9P5KyLP/sxR7xMissPBWwP7Ms3gwH23e7CKMBExS6Ln4/kbQhfQgLWYAAqDXhQep1OMLECytaNuDq0otyQoTU7AtXd3a7MxE+fVNiJrs5pMzxHtoWNsfU8n89H4XESisB+1e4r8TuuR6/jwNkH4/yfBwB0GmaoAwEYSnowvL64/RxSl3E671+s8icLebvZfAgBSng9pbMXWrAc6DABos5nMXld+oBUdBV6v4UPu5v3yLkPDdryeGYkkNvpm9J0tjSKqfveRS24RAGTsvvf8ik2iN6vZaPRmE08BIAy6nc69sNVzPC/H/x8OAPzmf1/sGNZUEqq6LQ3embn5HJcQrSCMRs+HN18Ab9rdU+UfoSJgaYWnkd8rwV+k2ggFguW3XveGUgBAO9d3S/m/UL3YLuviD9vxV5ZYJ2vhuBkASGEbotk5n1iMMCGi13rU6fxMnAhMedawHgNUAUA+RCSFx2J/PUlWk+mQJWZmm3lYSmXemVWAxiSE3snxY5cCI5oQjZl++/V/vZk/753+kr1PHSRGx1YmSNhWDYng6PiJUsr2ywDY6q4SQbyafvfV/0sp9fjZX3p+G1HYOEKIbHaTs3doNjb8sAUAaWEOUxFSIVIgejEZfoG8AiXU8CHvFwAU1aYtAGDRbJaG19kAgBRnwGzlWHlnfvQRkddAnNjXPYX3ZrBQoRVtAUBRf4hztjRvbi7/XnDqeIPjJ/+Rco8k0ciEJPZz8jnFvZGxMDW+8yK4IZ25fQagLHVKmSCViKAYu9+1MClgA0iCooENSpIkk9VmNBu/mcy+TTYzBNfxoiB64PsPlBsQBiCK0YjINmIYRBL7OTbdb0W9VquTzt+DFGyeTD7BX0g9pcTVFuKMBEyCjMCgbReOGRwQ4MV4/O3Fm3+1mX5DMGc0SMYoFxJZo9dqfdo+/qztPwjcdidou8ol9JDEGIPgCuqKzBTjtjzPpfprQbOpnNfmw111wtCllJp2VvEtfYBtj4tvzZubugG7OARSChA3qioVb1wIiQFQ62Q4/pzIsSWPTvgg8HrWNQ2QZac6iwetzHo6ECFaKVgAmMxexmZNqaIxg2Cmo+JUAv4esu5+AAC3iTLLjh0O3h6fCQAyJMwANJtfxnqG4Fl4I2IEzGxyuY5nDoX93qny/MAbhOEpsKmU/+/asvjRY4P01G6+I24+FrcnPjOI2by5+GqxfEnoen6n1Wp3W48Cv5MHzxIAgLs5EGNDKkJ3BwC24dnrPHaU2/wJdxj3ehfZ0CxeOQZ4E09n8ytERQTMMOg9dtBJ6SeUu06/TwBgiZvG6OV8PB6/TvQSAFpRv9O5F0Q95TpvAYreNwD49X9h42DDwmiU5S4JKheneKUU9AVhuby+OP9Hk8zDVt8P76EiAGiFR63gOGtGU5pTlifWK6+/vvaf/pCCqp7I7bX/3R9oBABmY+u4ZI0/9wIAyMRAoDrCS2BYnKjX+zkFD0AIwMFaZ816AGALzKogQ5FOwebl5/V6OV9MEr3KxnEIQCP4yEKKRRCEmFkp5+T4kVJKYqU8WM6/+Oaf/msKOkePfmU2A42JnaJ2HJs5IQkrNxwcnSp0rImpCBpjEMVVeHnx5dXrP5yefXL64E+1sFLKzhSWlhG+Rep/29pFFEwjl9UDhWykG0nALCfDr5AXOx2AHw4AGI6Zl2w2GS9ZKtUdFFHemRc+Vcq/KwCArdTw4dWmvQ+z3HxIiShoT6+0bWrRn96MR5d/hx62us+69/5dVB1JGNkB1ArQYgYRk7lz8F2up97QFAqT9w2NglKmWDg81LaYjYws6SSAFa0CFt7Eq9Fs8no+fT6dfgvKQRV4Yd8P7vneA6QwnUZUwIYUOiJJJYO0unud9iAMW45DzICpE3bu8FrDcoEtYbKgqINoYaH18QBAAc0iyeZmOfry6up3y+VrgqVDKEliAAAxZi86+Xn35Ff9zictFYkYch0iAMNoFAEgWqaSSb0ysuy/RIsqUfBlT227yQdm+9hrSPmHwIDcGK6+FVBeQs2AEKvGKZb9n09YVZEAFrGHFf+RxepqubxMdQNFnw5+URCXA06je8lbCu9Q3y0jAWBrG7/eTGeLi3QK1mrRogReLwpOkBprn/nbqXEeOAAGwC3l4GKoaRwmpoKlAyKuNrP58sZuhHy8fhNPxtMLAgmjo1bUR1C97lOlfALJkVWtDOIPnql/Xx8rzWytwwAAx+vZq/PfMc9B/Fa7H/itTuu+77UBAKm6NRjw3Q+FAwFAotfT+ZviL7mu24ke2DXcYED2AwGAfFkakMXqcrWa5XbUR/1HJCUA8C4iJY0yhoImiaez6+nk0vDa9ka63ft+2FZKFd0CPyQAwHol5roFeoueWprPFn6cN/Hs/OK3yXrkBa2w9UC5ntU163Ue71bxd/lq5cRo17SZsi76IQAAK+FyW8wTyomwdQBgpc2mCABUffZf+hYuAAB7NWIgBg7CJ63BnxD4gg7WGdnssoB2QjnvsOGFGRBlvV6Op1eIorUVv2cFKIL2ThEUMwsYRcHg5JFPDiYGPH3+8r+/efOvgsFng6OfzDYrIAVCilLLGwcpYdOK+p12z3E8TlK0xpJqh794/j9slsP7T/5Zu/8I0SCrpp444/vJ/q1adP6ydgEAms14+EcLAJClIu7+3gFA9kaKuZ0xJma9YInrwmYqMEXuid/6SFH4FgBgD659CwBQSe8KBjpO6e4MrxevZ6N/pFa/N/hVePRnKIEwg0kd6AryuLm+SmPieIfzGO/WOC4LwEGxCQBsUPQmvlmtbmbT88XiMt7ckAKXIgwGkf/M8QesAMExRkiYQAkSpuX/tLfGbEgwYdPrHgd+y3FVUZ19N2/OpsPNtmKX6SUUugoiyAZQGBSiGLNeX9xcfr64+UdILjXGqKzTjhPzWiCI2j89fvK33egZYdDy0EBqVmxVmNKxZiHFZFLDcc7swwsLFaUi1gmyW67m/QCg0B/IXSBkBwYUvIHrBrWhPMC6iwFqYUBNrwl5K5MgeR+g9DkkdbABlDabm8nnBApBCULgt9rRgwxrc8Hssr5M/hYwQFIfpecCGoGQ0gPAsB50P1LkYUpawEzjoVJi3J6euxfQNDzWFCiqAzNYt/+wLFKMGtmxzxCJxtNXhrVd7VrHdsBmMjtfb+aO4w169wm9KOxF0X1gkw5UFJrwHxQDHBKg7ipMtBUIPGRtZHX46vnIooej11ejLxBFUdBu9X0varXv+yqyTcV3RDMV1cftoCPfDgDiZDVbnBc+CltRP/T79qOaHYgPxQDv6BuAiAaMMeZm9C2RQwSWUnU8eKygQgF6D9l/bnxpR6EsABgNzxfLoeE1IrZap73umetHShGX+zYfAAD8za//i4Y7uUVNrzyVuOOEXgjTWsdvrv5+Ob/ylBO1HyjXB3RA5GTwDNGBXMk4P4TqVkzR37e6IfPFWlhZKcN+r+9vqZsvdhiX6wCAzjoAeg8AKJuepn9MeRQYGWKTOGrQPflTxzsVVnnzpFCpKkXeVNmmwWayWP7PdCTNer1crmaJ3qS5BSfWyCZNO0CJiAbtUGswOPYxRDIso68+/78n6+HZo78Qt71OkEUTIJKjiJANABtQnXavFXVd8jULoCA4AppQbZYX3375//TDwcMnv3aDDgAVKUDvHwAI5i83Lc6R2uIBsShxPb3+kmVKJJgLsJS/9712AEzVvFm00bExs0IuuA2bdt6UhNE59aKnjopqa3h3DQxvPXAhpSpmYbg2VdRNa/8AgCZejL9erL51ux91+3/d6j8zGkUEGB0wgiobcoVqPnfA8VQdgSiOPKLUboG8Z1jcaFstbVtGZwPIgEjImCxWy+lk+NVscRlvRtqsXFe5Yc/17gf+GaiOsLJNj1RLNyshkQJhzAy8xPO8KOx7bjrIlLPjAIWhpphir5mRy3PMW916h0DrjYgwKBQdry9vLj8fXv9WJ1eBEztGaTYGeQ2+F95v9T7pn/yi2/rMBRchETGAhoCVZDCM84QVrIR/bUqdX2p5rlSgkcF1C4dnNxffxQB7YUCatu4YCzS7fcGup1gW4cEU+WC76IUK/vGGE0Rcbyaz5QsSXxAFdL/z1FEekWuNoCtuJLCjZLo3c62BASKIxJt4Np1dpPJR2U8FfrcVnlozhVSOApXsAKHdeYDSqcfmHROa0mEku5G41Nxdx/P56oLQQ0EGBmAWvVnNZ4uhMabbPo6iLojb6zxU5CMW+uT0FhLAHwQG0HtpFxTHb+pubQcA6Pj1+T/Nlm8cx/PddhR1yPF6nccuerXNk3e5PiltELwVAGzi5Xx5UVh+qtu+56SWebee9N/7OxUBULJaz2bzS8fxsvIQHvUfUZoqwPcAAPL2F2id3Fy/3GzGxsSC0O8+6HXvk+MS2TSGPiQA+Nvf/JcNbF2+raVVkSUpndL55ACJGJCLm99OR68VQtQ6c/wWkgvCJ4NPMgCAtkVGFZGPUplfauv6XDj4y7URKtZF6gEAo0XPnHGRbae4BgDwWicrEbMfABTxX/FhWSE5RCSDAkYzuK1nvd5PEQKT0iSqAACApLix7zhLG8fL6WxkOGHWyJjNCluilEIkwzEb9N2g2z3zA0cptZx99+3n/1KFg97ppzGHIkY4BlIKHQVir01EWlG/0z5GFCAUdqwSObG+ufzD5esvTs5+cnz/M0BGcKuZP2KhFPd9AQAismIsIpvp9R+Z56RMYQbgewUAJZVu4MTotTEL64zYBADAOfKjZykA4B2j0LfY0mneS28bLEsAQNCO1mhBAhYCBh2Pr38Xm2un//Ojk39L+UdkTetYlGhBlWZ1hM0A4PYTyiLXcpq1TVErQbaU8xVTPRsdRAPERuJErxezN4vx6+X80ugFKHbclh88DvxHQj45bs5xh1x9C9PJVwJBVCgxs3Tax47vOcpPTdy3ye425xasL6ILKRFTCHNWex+YYxeJmJer8WjyYjL6fDP9CpJr8pSPyICxUIxB1Pv58cmft4PHgd9BVAoFFKLRiCJi2GGlhYBtqRhR2QIEi67xPN5eIWdQaQsAsLaynrvbN0jg13cGSrz8OjXPet2EQmKEvB8oZn+zazNXcljbybRKswGIqM3mZvxVHsWVUv3OMyIUsRpBAGBKMaRMWNrF8AfBADTz5cV6vbSzv/nM2KD7TCkEUekGEAs+oQaB7JB2mmZ8C+TD94QBUIN4gDGIAwDXk28EEkU+sFhhKwEznVzGm5mrom7vgeO5gd8L3RMAU2je4gEqQD8wDOC9AADeH2WIoYbuUj3uN6vFyze/TczUdYIw6PlhF4D73ScuOVBHjHn7iyuPb90dAJDv++3wfuETaO8h+33LgIIgApr5YrSJZ/mz8tyo3TrNPQoYOZNJeD8AoHiOGB1fnr/QemaMFuSj/pNe9wxIZQAA4cP9qXYADmgF1HcDsPYIF0FEh2Q8v7i8/KOJZ0HU86MBoY8IvfYT1w1EBJEBHRvdih3LYtW2scIhVEd2o6bUv/gJ3JAkVaC58JpNzGZju+9WXkd2X1smQlRLv0NiECUowMQ6BvI6vV/5nadsHAZBFDKCogyJ3TFGoEwzpb3pFFj4VHxrJk7m8/kyGQEQcvouCJ1Mrw3YKGbwPK/bOfK9yHHiV+d/GL76fe/eM9cfaONpTgA1ikMOZh/OABQGnW7nGMEBQgI0wkJAenPx/B8Wi9G9hz/rDu4j+IKc5zeYVk4rk6a0vXq8y96TwslhSymEVunIvn1CRImno6+TZKQcATTCqAoYcqc8y7ut8LtXdCR3esoswKZsNuWAmWUeIIxMAuj0/OATcjulHPeHqY3sIIddO7P0YTMiGhQhUMnqYjz+faI34dm/c3T6GyAPgMggFrnsxGl7zeZ/txRXeG+FrOCMC8JWND3b3ZQZZucaYinWpRSSkcSbzWg5H84mF8v5eRIPBdae21at+2H4SNEJWlUfoJSInGpBpHIZVnvRVmqDIIqiyHU8pVR23WLxZ4EBn4ZCAsyK63adWwttY/lUdhfYYR5mRhaBeLN8Nbr5Zjj+Kl5fOHqllGGOFTvshWH346j3y+7xLwLv2EPHSnnar7N+USAGgRHTfNeUWRwiJovQWf5HUgNORCoJZS7oiQ2aTnVVf7P7ElObJ9lbtq/JErgqklbuBuwW/pv2TZ5f5rM6IpjFBE7nW8Cs1tPZ8oUVAgI0oXfSio5vzVdKF1mix9RDa0tbZdZpU0iS6+FXjlOcCATfPWq1OkSOzaMrJ2Pl0IE6Jg8UnJh363rN4ZZqN2bRh774P3PjZECezS83ZobgWgNsABBIkmQ1Gl8LJL3WSRR2Bd1e55Eif1toQ4ZbcsTmtHE3Yytb0X8PSIDeX6m95hMKY/TpjRhBFjUZvrqe/AFAO+6gFbU95TFSv/PYVSqrMNaGULXdLKlUMiNQNtaF+5HAvufP267mbPkmjuPcf6MVnvh+y+YjJACi3up1SNMZ9RaPODbxaPKdUm7+ZNrBcRi0iiosxeW9+6doQVNO9/MKVFPFDePN8ur8K8OJ1gkAnJx81O6cIBIRWX73B6UA/er/cFsHkw85s5sqRhYAzJaji+vPN/Mb32sF3RPXiQxzt3UWeAOwzFpS0MjxKgGAHaN12hnyVbu2ATUpfrNCZR0AWLNJADjNKhpdwPKng7U7ClGECQxoYTd40O39CXpdBIeZscojgp06YmkYoLZCg1K8BdZaz+aj9WYBZqsBkloECCESszGcuE7Q7RxFUcRm8/r53y02s5N7n8XiMTNrI7BBdDE1GkTHcYwxgd/qdo6InHQGl4CI14vhq69/DwAPPvpZGA5QWXk4Sk0eCMBoa0rwzri+JAyVagApJ3+zCExgxqNvTDIkxXaNQeaMVgsAoFGG8m0AALKIbBI9Z7MpALlC9QhTcRJ0ep7/THndHy8AsGV0SQhACS/mLxaLb3TCnUf/vDv4JYPjoAcsYnQOySrU4XzO70AAgIiyOyfK2xiNInbSwwADoYBSxggqZo3ELJo5SZLhbPZmPbtaLceb+BrZOI7nel0veOaHZ6RC1krQMRyn5VtOfcFEjAATYE6jD/yw0+kQkVJqSwKh1DisorCR70STk0ZSnoTYXCdN+9j6z4jSejr6ejT8u8n4a+Y5KkIBYsNsSAV+99nx/b/pdH7mik8uaURkIdS57bcCBDHWSCCzleHiK6gXY90Zlt02snYqysXJYKlmXVwX9hsK9sh7MEBKIi/rL9ecR8h7vi6XV2o80YrpplAqupo17i5ufk9ERMoin277oee2DklQsMFnoGK4m3u6wdY1CebLi/VmkptFICoip9M6cxyvVHgXbG681Mg77g5N7vYN7pCYYgkfFqk7woioVvFovrzKDIxZUm9pMxpfrjdzj7xB/75SyvW67ehelpgSYjYEXPdyb00Pa2av7/5Rd8zUv5cOQPGUtwsyN7E2gsaYy/OvpqvnDmEYnvphpMBlhKPeU4XIdadV0dc2W1c5J2PrHm3ndNOh87vAALs17cMfTr4t/lO3fc91w3yQneQdK9zv4RhcxYv58ipv0TNzr3Xme609VafbClJQwQDNMx64WS+uzr9i0UkSI+LpySetzoAsZ+FHAQBu2zDNIsfcFHS2sgBCDslKL69Gn8+G567Cdve+8joA5HleJ3pCqFkcRCnVK3YAd3NCRruZ/T4AIAQF86Dm7D8DAMBiNmzWBS2XNNhi8xzwLgAgIaZ0Mg+0YolB+e3On3idj8E4duyGwaCAMBHkXCAuEBvo1n5oVW4EkVkv5+PFcipicklQRS4AWGIAMwujCJwc34+i9np19erbfwhaR+HR49Vmw8mamVVqlkB2ZMJaqLpO0OsOrHyNMKAjSuHw/LvrN18EUefBo186vieowJBCteHE6pDaKkROdqolvr8FACAi2x1HUEiCwgQynbyI42vCBAjAFjyEihTOooj4OwKAstoDoxijV4meg5gyRxzyCeAUAFDXCz9RXgcFBQV/pABA0KaGZj6bfruJL1mczsP/edT9KQkBOLYQbjM2hpIG7hYAVOu4t1TCEKU2CgtwSp5OBQAYEYEEUOtkuZrfzGdvFpNXq8W5MXOl2uQ6yusGwZHvnSl1IoCcChRmopZiEJSlyhAgsyaFxhgE6na7QRBZAdzSNSBkTg7V7Zf6DLDOavy2RCeMdmsbQWVEK+WxWa+Xb85f/I/T0e8JRgJamNg4rhP5Qac1+Lh79POw9TPH8cmgSGJISBCFhIyTcegR0Q5TMrNsjahvH9tNq/KA1QngNG5zHQyA7bwTQNPnN3KBCnyerTOXcP2qSE0beH+hvalQ1TQrbBNWS5tOm0WcytCtNsPp4qUin1kQkdmcHv0UwWlwKW7YptzAWco+gbL+g/37RC9HE6tNTrnBSxj0o2CQmWphVi+AJgzQ2MNHaQIAB5R9eafARNaxoboXBLWsxtPXmO5Dbfk/KLCJV7PJpYBpR8dR+0jEtKMz3+tlQYYQU1Rcc217M3gpn+u335o06Qf+SCwIqrPCZEf5QRmQTTy/ePPFxlx76IbtM8cLQBxBOO0+tUPuDQpRpVdvzcgFtCKPmZEAxDa+GFOZhztl5YzZpV4Nv1JK5SnfUf+JIs/q2Nq/UfgDYYDdoWEAYOTlarSJF1n+Y0Rk0H7ouv4dC3z1ArXNdDv7N7hZLy4vvhLWWidE6uz0k6jdR6QfBQD421//H5uKKwc3BOp1rFLYwIjERvT16MvJ8BXypt05dcIBgsccD3ofO46D4JRBak1y39QZqBYOa7Jk3A0EuwAgZ6fUAYCVpQDVAoDc0b0CEysYoCD9aJDJtuk991578GuiLiPY7YTE6ZmOO5llAwZoiuDbzWD0YjmbL0Y5E8BmzIjIBkSEmQFZUB0dHbeC1vDi+WhyfvTgU8cNJtNrMApYC4nl2NhQYhOOwI867b7v+IKOAaMQAPjm4uvhxTf9weOjs2eu7zEQG8TU/IhItn63/HYEuBpb6DIAAABgB2S+eLNcvialCWx2XXwXCEUjpJ0z/h0BAHBi9FLrJYDOPAq21RdbsRNJSAiw5UWfOF7/wwIAm5oUAmil9cQoBlhMfDWff8c81xJ0H/77YfsjB1DY6ksKQbXw3NSwKqahOwbJUOy/5R0eSI1dGQSBhRRaYhvQZhNPl4vZdPrdcvFyvRgiGdf1iQLX6zveE8/tILaAHCKyHCFrswrAxhgHCdKjyxARsxYRzwtarZbnBRnbh7cO5VusyDUFMhRbK2Wry2VEoQMAQGjAWMihlAucLGevx6Pfjq9/b5KJorWJY8BI3JP20ae93k8j/zRsHTF7DilBFjAoLAgKicUIsuKsZC5b9rnNugS39IxiNt/w0mt6BbUAoJKv78yA8Q4hZ19jmUqAoYABsvJ8KpFUmqVqJtvsFSct7SRkO/pl8c/WE5r5cvRbBKWUsr8UBr0gOMv7/rs1gtqdWrPg7S/abJeRRRNB3sCZLc5X66lStvzviCSKwn73YW7eslWO2luG3Je17LPRuBMA2Dbiyk0cM12cJ3qtyGMxduyYQQB5Oh5t1mPX8fu9B8r1lXLa4QMiB1GQBIRyX7k0fayIDu1JSGo7+28V995T8f5Ohjb7LyklCtr/QsLj6Zub4beGl4Ebhq1Tcj0ExSCn3adZ0iJ1CZhUWtOA5mb07fHgY8tws1ygt4M0Nr+3acDN+JvisjwefGz5PzVy5t8nBmiSDdWib0bfKeXmSolax6f9j5Vy3yL53rXh2wUGxQo4AK5X88uLr0BMksRE6v69z8JWN+ViENj5og8JAGoDVr0oYaNUaM1m2KrTgDDIaPLtZPpaL4dhq++3zgh9Zt1pn4V+P+NfSWHYt660v3ezSZNJcEP5fxcApCXzcubNYsSs2FgvpxIAKF9ebUUVyvWrdIqLBETAGAMYtDqftTqfJUAiotABNEU0ki2jtDV8azOtRqVBRAEByGI5mUyvt8UAxpQLBMCimVkIRUy3cxz5wfD6lTHJ4OzpJokXi6kYyKQGeKu2aZ8buoP+sedFNqYAodnML17+02oxvn//s87RQyYlyCiUadil9k+5EvmdU+06lVhEBFKQzgQTslEEq9X1dPatogSREItLus6WHPmQVuCtDWIRIWHDa2MWRq8pHUStAQAoCQoxRH7rU9frp5PNIB8KAGDpkWZPgxA45SuT3sSb8/XqlZGEMeo9+g+94AEZu22RiMQwkOTMmd0FWaM5WB3+48pLTln4mAn5gxIRw4mOV6vlOF6Nl6tXk+k3xDGicrzQ9dquf+S495Q3YPYYhMQD4NQl0HbGMSG2w8qpsqfFxq7rtttd3/fTvF9oK5DPXM7+IS+fZ3MCGVMiZeFTajOMQmSJQoaRjTBvJhcv//Vk8geJb0hrIwZdvzX4RXfwk6j9sesNXPSVMCMZBiWaFQKwkiyAGa0IWDDjzEhOYM20LEo1/jTUCe2L3rvZLYs0KjPW1NqxAQbsWsJBZoFXwMx1Q8BlItOuUYBgk/7m7TAgPXSt/TKAQllvJuP5144KbZhi5m7nY88LqqoU+YOqUtpqNPhrphdSwft0WIVlcz38SikXUYkktmoW+iet6Kg2vNTGpVoq1/6z4eD4VkPBspNuhfK/mS8vNnpB6EpqYk0iWhCSeDme3ADHve5JFPYFMfAHUXCcLkjaSl7UAQDGvTf14wAA74gZ9gEASVvHjujk/OrL5fJSQEdhz48GSI4NsCf9j2oidqkDsBWuJSKB9fXwxenxJ+lhLblqBSLK2xwZiMaY4eTbfDl5btRt309LIXwHePQ9AQBBSvRyMnuN6OZQk1mfDT5FxLsCgErLNx9d3JlQ5UIHBpeL6eXFFyCSmESB++DBT4OokyUtb1Vs/D4AQBXEkOxhHN4GA6i8mgFB5qvr8eTb+fzSU16r+0Cp0BLKB92PRJAoH6TYjkntPuh9a+mA7L8y51ELAMp/z+8AAHYwQKEkowCNBiFRdNwe/Dl5R8yaQOX5EzaoXBc8O8uWCFwib+SEE3uYWQywXE2ns5tcetwCgHQcgoVRWDSidHsD0jybDh0/6h09WK6mi8UcxOTcQQUZI0KBCLpO0Ik6gd/RgIqEBBbL4fnL35LAw0e/wrBLjkJGQGEBTK+f3iHVrvGJywEACtuqCSmI48lk+i3JKs/+CyfKLRjgreO7tQATWRmz0DpuAgAKQSBBAYZ2CQAUJgE+HAWoQFXKAAAAkF4n61er9bkgsArbZ/+BwNH4+gpE2SHFe2en5KTNpYKAlTTGa+TaLKf4361KOrIxvIlNslxezGfXRs91PBFeAzCDcr1IYTf0Tsntg+OR8oXt3K1GSS0yJHX+chUaYLYSW8YYW8JEgeOTM88LC6rMZUAIZW3TtOOBOePfBrotnQaFjSCq1ElDUZzMF8vxZPL57Oa3vJwBC2PieMdR/2eDs192vPtIHjqKU6aKEcMOkbH6jwYAQCM7xIhotICiHHVQ3hvZVdrB0tBn/TwA7AKGSjpyOwyARp3QRoXQWzFAeTS/SZBcGjDMPkZQAQAQIggki8Wr1XqqVJpahUEvih4WLBd3fANqZFXrfbi2CTqYVKAMElvqWqyu58tLRV5WCBfCoNt+mJdm9ueRDdojdywRHZazVgBAzk3axLPJ7EK5jgV7qZMOG0Yzn442q7nr+oP+GZHDoHrdRw756dlbPouLACCfYK5lBxWbQh8kcXpPmGEf4zqz+0QAWi3GF5dfgCyMYLtzpLx26hYncjr4uCZibw9WlbUumYiY4Wb0ots59tww525ZCFecFb4rABCRq+FX+YptRUeh30+FRNPqyGHUhfeHAYqLSpCW6+FqPbIAwP69MeZs8GxHI14O+nC5nZSQde1SpshiPrm8+AJBEqMd9B48+KkftvMOwIenAO1b2fv016CZDlQCAGKJgWZ1PflqMnmDotvhmRva4Vd91H/mKD9THlR1r90+pL0uzY0uAYVMEaoffjgAEE6sCpD9GbVTmbDfbwnuu99efChGBAms/4kRUcp3g0+j9jMmH8RW5alAE9+tJ91JlIDsSBYAKCARXq1nw8mNiLBoJ+PMEJEBYNu6FY2KQz9SDKv1LGyfttpHl1fP0Rqlsf0oJCKitKgvqESbfv84CHupMolSs9F3L57/vts5vvfoM3Lb6bXZwgPkHfC3DgVY6QshovUms+eTlawxvF4uzuPNCGTjEAJRuaS0l27zlmDAsjIMm6UxC9EG0Nhrq2wfAgHUKGCkFbR/klGAflwAICW7M4oYZk1mqVevVqsLUQ57raX+S0cdE4IwZTYURtJ0wdJdtmT0brdrUYGFB1vtaq7YdaX6Nqw3cbJer5fCiUDCkhizYdFk5oJA5JAKkAJUjnIiRSFQaHtLyCnlhkUDMImPKCiJVfst5DEsIv3+wPO8nOJfWB5Sr5JRcDy1kW0rt1LWLbW9PgucHDDLxfnF+e+n4+dKXwIhecdedNo/+Um7/Sk6XQTXAWERJraTqYQMokQMMYtDIqIs9YlZSIAQWMr9RSl7ilcxQB0AqEuU6zHAHj5PXZ2ikLjnFuYNGIBrP60BA9RdM9cA+D2HVBEJ2GYgIsR6Mhx+47qurdCLSK/9keNFwgioy7yKQy5PaguH2bxsan1leHU1/EYpKZ56oX8ShYM8bzs4E+WS4/VBu/3uzAfba5JcIVe0iSez1yl4I+FUsMiAOEm8HE8uwHC3cxxFXQZwnW6nc89ag+/amW3Pq7oLvN2b7P1E7x8SA9xufCYiYHg4fDmbvVLEorygdaScAFEsmjzpf5TyM3cM0fMOAJEjafGObsbfHPU+zuwXqKiI9dYdAGa2MwD2/fU69x3lWzM7EQE0VseW3t+zv9NPa+Hh+EV+y7aV7blRr3VWieu3GnLtAoDi9FSeoaV7A22+igBQBAAu+ffv/8QP26lyCYJ99oIfyAm4CADujgEO6WeJIJCwAjgffz6ZnSfrWeQdR70TS/3vtB6GQTeXmKwAqVvbR5nMXG02XK4T77rrNQCAwj+xYQ28zgBAVgIvsKWzXZSWhG4FAIyZEIQgEihxGLp++xPHP0PlWQywa2lUOL95p80HdW0kLvcBBACECRHjZDWd3cRxzKLz9YqICMpmFxo2QCKsQ8fVxmn3TpJ4tV6vszPTIBsiQlQgRCiskAWBoRN0w+4RKHGRiJPLN99eXn1+du/pyenPNCgiAtCFpv47xIRmAABsPY81ABOA1pPF7JXoBaAhotQXdLsS8P0CgBQiijF6wTwXY+zAci0AQDJigCGqAoDsfX8QAFD0V7b+XwRojBGTgJ7o5ZvV5hoclTgdg3/jOfcMxyAKgSUdydVFyn5j2xArcoRbeUdJqXexZK64wFsRJySfiIAcAJJ08SoREVZI9mscYIMkYrQCNMR2MAiFOPMbYubjwYnreURky/9Z6l+nZwycmpWWAYBtxxUbHVJo+CGBFq1A1uvx8PLL+ehLWQ99l9DvRL2ftrufuU7k+X7CLioPRaOQIBOabETFPshEgAwBAZIRnQ2OAxBnYr7ZcuLy+pJSbw05r+PvTHib2mVfdLtF2Q5235ZPV4FE+dt20uWyLZqIINbAifIFlD4PKzqYjQO7xSFLk29564gyX15s1jeErv0ERX6v90wYy21wrgUAu/SDBiUiBDCQOc8IY2Lmo8m3RF6WhBkQ73jwUZ6clQuKt2T2nKUQO7n1HY3AmhIRliK3AVFY9HI5X22ustkwYGZIZ71gOrnZrMeeG/S695XrMkOn9cDz2phtmUL5OXtiO4LetRjgIADwPcIALvRy3z8ASCU3kBmIGVivz8+/YD1WSOi1/GggSqGwI0qLPjn6JM9JKh+b+bdwPmXBzNeTb04HzxAoZwdAZUjg7n2AnAJk3+Px4OPshVlHQrYAAN8b1epunxObeDx9kUmEE7Mmcnyv1QmP3gUA5GJ3BbUbsOXRNH9L3dAJMe0ACLAxxnWiB/c+8YJWdkpm4Ivgg/zBv/nNv6g82fpOx8GtgF1J95Q4RTJfXt6Mv1vO37gU9nuP0XNA0HN73fY9BBZWVii/tMmzXA0bsv/9U7/ZOd1UMt/+d1UU8cxTeWRmY3glvGGT2GCqtjob+VfIbZlVuQmQiXXYCTM2rsBR0HrihkfoKASF6OoswQEAaw9DAsACKlt8aa5JRey0U8iEIkrZ2qMy3wxfJ0myVQME5TgOABqjbfpFBHGyYDNzVdAOHxpw42Rli1h2js0W8klS7y3L6Xddr9s58jwPlWM2s4uXn88nlw+f/KQ7eCrgMBKyCKEgowAyZo+am+RBGwlCDZMAgmQxAGNi0x0Tz+bza4gvEYWUIIqQEiDLrVCAVpfdJh/1Ywm4x4W0NDUuIiQgnGg9N7yySRwIqlSnOVUbJAA7gE0CIKHf+ony+9vcrDiIt70efC8BcQ/mwZIsEpbKnEZrs1HrSbx6mZgpK39iIGr9L5RqgU6TMxQCMlUl07p3SiDMbJPvHZJ3liMWh03Rtm7S/ljJBphLm9F2pQjz9Jet5NRWoeLoyHGcVHO9Mablgg9mV/UPawktKf+kIIEPjGj0ejO5+ON88h2ICXudqP+o3ftU2AVRNnaJWKozq2yWN6eycA7+SyNlObaXHUhZm+3VV+iL+dN+4c5Dqj97pgIql1T5Lir8TBYKGtbPrZl9E1m/ulvFSjMJxCAugVlvpuP5V47yLdtEQLfbjwO/Zycqdsr/pb/JbA1TZbMGSXtJO9jiMmhEIVCGk9niPE4miC6CEkhEJAqOW+GZgCnWwpqRzJ1TzDvnrChFBLilvYkBoDhZjmffOirMsZ/9exFJ9GI0vkZJOu2jVngshI4bdMIHBWoT71AmarB3bX5vo03Jf6MOEpQ/LR0BqjtG3olK9A4woKkDYEgcESOEos1qNbq++oZIE4ETDJygUzj3zfHgWVPlPu9S2sas5RTdjL847n+avYVKxk97b5Brj2MRsQCACEC8KOxFYa8cQG4R1RAuffceegPvrRqKbNVQM1CkRGSt54vlOIfQ9qpa0SDyendud9QtrVTOhJlZJ/GaiDwvIHSAbFKPIjKfjS8vviCFWmvPbZ2dPIvClmx5sthQePpAAKC6kRpOgloMUFGjL7aiEGWTTIejb6aTN8Cm33+ovA6iYoaj3lNXeQDExKWnXNi02Fj7/yEAgJ0BeF8AgDNdSAUIgChkjMsSel4/aJ0ovy8UGmFCN23wERgBFCbKKJgIiCiGRUSBIIkRVX0y5aZK1cAFeDodzxZDSH1DlSI3JReCsQ0BbdZsZnGy8L12r/04SRKtNSAzgm2lAYCCzIgEAUEZwyDU7/fDsOMpWq/HL775x2Qzf/TxL6PuI2AN5GQjH4aZHCQANiAWS2whCr4NALBlJBQCIAYDQpZxa/RqPn/D8VjBhgjQsQgKARUipoKD+6cRGvKPioKNiCCLcKL1lGVteSAIuWHsnQGAwJ4d8HaVkkbiUz0AyIQytd7I6ipevdZmJX57brph9O+Q8mzylhHit1mXSPWpIqUD6MxWbZMrEkwFtjEXMv5UUMuKVm2JZ1KT8KFU1zkJA0Cn04miCDITjD26Z3kRek+NA+pIKXk1aHtFpDer5Xx8oUR32sduq2UoAEFhFwUBJC8wI5pcfMD2KEyq8lm60z0AgMo8jUoLds96LsR5sz/z3t/+3W0FYPWdws5b3sZfU3ILvuXKm97LbRpB+c+TiE5jnebp8vkmnlllZADSOj47+QlgUMuGqmCAXM54e9mNwAOKzRnh2Gqn5AuSmY/7HykKc9vmA7LMQ8AAvxcMkOf3KGyzydnidZwsiNztqE4mPD2ZXq03C095/d4xOQGRG4aD0Os3XjlhqeW0FwBUfmy/OWah/2/2RMkfEwCQzNyQjTHj8evJ5IXvEQsGrRPywpSayCiQHPc/3Uvd2Q742onz0fj8qP84oxkflFrX7vdijNVmM56+EjFEXis8CvxOXQyR/QAAGhoQhwOA1KO8dKIhgMzXN6v1zJI2bIUeEVvRUeh23hcAEDHMvFovVou5lZFwnTBrZyGwTKbD66uvcgBw7/STMIh+7ACg2gO/rRWQ9jF3DMMZxLaiLJ1mMv12OHqdJJN25zQMTog8rdeD3seeGwKLKCw4quzL/u1EL9RpQu7mZ3xb9l8PACwVoQ4A7OR/JeHzJgBAhXIEgC3lIwCIEQUuiIOCBh1wB054osITAR+RkFiBADhZX5/s7wJaqT7KO/ZZxlNoJyLk3FCrwV9gLwiBbDary6s3gNpyBB3lp47FwplUtkn0ks0icE+isJskWuuEVBryUy/bTLFORAQVIjKL7/u97rHj0HI2fPH8H1wPHz350zA4FbJj+ECOAjYEDEIGUIFU4mkmcKYOAQDbJgABiLLpvRFl9cgUmoTj5fy13lwqSRwiUFaLQzEhsl2iuG8XNOQT5fJ/mnEyL7WeM8f2eooAwC6hHAAgC0JUAQBIhX73DwsASgnLNtnVwGz0Si/Pk/W5MbFqnYH3y7V5QuQgk01ZrAaoZb1XClHFA6PgXWpKZ3wVBmDuWCe57W+GDaoYgAWQ0/J/hhDa7XbkB5bfn/0T5KjjNu1j2Xe6c1NNhHOmCgNpswIjhOw4HqErCJyKRJGk0/ApdduilHyQt5IBNdSASwuSdn6gDBukSdWNsKGRK3JAK2BPcilwyyhww3AwGNoVMt4BA3XZOdcnhVUAYzLLLbLBbTT+o6N8RGQGAI7C41Z4YoSQSuX8XJ298l25mlnu3FT7TBCtKorNUXC+fL1cjxz0UyknUGHYDr0zAWMbqrVOAnJ7nsAH/uudMtfcUkBECI2wipP5dP6alGft55g5VzPcxLPZ5FoEo7DT6QwYwHM7UXSmkGp5qtsx+ncGAFXmIR7yZAr2mnUuzlj3P2vL7XdECM3XY1IDQWOSN+f/pPUQRLl+y48G5LjWqk8EAfVR75NmAJCmBJCxTG7G37CB48GTtwUAVQxg73q5Hi1XI1tb6bTuu05w20F5BwT1jgCA2VxPnleKPiLS7z7ylLfnenbdM7AwJVGhIzJrFj2dDJfLuecF/d6x50aZniWKyHhyNRx+i4hax57buXf6SRS2Mg10QaQfCQBoTBpqHARrGwLlUlzm4MvAmDdflquLm9F38+W554XdzmNFAUMSeSft1ml5Gp3qt5yU69mHOP4CcP2yKZkMUAZFczcAtLVNNkYvWTbvAAB2bkK2QquIhAKIChkJFAAkmhNBwJbr9Z3w2PV75LqACoBSF61MiBOz2Ocg2WY0STXEmFSt185eUR4Zt7wzNovl5GZ4KSJKKUIn3TD2KBIxJjEmQTGe23aUz2zsK9bCAGz9UwuxRlJZIWJFXq878H1/Onlz/uJ3vt969PGvXa/LEhN6hpGQLQBgJJL6ErvQXgBQQOUF8jqlDWUhe8vWboZZr5Y3enVOsiBla8kaMoCBYqGLsTMeZu8wTJ1dQAoAUBKjF8Ys0gS3BAC2hU9EMGDqAYB1ZxR5NwBwZ5zQBABEEmDmZLqZvzTJkJn97qfh0b+5SoLFfE3iZi/dAKFI0nQ0pgkEEYspR1WuSccJrdhiRnjDij83oVS6Df1+33GczK8XikpEKbO2YIpZS4k5HANs044GnrFGg4jEjsXhlPNxUWfm5Wmgy4vKjPWMbQHemzrYeFvd+VKtqTeKwWOdlsNO22HPLuA9GEAaFEL3AIByub34yYeQfPiWopWQgElromyuRn8gYATXxkPDm5P+z4mc3OG2dtdXwixjwz+VrzCXx9V6M5p9QeRBqlpGwnjUf0roZer40mQlBrcn7gdxhO4wLpxNtAsDZXc6mn5jhAmVMCNa9rO9Oz2fXa83M0cFve6Z64ciEgTHgddThIhUZItZjYH9uoJl9T+uM6aoGX5owACH9Dm2vg3YkGO+n7Db/B5TexOA5Wp6ffl5rMeOCqPOieNFgI4AWwEDAXMy+EnzS7edLpM7TlyPvkTlHXef1tXU+DAAAFtn0iywD8cvDW9sztDvPlEp237PQXmHp3EXAFCCAZbTr81qOH2llGtJKLlQVb/7xFPOHQEANQAAYWadrMaTqzheu67f7536XitDHcDMk9HlePICgBOjfa9rOwA5AACiD+oEfAAAuP3YKwhmV/MJe9amZ7joZH0z/mo0/U7EdFuP/KAHJATqqPdJNrtJ9e25SpGLcH+SnbcIoN7xt2IwvB3wKtiBMYo0AYDCEjlQXxnr+vJolQJTA2NBJUBgZ/yJDQi4KAE4nmoN3NYRq7aDDqIrbDnXVShCUq2CFHvr2+dAmEWHVD7EmOTi8qXhjSJfwBA6ad1UdKroohMAIvS8MGQ2id44DjEDCecGwxZCZCKjQuyIiBu63U5/OXrz6tXnrd7R48e/cQPfGIPg2iovs1YolfdbCByq9iXmTuPlR0ycptGczgMIFbwdSEQ2yTBZveR44gCDsn04YbC5phIBFCE7o7A3QsOuZ5wgsrBsjFkYPS9gPNwBAIKIOQDwok+dYIBIW5OdHw4AbNcw7mT/kjKlNOuY43G8+M7oBQKEg19HZ/+2ACUx3FxOERFEiCywNNJA487L9pj2C5pHhCHzhMr2lMWi+VHNzBYYHh0dEZHjOClUgO1MYWUj2L6Bg9lNNckm4i2Gsju7uimRhaz2lrpfW89TQ6miKKKUZwxqs+TUWADllgxPxOzyaIsYoBCa6oENQmONfw9Y2mUI7AhuSqmSWoNwdqwDqOYKs1nhW2Dbdi0xlvKVUseAhRUAJWZ8M/knF6NMdY19t9eJHjNKTT+w/HXF2WUD22SamugoYEAIidngbPlik0wJvXS+mXXgDTqtB1v2VI0/xt24JbcW+O8EAGwhg40QAoharq/mq3PHibKT3cr/CArEyXw2uWbR7ei407bs/ygKThU5WK7RZnbat1yqdfoubAfen77Xbu238M+pXYTvM+A2VxaYdbwZzRc36/V0sRwqhYE/CKITVI6dsExN+koAAGpT5ayoCsZsRtMXgnzSe/YeAYAAD8cvcp+iQfdJrYLtIWLflS/aZQTRIajXNpJQhIGI1vFkvrhCdAu+8swMx4OPFeD7AQAszGa9mU9nV4YTRwWD/pnnRlUAMHspYrTWvte9f/Zp4Ic/TgBwFwxQ05Xj3YR3exoYQDIANJ09vx5+s9qMA2/Q6z0QBGDTbT31gx5CUv+i75j9I6KdDtwPACoJXA4AtjKIGQAQ2fAWAKTlxTsCAKjMX6at9UykB8mxiQKhiDYErmXnAxALxixILS8YqNZ912mhEwI427I32RIj5MmliAiV0rhK/47zySvbTxAQSeaL6WQ6tNphxcdoZ9TsDyvylFICWmtNRMgml0So1AaEUYgENAn0+93p9PX1xcv+4MH9Bz8jxycFRmMKtBiFkKR2K6pit70EAKj2ERNsNRAskSzDAIKAwqwF4tXy5WZx7hHasWBEYbA6UURAJJkWTTMG2A0+1gHAWoCxWe0AAMpzHYLUojwDAM+c4LgEALK67w8FAKDirVDAqQYkkSTR64tk+QowAYDo+N/wB3+tlCJxmMlKdxKBKdOXsQD+DfN6vdZaz+fz0g1KvShNsW+Qw4ZWq+UqBxHDMCzW+LcCi7Il1ldSgdT/TkxqZc0NFXHkSrWpWtVuOnrqzCCFEWg76Q6SAl0CZtydZGgopdd4ae3NfevAKsnt/Q3c+XVpVPffnYqpv/hSxbfwiitaEfViNTsim1lWtneEQ/YBjDy3FpHL4e8IEgTPVpcNbwb9n7pOaJ94pVVb23zIn6rZUUnaRQIWnW42y8niuQJHEDI90M1x/1NFPhRmV3Zr0nfFALcmmrsn4J6ETEQUEbMRgZvxl6gAwQEgEGP1o9O5stl1rv0P5CFSGB6Hfj87izDtq9QxeYq5uOzMgO3RHmycATgkfSeEWskToT3x4fsDAMx6sRzG64VAMp1eJmasyG9F972ok0r3SFbLYt0AAIrtplRzabkaLdYTJHPc/eROxju1kScPyCxmPH1hhAHId4JO695bm1oVv6h2JvhOAMAuoOn8PE6WSqlcVNcaPp4cPaO9a+ZwACCGjdGr9WyxHBpOPDfqdc88N7WQZxZmHo0vp9MUAAR+797pJ14QZrsgpQB9MADwV7/5F3QwAMgfbzPC5gYAQMwaRIhotbm+Gn41n1+66PaOniC5wOL57V77Ke0edbXD+4TQnBjt1/uvMH9qY8o2+RDDnLDZMK+Z49zH950BwLadaKcn05uyFRZkEUZRiGLTFDsvYhh0QoyBcloqOHLCnuN0CF0CVwGKUltJdSplTuVS63YDExED5uDYsraSZHVx9R2zdpwgI16oUllOyHEcpZTWWpvYJZXP1lQKvYQOgxIwBAkjkGK9mkzHF4PjZw8f/kSIUjI3KOt8vntq5vjkTgCAkTOPw3Q9pA0KQhAUYHIUs14tLjaLVwoSQkNKtqRJIcvDfxsAIInRK20Wkg0AQFrv3gMAAi/69DYA8L0zBLGENYr8HwMcc7JMlud6fUmuIEpw8s/d7m8UIgkBOBYmMmwnUEsboZx+mUwrjYsKgA1RPV/Au7Zi2TzxlvS/haBgdutPuRH1zqhMzRlfkcbYuch9MKBKQkjVoFOfPmFOtYnKXTgA3Xw9+dYrZs18YFnX8kmoMQ/c5YDVY4A9Wq67X72TPla1Vqyh4Y7OY8NNldV1SjCgoSRcBiGmWEImRBHZxNPp7GsQhwi0AAAEfqfbelrs1eXisE0RIF9IjPVJKhWzGtTGmNniVawXCCqFIkKB3+m0HmRICdMxdJYDIs/eY9v+JOOeBbNbAygqkFVeg0U6y9V4uR4iqdTbnk1m+so6Xo4nV8zcaZ+0oh4jeF63FZ0oVJVTcU9Jftda9a0BwOFlj5qJkQ8EANab2XR24RBorSeTNwgL5bbbrQfKj2wES9c2CYg5Gfxkz4xBoeSB16OvgRBB5ebBb3WdXC7zKZZkNPnOCCOqTjQIvMFbCIlWvo4a6hwHAYBCnspihuPnRE7BDlkQ0fda7dYp8t19MGqHgI1onayWo+VqlHASBr1u59T1AjvxwizG6Mn0Zjz+TsTERrf8/v2zT10/+LEAgL/+s/8KSpoMcuvO3AsA6s7CvBslBMjarK5Hf5xMLsSsOt2HQTRAdhNenAw+c9GXHXJRTZBC3FP736/3v0P+OQAA8JrNilnXAQC5S6sLG0I3phbxKfmEWBDJALNKV0naLQUGYZUkwkZI+Y7f9Vv33PAEnRaICwWR2jw5zqcws0SqClckmwy2JXMGAU4Wy9l8PjO8QVSWmoXgIiKLFhFFruO4CjDR67LAqE1wU4cRY3NfUvb0RmZWC7O8nsxnp2c/OT77mNAhwOL8y50AQJO2gGBGEEpNUhQICdkuAAoiWyMz5OVqvJ58jRI7TuJQmpSn3SHGujMza2HvAwCLRC9BTDpz8bYAIKXUfmgAgJKwTnQyixevQE8dHwXZPfnnYec3ylqX5sBPFJKplnJr5MxBCvo2dRW+fA9ykzJsLr5mqUG5lFPevt8uSOsPUJVpr0+I048t9DOp8bS+BQNkbGXG3IVD9qViDKZoJQNlDQ27rCvKevvwafYWJM8rSXYU97EBA9QXg7NrK7QOkKtvtpDE73ZOijOsaZznXc8sc0sikn5pejslDIn1ikClq0JAARY9Gv/RmCSVmUIQMf3OJ64TILiA2oblW5o/yEUkWYsBKsss1rPR5AWp9FyzuPSo97FSLohKx+dACejCy9+bHOR9mObMpSFTouIzKeQA9ccippqP8Wj6DYIHhALatk3ttCUBTyY363jiOX6vc9/1Qi1JEJy2wiPKpE4QUQqeR9nsUCkHrwCAhghQ2tH5u34LX/nSl5eGgGnXhaAEkPBdM93av5/MXrGOAWC5nM7mrz2HHLfXbh+JCuyvKCRmTgFA/7O9VDEGcQA1MwwnXzJgv/vAU9HbPajdxSOCAno4fiHIItiNzgK/844AoBJyDwcAptDvtccuixmOv1HggrIKU+k1h0GnHRzdNeduAgCgjTFmvhgulkMtuhUNWq3jIIgymVooAACJTfyjAwB/+2f/ggEL8EtKic7+X86QQP38vu1xZ615QQAxIAQYTyZvRtMXm+VV1BoE7TPCUDgJw0E7PIGs4m1ddbLyWIWjVj/sW4QNe3j/db9bKthY8gwJCBjmxJgFSyxGS2o/TpTObtfE3l07sHpp+XxEosp8y3kRUm1TZs6pIqBAiUjCxoDnqIEXnjjhPaSAHJ8su5KREYiIwVo5bfNOqyJan10xCqZlhlhvJtPRcj5XjmX2b5kYwminLUUk0RurtVk8+QyIpSQhKNlyOAUVrTdvktU1x+7R6Sen9z8lNCQkjCIoZEQE0aWCupG1Dsj3NiOgZRyhwB5tAcy3KRWRIaJiSC3QgRShE+vZcvoS4iuiNSitkFKtHvSALduSGch6Au28Q64yDTjReq7NEsXyuqQAAEpxXyEzWtsc34s+dcOTqkcTCst+8YnvBQBIbjtgh7wl0WbD62u9vGaeuz4BKvfe/zIKPxUDBConkglyNvFfX5CqPTjzY39PMGkC6tVPzj6/5AyQFWh3+Dmlg7OiPMM7FY2DkQDvz9XYABXmjvaU8CsmADt5cCMM2HJ+CnQmW0fP91FDA0QKACYfRykHCm4Y2Li9FSB1ielWPrVcV6rrQhS+pfC+eM/TznTrC9x6ZABK4vlo9nWxHcrM945/ieBal67MAJjq4uS+weU8QtqWaTYilZp/TRcv1/GE0M19iAPvuBV1EJ29eVe1CyFbpYrSNUhz2elWE+jCGWQn8bZFU1vqBIDF8nodDwEdW/0VTisxRBSvJ+PJFRvT7Q2i4FgcUhh1W/eICBFAlCBn2xyhqte4s+ulkMwdVplOgzzLvhwO3zWQNkrTFmN0Qaok7XTVf5QBIASVK0Gx6Ovh1+S4wGY+Pd+sh6jcdvvM8wcZUNnqGorI8eDZrdm/CIokN+NvAKjfeey6/jufFduCF7Mezp7b2u6g99RR/s6wbp1DyAFvoToDkEO+/c2jlP+jBPRms1isrjNdGcrl41rhie+3mmYAGGuSt0xyZTdfEmaOk9Vsfr1ZTQDAD3ud9pHnt1IhCgGt9XRyOZ68YdkYI1FwfO/sY9cPsrxOcvmsDwUA/iso5deyH6HWPvOaAl4GqS2BJEXPwMKIZFar0WjyfDZ7rciNOvc9r8uiXccftD8upryHl9LLcp9UGni9DUAeBADMRsRsRfibAUBTyKiVB82w0e1RRgoFEqRc2hdJ0BgRQ5rartuLojMV9sgJgTwRFCYiyClR+WxDJkuyzVwL10GFzMNoEy/n8+ls7DiOpSsws1IKxDk5vkfkaB3fDC9J2aMO7Q/YRkYeCrfCSkoBcxxfxfHreK0e3P9l//ghoadQ2IABA+IqBBEhxcyM4EKZzG3Z/E38nzoAANt5jwwApH9JCkERGs2yXr5JVs9JVkQIyArQCjIKK5v62wIsYnUSsFq55CRJZtkAgAAKQs1ws5UBTfMXDrzomRedNgOAHyI8FAGA/UYESQHAZsrxRC8vgBLX85ic6NF/4ruPWEuuu5+WZN8aABSixm2Rp4YAsKs3J5XZd6GdUln1c/ZjAGrcm3IoUClGg30AoIAnd7sBOw47tV+aLbMSAKgk9FkEKOINgdryTwED5M7Nt00G71UIzQCA5L/Lsv8TmrJtBdjoGACpi3DxqTIgAG82N5PZBZJBRDYEGLeje+3ofmqwKA5SPqLN++6iSF4vj40WbShsTYFFXw7/QEQEvlWtFZFe+7HrBmxuLyrnHcEDfK/qtsmhkpQpAEjbwyjMtt/NcbKYTM9JgaRyxsSSoACRYjbz2cV6tVDk9QfHikImJwz6rWCQz+mw1RKtcxndp/eJtysTljDAAWlL0e/8XcZ8S7+be3pU1CwQ6ocQhdJtlXHbEFSiN6PpN4p8bdbT0Us2K9drt9tn6Ebb03/rxywnR5/sfSBpAzzRy9HkOyKn137kON77OC5S5Q9mfTP91hjjkNvvPFbKzc4w2kELckvRdidd492nXSsWWwcAAM1iOVxvpkROQWuBRaTTuu95QdMMAGfs3/KD3QcANvFyPr1ab6YAEET9TvvID9r5MLRJftwAoDIEjHhor2r/lthK86bzecTAKQBANLy6GX81mbxhvQmjk6A1sOnmUfczhxxB2TFHxj1SvHvF/vf95e4MQBEApDKgJraUbhFTbI80AYBKmeE2GSyrZFOzthoeu5CgkG2gkwgQoEJAFNGu1gzgoYrI6ym/r7yOclqiHKsuCkiMgAhKgARy0RCryAK5mwtW70LEGGPWm8V4OCJl2694NDgNgw4LEQJzPBxdGU7AaMu2ZwRbtrcBztZfiZSlawOqdfxqPv6Dktb9h39+fPqMiIDZiAKM0ahszajdA3XvYHf5ICwDgLyzlGEAsuwmmxAgYhyPV9MvRQ9d67VMhohYUj64nQGirW9JqaSaPT0DvEmSmXCcqiXUAYDsf5vsVA696FM3PKoCAABOl+UPCgAAQNIEVZAYeKNX1xDP9eZcCF0vFH/QffQfKeybRKPQ1pEKG3kdNZGhTnK76QAvVYix/sivwOzGDYVcd/DXDG5WYADdbqh0kOD3rknWno/NOXt1KkN8W31OilfOtV2CVCekEq/2GYdVOgD753Eba/nlBBobuwfNdCCsnbWtRwICJs+cRNDw6mr0RyIQserPlHBydvQLRX76sXlytg/LVWaroIKvtjzSbDusNsPR9BvX9YFdQCMCrfA4DAbpkFVtv6W0VsuqeNmbwtsKo9X9Uv6sCmcpN0lAzCV9CRGFk/H0heEYwWGQ1D6SLDUCTbKcTN4wQys8aXd6BsB12+3WqUNOtoxB0o4F31nwH+XQSnwqq1r/YUVv06I5ybsHTxEBwt1gVUIxFZCcWT0gqFy7LEk2k/kLECfejJezC0D2g6OwdSqpmDUWAQAA7HYAym/TZtGUA4B+57FT0Ol/d76+4Xg0+Q4AwqDXjk4KeTvtlCTq255NMIAaQlbj+UXFZwsAMJq+KE5B5ACg13noON7hAKD81eVlwyLarNbT6ewmTuaM0IoGnfaRH0SUyaGaRE/GF+PJG4HYGGmFJ2enH/2IAMBf/eq/zLLAdDa/nlctb0mZSuNX6umjrXEikkznL8fTN6v5jesEUe8eOR4abkUPw6ALAIjWybkUqWrnffMGK+8r89NOMK2fAaBiRRMsAFhrs7IAADA3JcoBgOzvM1Zqk3UCSnhI3aKsZMI24iASZ01BxdbQygFGNsCojGqR1/Nb91y3jW4IQGn4QKuOvx3oyVZ82iODHXJXaiouYIwBAGOM59kVrESMbbJPpjebeA5GA5ARpTDXIRUb79AawQihAyKcbK5m09+CCR48+IvByacOgVIq1qDSk5XyJmltvOCKHbdgqXdUUypIKUn2kGNAAAcRBQitiC2JcLyevlgtnntklAOgiG2WDwpAZV9pdgGA5RiKJMLrJJ6BJJDKxVZ72FhKgLgIACjrvRSbuD9cIGgAAKIXvLzgZMHxtSFw/Mjp/rR1+u8r8Ey8JbiXAADUcrul/rhHrtlFKE0NhLrkgQ+pETZVanf6ADU+r4e1Ag6CARVZzPyftnZItTbDjRXuWwSCClOq9Yk4QZOxI9TOBuxkGFmajvvBDN/aDahN+vepVdr8qX6lyR6v6NXmejz7lsgjJgEjJL7b77SfWrv6rF/JDUlV5bv2XVsRAIiY4eRrw7HlwSOCMJ0cfVKUrEi1FoSKeHV/lTo/Z+XQSVhuaqmXu0+IRCCJLZQAm00yni0uEFFA5QuSmQmROVnObparkaOibve+GwQsGAXHYdC3Q0L28oT3Vtwr118LaFBuzUmwLNxUMQRAqUVWh0XIvYChVtQoP4Vqqh47BQsRiePldH6OiMvZ9WZzqZQbRfe98Mhk7iW2sWzPcQY57j/DZsaB5aGJSJzMxtM3hE6/+7AMAA5qWu75o81mNPkOgDqtk8Dv7ZCsdgFAGYu+kx7RPgAgItejr5VydyiUpt99pMijhkBtCQKUYbQ6U8IqAFgsx7PFdZwsBLEV9bud0yCIcn+hHzsA+Ge/+F9j+kcRWS1tqn03d8UAmIlPM+Q9FA0ZAFitx+PZd4vpJTC3+veVEypwHDfoth9b00QiKgOAaupffXO4p5tUjQiVu0tlM8t+IgJGRIQ3iV6CJCkFSNKMuQkANHDIqkEk504I4iG9y3IgK/tcorKMGCuLT6IUEgokhgUcYUe8LoYnbnii3DbmfzKZVM7vGNOptWJJddsQECgLKBWuJ330eji60mbNzCrjfUFOv7bup5iOO9t3ouOr6eR3Rq/un/1bDx78wi5CY5K0CpXyx/BuAACa+GNbIhAAIDpW9BNRCSKDCBhSClCvZm/Ws1cKF4hCKqVTC6EAMSjKnG5z5JkDAODY6IUxK9kCgO37pWoSLJYmZQGAFx7hDgAQ+SENAgXzKhkSsAgwoujNGFeXJpmCmbMSccLWvb/12n+twBVdorJkAIAamgBcWyHLU6T687U4Lyjbl1sHJ/hOx0bT8FzFSLsZJ+xJeW8hBZWbAPnTr8dOe7LPyvPZ83UZJbJWMKexzl0hBZXgys7X7bYCmgBAAzarfBHX3tEu72jXgSsHMLBDnUJE5tXV6J8ANIIvkNhYGPn3o+gsvUhGAN7NvA+4nZpWsC0TKMA4WV6PP3eUnxZ8REL/qBWeWPnjnSH1mrbV/qO2yeitIYA0j4/bJ48q89ojEQFJrm6+UkoJGQRHRFgSG9pEhPViNLoA4CgctFpH5LqIQad1TylfxKA1nVecCTPUs0HuXIlHaSguNAKA7NhVdQ+H7/61twAW+3U1PKZs3Rafhi1lrjfT2eICWE8mb0AWrhNG7UfKjRh0yiwiLJTYuRYAFM7EVFp7sbpcLMeIuNMBOGRJ0J6HkwOAXueh54Z7g14VANx5XHv//IAthUjK7GIxN6OvrddekeHOzIPeQ0UeHfYUCCpdPiqtKxZO9HwxWqyGKQBoH/fax54XYKEDMBpfTDMA0I5OT0+eFgHAgQO33xcA+PNf/K/y2jCRQnIQFRRMVWuqUXd7cVjSxEv/0zDHN+NvVqvRajFsdY7C1gmIy5Ic9T52VJgNXObtStyf/cNBbl+31EWaAcAcxBQBQKYFBHsuY+dAor0zWtvHm+XlJTC9LQ1ah1SW3OAaMa13IVIW3ZhsPmcUAzJrw2BUy/HPvOjMCVpKKQM+EeV5ucLda+CqAmMm8bmTVUvWOuDpbLxczQCYhHLKvkXTuSsoEQo7oAwAiLkej/5RYn189psH9/5EuZ41RMsqf6pe4A7RQH3XeGukhXVO0fb5pKk/WXUgYYWorB0YOQpks97Mktlr1iMHVtbfyq44ESzV5/L8VQSAxcTGLIxeAjCgqNSRIK8oVAGAFWc0ELrhx154gjt77YcEAIglY4oUAEii1ze4udZ6gpIwsvH77fv/nh98SuKAQcqn3MQCAACoUQnbF2M57zLJ/qw9Za2kFP8tB6buSK5zby3/GwFXMWS2bRn3J7t1gKGmvi639gGwrnGAzSX/xnJ44+wEV5PR/N4LG7gJY+zmtVjXyqjtb9wVBmwJLaUfMLV3VMUPdebBlkS49VvM/mccjyeL57YhCWiE0XHcQedTICQUYZXXgyraowd0A2rGnXMB5cX8zXJzReDbC0ZQR/2PEdzdZKgSdXcFl5qL37U74Y4TNVa/KpVwSH9muRzOV5dEDiIaY3JaGiEym+XiejGfeG7Q6Z4qNwBUUXAchYNsigAbGjsHVdYPz8TzykKRvLr9J8rdFbbCZelhepdC+IEAoKIZv/tbGTEvTyhRoazWk+nyMtksptNzz0HXb/vRMZJnG1PpY98WlPik/+y2pNkAwNXNN4DaGnVZAPBWxCduAgCIqt95XDdd0OTe+zbdhlsHiHN2GRLE8XK2OAdwcgCQTTDCUf8JoaJD90Oul4A1C5iFEz2d3axWNxu9AlKd7km3deQ6IarUw74JAGQ6Nx8cAPz8PysmyoQOkktEgpTxJcowgAUOdtguAICt2pE9xlBoPHu+jseT8aWrsN29D06IYkK/347ugxCgyecvS0+/oDzYnHyXVICafr4Qem4BAMLaZnUgVtP4LV4YNlcHm/FAzU1y3lTJrla2oRtVPj6BKAQp2d+uRc2ijQuq7fkDCfqeGynPJ+UROnbqK41kmJcuuCQ0UdJT32J6u7XsOjEmmUyv42SZtea3L0IYSYCJxThIAqiYDABAMhwN/xUz91qfPHjwF1Grlxl345690dTwySWPoDoKnL9Z4vSEIwXEACQOAAkJoAsMQMzKgFnHs3O9uUBeCQkiIAkJM5JN0HKaY25vxHrFemF4UwEAVF+pEgGjAA17TvSJH53m1YsPBACwUDpFYCEQwxteXkl8rnkBoAFF2p9Gp/+e5/QVuGDSOoFNlUREiFEObBjuUGIK3NY9v17cRVYk5BC8kVPeKwL/vFNI3n8i7Pkxai6fN35yMQNurprsXEbjXF0DEqh2A/KEkuvVjQ4gumRO2VIQ86l5EciHNCgqmLfyRTUtoyb35Ww2oOx8vH0XhpPJ9GttNrbAb0NZ5J+0oweFSmGqZQyo80pTceoAbodM28a1FWowJrm++YNSDqEHACxxFBy1wnuFJblP+ulO3YBKDsoHJVtVFWzL7bGM00Qvb0bfKZVGeOYYUTEzEoMhncymk2sWHYa9qH0MqBT5vc4jx/F28BvvcMRvTwcPpQzV/XVRvpbBEGDeB86prXf93j0zBrXX1QwAwJSm/BHJrBbD5Xq0WA7Xi6HrekE4cPwOKgfYTmUUWQCEoI/7zw7Qx+fzqz+SowBo0H7sZnX6u2MA3m1wMeub6XcAfNT5aIdvU4m1b5/6HwgAUjsKAECZza8TvSh2MLILhuPBUwQ6FABsmwD1AMDEyWR2uV6NY7MGUt3uvU5r4Do+UcoWZ22Go/MSADj+yA38HxUAyIslBECkXCIHyYUtZ7pgqySH1BUqz8suXypkkAAMq83VfH29nI2SzcIL+0G7h0xEdNR7RugKaERKZ2XySkxz9l95a4wHZf+HAACt58yagPdQ/w9YvlCxDjh4eAvLtkpUkLbIewJA+ThBaiKDiIpFCDmfYScBYEw0iCADKicgt+2FR1545HgdFhfA4ezkwjI3yQ6HSMG8KdNfL2bYthWdTCbjzWpm3zVj+srSTrcQImphQSR0AA0BJcnFYvSHjY47vaf3Tv48jDqO8gCUiG4KcLlgf+WF5hXcdDCrBgAAI2VKbaSAGIVQiai0KyeEAuIkzJzEo83iJSYTBwQQmRKrrFrkhmPaGtFGL8UsgWPLNVaAZcO4VJSd8rAkWgFq47rhM691guBU1uqu6McP0wrIAIAxOobFRZK8AVmJIyCijv4mGPxPCFBJYDtFJRprAQDcdsbszqpu1YRKCG+/8xHKbZCDa4uOebmUd6rIb4UBuHLQ3eYfXGjrFaYgdku/2IwBGhQJ92GAkgBoHYWJC/+0b74WK+0X5kJYewcMUHfxO5Pl+wYDygpIpW4AmDheD8d/JFKIwMykQGt9NvgT5TrAKp2HRi2MiK6kDHjZxQD5rFTdvWD52kTArNfz2eJrh8KshqaPez8lolxt89YuR/Prvq0zUBqeufXY2tZK84U3X1ytk2sEDwCYde6kwcwIsJhdr9dTQqfTPXb8LgAFfqcTPgBEpKQw+klvnWjW7x1qaoNApZeS/RdDZFXgtsY4cDARpaxhUENh5wIvt5gH7+kASK5ygQxCLPF49Mrwejq9NMnS96JW9x6TInJyq/XSB+A+AJCqLyIz66vxl3YmddB+WqzTvxsGYFvvu5l+RwRHnY+InPJirim2wDuIse5/X1YjCFMxJh6OX6QjPZnHaL49j/pP3hcAQIEkSSbj8816stErVE6vd78d9V0nQEzZqhYAzKbnVgWo0zo7OXr64wIAtc8UySNyCC07QmXBgxo2JzIWtaVLjdwqcSqvKkkynr5cb6aL+UShafceIjkCptd+4rmtNNMFJWCkoKQOUJSwrMnmGevHRqvvVXb/lYvETXuuGVmyToBjQE6DKWFFmLKepiKNiKhYUSuoKB4GqPht9k+JTZQOpaUPSlgBBMrre+E9FfRJWZNqEhEgBZklFqg0iBNgdt4XrVJK2hfMMJ1drdYLEZPPVTMWOO4pQYjsiYkocTJcjv7IybzV/SiIPmpFg1bYcdwQUsKPUYAAysp4ICrGLbGhRKYsFiGkfq49BbQZBkBEBszYU4SgBAmFGQQdZr1Yz94kqwvENSKiEiSDqITRgOT8XZI4SWZWLpbAWH7R1lIeuQbVgVFMzMz+vVb3M0JVCqBZPUMQ8uJ4of/7rgWVah8MU53BHOKi0SZe6NUb1BcozEpirYJn/3EQfKKEib2yBmh2jwZrE5TmI4cPOHEbP7A2yT6UfbTz85VC7yG/Xnaw3/6AEaHbrnO3WV9fObglN+LDMEB9clmkAxUX506CXhfiSod6Cla3H871OqG3qQOVYACWg3Olzlr5qBKTHkwW5InR2FzoavhbK0cGICwaUEXBSbf9oKjCuYMnuSnnbuicWGqMBVMoggLx1c0/kGopq3iEOvRP2uF9Tm1PMPdt2CXG7H67pT42+szgLT20QzytKZvgQpJEL4fjbxSFSMIcp2qXYgiUgNF6Mx1dCKw9v9NqnzluBADd1lNHeVgYbX/bMMW3Nzh2b0oQ0IgIgiOCAmtjxJhEKV8pVXcQ7Es0Uao1/uZeGTVdc63BXwXni6DA5nr4Het4Pn1BgF547EddQUBUKLkIngBQPge1z9Y3U7KyAEApV0SOek8d8g/tsdzyUlIAMJq+AIDj/jN8r6OsTbuvEQDY6UsRQDHGTGYvC7CTrKIFIrLenB7/JM+/ms5RKjetKiSUYo3DxMlo9Hodj2MdK3KO+k9arQ4qL2Nos4jcDC+mk1csGxG0HQDH9wqyUfwOpmz0js+5CAAqn0iAqoABEIAEqLZIWVeBwF0AUD1rwcyXV+v1cLWcbDabVrvn+R0AcJ2o134CmaMngmLkwvaiWv594cIICprxxYzQfprt/1JzoLfnB4qwaDSx4ViMBuR3amDtzFRjHbes5p9LR13qp7jrf7wrIFPJnPLnk6qCKNySJhk3iQH0FPl+eN8Lj5zgmDFIyVp2vkBldP9tQ0DtDCyaPJsENrP5eL4Yp8qqqT0O5OKewlhMHxG06Mli9vV6Oe8O7ofhMwHqd84cN3RdP4UKkCCkWbKBtKNXwja7KpB2tLU+7m8xgJAdpFD53wtauRhGRMPr9eI6Xp2DmXuKDWkhyW8EDRIbgRQA2KQK0QquNtaVCZBBEyNrY1Sve/RzUFH+rq2EKGSKZqm68d2iBN1hsg0xnTlhzgsSaLSOx7y8IHMFABplLb2jz/5zX91HToTt4NDO8ua9IpJ7K8EHYYADAMCBzYc9P9z84viA45Pto8e7yAQdBgCaHhc3DU83XeGOURrvHn4Ntr47tmtVzoOpC1z7oSAfiAH2vNkqyxyMbV+nDlkirFfXw39KhS7stYE+7v9CKXdL9QGzq0aTF33rOFe3jEQjYqKXo/EXily7JZn5uP8pkAcly2rYabnc2i2pOX/hjkyhOhUjBiACtA3w+fJNnKzyf7KkqXS8Fcxidr1azlBBK+qH0Ykgh+Fp5B8ROliweHu3OgXf1h0v59aCAhrBE9AgqE0yX1wFfs/zgrzwjzaNuc1hgGD3zN4TvvYVZVDqMUYGAMWq044mr+L1fDF77bpe1Dp1/BanE3a5dKlkPp4gIse9p425YzYBvInn4/lr+2NHvY9VneXc22IAYNY3oxeD/pmjOhVB4R8YABR/UZvNdP6mchRaACBGHw8+Lh6l1AwACgmx7M5q2v/UmzgFAEniOM7x4GnQaivyMh8AMcYMR5dFAGA7AO8MAN5TB+AvfvafCWGzKSAhKERFyiFyBLZF0zt9S83bFUJibdaT+Ytks5zPpkqpVveI0DVG9ztPPbdFNsViygFA0WOvuTFEUDb7yAdGSbZjN1SDaEvFLREWtgBAoyQ2rDM21mbsHwW4RzzkTlvgbg+WsAhMBWGPJ2J2/9bgRUisfwmKgNGKMSCv7wZnjt8HFQApIshUYm3PGhhA2RmDLcjeHsOC1g9Fjyc36+W02PsTKqj7F4qkAgYQQc/W889Xi3nQOe52fw5AbCgIW2HQ9cN2YSTf2BfBbNWiDsAAVEpUtxggvYwqBhAgQCZAQCUIAptkM9msbmBzI7gA1EBOmusLo7DhlU6WbKz+j+R6R3uc8gSNCIJODHvR4DMvvC9sbBljez4JApAg3z1M012PXtsE2O4ds9Hra169IZ6ISMySBJ/c/8l/StBFkwAXH6PcAgB20vcDYUAd/xtuy28ORAK3Mw3eBQbc5hsge08+ruzw/Rz9yt/XOoVVAkKF98iFSi01X0+usFlzUzsqRukQUTMMuF3nJ4MBWBKD470VbpN/ERtAxLyKtFy+ns1fo1LIxJIgohG+f/xnVnSuRNUrwIAdbjc3wYD05zMV0TRPFj2Zv9TxgggAiFkHfq/TeWyMSYsaBTExqDNp3puuVWkVNQI7JHvjRr2Mtb3Z1WY8nb9R5ObFr5z4hAJsVqPxudGx57Xb3RPl+IIw6D5zlbczPM0HJJp74tXe4ECFmllh5bMRZp7Oz12nHQQBkUOpnkNzHlnUHKvX7D48CHOxNrcLAAoHUDpzYiWAFtNLnUw9Nwzbp8oNBUHM1oG+MAdMKQAoCqIUn3n2Cqazi7WeWkewJgDwVhjA6uvLaPKi332slFue8XiXP/x2p1j2VGm1GS5Xk2qERyIiAux3Ht96s4cDgDiOR8NXcTzZxLHruidHH4WtHlHea9oDACBTFP3QAGCrZrhTVJZ0MFFlw8GOQCo1I4S31S32YQAQsiz/6fz1ej3crJebzTqMOn7QEWHP7fQ7j1ODDMY9MmE7z66mJ5INfdb8Vn7Gq4qxCzIws2jhGJlZYlvzyNeCIFfo3dQ8v4uIyG8FCYqUw/3Pkyou6JQHeGxmzaZENN7SIhUoMcwamR2hlhMOnKDneC1yIlAKwQUgBAKVbveCni7lTAAoCI/M5qP59CZzGiZrxpXv1ZxML2AAFaJIvFiv/rhZzL2w2+o+UxQBAIvqtI9cv+W6LqJQZi5WtzC44iCWBn1VbcTsYgDbWpF04oXSgRNkQbB+IrFeJ/G1Wd6YZESK01aUJAIazDrRCzEaURFwGpcL9dHi4ZE3FkWMMIMB9O61Bz8FcfOykNUf4C0zXsoeQO8TAGRmHSiSjpcggCTLeHMBy3OUBbJsDPDxPzt9+h+QeGRKVLQSvfiQdX73udv6at27dgNuwQB7XK5u/XW6jS90AAzYiWEHEag47wFC2d4B6hyFc98DuxEbJgS4sQOwK1MjldkV3h0Ozik6cKuaUOUby7lvbZkjrUEUWZokWuub4e8BANCAuAia2XQ7T1vhiYgAGthlbO2qtsvejk2exDNaAAAA2myuRn9w0bdxiVkPBj8ldPYQf9MnkyVwdIBP/B5Q2uQvdisMADGzxas4WRM6AibPU23ahwKr5XC+vAKhdus0bA8EOfCOO637KPv3C931Rg7sBhSschwBbTSPZ98pigK/rZTrKPfQNAsbyId3AwClU0ZEsGwwUlAjtWp7GG/G0/n5ZPJGofGCdhAcoXKziRLJjvhs1ZGqAQAV4McoYG5GzxkMkgGgQeeZo9TtCbhIc55R+kFmvhl/dXr0s0y0491z2T1knAMAAAGImsxeaRMXCwo22UBE1wnb0ckev8jdg7NhBjH9xSRJbq6fx/EsThLX9U+PPw5bHcS8RC7MXKEAWQAgKM3KkD88AADYxQDFNA5RAbpEDinPJkbpcGfF6KjxYMP6SgNCHK+H0y9Zm9V6rsgJoz4RaeHjzkee28oyS7P/ndUrlma16hpuJZVy/e1IkIANcAJMwixajBZgkKRSM6s8Lmru92XZMTWl4PuDe65raaQ0jFL9xW1Lk249MCpCafkrJiIlLIyW/c9ajAYEnygwbqSCrhccKb+FypJniMTZqmRZ49R0EpcYdaYsxJPp9WI5wTR4kf2VLd+msEsNAwCTWa9XX64WEy9qtaOfOo7H7AgSI0RhOwp7gRtU2iwFJMA5qil4AOMuAKiunHS+nNJqgRWSIkWAqTIpsiGNYrSebxYXZnWBuCIiAAbeMC8NbzCb8q2oQ6YqmcXB02xmRkRAJwbCsPuxHzyUrRYQW3DFmUPf+6jcQPNKkFSW2I6IMMtmFm8ucHONvEIxG03uo/9Z/+xvUQgNbWuxZSm9AgC87cIOa2sUsesPDAPqK9zNv05y+28dbiFcSyzB22+hDABkn31SVm8uKaLWCps2led3YVJFAHELYAT21M53O/61YKnyBCTXrd95UGX1D7VeXU0WzxFcm7aQYmZz7/hPERwAAVDQ1O0pPocC2OAdslBW+EcRA+IAgEAyW1wsNxcuuvYUc/1Ot/WkkKzeMtBV1DU6oCfAt+64Q2CAFf9ZrUazxWtCL0NrqV6vPTKM3kwn59qsHOV1ug89P0JFnfAjz/FvG6Q5AOs2OGnWLsgqsR5FmAzHs/nldH4x6H4aBIHjBk3qPY0AoLjQ8J1ibBk95sNyqvjWRHCzHo0mzxeLGwUqavccvwOkckScHfFse/027Rp0HlNDRT+XTrkefcmCSAbEOep9rBrGX6Xpsvdn66xvxl+dDD6zvtopweqOnecDOgC3f+C2HSR4PfoaUZVFvcCmN4HfCf3+3sJN9fuoaV9KCgCur75NkrkFAPdOP/HDFpHadgR/5ADgL3/xn9Y++6JMlaSq9AoIEQNEInIsG3uXj344BkBEZoNI0/nLzWa22aw2m1UQdQI/EjCe0+u1n2S25Le2Dqt/jGANZsjITtt8MWtu5ryL9I/RIgbFMBsBA2zyk8bW9vKCUVZI27m71HDq/eRneUaVxbu62dY6ANDsSmbb/SrL/Ch/+0iirIQmKxBHBIQRRDQRK9cNT7zozPX6gC4AgKj86xGx6MOS0xsBYLWejSc3IglyVtMgLATBDK2JKKVYtCTrZP16tbhQftSKnvpuV5AAfIMGgPute14YKKWY2f7/6uZNE9QCBiBsBgCwiwGIlF1Cgqn8f9ooQ2SJQeLN6mY5fUk8Uw4DJ8xz4djW+fKpvkpZNP9yLlhJGBDUzCzoHvUGPxfw8hhqzRlSUSPA9w4A6pKPTAFdb/RmrtfXkgyRFwrMxkStj/6TqP9zFBQRxbmgHu+ym8oXJvukvvF2esCu0c9+ULE/udl/6tzCsW5MoZhk73u5HQkcpvqSn2cH9AHKUER2yzr5CqxBMnj7ZxYZQbuwJz82irMceeF8twd7yFRABQPIliJlapeNIFuljvH0CzvDiii2Et9tP4yCU0YuG0PL/j7ATjhvZgQJsejL4W+V9VlBFJFu97GjWohbB9CDADDybqWjEtgLe5nv+pk7zUAtIjfjbxESQk9EcgBge7wiZr2eTsdXpDgKe2F4pnw38AZRcEaZ8uk7xKUKc2NfX7EwpSYAQEQCrBMznHy7WA0HnZ9GUeS4HgDdAQDsiT8ob2dfVYsjCgCARGS9urkefRUvp8oNO91jIM8mPlvvHUI7fp0/llsBgIAZTr5mSaUUj/vPqHGItv7KaY9HmxBLPBx/d3r8jBnsdOWdmjYHLIO7ycVaC7Crmy8dJ7BoxAL1/FhvR8e+1256QbQPhRRZQGnlAQDieHN99TxJZlpr1wstACjI3lSHgFvhiZUB/dEBgD1jEDkmzgRoFZGHpAi9HQyw/36KslmkUCwRyJhkPPtOJ5vVZk0gftBWSonAoPux6wR7yyRULh00OO+m7W3MM/JszDerL6YElQwMgAHDIMysbTPUgoHsqCsqN1PR3Leg9VnTPbw1/apTgYB6W3vYpoZU1o/P6fX1drjbIQoRwynzB7d9bQI3r1hbO2vcOpkrBkgMAgTgD5zw2A0GjkI7JZKDIEzHCQQgJ+gTAC+Wk/8ve//1M8m25Qdia629I9Kbz5U3x15LNnvAZrNpGjMcqCHMjEiA6m5yMBjzP0mgREAQ9TCC9KgXQo8SBEF6EAYi29x7+97jy9dn0ruI2HutedgRkeEzvzp12pBVaPStk/V9mZFh9l6/tX5mtZ6LiRzAStQUlN/DCEFZYUQBu91tL7fbl0q1et2Hrda5AAkpECJgttDtdnWr1Wq1tPJhH6PrWvjJosnirlFF77SGDuSQbWayRahIRFAIQTFaEevW4iic7uYvwu1b34uANwJB1vBORAiKLubZw3D6AHI1NwuL7vY/bncfSKxU4Vz1Jljd/uWmaPrCnbP/T0LIuxnk7m2J2K7NdmmCGZopyg45Mt69waM/bg3uE5CIUGIV6ABAIQA7iwHy/TxurtoPRKIeyv091Ho8PBOoFeMe1Uk9BAOOmn4ctDMqGXIfiQGgWRzMha9Yg1tsFZyrwFcIIGLrG6lcWYwewwiq601mr10SQm9RIIgWs9nXiIpIMzOiMPPds5+BIudGoLAikqz27uImUbWj8AEwkt0F89nymcbYHtH3Bv3+g6TFjvm7+3AdkDrz5BtPcCtAe9zNbDe76Wpz5ZEvIiym8M7WRovFm124bKlOf3ChvW6rNep17njKxZyZfXvs6FGAHHqWSxMkzqz5+xQRy+Z68tVqvRwN7g/7F77fFnQ3Bjn/uhwGxvpgr8Pn7ajSLUdFy9//rrUUN/XFLpZvryZfcRh0+yedztiguLC6GABQzL9yPTvnyTHqPVBURW1KIKjlaDr/jtEiKBE8Gz+l5onToa5t7j5nBDSWQ0XtOrO774EEKl1u+CAAMDaYzL5TqhWLL5DdSXaMg9Hgnlatyl+nA2MIKVa5DAAQBLurq69NtLHWen7n7sVnrU6nAAAm08vZ9LlAKIK97unF6cd/rQDAH1ZeN4wX0OLtLu5fQBH5ivxUGYxYVYbW3E4MhIgEnNr8LzfPd+HcRBDsFn6753sdEWl5o9HgIaAB0Umrprbxz1jVscseTNYuhly9LhQPBAAkircQBwbYtf/ZWitiId5aJMteTb6SSm8gSRKMIWGrZh76XLnJB5ePJFVVAZaHvOXqWe3fHzP9Kio81a5/QAAMtKcpE8WCDwEg3L8qzr5HEJEpbWwTswSRWPC011Ldx36r1/L7qFrxNAAlCYB0bJzULZSDIJjP3jBzggEo1R4IspubY7yJxqxTu36z3r0W5G73Qat9F8RNnzxA4wb9VnA4HHm65XmtDIcnCwAASB3EZHlrIAJFIlaBAlEZ5TfFOnhkAAOKw+1yM/3G7p4rtQN0vMN4YMUMDgCUfUXc82RJhEEl962IAJ6NTn4igoI68XzI91yxBIDZNjT4s/pjwaJ/VGlPlbgakNBEC7tbQbSUcIVi2AZ69Png/j/HVk8LgcQTX3eqy9aE6ZtXifWlYRSwx0vUDACgnF4Eh308j6mwD4eRHaJScFbz865vIsdjAEgcOY+Q1SaLe76rUtYI5VwpkRs+uhAYvL9SSQ8+txrnqmduUFlIhRVpvrlfXQfY4rPGMlt+G4UrAAPiAQpz2O+ddTtPHC8C0IDlwzC1EQYwSMLsc3ejYtldTn6B6CmIU9XHgydKD523WDKEydpvFB72puDI8nn7vkggM4izNryZf6WUIlEAwBJmNf4AEISb2ewVoGn7g8HgLpAadB92WqcIibEpcjGp8dBTKUfM9PLrFZeaRywiV5MvlqvFoHcxGt5tt3oMBgBBtHvckmawE5CQiBDUBg5KJaatwwDZFHSoGc5wFiXaBAC4ndpOpi8ns69IoD+40O0+Ox7ynv8ZP0duT3fL47B73/fatWdMyHIwW7yyELqu1snooQL/Vlek5ikTEesmaQBEdIwZ5fexgj0+SozCaL1YvXaJqMKK0QXVOwDAo8EjrbyGXnKBphsLrvPjxuyB7Hbbq6uvrdlaa/1W9+7FZ367XQkAACNm+OsJAOrwXv58xzFP8QaCQohKqzaSh6hAKGmx5yrgTDNPChOAhFJPiGjs9nLyF1r7u91GBDvtvrvNzkY/0lpXdv0txBNeASIFYl2jQjvRMCkWIEIkcaYxjIqQfcZALFgGC4hsyXF70PFgmRKvAxELYpzhPTOD2LTj4gSaGWlBqlEWUiAJiTx7rM4QHjKZIJmmu6RLkgOpSfc0xVSJ3oAZhJBs8paqPElML2JsSY1Unlm7KtlZuuZ8eOIycb9yx5w+FkTFyAgq1e+66ToziABLS9TQa521uifaa6PSQIQkCJ6IAAkCx047yFEUzRfXYbBOEAslFGRKemOxqw/HYtjIBItg8zyyq3b7otN5rKjrnm0kK4TEWkRYQkYY9E877YHnecl3yZLHYpi6n6jm1+598JkLvEwNrzLOV661B3EshhWxCJbtcjF9wdsvUYUIoRIrCIjEaIUJY0Vg4rbk5lQQK/w4mUeRIDNbI93eJ53uI4vp9FWAFIjB5PxUZs5X7O57ilquRHbMUJRUWsBOb8xkkSMCEI6M3ZhwzWYLdiPRhpRgFNHF7/bP/8C5KGr2YmIAIiC7yRtJaeAgt2C8VNQ3h7aogq6uiPwdomAsvc+xhqG5jjIWz3a8YZDAcfLcOsPQ5lOEgol65KgIhZKRZW39lzVRkUNpA1Q0nOGDV7ZMgqq6H7iZK1XpeFN5EbGiaDCCZKLtzc1XSoMwAEYiijm8OPkpao3gOWfhQoTwkTdqdvaSYZm61pIydnUz+aVKqg2/dTboneOesOEUHZ5j19RX+BVpElxZuKdr6HEi2hK6JgB277ZcvwzNGkQlnU4RsHt6N9vl4nK7myHZUf+J3+22W/da7ROlFMZOGMX4wtw8kOTAQ9fIHKgAeADAopCsmOn85XTxTNPo7sUn7VZHksBHiWOADzyPqb9fQzJTFt/CEeWblPVLKT2VhJldFAygefX2z3frhaf97vAEVcuyIEE8SycXwanSOkHEolCvc9ZuDWGvqCw2PS1Hk+U3cUUEajS4rxyl4na+arXnQcQmn4xHJ3y9h+yamrciAFisX4ThLtUAJC0wq8Bvtbq97knsWXGkqQxKviGCezGSIADtduu3b3/DEtiI253hxdlHrU53b44nIMKT6eVs9kwkAsZu7/Ti7COv1XauHs0nrDBX/0sAABUYgCvHx0nfAVEpapHSiJ7DAPl4PCw8BpmFwaVKceLWbFabt5vdDQAFQaDI831fRFreyWjwiDkkiqPFhZxZDYqIEDpxLQKzCCOxCCEqSPgkFHtoKU2CYCIxYbSLIIIuUdfT/ZZue+TFRDeJkBmQRSzbwEYbYwPmFQCn26oD6ykLSJzHnGMigiUwVhOiAKFbcWLsGM/N2RVJmF3Ykyk5IkreIaGQYOBesRClml33K66idaleJPtQHgu4D56FfayJirNePUyj0Ao87MwANz9oprSvv68xWUC0YbaCpNp+Z+y175DXJ60IW/GXIHCYmEGQCYAWy8lqPZWEY5pIiIp5XoJAoJhDttvt9rkJprrd73aeIvWRBIQUeC4mzDHvSZgRhoNTreKBQEriT7vpRDo+mc62iHLeoOmJTTDqHgMkTgLCLt8nCQNXGFq7Xi++C9ffAK58DeQipBUzsogSBkRFibuOm0SlcySXoOfcCtmIqOF4/BNQ7ayzanqQdQCgPCgoyEMqdk2XxRY/4gJiUSK2O7ZbY3bCBkzIvEO7IwVkrL77n/XO/qErNTTqWCvsYAxxnX1hVhJa7o4dxgCHNqeD1N4aLHEUBsg5YFY1+Pbz/QoJKdf1/fO90YMYAOvb0lUfIfb4HnCW3HwEgLGlwSu/FwxQd6XqYEklBsiB3bRSJNxsrlerVzF+drEehu9d/ARIW2udgigHXLGSxyUNd1j2Kzhsj8Kz1ddhtHYLDjOfjj7yvV4+2D5HYmmkN+ztWfk2t3rpkSzwGhgAjDBRTKpEkl2wXK7fAIhSmiUSEWRK+yYC1kSbyfQVyNb3+qPBPeUPBoMHSvcp6ZnGk1eo1gU1cQQykdj1RBROPaZQQFgREaBhhtni2c30hVat87PHg955XKEl1JRmm77j69TbAoA6TyHXGnNcSmY2dvfi1b9jE7W7g3ZnIKhZ9gAgmQAk/SxRgFahbrdPOv64wVwkCNfL3StrhIhQ6GT0EMmHW0esNACAW6Qp/6AYwG3cIvZm9l3iBMiS8GZRGMHrdgft1tAlQb8DAIjTO/MAYLtdXV5+wRIYYzrtsQMARO65LgIAFOr2Ts9Pn/51BgBluk5+dhwLRSURfDp5tUbsICKSTusn2NtL5zwZE/1Z/GS6BgySWBtOFl+LZWGMosjzfFTEbE+Gn/heNyJwmgEAQjCxgyQhkiVkZHHkcxGrlMduPiGRtWHEIgwslklrb9Tpf94bfNbtfeypIaEH6IEoQrAu4optuoyiRCIs0U7AMrMIu3gUZiNiJdwJRAzGwQ/kwEQrE63CzbMgXBheKgwJLYEIRCIWOInQSoJpICbaOhpqfMLz5Z3YjEcsswEAi4TAIhbR+Z2RgBUSIYVCuXQtl0iZvbfj8UTcgkDEOBYHQRgrfAaFUuyh9ihf9oZIROjqSAFEZQUiVkw98vpee+R5HVQ+akVaEXggyg0u3UHugvVifuOy5QEA0ctuD2mfXoAQDLNhiaLg7W77Wnv9du+xp4aICiw7TpPDD87TUERAabYwHp0p5XmeF9M904RjACJKMgQknQAUAp4ZKTEPig2vEFFInCCemYHRMoBEBBHbINi9DFdfcTghjUhCaABAQNtETIVJDp1LCS097iIiLF5v8InXvZuoq0kkygIAaDSoSL2G8ktLtjACAYrVI8AEiGCZDUloo3VkNsw75lAsEIALOEMUMsa7/097p39H2KBVoIhsBgAgCFhiOmYXqeS+NZAuDnlxpk65dKDv/q5mQe5uTwFA5eZxaGTBWQBQWBuhJLpt0AYczE9AODZpoSwPOCZtAGsARt0x1260uYLe1l2v23wLweJsAa0NrqZfkAs9F2QEFB727rU7Z2ksFxGxmMQAIHmHKmpNEzUo/QpuOeTdm5s/UdRxVOlO62TQv5PudJmsAMwnYx5TGwncntlPUk2rELGgtLWRQkHwLAeL1QtjAyISAQEDEGd7MwgBCZj1+u1yNUGy/c79fn/Uap/3u3cZlFtMHAe2wS4TG0Uy+e2PsYaIktxVpAiYDYieLb+bLV6xsScnj07G9xH8eHXKAIDq9Sctqm/rSSryPQGAxFwyRJbtbv7y9Z9qpM5grLyOO2IHAHiv0c8CACGiljfsd84rJ2mO/Gbsbr5+lcQa7AFAbgZ4bNR6xaJZSGHL2gD9ZQGAXC/G2GC2eBnHpYnN9SuEBv1T3+sdMpWBBgCQWwQYAGizWb65+gIldADg/PzjTqcbB2vK32wAUH1HpO5A+ZqJEDxUmtAj0rF4FDE1a0+f7H0+F+farq4vstq+Wm+vCX0bGSKFigTClj7v9R6iZkRBoThOSsCKEmQNQkSATGJdU5iUsohhaLbBLmTE1lmn/3jYezRsP+q2HlDrnDSKgFhATmS/ydO1D7J1x0bxl5UkzjZ1+hMwqSOyiChhQhExioMwWptoGUVzY7fAoeWQOWQJ2EbMRoARDLJlMWIt2MAxjlzuGKBzH2JHgk/tFESYJRQxhFbAIjoJETAKorUQKfKT0Ty58HASELAMpACRXM6rI0Qhyt5VxsGAtNDPFiYpg9w9UBAH+u5hAKUgER06IgCyjEYYYUC6pfye8gfK7ylqA3qgtE1LahZAns9uwnADsQAgEzAnFLOeCEEsorVMAoENb4LtGwtRv/ux540EtWORgWgmJkpnIEoo6VoxjkZjT3eUUkCYEBYJiu4ZeeJT3PVX7mBchrHz549/xjIzCBKwFTBgGShAXm4W34SrF6h2RKhQWbGgEqtTQWQVX6aYbe+mEPFCzMwAhPpiMH4K2ANgEnIprU5hwqXNslJefFRTnJKKlnfCQRTcmGjHbABtfOIFQRjA+JpsGHgP/8Vw/FOxBhmFsAgAkglAoZl6PAY4EgbUGIxwTI1tLnOPwADVymDkZOJxHM2p3gc9axWawwDHaA9qMUDczS3RYPaN2ErtxCEMUMMyqhgFpMnHfGTBihVEIy6XFPHJ5EJZUevcmuYeCACI3Wyni/VL5RyJ2GOKCGA4+MgZTLtCwbmCFuYy6UfX2PAf8LPabt8u1q9ce8Vaezb6XHv92BcBZf9ZWHt63w8MKM2mKD8wdKPX9Mzvwuly/ZaI4laf480zJR13NHY7nT6P7Mb32iejx6Ra49FTTT0AAjSUNAgFK0t3OVholecGsYak/Cy5oa5YEVyu30xmz6LIdlv9u3c/93RbWCEJg00DGbPXFzNOo9mgtyOdgo94Tou7CaBUAgC3FyPLcnl5ff0brf3WYEyk490ZY1Ve5jFPJ7yCiO3WoN++k1TetgBsgCWMVvP1G9fnQlTj/kPKMOArkY9kGr/vYOnPR5iH/kAYAAAis1ms3rrSP0uLct9x0Lvje53bAYDkNFHua7lKCQBovV68vf4SZWcMd1qnF3c+arc7dQAAgHrdv3kAIEfmSd1J8o3GpFpCD10BmowCGBCq3e7jOoycaQCyMLIEN7Nv4h45o1JawBiGs9Fnvt9FFKWUZQCxJKCUsmi0kLGBE6OAkBVmQCJfexfe8JPB2c+7rbse9ZT4hrURZAa2QCpe+9BVmLgXOEjcjI+3nLjIFRAByc/L0I0LhEViqylExSAucQ54T9+0grGWlyoSQ5mNQAIAgFEMswGJLEciJpHtG7Gh5SAMZ8YGKBGAFQ6RoyhchsEiCC8BI8AAwewbjWIVKCzbZIOVzPQ5LWtQwNK+mJOMzEAQCDDtWqVcIIqNxtmxDNNOdoSEjGwVYJuUj16HvB75bWr1le4IK1cWM/Nidh2GG6f9hdg7Ve0dQoWsGBEhigSIJeJoZbavdzbotM/b7TsK2+6GYXBgAJRSImhBEjGuO2YUkXar2253fK9N2lPKS8MjndetGwtkE+OzGMD5lsaiYogdY9mKiFhrAQUlUhoIo+3y5Wb+rchKkxHFjmsUjyA4fY7iPSmNAo23QEsWveHwE6XPQQEJxR47wJWrZn3dL5XrsE1y9RzkVmBsOA+DiTWL9O0tCIgGQGRGMJ6vTLDrPvlvB8PPbWRIwMZUXnb8q/3ESaDWwxv5IAA42DZOwVLp/Y8DAAeQQMU7Z9KsHIfNHgtmanzlM4fPkikFa+16a8hLFdarVR589QnNDCWeYTbE4Rg6EJRss923zi9yNQdcSyLiOvpQ3U8W5gDuzVkERN5e/8pNVxDRggEAa+H+xU9jtVXSryzX3JWXgPLeVgUkkNgmCkv49uaXCMrpfVveeNR/KntlVpICkjyDlTeklPhFpYZF4QaQhqqqfDe6RgkRMCd8S4gms28BbXbWH093SRgELK63k+XyNSAP+3f7/XOtx/3+PRKNiIAmKdklIUvAMTO3JrQv+alZ1U9utpfT6Yvtdttq9+5cPO62z5xrMyBLYoZTTyiKAcYhAHC4Zm0M2ynUxAl4IxTLAAgcXV+9XK2e+e2+3x2kEtLYJZaqrasRyPNag96DPGbO2ewuV9dBNEupreP+Q638SqfjMiIqnpbbTAbwWLDEdTbu74YTQjNfriaZTT/X4Ot377b89vcBAJkEzz0AeHP1BcrOWum2zy7ufNxqdRClAABupt8RGETlaEJ/8wBA5rIKVxUWiQELCWhClWIA2d/NGQ5DMjcAIEQrgq6bTqR34WS6+FaBQkQQz0lgtTc4GX+EiAQCKBoJ2RIBM0eRDYw1olkNdGvY7d7rdT7qtR+ozj3tD5RSYFisBVHMACzG+eUgAIEIKGekIugeszQDPCOdBBHhPXkbnJqXYzGCoETxI02E4InCuEB0ZiACnHz13NObPG6cEKYk05tBFiFitm71il2JSBIXMCtiBRyv0YCEwKEJl0G4CKKZ2B2LYevGDhHYGMorYWArNmCzZQksbwEklaC5N0S2FiNKeJyJEFkAWRAB2XGMkqmOBQCDrFEppBgMiIhlEjBikQEY2XGcAFB30GuRP/LaI9U6FdUSVCLIzJvNar2cutPlinUiipMB2DhhiVhOe7Foo9DMg2gBwO3WyPNGgK3EComEMBu2QpT3YkMljAA4Ho893SLd2psYpOxAp82FjBMoYgKHKFszOUcjsGKBAUBhhIioVbS5XM+/joJLz3PzdIn7QOjIb+gk3Zn8mvhusQatsN++2+9/xuToTcDIuUorcSdo6PpjfEMVJ2+WgJlJhMSIWdtobsxCeIXJgEcYRYQh9i5UGFcJo4//h077EQcRADBSrIaPXeSrrUgaCtljVuDqVusBqgzjkUactUgg2yovdvoz3AY+NM2o3TXzXVg+jAHqj7NcKlWPL6DaLrYiIBwb3Ieqe/ZZ4NXApC9cUCz2JIr2r9WN8ApeUC0M2O3ms+W3GnwLGE9WWXr9817nnlscmMNCIOuBwq7ECyrfoggQhPPJ4gtFLRYjYs9GP/J0RzBr7MsJa9FiQrMsqp+zRf+BkkiyV77JXy7DhCGJFQiJ6QJvg+vl+i2hl5BUnd7UQQQWBLFmMnkWmqXntU6GTzxvMOg/Ul7f2Rxljj/XeigZDcvxSCBtUWfgE6TaM0FYb68Xy++26x2ROj9/NBjcjZ0nkmm1NJYyh27vW5SknAvorHYuKmXYuQJR2ATXb59tdq87g1Ov1dk3H9zAOfNIZgtG11c6O/mkQF7NlGSyXF8G4Sqx7qWTwSNFXh1/pnJDKWrMjvAOutXc4Oi8iMNaL0RZb292wSobQJTtWQx6D1p+O9VS3+oP5e6/mBYKQKvV/O31l8BbZuh3L84vPvL99kEAoP1WxjvzrxgA/NGRT2MlAEhX/8xKSggKUCdcIDcHKBLFJLaATBIR3SBSNGK03LzYbaZEJOwhIilgNuPxRy1/wGysjThiEVRKa2/UHj1tdZ92eh8pPdTQUdhn8CwzABkWImf8AgRxaRN3cwU5dopMXCMzYry45gZEBCvlp4EzXTVLMV8cEAlBScwVAbc1OFjBkBE/IaaupM67LIX4FiQldggkByuCuYwehqQ3k1jsCQIo0Mlcwk0NlSNL2ITG4yRQSCISCTCZDbNhCQGYSUgMS8RiOFhaR1VigwgCljkUa8RujN0BBwIRCgsYYGPMTsKdMaGwIUjSzsWCNRqAJbRgSTv0Y4QQEC10hFp++0T7p8rrC2qlWoI6tJv1er3bbUTEHXr8hZVBbsWCB7EcGVHGMgozijF2bXlL2NZ+T6sOWg8UpJH1KSEKhGKaTdbFCFFEuu1Rp9PRWqPSe88fzElWElJSPArIiFjYQmyH4+oVZxiqxKAW4WC7fLVdfQWwITI6/lLsuPeCLr2MCgwQcSgM24PRT9AfJlMyLle4UtrIMOu7FSdaYDIxjhO+Yh90u7Ph0kZTsCvAKFFQSdao143RHfxQanT28X+v9ZiDyIKoJH8eUTIAgEjqGSalnSOfW8e3gwGlvmaemcM1ebQ1CKRmV5OSDWuZ8CPHOPpW9V+zb8Jxa+m2aWKSLaEP0Zy4meVcJwhungakTsrlCHmqnR5USXhrG7HH2ARVlW7Cb65+GTsFoBERFB8hHI8/8r2u2xSyE8JmBk75Tq6ccgAAgpnMn4Vm7haKlt8f9D5Kfisla7m/UHqjlsljhWtwsB4qBZrW52Ukx8/oRtKWBCwHVzdfaQ8RNItJHK0JAMRap6EKw9lk8kKh7XZOhsOHfvus230AlpVSIjarbcgfWTzrqE8DlGYAUPkUI/B2N5svX6xXK2vN+fmjk5NHCC23vmG8Ae+p6hVUz8ZC830k2h7AFQ4AMHMUrCZXLwKe9PsX5Gnm5AFJyAllW2RERCAWezJ8qpTKOqJmP3q1ebsL1gkOotPh49rgsJp5cqXJREbI/h7+3DIzrsnkajJ7kexxWH6uR/3Hnue9GwAoPFwpAFiu55dXvwEOmGHQu3N+8ZHntQDRcTpQUISns6vrybcOALRbIzcBSDwz3zsAwFtZixaSgOXQG2Hl5Ib3LKCEEYQeoQJSwopISebhJ6I0epaUsBVH0EzWCLZmez35lVYt1w/WWhuOfG+g9UUQad05a3cejoZP+t2n7dYjbI0dH85aK5ZBkkGEWBSXmScxw4dFRJQAoKNlsIgw7INsIfYCyjhqCQgkrT8srLAmbgEjgJDCOCyWCSE2sRQUtee0Y64Xsn+u0pUg8wiiY187rS7LnvfsyNeOlI8cz7CVZqDY2ydVGCLGMIKyvqDuGNE1993nSoaIQCgsTnDqrPolZfiAWLFGwACHzqCfAKw1CGxtYE1gbGjMTmxozMKGa7t5ZeyNMZeAAQITx0pKUpZQISKqFukT7Z3p1hC0x7qFKJvNarGcO0pV8kcRoSI/Jokxc+zU5I4QRJjNBlA83UVqJ8N9lel5CQAz6HQTgiTHJM6Dc5kmgHfuPnSB4RXTLddxJ0XicBoppwh3iIuRQUAIwQhoZz8FwAYiDCeL1bdR+MpDi0gg8faf2HruKRrJEk4gYm2k24+7w6cgCoAU7J2aGAviMyyU/sl9xS47LBkVcLxoRQGbRRRMrGxEIqTYije5/VSWmSCK2SoG22k9ufjkv2NRGEUGlGJ2k70EABTq2gr5Zm046F62fgzRtioZIAYsWOqI87EAoHK8kPtUrgMAiT3E4VFDsUTLV37JI1jXOK8sf28HAA72NXOcwAPJxHvYkJjblgFeM3Lg6pPPUhoX2+LqWxurvH89CtfX068VKEZ29zMidvzuYPBk34MHSPzZqIoF1IgEijAguY7WXs3+FBERFKE36D3UXmf/deKyyWQAAFWDnGyC8m0a0olta2NgXjJIQdACBhG368lq94Kg5aaRnJhhOP9idwiz5fPNZtJSnfHwvt8ejEYfA/ZcPmbMZGeVHwXsbSQgjTBz5JzjCEJZgVPhV7bB9XL5drvehNFuMDy9c/GJVr2k7xuTrCCJKWzotWLts4DvxkI5dmLATE7Fx7xdzxbTV5aW7d45ETFLvEcjVAIAAkz/adh75HleSnkv+Fhc3XztVnhnjOM0AA0NiwYAANWJNHwcrHqPGKChVWQnsxcZ2WTuulsbnI0/dfTg21GAjgAALAFY6A/uXpw91V4LawAAkfa9wZ3zj39gAADHY4ACANifzCRltjjnogLLK+Eox8yqVKcOOuZggBJEIu1a/pRqKBVpckFJQuLSY1EUswBycDN9to0WGtoIDKgAULyLu3f/y9N7v91un3o41NC2QqGNmyNx6wGBJKbDJpEfJYpbLv+1bjZeqP/Kt1oxHCdN6Mjk1GPMonmvC0eJdpWIhKjC3Nc5YGa+xZ5znB5X3ld5P/3IkKCyTQvOUVEQY9o3irBraDhyHCsIxazD3TTcXUW7t8H2Mtpeh5uZ2ClRgLBFRANKdAu8nt858XSHvC56vciw2W2WyyutKaZokSbSgoBAKERExhhjQ2ZLWsUfKsBsldKETnyiYgOfFDaIyQIwp89LYB4lT6wgqLt3HgHqfRBworjKr445w9a4Vohnfo5eRu4NtTIGNsvVt8HypYKACBAsAiggztyNFGfTKBHRgGIiI63e8CPVuoOIGKcwxHey3XsBSUoYLVdOSEkUK1tARjHWbILN1NoVw1o5sq+QODQe366YHgynbXWru+PfGz/4A2LLzGyRkpPhyr7Yki92jK0u7Cq7g0l5UTbZpCw390DhmOmyJ/y9LGcg46aas8TCGr1vxkgn2zvE1P3tqGe21ne/lCRY+N3iksvcgFKSL8IVSKCOEVTvO5kN7k04RXLkr6fJwUeOAtze1iCoLbTGK8pxzExiBQkwiegWANpurxfLy+SqxW7lJ6MHvjeoAw+lFnURMuXJ1ghokBNmHTj+oURmO1t8KSIgqtMe9nuP4lZaDXkpQ3mSY3DpoZqJ60YBVe8QCXoiYnh9M/vaVwpEIVgWA6iYxR02ggYAE60m0+/ERt322WB4r9U+7/cfCURJ76DQbZW6fn+tLqiWIMQACsQIkCAJGAVqs7tZr99uNqttsGj7g/v3ftry+26MeXxB2cCagzyXXarV7d9vH098IsUEq+V0uX6Liv12P9WhxfzbfQeRs9WF249EZNi/73u9WLOdZnoke9bV5It9nSA4Gt7zqH2gFj9iCJBY6lXctHWi7coG8zvAgLqJq3uOrmZfEulkSeAUExGIMeHF6Y+dOrOwgx9TdBV/zTV4RRar+fXNF8IbEBoMHp+dPtBeK76vOH6uJ9O30+k3rtDoqMHpxZNOd5BcF2ko+r8HAChSAevepw4AwGFD3jxWyFh/xkwYl8MlYpE0AIIiIATRQBoRNQiSBwAaGMQSEaIyYRRGdh0ZxtNVcEkw7KoHvv+p539E/qfnF+P+GBGsWEGrBCyBMsntt382MomM+5sDk0yNLD2xecraCADw0JVJa+3bIbJD636x+i/0fbNbFFdt4YTZL+9cf6SWxxx/d8TinZSWnVhyHkECt3wRArKAMJvI2J0NtuFutdteme1NtH3B0evQXgqurBgRVMJA2vN75PW0HirlC4Sz1ZUin0UhtQS9s/P7HnWEEdAiS2SCtzcv3UxTwIKQxK7W2q0CStTJ2T0XJOceV2bjukTb7Xq9WQJA0iBxxqAGgBD03TsPXXhwOTKsUuQa5wns6QeYayChMG3D3eVq9gLNnCgEEiV79XyWR4GoFApHaIzR7fP+8DNUvgMAbkqQAoAYd2UHdpnjISIRy2wIWMCw3ZpoGYVr5g1KRImnE+xl7hmP1EQ3KQQiwlH39O5/0T3/bTBhpiSlBADE/+k0GBZs05NRav5VFOJCmBHn1U+ipa6vWbeyo5TLOKkAAA3Sw8MwoFrDWmRCQ63TSwFBpQOW3MSgXsScOzY8ZqhSAC1ckXhQTQriI7EBVf1KurfVYYCqbGOuYyOQYhMBKRCxCJ5AeDP5ztogpr6JRUTC1vnpU1cjVl13rm8FcTUMSL1l4huPSXC3my3XL5Gk0zpttUa+32VbtMZqsFtNgXTx/sQDBlmZj2CoysUrnGcUIVRGLBHNls+jcIaIhJrFJPLfbBks2/X1Yv7a07rfu9fqnpyMPwHspP4SBeJ7Awau6MQ3PbaSbEMowojCDJFdLJdvd7vNaj33vdbdOx/1+3eE1a1KyTQDp+5JLAYyH2XNRMc374SN0xeacLtcTFabN9pXXqtHpDI6yf1+7WRfe1pLshP1uudtf5SIr3mPDYAB4Hr65XsEAPuGF0J9nsMB+yBpHBR8n1GAiNwsvo5BIDuCdCJAFbY2ujj98RGRBXwrADBfTq9vvgTZIniDwePTk/va8+KJt+UMAPgOgIWwTd2zOx/nAUAOBnxPACBpuBPkjObeAQDsx7jZpnn5asU0VlK4T5Yll8ERd1kRnQ6S3B9UiIq1FgtgjYkCsSxgBdvKO9HDH49O/lan/QTYe/OibYwgqEgAUN+5wE5bAQISkAKwlpK0QlfEpGKo1NMm2W7xYKFfp6d8h6SM9HnLnrXC5nJkdEZ21FBx72a6+27UUCylss5VJSQnlfsENkGg/SGkfvNxxlcpLwKQEooRSGJlxILoSElGeMVmFqyerWe/3C2/DIKpa1YZIlAavban20p5k+VLUh5g++TkScsfOg0ushB6FkSEt+Hq+vqNUm7dJAQWRkR19+IJkZ9kgkDsYiSYFusJGx4B5erqLUuIqe0p0r27Twr2C9nRalLlS+kW4Xw3nY17OAhRhZGdraYvbHCjcYdg4lgBQWRxo3MGIuceZTy2WxavP/6p3zlFS8mMK99aSyU0WSJQbOZoCBjEAO8iswvDhTEL4BCRkcQlw7vZXTLcoCyjA5ARITH5uTh/+C91566LrESb9lmdgDVtXaeQoN63o7TZV3fihY52EJLKUUADAGjebLJskwbryQw9WY6njhR3zZr1JGVSiTgH+4oYgYOWpnEp2YgBJCVQHVHf54Igm8YIOcSSFVc1d1IrSUEl4MfVhS+ym7kBAIEKo+Vk9p0j+rscPWujweB+v3teOEtlnOY8Ius00MWKPKPjFzBi+Gb6a0AjQMP+/bZ/UtmgqS95OVvtFSDBMXvQMbFi2Z8lkCBcTOfPki6JZJ+gNK6EJZhcP2e7bunucPiw27/XHz5m6zIlufITRbBcIzICsj2m25X7XdGAEQAwS2Tny+Xb7Xa52a6VUncvnvZ7D1y2o8tSdMZODV2GAluy7kmUKjiaXR+SN6R3G+DHLvUsYbBcLW/W2yuv62vVwThDKm4qEWSUkwhs9zwfd/zdzrjbOXOO1OmsUjj+ntfTLzPO2jgc3PV077YHXMksqFtIm+cqtylkb9syZWvtbP08LkFZhDgP4eX85JP3AgCSDFAUkdlicjP5EmRH6A8Gj0/G97Tnxd2BmJuwBwCI6Onu2flH3d6wEgAUeDfvDADSbuXhYvV3fvpHjUNtx6XNwTZBzLZ20lDguAKLGVbkgoEhtsQBpVEpRUppra0YE8p2E0aiwR+1ex+Pxk+7nSfd9hPSpyBICGB5vuLXrxE4IGwRyvld1WojUSKiBYsx7UHtMQByZaEsVXt/rotfqDlqlqfbhd5V5LjDrVPzsL5jmk+Eikvt+oFDzO3BPbSrmCdgdaxgLUDCAleSshxKFIA0jQ/BRbMndj0MQCgAdhdurzebF8H6Vbh9Ze08soHlnUBEikm3fd9H8Dy/p1XL2RgLKWQLQIIeAFiOgiCYTN8k51xfnD3SWseR0MQAFMcugnKeRHH0wX6zd7KhuLPimuvFE5zdRfL9OYnbNXGwXdyXjPWd5EIeSCNqy3a7mr2y69dEGxR21PyECwHO7pNdSIJYa63XujsYfcbYTj632qhk35IRBpcTJ8baDZu1MRtrtsChQEgo4pjHqFx3OVv9p/Wlc9tEBFDAJkT/s/MH/0J837PaCilJMu2KAKBxKUe+1fpe8GUvPIkoR2GAQlu0JoMst5FnR8xV93xNvYvlmUDOiR8bmP1Jz6JcPWfkOcUMgf3PNxoZNcAAKe4YfKDkbYIBFaU5ZciZVSkHfDwMgGrPci416g2hZhttdjfL1WXS7LcAYIUvzj7xdDcPzxosSvkgxya1GgM0zlrahMvZ/DtBavujXvec0EsuEyPS/uPAHv0gcAEDxAUoHu9Mz/UllgDy1dWvSAGI3htyxGw6EBe1i3YbTKfX33ma2q3RoP9wdPqp0n0AUEBxWFjyWUkFQ+UPyyff8XG43Q0z0bnlhNFiuXoZhma9mqKi8ehs0H/YaZ8wcyr6Tc9VtksNVdm3FTPAGglQ3c6IAo2xV3wQALCxu+18t51toxuv3QLw3caUalgp6Um5mXvW3TI5fnV28oQoPqO5RgPK5c1vMkxXHPTv+F7/yKPFavFj9cJYHoo236g/BBIwZjdbv8TEi5zR7s0/BAj16fgJlET/R144yipdxcZ1jMhsfnUz/QZkp6gzGDwejS5c8CiSMHMKACaTb13zTqvO+cXH3d4gFnJXAYCGzfT9A4Df/ekf19mf7ecI+SqnkF8YByQ5NZXjE7OLqlOMBGAcLCcCJLGCIL4V8elO9+xv9c5+Nug/8OEErbbiRRElKWOoEGzEQciv3whYc+++aneUACgiEetc2WP1Znb/hmLCYm1RXjIrOHBmXarIrS4GQtr/klvW/XVIupLtk3tUYiv90jQAG3FI6i3T+HRk3VELr+/TVUpfFWNLT0mdl4RBBJy/pDvylqPQijF2FwUriRbR7vV69Wa3eW5547dIUGmvTcqLZ0qxPMC5c7ruCITRLgyDbmeklHLqOiIA0A6dptrrnOcgk2PpuGTrtPTPn7QK1mBh/+DS65SMCJyBK6AlLYCMslktnuP20poAJHJi9AQ5UEyhQQuANmJh7A8/190H+c9lyj2Vcd8OhZEEmVmMCWZhtGazRgmczg9i+lDmfWKHYyygXwHrJDmIYqNID37v9M5/QVrIeoyghQwaEnJPXyo+oyYj8ooNPkPWvzUAgCSUN8MTOOgVAyhcNa8vrP3pTsb1zyxXP7FVc48SAKgGQmkzooABmgcL9RigVMOURa7ZYWBtb/62HkHVsIFKq1lzr7oMA7BaX8GxgRVEqZKHjX179RWS4J7/o1qd7qj/sIb3lXWmTm03ubn+SNOXRBDJghAwX05+RWCBsNu+0+meE5G1hgQwdgCTCuIE8jGFDkpyA1A197puwlZ337rjX2+vNptXRArBYzZx1ZKZHyNrgXAyfx5sbnzdGg7v9Qcfj0dPLVi32CDl3jPNhizMAPfaswT+UWMAbWFIyGzDaLVYPjeGl8spKRwMzwa98373AkABCDOLABEWXXxqT6Y0Ly/HAADIURPxVhggtt+wvF5dm2gb2An6OhZhZ0osdH5GCQAonBb3uWcnHyX1Xn5GDXA5+ZUrz1IA0PIHx8yO8rT+qhOI0NzXKPwA0rHRde8MA4zdzpZvMFF2ZicAKKBVZ9i/m1gA0REjsjyPMZ5vZ+5tEbYwW7ydzr8TGyjVGgwej0Z3PU+VJwAOAACAmwD0+sMsAIi95rE8BH43ACDHd6trAUDiXJma6uarf5TkCUcGINLgkpcQUaEGjM0OkIzhXWRY0KJS/qDdutvtfnY6/FGv97nXHoHSwgasYufpwsq5qbgpnifIEgYhKERQokAhOqEPC0maMFCs3ZtB57sCgNsOtgpyOqkpOPB9ReIVJMgHn+GD90baAai6ybK/nt4+lPkVieVxDJSxVEJQadawADMwWtKKFZAFxLj55owoBNjaKIqmu/Wr7eq5smvhiCVEYkRRqNGpDVyHXyuXaMNsANm5QSsXcEYM4scyNSc6J0qDxoQpce2FVDHkyKZJDynnP92ELVMVRJx17TY6K0zMgEqQrFIoshZeRtPvgt2KeUfCccsNlIjDAQJorQAYAWvQPxue/IzIs3uVWwwrbRJZkKzakXBg7DYyaxNOhQ2iVQhpKHpuGxaMgzUgDwCccRIBohBwEGw75//05OwfEgGJZmRiJaq6j0t1cbNVVU7JWT89sKYnMS2Uq1rCcuCBzRYlVM1hzbayMvd+bRJWbpFFKdQWgnUdsgoqS3ry6/eAWvuUmgZq5cjD1pAcGojOVcU3HopPzt8hlRigYO1e+nUpdOVrJg/k2k+uex3s5vPlpXObca8xSL971u9dNKq0c1+nPqeseBukVZfY8HL650opYe9k+Fj7PWbrKN0kOfPTyjWkga9VW5dwPZWutp7en3JmM1l8hRK4lcdRbGIiTWyIR4QY7JbXk29IwnZ7PBzdH41+5PlDV7IooOz6wwiVU6BKJFAcAlRZA8VZ6WCCcLncvDSBLFc3SqnBYNTr3e13z0A8B1rcVahq7jZWUiwHt3hp/IGsb0HzvKgKAFi2dr2cAJqdmQEhgi6E1xb+XgYAAHAy/Jgonfw7U6m413U5+bUzDEUCEOx1T9ut8TEVdrZXclAVcEz9U5ff8h5zA8JovdzcxHc4C9Be4IFM7dagFzMAjwQAuWetDgBM52+m8++AQ63b/d6T0dhNAOIYVne0N5M3CQAgrVpn5x/1B6OjAcCxWdp1feEDVd7v/eSPGavFcKkEx2UDgYKkYnDWfbHLHqEWQhISy4IcARsLYjRR1+8OvfGnw96jbuehYF+rAWCPoIfSZiI2FhEtErIQSsoJISGByKVE7fckQhAH8B2HQVgUZJzdIe/gcWTFfMwJrdMtvUOB/j1BRfP71z2oghX7AYIqHEa9TzM0FL6Yugulk3o3gqDExQxyloIozhor8cBKnG1QJQ2kmFIhjGAZtet9SGTsisWCCcBuwnAW7eYmWqFYIQZAQAViEJFlh6hYotwRqghBYc7+i+JiGok5zgBOiRzZvKf9CDUfAVa1WFBhWOBKHIUo1ohY0p4iCzAPdzfB+k0UboVDNwHYlxGELplOxBIjsrWo+8MftzoXSfM+jQVwDXgLbACYkNnswmgZRUtjt4SRAKu9J0CpeyRI+fsh5eokGUACYsPQjB7/N8P+TwEA0WNCZlFImU2Ay0/KPiVKirt7odzffy4UhzO1zyNwwyimrmqEekvQPX7eZ3ZyMwDYlw7ZGgclyzQQLI8gavvrDfKATGiAbehNNMgoKw7etYqrT0UTDKhjBDUUOrk7Ib4bOU1/yJgbVoKN4mCnSg7OAFokci++uf4LQo2SgiIWhPHwYac1ZgnLuROVd07VaKpwhimT7EsAEOyuZ8tnRP6ge7/THjspDIgLxwxLq7McgZ0ObRCchZq1JLfKiGgA2AbT+fKFRh2X78xIgokIKOn82cXi7Wb91kPqDx+MTj7q9h4jkrOHznqQVQKA8iPivBrKj1WFON49kmDDaLFYv7YhL1c3zNAfjkaDO73OOYKPiCymuSlzcOPM3cs1z5GUzidWDthLvciGaQOzscZsVlOtaRNNGQyhByWxWSG4JjscyAIAQmTmxIcx9pa9mv6GcO9m0WmPu53T25wcdoFr5bri4DkvAoCa27vZNeh4JICIm+10EywADQi5wxawCAqQkanbOem0xy4v7B0AgAvqTDn6IgKM1trp/M1s8awAAFz2qFtIsxMAEawDAAyY3T6oMi/x9lYyh0XAv/vTf5njNeblniLCLLFuRwEREVhAVghKE7K4dCdEChntzgahMnrUGXw8Gv281/u813lErcG+uAFmEykmALVPjiSVTt5R4tvNufVbYrHgzjsJCHKsLQYUEUKMXX6T5nehO/heAMABpEVyLAK77ccdDQyys7bcsxob86nmnlDhUPFokfT+E6u+GqW/ktKjY0wZ17sI5MyUnCyYMx8krhMOAASsLQohOGxn3eeSAMPWRDsO11EYiFg2OxBjzUbMWiAECgDYWjeTElTpLNW6JSCTAQcZ57UK/43Mf8b6lnJdmLBZKG5EZaRCHkAEhiVAy2jF8DzcXbFdCwQgBm1qTsqOY+ZMfkQUYKQYRcQKa+9+f/gJACVeunFAtQUBawRCa5cmWploIxwBhsBGEAn2HoWZgyYCjrPk03POmOqNEFgwDppAljBqnX7y3/S6jwAARFtUAEBWhBCp0Jri2gUUM7ESefMAB0Sd1w0VDAwri+9s2leJ/5YMLeUgAMho46jI6k6fH6z4akV7yuxjhXJwu6qcA1QAgKp1gKTe4OWQlUoFBSLGABVBbOUWeGH0sd/+D80B0t/KAwAoxIcl7vX7nnrmd6uoF8WiPOaahtFqMn/mUCXGdvtgxdy/82MELz+JahClSOlmKEIgx/9Jhg8es1kuv9uFSyI4HX2ivLYwAhCgEUYkqZLFS11z9xgMUJo1cdNtWH4Hjt5e/8K5IeceOrGSicGyJri5eS6y6Kpud3jv/M5vkeoBKBcE7lIM9gUtFrF03NxpSoQ44B20C6eL1RsRWa2uo9AMBif9/mm7c9bS3bjTlDyq8I4ME6mql6paosXbL//ExWx9KuEEqjkwZjbWRMF27XlqsX3LYIg0iCrU/ZknnQsvIipmczb+PG3IAqpk3hsDAEX75K/bA4B9I6M4vKUD3rUNAKBy/fz+GGC1vtlFK8fHQwEGl02BSEKiup2TdmuURey3wgB1AGAyezlbvECJPK/T7z0Zjs4rAcB06jwJWJF/dv7RYDiuAAAJMQJiFx04ZjE/WPofAAB/98d/TCrW+wujkHKkSSBLCM752+217u4UipjZRiGQElQsSOQRdLzWHX/wtDv+Wbf7WQsvkFsGyCQk78xxuGZ/7E8sgjlr2/yBS51IXyjr1ldRcAvlSPDprwsVy4Uk86jY8j/69QNUouPfp+bns+S542F3RZn+w/wpdDoLZ6DCQyl1BCrQD5JL7kzM9q6ylPtqxVE2OeM/ELHIAihkYtMbNitrt2x31kYoltAAMoAViASMiEUUJEHwkli6pO0NRIAokXHQFlDEpV9T2g5JxCfsHDwJEBkRVOypT7GrDzBLuA7CTbhbmWgFdicQAEakrCIWZ1WchJbnLfzFtTqR47ThzvBHLf+MkSgWgLGABbYg212wDIKpyBbAuAzgHIaRnEsv1Y+54oZrjldAhu9cfPzPO90TsdqgEGAkLnZa9oMjIUjfATFD0+e00GQH+lgKTb5M4mZiIJaphjN+ODYZwkjefTVRQMRxd2mdLeVv51ih+zA4yd2r1Tt+XFjbUoHOmK/dJZkAlJm42W0yozGAozahYmXPqbiWSiQoRsba9aFO0oqVDX6sPcKSOz6W2BS1QIjLdXBWR14fs1Wb/wAi7nETViB2tngeRCtkT8TE0n+wndZwNHiAZFmwVOFVF6BY26HPcMzJSvJwhcF6NvsaidvtO/3eGYInYuP6w3FW67/agS943EDA7doisThxP7YFi+ABGmEFaBLcAlG4mM6fI1lCn9kgujRZw2IQPLEMhCDRZjtdzF4pzb32ycnZz4ejpwDIzAgekhDYvf8B5LB97QQvz1VL7+GcvQFaYQ3AoVnOF88Qcb1cbHfrdmfQ64963ZNO5z5YRqzwZq3QGh2YbJf4UTmDrNyTg+55KdkHEWBMmc4DAGc7UXcjCRsThNYa8rz5+hmLi8hUzfO3LOXBfbvR4IlWLRCbsABYBAnFMl/PvnAAwBFffa/f711UpjTU9QGrpqbcXA/cqsuZsyIowafy+oVl4kNyIW6m3+SsEVwUDxCgIfGGg7ue7lZVUEd1Wkn2lSmyuGLAWnszfTFfvgQMfeoN+w+Ho/taEyoSiICFBAR4Nru+unmGZJhBgXd+/lF/OE6p0c4egOsQbE3pRsciAWxGDvg7P/1DZ6HFGRdwrZQgI1gAI8AaSSkNQmForJVVyJEaQPe8133Ub9/ttu63Wxd+65Hy++S3mAGNKyPIcsVXSIO69g9nrm+NUl776orscvVfV1X/cACgcHjvHQBgJoj0e4ibk348V1ft7x0AcGlxSQAA1GWrQW76lLKD9oScbO8d47Vb4jC09IK6J8laa8RGbANjA2NCCTccLTmaI28BQwEDwEwWSGjfI2GFBMAEbGO2rmvtIHM8zK3QcrD7whbECofGhGJDtgGbwETbyM5ZjJPnKgBA44AHkE6ZwQ4D5NnknGxOwMzCiN5Zv/cEdCdezcEgRDZaB+HE2K3wjsA69GLzPGMXqYXJsB4zidFZ/r3LRXbxJW5PR0QREv3x3U/+S606wsqCSDJVdXsbCe3VBYiMrPYXivdFn4hKIjgkScBJE7vTiipN04u771KRb6/iN2BMFf8C2SKkvGJIleFVpoFKMaTLhYRIMqdih+UkYwRXpiHlWBNOCZDpaxQAANRrgo8AAJBnptZsGxVMBjmil8Y5TF5dIlcDgGJiaFMhwA17cI460qgKyNaUrvYyZn11/QyJEZUrYd3dNezf7XZG7iJirQyg/Lpgw2RDUMhF6SkQM189D3cLQOl1H3baQ0Qvg1qhAd5UBW5WyyUPwoC9HD+WUhkXzZvdbpIFB69u/j2iKNViZseecnZGse0mi2hCG15PnplgobUeDx+cnv7c75zA3uKTURiB+LgpUPMgWgEmOISdrjoIdrPV1wppt9utllNS3nh82mqNBoOHIkhyiMVxQA9dB4+zMyXGUuNfCpt4/ZzflaEHAIAxIkJKTRffMLNSqt5XNPfgpKxUAB4Pn6qM4XWC6osTAET0dG/Quwu3qd+Pj6B+FwCQmQDsbQNvQ4LIHl4FACAWdoF9ejx8oHX7+C9yEACIZWvtdPJisX7FGGrVG/Yfjof3PU8BIQCLa52zzBfXVzfPBEJh0uSdnT1NAAAlo3jJyvNqnR6L8/FbYYAaAPD3f/ZfO9EhAFkBEYkt1YnRGmtCY1iQxbJQh9qn3cFn/snfao9/6uHYs22kNgsBo4ASdnWAqCSS003G9t8lc2kpy0Co4Q5mzgJV17XJ+wjQUYvO30AAkH3/rO3Rgc+tmQ/ggfvq1pqEMgDYGx8V2FAZAFAQKyPlJDC5Sji5f4oGRKr62UUS5/rq/i9u6iODEErEUWCjuQkmYTizZikcCkX7EFCwKAxoAQ2AaCQkcem8yAJo2JW4qAQdjcEQiARBFOzCzU0YLNlsEawmIhBAA+goM4lGLS642aGaVD6B+dqUJdNcB3H6eJZ2u33f75xbEYUCGJhgFQRTa5eIovZXjZJvHZ+0bK+oyf4iljjHYMS5pBojuvuzsyf/mFSfhaxbU4GUuORpIlZpCSNKmGMX1MR3iMFlc4uA8N5dJbkTmNnR/WAP4iihjBe7QQQx+qA9VVcKABL38RRcKFjdJCdZWyn7raV2CABxGCpKpbiIa9E4l01jGaRmmzxcqVRpfLkJAByugeqo51yxdVTwu/bvXOcHApATRZQ71s3bcBIhzFBNkSoRZpB329l8cZVG8qVTo4uzp4o8jNkRtaOVysIik6om+QkJCQqLIVDWRm9vfqGRCP3xyRNFreRGi8kYhVW9IQUiYwEefxw1h1dktgZnRcoc74nMrBSmteB+iQNlObq8+Z881QfRzq3Dmf9kWObKgnC4upl8RWLa7fHp6Wfj0efi4hFBAZoChildkUOwE4tJ0oiuUWARhZlv5l8ARjawi+XEMo9GZ93esNu9r7CPJC5PoGjFVmI8VyepVXeapfwgHB/HVtFxc/2XKivSmN3AxsFURLyZfcVslFKSH9jmaoYaADDsP/R0N6G2QyICRpboavIFJS5ARETkD3sPjlWI4pG+Pfz9AEBp+Ca3KEiySeHT+fPsgilAbgQnYFHgdPSRUt6R3+IQGKBEwm0nN88X61dCVqvOsPd4nHEBctwZAFgsp9dX37EEKAiozk+fDsengkhEqQ3ongKUn88cQRw/5oxjLQD4Bz/7QxeP7OK6GEEjGcNBEATbMLRaOifdk8fD/se97o/anaeq/QBIMzCIIStsQEAjKElrC4oNBjF5Di1kJ5J76Wcz0MzNp0AVt8AEEtC+gPirAwBVH/E+AUDD+9/+STtACnp/AKB6jiEVvqhZC9FiPVFahoqLI+Yz1xAkobxLgtrdYMBZ3ouzIOUgClc22NpwaeyGeQcSAodsQ7FbtiGqHSGTYiZDqBO0zoaAEMFaMUG0m4e7idmtxOzckWoi5/shKEgWyAK7Wl+EsBylnuY2QIXhg43DyxyfUNBKr9u7Q+Rb3hm7NuGSwAhE+URxLJA1K5f7/M69fzkh2LjgPrGWI33RHv+s5d9Rus3IJB6Q9pUm3UHwiDyIs4Eljq8XE2MAEURkZEBOiE5x7lgs3QEiN1pBldwV6NQPMZOqVBVhTpXFuUETlojFLEnnvhQrK+QAho3bB7BXM0KJwYyCCOBk5e7xTBS0gpSOLAuBAGX/7MIwvU4McEsYUBQGFGugJpfJI0vz/CC59K/J9+LKCkCadlYut/wLRq1HpA6nThXB26tvKe6MsXAc8t3vnQ16d5IAa25e6+rsUAuow3HPEujOu2B5M/vW9/1B957fGiIoKPb+ay1c6+xfc2zjY7Z55KToVxkMYBA9iLUQnKYXr7ZvlpsXHnYQUSRyJz2FrIwMloRkPX+1Wb8hlOHg8Z17v+15F4LsHiUFsZKSjygms+ymgrInE9khbAlJFIjlaLF6Y8xCRBbzmzAMOt1Bpzvs9e922xcJLipKgMpHQnJEJ7sKADDmTIoKPmZHFdClbRrLzXwXPJ8kdjEbpbw40Ks2UyVrPuZMKWyve95pneYfKxIE4ehq8kU8HABARGPt+clnt3Izl1tUxvw9AQDKLeZdhT/WRrPFi8wVtG6hdrsOoT0dfUYEjiZ3hGq8Zr6BGCM0jgHAzfWz5ea1kNWqN+w9PBk/0JpczzHtQaxWy6vLb61sUACQTsdPRyfnqFIqRKwE4Ko1h46/UO/G4Pjdn/8hiPiKWAwAsIXIEkKr3X3aOf9Z/+xve+pMQ5eoH1llLBiU0KJSSrslRlmwrFijIIDEhusCSYZF3PfLDOgh091sSuxrAgAZukvRzaZ8Egn33hE/HACoKt9jV6LG96ngfhz9/u/2mP2gf/bZH+VvV/d6tkwpKYdq+4vZoVBGVxCXYVTQZuUEoemv7Vnp1gg7Sv3O2pWN1uHmMtjemGgCdsUQWbKIga/ZGANiTbAy0QYlUoTk7nYnH3ALA4hbKJiZkd0xpAbPOY0EIubVnO7dsrOC+Nm2YlgTdZXyBAJjt0g2QV9ptUrOd8iZe+ar/7Su5WzQYLmflMidhQiByK4xko7ClgIQCBi0AU3og/KAfKV9VBqVJiJCn0iD8om0Ih/JR+0hKdIKFAl7EpMHErdgQWfVyvH+SJBogoEUAQomiXKcKcc5E8GLnP5TMkqmjMI4hxAErLOKd9SjhBmlkuGh+6ds/igBIREJCRKADQHZOU2hMIvZA4DEebqifwzZqLjmWflRGCBlj1gouKxwoQwiaeKKNO8ZTZG95SxnyY3yS5nnB/khtRwnyv1WDVkfwVomwu12Ml9cxjs0WhAUYAA+O3nabvUTlb+tpEvVo4tasyABi6AJ0LKZLb4LopWnuiejR0j+/j059Rspai0OFqZU+2O1PrB7drizLJQdQct9enxHJHy5Nzd/QqQJNZIVEwHofeHo1iALAsHN268Mz9ve4Pz0J6d3/zZbim3U0ZAAAGX1G8exNfbqPS6DW1EKmdmsNpfb3ZVWrfnicrtZen5nOD5pdy76nQdJtBOXKUBplmIdBjgSAGQMCbhgjlzXhCqX7OnllkKHJdkfXXmYatmvp18m2stkm2CpkobbBDKkSxZo1R4NHhZOhSAYu53Ovs0AAIisuTj50e3ijG5b0dckPdcGicqB1v6RMMDaaDp/vqeUpxoAt5KLQz4Z849b6MU5MyFP9F0swGIMTybfLFZvEC3p3qj/aDy673nuGWHm2IZ4s1lfXX5rzAoAkNSwf//0/H4KAJKQkOLScEsA8I5IAP/uT/4QhBBVZEV5/VbvyWD485PRjzz/Y2n1gJCjkIQMo7GIwoIUCaAiBBOP6dmC6GxVrcglwIKNmRrZvIxjIV2O/1PfBc+1AUpdtzgkNUmD+yEAQBLLB5X6jeMBwFEAozgTbCz33emyuK+D/1IAQKxaZmygADU827ELkACWUufS4Xt8I+UVIPGPWUrY7vlbTu1HFUiQ5s3FqgGMj1nFzBk2sI3MhsNpuHgebl5H5noXTqNwjfYaxCIYjyhm8LHNRIcykZtPJxsG6uymki21U4NRrN+x9vGcIgAkrBAMElsWUCTCyZVFRCx0T2v2pLzBc9ZJAyj20GEEZCLQqm12kYiHAkqAnKo3pmRxsoMZu2/jKQZEUIQeKo2gmTygFpKv/ROttdI+ag/QQ1Ke7iivTdoj1GljBkghKkEiiLUfsRd4HHiGJMISo4KEJQKcrpNx+Ot+g0z0uxQHRSEhEKJi0EQagYBUFpWlwYLxlaJYbCt2A7xju1NiQSIWYyGe6iAq16nF0jKOiSIzm05a4wiUaw7WTp/3LS6G6tQwhuP44rBHxs1OlNwMA/ITjxoYc8AttDrki444HnfbGBtcvn2mdKzKZd7H09678zlQLOWv/6xSJ+IABsjsL5bfTv4cwI76j7udM8m+DzeHph3FbaD8Kc0sd1zZG0qnCsIoEBEkyUcU63Ysb9/e/KnW7aRCskkx7dxUhZEV4Hp7vZg8I7Tt9um9e7/THz0RG5PLkawzRbEg6czwlt+rfCYBEVDsNpgsl6+09rbb6Xw+0X5rODjp9S5a7XOiLhEJG41QAlT7BkflUKIWCZQAgGu+JOQ6u6eUxA84ZwuPtKAsoQJKH+bKx3fPlwAWsQ4AEOnEZKKMKAQRGRJukmTrUTw/+aS4hiCZaDOZf6tVy+FeImJrTsefubDhQtcVDxaPRyIBrnlO8Xu9K+xdQKQyYNiYcLZ4gZSI9DIAABHB4vnpJ3tWapUM+qjyJgcA0BgzuflusX6FaLXqjfqPRyf3tY43JRajQABgs9lcXj+LojmwgKZ+597p+X2ttdtvEcnuN7IjZlb5O+l7YgD8r/6X/3fSJIS+P9b+mUcnAH1hHQkY3rt0O39+ESvsKQJmA6TcKUZEsCQo5MqpRK5d20TCOJLpKAAg+aerqj7eP0rZ5LlUr4Pwg04AsgAgNifNDB++PwAo1/p7lggecOAC5L9MAJCL/KhTMhyRh5B+r+pRXSL/qH6bEgkeEiFBqi0WBATkpPRPz7ACTJUDAGAwAg80M+6WvLlcL5+vNm+D1XdhuOBoQbJDYk+BYMgcWtSIAsoSETt7KxEA0KIYZE8mcWzdkpMjljvc++XGuYnFsaPKeZ6AsiBEjl9U0UKgQ22VrHcHxU2/1NQbk2wyT4EGIUCrBBWiSISIhBKhILCKnTHiB5CILIIIOXsfZhYRFrQgYiP3yKOwtVYEibTWWnlDiqPEEQAItZAGVEwKUAlqRKV9T6s26p7SLaQuoMfggWgAhaAQFaBS6CEqJE2kAB2KUIgooIQUIsY/GesXiVQLCBGVzcxJckqvvT+BMILmrXAQhjOM1sBblojBMqlE2exUiYASd31iCbvELjV7jVemFG7c/PiYUUAVBmhKGm7ymnwHGBD/kG2mKxw3DeCG2hcgRezZG3t/Bjbb+XJ55UB1Sr0FgH7vrD84cy8SYOU3qjBYw7rEsYqTEwTz2fIZgnc6eqJ0JzvzcWy3eMmqEwQ3nt6GUIhsWz05fmf24sy42NqAxfiql7b/3S232r7abi6BfBeh5aqZZNdyvDhLwtfTb8PNlaLWycmnDx7+LpKf2AMgIJNwdgIgsTL+MKGiZpThEhh5t5mvNy+JKNgt54trRDUYnnR7427rvt8eiPNhg6KlLFS7Kkl2QEGHrVGLGDVeeMHGf2fJ4lhM/qQRvJkmMRXeNOc3EC/4nE5EhU08AVB7wS5wRY+vEgAwm/O4r0+JnZoBoDBaTxffadVKRSDWROcnnyNRrvTHgr9eYwl5qGCvG2zWZbDUmYRWEH2zT2vJ4DGKgvnquUuLygIAxxTwVXc0eLBnb+bf/3gYsHd0YASWIgAYPDoZPSCvCAB2u93VzYsgmIq16Km2d3528cDzWrFmWyibi3LMePCIycDR3+hf/teCSVBU7P9tY0BvGJyQInVicR1AjHtpzKKIXH6BdZtrjuSTqbnLWVQHkV8hE7Sp4Z0FAHsq6v6RF3o/AKChoK8DAC6EAnNCw9z75MBo6f0rUwVuAQASRJ51W3q/xqB5v+d3BwC1vgpwiAuUYQEJVHgouXsy85TFdX9Soe11xkhQ9D8nAQUojJbFGmutRLsomO4211FwFQXX0e51FDzXtDQUxs4YpAE0sBAwSOQMc6wjwlEKTajQScouwYhYtZ8hU8AWnbMYKp0ICXIFjY25+KWKdj+S5r1tZfykIOT41oCsY8adaCSrxCPnJiIgFCrQAMBogIXAxIHnic7BJaw5URCzZZDEa4jFsjCLsbEkl8lasTZy5hXKzQ5JA3mkWux3lG4DeYAKSQtqxrbSXcG+0l3ljzzV16rjeW2te6g9VCRIRBrQA9QglAgWdVoAIKpUCoyxcxBmYq0l3zpIuxVxTCrQzgRTG8wgWrIEQiyKQLR78JGTikAYkmxpYHGXvQwAoIHzWl9uZjcALrFxqMFcqEYQfJBbUlvNZ5u3NSWsiOx9vuXgNKBYJmZZTFw7FmdmXq6ud7uZm8YwG9fvtDa6c/6x8nwXBlTTcooHWUV4UKudyHHBme3rq19o8ga9u532AFAX7FDrAMCtkEBdSHCe445IIYgnEAJ3rGyuZ7+4c/J3KO7vEmPoyso3N3+mkYA8AGGJ5b9KVNzLAxCScLu5nn1Jdu3r0b37f7s7/LmnBBhRAkEPABTaJKxlnyaBR9RSGRvfZIInsUFCEK7W65fCoYCZTd8YY0bDO3633fEvev17IEqEnYaBYvvHXBul7DCbZ8Q1yT9ST+n9sE6sE4/GtLFY0l1M4YjZjIgIlBkFqMzumy05cgbZcU2FKGJvpr+xYjAR7EKNfKtgJJACgLPx50RUAACR2Uzm3ypqu/9ERGuC85PPSaks6K0EAE0rAt5qTpACADzeOKhYoFeZxBT8gqIomG9e7F1SErGWm2YPOmft1kmFl8wtMUAlAJivXiJaT/dHg0fj4X3lu36WTQAABUFwdfMsCKZsDGho6Yuziwe+3yYdt5dc+mclAKiTK7wncTDgP//jnM08ijh/UhSTHpwgAOXM7DJVC0rp/qkQhkrtPLr4w6mxK2G5VVaZhp37eeSCCPXdOvp/c18vTISzqKNwfpIeVfEa1b1eeBoLkZxJf/v7nv8iOMH3YzeWB5M1D4sDBi48C6uKHABU4Nq7BExiSTZh8Ga7ut6ufh0Flzaam2gtFAkjiFUQIAeAGHEE6PI0FIuAIhTXcdcMoNxDxoICqIiRBSjpMQmLgdjd23IcLoxJSxvRbdtoAFjFME8BoeJE4cro9kZE5WI40+SB9HxYEbXX0lBmg1H7Rlf6OlsBCzYwNrTWIrqYNeG4aaVcCjQjIAoDAyCCAtAICshD8pVSSmmlPE+3yBuSapPqkGoREZEm5Snls9cD1UXqxMWTBQQfocW6S6gBNaInoBCUkMrMCSnl9Dev71jyu4+dleOyplAIsqBosJbnwfaStzPZvfE6mrsjiRDRE2vApbYpUiIMFhhBFJJjXccLlzStjFAmjTR09LMdo0pxcOV2S1JdTR4hET7AXC+EKGde5NrVo4kXxAUYwMiFHTHxCCLLuzeX3yilQBRICIngt9XqnIwfI5KAob0wvTgJkXoAU39u42gIa4LLmy8R5Xz8Y9IKqcrtp7wys1QTG46fCUApT0C0xTCusI1cTf7s4uznhDpZYBHQosBq83q1vSQiN9t3HAlXHDOSK6MZYbN4uVq+0oCtwf2nj34fdQ8AiChN9tjntFTEpTVXVCljJzvUYRttZstvBawSXC2vNttlZ9Dv9e74rZN+9y6C72Kj449CS3GoxzHKGa6ZnMSnsZDdHhuhgRWxCCzC7KjkwLDXZbl7gxIA4GiEDhIUvfylCgAU7qXr2W/EMlHM1KqbAKQYINUdISKzGQ8+8rwOIjKHRL5b38NoPZt/q7VOnYWMDS5OPyf0kjg/daz06PgNuPGwy/d2JkqOGxp/FQghi36Rg3C13k4S37kIsm6EYAfdh61Wp2HCAE1JEVietToOqjFmOnk2X70EMJ7uj4ePh6P7WmtEYRDhEIAVqCgIrycvN8HEmi2iarfHw9H9TqevlEoyZfh2wox6hQDX4oSab/e//iMpd0wRgBzHlxKXdazpSQvWsD3ro+DKVP68RVcZABBgkw/MBwDwVwoAcr/yNwEAAOR4/9WvY2aZyN7kHogAkkVEilOsBYRZQo5WHG6C3SoKZ2G4MOEkDG9g9y3QysrCeWyncna28dpHRPFIXZgIgJQVAke3SfYMlkAyf9w277TCGhARVeJbTyjOXEzcWEN0pmXlRHIkIiQuwRTTvUrivE730TFnxm23CczmGC0YtBbYGAHPiibUQAiogFqk2uIPtWor3SL0iTwgX6u2p9u+P1a6RbpNpBGVMDhIIMoDV8onYJ6RXKC9az04rAVJhpNCdCR+K5iDZ2jzVxkLyK20rEMtNwBAEjuahDljibSSiGVhd5erqz+fvv13bV9Rd+B5PdI9xDapNmkffUJrAP1ICNiL8SQnnQuCirin7K3Mx8buuKuVxlQe5NY3A4CaLbD2YOrNPav9UmtnCI0S4Qar0OzDvN5MFsub5PwZAnE03/HJebd9Zq3d1+W4NyqpO2MNScyFBjBbsHZ9Pf16PHzQao1KvbpatpVrLZfXuuyBpYldtR3B/IGRE0UhIIux2+n8y/OTnyMlJF53h7BcTv/MKV4wcfwtbL4o1tpgNn0WRRNP+Rd3f+vi4u+wYBLTwVnnoixvppmZmQeEKXp1qxCE0W6xfgaWUWC7u1rOJ16re3J6rtVpf3BPq541gmTjAA8RAYNZf/1sCnJNonYyAShKh7NjNHKrHMfVP4gVMQ4MWGYkSW+tdKKO8cLlxp6UrKi5fGXZXyI5HgA0bHAlQ2Ee9O61WycO38bGrwgm2k3n3yaTAUBEa6PT8ceOFFR5NuDd0pSrEtmOnHS9GwAo+1lvwsl2t6gDAMPeI99vH09nOBIAWGsnN9/NV88BuAwAQCK343MYXE9ernc31mxFpNU6ORk/6PT6SvvJlveOAKD5Dx0xHMA//COOqTvu/8WDrRyVP31OIPP4VtdVx0YTlDxwMoVgAQCUl+wGAHCQc/8fOQDInp9soV+u5qFKVJ0+k7XUo/cOAMrfDKqoRLd0L627gSHrILSvaWhPFFHxXzhTXyoUAyhsNBIKCBhgCxyKbMHugs3zYPnrKHjB0crYHUvAEBpjhA2zybTTnBUvKqVcc0yhFhER47RNwkaSIF12swjCRCvJ6cpLgATAboYAyvW0MlVL1lwrDiJHVAReDCVIEREqrZQiUIAawRNUpDUpD6itVN/zR7r7kVJDlCGAD7GsVgkQoY9I6RZoY08hxWAJlSRMuf2TbYElm4WQiGUFgYCRSSi2FSYAYnT/iaWCjMtcqqYVqS4zO7kpUut0TksjAiuyZDO5+eLfrmd/0tIaRAkYdxiWhUVZ3/f9QffsZ373nLCbfBIhZKPEoECY3rez+EAjs24DaCjry8Fh2d42l7aK4xLE6iUKjQ31qgq7yQA6nSFkaFScPWAR++r1N0jsnGvT8tqKuTj7yNPtXNQr7pEANvnr51IOsszGfB9Klqvr5fryztnnSulGe8GqWUeNn1KpQ5n7seImmDKsmB3gZwkub/7sbPyp5w3QBSHFo30Ow/lk8ZUiL/dWKXqMRSw2iGaT628Io05r/PjJf9rt3rdimCGmt+UX23jrFYDj/PIRhVM8DCyCLMFs8dLKygO9264W85eC6vT0kd/q97v3lB66niApTlIEsUpDXH1ajgDGmUfSCSrEMhuWCNg6JOAMZIlydAXnKACJcZlr/NO++ifEghFQeSbpNKDIzNezv0gBwMFSijO3EwEKGMLW+cknKTiJw55NEQAwm/HwqafbeQDQGKlWB1oOgYF3ARJN68aB9t9y/SYyOwZnA8C5n0Qe9R9r7cc3+aFSoa7XnGVrkxAzsykCgNH4gVIKHfdPrAvGYWMmN6+W2ysTrQDAbw1PRg+6/ROlY+8coXc08TyIBw4yhfCP/riI5rFEfsgy+OsAAMo7HnctWMwDgLrqv0BB+QAA6gBA3fkpFPR1iRF4BKfsLwEA3OI2e2dI0AwSkIkIJS7VEu0HIAIjowt+ScmdZLWgcAS8isJJFE6jzZXZXUfRNIomkVlZuxbeskTAhtAqEFDa5XI4yzxn34YuczS1enTiHOXMOsEKRBYtOxEJAhCBAnZO2c73RrmUAhFMtigFQkAekUbyiRRST5FPqkXKV9RWqqWoReiR7mjVJeUT+lpr5bWV7iG2ra9BwDBg7Dwowk6GyJleV1q7kDDF5wpj+odwbOVR0+PhzAoQdyUKTYpUaFue5KSVTXWzIPUbLd3knDAcJJ8lLMRAAhCwmb75039jom86uk0s1gbC7ELNWIxhYzBQw8/GD36/5Y2BFLjQuH2/Eyt31oTcIAfJDGUuEOfruVsRIWqq6qNCA+rcQvEwtWZfdcUNCJAmbJPYMuZMTpEBIAy315MXRJQSxN3r1kb37/xYKRWDI2cDEBfEpW7C8QOBdO0isTZ6e/3FoHen1x1n2RQHT2Cd+1CjLvyAN5QwIllrzXp7E4SXp6OfEnmZW0MAzeu3f6Y9yrb/kSTV2sXvz2axfrFavFZKnZ98du/+72nV5uS2xHSAlVbYrrhsDt4qXnpKwqrEWjtfvozsSoFiM1/Mr4wJ+8PTVvtiMHzQ9k8tu2vEJfbvUVVmqhjOX/bslbJ7Ew4REeMAgOUQxDrTZJNmDpCUNHWUOLmpFAMUWUBCNTta3IER4avpr2LyjFMuSe0jnE3fS8gRFgAuTn+c+J7FT6UDAGm4mPuyo8ET3+s0lmG38nVt2qffFQNUH0bz1j9dPBNhZ72dTb4jUCJ2PHykqPXeygPn/iZiI5MCAK16DgC4CUAsLgILQmzMdHa5WL220UqQfT0Yje73hxekPNjzf7imer/dcd4WCeAf/nHM4UPMDZayXQFHt4NKT0Ym+N5/CoVjHQA4akqCHwBA9XloAAblNanu9YPX8fsDsPJYvDglP15k/L4wQJIzkM4BRPZ0Z0QCAaGM9xC6LQ4AnSMhAwpIRGiAd+AsdiSwNrAm4GgVbSfB9s1u/SLYXgneaA0KxVpBYUJBZgICSvIBkJ1zJaFHRCEMyOtr/8zzB6RaCBpIo/I19Qk1kQbyETSST9gi5RN2EQlBIXpACkQLkqseAEhiG01JA8UERRhQnAU4CIJwbAlACqw4xlG8vsTr2N7ob+99mXNCz/MGswOB8isoANkkQcxVAO+A/fZD6oqwHmZIQjcLFYMiAcNsOLq8/OX/IQpf+JqIwUiITIha0JIF4cjKyrYf9R/+553OBYKWOI6u1GlrzvzK5xwfhAHFV7CC/JMd5GafQWS5jTZOjoEBeIhbX2VXWl0ip2FYTmeScz1CXq1vFssbpTQAWA7jkReisbuH936O6E6jShrPzYMLvsXgBTmKouubX1+c/0Qr3yXsJoKBZr2ENFw4tyQ2JHZneUFZwCaIBByZzdXkiztnP9HKL7yBiTbXs18TESJJGh5XGryz2U1mX5jdyusMnj78R93+4zRi1rmA5LbmfQpH6YvUuO446xtAg9AyZrfZvg2iCZEvwXq5fL3brHv9cWd43unc7/fvstWIFrPs/+qbVA7XQ8h1T1DaMkdhllCsYYmEjYiNA7vidnlMgkrtmxMbBkr2CGeB7u1VAVAdfFkGAG4CcAgA7HFglpLt1quz0Y8RkVTSChGJou108Y1SXnZ8NOzfb/n9zB10cIvk2hJfjnLSFGBoNHE5tPIclS92NflKKTdhtjG4TaRrYs3J6HEWAMSFyoHDzu9JlQDA2uvrb5fLlwAmBQBKKZcSnnmmzHx+M1u8MtFckD3VH43uD0Z3lPadUq7qPNNt8Vjz0l0LAP7oX0h5S0KSvGNgRbFY8NV5t2Z/OnCHjE//8QDAxTF+AADvDITeAQAUcg+OtTH9HgAAMskGKFVdeWhMYm5+/ZYAoHjACeqId0nM9IcYRIBQrLAzySE0AhZRkDQ6GwsEsSxg0QbGrILtPFh8t9l+JeYFQQQWGFlICfhILa3aqNrO5YawramvVVd55+j3tT9G5cc6NlSotDPXx2T4S+Scu2K3E8hlu2ZbgEXqfLzdYGKQKvEMmgCdA2i8zCaCCkKpXDYzZjvpnk2IMSd+v/Jg7Efk1EfJdDR2G4ljnvOTwKyPU/mK11pcFG6M4v3AWREIojASKcsisnvz6s//tZjXSgswW2G0QAKijGJiEEsb6D7q3fmDTusUkIBTY0rKWKAcAABwhEfngcZwkSNe7PdngcGh6cFRvKDS2AdwjzyOPn6sTsaNfzp/hNZGb15/5flKGAVsoo8HALAcPbz3U46VskWqgwjffmqxvzHc/86Xb7SmTuu8GHVyEDzkz2GdVrgRBkghLo0B2ATb4HobLC5OfpJA53joJCJvLv8cKCDURMpam2VGZfUA0XY+nX8tJhqcfPzR439soa3JEeCk4uTEl7Xc4a7zXNqv7dbaXXC13l5rZABaz1+u1rN2u9sb3OsNHvZ6d6xBN2vNO9iys3iqDAxtelJyhCuuuKzAYA3bgCVyQ4D09SAImFkrj7SnMJMAQJgrroScj5kTKSXKYKqv/tOruQcABQFxHQLMvyGJ2LPR50rtY24JMYq2k3gCUAkAbtVg5tssVt9zdl/xhihc39dmALi8+Y3WvgMAkPirOtDGJjoZPVXkpf3rgwBAGq5WHgBcXX23XD5PbEAfjE8eZwFAfO6MWS6nk9mrKJwIsqe7w/7d4ckDpduM/G4AoE5rUXcOjwYAWCvFKNhH1gGAAkG8WCBW1Z17q/7bAABMmlryAQDUA4BC4V54fe/+lA8yq3s9CwDcDVO4vmVI9n0pQJxXJENNQV83qcDGn0c+SrvGuHdnw2LB6v6TMiMCSWZosWgMMDUERFSc/BaLTcsv98MIorQFjlh2LBYACJAEQQioBUCAHiIyMjOzJWSyNoyXEEKFhORCWZEJFWpXZKdrWvotFKaPVf58lPgpyHtuCrnOPQsgW1AoEocpY0zpUYCxCRtmuwlN+3LCAHF/5+zC4s7kHmrm7+rMO3DT2OdQ7kQaHJO3lUisS50nmkttUwgAFE6+/Xf/ezRfkyfMbK11fnzofGaRBQLVfdS6+F90WuOkdYrATrScbT1igzdaYYkXaS7N+RgAAJDLDy6TgprjwzDBfkdgAKjzIa1TOTfDgBoWB+92u+n0GaGfJKtKGg7IzA/ufR57L6FKbE8wLzBgqOnzNWUhu4a6Cd/e/PrO2We+1xaIUmvZ2ySdHYYB2IzxMu/MzFE4my2fXZz8DLVysEcYSbEIWhtdTf4MhIh8kQjQxtb7+9VMRITFrBbPt7u3Gvy7D/7BnfOfB2x0YmFcrp5Rall8aQFUJHQlD9M2uJyvXvtKi+VtcL2YXqJSo/HdQe9Jb/BIBIk4d8njKyt1pKxjAED+vFF6lUXcqmuEI2YDYpGtECLxZrOYT68DE7VbvcHwtOU5s7JCWZ/qTYlIk2hndeAkwpXVf1Yx8g4AID8EQCIY9R97uuNscF3zm21wPf06EyZDADDo3eu0h/kYNbpVrX9kgN33RAJ1z1GeEeDaTSwiV7MvFfkZt1Z0my8QWhudDh8raiVWbKWjKLui1dcVmIpXRZj58vLb5fI7JKupN+g9GJ889LwWkGQLU7F2tVrcTJ+H4QSQFbX73YvT00fkd4QODh4bbNPl+LN3gAK0h8h44AIV7+a8BqDOUqYSAOTsI8s8wpIIuKL6/wAAbg8AYknrDwYAygSPW+UqHAAAUrzKhX8qJhriAcBQGEMVJw/ZNDqqI3IyEXF+c0yoQMJxl5sRlbDL7BICtBinHac9CaHYRFOp+HwKIQpjXF+nBtWuDZ6407CISwhLwmjcruYyZRBUtqbf8+YRD+pqUndtTmVpkhuak7MXBMsIgIo5Nq8o0KVi/FA+b5hZbTjpHaTIJLmRKH/8kv69bslOK/tjZs4l5JCuY0n0ZrzUaHfhfA83s2e/+D/y9t+RJisikY0vt4qbTiDS6n/knf2nLX+YUAso8ZvnfSdFcsGFddacmUsjB2khxYl+KUDK5ucnOT5JYfmtiW3J2/lJ3SyxKTegorddU+OiZE4CAxTyX3m1Wq3Xb0B8ROusPx0VB0nGo/N2a5SdFgBUKnTlyMC1AnQJzTYMV73OaXzWkWNufcY2tCFHrLlgzZHdM79b55cKAEG4mky/Phnd7/h3GAkwBCFKyrvQTK+vv1FKOUmohRDZhXjCnuwnHJlgNv2CedFS/U8++1/57XMrjAaJJNUKZ0vwRgBQjfEQUUSF0Xyy+FKjRlDM2+vrb1DscHR/OHrU6T1AaCEKsMT2BvEwMEl1jaWuckwD96AmIQ4PlgisYQlBWDgUsSiWiEIbTaZvNqspAFvxur3x6ehca62UglKwNwCxIJEm9BRqp7NCRc3dZABgdi5AJhXsHlN/J08iuxj1Ye9hyx+6BTleosFe33yRmP3HPK5e5063M9pzujL8rvcCA7DmRpVbYoB6LrskXzytPFlErhdfELTi0B0RAKoDAPGOwtIwEBas/b4FAHB19d1i8a0DAL3OnbOTJ7rlOy0GppZrFtbr5dXNd2E4AzSErV7n7PT0oW73MhSg2wGAo8eMB34/AwAay+iKAq7QlM2fuOO54OX3b/CVf492kx9e/5vyenPOwPcEfjlcirmyPtchTheuhPPToEzYo6OYgiNxUV5h3ZswSil9Q0mjuyTz2bH9RilNidhy/slPXJ9V5TpSFMU2LA1ZLNUgy86d26Pe+T3+yYVeJ6q4w22LMgDAItM0EQGTwwBEAoCahKLg1S//z6vN/6flKRMx2whBEYqgIAkRsIlk/Nuj099XSu0bbJyr/ss4M2+Qzw2VzSGH9Zp9FA8XkQUYkATG2fRc1XsNHWhRJyWmZHs3RTPveswgwCCIlFLCgBGYzeu3XxORRi3OcMOJNwRF7PnFU621KonW5EAgVzEeolBrpl/k9eWv7l38CNFDtHvIVMUzbD7hB12DsPib1uVLZG91a+3l9Z8o8k9PP1PUShXn7vJp1NfTL6NwSaRTc2FBQGFmZwvMIIrArrfX09k3LTGj05/ef/qPAD1gS6IYJZPKvFf2lx6ZHKbLL7kKwAgCClkOJvOvjN1p8BHD2fRyu7nuDy5Ozz7pDR4R+i622a3SBRi8z1A/qlTNW6863X9GB5LIFSJmy7ITjpgZxAIYt2Kut1fX00tjjIhYK57fvnf6pNXtOCuF5Cvnx3qglGoBanI5LaQLi+XedytxpGG2V9NfA9vjAACUNAxKEHqd045/190YyanCq+kv4szAeGOSbvui2zlzvSFAU64Sj0YCt+SmH8MhxKYBQqbPKOX07uvpl0S6ABQdvDF2dz7+jJILkW3xlCGJ69BVtKvEPTJJepqIiDDz5Orb6eI7IkJUvdbZ2cUnvt9O2EfCzIgK2ATbzeX1d7tw4j6j7ffOTj9q9caMrEAsYI0OuOE8U839UC3mPmICcGBw85cHABoK/Q8A4D/O1xuu+w8EAFJOiECFz1Whd16MMRbK1dAlWnM6x4z/hbBwDCJSBABSKs3j+pQZj5/AUt0O2cwmRGxa0otDhuSf6v7+Q2AAzCtSCvPMCgAgVPBix2Jk1X44LiSI7JQUno3e/MX/db74f7R9bSK2kUFEQgSwQKg0RtEWT/7e+Pwf5aAICxBKVR6taxTl7ocDIma+VWeu2NEXqgu3OhCZlBRSB4utOgBwqK3ODTdwVkrofiYI1pPZW0fGQLYZggp5njc+eYixSZSUnLyb+VS1jPxMy5ZfX31x7/wTx6hxYJvZZLnphesoueboLYLYJF/yivO2ctaTyeQkChfTxTfn4x+R7qSn0fWAEZRY+/r6/6/RU6olDAKhMwCKW6TALAZBAUez5fPV+nWLvKdPfr89+tRR8K1lXcporzjgPJcShUUcAE6PxxMAkd18+XIXTj1sgdjN7mY6edvpdO/e+bzbvSA9RvAELMWOXFKw9YRkcE15RVH9NZX9feuK4Iy+MUkoD5mNSCASiZu0SgQANtrNl28W61mSv4Kd7vDuyWPf9wUp9dzk3BNBCArJJ/KcCgsAC0trDgDED4G5mv6FiFVIgnQcRybj4ykalHi6Pew9yU8/7PXsyxjxcpz60mkP+937yRhfKtMJmiHru00GjgQADbtYdqvNMPri++Rm9hWRTrxlJdP/ImujO2efuTlJmrC2n2RyIQgLs/nlWQBQrCJEmHl282Iy/xbAIKpe++zs/LNWq4MoQArYQRGFYsPd9vL6+Wp7SQgC6OvWxflnncGYEUiY8V0MfypPe0XH4CAAwGM6dqWCqRIA5HbT7+1a8wEAfHi9+X74AQEANA21qwEAVBDQU9YNlAyGs82t/fu4aEop1q3ZZmlWkJB6d6UrWgoqKotlPKJkK4ONw8ROrPkZSgBAnQxXbmcj1hAIWHk16wBA9S6bHhLmXIAEUaEVQkTwRG6+/rfXl/833ydrLUSSIDgGQlIQRCs8/ScXF38f3DBaKLbEIXFt1wYSczMz9SAMyHz9Q8G9SdVSZV3PtcKA/Lk60i20oeGNFUV/zaQCBYE4kbQiynI1Xa5mscbRmn09BDAanrc6g9w3qj7hfCsYkNSdbK0VChV14nDnmPzFBQ/y3OCl4gHj45gPxV91+l0Bq5BEJAq2V9Nfku7cOf0ZoiBZ4TT2GBFlt51Ol18p6iRSOmutcwwWAC1iRSwBWrO6mXxtwkl/8PTjT/4JQ1dpAgZERq5QOWfdtMoAL8Nz4+TMgAAt1882uyuPPGAx0fpm+tLa6MGDHw96T7zWELEdJw0LFx7nI20bqjCe1D3jTp3PZiscskTMBhPUgWKWq5vZ/MrYHaMgC5Aaje+N+heKdJaJVLDlAdEpACDSiFTYEbgUQZgAACECEF29QNXbqgpoJGE2Fyc/xTjPMT4JV9MvUoMjNxYWwYvTT4l0rAoQil2P6+xuEaGRzHYsDGgEAMfQNQua9cxfWERuJl861msm5BgS6wU8G3+8/zosB5+7eO/YMw8Fkwb3vtMkwszzycub2TcOAHT80fnFj9vdHkpu2IsiJgyuJy/nq7eEzCAKvIuLT/ujcwcAnKj4PTXEuAYD0PuZABSI+9AQzPQDAICG1z8Uyh8AwHt4/0PVf0E7USy8qmwWmwaaWLHWF0kK7ofoQEs+MUpKkILgu60fZVnwrZamsq5A9oLjqrCeHwYAFJQhxwKAbHWLewjHKAoFFAEZz8Ly1f/3xXf/xvdEECBIWixkCDVq3oZLffHPzi5+C2zc788CgJJBSspzs00wqYncIDnGSO6cNMEAR+rgmq4b1Yg4s+Mmqq3sD5Ne9l2nfE2ZOQM5+oeAEy+JG58ZG7y9fKE0EmoWI2LBsmsBitiLOx9pJMbcxIBKXvINkuUCR38viQFgNmEY+u2W88ZxJ0XEpnTqKofTIgzARq5FIwxQIpZiGxIRNm+v/pRQnZ5+5jSgIlHC6rZuWHF5/QsEUko5hnT6JDJIMrsIEXi3vp4vniFvL+7+w4t7vyUICpWIEAnYRErmKCuZ0VgTyBRBsmKJyJkRqdXm9XLzEoCUaKJwev1ytZ2fnt07Of3JaHCfRVkDiEBood4c6ej1gatPYMrhBItsWYzlTUL+idJbzprVzeTNdrsGYGfbTLp1fv6k0+qn1mo13WsEaCnlO9K5AwApTCp4FsYmEGAvJ79y7kbZU0pZ1UqDhgEVIIvYi5OfOpFZavlwNf2VY6o4fpHrgp+f/MhFzSAqYYoz1G+3/L4P7yCU5g6IYFWLpEpHKmJvJl8S6WR+brNaat9rDfsP05+vjYbM+15mgxEqAQABMPN08no6+8pxxrreydndz9udQRYAuJ+0UTiZvp0uXwsHqAgFz88+G57cYQQFYkEKDcHvgQe4NAdougoHAEA5qbdCuYs/IACoFYl+AAD/UQKAyvvhBwIAKcs2i+YrC9B3AACFT8TEGCgzCiBsToatLPKTA6C9guJ2O2jx/YCOX4sOVud1/3T8+5cdBQrArGi7wVJpxFHg/1TAMOLsDAdREIUVe4Lh9E+//NW/anvGCjsaLQoABQo1Kt5Fm86DfzE6+TFHxnFGEy/VzFSBm3K1msDJgVLyYO5pWg2nBX1d3ckHJgDJz9SnCDeQiQlihnrxe5X1wfs2GhOQODXMZrOYLyYUp7MaEWE2ChQjaK0vzp6QMBcfZ0ulbpgkkxSqRwJ52CDoeMagHEFGRFzYUMlQhesCvxpb/gecQ0WAlLBFJBbL291ivnqhQZ+f/wTAIHppFxDRAlAYba5u/rTljVkiYQC0iAo4tZKkGABwMJ+/3AVXXfTuP/mD7viRgAGrEVHAkOzN1XIIsN6oFEmESYSVRjYCAKGZ3sy+QRQNPqFdLq9m86tut3dx57Ph8EfOIwEAFEGq43RUDazjvOEtuHAiCfxL7THEsoTWGuaNSCRJgJT73fXqajZ7yxaA4vR17XfPzz5q+b64UOT84s8QmzowIEBL6xaQT6hUEjjINQR3EhCwV9O/YGbHZ0t725Q3C4pRRA0Hj0HORp8TqSTeHQDgavoLEcVs3DLo3v/85EcIKjkPiMS3qTiPWRZuAwPKJX4Zt2VixSoBALOZTL9Sykvd27JPYsvv97sX2bMKDQkqFQBgv2Jnm1kEIJZn87fX0y9RIgDoeMOzOz9udwbuMsbcThGFIpYn8+ubyQvmLSokwPHo6fjsnpBScYwHWvhrBgByZ7yGMvHeAUCdr3xuGkUIyCR0pNvMh9f/5r5+MGfgB5wA8GGr3XfoUTV/aNylqMnXS9JwM/x7ecfPPfr46HbL921O17HpfkcBlXcBAOXEiToAQMqCoBB4CHbz5W/+7H/r0YIZyTr+PiMGCkGId8YOH/+3vcFjMRY441meAQANFu+QF6rWggE8vvte3WDOGU3juwTiun+iA1CwybkIy59CWHNyMsE6Yt+8febklswiYDLwiQb98aB/RsIWpKF/WWDdFs5JZSGeGH3G8X8iHE8AhKQsAGg4b3hQBFw/EEAL4gQAstksZquvCFtnJ0+1aiMix7WppCLd+eq73XZK6MV8aN4hKhICtJyefrYmmk4n34HsRu27d5/+Y69zKszCClEAmRICva1xSE913fnONIN4IoYQLa8vJ79WotzaG4az66sXnte+c/fzs9PPBVrOapmKCbK0Z2OzrZigHpF+XQAAqbQd2VoOLQdsdzFbL75eLDZ8e/V1GGyJtAAAWmbpd8/Hp/e11iDYUKgJEkJL6ZailiAVbD3zP08J4LdXk9+wmCwAqOhTCKHsyXtF70TGk5MnWnXS6GtmmS6/jKLIjX0QFZAQqLPxp4Q6C9WYOYYEx+5ZfHAR+15gIFuL5+4ol2RTxAPWRtPZt85wqXxILW/Y713spfyMDWay7g2TOMjiPsJ7PAIoAizzxdXV5AvgwAGA04vPOt1heh1dCaFQmGE+v3k7eS5mBQQKYdB/dHL+UCkv6zFwGzlfwxkunAdu2GSPAgBNnVdIDTTo3ew4mwFA6iv/AQB8AACVOQPvBQCUC0eUoyrash1qrp2JB7h9leLUymFpQaB8uED8SwEAJfNHeV8A4B3gxH5xKKG4siLiIABIgksTFYdiLQoVAAvZt1/8+f+Ow28IFFojjkiNO00oYCP2xx//d632hYQRAiBRysrdR6pLHb+2WD7W/UwB+B0Xh8T56VbpH2qDcpt6hHmT/iIeqJMsJ90+rqwtoOQRFLfwiURws51PZ1da60SdmW7pkQhenD3yvFZy83DJBegWHXeK6QRYui0rVbB7v6CmPISqsvUY2eU+GQ2UgAnD3c38C2HV7YxGgzuIHkjSMAbjTojl4O3bX/le111ZEStgEBWIckDCYScU3qxezhfPW+TfOf/5+O7PUHeEGUQnF9TGDjZYRptZAJC78VxLm1mEg/nqO7ZrEE/A2CiczV9st5s7F5/evfe3tB4KWGFCkKQ6wyRkfb9+7t0RYhfjmnuyMYtt76OFDBwaEzDvHAPKnR/3zqv15ObmuQIU9ACAMbSWT8cPB6MLIsoCgKrLp5F8pTpK+SDkPEwrN4L91xR7Pf3CcoSI2dK8vP7vnSUzACDlF/X6J932nTjYES0AbnfT5eaVtdaZECilUOhk6OAiuasPAC4/+/hOluyrvvIlOEbPyoe3AJEKAJCfAEASMmNtNJl/G4czSI4PiYhtf9Trnu+jAF09mQSGVMIYhuJnUezg5NoEmE4Alqubt9e/FrtDxLYenF581u2N0gFRMitgEVyv52+un5tgIWS1kk773vndJ1q1E+9oQcT3AQAK2+shba8TActfYwDg7FA+AIAPAKAyZ+AdAEA5f6Aue65cg9YVpoXXEWPfkmMb/xmf9SK5Rarq2rpysK6IP9TdQaihDNUv0+9Wo7+XeULdtvGOAMCZuDcDAEIlAMTA1PF23/7q38xn/z8NVrOwaAbLsNVKAMDC8Oyz/17pgYQGQbJBaIw2/qAaqlhdedoEAOBd9Lilhne+F547vLK/RIVtaGbrYjoCACR3XfHI2WlA00e++I+IiIvlzWo9c+HWzCzCsdQSI2vw3p2PlIY0mStVCr5bx53KlaikwSqCSMlfUESQDsxPcuki6aqFBzkYXHg/FjtfvgrCBaI6GT71vU48HAAQpvTm2O5mi8V3RDo1TuGYBYQIJKwEIgRh5vnsy2D7dtA9vXP3d9vDR4AKXVGOiGIRPEDDWHEC07SQyhvP4bPN9s16e61AAViBaDm/XswuR+N7Dx/+J3773E3QkpCPRC6MDMAEmLYzKxfMI1PwCppgJ6EGDozdsd2wmOTdLBHZaHd5/TzaLtClLgKx7ETk4uyj/uAEFJXbNqk5LCI6AOB5PSIvlfxWPt3pV0KJrqdfsBgAqAQAFd/ajROFCEU4zSSGs/FnTkggYBHRWns1/SUzO4sqIh+ZTsePPK/j4B8iCsd9tSMH2lIevcph5mHzQlSx1L8bABCU/DsjYr973m6NnTBAxKI4alkO2BdgAEPZTT+n2YsbKCyr9ez15S/EhgDsAECvP3ZRcczslnpkAaDNZvHm+qUJZoyhIvD0+Z37H3m6k9boBQAAGbPdd5qlHLLtOjgB+FCAfnj9w+twS81JHaBtyNhuarenwwSm9Ej2U8iGFnLe4b72I941Sbq4KP81tottzpGo0wDE5y329wFQVlty3FCFMLv+f7395n/0JHS+8xZETKSIQSy0n1589C+RPLF7va+g689mhGj5MU6zBV5yeHy8MrLBygagmD5T7nxbsMdsMAf3fqr9UnKw+C6cIuf0zxK9ePl1y+8AEGDELAl5WgDAGnjw4EklaK888jyAqTiNyfHb2kY+5EK7sqqGsm+Y1MzuKgMWivxvR0hHBoDtdrJYv0Tx263hoHcX9/l5e+NbAX51+e/3+UcABJxqzS0BiEaxBBiYm+XNVyZan5z+5M793yHdItVyvJF9Ozd7eHnbHyQB6zBbPokOrTBttm9Xm7cAoJBRKFzfXN68RM//9OPfG42eRtaAeCI2i9Blzw3bF3N1pgaZ0q3Cfyk1cmGQxMnRCljg0NrQ2q1IJGxIgJ2/KsF6cTWbvELRAASIljgyW03q7ulH3cEQnGy6MmzEdW+gRV7H0x0EDUDZ+2o/wxFidAFeloRE7NXkCys7Bbq50ZP/uAxREGLfp7Pxp4p8F9+IJMz2cvJLa+PRiqKWQDTqP257Q0TcZ8YkarMyuitIDupd+rmCxXJUnVo//Kz63MrGUGQ2s+WLwgQg7v6QDHtPPK9V8g5qOEiqWDAliz1sauC62c5ev/3CREtCq1Tv4uLH/cGJ602I2P1RWgjD3fXVq3VwJRwgCXrj+xcft9sdQMVI5BpEFRgA3xUA1P08fQAAH17/8PpfOgCoK9SwuvQvkvtLmbXxWsZ4uNDPb963AgAHC+7/4AEAAIhLJXKzBAIACJa//vaX/9rDaw3AIFYA2BIFwuj1f3b65J+BKGFTAADV5Jas9+jBsS/vGcDHeIZWwoAyBqh1Jm0aHPEx1Bqq/YFjPXASX0hw/f4g3Eymb5zHokBkbdrJE0TqtHuDwUk8zmr6gsfSbzLHf1SCWOEWKhMMKjFApdmL+765akzEEfavJ98406HT0yeKPACV5Aw6bjKigOXdm+u/0MpPpAuOiiCus84uE96KkN1tXi3mz1pApxe/e3L+GZAHpACAkmGrFIMU8o8huen/PqA3PSeb3c1icUkqcgluYrfTyav1bvHowW/fu/+3BQmErGXETPJa4RlkqRyZ1kw+uQYYO1cWF44mAlbszpqd5R1LiJIQvVBsGEwmr4LtXKEvgoBoUEy0bmnvzvnH7e7QLSNZAJDnnCikttZdrVsMRHvTzywGIBJILKpYBJHlZv5rYwMEdTsKJdh0F3ASlFH/sae7actJRC5vfh2ZLQAQkaIWIHfbJ8PufSs2Xrkz7f8D2qRjRAK3ThSuhQDHf24Yreerl5jIX/IAAEf9x1r7eSxdrqubMIBbeFM5h1sKnP/Adrd8++aLIJoRGoDOxcWPhqPzFACk9kEEEEXR5ObNYvOG7QaQUQ0e3Pm01ekjkQMA7n74wQAAfJgAfHj9w+t/2QDgQKc2nygMMe24spIgOaagPzjG/R4AoI469R8AAKjz33Qtf0EkiSNsEZGRIZj/xZ/8bzz+jU8AQMxigQm3YlT/5O8PHv4TYXKpoml3vxYA1Df2GtbkfWf2OJenwog/00g7wgMkg0xKQyduLrKpCSQcJilBhjHvdu6r6zfWBk4M4LbY2D8RGRG7neGgPy5nCNQcw2EYUJI02EMXpZpLXSD/SMb1qPoA8jqi+MZmBIk2u+l6MxGRweCi3TqpBHIosN5eLdfXSVvUuRVlvi8jE5OA5c1y9k24nQy84dmD3++O7rm6HElQEq/YKrXP/nYVwpgLZdMiDBF3wXI2/w7QiLACFObV4tliOR2MHn360T8CaguACKHzoWeuBABxgyNzNnIPuzQWRsUgNncbC0vIZmvtljkEsWmqFIpZrafTySUBoxALCikrxkTrfrtzfvaR9rtE5BzBylfNhZ0p1dFeD8hzoWCVj/P+aiYe/JPpr4wNCT3E25G/C8vgsP/A16PsLTFfPV+uL93eopXvsiPOz37kSn8AN0BT5fUhO2SuIsYc5JRW/9ix347rSl8uDpoAgmixWL2pAAAAADAePNHaT+IdKr/L4Qob95TJNHIeUCDcrd5efbPZXSmyAq2T00/OTh8kGgB2iDjO3rbRbHY9XTy3diliUQ/un37c7p2SVilPrMK7rCqpDQDwuMP+AAA+vP7h9b82AACgnBZcx20t21xClW3isS49dT9/SwBQDub7awUA6q5Xc5J0sZuerT8yfnBEjKgAmBWjiX797/8VbP8n3yMFipktWMIArB6c/+ede7+LFpkZMr12jpdm5/fKBy/WAfl4vgQ/aAa153HlI2bznFo++HEpzb2yYi6/SLdJva3DAOlXi6Lg6vK11nGkQtxjy/jUnZxctPx2DVHqMAyohDElDCBcbxua+anqbCwoEVpQIFtYpOfZGeOkXV5HvAnDxWT20pX1J+MnWvulwyAAFuGr668AOKaOMSPbbOagmy2ISGSvZ9ffaODT1sX4yT/wuqfC6NhMCEwCrvPg+FcNl5L2h+GsRaPJ4mtrNsIKgEGCcDedT16q9vjzT36/3bmwzBy7HkusmcrcpY2VJVfi9goiUBUAEGG2G2PXwkFi/ekaumI5uLl+He42BIoIIiFANHbH0WbYG5+dPSbdzgKAsv4Vyfd0X+kWgwYnrq0BAGkssbusN7M/ZWYEfSsA4KAvMyMJiEKEbuek27rHezNo2IXTm9lXANqYsNXqaPQEouHgqe/1Ekzlxka3yllruvnxiHr04Hc89ANFALBcXUIVvUeAz8YfE2m3yqfbay2jLHdlixjAsbaS/xQUMOHu8vqb1eotKQPo9YcPL86eKOWlACCZq6DYaLmc3kyfR2YKwETdOydPe4M76GnOxw5k7yhpPCffHwZ8AAAfXv/w+nsAAMWSHbmpNC/0ravchxz5ZB8mUqnnb/6UcoFb/vn/QAFAXX5Ik5lBHWpKWbmE5FqWyqLlL//s3+xm/8+WDwSKODIgBEah37/7B52T3xZGEUkBgGChQSuHt0BwdQkKNnuG5gr3uoGAFGf0cujdqLJBjiSHkEl1j5yk2ffmgPuQu9yL5WS9WaCAUspam0axupabMXz//kPH/6kY7BygPNXCACqJttkRbQ5st1X53ym2KV3TsqrVoc19IxyZ2VxdPUOyiNLvXnR7Y5F9GGriQ0qIEgar6+m3inwkdlFQabJbkmJrRZDJbJffzqev+63uxejp4P7fIa/vmu6Yd0AqtbpzdpYilvIRC8v1683mOka/bIxZTG+eCeP9h79zfv4JoCfxsmkQCYCALWBV6sERD2keBtjaNRCMCAObyGyYN8KhS0HGOD5XtrvZ1dULElLgowIjIADGrMWGp6M74/ED0J6Tm5cnAATAQKQ6njcg9IRU3G1Brg54EopV40IAcDX7hdgQhKrMZKEhqRcSpj6hJ8Ig6vT0s+xVs9HmZv5rZoiiqO13FHlItt0+7XceOKFwZnJVybrPeeoX5OwNHYfS00FHT96OBACUWkXtwnkjAPiUHHsHBSTJ0T5Ca1GCAYlJqySzQRYbRlc33y5XrwEDQNXu3rt/91PHOMqfLrLWBtvl5fW3QXQNYpHap/0Ho5NH5LeEpOrb1S/T2Xc+DibVNbk+AIAPr394/X0CgAOTgcKv5wFAWv1nG88Fy8g695uC0sBRhtKVrslO/j8IClD5/FdHmCHfLns4Me8nJFagxIIiVKgZvvzl/zh7+297LYUABKEFAWt8rz+891/5wx+Jc0xkdC1zyTf1k2qPazpPmQ5fCTw0l90HcwOO9AsqTBhu5RLYME9Id7qqzmiTP4+7rNPZ1W67ItLMJo9SGAC63f5oeMoMdT7fhXL7eBhAmXInW84csvvkgxO5HDyQQtlBGSdTQrLb3WKxeANC7Xa717tDRC78GIqBZXY6fR2auQISdPLpLABwno+IIky76eUvo91y0D+/uPh5e/Qpko4BVabMOsay1nkdIihAE0bbm9lXCjWzAYyQd/PJi/V6fXH3Jw8f/l0BIlKJ/lSYuRA3niVTYb38oP5WrNbEIzCKMXZjog1L4HJ/0QXSCQOayc2b1WKiqaVVCwgitgJgwwUIn58/6Q/P3JGnAKAwAGHQSnU8fwDkp6rc8rStKHMXEpHJ4usoWCilCiXsUV/fxRqARgRmPjv9EaIiAUYCMCYMJovfGGNsFHpey3nCGit3zn6slEqsWqsRbI17qcDRzMPjsMGBWK7DACBYLtdvqpdQ4POTz+KmALCLERBOvNmOnnhkTwWBJC5AyFF4PXm5XD1nCQDRb53dv/cjz2uVPEkRWEy4eXv17WZ3CWIRvHH3fHT2VLd7nPieVQGYxmXs6FHJBwDw4fUPr/+VAYCyd0GznWghiTBbGTSoxLKd/oMA4L0Eq/3NBQAIcOSgPe4lI7ACjQZIAUFL8NmX//bVy//LwFOAEbG1EAHbVufO6N4/050HIASxITenAMAKEuQY4ckxc22BdVRo1B4GHDCEbSIXSQMAqP0tPMgaqoYBjqVApQMouf/tv5qIvHj1TctzpBewNnJFgKtgRGQ8Pu20+/kHhNMHqgIgYR2dqRSalhUWYlMXk6pfryigE+Vyde5BageMEpufRmZ1dfNCISBiv3fW6Y5iMo/N8bIQkW349uprRKsQOWYjce4rABIIIobR1c3lr9ro9YePz+/9J+SPXQcapVAhHQ4wJgDHWbKyWa4ug2gBjIAhiWw31zeX3/UGDz797D/TXldYWWtJORscSTDAvvRxZ5j2jQ+5JQbg6kcDGDiKzMrarXAIzvgH3BwJwnBxffnCGONRVymfCY0NmA1HK6X0+Z2POt0xpMG5VSMuQM/ze0r3EbzCAVdaWKbEG0TchdPV6gVzYmibr/6h4jGRfPWvXPgXAIzHnyhqkzCiAjRhGEwWXxpjTLhVSnmtLqEGsafjzxX58ZgxGTscN5eLH6zDs9OjVlcuvFt2dldNf9/b+zp2nNoF89X2DeQD+9KfPxt/ikDNvYCGNbYcdONU4yQEImLszeTlfPXc2jUgev743t0fd1pdVHrvaSvWWXCx2V1ePV9t3zAbAuy3xuOzj/zuQFC5R1gBQnXcXvVijbfHSx8AwIfXP7z+1wUAQDZpOxkNl8cCzZihcsyXJuM2AIByR79MlfmbYgP6QwMAAAAFmoARiMATePvi//3s2/9TVxuBEK0RiIBtr/909OCfkx45U5T4mJGBRFwKQDUAkNrDwRzF/7B2jQ9piPNeQ5nBvxzfyD9msNAAAAqvU2lTqzohHIbh9fUrpVTi9s0u+Nb9qzHm3t2HntdK85WyR1IW3Rb+ozkCuQoAVHcxqbYMlcrZfcHhpHShWUQIFDPvwuls8VqBj4inpw+1amdzbfdLh9gw2t5MvyUiArb7oVMSl4auxDeIard+Npn9+tQ/753+ZHzntwARQKEAoiiMY78SYx+sQQLOXl0I2NnP74LpbPlKIbkGvzWzt2++JuP96Mf/2OveA/KdplmhpGwKoD21Os0aK2UqHCjUsp4/FZBTIgRmE0R2wXYjbBxaY7aIxBwtl1ezyaUmz9MdIs8iRGYnNgAbeK3W2cXHfqtX+Jhs5JWIUrrt+31UXRfVnJ0ClZduTAKpHAywHExnXzSUnvUYAJ3damzrKTIafezprnOVEYiY7dXkCxYTbFdE1GoPSQFYHA0e+t4gPctp0XwsBqgBAPvy/RAGKOrZOAfUk5s5r3Qq2vsWAUCa+pL9Fucnn4Fg9gsWT2x2HeAKVJDNkE4/xTXYwPJ88XYyfxZFcwHQ3ujOxeeD3hAoNnSy8ZSJUEBsdHX9Yr56zswE0tG90enH3eGJUp4Fi5gEi9eEnRbOHt5uZlL9aHwAAB9e//D6XzHAqKOm3Ep8/OH19/J6GRikEwDQAiQopBE0w3T+xa9/9a/6aim4ARMAMtlAjX7n/r1/yoSuKhJGR7QFROvklDVen3kecw01CLmJTpDdKeXArtDoNdREjKk0qzkkUajdfirp9VnnUNeddf+yWM7W6yURcUzbEIhVpAwAnXZ/OByjosYCperkoxw6bChkn+Uyg5Cru7zJGa4sZBs4D0kiHYm7VYQA2YTB9exLEg9JDfrn7VY/KUqUiI2T7FxKOvJqfbNavUH0XBwwJEMABciwz9kF2S4mvxHe9PTp+b2/1xnfEyaGOGQXKfutiUuzi7jxL9l4YLZmczP9FhERLKAm2c0mv17MVw8e/L37D3/OHOsd85ZEafrv/hqlBRBJ86Upp0Zk7yAGIIIkLxq2NlpZuxUIxLqYP4MMiGii1fXV83AXKOW12n1FvhEIwpkN10phu3d+dvIIfY0MDETAACmLRADACiEq5fW11yPyEwAg6XKSP2bMznoTtYW9mf+qMmTtcBfYLS0iiM4J9JHvjdKKmSW8mvzGchDutiLS7vYIfQDodcfd1gNSFfyuHFORsv9UG1FyuPo8FCgGVWqZ3FqHkBi2qhR5untksX4WBOu69efO+acgKiazgWsMYV0a8b5xhvlkzwq8KQhgrd0uJ9eT59togmhJ9+6fftodnJL24gAZpxdiAWBgnk3fvJl/QyZSqJXG4fDJ8OQRELnWUu48IOYh0O04Sx8AwIfXP7z+AQB8eP29AQAhABIPEUA8we3u1Z//+b9u8WvANdodobDZds7/ycWdPxBkkdi2JVbaATjXRTgQ9QWF/neRFYpHJdoWtquDDP7aoqrUb6vd2jNp0w2CxVphQG2WWdKYY/P69WulnWPkXhUASYd1PDrpdIfZmUlztm4zEjgYcHaMHYoDe1Srcmz2uoE0rNRaO51+Z2xEgJ7fGw7OFLWy2kqBCEQDGncPX0+/NdGaSCcWN5S9fIkziTX2Znr9m5b2hp0n9x79DraHbKwgxZ5VWMFFrnJPSStINsbM599ZDoi0WAMYReHl2zffDXtPPv3kH5PftqL23X3kBm1rpst+kEwizciWAEWsgGWzjuyK7S5m/7MAOqd2WK+ub25eICjP6/S6QxZlhHfBNNrNtd8ajR8MBhegqBIAiAiDUtRS/zN7fxpsy7alh0FjjJmZq+92f/rm3nPb11S96p9KTb0qlVSFJEuWJYMJrJCMhR0Q4Qj0A2zLEBWEgQBb4MCWwbJlhGyQjEEVIewwNipZpaY6Vb3u9vee/ux+9X1mzjkGP2Zmrlxr5WrOfYX/sO6v98bZO3fmzJmZ4xvjG9/nlpVbRHAl0nRfBgC4qoYrws32B/Da/0nM/En+HJQKB8X8YfyAiIhctT82HPrBEFi8XNF1CgDAzEf7b0fSmYyZPnQrCg3pa5HMNvUPDgAiFutMwTnp4NngnCZVs/PFqmfQ84q1yk3huFsTqzJvUy+X1F9ZBQCQzXjUu269GPhNhQYod1S7X22cKNdLAwARQWERGfaap60nZCaIynWoWDppNO46npu2AEt19lY9dDsAsIvv4jsAsIv/NwsAkEQBEgixGBl8+NFf58mHLvSQp0Sig3H19p9sNH6MWYM4MWlCBIwsC2imMuaFqts8VWy1jt4CeyShjMdDw1kiiRu+yqkSdfZnehkGLOrtrJI9WTyN7OtalfCNRv1er6cctM5fVryFmVFAgNnIjRu3lOPNuvy0jetCVvtiHgbYw8x35NfBgEWmLa5EffEqZSzObE8CiMh41O4NzwgKyoFSYb9UrNkSpi2cx2RoEghBiEWfXnyc93J2fazaj0WgdpjYivYgyzj4Yth6ViwdH+9/rbr3SJQLPAMAskCjWkk41gCOiAHUg/7FZNonIgAGRubmdfMJG/XowbeKpRuowESaRaAAV8FFXrvJ50Dj6j7AIs1DQmMCo/vMU9ahQChiIo8zYeHg+uqZPx0p8krFhucVtEERMxxfBv6wWKrvH9z1ciVBIgAjkmb+UNwBcJyy61WQClYfMmlMrX0A7WaJlvaq+d3XcgFLtxFs7T82xFMHjbeEUEFklNHsfmY4mPoDHYT5YsGhklIOS7hXfdNxXFghV7qp07iCzvM675z1ok+4UAuPUUFcFkk2Nly3P121dOXSYd6rxRh4Jhq2vdYqrup7xADAn46vmk/702sCFnT2yieN/Qeul0+gfwIAAGA6Hr64+BzNEIA9V7newf7BPS9XEML10Da6HVvvDM7++R0A2MV38R0A2MW/BAUIQAiUMBEQi4bJ86f/Ref6V4qqq8wUHOP7k6MHf7ZceddoDUKR0hwLIHMqJQWhTOfXFd2ATRXQJRK5zCpJZnl4YEv5jhnlAyXrxFICnZhRAkRax9heAwOWuwH2h/v9zmg0suKKduTXZsDx/4abN+6mZxkXRLFWwwBeSqYsg3mjLEkGeFgWC4JFKzSzJn9akNokBcIYBINm+wURKfKY9X7jruvmYnEek2h6IipmTUTjaafdfqEohyQIikWnzxZRWaY+StAZfH/aO2s03r9z8yfArQAhIQioqAMQ39Tk5FYsn0EhRBmMrsajS4QcACOJ8GTQf9HtXBwdffXenR83TLbGSZKx63hLFhnylgBg/hQNi2Y90jwA0UYHVrQ0mjw2xp92r66eI4KnipXqPqFnhINg2h+ei/jV+u1G45ZSismJyFEiKQBgDCCA53l15ZYRnOSeW4rWWhhgt4axRs7N1ocsetH+ZTn/Tl5fMwSVjA4LIhpjDhvvgHLIzqoSXTYfM4zCcOJPJ7lczsuVCV1jdKV0VMwfRK++xTtCy1t6bdIsmW+wjXPbmTr3C8kupkVnkQmSIeBoea/bny8jrggAFI9zXjWZY0mcqrcDNumujawCADoML5tPe+MLFGbAcq52dPxuLl8EFSloxa5hDADBdPzq4rEJeyLadcBx9w8P7nqFqsQ2w/MAiTL3D2Ztg8ybsaJ7wDsAsIvv4jsAsItvJduaxgAIgiiEYmDSvPzNZ1/8pzX3ygHDFIaajx/9C6X8PR2GAhSxtC3vP02VWZYCXFvJSb/VV8oCJgdZctCMnKBgbohzIwyYb/nzigqfWZOuJdPtW+R2i60M5rlMiJnPXj3P5XL2aMl/yfc1ny8e7B+l6+9Leju8Jo9fpOakJfNwI5LhTAzACJlewhvXLc7kSIRZ9NXVMyIWQSLIFyvl4iEIUSQPatJpkMUApxefKgQiQhIrEBQDGwYgZLJlddadbv9jf9i6fetbB4fvinIRFc4sziIAkNIUSIGouU2AAtoPht3+qTUuMOw76AT+afPqhasq7779h71iNdDArImcRI3Ubjl+bQ7DrDNAklWBThd3I4/hQGufzYh5KGLYGBGD1hqZCHTQbL8cDTtEVCnu5/IVQscIj0fdweSaCA4OHpbK+wAgKgIAImL9QERExIAoUgXPayAVEJ1oA0f/jqs0SVMAIFJoGQxeTINuooC0+uJpHtlyfN1otw0ilAu33Vw5al6xNjJu956FoT+dDF3Hy+fLgIqIjDHHB+8gKBFEiudqIn3LLKCFc07SWS8uyaQGLdtIS1ZLLYlG073zKCg+oYjSZt217O82O1+seqhLhaNCvr7gRZA2uIC1Eh3bAACj9XX7ZWd4BkYDgOcUTm68nytVbSssAQAAjAI6CM6vX/jjaxafFLuqvt+4XawciaLlZEBwZad0rim59u2N6x4r3gGAXXwX3wGAXXwWX5aJmLGAJJrRVMQaJ73Wx08++utlfOI6SmPI4hy/9S/mcscSsO0AJABgNgSc8c00sNrrZzkFXd9ez/LitZ8R2STLM6fdIavOgGUjkWYNvJlxanlO83G13BAj4mQy6bSuiCjSLI8vM0ECjfp+qVRJG1St7pjzljAg6dbAKhGtLBhjh2LTR6asv5RBVZeFjSci0u2fTycDIgcRNfuH+w8d5UGiao/RnUVEYIOo/GBw3X7qUt6y3kEcJDPLt4TsaIRAGEye9YbPKaT7D3+hXLvJQggKERE4WaKV1GOW9IowB53eK218q3wlECKMe62nw1Hn4d3ff3DwlgYFgiyGUGHUkYBkGjgrQdykZBXvq2UMsLT3WNg3eqTNiM0UrXIUm1j+Ev1x9+ryBUvoOvla9VBRHhED7Q8G19Ow63nF/cOHuXwdgAWJQAQ4rbYmIkiuUhXXqyN4dhTbno2AwTU1hXnVMhET+O3e4CyZFMq+6GgUaW4LJYdK/rVUOMoX9gUMCQFobYJ2/3Ot9XTSF5FSsUqOK0xIXC8/dJ18Zu5rbxBydqFhNqa9Qe1nHgngOpg33wHgbACQ7uxx0gH4FFGtAQBJr2x+xTbpFM29Q2Qho7YqQCTMxjTb563+SzA+EDjkHJ98pVDeJ8J5AAAiBg232hfd7iuWCZK4qtyo3ijVbqLrZWNF3AIArMYAuAlg7wDALr6L7wDALr4OAEBKl906cylkA/548OL5R3+N/G97OQoFFNWO3vrzjlPHMBRwEgoQkkis7pytaoK83vEni5Cy1kET11mMrUqwUNZTgwS2cu7kVT2KVTW2zCw8fcBWuxlMpq6rjInAkjGGVAQAmPn46Ibr5lLHSbXOZYO/2NanMbdG6yeMYcFELF5MXgH/spgtEoTj69YLh1ybKBeK5Wr5JJGVjEq+YhKd3wgw+D0QpQiN6ITunJjOooBAyKzH/U8Gk8uad+PO/Z/JlfeMERQCVAgpyhDCKuXEhJmGwIPR1XjSQ3CAfNZKkR6MHnebl9XqzQf3/wChhypvWzo0yxu3dbfYAAaW+gB2ANcS4gUMSGh4asIh89iwjwJW+9+uGEvYvn4xHLWstUK5tE/oiZjJdNAbXBiY5PL1g/2Hbq4oIkAK2CCBcGobMCin6Lp1UkUA9foAIGnYcain3e4XmWg5XSaY6yJixIKzJH5Cx9bRi8VyoXCDiMCwbQK0+59rE/jTgQmDXL7iuUUgsgyZYr7BogVVdnliVacx9bbcRvUf5/HkNgAgyV8XAEDE5InmAVhEtugAbPMfr9jq2UCYIqN3FhP2+92rzjMOR+QQAe0fvlupHVl2nq2YxAMnQmz6/W6r/SzUfUB2VblaOqju3UPXi/ZDlmPX8hmsrBbB6zmy7QDALr6L7wDALr4BAEj85UVhIlLIAQQ8uX750V+b9v5uvugGRuW8o6O3/pzCsugZALBldY6VDVfJGiJtSKwXvgqcpfYDi51fy7KQNXnVkmV9dqk1zfjItgJdYsVkaBpuMDXLzryZ9cXZKTpKQVS0M8ZERptgRMRouXXrjrVonW9dZGAAWXVpLFtiAImZYGu/xzMUNE8KWtGBSampxswNc3rxmSJXEQCwZnN88OaCUyxaP4QU1eqq+djacQlb4hant7TtG4iEoZ4O259Mdftm42snt38M3AIbQmBAlUogeA0ASNYyDKbNzheKPETFEiqQMOw1mx/pUB69+XPl6m1hR8SgckC0g2SyOlHbo6lVS5f+T4FdIhEwwoEJh0bGRo+s9j+yzR1BRIJwdHn+uUCgyK1VT4qFGohjTDgcdfvDM3RMvnBQ37vruQURnCVzaG0obGpIjlP1vD0gB8SNZjMS5sZmOhODOLZTEYZht/fpyiYkmPmxZlpqAkQPPaHHrPf23iIiZCsUG9o54DAYTccj1ysVi2VBAFGuU2pU70DKfC2zTZFRWVj2id+uFbARA6S3HEoKANjj08xd0ZotIqje8HkQjjMf3krpJOfV46eG51ViswFnpjsnrgYAKGYw6F20npmgrxQBYOPgUb1xCyii/STcI2YmI+PJsNl86oddlkBRvlY4qB7cV7liInaU+WpdOIMdANjFd/FdfBf/b24GwKbp9gOCjjAG7I+uPvy/9i5/uVhxptop1N4/uP/HFRTYACAjqBT92lLbVxKCF7jL61g6GUfgLXOj9eqW6cx+zofuNbsBG8u3m9IFTn1kjdbBxeW5UsrO+IoIyZx4eblcrVSqq/KM9blmugC/5ZQwpBz34qxINl1IlFqlPD7nZM6j9E5IBJE0GBmOr/uDjqLIU7ZcqpVLh7FoDIjMXak9jmH/4voLl6I0lMUgIgEyWB8iZkARQ6Cm/he97gti5+6tH6/vvw1EzAQR2Yni8j+nKRMRJJBYN9L6BbAZDy+G/kChIwjMYxLodz7v9M6ODr7y4MHvAVVkZqMRQTsksOhyyulHbPPY6AI1gtPOaxxTVjBRJhXQxgyM7hvtixiRCQgiW5dABaLb7efd3qVDKueVa9WjXC4HQEFoWoPLyfCaXKhWb9bqt5GsVI6JzzIilAsTkpfL7ZEqAbpZt56ihGxp8icyW0z/AuvrzidWy5VkIQWfdbRm7Pz0IH6aBQQgjPX6m47jCCMpEDHDwfUkuNSBPxn3UDmlcoPQRURmc1B/m4iiPRPzsuz0BCyP9Kx+kyz3HrdBArNHKm5V2UQ5ydQdUukSiSTtxMj6AAG4P7wMwl5kuxu9bO1vcb1823WKyVOY0SHc/BbK4NKIWI1nQWBkGY/HF63ngX9NCOSocuXOweEDQAKcyTCgGBEUEZ6OW63TzuScWICwmivVD99zC2WgSNoLYzYgx02kVWS89CMzJ8aQxQjCHQDYxXfxXXwX/xIAABGsnzsDKER0kCGQYNL+9D/pnP7fvKIKxCsffLNx6+cJXTZmzi85BQBSFXfaUARdKxCU7hSvNBLeIK6/4lMnkPQNVn1OfhcxwPLwQ2zwGeU9k8mo020TKk4dCnmWhzUajUKhmDYN2PhRX8Zaq9saWxWqZUM+kXmQtFAQAzIyWpAT6uHl1SullPX2EjCH+3cdlcsEfskCjqftTvfCVR4AW6iJliJhx39t/RpFCfdHn/R7p5X80e1bP5Iv3yEiYSWkUSDZlouj5LH0qgjacV4x7Iedbu+CyGEGICFQ0+mz5tWnAMWvvv8LrnfCgoDMBhTFU5hoVqzntqSgBQSVAABMcvvEnFemRvfDYGA4sK2PhIyBoIJgeHH+KZvA8/LFQq1U2nddFxgn/vSq+4rDPjqqXrtbqR0hKZHIHy15QoQB0XWcovJqRMX1deXsht68gYaIXDe/Z+Ugae0CpCd0FyhkCQCoVO7kvIq1GUaS0B/2hs916E/GPQAuV/aQrFCsqVfue24pDaJsgr0lRT6zY7B9Q0CypjjShZIZAEi1EOf6YCiTaXc4voxGUHA274vCtcpd18nHu/q1AMA6DGBfucgRAJhOp5ftF/60iWCAJF+8cXz8JjkuoiSGJCjGXhYa3WqeN4cvyYRAmHdy+0fvusUaEVl0vaCotsYFYEF0dV69YKtWwA4A7OK7+C6+i2/uAFgRQyFQCKCAwRjf7z/5W+3n/4GXpxCKlZs/Xz38ZlQgTY5GKCI8R1am9fnxRo0glDlZzw2+AZv7AJsAwLrPyUZOfPZIwIxdgGumcgmAr6+vw9BXSkX+XzBz17KY6vj42HHceXlvyRJ0XQcDEnI6wmqizjzHaTWwkY3JxKzsy0nB0qi4CHp6/pnjKESyJq/G8M2TNxgI0NCKdEBETi8+BgBXeSIhoICoRMyHjSgiSxZHGLc73xuNmsd7X79x8yvk1pEIIlEXtko+ybbPui9kN7jRfqvzDEhQHBFjUMhMrpu/M50MHtz71vHhVwNtxWkQAIi0LNgkRHYDklVhfY3OFa3ADwKazdjofhiOmAMELSKYpJIsnfZpp/fCVZ7nlkrlvVKxqpQKQxlOhp3+qcjEUYX9/Xv5Qg0ViaB1FI4dmhgEkfKuW1NOGdBLJ53rk7ZUFh9bocVCnFfNbwsqANsB4M0HiBlNyxggl98rF27YpwARw2DQ6T9lNuNxm41fKtcdp2IEFYo1Doss52ZwIjkH2uJx2ALwkKzn/adrClbb156SE1H7okZZ9F6dly71g35/eJpU/QUBxYqwmXr1XhoAxA8vbXows/9pHgNwNLgPEE79q/bL8fgSIRRk19u7eeNt5RZQAQpEz3jka45kpNO9vOo9Z3/kOOSQWz98VKoeW1pjGgDACgKn1XrOfM0s/TxndjB2AGAX38V38V18awCAzECIgAgEAApYxPjB8Pnfaj/9K26OmCrlO3+0tPdVISSt4iMrQWYEEUMCADSTQl+qZW74rK6t6My7V20mTG8pg7NxJCDrhGXjdzTjYudre0kqz6xPT08dhxL+T8K6sTCAmW/evBWNBGRbF70eMklRE/hLdDZWwwBeeyiypA5hHIyuRuMuoWsnHER4r37LyeUQXEBNki0Nbow+v/rEcfIEmDIAngksEiCLRnDZXLZaH4bB6M7JzxycvCGUswoqafb/CgAQpVA2R+kPr8aTNpCLTIyGcTztPW22n9Xrbz66//PKzWsjVolIEQDodIKSVlld7zOwat0SVhItQkZmIEAWM9W6b3Rfh2MRQdCU2iFhMDo7/RTRJ8wXC7VKdd/NlUQkDMxg2OmPz4Wnudz+0cED5XoWAFjAkgAAAXSo4roNcgqAKtGmTPbGBgyQLrEjgxAiXlz/FpADQPEYA6d/fOG9MQMAkDH0z0D79UeKPFsRYD1t978wRofBcDLplUtVx6sBuShGDBwdvJ2o6BiId6O87r1YhwEWbRBXvz0sALDNUkRUSiXC/8nr2iKBBFT4wbA/fJkAgKjugihiatX71vk4ZS2cOQbAG7ffEgtoBgC0HzS7Z4PBKUgAJKQqN07eyhfrkLKDiO3AQERGg95F+6medh0HlVKl2p3G/oMlAJDMk8zLksrrtWVmeCnr7b0DALv4Lr6L7+KbAYAg2s8rAQshIBpfD57+P5tP/t1SwWFvP3frj5X23hIBZSI/IDsOaAGALaplAYBsGPA63r3LSEA28ygWS+/pI8/SqmwLrS8DA7Jz7sVZ4VSlEBFHo0Gn04mHX01k3iQicSqW8/L7+/vMkbnsTPRmNry4ucJnP9GShQEWfY63uHGz1FY2twJm47mokE0Qjpvtl4hI6LEEiOi5xWrlkBxn4a/Q/BTBaNztDc6UytkMgzlI8iFLpkIBFq1A+f7Tdvszl9x7d/9wpXbDIAE4AJyYpM4gWeJYl8CzyDKWp5N+t39ORAx2JgB9/bJ3/alv8N03f7Faus2kmNlK0yCASIioGLTNoxaNBBYW5EsyqWYZMIoOzSAIeqxHwgGIoWgwILox/f759dWTfC7nqEKpdFCq1JVyjTG+7/cGrfH0mo1frdzd279NRKgIWBb4S4CO6zSUUyWVTz8ym/QuU7wvNguElsv29+yQEeOKdodA+lcYZ3K6CxjAgNRK9/K5WpRSi+50PjcchHoyGbXz+Xwuf8CIDjgINksuLvCLskzuNvcBsg0EYEs/kBkFyBiNiERkn33gOQAQbU6rjAQq0INu/+U8Lyj64Vr1bgIA5roHIts1ARYuaxEAWHVoE4St3mW/98qYMRAD5Y4PHlXqJzPdJhEUY2eCmWE8Hl81n4bTDpEmB7380eHRW47jWdgSX+wMAMyfy6ImAW7BmFs1YLYDALv4Lr6L7+JbAYCEtYKIgMhTPXjy/7h88pcrZQdKd3LHf7xQvwMaEJHAjZXUOZG6T0Ti11TXtmiUr2upL3QDNlbpEknEtTVLXtkT2DxmkJ0Er5ETjYusRkTOz89FjFIqXfS1LXUiYjGN+l6hUFpIi2G+yrdyRiL97V86oUju214gbyHnkpnNbJ4NmFEstNbN66cCRpGbdEXq1Rv5fJGtDgyohT+RXG+ndzb1R0opERHDiTWYSBj9Ccs5gWAw+HTQf1kr3rhz7w96xSqL2HLp+n0otoAKBkFpM2m2XyJoBJdFCwJI0O19b9A9Pzz6xv27v5eNANrGgia0lG5GVIImxbGas5pedoTFDWmJWZmrkQCHQdDWYU/YB2QxHKt/CpEKg8nF1ef+tFvwyq5XKZX3CqWyQicMw9Fk2B+0/LDNzId7b1Rrx5byFBWVKTagAFRUcryaMxv/pdevjs/LxQJ2Bo9Dvw9A1kVsFQCY73FRPJsRD9XEm6RQPCrmD2KICKPR2XjaMjwdDtqOwkJhXzk5BMUSlotHpcIBwMwCbNVpU9oEOWvDLGTKy7JCG6sYImKM0ToEAMdxYvAPOC+WEPUBLAAIh93Bi/SyJP+7XrnruoXl1xBug+Hnfj6zjSkAqERMEHb6rW73hTZDJGDARu3uwcFdVF4y32z1ggiQAadj/6r5NPA7oqfkius0Do/f8vJlRASynh44+/RkUoCWBAl2AGAX38V38V38/1czAEIpFxoSQDQTf/D4/37x5K80qjmsvu2d/Le80gGxg2iJ0ZIMACyWb1fK7a37FM01gte21Je9wwSzs9g0AICtuMtmPbko65TWQ5qMbICZkcQYc3Z25jgOEYmYlESgST7wJyc3bda7kHZwfD60HSCxOUHkhGrv12KuwFsMp64DNms/1AzA48mw2z8ndEQQ2SAJGzo5ekBqNta6KNuKCMgc6lfnn+RzxTh15jgNsssV6c0TCHOv0/448Dsn+18/vvUj5JaYOSYgpWvvDDNnVkbEiLoDDADd3vl42lGUAwAWDcDT0ct25zNFxXff/eOF3H6o2RhUShGaGIoIQ4r1vrD5Jb3x5rL/FUMCa+gohsAYMwyDntZ9QB23RNg2AQigN7i6vH7iKsm71UJhr1jZ8zwPRLTWw3G317/2wz6CunXj3Vy+GqOjaKha2Jp/ea5bc7wKYgFRJee/wh83q9MV3UcTb1KN4oynl6PReWYWnjaYU3ODNykAkDoyIpJTrBRvO44DAMzG6FFv8FLzZDrpmzAoluqOW0BwSIHRuF9/oJQLQAtGdZkGhWtIjFm9C8gsfKwaD7A3S+uQmRMAgEixBivMxnui0R3UZtIdPJtDjwsAYOmhXvX6SufWi2/UFcNUSoRD3e93r7vPjB7aik+xsHd89DBXqHPcq0RhjFFr6PN18+Vo0uJwAKQ9VT04elQq14Ecy7sjwDQTb2Naj1tJZ2Vd7w4A7OK7+C6+i28AACysos8KIsYAYNL9/D+6fPrXjxp1aLyfP/559EoO5wWZrAZoCgDYjMrmZCTZNJg0DMguxKa+mq/zSZA0l3T5a5GkjF8eAGzAAOthQDQ3aXv9yb+OxjP+TzwXmCYIST6fr9f3lp3O0qdLW5/Mwrc/0m5amcNt4KZvCQNi92IyJry8fmKVQAAcZGNMWKselYo1W+xkcAB0wsyZ1QjB+L7fbj9zVC6CMBCgEAghmZmUJyOICcPrbudT4eGDW7+/vP8InZzNSVAQEWYC9qlpwmioAEnAR3am/rDTf+k4DhsSMYDMPOxcfzwaX965+WM3bv40kROyMGsCZcV/RDDSlWREkjWD7+nZgOX7hGs0lGa/F4pwGPbCsC08EdaIiGKMoE2/2AQXV49H42bBK+Tdarl2UiiW7eC+1ro3aHWHTeExoXfn5vvKzcfkeEZUgAYEmYFULpfbU06ZRSEqAiWxpM+iLI+sILpEz6NBVCAEGAA4/rQ3GD6P02ie/UDM9U9UeiiaoBZEZU3WlgGAFt6vve04ruWriAk7/cdGpv5k6E9H+Xwpl6uyIusXVi3dzXkFRDcBAMk0TubDtVTCMNsTaBZggH39igin9PLDMDDGOI7jOE4aANhRC0sci3N90mbS6T/dDACEZCOFcnUJJvZ0V9F9SYw7mMHwYDC47j4J/AGiCKEi9/j4zXLlCAijlRSmaIrGiKFW+7Tbu9ThADB0qXCw/6hc30flWgBgeXULu2XhDixA6K3pTLDrAOziu/guvouvjM8lWNEEMDhCrKJ3rwMAaLQ/bn3415ov/9ODRlkd/qx7+JOucg06ChCYYuYFzztcZghQ0EzQnNd/UzcOBsQsbVhb0Moclp0bEc6s/GVSRNLakVn9/Q00pHStGuLBU0QUw9fNS621nQW0AACiobro/Gu1WrFYXH98mpF8aEmdUDZmA7LqyCslLE1m+4jAukDEfJJ5R2ERM570+oM2okJElikIiaijg1uO4yHPyA+MDOAABiCOBQ/McHb5iYOKiGInpegyCVCAiNEgAzIaCSZPer3nnpu7f/8Pe/k9ctxYogSBWDA6T0tBFuS4GEkSYYuw3X1ptA/oCGgGgwCT0Wetq+eFYuPtR79Aqo5EAo7tYNhLi+Yosn2g11DIVlkdLW9F688BthwsehT4ba37ICHEVX/NTAAgejodvzz/JOewC4Vy+bhU33fIFQERDsyk128OR9eGQ9er3jx+x3VdEQFwAHRqOsJ13YaXqxN6ACSgMl2uslPndKUZ08hfRIzRut3/3Da7Ug8gkzic2rcKMlZywdoPgATCSvlB3msAarsrOt1PQglCfzKd9D3HLRRrSK4QElM+VysVjogcESMW8yAL09ylzT/a8xiA5xPTjFbYcnOAJJudwsxa6yDwXVc5jhejYrS3Mt5OkUQuIBtj2r0vEpGftHlZo/5QRc4Ym1PkZBAIN4nSJj/ABggMGpn6g+vmi8GkC6gVICPXareOTx4iFpAYJARxALXtESHjuN+7bj0LwpE2I5dK+/Ubtf274rpWCBTI7luVPD7LvcYVF0FrrAaTqZ5kiXYAYBffxXfxXXwDAEAgFDAkAEgEChmJw3Gv+eFf7V/8F9VK0b39x9z9H1KAgi4JJexuXpx+o4U6McnaF/fWpKCZrPgCJJAliehNAAC2kPWE11cKWj+anNZOQQFjzNn5K8v/SbL/JLdICYA6GwESpc2YILNU+dpOtLip3r/Y3BCYG1BGQauoQ8BG/GDY6lxEDP44kyuX6pXy3kJdMyXvE21XrYOrqy+UchBxboVjmwVky+sQZDMeftjvPN3bf/fW7Z9UThnQYWBbopd5QVkWme8yMTCOxu3BqEmokEDrAICA283mR/50cOf2N49PvibGEwQigpk85UpZzM2CqgA4j7QwjatQlg7FCEEY9sKga/QIIzUk63HFthPQ6py1ui8LHuVUrVa7lSuVCVAEjNG+Hvf6zdHkCtgUyzcP9+8pFfH7EU18+5BUwXMbbq6K4AIQCyCuVrldgQESAJAitYuwbnY+N+xbWdjkji8AANuAXFioJW9vRJR8Yb9cvJks8mDwYqJ7OpiMhz1FVCzVSLlC5IBjjNSrtx23PJtbBRMx4rKe7uS0abH2TGt6mGkMkDEeEA/xGxHW2venSinP84hU4nOcen1RoutqOLQAAOatfJl5f+9NQmdpQiPDCgDTL4IUTsvu08arLYwWAGjtnzef9QctkdAhYGTPLd+6817OqwoKwczhmABQIJhMr5rPR5Om4SmyW6/u7x2+Sfk8IhKQoBERXNOy4A0iU5tT+h0A2MV38V18F38tAGA1QB0EJA76Z5cf/h+nzd/w8rncm/9sofEOsEFUyJgYq8YSQIt927i29xq2R7D1iPDipJfMO/tGv7XOP9iyNbYp2WYbuOKWLkKLf0KQbSI6Go263a5lW6XY/3M/f/PmzXmDUt6GrrBCkGRbwAObSSnZ8GZufjGV+QnwdfOV4XD2bWc0ggf7x55XTCdby2xvZJlM++3umSI3Xqj5W0+CTMYwEYEEw/7vDDqn9+7/of2Dtwy4QCpSHQGwyRTG7gqyyDRjo4N29xWCIyLMmiUklFH/83bnaaHQePvNf8Ir1JmTxJ3n1pC2bShlVjojj9flxsocBjBIhvXID5ra74sYQrGuspb9D0JswlfnH/nhKOd5teJJuXbkup4Ii4DWoe9Puv3zyaSFKPW9N+rVG0ROXFFmRGQGQNdxi563r5wSCKWQoGy34eeA+mwbYPRXur2ngR4BQJrYk+CBTACQCUQtNYgRjvbeR1S2U+RPW8PxeWjG42GPmcvlKnlFEHKQAKCQ3ysWjwEAUIugHSbe+G6ZDTHLugR0QSZopdMZMtvVNGY6nYhIoVAgUpEB9YrHVli3up/PAwCya7jfeIvIydp1c0PMuPotgMBr6IIiQsAgDIYvmi/a3TORUCESsQE8Pnq0t38n3rjWyZDJ7mrD183T9uBMjI8ChVzx4OQtr9iInkhLNBVgWGWkmA0A4gdiWyLQDgDs4rv4Lr6Lr5wBsAAg+mBbAEBIShTypPXZ5cf/rgw/IeXl3v0XiuX7LBqFVHKoGQDIODjJurR1oVe7Ps19Ld+A+ZT9ddVCIdM47HVFSzMNgBI6BDNfXFwkWuBJ5T69Jrlcbn9/f5WxcTLAmo0BYI0u4Wt3A+YYQSSruvNpfgLH2iAEOJq0u70WoZM+q0KuWqs1Zgz+CJHGA7Vs3bjYQRqMmoNBJ3JCsFXb+T4PAYlhICW632n/pkynD976k8XKkWG0soOYGiqNTi9ObtJmbf3elT8dkuNqPUVE4dBw6+riY23G92//xNHRDwHmTQw/aG5aA2Vl72XWb9iqcgkpIczFX9cgfhj2Ar9pzBgYiRgAmK0LBwHAaNw9v/yICHJeda9xN1coq6htAlqH4/Gw0zsLw46rVG3vvUp5jyiRAGIAYEDCvOdVXa+BmAfAuJC8gGOXKTqy8CAvA1qb1I9G5+NpG8Vo0bb3FdGx5gFAsqUNpAeFF30DmLhefug5NQswJtP2aPxS63A86YfBqFCs5XMVRnAgSpGr1YeOyiHOnLYks9KcxJEzr2v5RUGS/abKGA4mFDHGSOiPwzAsFAqO464GABH6anUfg5ikPRgDgGC/8U4WAFiZ4stastlSnh3rewqDYKd7dXH9hYgBYIeYGQrFg9v33iHKAwCSVcMyKIICyNLuN5vtZzqYKmJXObW9N2p7t+wTG48BvDYAIMD1Y0g7ALCL7+K7+C6+FQCwg7yALEgEwoAKQRBIgUM8OPvNy0//ihOcGvJKX/mXSsUbWmsU+3mOUgezIgneZAdGC+T4rJxJXrcVsDpl32Tlk+U2mnYJYNioSboVxUiEEdEYc35+TkREMM//maXI1Uq9XC6vaFNkdy0o62ReHwasrfpvkBOJBjcTzoY24eXVC8clECUizEYpZYzZaxzncgWQKBtIVy5FQkRXxBARs3718vNcLpccPJJ1mpdERCMCDuuz66vfqroHt9/+o55XNjHlB4Vtk0gwEgxKtSksT4knk1Gvd+qqIkNohFGAZNzufdTvnJXLJ4/e/DlSJVK5yPMIlZ2STC/lNhKQsK1FXZRPp2ybCSXUZhD6nUC32fgoDmI0I4FiLPf64urJcHjhKadUulVvnCilCB1AYwHAYNjp9k/ZjHNOobb3drFYjQFAosdCiIVcfs91awiuCMTGyTI/54OrgO4CL2gOACAKGK37nd5LgTDdhFzzAlnSC+LUE0rMulw8LBdv2myeZdLufGaMmUz7vt/Le5VCYZ+JiUkpxaJLhaNC4TheYQI0KQAwx5FZeCTXwoCFR48zSUEzhEARUy70x5PJKJ8v5nL5WSFguQuHICKd/jNtfEtUiw2twRj/YO9dImeNL/gWZufrAIBVl7J6v+PJ4MWrDw0HCsW+uMjJ37n9Xq7YQIqXhY2lACHLcDI8v/o8nE6IQqWoUDo5PH6EdixbEFDSju/bVvRlZVNoBwB28V18F9/FvwwAACIRUYC2XqQcUI7pP/2Vy8//wzx2mCqlr/xLea8RhiGBA8DrAQDJl0+A1nMnMjHAcvFszXDwLB2Zy2kgEetYKr9a7n4y28ArAcBq/sBCPS8IglarJSK2CGq1sZMTs3OrjUajUCjMzgTXNVKWlzG6BbiJggJbTF8sHHw1BkjIP7YYCADd3vXUH9t8SxhZQiQpFiq16qHNGLOcBGZyKaGeXF2/VMoliYcoZnyS1CUwgDja/+zy6rs3G189eeNnSXnGRFAhDQBSzQybgNr2i+70zkyobR5pjA8iQXjean5iwum9e7/38PgrhgmACB0QE1PONuE95B/sEbCABQQ0okLxg6ATTJtGhiIGZWauLGCEUevxi1cfKAodzDXqD4vVukIUUICGWbQO+4Nmb3AuMim69cbeW14hb8kzVqZJkIUVqWI+f+i4ZRCyHPhYa3XTYxjj2zSEXqC0IYlwcN3+HDCM9T1VSip0YSkobc6VagXMuPgkYEAOGm8qLCIiS9DufM4chGY8Gl07Kl8o7IEiQsdBR0RYgv3aI8fxBB1LJ4vPc8MTMXMhwFXgZ5EjZI3M5q8FbIvMgIiIDiaT8dBz8/liMZE2WrW8g9H5NOglcrf28i0AUMoFwEzGY3Z1ZRMSsLX5yOaFRUQUCjAaDl6++Gg86ZCKEYjIwcHdg8MHQJHqq63QEwsABMH0/PLJdNwjCIDA8+rHN95yvCKSSp/cdhzRjCtaHkPaAYBdfBffxXfx1wMAGH9pLQAAAHREObr96S93XvxNB0bs3qh+5V9UqiShRiEStnIuAMzpEjXHH0LcmjG8oYqz2cJmJfWCV1GMZA20iKVd0pa0uNwBSJAACq0pk6+iAw2Ho36/b6daGcRSZRIKjS0QHh4eep43VyjFjV0RXoXEGJnWJXDy5W4TLi1IatdJEPrN1pm1OWNmYQQ0iFSr7hcKpYj5bllDgplOAr3+1XDUVipHwnN/Yg71CYoSMZP+9zq90we3fnLvxo8IWmsFJFAAOk6o41wOI98vEUCEybTX610qpyDCAMhmDDxodj4c9lt79TsP3/iDjlcBIB0KkZVrSRxMeXMS8wPAgGh3oQEA0SPfvwrDrkCYoC9kSWYSuv2Lq+ZTV0nBqe8f3HfzFbInioY1hybs9i6HozNmXS0eN/bedF0lEfs8mkMQRuU1Crl9pUqJD9eaZ3Ct213WjyGLSLvzuebJwqBI1iLQAu0nhgERBQ4RSdiA1Mp3CrkDCzD8aWs0uQjC6WjUNMYUi3uu6wkqRHTJZQlK+ZNS8cAIiWgkOwSM26v6rurIRRk8L9T+OV4NRTNZTzsIjyYcT8ZDx3EKxYogUpJ5Zy3deNIeTZoCIQClAcDh/nvLFKCV6gWbMcAMALD9K2xERCECCwFfXj1rdV4CagYiIhZdKDRu3XrPcfN2v0Z6oCyIyhj/unne750BTwXFdYp7B2+Ua4dg+wULztw/MACw/5raUbQDALv4Lr6L7+JbAYCoKkqAKOgAKv/iu//x9Opvo0xV6c3Ku39eyMHQAKOD0Qc40u5IGe3iAkH8NZDAl4QBiwQeofSRKfsEJDJ+WvqcpPsAaQAgS9ZF81/ZbTGA/T41m80gCCLuuIjthtuGgIgBQq31rVu3rG9AJgBY7mBkZpMpAJAFD+Z+V36ge5TKzmM7CG53WkEwjvQMRazRbD5XqVX3ZjIdlgIUAwBL7bbJITNfXD0F0ErlRAzy7E+k8zBmBnEAxqP2d4OQH979qcLeAxGMy+QE9oBI1sPIFmbtyZCggG62zoRDQMcIAmtCPZ582mk9BpYHD/9Ao/FVFitu6AIamSdVJ7KtS1JU89XilVznRG120RcJEYFRkJE0iDHBwJ9caB7E/2REEExUDhf2T8+/GPtt16FG6UalfkxuMZKHYmaWMAxa3fPx5ExEGuXbtcZ9xyEhK67KSQfAze3lcoeK8qnC/GsDgNTTNK9bDwZEDUZPJ343an+ZZc/vOSPeGPgtMGpYwCC4Co0RVcwfVoo3LBpgM+kOvmDR41F/Mu7kC/VCsSKobK9DgWuMv19/hCqP1vt8xYQPwaZp0/m3xGw/84JfmFVCo4XmgAEUMx2PeoiqWKoAKTuDRThnV5L8CT/oD0aXFgAAsO3/rAIASfkji1mFKGvmVTjVvcG4/0kkAGIIeDBsnl98ZozPpCIpXpW7efOdYvEAYiEpFFAR2tGdbqt5/QQlNKIV5Wq1W/uH98A6GxLbj0j2Xlo1BAyZnagEkFP0uk4eqx0A2MV38V18F09nxnN1l2gGAEVQAQgBKSACJaNX3/63p/3/2gmVOvrx4v0/ocgjnxk1CdkvCWNGyTlbFw+zfYLnOb68ikQ0LyguX4J6gbIqd9lUu53vJDCsyIZZ0l+u1dRbEYHT01MihLgONvfdQwQAY0wsAcRb9j3Wp+nL4wFzedaWC7LeESn5GAsi4nDY7Q9ajuMBMItOfqpUrFXK9Swql6RJQYgSBPq69QLRDhXMjNIiefWIdSDIIoQc9oft7+Tp6NbDH3NK+2gijZcoWafUUAeiEYVkLOet2z8fjfuOygm6hqfELkOrc/XrE797dPijt2//NAMyKAcJEWFGcZGsBaH10p+rNmf63kU7LfFGQADRwmPtt6d+C8S3UMrOVABrEAKg6WT06uLbglxwivv1e26lrghVPGnD2kyDabvzbOp3gPmg8Ua5egNVjlR0IYhoGIBULn/Lc8uEuYWrm6ncRLbKK3eF5eqoeeEZjpEACUyDTn/wElALq6ThtmoeIK3FufBXEJGEhAxhfr/+JhFZNtRV+/sEHAR+v3/hKq9SOWRyEF0AVkqB0flcrVq+xaBWvUzsNNSqx2GR9kayFoQnfQxaYAeJCSfjgTF+qbwH5CIKCaWn0tP/BYHfHX4RuepFAxVk2D/ae08pZ6PgwTpL3aW/tUCAjLx72QAr0P6r8w8GoytSOSGDCMjU2L+3f/gQUYHoCGCIkAAzB5PB2ekTLR0RQVCV0snBjQfKzbM13wOx1hwAM9eIqAW6YjpsEQDgBiy6AwC7+C6+i+/imwFA9C1ToBCIAMLWy+/+H4LBr5Hkczd/rnDzW4QIodi0yeZkmQAAMrWx1wKAZQ4Jyap3tWTSYBa5BDizx0qEyVd/KmRjrjbTxcNtGxQrMIAYw2dnZ47jpEv4tiCanEmhUKjVagkAWMnAXuozLHstpwuTawDA1hhgJelllmQAMOtev+37E3sJiT8AMx8cnLiOt671H+vSTCajTu8KgCP/pnmUmNQpSZgRTHA5bD3erz06uvtVcErIsSmBZVWlGDsGBEFZOgdrv9U+Z2ZCh9FhmWodSvDZ9dUn+UL5/r0/Vq7cMMYYAAcdRFkLAGjVWmXnjshrSrBi4iYPCUjAZhBMr4PAmn8BEoOgCKIYNgBArdbLdu+JcqDk7e/vPyTPIyucZNPlUI8mg373VaB7wHKw/6hcvoHKgQgA2CK846iCmz90nDyCt1hPtkAidY2rMMBqHcwoUQ7NoNN9msy0rB8FnscAPAczUCtxhdAYs1975LkVu0ku29+xpsj93pU2fq16RF5eGIkcKzDKDI3aLcetLevlJ42LBeXMNSMQaRWvNf8t+AkYEGDtT0fT6bBU3lNuHoAVqFV7g9lcdz6Nh9pBEEDIsH/YeNdx3BQAwDX8pXUd2XkfhvRvRSJvbIiFBJrt55fNx4iYeEfkC/s3b7+nnFw0L4ICLCQIwmE4OTt97PstZiainFc9vPFmvlgzIAQIwmkAsNCi3aoDsAMAu/guvovv4j8wAIiG6oRAoSgEnpy9+v7/Xo++DapRvPvHCgc/RmwYEAw6YDOqlQAAYF0fIBMApPOMlaXrLVjpK2kJiT9RtvzoajpN7BuwOmnbBAPm1YHCwFxeXjouJYdNK9vY/KNcLpfL5YVrTAOGbeglc7rpnHFdnJ3JbVRPyh5+TWaakWQw6A1HA4eigebE9alQqFQrtQWR8sxugIicnT8FZKUwXVlPYEDiCAtGg3L80SdBf3Ry9PX6jfuMnq1BLtDD5paDEUn63cvxZKDIAyBmNmBYrnpXvzXx+zdv/vTJyTfJ8ZiZmVWkVySAGShrLYl57Vx4Rv1VACABAIjCMDFhezq5NnoSNTTQgCAyArJmMCY8O/vIhD2FWK89rO/dFjBAjorRsgl1d9Ac9c9DMyRQh/tvlSvHqEhihhwzE+Y8t+bkG4pyACpBzguXMc+Oy7hY2wFYLQMghv1W5zNmgyQWes29tdaNTMwGjgwYaxMBQEKqUjoq5k7sCZw3v+MgGGN8fzAYXVVKe4Viw4AIK0R00BEJC/laqXQbrEzshqbNVtPPm3Ddgp8AMwKzDv3paNgulmpevpK0TTIRhYhctz+X2LDZljZYpgf195RyQGiJSZV9/pnOX4svyUXJIxPhaAlRaDLtP33xbSUBg1EWY6rczdvvF4t7MzFTEbQFfjHnZ0/6w3NgIcWKco3DB7XabSawTxMizlR6cR0AwKwr2gGAXXwX38V38S85A2D12mcAwDbWAYhAD5+8/N6/wdNPIXdUuvOnS3vvAhsGVEzABiijA5CZrC8LbRPICgCQTgqRhFe+rjeBgUyufJT52YIi4Jov5Tpyc/xhTg0+bCiQ47wgz3Aw7na7RGQr4unvPVFkdtVo1IvF4jKrZ+UgxFoR+szOTLz+nJnPbSeims6AMdEA1WZ6dXnmOGSVXuL+jEFUe41DJy7/r8MAKMaY88snRKSUYpNc4GKdEtkwkoM06P0OBcUbt364tHfIhqxO/II0J8e/yGiQnSAcXbdeuugiqsBoIhCR6eh32s3PC8XGo0d/ynHqTIoAKRr4ZuttPK85wsslyWV9pPWqhcujpXackZmRmM3AD66CSVtYJ7L9BIlwFAxHndOLD11iJXh88+v5Uh3FsKVuIyMoHfrX7VN/3GKeEnoH+28UKwdEZGlUVhdVOQXXswKgDoiT2S9atQlpaS3SK7/0WuB2/wsdTgANMxO6GRssmyhlYCYPysygQIiI0SF0D+pv2f3WbH/fnkAQjvqDM8/Nl0pHoEgYEZUCZZW3KpVb+Vxjy7LCli+H5UsgWVYyhdh2jXUwGQ5auVyhVNq3O3YVsEfE/vBi4rdn7zQhw5PDxvsWAGzUn81EApnXsrwbmdlqPwAQm/Dpy++EkyYgR00mxPre/f39N8hRkZl3DAAA4Lr5stl+gYZRaUdRoXLjaP9NcHKIRtJDAGnpf8HlF3i21zZuugk7ALCL7+K7+C6ePQSMcVqMEf/EutIrBN3/+Pn3/zfgP6Pincrd/3ahel8EGcSJhgPRfoZt4pcAgDQBIOvLl8IJuNV3dB3pfO3865ofE5EVw8FJAiewacBgUx7AmbxbQb6+boWhWVBXTBI+UmAngJfNleaPnDWduToJWGXKtjit+NrdgBmZiFkTIgB0Oq2pP1BKgSiWmeJ7Lleo1/YjEX3MMPRJOXPJZDJptl86jiNsVUnMAmBIleGJhAe97+Tx+MbdH3aKBQnRprZpLVQTm85G3kMsnd6F708I84DaGMOCyK325a+GPLp/7w8fHH1dB8oQEYhCQVlI9Dc0mjZuzkUayfy+imcZDUvIuj2dXulwaI+PAlaHN+JVAV9cPekMXnqEeVU+ufNV5eaRxVhfb2QQCsPwqvks9DsgoaMK9cbDUrmBiKDIujKjIjdfy3l7hAUAmyunYHbcLEpl+7xxAjhzQ9rOzHByNhl3BLS1YtgaAMTgRyI5IBIAcBDFgDQqb+a8EiA3m58KGJGQRQ/613443KvdQXJFCQg56FhamuNVauU7Vs5yaxiwtlX4OshcgRgQrYNR/xoAavVjQofRjgtzeuWjjoegDnvdwStERFACBkFpMz5svO847qw/KWQz+C1lf5ONmiFvmnQDhIS1HQW25YmLq8e97hcEiMQAKChernHz1tdcr4iIIqFtApAIAvQHzdOLx2hCwECROLm9G8fvuYXSjO0Wp/GSrtdYv4nUJsT1yAZ3HYBdfBffxXfxLwUAEMgAI6JDaL87ZvDBk+/9Lyk49Wpv1+7+007pGEQBABlBVIIc5ffIywBgff49P5C6+Tu6/sO84lO3QY8fV0GFuRFe2X7IeI2qY+ImZlsup6fnKQfWOWKPQgKAQjFXq9W29+ra3iZ5GQYsULBoq1uQzTBWBMw8nU47nWtS8eaQMOGb1Wv7hUJJEu2VFLVjCeKY8/OXQGHkHxzdCZMmyaQuHwnCQeeTeuXh4Y230HXBzNjqScE4qRna/8aTfrd3iagQPAFtjBEJw+F3r5vfrdRuP3rrn3GdotFKo1gAQPFmmM9EVsKAtTMnPDtIesR8cebEIIEJhybsTP1rY/zoyIjAxg45EKhQT16efegHXQe9Ru1m/fAeKiKDNke0axAE04vrL8y0Swo8p1at3y4UK/GMAAHlXLfs5mvoVEloYeks32bNhMMGld4llz1hDMN2b3AKotdw1jPBw3I3wGbwiJLLH1SKNwCg3X5iZIxomHk87o4mzbzXKJf3DBphJCIFrlKotS6Xb5eK9eXccguTqYWHF1dShtJVfFAzDw0WITEmnAw7gT+u1Y4dN28A4+HpefIVgoiEetztPVFKWdM3YUyGgEEoWud4jHjjTMKW1KBIwgsMSmQUI2L6/eb5xXdRGNAAkgA7Knfj5tcK5UPbAbBNAAUILFN/8PL8cwknAj6CIbd6fPhGsXKA5DBEjxUmxf6NyEpe0zhsBwB28V18F9/FbXyx2BMDABBiBERwCKw4O/e+/clv/y9y5rpw8uOVW39S5cvEyloPCVoJoDnGzjLnhHG5WZtBCdgGBmys9K+HAdvLtKeT9TjdXHGETXIuy1kfABjhs7MLy/+ZlzZCImIdAkC9US0Wi5vq7tl/a2NDYE4/ExfjSd4QZ4G8dU+ARZBZt9rXYjRE7ly2raERkRmOj25aT4DMyct0JNTB1fUrALBJ6szkCBkWaV2MiGK6437r8PDtWuMEyAFmziSoxwpFxpje4Mr3J4gKhOygAugXVxf/SIv/xsNfqNV+2HG80IqggyDNXEuzjLG2GiJPnrgF52MAXpwXFxIwAIxgWHcDvx0EXZYAZmqhZAVAUag/aF00P0AxjioeHr1VKFVROWRijwMAAPKn47Orj0GPlFI5t16p3fbyOUflgRyknOtWHK/kuCUWdz2pYj3K3fyLyHb8ms2k1f0cbCOIEdCsQwKplZkbgwGFEiIigssSaOGjvfcd5bEE181PhARRQn8yGFwRqlr9iOMRWwcdO6zi5SvV0m0iEkE7E5JlTbAeCWxhqRHf03lqEAkZZp6O2qNhr1Ley5cqRlRKPYkXAICYsNn9VJGb5PraTBMAkO4AbAcAFs4Wk85WxpiKUJKmE+hg6r989TtBOFRknwcWhr39B4dHbwE4ghoAhDUJoJDh4OzyyXjcBA5AtHIK9eqt+uFdUnlBjoDubPJh017aAYBdfBffxXfx3y0AEAsrEhAggmMbzoak99vf+/V/re6Oi3d+tnj8i+R6JISsgJSZq+otAgBKhOrEcAbBk2mdQ42kqSnLP7lEX2GSdd+M9QyijCw5Sz8bccNscbqZLriuWREEutlsIqikTR9LGyEAEIjW+vjk0HXduHC+ffLxWn5kqew5FtaEWXFSUgk0bzcbwADU6bT8YGRL7MYYO8pnM+ZKuV4qVVI0kjX1XR6Nh93eJaEbz2xIupxsJyVSvxiGwRWyc7D/RrGyh6hQjFmZyLKIGo/7g9EVABF62gQiLlEwav7dXvei3Dh689E/RVAR5TAICivA9BQBZXddZP0eWwEAZjdunidmrQaYzZR1J5g2tR6KhEAY709CFmZmhlbrtDP4zEXIe3v7N95x3DwBIgoZxRiiEKCajIcX1x+Jnrium/ca5erNXL5CTkG5JcetuF4FwROrlcRW4Gvdg7MN726dSBQJGHPd+ThWhxLLJMlczEW1qJS6F0vgoKWZAKKwBOXim8XSHmtpDz7UOgAAZNPvX4R6WqsfK6dsDaoVWEUgZcDUSg9yuTwALdDo18p6bnb7zu6/pV+YTKI0AASTfr/XLOTLpeqeoLsgFpTu0SHLVedD29VBYASlzfRg790FALAw97I1BkipHs0phjmIPogz635xgAKnFx/2umcESlA7LppQ8vnazbvfcLEAKpKVQsMESiRsdl+1Wi+AAwQGdIv5xvGNt5VbFBVXW8TsAMAuvovv4rv473YcV1bYI6cXZES0utcKAckIKNKi27/2/V//l+ues//en/ZqP4mOCxqFhIwSBJmpX0dJUeZbe96IKgnOinmr5CDTKGE9DEhy6Iz+tSw4+HL2AHEqiV+zXOtIQfPHseXJWNtH0t2P0WjS6/VsCsucUSHWOrh9+zZSgtMypg+zxBM3qXNu0i9aupQloLUp6ZlOx+1O03VdESMmlv4kQEQ2cnh4rBwvKq8i07wBwuzSEBDx4vyZnSeOXG9ZGDMmIgQMCJFMhuMX5eLd2t7NfK6CKMwpIjUSotipA2AUJBMGl9fPHMchdgwBayOIOH5yffVr4Khb93726PjHghAENKGrJEx3HuzzkoZM25Kt0+SfJF0DQGG21qtxDmRLsAKGkFmPg/Dan1yJGBADFCVnxJYeBNpML84+Dk3HYShVH9QO7hIRkUPCAgYYBQiA+4Nuq/05mamby7tOo7x3M+fsO4WGlz9wVEEBMkbKkriyxUSvVfJfre/EtnXY6z/2gyEKMGoEBzM2oWS/xHBZtdPKdirX9erVN0SwM/jcnw6UQjA8HvVHk2alXPcKBwAARiMqUISokE0uv1cuHiG4gBqAksd2S9WvFe+IlZKaaTDAyArEDya9zrlSWN2zqkQqzdNjnPW7mHWn+9jOhQMAiDI8Pdp7L3JtS735s5oYc1Jja++dLODluXemCLIQYLv3/Pz8YwBQZBBJhAHp+MZ71eotQA/QEIExBgVQzGTSuTj/ItQjK+nrqvzB8Zul6o0UyGScb9KlzpCyKk1L2lk7ALCL7+K7+C7+gwAAIiA0gApDE1z/6gf/6F+pF0sn3/jnVfmrIkLWQlUcBhHaII+9kL4vsU02lAzXA4D1ZcgtNRk3smVQXhMDpFMTRiRZ7kV0u/3pdGrnfSP5/5QPDiISyPHxMVJ2WXHjpa1zbH2dbGZBNpQxAgDRpLKV+4x0Kq3iPrfbzSCcxuV5BisuCVYvlm/cuk3oWMxDCsSsIFARGmPOz54qpRAVS5BKoTI2GxEZ3RcYlIt3CqWa61VQ5sTdjQCiJCcMwP1ubzztIHgAwsws2oGge/2rw8F1ff/mG4/+O+iUjGYjrEjSY8SIyIlek2zcjYsAQDZ0n+ZbSRCCaKOHoX/l+y0Qk3J3JgRmQctxv776QnCCLIeH7xRrJ5jsO2RgZAMM0uu3Ot3HjmjlFfJeo1S7Wyzccot1J1elWPAnelFkD7lyltLPVg/aqp+ZTq96w1cQjynjWu0de25p0BhtvNlYCNriN5Eq5vdZ/PG0ZXVC/bA/6LdcxyuXj0A5sXOcEHkOQsiyV33ounnLnmdmUsw8B9K+BAZYo8Q/DwAwMEGv8wpNUNu/iyoPq0l6iDgYvAzCsTEaABCJJTyov+WoQiKzu6VK6aYfk4XPymyoXcS+GbQePn7226ynihgRgdgIlQpHd25/DVQOkKPkngXFgJmenn82mLSt+bKrvErjTmP/XsqpInLXlnj2NwsAzAHRRTu2HQDYxXfxXXwXfz0AYL8HiABoEAjEUSgAoMPp2X/+4T/8pf3q/slP/gXK32ejESj2tI80SGBJCT679y3LAGBDRp62D1tFGVr4+XTlbO1H7vV02ZfBQJqUshIGRDTuORqDiDl9damUiuQ+wdgUOSEOIWI+n280arg2t7BfyRV5RvbVrRFmyfzd5Qq37QMs8BmSf+33O8Ph0HVde1EycwUWRGw09vO54irXpwW+chBMry5fOY5jVR0xUruZTWbPXx2K9BzCUvFmvlQkVSAhO34gCPNyQ4CIfjBqty4QXLRmWuwIBGbyndbFR+Tl9g6/cfPmT5PrGGHRSqEgcvJkpYXwaV0BeBvppLndMneSFh6jNmZkgoE/uQjDnsUwUcGbk+0k/e5ps/1cqVBh+eTm226+ZrsTUXIsJAaMMe3u+WDw3CXl5guFfLVQelSpvOnkSuTl48YYzuVVKFs+RFuI4XAm3hatr9ofZVJ9lje/7QstslNSE8aISETGGACulm4jYn90Zuc3DE873UsUKJX3Ha+Y9C2JHAXKgCnm9yvFWwDAIITGZrycqjTPNRVfDwbAiiYeElicygZk0D31x53GwR2Vq9vHLN5daQBAADydtEaT6+QgIlyr3XOdclpRZ4GktK56gq8HYCxlK5ruRf3s+Xenk5al+7H9y+LcufWNcnVfInVZBDYoRolcdZ5ftV4QGyH0UOWK+4cnb3tOIe3Qh9EfSG8G2hZ67XwAdvFdfBffxb8EALAdAA3ggDgETIgcDp/+jS9+8y/t7R/v/+S/ptwDCUMQ5YgSZERliRBR3XqLCv1C63mZ6pr+rQUpIdpCDyf5lS1hQNJ9ziaWbOoGbGOam9yRhKhgjDk7vXRdBwCMMbbiqCwdKP4kVyqVcrlIrzEV/aXGo9eJmS5mD0s3hQFApcr/xuh2u2mvSERYdPq+a61v3UzrLa6o/ccCmqPRoNtrLZhtxbR4SJMcrPVY4LdLxWqheOB5Hjm5JX+GOYTZ7/cnkxahBwCaDQEij3pXf286apcP7t+4/YecXB3BQRQUcAjTVHhOmdfidvAytcKr9YLmaWkWAAiEWvd00PXH18YMiCiehxaKhEDRiO40n7b7L1wH84Ubx8dvoPIkys/YSsUzcxAEvc7pZHrmqrxy8/lctdL4erX+JioPSCW8o3RVdQEGrH2U5pY3WXaUtRgAmYSanc+0mWQY8/GicBCkqEnxlKos9AGUUsysta6WbiqlRtNLZg3AAqY/aIWTUb5QLZYaiakconLQAQADZr/2FqkcoggYZAcRGbYyHMTXhAHJApDEo9/I49F1v3W6d3DTLR5BTD1SgFbqNI0PTTjuDp/ZOwsASFIu3c151bgDoCLXXtgoB7xNC1QyAUCs2CPNqyet1mMUQMWMAIaZuVq9d/v224y5qM9rQhdBDEz85rNXH5MOxCEHxHWr+8dvlYp7gJZzxVlrSF+inYs7ALCL7+K7+C6+GQAQJ+kUAzCgQkASQCQJuh/9n1598B/WDu/s/9QvEZXY92cAQIDVrG4tIhFDJPnrS43mlVxY4Y3Kodv4BhiQzIrXKpvPBQmdjZXpTSBHsj8rcWpr/7fv+9dXbcdxAIDZzDKYZBqYpFarFYt5awuwLKG4Oht7DcveuZOkdbXexItNRJYg1ix/7XY74/FQKWWTctsBsGMMIrK/d5jLFSxxKL5Ss8LiAEDMdfMiDP1UWmxmw68Zvrngudqhspsrel6eyIlKj4Rx5hT5VogYZn159coh13a9xLAIm/GH7asPPM9rHH7z6PaPGnQlFOWgEoOgJa5ByjwYoC3g01aFVfvIJHiMEZARNLM2YVMHnem4JeDHslGYOAAAK83+5dmH4+DaVV7j4K1K9QhRIUf7zaaJIjL1x63rJzpsu04RnFK5eHx4/JOF2jELWXNcRMF4IHex7I2v5YPLyYhz1vMyU2K1IyWjcXM4Oo0KvbRomjFXpSZc+DtzK2m7NKAAwLCf88rF/OF40grN2HY3pv5g0Lt2HK9SOyD0oh6OMJGHoJiCvNeolO8DBnZB7A7asn+Ir90QmGHC6LUQ9tvnn1er9WL9LogTLWDcYk01Z5A56HQfA5qowShULt+0dmap1J+SYaeNxupb9ASiZiMBilhUGW0Sf9x7+fLbhn0iyyLTbAyp3J27P1QonRgxpOy0DCOj4fHzlx8Gkx4oUsLKyddq9/YO7q8GALT1rlsEmbgDALv4Lr6L7+LrAEDc5bbEaAZiEIcIUJRCMOOr3/k3ms9+uXjw1vHv+Z8LezKdiHFU5PbOrCwjRGYVvcwUE7IL7a8l67n40VrNzV/7xV0vp2Oygcq8yM9r8T1sgX/2LReaTCbdbi+x+xVZoNELIu7t1/N5z87ebcPb2RIJrBoOXlCgz7wvyRSH/VcVU7Ft8dX3/Xa7ZfU9mXUyG2AvPAzM7dt3EdFOCtqa/ToLZ+bTs2e23p3wGeKSLWbcFwTXw5wqePkSOTmFBMCAjliTa4KZsTRBr98aDLouFQS0EUbNAoPB1W+Nxxd7Bw8Pjr9VbJywERFRTCqiHjEipiztFu3SzILHxWv1YdJeb4lOFxhCY3ga+hfhpBmGIwAd/xihmFjOC8NgfPrqu4xj1ymf3Piq4xWICFjHpVAlgsw8Gvfa158STUnlGWuNxhtHN37MKVREkxWfBdQYezzFqH5x2yNtRfaLr4rjhhFnPeYkYhSK1uF153Pg0LqzIeJyny3aS4TLQHF5qxORYZ+Z96pv+sHA1x0RAdBa86B/YTioVQ8ctyIIYpiEQXkKEBEDE+zXHrleafYiZVl5aelnfOWCbAUDEBERtBlfXTzOK6gfvgGYT54dmDcStnug338RhIPkIMXiSSFfTxXLI5Z8CgDwNgBgPS8oqUfY+WYEEAlR5Nnzb49H14pygGxV3wR0fe/ByY33BQiUsSZiBIgQXF0/bzdfIBpEJPJKhaPDG28pJz9v8s2L2T8mkG8rALDACNoBgF18F9/FdwAgi5oSAQBLOiZBIBQkchRI2D/9zV8aXv5K/uCbxz/xPzYaJZggOwRWsgRYSRoAgFDmO3pNCpstyDNXJoSVvgGrs/IfEAYgqkzGArzOKSy3122Fst8fDIfDhQtPYIANHh7tu65KUp/F42/VEJCNHY9VdJQ12UwaBhBFOvQsutPphGEQ6xrp6F8BLPgplUrVan2mMp49p5iSPDfm/OKZUm66qDnv+zvDloIAzJVqCcFxvaLr5pAR7U5EQSArQ2R/Xevg4vyF4xKgQlbCDsLEn36ve/kpKffg5Bt7Bz/qFcvGGGBUKBhl/yo9/CAiafY/r951tF0imOiDRo03EQFNIIZ708mrYNIWDiLwg0Iyq+sj4rB3ddH8iJDLxTsHR28IIRFRslxCwGgHAEb9x3lP+UyaDu7c/LG9kx8ySKgBgREjlwMRYTBpud70DrcbEbfuBsS0J7OU05uYDMYo0uo+DvUY5oWtCHBBhHS5zC5g4pngdJuRRDjUk3L5xHXy42nT6CmSAXEGw+Z00ikV64XinoAjbAEAKds3AOO5pXr1AaJKp9HLlxkLhfEmALD57ttLVggaTLv5VI97+4dvqHw5uX0Yi5txSjp26veGw9OItyVSLh4X8430iHasi4rzzD3eCABgq9kAAFvUAI2orq+/OD//zCEiit/nRiu3dPP2Vwvl/bi3aFCAwIxGzVdnn7EZESpQTkFV9k4eFQr7C4rSS4hrSwAASz2iHQDYxXfxXXwHALYAAILK0qzJQUViRu2Xv/WvTru/UT3+o/Wv/3PGCJkADBKwsFIE1gk4DQAyHGQ25dBZGGABAMCWvgGrsuG0n8C8QiivtTxaoYO+DGM2KQUhIosmIjZ4enqefCnn9Uxm9+Xo+EApXP6SrT+T7cXIVzUEFo65jAGW1ZwAYNjvjkajOB1h6/mVJHPGmIODo3w+LxINccY5/co8SYfh1fVLRMtNt9lMpuwjC4KAcV23kMsRKdcrK6Ug4ucL0mzr29+ajPqd3lVO5Zg8NlOQnOBwcPn3h/2z2t6t2sFP1/beAMcozrMELhIAGDIoi/KXKGZNcreg9LKs5r46YY5cYEWY0IR+czx9afw2ASeZeAIALOvu+uLZYPIUhQ4OvlKtntgHGUkivSNGENImuLp+aaavXNcdG8cpvvHGvW9R+S6KRq1BQiS2WiwZlr2WWT43UzHHtF4HttObipfxZERWGY/PhuOWiFmlbJv89ewJ8lQfIBpmQNI6RKX2avdH47YftG1cm1Gv+4owV6kdIeYxJh8qcZWDWlgkLOVvlEo3lorQc2zGRCl48fHfykMgjQ2jRXAANEG/fzZsvtrfe5Ar1yMt1ggAoB0FTioCzEGr/RmRLcVAIXdYKuzNn+1iMzaNARKjsdXDUbKmXiNi57CFUEQk1MPHT34r9KeeEzkQIwuDqTfeODp5kxwX7IQGC7HW4eTl2YfTSQdEoaPymC/t323U70XdwRXuy8n3K/4B2qrHsgMAu/guvovv4qvisf4Pxx9OZURIAaIoRdPe4+e/+RcpeNK4+U8X3vrjAgCGRYyrEcgAu5aQzMhWniWaOARBoY1Vz7SQov2SrP/5Nb4BM2I6vC4vKFsOb6Edsd43wGZlS9crafZCSsabz86vCHH+EuIhbEGbzdy4eWy/+tmMnddoCMimXkcWS3gdFwgoqj6LZTdNp9NW69pxHFtlj0jkhi17x9LWj49vZgKSVfdlPOn3eh3bZLIf8oh7gIyo4v9r56e1INRqNUQkclzXRVSYZD8oCARR3Zq08ZutC2Bx0DFILL7RoKavOte/HnJ4eOOnK/tfLeTLQAqtbCiACAvhKirFZoO5rD0PmdMmaIgVABhBBUogCHFqxq+CyUvRE0ECFBKI2VNWQZWm2r86/a7BkceF/RvvFkv1ZErDssNRCIAm/rR99rGD/TCH47BQv/mH7t34vexWWfvAIzBjBT4iigPWOwxQb42H12FvXAKccSZHyaOHKFrrTu8zZg1AicUyytwDGM8VZGV+s3FhifcnCjsGJoeN94JwNBifoQiSGNHD3oU/HVQqx7lSDViElUDoICG4SMIIINSoPlSOA+DATO4JZ5dPCthkPy9zgp3LPgBpeBBHxAFkwBBEjaft1vXjWr5RObwrrFABMCIDEjCyYjIUdRFFZDB8GgSBvVOFXKNSumWdGUkYURmQtZV+3qJNGlcukGnFDxCDAAMGL59/MBycEzlEEPnEs6+c0q0HX8/l91QEgg0ygw6vmk8v2s8cUIiSU45XPDw8eNfxXCQnvpU6bsJkdNTmxqhhK6ezHQDYxXfxXXwXX4qDQUSZiZCQICIJKQOIw6vvn337l4o0yO39YvGtXxTlodFiKAesmRBRCS8DAOskumYEbe4rkjJXWo8B0r4BGZZhSY3/NRlBX943YK1pQHrCLw0AjOHziytCTGYA5mEGiZhKpVyuFOM1MRmfKtnclNgaBjAsO0PH9b81axLPNnCr1dJaJ3kbM8eyrdEplUqlarWxgiKVnUEOhp3hsJ8saHLJNmtSSMxMBMwMhLlcrly29q7gOB4CJdcygxCCgDIYdIajvgIHETUb4VBEpp1/1Os8r9UP64ffahw+JFRGAAUUxqiDFu7pug7Jug0MYJJ1XrhfQkIGBZPHUzDQZqRHT8PgCk1oBJCAJDESQDGMiINR7+L0AyfHLpRPbr/jupU5aXwhYBTB4ajbaz9WMBkrw3B859E/d3zyI5QrGx2YybWetFAGiEBESMaAwRWNsdWAZ8Vw+Yr9xgyzRB9RRPr9Z344TFBWtEo8N//KsNL2bkEzlNABAF+PKqXjQm6v3XsGYpBYkINxv9+/8nLFcuUQycP4HEiYyBF0RJhI7dXfjmG5sgVvSwsUjKYXsp/B9NsVefVrhGZ7yQIAMADoB8Pryy88Uoc33gDM2x9VQAIcT/UyIlqYMRqdTfx2NEIA7l7tIZBjhYMAyNhpCt40rr2k0pb5aqVVlQhmEXEQOt2XZ2cfECAqR0SADSEKcm3v/uHxW0SkFBphZAFj+v3Ll+cfsQmVcj1CdCvHB+/kyzVSLrAIGIz6dZStCLQDALv4Lr6L7+I/YDxxhUx3AKwuNboMZFrPf/36w79UK4F23zt8/89wzoFQQBzQlhShHUAGYTvhmlBUJUO+cp01VTzrtgUASP8iZ/emN5FyviwM4NcgNckiAEg8oLQ2l1dNS26JOA+p/BtRlFL7+3vKQUszyO6Jc8oxV7aCAfFp84pvn2xYqCyuESL2ep3RaLRg+2X5NhQRfqDRaHj5Asx37tdDlG6v6fuTxCNZrEZ9vCCUSgSNcKPR8DzP/rAiZ4FUphxiZgQK9fTy6lQpRejY8rkxoZiL7uWv+/745NZbtf3fX64c2pFZS6OfI6BkYYBtfHDX8RWSyjEQgn02CYBBCYIJ/avp4HM2A2Qx8TwDxZVmq9jTbL/qtJ66OaeUOzw8eUCUj3SWYgAgBrRmf9DrDx+D+BNkJ/fwjff/p/Xjd518DkBJ2Jn0ToPxOUJIwKSMFo0bmHG8Ld9sk/xuMvo+GV8NJ1fpwnP6D0VGcutFrlLgBEEhidYhEDUqD8Z+MwyGAALIxoS97pnhab1x23EqAAyMNukEcYkQAA2PK+W7pcKR3c7R9mbbWDKpCYElXWDMfmPg2hK79QYBAMNB6+qp9ofHN99wvHoEwxGjodv5PqQf9nv9x4R2Tkb299620kaJblhiBredb6AdGs5QA8sEAPG/MQqiMPP46bPfmE6HRB4IobWLh8DNl2/e+nq+VLdrJgaUsB+MX7z6YDRqKqU8InQK9dq9xt5tdHIAHO8JE+uZLr45JGMKhXcAYBffxXfxXfy1AUBS90/+l0IDChkn3Rd/r/nhf1CpmJHUj978s7m9E2DSBgFAGYOM1sDT5rkxmwiEcTu1HIAlFZqtfQOy83KzkCLgGlXQL9MZXwUD0nak8wAgXVSzn+2w1ewt/LpNwRERgSuVSrFYIJUM8qVVLBfRjV387RsCmVPCmQBg5f2CmdtoGIaXl+dWzzTdyhCRuAmAnuft7e0JKpJtVIyig5yePSeasUHsARFRGBAx8allkHyuUKvVEvWkBMfOdF1RQFBEeoOr0WjoOnkAYh2yUUgw6f7XnfbnpcpBY+/H9w+/Rl7egisisBr/y1neSpry6k21gbAcl3Up1v8RB0CCYPBkMnmCICsAAGgdnJ9/7Psdpdxa/X6tfqzIFbG08ejHxIAJzLjTGk6fCoVTI17p/Xe+/kuVm/fzOZeFCLWetrpXX3DQRBIBrUCY9YZpBdjGShYSuZjVtedoDCDUw27vCRtJhIbSrmRL7amF2nB8l1JuGwgKkAMdlAqHnlscjC6EQ/sOHI5ao+FFtXJYKN0QERQU0AlsIHQA2TAf1N9FVAhq1k6J31EL/L1Z3w+zFwo3JZ8RP0q42znt914eHd0vlm+KEIlNsTF5c8/GAES32h8hoj38XuMtBDd5NpdNxFcrqqWnHTJ2dRoAZEwuCSAYAr66/vzi6jEJEHqEImIQQERXGndObr1HDiESMIIYDsNm+3nz6okB7YCQly/kjo5P3lFeAVGieRvUq0RYl+0PcVOHagcAdvFdfBffxTMAgC3/W5VDBbHKuBJR/uDFr1x8/Nfc/ESLlz/8mcat3+vmSoYRgDAMlbggJrbntB86hgUi7OuV4WEBBqzyDUgzTNYBgFn56PUaApuqSpvTa1xi2Nv/PZ743W7fLvKCQ4KIyefcer1GRGn97/mEIz14kBJgnU9BEF5DMDRTXSfzhxf6Hu12ezodW+H/WaY+f5BqtVopVqLzB7PlWZ2dP7eOTgk5KknxAYAwIv+wkXq9ns8Xk2//MgCIxH+Mf3n1ynFcBJeZmbWIgvC8f/33ptPx/uFXayffrJdumMheK2IxC5KFECvXAbb0Z4BZP2G+WhytvBg0SgitAbc4YILuuPN9bTqIaAGMbYOQ/TVGEZlMRucXHyD4jio09t8sFuuIqIiSpRBBNhBMgmHnchK+DCE0BnLVn/zaj/3r5eMbLgISMAcIunf9eDR+ptCg8VGIIYyrzbQCUvJ2j7OsbgVwTIYxRMSsm63PbE9MFk05OItOlZoIkqXzQUZQRKQlRHDrldvDyVUYDKwyVahHnc5z181Vq7dJ5cQIIjAzKY2QJ0LbyMrla9XSTWGVXP4MDGTfbt5g3LcMgIVSoEVEeDxqXV19Uq8e1w8eiuRADKIoBDFi91D8FCCgafeemXAIgCDUaLyhKBe9Pxnn3p+48rlOvUUpsxaQCQDmDsKCpIGV0d3PPv8N1lNFBUAmNGAUiI+ue+Pu1yu1Y6vOhAyi9Wjcu7r4fBQ0ySA4Tk5Vjk/eK1YOrGQXCgKaRCpgEXXsAMAuvovv4rv4704HgKJEk9H+TwIAUr4ibj35z8+e/F9ynhCp0D2q3fi5Sv0rqFzrlSkIaJiIlpOCLUqDW2GATb4BvHVpfyUv6AcQDN1cA8Z5hr0gjIaTXm+UPv5MLx+lUa8WCvk5/JOtK7Ihv9/IC9rCwzgSzs/seyDJdDpttVpKRW36ZJ4hrsQLAOTz+Xp9L6EiLPadVpySiJydvXTcxC9skXVDgBaospGjoxNHeYnrcDprtLm75W30+s3RuE/oIrrMmlkL6LD/G73rzwv5eu3o99WO38p5ZXtwEgC02NiW5HmJa7XhXqzaVElPI6JvpUgdaGeN7byy0tPhq3H/Y4AppkZRrQQQCjADi3RbF53+U0XG82r7+2961gEgFtmMlIKYB4PBsHMecktjgABe/Rd+6Kd+qVCt5RxbdNbKMb3uea/zMQQT19EiJrsntBoDbAMDlkYCOE46jXXk7fRehMEw3UFa/cRRuvCfSqBlvi+nALU2Uq/eFuH+4KVSDiIIhN3OqR8Ma5WTfGHfCBOQCANqQs+6VSAoAV2t3HFUyTYTZoCccWUvi7fjpie/HncVkMUeWAej0/MPHMGTW19BVbSHsp4bSJHdRORAjWbqDwaDF1YttF5/01FedHCh9X93QeQgee3PN1s4kRBNnt/FFzIYFBIOEchR4YuX3221XniqZLGnGFBIjNNy/dbN2+8r17FELTFa+7rTen7ZfWK/II7K1RuP9g8foCJgASIQnRYzTZ+2bOqoLO/GHQDYxXfxXXwXXxxTE5E0ALADZIzsUOhQ+OqTv3H16pfL+ZwiMAqnsv/GO39GqaNQAgElqIA1iaL4mGw/MImZ0RYqE+veyVmZ4mpvyznZvnXyLBv57l8WBmQeB1McBkEYDqb9/nCB/iRilMJ8Pl+vlbP5URnzuFvp363J4bbAACvraiLS7Xb9YDJrIsxyr5mvWb1eLxaLdh4gY8FXaJgaYy4vz+JcNj0mzrG0ZeQJZYy5efN2OiFLj/8mTYAg9C8uX7iuS+gxg4iICYAve2f/cBwOjo4eFes/vbd/n5UgJwCAOeYOzYk+vqYn7rolTdtasSUvkc2cUPqj3mdhcEWsGZCBUZAAGAUZCBQY9jm4On880W1HTKl0q7F3TymVvnwrVMNad7vdYNQS0/VpRCzlW3/uaz/1F1zleAoESczUyVOvc9FpfUTGJ5wwMsWGHnMV32zktj3+SaniCgKa9NOKqIJw0O+/tJPlkio5bzYenhPqiZxJCMSuZ2h0zquWivVO7yVZchCaybg1GF3mnEKtdkuUh4IAdn5dI7jKTrKCkMrv1W8D5xPNK1KwBgAsvVrWzoogC88Ephyy0gnhxcVn097lwY13itVDFiJEZCOEBCLRmxXjZ076g2ehHgFAvfzQ8YrWq83+4UzJ1DUa/7HKwsKHw8Tfhaw2LIqd50YBwDCYth8//m3kEMkRJGBBAYHAyRWOb71Xru0ppcQQayPajEbNVxcfh9ORQ8pxyMvfOLnxbi5fTlX6TWYNaBsAsHC2OwCwi+/iu/gunqFTIXGCxQiIqAAZ2VWgpP/59//9TvPv7ZVKIIGrcpNwCsWv33/zTxujNLiEIQMik7VItYJxCyWotRgAN6cRK3wDVh12flDYrPyVTZT3Vb4BK1I6zqyU23VYBgC93iB9U2yqms979UZVzUsGbfpscyZzN9OKIbOIm55UhtcZjRiPx91u11KVZqO6KSIQEXied3BwkL6cpTHumP6eckEGoTAMr5tnVj80Ovjsx4SZCdCud6VSKxaLIJSewYhZQNHPi0h/0BmOupYgwcwiqCSY9P5Rr/WYisWT4z+Qq77RKO1rFGEklAgApD1oV+ycLXDsagyAs9yfDDJao2IS1BJeDLsfgUxQWAMIaDKWCwEASAaBpe/3WpdPQhw5DPX6m+XKsUNgkOwAvjAiKmaejof9flfMFMJWSAMyav+df/nRD/8ZV5RHwqwNTh0Xh73rTusjYJ8cH1jIyJq+3Jcjxc2hTQZAg+BI4vwqCtD0ek+DcBr5SNjGyxyVRVZoCZjl0oDlBRE5BgI2UC3fnEz7Rk8QEVBrM+n1XorR9dodlSujoHXiY9GIQuiBKCRhCQu5k3LpEEFF5tZgVhGB1nV+sviK829jEjGkgAQ6vdPmyw9qjfv7N+4ZVARWfQhQBIzVpIr2uLVQGIzOiahWvu96lTQAWNi6c4TDFaILJLw0qM9JByCjw4nKcv0BGEQrNGen32u1n6LkAV0kQWEEFoRi9fjWnXcdz0VxxIhoHYb9Vxefj/rXCsFRYqBxfOO9avVw9kLYAYBdfBffxXfx35W4rTjOeYFZVWmbMRBGKZoiRCkgmOD04+/8JfGf53JKi3FRoQmH02D/zh/fu/0zbJAlFFD2Da/AZdS2FcBKFj48uKolPTs3SdetM2cAbPKadqJdDwDmi+gCWb4Byfd5ITfNPoHtBh9XUoOQRaTXHY2GU0TFrJEScGIODva8nNpqeBrnrJE2Jhwb3b6WmwDL8CNS4bduSlo3m82kRDdbLqGZ/xRAuVyuVqvJ/11l5zzDNkIGhAhGg36/37fQyJLCk3O22CYie5Daaxy5rpu+uWnSs42HEpy/eOHkFJBHBkWMIEF43b/4O1O/Vzl5q1L/PXvl2+h6QsplnXb8ne2HzAbAtmCAFx/PBDdich8JRCEYUixows7HE/8FoMx8FQCs/xfGqVi/d9ntvhQwAnS0/06+WEJwLfddgdboiKA/CQbdPohGCvX4pTiBaLnx9f/1m1//UxgKgRgIFE8Rsdd7Ouw/BgmBmLS2J7YKFmYh85UVccHFdhOu3tv94fl03AEKQaIpDiu+s6bMvsDFSvHQbAcgoqi5Tt51ypNJE1DbTTicXIwGF9XyjVzlEMS1TlUK0HCAjkJQNs9kCSulu8X8frTbmZCyyigia2oLaf2iuWczXufZY4J6Op2cPfstx5U7d35EvBKIR+wzKSVgQBAFha3FHQBq47d7T4ADRDzef19zMge/FTJZhWQyJdcyzCvSXCAwCh1/2v7si38o4cRRJUQEEtCAHFAuf3Drjer+LUdcYGAOOeRO+/HV1dOoDqKoUr5/cvMdQBW1iJCRJc2Um51P5gdltfLBDgDs4rv4Lr4DANkAQCiptAmgIpQiQDD+9KPv/ZsetEE5yIbQdurD3jR/7+0/W6o8Cg0AugZCxQ6yCBiFjohEb25cYKTQxqR51ahllmsSr6hgrSMJzIVw/rdeM5nb3lggRfFHETk7uwBxE69cIhLgcrlYrRVpO2bU8pB0RmXutQHAHAaYlyfChZUcjUazBB3MAgBIMrCTkxNbxV8zubFQYhdCZn1xdoopozRM1X0xPgdEKRSr1Wp9AePNYSREAO6PBoPulXI8AAdYGEJgCce/1bz4oJCv1k5+f6XydqlSRnaAZvq1maynLRllsL2YbGqyAMER0KgAuD9qfz8MW8nBYw5VIo1PzNxuvegPz4lAqVyj/kaxWAJxCFjQJWBfAHQ46A78KeQKJaWGg9aHjhdy4N3/qX/n9rt/hPwA0LDxQSYIYbf12XRySoQsgbUbSwBA9uXMb8ItumTzHacVy+UH/UH/zE50pOv6K9dcUIBXvEkYUSW9JQSnkK/pcBSEI6UUMGsz6HZeKMpX9m4ieBEji60KLCMoxHj3otqr3XfdgmVVLT4U8btozQRw5GEscydppX1QCFNIjxSw9q/OPun0P3l476dytdtsFAKLNQIDg4gEwpGsMIpwf3Q6GV8TqYO9ryjliehl8s/rOv4ucfZM5o2w3xo2QArEGARQGL46/X7r+pmrckiW9M+24VCsH57ceuQ6JRQQMcA87F1dXHwWhBMRIUcRVe/c/lqhuGeEiYiBMW31kDoB+3XZXv1sBwB28V18F///3zik3NTTACB6nSZ0ZBJCB4HzzEH/H3/60b/l5XwRVyJldB/EsNJT/+bDB/8MlW9rRGNnAMRHyBEbIjLM6Yp6zI7Zqm27rbUqbi7Gk6QTAsz0DTCQOtNtZwO20T9ZmR6dn1+zsRoXYi2rHFft79cchfNCF1vBgFUc32XKQTJ4Onet2d/LlZ4M1ufr/PycLJk6lblArIVqTymfzzcajQUItLyMNJvgRBP9XXNxdpqeLE/ngrb2bM1Q9/YOcrkcM2NUDQWrJzMrSSIaY04vnylApRQYR4AZQuJ+5+JXxpPOwdEjp/STR4cPnbwDGghnaCTd9FjFo9iuLL1y/1h3W0xrM4pBBeHk+ajzMYKPiBw5KuACctU6uLp8MvHbrqtyXr1SuZXPF0nIzoMaQIPc71z7UyNB7sad+8Pxde/iH3p5Eb/46Pf/ewcPfwanISmRcBziCMNe//qj0HRBERhevqBMALAdB2b1sGxWvsysr9uf22pCXHimtBV3dn9hkRoUe3WhWBV/AGCGfK6EiFN/YKcFUIJe90Wop8XyQb5YZ3YQESJ7aQPICE70u8CeW6lX7sKaTmYWDWlFN3L2LhIEFIplQFFEFAqA7rRPr6++d3R4p3H8NQ0OagZkhWxmxnkq2Z9Tv9ftPWE2R4fvExYs8WkZBmzl+ztPDSLZDOpmkwxigMVVMJ62Hn/2ayDa9UrGiBVHEjDKcw+PH9X2btgxHjTsT0bnl58Px9dsxHEcRjrce3R0+MiIAKFEowWLToWSoo8uq59l3oIdANjFd/FdfAcA1gEAK0FCRITsaTO++tWXz/6Km9NTEdCIJK5yULQxoeAU4evHb/wJ19sPhRAVgjZaKZgZADPy/J+mNMlnSwrN9oKhqyriC8PBG6RLtq7mMkZH3kLvyKRHM0cjv9PuRqQOIsN6b69eLHnAy9T/bdZqLhtDySBFZFJZFi93ZUMAmeeKf5b9vyDRuJwi7+3t5XK59clitJDxhVuEyKyvLy+MgK10pjlI0SWAQcRKuVEuJ/OCyLHSq7UHjnYgsT+eNNsvXaeAiByCkEGhcPI77ctvk+cdnvyBYuGt6sENMMwIjhBgOANhuLye8zwTXNovW+2fWTqbOoJ1L9YhT8LeR9PphbIQcX5LxMkiBMH09OJjMWPHcfL5k0r5KJ8rEgADKQEW7I273W6XnEK9ePfGnbtPnnwQ9v6RqxwOi+/9wX+vcfsn0ddIoM3YmFYwOp30nzH4QgqNFqu9uFFfC3nNNM4qt4TFjFMWfdY6vRc6GEValqgjNjiss1JIVIPSLQsrLgRARA4AWH80VxU1T5gZUcToYNocDq9dJ1+qnwDkiYiZUQhQC2gEJ25zEUtYzB1VyzdEZs5cc4uR3h6YJcaVXexIWmTRHBEJIMlk0jp9+Y8JR3ce/DzmSmjYvi5ETLx4FAMAxRwORy+G0069cr+YP5CofyIJMN7qXbr0qG7T1bFnC0LMHA+fGCK+OP1uq/WCwCGVYzDEhGRETKF0cHLnLTdfIibQJgz0dftpq/NMtCEiUuI4e/fv/YjjlmLS1KLfYhRdwX1cpX62AwC7+C6+i+8AQKr0K5QGAMnoJACQMm6I3Rf/r+bFf6Jy/lQbxYgAohzPMWyMlnEATqX6rcOTPyROngWZCVEIFBidfIYTDLAAADaNnK7DABnyoD+Ab8Bqhsxm3wA7G7cd+SEqZFoPo9NXF8nwbr1RKRRdIiJAq6eRmYivNPxa+HinHIITTlfqDGmVodiaTD0u87NlKp+enjqOM5vZjVOZhY7HydGRUkrieb60k+i8V8OsD2Bn0I0xVxenEo1HRHbCiVOSLe2D0OHhseO4dnyZ2SY7ySizsdatTNy6vjAmBAAQJcBGxOOg3/rP+v2L+uGjYvmn643bTiGnxEUUiHTHeblVsqqwvT0vyKIvtGZmGRQgEmQC8YPLaecDFp9AL+fKtkiMiOPx4OL6U4WayCuVbpWL+zknZ7soKGY8Ddrda2bA3PGbd380Vyh+/v3/EvzvKlCg9r7+B/9q4eg9DA2gngZjnrz0h8/CsGMIxBoHAMV6pIu9o0WiCzKsHcrf0jAhBUTF90ed/vMY7IUK1HoaVTYMEBTgGHtT8sJRMRgANMAG2e90XgKHlfqJ8mqArpVAFTEg2ibQRErAsdPn9crdfK7KjABbNCrTszrzjh8wN6swx7OyGz4Ix5fnvzMZPT84+ZHq/gMUstJDSfcgxkXR5plMu53+UwC6cfi+HQ5e8Jz40jBgPRJQgIntQCJ5TAihf/3pF78BOlCUR0V2dEcJg6MObz6sNe6gEBlg5t7g6uziEx1MEZGUCMPJ8dcODh5YGSp7G+e6vnE1Z6sL2QGAXXwX38V38WUAkM4Rbe4lYFkQClGU4c7jv9Fu/m3lmdAwGFboAAmpaFo3NP0Aqkc3/nS59kPsEghFms0a0vQN21tISmLJB28hvdiIBH4Q3wCShH/EmUMCCwdnfD3jsO0FOm3Nr9vtT8YBM9fq5VIpNxPJF1pl4BUDAFkPcqIvd6ySueacUXgbpaC58USAlPY/w/y0dJr7VCwW6/U6WuVEa8uaVQ82kBC1JXH6EjGX56cS84tsWp/SFzIAUKnUqtVacgL2rwAKzuAlM4Lh8Pz0Wc7NAyEIBjxR4on/aefi7wPlase/z3Hv7Z3cVOggEDErJxIdkoVFkDWkDpP9lC3tn1TJktMD3JFjsk1VUU8Hn/uDz0ERAYNQzIQBiiaCo9yx12+2u88cYsJcrfagVGw4SAAkIlqCdudy4k8ZVO3gR99956eGw+Hj3/qPyXwhMvEaX/vRb/0VKN5CAM2hnl77/cfB9NRIIKQAAIy21WWMtOE5BQBmAHIb6LhlFRkWRoQF270nQeiLGEAGYMom3qwhpYiFVktGe4KIJA6DCAQEKGKm46vx4LpQqpfKJwZdA6IARYydCY7ya+UiugI+Yb5RvaMov2BcvSH7XOqSZVZA4pcVIYoB6Vw/a13+tlso3Hv4MwKeIBAKCAHq2B4ruUBi1oPx6XjSOTn4isyGN2hpleQ1YMAWDQEFyaBOPOkEwKwdR7949u1O+5Uicp0cA6JBImL086XGzdvvuk5BsRKRqT96fvrhZNwjYCJgMXn34MEbP+p4RWNVb1kg/RJA2J7atAMAu/guvovv4isBQJSiUWywQuKIEhJHh9ef/Z+7nf9KeYZBGSMEhsRRDhoEYoFgMoGJoYdvv/fPs6oxAktOxBAoW0RMoEXy17NmVTe+wXn7F/2yogXJjOu/9E+88I1MXG9gYQZuC3r3NgKaSfWOGc7Prqq1SrGYT8DSXBk1sxI/g0z85Qp4kYL+6iwqE06kT+zy6kprrZQSYGBI0f8llXfBwcGB41DSU2JmhdmSrzyTiIn0B40Jry7OLH0h3s9zCTczHB4eeZ63fBNSYyasUAaDQa/fVOQJIbARCZWYXutXBt2X1b2b5drPVeo3SpWG0YAoORTNkSTurNxo9UnkNZwitgAAgLadEoG6yAxLKTS6P2p+X+smuUQAmhmXFO5FkJlb7VfDyYUCcZ3qfv1BzisREYpi4H7Y7rcvjZFc/vbJ3V+88/ArF2effvbr/1sHmgLDxv0/9SM/8b/SXgXQ9f2+jF9MBi+06TCIECKb2MbN0ujjEQ7kNOlCxCxqBCFvzK82ZO3RzwgK+mG/2z8TCEGIRau1qo8LAl+LNfUUSdxuKRJHkA0IgYgYNH6v/UxEV+o3nXwjZIlfGszMEbOfHNtJYAkK3kGtegKiUqe96XlcatAtTVfPjI0tAGDSo0H76vTXtRkd3/rxcvUmqbwYAOB4zt7CcorscoUmfrM3enZQe18p77UQ15Ynn/kIKJAEJVrnaXtuhBz6nc+++IdoQhIPFaA4QCJiUNHhyYP9xm1FOTTi6+Ds8kmvdyomRBQBFnbu3Plqfe8+C8msiyKwNMiUpl+th2Q7ALCL7+K7+A4AzAGAiCoNgCSIyCLoEBqjFFEwvvzk3x90/77KMwMZwwRCRPY7SmQnviajsV89+MO37v9RIx4rZcAgGwDH6ojPnAFgWQ1wLqndiuKyCQwsJNBp90qz6sPAkp7JS34so1Gw3ZTnpm4Ax1QcSZgq9kMOwJbckpnEz09kZnJIsmHAIjnqtQBA6jQQcTweN1utiP8DLDxP/Y8PVS6Xq+WKXdXZNOGKG2oX3Mp9JnzoXrs1nU4TfSGiGZXZgKlXGuVSNRkFjiUpI/CWyP8D6xcvXng5VOSFbJQICOrgZev874LD+4c/rrx3Ggc3im5BMxMoUoZT6z+bNkZMxjQ3pRAm+6bg4kC8ra/HyjCRrruA70/Ops2PSBlQBhENMJhlACBa83Xr+TRokXCpcLTfuKeoAMDIbgBBe/RCD0auVzo8/gPVGz9Xb9x+/uQfPP7ev0oyRBjf+epf/NpX/odTQsMqmF7B6OVwfCYQAACSEREQB1BjysjPDitnbA82W0LQZA0YZBMGQNshaXY/ZwnYkO3ayWrKTZoVM4PclqAnEZVMJBoXTtzWbB4NYJRof3Q17J87+UapfgPIiRsOJBIKaxACZadcPQtQG9V7Xr6WekvINq+FxNU7a7o6agFZiiAJC0mox80XH47Gr/KN6q1bvw8wZ50N4m0pAJSMSQAim/Cy9cFh413XzcdbxawS7lw6z1WqXxsAQOwbYCsFitmusEYAJH19+Z3Ls6coriIFpBANAAmEuVz1zr2v5PNl0g6LbnbPzy8/NaHPrJVSLKZQOH7jzW8COiwSi/+mtg0tUM5w1n3Mehsi4g4A7OK7+C6+AwCzojsigrJpU1TotbLNiOgAm3B48d2/PBr/Y9cDTYjG2H8mRAABQlAgYszEHw3VvXf+XOXoq5qJGYBQMxAbALK1NGN/flYLpyQnYIiGO7fLsXiBErMBM7yeb0BWurz8scQte+jbNy54Y/K95jI3VB+XUISkNOi3gQGJ8A4LNpvNMAyVUgAsnD37K8LHx8exJW3GIixsShM7/qT7DEEQtK4uI/YRSUoPFIqFSrlcVkrFuM7MuBPRHo5Q3HDY77avcrkcotJaM0JO9KD1X3V6ryr141LjZ4vFvWr9yCrwA8+c2la5PeAWjPbUs8bpvkEiNWVpdlHClCTZhCja4GTU/ESmF0AGFCCjAYOMSCwywwDMHAR+s/08NH1k1ajcrtduW5zCzJNJuzc4BVRu7p13f+R/BO6xKhS++O3/6PLJv84QEOYe/fi/89aDXwgdCkMz7H4h07NQj5FCQAMwm59GoVhrcW7DJFWDuabH3JjyBiC6xQIKMAzHzdG4JaBRDAglMmXR1A1uLLrPGjgWmlo8IITIluVoiwJMrIGDbucZ6aDYuOnk9xlIRAjYgJ2IiBYfKNp1juPVSvcQEdGJc3GJiTeykayYCQAWloVAG9Ctyxejq++Zkty597Oes28nbRK7AAsAkIQN2Pf2dNpl8Qu5QwQFqNMv26xu5GqbtqW3gYpLRXbxUz0ZTtk5CwBxcpkojhl+9smvTv2B63oIrpWvRdBAsn/44OTkTWRF4kymgxfnnwzGLdbGITu5oe7d/ZHq3n0GA4zMGlABMohGcCTjJbwsCjRPANsBgF18F9/FdwBg7gudDQDAAQmmnfPv/NtT/3uuB0YhGo4BQDTOSASgiEMdhgORB/e/+j9Q3nEgRgCUQQYBnk1wCmGcWlGmImTsFMZbklNXoYXMSYDVWchmnbv1MkGvZQq2JU1oayLQa7CQF2YksiRKVp6nJauMRqNOp+c4TkTWN7xwhva38vnc3t7eqqtbxgCc2rSJ8aeIBMH06uoKAGJZTxYRz/Ma1YbrulktHVaRbbCAIma+uDgD1A54gMw6NCROcN26+jtBOG4c/ES+8l6lup/LV63WULQUUWVxrbjTFlSW5asWBEBZkE5KAAARAQb+tDXqfKJMH0gYGTkar0SStEKUiIzG/VbzGZNPRh00HpbK+8CohVjCTv8pBz3C2t6df/aN9/+p4RScnPrt/8//RA/+hjGGYP/93/vX7tz9poZgMhn32x8q3WfxFwGAEC4NQiwCyPlncMNIDy5DBV6XhgEY7bc6zwxrogWx3vnHFtfPCPHSiwYUoO0VMIKIIRACCf1Wp/myVKwVG7cN5AiMiDAQ2UniaHuoxFzMdfL1yt3Ix0M4AhZLE70rH8d5oJh6K0bbxiHQDP7k+uLZr4U4KO+/cXTwDUVudMlCqRcaI7iCYHPrq/aHh433iFDYi1o62+Ku5MSzCiXxLy8BgHk8D7FFFzIJKBUOuk+fPv7HiMpzC0YAQRGKYV955fv3vlrKN4iZWS6un523XrKZoggRMOti8dabb/2EELEWiS+W7PNHsAkACMNOBnQX38V38V18CwAQleFRCQApccAE49bpd/53Qfi5kwMmJJ4N70a5CAkRGUEOQiJw8z9+8uafYFUJ2EQHYwG2r2wRgjVjqakPJ28WH9wuk9gSAKzKGBacqtYggd+lVsDiEPNGGPC6gqHR8UkyLUsFs30D7OypEX716sxm3hBTwBdxAgkz12q1UqmUdT68dOSMmyciiRK5iARBcHl5SQQicnBw4Hme7S0kqfACA8chMiKAMh6P2+2m4xKCAtbARkj8zq/1ep95brFx8gdL1XuVcsMIAYDCeJfi4u1Yv5gL1dw1MNXSiFKYSmI5HRIRIhAIhr0n/vCpS2GEyU3KzizS22QAxaw73Yt+54KdwAXv6PDtglcRA1p5QdCadF4SGCj98Ftf/1cq5ZsjrRlGv/7//u+68h0OQoGbX/uZv7l/6x1hfzzq9S8/cCkEDJACgBnlSRYsO1aX2yNHpy023pqDrEpS270XYTBaoFetbOJt94ALSTJSzEAsGtl6R0w7109JT0v7dym3h2IYCAAJDDNbspMgKKUQlWXs5L1atXzbjptH1mmYzu23owZZ34yZD0syCQCijAmnp8//sT9+6ZUPjm98w8vvgQWE4sQT0pYU5NpZBUE2xhB6ABxJmm7xXlrTAVho3PEMD/ACrJr9CsdW3IYdhxAnTz//B6NBU9BTygUhQmEwjLBXv3Pr6KHrELLbG3VfnD2e+E0UIXRYpkbcR2/+eKV2U9t5Dbs5ZaGLnJwhrmI07QDALr6L7+I7ALAEAJBnzBxKOsuKkAn0tH9x9sFf0vqFkwODoOKZv2T4j8FOCyIDAAc6xPqNP1I5/hYox3BMNzec6H5GTOKt8mZeIB5s8d/riQWly9vrsxBaUdqczQpHPqO05Ea0UHqMBIi26QNkNDHmz3ztWGq291ZmHpbqmK+ryHa7/cFg4CgPSYwxRCSGZ6lt4rYqcnR84LqunebciHYgNYK9ALTSnl+pBeEsYZOZE3ACDF6dvlQKlXIj1oSEHF71Lv9BoDuNvTe9yu+p1W4USmVmIAFKjamk0MW2hnTbDLLPoEXUB7CptrIyhwRG82h4/QGHF5bdZN1VY8p40gNhRCcMp1fN59NRRynIedW9xj1X5Uk8rWTQfyLjVqD2bn/1L9y68UfYD0MCPX32G3/vn8xR20zGot74ys/+zb2DW6Ge+uPe4PJTV/lCISljOwCWb7OOThbXdxd4LLh2869Hswu9u2iqFWDq9/qDUzZCILw8VIAq4zYlIysGM/+W0Exzy1hJJTAkQEqCSbPfep7LVUr79xmcCNWCiJgIAIigIiKHQDEYZl0uHpcKx4wsIgrUiqxa4HU0K6M+mDCiC8CXFx8NLj4QF8v7tw4Ov6FULtbvIoEwemSArEAQgxEwU39QyO1Fr5StyxPrSwl2GJ3nGgKcTv1nD69EBKq43yLB5OrJF/9Aa+24BQIEIAYDoJVbuX/rrUqpTtrxWV9cv7ruPmVmZEQKWcJa7d69Bz/GQowAsXV6hAFwviG36Sp2AGAX38V38R0AiNO+2RAwJzKgEQ0CmUBPus/OPvq3RF9QTpgQWByitIKn7bEKkkLWjCyTUNfvvvVnVe5NQqUViAiwIIutXy7XQbf7KPLrwICM2u02vgFrziTt9pX8cLriFRcgN7sIW++wTaVlk4lPlpN4lNUTexnnIIvoYn7AINUxX8wJjJGLiwsQUkolg7kLRHD7f4vFYr1WSdOTNhqjphPHBQaFnZAWMLaWubAsGfqb0VA1jkaDTretVJReIxBCMO39aq/1Bebck+Of0XRycHTbdTxLs6GYiJ9WM1zRkOH1MGDVxSb4Cq2xrOWjI0ZCWRQE4+vB9fcUjki5iMiiRYQA006xKAyCk+nw4uqxsHYRvfx+rXbsqiJRfjq56vU+A8d19n/uG9/8JQxrxpcA0LR/7Td/7U84XgjjCdOjr//i36pWDoNgrMNe5/xjzwmIGElHAGD1g7ZwKzF7uj17BeanaNa17FBYovFcEDHtzlNjQhQ20RAwbZXIzr/90tQyBJUUsBMWGTMTAZpw0H0eTjv1/YeY3xdhCwAitCbAYABAoRNZOKMyxq+V7+RzNUYAIYzt6n4gGBCVuhnRBQx6/avWs28b6BYaNw6Ofthz9wDZWknYCZkEkkGsmRPFARBc3Djlv7h66zqu2WZsKZ0ACwAgqopEUkWK4NWL32g3nzqOi4gIObF+EyL7eyf3brxN4jHzcDw6bX42ngzAMKBm8QlzDx/9dKF4YIdhImDMTACS9d5bMs7bzQDs4rv4Lr6LLzcBZjKgsgwAAPWo+fHlJ38ZTBNytsAkiKhS+VBU9FWESGIMcGBQE9679fDPoXdiHLQAQASRhSwjCGK3ANweBszpZmzP4dneN2DjMUkgc0x2TjAUX8M3AFbPMKy6ihU0pG0oKJsqfCu5E5Fg0Wg06rR7s8o083wiPqNv7e/v5zznNZOejMRRRBxLYIiPPDNOXuQo8+L2Zun1OqPx0Fo+gQFRGnW3e/1fTkfN4t79WuNbnlet7x1i7DtgkcYCAFi9kvy6DYFksDjeJ5H1gQUABIZhMOk8C4bPHKUF1Gxzzra91cZhEen2rlrtV4SYV7lc4bBUrCunyICD5qfaNKFw++4P/cU37vzCJGTt0zSQ4Pw/+973/3voGJmMfXznx/+Jv112a5p9MePm+fc98hENkkZiEbGiWDhLwXlNo0xEMAX/1rN6sg0rMgEAOAIhogI2g1FzMm0zswCvQSMb70vEtAEgJsY5eYB4R7ECFYbd7uXHxeJe4eChdbcFQIUpfScxVhUKFVk1IWPCRvWB41YsBQ5B0eo+AKxjPy4sICAxsAnC8fXz70+mj93SXr5+tF/7qqICoLaucAsSqHYPM2tEJCIAgqxG1uqHfT10mTVPFt876bsZT7YgEjEbCdBxJeg//vzvhMHEIVfAtXbzRgJyvAe3368UD4CFhc6vn7Z6Z2I0swYMQLhae3jv4Td0dJ8QUIMQIUvWc7rmVbMDALv4Lr6L7wDAAgDgSPQbU19xNCJmcPnbrSd/FU1HvNkkJsRyEKmPBhoSj4lRxBjhgOmrb3ztzxv02IixSYKJvhdJPgcwN9UnPNNNX9B4TmxTF7WfWbZPKDemBZuaAOsOvkiznWtywBYwg9eTgmDNHMLqXGo1L0XWEA8yP4tnpxeIqJQSkXn337l+guc5+/v7ScUxdckbYMACFqKViREv9F6WaTaIyKxfPn+Ry+UiJwrRAmEw+n6/9W1hrh39vlzpjXrtwHMLAKAoOT07oyKrCtjz67/F2MmMsjwHAISsi6n1prD10dD3m5POh2j6CtF2WKIpTxZElewQZmYdNlun43HLIco7Fa+wl3eLTq7sB71+6zESV+/8/KMf+Z+VnGMflJ6G42k4efnLH37033ccMJNJ4H3jm//kLxdMzpgQiZsX31Y8JMWE2p7wCps83ug9t1qlSjbs82XPCiEkI4IEqHXQ7r1gDmT+1xVgGoRvTGSTtyIxMUVcphm7TwkYZiBCv3v9uQ5GjcMHlNtjZhFQqdvHrO0jjopsuwlAE3n18n10FCLZDUpbpNQbXjuoRVAhaTO9On887nwIDhf37pYqd0v5G7YDhqgw6U9GYmcqVkENEVxADeKseUu81ohwenswRv09hkzhzcjS2yHSogHAU9Rpffrq+XcQDFEegJRSRnTAplE9vnfrLY/yIKrVa180nwd+3xitHEEOgApvvP1Nt/D/Ze9Pw2XJrupQdMy5IrLf/d6nq3OqTp3qq1QqSaAGRCOBQAYeYGyDAfviBi42fDbX5l3s+6797Gd/137X5n7XGBswNjatDRiMMJZAoAZJSEJ9U6pG1Z++2f3emTubiLXmfD9WRGZkZkRm7qMS8D7y/FAdzZNNZMSKWHPMOeYYK2pVlYSsIcKQKcVMGGAOAObxeXwenwMA9Dv4KQDok3M8OHCAiNj9Gx/Ze+mXjB5oWUCBp/57nTuTDiQCYHFg42DYwKozajtdu7L6TafOf4uDisIhAQCJnBxIKKFrJ/uJUsJ2SPgtOmyZlFdGzWaferzq8ui54vyht5GUvUgsqCglZehUOtCE3sJtgJnxRGrimdEiADCSdve68ebmZhCE/Xpw4rwrw0kh3NLSQr1eJy2CJVNy67SwOEWPXMZ0h9IrJV6lsdNp7mxth2EIsEA1smr2jrY/0Glt1euNhdW3luunlpdXVIiImDJ0Jho5SMoedpY7PqR+U0iaHlDX+kvXw2yGpl9mmQNC76h9pbf/pKEIQt4cwLPuUoOIBBSIiI06tzavWntYNoEJFquVxdA0SuXGweHlKNoMStX73/B/1dfeHJqyKEVRK4ql+dyvP//ED3LNxJ22rHzNl33jrwc9B2c5oJ3NT5I9JHbEFupUvQmuUkomyQUARRgg934c7hi4qes21a8kQFQMse7vX+tFB31eFiNHaWf8HiyaSTCkifUETJ/v5F/poAFL3Nve2XyuWlutr94LgIhVhdMP9D+BFEpMyR+jqoEpLyyc8yo9I2yZacgkp7PhRY8cYNBj5b3m9d3Ln1LuBYungvLCxsqDYVBXOIIhWIVTMQmfU/pEKQEJIRw659O1UyeNvowBABDlyzFntYP9mSPWAO7y8x/cP7zCXCKEzAAbCwVw/syDqwsbAHcie23rpXZz27kIYENdp7J68pFTdzzsnLKyeGdoZ5QtJkw6DZ/POQCYx+fxefxPb7xvoJgp8/vefVLR7AMAVWGKVHo7V967f/ltxnQ0dMRBpoRPfvJVsrmjhmT8ziqKOGou3XXv9y6sPxS52AkphaRx7DSAev04odGEPr+oQ+O7S3+esk+MngkASPJbc9LH0QxGciuLfSRQNIE69IZRQzGaUAWfhaSLKdqUuY14GhqfGD5CLZyUSHn5zOxU9nYPO50OM1MispnYtSac41RZqFKpLC8uZBpFk4uOhRwbmsCkygyhjnPKvT6jU7u7vdeJj0JTYud5EhG6z+5s/6Fz8fLa/aXqaxpLp5bqy17yp49+Bf2jGkkup4yqZ82nxoFlf7hixBUBYGJxzoWGLVrdzc9G8Y1k5kGTufJxB2IROWpt7+3ecNYaDsulxbBUK5caNup1u5dZ29Uzb3n4q37KtgMEpAS4rrju7uO/+vwzP2xCtnFcvvOvfenX/RQOD1QQhLS/+XhsNxmWyfYHN4fF42VkwRBxPpabCQPIoAYx1sEbpPUY8G2ggbje5s7z6UCIJT+eSw5K7CHjsG3F8Ro1g2N2IqJMAbu97ee6R9snTj2A0np/xTKsFwAV7UIDr90EMCEAKZEGXF9aOKPMSdpN4gemxIE4v7XihV7z1xiJlwZi2K7rXHrxYxzf0qBRWTq50jhTrZ1VVlLnodoYYMuV+RpYQPbvIxRof004dazZZ6OObzH9r86O06hqYGy307r0wgfiqB1yxXctBCRArb509x0Pl8OKCu/ub2/uXYniI7WOSVl6Uqnfc89XlkoNIRFh9sJTJJRYPGRoe/2HXtJidvMOwDw+j8/jcwCgPusYS5t8XjIAABAH7Vg52r307ubNd4Rh7Ej7FCAixsBaS/sblYgkTkQkqsR8aHuvvusV3xeGS5E6UWMoQBQpECDd/5lU3Zis+GD/yI4K5AlW+kTQ0WzjwTNxuGlWzX7kWgUPv3doQgBT5Y9k9u58jlHXRC5QLkTRPCSTioo4Twtzzl2/fiMMQz+Gm52uG2LFkCwsLCw26jPyvDHVv2ymEzL0LT6/6UV289Y1EwaEMrmuhQmo29z//YPd52r15dXVL7U4feLMXWVTERHuJ+U8lfc/Vd9mlkUlGW6WH6hwRM7Z7cNbn4K2klGEFISMk7iccwf7Nw8PNqHKVArCmilXaqbSbV4XdJiCe974oytnvrXXtTCBkmWOYLs3P/OfLj33D5kkdrLx0D98+PX/VNptJkdsD7eejqMboIgQgySZ0skHABgGSDr5cozflf0TNXLL5xuHJZmcEEInvb2DazbupACAE9vsgSXWBAwwndkyKG9DvFSXi3dv3Xym3lhbWr1HhZWp33nwMwAivqRgocxcSr5CTbm02Fg4CSihpIi9TbVHzoZygKLXD81dXQ5KAu9rJ4hv3niyufcCiBZWzsHw2soDJlhgBcgSGWis4PxOZkpCy0joZIakaYL5yTHg06A9OAwAkLGvZlhiOdh94erlx0nIBCVVRyaw1irR2VP3ra6cZA1jF127danZ2obEBDDFDmb1xH2nzzykQkIQ8aBK+o++pG0y0njxlYJ+Y3MOAObxeXwenwOA8byESPsAgNSqdlzUvPnS27u77yqFYuHFf5LpwEwRyFfUlZSIRYX99hI7gFuK8sLCN508/00CEymTxkYNOxK1vglASS9+aNvIMagqKglTnzRyDIm9mXg1x3EMKOBM537ssX0DZmEEHdc3YIzMnYMl+go8BweHzeZREAR9C1LP/PHzq/0PNAGtra0FuWn0NNZBcaFdivbo3G9RApT3D3bbrSabsgoDEXGA+Pr+zju7R/uLqw81Gl9qyotrG6coU8Ps2w6MfCsXXqxJ+K3oDAgBkH47iBCoKrE49KLWi0d7TzKEmbNJdtaxO4GUNt7cutJp7zMRMatWK5WGIbijm0SdhY3X3fPmnyrzqa6LxRmrNix12XUuffTf3nzx/zaIu3B3v/an73ro+12vF5iYEDe3nu91r4J7hB5ISBJtJU9ryf60UTSbdypmnA3Q3Ptr0BBgn1j7TyAYkHS6+4eHm6rO59+aEqgIw48438/xwRwKkEwcxWFWsbBEFMDubD/b6R6e2LgvrKyIU/9sZIXC9ksPqf6VSQVJFUCjtl6pbHj6zZAbcYEOUhEAkFSmS1WIXau1ee3iJxityuJquX6iWt1oVM8QjMJl1Xgn8uvGT/Us5gy3AwNS6pSStyfz0lcaGyhz9NILH2k3t5hKvqwkIrHr1qprZ8/cU6ssKOHW9q2d3ZtijwhgP5selu576M2haUTOwos4pc4AaQdvdEXxMMKZA4B5fB6fx+cAIH3yDzLvEQAgJJ1eZ/vaC7/uWh8OSxB46yXpA4DBVk4kfgLNTygCzOSbAMq9Xqd+34W/aRZfEWuHOFAEoapzSv1MCN6oRiYBgAIYMDwnMJvyz+wYAIUOo0X1RR6cbckdJBAazAfP6oEwrYkxXvgcyokLSD5UOOjpK9BJoq+K69evMwdZxc9s4T+xgxDXWKgtLS1k3Wqn0JMKf53OeE6ypl3JzzEqDttbN6y1xBUici4mRdz99M6tD5cML69/RVi9t9JYqNeWjRka/chSBUa+iQvXic5O00qmTpO/BqCEvuzIina6W5+Nops+PeXh9Z4dclDVuNfdvHXZujYTEYxqtdZYsNFB3D1YCM2ZL/1HKxe+IxCOhKyDAiZoGW09+75/sX/jF1glAh762v+6fsc3SBwxx6HKwc7zvfY1RZe5m7gOj82sJ8y5FO/lId5JI600fsfRaH45/GONr517nfskvRO7u3vFunYyG+BHtjPzGyMrPHNkQ9fTgPpFh1wAoKrCwipRvLd96/lKpbaydgFUZm8wBzJJRuvlo1z6dck8gKoTwWLjRKm0lkbybgqarr7vIa2o+lEQp9Hlix+37ZcQlhbX7xU1q437w1JNWQ1pqss1/rFcCKR1xk7dMf0WMzdo/1L053pELTN6ne2Xnv8obC/gEKxOoc464vXl03ecvkvUNJvNrd2bve6+n2QwUIveidOvPHnykVhU1fkKVNYADn2X4uF7t/+aOQCYx+fxeXwOAAYAYFBEJ+obgZEKSa93dP3iM79A9slSmcRlBgcyAIAImqQFlPI8AaiyMkNidLRF8blHHvshi7NOuhKWACVRA1InnNECkn4roAgAjMGAMbGgYYKQvExqoWMJ4gQ5lLHcaPAVkvGBYp28y/LMMACY0TcguzY4f3h6oLPprK/MdTrdre3dgEPfbU/VP2VcbHt9Y7VcDkmRnQy+DSQwIy9ohG2c/BamXtTZvLEVlgwoFBGQJRftbf929/DqwspaY+HNWlpdX9sITM1nFbnHmV4pGQEAxyEFuUkAIHX1gmGFjbq32lufAvWSaYQR5kaS0UJEValztL+1dYUTCj6ZoBqUQN1mZJurq6+/9+v/PblFNmHsEBMFLEQttntP/c7fa7d+14rGtPC6b31Pbek+chbqStD9vZe6hxdBvT4AQJ7SvuThSdZjXrt+LVYnF5jZl/mTVkCqC3TU2W61Nv2/+tvEJ9zpYOhEYEmaB90lJ+cmYxERKSPe373Uam2urp5rNO6Q5OipTwRKpoGoj4pNP+NXdY3GmWp5XVWJna+cDK2fSQAgYViZRElf034Q7e6/sH3lYxZRY/VsqbxQK5+q1+6gwJC6Pj4f+42cnbAfuoKS36qiY8prThhu9vPTaZnAnzcRuMDQ3q1nbl17AhCYgDmAkJU4MJWzpy8sLqz14u7W9s2jo4PYtjk5qR0uLd1971cHpkqkVrP9tKEDcJnfnl2lcwAwj8/j8/ifXgCQGPHmAQBlosSglCExa9RtXnzh6X9f5ith2cSxMCdvHkp/M7apLnkc+6KcMYZgXURxZDv14LHzD3y/w1JMRCxEBFGywulXA5J1oUo1NCbUknUcAIymK7P6Bswqs9PfuafIoRTAgNGpgGOYBsixXjbd4KxgWLOf1jP7XJ8Om0eHh63QBCKStVLqJywEUdWFhcbCYr0/EuInM3OPdpai4zQL4f4K4SwHzJ/4Vrt5sLfPpkREog4QjS9v3XinSm9t4+FS7UtMuLi+fsrfF6lY++h560M11kmHOnlEeMTgrC88T6QkmmSxhg3Zw72nXOs5YpWEJz0GaFX9/4igebC5v79JKnBQExhjQupG3ZaBvfDGf7l273drLyaUrECCwJAlRNK58fjbvyeKPxupQ+3VX/lt76bAsASQbpnc/s7lbvMFoMsmRla+Zpg+IWP19T4kHvPJnq5VlSdQWzxYn8ISRbS7e925WOFUYyLjJTiLzKnGMcA0AMB9IQJFHLDG8cHWzec4MOvr94WlBZtkzGq8/ACpt5nLABJDYDYkTq3K8sK5cqnRr8EXGREWnqcsH08hBCeti89+0PVucmVxae1OaFCrbdTrdwCOhwFA5mfy8PNKsjfj7JrCmGEmqvCRSQOKjqoCjogC9C4++5Gj1k02oUCZAxFLZGrl5VMn7ipVygcHe/sHO93egdckIFiBrJx4xanT96uQkMeBGMcAfQDAflfr/945AJjH5/F5fA4ARiku6R7u676kkYHr7D79wjP/tlreJ2YXK5l8AND/qySsZZ+9CWBgSK1zUCdaLz9054Pfb6WhiB2x3828F0H6mZI2EwpSAR0j/1CRZf1xfQNmaghMYNgXpdqs+bQQyRz/xG7AdBrM7cCAiQAAGZXPi5eulctV5nTnVpdNTRRQscy8sbEelky/DlqUYOX3dmbSJi8cz02FTZIzfPnqtTA0TGURy0SGpHnw3p2tx6u1pbWNN4o5vby0Uasu+lsj49Yk2aS/6PxLKlp1rJ6AT1M8AEhct8WP2Aox4A4Ptz4tbrNvcObnPoc7WlAVcaQi+7s3Wq1ddioC4aAUCvUOLHqN+t2PfOvbysFJVY0jCJg4gHFBqAc3PvvE7/2FWG4pbPXuv/3GN/2ryPYMjEorVNfavdg5eonQI5YM9oafXvUXSJC/SLKXbwIvKI8UJMiK0uSfT8EIhZ2k2drttPe8RzLly2oNLpBM7AbkLVHuNxaci4nVkN0/uNw8vFVvrK8s36lUSXshBMjwSE8CSpNHKNiBFNFi/Wy1vFxo1+1nIYTyh3Zg1PMrhRgiAg3czWtPHd76jBhdWb/HlBuqbnnh7nJlFRJ70+jhigaNdAVJoQOPub6alswOACb293Is+fzwWOp513+jM8xRZ/ul5z8ucYthhGIFMwxTaXlpY23thKjevHWt3TlUiQEYFqc9Dpfvvf/LOFzs868SRmXGzgX9XW34GTgHAPP4PD6P/+mNj+bElHI5uF/69e3WKER8uPWZi8//m3o1cgLvfZlDgEmkoEnEKROUOClVSuIYYEitCEBqF5e+auPCd7pe6AJVJySpxCGlhVimPADAfeHtIvLPSB5R5BswOy9oiiDM2AbJCiJyBbXPrGxovnVRnnHYcVrtk6aEc7gHmeJulgqc9fRVVef02vWbYVj22b6IkA7NyyoAdbVabWVl2VtW9Z10cwke030bJkkw6dRf3el0dvZ2jQmJQzjLykB7Z+tXjg73ltYuLCx9hamsri6vMJU8sTijaC7j3Zsi34Y0VZz9UBPzMn/qWAUaeGo7G7W9m0ebnxJqE7GXs+z3Nfplcl+Sdhbi3O72tXZ73wiTQgxBmyRRiN6Je//K2Tf+qwpErDohJyUiIJCwhhvP/s7T7/suRVshJ177c6967HuiyEIdXCtQe7T7XK9znWC99x8AYiUhKCcc62EAMAFM8iSdpOE71J8Wyr+DPTBIh30HN51PlHd3L1nXFTUgCylSK/IqBQWAuRgAqPc7ccIMESFWcftbt14Q7a1vPFAO15QpydcpZjH9Cj0A3wpgDrw/AKCeMrfYOFMtrxKpJ3dJPiaRvOcGhMkDAFJHRLFKL9q9+dwfRLpXWVhfWDknNqxUarXqnSUTYKCoJoM56UwSnCVJequHccSVfzP2PzVZw4OBkElPUUqet0Tknwzp04YBUY6ZSs29529c/JQ6UhMDBGUiE5jqxvrZSqXSPDrY39+1tg1ANWajIrJ++tGNUw85p0pCmvjB9fuTcwAwj8/j8/g8PhTPDgAk8pqDp7woZwj+zARXoah1+V2XLv98uY5IiEQhGJF4zwyR5ajLJ4MBhmBJNJYQoSudXP6WhQtvjXqw5NgxoOJikwi4q4OCyW8tecnEdK5OkjOxFgGGY/kG9EcVRxgLL5dvwPih9wlCM+qEzgIYZvEN6AsF+rTAZwqHzc7hwZEJvJSHiozp3ENE5MSJtTAMiXWKV/Hw8ZNOTygnk4L80fruhH/N9vZ2HLsQoWXxBWLXeXL71nuNyuLpN5Uq91QrSwtLi4ZCUtuftRhLE6eAgcxVln6lmfMNzlL2c8IeT4n0ZBQxK4ht1Hymtfd0AHWMPsROIGF/GJcchJ3VyHU2ty/GR50QAZQcWcK2Q7Wu7oGv+eXanV9rbMwqYhkagAglrdbw5B/+y2tP/L+dxpGGD3zNH9x3/nW9yDGJs62yHLV3nu/YmyCFxMOIkfNWtQBFkrKaC4wTpljuRSz2DcjerSORdnu3ebQJZSISigEmLXx9zjXtU0RS1N3PiyWZgPdr2zMQHRv0Wtc3d16sVRdWTtxDaKiIgbp+3zTzPE28itX4ZcnMoo7AC/UT1cqqpFPLQz0kskM+guPdRRhSZ5NniILstRc/IUcvRsYtnnzIcC1Wt1A6UWucDpLl5QAmciKsRF7ZafxijTweU9MJmXRXTvENmOVh5bWA/FSDUxIT0LWLn9nffi4QITKOhZjVlmrVpdXVVeZgZ/dG1Gur6zliIlXYsFQ9f+9XU7Dgm2mqxMwiFiReuEzS0zuyicwBwDw+j8/jcwAwBAAkJbUrmEiZGYgqiPdf/M0bN/9bWOVYQaKkZkQ7pgAAIKV6KjQUskREzgkHYcVJvHjHXX+9vPhQ3OsKl+GsEJMVQ+T9HfszyrNQ4SdPCBR1DGb3DeiXb5FHgchp5d+Wb0CmxpnkWzzT9MIszJnj+QYMZgBA1un165tMxgOAPr24rwEKgEnr9erCQiMhaqsSzMSzIfmNmv5QAU2AUYMMMjmA4X6Rc3rt2rVSWGYYp9anYke7v324//TiwsnG2jdQsLa2shqUyhA1IGKnSnkAIP96jWOA3AHE4V+tox0GrzGvROzgRLXT2Xsi6lzmvqxlOmQ/BADUAeyc63S7O7uXbbsdUOAUlvbK6KqaRu3Bx77ld22pWhYvfGSggYKDChoNfPh3fvDw8n+0Lu5h5YGv/fD5s/fHVhkax1tVbR/tvtBzOwpRFyXkHyKZCAAK0ye4AgpcAZAjKWrcFeX0qgqyOztXRayqOhViR6NPP1cARGX8QZE9wqGqtlICAJgFnb2d5zutvaXV0wuL91iJWUM/ncwK9bT7frm9zwsiZmXfSVAx9YXVWmUjpRgl7HzRaNSpdwQXwfgTm96DSqQH+y9uX/2YSs8s3VFfOMvMYjsrq/eVgio5owo2fm2LU0PseNw4L6dT2scAMxQO6HgPn3R5cH+dqBd3dcJMZLpXX/jk4e4lQ1AKQIY5gHKjsVSvLcW2c7C/pS6WZIE5MK+s33fqzCutCqt/OjkiIlYRYQpGW51zADCPz+Pz+BwA5AMAr4NO3rBGmVkRlaWz9dwv7e++KygZ6/3cldMp4cH3eAvGXACQpGVwoMAoxLGGcVi2JfuGO+7/biDoSAAnwpYQkgUng8ikNJMK/qQ+AF5m34BxUZcZE6DczHK6bwAdS4IDL6dvQCqt3T6KdncOwjDUVDp9IEiSZFeOIBsba2EYzMznkfyOzRAASAji0zZqzVp3qWqn09nb2zEmVE8CV+e0uX/jv3a7+xsnX1WpfxVMZWN9zbvYGpAnDQsmJfHDV0pGpoQnjAiPjMPK2OezEeec2lZ76xPq9mFcnwieDgCw74MReccCcU7b7fbuzhXp9ogohoVuMcIQ7Y17f/jeN/8fruUMqRUEIJBhJhNgoW7f97Y/H+29u9NtR7jz/rd8/PzpdXGsrHF0LXTN7v6lWA9E3TgAKO4pUT7+nAYAcilSxao42SnVjDcD2W63vd+8qmKICBoPmb9OqRRITkU6PR6nIB66fTz8MKBOdGt754WA+cTGgxysCBRkITQQohmCKKrqwCHArCAWcQoT1Kur1fI6M6s6z6URxzRmVjBye2ZHgUFigI4cvPTc+ypur6PVlRP3hkFNtFetnq5XT4AsS6iwXo5IRJQMF1QB+qd3hIullP/omGV6J+8qJGdocLd6Bz4hIgUJqZI2n3/2Q7a7xVRWlJjhnDMoLy4uV+u15uFOtxuJRKROWUGOg/qFe7+Ky0vOOVYQqcL5phDGuY7pPTsHAPP4PD6PzwFApuTjheyI0tK7MDMoDqKDW8/+h07z4whYmJ1zqmpoRFACgqwkDo3s8Yk6EBGEDKlTMtyBNE6c/p7q0mNCcBSQOEeOXBAoCSWHPSMGGN04taDAldcHOL5vAKbLhh7TN8Drjo//nKIR4eOrcBzPNyDdOB1AB/udVvOIDWWz/5HUpF4rLS8vEg35HI12SDLnJC1m5xO3BDp66SZrOw5LvO/vHXQ6HebAqUDUEPc6n9m5/h5TLW9sfL0GZxqLG4v1OgBVMJynnclwDppbOc42ZGRsqoR1wnF6daxBDXswY83qRFy0c7T5sYC6lmIDI2rTzIyR8spSEhGc1Xantbt1WSOrkJjaoR4okVF+5OvetXbXa127qzDimEFiKCAYRr1q/+A3v9G2Pt5qH1i6796v+ehdp5YhpAHi6BqONnvtG0otJ1adTSkxVNiFyVtUORz8YYmbyb4BmGjGN4zVxVNzAN7ced45N9TNI5kNGxdiAKcgogHiTSQ+EUAtRQety4f7V5YWTq0sPeCU2KCvikuSkt/8DIwQkVoVIjIgImLmWJRVFhsnw9I6M1KjAygcNJjQ0EtrIqxOVNWQxmyvXf+U3XxWoJW1jVL9DFO5HC5WSiulUoUSfaQEODk1PPSUzuDbjMxagaKaFLGGZkEChU8rATPEesKnZVE22ty/duPyH6pzrKGagJIZF24sLjBTu92xcRtihUBsBW79xKMnTr3COadsSJTYQTkxjhjeDfuLeQ4A5vF5fB6fA4AUAKRF0BEAQCxo37r1+X/b6zzFYeh8F1uVQWMAIBEpzyUCARBRIWUyyWbpuqakcXT+wVf9P61UnDC07KjLaiDJgfRngkeswYp2JtLpdKDcTe74vgHHaAjM6BuQZkhD2blDVvlkdqWgL9Q3IMnR4cThyuWb5XKZ0kvfP32qSgwiCkOztFgrlUqYLABPMt55GDmG7ARCAXYbaylkjkRVbeyuXbtmwpKhQNWpmCCwh5u/vr/33OLGA0vLb3XE6xunQ1MiFVU25J2VNJ8fNaWTU1Rgzs8s09FwGQEAouo6W82tj4UcO44MQic9JHMzCR4B0GeNW0G3fbi9eUmtCjoRWiG6Fbjyypc98mfeUQ0rkHY3CrxBGBmGuiAw9aD7gbd9k8rjB4fbEe6/72s/dPeJdVJFmaLeDbt/1UZbSi0nkTqZEQCM5ZE5HlTFIwHZ10z3DRjiAjGpxoSyIo6j9t7BNfJe4v21RDOaSORcX4YmACDV98xW9InI2f2tnc87idY2LlSCsySakCdp1PWPhYVFxHoAAECIicjbqVRrJ2qVldQ5eOBqnF909wvGc+qcV4kVB2nHN248+7EaH3WNWzz1GFALoGQqK4t3k0ZE5NsjOSs5SwfKnl6aYanLMUlBEyCNCMioOpCISKAkhL2tz27dfJpFQWUwMQeGAiiVKmVVjaMj55zAEQQUc2nl7rvfaMKGgBl2MAkw/hvmAGAen8fn8TkAGKUA9fk/ysk/kZKX6m9fufbkj8W9i0G5FEO8OjZp4nmZ3RgEOgwKaGSD90974QBwsC4I0Yk6jYVvvevCt1srlgOFJYGDNWKIfNokQlCS2QHApMyYJle5cEzfAMzoIDa7bwCGB4VH1YRIi/VVXk7fgJSdgk473trcDYKAGP64+hPAzKwQQBqNxuJCdaxkrhNgwBgQksHvo2l8g5FPG6Ys9Hq9W7e2gpIhZVVHqEBu7V795Z5trpx8a6X+aLVeW1hYSMccOV2oroCCJTMugIJzO3AQk6E2xaDDYECO4ri9ebT7REgdpWhgK5usBx7cyOJAYSza6zS3Ny9JHDm0LFoAL6F76rF/fvrhvxOyFRGSwMGFbATMADOqQfv9b/smps/tHuzEuOf+r/nQ+RMnjaqpodPd6uw8r/EOma6TSKzzyyyZpCSe6vw6Wci/CAxkOioyC0im7ELlxEKBYXb2LlrXUyV19jaoKUUTw2PTMpRwI6nXOrqxs/NCpbawsfag6gKxZH9gcrGUue9urkqizOwBgNerEbH1xolaZYOIiIzHCbmHNOSE4DsNIiAxgh61b176BHdfilzEKxcajbMkalVq1ZWF2hmvIpDO5fszplkAMHJRckaEB4fkcioms7kHaBFiJFUEnkMoAkcMZwOQ6tFLL/5BdLQTcslBA1MiClmhxGEpELHWRqngj3MqaycePHHyIQsTEJzzWnaOM+2UEcm1OQCYx+fxeXwOAJJUuF/BIiI/AexHqYjE7j977al/A7fJZbKAuiR3ISJWzuqmjwGAAQZQIWJRBQOxKhgBWMg56UbNhTvv/d6l9Vf3nKgCyg6OAdKk/ulp07PPAwwnhBghDyhNyiiP7xsw0yjCMX0DsqqUox/rjcNGqefHpwZNgwGekUyHB0cHrWZAbIyx1vY9gFP5I61Wy8vLi4Rx31DNtRGdyJISGkhfSpZvoJPq0NIXLVXVvb29TqcHChkkGkHIHn1069YHytXa6qnvhFleXz8RBAzNrtUhAHBbSGDK6WXIkPPtkL4Qi3Ztd/dg7+lQ90HRQO42EX5Rr2NIrKRQBCLS7Rzt7d5od3dU90ExNKhS45Xf+G6zcG/Zc8pFWJmZnWpIJEDdtH//t/5MQE/sHOw5uuu+N3/0wsZJJpga2p3No61nYXc56KnE1tosAAB4xvHfCQz7cTBc0A2YwggaHgsRIFB1Tnp7+9eti5NUW2elpowl2eNWAFm7AwJYNVZ2KtHe3tOdVnNl41Rj4QJJ4JIaB1H6LqNG4WDYOYfU902ImZmFKZmod5XqWqO2AcC3Aoq6c8lgLifks1RJ08FQs/XSjUsfKkvcpdLyiQdNaUHVxba9snChWllhDCB3hufGIzh6XNAM+QpdMnJfz+SeTgVLQtURswp5DwSwJcdxzIyjzrWrL34C0jUwQjBcDkPjHIVMymTFqRNFrKpOukG4dP7eN5Qrq845otDBAdYgHLnE/XrKHADM4/P4PD4HACkFiHUwd9jP70nZuKOtxzc//5OEAw1EmMkmUqFEZGBUVbKZHOcDAAEzYiEhMaQeKpAGAuuM7XTi83e+8ocq4QlYiog43cVN+u5sE+BY2cY4Nej2fAOm6dZPkSU9pm9AYTFyAAw4n1f9cvkG+OzHObpy7SYzgiCA8yYPNmkOMKtqpVpeXKwFIXuXn34W7rXPZ0kO+syEVA0lxzdg8ockznGeMeXctWs3wjAkLos40Yi027z+64ed6yfW764uf2tQXVpdXnLOGSqBrJdSGSqLTryUg2poITVI8q8aFQIAI6zUddHB7t4Lob0JjUACor6oJUninwTvm41AVbvt7sHh5mHzimA3IDKIq8tf96q3/mbMvaqwUihwRtmjHIbAcF177/qtN1fNM9sHe7Geuv+rPnHh1BkmDevU7uwc3nza6C6CDsT5OR/WIgAwIwCWyZSeokZOFgYUFZgTNlxKmyHS3f1rUdzEwGLWL2IamMRBjtPEkzEPMc5MvwgMonhr69bnReTkyXvLpdMuaSh5oU3x/B8Y9mJZqSinB57Gl1oMSNWJSKm8tFA/xRyMOPXmFuO9HURyMBBILCSXLr9PD64r4nDpTHXpLkKgqs7F6yv3hkE9oWYpZ2bQR9Y85wyyy2inbqw/4PJ5SqozwgDfllASP6ug6iW7lFjZxFu3nti++nk/yK6G2Qhr2ZAqGZdILkXWKZONbLy88cDZc69UMapO2Qw/GAeXWLyy1hwAzOPz+Dz+pzOeGSnLVprF61EQjBLYSGAA1uaV39984RdDdKNAQARVsBcC6jvFDhJrr3ee9VIF4I2BOfnmka461LmQBfyas/f9ZRusCBxESQzBqhIoNiAHBRlCpMT9Wg7raKV/FjBQmNu93L4BQ22H2/UNyMpQTp5tGO8JzJKN5Qr294d02+1od+fAlMK++icnzm4Ja3lldbFaC9NZ1ckkiukWBNkB4rGTwAXEjKEz3Ol0dnb2AlNSFnHEJHHn2a3rb+fQnjrzzcIPLK0s1qs1b1qce1SacTie0tKZYdI0J8scmxv27GfY7tHRlV7rRUaLIAESdRh/e3GKuRVOJVC1UU9bhzs7h0+otsowZXSrD/3oK177tzWODYxVy1RShSEIwzgwI+D2e//711eCp3f2doVW7/mKj913+h5RV14wrc5m69bnWfbJdBUiNvZHZzC4l2enw+Uuv1zHgCwrbBwYp74BxUhSXYo3jWq8vXtNJFJ4zr0BWe+zRsIzNwSyv0IKwLwBrJAYQ4fNS7vbL9UrjbWTD5PWiMireQqUVBhWKRyRwPJ/AgKhDIgiZg5UnRVeXb4jDBazCsvpScvvioiIqiHtKut+6+KtFz+ybHqHJEtnXmlomQyc7QWmvL78ICsIYqGsRki9+R2U05EDYeXJOG2UXTnsi1J0E01tAgzfy2agMaAsJjbUvfTiR9t7t0r+mW/CMBBoKXkasPPwiQA4ccacvetLFhbOiHqipLAGuTBPiOcAYB6fx+fxOQDoA4CkTNUHAIaFjTLLzsV37l781ZC6cUB+A1eSWQDAEI8lydxH93JiBxcQR9ZKdfGtJ+78ZuaaVXjFPBEF1AiB/JhnnEUsJMdWwpleKf+T6huAYQma0fR0zDdg4s+ckcLB21t7UWS9JKuIiFgvZ+7/1OrVpaW6l9wemENPOoBp567Q/VcKlChHC/Y7O3vdTmSMSd0J3OH+b+7dfHJp7a6VjT/Xs+bk6TOhCaB9r9C0GyY6wgOZZmQ2GQbknuQcDEBEJCpiCdb2tpuHL6rdMugZbwrFTGRY1A/eCNioiDOq4iwODra2Dz5t0CsTq/K5N/za+YffYjvOS8qIwDfzlBAAgAZove/tby3R03sH+w6L97zxo/ff8aBKXFoM291bzVvPsuyDO30A4BlEXu9oNoEsuT1SUFFHhYcy4eFOXcqE6ftSEaTd2W8ebSVsb29SgRjKDEokCmaiBkleIsuZDNIA4psA4tqHBy+1mjcai3esrNwnEhAZaIR0vLuv6DqyokgtIfAW6eJArA4uDOq1ykq5tOjhd4YRJLl3vffkVjgD05O9m5c/wr2rscTaOLe0cC84UMTW9eqllaWl86rOwHiJzKTcM5hqIJo21HssAJA95vF35TZe/ERZv3sjYANLQexs7/JzH4pb+35jQiDM7KELGT85bVQVGlun5drG+bu/hIP6xMXJDjoHAPP4PD6PzwHAJAAQsLKJrz/ztubN3yqRtZwWqqd1AEaSUSGkzO5RAMBgBKFEPUZ8ZIOz576jvvCVXKn21JKDqGMFOzAJ2EhGFfT2jHKnAoA/ab4BmYq4FI3/DvlSsU73Fph4ovpfZy2uX7tlwrInK4tLUgEDVdVqrbK0tMCc6EdhEq9qZmpHcVo2y/HHsbt5Y5OM1ysFoRxi5/q1n7Pdg/XT3xLUH65UgsXlNVJhUlYv1Cj9KZHh75Ich4SJBzzbOpSC7pOIiw3ZbudG5/AiZE8lCliYSMECJlZWkLKIqASqCme2925uHXysCls23MPag1/1rlN33e26BCXlBAAAqgEZAUMDaf7+27+hxE/sHh4Kqvd9+cfvO/ewSlRdKDe7t1qbz5I71KBNKi6OPCekDwBmXlEy7V7g/HbBFAAwBiBJRgAAAEW8uXmRSJ1YZhanZCw08CSToUdflumXk+BK7jFnJgE8wlJDiO3Wrc2nncQnNu6rVO4UEMQRHMBKAtGspcPgC5JBGiUyKkSsfvQ/Fre8cK5WXQPENxP81IE/hr7tRv/J4FQYhpwVIweHz926+uGydLpUWVp/sBSsiXF+TmChca5SXWJHxE7FSAJ9BxiAdfoKR65f2LSO6FBrcdIkCQ81SZjYqUC5pFFr++ILH9ZeJyQWJmL/iQFDFQ4Ugp1Y59WETpx+eG3jXhUCm7y7jzH3AZjH5/F5fA4AcgBAvypJALnQgKhz9fO/0t56T0BWGJ6J4DsA/U2oDwBSf0rKq0ZTdhcf7BzMMBQ6isUpusDiidPfU15+VIKAHQEk4lSsgSqbTONAhlhGyuMJhB/n1dlUzP/E+gbkpUQCQOh4vgHFH15EDXJHrehgvyMkvpDZXzOGXFgKFhbqpVLgOWPZMuc0AIAZZwNGEg7BFCNkIjo8bO3tHxoTEEyiLdj+9OaN36pWFhdPfycFG0uLlUqlAYgh7qfs6vMqldu5arfDCxrOipggSuq7KCA5ijrX20fXqLdJ7FUOQyJNhvI1EBFRQzYAeGvv1tbeB+uGSozI3PvgV7395MmTNnJExgIkEBIwgYkBJpho/wO/8y0hPb5zeKCo3PuGDz9w/tXietWFcru7ebD5jNgmhx1SKzZWTXTriwDAcVfUyOv7ngkyEUoV+gZkAAAR9Q/R2ube/qaqE3UqIBYigpBS/jxPXwNtbMUWuuZ5igozO7UMUkSdzubWztPlUm3jxCsUdeaABYpIQIzBxHP/IJNqN2KPLrxhrfECo3BEVK8m0kDiH2vKlFMvT9o86gQQFu3R4bXLH9LWVbERLZxaXrnPgtmE5CxzsLx83nCZ1BGMS06jv3GMiPAsC7zA9HdaU1SGvEEIUzt76ayFIVKrEQdm79azu9efIBcRQj8PlrZHBGBBTBqQisKFpdXzd38JTI0D40/vKPTyq2YOAObxeXwenwOAwb47DAAYzjARHV1++hd6ex8yLOKzJBIlYZhsRcp/VBYA5NTWR7ZwSdgXgbJPL0WEqefkwoWHfkDCNRVLCEXEqZASKKk06wgGUM4aMI3k9JNnA2jy+OyfAN+AIhiQwT/5Onf+KGfuBoyeHBG5eWPHqWH2KMzrjnvIFy+vLNXr1SxdPk+tZTLA0FlIQTTQlS8WbqIkXbhx/ZZTZQpUSSWCkdbmrxzuvLR28p7y8rcxVddOLARc9m0cb95EKb2axkgmx7p2E4a8x87wcGZJ6tlxTklEDAlps9fZ7rWuuGhf9Shg9u62xt9fVCYEhkridGv3xq2d99U5ZLZSecWjX/OO1YVlG1ky7IjhICTe+5UIBOXe3od+99sNPnHQPHQoXXjtBx6857Xi4j4AUNeioE3ixFmvT+rpfH0brC8cBkwHALP5BnjgljxwOB3fUSWiZnPzqL2b8KyS54YZv3YzONqO59xJwuqbAP6JRwrV+ODwqcODW0vLJxaX7gXXIQ6kBIbaXBTRv83VzwyTeJcAJaNwIvFC/XSjdlLVeV2FLAAY9dBwEGJjrQ2ig8MXbl3+SIN6LQ1WzzwAc4JgSVRhy+HS4uI5gwCAg6QLn0fUBaZf2dwVLjpOcyoCA1PrMv4Mq6YOfRyz4ta1xw+3n2drQWVlJQPnkgn+vpciRMG0tn7vysY9lE5UzwHAPD6Pz+Pz+GQAYJWMN9dUAgOGxDCp27v01M/EzU+ZgGLnE33pe4DdLgAYlIG9TAcbqIZQGxJi2LDy1efO/0XL7FTgjEAh4KSrnnD/iVNqsjJyTVgld6fJL1RP9Q774/INmAVUTPAN4OK8ebAG8maFu91oe+uATAjIQPgfUHX1enVpuTEjUZ4KcsG8t0z6ECkGRT4JiJ29cvl6uVQnIhEwNJZrO1d+wYk9c+brtfpYgODkHRti1TMHPLlFM/dIorSDWTLdcYmYyR2AYgwAITADViTJxiRmimPXjI9u2s4t2J4SmInZH2g9NMaQsb1oc/Olnb33VjgwZF39Na/++nfVw9BZogDiszwDIjHMzjljjHZ3P/jOvxjyx5rNQ6fB+Ve/++EHv8LZuFyvdHpbze1nXXzAYYfEObGQIQAwcMU6HgyYigSGfBKmQuJC+zASgh/8MIDb3HpeVRWWwCICcswBcgcSZHKCm3tQqX+Wt5slIXZqm9vbT3S6h2vrd9Vqd4ufm+E+zJDR4n3qFdDnArGyH97wzQ1Hcb26ulA/AwBkqIA8pupUiYRUlWB7dHjt4ge5cyV2Qkt3LCzfy06JyKp1zq0u3FGvnrCqRAPYPDwDQMfr1I2LGk9nSIoqZb0di5aHqjIH0FgBGHZx+/LzH7at68aEqqSpYWXycGKnYgwFKlFYXj597lXl6iLDCNxgaAlpB1vnMwDz+Dw+j88BwBgASMgGRAQJiVx066Wnflq6TwXMsXN+E86aAKfzan0AgNz8PzMGMLTBGKEYjhEwsxMY9CgUGy2cOvM/1VdfERNE0ta5ZL428SmVPgYY17Ab6QD8/6lvALHOAir6P78PAIZSpWLfgJHaZFKfU907aHXased3Jb5UJKxcLpvllaUgSLSA/KWfndIzuQmDCY6w6ooyBr/2jlqdrc3dSqWRpA6go8N3bV9/X331zOr6NztaWl5cqC8sk3N9vwvRHI7UVECSLWFSsX9tQRsnf+Q0naJOJCNFrGGrsBIdubhNGhEpBSFTSGTIWRe3O62DzWufazZ/v0yG0NXlN73qre+skzjLMAJlEYgBAwEjdspM6B1+8N3fXdIPNw/3FObcK3/rkUe/zkaOKyVr9452Xox6m2EQKWLrYu/0l9xxSiPj5sicgv7/1ZkEuPLnvAc+CTPg4exwcHrR+nUHUtVe76B1tGdt12uYKqwhLu4jySiVZRIGGFAf+9UHZWso6Paubm59ngTrJ+6tVM4INE12i9YJg6x/jfphJ6okX0eiQha2FFaWFu4Ig2quWtfgCS8qxGRFQ3vYfOHGxQ+UtBvxwsL6XUFpNRk1FhtQsLx8wXDoiTH92f30MwkFngzHgAEz9EL72E9pQgVBgMA7ozEohmWG7exdfu4Pnd03CEkYxjligKEM41QIQsRqgvLS0vm1jfNCAZgDHjQB+rYqcwAwj8/j8/gcAEwAAAhJbfvqi0//FMsLAJz1pB3lrIXSFwYA0g3Dj2MSoIFQUHZR/MCdD/xVKS/BJdqbzsFPCwhpMgeWAQBJA31iCXZ2kfKXxTdgVsHQib4BxHqsImtRQ38W34BkeENERK7f2GPmNDshQNgIHJZX6rVaxaMxkVEVzpzMoL/qiq/LsOaS5uYQqV7P2Bf5jyWzu7vXaceGS845ImLu7d38meb+tfVTb6osvd5a2Th5olIq+6HMRN4+A3gGE+2z9SXSVDJHIGVaG0eKqBFeitGqgMmoMPspT++6EBhDIFVVjns23j863L7x4h92Wr9fYhD1aPkbXvUNv1FTjiOYQJ0QBGKUmVjgCKpA3P7Y+/86uu8+au0q9Owjb3v0Nd8Ydy1KJXUH7f3L3c7NwHQUsRNbCADyb5U+reU2McCQVULRgicZfuxIolqcQkciUjiCUcXu7hUnPREBRCGccs0FMh2VkajnyFDuFKn0mxaq5EU/2VhV1+lc2tl6vhTW1zbuZbMG0j57Kg8DpD4GwiDHFEONp3slrQDAwhoOF+qnKuWF/FyZFV75XokVolFMR1cvftAeXiIY01irrt0FCgIErIGTTqm0sby0AQ39gzpd/xPYVsfDADNqJKSPVikCAARxxFmNByYLClr7z1+99FGOKUBJueeYFaxiHMOAIMqBAahWWdk4+YCpNMCBoYFy2RwAzOPz+Dw+NwLrP+wpCwD8Vk5EzCDWqlD38HMvPvvvDO/H4tQ6Bo0AgEEalHAodPCZI8eQxwiijGuPSNKMZqM9DldX/+zGya+OlRwFTm2gpl+t818ncMrJ+CkL56ZcA6czvX3N0Ly8U6fvHX7H0Zm+elymMEc3fYpg6NBnsg4dtnJG6Y80g8r6wpfss28iah/19nbbzCokIuLpEyJSq5fWVhpFZUgMC5ZP9gAuTppnuhwDsEcGGouaK5dvloKymhDOEpGLLu1e/88Ku3LyL4S1u+I4PnPmDDP3hzIpg10mXu7JqlCj9rGFKqgFRWXvF5ENphiEk29RTkbtNZ25Z4eo1W03Lz/5tqj7/hDM1OH173js63+pBopjKEMFEDgGMxhQAVScc09+4h90N3+21d03io37f+qxN/y1XqdLBuraUe+gffAS8yFxMgPAzAROCBuj1HPNbQP0McBULvh4Yj2mmeuQ5xtQNCGT+gbAG6Y56e7sXAPEOUcsSEx8lRk6PJY64TmQOG1NWISSsMwtrAEZirb3nz1sXlmsbayuPuioQbAKS2TEKTGMiLIRuKJ14jW1xhWoqmGjsXDScDVHXLj/pLEOAgqivaNLN1/80AL3IlMJNy6UaQEmgDKYnG2vLN5dKS9BWeDYkDohBP6s9s9JgX7AaLFggqQB6QywYdjffWIpJAUYIbauf3b7+lOhKoQMTMzwcrmiZMj7K4elcGFl/VylsRaGVWbuewWmJ3buAzCPz+Pz+BwADABAMgScBQAlQXvrY5cv/ceSafWchYOfsjKMlx0A+P8mKY7RgKJmdPaBB3+Ago04VCNsYVRgspV11sRDl2QIAKBQsOK2McBUADA2c5z58Nna4omY0pgh19TUp+i3ZDHA0IadBwD6bGAR2d466MV9cc+E7F6tmeXF+hChdmI7YvaSYfF5npo9JLlIu93Z3toPw7JTJrXiNG69f2/796v11aX176DSerUSLi8uDa3VDOt5wqEWAZI8all+N6B4nEP6N+BIv8gTV4a+SDlDULFso6hzeOnJt3Xb7wnBhru8/h2PvuWXagRrAYY4qFMxRKSGSBwULo7jy8/+h63n/1k32iG1px/6qUdf+71RpwtWcV0bNzuHl4F94ljFS+igDwDGZx4ms9dSv74vxJpaJqyc3I/1izmFSdJs7h0d7aVsnUQQhkhT2n3uVMOY+a5OHMXRfmNBCUKkTpt7u8+3j7YWF+9sLN3JVCW2IgAF6iwTMnl23jOqL/sz8sAkG5pGvbZeLtVVHXPQ778pCcDqBE5UmUhitK5e/iCal0Ou2qWT5doao6okAYeiUSmsLdbvJGJmFhFmFnFEnHtWeXS6acZhX9DE50CRHmgxBkgumQkA7d249pmdG8+WEQrISycpAgUzs1dWNSgvL59pLJ0OqospAMh+0RwAzOPz+Dw+BwB5AIAZRESsodPD6++/cf0XQ3PUcwIHUowBgKzNzbEBgHebV5WEU8ssABtCpxvZuNx4y4WHv9sKWQ5IxYFIvCB6+o2cEJA8933UzoamJhmzwoACiovOAAAAmckKIMsGOQ6lpPBzpsiAkvalWvucZiKKevH1m/teTD9l+WulFDQWqmFoCia8kVu+zVZw86k7MzVURr5nZCybAOzu7Hc6sTEGakR7KtHh5s+3j64srb2iuvCNjmsnTzTKpjzUo8iulen6P7PbSsgssCcvE5JhGMDjJfaUJiQqVqLuxc/98lHz90pkDHfDje968E0/3whgLZTgFIhFiSggRpLy9nq9zRvvvvyJH3SyJRSffvD/ftXr/3bU6joWJ221nU7zusomJfKU/fYZ58k1TnZuHr2ot2XWISkQKk6UC7NVr3Cvh63NqNdyTgHrtTtHmjYjkLgIxxaMBwwAQF+V3wQUda7u7j5vXbyyeqFaPysKBvW/iEGs5PImwkfO1RgGEBVabJys11b7bRmQUThD7C+xc352Vtrt65df+P26dOPScmllIywtE5eImFQVcbm0uNQ4B4BgRC0ziQ6QcDa5L5RhnQXkZ2DAyIKfLBs1PpXUf4GIBCEJOtde+MTh/tVQTQZ8h8wGDCGEVFpaPNVYvKNUX852VAYHNgcA8/g8Po/PAUDyQOxLyTD5MQA2MLEcXv69za1fMabdcwqXagRRNqEfAgCSpwKU74DrZ84S7r6kFvAkADHUOrLtVrd07u7vXzr5GiV2FAzE5qwQEQNK5OcW3EAdVGfJvb6AwmSOT3DWPuzlwAD5ipOzSvKNpkSFP1wIxFCBQjhtv3Qjt3Xr0ATwlAkiVy2H9Xq1VA77bYrbhlVFP+E4/soZmkyaC968vuO0FBBUycFJ9+LOzV9Swsr6V4e1LzXlyqmNRXL+HsiTdZKpIp7TSUG5jIXp63BMXnZEnclzJPxtAidetd0rvlz63H9pHrw9RBAG1qz8ufvf9IuLJXauDwBUCTCUHIxDz8bbtz760ke+h/SmQ+/UI//fV77+78at2DpV6sK1u81bNr5BFCdOt6RpB2BKx2ki3WvqEIvMfj7HXcRGkEC2Ys3MUdxptrbjOFaJPIzJIFI3goentwIA5Qx7beRJ64n7HBuRdu/y9tYLJuCltXvL4UlFEJD4mr2QJeWsku8EDJB5tLI3NjagenW9WltPv5Qp8fNSJYgD/Eywdi/e/IhuvVAqlah+wtQWg3ApaYKoOunUKhtLtTvEywwMzgFj2okdQQKzeqHMVIsZ8l/rGyFnMQARCTtWUYquXfzE4c7VwAVJQ48McwAiJSmVKgv1kwtL58Laov8cmQOAeXwen8fn8dkBAEfu4OLbd3b+GwfdPgAAezrCECXAE4dIjw0AMhlY300MyhAROIHrtDunH3j0b4YL9zoGHJSgTkh9Ic2PB4PMkPpNQQGpoAR7HCQwPto7xIGmKRLXA0fS2/UNyK8OTuPRZjbv0b68cDIkQezzS4qs3ry+x0Y9ACiXw4V6uVINx6txM2OAWdJEORYG0NQQQohsL7pxbdeUawGcCNhoc/edO7c+WFs5tbLyjRqeXFpaWqyVIQSmQns4mQ6udGaNoNvrA2TFZLPmel4IxZc//fIWYdj40uP/pXn4WyFKJnDUeMsDX/Nry5VQJAEAZCFQDwCIVWOyKpu3PvnSh76H9bJF9+yj/+SBL/17ttuLI2XEcO24u9PtXINGxF5zSRg0zs6fWrid3Nb5AvpvwgWv7merqaIlp0kkdXvN1tGeuJ6qiliAkxHw3FYbTVzhMkBDIz/Ozy6BHMCkgLbbRxd39y6VyrWltfsDs+TfQuznOnKN5yZBZWLtG54456q19aWFU1ADGvxwJ/CcJueUTXwUb1996v0LpqWlxdL63VZdwHUBjDHqnHXt5fodjdopyRvkGDoMkokwYKgvd4xWQKEhgBScf29KLQHIacyM2B3uXPv83va1QCCUzKwTERkul6qNxsbi8nlTaSRblQ49YuYAYB6fx+fxOQAYpQCByRf4yYAjt//Sf9/dexsHnZ5VOCYIMRcAAJDCA4ARG+ACADCAAarJl4uku7JhA46jI+t6Bo+ef8X3ceWEiCiMiJCC03zb746OckqAE/kJcvt5iQzV+0lHE4iJNdPj+QYUGhiN0QMmf+Dwzj1IxzXR0haTGDJQZN3NG/tMRlXZ6Opyo1JN3ACYg7HPnx1QzWSCRrPMY2TL/0yt/fbBYcQhUdxVGMLR/tYvNA9vLG68qt54k1M+e/pcGASqzpcVR/SaCgHATI2jmQayUaxmM6WyToP80jcHvOajFebYXXr8F5vNd4QITagSfslDX/eO5VrF32qxgiyU/E0vAUMcxyI7Nx9/7oN/megl0c7q+R94zVf/aCeKyEKdJYl7nVtR77pKF+TA2gcAsyXxeSvwGP2i2edwfEukSMpXVFWFTOLbBVU9au8etQ8VsaqmRW7pS/rMhltkWieQQRbOMLMoiAWudbD7QuvoRqm+tLRywfBiCrN9Ryff2UAGa2P02NhAVVkCVefIVcuLSwtniAzUgFRJoKwKdVAlNs5ptLf3zM7lT9QDkcYdlfqKaEBhmfqPWtdeWbyrVFojMjkdj5GZ7+FFm+fLNsMzbXw4mCfIgMo4ACA/hQZRihnGSnPnxtN7m9cJFoAhJTIw5Vp9eWHxVG3xlAlqQIK2JGsjOQcA8/g8Po/PAUAWACQTwAAxyIBj2X/pN3Z2foODXqSEmAgC8jMAPJKmTAAADmowISmmPgBQVZ/fa8ABsbXOxl2nttH4ypMXvjMMV+J0aJgUECEFUVbPVCTzg26jJT21Nz0FACRZqeb/w+36BszeZ5/8ymFU5tKcAwB8EqGwzHzUttvb+9Vqud4o1yphOoFnRGZxuZruA3ob12VEfb5/5KT2xs19lcDAGz8Frvv8zuavORcvrb+1VH/EWnvn2TuJPLQQgME0fdAi+73TyWPTr07fyKyQTT6McPq3Ula9RFWhAUtsEZoovvyZXzhovSNAaMqwdM+DX/vu9cVlX6O2UG9By0zECgiJ6UEOb77wuQ98J+NZRRQufuVXfuPPqVlxsXVxRKpR+2Yc3RA5IhYlIfL9Li74RXlOuhNGP0m/wG7A7L4B/ZzVE9tE3MHhVrd3pIiTYXcdSHliTMppInSRwucAEYSgBiQKJuqpbe7vPds62l1Y3KgvnWeuMbNYZ4Khpkp2WF9IslYDgwK7t+si9U9yUauqYVBdXTjNQR3E3ihdhcQ3QESVnOXe1Zf+AHtXqMTLqw/GlTI0UALUEKu4CM6uLN9XLjVG7qypYlZ+FmX8LpjxSUVjEHfsEsukx5jG3hyQSVzcPmpd39u81Ot1SWIOTFhZWVw80VjYMJVF1gAApd5tg91hDgDm8Xl8Hp8DgMkAYPeFX9vZ+W9ciqwGiJWJQDTSAfB8DL89CdQXlY8FAICUzJPOAsBAwQE4jrsOzimWG289cc+3gaoCha8EOXj+K9IshYgkTYJTJkBBQsnTt6tZMEBRk0EpP42Y4BtQkHWMqENOS5KmKQWNYIC+mVcycEkOgBX1JkGh4dyi4FQm91Ri1XGpw0UAwPX0xq1dE3IoJkIXzrrWx/d33xOUFhrL3871DefcnWfuBDmDNO9Pio5ulks/nq8XH/lk3wcdQYCjMEAZJFmGSTIuOWJUrAFL7Cjgnr38mZ87aL0jQNmUJXJnHvja955cPamOwHAEiT13KKkcq5AL0N289akP/HkbPwmKhc687i3/YXHlVSIQ7Ymgd3jd2VuqXSJRtpR4MjCAHBUgKjK7mAgFSWdbJ1NaTBN8A7wbQP+UAkooQTu7ezet66mQqnqLBUKoiMfbC4ODpcR7oejXjTYBACMQGDCBHMHaeG9/5/leb7exeLK+dF5RZmYSUh68N3tLCuXcaNljS6r1JCysqsRar99RLi8ZwwBISaCiBHV+KqDTvnX1+fdVuMcULp5/VbfbJQ4Jhlghos6p8NraBROUxy/UhKvD+VcnI2c6459CdD1hisaqkLKBswRhqEMctw/3D7ai3n4QmFp9rVZdC8O6moAEI7KqHgPMAcA8Po/P439K4yMdWGTm2ZTUeOtEVuNk5/M/v9N8O4fGqmqsgYZgl/EBkKwFWEpNOdZEJw0fbb80S0JKRAZqI3Ho9NA4f/Z/qi69wRgTUaASkTIoJuFASZI+gPb7AOMimKNZQh4rYwbfgJEqIKEPQsb00SeVskePR4sxwOBlfdiQGdeTCbW67IFl/94fDs7gigk7rk4u3Kr2Ud/ohyTbrYwyBMaE+aZQZQgmK1Xez4cPW+2jg66y94josG0d7P966+haffFcrfGtprxcCcKVtSVSBCChZAYjXbEDQsLIFZw6kDACtPrZfV+zPx8QTvMNGMCMvg+Av9z9CwdyAoUxvd7Fz/7cYet3Aq1w2XbjxUfe9P7Tp87bGBIwSCQiBlGQzD1LzC6AbXY++d6/bntvZ60cUfzII/+vsw/8DSayLNZK9+AlF28T9YgtIJ5qkZ5zyl1sE51c8xJDHvO7kClkoQnrc7KQf5a4QjDOtnd2b0CtiBhjBJo5fpfKkWkOBkg+asJ38cDKQIeeNcLO9m7u716M48OVldP1xt1OSkQKBIBN14wmtw4p69ANIjQCAyR3wioMKosLJ8OwoapELCICJUdCAXG8fevJ3WsfLSMu1e+onjgbOwaVyQgLC0Vk1XB5dfVe+DlmckVdjpEHab/H4ks8fT2x26EGJddoxBdl9IL2r4XqYA/yTWNGLGJj2xORMCgbEwJMaS8lBU5w/UbcHADM4/P4PD4HAJmNmUYAAFu3/fR/2m39DodGCBI5IwEZZDsAXzAAGMIAXm+x7w0ADpkBcSrdSF1AZ++68DdQuUsMiEidqECVymAHl3w1k3/QTwUAuH3fAByL+56bTOfJhspk/+Asuhhxj5pQWhv3+s0T+JtINJqBvOEzlXHRoX58xmHrQq68eouf/jLzF5G3dg5s10lCwIile3F397esay8svrra+GoEpdXFpXI1JAX5jHY4w0h/GRdVdguYXGOVy+y5kknC51MAwPDr+8Q2SjG6z8UVxN3opc/87EHz7QbVoGy7UfmBr3jXubOPicAZQFQtASADNqrOiiUJAj2Spz/8v+3u/qRBtcvd5eVveewNP1qp1KxRq1Fz7zLbXWhEbJM54AQAmMml2Vm0fWbxDZjR5G72780q5xpQs7V72NwxgVprvb1d5o4QGiPIjT83CqaEB0qpoxiABRp3e9f29q6IjZZX7mjUzllNzPW8yiqR+sKD//yxqQBkuUAZ05UEDDMHzsUAFuqnarU139MDheJiL/TrtHv14kfs/rMlpvrJx6hac04pCNV5P+82K0rllaXGOW8pkAIhCwTjBsYjd6g/2hHO54T+2ORL3McAuQAge72yPgPp81xEhJGUcNK2mfjU3xNT+9vBHADM4/P4PP6nHQD02fPSd2UnZAHA5pP/fr/9Lg5JiBE5GgMAI1NcRPgC/6TlLkcA1IAJzBAR13UuBn/pA4/9oHK155yRwLHAxuwF+JKtEeBRvZo8Wb283egYvgFfDACQUERun5iUl6eOA4AsBhAv9qIz/OSJfYAMABg6sLF4kdePyy8x9i+KcmLfm2zhCUq8cm0rMCFISVQ1jtof3996P8r1teWv5/IFZTq1vmYMExFBxs920anu46sMdQezLJVsU2TaRZyoe0P5eU+SZYJML37xUz+73/ofAapB2fZ6dM+X/fb5C1/uLDQEHFykYGIGDBjOxdZxGUdy8eM/fuPW/8egZIOew0Ov/vKfXl45a40qu8PmVdP1AKAvBITsGECKy0f4fJPHVGRS5+04IDPLH8u1JZ50h5KokCHd3b/W7TWJjLjE7WQY9WVhc365PVcwNE03s00kSns5qui1jy7v7VwhorX1s9XKKRWjnGTXAQUgP/lk+jdCqlebrDMd5c4Njo2IoEYhgJTKi4v108aUVJ2CIeQUGqDbvnH5mfcuYl9Ly2vnXtfqdqyCSY0hkKgTJ9Fi/Uy9egKsKobYl9Wp6EHX/3b28vxUOHPVv2FnfrQmT62hy0GjT7A+Qyn9BPbMqD4k8JAvW0AY+oY5AJjH5/F5fA4AxgEAg4iVDCiObj357w4776MAygaRI+VRFaChbPtlAAAp14XJCUPFjxeYUDRWdZ1OZ231L9xx97eqkuXASeQ5Bamqtu9IaN8aLNmldIjzPT17oNutNc7a8pjkGzAYFJ6BIT3L9w5xIYp5/Lkjwvkp/pjH03iiPxmijJOI0sPTyd2AlAIEIoqi+PrN3TAokajCQqOj/d/Z33misnJheenPkKnXFxeW640k+WOfi+kMQ72DYrBgov+DzmIdMBkJuFkwgFeC9+0IFYANur2Ln/7F/eZvGpQ5tHHs7nntfz//wNeKhQZCwnGk3jlVCSCH2DlTQgdXP/lzl6/+SKChBO1ITj70JT+xceaVSirMrfZl091T6RFHbCQz5puVh09TurwLfZuCobnwknIoKMdpQQy/kgQaqDqlaHvzqohLssy0lI6UYdUvQKCAqJZpG2bHBjj3kBjqVJiZqNdqXtrbvRwEpbW186VwTYTIGIWosCEVUsoALc77GTp2krMwwIOWcqlRr66HpZp1yVExsyLe3X9++8X319lS4+7lOx7db94MUEEA8qrOFKnqYv2OSmU15dppX/Z0fCZ4HACkHdeplMIZhkDy71AZeXSPTCn06wXZBm+R+twcAMzj8/g8PgcAWQDA/gHuGwAUKMXRzSd/otn+EIWibNAbGQIWIhKMFNfxcvxJx+ScI2InYKPK6gRAt7Nfu/v+v7Wy8diRWnZEZBxcOj8pWSJQtnueFqj6lTMeqSlO4dJoTu44IRGhAu/YGX0DSDGz/o+MVOYm7KnjhKhxNZIigJGf4qepgYdb02gAMhUDZFOuEQCQKf8ToMym1Wzv7DeNMSSeeNPa2/7l9uGNpdNvrtVe5yAn10+UwxLIkTIgouxbB0UYgDLakf7HCQbHMw4AMpdyxt7RbOqZg68YGM16pO0BgAYBd9zFz/zSzsF/CzlE4KIouvvRX7rn0T/LIMdQVdcDABMAAUEdHCwMdXXzqV975tm/XYZxpt1ziw+95qdOnf9S5xQcNjsvcq8F7TBFYE0SwTEA0P9tfSXN4yDhmWDAyOm93RZczmuItRe193c2Qc4jQ5CM3BGkQ6pNw0lkroWwjHmUcfpRAhiwQAh6dNB8/mD/ZjmsrK3fWyotq7JTTYSJaHQQhQvyaB2D/cmcq/pBIgGw2DhZra4mBMk4JlYx9uqlP7Bbz4CDtTteQ/WN7tGBGiJlIpcqg8rywl2lciMdSeLBTVfwQGP/xgQA8MxocCIMIJlwb44sluE+AIbhUCGomAOAeXwen8fnAKAPAHzurgkllUCBIu7c+NyPH3U/TiGEoDEC9AGAf/zTiEMqHRMB5BVpktY5EYmIKhgk4sgYGHIuJo2i9l33vPLvhOX1WEWVlMBOE5qHPx5OjmSGxPTYujSzUHQmAIDj+QbILLp4x2hH9Edpi15fBAOKa/wA6Qxc/5mzwNzq+BgAIOJbW3u9XszMgGVHkJtbt34ljtorp/9SuXrBBG5jZcMwA85nfv4WGGIWFRAb+shnRHxpXMV1KjVoNtnQ8UXIox0AJigRVJTVBKYrlz/3Kze3fyUgY0qu22ufvf8nHv7S72XA+innCAA8BQgciTMgwzFuPvc/nvzMD1RYBEc9qd7/ip889+Abop5QYDrda9ptErqECCwpE4OLDp0Gzlj5tk3Fi3aKfdj46Z1xhmSUiEIy9iJWdVGvuX+wmWVqJQ/Jse9KWgE6/mSTYQxQsIYlndenGEyih82Di4d7N0u1+vrq+TBYUWUlEhmCvhPadCP9B1XHHPgBYkCghogUlkTLtY1qpca8CC6p6xGZ2O1f/Pw7QncI8Kl7v67V7VjXCYISpV/qtb+WGmdK4QJxKNrzBPrMVIzkAYAhAHScFg2KZgMGUk6TC/k6xIkaun3U5Uyop9WcOQCYx+fxeXwOAIYAAFGSoRIrB9Do6NrjP9bufgohwKRxwqociEMOAwA6fv2/EAAoK5zfkwBHfmMjp8oqsbCG4dedv/fPOa5EEN/F9uI2/c0s4ZBOSFtvDwPQbC8uSNwLfQMmfKHOKI89Y+0tKYFP5kHlwgA3gc1CA6D1MmKAoaszBF1Uha9cv2U4AClgA0HU/ezmzXeWyvXlje/jcGGxUW7U60SastZ15AxMTlMK9W1kktevUqHp6QwwIJN0shmR6yUiJSYVgSEuUVdvPP0bl2/8bMkEpiyd7uGpO//Rq974DyDOkVGC9JQUHBAxYJyzTEQk2Lr0/sc/8j/XSlHs9mMNzt39L+97zdfFkaiRztEuxU1ohymG15IZo/qMJ6QF14sx3fptIgxQUhoiy2EmeVnKvTQJU2Xw8dps7XY6TYXrK48lS2sM4ffnAcaYMC57tAVWugbqVIwx5KgDQOOjvYPnj1rblfLC2tr5sLQgjsEmC6Um3JujD0xS5xxz8l1eipnAIKfCqlqrrVfqJ8gZCLSEg73nbl76QMUdannjjrvecNA9AsQY4+v/hlg0UtWVxbvDsEHsBpPNQ3hMJgKA6SUJoaLnjA51MqfBadL+LjbqsJ6eKB4nf6rqHADM4/P4PD4HAJMAgPRaVz/7rzq9T1OJyLBE+kUFAOmjnwf9BCUlVXWq7D8/gMY2kLDdPQrvvPCDpaVXgokJCqNOWEEpjzz9XQMLgqkE5eOK0w8KoDklc8rdC/sk42NhgNlbAbnTtGNFTe3X1CecmWNjgMHk4rH13adigFQrZrDYrND165uGA0PiQMb12s137259amHlbH35LysFG2uL5VIgEE7MLQByCh4AqmGVIeQNSxQemOSXt3NnA27DOkBpeGQ2BQCAAgamHERm85nffP7SzwRQU9VutLO88YOvf/O/CUhisChgwaoSICByJE44JBBpc+upP3zPd9fCptP9TuTuOPu/P/i6Px9baIDe0QHFTUiPuQeGiFX1rCkeMhLJWFjQtNtqxpUwkYN3DAxQxEFnpMdPQkROSRE3W/vd9r7PfUcfXzmNPhk7FkmVeccbQf0s1pEalZTBRUrUEzk83H2x2d4vVxdXl+4KwwVVloyu2nA6XXh+JrQglINQ1amKoFxp1GobAdUtg2CvXvnD7tZnSoTSwl2VjXvEOUfECibxDgkilqm00DhTLteHGTjDT4IpAGASxisGAMM9gdkAgL9B+j268YfyyEj3HADM4/P4PP6nOj68WwiU+//ODJCSgXR3rn72X3Xjp7ikyoFYF4AIJtsuT7eHKb3a4/+h7H6QUlshHBpyGsfOHh3Iucde+yOBO2lT3rOINQSjTM6QiQQ0vi/NyCWYJTH1ECOrgjr9k4/lG0AFo41yjIHj/uY3kWwzutfm4pEJAkRFI8KTS4Cs06nzKSzUwRomAXDU6u3tHgZBCRSrOpFWa+u/Nju3Vja+olb/amvlzJkTTJ7PrcxMlHXjmkYaJunLNE0eMM1+lK/QF2T6hb4BI5XLnAq7H1Q1LARiIReoKQUxb17+0Oc//+MVtF3ojDSp+jVf+ZZfC+s1dWzJUWwApcBz+sQqEzS05FzzPb/3XaH9nJG4ZfdPrn3/K77q+10cKEvcaZI7VBWiiEiduoSMTiqFNDUpbgXkrMMZAeGEW0+HLfyKCThFefNQSnqwf73X63lsqU4AVRZKVMXgm5C5H5IdFx56Td9JJONZkf1Xfx5it9/cf6nT2qmUG8trZ8NgFTDKUOFhHOK8wZgMV7IHt6lqvzGR7WOkfzdJE5VNvXKiXF4Vg67sX3/qPdX4ikOlsvyQWVqCGqcuMCZRIoYwYnG0vHwhDBuaKCwPhmshNKJEnDuuUNQTyBYRPHfQjGI8Ka650FDJP6+KlD0wQb5/4hwAzOPz+Dw+BwBZAODt3YmNEhFYXGfn2uM/1o2folBgwiEAMFxAfdkBgA6Rbv1smwJEZBAY2Fhgj46O6o03nn/k+8TVxXjNCmHxPXBVVUOeSD2jGc3sGqCjO9NtG5rOAINyEYKQHk93aHKdNZcWPwEJjFIgckt6s8qGzioTROwIRkS869fuzmG7GxskXq0uurZ765ct0dr6nylXH4wczp05qWIzPqA6w2jpyMmXYf3+fADQ/9f8YvBIBjNS+SdFseuqYjD2kAAAAjQEm5Ir7W998jOf/BcltGPqhnoU8UNv/rrfrKyeJSKnBjEAhVEmBsEpADWOAPuJj/yDo2v/lTnq2h1TedOXveX/AFVhxHY66tqQmMkpYoH6VGxiM0SGwcpkAIBjjbKgaDY6dfz7ggaOk9Mf7+7diOJupo3JCtuHmsVvlKJ7YfSVwxAifUhGVg4O9y91WnvVSr2xdKpcWldlMKsaQIgFEGi5z2X3Kfhwqs1F93Xq8O2ZkyIiKmGltFKvn6Cw1Dl68cqzv1vVFsJGdf1B4RKbEP7FqgQJoCJCJlxsnA5L9cSL2o8GJ66FBEx3I8nFAFltBt9cypMhLsAA2V2sgMWXO6w/BwDz+Dw+j8/jkwCAIRKA2D/uJe5uXvvsj3Xjz3OJlBlWDFGqOMF/hAAg3RJEiRhkEhJS1D06cBtnv/3EPf8PZ9X70YqIiiGOGQgcO050gbL+vsXlcJm0FxRnEhMS6JcLAIxjgNwN77aToZEmwEjON3WKeoQaNBUGFPkGTEICZKHsF7M4bO0e2FiJlFSExB59bvPGb5UWTq6sfDMFGyI4d+bkEB0/oavp7ABgYp7hcn/fcX0DtBAAJMg1CwAAKBOhrCRlqXZaz33sg/+cdFPQCdHu4eSbvuY36qderaqCgGxyaxMYBiJKQuSgBlde+s3nP/4jFdO2sn+oZ97wVf+6sXxW1amLJe5AYpCFOhl0LaaScKQIABTMDMxyp8wwRUB6rJ5ejniOqHXdnd3rCifimEKFGz3qYpA/ptg7ybtqKB9Wp+SsPTw8eKHT2qtWGgsrJ8rBmiIEs28bJPm9lsC99Obn1MY7OSopuGVUiTnNwJkUVpwShU6jpfp9YaO2v/XE9gsfKHGbquvL6w/HqAqLwgZBoE4YBBIS50CrS+fDsJFdw6rJbACDphYXxpCACI1ekSIfEppq3JHp1A1f+SK/NswBwDw+j8/jcwAwDAA8B9aTDVIAEHVuXfvsj/XsMxSC2KhLAAAAghkHAC/jH6FhGZRBHwDMgWNjTOxsQNFe92jl/KN/t7p4rxWnFCbEZUigRtVrbFA/08roVR+7Zj85B6IR86echO92fANGhyALClozwICZCU4kqUFYzsuKkEAGAORRiY7hGzDh5A8mAcTh4uUb5XIV5MiBg/ho93e3Nj+2uPEli4tfo1xvNBori3VRm3zziFvF8BogItXplmpjp04mAADM5huQNdUavxySZWB7NzMwuEQGgQut2/rEH/xfnc7nWLsGRzE2vvyNv7Ry15sAFgIiEhEOCUowEHXkjFixzFH74qd+7zuMvaw4atLCKx/9R6t3voEVisjZrriY4SBOSXQIA2QxcHHOPdK6yVnSOelycfMkY/hKxcbJM8gNjZzkNC93AIuNdvevOKvEIjJSxUhbcJg20CxTsI13cc4+lomtta3D/UudoxuBqaysni5XTokIuIyEXBSCYh1oBDH6WlujAICzZ3VgcWACX7ZnhggcBcZqdWm1XKrv3vjs/rVPVo2l+unGxgO9WDkwXlZI4EjFMMNZUyo3KmfDUg1ks57HY9drUomBiy4JCZBjIjbBW2YUxSVUnxxvhD5Cy5iFzQHAPD6Pz+NzAFAAAJTApAQilqhz49rj/7oXP+sBAERN33fmjwIAYESDRFWY1AkIQRCSUyAmUCzxQ+cf/p9duaYkxoUOygoVC8DAAKI8aAIcBwPMVpmesIlMSRqm+waMFjtpykFOowbN3Igoaq9PHI2dTvMY5ivP7huQ5TqDJLK4cvlmtVpVWHJgau/f+s8Hzatrd3xLrfrK2PHK6mKjWskMDXtSARVm50kKMvEHFjqIZY3DjucbMBkAaJrVJTKgABExlTTgwEFN7/GP/sz21v8INWZ0elh/w+t/fv3C1zHYscJBhYigCg1AEFgWEWs4RPej/+N7qP1+C3tEuPvcD5x+8FvDSlWoLVHPxRGLgGza23EjCdyI8m/B7Tv0Sh1fSHkAALfD6R+Gl5L7EZMaDqrEzL1eZ3//inMO3jlrCBymgGesFTDc85ThG9Czp8zYBGqSyhORUERELmo2my8dHd4yXFpeu6NWPgUmp/33+sPQbJbPOtIB4LEbkPvzxErcP1QFkzjnekLB8tLJvWufPtp6wlQ4rJ2pLZxzpqoEIlUwkyYNNGVRu7p0V6m0qIihAbFOm8GY1BMYBwOcgfeTn0tUQMkretKmsgQ8ChvmAGAen8fn8TkASHgCRL7M1AcAIBd1rl97/Mci+wKHDKYEACiPiEj+EQIAz5dQVhICGTIUWm27rq0tfsuJu7/RUpmUiUsKRy4ymcmxXGHQ49Dob5PDM3VIYLJvwMwYYCgNxXHo0ZjZDnnCW/qZdkrwlak/BDP5BshIB8AnZJ3IbW8eGGMIEQDYG5vXf8VJZ/2Ov2LCsxLb9VNr1VKYsQX1XJGcpDHrODtM9DqGRXTfuG1k6PC4vgFZbrQO0+qSGjkZw6EQBaxC8sKTb7/40k9XNGLEXVS+5LF/t37vn60EJTXkoLDs7yMxGhhVq1ZAJVNy+sQf/OPDaz/htNRFd7HxLXe96nvLjYapqEQ9jSMVy3CApISNQXLGszkbUIG0bl5DQIZWtRzfS3iGofNJSB4xU0lVo6i7t3u1GLTnZJx5pEcZJ5hlDeZSRMHin0ksJOS0226+1Ny/AaaVtVPV0mmFUQoBSZX4Y/+Xoeq+Ohmm2Y+RG6Xv5yUJuGUSBthqDxTWK2bz0qcQ31K4sLZRXblgpcxGOaUhEcTz7ohooX6iHK6QIREZhtYT2o8ySzeAJ75+QkMgz0tOCrDh8IfMAcA8Po/P43MAkAUAiREYhInBca955doTPx67ixQQGe4DAGLNaF30dzjtF9e/8D9OYSjLGhjabEgIEISGAcSIpRO50p3n/1pl6bWxYTB5Z4DAqYNjBRH5vD8PA2BaObOQkzA7AJiel4ub7dPyVYMy6azMkEjN2rifHcnw8EYrNFND4zboWKqOmXf3j1rNLjMTIlUXtz+1det3K+XFpRPfa8KVUuhWVlaMoZRoofl2oRn28DgpKNM3yL1n3CCnzyjEC47nGzAVAIzVyNlwqBQYUqty8+rHPv+5/7OEQ4aCzH0XfuTMo/9LLaxJEIh3dhUExDbQkiFxsQixCUqCK8/8yjOf/aGqhD3tWDz0wJf+ncW1u7TMpFZjq3HMcAonJGnm6sZzuOHzOTHhLmgFjJ+HaeMZxXdfCo9ngMEykjF7IhAzx72j7Z1rSPV/8hLr6W4SWTCfUebJ2CNQqlaZuD1YIuOidrf34sHeTYVbWT1Tq5xjNuCSOD+LPMW/LxcAeOaPqookSrKkUCWQUSURAUW93gvNrRfZtmGC+tL5xuI9jkpOLWX+qCViEbXLC+cqpWWQ6+tHz4ABMLJ+JgOACRduGG7pcYsXcwAwj8/j8/g8PqUDQBBmBsXdw4vXn/o3sb08AAAw8EMCX2QAkEzVDm3BnpthnbJRZUAogEEgInE3YiW3dueFv06Nh5QpIBaQKsHGwwAAgGrKCGelGfgMk8pak4eDx3ejwoxEqGiCMN8qFYNMJ7v1CnREoAaThp4LWwHjpU2/elxRq33MI0lmaAodyzcglSLRyMmN69tMJSIldVYOOwe/vb/79Mry+erKd5GpLNRLCwsLgLC3AVNl4ycjRwFAoS7QQFZc849NNStEmE5D5gGAAQyQ2VZ+fp/HC5IyB6xGTUiiVuXg4LknPvZPAr1FgIGsrnzT/V/2EwvVdQ0EbKxacWxAElJooBqJI0JYA5qHT7/vXd+8YLvEsmf5zF3fd/f9X0elirIT62BjlhjkhEQTMdDsbK5w/nqehAH61P+Jwroyo/Xv+LB18nxIRUKHYIAUUlVSEU9/izhW7kVHewfXPR73de6820cHNwjJqNbnEAbo96A4ex29aznA6rup4ojFqbijizv7163rLC2fWaifV1S85lV6FdBX48lejvEzpiSknL2RfW+KFGR8SzQU9U7FUefo+YPNp0vGwYWNlburK3fGUvaUUCVlUoIlMuQMM1eqK7XqWvIVQ2z7GY1WmDMLowgATK1KZPWpcl8/PhuQff0cAMzj8/g8PgcAAIlSIi+SaN8R2KjA9vaeuvbMT1i7SSGIGQLfAeB0mC2P+UPHyaSnpEFENGZF6reJvltT8qMkikQj4XN3P/h9XLmHFFIKxcYsChFSVQqSSTiIEKjPph3dZvSYx+mO9Wo/BzhZnnyEUHDbvgFDFpg6cZuboRswqjI+0Tdg6g+c7BtQ/HYR4k6nt7t9xAxihRPrrh1s/kYvOlxae0Nl8c0An1heKlVMNkVLE0Eq4jWR8rQ56WkAL0MiGk47hpKcpJSrOfl93jViyejAJoMQXCYiUVLVo/2bT37iX7B7ksgYsqDzr/myn1869WpwjKDkfaBIERriEALbs65kTS0KeuH+u9771+p7nzRkD1xbym983Zf93aBcF0OqyhKL6/ofQqx+wjUrCZWiuyIkMAUM5FntDuVn/XZT7rpND6DYISsjFdp/yGUXHiZlnM5G0e7+FXGcdHZICGZszWsuyM817R6fFPeIMSNKRimqsL3Oxebelah31FjcWFw6F5gVGCZRBxURpgDGZRLuccswNwbbc/pIUParyz8V2wePt/afZRcLzOLy3dWlB6BhZBwDDMMMqIMyJIJQZWFjoXLKmxcPKGqSCESMPxL7sqEj1RPk2Yeld4tkL1a2MAHADG0KOlWlbXxRzQHAPD6Pz+NzAJACAIDAQwCAos72Ezee+2lxW2RUmbwlDREx6I8QAGAcAyR61KoAMbMvoalEMeJq+ZE77v0bqJyAE6dQVXIZ1iyRqhOT1gXTTWhiIfPlAwCY0Tfg2JZk4xjA/7ev5JhWHKc3N2b5xnHZ01k6P8fyDRj5dgdHZDxZYn+v2T6y/lIacp2jzx/uvMOSW1n5htLCK5yls2cW2Xs5jRhWjNn9TsNQsy2M7KcVmkPnMxymaTexZnInb8ErCI0xTljAUWf/iQ//c9hPMIKAnVDt7gf+xT2PfDdKgYUKQS0ZAbFSQICzIsZSKaY4jD79qX+59+LP1iiK5ehQlx597IfXz3y5qgg5EQu1IkJgkAMJxE0GAJhtNmBWBt2w8RNmEPmZOh+MmW1AVDXuHe3t30zI7sqqxEZUKDv/mvPrJvkH8zDYG0FECQBgFlWNouut/Uu9brNcaTSWTlXL5xz8DAALnJKwliHEsMqU+yAqyomTPkAi28xItNZEtdM+fLq1e8lwzDGqaxfKy/eQJTElSrWXIertz0hdWFpcbJw2JvQPGWb2ll5Jmy6dPSi4dkMjJblPvX6XYBQDFPgG5N6bE9hBcwAwj8/j8/gcACQAwLN/+i8xgQpFR1uf2Xzu3zvZ5oD7upxExIAm+fQfNQDoO6eqpqKQlMyoSWyd7ZlAqwtfceej3297HDmADTkr1m+HkhTbWIXSjVyJZyphvkwAoCCBngoDbg8AZJLRl3k2INc3AMXDwSOfPKNvQP/ThCT1NqIb13aVmBQiYtS2jz6+v/17XFtZW/o2qp40XD59sj5wDB0DALNcguK8vJiz5KGdjHvkZWWFxtjhxwEASQ/ElFVVKVQY22s/8aH/M47+oEQwFAjciTP/y2Nf/g8QlMRorAQHPwrPpu+oreQk5ujyi7/z3Kf+SQP7Rrst7a2sfv0jX/Z3IFUxcWStqGXnCADFSU8jHVPJqsRmNeknLlGdkAVOggH+khVaUM+ualWIBLKMmozrFkdxa2/3qu8DZHWBxlsBo3w5kjERodGh82ELLe5nt77lQmpttNdqvtQ+umVMrba4urhwDlRP+weBgyVSaJAOW4+q3Y/MDGTkmAKQ9DWFoOzSIxGN2rtPdJsXCWKhK4t3VxbvtxSyUT9AbChQdaouVONYwqDaqJ4Jgwobkv45UfbjE33MU6AMNgUHjpCCpO/iopyFB1NXWqGa0BwAzOPz+Dw+BwAjAMArslFAQlFz8+Pbz/+M6L7XhEs3lD8iADDM7+y3riklRXhv4EFuwEwaqZqWOnPq/A8snXpdHIeOSMXBKZTRpzKTGUypkvYxwG3DgNvI10d9A8ZryTPX48cTnclemLO5CN++bwBmcBCb5BuQl6spK8CeCX358m6pVPJjlCy95v67Dnb/sLr6yOLCW2Dqi4uLy4t1qBu6eOn6n8A2mQ0AYFZjaRpigKSLtnCR5PJ/+vMAgzySyJIhMgIWU6Ze9/EP/LNO9KEQtmQCRVSpf9vrv+Zfl+rLAhFmFyeXgLjPdhOBs4i3rn/qsx/4kSouVeAsuUg3Xv3Gf1pZuNuaOFao6wXiGSIWTF70hlQmAbzbgQH50CiX202Fi3OGtUqThWtHkQmRASSOe3sHN62NfB8AI2PrExhByJn8GcHkpH28wYPslgKoI4Jy5NxRt33p6PCGjVxjYbWxeCYIFgWGiFT8GnAKRwPPRCkqqWeGywOQ+BGXNJ9m9a5fhsgdNHc/0zm8RQHB9hZXLlQWzscoMZfSFrEzBIhhI+JAZBbqJyrlJa8c6tsjGZGiyffIrL4BQ0gADICml110DgDm8Xl8Hp/HbwcAwAAUH259dOfF/+jcPjODPR1fidirq3xRAUBx2pxNETStZ5NvjpNCXRRWwb3zdz74N7V6IoZVV/HWYGpZVYkHEhZEyS5NOrWD/IVqBE1W0C8oLhYeUpFsaMZwqnBaoK9ZOTO0mOHFBYPOx/UNKJoK8MmNMsVxfO3yXrlSUlUVGOrsbf1q8+D5pVNvqdde7TQ4cXKlWipn1Vey1mMjlkMTqMNUnFxmzrNiBh2SAeJiQg5Lu6g5k+aFGRczMuyUmMII0KBWttFnP/DPDtofrMCFJVZpOXrdl7/5pxc27mUyltRZUk3OKhOI/AyMixE1t59//D3/a+ieCWEpQMvau+//kdP3vikip8SQmK1VJ/6UKSxIxgHAMHKbZVHdroNE5qxOHBQuGGofuy+yT5K8hoAFAkCs627vXFMlRUwwGBO8GrthC12EM18kKboTBg2xg4TADKiIqHEGFHWudlqXj1r7JgyWl89WqqfBVV9oR2acYGYYz35FDbpVyUEbBwlEYI5am08dtS4TqYg0Fu5orD4oVFOyRIY4UBFfiEn0k+BKQX2xcToISqBAkdh1+3/KjjpM6PGOCwcXCVb4ws3M6mE6BwDz+Dw+j8/jxwMAzBCOm5t/uP3Sz6YAICkgEnFfPuWLBwCKBYVopFo3JPHOJNYKOrUgqNb/zIk7v9mauigJjKeuqhiGAVnPDMkWGqfpTx/3R42xvWcAALOUUSf7BozOkhZYB/QxQMYD6wvtb+QKqE+lBo34BuRc9KzNE1On3b11q1kOS77UyGhu3fwPndbO+rnvKFfusVbuPHuaeeSMORR4D8/SqMkvMA8ROXQWDNB/1/QRcNERynhGnkiVDKEUk+GwUZLoqT/8V7d231mFGorC0B1Fpx57zb84ff83EkIJVWJyClKwwnACACxZMbHr7Hz2d37IHX3aABT0jqS7sPztr3j998UIhIlh4SKNY5BI4mmlUJdyS0yu2wPP2gebAANmMcSQlK0ot1ljHh31IIzaCUs/X7c22j+8FcdxOsw64KAPMvucxT91Sth3AMzoiLB6liUUkb/TRbrdzpVW85babq26Ul86a8JFVWKIIMg/Q0OoZuQ8sBKSsWbAl+2JSLWsEgsHLIedgyeb21eDMsT1KrVTjbX7LGrGlH0viWEUEUTZ32kkhsuN2olSWCETQHlEiqc/DDA+/D3uojDaQsz7Z55Yasn7fJ0bgc3j8/g8Po8XAgBfDmcAsMwsHDe3Prz1wn8UaTIbcJLZ/5EBgHyaAca5AaKqDDaE2IkYUE/DchzZ6t0XfjCsP+IYlrxihSXH0BLBJkY2POuM4BeCBMZqXdMBwPRDKvANyBWT0Tws5SGEZz95NsKxMAC+OL4BPK7GQwP9FiJqHnT39o+CoARxqsS6fePKT4qLNs59XxCejm3v7LnTAeWnlX6KYFqrZ9brMnKeqSi5p1nO27h7EQ/PbmY45SRkys6FHDbKpeCZT/zsxcu/WIMGYS/UXttW7jz3vQ+/4Uc4WLah2JisgAQhERuvx6JC4tgFEj/1vn+4df3XywhgIqEookdf88a/V6qesgaqsThHridioQKmPACQi46Ex8gomHVEGLmZ4uxrrFjtKm95kyb3i/a1rQZUfYXt+2HFcbyzdz11DEh+NY8bDuS073QyBsAoYU8gCg396SOFKpyJ4WwU3eweXu11m0FYbjRO1BqnwVURi3SGeCiZVi7oJSbNB8WQnyMJO4UaIxoHaoQ6nb3PNw+eZ4kABJXVlbVHOFhxzGD1tgB+nsqQ/3YBUC4tLjRWA1NSBKnxsKPRfUdmbDnmigVNkA09VkNgDgDm8Xl8Hp8DgAIAYEjIHm7+wfaLP6faIvLuWgoSUPBHDAByMUCSgXHCpSclJRUYVUcSM4sYAV24794fdmbRGVYIHKsSiSOIQSgkPp2aJRc8Lh0oqzHfTz4mNRwKmD/H9Q0o3M4oNz8a5GlfFAxQ0BZAsW8Aa55yCKmkiq/7+91Wq80UJsKU9uKVSz9dq1RXTv0AhctEevLUKpOy8kgykQIwd4zznL1raLxIP152PR5FqqhMOzZACdVkEJOUEUBISGsUVGv1pavP/s7jn/6XIWzA7apqzHEpeOTLvuFnqpUHewGcIBJAUAbYQFIFFWIRp1vP/OrnPv2PyxCQIxx2sPbwa/631ZOPxQT1WrvWuwKrkC0AACiAAQMwcFv3UQqbp95sw8I7EyxpR6vvlAVbCXs9+/706iT3iEh02NrpdttZ5MPjZKR8C6qMaH0eDBjCADCgODXKM1BLMP7qOznoNK90jm45iWq15cbCaQ6WUqzIRORJSjkCuGMcpyEbLyHvwMASOBOIxhwE0Ha7+Wxz68UAonrE5YWFtUdMcApMZKDCUFGNmYiZCSGJKnrMK4uLK6WwMpirEi0W+5nSvRnHAJLTFpj0UBrvJCfXYg4A5vF5fB7/0wwA+i3ghP9DaUJPwsYhsHvXfn/rpZ8PKHKqZEx/L2Y2iZoyjdNLvqgzAIMOgOdV+8pdRhrIHx8JOediUsvB6+995Q8qlTWGEAscYg0JzqvVeUo4iWQ2GNLpW8MX2A2YOW1/2XwDkCUCUZEGZUIKKtBfl+SIjuMbUIRwiqg4uRbCRKQQAovIlSs7HAaBhiICWNv56PVrb1tcWFva+AEp1RarpcWlKktalxymChQYos0izDoJpCHD8ifK//lF/glFZ49URqyjstfRKFkKYRr1xmLr6PqH3/n3A7lOaFe1E8DtMX/Jwz967tG/6tT0AqiFACGBnGjIRhUgUhdbjtpXPvC732fssyFQRqcJd/bUX7j7NX9dJLAGJJ3YOREy6gyLnx5OvbqS9tGwmk3Ob/GzATJWyj2ubwBN6x2M1OBz1/b465WVssUGKpzw9mDg4HCn020BNhXv59RBLINGsk9a6ovY6NCyz+1dJDLMmZOZnDCCsmgMEkBsvN1qXorahwEHjdUTldJJMjWBEkbZRMqTVKeSc5r9UmV/pgWqRCagXvOZ5s4LLmoa6jI3FtYeMbW7iNSxY0kAkiE2IEmeGw7KpcrSYmODTVk18ZFQCWhILukLggGTaxNCk30D5h2AeXwen8fnACADAJTgnYA9vdKYWIzbvfrunUu/GJD1AKBv52LICP64AACyo8DJRtbPriSlWbP3znSdXnRi47tO3/1nVWKH0PsIA8IuAQB+Z6bUQHTCTPDLggH+pPgGkBbUSiXr2DMLpJn8jUWV0SJ1IBlPjCidtxVEkd3cPKTAkGWwqrNHB28/2PnDpdX7a8vfJRyur1RrlbJXIewDAF8FnOYWNENGMkW2dSh7RNEw9GwdpywAEB34l/melcbqTKBUX1jegPY+8f4f3bn1e2V0K9Qtqfao1yt/1bd828+BT8ZwloyNwYnVGZVYVFlERSKw+egH/+nuzV8oO1tBDwgic+H1b/pnFC5aA4KNrYWQQQ+iIOdtJaiPqYb4Zvm/a2YAgAmmAf4NmKF30O84FSHYGa6yToS17qh9cNQ+9Nyb9KIo6+ikbwHY00m3tjKNH2SKAVSVQSCn6kTave7VbvtAbS8o12oLp8JwBVryjxd/XfpSByN9gBFBUgwbBnsFJIFCCYYDSBRd3t9+2rb3SxTHptRYerjcOE+GWVigYhTOhUZVCExGRYUctBRWG7WTpXLdfyaTiiRD+QBDSdFXIz0eBigAAzLSPR6CDWPlhjkAmMfn8Xl8DgDSDgBTv7tKpMbEYHvz8m/vX/nlgKxTZmbPNSUF8x8vAEB/RxzZVolI01TPQQAR7bQPl+69/weWTr7GinNqVJ0iIGeJBgVMEIHEZSbPZikJq+oXHQDkVTdngQGTj5+0kDMxekFlxgOezUEMo2yoPOMkLvpFzcNO6ygCoGJAViXeu/Ufo87VpfWvKi98LYFPnlwIvE9dpk1RPFA+Wt/NzwGOcxVI81Hi6AQITVGLykq1ZgFAclQqwiyoB9XFSm3hpSf/x4uP/xhjvwytlSWOjw6l/IbX/uszr/hLFKFNosKxgpyWiNhABM6qjTtUCa+98N4nP/nDJd2vkQuJ9qTyylf/k5Uzr4iUhaCIETujTiXqA4C0CTBCNC8GABgY934hgwFZGDDLzZk7n3BcDJD3Sjk6ah429+BpUelkrXemG0GM5KgAPea7CuR8s3I6cU5JpUYcSFR6Lt6KO3u93hEblCqrlfoJNhXnnCH2vrzj0//JDZgiDR1ckMGcLhEpMZQAtmqDILDR1tHW452jmwH3HNeqC+cXlx8hE1iJkse9Om8YrHCJChCcqtYrJxr1De+i0D8/iVkYGZEZMQAmj/yOIIEh77AC47A5AJjH5/F5fA4ABgDA7xYMBcQYp9y7dfEd+9d/NVSxnmBKUPJmwPzHCwBU1Y+Esg7mAZQSjoc6JTJKIqQi1nAUd++799G/FVbXrZBTZpCIsIIUhhI1PM3UKY+JAW6nFfDH6BswLhM0CQDc7ngAJvKCqGD8eoylM/SxuzvtXhQD7CwROxft7d78SVC8uP7nwtora6Vgda1GopqSoHzFUWhU/XPaoc4wjzGbl3DmdxVcFJLc9yZXQXSoKZNm3gyxIuCqCyu1hROtnRee+P2/H7srTFwKOiXgyLaXam/6im/7NeKKZepGEikbQaDCxEwaO+tiCEe2s/Wxd/5l1ZcCaGCk63R54y8+/Lq/GotRgiIS64xCtEMQgU2eGB5mwwzPeOSk1xkAkBz5bK0qvY1EcPS5ly0hp6pNRKo6m2ssaW5OqAKQ9npHewebqnFqGoB+gptdw6yTl42Or6tcDNDHkemZSVoB6trW7truYRRFphTWamtsFgyMn9rOvZ0xgQ6E/tyLBwCwRFAOWARHRzufau1dCzgWRXnxwsLqg4EpkWjPGQREagGYbC0GTtVVy8uN2mnDFYXlxNUtmcZhDsaB9yzdzsm+AZI91Ylx2OgTbA4A5vF5fB6fA4ABBchL+3saKXMEE9146TcPrv96mSj2JZsBACBJdtM/HgDgMCjNJv7ECu1X4yTZ0pQhsYX2LFUbjbfeed+fU4QxjFglVgaRaNIrh9OMWo4/MzzDtvQFGIdNSWheXt+AwbaoQ1+RqUl/UXwDxt/SX3W5/zrWGRj6qKuXdzgIE6Yy2e7Rpb2bP1OqLi+f+G41JzdW6vVq6Ec5+58jJACneZgcBwZMwlSTOf3jMKAQAAznhf13pSO/8GqnOvxK9nRqLvUoqNZPhOo+/a6/d9D8WJnCCO0qWaP2QPmtb/ntxl2v60UQRUeJBQFgFCKqShZWVY2LPva7f73b/XAozAGsbfWCV73uK/+xKS85Spz2yEWiPcAmtI1sB2C4sTN+9vxnyNiiyvoGHNc7bHYYQMMAAAN3Kjc8VlqwAApaAUQkInHcOWofdrrNFG1qygIyGQAgM9ytOhUDqBAl/HywBv1FodJVVaDr3IHGbaaqKS2ASwQzAQBkWkl9iJHdILj/cBBmEiNiBUxhz+4+ebj1rFA3UlOpnT6x/pApLUcaqTpCCQyoA5hBQ7M3okvLZ8ulBiEg7rsU+w4AHa+CQP3mWOG9PAoG5h2AeXwen8fn8WMBAOXOjZd+4/DG28pkbLIlwJvU+Mb/nxgAgIw2qPbpE6mDEtQ5p7YXNy488DcqS692iIkNxJBiBAD4z8zS0BnjVIcZkvKXAwm8vL4ByVY49aBIczMGyrBR/mh8A0aPnAjA5Ys7JgwIJo6dCbR9+Mm9W7+xsPrKhdVvjKV87sxaybCIMA1GHAa1Z8VswjWYZVC4iNJTiAEGict07VRk2UeePZPSytkgab4pQCamoFRZr1frL37q3z//7H+qcigahaZb0m6beyvrf/Ur3vpTPQcHdNUL+rPRRDArZjUqgdKzH/3RS1d/sqYkEKJOS5cfeuWPrJ/5cqciJEoQ14X2SAXkUiqOHwYw45dytOSvA4mnnFxNR3/1zDBgVgwwcm4nmojlfSyNI3MVEZ/li0jraLd1tAeAU/uJrOwvDTPoJiJ2HaKcDVesFUwQVUcI0zuUyPNtOLbiVGKmmKHQUMmgsAOQx3Pzo9BZT+Jsr5WJ4lAMg21AYptP7e48A9eOhMrVtbX1e0y46tQoMdQQJa0JUiZKDJVJY6emXlttVFbIlFOPBZqli4jjU4PGuwHjfac5AJjH5/F5fA4ARmcAPAAw7IQPr7/035o3fqtMxiIAhJl8D9pT7f+4AEB2f8086JPWhM+xBn0AMLHGvSiWI6cPPPa6vw9djdORX48B0m2DiFXUJ0ojM2QsJHyMEjhU5XZ/3xfFNyDT9J9WBadUxJRy1Mr7VIrjkoKOi2RGLEL99156cTeslFnUOsfkjg7es7f13rXTf77aeIxMcOrkUkCBaMxgDwDG3STyRg5m7wlM+0UFfB6kQv48jFQnXS+4PgDI1oeJVUlUTOKxasowjWplMW4+9YHf/eEQLTYSktZN+8geHbqVb/6Gd5ROPOacWqFYnYqB04CIAxVHUIQOO9c+9NGP/VBV9xXOULerun7iG+5/zQ87GCFrSZ2LAomgjmCVFJAsAJg8GuFPu8PEkq2mDq9TFkxhyj5bKwBZOtU4DWbkA0ebUf0bgNQ7gqmfaiV31D5oNg+dxJSyELPliZFy9cTTpYPnJ0mCGJUBCDlWQ0SKWEAEAxISkyjPUqQQUVZ17G9cphm7c8lharreMgYU6h/2Is4wa0CKmJwJoEfPt7aebfd2Y9EwrK+s3F1duBATM5MqQ0g1JrZEhpMV4gyMaATlan21VlkJgkr6oOMZb8apMCDXO6xINnQOAObxeXwenwOA0Q4AQ4jImNihee3FXzu69Y4BADCqg+7wHw8AyKWLINF7ppSUnDgDwEENi1GIul6vJ9Hy0tdeePD7rQaOISKkfvSX+smZsu3vEsNbDvdFzadmG6mW6DHOwxfdNwBMgwx4oOLCGFXGzCnMkeYf8HEwwIiQZaFh0/CU8OBomay11680OQyMiogo7OHu21p7nzx57m+XqmcqldLyapXFgFz/C/ygSNLMKfQAnj3tmKELVIABJDHR6w896qyfMwIAACVRMIMUDqamWm4srgWl+KO/9UP7zU8YDSsUxnxQZduRzvrad73hm3/GduGUOi6ZoS1Tyj1XYkWgvff87vd2Wh8voxOgZ+EEd73uLf+GSyuOxRHHtsUuYrEEC2hiVjU+sJG3JjMAYPKpltwK7mwUu+kY4DgAYMb+lfRzfVWN7dHBwX4Ud4koO2bgBSj7+GeAQgssJoTAWYQgCQAgImUBBBqQQuHE0zJZxWEgZgCbsCELuUySx31K3fdEE1uYxHnAQAlqoUZIFCWAQZZZ2W03955u7m0rIhZXXzjTWDmPcE0QEjv/YCBS+GYTwApmFrVEZIJavbYeBlU/O1Fw5rmoXzEVA0wDAPMOwDw+j8/jcwDgH6bsZ2lJKJEAIhVjnMrhxYv/Jd56J5mys2xAYtQXnPzOQwpVSR3B6I+sA1Dw+KecvMHzjzlkWBFxzrmIT97xl05d+ObIWadCRBAHB0AghgygDkSahHJ2lMHnj4l2z5BEftF9A0YYz7MkN33ZmeEXZYDWxInMYt+A47X1B32PvFYAIN2e27x1EJiSqGVnlA63bv4H29tbu+N/DUsLS42wvlhlBRE5Ep94ZRXBWQvTelIMfItmO+Dp4GeaWFARVWyk8zPqJ5AItaSvVAOuliuL1YXai5/91YuP/+sYtoJ6FLRL6IS2s4Xgm771Ayvrjxy1EQFOYVgCZRH1/HzjlMt06alff+rxfx7iIESXTdwSPPzYj56888u7qko2lg7FMTnLFBGceIa3OmiQo+JyHK2qTOqWzwWnY5KCBstm8qtT+zCajuWR0wfIfrIk18JJtLV93UnPc4HSX5RR+CEdHUYv8A0YPeTMiEiiMUr5fbnMQ0MmLb6cU825bxGkPQ1lTU4qOyiRELU6rUuH25c0ahKsKS0sLZwPl+80VHMSgUmFib2skJKCWKHMyiJWjZbDxYX6ibQVQCma6mMnHs/eNTMdMSuDq+gczAHAPD6Pz+NzAJAAACKnarx2nIoxTmT/pRd/ye28ewQAQBTM6YTin1AAkPw6UUqFtYkkVjLoxdHahVf8ndrS/Rq5HtgwNI5UTKAmcaFK3cEAuBQACHiESJqIB9FMVJ8/Ot+AVAh89tr8UCaho6PApJOzpKm+Acei2o/mZ/0yqpActaPdnSPf5AnUWLl1/crPlMPKyqkfZFNaX6mUa2UPAFSTfL4IAIwdhhRVHGfpBuC2fAPSEy6TAcD435N5/L5thamVKov1Sr1r9x5/5w/ttj6/ZBbbaoHOSthtxnultb/25m/+Kdtlp7CkwhQKxCqEoJ4ezZ3Ozqfe94Pto0+V0TaBNG3v9Lm/9fCX/JW2iLBR20LcgVhCDHLJGVPXnwHIwQDDYzPHB4Qy0g2Yedo+JfBMfXU6EnAsk41C4OrnstU1W3utowNAmDl1zesjEyEiVh66qUmgXDBMUmSWkVkPPN5xEgAzY4BslbwQAFDqlKygATMtALHYaKu180yneZM0IqJy/ezi2jkOVtQF3mDev5g4aZiwCpukgBKUK7XKWilcSHA4GVXn2wLiklu4SLXpC8QAcwAwj8/j8/gcAAwAgE+ClNVADVlrdy+99Itu971kKs4yUUKySQ3D/mQBAF/yG2fuGoFjQANV50CkcRA6g9fe9fD3BabWIYEEpGCFWA+CPCFK+juxG1Sk/H+kv/fOVvIcOefHmw04LgDIZOM6w4FJUW6Rw9IpgAEjhrvFI8LHQQIZAJCwJpgODtvNw64HAOSsdZevXfnPiwt3L65/p4q543Q9DMOhcmZf4DVDAZrgCXCsU13kG3AbGGAk4ZtFpJL6okLMMNWwXKtwA/XqzvO//skP/fMqQOUaacxBy7jmbi/4ijf99h13vb4bU4dSslkMwwJJRn/iAM985MevXvzxGjoGFiXV8lu/5Kv/dwRlZ4yNDjXuqIuZrML6c0UQHkk/c4+2WKl2lnzuC5ENVXU0OZUmIeUJF/Q4YG/gM91uHzZb+9ZF/r3MQaqvbwDxhHhXoJuUtAgKTAOmAoD0WGQm73Ca/pq+8/dI5wFKQhAl5gBy2G292Nq9iLjphMJyfXH1fLl2h1AJKgQWqO8iMoOISPpu4mJVyuVqvbpRCWogETBzIE77DKsMJHaZ5/BUMl4+DOA5AJjH5/F5fB4fAQACENEAAEDi6OalS7+o+38ALjvLAMiACKlfwJ80AIC+NVgWAxh1scIwrGUTkLNKJgpc0Nj4ztU73gLDUGOEY1aJ/fxawkLRzDYsQxSFYQXD7JzpF5kONGv5PIUBMlM+mq++V1j0L/QNGDIzGukkDL9pphSwPwzQBwCXL2/7kjMRGdjDw0/u7b9naeGV9eWvVzF3nl1k5rSQmZQzvf6fx1wJAOBZGgLHrVhPVDAkQfFId47gY7KGc4vNiQKoz6P8C4QDE1QrteUSVylofuBtf7PdeiIMqsylHlpLbGM9EPvGt3zXbxHKVhCJWkNGwNLnZ7MQ7e+/8IF3fXsVN+oKoNMKX/PY6/7B0vJ5KZGiZ7ttdd3/H3tvGm1JdpUHfnufE3HvfUO+l1NVqlSaahKFhpKEJCMJBJJshDCLydimYbmtppfdxpjBNnjAjbGXsb1ws4yhmawGmxnabhsDtgRiksUgJNA8lmpSZWZVzplvulPEOXv3jxMRN+LeiHvjZalKmVXxlpZW1n73xY04Q5z97eH7CA4QhQBCEJJljDa1C6/aNrCa+XGOJqjF4l/N4LRkyzTDgFYYYPZpcXv7V4ejvZABIDJ5SkRUCXBNEfdKq3pzNqDYoUpLFpgsZPZkoW1jJQaouU8BUWgWQyTWp+osiUzPHlx7JDm46iUh2M2jJwYbz4a9VQlBX14hIf8UvpdVmK0ihbKXdPvIs3vREWbONeM4Gw/VQD7dnqJ3yeN0AKCzd/bO3tnrAQARiMEKAzednD17+udk949h1sRxiDYqKYe36A0GAHK3iRdoZESFoc4gTsgzgxNHdjJOjt79or9r+y8BTwSs6oUsibIPB3YFA9QAgPxXOkdwSIdlmn9ydQMWKumXUbbXjKeuDl/X6QbIHDyoQxSrHeu5Wz1zepeZQQ7KJNPh8L07O+/b2v5zvc1X96Pes27ZDI3OWm2pLC67oEilrecIhyEoXKYbsISzda64mWaST8Xns/kNlRUBAQAADLGlwZF1Xee1tQf+7D9++lM/aLk34P4EibHDI266J3z7C77vRV/4rVOPsarNAARsKJZJ1Sr5Ad79u9977fxPbpIxOtqhUy+86+8/5443mkHPm9RN97ybMFKIzwBATfEMr2RVaqDTlbkQeL1uQOkKhyEMPSwMkJYO5dz8BgEKVSWwQpgxGh3s7F4RUQr9uxk1p1M1+XWk8THrd6vWvNuxhEd1nvl01oTezHO6HKWXHWkleLFB9NcSvOxM9h/a3z1PbgjRqL+5fuR5/Y3bmGKnoSYqq+fhrLzHGJCII1YRWesfH/ROmNgUML6SfOgAQGfv7J29sz81AGAyfPT0mf+oB3/GvCaOoUzslZRBAN2wAKDqQuWCACKsRtiwEfWicIrE2hfefe/fc3QiJbWUOhh1IFVSKY7V8CQevizusyR+3E7bqNaJfKp0A1a7UMsi+jVJl0bdgGo7cuvSoIZ6aDn96L4xDHIAJD3Y33n3NH18c+sL7eCFR7c2tjcGJVYW3wQAVpVAHM6fWJk0WARgS2DYXBtGFQOUr15imQQAMhRr3IujI8RrLrn8gd/91v3hg0fMwCl7N91cS0fptf301Ju+7rcHg+eOUhgLgqhhpGCPiACnEumlqw+953feEunVdbJ7oOMb/8tdL/vf1rdP6kCT8Y5LR5Gm0DQnep8bBGrlQa7S02ilG1CHtFtAaznExiRp2do+aw4u+PmLcLWS89PdvSuTyZhYQ+C/9CapKY6qW6U19TxFMyzrjDa0eSlyeT+W8IBfleKTJu+fFAIVtiLOEqsaVa8s0Ek6eXy4c346vmJposJrm6fWjz7PRuviDGBgwvbMnHtGkqVHAIXv9zb78fFevK5MdaPEbXJ0SzZvBwA6e2fv7J19NQAY7T905sxP0/ijygNNmUoAIOtDvBkAAETBICUnzmoMZs+IxHlxopNe9Jo77/s73vdS4qBWA3GZPkAmoyPIpcHKDNlYEDxqCjXhBtENKDtMpZVwqIRArc880w2o/jovUZhvUlxes9uEAUTk7Jl9Y9jDW2JxO9cu/bbCb25/IUfPOnXbVt/0MheHiSTovEq1PmtZ2UZZuOq6kcBiVHvJ1GfzVRp/0tq8gZYBQNnNzvMAIDI26klvO1JCb/3aw7/+vj/+/jVMDHowMZlJnI4PzNUpf8nX//XfciPseyFiNWCBFTHCzokh5g1512/8jeG13xgoUlLVl73wlf/o5G0vcj04P0lHV9lPjXrmNBevrThnbWZ2uV/LpVh1TuHqa2FAPl/Cy5y/JyYftpopqAQDMgJPDf82xngnzKwQEdnbu3ow3GXmEOpmsvm8N5bkrUoFZIuWq6yyC6Mqhb9eWj9SkkNekd9bNoNqFI6IRK2IGGO8TwGrrM6fk9H5g2vnRXec1zja2tp+/mDtKJt1gaqqwKoqyDFZzqUYoZynAo4O1k5YG+fAUsoLhFah7jb7twMAnb2zd/YOAFQAAAA2MFBGerDzwOnTP2Xd/Yq+ppYUswwAc+7M3VgAgENErAIJAGElDxBEWUEUSaScqtIoneD4qW84+fyvgRdnjEgCn1H4ZXUsTESad+wxgJZeDh9GPPizqBvQeOBxKY2+QDu4NL1eeWqGrtANoHZKW9LI+iKVwGpmd17PP34QSq4MOJ2e37v2e73oyNqRLxA68dznHYFahgNYyXDOhFiKIzJJRsMy/7xVybCnDABk89UKAMymVcHlenoigjKzdcZEtMZxpDBRpH/6O/9gdPH3I4qVIrUgdSw7Bz59wQu/96Wv+4fTIU0ZsGoFVkicMDMJyOLi+Xf/we//5Q14gplg8wUv/N477v4yWYvVyHT/ikz3I6TMSZ5a8y0AQHPahJYVwAi1dNmFDwEA2mKAYvnNkeQ27RTOUoUCIEMCJeEwAEky2d/fnUyHICHSuWbWKnVBDQZYxTegdRlIKQfsq7tVFhabrEqOlflMKchRBxURASGrvQztzqTsSRP4ndHuI8ODi95NhM2RzZNr67fGvS1QX4WUTc6MZIJeMpvArEAirhdvrG0ci6N1gg05XMoZ6NCIAQ6RDegAQGfv7J39mQ0ACLNDTkkIZMAEVjHAcOejDz/6th4eFR+RM1CG8QwK4bdcQ+qpBwBSx8uPPA9fxMKp7JiqKmkRPAKRISJRJT1I97ef83l/e/uW+yYuVTALTZUBGBWwzgQyM3ngCidGKRKJ5kgetzvCaw+tz5puQGMT6lyvMK0gQqF6Pd1qAoAaNb9mCYFGzlCuBlYzFzNJ9eL5AyIhNcKUjB4c7ry3N3j+4MiL1te3jh3fUPWsllSUgv7XrNl3roa4Vl6tqTegqV5f6XChx6XR1tVLovQ0Fdc5SwLAqFGlTWNjIwbc3xl/4tO//w/SyZkI/RQwRtdseuD292X7zW/8ja1n3ZcAHuKJjUAERmEE7MQN+B2//lV+/w82iIcqR45/232v/TtRz2Kw7idX3PCiJmPDqRIUTgmkkk8lF28bJSlVmzcCgPKaJNY20JqrGSRZaEA/DG1oDUIrk2jNVW3NlLkOkzHLGBNCc4DqNBnt7l3x3rFCWHJ2ICqWfXWfyjw0KvcdNTMFzWSkFx9wphsgVTQuq1IBi83BtUCEpKBOICUZTyfnhgen3XjPSRqZzbWN4xsbt5joiECZrYoJSJINBJyVBvnANEVrg63+4GgU9SpqAKrMGZWqBvRHfuF+6pdcgak6ANDZO3tn7wBABQCAYRgGyqr7Vz/8mdP/vkdn5wBA8bc3IAAAiuodmotMz/PcwzI5VTWc6uj5z7nvO2z/uHNejfXCKokFQTnEupih8LIiCVD/Mx/Gu8F0AxaJU1vSty9vDFj2jYXzIbp0lisYYDL1Vy6NASUlz346/NRk9xNrmy+K1p69tXX0yNZaAAAhxp/rzgbOQW3pq7W6+XaFB3UfXv6lLTFAtpqKhRS8/4BK2fS8iVjZ8JqY3uWdd3/8d76L4CyMhUHkyO0dYHKs/9Vf/LW/JEyOshkQp9YTCyKC7+PDH/qp0x/7ngje0TTV17/2z//g2sbtvG6Z0unBZT/dgz8ApUQkIqWMEFfHRZcDgLmhyNruV8V0uRqJr8JvwRPQDZjDAM3dIX7V26nmBoLPKiJBL2w0OtgfXs0GkLmQE66KBqAeAyx7mdQj+crTNWDXBubQJRiAGyIQHJhVlYQy8p6ppAdJcv7g4HwyHZH6yA42t070144SbSlElAlRBugC7T8bEs/MIrA2Gqwd78UbxkQoNQQzh7S15sRKrfJOHQDo7J29s3f2BQAACAgMw8IKVn9w+UOPnnlbz573ziJlgiEuBZY+ZwCg6XU9OwJpXhOsPoNPhtUxYRIxmfgv3Hbn15Hpj6FQSwqGg1Ag7849pYrD0RIGLCspaZUNeHJ1A2rvrTkciwWh1kO70e10A6ruMvzBMN29NslWF7nJ/kenozODzVdE/aPHjh1bW48B4SBXxDW5jrqm7aWlIKXegKdON2DlegipjVKDRAEAlCPAEcdEFp4IfTq6/cB7f+LRT/9oDNujzTFNerTXk9E5XXv9q3/6ts/7SpcGNkpRw9apSShNYXo4kHPv/K9ffpTPichlHH/Vy77/WXf8RdtjiTWdXJsOL+n0wMApwagI+fxZaKVb3KSiVYl8t9MNCKmAGrKgtmy5uiR7Rks+t1xga+F5VdUYk7utudgtZHfv0mg0LMOeEgZYzADIivfJct2A1U3/sqIzGKs1k0vQz2SF+2zC+gIc1Hm5MBldGA+v+nQMIOptHNm4tdc/orSmsFkPAFkBlFOrRpWYoape2RizNtheXzsBJYVjtkX5kIiEkWuJAToA0Nk7e2fvAMA8AFAipSwDQOL2L33w9Om39eILLjXkjIHRGxoAlCun50eAQXNeNQtcREYti09pbN3g6G1/fev4azxHyBVkRcSSVVVDEMwTy1wfBjisVtRToxswF/hcmqloBwBQkUZqTAIsSyZUvmhvf7K/l6iKqgfJaPeDkIPe+ktNtH7y5PFe36DUlt1mXvJJWQYDhKrFN08gJ3Bo3QCY+Yi4sqoykRaVNrm/SGSIjBhlT7CGYa2SREd9Xz75P7/nzOPv2NQjSlDCZry7l15V/8Vf8Vd/jex6KkRWvZAVdVNigbWQCO/+n39z+vivx+AdpLcf+8a7Xvd9G+tbvideRtPheR0NjUwU09KalFXJMZnLODXVZTWnoeZTAWWVtyYA0GLlN0yfau2vq9Xn0jIVkG+EYogkYIBpMgIgPvP+2VSC2WXQmFXAlyTtah5zuYrwIgwQBVORAVgBbtsDALAGsUiwZqwMaSYoruM0vTIeXpiMd0hSQOLB9vr68bh3FLCiUCUykUCNcEgICDEze5lCeX1wYm2wZbiPjGppsfKn7X7sAEBn7+ydvQMAGQDI39hgBkGNl/2Lf3b67Nt60cWbAgDUZQOyGwsnV9CZLwJzRiJHCREbE/npmKLxMDn1+S/+LtjnKTtPVjUlIkmNyYhWNCS1fbnWVmmlsNGc+9iKpWfZefZZ0w1Y8UNttTabugKWeA/VaJ2QrnaUd3ZHwwMHeBEQkuH+B5lsNLjLmvWTt2z346IA3UhY6i06sFlXD1SBAVhbgc/DwIAaT7G8bovsRwEAit21CAAAKBujrAZsrBM70CiNemT33/P279g9+HCfB6Rr4Omm39mj0fETf+sNX/dvpmNOFakqORLRCGREoogf/syvffA937HNmko6pdte8aafPXnqXjGSauqnV+RgX6e71kwdlKpN4TrrtFnS44FyocuceN9iMqp23FilFopXpqlVF37DfWZ8Pm1DD1Qz75K/IirU+/nEmdSNrlw9L+qIyDs1lkKN0NLEkaxYijVkQfPZgOUyFHWBAzkMBpAg+BtWgoIzqlLxgMCAFM7tpdOLSXIlmR741IOxNtgcDE7aaItNrKoE470SafD+M00AMEPB0ZGNW+NonZm9uFBAtahbvvKd3AGAzt7ZO3sHAGYAAAwiEIEAK37vwnvPnnlb3LtSBgCzZP1NAACUNJecAUhnBDMAIKF8gr211nv1idCI7Mvv+LzvTGkgxgBOlSBBuN4Xha0LVQfcMsS7LJBM8tTrBrQHAO3+anlJTyWQ3eB/5LoBUjOSl68cjMbK8CICTEbDT0bmiO2dMrx26tZNazmrHiaD1gAAzaVBK6VeW4eZpd2H61UdUNelqtXOjdA3KTBgGDIk5NmTXbeCiGPqrV289tGPvvM7hnR2DcegHFEa0f5Uce+rfvzOl/zldIyJAalXMQzEKWyKER7/zd/6y/3x6QH0CqUvfPEP3v2SvybkU+OhuzoauuEu656DEiQnKtWlofOmcfMrHGvW9sPbiPRWz4I234Mc6qXTPOMzFd4QaxFxqZvs7V9N0nE+uaZB36CWLkmKhOQi7FkeOFhM8S3R6asfBFo2I0Qm7GhVBYxmDFEMOGKogOBTv5ckF9PJbjIdqqTGRoO17fW1Y2w2yccuL+ZUIpBXJSZjQmIWtLlxst/bytoADr0xpQMAnb2zd/YOAJQBAJTAQSIUYsXvnn/f2bM/2evtuNSwt6x8IwOAEo1jEZJXUijlQXplYs0TAirKLB5giUjU9CRF6qd+2t/8yud//l+ZguFIKQIlmkbEaQ4AIDRHJcmHDQPXfuap1w2onOYLtTqNusLtSoOWwIB81WmtR6H1XCty8fwoESV13nvVYTq9aMxGFG8D9lmnjljLAM9i/1UA0BRcb4wct4ABTwJtaGVqmgBAvX+b+5QEJmWJmBDBMDEbicxg8Pij/+X9f/xPY0oVvRiDDTap31E8+0u/4pfXTt3jUnaKxCilSlMejEQH+KMPfO/FR3/hGNGOnFs/+r+/5vX/huJ17Xvw0I/3ZTJKp1eAMWW8WHN5gEPkrJbLqM1WJrWtt6nFeNerG1D8xi/PHVBzCCBnrZlRipVTAalLdvcupWkSwv/11EONvECVeESl1LBR30MXt3O1M3huscsyINTkeSsBobxIgqoKckb/LFsVLsippHuT5PJketlNJ+K8MdHmxrHB4BhoA0yh7I3IELGqEOlMRo2jrc1TUTRgXt5/Ur8qOgDQ2Tt7Z+8AwAwAAGCTRcyt+J1zf3LmzE/2+7uLAKDEbXfDAQCELrsqAFjwa0UINnVgAzViVJhM6iIkw4PeqRd+y/bJV3pJPcciYlQgfWiaB1s1VJkrgYjKPQGHxwDl4/zJ1Q1oCrs20oM22JscixB/rz10qzSgKx2I+kzCmc/sa+yNqogTGamfgvvW9FTMbbdvWQ7Qj1Q1uAqHzWywHi5hIqw3FAAQQuhXgWEQG7LEscCADFPPrul73/W9l8/+vxG4j54x6ywpYXfdfOmrv/GXYl5zgqmqA/GB7yUGjJ299737j75rUx8SHOz6O1/3xp9eP3qv6Vuykkz3yY2T8VWd7hgKqr1apcetVMotX6ht8iFLZnD5X3Gu6Fe6H1kKthtYdHWJS904m6jmaohIxOW0wgHCM5F6caPR3nC0n6YJM2OhIKouQyilFeIXMcAqwrFZVRLNKXY3peaa2h7qtrCSkHKuQAwwQfJ6fTV5C1BYt078FBgl46vJ+GqajAU+6sXrGyd60QmgD3KqSohCZ1eOkdSpE5EjG7f24iNR1GsXNNEOAHT2zt7ZO3vFGyNWASmpoUB6o0Z198zvnnn8P/T7o9QRp2RglLU4y7Ta4nlDlQDltxEOIyEizUqli7uHQCGS1yMTkWEV7721bjK5/e7P/3ZavzWFQCNRAjkjXDQTK0GZBLp4CC6n2milG5BdiG9m3YBlnKE1rgbVygzP/DkRnD2za0wAGV6RiDioNcb0+3zs2DYbCZytc8Xx5fEJ/2+ooNCvf/aFbg35nOgGrNIR44XMCWfxUQ4iHcRsyURMPfYGRAfusT/77W+dTh5cwwCAEG9iOlU59bzvfvGXfDcLPEM8Eicy4Vidsfr+D/3ry6d/as0Pz6m++kX/1y33/q+mFyGeunRCaSLpeHpwTuTAgogDR64VEVYDeJlzYaGrMK1Si5aM2Vw0Vs09uboBWSZw1d5s0Rck5fwGMZxLdnZ2knQY6EGJyv1FxPC1Tc/VBgMp5AJUqBAwKVOmckNyhpCFclbrBsjSBujmahyqUq1m7QHqVT1IidT7/XR6eTq5mkyHUNsbDNY3TkZmiykWeFVVsgwQhUONAXg4gONofW2w1Ys3Z80AGlqQfdPrtgMAnb2zd/YOAMwAABgMgEMZgeyc/u3Hzv9srzd0nm9CAJBjABEwlSTAqAwAQiTOayYNRuIVydRP1ta+7LZ7voHsQMjAARSpOFaUAYBSfZAbteT6q7MBdXn8m1U3QOqdYG3M1ROWhYFV6czpnSz4R07EZwz40O3t/ubmOsgVUf/56GmlPL0KDBpiuqzLHuep1w2oy8+YBXJ3zrEKKzERgQ3YxnEfiDk1EvOVi7/5R+/6J5tIABMj7mNs+uPd6ZGXffEvPvt5X5SqZzUTJwKNElE2B5MP/cE7v+mIv7Inw2cf+St3vfGH+9Ear4n33vlxJEiTnfTgnOokYpaZLnXT08mS90MTAKhJKK3AAE+2bkCp670VOPdtMkIZ971IkiQHBztBMDhg2lL2QMr8vPnrt541tZZ5TGixHULnAAAWdANKh8WsPG8x43cYAIC8PxiQkE92odCfVFQOJunldLSbpEO2NFg7NhicZAwCiaoymXzSmKnIpDjR0BhgjMlud+nG7ABAZ+/snb0DAOEsQVABY1IQManxcuX0O86d/7lef3LTAoDMHSlXAM0FZYM+J7wCnPHHJ05puDuN77j327aPfiEAb1WdDYc9+9yV5BkbkqqupMdoDwOeRroBrULdi+LBtQDg7Jl9Ig13S0SBO0VVb7lls9cz5XgukS75xsqKbai5amBZ+VzqBizEfc3CbXBeYs4wTEQgZrYm6imtRWIw1f6W/uHv/bOz5351nTcCQeMG9r3du5a+6Gu/8bdIjqaEqTovaT+JKfV6JHnXu/5Weu5/9MEJbnvFX/xv25t3iHEenqzTaWo9kvHZ6fRKFFIA5PN+G7OkYKZNF3vtWC3yBX0OdQNI6xGILt4zCS3lkC1c+SztBhmNDvb2drykzNWkFkmZR7WBgkyWLOM2ugG1c1fAHiUQ6TLdgLqnDbxAxZ0rgcCqSvAqVjPiZlGEfe19ei1Jrk0nV8X5KF7vrx3p9bdIY9WiRKoSiVAmEbGmtz64ZTBYD6/m0HCcv6Mqe78DAJ29s3f2DgDk/2YFUxkAXH7kN85f+oVeP7mpAcDC/VBxIAkUUIiShCPEKMDiVfxEDrzc/ZKX/V1Et6U2NRR5garCwWTVRBVnosgG0BNji18SvWsJAz5XugHN2mGNMKBmrKh2lFhEzjx6YKz3oWgZwvAAqerttx8NakGhuXB58LjBsyu1ti+0BCw0+z5FugG1oLH8mIsAoBguIlImJsNsiftse5EBEsvM4+Sx9/zOd+6OH9y066JTeLdt3NAPt0699dVv+uE09a4vydRHY/SF/Jp98KFfePD933UUkwtkXvqFv/icF7yFVRLrmVL1zqbskiuT0bnQIRMoW1YCgNarVGrxWz1h6HXrBuj8njqUbgAt3KQucfRXgf+iS5iIvPdJOh4O9yfTkaoEAoPsTV0MQs1tl2EAzy3apV5+QyUbSTmDF9YXVuoGLOxtXpBmz/5QAPKqCo2IjIaFRKQQL1PyY5fsJMmO995Gg8H6EWuPQDlkEvOxYhUS9kwGYO/TzY2Tg/42M5dPuAJcdQCgs3f2zt4BgDkAgFIJENjL5Ud+9eKlX456Uy+mBACKyPdNCgAy3zUHAIBIIA6SwDhIoio6maSTaf/YX7jzFd8Cj1SNMFEQocpS18g6pwuajkNjgGUu4NNYN6CShKmTD6v7Sz3zmV2E3L6QIrXECn/02NrGer9wfK8j/4Aq3eTcZ+Z6Np563YA2E5FHkU2eNOBQKyUgZsvRetTrcQpFZATaHwyv/v5vvfM7+jo0iC0h7qlNJpfFvvrlP/r8+77GiR+nTqdEk9T0LaYPv/Md33BEP7OjB9u3/L1Xvv77I2PTmKApqYdLJZ0mo3M+3WEOaQfPGiLe+cshvHZWL9eVlVStcO8T0g0oreRDSQhnqcaFDy3CFZovSCsrIWRqwbNUgKqqTqbDvb0d56fGmCLxRci4dNhULpi/jbVOMkwqGarGx6zCrRzYV2uB2ukGVHIHeUtD6eDIqHuz6xMCEWoAJ8pCDuTUO5WRSw9cOlTV3togMkeIBvmhExILUCaCDT3WCucd33ryLsO2Sr06u6UOAHT2zt7Zn3H2Sg13AwAgVuP00sP/36XLvxL1nBdwaogMUQUAlJLXNzIAqA9eF32Zs9S2KgDPysw8dWm6uz/p33Hvtx1/1hd5Nbk2MEihXkxOLiQlANAY2D6EPydLsgFlH+Vm1g2QZTBgbmIKAPDIPht4VWIN5Rz9gd0+1o8MzwGABa9rhes5W8CH1g6bXf8p1w1Y/ACXcyZEpMTM1pq+7a+JRlCywNSZtaMb73vXPz79yNt66MVqexyxTcfJrsXnveotP3Xy1peNx5OpWJ4Y5mTNTP/o3d965cp/XdfkAu5581t+Ldp4PlmhmHSaKjlKfTq+kkzOEZwxhjO2ewFICDU1N7Q8P7NyxFYgpc+OboAe+j6puV6rSWKgHPIv/ZuL/uDZTYs4n47Hw4PhTiiSydY5TGANqkuD1MsGh/dVTY5xeVFQqdSKtLbAXlZOU6Vgafb3ohmTbCYhDDAzVEQ1ACER8hAPmTp34PzYmoGxPcO9gJeUicAAhwq0ooXaO7n15F1M0dw9ZP/oAEBn7+ydvQMABQAgAgXaPFbj6PxDv3z1yn+2capgpMwITq/mwW+Ze6fnl73hAEADZfsMBqhqxhmqKoAxRlXS1BGm6fA5d73iO9aOvCCF+EDbp1A/oxcESZEHyMZTlgU+2/nTqynPbzjdgLoSoJZop4Kayow5ISZKUNXx0F25fCCw8EKsm0d6Gxsmimgh8H+IIa3tDSg/0SKc+BzqBiwZzBwAVKSmlA3B2mgQx7EDG/TZq4M1tDGyl977q984nX4k4j6JM5CYdKhKeOWbv+GnefDsifcYG/ippfjSY7/83j/59iOYXkb6ypf+yKnP/+aI2MUeU3WSGBV102T0mHfXiMgyE4VtRADLfJl7DRJYHoRuhgG8OFBPrW7AUiWsegrdyoWCd7tYEpY7xMg7Xma1bc5PR6OD3b1rRAjaAk26AUXxz0LhUwMAqBsxIV3kJCjxAtUudml6bxRTE5KpIRUA8ZkM5WwTEYFVKWjM5QJ/ovDee6NT5ydsyHCcvWON1ZzOjQ0V4QOCBXD82B2UESpVKVk7ANDZO3tn7wDAPABgZWZycv6BX7p65T9HPZkDAEEC7OYDAEGbJj+IiUi1AgDCmcVqhLwwk1U/SdSNI/vq577i26Joy/ugesDiPGmOARoAgAYO7M8yALiBdQNyT2Eu6LvKG6t4gfNhxRIAAHDmkX2Fv+32TTZksjmNQGmZ91PV1zXIXg8AWEwL4IbTDZgHAMhrPJSDLphlE0X9HnFPxRhjTBqLtc4Mru7+8fv/x1sjDIninroxRpamTu167ytf/w0/FkeboxHDQxXePfz7v/Y11j8yRbLd//MvecsvrNkjOhDv2MvEKGLAjS+Nx2dEE4uY2BHZcFey/OaXLeAG4qal1WVPuW7ACgywJBtAM8TIizAyf+SQDfCZem4+DqI+Tac7u5fTNKEqwfECyY9Ildsni+BURDZ4VrdTHatSR3t73QCpPgsV45wXL4US/9ljag5ci0BA6AMmshri+iohDQImqBedKlKCMbD5laEKCQrEWaZaQSqejh+7g5mZuawrotqVAHX2zt7Znwl2WlaMoCx5RJ+UNCgBK6txcvHBX7x67b/YSDwMp8TISoCUKtUGqNT/6M1QAlRJApQD5BqOESgZ9gRxwm6SiN7yrG84+dyvgY1SOHJ9qAOYXdY9EHCREFR9oLNY3gzQGgm0EhLmw0GL8icPNU0rHNzPrm7ALJFSqq0q1nHB5QpAqxQrxYczwtYnEF+/kXUD6u6WlKn84TxyHJu4Z2zMbIJuHemaxUA27Sfe8yOf+uS/7sH0qKfqBfuMyZQGpzb+0uu+/oed9A+m3ngVox9+13fuXPj5LdVrMK960ztuOfUaD00gUAclK4L0YDq84NPLitTaWHMttjxAwItRYaXGptg2TvYCbWh9EuZzrxvQbm+20Q2Y/28R7/3+8NJwOAw+bpAcJlFVFZZq3L2+o9pkG1QXJYqz9OYCBgj2jEm5Pt1V0Q3IffpKadZc4WjWG6Co/W0Fb4hX1aAOlo1wts6laIah/EdVQf7k9ovJJAqDWUqhywB09s7e2TsAMAMAgd5BmJlYyOnF+3/+6t6v5gAAnDcX5q9mvfkBQBkDaC4X5VlIDYvxRjidOjXj1Pef+4K/t3HszwX1X4ESLNJpRtQdwv95xchnqRmgLQxgtMoDSGPV0OFu47DNwU9QN2A+1kha63BU7pDmr9ByVFd7aTeSbkAdC9CsI2WWFdGIDLPtG2uJDECGByx9bywifv/b//rpy+/Y4HVR09PEmQP2ERCfuutvvvIN/2Syz07FeX/hwV/72Ie/5bgm+zTcOPUtr/0LP0YJeaOOPDkQBM75ZDcZn/V+n8gYQ9VJ58VsUvARqdXT1WQDmgDA4hU+17oBQq03zspe50VnPUTQk2Syf3BtPB6FVmw2IaVb257LOVLy1eel3J+u7FZhKbfHl96bUhZCWVzdBQYgXbbjZs9CunyXlPKrovCLnRLlCxZHlao/cexOw7ZQrBcRQ9wBgM7e2Tv7MxoAaDlKFEimgQAAkMrFT//s7u6vcyxCTAkxGEwhsJr1v5Zyu1V/+iYCAMVt5yXs6pmsiCiRAJbiJNkDD6fu1ntf8j22/yLDzjG8T0mZs0Y1AgkRSS0vuF5HJ+ghMMAcj2FWgbNYzrsQwryuhIAcmh2o1idrpxtQKtBqdA3qHIVqUbgeelRvFt2A6pU5dzYrtXmsrMTEse3F1sYKEGJFZBF7s07uwf/+n77W49Eeb1iJYkDgLE32dOPVr/m+2+5868Fw4r0fDR//k9/9+m08Sti/hKNveMNvHD/xOt8TBaepenh4WHE+OTccPsYkEYFsPQAoRibEj0u9HytJfg5NE/S50A04tHzYoXQDFu+5vD5FfZJMdnauTpOxsWCyZbZQVVUhQ+pUmGd/y1rEB2p2d7Y+qZxZyrZV5pE39HLMIYHiP8upgPnu/8ZdUvcWmr1spSkhGZqqReTWk3cQLJggGedvBwA6e2fv7B0AqACALHLCSqm7cP9/2N17O8ehB6ACAFDqA75JAcBCbfGssMRrKPE3YtQYVi8+naZ6EMUvuefF/9jbk8QQrwrnvUKUiFiLnlGfO2FzTYpc7zTkgbonUhG0TDcgP56lJnWwIuB6qPs5rG7Aysrs5UH0FdmVUuXGHAZo3g5tcwI3mm5A/oGcBCkvBCoAABEpWSZLhmEsmxjoCZHhQX+w9oE//sFH7/8+omigGwoGOEKSAkTHX/PmH+6vffHB8JpYfuBDPzB87Gf6fLAvk1tOfNN9b/rpPkVpTONUvRBEeyDSyf7Boy65GClMbEIl99ztlR7DV/y8sAsWEnOHT1jJjaEboEtgQDmbdL26AbIgCTyLcAOYJgcHw73JZExE1loAoo5I4ViNYr6xx5D48mVnmRbKn3o+ujH/nlkKAKDqy8GjWSLoiWCA2fdm7LcVDeMsCSAicnTrtn5vE4CqCXqCHQDo7J29sz+DAQAV2u9CREomhLGJCCyU+gv3/9Tu3m8GAECOSelpDQCUMjXKwCwNn/rYWA+FNeS9cy51w431N9z1qu9MEkuOlJFAkLgAAHK3QIjIw2O+UaIOAywoM7Tg95SVGGAJEqj9Yz68H9M2zr0MEDS5UMvqwivLeAnJ5hwzipZGlakhM3Bz6QbUArBMJFXKFdgS+nYskVEhMpZtj8gw98Vby/EB7/3Zb3z1dPKxiNetsCM2jMibMfz62ou+6Ct++Orepnje3fuDT/7pPz6OS71oeiE9/rqveMfxYy9xxiRexRMD7MFA4nf2rj3IcmCtNYaKkLkKzfnT5TJxLLQ9tCgNunl1A4LZL35ouW7AwqRnFfAiQjm5/hzPpohMJgeT6cj5qYioEMiJVOp8qLL8pAajlmDPSt2AMltoFQDkxTmHVBBrgwFqd0rRBkDkvddbT7yQrQEA8USmAwCdvbN39g4ANAGA9Nwn37Z/8DuhBIhTZnDg/ynKi59GJUCzmycikRQwpAqv4FhJKAJS75FMhunz7vqWY7d/pbjEgUjhfa4eppopiZGGvLlQ2RHhehekYAut0oZeHwy4DiTQgk70yWkSuC7dgMay/tL6ruUnKdyOUjfhddLv3Ji6AVUt5HItkKoqK0MNkQFbMpZgObIifTa9Ka1dOXjnJ97+ViCxtBZpaHEhNTF5ec7dX3/bPX9jfJVS2nv4Y9/v9v7wJE2v2IPte37gC1753Q7wAlEPb9Rl75/x6Nzk4FFWZyPDDIPMMa0DAPUDvrwuqGXVzc2iG7CCLbSco6wfrizZmHvYIZEiUAMI8azYJk2naTo9GO46n5SQhhhjQtJgEQKVoVjoGG7I3dWxaVV1Axbmt1k3gFYkT0qHWgkD5O/PORBF5IkiEXfi+J3MlmDCjXUAoLN39s7eAQAAokwEA3KBQw0s5NLHPv4TBwfvMj1VNlkPQBZWKV7wNz0AWAi5EQBlIWGC9wKCGLVqiZSmMo2MuL1b7/mC7+HBs1I4dlE4IEUkOAHFGVz+8dDlfowSSPiQnKGrOYJWlgZJM4v+dRUFVSNz5W+r0w1YvKuWzzsL39as6qwJe1GsKGCARV+kpW4xblDdgPoUUwkJZC0BJERgZQNlthE4YrE+6hsX83b/E3/8Lz7zwL/vqenBKuDhBtQbISE98dIv/Iebg/vGw+HulT985OH/+/bBeG90YXzkq177ZT/T720pk4d6R6KAgkQZ02s7D8Fds0zGBqXaDADMmj6p3vlbVtm1Am6thAFPtm6A1M5Bi31UIyS8+OnaVECV/ZbKyyDohRXR9uIxFTKdjvf2r0ymB8YYAMwWyqGttu65UK0omwdOVQaIhQev0w2ouPKVDMBqGFD9JAMyj+QX55GJiE4eu7Pw/qFdE3Bn7+yd/RkLAGa89SIEogIAEKBsSZPxmY//+Hj4btOjOQAAzsgYn3YZgOLoCbL0Whx8rCxGicR7bykx5g3PefHfYI0TwJAtMu+lBsH5wGFtTUOZ5YbaloAfDgYskFQurIFFLaHDxFkb7rmtboCqzi/XOqadUE2+BHE0hv9Ja8OlNeMmq+l3bkjdgCXd3TMHLtPvCIy1ZECGKBIeWEMkxsTrkzi9/x3f/Njl3+vTOmtkyJN6IZpotLXx+fe+4u9QsiHpzgc/9raj7j09+PNY+4LX/uLx530JiSrzJIUQSDUSIvajyZXxzgNMai1HhsPcCdWG/2dPQbpqzbeovP+c6ga0EelrvJ9VugGLF5zpvgUC0EVAVeHgQihQNMgoRNPpeLi3d82TZ0YVILGq5yxDSdXnzd+JlbZgqgUv5U6GuiRAWAlS2oAN7bykS6oE58v55qaPDEgM944ffTZTLOoIEch1AKCzd/bO/nS2z+JbTCChOVHLLAMggfg/e78zIzB7T4dnP/LvhpMPxpEKG3IoegCUQKpgLt7y5Y4xVrpZegAaTq9QCJTreWkxmiQUzsXESf/4c996/JY3eYKoI4mU1GiiSl6tAZSJ4QKyygRuYDJ+D5nVQoSUuoQxK85FkkXk9gRhAOalf7Aq5NkGhLRV+a2/n+vUDZDlMKBen4hmGYO6D0gdAFgBGD5XugF13y4Lz8Xli5QUZxlKBobICBNFsZU1ob6x6jkSPv2e//JWlz7EuhZTBHUCT0RO13tHX3v3nV8O3z9/9j1Xr/7KuuyD/OZtf+3z3vQjdgpn4Rw8wThECmEQ3MHuZ6ajc72I2Nps3Em9CGcZgMZppSWAh54s3YA5Fvwl0zd3t8VsVrN887oB7VIW16MboA2UQdWcwPwbr8gGqGqSTEYHe+PJTsgGEJGHFlw9FW3pqpRYOG6yz2RAs1wNNWvSzYR4qWa+SnZZAgPqIH0D66tWZ5ODrnJ84thziK3CE5H4LgPQ2Tt7Z39m2JsAQHZ+kCoXrb0wRGqdnxyc+fAPjdOPxBZzAABMEHl6AIC62FUhYCRl59uQemIihksQiQ63n3Pv37dH7vWBU0+NqiqciDAFXqDMcSw8uaziSnQJDqktsZ3rbEMtuf5S53hZLVCDX9VUHdSaj+Wp1g1YGjnWlbyKSku6AnDD6gZgvuGV6zIARQqFAbAQkRE2hNhaq3ZAcMSDXi96/PR//9T//EeChNAn8qSwMBMyTjefdeqLN4++xA0vnr/0djN+9Bine3z05V/19sH28xOnIkiFjFf2ysykEDm4euUB1lEURcYGUWAC+XBD2jyntDzjcRgM0F43oFY0AC16AxoAwOwzhwEAFejXEgOEkSSt3UfL6uuy2ASEmUUckfHee5+m6XQ03p8mY1VvDKmaIv9WvmB4v3nvjTHZb1mFlPyslDFQEmW9v/BKK/eOlEryZBUAaJzH8keIiNiLYGPt5Npgi60J4ZgOAHT2zt7Zn6kAIHtHixICg0TG9sBkSJV9Otk9++EfmqYfN1bVWHIomoDBRTjn5gYAtaUveaArR0R5hp0EMNaTGGNo4mGSyeiW5937NwdbL/WUEoyQh6iBEUkYkXICZSEuXHYlEMwcwUnBk7jYWloXI581/LV3VVnb+cpV16rJozxkadCTqhuANrH5zBtY6UZXShEOl2a5EXQD2o+zhEYXMbHpiyFQL477LjHEETaSs+//l4988ldExbCJEFk1XjFFzLjl5G2v6PePDfc/tXPpw9uD4e743K13/8CLv+jbRCCKxIdtokYYgGHs7Z0dHpwdRMZYDTK1ioQKYAy9HgDQLn91HboBc8gz233wLRcDSav7fIK6AVqb2qsTuyi3+S5JfhYOeh4vz0ZGVafT8WQyORhdAhCC+Mw2T1gJQ4IMYmggzpgh5nivRGaKvKiA+WYFsebm4GYkUFY7Lo9G0AEIssGBKyn8MHcZgM7e2Tv7Mx4ABH8kAAAiIhYDUpO68e7pD/1Q4j5pDKll9hQyAKQAE0TBdFMDgFU/VB1CZZCqsiVjYnLiVAgTdbcfefbXnTzxOhj2LJoya+IJpBCoMqFIrcAESZpwOOVKarlfO5f4zo9JAyqzcLDWdHwKraCKX+4vzrfnrtINODTdYcs4d8MEtNANaIQBC30v2goAVDuDb37dgLqLKLFagoGNDVliKxwbYc+x4vxH/ujbdy9+gBFbVQGZqCcpefR69pajxz9P4caj0+oeksnlq/qir/qm3xLTN6BUIQ5O1DhYQ2A4N9m59gjLXmTZmFA6KKK+CD0slN9I00S1TFsdPk+1GqO20Kxg5MXxi3e72Bz8RHQDlt6ob5mRW4wsqGrOgYx5OlEgTafOT5xLR+ODyWTEDGOMQVTEL4wh7z1zJkWXMc/Cl94tdQrx1SKrOdpQiF8Nv0kXAUAZxpfrl0RdIRfQNQF39s7e2TsAIIAEkgQhZSU1YqAwSMdXTn/43ybp/VFkhA2LFgAgo1d5JgGAzP+GBYSZQNZ49Vas0GS6adZf/pznvxm9ZwHGqFcSQIxCCKIBBpgiriyeS2eahiGl0hDWEOOQYCbYubRuANASz2XtJ+dq0OtKiWYrpEk34InDgM+ebkCjX97M8FPjZlZI6BcIB28s3YBsFlZGuKuPR9XuAjXMDIqsGnAkNjZCxvcxiPf33/+pP/ju3YPHIsAhZTJRvJFMlenIZv9Y1DuCvhkfPKTDCzuavuo1bzt1z1dGCgfvnUk8rACAsapK4/GV/WsPxtZbG5MRiCqkFgA0YYCmupFlfZ/XhQSWSweshKBVcD776tJ8tVzADUggfzPoirdVy5ybzBUW5uV2NVVDGZtQJizgpsnw4OBgOt5h5lxw1xTsZ0XjU+ALqiNZqnnPlPdXQfHZMBHLdQOaVcCzk5FVPXEnBNbZO3tnf4YBgJmzPgcAsuhuBgCUNQAAlz4QRdYbeoYAgGpdUJXeTo0iYVgAxFaNRJ68mphkNPYeW+vHXnnsltf21p5tuBeRTVWUJHCDZAQdHgB8VlOrmQOkhIynbiEULfOBeVbkxbjU7GrwKidDmkLIS0hRWlcE4QbQDWgNA5rVAwqq8ptUN6DyJ5Ue87wrABzWHVOfxQhHaqKYIkKk/ejg2js//JvflWDfgD05i0h7634Sb0Sbyj0abERmJPuXd9Lzg7U3fslX/7xRoMcuxdjDKEymtwYRt3P1Ee8uRsZGsVF1VHK1y0ytJWJQabVPdfUiaRjqNmILzdc5ZCZqvue7FVZBU4tw9uytXmV+OdRZ6LRZAGOl79G6DNt0OvQ6uXLlQqA/ZrIGBqakAOBnDUt1CEprUwHV7dZOL7y8kfPu51xoxUM5lP3kLzABSQcAOntn7+xPf3t2uLYBAICysoqyJqPLZz7yQ949HEUshigDAIFjgfMD+2kFABragmfNABJa2YTZRMpqYUidd2JZmaIkSVLX1+g5/Y0XxGvP3Tjy7F68GUXrSpEqFCywRKZ8WKmUCLY540efq9ydkVqEGoCCnk/nC3znAEDLSPmK/uAFGHCT6gY0usrUREyZF2FXvZYbTjegjXaYUr6EwiQSMg6wnrISGQNSE4HWYWLDMIjjjcHZT//KJ973z0T2YokcPEcqesS59QFtDNiaDa/jkUuunoP582/578dvvcsLUg8B1MMIiCCkKpQke+ODR9UNI8tkhGnxcXi2YmgxMu2bVs0TSxlpuwSO1L9jW6+9eh5eknaIWpuyfS1hc3OrwzwFcO6lZ2CgtAGl7pWS1dJkoQdxAKbTsfOJ89PR6CBcP2IjIqGBp6BBm3sSLuNkWu3ukzZvioVsQLhmYChilNqruibgzt7ZO/szFABQma5eYAqiQFL2rBCj6fDymQ/9Wy+PRBGr5ac9AFikyFjAAPmhKMqixEbYgDxAHCr7BV4lEW/EKqKR6zENer2jvbXjcf/YYOM5a5sv6A+e5bSvBBEHUZWC7V2FCEQgnbUNFCUbGY2GlE90EpqL9mVt3MpzkqvVxPr88dlEMz/vla7iDH3qdAOA8gpv2aZZ0IPUhE/LSkXUOsz/OdINqPMma2qEWGsAAEqSFCaAUkOkIPSIekQWcRyhRxYcbUiMi4/80sff9c+tTjPBENOHM0SbvSg2lMacwA8fTS7f8YJ/9eo3/B9pAk+kEO/YOBBlyxTAdHg+HT1OKjAwVqrxbJpbLsWEVleCLIFvjXoaLXQDDoUB5t6fbdJQTUIchcAWrks3gNqlwppGT9UXutEFJCilqnIkoFSbIA09A7Xc/Kqk6lM3di69eu1ixEbV59H3+d0qlEGhSuYhEJsy1c+C6LJ3CFU6ucNjirhwLDKIyGSP2QGAzt7ZO/szxD7LttOcWJXAFO6tD6rAgCQHj5/+6I/AnTF9ChUsoQuWiIlyThtqk4u+6ZBAeC5dTAKEPEBO2oOsBJaMh6p6iLAIkTIDhlUpdU6ZVL0hAg1SbJvBrRvbrzq6/bLI3CJO4ZlJlVKBUfZMhijAKwlHPGnKFIsmzPDQ4vQKjn6hMaAc8Md8VLHw9hZUcSXvXJw5IiTXU4rTAhU80WxA2y+idtUCC5BgeUB9buhakAW1cNlLlsPqBhDVg4oVvQFKNQoDCoZRYiVDHDHF4EijXkRr6jjqGd3G/e//mc+8/19HfsqwiMiSS9JN5jU2Lo5s7K9emTy2a17/l77213tRJBaOVFIiAQkUIIKyJj5JDy646QVFElkKdMJhEUoh3Dz3RCS1iaDlUeEmzlBdaOpvjQEWIART+UV6KIEOXnqfkr9hmtZ47cXbcYaG6+vSjNEqsESKFYWFvHgdEZekk9H+/jTZL+sGZKxBMAofHq2Ya2aGeg1Xo/pZzoooyzSjOWipAICicaJaOUlEHQDo7J29s3cAoB4ATA/OnP7Ij5I/WwsAwnHyjAIA2TGjxQ+yYwxcuALqPUMC7wcZpsy3Y1YOjD9ewN4lfp17d68fe+Xm1j2DjVsN9zIZASWwMgOkEJ85tbnDoWBiVfWkMDBUFMnmKfaM+EKyOu+VJQqByTtAlEUfpdEbaPCzm3UD5JDj768/h/PkYICafNoy7bDGL30ydAPaFgXpLJq+wDtkCYZsRNQjE3tjYHs9Whd1cWz9Gu5/3w8/8oEf6cGCjbFO08RjEHGfIjPoT6YHl8/56Zd+0X878ewvsQaIMJ2mrFYdmIgZwlBVl+y68aVpusOaMFs2minOBnaY+vzI8kB7CwCA69cOWy2vUb495TZrj5dKHYf3xpOmGyDtAcCSqy1JPTVdk0i996ws6pxLRuP90ehAkYbXLBGH86UQM67QhhY5AZhQfacsRATxzBy8/4U/zNsbSL0vSJZ9QW2Uvck7ANDZO3tn7wBABgBYSTQAAFU/2T995qM/xvKY6TMzBQBQysw/vQHA/FFfiR6pqlaqDsqHbOGGBn4fhQdbImKIVVJx1lqS2CUTl4qTdekdpc271rdfeuzI3UTHCFbhWGGYidSAPAsMRITZAmAVVYIo5cWzRCSUiQOwAmDJ0t/ZnQRWviBUVHIlsypeqQYyuVgkyodyqlrUNLesWvbXP3kk1yGZXN8hsKS2nqqXkuv5xicGAFp4bHO6AXUAgIhIFGAiwxSDeyYeqDHO9Fn7hsAexOq36c9++59eeehn4sj004hhEkw99SxHcYye233MXTx+/K1f9GU/HhF5C6QYCSIBK5ihgVZJfJrujocX4ffYwJT4TJcHlpfCgBra0EY3d3X37ep5rKd5Xd0c3KrfJqvdwvW0LiAXEV8ykNnOxuH2SNMjF0728tkr9MiyfBdmKR0PVdVpunPt2hWDQNMJIoS2AVSrEIu+BUKUVfarMs9IcUPyMKtlghiON9aPx9FGKD4qw4Dsgh0A6OydvbN3ACAAACEh0aAKrOonu4+e+fiPQx6L+pyFavLq/6c7AFh8roqOfQj7Vyj8mRZ8CBEKjRNQymJ7BkRkADEUWYCU3ERS8V6dV4z0RK/3grWNuwbrt/TXjvfijThai6MBaB1GVH2QDch9TgrB+8zjUc7kBVhJKCTIC+nTMqt32b1Y5F+vuEqLnSR1cgFL/NzDxzKfaAS9uLFCLWuJ17gaAzQjgTkM8FnUDZjBtmbdgDZsoTOfkhQlgaZyIVBRdGFgSC1M3/bXvVm3IqnpR0zGMTHUwln5wO9+86XH/seGbClHZJIkTQj9vjVWp6nuXtCtr/iLv3vi2AumRM5pomQCH6jm64AhmkwnV9LRBdWxMZQtXjCUlH1WrFaRf8AcaUHTbNbSts7PXqsmlkMTaC4HLQv3LEtEOaS6qK5fN6BhrHTu3lrrXhfBjpY4edanlJUsZmoJiw0JpSi+J/Xee+dShR+Px8PR1exlSxSKLeeaQ4JDzzDFIhFxzFA1Nuof2TxhTYxFZXGSLgPQ2Tt7Z+8AQAUAICdQExJSP9p99LGP/4TqY1GflYhrAACejv5/7ZlK5WD/fJdqXsVcE0dUT0QqJY1MIjURE1iJvYF4kBgiYp8AfgpVMohBsTcRmQ3wdrxx+9axO7e27hXdUiXSlEhJOUQ6lYk51NqW7ib/bcAqi75Uudy/CQA0NeOG1dVUb/Nky4e1hAHC0o7daF45CGgFAxY4Q2XRAX2ydQOa6oJqdQMWW72FmEgFApAJFWHUs70NtlswYGanNoKFR6TwMaZ6/g/f/s3p3sc2bQ+pnzKJj1JOtnvoTUcPy6XnPff7/9yX/iP2SFmhrB7GQzyIQKxCRAx1o9HwsTTZISSRNVkdOKDZbdPCSFTReL1rW6PbMDcUC1Ve8gRggLRahKtZa+sJQz1qsPp17aD5+6TFTy9w8C+HATUYoBEAVFpWmno5MnqgQhGixAgUsIGqF/FJOhqNDpJ0rKpsqm8zUYIREWVHRKq0sb61NjhiTX956rIDAJ29s3f2DgBUAEB4ZYu60e6jj3/iJ1XPRX2AmWYlQM84ALB4trc4mJWUANWQlA99bzBKxBkpC4kIKRuohxBZm8kCqHgWzyABq2gE8SKCaGuwce+JU69b27gTZo2ZnZ8ILMEo0qKzLnMglHOO0NyFYpo7qUM4jZVnywA1H1gVMUVNrmBBQWwVBmiZE2ipo1REvmccLG0YGxtFphbvtS6KW2CAZgBwuFTA0kByjePY5PnVAQAO64RIBQooE5GHV8O2F0VbiLfFkPEeFEVgCAwrR7i48/GP/eG3T649GKGvJoImXp0gvWXQvzw6vYMXfvU3/t66OSmiZClxCkfilEGZDp5RUvHp1eHwgvp9Q7BMIYtVcM4IVnHg1PruJdXYWpL869IN0M9iHgAtOhnq12pb3YDFG55f2LQscSA5spQ22YBlACC0my820wuIl1w21PSXszoZc78LNEGs8OK98zIdjUaAHAx3QcIM9Y6IBLS9dcKa9V68Fg6mACEaffsOAHT2zt7ZOwCQA4DiSBNRN772mcc+9e+B8wEAqKrNmoDpmQMAGpQBZudp8ONnpoIjL5fsVCLJpHOFiASG4SnkA1SRle8Lcwh+Bb0wyXkyvLEgIk/sRH3i1UXKJ/tbL1o/dvfW2vOt3SATiwTYZkGR14zcj8iQwvs0ky8gKuhLggBZVjI0q6+QOf+jFQDIV1pNhK9ZPuwJFAW19r0A4WUkjMtdnBUAgOq9n4AB5lzY9jBgpcQB8bIPtNUNyD8eAED+OEoAnAqx0mZ/7SQZC43ZONGIAU7BUB3o7rU/+eC7/q4bnrXRmk1lajj1vLU2wmj4GKb3veRf3ffKbyci7zTxlHqFB+e17RmRq0wnkwvp9DL8xDIzk3KubaWk1E5QgmSx7n95pqUxw9PYJbxa8OsJ1ALVXG1ZzuqJ6QagJB+mTZGMVpur7nFIF7fHTEK4Qhgq5ddFHsXnCgNp/m+T1TEuHGTw4c/NvNYeFcGpMkFQU/KhAwCdvbN39g4A1AKAZHjlM4/f/zbmi7aniwBAZxHnp9tPucZ6KQCoIgGdOSJEVNQFcd70lhVCqEK4qG0gVvEgYwCQcomqQgt2SDIGCBRM8N6rU5VIUkx5g8zRXv/U+uYtGxu3DdZvjwenYNY9qYhQiMF5UfhAi6EUIWexLNhvwgFZqMKVc/fcRuC2BADQ0CSw6LgcqqZ5JQZoLFU6jHJwUYsy85ZKCrVNFSZ1Dr40Ckp8lnQDGFJUAZU/07IiqPjxIAMVyiS9CQIPFagS2+2of9RHfQMDUQMjlAm8Rr3k4dPveOhP/3k6vmwoJhqQ9RPZ2Ta0l+xS9Iqv+Jr/1usfS4DUaSJKCnKAMFgNa2Cy8sm1NDmfTvdIPTPBCFFUDNLCzDYoAJQl8NoAgNJ0VXQDcN3lQOW55qb9Im1FA8C6bMW20w1YVg7UUj6s3IVf1xBV87FsZJWUQGVxGM0AwNzdlplAwzBmWukLTS+5pImf6a/J7JUVxC4K1qDC1yeaEQQ15jw6ANDZO3tnf2YCgIKcgSjjjqEZw6UHyf7l+89/+j+GDEAoXClKgFihXJNqX3JaPDN+aE7EdHkMuOLtEVSl6CWtNK5ZzmqGVCECEktgZifsnHc6Atjrutq+Xbvj2LHXbh+7j+SIKsh7ViFWIaewaiwFnYEs0ssBGyhTHglmBUi8gVElITeDCkK1fQJlDFDrreJ6RMQOVw7UdJ2CdLz0ay7fTDEv4fEFVH9ZWSAXb5ISW36fjQJGOleetZxTZRYCL7c2NvK3zqWnKpKuGZBgJQreoSdRcQqKwRvRYIujDfGwZJmRGvBEjAr66dlHf+GBD/7QZDTs2Z6BSf0k6iX9qb+kes8933ffa/52kkIJqXioYYU4ISUKtFasEPXTS8n0nHcT0akxZKmnDNFKKqkcRa5fFQu+dRm2LZkLgsy3shTLOO+PqbYSrO5UKQNIbvTB2yQEpBbUlWq6Sh9Ytmx0efyelmQ2qLl9YmX+akGnYm6httvOUrrBGiG2udVejtp4ZKuFlzf1dACgs3f2zt4BgEUAoPD7l++/8MDPdADgUD+LjYwVJjtd8beFo1MZSaasm1eDz5ZF68kwlA3DORFvlLxoomISPdmL71nffFF/45bB+vFef50QE697dQoDMEOJUngQkVclK0AgERIlgVB5tcwASfCDF7hEghdZm2evxOYPgQGukyMIdXLOlUKmKgAoZiS7T6rrhw6jUhVFrned6An2GbftcCjGs8mvWiohPP9mCHFlJXChB+dIRECGoyPGbLPpszWqymwZ5NUBYuzBZx74fz7zkf8wnUjM1pCAp+sR7STDfbnnzW/++bXt5zumSMV7dSAjTF6FFJxpPxHcdHzRp5fFj1XVWCaiICO+CACW5AFq1pXoagCwtEE8ZMmozplugc3qAYDUgufrBACo/aJ2lXUVyNSEAcqsBocGAMvCI9p+Oy/XYeDmvE3eRa0dAOjsnb2zd/bDAYDQA7B36VMXH/zZDgCs9kOpMQLNdYfsEhhQ6wQH8bXgGAU3KItYE1SYmRWhxgIRwTKr2DRN1RmVvqDnB5t2646No/dt9+9l7ROsQgAHJkMMEhBJlIWHxYMgRuChjFB2XFIYUEUVAEjJp1yhINZCP/iwkmFNbk2jg6j12qKFwmseelzlytS6mNQ6uil6fTmNuedaXgRVpg0t/WepAIzMLAkQtJMoF5ITr0qKyPK6jdc52hQyxBL6Ach7YYAvn33oxz71gf8U+5QZZKkfE9LphWl6y4m/+sYv/5FEdarqHLM6VmsUgHcwzFACEdSP0+mVZHLRy8iyIQaTESzRn9JWAKBx6NoDgLltPb8fl65hvwgAZFUyZzkAqGZC5u5MePWCaa49a+hL1lKN2Sqxr7YFTsW4r2yGrsVUi/POzZlVoTIAoNqh6ABAZ+/snb0DADUAwEu6d+lTlx76uWYAQIsnwzM5A7BYll0eijISaD5QeeG0K87LcnOkBgZ3Ep2F59kTUWBzMRRZshCF85JSCufgHEjsc3vxPZtbd/cHR+N4u9/bosjaaM0xe3jjvVERJUc+Fx4WlbyNT7LOj0K99dAAYDUGWB1kXTkJtVmIWRKgvC9ogcKfacl1aj3466wFOiQGaBqTRVp0rCYLmos9F1LQeeqDFJAgXC0eRMZGaybagllTOGFjyZBC4ciw0uWP/ek/Pf/gO/uIjHoexICb6jhJ11/80n9x14u/aZwikVz+yYeekyx4qyyGVL2bjC649IL41BgKrC8LvngZpz0RDHAoALDYG9Byfc4H5r2u9jMbnqJCY5VR3VPNQx0eA5RGYxUGaIcEBIfBACsR2sLjSNO8r9JVKAjR5kejAwCdvbN39g4ANAKAyw//PHDexqSsHQC4PiTAWvbP6JAAoIiLl+kRyydoLmwpxGzIMMEQhNhCVdWzMinYKBuRlILOALjnaU2i2K7furFxx/qtL7fxSavrkrpwtyJuVmdMGZEpiQWJkpCyAsQhH8G1UedlrhJVmECuI8i6Mv46BwBmvnIdXWnh3CwsXakXe66674fBADMvh+oiu8u7VxdHZrEWaPkAFgBgzuwxX2vByF8FnpljjjaiaB3GCjyox1CFh7dxHE1w/8fe+Z27V++3yhOaxlZ7abTXw4HbfMOX/OStp14/ZUkTJh9Gm4wSEbwqGQIJDCDpeHgxGZ2zTGzy8ckpXMrDmw9a61ogIAj2ldabfwIAoOUqPTQAmF2tHslIy6V+XU32FYKg+tD+alrbdrB5NQBAwwtwpidQmz9pCj3kr+LFWqBOCKyzd/bO3gGAZgCwe/GTVx75BaILJkIHAD57P6GKnpZ7jHNqsovk6EQskipZUQ/ACJhDPY9h2KxiJ5yaFKrW2ZAF4L1HShBWVU9QQ1Ar8Qs2jr50Y+uOqHei39s0FqIqIiIIDSFQy7CiFE5VzSPrUtfuuJp5k6SNg3IdMGAxWNgIABbaMbmmIlrqBv8JAgDMideGjdkKA+QsKPW5phasR6xNQm2YgwEabtKDlNkM4v662Jh8Tyg1ZJUcNO4Zlj5o9z0f/O3/89ronBFVpGJIPI0t+vELv/jL/11/88XpGCLqoZaYw+VJiUkAtcLMko5Ge4+J240MB0banCJSFwTXDo0BFoCWLE7RPAHrCnag5S7sPACQuk9y7Uy37g1oCrrzMsSoyyP31OpLcaj4fUMI4BAYoFpU2fCHDRig2CiLadgOAHT2zt7ZOwBQ3wQs6joA8FThgapzUxtv5jmfTwEKBKMCCcLAWRkLs4oxpIGKFACYVAlsw/ySh3qhwMliGBBCj5zq1IuPtHeU14+b9ZO9recO4luNWSdeU2KoJdjgt5T7gJ9UAJBfZMUH2gCADAOUmF5qHMTGZseaupQ8ICrtG4IXKzeyT3GWF2osdZgbN50nTKyAnEXwU/3ekqvEpcAto9pdmj+HQJS4F8VH2PQ1D8mHIn5LGMDQABc/9UtnPvFz1/YuJJp69iQMcNK3Jn7569/4A2LutIZM0L0I/2MoQAZCIFZDMhpeS4dn2BDgaAYASuNIVdRUWw60FADwjKRLFhMLCwBAqF0ovdYP5jpndkZw2eQvr4Bwq1MB3LgvZDkcndtpy2FAITLY7vb08AAA9fJ8zS0EnO1TqQMA9fnJDgB09s7e2TsA0JgBuPzwzxNd6EqAVoRza5RWl8YXmRbOpHklgYrzWmo5JaL8LM+0hA0FzdtQOMEiwoCBDdT/mYNpmMiTWhFRVRFHysYYNSRgowKNOGVyROiraso9rJ3Axu3rG8/d2LydzKYQEywrmHTmPTUAALTR322LAQhtlVnL3yjLAAA11Bg0AICgrLbA2apUaNeiFQZorEcv0cUWzly9AMVyALBQQ8I5q2bJEyo3mM45oiw04zgKomYUqGkRRfERmD5HTEZUCUJGxHJkjQN0fPDAY3/0Lx659ukUDjJVeMYghdmjjZe/6vuee8dbDK2xQhw8q/WB+D8jHiJSQFI3Gu09wvCA44wuhitrokreqqpE9cHgRUKq6wYAzX6qXjcA4FVOdq3Iw9JgfKX2hht3RrkUSq8bAJTIOVtpLxRPLXW7Q1XnhTbmAQDl27C+Rz/YuUrDWgsA5t7S//8Atl7TKAzPy8IAAAAASUVORK5CYIJ43lu9sxiHP0cVeb3X3fO8Z8CGP0Xfi732TZi8cPGJP6YdRb1h67g92J+DPz25fL2rZZ09ayKHP+fZHr2U3ls9sxiHPyIVeb0bbIQ9ZpWDP+aHo70V3vM8Z8CGPzvfi73llBw9O3KDP0pet70eTpg8cPGJP50dRb2jmIcz2a6GP2x7kL1HVRozBMSJP4ELSb3iXCQ9FhGKP8BAK70OWXo83TWDP76FvL2m4TU+xQtiP8tgGbxCKC0+5KFiP6HaTr05Xyk+YNRaP/2EVb0TUzI+29FZP3Y6LbzvqjI9uHFjP4f9Hb5yX748q09jP3AvJb6mIS89j31aP27FH75bIDE+IeBhP3NA0Tx52io+t2VYP0XL0TyjJyE+5hJYP8ozSD2jJyE+5hJYP8ozSD3bJik+xcphP8g1Hz3u9hU9OBVUP4XnGj5rAGu07udTPyySGz5MNnG0+6VdP00+ID4kVAY9h9BdP+LBHT5fuY891P9UP4BHCD6C/Fc9MnxUP2sdFj5GW3g9kiJeP66gFj73fWE9kxFeP4idGj4fhBw+7+NXPytPmD0N1gA+WC1WP+kw6D3gFw0+SeJgP51Z2j02sh8+6hlhP3dtpT3yZe49TNBfPwLjAD5fuY891P9UP4BHCD4XNY89aWteP20PAT4XVqs9grJeP8mYDj4i1sM95g1fPz/7DT5T/Lg9MyNVP0YuBT7ikcMzCi+DP3yavb0OWXo83TWDP76FvL2jmIcz2a6GP2x7kL0Sozs0C0ZqP+tmIr4VLcg8HkFqP1vDIL4igr08eeNwP81oF75d8S402eRwPwLaGL7rIjI9h/ppP/DrGb6ixiY9j85wP03UEL5GtKQ88vx7P0fB9r1giQY9D8x7P/6G872XPSE+OyJhPykykj2jJyE+5hJYP8ozSD2sgRU+iXBgP/OrZD2sgRU+iXBgP/OrZD2sgRU+iXBgP/OrZD28Pu888CBtP4+TEz7OOWO0eQxtP4e4FT4J+FK0PnF1P2Z9CT5vsNk8sIV1P7Z0Bz7yAQk0y+Z7P6vn972voGy0RvFlP1XLHD7Sf/s8pRRmP/QoGz4wwlg9jFxmP0VkFz59an495T5eP/BLAj77hnI9zk9mP0/LET5dO3I9zlpmP9wwAD5GRqA9W8ZmP0aaCj7Ec7s9VRNnP3cXCj4q/OQ9Zq1nP0mi+j34UQk+c2toP3cV1j1FUho+LkFpPwXRpT3GpB0+fnFpPxkyjD3GpB0+fnFpPxkyjD3f5xE+tcZoP3tfSD3QbSY+qflpPyLwMD3UQxc+hZBgP90mSj2vuC8++49qPybQ0zxJDDQ+zitrP7Q6+LugSCs+d8BrP/5+Qb3rcAM+4ZtjP8H73b3+1hA+d3FjPzItv72ggAw+QEJrP28Sub16GAA+ptdqP+KZ2700vrA97vhjP7+hFL7uxZ498I1aP5ngE75eA+s9gRtbPycvAr7dguM9wYZjP54gBb6yhY898sJjP2YfF76nN3Y9lzxaP9u/Fb6uRXA93X9jP0ZlEL7G64E9s+VpP+oOFb7yGZ49vHJqP/IUEr6iYl49lyNxP39iDb6cJ4Q9xQdyP6mCCb4cst09T8pqP0H7+70G9pw9MFt2P0/07z2lGa495X1uPzS1Aj78NZQ9DgVuP4IpBD4b2IQ9Zht2P2Ug+D05kRw+Gx9+PzmgPruYmhA+foaAP45G2rrmjwE+5x6BP9ZyA73ndfg9i8eDP0XJXTo9oek9T5+DP5Su3Lzczmo9JlV9P88i5T1Gzoc9935mP5xh+T0CcmQ92dF1P7sn4j0b2IQ9Zht2P2Ug+D38NZQ9DgVuP4IpBD53N389M7FtP9jo7j3GpB0+fnFpPxkyjD2eUg8+fJxoPz1mbD3frhw+eXx4P6oR4DwYoiE+hfV4P+8WfrsLuis+MCJzP6Rcw7seXic+NLJyP5gh2zxE4wk+U1WAP8qo6TwVIO49+nGDP9Nm6jx5RBY+p/Z9PwoAQ7v/2QY+/SGAP0Mk7DxE4wk+U1WAP8qo6Tw5kRw+Gx9+PzmgPrt5RBY+p/Z9PwoAQ7v/2QY+/SGAP0Mk7DzOke48I1GGP1detT1svmI9B8+GP5a8mj2Clos9yZGDP/i0rz1SuCU9nRSDP6pbzD3QOOE9fF+CP7gdST2nN3Y9lzxaP9u/Fb4wVU89x4hjP/61Eb4UM0k9UjhpP7P8Dr5G5jk96khwP9qMCb6ZvE09D3twP6dRCL6KPmQ9njppP9nPDb6iYl49lyNxP39iDb7L2kE0qz1jP3YUJ76HhT40J7FaP4GSJL6K5wY+dKl3P0TOlj0Fvwo+t6B3P7xAgT2pnBQ+65NxPxAOiD2OYBE+L0lxP4/goD32BgI+inBwP6Zuyz09Pgc+PJ9wPyDoaz2pnBQ+65NxPxAOiD0Fvwo+t6B3P7xAgT3b6/s9/eZ2P0++ZT1y8f89Cgt3P/C5ST2u2BA+WAB4P1KfOD1HMxw+HSdyP0lVOT0/uQk+T9FwP2tgST0zscs9UoSDP6LOZj39v6Q92OuGP3DHVT0wwNs9RaB/P5m7mj0zscs9UoSDP6LOZj2Sjss9ayCDP1SmZj3Ysdc9nSB/P9K1lz2Sjss9ayCDP1SmZj3rS989zvOBP2szRz3rS989zvOBP2szRz2Sjss9ayCDP1SmZj3/2QY+/SGAP0Mk7DySjss9ayCDP1SmZj3Ysdc9nSB/P9K1lz1UZdc9Lq96Py4Au71ZxMw914eDPw56Ur3egrc96zmHP4AZlLy9pdg9fBZ6P824tL0BXhU+RhJ5P1D0HL1C/yE+ZitzP2QKL70XxO89sDhyP6nrzb1kDgM+Zx5zP/lrrL3jpPI9qtt5P2k+mb29pdg9fBZ6P824tL18zNk94xZyPyfp471z4Ms9bweDPxm8UL3mjwE+5x6BP9ZyA71hrf89N7eAP9h4Ab15RBY+p/Z9PwoAQ7tz4Ms9bweDPxm8UL1hrf89N7eAP9h4Ab0zZ+09L8F4P1Rnhb0AtP093JhxP9eYkr1hrf89N7eAP9h4Ab0t/wk+NfZ4P67xY71z4Ms9bweDPxm8UL0ScPg94m54P+rgbr1z4Ms9bweDPxm8UL1CNwU+TIpxP825gb1EphY+gSRzPyvcd73pcxQ+L5haP30Txb3XwQ0+WHRiPzdDm70wiwU+gwRqPzwomb2ggAw+QEJrP28Sub3kYxc+iWpaP7fokr1f8BM+bmliPwABjb1SSSY+PsliP3oOgb3uaiE+GIdrPxSugr2xZg0+3v1pP0oxib3kYxc+iWpaP7fokr38i049JlptP0yPED7M8WU9F4htPyQxCz57u2E9EI9tP1UW9z19an495T5eP/BLAj59an495T5eP/BLAj5Gzoc9935mP5xh+T1dO3I9zlpmP9wwAD57u2E9EI9tP1UW9z17u2E9EI9tP1UW9z13N389M7FtP9jo7j04r0490Kt1Pzdc4z0CcmQ92dF1P7sn4j3b6/s9/eZ2P0++ZT0/uQk+T9FwP2tgST2eUg8+fJxoPz1mbD09Pgc+PJ9wPyDoaz1y8f89Cgt3P/C5ST0wiwU+gwRqPzwomb1giQY9D8x7P/6G872ZvE09D3twP6dRCL5u6Wc9FkCKP+414bxMF9k9PllvP/Au9D3bXMM9hy93P+nt4D3s3N89p2h3P4dUxz07kKA9GJh2P9Mi8z3J9dQ97opvP4bp7D3s3N89p2h3P4dUxz3Pmd09qvd2Py7IxD3Pmd09qvd2Py7IxD3J9dQ97opvP4bp7D3J9dQ97opvP4bp7D0G9pw9MFt2P0/07z07kKA9GJh2P9Mi8z0CAqg98MN/P7iUxj0wwNs9RaB/P5m7mj2w52s9rgR+Py4t5T0G9pw9MFt2P0/07z0G9pw9MFt2P0/07z3czmo9JlV9P88i5T2w52s9rgR+Py4t5T1MF9k9PllvP/Au9D1MF9k9PllvP/Au9D10Y7k9cJJyP6koAr4Wq6M9oLl7Pzst3r1giQY9D8x7P/6G870Pjoc9Jp5yP39rCr4ya9k91KdyPxWV6L2dzcg9M8RqPxqjC76cJ4Q9xQdyP6mCCb6XPcY9oMhqP1smCb58zNk94xZyPyfp472XPcY9oMhqP1smCb6XPcY9oMhqP1smCb6XPcY9oMhqP1smCb4Pjoc9Jp5yP39rCr6XPcY9oMhqP1smCb6dzcg9M8RqPxqjC76dzcg9M8RqPxqjC74ya9k91KdyPxWV6L2lZoY99VKKP4nAKLzEXcY9zx+HP3evfzvgDr09ChOHP9SW3jz0oY89sEGKP/fWsDsN7Zs91n2JPyIZbTw5d5M8u9qJPw2Cmz0W2ik9KFCKP6KQhz3pBnI93WqKP8maQz1/hYs9G02KP0XHwTymZZ29ayKHPxzaHr1T67i92J+DP3m5fL0IbIS9ZpWDP/2Ho723lBy9O3KDP1het73XXCS9FhGKP9lAK71LWHq83TWDP8SFvL0zXym+YNRaP2yFVb08KC2+5KFiPxXbTr2m4TW+xQtiP6tiGbwTUzK+29FZP008LbyvXr68q09jP3cvJb6UqjK9uHFjP439Hb5KIS+9j31aP3TFH75pIDG+IeBhP4s/0TyA2iq+t2VYP2HK0TznJim+xcphP1Y1Hz3iQxe+hZBgP3smSj1h9xW9OBVUP37nGj6aVAa9d9BdP9XBHT7ian695T5eP+RLAj65W3i9kiJeP6OgFj6WuY+91/9UP3ZHCD71/Fe9MnxUP18dFj5rfmG9kxFeP32dGj75Fw2+SeJgP2xZ2j0g1gC+WC1WP8Uw6D0whBy+7+NXP/ZOmD1Hsh++6hlhP0JtpT0iZu69TNBfP+niAD6H/Li9MyNVPzUuBT5OVqu9grJeP72YDj6WuY+91/9UP3ZHCD5Z1sO95g1fPzT7DT5LWHq83TWDP8SFvL1wgb28eeNwP85oF75cLMi8HkFqP2DDIL5Oxia9j85wP1nUEL6NIjK9YvppPwTsGb68s6S88vx7P1TB9r0fiQa9D8x7PweH872oPSG+OyJhP/Qxkj0whBy+7+NXP/ZOmD23gRW+iXBgP5CrZD23gRW+iXBgP5CrZD2XP++84yBtP4KTEz5Csdm8sIV1P7B0Bz65gPu8pRRmP+0oGz6kwli9jFxmP0BkFz5rh3K9zk9mP0jLET69O3K9zlpmP9cwAD77c7u9VRNnP2sXCj59RqC9W8ZmPzSaCj5b/OS9Zq1nPxWi+j0QUgm+c2toP0cV1j1XUhq+LkFpP9LQpT3XpB2+fnFpP+UxjD3cbSa+qflpP7PvMD3q5xG+tcZoPxlfSD1JDDS+zitrP3I++Lu2uC+++49qP0DP0zyZSCu+d8BrP29/Qb2VgAy+QEJrP6ASub3t1hC+d3FjP2Etv73fcAO+4ZtjP+T73b1tGAC+ptdqPxOa2707A+u9gRtbPzkvAr7ExZ698I1aP6vgE74KvrC97vhjP8qhFL67guO9wYZjP7YgBb6HhY+98sJjP3AfF75VN3a9mTxaP+e/Fb5VN3a9mTxaP+e/Fb6c64G9s+VpP/YOFb7KGZ69vHJqP/0UEr5TYl69lyNxP4piDb51J4S9xQdyP66CCb73sd29T8pqP3P7+70wNpS9DgVuP3cpBD7XGa695X1uPyK1Aj429py9MFt2Pyv07z1K2IS9Zht2P04g+D2YmhC+foaAP8BS2ro5kRy+Gx9+P7umPrvgjwG+5x6BPy1zA71Aoem9T5+DPzWv3Lzndfi9i8eDPz20XTo0z2q9JlV9P7gi5T1LNY+9aWteP2IPAT51zoe9935mP4Vh+T0wNpS9DgVuP3cpBD5K2IS9Zht2P04g+D1YcmS92dF1P7In4j3SN3+9M7FtP8Ho7j2oUg++fJxoP+BlbD3XpB2+fnFpP+UxjD2wJyG+5hJYP1wzSD0Luiu+MCJzPzBgw7sYoiG+hfV4P6Ydfrvlrhy+eXx4P90Q4DwlXie+NLJyP7sg2zxL4wm+U1WAPxKo6TwrIO69+nGDPzlm6jyARBa+p/Z9P0cGQ7sE2ga+/SGAP5Mj7DyARBa+p/Z9P0cGQ7s5kRy+Gx9+P7umPrtL4wm+U1WAPxKo6TwE2ga+/SGAP5Mj7Dymlou9yZGDP+K0rz2vvmK9B8+GP4S8mj1jku68I1GGP05etT2kuCW9nRSDP55bzD3nOOG9fF+CP24dST3eVE+9x4hjPwm2Eb7FMkm9UjhpP7/8Dr755Tm96khwP9+MCb48PmS9njppP+PPDb5SvE29D3twP6tRCL5TYl69lyNxP4piDb5bRXC93X9jP1JlEL5VN3a9mTxaP+e/Fb60nBS+65NxP98NiD0Xvwq+t6B3P45AgT2b5wa+dKl3PxfOlj2gYBG+L0lxP17goD0IBwK+inBwP3Vuyz0Xvwq+t6B3P45AgT20nBS+65NxP98NiD1IPge+PJ9wP8fnaz3y6/u9/eZ2P/u9ZT1VMxy+HSdyP+FUOT272BC+WAB4P/OeOD2G8f+9Cgt3P5y5ST1JuQm+T9FwPw9gST1Kscu9UoSDP17OZj0WwKS92OuGPznHVT2pjsu9aSCDPw+mZj1Kscu9UoSDP17OZj1HwNu9RaB/P3S7mj3vsde9nSB/P621lz2pjsu9aSCDPw+mZj0BTN+9zvOBPyIzRz0BTN+9zvOBPyIzRz3y6/u9/eZ2P/u9ZT2pjsu9aSCDPw+mZj0E2ga+/SGAP5Mj7Dzvsde9nSB/P621lz1PxMy914eDP096Ur1PxMy914eDP096Ur0+Zde9Lq96P1IAu73egre96zmHP/wZlLympdi9fBZ6P/K4tL1C/yG+ZitzP84KL70BXhW+RhJ5P7P0HL3bpPK9qtt5P5I+mb1ZDgO+Zx5zPyZsrL0AxO+9sDhyP9jrzb2mpdi9fBZ6P/K4tL1lzNm94xZyP0rp471p4Mu9bweDP1u8UL2ARBa+p/Z9P0cGQ7tjrf+9N7eAPy15Ab3gjwG+5x6BPy1zA71p4Mu9bweDP1u8UL1jrf+9N7eAPy15Ab0cZ+29LMF4P3pnhb3ps/293JhxPwKZkr0n/wm+NfZ4PwryY71jrf+9N7eAPy15Ab1p4Mu9bweDP1u8UL0GcPi94m54Pzvhbr1p4Mu9bweDP1u8UL0+NwW+TIpxP/m5gb05pha+gSRzP5Dcd73fcxS+L5haP64Txb2VgAy+QEJrP6ASub0kiwW+gwRqP2comb0kiwW+gwRqP2comb3TwQ2+WHRiP2VDm73ZYxe+iWpaP+nokr3laiG+GIdrP0mugr1LSSa+PsliP7IOgb1T8BO+bmliPzABjb2mZg2+3v1pP3gxib3ZYxe+iWpaP+nokr0z8mW9F4htPxkxCz7Yu2G9EI9tP0EW9z2Qr0690Kt1PyBc4z2KkFC94s11P85y/z1pjE69JlptP0aPED7ian695T5eP+RLAj51zoe9935mP4Vh+T29O3K9zlpmP9cwAD7SN3+9M7FtP8Ho7j3Yu2G9EI9tP0EW9z3Yu2G9EI9tP0EW9z2Qr0690Kt1PyBc4z1YcmS92dF1P7In4j2pjsu9aSCDPw+mZj2oUg++fJxoP+BlbD1JuQm+T9FwPw9gST1IPge+PJ9wP8fnaz2G8f+9Cgt3P5y5ST0kiwW+gwRqP2comb0fiQa9D8x7PweH871SvE29D3twP6tRCL5r6We9F0CKPz024bwKXcO9hy93P8bt4D1+F9m9PllvP84u9D0d3d+9t2h3P3BUxz1skKC9GJh2P7wi8z0d3d+9t2h3P3BUxz3r9dS97opvP2Pp7D3zmd29qvd2PwvIxD3zmd29qvd2PwvIxD3r9dS97opvP2Pp7D029py9MFt2Pyv07z3r9dS97opvP2Pp7D1skKC9GJh2P7wi8z1HwNu9RaB/P3S7mj0qAqi98MN/P5SUxj0G6Gu9rgR+Pxct5T00z2q9JlV9P7gi5T029py9MFt2Pyv07z029py9MFt2Pyv07z0G6Gu9rgR+Pxct5T1+F9m9PllvP84u9D1+F9m9PllvP84u9D0fiQa9D8x7PweH8734qqO9oLl7P14t3r1PY7m9cJJyP7ooAr7pjYe9Jp5yP4prCr4Oa9m91KdyPzmV6L1uzci9M8RqPyujC751J4S9xQdyP66CCb50Pca9oMhqP2wmCb5lzNm94xZyP0rp4710Pca9oMhqP2wmCb50Pca9oMhqP2wmCb50Pca9oMhqP2wmCb50Pca9oMhqP2wmCb7pjYe9Jp5yP4prCr5uzci9M8RqPyujC75uzci9M8RqPyujC74Oa9m91KdyPzmV6L2nZoa99VKKPzzBKLzOXca9zx+HPz6rfzvyDr29ChOHP1KW3jz9oY+9sEGKP3zVsDsY7Zu91n2JP1cYbTxO2im9KFCKP5OQhz3Ad5O8u9qJPwaCmz0XB3K93WqKP6CaQz2NhYu9G02KP+bGwTzrsh494vGCPwe/yz3rsh494vGCPwe/yz3GxkE9o7h1PyP1Az6esDC0uxeCP2Fm3z2wo7c8zICCPzt41T04r0490Kt1Pzdc4z0mkFA94s11P+Vy/z3rsh494vGCPwe/yz0gDeE8lzeGP+1wsz3rsh494vGCPwe/yz0gDeE8lzeGP+1wsz3rsh494vGCPwe/yz0+sx695PGCP/2+yz0rx0G9o7h1Px71Az5epLe8zICCPzJ41T2wDeG8lzeGP+Jwsz0+sx695PGCP/2+yz0+sx695PGCP/2+yz2wDeG8lzeGP+Jwsz0+sx695PGCP/2+yz2qVxu0PbGFP0JHvz05d5M8u9qJPw2Cmz2XQQW0WX+JP4ULnj3Ad5O8u9qJPwaCmz1W1xY93etcP+p5Jj6AlUo9azxZP/ydMz5r3ci6ARNVP1QPIz7G0zI9NQZWP5VeOT7sLnw9ucVXP6DePz7A4Zc9/YxbPzQUPj7aZZI924FeP/7aND6lfo49JI5kP1jlLj7TOZs993tiP9M9Mz4jX3Y9+xRiP12zKj4+NZ89Mt5hP0TcNT7ZcJ89yTdfPzdwOj6H1589hOtkP/KIMz6778A85ZNhP+6uIT4m4go8IlphP60DIT5LTpI8l9hlP/acIT7SGhE98gVoP2dEIz7E3kQ9cgxmP5ymJD4ZRYE9vpBmP6d4Kj5KXk09VSRoP+RCJz4veHg96l1nPy8LKj4Dv5I9oPpmPzscLz5GzGW82DthP/QBIj5GywI8p/1iP54iIj7RsZw8B4ZgP5KJJD4+vrc8/Z5lP1gSJT6rnV48YQ5qPyX5Iz4pbZG6K1tqPwnZIT40dMG8kHBsP3O/Jj5Vo1W8aRJtP+eoJD4rB6u8z/1oP/B+Iz6uuxa85VltPy0aJT7SdLo6QWJsP8XkJD7VZaK84LduP1ScJz7WwQ+9CjtgPx2NKj5ARyG9acZcPw33Lz4y1U294PZgP1NFMz5mLFC99e1lP/mOMD6BDCS9m9xnP1N2KT4fuwu90rhrP7THKD4J7Ta9km5pPz7nLT6w/Rm9PIhrP2SnKj7Sf/m8gwluP3awKT5Zhzy92BpXPxhjMz5g+Di9HMJcP46qLD4OuwS9YV1ePwYGKD7JAEe9FUVhPytCLD4S8Ii9khVhPwkdMz5S9JW9qstdP9g9Nz5HIK+9BPZZP+JvRj5NZq69hXNcPxgVQT4nuZe9fetYP1wPPz5Qla2983NdP+FBQD7EPKC9dWdfP+X5Oj4SALy929BbP/L7Rz6Gbzy93YdSPzw3Qj7Mbwm9yXlQP1JJRT402ky9xwNQP5udUD5bh4u99cpRP9dVUz4mhZe9Ho1UP0a6Sj5YP6+9x3JXP6SgSz4JF6K98HZUP9IIUj6Lua69SrZWPzN3Tj6Ubby9sEpZP+tNTT7jlXG8Rg5OP9tFTD5gdRG9NJpQP0luTT4Xsx+9BJxTP6a1RD6BLFC9cDlSP7CEVD7ZXVa9HQhPP4fDYz4nvCu9k2RMP/t9Zj6vCNW8wTVJP8yDdD7nABW92R9KP1cpcz41nry8DVhKP7gkZz4YAiO91adKP76Ecz4XxD6904hMP14pbj7+0ga9fApJP7t3ez4y/uY7qu5MP/1NUj6kFZo8D6BOP7lTSz4H5as8RghMP/K9XD7eJjk8bYtJP5wNaz5mTmK7ihNJP1fnaj7s3368VVRIP36MdT4r7Ii6D5xIP6phcz65YkC8tTxIPyu8dj6Ll7e8pyJIPwKsfD4zcxE9YbFQP2CJPj4HwbE8fl9NPw/9Sz4MX+A78K1NP/MxSz58l388BxBLP9ObWj4imwY9cNZJPytyYj5cCDs99/xKP3gpXD6MC4s985BNP0IRXD4BD3o9IKhLP5eaYD6u5249qTVOP2LEUT5buG89qytLPyskYz6tzUM9Z1lKPxOOZD5VEo89wj9MP7lBZD5wZ0k9GDhVP8HzOD4E2zQ9jlVYP7JXMT5Av3090kxYPwF+Oj75bJc9rpFVP1X8RT5OYJA94RRSP9v1Sj7NjZg9135PP05LVz5TFp49Qr5SP8QyUD4p8pw9wldQPwKZVj5O9Zw9ji9OP1OPXz5dpzm+peFlP4nvHDxbJ0C+mb9jP2A0AT3gWDm+ZuxYP6pfKrzuxUW+1cJfP04DCj1pJ0u+K35jP9jyRT3hnEu+e6toP1MVVT1HtUS+vW9rP0HjKj2U9Ee+B79wP2Qe2zxSu0i+3o5vPy1HGT2GID++TKFtP26jtjzkREq+AClvP7w1KD2VrEu+CpxsPyZJQj2Pg0u+2wdyP09KDz1wwDy+G29oP/NQSrzqJkG+vh9mPzNE1LwwakW+9WVrP6a90rxeh0a+AK1vP5fiXrwEpEG+JqxvPwL0BTsqEke+udlxPxSogjwCC0i+SZ9xPyY9/DkQCEi+tz9yPx7TRjwTrUq+7i9zP97VxTwU/ki+UHtZPwdDGz3TbFm+KeZUP9fTCz01uF6+W9xTP2iGlzwwImy+naZSPz/YDT2UCnC+zqdTP1sHXz1rOWS+67VVP0UThD3FHmK+9T5bP5/1oD3zBGi+pbFYPz8knT3JMFe+sBtaP49riz31H2u+0PhXP5FNmz1U426+h/FVP++9ij3m32m+l1paP+0srT3k7UC+KU1fP1iSKD3Xcj2+E/1hPwok5TzyzEK+/DNkP6oPPj3XaUu+8zVjP/bghD25FU6+rh1fP7r9kD2VCVy+qchdP9shpD0isFS+vRJhP8cGmj0M+1q+eNReP7u4pD1U1GO+/OtcP7azsD2eLz++6V5iP+UpPL3dlDu+pfVmP/uc9Lwh7Dq+nDpmP7Kxa7xttjy+GVVrP+vmsbzY/T6+Zi1uP7k5H73A1j++9XJsPwpCWb2bKkq+PFJrP+xUnL1zIka+s1JtP16MjL0m+kS+uYdoP2JWir0A7kW+txluP2WChr1BPEO+J6huP4BPXr1CJku+R+ttP36Lnr0B2Eu+vqJeP0Zteb1QAVG+0OxaPyGNZ709Jli+BEpdP8+1l73wTle+dLthPw+lrr3Pi06+6+xkPzcVpr3mF06+WUBpP0Skq71+o1S+68BlPw8ls71Ep1C+Sp1oP09nsL0uKk++Y91rPzg7rr0u8mO+cD1UP4YZHjvHJGy+CW5UPwdmqLz+AmS+WGVWP+ArAr1da3i+UKxUP183EL1kdIS+8FhSP7i41rzXN4S+bCdRPxOoN7xgnIi+i6xQP54jVTxCwIm+glNQP6QO1zpSS4G+BVRRP/nKHjxAfoq+yXhQP9DDFrsQ24i+2TNRP2CfW7x7W42+ySRQP/sIFjzMF2K+h+VVP7Pe0jycXFa+OGNYPwyz/jyOdme+0yVXP7u4Lz084nm+eYpUP/grMD0wW3++M3tSP48D+zxAS4e+XAtRPzD7xjyZe4O+5MVSP8HyEz20Loe+hnBRP8ol5zwaHoy+j4FQP0+gqDyh5lq+mDZYP5zJUL0ASlK+JJhdP6Ajer3KIke+z+NfP2Z5Xb0SOFG+fZdhP1X5kr0rUmC+/ldgP2aRrr0K2mi+1/JcP7vjq71i336+aVNZP2boqb3BZHi+JVpbP3e8tb0+GnK+hmRYP2sHmb3m63a+JElcP4oIub3c522+b1ReP/e6t70vKoG+6axaP+GHur0jMmy+4UpVP7lqF73lUGq+rp1UP83Rrrx97Xy+65VTP1zI/rxdh4O+h+5TP1yHSb1HI4C+D3JVP5SIfr31iIK+okpXP3mWnb3hz4S+Z3NVP+vsgr0nAIS+h9BWP+B+mL3HXIS+c6BYP+tYrr2Ss+29uG5mP5ZuCL5+AAi+MCtoP/RU872Q/wW+EgdaP5R2Bb6Q/wW+EgdaP5R2Bb6Q/wW+EgdaP5R2Bb7pERO+pMRlPwNj6r1GphS+J9xqP+xO471Aswu+ikFvP4bj6b3KIP2994FvPxhn+b2cQd69br1xP0BPDr6cJ+y9d01yP46gBb6PauC91zVuP2RAC754rvK9CpdyP9JiA76f8QG+hZxxP+5k+b0AJeS9DAh0P2W2C75PYNe9nbBlP+gHHb4MPdm912ZiP8U3Jb6+wsm9kq1mP89RLb5wvMK904xrP2LSKb7c8sm9jERtP46sHL7idNC9IxdxPwvuFr6HUse98/VuPymIIr6dXM295/RwPw2zGr6TK9a9fGtzPytxFL5G9Bm+ygphP1uyzr3Jiy6+iyZePwp1y72qoTG+zx9bP7Ux3b0cnUC+KmhdPxcax70yckS+AURhP0rWrr10kjm+lcJjP9PZpr1Loi++A3RpPzdPoL1hSDi+R7BnPzBAnL24MSi+x69mP/2gq72y8zu+PjhnP3J+nL3uZUG+cstkP5jror2vQTi+LiRqPzHxl73s1Qq++DllP+6z3L3iIgG+pbtkP8Oc9L27XQS+T1hpP3ky5L0WDg++dNhrP92fyL3QSxm+SihqP71ytr2+0Ca+jyZrP8+wpL0ONBu+al1sP05gtb2laiS+ZuJrP+Ddp72tcS++U+NrP0gznL2gIDi+3oxYP6cLDL79ETe+m2RWP30bIr5lHiq+LmlWP2HgKr7LcDy+XjtVP+RmM77k70++j8ZUP8GdL75SdFW+2AVVP2lkIb79tWW+c85WPz+0D75dEGS+6YdVPzC0Gb4AW1e+KfBWPyzWDb6p6mO++VRVPwm/Hb6JxVy+e/lUP72+Jr6eDG2+dxpWP3PXFb7ZVD2+jAhcP6dm873HNTO+ZJReP+6d5701BEe+fLJePw5/3b1p61i+6ZhcP2fJ5L1V41q+ucBZP8DC+L0YAWe+LhdYP22sBb6JM2O+WJJaP2rk9b3Y4Ge+5sdYP+/BAr5eiG6+DGVXP2e8C75fxBa+1b9VPxwfN76trAS+YsFXPy0cRL741fO9EgdaP74TPr7blfa9dWBZP5eZUr51LAa+xzRXP/P2YL6tfBK+UxdVP3i3Xb4SZyq+sktTPybXX74YjCC+3dRTP8sJZb65uCO+s6FTP70OU74wkB2+wkdUP5c+Z76BQhO+z5ZVP5SHZr6mPym+MGRTP8W8ab7meiy+U/9UPydlLb5QiTC+DGtWP2b8Hr5TED++Ug5VP/BNLL7i6kG+VflTP+I7QL4VnDa+WyNTP1DuSb6YGDS+RcZSP5tUWr59AT6+HUdTP4odT74r5ze+KdtSPybRWL58HDO+rNtSP8FVZL43BNa9WNpcP5kwLr7Q4Mu9GUxiP/ZpJr6pgtm97MFjP6v/Gb6rccO918hmPxS1Jr4UAa+9j85mP/zmN76F2Ku9mKZjPzVhQL5dbK29AURgPwF0Vb6m56W9x5hiP6ExUL5v8ra9EANfP2e5SL5Z9aS9UJJjP9DwTr5Gp6e9y1xlP6XxRb6QVKS9niliP0oOWr5nLOu92bVYP9JGO74MAQK+AL1WP0ZUNr4mPvi9L5xWP+bnSb5AzN29J3lYP84YV765JMi9UvxaPzM+U77cN7W9SehdP+ZmWr6NI8m9uxtbP/BDXL53l7m9x0BdP+SxXL5uDqy98stfP7s0X7764we9ObdkP4chLL6v3km9woliPzK1Or6797O7JlhaP8sLMb6797O7JlhaP8sLMb6dc0C9/FBfP3emQr72P4C9mWpiP4sWR74zVpG9EMhmP1BeQr5AsIW9ShFpP7yWN77jbWq9031uPwAhLr5Z8IW9zxZtP7hbM76HIk+9zFdrP4f3K76NIYu9E7tsP804Nr619ZC9r2JqPwVaPL50WoW9+JNvP3kOMr73tH687hxoP7hDJb6aJJm6AONmP4WHJb6tzbq7c9JrPxrpIr7JGqi89x1vPzBPIr4MdA69oRtuPws2JL6SRUi9GdFvP/TeKL7aFg69mFlwP3xrJb6kKzu98mdwP3AXKL7emGi9RvRwP/nDLL77iKE8O1hlP8InJ74yBdk4h3doPyomJr7HZ1W8+O1mPz4rKr4JiTe8+ApsP7dVJ74rJtw6NapvP8ZOI74rNIQ8fehuPxz9IL6WuSQ9vqBvPzduJL4Yyvk889ZwPw32Ib5kbQs90mBsP7B+I77wrt08+19xPxw4Ir53cIE8ayJxP1aqIr4x+R494RZyP6bII74G6iE9sFljP9A9ML5G8yU9KvtfP4rfN75rkmI9JmljP6lcOL48VXg94QNoPzRmMr7mFFQ9r0hqPykeKr6t5Us9SlZuP6/mJr7Cd209halrP7x3Lb6ESVk9wgBuPx3gKL7U1EY9q9NwP65GJr43LSo9RUJaP43+Pr5eSjw9wnRfPzCdNL6TSA896aNhPyf6Lr5B91s9RIhjPwA6Mb4rgpI9XG9iPyEbOL4W4Zg93glfP2VaPr475ao9bixbP1nmT779u649nl1dP5f1SL4teJE9IKFaPzNOSb554q89K1FeP217R74paKY9BmZgP2X6QL5JPrs9dZlcP2syUL4+Qho9sHlWP7KuUL5bIsI8wHFVP7UXVb5XjSI9c2FUP+qUYL60InI9/QFVPwcTYr7Nf4k96+tWPy67V745aaY9C/lYP2exVr76NJQ9/spWP0kCX75pq6Q972VYP6T8Wb5EC7c9F2JaPz0gV75VDG87KyFVP0/iYL6m79Y8EmBWP3MqYL41dgM9DIBYP1frVL4iey89d2tXP2XzZb6EgCs9RjVVPxndd75U8vA8UH1TP128fL7n+To8DEBSP9h8hr5Oz7Y8fGtSP12Jhb42zhU8BbZSP8PLfr6FJdY8ob1SP2yBhb7ydww96cxTP3QZgr5HGZU8IRdSPzwMir4RIZe8b7dVPzA7Z75+MOq8+ZpXP2KDXr5fUQW9805WPzDfcb4TUcy8QjlUP/M2gb4T6DO8OOVSP0yQgb5H3e45JxlSPxREh76CR1285BhTP4Lhhb4AH1m7s05SP+3Vh75pAes7mO1RP5jrir65zzW9U39ZP7KwTL72tgu9btNVP7v8W75Rz568UilVPxVuW74zmfi8RKZTP4rHa75ttEW9U8pTPwG4c740OHS98oRVP4WZbL7JP6G9uGdZP0C8ar52XZe9ZkRXP7hRcL7ZCY29Zh1ZP+FrYL58R5O9AbdWPxkjc74zG3+970lVP2Izdb5YsKe9zoBYP7B0c77bX1q94Y5eP0mqRL5AOTq9AgVhP/DBO74xgYC9yWFiP7huRL7gp529wdhgP8LZUL4FqZ299WldPwWGV76+mqq9HYpbP7XpZL5pn6m9gaFeP09CXL6vM629qXhcP6zEY74zZbG9m6haP26zbb52lgc+bMBoP9AJ7L0+Xu0978BmPwaKBL43NgY+BWRaP5K5/70LxBI+c3VmP+7o4b0u/RM+jJhrPyT33L2rygo+zOdvP0CK5b3BbPs9OQBwP+Ba9b3mQuo9sKNyPyNABL5MmNw9W+9xP/bbDL7BJd89mXRuPykNCb4t9QA+hh1yP9It9r2utfA9IfhyP98LAr6cJOI960R0P6m5Cr4VhNc9CrJlP0MLGb778dk98E5iP3KEIL7bEso9nHBmP/mSKb7zXcI9FFZrP5AjJ77mHsk9NT1tP8BXGr5uCc89ECVxPwtjFb4nB8w9jvRwP7ciGb7XYsY90NhuP3ePIL5waNQ93oNzP/FeE77GoTU+ZHpVP42kE754cTY+9TRYP5VN/b2QEik+OZdVP3tnHL6+FDs+ReBTP2kNJL55bU4+ezxTPwapH757IlQ+Zi5UP2T9Eb7SvWI+lTZVP7AvC76pRmQ+Ve5WP+BJAr4X81U+RPRWP0olAL6VWls+Rf5TPxxtF74SkWI+O9ZUPyEFD76Apms+oBBWP4IJCL6HLTs+r4JcP4li3r1FmjA++CNfP+nO1b0zcEQ+nb1fP7Iczb1quFY+SsBdP1tT0r23Jlk+HIpaP/4W4r3FdGU+bqdYP7C28r1yOWY+EnlZP2z+7b0lSmE+YIRbPwzh4L0cBW0+Cs1XP10V/r2G9jQ+LlVgP1KWz71WXiA+xx1jP4WQyL3yJTY+ImhdPxQ34703GUc+7qxfP9yy073SVk0+tXFjP6qNvL3Tf0M+UtZlP6AXr70HNUM+/bRpP9Dtor2mODo+GHBrP+htor1L3DE+Za5oP/f/qr1egUs+GOZmP2pyrr0ZyEY+1UJpP+32pL0KhkM+VSNsP/7unb150Q8+hkVnPzURzr2QtAM+T9RmP2Um4b1Cbgg+3GFrP24i0b2QzRU+tdFtP5dIur327CE+UBxsPzy6rb2cCTE+HhptP6Ywor3QTC4+3dVtP/P3o71ixiM+iVJuP6vUrL1GWzo+0tltP4CPnb1HL8s9CqJiP7n2IL4Jvdk9Z21dP2CPKb47JtY94QVkP13IE74YBMA9fQZnP1COIL6X/q098B5nPxRpMr4b+609cxRkPxKsO7633qo9xzdjP8DeS769hbQ9TwxhP6dbUb5KEL09nrFfP7OeRL6qfKk9ctRlPzP7QL6XJak9+ChkPy9wSr6E6Ko9D+xiP0fYVb7jJvM9j7NZP9XBNr4oNgY+zORXP3xgMb4DuQE+5fRXPw9TRb4Vwek9YsRZP/7+Ur73HdI94AFcP0RgT77rbL49XdleP4qIVr75fsM9CkZeP0XOWL6pP9Q95kZcPzBMWL48xrQ9zLdgP4A5W77NMQg+G/VXPxifN74ZeRk+L7NVPyQxKr5O/vs9dG9aP27sMb6ZC/89oqxZP/tfRr5DAgo+h0JXPxNoVL7HphU+m/NUPxvPUL5NciM+0mtTP2HNV74cCy0+Kb1SPzVmUr6HQyY+gj5TPx7CRb5OtBY+q2VVP0yjWb5moSA+LulTP7UWWr6XFCw+0s9SP+BRXL4TGC8+jDRVPx3mIL4v0jI+obJWP9sQE767JkE++QdVPyQKIL6mK0Q+OyVTPytvMr5t0Tg+FXdSP8RFPL5NejY+UBNSPyewTL7hRTo+AhlSPxkdS76ZUUA+ZHRSP9RVQb6crjU+AiJSP1y2Vr4kGTg+8klnP4vgmLwi0jg+2/JiPxDjE73wsDg+ZPxYP9CfFrvwsDg+ZPxYP9CfFrtKAjo+JlRmP30XZLsptzo+kIhrPx8sIbyyMDo+QaFuP7W92LyYmjg+rh1tP2msJ72BPTw+CTluP7Daab283T4+M1dsPzS2hr2yHzs+52tpP7wpab340Ts+6VZvPy/VLL1Pjjw+c/RuP5QbXb1OvT8+VPNuP6sDiL2VsEI+fnJfP9nvW70LZEg+BK5bPwQgUb2+lUw+wk1eP4syjb1HB0o+5OdiP0h2ob10L0I+OAdmP/SxlL3NbEE+FGNqPwsHmL2rikM+XslpP+bYnb1PKEc+vvNmP9sqo73yWkI+7ANtPxq5mb2NEEU+HkJjPyIfHz176js+TIJlP8FdkzxkUUk+AGNfP4D7JD0mCk8+ZwpjP8CiYT01bU4+kypoP+modD13fUc+adpqP3mYTT2BRUg+oiNvP/i3Pz15JkY+cG1wP3t2FT14K0E+qhNtP7NEAD3y9kw+0iRsP3UWZT3mQUo+97puP0CyTT0ZH0o+Rq5xPxzBNj1EMDw+OFpoP4Ota7tUQz0+6k1mP482jrybEEA+paJrP9BYh7xtKEE+dMhvP7hndLtPeT8+XnVvP6DDQTzH7kM+rKFxP8VW1TxdaUQ+oRZyP2Y0tjxCekM+95dxP/t2LDy17kc+J/ByP2DYCz0QXGA+HfVWP5QDHz2sWU0+JNBaP0utMT3bGmM+0oZVP0VuxzxmDnI+JfpUP1KyIj3rYnY+hTxWP2aecj20I2w+3mBYP2VDiz1VbGw+oP1aPzRbpz1ZBWU+okVdP+ejqz0XlVw+PDFcP8TAkz1pf3Q+C4RYP0JrlD3y6G8+JWdaPys3pT3KmG0+Dr9cP3L9tj0etEE+NTxgPxeCPz0ieTk+HiBiP6TXDz0EVj4+RaFkP0WFWT2HjUg+xBtkP/mZkT0Lb1A+KsRgP8zymT3SbV0+rIdfP+tNrz0EtVs+4YRgP4vsrz37tVM+BXFiPynMpT0vCGY+WAlfP/j/uj0LRnI+VadVP5lcpbw+C20+XipVP+lpZzv0yWc+rElXP5JF+LzMdHw+z1lWP2vVE73/jIc+uKxUP8+s7rw9j4g+bntTP7eOabx5/44+ixVTP7PKNbuwcY4+mFhTPxsWEDwm3oY+BnFTPyHr6jtL+Iw+yuBTPzwTj7xtc48+WUhTP9dM4Lt5CZM+cC1TPyUufjuS+2w+0r1WP2tN3TxTmmA+xsNYP0loCj3Dh3M+oi9YP8lXMj2amIM+NE1WPy+5KT2fK4Y+i3dUP66+6Dx0tI0+9Z1TP5xupjxmtY0+KwBUP2HKxjxsJIo+HAtVPxZFBz1vYpI+RXJTP1Bpfjz9yE8+xWldP0JAYr3T41o+2LBYP4fHMr33KEQ+ipVfPy4bRr2eeU0+rkdhP+ceiL1zp1w+SihgP97jo72yF2Y+7uxcP5qNoL0K8nU+gotbP3eBqr13C30+t69ZP/1Xnr2cmXE+KQdZPz3kir3Sq2o+3VReP5f3rL14M3Q+sG9cP5wDrr0GAIA+IgNbP9l3r70SPmw+x8pVP4p/+by4zWo+DzxVP1IRcbyVfH0+IWxUP6v9ybwUmoM+ZsNUP4UEML1S0n8+tQlWP2JZZb1D74E+RdFXP36tkb0Ve4M+82lXP4aPjL0Ej4Q+RC5WPzVabb0yg4M+siFZPxvxor3q5gm+FCtiP8te8j3G0/S9+NdiP8ctCT7QFQe+ZPlVP7Qa+T3QFQe+ZPlVP7Qa+T1J5+q99QdgP+jjED7+M+O9a6RkP71vFj7LTOy9QwppP3fUEz5Tpf+9KdhpPz05Cj42exK+xZRsP5MwAT58Nwm+D8hsPwClBj6zsQ6+Hm1pP2OE+j0szwa+yt5sP/uyCT6+Zv29d6prP810Dj6V3A6+8qFuP9uGBD5WUh6+XRViPx0Y4D3ANia+pf9eP4aF3T3kLi6+IVxjP4kS2D3X1iu+WOdnPwWD3D0Hmx++3DhpP3ul5T3ryBq+72hsP3y09D3kcyW+0r5qP0JP6T3teh6+mF5sPztG8j2iuRe+8nFuP4qm/D3eATC+vY1ZP0sb1D2BISi+T8BePyEzzj35bBu+V8pfP2aB2T0k8Se+8xhjP5PJyj37Mzm+3JljP4qsuz0z/UG+psRgPyuUtz0BZ1a+nsJdPwmNuj1lY1G+xwRgP06etD2kLkq+9VBcPyVNvz3UD1C+xO9gPwVntD30F0e+0n1iP86ctj2s1Fq+/blfP/X5tD3CAjy+UnNVP/vF5j3naza+8ChTP+Pf+j19e0m+7mdTPxs/9D2K7Va+/bFVPytr4D199lO+k1xYP1LNzT2HHVu+GXhbP+GkwD3cXFy+GItYP8/o0D39Kl2+gs5aPy6bxD37vF++ZG5dPzwLuz1wVS6+sNJPP2f1DD4iVjy+XdBSPxYpAD7kyTe+KrtVP4em8T319kq+bspUP5Cc9T1vXle+PdpRP6D/Aj4kC1O+KhNPP9k4Cz7wzlK+16ZLP8mdHj4pnVi+5s1MPxXVFj7HXEe+JZxMPxkWGD6m/lq+D2dNP2beFD6TVVu++1pPP5csDT5LQFy+lbNLP5dwHj4hByS+NSlOP96rHz7nxha+j2lPP6adIz4B9CG+zvBMPw/4Lz5mBjO+YeVKPw4dMj6gEj2+rt5KPwG2Jz5AuUy+R4dKP/A/Jj6XVUG+D2FKP+niLj5O+Uq+FVZKP0+kKT6TQFa+ro1KP9Y3Jj5Q/wC+jM1QP9fiJj6UpBS+VxxOP3jaJT6TVR6+lNZOP9FyGz79VSO+3iRMP+cWKz6E7xy+Z35KP+6oOz48fQ++iy9LP/JGQD5FG/69CvVMPzXgTz7fege+iV5LPwDUTT4XYf29YdNNP6uaQj4/FAu+tf1KP7y6TT6owRO+oIlKP6RERz7sjAO+nqxLP65oVj4XauS9YKdUP82PLT7lI9+9PrlXP1nqJT4HetK93i5XP1gYOD5i5tK95kZUP80vRz63uuC96hlRP+E/Rz5qRe29EpJOP/6ZUT4z2d29pIlRP86ETz5exOi99E1PPz3QUj64Gva9GUpNP/1PWD4Oade9cFVcP0l7Gj5Kbtu9xbFYP3dsKz69DO69S+pVPxPKKj4A3ty9UiZXP3u/Oz4O1cW95FNaP0TNQz7eRrq9Ug5dPzg7PD4+I6+9h7hiPybZNz7Agq69N6hgP965Pj64nLi93phgP54qLj4r+q+9Kw9gP8K5QT77ebi9JKBdPzR3RD6zjKm9T+RiP6DYQD7Ojd69cAZhP3fVDj5YSvK9ZTphP672Az4ZI+K9bjRlP4SDCz49gcq9pchmP48OGT7VG729XpZkP0hkIj7ZCrC9nbtkP/C9MD6H07u9rolmPy7jJT6TCrK9Co1lPy7iLj6tUqq9u/JkP3nKOT5PBvY9d65iP0LcCD62LQw+ZORhP1wm7j0UGwc+DzNWP0N+8D0UGwc+DzNWP0N+8D0gJuo9RI5fP6siET4h3OI9+KxkP7q8Fz4+/+s9abVpP1WXEz68/f49l79qP1JIBz4n2Qk+UBFuP6N5Aj4+oxM+3N1tP0Bc9z1wKhA+/TlqP8qL8T0beP49TKxsP27rDD7sLAc+PStuP53eBT7QthA+5ghwP7/RAD7g4CI+O6xhP8z02T0iNis+hy9eP32K1j15sDQ+T/liP4Fk0T0YmzE+WDNoPzvP0z1wiSM+RdZpPy4r3D1UWh0+D5NtPwOt6T2ndCE+HIFtP3395j1L4ik+OJhrP0Iz3j39jRo+NclvP9Tg8z30BNc99QxYPxhRLD59XtQ9JiJcP4yKGT4SWuo9IdRUP+SWKz58ztc9zE9WPw1vPj7vu789qwBaPwdoRz65P7Q9YR9dPwAGPz6k56g9JjRhPxjWQT6Tnao9pH5jP445Oj47J7Q9hhNhPxJyLz4yfbI9wcJdP90tSD7NO6o93IZgP20pRT6hdaQ95LdjPzc4RD7rld49nUthP56sDD5AoPQ9+GFhPy6eAD6SkuQ9quhlP5MMCT7eDMs9RtNnP+8YGD40Gbs98HplP8JsIj5TnKw9B7plP+lbMj4pOq89955mP81OMD7Pl7o9l6ZnPwFWJj5wVKY9DwBmPzdpPD5dLEY+Ny9RP2v4AD6h5jY+6SpPP9HuEj6Z+EE+tDRUP4VP7j3irVY+xpZSP2Lt8D3y7GI+ZldQPz53Aj67aV4+HZRNP4teDj6U3WU+0jZMP3sbHT6VUGA+66NLP0tuJz7Jf1I+ONZLPyDkHz6zHWg+uz1OP2ydDz6FWmg+nqpMPxIMGj5ur2o+qXJLP2oBJj6lpyw+QmROPz2TKT5Jah8+AY5QPyCULj7UtCw+zDZOP0u+PD5lAkA+VOtMP6kUQT5zTkk+tYJLP3w6ND5ccVo+QhhLP5CYMT599lg+kihLPyKnNT51I08+N8tLP2VqPD4V7GQ+HuJKP6BXMD4EYh4+XO9OPzLPJj4GzgY+wOZQP7SXKD5z1yc+Sg5QP62KGj7PRzA+kJtNPwQgLD57eSs+c71LPyo3Pz6ReBw+7uNLP28BRT5ZQxQ+eeVLP7J4VD6O4Ak+rjxNPxftVj4eGwg+bPZNP8IPSD6oASI+QoFLP7KgTD5Wfhg+vKlLP7M4VD5zKBA+3ClMPykoXj4wuuc9YHZUPx4ZMD4+M9w9249XP6InJz4bF9E95e5WPxTMOz5Jztc9OAFUP/kaTT4hFOw9W+NQPyFoTT6u7f492JlOP54EWT558Pg9oU5PP+lYWj7uDek9PWtRP7WRVj4gqgU+L4dNP1tzYD6uPCc+vjpfP8VO0D1pSDI++6ZZPxeS0j1QKRk+W/5fP6Ea3z2rICU+HAtkP9fTzT2lczY+VQ1lPwpLtz0GukA+SiNiPxvrrj2PkFE+kq9hP8YFpj2eZ1g+60pfP1Iiqj3bAUw+oWNdP/JDsz25lUU+lStkP0mHrD0pwk8+natiP9uBpj2lBVw+t5ZhPy//oj0hlEI+21pVP5iq4T3HHD8+HqNSP1cN+T3KQVM+PWJTPy4d6z1CVV8+10lWPxtA0T1Oclk+eDZZP6mevj048V4+DNtcP8uErj2EyGE+jClcP3v0sT031mI+xJtZP2obvz11xWI+3CZfP5hIpz3/FJO0jblLP/IUSD6XWI+8FN5MP/10RD5rAGu07udTPyySGz5h9xW9OBVUP37nGj5h9xW9OBVUP37nGj5hZyy9EF5MPwBoRT71/Fe9MnxUP18dFj71/Fe9MnxUP18dFj4b5YK9oS9LPwLzPz6WuY+91/9UP3ZHCD5qp769NYZIP/xFSD6H/Li9MyNVPzUuBT5Zeeq9ixdMPzRJNT4g1gC+WC1WP8Uw6D0wAAe+5H5NPwA8KT6EMRq+UEpQP1WBEj5drkK+6aFPP0f4AD5lpEa+XuZQP0tr1j0whBy+7+NXP/ZOmD3dK1S+z1tQP6URsT2wJyG+5hJYP1wzSD07qm6+G09OP0iSiz0g1gC+WC1WP8Uw6D0TUzK+29FZP008LbxYQl++AQ1VP/WnZLxYDma+MlhUP+qDLL0L12K+0vBUP2BXcL0zXym+YNRaP2yFVb3GFFi+UnZUP9xumb3ZYxe+iWpaP+nokr0X+l2+SzpRP8t5zL0X+l2+SzpRP8t5zL2A2iq+t2VYP2HK0Tw4CGa+OCpRP67nMD3UumW+mbRSP3liWTzfcxS+L5haP64Txb3fcxS+L5haP64Txb2KIke+62NTP6G/4b07A+u9gRtbPzkvAr40+Dm+l1hUP541B76TliG+ewBWP2fjE77oOhO+YclUP0cwLb5KIS+9j31aP3TFH75VN3a9mTxaP+e/Fb4dHKu9is1SP6Q3Xr6tCwy9tclXP8YNSL47U3o0dD9WP8WQUb6HhT40J7FaP4GSJL7kfAK+zi9WPyEjMr7ExZ698I1aP6vgE759BeC9kupVP4DSQr51V488FN5MP/10RD7u9hU9OBVUP4XnGj7u9hU9OBVUP4XnGj7QZiw9EF5MPwJoRT7QZiw9EF5MPwJoRT6C/Fc9MnxUP2sdFj6C/Fc9MnxUP2sdFj7V5II9oS9LPw/zPz5fuY891P9UP4BHCD4ep749NYZIPwVGSD5T/Lg9MyNVP0YuBT4geeo9ixdMP0RJNT4UAAc+5H5NPxc8KT4N1gA+WC1WP+kw6D1nMRo+UEpQP2yBEj5GrkI+6aFPP2T4AD5OpEY+XuZQP5Jr1j0fhBw+7+NXPytPmD3MK1Q+z1tQP+4RsT2jJyE+5hJYP8ozSD0rqm4+G09OP5eSiz0N1gA+WC1WP+kw6D1YQl8+AQ1VP6alZLwTUzI+29FZP3Y6LbxcDmY+MlhUP1KDLL0P12I+0vBUP85WcL05Xyk+YNRaP/2EVb3JFFg+UnZUP5Zumb3kYxc+iWpaP7fokr0p+l0+SzpRP4d5zL0p+l0+SzpRP4d5zL0p+l0+SzpRP4d5zL152io+t2VYP0XL0TwvCGY+OCpRP0ToMD3PumU+mbRSP9RkWTzkYxc+iWpaP7fokr3pcxQ+L5haP30Txb3pcxQ+L5haP30Txb2ZIkc+62NTP2a/4b1K+Dk+l1hUP3s1B75eA+s9gRtbPycvAr6qliE+ewBWP1HjE74FOxM+YclUPzIwLb5gHKs9is1SP5k3Xr6nN3Y9lzxaP9u/Fb6mIS89j31aP27FH74mDAw9tclXP8QNSL76fAI+zi9WPwojMr7uxZ498I1aP5ngE764BeA9kupVP3DSQr55ops8YwaaPyrBpz34Efs8hMWZP9smrj2nbaI8WfOYP2Ccrj2nbaI8WfOYP2Ccrj2JGPs8xBqZPzilsT1WTQ89H8eWPy9Uuz2mrwc9/zOWP8FitT2gZqg8Cb+WP/1iqz2gZqg8Cb+WP/1iqz0ZNwk9NlCaP31Utj3GOAI9VLeZPw3ttT2JGPs8xBqZPzilsT0pcAQ9PnaZP3XLtT2nbaI8WfOYP2Ccrj2gZqg8Cb+WP/1iqz2mrwc9/zOWP8FitT1JiuQ8gQ+XP68Crz1FI6087DKcP20rkT0J0e08gLCcP4ZzmD0JCow8YOSbP1RWkj15ops8YwaaPyrBpz3GOAI9VLeZPw3ttT1+jfE8AlOaP8QarT1QhwA9cFacPyZapT0pcAQ9PnaZP3XLtT1zqg89x9CYP9Iyuz2vRBU9nB+YP9RMvj1nIBU904uXP1yBvj2Mzgk9lqqbP5Berz1SOA49RfqaPwH9tD1+jfE8AlOaP8QarT252Z88kG2VP49LpD252Z88kG2VP49LpD1JiuQ8gQ+XP68Crz34O+086SWVP255pz34O+086SWVP255pz3XiQE9go+VP8eIrz252Z88kG2VP49LpD3XiQE9go+VP8eIrz28GgA9gMuUP8cZrz0Z8Ns8cfuTP3ihnj0QxYU8u7GTPz2mmj2KEvu8hMWZP84mrj0Eo5u8YwaaPyLBpz02bqK8WfOYP1icrj02bqK8WfOYP1icrj0bGfu8xBqZPy2lsT3wrwe9/zOWP7VitT2iTQ+9H8eWPyFUuz0wZ6i8Cb+WP/Ziqz0wZ6i8Cb+WP/Ziqz0POQK9VLeZPwDttT1iNwm9NlCaP3BUtj1ycAS9PnaZP2rLtT0bGfu8xBqZPy2lsT02bqK8WfOYP1icrj3wrwe9/zOWP7VitT0wZ6i8Cb+WP/Ziqz3biuS8gg+XP6cCrz2K0e28gLCcP3xzmD3CI6287DKcP2YrkT2HCoy8YOSbP01Wkj0POQK9VLeZPwDttT0Eo5u8YwaaPyLBpz0QjvG8AlOaP7garT2XhwC9cFacPxlapT2/qg+9x9CYP8Uyuz1ycAS9PnaZP2rLtT22IBW91IuXP0+Bvj36RBW9nB+YP8ZMvj2cOA69RfqaP/T8tD3Vzgm9lqqbP4Rerz0QjvG8AlOaP7garT3biuS8gg+XP6cCrz1A2p+8kW2VP4dLpD1A2p+8kW2VP4dLpD2FPO285yWVP2R5pz0gigG9go+VP7yIrz2FPO285yWVP2R5pz1A2p+8kW2VP4dLpD0EGwC9f8uUP7wZrz0gigG9go+VP7yIrz2SxYW8u7GTPzammj2g8Nu8cPuTP22hnj1CGt87S1ibPyxhjj2GpPw74kSdP8dHcj3lWkU8NwqdP1FEhj2ZSvOzmQ+bP4iajD31XMmzZxydP7USWj3lWkU8NwqdP1FEhj3wwyA8pJqcP2w6gD1CGt87S1ibPyxhjj0xAQ49DDOeP566ZD1DUx49Q12ePzUJZT2msB09HTOdP6ethD1wXI4806idP4g2gz1FI6087DKcP20rkT1szmo8C0qdPz9fgj1FI6087DKcP20rkT18rpg8jgmdP+xwgz1szmo8C0qdPz9fgj3mhQY9t9+cP/l5iT3Tp/Y8UuadP7J1bj1CGt87S1ibPyxhjj3M7Fo8hsqcP00Rgj0JCow8YOSbP1RWkj3mhQY9t9+cP/l5iT2J0ds8olKeP7wpfj1ETQM9jkKePw9Pbj18rpg8jgmdP+xwgz1FI6087DKcP20rkT3wwyA8pJqcP2w6gD3mhQY9t9+cP/l5iT1ETQM9jkKePw9Pbj3Tp/Y8UuadP7J1bj3zkrY8bCCeP1Ypgj3vc249FIiePzilRz1XC2k9YYadP4Zdbj1ZC1s9FEGfPwFuUj3kmDI9CVydP4cTgD1DUx49Q12ePzUJZT1XXxU9346eP/DAaz3kmDI9CVydP4cTgD3vc249FIiePzilRz15+X49vqqdPzstSz1XC2k9YYadP4Zdbj3aGIM9xiWdP7jqZj0ka009gYadP3kBdj3kmDI9CVydP4cTgD2OKEA9ulefP8fIYD1XXxU9346eP/DAaz0H5Ck9OhqfP32yZz01pvy74kSdP8BHcj0sHN+7S1ibPyphjj3NW0W8NwqdP0xEhj31XMmzZxydP7USWj3YxCC8pJqcP2c6gD3NW0W8NwqdP0xEhj0sHN+7S1ibPyphjj12Ux69Q12ePxwJZT1kAQ69DDOeP4e6ZD3fsB29HTOdP5uthD3CI6287DKcP2YrkT3kXI6806idP4I2gz1Xz2q8C0qdPzlfgj3wrpi8jgmdP+dwgz3CI6287DKcP2YrkT1Xz2q8C0qdPzlfgj07qPa8UuadP511bj0fhga9t9+cP+95iT2q7Vq8hMqcP0YRgj0sHN+7S1ibPyphjj2HCoy8YOSbP01Wkj310du8olKeP6opfj0fhga9t9+cP+95iT13TQO9jkKeP/5Obj3wrpi8jgmdP+dwgz3CI6287DKcP2YrkT3YxCC8pJqcP2c6gD13TQO9jkKeP/5Obj0fhga9t9+cP+95iT07qPa8UuadP511bj1lk7a8bCCeP04pgj2MC2m9YYadP15dbj0hdG69FIiePxClRz2LC1u9FEGfP9xtUj12Ux69Q12ePxwJZT0emTK9CVydP3kTgD2KXxW9346eP9jAaz0emTK9CVydP3kTgD2q+X69vqqdPw8tSz0hdG69FIiePxClRz2MC2m9YYadP15dbj31GIO9xiWdP4zqZj0emTK9CVydP3kTgD1ca029gYadP1gBdj3BKEC9ulefP6XIYD2KXxW9346eP9jAaz095Cm9OhqfP2SyZz3HyJg9DMSKP2qhezwN7Zs91n2JPyIZbTwN7Zs91n2JPyIZbTx/hYs9G02KP0XHwTzHyJg9DMSKP2qhezzUyJi9DMSKP5mgezwY7Zu91n2JP1cYbTwY7Zu91n2JP1cYbTyNhYu9G02KP+bGwTzUyJi9DMSKP5mgezzXXCS9FhGKP9hAK734TZi8cvGJP6IdRb2r/5q8MmmNP8/mUL0yRCm9pmCNP13rNr2A1Z28LtiPP9uHZL3rQDC9Kf+PPzXLS71q/Ra9UK6nP6u1Gr20tw69b3imP+sjrrwwJjO9dKqmP5Pg37yZxJk9G1WcP7mQXD2nk5Y93p2bPx8Fhz3Qw4U94hqcP+tHjD3aGIM9xiWdP7PqZj3K3hg9gTGcP0Dklz3wmBs9Yc6aPzINqz35LNo8xN2aP4QLoj1za/s8RxScP8PkmD0CCFg9a+aaP5Njqj0+CVY9fk+cP1I+kz2qD5M9PVSZP0f0nT0HjY49pM2XPzN9nj28jXc9YNyXP+t6qT1vfYI9e4GZPzi4qD1vt6Q9SyyaP89khj3CQZY9/J6aP/kZmT3Y96A9KeSaPyaVhD1SA5s9/hyYP+5ulD2FQaA9+dSWPz3Hhj2ypYs9J2+WP+ScmD2evjo96tyWPxeSrD15DCI9aZCVP42qpD2ztPs82M+XP55drj2OpWc9NoOWP705pT2BxIk9X/eUP4Zliz2kOFg9wCOVPw4znD0NxqM99wSZP+3Piz2ujak9yTGbP6S2Uj0rw7I9i7yZPzuNVD3owCM9XCSYP4V+sT3upEg9HCGYP0/AsD0uGlM9u6eZP+Zrrz1QiB09AoGZP/AZsT1+Vaw9EnqXP5u3bD2vGrI95LGYP2QCYD0IJIY9ltaaPzJ1pD3mhQY9ut+cP/d5iT2nsB09HTOdP6athD2e5+M8ileZP2c2rD1URJg9tSGdP1DUKD1YC2k9X4adP4Vdbj0la009gIadP3cBdj3S0q49oJebP4CrGD3kmDI9CVydP4YTgD3Sy588oJerP0ICFL1mP8w8jzCsP1TwRL23XNI8gvCqP6WxUL3SBKM8kyiqP5hIH721RLI8k66sP8/Gdr0XALs8nWqrP2cegr1mctcwuDapP+GtxrwbGm8zEvSsP8Mnkr1THTE8efesP/zmjL1Z9EI8IZ6rP3Byk702DIAztp2rPyk2mb335x48lN2nPyyj0bziASg8xmWpP1XK4LxqPK4820eoP0KaEb1Gzgqwm7SnPwblt7xbvC08UjemP7yaOLz35x48lN2nPyyj0bxqPK4820eoP0KaEb3ykrE8eVOmP4A+h7ygC6ayJJKlP+5qxrtGzgqwm7SnPwblt7w3ZJAzbcapP77Ipr19z4Q8JuWpP3sfn73ZyP88TgeqP5driL0O8+88+3upPyebWL0q+CA9aUmpPzugh73ZyP88TgeqP5driL19z4Q8JuWpP3sfn70U8rM8KgamPx7b/bu0tw49b3imP74jrrzWNg89ASmmPyYgbLwyJjM9dKqmP1zg37xw/RY9UK6nP5S1Gr0g9TU9O46nP2q1Ir3vCRk9h6ioP1IGVL3ZyP88TgeqP5driL0q+CA9aUmpPzugh70O8+88+3upPyebWL2bFTs9STGoP14TTr1JmJY9JC+eP4KszzyWdqw9vz2cPxg3szyPW7Q9cOmYPyJXGb1mNq49y3mbP5cfjb2Jvqc9hJiYP54Ibr3K+bM9+W6ZP+3gh7wi5Jk9+HGfP/0uIzzCfY09sOqfPxj/OjwlZKM9af2VP21pQb1Yqa89QEmWPxQj3LzEtpk9TSCTP3iVEL38+ZU9CZqYPxXkjr2T7o49dOWVP3Cccr09d6A8bn6oP1KAqL03ZJAzbcapP77Ipr08LIc9fduSP2mrQr3LP40zB0OYP8IspL38RWszOnWVP9eQkL2Z87Q8toaVPwe2kb3V9ro8UFKYP+rNpr2r60c9VK2VP6FSir18lz09J8uSP6EYab1JblE9DJeYP31Dn73Ar4Q9GpKhP3TpBznTFUw9RsyhP23zxzuQWl09cUWgP6AzhzyQ1jw8VuilP/fKIbvAYPCyb02lPyUAwjoc0zU9q0mmP73Nm7yit1g8RcujPz1W8TsniO08QvCjPxuUujovNTU92QekP7Akxbt79qA8pP6SP1eWcr28PTQzsSeTPxtuc70Gn3A9YBCfP1lT/TzrKt08a5CTPyBJmD2+2Z88km2VP41LpD0UxYU8vbGTPzummj1lL/6zRO+WPzHNoD2tbaI8WfOYP12crj2iZqg8B7+WP/hiqz13kPOz+AqUP8tkmz2K4PmzoaqYPwkCoT1/ops8ZAaaPy3Bpz1U+OyzfDiaP5D1lT1JI6087DKcP20rkT0PCow8YuSbP1JWkj3WHw8zsnaNPzebVL3WMwEzBMSJP34LSb0ZTpg8cvGJP50dRb3U/5o8MmmNP8bmUL3hXCQ9FhGKP8FAK709RCk9pmCNP0brNr179qA8pP6SP1eWcr0UdjszrbiSPxBteb2GT6I8rbiSP5V8eL18lz09J8uSP6EYab1iSU49uUGTP9Q1hj0UrUA9wvyQP0TMiT2hPrY8cEGRP604lz2++POziOyQP2W7mz0DQvSzZk+NP0D4mz2k1Z08LtiPP9KHZL3OGCUzwt6PP37aZr3+QDA9Kf+PPx7LS73HQDM9F7SNPwlfjD1owqA8l+mNP3avmT08d5M8vtqJPwyCmz3BwfazXH+JP4QLnj09KqM9yUOVP4wUZD3ivbI9TFiWP0oTPj314ro99NuXP5uxIj1GYro9F6qZP3/4Ez2rOLo9ohiaP+29ojxEa7U9YB6aP8b/CDsCtrE9Ns2WP/DaB7zrwbU9xjeXP5Mi1ztKErw9sISXP5KDvTwxj449hyKTP6LLWT3wZoo9JOuQPwrCWj3q06M99WqTPzc4p7xGzag9woKTPzTdP7rvzZ89U+qSP57NFz23EoA9/y+QP0eJHb1s6Wc9FkCKP/A14bxG+HI9xFaNP1jJBL0adJo9i4qQP51rhrxbsqA9W5+QP0RTZTujZoY99lKKP47AKLxCwo89fFuNP+8GWLwz1LA9aZ6VP6I2LTyUqLI9nwiVP3yy8zxNca495mWTPwghgjwho6g9zEmTP/kisjz4S6w9STSUP1yBfjwyV6U92xySP9V1ujwj5qA9jqKQP+AGyjxUkqs95G6TP+b3JjxpUpU9SWyNP1MrvjvyoY89sEGKP+HWsDu7tZA9lSiLP+SYBzx3gpI9KT+MP1mphTwIppY9LGGNP3hv2jwgPao9yfiRP2shjDxUvaU9/fORP+YSSTxwQaM9U0SRPxjgkTwU2ik9KFCKP6GQhz039oA9WXGNPzjWVD1w+I49AVGLP7yruzx+hYs9HU2KP0HHwTzqBnI932qKP8eaQz3GyJg9DcSKP2OhezzeOGE9umWfP+30v73yy5s9ccebPxYtpb3Us1o9DdSbP+Hfs73sw4W94hqcP9dHjD3Ek5a93p2bPwkFhz2uxJm9G1WcP4mQXD3yGIO9xiWdP47qZj18Ldq8xN2aP3kLoj0ymRu9Yc6aPyoNqz0G3xi9gTGcPzbklz3qa/u8RxScP7jkmD1JCFi9a+aaP4Fjqj17CVa9fk+cP0Q+kz0Ajne9YNyXP9h6qT0ljY69pM2XPx59nj3JD5O9PVSZPzX0nT2PfYK9e4GZPyW4qD3gQZa9/J6aP+MZmT2Ct6S9SyyaP7dkhj3z96C9KeSaPw6VhD2gQaC9+dSWPybHhj1tA5u9/hyYP9dulD3PpYu9J2+WP8+cmD27DCK9cJCVP4SqpD3gvjq96tyWPw+SrD07tfu82M+XP4tdrj3SpWe9NoOWP6s5pT2exIm9X/eUP3Bliz3hOFi9xyOVP/8ynD0pxqO99wSZP9TPiz3Ljam9yTGbP2y2Uj0+w7K9i7yZPwKNVD0swSO9XCSYP31+sT0ypUi9IiGYP0bAsD2SiB29AoGZP+kZsT13GlO9u6eZP95rrz2QVay9EnqXP2G3bD3NGrK95LGYPysCYD0pJIa9ltaaPyB1pD0dhga9ut+cP+95iT3csB29HTOdP5uthD0m6OO8ileZP142rD1mRJi9tSGdPx3UKD2LC2m9X4adP15dbj1Za029gIadP1kBdj3k0q69oJebP0urGD0cmTK9CVydP3kTgD2TXNK8gvCqP7WxUL1CP8y8jzCsP2HwRL3Cy5+8oJerP0wCFL2+BKO8kyiqP6ZIH73m/7q8nWqrP20egr2JRLK8k66sP9nGdr3kHDG8efesPwDnjL3S80K8IZ6rP3Ryk73YASi8xmWpP2HK4Lz25x68lN2nPy+j0bxYPK6820eoP1CaEb1YPK6820eoP1CaEb325x68lN2nPy+j0bx3vC28UjemP9OaOLz0krG8eVOmP5g+h7w6z4S8JuWpP4Ifn72hyP+8TgeqP59riL3q8u+8+3upPzubWL2hyP+8TgeqP59riL0R+CC9aUmpP0mgh706z4S8JuWpP4Ifn70p8rO8KgamP47b/bvZNg+9ASmmP30gbLwV9TW9O46nP4a1Ir2hyP+8TgeqP59riL3aCRm9h6ioP2UGVL0R+CC9aUmpP0mgh73q8u+8+3upPzubWL1ZmJa9JC+ePyeszzypdqy9vz2cP7U2szxeNq69y3mbP7Afjb2HW7S9cOmYP1dXGb2Avqe9hJiYP9AIbr3N+bO9+W6ZP17hh7wr5Jm9+HGfPzsuIzzNfY29sOqfP3X+OjxQqa+9QEmWP4Ij3LwgZKO9af2VP51pQb3Atpm9TSCTP6WVEL0FtrG9Ns2WP8LbB7zu+ZW9CZqYPyzkjr2G7o69dOWVP52ccr3ydqC8bn6oP1mAqL00LIe9fduSP5SrQr1d87S8toaVPxC2kb2K9rq8UFKYP/LNpr2J60e9VK2VP7JSir1llz29J8uSP74Yab0lblG9DJeYP4tDn73Jr4S9GpKhP33BBzngFUy9RsyhP3fyxzumWl29cUWgP1szhzyKFTu9STGoP3kTTr2+1jy8VuilP2bLIbse0zW9q0mmP/TNm7z1t1i8RcujP/xV8TtKiO28QvCjP92Rujo8NTW92QekP4slxbtU9qC8pP6SP2GWcr0jn3C9YBCfPxRT/Tw52p+8km2VP4RLpD1iK928a5CTPxhJmD2LxYW8vbGTPzWmmj0wbqK8WfOYP1acrj0nZ6i8B7+WP/tiqz3+opu8ZAaaPyXBpz29I6287DKcP2QrkT2CCoy8YuSbP0xWkj1U9qC8pP6SP2GWcr1WT6K8rbiSP6B8eL1llz29J8uSP74Yab0ZP7a8cEGRP6Y4lz1QrUC9wvyQPzbMiT2cSU69uUGTP8Q1hj3fwqC8l+mNP26vmT0BQTO9F7SNP/1ejD27d5O8vtqJPwSCmz1UKqO9yUOVP1kUZD31vbK9TFiWPxgTPj0H47q99NuXP2SxIj1ZYrq9F6qZP0r4Ez2zOLq9ohiaP329ojxPa7W9YB6aP178CDv3wbW9xjeXP9wg1ztSEry9sISXPx2DvTxIj469hyKTP3jLWT0HZ4q9JOuQP97BWj3p06O99WqTP5g4p7xQzai9woKTP+bpP7oEzp+9U+qSP27NFz2yEoC9/y+QP2uJHb1q6We9FkCKPzU24bxF+HK9xFaNP3vJBL0bdJq9i4qQP/1rhrymZoa99lKKPzDBKLxEwo+9fFuNP6IHWLxksqC9W5+QPzxQZTs71LC9aZ6VP9I1LTymqLK9nwiVPw6y8zwqo6i9zEmTP5cisjxUca695mWTP58ggjwBTKy9STSUP4mAfjxdkqu95G6TPx73JjxzUpW9SWyNP+spvjv7oY+9sEGKP4vVsDvGtZC9lSiLPzmYBzyGgpK9KT+MPwOphTwXppa9LGGNPyBv2jw05qC9jqKQP4QGyjw7V6W92xySP3B1ujwnPaq9yfiRPwYhjDx7QaO9U0SRP7ffkTxcvaW9/fORPxsSSTxN2im9KFCKP5KQhz1L9oC9WXGNPxDWVD0UB3K932qKP56aQz1/+I69AVGLP2WruzzSyJi9DcSKP56gezyMhYu9HU2KP+rGwTyqs1q9DdSbP/Tfs73iy5u9ccebPyktpb2zOGG9umWfPwD1v72zJT+9bQ6fP3jpEj0PITW9m1yfP50IBj32USC9jTSgP36isjx0GQ+9Ap6hP/USQDxppgy92cWhPxN9LzxQ9wq93P+hP0GaGjymagG9O3GiP8mfBTyXx6u8+P2iP0NvETy8PQazzaWkP3nbjTtJhHG7zhebP7FwjT31ZuGzNdWaPwZWjD2dW2s7HxKbPzKojT2G7j09YA6fP+BoEz0AHTU9hFyfPzAPBj2Qmx89WjSgP2YkszyxTA89IJ2hP6lGQDxw1Aw93cWhP4RGLzwpJws9KgKiP1J7GTzx6wE9Dl+iP/vbCjzuvak8kASjP82jEDznYEM9B/qmP6EZC73iHkk9UrqmP1sh7rzHQk89wpKmPycA07zGGVU9sFWmP/D+s7wGVVw9CrSlP7Bmm7zeZWw9RRSkP+mjZLxCeG89yt+jP6KaVLzeZWw9RRSkP+mjZLwsnnk9qVijP4rvK7xAhYw9h2OhP4BeubpGdpo9VgCgPzuiojuw+Jw90lWfP13Guzu49p89UrWeP2FRBzzafKM9FvCdP+IRKDy7fqk9YRqdP/X8XzxNdrI9zpubP/O2bDwyg7Q9dT+bP8esLDxz6a89R+ebPzKjizwrL7M9goOYPx5DYLxzVrU9/w+bPyvb8rwtbbM9CbCYP6c+RLwOeKI9gKCcP68Fo72+kqY9AZqbP9kZl71F/549QTydPy0xq72Kn5Q9ySueP37tsr3514Y9izufPy4Mur2Kn5Q9ySueP37tsr0ecXE9KgKgPybivb2iHjA9dzqdP62gur2qoME83HWbP3UZub1tAIA8wZmaPx1Ps70wHOg80tCbP7UGur0Puik9QsScP/2hub0CnzA809CbPyQiur0zqqYzU9GbP/1Hub02fJ87SZKcP03Zu73kGaszRgudPyD3vL29zqG7GZWcP+Tiu7049ie82dCbP3cXur3vtHq8X42aPwL/sr3Fk8G87m+bP/D2uL14xOq83dCbP1vyub05dC+9D0CdP7i7ur0vHyi9aa2cP1d2ub0kn4i9bjefP0Caub3Kc3G9tPqfPxzjvb0s5pW9TjueP7Pmsr1lL5+9p0WdP9Rbq72ZZqa9u5qbP4pTl71XmLW9xvOaP2tw8bypkrO9UdGYPx0CPbzulrS9fDubP0a7LjwwdLK9OZybP6GdbDyhfqO9DfCdP/jvJzy+RaC9vKuePy3mBTwzV6m94CWdP0L7WDyz+q+9K+WbP78nizwghUO9ufqmP2lWC72nfkm9c7emP5h67rxpg069WI2mP0TK0bwgDVW9qVWmP2f1s7wb4lu9HK+lP0kvmrzJpGy9FiKkP/hJZbzju2+9O/KjP3wyV7xXn3q9M0WjP/KbILwwbIy9/GKhP8REtLp5lJq9TgGgP15mnzsX8DG9UlGoP5usT73PMS69i7uoP64+br29Uiy9dxupPzR2hr20qy896w2pP0Yehr0vpCA9huuoP0ZAkL20qy896w2pP0Yehr0AtwE9lM+oP6ISn705ryC9+/eoP0obj729Uiy9dxupPzR2hr2NMgO9E8moP2ESn70Lu7a7dpuoP3vUrL0zmhu8YUKoPx7Jrr37Lrk7TZuoP5LOrL221iI8ajuoP7birr3eOC68HHatP8bxir0ZfYe8PnytP3++gb1ZNLO8jXmtPwqncb0kjcG8hh2tPy5DVL043My888msP8BfP73b8b68HHKsP7A9L7388iS8jaKqP91t1rx9kkq8u8mqP3Dy7LwBe5K8gBqrP41ID71mYC48a2+tPzsMi73w04s8hYitP2q2gL1lMLM8DXatP5y9cb0bLsE80xqtPxAaVb0X1Mw84MGsP6uqP719y788622sP3OgML2vBCU8ZpuqP6qp1rzkd0c8x82qPwvl6ryQVJU8BhmrP5IDEb28x6e+XmMsPyWmKb/Hteu9jNokP1WgQb+9EfK9kua7Pv40bL/3cgY/ncUcP51EF78tnw0/qDUvPzon8768x6c+XmMsPyWmKb/v96I+NRQeP7kjOL9Xuus9vd0kP4edQb9XKRw+NHkZPyAkSb+9EfI9kua7Pv40bL8AAAAAj5okP7oQRL8AAAAA1PiePvNYc78O5d8+HJukPvwCV7+8j0s9bWkaP7jKS7+JsX8/cNjwvG8nIL2+7W8/zJzEPP0gsr6mEl8/Hf3DPUde9r5p4n0/883/vckI8DxLZSg/SMj2PbFVPr8BoVY+Ss9VPen0eb+tmbM+a2jaPohqVb/YynE/7FZsvb+UpT6vgW0/e2OZPdwtuz7nLmE/ooilPimksj4NL2E/2ZWlPiyXsj463zE/ydejvKwKOD+nfCE+SvEEP2kEVz8AAACA67XzvVMufj8AAACAUkmdOQAAgD8myhA+ym5OvFFofT++S9E+vQzLPhdsUj8EBuE+ChaKPh5XWz80Ckw/yvBJPaMXGj/Mu6U+itw1PE0zcj+rXmc/JMNCPlpMxD5+VCE/YkchvqqiQj913j0/VWMqPI6xKz9ICmg/n9v5PA211z5K3hM/Ca56PUpjUD/AWzG/ZD8GPgCINT+u0J6+nSEKPh3pcD90/7K+D+EcvSqlbz8vM48+pvEOvfSedT9sfxU+RzLvuw5AfT8AAACA7V0XP7p0Tr/hkks9QmUaP93NS78AAACAj5okP7oQRL8AAAAAmp+PPre4db9uHTQ+7zVnPkhKdb/IzEM+T/bOPrr6ZL8AAAAAwIb0PsrqYL8wjRo/U5ZlPnDYQ7+0YAU/EBjXPuE1Pr+M0cQ9dCMMP6vRVL/DbTQ+glrzPgWsXL+CLn4/7b2wPRG7p732/wo/sd9WP8H61LzDxnI/wFZjPqwMaL5jx3I//TZjPjchaL5rx3I/O1FjPgkHaL5W/cM9+CiaPknjcj8AAACAUqmVPq3RdD8AAACAtZTBPkD/bD/ONc09whHFPnThaj8AAAAAZlQPP1gdVL8AAACA26tPPh+uej8nPs49J/AaPmu8ez/6Yso+6plEPvb0ZT+0n30/m28BPsPNTD2R3mw/+aIfPkkLsT6FOn4/M27wPamaRLuS6ny+S038PUoOdj+1dq0+9+5nPtLGaT/luw8/SpJhPmoyTD8q+jM/JzhePj9fLT/xGmk/2WRVPgbHtj74AnQ/LJsiPuLIg76SBHQ/PpwiPqS8g75/bSk/ViXKPck9Pj+sZDc/SIONPV28MT+Lp0U/Z68yPmpwHD8KTHU/aUkMPv+cgD4vJXs/G6csPsjLw711nWQ/zrlvPobExL53UkM/YHrhPS4RI7+lonU///U5Pl14XL7BDnE/6JZUPjyvh75SQjw/2TOAPkkzIb+vnq0+3NqKPak0cL+ppvk9OYvsPVhdfL9YTh8/AWSqurBkSL8EMSo/mmEDPrNkPL+vHwG+tIkOPGPyfb8E5CU+QhSQPvQgcr8YCFu+zm2jPUU9eb94Ua2+X6SSPRcwcL+Qw4Q+L1uTPrICbL+1bDQ+UizBPvS/aL9E0ZE8i5lZPpocer/Tcyg/+G2WPk59Mb8Svyg92f1dPniweT+gd1g+q/iePv5AbT9yDQ8+YUaUPuxncj+iMxE+NiyjPrTrbz8b4zI/3RU3P2YHebzsk0M/RxAlP5myyLxc8Dg/eBUeP35Jn76th0A/96soP1j7h7xq2DM/MCEiPz4zpr5mKkO+Jq8/PjSydj+U0xy/8lfKPLo9Sj/44/a+Jy6hPRxdXz9QQ0K/ahxivYcgJj+gIES/b8R1vCJ8JD8/o0a/N3CBvIRwIT/aEBQ/snQgPoDyTL8a5xA/bIEIPgREUL9Hz1c/yePlPtSnlz57ImQ/teblPq0ghb02Jm8/Xje2PsK10bxG310/hKSdPg71yD7iNT0/hg4dP0xjjj6siz4//IEVP0rXpT6Qjlc/3FgJP08zZr24YkI/tz2sPnWYDj/qVZ8+m9ZFvzyYDT8Sns09jy59v6Cd3r2BknY+ql13vyj6uj2YbdI+ZLonv39GIj/KfK68VlzNPiFxaj8AX+c+pmEBPygvPD/rFeE+2XwDPyqhPD+BDc+9JQ+rPsXlbz/J3x8/T9NeO1DwRz+cuLU+t3Q7PxvMFL8KTg0/tUc7PmNFUL+ABBU/QPEjPksVTL8hthE/tDaYPps+RL8WSjq/lz5GvUwnL79BQjq+FpwAPu6qeb8LIkC/o3icvfIKKL8AAAAAFCWoPcAif78AAAAAYfWovZogf79dKTo/eoD1PgJ++z5amlU/fYLvPt4+lT42RmY/PTyuPhRKjD7lXVI/hEGpPpGn7T4xIx4/ahTDPgAcMD8J/gI/7GfvPQXnWb/Bag0/zVHrPYVbU79/lfg+/gMJPl4qXb872uo+okoZPoI6YL+Y5Vk+Qhu4PYETeT9kaR0/E+eqPqroNj/4peQ+r+QdPq+gYT8lnEg+xB5rPdybej/1tCE/KFjxPlSPHT9mNiY/YEwRPzibAT8f5FM/AM5ZvtTwBL/W6mo/QCJ0vEtTy75OBj0/BSD9vEF2LL85ND0/JSSVvmR9G7/hpS4/FnFwPlxCMT9b+Sk/BLbrPbclPT9b+Sk/BLbrPbclPT8oBj0/h/H9vB52LL+4YkI/tz2sPnWYDj/hpS4/FnFwPlxCMT/2YBM/xwsDP6E5Iz8y3lE/qWjAPvs73b528k4/G32dPv97AL9MqSc/RhsyP9ULl75nWmU/qSGfPsCCor4ylUs/rwr/PhH1sL7NFFg/nqLOPrzHtL6p4ys/7yTOPohEH79U0nM/a1ibPgoe67zDVl8/4KDaPhqDc75nWmU/qSGfPsCCor68b2E/EVVSPnWg2r67sWg/tTy3PgvsWr5sTcQ+7okQv6kcO7+Kcis/K7MdPbHaPb/yHBw/hUXavs0JK7+qsrc+9ynUPBXdbr8f1UM/5/EOP4FYpL7xn3E/8qGfPnPV370CNW4/33eLPtDGer5Jbys/LbAdPaTdPb8WaAM/+c3bPnY8Pr+7sWg/tTy3PgvsWr77Wv4+m8OgPuEfT7/ttrc+nQDVPBLcbr82ZPM+sWuUPsWlVL9AK/o+NoOiPlUOUL+CpjU/whciP91Nnr7HAXg/xpdqPlUlwr08X2M/P3U+Prci1z7mBl4//CxhPkSo5D5qbV8/LBHBPpy2nr5F+AI/fxsNPiodWb/+Iio/GClLOz1IP7/9QRI/+z8XPgGtTr878+U+bi1HPhs+X7+ISa4+Af8zP7HSH79gQPw+ESiaPtMDUT/tqm8/I/BWPkVVkD6b430/qL/1Pb9POL22hG8+ApwVPngSdj9+nW8+HJsVPv4Qdj9wUtQ+0rUiPgxfZT9Pxtw+ZcoyPomcYj9BFaw+yyuFPiC7Zz9mFqw+kR+FPqq8Zz+kAOI+a/1pPgYjXj9P1qM9pwZ9PgM3dz/RWug+tm6FPm0lWj/RJl0/D5WhPkoByT7ADWs/0sWLPuT9kj5KYW8/PqZXPsP3kT5k8Gc/tSGfPnoZkz5XUGY/ytmoPi16kj6PSzY//Q1cPqwbK7/umz+/fJGpvSNxKL+RST8+bU2VPqkocL9d2zY/UY2VPgHQIr+fNPw+AFTQPrfvRD+vL/U+r0LnPmK1QD9ehxQ/r3jnPupvLT9m2L8+v+jXPsRgUz8W+VE/6VjIvs+o1b7xmlY/txqvvkll2b4dd1c/S7ecvkDH475AUQk/Yc73PkH/MD/cbvs+zbCsPmOcTT/2rha/pA8bv2cQCT+Gi9m+03L1vjiURD/lBxm/eEj5vkAKIz+4Ee4+TxgBP2NIOj+rkA8/3MMCP1nPJj8wBZI9NJqmPv1gcT8Svyg92f1dPniweT9Iwyg9YwNePiWweT9mKkO+Jq8/PjSydj9mCxO/ksBovttQST8jcj0/wZLevhxiA796+DG/WWosvy2dgD6dEtY+IVzzPrksRr9Jsrs+O0INP0vEP7/DbTQ+glrzPgWsXL8E/cu83E5EPr8re7/mNF4/w3JXPtRL5r599uo+B0a4PkT0T79E0ZE8i5lZPpocer8n19o+5qJJPn3hYb+8b2E/EVVSPnWg2r42a24/dkGzvmlrzT3Tbm4/JTKzvnM0zT010to+WJ5JPvDiYb/ppCm/8wUtvxQqpb7ppCm/8wUtvxQqpb7ppCm/8wUtvxQqpb4pW0M/fYMAv/ti0D4pW0M/fYMAv/ti0D7261o/hDnOPvEOp76XrzI/PRA3P0YOHL2EvjY/iXspPzXLaT6kXGU/fYy/Pmkodb64rFY/x4sIP6sd4z2a0/g9PFODPhl5dT8xkBM/LF4+PrW0Sz/XJVk/smtvPuJP8z4ngl0/UhCFPnB82z4Z7wm/hZcvP9xr+r73cga/ncUcP51EF7/v96K+NRQeP7kjOL9XKRy+NHkZPyAkSb8O5d++HJukPvwCV7+8j0u9bWkaP7jKS7+mEl+/Hf3DPUde9r6+7W+/zJzEPP0gsr5XsX+/+KnxvE8nIL1p4n2/883/vckI8DwQula+JM5VPZHzeb9LZSi/SMj2PbFVPr+tmbO+a2jaPohqVb/YynG/7FZsvb+UpT5lCGC/0QykPZBV9D5n1iS/GVuxvTScQj/bE1O/oX3hPXAVDj+nfCG+SvEEP2kEVz8myhC+ym5OvFFofT+0n32/m28BPsPNTD00Cky/yvBJPaMXGj/Grty+DMHwPrknRT8EBuG+ChaKPh5XWz/Mu6W+itw1PE0zcj+44T2/QmYqPPOtKz9+VCG/YkchvqqiQj/pMlu/Qhi7Pu/wuj5ICmi/n9v5PA211z5K3hO/Ca56PUpjUD9sfxW+RzLvuw5AfT/2CrM+qN8cvQWjbz8of50+J445vZhPcz8vM4++pvEOvfSedT/hkku9QmUaP93NS78K5kO+TPXOPpv5ZL9uHTS+7zVnPkhKdb+0YAW/EBjXPuE1Pr8wjRq/U5ZlPnDYQ7+M0cS9dCMMP6vRVL/DbTS+glrzPgWsXL9cy32/jChLPAmHBb6r7k6/q+kZvnG4Eb9OwHm/ps0ZPhALJL5Hv3m/A80ZPpokJL5GMcS9liiaPq/icj+UNs29tyzFPsnbaj8nPs69J/AaPmu8ez/6Ysq+6plEPvb0ZT+f3Wy/jbwfPpMKsT5KO36/fzrwPUGbRLu1dq2+9+5nPtLGaT+S6nw+S038PUoOdj/luw+/SpJhPmoyTD8q+jO/JzhePj9fLT/xGmm/2WRVPgbHtj74AnS/LJsiPuLIg76sZDe/SIONPV28MT9/bSm/ViXKPck9Pj8vJXu/G6csPsjLw70KTHW/aUkMPv+cgD51nWS/zrlvPobExL7BDnG/6JZUPjyvh76lonW///U5Pl14XL53UkO/YHrhPS4RI78dQTy/IUCAPkEyIb9XTh+/YX+3uq9kSL+ppvm9OYvsPVhdfL+vnq2+3NqKPak0cL8EMSq/mmEDPrNkPL+vHwE+tIkOPGPyfb81TtW+EyWIPiGMXr/CTNW+QjGIPp2KXr94Ua0+X6SSPRcwcL+Qw4S+L1uTPrICbL+1bDS+UizBPvS/aL9E0ZG8i5lZPpocer/Tcyi/+G2WPk59Mb9yDQ++YUaUPuxncj+gd1i+q/iePv5AbT8Svyi92f1dPniweT+iMxG+NiyjPrTrbz/sk0O/RxAlP5myyLwb4zK/3RU3P2YHebxc8Di/eBUeP35Jn74uFji/nGgfPw/znb6th0C/96soP1j7h7wkEUM+FrA/Pmmzdj+u0J4+nSEKPh3pcD+U0xw/8lfKPLo9Sj+gIEQ/b8R1vCJ8JD9QQ0I/ahxivYcgJj/44/Y+Jy6hPRxdXz8qo0Y/40GCvHNwIT8a5xC/bIEIPgREUL/aEBS/snQgPoDyTL+FfEK/q3gbP0X7bT42Jm+/Xje2PsK10bzVI2S/duHlPqMdhb1Hz1e/yePlPtSnlz5G312/hKSdPg71yD7iNT2/hg4dP0xjjj6siz6//IEVP0rXpT7gjle/D1kJP8fKZb24YkK/tz2sPnWYDj+Bkna+ql13vyj6uj0Sns29jy59v6Cd3r3qVZ++m9ZFvzyYDT+YbdK+ZLonv39GIj/rFeG+2XwDPyqhPD8AX+e+pmEBPygvPD/KfK48VlzNPiFxaj+BDc89JQ+rPsXlbz/J3x+/T9NeO1DwRz/7UA2/nEs7PixDUL/WCBW/z+4jPkESTL8hthG/tDaYPps+RL9BQjo+FpwAPu6qeb8WSjo/lz5GvUwnL7+CKEA/JEScvVEEKL8YCFs+zm2jPUU9eb/BvQA/mJTUPe2rW782Rma/PTyuPhRKjD7onFW/P3jvPqhAlT5dKTq/eoD1PgJ++z7lXVK/hEGpPpGn7T4xIx6/ahTDPgAcMD9/lfi+/gMJPl4qXb/Bag2/zVHrPYVbU78J/gK/7GfvPQXnWb/iz+q+b0wZPiQ9YL/4peS+r+QdPq+gYT9kaR2/E+eqPqroNj+Y5Vm+Qhu4PYETeT8Ngki+fllsPQKcej/otiG/9k3xPjqRHT9mNia/YEwRPzibAT9OBj2/BSD9vEF2LL/f62q/hBx0vINOy74A6VO/R8xZvjrpBL8rNz2/dyaVvkF5G7/hpS6/FnFwPlxCMT9b+Sm/BLbrPbclPT9b+Sm/BLbrPbclPT/RJl2/D5WhPkoByT7hpS6/FnFwPlxCMT+4YkK/tz2sPnWYDj/2YBO/xwsDP6E5Iz/9ukq/P463Pi0W/b4huUq/q5m3PtsT/b4y3lG/qWjAPvs73b4Zjia/J8sxP6xJnb5nWmW/qSGfPsCCor7NFFi/nqLOPrzHtL4ylUu/rwr/PhH1sL7DVl+/4KDaPhqDc75U0nO/a1ibPgoe67zs4Cu/piHOPoxIH79nWmW/qSGfPsCCor68b2G/EVVSPnWg2r67sWi/tTy3PgvsWr7DIhy/Yzfavv4IK79Jbyu/LbAdPaTdPb9sTcS+7okQv6kcO7+Lsre+h/vUPOzcbr8f1UO/5/EOP4FYpL6doHG/ZKKfPqWh370CNW6/33eLPtDGer4WaAO/+c3bPnY8Pr9Jbyu/LbAdPaTdPb+7sWi/tTy3PgvsWr77Wv6+m8OgPuEfT7/ttre+nQDVPBLcbr82ZPO+sWuUPsWlVL9AK/q+NoOiPlUOUL+CpjW/whciP91Nnr7mBl6//CxhPkSo5D48X2O/P3U+Prci1z4nXmO/jY4+PrAh1z7HAXi/xpdqPlUlwr3IxT6/zcAaPwohkL79QRK/+z8XPgGtTr/+Iiq/GClLOz1IP79F+AK/fxsNPiodWb878+W+bi1HPhs+X7/ynQu/dhmevAmFVr/tqm+/I/BWPkVVkD7n432/8b/1PRvnN70E2ny/GF8YPrybRL2tsVy/aO+WPgIL0z5zNvy+AyqaPnYGUT+2hG++ApwVPngSdj9xVtS+G9MiPtFcZT9Mx9y++7AyPoydYj+kAOK+a/1pPgYjXj9mFqy+kR+FPqq8Zz9BFay+yyuFPiC7Zz8uoaO9yR99PvU1dz/RWui+tm6FPm0lWj8oBj2/h/H9vB52LL9KYW+/PqZXPsP3kT58D2u/2saLPt7xkj5k8Ge/tSGfPnoZkz5XUGa/ytmoPi16kj6PSza//Q1cPqwbK7/umz8/fJGpvSNxKL8lSD++bVmVPuAmcL9d2za/UY2VPgHQIr+VJfW+hEXnPr63QD/GT/y+42HQPlfjRD9ehxS/r3jnPupvLT9m2L++v+jXPsRgUz/Dnla/YQuvvoVi2b4W+VG/6VjIvs+o1b6ReVe/FLmcvry8475AUQm/Yc73PkH/MD/cbvu+zbCsPmOcTT+Gi9k+03L1vjiURD/2rhY/pA8bv2cQCT/lBxk/eEj5vkAKIz+rkA+/3MMCP1nPJj8nFu6+thoBP01FOj8wBZK9NJqmPv1gcT9mKkM+Jq8/PjSydj++Jym9nP1dPjOweT9Iwyi9YwNePiWweT+/EhM/1MFovmNLST+lbz2/1Y/evvBmA796+DE/WWosvy2dgD7DbTS+glrzPgWsXL9Jsru+O0INP0vEP7+dEta+IVzzPrksRr8E/cs83E5EPr8re7/mNF6/w3JXPtRL5r599uq+B0a4PkT0T79E0ZG8i5lZPpocer810tq+WJ5JPvDiYb+8b2G/EVVSPnWg2r7Tbm6/JTKzvnM0zT02a26/dkGzvmlrzT010tq+WJ5JPvDiYb/ppCk/8wUtvxQqpb7ppCk/8wUtvxQqpb7ppCk/8wUtvxQqpb4pW0O/fYMAv/ti0D4pW0O/fYMAv/ti0D447lq/ii7OPqoQp76XrzK/PRA3P0YOHL2Evja/iXspPzXLaT6kXGW/fYy/Pmkodb64rFa/x4sIP6sd4z0xkBO/LF4+PrW0Sz+a0/i9PFODPhl5dT/LO0+/7DOiPmIV/T5ycmS/SWw0Pqm61D4Bh1I9kd6tPlttcD+W71I9Vt6tPgptcD9PAq0+MYfJPhfcWj8AAACAZpTjPglSZT/bOwE+aObjPunzYj8E2nw/GF8YPrybRL2tsVw/aO+WPgIL0z6W71I9Vt6tPgptcD+WhTi+Q8uuPv0nbD8p3Hs/3uUyPvDLIb05bDi+EcyuPhQpbD+AQUG/JZm7vWY/Jj+W71K9Vt6tPgptcD9PAq2+MYfJPhfcWj/bOwG+aObjPunzYj+WhTg+Q8uuPv0nbD+W71K9Vt6tPgptcD8p3Hu/3uUyPvDLIb05bDg+EcyuPhQpbD+AQUE/JZm7vWY/Jj8AAACAPNruPq5vYj9Rnvg941+DPkB4dT8AAACAvms8PgChez/40fi9e1+DPn13dT/tUaO+/gd1PiHEaj9RTtq+PwrgPkSqSj8hYkM9QiHyPso7YT+cUNy+O/AGPxCZOz8pkO++pp3+PkQIOz8F0BS/5xjTPm+VMz9YtgW/xXqnPvKaST+gjuK+BDQAPjxTYz/OChS/g2dRPm0vSj86kcC++uxAPoU/aD8f3Ce/N8xuPpXVNz/ExSi/yQycPjz3Lz9M6Bq/lPH0Pf5/ST+crxC+WheEPa3kfD+wRTa98x2nPG6xfz+baKK9gucMvC0vfz/QOTC+5hfivYiXej+GEYW+7OYMvGYxdz8FgcK+Azs9vTaDbD8QAo++I54zvsiscT/RprO+f/Ibvi2IbD9mjeq+DsmHvWLsYj/nUDg+T/L9PJuxez8XIJ+9RvEwO6U5fz8/Njy+c+jZPOmLez+GvSy+TAZ5vB5NfD+ABBq+wzUivljReT8bBqO8o00EvpvNfT8COl8+YLMIvqt+dz/rK389QoFvvkdjeD8Oc0o+8bgvveC0ej/iTa+8CMaavi72cz9ilMO9vJaOvlqndD/HMPc9Ah2Yvu56cj9HndE+dYj0PcKNZz9kvPQ+Mjw9Pr7TWz+bdfw+UokOPpTYWz9ucgk/3/wHPGj2Vz+Iwdc+vlG4vLYWaD9OR8k+6o0bvmQnaD+tuAk/8dH4vYOLVT+uZ/k+BaQ0viX3Wj+AWLs+dRRyvn5uZj+4aM0+WErXPs9TUD+gTLM+YKo+PgQBaz/r75Q+kKDFPTSucz+POKk+uyTKPeFJcD+JVuo+yWVVPao4Yz+78/Q+nno6PgTqWz807ws/eDvDPsTaPj+jYRY/ulBRPhN1SD8Oi+4+eULPPj1sST/JYx0/sbrJPT5SSD//bxI/YEc2Pf6rUT/M8CY/80BkPj6AOT+VmLk+hEwjP8HyLT/cDJ4+0LM2P/P3ID+EyLQ+QyQ1P7axHD+PZvM+dd4vP/ixDD+z7vo+N/AWP1JaJD/RMRg/6soCP//zHj+Z6RU/BZYhP10zAj/PMyA/FL0RP0V/CD/8SSg/nnHmPrC4Gj8mSFQ+EVhNP05dDz924Nw+f9ktP9UJGD8JZv4+79gZP8xFID8kowI/xokgPxSoFj+SRw8/ynsvP65u7j7ZHuU+z3tCP+iP8T6mJ4A+9OVgP7tV0D4mu9g+cdBUP3NsuD4h4Gk+AF5XP5vf+j4IEwQ/hSpMP3AboD43nhA/RYs/Pxkhsj7Mucs+qztfP8/4kT6rrza9eK9XP51sCT8bjhO+0aFSP+O+DD8WuA2+QOdZP0mcAT+GOfC9yVxqP2sQxT4e/1Q8MVNoPzTx1j5WC8Y9+wZxP55GpT69zHe9C4x1P/51jT4lv2M8uoJ3P7GQgj6RiB8+byN0P7jIgz7aqIK+3n4oPyZSNT9OS4S9OxlMP7ykGT+4UxY9ZKRSP2kuET8AAAAAYnlWPzbGCz+UmcS9BUtjP/lj5j4L+D6+ldtTPweMBz9WVMG+Jxg0P90iGj8t7J6+DIhSP0Ae9D6lEZ++sj8uP4zYKT85aY++pdFgP42Axj7521O+IhxnP8URwT7XL8i+abBOPzw/4j68TsK+PTLoPjNxTj872si+p162PqgbWT9rTNu+cVG+PqXZUj8Ohgm/gw7NPokHPj83lvC+NNADP+qMNz/SlgW/l04WPzZsHj8gmxy/1IrnPsknJj+J5xq/pT8EP2kVGz9gNgy/pgwiPw4PDD8GfH6/vKlPvRDPxL0uImu/tO64PS8exb6Izla/8EMJPwABvD0lO1u/Pjd0PvV86r44Ilm/JC3uPSRMBL8r70y/GnmLvVNtGL8LZV2/roQvvoee8b4X3Ge/0aa5vvTeYL5u8l+/Lj+VvnQkxr5d2nO/eJR+vvDSM74lLVq/IwiBvgi36r74oEi/CwdwvpxAE7/DlWC/F+eqvviVsL7qv3a/0FAnviVxVz5wSGy/kQjovUFPvD7Ysmi/BlSBvnnGqT75xly/lovdvg6Bhj5d22e/MXTTvtz9wz0GYWa/oNrdvmNMSL0nFla/eBwIv0Q2CT6xdmO/rFnqvtdBAj3QEWW/eb/dvgMB3r1bC0m/ACAFP738q76ORRa/rUtHP0iIY77Wc/G+/f1gP7Bzk72q4Na+8QJjPzZXRr6kvIG+A1pgP3e10b56VeG+TUo8P//dA79LXBu/2FnvPvKMJL+yZ/q+fnQePyZUHb/yZTW/kY8APy/L/b6DSvO+Qq8vP/74DL/q4om+sJBDP6QfFr/VaQy/rsITP4zgGr8ZR2y/ixVUPoQapr5iVnm/pkILPex4Zb662m6/Zkqduvg4uL7+g0+/dSSovSRuFL9j8ES/gdksPuq+Hb/MhC6/FbCUPlLoK79OODO/fI/tPHamNr9e2T2/ZChtPlstIb+/Ui2/tUG3PmGeJL8jhW6/AMkHPlgcrT6Vjn2/zTGivOOqCz6WhX+/kWhVvaeqAj0dmH6/+4CmveD2hj3YEHi/B+lIvhm0GT5gdna/mnXXvQkXfz4x9mS/mHklPDH25D6U6mq/voUevotmuz6jGWu/0MKgPZyYxj47/mi/uS2Dvmq2pj6ttW2/gK6LvrnggD5S8mC/Eu84vo5A4j7g31G/u4ilPlD68T6EYES/3RHUPvvT+j4PDEO/5q/DPuXcBT/MNjq/jtaUPhkhHz8gxk6/vRJUPllQDT+dPE2/qOOlPbeaFz/n3jS/Fxk3PitKLz8PVzu/K3/ZPapWLD9+80q/kgy+uxQHHD9J1MW+xvhrP2odBb3Fc7W+2iNoP0nHaT40KLq+I1ReP8+JrD7B4Ku+mjljPwB8oT4Os0y+nhRvPxfClz5OXHW+dbh0P3etLT588HS+Qe93P/Tsjb0cPA6+XpJ8PwIbrz3MXae+EKFxP0/2Qr1hToS9C+p7Pz7JKT4/n6u92KB3PyUldT6mMJm9rzR/Pxq0yDxl8+q+y7JYP4g8ir5aGgK/LuNJP1M1sb79ku++Dc5OPwqCt752kq++9CVZP92mzr5HhKm+yLJmP4tAj77jala+MOlxP0K2gL6yDmC+Qi5jP2K5z75Y8TC+DX1rP0tFtL6KCwK+Wkp3P7azZr4x5AS/w4U7P+F84T4VGyu/2FP/PllIDT++7ja/kkrmPjopCT/BIC+/KvznPgdUEj961Ba/l8nfPrr4LT+aHAm/e9sHPwIqKD/5ErS+rjg4PzZFGT/5tde+cXQWP9DSMD+cCte+urM6PztECj9D69e+3AcAP9ieQT9waPW+WS3lPmhCQT+QhK2+G+EbP7KaNz+C3bG+p5lmP69shT6Z9Ky+prNrP30XSD5BeJ6+QThsP6g4az5qFFC+iPtsP49Uoz7ueYW+691gP50azT6NQ3K+HMdSP/8PBD8DnQC+RBdmP8cJ1z5b/wy+NLZcP2Oj+T5h2U6+SZpIP5tmFj9YgUC/HLQVPhCNJL+kYxC/6p/vPRBDUb8Ihgm/ZnsjP24ODb+4hQm/loEjP48HDb/Igwm/R38jPyAMDb81FPK+Uw4PPpS5Xr8jjvm+OcvDPSkwXr/9UwG/kzFEvQGXXL8WQh2/iluPvHr0Sb/yr0i/TETPvMjNHr/4Biy/w1r+vYHmOr+pFUW/JJKHPTCAIr/P0xm/gnJGviuGRr/2FQu/J8YtvhV8Ur+OBjW/IV1CvoteLr+66l+/5x1jPnGq3L7WvGS/tvmPPqRAs75YTmm/419uPpbQrb6U3XG/hW/OPbOjn77eiWW/Ve6ePYIw375vNWK/NH5QvdVK7r4803K/3wjwvI9wob7OD22/pYGmvU+6vL5SMF2/D6cKvi1G+L5VXvy+693EPpfPR7+aKJq+PaUKP63tSL/1K4O+MeYcPyhbP7/KylC+1ZQUPzrUSb+tJwK+8jn4PkyGXb9qDnq+E3nWPsHkX780Ns++1YF3Pq/FYb9Pem6+bhWXPjM5bb8h8uW+yFafPvtnVr/1gwC+w/ucPuKKcb9LyrK9hVy+Pk6YbL9ie2q+q2lWPlldc7/P8Sy/EidpPgCGM796kT6/vgFNPtcSI7+yKju/+zcaPt1YKr/lqy2/5M0qPfTGO78qDxm/yVAJPglQSr86sv++Ml+pPf/GXL8v9hi/1ooOvXQVTb+m7gi/qASjvGA9WL8TXtq+95RUPd4qZ78kRb69W/dcP8Ee/r5K2xe+5+NxP0Nzlb7OKBy+As92P+KdXr6vIhe+uCB5P4PUNL7pyUO9Srh+Pwmcs71ONJG9Q0x3P3+Rfr4iUa+8ppFjPzhA6r56NKI8KPJ0P617lL6/8dK9yZ1fPyic877vuHM96dZ6P/1IQ74N/1Q8QdR9P+dnBL7k49A9/ApxP/JYpL7Gmv+9DH01PxCzMb+Eqwu+fBwYPwvtSr8YBiO+7lMlP6IoP78yqq28Ol0pPzbkP7+fcjW9MjlBPx6MJ79BV4Y9W91MP7KXGL8HCc49rRQxP0QSN79xHwU+rzY9P6kxKb9OKQs+3lNTP408DL+Kl7K+F2ZsP4fYI77nwQa/hVFYPwAgwb3tqhy/HBVJPwbSvL2oxhi/yhlNP0/bNb0fUQy/kutUPyUMtT1zd+W+hMZkP5zEujzHt2u+5fN4P1dFFL1RarG+R7RuP0y50T1W7I++qGB0P8ruyb1AbMu+arBlP3RURT69XO++wwFdPwuqQj4Jrou+MVBzP2qvGD7Jjv69xj10PwORi75g8zm9u8NsP7xSwb6ldOA8Bnl1P/2ikL7myQc+OXV5P+aoOb4gefK8i/58P8J9Gb5LKEK9vj1/P/85eL2b3dc9aKd8P56o+b3K/n893RJ/P9zsa73VTVG9GZB/P/XU5zyzjkq/hRQCP/Iwrr7ED1W/h/aTPhE48r5eHVC/iLJUPrJFC7/hgFa/Ib9OPnfRAb/TZmi/WBcZPhSbyL6isWW/6QKNPgyzsL5RlV2/2MPrPr+dSb40yW6/4NuTPhv4XL7EvlO/Ljn6PskVjr6//HW/ZLI7PmiUVL77RnS/YR0JPg72iL7p83G/Ms+ZPkl8A75B4ym/sYI1P5Y7dL7qsxW/tYRHPwdkZr5vCRy/gDpFPz1kP76orSq/7hs+P3nYgb1LID6/BvUnP5RQCb4h4VC/YTsTP6escb2v/Dq/xaUuP0nxBT0h/Ee/q5YfP+Q2CT3QxVu/zj8DP1E+Rryg/rY+ux6YPmyrYr/8eQQ/0bbePjSkPL8mo7090yAcP1h9Sb/4pr09+CMcP9l6Sb9m6As/gG8CP2gkKr9XthI//3TxPtSRK79mNik/19S2Pt30KL9VvBQ/V+ebPng6Qb/wt+Y+bqkXPiteYb/lcBo/TN0xPvhDR7/kI84+F8ppPqbtYr87sS8/JfotPu4KNb/3ZDU/2fdtPueQKr8Mdxs/HeWuPaI1Sr+FtxE+yolBPoO7eL9kNCs9esY2PmGpe7/5E4M9SCAFPktMfb8kdgI+lf/UO4zofb+/a3Q+1v2hPTzGd7/4ybA+ACjLO+o/cL87wFs+vda0vQQDeb+TX5Q+T2azvZL8c7/D/9Q+Ge4evW6VaL8Y0Pe9kctyPmXDdr+m6vM9floTPoN+e7+imGY+9IINPh/ndr97ik4+1V3LPVJyeb+9WRc+834MvTYJfb9YrPE8LTfvPITHf7/7kU++c1OnPbPPeb/x5p292n9ZvS/gfr8QoSO+KvQoPtUneb80BGe8odERvotdfb8UdII97mgNvrYFfb+K6Rm+boTRvau7e7+516W+OIe6PoGFX7+g376+XzvfPoWwUb+rXc++lxfKPhMhU7/bNva+lpaOPjDVVL+pib++BDZrPqYDZr9lMcK+oPLKPW+Ca7/g0AO/WhUdPrLpV79Z/vS+qGS7PfSQX7+psb++5qstPFtdbb+Wx3q+TeUhP8wiPL+yLn++XRLUPpMaYL+srFi+ESulPmwubL8nWoK+35KnPmD0aL8HZMi+/jqdPsISXr8encK+uyLdPpdiUb9CT82+fQYfP+BcLL8BZ/e+iQfwPhhKPb/bcKG+US8hP6bENb+AQwm/bNe/PimiQb9jvgG/8N6iPp0cTb/zKgu/A7z8Ps/HLb9glCW+yiBPP5KjEL/jsb+9PD1cP3JIAL9sGg2+/bBcPwKy+b6BK4e+tBVdPzzo27488Ji+0QNKPxlmCb/WL9e+oLc8PwNyB7/qyMW+L/dUP+H6y74yEOG+GXZJPyqv3b4fd/6+6kcxP/PcBb/g6ms6rGxvPxs9tb7fHni+0zthP4Fc0b5NLKO+iodUP9cv6r6GAau+Lz1ZPzMS0r7nkL6+491iP7FCjb6Qlnu+V4huP1faiL4Tp+i816V7P+PAOb5+IFa+Dap3PzkHEr4djlu8CVx2P5gDi74a2p2+4CByP7+x0L1Qi7u+lDxrP88DFr6xczW+snd7PxwJeb0g/oE+9DtpP9ZKpr49QLE+tG5fP/4ssL5ZQbE+NAVkPwHWlr5YfKw+QXttP6v1JL65blY+SWJ1PxHyRb4fGAg+ybR8P8kStr2htZM+Hdx0P/39Mr2shF4+ddV5P5cbnrzZdZw9+zF/P0QGrLyszdU+n7knP/YrIb9YRIc+MONSPwZoAL/Usy4+7/VeP8Pw674ka1Y+hv5eP1554756+KA+JFpiP8LksL6IZcY+oEBQP/UM3r4y4Qo/aOInP1FmBr8mjwE/vZNFP8Ydxb6m0vE+aFkoP+o/Fr9u8fo+QX5SP+0glL4pstk+rdFcP+BijL5YjhQ/2787P1tMtb6iefg+2rfgPqGWQb+KifI+VxqxPjtWT785ygI/roGzPgbvSL+fgx8/kQCvPrwYNL+nBhY/3D/uPuvQKb83Uyc/RaoCP0YOD7/vJTU/9HK5PkJRG79KgTc/KFrXPmpdDr/fjjA/wSgKP7sv977G5hE/rfSwPQ8wUb8pJkE/EakCPnDPJL+fYQQ/QrghPxzYE781mPY+BInaPcOuXr8lx/w+rVdsPWAiXr+qgAM/ft6tva2QWr9oKB8/FLVIvVgeSL+9NS4/QSMbvkeHN793MEo/5ro4vXmYHL8IREY//oo5PemHIb+Nqw0/2LBQvsa+Tr9FZBw/z+NlvlZbQr8eWjc/3O9avrYQKr9B9F8/3IZaPpCs3r4dZWQ/iMSNPuq5tr5DG2k/NgBrPi4FsL7WI3I/Qy3MPWYmnr7CMmY/N7mNPd0v3b4ydWM/yXJ5vQXc6L4yNW4/KOauvc9ftr4yo3M/Tjj4vOBqnL4p114/Ah0WvqaU8L5zlz8+WDJmP05/yr51AAA+pahGP+tCHr8iNHc+2V9sP7DjmL5CKU8+Jc5tP5nGnr4A6Hs9/YF0PwBhlL4EqkY9yIhoP4mx1L4tZ6K9w1JjP2Pu575Sxhi9ZTRLP1BpG7+6J2Q9NUZJP0SMHb/kbpK9rW5zPxYqmr7hefK9HBNtP7hxt7493SS+v/pcPwj+9L5oV/09uP0WP4VKTL/aBh8+27AAP6mzWb+rB989wsoCPz1LWr//HvS85cIEP2TAWr/RZCq8UtggP4QkR79+Cfm9sHAtP92zOb/x5Tu+xkIaPz7URr/TKRy+80MMP4aQUr/m6ES+xwk1P3YtLr8JZLs92LYRPx0tUb/2PpM+yQrRPlzKXb/slxA9puskPx2XQ79az0w8+OgcP/Y/Sr/CJaC9kbQEP1QAWr/ZIQ491ETpPrG2Y7+fFmI8a76qPtRRcb+Ot0Q+FqWQPs6YcL8tKXo+ROqzPuFeZ78HsAO+XC7QPtqNZ7+WWsK9fqqvPvg6b79nDb47TZB+Pn31d78DpP0+aTGGPgcEVL/szxQ/PDZrPjLVR7+LZw8/AvxDPolTTr94ff0+uGqrPUpjXb+rE84+R4c0PhX2Zb9RCZU+JU0APg7Ocr+Rhqk+Mmu8PAF9cb/57c0+9BIDPCJfar/4XFg+hR7BPZoNeb8THlY/gUDCPtyLyr64EEU/M+kVP7MLgr6s8VM/6AibPpG38b6cDVo/P7qWPp3k3b4m7Go/Eyl2PqP9ob644WQ/iWO5Pn8Ch742bGs/zH69PubCBr5liVY/E+oIP2cx3b01lU0/56EQP7EJQr7v5XQ/NAFiPlGrQr7+jnQ/Q5qIPixbAr421Ww/3yHBPiYiML0+2R4/zRFFP+QwGb67Cgk/vVtVP39/DL7j8w4/UNhSPzQqy72F7Bs/fuxKP8tC2DxMOzI/tm03P1XFMb1mN0U/DgQjP0R6Az2Azzk/ejAtP+D7/j1Gsys/Vj07Px+F/D0Vf1A/dC4TPyiSoD214xU/OC9OP9XTvL3uVL0+1atoPwSGRb4Xris/9Lo8PxdaqL0GySY/O9hBP95IP73oVxo/CRZLP3p3rT0jMgI/cmFcPxGGhTyYNNE+xWxoP3V9vz3HXpg+LBh0P5zJQ73Rha0+FZNuP7oZBL4F5AU/mwVVP4vuPD7DKuk+TO1eP4mlPT5O1as+CIZuP6UIDj6OIh8+WMFtP1RYrL5M7a89bvdnPy0T1L5+n4k9PZdsPyaCwL4yK0u7y/h2P13Dhr4nu/Q9uph4PxOoU75sO/A9Nn59P+MIm71xCPk7f0d/P0nHmL0WIg69Uld9P5jZDr798vQ90CN+P7VGWDyCzn8/k3XXvD1N6rzxtXk/03rpPcsHQT4eVU0/6sYYPyr0ubxAWE0/sMIYPwH3uby+UH0/H6JWvQ7VCb62wn0/XASrvRBR0b3+mHo/fxNQvg/EsbyNVn0/iN7xvSAkqD0fuXY/jMgyvl+ITj4+lHQ/AjRvvLYJlz4VTXg/T+NpPfJIcj69dXQ/HUiSvpESpT107HI/+AiMviQUIT6mAHA/qLdRvvIGkD7qdmM/MsOXPiJPsz61DFc/K7HFPschwz5yDVc/P1a0PnVD0z7rR1I/35yCPlGWAj9bdmM/MgY0Ptz92D6qYGM/3vdCPXv76T4vKFU/DhGLPYK0DD8kaE8/vQwPPtq8ET9kqWE/eD8kvb7k8D6N1GY/UdHePXZE1r6ELHo/a7bIvBrEV75VGlw/zOJDPuxs8r6ipFs/8kMYPqq++76s6VM/z8vMPDx8D78uvGM/M4cFvb5D6b7ZZ2A/bJgqvvcp577UNHE/6789vq3mjr4x43Y/LULPvQ4qer6w1k0/eS/VvbvaFb9bI1I/vgstvlmqC79QrFw/BtiBvsm34L62fn4/PpbUvaVR/DzEqXw/6LvBvfRRBT6AQ3s/sTAZvlW89D3w8HQ/N1yPvtBboD0i8ng/3hhqvh8yO73kcHA/jsyfvn9vEr5iu2o/FwTJvnxvkr2nhGw/GuTDvpSrrTv1iWg/LxS5vihWV74XX/g+G09PP871qL4K+yY/iHMhPxRJ174gFtk+mlVePwt7g77wUtQ+UShcP15EmL6m8qw+dcZXPz141r5hBeM+GwtFP24p675/Htg+jbAzP6/eEr8zABM/X8kYP8V3D78P8x4/HUIeP1TI9r7QMZU+Jy9LP7WzCL//zqQ++24+P3PvFb8zd9E+T70lP/GcJL9w7E0/zzDXPmH81r4Kalw/Vb+sPpndwr4v9lc/PSOqPi/2175UZEk/3K2WPs7tCr/iPTs/pNDVPhYDCr++qSM/U0LgPlPLIb+jyic/3B2tPuHiLL/xCTU/JpuTPgZFJb+e8xE/q0fnPqqsL79V9H0+YsRyPwLBSj4hR38+xXF3P4fvdL1TLY4+MwBqP2xXlz6mzW4+SK1tPw8TlD4R97k98Cd0P5e+kj7mLOU9pjd7P0lCID6qf7e6UxN/P4vfrT1QIqg92Ex+P+oPpb3GljI+q3J7P7NWjr17ig69jh14P8WmeT6pgIS9UZd7PxhAMT7STZW9YTB/P8pBAj3275Y+4KBnP1xWnb65O64+ZftaP4fvx77fT5g+lFlePzbyyr7jbSc+p75jP9tS2r6+/yE+VbhwP4dEmr6GlRA9YyJ3PwJZhL6NoQm8ClhvPxWdtb4oaRE9O+NoP4XR076RLzu9fEp5P0AlZL4aQR8/txUZPzVhAT8P0u8+HfZHP5Jn0z7mGTE/5isFP380AD9VUik/ZqkEP0vOCj8kyRE/Kv3/PmMIJz8c0QI/an4cP6mzGj/QwMg+2bUjP4VKKT9kL7A+GPlEPxvCCT+cotI+flhHP1WI8j6xuOs+v4gBP0e5Oj8jicw+yvgNP1bfOj+lNZ4+l/YnP/tBMD8HQKQ+++5pP0UUfz4eE5I+TRNyP2kNID4wdIA+3PRyPylEQz4GgRU+ysNyPxdIkD6hv3Q+cS5mP3a1uz5c2kE++xFbP1mK9j4hZbM9tghjPyFI6D6Sp5M9IYlrP7MpxT6EZiI+MARRP0EgDj/uzxC/Mfm6vbjOUT+LE0C/Xi2hvbsJKD8leAm/AAn3PgYmMT96cwm/ZQz3PnUoMT8Z11G/8av6PBBuEj/tlEe/OsKovZftHj8X7ji/WG4wvm1wKz/HQym/22hevrnUNz8P2gy/B/9yvlf0TD9+bhy/ftKYvu2vOz+HQQ6/rtl5vtN2Sz8iWC2/CTXkvs7kFT/nFS2/l/y6vnLRIz8hYh2/aaiCvtALPz9Zebi+Zo0XvT6ebj8nvIm+OEKTPfbfdT/7kI2+Odw1vdHBdT+p6Xe+oSeAvgb6bz9ixr6+0OSDvn06ZD+KZdC+AyaZvv/wXD+Z1la+ZVjKvq7xZD+Ml5C+8yunvsbqZj/bYey+X554vmRpWj8bb1++a7bRPhDDYj+Bura+oMJCPtMhaj+9XN6+kvfkPUDQZD+45sq+L+3aPf9waT/tto2+VVYoPfzFdT+DTma+U2ApPibSdT8UOZK94sKxPvFgbz8JALy9b9gsPuQ6ez/lAB6+GE3EPjAdaT8rh7C9jWJ3PQKUfj+YlBi+oDZvPFQdfT8snES7UoIzPtwIfD9Zi/29CigfP+39RT+zcPC97lQzP8EzND86jpe9YigwPwHJOD+xIVs9COklP7R6Qj8vcU68lQ4OP9PxVD/Y9YY9FpfsPs9mYj+Nkhw+bXUTP1+STT+ADSA+q8oCPx5mWD+oQ+k9VA/JPmefaT/BAjy+MSxHP/HOGT9vaYC9TDshP9wyRj+ueT69eGYLPxtjVj/5GBW8qZ0RP/CJUj85dfE9GrgePwCURj9znis96e80P5fIND9ghB69NdxYP36uBz/lHeM9+ZhHP7LEHT8KYe69KDlQPz7qET8CJFM+py08PxFYJT8OEVg+5kIuPxCWMz+Nzhk+hYlSPxR4DD/QxK2+t9NYP26B0T7n+ta+ldNWP8H9sD7i18O+lKxdPzcFpT5vNY2+ERttP2eigz4NkFe+t05nP38Wvz6WQKS9ND1tP1H1uz77tx6+qUt2P5/IZT4M/rK9jfx1Py6Nhj725gw8I3BuPwdRuj5fixy/1dEwP+2hxT5nTMa+7/NNP/mN5j60RpS+XzRRP5sh/z7Icpm+BB9WP7f16j5iHpi+lZxlPxCvpz7oUti+8ktZP2u3oj4KAR+/jOY/P0Mxaj7dM/O+JrpbP7LCRj5JMR6/Dyc4P853oj4V1sW+K8FoP2zSHj7lFqa+XLFsP0+XTD6JgwK/zFlaP17L5T0rokm/quYAP3zRtT6hsFW/CV3RPuPUvD7Xk1e/U2TbPg+upz6GXVy/j2/wPsboSD5b0ki/nB0TP9nIbj7PJj+/HeImPwB5Bz4KNli/m3gHP50cpz3mx02/uYEXPwbFdT14Dza/8CozP277hz36PVe/eJmoPu8A3D4TW02/zecHP67siz7JjkC/W9gdP8ISbj5/x0e/1V4XP0JHUD4tcVm/MbUEP+rzyj0NNGG/dVbdPsHaSj78l2u/+GNqPph0oj4wfm+/G4OiPl7THj4JOWG/huqRPpDPwj5aaG+/DXSzPt4SUD23NGi/eAfXPt+m8Tw8fna/FdxxPiTvBT6t7Um/uQwPPv88GT8LCTy/j7KuPZ5XLD9py0K/ETl4PSphJT8qVlO/da/6vAlDED86WV2/0jujPez2/T7LYmy/UlxcPYabwj4yOGK/sHWtvX+36z5kmWq/TA1gvTgCyz6XLXS/97UmPd9fmD7WaEI/PvttvQLkJT+l8BA/E8yZvdYjUj9d9Ao/oDkCP/8UKz8t9go/xDQCPzoXKz+0gVI/qF9lvAyjET9+FFE/0ZJtvRf5Ej+Xpk4/Fe9NvkEPDj9Lcjk/dc5IvsIwKT/BuSg/EYmfvlQ6Lz9BNgo/y3J1vg6QTj+LfA4/r6YXvoRGUT9qTEM/y3invrLEDj/e4jU/xee5vrZQGj84MBs//KLDvrSPMj+KOrA+fmGhvAtOcD8OeoU++gEaPc/1dj9bT4A+i2s8vDnQdz9ro18+wB0Wvjf8dj+GWrE+f18lvrqQbD/lTMA+6kyRvlzcYT8Jsow+uf2jvggWaD8JfGE+QRWMvkaxbz98y8o+lBS5vqoUWD8FYFI/AJ76PqpYlT5+0Vg//iiWPsUO4z4ROkc/M5ERPwd0iD72iU8/kjwMP9+OUz5ANWA/jIPxPgBP0T2JvGY/IHXEPsjTTT6mcHM/oz+IPvaXIT51P24/pmI2Ph+loz6yomQ/uMRxPuQLxD4Fo20/irC9PpIdBT363HM/rVeZPh6LWz2rU3k/QwM8PsNmCD5dzEo/HrnJPWAvGj+ljjw/oUJGPa61LD9yCkM/0SyQPFfBJT/XVlI/uxadvW2YED/X4F0/dm8BPYzg/j5SmGw/4w0+O1uIwz5GUGk/9HHXvXe4yz5VgmA/xrMIvg9W7D5KP3Q/Bmo8vHc9mT64cB8+wZxEP9wHHz+xUYU+2l9gP+VZzz5nBAU+yuImP81BPz972Js9uVY3P8iaMT8M4hi+HZBAP/NMJD+M6hW92OFbP17EAj9lqSS9SSprPy9FyT6MyYc9R2h3P30qfj7BkCA+/5dvP7B8oT5h0EC+ktVTP5trBz+xD5y9TVxiP2jv6z5Ppui8qrZwPwSrrT5K5dQ+zo9lPyk+Gz6XtQ8/HVdTP9+7bD0Ej9E+HkppPx26OL2caHw+z8JwP+ebb74f9E4+Z7R6P9GQILzHvgo+2uN8P17Ymz36izU+ivF7PwZ+NzsIrDo+GCl5P6zyDr5lg8A9xA59Pxx88j0UpIE+74liPwslyD6Ujvs+HGVPP7e+oz7z3CA+VeJhP+Qc4z6mkiU+jJ5mP2BGzj75ZxE+zNxzPwfHiT6nFIw+im9tP4p0gj5LtaI+BoFwP4crAz4QNPc+umxcPw6KIz4QePo+IPBVP8aWfz4q5SE+TER6P/k7Dj67+2A+iqN4P3bPuz3a1LI+N5pvP4p9Nz13djI/oBEoP++Ckz6z6UI/g6gSPzpjmz43YUM/cFIXP+ShhT7boUQ/HKogP0YmAj766yw/PxU4P5Q2Jz4Kox4/4E9IP0qqej2y+C4/fdk6P/1+N7w9ajw/FUktPxk5NDxTrhI/uc5RP2NHnbuTcdk+OBcmPi0EZD8EFIE+/Pq+PnKWZD9z9vE+XaM9PTVMYT+7WwA/PlD8Pf88Wz9f1dg+ktZFPUaUZz+ncrk+r58rPm+6aj9JIHA+/wQjPoeAdT8ez0Q+P/qrPpgNbD+jmYg+TE3CPrrJYj9t9Zs+vWUqPOPRcz9ZwHU+X25OPesueD/HohY+CbIhPqr3eT+0VSg+SRkcP1l9Rj+/pwY+0s80P5YSMj91Xgc+5+stP43GOD8GtoQ8srcgP1s4Rz9aBc49UhsKPwACVj9jMiI9POrgPtTAZT++h3S9LCv2PqvyXz+Rfoy98fQLP2uiVT8TZSo7KSO7PllJbj8AAACAdXxEP+UZJD+U5IM8GzVQPznkFD8AAACAo7dPP5mhFT+B87A7kpBSPymXET+nfCG+SvEEP2kEVz83yBS+ZgZMP3AWFj/OP7W91L5PP9rdEz8EBuG+ChaKPh5XWz89rYW+W2RFP3atFD/Grty+DMHwPrknRT+aGIS9z0JNP/gWGD+wILC9DChOP1krFj8eT3O9zO1PP5SPFD/CLHq+SuRZP+Pi7T5bmAy+DdBUP63hCT97Nkm+ighZPws1/D6IsJ2+cFJhP0ftuD5B+M++eo5hPxIceD4m/ce+UL1jPwFicj40X9y+9idjPzp6KT6FfEK/q3gbP0X7bT5kHcW+1TBlPyOTZT7CLHq+SuRZP+Pi7T4I3dO+BbRnP0R/yD3Kf8q+bo1pP9RL2T0ibs6+9C1qP0Hj0DyjgsK+kcBrP0SWsr1m8Mu+YQ1mP004PL73gaC+7F9iP8wysb7IxT6/zcAaPwohkL5itc2+hyhkP5hvV75kqs2+4CpkP89xV75xOc6+IT5iP+jncz4Yi72+P21mP8Y2az7ys8i+Ws9lPxcHTj5x1Oe+vSRkPyvq4ryCpjW/whciP91Nnr5IJ+a+G15gP+m/ML5UUpa+uKdlP4MPqb44xcS+OflmP6lNSL4mJaK+kE9pP7SZhr5Itai+e0dlP0b9mL72YdS93FVyPyFEnL4dBWe9RT1uP8ckub7GJBO+wIFuPzLZqr5JHYW9Bc11P98ni74AAAAA9/BzP/RJm74AAAAAIchrP8ptx75vtWK+Yy1uP2ualb5eHrC99mhoPxUd0r61YCG9jiVwP685sL6U5IO8GzVQPznkFD+B87C7kpBSPymXET+nfCE+SvEEP2kEVz83yBQ+ZgZMP3AWFj/g4RQ+owVMP+EVFj/OP7U91L5PP9rdEz8EBuE+ChaKPh5XWz89rYU+W2RFP3atFD++S9E+vQzLPhdsUj+aGIQ9z0JNP/gWGD+wILA9DChOP1krFj8eT3M9zO1PP5SPFD9bmAw+DdBUP63hCT/CLHo+SuRZP+Pi7T5ra0k+FwlZP5Qo/D6IsJ0+cFJhP0ftuD5B+M8+eo5hPxIceD4pu9Y+05xgPxCXbj40X9w+9idjPzp6KT5X+wo/reJWP7b91LxkHcU+1TBlPyOTZT7CLHo+SuRZP+Pi7T7Kf8o+bo1pP9RL2T2JkOI+vlRkPzOsvj0ibs4+9C1qP0Hj0DyjgsI+kcBrP0SWsr1m8Ms+YQ1mP004PL5rkaA+rVxiP2M1sb5lRq4+UQI0P9HPH79kqs0+4CpkP89xV75itc0+hyhkP5hvV759ts0+wSlkP4lWV75xOc4+IT5iP+jncz4Yi70+P21mP8Y2az7ys8g+Ws9lPxcHTj5qbV8/LBHBPpy2nr5x1Oc+vSRkPyvq4ryCpjU/whciP91Nnr5IJ+Y+G15gP+m/ML44xcQ+OflmP6lNSL5UUpY+uKdlP4MPqb4mJaI+kE9pP7SZhr5Itag+e0dlP0b9mL7GJBM+wIFuPzLZqr40tbU+wXc7P1LJFL/2YdQ93FVyPyFEnL5JHYU9Bc11P98ni76CnGI+vC5uP0Oblb5eHrA99mhoPxUd0r61YCE9jiVwP685sL7+a4u+l4i2Pk7LZD9fKE++Kt9xPitOcz/V/Ha+apAPPuzVdT/x+3a+HaoPPgrVdT8RZSa+vSCdPr4RcD+4suq+Wb1wvkNqWz+fLOG+kCu0vpuHUz+4DIC+y99cvrOicT8DDIC+yvhcvl2hcT/vKOm+UtcwPvGVXz8E5ue+R30DPkbbYT8IKUs9HiARP+eBUr8IKUs9HiARP+eBUr8IKUs9HiARP+eBUr/mU5Y+trhRvs8Ib7/mU5Y+trhRvs8Ib7/mU5Y+trhRvs8Ib7+TS4S+xG4tP71MMD95GgC/ALNMPz/8qT6g8ta+y4cZPzxlLj9RYaE+NoQMv0QxRr9RYaE+NoQMv0QxRr9RYaE+NoQMv0QxRr94HQq/lnUTP5A2HT9W9a6+2MyQPghwZT9Jp7O+M35mPsmxaD+QoMW+AffCPV/maj8RFei+89yCvTqaYz9qMRe/aiGuPhBXOz8+ZQi/tAygPgJRST88nYC+IxpAPRuAdz8nHQm+UvGDvob3dD9oAwm+xfGDvlz4dD8xki2+KJ+Nvpkncj9Hy1m+StZ9vpL1cT/z2og+lR0mPw1fNr/z2og+lR0mPw1fNr/z2og+lR0mPw1fNr/n/tK+8rUEvP49aT8ZPJu++C29vnndYD9daXc9t6FMv4ILGT8CTq+8utqIvuifdj9fKE8+Kt9xPitOcz/+a4s+l4i2Pk7LZD/x+3Y+HaoPPgrVdT/V/HY+apAPPuzVdT8RZSY+vSCdPr4RcD8NIuE+ly20vv2JUz+4suo+Wb1wvkNqWz8DDIA+yvhcvl2hcT+4DIA+y99cvrOicT8E5uc+R30DPkbbYT/vKOk+UtcwPvGVXz8IKUu9HiARP+eBUr8IKUu9HiARP+eBUr8IKUu9HiARP+eBUr/mU5a+trhRvs8Ib7/mU5a+trhRvs8Ib7/mU5a+trhRvs8Ib795GgA/ALNMPz/8qT6TS4Q+xG4tP71MMD+g8tY+y4cZPzxlLj9RYaG+NoQMv0QxRr9RYaG+NoQMv0QxRr9RYaG+NoQMv0QxRr94HQo/lnUTP5A2HT/Mm7M+R4BmPuKzaD9W9a4+2MyQPghwZT8RFeg+89yCvTqaYz+QoMU+AffCPV/maj8+ZQg/tAygPgJRST9qMRc/aiGuPhBXOz88nYA+IxpAPRuAdz8LXi0+fayNvvwncj9oAwk+xfGDvlz4dD8nHQk+UvGDvob3dD9Hy1k+StZ9vpL1cT843Yi+yhkmPxRiNr843Yi+yhkmPxRiNr843Yi+yhkmPxRiNr8ZPJs++C29vnndYD/n/tI+8rUEvP49aT9jfK48ztqIvgugdj/Y0Xe9ZqFMv0ULGT8OEeW+uRMPP8y8Mj/wxwO/ilwJP1UtKz/OES6/DBzjPit4FT8AAAAAEWEiP2DpRT+9hQ2/M+wTP1+1GT+TumM/1ZPSvjeQS76TumM/1ZPSvjeQS76TumM/1ZPSvjeQS75SgNm9biQ5P4SyLj+dXzq9Q5cyP58LNz+KIbC8srRJP4yLHT+8y66+wwHLPnkpWj+TS4S+xG4tP71MMD+qTOK+W0ayPoahUz+L14W+Abs8v4F+H7+L14W+Abs8v4F+H7+L14W+Abs8v4F+H78CHyc8A2g1P9icND9CS+q8kiI9P+pdLD88EOW+qAwPP7fCMj8CxbO+XA8eP2w0ND9s/da+JYYZP1xjLj8CHyc8A2g1P9icND/5dq0+RF8HP9w3Rz8obAY/qnsQP3gRIz/NDqK+DukdPxp8OD+TS4S+xG4tP71MMD+VC9e+taAaP51kLT+Y+yU/hKrpvs7/G7+Y+yU/hKrpvs7/G7+Y+yU/hKrpvs7/G7/9fje7oMDmPnqGZD/bDT4/drnrPqcw+T5aa+M+pz00P7vXDT/IQSA/JJDxPozzHj/diC6/8y0svzBZk77diC6/8y0svzBZk77diC6/8y0svzBZk74pa4k9Rv8vP1IcOT/bDT4/drnrPqcw+T7XeBY/8Z0rP6Dg5z5aa+M+pz00P7vXDT89cdI+TIVRP/6TzT4ORRg+iug5PwnUKz8pa4k9Rv8vP1IcOT+DHI0+fNDXPjoqXT8GYhC+6QvCPsUiaj89ZCq7dGnNPkF+aj/wxwM/ilwJP1UtKz+/BeU+Sw4PP8PEMj9oFC4/cR/jPttzFT+9hQ0/M+wTP1+1GT+TumO/1ZPSvjeQS76TumO/1ZPSvjeQS76TumO/1ZPSvjeQS76dXzo9Q5cyP58LNz9SgNk9biQ5P4SyLj+KIbA8srRJP4yLHT+TS4Q+xG4tP71MMD+8y64+wwHLPnkpWj+qTOI+W0ayPoahUz+L14U+Abs8v4F+H7+L14U+Abs8v4F+H7+L14U+Abs8v4F+H79CS+o8kiI9P+pdLD8CHye8A2g1P9icND8CxbM+XA8eP2w0ND+/BeU+Sw4PP8PEMj9s/dY+JYYZP1xjLj9ea62+cGAHP5Y5Rz8CHye8A2g1P9icND8obAa/qnsQP3gRIz/NDqI+DukdPxp8OD+TS4Q+xG4tP71MMD+VC9c+taAaP51kLT/L9yW/Za7pvmUCHL/L9yW/Za7pvmUCHL/L9yW/Za7pvmUCHL/9fjc7oMDmPnqGZD9aa+O+pz00P7vXDT/bDT6/drnrPqcw+T7IQSC/JJDxPozzHj/diC4/8y0svzBZk77diC4/8y0svzBZk77diC4/8y0svzBZk74pa4m9Rv8vP1IcOT/XeBa/8Z0rP6Dg5z7bDT6/drnrPqcw+T5aa+O+pz00P7vXDT89cdK+TIVRP/6TzT4pa4m9Rv8vP1IcOT8ORRi+iug5PwnUKz+DHI2+fNDXPjoqXT8GYhA+6QvCPsUiaj89ZCo7dGnNPkF+aj9n2Hw/kkUUPvdLc724rFY/x4sIP6sd4z2or1Y/F4cIP8Yg4z0ngl0/UhCFPnB82z6P8UU/ctKAPSKKIT9n2Hy/kkUUPvdLc72or1a/F4cIP8Yg4z24rFa/x4sIP6sd4z0ccWS/aXA0PoW/1D6P8UW/ctKAPSKKIT+ADdO+oHrpvcVnZ790OQW+WVvTvQlyfL882B++M+ozvk3UeL9VtNu+tvpPvptPYb+KIQ6+0/tpvmiudr9frL6+y62avjWlYL/3tpy+pT5QP7I4/T5SghG+JiVkP0yR3D7Llwy+LvxmP0NA0T5FiCQ/cCguP/lgtD4a+x8/pOYhPxZa6j7pts0+ZnpBP35fBD/V/cU+EDpTP97k0j47UC+9UpgvP5r2OT+bryG+ZLDuPs7XXj/Maxq+HyXXPlQSZT9maQS+j7UbP4t8SD/lvbA9hDD5Pj6KXj90ozA+vTlCP13RID/KRCc/sm/Ou0DKQT8vvxI/GIJqvtlnST+nocM+RxlAvmWmZz/Zcdc+I6DWPLIiaD8M1Vg/GIpfPqkq+D76WjE/E6GWPo+MKD8q10k/clvoPtCX1D4l3Tg/1qgXviv8LD8vIEA/Jm6SvuKFGD+3Og0/J0i7vsHjPz88xbE9CNyZvoIncz+R15I9hI/Cvn0VbD+utEi97W4SvukOfT812qg+LYXHvqkgXD9FOQQ/9/gAvwdBMT+3+4c+/1IDv3z3UD/yFFc/6cyIvITFCj/J31I/36XwPk1coj46GGw/FLtePqOkoz5rq628R4OvvR0Afz9cZjM+ES7Mvb2+ej9u5hk+aMblPQ11ez++6wC+XhovPmkpej9ELWI/Bxw8viKf3D5SCnA/ETLvu3XpsT7wCsY+9ir4PknVSD9W5em91DpIPz7PHD/Tk/+7p1FSPy7wET/kx5i9At6CPinCdj9/hiY/4P4wP2P4oD4z/5I+5hxbP7U23D4Wh7A94QVaPzZYBD/S9Vs/fJ3zPjOEQD4+pug8CD1ZPyk+Bz9eU1k/pdsbvuCQAT99Kn8/+w8+O2YTpT2LEXE/nUtEPoOdjT7tWEk/HahoPJoOHj9ABmE/K3MXPgwX6L7jqFA/B6LBPuC14L4AAAAAeLZRvQyqfz8AAAAA7NuGPsb1dr/QGuk+3rmHPnyXWb/92ds+NPTbPn5dS78AAAAA8Sy/PhR8bb/DGcI+TKTwPiIPTD9WnAA/j0ILPXktXT+Jpfs+LH8ZP1CwIT8AAACAiyWzPmPRbz8y72u6fpdhP/wG8j7DGcI+TKTwPiIPTD+Jpfs+LH8ZP1CwIT+3/sw9wCdoP06a0T4AAACA8mVSP2nWET8AAACAiyWzPmPRbz8AAAAAuKXSPoFUab+XRaM+A9YDP2mxS7+Mujc/ncwrP+hbPr7kDjA/ioIVP33I3D6BRuU+Dg0xP4sTEb+Mujc/ncwrP+hbPr6XRaM+A9YDP2mxS7/zmEg+zxNNP2XKED9SghE+JiVkP0yR3D4Smlk+RehKPyROEj9OEAc+f1FnPzKw0D73tpw+pT5QP7I4/T6bMoo+g99XPy/+7T6J/NY+S5xRPyFyyD6Mujc/ncwrP+hbPr5Xy9Q+aaJYP920qj7kDjA/ioIVP33I3D7FGaQ+6NlgP4+ctT5HeCc/MNMpP+4Auj7IEmQ/Te7cPkoaET4PL30/qTf4vZerrb263l8/SDqBvosR1L5vS2A/KoSYvoMJwr5C2H8/7X0MvVObxDtK4Tw/u1MFP0fb2z4+r9Y+W5cwP+EXFz/AFFI/bTK5vlCE4r6qlHg/lLNMvoQlBr5HeFg/AvezvtC3zb5ADBU/b87MvtMzNb9Bqg0/w+ngvhUqNb978Ek+GErwPq1YXL8AAAAAnLDSPgtSab/xXAw/P7fPvuA1O78AAAAAWxfCvofkbL8AAACAHcf2vjNNYL9MiTA93TbpvjCiY78543I97UvEvjzza79KBIU+tqTdvlL6XL92AGs+MtXUvrdMYb+tlIM+sqHSvtPdX7/PF+A+OrolP8C8Hz/ANJ4+bmwmP4i2MT83ko8+J3ZFP2BCEj+1/l09wUJYPxJKCD8AAACAuSpIPz6XHz8IQCg+fUlSP6/OCz++2j0+O/8DP0UmVj8pfZ8+eIsMPwOORj/+kas+7mIOP92vQj+XfQw9qG8OvvZbfb8AAAAAIbuWvUNOf79AE7Q+spxVP1Q/2T5cIR8+9WSqvk8bbj+YqAK9QjGVviLBdD+RLl09lAYfvhiEfD8AAAAA93QGvpbIfT8NFhm+3MjUPcO4ez8e5OG9KR9SvtT0eD8AAACAvJUUvmlKfT8AAACAV3t/PoXndz/rrkO+6pDcPtXJYT8AAACAR1IXP0R9Tj81PF++big/P2rfID8NnK2+VrcbP5W4Nz8AAAAAZ2IUvkpMfb8AAACAAw/HvbTJfr90OQU+WVvTvQlyfL+F1x8+mwM0vi/TeL+ADdM+oHrpvcVnZ79VtNs+tvpPvptPYb+lSh08tUkPP+ogVL8AAACAYfwUPqVGfb8WCug9Fh6nPQZ+fb/EBNY9BcwPPw0aUr8elr8+K/qrviNIXT+YitI+jBODuwxaaT/REzI+MM+IvCAQfD8AAACAx9dwvOz4fz8AAACAPhnZPPzofz+KIQ4+0/tpvmiudr8AAAAAB2RmvrZveb9frL4+y62avjWlYL8Hte8+z12HvZ2TYT8pFSE+mrbIPCO8fD/IPHk+n1nTvKY2eD8AAACASdbwPK3jfz+V9Uc/8yfNvqkx9T52TGg/J0eUvinomz6idnk/L+DYvbm+Sj7P/Ho/dNAVPkn3Bj6oy3c/R0OAPo8BkTzO3X4/3EhqPcnGmL0rBH4/ypHlveiIW72nrns/p1j9vQLwCb4dVn4/2ge9vaJliL01oCo/zo+ivoGsLD/mR0U/OHABvkrnHz80sHM/7sV+vrYXN76GVns/Mi4uvkVCrb0Kg2Y/MyyYvi6eoj4TJDs/ejGqvu2NGL+EJDU/XWs4vgXsLr+VTzY/J/d6vjhpKL8en20/4I6EvsnOiL6waXk/XbBdvs9ngL1C92M/FLtWvmC+zr7XcW8/+8lHvp8Yl76SZ3g/9MplvmZTuL3+CnQ/KZOYvmfuST1oGnw/Vp3NvMIfMD5hBHQ/P80qvhMggT4iY38/zmWIvUdfmLyhKG8/0dBEvrfbmT6AJ3Y/RhxAvklsTT45cHk/D7f8vbObQL7xuno/rn0/vn+mm70TZXY/1UBPvRB/iL7PfXo/popbPHfWUr6t8n8/nECCvDMpSzwiLXg/2nlcvrra8D3/UHA/obmvvq81AL0wFW0/1O+nvuHfPr5nJ3E/QmurvuJqvDx+Phc/2dYjvqJxSj9zpVI/PxlIvpWbCD+MQWw/9UAPvl6ztz7cKl8/VGQQvlk+8D5VLV0/ZiRTvpc06z5WWn0/iKYGPvWwaj2lGy8+sDzfvU+uer9WXBE/b1qmvjSeQb/KtUA+v5qTvp5ZcL+huc2+9HxBP7FaBD8a+x+/pOYhPxZa6j5FiCS/cCguP/lgtD7V/cW+EDpTP97k0j7Maxo+HyXXPlQSZT+bryE+ZLDuPs7XXj/muC89IJgvP2X2OT9XZwQ+sLkbP2x5SD/lvbC9hDD5Pj6KXj90ozC+vTlCP13RID+nocO+RxlAvmWmZz8vvxK/GIJqvtlnST/KRCe/sm/Ou0DKQT/Zcde+I6DWPLIiaD/6WjG/E6GWPo+MKD8M1Vi/GIpfPqkq+D6l2Um/wlboPoaT1D7gt0K/Y9yIvgd0Fz8l3Ti/1qgXviv8LD/fdBS/reXBvsunOD+R15K9hI/Cvn0VbD88xbG9CNyZvoIncz+utEg97W4SvukOfT812qi+LYXHvqkgXD89+vq+CuoDv+j2Mz+3+4e+/1IDv3z3UD/yFFe/6cyIvITFCj/J31K/36XwPk1coj46GGy/FLtePqOkoz5rq608R4OvvR0Afz9cZjO+ES7Mvb2+ej++6wA+XhovPmkpej/f5hm+o5LlPcV1ez9ELWK/Bxw8viKf3D5SCnC/ETLvu3XpsT7wCsa+9ir4PknVSD8UGeo9PTpIP8nOHD/Tk/87p1FSPy7wET/kx5g9At6CPinCdj+3gia/0wExPxH7oD4z/5K+5hxbP7U23D4Wh7C94QVaPzZYBD/S9Vu/fJ3zPjOEQD4+pui8CD1ZPyk+Bz+LEXG/nUtEPoOdjT59Kn+/+w8+O2YTpT1mUVm/BcAbvkKWAT/aWEm/d0tqPIwOHj/jqFC/B6LBPuC14L6lA2G/anEXPnch6L5sEOm+c7uHPgWaWb/92du+NPTbPn5dS79TlwC/Fa0LPR8wXT/DGcK+TKTwPiIPTD+Jpfu+LH8ZP1CwIT+Jpfu+LH8ZP1CwIT9uF8K+gq7wPq4MTD8y72s6fpdhP/wG8j63/sy9wCdoP06a0T6XRaO+A9YDP2mxS7+suTe/zMsrPzd1Pr7kDjC/ioIVP33I3D6suTe/zMsrPzd1Pr6BRuW+Dg0xP4sTEb+XRaO+A9YDP2mxS7/zmEi+zxNNP2XKED8Ys1m+KudKP1hNEj8OIYy+gyhYP33R6z6Muje/ncwrP+hbPr6J/Na+S5xRPyFyyD5Xy9S+aaJYP920qj7kDjC/ioIVP33I3D5HeCe/MNMpP+4Auj7IEmS/Te7cPkoaET5b3F+/6jiBvmcc1L7f9Hy/9ToBvgXRs71vS2C/KoSYvoMJwr5U0H+/9V0YvTCfCTxuYi6/clUOP57c8z4+r9a+W5cwP+EXFz8hR3e/B0tdvm7SEb7AFFK/bTK5vlCE4r6Beli/3PizvtKszb4rBH6/ypHlveiIW71b7A+/zCDQvg1fOL+2pQ2/8uzgvqUsNb978Em+GErwPq1YXL/xXAy/P7fPvuA1O79MiTC93TbpvjCiY78543K97UvEvjzza79KBIW+tqTdvlL6XL92AGu+MtXUvrdMYb+tlIO+sqHSvtPdX78UwuC+4uEkP4BgID9dIp2+CQsmPz5OMj83ko++J3ZFP2BCEj9PVZ++1RJhP2+6uD61/l29wUJYPxJKCD9jGCq+e/RSPyaoCj8O9D2+mv4DP0ElVj8pfZ++eIsMPwOORj+bd6m+2L0OPybjQj+XfQy9qG8OvvZbfb9AE7S+spxVP1Q/2T6YqAI9QjGVviLBdD9cIR++9WSqvk8bbj+RLl29lAYfvhiEfD8NFhk+3MjUPcO4ez8e5OE9KR9SvtT0eD/rrkM+6pDcPtXJYT81PF8+big/P2rfID8NnK0+VrcbP5W4Nz+lSh28tUkPP+ogVL8WCui9Fh6nPQZ+fb/EBNa9BcwPPw0aUr/REzK+MM+IvCAQfD+YitK+jBODuwxaaT8elr++K/qrviNIXT+6LiG+y7XIPB67fD8Hte++z12HvZ2TYT/IPHm+n1nTvKY2eD8mLUS/wjzOvl0hAD92TGi/J0eUvinomz6idnm/L+DYvbm+Sj7P/Hq/dNAVPkn3Bj6oy3e/R0OAPo8BkTzO3X6/3EhqPcnGmL3brXu/R4z9vZLvCb4dVn6/2ge9vaJliL01oCq/zo+ivoGsLD/mR0W/OHABvkrnHz9qWXK/zwmGvnFNQL5l4Xq/ttY0vkzNu70Kg2a/MyyYvi6eoj4TJDu/ejGqvu2NGL+EJDW/XWs4vgXsLr+VTza/J/d6vjhpKL+3ym+/qMp/vj1Je75C92O/FLtWvmC+zr7XcW+/+8lHvp8Yl777g3m/OZZdvrpqZ73zaXi/4axlvuAbuL3+CnS/KZOYvmfuST1hBHS/P80qvhMggT5oGny/Vp3NvMIfMD6zYn+/AJqIvQVfmLw5cHm/D7f8vbObQL7xunq/rn0/vn+mm71kY3a/aj9PvTyLiL7PfXq/popbPHfWUr6t8n+/nECCvDMpSzwiLXi/2nlcvrra8D2AJ3a/RhxAvklsTT54Km+/VdJEvsrPmT7/UHC/obmvvq81AL1nJ3G/QmurvuJqvDwwFW2/1O+nvuHfPr5+Phe/2dYjvqJxSj8/wFa/ZVFFvjlTAj+zL1O/HAxpviJyBD/tDG2/O24BvlUqtj5WWn2/iKYGPvWwaj2ve2S/g2srvrVt1j4AhUC+wbeTvptXcL9OlBG/DNqmvqhYQb8Jfy6+Iwnfvdm1er8lzkS+qiBbPyXA9T7AFSq+N79cP1Dw9D5fKja+6vlLPzHWEz9OtFW+8WAxP/+vMD++v1e+NeIkP25BPD9+TJO+QcoQP4nbRT9q756+UXwGPwXRSj+s8oG+YP8CP+sgUj8AAAAAcxX5PtapXz/vxNk+drogP3DfJj8AAAAAhmkzP8KcNj/vxNm+drogP3DfJj8lzkQ+qiBbPyXA9T7AFSo+N79cP1Dw9D5fKjY+6vlLPzHWEz9OtFU+8WAxP/+vMD++v1c+NeIkP25BPD9+TJM+QcoQP4nbRT9q754+UXwGPwXRSj+s8oE+YP8CP+sgUj8vtCo+ULdjPwXP2T7QYOU8BvpvP4W3sT7iRIs9bD5tP98wvT4efEw+aPxDP0GQHD8J17g+zpACPyveRz+dGNc+QCUHPzz1PD8MGb4+7h8eP0B6MT/RDdc+tCYHP0T3PD+8mdU+JGgfP6N3KT9u6vU+r5YhP8bnGz/O5j4/D5X2Pky66z7m/mg/fgymPtT/gz7NfGI/5Qe/PjYOjz7LaFk/vunePiXtmD7ia2A/GFLfPi32Tz7ufnA/oGyrPmPrlT2E7Xc/4tJ4PsVFYb3Q/Gw/8x+2Pnp8Az4QV38/oSWGve0H8LyYzX8/LqQSvXgTgzwCdn8/x7h8vc7Wo7yhsTw/HBCHvrFHH7/bdjk/SJadvuzkHb/spgc//RmPvsP5TL+Qb4M+jjJ7vpBRb7+MvXg+y/PjvTyxdr+Qb4M+jjJ7vpBRb78BFIM+nH7yuxF2d79Pg9E9WGxJvuugeb/RCAo9j6qvvk9OcL/tciy9CdSvvnwwcL+fKO091RCHvlgldb/xCfE97sQ6vmLleb9hARq9vgKHvm7Adr8AAAAAczJzvuiseL/GQgu9MnE5vt+de78AAAAAHe88vteae7+Bqws9CHE5vqade79hARo9vgKHvm7Adr+Z2yw92NOvvjkwcL/RCAq9j6qvvk9OcL+fKO291RCHvlgldb9Pg9G9WGxJvuugeb/xCfG97sQ6vmLleb/1fHe+Q+7jvXfFdr/Mj4K+pTXvu5eHd78oBoO+dB18vpNQb79MPwi/g3CQvmRYTL9evzq/0VGWviwnHr8irX+/9xtAvc5HlDwidn+/57h8vSwFo7yE7Xe/4tJ4PsVFYb3ufnC/oGyrPmPrlT33Zlm/l+7ePnjwmD4quF+/J4+zPghXrD7ia2C/GFLfPi32Tz7Q/Gy/8x+2Pnp8Az7WPzW+dKNiP2Ip3D4WgUC9I1NvP2EqtD44c5O9HlpuP5Iitz4kmki+VhFGP4w9Gj96NLW+Ht8DP7fXRz+/z8++5ZEIPxf4PT834Lq+4wYdP2RMMz+ah9a+bC8dP2A9Kz9y/Pa+vI8gP9WKHD+w6jO/rSUEP7qf+j7Xep++QepdP7hPxz4tj7O+elVgP0sdqT6fY+6+Kw1hP2Gx0L2fY+4+Kw1hP2Gx0L2y2OE+0vQ8P52wAr8AY+4+lQxhP0Tl0L1+fqw+NtocPwsEN79B4+G+sfI8PySvAr+fY+6+Kw1hP2Gx0L1+fqy+NtocPwsEN79opyS+IADrPoevX780IiO+ZBMGPwU8Vr9opyQ+IADrPoevX78EICM+JhgGPyY5Vr/BGdO+8C1yPmU7Yb+6chu/p9w5PrYFRr85rli/GyS5PaJZBr+61Hi/S3olPRUObb6FlH+/v5H2vJt3Rz2D+22/FEETvqS5rT5yiBG/L2bEvVwsUT8ADkW/hFTJvfd3IT8CQEK/qVIFvnpgIz/BGdM+8C1yPmU7Yb+6chs/p9w5PrYFRr85rlg/GyS5PaJZBr+61Hg/S3olPRUObb6FlH8/v5H2vJt3Rz2D+20/FEETvqS5rT5yiBE/L2bEvVwsUT+BDUU/cIjJvY93IT8CQEI/qVIFvnpgIz9i+4w+fHnvPnFHfj4u/eQ+WCGMPrhx0T6r35I+WiUHP27eoD5cSvg+YvuMPnx57z4A7H8+JsUBP3FHfj4u/eQ+hS1hPvCf9z5YIYw+uHHRPh+raj5ofNo+mGaDPkzMxz6jDJg+TJ7bPuKATD7Oyu0+h/+TPnjgOj8xUIM+n4g6PwYigT7elEE/3kCUPt6UQT/uLZI9XCU1P5zFNj2jlDQ/Ds6RPd6UQT+GnKE+BDs6P+HapD7elEE/BDawPt6UQT8ENrA+3pRBP3Zgpz7u1zk/jJ35Pt6UQT+ELgQ/tpRBP5gOBD/4WDk/W2f7Pg6qOT9OJOk+3pRBPyyo8j7elEE/fNrwPqezOT/AOvM+/sU5P/nWuz7elEE/HOTPPt6UQT8PEsk+msg5P3dkvT4uFTo/dKbTPqn/OT9OJOk+3pRBP3xM5z6SUzo/MWHgPg6xOT8sTtw+ycE5P9ZF4D7elEE/uQqUPGSQCD/dMQo99b0IP/pgmDyyXAA/bUtwPCVYLD+7ZDk93z4tP1sFNj3mFSU/9HVyPERbJD9uqoo9O8ItP71Ehz2J9iQ//CYxPaj5FT9fN4E9riMVP0MGuT6OCTo/BDawPt6UQT9gbbE+E3U6P2BtsT4TdTo/YG2xPhN1Oj9Yufo+FRIuP2N1Aj+NIy0/icMAP/LYJj/ugvg+gvgnP/LRfzwtVBY/tG8DP66bMj/Amfs+piAzPzFQ8z53qDM/JEfqPjh1Oj+VFvA+q9szP0Lo6T6P+TM/VKrgPj7cMz/ZfNs+RAI0P9Di0j7J7zM/n1TIPiYyND8a7r0+6Sw0P9jEuD7CEzQ/2MS4PsITND/Efq4+QwQ0P24Zpz728TM/xseuPjJxOj8miqA++AQ0P992lD5gETQ/2qOFPrCOMz96iT4+Xfc3P+TaUD6HGjk/WP5RPrQjMj//9UA+O6AxP+3vBD7cXDY/i+7/Pd6UQT8mASU+3pRBPxc7Iz4iETg/I9HlPfcYNT/ew8M93pRBP62qxz3R1jU/YwfaPXgcLj/urwM+4rEuP46IxD18LiQ/x2LrPdKlIj/fNis+xHEwP4h03T47nCg/guLbPjy6Lj90wOA+GNsuP76B4j5GTSg/j0O/PoBPFz+PQ78+b5sSP0bnrT4VuBE/j0O/PiqICj+q+a0+vl0KP0um5D6LzCI/XvfmPqDpMz+TV+c+Bu4nP76B4j5GTSg/dMDgPhjbLj92BOc+cNwuP9jEuD7CEzQ/Bu6xPuoGND+uyKE+ot8pPwe3lT50mik/IfWUPu1ELj9o2qA+KFIuP7dbzz7WuBI/XwbQPgW1CT9UHZY+b0UlP5pfpT6doiI/t1vPPta4Ej+PQ78+gE8XP49Dvz58ERg/OOXQPlYVEz9UyQA/zGPjPky98z4s8Os+XBr8PjCx/T4hRQU/gq/zPoLk3T6zsAo/3sPDPd6UQT8uL7Q9P5I1P967qT1MCy4/njGdPWbEJD/uSrA9FoskP43Uvz1aSC4/jojEPXwuJD/0I3Y8K2I0P3P9czwrlEE/Nh68PqtqKT8zNrg+J80pP2TruD6bVC4/IX69PjJtLj/AJsc+/HIuPwdasj5GFy4/ZOu4PptULj8zNrg+J80pP+cXsj74Xyk/gIKvPi5XKT+wXak+cKgpP8frpz7mIC4/QMeuPuEMLj+elOI+5kAGP6vw3j5QKvc+qxH0PjY0Dj+elOI+5kAGPwYC4z6uLwc/a5HyPlDyDj8GAuM+ri8HP3v/3j4Tkws/GyGxPklfHz9k37M+Y8ocPzjl0D5WFRM/ZN+zPmPKHD/oJ70+hrchP5yOcz5+Thg/6N6bPkw/CT+WdbA+VPv7Pp3gdj40RRk/N1uHPrPeKD/HtYY+GOstP7EZSD787Co/109XPqphKz+lwWA+pqQlPxcjVD5o8iM/J2E7PgPRKT/YrZs+9ooKP0bnrT4VuBE/8POsPhCfEj+PQ78+fBEYP9itmz72igo/8PeHPqPwID93F2s+CH4mP0HAZT5mZiw/8PeHPqPwID+oYHs+4lcoP05Tej7r4Rs/dDdxPtc1Jz9OU3o+6+EbPwJxbT4U6Sw/SGl7Pj1hLT+yaVA+3pRBP7oVYj5KoTk/DvNiPni6Mj9Y/lE+tCMyP0f5Zj7elEE/YHdqPrvnOT/h5nk+Sn05Pw8vez71PDM/PYJrPsEvMz9H+WY+3pRBPySc8j4K3C4/cIjvPnQpLz+J5Ok+FAQvPyRH6j44dTo/JEfqPjh1Oj9e9+Y+oOkzP0Lo6T6P+TM/ieTpPhQELz+J5Ok+FAQvP3YE5z5w3C4/44zpPsb7Jz+TV+c+Bu4nP+cXsj74Xyk/QMeuPuEMLj8G7rE+6gY0Pwdasj5GFy4/gIKvPi5XKT8O82I+eLoyP183gT2uIxU/7kqwPRaLJD/YM6Y+RKvhPix8DD+upxo/uEUIP38SEz8ANwM/MTsWP3R7DT8Clg8/bAkNP/zGGz8ANwM/MTsWP3sAAz/I6RY/DdPIPmrQJz+I3dI+n68tP2wJDT/8xhs/2AYOP68jED90ew0/ApYPP02uAj9/gwg/qxH0PjY0Dj/ALwo/8ZUEP9gGDj+vIxA/2AYOP68jED+Z6Qo/XvoEP8AvCj/xlQQ/LHwMP66nGj8sfAw/rqcaPzxsNT5K6x0/TFVVPiJPET/JMCg++qAGP9TgHD48Vxg/+CFNPuKfID/+rx8+NrQmP83dGD7uYBg/BP4dPvtXJz+0Lk8+/ZUhPwT+HT77Vyc/BP4dPvtXJz9ImBs+jwYvP9TgHD48Vxg/BP4dPvtXJz/+rx8+NrQmP/6vHz42tCY/+CFNPuKfID8Ty7M+ilHkPo9Dvz4IZ/4+aIPOPrDp+z6TQcA+9NLlPrnBxT66Bew+gLD4PlKz0D592+o+IIvZPtAf3D70veA+DMHLPqz95D5u3qA+XEr4Pqvfkj5aJQc/AOx/PibFAT+FLWE+8J/3PqMMmD5Mnts+4oBMPs7K7T4GIoE+3pRBPzFQgz6fiDo/h/+TPnjgOj/eQJQ+3pRBP5zFNj2jlDQ/7i2SPVwlNT8OzpE93pRBP4acoT4EOzo/4dqkPt6UQT92YKc+7tc5P8bHrj4ycTo/jJ35Pt6UQT9bZ/s+Dqo5PyRH6j44dTo/fNrwPqezOT9OJOk+3pRBPyyo8j7elEE/wDrzPv7FOT8PEsk+msg5Pxzkzz7elEE/+da7Pt6UQT93ZL0+LhU6P3Sm0z6p/zk/1kXgPt6UQT8xYeA+DrE5P04k6T7elEE/LE7cPsnBOT/dMQo99b0IP1sFNj3mFSU/u2Q5Pd8+LT+9RIc9ifYkP26qij07wi0/HCcxPaj5FT9fN4E9riMVP0MGuT6OCTo/+da7Pt6UQT9gbbE+E3U6P2BtsT4TdTo/WLn6PhUSLj/ugvg+gvgnP8CZ+z6mIDM/MVDzPneoMz+VFvA+q9szP0Lo6T6P+TM/2XzbPkQCND9UquA+PtwzP9Di0j7J7zM/n1TIPiYyND8a7r0+6Sw0P9jEuD7CEzQ/bhmnPvbxMz/Efq4+QwQ0P992lD5gETQ/JoqgPvgEND/ao4U+sI4zP1j+UT60IzI/5NpQPocaOT96iT4+Xfc3P//1QD47oDE/JgElPt6UQT+L7v893pRBP+3vBD7cXDY/FzsjPiIROD8j0eU99xg1P97Dwz3elEE/3sPDPd6UQT9jB9o9eBwuP+6vAz7isS4/jojEPXwuJD/HYus90qUiP982Kz7EcTA/dMDgPhjbLj+C4ts+PLouP4h03T47nCg/voHiPkZNKD+PQ78+b5sSP49Dvz6ATxc/RuetPhW4ET+q+a0+vl0KP49Dvz4qiAo/S6bkPovMIj98TOc+klM6P1735j6g6TM/dMDgPhjbLj++geI+Rk0oP5NX5z4G7ic/dgTnPnDcLj8G7rE+6gY0P9jEuD7CEzQ/BDawPt6UQT8h9ZQ+7UQuPwe3lT50mik/rsihPqLfKT9o2qA+KFIuP7dbzz7WuBI/XwbQPgW1CT9UHZY+b0UlP5pfpT6doiI/j0O/PnwRGD+PQ78+gE8XP7dbzz7WuBI/OOXQPlYVEz9cGvw+MLH9Pky98z4s8Os+VMkAP8xj4z4hRQU/gq/zPoLk3T6zsAo/Li+0PT+SNT/eu6k9TAsuP54xnT1mxCQ/jdS/PVpILj/uSrA9FoskP46IxD18LiQ/rarHPdHWNT/ew8M93pRBP2TruD6bVC4/Mza4PifNKT82Hrw+q2opPyF+vT4ybS4/wCbHPvxyLj8zNrg+J80pP2TruD6bVC4/B1qyPkYXLj/nF7I++F8pP8frpz7mIC4/sF2pPnCoKT+Agq8+LlcpP0DHrj7hDC4/npTiPuZABj+r8N4+UCr3PgYC4z6uLwc/npTiPuZABj+rEfQ+NjQOP2uR8j5Q8g4/BgLjPq4vBz97/94+E5MLPxshsT5JXx8/5xeyPvhfKT9k37M+Y8ocPzjl0D5WFRM/6Ce9Poa3IT/o3ps+TD8JP+jemz5MPwk/nI5zPn5OGD+WdbA+VPv7Pp3gdj40RRk/x7WGPhjrLT83W4c+s94oP6XBYD6mpCU/109XPqphKz+xGUg+/OwqPxcjVD5o8iM/J2E7PgPRKT/YrZs+9ooKP49Dvz58ERg/8POsPhCfEj9G560+FbgRP9itmz72igo/8PeHPqPwID93F2s+CH4mP0HAZT5mZiw/qGB7PuJXKD/w94c+o/AgP05Tej7r4Rs/dDdxPtc1Jz9OU3o+6+EbPwJxbT4U6Sw/SGl7Pj1hLT+yaVA+3pRBP1j+UT60IzI/DvNiPni6Mj8O82I+eLoyP7oVYj5KoTk/R/lmPt6UQT8PL3s+9TwzP+HmeT5KfTk/YHdqPrvnOT89gms+wS8zP0f5Zj7elEE/cIjvPnQpLz+J5Ok+FAQvP+OM6T7G+yc/+5ntPpt8KD8knPI+CtwuPyRH6j44dTo/XvfmPqDpMz9C6Ok+j/kzP3YE5z5w3C4/ieTpPhQELz+J5Ok+FAQvP+OM6T7G+yc/k1fnPgbuJz9k37M+Y8ocPwbusT7qBjQ/QMeuPuEMLj8HWrI+RhcuP4CCrz4uVyk/DvNiPni6Mj9fN4E9riMVP+5KsD0WiyQ/2DOmPkSr4T64RQg/fxITPyx8DD+upxo/ADcDPzE7Fj90ew0/ApYPPwA3Az8xOxY/bAkNP/zGGz97AAM/yOkWPw3TyD5q0Cc/iN3SPp+vLT/YBg4/ryMQP2wJDT/8xhs/dHsNPwKWDz+rEfQ+NjQOP02uAj9/gwg/wC8KP/GVBD+Z6Qo/XvoEP9gGDj+vIxA/2AYOP68jED/ALwo/8ZUEPyx8DD+upxo/LHwMP66nGj/JMCg++qAGP0xVVT4iTxE/PGw1PkrrHT/U4Bw+PFcYP/ghTT7inyA//q8fPja0Jj/N3Rg+7mAYPwT+HT77Vyc/tC5PPv2VIT8E/h0++1cnPwT+HT77Vyc/SJgbPo8GLz8E/h0++1cnP9TgHD48Vxg//q8fPja0Jj/+rx8+NrQmP/ghTT7inyA/E8uzPopR5D6PQ78+CGf+PmiDzj6w6fs+k0HAPvTS5T65wcU+ugXsPn3b6j4gi9k+gLD4PlKz0D7QH9w+9L3gPgzByz6s/eQ+zojqPhk3HD/OiOo+GTccP8ep8D4kiyg/h+L5PhyjGz96U/E+MhYcP+OM6T7G+yc/+5ntPpt8KD8E2gU/hCPzPlxPAT9InOI+zojqPhk3HD9MAus+otQWP86I6j4ZNxw/zojqPhk3HD/HqfA+JIsoP3pT8T4yFhw/XE8BP0ic4j4E2gU/hCPzPs6I6j4ZNxw/TALrPqLUFj/OiOo+GTccP8wJ9j7BaBY/qOHrPgHmEj8ObvI+UlwSP6jh6z4B5hI/PtuwPkDTjT1PAaU+cL+LPT7bsD6QV/E9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0+27A+QBXDPARZqj4AgMo8PtuwPsAQIj2H+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjwQp6Q+ACT9PIf4qD7gzL08pjStPgAUczw+27A+QNONPU8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0+27A+QBXDPARZqj4AgMo8PtuwPsAQIj2H+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjwQp6Q+ACT9PIf4qD7gzL08pjStPgAUczw+27A+QNONPU8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0+27A+QBXDPARZqj4AgMo8PtuwPsAQIj2H+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjwQp6Q+ACT9PIf4qD7gzL08pjStPgAUczw+27A+QNONPU8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0+27A+QBXDPARZqj4AgMo8PtuwPsAQIj2H+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjwQp6Q+ACT9PIf4qD7gzL08pjStPgAUczw+27A+QNONPU8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0+27A+QBXDPARZqj4AgMo8PtuwPsAQIj2H+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjwQp6Q+ACT9PIf4qD7gzL08pjStPgAUczw+27A+QNONPU8BpT5wv4s9PtuwPpBX8T13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPT7bsD5AFcM8BFmqPgCAyjw+27A+wBAiPYf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPBCnpD4AJP08h/ioPuDMvTymNK0+ABRzPD7bsD5A0409TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPT7bsD5AFcM8BFmqPgCAyjw+27A+wBAiPYf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPBCnpD4AJP08h/ioPuDMvTymNK0+ABRzPD7bsD5A0409TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPT7bsD5AFcM8BFmqPgCAyjw+27A+wBAiPYf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPBCnpD4AJP08h/ioPuDMvTymNK0+ABRzPD7bsD5A0409TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPT7bsD5AFcM8BFmqPgCAyjw+27A+wBAiPYf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPBCnpD4AJP08h/ioPuDMvTymNK0+ABRzPD7bsD5A0409TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPT7bsD5AFcM8BFmqPgCAyjw+27A+wBAiPYf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPBCnpD4AJP08h/ioPuDMvTymNK0+ABRzPD7bsD5A0409TwGlPnC/iz0+27A+kFfxPT7bsD6QV/E9PtuwPpBX8T13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPT7bsD5AFcM8BFmqPgCAyjw+27A+wBAiPYf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPBCnpD4AJP08h/ioPuDMvTymNK0+ABRzPD7bsD5A0409TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPT7bsD5AFcM8BFmqPgCAyjw+27A+wBAiPYf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPBCnpD4AJP08h/ioPuDMvTymNK0+ABRzPD7bsD5A0409TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPT7bsD5AFcM8BFmqPgCAyjw+27A+wBAiPYf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPBCnpD4AJP08h/ioPuDMvTymNK0+ABRzPD7bsD5A0409TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPT7bsD5AFcM8BFmqPgCAyjw+27A+wBAiPYf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPBCnpD4AJP08h/ioPuDMvTymNK0+ABRzPD7bsD5A0409TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPT7bsD5AFcM8BFmqPgCAyjw+27A+wBAiPYf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPBCnpD4AJP08h/ioPuDMvTymNK0+ABRzPD7bsD5A0409TwGlPnC/iz0+27A+kFfxPT7bsD6QV/E9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0+27A+QBXDPARZqj4AgMo8PtuwPsAQIj2H+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjwQp6Q+ACT9PIf4qD7gzL08pjStPgAUczw+27A+QNONPU8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0+27A+QBXDPARZqj4AgMo8PtuwPsAQIj2H+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjwQp6Q+ACT9PIf4qD7gzL08pjStPgAUczw+27A+QNONPU8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0+27A+QBXDPARZqj4AgMo8PtuwPsAQIj2H+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjwQp6Q+ACT9PIf4qD7gzL08pjStPgAUczw+27A+QNONPU8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0+27A+QBXDPARZqj4AgMo8PtuwPsAQIj2H+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjwQp6Q+ACT9PIf4qD7gzL08pjStPgAUczw+27A+QNONPU8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0+27A+QBXDPARZqj4AgMo8PtuwPsAQIj2H+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjwQp6Q+ACT9PIf4qD7gzL08pjStPgAUczxPAaU+cL+LPT7bsD5A0409PtuwPpBX8T13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8PtuwPkAVwzw+27A+wBAiPRCnpD4AJP08h/ioPuDMvTymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPIf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9PtuwPkDTjT13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8PtuwPkAVwzw+27A+wBAiPRCnpD4AJP08h/ioPuDMvTymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPIf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9PtuwPkDTjT13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8PtuwPkAVwzw+27A+wBAiPRCnpD4AJP08h/ioPuDMvTymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPIf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9PtuwPkDTjT13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8PtuwPkAVwzw+27A+wBAiPRCnpD4AJP08h/ioPuDMvTymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPIf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9PtuwPkDTjT13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8PtuwPkAVwzw+27A+wBAiPRCnpD4AJP08h/ioPuDMvTymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPIf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9PtuwPkDTjT0+27A+kFfxPT7bsD6QV/E9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPD7bsD5AFcM8PtuwPsAQIj0Qp6Q+ACT9PIf4qD7gzL08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjyH+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPT7bsD5A0409d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPD7bsD5AFcM8PtuwPsAQIj0Qp6Q+ACT9PIf4qD7gzL08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjyH+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPT7bsD5A0409d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPD7bsD5AFcM8PtuwPsAQIj0Qp6Q+ACT9PIf4qD7gzL08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjyH+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPT7bsD5A0409d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPD7bsD5AFcM8PtuwPsAQIj0Qp6Q+ACT9PIf4qD7gzL08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjyH+Kg+4My9PBCnpD4AJP08pjStPgAUczxPAaU+cL+LPT7bsD5A0409d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPD7bsD5AFcM8PtuwPsAQIj0Qp6Q+ACT9PIf4qD7gzL08pjStPgAUczxPAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09BFmqPgCAyjyH+Kg+4My9PBCnpD4AJP08pjStPgAUczw+27A+QNONPU8BpT5wv4s9PtuwPpBX8T0+27A+kFfxPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09PtuwPkAVwzwEWao+AIDKPD7bsD7AECI9h/ioPuDMvTwQp6Q+ACT9PKY0rT4AFHM8TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8EKekPgAk/TyH+Kg+4My9PKY0rT4AFHM8PtuwPkDTjT1PAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09PtuwPkAVwzwEWao+AIDKPD7bsD7AECI9h/ioPuDMvTwQp6Q+ACT9PKY0rT4AFHM8TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8EKekPgAk/TyH+Kg+4My9PKY0rT4AFHM8PtuwPkDTjT1PAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09PtuwPkAVwzwEWao+AIDKPD7bsD7AECI9h/ioPuDMvTwQp6Q+ACT9PKY0rT4AFHM8TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8EKekPgAk/TyH+Kg+4My9PKY0rT4AFHM8PtuwPkDTjT1PAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09PtuwPkAVwzwEWao+AIDKPD7bsD7AECI9h/ioPuDMvTwQp6Q+ACT9PKY0rT4AFHM8TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8EKekPgAk/TyH+Kg+4My9PKY0rT4AFHM8PtuwPkDTjT1PAaU+cL+LPXdnoT4wLaM9mCmePiBsfD0gWqA+QK8yPRh4pj6Atx09PtuwPkAVwzwEWao+AIDKPD7bsD7AECI9h/ioPuDMvTwQp6Q+ACT9PKY0rT4AFHM8TwGlPnC/iz13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8EKekPgAk/TyH+Kg+4My9PKY0rT4AFHM8TwGlPnC/iz0+27A+QNONPT7bsD6QV/E9PtuwPpBX8T13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8PtuwPkAVwzw+27A+wBAiPRCnpD4AJP08h/ioPuDMvTymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPIf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9PtuwPkDTjT13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8PtuwPkAVwzw+27A+wBAiPRCnpD4AJP08h/ioPuDMvTymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPIf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9PtuwPkDTjT13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8PtuwPkAVwzw+27A+wBAiPRCnpD4AJP08h/ioPuDMvTymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPIf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9PtuwPkDTjT13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8PtuwPkAVwzw+27A+wBAiPRCnpD4AJP08h/ioPuDMvTymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPIf4qD7gzL08EKekPgAk/TymNK0+ABRzPE8BpT5wv4s9PtuwPkDTjT13Z6E+MC2jPZgpnj4gbHw9IFqgPkCvMj0YeKY+gLcdPQRZqj4AgMo8PtuwPkAVwzw+27A+wBAiPRCnpD4AJP08h/ioPuDMvTymNK0+ABRzPE8BpT5wv4s9d2ehPjAtoz2YKZ4+IGx8PSBaoD5ArzI9GHimPoC3HT0EWao+AIDKPIf4qD7gzL08EKekPgAk/TymNK0+ABRzPIkHHz+o0uk+SFUkP2yk5z52Bx8/QDbRPqj0LT9ANtE+qPQtP0A20T6gRis/XOTqPlQeND9ANtE+VB40P0A20T4EbzM/BmDwPg7AOT9ANtE+DsA5P4Qu9z7W2jU/QDbRPnRvMz8GYPA+iNQjPzw20T4qxS4/mFvsPmjbJD8+Guc+dgcfP7TS6T4L/SM/TqjmPuQGKT9ANtE+BG8zPwZg8D4OwDk/QDbRPg7AOT+ELvc+eqAbPzw20T52Bx8/QDbRPnYHHz/Uu+k+xL4nPxie6z789Sw/ZmbrPgzYMj9ANtE+O6AzPwZg8D4OwDk/QDbRPg7AOT+ELvc+DsA5P4Qu9z7x+zA/QDbRPnRvMz8GYPA+VZooP6jp6z5JdTI/QDbRPkl1Mj9ANtE+hBM0PwZg8D52Bx8/QDbRPoFBLD/0EO0+VdIkP06o5j52Bx8/tNLpPvxINT9ANtE+DsA5P0A20T4OwDk/hC73PkHDMT+YF+0+dgcfP7TS6T52Bx8/QDbRPuVvJD9OqOY+UMY0P0A20T4EbzM/BmDwPkhVJD9spOc+qPQtP0A20T6o9C0/QDbRPqBGKz9c5Oo+oEYrP1zk6j5UHjQ/QDbRPlQeND9ANtE+BG8zPwZg8D4OwDk/QDbRPg7AOT+ELvc+1to1P0A20T50bzM/BmDwPirFLj+YW+w+iNQjPzw20T5o2yQ/PhrnPnYHHz+00uk+C/0jP06o5j7kBik/QDbRPgRvMz8GYPA+DsA5P0A20T4OwDk/hC73PnqgGz88NtE+dgcfP9S76T52Bx8/QDbRPsS+Jz8Ynus+/PUsP2Zm6z4M2DI/QDbRPjugMz8GYPA+DsA5P0A20T4OwDk/hC73Pg7AOT+ELvc+DsA5P4Qu9z7x+zA/QDbRPnRvMz8GYPA+VZooP6jp6z4OwDk/QDbRPkl1Mj9ANtE+SXUyP0A20T6EEzQ/BmDwPoFBLD/0EO0+dgcfP0A20T5V0iQ/TqjmPnYHHz+00uk+DsA5P4Qu9z4OwDk/QDbRPvxINT9ANtE+QcMxP5gX7T7lbyQ/TqjmPlDGND9ANtE+BG8zPwZg8D4Ycgk/jFAaPnedAz8kJCQ+GHIJPyBHLT4Ycgk/IEctPnedAz9A7Cs+d50DP5jdRj53nQM/IHtQPhhyCT/Evk4+GHIJP8S+Tj53nQM/eGAbPnedAz84iCA+d50DP0DsKz53nQM/bKgtPhhyCT8gRy0+GHIJP8S+Tj53nQM/IHtQPnedAz/IWE0+d50DP9DQ+T13nQM/mIHvPRhyCT+QUvs9GHIJP4xQGj53nQM/OIggPnedAz9wnSI+d50DP2jk/D13nQM/bKgtPnedAz+0fTM+d50DP+hLOj53nQM/sEBBPnedAz8oTwk+d50DP9CnFT53nQM/cJ0iPhhyCT8Ia2I+GHIJPwhrYj53nQM/yFhNPnedAz+Y6Vs+d50DP5jpWz53nQM/QDlePhhyCT8Ia2I+d50DP0A5Xj53nQM/cFNmPnedAz/In20+8HEJP5z5cj53nQM/JCQkPhhyCT+MUBo+GHIJPyBHLT4Ycgk/IEctPnedAz9A7Cs+d50DPyB7UD53nQM/mN1GPhhyCT/Evk4+GHIJP8S+Tj53nQM/OIggPnedAz94YBs+d50DP2yoLT53nQM/QOwrPhhyCT8gRy0+d50DPyB7UD4Ycgk/xL5OPnedAz/IWE0+d50DP5iB7z13nQM/0ND5PRhyCT+QUvs9d50DPziIID4Ycgk/jFAaPnedAz9wnSI+d50DP2jk/D13nQM/tH0zPnedAz9sqC0+d50DP7BAQT53nQM/6Es6PnedAz/QpxU+d50DPyhPCT53nQM/cJ0iPnedAz/IWE0+GHIJPwhrYj4Ycgk/CGtiPnedAz+Y6Vs+d50DP0A5Xj53nQM/mOlbPhhyCT8Ia2I+d50DP3BTZj53nQM/QDlePvBxCT+c+XI+d50DP8ifbT7wiwo/Ndo+P41pCj+cWjg/a3IIP5xaOD9bYA0/c9o+P3RgDT+gWjg/rCkLP/GsND/RVgw/8aw0P3ozCz/mxS4//TcOP/CsND9Qxgw/8aw0P4tVDj/mxS4/QuEPP5xaOD9QEhA/Ndo+P4gZEj+cWjg/7/QQP+bFLj8YnBA/8Kw0P5v0ED/wrDQ/GOMQP+bFLj88zQ8/8Kw0P3ozCz/mxS4/vbYNP/CsND/NOQ8/5sUuP/CLCj812j4/5CALP5xaOD9rcgg/nFo4PxicED/wrDQ/7/QQP+bFLj/RVgw/8aw0PxjjED/mxS4/IN8QP/CsND88zQ8/8Kw0P4ZgDT+cWjg/a3IIP5xaOD/wiwo/Ndo+P38GCz+cWjg/EbILP+bFLj9Qxgw/8aw0P+X3Cz/xrDQ/EbILP+bFLj+rGww/5sUuP3hcCz/mxS4/HTQMP/GsND/tMgs/8aw0P7QaDT812j4/UBIQPzXaPj+GYA0/nFo4P4oZEj+cWjg/IaAPP5xaOD+NaQo/nFo4P/CLCj812j4/a3IIP5xaOD90YA0/oFo4P9FWDD/xrDQ/rCkLP/GsND96Mws/5sUuP1DGDD/xrDQ//TcOP/CsND+LVQ4/5sUuP1ASED812j4/QuEPP5xaOD+IGRI/nFo4PxicED/wrDQ/7/QQP+bFLj+b9BA/8Kw0PzzNDz/wrDQ/GOMQP+bFLj+9tg0/8Kw0P3ozCz/mxS4/zTkPP+bFLj/kIAs/nFo4P/CLCj812j4/a3IIP5xaOD8YnBA/8Kw0P+/0ED/mxS4/0VYMP/GsND8g3xA/8Kw0PxjjED/mxS4/PM0PP/CsND+GYA0/nFo4P/CLCj812j4/a3IIP5xaOD9/Bgs/nFo4P1DGDD/xrDQ/EbILP+bFLj/l9ws/8aw0PxGyCz/mxS4/eFwLP+bFLj+rGww/5sUuPx00DD/xrDQ/7TILP/GsND9QEhA/Ndo+P7QaDT812j4/hmANP5xaOD+KGRI/nFo4PyGgDz+cWjg/n+LFPuje5D5UvsU+mBPsPlS+xT6YE+w+vsHLPtgA5T6f4sU+6N7kPp/ixT7o3uQ+VL7FPpgT7D5UvsU+mBPsPr7Byz7YAOU+n+LFPuje5D5+NpM9dn6zPl3DHT34RLI+vCAkPZhKoT4ODpk9pGmiPvtzIz0SM5Y+Tu+ZPXDRlT4hnG0+QC5JPeyMej6AfY496qFsPhBvij2jYoM+KI9YPlnxhj5g4mE+DLSKPmhOXj41yYg+yLxRPq6WmD5sk1o+LkiZPjhEaD76Q58+2JdkPu8anD6obVo+3I+SPkhiaT4TN5E+JLdbPhaWiT6MHHM+kSCKPshsfT5o5o4+MNd9PtesjT5wqHI+bl2EPui0az42mYg+WLdqPooJhT5YtGY+HNeGPniiej7XhYM+OGuCPodCiT5gxoM+RJGVPnZPgz4NAJg+wouJPnO2nT6Ui38+N62PPkAphD6rLYc+5A2KPq7bjz5IZIo+MLOEPsCLcz6Oq34+wLxgPiWDej6weWs+jtWYPuCsfD7+e5Q+aJd8Plhqkz5Y4HE+Z4GZPnBgcj5nVH8+IDd7Prwcez74z3M+lniMPrhMaj4e4Jk+3MFQPmB9lj54v04+UyefPgBxcj4Ol34+HIRMPrZ6jD6we04+p9+PPghETT6XOHI+uPhYPkiBkz5wt00+UCoxP0iC6z3sIy4/GFztPYB3Lj9oKP89AJcxP/iw/j0WPCs/6F3wPYiJKz8gcwE+MS03P2B+/D3oTiY/gC/2PRxWKD84jPM9l6coP8xwAj4WVyY/sMcCPqTsNT8oNQg+jOE0P1Dv/j3CCjM/mJUJPtLtNz+QEAc+gDSOPmAriT0EjYk+QP02PYADgD7AtiM9hj+GPtB/ij1EXZY+WGCOPccJkD7A5jA9YvwlP/B+Dj4QFik/cCQOPrmfLD8o2gs+2B4vP8y8CD4+KYs9ADbIPBvAaD0AK488W6oIPQB4zTxzwYg+0EOfPeyMej6AfY49ha1+PsCUnz3qoWw+EG+KPSGcbT5ALkk97AlkPmBjVD2wb2Q+ICUCPUU6Yj4Amw88/XFZPgD0iTzR6mw+gE+3PLBGXD6gHiI9fadzPkiaOz5/eGQ+VCZOPh35FT4EFVQ+cDfyPcgEMT5N/fc9MD5PPo5KMD6YTVc+9RlmPqj1KD4Zq20+6EAjPrDF/j0cv2s+MisaPqCzcD6etwQ+hMOGPlNq1T2gWUs+nt/WPdT3aD5cHBg9oCUnPW7kUTzARuM8V//cPeDihj7uzVA8FDpRPvMJUTx8P28+u1EpPSgBbT688Sc9kIFOPo7Tmz30oGo+raWcPWwohj4Nfps9yAJLPuB0aT5sTww+ymd+PjxVBz4mzoA+/IIcPhALkD7QxZ49qEeYPlg5oT0n73A+UL6fPX59kz7IgM09rpqIPoBv0j1hGXs+2EzVPdsBIj18wIU+ccBVPGRZhT54P4M+/G8yPkP0nT6wVJU+bdyjPsg1iz61cKU+lH6VPlq/sD4oDoQ+x6ajPvB2dT7QcaM+3LGEPqOvsD4MHpQ+JsuwPmAddT7z7qM+WNRmPnvAsD4gVWM+pVqhPsgTVT6kB6Q+wLNWPmtRVTzKkqA+7bZNPJQmsj5dwx09+ESyPrwgJD2YSqE+fjaTPXZ+sz4ODpk9pGmiPtsBIj18wIU+8zhQPCixhz69pSI9LHyHPq2lnD1sKIY+L3SMPoDrlD54Yo4+COyhPliYoD447qE+7L2wPmjaoz4w4LA+3Ae1PvtzIz0SM5Y+8f5PPIzRlT5O75k9cNGVPkv8jj6UOrE+B7ehPkiNsT7WOaI+7G7FPqSrsD4I4cc+Lit7PgzEhz6Rn3A+HqOBPrzYaj7UeXY+nQVrPqjKZz6Ovls+2O1ePsw0SD5AGFg+mGcyPiyJcj4vFEU+KF5zPiDAWD4gm3U+Gfd4PpQvkz5Z+Ho+ypCePhA2GT4q0oc+mbEyPlTLiT6oYmQ+POiRPvHT3T2sHpU+/YzWPRRAtT4qoNo98iKkPgDEFT4E6JY+tBsyPgAimT4m9go+2Dy4PtjPDz40kqc+EJJFPsAYgj5XSFw+9kuGPmd/SD4C3ow+OEJQPqw4jj4HRkk+xCeJPhiCTz7scpQ+/yJQPgyimz6g9kA+qByMPhqLLj4gT6o+K18pPkBdvD6lky4+rMS2PugYOz6I3bE+nsNOPkDjrD420Ec+WIaTPmH0Pj4igpM+9YBGPnC4lz4WRo8+aNTDPsHPez6C+q8+RddFPlzVtz7nUUk+eO28PuDOdz5kd8E+dLk8PjSPuT5y95492LsHPmvt0j2QxSo+3lOcPXjiKT4MtIo+aE5ePlnxhj5g4mE+o2KDPiiPWD41yYg+yLxRPvpDnz7Yl2Q+LkiZPjhEaD6ulpg+bJNaPu8anD6obVo+3I+SPkhiaT4TN5E+JLdbPmjmjj4w130+kSCKPshsfT4Wlok+jBxzPtesjT5wqHI+NpmIPli3aj5uXYQ+6LRrPooJhT5YtGY+14WDPjhrgj4c14Y+eKJ6PodCiT5gxoM+DQCYPsKLiT5EkZU+dk+DPnO2nT6Ui38+N62PPkAphD6rLYc+5A2KPq7bjz5IZIo+MLOEPsCLcz6Oq34+wLxgPiWDej6weWs+jtWYPuCsfD7+e5Q+aJd8PmeBmT5wYHI+WGqTPljgcT5nVH8+IDd7Prwcez74z3M+lniMPrhMaj4e4Jk+3MFQPmB9lj54v04+UyefPgBxcj4Ol34+HIRMPrZ6jD6we04+p9+PPghETT6XOHI+uPhYPkiBkz5wt00+gHcuP2go/z3sIy4/GFztPVAqMT9Igus9AJcxP/iw/j2IiSs/IHMBPhY8Kz/oXfA9HFYoPziM8z2Xpyg/zHACPozhND9Q7/49pOw1Pyg1CD7CCjM/mJUJPoADgD7AtiM9BI2JPkD9Nj2ANI4+YCuJPYY/hj7Qf4o9EBYpP3AkDj65nyw/KNoLPtgeLz/MvAg+G8BoPQArjzw+KYs9ADbIPFuqCD0AeM08c8GIPtBDnz2FrX4+wJSfPewJZD5gY1Q9RTpiPgCbDzywb2Q+ICUCPf1xWT4A9Ik80epsPoBPtzx9p3M+SJo7Pn94ZD5UJk4+cDfyPcgEMT4d+RU+BBVUPk399z0wPk8+jkowPphNVz71GWY+qPUoPhmrbT7oQCM+MisaPqCzcD6wxf49HL9rPp63BD6Ew4Y+mGcyPiyJcj5TatU9oFlLPp7f1j3U92g+XBwYPaAlJz1X/9w94OKGPrtRKT0oAW0+vPEnPZCBTj6O05s99KBqPq2lnD1sKIY+DX6bPcgCSz7gdGk+bE8MPspnfj48VQc+Js6APvyCHD6wRlw+oB4iPRALkD7QxZ49J+9wPlC+nz1+fZM+yIDNPa6aiD6Ab9I9YRl7PthM1T3bASI9fMCFPng/gz78bzI+bdyjPsg1iz5D9J0+sFSVPrVwpT6UfpU+x6ajPvB2dT7QcaM+3LGEPvPuoz5Y1GY+pVqhPsgTVT6kB6Q+wLNWPtsBIj18wIU+vaUiPSx8hz6tpZw9bCiGPliYoD447qE+eGKOPgjsoT4vdIw+gOuUPge3oT5IjbE+S/yOPpQ6sT7WOaI+7G7FPi4rez4MxIc+kZ9wPh6jgT682Go+1Hl2Pp0Faz6oymc+jr5bPtjtXj7MNEg+QBhYPi8URT4oXnM+IMBYPiCbdT4Z93g+lC+TPln4ej7KkJ4+EDYZPirShz6ZsTI+VMuJPqhiZD486JE+8dPdPawelT79jNY9FEC1Piqg2j3yIqQ+AMQVPgTolj4m9go+2Dy4PtjPDz40kqc+tBsyPgAimT4QkkU+wBiCPldIXD72S4Y+OEJQPqw4jj5nf0g+At6MPgdGST7EJ4k+oPZAPqgcjD4aiy4+IE+qPitfKT5AXbw+pZMuPqzEtj7oGDs+iN2xPp7DTj5A46w+/yJQPgyimz4Ygk8+7HKUPjbQRz5YhpM+9YBGPnC4lz5h9D4+IoKTPhZGjz5o1MM+wc97PoL6rz7gznc+ZHfBPkXXRT5c1bc+dLk8PjSPuT7nUUk+eO28Pt5TnD144ik+a+3SPZDFKj5y95492LsHPoUWiz5YjTA+HEiLPsDLKj7D9Io+iIcZPvWwiT4AegU++KOJPiRFAz5MXok+HGcAPjkNij4Y0vU98AGQPjDH4z18tpk+cEqvPYfKrT7Y61g+WVqwPqyoWT7Q3a0+qC9ZPs9Hiz58gTA+IkmLPijNKj4UE4s+nH4ZPiGriT4YiQU+YpyJPhhIAz7iUIk+bE4APs4eij7wf/c9kx6QPgAQ4z0dFWQ+EO98Pc5aZT5YFYw9EaJlPtDzlT0SQGY+IIShPSKdZj7QLrE9u4xmPhB41T0Cf2Y+wMLaPbuMZj4YeNU9r6ZlPmA26T08D2Q+0JYOPuPIYT6oSSE+sSNgPlxUKD5akmA+XIkvPluKXz4U8Dc+RBtfPrDrQT5/K1s+2O9OPuA3VT50d1E+XqdePjALTj6jBzE+BNJgPrStJT6IFUM+rIozPuzfXz7GN9w9SFIjPrc85T1obS4+ShDVPeiUHD6V1sc9EFsTPkwHuD0oPgk+lNbHPRBbEz7IB6o9PNAAPqjOgj2geBw+V1ooPYhSLj5IuAA9rNs3PuXLPj10kyo+bC9+PRACIT7k+dE8tIYrPnXFUDwkNiw+toSXPPyNJD45yFA8CO0fPs40mDxgcSQ+/8zMPEyPKz5eRv48+GE4PpJZKD1Qjy4+419APSiRKj6faII9/EIcPhU9fD14GSI+0Oq5PUBbCT7LRqg9yMQBPkwSyT2YtxI+aB/VPXwwHD7H8eQ9cF4uPhqRJT6QIkQ+7G80PgjaXj5mTlU+6KVRPlYrWz5w604+qIdfPpjvNz5uSmA+6N4vPrvTXj6cSEE+7pFePsATTj4EAmQ+oLl8PVwtZT6oH4w9kOFlPtAqlj1iRGY+aIOhPU3ZZj7gmLE9lnJmPlB41T1GTGY+oFTaPRfmZT5QTOw9MzJkPgyIDj4Zs2E+8CIhPuV3Xj6ghxk9AOFaPmBL6DyM2lY+4C2gPPoWVj5Au6Y84L+HPQD7/DxIUZU94EbXPL/hWz0wYhU9yDOIPSD69TxTAZM9wNjTPM/UXT3weRY97LOhPFBXJD1gBsg80F40PXh2ojwgWyQ9V2bMPACZNT3sKig/gH7tPfaVKT/Iyug9ZvIqP+B+5T1UrCw/cILkPeL6LT8YxOQ9LRAvP+hF5j2ibTQ/uCvvPQSoMz94d+89L9kxPzBs8D00LSg/YNDtPYezKT9AzOc9q/MqP9iu5T1eoyw/QMzkPQz9LT/gN+U9FgEvP9C55j1AcDQ/wIbvPVC1Mz94Fe89gb4xP8DR8D2hBqAGnwaiBqEGnwaiBqQGowahBqIGowanBqYGpQaqBqkGqAarBqoGqAauBq0GrAavBq4GrAaxBqwGsAawBqwGrQa0BrMGsga1BrQGsga4BrcGtga6BrkGswa7BroGswa+Br0GvAazBrQGvwa7BrMGvwbABrsGvwbBBsAGvwa/BrwGvQbBBr8GvQa2BrcGsgbCBrYGsgbDBrgGtgbEBsMGtgbGBsUGvAa8BsUGvgbIBscGsAatBsgGsAa0BsYGvAa/BrQGvAbDBqgGqQa4BsMGqQa1BscGxga0BrUGxgbFBsYGxwbIBsUGxwbKBsIGyQbCBrkGugbJBsIGugbCBsoGxAa2BsIGxAbLBrAGxwa1BssGxwa3BssGtQayBrcGtQaqBssGqQapBssGtwaqBrEGywbLBrEGsAbCBrIGuQa5BrIGswa3BrgGqQavBqwGzAbIBq0GrgbMBqwGzQbIBq4GzgbIBs4GvgbFBsgGvgarBqgGzwaoBsMG0gbPBqgG0gbWBtUG1AbXBtYG1AbZBtgG1QbWBtkG1QbcBtgG2QbdBtwG2QbcBt0G3gbbBtwG3gbXBuAG3wbhBtcG3wbgBtoG4gbfBuAG4gblBuQG4wbmBuUG4wbkBugG5wbjBuQG5wbqBukG3gbdBuoG3gbZBusG3QbrBuoG3QbhBuwG1gbXBuEG1gbZBtYG6wbWBuwG6wbvBu4G7QbxBuYG8AbyBvEG8AbxBuUG5gb1BvQG8wbzBvQG8QblBvEG9Ab4BvcG9gblBvQG+Qb3BvkG9gb1BvoG9gb0BvUG9gb5BvQG9gb2BvoG+Ab8BvsG0gb/Bv4G/Qb7Bs8G0gYCB/sGAQcEBwMH/wb9BgQH/wYDBwQHBQf9BgAHBAf+Bv8GBgcGB/8GAwcHBwYHAwcJB+8GCAcHBwMHBQcKBwcHBQcNBwwHCwcOBw0HCwcPBwcHCgcQBw8HCgcHBw8HEQcGBwcHEQcPBw0HDgcRBw8HDgcSBwIHAQcCBxIHEwcUBwIHEwfmBuMGFQfwBuYGFQfjBucGFgcVB+MGFgfzBvEG8gYXB/MG8gYYBxUHFgfwBhUHGAcZB/AGGAcaBxcH8gYZBxoH8gYZB/IG8AYQBxsHDQcPBxAHDQcMBw0HGwccBwwHGwcUBx0H+wYCBxQH+wYdB6sG+wb7BqsGzwa9Bh8HHgceBx8HIAcjByIHIQcfByEHJAckByAHHwcfB70Gvga+BiIHIwciB74GzgYlByEHIgcjBx8HvgYhBx8HIweuBiYHzgYiByYHJQcmByIHzgYlByYHJwcnByYHKQcmB64GrwYpByYHrwYoBykHrwavBswGKAcsBysHKgctBywHKgcuBywHLQcvBy4HLQcyBzEHMAcxBxwHGwczBzIHGwc2BzUHNAceBzYHNAc4BzYHNwceByAHNgcgBzcHNgc3ByAHJAc6BzEHOQcxBzIHOQcyBxAHOwc5BzIHOwc6BzkHLQcqBzoHLQc5BzsHLwctBzkHLwc9BzwHNQc2Bz0HNQc4Bz0HNgc0B8EGHgfBBr0GHgc/Bz4HPQc4Bz8HPQfBBjQHwAZBB8kGQAfJBroGQAe7BsAGugbABkAHugZCB8oGyQZBB0IHyQbSBsMGxAZDB9IGxAb8BtIGRAdEB9IGQwdFB0cHRgfKBkIHQwfEBsoGQwdHB0UHSAdIB0UHRAdDB0gHRAdCB0gHQwfTBrEG0QbNBqwGsQbTBs0GsQaxBqoGqwbQBrEGqwbQBtEGsQY0B0kHwAY0BzUHSQdAB8AGSQdJBzUHSgcFBwQHSwdGB0wHBAdMB0sHBAdNB0AHSQdBB0AHTQdNB0kHSgc7BxAHCgdOBzsHCgdOBwoHBQdPBy4HLwdQB08HLwc7B04HUAcvBzsHUAdLB1EHBQdRB04HBQdSB1EHSwdMB1IHSwdUB1MHUAdTB08HUAdOB1EHVAdQB04HVAdVB0YHRwdIB1UHRwdMB0YHVQdBB1YHQgdIB0IHVgdIB1YHVQdNB1YHQQdZB1gHVwdZB1UHVgdYB1YHTQdYB00HWgdNB1sHWgdcB0wHWQdMB1UHWQdWB1gHWQdXB1wHWQddB1QHUQdSB10HUQdeB1MHVAdfB14HVAdUB10HXwddB2AHXwdgB10HYQdaB2IHVwdYB1oHVwdSB0wHXAdjB1IHXAdNB0oHWwdkB2IHWgdSB2MHZAdcB1cHYgdjB1wHYgdjB2IHZAdSB1sHYQddB1IHYQdkB1sHUgdbB2QHWgc+B2UHPAc9Bz4HPAdlB2YHPAc8B2YHSgc1BzwHSgdpB2gHZwdmB2kHZwdnB2EHZgdhB2cHYAdnB2oHYAdgB2oHXwdqB14HXwdoB2oHZwdhB1sHZgdKB2YHWwdmB2UHaQdtB2wHBgcRB20HBgcRBw4HbQdwB28HbgdxB3AHbgd0B3MHcgd1B3QHcgd3B3YHdAd2B3MHdAd6B3kHeAd7B3oHeAd+B30HfAd5B4AHfweBB3kHfweEB4MHggeFB3gHeQeBB4UHeQeFB4EHhgeHB4UHhgeCB4MHhQeHB4IHhQd6B3wHfQeIB3oHfQd9B34HiQeKB30HiQeMB4MHiweDB4QHiwd2B44HjQdzB3YHjQeDB4wHeAeFB4MHeAdvB3AHiQd+B28HiQeMB44Hewd4B4wHeweOB4wHiweNB44HiweQB48HiAd/B4AHiAePB38HiAeKB5AHiAd9B4oHiAeOB3YHkQd7B44HkQd7B5EHfAd6B3sHfAduB28HkQdvB3wHkQduB5EHdweRB3YHdweIB4AHegeAB3kHegd8B28Hfgd1B5IHdAeNB3IHcweSB5MHdAeNB5QHcgeEB5QHjQeLB4QHjQdxB5UHcAeYB4kHcAeVB5gHcAecB5sHmgedB5wHmgebB58HngeaB5sHngeeB58HoAehB54HoAfeBqEHoAfbBt4GoAejB6IHnQekB6MHnQfiBtoGogejB+IGogenB6YHpQeoB6cHpQfnBugGpgenB+cGpgfeBukGqQehB94GqQeeB6EHqgeqB6EHqQeaB6sHpAedB5oHpAeeB6oHmgeaB6oHqweuB60HrAevB6gHpgawB68HpgamBqgHpQexB6cGpQalB6UGpga0B7MHsgelB7UHpQayB7MHtQelBrMHsQe1B7MHpQa3B5gHtge6B7kHuAe2B5gHlQe9B7wHtge6B78Hvge5B7oHvge/B8AHvge+B8EHuwe5B74Huwe4B8IHuge/B7oHwgfDB78HwgcJB8QHrgfAB78HwwfFB8AHwwcLBwwHxgfHBwsHxgfFB8MHyAfJB8UHyAfKB8gHwwfCB8oHwwfHB8YHyAfKB8cHyAe8B70HywfMB8sHvQfNB8wHvQfPB6cHqAevB88HqAcWB+cGpwfPBxYHpwewB6YGpwbQB7AHpwbRBxYHzwfRB88HrwfSB9EHrwewB9AH0wfSB7AH0wfSB68HsAfGB9QHyQfIB8YHyQfUB8YHDAccB9QHDAe2B9UHzQe9B7YHzQfVB7YHcQe2B5UHcQeCB9cH1gfXB9gH1gfaByEH2QfWByQHIQckB9YH2AfWB4QHggeEB9oH2QfZB5QHhAclB9kHIQfaB4QH1gchB9oH1gdyB5QH2wfZByUH2wfbB5QH2QclBycH2wfdB9sHJwd1B3IH2wfdB3UH2wfcB3UH3Qd1B9wHkgcqBysHoAahBioHoAbfB94HMQcxB9QHHAfgB9QH3wfjB+IH4QfXB+MH4Qc4BzcH4QfXB+EH2AfYB+EHNwc3ByQH2Ac6B6MGMQcxB6MG3wekBskH3wejBqQG3wehBqMGOgcqB6EGOgfiB+UH5AfhB+IH5Ac4B+EH5AfjB9cHhweHB9cHggfkB+YHPwc4B+QHPweHB4YH4wfoB+cHjwePB+cHfweBB38H5weGB4EH5wePB5AH6QfoB48H6QeKB4kHmAfqB4oHmAe3B+sHmAfrB+oHmAfBB+0H7AfqB+kHkAeKB+oHkAftB+4H7AfuB+sH7AfqB+sH7gfpB+oH7geZB5cHdwd3B3QHkweZB3cHkwdxB24HdweWB3EHdweWB3cHlwfjB4YH7wfjB+8H4gfnB+8HhgfvB/AH4gfAB/EHvgfBB74H8gfyB74H8QfzB+8H5wfoB/MH5wfzB/AH7wfFB8kHpAb0B8UHpAb0B8AHxQeiBp8G9Qf2B6IG9Qf2B/QHpAaiBvYHpAbxB8AH9wf3B8AH9Af5B/YH+Af4B/YH9Qf5B/cH9Af2B/kH9AfyB/EH9wf6B/IH9wf7B+0HwQfuB+0H+wfyB/sHwQfoB+kH/AfuB/wH6QfuB/sH/AfzB+gH/Af/B/4H/Qf/B/wH+wf9B/MH/AcACP8H8gf/B/sH8gf8B/8H/Qf+B/8HAAj3B/kHAQj6B/cHAQj5B/gHAggDCPkHAgj5BwMIAQgBCAMIBAgECAUIAQjzBwYI8Af+BwgIBwj9B/4HBwgGCPMHBwjzB/0HBwgJCAcICAj6BwkICggACPIH+gcKCAAI+gcICP4HAAgKCAgIAAgKCAkICAgFCAYI+gcBCAUI+gcJCPoHBggGCAcICQjlBwsI5gfkB+UH5gcLCOUHDAgNCAsIDAjwBwwI5QfiB/AH5QcGCAwI8AcOCAwIBQgFCAQIDggOCAQIDwgECAMIDwgPCAMIAggQCA4IDwgFCAwIBggMCA4IEAgNCAwIEAjCBxIIEQjKB8IHEQjKBxEIxwcUCNUHcQcVCM0H1QcUCBUI1QcWCM0HFQgXCM0HFgjMB80HFwgYCMwHFwgZCNMHzAcYCBkIzAcaCNIH0wcZCBoI0wcbCNEH0gcaCBsI0gccCBYH0QcYBxYHHAjdBycHHQgdCCcHHggeCCcHHwgfCCcHKQerBh0HIAgdBxQHIQggCB0HIQghCBQHIggiCBQHIwgjCBQHEwckCCMIEwcTBxoHJQgkCBMHJQgaBxkHJgglCBoHJggZBxgHJwgmCBkHJwj1BvMGKAgoCPMGKQjzBhcHKggpCPMGKggqCBcHKwgXBxoHLAgrCBcHLAgsCBoHLQgaBxMHLggvCBoHLggTBxIHMAguCBMHMAgwCBIHMQgSBwEHMggxCBIHMgg0CAEH+wY1CDQI+wb7BvwGNgg1CPsGNgg3CEQHOAg5CDYI/AY5CPwGRAdEBzcIOQg4CEQHRQc6CEYHBAcEBwAHOgg8CEUHRgdGBzoIPAg/CGwHbQdACD8IbQdtB2sHQQhCCG0HQQg+CP4GBgcGB2wHPghrB20HRAhHCG0HDgdFCEcIDgdtB0cISAhICEQIbQdGCAsHSghJCEYISghJCEoISwhLCEoITAhMCEoITQhNCEoITghKCAsHTwhOCEoITwjHBxEIUQhQCMcHUQhSCBEIEwhTCFEIEQgRCFIIUwhPCAsHxwfHB1AITwhGCEUIDgcOBwsHRghUCBMIEQhWCFQIEQgRCBIIVwhWCBEIVwjCB7gHWAgSCMIHWAhaCLsHwQfBB+wHWgjsB+sHWwhbCOsHXAi2B7wHXghdCLYHXghfCLcHtgddCF8Itge3B18IYAhgCFwI6wfrB7cHYAhhCKcGsQdiCKcGYQhjCNAHpwZiCGMIpwZkCNAHYwhlCNMH0AdkCGUI0AdmCNMHZQhnCMwH0wdmCGcI0wdoCMsHzAdnCGgIzAdpCMsHaAhqCLwHywdpCGoIywexB7MHawhrCM4HsQezB7QHbAhrCLMHbAhsCM4HawhsCLQHbQhuCPgG+gZvCO0GcAhxCO8G7QZvCHEI7QYIB+8GcQhzCK0HcgitB64HdAhyCK0HdAh0CK4HxAfbBqAHeQh5CKAHegh6CKAHnwd7CHoInwd7CJ8HfAh8CJ8Hmwd9CHwImwd9CJsHfgh+CJsHnAeACJ0Hogd/CIAIogd/CKIH2gaBCJwHnQedB4AIgQiCCNwG2waDCNwGggjYBtwGgwiECNgGgwiFCNgGhAjVBtgGhQiGCNUGhQiHCNUGhgjUBtUGhwjgBtcGiQiICOAGiQjaBuAGiAiKCIkI1wbXBtQGiggyCAEHMwgzCAEHNAg7CAAH/QY+CGwHPQg9CGwHPwhDCEEIawdVCBMIVAhZCLkHuwdeCLwHagh2CMQHdQh1CMQHCQd4CHcICAcJBwgHdwgCAAEAAAAFAAQAAwAGAAUAAwAGAAgABwAFAAYABwAHAAoACQAKAAsACQAJAAUABwAJAAwABQANAAcACAAHAA0ACgAQAA8ADgARABAADgAUABMAEgARAA4AFQAWABEAFQAZABgAFgAcABsAGgAdABwAGgAgAB8AHgAfACEAHQAaAB8AHQAkACMAIgAlACQAIgAjACQAJgApACgAJwArACoAKQAjACYAKgArACMAKgAuAC0ALAAxADAALwAyADEALwAxADQAMwAwADEAMwAxADUANAA1ADYANAAlACIANwA7ADcAOAA+AD0APAA/AD4APAA2ADUALQAtADUALAA1AEAALABCAEEAHAAdAEIAHABCAB0AIQBDAEIAIQBFACAARABGAEUARAAqAEgARwApACoARwAmAEkASAAqACYASAAkAEoASQAmACQASQBKACQAJQBLAEoAJQA3AEwASwAlADcASwAZAE8ATgBQABkATgAOAFIAUQAVAA4AUQAPAFMAUgAOAA8AUgATADAAMwASABMAMwBWAFUAVABXAFYAVABaAFkAWABbAFoAWABYAFkAXABeAFwAXQBYAFwAXwBgAFgAXwBiAGEANgBgAF8AYQBiAGAAYQBbAGMAVwBUAFsAVwBmAGUAZABnAGYAZABqAGkAaABsAGsAaQBqAGwAaQBkAG0AZwAhAB8AIABEACAAHgBDACEAIABFAEMAIAApAB4AKwApAEcAbgAoACkAbgBxAHAAbwByAHEAbwA6AHQAcwA3ADsATAA3ACIAFwAVAFEATwAZABUATwAZAFAAGAAWABUAGQB3AHYAdQB4AHcAdQBoAGkAeQBpAGsAegB5AGkAegB2AHsAdQB8AHUAewB/AH4AfQCAAH8AfQCDAIIAgQCEAIMAgQCFAHkAegCHAIYAEgCGABQAEgASADMAiACHABIAiAAzADQAiQCIADMAiQBfAIsAigCMAF8AigBeAIsAXwBcAF4AXwBcAFkAXQAyAEAANQAxADIANQCNAC8AMAATAI0AMAAUAI4AEwCOAI0AEwCRAJAAjwCSAJEAjwCPAJMAkgCWAJUAlACXAJYAlACaAJkAmACbAJoAmAB6AJwAhQCdAJwAegCgAJ8AngChAKAAngCFAJwAogCjAIUAogB1AHwAmQCkAJgAmQCXAKUAlgCCAIMAnACdAIIAnAB4AHUAmQCaAHgAmQCAAH0AhQCjAKYAhQCZAHwApACnAI8AkACoAI8ApwADAKoAqQAEAKsAbACqAAQAbAADAAQAqgCsAKkAqgB3AK4ArQB2AHcArQCxALAArwCyALEArwCvALMAsgCzAK8AYwCvAFcAYwCsAKoAtABqAKoAbAC3ALYAtQB+AH8AtQC2ALgAqgC1ALYAqgC5AHsArQCtAHsAdgCwALEAugC7ALAAugCtAL0AvAC9AL4AvAC+ALEAsgC+ALoAsQDAAL0AvwDBAL8AvQDCAMEAvQCuAMIAvQCtAK4AvQBUAFUAwwBbAFQAWgBUAMMAWgDGAMUAxABVAFYAxADHAMMAVQDKAMkAyADLAMoAyADJAMwAyADJAA8AEADKAFMADwDJAMoADwDEAMcAVQA8AD0AQQBCADwAQQBxAHIAbgBHAHEAbgBlAGYARwBIAGUARwCSAJMASgBLAJIASgCRAJIASwBMAJEASwCVAE0AdACUAJUAdACaAJsATgBPAJoATgB4AJoATwBRAHgATwB3AHgAUQBSAHcAUQCuAHcAUgBTAK4AUgDCAK4AUwDKAMIAUwDCAMoAywDBAMIAywCwALsAxQBWALAAxQCwAFYAVwCvALAAVwBDAM0APABCAEMAPABFAM4AzQBDAEUAzQBFAEYAzwDOAEUAzwDRACgAbgDTANAA0gDWANUA0wDSANYA0wBvANcA1ADWANgA1QDRAB4AKACnANkApADbAE4A2gDcANsA2gDdANkA3ADaAN0A3AA5AFAATgDbADkATgA5ABgAUADZAN0ApAAQAMcAyQC6AL8AwQC7ALoAwQDLAN4AuwDBAMsAuwDIAMQA3gDLAMgA3gC/ALoAvgDHAMQAyADfAIwAigCJADQANgCLAIgAiQDgAIsAiQBeAIcAiACLAF4AiADgAIkANgBeAF0AhwAMAOEABAAFAAwABADkAOMA4gDiAOMA5QDoAOcA5gDqAJMA6QDtAOwA6wBlAOoAZADvAO4A4wDkAO8A4wDwAOUA4wDuAPAA4wCEAPAA7gCDAIQA7gDwAPMA8QDtAPQA8gDoAKEAngDnAOgAngDpAI8AqADpAJMAjwCcAIMA7gDvAJwA7gDqAGUASABJAOoASABKAJMA6gBJAEoA6gD1AOYA5wDtAOsA9gD5APgA9wD6APkA9wD3APgAqQD7APcAqQAGAPgACAD4APkACACpAPgAAwD4AAYAAwD6APcA/AD8APcA+wD5APoA/QD9APoA/gABAfsA/wD5AA0ACAACAWAAYgBjAFsAAgFbAFgAAgFgAAIBWABjAAIBswCpAKwA/wD7AKkA/wAFAQQBAwEHAQABBgGrAAQA4QAIAasA4QCrAAkBawBsAKsAawAJAasACAF6AAoBnQBrAAkBCgF6AGsACgELAQkBCAEMAQkBCwEKAQkBDAGCAA4BDQGBAIIADQEOAYIAnQAPAQ4BnQAMARABCgGdAAoBDwEKARABDwESAREBAAATARIBAAABABQBEwEAAAEAEwEBAAIACgACAAsACgACAAAAFQEWARQBAQABAAoAFgEZARgBFwEaARkBFwEdARwBGwEeARkBGgEfAR4BGgEhASABHwEiARsAHAAjASIBHAAmASUBJAEjASgBJwEiASMBJwErASoBKQEsASsBKQEqAS0BKQEwAS8BLgEuAS8BMQExAS0BKgEuATEBKgEuACwAMgEvADQBMwEyAC8AMwE2ATUBMwE0ATYBMwE4ATcBNQE3ATMBNQEsATkBKwE5ATwBOgE9AT0APgA+AT0BPgA4ATIBNwEyASwANwEsAEAANwEcAEEAPwEjARwAPwEoASMBPwFAASgBPwEkASUBQQFCASQBQQFEAUMBMQEvAUQBMQFDAUUBLQExAUMBLQFFAUYBKQEtAUUBKQEsASkBRgFHASwBRgFHAUgBOQEsAUcBOQFKAUkBIAEhAUoBIAFMAUsBGQEeAUwBGQFLAU0BGAEZAUsBGAE2ATQBGwEcATYBGwFQAU8BTgFRAVABTgFUAVMBUgFVAVQBUgFUAVYBUwFTAVYBWAFZAVYBVAFaAVkBVAFcATgBWwFbAVkBWgFcAVsBWgFRAV0BVQFQAVEBVQFgAV8BXgFhAWABXgFkAWMBYgFiAWYBZQFkAWIBZQFgAWEBZwEoASUBJwEnASUBJgElASgBQAFBASUBQAEwAWgBLwFpAUQBLwFoAWkBLwFsAWsBagFtAWwBagFvAW4BOwE5AUgBPAErATwBcAFJAUwBHgEgAUkBHgEhAR8BcAEfASABHgFzAXIBcQF0AXMBcQFjAXUBYgF2AWYBYgF1AXYBYgFyAXMBdwF4AXcBcwF7AXoBeQF8AXsBeQF/AX4BfQGAAX8BfQGBAXYBdQEdAVcBHAEcAVcBggGDATYBHAGCAYMBHAGEATUBNgGDAYQBNgGGAYUBWQGHAYYBWQFZAYUBiAFWAVkBiAGJAVYBiAE3AUAAMgAzATcBMgA0AS8AjQAbATQBjQAdARsBjgCOABsBjQCMAYsBigGNAYwBigGMAY0BjgGRAZABjwGSAZEBjwGVAZQBkwGWAZUBkwF2AYEBlwGYAXYBlwGbAZoBmQGcAZsBmQGdAZcBgQGeAZ0BgQFzAZQBeAGfAZQBlQGhAZ8BoAGXAX0BfgGYAZcBfgGUAXMBdAGTAZQBdAGBAXsBfAGeAYEBogGUAZ8BeAGhAYsBjAGjAaEBjAESAaYBpAERAaQBpwGkAWUBpwESAaQBEQGoAaQBpgGqAakBcQFyAaoBcQGtAawBqwGuAa0BqwGtAa4BrwGvAV0BrQGtAV0BUQGoAbABpAFkAWUBpAGzAbIBsQF6AbMBeQGlAbQBsgGzAaUBsgG1AaoBdwGqAXIBdwG2AasBrAG3AbYBrAGqAbkBuAG4AbkBugG6Aa4BqwG6AasBtgG8AbsBuAG4AbsBvQG+AbgBvQG4Ab4BqQGqAbgBqQFQAb8BTwFVAVIBUAFQAVIBvwHDAcIBwAFPAcMBTgFPAcQBwwHHAcYBxQHIAccBxQHJARcBxgHGARcBGAEYAU0BxQHGARgBxQG/AcQBTwFBAD0APQE/AUEAPQFpAW0BagFEAWkBagFEAV4BXwFDAUQBXwFGAY4BjQFHAUYBjQFHAY0BigFIAUcBigFuAUgBkAGRAW4BkAFKAZYBkwFJAUoBkwFJAZMBdAFMAUkBdAFMAXQBcQFLAUwBcQFLAXEBqQFNAUsBqQFNAakBvgHFAU0BvgHIAcUBvgG9AcgBvgHBAbcBrAFOAcEBrAFRAU4BrAGtAVEBrAHMAcsBygHNAcwBygE9Ac4BQAE/AT0BQAHOAcoBQQFAAc4BQQHLAUIBQQHKAcsBQQFpAWgBzwHRAdABzwHRAdMB0gHQAdEB0gHUAdUBbAHSAdMB1gHPAWgBJgGSAY8B1wHZAUoB2AHaAdkB2AHaAaAB2wHZAdoB2wFKASEBPAHYAUoBPAE8ASEBcAGgAZ8B2wHHAckBxgG9AbsBtgG3Ab0BtgG3AdwByAG9AbcByAHcAcMBxwHIAdwBxwG7AboBtgHEAccBwwHdAYYBhwGEATgBNQGEAYMBhQHeAYQBhQGDAYIBiAGFAYMBiAHeATgBhAGIAYIBVwERAd8BFQEAABEBFQHiAeEB4AHhAeMB4AHmAeUB5AHoAecBjgHrAeoB6QFfAWAB6AHgAe0B7AHiAeAB7AHgAeMB7gHtAeAB7gHtAe4BgAF9Ae0BgAHwAe8B7gHrAfEB8gGbAZwB5gHkAZsB5gHnAaMBjAHnAYwBjgHtAX0BlwHsAe0BlwFDAV8B6AFFAUMB6AHoAY4BRgFFAegBRgHzAeQB5QHrAfQB6gH3AfYB9QH4AfcB9QGmAfYB9wH5AaYB9wETARQB9gH2ARQB9QGmARIB9gH2ARIBEwH4AfoB9wH6AfkB9wH1AfsB+AH7AfwB+AH/Af0B+QH1ARQBFgEAAlwBWgFdAQACVQFVAQACVAFaAVQBAAJdAa8BAAL9AagBpgH5Af0BpgEDAgICAQIFAgQC/gHfAREBpwEGAt8BpwFmAQcCpwFlAWYBpwEHAgYCpwF2AZgBCAIIAgcCZgF2AQgCZgEJAgYCBwIKAgkCBwIIAgoCBwIMAgsCfgF/AQwCfgGYAX4BCwINApgBCwIKAggCDgKYAQ0CCAINAg4CCAJnAG0ADwIRAj8APADNABECPAATAhICPgA/ABMCPgDOAM8AFAIVAs4AFAIXAhYChACBABcChAANARcCgQARAhMCPwAVAhQCGAIVAhECzQDOABUCzQATAhACGQIVAhACEQJvAHAAGgLXAG8AEAKEABYC8wDwAIQA8wATAhECEAJhARsCZwEcAs4BPQE+ARwCPQEdAj4BPgASAh0CPgCAAR8CHgJ/AYABHgIMAn8BHgIcAj4BHQLNASACzAHNAcoBzgEcAs0BzgEbAh0CIQLNARwCGwJsASICawHVARsCbAHvAR8CgAHuAe8BgAEjAhICEwIjAhkCJAIlAiMCJAITAhkCIwIjAh0CEgImAiECIwIlAiYCIwIdAiMCIQIbAhwCHQIpAigCJwIpAioCKAIoAioCKwItAisCLAItAi8CLgIwAi0CLgIyAjECLwItAjICLwIzAi8CMQIuAi8CMwIyAi0CLAItAjACKAIoAjACJwIrAi0CKAIpAicCNAIpAjQCNQI0AjYCNQI4AjcCNgIuAjkCOAIwAi4COAI5AjsCOgI4AjkCOgI8AjsCOQIuAjwCOQI6AjcCOAI4AjQCMAIwAjQCJwI2AjQCOAIpAj4CPQIpAj8CPgI+Aj8CQAJCAkACQQJCAkQCQwJFAkICQwJHAkYCRAJCAkcCRAJIAkQCRgJDAkQCSAJHAkICQQJCAkUCPgI+AkUCPQJAAkICPgIpAj0CSQIpAkkCSgJJAksCSgJNAkwCSwJDAk4CTQJFAkMCTQJOAlACTwJNAk4CTwJRAlACTgJDAlECTgJPAkwCTQJNAkkCRQJFAkkCPQJLAkkCTQIpAlMCUgIpAlQCUwJTAlQCVQJXAlUCVgJXAlkCWAJaAlcCWAJcAlsCWQJXAlwCWQJdAlkCWwJYAlkCXQJcAlcCVgJXAloCUwJTAloCUgJVAlcCUwIpAlICXgIpAl4CXwJeAmACXwJiAmECYAJYAmMCYgJaAlgCYgJjAmUCZAJiAmMCZAJmAmUCYwJYAmYCYwJkAmECYgJiAl4CWgJaAl4CUgJgAl4CYgIpAmgCZwIpAmkCaAJoAmkCagJsAmoCawJsAm4CbQJvAmwCbQJxAnACbgJsAnECbgJyAm4CcAJtAm4CcgJxAmwCawJsAm8CaAJoAm8CZwJqAmwCaAIpAmcCcwIpAnMCdAJzAnUCdAJ3AnYCdQJtAngCdwJvAm0CdwJ4AnoCeQJ3AngCeQJ7AnoCeAJtAnsCeAJ5AnYCdwJ3AnMCbwJvAnMCZwJ1AnMCdwIpAn0CfAIpAn4CfQJ9An4CfwKBAn8CgAKBAoMCggKEAoECggKGAoUCgwKBAoYCgwKHAoMChQKCAoMChwKGAoECgAKBAoQCfQJ9AoQCfAJ/AoECfQIpAnwCiAIpAogCiQKIAooCiQKMAosCigKCAo0CjAKEAoICjAKNAo8CjgKMAo0CjgKQAo8CjQKCApACjQKOAosCjAKMAogChAKEAogCfAKKAogCjAKTApICkQKTApQCkgKSApQClQKXApUClgKXApkCmAKaApcCmAKcApsCmQKXApwCmQKdApkCmwKYApkCnQKcApcClgKXApoCkgKSApoCkQKVApcCkgKTApECngKTAp4CnwKeAqACnwKiAqECoAKYAqMCogKaApgCogKjAqUCpAKiAqMCpAKmAqUCowKYAqYCowKkAqECogKiAp4CmgKaAp4CkQKgAp4CogKTAqgCpwKTAqkCqAKoAqkCqgKsAqoCqwKsAq4CrQKvAqwCrQKxArACrgKsArECrgKyAq4CsAKtAq4CsgKxAqwCqwKsAq8CqAKoAq8CpwKqAqwCqAKTAqcCswKTArMCtAKzArUCtAK3ArYCtQKtArgCtwKvAq0CtwK4AroCuQK3ArgCuQK7AroCuAKtArsCuAK5ArYCtwK3ArMCrwKvArMCpwK1ArMCtwKTAr0CvAKTAr4CvQK9Ar4CvwLBAr8CwALBAsMCwgLEAsECwgLGAsUCwwLBAsYCwwLHAsMCxQLCAsMCxwLGAsECwALBAsQCvQK9AsQCvAK/AsECvQKTArwCyAKTAsgCyQLIAsoCyQLMAssCygLCAs0CzALEAsICzALNAs8CzgLMAs0CzgLQAs8CzQLCAtACzQLOAssCzALMAsgCxALEAsgCvALKAsgCzAKTAtIC0QKTAtMC0gLSAtMC1ALWAtQC1QLWAtgC1wLZAtYC1wLbAtoC2ALWAtsC2ALcAtgC2gLXAtgC3ALbAtYC1QLWAtkC0gLSAtkC0QLUAtYC0gKTAtEC3QKTAt0C3gLdAt8C3gLhAuAC3wLXAuIC4QLZAtcC4QLiAuQC4wLhAuIC4wLlAuQC4gLXAuUC4gLjAuAC4QLhAt0C2QLZAt0C0QLfAt0C4QKTAucC5gKTAugC5wLnAugC6QLrAukC6gLrAu0C7ALuAusC7ALwAu8C7QLrAvAC7QLxAu0C7wLsAu0C8QLwAusC6gLrAu4C5wLnAu4C5gLpAusC5wKTAuYC8gKTAvIC8wLyAvQC8wL2AvUC9ALsAvcC9gLuAuwC9gL3AvkC+AL2AvcC+AL6AvkC9wLsAvoC9wL4AvUC9gL2AvIC7gLuAvIC5gL0AvIC9gL9AvwC+wL9AgAD/AL8AgADAQMDAwEDAgMDAwUDBAMGAwMDBAMIAwcDBQMDAwgDBQMJAwUDBwMEAwUDCQMIAwMDAgMDAwYD/AL8AgYD+wIBAwMD/AL9AvsCCgP9AgoDCwMKAwwDCwMOAw0DDAMEAw8DDgMGAwQDDgMPAxEDEAMOAw8DEAMSAxEDDwMEAxIDDwMQAw0DDgMOAwoDBgMGAwoD+wIMAwoDDgP9AhQDEwP9AhUDFAMUAxUDFgMYAxYDFwMYAxoDGQMbAxgDGQMdAxwDGgMYAx0DGgMeAxoDHAMZAxoDHgMdAxgDFwMYAxsDFAMUAxsDEwMWAxgDFAP9AhMDHwP9Ah8DIAMfAyEDIAMjAyIDIQMZAyQDIwMbAxkDIwMkAyYDJQMjAyQDJQMnAyYDJAMZAycDJAMlAyIDIwMjAx8DGwMbAx8DEwMhAx8DIwP/AikDKAP/AioDKQMpAyoDKwMtAysDLAMtAy8DLgMwAy0DLgMyAzEDLwMtAzIDLwMzAy8DMQMuAy8DMwMyAy0DLAMtAzADKQMpAzADKAMrAy0DKQP/AigDNAP/AjQDNQM0AzYDNQM4AzcDNgMuAzkDOAMwAy4DOAM5AzsDOgM4AzkDOgM8AzsDOQMuAzwDOQM6AzcDOAM4AzQDMAMwAzQDKAM2AzQDOAP+Aj4DPQP+Aj8DPgM+Az8DQANCA0ADQQNCA0QDQwNFA0IDQwNHA0YDRANCA0cDRANIA0QDRgNDA0QDSANHA0IDQQNCA0UDPgM+A0UDPQNAA0IDPgP+Aj0DSQP+AkkDSgNJA0sDSgNNA0wDSwNDA04DTQNFA0MDTQNOA1ADTwNNA04DTwNRA1ADTgNDA1EDTgNPA0wDTQNNA0kDRQNFA0kDPQNLA0kDTQP9AlMDUgP9AlQDUwNTA1QDVQNXA1UDVgNXA1kDWANaA1cDWANcA1sDWQNXA1wDWQNdA1kDWwNYA1kDXQNcA1cDVgNXA1oDUwNTA1oDUgNVA1cDUwP9AlIDXgP9Al4DXwNeA2ADXwNiA2EDYANYA2MDYgNaA1gDYgNjA2UDZANiA2MDZANmA2UDYwNYA2YDYwNkA2EDYgNiA14DWgNaA14DUgNgA14DYgNqA2gDZwNqA2sDaANoA2sDbANuA2wDbQNuA3ADbwNxA24DbwNzA3IDcANuA3MDcAN0A3ADcgNvA3ADdANzA24DbQNuA3EDaANoA3EDZwNsA24DaANqA2cDdQNqA3UDdgN1A3cDdgN5A3gDdwNvA3oDeQNxA28DeQN6A3wDewN5A3oDewN9A3wDegNvA30DegN7A3gDeQN5A3UDcQNxA3UDZwN3A3UDeQNqA38DfgNqA4ADfwN/A4ADgQODA4EDggODA4UDhAOGA4MDhAOIA4cDhQODA4gDhQOJA4UDhwOEA4UDiQOIA4MDggODA4YDfwN/A4YDfgOBA4MDfwNqA34DigNqA4oDiwOKA4wDiwOOA40DjAOEA48DjgOGA4QDjgOPA5EDkAOOA48DkAOSA5EDjwOEA5IDjwOQA40DjgOOA4oDhgOGA4oDfgOMA4oDjgNqA5QDkwNqA5UDlAOUA5UDlgOYA5YDlwOYA5oDmQObA5gDmQOdA5wDmgOYA50DmgOeA5oDnAOZA5oDngOdA5gDlwOYA5sDlAOUA5sDkwOWA5gDlANqA5MDnwNqA58DoAOfA6EDoAOjA6IDoQOZA6QDowObA5kDowOkA6YDpQOjA6QDpQOnA6YDpAOZA6cDpAOlA6IDowOjA58DmwObA58DkwOhA58DowNpA6kDqANpA6oDqQOpA6oDqwOtA6sDrAOtA68DrgOwA60DrgOyA7EDrwOtA7IDrwOzA68DsQOuA68DswOyA60DrAOtA7ADqQOpA7ADqAOrA60DqQNpA6gDtANpA7QDtQO0A7YDtQO4A7cDtgOuA7kDuAOwA64DuAO5A7sDugO4A7kDugO8A7sDuQOuA7wDuQO6A7cDuAO4A7QDsAOwA7QDqAO2A7QDuANqA74DvQNqA78DvgO+A78DwAPCA8ADwQPCA8QDwwPFA8IDwwPHA8YDxAPCA8cDxAPIA8QDxgPDA8QDyAPHA8IDwQPCA8UDvgO+A8UDvQPAA8IDvgNqA70DyQNqA8kDygPJA8sDygPNA8wDywPDA84DzQPFA8MDzQPOA9ADzwPNA84DzwPRA9ADzgPDA9EDzgPPA8wDzQPNA8kDxQPFA8kDvQPLA8kDzQPUA9MD0gPUA9ID1QPSA9YD1QPYA9cD1gPaA9kD2APbA9oD2APZA90D3APYA9kD3APeA90D2QPaA94D2QPcA9cD2APYA9ID2wPSA9MD2wPWA9ID2APUA98D0wPUA+AD3wPfA+AD4QPjA+ED4gPjA+QD2gPbA+MD2gPmA+UD5APjA+YD5APnA+QD5QPaA+QD5wPmA+MD4gPjA9sD3wPbA9MD3wPhA+MD3wPUA+kD6APUA+gD6gPoA+sD6gPtA+wD6wPvA+4D7QPwA+8D7QPuA/ID8QPtA+4D8QPzA/ID7gPvA/MD7gPxA+wD7QPtA+gD8APoA+kD8APrA+gD7QPUA/QD6QPUA/UD9AP0A/UD9gP4A/YD9wP4A/kD7wPwA/gD7wP7A/oD+QP4A/sD+QP8A/kD+gPvA/kD/AP7A/gD9wP4A/AD9APwA+kD9AP2A/gD9APUA/4D/QPUA/0D/wP9AwAE/wMCBAEEAAQEBAMEAgQFBAQEAgQDBAcEBgQCBAMEBgQIBAcEAwQEBAgEAwQGBAEEAgQCBP0DBQT9A/4DBQQABP0DAgTUAwkE/gPUAwoECQQJBAoECwQNBAsEDAQNBA4EBAQFBA0EBAQQBA8EDgQNBBAEDgQRBA4EDwQEBA4EEQQQBA0EDAQNBAUECQQFBP4DCQQLBA0ECQTUAxMEEgTUAxIEFAQSBBUEFAQXBBYEFQQZBBgEFwQaBBkEFwQYBBwEGwQXBBgEGwQdBBwEGAQZBB0EGAQbBBYEFwQXBBIEGgQSBBMEGgQVBBIEFwTUAx4EEwTUAx8EHgQeBB8EIAQiBCAEIQQiBCMEGQQaBCIEGQQlBCQEIwQiBCUEIwQmBCMEJAQZBCMEJgQlBCIEIQQiBBoEHgQaBBMEHgQgBCIEHgTUAygEJwTUAycEKQQnBCoEKQQsBCsEKgQuBC0ELAQvBC4ELAQtBDEEMAQsBC0EMAQyBDEELQQuBDIELQQwBCsELAQsBCcELwQnBCgELwQqBCcELATUAzMEKATUAzQEMwQzBDQENQQ3BDUENgQ3BDgELgQvBDcELgQ6BDkEOAQ3BDoEOAQ7BDgEOQQuBDgEOwQ6BDcENgQ3BC8EMwQvBCgEMwQ1BDcEMwQ+BD0EPAQ+BDwEQAQ8BEEEQARDBEIEQQRFBEQEQwRGBEUEQwREBEgERwRDBEQERwRJBEgERARFBEkERARHBEIEQwRDBDwERgQ8BD0ERgRBBDwEQwQ+BEoEPQQ+BEsESgRKBEsETAROBEwETQROBE8ERQRGBE4ERQRRBFAETwROBFEETwRSBE8EUARFBE8EUgRRBE4ETQROBEYESgRGBD0ESgRMBE4ESgQ/BFQEUwQ/BFMEVQRTBFYEVQRYBFcEVgRaBFkEWARbBFoEWARZBF0EXARYBFkEXAReBF0EWQRaBF4EWQRcBFcEWARYBFMEWwRTBFQEWwRWBFMEWAQ/BF8EVAQ/BGAEXwRfBGAEYQRjBGEEYgRjBGQEWgRbBGMEWgRmBGUEZARjBGYEZARnBGQEZQRaBGQEZwRmBGMEYgRjBFsEXwRbBFQEXwRhBGMEXwQ+BGkEaAQ+BGgEagRoBGsEagRtBGwEawRvBG4EbQRwBG8EbQRuBHIEcQRtBG4EcQRzBHIEbgRvBHMEbgRxBGwEbQRtBGgEcARoBGkEcARrBGgEbQQ+BHQEaQQ+BHUEdAR0BHUEdgR4BHYEdwR4BHkEbwRwBHgEbwR7BHoEeQR4BHsEeQR8BHkEegRvBHkEfAR7BHgEdwR4BHAEdARwBGkEdAR2BHgEdAQ/BH4EfQQ/BH0EfwR9BIAEfwSCBIEEgASEBIMEggSFBIQEggSDBIcEhgSCBIMEhgSIBIcEgwSEBIgEgwSGBIEEggSCBH0EhQR9BH4EhQSABH0EggQ/BIkEfgQ/BIoEiQSJBIoEiwSNBIsEjASNBI4EhASFBI0EhASQBI8EjgSNBJAEjgSRBI4EjwSEBI4EkQSQBI0EjASNBIUEiQSFBH4EiQSLBI0EiQQ+BJMEkgQ+BJIElASSBJUElASXBJYElQSZBJgElwSaBJkElwSYBJwEmwSXBJgEmwSdBJwEmASZBJ0EmASbBJYElwSXBJIEmgSSBJMEmgSVBJIElwQ+BJ4EkwQ+BJ8EngSeBJ8EoASiBKAEoQSiBKMEmQSaBKIEmQSlBKQEowSiBKUEowSmBKMEpASZBKMEpgSlBKIEoQSiBJoEngSaBJMEngSgBKIEngSpBKgEpwSpBKsEqASoBKsErASuBKwErQSuBLAErwSxBK4ErwSzBLIEsASuBLMEsAS0BLAEsgSvBLAEtASzBK4ErQSuBLEEqASoBLEEpwSsBK4EqASpBKcEtQSpBLUEtgS1BLcEtgS5BLgEtwSvBLoEuQSxBK8EuQS6BLwEuwS5BLoEuwS9BLwEugSvBL0EugS7BLgEuQS5BLUEsQSxBLUEpwS3BLUEuQSqBL8EvgSqBMAEvwS/BMAEwQTDBMEEwgTDBMUExATGBMMExATIBMcExQTDBMgExQTJBMUExwTEBMUEyQTIBMMEwgTDBMYEvwS/BMYEvgTBBMMEvwSqBL4EygSqBMoEywTKBMwEywTOBM0EzATEBM8EzgTGBMQEzgTPBNEE0ATOBM8E0ATSBNEEzwTEBNIEzwTQBM0EzgTOBMoExgTGBMoEvgTMBMoEzgSpBNQE0wSpBNUE1ATUBNUE1gTYBNYE1wTYBNoE2QTbBNgE2QTdBNwE2gTYBN0E2gTeBNoE3ATZBNoE3gTdBNgE1wTYBNsE1ATUBNsE0wTWBNgE1ASpBNME3wSpBN8E4ATfBOEE4ATjBOIE4QTZBOQE4wTbBNkE4wTkBOYE5QTjBOQE5QTnBOYE5ATZBOcE5ATlBOIE4wTjBN8E2wTbBN8E0wThBN8E4wSpBOkE6ASpBOoE6QTpBOoE6wTtBOsE7ATtBO8E7gTwBO0E7gTyBPEE7wTtBPIE7wTzBO8E8QTuBO8E8wTyBO0E7ATtBPAE6QTpBPAE6ATrBO0E6QSpBOgE9ASpBPQE9QT0BPYE9QT4BPcE9gTuBPkE+ATwBO4E+AT5BPsE+gT4BPkE+gT8BPsE+QTuBPwE+QT6BPcE+AT4BPQE8ATwBPQE6AT2BPQE+ASqBP4E/QSqBP8E/gT+BP8EAAUCBQAFAQUCBQQFAwUFBQIFAwUHBQYFBAUCBQcFBAUIBQQFBgUDBQQFCAUHBQIFAQUCBQUF/gT+BAUF/QQABQIF/gSqBP0ECQWqBAkFCgUJBQsFCgUNBQwFCwUDBQ4FDQUFBQMFDQUOBRAFDwUNBQ4FDwURBRAFDgUDBREFDgUPBQwFDQUNBQkFBQUFBQkF/QQLBQkFDQUVBRMFEgUVBRIFFgUSBRcFFgUZBRgFFwUbBRoFGQUcBRsFGQUaBR4FHQUZBRoFHQUfBR4FGgUbBR8FGgUdBRgFGQUZBRIFHAUSBRMFHAUXBRIFGQUVBSAFEwUVBSEFIAUgBSEFIgUkBSIFIwUkBSUFGwUcBSQFGwUnBSYFJQUkBScFJQUoBSUFJgUbBSUFKAUnBSQFIwUkBRwFIAUcBRMFIAUiBSQFIAUUBSoFKQUUBSkFKwUpBSwFKwUuBS0FLAUwBS8FLgUxBTAFLgUvBTMFMgUuBS8FMgU0BTMFLwUwBTQFLwUyBS0FLgUuBSkFMQUpBSoFMQUsBSkFLgUUBTUFKgUUBTYFNQU1BTYFNwU5BTcFOAU5BToFMAUxBTkFMAU8BTsFOgU5BTwFOgU9BToFOwUwBToFPQU8BTkFOAU5BTEFNQUxBSoFNQU3BTkFNQUUBT8FPgUUBT4FQAU+BUEFQAVDBUIFQQVFBUQFQwVGBUUFQwVEBUgFRwVDBUQFRwVJBUgFRAVFBUkFRAVHBUIFQwVDBT4FRgU+BT8FRgVBBT4FQwUUBUoFPwUUBUsFSgVKBUsFTAVOBUwFTQVOBU8FRQVGBU4FRQVRBVAFTwVOBVEFTwVSBU8FUAVFBU8FUgVRBU4FTQVOBUYFSgVGBT8FSgVMBU4FSgUUBVQFUwUUBVMFVQVTBVYFVQVYBVcFVgVaBVkFWAVbBVoFWAVZBV0FXAVYBVkFXAVeBV0FWQVaBV4FWQVcBVcFWAVYBVMFWwVTBVQFWwVWBVMFWAUUBV8FVAUUBWAFXwVfBWAFYQVjBWEFYgVjBWQFWgVbBWMFWgVmBWUFZAVjBWYFZAVnBWQFZQVaBWQFZwVmBWMFYgVjBVsFXwVbBVQFXwVhBWMFXwUVBWkFaAUVBWgFagVoBWsFagVtBWwFawVvBW4FbQVwBW8FbQVuBXIFcQVtBW4FcQVzBXIFbgVvBXMFbgVxBWwFbQVtBWgFcAVoBWkFcAVrBWgFbQUVBXQFaQUVBXUFdAV0BXUFdgV4BXYFdwV4BXkFbwVwBXgFbwV7BXoFeQV4BXsFeQV8BXkFegVvBXkFfAV7BXgFdwV4BXAFdAVwBWkFdAV2BXgFdAV/BX4FfQV+BX8FgAWCBX4FgQWCBYEFgwWFBYIFhAWFBYQFhgWHBYUFhgWHBYYFiAWJBYcFiAWLBYgFigWMBYsFigWMBYoFjQWLBYkFiAWPBY4FjQWQBY4FjwWQBY8FkQWSBZAFkQWNBZMFjwWWBZUFlAWXBZYFlAWYBZcFlAWZBZcFmAWZBZgFmgWcBZkFmgWSBZEFnQWeBZIFnQWfBZ0FlAWVBZ8FlAWfBZ4FnQWcBZoFoAWiBZsFoQWkBaEFowWlBaQFowWmBaUFowWkBaIFoQWpBagFpwWqBakFpwWsBasFpwWrBaoFpwWjBa0FpgWtBaMFrgWvBa0FrgWvBa4FqAWpBa8FqAV/BX0FsAWxBX8FsAW0BbIFsAW1BbIFtAW3BbYFswW4BbYFtwW5BbgFtwW6BbgFuQW7BboFuQW9BboFvAW+Bb0FvAW+Bb8FvQW8BboFuwXBBb8FwAXCBcEFwAXDBcEFwgXEBcMFwgW/BcEFxQXIBccFxgXHBcgFyQXKBccFyQXLBcoFyQXMBcoFywXNBcwFywXQBcMFxAXRBdAFxAXHBdAF0gXGBccF0gXSBdAF0QXUBdMFzwXWBdUFzgXYBdUF1wXZBdgF1wXaBdgF2QXXBdUF1gXdBdwF2wXeBd0F2wWsBd0FqwWrBd0F3gXYBdoF3wXgBdgF3wXhBeAF3wXcBeAF4QXbBdwF4QXlBeMF4gXlBeYF4wXpBegF5wXiBewF6wXvBe4F7QXyBfEF8AX1BfQF8wX4BfcF9gX1BfkF9AXkBfsF+gX9BfwF5AXpBf0F5AX/Bf4F9QXiBf8F9QXrBf8F4gX+BfkF9QXnBf0F6QX8BfsF5AXiBeMFAAYDBuoFAQYEBgMGAQYHBgYGBQYCBgkGCAYJBgsGCgYJBgIGCwYOBg0GDAYOBgwGEAYUBhIGEQYNBhYGFQYZBhgGFwYcBhsGGgYfBh4GHQYiBiEGIAYfBh0GIwYPBiUGJAYPBicGJgYUBg8GJgYfBikGKAYNBh8GKAYWBg0GKAYpBh8GIwYSBhQGJgYnBg8GJAYNBioGDAYtBhMGKwYuBi0GKwYxBjAGLwYsBjMGMgYyBjUGNAYyBjQGLAY4BjcGNgY3BjoGOQY9BjwGOwY2BjcGOQZABj8GPgZDBkIGQQZGBkUGRAY+BkgGRwZLBkoGSQZOBk0GTAZQBk8GSgZJBkoGUQZUBlMGUgZQBkoGSwZVBkIGTAZHBkAGPgZVBkEGQgZMBk0GVQZYBlcGVgZbBloGWQZABlwGPwZfBl4GXQZfBmAGXgZjBmIGYQZlBmQGYgZjBmUGYgZXBlgGYwZhBlcGYwZoBmcGZgZmBjkGaQZsBmsGagZnBjkGZgZvBm4GbQZyBnEGcAZ1BnQGcwZuBncGdgZ6BnkGeAZ9BnwGewZ/BngGfgZ5BoAGeAaDBoIGgQZ/BnoGeAaEBnwGcAZ3Bm4GbwaEBnAGcQZ8BoQGewaHBoYGhQaKBokGiAZvBm0GiwaOBo0GjAaOBowGjwaSBpEGkAaUBpAGkwaSBpAGlAaFBpIGhwaRBpIGhQaWBgsBlQaZBpgGlwacBpoGCQKeBpsGnQYAAIlQTkcNChoKAAAADUlIRFIAAAQAAAAEAAgGAAAAfx0rgwAAAAlwSFlzAAALEwAACxMBAJqcGAAACk1pQ0NQUGhvdG9zaG9wIElDQyBwcm9maWxlAAB42p1Td1iT9xY+3/dlD1ZC2PCxl2yBACIjrAjIEFmiEJIAYYQQEkDFhYgKVhQVEZxIVcSC1QpInYjioCi4Z0GKiFqLVVw47h/cp7V9eu/t7fvX+7znnOf8znnPD4AREiaR5qJqADlShTw62B+PT0jEyb2AAhVI4AQgEObLwmcFxQAA8AN5eH50sD/8Aa9vAAIAcNUuJBLH4f+DulAmVwAgkQDgIhLnCwGQUgDILlTIFADIGACwU7NkCgCUAABseXxCIgCqDQDs9Ek+BQDYqZPcFwDYohypCACNAQCZKEckAkC7AGBVgVIsAsDCAKCsQCIuBMCuAYBZtjJHAoC9BQB2jliQD0BgAICZQizMACA4AgBDHhPNAyBMA6Aw0r/gqV9whbhIAQDAy5XNl0vSMxS4ldAad/Lw4OIh4sJssUJhFykQZgnkIpyXmyMTSOcDTM4MAAAa+dHB/jg/kOfm5OHmZuds7/TFov5r8G8iPiHx3/68jAIEABBOz+/aX+Xl1gNwxwGwdb9rqVsA2lYAaN/5XTPbCaBaCtB6+Yt5OPxAHp6hUMg8HRwKCwvtJWKhvTDjiz7/M+Fv4It+9vxAHv7bevAAcZpAma3Ao4P9cWFudq5SjufLBEIxbvfnI/7HhX/9jinR4jSxXCwVivFYibhQIk3HeblSkUQhyZXiEul/MvEflv0Jk3cNAKyGT8BOtge1y2zAfu4BAosOWNJ2AEB+8y2MGguRABBnNDJ59wAAk7/5j0ArAQDNl6TjAAC86BhcqJQXTMYIAABEoIEqsEEHDMEUrMAOnMEdvMAXAmEGREAMJMA8EEIG5IAcCqEYlkEZVMA62AS1sAMaoBGa4RC0wTE4DefgElyB63AXBmAYnsIYvIYJBEHICBNhITqIEWKO2CLOCBeZjgQiYUg0koCkIOmIFFEixchypAKpQmqRXUgj8i1yFDmNXED6kNvIIDKK/Iq8RzGUgbJRA9QCdUC5qB8aisagc9F0NA9dgJaia9EatB49gLaip9FL6HV0AH2KjmOA0TEOZozZYVyMh0VgiVgaJscWY+VYNVaPNWMdWDd2FRvAnmHvCCQCi4AT7AhehBDCbIKQkEdYTFhDqCXsI7QSughXCYOEMcInIpOoT7QlehL5xHhiOrGQWEasJu4hHiGeJV4nDhNfk0gkDsmS5E4KISWQMkkLSWtI20gtpFOkPtIQaZxMJuuQbcne5AiygKwgl5G3kA+QT5L7ycPktxQ6xYjiTAmiJFKklBJKNWU/5QSlnzJCmaCqUc2pntQIqog6n1pJbaB2UC9Th6kTNHWaJc2bFkPLpC2j1dCaaWdp92gv6XS6Cd2DHkWX0JfSa+gH6efpg/R3DA2GDYPHSGIoGWsZexmnGLcZL5lMpgXTl5nIVDDXMhuZZ5gPmG9VWCr2KnwVkcoSlTqVVpV+leeqVFVzVT/VeaoLVKtVD6teVn2mRlWzUOOpCdQWq9WpHVW7qTauzlJ3Uo9Qz1Ffo75f/YL6Yw2yhoVGoIZIo1Rjt8YZjSEWxjJl8VhC1nJWA+ssa5hNYluy+exMdgX7G3Yve0xTQ3OqZqxmkWad5nHNAQ7GseDwOdmcSs4hzg3Oey0DLT8tsdZqrWatfq032nravtpi7XLtFu3r2u91cJ1AnSyd9TptOvd1Cbo2ulG6hbrbdc/qPtNj63npCfXK9Q7p3dFH9W30o/UX6u/W79EfNzA0CDaQGWwxOGPwzJBj6GuYabjR8IThqBHLaLqRxGij0UmjJ7gm7odn4zV4Fz5mrG8cYqw03mXcazxhYmky26TEpMXkvinNlGuaZrrRtNN0zMzILNys2KzJ7I451ZxrnmG+2bzb/I2FpUWcxUqLNovHltqWfMsFlk2W96yYVj5WeVb1VtesSdZc6yzrbdZXbFAbV5sMmzqby7aorZutxHabbd8U4hSPKdIp9VNu2jHs/OwK7JrsBu059mH2JfZt9s8dzBwSHdY7dDt8cnR1zHZscLzrpOE0w6nEqcPpV2cbZ6FznfM1F6ZLkMsSl3aXF1Ntp4qnbp96y5XlGu660rXT9aObu5vcrdlt1N3MPcV9q/tNLpsbyV3DPe9B9PD3WOJxzOOdp5unwvOQ5y9edl5ZXvu9Hk+znCae1jBtyNvEW+C9y3tgOj49ZfrO6QM+xj4Cn3qfh76mviLfPb4jftZ+mX4H/J77O/rL/Y/4v+F58hbxTgVgAcEB5QG9gRqBswNrAx8EmQSlBzUFjQW7Bi8MPhVCDAkNWR9yk2/AF/Ib+WMz3GcsmtEVygidFVob+jDMJkwe1hGOhs8I3xB+b6b5TOnMtgiI4EdsiLgfaRmZF/l9FCkqMqou6lG0U3RxdPcs1qzkWftnvY7xj6mMuTvbarZydmesamxSbGPsm7iAuKq4gXiH+EXxlxJ0EyQJ7YnkxNjEPYnjcwLnbJoznOSaVJZ0Y67l3KK5F+bpzsuedzxZNVmQfDiFmBKXsj/lgyBCUC8YT+Wnbk0dE/KEm4VPRb6ijaJRsbe4SjyS5p1WlfY43Tt9Q/pohk9GdcYzCU9SK3mRGZK5I/NNVkTW3qzP2XHZLTmUnJSco1INaZa0K9cwtyi3T2YrK5MN5Hnmbcobk4fK9+Qj+XPz2xVshUzRo7RSrlAOFkwvqCt4WxhbeLhIvUha1DPfZv7q+SMLghZ8vZCwULiws9i4eFnx4CK/RbsWI4tTF3cuMV1SumR4afDSfctoy7KW/VDiWFJV8mp53PKOUoPSpaVDK4JXNJWplMnLbq70WrljFWGVZFXvapfVW1Z/KheVX6xwrKiu+LBGuObiV05f1Xz1eW3a2t5Kt8rt60jrpOturPdZv69KvWpB1dCG8A2tG/GN5RtfbUredKF6avWOzbTNys0DNWE17VvMtqzb8qE2o/Z6nX9dy1b9rau3vtkm2ta/3Xd78w6DHRU73u+U7Ly1K3hXa71FffVu0u6C3Y8aYhu6v+Z+3bhHd0/Fno97pXsH9kXv62p0b2zcr7+/sgltUjaNHkg6cOWbgG/am+2ad7VwWioOwkHlwSffpnx741Dooc7D3MPN35l/t/UI60h5K9I6v3WsLaNtoD2hve/ojKOdHV4dR763/37vMeNjdcc1j1eeoJ0oPfH55IKT46dkp56dTj891JncefdM/JlrXVFdvWdDz54/F3TuTLdf98nz3uePXfC8cPQi92LbJbdLrT2uPUd+cP3hSK9bb+tl98vtVzyudPRN6zvR79N/+mrA1XPX+NcuXZ95ve/G7Bu3bibdHLgluvX4dvbtF3cK7kzcXXqPeK/8vtr96gf6D+p/tP6xZcBt4PhgwGDPw1kP7w4Jh57+lP/Th+HSR8xH1SNGI42PnR8fGw0avfJkzpPhp7KnE8/Kflb/eetzq+ff/eL7S89Y/NjwC/mLz7+ueanzcu+rqa86xyPHH7zOeT3xpvytztt977jvut/HvR+ZKPxA/lDz0fpjx6fQT/c+53z+/C/3hPP7JdKfMwAAACBjSFJNAAB6JQAAgIMAAPn/AACA6QAAdTAAAOpgAAA6mAAAF2+SX8VGAAqgi0lEQVR42uydd3gU5fr+PzNbk03vvdB7lSJgBcVyFBui2EBQLKAUPcdzjqf40+8pKiCKIqCoIMrBigWVJr1JD70lJCG9b7ZO+/2x2TWEAAkEEnTv69orZWd3Zt6Zed/3vt/nuR9BLj2qcaEQBARRD7Vevr8FEQQRQdCBKAICfvhxOWP37j2MengsNpsNnU53yfaraRoBAQGIoojNZkMQfr/PktPp5Kmnx/H8H6f4b0g//PDDDz/88OPccNvRijM93MQPP37HEJpEADiLMACiRyCoEQIQhJqfehB1nv+LOhB0NUKB4BMN/A+oHy1y/HBL/OmFF/nq8y8JCAjwN0gzwOFw8MAD9/N///5//sbwww8//PDDDz/8AoAffrQIAcAHrdaPs+yutkCACKJXEND5RALBKxaIOkA8XVjww49LcD9vXLqUCS/8nSq7E/0ljALwwwOn08ngIdfz7uyZ6PV6f4P44Ycffvjhhx9+AcAPP1qOAHAxBQOxVpqBN3pAVxNdUCMUeMWD2uKCVzTww49GQpXcZK/6ibmLvuCTlRsw+6MALjlcLhe9evVk3gdzCAkN8TeIH3744YcffvjhFwD88OPyFQDOVyw4m2Ag1Eo/8AoGNb/XF11Q+32fWOAXDPzwoOxABgfWrubvcxdwvKgcc2AgaJq/YS4RJEkiPT2NBQs/JC4u1t8gfvjhhx9++OGHXwDww4/fhwBwMQUDsca4sJaPgVg7wkD/69+nCQb+zuW3DNnlpHDDar75cRmvL/wSfWAQoui/5pes/WWFiIgwPvjofTp16uBvED/88MMPP/zwwy8A+OGHXwBoasGgEf4F3pQE0e9f8FuFLS+XrLWr+PeHC1m75xCWkFB/FMAlgqqq6PV63p09k6uuHuRvED/88MMPP/zwwy8A+OGHXwBo6YLBrwLAr2JAHf8C399+/4KWiKJtm9iy+mdenD0fmypg0Bv8jXIpnjJNQ5Ik/v3f/+Pee+/2N4gffvjR4qAoCqqqIsuy73dFUZBlGYfDgd1ux+Fw4HK5cLvduN1uZFlGkiR0Oh0mk4nAwEBCQ0MJDQ0lMDAQo9GIXq/HZDL5G9gPP/wCgB9++AWAy1ssOJtgcL7+BTVlGEURv3/BRRpLrJWcXL2cWf/7ik9XrCMoNMxHUAW/SHNR4XQ6mThxAs9OmuBvDD/88OPS9v1uN0VFRRQUFFBdXY0kSb6Xw+HAZrPhdDpxOp0+Yu8l914RwCsMKIqCpmmoquobPwAEQUCn02EwGDAajZjNZgIDAwkICPCJArVL0ZrNZsLCwggJCcFsNhMUFERISMhvMj3N7XZz8OBBioqKUBSFxMRE2rZt6xdG/Gi0AKD552pnJok1zESoxVCEOmxFaMLI14ZcC0HT/NfMLwD4BYMzCwanphec7l+gQzBaQPSvWF8oSnZvJ2P9Wv448z3KHDJGsxlREFAUxS8CXEQ4HA7uH3kf//7Py/7G8MMPPy7u6KtplJeXk52dzdGjRzl+/DhFRUXY7XYfga9N3H2jcZ0xQKs1WT7be/VtoygKFRUVWK1WKisrqaio8P3tdDoBMBqNBAYGYrFYCAsLIy4ujsTERCIjI4mOjqZXr1707duX0NDQy/p6LF++nCVLluByuQAwmUykpaUxYMAAunXrRlBQkP+m/Z3j+PHj5OTkYDabSUxMJCkpCdx21JIsz7z4HDNpP/zwCwB+/PYEA01FCIxEDIzyN9MFwllVQcHalcz+7Gvm/7CK2PhEBg+5jg0bN1FcVOKvU3+x2t3pZOjQG3l71gx0Op2/Qfzww48mhc1mIy8vj8zMTI4dO0Zubi4VFRW43W5E0ePzU5v41ybxXuIuiqLvpdfrT3npdDr0er1vhd8b8h8YGIgkSVRWVmK1WnG5XDidTtasWcOmTZsu+Lw6duzITTfdxG233cYVV1xBcHDwZSfGLFiwgLVr12I2m33/86ZOJCYm0q9fP/r06UNYWJj/Rv4dIj8/n6lTp1JWVoaiKHTq1Ik//elPpwgAfvjhFwB+qycnCL5B2Bta54dvBEUwBCCGJPrboglQvH0z+7duYcqbc6hwSox/djyqqjL/w4XYbXZ0ej9BbXoBwEW//n2Z98FsAgMD/Q3ihx9+XBAkSaKkpISsrCyOHDnCiRMnKCkpweFw+Mi8dz4hCAKBgYFEREQQHByM2WwmICAAi8WC2WzGYDCg1+sxGo2nhO97t9Pr9YiiiE6nO+VVO1xfVVVf+oDdbmfv3r0cOXKEkpISKioqKCkp4eTJkxQUFFBZWYnNZsPhcOBwOHxChFdc8B6D2Wz2iQ2xsbFceeWVXH311XTp0oXY2MunpOrx48eZN28eJSUekV0QBCRJOkWUiYmJ4frrr2fQoEEYDP5ox98LZFlm7ty57Nq1C4PBgNvtplWrVvzphRcQJAeq3wPADz8ubwHAS/AFUQRRqAlxF3wEF1nG7XKDIGAMNIOiospKvWF2v0MFAAQdupAk0PkHxguFvaSI4s3reOuTz5j5+RKuvvpanho/jqNHjvHxgk+x2x3+VeomhsvlplOn9sz/+EMiIsJb9LE6HI5TcnX98MOPloGKigqys7M5fvw4x48fp6CgAKvV6kvhqk0oDQYD4eHhJCUl0aZNG1q1akVsbCwmkwmdTtcsKV+KomC1Wn2GgtXV1ZSWlmK1WnG73SiKgsvlorq6msrKSoqLi3E6nb4IBlmW0TSN8PBwWrduTbdu3Wjbti0REREt/totW7aML774Ap1OR2hoKOnp6Rw9epTy8nL0er3PVyE6OprnnnuO8PBw/w3/O8CaNWtYtGiR7x53u9106NCByZMn+yMA/PDjchAABMFL8usQfEHwEXynw0W1zU5lVTVVVdVUWqvJPJHLvgPHKC4tx2azYzQaGXbLtVx/dT+iY6NBJ4Iso0jy71wDUBGD4xGM/ly5phBUirasZ+PatTz0j39hCQrjuuuu49Gxj7B92w4+XrAIt9vtFwGaELIsExERwQcfzaVTp44t867QNFasWMHmzZuJiopiyJAhtG3b1n/xfqNwu90YjUZ/Q1wkSJKELMuoqup7ecm5JEm43W5cLpfv99rme7VN97wr6wUFBeTm5lJeXo7L5TotrF8URYKDg4mLi6NVq1a0bt2a5OTky5ZIOp1OTp48yb59+9i3bx95eXk4nU7fuKSqKjqdjsjISNq1a0eXLl1o06YNISEhLfJ88vPzmT59OlarFb1ez9ixY4mOjmbjxo388ssvVFZWIggC33zzDcOGDeOVV165LIQNPy7snpgxYwYVFRU+EcjtdtOlSxeeffbZ+gUAv1XTpZgi+9vaLwCcDlEUPC72uloEHw0UFdnlptrmwGq1UVpeQUFhCYVFJRQUlZKbV0hBYQnllVaqqqqprrbjcrtRVAVN4xT13qDXk5IUR6/unbh6YG/69OpCXEIcqMrvVwjQVISAMMTAaP+T0ASoPplN9tplPPavaWw7nEVKUhrXXX8NDzx0H6tWrOZ/iz5HVTV0Or/y3FTkWlU1Xpv6b4YNu61FHmNlZSWvvPIK5eXlqKpKQkICL7zwgt+g6jeGoqIi/vnPf3Lw4EHuvPNOnnrqKb/Y10TPeGlpKVlZWRw9etRHWL3O+bWFAO//apfb864Aewl93Vx9QRBOCesHCAgIICoqitTUVFq3bk16ejrR0dG/uRByp9PJ8ePH2bt3LwcOHKCoqAhJkk5pD4PBQFRUFB07dqRLly60atWqRaVbaZrGnDlz2L59O5qmMWjQIB555BEAcnJy+OKLL9i7dy/ffvstLpeLZ599ltGjR5OWluZ/uH6DkCSJefPmsW3bNkwmk+95lyTp1AiA0joCgJ+V+uEXAC7BDgUBUacDvc63kq84XZSWV1BSWkFhUSl5+UUUlZRTXFJKXn4JJWXlVFZVY7XasDscSLKMdxwXBQFB9AzioiD6ogbqGyhkWUGSZQx6HclJ8Qzo253HHrmHtHbpqHbn7y81QNPAYPakAfhxYVBl5Opiitav5L3PvuMfH/6PxPgUgoJCuOPO27nt9ptZsuR7vvriG3Q60V8doAknsY+Meoh/vvS3Fnl833zzDUuXLvUZQUqSxP3338+1117rv3i/IZL6+OOP89577/n+9+CDD/L6669fVjnVLemZzs/P59ixYxw9epQTJ05QWVmJLMtnHNvrm2ecazuvAGAwGAgNDSUpKcm3yp+QkIDFYjnvc7Barb6wfLvdjsvlQhAEzGYzOp2uZj7ya0RCXUHCW/rP6yFQuwygyWTyGQg2Faqrqzl69CgZGRkcOnSI0tJSFEU5RQwwGo3Ex8f7xIDU1NQWUXJv06ZNzJ8/H03TiIiIYPLkyURFecyNbTYbn376KZMnT8ZqtdK/f3+GDBnCsGHDuOKKK/wP228MK1as4Isvvjglkgc8kVkdO3Zk0qRJHg+A0hNNGwGg1foO7Qy6QkPphYC/LMFvimU38J6oW2fxtyAAnEb43RLFJaVk5xSw/9Bxdu87RO7JQopLyigtr8Rmc3hy0mq1g8dB15PrL9Yy9ruQCZssKzidLnp07cCLfxxH//49QVFR5N9ZNIAg1PgA/Bq2Ksuy37m+wTeTguayoboqEVGoOHqEjPUbuf//3qKo3Ep6amsMegOPjHqQgVcPYPGiL/j+ux98pkV+XBjcbjedO3di/scfEBbWcspaaZrGkiVL+PHHH0+ZqHvziMeMGUO3bt38F/A3gPfee49x48adZjTbpUsXXnnlFYYNG+ZvpHOgrKzMV17v6NGjFBYWYrPZgNON97xGed5XXQO92o77dZ33DQYDJpPJR6YtFgvx8fEkJycTERFxigFfQ6AoCoWFhZSUlJCTk+OrEmC1WnE4HL6QeoPBcIoBn/d4akcg1CYsXmGgdkSDNyXB+31ew8HQ0FDCwsKIiIggNDSU4ODgCxIvysvLOXLkCHv27OHYsWOUlZX59u2NoggICCAxMZHu3bvTt2/fZk2JqKioYNq0aRQVFQEwatQo+vfv73tfkiRefPFFXn31VYKDgxk2bBhRUVHccsst3HDDDf6H7zeCzMxM3n33XaqqqtDpdL7+2OsB0LFjx1oRACf8KQB++LWJphYAPIRfBJ3ek7fvligqLuNoZjY7dx8gY/8Rjh7PJi+/GLvTs+ounjKoC5eUGLlcboKCAhl5zy088ei9hEVFoDhdvyMCqyIGxyEYfy0DVFhYRGxsjP/pOFfTuW2oznKQXYCGIOpw22wUbdnMP977lA9/WEVqcitMpgACAgJ4fNyjdOvehY8XLGL5spUYDAa/CHCBUBSFoCAL78+bQ89ePVrEMamqyhdffMGKFSt8OYjeVT9N02qOOYgnn3yS1q1b+y/iZYz9+/dz/fXXU1hYWO/7RqOR5557jr/85S8XRMp+a3C73RQWFnLs2DGf2355ebnPxd1LhlVVxWQyER4eTlpaGmlpaYSGhp7iru91tPeuintJtfdnfa/zhd1uJz8/n6ysLA4fPkxZWRlOpxOTyURoaCgRERFEREQQGRnpI+ImkwmDweBb0ffOdWof5ynjSs15e1+yLPu8Ddxut8/oz2vqV1VVhdVqxel0+soTWiwWIiIiiI6OJj4+nsjISMLCwhq9Yl9cXMyBAwfYu3cvmZmZVFVVnSYGJCQkcM0119CvX79mSw/46KOP2LBhAwA33HADw4cPP61Np02bxp///Gc6dOjANddcg6qq3HXXXQwePNj/QF7mcDgczJ49m/3792M0GlEUhbCwME3TNK2yslKUZflUD4CyugKA1zycs6/a+1fn6zSOcIbfz4s9nuN7/ai3uWo3eSObqkkEAJ13hV/0mOuVlVZwPCuX3XsPsWPPAQ4eziQvvwiHwwlQaxBsGRdWURRcbjf9r+jOP//8FB27dURzOFBV7axCB4CseJR5nShyWXI5TUUwhyJafiX8J0/mkXMiG0EUPRUWWmjnoyoqnbt0uvQ1jBUXqrMSzVUNmkrtCy/odJTvzWDlsp95+N9vYzQHkJyYhsvlIjIygqfGjyMtLZV5789n3doNGI1+EeCC7oKaUNr/vPp/3HPPXS2iL/nss89YtWoVBoPBtwI4YsQIqqur+frrr9Hr9ciyTHx8POPHj/eFq/pxecFut3PXXXfx008/+cj+1KlTT27atCn4k08+OcU1bciQIbz22mv06NHjd9telZWVZGdnc+TIEY4fP05+fj7V1dU+QukVzwRBwGKxEBcXR5s2bWjTpg0pKSnNUs/du8J/5MgRDhw4QF5eHm63m5iYGNLT02ndujVxcXGEh4c3u0eA0+nEarVSUVFBcXExRUVFFBcX+6oBmEwmwsLCiI+PJykpidjYWMLDwxsU7adpGvn5+T7zwBMnTmCz2U4RNtPS0rjmmmu44oorLrkR5ooVK1i8eDEA3bt358knn6xX6Pnss8/44x//SO/evYmPj0cQBB566CH69Onj79AuYyxdupQlS5b4nkFJkhg+fHjuvn37Avbt2xepqipdu3atEQAc9QgA/jb043eoIZyPAKATRTDoPYRfVakqryTzxEn27D3M9t37OXj4ODknC7HbPbVoWxrhr3+AA6fLRVJ8DH+c+Ci333o9iCKKy33KdqIogAYOl4RTkjHqdJhMesTLlcRpGuhNnjSAmnMoLCzi1luGkXcyH4OhZaYCKIqK2Wziu++/pkPH9pdMLFGd5WguK6hyvaOGqNNhLykmZ+Mmxr4+mw179tOmVQcMBiMul4vExAQmPPsUUVGRzJk9jy2bf/GLAE0w8R0z9lFe/NsLLZL833PPPVx77bWoqsqHH37Ipk2bMJlMuFwuOnXqxBNPPOEvEdhEOHr0KBs2bCAwMJChQ4cqISEh1cBFyQ157rnnmDp1qu/v8ePHV7z11ls/yrJsevfdd3v/7W9/S6moqPC9HxcXx9SpUxk5cuTv4lrIskxBQQGZmZkcOXKErKwsysrKcLvdp5XX0+v1REREkJycTLt27UhPTychIaFZKio4HA6ysrLYsWMHx48fp6ioCJ1OR3x8PK1bt6ZDhw4tzgzvXP2jt/zfyZMnyc/Pp6ysDJfLRWBgIHFxcaSkpJCcnEx0dPQ5owRkWSYnJ4ft27fzyy+/UF5e7gu51ul0dOzYkSFDhtCx46WrzLJjxw7ef/99ZFkmKSmJKVOmnPH6/Pzzz7z66qskJyej0+kICgpi7NixtG/f3t+BXobIzMxk5syZ2O12dDqdt+SfNHr06JXz58/vvnfv3nhBEOjcubNHAJDqEQD88MMvANQPURQQdHrPKr+m4aiqJis7j4z9h9mx+wAZB46Qm1uAtdruGwT0et0Fhdo1FyRJRqcTue3ma5kwbiSpaUkgKYDHcbzK7qLa7kavFwm1mDEZdL+JiCBdaLLPB8DhcHDP3fdzYP+BFmHyUx/cbjetW7fi8y//R0jIxY8A0CQ7qqMcZIf30TnDE+UxtizZvo35X3zHH2d/THRUHNFRcaiqgsvlpk3b1oyfMI7AwEDmzJ7Htq3bMZlN/t7oAia41113LbPfewdDM3lX1CX/iqJgMBgYPnw4V199tW+76upq5syZw4EDnmfL6XTSr18/Ro8e7ffduACUl5ezcuVKNm7ciNVqRZZlxo4dmzdw4MAcoF9T7++LL77g/vvvR5IkAHr16qX+8MMPK2JiYgoBEdDWrVvX5Zlnnum2a9cu8dfuQWDUqFG8/PLLJCYm/uaug9VqJTc315fLn5eXh9VqRVXV09z2veQzPT2dtm3bkpaW1qwl2qxWK7t37+aXX34hMzOToKAgWrVqRbdu3UhLSztlld9r2He5wuVyUVZWxsmTJzlx4gT5+flYrVZMJhNxcXG0bt2atLQ0oqOjzzqPO3nyJKtXr+aXX37Bbrf7opvMZjM9e/bk+uuvJzU19aKfT05ODm+88QbV1dWEhYUxZcoUYmLOnMa4YcMG5s+fjyiKqKpKVFQU48aNIyUlxd+ZXmb38axZs04J/Q8ODmbMmDG7ExISMubOnTv0wIED0ecUAC75s+wNbddqfm1kbkGtj58+B62zDZw9RLwlpDmca59CPed8pt/rnmft9tUa2Aan7LO+Lz/HwXrK0NVzgC1rzDirAKAzGECvQ3E4OZlXyP5Dx9m2cx+79x7i0JEsrNU2T/ieTofhMiX8Z5rMV1mrSUtJ5K/PP0mfvr2ptrtQFRmjXkdUWCBBQQGg14MsX/5lBDUVMSgWwfRr1OqE8ZP4Zsm3LXaVw253cM21VzF/wbyLuyNVRnVUoLmqTgv3P6NgptdTdeIE+9eu576X3yC3uJzWrdqjrwmXdLlcdOvWhXFPjkUQBN6b8yE7duxssWJLS4fb7aZNm9YsWPjBWSd9FwuSJPHZZ5+xevVqH/k3mUyMGDGCAQMGnLZ9SUkJs2bNIjc3F4PBgMvlYvDgwYwYMeKMpMKfCXeGx1NV2bZtGz/++CO5ubnodDoURSEgIIAnnnhib8eOHauB/k25zxMnTnDDDTdw5MgRACIiIvj22293DRgwIAPQ17pkSl5eXvxLL73U57333gutbRLYrVs3ZsyYcdlXg3A6nRQVFZGTk8PRo0fJysqipKQEl8vjo1M7V1yv1/vc9tu2bUubNm1ISEjAbDY3enz25sFbrVZsNhtOp5Pq6mpcLhdyLSNfr2meyWQiMDCQ4OBgn2meN3UsPz+f/fv3k5GRQVVVlc/crm3btoSGhv5uniOvIHDs2DFyc3Ox2WwEBQWRlpZG27ZtSU5OPqOPxeHDh1m1ahUZGRnIsowoiiiKQkhICP379+eaa64hOvrilRuuqqri9ddfp7CwEJPJxBNPPEGnTp3O+plffvmFhQsX4nK5UBSFpKQkxo0b56/ccRnhhx9+4Ouvv8ZgMPj8dYYPH36yX79+mzRNk+bOnTukXgGgPLtGAPCPrH78fnFGAUAURXZlHGTl2i1k7DvCkaNZFJWW47A76dS5A2lpKaxaubpZQvQuFrxleQIDA2nbtjX9B/Sjc5dOuN0yuB3ceHVPgiM9E4Ki3Dw2bd1BYnwcvXt2Ra0p5XO5CgCCKQQx6NeBb87s93jl5X+3WOMqu93Oo2NG8Y9/vnjxmkWyozrKQHY2apAQRBHZ4aBwy2Zefn8Rc79bTkx0AhHhkbUmzi769OnNY+NGI8sKH7z/Edt+2eGPBDhPwS4wMJD3P5hD7949LzkBWrRoERs3bvSR/4CAAB566CF69ep1xs/l5OTwzjvvUFFRgSiKyLLM3XffzY033nhGAQD/VOUUZGdn89NPP7Fz505fyTJFUUhNTeXmm2/O69mz5wZBEBKBAU05RowcOZLPPvvM979XX3315PPPP78K0NVziWTAvHDhwq5/+tOfOpw8edL3RnBwMC+++CJTpkxp0pJuF1tsKy4u5sSJE2RlZXHixAlKSkqw2Wy+/H1BEHyr/AEBAURHR5Oenk67du1IS0sjMjKywYsFNpuNiooKioqKKCgooKCggNLSUiorK337NJlMWCwWAgMDT3HZ9+7Da6LndDpxOBw4nU4MBgORkZEYDAaKiooICQmha9eudO7cuVlExJbYpxYXF/vSN/Lz8xEEgcTERDp06ECbNm1OE0dUVWX37t2sWrXKJ44JgoCiKMTExDBo0CCuuuqqizKncDgcTJ8+nRMnTqDT6Rg1ahR9+/Y95+c2btzIp59+6qu60K5dO8aOHdssfhN+NA4HDx5k7ty5vtB/l8tFr169bPfff/8anU5nBbS5c+cOPrsAUDO+CiD4zf38uMzR2Pv4jAKAzmhg+Yr1TPzra1RWWAkwm9DpRCRJplu3zjz/p8m8O2sua9esv6zzVzVNw+2WEIDY+Fh69erBlQP60aZNa8rLK1i7Zh2rf16L1Wrllhuu4o4/XM/ajVtZ/NVSUpITef6Zx7iyb0/Uy7l8oKaB3ljjA+DpFDes38hDD47GbA5oVnNDTdNqNFrhlOOw2ez857+vcN/9916EnSqojvJfV/3Pg3YJOh0VBw+w+qeVjPzXW6CJxMcnYzSYEEXBd9/163cFYx4bhSzLfDhvAVu3bsNoNPo9ARoJl8vFP/75Io+MeuiS7bO6upqFCxeyfft2H/kPDAxk9OjRdO3a9Zyf3717Nx988AFut8dnRBRFxo4dW69RnK+GuSD87kUAp9PJqlWrWL16NRUVFb6w46CgIK6++urqIUOG7AgKCsoFJCAJaDKb7zfeeINJkyb5/r777rsdjzzyyLGbbropw2AwnGk5SQXUffv2tXv++ee7/fDDD6cMmPfddx/Tp08nLi6uRRJ+b4m748ePk5OTQ1FRETabDUVRTnPs1+v1BAcHk5iYSPv27WndujUJCQmNJn3FxcVs376dzMxMn8AgiiIhISFER0eTkJBAbGws0dHRBAcHExQUdM4UGlmWffnw2dnZ7N69G0mS6NGjB717975scvqbA9XV1WRnZ3Po0CGysrJwuVzExsbSqVMn2rVrd0oZQJfLxZYtW1izZg05OTmnpH60atWKYcOGNbk/QF0B4NFHH+WKK65o0Gd/+uknlixZAniiufr3788jjzziT8lqwbBarcyaNYtjx45hMBiQZZnQ0FDGjRu3JTo6+rggCAZN02SvAAD8WgXgDALA5YSWVoxA0M7vIM9EWM90PS7Wef9eizucUQAQBBANRj5Z8Dn/98YHSKqKThRxOB0YjUb+9KcptG7Tilde/g/Hj2VeduHLsqwgyxIBAQG0a9eWfv2uoNcVPYmMjOTEiWzWrlnH5k1bKSoqwWgwoKFRVFJEta2KlOQEJj41hkfuuZVgSyCa7rcxUIihSQg6z3XMycnl1ltup6ysrPlWpzQNSZZRNRVR8PhKeImx2+Xiiy8XM2DggCa+MZwo9tKaXP/zHxUEUcRVVcXJjRsZ+993WLNrL3GxSZjNgRgNBl9orNst0f/Kvjw65mE0DRYu+JR16zag1xtatGlmSxQAevXqyZz3ZhERcfFrUldUVPDhhx+yd+9ezGYzsixjsVgYPXo0Xbp0afD3/PzzzyxevBhBEJBlmfT0dCZPnnxaf6p5hbrfuQCwe/duli1bxpEjR3wO5IIg0LVrV/XGG2881qZNmwygGk8ovgIkNJUAsG7dOm6//Xa8xn4dO3Zk/fr1K9atWxcKqMOGDTvMrykA9fJph8MR8corr1w5derUKG+YPEDXrl3597//za233tqs7StJEmVlZWRnZ/tW+QsLC6murvaFdtc27/M69kdGRpKamkrr1q1JT08nOjq6UeNGVVUVubm5HD9+nNzcXMrKyhBFkZiYGJKSkkhMTCQ6OpqwsLDfVNTh5Qi3201ubi4HDhzg6NGjOBwO4uLi6NKlC+3atSMkJMQnGqxdu5b169dTUlLiE+rCwsIYPXp0k4oANpuNadOmcfLkSQwGA2PHjqV79+4N+qyqqnz22Wf8/PPPPk+Ahx56iIEDB/ovdgvF119/zdKlSzEajbVD/7P79u27RaiZJCqKIr///vu+CIAOHTowefJkNMmBWpFdxwSw7qiq+amiH5eZ5HMeC5Vn8wAQ9TqKd+9h1gf/Y+G63QgI5BVkI4o6Bl45iD+9MJmc3JO89t/pOByOFh/GqGkakiShaRrRMdH06tmdflf2pX2HdgiCwKEDh/l51Rp27txNVVUVRqMRUSdSXV1FYXEhBh0Mv+VGJj81mrTwEFxOJ8GJiRiDg39dobtcoamIlmgEc5hPIOnbtw87d+5ssYf8888/N10OraahuSpRneWgKlxwsHWNGWDxtm0s/Hopz82aT0hwGGHhnpJvJqMJXY0IIEkS/fr34eFHHiAgwMxni7/kpx9XIghcNqHBLeHZlmWZv//jrzz8yIMXdV+lpaXMmzePw4cPYzKZcLvdFzSp/eabb/juu+9wu9107dqV8ePH1yuoar9jAaC4uJjly5ezadMm3G43Op0OSZKIj49nyJAhRQMGDNit1+uLakZJ70MjN5UAkJeXx0033URGRgbgKfm3ePHio8OGDdtYWFgYPnPmzO4vvPDCZovFIp+j81AA47ffftvlj3/8Y4eDBw/6ZqFms5kXXniBv/zlL5espJwsy5SVlZGbm0tmZiZZWVkUFRVhtVqRJKlewh8YGEhkZCTJycmkpaWRmppKTExMo1bQJUmioKCAY8eOkZmZSWlpKaIo+oQE73e21BQ0P369f3Jycti7dy9Hjx7F7XaTnJxM9+7dadeuHQaDgbKyMn766Sc2b96M2+1GVVUiIiJ47LHHaNWqVZMcR3V1NVOnTiU/Px+TycS4cePO6QFQG06nk/fff589e/agaRqtWrVi4sSJjfan8OPiIy8vjxkzZlBVVeVz/e/Zs6fjvvvuW63X66sEQdAFBgbKgiBI06dPv8krAKSkpPDiiy/WCAA5tTwAzo88+XHWGRn1uxE25G8/LpmscDYBQBBF3FWVZG/YwKJ1u/hk+Sayc46DKBIfk8Qdd93Ggw/dzzdLvuejDz/GZDS1yOuoqiqSJKHX62nVKo3+V/bliit6E58Qh81mZ/euPaxevY79+w7gdLowmYyIog6Hw0ZxaREOp4Mru7TjsVuv59q+vQgID8MQFk5QfDw6vf7yJ/81BNiTBpDsM7q77rrrWb3659++AKBIqPZSNKm6SQcDUa+n4sgR9m/cxL0vzyC/pJyEhFTfpLq2COByuenZqzujRj1IRGQEP/24nK+/+gaHw9ns9aUvF7hcLjp17sT7779LbNzFMXIqKChg3rx5ZGZm+kr5xcXFMWrUKFq3bn3e4sW2bdsoKCigV69eZ3WH/70NlbIss379elasWEFRURF6vR5FUTCbzfTt29d54403HoyOjj5QQ/brrr7LQBxww4WOH08++SRz5szx/e9Pf/pT1X/+859lgAvQZsyY0a979+7511577QnOHgUAnpQA5fDhw+3uvPPOfvv37z/lkt5zzz28/vrrF8U9XVEUH+E/ceIEmZmZFBQU+Con1C3PJwgCAQEBvhJ9aWlppKWlERsb2+iQebfbfVoYeUREhO874+Li/ITrMobb7SYrK4s9e/aQmZmJKIq0bduWXr16kZSUxM6dO1m4cKHPuyE6OprHH3+8SZz3q6qqmDp1KoWFhQQEBPD000/Tpk2bRn1HZmYmb731Fg6Hp9LPQw89VK+Jqx/NizVr1vDJJ5/40u5CQ0N59NFHt8fHxx8WBMEAaEFBQbKmabJXAAAICwvjtddeqyMA+OGHXwA4O4k5fpyifXtZvH4nr8//DKvDRkpSKyyWYJ6d9BRdu3VhxvS32bJpK+aAljOAe039QkJC6NqtMwMHXUnHjh0IDg6isLCIX7buYOOGTRw7dtxnJiQKIg6Xg7KyYiqtlaQnxvHIjddwx4DexKWnYo6LJzAqCr3J5DE60n5D4UCC6PEB0BlqBIDrWL169W9aANDcNlR7KSjuJi8FI+h0OCsqKNqymeff/ZjPf95AVFQcgYHBaJqKgIDJZEQn6nwEtm27towe/SBp6Wn8snUb/1v0OXl5+X5fgAYSaVlWePFvLzBq9MNN/v3Hjh3jo48+8q0yuVwuWrduzcMPP0xCQsKlOcdGCgBZWVmsXr2a8PBwhgwZclmtqB49epQff/yRffv2+cioqqq0adOGW2+99VinTp0ygKoawl1fs8hALHDjhRzH0qVLGTZsmM9dfvDgwe4lS5asslgsxTX7VrZv3560bNmy5D//+c+b+DUC4VyXUp4zZ06fL7/8su22bdv0paWlvjc7duzIW2+9xeDBFxa8oKoqFRUVp6zwFxQUUFVVhSRJpxF+wEf4k5KSaNWqFSkpKcTGxhIUFHRegkNOTg779u0jJycHRVGIj4+nXbt2JCcn/25c9n9vsNlsHDlyhN27d3Py5EnCw8Pp0aMHFRUVrFy5ErvdjizLJCQk8Pjjj19w/1lRUcHUqVMpKioiKCiICRMmkJaW1ujv+eCDD9i0aROCINCmTRueeeYZf3WeFob58+ezfv16jEYjbreba665pnzYsGErNU3TBEEQgoKCpJr5gE8A8FYheffdd+sXAC7m1Kqhg3btMndnK3dX3/anTDzr2f5CMhrq7vNc/2/o9zZkn2faHw04b62B332mfWlnOU/hHNerKSdxzSkAeENO87dvp/JkLs/P/pSlm34hIjyaiPBo4uNj+evfXsAtufj3K54yLM2Zo6dpGrIko2gq8XGx9OnbmysH9Ce9VRpoGllZ2WzauIUtm7dSWFCEIIqYTEZAwOW0U1ZeSkVVOeFhIdx1dX9GXnclHdq1xpKSQmBsHHqj8bdH/H2NpyKGJCAYLL99AUBTUR1laM4qPAtyF+eJFASB4u3b+HLpCp6aPpcAs4XomHjfZFvAkw6g1+nQ8KyixMXFMvLB+7iiTy+yMk+w6NPP2LN7LzqdDp3Or1qfDU6nk+sHX8esd99q0n5o3759zJ8/n/LycoxGI06nk65duzJ69GhfzmtLFEQ+/PBD1q1bh06n4/rrr+f+++9v8ddQlmWWL1/OsmXLsNlsvtzhiIgIrr/++qpBgwbtDAwMzOXUcP96+ScQBQy9kAf8r3/9K//6178AiI+PZ9myZTu6dOmyFzD4dES32/CPf/xjwJNPPrkzJSWlEmjIg6ocO3Ys/MMPP+x55ZVX2qZMmdL24MGDvjctFgsvv/wyTz/9dKPv5ePHj7Nv3z6ysrLIz8+nqqoKt9uNIAiIouiLQhIEAbPZTHh4OImJiaes8F/IanxFRQUHDhzg8OHDuN1uEhMTfaTfT6h+XygtLSUjI4P9+/fjcDioqqqiqKjI59yelpbGY489dkHVF8rLy3n99dcpKSkhNDSUSZMmER8f3+jvOXbsGG+99ZavjOWoUaPo16+f/yK2oPF92rRpZGdno9PpUFWVBx988FC3bt12CIJgCAgIkHU6nVZbADh48GC0LMtomsYHH3zgEQAq/REAfvhxbgEATyqAZLdTuHULyzZt55k35+GWZFqnt0OSZAYOupKnx48jY88+3pg+E0mSLnnusqZquCVPbmhaeioDBvanX78+xMbGYLc72Lt3H+vXbSQjYx/WKit6vd5nIOJw2CkvL6XSWk5gQABD+/XkgesG0rN9K0JSUwlJTcUQGIimqr+NcP+zkGIhMBIxIOK3LQAobhR7CUj2iy7FiXo91qws9q5dx4hX3iS3sIT4+GQMBuMp95LJaERfYyYpSRJBQRaG3XkbQ4ZcjyS5+WHpcn5cugy7w+43wTrbpa0JCZzz3jv07NmjSb5zx44dLFiwAIfDgV6v95YbYtSoUS26Aoqmabz99ttkZGT4HK3vu+8+rrrqqhZ9DdesWcOnn37qW5nW6/V069ZNuuWWWw4mJSUdAhycO8zeKwBE1AgA5z0gbd68mbFjxyJJkjZ9+vRDt9xyy/Z6CL703nvvXREcHGwfMWLEgQYeH4Dyj3/8Y8Af/vCHvJiYGGnixIkDvv7661MY8h133MHrr7/e4BSTQ4cOMXfuXF+JSZ1O5yP8vjFdEDAajT5X/djYWMLDwwkMDPRtL4oiBoMBg8GA0WjEZDJhNBpP+T7vT68hY2lpKQcPHiQ/P5+IiAg6duxIWlpag8v++fHbhaqq5OTkcPDgQXbs2EFWVhZ6vR5Jkmjbti2PPfbYeZffKykpYerUqZSVlREREcGUKVOIioo6rz7z/fffZ+vWrQiCQPv27ZkwYYI/Da+FIDc3l+nTPZ5jmqZhsVh46qmnNkVHR58QBEEXFBQk17qWyvTp04cePHgwWpIkFEVh/vz5fgHADz8aIwD4iExuLjlbtzJp1scs37qDuJgEIsKjsTscPPTISO66axiLF3/BJx8vwmw2X5KQZUVRkCSZgAAznTt3ZNBVA+jWvSshIcEUFhazffsONm3cwtEjx5AkGaPRgL4mb9/usFFaVkx1dRUBZjPX9+7GfdddSZ92rQiOjiK4VWssNaq0VlPX+DcNTUUwWhCDE36zAoDmtqE6SkFu+pD/M4lnbpuNoi2b+cvsj1m4bA1h4VGEBIejaafeU3qdDoPBiFjjCC8IAgMHXcnd99xBVFQkO3fu5usvv+XIkaMYaioJ+HH6BE6SJP7+j782SUnArVu3smDBAp+o6Xa7GTBgAA888ECLF2JkWeadd95h//79p5QpHDt2LB06dGiRx1xdXe1z8/a6wN92220ne/XqtVcUxcIaIt/QG18BQmsEgAu6WGVlZWiaVhIZGflDzTHU7TyUjIyM+EWLFrV95ZVX1gsNH/zkNWvWpPz0009t/vWvf61wuVzRs2bN6vG3v/0tobq62rdRp06d+OSTTxrkbL5hwwbee++9U8j6uZ4ZtY64XZvge0UE78v7t5f4e/9WFAWr1YogCMTGxhITE4PZbEan06HX633ben/3/t9gMPgEee/LZDL5+rj6xIa6x+bH5QWn08kPP/zAypUrfX12hw4dePTRR89LBMjPz2f69OlUVlYSFRXFc889d0ppwsbg8OHDvP32276ImcaUFPTj4mLTpk3Mnz8fURS9VXOkcePGrdTr9ZVBQUFq7W63dgSA2+3G7XbzySef+AUAP/xorABATbhg+b69/PjDSh6bOhtZUWmV1g5N1dAbDUyaNJ7OXToy7/35LF+28qKujnny+xXCw0Pp0aM7V10zkA4d2yMKIlmZWWzYsJltv2ynoKDQt9ohiiKaqmKrIf42m5VgSyCDe/fgnqv70LtNGkGREViSUwhOTERnMKAqyu+JPoFo8BgBiiL9+/dny5YtLfZoV6xY0YgcWQ3VUY7mqOBihvyfSQQo2bWT5SvWMOq/7yAKOmLjks7wmP2akysIApqq0a5tG+4Zfifde3ajoryCJV9/x88r1+CW3H5vgHonly4mT3mWCc88dUHfk5GRwZw5c3xijKIoDB48mLvuuuuyqBHtLY2Vl5fnI0myLJOYmMjTTz9NREREizvmrVu38sEHHwB4V3cOt2rVakvNA9tYpqcCQTUCQFOY0xQAy/g19P+UDsblchlefPHFgU8//fSOtLS0hqYBaE6nUzdp0qTrJk6cuKd9+/YnAd3KlSt7TZgwodOBAwd8G/bu3ZsffviB6Ojos35hVVUVy5Yt4+jRo+Tn5+NyuU7J8a9N9Ov2HWfqS+pGvtXup2rDS85VVUU5y9jp/bz3VZvc1xUaahP92gKCVzQwGAy+6ASz2Yxer/eVWfUeT22xovbLu23dtIjawoj3XLzn6t239zhqH3/t32tHXXhFmNrChfecDAaD7zvri9Soe13O9f6lElq97VP779qv2vdNbYHJe10UReHbb79l48aNCIKAw+GgR48ePPbYY41OPzl69Chvv/02DoeD6OhonnvuufP2l1AUhblz57Jjxw4EQaBjx448/fTT/iiAFoBFixaxatUqjEYjLpeLq666qvyuu+5aBShBQUFKnXvUFwHgcrmQJMkvAPjhx3kJADVERnY4KNi6hRfe/ohPl68hPi6J8LAoXC4nUVGRPPf8ROIT4nj9tRns3LGrSUWAX8v4QXxCHH37XsGgqwaQmpqM3e5gz569bFi/kX17D3jC/A2e1QXP5F3GZrNSWlaKw2kjOMjCTf16cu9V/eianowlIhxLUjJBCQnozWa0WgP+7w1iSBKC3sSuXbtY+Mn/mP3uHAJagLmjBqiyStcunfnHSy/So0ePhq0WqLIn399V5b2TL2176vVU5eaSu2ULD/1nFjsPHyUuLgmj0dyge0yRFUJDQxg6dAhDb7qBsLBQduzYzaoVq9m921O2yD85+RUul4uXXv4HDz008ry/o6SkhOnTp/vqV2uaxrBhwxg6dOhl0w7FxcVMmzaNyspKTDWmpYqi4Ha76d27N2PGjGlRQoaiKLz77rvs3r0bgAEDBrhGjRq1FLBxfiH8ag3xH1ojBFwoCmsEgDM1mvzmm2/2T0lJKbvjjjsO0/A0AGn27Nk9HQ6HeeLEiZtrzlU9ceJE8sSJE/t9/fXXvs53+PDhLFiwoEF59DabjaysLMrKymoi5TxhsLXvA5fLhdPpRJIk3G43siyjKIrPQNe7vfcz3ve823qJtpfg1Scy1CX9DSG2XgG0McJE3X3X/lmbsHrPQZIkXC4X3tVBu92O0+nE4XDgdDrxkgbvyyto1CX6dc+trlhhNpsJDAwkMDCQkJAQwsLCCA0NJTg4GIvF4hMvvHOVs31vbdGkrpBSV2SoK7LUPe4zbee9prWvt/f32vdP7d9r3wPe+8X7qi0A1BYCvAJSRUWFbzuXy8XQoUO5++67feeoKMo5ozxWrlzJZ599BkDr1q0v2LzvwIEDzJo1y1cKc8yYMfTq1cs/uDYj3G43M2bM4OhRTwSkLMvce++9mX369NlqsVg0URS1MwkADocDSZJYtGhRjQCQW48AULd0HXXmi2dyiTutp+PCHPAaReEu4b6ac//nu5/mbp+GHE/dcokNcXWEM7sYNpzfNEoA8JIZe95JfvlpBSNemk5plZVWae3Q6404nQ7atG3D83+ciMvp4r//8YRyXqjpj6IoyJKM0WSkVet0Bg68kiv69iYqMpL8/Hy2btnG5s1bOX4sC1VVahR1bz61C2tVJaXlJciKRFR4KDf27cVdA3rTJS2JwPAwApOSCUlM/N0Tf889pCIGxSKYPMZmmzZv5c47hvuMEpsbsiQxcuQIXnv9Pw2cWjtR7MWguJrt+AVBQJFlijZvYurHXzJ98TeEhkYQGhp5WhrAGZlMzcSpY4f23Hnn7fTs3QNFUlizdh3LflxBbm4eoiig1+t/1xEBiqIQEBDA7Lnv0L9/3/P6DlVVfXmgJpMJt9vNsGHDuPXWWy+rtjh8+DDvvPMOTqeThIQEOnXqxOrVq31C6i233MIdd9zRYo732LFjzJw5E6fTiV6v54knnsjs3LnzOupfcW+oZmioEQCawqmxCPjpbALA2rVr01euXJn00ksvrW+EaKEcOXIk4uWXX77y7bff/jk4ONiBJ3rAbbPZYu+7775rv/vuO58I8Nxzz/Hqq6826XNel7h5CWBt0uYVEVwuF/v27UOn0xEUFITL5TqFLNcWD7wE0kusvSS7rvDgJdh1P1efEFGf2FCb3HuPoS55r/3yvt8UY703EsFkMmEymTCbzQQFBREcHExwcDCBgYG+/3sjEeuKHfUdx8WehzTk+xt6j53PvegVeWqnqLhcLlq1asXzzz/vmze63W5fVMiZ+vxZs2axd+9eVFXlxhtv5J577rngcWT27Nns2rULQRDo0qULTz755GUR+fVbhTfNw2q1AmA2mxk3btz2xMTEI8HBwVo995cyffr0oYcOHYq22Wy43W4WL158FgHADz9+X2i0AOCtClC+N4Npcxbwr4+/ICwkjLi4ZAAcDidXXtmXCc8+RVbWCWZMn0lxcUmjRQBVVZEkj59HZGQEXbp2YtCgAbTv2A6dTsfBA4fYuGEzu3buoaSkBFEUfYOrqmq4XA4qKsoorywDNNqmJHFz/17c1KsLrRNiCIzwhPoHxcejN5n8xL+WACCYwxAtnjDTrBPZ/OEPd1FWWtIiBj9VVnjxb3/miScfP/epuK2otlLQ5GYXL0S9nrK9GSxbupwH//02Op3O98w0ZsIkSxKBgRYGDuzPsDtuIyEhnoqKSrZu/YUN6zZx4kQ2siRjMBp+l0KA2+Wme89ufPDh3PMOAV29ejWffvopBoMBt9tN+/btGT9+/GXnXr5p0yYWLFjgK503fvx4vvjiC9auXesLXx47dizdunVrEce7aNEiVq5ciSiKtGnThmeffXaV0Wg8ScNX0ptbAFBLSkqCX3nllT7//Oc/N4SFhbkb2vFomqY+/fTTg4cNG3Zi6NChtaMH3NnZ2Wl/+MMfrsnIyAA8Iehz585l9OjRl504V5ec1402kGX5lAgFq9WK1WrFZrNht9txOBw4HI5TVu5dLpcvKsErKHhFCe823n3UXpU+W8SCdzW8tjeB16vAa4zoTQMwGo2npCV4+93aq9/1rYCfab5Rd4X8fMl7fWT7QoSF+saTM0Vy1P1/3fSK+iIRAAwGA0OGDOHaa69t8PiVn5/PG2+8QVVVFQaDgSeeeIJOnTpd8P26d+9e3n33XRRFQa/X89RTT9GxY0f/HLGZsG3bNubNm+dLx0tMTFSfeOKJnwMCAoqDgoLqEwDk6dOn33To0KFoq9WKJEl89tlnaPI5BID6yrSdaVH2TAvM53q/0Q8fDStx19jvPNP5nWnf53qvscd2tnKHDS3jd7bzooHHcz5teiGfOZ/rKXDmEoLnWVqw8QIAnvrmktXK0dVruP+fU8k4lkV8bCLhYVGomorT4eSGoYMZM3YUx45l8u6sOWSfyDlrOkDtkDOAoOAgWrVKp/cVvejVqzuxsTEUFZWwY8dONm/aytEjx3C5XL6BWKgxTrPZqimvKMXuqEav19OnYzuGDbyCqzq3JTYsBENoKMFp6QTHx6MzGv3E//QLgWAwI4Z4ctTdksztt9/Fju07LqgsVJOoVQioisKHH73H4CHXn1XEUJ3laM5K0C5tvv8ZBQCdDnthIXtX/sz9r8wgM6+AuLhkjEZTo+8/VVVxOBzcNPRGHnr4fmzVNpJSkqi2VrNnTwarV63j4MFDuN1SzaRU97sQA7x9yPN/msLjj485r+8oLi5m6tSpVFRUIAgCgYGB511Turnx448/8tVXXwFwxRVX8Nhjj2G323nnnXc4evQoAGlpaYwfP/68arw3JUpLS5k2bRqlpaVomsZ9991XfN111y2/wIf3UgsAANrzzz9/3T333HOwX79+uY0QL+RPPvmk086dOxNee+21lZwaPSCvXbu295133tmprKwMgJiYGJYsWUL//v39Y1YD+sszRQ7UR6jrEvj6iLf3e2pHKXhFjLqpFnXTKM6UK3+m46qdR1/3/16R4GzndK7UiNpCQ+3/1SXvZ0odqOuhUNdnobaJZH1/1/Y/CAgIIDg4uFHXd926dSxcuBCApKQkJk+eTGBg4AXfN14T1X379qGqKtdeey0PPPCA/4FqJnz55Zf8+OOPGAwGJEmiT58+1vvvv3+lwWBwmkymswoA3jKoX3zxxbkFAD/8+J3gvAQA8Kxo2jKP89X/vuKpN+dht9tJTkrHYglBUTxq/E0338jDj4ykpKSU+R8u5JdfdiAIIIo6QKs1oAkYjQaio6NISk6ka9fOtO/QnsTEBFwuF4cPHWHz5q3szdhHUVEJoljL1E/TcLmcWKsrKS0vQ1UkIsPDuLp7Z27r35NerVIItgSgDwklOCWF4IQEP/E/15xZ1KMLSQLRM3d95pkpfPLJp00yqF4owQsJDubLrz6jffu29W+kSKj2EjTJ1iKIv+9BE0UUl5O8TZt4/N8zWbZ1J2FhUYSEhDc4DaA2JEkiJTWV+x64j5++XUq7dm0YMOhKUlKTkdwS+/btZ+uWbWQez6K4pBSH3YFer/OZVv0WoSgKQUFBfDj/fbp163Jen589ezY7d+7EZDIhSRIjR47kmmuuuSzb45NPPmHNmjUA3HTTTdx5552AJ7919uzZuN1uFEXhzjvv5KabbmrWY/35559ZtGgRgiAQFRXFlClTNoaHhx/l/MP/ffyvRgCIaoLDbIgAIM+ePfsKQBo3btzuRggAanZ2dsjEiROveffdd9fExMRU8auJoAbw9ttvD5owYUKKd9zq0qUL3333Hampqf5hy4/f52xF05gzZw47duwAYPDgwdx7771N9v0bNmxgwYIFAERHRzN58uTzri7gx4WN7W+99RYHDhzwlY688847cwcNGrShrvt/fQJAeXk5LpeLJUuW+AUAP/y4UAEAQUDQNEp37eK9RV/x1/c+wWgwkpSYhslk9oXwXXPtVYx+9GH0eh0rV65h88YtVFdXYzAYCA4JJjo6ipSUZJJTkoiPiyM8MhxrlZUTJ7LZuWMXezP2k5OTiywrGGpM/TzKu4TNXk1lZQU2uxUEgY7pKdzavxfXd+9EekwkBpMJU1QUISkpWKKjEfV6P/Fv2KiKGJKIYPBEbMz7YD5/fP6FZhcAFFmmQ/sOfPHV/wgLqye8W3ai2EtAcl6SEn/nIwKUZ+xh6pwF/PvjLzCbA4mOjj8/VqOoBIUEM+Khkaz+aQWZx44THR1Nt+5duPLKfrRr35aAADMVlVXkZOewccNmDh08QklxCZIsAQKCQK0yYQKXuy6gKB6zxI/mz6NT58aHav744498+eWXGI1GnE4nvXr14oknnrgsyy0qisLbb7/Nvn37EASBESNGcN111/kmzYsXL2bVqlWIokh4eDgTJkwgPj6+WY7V6XTy5ptvcuzYMTRN44YbbrAPHz78B8BJw0v+nZGQ1wgAMZdKANi0aVPqZ5991mbatGk/N/L4lTFjxtx4yy235N5999376uxH0TQtcNKkSTfMmDHDt0R6xx138Mknn1zUijt++NFS4TU6raioQK/XM27cOLp06dJk319WVsbUqVMpLS1FEAQeeughBgwY4G/4S4zS0lKmTp1KeXk5giBgMBgYM2bMrvT09IP15f/XFgAOHz4cXVRUhCRJfPvtt34BwA8/LlgAwJMKINvtFGzZxJ9nLeCTZWsIDAgkMSEVg8HoC1Xu3KUTI+67h86dO+J2u6mutqE3GAgMMCPUTK6LCovIzs5l2y87OHbsOPl5+UiSjE6nw2g0ICAgKTJOh43KqgqqrJWARlR4GH07tmXoFd3o264V0WHB6AIDMcfEEpyYSEBYmK8sEX7i30ABQEW0RCGYPUr3ipU/c9+IB5pdAHC73Ay+/joWfvrR6YfsqkS1l4Gm0JJW/mtD1Olw5Ofx7aIvePjfM5FkmYT4FHQ6/XnldOpEkQceHcWu7TvYv3svRqMBSZIxB5hIS0ulR/dudO3WhaTkRMBTY/1EVjY5OSfJzs6mpKSMivJyyssrTglNFRAQRBFRFBrkxH2qLig0m8Cmqiomk4n3P3iXPn36NOqzJ06cYMaMGTgcDjRNIywsjIkTJxIXF3dZPsJ2u51p06aRm5uLXq9nzJgx9OzZ0/d+SUkJM2bMoKSkBFVVufLKK3nkkUeaJTpkz549zJkzB0VRMJlMPPPMM/tatWq1nQtf/W8OAUAtKCgI/ctf/tL/1VdfXRcVFWVvhAggz5s3r8u2bdsS33nnnWWcbiIoOxyOyHvvvff62qaAL730En//+9+bXXDKzc3l+PHjOBwOXyi31/Hea4DnL1vqR1Niw4YNfPzxxwDEx8czefLkJk9nmj9/PuvWrUMQBHr27Mm4ceMuS1H4ckZGRgazZ8/2pflFR0drTz/99OqQkJDCwMDAcwoA+fn5yLLM999/7xcA/PCjKQQA8KQCuEpLObp+PVPens+yLdsJDLCQkJCCsUYEcLlcBAYG0rffFXTp2pnQkBAcDgfFxSVkZ+dQXl5Bfl4BJSUlaKqG6CX9goAiKzhcdiqrKqisqgRNIdgSSK92rbmuZ2f6tW9NWmwUAcFBGMLDCYyNwxId7TH20zS0s9Qi9uPMAoBgCkYM8pCfxf/7nKfHP9vsq0xul5vHHnuUl1/5Z+2D9ZT4c1Rw3k4Yl+phE0VkWzX7lq9k5EvTOJiVQ3xcEhZLCG63q9F+IrKsMOKhkeTl5rJu1RoCAwPQiR7OoMgKiqYSYDbz+LhH6dCxPVlZJ2jVKp2goCA0TcPtdlFeXkFpaRlVlVXk5JwkPz8fu91BaUkpNpsdRZHRAE091aNDEAREQUQQTzV70ul0p9SHPptQ4BUymlIA0Ol1zJ79NlddPajh95XbzcyZMzl48KCvvNDDDz/MwIEDL9tHuKioyLcyFhQUxLPPPkty8qmmk6tWreKzzz7zmZ2NGzeOzp07X9quRtOYN28eW7ZsAaB79+7qE0888aNOpyvj/Er/1ScA3AjEXiIBQNM0TXz66acHjxo1KqNv376NMTFUDh06FDVx4sSrFixYsDIqKspaj3jgzszMbHXzzTdfdejQIQCMRiOLFi3ypXhcSuTn53PgwAEyMjI4ceIE1dXVaJrmy+02Go2YzWbMZjMBAQGEhYURHh5OSEgIFouF0NBQwsLCCA4OPsVszw8/GtJ3vPfee2zbtg2Aa665hpEjRzb5fmoLlBaLhYkTJ5KUlOS/AJcQS5cu5euvv8ZoNOJ2u+nZs2f1gw8+uMJisTjOJMbUVAG46fDhw1E5OTlIksSyZcv8AoAffjSVAOAVARwFBRxYu44X5n7Ciq07MZnMxMclExgQeEoJIU9NbVAU+ZTv8DrqelfrPXn9Vsory1BkN2aTke5t0rm6WycGdGpLm4QYQsJCMYSGERAbS0BEBAaLxbMCebYwf+///asQZxtZQW/y+AAIAjPemMm//vVfTObmc0HXANkt8dpr/+LBh2qMeBQJ1VGK5ra1ePLvu+c0jeJtvzDptXdYtGIdoaHhJMSleHwz5F9rTTeI2UgSt95xO4Ig8N1XS9AZDAiAKHhW71VVw263M2DQAIaPuIe5s+Zg0Bto1TqdVq3SSU9PJSIiAnOAuWblXkWWFdwuNxUVFRQWFVNSUoqt+lQHbqfTTbXVSmVlJQ6H05dLDh7DKIPBgKqqZ1npE5BkT1lGo8FYf81wGm+wqqoqoigy482p3Dj0hgZ/7vvvv+frr7/GZDLhcrkYMGAAjzzyyGW9ypORkcGcOXOQJInY2Fiee+6508y1XC4X77zzDgcPHgSgbdu2PP3005dU6MvLy2P69OlUV1cjCAKjRo3K69u37+omfJhlYDCQcIkEAAD55Zdfvjo5Obl01KhR+xohAGiqqgrDhw+/+bHHHjt00003HT7DZ5X169f3HDZsWGevKWBcXBxLly49JcrjYqGsrIzDhw+ze/dujh07RmVlpY/01zakO0Ne7q/zBlFEr9f7SuR5y+eFh4cTHh5OUFAQQUFBhIaGEhoa6kv/q23mV/d3bz9Q22TvbLXo6/ue2v+v/fna5+Wdr9SuCuAVL2qb3XmN8mqb49U20fP+z4/Go6SkxBcWLooijz322EW5/+12O9OnTyc7OxvwpN3cfPPN/gtwCYWe2bNns2PHDoxGIy6Xi9tvvz332muv3RAcHKye5XNqjQAQefz4cWRZZtWqVX4BwA8/mlIA8IoA1VmZHN68lVc+WcLXazYiCAKxMYmEhYYjCiKqpp42OfAOjt4VyWqblfLKctwuBwBtkhO4sXd3ruvRkXaJcYSEBGMKD8cUHUNgdDRGL+nXNLSzrTr6iX+jyaouJAl0Rv78p7/y4UcfozcampVia4rKZ59/Sv8r+3ny/W3FILsuq2sq6vVUHjrIxx9/xoS35mHUG0lLbe1LA3BJnpJVDYEkSVx/wxCiYqL57JNF9ZZplCWJpNQURo56mO+/WsK+PXuxWAIJCw0lKiqKxKR40tNbER8fS0RkBEaTEbPJVCPUeVyuJbfkK6Gl1RBHbykuu91BSXEJJSWllJaUUlJSSlWV1VeO60ylo+wOG8XFBSTEp2A0Gk8rzaVpGgj4IhoaOlFQVZX/vPp/3HXXHQ36zKFDh3jnnXd8zt0JCQlMnjy50U7ULQ3Lly/n888/RxAEOnfuzFNPPVVvHe29e/cyd+5cZFlG0zRGjRpF3759L9lxfvPNN3z33XcIgkBKSgqTJ09eHRAQkMP5l/6rTwC4DmiKJbsGCwBffPFF561bt0b997//XUvjIhnkl156qb/T6TT/+9//Xn2GfWmAunDhwv6PPPJIG6/4dsUVV7B06VKio6Ob/DpZrVaOHj1KRkYGhw4dorS01Ce4ecm12WwmKSmJyMhIbDYbVqsVp9OJ0+n0leTzEu3aLvP1Pce1owi85NobXVR7m9rEvCGO+rXfP5uD/tn+ro/Ue4+1Nsn3Gq7Wfc8rEnjPrXapwfpEhPpc872vuiJE7bKE9YkQdcWH2v+/3AxiN23axEcfedIBY2JimDJlynmXfj0XlixZwvfff48gCN4SpRiNRv888RKgqqqK119/naKiIt89+uijj+5o167dobOle2iaptUIABEHDhxAEARWr17tFwD88KOpBQBqBpTyw4fIz9jHhyvW885XP2B3OgkOCiEyMoaAAMspBFJVVdxuNw6njaqqSo+ZHxAfFcFVXTtxfc/OdG+VTEx4KIbgEMwxMVhiYzGFhiLqdGiqenbSX5v4+8l/I9m2hhiSgGAIZPQjY1m+fCWiXtdsh6MoCjFR0Xz19WLSUuNQqgpAlWnxq/51BQCdDnt+Ptt+Ws79/3qT/KJS0lJaExgQ5BPIHC5ng0LjJUli4DVXkZqWxqfzP65XAFBVFUtQEA+OfpgD+/fz87KVmIxGRFGHWDPpMxgMBAVZCA8PIzwigtjYGMLCQrFYAgkKCiIkNJSgIAs60RPyr9fpQBARRE+0gXdiqioKDqeDgoIiMo9lsX79RvLyChBFod4yW9k5xxFFkdjYxJoyWZqvDTRAFAQCTOYGT0o1TUOWZP75//7Ggw+dOxTUarUyY8YMcnJy0Ov1qKrKo48+2mj/gKZ/9M68gtpQLFiwgPXr1wNw4403cvfdd59xXx999BGbNm0CPM7yTz75ZL330sUgldOmTSM/Px9VVRk2bFjZrbfe+hNNG84jA1cDTWGV31ABQNm1a1fCjBkzus2ZM2eFwWBoTC1SeeXKlanTpk3r/eWXXy41mUzSGT6rAOZJkybd9MYbb/hmwQ899BDvv/9+k4TRO51OMjMzycjI4MCBA3iNtLykX1EUjEYjcXFxdOzYkW7dupGamorJZEKWPZWAJEmiurqaiooKKisrqa6uxmq1UlZWRkVFBXa73ScQuFwunxBVt684n1ShS0lmz3R8ZzuG+j5T37nX/r02YQfqLb3n7Y/rizqoKyh4CVVtAaF2NIPBYDhNwPBGbniPNyEhgbZt217SSAZN0/jggw/YvHkzAAMHDuSRRx65aPs7fvw4b775pq/09NNPP0379u3988RLgMOHDzNz5kxf3xAeHq4+/fTTq6KioopNJtPZ+L9QIwCE79q1C4PBwLp16/wCgB9+NLkAUEOwBUGg9MABrMePsfnQMf75wWccyc0DICw8imBLMJIkYXPYsNttKLIbgIjQEHq3a8WQXl3p16E1CZHhGC2BGCMiscTHExARgd5oPPdKv5/4N5kAoAtLRNKMDL9rBLt27UYTaDaDN7fbTc8ePfh84TtY9HJNCsnld10FnQ5XZSX5mzYxfsb7/LBpG7HR8URGxvhWwWVFweV2NUgAGHD1INJbteKTjz5GX49A471eDz76CG6Xm0ULFp4yIdSJOnSiDgFQa8oRCoKITudZqTIHmLEEBmIyGdHp9JhMRoKCg7BYLL6VKr1eh0FvQAMqKiqQJQkEgcLCIo4eOXbKPaNqnlrYqqZRXV1FcXE+ERExBAWFoGraaVfUZDSi1+kbeMtqSJLEH/84hXFPPnbO7ZcvX87ixYt9of/XXnstI0eObPZVMG/6xPkeh9vtZsaMGRw7dgxBEHjwwQfP6mdw8OBB3nnnHWRZxmg08vTTT9O2bduLfp6bNm1i/vz5AAQHBzNp0qTd8fHxu2ka87/aAsBAoNUlFADUsrKyoPHjx1/973//e31qamrtkn7nvPxFRUWW4cOHD505c+aGrl275p9lf3JFRUXMPffcc93KlSt9y5FffvnlefsByLJMTk4OGRkZ7N+/n5MnT+JyuU5Z6dfpdERGRtKhQwe6detG69atsVgsjd6Xy+VCkiRcLhdVVVWUl5djtVqprq6mqqqKsrIyqqqqcDgcvsl/3WfiTCS5vm3qPlO1/67vZ933vb+rquozTVUU5ZTUAu/L+/+6L+/nvf1VfREKZxMOGisoNFQMOZcYUV8bed8PDAzkoYceonfv3pesj6yoqGDq1KkUFxcjiiKPPvooV1xxxUXbnyzLzJw5kwMHDqCqKkOGDGHEiBH+eeIlwIoVK1i8eLEv/79Tp07WRx99dEVwcLBDOPONrWmahjcCIDs7G6PRyNdff+0XAPzw46IIAN7BQRQpOXCA6mNHOZCdx9TPvmfn4eNU2u1omoZBryc2IpTEqEjapSTSv2Mb2sTHkhwdQWCQxZPXHxdHYGQkxsBAEATPan9DyGfdbfzk/3zYP4h6dGGplJSUMfzu+8jJzkXRFBRVbZYjcjpd3PaHW3h/zn9QKksv3+tacy8Xb93CB18t5a9zPyHIEkxyUvop97csy7gk9zkFgGuuv474xAT+9/EnZ1y1lWWZe0aOIDgomI8/+OiU/HzPSruIQa/HoNN5js8XEuvZQlM1NLQzPn+1s2u82/hWjQQBVdNQVAVZUVAVBe9yqKZpFBaeRFUVYmOTfGkHtaETdZhNDfeecLlcTHluEk+Pf+KcE7rp06dz9OhRBEHwhf43tYP0eehuSLKE3leesfEoKSlh2rRplJWVERAQwPjx42nduvVZ76OZM2dy6NAhNE27aGZataEoCu+88w4ZGRkADBgwwDVq1KgfABsXXvqvrgDQF2iK5bqKGgHgXKVGNE3TxDFjxtz46KOPZgwaNCibxqU0qPfee+9tt9xyS/GoUaM2nuOz7sOHD3ceOnRo76ysLAHg4Ycf9oVGN5Tc5Ofnc/DgQfbu3cuJEyew2+0+0uvtLyIiImjdujXdunWjbdu2F70eutdAWJKkU9KizlWZpCEiwfmIB7WJ8Zk8CLxpU97oh9ovWZZRFMX30/uqLRp433e73bjdnnQw72clSUJVVV86Vl2RwStI1BUj6m5T1yOhdsRRYzwJvJ+12+3cdddd3H777Zesnzx69CgzZ87E4XAQERHBlClTiIqKuqj7XL16NZ9++imCIBAXF8fkyZMJCQnxTxcvMubNm8fmzZt9+f9Dhw7NGTp06Maz5f/XTG2YNm3aTQcOHIgASElJ4W9/+5tfAGgG6EQRRM/cFw0EneiZMCpqs3EKPy6CAOAdSARRpPToUcoOHsBus5NVWIrD6XE6Nxn1xISFEhUShNFowBgcjCksDENYOObwcExBQQiieP6k30/+L5CF/FoF4PixTO65+z5s1TZkVcEtS82y7u52uZg48VleeOFJlLL8y/raijodhdu3s33rdu7/vzex2520Sm+HXm845X5XFAW35EapZ2UcPPn9N912K0HBwXz+6f/OKABIksTNt/2BlLRUFn7wEQ6Ho95Jnl6nx9REeY3eiaaiqsiKXL/RnyBitZZTXl5CUFAIEREx9W4XYDI3eFLqcrqY8vy5BYCioiJeffVVbDYbsixz5513cssttzT7vaEoCpIsY6wJvT0f7N+/n3fffRe3293g3Nh169bxySefABAREcGkSZMu6oT62LFjvPnmm7jdbvR6PU899dSxjh07bqBpV/+9AkBPoCmKg1fVCAAS5w4/kv/4xz9e36lTp4JRo0btb6QAIP/f//3ftTk5OUHvvvvudw34rPrnP/956H/+858ogLS0NDZv3kxs7LkLHxQVFbFo0SIyMzOx2+2eyZpO5yOSwcHBpKen07VrVzp16nRR/AX8aFhfWjuC4ExGiLX/5xUNagsQ3lftyAVv5JTVaqWkpITCwkLKy8ux2+2nmdLWjn4QRRGz2Ux6ejr33nsv8fHxl6xNtm/fzrx585Bl2esdctHNS2tXVqnJQ2/2dLHfOmw2G1OnTiUvL8/nAfLwww/v6dKly75ziPWnCACCINClSxeeeeYZvwBwKYm/TkRVVcoqbRw/cZKC4nIURSHQbCQuOoLU5DjCwkLQFAVV9Zdp/00IAF7yLep02IqLKT96FLnaiugNoxNFdAGBGEJDMIWGERAejsFsruGeauPCzP3k/6IIAGJwAoLRwvbtO7j3npEYjUYUVcHpcjXLIbldbma9O5M777wBpewkl2P4v08A0OspO3KEgt27eeS1d9l+8Cipya2wBAb7wvBrT/5kRUFWfjXh8973siwzfOT92G02vl/yzRnzfiVJYshNN9K+Y0c+/uAjqquqEOsxhBMFz4SusS3r3V71TjwVBVX1hPmfLZlbEARkWaKwMBdVVYmIiCEwMJja/v8aYNQbMBkMDaoK4HK5mTT5GSY889RZt9uxYwdz5szxGeNNmDCBDh06NPu94XJ7zAjNJuN5CwArV65k8eLFCIJAx44dGT9+fL0GgLVRWVnpC6nVNI177rmHIUOGXLTzXLx4McuXL0cURdq3b69NmDBhpcFgKKBpSv/VFQC61IgAl1QAmD17du/MzMzA//znP+saKwAsXbo0/bXXXuv/ww8/LDWbzVXnaBdpxYoVvW6++eYusiwjCAJfffUVw4YNO+eOli5dyuLFiwkMDPS5+Ov1eh/p79ChA/Hx8X6n+t8oSktLyc3NJTMzk6ysLIqLi6murvYR/9qRBjqdjqCgIGJiYkhNTSU1NZWkpCRiY2MveenGdevWsXDhQjRNo127dkyYMOGim/LVLVnap08fxo4de1kZJ15uyMzM9HkvqKpKSEgITz311Prk5OQs3dkHtdMiALp06cKzzz7rFwAuIfkvKi7n2MlSHLIOnd5AoCUINA2b3U5xUQHV1gpaJcXQv2cHjDXVo/z4LQgAXlKh06EqCorb7cnhAwS9Hp3R6Ok4a3L6T8nrr9uhnk/eub9TPt9hDkQjutAkEETefPNtXn91GhaLpVEGdU098OpEHV8v+ZwePVqjlF7+EQDWggKKt/3Cq4u/Z843P53mA1CXYGs1kzGvSZ6qquj1ekY9/iibNmxm25atZxUAbrz1Zlq3acPCDz7CZrOdcULfmJx777VRvOGrquIz8BMa/JgKlJUVU11diSAIhIdHERQUelo+bEPNAJ1OF5MmP8szz55dAPjiiy/48ccf0ev1RERE8PzzzxMWFtas94WiqLglCVVTCTCZzpt0LVy4kLVr1wIwZMgQhg8f3qDPffXVV/z4448IgkB6ejrPPPPMRVlVs9lsTJs2jdzcXABGjBhRfP311y+/SKqeDHQEmiJBuFECwPLly9vMnz+//YIFC36gcWkN8vHjx+NHjBgxZMGCBas6dOhw8hwCglxWVhY7cODAGw4ePCgAPPXUU7z99tvn3NHWrVuZN28eqqpiMBh8bvC9evXi1ltvvehh1X5cyv5FoaysjOzsbLKysjhx4gQFBQVUV1fjFY5qV0YQRRGLxUJUVBSpqamkpaWRkpJCTExMszvgL1++nM8++wyA3r17M27cuEuy3+3bt/P++++jqiqhoaFMnjy5QZE2fpwf1qxZw6effoper8ftdtO2bVvnY489tjIsLKziHH2qBgg1AkC4txqOXwC4VORfR2FRCZn5lUQleDxiPGbQ3qm7Z1ZbXW3j8NEjiFIV1/Xvir5WpZdLT31+f5XiLroA4G3QUybvtc1vmvpi+4n/BT4EKkJAGGJgNG63m3vvGcnu3Xsw10RoOF0uFFW5pIckyzIpyUl8teQL4qMsKJUFl/V19hoBFmzexIpte3j8tVkEB4WQlJiOpp1dAfWetdst0ap1Ok+Mf5zXXnuDrOOZ9QoAXuOs4SPvwxwYwCfzPkJWlDOTaQFMBpPH6f8M+6+90q/UrPRznuxNEARcLidFRSc9Qo9OR2xs8ml+AA0VJlwuFxMnPcMzzz591onwjBkzOHjwIABdu3Zl/Pjxzb6S43K7kWWPiBJgNqPTNX6CIkkSM2bM4OjRowA88MADXHXVVQ36bHZ2NjNmzPCliIwdO5YePXo0+XlmZGQwe/ZsZFkmJCSEyZMn74yLi8ug6cP/m1MAUPbt2xf317/+tc/8+fOXhYSESI14RFRJkgJvuummWydMmLDvjjvu2HsOAUADxMcff/ymuXPnhoFntWv9+vXnTP1QFIVffvmF9evXc/z4cRRFQa/XI8syYWFh9O3bl969exMXF+cbA/y4PKCqKhUVFaes8BcUFFBZWemr5lCb8AuCQEBAAFFRUaSkpJCWlkZaWhrR0dEXPby+sViyZImvfOjgwYMvmSFfdXU1U6dOJT8/H03TePDBBxvcv/rReHz88cesXbvWZwB43XXXFf/hD39YExwc7D5Hf3qKAODtE/0CwMWHKAjYnU52HzhOSpvu6Axm1DNwBo9XlJ69e/cQZnTRq1t7FPnS8otGGcb/xszlL40AcK6G9JP/FiQAaIihiQj6ALZv38n9Ix78tV4w4JKkS+4D4HK5uLJfXz7/ajF61YlSdXlHACAIaIrCyY0bOX4skxEvv0FpZTVtWrVHp9M3SAF1OBzcd/9wruhzBS+88CJOp7PeFWNN0zAYDDww+hFcTieffLSgQQ7zep3+19JPgoCGdopRldrEz29JSQEOhw2A8PAogoPDTxFDdDodZqOpAfeKm2cnjufZiePPuE1paSmvvvoqVVVVyLLM7bffzm233dast4SiqjicTjTNc80sAeZzhu3Xh7KyMqZOnUppaSlms5nx48fTpk2bBhOGuXPnsmPHDsBTV/5ihLh++umn/PzzzwD07NlTGTdu3I+iKJbT9OH/XgGgE9AUFuWNEQDUsrIyy+jRowe/+uqrG9q3b1/SyPOTx4wZ84fU1FTp73//e0MqD8hffPHFFcOHD+/ofeaXL1/ONddc06Cdud1utm/fzurVq8nKyvL1EYqiYLFYiI6OJjk5mdTUVJKTk4mJiTkv538/LubQrVFRUcHJkyc5ceIEmZmZ5OfnU1lZidvtPm2FHyAgIICIiAiSk5NJT08nNTWVuLg4AgMDLwtiCDBs2DBuvfXWS7bvhQsXsmbNGgAGDBjAqFGj/DffRYDT6eSNN94gMzMTvV6PoiiMHDnyUL9+/babTKZz9b+/bQGgvvlXTUR1c3MinV7HroyDKPoQktLaI8vSOabDIm63i0N7tjDoik4EBpibfH7ZpIT+TG3vFwCaifz7iX/TXRe9yRP+j8C//u+/zHpnDkFBllpE5dL7ALhcLkbcew9vvjUdTbKjWvMv+6YWdDpOrFuHs6SYsdPfZ+Oe/aSltCYwMOiceVCyLBMeEc5L/+9FNm3cwocffnxGOqIoCqGhoTzw6CMcPXSYH79b2qh8TQEBQRRA85Twa8oC7bUHALvdSklJAQAGg5HY2KTTiKfZZPa4yZ5j0jBx0jNnFQD27NnDrFmzfDnPTz75JF27dm3W+8HlduNyewZKTdWwWALOGIVxNhw8eJBZs2bhcrmIjo7mueeeO+cqcG3s2LGD999/3yNCWCw888wzJCcnN9l51l1Be+CBBwqvvvrqFTSt839dASAFuKYJvqsxAoCmaZp4//333/zEE0/svvbaa0/QSB+A119//fpt27ZZFi1a9F0DxAM5Ly8vvn///kNycnIA+Pvf/85LL73UqBO02Wxs3ryZdevWkZeXdwpp9OaBBwYGEh4eTlJSEqmpqaSkpBAXF9fsFTR+j6iqqiI/P5+srCwyMzM5efIk5eXluN2eCjK1yzcCmEwmIiIiSExMJD09nbS0NOLi4ggODr5szllVVWbNmsXu3bsBGDFiBIMHD75k+9+yZQsffvghqqqSmJjIlClT/GLYRUBubi4zZszAZrOhaRqBgYE88cQTG9u0aXNcEISGDI7ab84D4Gzc6Wyp05eIIwk1+arfLF9Pqw49iYlNqCnZfXbodTr279lCu5RoEuNjTzMfvejteD7t8xsQAi69ANCU5N9P/Jv42qgIgZGIARFU22zcfecIjhw+gqlWGbbm8AGQ3G7++tc/M37Ck78ZAUDU6cjZsgV3UQFvLFnB259/R1xMAhER0WcVADQNJMnNqNEPMeiqK/nH3/+P/Lx8NDzl4+peF0mSaNO2LSMefoAln33B3j0Zl9ywqWHdgkZR0Uncbo+4FBkZi8US4osC8JgB6jEZjGc1A3S5XEx45mkmTX7mjNt88803fPvtt+j1ekJCQnj++eebNddZ1TRsdsevZbo0jRBL4BmrOpwNq1evZtGiRQB06NCB8ePHN+p7nE4nM2bMIDMzE03TuO222/jDH/7QZOe6e/du5syZ4xOmpkyZsiMmJmYvFyf83ysAxANN4WjYGAEAQHnqqaduGDhw4IkHHnjgUGMFgG+//bbtq6++2mf58uVeI8CzzVhVwDxy5MibPv30Uwt4VidXrlx5XqH7FRUVbN68mT179lBYWIjNZvOVA6wvbNwrCHTu3JmuXbv6CdFFQnV1NQUFBT7Cn5ubS0VFBQ6Ho17CbzQaCQsLIyEhwUf4ExMTL+vydS6XixkzZnDs2DFEUeShhx5iwIABl2z/BQUFTJs2jaqqKkwmE+PHj6dt27b+m7OJsXnzZj766CNEUUSSJNLS0tzjxo1bGRkZWVarLxRr9X+n9YnTp0+/af/+/ZGXvQfA+RLWSxwR4DF2Vlj41TK69R5IUlLSKSVczygA6HVkHtxFdLiZ1mnJFzcN4GK0yWWaGtB4AeBCjBKaijT6if/Fuh08q/86IxvWb+Thhx6t1+zH6XJe0tqdiiTzwUdzufHGG0B2oVSdBC7vkiGiTkfxoUNUHjzA2v1HGfvftwkOCiU5Me20SgCntL3DSf8BfXnm2af58oslfPHFV5hqQuO95aFk9dcST263myE33UjPPlfwyQcfkZ+Xf17E8qLfeYKI1VpBeXkxACaTmZiYxNMGl3OZAbpcLp55djwTJ004o9Awc+ZMX/35Dh06MHHixGZ1OXe53dgdTl8XqWoqocFBGM7jOi1atMgXXn/ddddx3333Nfo7vvnmG77//nsAevXqxeOPP95kaQC1w/979+7tHjdu3I+AlYsbAZAANMUSYWMFAPnll18eBEh/+9vftjRWANi9e3fiww8/fP2SJUtWpqWl5TXg89K8efOuHjNmTBpAYGAg69ato1evXud9wm63m8LCQnJycjhx4gTZ2dmUlJT4nOLrCgI6nY7k5GSuuuoqevXq5RcCLhB2u53CwkKys7PJzMwkOzubsrIyHA6HT4Cp3f4Gg4GQkJDTCH9YWNhvxq3eWxru5MmTGI1Gxo4dS/fu3S/Z/iVJYubMmRw8eBBN07jzzju5+eab/TdrE+N///sfK1euxGQy4XK5GDhwYOk999zzs8ViqZ3/7/1Z34RQmTFjxtC9e/dGw+UZASDU0B0BoeZMPemY3lTBliYCCIKAJMnM+9/39Ow7iPS09AYJAAa9juMHdxAZYqZt69SLJwBcTKLeAtIvLo4A0JAbrSEneyECgJ/0X1xoKoLBghiSAMBf//J3FsxfeNoE7lL7AGiahiXQwldfLaZjpw6gyh4BQG2Mp1YLFAD0eqx5eeRt3kR+ZTXD/zmNCquNNq06IAhiveOZy+UiNS2FP//5ObJO5PDmG2/7zJzqazdJktDpdTw8djR2u50F8z7yddItTwDw5BsXFub6csaiouIIDAyqYwZoOmtovNPp5Jlnx58xAqCyspJXX32VsrIyZFlm6NCh3HPPPc332GkaVpsdSZahZlBXNZWwkBCMhsYJAC6Xi+nTp/tyuO+//36uvvrqRh/Tjz/+yFdffQVAv379GD16dJPcM1arlddff53CwkIAHn744ZMDBgxY1UhifFkJAB999FH39evXx82dO/enRp6nXFxcHDN06NChM2fOXDNgwIDsBnxePnLkSPqVV145qLS0FIBXX32V559/vunEKpeLkpKSUwQBb+k4WZbR6XS+SIGUlBSuvvpqevbs6RcCaqG2l4r3JcsyDocDm82GzWbzmfd5BRe73V4v4fdGMcXFxfly+JOSkoiIiPjNlm6srKzktddeo6ioiKCgICZMmEB6evolPYavvvqKH374AYDu3bvz5JNP+ktlNrHI8uabb3L48GEMBgOyLHPvvfcevvbaa7eKotjQ3Di5RgCIuVwiAARBQPSa/6qeOZzT6cIlecpAi6KI2WQkIMCMzqD3zBka4sl0icipt2+at+g7klt1olevXkiS1AABQGTvjg20SY0jJTH+4qQAXKpV+obsp4WIBU0nADTkRPzl/Fq0ACAGxSKYQqgor2DYsHvIzTmJ0Xh6ZK6iKDjdl8YHQJEV2rVtyxdfLiIiMgI0DcWaD5L98q4EIIq4q6vJWrsWZIlH/vsuW/cfolVqW0zmwNOqAbjdEpGR4fzpz1OQJJlpU9+krLQcw1lIotvlpnOXTjz/wiQ+XbiY7777AbPJ5Ksr6JLczVdypd5HXcRqLae8vMRD9k0BxMQknLLNucwAXS4XTz39BM89P6ne9w8dOsSbb77pu48ff/zxC1ohveCJjixRZbV7BvCa8H9NU4kIC8XYyFSNjIwMX3h9YGAgEydOJCkpqdHHNH/+fDZs2ADArbfeyu23394k57pz507mzp2LqqqEh4czZcqUTVFRUUcvgQAQB9zQHALAsmXL2s6ePbvDZ599trSGIDS4EoAsywE33HDDrY8//njW/fffv7UB7aQqimK59dZbb/7pp59MADfeeCNLly49L0PJhsDtdlNaWkpOTg779+9nz549WK1W9Hr9KULA7yEiQFEUsrKyyMvLo6qqCofDgSR50rK8aXROpxO73Y7NZsPlcuF2u5EkCVmWkSQJt9uNLMvIslwv4dfpdAQFBREbG0taWhrp6emkpKQQHh7eIiO7Lgby8/OZPn06FRUVhIeH89xzzxEdHX1Jj8Hb10qSRGRkJFOmTCEiIsI/j2wiFBYW+tIswGNWOW7cuM3t27c/0ojxwicAQMuOANDpRBB1SC4X+QXFnCwsoaCkApdbAVEEPOVZFUUGVQFVJjwsmLSkBFISYwkICgRZOXtk7iUinTqDgaUr1nGy1MXttw1rkAmg5rayc/tGrunfiyBL4Dl9sC41+ff0w7WG75py12ecP9fX1ueaazcDn2l6AaC+kzlfkuEn/5eK/YOgQxeaDKKeZT+t4PHHnjxj6R9VU3E6nZckCF+SJK65+io+XbTAtwqpWvPR3LbL//4QBE6sX49WUcG/Pvueed8uIzEumdDQiFPSANxuN6GhITz3x4me8MM3Z1NeVo7BeHaC6HS6ePKpx+jb7wr+3z//RU52DvpapPJSCjkN7WQVRaGo6CSS5DGxqhsFcK40AKfTyfgJTzHluYn1vv/TTz/x+eefo9frsVgsPP/8881ax7naZsfmdPpW/8FjtBkVHo7J2HABQNM0PvzwQzZv3gxAjx49ePzxxxtN/CRJ4q233uLw4cMIgsDIkSObrMzVggULWLduHQB9+/Z1jx079gegmosX/u8VAGKBG5tDANi1a1fiX/7ylz6LFi36KSQkxE3jwpaUe+6559ZevXq5/vKXvyxv4MRXnjp16vXPPfdcIkBERASbNm2iXbt2l+R+Pn78OBs3bmTHjh1UV1f/LiICrFYr27dvZ9WqVRw8eBBFUTAajZhMJgwGQ719Vd3/1e7ffONsjemixWIhNjaW1NRU0tLSSE5OJjo6ukV6uVwKHDlyhLfffhuHw0FsbCzPPffcJfc0qKioYOrUqRQXF6PT6Rg7diw9e/b0TyWbCNu3b+f999+vySmXSUpKkp988smVUVFRxTS8mkqLiADwCnn1E38diAJlpRUcOJJJ9slCBL2ZuIREEhKTCYuIIDAgAKPJUwZZURScTgdVFWXk5Z4g+8QJqq1WEmIj6dOzM2HhoaiSdHbKdZFXwnV6PUePZ7Po29XcPfw+IiMifFEAqqpy5MgR0tLSMJvNqBoEmvQc2b8Dt8PKVVf2avrw//M8X0EQEPU6UDWcLhcu168LZnqdDpPJ6OmDRQ+511QVVdWajjdf1gJAE5AjPy4V/1cRTMGIQXEATHz2Ob768uszlgLS0HA6nZekVIciyTz8yIP8+z+v/Dox+o0IAKJOR0FGBrbjx1m2az9PT59DZEQ0sTEJPgXU6XQRHh7GMxOfwmqtZvas93A6neec/Lndblq1SufFv/+JXbsymPnmrHpXiGRFxlXjGN1SRIDq6irKyooAMJsDiI4+NQrAZPQMhmcSAJ58ahx//NOUet+fPXs227dvRxAEWrduzaRJk5ptIq2oKmUVVSiK4lvhU2tesZHhmOrx3zgT8vLyeOONN6iurgZg9OjR9OnT57zIjDdM32Qy8cQTT9CxY8cmmTBPmzaNoqIiBEHgkUceOdm/f/+LHf4PoABRNQLAhc74qmsEAGcDv0vJycmJGDNmzLWzZ8/+OT09vbGlDuWnnnrqVlmWmTNnzvcNFQB27tzZ5qqrrrrSZvOU1XzvvfcYM2bMJb23MzMzWb9+PTt37vzNRgScPHmS3bt3s337dvLz85FlGb1ef8qKvbcfr7tSJAiCp8SqKKLX6zEaPZNJvV6PwWAgMDCQuLg40tLSSE1NJTo6+hQz3iZ9QBQFh8Nx2VRx2L59O/PmzUOWZVJSUpg0adIlL1uoaRpz5sxh+/btgCfSpjlTyX5r+PLLL/nhhx98+f/9+/evGDVq1DKdTifTcBG1+QUAzZOvX3eqKooCgl5PSUkZ2/ccpKTCTmJyKu3bdyA+PqFm1b9hKC7IYfPGjWRlnaBf78706d4JQQBFaZ5oAEEQUFSV+Z8txSaJ3PaHYQQEmFFVFUmSWL9+Lb179yEsNBSDTiM/5ygHDx5kyFV9CQ0JatrV//Mg/17i77Q7OHwsm+PZ+ZgCAgkIDERVFRRZ9szZVAURjdBQCzER4cRERRAUHARoqIrHg6tB7dyMBoItTwDwE/9mEQDE4AQEo4WioiJuv+1uSotL0Z8lvPxSGAEKgKqovPzKPxk1+uFfBQBbMZqz8vIXAPR6KnNyKNy2jSMFxdz7z6lo6ElLboVbcqNp0KFDO0Y+OIK8k3l88MECZEluUKin2+3miSfHMujqgUx7bQbbt+884wRSkmXcUssRATRNo7g4D5fLY4xXNwpAr9OfkRy7XC7GT3iKyVOePZ29VVfz2muvUVhYiKIoDBkyhBEjRjTbedqdTiqqrLVy/38lDXHRUZhNDRcAli5dytdff41OpyMhIYGJEyeeV2mv3Nxcn5AQHh7OpEmTiImJueBz3bZtG/PmzUNVVSIiIpg8efKlCP/3CgDhwNAm2JetRgBwNFAAUG02W8Dw4cNvevnllzf37t37ZCOPQf7Xv/415Jdffgn46quvvm+o6OByucIGDx5884YNG3QA9913H59++mmz3OOZmZls2LCBHTt2nCYEpKamMmjQoMtKCKiurubQoUPs2LGDI0eOUFlZ6QvT9+boBgcHYzabMRgMGI1GzGYzFouF4OBgAgICfJEBZrOZgIAALBYLFouFgIAA9Ho9oij6trlYcLvdVFZWcvLkSYqLi3G73XTv3p2AgAA0TSM0NLTFRhisX7+ejz/+GE3TaNeuHRMmTKjXrPhiY/ny5Xz++ecAtGnThokTJ/5uozKaErIsM3PmTA4cOIDBYECSJO6+++7MG2+8cX1j+88ZM2YMzcjIiBFFsdkEAB+vqfldZ9DjcrjYnnGArLwy2rTvSJcu3Qis1QdKskJ+fj4FBQUUFBZit9nQgEBLECEhIYSFhBAbE0V8fIJvGlyQm8X69WsJNIgM6teDkJBglLMZ8J2LnJ6B94migFCTlgAaqqqdJnDqdDrKK6tY+OUy3KqeYcPuwGKx4HQ6WbVqBf36XUl8bBT2shN899NqbrymP63Sk1AkuWnbvZG8UieKaGhkHDjG0ZxCYuOTSUlrRXR09CnVdFRZxuF0UFVVSWlJEQX5+VRXVhBo0tEmLYnU5Hh0Bj2qrPwqBDQ0Pf4S8przLwN4MUQBP/lvDroFotHj/i+IfPnlEiY+M/msEzKPEaAbtyxfVBs+URRB1fh44YcMumrgr0fsrEC1lVz294ug0+EsLyd7/Xrcbjf3vTyDAydO0r5NJzp2bM+gqwaQmpbKurXr+fGH5b4c0IZM7tLSUvnLi38kP7+Af//rNRRZOauRmyRLuBtg1nJpNEABu72akpIC4PQoAFEQMJ8hDcDpdPHi3//CmDGPnPbesWPHeOONN3zGW48++ij9+vVrrqeO8ooq7A5njatvrQgARSUhNpoAc8NW/BwOB9OmTSMnJwdN07jlllsYNmzYeR3X7t27mTt3LrIsk5iYyOTJk5uEnH344Yds3LgRgP79+7seffTRH2oI9cWehSlAaI0AcKEsobECgKZpmu7uu+++edy4cXuGDh2a2dgJ7Pvvv99vwYIFrVauXPmdTqdraHup//znP2946aWXYgCSkpLYvHkziYmJzfZMe1MDvBEBl1NqgKIo5OTksGvXLjIyMnyr/d5z0DQNi8VCq1at6NmzJ23btiUgIACdTodOp0Ov17eI/Hy73U5paSl5eXmUl5fjcDh810AURd+5yLLM4MGDm7U06tmwePFiVqxYAUDfvn0ZO3ZssxzHsWPHeOutt3A6nQQFBTF58mQSEhL8U8oLRHFxMVOnTqWystIXIfP4449v7dy5c6NLqTa1AOAV+7zEt1ECgAA6vYEjR7PYsmMfSelt6dvvylOIf0lZOdt37ODY0WNYbTaM5gCCQ0Ixmc3o9HpEQcTldKKqCrLbTVCgmc4d29OpUyefOfKh/bs5fGAvvbq0JTE+tnEiwNnIsU4HgojV5qCq2oYiSwQGmAkPCUJnNHjMCGu1iU6vx2azM//zpcQktOLqq6/B6XSyYsUyrriiDwnxCRw9uIOy4gJuvn7gWY3/PB4JIpp3HiuKnpD7c5kFNoIj6PR6bNU2ft60C8EUwsBBgwgLC/PcSJJMdbUVnV5fc44aJqMJc4C51tzTQdbx4xw5dADZVU2H1qm0a52CTq8/+zW4LAWAphYD/OS/mfi/ihAQhhjoMdF5/LGn+OnHZWcNqRMAtyzjktwXVwAQBMLDw/n8i0W0bt3q10N2V6NWF3A5VwHwDiaKJJG1di2i08H4t+fz4+bt/PWvL9K9e3d27tjF2rUbyDuZh9FobJATu3cFefwzT9D/yn6cyDzBf/87jarKqrOKBwICkiLXRB60DGPA4uJ8nE47ANHR8QQEWHzHZjaa6j0fh8PJyAdG8H//+n+ntdeKFStYvHgxer0es9nMc88912wTNklWKCkrR6ox+/Ku/muqhqKqJMfHNlgA2LFjB++99x6aphEUFMSzzz57XuZ/AD///DP/+9//0DSNrl278uSTT16wgVx5eTlTp06lpKTEG/6f279//5+5+Kv/4KkPbakRAAIu8LscNQJAY4QL7eGHHx560003HRs5cmSjJ7Dff/99m3/84x9X/vzzzz8EBweX0rAUAmn16tU9hg4d2s1dk96zePFihg8f3uzPdO3UgLoeAcnJyXTo0IHY2FjCw8OJjIwkMDAQk8l00cLfT2vwGjM+RVGw2WwcPnyYnTt3kpmZic1mO2W1X6/XExcXR5cuXejRowepqakXzWzx/KZlGlarleLiYnJzc6msrESWZZ+3wJlc62VZ5tprryUyMrLFjZl5eXm89dZbVFRUoCgK9957L0OGDGk2QcUrvAqCwIMPPsigQYP8c8oLxM6dO3nvvfd892JcXJw8ZcqUFSEhISU0MoXKKwAIgnDeJoA6sYZ8qgpOpwu3JCEKIhZLAKK+1irv2cg/HnO8bTv3sXH7Pm6+5Q+0bd/Bt2lRSSmbt2zh0OHD6I0m4hKSSE1JISYqkiBLoK8tXG4JWVZwud1UWK2UFJdQmJdLgMnAlf37075tG4+QUFTI+rWr6N+9LXGxUefOq6/v+GvNn3R6A7lFlWzevhenSyLAEgSahiS5EDWJVsmxdG6bRkBgwClkV2c0kJuTx89bDzL4hlsQRYHt27eRkpJKfHwCO3dswazZuWpAb5R6FqB0OhEEgeKSMo5m5lJSVonBoCMxLprUpPiaKAep/iKQjSH/BgNFhSWs3LiDdp170rt3bwByc3L4ZdsvlJSWo9MbMAaY0VSQ3C40VcVsNhIbE0N6WhopKSm+CKCTudns2rEdl62S3l3bkZqaiKaoZ09vqLkGoiAg6HUefuPdXhQ856NqqIrSZP5rTSMANIUI4BcAmmuWgBiaiKAPICcnhztuH+5boTlrz6oouC6ygZygQcdOHfnii0VYgn5VSTXJjmrN/000vyCKnFi/HqW8jA9WbOBf8z/jqkHX4HLKFBUVo9frGrV65LA7uOnmG3l41APkZOcQGR3JOzPnsGvn7tMm0TXFAFA1FUVRUVTFtwrUEsQRh8NGcXEBoBEQYCEqKs73vkGvx2QwntYRyrJMTEw0H338AW1qi0a1cja94cfPPfdcs4SOAlirbZRVVtUJ/ff8VBSF1MR4Amupy2eb5M+dO5dt27ahaRp9+vTh8ccfP+/j+vzzz1m2bBmCIHD99dc3SYrE7t27fdUJIiIimDJlysbIyMhjl0gA0PCs/A8Fgi/wu5w1AkBjjAvl8ePHD01PTy+bMmXKL40VADZt2pT42GOPXb98+fLl8fHxBQ38vFJVVRV91VVX3bhnzx4B4LHHHmPOnDktpt+rLzXAe+/rdDpf6Lw3fD4iIoKoqChCQkIICQkhMjKSsLAwzGYzJpPprOOVl9R73fVtNhtVVVVUV1f73Pi9/6uqqsJut+NyubDb7VitVt8xefvGsLAw2rZtS8+ePWnfvv15pdpcTAGjsrKSvLw8iouLsVqtOJ1OjEYjbdq0ITY2lpycHLKzs88oKHsFgJYYAeCNJBJFkejoaCZNmtSs7vu1jU0HDhzII4884p9TXiCWLFnC999/j9FoxOVy0atXr8onn3zyJzyGrsJZ+nm15qdQIxRckADgIZ8iZeUVnMgtpLDciqoJaIgosoQmO0mKi6Jz+1aYzebTV3lrCQA6g4Fdew6wZfcR/nD7MBKTkgGw2R1s3LSZnbt2YQq00LZdB5ISE4mPjSIiNNgjPpxJgHI4KSmvJL+4hMzMLE5mZ9EqLZUbhwzGEhhAfn4Bm9av5sarehFkNpx3yq7OoGf/0Ty+X7mRdm3b07FDRyxBFgRRRJYkCgsLOXjoIG5bOdcP6El6WqIvlF+n01FaVs7XK7Zy7fVDsVgsPkNAk8nMzl07cJSd5I5brztFAPDm4ZeVVrAj4xAFZVaio+OIjolFkhUKCvIpLszjiq5t6NG5HYqqcL6sWGfQk5OTz6rNexhw1XW0bdsWl8vFihUryNi3n4iYOBKTUwgPC8dorDF11VSqbXbKKyqoqqygurISk0FHWmoK3bp29VUlOX70KDu2bSHMoqd/764EBVvOmOYgaBqiQY/d7uLEyUKKSiuRFcXjK4OGJkukpcSTnBCDKOqapFRi8wsAfuLfrOQfvckT/o/AgvkL+ctf/k5QA8IwFVXFWZOjfbEIoKaoDB58PR98NLfOzl0oVXmgqZf9JRB0Ok7+8gvOvJNsPpzJw//3JsGWUBISkhtde93pdNGuXRv++MJkqqureW/Ohzw2bjSrVq7mmyXfYzKZfiX9qofwK4qndIxGy4ynKCkpwOGwAQIxMQmYzZ4cVZ0oYjaZ6yXEiqLw8iv/5L777/X9v6qqitdee43i4mIUReHqq6/moYceaqbHTqOwpMwX/u8l/l4xQFEU0pMTsASce8H6xIkTvPnmm9jtdkRRZMyYMedd1lBVVd599112794NwPDhw5tkdW3VqlW+qILOnTur48eP/0mn0zV0NbspBABDjQBwoVbh5yUA/OMf/7jJ4XDoXn311YYa+fk+u3v37sR77rnn+m+//XZVhw4dGuUh8Nhjjw197733IgAGDRrEypUrm03wOpsQsH79erZv337KCnt9z4zXTVuv12MymQgICCAgIMAnCERERGCxWFBV9Yyk3u12+16y18yp1nd7x566+zaZTCQnJ9OzZ0+6du1KXFxci2lDh8NBeXk5ubm5lJeXY7fbfVEVAHFxcbRv357w8HAEQaCgoIBNmzadsa1bqgBw8OBBZs2ahdvtiVIbMWIE1113XbMe06ZNm5g/fz6qqpKYmMiUKVN+06UuLzYUReHtt99m3759GAwGXC4Xd911V9bNN9+8/izjhSLLsqG8vDwpOzs7PDIyMj8tLS0fUGfMmHHT+aQA6PR6Kiur2LXvMG4FYpNbE5+QREhICAa9AVmWKS8rZf/+fZQU5NCnazvSahHf2nxIZzRw8NAxdhzI5tbbhhEaFg5Axv6DrPr5Z9ySTLsOnWjfrg3J8bFYGiD814Yky+QXlXI0K4cD+/Zg1ovcdcfthIdHkLF3HydPHGPo1b3QZFejaZpOFCmqdPHp18vo0bMXnTt1RnK7PSvZNf2HRxzVOHLkMLu2b+KW6/rRpnUKiiSjMxrIOpHPlz9t4o477iQgIIDS0lKfH0p+fgFrV/3I/cOuJyo2CtUtIep0yJLEjj0HOZSVR0xCGm3atifIEoSmqh7KKIiUlpawdcsGBvRoTbs2aeflH6AzGMjJzWPFhl1cN+Rm0tJSKS4uZtny5VidEh07dyEtOYnwkCDMJhPGWr5oLknC6XTjktyUlFVyIieHvNwc7NZKkhMT6Ne3L/Hx8WiaxtatW8k8coDuHVLp2C4daiI9a7ezhsCuA1kcyc4nOiaelNQULBYLgiDgdrnJyztJXm42wWbo2r4VsbFRF+yZ0LwpAH7y38wCgIoQGIkYEIGqqjz80KOsX7fhjOX/TiELmorDefEEAJ0ooioqjz8+hr/+7c91dq6gWPNAcXG5pwGIOh1FBw5QdmA/RVY79/5zGhV2F61S2zTqe9xuNzExMUx67hmSEhN4Z+ZsNm/eyr/+/RJFRUVMm/oWeoOhhvDXrPS38NYTBAGn00FxcV5Nnm0wkZGxvsl63XKA3hU6RVEYdsdtvPb6f3wrgydOnGDatGm+lcD777+/2SaPbrdEXlExck3O3CkpAJqGLCu0SU3CEnju5/Drr79m6dKliKLoc8RuyPNbH+x2O9OnTycnJwedTsejjz7qC4W7EHhXdACuueaaygceeOBcqzktVQBw1wgAlY0QL+RZs2b13bFjR8TcuXN/bKwAcOTIkYRbb7118KJFi37u1atXbiM+L4wePXrohx9+GA4wZMgQli5d2mJNyo4ePcquXbsoKSmhqqoKm82Gw+HA6XTi9k44a/ULdQm696c3rP1spL5uWS7vtuDxnfHm7huNRkJCQmjTpg09evSgTZs2lywV4VywWq2UlJSQl5dHZWWlpyxvzfl720BVVVq3bk2nTp18/3M4HPzyyy+UlZWdkgIgCAJGoxFVVXE4HC1OAHA6nbzzzjscPHgQgPbt2zN+/Phmvx7e6itVVVWYTCbGjx9P27Zt/XPL80RpaSnTpk3z3Z+iKDJ+/Pit7du3P1P6lFxeXh6Rm5vbJz09PdrhcAg7d+5UQkJCDvTv33/7m2++OXTPnj1xjREAdHo9JaXl/LxhBx06d6Zrzz4+vdflcvmeFS9yc3NZt+ZnOqXH0b1LOxRJwpOmLoLBQEFeAT9vzmDorXcQERGBw+Vi+YpVZOzdS0qr1vTo1p2UxDhCgxouHNVXNrTa7uB4zkl27dqNtayEYbf/gaTERFasWInFJHLlFR1APt3s+YwpDICoN7B0zU6qbC6GDB6C2+0+LbXh1/7DxL6MHezctpkxI4cRHBGGZHfwydcrEAzB3HzzzeTl57Nn7UoiE1Po0W8Aoiiyfv0aKopyGHrdlcRGhVNaXsHGbftQRDPde/YmPDwSRfHMWWvv22AwUF5RweF927m2b2eCLAEN82WodZ0Li0pYunprDflPI+/kSX5YvoLgiGg6tGtH2/RkAhrYx1TbHBSWlZOdm8eJrEwqS4tpnZbC1VdfRUhIKCWlpaxbu4ZAncKAKzoTHBKEKsmIooDDrbFs3XZEQwCDBg4kPCL8jPvJzz3Bzl820iY1wSN8yOcvAjSfAOAn/y2BYnlW/3VGjhw5wl13jMDtdp8xN7BuB+RwOS9KuLgGGPUGJLfEtOn/5Z7hd5+2hacUoP03UQqwIjub3C1bMJtNPPLfWWzae4i2rTug1xsa1L5ut5uwsDAmTh5Phw7t+fST/7Hkq+8QRIEJkybgcrt4c/pbiKLY4kl/ffB6AYiiSExMIkajCTQNs9mMKPw64ffWZa2oqCIuLoa5779Lx46ePLucnBymT5+O0+lEkiSGDRvGH/7wh2Y5n0prNUWlZR7Sr56a/69qGrKi0C49maBzlLayWq1MmzaN/Px8VFXljjvu4JZbbjnv4yopKfFNviwWC88++ywpKSkXfL61DQCHDRtWfOutt/7EpVn9bxECwKefftrlm2++Sf30009/oHGmh3JeXl7c4MGDb3jvvffWDBw4MLuBAoBSXV0dedVVV920a9cuAWDy5MlMnTr1snjevSv1NpuNsrIyysvLsVqtVFRUUFJSQmVlJXa7HYfDgcvl8uW1e1e0awsC3v+JoojBYMBgMGAymTAajb4ogtDQUEJCQggMDPSlHFgsFo/bdlhYiwjxVxSFyspKCgoKKCoqoqqqCkmSTjm/utunpKTQs2dPH0mQJIlffvmFgoKCU9LKDAYDhw8fZt68eaSlpfHYY48xYMCAFiUArF+/noULFwKg1+sZM2YMPXr0aPbjkiSJt976/+ydd3xUZdqGr3Omp/eeEFpC6E16RzpIR0TAgmJXbOuun7q6uqvrimBDsSMKKFXp0nvvHUIIpPc+9ZTvj5kMCQQIEBQ1z29XlGTOzJzyvu9zvc9z3x9x6tQpAEaOHEnfvn1rl5Y3GEeOHOHzzz93VijKMsHBwcoLL7yw1tfXN7uKMVcuLi723bt3b/eWLVv6lLeCOBwO1q1bR0hIyJlt27aFHDp0yLe6AKBcvX77/hO0adeZsIgo0tMzOHb8OPmFhdjsDlRVxWQ0kBAfT5PGjRFFgdLSMpb+vJh2TetQv0EsksVKXkERBcVlHD+TTNuO3YmpE0t+QRGLf15CYXEprdrcQYsmjQj086mx86eoKikZ2ezYvZfMlGTGjBpJaEgwS5b8jL+XHl9PLYWFxciKgl6rJTjInwax0RiM+st0AkRBoMwBsxf+SqvWbagbWxdJkqoEAOUQQKMR+XnJQjSKjToxEZw5ewEHegYOGIS3ry/bt2wmIOcsebJIVLuexNaJwW63cfjAbtLT0wgK8KfUbCUypj7xjRIQBeFiqXsVQnlarY4ziScxysW0bZFQ7bJ4jUZDSWkZi1dtoX2XnsTHx5Odnc3iX34hKDyGhPg44mKj0Wqvf5lisdpJz87hfGo6ZxPPYC0pov0drWnXzik4vXfvPs6ePkFcnVCaxMfikOGXdbuIia1P504d3XNgfl4eDsmByeSBr69vJehUWpDFmtUraNeyCZERoTcIAdTfAQDUJv63R6gKgs4T0ccpgvbZp5/z77feqbYX8K0EAOD0eldllR/n/0CbtpeXNCulWai2kj8FACjNyiJ5yxY8TUbeW7CCTxevJDamgUv0TrnGYtlOWGgwjz0xmbj4hvz040IWLfoFVVVxOOwMv3s0Hh4ezJk1+4olnxUzJSoAgivutP2GEEEQBMrKSsnLczoCeHv74e8fhKqqlYQA7Q4H94wdQ/ee3XjpxZfJy8vjgQfu459vvIIgCNhsNqZPn05SUhIAcXFxPPPMM7+5OreqqqRl5VBaZnaq/7uSfmclgIKqOvU14uvVwdvz6gBg9+7dfPPNN67z4s2zzz5LeHj4DX+2kydPMmPGDHc1yfPPP4+vr2+NLpDvvffejG7duq37DQEAOHtD+wE3m9HcEAD45Zdf4r/66qtGS5YsWS4IwvU8PnJeXl5w9+7d+73//vvb+vbtm1RNACAdPXq0bqdOnbqUlJQAMG/evN/V8rImE2GbzYbNZqO4uJi8vDyKi4spKioiPz/fbctXrhXg6enpttvz8vJy/105DLhdFPqvBEIKCwtJTU0lPz+fsrIyZFl2J/xXGssVRcHb25vOnTu7d8hVVWXPnj2kpqZe9n0NBgN79uzhn//8J3FxcUydOpUOHTrcNgAgPz+fDz74gMzMTFRVpVOnTtx3333X3SJ3q2Lx4sWsXLkSgFatWvHII49UaxOlNi6P5cuX8/PPP6PX67Hb7bRu3brkkUceWS0Igv2ScVORZVm3fv36XvXr1w+qV6/epc+OumbNGmHr1q0UFxcjSdI1AYAgCDgkiTVb9tC8bWdiYmI5evQIq9asIzSqDkHBwYCAJEuUlZSSlZFKaFAQQ4cMwmQ0kpKSwsY1K4iKCCE3vwS0eqKiY4iOjiYqKpqc3DwWLF6CVm+gbds7SGhYF+MtasnKyMln/abNFORm8cB9EynKz2fb9h3UqROD0WhEEEUs5jLSUlMoKcilT9e2hIcHITvkCkmySGp2MYtXb6N/v/54eXlV3oWvIp/TaDTk5GSTfP48hYWF+PsH0KRxYzw9PSkoLGLHmuV0CjFSaHOQqg+hY9duzk5kjeBs03JITjBrNLrbs6rMM92VXSIWi5mzJ/bTvV0TdLprb5qJooCiqCxeuYmYhk1p164dZrOZOT/+iKdfEG1ataJ+TMRV9ReqE2UWK6mZ2SSeSybp9EkCfb25s3dvQkJCKCgodFbkiRIajZ74xs1o2rQJdoed7dt3kHQuGbskO6tgBBEvTw9i60TTvHkzPEzOdWFq0nEO7NvLgF6dEAWhkgSCKAoIGvXiEyPDZWxEo/+NNQBqk//bCgCIXqEIBh8kSeLuMePZv29/Ja/Lq7MjZ1mecgv68AVBQKfREhwcxPyFc6tUNFcs+ajm/D/8PaXR6ShKSeHCjh14GA1sPHySh96dQUR4DH6+/lWqhgqCgKoo2Ox26tWvx7gJY/Hy8WH+vAVs3bLVrfDscDgYMnwo/gEBfP/1LDQVaGZ5FlIOBQRBQBRE58BR/ndcDgBUnDZ1DsnBbyUVqKoq2dnp2O1WNBotoaGRaDQ69DodOpd4mMPh4Lnnp/DY45O5e/Q4du/eS1RUFN//8A1169UFYOXKlSxatMjtz/3ss89Sp06d3/R6W6w2LqRnOnUXFMWZ/F9SCSDJMo0b1L0qAFBVlS+//JI9e/YA0KlTJ+6///6b+mwbN25k7ty5bpHE55577qZLbMvKynj//ffdicdDDz10vlWrVpv5bQQA3QmxCwCE1MBxVgMF1wMANm7cWO+dd95p9vPPP68wGAzK9QCA4uLigG7dug187bXXdo8YMaK6LgLS7Nmzu0ycOLEugK+vLzt27CAhIeFPP61Jrp2Q2zWpv1aUlpaSl5dHWloaRUVFWCwWdyVDdR0GVFWldevW7nnTZrWyYfMWTpw+Q3R4qBOuV1ivGQwG9u3bx6uvvkrTpk15++23bysAsGjRIlatWoVGo8HLy4unn36a6Ojo2+aaHT58mJkzZyLLMoGBgTz//PNVChOWOxfcju4Kt0MoisLMmTM5cOCAGwAMGzYsdeDAgZu4vHJK3rVrVzu73R7XtWvXKo+Xl5fHtGnTyMvLQ5blSgCA4lRUQayUtmj0Og4eOk6ZYqBz157k5eWxYMnPRMU2oGlCHIF+vs4WGauNvKJicnLzOXbkMGFBfgy76y5EUSQp6SxWm52AgECCg4PcSWRuXh7ffT+HgNAwWrVsReMGddFpby0DT8/OZcnSZQT7+zF6xLAr/t6ePXvYu3ML940eiIfR4O5N12g1JKXmsXLDbgYNGoy+fNyoIhHXaDSVqq8ubjY5VadErZaUlBSOrPmFfh2aYZcktpxIo8OAYXh5eqAoKgKgKLL7NRXHqEvfV7gk4T12cBd3NI3Fz9fnsjWz8yNenHJFnZZNW/dSKhsYNGgQqqoyf+FCisw2unXtSlxsdI3CxcKSUs6nZnD02DFyM9Np37Y1HTp0cF6j9AxsNht168ZSUlrKjz/Nx2xzUD8unuCgIHQ6HZLkoLi4hNycHHTI9LmzF97ePoDK0kU/0rpxLJFR4cj2cuFFAbtdJisHiko02OwQG6USGHARAggGX0STXy0A+Itm/yBo0PhGg6jl8KEjjBk9rlIPZXXCarPesLLoVZNiUQQVmjdvxvyFc6sWrpJtyEVpgPrHvASC4N79zzhwAFtJCQa9nqTMHMb+azqKoCUqIsb19VT3t1RV1d0T27x1K+4c0Je83FxWLl3B+XPnKtkFSpLE6HFjURSFBXN/RKvTOeVxRY0LEjiTfnefbAU4cNWPzkUXCPU3OVUipaWF5OfnAODvH4S3tx8aUYNBrwcVbA47b771OvfeO5bly1bgcEikp6fj4+PD+AnjAKcOwLRp07Db7TgcDkaMGMGAAQN+08ueW1BIZk6ec8Gjqm4IcCkAaNqwHt5X6Qk0m8289957pKWlodFoeOCBB7jjjjtu6rMtXbqUZcuWAdC4cWOefvrpm54I8/Pzee+998jLy8PT05Onn356X2xs7PHfGADYgf5A6O8BAPbu3Rv90ksvdVm8ePEKHx+fEqrfBiCbzWa/bt26DZoyZcqp8ePHV9dFQH766af7ffTRR8EAd9xxBxs3bryqtWtt/L5Jf1paGllZWRQVFVFu3Vixn7+6UZ5gdurUyVnOXFDAR598gtnmoF5sLOEhQZftkN3OAODChQt8+OGH7uqHQYMGMXTo0Nvq+uXn5zN16lTy8vLQaDQ8/PDDl7UnnDhxgp9++skJ5YcMoX379rU3fhWA5P333yc7O9u9ifHoo48eaNKkydFLxj1HWlpazLZt27oPGTJEuJrmzfTp0zl27BiCILgBAIoFKT8VjVYARBRFRaMVyC+QmbdkLSPHDCY0PJpVq1dTUGajd49uhAT4XT4HW6ykZmaxceNG2rVsQctWLa8I5GbN/p68whK69+pF87j66PW3Rovl0irO0+fO8/OSn2l/R2tQFHJycnBIEkaDkaioCOLi4vHx8WHz5k0UZqUwpE9ntyaKRqvhXGoeS1Zv5a67huLh4YFy6TayK+nPzMykpKQYUdQQGhqKj4+P2y41KyuLvOwsMtNTsaWdZdSQ3og6PavXbyf2jq4IghbZYcfX1xe/4FBSUi6QmHgGWXbugNepE0tsbF0nFqiy/UDg+KHdtGkcTYCfrzsnEUUngJAkB05+oCJqRM6dT2fHobOMuWccJqORTVu2su/gYXrd2Yfm8fVvSfWOqqpk5RVw9ORpTp04ToCXiQH9++Pn7+8et7+fMxezXaJLt25Eh4Xg7enhFAdUVaxWG/lFJezdfwAdEgMGDEAQBPbu2sGxw0mMHNwJTw8nKC4ssvL13JPsOdQYs8WErKi0aqryt8dkvL1UZPRofCJB0NQgAKguEKiFALdB/q8gGLwRvZxKxu/9bxofTP+o2uX/bgBgt9WIFcWlodPqkBwSPXp0Zdbsr69MjEuzUG3F1fZzvV1C1GhQZJn8pCRyjh9HttsRNBp3Gc9978xg3+kk6sfGodFokBXF1RMnYbc7CAoOomuvHjRqksDxI8dY/+saiouKK4ESVVXRaXXcO+k+jh46zO5tOzAaTWhdE6tQA+hEVpzluLceAggoikx2dhoOhx293kBISCQajQaj3oAsK4QGBzJn7jfE1K3v3jE7dy6Zz2Z8zqv//D+8vDyRZZnp06dz+vRpwNkGMGXKlN/Uu/t8egZFxWXgUv93Jv3KJTaACk3j6+NzFQCQlZXF+++/T2Fhobv8PzIy8qY+27x581i/fj0AAwYMYPjw4Tf/fV0uBaWlpQQGBvLCCy9sDAgISPkNAYAEeAB9uHkNgBsCAMePH4967LHHes6bN+/X8PDwrOv47orNZvPp1q3boEceeeT8gw8+uLUar5VtNptv7969+23btk0PMHnyZGbOnFk7791mYTabOXXqFCkpKe5+/quV9lcXADRs2JAmTZogSQ7efue/pGflEhcfR92oCLRa7WU7ZLcrAKhY5SQIAhEREUyZMuWm25JuxeecOXMm+/fvr3LstNvtbmV7jUaDt7c3jz76KA0aNKh9CCpEuctDuaZHYGAgzz333LqAgID0CuOeKkmSbtGiRX2aNWvmd62qpg8++IBjx44BuAFA4hkzX3+VRZP4TEYM8MTk7YPVbOW9T/eQm5/Nv96YjLePJ9/P+ZGGCQl0aN2y6tzG9ZwmJiWzY8c27r3nHkRRJCUlBVEUsVqtmM1mjh49RlpWDt169qZ5owYYDbfWieXSHrMNW3dw6NAh/PwDETUaEFQcdgd52VkoditDhgymSZMmLFy4kAg/PR3bt0C2O9CIAoVldr7+cQWdOnWlXr16OOz2KgFAWloqxSUlGA1GwsLC8fX1oaysjEMH96HkZxKgA0mRkUpLaNepHR5BQWxbvQ5FEPHz9CA1v5TsMjvdBt6Fh7cPOTk5KIrsaufydeYmVxAftDscnDy8h65t4vEwGVFc8KKwsIR12/fj6eWDIstIsoxGoyUnr4CuPXpRv149zp2/wE8LFtKxSzc6tG5RSeX/VkSZxcrp5BR279yJRrYxbNgwgoKC2Lh5M/sOHqHXnX1o0aihC15cHiWlZaxatYounTsSHh7BqZOneO5vS+jYtif/90wINrvCB18cZ+vuIAQhClGUUQG7DYb2U3joXhmN0RfBw2lTWAsA/qIAQPSOQNB7YrFYGDXyHk4cP3Fd5b4CYLXbcchSjfeDG/UGbDY7w0cMZfoH711ltWNHLkrlj1AFIAgCgivRNOfmknPyJCUZGe5KAEEQkBUVBIG/fT6HVdt3ExISidFoQlEUHA4HBoOBlm1a07lbF1RVZdP6jRw+cNBJay9JYh0OB9ExMUycdB/zf5hH6oVUZ+lnDX+v3woCCIJIcXEBhYW5AAQFheHh4Y3BpVwdGxPB91++R1j9i5N1UVExjz/6FBMm3kv/AU5hplWrVrFw4UJ3G8Bzzz1XI0J31VrwW60kp6TjcKnuKqpSaee//E9ZlmkW3wBf7ysDuePHj7stscLCwnj++efx8bnx/FaWZaZNm8aZM2fcdoJt27a96e984MABvvzySyRJIioqiueee26dp6dn+m8AABSHw6GsXLEmKj0ts0W37p0CGjdpdNPHdAGA67EwlJKSkiLuv//+3t9+++26evXqXc93V+12u6579+6DJk2alPPQQw9Vp3VCOnv2bGT79u175eU5K01mzpzJ5MmTa+e92ySsViuJiYkkJydjs9nc5bM1lYw2a9aMunXrsnbtWr77YS6NmjYlPDiQkMAAN2T8IwCAHTt28MMPP7g3GcaPH0/nzp1vy2v666+/smDBAgRBoHHjxjzxxBPuNpTysbocTNvtdurUqcPjjz+On59f7QNxyTnU6/U4HA6aNWtmfvzxx1eLomjmYtWUtG/fvubJycktRowYcc3n5oMPPuDo0aMANG3alGeeeYa5PxbyxVdFeHnaGT/yPAP6RDN7noVZC04THa7ho2kDCAkTmTNvEZ26dKV+negr5zWCgCQrzPvpJxrFNSQ5OZnjJ07h6eWNrMgYjCa8ff1o0KAB7Vs1x6D/bVxYKkIAi2v32GQ0ILp0DvKLisnNL+LkiaMknznJqJEjSWiUwA+zv6VX+ybUqeO0NNTodCxds53MfDND7xqKJEmol1b9CgIarRajXovNUkZBUSGqoEOj0ZJ45hRqWT4dWjQkMDQEe0kZgk6DoNFgzc9DUWHP6TQsGPH19cNis+Dp6U1YSAi+/v5O9X/X/6vKIbVaHWmpFyjNu0DXds1QFBVRFHBIMhu37SUiui71G7dAVZxnRKvTonc54VhsNr6dNRv/kFAG9+uD13XaL95oSLLMyaQLnD5zmrL8HOIbJbBn337iGzel0x2t8TBePQ/bt3cvgiDQuk0bDh8+xZNT9qCo9Xj7H8GYLdl8OtuOqsQjio4K7wm+3irv/p9MRFwYCJ6/AwCoTf5vh+wfRL1T/V8Q2bVzN/eOuw+tVntdixABZ9m1XapZAFBu72axWHjo4Um8+to/rr4iN+egWgpvvyoAQUAo381RVSSbDWtRESWZmRSnpCDZbIii6CSTDjt2s5n8giJKS0tZtPcoc7fswdcvEA+TNwIq9RrUp3OP7kRERXLs8BG2bdxMbm4uOp2uUj9UeYm/3eFg3Li7ad26Bf9+879IknSTO0sKiuK0rRME3BoBokZERcXm8ma+lQBFkhxkZaUiyzImkydBQeHotFq0Gg0Gg4HvZrxJy669QLg4kD/+6FMoisInn36IRqPhwoULvP/++24f8BEjRtC/f//f5JbIzMkjMzcPVKeNptsC0GVf6NRYAEmSaZHQ8KoAYMuWLfzwww+oqkpcXBxPPfXUTXm8Z2Vl8e6772I2m/H09OS5554jIiLipr/zpk2bmDNnDgDx8fHq008/vUar1WZz60QAVcCRl5vv+9UX38Z/883sOFRB06x5M96f/h+iom+qSuKGAEBaWlromDFj+n7++efrmzRpknarAcCSJUvaDB8+vDGAh4cHmzdvrhE7x9q4ubDb7SQlJZGUlITFYqnRxL88+ddoNHTq1AkvL09eeeU1BIOJkKAg6kZHotNpK1ke3q4AQFVVNmzYwC+//ILNZitPBnnsscduaoy7lXH06FE+++wzHA4HERERPPfcc273iFmzZrF9+3b0er27rNnhcNChQwcmTpz4m1ag3c7x5Zdfsnv3bnf//5AhQzKGDBmyvkLyr5jNZu+5c+f2u/POOw3V0e+pCABatmzG/Q88zYsvpXEhxYEgaAkKKCIiFPYf1lNYfAaTSeKLGd2pX9+LuXN/ovedfQgJDrqq8B3AgsU/czYpiUYJjakTWxeT0YBW62y1VFUI8ve9pqjvbx1mi5Xz6Vls27aNc2dO8vBDkxAFWL96GaOH9MLD6LRZzssv5Mu5y2jZtgOtW7VGlmR3r365NolGtZJ46hh79uwjSAeqqEX1DSW+WUtsFguHD+xiUL/eRMeEIpcWOUGELLNu51G8/MLw9vTgxL5d5F84iyiI2LUmGjVrQYv2HUF0VsyiKpU2mjRaLXarhcMHdnJHk7qEhgQiywoajYYNW/fgGxhK6w7dKCwsdFouy7LT5UwQ0Gg1bNm+g/SsHIYNHUZMeMhveu4VReHM+VROnDpN0ulTRMXWpWfXTgT7XxsInjh+nILCQjp16sSevcd47sX9INSnRWMTgpDP+dR6rjFFrfB+4GFSefv/RGIbR7iXEbUA4C+X/ysIJj9EVwnIG6+/xVdffoOnp+d1HcYJABzYJUeNAgCNqMFoMGA2m3np7y/y+BOPXONJkpCLU0H5rWzFr56kCqKI4Ers7SUlWAsLKc3OxlJQgKWgEIfNgmS1YbdZsZWWYC0pwW61INlsqIqCUSuyK6OAt9fswtPLh8ZNWtDmjjYkNG1CdnY2Wzds4vTJUy766XyIneJ9IhqN809VAU9PD95481W2bd3OTz8urLa446ULMYfDAQj4+/sSHhGOn58vDoeD/Lx8HA4Jq9VKUVExkiy5LHKUW3h+RQoKsikpKUIQREJCIvAweaIqMkXFhUx96x888PAE0AW5x5rvZn3PpzM+59tZXxLfKO6yNoCGDRvy7LPP3vJFmKIoJKWkU1xaXv5fAQCUJ/+qCio4ZJlWjeOuCgB+/vlnli9fDkDnzp257777burz7d+/n5kzZyIIAlFRUbz44os14rG9YsUKlixZAkCnTp2s999//2qglOuzw6s2p7KYrcKiRUviPvzgo4TU1HSvQP9gTCZPbDY7L/ztKcZPHPtbAwA5Ly8vaOjQof0/+OCDDW3atEnl+loAvF0tABeq2QIgvfzyy33ffvvtUHBqOWzbtq12p/F3DEmSSE5OJjExkbKyshvq7b+e6NixI2fOnOGrWbOp17AhYYGBhAYHukv/b2cAYLfbWbJkCRs2bHCBZ6emwWOPPfabVWrdSKSnpzNt2jSKi4vx9fXl+eefJzQ0lIyMDKZPn05JSQl6vZ6YmBiSk5ORZRlZlhk6dOhvrkNzO0ZpaSlTp04lIyPDPRc/8sgjR5s3b36gwpgnbd68uX1WVlbc6NGjq3XcigCgVatmjBnzNE8/m0JpqYxGI6AoAooKGlGhoPAsgljMx9PbU7+eP/v27aO0pIT+l1yfrKwsgoKCKq0Z8goK0Iga/Hx9/nDn/vS5FFauWom5qIApU6awe8cWSnLTGdyvO4osI2pE9u/Yy7JNe2nYvDUtW7Z0KtGrKpJkJzcrnYP7dpOXmUnrqCBaNI4DrZbEs+c5nF1G+179MOh1bNm8gTGDuhIU4IuqqGzcdQTRGEhMbBRrliyivmh2+trb7KRmZHMgJYfw+vE0adEST19/tCYPNFodgiiiIlCcn03iqcPUiQiicVw9ZFlGo9Nx9NhpUrIKGDB0NHv2HWD7jp34+Pmh1etBcSrjG43OTcZmzZrSqsnvI46rAmeSUziVeI7wkCBaN21UrXnh0KFD2G027mjXjg2b9vLa64fR6eLx8wlzqYXpubQq2gkAFP77ugcxDS9KId0aAFBb/n8bAwAV0TcSQWuiuLiEEcNGc+5c8nWT9VsFAPRap7p7mdnMu/97h7vHjrr2V7IUoJhzf9sqgHKlfFFEEEQQQC7f5c/IoDg9nZKsLCxFhdjNZqxlpUg2G5LdhmS3u4imWlndVBQxajWcLrLw92VbqFuvPk899wJWq5U9O3dxcO9+LGYzeoMBjSiiETXuxaRQ4XOZzRYGDerHsBF38a9//ofMrKzrVsW22+3o9XqaNm1Mx84dCA8Lw2q1kpGZSUZ6Ji1btSAkJIj1azfy66/r3JYtNoe9SueCmgIsNpuFrKx0QMXb24/AwBBsVgtZmWk8/9RjvPv2S6g6fwS9M3lOPHOWcfdM4KGHJzH5kUlAZTcAnU7Hs88+S2xs7C2n7UkpaW4f4fJd/4rJv/P/zkVvqybxVwQAqqry1VdfsXv3bgCGDRvGwIEDb+rzbdmyhe+//x5VVenYsSMPPPBAjXzvOXPmuBfzgwcPzh06dOjqW5D8q4DjxPFTwc8//2LLrVu2RAQHhRMS4rTyURQFi8XKiJFDePX1l272fX4Fcq4HAJSWlgYOHjx4wNtvv72xY8eO16N/IFssFt9u3boNeuqppxInTpy46xqvVRRF8erfv3+/NWvWGAHGjh3L3Llza+e93yFkWSY1NZVTp05RUlJyyxN/dwVAx458/e0s0nNyCQ8Lo1505EUF79sYABQXFzNv3jz27t2LVqvF4XAQGRnJxIkTudTm7XaL4uJi3nvvPbKysjAYDDz22GMkJCSwdu1a5s+fjyiKxMTEMGnSJBYvXsz+/fsRRRGTycRTTz1F3bp1/9LPytmzZ/noo4+wuyoJ/fz8eOGFFzYGBgaWj5dyaWmp/3fffddv4MCB2urO1xUBQLNmTXj00Sm88FI6SUl2dLqKveQiJWUZlJYlM2ywP88+0wONRmT5smWoikKr1q3x8fUlIyODDRs2MGrUKEJCQv4U515RVQ6dOM2ShQto2rgxo0cOZ87339G0XhjNmyegOBwIiszJg0dYu3UvxYoGg6eXs23VYUe2lBHhZaBVnXCi4+rjW7ceolaDajGzb8d+9qUXM3bceHbt2kF2SiLjRg0gPbOAnUfP06plK9atWk6zYA9a39ECfUAAktWKraCA7PMXOHIykbyiUjQGTzQePmgNJvQmIwIqdkcZbVs3pX7daHdlTXFJGSvW72DIsJHkl1j4edkKEpo2JygoABHBlYOqGPR6Av18CfDzQfwd81JVVcktKMLTw4hHNTfp1q1fT52YaBo0aMi7U39h6bI8TKameHmGucZ2tYprDDqNyr/fCCQ+wbsWAPxVk3+0Bmf5PwIb1m9i0gMPY7iB3WEBsEsSNoe9RgFAube72Wzmq28+5847e1XjeylOLQDlUqvYqyTvV7kn3WWZbnV8AUTh4u+qKqosY7dYsBYWYs7Loyg9jcLUFIrS07GWlCDbbThcib6qKM7ypXJbznLbPa0WnYcHRm9vDD6+CIqCh9FIilni/g++xsvTi/Ydu3L29BkKCwoxGgxotFrnQrJCRlIxJEkiIMCff77xf+zcsZvvZ8+9rp3c8p2JZs2aMOSuQfj4eHPgwGEOHjzMhfMXKCkpYdToEbTvcAfffzeXxMSzlRaVqupsB5AV+ZbdxtnZadhsVrRaHeHh0VgtZnJyM5k4ehTfzPwvgtaI4B2OUwFWYsL4B9BqtHwz6wu0Wi3JyclMmzYNh8OBw+Fg2LBhDBo06JY+epk5eaRlZaOqXDX5V1GRJScA8PPxrvJYNpuNadOmce7cOURRZOLEiXTs2PHmAIXZzObNm1m0aBGTJk2qEZXqU6dO8f3335Obm4uiKAwbNix7wIABq6nZ/n8ZEPbvP9Bo4sT7mp05nahv3KglXp7elQRKrRYrAwb25d//fa3GAIBaxZioXvLfOMtWfQYNGjTotdde29qzZ8/z1wMASkpK/Lt16zbo73//+9677777xDVeK6WmpkZ07Nixd2pqKgBTp07lueeeq537fuNFXVpaGqdPn6awsBDgNynzVlUVDw8PYmNj+WTGp/gFhxESFEBMRCiKcoml1m0GAFJTU5k3bx6nTp1yl4AnJCQwbtw4wsLCbvtrbrfbmT59OmfPnq00Jn/xxRfs3bsXgH79+jFixAhycnKYMWMGmZmZSJLE4MGDbztng986NmzYwLx589DpdDgcDhISEqxPPfXUao1GU14tJm3ZsuWOc+fONZowYUK1W2fKAYAoikRHR/PSS39jxmelrP61GIOhspicJFkpKEpEq03l0QebcvfYTiiywsGDB0g6dw5ZlvHx8aG0tIymTZtcxVZV4dYUuN3C+1eSWbNxM1s3rufxxx7H02RgxdIl9O3i3OgBZytrSWYW5xPPUlhQiCLL6LVa/Lw8CAj0xyssDIOfv3OdrDqt/xSHxJwFK/EIjqZTp078svgn+nZrQ3JmMR4+weTn5pBxZCfj7xmK3s8f2SWGKmg0CKqKZDFTmF9IdlYO59NyyC8zY9KKhAf706hZY/yDApFd1q8arZY1G3cQGBZNizYd+Wb290TVqUv3Tu0xGfR/iueksLCQtWvXctddgzl1JocXXtpEaakfAf710Wk93DojVaXgsqTy4gvBdO3ieQsBQG3yfxuvTBQEj0BEk9Oj9sUX/sGP83667vL/ismmzWGvsY8nCAJGgwFRcCqoLlg4jzZtW1fvq9mKUUqzrlkFoLqSd0WRncIgLis25+pdQFUVd9KuyBKq7Py94swMClNTkWxWHFYrtpISLAUFmPPzcVgtzl19RUZw2eoJooio1aI1GNB7eKD38ERnMmLy9cMrJASPgECMPj54BQZh8PVF7+FB7okTFCaeIavEzL3//pDUjGxiouphNBqrpdyvqiqSJPHoYw8T36gh/3r9PxQWFqOtpt+sw+7Aw9ODkaOG0ap1CzZt3MrGDZvIzy9EFJ1qr2PGjqRjh/Z8MH0G586dw2AwXDYZq4DtFjlECIJISUkhBQVOS8CgoDBUWSKvIJdBPbozf86nmEwGVM8wBJ2z527a+x+QkpLGe1PfQRRFJEli2rRpJCYmAtCgQQOeffbZW+YdrqoqZ5JTKCopdS4PqgQArnsTFVlSaN20EX4+XlecBN577z1ycnIwGo08+eSTNGzY8KY/54ULF1i4cCGTJk26KUHB0tJS1q1bx8aNG7FYLGi1WgoLC5k4ceKZvn377qxBAGAH/L/55pvWL774YpTdppAQ3wKdVu/qUbwYVquVfv178/a7b9zs7PYrquqsAKgy4xcu/rVzMlatNptu0MCBg1988cX9/fv3T7oeAJCfnx/UrVu3/u+8886OwYMHJ14LAKxZs6blgAEDmsmyjE6n49dff6VHjx61c99vFFlZWZw4cYL8/PwbSvwr9uirl/heX/TWvkLaoSgEBQVhtVpY/MtyImPqEBMRip9PZW/s2w0AHDlyhPnz55OZmYlWq0WSJDp16sSoUaOu25no94xyxwKAUaNG0a1bN95++22ysrIQBIEHH3zQLay6dOlSli5dCkCbNm2YPHlyjepB/NHi22+/desk2O12BgwYkD18+PB1rqFUtdlsHl9++WX/bt26mZo1a1bt45YDAK1WS2CALyNGPskXX+tIS7Og0QiXrS3KzJkUFacQGuzgzdda0rxl/MX1kcOBTqdj1epfCQoKpO2fTFclPSeP72d/T1REKOPGjuX8+Qts2bgGXw8djRvWJSoiBK1Oh+RwIKoqOlEAjQiCBsWdYiiV8j2NXsfpU8n8smYHY8ZN4MTxwyBZsClaEho3Zd2q5bRPiKRV+zbIdsdlOaQgioga0bmu12qcP1MVUEBVZBRZcY+zWTl5bN55iNH3TmTDpm0kpaRz1+CBBPv7/uGuhaqqXLhwgYCAALeWyJkzZ9i3bx/16tWlbdt2vPCPX9m8uQQfnyB8vWMvXYhUASlV7p/oz+hRvrUA4K8ZgnP3X6MnPy+fu+4aSWZGJjrdjSmTlnvB11SU9/8rioJer2P+gnk0Soiv7o2HXJQGkvWq95qqqkhWK5bCAkqysjAXFGA3l2EvK8NhcSXyDgeyJCFLDicAkBXsZjOqIiNotIgaEVGjRdRp0egN6PR6dCYPDF6e6D09MXh5ozOZ0BoN6D088fAPQO/piUanQ6PTIZQnmupFACEIAsUZGaTu2IHFIXHfOzM4lpRM/XqN0Ov01xTYc3qFWhkydBBjx47mow9msGvXXozG6u3+2+12wsPDeOyJydhsNmbPmkNy8nl0Oh0ajQar1UavXt0Ze88o3n//I06eOHVVXQEVsNttSDUMAS4TAzR6YNDpKCwpolfrliyc8yl+4WEogh7R2ylid/jQEaw2K+3a3eE+zooVK1i8ePFv0gZgtdk5lXQem8tCx2n/p1SZ/KM6n6s2TRtdsQIgJSWFadOmUVpair+/Py+++GKNLNYlScJisbgnnBuJ48eP88svv5CUlOQSQHJCqQYNGpgfe+yxdb6+vsXc3PaIgnPXXzybmFT/tX++1mzOnB+8ggLCiWvQ1PUsXN6CYrVY6dO/F//937+ubzq7fE77FchSQStc8ntC1ferarfbdYMHDx70xBNPHBw6dOhZVVW11VzsS+np6WHdu3fv8+WXX27u3r37taoHpLfffrv3yy+/HAEQGxvLzp07CQ0NrZ36bnHk5uZy8uRJcnJyqnRludbYrSiKS8dFg1ardY+7Op3OWVVls2G1WrG7xpCq7AJVVcXb25vTp0+TmHyB0LBw6kZHYtDrKs0ftxMA2Lp1K4sXL6asrMz9ffr06cPQoUP/cOJ4S5YsYeXKlQD07t2boKAgFi5ciKqqeHl58eyzzxIeHg7A9u3b+e6771BVlfr16zNlypTbVuDwVofZbGbq1KmkpaW554xJkyadbNOmzR7XeOc4dOhQk82bN7eZPHnydVU0lgMAnU6Hn58n7dpP5Ps5gUiS4wrLRIXikgsUFufTthW8+Vo7QsIqC8d++c23dOrQnsYJCX+q66ACu/YdYsO6Xxk8oB/NmjWnqKiIlHNnSD6XhMVqRSMK2Gx2RAE0WoEgP19ioyOIiQi5OK5UOLFOsT+FL+cso1W7zgQHBbJr51bCI2KIjIxgzYol3HNXbwIDA5Arto5WggDOHe3E5BRkSSbA35fgQH80Wg2qoiKITjiwYeMOAkOjqBfflFnfz6Vj5660bvbHvUZLly4lOzubiIgIrFYrWq2W1q1bExkZwfJVJ/nXW0fRao34+dTBYPC7ZN1z+c1ts6k89WQQA/p53SIAcLUkpRYA/M5Pt4Kg80T0cSZFy5at4InHnsbD48aVSWVFxmqrOQCgc/X/S5JEYGAg8xfOJTo6qvpf0VGGUpxx7XutQguA6qKWiiQhO1wJv8uereJzJIgioui0L3EK/QkXd/sr7PhTscezPMEvrzJwqbxX9Zw4+6kcJG/ejL2khIfe/4KdR09St05DjEaPq4rrlSf/vXr35KGH72fhgiUsXvQLhmqWPTkcDoKCg3jp78+RciGNmZ99hdVqcS9IJEkiKCiQ/3v1JVat+JWly1biYTJV69g2ux1JlmocAuTmZmE2O/tqjXojZquZPq1b8O20N4ho2RJZkhB9IhG0Rqd1japWAl2XtgEMHz78pvvorxR5hUWcu5CGUr7rryiu3X8qqP87k//yCoA2za4MAHJzc/n4449JSkqiY8eOPPzww7eseqG6UVBQwOrVq9mxY4d711+SJCIjI+nRo0dK+/btDxuNxgJuTP1fdSX9KuBx6tSZ4Nnffddw5uefR+TmZlMvthHhodFVKpy7AYDVyp19evLu1DernZRd4Vi/AlmXJ+KCq4roIgpwuWWokixrBw8ePOihSZOOjBo16oyqqtryMslK7UhVJPQnT56M7N+/f68FCxZsbNu27dX0AxRVVT1GjRrVf9GiRSaAgQMHsmzZsr/0zuKtjsLCQk6cOEF2djaSJF33c6iqKqIoEhERQVhYGJ6enuj1erTlrV6i6LYGtVqt5OTkUFBQQE5ODlar9bIkWavVsn3HDlRRR3BIMPWqcL24HQCALMusXr2aFStWILlKeA0GA3fddRe9e/f+Q94LGzZs4Mcff0Sj0RAcHIzZbKasrAyHw0Hnzp2ZOHGi+1k8evQoM2fOxG63ExERwfPPP/+HqnaoyTh37hwffvih005YVfHx8eHZZ5/dGhYWds41X4izZs3qExEREdinT5/rOnalCoBAP+7sM4a588JJz7CivQzhgoCIJFsoLE7GZi+lX89cnn92GL7+ociKwrp16zl64hT3TRxPoJ/vn+5aOCSZTdt3sX3rZurWiaZf335OFwRwO3I4baltlJaUcP58CiePH2b8sDsxGZ2bd5euvzU6LbMXrCYovA7t7mjPwQN78fMPQhBUdm5ew/1jBmHyMFVqU3Kvn10uA+fTMklKzSEwKJS8/AIcVjP1ooIJCvQlK6eAUrONs+fTGTpiJNt27CYzv5ihgwbgaTL8Ya/FiZOn2LlzJ7169sDLy4vAwEAA7HYrL/79F7bt0OHj44+vd+wVqoPLr4OILJcRGaHjX6/HEBR00fGt5gBAbfJ/2wMA0SsUweAs7X3i8adZtnTFTQEARVGw2Kw19hENej1ajRa73U5sbCzzF84lIMD/+j5TSQaqvfS6BQEF4WKPv3CNCoIr3fc3a4MnajSk7d1LWWoqT874jrW7DxAbUx8PkxfKFQCALMtIkkS//n2YMHEcy5et5KcfF1ZbcEpxVR/87e/PIQoi/31n6mULWZvNxoT7xpGQ0Ih/vfEfZEm+LjGrmoYAgiBiNpeQm5vpAkdaHJLEwHZt+OD5h4nu0gWdyQg6L0Svqnc/L20DaNiwIc8888wNV8NcLc5eSCUnvxDBmaW5dvwuJv7l6v8XKwAU2l4FAAAkJiZy/vx5mjVr9ruKEamqyoEDB1i2bBmpqanuxN9kMtGxY0frnXfeeSwoKOika3663uRfxrnjb8zMzAzeuHFj1Pz588PXr1/vVVhYiJ9PIPXqNsLD5IV8jfvLCQB68O7Ut6qRnCi4rkaFqVRARUW4BABUvfMvuP8QBVFVVEVz15AhgyZMmHBs7NixpxVV1VLF66oYd6Q9e/ZEjR49uufq1avXx8fHX81CUMrNzQ3t2LFj3/J7+rXXXuONN96gNmo+SkpKOHHiBBkZGUiSdMOWfoqiUL9+fZo2bXpdr8vPz+f48ePk5+dfXMy5POZXrFxJRExdwkJDiYkIvWxe+r0BQGlpKYsWLWLHjh1O8C3LBAQEMGbMGFq1avWHvSf279/P119/fdn8HBwczBNPPFGpEictLY3p06dTXFyMl5cXU6ZMITo6+i/5LJVbxZb3/zdo0MAxZcqU1TqdrhAgKysreNasWX0mTJgglldQXC8AcIowRjNm9EgWLgli85YylwaAWuX6wmYrIq8wmQZ1z/LW60MoLDFz5NhxsrKy6dilCx1at0Ajin/K61FqsbD/yHEO7NtHQW424WFh1KlTh9g6MQQHB+Pv548oXhzrFi/4kW5t4gj096u8i18OAPQ65ixYhcEnhK5dumG1OjcIzl84z+5t63l0wnAMBr1r3sXdx14+ppVZbGzcfZyuPXrh5+fvGv8KOHzoIDZrGSFhkRiMJrw8PQkMDOC7H+bQpVsPmjVq+Ie+DkUlpfyybDlGnYaOHTrg7x+Ap6cHDkcZ06ZuZsFSG16evvh613VZgVeVfwiAgKLkMnlSFFFR50lIaOHe3Lt5AFCdpKcWAPze2T8IGjS+0SBqSU/PYOhdIyksKLypnUNFVbHarDXi/y4ARoOz191mtdG0eRMWLJx33WVxqmRFKU77Q14lUasl9/Rpik4c5+/fzGfhhm3ERNfDy9O7SmV9m82Gp6cno8eM4M47e7JgwRJ++Xm52w6wOmG1Whk0qD8jRg3j9dfeIjU1vVLlgCzLeHt78/q/XmHZ0hX8unrtDVkK1iQEcC4aJbKy0pylfK7kbHjXjrz98N34x8UT3KgRiqy4W16qiuXLl7NkyZJb2gZgszs4eTYZi2t3w1kNcjHxryj+5/ofcjUAwO0Q2dnZrFixgr179yJJEoIgoCgK9erVY/DgwWebNGlyFCjm+nr+y3f7BVmWg3bs2BH93XffRS9ftswnPSMDgMCAUMJDo/H18XcnUde+z2306t2N96b9+6q/J8myE4ohXEzuK5YLwRogE+HK30lwVwOAKAqqoqri0KFDB4+7557j99577ylFUbSVwYFw2RTpWgBJa9eujX7yySd7bNq06dfQ0NCsqwGAHTt2NOzZs2cHm82GIAgsXbr0lotb/tXCbDZz6tQpUlJScDgcN5z4VwQAcXFxxMfHY7fbcTgcGAwG986+IAhYrVb3GHXp2L1582YsFosb+JaUlPDL8hXEN2lGVFgIYcFBlz0fvycASEtLY8GCBRw7dswNC6Ojoxk/fvwfXgk/OTmZjz76CKvViuhyH9FoNEyaNIkWLVpcdu2mT5/OuXPnEASBESNG0Ldv37/kMzV79my2bNni7v+/884788aMGbPWNQ/IGzZsaHL69OnWN6KTUA4ABEGgUaNGTJw4lr37PPh4RiFVs35nZafVVkZp2S5GDguhV88Y1m7YREy9BoSGhtAiIQ5vT48/9TWRZJnUzBwSk85x4vgxzKWlKIqMRhTx9vJCp9PSum1bWjdvxs+LF9EqLpyY6HBkqXLLp0anxWJTWbFhNyHhUcQ1jHMr9hcUFLBw4U/0aN+MLu1borjm3grzHxqtloPHz1Fk19CyZUt+XbOW8PBQOrRvj7aKFqEDBw5w4Ohx7h416g+9+18+TienZrBv3z7SUlPQ6rR07dSZ5s2acO7EMf72+hFSMjwJ9I/FoC9vAbg0FxNRlBKiokTun6ihrDSFHj0uVljdOACobtJXm/zfBneSgmDwRvRyqun+OG8BL77w0g2L/1W8QS01BQAEAZPBiCAIWCwWOnbqwNx5s29sUVWWhWot/m1tAWsCAGg0FKWmknfwAG//uIyvlv5KVEQdfHz8Ki3iZFnB4bDTsGED7n9gAiGhwXw36we2bnGK6FxLKEp2DbSSJBMSEsyb//4nGzds4rtZc/D08ECj1bgBgs1mo03b1kx66D7+/da7ZGZk3jA0sjvsOKSagwDlbQDl8cDA3rw8biiq0URs165otFow+iB6BF9xwTZ9+nT3wvtWtAEUlZRyJjkFSZKqFv2rIPilVoAubZsl3LYAQFEUdu7cycqVK8nMdGqISJKEl5cXPXr0KOvdu/c+T0/PC+VrgOtM/A05OTkhixcvbvD999+Hb926VaOqKn4+gYSFRuLt5YdBb0RFvS67SZvVRvuOd/DhjP9VuXBwP1eSVO4U5M7QXZWI5R9yjQCZVSXiFRP/8teKoqiqqioOGzp08D333HN8/PjxpyRJ1pZTT0EQnHxWuDhfXvxXQZr9/fctp0+b1mzLli0rPTw88q5yPqVPPvmk+5NPPhkDEBoayo4dO/7y9mI1FVarlcTERJKTk7HZbDed+FecQ3U6Hd7e3lgsFhwOR6UWAI1GQ2ZmJjt27sLk4Umj+DhatmhOREQkObk5JJ1NRHJIqM57jYKCAtZt2ESDRo2JiQglwM/3tgEAhw4d4uWXXyYyMhKtVossy8THx3Pvvff+KXQqCgoK+N///kdBQQFarbOSsVevXtx9991V/v7ixYtZuXIloijSsGFDnn766VtSgXY7h8ViYdq0aVy4cAGNRoOiKNx///2n27dvvwvQKIoifP75590bN24c0a1bt+s+fkUbwKZNm/LY449QXCDzf69mk54lUHkp4x55KSpOIiz0IP/38l2cOHEABzo6d+xAWJA/+r/QNVJUlcLiUgqKSygtLcNiNWMxWzl86CABfr5MGDeWNWvWEOWvIyG+LrJDcq/PZEUhLSuXg6dS8fYNolF8o8pwQKPhzJnTbNm0joZ1IxnYqxMmg965DhIENDotObmFrNp8gKHDhrN7/0ESky+AomDSicTFxZGTk4PNZiM4KIimTRqzafMW/ENC6dWl058ExCjkFxaRlZtPakYmhbnZdO/ckYjwQL74dDHfznOg10fh5xtbYRlV+Z6WpCxGDq9HZMRuGjRIqLQmqB4AuNEErzb5v20AgOgdgaD3RFVVHnxgMhvWb8RUzT7uqw7gNmuN+L5rNBqMeiexM5vNDBjYn89mfnxjB5MdyMUpN37f1hzCu67nQBBFrIWFZO/Zzcxf1vDO9wsJD4vC3y/QrRxvs9nx9vak/4C+DBzcn+Rz55n17fcknztfpSJ/+YLPbncAKp6enkRFRRAWHoavry+NGzeiVZuWrFi2isTEJPJy88jIyKSkuARFVZAkibuGDaZr1868+cbbOByOm/KydkgS9hpwjhAEkbKyYvLystx/9/zYYTx2151YrDai7rgD3+hoFEV1V75cNrhKEtOnT+fMmTOAsw3g2WefrVHxqfSsHC6kZzq1Jly7/4q75//y3f/bHQDk5+ezaNEi9u3bV8FyRiUhIUEdMGDA2bi4uMNAGde36+8AjKmpqXW++uqruG+++cb//PnzaEQ90ZF1CAwIxWg0uSsMbgQ4yrKMv78fH854j7i4+pf/XFGw2exXFPOrEGsQyETFncQ7E3jBPf0KFdaToiiqqqJqhg8fNujecfceGz/+3tN2h0Nb7haACIJaIfGvAABEUZTefffdXqtXr/Zft27dMkC6yscTHnjggf7ffvutH0D37t1Zs2bNXy6hqOmw2+0kJSWRlJSExWKpscT/0vG5vBWr/HmqeI9rtVoOHTnKjp27CAkNQ5IcyJIDbx8fWjRrRmREOBqXKGB2djabtm4nLiGB2MgIfLy9bhsA8MYbb/Dmm2/y4IMPotFo6NChA8OHD78px5HbDRK99957pKSkIIoiYWFhTJkyBV/fqnvFz507564Y0Ov1PPnkkzRo0OAv9XxduHCBDz74AIvF4hZLnDJlyvbIyMizgJCVleX/zTff9Jk4caI+IiLipgHAM888A1iY9Xkq85bqMRoubfQScEgOysq2M26cFwP7t+PH+Yvp1K0H7Vs2rR0Qy2He4SOcOH6MsWPHsmvXbjyFMpo2ru9W8hdFEYvZzE/zl2PVeDFgyF0YjUa33odzXNNhLshi3S8LiYgIpVff7uh0OqdFtiJz6sw59p/NonnL1tSJieGLb76jVZu2hISGcvjIEQRVISQ0FFVRSU9Pp6ykGFEUGDJ4MGHBgX8uEKOoZObmc/j4SbJSzzNq+FDys7J48ZUVJKfGEOAXi9Hgf0kVgICqWgjwU3j8MT9SUrYyZMiISht4VwcAN5NA1Sb/t0v2D6LeWQotiCQlnWPEsDGYzeYaSXSsNmuVfT9XvzUE98q5fDGi1+vRabRuADB+wr38+z833r+qmPNQLfm/bxXADQAAh9lM1q6dzFu9iZdmziY0JILAgGBXWaGGtm1bMXzkUPz9/Vm2dDm//roOu82BXq+74gJWr9fTuEkCbdq0IrZuHRRZobikmOzsXIoKixBFgdCwUKKiIvHw8EBRFFJTUjl48DAH9h+ib7/eNG6SwFv/+i8ajXjTC+CacI8QBAGH3UZWVppbH+G9x+9nWJe2lJkt+EZGEtW+vbP6xRTgtr68NFatWsXChQvdJbbPPPMM9erVq5lBW1U5fe48+YUl7nv90gqA8gV5BSUJVwvA7QcAcnNz+eabb9xe3ZIk4evry5133lncs2fPPXq9PpPr6/WXASE3N7fep59+2mjGjBn+mZmZeJi8iYmqh59vIFqt1qWXoNzA43fxrJZbOH004z3a3tHqst8zW522lUKl6RO3p3GFWIcgpFNlBUClfyA4F0KqJEvakcNHDLr/gfuPjLvnnjNWm00LAmL57wpU6nkULkJR6bHHHhtYWFgozp07d7mqqpqL42fl81hSUhLUtWvXfocOHRIAnn32Wd5///3a6e9GxyhJIjk5mcTERMrKyqqtqXIrohwMHDl2nAOHDtOocWMkh0Ry0lly83KIiY6lXbu2RIaFkZ2dxdoNm2jeshV1oyMxGQ23jQbA4sWL+eijj2jXrh3dunWjb9++v7t4aU3HvHnz2LRpE6qqMnz4cPr163fVe+yTTz7hxIkTKIrCgAEDGD58+F/qOSt3Q9BoNEiSRL169aRnnnlmtUswVt2+fXujffv23fHYY4/d0L1SNQCwc+bgGf7vHRmb3Q9RVC6O2YJISUk+ERF7eOftwRw9fISk1AyGD72LkAC/2oHRFSkpFzhy5CgDBw7k4MFD5Geco8sdTdDrdc5eflVFFARyLqSyZv1uLAYvevUfgMlkcsJOUcRuNbN+0TwahvrSdUBvFI1zDSuXlrJnxx5O5dsYOmYsHiYTy1euIjkljTGjRxEdHkpRSRkeJiM6l8W1xWYnOycXEZXoqMg/7XlPPJ/Glu3bCfAyMnTIEN59dzWLlhZiMATg79sAQdC4VjCqa91TyMjhsTSKO4yiaujcuXPluaXGNQBqE//bLP9XEEx+7jLor778ltf/+a8aUZy93haA8oWrLEtYrWZsNhsGgxEvLx+MBkP5nhhms5lnpjzFc88/cxPZl4RcnArK1TbNbq8QBAHJbidr5w5+2bCNJz/4Cn//IAL8gmnQsB53DR1MkyaN2Lf3AEsWLyUlJRW9Xn/Fhandbqde/XqMGj2MmDrRHDpwmB07dpN87jylpaVVLgSDg4OoExtDixbNadQoDkVV0Rt0ZKRl8tab7yAIQo3sKsqyjPWmIIAAskRObgZWu7PnedY/nqRj03gsVhtanY46Xbpg9PNDRUDjEw3i5XnphQsXmDp1Kg6HA1mWadq0KY888kiNWDJZbXZOnj2H2WpzPYrX2v13/lOWFNo2v70AQEFBAV9//TUnT55Ep9OhKAotWrRwDBgw4ExsbOwJwEz1d/1VJx9R/WfPnt3szTffjElMTMTTw4c60Q3w8w1AFES3VWL17wjBXWlR3k8oiAKiKGLyMDFoUD+eePrhyyqfrDY7Zov1kqmrcuN/BWG/dUC6ANrKP7lY+19+HEEQEEVRtdvt2tEjRw6e/MjkQ6PHjEm0WKxa926/4LRKKj+SKFwEAlqNRh08ePCg5s2b2/7zn/+sVhRVW95lcIl7gHT48OF6nTt37lxaWgrAnDlzuOeee2rnvxuItLQ0jh07RklJye+a+F86N2i1Wo4cPcbufftp2aYNHkYjBQUFHDl0mLKyUrr36E5EWCjrN2yiVZu21IuJROuyVbsdAICiKGRmOoVbb2Q3948Qu3fvZv78+YiiyJNPPnlNYb+1a9eyYMECgL9kG8DcuXPZsGGDu/+/R48e+ePGjVvjgsPqd999193Hxydq2LBhN3T8qgEAKLYCpk7bzcbtddDrPSqM8yKFRaeY/LDI8KHt+fSzr2jSsg09u3RA9wezpbyVkZdfwPr1G2japDGNGsVz5swZzp0+RqNwP2LqRqMKTvcSjU5HfkYei5asJjSuMe06dESSZbQ6HXu2bqYs6TDDxw5H5+PrzCcyM9i5bTfJNi13T7yf/Nw81m/egtboSYtmTUhoWO+KLXx/hbA7JA4eP832LRu5a1AfrOYQ/vbyGvIKdPj5RmMyBrs2SwQU2Ya/v8QrL8ewd+8i+vQZ6HQSqNDTeOtsAGtBwG0DAESfSASdB7Isc++4+9i5Y1eNlP/LioL1Gi4AFXerHA47ZWXFmM2lyLKCp6cXvr4BeJg8Kymqms1m/vXm69x3//ib++rWQpSynJqpAnDt0t5KSy1BEJAliaydO1i3bQ/3//cT6tdvyOOPPU6TpgkkJZ1j+bJVnDh+CkHgqgsFSZLo2q0z9z8wHqPRRGLiWXbv3ENy8gVSUlLJzy9Ap9NWqgIpt5uSZRlBEPD396dZ86Z07tKBevXrcejAIRYuWEJaWgYGg/6mz4XsqgS4sQHICQBKigsoLC1Co9Ew59UptGoYi9XuAFkmpHFjQho3RpEciJ7BCEa/Kheln376KQcOHMBoNJaLEDF69Oib/n6FxaWcPnceSZar1ftfTgJk+fYCAEVFRXzzzTccP37ctSOv0K9fv7IhQ4Zs0Wq12bismqqbBwCapKSkhi+++GKzRYsW6Q16E3Vj4wnwC0IURFdFUTWhoisNlhWnTZok2RBE8PH1IjIyAh9fH3r37kWXLl2IjAq/LJlTVZXC4hIcDsmdkF+jD2Ad4KoAcP6ye/fe7RQguF0BNRqNarVajXePHjXoqWee2TtkyF1JVmtFAHAx6Rdd45QggFajlc0Ws2/Pnj0HPfrII+cfeuihrbKsaCvekuU7w4A0a9asLvfff39dAF9fX7Zv307jxo1r578bgNpr166lqKjotkzEdHodGzZsIj0rmxYtWxISFITJoGfbjp3s27ePJk2aIMsSzVq2om5k+BW/4+8BAP4KcfDgQebOnUtERASPP/74Ne+hkydP8umnn2Kz2QgNDeX555//07REXDOZsdv54IMPSExMdOvITJgwIbFz5847ANFsNnt88skn/fr06ePRsmXLmgMArgTo6P4jvPHfIuyOWERRBgRsNgfBIYf4cFpPjh87yfY9+xg2bAT1YyJqb+4KkVtQxK4Dh8lKTyXE35c+d/amtLSMDSuX0jDQRIv2rVFEJ3zUiAJrf15LcqmDgXcNR9BocDgkVi34gc4Nw2jSvRuKqmLPy2Xflh0cLbJzzwMPk5WRxcZtOwiLrkOT+IbUjY6gNquEopIyNmzdTmbKOR647wE++fQAC5akoNP6EeBXHxBREZClEiZPiiauYTInTyUxdOjQy3L0mgUAl0KAWhDwey9nQNSh8YkCUcOJ4ycZOeJutwpnTSyWrDbbFewnnD93OOxYLGVIkgOr1QwIeHh44enpg15vQK/Todfp3FBKVVXMZjOfzPiQQYMH3DT8kIvTQLL9Me5DQUCVZbJ27WTLrv3c8+Z0evXqxV1DhrLm1/WcPn0GWZbdfVLXujbx8Q0JCHSWvkdHR9EwrgEREeEUF5ewc8cu1q7ZQH5+/hVV/WVZdpdOJzRuxOjRwwkOCWb2d3PZvnUH+pqAAIqMze64gRJvAVV2YLeUkV2Qh0YjMvuVZ2gbV9cJABQFk78/dTp3RqPTopY/B1XAoJSUFD755BO3eJMkSdx999306tXrpr5benYu51Mz3Ir/inL13v/bEQCUlJQwe/ZsDh486Bbu6tevX9nw4cM3CoKQB1xPliQB3vPmzbtjypRnIrOysqkXm0BocAQajQZZlqt97QUBZEnGbDEjyTaMJh0N4+rTokUz2ndoT926dfH390Or1eLp6XXF8c5itVJQVHIR7lWk4xevSsWFRwUAgMt+x/lboiBU6PpxJucajUYuKysNuHfs3QP/9veXN/Xu3fuCzWZ1agBUrABwgYDy1xkMeinpbFJ4r1497/xs5sydAwcMOCPJ8kX7QFcFgCCKCCA/9dRT/T7++ONggLZt27Jx48abFnn9K4bVamXDhg1uJffbLURRxOFwMG/+fKJi6tKwQX2iw0NwSDI79+5n4/p1BAUFMWrUSIL8/FBUFVEEQSi/iwVkubLGQC0AqLk4duwYs2bNomvXrgwZMuSav5+VlcX7779PUVERvr6+TJkyheu1uvujRkZGBtOmTaOkpMQpAm0y8cwzz2yPiYk5C3DhwoWIWbNm9Z48efINi0ReDQAoip3//W8nm7ZGYjDoAJHS0kwefMDCPXd34oMPZ1A3vjEDevdwl5rXhjMckkRyaoZzjXPuHLayIoYMHoSPlze//DiHRsEmmrdvg6A3ICgym5ev4VSxwsC7hqPR6igtKWDDorn079SK6DatcRQWcnLbDjYmpjHinntQNEaWr15H3bhGNGvUkIiQ2rGoYpw5n8qqlato0qgucQ278PL/LSTpvAEf7ziMhgAkRwH168O//9WUFSvm0aZNO+rWq/cbAICqQEAtBPid8v/K6v8zP/uSt978T42U/yuKQmFRPqVlTrE4wbUov3jZBVRVxm63VbL20On0aLU6d5Kq0TgV5zWiBp1Oh0FvRJYVfvxpDl26dr75U2AvRSnJ+GM4ArhOYNbuXezYvZ+xb36A0ehJWEgkiqKg02mvK+GWJKlSUiUIIk2bJvDEU48SEhLM2bPnmP/jQvbs2XdVqOAUH7RhMpm4e+wo7uzbizmz57Fq1ZpqwYiKx5Gkcps1KvU+O2TpOsXdBBTJjmS1kF2Qi86gZ/b/PUPLetHYHE4hGkFViWrXzikG6LAjeoUhGKpOqo8ePcoXX3yBw+FAVVUMBgOPPPIICQkJN3w5z15IJTMnDwGhsgNAeeJfxe6/E7zcHgDAbDbz/fffs2/fPneC3r17d+vdd9+9UaPRZF9H8q8CisPhCHz55Zc7TZs2zdfPN5i6deIwGkwoilyNa38xYTabzZgtJXh6mmjesgldunamY8cONGhQH73ecF1jWHZeAVabHUEUqtxdKBdlE9zJvepqARBc5fiV/XfLe/jL72utVivn5eUFPTBxQv9/vfXWhvYdOqTabHatUDHhFwX3+FkOAzw9PaSNGzbGjr17TNdf16xZ17JFi3S7Q9IKbrjgfD+NRiNbrFafO3v37r99+3Y9wEMPPcQXX3xRO//dQBQVFbFx48ZKXtS3W+h0Og4ePMjeA4e4o0MHYiMj8PbyoLjUzLETJ7lw/gK9evUgyN8PjQby8uDEaV/MZivR0TlERmjdgrt/CgDgKnm9HdaZJ0+e5Ouvv2bo0KGX9dteCbBOnTqVzMxM9Ho9jzzyCE2aNPlLPGt79+7l66+/dtn6ykRHR0vPPffcryaTKR9Qd+zY0WT79u2tn3rqqWq15BUXF5Ofn4+qqvj5+eHv78+HH37IkSNHKgOAitfrxDneeDOLMmsUqqLi453Ixx+25MKFC6z8dR0T77uPiJDA2oHxSuNlSSnJaZmcPHWa7LQLDB92F34+vvw8dzatwr2Jv6M1ttIy5i9chXf9JnTu0hVZVlAkC8t+mkOrmBDa9ehE5omTLN95mIT2HWnbvjOz580nIrY+7Vo2J8jft/ZEXxIWm50dew+wb9cOJt0/kc2bk/n08z1Y7fH4+dRDp83iuWcbUK9uGRs2bOHuMWMQy6t9K6y1rh8AXE9iX1sN8LtPjOVJj6KoTJzwAFu3bKuR8n9FkSkozKesrASb3Xodu3eVF9eCIKARtS4RNj1GowceJg+WLf+Zxk0SauY8OPLAYQYFZLv99r1e5QBg714OHTjM2Lc+xC4p1K3T4KatFp395wqTH3mQxk0b8+uqNbRo2ZzGjRsxb+58li1dec1+1/L2gLuGDmL0mJF88/V3rF2zAaPRcE0QIUkSRqORkJBg/P39UAHJIWGz2SgpKaGoqJjikpKLoKMau2+K3erUTCjIxcfbizmvPkOD8BDsLqVZVZbxjYwkun17Z4WB1ojGJ5Ir1XevX7+en376yS1IFB4ezlNPPeXsm7qBOJ+WQWpmtht+XEv8ryIAaNM8Af/fEQA4HA7mzZvH1q1b3cl/u3btHOPHj99kMBjSrzP5lwsLCxvcf//9rX/5+RdDo7gWBAaEoiqKW8Dx6mOEiCQ7KCkppqiogAYN63Lf/ffStVvXm1LNLikzk52bf9ntUG7NdwUOsQ6EdFBdu/EV6gQqKPmX/0yv10nnzyeHP/HoI3e+N3X6+mYtmqfZ7XZt+e79xV1/XP8uIooCXl5e0sxPP+3w8ScfN9y8ectKH1/fPEWWNYJQDhkEV1+4xpF49mydDu3bd8/Ly3OC3pkzmTx5cu38dwORmZnJtm3bbmtxOlEQsDscfP7ll9SpV582rdsQERKEqijYJInSUqdoYXCAP8dPnmTr9lAys0NwSHaionLp2aOM2MgI9zj4hwMAqoIq20GyoUoWVNmOXJwBRh9UnT/oPTF4/D5j5+nTp/nqq68YNmwYHTt2vObv2+12PvzwQ86cOYMoiowfP75a4ODPEAsXLmT16tXu/v8uXboUTJw48Vec/f/yggULupWUlNR54IEHrnocm83m1uwwGo3Otq7CQoKCgli/fj1nz55FUZQqAQCoTJ26jfWbQpEkkVEjC3l4Uis++vhTGjdvQe9uXWoHxWvmAgpJqRnsP3CIjNQL3HP3aBwOO1uWLqRTnUCSM3LZn2tj8LCReHp6IisKHnqRU0f2sGPjFno1iiHfbCNZ0fPgpIf4ecUarA6Ffn164eftVXuCrxDp2bms+nUtnnoYNGg0r7+xiu27QKcNoXPHQP7zVj2WLVtKVFQ0l7XQuNagNwcAqpvU11YD/B6zJAgaZ9mzRsf58xcYPnQ0paWlNWZzJgoiKs4yf5vDjuSQ3Lt5SkXKJFxM9rUardPjWBDdi11R1Lg+k4CiyJg8TLz9zltERkbAzdanCKA6LMilOXh6etCgXsxNJ9O3lgEIZB3Yz8lDR7nn3x9SUGKhft24m/7MVquVgYP6MXrMSKb+7wMOHDiIv78/EybeQ/ee3fhp3kKWLP4FvU5/Vc1ERVFwOByMvWc0/fr34X//fZ/jx09hMOireOxVrFYboWEh3HlnT5q3aEpAQABGowGHQ0KSJQQErFYnBDhzOpFtO3Zx6uRpbDYrOu3VQYBis2K2lFJQUkRsZDjf/eNJgnw8kWTF/f46vZ46Xbti9PFBlWVEn3AEnad7WKo4HKmq6hYlMhgM2Gw2mjVrxiOPPILBYLjuc15QVMKppGSXBgDuVgCuIP53uwAAVVVZuHAha9asQavV4nA4aNmypTxx4sQtXl5eF643+U9MTGwy9p6xLZOTLojxDZohCFoU5drAUBQ1OBx2snMyKCzOp05MHQYO7M9TzzxBeHjYVV9bWlpKbm5uubJ0lWArMzuXguKSSj9zlvS7+vjde/uCex4T3AAAbcWKJ6Gi+r9LSEBAwGA0SCeOH4/8+4vP9/poxqdr69atl+FwOC5WALh2/0VRcI6JonOc9Pbykh5/9JEBaenpXkuXLV9ms1rtCIJQERgIgoBep5O/+fbbrg8+8EAdAJPJxJYtW2jTpk3tFHiDCdyRI0dqDABUtPeryTAY9CxYsJDk1HT69u1HbHSk20NbEASsdjtHjhxkxcpidIY+iKKMomipU0diYN9ifLy9KxzrNgcAqoKlJB+NVIroKEGxljjb+hSpfKBwKovggol6E6LeE0Xvg6zzQ9AaQdSg1+tvybWoGGfOnOHzzz9n7Nix1XoGVVXlq6++Yvfu3QCMHDnyqs4Bf5aQJImPPvrILSrrcDgYN27c2e7du2/HqSkjfPbZZ31jYmICBw4ceNXk/8CBAwQHB1OnTh33c+twODh9+jRz584lNzfXLfBbEQDYbDa0Wg37D2Tw1n/S8fPV8N936pCbk8HGzdt46KFJGGtADPivAQFUjpw+y8GDB7GUFvPAfRM5cugAu1cspsQB3QYNo369+jgcDvcja9SobNm6hSP79iFoRMaOH4/W6M2cHxcwfsJ4osJCak/sNeaW/cdOsW7NakYOHYDDEcar//yV9AwrL/+9Pz2761i48BfGjBlzeZvvDQOAS5P66g6mtRDgt17FI+hMiD5OS4yFCxbz7JQXbklfaEUPbFVRUFUqKXi71LDdO1wXrbbUShPhpRNjlcDpxj4gFquNtq2a8NM3UxEFKgGK2woAiCI5R46QdPgo4/7zESnZ+TSsF39Tx5RlGV9fX/711qts2riVuXN+xMPDA0mSEEWRSQ/dR/ce3Zg+7SN27dxzzWS3XCRwynNPEhQUxL/f/O9ltpLlv9O3350MGtyfoqIidu3cy4ULFzCbLe73NhqN+Ph4U6dODPGN4ggODuZs8nlWr17DwX0HsNvtVQspqSqKzUphSQFlVgsDu3Tgf5PvudwnXlGIaNWKgHr1UCQHgt4D0fvKNjF2u50vvviCgwcPuiFAjx49GDdu3HUvHO0OB8dOJ1Fqtrjv6Yrl/1R8DtSK5/f3AwCqqrJs2TKWL1+OKIpIkkTjxo25//779/r5+R0DqrsiUgF5z549LcaNu6e5w6ESV68pZWWWq+o9OBNjEYckkZmVSpm5iGbNmjHu3nsYPHgwYeFVLwrMZjO5ubnk5uZSXFyMoihoNBpCQ0OJj4+/7NopikJyWiZlZvNFFf5qXF8BYR0C6ahoywUA1XLe6j6MSHkRgclolPbt3R3933//u8enX3y5MiAwME+RFY1zTLzY8y+6NQNERFGjiKJgHDSg/6Deve/Mf/2NN9ZazGadu13AVQGgN+il/Ny8iAED+vfav3+/ANCqVSu2bNlS2/9/g7Fv3z6Sk5NvGgCUtxHVr1+f9PR08vPzawy8A+i0Wo6fOMncH39k8LDh1KsTQ4CvD4qiIIoi2TkZzPj0VzT6sej1BrQ6EyZ9JI0TrPTsdh5J5rYBAOVjYWlpqXOsV2RUyYJGLkW0l6DYS8B+ScJ/Vc1RBcqtiUUt6E1g8EbVO6sDVNE5v90KIJCYmMjMmTOZOHEizZo1q9ZrFi1axMqVKxEEgZ49e/4l3DtycnKYOnUqRUVFTpCp1/PMM8/srFu37hlAtFgsnh9++GHf3r17e7Rt2/aKxzl27BgGg+GKlWDTp0/n2LFjwOUtAEVFRZw+fZLmze/gnXcP4+Odz7NTuvH559/QoVNHmjdtWjsgXkdYrFYOnzrL3t27qRsTxcB+fZj5ycfkl1q4a+hwAv18K1UKixoNaRkZbNuyAb0GHn38Cb74chbB4REMv1n9r79ImC1WVm/YTFbKOSY//DBLlx3h6PE0nn1mIHv3bAREunXrduUc8TcDALUQ4DdeySuInkEIRn8Annj8GZYtXY6Hh8dvk8hWkQ3cyKKgpsJqtdG6RWN++vY9NBoRRbk9AYCo0ZB3+hTn9x/k3rc/5lRKJvH1GyEIIjdaDmGz2ejdpxejRg3jjX/+m5ycXPcCV5IkPD08+Mcrf0Oj0biT+WsJYNntdsLCwnjt9X+wdct2fvh+nhscOBwSHh4mJj10H42bJLBg/mK2bN6GxWJxL7jcPdXlSbFrQRYTE0XXbp1p1rIFpxOT+GnefFLOn78cSqggWc3kFuTikB28/tC9jO/VCbOtsrWgIsv4x8QQdccdqIrLn9YnEkFnqnCfCZWGo+LiYj744ANSUlLc6sRjxoyhd+/e133uT587T2ZOvlsf41rl/wCSSwPg9wAAhw4d4vPPP3fpNUjExcXxwAMPHAoMDDziWnVXZ+BWAHXdunVtJkyYkODt5UdMZANKS81XHfadO/42MrMysDnMdO/ehUkPTaJ7t64YqmgzKSoqIjs7m4KCAmRZxtPTk4CAAPz8/K6pcyLJMonnU7FabRdV/IXLxyvhkjFMQHBqAAhonffuRe2TivZ/5VoABqNR2rBubcNvvvqi+WdffL3cZDI6FEUVqqoAKAelBr1BSk29EDJk0IB+H370yf5+/Qccs1mt2nJo4KoWUD08TOq/33rrzldffdWtkPXee+/x/PPP185/NxibN28mNzf3ppN1RVHw8/Oje/fu5OXlsWPHDnc1QI3ME6JIYWEhs76bTduOnWhUvz6BAX7uFqo5cxZy8GgC/oHN0IgafH3qAiYaxWXSpdMFZFn43QBAeTtUWVlZ9RJ+RFfSf9UT4ga+VVwM3NUBWgOi3hNJ74tq8EPQmkDUuHcmPT09bwoKJCYm8vnnn/Pwww/TsGHDar1m/fr1zJ07F3AKeE6ePPm21Z+oqTh48KBbp0SWZSIiIuTnn3/+V09PzzyA7Ozs4M8++6zP+PHjxXr16lV5jJKSEk6ePEnr1q2v+LxeyQawPHbv3oO/vw8mUxiKqlJaks7evfuYMGH8n/4a3IooLi1j35Hj7Nu9k9EjhqNIDpb8spTYBgm0btYEnVbj1lex2ewcPpXI0QO7GDqwL95+gXw3Zx4PPPBA7e7/dURmTgELFy+kUYN69O7VC0lyYLfbWbhwIUOG3IWfn9+V87SbAgBXe0Cu9vNaEPDbJJM+kQhaI3l5+Qy7ayQZGZl/KY/ZSgDAZqdF03h+/Pp/6PU6tzDhbXfNtFoKz54lec9eJrwzg2PnUohrkICmCj/n6obD4eDZ559GEOH9/3142T1gtVrp0LEdU559ki8+/5b16zZUq+TdYrEyYFBf7hk7mn//+10Sz5x1JjBGI08+9SjBIUHM+GgmZ88mYTAYrgkVVFV1tZEoxNatw4iRwwiNimD2rB/YuWMnBr2+QrImYC0tIjs/B4PBwA+vTqF5bBTWco2H8qoURcHo7U1st25o9XpURa4kjHm1hdyMGTPc0EKr1fLQQw/RvHnz6zr3OfmFnD53Hll2WttdTf2/IgC443cQASwvR921axcajYbo6Gh18uTJR4ODgw9dZ/Kv/eWXX9pMmDihgb9vCLHRDbHZbFdcUAmCiKoqZGSmUVyaT5++vXj00Ufp0aP75QuM4mIyMzMpKipCFEX8/PwIDg6+bussu8PB6aQLWO12RPGi6v/FxF+4DAK4dNSdLgACWnfnhsvyz60dILibATCZjNKSRQtb/rpyRfSHn85cLgiCqKpqpaS/IgwQBQFPT09p1YoVCf/3j5faLl+5enVEZGS2LMtad5uAIODhYXIcOXy4ycAB/dvk5OQAcMcdd7By1SoCAwJqJ78bCEmS2LBhA6WlpTftAKCqKnq9ns6dO+Pt7c2ZM2c4duxYzbXfiSIWi4WFixYTU78+TeLjCfT3QxQFUlPP8+nn+/DyGY0oSPj41MWg98PhUGnaJIOO7dN+cwBQnvTb7faaSfgvvXZ2O4JGg6h1CeW6LT1VVFmpPDyVtwuIImhNiEZfVIM/itYTVWtwz5k3AgTOnj3L119/zaOPPkp0dHS1XnPu3DlmzpxJQUEBd911FwMHDvzTJ58///wzy5cvd/f/t2/fvnjSpEmrAQcgJyUlRf/www89Hn30UYKDg6s8xp49ewgPDycqKuqK71MRADRp0oQpU6ZU+nlpaSkbNmxg0KABiKKWuXPn0r5de+rVr1c7IN5g5BYWsXb9ZuyWUu69527m//gjhWY7rVq1pk54KLKioBFFMnPz2XfoCHlpSUyZ8hTzF/6MaDAxathd6DRi7Yms7tgK7D10lI1r13DP2LuJioxg79695OTkMGDA1Sspah4AVFcjoBYC3MqVPGgNLtszgc2bt3L/xEk1Iv73RwxFcdoVNm/ckB+/eQ+DQX97A4Bz57iwZw/3vfsZh86co2H9Rmi1uhsCAIqiotNpefWf/2Df3v0smL/4suS+/Hdee/1lSkpK+O/bUxFF8ZqLEOduk47XXn+ZzIxMpr3/ESaTiSeffpSI8Aj+9+77ZGRk3lD/vN1uRxAEBg7qR7/+fZn13Q9s2rjZfSxBECkqzKWouIDmDevx3d8fRyuKF1s7BKHSOBXbsSOeYWGorhI0jU8UaA2VFqiXft8tW7YwZ84cBEFAURR8fX157LHHiI2Nrfb3sNkdHD19ltIy88UqgKsAABVnC8DvAQCKi4vditQajYb77rsvo3379mtx9WRWM/nXzZ8/v+vE+yaG+/uEUL9uo6sKhDoTmTLSM1Np3bo5L/zteXr27HHZfXb+/HkyMjIQBIGQkBDCwsJuqsy9tMzMqXMXkGTZ3QJwsff/kimsAhhAENahqhVsALkEE7g0T1z/bfIwSbO++rL3mVOnPP7zv6lLbTbbRSV/sXL5fzkE8PLylt947f/6HDty1G/+4iXLZFm2CiCWAwKtRisLguAx+aFJ/RcsmO9RnsT9NH8Bdw0Z7LR+q51TrzvKysrYuHEjDoejRhIwRVGIi4sjISEBRVHYt28fqampNaIvIIoiFquF+fMXEtugIU0TGhHg54tWK7J4yXL2HIjHyysOvc6Ar099VBUkSaRl8zTat0tHksTfDABYzWWXJPxlYLfcVMJ/achupyHxkrIdFVGndf69s+QMVVFRy51oKrYLaA2IehOK0R9V5wdaI6qovS4YcPbsWZYsWcIjjzxyXW5LSUlJFBYWkpCQ8Kdfp8myzCeffMKxY8fc/f+jR48+f+edd25xzTXSgQMH4letWtXuqaeeqvI85uXlsW/fPvr06XPV61EOAERRJCoqihdeeOGy87thwwa3TsyBAwcYMmRI7e7/TcbpcxdYtmwpw4YMQnbYWb5yNY2atKRZo4buc3vy3Hn27tlD/cgg+vUfwDff/UCf/gNoVD+29gRe79qtzMKKVauxmUu5e8xoVixfTqdOnQgLC7tFAKA6SX11qgRqIcAtAAAKgskP0SOYgwcP8vFHM1j6y3KMJuNf8nQYDUYkSaFxfH1+/PY9PEwG147sbQgANBqKU1I4v2sX9/9vJgdOJdKgXiN0Ov0NAQBZlvH18+WVV//O8mUrWbtmfZUJudVqZcLEcXTu0pE333ibrKzsai1UrVYrgwb3Z+So4bzy8hv06NmVHj278c5/3uPcueTrTv5lWUaSJARBwGg0YjQa6Na9C506d+Szz77k2LHjLksglaysdOx2K4+NGMQLowZQZrVVOZ4oskxYkyaEJCSgyLLz+TD6InqGXDIcXQ4BFi1axKpVq9w7FXXq1OGJJ564alnVpXT25NlksnLz3DvElfv/bx8AcPLkSWbMmIHdbsfPz48XX3xxW2Bg4FmqJ/qnAuqiRYs63Tv+3rpeJj/iGzZ3gTa1iqTauZDOzc/GYi1j8iMP89zzz2AyXbxfLBYLR44cIS0tjdDQUOLi4mosKcktKCIx+UKVyXtVO/8X/7tcA0C94sMhlusCCAImo0l6/93/3KnT621Tnv/bFqvVqi0HBO7yf0FA1Di1UTQajaLRiKa7Rw4f3KNn75y//f0f6ywWs64cyLkcAuQF8+d3mDzpwQblcGXChAnM/OJLZFnGoNehu41V7G/XyM/PZ9OmTTe9+19xPKlYBWC1Wtm1axcFBQU3XQlQDgDmzfuJ+vGNaNakMQG+PpSWFvD5l+uxOIYhCuDjHY3JGIyqKkiSSJtWabRtc4sBgEul31GSeYUdfpy9+TW13OHGmuMEUXCDblVWnC1i7nYB0SkmaPRG0fug6nxQtc7EsRwIVAUFzp07x65duxg7dmztA3WFyMvLY+rUqRQUFLisoXU88cQTe+Li4k66wKq0adOmVnv37m369NNPV1m1unXrVvz9/a9pmVgRANSpU4fJkydfdl+fOXOG7OxsPDw8CAsLIzw8vPYi3WTYHBJLlq2gMCeLCePvZf78+Xj5BdC2VWsMOh0Wm41DJ86wf/d27hkxCBkNWbl5dO/WDW0NaqX8leJCRha/rlqFj6cn9evXrZYI6a0BALW6AL87AHD2OXvQoUMHdu3a9Zc+HTHRddFpjcTHN+THb/6Hl0l3WwOAkvR0LuzcyaSpn7P72Cnq141HrzfcMAAICPDnlVf/ztKlK1jz67oqk3KbzUa79m157vmnefed99m//2C1kne73U6DBvV56R/Pc/TIMZo2a8J33/7Axo2br2snw+FwoCgKQcFBxMU1pFXrFsTEROPp6YHDIeHt7UV6RibvvzedvLwCbDYLWdlpGI0Gvnv5aVrUjcZWYWF2KQDwCg4mtnNn506TC0xqfKJBo7vm5/riiy84cOCAWxSwXbt2PPjgg9VexKdn53Im+cLFJP9SAcBL/vi9AMDKlStZvHgxgiDQuHFj9Yknnlil1WrzcO7KXGsNrqxevbr93WPGNBTQ0bhRayh3Pbh00hFEFEUmIzMFb29vXnn1Ze6+Z2Sle2rLli2cPHmSBg0a0L59+2oDl+pGenYuSRfSKggAVjNpQFinoqaDoL007RBctf8CoAoCIqDT65V/vvxSv1at2pwffc+44zabVauqXOz/Fyqo/wNGo1E6m3gm8r577+n10YyZezt06nTCYbe7yv8F9HqDVFRYED5m1Ig7jxw+DEBERASLlvxC06ZNsdttGPR6PP6isPdmIiUlhd27d9eoBaAsy0RGRtK2bVsEQaC4uJgdO3ZgsVhuCgKIokhxcQmz58yhZes2NEtoRFCAPwcO7GHhz6Xojd3QiAJ+fg3RagwuTQ+Rtm0u0KZVVs0CgHJbPtmKKtlQJRty7tkr7/Aryk3v+NcEALh8XBIQNKLT3UhVUCW5gvCgHowe4NIOQGtCFXWXAYGsrCwKCwtp06ZN7S7yFeLIkSPMnDkTVVWRZZnQ0FDl+eefX+vj45Ptmmuk5cuXdzx//nyDxx9//LLXWywWVq5cSd++fa9ZZVGxBaDc0Uer1VZ69vLz8zl69CgtW7a87lay2rhyHD2VyNJflnDfveNITU3lTGIinTt1xWQykptfxK79B8m8cIbHJz/I7n2HaN2qFUFXaPeojepFUvIFjh09TP9+/arV7l2zAOC3BAe1ceXpUNSh8Y0CQUPPnj3ZuHHjXxwA1EOnNdCgYQN+mjUdH5NwWwOA0owMUnbt4qGpn7PjyAnq1Y3DoDdeEwCUC7c5xaacSuSKrGAwGHjjzVc4dOgIc+f8VGVi77A7qFe/Lq+89hI/fP/jFUHBpaEoCiaTiRdfepZGjeJYu2YDX3z+NdryXsxrJv4SqAp169WlW48utGnTioAAfzIysjh9+gwnjp2ksKgIT08PGjZswJkziezZvY+s7HSKSwrp3LIpM6dMcveYVjmOqCqCKBLbpQsegYEuMUAFweSP6BF02Tm8VBQwNzeXGTNmkJqa6q4EGDBgAMOHD6/WNbXa7Bw6cRqLS3DuagAAfh8NAEVR+Oyzzzh48CAAgwcPLrjrrrtWV2NtrQLK9u3bW48YMbyxucxO04S2rgIwtcrExWazkpKWTKP4BP715j/p1qOT++enTp3i119/xdPTk0GDBhEaGlrz31WWuZCRxYX0zMt2eysXrV0u8KeqrFVRMwQ3AHBZ/l1yz6mqikajUWVZ1r7yt+cGjhh998Gu3XudszvsWqFiwuEq/cdZ44+Xl5djzuxZ7b//7tv4nxb/vNzDw6NAVVSNKApoRI1qMBrEd9/+T+8Pp09zr5Te/d9UHnvyCcyuNhO9ToePl1ftdHqdcfz4cU6cOFGjAKB8XGrZsiV16tQBnDuge/fuvSkIoNVqOXHyFOs3bKBD5y7E16+Hr7cXPy9dyp79cRiM9TEYfJzif67nUJJE2rc9T6uW2ThuBgBUTPgdVlTZBrIMKMh556iJkv7fAwBcCbSIGg2qIqPKkqtCQAS9AVHvhWLwQ9V6O6sDXFBGkhx4u2wWb1ZU8M8Yy5Yt45dffnHPpa1bty565JFHfhUEweEaUOWffvqpW2lpacyDDz542esTExM5c+bMNfubLwUA5SKAl1b6qaqKzWa73CqtNm4q8gqKmL9oCS2bNqJubCxr1q+na+duGPV6ktMz2bZ9Oz5GLaNHjWTb9u3079+/xqqv/tIZYBWVrH8MAFALAWrgXCqVRM5qAYATAOi1Buo2qM/8OZ/hq7PftgBA0Ggw5+SQunMHD733OdsOHaNunYYYjR5XtE9TVRWH3YFGq6FuvViaNGlM3XqxeHp4YHc4SE/PoE2blqSmpDH1vQ8xGC53cpNlGT8/P1557e/s3bOf72fPqRYAcPraq/z95ReJiAznX2+8TWY1xCbLBaEiIsIZPGQgnbp0QJEVDh44xPZtOzl9OpHi4mJ3IlaeZJk8PLBYykg+fxZFUXjnsYmM7NwWS7n43xXGEEWSCGvalKBGjVz9nyoIWjS+0SBeexF+7tw5ZsyYQUmJ0zdeVVXGjx9P586dq3VdT55NJiM7D1EULncAuA0AQH5+PlOnTiUvLw+tVssjjzyS3KxZsy24et2vEtKZM2eaDRjQv2VqSiatmrVH1GirvFc1Gg0lJUVcSE2md+87efOt12iUEAc4d/1/+eUXzp8/T8+ePWndunWNfbfi4mLy8/PdNoG+Pj74BIeRk1+ARtS4euapdK+pl2YYF2MnAmcE13lRL/l5xVtPo9Uq+Xl5Pm+9+nKfJ599YUt8QkKWw+7QCOUCZRV7/wFRI6pGo1HzxOSHBoeHh9vffPu/K6wWqygIzkTE5OHhOHLwQLPx4+5uVVRYBEC79u35Ye6PeHt7I7tU5g06HX4+3m5xw9qoXuzcuZO0tLQaAwDlsO/EqdOEBgdz111D8Pd3uvIUFBSwb98+SkpKrvv9BJed7tLlyykuKaVj587UjYpAEBS++HIBWXm9EUVf/HzqYjIFuZ9FSRLp0O48LZvfAABQVVR7MarD4kr4neDWlSaDICAXnP/9lj23EAJUPO+iRoMoCiiSjCpJOMUEtaD3AKMPss4XQesNWt1lrQK1yY0TNH/66accOnTIDQCGDx9+bsCAAdu56O2ozJ49u6coihH33nvvZcdYt24dAQEBtGrV6oYAQG38NmG22lj+6zq0ioO+fXqzbOVqOrTrgFGv52TSeTasX0v3rp2IjYkmLS2NLl261J603zrfuC0AQC0EqFEAIHqFIhh8agFARQCgM1AnNpb5P83CX29BrlgufpsBAGtBPqnbd/DwezPZfOAIsTENMJk8q0yqyvvlW7RsTp++vYmOjiQ3N4+ziUkUFRXj5e1FVFQksbEx2O0O3vzX2xTkF6LVai5LyDUaDa+89nfSUtOZ8cnnVYKCS8NqtdG1W2cee/whli9bxQ/f/4jRaLjmIkCSJLp268I940bj5eXFxg1bWLduPRfOp7jFBataMAmCQGZWGgWFebRq1JCvXngEvaYK8b9L31OW8Q4JoU7nzu5920utMq9FUQ8cOMBXX32FoiioqoqnpydPPvlktUQBi0pKOXIyEcnVs327AYBy+z9ZlgkKCuL555/f5u/vn3QNAGAvKChoMHDggE47d+4WWrfojMnogaJcLvqnEbXkFWSTm5fFgw8+yAsvTiEoOBCAwsJCvvzyS7y9vbnnnntuugxTkiR3sl9YWAiAyWTC398fX19fjCYTp5JSKHLBnGpBrou3wj4BjjtbAC5NQlQ3QgABnV4vnzl5Inzmxx90eOVf/17t5x9gURRZLK8sqGiJKQgCep1OykhPD5s0YVyf197896EevXsfslttOlEQ0Gi1Mqrq+fwzT/VbtXK5R3lS8eU3s+jZqxdWq9XZz4yAwaAnyN+3dtfxOmPDhg010p9fMbRaLbv27ufokcOMGDaUQYMG4evr61wgm80cPXqU9PR0twVkdUKj0ZCalsEvy5aR0LgxzZo0JijAH7O5mA8/WoJDHYlGoyMwoAk6rUclANCpwzmaNc29/hYARUIuSgHF4U74K67X5Pzzv+u1+y0AwOWTEa5Ku3IhT9fMotGCxoSq80E2+qJqTICIXq//y0OAgoIC3n//fXJyctBoNIiiyKOPPrqnSZMmJyvMNcpXX311p4+PT+jo0aMvWzssWLCALl26EBERUQsAbmfYo6qs3bSNzLQLjLt7DL8sXUrrVm3wMHlw8PhJNq5fy+RJD3D+fDJBQUHX1HOojT8zAKiFADV0RUWnwrmrt7ljx47s3LnzLw4A6qLXmYiOiWLBgrkEmBzIlpLb8h4TRBF7aSkp27Yx+X+fsnHfYepE18fTwwvlEgDgcDjw8/Nl/IR7aNwkgX17D7Bp4xbOnTuPw2GvlDRHRkbQuUtHdu3cQ0rK5UrU5aWq//fqSxQXFTN92sfX3MUvT9T/79WX0Gq1/PvN/2I2m6+6gC5vUxhy10DuGXc3iYln+eH7eZw4fgpRENDpr/yegiBis5lJvnAWVVX55LnJ9G3dFLPNfs0xQ1VVtAYDdbt2xeDt7WwDcLfLRIMgVgsCLF++nCVLlmAwGLDb7cTGxvLEE0+4F/VXC2cVQK77mLdTC8CSJUtYsWIFAK1atZIfffTRVYIgFHDl/n9JkqSA8ePH9/rxxx9NTRPa4ucbiCxLVST/GrJzMrBLFt56603uuXeMeyGcl5fHjz/+SEREBEOHDr3hpFWSJHJycsjNzcVsNmM0GgkICCAwMBAPD4/K1MLh4MCxU5gtVucuLReV/qvx7ntVOOFerLrggNM2UK10EIPRJG3btCFu9Ypl8a+9+fYKQRAEVS33gq8MAURBwMPD0/HTvO87fP/tN3Gz5s5f6ePjk6cqssa1+68s+unHzv/397/FlrdWTLj/Ad789ztIkt39nAsI+Hh5EujvS21UP+x2O+vXr8disdRokiaKIvn5BSxYsgQ/Hx+6dOrI8OHD3cm1oiicO3eO06dPY7fbq/XegiDy87LllBSX0LFzJ+pEhWPQG8jKSuOjT1Zj8JiAXm8gwC8eQdC6BxdZFujSMZnGjXNvSANAKU5HdZRVHitvg+T/dwcBl6xh3eO664No9SYEnxBkjRd6z0AEje4v+5wdP36czz77DFmWURSFwMBA+YUXXljr5+eXU2GuUWfOnNknLCwseOjQoZVeX1hYyMqVKxk6dOhl43otALj9YvveA5w4epgHJ05g+YoVNGnSDC8vL7bt2svRwwd49pmnWLp0KZ07d662bWZt/FkBQEUIUAsAbujcCToPRJ+LZPTpp59m9nffY7XZ/rIloaHBEWg1OiKjIpi/6EeC/AzIhRm3LQCQLBYnAPjvDNbvPUhMdD28PL0rWRdKkoSvny/PP/80CAJffvENSWeT0YgiWt3l/feSJCHLMnq9/opJlsPh4JXX/o7FbOG9/013qe1fOWw2G+073MEzU55k5mdfsXHDpmv20dlsNvr2u5MHH7qPXTt289WXsygqKr5m1UB5gpORkUJhcQHdWzfnsymTkGUZVVFQXd7PV308FIXYTp3wDg93ugE4/xLRKwTBUL2ESZZlZs+ezdatWzEajVitVtq0acNDDz10TWCSX1TMkVOJKIpawVquagDQtnkC/r8RAJAkiY8++oiTJ0+iqiojR47M69ev3+qr5MMy4P2Pf/yj5zvvvOPToG5jwkKjq07+NRoyM9Mxemr56KMP6dGzq/tnZ86cYf369bRo0YIOHTrc0GfPzc0lMzOTsrIyvLy8CAkJISAg4KoQymKzceDYKSxWm7v/3n0NhMrXooq/2osbAFzNL0DFaDRJC+Z+f0d6WqrX0y/8fYPdZnNbB16EAEK5ur+q0Wh0Tz/60JA6sfUsr7zx5kqrxSKIooBOp5fy8/MjJ98/oVfimdMARMfE8M33c6lTpw6S3eFUNBdEBBHCggLx8vSgNqofxcXFbNy40aWfUrPzgiiKLFm6DBUByW6jUVxDRo4cSYMGDdzvVVBQwKFDhygqKroqBBBFkZOnT7Nu3QZ69OpFXP26aDUaNBoN586d4ZNPN+IfNAmjwQtfn/qV7lxFEejS6RwJjfJuCACo1gKUstyLAMBlmfF7lv7ftiCgwgexW63kZ+YREhmEMSLBWTykMyHoPBA0+irh8581Vq1axaJFi9zl/y1atCh+7LHHfhVF0V5xqJ0xY0afOnXqBA8aNKjS65OTk9mxYwdjx46t1nNaCwB+39h76CiHD+7n/gn3snr1Gho2bIifXwDrN22iIC+Hu8eMZsmSJYwdO7ZWg6EWAFBbBXBT565qYbMH7nuYTRs3Y/Iw/SVPi6KoOBx2IiIimL9oHqEhQcgFyaDKVFv++7d6IAUB2W4ndfs2Hn77Y9btOUh0VF28vXzcAEBRFERR5Jlnn8TDw4NpUz+kqKjoui33Lg273c4rr/2d3JxcPp3xxTWPJ0kSz784BX9/P956423sDsdVF68Oh4OYOjG89s9/cOrUaT6Y9gl2u71aaqWiKFJaWkxKWjI6rZbvXn6aNg3rYLba0Or1BDRoQH5SEpLdfsWFgSJJhDVr5rQDlKSL443W4KyaqeJ1VYkCWiwWZs6cybFjx9zOAP369WPUqFHXGNpUjiUmkZ1bUOEz/v4AICsri/fff999Dz3++OMn4+Pjd1O1/Z+Ks0ez1wMPPBAREhRBvdh4l5V25alEI2rIzEonMNiHmV98RosWzdw/279/Pzt37qRnz54kJCRc5xShkpSURFpaGgaDgZiYGIKDg6vdS11SZubg8VPYHZLrOqhXziLciY4b11QAAFcPo8EoffT+f++MqVs/c9jI0UdtVqu2/HgCFVsAQK83SKdOHK/z7BOPdHvzv+8d7NCx82G73aYTRVHVG/TiB++92+fbr74MLD/2G/9+m3vunYjVanbbA6qqgI+XBxGhwWhq+42vK3Jycti8eXONCgCWh1ar5eix4+zeu48WrVtz6vgxTHodAwYMoHPnzgQFBSGKImVlZezatcutM1JxThBFEY1GQ3JyMus2bKRZs2a0atnCueOsquh0Ok6cPMqMz7YSFvEIHiZ/vL2iK7WNKYpAl85JJMTn3xgAkKwoxWkVZ6vbMvmv6hH+vRe5ks1OSWExYU3vQClvPxQEEHUIek9Ej8Dbbi1S80t7lS+++IK9e/e6AcCQIUPODxkyZCsX+/9VQPz444/7NGjQILB///6VjnHkyBHOnDnDiBEjqvWetQDg940jJ8+wd/dOJtwzlrXr1lOnTiwhIWFs3LQBjUagWdOm7Nu3jzFjxtSerFoAcAkEqAUA1w8A9F6I3pV9TL/68lte/+e/rmmZ8mcOh8NBWFgY8xfOIzw8FKUkA9VedtvdY4IgIDscpG7byuS3P2ZtFQDAZrMxaHB/et/Zk3f+8x45ObnX3K2/VsiyjIeHB6//6xV+XrKUTRu3XBUAOBwOYmJieOW1l5g9aw6bNm25JjCw2+088thDNG3amH+9/ja5ubnVsyoRRGTJwYXUJKw2K/f27cEb94/CbLWCohLeogWBcXGk7NpFwYULiFfY/XXbAXbpgiCKrjYA53Mjeocj6Kv/fOTl5TF9+nSys7PRaDTVFgUsKinl6Okk7Ha76967HADIskKb3xAAnDx5kk8//RSr1UpgYCAvvPDChoCAgNQrJLny/v37Ww4cOLCp2WyjSXxrtyhiZWCjISs7nbCIIL76+nPi4hq6f7ZlyxZOnTpF//79iYqKuq7Pevz4cU6dOkVwcDBNmjRxi6pdT+TmFzorMVyfuUJ+X524CAAunafK7QKcrhOqosjad998vf+Q4aMOtGx7xwWHzaYtT/7dIMBVDWAyecjT//d2n4P79obM+GrWcoPBUKgqisZoMtkP7t/XasrjjzQvKSkBoHPXbkz7eAYGvQFFVVy2ZSpGg57o8NBaC8AbiKSkJA4cOHBLAIAgCMiKwk8LFhIZU4eAwEDOJyWReuE80VGRdO7UicaNGxPg709qWhrFxUUIrmuqqioWi4X8/HzOnTvHufMXaNO6FY0TGqEoF51P9DodBw/v57PPdxBV5wm8PELw9Ai9DAB065JEfNyNAQBUBbk4DSQbiOJtVfp/PTDg9wICpYUlBNZvgqJc+qkEZxuaRv+nfsZKSkp4//33ycjIQKPRIAgCkydPPtC8efOjFeYaVVVV8eOPP+4bHx8f0Ldv30rH2L59O8XFxVwKBmoBwO0ZickX2LJpI/feM5YNGzYQERFFREQkq1etJLZuLAaDnvz8fPr06VN7smoBQC0EuOkpTtQ5/c0r7CCcOHGSUSPGIknSX1aERpIkgoODmL9wHpGRESjmXFRL4e0HAEQR2Woldfs2Jr/zyWUAQFEUPDw8+Mf/vciypSvYvGkbphpY8FssVvr068XdY0fxr9ffJj0t/arJudVqY9y9Y4iLb8jb/3nPmfRc5VxKkkRYWCivvf4yP85bwNo16zGZrl2RUq6knZ5+geLSIuJjovjuH0/i7WHEYbMR1KgRYc2aIYgipZmZnN+xw5nYX+mzqCphTZsS2LBhBQCgIuhMiD6RVxmOLv9+R44c4YsvvkCSJGcCZjQyefLkq+5oq6rKybPJpOfkXfSgvwQC/NYA4MKFC3zwwQeUlZVhMpl46qmnjtWrV28fl1cASMXFxWGDBg3qs3XrNlo2a4+nh89lon+iqCEnN5OgEH++/uZz4uPj3N997dq1ZGRkMGTIkOtK3jMyMti2bRseHh60b9+ewMDAG/6+aZnZnDibfH2l3hcJQWUNgCuEVquVMzPSAz77cFqXJ6a8sCE4NLRUlmWx/J6ueH/rtFopLzcn7ImH7u8zfMzd6RMfnLzBYjGLWo1WViTJ/6Xnn7lz+9YtBgBPTy8++mwmbdp1wG6zuSsYTEYjUWEh+Hh51k6DNxAHDx7k7NmztwQAAOh0Og4cOMD5lFTiEhpjcziwmM2cS0wkKzMDo8GAt7c3fr4+mEwmVNUJWUtKSygpLUPUaElIiKdJQmM8PEwXx67y4+v17N27ky++2kOduk/h4x2B0RBQGQCoAt063wQAAJSybFRrEYiaPxwAqA4cuJWLYUtJKabAKPTevqhKBRlYRUH0dgo3C8CmjVv5cuYsho0czMhRQ/805/jMmTN8/PHHOBwOVFXF39+f5557bmNQUFBKRQCgKIr48ccf923SpElA7969Kx1jzZo1GI1GunbtWgsA/gCRnpnN6tWruHfs3azbsIHwsAiioqKZv+An7rjjDkqKnVWHnTp1qj1ZtQCgygVXLQS4zqlM9IlC0F5MCh0OB2NGjePgwUN/2T4bSZIIDAxk/sK5REdHodqKUUqzb0sAIFmtpG7bxv1vTmfLoWNER8bi7e2LoiiuvrlmDBtxF+/+930cdkelHdgb6V+VJAk/Pz9ee+NlEk8n8vFHn121okCWZby9vHj5lb8xf/4idu/ci+EaPfwWi4XRo0fQum0r3nzjP8iyck0YVZ78Z2WnU1CYR4CPN1/+7TGa1Y2mrMyMX3Q0UXfcgeDagUdROL9zJyWZmVesAijfpQ1NSCAoLu7izrWqIvpEIOg8rgsCrF27lvnz56PVat332BNPPEFk5JVhQl5BEUdPn0VWVdxygJdUALT9DUUA7XY7H3/8MadOnUJVVQYNGlQ4dOjQVYBC5QZ37T/+8Y8+77zzjv+V+v6domd5ePkamfXd1yQkxLvP3apVqyguLmbIkCHVEnACKC0tZfPmzRQUFNC+fXsaNGhw0983NcMJAKoriXLJBFmtFgC9wSDt37Or3poVyxOe+8crqwDh0me0/E8PD5Pjh2+/6f7TnNl1Pvly1oaIyMhUh8Oh9fDwkH9ZtKDHW6+/6i6TGH/fAzz74t9xSA5nw6wKAX4+RIeHYLzJFqC/cmzdupWsrKwbBgDlu/XqFUpJNBoNZrOZ9evX06VrVyw2B8UlpcguO9S8vFyKi4tx2OwIooBOq0Vn0ONp9CAiMpyYyCi8PE1uB5VLx06dTs+uPf/P3nnHR1Gubfiame2b3nuhBQih994ERQQVUcSC2Hs5NuzHY1dUULEXrBTpovQmvfcOCZDee7bOzPfHJktCEgg98OX5/Tx6spvNzjsz77zP9T7Pfa/jhx82E9vkKbw8o9DrvKoBgD49E2nW9NwBgGovQSlOv+oAQG33/YVcHNutNvQ+oWhNnlWvE1VB0HsjeAQhAHv37ufOUQ/w1ruvMvSGa6+a8Vy+fDnTpk1Dq3VZJMbHx1sfe+yxRZIklVCpBUBRFHHSpEnXxMfH+/fv37/KZ/z1119ER0fTunXrBgBwBURqRiYLFy7kzlGjWLpsKaHlFQC//f4bXbp2paQwn5CQkDpZOjbE/xMAoJabKwsNAOAcBk9BNAchGKqKmn3w/ngmffEVZvP/zx0ip1PG19ebP2e6hLNUh8XVz1gfKwBsNo6tXs3tr3zA1kNHiQiPwascANhsdvr260VsbCzffP09Op0OSRLdEECWFVTVlVzXpbzetdNkZ+x9d9OzZ3c+eO9jDh8+ctrftVisXH/9tfTq04O3//c+DofztAKTiqJgNBp47fWXmDfvb/5dteaMIKoi+c/OTic3PwedRsOnj43luq5tKSouwTM4mMguXZD0evdumChJFKamkrxx4+kdAWQZg7c3sb17I2m1rsVYLe0zdVn4T506leXLl7v1AOLi4nj00UdrTXIVRWXPoaNk5+WXL+QvLwAAWLRoETNnzkQQBGJjY3n66acXGwyGzEqJrmPbtm0te/fu3VGrMRDfvD2KUnWJLAoixSXFaLQK33z/FR07tncDpjlz5iDLMjfddFOd21UOHz7MsmXLaNy4Mb179z5vjYuKSMvMZu/hRHcFxlk+AOsEAPR6g3P2n1M6FRcVS3ff9+AGm81a7f0CrkqBkuIi7/88/vD1bTt0yn/mhZcWWi0WUafTOdLTUqKffvShPinJyQA0atyESd/+gF9AILLsRFEUfL08aRobhfYi7Vz/fwhFUVixYgWFhYV1tgBUVdVtBypJEjqdDpPJhMFgQKvVutuCZFnGbrdTVlaGzWZjxYoV+Pr60r59e0pKy7BYrVhtdhxOJ05ZKdd3cQEAs8mIh8mITqtFFAVEUXLPi6qqoqIilAtJ6nQ6Nm5ax2efL6ZJ3Cv4eEej03q4AUBFvtmnVyJNm+SfMwBAcSAXpiLnHa2Us/0/WFbVDAPPKjQaDYJHaPVnk6qC1uDSoQHsdgfjP5jI2PvvJDQ05KoZw8mTJ6vr1q0TdDqdq43x+uszb7zxxmVUFT9QVVUVv/zyy4Hx8fEBffv2rfIZM2fOpHXr1jRt2rQBAFwBcTwljRXLlzH6tltZvGQpUdEx+Pj48ceUP+jSrTslhblER0bSuk2bhsFqAADVKEDljKDhbNURAAh6T0SPqg+ODRs2csfoe9Bp/39a0MiyjJeXJ3/OnEpsbAwoMnJRMihO6pP4jiAIqE4nB5YtZ+S4d9l/PLkKALDbHXTv0RWT0Uh+QT7t2rUlNDQESSOBqpKbm8+hQ4c5sP8gJ064EoczJfM9e3bj8ScfZuaMucyZPc/dn1cbSPH08uC1119m8aIlLFyw5IwK/larleE3DqVT546889YHZ1TarljkZmWnk5efA8C40Tfz4A0DKC4tRWcyE9OzJ3ovr5Nq/uW/pzidHFu3jrKcHITTaAF4R0QQ1blz9d51r/Aq1TM1Lfwr/tbJMbTw1VdfsX//fjcE6NWrF3feeWetVQ75hUXsOngEWVY4tRPgcgCAlJQUPv30U0pLS9HpdDz22GOVhQAVWZb1N9ww9LoFCxaa27TqgqfZG1mpOvZ2ux1ZtTLpy4l0635S1X/GjBmkp6dz//3316ntA2Djxo3s3LmT/v37X5Bd/8qRmpnNvsOJ56r2XicAoNXqlM8//uCaFvGtjg8acsOBmgAAgNFodMyc9ke7qb/+nPDhZ5OWx8Q2TnU6HKJOr9dP/Oj9wdOn/O5ZMb4vv/Emw26+BbvNBoCHyUjT2GjMDT3/5xUWi4WVK1ditVrPWJVU0YZlMBjw9fXFx8cHX19fzGYzBoOh1goCVVUpKChgw4YNzJw5k+uvv74KCFNVFUVVUBTVleyX+8tXfF5+fh7HTxwjJfkE6enpFBYW4ZSdaLVa/P39adI0DlVV+f77v2jU9A2CAlqj0RirA4DeiTRtfB4AAJcdoDNzL4j/v6HT2UABofwfyS+6BsERFQSpin1zamo6oaHBV03Lpt1uZ8KECerRo0cFjUaDqqqMHTv2QKdOnTafMpeqgPD1118PbNmyZWDv3r2rfM7s2bNp37490dHRDQDgCoiUtHRWrVrJyBE3s2DhIuKatUCr0zP1z+l079GD4rxsYmNjSUhIaBisBgBwGgjQAADqPmYaPZJXeBV7maKiYm6+6VaSEpPOWzDuSgUAHh4e/DlzCo0bN3IvZKr5GtcDACAoMpv+WsAtL75FSlZOFQDgdDpp0qQxnbt0JCgoEJvdTllpGaIk4u3lhY+vD8FBQWg0Etu37+SffxZx5HBijUm6zWYnMjKcl199gZSUVCZ8/PlplfxVVcVud3Df/WNo1DiWd9/+8Ize1U6nk4DAAF597UVm/DmblStWnxYY1JT8D+3ekQ8fuhNZlkEQiOzcGa+IiJNK/pUTeEki+8ABMvbuRajleymyjFdoKNHdutVQiumF6BF8xoXfqbNReno6kyZNIjs7290OMHz4cIYMGVLrWO4+eITsvIKT1ROXEQDIssykSZPci6XBgweXjhgxYiFgBeR169a16NWrZyc/32DimiRUsaSsmHYKinL44KP/MWzYMPfPV6xYwc6dOxk7dize3me2WrTb7fz777+UlZXRr18/PD0v/BgcS03nUNKJShoMFxYAiKKolJaUmH78elKvm0eN3hQZFZ3vrJxxlYdGo1EK8vONL//nyRs6dumW8dCTT6+wWS1ag9Fk37ZpQ/tx/3kqobS0FIB+/QfyxrsfIEkiiqIgSRLxTRtd0mvkao2CggJWrVp1xvtDEAS8vb0JCwsjODgYLy+vM0KksrIyrFYLsqygkSTS0tP5/vvvCQoKon379i4x0FPmv/JrA6fTyeHDB1m7bjU7d+4jN1cGfJE0PkgaM6KoRXZasNvzUJQcPD1liotKiG06juioG9BqTFUAgCBAn15HadK44LwAgGrNx5G85f89AKgNCFT7eUWFmijWAgBczx5XC5q5xlazKz2Ki4vV8ePHk5mZKYiiiMFg4IknntgcGxt7oAYAwPfffz+gZcuWwaf2hs+fP5/OnTsTFBTUAADqcZSUlGA2m8nPz2fp0qXccMMNLFy4iNat26Ig8OfMGXTr0YPivCxiomPq3NLREP+fAEADBDjX04rkHVFNVfbFF15m6pTpde6/vZqiYtdmxqypNG3q2lFULfkoZTn1DgCIsszyP2cxctw75BUVV9EAUFUVo9GIKIkUF5W4e7BdCzwBrVZDYGAAbdu14bohgzCZTHzz1fdsWL8JQ6WdQrvdjq+vL8+/8DRmDzPvvfMRmZlZZ6wWGHztQEaNuoVPPv6MffsOnBYmqaqKw+HgkcceJCQkhHffPv3u/8me/3TyC1zJ/4AObfjwodGYdDrsDgchbdq4evdluebPkCQKjh8ndevWqvLulf6mqqpodDpie/VC7+VVVVBLEMp3YnRnmJaqL9IOHTrE119/TVlZGaLoassYO3YsHTp0qPEzMnJy2X84qZqN/OUAAHCyRxMgJiaGZ555ZqnBYEgDDLeNGjVo+rRpPvHN2+PjHVBF+E8URbKyMrjhpmv5+OMP3T/fvXs3S5Ys4a677iIwMLBOidiSJUsICwuje/fuF20RnJicypHjyYjndt+fEQBotTr50IF94SuWLoq775EnVqKqQk294QaD0T7l1586L134T/O3Pvh4QUhoWJ4gikphQX7Yy88903f3zh0aAE8vLz6d9DXxrVpjs1kBl+p7mxbNGhT/L0CkpaWxfv36GnfvK8rtvb29adSoEaGhobXOkXm5uRxNTOTQoUOkpLjU/B0OBw6HA0mjQZEVcvPzKbNaKczLZdSoUQQHB1epYtJoNCiKwv4D+1i6dBH79iWj0BQv7854esai0/sgilqESteuojpx2AspKjxEfu4GjOYImsc9htEYhKrKFx4AOK04jq9vuHBqWWecLrQBjUBVagQAgtGv3A7w6ouMjAzlk08+obi4WATw9fXl2WefXeHv71+T24z6888/94uLiwvt2rVrlXtx0aJFdO3aFR8fnwYAUE8jOzubjRs34uHhQUREBPv27aNfv74sWrSErl27U2a1MWvuXLp07ozDUkxAQADt27dvGLgGAHAGANAAAuo4ZgqiRwiCvmoCsWDBIh5+8LH/lwDAZrPRokVzps/4w62DoDotKIX1SwdAEEVEh51/fpvKLS+/j8VqJTIiBk8Pb/fiomJRWuEjfuqCVZZlHA4nQcGB3HnX7bRr14aJEyaxdcs2DAYjNpsNPz8fnnz6MWJjY/jog0/YvXtfrTvzqqpis9ro0asb9z8wlmlTZ7Bo4ZIz9mRbLFZ69+nJ/Q/cw6cff8auXXtqBQYVyX9GZioFhXkA9G3bmvEP34GHSY/NaiOoRQuC4uNd9m017ZKU///kTZsoTEmpXplQGQLIMmHt2uHfuHGVBbhrIeaDaAqsw9RU/TusW7eO3377zb0Y9PX15amnniIkpHovpyzL7Dl0lJyCQtdu9GUGACkpKXzyySeUlpbi5+fH888/v9LPzy9p7959UR07dewvCRqhdctOLosyTrZClFnK0BtEZs6eRnh4GACpqanMnj2bG2+8sU5WfxkZGSxfvpw2bdoQHx9/UY/zWEo6h5KOn2t57VZg3+kAgN5gcC5Z8Hcbu82mXD/85t01lf9rtVo5LSU54L+vvHjN9cNuPHLTrbdvRFXVnOzsiM/Gf9Bj5fKl7sz+7nsf4MHHHsfucCCooJar/rdp0RRjg/DfecfBgwfZs2dPNQCgqioajYZmzZoRExNTIyBITk5m48aN7Nixk7SMDMqsVnQ6PR4enpjMZgxGV1uARqN1tw8oikJBQQE+Pl40iY3Bz9vb3XaVmJTIylXLOXAgGcQEPD17otGGIYoSoqhFI+nRaAyIos4lAllejyQgoCJjteVTVpqCl1cTzKbQahUAfXsfpXGj8wMAqAr2lM1gLaniNtQQVQFA5TRfBBRVQesf6352VXl2qCpoja7Kzasw9u3bp3zzzTc4nU5RlmUiIiKU//znP4tNJlMOcGqvnjx16tQ+jRo1iuzcuXOVsV26dCndunWrc2VYAwC4tFFaWsqSJUvo06cPBQUFrF27FrPZTI/u3fl39Rp69epDUUkpc+fPp3XrBLxNeqwWC31O0XpoiAYAcHoI0AADTgsABIMPorlqEpORmclNw24hJyf3otkd1eeJ6eFHHuTlV16s9LSWkYtSQHFQX3QABFFEtNuZ9dOv3PrK+8iyXMUG8GzC4XAgSRKPPPYgrVq15IP3xrNv30EaNYrhkcceJDo6is8/+4oN6zfVaiWoKio2u42+fXszZuydzJs7n7lz5qPVak+7Q2uz2YiMiuCVV19kw4ZN/PzTb6dN/hVFJjMjlYLiAgD6tEngvQdH4e9hwuaUCWzenKAWLVzKzJXG4dTvIEoSaTt3kXPoYHUngErvrWgDiOra9RQj+PJ+TO/IOpW4ViysK8esWbNYsGCBWw+gWbNmPProozUKcGbm5HHgaBKyclL09HIBgLy8PD766CNyc3Px9/fnueeeW+nv73/8xRdf7Pvhhx9GN4mNJzgo/BTbP4GMzGTe+/AtbrttZDn4sfDHH3/QrVs3WrZseca/m5mZycqVK+natWudezvPJ06kZXDg6PHTCleeJnYCu2oFAOUL+99+/LZX1x69DzRv2SrD4bBLp75Hr9M5J306/tq01BTfF197c66vf0BJ4uGD8R+/907bHdu3uj87vlUC73/yGV4+PshOJwiue9LXx5vWcU2QpIYE7HwjKyuLtWvXVgFCFcl/+/btq8G7gsJCjhw+zKrVa9i1ezeKCn4BAXh7+2AwGJAkEa2kQavTopGkk9OLqiKrKqqqoKoCiqLg5+WBv58vBw8eZOeunRxJKsJqbYOXdzwqvoiCFp3WhE7nhVYyIoiVLyW1yn0oCBVzqYos2xErzV8V81S/PkdoFFt4fgAAsGfthcK0hjaA8kRfrAUGKJV2+0VBROsfi4rqsv6rAk9UEDWu6rOrcEzXr18v//LLL6IoioLT6aR58+a2xx9/fLFWqy2qYficc+bM6RkWFhZ7KgBYtmwZ3bt3r7OYdQMAuHThdDpZuHAhcXFxaLVa9HodQUHBFBYWkpKaysGDh+nbpy8lpWX8vXARQcGBNG/SiIMH9jNy5MiGAWwAAHWAABWr7YbKgNOPVSVV2crxwP2PsHjRkv9XVQCqquJ0Ovl9yi906dKp6kO6JB3VVlJv2gAEUUSwWfn9qx+4682PAc4ZAFRAAG8fb/775ivk5eaxaNFSbh99KwaDgW++/oEtm7fVmvxX+NsPvWEIN98ynJkz5jB/3j9nTP4dDgc+Pj68MO4ZZFnm/fc+wVJWVqPCtiCI2G0WMrPSKCkrAeDazh15Y8xN+JqNyIJIcOvW+MXGopa3QFSc0ypJVyUAUJqTQ9KaNVCuGVDTHKGqKpJGQ3T3HpgC/Ku2FKgKgskf0eh35sVf+feo3E/udDr56aef2LhxIwaDAavVSvfu3RkzZky1MXA4nezYd4iiklL3Z1wuAJCbm8v48ePJy8vD39+fl19+eVl+fn5Jp06drs/JztG0a90dnc7g3lUUBJGcnCx69u3Cd9997U6o586di6enJ6daONUU+fn5rFmzho4dOxIaGnpJjjMpJY3DSSfOtQLgtABAq9XKRw8fDp07c1rbh554ZqnBYJAVRalyEer1BsfObVsiv/j0o76PP/P8xi7de+7ftmVTx4/e+V/C0SOH3e+Liorm1bfepXl8Kxw2WzmjdFXKNI2OJCo8hIa4MM+HlStXkp+f774/FUXBy8uL3r17I0kSdrudzMxM0tPTSUlNZc7ceeTmF9C6TRv8AwIRBQFRFDAZDZgNBowGA1qtpprOhFrpb1YATEEQWLNmDUuWLiY9Q8VgHEh4RD98feOQJBMiKggVc18NAnLlAOB0y6MLCQCKi4vRycUI2Q1CgBXXSm1zSQUEEAXR/R7JN6rWdZvoFY6gNV51Y7RkyRL1zz//FHQ6HXa7nR49ehSNGTNmMWCn+u6Lc+nSpZ08PDyaV24BqKgA6N69Ox4eHg0AoJ7NocuWLSMwIAAEkWX/rkVAIaFlc1onJLBg8VJ0OgMD+/WlzGJlxeo1lJWVcM2A/qxatoS77r77grn8NMTVCADqAgcagMDJRcEpqrIV8ftvUxg37lU8/h/ZAbp2YZsyc/Z0zOaq4EO1FaKUZNUfACBJCKWlfDvxSx7+8EtXIhDZCA+z5zkBAIDiomLuf+herrtuEKBy6OARfv75N44eSaqx7F9VVWw2O35+vtw++lZat2nFH79N499/16DT6U6f/NsdmD3MPPPsE4SGhvD+u+M5cSK5+u6/IKAqCqWlxWTnZGCz2xAEkbsH9eOJm67BrNei8fYhJCEBc2Cg69jLS//dv38KGBTcHy1wbO1aijMyqlcBVF6cyTLBLVsS0qqVa3e18v0japC8IkE8sy1YTRCgtLSUSZMmceTIESoWPTfeeGONooApGVkcSjpOxRHUFwDw2muvLXnnnXcD33nn7bYhQRE0jm1ZZfff4XBidxYzY9Y0t67G/v372b59O7fddtsZLdWKiopYs2ZNjbusFzOOnkjh6PGUcwUAu8ohQI2Zj95gcMydMb2zpcwi3H73mI1Wq7XKBCyKoiLLsv6tV8dd16x5i+x7H35szYY1qzuMf/etFunpae73tYxvxXMvvUqz5i2wlqv+u9iUioeHibYtmmHQ//8Tc71YcezYMbZu3VqtMs7f3x+j0Uh+fj7FxcVu2z+Lxcreffs4ePgIRqOBli2a0yg2Fk+zGRVXe49SCVjWvDwR3K9rtVosFgvbtm/j31WrSU6x4+XVnebN+yFqWuFwepTPdQoqSkVJARWSpC5NAKE8UbJzqlSpGwD0PUKjmAsAACQFIXM3KDb+P9kBnks4ZWdVAHA6IUBTAILR96obgxkzZrB48WIqLABvuOGGjGHDhi2n5tJL58aNG1sVFha2GzRoUJV1ycKFC+nWrVuDBkA9i02bNmGzWYmMjGLm3PkER8QgAKknjuFw2NDpDHRs34H4uCZYbXY27dhJUuIRRt4yghVLFtG5c+eL3vrXEFcrADgTEPj/CAIqqcpWjiNHjnLzjbditVrr7Hl8pUdpaSn33X8vb/z3lerD5ChFKUqrNwBAlCTUkmI++3Aiz3z2AwDRkY0xmzyqlBPWJWRZxul0ktC6FXfdPRofH29WrVzNnNl/UVZWVs2GquL9Go2G9h3acettN2O1WJn80+8cOXIEvV5/xrJ/P38/Hnv8IRrFxvDJx5+za9duDAZDtYWvw+GgqCif/IIcHE4nniYT426/kRt7dECUJLxiYgiMi0NjNJ5U+6+l6qfyIlsQBESNhoITJ0jeuLFWJwDXLaKg9/Qkqls3DJ6nABZVQTQHIhjqttBQKik9V0RaWhoTJ06ksLDQLQp4zz330LFjx1MWiDI79x2ioLgEURAuKwD4+OOPyc3NJTQ0lOuvv37brSNvbV5W6jBFRTRCp9O7x1oURVLTk3n08ft5/vlnAZfi+cyZMxk8ePAZVZpzcnKYPXs2ffv2rbOncz0BAHuBbTUCAEFAFAS+/WJivwGDr9sd16Jlpt1etfzfaDQ6Z02f0n7tvyubvvHOh8tWr1weN2nCJ42Kigrd7+nZuw9PPvsCoWERbtG/ytd6iyaxhAcH0hAXLux2O8uXL8disVS5LmRZRlVV9/1bCeQgiSKlZWUkJSZyNDGR0tJSfHx8iIqKIigoCG9vb7Raba3XWcVnV76nXABCJScnk9WrV7Jt23ZKy/zQ69th9kjAaAxF0nih0XggCBoUxYnTacVhL0OWLUiSiLdPEwRBR+VqAVV1tev373uEmOjzAwAuO1o7mtz9LhHdhiqAMz4bFEBTBwAg6DwQPUOvquNXVZVvv/2WrVu3otPpcDgc3H777cf69u27hur9/wDOQ4cOxR4+fLjn9ddfX+WF2bNn061btzoD4wYAcPFj586dpKam0qNHD6ZMnY7W7E1oaChRoSHkFxdTWlqGn48XIYEBaCQXqNx7OJHt27bQo3tX9JLA0aNHue222xoGswEANICACwUAalKVlWWF20fdyaaNW2ot/b4aF3e//PYjPXp0r/5wLstBteTXKwBASTEfvD2el77+BUEQiI5sjNFodpde1yVsNhve3t7cfMtwBvTvx67du5k2ZQbJya7ER5Ikt62gqqrodDoCAgNo1rQJXbp2wtfXhzVr1rN82UosFis6nfa0D3ir1Up0dBQPP/oAsbExTPjkczZs2FzDNSZgs1rIz8929/sH+/ny7v2j6JvQHFmvJyihNZ6hoaCqVRX6TwcBKl4TBARRRLHbSfr3X6yFBaf0zVaHACZfXyI6dULn5XWyFUBVQaNzVdHU8dqoCQJs3ryZyZMnu3y+FQWz2czDDz9cLelNycjiYOLxegMAwsLCKCoqKp07a6E5JCjc1beqniw3tlotSFqZhYv/wt/flSj8+++/AJzq3XxqFBYWMnnyZNq3b0+vXr0u+T12LDWdQ4nHLzgAkDQaJTMtzffvebNaj7nvodWCKFaBU1qdzpFy/Hjku/99pd/9jzyx5+jhg/7fTPo81Fmp+mT4zbfw4ONPYfbwwGG3V9keUxQVby8P2sXHodU0JF0XOnbv3s3BgwdP64RSbb4uBwOyLJOTk0NSUhLJyclU2Dfq9XqMRiNGo9FdPeVyzchElDS079iJsJBgpFOuFZPJRFhYGBZLGdu3b2HTpvUkJR0nJ6eYklIVVdEiSjq0Wg2enkYiwoNo2641m7faKCnpiY9PI7cDQGUAMKDfYaKjis7PBUBVsdlsiKWpkJfYAADOIWpuA1BB1JZXnl09VRU2m42JEydy9OhRd4XNvffee6BDhw5bagMAaWlpYVu3bh1www03VHlhypQpdOnShUaNGjUAgHoSy5cvx8/Pj0aNGvPlN9/ROK4l7Vq1wNNkQqkQvATk8oooSRTJzMtnw+YtSCjcNGwoM/6czqhRo+pkFdwQDQCgAQTUBQBoTYg1qMpOnPAFH4//tM5CKld68t+oUSyz5kyvUTlWLkoBh7XeXBOCJCGUlfLWG+/xxne/IwgCMVFNMBhMdQYAVouVps2acN8DY4iNjeGP36axYMEinE4ZrVaLLMvIThmzh5nGTRoRH9+C5s3jMJtNFJeUsHnTVjas30Rebh5aXe07WKqqYrfbkSSJ7t27MPrOUej1Oib/9BurV61FV6lEuaLctbi4kNy8LKw2KxpJ4q7Bfbnrml5E+HmjDQgktG1bdB4eJ3f963I/13BfC5JE5u49ZB3Yf9o2AADF6cQ7PJyILl1cFQMVn1+Lm8bZQoB//vmHuXPnotFocDgchIaG8vjjj1exxrPZHWzbewCLxYqiqJcFAGRnZzN+/HiKioowm00c2HeUnKziamJ5oihx/MRRHnvyAcaNc4lq5ublsWzpUoYNG1at4uPUxeAPP/xAVFQUQ4cOvSz3mEsE8Ni5AoD9uKwAq2U9Or3euWH1qrjc3FzD0BtH7Kys/i+KoiIIgu6jd9681mg0aU0mo+O3nyd7Vk4k7xgzljH3P4Sk0eB0OCohs5PRrFE0kaHBDSuXixDFxcWsWLHitFalZ4IBFWC1tLSUvLw8d+uAxWJxi7ImJydjtTuIb9OWJo0aERboX72zv7wywNPTk5CQEHx9fVFVhdLSEiyWMhwOB6IooNfr8fLyIiAgEIPBzAsv/cCKVT5EhndEECQqqgBUFSRJZWD/w0RGFJ83ACgpKUGj2pCydzdcOOcEAKKprudQfh15hSNoDFfVfTV+/HgyMzMRRRG9Xs/jjz++tXHjxrW5qcj5+fl+q1evHjR06FBN5Xn6jz/+ID4+njZt2pw1AEhISODJJ59suPguwhp72bJldOjYkfUbt3A08Rg33jAUo8FVMVphi6zX691zq6zI7Nh3iD07t3HriJvZuWMb0dHRtVomN0QDALjgIECFi+Y1XQ8OtlZV2W1btzPqtjsRRfEqPn5XlJaWMmbMXbz1zn9reMzYXQBArT+3gCBJiJYyXn3pLd6ZPBVRlIiJaoxebzhtP2lFWCxWunfvwv0PjsXhcPDjDz+zaeMWdDodiqLgsuAJp1v3znTq1BEPTw+Sk1PZuX0nBw8eJjk5BbvNjkarqbVFRHa6WgW0Oh3N4ppw3XWD6NS5A/v3H+SXyX9w9OjRKu0CoijicDjIy88mNy8bgEbhITx/23AGtmuJjIB348YExsUhiGL1Xf9zAAGCKGItKOTY6tU47bbTtgK4cn2F0Nat8W/WrGoVgNZQbs1U9/vkVAigKAo///wza9euxWAwYLPZaN26NQ899FCVNozjqRkcPZ6Moih0bN3ykgOA9evX8+uvv2IymSgsKGH/7iMo1dip4CqT1jr5+5+5BAe7ktGFCxcSEhpK29MszFRVZdq0aTgcDu64445zTcDPO46lltsAnlvVz0FgU00LV41GK//5x6/dW7drn9S8Zav0yur/RqPJuXD+3M5/TvktLig4xLl61UrNydeM3P/wY9x82+3uVpyarqkgf1/imzVBq/n/0bp1OWLdunWkp6eft0tOxbO18jWu1Wo5evQo6zdtpnGzOPz9/IgIDiy38zt5f50KASpE5nQ6HSaTCZPJhE6nQyyvGnA6nciyTLu2rXnwkfHs3NOMiPD2aESd265TVQU0ksLAgYeICC3BKdcMAFq0aMGHH354RheA4uJitJKImLsbrKWXbsdaFF2KA2Klsa3tb1e25FMUUNRz1tG54ADgdDoA5iAEw9WzE5qRkcGnn35KUVERAL6+vjz77LMr/f39k2sBAIrFYjEtXbp00MCBA81G40lRxD///JPAwED61tE2rgIACIJAq1atGgDARTzHmzZuJKFdB2bMmk27hAQ6tG9PUlIShw4dwGg00r59R/eaUlVVtuzaw8EDe7l3zN3s272L3Lw8brrppobBbAAAlwYCKKqK4nSi0WpdDxFVveqOtSZV2bKyMkbcdBsHDx666pU3rVYbk3/5nj59qpcaq/ZilOKMelP+XxkAjHvxTT74ZTqSpCEmqnGV/uvaeI/FaqVf/948+NB9pKSk8vVX33P0SCIGgx67zU5ISBDXDhlEj149sFmtrFm9jvXrNpKSnIpTlpEkVw/qqYtQp1N2i7+Jooi/vz8t45vTtVsXWrVqiaqq/DN/IX/99Q9lpWXunX/X5wiUlBaRlZ2OzWZFr9Mxsl8PHri+H6E+XqhGE8EJrfEKCUFV5DpBjrqCAEGUyDl8mMw9u09f4eHqH0BnMhHdqxc6s/kkhFBVRK/QaloaZwsBioqKmDRpEklJSW4hpIEDB3Lrrbe6x9tmt7N970GKSkrp3Cb+kgKA3NxcPvvsM4qLi5CdIts278bpkBFq2P0/kXyUsfffxZtvvgFASkoKK1as4LZRo9Cdpnx6+fLl7Nmzh/vvv/+yupAcS0nj0LHkagrt5wMARElSCvPzPefNnN52xO13bjSZTI4K9X+dTu9ITTkR8ebLL/bLz8sVsrKy3L8XGBTE408/S9+Bg3A6nTUmKLKi4OvtRXzTRpj/n7RtXa7Izs5mzZo1FxxOiaJIcXERs+bMo1GzOIIDg4iOCEVfnsiLoojT6cRut1dJ+CuSfEVR3KKCp86Rqqqi1+vp368Xd499j6PH2hIR3g6t5mTVmKoKaDUK1ww8RGhICfIpAGDz5s288cYbDBkyhIcffphu3bqdGQBotYhFRy+6HaCokVxARisBIljKIL8Iu82Gw+HEKTtRFJc8olCOanVajRsGS1oNok6PaDKAXu+GCAqAU74sUOC0OgB6L0SPq6fKZ//+/Xz99dduUBUeHq48++yzS0wmUzY1twCoiqKI//zzz6AePXr4+fqeFEWcN28ekiRxqjZAAwC4/LFz507SMzKIbdSEjRvWExoSSk5ONtdddy179+6ntLSEtm3bI8sy+UXFLFm6jNDQILp26siKZUu5Ydgw/Pz8GgayAQBcIhAgCMgOB/bSUvRmM5JOd24JSL09xtpVZV979U1+nvzLVd0GYLfbiY6OYvbcGXh7e1VP0kqzUK2F9QsAiCKizcrT/3mFiX/MRqvREh3VGK229mtTVcFmtdK3X28eeuR+EhOTmPT5V6SnZ6LRaFAUhZ69ujNq1C3odHoWLlzC8mUryc3NRZIkNFqte3+7si6AIIgYjAYCA/zx9fUhODiIVq1bERsbTVBQIHaHg507dvPP3wvZv/cAkkZyE15BEFFUmZycLHLzXAlPn3YJPDB0IJ2aRqMKAuaIKIKaN0drMp6+5P9cQUC5AXfypk0UpaYiajQ1jqFwctVBWPv2+DVuXEV4UNCZED3DzvrrnAoBkpOTmTRpEvn5+Wg0GmRZZuTIkQwYMMD9O0ePuwTqOre9tABgypQpbNiwAUnUsXXTbqxWew0e8wKy4uT4icP8MeU3+g/oC8C0adOIjIyke/futX7+4cOHmTlzJqNHjyYqKuqy3mMpGVnsP5J0rtVPh4CNpwIAnV7v3LRuTbPk5BNeI24dvcVut2kAJEmSVVU1v/vfVwYuX7LEs/L1Fx0Tw/OvvE6b9h2xWa01XpuyohAS4E+zRlEYG2ySLnooisLKlSspKCi4oCK5Go2GhYsWUWKx0ax5C8KCAwgJDKSkpIRjx46xf/9+0tLSEEURk8mE0WjE19cXf39/AgMDCQ4OdldxnZqwVgCAnj27MvrO/5KS3oXwsLbotJ5VAYBWZvDAQwQHl1YDAFu2bGHp0qU89NBDGAwGevfufUYAAFw0O0BRI6ExGl0GAzn5JB5N5nBGIVmZOaRnZJGYnEJqZjYlZVacsoxcDo81ooRRryfIxxt/bw9C/HwI9vclKNCfAB9vPLQiJqMeTy8TWg8jhgA/dOXOQMp5wYCK8azb70t+MVBTS5+qgkbvqjoTrg4dgA0bNvDzzz+7IVdcXJz9iSeeWKTVagtrAQAAyuLFi/slJCSEVbaHXbp0KYWFhYwYMaLOAGDv3r0ADQDgEsSyZcswm8xERkWya9duWrRoTklJCbGxscydO4+OHTvh5eXN1l172L1rBzePuJkj+/fSvHnzOus6NEQDALhgEEAQBBxWK5aCAkx+fkh6/dVTCXAaVdnly1dy7z0PULm86mqL0tJSRt8xivc/eKfGcy8XpYDTVq80IVwVABYefvwFvpk5H51OT3RkYzS1JK/gKvvv07cnjzz6IIcOHebziV+Rl5fn7rsaeetNDL72GrZt28nUP6aTnJyCVqNFqlRK7HA4UBQFb29voqIjiYmJolmzpgQEBuDn54vRaKSsrIyiwiKKi0vIzskhJibK9Zm/T0dv0LsTXVEUsdltpGekUFZWQoCvD+NG38h1ndqgEUDw8CS4VQKewcGoqlL3kv9zAAGCJFGWl0fyhg04rdbTJn2KLGMODCS6Rw8XLKhSBRCBoD373ddTIcDevXv59ttvcTgcbvHFhx56iJYtWwJQZrGyZfd+EuIa41sDtLoYsW/fPn755WdsVoXtW/ZgsdhqSP5dx5CdnY6Prxdz588mJCSI9PR0Zvz5J/eMHVujxga4Ko6+/vprOnXqdFlE/06NvIIidu4/hFOWzwUCHAHWnwoANBqN8vtP3/dq36nLkZat26Q57HZJFEVZrzfoJn/3VZ/vv/6yypZey1YJPP/yqzSJa4HVYqn12gkJ9Kdlk0ZoGsr+L1kkJSWxbdu2824DqHzf5OTkMOev+bTp0IngwACC/X3Zvm0bBw4cQJIkAgICiI6OdjsHOBwOysrKyMvLIzs7G1mWCQ0NpXnz5vj4+FBZOFJVVQwGA926dWHU7eNIz+5BeFgH9DqvGgDAQYKDLciycMozxIIkSRiNRmw2G3379j0tAKjQOXDZAe4ExcGFsAPUeZhAr4OMbFZt2c+u/cdYsmYDR48lczwjC4vzZJWY699CucWe4L6XFaW8dUJVEATQShLeJgNBvt5EBgXQKiaCRmEhNIkMJcjXB0+zHs8gH8yhQRjKYYDTKVdpITjlhFYeiHM6zlorAMpBq+QdAdLVYfO5dOlSpk+f7rbD7datW/HYsWMXAafzkJT//fffHlFRUbExMTFVYEJiYiKjR49uAAD1MGRZ5u+//6ZJkyY0adKEZcuWUVhYyLBhwzh8+DBHjybRuUs3Zs+bR2yjGJrGRnP0yJEa7ZEbogEAXJpBEAQcFguOsjKMV1UJSrmqrHdkNZqcm5vHjcNHkJ6WcVaqx1dSWCwWfvjxGwYM7F/9RafNBQDq27VYLgI45oGn+fXvpRj0BqKjGiOKUo0AwGq10qVLZ558+hGSko7z2aeTyMnNRRRFPDzMPPr4Q7Rp05ppU2fw17y/URSlyvmuSPxjYqLpN6APCQnxeHh4kJeXT052DocPH0Gj0TDk+mv5c/osVixfhSzLWK1WmjRpzAvj/sPSJcuZPWueu2S1tKyUlNRjgMKwnl25Z3Af4qPCsNhs+MTGEhwfj8ZgqHnXv+IYLxSUUVUESSJr3z6y9+8/oxYAQHiHDnhFRZ1c3KkKgt4T0ePcvOpPhQDLly9n2rRpaDQanE4nISEhPPHEE+4F96HE4wT4+eDn431J7pEff/yBA/uOsGfXIcrKLKfd+Uw8dogHH3iA/73zGuAqyXQ6ndx8882nOI+fjL/++ov8/HzuvPPOy9b3XznsDoe71eJCAACNRiOnpiQHLJg3J+HOex9YrdVqFUEUFY0kGWdOm9J10oSPwyv39ffs1Zsnnn2R0PBwbDZbDZes6x4IDQqgaUwket3lTQS2bt3Kf//7XwYOHFjFu97hcDBq1CgiIiKuqudGhaiV1Wq9INerVqtl5apVZObk0bpNW0qLCti9YztGk4kuXboQGRmJVqt1l/qrFcrZ5demLMvk5uaSmJhIWloaTZo0ISEhoUprgIeHB126dObGmx4hK7cnUdG9Mei8qwAAnU7m2msOEhhYHQBUrIMqzuuZAECFEKBWqz1vO0CdTgKzJ6Cwc/1ONu1OYuGSlfy7eTu5JWXl4yHhafbAw2RGq9Wh0WgRRemkQGm50niFG4yKiiyrKIoTh8OBxWrFYi3DYrehyg40kkSYvw+tYiPpEteErglxhPr5oDPp8QrywT8yDI3J6H4GVKT5ilMGpxNFVVzgoZJIrqIortfrAgBOIwKIqiB6hiDoPK+K+2nGjBksXrzY3fo2dOjQzOHDhy/j9MI6zq1bt7bV6/UJrVq1cv9w7969bN68mXvuuadOf/uzzz6r4gLQAAAufpSVlTF//nxEUaR9+/ZIkkRSUhJ9+/Zl5oyZ+Pj6kZmVyaBBg1ixfCl9+vQ9o21wQzQAgDMu9Cs9yc7tI2TZlSBcZcJ4tanKPv7YU/w17+/L2o97scLhcBAeHsaceTPx9fWpfq5thSglWfWuzE6UJOTCAm4b8zizVq7FaDARHdW41oVqbKMYxo17jtzcXD799Auys3KQJBGDwcCTTz1K6zat+OmHX1i4aCm6Sp7Urn48hZjYKAYPGkjHzh3IycmhIL+QwqIi5s6eT0pKCpIkITtl7h57Jx3at+Odt9+noKAQjUaDxWJh0KAB3DXmDj768FP27T2AqsocS04kwMuT18eMYFDHNsgOB7IkEdyyJb6NG7sWaopyUe7hGic5UcRWVMSJdeuwl5aeHgKoKpJWi1/TpgTGxVWBLpJXBGjOrQxbUSq8vl0J1JQpU1ixYgV6vR6bzUarVq14+OGH0ev1FBQVI4kinh4Xvz1n6dKlLFiwmB1b9lNSUlJr8i8IIsUlhThlK1On/UHrNvHk5+fz5ZdfMuq222jcpEmNAOD48eNMmzaN+++/v1719yWnZ3Ig8TjncJUlAmsrAwC93uCcN/vPjkaD0TLwuuv3KrIsKIpi/n3yjz0mf/9NUOWy4ptuGcm9Dz+Gl5c3dru92ofLioJRpyMqPJTIMJc93OWORYsWccMNNzBmzJgqAMBms/Hqq6/SrFmzq+75sWPHDo4cOXLecFwQBBRFYcasWYRGRpGemkZZUQHdu3enRYsW7gT/TK2HFQ4DRUVFbN68GVmW6d27N1qtFqfTWQ4AunD90DvIyu1G40ZDMRh8zwoAiKJIfn4+ZrP5jAAAKukAnKMdoM5kBLORsrRMNicWMH3mXP5esJQTGdmoqorJ6IGPlw9Go8n1d0SpSsp8Mtmv/OwQyh8dp/xbpdzKVMHhcGCzWSksLqCkpBhQiQz0Y2jXDgzp0pbIAH8ckoh3oDcGvZaS/FKcDgeqolR0lbmeX+WfL2k1GDyN+IcGYArwR6OR6tROUCsEUBUEgw+iOfAqWJarfPfdd2zZssVdAXD77bcf79ev32pqL/8HcB4+fDg2Ozu7Z+XWstTUVBYsWMA999xTpwqdBgBweSIzMxNFUQgNDUVRFP7++2/atGmDn58fixYtolOnTiQnJ7thY0M0AIDLDwcuUgJyeY9dQTQHIhiqJ8EzZszmP08/d1XqAJSWlnHrrSMY/8kHNSdkJRmotuL6BwA0Gmzp6dx496Ms2rQds8lMVESjassEWZYxGo28OO4/+Pr58sF7H3PiRDI6nQ5ZlnngwXsZMKAvv/82lTmz/0Kn17kX7zabjZCQEG4YNoTOXTqSmpLGwgWL2blzN4qs0KNXN7p06cSvv/xBenomoihgMpt483+vcuDAQb756ge3pYsoirzy6gs4nU7eeftDTqQew0On5dPH76F362aUlFowBgQQnJCAOSAARZZP32JzsSCAIFCYnEzGnj04yspcYlG1JLuqLKPz8iKmZ0+0JpNrsacqCAZvRPO5k2ql/NhEQcBut/Pdd9+xY8cO9Ho9VquV/v37M2rUKLd2wcXeLU9JTWHyj5PZtGEXGWlZaLSa0yYgx44fZcQtNzHxs/EgwIIFC9i1axfPPfcckiRVAwCqqvLjjz8SFRXFNddcU6/uM6css/fQUTJy8s42yT4GrK4AAKIoKsVFReZpv/3c9ZZRd6wPCgktspSV+nzzxcTeM6dPdYuvSJLEmPse4I577nP3wp66UFZVFR8vT5rFRuPj5VFvxmrp0qXceuutjB49uhoAePa552jcuDGKoiKKAhpJumDOMoUlpWTm5OLv7YV/DRD3YkZxcTHLly9378af83wuiuTl5TFn3l84FYWgAH8GX3MNHh4eOCpZPZ7N54FLd8PXz59+/fqikVwied27d2PY8Ds4kdqCuOajMRkD3fPpmQCARqNh69atrF27lkcffZSePXueEQBUtAGcrR2gzqAHvZ6jW3ezcmciv8z6m3VbduKUZTw8vPHz8cOoNyJpNFAOUCoq1SrN6AiCa17XaFyONRWwRZZlN1RR1QpUICBJLohS4dCgqiqy04HVUkZuQR6lZcVEBQfw6PBrGdCuJXqtFllVsVjtWG02ii1WSi1WbE4noggGrQ4PoxFvsxGz0YAoCkg6LR6B3gQ3ikBnNqPYHbWCgNqFACvcZ678yhqbzcZnn33GkSNH3G2M995778GOHTvW6KRSeYmTnZ0dsHPnzoEDBgzQVNyDRUVFTJs2jREjRtQJKDcAgPoDBFatWsWNN96IJEmkp6ezcuVKbrnlltPaBjdEAwC48CCgLhDgKgIAgs5co4jZ8eMnuGn4yNPu/F2pUWax8M03k7j2ukE1jolcmAKKHahf51nUaCg9lsSQux5j9a59eJg9iYyIrbZDZLPZuPW2Edw8YjgTPp3EurXrMRqNWK1Wrhk0gAceupd/V67hm6+/d9tRVSyOevTsyqjbb8VisTBrxlw2b96K3e4ot6RzAYK7x9xBTEw04z+agCzL2O12evfuyT333cV7b3/E0aNJ6HRarFYr/fr34bbRt/LUk89w8MBeXr7zFu4f0peSMgs+MTGEtG6NpNW6PGAvFKw7RwhQlptLSVYW1oICSjIza/8askxgixYEJySchBaCiOQVCdK59wZXhgBFRUV89tlnnDhxAm35+Dz00EO0bdv2ol9nsiwzbfo0li3+lz27DtXY8195se1w2MkryGD6n1Pp0LEdZWVlfPrpp3Tp0oWBAweetDGr9Ft79uxh3rx5PPXUU/USMpZZrew9lEh+YdHZwJYqAECv1zuXL1mYYLVYheG33LYlNycrZOJH7/dasnCBW8DBZDLx0GNPMvyWW933YOXEX1FVNJKGkEA/GkeGYzDUL7G/pUuXctttt7n7biu3ANw0chQR0TFYLBYUVQFVQKfTYDIY8PL0wGw0YNDrT6qy1wVMpaRQWFjEoWMnsDmcREVF0aFV80veCrFu3ToyMjLO69mo0Wg4cGA/s+bMY0D//nTu1NFdun+uIUkSubm5zJg5i87dutO23ImlW7eu3D3mSbbv0tIy/gG8PCIQBA2goqgCer3MdYMOEuBfFQBoNBpSU1MZN24cQUFBfPzxx2e0Aay4DkpKSupsByhqJDRmM7kHDjN39W4+/2kKOw4nISAQFBSKt5cPGo2rFcJud7idZ4xGI6GhIXh6euLt7UVYeChBQYF4eHq4k3+3vZiiIisuAFBSUkpWZhaZmVnk5uaRkZ5Jbm4udrsdAaGS1W25C4u1jIycTOy2Ukb160lCbAQbDxwho6AYh6JQUFxCUUkZNocTVAWNJGI2GAjy8aJxWDBtGkXSKiaS8KBAtFoRc6APoU2j0BmNNWoK1K4DoIIguQCAdGW3ZxYXF/Pxxx+TkZHh1iR67LHHtjZp0mTfGQCAYrPZDEuXLr2md+/eXhX6Moqi8Msvv9CvXz+io6PPCgDEx8fz1FNPNWR9lynWr1/v1heZMWMGCQkJxMXFNQxMAwCoRwDgqoMAKoga18PklBI9RVG5+66xrFm99qoSA3Q4HISEhDB33gz8A/yrj4jTilKYUi/Pr6jRUHjwINeNeZwN+w/j7elNeFiMa3FdHk6nk6CgIP77v1fZuXMXX036Fq1WiyzLBAYF8cZ/X6KoqJgP3v+EwvwCNFqNu7f05hHDGX7jUFas+JfpU2dSWFCI3qCvssslyzIeHmZee+MlVq74l3lz/0avd73n5VdfIDcnly8+/9pdfhoeEcbgIYN5++23aBEWxI8vPIIkqHiEhRPRqROCRuPu96/TbtrFhADluz9Ou53jq1djyc+vuSVAVRG1WkISEvCOinJ9D0VGMPohmvzPcxpS3WNx9OhRJk2aRHFxMU6nk1tuuaXOFkfnE1u2bGb69Jls37yP4uKS0ybAoiiSmZVB775d+OHH7wBXL+bkyZN57rnnCA4OrgYAZFlm4sSJtGnTporLQX2LUouV3QcOU1RaVldbwOPAv4BGFEW1tKTEOG/Wn+1vunXUxpLi4oDx773VbfOGDe7JNCgomMeeKbf5O2UXU1EUJEki0M+HsOBA/H28L9ju+YUGAKNHj+a2226rcv3abTYefeJJWrRogdVqxSE7sVntlJSVUVieLCmqikGnw2Q04Ovtha+3J14eZjSnSarHjx/Prl270Gq1hEZEMnDIcNq1bIq356WtisjMzGTt2rXnBQAkSWLjxo2YTCbatWuH3W6/IE5DGo2G1WvWkJ6dy+CBAzDqdbRqFc+nE75i+ozjxCc8jIc53C0EqKgCel05AAioCgAqXABef/11WrVqxXvvvVcnAFCR4J3JDlAURTQGPVgtrN+SyFuffsWC9VsRBYmQwCA8PX2RNFrsDjtOp4xOqyUiMpyo6EjatW9LUFAgISHBeHiYKbNYyM7Koay0DLnCmlYQURSZouJiCvILsVit6LRafH198fbxwmQy4WE2owJFhYUcOZLInt17OXToMIWFxWjKbQaFcivo0tJiMrLTcTrs+Hl6IemM6PQm1+RWXhGiKiqy6gLjZZYyrFYLquok1M+bbi2b0b9tPB3iGuNh1uMb4k9As1hEUaiiEXBaIUBVQfQKO2v72foWGRkZfPrppxQVFQHg7e3Ns88+uyowMPDEGQAAgLJkyZJejRs3jqqsED9nzhzCwsLo3LlznQGAqqq0atWqAQBcxnA6ncyfP99dPXop1jkN0QAAqicXZ5OEXA0Q4DQPk2++/p6333oPD4+rpw2grKyMG28azsTPPq55OKz5KKU59dJmR9JoyNm9m6H3P8PGA0fw8/YjJCSyCgCw2WwMv3Eow2+8gbfefI9jx467BHbsNsbccxcDBvTlww8+Yc+uvegNelRVdSWXI29i+E03MOX36fw9fwGSKFVxAqgcVquVIUOvZegNQ/jfG++Sk5OD0+mkR49u3P/gWN5/5yMOH0lEo5Ewe5jRaGHrli1Mevp+BrZviao3EtWjh6sMUpbdfZp1TnAu8v0najSkbNpEflISYi29hGp5kh7dowceQUEoshMEjUtUU5TOcxo6CQG2bdvG/PnzMZlM3H777YSHh1/062zevLn8/ssMko4mn7b0X1VVREEkNeM4X379KUOGuB7aWVlZHD9+nA4dOri8yqm6+19xTM8991y91xhJy8xm7+GjCHWbD04AqwCNVquVN29Y39RgNChmk1l6+41XOyUePeIehsZNm/KfF18hoW07bDabK/kv71mWBAFvL0+iw0MJ9POpl4l/RSxZsoTbb7+d22+/vcq1a7PZePHFF2nSpEn1lbuiUFpmIbegkNyCQgqKSrDa7Gg1Eh5mE4G+PgT6++Lt6VHt2Cu8uyVJIiQsnD6Drqd188b4XwJRzFOPYcWKFRQWFp4XBHA6nW4Lvws2f4kiKSkprFy9lu49ehATEUZQUBC7d+/ixZf+oGWrpzGbQ/Ewh7sBgEHv5LpBhwgIsOB0VgUAW7du5bXXXjtrAOB2A6jFDlAURRAFnE4T3379I/+d9BP5FitBvgF4+/ih0eqx2R2ASnh4GG3btaFjp/ZER0dh9jBTkF9AamoaRw4fZe/e/ZQUl5CdnUNZWRmyXCGuKiCIApLg0m+SFQXZ6XS3pRgMBry8PAkOCSYyMoLmLeIICwvB6XSyc8cu/l21luTklEqtBCJOpwOH3Yqggt5oOgUSCyf/t1wTQFFkbHYbRcWF5BXko5egS3xTbu3ZhW4JzTF66AmICcM/OhzF6XSDgNPqAFwA2Hy548CBA3z11VfuFo6wsDDl2WefXWw2m3M4vQYAgHPnzp0ti4uLO/Ts2bMSvN5CUlISI0eObAAAV1gkJSUxffp0xo4d2yD81wAA6jkocI/SFQ4BVAXB6INoqi4qs3v3Xm695Xb3w/JqAQCTvvyMoTfUbC2iFKeh2kvrJQAQNRLZ27dz02MvsW7vQQJ8AwgKCncDgIrF9yuvvkBRcQmffvyZeyc+OCSY/775Cqv/XcvPk3/HaHT1VtmsNjp37chTzzzOn1NnMnv2PPeOfm0hyzIenh689fbrbFi/id9/m4pWq0Wv1/HfN1/lwIFDfP/dTxgMBux2G4nHj9C5eWO+f/ZBJI2GiK5d8QgJqaL0XznpvawQQBBQFYUT69dTmpFRqxYAgoDidBLQtCmhbduWtwIoiOYABIPvBZhiTo6HxWJxl0heipg1ax4fvTexTufDbrcjah38NX82wcEhtcOSSsc1adIkGjduzHXXXVfv5wuLzca2PQcotVjrUgVwAlglCILksNs1xxKPhufl5wV8+v67cTk52RiNRiRRpE37Djz0xNNEx8Ris9uRBAGdVotOp8VkNOLn7Umgn895i8yVlZWRm5uLxWIhIiLiosCWlStXct9997mtmioDgBdeeIGmTZue+XtareTmF5KRlUteYRGyLKPTafH29CDQ3xd/H288yy3YPvvsM3bv3u0GAL0HDSG+SSzBAZdeRDIxMZFt27ad13mqrJtwIQFAWVkp02fMplXrNrRNaIlBr8fT08QDD45D0t9GQEBrvL2iEQUtqsrJFoAAK5UlKM4HAFS0AdRkByhqJDSozJq/nil/zmXOvxvR6QwEBwShN3pgd8qIokiLFnFcM6g/8QnxmIwGkhKPc/jwEXbs2EVuTi6pqWkoskt0r6Lnv7JLQk1jW3lOq3BKUGQFFRfQ9PXzoXmLOLp07URYWBh7du9l/vwF5GTnuN1sTp2n63KeBUFAlmWKigvJzM5EI6kM796RMdf0IjI4AI3JSFizCLxCgnDaHUg+kbXqAAhaI6JXOFdybNy4kcmTJyOKIrIsExcXZ3/iiScWazSagjoAADkzMzNw3bp1A4cNGyZVQLiMjAzmzJnD3Xfffcb5rgEA1K9wOp2cOHGCyhUdDdEAAOo3BLjiAYAKGr2rDeCUY7HZbIwccTu7d++td72n5zrBBAQEMGfeDIKDayCMiuyy/1Mc1Lf+f3C5AKRv2sStz7zO2r0HCfEPxi8gxA0AXLZxwbz2xsv8/usU/v13LQaDHqvVxrXXXcNto0by1v/e5VjScfeuk06n49XXx1FSXMKHH3ziXkCeKWw2G/eMvYt27dvw39ffobi4GIfDwZ133U6nzh148413KC0tIz8/h6ycDP533+2M7tMFc6PGrt75GoTOzgoAVFy7F6ENwFFWxol167AWFdX4fSoSWlVV0Xt6Etu7N5JO51LVrsVa83whwKUKRVEY9/wbLFm8wg2Jal/UiuTmZdO1R1smT/6p9uOodDcdP36cn376iSeffLJeKf+fLvYfPUZyWkZd7osUYIUoishOp2Hn9q0d5/w5NVYA/P38MBqNNG/Vmq69+xIWEoIkgNFowNvDA5NRj0ajOW35+5mipKSE7OxsTpw4QVJSEmlpaeTm5lJWVkZ8fDxjx4694HoL+/bt4+233652Ls8GAFS+3nPzC0lOzyQ7vwDZKSOILjjiaTYRFhzE1N9/4eCB/YhiOQC4ZgjNYiOJCLn0O0Y2m41ly5Zhs9nqhYVl5WRTlmXmzJuHX0AwXTt3wKDTEhoaxpw5s/n6u220aPUEnuYwTMZAZFnFYHBVAPj7V28BOFcAACfbADS5e1HK8kDUIGoknBYrRZmlPPPmR/yxYj2B3n74+vqDpMXhdBLXvBnDhg+lffs25ObmsW7dBrZs3saxpOPYbDa3ds3FsCmWZRmn04koikRFRdK3X28iIsNZtWI1GzZscunVlIsKVgh0nproi6LoFhSsDQTkF+SRlZ1Gs8gwXrnjZlrHRiALIt7BPsS0iUP0iUKV5Zpn1FpaN6+kWLp0KdOnT0ev12O32+nSpUvxvffeuxiwuknRaaYLWZa1c+fOHdC9e3e/kJAQ9xroxx9/pE+fPmfsIW8AAA3REA0A4PwAwNUAAajdxuydtz/gm6+/vSrcAMrKyhg6dAiTvvqs5lPqsKAUpdbb8ymKIsfXrGHkf95gy+EkwoJC8fENcgMAm81Gx04duO/+e3j7f++RkZGJRqPB4XDw3AvP4OXpwVv/e9+tXm2z2ejTtxcPPDiWD9//hJ0799QZ9NhsNtq2a8PzLzzNJ+M/Y+vW7QC0bdua5154mo8+nMCuHbtJy0xBJ8HU156ieZNYwrp1O6mef0oifzkS3poAgLXcFtBRVlYzAKjgDuXVAlHduuEVFnayCsAjGEHvdYGmmZOtEYqioqjKeSWJZ4qMjEzuv+dxsrKyz2ilJIoiKanHeWHckzz62GO1Jv9UAgB//fUXOTk5jB079oqZN4pKSti5/zAWq/1MlVCpgiAsFkTRP+nQgY7bNq4LU1UVrUZCECXi4lvTtGUrYiLCaBQZdt5JY0FBAZmZmZw4cYJjx46Rnp5OXl4eFovFfd1IkuS+r55//vkLvrty5MgRPvzww3KR0PMDAJUjJ7+AYynp5BUWlduquXZ3Vy9ZSEZaCgAhYeH0uuY6mkRHEB0Wclmuje3bt3P06NGLkoieDwBQVZW//1mAzmiie9cueJqNgEBgYCDjxr1KcnoromNG4OURDmjR6RxcN/hQNRHA8wUAiqK4qoTK7QBFnR6nxcqxzXtZtW0fT3/5C6IgERUejV1R8fLyYtjwoQy+diD5efksXLiEtWvWk5eXhyRJaLXaS/p8cDgcKLJCdGw0/fv3prSsjFUr1iAI4Ovri4enBzqd1qU1UO6iU1xcTH5+AYUFhdhtdlRUdwuB+xzhak2wWC0kpx7HQ6/h7ftvp2d8Myw2O3pPEy0HXYvWaKwZAqiqy8JZe+XqM82cOZNFixa57W6HDBmSdeONNy47hRmfLpz//vtvZ51OF9e1a1f3D//55x8URWHo0KENAKAhGqIBAFxkCHAVtAHUZge4Zs067r5z7CUrP76YUVpaxsTPP+amm4bXvFix5KGW5dbL8n8EAVFV2L90OSOe+x8HklOJCArDyzewCgC4bshgunXvwltvvudeCOr1el5/4yWyc3IY/+EEdDqdy+ZIVnjp5edQVZUPP/ikSunkGZ+85dUUr//3JZYtXcmsmXNcomWBgbz2xkv8M38hc+f+RXJaEm0bx/Dj8w8T0qwpIe3auRLlWkDa+VprXRAAUFDAifXrcVitNa5C3JoFoogiy/jFxBDWoUO5JWB5RY13BPWxiuRMkZqaxgNjnyAnJ7dOXsrJqYlMnf4rPXr0qBUACJWumc8//5xBgwYRHx9/RY1Lcnomh5JOuHf/akm8TgDbD+zZ1W//7u1eqqKiKgo6vZ6EDp2JbtSUsOAAmsVGnTPEKSsrY8uWLezbt8+d8FeIx1XedXTd37J7hzIhIYH77rvvgoPcw4cP8+GHH1Z7PpwvAKiAXxnZuRxPzaCopAStTseqRf9UAwCNIsOIjQi7LNdFcXExq1atwmaz1el+uVQAwOl0snDxYnQGE926dMbLw+wWwNXrJJ7+z0vkFvQnMnIIRkMger2Dwde4WgAqAIBwAQBAxRhpVBva3L0oTieHNuwiL7eQZ7+ewu7E4+j0egL9Q2nSrDH3PzCWgAB//p6/gGVLV5Kfn49Op7vsTkR2uwONVsMNN1xHVFQUxcXF7p1+cAk6Go0GjEaj6x4UXa+lpqSxf/8BDhw4RE52TrWqhYpqgBMpx9BJChMeG0uHuEaUlpSiNZtoOXAgRl/fahVzqAqiKQDB6MuVGKqq8v3337NlyxZ0Oh12u53bbrvteP/+/Vdz5vJ/9zLk+PHjEZs3b+578803CxXn4siRI6xevZq77777tNdNgwtAQzREAwA4v8T+aoAAp7EDLCws5MbhIzlx/ES1XZ4rKZxOJ75+vsydN4PQ0NCaAUBRKqrDUi/PpSAI4HSyZf4/3PzC26Tm5BIZEoGHt1+Vvtsx99yBj68PEz+dhF6vx+mUCQjw49XXx3HgwCEmff61W2nVZDLx2hsvMXfOfP5dteas2jwURUWr1fDqa+NITU1l0hffotVq0Gq1vPr6OBKPHuOLzyeRnpnMNZ3a8sVjY/BPaI1f40ZVAUBNEOAyps6CKGIvLub42rXYa6sAqAAAFYDFw4OY3r3RGAzlEEBB9AxF0F14ZfLCwsLyHmkder3e3fN6oSI/v4AHxj7O8WPJaHWn39W02Wx4+RiYMWsq/v7+NY9TpXOZlJTE33//zYMPPngFziUqyelZJCWnuisBqo67gKoqBXu3bxUP7dvtJZRba5rMHrTt3I2wyCiC/X1p3igGjebckpkdO3awYMECjh075k74Kxa4Fb3MqqoiSRIeHh4EBAQQGRlJ48aNadWq1UWp4rqYAKAiHE4nSSdSSc3OZeXCv8lMT60CAGIjQmkUefn6oQsLC9myZQv5+fmXvRKgQkxQURRmzJqNX0Ag3bt0xsvTw/1ap06dKCkp5Lnn32T/oSbExt6Or48ngwfuIyCwagWA4QIAAEVRcNjLkDJ3sH/1ZrROle8XrmbKso1Y7DbKbBZuu/V27rjzNg4ePMzUP6aTmppWLxL/U5NWAIPBgMPhwGarcG04ad8qShIGgx4fHx/CwkJp1CiWFi3jMJpMHDp4mOXLVnL0aBKSJLqBkSAIyIrMseOJBHga+P7FRwnz86GszIJfYAARnTtj8vc/BZwrCDoPRM/QK3I9ZrfbmThxIkePHkWj0aCqKmPHjj3YsWPHTZzZAcA9Cg6HQzdr1qxrevXq5R0WFub+7D/++IPBgwfXutZrAAAN0RANAOD0if3ZCJJd0VUAp+8p+88zLzBzxqx6r9h9uigrK+PaawfzzXeTalmlOJELU0B1Uh93bgVRRLVYWDZ9JiNf+YCi0lKiQ6MweflUAQBPPPUo2VnZTJ3yZzkAcBIYFMirr4/jWOIxPh4/EZ1OhyzLeHl58eK4//Dzz7+zf9+Bs0rKKnbqX3ltHAX5+Xz6yRdota4H+auvj6Mgv5B333mPjKxUru3ans8ev4fQLl0xBwaeHgBcZgggCAKy3c6J9espy8tz2z/VzP1U9+tR3bvjGRJS3gZw4UWaFEVh5cqVrF27Frvdjl6vR6/Xo9Pp0Gq16HQ69z8Gg2snymQyYTab8fPzIyQkBIPBcOZky+Hk+f+8wsoVazCZjKc9/6qq8ubbrzD42gFnTP7BpRhfVlbG8OHDr9h5pKC4mOS0TAqKirHaHCiqggBotFpSjiWyYdXy8gW9go+vP+26dCMwJJQgPx+aN4o+p13inJwcFi1axPr163E4HGi1WhRFwVm+K6jRaPD29iYwMJCoqChiY2MJDQ3F39//olduXQoAUBEZOXl8981XpJ44AYLgBgAx4aE0jrq8gmgOh4Ndu3Zx4sQJVzJ4GTQBFEXB29sbLy8v0tLS+PyLL4hr2cpdAVABiLRaLZ06dcJk0vHV1z/x56wCvL0HMGqkg9CQUmx2xX3vXogKALW8ND5p/i9YcvNIzinglR9mYFc1ZOZmERwcwGuvv8aihUtZv24jgiDUq5aK6vOea7lXc3uYa15UFAVZdo23waCnSdPG9OnTg7jmzdm7Zx9zZs8jMzPLPSeLoojdbuNI4kE6NW/CN88+gKqoLp0Qb28iu3ZF7+1dqR1AdenNeEWCKF5x82hxcTGffPIJGRkubRWdTsdjjz22rUmTJnvPAgAAOFevXt1ZUZS4Pn36uH+4Zs0aTCYT7du3bwAADdEQDQDgIsOC8sSlthBFEUGnBUVFcTguuPLv+R+DUt5TVj3J/+uvv3n80aeuaABQWlrKx598yMhbR9R8+I5SlKK0+ln+j0sA0JGXxz9TpjPqf5/idDiJDo1Eb/ZyJ1t2u4P/PPsER44kMnfOX+j1emRZwcPDzKuvv0hJSSnvvv2he/2g0Wp45dUXmTd3Phs3bkGvrzsAUBQFo9HIq6+/SOLRJL7+6gd0Oq0bABQVFvPmm/8jOyeDfu0T+ObFx4ju1QuN0Vi1//80EODyzXwCGTt2kJeY6HIBqAkAVAJ/qqIQ0qoVgc2bn4Qbqlpur3lh7pns7GwmTJhAVlYWWq3WvdCsbR6pWJwKgsvqKjQ0lDZt2pCQkEDFTkltsWHdZl4e9ybFxSVoa7EBdDgcREZG8OMvX+JzigVb5W9U+SzOnTuXli1bXtCk8HJFSZmF0jILFquNgqJiSsosJB45xLpVy5GdTsIio2jfuTvBISGEBPgRERJ01jv/iqKwadMmFixYQHp6urvaw+Fw4OnpSUxMDDExMURFRREWFoavr+8lL0O/lAAATrUBjKDXwGuJCQ+hcXREvbgujh8/zu7du7Hb7Zd091pVXX3m3bt3x8fHh7Vr1zLx80m0atOOJrGReHt6VqkOkCSJuLg4mjZtyvYdW/n19yWYjQKNYgPw9vZ1r1mMRuN5AwCA3Iw0ji+cgQEnH079h2W7DuPl7UtaejJ6g46oiFiys3PO6EBzZS4PVRzla77GjWMZedsIQkKCmTZlBuvXb0Sn07nbCfLzc0nPTOH2gX15+Y5h2OwOtAIY/f2J7tYNnYcZZAWlfO4XvcIRNIYrbkwyMzOZMGEChYWFAPj4+PDMM8+sCgwMPHGWAEDOyMgIWbFixYCbb75ZqJiH8vPz2bFjB/369WsAAA3REA0A4BJBgBpC0uuxWSzsO3gEX7OJ6KgI0GhRFPm0v3epAYBg9EU0VX+wp6WlceOwkeTn59ebPsezCafTibe3F7PnziAysuaFolKWg2rJr78AQKPBmpHB7F/+4O73JyEKItGhEWiMHlWSsmf+8wRHjyYxp9zOryJJfOnl5wkI9Oft/71PXl4+kiThcDh48qlHOXbshPv9dQ2Hw0FMTDSvvTGOP6fP5p+/F7oXMq++Po60tHQ+eO9DcvOz6Bofxy9vvUCTPn1QBOH013w9ENcUJInC5GRSt2w57b2tqqCigqriGRxMVLdurt0YVb3gJZrFxcV8++23HDhwoMruYuVEv/J/V/53RT94xUKradOmdOjQgbi4OIzGmnf5587+mw/fn4Ddbq9xN85qtdG+Q1u+/WFiVVusSmDkVABQ0Sd9qRIjq9XKsWPHOHjwIFlZWQQEBNCiRQtiY2Mv6M64qqoUl5aRm1+gHjxwQLDZrDRq0oygAH+8PMwYz8FBJT09nX/++Ydt27YhyzIajQan04kgCLRt25bBgwcTHR192ZOlBgBQPYqKiti6dSu5ubmXbCdblmUCAgLo3r07oigyd+5c5v2zkJbxrYiJCEVfrvtS0bZUsUsdHh5O27Zt0Woldu/eTVZWDqGhoTgcDrKzs1EUhS1btpw3AMjavYPUDUs5mJzKa5PnIupNaDQaUtNOYLVZiYpohCRdeTvZZxsVYGjQ4IHcdPMw5s39m/l//VMubiiiqgqJxw7jVBQeGHoNDw/ti0mvw2l3YI6IwBzXwlXpYTah00gI5kAEg/cVNw4HDx7k66+/xm63oygKoaGh6rPPPrvYbDZnU3cNgPLpVxVnzZp1TatWrfwrK//v37+f6OjoWjeuGgBAQzREAwC4qABAMho4cSyZcW+8x59zFtCpVRyfPfcIrbt0QuMf4N5BrBff/zTiZfeOfZBlS1ectiy4vkZZmYUBA/vx44/f1JpUykUp4LDWXwcAjYbS48f47uvJ/OfLyRh1eiJCwpEMHhVpF3a7nUcfe4js7BymT5vhXpTbbDZG3nozI265kffeHc/OHbtcyrtWG4OvHUj7Du348INPkCSpzgmF1Wpl4DX9ufe+u3nv3Y/Yu2c/kiTh6enJq6+PY9OmLXzz9bfkF2TTrmkj/vjgFZr37+9OROt8L12G8yGIIo7SUo6vW4etuLjWNgAApfznGp2O6B49MPr5VVFtvpA7NCkpKWzevJmCggIcDgd2u73aPw6HA6fTiSzLbjurih0/sbwvXZZltFot4eHhtG7dmoSEBKKioqr9vRl/zuGLid9QUlJarT3EarHSo1c3Pv/yoyqJ8Knn7VKfPVmWOX78OHv27GH//v2kpqZis9ncrxsMBiIiIoiPj6dVq1aEh4fXqz5jp9PJunXrWLx4sbvao+LeDgwM5LrrrqN79+715jufLQBwOBxuv/bKbSJ1Ff+sCQBEh4fQpB4BgIrrcNeuXRw7dsw1D1zkMm1ZlmnTpg2xsbGoqsr/3nqbUruDRtExRIYGoZRrRjgcjirXjizLmM1mwsLCiIyMxMvLy30fp6SkcPjwYdatW8cbb7xx7hoADgfHVy6hLO0o7/8+m1X7jmH28EQAUlKPISsK0ZGN6l9V5EVbaqlYrVY6dGzPQw/fx4J/FjF3znz0ej2iKJKdk0l2TgaBfiHc0qs9Y67tRYnVTnp+EabGTTEGBBAZ5E/LRhGg80T0CL7ixmDTpk38/PPPbsHKZs2a2Z944onFWq224CwBAIBj165drY4ePdr+pptucv+wwpq4NrvZBgDQEA3RAAAuGgCQTEb279nP3Q89w5bte+jRozs+Pr4c3bWdN8bexsABvfFuFodUm9XLpT/lLgAgVS8F/3nyr7z2yn8xe1x5doClpaW8/8E7jL5jVC2rJ7sLANTjBYgoSRQePMA7n37D+Klz8DSaCQ0KRTSY3N/bZrNx84jhtGzZgvffG+9WBHc6nIRHhvP6G+NYsfxffvt1KgaDSx8gKDiIZ597iu+++YFDh47USQegYvfohXH/wdvbm7fefA+bzYYsy8TERPPq6+P4efLv/DVvHrn5WbSMiWTKB6/SevCgugGAmu6nCw0CTte2U16lkLZ9OwXHjtXaBkA5elFVl9p7aELCKW0ACoLe66Iu0Cpstux2OzabDYfD4YYATqeTkpIS9u3bx/79+8nLy3PBivIqHqfTiaqqeHp60qxZM9q2bUvz5s3x8jppYbh61Vo+n/gthw8dQW/QuxMZS5mFgYP68dEnb7sKHlTVbY1IpcTuUoSiKKSlpbFv3z727t1LcnIypaWl7kSz4j0V370Cinh4eBAdHU3r1q1p2bIlwcGXdyGdnJzMP//8w44dO9wl3RV+5O3atWPo0KGnFbW6UgAA4GpjuRAA4JpriQ4NpklMZL2ct1NSUti5cyc2m+2iQRun00lISAidOnVCo9Gwb98+Pp/0JZGxjYiJCMfb0wOtVsuOHTvQaLU0j4urMg9XaANoNBpMJhPe3t4IgkBubi6Kopx3C0BpZgZpa1eQkZHMs59PJs8OWo0WBDiRnIgoikSGx/y/AQAVYbFY6NS5I489/hBff/U9GzdsxmQyYrNZOXbiCB4eXnjoTfTv2JI+beORnU70Pj6EtmlL88ZRRAb5oYo6l9aMcGVVTyxfvpxp06a5HQC6dOlSfO+99y4GrMDZHoxSVlbmOWPGjMGDBw/WV57Hi4qK8PT0rHFuaQAADdEQdQUAtU3OV1m/1oWCAJLZxL7d+xhxx0MUFpcxadIkbhg2DI1Gw/0PPsTk777lo0fv4dbrBxDQti06s0d1cbRL/v0VRI8QBL1ntZcOHjzEiJtG4XDYL6nAkatksSLV4qxt4ip2OGbP/ZOYmOiaD9tejFKcUa8foqIkkbd7Fy998AXfzV+Cr4cXQQEhCHqD+7qz2+20jG/B4088zPiPJpKUmHRyB9FmZ+x9d9G2fVtef/V/FBcVo9FosFpt3H3PHURFRvDBB58gcObdKrvdQZMmjXj19XHM/+sfpk+bicFgwGaz0bVrZx59/CHef3c8mzdvJisnjWaR4fz+zjg6DLkWVRTPbqF3MUHAaSCAKEkUnjhBytatp5//yq9MWZbxDAoiunv3qsBAEFzimtLlVb3Pyspiz5497Nixg2PHjmG1WtFoNIjl58PpdLqSqpAQEhIS6NKli1srIDUlnZ8n/8Hc2X+jKgqiJGKxWHj2hSe5e8ztKIp6cggvIQBQFIXt27ezfv16jh07RklJiWvuLa9kqah20Ol0mM1mSktL3SW4FaXQFQm2r68vTZo0oW3btiQkJFxSlwKn08mqVatYsmQJeXl57nvW4XAQHBzMddddR9euXS+LsNyFBgDndpuenPNrAgBRocE0racAAKCkpIStW7eSk5NzVlVWdb12fHx86Ny5s9vl4eNPPiE5PYvY2Fh3ZcTWrVs5dOgQcS1a0qFd2xpBbAXYrdAKOFUDID4+ng8++ICuXbvW6PpRW2Tv2Une/t1kZqfzwle/kWuR0UgSqqpw7MQRjAYTYaGR7r97tcdJgUCFsjILI2+9iT59evP22+9TVFiMIEB6RjKKquDt6YOoKtzSrxsdmjfCarPTc8gg4tu3Rna4BItr27SpzzFr1iwWLVrkBgBDhgzJHD58+LLzeGw4ly9f3kNV1UYDBgyocn8ANbauNgCAhmiIugKA0y3KG2BAlZBMRvZs383IMY9SVGplwYJ/aN26jft1h93Ovffdz2+//cobY27l/pFDCWrfHo3JfHkrAU6zY+l0Ornt1jvZtnVbndTEzzfpdy3gZWw2G1a7zeWnrdNj0BvOaiFssVjo06cXk3/5odaFl1KahWotrNcAQBBFMrds4fUJ3/L930sJ9PbDLyAIQaNz348V1mCvvvYiJ04k8+03P7oX5id79l9i/l8L+HP6LIxGA7JTxsvbi1dee5GVK/5lzuy/ztjmYbfbeeih++jQuQNvvv426WkZaLQabDYbY++9i1YJrXj7zffIzs0mOSWJ2LAQfn3jP3Qddj2CwXj2LS81zTcXYq45TauBIAg4bDZOrFmDtajotIv2iioASaslplcvjL6+J+/j02hrXI5wOBwcPXqU7du3s3//fnefb4XAXEXrgL+/P8OGDaNbt27u3/3hu1/47ZdpWK1WuvfowsuvPotfgL8rQTtlHC/2kyAvL4958+axefNmnE5nle9f0fIQEBBAXFwcCQkJhISEkJ6ezs6dOzl06BA5OTnu467cGqHRaGjevDk33ngjkZEXP6m02WxMmzaNtWvXum39Ko6nQ4cODBky5LJXJtQHAFBxT9bUAhAVVr8BAOWAcN++fRw5csSdXJ/vmMiyjJ+fH+3atXNX7ezcuZPxn06kVes2NI6JwlJazOLFSzCbzbRs2ZLktDT69upVa7J9Kpyt7AJwrgAgefUKStNTKC4u4KXvpnAspxCdRoPDYefY8SP4+voTGBBy1QGAyloLqqKi4no+e3l54e/vh9lswmQ24+3rQ68+vVi58l/+njcfURQpLS2itLQEXx9/VIcdL7ORu4f0pXFwIB07tqZJr56u9jNFrnXTpj6Pyw8//MDmzZsxGAx4eHgwZMiQoz169FjH2QkAVlmiZmdnh/79998DRo4cKVS2PC0rK6tRB6ABADREQ5wLAGiAAbUn/0YD+zZu5pZ7nyI5O59lSxfTuUvXalaBsixz37338vMvv/DamFt59PabCGjbFlGvv4yaAOXWMt6RNSbDH4+fwMQJn18UP+mKqLDDKS4uoqikAFlWMJs9MRpNmAxGNJqzE1UqKSnh7XfeZMw9d9V6/cpFKeC01d9rVhAQVJXE1Wv436Sf+HXJKkL9g/D2DQRRorLuutVq5ZpBAxh9522889aHJB5NdO9m2u127h4zmv4D+/HeOx9xYN9BDEYDVquVjh3b88hjD/DL5N9ZseJfdz/iqWG1WmndOoFxLz3LwoVL+PWXP9Dr9SiKgk6n5fX/vkLyiRS+nPQNkiRyPDkJP08Tv7zyBH1uuQnJ0+v8IFcdHDcuGAQQRdJ37CDv6FGXDkCtd43r9xRFJrRtWwKaNKlq1yRIrntKrF8Cmvn5+ezZs4ft27eTlJREWVkZoii6S891Oh233HILvXr1ci/cdu/aS3FRMQltWuHl5YlyGZL/AwcOMHPmTI4fP+6+tit2enx9fWnWrBmtWrWiSZMm+Pr61ggPDh48yK5du0hMTKSwsNBtj1YBSQICArjxxhvp1KnTRT2Wf/75hzlz5lT522FhYVx77bV07ty5Xu76XygAoCgKxaVlbms1nU6D0WBAPM29XWMFQEgQTWOjroj1QVpaGjt37qSsrOycBXUrSvYrtCwqhDxl2clLL7+CpDMSHRXB3t07STyaSNu2benVqxfJycls2b6D66+9FlEUaqzEutAAQHE6OLZsEfbCfBxOK6/8MI29x9LRazVYrRaOJx8lNDgCb2/fKx4AVFRPKIqKKAhodVqMRiO+fr4EBwUSEhpMUHAQ4eFhiKJIQUEhaZlZJCUdIzUlDUtZGZkZGeUWnw7y8rLx9fFHI4pYSktpEhXCW/eMICY4gOBOnVy2s047gt4H0SPoihknh8PB559/zsGDBzGZTAQHB3PzzTdvbdas2b7zAAAA6ty5c/uHh4eHdOzYscpzrsIatwEANERDXEgAcCYY8P8IBEgGA8d27uaWsY+x9WAic2fPYtiNJ0VJ0tPTCQwMdD/4ZaeTO24fxbQZM3nr3tu5//YbCWjdBlGnu3wQoMJaRlt9F3jz5i2MHnUXkqS54OrTFSW5BYW55ORm43Q6MBhMeHv7lVsDSRjKVebrGrIsYzQamTVnGo0bN675TU6bCwDU5xtREFAdDg6sWMGLE37g7w1biAgKxdPbH/WU8VAUBZPJxOv/fZn0tHQmfPqF22JIlmU8PD14cdyzaHVaxn/wKRkZWej1Omw2OzcMG8Ktt93M1D9msHDhIkCoski12Wz4+vow7qXn0Gi1vPfOR25nCJvNTquElrzw4n+Y9MXXbNzgovuZWenITgs/j3uM6+64Da2Pb+2tLqdAskt5zdc0X4mSRGFKCimbN59xbnNtxjjxDg8nvFMnBEE8+bKqIJj8EY1+9fL6kmWZpKQkduzYwc6dO8nJyUGj0bh3xIcPH07lsspTkGE1KCNcxO/577//Mn/+fEpLS9FqtciyjCRJNGvWjHbt2hEXF0dgYGAdT7tKRkYG+/btY/fu3SQmJuJwOKoAkAEDBjB48OAL6hpQEUePHmXSpElYLBZ3ot+1a1euu+66s1ZZvxIBgFOW2bbnAPlFxQiCgE4jYTaZ8PPxItDPDy8PU50AQGRIEM2uEAAArh3JLVu2kJ2dfVYtARW7yV5eXjRt2pTw8PAqgOj333/nj+l/EuDnR0ZqChGRkfTt25egoCAURSElJYWVq9dy0/AbMBr0KMrFBwDWwgKOL1uAbLejNep45/fZ/Lt5N0aDnsLCfFLTTxAd1Riz0QNFvfIAQEUlhqqqeHiYCQwMJDw8nLDwEAIDA/D18y0/5xaKCotIPJpESmoqGZlZ5OXlYbXaXAi5vOqx8vO2sDAPg8HsKpO3umxHR/fvyqPX9yayc0f8GjVGUUDQeyCarxwAUFJSwieffEJaWhpGo5HY2FhGjx69PCAgIPU8AYAzKSkpZuPGjb1uueUW91jabDays7OJiIhoAAAN0RAXDQD8PwYBkl5HQXIKd973JH+v28J7b/6Xca+/4X59/l9/MXXaNF579VXimjc/uVCyWhh2/RAWL1/JJ4+P5e6Rw/CJb4UgSZcHAqgKgtEP0eRfw8Rdys033sqRI0fPyjO+LgmuosikZ6ZSVFSAJGnw8QnAbPZwP2S1Gi26s7RUslgs9OjRnV9//6nWnTTVVohSklXvy/8dpaUcWbmSh97/krV79hMb2RiDyVzjLo7VamXAwH488MBYvvrqO1au+NdNv202O02bNeb5F54hKyuHzyZMIisrG51Oi8Ph4Pqh1zF69K2sXbueKX9MJycnt7xPHCIjw3ngoXuJiYli/IcT2L17bxWngfvuH0urhBb89/V33Dtc+QW55ORm8tUzD3L3I/ei8fNHKd+tvaAA4Ey6Amf63JoU7AUBh9XKibVra28DcFvtgaoqaHQ6onr0QO/ljUBF73J5ZY1XRHnFRv2NrKwsZs6cyY4dO9DpdO5e4aFDh3LdddfVOAbqKeftYsz0BQUFzJ07l02bNrnaLSQJu92On58fQ4cOpUuXLudlUSrLMjt37mT+/Pmkpqa6ROrKF/ft2rVjxIgRFzQpt1gsfPPNN+zbtw+dTofD4aB///6MHDmy3u/6XygAAJCdl8+23ftREdDptMhOGUVV0Gq1BPr5EBUajLeXZ+0AYOC1RIZeWgBQuUe+8vEqilKrrWZNn3HgwAEOHTrkblk50/sFQSAmJoamTZtW+TuqqjJ58mQ++PBDwsPCadbMZfMZERHhbolxqcvnMHf+P9w0fBj+vj417rhf8AoAh530zespzcogqFlT3v76J2bOXYzJZCQjM5Wi4kJio5ug0WivOBFAVQWtVkNERBgdOrSnWfOmaDQaiouLKcgvICUlldTUdDIyMsnOzqaszIKsyKgqSJKIKIpuod6T7QIqqqq44YwgCBgMOgL8/WjZrBHtEuK4aUAvIuKaIRp9ECQ9SNoratyysrL49NNPKSgowGAwEB8fr44ePXqxyWQ6WwvA6qtXRZFmzZo1sHXr1v7NmjVzv5Camoqnp2cVgdvKAKBVq1Y8+eSTDVlfQzTEeQOA/2cgQNRoUMvKeObpl/hs2lxG3XwTv02bjlS+IF24cCF//vknDz7wAMuWL+eRhx/Gt5I1SV5WOgMHDuTQ4aN8+cyD3DB0EF5xzS8PBFBVBK0B0atmW6WXx73G779PqdVb9RwuM5fiesYJiooLMRiM+PkFodHoUMt3BAQEDLWUpJ8uSkpKeOPN17j//rG1L1BKMlBtxfVeANCal8v+ZSu5+53P2HssmaaNW7istGq4xxTF1Wv4/ItPEx4exrvvfETyieSTegB2Bz16defBh+4lJTmFzyZ+SXp6hisRsTvoP6APY8beRXp6Bv/8vRCb1UbzFnH07NUNq9XGTz/8wpYt2zGU+5s7nU58fX3539uvsWrFaqZOnYHBoEcQREpLikhOO857D93Bf158unYAcL6l/ecLAGqDAKJI1t69ZB84UHMbwClVAKrsJKB5c4Li41Fl+eQ1qyqI5qArwrO5pKSEKVOmsHXrVjQajTtRuPbaa7nhhhtqhgBV7+gLGomJicyYMYMjR066VDgcDpo2bcrNN99Mo0aNLtjfyszMZObMmezatcu9O2u324mMjGTUqFEXzNd+0aJFzJo1C61WW67PEcMTTzyBh4fHFfXsuxAaAGkZmazbuAW700lQSKi7AkOWZTSSBn9fb5rFRmEyGmoGACFBNGsUdUmP2WQyER4e7k6ad+/ejb+/v/tnZ3O9bd++ndLS0loBlqqqmEwmWrRoUe3zS0tL2bBxI5MnT6ZZ06Y0b94cT09Pt6aF+xkiipSUljLtz5n069eXRtFRlwQAACiyjNNiQedh4n+vvMJPv83CYNCTeOwwEeFhREU2IiUl9bwA3gVb9LqBrnra94iiiNnDTEhIMFFRkSiyTHpGBjnZueTk5GK1WnGWw5eK3v9T/wYqKKpLEBBAp9ViNBnw8vIkwN+XkJBAmjSKpk1CPAmtWhIVHQ3aM/f6O51OcnNz8fLyqjOQupRx8OBBvvzySxwOBwaDgdatWyujRo1aZDAYcs8TAAA49+/f3/TQoUNdhw0b5h5rm83GiRMnaNKkiftnDQCgIRriYgKA/wcgQBRFBFS+Hv85j7wzgdYtmrNy1Sp8A10lWYcOHeLFF1/k7bffJj4+nsWLFvHv6tW8/NJLmCr10h/au5N+A65BUBS+f/5hOvfugU+zuKoltpfuKVircvnixUt58P5HLtiDRRRFMrPSyM3LRpI0BAeHV0n+ATSSBv1ZqnIrimsXadbs6TSLq2URqirIhSmg2Ln0juVnBwAsWZlsWbCY0W9NID2/iKaNmiMI4imp18mw2+3ExETz0ivPk52VzcfjPyM/Px+dTudWP+/cuSP33HsXxcUlTJwwiZTkFHQ6HTabjZYtWzDmnjto1KQRdrudQwePsHbNOvbu2UdmRha6ShUgpaVl3D56JP0H9OX1V98iLy8fjUZCQMDptHE85RiPDh/Ehx+8gcY/4OICgFN//2w+twbHAUEUsRQUcGLdOpxWa+3luoLgEgOUFXRmE1E9e6IzmVy7b+W2gqqkQ/UIQyNpEMX6Pf/Z7Xb+/PNPVq9ejSRJ7vLjQYMGMXz48EvmQ79hwwbmzJlDXl4eOp3OvRPatWtXhg0bhrf3hQcqVquVBQsWsGzZMrcgn8PhwNPTk+uvv57evXuf1/EfP36cL774gpKSEgRBQKvVct9999G6desr7vl3oUQAS0pKWLFqFfsPHCI4LILQiMjyChQFh9OBh9FIm/g4fvr+O3bv3o0kikREx9Bz4LWEBvgR1yj6vI8lJyeHvXv34u/vT4sWLWo8x0VFRWzYsIGWLVu6S4otFgtr166lTZs2dW4/qRwWi4Vt27aRkZFRa0tAp06dCAkJAVzVKqWlpaSmpnLixAlKS0vR6/VIkuTe8a8tsf3lt99pER9P5/btUBWl2tPjTADgww8/pFu3bjVqa9QlPnnvbT7/+le0WonDR/fTtWtXOrTvzD9/L7wobTYXExRUdhJxOp0uUb5yAuoW/6v4mXoSHEiShEGvw2g04OXjSVBQAEGBAYSFBhIWEkRgUAAhwSGEhYcTGBSGpK37WsvhcPDXX3+xceNGoqOjGTVqFH5+9av1bP78+fz1119u28n4+Hj11ltvXWQymXIuAABQ7Ha7fu7cudf07NnTu7Jt6vHjx9FqtW53mwYA0BANcSkAwFUKAoTyEq5/Z81lxJMvY5NVli1ZTKfuPQCX4M/LL7/MLbfcwtChQ92/9/PkySQmJvL666+7qwQA1q5cyjXXXk98TCRfPfMAjTu0x7tJk8tQBaAgegQj6L2qvZSVlc1Nw28hMzPLLVx1Psl/SWkxySlJqKqKj08AXl6+VZJ/QRAw6M5+999isdKlayf+mPIrklRL+b/TilKYUu+vQVGSKEtNZfmc+Yx+eyJ2WaVRzJkX1larlZ69uvP4E4+wf98BPv/sSwryC9HpXRDAZrMRHR3Fvfffjbe3N7/8/Afbt+1w70r6+vpy512j6NK1M0mJSfz+2zR27dqDh4fZvfixWq107tKJx594mOnTZvL3/AVulwhZVmjSKIrN2zbRp1UzfvtuAvrg4EsLAM7ls2sAAenbt5OflOSy+DsNOHNBAJmg+JYENm+J4nS6yjtRXfexORDJ4ItWU//LvB0OB9OnT68CAWRZpk+fPowYMeKiLtjtdjvz589n2bJlbi2Cykl4nz59Lnqp/KZNm5gzZw45OTnudghVVenevTsjRow4JzFUm83G999/z86dO90WWAMGDOC22267Ip+BF9oFYPfu3fz1118Ul5YR3bgpEVHRmD1cYpNGg4EVC+eTfCwJRVVp3rw5g4YORxAE4pueXxWI1Wrlt99+Y9OmTXh5eXH33XfXCGTS0tLYvn07Xbp0cbeE5OXlsXnzZjp16nTOyZaqqhw6dIgDBw64dS0qh7e3tzvJt1qtFBcXY7PZ3CXkdQmNRsPMmbPQmcxc078v2hoqyC42APju8wm89/FXbgvAhIQ2jLl7DN98/f0lg4oXZinrKtmXFQVZkd3uKbKigAqSKKLVajEZ9ZjNHvj4ehEU4Ievny++ft4EB/oTGOiHn483Pj6eeHt54+XtjYeHLwazFxrdyaS/rMxCVlYmMTExVaCRJEnV7ErT0tKYMGEC+fn5AIwaNapW/ZbLEcXFxUycOJHU1FQEQcDPz4+mTZty0003Lfby8srk/DQA3I+uHTt2JOTn57fr16+f+4dOp5Pdu3fTokULDAZDAwBoiIa4pADgagIBgoAkChzfvIXbn3yZ9fuPMPmbrxnz4EOAqzTvscceo2XLlrzwwgvVjv/d995DI0m88OKLVV6aNfU3Rtx+F6P79+CNe28jMKE1PtHRtQunXSQAIOg9ET1Canz5kYce559/Fp53G4AgCJxITqS0rAStVkdQUDjiKar2Wo0Gnfbs9QZKSkp4+ZVxPPLog7UfpjUfpTSnXpf/VwCAkmNJzJk6m/s++gqNTk9MVOM69UzabDYGDOzH/Q/cw5EjiXzz1fckJ6e4k3S73Y7RaOS6IYPp1783S5cs5695CxCEisWgQN9+vbht1C2YTCZ+++UPli5ZjrN8kTpgQF/uvHs069dv5PtvfgIBt7e8Vqfj/nvv4KPx44kN8Obv377GKyYG+UIDgNMo+dfp9TN8piCKlGZnc2LDBlSn8/SfUe4/rzOaiOzeHb2XJ4pTdu0KKQqqpEfwDEeSJDTSlQEB5s6dy9KlS93JhtPppEePHowaNaraAvRCRH5+PlOmTGH79u1otVp3GX5MTAwjR46kcm/nxY6UlBSmT5/OgQMH3N/F4XDQs2dPRo8efdZJy4oVK5g+fTqiKOJ0OomMjOTxxx/Hx8enAQBUmrtXrljBps2bKbNYCQwOIapRE4JDw1i9dBHpqcnIskzrhASG3jySrNxcOreOPy9h2oyMDD799FMKCwuRZZnBgwdzyy23VHvf3r17OXHiBN27d3dXnxw+fJi0tDS6d+9+3lA8Ozubbdu2UVJSUqUkvspuMpxV4u9+lmq1rF69hkNHkxh2w1D8fLyqVQtcbAAw4/fJjHvtA8ospaRnJBMVGctrr73C9OkzSTyadN7jd1ESfU725yuyjFN2Jf0VY6fVaPDwMOPj7YnJZMTHx4uAAH8CA/0JDQnE398Xby8PvDzNLiBgNODt6YHR6IFGb0Jv8kTUmYCanwdZWVns3r2bXr16uefb7du3o9PpiI+Pr3b9fPLJJxQUFJRX+XXmgQceqDfjuX79en799Ve3KHHTpk0JDAxkyJAhy/z9/dMuEABQLBaLecmSJdf269fP4Ol5sm0iNTWV/Px8WrVq1QAAGqIhLgsAuApAgCCKlCYl8upb4/ls9kIeuuduvv5pMuDaGX3ppZewWq189NFHNT7UbDYbzzz9NO3at682QX/8/js899KrvH3vbdx5XX8CO3bCUNlb/OI/9k4rWjZ1ynReeP6l87IDFEWRkpIiTqQkAeDnF4SHh3eV3X8Ao95w1jt9FaJKM2ZNpWXLFrW/rzgN1V56xQCAyd/9xjNf/ozRZCYyIrbaWNW2gLHZ7PTr34e7x4wmP7+A3375g23bXCJvrgexgsPhoH2Httwz9k4OHDjEzz/9htVqLVf4txEZFcmoUbfQoWM7Vixfxd/zFzJo8AAGDb6GlSv+5ddf/sBut7sTIovFwjWDBjDshuu4++57CPf1YMFvXxLZpg2yw3FpAcD5fH6FwJ2qkrZjB/lJSYh1qQJwOvEMDSW8cxcESQRFcQsFCh6hoDWjkYQrQvBNVVXmzZvHokWL3ODO4XDQrVs3br311gtqC5qTk8PPP//MgQMH0Ov17l33Ll26cOONN55z4nE+YbFYmD9/PitXrnQfv6IojBw5kso7TGeK1NRUJk2aRF5eHpIkIYoiY8eOpX379lfsIuFiAICKKC4pYe+e3ezcsZPUtDQMJjMF+fmUFBehKDKR0bH0u/Z6rFYbnVq3xNN87kA6JSWFiRMnUlpaitPppF+/ftx+++3Vnivr168HXG4NFXPdtm3bUBSFytZj5xM2m42tW7eSnp5+Vi4BZwqNRkNi4lH+XrCYwUOup1FkWI33+sUEAGuW/s2Dj79EVnYGefk5hAZH8b+3XmfxoqVs3rz1srcBnBTjU5Ar2foBaLQSHiYTXl4eBAX4EhURRmRECJFhwURFhBIeGoTRaESjc4FCFRVJEBAEEEUBnc6ApDUi6M2gMYJQt1w3OzubrVu30qlTJ/z9/VFVlfXr16OqKj169KjyXlmWmTBhAocOHQIgOjqaZ555pl5oAciyzJdffsmePXvcFVXXXXcd+fn5XHPNNatCQ0NPXCAAAODcvn17V41G0zQhIaHK+d26dSstWrRg8uTJ7Ny5swEANERDXBYAUBsIuAJKsu05Ocz+5Q/GvD2R5nHNWL1mDV5+LmGcmTNnsnbtWt599133TmtNkZ6WxqOPPcZ9997L0BtuqPLaA/fdyy+Tf+L3156hR/cuBLZvj6DRwKVqBziNHWBSYhI33XgrZWVl51y2JwoiyalJFJcUodXqCA6OqLbQkSQJg+7sFwRWq5UOHdozdfpvtQsLyTbkojRQZepz/3/F9Za/dw+ff/Mr//3lT7w8fYgIi6qTbZLT4cQpy2gkiZtGDOPGm27A6ZSZO+cvFvyzGJvN5t5VsFqtREVH8cQTD1NcXMIXX3ztahkodwgQBYEbhg9lxMgbKSkuRZad/DXvH5YvXYFSrsxesYCNjo7ipVeeZ92a9bz51ptEBvrxz48TadW3N7LdfnEAQF2V/s8BAggaDcWpqZwoTwBqEwQUNS6LTKfNhqTTE9unF3ovb+TyVgBUBTRmFwRAdWklXAHQU1VVFixYwPz581FVl6iVw+Ggbdu23HnnnVXUlc81srKy+Pnnnzl8+DA6nQ6n04nBYGDo0KH079//ssOSRYsW8ddff7mTQQ8PDx555BFiY2PrtPj98ccf2bRpE3q9HrvdTu/evbnjjjuuiPN/OQDAqWDo0KFD/P333+Tl5aGqKsGh4fQdPASHw0FCXBNCg87dpaEuAKC0tJT169cTGBhImzZtXPOr08n69esJCgoiLi7ugo/tvn37amwJOKfniChSVlbK5F9+o23HTrSJb4HZYDjZu34JAMChnZu4c+yTHDh8ALvDRmhwJLeMvAmDwcjvv0256ADAleC7QKyiqqhKecJfftySJGLU6/H0NOPl5UFIUAARYcGEhgQSERZMdGQogQG+eHt54mE2Iei0J58tiuL6x/UHXJsnkg40BlfCL+lAOPvzWFRUxLp164iLi3PPNRs3bqSgoIA2bdoSEhJc5f1Tp05l+fLlaDQajEYjTz31FFFRl98ms0L8rwLqenp68uijj7Js2TL69OmzuVGjRgcuIACQi4uLA7Zv3z6oe/fuYuV1YE5ODllZWSxbtozdu3c3AICGaIjLCgCuIBAgSBJKWRn7V6zkrlffZ29yGqsWL6Z7v/6uB9yhQ0yYMIG33nqrTkq5O3bs4IXnn+f9Dz6oshNkKSul/4CBFCQf45dXnqRx5474Nml66VoBTmMHqCgKd4wew/p1G86JLAuCiMVSyvHko+UKx54EBARXX3zodGiks38elJSU8PwLz/LkU4/VkhVbkUsyQXHU++S/ItnM3LyJD7/+jQmz5uPnG0BIcHiNYk8V4XA4UVWFyKhIevXqRus2rfHx9qLMYsHhcBIVHcnOHbv44/dpHEs8jt6gRxAEbDY7/v5+PPPsE0iSxMcfTSA3Nx+9XossK9jtdgZe05+x995FcnIq7707nuKiIvR6vVsTICoqkqeffRJLWRkfffApBw7uQScJzJ30Hn1HDEd2ytXv9fPZoT+b+eIc/44gijjKykjfsYOS7GxUp7M6BCgXhkIQXP3+goDRzw+d0YhHeDiewcGuc6aC4BkKWhMCKporqPd18eLFzJ07111lY7fbadeuHXfcccd5QYCUlBR+/vlnjh8/7rbF8/Dw4M4776Rdu3aXZsqrOI2nSR7++OMP/v33X3f/frNmzXjkkUfO2A61du1afv/9d3cLRUhICE8++eRZqan/fwYAFfHZZ5+5RADLXQD6Dh6CzW6nReMYosJCzvlzU1NTmThxIsXFxciyTP/+/Rk1alSV9+Tn57N+/XqaNGnibkNxOBysX7+e8PBwGjdufMHHNzc3l61bt1JcXHxBVPI1GompU6ehMZrp3q0rIQF+7h3uugCAjz76iG7dup1zy0rWiUPcftfDrN+8CUmSCA4Mo137tvQf0IePPvj0nACAO6nHlXhX/H+l/L9RVfe9LUkiep0Os8mIyWTAx9ODoCB/goMCCAr0IzjQn4iwIEKCAvD29sTT04zeYICKdq2KRL9C4V+tmDkEV8IvSgiSDkFrQtAYahRSPpfjW79+PQaDwb1G3L9/P0lJScTHxxMdXVUAc82aNfz2229uUch7772Xzp07X3aAPHnyZDZs2OCeO9u3b8+DDz7I5MmTadeu3ZG2bduuv4AAAEDesWNH78DAwKhT3TMOHDjAlClTyMrKQpblBgDQEA1x2QFAfYcA5aXA+bt28c7n3zJh1kJefu5Z3vlovGu2kWVefPFFhgwZQv/+/ev8sTNnzuTbb7/lpx9+ICzipP3e4UOH6NStG9cmNOW9x8YS3LETBj+/S9MKoKqgNbjaAGqISV98xQfvjz+n8l9FUcjISqOoyCVU4+3th7e3f7WS9nMBAIqiIgowfcYUElq3qiEzLkUuyQJFviLaTQRBQHE6SV2/jv999Rs/LlyGv18QwYGhNVYAKIqC3e4gMiqC668fTKdOHSguLWX71h3s2LGLrKxsbFYrg68dxNAbrqPMUsb0qbNYsXwl4OoTtdlseHl58vyL/0GSJMZ/NIH8vHy3N7rNamPANf247/572LNnLxM/nYTNZsPpdBIf35KHH70fq9XKhI+/IDMri5zcDIqKC5j+/quMuH8MSnmbzAUFAGfze+cKAcqFD+2lpeQlJpJz5MjJXenyuaHKYluvR2MwoPf0wq9xIww+PqhKeRWAzgPBM8RVXYBQq1BlfYxVq1Yxa9Ysd8uH3W6nRYsW3HXXXW5htLOJpKQkfvnlF1JTU93Jv6enJ6NHj76k5fFOWQbVlSTVFkVFRXz11VckJbn6le12O4MHD+bmm2+u9Xcys7L4bOJEcnNz3Tu5Y8aMueyL8isRAHz++edui8YKAGC322nVrDFhwYHn/Ll1AQC5ubls3LiRZs2a0aRJE8CloVIBACp+dqHDbrezY8cOUlJSzqn3v3JotVq2bt3Cuo2bGXDNIKLDQ9GXO8PUBQCMHz+ebt26nbP7hqMkm3vGPsaMufPx8PAgOCgUnU6L0WhyC9c5HE63mB5CLUBOqPiXa+7UarXodOX/aLXo9TrMJgM+3l4E+vvh5+uFt7cngf6+BAf5ExToh7enB2azEdP/sXfW8VXWXxx/P89za909RozuhoEoIGF3t1igNArY3ZIKiu0PVBRBMVBEaQZjdI0xNhaMdd++T/z+uNtlY6MHFuf1QuHGc5/4xjmf8zmf4+2FwWR0B/maZyN1l20pKppWW3+hJtDXIYgSSHoEyQCiAUHUud87ByWFW7duxWw2079/f3Q6HYWFhSQnJ9O8eXPat29f57MZGRnMnj0bp9OJLMsMHz6cG2+88S9dJ3Jycpg9ezZWqxVBEDzARK9evfj6668JDw/Pv/TSS1c0NgBQVlYWnpubO6Rjx451HorNZuOdd94hNzcXVVUvAAAX7IL9LQCAhoCAv0mgJogiVRnprFn2O3e/NpsmTZuzcdNG/AICAfjmm2/Yt28fL7744mkf+6WXXiJ1/34++/zzOsJa33zzDbfddhszRt3NHTdeTXCXrm4l8vPRGvAE7QB37tjFLTff4WmH09D+rNV5nO66OllVcDod5OfnePoUh4VF4+XlXc/5EAQBvU6HJEqeQOvY4x5rdrudLl078+2irzEY6movaM4qVHPh0bruf8IklCScFRVkrlvLkx98zQ/rNxIWFkVYcHg9AMDlcmEwGBg67FKuuuZySotL+fXX39m+bSeVlZUIgogkHRVy69qtCzffcj1xcXFsTNzE118toqysDKPRiMvpIjA4kKlPTsLhcPLOWzOpqqrygAB2u4Orrr6c++6/i8Xf/cC33yxm+PAh3H7nrRw6lMncOR9SVFiEyWSiuCifwpIC3nviUR57fAyqwdhwZ4vzGMyf1ZzQ6bBXVJCxejWyy1V//GtuwT+jvx9Neh3V7zjqZLs/JvrHgM7oLrc5S8f+fNuGDRv45ptvcDqdHp2I1q1bc++99xIeHn5awf9nn31Gfn6+J/gPCQnhrrvuqufYnpdth5NzglJTU/noo488zqwoiowYMaJBpoKmafxv/nzWr1uH0WjE4XDQv39/7r333n809f+vAgA+//xzNmzY4AEALh52Oagq3Tu2I9Df94yPe/jwYWbOnInVakWW5QYBgKKiIpKTk2nVqpXnumoAgMjIyEYvATjWMjIy2LNnD7Isn3npnShiNpv59PMv6NKjF+1btyQsJMjDAjjXAACajffens6TL7+Dn68fXiYf5OpsuiiKGPR6WrZoQmREKL4+3vj5+uDlZUKv12HU69HpJfQ6nVsc2FAT6Hvh6+uDr48XPt5eeHmZMBmNmEwGvExGtx+g04FYHeBr6tH/q+7uLEeDfOHofiJUZ/RF3dFAX9IjCOcu0D8RQLVr1y569uxJWFgYZrOZjRs34uPjQ9++feuUR1VVVTF9+nTy8vI8we3o0aP/0hKqH374gd9++w29Xo8sy0RHRzNhwgR8fX1Zvnw5paWllbfffvtyoLFpmUpaWtolMTExTY5lac2aNYu9e/cCF0oAzixE0/4Ve9gFaywAoLGd8b8RG0DU6TDn5ZG3ZQuPz/mcnzZu5Ycli7n2+hs8C/TUqVN55ZVX6lGyjl6PDEgNXofL5WLEiBE0b96cl156qc57D48cxXfzP2fRS0/Qc9DF+Me3PD+lACdoB2i32bjxhttJSUmp5/y52+FUU+SOeZyCIFBRUUJ5eQkAer2RiIiYeguJ+9+CWzQNt5NdEySJooAkNuwAWSwWxo0fy6THx9W9FHs5qrW42sP/5yxaok6HJT+fg6tXM37ul6zZuZuI8GiCAkPqOdyxsTHc/8A9xMZG8+PSZaz8czVWq9Uj9gduhoDL5UIQREwmAx07deTue24nMjKCg2npfP3Vt+zetRejyYjD4aRJXCzPPjuVg+kZzJ45B0VWECW3yr/L5eKuu29n8KWXkJWZTfMWzVm7Zj3ffvMdFrMVvUGPKIpUVJSRm5fNxDtu4O03ngd//4ZZLGfaru8veJ6CKJK9aRMVhw8jNkTN1UCVZYKaNSOmV09QFM9c0NwPAsEUgOAbUa3roSFKEv+k7XTjxo0sWrQIq9WKTqfD6XQSHx/Pvffe6+lZfiLbt28fCxYsoKSkxJNNDw8P5/777z8ndOrGtN9//50lS5ag0+lQFIXw8HDGjBlTjwGxc+dOPvroI08LxdDQUMaNG3dG/eJP5ozVtEv8NwMAH3zwAVu3bkWSJKJjm3DRkMvw9faiZ8d2iOKZz55TYQAUFhayZcsWWrRoQdu2bT37dmJiIiEhIXTs2PGc3++ysjK2bt1KeXn5GSvmG/R6fvr5Z/KLSrjo4kuIi47AUA3snmsAQHNZMBdkkLR1N1VmK2vWbyG/sASdTkIURBJ6d+GOm64gIMDXHWCLQnUw7kn5u/9TG6mrOeea2nvt6N+1Wn/cyOwxMJ8ouMX4PIG+AUE0gKRz/1uQ/hb+Qk35SUxMDF26dEHTNDZv3kxpaSm9evWqs+5omsbcuXPZuXMnkiQRGhrKxIkT/xIBVXCzpqZPn05BQYFnn7jmmmu48sorPWvkmjVrtFGjRq3Q6/WFbie50UwuKytr4nQ6L4mIiKjzIC90AbgAAFywxgQAzlXQ/hezAURJwl5ZSdG2rfyZmMyDb7/P8OHD+WXZr54J8MILLxAdHc3DDz983GBak+0I+uPXih45coRbb72Vxx59lNtqCRCVlpXSu08CTbwk5k0dTVy/BAyB56ErwEnaAb74wit88vFn+Pr6HqVHu5y4ZIVj8/SK4s7822wWLJZKz+JRV/3frZirKAoOhw2Hw4bL5UJVFQ9Y4OXlg8nkhZfJhHgMAu8W81H55tsv6datq+d11VqCZiutHjv/rAVL1OmozMoide06Rs76nO1pB4mMiCUgIMjNhtA0HA4HvXr1ZMQDd5NfUMhnn/yP7OycOoG/pmk4HU78/P3o3KUTffr2oklsDAGBAVgsFixmC7FNYqmsqGTmjHdJTT2Il5cJq9VGn769mDBxND//9CtfffkNRoMRqp+TwaDnmWenEhMbw0fzPmXDho1IkuTJUNXoPWRmH+S6SxJY+MksDGHhqCdqBXiq8/wvBABESaIiJ4ec5OTj/76qIYgizQZchHdoqBu0047CAJogVTNs3M63AH+50J12mjNk9+7dzJ8/n4qKCk8Q36RJE+677z6aNGly3O/t2LGDL7/8ksrKSs/3oqOjueuuu86ISt1YQmmnai6Xi88//5wtW7ZgMBiw2+307t2bBx54wPMMKysrmT17Njk5Oeh0OjRV5a577qFfQkKjn09VVRUmk+m8t1E73wDAzJkzPVm7Dh06cM99I6ioqqJ5k5izOu7plADExcV5gv0aAMDHx6fRugCcytjbsWMHOTk5HgbK6ZgkipSWlfH5F/+jR98E2rSKJyLErQVw7gEAK5jzEKrHi+Z04nIpSKKApNeBJLnr6xX16DqpncEq5gn0PYjt0Rp9UQ+SEUHSg6h3U/lF6W/tG9SITQqCQEJCApIksWvXLg4fPuwBBWrbzz//zI8//oher0eSJMaMGdPoc/FUbe3atXz11Vfo9XoURcHf35+JEyd6mGKFhYV89tln3HXXXckxMTGNKQTo9mJVVSwoKBgcGRkZXjtgPRcAwH8tKK5h7lywCwDAuQUC/ioQQBDQFIUjycmU5eYy/r3PWLvnABvWraVvQj/AXZ81Y8YM5s6de3whLNkOos795wS2Zs0aJk2axKeffkrnzp09ry///XcuGz6cZ++6gdH33U5wly7noRSguh1gQJMG6W7Jm7dw++33oMguXLK73szusCNJOk8veFl24XQ6cLmcyLLrmFsr4OPjh8Fgqs5cCTidDqzWKpxOx3HPymj0IiQ4jAD/QM+iW+N0dujQnkWLF2IyuanVqrUIzV7xt2/1dyIAoHjvHvZt2szD0z/jwOEcIiObEOAfiKCBw+lg4MCLuW/EXfz5x2oWfbsEp8OJvlb5g8vlQhRFEhL6cPU1VxAZGUFWVjZ79qSQnpFBYX4h5eUVDL9sKNddfxV5eQXMmjmHwzmHMRgM2Gw2rrv+Gm6/42benf0BG9YnerpbuDsudGPs+Ed5f+5HbExMqiMM6W4Z5+Rgxn76dGjD70u+wD8yEqUhAOB0gvq/MPivuS5VUcjasAFLcbF7Lja0QboUguPjie7e9WjZgydj5RbaFLxD3XTU6uOebwdCO84acqrnsWvXLhYsWOABARwOB82bN+fhhx9uUBNgx44dLFiwwFNSUgMa3H///cTGxp7RNTgcDnQ63XkFAQoLC3nvvfcoLCz0CG7dcsstHv2XH3/8kZ9++smj+t+5SxceHTWq0R0mu91OaWkp0dHR530enG8AYNasWXWc9nHjxjWKE5qbm8vMmTM9XQBOJAIYERFBjx49PA7w5s2bEQSBPn36nNd7n5mZye7du3E6nR6G3KmaXq9n/fr17Ni1h4sHDaJpTDS+Pt6esrxzBgDIdtTK3DprjHudqVHnPx1/pqFAvzZtX1edza9Vny/q+KdaUlISNpuNhIQEjEYjeXl5bN++naCgIPr06VPn+e/cuZN58+Z5yv1uv/12Bg4ceN7P2W63M3v2bDIyMjx7w8CBA7njjjvqgLdz5syha9euORdffPHqRgYAAFwVFRXxBoOhf23f5FwAAFVVVZ6E2H/BaubrBSbABQDg3AMBf4HTL4giRfv2UZl+kLW7U3nw7fe54YYbWLx4sccBGDt2LEOHDuXaa689Dkwmu89dOrXszKxZs1i2bBnfLVqEXy1A4cGHHubrLz7j2xcfZ8AVw/Br1vw8lAJoiD5hCMa6G76iKLzxxhu8+cZbWG1WVEXmfApGCAgEBAQRER6NIIiARmVlJaPHPMqTT00GTUU1F6I5q/6xwT+4M835W5LZmrSFUbO+4HBhIVGRsfj7BeJ0Orhk4MXcP+JuFn/3Az//tKxO9r3GEY+ICOeOO2+lZ6/u7Nixi2W/LCftwEEcDmd1j2KpWsNO4+57bueKqy5nf0oqs2fOoaysHJ1Oh6qqTJg0lvj45jz/3CsUFRZ5so12u4ORjz5I+/btePnF1ykvL691Du4yjoOHDhAXEcKan7+mScsWJ24F+BcG9qcLzpSmp5O7fXvDbQFxazikb1hD31uvI6z7xahKLeBDU0HQIQY0QRB11dmDc7+ZarXX0WPW1DP95f3797NgwQKKi4s9mgDXX389V1xxRZ3P7d23j08+/hiLxeJxCFu1asU999xzSmUDxzObzYbd4SDoDNXJz9S2bdvGZ5995mlt5ePjw/jx4wkPD+ett94iJycHSZLQG43cesdd9OvVo9HP4WB6OkGBgX9JR4G/AwDQGHYqAEBNG0BfX1/69OnjmadpaWnk5uZ6ArPzaVVVVRw4cIDCwsI6mhQnW0Nq3v/p559xKtC9WzfiYiI9wP25AgBQnCiVh08vcVFD36+1+yOKIBwjxCfp3dl9oSaj/++ynTt3UlpaSkJCAiaTibKyMjZt2oSfnx99+vSpw/7Jy8tjxowZHkZLje7I+bbt27fzySefePYdg8HAqFGjPF00amzp0qXk5+dbHnnkkd8AO9CYTpsmy7LOZrNd6ufnF3KuAQDgPwMCaJqG2WzGz8/vQsT8L3sWjSsC2FjO/XkEAURJwlxQwOGkJFBVJr3/P37dvIM1q1dz8cUXA+5a0G+//ZYPPvig4fpLTXMDANKpUzNVVeW+e+8lNCyM6dOne14vKCigW4+exAd68/Ez44jrm4AxMLBhQbVGBgEEUyCiV7AnmE5JSaFz587ItTK5NWUAJzMvkzfe3r5YrFXY7bazOrOggBAiI2OwWq0EBATw1cIFdGjfGqUqD1zWf3TwXxOg5Sdt4s+1m3h83tcUlZcSHdUEg85Ely4dGTv+Mb5f8iM///QrRqOhzqZjt9vp1KkjDz0yAr1ex9dffcvGxCRkWcZgMNTboBRFQafXM3bsKHr17sHWLdt59933cdgdaKqGf4Afzz7/JAUFRUx/Z5Z7jlT3g4+MjOCFl55h9cq1fP31ojoCjIIgkJVzCBGFtcu+oVuvrih2xz86+K8BB112O4dWr8ZptTYIAoiSjn1/LKdNQg863fFANfNBqz3ZEb1DELyDPfegsR0HrVYbrAaD/LMM/mvswIEDfPjhhx4htQ4dOjBmzBhEUUSRZRRNY86cuezbu8eTFW/VqhX33XffWdfEy7LMzr0pdGzXFqNB3wj37NSH4aJFi1ixYgUGgwGHw0G/fv246qqrmFWt/I+mEdWkKbfdcSetmzduP+6SklL27N1D/379znv9/18NAHTq1KnR6nZzcnKYOXMmNpsNWZYZOnQoN998c73Pbd68maqqKhISEjytHw8dOkRKSgr9+vU74/Z4Z2t2u52CggKysrIoKytDluWTsgJEUcTpdLJ23XoMXj60aN6MqPC6jJ1jAYBp06aRkJBw5i0/VdkNAKjyMStOA9n82q31aoT4PBn96my+8N+hH2dkZJCVlUXfvn3x8vLCarWyceNGDAYDffr0qSMe7XA4mDlzJhkZGQA0a9aMiRMnnleAStM0PvroI7Zs2XKUBdW5M4888ki9tergwYMsWLCAkSNHrouMjMyk8VkAcllZWQcvL6/uNezF2gBA+/btGT9+fKMEYDX2XwEB/s6sh/9KSUbtsdd4AEBxmuYRXWlsEOBsHP3zECwIoojidJKdmIhSVcnWtEPc+9q7XHTJQFb8/run/dXDDz/Mvffey6BBg46z4bmqaWend56Hc3O58YYbeHzSJG6+5RbP61988QX33Xcfz99zI4/ec+v56wqgqaD3RvKNAFFHZmYmI0eOZPXq1TgcjlM+jK+vP9FRcUiiiM1uxeVy4XDYcbkc1do9NeI9R50BDQ1V1VAVBVlxeWiKOp0OL5M3/n7BdO7cmdfefJmuXTqjVuSgyfZ/vHMgiCKyzUbepo0s+XMTL32xiEqrmbCwaJrGxfHkk4+TlJTMNwu/qxfQ2+0O+vXvw8OPPEBWVjbz3v+YI7l5GE3GBhdEVVVRVRWHw0FoaCiPTx5Pq9bxLPt5Of/74isMBj12u53OXToxZepEFn27hKU//OxxKOx2OyMevJc+fXrx8ouvk59f4NnkBUEkvyCXsvJifv9hAUOHD0Kx2v4yYK+xQcIjO3ZQnJbWoBigKOlIWbUC3wB/et58NcEd+rg7AtR2fEW9WwtAkNxg2zkAAGrusRukqJ5fjRT417Y5c+awc+dORFEkIiKCxx9/nLS0NA4cOEBgcCi//PwjqqKgKApNmjRh5MiRjZK5lhWFZb+vpHPH9jQ7y3rwotIyAvz9MJxiQG2xWJg9ezaZmZlIkoSvry/33HMPP/zwg6d1W1RsHHfcdTfxcTGN91yBH3/6CX9f3+PvP/8iAEDTNGbOnMm+ffsQBIGWLVsxdtw4TMaz77W+fft2PvroIw9l+uabb2bIkCH1Prd161YKCgro27cvwcHBAB4qdqdOnU6oe3G+rKKigqysLI4cOYLVakXTNCRJanBdEUURWZbJy8tHFUT8fH0I8PM9dwCApqJU5IDiqLXy1G6t99cr7v+dAYCcnBwSEhI8HVOSkpJQVZW+ffvWAQAAvvrqK1avXo1Op8NkMjFu3LjjC1SfA8vOzmbWrFnYbDYPs2TEiBGe8pna5nK5eO+992jdunXulVdeuYrGFQIEUCwWS2BVVdXQyMhIY20AQJIkoqKieOKJJ+qUL54tANCYwdg/Ifj8u4EA/6XyhHMCACjmIk2TbSA7+NsBAec4YBAkiaJ9+yhM2YfRYGTyh1+ydF0SS5Ys4frrrwdg8eLFrFixgvfff7/hQaYp7nt2hpvXL7/8wnPPPst3331H8xYt3KuYojB0+HC2bljPty9Oot/lw/BpEnceWAA1IIAXkk8kSG411/Hjx1dfv1gt5Idn0gmCgKqq6HQ6fH398fH2xdfH37MZ1Kl31o6G+8c6uTXPWlVVFEXG7rBhsZgxmbzQSQZuvPF6Xnj5eQID/FHKs0Bx/iscBkGSsJeXk5+UxBe/bWDawu+xOWyEh0UzcdI4/P18mT7tXY8jVzv47969K+MmPsbunXv4cN4nmM2Weg6Cpmk4nS4EwMfXh+DgIExeJpxOJ81bNOeWW27Ey8vInPc+ZHPSFkwmIzabjbvvuYPhw4fw2qtvkZqahsFgqM7mtuT5F59i6Q+/sOjbxZ7fE0WR4pJCCovy+OqT2dx+x00oVmv9+fwPXKgFUcRpNnNo3TpcNttRFkD1mD2YuM7dMcHpomX3TnS/f1TdMgBAq91to/o+CI28OQiCgEuWsVhsBPhXi3Yedb8bzX788Ud+/vlnNzjn5U2bNq3IyMigqsqMTqdHlp0Igps10ph1qVUWKz8v/4OI0BAGX9z/zIOnKjP7M7Lo2r41xtMQ1Fu3bh1ffvklkiShaRr9+/cnLS2NgoICAMIioxnxwIM0i41qtHudk3OYzz//jFtvvbUepfbvCABoZzDWXLJMpdlCaXkFZqudHxd/S17uYQDCo6IZfvV1tIyLISL07ECkGhZHjWjao48+6lH6r2179+4lKyuLNm3aeDpVZGZmsm/fPnr06EFERMTfZm1yuVwUFhaSmZlJSUlJdfcXoZ5ORu29WlaUOmKkjQ4AoFW34lWqhfhqqPuSW43/Qi3xcS09PZ28vDyPCGANAKBpGn379q0nALp582Y+/fRTJElClmXuuusuBgwYcN7OtzYzSpZlmjdvzrhx4zz6Qcfa6tWr2bBhgzJu3LjffX19SxobBFBVVcvKyrokNjY2Rq/XewAAnU5HQEAAkydPPutOCTUlADX2X2ABnIvgszHOSatur/xfCv4bFQDQNE1DU9HsFaj2iuo2dn8TEOAcAgCiJGEtKSErMRE9Gjsycrjn1dnEt25N8ubNeHl5YbPZeOCBBxg9ejT9+vVrcKNzO/NnNwCnTJlCZmYmX331lWfj3rlzFz169WRI53bMmfwo0X36YgzwPz8gABrovJB8w0HUc/vtt7Nw4cI6nzAavAkKCsZoMKIoMkajCaPB5O7eo2poZ6gWULOQCoKA3W7HYDAwcdJ4Hnp4BGhOlPJcUJV/jRPhLkHJJ3/LNuYsXcW873/G7rIzcOAQxo59jBnT3yX38JE6dHun00lcXBOefGYymRmZzJ41F7vdXsc5cAf+ToxGI23btqH/RX1p2qwpQUGBGI1GRFGgpKQMSRLx9/fj8OEjvP3mdMxmC5qm4e/vz8uvPkdBfiFvvz3Do9isKApjxz1G02ZxvPTCq1RWViFJEqIoUlZeSl5+Dh/Oep2HHrkXxWL9O6+op7W2SDodRQcOkLdzZz02jihKpK5diSorBEWF0v++O9BHtHS3/qs+vqZpCDojYkCsZ31tbACg5reyc/MoKi6lRbMmBAf4N/qt27p1Kx9//DGiKKKqKiGhYfTu1591q1ZSVVnh0ZMwGAyMGzeO5s2bn/B4DqcTVdXwMp2YunqksIRVa9dTUVbMPXfeia+36YzO/2BmDrmFRfTt2um0SglKS0uZNm0apaWlSJLkAcU0TUNVVQKDQ7ju5tvo2bk9UiM5Jd999x3p6emMHTv2rDJX5wsAOA1HnQqzmaKSMkrKKrHYbaiKe06tW/ErxYX5aEBkdCwXDRlOeHAgndueOdOgNl1aEASio6OZOHEivr6+9T67bds28vPz6dq1K9HR0TgcDo8uQI8ePf62zr7ZbCYnJ4fc3FyqqqpQVfU4rIC6qvtGo5Hk5GSef/55WrVqxbvvvnuWAMAFO1Pbv38/paWlHn/T5XLVKQE49lkeqwOQkJDA/ffff17OtaioiBkzZlBWVuYBIG666aYGWTW1g+cZM2Zw0UUXZQ4ePHgd50AMMC8vr51er+8VGhrqAQBEUSQ2NpYnnnjirEsk/qssgL+T9sHflZFwru99Y99/NwBQY7IDxVoMLlvjBlhnCgScKwCg+ni5yclU5ORgMBqZ+ulCfliVyJy5c3l01CiP87Vy5UrmzJlznBt+JvmO+lZZWck111zD7bfdxiMjR3pef2LyZN55+21mjLqbu2+7gcCOneqKep1rEEDUI3qHsD89h02bNuHv709YWDhZmdls2rSZ/Sn7yc7O8WQddDpdo9Woms1m4uNb8PIrLzDg4ovAZUWpyq8WVfv3THhRkqg8nMPh5G28vvBXvv1zFbIi8/Szz+G02fn2myXubge1HGeDwcDkqe5avzdff4eKiso6wb8sywiCQLfuXRh+2VA6dGiHLMscOpRFYWERNqsNLy8TMTHRRMdG43K6MBoN/LR0Gd9+uxij0c0CuP6Ga7njzluYMf09Nm1M8tT4NW0axzPPTeXTT74gccOmakBBpKKynNwjWcyd/gqjHh3x9wUAzmA9EkQR2WolY80anDZbLVaLhqjTkbpmJaqm4mUykXDHDQR26HMUrPN8VkX0Da8nttlIs9WzEimqSvKOPRQWl9C+dTwtm8Wdxq3R3ISmE6xrhw8fdoupmc3oDQb6DRxCbLPmHNy/j+QNaz1AUUxMLJMmTfTUUR8fAHCRnn2Ylk1jMZwgI7/vYCa7du9hz/Zk7rn3PlrHNz8jx2Hb3lTMFit9unY8bWr5l19+yZo1azAYDB5BQLvdjsvlxMfXj/6Dh9O9SyeaRp99lriwsIhZs2fRp3dvrrnmmr9sujQWAOCSZaosVkrKKigtr6DKakWRFXd2WhQRAEmUWL38FwryjwAQ06Qp/QYNJTwkiE5t4s/4GjIzM5k9ezZ2ux1Zlrnooou455576n2uoKCAbdu2ERYW5gn2awQA+/bte9zM5t/JFEWhpKSEQ4cOUVRUhMPhqMMKOFbDR6/Xc+DAAT799FOaNWvGo48+Sv/+/S8AAH+Bbdq0CUmS6NWrl2eOJSYm4uvr63mtzpxyuZg1axZpaWkIgkBUVBSTJk1qENhqbFu+fDnff/89Op0ORVEICQlh3LhxJ9V6WbFiBRs2bFAnTJiwMiAgIK+RQQDFbDYHFhYWDm/RooW+sTUAjgcC/JfKAP5qEODvyEY4X9d7bgEAAFVGtRSjOc1/LQjQ2BoAtTJkoiRhKS4me/169JLEjuwj3PfqTGJimpCcnExAQAAOh4MRI0bwyCOPeMQAz6WtX7+e8ePH883ChcRX98guKyujS9euCDYLC5+fQKdBl+ATE3seugLUDSskvxDQB9Z7t7S0jINpB9m0aTPJyVtIO3CQ/Px8Dy2nhmp5OqaqKlarlSFDLuXV118kOjrazU6xFv9jKeQnnICSROn+/WRu38XTny1hRXIyYeERTJkylUULF1FcXIpOV1fx/5Zbb2LosMG8+spbZB7KwlgriHE6nISEhnDb7TfR76IELGYLGxM3kbghiYyMQzidTmpU+319fblk4EVcc+1VmEwmLGYLb74xjcOHjyAIEBwSzEsvP0tmZjbT3p6FKLpppE6nk8lTJ2IxW5jz3jwMBgOiKFJVVUFObiavPPsETz81vr4GwN8x+D+NNUmUJHK3baM0Pb2OGKCok0hds9I9XVSNHldeStyQa9zztOaYtf4vegUjmALP6WVWVJlJ2r6bysoKunZsf8oggNlqpaLSTExk+HE/U9P2Ke3AAbr06kPHbj1RFQVRlNi1NYl9O7ejAe06dGTs6NGI4snn7NY9Keh0Ojq3adng5uZwudiyO4XCgkISV//BZZdfzqUDLznt+2J3ONm8cy8aGn26nD4AsH3HDj768CNAw2QycfHAQRQUFLBrx3ZMJhP9Lx1ORGQUndvE4+fjfVbP8JdffmH1qlWMHTfuL607P1MAQNU0rFYbFVVmSisqqTJbsNodKErdoL+26XQ6Vi9fRv6RwwhAdFwz+l4ymKjQEDqeBQCwatUqFi5c6AlW7rvvPvr27VsvcE5KSsLpdNKrVy8PuLNhwwZatGhxUibL39GsVitHjhwhJyeHiooKz70/ljYrCAIGgwGlWrtj8ODBF1S/z7M1NNZKS0tJSkoiNjaWTp06Nfi97777jt9//x2dToder2f06NGNLsx5rNlsNmbOnElWVhY6nbtUdMiQIdxSS8vqRGNy1qxZxMfHF99yyy1/ACqNSIjTNE1NS0sb1KpVq+j33nuP3bt3A43XBeBcB2X/xUD0nwZCnE87tuSkMdfl+gAAuNurWQrRHGYkgx40jt/T+2wc8BM9vEbM/quyjFCLCieIIrlbt1KemYnRZOKFBUv4+rdVzJ49mzFjxgDw008/sXTpUj788MPzVmPyzDPPkJWVxRdffOH5zc+/+IL777uPBy4fxAuj7iW8Zy90JtNp9tI9+2cm6H0QfUJAOr7DfPhwLqn7U9mwYSM7duwk/WAGZWVlnuxDQ6r0tc3pdIIgMHLkQ4ybMAaDXo9qK0GzllaPg3/hZBcECrZtJX1PKk98+A1J+/bQtXtPevfqw5+//1kns+9yuWjevBlPPj2Zb7/5jt9+/b0OLdjpdBLXtAkPPTyC1m1akbQpmW+/WUx2VrYHkKl9/1VFxWa3071HV0aOepCAgAB++/V3/vfFV5hMRux2Ow89PIJ+/fvy4guvkpN9GL3eLRQ4/LKhDBs+hBeffxW73Y5O0lFcUkBhcT5PTx7LKy9OOSUAwCPi0lhA35msPdUK+sIpAADW4mIy162rDu5rXteRuupPdxAhu2jZrRNdrh6GFtiU6mLbo7+paaAzIPnFnPM2VgcOZZOakYmtqpJ+fXoSG3XyFnwVZjN7UtPp0rY1vj5exw0I3587l9DIaPoMGOjpDCKKIoqisGntKjLTD9CydVvGn6KAW1pmDgezcmgeG03rFk0Rj3kWZRWVbNubitPhYM2KX2nXrh333n3Xad+TwpIytuzcg6+vD326dsRoOD0AoKKyirlz53Io4yCduvWke9/+yC4XWRnp7NqahF9AIN169yMmKpqObZo3eHy7w3nSe1JRUcG06dOJiY7m4YcfPunYVBTVA9CdTwBg6pQpHsBaAxwOJ2arlfJKM+WVVZgtVpwuVzV2K5wUDKoNAABExsRy0eDhRIQG0alNyzN2Gj/88EO2bt2KJEn4+fkxceLEei0pDx8+zM6dO+nYsaNHSC0jI4PMzEz69+9/3tv/NbbjXFpaSmZmJgUFBcdtJ1gjJjh48ODzkkW+YEctJyeHvXv30rNnT0JD3Z0a0tPT2b9/P926dSM6OrrB723bto2PP/7YI2554403MmzYsHN6rlu2bOHTTz/1lIGZTCbGjx9PXNypAc07duzgq6++4r777tvRvn37XYC+EU9PzsrKahsaGtrrs88+Y9euXY0OADQUEF/IRp/f375wv88RAKC53yAnI4Xkjevo3b0Tsc3iwCV71NkbzRFvyPFvxOy/pijITif66kDJU/u/fj06AdJy87n7ldn4BgezffsOQkJCUFWVBx98kNtvv52hQ4eet4ddXl7Oddddx6OjRnHLrbe6VzJZ5qIBA9iWnMzXz45j8OXDCGjd+jxpARwzKkQDoikAweh3Ut0DVVVJT89g9649JCZuZM+evWQeyqp2PET0ene5QM1gtlqtRERE8NwLz3DVVZe7j2EpRLNX/HvVgasDwrxNm9i9ez+TP/yGPRlp9OzTF0nTU1ZSgliLQeFyyYwZOxJvHx/eeWuGezxXB5cul4uoqCjGTXyMpnGx/PjjMr5duNjTDvBEZjZbuPGm67j9jpvJy8vnjVffobS6zVTHTh14+pnJfPbJfJYvX4HJ5BYQbN2mFZMeH8c7b88k7UA6RqORklK3CODcGa8xauS9JwUAarpBCMdmyc9mXTneMU60ptRqoXeixVUQRZxVVWSsWYPssLs/q1VrAKz+wz1mXQpB4aH0v/0GDM06urUwxJqe1kevU/KLBt25pRPbHU627EmhpKQUa2U5QwcO8DiWx7NKi4XNO/cRHhxIpway8VarlRkzplNaXsHgy67C28fXk1V0j0cJm9XC+pW/U1JcyJjRY+jYseNJz7WguJSdKWlomkZ0eCjtWjavw3zJySsgJT0TURBYv/J3fLy8mDB+3GmXHG3btYfM3HzCw8Lo2aldvUDc6XIhiiK64zCXXC4X06e7r3/g8CsxGIxomopOr6c4P5/NiWsxGPT0GzSMyPAw2rZoirdX3eecX1SCXqcjJOj4pSC/rVjBTz/8wEMPPUTXrl1PeE0lZRVYbFaaREWeVwDA6XTy2OgxxMQ1paysHLPVhtlmw+FwoigqgkBdEdhTsHoAQHQsA4ZeRlhQIJ3bnhkAUFpayvTp0ykpKUFVVdq1a8eYMWPqsNNqsv92u90T7KuqSmJiIsHBwbRv3/5fs+3Y7Xays7M5cuQIFRUVuKrHfI1w7wUA4K+xrKws9u3bR9++fQkKCsLlcrFlyxbMZjN9+/Y9bsBTWFjI9OnTPQyPbt26MXLkyHMWmLlcLubNm+cR13M6nfTu3ZsHHnjgtH7zyy+/5NChQ8ro0aNXBQYGNmYpgFJcXBzscrmGLVmyRLdz585zAgBA3ezsf4Uxc2xG2sfH55wmSRvSXLiQ/T+XAIC7fxQu2cWWzUmsWfk70aH+XH/VcPxDg1HtjrPPQJ8IBGhMAKA6UK6h7Io6HYeTkijLzMTb24s5Pyxn5ne/8MyTU3n5tdcBt9rzhx9+yKefflpPdfWcmeICSc+yZct46623WLJ4McHVrbNWrlzJpZdeyqXdOjDn8ZHE9umLV2go2nkrBagDDYFkQDT6I5j8OdWsvNVq5eDBdLYkbyVp02b2708lJ+cwsixXi9f05bU3XqZ161a4VYQL0BxV/+7WQIKApijkbUxkw+ZdPPXJIjLzc2ndpj2odauwa7L/Ex8fy3uzPyAlJdVD/VdVDUkSGTvuMXr26s7aNev54P0PAeGUSjAURcHHx4ennnmCuLgmzJz+HklJyej1BvR6Pc+/+BTlZeW8+cY09Ho9qqri7e3Ncy88xR8rVvLrsuV4eXlRUVFGbl42b730FE888djJAQBVrb+In23b0AY7dZxkPal+v0ZI73gbiyiKVObmkr05CdSjPa1FUSJ11R/ufysKok6izzXDiBhwmXv9kUSQJKojIvexfMLA4H/OSQ+HDh/hYNZhzBUVWMqLuXTQQKKijq9SX2m2sHV3CrKi0KltSyKPUV7/6acf+emnnxkwZDhxzVrgcrnct7XWvZUkHfm5Oaxc/gt9qh3Dk1ml2ULyrn3uVqCqSkigP61bNMXf1weAlPRMsnPzMRj0bNm4nrKiQh5//HGCg09d0bmsrIxV6xLxDgjG18eLXp3b18vQF5aU4evtVS9or7GVK1eyaNEi+g0cQpPmLZCrrx/AaDBSWVXBtk2JSJJEl159CQzwp2lMFNHhoR4nyWKzsWv/QdrGNyPI3++YoNpFakYmixZ+hSzLTJo4kZDjXKOsKGTl5lFUUkbb+GYE+p8bB/R4AIDscjH4iqsJi4zB6XB3ERIEoR5742TOXc0fSZLQ6/Ws+u2XegBADSB1JrZz504+/PBDzzp63XXXccUVV9T5TFFREcnJybRs2dLTbaGkpIRt27adMPj6p9ux7QRrNGYuAADn3xwOB5s2bSI2Npb4+HicTicbN25ElmUSEhKOq6WiKApz5szxiN2FhYUxadIkAgMDz8l57t+/nw8++ODo2i8IPPjggycFKhsKbt59913CwsKqRowYsUKSJCuN0xVAs9lsUl5e3qU///xzaI0GwLkAAP6LlPTzGZA39Fv/FbDlfLAtGi4BoK6oVGVlJfO/+IwdWzdxx03XMGjwAJCVsy8LaAgEaOza/5pDiSKiJFGVl0fOpk2ImorZ4eS+1+dQYLGzbcsWmlTTl8aMGUP//v257bbbzt/TVmVqhPdGjRpFbGwsTz/9tOftG268ke+XLGHu2BHceO3lBHfp6gY1zmcpQO3RoWkIBl9E71CQTh8kKS4uJS3tIGvXrkORFcZNGIOPtxeoCoq5AFyWf31fYEEUcZjNFGxO4uc1W3h5/mJKKsuIjIzFz6euAJPdbufW224iLq4JM6bNRlcLmHI4HCT068tjox+htLSU1159m4L8gpNm/mubzWbj1ttu5qabr+PPP1bz4bxPMBrdZQCPjHyQrt0689ILr1FUVIxOp8PlcvHk00/gcDiZ9vZMTCYTZeUl5OUfZvLoh3jzrRdQbLbTC/7PBgg4FQDgFEqOTsgE0DSyEjdQlZ+PKEpuQUrNLZh3YNUf7mOoGoos06pzOzrfP9J9PL3ODQDUsAAEEIx+mEtteIdFoDOdO3V3h9NF8q59OFwuivKOUFqQyzVXX01sbGzDAUGVmW179uOUZfx9vOnesa0nSM7KyuKdt98iOq45fQcMQlWVum0Ga3U8EEWJxDV/YKkoY/LkKSdtvZRXWMKeA+meR6SoKka9nqYxkUSHh5GWdZjc/EIMRgMH9u5i387tjB03jvjq1qknM4vFwtKlSzH4BRIUEobJaKBX5/b1RAez8/IJDQxsEAAoLy/nzTffxNsvgH4Dh4Cm1ul1IooiBr0eu8NBcuJaqsrL6HPJpfj4+BHg50NsVDhhwUHoJImte/fjcjrp2bmDh21gdzjYezCTvXv3sHndatp37sZ1111LdFhdEEZVVYrLysk4fISKSjNd2rYiMizknI2h4wEALpeTS4ZdSXRsHLLsOu2AXxRFjEYDXkYjoUGBeJmMHDqcx28/LqEg70ijAQDHtv977LHHaNOmTZ3P7Nq1i4KCAvr164ePjxt02rNnD1arld69e//rnU2Xy0VBQQGZmZlUVlYyYMCACxoAf4Hl5OSQmppKQkICPj4+pKWlcfDgQXr06EF4+PF1WX755ReWLl3qKfN79NFHzxlrZcGCBaxbtw69Xo/L5aJly5aMGTPmjAQyDx06xLx580hISMi89tpr1wMijVDrqWmanJ6e3u/777+PP3jwIJqmnRMA4NhA7b8yZ85HcKqqKhaLpd7r/7Xs/7m83uMCALXRxZos4po1q5n11ht0aNuCJyY8in9IEIrN3hijqXGCgOOYqNPhstkoz86m9OBBBKcTvdHAr3sPMvqVGUyaNIl33nnHg24+++yzfPzxxwQEBJznWSWDoCM9PZ0HH3iADz74gDbVfYr37t1L9+7daRsbwRdPjqVZn94ENG2K2ljaDGd0vqq7v6/OCyQDgmSoBiVA0xRQZTRNdSuKCwIIEgjVNYd6HUcZXwKoLjTFhWotA9n2rw/+a4JM2eEgf3MSnyxZwazvfqbKbiE6Mg4/Xz8Py0ZVVby8vJgydSI//vgLSZuSPc54TQuy8RPH0Kt3D5Z89wMLv1502puxw+GgR49uTHpiPCn79vPmG9MAN803oV8fxk8YzbS3Z7F58xaMRiMOh4M77ryVzl068fKLryHLChUVpeQV5DLm/juY/e4bKA7ncYN/hFoMh1qK+mc8/08GAJyi6Kh2zPOp/XeX1cqhtWtxms3uw2mA6h7fB1ZWAwCKiqooBAQG0P/6yzB1TkDTSaDX1wEBNEQOb08htH0XfKNizuk4y8g5QlpmNnq9nowD+ynOP8LVV19Dh3Zt6m86ZgvJu1NQFMVNx48Io0PrFggIrF+/ng8/nEfPvhfRpVcfXE5nvfFcM2YlSUdZSRGb16+hfbu23HXXXcelCTqdLrbtTaXKYqlXj6xp7vaAqqrhkmUknY7c7Ew2rlnJfffe26AydkO2ePFiUg+k0fMit2aBj7ebAaCvVUKgqCqp6Zk0bxJTryWhpmn88MMP/PHHHwwcfiWhEZENAuBGgx4N2LDqTwrzj3Dx0MsJCAp206wFAT8fb8KCgygqLae8soqWzWJp2bQJLllmd+pBissq2L5pA0UFeVw89AqCQ4IJCfDH388PBCgvK8Nsc1BptiArCs1jY2gb3/Scjp8TlQAMHH4F0U2a1mFCHJtI0FTN011Cr9Ph6+1FUIA/wYH++HiZMOj1iKKIS1bYuieFZUuXUNhIAIDT6WTGjBknbP9nt9tJTEwkKCiIbt26efyeDRs2EBcXR7Nmzf5TQajZbMZkMjVaR58LduomyzKJiYmEhITQoUMHZFlm48aNCIJAnz59jstI3bt3L++//z6apuFyubjmmmu46qqrGv38CgoKmD59OpWVlUiShMvl4o477uCSSy4542Nu2bKFhQsXcs0112y9+OKL99E4pQDyoUOH2s2fP79nXl4eiqKcMwCgdkD8XwLNzmVN/vEy/+e63ODvdm/PNdhxUgCgrKyM7OxsWrRogZ+fH0eysnjuySfJz8/m5een0K1PTzS7HfVsa9LPxvk/3sVVC9xUHTlCwb59OCsqMBkNpOYc4cNlK1m5IwW9wcDmpCTi490Kwy+99BImk4nJkyf/pQNg1syZZGZlMWPGDM9rEyZMYObMmbz+4O3cfe1lhPXsjc5oOL+CgA25eNUlI+5nJta4fdWv1wmpGnAPGwJ9hH/rrK4zrgVRRHbYObIhkWlf/sSny1ZgdzpoEtscby9vz3N1Op1cdFE/hl8+lDdfn4bdbq9T+9+0WVOmPjkJRVF4/bW3yT185LRLV2SXTHRMFFOfehxFVnjj9XcoKChEVVVaxLfg2eem8PvvK/lqwUIPANA3oQ8jRz3IKy+/waGMLMyWCvILchl1x03MnfMmilZ/XtcR/Wtonv+VLUOPBQFqQApNQxBFXFYLh9bUAABCdRmACqpK2qo/QdFAUUBVEQWBnkMuIeaya1F1IhiMYNC7AYDqdenI3gxEow/RvRLO6bCz2R1s3rkPl+xu17lzy2aqKsp54IERxEbXLQewWG0k79qHq7qVpKZBh9YtiA4Ppbi4mAXuuk0GXXYlAUEhdYLg2gCATqcnJyuDLYlr6d2rN7fffnuDG7eqqqRmZJGTV3hcgTjPmKkWEy0tLmL178u46sorGT58+Emvf9euXcyfP58O3XrStEUrXC4nAX6+9Orcvs45VVSZSc3Iomv7Nhj0dX3QyspKXnzxRUxe3lx65bXVgW39PU+n01FVUcaKn5fSoWsPWrXr4Dl3VVU9wErN74qiSFhwIDa7kyqrFUtVFWtX/Ep0kzi69+mHWq2TUVFeTt7hbIJDwwgNj0BVNcJDg+jUumUdrYTzCQA4HA4GDr+SmLijAIBWPV+0al0NnSTiZTTh5+tNkL8/Af6++HiZGhwLTqeLbfsOsGzp4noAwJlqAGRlZTFr1qwTtv/Ly8tj27Zt9OjRwyMMWFpayrZt2+jTp8+FTPgFO6+WlZVFWloaF110ESaTiezsbHbt2kWHDh2O24mivLyc6dOnU1jo3rM7duzI6NGjGz1Y+umnn/jpp58wGAzIskxkZCSPP/74WZeL/PHHH/z222/KnXfeubFbt26HGgEEkPPy8mLnzp07qLi4+JwDADV72elqnlwAABq2Y2vf4b+T+a8ZS+cD6DgpAABw5MgRtm/fTosWLWjXrh2aqjLj7bdY8PknjB95P/fcdzuIIoqrEUsCzuZBCwKiJOG0WChKSaEiKwujJFJud/L1H+tZtDYJ/4go9u7exaOjRjFnzhzAXfP30EMP8dZbb9GyZcvGmyhnENJWVFby0IMPMnnyZHr27AlAfn4+Xbt1w1/S+OrpcTTv1ZPgVq3OY1vAC9ZYwT+4BSltpaUcWreeV+b/yOLV60CAuCbxGPR6T+DjcrkY+ehDlJeV89WX39RxxB0OB1dfcyV33X0ba9duYG51W74zWXCMRiNPTJlAq5bxvPrqW+zdsw+9Xo/RaOTZ56ZisVh57dW33Nk6l0zzFs147vkn+fTjL1i/PhGLtYr8glzuu/5KPps3DUVvgFpBUj3RvxPN89NdCxoRAKBWICvUKkvSZJnM9euxFhe7WS2aCooKqkLaypXu+n/F/ZqsKDRtFkuPcRPR9DowmdwggE7ygACyYqAit4jgNm3PaRkAwP70TLJy89HrdTgdDjatW0V4WDj333dvnWx3eZWZbbtTUKqdGU3T8DIa6dqhDb7eXpSUlPDmm2/i6x9AwsAhSJLkAX9rPi/pdJQWFbH2j1+JbRLH2DGjj6u2X15dcuBpDVfr3jdkoihhrqxg1fJf6N8vgZtuuumE152Tm8fnn36CokG/Qe7zlRWF4AB/enWuS5FNzciiuKyCPl071BMBdLlcLPzmG7Ykb6Ftx8607tgZoXre1DZJ0rEtaQNHsrO4ZPgVOOx2KspK8fb1Izg0FKPJC1VVPeCBhrsbhyCA3mAg62AaO7Zsov+goYRHR1NZVkZ2RjpZGemEhIfRtVdfBFEi0M+Xzm1bnXYbw8YCAARBwGazcvHQK4iJa4YsO5FECUEAnaTD18ebQH8/ggJ88fP2Qa8/uT/vkmW27z3Azz9812gMgFNp/7dz505KSkro16+fhzmVmZlJVlYW/fr1O386QBfsglXv6TXsk5YtW3pYAKqqnnA8fvDBB2zbtg1JkggICGDSpEmEhYU12nlVVFQwY8YM8vPzPeJ/V199NVdffXWjHP+HH34gMTHR/sADDyS2adMm9yxBAKWsrCxw+vTpw4uLi/XnAwA4n4Hb3wkEABo9W10bAPgvBf419/R8Xe8pAQDgrqFcsWIFXl5eDBs2DEEQWPbzzzw1+QmG9u3KC89Nxic0FMXp/EtvXk1dfHlWFoUpKWC3IUg61u7ez8fLViKb/LhzxEOkpx3gsw/fJykpydNf9euvv2bDhg289957f4uHumjRIjZt2sS0adM8r82cOZMJEybw6gO3cfdVQwnr1RuDj89f0BXggp1JYFknmNHpMB8+TMra9Tz1yRJWbd2KwWikaZMWnrGiqio+Pt48MWUii75dws4du+oE+LIsM+mJ8XTv0ZVZM+aQuGHjGdXi1ZQSPDFlAp27dGL6O7NJrqb7O50uxo1/lCZxsbz84huYzRZEUUASRZ59/kkOHszg888WYLZUUFB4hJuHDeLrz2YjeLvHZU1W8JSD/5MAJ+cMAKj1e3XOueZ5CQK5W7dQknHILXSmqNUZf4W0P/9EVBSQ3YwAVVXR63QMnjIZ78hIVIMBvEzuUgBRBAFEkz8YQ3BZLRj8z6zcSFFVpFNwOKqqRfYUtVqxvqCAzRvWMOjSIVw+dEi1/IrGngMZ5BUW1XFiFFUlJDCALm1bodfrWL16NQsWLKBjl+507tXHvfbUElB02Gys+3M5LqeTS4ZfSe/uXQgPDmzwvGx2B1t278PucCIIAko1zf/4AICIxWxm1W8/0717N+66887jftZqdzD/y6/Ys2MH/QddSkRMLIoso6gqYcGBdO/Q9qhzW2Vm6+4UvL286N2lfYNO3P6MLNauXceebck0a9mSTt17I+l0HgBWFCUsVZX8+euPxDWLp1f/AdjtNg5nZXJw/z5EUSSuRUtimzbD5OXtGW+qqnqAk11bkijMyyW2WQvMlZWUFhehqipN41sR36YtOp0efz8fOrRscVyhwvMFAFjMZm66/S6ax7fEy6gn0N8PDQ29To+Pl+m09ztFUdmecoCfFi+iMC8XjdoMgAA6t2112mvaRx99xJYtW5AkCX9/fyZOnEhERESd9TMxMRGj0UifPn08rycnJyOKIj169Liwf12w8267d++mvLycfv36IUkSWVlZ7N69m65dux5Xv+X3339n8eLF6HQ6NE3joYce8pS0NIatX7+eBQsWeEBfX19fxo0bd9zzURSF/Px88vPzcTgcWK1WADk0NFSKiooSfH19PXobNb7OwoUL2bt3r/nhhx/e0LRp08KzAAFUq9Vqeuedd4bm5eX5ny8A4L/r4jZuCcT5qH//rwf/pwUA1EzQ5cuXk5+fz80334yvry979+7lkREjiPKWmD3tZaJat0Zxuf4ScTpBknBZLBTs3Yv5cA4GnZ60/EI+XbaKtNIq7r5vBH0uugQVkXtuvYF+fXrz1ddfe65txIgR3H777SellZ7JQ6oJKE7new6Hg8cff5zLLruMK6+80g3EmM107d4dnd3MgqfGENetK6Ft211gAfzdg//jAABlqfvZvi6JJ+Z9zY4Dqfj5BRATHVeL/u+iQ4e23H3PHbz91kzKy8s9mhw1ytlTn3qcyMgIXn35TQ4fzj3jjJXT6WLUYw9x8cX9mf+/hfzy8zIP3f+aa67kmuuu4pWX3yQ7y11P7nA4mDJ1EgajgddffZvKqnIKCo9wxUV9+H7BB+gCA+toVNS5+sZe5BoLADhmnruF/dzgmiRJlB06xOEtW9zXoqigyKCopP/5J7hkkN0lAGgasqbRJC6GXhMmonl7g7cXGAyg07lvhqhHCohBtrsQ9XrEM3huiqoiu2RPR4gT2b60Q+TkFyCJIpIksWfHVkoKC7j6uhuJCA+ltLySwpJSD/W/domOqqo0iY4kNCiAnCOF/P7rzxw6mEr3vv1p076TJ4OvaRrJG9aQk3mI/oOHERkTi1Gvo2u71m6Rz2OsvLKK7XtTkavvWc6hdCKiY/Hy8WlwTRNFEavFzOrly+jYsSP33XvPca93Y/JWvv36S5o0bU7X3gmebL2iqoQGBdKjY1vPv7ft2U9xWTlBAX707NS+HgOgoLiUPQfSEUWJ7EMH2bZpA2GR0XTrk4CPjx+qqiBKEru3JnNg324GXX41IWHhaIqKqqmUl5aQnppCfm4OJm8fQsIj8fb2xsfPj5DQcIwmNy1+y8Z1HM7MRBQF/IOCiYyJJaZJM/z8/VEUlUA/Xzq1jT8uo+J8AgBlZWVMnTKVjp06Ntp827H/IN9/+zVF+UfQtLMDAMrKypg2bRolJSUoikKHDh0YM2ZM3bKPigo2btxI06ZNadeunef1xMREAgMD/1Xt/y7YP8eys7PZs2cPCQkJBAUFYbPZSExMxNfXl169ejUIUKampvLee++hqiqyLHPNNdd4/MazNVmWmT17Nqmpqej1epxOJ/369ePee++t59PKsszevXtJS0uTJUmqCAsLK/fx8bGKomgtLy+XMjIy2kdGRnr37t2bkJCQet+dP38+ubm5ZSNHjlwXGhpayZl1BtAURdG9/fbbQzIzM4NryiIuAAAXAuELdoYAQG0kMCkpidtuu42YmBjyjhzhgRH348jP4YN3XqJV754oinreQABBcPfZrsrNpWDPHrBZMTtcfL0qkR+TdjJgyFCemjqVwNAI0jJz+Hnp97zy3FOsWLGCIUOGALBt2zZeffVV/ve//9VBJRsMCmr/7mlAAEdjlFP/3po1a5g+fTpz5szxIK2ffPIJDz74IO+NHcHVg/oT0acvei+vCyyAv3Pw7wlOBU9gJUoSBdu2snbNZp78+GsycnMICQknIjQKVVM9INDlVw6nfbu2zJzxXh1hJlVVMej1PPXsFDRN49VX3kRxKQjimS2cDoeDm2+5gRtvuo5F3y5h8Xc/eACA/hcl8Njokbz5+jvs3LkHo9GAw+Hgppuvp1u3Lrz68lsUlxRSUHSEob278eNXH2IIDUWtriU/6/KekzEBzgEAUFPLjKqCqiGIAvbSUrI2bEB2OBDU6pp/l4v0P1e6AQBFQajO6Lr50DoGPzEJv6ZNUY1GMBmPsgAA0TccQe+HKsuIhjMDbiw2G5qq4evjfcLPWW12tuxOweF0IkkS5qoqNq9bTesOnYht1hxN1QAVh90OgoBeb2h4rRIEZJeLxNV/UFyQT/9BQ4lp2gwBSNm1g13bNtO1V1/ade6OIrtQVBU/by/i42IIDgr0AEFWu539BzMpLqtAkkQ0VSM5cS06vY5O3Xu56fLVNfO1AQCLuYq1K36jVZt2XHvdNUSEBFNeZaGopJSwkCACfH3IPJzHt998TVlpCf0HDcXH1x9VVTxruE4n0aFlC4IDA8g8nEdGzmEEQUCv19GzU3t8a4EVVRYLO1PSsDtdSJKETuduc5icuA6D3kDbjl0IjYzEbrOx5vdlhIZH0K13P+x2G6qioNMb8K3OjBQVFlCQm4MmOwEB0WAkrlk8AUFBIAgcyc4kZfcO2rRuzeVXXk1eUQmFJaWgaSiqSnhwIN1qMRf+KgBAFEWKioqYPHlyo2YZdx/IYNHXCyjKzwM0IqJiGDD08jPSANi1axfz5s0Djt/+Ly8vj+3bt9O5c2fP/up0OklMTCQ6OtrTEvDfbDXA2H+Juvx3t8rKSjZt2kT37t0JDQ0F3KyUkpISEhISGhSoPnLkCDNnzqSqqgpFURg4cCB33HFHo5xPbZHBGjD80UcfpW3btvVAty1btjhkWc5p165dbpMmTQolSbIDSnFxccjKlSs7xsXFxfXo0UM6XqLCZrPx2WefoarqkQcffHCDyWRy4haXOq3dGxDffvvtSw8ePBh2LrsAXLAL9p8CAAC2b9/OL7/8ws0330ybNm2oqKjgoQce4PCebXzw+rN0vngAqiSd86BUkCRUl4viAweoSE9HUFXW7zvAvJ//xBASydSpU7nyissB2LB1J7t27uSl556iTcuWLF++3OPUvPDCC5hMJqZOnXry4L9WQHPKwbymAG71b3fvMOGUdAFUVWXSpEm0adOGkSNHuh1+i4Uu3bvTwtfA7LEjCOnQgdBWrS+wAP72wf8x/9Y08pM28d2ytbz25RIKy4qJjmpCYECwxylzOp08/MgDVFZW8vVX39Zxwmvq9p95dgpms4XXXn3rrOpVHQ4Hw4YPYcQD9/DVl9/y49KfPQBAQkIfxk14jGlvzyI5eavn9cGXDmTY8Et59eW3KCouJC8/h6v692bx/LnogkPQasbk2Qbo5xsAqDleLRBA0DQcFRVkbdyIy2xB0FSQFQRZJv3PlWguVzUDoJo5IAqoosCgCeMJjI9HNRmrtQAMnm4AgikQ0Sekdv/BMzhVjdyCInfdtd+JxZh2p6ZzpKAISRIRRIFtmzbg7e1Di7btOZyZgdVsJjI6lqDQME9AoGmau22jKLmF+gQBnaSjsqKcdX/8hiLLXH7t9ZSVlbF6xW/4BwTSoWt3nHY7DocDo9GEr78/IaGhhAYH4+1lQpZlyiqrsFhtnjVUFEUKjuSyb+c2JL2eZvGtiGnSFFGSPBkBnU5PYV4uSevX4OPnh6BptOvQAZeiUWU20yI+nojwSA6kpbFxzR906t6L5q3a1FPs1zQNvU6H0aDHckwnm/at3KKHAGWVVexJPUhZWTmWqkoqysuQXU5ESUd5aTGHMw+h0+nw9Q9EEKCstISAwEB0egPePr40jW9Fm9atiW8ai6KqHMkvQtLpaNO8CaqqUVpZyb60Q+61WxAQBZHNiWvo3qkjQ4cNQ5ZldqemU1hahoCAj7epwfaFfwUAcOTIEaZOnerRqGkM23cwk4UL/kdRQR4AEdExDBhyZgyAZcuWsXTpUnQ6HaIoMnr06Hrt/9LT00lNTaVnz56eNmuVlZVs3LiRli1besSB/23mcrnYv38/rVq1QpIkxGpW0D/FkpOTiY2NJSoq6l/5fGw2m4eZUjMGU1NTSU9Pp3fv3h5QoLYVFRUxffp0ysvLURSF/v37c++99zbCVqjxxRdfsGHDhuqSQCcdO3bkscceqzNmqqqq2L9/f2mTJk2SIiMji6uzHWJ18B/+/fffJ/Tq1cu/a9euJ/3N0tJSZsyYQY8ePfZdd9112zhDFsD06dMHpqamRl8AAC7YBWtEAAAgJSWFBQsWcPPNN9O1a1dsViv333cf6Vs38cErT9Jt8EAwmo4GpqcY9J7ambuF/mxlZRTu3o2rrJT8sgrm/fgHydl53P/gw4x+dBS+vr44HA6W/vQzXy38hvy8PJIS17Nw4UJuvfVWwE0DvPvuu3nllVfo3LnzSYN/gTNhAhztmH3ssU5mW7ZsYe7cuUyfPp3AwEAAZs6axTNTnuC7Fx+nXdvWRPfti2T4qzsCXLAGg/8GAjtBFJFtNvKTkpi3ZAVzFv9ChbWSuCYt8PX2Q9VUT13+U09PZvPmrfz26/I6TriiKAQFBfHMc1M5kHqAOe99eEpU8BMBAJcOGcRDD9/Plwu+4acff/EE+j179eDxJ8Yx/Z3ZdVoBXjpkkAcAKC0rIefwIW4afBELPpqBITSs8dpU/hUAQG0QQNUQFBnV5SJ74yYsRYVuBoAsI8jKUQBAqQEA3O6P3mhg8JQpmMLDUL2M4OV1VAxQAPReSL5R7haZnPk12B1ODmblEBMZTpC/H1abHVlR3HRQRUFRVGRF5lBOHja7HUEQECWRHZs3UZiXiyCIuFwuWrfvSIvWbeuJ8VWWl5Gbk4XVYnHrH1RbcWEBlRVlNG3ajCqzhZLiInSSDp1Bh05nwNvbh8gmcTRtHo/RZHLXu1cvh4IoeI5VI5TaslkTvPUSKSkp7Nm7D8loIr51O7eoq8OBw2Endc9uMtMPIOCm74uiSFzzeKJimxAZE0tsdBQlRcXs3rWTlu06IEk6VE11e6O1spy1+9HXfuwBfj74+/lgtzspq6zEarVht1mpKC2ltLiQkqJCbFYroiiiKAqgIcsysizj6+uHr58f8W3bExwWjtHoRbcOrQkNcq/bVrsdVVHrsDUOZGaTnZuHIIgIokjy+jX069OLAQMGuIMBu52te/ZjsdnxMhrp1bkdXibTeVvOGgIAJEni0KFDPPXUU/VE9RoTAIiMjuGiMwQAFi1axIoVK9DpdHh7ezN+/Ph69cq7d+8mJyeHPn36eOjIpaWlbNq0iXbt2h1Xdf2fbiUlJR7fLTo6+h93/p988gnh4eGNJkD3d7MaFoqvr68HYCsoKGDr1q20b9++wdaUNUFzjep9QkIC999//1mfS1lZGdOnT6e4uBhRFNE0jXvuuafOvLdYLBQUFJRHRkau8fb2rgBqEEpNlmX9N998M7hJkyYhAwYMqEPvPpHvvHbtWn744Qf5scceWx0fH59/BiCAMnPmzIv37dsXB1wAAC7YBWtMAADgwIEDfPjhh9xxxx10794dc1UVd952GyUZ+5n7/BO0u3gAkrd3o4IAguDOQpVnZ1O6PwXZYmXFtj3M++VP2vbow4svPE+HDh08TsCqVauQEQmLiGTHtq1s27yJnTt3ehD/X3/9lQULFjB//vzj0uCOrUnRjgn0TlsT4DRBgOeee46uXbtyww03AFBYWEjnrt14eEhf7h0+kKCOnQhq1uwCC+AfEPzXAADOqiqObN7M2/N/Yv7yP7E5bTRr2gqjwVgd/Gvo9TqeeW4qK37/k1Ur19RxwmWXTHRsFM88O5X16xKZ/7+vzxoAGHzpQB5+ZAT/++Irlv3ymyfQ79a9K1OmTqzHALjssqFcMnAAr77yFhUV5WQfzuDKfj357n9zMYaF/zMBgFqBv/sP1Yr/CoIGBXv2ULhvX7UQoILgqsUAUKs7A1RHtKogMHjSBAKbNkUxGcHbG4wGdxmAAAgikl8U6L3PukyiosrMocNH8DIZyS8qRZZlT5Bb05ZNrNWmSBBF9mzfQlZ6GmERkcS37UBQSKgb7BDqr2mlJUUU5B7BajV7juVyOdm3Zw97d+3E18+PhIsG0LR5C0LDI/H188doMhEcGEBVdd/645mqqjSLjaZ18zjPa4fzCti8fSe+vn5IOh3WqkoOZ6ZTUlyIj48vZWXlVFZU0KlHL5rFt0IDmsdEEd801p1dr6hE0zQcTicOp5PyyirKKqpOWl+oqipqNegjSSJitbq9zWrhSHY2druVgMBg/IOC0Ov1bE5cz5dffIbdZqNFq9YEBPhz2z0jaBHfkvDgQJrGRKKvLt1R1PpAhN3hZPu+VCxWG6IoknFgP/17daddrfrz7CMF7DuYgbfJzQCo3bnhrwAAdDodqampPPvMM/Tr3/8sp5v7eThcLnbvT+fHJYsoyj/SqACAl5cX48ePp0mTJvXA9cLCQk+t9X8FAMjJyeHzzz/n3nvvJS4u7h917haLhS+++ILCwkLGjh1LcHDwv/IZJSUlIQgCvXv39oA2SUlJREdH01AWvbZKv6qq9O7dmwcffPCszyM1NZW5c+ciyzKqqhISEsKECRM8gJndbictLa2yVatWa00mUxmg0zQNp9MpOp1OLSUlpc2OHTu63XHHHR6Bwto+syiKDXYucjgczJw5k4CAgNxHHnlkjXD6ReHKrFmzLt67d+8FAOCCXbCzAQBkaxXO8mKKzTb2Z2TTNyEB/+o6pJoF4v7776dr164UFxRww7XXEqjZmfHkOJr07oPkbUJT1DMKluucsCShOJ0UpaRgzcmmoKSMuUuXs+1wMZMmT+HBB0a4F8/Nm3nrzTfx8vJi1KOPIfn4o6oao0bcy9VXXsYrr7zqOeb48eNp164djzzyyKk7LbWDktMtB2gARDjZd7du3crXX3/Nq6++6nHERo4axa5Vv/Pp1NF4R0cR26v3BQbAPyD4rxnH9vJSchKTePbj7/hx3Xo0QaB501aIgoiGO/vv7e3NM89N4aely1i7dn0dJ9zlchHXtAnPPDuFNavXMf9/C88aABg0eCCPjBzB+3M+Ys2adZ5Av2u3Lkx9chJvvTGdbdt2HBUHvPZKevbqwWuvvIXVaiErJ53hvbvxw1fzGg8AOJXg/pwCADU6AO4yAFeVmSPbtlKVl4egagiywsE//3TT/xUFFI0aBEBGo8/ddxHbszuql5cbAKijA6AheAUjeoecvGzkFKzSbCE1I4vSiso6wf6xJkoSZUWF7NyaRFyL1jSLb4WPtxdBAX5omkZhcSkulwzC0fZ+giDiZTJis9s9AIDBaGTeu7NY8PknSJLEQ4+O4e4RD+Kw21EUhfCQYNq3bMbB7Fyyc/PdJQQNBNwhQQF0bde6DqU0IzuX9JxcqK7Z79y2FSa9u52bBnz00Ud4+QXSsWt3XC4ZQYBendvj7+tz3MA+Kzef9OzDJ7yHPt5e+Pl4o6oaFVVV2OxOVFXBbrMiSRJe3j5IkoQGmEwmvv92Ie+/OxNvb180TUIQjDww8iEeefh+msVEnNJzyzx8hINZ7vMqLy5kQN+eREREHp2bThebtu/GYNDTu0uHU+r8cK4BgN27dzPlySdJSOhHZZUZWVGrxwmAm91Rw/JwU8xFRNH9R6i156mKit3pJCevAIvNwdoVy8g/klsHAAgJ8KdTm5a45X5O7dq///57fv31V3Q6HSaTifHjx9cLdpOTkykuLqZv375/SwBAQ8PpdGF3OHG6ZFwuGZvdjt3pRJYVBAEkUULSSehEEVES0UkSkiihk0Qknfvv7nsvIIkSXiYj69atIzExkfHjx2M0GnG5XJSXl1NeUUFlRQUul4uIyEj8A4NwOJyYrTZsdgd6nY5msVHnrQNFQ1ZWVsa8efPIysriyiuv5KqrrvpXuhPJycmoqurpTlFVVcXGjRsJCgqiV69e9T5fVVXFzJkzyc3NRVVVunXrxqhRo876PNatW8eCBQvQ6/W4XC7at2/P6NGjPWt1UlKSGhsbuzomJuawpml6i8Wiq4ktBEEQfvjhh0vbt28f1L179wbXZKfT6W4361VfJHbVqlUsXbpUnTRp0oomTZoUcXosAHnWrFn99u7dG38BALhgF+yMAAANnGZKU7ZRvHcXadlHWLJqA94xLXhr5my8/P0BN5Xuww8/ZNy4cbRs2ZK0vXu5+qorubRTK558dASRPXog6HQeTYDTBgGqnQhraSlFe/fgKi1lw579zP5+Oc279OD1116jdevWVFZW8uabb7Jhwwbuvfde7r33XsqqLOzef5C01BSen/I4f678g3bt2ns2+4ceeoi3336bFi1anBEA4CkJOAN2w6mCAJqm8eKLLzJs2DD69esHwIHU/Vx/+WXMGHkHrVo0J6pfPwze3hfEAP/mwX9NAGYtLCRt3UamfLiQP5OTMRhNNIuL94A4iqLg5+fHs89N5fslP7Ju3YZjAACZ2Nhonn52Ctu2bmfeB5+eNQAwdNilPPjQfbz91ky21Mr01zAAXnv1bXbt3F39upPb77yFNq1b8uorb+F0OcjMOsiALu35bdFneEdE1Ku9PucAQGOAAMcCANUigKjKUZE/h4PCfSkUHzgAskL6qlXgUtzZf1X1AACIAoJOYshTT+EdHYlqMlW3AzSA5G5ZKhh9EX0jAOGsAQBwZ5T3pWVQVFqGKEkNrkmCILJ14zp0ej2devQmPCSIlk1j8al2wnILCkk5mHlMkB5Iu/hmZGTnkltYhF6nw+GwM+PN10hO2oHZXEn/AQk8/eLLiKLbT+veoS1BAX44nS6Sd+/DYrPXKSGo6WTRvUMbAv3rthDal3aInLx8BEGgRVwsLZsepW+npKSw4Muv6HXRJfgHBiG7XAT4+dKrc/uTBoh7UtPJLSzyBNE1Geiac+navjXBAe59zWK1kXk4j7yiYoRqQEWtVR5iMBhYsmghS75dSGlxOS6XgKx4MWT4MOb/bwbhIUGn9MyqLFa27dmP3enEXlnGkEsG4ONbV89hZ0oafj7etIiLOa9L2/EAgB3bt3PdbXfSo3dfrBbLcfdtz19r7XENUYDd4ow61vxeFwC4ZNgVaJqGsVoks22LZgQH+p/0vH/88Ud+/vlndDodRqOR8ePH07Rp0zqf2bx5MyUlJQ0CAB07djzv2XFFUbHa7VRVWag0WzDbrNjsDhxOl6ddJHXuaP1l4+i7gjvolyQkSUIQBPx8vekQ35wvv1zAkSNH6Nu3L4cPHyYvL4/S0lLsdjuiKOLt60+b9h2JjmtaXeYieJ5RcKA/rVs0PaneyLm033//nSVLlhAREcHEiRMbFMX7Z7sTGps3bwbwAAB2u52NGzfi7e1dp2VljdlsNmbMmEFWVhaaptG1a1ceffTRsz6XxYsXs3z5cgwGA06nk8GDB3PbbbcB7uRfTk5O9pAhQ9Y4HA6Dy+WSACRJUr28vBz5+fnRP/3006W33347vr7HHy9Op7NBFkBxcTFvvvkmgwYN2nXFFVfs5PTaAsqzZs265AID4IJdsNMFAGQ7qr0cTVVAceCyWNBUFWthIeb0g8z6ZimX3D6Ca2++xfOVxMREvv32W5588kkiIiL446el3HPffTx5x3XceectBLRp6z5etWNwqu5tDeW/LCuLstT9WMor+WL5Kn7ZlsKjEyYxbuwYwC36M3fuXLp27cr48eM9Qik796dRabbx/rszKMk7wvLfl3uO/euvv7J48WI+/vjjM1qkazsx5xoEWLduHRs3bmTy5Mme10bdfw9yfjZP330Tvs2aEVwNbFxgAvw9A//aAEDFoUPs25jM5A++JnHXTvz8A4iNaurpAKAoCgEB/jzz7FR++P4nT0b+qLNY/f5zUyksLOLN16edtQjgnXfdxvDLhvLqy29y4EAaBoNb7b9f/wRGPfoQr77yJqn7D3icgUdHP0JoSAivvPwGsiKTmZVGv45tWf7dZ/hGRf3zAICGsv81IIBS3eLPJSMoCprTSenBgxSnpbF32TJ0KtUAwFEGAIKALGj0e3AEUd27uwGAmnaAUnXdv2Rw6wBIBmq33jub65Blhf0ZmRwpKPIErrXHXnlpCTuTN9GtTz9atmhO2xZN63SYsNjsJO3Y4862a+Dn403X9q3wMplwOF1sq65JdzrtPDFuDCl79uHrF0VgkMRLb7xF0+Yt8PP2onvHtp6AP/tIPinpmXWy14qqEhcdSbv4ZvUDz8wcDmblEODnS89O7eoI3y398Ue2bt/JRYOHIkkSsqLQ/JgSguOZxWYneedeXNUdKiRRxCUraLjLPdq1bEZcdGSddf7AoWyyjuTXAS8EwR1cfT3/Cz6dNxdF1WE0BuJyOujcrQtfff0pbVueWgZZ1TS27dlPXkEhRkFhyKCB9YCMkrIK/P18POUEfzUAkJSUxI133E3vhP7YrNbq8V4r0D+FvfDYcPZ4AIDT6ULTVPx8fWjfqsUpBZ8//fQTP/30EzqdDoPBwNixY+uB/Js3b6a0tLSOsvr5BAA0TcPmcFBZZaG8qoqKKjM2mwOnS672J9xMm1P1KwRBQBDFOuwKh92GxWKmqqIcp82CtaqKnJxsHA4HLllGr9Ph6x9AUEgoYeERBAaH4O3ri8HQcJmJS5YJDQqgZ+cO/FWNusxmM9OnTycnJ4cHH3ywwYD4n2yqqrJp0yZ0Op2nBKBGGLAGAGio/d7MmTNJS0tD0zQ6d+7M6NGjz/o8PvjgA3bs2IHBYMDlcnHLLbdw6aWX4nK5+Pzzzxk8ePD66OjobEVRDJqm4evr66o+N3nz5s1dsrOzO990001nfA6zZ89G07Qj48aNW8npMwCG7927N1zTNDp16nQBALhgF+ykAICmolTlgcvqcWJrNhYEAUvmIeZ88CmRfS/l3nvqqoz+8MMPJCUl8cILL2A0Gnn9uWf55MP3+XDqaHpfNgzvqGgPLfhUWACCJKE4HBTv3481J5us/ELe+voHbF4BvPHW2yQkJFBWVsZrr71GUVER48ePr1Mf5XS52LIrhUqzmVEj7uXJKU/w8MMPe95/5plniI+PPyOxlHoAQE3gcIY6ByfTBbDb7bz55ps8/PDDHvXbTevWcvGgQVyd0IOR1w6nZ/+++LaIR2cyXdAD+JsG/zXjumTPbnYk7WDS3AXsTj9ASHA4EeFRR/uVKwr+/n4889xUlv+6guXL/6jjhNeMl6eemUxAgD8vv/g6lZVVZ6zm7HS6eOrpJwgKCuSlF1/HZnPXJDscDm659UYGXzqQV156g7y8fCRJQlFUnnpmMhazmZnT30PVFA5lpdG/c3uWL/oUn8jI8wcAnM7nThcAUDWPBoC77Z8MsgwuGVF2YSsuYfcXn5F/OA/FJSNqtUIbQUAVRYzeJgY9/TSmqEg0o9GtAyBJnnMVfcIRTP6NymRQNY0Dh7LIOVJQZ52SJIkjh7MpLiwk4aIBdGnbsl5feVVV2Z2aTl5hEQaDgc5tWhEafDTLVlxWzr60TLKzs5jw6COUlVrQ6Y047CU8+/JrXDr8CppEhtKiSUydtXjzzr1Y7Q7E6oy7Qa+nV5f2eDcgapeZm8f+g4fo1KYlMZHhdd77/H//Iy+/kN4XXeKhnbvZBv6ndG9S0jPJys3DoNPRsXU8qqZRUl5BbkEhESHBdGnXul7Qs31vKuWVVXUCc5PJxGcfzeOzD99HlLzw82+DuTKd2Lgo5n38IcMGXXzKzyv1UDZ7U1JpERtF184d/zbL3PEAgDVrVvPiy6+Q0H8AJaVl2J1OXC4Zp8uFyyVXi1BqbmDl2Gj/OFCATqdn/Z+/1QEABgy9HKNeR5sWTQny90eSTq0EoKYLgCRJ6PV6xo0b1yAAUFZWRkJCAv7VbMby8nI2btxImzZtTosVeKrmkhXMFmu1JkUlZqsNh9OJqmke8OSUfKNawb5QPd9dTic2qwVzZSXlZSVUlJVSVVGBxVyFy+VEVVV01e09fX39iG/TjqCQUHz9AzCaTJ6WrWp1549j/RNV1RBFgZbNmtA89q8VD/zxxx9ZsmQJAwYM4IEHHvhXuRYul4uNGzdiMpk8AIDVamXjxo34+Pg0CACoqsqsWbNISUkBoEOHDowbN+6szsNisTB9+nRyc3M93SIefvhhOnXqRHJyMomJidbRo0f/ZrVaZUEQBF9f39obvrJs2bJLQkNDm9Rcw5nYZ599RlFRUdHkyZP/OF0cvDYA0LFjx7O+Hxfsgv37AQCXDaXqyPF2HSS9jpmvTyeiY19uv/02z+IjVNf2zZ49G0EQGDNmDE6rlWuuuBxvl4W3xz9MdJ8+GPz90RTlxJtcNeXfVlZG4Z49yGUlbNybxswly0gYejmvvvY6AQEBbNiwgblz5zJ48OAGN4GSsgr2HswkOSmRaa+/4m6tUo3qm81mHnnkEZ577rl67YHOBAA43muNCQIsXLiQoKAghg8fftQZ/vhjJkyaiMth54X7buG2q4YT2KoV3pGRUI82eMH+6uC/5rOFW7ewceM2Js5dQFZ+LqGhkYSGhHkcZVVVMZlMPPPcVLZu2ca33yyu44SDO2t/2203c/2N1zBr5lzWr0vE6wzqM2VZJiw8jOdfeIoDqQeZOeNdDNVdJVRVZepTT+Dr68PLL76G0+mqDn6MPP3sVDYnJfP9kp/QNJlDWQcZ2K0jvyz8GO+/CgA4m+D5eACAWk3vVxSQXW4QwOVCcLkQZBltSyKHUg6wZ1cKmlwbeBNAEpFFgb4PjiCqew/w9QFjTScAt8MtmAIQfcMbt5ShJpA+nEd69mH3Gl29rhYXFqDILoYPGeyhux9rDoeT7fsO4OfrQ4dW9TPZ6TlHWLr0R6ZMGIPRGIOk88FctZ9rb7qFSVOeokOr5vUytfszMsk6nI8kiSiKSmxUOB1aNRxk5RYUkldYQvcObeplwxctWkReYTEdu/dClhX8/bzp2ak9ulMEvyrNFrbsTkFRFPp07ejRDUjPzkUUhQaDm/ziUnbvT6uzthuNRubMnM6irxcgSt5ERA6hIH8V/v4G3poxkwfuPvU+3Fm5+ezcm0L/nl0JCQ762yx1x+sCsHz5ct6fO5dBgwfXA0ucLheyrCDLMg6nC6csI8sKquoGBWrKKGq0JHQ6XbVmgMjCBf8jOysTQRDqaAB0bd/6tM77999/Z/HixR4AYOzYsfXa+tVoACQkJHg67DgcDhITE4mNjaVVq1aNcg/tDhcVVVWUVlRSUWnGarMhV2tZiKcQ8AuiWIcJoFUH+3abFbPZTGV5WXWwX465qhKbzYaqqkiiiMFkwi8ggIDAYELCwvH19WP75o0EhYSQMHAIiiw3GPDX+CM1K5JBpyMowJ8mURGnVIJxyvfGbmf79u0UlpTg7+tHbEwMkZGR+J2E5ZGamsqMGTMIDQ3liSee+FeVAdjtdhITE2nevLlHh6JGAyAgIOC4jId3332X3bt3IwgCrVu3Zvz48WfV3vHIkSPMmDEDs9kMgL+/PxMnTiQiIoJ58+YRExOTc9VVV62hfmZeA/jtt98Gd+zYMfLY7hunY59++ilWq/Xw6NGj1+BuK3gBALhgF+xcAQCqtQTNVgpCw3NNMuh5b/Y8ugy4jAEDBrDuzz9Y8OnHBEZE8ORzL+Dl5c0zzzzDsGHDGDp0KNs3b+b6a69m3PXDueXay4no0RNBkhoOojhKH6zIyaE4ZR+q1caiNRtZsmkHYx+fzH0PPOgJhnfv3s2DDz54XLGetMwc8ovLePPVF9Gcdn755RfPe1u3bmXevHm8//77Z7RIHi/YbzQQoIFjbNiwgR9//JE333yzzutbEzfw4EMPsWNfCo/ffBWPXHsZAS2aE9SqFWIt7YULdg4C/9MM1gRBQHE6yd+cxKrEbTz+wVcUlRcTFdWEoIBgDwOgRr392eeepLi4mHdnv1+vTs7lctGseTOeeXYKhw5l8tYbM1BV5ZSFsmrMZrNx+eXDGfHQvUx/ZzZJmzZjNBqRZZmoqEiee+Epdu7Yzdy5H2LQ61EUhaioSJ56ZjKffvI/tiZvQ1ZcZOWkc1mf7ixZ8D6m8IhGFQHUToVZc7YsAM2DvhxV/69dAiAr7uy/7AKnO/jH6YRtmzCXlrJpzWasVmtdAEAUUSUBo583g557HlN4uJsFoNcdFRHVe7m7AZxlO8DjWW5+EQcys3HJMpIoYjabCQnw46I+J+7hbrHZERDw9qpPB3bKCi++8hqvvfgc/oGdCAjsSG72N7Tr0ImPv5hP7y4d64n+FZaUsWNfqruFnqrSpW0rIsNCGv5tqw0N8PWuLw61OSmJA5k5RMc1wyXLNI2OpG0DZQTHfczAzn2p5BWW0LFNPE2iIjxzTlFUdLr6+4Gqqmzfd4DisnJPGYPBYOCd11/hl6XfI0m+NI2/h9ysH0AoZcozz/Hs1CmIwonPQ/A8o0KycvPp263jac/f8w0AiKLIjz/+yMcff8yQIUMa9ffeeWcaaWkHEEXRAwCEBvrXY2WczP744w8WLVqEJEnodDrGjh1Ly5Yt63xm586d5Obm1ukCAHio1l26dDnjPdxis1NRaaakvIJKswWb3VENwjWc5a95zVM+Ub3eKYqCw2HHbrVitViorCijoqwMc2UlVVUV2G02ZNktgqnXG/D19ycgIIiAoCCCgkPx8ffHy9sHg9GIJEo4HHZW/fYz/gGB9Ll40HGZgoIgoJMkTEYD/r4+BPj74uvtjSSKeHuZzsK/gSqLGYfThbeXF94mA5u27SLjUBZVleWYKyuQBAgPCyO+eXNaxLcgLCys3u+VlJTw1ltvYbFYmDRp0r+qY4PFYiExMZEePXp4uhzUlKZERUXRrVu3Br83Z84cdu7ciSAIxMfHM378+AZr60/Vdu3axYcffli9LirExsbyxBNPYLVaeffdd7nzzjuT4uPjD1C/Nl/TNE1at27dkC5duoScDTjzwQcf4O3tnXbPPfds4vQ0AJRqACDsAgBwwS7YqQIAVXloTstxHVBJkpj7yVfceOcITF7ePDVpPDf1aMO6xCR8uvRn0qRJZGRk8M477/DUU08RGxvLS88+y0fvv8cnUx6jxyUDCGrdusGgVBBFVFmm+EAaVZkZWC023l38M5lmJ6+9PY3eCf2oqKhg6dKl+Pr6ct11152wdd/WvankFxQyasQ9PP3kVEaOHOl5/5NPPsFsNp/xonCiQP+sQYBawUjtY1gsFm677Tauv/56RowYUec7BdlZTBw/jq+/X8qDVw1l3PWXERgbTWjHThh8fOpu9FrjBxkXgv9TnHSiiKOykvykTfy8YRtPf/Q1VdYqmjdthcnkjaYdnRdOp4sx40YRGhrMKy+92eCYcrlcPPTwCAZfegmffTqfZb/81qCi7nF3SUXBy8vEs88/hdPp5PVX38bpdCKKIna7neGXDeH+Efcwc8YcDzDgcDjo2asHj4x8gFdfeYvD2YdxuOxk52Rw8+CLWPDxTPQhof8sAKD281XVuvX/mlYNAMi1SgDcDABkGbZuxFpWwcZ1SViqLAievJmAJoIqiIRGh9N3ylR0QYFoRhPodG4hQPegQPKLrNsOsJHnZn5RCfsOHkJRFFRVpV18M+Jios7qmOMnTmT2zJmEhPUnOuZq9u56AS8fid9+X0n/PvWVqm12B5t37cXhcKLT6ejese0ZiYlVVVWxa38aFocLURDo3LbVKQvu1VheYQk7UlKJiQync5uWp/SdguJSdlWzAITqzPWrLzzLn8t/RacPoE27yeRkfYPZvJsRDz/KrOnTMBn0pzRU84pKsFhtdcQO/44AQM36s2jRIhYsWNCoAICsqkx7ZxqH0g8i1AIAQgL96XqaAMDKlSv55ptv3OwCUWTMmDG0bl33GBkZGezfv59evXoRFhZWJ/ApLy+nX79+dbQxTtRCUlYULBYrpdXU/kqLFZfThaaBKAp1A/xaeglaDfAky+6svt2G3WbFYjZjrqzAXFWJpaoKs7kKp8OOIrvZk0aTicDAAEJCwoiKiqJJk1giIiMJDAzCy8sbSefuVKEqCpqqkZ2XT15hMaqisH7l74iiSP/Bwzy93Y+CENTqHCC6u9JoGrKi4KpuBdc0JpJWzc5MH6G0vJLt+1KRZQWjQY+frw82ux2HU0YUBVwuF5XlZRTkHaGkqABUhajICNq0bkPrNm2IiIhAEAT3XvX66+Tm5jJp0qQzYnH+XS03N5d9+/bRt29f/Pzc4qiFhYVs2bKFrl27Eh3dcPnF3Llz2bFjB4Ig0LRpUyZMmHBavkBDc2jhwoUezZ/u3bszcuRI9u3bx9KlS7UxY8b87uvr25A6v6aqqmHt2rXDunfv7l9TXnO6pigK06ZNo1u3bpuGDh2adhoAgCbLsvTOO+8MP3ToUKCqqhcAgAt2wU4KAGgaSmUuyPYGHVBJkigqLubnPzZy/yNjWPTdYnSuCq6/+lIWvf8xabI3Tz35JABLlixh27ZtvPTSS1SUl9O/X3/6Novk6ftuJrxnL3zCwtBqBaWCKCI7HBTs2oWzsIDsgiJe+GwhTdt3Ysbs9wiJiCI9PZ1t27bRo0ePk9bnma02dqWms2P7Nl58ajJr166lTS0HYMKECQwbNozLL7+80QGAxgABah+j9nG2bt3KlClTGDZsGJMmTarDXlCcDt54/lmefeNtBvfowgt330jT5k0I7tgJ75CQoyBAI7QcuxD4n9k9EyWJyrw8Crdu4as/N/Ha/MUomkLzpq3Q6/V1nrnD4eCqq69g2PBLefnFNygrK6vHVnG5XERFRfHUM09gNBqZ9s4s9u7Zd8obv9Vm44YbruX2O25mxvT3PEF+jbP75NNPYDKZeOWl13E4nB5dgJtuvoE+fXvx8ouvY7c7MFsqyT2SxSPXXsa7M19FFxzSuADAqc6lswUBGhIAVNWjbf6qg39k2QMAqFs3olqsbNmwmcKi0rrnKbjhgJjmTeh2xaWoQX4QFIjUvFO1EKD7dwWvIESf0HMKzuXkFbI/IxO9JNG7S3u8z8I5BLjjzjv5ZuFCIqKvoGnzu9i17Uls1kyW/forl9UqU6ptew9kkJ2Xj7+vDz07tfeou5+u5RUWszv1IF4mIz07d8DrNDtgOJwuknbsQa/X0adrxzoCfydySLfsTqGiyuxRVn/hqSlsWLsaozGKDl1f5HDWIvKPLOe6G2/m448/ISTQr8FjqdXPueZ3S8srEUWRQH/fv9Xy1xAAoKoqX375Jd99912jAgAOl8z0adPIysxAEI4CAMEB/nSrVQKgqiqqpp2w5GPt2rV8+eWXJwQAaoKq+Pj4OgFkcXExW7dupVevXnX6zDudTlwuF5qmodfrUTWNSrON8soqKs0WrHa7m9pfXc9f85xVRUFRZBRZRnbJOJ0OnA4HdpsFq8X9x2azYLPYsNksOB2OavV90EkSXt7eBAUFERISQnh4OLGxsURGRhISEoK/v/9J18XSikr2pB7E4ZTR6XVsWvMnFWWlXDL8SgxGU73uTDV7UO0SgJpfUFSVqLBQurQ7s/KIisoqtu1NxeFyecZ+7SSOG4QQq4N8B2UlxeTl5lBaWICARlRUFG3atiU6JoZvvv6a3NxcJj/xBC0bqVzj72B79uyhsrKShIQEzzOpAauOZavUtnnz5rF161ZEUSQqKoqJEyd6AIQzsa+++orVq1d7xICvuOIKrr/+etatW8e2bdsco0eP/k2SJDP1qfkaIP7www/DevfuHXw8wOJUgJA5c+Y477rrrt/bt29fwamXAChFRUVBb7311nCLxaJzuVwXAIALdsFOCgCoshsAUF001F9GMhhIStqCYgymV5/+vDtrGqPuvQGn08Fzr83i/odH07WaNqcoCk899RQDBgzgqquu4v33P+C5qY+z8LkJtOnUgahevT3OrihJOKqqyN+5E7WslA17U3n+04XcfOfdvP7mW4h6A8nJyZSUlHDxxRfj7e190ovLLyohNfMwn3/0ARkHUli9apVnMa2srGTEiBG89NJLtG/f/pwAAOcSBMjPz+fZZ59FkiTefPPNevVvX3/4PiNGj6VFTBTvjLybdvFNCWzXHv/YWPdmX7vW+QIQcHqB/1neJ0EUKT54kLJ9e5n74yreX/oboiTSLK5lvXHicDjo3qMbEyeN4fXX3mHfnhQMDQQ6drudiwcO4JFHHqCwsJAP5n5MSkoqJpPxhAwZm9VGpy4deWLyeFb8vpJvFn7nCWzsdju9e/dk0hPjWPj1d3y/ZCkmk8lDk5765CRUReWtt6aj1xsoLSuioPAIT999My+89CRSUHB9eqlQyz2o+5eTPotzDgCcsAOACors/n+NBoAHAFBQk9ejUxT2797H/pR0j5hWtXcLgoDOaKDr5YOJ6NAS1T8AfL2RYtoc/U2DF5Jv9NHzPkdzcX96JpVmCz06tTurfvKKojBkyKWsWbOWpi3up0ncjaQdmE1h3gqmTZvG+PHjG/ze4fxCdu8/SEhwIL06tTvjtdHlktm0YzfeXiZ6dGx3RsfYdzCDvIJiErp3PuXe5hk5uRzMzHEDcQI8P/UJNq5fh69fOzp0eYG83F/JTP+UAQMHs+DLL+t0FDjR3uBwOtFJulMWufurAABRFLFarcyfP59ly5Zx6aWXNtpv2Z0upk2bRs4xGgDB1RoAQq17Z3c48DId/5lt2LCB+fPnewDTsWPH1ssS22w2EhMT8fHxoW/fvp7XZVlm48aN+Pr61qNby7KM1WqlqqqK8ooK8guLKSopxWa343LJOOw27FYrDqcdVVaQFRlZlnE5HcguFy6XC1mWURUZVdFAcBeC6PV6vL29CQwIJCAwgJDQUCIjIomICCcoKIjAwEB8fHxO+546XS627UmloqoKnV6P025n7R+/YjAY6T94GJIknZZOkCiKNI+NJiQoAEmS8DYZT3sOl1ZUkpNXQElZObJ8/JK1Gs0SALvNSlFBAbnZWRQX5aOpKoos43Q6ufq667mof3+Plsc/2Wra/R2rQbF161YPK+V44P4nn3xCUlKSu3wmMpLx48d7tC3OZH1/9913SUlJQa/XI8syd911FxdddBGrVq1i79695tGjRy8H7McJzJVly5b1Dw4Obl57bp2OLVq0iAMHDhyeMGHCGm9v79NZGF07d+5sM2/evD41bJELAMAFu2AnBQBc1QCA3CAAIAoCy1YmMvCy69m1ew/moizatYrj3XnzGXzZNXXE6QAOHDjAtGnTeOONN9DpdHTu2pWbenVg1DXDCO7ajYAYt0q0rayM/B07UKoq+XZ1IrOX/MbLr7zCw4+5W/wt/+039AYDAwcOPOX6yAOZOSRv28Go++/mmaefZvLkJ+ospu+88w5ffPHFGdVInY7if2ODADW/6XA4ePrpp0lLS2PmzJn1auBW/LCEW++5jwAfL2aOvp/OLZvi36YtwS1a1M/MXgACznngXzNuRFGkaP9+Sven8OpXP/PVH2sxmUw0i4uv54jJskxkVCTPPf8kSxYv5bdfV2AyNdyeyeF0csUVw7nzrlsxmy0s/u4HNqxPxGy2eKinNXNHURR0ko6+Cb25+9472L1rLx+8/5HnM6qqotfrmTJ1EqFhIbzw3KuUlpZ6HIGgoECef+Ep/vhjNT98/yNeXl4UFOZRUlrIzDEjeGzCY0jBwY3XiaImE3WqHTbOBAQ4lQ4AtboAeOj/ioK6eT2iLGOtNJO0YTNVVZbq+V5d5S1JKALEtGxKt2uHQ1Ag+PshxbatPkcNRL1bB0Ayuv99juagw+misKTUU/d+plZSUkK/fv05eDCN1u2nEBY2gIL8PziYOpPbbr+dLxcsOC4AsGv/QWIiQk+7rrt+AH8Ig15/xrT54rJytu7eT4+ObQkNPjVHudJsZsvu/R7V9uemPkHiujVERF1Kq7bjKS3ZTMruN+jSvQtffrWQ9q3jT3mNF/6G6+6xAIAkSRQXF/PVV1/x559/MvgYEcAzB5RUKswW5rz3Lrk52fVEALvUAgDAnVkXTrAebNq0ic8//9wT4I4ZM4Z27eoDRdu3b6egoIA+ffrUyazm5OSQkpJCnz59jiswJ8syNquVkpIScvPyyMvLo6S4hKqqShzVWXxFUdHQkEQRnU6PwWjEaDTi7e2Fr68fwcFBnky+v58f/v7+Z0XbPtbyi0rYnXrQ3bZSpyPzYBpbN66jW+8EWrRpd9pCrZqm4ePlhbeXEZ1OT8umMZiMxjM6t0qzmazcfPKLS0+6rguiuyRBVVQslirycrJJ2bUdl9OJzmAgLCyClq1b0759e5o3a4qfjzf/RDt06JBn3IWEhHiAqo0bN+Ln50evXr2O+90vvviCDRs2IEkSoaGhjB8/3nOM07WqqireeecdCgoKEEURvV7PY489RuvWrWsYAFVjxoxZLoqis6FgQdM0JT09PWb79u2X3HzzzaeNamZmZjJnzhxt6NCh64cNG5bJ6dX/a19++eWl69evjxBF8QIAcMEu2CkDABW5oNUHACRRpLS8ggO5lfTtfzGffvwhYX4i6dkFXH7tTbRp3XAN1ty5c1EUhTFjxvDm22/z1Qdz+HzKo4TExdKk/0XYSksp2L4Ne3k5s5csY/6K9Xy78EuuuPZGZFlm8eLFREdHM2DAgNO6uF2pGSxY8D+mv/4qmzZtomfPHp735s+fT0pKCq+99tpZBeOn4rAdr57/jEGHY377nXfeYenSpUybNo1j262s/X05t9xxByLw3rgH6BIfR2C79gTHxzdMz/4vAwHnMPCvcyhJonjfPo7s2cPTny5h2aYkAvyDiImO8wgA1hlrgsAzz07BbLbwzlsz0et1xx2XLqeLSwZfzG233URQUCAZGVls37aDjIxDVFZWYrVYUWSFuKaxDBo8kOYtmrF2zXq+X/IjTqfTky2z2Wxcc+1V3HPvHfzviy/56cdlmKqzbQ6Hg969ezJ67CjefGMa+/amYDKaOJKfQ3lFKR9MfIT7H3vQrQHQiABAzRw45TmknUYQXfvZN0T/r+kAoMjVQoAuhBotAEVF3bIOnC50qkpOejbbduxzAwc1Y0cU0UQBn6AAEm68ClOzWFQ/b/DyQgqPr/59AdEn7Gg7wHM492RFOWXF/ONZSkoqffsmYLEqdOzyAn7+LamqPMju7VPo3qMziRs2otfXp/dn5OSyPz2TVk2b0Kr52fVZL6uoRIPjdjI46X2QFTbt2E1YcBBtWjQ9pe+oqsqW3fupNJtRFIWnn5jI1s2baNHqYaJjr8ZiyWb/7peIjPZmwcLF9OvZ7R+9LB4LAOh0OrKzs/n+++9ZuXIlgwYNOuNjV1RZKCguwWyx4nS5UDSNP375sU4bwDPtApCcnMwnn3ziAQBGjx7dINuvtLSUpKQkIiMj62T7XS4XiYmJ+Pn50aVLl9MSClYUd9cDRVGQqzseiaKITpLQ6fVnxbw5XcvKzWN/RhaSKCLpdOzakkRWxkEuGXYFfgGB9dZoobpF5/F8EJ0o0alNPAHVpSq6asbYmYE+CinpmeQXlZzW9ySdDpfDyarffqKirJSm8a3cQExxISAQERlJmzZt6dSxA02bxp2QKfJ3MlmWSUpKwmq11qn/P3jwIKmpqXTq1Im4uOOvmfPnz2fdunVIkkRgYCATJkwgPDz8jM4lOzubWbNmYbPZ0DSNoKAgHn/8cYKDg9m6dSsrV660jB07drnRaLTRAANA0zTMZrO4efPmnh06dIiPjIw89XW9rIyPP/4YWZbzHnjggQ3h4eENggzHG1bFxcVh8+bNG1pSUiI6HI4LAMAFu2CnBgAcvwRAkkTSs/MJjWtPYWER7787jauuvIL+lwzFeIIFtrS0lKeeeoonn3yS0NBQEhISuOeibtwy9GIC2rSlPD2dqsJCXpm/mF+27ObL+f/jmutvwOFw8NWXX9KqdWsuuuiiU74op9NFVl4BJeVVPP3ERHIyM9icnExgLSfx6aefpmvXrtx8883nHABoTBDgeL//xRdfMGvWLF544QWuueaaOp9PWr+Wa2+4EUGWeX/Cg3RqEUdQx04EN29+fPT/bNvcXQj8j39IUaRgxw6y96XwxLxvWLdrFy1btsbHyx+73d5gGcBNN1/PZZcN5YXnX+XIkbwGA6uaseFwOomLa8KwYZfSrVsXQsNCEAQBh8OJ1WpFdsmYLWZS9u1n9ap1ZGXloNfrjlIt7Xbad2jH5CkTyUg/xDtvz0SWZc/7DoeTUY8+RHzLFrz4/KvY7XYkSeJwbhZV5go+emIUdz90L4bwiHMCAJwTFsCxJTG1g39Na7AEQKjRAlA11M1uAABFQVQUNiUmk19UiiTWCH652wGKRiPdrxlGRMc2qL6+4GNCimzlARwEox+ibwQehbC/sa1Zs55Bgy7G5BVHx64votf7Ictmdm97Gh8fC8lbttOsaf2ges+BdHKOFNC1fWuiwkPPGsioCULO1PamZWCzO+jZ6dTLCFIzssjOK8DldDJlwmj27NxFp66v4h/YHlm2cTD1LQz6I3w6/xsuG3zJvw4A2LdvHytWrGDVqlUMHDjwjI6bk1fAgUPuzhQ1mXy9Xs/aFb/WBwDOQARwx44dfPDBBycFAAC2bNlCcXExvXv3rlPzv3nzZsrKyujXr99Z1VL/lXaksIjdqenodDokUSRx9R+YKysZeNlV6Ks7utSYKIpYLRYknYTBYKwHBKiahrfJRO/O7TGcoXZHnXl0KIvMw3mnDYjUnOea35dhrqzgkuFXEhYZRWlRIXm5hyk4cpjyslJEQSAiKoq2bdrSoX174prG4eP992UGKIpCcnIy5eXl9O3bl8DAQOx2O5s3b8Zms9G7d+/j1v/D0Zp9SZLw8/Nj/PjxnGn9/ZYtW/j000/dXYsUhebNmzN+/HiMRiNZWVn873//c40aNer30NDQMuqLANYAAJLFYjFkZmYO6Nq1a4jpFICYoqIiFi5cyOHDh2233nrrhk6dOhXq9frT2Q3ln3/+uXdaWlobWZY5ePAgF0QAL9gFOxUAAA21Kh/Naa52nAVPoOmw2zlSpRLfuiN5eXm4HFbimp0avfHbb78lNzeXCRMmMG3GTH74bB4fPv4IkiThdDp5/pOv2ZRxhO8WfUtC/4tw2O189tlndOzU6ZSDf1VVySssJrewGLvTxdbNSUyZMIbBgwbx22+/1VmYxowZwwMPPHDcdiqnGsz/ZSBAA8f69ddfmTp1KqNGjarT7QAgce0abrjxJnSawkePj6R1XAyh3brhHxNzcqG2fyMYcLKax0a4Po0GYjhBAEUhd3MSWQczmPj+V2zZn8pNN91ESVEFOTmH66hOgzsTFRfXhOdffIrffv2Dr7/6Fq+T1Cu7XDKaproFo5rEVNNKTSiKQnFRCenp6ZSXV3iofbV/KzQslMlTJhIQ4Mdrr75N5qEsT5mMoigEBQXx4svPkLQpmS8+X4DR6K4Bzc45hMVq5vOpj3LLfXdiioxqPADgGBCg0VkAxwIAqloXBKjXBrB2CYCKmrzeAwzoEMjKyGLrjj1Iglg9CESQRDRJJL5HZ9oNvwQ1wA98vMGgRwpt4WYMiDok/xiQDH/7KfTdd99zyy03EhTci7YdpqChgAaHDk6jsCCZFX/8yeBB9YPDbXv2U1hSRp+uHQgK8P/Lr6OguJSD2Yfp07lDg+3/GrLDeYWkHsrGbK7k8TEjyThYQNeeb2L0CkNAJO/wF1SWr+H9Txdw8zVX/usAgI0bN7J58+YzBgCycvM4kJnjBr1qzU+dTsea35d5AIComFguHno5aBrtW7U4rU4PtQEAVVUZPXo0HTp0aHgMFBSwdetWQkJC6N69u2dNTEpKQtM0+vTp87cszzgVc7hkknbsxlxlpqqygm1JiWiaRvOWrQiPjCYoJBRVVREliaL8PGxWKzFxTU94vd3atyEkKOCszqvS/H/2zjs8qjL93/c5Z0p67z2kdzoEFFApir1g79hR7GV1V911d60giAX7Yu8VFbtI74SQhFRI771MPef8/pjJkEACSQgC31+eS69cJDNn5tT3fe73eT6fTrbt3mO3MBQOMRQLB825tFotDXW1rP75B6wWC9NmnU5QaLhN30gQMJtMtDY1UVNdSW1VJa3NtgoD/wB/YmNiSUpKIioqqhfsOV6iurqanTt3kpGRQUhICBUVFWRnZ+Pk5MTEiRMPqQPxzTff8N133yFJEnq9njvvvJOoqKghfY9Vq1bxxRdfOBwAMjMzue666wCbG9WSJUs499xz/0hNTS2nn/L89vZ2LSB3dna67dixY0pKSop3fxUMJpOJrKwsfv31V1pbW02zZs3aMXHixFJ3d/fBeFjLbW1tns8999zs2bNn63fv3s22bdsARgDASIzE4QEAIJuQuxrBara1Atjn0K1dVlz9o9ENod+rvb2dxx9/nHvuuQeNRsPMGTN47JIzGB0bzeNvf8Taogq+/uorMsaMwWQy8cbrr5OSmjrgyUVLWzt7K6rpNJpobGzkw3fe5stPPiYkJISXXnqRuXPnOl7b1NTE448/zt/+9jeCg4MHlcT1Vxp3LCBAz+/Tva2NGzeyYMECzjnnHB599NFen5Gzfi3X3XAD9U2NvP3gbYSHBBM4YQKufgO0azvRQcBAhI6GKfHvTx9CEEUsBgOVG9azb185d774Hrv3lvDAAw9QW9PIn6vX9PLb7pmY33LbjYwenc7jj/6bmprafqsAeobVau21wmP/Fr1W/Pe/Vkan03LPfQtJTU3hlZdeY/Ufa3DqARuMRiNnnDGby6+8lP/++xny8wsccKC0vASL1cw7Dy3gvCsuPqoAYMBVAIO9Nvp0AFD3l/93uwBYZRsAkGWUbRtsz0qzBSw2nQDFZGbDhm00t7Y5fL0RJVRJwD3Ah8yLzkYXHori5gJOOjsAsAuiugUh6N2O+9tp6QsvcvddCwkOPZPo2BuQZSOCqKO+5n+UFK7k5eWvcfON8w+6N7Zk5dLW0cHkMam4HQercSazhW2780iJH4Wn28COe1NLG7vyi2ior+fe22+ktkYhfdy/0WjcEAQtzU3fUln2IS8s/x9XXHwRGvHEBaY9AUD3ePLLL7+wZ8+eIQGAipo68or2HjQGiqKEVqfltx++paayAkEQ8PUPYNqs09FqdQT5+xATHtZvC9SBsWHDBlasWDGgCoDW1lY2bNiAXq9n8uTJODs7O1oAIiIiTliP+br6BgqLiti5cyd1dXW2Vdm2VqyylVHxSYyKS8DV3QMBgbJ9JTTWVZOQko6zq1ufNs3dc46MpPhB224eGCVllRSWlh929V+WrYiCrX1BlmVamhppa22hvqaaspIiNFotU2bMJDg8AqvdocGhdyMIWEwmWluaqauppq66kqamRmSLBQ8PTyIiwomNjSUmJobg4OABiUsf7ei+7oKCgkhISKCtrY1NmzYBMG7cuENCizVr1vD+++872lUWLFgwZJHrbj2BbgeA888/v9c8+s0338Tb2zvnggsu2N4fAFAURejq6tIAlo6ODtdffvllopOTU1BycjIBAQHIskxbWxt79+5l9+7dNDQ0KCEhIbUTJ04sSEpKqtVoNDg7Ow9mEiF/++23k3fs2BH74IMP8vrrr5OVlTUCAEZiJAYMALonwooV1dyBYulCRQQnbzS6ofdSff755zQ2NnLTTTdx4403IVQW4e/tyTt/bOLjTz5lytSpWMxmli9fTnxCwkGCgn2F2WKltLKa2oYmrIrCprVrePmFJVSUl7Lgzrt56MEHCAkMOGhC8+abb/Kvf/1r0AKA6iESyWMNAbq3l5eXxw033EB6ejpLlizplVDW5GRxxTXX09jSwBv33oJvUCAhkyahc3UdeLL2F5fMnwhJf1/XRl/nVpAkjM3NVG/ayJ6SchYue5eS6grm33ATyUlJvLRseZ/XpMViITIinH88/jBZO7N5adkrDlGk4QhFUbBardxw43XMOX0mH37wKZ9/9iU6nd5xeBRFQafT8ehjf6OtvZ1nnlq839daENhXWoRWI/Du325nzrwL0AcEHBUA4ABzw3Wt9dv/r4Ii7//ZbQMoW/e3AMgKyrb1YDb3cAeQ0QDVFdVs3ZmDoiogiDY3AEkEnZa0uacRNWk0VmcXcNaDJCH5RAEKgt4T0TXguG8BePDBv/Hss08TOep6QsPPRpaNiKKe9pZvyM56m4ce+QdP/vtfB11nm7JykGWZyaPTBrzifrQjK6+QIH8fAv0GJpjV0WVgZ14BZaVl3H3b9XS0e5M29p+IogZB0NLe8it7S97kmSXLue6qy3DSajlR40AAIMsyK1eupLy8fNAAoKmljay8AixWGVG0C5NKEqqi0t7WSk1VBfm7d2EyGkBV8fD25qRT5xAWEkxGUtyghBJXrVrFl19+iSRJaDQa7rzzTmJi+q5YbGlpcST7qampgE3kctu2bUycOHHISurHKlpbW9m0dRvZu3OwmC1odTq8vH3w8PKmsaGWrK2b8fL2ITo2nvBRsbQ0NZC/O5vk9NH4BwYjy9Z+5xqSJDEhLQn3I1Tc35GTT11T8yEBgCAIGDo7aWyoJzAkBJ1Oj8ViYV9xIXlZ27GYzQiiiLuHJwkp6QSGhKJ3cuqlpdMNAwRBwGKx0NHeTlNDHbXVVTTV19HZ2YFWI+Hn509EeASjYkYRGRmJv7//MQMC2dnZGI1Gh+Bfbm4ue/fuPawGQHZ2Nq+88orjPr3mmmvIzMwc9OebzWaWLl1KUVERGo0GVVW59tpre2lMbdiwgd9//7353nvv/UWv13f3DB/k89PZ2SmpqiqKomhRVVW7bt26UdXV1YGyLHt2dnY6tbW1Cc7Ozl0RERH1aWlppb6+vk16vd4qCILk5uZmGcTXtlZXVwcuXbp05plnnimefPLJLF26lN27d48AgJEYiUEBgANSG1UVjjhPam1tZenSpdx3331s2LCByy66AA83Nx7+57+4/vr5yLLMK6+8QnBwMBdeeOFht9fQ1ExxeRVmq0JNdSX/e/1Vvv/mK0ZnZLD0hReYNm1an+/bsGED69ev59577z3iJO/ARHIwh0gdTghwAFSorKzkqquuIjAwkDfffLPXQFaVs4sLLrkULxcNz918FR4hoYRMmICo0fRL/YecXP/VUGAQdkZHK/E/1DkVJYnO+npqNm9i65693PPye1Q31nHqqbO44/bbePLJ52huau5TcMpkNHHWOXO58qpL+fijz/nyi6/RarVHDAG6k/95F1/IhfPOY9UPP/Huig96uQaATRhw9uyZXH/DNSx9/kU2bdrigEuqqlJSWkiwjyfv/O12Jp51Bk7DKQJ4wPlVBwndBnzdHKj+37MFwNotAmivAHAAgLVgtto1AKz7QYGikpWVQ3lVLYIogmirApAlkbCkWMZeeDqKl48NAGi1SL5R9jYAHZJHCEjHd9J47XXX8+47K4hLvBu/gJNtFQCCHqNhLbu2L+Ka+bfw0ovLcOqxYisrCpt27kan0TI+Pem42ZeKmjrMFgujwkMH9HqD0cTOPUXk5eRw123XIwixpGQ8gqqqiKKOjrY/KSp4hSeeXsIN116Nh6szJ2r0BADdFoBffPEFzc3NgwIAZouFHTn5tLS12/rRJQ0Ws5n62hr2FRdQV1OFk16PyWTGbDahKDJBoeGcPPN0vD3ce9kADiQ++eQTfvnlFzQaDa6urtx1112EhvZ9fruV18ePH+8QTSssLKS6upopU6Yc1JZ1uOepwWRCr9UO6n1H/ghTsVqtlOzdS25BMW0dXTi7OOPk7IwkaXo9N/Ozd5Kfk40oSaSMHkdbSzOe3j4kp2UcJETbM2RZwc/HizEp8YjC0Mcdi9XKlqxcOrq6Djt+iaJIXU01LY0NRMXGo6Bi6Ohk87rVdLa1oigKbh6eBIWGIWk0BIWG4e3jj9hH1Y0gCDZwLggoioLR0EVrSzMNdbU01NbS2tKM2WxEr9Ph4+NLaGgokZGRhIeH4+/vj6en57BB90NFUVERDQ0NDmvKpqYmNm/eTGRkZJ9OFt1RUlLCCy+8gNlsRpZlzjnnHM48c/AtSM3NzTz33HM0NTUhCAJOTk4sXLiwVztBR0cHixYtUs8666x148aN20vvKgChJwTo6OjQ2PMNxdXV1aIoitTS0uLS2dmpV1UVX1/fTjc3N0NHR4cESIIgCM7OzlZJkgY6oVNUVRXeeOONUzs6OoJuv/12tFrtCAAYiZE4cgAwfPHZZ58RGBDA6NGjiYiMZPr06XzxxRcIgsBbb72FRqPhmmuuOezgsbe8itqmFswmM7/9vIrlL75AU0M9DzzwAH//+9/7Fezp6Ojg888/x9fXl7POOuuwiZ3QT9J+qKRyKBBguEqae0KFxsZGrr32WgRB4J133um1ilG4ZSPnXDSPqSlxPHDJObhHRxOYnm57/1AuieG6jA6X0B3p5wxTwuhQdj5we4c5j6Ik0VpRQf2O7fy+cw8Pvf4hzW2txETH89+nnuD331az6oef6EssR1EUBARuuOk6pk0/iY8+/JRvv/kOYMgTTau99ePiSy7k3PPO5peff+WdFR+gKEovCGG1WvH08uSxxx+mvr6BZ59+3rEaZ1tZMVO0t4BxCTG89cAtxE6bhrPf0QMAww4Bel733aX/3T9lxVYBICuO/n+s9goARUHZts6W/JutDltAZBkRaGttY/OWXXSZTQiiZNMBEEVcA3yYNO8cXKLCUJydbDoAvqMceya6BSLoj2/RsXPOPZfvVq4kMeVhvHzHocgmBEGH1ZLD7p1PcM4Fl7B06QsE+nr1et+mnTm4u7mQHHv8lFW3dXRSU99I/ABdCcwWC1l7itmwfj13L7gBL+/JJCTfh6paEUUd7a3rKC5Yxv1/f4LbbrmJgCPslz5eAIAkSdTX1/PVV19hMBgGBQCKSsspKat0CM+V79tLYd5u2lqaCQ0NZfLkyQSEhPPJRx9QW12JgEBQaBgnzTwdH7sLwGDu9LfeeouNGzcOyBJt8+bNdHR0MGXKFMezd9OmTVgsFjIzMwflANANhP8KzQBVVVFVlc7OTgAam1vI31uKyWRFlETU7jmB3bKyZ+VUxb4Sdm3bgsViIiQ8ipNPm40oiv07ANhX/9MTY/Hz9jri+21bdp5jHD2U80A3BCgrKaaxsZ64pDRURWbz2tVUV5Th5uHByafNxtc/iK7ODsxmI1qtHucBrN7bKgNEBAGsVgtdnZ20tjTT1FBPc0M97W2tmOwit+7u7vj7+xMSHExoWBjBwcH4+Pjg7u4+7FCgtLSUqqoqx+q91Wplw4YNODk5HdIGsKamhiVLltDa2oosy0ybNo0rr7xySPf8Sy+9hNlsRlFsWkL33XcfHh69NVu+++478vPza+64447VWq1W5hB1a1arVTQajZL9WlLtl2OPYXw/URpk8g9gXbNmTfo333yTceuttzJqlG0sHQEAIzESxxEAqK6u5tNPP2XBggU88cQTZGZmMmfOHD777DOampq44YYbDvkwbWnroKisAqPZQklRIa+/vIy1q/9gzJgxPPfcc316EtfV1bF69Wr+/PNPXFxcmD17NlOmTBmS1646wJJyYYjbHM5qAEEQ6Orq4pprrqGtrY33338fP7/9qtt/fPsVV1x7PbedN5vLTzsZj6Sk/u0BjxUQONpAYYj7ZrbKaCRx//ka4DkXJYn6/Hxa8/fwzYYs/rniM7pMBvz9grn22qsYPSaDfz3+X6z2EtkDQ5ZlnJycuH3hLYwdO5rffl3Nxx9/RlNjU68e3YFcc0ajCW9vL6697komTprAl198zddfrXRM9HqGyWTi2uuvYtasU3nqv4vIzs5Br7e1KoiCSGdXB6XlxZx10kSWLLiGoEmTcfbxQR1uANDz2uqeNA7mfuvLGeBw/f/dAoC9bACtCLKMsmOjrfzf3F3+vx8AoCiIokhBfjG5hfuQJBEkCVUU0Hm6MfH8uXglxaG4OIOTDgTRVgWgKAjO3oiufsftwKGqKqeeegp//LGatNH/xd0zEUUxA1oUtZTcrMeZcvLJvPDSKyREhfd677bde/D38SIiJOi42R9ZUdhXUU10WPCAJvNWWSG7oJhV3//Iw/fdQWDwLGLib0NRTIiinraWDRQXLOHuBx/ltltvJjTg+D2XgwEAGo2Gffv2sXLlSmRZHjAAaG3vZGduPoqq0tRQz44tm2hrbiQhIZ6pU08iOTkZnU5HQWkF7779JvU11YBNBHCoNoAvvfQSWVlZCIJAVFQUd911V59jfrfHupubW68S502bNiHLMpmZmceVAOCBSf+Bxzk7vwiLxeJ4xgndzztV7QVNtVoNW9atoaRgD0GhYUyZMRM3d/c+NGNsn6nVaIiNDCMsOPCI96GhuZWdufn7wbajFaT/6oMuQxfFe/IQBIG2lmb2FRXg7uHJuCkn4xcQiKIoODk5IYji4CoZexwTQRAR7OOu1WLBaDDQ2d5GS3Mjrc1NtLW00NnZgWyxoNFqcXd3x8/Pj4CAAEJCQggMDMTb2xsPDw+cjsB6sKysjKqqKkcFwECvx46ODhYvXkxVVRWKojBmzBhuvfXWQX/+unXrePfdd9FoNFgsFhISEli4cOFBCw1tbW0sXbpUnjZt2rbp06fn048WwIHXktVqFU0mk6iqaq8d0el0sl6vH+zJsxQUFMS8+eabmdOnTxd76hSMAICRGInjCAAAvPbaayQnJzvU/X/5+WeKioq44cYbD7mSWVlTT1l1HR1dnXz31Rcsf3EpqiLz97//g3vvvfegfq09e/bw9ttvs27dOsLCwjj99NOZM2fOYYX/BpqoH412gOGCAN3bFAQBg8HAddddR2NjIx988AH+/v6O17z5whL+/uijPHfbNUzJSMF3zBjcg4KGBwIMAAgccRvEXzgxUw9MIIewyiNKEjXZ2bSXFPPx6q08+f4XWBSZ4MBwoqMi+fujD/H++x+x+vc1/U4gLBYLbm5u3HDjtUyZOpmiwmK++OIbtm3djizL/bYFyLKM1SqjqrZe/vSMNC699CK8vL14+613Wbd2Azrdwe81GAxMmZrJXXcv4PvvfuTddz7opVMgiiJNzfXU1FZx18Xncte8uQRMnITew2NIE7HBXEuq/TwMCQL0OI+HBgDyfhtAaw8NAEVB2bHBDgCsYDGDtScsUBABs8nEhs1ZtHZ1IkgaVElE6+zEuPPPxC8lDsXVCZydbToAvlGgyAh6D0T3oON24DAajZx00lS2bcsiY9yzuLpFoigWQIMgNJKT9Q/GjE1h0bJXSE+IQdvjuZ5bVIKftxcBvseXAnddYzNeHu7oBiAyp6oq2QUlfPD+xzz9xCOEhp9HVMy1Dh2E1paNFOUv5u77/87Nt9xEVMjxey4HCwB2797Nr7/+CjAgAKCqKrlF+6israO0qIC9BXuIjRnFtOnTiY2N3X9NmUxszyngx2+/pLa6CoCgkDBOnmWrABgzCABgsVhYsmQJRUVFqKpKSkoKCxcu7PN53dTUxMaNGwkKCmLs2LGO33dXDxxqxfVYJ/x9RU5hCTX1jbbV7Z5j1wHJrmK1smv7ZmoqylFVleCwCCacNB2dTndQD72iKHi4uTI+LWlQ1RD9RVNrGzty8hEEgeamRqrKS4mJT8LZxeUgAKGqKgaDAUmSMBq6WP/HrzQ31uPi6sb4KdMICA5GtljRaCQkSUQcptap7soEwe7koioKZrMJY5eBzo522lpbaG1uorOjHUNXF1aLGUEQcXLW4+HuibePN94+vvj4+OLp5YWLqxt6vQ5R0iCKtvY6URDRaEQ0koRG0iBJIlqthoqyMpqbm3sBqe3bt2MwGMjMzOwXUiqKwtKlS9mzZw8AsbGx3H333YOuEPz666/57rvvHA4A06dP54orrujztZs3b1ZXrlzZcdttt/0ZFBTUpyXgUQxLc3Nz0EsvvTTdz89Pf8MNN/Ta1xEAMBIjMUAAcKTJ2EAFenbt2sWWLVuYP38+O3fuZN26dcyfP7/fhEeWFUrKK6hrbqOkqJCXlixm0/q1TDv5ZBYtXsz48eN7vb6kpIQlS5bw66+/MmnSJG6++WYmTZo0LAPxgUn6sEKAAxLM4UxtDQYD119/PY2NjXz88cf7vWRVlQcW3sEXn37Mq/fdTGxMNIETJqJ3dx/+8u0TNIZq+9gvANi1i/a9Jaz4eQNPf/AFklZDaEgkggI33HQdcfGx/Ouf/8VoMNlWjfsIq8WKVq/jvPPO4vQzZqPT6diyeSt//P4nhYVFdHT0niyKooiXlxfBIUHExIxi3PixxMREU1BQyLsrPqCkZG+fFQRmk5mw8FAe/vsDNDU28/RTi+jq6uo1CRQEkarqMlrbWlh+702cnjmeoMmT0bq6Hh0AcCAEGOp5sSf6jrLY7t5/1P0r/6riSOYdDgB2HQBBVlG22wGA1WyrADDbdAFs77P91IgSpWWV7MwrBATQiMiSRMbMk4k+aTxWFzdwdQK7UJzkE4GgdUX0CDlu74nGxiYyp0yisKCaMROextkl2A4AJAShk9xdj5KcGs4zz7/I6KR43FxdeoDcOtzdXPBwO76cDjq7bEmGk35gwrC7i/ayZNFLvLl8ERHRVxAeOc8BAFqaN1K0ZxF33vc3brzpZuIiQ0/Y59+BAGD9+vVs2bJlwACgrbOLDVt3UFZShLuzjsmTM/u0JiutqqGotII1P//gsAHsCQAG0wLQ1tbG4sWLqampQVEUxo8fz0033dTPtdzIpk2bCA8PJy0t7ZgDgMEm/H0BgNr6RpvuSD8haTRU7iuhsnwfbu6e7CsqQFEU4lPSyBg3CUWRHf3yJoMBBAGdTkdMRCjBAX7odUdmU2owmtianYvRZAYVCvfspr21laSMMbh7eCLbFyC6k39BEJCtVgpysinOz8VqtZIyehzJo8dgNpkd29VobI4Psqzg7OzsaGmQZXn/nMr+cyjjePcxERBsUEBVsVosmE1GTCYTRkMXXR2ddHV1YDaZkGUZVVXRaDQ4u7ji6uaOTqdHq9Oh0WnRaLR2cGFz5RFFEZ1WS1VlORpRYNzYcbi5OuPj5cmunTsxmc2Hncu+/vrrbNmyBVEUCQwM5J577sHT03NQ199rr73Gtm3bHABg3rx5zJo1q9/3fPbZZ5SVldXceOON69zd3Q1/EQSwdHR0BL311lsndXZ2utx6660HiXWOAICRGIm/AAD0p2wvyzJGo7GXd6nFYuHHH38kICCAgoICzj777H4fUEaTiYK9FbR0dPDrj6tY/PR/MRo6+ec//8W9997bS+G+ubmZF198kXfeeYeMjAwefPDBYRu81QNWDYVDJIgHDhjDARqGCwJcc801dHV18fHHHzvOibGjg8vmzaO6JJ+X776JwOgoAseNG7wo4P/R5H84QYwoSVRnZdG+by+vfvcnz3/yNU7OzoQEhSMiEBoWwqOPP8wP3//Ip598ibNz/2WE3eJ9ySlJzJx1KomJ8Xh4elBeVkFRYTE1NTVYrTKBgQGER4Th6+tDUFAQnZ2d7NtXyuo/1rB1y3ZMJlOfloJWqxW9Xs/9D9xNVHQk//n30xQVFve65wQEFFWmZF8Rbi5OvP/w7SQnxBCSOQVJq0M9cO1JBbm59OAJqU/kgXeO/Z46sGS/h7ZQD1hmadiLxjfqUA+ng+AcqoooCHR1GTAZTXh7e6LKih0AHCAA2L2qb+3ZAqCg7Fhv7/+32P5mse6HBapdSBBAUdm6I5uqxhYkrQZZEAiICmfixWeDnze4uoBOa2sD8IlA0Logehy/SWN5eTmTMydSW2tm9Lgn0el9UVUrIAIm9uz+FzGxHvx30YuMTk7oZRnW0taOTqvF5YBre7jvtcGG2WITstYN0GYur6SMv//tP3zxyWuMiruZ4NAzHACguWkTRXueZeF9D3HtdfNJjo06WC/kBAMATk5OCILATz/9RH5+fp8AQLUDNdFeIScAO3bnUVJczNiMVKL78SSXZYWt2bl0Gkz8+fMP1FRVHAAA3BmdnDDg66O6upolS5bQ1tZ22F7ohoYGNm/eTHR0dC+BtW7rteFYPDhcKIoy5IS/Z3QZjOzIy8dssvRbHefq6kpnRzsbV//GqIREIkfFsf73n6mprECr05E5/TRCo6IxdnZRWb4PRZEJDY9Cq9MhyzLOTnrSEmLwOqAffLCRnV9EVW29Q2W+ICebutpqktPH4B8YREdHh11UU0RRFHbv2EZpcQGqquLu4YmPfwCJqenonZz7Fi5UVTw8PIiLCsdkttDW0YHBaBPHk1UFi8WKLCu2w3SkUKDbDccOBlCxjX2qiqIojv+xwx07icBmoGOvMugxNhXm78HZ2YWQsHAkUcDdzZWifFvr1JxZMw/5fT766CN+++23AYlf9jdPXLx4MeXl5Q7Qf+ONNzJ69Oj+M3GLhU8//ZSurq7KefPmbfb09GzH1g5wNB56CqA0NTVFffjhh5Pq6+t1N954Y5/72A0ARFEkMjKS+++/f0D2ySMxEv/fAYDhSpIdq+N28tptH9YzSktLWbNmDeecc85BwiLd0d7ZSWFpJfWNTbz5ykt8+uF7jBkzmhdffIkpU6Yc9ND773//i6urK4888shhBf6GOyk/ZCXAEAaW4bYK7I7Ozk4uueQS3NzceOeddxznpbqsjDNOn0OcrztP3HAZ3jGx+Kel2QDA8dLP/3/hhhNFqrZupaOigqVf/sLyb37AxdWNoIBQdFotJpOJy6+4hNlzTuOJfz5FcfFeR699v4mL2YwoigQE+BMYGEhCYhyJifE4uzgjihJWixWj0Uh5eQVFRcWUlZZTVVWNxWI5ZLuAIAjccedtTJo0npeWvcrqP9bgdEDSJggCRqOBvaWFjE2M4817bsAzKJjQ1Ahb4nx0Z829ZgSHC41PlGPiZZ+hOZJ9i9mCTqft2wVAPqAFoLv/P2uTvfzfvL//3yIfDAAUFVGjob62ns278myb1kg4ebkx+aKzcYuLQnFyARfdCQMACgoLmTxpAp1drmSM/TcarTuq2q0BpVCQ91/CQuHR/zxnS/zC9lczGM1mREE8KNFW7EJlx6rfWlFVVEXtt+rmwCgqq+LmG+/ht58+JiH5PnwDTkLpBgCNmyjIe4aF9z3IlVdfR1p8dK82iBMVAMiyzLfffktFRcVBAEBRVWRFQdujOqjTYKCuroGQoIBe4PDAaG3vZFt2LoIosfqn7/sAAIOrANi3bx9Lly7FZDJhtVo566yzOOeccwYFADZu3OjouR5ukbcjXeXvL/JLyqioqe33+zo7OyNJEllbN9HS1Ejm9NNwcnGhuaGedb/9TEd7G96+viSlj6GhthZBFIhPTsPZxcWRZMuyjIebG6OT4tDptENuCWht72BnbgEms9m+DYHCvN2U7yshOCyCyJg4RElCtlrJ3bmNkkJby4Ck0TBhyjRaWpqRLWYSUkej9oTFB8T4tESCAgIQRRGr1TYflVUFg8FEQ3MLrW3tmCwWLFYbEFAU5WBmLPT60f+cra8x/8B/9bER0e64o9FIoKjk7N5FZFQ0ISEhaCQRjSSyKyuLoAB/pp009ZDH9ccff+SLL75Ao7FVFSxcuJC4uLgBn5fa2loWL15MW1sbAG5ubgOCCG1tbXz11Ve0tLS0T5s2LTcpKamshz3gcK3HyIBrQUFB2sqVK2M7OjqEa6+9tl9rxG4AoNFocHd358EHH+xXCHQkRmIEABzFJPnABKOrq6tftf6mljZKKqrZV1rKk/98lJxdO/nbQw9x73334dajdDQnJ4dHHnmErKwsFixYwG233Tbs3q3qAC3ehhsC9PrsYWwJaGxs5KKLLiIxMZGXX37Z8b22b9zAmWeexWWnTGLB+WfgnZyC93CJAh6n8ZeuOgoCqixTvmE9XQ2NPP3x97z746+4uXkS4B+Mzq6O7ebmyiP/eBCjwcQzTy+mq6vr8D18Klhlq71/UkCjkRyq3RaLxaHm272iotFo+r0erVYrgiBw483Xc8op03j3nQ/45uvvcXI6eAIviiLNLU1U15Rz+emncv/5s1G0GkbPnITVbDn6x3SQEOBgKBDpMC92wK6eAKDbAcDaswKgZ/+/1Vb+b7b2FgFU1F4AwD7LY9vOHCrrGpF0WtBpGX3WbMLHpWB1dXHoAKDKaIJSj+sWgOzs3WRmTkBRgkgb+wSSpEdVFWyrWiKFe57Gx7eVfz21hNSkJFLions9+xGEg/y/5W4xsGO4Uj4Yn/nislouvfhatm5aRVLaI3j7jkeRbSKATY2bKMh9hoX3PcB551/EpLFpOB1h2fSxBgDOzs50dnby1Vdf0dTU1CcAOBDgKHYhzMNFZW0duwtK0Ot0/PHj90dcAbBnzx6WLVvmuN4uu+wypk+f3u94uGnTJiIjI0lJSXH8Pjc3l8bGRqZMmTIsfe9HK+nvtd/FpVTW1h10zJ2dnW3JsyTRWF/HpjV/kDx6LFExcchWKxqtltLiQrZtXIfFDpTjk1NJzhiHJIl9rLALKOYuIoIDSUxMHPL3raipZU9xqWNcEgSB8r0lZO/Yim9AIDEJSRTm5bC3MB+NVouqKERExzB6YiZmo5GcXTsIDY8gIDi0X/FCX08P4qLD8ffz67FS3/s1JosFq8WKyWzBYDZjNpuxWKyYLRassmwDA6qK2g0HHPMGYX9OL9gq4rrHelGwCeRKoogk2fQJNJKEKElIomD/nYRkT/w1koRWq6GttZXdu3czaeJEx1zXarGwfv16QsPCiImJOeQx3bp1K2+88QaSJKEoCjfffPMhV+8PjJycHJYvX24DJbJMSEgI9957b68qXgfMNRrZs2cPe/fuxWw2d/n5+bWazWZjY2OjLi0trSwjI2PvME2xZEDo6uqK+OmnnzL+/PNPj8DAQK688spDgoluAKDVanFycuL+++8fsgbYSIzECAAYRgjQX9Q3tVBSUc2WTRv516MPExUexvLlr/YS6Onq6mLZsmW89NJLTJs2jX/9618O64+jMSkczD6pww0BusHCMEKAsrIyzj33XObNm8fDDz/s+P2Hb7/FjbfcwhPzL+X8U6biN2YsrgEB/6cgQB9g/6+52UQRS1cXpWvXYuro4NH/fcFXa9bj4eGNr0+Ao6/SZDKRMTqd+x+4mzV/ruXNN1bYEqNBrEJ1Tza7r7mBXndmsxknJyduuPE6Tpo2hc8++YLPP/vK3qPYt69yVU05ra3NPHfH9ZyWmoDkoidl+ri/BgAcCAFEceCVB/byfNGWvSD5RSNbFUBBo4LaLf6ndCf/dgFAWUGwyjYAYDHvtwB0iATKdv0AegEAjSRR29jE5p25yICiERk1No3UuaeieLiDswvoJEA97gHA5s1bOOmkyej0MaSO/ieiqLEDABBELXsLn8fZqYwnnl1GcmIio5PiHNdgfyv9Fjt40kjSCfEcKSip4Zyz55Gfu5bUjCfw8EpBUcwOAJCf8zR33PsA551/IZPGpB3U8nCiAQAXFxfq6+v58ssvMRqNBwGAI4ni0gqKyiqGDQBs27aN119/3ZEE3XTTTYwZM6bP13aLAAYHB/d6TU1NDbm5uWRmZg7ZMehoJ/wHAYCSUiqr6xB7VLE4FkTs99uWtasxmUxMmXEqkmQrv5c0GixmM2t//ZHaqkoEUWRUfALjMk9GVQ5eXRclifycbOIjwzht5swju4/2lrG3ogrJDgBEUaSqopzcXTtpa27CaDTYq3IEfP0DGDNxCk4uLgiCQFNDA5VlJSQkp6PR6fqceymKgqurMxkJcTg76XF1dR1yRUc3CFEPAACOucQwzNEKCwtpbWlhfI/21aamJjZt2sTYsWMJDDy0C0N+fj7Lli3rVtvnkksu6dMdq7/4448/+PDDD9FqtVgsFtLT07n11lsPOmY7duxg7dq1irOzc11KSkppXFxcrY+PT6coirKiKBpZlkW7NeARje72w+2TlZWVsnLlysji4mImTZrEpZdeelhtg54AwMXFhfvvv/+wx28kRmIEAAxDsjyUh2FDcyuF+yr48vNPeHnpYuZffz1PP/10L4HADRs2cP/999Pa2sq//vUvzj///KOXLA5w9f9oQ4Ce2xyuEtnt27dz6aWX8thjj/VQeFW5f8ECXn3zDd544DamTBiN39jx6N3cTmhRwKMpsDjgm02SMDQ1Ub5uHSaTiQde/ZiftmzF09MXb2+/XiuERqOJs84+gyuvuoxvvlrJJx9/hmBfSTha17nRaCQsLJTr519N+uh0PvnoM7784huHOFFf17EiKxSXFuDspOfDf9xJsLsrLn4exGeOxmo0/XUHt2fSL4p994T2BQAUlZ57ppittHZ04h2RhCQIjoS/lwOAoqL2LP93tAAoPV6v9F79d3w3gW07c6msb0TUavAM9mfSxeeiCwlAcXGx2QGeAADg9z/+YOZpp+HimkDq6EdBEB33lyjq2Ff8IgK5PPHsMlKSkxmTHH/YEniTyYwgCuhOkB7N7D1VnDF7LpXlu8kY8xSuHjG9AcDup1hwz/2cd8FFTMhIxcPN5YR8dnYDAFdXV/bt28e3337ruL9+++03TjnllCOHKXvL2FtehV4/PADgt99+4+OPP3aUQd9xxx3Ex/ftItDV1cX69evx9PTspRnU0dHBxo0bSUtLG3DScCySfsd+GAxk5RXahPUEwQEtuucLGo2GqvJytm1cw+iJmYRFRiNbrUiSREdHB7k7t2GxmFFVqKksR6vVMuP0s/Dy9rFDOwFFVVAVBUmSyN6xDS83J66+6uoj+t5WWWbXniIampptVQCiiNloZM1vP1FXVYGksT0PfHz9GD91Gk4urg6RQFGUqC4vRZIkAkJC+33uq4pCSnwMgX77nUeOBAQcrZBlmQ0bNhAVFUVYWFive7C0tJQpU6YctsJ17969LFmyBIvFgizLnHXWWZx99tkD/g6ffPIJv/zyi0MAcNasWcybN2//+bJa+eabb8jNzW099dRTc8aPH1+h0+lMdpbuKKijBxcZ4pTNajabXfbt25fw+++/x23bts1Jr9dz1llnMXPmzAHNhXpqAISHh/PAAw8c1I48EiMxAgCOUtI8mGS1ua2d3MK9vL78ZT794D2WLXuB66+/vscE0cQzzzzD66+/zoUXXsijjz66X83+LwAAg+7jPwEgwMqVK7nzzjt57733yMzMtE0kWls4+8wzKS0u5H8PLSA6KYHAMWMR7SV4RzO6JwCqqh4xcBhO9f5h2TdJoq2yksotmzGardz/6if8tm07Xl7eeHv1Vla20XuZy6+4mLPOnsu3337PJx995rD5G87r22Qyo9NpmTbtJC6+9EKcnZ15/72P+PmnX5Ekqd9JkiAIGE0G9u4rZGxKIm/edzNWk4mgUUGEJMb8dRUAfUCAAV2l9uur195ZbQm+1WJCYwUpJHa/tZ/VAoqCmr3ZlvSbzIcXAFR6CBbaV7er6xrYmr0HWQCduwsTLjgT74TY/XaAIsc9APj+h1WcOfcMPDxTSU7/R887DlHUU7b3Ncymzfz7mWWkpaczOinusOr6XQYjoijgdIhe8eMpNm/fxxmzZ9PcVEHGuKdwcQ1DUSw2F4CmTeTtfooFd9/PuedfyPj0ZLw83E94AJCTk8Mvv/wCgE6nY926dQe58AzpM/aVUVI2fADg22+/ZeXKlUiSrRXqzjvv7NN5oPsZuGHDBhRFITMz05FYqKrK+vXrCQgIOGQP9bFM+nsm0TkFJTQ2t+BiL9VWFBW9TouKbeVakWU2/PkbkigxadopjpL7xvo6crN24OLqSlL6GJxdXMjaspH8nGwSUjPIGD+RlqYmLGYTHt7eODm7IIoiBTm7qa4o5a47F+LhfmTXdpfRSPaeIlrbO9HpdezJzmLLuj/RaLU2y2VVxcvbh8S0DPwCQxBEwT4/EEBVqK+txtvHD61e3+e8S1UUfDw9SEuKO6j1yM3N7ZjPDbqjurqagoICMjMzHYmqoihs2LABnU43IFHrrKwsXn31VQRBwGq1cvnll/fb/tIXgHj55Zcdq+YWi6XX+1VV5aOPPqKoqKj52muv3RAeHt6ITfF/yAfwgLYrBZCNRqPTjh07wjds2JBUUFDg1V2JcM455xAdHT3gbfd0AUhJSeGuu+4ayfpGYiSOKgAYQuJlkRW27srlv0/8k19++I6PP/6ol2hPXl4eCxcupLGxkaeeeorZs2cf9YMz1NX/gUKAoa5ED7cuwKJFi3jvvff47rvvCAmxJR2FObs5efoMxowK49lbrsQ3No6AboukoyAKKEgSoiBgMRjoamrGyUmPzsvLVkU9iM87npL+A2GNKEk0FRdTk5WF0Spz3/KP+GP7Dry8fPH28j3IWklRbArF8y6+kLPPmcvWLdt5792PqKqqPiLxpe5tm80WNBqJ5OQkzj7nDEaPyaC4uIQP3vuY7OwcdDrdIY+frf+/keqaCq46ew6PXnIWLV0GYkfH4Bbgh2I9BhUjdghwWACg7n+FqKj2N9hF/6yy7e9miy2Zt1jAZLEl+CYzoqnHyr/ZamsDOIQAYK97xn48N+/cTV1zG+i1pM05hcgJ6SgurjY7QI0GTcjxDQC+/OobLjj/XDy9MkhOf6SXCJco6qkoXUFH+2/8+9llZGSMJiMpDtfDlFF3dHYhiuIJUyq/em0RZ8w5Baulg7QxT6J39kdVrHYbwE3s2f0Ut911H+ecfyFjUhLx8/Y64QHAli1bWL9+PQCRkZFs2rRpWEpq91VUkV9SNmwA4EAhtAULFhyyVz0nJ4eKigoyMzN7iRJnZ2fT2dnJ5MmTj7ukfz+zlNmzt5S6+kZcXF1RVBWNJBES6IeLkzNFpeWIokTZ3mJ2bd3E+KnTCA4NQ1EUqspL2VdUSFBoGFGx8Y5qr+bGRlb//D1Wi4XQiCjaWptpb23Fw9OL4PAIYhOSMRoNrP3tZy659FImjht7xPtR29hMTkEJVquF3Tu2srdgDwaDAWdXN9LHTaCpoZ7qijICgkOJTUzC1d3TAQFMxi5MRiMeXt79zhdURSE2MpyI0KCD/na8VANs3LgRLy+vXtdqY2MjW7ZsITU1tVdVQL/P5i+/5IcffkCj0aDVarn99tsHLALY0dHBokWLqK6udmgU3HLLLSQnJwO2lp8ff/zRePPNN/8ZHR1di03pf8jzo87OTo1Wq1X0er0VUDo7O523bdsWsX79+riSkhJvWZaJjo5m5syZjB8//vBaSIcAACM2gCMxEn8BADgo8T1Momq2WPjx1z947tlnKM7P48MPP+Lkk09y/P2DDz7gH//4B6eddhpPP/30UV/1H+5E8pDigEOFAD22eaRJrqqqXHPNNRgMBj766CNHYvnZu+8w7+prePCyc7lx7ml4JCTgGx+POoytAIJ9FYKuTvK3ZfH2R1+zfkcWp4xP464FN+AVFwsIh4UAB/39GJX5HwociZJEXV4eDXm5GC0y9yz/kD937MTHJwBPD+8+vZVtQjwKs+ecxmWXz6Ozs4uvv1rJ+nUbaWtrQ5KkQwr69fxONgVkmy+xp4cnCUnxTJs2lbS0FDq7uvjtt9X88tNvtLa0onc6/CqsIAhUVZfT1t7Ck7ddwxmjkzELkDw1A51eP7Ay/AOT9yOdhA20CqCHPZ/oeHG37Z9qS/q7k3qLeT8EMJkRHav/VhsEcKz+29sEuq0D7ds/8N4XtVrKq2rYmVuILArEZCSRcvqpKF7u4GKzA9SEpR/XAODjTz7l0ksuxstnPEmpD9r7//cDgKryD2hq/J7/PLeMjNFjyUiMxcPN9ZDbbG3vQJIk3FycORHim+9yuOC8GWg0Emmj/4NW54mqynYbwA3s2f0MC+66j7PPv8BuhehzQgMAFxcXVq9eTVZWFgBarZa1a9cyceLEI/6MmvpGsvYU9q8B4OFucwEY4Fi3Y8cOXnvtNURRRJZlrrjiCk4++eR+X19dXc327dsZPXp0L1Gxqqoq8vLymDJlCk5OTsdN0t8dRqOJ/L1ldBhNNq0XBHy9PYgOC8XHy4PiskpKyipQZIX1f/yCi6sr46dOAxWqyvdRX1tDRHQMfgGBdphgdcDdPdlZ5O7agcVssref2fQCFEXGxy+AUXGJFBfkMSomlksvuxQBm+hddm4eXZ2dJMaNwtXFBY1Gg06ncyRvNvhsxmQ2I1utWK1WLBYLe8vK2bZjJ7VVlbQ2NyHLMpKkIXXceKJGxSHLMrVVFRTtycViNhMZG09EZDQanU2AtKuzA61WZxML7Gu+oKpotFoyEuP6bcc5liCgtraWnJwcJk+e3KvMf+fOnbS0tDBlypTDlq/LssyyZcvIy8tDEASCg4O5++67+3XaOjAqKipYunQpnZ2dtqoLLy/uvvtuAgICaGpq4rnnnuOUU07ZMWvWrN1HkvzbRcAlSZJkFxcXua6uzmP79u2Rmzdvji4rK/MQRZHo6GimTJnChAkThizs/cILL5CdnT0CAEZiJP5KAHBgItRz4FZVlYKCAjZu3MjmzZvZlZ3NunXrSElO5uuvv2HUqGjHYPTYY4/xySef8Oijj3LVVVcd8yRuOLc5HNsfrpaAhoYG5s6dy0UXXcQDDzzg+P3tN8zn1bfe5p1H7mRSciw+ael4RkQMiyigoNGA0UhLcRG//PQ7L32ykoYOE2GhYRSU7uWaWZncedt8POPiD4IoPYURj4Zd4rCc3wMghChJVGdl0VxchMmqcM/yj1i9ffshAUD3ds0mM4lJCVx86YUkJydSUVHFmj/Xkp2dQ3VVDUaD0eY73E9Ikobg4ECioqMYO240kRHhhISFIIoipfvK+PnHX9myZRutra2oqopG0iBppENer7Iss6+0CFB47f5bSY8MQdVpSD9lwtBW/7uT5mGCAIMCAN3vs/YQ/uuGACarHQDYVv33VwBYbL8391D/l3sAgANX/x3XgYhRVti0NYvGji78QwKYdP5cxCB/8HADvRZN+GhEz+PXBvDd9z/k6isvx8dvEgnJ99stAPcDgJqqz6ir+YJ/P7uMxKQkJmak4u156Eloc2ubza7J9cTolf/g4+1ccekMnF28SB39BBqN634A0LiOPTnPcfs993PmOeeTkRRHkL/fCQsAnn32WfR6PT/88APFxcWOvw2XBkBjSxvbd+9Bo9WwehgAQEVFBUuWLKGrqwur1copp5zCZZdd1u/rOzo62LBhA4GBgaSnpzt+bzAYWLduHSEhIYSHhx9X56Wto5P8kn2YLDKiKOLu5kpUaDBB/r6OJDZrTyENza2UFhWyZ/dOJk87FU8fXxpqq7FaLPgGBKHT63FzdsJoNGGyWPaLxqoq9XU1VJaV0lhXi9lsBlTMJhMmoxFBENDqdDi7uJI2djwuLq4IAuzasY2G2hpcXd1wdnZyKLB320Dakj8DBoMBWZGRrVbMZjNdXZ3IViuCIOLk7ExoRCQRo+Lw8PZx9PxLGg1mo5HSkiLK9xbj7OpGTEIi/oHBtqZxkwnpEC1yiqLg7eFOakLsQTakxxICdJf5+/n5kZCQ4Ph9e3s769evJzo6ul8NiwPncYsXL6a5uRlZlhk/fjw33XTTgL/Hjh07eOONNxznKSIigrvvvhtnZ2e+++471q9f3/HQQw/97O7u3sUB3XOHmx51/28ymSSz2aw1GAzazs5O5x07doRt2bIlqrGx0cXb25u4uDjGjh1LcnJyL+2vocRzzz1HQUEBqqqOAICRGIm/EgB0Jy/dg3ZVdTXffvMN33//PRs3bqSurs7xupkzZ/L+++8TEBAAQGtrK7fccgvl5eW88sorpHWXn/8VidwBk/bhTCyPJgQ40lXvDRs2cNVVV/H22287Vkua6+s4aepUVLORdx66HU9Pd4ImTMDtCJwBulf9TfV15Kxdz6sff8XP2/OIjowmOSEBrVZHdV0dG3ds4aFLzuSKqy/DJSra1n99jIX8hpL4O34tSVRu2UJrWRmyCncv/5Dft27D1zcQd3evw9qE2RT69YwbP47TZs4gLi4Wi8VCdXU1tTV1lJVV0NTUhNlsE/+RZRkXF2diY2OIiAwnNDQED08PGuobKC+rYOfOLIxGE97e3oSFheDt443JaGJ3dg7bt++kproWjVbTZ6uBIIgYDF3sKyskJiyEN++7GWedBicPV1KnDdEB4AAhv78MACg9Xt0t9Net5t9t72cx2QCA0YzYXfZ/oACgxbrfOlDtHwAgCGh0WnIL9rKnpBS9mwsTzjkdn7gIFDdXcHFCEzUe0ev4BQD/W/Eu1117Nb5+mSSk3IeiWHsAACdqqr6kuuJD/v3cMlJSUxmXlnzYEvgmOwDwOEEAwNsrNnD9tafi5h5OSsZ+JwRR1NPYsIb83MXcee+DnHH2uaQlxBIS6H9CAwCNRsM333xDZWWl42/D5QLQ0tbBtt15iJLUPwBIGXgLQFdXF88//zzl5eWoqkpiYiILFy7st21KVVU2btyIxWJx6AB0r/Tv3r2b1tZWJk2aNOgS5KMVNQ1NVNY2YDCacHVxJjwkkLCggF5Cm7KssG13Hg1NzWz68zd8/QNIzhhLe0sLklaLm7s7sizj5eFOSKA/hXvLHE4c3c8pURAconxGo8GRrLc2N1FTWU5jfR0Wi8WmDSTYQLMoCI7WvV7/YxMS7LloodptVyWNBjd3D7x9/fDy8cUvIAAf/wAEBDo6OnoDVFFEEETa21ooLS6koa7GXpGQgKuHp82q7xDzLFVRCAkMIGFUxCHnXH+lNkBhYSEVFRVMmTLFAUoAdu3aRV1dHVOnTh2QE8WuXbtYvny5o///wgsvHFS77E8//cRnn33mEACcMGECN9xwA4qi8PzzzxMYGFh41VVXbcLW93+4ZL97CBbNZrO2paXFqaqqyqu8vNyzubnZA3Bpb2/3kCTJOTAwkKioKCIjI/HxGZ5Kqfz8fJYvX47JZMJisYwAgJEYib8aAACUlJSw/JVX+OiTjykvKwfAy8MTNzc3aurquOSSi3nzzTcdD77q6mquv/56fHx8eOmll/Dy8jp2Cd1RSDSPii5Aj0TjSAatRYsW8emnn7Jq1SrHcf/th+85be6Z3HD2bB64aC6qkxORJ52E1tV10O0AgiSB1UJLYSHffPUdL361inaTyqT0DPz9ApAVGUVR0Gq0ZO/JobS0mKV33cDJZ56Oc0josLYfDCckGsi5E0SRik2baKusREHgrlc/5PfNW/H1DcTNzROnw/Tc23JbBYvZgpOznqjoKFJTU0hOTsTTywMPDw/0ej06nRZVBZPZRFtLG21tbXQZDBQWFFFcvJeKikoaGxodvsmCIKDVavHz8yUhMZ6JE8fjH+DPjh1ZrPrhJxrqG9Hr9fT8apIo0tjcSE1tBWdNnch/rptHl9GEf7AX0ZPGDM0BYBgBwIA0AOwJuugo11fAqoJqBwAWexWA2bLf7q9XC0C3AKBlYP3/PSexGg1tHR2s35aN0SqTNnU8MZnjsbq5gpszmoRJiF7hx+3A8eZbK7hh/rX4+k8lIfkeFMXS49Q5UVe9ksryFTzx9FJS0jMYl5qEv6/3YZLAdiRRwv0EUct/7c0/uPmG0/DwSiY5bb8Qoijqqa/7g8K8pdz1wN+Yc+ZZpMbHEhYUcMICgOeeew5Zlvnyyy9pamoadgBgMJnYkpWDVVH586cfDgIA3h5ujElOGNTY9uqrr7Jt2zYkScLX15d77rnnkMlFQUEB2dnZjBkzBn///bCmra2NLVu2EB4ePqBV2KM9NymrrKayoRlREAgN9CcqLKRP3YyOLgPbc/IpLSlmb2E+YyZNQavVIogiGo0Wq9WCu6sro5PjaWptI7ewpNfK94E2soIoOsY3QRBQFIW6miq2bViLLCu4e3jQ2dGByWiw9eYLgCAiqL1r0wRBsLUF6J1wdXPD09sHv4BAvH39cXZ1RRREVFVBVhRQVbq6uvo8FqJos0xtaW6iYl8JXR0dBISEEhIWcfgWNEVlVEQokWGH9oT/K6oBampqyMrKIj09vZdHfXfvf0xMzIB7+L/99lu+/fZbtFrtgLQvDoz33nuPP//80wEAzjrrLM455xxaWlp48sknmTt37pbp06fvoe/yfxVQrFartrW11bm2ttarurras66uzqOhocHdZDK5aDQavbe3txQZGYmfnx8eHh6EhoYOu7tRR0cH77//PgUFBRgMhhEAMBIj8VcDgI6ODl577TWefvpp6urqkESRiLBwosIj8XT3YP3mjZx/0QW8vHw5on1gLy8vZ/78+aSnp/PUU0/95cT9rxKROxoQoNd2h7gNq9XKueeeS2JiIosWLXL8/q7bbmPpK6+w4uE7yYyPRB8cQtjEiYNyBRA1GuT2dvZt2cKLKz7mk7VbSUpMJjUmDlEUHf7gttUEm5PMT6v/INzblaX33ULU1Cnovbx7Q4AeLQB/ORwa5DUiiCLlmzbRXlmJIgjcvfwjftu8xQ4APNDrdIiCOODvYbFYbOX6Gg1u7m54enigd9ITERFOWnoqfn6+FBeVsHHjZvL3FGLo6kKSJHR6PZo+yvtlWcZqtaLRaEhOTuTsc87Ex9eHL7/4mo0bNjsGaUVVEBCorauita2Zx6+/lPMyx2JSVKLTovAKDUY50gqAI4EAgwEAitJHC4C8v6TfIoPJNDwCgAfc46JGw7asHEqr6wiPiWDcGTNRvN3BzRVN6lREn8jjduB4/Y23uenG6/HzP4n45HtQFHNvAFDzPRWlb/H4k4vJGDOW0SmJBPn5HnKbbR2diIKA2wlSAfDaG79w842z8PIeTVLaIw4dBFHSU1f9K0X5L3Lf3x7htDlzSY2PISz4xPSfLiwsZNGiRXR2dvLll1/26oFfvXo106ZNG5ZxN3tPIfXNraz5eVUfFQBuNhHAQYzH3333HV9//TUajQaNRsMdd9xxUCLVU8yvo6ODzZs34+3tzejRo3t9VlFRESUlJaSkpPTSCPgrw2Qyk7+vjPYuI94e7oyKCMXfp3+o1tjcytbdeezJ3ol/YDBBIWEoimx/1iv4eHuQEjcKFycnduTmU9fQjCgKjpV5g8FwUO+17XjZhl1RFNFotWzfsJaqinJOnjkHSaOhraWZ9rZW2ltbMZvMdigmodVpcXJ2xsXVDVc3d5xcXHByckaj0drF/JU+k/bu79JfSJKEqqq0tTRTXVGObLUSEBKGj58voij1DQJUFUESSY6JJsD38JpSR6MaQJZlysvL2bNnD1FRUb0SdVmW2bhxI7Isk5mZOSDnH1VVefHFF8nOzkYURQICArjnnnsGvIBmsVhYtmwZ+fn5aDQaZFnmmmuuITMzk+rqap599lmuvvrqdaNHjy7pAwDInZ2dzlu3bo3Mzc0Nbmlp8RVF0cnT05OgoCBCQkLw9fXFy8sLV1fXIy7tP1x89tlniKJIRUUFu3fvHmkBGImR+CsBwOrVq3nwwQfZtGkTGklD3KgYIkLD8XBzR1UVfl/7J2eeczZvvvWmI8mvq6tj/vz5ZGZm8vDDDx+TA3K0V/8PBRuGmlgeah+Gso3c3FzOO+88Xn75ZWbOnGmbTNTXMWXqVDQWM+/9fSF6SSBkwkQ8w8MP2wogCAIIIqa6WrL+WM1jy99hY1EZp2ZOJTos3LESDdDZ1YWTXo8k2uzn2jra+PbXn7l57gxuu2oefqPHIOl0PfZRsEOAwQjO9bSpHeJ5GsK10Q0AOiorMcgKd73yIet27LABAFcP9PpDAwCh5/c5KOe1TZ5URUVRFZycnIiKjmLChLHExI5ClmV27thlL+2vBgRbj79qL8VERbb37SuqitliRqvRcvK0qZw04yT+/GMtf/z2e68JVG1dFRarhTfuu5lpqQlo/fwIz8x0fEG5cd8BCX2//+gbAAwVAhwOAPQo/+8FAKz23v9uANBdAWAxHywAaLX2gAA9NAC6Rf+6AcAh7m+NVktlTR1bduXh6unG5LNPxznQF8XNGc2YUxD9o4/bgePl5a+z4Nab8A+YRlzSXb0BgORETcUP7Ct5g389/RzjJkwgIzmB4MP0wHd0GhAEcD1BRADfensV868/Ax+/iSQkP+DQQRAlJ2qqVlFSsJwH//4oM2bOISU+hvATGAAsXryY+vp6vvnmGyyW/XBv7dq1TJ06dVg+p2BvKeU19X0CAG8Pd8YMQgMAegsBWq1WrrjiCqZNm3ZIBf+cnBwqKysPSvRVVSU7O5va2loyMjIcrYp/VTS1tlFeU49VVogMDSI8KLBPiNszKmvrWbthE22tLYyKS7DVZSsKKirhQYHER0cgSRIGk4lNO3djMlvQabW2Hv3OTpxdXBwwQFVVFFVFp9USHhyIIMDe8io0Gg3VleVsWP0rGeMmEZ+chizLdi6v2sdpofs/+1hjGz96tgccLvqrAug1VNhBQFdHG20trTaY6OmBs4vb/naDXsOAipOTltT4wwuUwvBVA5hMJhoaGigrK6O5uZnIyEiSk5Md17aqquTk5FBWVsa4ceMG7LLR2NjIc889R0tLC7Isk5GRwW233Tbge6alpYVFixZRX1+PKIro9Xpuv/12YmJiqKio4Pnnn+fKK69cP2bMmOIeAEAF5MrKyoBPPvlkdEtLS+C4ceNISkpyJPzdx8xoNAIc9eR/y5Yt/Pnnn9x66628/fbb7Ny5ExgRARyJkTjqAMBkMvHUU0/xn//+F6vFQmJsPJGh4bi5ugEqsqKwev0aTp01kw8++MBBNpuampg/fz6TJ0/mwQcfPDbJ/wGJ3l/V/3VUdAF67MtQtrFkyRI+/fRTfvzxR9zc3AD46ssvOP+CC7n30gu49awZyFqdrRXAxaXfSgBb8i9gKC/j95WrePCVFVS2dnH2qacR4OOLxWpFEkWMZjO1DfWYTCZcXVwJDQxCVmS0Gi25hfns3rObV+6cT+ap0/FOSjrg8waT0A/stf3BmSO5JroBQGdVFU1dBu56+SO25e7G1y8QVxcPRFFwfHh30aSAYC+9755ECUiS3TlB3X/9qKj2SY5tA7KsYJWtqIqCm7s78QlxJKWm4O7hQVFhIVs3b6G+tu6QDgKKomAymQmPjGTuuWdRXFDE6l9/Q6ORMJtN1NVVodVqeevhe5iYMAq/jNH4REUhWy0IPfbAtmRkP56qitxaZku0FQVHm6Cs9IE3hB4/xIEDgcNpAPQHABTZBgG6rf/MdmV/iwUMNieA/eX/9hYAq9X+uoEJAPaesIqYZYUNW3bSZjQy+fRT8Y8Mx+qiQzNpNmJw3HE7cLz48qvcseCWfgCAnpqqnygpeJXH//sMk6ZOJj0h/rA98J1dtlW+EwUAvPPuSq65+mz8/KfaqyBsOgiS5ERVxXfsLXqdhx9/gpNmnErq/wEAUFFRwcqVK3s9Czdt2jQgb/KBRHFZJfsqqlnzy6phaQHoTloMBgOyLDNmzBiuuOKKQ1+DnZ1s3boVRVEYPXp0L8chWZbZtWsXTU1NjB079q9xI1JVGlrbqaytJ8DHi4iQYJwH4NACsDu/iC1btxEYHIyTs4sNtAsCcVHhRIUG9wAFdZRX1RIZFoy7iwu19Q2UV9VgllVE0dYe5uqsx9XFmUBfX3y8PLDKMtuy82jr7MJqsbDm5+9xcnIh89SZ9hL+4V1XGggA2M+MbU90s9GIwdCFCjg7OaPV6/sYChTc3VxJS4jFSa876hCgqKiIiooKurq60Ov1REdHEx0d7biuTSYTe/bsoaKigri4uEG1nHxj19eSJAmLxcK5557LmWeeOeD37927l2XLlmE0GlFVFV9fX+699168vb1pbGzkv//9L2efffaOGTNmdDsAqADr16+PW7VqVUZSUpJuxowZvdoYesZfAQAqKipYsWIF5513HikpKSM2gCMxEn8VANi7dy+33HILP/30E/4+fqSnpOLj5Y0sy44BYc2GdYzPnMhXX32FXqd3DLpXXnklqampPPHEE8fsYKjH0D/+aECAI9kno9HImWeeyYwZM/jHP/7hSGbmXXwJq779hk//8zDRvm44BYcQNmFCn6X43Z/XsbeEVV99x70vr8CEhrNPPRVPdw+sViuSJNLQ3ExNXT2B/n54e3iyp6SIkMAgfDw8beV7gsA3v/xMSpgvixZcR8jEibgFBdk9gP+C83CElSCCKCKIIoosU7ZuHV319bR0GbnzlQ/YlpODn18wLi6uts+2f1b391BVFVm22qskVBRFRXCILYlIGo299Ljv9FkFFFnGapXRajVEjRrFpKlT8PbxZsvGTezYvAVZUQ7Zg2c2WwgKDuaci84na9t2tm7cTFdXB61tTeh1Ov57+y3MnX4ycbPPQupzcO+xEt7tF68q+63jHCvmsg3sKBZQbaX01uZy27+tFsC6HwSg9IACPQDBIAFAr/5/RbULAKogWw4QALQexgHAam8BUA5f/t8jNHotewr3sbuwhNETxzBqXAZWvQbN1LmIYQnH7cCx7KVXWXj7LfgHziAu8U4UxdQLANRW/UxxwSs8+p+nyTxpCmnxcYQepge+y+5k4ep8YgCADz78misuP4+AoBnEJix0QBBJcqKi7CtKS/7HY/95mklTp5ISH0vECQwAnn/+eYqKivj5558dv3d2dmbz5s2kpqYOy+cUlVZQWlkzbADAYDDw/PPPU1ZWZtOV0Wq5/PLLe6n89xUNDQ1kZWWh1WrJyMjA09OzFxTNzs6mtbWVCRMmDEiYbahhMJmob25Dtq/6e7q7Der9v61ZT0NzK37+/litMhpJJCk2muAAv17jXU19I96eHjjpdSiKYrOAEwS25xQQ7O9LREgQTvqD9Wlq6hvZtacIrVbDzs0b2FdSxLSZp+Pj59+rqm+4xuVDtQEcat6kyFYsZjOCICBptIgHjHWKohDo70tyTNSAkntXV9f9TgmDCKPRyPr16xEEgaioKIKCghzXj8FgoKamhvLyctrb2x1VAQOFDevWrePjjz/GarWiqirOzs7ccccdREcPvIps06ZN/O9//3NUzMTFxbFw4UJ0Oh1Go5Enn3yS5OTkvZdccslaOwCQv//++4wffvgh7eqrrz4sCDQajY52nKMRbW1tvP7666SmpjJnzhyAEQAwEiPxVwCAn376ifnz51NdWcWEMeNwcXGhuq6GmMho9DqbIMuGrZsIjQjn999/x93dHbD1Hc2fPx8PDw+WLVt2TK3cjrXC/FHTBeiZiAxiOxs2bOC6667jiy++IDk5GbC1B0zOzOSUjBSeu+VKjF2dBI8Zg29sbO+E3D5AdhQX8e3n33DPyyuQ9C6cfepMXJ1dkBUZUYCy6ipa2toYFR6Jm6utDK+ppZnSqipS4xOQRBFJkqipr+O7X3/myfmXcN6cU/EbP87u/6seneN+pEm/ZFMqVmUZU0cHXY2NtFVV01lfh0YUaO00cOvS/7Ezv4CgoHC0Gh1mswmjyYDZZMJsMTn6LLu/oyiKiKKEXu+MTqe3VwKIA75nVFXFarWi1eoYN2kCU08+iaKCIn758Se6OjsOOTCbzRZi4+OYNfd0vvvia3bu3GwDOKLInZfN42/33ovfmAlH46awrcyrsq3EWlWxdDSA3IVoNdnE58wGOyCwcwCH9vCBkyfFxgYOBADdLgAOAGDv/bfak3yTxaH231sDoIcDwBABgKjR0NbZybpNO/AL9GPCqSejuDkhTjsbMTL5uB04lr64nLvuuLXfCoC66t8oyn+JfzzxX6acfJJNBO8wCbDBaERR1BOmAuCjj7/ksksvIChkNqPib0WRTQ4AULbvUypK3+ffzy5mzPiJpMbHnvAVAPn5+fz++/42oKCgIN7/6BOiY2KxWq0I9iolUbBXKYkiorBfRK67rUuyu8AIAsiKgsVipa2jk+q6BhTo0wVgKAAAbKJon3/+OXq9HqvVipeXF9dffz0RERGHfF9NTQ27d+9Gr9eTkZHRy0ddVVXy8/Npb28nPT29l2r7cIVZVqhvasbT3Z0gP59B73dXl4Ff165H5+yKKAhoNBKp8bH4+3j1ep0s2yCsJEmO5B9sPe+lldWEHuAscGDivDU7j/ZOA7XVlaz//WeSM8aQlD7GYds3nDGYKoADRmN7l6Cy35XqwOOpqkSEBhETETbgrQ62GqC2tpasrCwmTJjgqB6pr6+nqqqKpqYmurq60Gg0REZGEh8fP+BtFxQU8Oqrr9Jl1/gxm83MmjWLiy66aFDXzcqVK/nmm28cAoAnnXQSV199tePvy5cvp62trfm+++77SRRFU25ubuRrr7027YILLhAGogNiMpnQDUDoeChhNBr53//+h6urK1deeaXjM0YAwEiMxFEGACtWrOCmm2/Cy82T1MRkJEnCy8ODlrYWyioriYuOITtvN50mE2vXrunlc3rvvfdSXl7Oe++9h06nO6YHoztRPqYQ4lBJwxEmpeoQ+tgXLlxIXV0dH374oeO4/OMfj/Lvfz/BO3+/n8yEcCyiSNTJJ6N3d3eU5guSRNe+vaz64ltuW/I6GidXzjltJs5Ozg5RnqLSfVgsFuKjR6HRaBy/lySJ/JJiNJKGmMhIZFlGq9Hw89o1iLKBN++9mcgxo/FNShpyFcDRXOlXZRljWzudDfW0V9dgbG0BswmNJKEKIlZZZve+Cu5b/h4VtXVIkhYBcHZxJiDAn7DQUHR6JwqLimmob0Kn06LV6tBoJARB5NBqAIcPRVGwWmSSUpOYc+Zcamvr+PbzLzEYug5bCTDrjNOpqijj919/cvz+qfvv4YF//gvB2fXY3DGyBVU2o5q7sDaW2ICAasWsyHQZbH2tokZEIwroJBEREQWwWizoRBARUKwWFKuKIlvBLPdoA9jvAOBI/k323n+rHQCYrYMTAOwDAmzevotOs4WT50xH9HBDPPVcxOi043bg6AYAfgEnE590dx8A4HeK8pfxyD//w9Tp0waUABuMJixW64D6cY8LAPDRZ1x22TyCw85iVOwNyLLRAQBKi9+nqvJTnlr8IqmjR/+fAADZ2dmsW7fO8fukpCQe++8z+AUGY7Va+km9Dk7E9v9F7dUn3l1u/scBAGDqabPx9fRgTMrgAUBbWxtvvfUWO3fuRK/XYzabCQ4O5uqrrz6smF9dXZ0DAowbN+6g0uW9e/dSW1tLYmLisDkV6Z2caGlrx2qV8fX2Qq/TDmk7VTW1ZOUVotFq0Wo0pCXG4uvlecgxoTv5717hNpnNOB0GblTXN7C7oASL2cyfP32PTq/npNPmOIT5+ht7hzLHGjoAGCBoFgRiI0MJDw4aFATonjccbp927tyJ2Wxm4sSJdvhiE/praWnByckJHx8fwsLCejlQHPY8V1WxfPlyamtr0Wq1mM1mxo4dy9VXX32QgOPh4s0332TTpk0OAHDhhRc6VtIB/vjjDz7//HPl73//+yq9Xm9atGjRzLS0NPeLL774mD6fLBYL7733Hh0dHcyfP7/Xfr/wwgtkZ2ePAICRGImjAQCWL3+VBbfdxqjIKKLCI2lpayUqLAxfT0+6TGbKq6rI3pNDS1sr3//wA7NnzXK899lnn+WHH37go48+IiAgYMgDw//FOFotAYMFAVVVVZx++uk8/fTTnHHGGYCNWk+YOJFAFyfefPA2MBvxjokhZOxYFEVBFEW6qqpYt/IHbnr2FTqsKhfOOd2+8q+ACvl7iwGIjx51kECPIAiYLRZ27ckjKSYWNxcXBFGkqaGeT1d9z0OXn8c1Z88iYOKkXtBhqMf0SPv6BVFEVRRMHR101tbRXl2NsaUZrFY0kohZUalqbCG3ZB87ivaRs7eMhrZOXH38iB41ipSUFMaMGUNoaCjR0VEEBQUjSRIFhcW8+dYKPvrwI4xdBnR67bBeY2aTmdiEeM654Dz27Stl5RdfoShyvysPiqLg6upGfUM1Lc1NaLU6LBYzn7z/PvMuv/z4uHEUGWQzKBZK8rPYVViKgGxb6RdAEkEriKgIWBQZL61EgKuIt6sTbno9ToKIIltRTEYUiwxmk0PtXzSZwdgNBOwigFZ7m8ARAACNVktZdS37yquYPD0T0d0Vceb5iHEZx+3z6YWXXuXO22/B138KCcn39rYBlPTU1fxB0Z5lPPz4E5w8YzopA0iAjSYznV0GfL09T4hn9LvvfsDVV19BaNi5RMVe5wAAoqRnb+FbNNZ/z5OLXiQpNY3UhBMbACxatIht27axdetWtFotiqIwJTOThQ/8Db+A/gHAYEOj0TgAgCiKuLi6MS5zKomJSYxOihvSs7quro6XXnqJ0tJSBwSIjIzkmmuuwc/v0MKUTU1NZGdn4+bmxujRow8CpJWVlZSUlBAdHU1YWNiQ99vV1RWrVabLaESr1RxxG0xpRRV7SsrQaTWkJcTi5+M1oOQfbKv/ql235XCuNLKi2LUADGRt2UBpUSEnzz4dP//Ag9oAVBV0Wls1gdlitbvJMOByelVVMdghwIELJerh4JN9+8Jhti+IInFR4YO27HSxCyb2ty8Wi4W1a9cSGRnJqFGjAGhtbWXDhg14enqSkpLSq8pkINHS0sLrr79OYWEher0ek8lEQkICN95446C3ZTKZWLJkCSUlJY5KwPnz5zN27FjHa5qbm3nyySfJzMzM6+jo0JaVlcXefffdgwYNwzqHMZv54IMPaG5u5vrrr+/VrgPwn//8h5ISm73lCAAYiZEYRgDw8ivLueP2BSTHJRAUGER1TTUZiUn4+/jQ3tVFa2cXldVVbNy+haefeYYH7r/f8d7333+fxYsXs2LFClJTU495+f3/bxCgr0G0v2O/ZMkSh8BM9yrISy+/zO0LFvDCnTcxd0IqRqtMRGYm7iEhdFVXkfvHn9z8zMvsqazj4rln4u3phdVqRRRF8kuKUVWVhFEx/e6nRpIorayktaOd1PgEFFVFQuX3tWswmrtY8cCtRI8ejX9a6iGrAI5G0o8gIIoiqiBg7TLQUV9He2UlhqYmW6IoinSZzOSXV7E5r4h1uwsob2jG1dubpOQUpkyaxNgxo0kfM4bAAahJr/x+FUuWLGPXzl1oNSJanc4xlZHlIyu1NJnMpI/O4PSzz2TTug2s/eMPNP1aDokYjV00NFSj1WoJDAymqqqC9z74gMsuueS4u38URSWnoJCK6hpEVFCsKLIZQ2c7gmK1CxHKSAJYLSa0qLhIEqHOCqMCfdApVqydZhT7qr+tAqC7HcBeHWC1DN4C8MCjKokYzRYKSytJSI1H4+aCNGceQsKY4/bZ9NLyN7j91hvx8ZtEYvL9KHYF/O4EuL5mNYV7XuBvj/2Lk0+ZMaAVcLPFQkNzKyEBfifE8/ntt//H9ddfR1j4hUTGXLUfAIg6Cve8TEfbGp56/iViExLISIw/rAbC8QwAnn32WWprazGbzbi6umKxWHB3c+PseZcRGByCdZhKviVJ4o8fv6O2ugpBEPD1D2DqaXPw8fRgXGrSYZXv+4vKykpeeOEF6uvrHSulcXFxXHPNNYdNljo7O8nKykKn05GcnHxQwtPc3Exubi7e3t4kJCQM2tPcxcXF1umkKmgPIco6mCguLae4rJL0xDiC/H0POT52dHT0+p27uzuKou4XpT3csa2tJ7+klKryMjas/oXk9LEkjx57UBuAqqo46fVEh4eg1+loaWunsbkVo8lW+aOo6gGZvG1VXhREBHsridFoRBQFJFFAI2kc7SQ2aK2CIDqeuaqiINtdcRRFsbkg2C1suy2Hux1wun+qCmglieiIUHy9PAd9LrqvDVEUD7KRLC0tJTMz0/Ga4uJi8vPzGT9+/KBdJTo7O/nf//7nuC4tFgvBwcHccsstBAUFDfp6aWtr47nnnqOurg5RFHF2dubOO+88qFVm1apVfPPNN7Kzs7Mwf/58sbs19FhER0cH77//PkajkWuuuabPKpwbb7wRWZbRaDSkpKSMAICRGInhAADvvf8+V115JWmJyQQGBFJZXcnEtAx8vLwwmc00tLbR1NrCL3/+zkXz5vHxRx8hiiKyLLNixQqWLl3Kv//zH84+66xjpr5/woOAYYIlhwMBbW1tnH766dx2221ceeWVALS3tzN5ylTEjibefeROtKKIs58f/gkJNGRn89CyN/nkz01cdPpcIkPDMFssSJJEcVkpBoOB5Lj4wyboiqKwMy+X6LAIfOyDcVNDPZ/99AMPX34+V501k4BJk9G5ujqqAPptoTjSY9U9yRAEFKuVrqYmWisrMdTVoRoNqIpCl9lCYWUNa3bm8PuObKpaOgiOiGTGjFOYedppTJwwgdDQkCF9fHllNc8uWsLXn3+J2WREa++l6/Z1PpJry2q1csqsmYybMJ4vP/2c4oJCtH2Wnoq0tDTQ0dFKYFAoEZHRbNuynqUvLOP2Bbcdl/dOfVMLWXmF9nPYfYHYBQdlC4bODlRZRrUYUC1GVKsVjQDebs64mduIdhJwE0UUk7l3/7+lZwXAkQEAsLUBlLV24OGkxSPQF+n0eQiJ447bZ9Krb6zglhuvxdtnPImpD+4XdOwFAJbyt8f+xbRTTh2QDZ5VlimvqiEiJGjQSdSxiNdff4ObbrqRsIh5RI66ogcA0LIn53ks5p08u+RlwqOjGZOc2Et87UQDAM888wxOTk6O86KqKmazmemz5xIUEjpMAEBAFOD3H7+jobYGFQgMCeX0cy4g2N+HiODAISuwq6rK9u3beffdd2lra0Or1WIymRg7dixXXHHFYdsPjUYjOTk5dHZ2kpSUdFCZtsFg6OU3PpBV0e5S++7Kx+Gc92TlFeDq4kJsZNigkv9ux59uzZmBhFWW2ZFbQHVNDWt+XoWziwsnzZyDJPZuA1BVFZ1Oy6SMVIfivqIodBlNdHQZ6DIYMZpMqIpNk0CrkdDptOh0WjSihCSJGA0GuxaOYP8p2pxyxIPHd1W1iebaAIDqcMuxTxLoWQ8gsP+f9m4A9EPsV++uBug+fm1tbWzcuJH4+HiioqIcr1u/fj1Wq5WpU6cO6nmnqioffPABq1evRqfTYbVacXd356abbiIubmjOMS0tLTz77LM0NTUB4OXlxX333Yevb294ZLVaeeutt5BlmVtuueWYzdWrqqr44IMPcHd354orrnBctwfGdddd57hORioARmIkhgEAfP/jz1x0wXmEBgQRFR5JdW0VkzJG4+nmjqwotHR00trZwZ/r1+Hp48WmTZschHPJkiW89dZbPPTQQ1xuLxtW+1GPH4kBQIBhPl79nYs333yTN954g59++skh4LhixQquvfZanrvtas6fOoEuswV3Vxc++ulPHnrjA6ZNnMyEtHTMFgsaSaKytobahgZSExLQiJKN+B8iNJJEVV0tdQ0NpCcloygKGkni1zV/ImHhjftuImLsGHziE1D6moAOAyDpLvGXLRYMTU10NTXSVVuLtb0d2WqlzWAke28567NyWbsrl5q2TkIiojjzzDM588y5TBg/vt/BabBhNFv437sf8vbrb1K6twSdXt/LAWCoIcsyTk7OXHrl5ZitZj59/2Nk2XrAdSWgqjI1NZXIspVxE6bi5ubOn3/8yF13383iRYuOy/vGZDazaWcORrMZ8YD96SWloKo2oUGria62FhRDB1jNuGsEUpQW/HUSGI02JwCLjCirKGaT7bobDgAgiXSYTJgV8Ar0RZp7MULS+OP2efTO+x9zzZWX4umVQXL6I/bnRg8AUPsnhXlL+duj/2TaqacMqAVABfJL9hEeHHhUnQBkWUEUjzzheuWV5dx2262ER15KRPSldgAgIAgSubueQqPZy7MvvEJgUDDj0pIJ9PM5oQHAgWJ3VquVGXPOPCQAsCVd2H3fe2ZbthN+4HmwtQB8R01VJYqiEBMTx5133Tkgi7bDRXt7O9nZ2Xz00Ud0dnai0WiwWCxkZmZy/vnnH1bMT5ZlCgsLqaioYNSoUURF9VaNVxSFvLw8GhoaSEhI6Hcldrj85A91fVfV1RMa6H/Izzmw9B9sq/9WWXasrA80auobySksYcu6P6kqL2X67LkHuQGoKkiiwNjUJLw8hjYm9vWdj8foCXc2bdqEIAhMmjTJcUwbGxvZvHkzERERpKSkDGrbP/zwA19//bVDZ0Gj0XD55ZczefLkIX/flpYWnnvuORobGwHw9vbm3nvvPQgAgK0tpqmpidjY2GNybLdv387XX39NYmIiF110kcNKvK+44YYbHPPYEQAwEiNxhAAgr6CI0+fMxtTRQUpiCvUNtUxKH427qyuyomC2WGlq7yCvKJ/svBw+/+xzLrjwAgA++/xz7r/vPh5++GFuvPHG/hPbkTaAfifIHOVqgL4+SxAEOjo6mD17Ntddd53j3HV2djBp8mS0FiPvP3oPelWhoLyKK/+zFDdPb86fOQcVWzlca1sbBfv2khwbh4vzfiHAgcTOvBwiQ8Lw9fZGEAQaGur55tefePKGyzj7tJMJnJxps8ODYTsGgiTZtAg6O2mrqqK9ogK5ox1FUWg1WdhTXsUfO3bz+9adlNbUExoeyZlnzuX8885j6pQpQ0r6BzLxMssKv/yxhrdee4MNa9fZyzSP3AnBbLaQkprC3PPO4YdvVpKTnX3AwCpiMLTT2FiHVqvl5Omz0TnpWbXyC84+6yy++fbb4/KeKa+uJa943wHJf5+Zim3Zp0fPq2o1IypWxidG49lShdJYi9FgwlBRTlt1Fb4iuKEgyirIMopstx8cAgCweztiBnTOOqSzLkFImXTcPos+/fwrLr7ofNw9U0lJ/zs9yivsAGANhXnP8+Df/8mMmacNqAIAIKegBD8fr6OaLFusNltNpyNUb3/ppZe4/fbbiYi6gvCoeQ4AACrZO/6Np2czz7zwMt7ePkwak3ZIEbYTFQBMm3UGgcH7AYCK6ngGC4KARqNBq9Gg12nR67Q46fW4ODkhSSLNre3UNjY5WsP2AwCbBoAsy6SlprHwzoXDsh/t7e0AbN26lY8++ghZlh2WZzNmzOC8884bUNJbUVFBQUEBXl5eJCUlHWQFWFFRQVFRESEhIcTGxjr2baj2cYNPklVHyfxgEmlXV1dUO+jQabWD/EyF3YV72bx5I9vWryVj/CQSUtMPagNQFIXU+FhCAv2O+DyeCFFTU0NJSQmTJ0929KdbrVY2b96M0Whk8uTJg+qh37hxI++9916v+dOFF17IaaeddkTfs7W1leeee476+noEQcDT05N77723T0FCRVEwGo1/ee9/Z2cnK1euJDs7m1mzZjF9+vTDvueWW26xOZSMAICRGIkjAwCNLa1ceumlrF+9mvGjx9De1sa41DTcXF2RZRlBEGjt6KS2qZFVv//C+eefzxeffwGCrQfq3HPP5eyzz+app546OPk/wEd+pArgULnKX1MN0BMGCMAbb7zBa6+9xs8//+wYzF57eSk3L7iLNx67j1MTorjhmeWszt7D5Wefi5+PD7IsY5VlsvPziAgOxd/Xd1AewZIkUV1XR11jA+mJSSiKgiSJfPfrr8QGebHolqsIGjsWr+jovqsABnU32Hv7AUNTE61lZRjr61DNZlpNFnZXVPP79t38uW0XJeWVePv6MXv2bC6/9BJOOukkfHyOLGmxWK0oinpY5Wej2cLO3Hw++egTvvn8c4xdXQjiUM77/qU4VVWRJA2XXnUFBoOBzz/6+KDJan19FSaTiZDQcEbFxOPnH8R3335GUmI8mzdvOSp2WEcSVllm665c2jo6D7/i1kODpOevnJ2dGJ+ejJNdvEpVVQwdHZSXlaEaOjE21mPZV4hPVwu+xk5czCZ0isVWEdCdFPeACgr0XfliBwBIImgkpLMvQUidfNw+g77/8SfOmjsHF5cEUkc/jihKjmoUUdLTULuGgrznefDvjzNj1kxS42IJCz58n+vughI0kkhiTNRRfX5W1zfg7+ODVjP0VoNly5axcOFCIqKvIjzyQmTZiCCIyLKRXdsfIzhY5Knnl+Hu4c7kMel4e3pwIkZ/AMBisXD+vEsJj4zCarGAICCJIk5OetxcnNFptWi1GnRaLTpt373tzW1tFO2roKWt3QEMegKA4Zy090wcf//9d761Q8vudrO5c+cyq4dI8aGiubmZnJwcFEUhMTHxoB7ulpYWcnJy0Ov1pKam4uvre1RX/Ycjid4v/iccHpj2EW2dXaxet5Fff/gWHz9/ppwyEwHhoDaA9MS4IwJ8J0oVQENDAzt27CA9PZ2YmBjH9Z+fn09RUREZGRmDEo7MysrinXfeobOzE0mSsFqtnH766QMGV4MBAB4eHtxzzz0EBh4fwqXbt29n1apVODs7c/755/dqpThU3HnnnXR2do4AgJEYiSMFAP/671M89sjfGJuWgVYUSUtI7JX8W2WZxrZ2tmbtoK6pgY0bN5KcbCvdvuqqq2hsbOTbb79Fq9UelPwLByS2IwDg8Ek5fzEIaG9vZ9asWcyfP99RBdDSUMO4iZMJ93bn7CkTue/Ft0hPSuWUiZMc4jp7iovQabXERkZhHaJt3/ac3YwKj8DHywtRENlXXsr6bZt59e4bGDM6lZDMKQiSNPAV157HShRBFFEsFrrq62mvKMfc1ESX0URRXRO/7szh+7WbKS4tB2DS5EyuuPwyzjvvPMLDw4/J+TdbLBSWVfLdt9/z3ltv09BQjyQNboIpCGKvFgKz2cJJ009mzMRxfPzOBzTW1yNpNNhW/ztpbKzBzc2djDETMBoNRI+K5/dff8Bo6GTHjh1D7j88WlFd10B2QfHAJ7PdVQA9Jpo+Xp6MTo5H00ePpgx0GU1U1tRRW1sPZhNOyDjLFpwtBpxMBjRmA82b16KzmHACvEQBN73OpiWhqig9AYAogEYDEkhnXYqQPuW4ff78sWYdc2bNQKOJIG30vxAlXZ8A4IFHHufU2TNJiY8dkLL2npJSmlpamZSRclR1ACqqa1EUm/f3UOOFF17gzjvvJHLUNYRFnG8HABIWSzs7tzxMQlIg/3l2MTq9jpMmjMHd9cSwNxwoADCZTDz44INHXApstcps251Ha3sHOp3uqACAvvrdv//+e3766SdHYi6KIhdeeCGZmZkD2qbJZCIvL4/6+nqio6MZNWpUryTfarVSWlpKW1tbn7oBwxmKqg74OddfAt3d2nckUbC3nPffWUFrcyMzzjgTD0/vXiK9wwEA+gMYx1N0dXWxefNmvLy8SE9PRxRFXF1daWpqYuvWrQQEBDBmzJgBz9P27dvH66+/TkNDg0O/IjMzk2uuuWZYnpM9RQC7AcBdd91FcHDwMT2OJSUl/PLLL5SXl3PSSSdxyimnDMou/IEHHqC5uRkYsQEciZEYMgDILyhgzuw5WAxGZEXmtClTCQkIxGQ2OxLODoORqvo6Vv3+C4899jiPP/4YAB9++CGPP/44n3zyCRkZGf2K/h1Ydj4SA5vYHCLDG/ZWildeeYX33nuPH3/80VHm/uwzT/HII3/H29sLkJg0ehy+Xp74uLtTXl1NfVMjaQmJB9n9DTQkSaK0soK29nbSEpJQVAVZlvnyxx+YN208t587B9+MDLyiogZVBSBIEggClq4uumpr6KyspKOxifKGJjYU7mPV5h1s2LYLgJDQUObNm8fF8+YxceJEh1XOsQxFUaiqb2TVz7/y2osvU1FaijTgFc2eDfC2sFgsREZFM++KS/nuq2/Iy8lxtAHU1lZhsZhITR9D9Kh4yvYVEzUqjrycXRTk5/Drr79y6qmnHkeATCUrt5DahqZBgxFHgq8ohAT4k5oQc9j7qK2jk+KKKuoam5EV1dbKgWoTCjR1IRq7EDvb0Jm6sFTsJay1kWgtaEQBBRFFEm0AQJRAEpDOvhQh4/gFABu3bGPmqSejyD6kjnkCjcYdVZUPAgD3/u0xZp0+i9SEOEIDD58AFZdVUFJWyfj0JLw9jt6KeVtHJ7sLislIjMPVZWh6A0uXLuWee+4hIvoaQsPPtQEAUYPJUMf2zQ8xMTONR//9FBpJ4OQJY3FxceZEjEMBgPsfeID4IwR/iqqyJSvnLwcAVquVr7/+mj///BONRoOiKOj1ei655BLGjBkz4O2WlZU5WgKSk5Nt3vDs7/UvKyujuLiY0NBQRo0aNexjh4pN8X4gFQZ9HYee33U4QMSHH3/K6t9+YdLJMxgVn9irDUCWFUZFhBIXdWTg/HiuAjCbzWzfvh1Zlhk/frzjvjEYDOTm5qIoCpMmTXJcJ4eLxsZGXnnlFcrKytDpdJjNZuLj47nxxhsPsr0bLgDg7u7OXXfdRUhIyDE5hvv27WP16tUUFhYSFxfH7NmzhwQjHn30Uaqrq0cAwEiMxJEAgIULF/Lu/1aQEBNDeFAI+yrLSU9IwtMuGgPQ1N7Bph3b0Do7sW7dOry9vaisrOSiiy7isssuY+HChQclrQcm+iN2gMMPAoYTprS0tDBr1izuueceLrvsMsBmsTRx4kSqqqo4edIUAvz8kUQRV72Owr0lJMbG4ursMqi+/wO/v9liISsvh5S4BFydnZE0Gjbv3EFXWwOv330jPmGhhE+delArSV9QRBRFFFXF3NaGobqa1ooKKqqq2VFcxs87c/hzezZt7R1IWi1zTz+Da665munTpx/WM/pYRXuXkV9+X83ip5+juLAAnV4/JHtARVFwcXHlkquuoLiwiN9//hmtVk9nZyvNzbaVh3ETphIeEU1hQS7+/oG0t7eycf1qXnzxRRYsWHDcHJMug5Gt2bmYzJYhX/+KohAeEkhSTPSA39PQ3MK+ymqaW9psq3KiZKsw6Z6oy1YUowGNqQtvi4EQHXhuW4uL1QiKiiIJKJLGBgBGTz1unze7cvI49ZSTaW+FtDH/Raf3RVWt+wFA3RoKcp/nnoceZ/bcmaQlxBEScHgAUFZVTU7hXmIjw4iLijhq31+WFTZl7cbF2YmMpPghjTUvvPACd999NxHR1xMafhaybEQUtXS27yVr+yOcMusU7n/4ETSSxNiUBHx9/m+JAJpMJh544IEjrvxpbm1je04+iqKi1R69FoC+kkZZlvnwww/ZtGkTer0eq9WKi4sLV111FUlJSQPedlNTE3l5eZjNZsaPH09wcHCv5057ezs5OTlYrVZiYmKO2cpqf4mzm5vbsM0TioqLWbpkCSHhkUw6eUavcV+WFSJCg0g6whaf/kDGsQ6r1UpWVhZtbW2MGzfOYTEpyzJZWVk0NDSQlpZGbGwsgmC3LjzEHM1oNPLmm2+yc+dO9Ho9FouF0NBQbr755mEtzz/QBtDV1ZU777xzUC0KbW1trFmzhpNOOmlIYEJVVbKysti4cSMVFRVER0czY8YMYmJihrxf//nPf9i3b98IABiJkRgqAMjO3s2F55+Ps1ZD5pjxuLu6Ul5dTX5JEWNT0vDy8MBoNlNRW8fPa/5g2YsvMn/+9QA89NBDVFRU8PLLL+Ph4XHYMv8RAHAEg6LtAB51EPDss8/y22+/8c033zhWiO+44w5efPFFZp58Cp4eHlhlK/V1tUSEhBLs7z+o0n9HRUiPfZEkibyiQvQ6HaMiIgFobG7i219/ZsltVzElNZHAiRNxDwzsVXLo2Ka9zF82mTA2NdFVVUntvjKyi0pYm1fEbztyKNhnK/GPjIri8ssu45JLLiEjI+OEOPeyovL9L3+w6OlnyM/NRT8ECKDafZgvvvIyrLLC5x9+BKjU1VUhyzKJyeloNVpi45OoqbapdLu5u/PLj99y3XXX8tZbbx83x6O6rpHdBUVHdM3bAMDgJ6uqqtLQ3EJlTT1NrW1YLBYEUbSX6NpK/VVsfcciKp6SgKu5E6faUgKq9uLe3gSj4uHy24/b661o7z5OnTGNyopmMsY9hbNLMIpi2Q8A7BUAdz/4GKefOZvUhNgBAYCq2gZ25Rfi4ebKhLRktNqjV2mTV7SP0qpqRifHE+TnO+j3L31hKffcfQ+Ro+YTEnamHQDoaGvJYXfWP7hg3mXcuGABeo2W0SnxePfhUz0CAGBveRUF+8qQRPGoagD0lwB3dHTw7rvvkpeX5/BU9/X15frrrx9UAmSxWCgvL6e6uprIyEji4uJ6rfYrisLevXspKSnB29ubhISEYSm7P9LkHxjW72Exm1m8+HnqGho45YyzcXHZD/9lWSEsyJ+U+Jijuj/HKvnPzs6mpaWF0aNH4+3t7RgP9uzZQ2lpKTExMY77pVsUsr/5mcVi4aOPPmLNmjUOuz9vb2/mz58/7Ar8bW1tLFq0iNraWgcAWLhw4aBaHLsrFUJDQ0lPTycxMfGwVQ4Wi4Wamhqys7PZu3cv9fX1JCUlkZmZSUTEkQPgZ555hsLCwhEAMBIjMVQA8PDf/sZXn37G9EmTcdI7IcsyGo2G6rpa9hQXMzY1DVcXV9Zu3YJVUFm7di0enh5kZWVx9z338O8nnmDKlCl99v2PAIATDwRUVlYyd+5cFi1axMyZMwHYtm0bJ500lYiQcEanpFFWVYlWkhhr14A40hBFkea2VvZVVJCRmOQQqPvyx1VMSYzkn9fOwyUsnNBx43oBAMHeH2fp7KSztpauygrK95WxMbeQ1blFbMkvoqqmDlGSmDF9OldffTVnnXVWn/Y3x3t0GIz8+Otqlj63iML8/CFBAKvVylnnnYunlyefvP8RTU31dHa2odXqmDZjNvV11QQGhyEIAjVVFYRHjuKnVV8zedIE/vxzzXFzLAr2lrG3ogrpCMpaZUUhLCiQlLjoIW+jvbOL2vpGahqaMBiNB997qooiiBiMRiRJxFUCH2Qi/H1wi006IpG6oxlVtfWceup08nOLyBj3FK5uUQcAgD8pyFvC3Q8+zpwzZ5GeEEdwwOEraOqbWtiZmw/A6OR4/H28j9o+1NQ3sjO3AA93V8anJaMbJGzobgGIirmB4NC5NgAg6Wmq38SenKeYf/MCLrr8ctycnEhPjHWsBp5oUVxcxFNPPX3UAEBpZQ17Svb9JQCgv8SxubmZFStWUFJS4iizDgkJ4dprr+3Xzq9n9FT4r6ysdMCE+Pj4g97f0tJCVlYWrq6ujB//11l99tc3fzRsCT///HN++vlnpp02h5CISEcbgKwoBPn5kJEUf1T36a8Os9nMrl27aGtrIyMjo9f8obCwkJKSEoKCgkhLSzvoWPd3/L/66itWrVqFJEmO9pTrr7+e9PT0o3JtLFq0iJqaGkRRxNnZmYULFxIZGTngbdTW1vLOO+9w2mmnObQxAgICCA4OxsPDA71ej6IodHR0OKwEGxoaMJvN+Pn5kZaWRlJS0rA+JxcvXkxeXt4IABiJkRgKAMjauZMbrr2e2PBwgv0DsfZIKLQaDVV1deQU5pMcl8DaLZu48eabeOyf/wTgwQcfxNXVlUceecThWXq4JHREB+AogYA+SuOP5Pjee++9NDQ0sGLFCge4mTN7NqtX/8nUCZNpaWshKjyCYB8fNBrNkHr/+4JD2fl7GBUegYe7O5IosSN3N8Ul+bz/yJ0EBfoTfvLJaF1dEbD1IxpbWuiorMRQU01ZWQVrcwtZs6eE3XvLqa1vIDAwkHPPOYfLLruMzMzM40qpeUhwpq6BX/5YyyvPP09ZaSk6nW5QEMBisXDKrJlEREby7ltvUV1dgUaS0OudSBs9Hr2TEx3tbYRHRFNUmEdE5Ci2bl6HTiuxbdu2g9Swj9V1vzO3gLrGpiMCAIqiEhkaTMKoI1+JaGxpZfvuPYe857o6O20mapKIu5sbLnodHm4ueLq54+Huirury3FznZVWVHL++eezY+sWUkf/Bw/PJBTFvB8A1KymYM9S7vnbP5lzxmmkJcQPCAC0tnewdVcuVlkmMjT4qLoBdBoMbNmVi9FkJi4qnJiIsEG9v9sFICb+ZgJDzkCRjUiSE1WVP7C38FXueegRZp1+Bl7u7qTERf+lq71DDYvVSlFpOaoC/r5eOOn15Ofn89ryVw4S3zKZTDz00ENHVKILUFlbz+6C4r8MAPQHAWpra3n77bepqqpyQIBRo0Zx9dVXH9Lhpa8Erquri7y8POrq6vDz8yMmJqbXNrq6usjOziYtLe0vsVP7q1b/u2P37t28/PJLxCalMGZCpsP5R1YU/Ly9GJuaOCwLPMdDFYDBYCArKwuDwUBGRkav81xcXExRURF+fn6kp6f361l/oEXkr7/+yhdffNFr3jRv3jxOOeWUowaHFi9eTHV1NaIo4uTkxMKFCwestg82+8u3336bu+66C3d3d0pLS8nNzaWiogKDwYAsy7S2tmKxWPDx8SEiIoLExETCw8PxOkrVUc8//zy5ubkjAGAkRmKwAEC2Wvn7Aw+xYe1aMpJT+kzidFotxWWlbM3ehSzLfPLZZ5w07WQam5pYeMcdPPTQQyQlJfVKAg+XeI5UAQxzQnQAeFGHAQRs27aNG264gffff5/k5GQA3n//A6688gqiwyNJik9Ar9Pj5eaKu4vLsAAASZIo2FuCXqcjMjQMVJWWtjY+/WElz992FTPSk/EbOxbPsDDaa2poq6jA3FBPTW09P+/IYc2eveyrb6Sjs4tRUdFcfMnFXHzJJYQeI6GboxGyrJBbvI9169bz8pKlNNbXox0EBLBYLMyYOZPA4CCWL1uC2WQkOTUDo8GAIIqkpI6mMD+PuIRkykpL8PX1p6qyjD152WzYsIFJk469d73N/i+Pto6OIwY6CaMiCA8OOuLv1GUwsilrN1ar3D/8VFUMBgMAzs7OqKrqgHg+Xp6MTUkcsqDhcEdFdS1XXnkFq3/7leS0v+PlOw5FNjkAQH3NHxTueYF7//YvZp1xKhmJCQT5H76qpr2ziy27crFYrbg6OzMxPRmdTnvUnovbdufR0NSKk5Oe8amJuA0Csrz44ovccccdxCbcSkDwHAcAKC35gIqyT3ji6ecYN3EyAb5exEdFnBAAwGQ2s313Pk2trWg0GvQ6HdWVFaz+6fuDxOvMZhO33LaA2Lh4rD2E3hRFsXvR22wBBdE2jiuKislsxmKVbde2qiKKAh2dBipr6w6yAVQUhdi4OBbcfgd6nbZPJ47hTh4rKip46623aGxsRKvVYjabiY2N5fLLLz9IA2YgK+eVlZUUFBRgMpkcCU/3e4qLi7FYLCQmJh718b+/fvmjsfoP9p7yZ5/FoqhMnz3X4fykKArenh6MS00cls891loAHR0d7Ny50+ZukJ7u6H1XVZWioiJKSkrw9fUlPT19QOr1zs7O/Prrr6xcuRKr1YooilitVubMmcMFF1xwVPdj0aJFvQDA7bffzqhRowa8jX379vHll1+yYMGCg/bVarViNptpb29Ho9H8ZRWWS5cuZffu3SMAYCRGYrAA4Icvv2LFG2/h6uKCu6tr3/7Vdgiwccd2Gltb+Pm3XwmLiGDLli2sWLGCF198cdBJ/Ygd4NEHAX1fDQMHLoqicMkll5Camspjj9ncHlpaWhgzZgxtzS2cctJ0rFYrzno9/l7Do1QriSJ1TY3UNTSQEp+AqtgmkJ98/x2zRifw6NUXorq6Ien1WJoaMXQZ+DOngM/WbqW8pR1vbx9SU1I499xzmTNnzl+y8nIsoqWtnd2Fe1m/Zg2vv/wKhq4uBnobWa1W5pw5l7yc3WzeuI6w8HBuu/M+vvj0U4ryc5l2yhz2lRTi6x+I1WLGYrEgiiLr1/7G22+/zbXXXnscJDFWtu7KodNgRBSH/vyQZZn0hFiCA4/cvssqy2zZlUt7R+chJ77dEKDntakoCu72nnjNcdASoKoqNfUN3HrbbXz9+WfEJ92DX+A0FNnoAAB1Nb9TtGcZ9z/8b2aefgppA2wB6DIY2WIXbwQYl5qI7zA9P/qKon3lFJdXgCoQEuhPasIoBvoUfPnll1mwYAFxiQvwD5yJopgQRR2F+S/T2vQHTy95mfjEJMIC/YgODz0hAACAwWCkpqGRipp6TBYr9TVV/PHjd2g0ml7jsdVqZfrsuQSHhvUCAN3JvX1QsT97BFTsSb8goKo4bCP362PQCwAABIWEctrcs/Hz8iQxJmrY5wN9QYC8vDzef/99Ojo60Gg0mM1mIiIiuOiii4iKijpotfaw17S9GqCxsZGpU6c6+qK7urrYuXMnY8eOxcnJ6aidz0Otkg+n+N+B8fbbb7NlyxZmzDkT/8AgZFlGURQ83N2YkJY8bDDzWFUBNDQ0sHv3bpycnEhPT3c8s2VZJj8/n7KyMvz9/UlLSxtQ8m80Glm5ciXr1693vN5isZCZmcnll19+UAvOcAOAxYsXU1VVhSiK6PV6FixYMCitgdLSUr799ltuvvnmfisd/uoYAQAjMRJDAACb163nwzffxmA0oNfqUek/edRqNKzetBGzqvDHH3/g4+/Hzz//zJNPPsmqH39EZ6e/A00wR9oAjjEIGOBx//DDD3nllVf46quvHGVv9957L4sXL2bOjNNwdXEFVSXQ2xut9sjbAARBwGQyUbhvH4kxMWg0GrQaDeu3baWpoZr3/n4nni5OqKrKrr3lrPjpT7YWl5OYnMI5Z5/FnDlzHNUK/9djT0kpVXUN/PjtSj589137eVcOe11otTrCIsPZuH4Nimzlkcf/zYzTZvG/11/n4w9WMOWkU1FVhba2VgICg6mpriAwMISfVn3NzTffxPLlrx7zfTeazGzZlYPBZB6wN/aBIYoSTQ11JI6KJDVleK6ZLbtyaWptO2xbQldXV98AID152FdBhzrhrmts4uG//4O3X1tOVOwNhIbZVPC7AUBt1S8UF7zMQ/94klNmTWNUeAixUYfvJzWZLWzZlUuX0YiqqKQlxBASePT805ta29i+e499NVpkbEoC3p4D60F95ZXl3HbbrcQn34FfwKkoshlBkMjNfgpRKOTZpcsJDAklJjyEsKCAEwYAOK5Do5Gq2kaydu3ix2+/RKvVHgQAZsw5k8DgkB4AQOBIhuyDAUAYJ808HS93F8amJg35fh5sApmVlcUnn3xCR0eHoxIgODiYSy+9dEg92Farlc2bN+Pv799LM6GwsBBVVYmPjz9q92p/yfHRWv3vjg0bNvC//71NxrhJJGeMwWq12p5lri6MT08ZNn2TY1EFUFFRwZ49e/Dx8SE1NdWRsJtMJvLy8qipqSE4OJiUlJQB2T62trbyxRdfsGPHDkfyLAgCEydO5PLLL8fZ+ehaiP4/9s47vqr6/OPvc86d2XsnJCSQEELYSxFw4N5aq1WrVkDFqri6l21d1SJutGp/VVvr3rhREZAdsvfeOzd3r3N+f9zkkkASQkgY9n5e8gqGO874nu/3eT7fz/N5zGYz69ato7GxEVEU0Wg0HnLzMPw9GhsbeeONN1i9evWoWxz6CAAffDjOCIDy4hJeeuppDD0Gr3RrJKhVKrbu2U1DawubN29m8pQ0Ojo6OPfcc7nnnnu44oorUBTlsJJ5nwrg+CACRiJt2tvbufTSS1m7di2XXXYZAIWFhSxctJDJCclMTU3D5XIRHhREgJ9+XMoABEGgpKqChJg4gvz9cbjclNZUsWX797z865+TmhDDixu/4j9fbSEhJY07bruNSy65+Lht4TdRsNrs5BSVYrbYePmFF/nys09HZQqo0/nR2tqA0Wjg0h/9mJtuuwNBEMjNyeUPv7yblMlpTE7LoKK8mMmpU6mvqyYhMZktm78iI2Mq3333HdpR7HZMaDBjsbIzrwiXyzXmuUOUJDpaW0iKiWDROJU17MkvpqPHcEgC4MC58nhTABiNRqwOJ39/7HH+dv+fSUi6nEmTrzmAAPicyrLn+O2f/8bS5ScxOTGOyUmJh0w4XG43u/OL6TWaUBRIS0447Nr8w4FbltmVW0ivyYwCxESEkZ0xZVTjZsOGDdxyyy2kT7+d8MhTUWQnsuwkb++fiIiw8fDjTxMQGEzWlBQiQkNOOAKgH4VFxaz7+6PodLohFQAxcfG4XK4+zn7/HH/A/yIIHHLnfCgC4JQV5xAS6Mfs6RkTQgAMlyjn5+fz5ptvYjAY8Pf3x+l04ufnx0UXXcSyZcsO+ztaWlooLCxkyZIl3t1ct9vN3r17SU9PnxCTyJFM8iZy9x88ngqPPvIIfkHBnHL6WQiCgNstE+CnY/7M6ahVqgm9fxM1TiorK6mpqSExMZGpU6d65zSz2UxBQQE9PT0kJSWRnp4+KoKloaGBN954g+rqaq9RHsDChQu56qqrJiyZHrjOWCwW/v73vw8iANasWXNYxJTFYuGZZ57h3HPPHbeNFovFgiRJY1Y/+AgAH3w4DAKgvbWVDevW01TfMGoZjyRJNLa28PGmL9nwzAauveE6wOME+/e//50PP/zwsGt+fATAcUYEDEMM3HPPPXR0dPDSSy95F7szzzqLHdu+5/S+HsB+Oh2RwUEo43CskihS09iAXqdDr/ej12zBbLXw7fdbOWfBbErr6qjpMHDrmjXcddedx4Up3bFCQ0sbZTX1GA0GHn/k75QUFY4ouxQECbPZQFdXO7PnzedP9z+MSq1Gr9fT09PD7+65i9bWFpYuP5Py0iKiY+Po6uwgIjKK2ppKWprq+XrzFubMnHFMz7unz0juiMaZJNFQV0tMWBAr+jpdHNEzhsLuvOJRKQCGCjqDAvyZdxwoAPp32+xONy/838v85u47iIw5g7T0NQNMAHW0NH5CVfkL3PfQ31l00nxSExOICg89ZNKhAHsLSujo7gEFYqPCyc6YMqHnVFHbQGVtA6IoIoowOzODsJBDJ2MvvPAPVq1azbQZawkNX4Yiu3A6DOTs/g3Tpsfw14cfQ6VWMztzKoH+fhOecE3Y9amo4MEHHzyIAHA47Nx0i2eX0OFweqT/Al6Jv9vtxuF0YrM7sFhtmK1W7A5nH1mgeMmAgZ85HAEQHODHnOnpE7pjPVQS2dzczOuvv059fX2foarHzO6MM87g/PPPP6zExO12s3XrVmJjYwftrLa0tNDY2Mjs2bPH9fyO5e5///c//fTTlJWXc9rZFxASFobT6cJf7yEANOPY4vNoqQDq6uooKSkhIyNjUJu6jo4OioqKsNvtTJ06ddTu+bm5ubz33nt0dnZ6W/2pVCrOPvtsTj31VCRJOuySk8ON9wRBwGKxsG7dOhoaPPOgWq3mlltuOWx/im+++Ya9e/dy7bXXEhkZOW7HOtZz9xEAPvgwSgLAZrPxzyefIXfPXjTa0e/iCXjq+N75dCOTJk/m8y+/8EqW7rrrLmRZZv369YcZMDPIwd5HARyF4H7gNR8VByDw5Zdf8tvf/pZ//etf3sXi6Wee4ee33sqKpacR6B+AIArEhIYgieIRkwCSJNHS0U57dzfBQSHexevb77/DYrOxbPmpPPjA/SxevPh//n66ZZm9BcWYrXaKC4t44pFHMBh6kIZMIgUsFhNdXW2kTE7lvoceITI6GkmUEAQBjUbDixue5bVX/o/TV5yPwdCNLMte6aNep+Pzzz7ko483ct655xzT827t6CK3uPyI6v8llYrK0mJCA/RcNg7mS1abnZ15hTgczsMOZjwKgAAWZGcecxPA/qTC4XLz5nsfcNetq9HqZzIt6xcoihtQPE749R9RXfl/PPj3J5gzfyZpiQlEhoeOKvEoKKuksaUdQYDgwAAWzJw+oYlzT6+RXfnFCH3PTGzkoUkHWZZ5/rnnuPXna8jMvpug4CWAjNlUR+6e33DKqYv45e//jFoSmDM9A61Gc1SSrolAeXk5Dz/88EF16ofbBcDpcmF3OLFYrXQbjBiMJsxWK07nfkJArVbz7eefDE0AZE2cAmCopLmfsGlra+O1116jsLDQuynicrmYM2cOV1xxhbff+2jQ0tJCUVERJ510kvd6KopCTk4OISEhh2W6digcy93/fnz55Ze88cYbLDh5GakZ03A6nPjptSyYOR3NONeJT7QKQJZlduzYQVRU1KAxX19fT1lZGZIkkZGRMaq2kYqi8O2337Jx40YcDofXayI0NJRLLrmEWbNmTQhhM1SMJwgCZrOZxx57jIaGBiRJQqVScfPNNzNt2rTDvkZvvPEG0dHRE9axwEcA+ODDBBAAH731Nh+//R4qtcrbtm+0u8MqSaK0ppqNX3/F8/94gVUrb/QEvlYr1113HZdffjlXXHHF4U1WPhXAcU0GCIKAwWDgxz/+MZdccgk33XQTAPkFBSxcsICpKWmkpUzG7XYTFRKCTqs5ojIAQRCwORw0d3TQ1WMgJiqKhqYGcgry0Gi13HHHHfz2t7+d8Hq5EwltnV3klVSgUqt549VX+eCdd4Z4lgTsdhvt7U0kJCbyx/sfJik5GZvN7q1F1+p07Pr+e3599x3Mnb+YwKAQmhrriIlNoLurg2kZmbz5xqv86le/5E9/+tMxPee6plaKK6uPqAWgpFJRVlRAmL+OHx3mvOVJdtyYrVZsdjtWq53OHgPdht4xzWOyLBMcFMj8GdOOeQLZn1Q4XW4++2Yzt998IxZzJNlz/gCCCIqCJGmpr32Xxro3eHj9k2RlZzI1OYmI0OBRJR+l1bXU1DcjigJqtYoFM6fjN4EmaW63zK48TxmAIAhIksS8GZkEBfgNuy6ZTCb++9//smbNaqbPvBf/gJMA6O0poCD391z6ox+z8tbb8NNomDU93Zu4nohlAOXl5fztb387aLfbbrfzi1/8YtButtPpxGKx4O/v7+n80zd+RVE8iMRXFMWjDLBY6e410tNrxO50semTD2lpajyYAJiecUSk3mhjjn4/iEEEntXKe++9x7fffus5F0HA4XAwdepUrrrqKhISRl+mkpubi6Iog5I8s9nM7t27yczMHJed02O9+++di+vqWPf3vxMRG8fipacjy250Wi0LZmaOe6nYRKsAuru7ycvLY+HCheh0OmRZpry8nJqaGoKCgpg+ffqoyjhcLhcff/wx3377LYqiIEkSDoeDhIQErrzyykHKgom4Z8MpANavX09dXR2SJCFJEjfddBPTp08/7M+vqqqioqKCM88885jPXX/+85+pr6/3EQA++DBUTiXLsiIIAgU5+3jpqWdwOByeia2mhtSkJPQ6HW5ZPuQHadRqGltbee/zT4mOi2Xr1q3e9mq1tbXccccd3HfffcycOdNHAPyACAFBEPjd735HS0sLTz75JHq9HofDwcknn0x1ZRVLF53saf0TFEjQGNsB9rcuNFqt9JrMyIpCW0c7za0tVNfXsnTpUv72t78dFy3ojrv7pijkFJbSbTTR3dnJuoceora6ZkAgLeByOWlpaSA0LIT7H32MtCkZBznRq1Qqujo7WbPyOgIDQ8ieOZfionwSk1Joa2kiO3s2337zOYmJ8d4geTwDlcHSYycIwrAS0qq6Rspr64+YACgtyCPET8uVV101wjF6ArruXiONLa0IgoCsKNjsTuwOJ7LixuN/KuxXwPQlGbLHCv2EIQAGBthOl5utu/exds1qGuqtzJz7F1SqABTFjSRqqa36Dx3tH/Hw40+TnpFOekqS183/UMFsTWMzpVW1SKKIW5aZk5lOZHjohJ5bcWUNdY0tSJKI2y0zOTGeKSmJIyZXb77xBresWU3mzF/g57cQBOho/Y6y4nXc9PM7uOjyHxEWGEjmlJRjknwdCwKgP8HpJ1ION2m12h1seOYZSkuKESWJ6Nh4rweAhwA4dtdOlmU++ngjX37+GQ6n07trGxMTwzXXXDPqemmr1cq2bduYPn36oN3ixsZGSktLWbx48RGR2IdKhI9mKYrL5WL9Y4/R0NTEaedciH9AABq1ivnZ09FpNRNyjyZKBVBTU4PBYPDGsLW1tRQXFxMbG0tGRsaoykEsFgtvv/02u3fvRpI86jqn00lmZiaXXXbZkOTPRMwZB66tQxEAq1evJisr67A/e8eOHRgMhuOCAFi5ciWyLKNSqZg+fbqPAPDBh4G5laIoiqG7m2ceWUdddTVqjQZRFKlvbqa2oYH52dno9fpBbX4OhEqlorO7i6KKcgICgvjm+y2sXLWafzy/3xH8+++/5/HHH+exxx4jNjZ2TEmnjwQ4vhLL/nuyadMmHnroIR5//HGvZGzt2rU88fgTnHXq6eh1evQaDRHBwSN2kxg6+ff0j+4xmTBZbUiShMHYy/bdO7Habfzyl7/kN7/5zXHjOns8oqO7h5zCUnQ6HRs/+IBXXvo/RFHwEivt7c3Isos/PfAQCxYvwWw2o9frBz1v/QH9L9b+nMryCk474zxKSwqIjIzGZDKSkpxCa3MD+QX72LNnz6hrIA81xvp7R/e3kJJlmW5DL20dnbjdMnqdFj+9Dp1Oh7+/HzqtluqGZuqbWg5KQA5H0SSpVJTk5xKkU3P1NdcM+Rqn00lDYyN5hSW0d3Rid9iR3e6+GmcZse+aSZIKQRTRaLXo9Xq0Oj06Pz90Oj2iKHnGuKIg99UXDxXUenpnT5vwHdDRBtdOp4t9xWXcfccd5O4tZfaCB9FqI1EUF6KopbriX5iMX/O39U+RMjmFaakphAYHjiqobWnvJK+kAlH0mIalJMQydfKkCT239s5ucorKEEUPgeOv0zF/ZuZBMuWB1+Cdd97m5ptXM33mPWh1CxAEgfrat6irfpXf/eUBTjplKQlRESQnxA36jBNNBVBWVsajjz46JAFw7733DukUvn/tPrgrwIHPoCdhNXtft2HDBgoLC5FEkfikSSxfcQ6CoLBkwdxxNY4b25wE33+/jbfffntQh4Dg4GCuvPJK5s6dO6rPqa6upqqqipNPPnlQaUV+fj4Wi4X58+ePOek7VBJ8tMffxx99xPsffMBJy08naXIaKlFkfnYmep12Au7PxKkA9u7dS0JCAlFRUbjdbnbu3OlRC82bN6p75XQ6ee2119i5cydarda7ti1YsIALL7yQgICAo5L8DxXDWa1W1q9fT01NDSqVClEUWbVq1WF3vDCbzfz3v//ljDPOGJcY4Ejxk5/8BLVajVar9REAPvgwFAHw8dvv8tHb7wwy/VOrVNQ3N1NaXcn8GTMJCgwckgTwJP/d5JcWMzMjE3//ALbu3U1uUQHvf/AhF5x/nve1b7zxBhs3buTJJ58c9SLkUwEc/+jq6uL666/n2muv5Uc/+hEAH330ERdccAGL5swnLiYWlSQRHRpymMm/gNvtpqvXiMXhQC2paGhpYseenUTHxPD8889zwQUX+G7AKILW/NJy2rsMdHV28PCf/0pTYyNqjRpDTxdGYxd3//K3nHX+hUMm//3Q+/mx7sH72fjRB5x97iW0tjR56nY1WgID/Aj09+f111/l008/ZcWKFRMWtCiKgtVmo6urh8r6BlrbO1DcMpIoIIrgdLpxy25EUUQSVag0KlQqNSq1GpVKPYgYGI4QkFQqinJzCNSp+elPfzrs8bjdbjq6eqisraezuweXy4XT6cDldGC3WbFaLNgsFmw2G3a7DZfT4TUSU6nU6P38CYuIJCYugeDQUARBRJbdg47LLcuEBwcxd8a0YzoHDqwpdjhdFJRXc9/v/sTXX37OzDn34x+Ygiw7ESUtFSXPIbv38PD6p4hPSGB6WgrBgYMD3OF2Int6jewpKEGWFRTF0zd8QXbmhO7+2ux2duUWYXM4vCqOmRlpREeED5tYvf/++6xevZKsWfei0sxFACpKn6Wn62seXv806dMySUtKICYy7KgF9RORTFVWVrJ+/fohCYC1a9cO6wGg9BEAff8dep3v8/p59tlnKSrymHhmTZ/OjStX0dHdQ0RYKCHBQcfsGegnNQRBoKioiNdff53m5maveVtAQAArV64clXGaoijs3LkTYFCy3+8HIIoiM2fOHJNfyEjJ/7EYe1XV1Ty2bh1xiZNYsGQZUh8B4O83MaV6E6ECMBqNlJWVMWvWLM8mhMHAjh07mDFjxqg3tD777DM++eQTJElClmUkSeLMM8/k9NNPH1ItczTuVb/3htVq5fHHH6e6uhqVSoUgCKxcufIgL4JD4fPPP8dqtXLRRRcdF3PY1VdfjUql8hEAPvgwVI5VX1OrvPjk07Q1NyMdwK6r1Wqq6mrJKy3hlHkLCAsOxjVgl0qlUtHV001ucTHZGdOICA3F6XLRYzLz5ZbN+AUG8sUXX5CSsp8JfPTRR8nPz+eZZ54Z1a7toADdZwZ43OLOO+8kJCSE3/zmN6jVapqbm5k/fz4qQWJe9mwQFKJDQ1GN0ghQEATcskxnjwGb04kkipRVVZJfUsjSpUt57rnnDtuh9n8Z3YZeduUVI6kkXnnxRb7Y+AlmixGjsYeVN63hRz+5FovNiv4Ap++B0On1vP/Wmzz64F8557xLcLlcdHa2ER0Tj9NuY3JKCq+++k9++9tf85vf/PaonVtTWwf1TS3YHU7sDoen37TbjcvlxOl04nLu/52HsNCg1enRarWo1RqEIYIsSaWiIGc3QToN111//aGDTkWhu9dIV7eBXpMZm93RVwIg99V/CyiKjNvlwuGwY7VYMPb20tXRRld7G06Xi6joGGLiE4iKjffUT/fNfbIsExYS7CEAjuEYGkwAOCmqrOXJxzbw5mv/IGvmfQSFzECW7YiihpLCJ/Hzq+ChdU8RERnOjPQ0Av0OrqkfigSwWG3syivC4XQCAqIoMHdGBiETvHOZW1xOa0cnougpA0iIiWL61MmDkuGB+Pjjj1m16mdMn3kvkmo2iuKiMPcB1Oo6Hnn8WeIS4siakkpQwMHr3ImgAjhSAmCs2PDssxT2EQDpGRmsXr0aFFCpVQQGBBzjMgDFq8Jpbm7m1Vdfpby8HI1Gg9PpJDo6mptvvpm4uLhDfpbFYmHbtm3ExMQMklrLssy+ffsAmDlz5qhLKUaz+30sxp3T6WT9+vU0tbRw2jkXEBAQyJysDIID/Cd03I4nioqKCAoK8no91NbWUl1dzeLFi0cl/d+7dy//+c9/vC3+RFHkwgsvZOnSpcO+52iWalitVp544gmqqqq8BMCNN97I7NmzR/0ZbW1tvPXWW/z4xz8+7K5fPgLABx+OAQHwyvMvKLu2fY8yTJ2/RqWmpqmR0upKFs6cRZB/AC63uy/57yG3uJDsjGmEh4b11f6BW4amjg6++GYTJ51yCm+++QZBQYHeyfkXv/gF5eXlPPfcc0RHR488mXveNCgx9OH4w5tvvslbb73Fs88+S1iYZ8frggsu4MsvvmTFstNQSRIRwUHo+6RvIw5KQAY6DL3Y7HZEUSS/uJDy6kp+cvVPeObpZwgODvZd9MOAw+mkpLIGu9PNd998y1/+8Ft6e7u57MdXsXLNz7HbHei02hGfL51Ox+6dO7hzzWqWnnoWQYHBNDTUMmnSZEymXjKmTOX9D95m7tzZvPfeewe93+ZwgKzgdrs8u/N9tYbSOLS2k2UZh9OF0+WirrGFpvaOgzwAFEXB7Xbjdrv65PYe13FxiO9XqVTs272DUH/9qAiAA+csh8OB1eag12ymur4Rh8M1qA/6wLZODruDjvZWGmqrEQSBlLR0wiIivMGiW5aJCA1hbtbRI7ycLhcqUULoS3YODKodLhfFFTW89p93eWb9X5maeTcRUScjux0IokRR7qNERXdy/yOPExQczOxpU9APY+R3YKDrcrnYnV9Mr8nsTcYnJ8UxJTlpgomkdgrLqjwKAFkmwM+vr1+5NOSu4meffcrKVTeSmX03gjAbl7OHfXt+T2KSlgf//gShoSHMmjZlSLOzE6UloNFoPKoEgNVm59lnn6W2ugpBFImOjWfZmecQoNcxfepkJFE8puTJwN7p4DGGe/HFFykrK0Oj0eBwOJgyZQqrVq0iJCRkVEnTnj17yMjIICUlZdB8VlBQgMViYdasWQd1YBhuDjzedv/78emnn/LOu+9y0rLTmDR5CllTJxMZFjJh3zeeKgCDwUBFRYV39x9g9+7d+Pv7j8olv66ujhdffBGDwYBKpcLpdHL66adz4YUXHhfJP3g6gD3++ONeAgDgxhtvZM6cOQeN+eHwySefoCgK55577nEzf11zzTWoVCo0Go2PAPDBhwNzrd/edofSa+gd8UVqtZq2jnaKKsqZOS2TiJBQ2rq6yC0uZEb6NCLCwgaVB/S7tde1tPL1lm+56upreP7551GrJe/kfM899/DVV1/xzDPPcPLJJx9y0fURAMc3qqqquP3223nooYe8uxmPPvoo9957L6edvIyQ4CAC9HpCAgJGVYfdbTRhsloRBIF9hXlU19Vy55138reH/4ZKrfJd8DEGry2d3fzhd7/nxeef5byLLubWtXfhditoNJpDPlsqtZq2lhZuueEaEpJSSU3LoLG+hqSkZMxWC4lxceTn5dDZ1UZOTg5+fn6YrVaqaxvo6uoiwE9HaFAgIaGh+Pn5jeo7x4LOnl72FhQP+9kDfz9SCcDe7VuJCgvm2mt/OuZjcbnc7MorxGixDtvCTBAEREnC5XQO6o/eD7csE9GnADiaBIDZYiMkKGDIgNrpdFFYUc3XX2/jT7++m+TU64hNOA/ZbQegYN8DpE0R+eP9jxAYEMCszCkjtv06MODdV1RGa2cXkih6knF/PxZkT0elkibsnI1mC7vziz1rmSAgCjA3axpBAf5DJhNfffUVN668noyse0DIxmppIGfnr1mwKIvf//VBQoICyU5PY6jbfqKUARxNAsBotlBaVcfnH79PW0szANExcSw6dQVBfjpmTU8/5gTAUGhubua5556jqanJSwLMnj2bn/70p6NSOdbV1VFUVERWVtZB3QRqampoa2sjNTV1xF3V43X3vx8NDQ2sW7eOiJg4Fpy8jMwpKcRFRUzoWjceKgBFUdi3bx8JCQlegz6TycSePXuYO3fukHX7A9HV1cWLL75IfX09Go0Gu93OvHnzuOqqq7wtdI8HctBut/PEE09QUVHhJQB+9rOfMXfu3P1r5AgKXJvNxiuvvMI555xzWB0xfASADz4cQwLgjutvVORRuPyrVSraOjspra5kcmISVXV1pE9OJTI8fFiDwF6LlYbWFrbt3M61193AU089Pshn4OGHH2bdunXcdttt3H333cM63/rKAI5/yLLMT37yE66++mpvXf7WrVtZvnw52dOmk5w4CY1KRWTIyDv3giBgMJsxmM0ICOQU5FFTX8vvf/97/vznPx/L9Bl+ACPv1f+8xs+uv46zz7uQ2+66F5Va5a1JHw20Oh0/X3U9rU2tLFm+guaGOhISErA53QQHBGAx9fLJpx/y7jtvExgSRlVdA/5+emZOzyAmOvqotGi0OxzszC3EZneMOZCSVCp2bd1MQkwkP/nJ1WM+FpvdwZ6CEsxW6yF7mPcf64GkxLEgABSgorae2IhwAvz9Duop7nS5KCirIi+/mF+uvZ2Q0FNJTr0WRXEiy07y9tzH3AWx/OJ3fyYk0J/saVMOef4DA9/ymnqq6hqRJE+S7KnJn0J0RNiEnXNbZxf7issQBc93ut0y6ZOTCA8eOnH65puvWbnqRqZm3oWizKC3O4/83N9zwaWXccvtdwxpAHisA/2xJFFHgwBwu2XySyvotVjZ+sWntLbuJwAWn3amhwDInIooisfldauoqOC5557DaDR6uwMsW7aMq666alRET7+jfHp6+iAlAEBPTw/FxcXo9XqmTJkyJKlwPO/+94+lDRs2UFZWzrKzzmPOzBkkxUZNeExypCqAmpoabDbboHLDwsJCZFlmxowZI77XarXy73//m7y8PC8xNGnSJFauXDmsgvFY3Se73c6TTz5JeXm5lwC44YYbmDdv3qji76qqKr7++muuu+467/uPB/hKAHzwYYSY87af3jBqW3adVktVfS1fbt3KqYtOYkpyCja7bfgJWFHoNppo7exg247tXHTJxTz3/HODeqV+/vnnrF27loCAAB544AHOOOOMIYNRXxnA8Y/7778fh8PBfffdB3jY7/nz5+Ow2lgwex6iIBAVGjKsD4AgCNjsDtoNBgRBpKi8hJLyUv74hz/wp77PPBZpv8lsQa/VTuju49FAW1sbixctYu7Cxfz8zntw97nrHw789Hr++sff8vWXX3HWuRfT3dVBdHg4glqLy+0mLCiQ1994leWnnc5FP/ox0zIy+mTURzcoyCkspa2re8ytACVJxfbvNjElJZnLL798zMfhcDrZnV+MyWwds4O/W5YJDwlm3lEkAADqm1vp6jGQNTUVi8VyEAGQW1xOc0sbv7rzDsyWSWRMvw1FceNyGsnd+0dWnD2XNWvvJj4qgsmJ8aP6zv4AuLWji9yScgT2+4FEh4cxK3PqhJ1vXXMLxeXVXpmvy+UmJMDP6wNwILZs+Y6Vq24kLf1O3PJ02lu/pqz479z08zu5/Mc/ZmpKAqEj9AU/3lUAR5MAaG7vpLSylqryYorzcpFlN263exABMDNzKpIoHrfXbfv27fz73//G3ec1IssyF1xwwagl0Y2NjRQWFno9AQaeo9FoZOvWrcTGxh7USnk0ie7xQJrs3LmTf/3rZWYtWMzpp5/G5ITYozJ+xzwmm5tpampi5syZ3qS2t7eXffv2MW/evEFtcof67nfeeYfNmzejVqtxuVwEBwezatWqYXfIj+W4djgcPPPMMxQXF3uP98orr2T58uUHq+SGIAE2b95Me3s7l1122XH1TP7kJz9BpVKh0+l8BIAPPoyVAJAkCaPJRH5ZCXFR0TS2tjAtdQrhoaHDKgAEQcDhdNJtNGEwGdm6YzszZ8/iH//4BxnT9jOqBoOBhx9+mNdee42lS5dy1113HbTI+coAjn98+eWXvPDCC7z66qveBfOCCy5g05dfccbSU1FJEpGhIWjV6iGl14qi0NZjwOV2U1FTRV5RAb/45S95+KGHjlkAbDCaEEVxSCOvEw0tLS08uv4Jlp5+JkFBQSO29hwOer2eD999m4f/eh9nnn0RsuzGT6shJCySto52khOT+Oijd0hLz2DdU8+QPikeP73uqJ9rRW0DlXUNR0AASGzZ9AWzZ0zn/DF0muiX8rvcbnbmFh4RASD3EQBzjzIB0GsysyuviLjIMBJiBu/WuVwucgrLMFks3PfbX1NW6iRr1q8QRQmrtZW8vX/kJ9deyLU/W8m01OTDMvzy9/fHarOzM7cQp8vjF6Eoiqfl1oxpE/YsVtU3Ul5dhyiKWK1Wj/liUCCzh/Fe2L59OytX/YyUtDtwuadRV/Mq9TX/5Y/3/40zzlxBZmoy6kOQhsezCuBoEQAut0xuUSnbvttMU0MdoOCw24clAOD4NVH8/PPPB/mfCILAT3/6UxYuXDiq9xsMBu+OcXZfC+Z+FBYW0tPTw+LFiw8iBw6F4+F6mUwmHnvsMRRR4rIrrmL6lJQJ/86xqgDa2tqoqqpixowZXsWFoijs3r2b8PBwJk+ePOL7N2/ePGgcSJI0YpvI0Sb/E6VDVBSF//znP3z77bdetcLcuXNZvXq1t13wSCTA22+/TUxMzCHLeY82fvzjH6NWq/Hz8/MRAD74MBYCQJIkTGYzewsLmJaaRlx0DC3tbeSXlvQZAI5MAtgcDrqNJmwOB/vyc0EU+Pu6dfzoih8Nem1ZWRnr16/n22+/5aSTTuLmm28eNGGOphbJh2OHpqYmVq9ezVNPPUVycjIAf/7zn/njH//IiqWnEhgQSHhQ4JBGgIIgYDCZMFnt1Dc3sjNnNzfeeCPPPffcuJjEjQV2hwNFUdBptT+I+yMrCvmlVbR3do75M3Q6HTm7d3H7zSs5+ZTTCQ4OAbeT2Pgk6hsaiIuNpaQol46uTrZu20bUBEq2RyQ7OjrIK64Y846KKIps/uJTTjlpEacPoUo6FBpb22nr7CIyNJTappZRlQAMB7csExYcxLzszKM677llmZ25hXR1dZM1dTJhA8p3ZFlmb2EpVoeDxx5+lC3fFpM95/eo1AGYeyspyPsLt921hit+fCXTUicdNhGjKAq784qwOZxodDroM3CclBBLxuTkCTnfsqpaisr6xowgoMgyfn465k6fhnoI35Hdu3exctVKElNuxemcSlnROizmHTy0/mmWn7KE5PiYUZEdB3o+/K8RAE1t7fz73/+ho6WJK668iq1btlBRXoYoiiccASDLMu+88w5ffPGFdyc1ICCAG264genTp4+OEHG5KC0tpa2tjZiYGJKTk9Hr9RiNRrZv386MGTOIiYkZdYJ7PCkmPvroI77a9DWX/fgqliycd1S+czQEyUDU1dXR0NBAVlbWILVqRUUFXV1dzJ07d8SYpKysjJdeegl7n4GxLMucc845nHnmmeN2f0ZrzDeqz+ojFXJycnjhhRe8n+/n58fatWtJSEgY2itnQBz+2muvMWfOHNLT04+r5/FHP/oRarWawMBAMjMzfQSADz4cDgEgSRImi5mcggLSU1OJjojE5XKhUqno7O4ir7SE7PRDkwAWmx2D2YzRbCYnfx82u52fXn89f/zD7wmPGGwGU1hYyPPPP8/WrVvJyMjguuuuY/ny5V7/gPGc/HwYX1x99dVcc801nHPOOYCnVdb555/PojnziYuJJcjfjyA/v4MUHSarFYPZQndPN5u2bmbBggV88cUXgxbgoxr8egbaD2qc2ewOducXYbXZx9RfWhRFtFoN1VVV3LbqBhInpZGaOgW71czkyVOoq69Hp9OC7OaTTz7g++3byc6ecUzOtX/3Wpblwz7XfvnuN599zDlnrWDJklMO+/vbu3rYW1iCiIDU5yJ/JIl4aHAQ82dMO+rjsaSyhuKyCnQ6HUmx0cTHRHqD331FZZhsNv71wmu88/r7ZM/9AzpdNN2dOVSVr+M39/2BSy66iElx0WNMyGsoraohMDDIQ8TpdOi0GubPnI5+HEk5RVFQFIW9+UU0NLd6iJoBAfnszKmEBB2ccO7bl8Oqm24iNv5mbPZ48vb+gbBwI39b/wxLFs4nJHB0SoXjVdLenzhNJAHQ3tHB2++8g9Fo4rxzzyVzWgYbNmygsLAQSZKIio5l8WlnEuKvZ3ZWOv37n8ezcsLpdPLKK6+wfft2b3vAqKgobrrppsMySCsrK6O0tJSEhARvO7Y9e/Zgt9tZtGiRZ90chcT9eCJLWlpaeOqpp5i3cBEXX3D+USNlRqMCkGWZiooKmpqamDVr1qAuDo2NjVRVVTF37twRpf/d3d1s2LCBlpYW1Go1DoeDRYsWeRPRoTDWsSwryphJ5aFgMhpZ//jjNDQ0eH0sLrnkEs4555xhzXL7j/utt95i8eLFxMfHH1fP4qWXXopGoyE4ONhHAPjgw+EQAP3J/96CAtInTyYmMmpQku8hAbrJKy0mOz3D2wpwKKhVKpo7OtiZl0tqcgoqSWL3vr2Ehodx6WWXsXz5ck466aRBrqq1tbW8+uqrfPbZZwQEBHDZZZdx3nnnedlvH44/3H///QD89reePvDl5eUsWLCAqLAIZmRk4qfVEhoU6F1Q+hUiXb1GrDYb3+3YhlqrYdOmTWRnZ/su6BEnN/0LtcfLYFefy/loAw4FcLvdBPr5kZIUT0NzK10GA3fevAqjycKChSdj7O5kavo0Oru76eruIik+nldf/SdPPfUUK1feeGyCcJeLnbmFmC3Ww06uBEHA6XDw9acf8aPLLmXe/PljIpBKKmqoa2pGFMUjSlZkWSY4KJD52ZnjGvCNJjGua2wit7jckyTLMtGR4WROmYwoCOSVVNBrMfPBO9/xj2eeYMbMXxIQlEZL0yY6Wl/hz3/7G+esOIPo8JAxfX9HVzdbduwmOHS/ikR2yyQnxJI6KcG7ez4wED3c6wp4k4PC8ipa2jq97RrpI4JiIsPJnJLCgbqz/Px8brr5ZiJjbsJg9CN31y+YOTuZhx97kjnTMw4p/z+QBDjelACHQwCMhZS32+3s3bsXnV5PZmamt13is88+S1FREZIokpA0iWUrzsHucDApLobI8FB0Ws1xb6DY29vLc889R3l5uVdSnZ2dzcqVK0fV0g88SoDt27cDcNJJJyGKIp2dnezcuZOZM2cSExNzQu3+9+Ptt9+mp8fA9TdcP+YSrbGO5ZHQ09PDrl27mDlzJlFR+0uempqaKCkpYcaMGd5OAMPNl//+97/ZsWMHWq0Wu93OtGnTuO6664btBnGk47if4D7SZ6FfBfDOO+/w6aefeomrtLQ0br/9drTDtG8WBAGXy8XHH3/MKaec4m0Bfbzg4osvRq1WExYW5iMAfPDhwOd37fU3Ku4hdqckScJssbCnII+pKZOJjYoeMrlXSSo6Dd3klRSTPTWD8LCDSYD+EoKconwmJ6UgqTTYHB55VGNLM6XlZfQYDUxNn8rKG1dy+eWXD3LC7enpYePGjXzwwQe0t7czb948LrjgAubPn39QUOLDscXHH3/Mf//7X1555RXA0x5m8eLF1NfWsXTRyeg1GiJCgr2LiawotPcYcLpc7MnNoa6pgZdffplrr73WdzHHKYnrX6h7eo3sKShBVpRRScndfbv+sZHhpCYloNdpKa6spq3LwO/vvYviwiKWLDuDno5WMjIycbllKqoqmJKaxqeffMiChfN56603j9m5F/cl4IdbQiKKIlaLha8/+4ifXX89mZmZY/p+t9tNaXUdjS1t40MAzJh21IL5fvm3oijsLSimo7MHjU4Lssy0KZOJiQynqLyazt5etnxbyqMP3Ef6tNWEhM2mpvJ1RGELf/nb31l60gLCg8em4nE6nbz/8ScEhISh0/ephhQFjUbNnOnp6HXj6y2RW1JOR1fPfpJFEKDPe2DujAz8D+hgUVJSwuqbbyE4dCXdXRbycn7FhZdeyH1/+SupiWPbCTueEtvDIwDgcA97ONLgmWeepbi4CICsrCzOPO9CKmvqEQSBkKAAstJTCe9LNI5nEqC5uZlnn32WtrY2JMmjArr00ktZsWLFqD+joaGBvLw8Zs+eTWxsLIqisHPnTlwuF9OnTz/k3HY8EiWtra188OGHXHbppUctYRyNIWB7e7vX9K//PTU1NVRVVTFt2jTi4uJGfP/333/P66+/jiRJuN1uIiIiWLVqFdHR0RNGzih4DPwkUToik+L+Z7G6uponnngCu92jEpQkiVtuuYVp06YNSwDYbDa+/uYbli1dOqI64ljgwgsvRKVSERUVxbRp03wEgA8+DHx+f3LRJUpkaNggiaokSZitVnbn5zI1OYX46BicIxiGqSQVXYYe8kqKyErPIGKAEmAQkZA8mfiYGKw2Ox29vdgdDtRqNaIo0tLWyu59e7HYrPjp9Zx9ztmsWrWa5cuXD2LM8/Pz+fTTT9m7dy9arZa5c+eydOlSpk6delRajPkwMioqKrjzzjt56aWXvGz5ZZddxkcffshZy88gQO9HRMj+hKDHaMJid1BVX0NOfi433nijtw7Nh/FFZ7eBnKLSUSWcChASGMjkpDgiw0K9/9bS3klZTT3PP/0kH777DstPP4fe7g7SUtPQ6/0or6wgJDiEpqZ6Ghtr2bNnL8HBx6aMo7PHwJ78Ym+gBIxqx0kUJXoN3Wz58lPWrFlzSMOnkWB3ONixrxC7w4EgiAOO5PAIgMAAf+ZnZ6I6Sn4YA2WzzW0dbNu1h5CQUARBJDjQn9nTM6ioq6elo4Oykm5+/8vfEZdwNtExp1Ja9DTxCW388S8PMTs7k7CgsUuQ33r7HZyCRHziJG/HCtktkxAXTXpK0ridr8PpYm9hMRarHaE/IO4bK4pbJisjjajw0EHvqayqZM1ta1Gpr6G1pZKyooe47e57+cU99xDsP/a16HjZtR0NAXDLmjVkTjsyc0pFUVD6foqiyLN9BIAgCKSmpbH8zHPp7O7xJrKT4mPQaLREhIUSGRZyXM+5e/fu5Z///CdutxtFUQgMDOTWW29l0qRJoybBtm3bhkqlYtGiRUiSREdHB9u3byc7O5vQ0NAR33+8eiVs3ryZoKAgZs2addS+81ClAJWVlQQEBBAd7dnsKiwspLW1laysrEMm/83NzWzYsAGDweBVfP30pz89yMx6Ip5xl8uNxWYl0D+AsXI9XtNal4unn36awsJCr3Ll1FNP5aqrrvK+7kACwGQysX37dpYvX35ctQAEOPfcc9FoNMTExPgIAB98OJAAyE6fpkxKSGDKpGScLteghD1tUjIJMbEjJv8DSYDu3h5yi4vImppBRJiHVLDZ7ezOz2VyUhJJsfE4XS4sdjsGkxlZUXA47NQ3NlFdVw2iyNz5C0hMSWHz15uorqwgLS2NSy65hCuuuIJ58+YNWhgLCwvZtWsXVVVVACQnJ3PuueeSmJjou7PHCA6Hg6uuuop77rmHxYsXA/CHP/yBv/zlL5xxyqmEh4YSERyEShQx2+x0m0z0GAx8vfVb0jMy2Lx5MxEHeEL4cARBz4A6wbbObvJKykcMAtyyQoCfjknxscRFRx6UMBuMJvLLq9n43rusf/RvnHrGOdgtJhLiEwgNDaeltZlek4mggADeffcNPv/8c5YuPeXYnLssU1pVR5fBgEatxk+vo6OrB4fTOeKumCRJdLa3seO7r1l7xx1HXNdYWdtAcUUVGo0GtVrtIVgU5TDOQyHAX8/87MwJb6fYXw8/MFB2u2W27NyDyWLBPyAQRVbInpZGT6+R+uYWenvhd7/4K4qcSsKk8ynY9yALTwrlzl/8lulpkwkJChjz8Xz8ySeUV9Uwe/6i/SR1X6KYPW0KoaMkF3p6jbS0ttHZ1YXT6STA35+4mGjCw0LRajV09vSSV1zu3cZW3G4PASAIuF0uMqdOJi5qsPy3sqaGu+75NU7HpdTWbKKl8TUeefwZbrjmJ0ds1ng8kACHIgBcLiennX0+6enp+Ot1BAb4oVGpUalUqKSxl714SwAkiejYOJacfpZ3Q6Ff7qxSqZmSkkhqUsJxPwf/5z//4ZtvvhlzKUBlZSUlJSVkZWUxadIkjwFn3wZIv9nu8UwkDYXe3l7y8vJYuHDhsLXxEzG3DacCcDqdFBUVkZ6ejk6no7i4mNraWrKysg7p2+ByuXjppZfIz8/3Sv+XL18+bEu8ibgvTpf7sEqOhro2/c/Xpk2beOONN1CpVLhcLqKjo7nrrrsIDg4ekgDo7e1lz549LFu27Lgbb2effTYajYa4uDgfAeCDDwcSAGuuuU7JLS4iODCQzLQp9BpN7CrIJW1SMomjTP6HIwGCAwPZnpvDpLgEkuPjsTscGMxmzFY7CgpNLc3kFxfilmVOW7GCcy+8hGkzstHrdJiMRvbt3cPnn3zE7h3bsVitLFqwkMt+dDmXX3458Qcwsk1NTd5F9kj6dvtw5Lj99tuZNWsWP/vZzwB48803ueKKKzh5/iLiY2IJDwpEEkXae3qwOZxs27Wd7l4Dn37yyZgc130YgZBxutD0OZg3t3WQX1bpJQREUUQQRWS3G5fLhV6vIzEmiviYKDTDBGU2u4O80kq++vIL/vL733DKshXITgeRERFER8dgtVqpqK5icnIKb7z+KnfddSd/+OMfjuk1cLndqCQJm8PBjpyCQQTAoJ99f5dEiaaGOvJ2fc8999xDeHj4EQeeO/flU1ZegUqSCAkL75O0y6MyB5QVBX+djvnZmWg0Yw+WO3sMCAiEhQQNS5gMt0NW39TCzr37CIuIQJEVIsPD0KhVNLa0odFqWffwvygsMJGUfCEF+/7Mj35yCj+59gYyJk8iJHDsBMC3W7bx9aavWHjKMvz8A73XS+kri5g5bcqwqgiXLFNd20BhYSF19bW4XTKhERGEhUei0Wjw8/MjMy2FiLAQiitraGppR5RE7+f3jwm300l0ZAQzMtIGfX5FTQ2/+/1f6elZQXnJq6AU8NyLr3DGsiXjMm6PdQJ3aALAxZLTziQiJhbZ5UJSqVCrRDQqDWqNCpUkIYkigiggMFKdsoKs9Nczi3zwzps01deBIBAdE8eSM84aXFaogE6vY3JiAmnJxz8B0N3dzVNPPeU1V3O73Vx++eWcMcq1zmazsW3bNiRJYuHChTidTnp7e2loaCAjI2PYMXK8+yRUVlbi5+dHbGzsUSWFh5rjmpub6erq8nZq2LlzJ1qtdtgd/IHYtGkT77//Pmq1GqfTSWJiIjfffPMgP6vj/b4MND1ua2tj3bp1XjWDLMtcf/31LFy4cEgCoLu7m5ycHE499dTj7rzOPPNMdDod8fHxZGRk+AgAH3wY+Pyuvf5GRZZlcoqL0Gk0mCwWEmNjSYiNw+l0HvYHqiQJg9FIbmkxbpebtORkkuPisTkcdPYasTudWKxW8osLaGxp5ozTT+d3v/sdJy85hR6TmYamFnqMRlxuN2qVBhmFtuZmCvP28f3W76iurESjUXPuuedy5ooVLF682Ctze/fdd7HZbF65kg/HBs8//zzFxcU89thj3sX0pJNOInvadFKTJxMRFIjN4cBotVJWVUl+cSG/+dWvuf/BB3wXb7wX9gF1thW1DVTWNaBWqQEFk7GXpoZ6wiMimT0zm4SYyEO2PFQUhdzSCr7Z9C2//cWdLFy0FK1GTVCAP7Gx8SiKQlNzE0HBIWz//juioyPZtOmr4+JaNLV2UFJVMygYdLlcuFxOXA4HTpcLp8OBSq3CaDBQX1nGvffeO6yB0+GgtqmFwrJKOlua6Whvxd8/gMiYOAKDQ5AkT5/74cgATytKDfOzp6PTasZ8DI2t7dQ0NDEnK+MgF/1DyWOdThefbfoGlwwh4eGIgF6nwWSxodNp2PjhZv777z3Exp9GRcnD3PnLmzh56XIykhMHtQ88iKByOJH7gkpF8SSAWo3aO2ZzCor44L13SZ48hZQp6bjdrkHHnBQXw5TkgxVf3YZevvrmW8qKitDodMQlJhEZFeNpKdh3Td0uN1qthoSYKBpa23A6nPsL2fv8BhBFDxkApKelEBe1X51UUlnF44//g+rqTPL3Pk7yZB2PPbWBBTOzxm3MHktzwFERAKefRXRsnCdB75Pye396M4vRQ1Kr2PbVF7S1NgEMTQAAWq2OSfExZKQmnxDzcE5ODi+99JK3FCAoKIhbb72VpKTRlbGUl5dTXl5OZmaml5AsKysjIiJi2Dr641X+v//Zd1BXV8fkyZOPurfJgcjPzycxMZGQkBBcLhe7d+8mIyNjUCeAIef12lo2bNiAzWYDQK1Ws3LlSqZOnXpCkTIHdj365z//yffff+9VrcyZM4dVq1YhSdJBHZw6OjrYu3fvfm+L46hN9xlnnIFerychIcFHAPjgw4EEwG0/vUFRqVSYLRY+/OoLkuLiOWX+AhxO52HJVPshCp5gdlvObroNvZw8dx4hgUG0dnfjkmXaOtrZvmcngUFB3HfffaxevRqNZnBQa7HaMJrN9PSaMJos2JxO3LJnt6y7s5OKslL27trBtu82869//R+nnnoqAHfffTennnoq559/vu/OHkNs3ryZp556itdeew1Jkqivr2fuvHkE6f2ZnZVNoJ8ei91OR1eXp+Xf/Pls+vrr485A5oeG8pp66ppb6WhtoaaijPa2VqIjIzj3vPOYNsJO0oEorqzl2++28Ms7fk72rPmEBAeiUalITJzkCbCMRlyyTFdXB3l5e9i9e/eI7smHC7dbRlb6ZfRCX4LkCe5kRUGRPT3jnU4n3YZemlvbUGSZ9s4uTCYTLqcDl8u1P+EWQJJUqDUatFot/oFBNNTW0NFUz7333jsuRqO5xeW0dnahVqmwWsy0NDbQ09WFpFLhHxhAYGAIYZGRQwaHiqKg1WiYPzPziNrfGYwmduwrIDIslBnpaahU0qjMsfqxdedu8nLzyMjKBlFEFDzlCRqNisqKOtY/8gWSahKdbS9z30N/ZFJKKsmxUSTFD97hs9rttHd209XTi93pRJZlb32/KAro1BpCQ4OIDAujtKqOnd9vpbeni4VLlnsS8oHrkqKQNimRxAGtBssrq/h440aMvUZSpkwhLmESqv7SC8+I8cjIJQGXW8bd3xVj4LXvK4UQ+ggARVFQqVQkx8cSF+MpjckpKuGdd75gz04tObse4oyzl3PbXfeOWfXgcDpxOl0ggF6rHfQ8Hgs1wKEIAIfDztIzziE6Ln7Y7j+HC5VKxZYvP6O15dAEQGJcNJlpKSfM/Pvf//6XTZs2eZOqWbNmsXLlyoPin+GS5T179uB2u7270l1dXbS1tZGRkTEkcXS8yv8HorOzE5VKRXBw8FH7zgPJTrPZTGNjozdpb2tro7q6mgULFoyYrFutVp5//nkqKyu99/Scc87xtkA+ke5JPwHQn9Tv2bOHl156yXu9AgICWLt2LfHx8QcRAG1tbezcuZNzzz0XsW9+Pl5IjrPOOgu9Xu/zAPDBh6EIgDtvWKlYbFb2FOSTNimZ9q4u3G6ZWZnTkGXlsEgAURBwyzK78vOICgsjNiqaXXn7iI6OJTAgkKraavbk7WPp0qU8+eSTo27zZrZaMfSaMJjM9PQaccvgcrv44y/v5ve//Q1nnHEGTqeTn/zkJ9x9990sWrTId2ePIerr61mzZg0bNmwgPj4eu93OgoULaWlo5JRFJyMK4HLLbN21nZ7eHr7e9DUnnXyy78JNMBoam3nvww8pKyrE5XIyf/58LrzwQsLDw5H7HP9Hg6r6ZjZv2cY9t69hytRMoqMiERSFSZNScLvdyLJMb68Bvd6PN978D6+//hpnnXXW+AQqioLFZsdkttDd00N3rxGr1ebZyXe6cDjt2G02HA4Hbrfbu+MmiCIajRa1Wo1KrUKl1qBWef4uSWpEcX8CqJIk8vfuwdTdwb2/uHfI6+JyuSirrqO7txdREJFEEVEUESUJrUZDgJ8efz89kkpFW0cnja3t3lZ6giAiSiJOhwOzsRe73Y5KpSY4NHRYAkClUjE/O5MAv7GbyzldbnbnFWIwmoiPiWJqShIOu310pIsssyMnn++3fEvy5ClExsQOStpdTgfPPPENBXnN+Pvn8NdH7sfPLwA/nYbUpAREScRud9LT20u30YjN7gJZxmIx4XA40Ol06Pz8vQZ8AP56HU5ZxtDVRe7ObcyeN5+QqBjsjv1tLPs7A0xJTiIuKpzc3Fw2bvwEfWAQ6dNnEBQcgqx4dvAFBWwWMyhu9DodISHBdBstOGWPp0B/ot//mYosI0gSstvt3YVXgEA/PVqtBoPZxNZv8/ny81pydq3ntrvuYcU556NRSWRNTUWv0x7ifrgwmi10G3oxmSxY7DZsdidarZo5mRlDqj2OZhLRfy3y8vIOIgAURUHv78/CU04lOCTUOxaOFgGg0+lIiIkmc8qJQwD09PTw1FNPUV9f7y0FuOKKKzjttNNG9f7S0lLq6+vJzs5Gr9ejKAoFBQWkpKQcJDc/3nf/B46jnp4egoODj5kKoKGhgeDgYO81y8nJITg4+JDmrx999BGff/65N/lPT09n5cqVQxLGJwIhM9AHwGg0sn79ehobG1GpVDgcDi699FLOPvvsgwiAlpYWtm3bxsUXX+wlAPr/7VjjwgsvRKvVEh4e7iMAfPDhQAJg5RVXKfmlxSTFJZAUH4/b7WJfURGyIjM7M2t/QHSoDxIEFEVhT0EeAX7+ZE1Nx+50UtfSTFNrG0aTkbKqClauXMm6devGvECVVtdR39SC0+nk9/feyd8ffYRly5bR2tbGtVdfzZNPPUV6errvzh5DuFwurrrqKu666y6vEeDZZ53F1i1bWbHsNCRRoqa+lt15OfzyF7/goYcfPqHO73CS5eMBvb29bNu2jS3ffUdLayvh4eEsWbKEs846a1S7TwcRCS3tfLvle+76+U0kJk0mKSERt8tJSkoq7r5kqaurk/DwCD766D0uvOh8bznIeAUpsizjdLqw2mzYHHYcDidut+x1FBcEgeb2Tqx2O5IoAQKDdIkD5rUD5zeVSkXOru3gtHPnnXcOexyd3T3kFpfR2dWN2+nAZrPhdNix2+zYbVYEAbR6P/z0/gQGB+HnH4BOr/fIKAcGXH1/H6kEQJIk5kxPJyToyAL7ksoaahubsVqthIcEMSU5Cf9DkAp2h5Pq+kbaunooztuHw2FnxpwFKMr+49VqJT58dx//9+LbZM8K5Hf3/dJDvsgyfUINBDwki9Nuo9fQTWtzI3abnfjESQSFhgy4FwqCIBIWHIzT6cTtdlNVWkxbWyuTUlJxuNxIahWSqAIUbHY7TrsdxeWgproKUZQICg1FklRoNFr8/P0JDgxAo1Fjs1qwW61YLBbMFjN2p5ugkFAiY2IJDglFq9N7XbzdbjeiKKHVSFjtzv5tMs99UhQ0WhW7dlTx5n8+xti7i9/e9wAJSUnY7Q4C/HSkJCYc1DnA6XLRazLT2W2gp7cXs9Xuve99bhQkJ8Yy+RBtBI9mQlFWVsYDDzzgTWwURUGUJJacdibhkZEe1cI4YdQKAJ2O+OhIsqamnlBrR25uLi+88MKgUoDbbrvtkEZzsizT3d1NQUEBUVFR3tc3NDRgt9tJTU09IQkA8BjwybJ8VFs696sArFYrbW1t3q4MZrOZnJwc5syZM6Iisby8nH/84x+4XC4URcHf35+bb7552Pt4vPsxHLgOCoLAe++9x8aNG9FoNDidTlJTU7n99tvR6XSDkvyWlhY2b97MZZddNmSJwLHEFVdcgUajwd/fn8zMTB8B4IMPA/P2rKkZSsbkVJLi43H2mWOJgkh+WQl2h505WTNAYUQSoH93ZG9hPlq1huyMaVhsNjqNRlwuN7v27aGhuYk//+Uv/O63vz2iSaGksobG1g4sZhO/uONWnn9uA6eccgrl5eXccMMNvPzyy0fUtsuH8cEtt9zC0qVLvX4MK1eu5NWXX+HcM87C4XDy1ZavSUhI4Pvt20841/9+aezxzuobDAa2bt3Kli1baGxsJCgoiIULF3LqqacekbN9a2c332zZzp23riYyIoa01DQcDhupk6d4CQCz2YRWq6O8vBSDoYOvv/lmXGrpR01Cud1s31eA1Wo77PlGUqnYueVbAvVa1qxZM+JrrTY7ReXVdHR3e5NGu82G2dhLT3cXvT1dWEwm7DYbCAJ6f39CQsOIiIohNDwCv4AAj3KqLyEYCbMypxLRlyiPFZ09BrbtykFRQFZk9DotiTHRREeEDWkw2NbZRXV9EyazBbVGQ1tzE8V5OcxdvAT/wCBv8qrRqCgsqOH3997PRZefzc9WXdG3Uw999Rm4XS7aW1soL87H0NODKIjo9HrUahWyW6a/clx2ywiigNRHKouShFqtpqenB0EAl9OFy+3eX2sueFr1udxuVCpV331wIcseMsGzRomeBHugcgCP74CieBJPv4AA/P0DUGs0+PkFEBEZSWJiIvExUTS2d2IyW1Gr1Uhqj0eBRi2Ss7uB77d+x5Kl6WRMn+nt8NBvIhgaHERMZDgatZquHgNdBoMn6XfLCALeVoPgMR5MHMbTYDgcjcSivLycRx55BK1Wi8PhoJ+tSJw0mYysbHR+/qMysxxvAiA6PIyZmVMROLHwxhtv8MUXX3gd4+fOneutrx4uMevfsW5oaKC1tZVZs2YhSRJ2u53i4mKmT5/uddM/UeT/A+F2u4c9/4lKdk0mEzU1NYSEhHhr/SsqKnA4HGRmZg5PiNrtvPDCC5SWlnqT40suuYTly5efsMn/UARAZWUlTz31FPY+lZhKpeLWW28lPT19EAHQ3t7O559/zmWXXTaIHDgeSIB+I2qVSsX06dN9BIAPPgx8Nq+/9EdKcFDQoAVcEAQkUaSwvAyz1cLcrGwE8Jo1Hfhwi4LIvuICRFFk1rTpnvpuQy8ul4udOXtoam3m7489xl1r1x7xAReWVdHS2UVvTzd333ozL7/8L5YsWUJ+fj433ngjb7755qh77PowcXj00UcxmUz86U9/AuCBBx7g97/7HeetOIfSijLKqip4/rnnWLV69Ql3bv0EwPEabHV3d3sT/+bmZoKCgpgzZw7Lli0bF3Kso9vAN9t2cueaVQQGhJA5LRO7zUpq6n4CwG63IfclfR9vfI93332Xk0466ahdg9aOTvJKKsYUfEgqFVu//oLYyAhuvPHGUQSvMlX1jTS0tPWRqB6Jvyh4xoXL6cBqtWDsNdDd2Ul3ZxumXiOKAiFhYcQnJRMZHYN2iOBpYHA2Iz2NmMjD70gwsLWfrMjkl1TQ0e1xeO6v+/Tz0xEWHExkeCjBAf44nE5qG1s8pQuyjCCKCIKI02Fj15ZvSEhOJTltvymfRqOmvqae3/3yL9xx713MXTCNttY23E4HDpuN9pYWenq6MPUaPGNE3O+2L7vdyIq8P2FXvIuLl1wWBAFJkrx/FwUBoa/swuFwIMsyao0GjVqDTqdFkiRUKpVX4aLRaIiPjyciIgK73Y7JZKK3txeTyYTRaMRoNGIymXA47F4yRhIl/Pz90WjUCIKIguD5Do0GrU6Pn58Oiy2ArvYmpkyNIjk1A6dbRlKrkUQRRaHvszwlCLKsHJT0D7hJSCoV87LS8dMfXpnHRM9B5eXl/O1vfztoh9Zut3HaORcSG59wsAeAomC1Wg/XAxCVSsW3n2+kpakBgJi4BJadee6QJQBR4WHMnDblhEiuBqK3t5cnn3ySuro6VCrVIJf1oTCwZt1ut5OXl0dSUhLR0R7fi5KSEoKDg71u+ifS7v+xXsfLysq8tf8Oh4OCggIyMjJG3P3fvn07r7/+OqIo4nQ6ycjIGNbLYbyezaOhOjyQAHA6nTz9zDMUFRai0Wiw2+2sWLGCK664YhABYDAYeP/997nwwgsJCQk5eA07hqaAa9euxWQyIQgCWVlZPgLABx8GPpp39HUBGCqxV0kSxZUV9PT2MnfGDCRROogoEEWR3OIiFEVhduZ07E4n7T09uNwKe/JyqGusZ/3jT3DH7beNywEXlFXS1tlDT3cna29exb9ffYVTli4lPz+fa6+9lnfeecenADgO8N577/HBBx94jWTeeecdLrvsMqZNyaC0ooy58+by9ddfH9Vd4YkgAPoX+WPl1D0QbW1tbNmyhW3bttHW1kZoaCizZ8/mlFNOOUgieiTo6jXy9XfbWXvLSvR+AWRnzcJmNZOWNtVbC6woChaLmaCgYD748F2uvvpK/vKXvxy1a1FUUUV9UxuSdPhBkyRJbP7yU1KTk7nmmqtH/T6LzUZ7Zw/dvZ6abpvDgVuWERCQJBFR9CSwsiJjs1owdHfT1tyIobubSalpJKakIg9TSy3LMplpKSTERo86mBvO3K+710hucTmKLA/aEVdkBUklEeSnx+FyYbHa+hJ/wRvUiZJEwd6duJ0u5p60BLfc93tRoCg/n9de+Tc/+vGPEBQXLU1NmIxGDxkky0h9O/kDk3OdTodWq0Wv16PVavHz88PPzw9/f3/8/PzQaj2+DVqtFo1GM4gEkCSJpqYmdu7cScqUdDR6f5ITYokMC/XK+FUqlfe8h+s3brfbMZvNmEwmTCaTVxpcX19PQUEBDocDlUqF0+nA5XIju919ZoIKgcGRuJx2wEVgYBBqtQaN3o/AoGBCQsPwCwhA7+ePSqMZPD/0kTKePwAen4c506firz98n4eJnIOGIwBcLhfLzzqPmHE0ARRFkZ1bN9Pd2QFAaHgEM+bMP8hjQKfTERkeysxpU71tTU8k5Ofn89xzz6EoCi6Xi7i4OO64446DXOeH6s5RVVWF0Wj0mgF2dHTQ2NjIzJkzT8jd/2OFsrIy9Hq995rX1dXhcrlGjB/NZjPPPvus18dBEAR+9rOfDakYGK97UV1dTXd3N7NmzZrQezvUzv23337Lf/7zH9RqNS6Xi5iYGNauXetN9AVBwOFw8Nprr3HGGWccZBI48LOOBf7yl79QV1cH4CMAfPDhwOfytp/eMCJJr1apKK2uoqOrk3kzZqFSeUiA/qA2r7QEp9PJnOlZyIpCW3cPDpebiuoK8ooL+dOf7uOP49gHvKCsktbObkwGAz9f/TP+9X//5LTTTqO6upoLL7yQf/3rX8yZM8d3Z48xdu3axcMPP8xrr72GWq1m65YtLDnlFHRaHTa7jccee4y146AIORYYrmXasZL6VVRUsHXrVvbu3Ut3dzdRUVHMmzePxYsXT4gaxmAy8/WW7dxx8ypEScX8eQuxWcxMnpw2KFC3WMwEBgaRl78Pq9XEpk1fodfrJ/x6ON1uducVYTSZxxQwiZLE159+THZWJj+6/PIxHYPD4cTUZ17abejFbLFitTu8ybLYt6MuCPt3iRlhn0SWZaamTCI5IXbM43MgKusaqG1oPng3uq+TgigIiCoVKOB2Ojy77ZKESq2ivbmZuooSZs9fQFNzG+1tzRh7DHR2tmPo6cHPT4/b7dmxCg4OJiYmhujoaMLCwgkI8Mff35+AgACP8Z9O59lRP8D1frSor6/HZrMxZcoUXG4ZlTR+AbLT6WTbtm1YrVays7MxmUz09PTQ1dVFe0cHXV1ddHZ2YDaZUBQBp9OBosgeU0hJ6itd0BAYFERgSAj+/oGoNGpUKhV6vwD0fnpUKjWSpOojAmRCAgOJiggnMiwEldqzO9yvjJAkCXVf0jEcJmIOOpoEQD8BJ/SpZxRFHtJgUJZlQoODmJOVgXSCJrz/+te/2LJli7e04swzz+TyAfPNcCSexWJh3759ZGVlERQUhN1uJycnh+nTpxMbG3vCKSKOBQwGAw0NDUybNg2z2ewtpUhPTx9xjfr222959913vcZ4c+bM4dprrx2yfOFIn0VZlsnPz6eyshJZlr3r+kR1SxqKAGhra+Oxxx6jp6fHa/B3/fXXs2DBgkFu/6+99hpZWVnMmDFjWBXbsRiX69ato7i42EcA+ODDWAiAfhKgrKaG1o425s3IRqvWIghQUFaKxWpl7oxsBEGgx2TCaLHR2dXJt9u3cNVVV/Hqq6+OK2tZWlVLfXMbsuxizc+u49G/PczFl1yC2Wxm+fLl/PrXv+bSSy/13dljjNraWm677TY2bNhAXFwcubm5LFiwwMsib968eVx3pY8mRtpdPVokgMvlIj8/n82bN1NYWIjT6SQxMZH58+ezYMECrzx0ItBrsrBl5x5uu2klToeTxYuWYLOavSaA/Yu9zWZDFEXsdjsbP3mPN998k6VLl058cGc0sSuvuC9AGcOkKIhs+vRD5s+Zw8UXXzQux2SzOzCazNQ2NdNl6PWWB/R9I4dqmC7LMlNSkkhJiDus8emWZXpNJoxGMyarDafTiShKIEBXT+9Btdv9qi5FUejp6qStuYmgkFCiYuNw2Kz0GnrobG2hoa4ap9OJ3Wb3ylNFSUKr0xMVGUFkZCSpqamkpaURHh5+wuxKHuimriielpL9SoL+UgoAu8PBq6+8giRJzJw5k6amJtra2mhqacHQ04Pb5fIYnPXV+0uShKRWoVap0en1REREEhMXT2BwEBarA2dffX1kTAxBAQG43G7csrxffSGKaNVqosLDiIuOGPaajvcu8NEmAEabHAUG+DNvxjTUA1QeJxKampp44oknMBgMCIKATqdjzZo1pKWlHZLIy8/PR61We1sA5ubmotfrmTt3ri/4GMX8mJeXR2JiIqGhoZhMJqqqqnC73UyZMmX4da+3l6effprW1lbPs6jVcvPNNw9Jsh9pHGC1Wtm1axdtbW1epYHL5cLf3585c+YQFRV1VAgARVH45z//yffff+8lqubNm8eqVau8/y4IAl9++SV2u53zzjtveC+bY1AK8Pjjj1NQUOAjAHzwYawEAHhq86rqamlsbWHhzNnUNNTTZTAwb0a2J8h3eKT/dqeDb7Z8R3xSAps3bx73iaq+uY2Syhq0Wi13rlnNheefwx//+CcALr30UlJTU3nkkUd8d/YYw2KxcM011/DHP/6RmTNnUlhYyPwFC3A6nVx+2WW89tprJ/T5HVgGMJEB+EA4HA727t3L119/TVlZGRqNhvT0dBYsWMDMmTOPSv1nr8nCzn353HbTSmxWGwsXLMZms5A8afKg3TpZljGZjISGhvH+B29z8cUXjls3gJFQ19RKcWX1mHYGBUFAlmU2ffIRCxbM55KLLhzXY2tu7yC/pOKwx4csy6QlJx7SHX7g67u7eyirqaW9s8fj36Ls5xoG1qKLfbX04FEj9PZ00VBbTUtjA5KkJiI6CovJTHdXBxaTCZfLhbZv9z4wKAiNziPbd7tcnLL0FDKmpI2pu8RwSfiRBNKHMq89EnR1dfHiiy+yYsWKQWRmW2cXFVXVGHt7sVstGA09dPQpBsxmMy6XC1EUUanV+Pv54x8YREh4OFExcfj7B6DSaAbRQUpf1wFv5whF8ZoFDncO40lEHp8EgEKAv555M6ahGaa040TAxo0bef/991Gr1TgcDrKzs1m9ejVqtXpYkhk8sv/S0lLmz5+PRqOhoaGB9vZ2Tj755KNqpncior6+HoPBQFZWFuCR9e/atYvMzMwRd/8/+eQTPvnkE289/LJlywYpNsZr/e/o6GD37t2YzeZBJUz987MkSWRkZDB16lTvMz4enRSGk+7n5OTwj3/8w5vw+/v7s3btWq/cXxAESktL2bx5M9dffz1qtfq4UQH4CAAffBgHAgA8SoDG1hb2FOQTHhLKwllzEPBIRrt6jVgdDvYV5lFdX8dHH37IueeeO/7Jh9HMnsJiNBotf3/wfuyWXj7+eCMA69ev57XXXmPz5s1HtaWMD0Pjmmuu4brrrmPFihXs2bOHk046CYfDwfPPP8+qVat+sATARJAARqORnJwcvvnmG2prawkPDyc7O5v58+eTmpp6UKAwoQSA2UxuUTm337wKi9nK7FlzcTqsJCYmDyIABEGgp6ebwMAgyspKaGltYPPmzYSGhk7o8eWVVNDc1jGm+v9+J/+vNn7AokWLueSiC8b12Dq7DeQUlnC40gRZlkmdlEBqUsKog7myymqKK6s9aoMhvk8URQRRxGI00tHegrGnB2NvL4aeLk/Xgj44nQ4EBHR+/oRHRJCdlUVK8iRCQkPR6v3oMZppaWpEIwnMnj37kM9FfxB4okuVv//+ewoLC7n22mv3u+MPA7vdjsFgoLW1ldraWqqqqmhsbMBqtSEKAmqNGj//AAKDQggMCkLSaFCpVAT4BxIcFo5Wp0dB6TNNlFGpJOZkZRAwTAvH8Zx/jksCQFHw0+mYNyMD3Qm81huNRp566ilqampQqTylINdccw2LFi0asYzH5XKxY8cOJk2aREJCAlarlfz8fLKzs4mMjPQFH8PAbDaTl5dHdna213+ouLh4yFaKA9HS0sKzzz5Lb28v4DFaXLNmDTExMeP63FVVVZGfnz9iV4R+VVJCQgKzZ89GrVZ7nfp1Ot24EwBGk4n1jz1GY2NjnxeKk0svvZSzzjrLSwCYzWY2bNjAZZddRnJy8oQSrz4CwAcfjgEBoFGrqWtqpKSqEp1Wx8xpmQT5+2O0WOg2mWltb+O7Hdu4+eabefbZZyfkgN1umb2FJdgcLr76bCOvvfxPdu3aTVBQIKWlpZx++um8/PLLnHbaab67e4yxZs0ali5dypVXXsmuXbtYtmwZarWa7777juzs7BP63EZTZw1HthPndDqpra0lJyeHvLw8jEYjKSkpzJ07l+nTp094Ij1sEGWxsq+kgjtuWYXbKZORnoHb5SYuLn4QASAKIharGZvNhk6n5513X+fll/+P8847f8KOzeV2syu3CKN5bPX/Hqmlk682fsApS5dxwbnnjOvxdfca2VtQgqwohyWHPFwCAKCiupai8qr+E9uf9PeVH5hNvTTV19FYW42hp9uTXPYZA3rq1P0JCA4hLDyCmNhYIiMjmTwp6aDe9gCFhYUkJCQQHBz8g0ryR0rAXnvtNbKzs5k5c+agTgujfX9jYyNFRUUUFxfT3NzsKZkRBDRaLTqdDr1eh4KIqFIRHRtHRFQsgUFBCJKERiUxOzMdvW745He81EDHIwGgKAoatZp5M6bh76c/ocfS3r17eemll7yGgPHx8dx4440EBQWN+L6CggIsFgvz5s0jMDCQPXv2oNVqT/i1dSLHzJ49ewgPDyclJcUzH3d3U1xczOzZs0ccw2+99RabN29Go9HgcDhYsWIFF1xwwbit9y6Xi9zcXGpra71lWCNBFEViY2MJDAwkPT193K7PcMn6O++8w6effIJGq8XpdJKWlsbtt9+OVqv1kgAvv/wygYGBXHLJJT4CwAcffkgEgEatpqaxgbqmRhbNmkOXoYfiinKyM6bhUjzGYN9u+47wyAi2bdt2EDM6nqiqb6SmsYWu9nZu/tm1/PvVf3PWWWcCcOWVV6IoCq+//rrv7h5j/P73vyc8PJy1a9eydetWzjzzTKZOncqWLVtOSPf/AxfLkSSaA3E4uwIDE4OSkhK6u7sJDg5mxowZZGVlERcXd8zP3WK1kVNcztpbVqNR65iUNAkBiIiIQpYPNuxqbmkiLjaeL778lFNPXcozzzwzYcdmsljYlVuEq68d4VgIAKfDwVeffMiKFSs484zTx/X4ugy95BSWjhggDUcAHE4JQP9Yyi8up7m9A5fbDYqC02HHaDTS2dpMS1MjvYYej6mrIKBSawgNCyN7RhYpKSmodXocLoVAfz0xURGoh9iR8vf3x2Kx0N3dTWJi4v/M3FZcXExBQQGXXHLJQeqbw5kbwFPW09DQQElJCeXl5TQ0NGCz2dDr9fj5+eNyOXG5XKg1GoJDw4mOjyc7eyYzM6aMy5xzohEACp6yCElSsWBmJoH+fif0WBpYZ63T6TCZTJx55pmcf/7IRGlbWxt5eXnMmzePhIQEGhoaqKys5OSTTx6248X/MioqKujq6mL+/PneUq9du3YRGRlJSkrKsM9sQ0MDzzzzDDabp5tJREQEa9asISwsbFyeObPZzM6dO+nq6hq1kq+fJAgMDGTZsmUTRgD01+1XVVXxxJNP4rDbvd1VbrnlFjIyMrwEwK5du/jkk0/45S9/6SUGjjUJ4CMAfPDhCAkAtVpNfXMTVXW1zM+eiVbjcWxu7+wkt6SYhLgEGlubySsq4OWXX+baa6+d0IM2W63szi9GEET+8Mu7iYmM5L+v/xeAbdu2cfHFF/Pee+9x0kknDXIq9eHoYv369XR3d3PfffexadMmzjvvPM477zzeeuutH8T5HaoM4MDgYLg2XVarlYaGBoqLiykrK6Onp4fg4GAyMjKYOXMm8fHxx1Vdp8VmI6eojDvX3ExIcDix0dGIokhQUPBBpnKiKNLR0Y5Wq6Onu5uyiiK++27iygDau7rJKSxDFMf2zAuCiMNh46uNH3D+eeezfNnoTAtlWUZROGTZwRF5AExKYPJhKAD6x2iXoZfcojLKS4tpaajHbOzF7XIiiBI6Pz0pk5KZMiWN8KhooqOiCA8NOaxx3Nvbi5+f31EtQznWCds//vEPFi1adMjd1v4geLTqALfbTVNTEwUFBRQUFNDS0oLT6QQUNGoNoiQyb+FJXHzRhYQGBw35mT9EE8B+hQWAJIpo1GqCggJInzwJ3RH4TRwvaG5uZv369RiNRpxOJ3q9nltuuYWEhOGfd7vdzvbt20lJSWH69OnYbDa2bdtGZmbmhG7AnIjo6OggPz/fq5YAqKyspLW1lQULFqBSqYZU9SmKwr///W927NiBtm/3+5JLLmH58uXj8sy1tLSwd+9erFbrYc+fLpeL8PDwQccyUunAkRAATqeTZ555hqKiIq9fxRlnnMEVV1wxiJD6+9//zsqVK5kyZYqPAPDBhxOdAFCr1DS1tVBWXcW8GTPx0+u9Ml9JUlFRV0dFbTXlVZWsOHMFH3300VFJVkoqa2jp7GHX9q385Xe/Ztv328ma7unFetVVV9Hd3c3GjRu9jtY+EuDo49VXX6WoqIgHHniAL7/8knPOOYc77riDRx999AdxfqMtAxgqUOjq6qK6upqioiLq6uqwWq1EREQwdepUMjMzSUhIOG4Tql6zmX2FZfzyzjuIi4knJDgYSVKh0+mGdBK22ax0dXUSGxvP2+/8l0ceeZirr75mQo6trqmF4sqaMbcGE0QRh83Glxs/4OKLLuSUJUtG9T6TxUppZQ0utxu9TotGrUatUiFJA+cfgY7uHroNvYc9H42lBGDgGG1qbaexuYm6qio6OztwKQIBQSHExsayZOG8IaXko+kt72lhqPzPJP8AjY2NVFdXs3jx4iMKtg9FCtjtdqqrq6mrq0Oj0VBRUYHT6WTlypWDdh+HeubGE8eKAJD7rpEoCGjUavz99AQHBRDo50dggB9+Ot0Pal3/7LPP+O9//+uVmc+YMYMbbrhhxGcrNzcXp9PJkiVLUKvV5ObmYjabWbRo0QnTeWOiYbPZvERJv2N/d3c3e/fuHeSZMJRyp6SkhBdffBFZlnG5XCQkJPDzn//8ILPAsZTblJaWUlzs6VYzlnvldrsJCws7iIw4EpJtpGT9q6++4o033kCtVnu7Od19993ec3e73TzyyCPMnDmTc84555Aqt6Px7PoIAB98GCMBoFKpaOtop7iygrlZ2fj7+Q1q82W12+kxW9iTl0NjSzPffPMNixYtOioHbrHa2FNQgt3hYM3PfsqsWTN5o0/2X1JSwrJly3j00Ue59tprvRORjwQ4unj33XfZuXMnDz74IN999x0rVqzgL3/5C/fee+8P4vwOR+oryzKtra2UlZVRV1fnbSWUlJRERkYGkydPntDWfYd7XiM9Kx09BnbnFvLn3/2K1ElTvL3chwtiBEGgtq6GhPhEcvNyCAjQ8emnn07IsZdW1VLT2HyEBICVLzd+yEUXXcjSURIAAO1dPZRUVtNrsiCKAmJ/8tz/s999v89N+WgQAEONUZfLRafBSK/JTGhwIBEhwQcRVIdzXP9LiYbRaKS1tZWUlJRxJboHjoeBxMBAEkaWZWw224T1AT/WBIBH2q+goCCJIjqNhpDgQEKCAgn09yPQ3+8HPdba2tp49tlnqa2t9RoCXnnllSxYsGDY95jNZvbu3cucOXOIiYnBYDCwfft2srOziY2N/Z+PQRRFYffu3ajVambNmgV4Sm527NhBSEgIM2bMOGg+63/2nE4n//znPykoKECtViPLMldccQWLFy8e9J7DnTOdTid79+6loaEBSZJGFZcOFcMOpQCYSAKgvb2ddevW0dPTgyiKyLLMDTfcwIIFC7wxw/PPP4+iKKxevfrQ69xRaAvoIwB88GEMBIBKUtHZ001+aQlzsrII9A8Y7PANdBlNtHZ28MXmr7nhhht46aWXjurBV9U30dDazlefbuTPv/8Nn37+BWetOAOABx98kOeff54tW7Z425Uciz6k/8v44osv2LRpk5cAuOCCC3j44Ye56aabflAJwUjJUVNTE0VFRZSXl9PR0YG/vz8pKSlkZmaSkZFxSKOnox4w9T3bDoeD5ubmIXsc17e0sWN3DusffpAZ02fidDpRq9XDtv+RJIm2tlYURSYgIJCPPn6X/77+OsuWLh33488tKaelrXNMHQD6CQC7zcpXGz/k3PPO4/Tlh1dfabM7qG1spqW9E7PFgtPhBEVGUWRESUKSJNQaDSqVus+MT+krH1AOmWgfrgfAaMbowCD2ULv9h0sU/dBgs9no6ekhPDz8f6rGeiIJgP56fvBI+/30OoKDAgkJDCAkKBA/ve5/4hr3E3X79u3jlVdeATw7qjExMdx8882EhIQM+T6dTsfWrVsJDg72duDIz8+np6eHRYsW/c97ARQXF9PR0cHChQvRaDQoikJubi4Gg4FFixYdNKYHEqa5ubm8/PLL3rGemprKqlWrBu3+H27ybzAY2L17N93d3Ye8N/3rgiAISJKEKIpexVX/74KCglg6Tuuo4rkAwxIAAC+99BLbt2/3qlTmzZvHypUrvdfg//7v/2hpaeG2227D39//mKsAfASADz4cJgGgkiR6jL3kFhcxc9p0QgIDPSZSAx5ah9NJR6+RPbk5dBq62bZtG9OnTz+qB+9yuckpLqOzq5ubr7+GwKBAtn+/HX8/PVarlTPOOIPExERee+21/WykjwQ4ati8eTOfffYZ999/P59++ikrV67k4Ycf5uqrr/7BnONQZQCdnZ3k5+dTWFhIb28v4eHhTJkyhSlTphAREXFQq57xrtk97EW/L+kfiNbWVj786CN+dsMNBx1bcWUtW7//nmcfW8eSk5Zh6O1BpVLj5+c3rJOww+GgvqGWqVOm8dlnHxEYHMCtt9/JrNmziI+NISQocMy79gOxt7CU9s7uIyIAHDaPB8BpK1Zw7pkrxvQ5dqcTQ6+RytoG2to7cDjsWM0mLGYzDofd01ZPrycoJJTA4BB0Oh1yX4/34cbZWBQAw43RI0n8/xfhcrlwOBzo9fr/uWtVWlrKAw88cJDs2eVycvq5FxEbn3BYBIBnmCuAR/rsr9cTHOhPRGgIIcFBaNSq/7nx1f+Mut1uXnnlFfbu3etNss444wwuvPDCIZ9dURQpLi6moaGBxYsXExAQgNlsZtu2bSQnJzNlypT/2We231dn/vz5XgKlqqqK8vJy5s6dS0RExLD3oru7m+eff56ysjJvov7Tn/6UmTNnDnrt4bj+NzQ0sG/fPhwOx4jqoX4fHb1eT2hoKOHh4QQFBaHVajEajRQWFiIIAuHh4fT29nLqqaceNQJgz549vPjii15FUmBgIGvXrvWaEz/33HN0d3ePmgCY6HjcRwD44MNhEACSJGE0mcgpKmBGegZhwSGDkv/+CcFgMtPU3sEXm79izZpbefrpp4b8ArcsgwIGo4luQy92pxMB0Om0BPj5ERTgh/YITHx6eo0UV9Xzxacf88df/4IH//YIv7r3HsDD4J5++uncf//93HTTTfsnIx8JcFSwZcsWNm7cyAMPPMAbb7zBn//8Z+6//34uuuiiH8w59u8YyLJMRUUFu3btoqamxisvnDZt2qj6Mh+rREwZIvnv7Ozkn//8J5NTU7n0kksGByeKQl5pJV9v2sQ/NzzD6aedTUdHGwEBgcMqAPrnlerqKsLCwjEaDXy/Ywtrf/FrQsPC8ffTExIcQlJiPMkJCfj7jX3Xb29BCe1dPWMnAPpMADdt/JAly5Zz0XlH1gbQLcvUNDRT09CEIAi43W7sNhtWixmjoQeTsRe3201AUDAJk5LRaIZ2T5ZlmcmJCaQlJ4x5jE7kePuhqwH+l31kGhoa+Ne/XsbmdCIKIgieOcPtlpm1YBFh4RGD1IHDzTP9vgcqScJPryMkMICwkGBCf2BJv1uWcbvdqFWqUcu7Bz6fDQ0NbNiwAbPZjCAI6PV6brrpJpKSkoZMPnt7e9m2bRvx8fFeSXt5eTmVlZXMnz+f8PDw/7kx293dzZ49e0hPT/d2J2lvb2fPnj2kpaWRlpY24v348ssvef311xFFEafTyYwZM7jxxhsHkeGjJe4VRaGoqIiysjKAEd/jdrsJCgoiOTmZmJiYIct9tm7disvl8q4np59++rjOcyMl6WazmXXr1tHY2IhKpcLpdHLppZdy1llnAbBu3TpCQkK44YYbDmPNnbh51UcA+ODDKAkASZIwWyzsKcgjM20qkeHhBzH7Qt8C12EwklOYR0tnO9u//55p06Z5X+NwOOnuNdLR1Y3V7kBRFAxGU1+QIHgzDkkU0Wm1BAb4ERYURFCgP356HerDNJSqbWymoq6R39x1B3n7cti6bRtzZs8CPIzkr3/9az786CNO7usK4CMBjh4B8M4777Bu3TpeeuklHnvsMdatW8eKFSt+MOfodDrZunUrO3bswGAwkJqayvz58719hg8Xx3pHNic3l9f+8x8S4uNZuWoVfgfs+tkcDvJKq9j44ft88fHHLJi/mMbGBqKjR3adFkXRUz/d1sLUKem8/fZ/+enKG7lr7V0osguT0YjJYkWv15MYH3vYc0A/9uQX09FjGLsHgCDgdDr5auMHLDllKRedf+74XNfCUtq6upFEEUEUPfcYAUWRsdms2G02/Pz9UanUwxIAY1UA9L+/f0xNxNj6X/MC+F+D0WyluLIap9OF0+32ypNlWYZhyBHPTr/sff71Oh2hwYFEh4cRGOiP5gdsHOl0uZDdMmq16pDPxVAKnU8//ZSNGzd6VQCzZ8/muuuu837Wgclnbm4uLS0tLFq0iODgYFwuFzt37sTpdLJw4cKDVGdjTxC94dNxC4vFws6dO4mJiSEjIwMAk8nEzp07CQ4OZs6cOSPOgb29vTzxxBNUVVUhSRIqlYrVq1cPIg1Gm/zb7XZ2795NS0vLiPX+/c9SfHw806dPPyjxt9lsGAwGmpubaWpq8poShoaGsnz5cux2+7jc40MRAADvvPMOn376KRqNBqfTyZQpU7j99tuRJIm//e1vpKenc+mll47a58ZHAPjgwzEmACRJwmK1sjs/j/SUFGKjonEOIesTBAGz1UZzZyeff/MVN65cyYYNz2K12TH0mujsMdBjNGKx2pBlxbtQDDdZygPa+6gkCb1Wi16vJdDfHz+dFq1Wg79eh1qlHnZXT5Zliivr2LFrJz9feT1T09P58ssviehjvm+99Va++OILvvzyS5KSknwkwFHC5s2beeutt3jiiSd48MEHeemll3jllVeOmlHkRMLlcrFnzx62b9+OLMukp6eTnZ1NcHDwuHz+0SYCjGYLH374EXv37GLFGaezYsWZQz6znT0Giipref6px+lu6yI5OZmOzg6iIqMPueCLokhZeQnxcQk0tzTR3t7Eli1b0YxjG6/d+cV0HiEB4Ha5+OqTDzl5yRIuPG98CICG5jaKKqqGvKZek7dDlgAkkpoU75tYfDhmc57D6cRqd2C2WOk1mjAYzVjtdq9sub/UTulbz/31ekKDAwkPCcbfTz9kt4kfMmRZ9hB+IyRcQxnJGk0mntuwgfr6em8XgIES9AOl50ajke3btxMSEsK8efMQBAGTycTu3bvR6XQsWLBgXAg6D5EoHrcEgNPpZOfOnWi1WubMmYMoijgcDnbt2oXb7WbBggWHTJQ///xz3n77bcDjhTN//nyuvvrqQddvNNL/7u5udu3ahdFoPGSXFFmWmTRpEllZWd7Xut1uOjo6aGpqorOzE6vViizLSJKEoii43W5CQ0NZtGgRgiAcNQKgvLycp59+GofDAXjahN92220kJydz//33M2/ePM477zwfAeCDDycCASCJIla7nV35uUxJSiY+Jhany3nQAyr0Jewdhl6KK8opr6niP2+8xZSMDNo7urA7HJ6kv88BeyyTT3/w0K9NlkQRtVqFRq3uawWkI8jfH71Oi06rRaNRI4kiDoeT4uo6Xvv3Kzz8l/s46+yzefvtt/H388NqtXLxxRfjcDh4//33CQoK8nUGOAr45ptv+PTTT3nooYf4zW9+wyuvvMLHH398yN7ZxztKSkrYunUrKpWK+fPnk56ejsVimZDvmmgiwK0o7M3Zx0cffoRWo+aqK388onqhoraemsYWHv3rn4mOiIa+hDk8PMKbBIxEAHR3d9Pe0Ub61AzeefcNHnzw/nH1hMgpLKXtSDwABAFFltn06UcsWLCQiy88f1yOq7u3l70FpciKMibS0VMCEE9acqJvYvHhuIHd4cBottBrNNPZY8BqtaHX6wgPDSYkMBB/Pz1azYllRCcrCi6nC7fsRhBF1JJqzPPJaJ7r4fw58vLy+Ne//uUlX+Lj47nllluIiYkZMpkvLi6mqqqKrKwsr3mryWRiz549hIaGjsu6a3c40WjUx+XGicvlYvfu3bhcLhYsWOA1/du3bx9tbW0sXLhwWDPFgUn7unXraG9vRxRFJEnilltu8ZYR9K/JhyJTamtryc3NxeVyHbJbiNvtZtKkSWRnZ3tf293dTUlJCR0dHV71Vv+f/th1IAEAHOTRMVEEgNPp5KmnnqKkpAS1Wo3D4eCss87ivPPO48EHH+Tkk0/mzDPPHH2nmwnciPMRAD74MMKjd8f1Nyp2h4Pd+bkkJyQyKS7eu/Pfn5C73G7csoysKDicTkxWO9/t2MrsBQv53Z/v76tH6l/QlMNucTVaYmAAL+Bx0+4jBvx0WkKCAnG73TR3dPPk3x/hv/9+mXPOO483/vs6AQH+tLa2ctFFFxEfH8+///3vQT3LfSTAxGDTpk3s3LmTX/3qV6xcuZJvvvmGL774Yszy+GON3t5etmzZgtFoZN68eaSmpo4qkBsvImA8JdYKUFvfyOdffE5pcRGnLDmZc84+5yBX5MHBqkJOUSllFRU8/8R6Zs6YTX1DPUGBQQQFBR+SAOgnAcrKSoiNi6ezo4P2jia+/noTWu34SFQLyyppaGk/ooBdFEW++XwjWdOzuOLyS8fluMwWK7vyi3A6XYPmG0EQEEUJWXaPOG/KsszkpHjSJo0vAaAo0NLegcFoQqfT4qfToddpvYSrb2r0YbRwyzJWqx2VSkKn1Qxavzt7DNjsDiRRRKXy7GC6XG5kRfHIrCURtyzjcnm8BFSSCkkUvLGH2Od6LiDgcrs87+tL0DwxigtF8agOJLHvs9xuBEFA1Se9dvWVLoiC4Gmzh+cYlL5jEAQBi8VKj9GErU/VIAgiWo2KAD8/Avz0npanfTu0MgpqlUflMFaM1KFDURReeeUVdu3ahVar9SZaP/7xj4eMWWw2Gzt27MDpdDJv3jxvsms0Gtm5cydxcXGDSjXHEocZzRaCAvyPv7HndrN7925sNhvz58/3SuhLS0uprKwkOzubhIRDl0998MEHfPjhh97rvWTJEi45wAenv+/9cPN0Xl4eVVVVfXO7eMjjjouLY/bs2V6zwfb2dnJycrBYLCOSBxNCAPQvCodI0Ddt2sTrr7+OWq32klPXX389L7zwAkuXLuX0008/rDxgomJwHwHggw8jPHe3XPNTJbe4mNjISCbFJ2C12XC63DhcTpwuNy6XC1df8o/ice31mATm88cHHmbO/AXY7XZsVqtnEvLz66tv3T95wAFGYwf+bojXKEMxk30u/v0vUAb+RQC1SoVKpcbldvHIX+/jvbff5LzzzueNN9/AT6+nu7ubyy+/nKSkJDZs2DBisuPDkeP999+noaGBW2+9lQsuuICmpia++uqrQ7LwxyPq6uooKysjMTGR9PT0IYOjoaScxxsRoABNre1s37mLnd9vJTI8nEsuuZjUyZMP+d4uQy+FFTVs2/wtX3/2GelTp1FeXkpKSuqoj0kURXp7DTS3NDEtYzofb3yfe+65i9WrV4/PfWpqobiyGkkce492SZL47svPSExK5IafXjs+BIDVyq68wQSApFJhs1ior6kiKiaWoJDQYUmUiSoB6DL0klNYitPlRuxTXImShEatQq/V4afX4qfXoe9TW6lValQqCZVKGlbl5XQ6cbvd41Z3PNTnj6aFlqwouN0eQzaX2+Uhsd2K56csIysyigwKitfVuv+nongCbLVaRWxUBCpJwocD1mMY9ZzX0WWgqKIKl8uFX5+qaWCCIAqC1yiwLyhAEAbvSPbHFfIBvxt4PEJ/PNGvJBziNcP9jj5PjoFJT39C1B96SH0Ew8C5IiYijNioSERRoKO7B5PFir9eR2CAPxq1uo9wkA4yBRwNaTzQEBDAz8+Pu+66i+Tk5CFf39TUxL59+wgODmbevHneGKc/qZw0adKQ69do4HA46TEaiQoPO67Got1uJycnB5vNxrx58wgICACgpqaGoqIi0tLSmDp16iE/p7Gxkccff9xLyoSGhrJ27dpRt/2zWCzs3r2b9vb2Eev9+8edLMvExcUxa9YsbxlcR0cHe/fuxWq1joo8iIqKYt68eSiKMi4EwMHPxNDJeUtLC4899hi9vb2IfZ42l112GVu2bOGkk07yEQA++HBCEABXX6uYrVb8dH4YzGYcTqfHuX/goivsT89VkorK2irC4uP59R/uo6uzE4vVitznAjzwpwLIbk8PbKWv37VWq0eW3d4FUJEVZEX2mgq5Xa79LL8sI4gSgYGBtDQ18P47b6LVaREFD/Mv9hm0qNV9galGg06nIyAgAFEU+WzjR9RUV3PuueexatUqgoICaW5u5q9//SsnnXQSv/rVr4iOjvbWc5nMZgL6ghMfjhyvvvoqQUFBXHjhhSxZsgSdTscnn3xyQvUmlmWZjo4OTCYTiYmJIx77RKsAjoQIkBVobmsnZ18uu3bsQJadLF++nKVLlozacK+wrIqWjk5eefEFBLdHldPe0UZa6tRR7f7vJwEkKqvKCA/zuIfv27eLz7/43NtK6EhgMJrYlVd0RJ8hqVR8/82XBAYEcvNNq1GrpHE5rt35xciygih6djNbm5soLcglNDySKdNnoFaphg2ajtQEcDiU1dRRXdc4aKepvwxL8ZYrCEiS6JHE9u3gajVqtBotmj4Vlk6rQaNRo9VoyM3JAQEWLVwIwtjKwQ4kgpW+pHzHzh0UFRZy3gUXEBgYhMPp9Pxx7CesHU4XzoEEtqvPtI79LbaGUpUN/Nn3IgRBYFpqMvExUf/zJof912ysc1xtYwuVdfUICNDnbu9NxDm4G8lQvxvtmBEm7BoMHJX7f6dRq6DPQLSfLBD6En9JlFCrJfx0OsJDgokMC0WjUY+4+z8QH3/8MZ999pk3SZw1axYrV64cdi2qqKigtLSUmJgYZs+e7R23TU1N5OXlkZiYyLRp0w57PPf0GjGaLSTGRh83Y7Knp4e8vDwkSWL27Nnenf9+IiQ+Pp7s7OxRxXSvvPIK3333ndd48YILLuCCCy4YtK4Pt/vf32HAbDYfst6/P/lPSkpixowZ3vvY09PD7t27MZvNo7o3LpeLxMREb2nH+Bk9KgMz8yGfJUVR+Oc//8n333+PVqvF5XKRlZVFT08P8+fP56yzzvIRAD74cLwTALdee73idsu0G3qQZaUvWfAYjHh2TDw/3bKM0+XG6XJS11BPRHQ04WGRGI1G7HYbslsGwZPwQ3/7P2V/oKX0G8iAIu/fcZFlGbfs8krxlAHMfT/toNZoUGQZg6Hb81mCAorgZeQ9E6rbU36Ah1RQAF2feWCPoRuVSo3DbkMQBAIDAkAQiIiI8PZXlSQRi9VGUFAgIcEhxMfHExcXS2hYGIqsEBQURGRkBCqVGrVahSSpvMwnAwLLftfYfmJCpVKh0WhQq9V9ZQtq79+tVivBwcE/WCXCc889x8knn0xCQgKzZs1i2bJl3prGEyXg9QR0yqjv0WiDuqNFBDhdbuqbW8nNzSVvXw5Wq4XZc+Zw+qmnEhEWOurvMZrM5JZWUlRQwLuvv07G1AzKyksJCQ4hMjLqkG3ADlzsrVYLTU0NpKdnsnnz18yaPYMXXnjhiK+H2+1mV34xvUbTmBM2tVrDnu1bsVst3HrrrQQF+B3xcdU3t1JcUY1arcHpdFBWmE9zYz1Tpk0naXJaX4J7qBKABNImjR8BYDRbyCkswe5wDgrAFEXB2qfogj5pad+u6nBJkNAn0VZJEvt270ClUrNg8UkeRYEgYLFaDupCIAjCICVXf+KkHPA9sqIguz1rxeavv6S+pprFy04jNiERl9OFoiiekq4BRyUME8AebqCpKAoqlQo/nZakuBhioyJ+sMl9PyZKyeR0ucgtKqPXZEYY8GwOJAKOuwBJEBBE8ZDP54HlhBaLBQY8J/1j2c/fj5CgICbFx6LXjI547e3tZcOGDTQ2NuLn54csy1xxxRUsX7582PdUV1dTXFxMUlIS06dP9x5XY2MjBQUFhIeHk52dfVgGrHVNLSgKTIqPOeb3RZZlampqqKioICoqiunTp3sT6ZaWFvbt20doaChz5849ZEIOnv72L7/8Mi6XC7fbTXR0NHfccQdhYWFedd9wa21VVRV5eXleg77RHHtycjJZWVne1/f09JCTk+PdUR8NJooAGC327dvH888/71XzBAcHIwgCCxcu5KKLLvIRAD74cLwTAGcuPV0RJYlOgwG73eFN/N19C17/wiWKfTVyVhMWs5kA/yBkxSOZ7JfbDjQrG6rl1IEP+YH/75Fk9gV8skc54JH79XUJ6GuR1d+TWavWoJJU/eEj3uW27zUePwK5T2HgHqQ2EEURu82KodeAIAjeHuaeHSOPAVD/wt5/lPupiUNPbKIoeomAfgLAI51Vo9FoBhEAgYGBaHVatBqtZ/IXQK1SExERQXR0FAEBgQQHBxEWFkZYWDjBwUGIooTb7fbcAwRvvdn+PwKCIB7wO3GQmczAe9b/x2q1eoP5/uPu/9n/Z7RBwwsvvMCVV15JRUUF8+bN46GHHuKee+45oYLiw12YjqYKYCQiwGp3UFldS07OPkpLirDbbaSlTeHUU09lamrKYZ9vYXkVNQ1NvPD0M+jVGoKDgymvKCV96rQxJdqSJNHY1ECAfwD+/gG8++6bPP7EOi6//EdHfC2q65soq64dVTB24DPrdrtx2G1UlBbT1dHOmlt/TnR46BEfU35pJe1dPXS2tVCUn4MkqciaPY+Q0LCDWq0OdU/GkwBQFAWH00VdcyvVdY2I4vDJ/xg+nH27dyCKItlz5g8bBHp325XhW4oduJMriCL7dn5PY10NsxcuJiE5FdnlmvieZEq/ek1LdsYUggL8RuUCfiyS9/45/VBz15Hu5o8VDS1tlFXXDXtsI5UBHovkX3a7MJlMBPgHIKokxsPeSJFlVGo1iTGRJMZGjypBzcnJ4dVXX0Wj0eB2uwkMDOTmm29m8gilW1VVVZSUlJCSkkJGRob3mre3t5Obm4tGoyErK4uwsLBRzmEVhAQFHlMFgKIotLe3U1FRgc1mIy0tjaSkJO+/t7S0kJubS2BgIHPmzBlVUlxZWck//vEPenp6vL3tf/zjH3PaaacNWtcPNON1uVzk5uZSW1s7qnr//s9JSEgYpMxobm6msLBw1Dv/xwsBYDQaWb9+PY2Njaj6yltUKhWzZs3iuuuuOzwvsAkyAvQRAD74MMJjN3/WfKXXbMXhdHqDYKFPtjlwwusPju0OG263Cz994P56ufE+qAGLvzJARSArsifxld2oJMmb/I+eVeybZAZ8gc1hw2o1odHo8NP31yYODj8UWUZG8SgLvCoFxfN7Rd7/O9nz+4HRree49xManprUPoKhn3Bwu0HZ77Pg+Xx5xETFYxzWvyvh+UJP0j+KP6KAKIgHEQDgMRLykC2q/Qm/VoNGrUGtVqHWaNBpdV4iwM/Pj7CwMOLi4khISCAyMpK4uDj0ej3FxcVce+21fPbZZ5x99tl88MEHXHDBBT/4h+pYkQAK0GsyU1pWTkFBAS1NTej0elLSpjAzO5tpU1I9UtWhcxxg6KSho7uH4so63n/7LbZ99x0L5y2ktrYKUZRISEg8rN3/gc+my+Wiu7uTmJg46upq2Ze7iy+++JzJk1OP6DpYrDZ25Bb2mZMKhzyO/gTbbOzFbDYREBhMZ3sb5cWFrLn1VhLGIeDdW1DElm++oampgZS0dFLTpyFJ0pDX7sAkvH/XLy05kcmJY/cAcLpcdHT30NHVQ6/JjMMxuNwLOKJuFv0dFHZ/v8UjyV140kG13kcCURTZ8/0WGmurmb3oJJImT8E9Anky3JpyJERA5pTJREeEeUm3o9mq80jmGf8BdffHYm7qh93hYF9RGWar7bgvtZMkiZrKCkoL9jFlWhaTp2aMaa4bYcIlODCA2KgIoiLCRmxdqigK7777Llu3bvX2X09LS+Omm24iKCho2Pf1dwaYPHnyIBLAaDSSn59Pb28vKSkpJCcnj6hyc7ic7MotYnJi/DFRwTidTtrb26mvr8doNBITE0Nqauqguve6ujoKCwsJDg4edfLf1tbGc889R319PRqNBrvdTnZ2NqtWrRrx/SaTiV27dtHV1TUqAqf/eQ0JCWHRokVe2Xx5eTlVVR5vjMMl0o81AQDw9ttv8+mnnw4aO5MnT+a2227zbqr5CAAffDhOCYCFcxYpBpN5xCBJEATcfY66NpsVSVId3sM9zsRAv+x/XD5T8Bj/2GxWZEVBq9ENu3M4dMAygFQYhwzOq2TwqhjkPqJFGEQ87G+X6CEAlAPeO/AnA1srwn6SAmXQ5/S7KXvVF14ViIe4cLqcfd4OhyZ+goKCiIqOZnLKZJxOB19//TW33347v/71r4mJiflBP1RHyxCwH909PZRVVFJaWkZHZwdOh5OQ0DCmZkxjcmoKk+LiCPQfm0GQ0+Uiv6yKnTt28szjjzF39nz89HqqqipJSZnscdMe47MoCCJmsxGbzUZsbDybN28iNCyIjz76ELVac0TXJK+knKa2Dq8EXRRF5AF13/0KHZvNhsnYi8VsRqvREBgSil7vR1N9Lbm7d3DTLWtIOYK6e4vVxudffsWuHdvxDwwic+ZsQkLDcLsPdv0fbve9nwBITUogdYwKAEOvkaqGJrp6er1zuacW+9DffzhzqdvlYtfWzYiiyLyTTkEc17laZM/339FUV8OshScxKXX0BMB4JGw6nYZZGVPR6wcH2kdbDXCsdu/HCxW1DdQ1Ng8qAzgeIYoi+3Ztp6q0mPhJySxYsnxol/QjuZeyjCCKhIcEkxgXTWhQ4IhJ8LPPPktdXZ23/dqpp57KlVdeOez4UxSFwsJCamtrSUxMJDMz05uwulwuqqurqa6uRq1Wk5ycTFxc3JBEQHefWWhWehpR46CIGg0cDgc9PT10dHTQ3t6OLMtERUWRlJQ0qBbf5XJRVlZGTU0NUVFRoy5tsFgsPP/88xQWFnpd/5OSkli9ejVRUVHDvq+5uZmcnBysVuuok/9+zJw5k6SkJDo6OigrK6O9vX3MJKLL5SIhIYGZM2ceMwKgsrKSJ598EofDgSiKKIqnXPaOO+4gJibmmJcB+AgAH3wY4Zn7f/b+Oz6us8z7x9+nTNeMNOpdllzk3uKeOLHTIY2SEAIhAQJkgQC7sLD7PLs8v2f5PrC7LBBIoWTJJqGkAqGnOLETktiOLbnK6pYlq3dNnzn198cUS7ZsS7Zsy46u18uW7Jk5c8597nPf1/W5PtfnumzZajMUiZ7esUsg34qqYJEtFxS9n0oA4PhrNAwdUZSmieCTcBp2qzDOb0ydAtIoDm6cnGCMBRRGORmGaaBpGqqqoKoKmqoSU2JEouHEmIrIsoWyslI2b97M6jWruWzlZSnWwKVm55oFMDIyQsuRI9TXN9DV04MgSmRl55JbkEd2Vi65WZnkZmXgTAQrZ5qtbGrroKauge/832+Sme5lyeJldHXFKX9eb+akxP9O5mR3d3dhtVrJycnlhRee4Y6PfJgHH3zwrI4bCkcIRaLEFIWBoWH8wTCqpiHLce2OkeEh6msP4ff5WLRkKd7MLKw2G2ai08ngQD+73nqDez/9aRZVzjujc2hobOKPf/ojQ0PDLFiyjIKSsriTdNyYnS7wTgIAFSVFzJk1+TaA/UPDNLS0EY7EEMSTZFpMk/DZUP+Ta6iqsuudN8E0WXPFJqQpAoqT2euq7X+ju6Od5WvWM2vOvPMKANhsFnKzssjLysQ9Shdiqlt0Xsh15bwAlj4/++ubMQ0TpjEJQJJlavbsprH2IN7MbDZsuhaL3X7C8ztVQIAsW8jMcDO7tAjHOMFcWloadXV1/Pd//zfRaDRFO//4xz/O+vXrTzln6urqOHLkCDk5OSxevBiX61grP7/fz+HDh+nr68NisZCXl0dubi4ejweLxYIoirR19tDc1sGqJfNJd6dN+fWrqkpjY2Oi84aFUChEOBzXDXE4HOTn55OdnX1CkDs4OEh9fT0+n4/y8nIqKysnLKD3zDPPpET/VFUlKyuLz3zmM6csq2hoaKCuri61T0wGtMvMzCQnJwe/309fXx+qqk64TG303p3cc5MtBJcvX37BAABFUXjkkUdoaGgYI0p5zz33sGbNmhkAYMZmbDoDAOvXXGEOj/hO66Qn61R1XZ90be3FAADM2BmAE+MADsmsYjJLpesamqaiqirhaIRIOEQkGndg7TY7BYUFLFu2nAUL5rN27VoWLFhAQUHBKXvtvldBgP7+fo60tNDQ2Ehv/wCIElk5uWTl5JHh9ZLuSSPHm0FWRjo268m7FUwUDOjuH+RgfTM/+Pf/x+HGJm666VZUVSEYDJKenjFlgV2cCllPRcUcNE3nN799hgcf/AGf/vSnz/i40ZhC/+AQ3f2DBMPxTI0AHG1rpa62hoDPR1FxKZULF+FJTx9VThNf74KBAO9s28KHPnw7a1etnNR3BwIBXt+6jeo9e8grKKZ8XiUOhxOn3YppQjASRkgweiaScXc6negJBsBkNQCG/QFq6puJxGKndFjPhvo/BgDQVHa9/SaaprL2is1YHY4pCZiS5QW73n6D3u4uVpxvBsAoR95qsVCQm0VpYX6qg8b5YAFcCsE/xFlF+w41EAhHpnUZgCzLNNfXcrB6Fxabncs3X0dGZubUlQGMAzJpus688lLKigpOunZv2bKFF198MVVClJmZyRe+8IVT9rk3TZPm5maam5ux2+1UVlae0HXF5/PR0dFBf38/0WgUm82G3W4nw+ulqfUow74Aly1ZyML5lVMKeBmGwd69ewkEArjdbmRZJj09HZfLRXp6+rjZ/GAwSGtrKx0dHdjtdubNmzepLjK/+93veOWVV5BlGcMwcDgc3HfffSxatOikAMWePXvo6Og4bYu/k5ndbkdRFFRVHSMgfToTBYGYouJPsAozPB4kKV6SW1BQwIoVKy4YAADw2muv8cILL6QAAF3XueKKK/j4xz8+AwDM2IxN5yhuw7qrzKGhoVM7dedqw5sBAC79CTaq37Ku66kNV9NUIpEIwVCAYDCAYcYdeY/HQ0V5OUuXLWPVqlVcfvnlzJs3L9Xb92Kysy0F0DSN7u5umpubaWpqYmhkBNlqJzsvn6ycHNLc6TjtNjLcbrIz08lwp50RODceINA/PMKhxhYe/eEPePO1V7nllg/jdruJRqMpwZ+pfJ4HBwfo7Opg+bKVNDc3snXbq/z+97/n2muvndSxItEoR7v66B0YQNXjqsyxSJi+rg6OHD6MLxCkYs5cZs+dh9OVhqapJ7AYRFEkEonw9tZX2XT1Ndxw9aYJfbduGOzdt5+33n4HHYE58+aTlZ1NepqTnKxMcjIz6OrtZ8/B2kk50EkAYM4k2wAqqsqB+maGRnyn/b6pAgAMXefdt98gEgqxftM1OF1pZ80SOQYuaLz71jYG+/u4bP3lFM+afd4BgGSgZppQkJfN3LIS5ESbyHMNWp6LDiOGYaKoKnab9bwOYW3zEbp6+y94MuGU65Is09XWStWOtzBNk1Xrr6BoVsU5nXOmYZCZ4WHRvDknbT9qsVh48skn2bNnT6pl3aJFi7j//vtPGwR2dnbS0NBANBqlqKiI2bNnn7C3qqrKyMgIIyMj+Hw+AsEQh5oOE41GKSvIo2JWGYuXLJmS7kWKonDw4EGi0SirVq065TFN02RkZISOjg56enowTZOSkhIqKiomdS5bt27lN7/5zZi15a677uKKK64Y9/0+n4/du3czMjJyVi2MJysqnHzv0IiPIV8ARVGwWi2UFORjs1rQNI28vDxWrlyJIAgXDADo7e3lBz/4AX6/PwVKlZaW8uUvfxmXy3VBdQBmAIAZm7FTPHLLlqwyY7HYRQUAJIPIGbu4guFjtDkh1Sc5+ZqmacRiUUKhIIGgH0WNl6XY7XZmz57NqlWr2bjxClatWs38+ZXnvHViOKZSU3OI117bQn9/H+Vls7jp/TdSVl5BJBLB7ZpYa7jJZu38fj8dHe00NjbR3tFBMBTG4UwjOy8Pb3YOTmcaFotEmsNBljedbG/6uHTRMzWXy8WQL8ChphZ++tAPefnPf+Kmm24jJycPVVXGOCZTDeo1NzcCsHDhYrZte42WI0289toWVqw4fQZe03U6evro7OknpmqoSoze7i46244gmgZzZlcwf9FiBoPR1Hw7mWMSZyWovP36q1y2eg0fuPn9p/3+YDDIwZpD9PT1UzprFoUFBVgtMjarFZfDngKCBkd8HKhrnhT1+UxLADq6+6hvaeN08ndnrfw/atxMw2DXO28yMjzEhquuwePNxJiC/UMQRFQlys43t+IbGWb15VdSUFJ2YQCABAgAUF5SyKzieObxXLIAzmX2X9Pjorrn07a89jrdg8OUlc+etnu5JEkMDQ6wfdsW1FiM+UuWsXDZylN27ZgSpwyYVVxAWVHBSedTOBzmJz/5Cd3d3VgsFlRV5aabbuLWW2+d0FpVX19Pb28vNpuNkpISiouLx5QFjAnwBobYW9uAYJpUFOUxNDiAoijMmTOHgoKCM77OgYEB6urqsFqtLFu2bNwA1jAMAoEAg4OD9Pb24vP5kGWZgoKCE7QAJmJ79uzhySefTGXhdV3n/e9//0nHraOjg3379qEoynkFq5IlT32Dwwz5/BxubqLq3XexWmRu//AHmT9/AYqikJ2dzerVqy8oAGCaJo8//ji7du3CarViGAZpaWl88YtfpKys7IKyAGYAgBmbsVM8b/PnLTnl0ymKApo2AwDM2NRsFCdt/zRalMwETY8DAsFQAL9/BFWLB582m41Fixaxfv16Nm3azIoVK6ioKJ+SjUPTdYZ8Abr6+nn+mad5/Gc/pa+3h6LiEspmzWJooJ9P3vcZNl17I2XF+eRnZ521864oCn19fbS0tMTrMPsH0HWDjKwssnPzSfdmYrM7kCQRh82KN91NtjcDt8t5TuqOh3wB9tc28NhPHmb7G29w3bXvo6i4FEWJnbPgP3lcwzCpqdlHcXEpOTm5/O7F57HbLWzZ8tqYVk/H2+CIn7bOHvoGBxns66XzaBvRUICC/Hh2ZNGiRdjtdgzT5J2q/XE6/CmuI+l8vb1tC8uWLOWDt91yyjnt9/vx+Xx4PB4yMjLGAF7H3/dAKMyemvr4+jXBsUwCAOUlRcydIACg6ToH65vpHxoZ0+bvZMHEFN1EBKB6x9v0dnWwZuMmcvMLpwRAFkWRaDjM9jdfIxwMsu6qa8jJy7+g4LRpxIUBly2Yi8vhOKdaAOci+38h7Ve/+hXdff2sWr8RISEeNt1MFEUioRDvbHsVv2+EkrIKVl9x1bn3PUwTQRSZU1ZMcf7Jxeiam5tTwWzSL7rvvvtSonCn24u7uro4cuQIPp8Pm81GTk4O+fn5pKenjwkmG1uP0tbRQ5rLweqli5AlkdbWVo4cOYLb7aawsBCv1ztGkf9U5vf7OXLkCH19fZSUlDB37lwkScLn89HT04PD4cDnD+APBBDMOAAgCAIej4e8vDzy8vJwOp2THtbW1lZ+9rOfMTw8jCzLKIrChg0buPvuu08Q80uKJzY1NaXmwvkL/uMwUE//IEMjPnbu2M5f/vh7tMR9/trXvsZ1111HKBQiMzOTtWvXXlAAIAms/PznPx/TNeyee+5h9erVMwDAjM3YxQsAiOcc8T7TzXnGLuGJOQoQiGdsVaKxKIGgD7/Ph2HGHf+MjAyWr1jOqstWcfPNN7NixYpTtkUaz6Ixhd6BQYYDIY62d/DYIz/iL3/8PRkZGWy69gaWr1hB5ZzZ/OkPL/Liiy/yz9/8v1x9w/soysliVnHBhDatJAig6zoDAwO0d7TTcriFrq5uQpEwVpuDrNw8vFk5uD0eZIsVWRRw2m2kp6eRlZ5Omst5TjN1/lCEHbuq+eH3/5OD+/Zx7TU3UFhYTCwWz5o7HM6Uc3SunulQKER9wyGWLF6Gbhg888wvWbFiGX/9619PoKoaJhxua6emto7WI4cJ+UbwpntYumQJixcvxntcf2tN13l3bw2hSPS0QbEgCOz42zYqZs3iYx/9yCkdacMwUmVJp1NnD4UjVB+qR9f0SQMAk+kCEAiF2VfbQDSmnHZ+ThkAAIiixP7dOzh65DAr1q6npHzOlGTpRUki4BthxxuvoWkaGzZfhzcz64Kz00zTZE5ZMaWF8c4m56oM4FKp/0/ac889R119A2uvvBqnyzUtAf1kScuON1+jr6ebzOxcNmy6FtliZQqaSp76fus6BXk5LJxTfsr3bd26lb/+9a9YLHFKeH5+Pg888ADZ2RNr1aeqKj09PXR0dDAyMpJY5x04nU48Hg9ut5uDTS0EgmE8aS6uvmJ9qpVsNBqlt7eXnp4eFEXBbrfjdDpJS0vDbrePKRXTNA2fz5cqK0hPT2fOnDl4vfGOAj6fj6qqKhRFQZZlYqpKd/8gS+ZXUlpShNvtOSuGTV9fHz/96U/p6OhIlU0k+9Ufz3yIRqNUV1fT09Nz2nr/5LwdT1NnvM9NZO8UBIG+wSEGR/zs3P4Of/jtCykxxFAoRHZ2Nt/61rcoLi4mLS2NdevWXXAAIBQK8f3vf5+uri5kWUbTNK6//no+9KEPzQAAMzZjFysAMJ3peTM6AO8xQGCUCq6qKkSiEfwBH8FgXMTSarUyd+5cVq9exZo1a1mxYgWVlZUpJ+P4jTgQCtM7METvwBAGAk0N9Tz0X//Bgf17Wbp8BTe8/xaKi4soysumsCAfUZT42te+RkNjAz/68WMUlsyiICeTeeWlJ6dqRiLx+vaOTlpaWmhtbSMQDCBIMhneLDKzc0jP8GJzOJFkCVkScTkceN1peDPcuByO8wJ29Q/72fL6Vh7+wffo6+3hmqtvIDs7l3A4gKbp2MfJ7tistkk7N6czWZbp7u6iu6eLlStW0dvbwzPP/oIPffBDPPvcs6n2o4ODgxyoqaGpqQmHzUZFRTmVlfPH7SihajqaphEKR6hpOoyqaqd1NCRJYvf2t8jyernvU/eeMgCcTEu2UCTCnpqGOKg6AWfH6XCAIExaBLB/aJiDDYdTLf/OR/CfHLfafdU01R1i/tLlVC5eNiUAQJKOvWPba1htVtZvugZXmueC70+mYZCd6WVJ5WwEQThnAMD5bi16ru0vf/kLb739Nqs2XElufsG0KzMcDWhVbX+T9tYWHA4nV153I5lZ2YTDkQkDeGcK+JQU5DGvvPSU77NYLPz85z/nwIEDqcB25cqV3HfffZOqVzcMg+HhYQYGBhgaGiISiaAoCr5AkMNHO9B1HafDzjUbL2fJ4sVIx2XMkyyo5GeTwGjy+RRFEVEUycjIID8/f8yePDQ0xN69e3E4HCxYsACLxYJhmhxoOIzL6WDZgnmnZGydzoaGhnjyySepr69PjVF5eTn3338/mceBxENDQ+zevZtgMHjaFn+6ruNyuSgvL0fXdZqbm8cAAmeyN4qiyNCwj96hYeprD/HLJx5HS3SvGT2e69at45/+6Z/IyMiYFgwAgN/+9re88sorqa4K8+bN44EHHsCW6K4zQUdvSnUAZgCAGZuxGQBgxi5hQEA3dFRFIRwJEQj4CYXjdFm73c6sWbNYtmwZ69evjwMC8+ejGjDsDzLiDxKNRrDZ7eza/jbf/X/fYmCgn/fdcitrN1yBy26nMC+H8rJSVl52GbIss2XLFj784Q+x8cqr+H/f/QHBcJTC3CxKCvMJh8OMDA8zNDRER2cnXV2djAwPE43GkCxW0r2ZOFwuPBlenE4XssWCLAo4bDZcTgcZHjdulxOH3XbexlHVddo6u3nu2ef4n8d+isfl5sqrriYtzcPw8AChcIic7NxJObtnCwxIkszhw42oqsqSJcuorz/En//yBz71qU/x8MMP09vby9DQEA6Hg6KiohTtfjzr7OmjtbMHTdPQRzlQpz0HWeZA9W6ssshnPv0pLLI8Jf3Xg+EIew41xIPiiQAACarrZEsAuvsHqW08fNo85ZQDALJMc90havZWUVYxh+VrNmAYZx/cSZJMX1cHO9/ahifDy/orrz5nLdkmGZljtVpYsXAeTofjnOoAXEplADt27ODFF1+kcvFS5i5ccuG0HCYwnw/traLx0EEQRT5+9ydYumQxNY2HGfYFzhk4axgG82aVUlKYd8r3ud1uurq6ePTRRxkcHESWZVRVZcOGDXzoQx86I0AqqQmiKAr1h49w+MhRFFUBQyPPm47X62XBggWnXHcNw0DX9dTaL0nSCTX0hmHQ1tZGY2Mj6enpLF++fEwQu/dQAz0Dg5QU5LFobjmCMPmx7ujo4Fe/+hUtLS2pwDQ7O5vPf/7zJ3RNaG1t5cCBA2iadtp6f13X8Xg8rFq1Co/HQ19fH7t27TqhzHGy2e9oNMbR7l6Ghgb575/8mIH+vpSw3vH2la98hY985CMsX74cURQvOADQ1NTEI488kipJsVgsPPDAA8ydO/eCsQBmAIAZm7EZAGC6Dv+E46r4pc4AHsnhMsd7JfGiqij0DfQQCPjGvNNqtVBYVERxySzmL1zE/EWLWLFqDfuqdvF///c/IcsWPnjHR5g3fwG6rlFSkI/H5WT+woXMnTMntaE/8MADPPazn/Htf/8PimZV4BseIRoOEgoFicViSLKM0+UmIzOT9Awvbk86dqcTi8WC3WpBUxScDjsel4u0NAd2qw1JOr8lLSbgC4TZd6iWx378CNtefZlFi5axcuVqLBYL3d0dDA0PU1E+G0mSMado7h0PDoznJMUdAIHa2oOkud3Mm1tJVfUutm3bwmc/+1kee+yxCX/fgfomOnv6U0rtE269JEkc2reHcMDHvffeg2uC9a2ns2F/gP11TRNeu0YDABWlRcwpmxgA0DswSE1jC4ZpnjSjMlXif8cHTJ2tLVTveJusnDzWXrkZcQrWakmWOdrSxN53d5BXWMzqy69MaTVccEuUAZQU5s/oAEzQmpubefzxx8nOy2fl+o2jN7lpZbIs09JYz77dO9F1nbvuuov169fjC4TYV9cYF7icasDHBEEUWLFwHunusWVPmqaDQKoULAk4VVdX8+STT6aC12SW+8477zxlX/vT2d7aBgZH/GBCZrqbWYW5NDU1Mjw8QnFxcUqIb7JB28DAAM3NzQwPD1NaWkplZeUJGff6w620dfYgigIVpUWT6oACcPDgQZ5//nl6e3tTwb/L5eKTn/wkS5cuHRPMHzx4kJaWFgRBOO3zaxgGTqeTNWvWkJ6eTiwWY+fOnfh8x7qtnOm6dLSrh0AwzHNP/5ID+/am/NzRzILksZctW8bDDz/Mxo0biUQiE9ZgOFemqioPP/wwDQ0NWCwWFEXh2muv5SMf+cikxmQGAJixGZsGAMB07AAwxkm/CHQARi9mo1XvkxtJ/HczFeCPDvSPZbmF1O+iIKYC3dHvvZTYEMKosN3ExDQS4adpxv9tJqnXRiqYTY3fKJBA1zUURUVVY8RiEWKxKLp+LNNks9m47sb3Ub17F4IgcufdnyA/v4BoNEZ+bhYFOdkpKtvChQtTn9u9ezcf+chH6O7q4robbuCqzdeS7vXiTs/A6UrD7nBgtdmQJQmH3YbLbsPtcuJJS8NhtyHJEuELWM8bjkTpHhzmzTf/xk8f/iHdnZ1svGIT5eWz0TSNlpZmQqEglZXzsVhsGKZxAeaAgGHoNDY1kJ2dQ2nJLHbv3sH2HW/x1a9+le9+97sTOk5rRxeNre1Io9cK0yR8msBXkmU6247Q3X6Uz37mPtxprim5rr7BYQ41Hp5U/X9yrZgzq4SKkqKJAQ0+P/vrmlA17ZRK4lNtkiQx2NfHjjdfx+5wTFkrQEmWaTx0kLr9e6iYv4AlK1ZPm73JNEyyvOksqZyNKIrnrAzgUgIAhoeH+clPfkIkFouXc7jc0zLZIMkyPe1tvPv2myiKwuarr+ZDH/wgAC3tHRw52o04xeCtaRhkeNwsWzhv7LpFvKRMEiVsibaNowGnLVu28OKLL2IYRkrkzuPxcOutt3LllVdO+jyC4QhVB2pRNQ3DNCkpyGfhnFkYhkFHRwft7e1Eo1Hsdjter5eMjAxcLhdWqxVZllO97o91+YkxMjJCd3c3w8PDpKWlMWfOHPLz88f9/rbObhpa2lI+z4I55RTl5Uzo3Hfs2MFvfvMbQqFQaiy8Xi8f/ehHWbFixZg1sKqqiv7+/tPW+yf9LEmSuOyyy1LnXVNTQ3NzcwrAOBNfTBRFfIEAPf1DvP3W31J1/8lOBaN9yOTxy8rKeOKJJ9i8eTOGYUwLf/i1117jhRdeGKNJ8bWvfQ232z0DAMzYjM0AAFPrbE63wHe0eJ1hmBhmnAanaxrhSCguZheNoekqmqpiGDpGAgQYb1MQRQlRFJFECVmWsVptyLIFSZSwWCxYLDZESUQUxDHo88UGCCTP2Uj8TP1h7L/jTmLydzP1e/J6k8BA/E9SpE1H1zVUVUVVlRMoyTm5eXzik58mNz8fRVFw2GzMLitBkuICmNnZ2WzYsCE1vuFwmP/1v/4XjzzyCA/8/df42Cc/TSwaF8pzp7nwuJx43Gm4nHYcCSBgvOs93zW9kUiUwUCIpuYWXnj2af78+9+Sm1PA+vVXkJHhZWRkiKamBmw2K3PnVCJK8gUJ/lPzXxBRlCg1hw6SlZ1HSXEJ+/dV8+6u7TzwwJf4zne+fdpj9A4MUdN4eNLOkSRJDPT10lRbw6c//SlysjKn5Jp6BgapbWxBGHU+xwODJwMA5pWXMau4IPW+UzlKkWiMfbWNBMLhk9bPngsAQBRFQkE/27e9jhKLsu6qq8nOPXu1fkmSqNlbRUtjPctWraNsztxpQxs3TROH3cryBZU47LZzAgBcaiKAuq7z+OOP09jYyKr1V1BYWj4GnJ1OPsbQQD/vbNtCLBph4eIlfO6zn0UUBFRVY399E75AcEqDL8MwmF8xi6L8nHFeM8e00D0eBNi1axe/+93vGBoawmq1pjRANm7cyM033zypudne1Uvt4SNIoohuGJSXFDJvVumYeT8yMkJPTw9DQ0NEo1F0XUeWZSRJGgMA6LpOst20x+OhqKiIwsLCU9bZ9w8Ns6+uCSFx3VaLzPKF88jwuE/5LL700ku89NJLqKqaCv4LCwv52Mc+xrx5844dv7+f6urqFEgw0XuzcOFC5s6dC0B3dzfV1dUp6v+Z+l2madLZN0DNwRr+579/inKK1tyj19pHHnmEz3/+89Pmeenu7uaHP/whfr8/Vbrwvve9L9VmcULjM4U6ADMAwIzN2AwAcO6D/kQbM12Pq9XHYlEikTCRaBhNU1PvtdsduN1u7HY7VqsFUUygzqaJpscDVV3XURWVSDRCJBxBHfX58cZAli3YrHbsdgdWqw27zY4sWxAT7ZWmS/lAMrN/LNg3MIx4wG4kzjFZOxgfBw1NU1FVNV7Dnfg/c5JBqSAISFIcMLFabdjsNpxOJw6Hk+ycbK6+9gbc6R6ikSi6YVBWWECmNz3F0JBlmY0bN6acJ0VReOWVV/j6179OLKbw4E8eIzMrm5iisHBOOSUFeRPe9M8HCBCJxhj0B+ns7mHra6/y3K9/yfDAIGvWbGDu3EoMw+BIawvtHW3MKq2gpKQ0fu3TYM5IokQoFOJQ7UFy8gooLS6lrvYAb739Bp/73Of47ne/e0rne2jEz77ahjEB98QD2QD7du3gzo/exexZpVPjIPUNUt/ShiRLCcfWQIlGMUwDq81+UgAASOlDxGIqGelpzD3FOZkm1Da10NnbN+74nAv6f2rP0DTe/dtWBvr7WL56HbPmVp51sC5KEof27KKzvZ21GzeTnpkZp19PI1s8bzY5mRlTDgBcagKASfvzn//M1q1bmVO5gMUrV09LX0OUJIK+Ed7euoVIKEheQSEPfOlLuF3x53LEH2R/fdOUlQKYhkF2ViYL58yaVMeX0SBAe3s7zz77LE1NTSkhQFVVqays5Pbbb6esrGxCx9xX20jv4FAKAJh7CgaSYRhEo1FCoRDRaBRFUVBVFcMwEAQBi8WS6hAw0ZIBfzDI7gN1qWMYhonb5WTl4vnYrCcKHIZCIX7/+9/z1ltvpcAHRVGorKzkrrvuoqjo2LkfPnyYmpoadF0/bb3/6GvMy8tj9erVSJJEJBJh586dqWD3TH1RURTxB4PUNx7miccfo7O9fcKf3bx5M6+88sqkBB/PtT3xxBO888478da7CWbCLbfcwg033DBhEGCqWAAzAMCMzdglCgDIspTIAl/IoN9AUWNEImFCoQDhyNiAPz09nYqKCpYuXUb5rFl4vZl40j0pmpwkiakNKB746ui6EafMRaOEI3HqeigYpq+vl57eXvr6+ujr62NwYAC/3492XOZEkmQcdjtOp4e0NDeWBBiQRKjPF2iSDPgN08A0zJQIm4mZoPPHN9V4kK8QSwAnqnoi+m2z2XE6HTicTpxOVyKAt2O1WnE44r/b7fYEsGLFbrfjsMdBEZvdhkWWsVit2G02bDYbdrsdm92BRZbiXQU0DVXV0HQNjyuN0RC0YRgsXbqU8vJ4S6ZAIEB1dTVbtmzhv/7rv7j/i1/mrns+SSgcJifTy8pFlRfcuVc1nUAojC8QpH9wmKrdu3jh2aepqzlA5byFrFy5irQ0N339fdTX12GaBgsWLsabnnHCfJoOIEAg4Keuvo6s3HzKS0tpaqxn67ZXuf3223n44YdPaOV0zIkMUV1Tf0bPt6FrvPvWm1x/w/VctnzZpO7pybIYza3t1NQ3EA4G8A8PEwj40VSF7Nx85ixYdEIWaTQAkGTIGLpBdpaX1UsWnAZsGKCm8fC4ztS5yP6Pdmj37HyHoy3NVMybz9LV6846WBdFkZq9uwmHwqxcuwEpIco4Xcw0DIoLcplXXjblQoCXEvV/tB08eJCnnnoKb1YWa6/YjGy1TRrcPecAgCgSDYd5Z9sW/CPDeDIy+bsvfJ7CvNzUe1o7umg52jlpkHG8OZSXk8W8WaVYLPKkPz8aBAgEArz44ovs2LEj4RPEdQGys7P54Ac/yMqVK08Z+EYVld0J+n98P9FYUFGWand5PswwTXbtP5Ro2yqmfKSivFwWzB4LYvT09PDss89y6NAhrFZrinWwatUq7rjjjpRgoaZp7N27l/b29pRPNNE1XZZl1q5dS1ZWVmr+trS0TEkiSpBkXnn1VX788EOp/Wf0MU/FEqutrWXBggXT5pk5fPgwjz76KOFwONW9AODGG2/k5ptvTiWmZgCAGZuxGQDgLAAA+bzXDSYp/qqmEgoHCQRHCIdC6KNo5fn5+Sxbtoxly5Yxd+5c8vLysFgt8Vr2BI197AI4unI9+T0gCGIKaBi9IBqGQTgUjvfV9fno6+vj6NGjtLW10dbaRm9fb4pOKYoSVqsVq8UWD5wdLqxW2yh2wNQ70SZxen6cem/EaeSjLlHTNFQ1RjQaIRIJo2lK6rNpbjd5ubnkFxRQUFhEYUE+WVlZpKW5SUtLw+l0YLfZsVgtiIKIIAqI44zRmGBs1O+j/xz/evzjwglzyjRNnE4nS5YsweVy0dDQQFdXF6Zp8sMfPsjQsJ/vPfwTrHYbuqZSVlhAcUEe9kSd5kSci7NVl08eJxyNMuwPMTg0Qmd3F/v37mXLy3+l/tBBCguKueyyNeTm5hMKBWhoqqenp5eS4lLmzJmDJEpj5vG0etYlGb/fR01tDZmZOcydM5f2thb++vKfWLt2Hd/93vdYsWzpiYFuJEL1oQY0VZt0hk4UJXZv/xtLFi/mhmuvnjQAgGmiaTrBYJDevl7aWttobmkhFAwhSCJOl4uMzCzc7gycaWnIiRaHo200AJA0XdfJzvRy2eL5pzyPYDhC1cE6VFU94dk4lwCALMs0HDpI7b5qsnJzWXflNWcdsAuCQN3+PdidLioqF0y77D+mSZrLydL5c8n0ZkwZJfxSzf4DDA4O8uMf/5hQKMiajZunpFTkXOz3uqbyzrbXGOrvw+508YlPfopFlXPH7Me1zUfo7R86Yz0A0zDJzc6ksqIMiyyd8fmOBgE0TeONN97gL3/5C+FwOFWXbbPZKC0txZkQppVlOVFeaE2B56FIjCF/AJvNRprbQ5onnWUL55E3RaVQp7NQKMTg4CCHGg8z7PPFQXpFRVGiqDGFDLcLUYBoNEo0GqWrq4v+/n4sFkuq7OG6667j5ptvTmXHA4EAVVVVDA0NTZjyP3rNLSgoYM2aNQiCwMDAALt27ZqS+arrOsuXL+eHP/whDz/8cAp4OpVvm5OTQ1FREddddx3/9E//RGZm5jnrPnIm9s477/D888+jKAqSJKV83uuvv55bb7319KDJFJUBzAAAMzZjlygAAKcuAxBOCEzPeJgQBQHDNInGIgQCPgIBH8qoTHVeXh7Lly9n9erVVFZWkpmZmRJwGd0OZ6pMFJPB7zGQQNM0hoeGae/ooLGxibraetpaW/EF/ESjYcBEEEScThfutHTSXGlYLNYTAuEzdVQNw0DT9VG6BkkkOynIFyUSCSYC3fjr2Tk5zCqbRWVlJRWzKyjILyArOwunw5ES5TkWtBspxsfxgf25NsMwUq2MFEVBFEWsVisHDuzn29/+Dp+499PcesdHcKW5UVUNSYTcTC/5uVl4JqgMfqZ1vlFFJRiOMDjip6urm7raWqre3Un17nfp6+mmsLCEZcuWU1BQjKapHGlt4UhrC05nGpXzFuDNyMAw9GlB+T/lsy7KBIN+9h3Ygyc9k0ULlzDQ181fX/oTaW433/3e97n9g7eN+Yym6eyvbcQXDE46QyfJMnX79+KwW/nExz82YYfENE0URSEQCDA0NITf74/30XY6ycjIwOPxYLXaONrTR+/AUGqdGI9GfDYAgG4Y7KmpT7QrG9ua6lzQ/0ePW29nO7vefgOLxcr6TdeS7s08871EEMAwONxYR25+Eele7/QTjDNNJFli2fy5pLvTpqwM4FKr/T/+2h5//HFqa2tZtGwF8xYvm3btAJP7z843XqO3uwur3c6nP/NZ5s+dM3YNjsU42NCMPxCeNAhgmiaZHjcL51VgnQIq9/GdKA4ePMjvfvc7Ojo6sFqtKXDgVPumIIpI8SwEVpudotIy7vzIHZQWFZ7jx8hk586dvPHGGwwODqKqasp/MhOJBNOMswmP9wMlSULTNBwOBx/4wAe46qqrUq93d3ezd+9eIpHIpIP/5FwdzQLct28fbW1tUwL0mabJVVddxbPPPssXvvCFMT5ecp2TZZlrr72WW2+9lRUrVpCXl0d+fn6qu4FpmthstrEgQOL3CwULvPPOO7zwwgtEo9FUss4wDDZt2sTtt9+OfBpQeCoAjRkAYMbey2aOicOOxU5Jn+KSBQCSwejoa0muJ3GRvmOLoyAIiS5ywpg2c8nAWtd1wuEgPv8IgaA/RVNMS0tj2bJlXH755SxevJisrCxEUUzVvl0IZ0UUhUTgLBIOhzl6tIP6ukYaGxppaTlMR1c7uq4mNhUL7jQP6Z4M7HYnoiBOWvRNN+LlCqOD/mR7Q8PQUZQYoXCQUDAIGNhsNsrKyli4aBGLFy2ivKKCrMxMbDZbCkRIosXTTcjwePG15Nx49tln+fOf/0zprFlce90NXL5xI3kFxUhWG2Bit8h4Mzxke9PxuNJO2fLvdGwA0zTRdIOYqhAMxegfHqa1tZX6Q7Xsqd5Nfe1Bujo6sFqslJfPYf78heTm5qGpGkc72mhtbUE3oaJ8DkWFBWd0zy8sCCARCoeprn4Xm8PFZSsuIxQMsOW1lxkaGuAfv/4Nvv6PX0s5ugA1jYdTgfZkA9nOtiP0dnZw/2c/g8Nhn/A8STplcY2OEx3O/uERWtu7CIYjDPX3MTTYT2FJGS63Z0xv+7MBAAAOH+3gcFvHmGs/l9n/uOMqEQr42P7m60RDIVasXU9JxZmL9gmCgKYqDPT2kJtfiDjN6P+j7/u88hKK8/OmBAC4lLP/SduyZQt/+ctfKCgqZvXlV01Jy8gp31dFgXf/to2u9qNYrVYeeOCBcevo/cEQNY3NRKPKxMFG08RikVlSOeeEln9TCQL09fXxm9/8hgMHDqDr+hj6+8l+Jv0jwzTRdY25cyv56EfvpLi4+JyMcywW409/+hPbtm1LCfidKgg8XhzYNE1ycnK4/fbbWblyZep9DQ0N1NXVYZrmGQXsyXV8w4YNeL1eotEoO3bswO/3TwkAkAQXSkpK2LhxI7t27RrjtK9bt45//dd/5X3ve9+Yzw0NDeHz+6lIgBKnA1EvBBBQXV3N008/TTAYxGKxpDSerrrqKj70oQ9ht9tP/rxPwTnPAAAzdjEG66P/ffx7pjIhcNEDAOPpAOiGTiymYByX0RROcZ1CKuCPq+lLkoRgmgRDAYZ9g4TDxwa9tLSUjRs3sm7dOsrKylLUuuk2VsnriG+uCt3dPTQ3Haa6uooDB/Yz4htOXX+ay0N6upc0VxqiIJ00KBQAAxNd01F1bQzQcazlj0o4EiQY8KPrGi6Xi9mzZ7NixQoWL148pndwHDwwLto2hkmUvrq6mr/+9a8cOHAATJN58+ezbsMVrNlwBbPnzsNitYFpYLPI8QyhK06/tFpkHHYbFotljFp7EsAa8flQNB1V1QiFIoz4/Qz7fHR1dnHwwH527XiHxvpafCMjOOwOCouKmT17LsVFJbjdHqLRKJ2dHbQdPYKqGxQVlVBcVITDZk91WbjYTBIlYrEou6vexTBh9eq1YJq89fabHG5u4Nprr+U73/kO8+fHA+Tmtg7aOibfrksUJfy+YQ7u2cU9n7iH4sKCM17YRzuyoXCEvfWN9PX00tl2BBMoKSsnIzPrhM+eLQDQPzTC/rrGMf93rgEAQRAwdYOdb22lr6eLWXMqWb5m/RnT9gVBQIlFiUWjuNMzpu1aYRoG2ZkZLJ43m/T09LM+3qVa+z8GoDp8mMceewxJFFm36VoyMrOm4T4qUbX9TdpbWxBFifvvv5/KyvF1XoZGfNQ2t6IoEwMBTBPKi/Mpn2B7z8nY8VoUsViMd999l0OHDhEIBFAUBU3TEiV58aSFbhjoCV8mGViPFtTLycnhzjvvZOnSpVN6rsPDw7zwwgtUV1enmH9aAjBMtUBOnEe8O5IY1zoapf1TWlrK+vXrKSkpAeLCh3v27KGjo2NCLf5OFaCnpaWxYcMGHA4Hg4OD7Ny5M1VqMBWOv8PhoLxiNjt27eJf/tc/p4QAv/GNb/C///f/TgGKuq7T1d3N0aNH6evvJ93t5tprr70gLfYmanv27OGZZ57B7/djSZS5qarK+vXrueuuu04JApzt+c4AABdH0Hsqu9RB8AtplwAAMFYHwDAMokrsjJ3EpNpsNBomGPQlqPPxQG/p0qXccMMNLFu2FG+C0nou6P3n5EaLApIoIYrx9kVHWlrZXVXFju07aDnSnHqfy+XGm5FFWpoHEWEMEGAmOhVomjputj8WiyTGLIrD6WTO7NmsWrWKJUuWpGoOkwjwdOz5fDYBj8ViIRaLceTIEaqqqti+fTutra0ALF22nBtvupllKy4jJ78Aq82OIIAoCEiSiCVRgyknaIxJAaNoTGF4eJje3l7q6+o52nqEzqNHOdp2hK7uDmKRCOnpGRQXlVBcUkZuTh4ejwdBEPD5Rujs7KCntxsDgby8AgryC0lzORPijOZFPeaiIKIbOlXVu/H7A6xetQa7w0FdQx379uzCYbfyT//0z9x3331opsDu/TVnthboOu++9QbX33Adly1fftbnrWo6VQdqOLB3LwH/CAXFJRSWlCFJ8rhr7dkCAD39gxxsaB6DKp9L+n8KpJFlDu3ZTWNtDd7sHDZcdQ2yzTaG3TBZAEBAwJJgCk1TbwaLxcKyBXMpzM87y0OZ7wnHJxKJ8Oijj9LZ0cGyy1Yze8HiVOA3bQBHWWLvzu0caW5AEEQ+85nPsGjRopO+f8jnp775CJGYcsoMsWkYZHnTWTi3AssZ0NJPZ65TlJ6pqppS6k8CALquo2kah5oO4w8EwYSBvl4ON9QSi8WQJAlVVbFarbzvfe/j+uuvPyM6/fHW1tbG008/zZEjR1IBIsD8+fOZVV6O1Wpj0BfAMEG2yCmGIwjMrShjXsWslKhy0nw+H7t372ZkZOSsFfINw8Dr9bJ+/XosFgsdHR3s2bNnyoJpURQIhMJ09Q1ypOUwz/zyKULBII888gj33Xdf6n19fX00NjUxMDCQYj5kZWayefPmaQ0AQFyo8Kmnnkrdj3iiSGPVqlV89KMfxe12j3sNMwDAxIPoU2WOJ2ozwfYMAHBRAQDAmKBJ0c6Ufi8kUO4ofv8w4XAwdewFixazau06Kivnk5edhcedhtUiT0ua+kQ3gWSf3pFhH1XV1Wx9/XX2H9iXuh63O52szBwcdieYoOoaiqqcUFOi6wqhUJBIJN5Lt6yslFWrVrN8+XJmzZp1yQb9JxtXWZYRRZFAIEBTUxM7duzgnbffZnhkBLvNxvxFi5kzdx7lFXPIycvDbreBICZEjhQikTB+v5++3l56urvp6uygt7sbv28ETdNwOV3k5uVRUlJGXm4+6ekZ2Gx2ME3CkRCDg/109/TgD/ixWB3k5uaRk52Ny+lAFMSzCvxT2SCEaQEgiIKIaUJN7QHa24+yaOEScvPyGRwe4sD+ao62trB+3Tq++OWvkFcyCy0hJDWZZ9ZisVC9czuzSou57Zabz+p8A6EQ7+zcRWNDE550D0UlZdidzlOCiGcLANQ1H+Fody9SIhA419n/0QBAV9sRqna8jShJrNu4mey8Mxd5M3QNUZSmpNXauXbG5pWXMn9OxVk5r++F7H/SfvOb3/C3v/2N4uJSVl+xCUESp9W+KskyB3a/S3NDLaZpcu+9946hmI9n/mCY+sNHCITC4wfhponDYWdJ5WxcDsc5O/fJlqJEFZV9tY0oqoqm6SBAT0c7B6p3MTw4kBIq1XWdyy67jA9/+MMpVfwzsV27dvG73/2OoaEhrFYrmqZhsVi4/vrrufHGG+PBInCosYWegSFEMS7Sa5FlsjMzKCvKJ+248Wtvb2f//v0pAbqzteMZAI2NjdTV1U0J/T/JdOjqH6K29hC/evIJAn4fP//5z/nUpz4FxNsO1zc00NbWhqZpY7pGZXq9kwIALlQpAEBdXR2/+tWvGBgYSIEAiqKwcuVKPv7xj+PxeKYcBLgYAID30lo/YzMAwDkBABRVQVHVM16EDUMnGPTj9w+nAtX5CxexYeNGKirmIFssKZqcxSKT7c0gy5uB5QJ0IpjSIEoUsVhkIpEoh2pq+fNf/sy77+5MvZbpzSHNnZ5o30dC2VwjFgsTjUYQBJPCwgKWLVvOihUrmDNnDh6P5z0T9J9qXJMZicHBQfbv38/WrVvZu3cPyT1OAKw2WyJ7YUGS5ZTIkZoQabJZbbg9HjK8WXi9WRQXFpKZmYlFlgiFwoSCQYZ9wwwODSbQW4E0jwevN4t0twen3ZZyVMyzksEUUFSFmKJhtchYrZaUYsaFBAMEBERJoqWlhYbGOnKys5lVPhsTkY6ONg4e2EM0EubKqzZx6+0fYf6iRQiCiBJTJiRA5Bse5uiRZqySxGc+8+lUID1Z6x0YZPee/SiqijczE0m2TKj05WwAAEXVqDpYSzAUSYkAni8AQBQlgkEfO7a9TjgYYMHSFVQumX4ib1NthmFQUpDHyiULz9hxfa9k/5N24MABfvGLXyDLMus3XYM3K2da+R1JNktDbQ2GYXDnnXdy+eWXn/ZzkUiUmsbDBELhseUApokoiSycXU5OlvecnvtkW1Jqerx8sr2rl76hYWKJDiKGEuNI/SH27t2DmKDTK4pCaWkpt99++6Tb0KmqyksvvcSrr76KpmnIskwsFku1KVyzZk3qWRAEgdbObuqajmCzWcn2ZlBSkIs33XPCs1dbW0tTU1NqD54qUE+SJNatW0dWVhZVVVWpsoIzPmZi/zdN6B0corGxiV/8z88ZGOjne9/7Hv/wD/8AwMDAAIdqaxkcHDyhjOFiAwAAmpubeeqpp+jt7U3p9CiKwuLFi7n77rvJzMw88VrO4pxnAIAZm7FLHAAQBIFwNHKGnxWJxSKMjAwSi8WPUVRcwpWbr2bhosVYLFY0XWX0mpTM/DvtdvJyslLiPROnYSVCFyEZBk5uMzoX2ZE4EGBBUWK89dY7PPfsc7R3HAXAbneS4c1CU+K1/bIsUVCQz8KFC1mxYgWzZ8/G6407Msma/vN374+NoTD2r5Nsu/Ef5qjxPB8AlSzLRCIRag8d4uVXXmHXrl0oioIsyfEWaYaJYeqAgCxL2Gx2MrxeMrNycHvScdhdSJKMYRqImBi6Hm+BFIuiGwYOpwun00Wa00Way4k10SZxquv8NU3DHwhhmAZOuwO7zRJ3CC8gGCAQrwsdGhnhcMthfCODZGfnkp2Th2GatB1ppqG+BkEQuHzjldx02weZv2gJVqsVRVFOWOMEQUBXVXp7urDIFiSLlcZDB/jsZ+8jy3tmDntXbz+hSJSSwnwEAbp7+znS3nXajPbZAAAj/gB7aurRDSPuOJom4fNA/0+OoWma7H7nTbrbj5JXWMTajZsRRPGi1fuY0PpsGGR43GxYveKMad2XsvL/eOb3+3nkkUfo6+tj8fIVVC5ePq3KAOREN5C6g/vQDYPbbruNa665ZkKfDYYjHKhvIhqNpUAA0zApK85ndmnxeTn/yYIAANEEQDowPEJ7dy9pTicL58zi5Zdf5tVXX43vXbKMqqqkpaVxyy23cNVVV03oe4aHh/ntb39LVVVVqq5fVVUqKir42Mc+Rmlp6Qmf8fmDdPT0UZSfQ4bnRFZDNBqlurqanp6es6r3P5npuk5lZSWlpaVs376dcDh8ZoKCo9ZHURAYGBrmSFsHT/3Pf3O0rZUvf/nLPPjggwA0NTfT0NCAqqrjgg0XIwAA0NraylNPPUVnZ+cYEGDBggXce++944IAZ3o/ZwCAGZuxSxwAMEyTmBI7Iwc1GPQxMjKEacaDqCs3bWb12nW43R5UTeFU66phmkiCgDfDQ25WJjarddzgV0guvEnavGGga3q8nj5Rd2caJgYGhjE2yJckMVErLiFLEjabFUuCZn4uAIFke7vunh5eeP43vPLKS6k5UF5ewdq1a1i6dCmzZs0iIyPjvAT9SZHG44OlZAY13jnARDd0NM3ANI/JP8Y7PsTr7Ud3exBFEYscL4MQBQHzHIIByRY9GRkZWCwWotEoe/bs4bnnnmPnzp2IokS6x4soSYl2ibFUZwVd11KiR7IsI0oSsiTjcLrIysomKysXtycdUZLiFGlMbBYrVqsFqywjSuKx7hajW4GcYaAuIGCaBr5giFAohCAI2Kw27HYbVktcy2C0i3E+AQFREIkpCh3d3bS3HUFRImRm5ZGXX4imabS2NHG4qR4wWH7ZZVx3402suGw1GZmZGEZcaNE0TXRVxecbwWq14snwomsaO958nVtuvoUlixdOybmGIhGqDtZj6MYpMUCn05m694IoYhom0WiELG/GaQGA9u5e6pqPpNaK85X9TwFfskzjoQPU7d+LzW5n/abrSPd6L4o95SwedmSLzLLKuRQV5p/RWvFerMN8+umn2blzJwUFBay98mpE2TJtgCJZlqmv2U/t/j3ousF119/ALTffNOHPD/l81DbFhQFN0yQ7y8viubNP2Q1mqs3lcqXE9CZrqqYTjUVxu1wA7N69m9/97ncMDg5itVrRdR1JklizZg0LFy7EMIyUwKCqqmNa+cViMRobGzl69GiqDZyu66xevZo77rjjjMQzh4aG2L17N8FgcEo0CU61hzscDnw+3xkH/mICAFUVlWAoRP/wCM8/+wxV7+7ktttu4/nnn0cUBPbu28fR9vYx3RrOGgCYBsF/am9qb+fJJ5+kvb09BQLEYjHmzp3LPffcQ35+/thrOsNzn+4AwHt1vZ+xGQBgSi0Si04qoNR1nZGRAUKhOPq2eOkyNl99HcWlJYle9hMPaA3DwG6zkp+TjdfjTtG7kgGrrusoqkYoHCYQCqNqxxR2DTOZjj4WKpmYo3Pao1oTmkhCPBhwOuw4HXZcDntqAZ3KIFyW46Jkh2oO8dbbb2G327n55pspLi5OiQVN5fcdA0mOXXES3ND0eHCmqCqGbqDqOqqmoihxx0JPtA40TBPDMEf1uyQR8B/X2igBCMiSjCTFAY+czAycDsekrklMAAqmeWrwwDRNZFmmsLCQuXPn4ko4Uj6fj+eee46HH36I2to6HA4XGRlZWCw2DEOHxP2OgwIKqhZD1VR0TccwdUzTQBBEbDYbVqsNu8OJJMu4nGkpRoDTmYbL6cBudyCJIrIsYUkEk+IoUCr1Z4IBu4CAqir4AyHCsSimSUrQ0GqxYrNasCQFm47bus8lKCAgoGoaI34/PT3ddHd1oOsa+QXF8XaImk57+xFaDjcSCYcoLi1l/eUbWX/5RmbPnYvN4UCJxlKAnWEYSLLM3nd3MHtWKTff9P4pOc9AKEx1TT2mYZ4AACRFJeOZO5FgwE93dycd7e30dnVSNquCtevWsHHt6lN+R03DYbr6+o8BAKFQfLIKwnmppZckicH+Pna+uRVNU1i8YjWz5y+85MsAwKSipIjF8+dNHsx+j2X/k7Z3715++ctfIksSazZuJregCF2fHvNElmUaDx2kZm8Vmq5z1VWbuP32D0/qGP2Dw9S1tOKy21k4twKH3XZBruVUwoCTsSNHjvCb3/yGpqamlMiepmlj9tmTtbFKAppJ6v/VV1/NTTfdhM02+TFpbW3lwIEDY2rjz2WwNtlWgse3kw4EQ/iDIaKKiiiI7N79Ls/+8ikWLlzI1q1bycnJ4d1du+jo6DhtG8RJAQDTKPhPWk9PD08++SQtLS1jmADl5eV88pOfpKCgYMx1nQl4NQMAzNiMXeIAgAlEJwgAxOlmCoMDvShqjOycXK6+7jqWLluOJMloZ3i9ZiLazPamk5udiappRCJRojGVmKqiaxqqpqHqGpFQmGAwQCgYJBwOEQ5HCPh9hEIhVFXB0OOUXdliwe12483MxJuZRaY3E09GXHdAN3R03cAiSzidDrIyMnC7nKmgZUomhyBgscipgDzZ9WCqjj1atdQwDFRNQ1HjLYhUTSUSVRKZBB0tcb1mIoAREmBB8jhCKvxjVHhpHhcajnK0TSN1vGQ5x+yyEmR5Yn2oBUEgGIpnVO02a2qzPhkjI3mNaWlpzJ8/f0wv5d7ePh555GF++tOfMjQ0hMfjxePJQJJkREHEZrUmMgdgmkaiRaCGpqmoqpJQdI7GsywYaJqGKAqIooQgSok2SQ4k2YLNGs9i2Gx2HA47aS43LlcaLqcTq82GPMqJOh0wkBztmKIQCkeJKrG4cFQCHJHkOGtFlmWsFguWxL+FhJDguQIFBOKaHv5QBH8gQH9vN339PQhAbl4BObn5CILAwEAfR1sP09vTjSxLlM0qZ+XqNaxet56Kijm4RlFNWxobCI0M8Zn77kvV058VABAMU32ofhTTR4orXAsiFquFI4cPc2DfHvZW7aajvZ2O9qMYus51N9zIDTfdQklJMYvmzUkFKLIsp4Q9RUFAMwwONhwmEo2m/l+JKan63fMBAAiCgKaq7PzbVgb7eskvKmHNxk2p5+SSDf8Ng9ycLNauWDqmteeE5sV7lA4aCAR46KGH6O/vY+78hSy5bO208T1kWaap7hAH9+xC1w3WrFvP3R+7a9LHGfEHsFmtFyz4n2oQYGRkhBdffJFdu3al6uTH94tO/D9N00hPT+fWW2/lyiuvnPR367rOgQMHOHLkSKo14HTzSZM+iqrqBIJBRgIhYgmh396eXro6O9j22qvEolGeeeYZPvCBD3Dg4EGam5snxGSYDAAgTFPx1L6+Pp76xS9obGhIAUCKolBSUsI999xDWVnZWYEAMwDAjM3YJQ4AqLp2Qs3geE5mXLgmRn9/N6IosnrdejZetYnMzExUTWUqfFLTNHHYbCAIaLpOJBJmaHCQ3p4eujs76OrqYmR4iEAggKooJ4YuycDYNBOt9o6dVFqam9y8fObMm8fCxYspKChET1CXRVHA7XKRl5WJy+Wclh0KxETgEVd/VYnGYkQVhUgkhqKqqJqKpidZEfFAXxQERElEEsTUPTVME1VRUGKxRGZcTYgUmglROBFJGKUYbsbLA4wEU0AURJxOJ+6EiFC8fMAgLyuTovzc0wIooigSDIc50t6JYZhYLTIOu510dxruNFcqiB7vHiSPXVpayoIFC7Db7anXqqqq+Na3vsVf/vIXJEkiMzMPh8MJCFgtltRxk5tgsrwh+R1J4UVNjzMjFCWGosYwDQNFiSbGVgcTBFFESrQdtFrtOB0OPJ50PG4Pbo8Hd5obh8OF3W5FtliRROm47E4ibE9en2miGTqRmEIkEiGmKCl2y2igRk6UKsiShNUix0ECUYrTYQWB8fIUZwIOJI8TjkYJhsMEgyGGBvsZGOjFNAy8mTnk5uXjdLoIh8P09XbR2dHGYH8vgihQWlbOkmXLWLpyFXPmzkMA3njtZf7hq1+jvOTsa3f7h300HGlDlmTAZGRomPb2NvZXV3Ng/14a6+tSlP258yq54qpNeNLTmb9gES5XXOdhfkUZZiJAsVgsqZ9Wi4VAOEJtcyuiKCEmqMaR81T/P9okSaZ2XxWNtTXY7A7Wb7pmWvZ6n1oAwCTd42LDqpVYLROnJL9Xs/9Je+aZZ9ixYwdebyYbNl2D3ZU2LURkZVmmub6OA9U7MXSDpSsu49OfuhfhIh7rqQIBNE3jjTfeYNu2bYyMjKRE+5L7ZAqgTwTpyU45paWl3HDDDcyZM2fS3xkOh6mqqqK/v/+c1PufbeCfvHZVVRn2+fEFQmiaxsBAP4cOHqTmwH5CoSDhUFxI+Vvf+hb/8i//QntHB9XV1RMu1ZgwADANs/+jbXh4mF/84hccOnQoxQRQVZWCggLuueceKioqjoFJk7yWGQBgxmbsEgYADMNA1cfS0YXjFuPR1xOLRQgEfJSUlfPRuz+Ow25HnQJKqijGKeWGaTI4OEBHewetLYdpa21hoK8PdVSHAkmSsdnsWK12LBZLPNOb2izFY2FPImusaSqRSJhIJJSiRdodDi5bvYY1a9eTV1CQqmGWJJHcrExyM72IkohhXFgQQBhFpY7GYoTCEfyhMNFoLKV0n3xfMtBPOia6YRCNRAgE/PhGfAwODjDQ38fI8DDBYIBwKEwsFkNTlbEAgBjPeCY3i2PlFjq6Fm9lZ7fbKC4p5YN3fASXKw1V1xGAWcWFpLtP7niKokggFKKzpz8urgaJ0gMd0wSbxUKay4k7zYXTbsdyknaRuq6Tnp7O4sWLycnJSf2/oij87Gc/4z//8z/p7u7G7c7Ak+5FEiWkhD7DqbbAsY5DPEMfBz7iZRuqlqzNjOsMxJQYeuL5MU0DiIMussWKzWbD6XTisDtwutJIS0vD5XThcDix2+1YLDasVguyLCHJlgRIIAImiqoSCkeJKTE0XUuwCOJAQRI8SPgmiEIcjIhrXcjIclznQJbFVEb7ZODAROafoeuMBIJElThgNDI8xMBAH9FohLQ0N9nZuWR4vUiyhXAwRF9vJ22tLYyMDAGQnpFBaWkZ7W2t3HHXx/ngBz9ETk4OgkUmLyuL9DTnpM7J5w/wzu4qWo8cpeVwI7UHD9La2kJne3u8XESy4Erz4HA40TWdOz72MT51/+eIRiJoWpwdk5PpZfmCuSf9jvbuPuoOJ+r/TfO81/+PXuv6e7p4961taJrGwmUrqVy0ZNr1ep9irw6r1cLGtatwOewT/th7XQzq4MGDPPXUU2CaLFu9jllz5k2LeSLLMocb69m/eweGYbJg0RLuu+/TWCQxVVt/vFN/MQA5UwUCQLwOv7+/P8E+E1N7ZfJPsvWwIAhYrVays7PPqF6/r6+PPXv2EAqFzlm9/1kF/glfZ9jnZ8gXQNM0BgcH2LVzJ7t2bCcSia/D2dnZKfX7l156CYvFwptvvUU4FJrwPZkQADDNg/8UCDAywi9/8QtqamrGgADZ2dncfffdqS4TowGmGQBgxmbs9Gv82PJnYeIAQDLAnrboBRBTVQxMzNEAwCkppgl0WhK44aabKC8vO2PaPxDPaEoSoUCQwy3NHNi3lyPNzQSDx5w5m82O3e7CZrMhy9ZxUeuTne+x98VpzYoSIxoNEw4F0HQNV1oaq9euZ92Gy/F6vfE6ecPA5XRQnJ876br2qbIk9VXRNIKhMEM+P+FIBF2Pn0s8Ax3P1AsCaLpGKBhkZGSEwcEBert76OvtYXhwEJ9v5IQARhDEFHCSAk9SG7GJaQqjui0cy0DE/0ioSoxgyM+SZSu46+574tR53cBhtVJRVowlIVA0ah9FEESGfH56+wfp6++js70dWZZJz/DicjrxZKQnykg0SIAB6R43mekebDbrCUCAruvIssy8efOYM2fOmI1/7969/Nu//Rt/+tOfkGUL2dn5WK02BEGMZ87FydU7plgDwlh9hThrQEPTNaLRSIJRocT/T4uXGYw+5ySdXJYtCe2BuOCgxWrHbrVhtdmw2WzY7XasFiuSbME0QU+UyIiiGNcfSGT9hdHBffIGJn7Gyxji5QJxJkgcBJFGgTtJUcfkx5O6DMdfu2ma+AJBYoqKJInouk44GGRoeJCAfwTTBLfbgzczkzR3OpIk4ff56O/rpqe7C59vKBWM2O0OsrKzyfB6cbvdOGw2RCl+TQ6HA6crrr/gcDrxpnuQJZFIJEJfXz/dPd20t3fQ0dGBb2Q48WSL2B1OXK60xHjaU89sNBLhA7ffzt33fZpYNJqaN6frAlDTcJjOvv5U28ILBQAIgoiuKux483UG+/vIyctn3VVXI0ryJV0GgAmrly+iIDdnwkD2pZr9T0tLG3dfPj5QjkQiPPzww3R2dlBYXDZtykVkWaalsYHa/VUYhknlwsX83f3347BZTuvcT3cw4Ew6BFwoa2xspK6uLiU6OO2Cf1EkFA7T0z9ITFGJhMNU7XqXLa+8hKooZGRkcNNNN7F582aKi4vJzs6mYvZs0j0eDhw4QPPhw5MCNSbKALhY7q/f7+eZZ56huroai8USLyHTNDweDzfccAMbN25MgQMzAMCMzdixvfVMn/OLGgCAeO2/kRBDm4xpmsbK1au4/MrLU0HpxJ1akGULpmHQ09PNoYMHOLBvL329vYngV8ThTMPhcGK12pBly5jNQjCPBS6CwJjs5pi6eNMYVYM9VsxO1zUikTB+/zCappKTm8f177+JxYuXYJgGqqZjtciUFubjSTs/VEohEdibpkkoHGHEHyAQDBFT1ZR4jiSJSKKEbhj4fSP0dPfQfrSVzo52+vv68I2MjMn6iKKUyDTHg01Jko9jTJxIlzu+Y0CqLECM1/erCQHDgYFuIpEQN958K5uvuRZVVdB1gyxvBiUFealNNdkloHdgkGFfkI72ozz39K/o6+3B5XJjd9ixWC3k5OQyt3I+c+fNw5uZlQiidawWC9neDDK96Vhkecy9SAbh+fn5LF68eMwDHY1GeeSRR/j2t7+N3+8nMzMXl8uDIIDNYp0SJ2h0OYEgCimNuHh7PC0uiKmrcf0KVY2XF2gaRoItEI/VR2kFmEaKdRKvlReQksCLJCIkmAySbEmJMIqyBYssI8sWZIuMRbYiWSzIsiU+XyQJWZQRkjXuCQAh/lOAMc9R8pqEE8vcBSEuupeYJGLifZqmEgqGCAR8hMOBOMhis+NOc2N3uBAFAd3QCQb9hEMhYtEIwYA/DsipWkLlWkuV7RijGEmqqiaYFaPAMdGCw+HE4XBgSd1HcZQraSIm5mosGp00AKBqGrsP1BIMhVOq0xeC/n8MNJKp3VdNY+1BZIslLvKWX3CJlwEYzCkvY9G82RN6/6WW/T9T1fnf/va3vPrqq8iyzLqrriEzO+eCzROnwwEJynpT3SH27HwH0zSZt3Ax99//OVwnqeU3Em03jxfEm66O/nQHARRFYc+ePXR2dk4J5f+YSLA5IbD8dIF/8n3DIz56B4YwTZPDzY385Y9/oLuri9WrV3PbbbfxgQ98IJXJHg16HW1v53BzM+pxIorjzaHjEwhZmZls2rTpomcAJC0YDPLcc8+xa9eulK6SnhDlXrBgAe9///uZN2/i4qrTHQB4r5d9zdipg/pzDeBd1ABAUvzPPAMAQNd08gryufmDt2K32yZElU8G/rqqcaS1hepd71JbU0MsIUDodKbhdKZhs9mRpKR4nnks+yyIY9rRieOcs3Dc9SWBAMMwUmr3o2nzuq4TCvkZGRlEkmU2X3MdV27ahMViRVFVZFmkrLAQj/vcgQAplVvDIBAMMTjiIxQOoyfEDJN13oZhMDQ4wJEjR2isq6O9vY3hoaHUcWTJgtVmS5RGWFNt7+LZ7oToH8Io8EQYM56MRxIXjn0u+ZqeEBwMR0L093chCAK33/lxLlu9mpgSwzRNivJyyMnKBOLtabr7BwlHYzQ3NfLiC88xODBAenomHo83EcRrhEIBItEw6RkZLF22nJWXrSYrJwdN19A1HafdTl52JukeN4LAmDmnaRoul4vKykpKSkrGsAG2bt3KV7/6VQ4ePIjbnUF6emaijaGMRbaco3sqpsTiBcQ4q4HxdA0SEMAoRoFhGpjJn4m5axjxMgljlBbD6Lkd73pAqkTATOhfmIn7Lorxk0kG/pJ0bG5ICXAhXu8uJ7QNRARhLAVVFCUkUUBIggeShCgKSGKi7ECWE5lpA0wdU9eJxaLxMhM9Pmd0Lc6USCrZR6NRYko03pEioUURD/KTLAcJWbZisdqwyJYEg0I6iSvJGODrTAGAoRE/e2sbUoHIhcr+HwMAJAb6e3n3za2oisLs+QviIm+XcBmAaZqkp7m4fM1KLKfJ6l0qWaCzaTWXtMOHD/PQQw+hKArzFy9l6WVrTgAAIuHwlPcRcTpPXsYjyzKNtTXsfXc7pmlSuWgp93/uMzhPBgAkWtud7L5PN6d/KksBptqGh4epqqrC5/Olug2c6fOY/JPUvhktnppsR5jU0Ul2OkpSzo8fn9HBv2EY9PYP4guGMDSN17e8wutbXiUjI4N/+7//l8/df38qc93V1UVffz+hYDCllaMoygkJDUPXiakqqqqhJdpGq1qyO1U8IWToBnaHgw/cegs5mRmXzNoZjUZ5/vnneeeddxJ7fSJxo6o4HA7Wr1/P9ddfT2Zm5kUPAJzrPej4IHIybKpgMDgmGJ1hKpzdvni+gvr3DAAAxGuYDT3lMI8XnJ5MidZitXLzB26hoLDgtCwAS6It3uHDTex4523qDx1KbCYW3O50HA7XmA1qDG1alLDbbMcp1E/yRo0CBHRDT7UqTG5QihJlaGgARYmyas1a3nfzrTidThRNQ5ZEZhUX4na5prZ1X2KzUjUNnz+QoPlHE+MipoJT38gILS0tHDp4gCOHj5VHyJIFh9OFzeYYo4WQCvYFIQ6aiHFthDjDYGwt+BmPqQmKpjLiG2RoqB+73cFd93ySBQsXEovFEATIykhH1w0isRjRmELVrl288pc/EY1GcLu9ZGRkjrlDoiigaQojI4OEQkEys7JYu/5yVq1ZS1paGjFFQRAE0tPSyMny4nI6MA0jdf7J+1lQUMC8efPwer2po7e1tfEP//AP/OEPf4hT0LPy4mwIUYyXBpzrhWLUgnWyjNyJi9qoOyUc//wdc6PGZmRMTCPBJBgNKKSAgmMOWtxh00c5eMaojgVm6j6ndApHfd8xgOFY7n105ie5biS/5/g1RBKllJBiEpCwWKxYLbZE+0NLIlsVP3oSwEsyEI79Pf7sPR4A+PinP0UsGsUEdE0jO9PL6qULx/1sW2c3DS1tx9r/XWAAQBAETMNg59+20dfdiTs9g8s3X4fd6Zz2+8tZeF/Y7VYuX33ZaXUALvYs0FQGkKqq8sgjj1BfV4c3K5uN19yA40z3LdMknGC+nCrAP53Jskzdwf0cqHoX0zRZuHQ5n/3MfThsJ6cja7o+pqPKdAd+piMIMFUt/nRdRxRFvF4vOTk5eL3eeIlaortOkiWVajusxTsRBYNB+vv76e/vJ5oAX83j1jXD0Ons6ScUjtDV0cFf//QHmpubuOWWW/jud7/LvHnzUBSF1rY2Ojs68Pn9YxgiY/4QZ2+FIlH8wVBcuHZokJHhEQKBAIGAn0g4jKoqcaHRjHRu/8idXH7FRuaUFl00VP/TuGXxcVBVtmzZwuuvv47f749rHyXAFlVVyc/P5/rrr2fdunWnBIbeywDAjM3YJQ8AGKaBoqiIkpjKQE4EAEhuDFdevZlly5eeVAcgLk4m0trawjtvvknNwf2YponNZsftzsBudyYyeqdW3bdZrQnF76lF+DRdT4ms6bqeCD79zF+4iA9/5KOkpaWhqCo2q4XykiLsNttZ1VSODo6isRjBUIjBYT+RWCzVv1wURMLhEEfbjnLo4H4aG+oZGR5KAClWnC43DocDWbaOcTrERMZWEkUEURiXITHVpqgqg0N9+HxDpKV5uOuee5k7d16KCWCxWBgZGuLVV15ib9VuALzebDxubxyZPi5gTUIS4XCQkZFBdF2jtKyMzddez/wFCzExUVUNiyyRm51Jttd7whzVdR2r1crs2bOpqKhIbXCRSIRvfvObPPjgg1gsVrKz87FYrKlWgefTATieJjkRsa7RehapkNw8wa0ap0PdsXr/8UGEYzCQgJAK9JMZnURTjWMlCqnSGmP0gY6d22gtgmRZAeIx5okoIApSCgRInm/q+szjOheYo8L91O9mApyIsyCS7J7kdYiSjGkYxKJRPnjH7Xzyc59FVRVEQUSWJPKys5hVXDDuONc0Hqaz98LX/x8fRLU01bN/97sIwLLV6yifW3npigEmMo2Xr15Bxqh2kuPZxUj/n4ps/8ls69atPPfcc1hkmRVrNzC7csEFnSeyLFOzt5pD+6oxTZMlKy/jvk99CrvVMkVTZXpoBbjd7mkxtzRN48CBA7S2tp5Vi7/kuGZlZVFeXk5eXt4ZCQcGAgH27NnD8MhI6lziWXqDzr4+AsEw+6qr+e0LzyJLEv/xH//Bl7/8ZQzDoKmpiaNHjxIMhU56LaIooKk6/lCY3v4BmpoaObh/P0damhns7z/Bp5UlibS0NObMncsTTzzBnDlzxnQTGn39FyMoMPq829raeOmll9i/fz+GYaR8oeR6UFlZyfvf/34qKytnAIAZm7GpBgAullaAoigSiUXHBQBAOKEOF0BTVRYvW8amazeP8zmwWKwMDQzw9ltvsmvHdlRVxWaz4/FkYrc7EAQxlUmcyPk5bPapv4GJb9cS9dqapuHzDREIjLBw8RI+8tGPYbXbUFQNT5qL8uLCVE37mQR9uq4TDEfwBQIEQiFUVUeSJayyBVVT6WzvpPZQDfW1NfR0dyU+J5KW5sbhSMNqtR3bRBOicJIkpoL/s2JJnKFglKKpDAz04vcPk5bm5o6P3c2iRYtRVYUDB/az5a9/YWCgH6vVRkZGNi6XG4ssx8sPkoFdAgjQjGMZY1VVCQSGCQb9SJLEmnXr2XTNdWR4M4gpahzFd7sozMvFbrOOqw2QkZHB/Pnzyc/PT732H//xH3zzm99EEERycgqwWG2IgoDdarugG/7Y+sWEAFxiLOK18Tq6oWMmMiCiFFf7Hx1ITLZ9pTBKQFDXdRRVIRaNoukqkUgIm91BTlbeuE/OeKDCqT2T0Zn7Y/dpKsFMw4hnoGQ5XooQiUT47Oc+w//+l39OdbmQJAmLLJ0E0NKorqkjEIyrSU+H4D+1PoeCvLNtC0G/n9z8QtZddXVKM+SSxAAMg5VLFlFSmHdKZ/diolaey8A/af39/fzgBz9geGiI/KISNmy+NkUDvhAmyTL7d79LQ81+DNNk1dr1fPLee7BI4gnrwNmMy4UGAqYDABAIBKiqqmJwcPCsKP+GYSDLMrNnz2bOnDljAv9IJBKn38finXCOZ5bFxW+11HEM06S/vz/BDDxG0e/s7ccXCPLG66/x2isvUVlZyc9//nM2bNjAkSNHaG5uPmXgn5wrwVCErt4+9uyp5u03ttHRfhSApUuWsGrVKjZcfjnFxcWkpaVht9ux2+14PB5ycnKwWCwJnRkz1Qo2ft6jdXgusnUzAaCmgBbDoKqqipdffpmOjo54qV5i30iWBWzYsIFrrrmG7OzsGQBgxmZsqgCAOK15+gMAgiAQiUbGDR5PFhjquk5BYSE3feBWrFY5lQiUpbhI3b49Vbz+6qsMDw1isVhJT8/E4XAlAv/JMyPsVts5Va81TRNFU9E0jeHhfoJBP1dcuYmbbr0tUTJgUlqYR5Y3Y1xmx6kQY0EQCIbDdPX0EYkp8XGSZWRJYmRkmIb6Bvbvqab1SAuaFm956HC4EpoIjsTGJCAKx1gVybq38xnsnwoEGBoeYGR4AJvNznU3vp/+vl7e3fEOAB5PnPJvt9pPmZFIAgK6kaSpG4TCQYaH+9F1jbz8fK5/300sSog1KoqGw2alqCAPT9qJVNckfbGsrIz58+djs9lSIMC//du/oaoaubkF2GwOhGkAAiQBHzBRNZVwOEQ0GiYai6IosdTcgLhgpCzKWKxWnA4ndrsjQaG3nhS0SwXvo8Qwo7Ewfr+fcCSEzWqhuLSErKxs9uypxirbKMgvOeXzOtGOHOfTAbLKMrphEA6H+dKXv8g/fv0fJvTZwWEf++oaMQwTQWDaAAAQf+73V73LkcZ6JFlm7cbN5BYUpVqbXooAQFlJMcsWzONkj+TFQv8/H4H/aPvlL3/J22+9hc1uZ8Pma8krKL5g80SSZaq3v83hhloM0+TKzdfwsY9+ZAx2aBgmoUgEt8t59vPmAgEBF1oMsLOzk3379hGNRs+qxZ+u69hsNpYtW0ZhYWFqTPv7+2lvb2doaIhYLDYGbD4Z03W0wn+K/WgYdPUNMDA0xF/++Ad27djO9ddfzxNPPIHb7aaqqoqh4eFTshdEQURRVfoGh9h/4ABbXn6JI4eb8Xjc3HLLrXziE59g06ZNyLKMoiiEw2HC4XBCcPYYSOFyuSgpKRlTppbUN0iWJV6Ua+dxIADEuwS8/vrrvPXWWwSDwVSngGRZQEFBAddeey3r1q3HmmDnzAAAMzZjZwUAiBcHTVOASKJOa6LBomEYuNJc3Hb7h/AmgmKLxUpvTzevvfIyB/btBQS83njWN16Xe+YlEZIkYbfaxg08pjLoiCkKqqbS39+Fqsb42D2fYvHS5cRiMVxOO3PKSk7qjJ48uBVo7ehixO/HZrNh6Dq9vT3srd5Dzf69DCco/larHaczDbs9rnCe6gEsxlX4zzbLf/zYTeW4qZqG3z/CwGBv6j47HGl4MzJxudwpSvUkpiSGaaLpBtFYOFGeEUAURdZdvpFrrruetLQ0ojEFWRYozs/Hm+4ZowuQvEZd1/F4PCxatIj8/HxUVeX/+//+P370ox8RDIbIzS3EbnckygFsnAs/TjiFgzQ68A9HwvgDIwSDflRVSb2e7vGSk5OH0+EkGo0SCoaIKhFi0RgxJYamx50ytzsdb3omTmfaCfdYIK7IH4mF8ftGCAT8mBgUFxdz5ZVXsn79OrKycqhtOszDD34Pm8VOpjf3mMhg6lxHAwmjGkhOkoFwLk2WZYLBIA986Qt8/RtfndBnWju6aGg5iiRNH/r/6PWvv7eHd/+2FU1VKamYw2XrLr90uwEYJlnZmaxasgDbSdpXTXf6//kO/A3TRBQE6urq+MlPfoKqKlTMreSy9RsvWDmiJEns/Ns2jrY0oxsmt3zgA9zy/vedcN6RaOy0eg+THo/zCBBdKAaAYRjU1dXR1NSU6hZ0NsdyOBwsX76c3NxcAEKhEPX19XR1daHr+km7B51qbxvtR/YODNHb18/vXniO/Xv3cO+99/LII4/Q19fHwZqaU2oWJI8RCEVobmnhz3/8A3t278Lr9fK5z32O++67j8LCQvr6+ujs7GQk0RXp+Lmf9AmysrK45pprThiD5G55PAAwFUyVC23Nzc288sor1NTUYJpmCizSNA1RFJk/fz433HADlZWVPPzwwxw4cGAGAJixGTsTAOBiKQHQTR1FUSeHMibqNN9/2y3MKp+Foevs37eXl//yJ0aGh3G53KSnZyLL1rMK/EcHL3abbcwGl6KUTaVzY0JMjRGOhOjt7aSktJRPf+7vsNps6LpBScHJWQDjzwHQDZOWtnZiqkr17l3sq95DV2cH0WgEi8Uab4dnj9f1xzP8SdV1ccqC/okCO2fnjJj4gz78/mGcTjceTzpW2XLWAo4GJoqq4vcNMzwygGEYFJeUcssHP0R5eUVcIBDIy8kiJ9M77rUl+x8vWLCAOXPmUF9fz69//WseefgR/IEAeXlFWG12ZDEOAkxVwG8mNtdk67/RY58EjawWC4oSY3CoH59/JDVapSXlbLpqE7d98DYWLliAx+PBMEzC4TCKoqREl7q7unn33d289NJf2V29A4CM9ExysvORLfGWm4oSw+f3MTwygGka5ObmsnbtWm6++WY2b96MLMu0trbSPzBI9b6DPPbTRxBNkZzs/NRcP+b4CeO6etMNAAiFQnzxgc9PGAA42NBMV98A0jRo/3ey53XXW9vo7erEZrezfvN1ZHgzL00QwDTxeDxctng+7jTXuPvPdKb/XwhhuCQLTVVVfvSjH9HU1Igrzc2V196Ix5uJcd7nSVyT5J1tW+huP4phwsc/8QmuvOLy8zom54MRcCEAgGg0SnV1NT09PWfd4s8wDOx2O6tWrSIrKwuA3t5eampq8Pv9kzr+eDuAKAj0DQ7R1dvHi795gX3VVXzpS1/iBz/4AfX19TQ0NCCe5jskUWRw2Meu6mp+98Jz9HZ3c/sdd/DNf/1XioqKaG5upre3F1VVEUUh3ho30Q4vOQ/iSTkVRVHJTLQBHG//Op/A3fk2RVHYuXMnr732Gj09PSeUBaSlpbFp0yZqa2s5cuQIhmHMAAAzNmOXKgCg6RrqGTAVDMPg+vfdSMWcCl59+a+8/eYbiKJEZmYuDocztahOUVyO3WLFIsuc6xDDMA1isRgDg72EQgHu/PgnWHHZqjgLwGGnoqwEKdH3fSKOu64btBztIByN8OMfPUhPdzdudwYulxtZtqQy/XKixY4onJug//zNJx1RiOsTTGVAqBsGwVCAoaF+YrEINpudG2++lXUbNmAYOpqm4033UJyfO27daxL5nzVrFoWFhdTW1rJ161YefPBBFEUhJ6cQq9WGLElYLdbTBvjmOI6mOUrM0Eydd0LbIBHYJOezQDJL5cfvH0lk2gXWrF7PZ+67j5tufj/5BbkTHh+/L8hvXvgtTz71FO9sfxO7PY2M9AyGRwaJxSJkZWWxfv16brzxRq677jrmzJkDQENDA42NjZimybA/SG1dA0/+/GcISOTm5I/TunB8N89M1OFP5XN/to7OF774dxMCAKIxhT2H6gmGIoiiMK2y/6NBjfbWFvbsfAfD0JlduYAlK9dcsiwAp9PJioXzyPJmXDQAwPnO+h8/JknhzTfeeINnn30WQRBYuGwFi1esOu+tI5Pg/FuvvUxfTzeCIPKFL36RJYsXXZCxOVfz5UKAPf39/VRXVxMKhc6K8p/046xWK6tWrSInJweAlpYW6urqUpnhyfhpJwT/osDg0Ag9fYP84fe/5d3t7/DlL3+ZBx98kJqaGpqamhBl+aSSMoIgYLNaOdzaxh//+CfeeP01EEy+/o9f56677iIajXL06NFUUspms2IY0NPTw+HDzbS0HGZgoB9VU8nOyuKaa66juLgYt9szBgAYndS5lAGApPX19bF161Z27txJOBweUxaQZAeYpkksFpsBAGZsxi5FACCuSB/lTHjPpmmyaOkSOjtaqTmwH7c7HY8nEynZD3yqHWBJPikddKpN13VG/MP093ezdPkKPvrxT8RbkZkms0oKyXC7J8QCSFLZD7d1oGgqLzzzNHurqykqKkOWLWAeE02URZFLQdJrtJr81E9YiMQiDA71Ewz6AFiz/nLed9PN2B0OFEUhzemkrKgAq9Uy7j3SdZ38/PxUu6ItW7bwox/9CEmykJtbgCTJWC2WMZ0nRreSNMx4Szoj2T4vEdebhoFu6hi6gZEI+g3TgAQwEO/0YEVO9LRXVYXBwT4UJV5+Uzl3AdfdcB2f+9xnqKysxOfzEQwGUVU11f7IarVitVqx2WzYbDasVusJgk+RSIynf/00jzz6EEeOHGHNmjXceustXHfd9WMUf8PhMPv376e7uzue4REFunoHOdLayhOP/RRZspKTnZcYQ+EULt5YEOT4G5bsIjCdAYC+wWEO1jelrm46AgCCIKBrKjveeJ3BgT6crjQ2bL6WNE/GBcjunoe9yTBYtmjBuB0bpiMAMB3awSUwAEZGRvj+979PX18fGd5Mrrz+fTgc57d1pCCIqEqMN199ieGhAaw2G//4ta9RWlp6wcbnXJQFnO/6/6amJmpra1OstqmwpUuXUlZWhq7r1NfX09zcnAjezy74l0SREX+A7r4BXnv1Fba8/Ffuu+8+HnvsMerr66mrq0M6BYAhSxIIAtvfeYdfPf007W1tCILAN7/5Ta688koikQiKoiBJElarFVXV2Lv3IK+//goHDlTj84UAC2BHlOwIgoN1G+7gzjuvZOkiN1ddtXncveu9AAAk7dChQ7zyyiupMpLjAaUZAGDGZuwSBQAM0yCaUGid7OauKFECgWFUVSU9PQuHwzlOa7Kps3PVDeBkFoqE6entwOV08unP/R05ubkoqkpOVibF+bmTcqZaO7qIxBS2v/UWf/r9b8nJKcDpTMMiyYgJJf8Zm7ipmsbQ8ADDw/0AzJ03nw/c8RGysrKIxmJ4XGnMKilI0bnHCyBsNhu6riPLEk888STPP/88ToeLzOx8REHAZrUhiWKqD71u6Mcy/YCh66iaihKLEo2GE+JIx553SZKQJDnR9tKNruuEQiEURU0wFCAaDVJSXMrNt9zCFVdcTkamFxJUvJR+yHHnLwgJNXuLJQUEOJ1OMjMzyczMJC0tXv8fCARoa2tj0aJFJzzfff39HNi/fwy90wTaOrvp7Ozk5z/5MTaLg5yc0QCAeVrn+kxeOzug6dh6c3zpRzgS5stffmBCAEBzWweHj3ZMq/Z/4zrEFpmWhnoOVMf7qs+dv5hFK89/dvd8AQAlxUWsWDhvXLHJ6dQHfroEDOYoqO63v/0tr7zyCrIksWLtBuYuWHReNYlEUSQUDPDmq38l4Pfj9Xr5x3/8xxPUxs8/SDK1ZQHni/6vqip79+6lvb39rCn/o8fCarVy+eWXx1s21tTQ2dl5RiLD5jj3PxyO0Nk3QNW77/Lsr3/BjTfeyB//+Efa29vZv39/nLFyku+xWa0MDAzwzDPP8Oqrr6Z86Q9/+MPcf//9hMPhFK3farVSW1vLM888TVVVNbKliLyCq8jMWorVmoEgWhFFK5JkR1EkSkrCPPD5LK7ZfMO4+9N7CQCAeHeH7du3s3XrVvr7+1NlARAH0pcvX87nP//599SYzNiMXfoAgGEQVaIJEbKJBv9CvGZ5sAer1U5GRvZ5aTUkCAIOm21S53o2wYWqa/T2dREIjHDbh+9gw+VXEFUUXHY7FWXFkyoD6O4bYMjnp7mxkSf++2cpZXxbQuxvxiZvumEw4hticLAPw9ApLCzmwx+9i+LiYqKxGFkZ6ZQU5p9yXiY3ekVR+Ld/+xYHDx4gIyMLj8cbd2IEAcMw423kEs9zNBohGPQRi0UAAbfHTXFREbNnVzBrVjlz5syhqKiYzEwvTqcTlysNjyc90drQTzQaZd/eA7z44os4XQ5uu+1W8gvy0VQ1xTJJfvepHLfk85vUExAEAYfDQUZGBtnZ2eTl5eHxeE4Eo9raqKmpQVEU5IQjKQgC0ZjC0c4eWlpaePxnj5KVmUNW5sSBrpOqQZ+BNkBSayA5BOOWcxg6ppFgYZjHmAbWBEsoEgnzlb//El//xtdOA4Ka7DvUwMDwSKoW8lzU/4sJMOms1iVRRI1G2f7ma4wMDeFKsABcnvRLjwVgmmRmxoUA7bYTmV/TQQRwOmT9T2YdHR388Ic/JBgIkJ2Xz8Zrb0zRes+HSZLE0GA/f3v1JaLRCEVFxXz961/H4XBMG99nKkCA8wEAjIyMUFVVxcjIyFm1+DvZWuvxeBL7U+CMWAXjif5pmkZHTx+HW1r42cMPMXt2Bdu2bUMQBLZv3x4Hq8bZ4wTAZrPR2NjIj3/8YxoaGlKvlZSU8L3vfQ+Hw5HS0JEkiT/84fc89dRTIJRSPvsOvFmrkOV41ylRlFMiu5gmigrFRVE+/1kLV1117bj703sNAEhad3c3W7ZsoaqqilgshiRJaKpKWXk5X/nKV0hzuWYczxmbsUsFANANg5gSTaj0T9wxGB7uRxBEMjKyzlhQ7kw+57DZJ+xwna3QnWnC0MgA/f3dLF66jI/efU8CcRaYXVqC027DmMDxRVFkaMRHV18//X19/OzRRzANk5ycglSWecbO1IkzGfEPMzjYi65rZOfkcsdHP8as8nKiMYWC3Czyc7JPG3jZbFZqamr5v/+//x+RSJic3LgoIAnqvqbFg/dAYBirxcr8BZWsXbuOyy+/nCVLllBWVobX653QOcdiMerq6ujq7EKU4m0xdd2Y9Fw9XrToeHBAlmUyMjIoKCggNzcXQRRpamzkSGtrykEXRgWWPn+Azp5+GuvrePLxn1FUOIuMdO95AADMUQG/kBA3VBOlDxrRWCzVBjEJeAhinAWRkZ5OTm4uLlcaumZQXj6LffsOoioq0WiEL3/lS6dlAARCYfYeaoiLSQrCtM3+J02WZZobaqmp3o2JyZz5C1m8cjW6dukBAB6Ph5WLKvG406YVADCdsv6nsieeeIIdO3ZgsVhYs3ETZeVzxrQTPacAgCzT3dHOO1tfRVVV5s+fz9///d9PO8DkbIGAcw0CtbW1ceDAAVRVPWetkJNr95lcx8naR/f0DdDd18eTP3+Mvp4etm3bxrJly9i2bRuRaPSE7xJSe7GN/fv38+CDD9Lb2zvmPd/4xje45ppriEQiiedP5LnnnuWZZ57Gm7WRefMfwGJNxzRNHDYvVqsHSRqbNFJVgYKCIe69e4grrrg6oVszAwCM3q8PHjzIli1baGtrw2azcc1117Fu/QYyxlmHZ2zGZgCA9xAAEBcGiWCzOVIZszMawDMI0O1W2znbBMc7v0AoSFdXKxleL/fd/wW8mV503WBWcSHp7rQJBUeiIBAMR2jr7CISjvDYT39Mf28fBQUlOGz283Y9ly4IYOAL+Bgc7EXTVLKycrjjYx+nbFY5qqpMuHOD1Wrl6V8/w69+/UvSnG6ycvLRNI1Q0E8g6MPrzeD9738/d955JytWrCArKyulnBuLxYhEIkQikdQzn3RwkpR9QRAIBAJ0dHQQi8VStXbJZ+BMAIDjg//jX08CVDZbvLNBJBJJdZoYM9dFkZ6+AQZHfOytquKFZ39Nxax5OByuCet5jDe+J9MFOD7g13UdRYkRjYYJR8JEY5ETAhVZlsnLy6OgsIDy8nIqyivIz88nPz/eqSAYCOFJd/OjBx+lr68fRVUmVALQ2dNHbXNrim0w3QGAZG31jjdfY2RoELvdybpNV5PuzbrkWAAup4sViyrJzPCMO7cuRBnAdM76H28NDQ08+uijKIpCQVExGzZfd1Z79mSBqpbGBnZv/xu6rrN27Vruu+++aR34nGlpwLlgAei6zoEDB2hNALbTcc6dTPTPHwjR3TfAlldeYsvLL/HQQw/xxS9+kXfeeYe+vr4T6v5HB/91dXX8+7//O/39/QiCQEFhIV2dnSxevJhvf/vbKaE6q9XK7xOZ/8ysDZSUfRKrNQuLxUGaqxhZdozaJ4+dqaqJFOQPcu/dQ1x++dXj7m/vZQAgaZFIhNbWVmw2G7NmzcI0SbXInbEZmwEA3sMMgLPNrp9pL/rzDQDEFIXOrjY0TeHe+z7LvMr5KKpKYV42uVlZExMCTLRmajnaiapr/PJ//of6ukMUFJSR5nQhS9IlIf53oeexP+BjYKAXXVfJycnjzrs/QWFREaahM6ukCLfTeUrGhiiKRCJR/vVf/pWm5iby84oYHhnE7U5j8+aruOaaa1m1alUqkA+Hw6iqOqYDwOj5nBT+O/55GV1fmaxhHP36VDrn5nHObbKt5AnBOyZHjnaiKBrbXt/Cay+/xJzZ87FYrBM6n5Nl+cdtrWSaaLqOosYz++FwiGgsgqLEUp+TZIncnFwKCgooLi5mzpw5FBYWkp+fj8fjSY2ZYRipNVbXdTRN46knfkVdXQOqpk4IAKhrPsLR7t44E8c0CU+j9n+nCq6ONDdyoOpdDF2nbPZclq9dj6Ebl9RzbbfbWTS3gqL83JOCTuer1/vFkvU/fnweeeQRDh2qwWKxsu6qqykqnXVeNCMkWaZmbxW1+/agGwY33XQTt91227QfszMBlqYaAAiFQlRVVTEwMHDWKv/nM/hPjl9nTx/1DQ08+qMHueXmm/n9739PXV0d9Q0NJ/hvyafJarXS2dnJv/3bv9HR0YEkydz6wQ9xpOUw+/ZU83/+z/9hw4YNRKNRLBYLDQ0NfPvb30KyzKWs4gFstmysFheetDIEUTopcH0MABhMAADmDAAwYzM2Y1MLACQ34EsRADhbEwURE3N6AwCJ8enq7SAY8HHzbR/kiqs2EYvFyMxIp6yoYML31zRNWo52oqgaf/7Di7zz1pvk5hXhcacjizMMgKkwTdfwB/ypcoDCohI+du8nycj0YpUkKkqL420kTzHnbDYbu3dX8YMf/ABZlli9ejXve9/7mD17NqZpoihKKrAf7SCcqbOQrGNMAgBnC6ydzkkTTgJQhSJRWo62I4kyf/jdC1Tv3s3sikokQZpQR4fxAIC4A3Ysy6+qMSLRCKFwkGh0bMAPkJeXR3l5OQsXLmTu3LkUFBSQkZExppezrusnfeYMQ0cQRLa88jovv/wamq7ypS998ZQAgKbpVNfU4QsEE6JV4YtirguCgKFr7PzbVgZ6e7FYrazZuImc/MJLShDQbrdTmJfD4nmzpyxYO9Pg/2LVaqmurubxxx/HMAyKS8tYt+nauKTnOd7vJUli51vbaDvcjGma3HvvvWzYsOGiGbfJMAKmEgDo7u5m7969RCKRaRv8nwwAEEWBoWEfnT19PPHzxxjs72XXrt1ker289fbbY+r+R+9FsiwTDAb51re+RW1tLXa7gw/f+VEWLFrMf33n/5HmcvLQQw9hsVhSQPajjz7Kli1vsXDpv5LhXYEkyqR7KhDFU3ehmgEAZmzGZmwGAOCYCOD5BgAkUUI3Js+OOJ8AQHKT6x/oZWiojzXrN/Ch2z9CTFVxO53MLi2eVLu71o5uItEY7+7czu9/8zxZWbl4M7LjrW5mbEpMUVX8QR9Dg70YhsGSpSu58+6PYxgG2ZkZFOfnnfKZTG78b7zxBm63m5UrVyLLMqqqXrRjYp4k8E9dsygyMDhEZ98AGAa/fOJxuju7KSutOCmj4VQAgCAke4CbxJQY4XCQYChAJBIaM/Y5OTmUlZVRWVlJZWUlxcXFZGVlpQRFNU1LHXeiDpkgCPh8fp555lmqd+/ha//4Vf7pn79+0hrXgaER9tc3pUQULxYAIOk0dx1tZff2t9B1nbzCItZesQnhPFG8zwsA4HCQ7k5j5aJKLCcJhs41CHAxB/8Q1xz50Y9+xOHDh7FarWzYfC35RSXnFChKsnPeev0V+rq7kCSJr3zlK8ybN+/iXENPAQZM1fwwTZP6+noaGhpSQe7FFPzH25TqdPT2s3PHdp755VP813/9F1/96ld57bXXCIZCx8rixoAG8fXq+9//Pn/7299IS0vjjo/dzZJlyznc1MijP/wBN910E1/60peIRqNIkkRvby/f/Oa/ohqLWbDoq5imQYanAovFPaYTzwwAMGMzNmMzAMApNp1ILHre6gKTi6soiBcFAAACg8MD9Pd3sWDhIj7+yU9hGOC025hdVjzhTUIQBDp7+hgJBGlsaODJ//4p6emZ5GTnv+cBgKnMepumSUxV8PtHGBrqA+CDd9zFuvXrUDWVsqKChHbDqTsDJGv2k0HoZK/nZOc2nZ771NgTb1MZCocJB0M8/thP0BSdgvziMetXnK0gjAsnJAPoeLmLQigcIhD0EQoGMBLZmGQt4dKlS1m8eDHFxcVkZ2enlMk1TUuJ/E3EITvWISDukppmnFmkaipf/8bX6Wjv5Dvf/ne+/o2vnVQvoam1ndaOrtT/X0wAQPJ6qne8TUfbESRJYtnqtcyaMw9NvTRYAA67HYfDzopF83E57GcUoJ1N4H+pBAI7duzgqaeeQgCKZ1Ww7srN8SDOPHcteyPhMG+++hd8IyN4vV6+/vWvk5WVNeM5ngSkqa6upru7e0It/s60hPJcBf8Q1zoa8Qc4crSDRx96kLycbHbufJfGxkZaWlrG1P0Lo67DarXy5JNP8txzz+FJT+ejd3+COXPmYZpQc3A/v3zicb7+9a9z9dVXE4vFsFqt7Ni+g//4z+8xb+G/4M1aic2ShjutjIm0oJ4BAGZsxmZsBgBIWDQWRZiCFlXnw+w2+3lVzRcEgRH/MN3d7cyqqOCT930OSZZx2KxUlJUgCcKEOACiKNA3OETv4DDdnV38948fRpKsFOQXnzSzNWNnZnFWS4zh4X4CAR8ZGZl89gtfIMPrxWa1UlFShCSJU+b7jnYWDMMYpSosjAk8RVE4ltUZJdB3IcdJEEWi0RhH2jtAEOnt7uJ/Hvsp7rQMMr3Hd08wxwBjo6/fMEwUJUog6MPnGyGmRAGwWCzMmzuPVatXsXTpUkpKSnA6nSk6/3jaCaMdXEEQ4t+U0A4wSdT66zqaphNTFGKqiqbq6KZJepobb7qb5uZG/vynl7nxhuv55//9jZNe/766JgaGhs9p+79zaZIkMTI0xM43XycaDeP2ZLD+qmtwuFwXxXo+AaSK9PR0Vi6ej9vlnBCwNRVsgLS0tEsqAIhGo/zgBz9IqHpbWb/pOgqKitHOEQtAkiQG+nt5a8vLRKNR5s6dyz/8wz9Ma0r7hbKBgQGqq6sJBoMTHp/xur5M5NmYDJtqMsE/gGmYdPUNsG3bVn773DM8++wz3HzzLWx59dUkLey4nSNe4vP666/zX//1XzhdLj5+7yeZO29+PNC3WHn7rTf504u/5Tvf+Q4rVqxIAQDPPvs0Tz/zCitW/Rd2ew5udyk2a/qEBGtnAIAZm7EZmwEAEqZoaqqX+LQecEHAbrWdV2qcIIgEQwHaO1ooLinl05/7OyxWKw67jYrS4kkAACIjPj/tPX34RkZ47MePEA6FKS4qw2qxzjxNU2yqphGLRenr70JRYqxctZaPfPQuFE2lKC+HnKzMs5rvAnHqPICqqoSjMSLRGOFIFC3xPCXiF+Kq9yKCKGCzWklzOnHYbdhtFsSE/sPpW+WdIwBAEOjpH6BvcBib1UrNgQM8/8yvKC6cNU4HAPM4B1REEEyisSgDA334Az6MBKunpKSEdevWsXr1asrLy1N9m5M1/Cdm88f+W0sE+aqqEYspqLqGpmqomo6mamiGjmGCKQip0zJNE487DYtpsGP7u+zcsZPPfe4+vvHP/zju9YciUfbU1BGNKRcd/X9MsCXL1B/cR8PB/ZjA7Mr5LF655tLoCGCapLndrFg4D2+6ZxIfOzNGwMVO9z+VvfXWW/z617+OP5+zyll35dWp9elczMm2w03sevtNNE3jiiuu4J577pnZmI6zlpYWDh48iK7rk2I2Hr9enm7vMAwDm83G7Nmz6e3tZWho6IwC3FNl/33BIC2tHTz60A/Izcpid1UVBw4coLOjAzEBbIz+RovFQldXF9/4xjcIBAJ8/N5PsWjxEhRVwSrLmAj86Q+/Z/tbb/KjH/2IiooKVFXFarXy05/+mJdfPcTK1f+J1ZpOhqcCUbQywwCYsRmbsRkAYBKmGwaark37cxVFEYfNft5BhzgAcCQOAHz2fiw2G06HndmlxZM6TjQW48jRTiLRKD//6U/o7uqkpKQch915zqiY72WLqQrBoJ/+/h5EUeRj93yKRUsWIwJzZpWkqOeTmw9xUMgwDILhML5AiFAohKrrIAiIJDIdYxxrIeX5pDoBEFc9djntuBxOXE57qvb9vAEBgkA0GuVwWwearmO32dj6+mtsffUVKmbNO258RlPoBXRdIxj0Ewz5GfGNpJ7P+fPnc80117BmzRq8Xu+YoD/pKCIcEwbUdB1FUVFUlWgsns3XNQ09waQwE1l/TDBMEyNB9dcUjWAgQDDoR1UVpMQ98Q0P01BXS8AfwDDgy1/50klFADt7+6htOnLR0v9Tt1EUMTWNd99+g97uLqw2G6svv5K8gqJzluE9n+ZwOFg4p/yknQAmAwqc7N/vBYc/Eonw4IMP0tbWhtVqZf2maykoPjdaALIss79qF/U1+zAMk7vuuotNmzbNbErJIFRV2bt3Lx0dHQl22ORBp4mCAIZhIEkSK1eupLCwkIaGBurq6s66lPJ4PlhX3wDbt2/nV0/+Dz//+c+5++67efnll8fVjkk+b//5n//JO++8w1VXX8P7b7mNWCxGtjcD3TAIhiM8/8yvaayr5aGHHiI3Nxdd17HZbPz88cf581/2s3L1v2OzZpDuqUAQpBkAYMZmbMZmAIBJB0tK7IJTkk/rVEgyNuv5zZYLgoAv4KOrq42yWeV86jP3I1pkMj1uSgvzJzxmyZaQh9s6iKkqTz3+3zQ11FNcVE6aK23maToHZhgGUVVhcKCXUMhPUXEp9/3d32GxWCnOzyXLmzGp51MURXRdxx8MMTA0TCQWS2TwTULBEEODgwwNDTIyPEwoFETXdURRQpYlbDYbdruDNI+bjIwMMjIycbnTEBEwTAOrLOPN8JDh8WBNKB2fayBAFAUCoTAdXb1EVRWLLPP73zxPfU0tJSXlxwVIx9pZBoJ+RnxDhMPx7GpBQQErVqxg/fr1VM6fj9PhQFXVeKY/+eGEg6qoGtGYQjQWJaqoaJoeBwhME9MwMYkzkaKRCOFwmFAoTMAfZGhoEN+ID7/fRzQaJhaOEgz6CYcD6LqGJMpIkhVNU8kvXE9OdiEDfdv58le+zNe/8bUT54ZpcqC+ib6B4YSuwcULAADYbFZ6uzp59603UGIxcvLyWbNxE5JsuegFAe12O2VFBVRWlM0samdpb7/9Nr/61a8A4h0Brro2UV0zlXNEQBBg+7bX6Dzais1u5ytf+QoVFRUzNwDw+XxUVVUxPDyMxWI5ZXB/uvtyulIAwzCQZZlFixYxa9YsAHbt2kVXV9eEAIDkEcXjAuJU6VbiHKLRGEe7uvnvn/yYSDhETU0NXV1d1NbWjlvWYLfb+dvf/sZ3vvMd8gsKuPveT+PNysRmtVFeXEBHbx/hSIxf//JJjh4+zI8eeojs7OwUAPDEE0/whz9Ws3LNf2CzemcAgBmbsRmbfgCAKIoXRRZGNwxUVZnW/ejPvwBgPHgZHh6kt6+T+QsX8fF7P4UJlBTkkpUxuQDSNE1a2juJKirP/eoXHNi3l8KCMjxuz8zTdI5M1TTCkRB9fV3ousaH77yLVWvW4rTbmVVcMCHHN+kIjPj99A+NEFUUREEkGo5w9GgrtYdqONp6hMGBgQl1C7BYLGR4vZSUlrFk2XJKy2bhdDrRTQNZFMlI95CZ7sFutWJyboWeBEFA03X8wSBd3X089pNH8Q37KC6ahWkaieyNiK6r+PzDDA4NpNr3zZ8/n+uvv57LLltJZmYWCKCpWlz0z4y32IupKrFYjKiioqhaqn7fMAwi4TC+kRHC4SCDg4P09/UR8PsJhYKpn+FQ+DTrqwNZdiBJdgTRgsXiYf6Cf8Bph6b6/8OX//7vxwUAYopC1cF6QuEIoihclPX/x99HURSpP7CXhtoaME0WLFtJ5aIlFz0LwG63k5edxZLK2ZcsPf982WgWgMViYf1VV1NUOmtK54goikQiYf726ksMDw1SXFzM1772NVwu13t+/Nvb29m/fz+KopzSlzkTAOD49+u6jsvlYvny5eTk5ADQ09NDVVXVuGVY4wX+yeBf1w2CkTCqomJi4na5cNhs8fcKAgNDw9TU1PLD73+XT3/60zz22GO8/vrrBIPBE55ZURRRFIV//ud/pqWlhds+fDtr1q5HN3RmFRfhdjlpOdpBVFF5+hdP0tLczI8e+hF5oxgAv3jqKZ5/4XUuW/t9nK4i0t3lMwDAjM3YjE0vACCZ+b1YgiVNn57OoiAIOGz2874o64bB4FA/Q0N9bNh4Jbfc9kEEAWaXlaQytZOxlqOdxBSV373wPLvf3U5BfgkZngxmCgDOjZmYxBSVkZFBRkYG4iyOz92PzWanoqQIu816ynsoCgKqptHdP8CIP4AoSvh9Pg7VHGRf9f+fvfMOj6s80/7v1Onqvbn3XsHYGAymQygJAZIQEtJIIdlkP8huNiwpm7qBEEIKpJG6KYQ0QhISsOmm2FQX2ZZsq0sjjTR95tTvjzMzlmzJDdtY9rmvy5fk0ZQz7znnfZ/nfp/nvl+kq7MDy3IU7r0eH7Ki5AI7Ia9bV9gtsSwTwzAwdI2slsUwnN7zuvp6Zs2Zy8LFS6moqEQ3dSRRpLSoiPLSksIxHjMiIOd60N/fz+duv509e/ZQVVlLaWk5HtVDLDZEZ3c7uq6hKAoLFixgzZo1LF26lFAohK7rmKaJbji7++lMhnRGw7AsLNN0Wox0nVgsSiTST3dnF53tHfT2dRMdjJDJaKMdFIpSis9Xhd9fi9dXQ1HRdGSlCMvSUdWSQuIvST4EQUGUVFSlCNVbSTTyGDsPQAAMxuK8tLkZ0zTHdf//voG1oes8/9Tj9HV3EgiGOO2scyguKR03a9BYBEB5aQkLZ01HklwC4PDnwJG91xs2bOCnP/0pANW1daw857yjagMsSRLh3h6eevQfZDIZTjvtNN73vved0ufAsixeffVVdu3aVbhXjzSxP5TnmqZJMBhkyZIllJaWOnPe4CAvvvgiqVRqzM+3R1n/kuk0veEI6WwGXdNRVAVVcXSQSotCeL0eOnrC/P3hv/DwX/7CH//4R9asWcNjjz02arw2XPhvxsxZXPX2awkEA5QVF1NfU4Vt2+zq6CKT1fj9b/6Plzdt4s5v3snkSZMwDAOPR+VPf/wL37/3XuYv+V/KyhZTHGpCEGSXAHDhwsWJQwCMlwoAcIS3dOPE9Dt/M8r/wfGV7x/oJR4f4rIrr+L0M1ZRWhSivqbqiNo7duUqAP76pz/x1BPrqKysJRQscoUAj9VNmiO20tk0vb2dWJbJjR/8MJOmTqG+qpKykuIxz6OYU8hv6+ohnc1imiavv/oKzz71JJ0d7ciy4iTJHl+uFUA4hADEeU4+SMtm0yQSUbLZDEVFxSw/4wxOX7GSUChEVtNQZJmKshIqSkuQJOmYthSJokh7Rwc/vf9+nn/+eadlIRgiEumnpqaaFSvO4IwzzmDKlMmoqgdN08hmNRKpNOlslkxWRzcMLNNE0zQiA/309/fRvqeN7q5OwuFeYtHYyPtaDuLxVOaS/Gr8/kZCocl4vVWonjI83koUJeiIKO7jqlBQJygIFdrYtoUgKMSGnjggAbCro4sdu9pPivL/EcmXLDPY388LT60nmUgwYcpUFi5fcdAk4kQnAIqLQiyZMxNZltxJ7Y2uaZrGt771LXbs2IEsyyxfuZqJ02Zg6Edn7ZdlmZ3NW9m04Wks0+Qd73wnq1evPmXHO51O88ILLxAOhw/J4u+NkgCmaVJcXMyiRYsoLi4GIBKJsHHjxjGTf3vU9UAgnc7Q1tlDIpXkX//4O3t2tdI0cRKz5sylaeJEvB4PPo+HTDbL9++5m1QyyauvvkokEmHLli37VTnkj/O2225jy9atXHTpZaxYeSaiAJOaGvDmYrz27l7iyRTr/vUIj/ztYf7781/gtKVL0HUdRVHYtm07n/mv/6Si6gqmzfgQoUAdsuTFdgkAFy5cnCgEwHiqADiRCYDjbf+XR0bL0t/fS1ZLc/1738fMmbOYUF+D1+M5ooC6tb2TbFbnH397mPWPPoLfH6Sqshaf1zfue3VPVFiWRVbXGRrqJxqNsOa887nk0rfQUFOFzzv6eRRFkaymsautE80w0LJZ/vmPv/HCcxswdJ2iohKKisqG7ZzZI4KpQwzxcmJ4FtlshkRiiFQqSXVNDeeefwFz5y3EFmwM3SDg81FTVU5RMJgrzT9GRJuikE6n+ec//8UfHvw9U6ZMYc2aNcydO5eysjIMwyCRTJJIpkhlNHTDyBEBWQbCYcL9Ybq7utizq4Xenk4ymeHziUIgWE8oNJmiopmUlMzFH2jA461AVUsRRRmEvTaJzvc0h42vnRPLFDDNBGAhKSX7CWiKoofY0Hp2bvvcqASAZVm8snUH4Zz938lEADjnUKatZQcvv/AcgiCyZMUqahubjonY2/GAz+fD5/WweM5M/D6vO6EdBWzatIkf/OAHAJRVVHLm2gtQFM8h2agdlISSJDZteJod27YQCAT41Kc+RX19/Sk71m1tbWzYsAFPrmT+sILMUZLQseKEfKxZWlrK4sWLCQYdbaH8zn8ymdwvIbcP8Lm2ZdHe3UsskeChP/2RDU8/VRBvFQSBufMXcMlll1NUUgy2zTf/9+ssXbKYhx56iA0bNtDT07Pf5ymKwtatW/nsZz9LRUUlV11zLdU1tVSUllBbWY5l2znL5EHCkSE2v/Yqv7j/x9z4/g/w1iuvQNf1wjH88Ic/5a8PP8HyM+6mrHQ+Xo9rA+jChQuXADhCAsBAPwGDREmS8Kqeo3vyBOGgCbdt22R1jb6+TioqK7n+xvcxuanxiCzk8tfBzt3tWDY89q9/8cjf/oLH46OpcRKyJLsEwDGEpuvE4kP09/cwY9Zsbr3101SWl456HkVRRNN1drd3ktENLF3n4b/+hQ1PP1XY9ff5gvsFY/k+bEkUEQXRUbsfFmjZto1lW9iW5YjeDSvrz6vrZ7Mp+vt7ME2TxUuXccHFl1JSUuLoDogCVWVlVFeUIgriMRHtzCtGIwj0h8OUlZXh8XhIp9MMxRMkU2lnp1/XSMTjdLS30bJzJ3v27GKgP0wmnSm8l6qWEiqaTCg0nZLSeYSKpuH31+PxlCOIspPPY2FbZi5wO9j3GUay2CbkdvvZJ1A7GAGQymTY+Po2MplsYR4Yz/3/owevIltf2cSObZuprK5h2crV41YQ0OfzIUkS82dOpaK0xJ3MjgJM0+S73/0ur732GrIsM3/JcmbOW/CGqwAEQcAyTZ5+7J90dbYzc+ZMPv7xjx+yv/3JiM7OTjZs2HDEY3CoJIBlWQSDQZYtW0ZRkaMrFIvFePHFF4nFYoec/OfRGx4gFk/wwgvP8+Bvf11olxr++VOnTeeG930ATdP4n9tv49OfvpUvfelL/POf/xy12kBVVX75y1/ywAMPMG/BQi676q14FJXJjfV4cq1uoigQT6Ro7+qlr7+Pb33j6yxYsJDP3f7fhTVTliUikSif+MTNKN7VLFj0XwR8h+YS4hIALly4cAmAfSdG0zgh2xXeDPE/AdAtk2QqTiwa4eLLLufsc86hvqriiN5PFEV6wv30hAfwqB7+/Ic/8PST6yguKqW+tskRTnNxjBIikVQ6SU9vB9lshnnzF/A///PF3C6zvX8Aa1ns7ugilc0SjQzylz//ka2vv4bfH6CkpAI5l0jZ2IiCiCRKyJKEKIpO4MChOWtbtmN1Z5hGYY5w5guDwcF+UqkENbV1XHrFFUybNgPd0DFMi+JQkMaaKlRVPeotAcPt+iRZJpVKMxSNk0hnHBIlGqWjYw/NW7fR2rKD/nB4xOv9/gZKSmdRU3shJaXz8ftrkWRfrnzfwrKMQ0z2R0n+7X2Np3KPC+IoBMAT7Gy+nY9/4hP7EQD9g0O8snU7lu28y8m0+z98vjF0nVc2Pk9vVwfzly6nceKUcVkF4Pf7AZg5ZSINb9AK0MVeNDc38+177sHUdYJFxaw+7yICoRDWG4hXREkiNjTIU4/+g3gsxqWXXspll112So9zV1cXzz777BsmQQ6UkFqWhaqqLF26lIoKJ0ZJJpNs3LiRSCQyIn6yD+FzwgMRIkMxdrXu5Jc/+ynxWGzM5591zlp0XWfLa6/yhz88yOmnn84///nPEYRBYU4yDL72ta/x+uuvc95FF7P89DMoDgZoqK0eQYbnHZN0w+RnP/khu1pauPOb32RCU2MhRvV6ffzzn//ijjv+l5lzPsPUaTegyL6DVgG4BIALFy5cAmC/iXFsEUDLsgoJzvHcRZJEEa/nzSn7HIoNMTjYx4zZc3jHO69n6qQmlCPwjhdFkcGhGG3dPSiyTEdHBz/70Q+JxYaoqqylorxq3NhFjr/kX8AwDTo6d5NOO4neRz/6US677DIymcwo50qgo7uPoXiC3u5uHvjN/9HZ0U5JcTmhopLC9S8KIrIsI0mS423/RhNv20LX8/efQyEkEjEGB8N4vF7Ov+gSVpyxEhsb3TAJeL001dfg83qP+rWTdwYYjMYYjCVJxGO073HcDnZsb2agv3/v/Sn5KC6eRUXlcioqllNUMhOvtwoQc8m+uU9AZo9CtR0o77cOdrD7vYcoqsSGnmRn8+dGtQHcuaeD1raOk7L8f995R8tkeO2lF5yKkuVnICnjrwpAALw+H9MmNjGxodad1I4ifvKTn/DMM88gyxLTZ81j4fLT31C8IskyXe172LD+USRZ5uabb2bKlCmn9Bj39PTw9NNPH5UqiANVA8ybN69g9afrOps2bSqU4ect+w46ZwgCkWiUvv5B+sNhfvaTH9Hb0z3qcTi79SKWZTNv/jx++IMfsnTpEvr6+tiwYcN+x+r1etm1axff+MY3GIpGece730NtXT311ZWUFoewLHvEcXT09jEUS7C7tZX7vvttrr3uHbz7+usLLjSCILBgwQK+9rWv8L3v3cu8hV9i2vQbsUwdsFwCwIULFy4BcOgEgI4xyrEKgkgiESWdTlFSUo6iqEelV/BQ4FE9yMd5918URWLxKD29HRQXl/CeD3yQ05ctwSMrh71TL4oCQ9E4bd09CKJIOpni5/f/hD27WhBFidqaBopDJW4FwDEkALp7OxgaiuDzBli0eDGf+tQnRt09F0WRgcgg3f0R+vv6+PUvf05XZwcVFbX4/YFCeaIiK0iSjAhH3b3BtCx0Qy/snmSzafr7ezFNg5Wrz+b8Cy9CVVU0Xcfv9TKhoQ6vRxkRPL3R4DKZzjAwFKWrq5uXN21i82uv0Na2e8SXLS1dQH3DxVRWrSQYmoIkeQEby9KwrH3nkOH9+8M/UDwAATDK8w8h+R9JAHyej3/i5hEEgGGavLxlO5Gh6ElPAICzI5tOxNm2+TVq6xqoaWx6Qzu8bxYB4PH6mDqxkcmNde6kdhTR0dnJN++8k1QqherxsOrc86msqjniSkBJltm++TVefmEDU6dO5eabb0ZVT22B276+Pp588smj2gYxPDm1LIv6+noWL15cSMxfe+01du3a5ST/HJoAqCgIpNJp2rv7iMfj/N8vfsbO7c0HPAbbtpkzZw6/+tWvmDt3Lslkkk2bNhGJREaU/3u9XrZv3869997L5s2bmTh5Mu/9wIfwejxMaqzHo4504xFFgVgiye6OLmRJ5pc/u5+O9jbu+uZdlJU5rib5771gwQLe//4b+cUvfsXiZXcxadJ1mGZmzNXZJQBcuHBxXAiA/AQ9HqDlEo/RFhrTNBkY6MUwDCoqqvF4vMf8e8mShOco9/4fSvKfSqfo7NoDAlx97Tu48i2X4VGVw/6+oigyGI3R0dMDgoiW0fjdr3/FltdfxecLIIoiVRU1eF0BwKMSEO07hqIgEk/GaO/YhSKrTJ82i4/e/GEmTGhE36fXVRQFUqkMuzu7SaVS/N8vfsaO5m3Dkn9QZBlFlo9LYGCYjmWgUxmgMTDQi6ZlWbh4CW+54ip8fj+arhPw+ZjYUId6BNfnaGM4FE+ws2UXLzy/gY0vvEC4r7eQhgVDkymvWE59w4WUly1Dkv3Yto5p6gegQoYn8vuU8BfGcZ/xPFQyTBDHuO9U4tFn2NF8Ox+/+aPc8un/V/hbMpVm4+vbyGraSdn/PxYJEI8OMhAO09g0EVEef3ojHq+XproaZk2Z6E52RxkPPvgH/v73vyGJIvVNEzn97HOdGqQjuEYkSeKVF55jx9bXeevb3so555x7yo9vOBzmiSeeOGoEwPD1x7ZtPB4PK1asIBQKOaRORwcvvfRS/smHdB4FQcA0DPZ09RCPJ/jDA7/l5U0bD/q6hoYG/vCHP7B48WK6urrYtm3bfnoDPp+PjRs38s1vfpNwOMzM2XNYddZZNE2cTGlRiKa6mjGO0aa1rYuMlqWrs5N77/k273zXu7jm7VeTzWYLcenSpUupqanlqqsu569//RurVv+amrrzMPS4SwC4cOHCJQAOBtu20Yf1Iu+72Ng2WJaRIwF0ysur8XiOXeIqiiJe1XNcJ2FRFMlkM3R1tZHJpjnvwot59/XvojgUPKxzmF88BgajdPb2Iggiuqbzhwd+xysvvYjH46W8vBrbMikKFiOIrrf10U7+89d0e+cuR1m/so53Xf8uzjn3rP2Sf0EA07LZ3dFFOpvlX//4O+v++QhlZZUEg8UIgoAqK8i53ZTjCcM0HHcOXWNgoI9MJsWsOXO46uprCIWKyGgaRYEAExvqkKUjFwaUFZnwQISH//4P1j3yCP39Tm+/x1NGXcMl1NdfSKhoJqpaDAhYljZGFZBNYcIYixAYNXkXjjIBsIEdzf/Nx2/+yAgCIBxx+v/zOJl3//ed26KDEURJJBgqHncEgNfrpby0hEWzpx/UQ93F4WEoGuWOO+4g3NeHJEksW7maiVOmYxymI1B+Hn7uyfXomRQ333wz5eXlp/z4DgwMsH79+mPSAmCaJk1NTSxatKgwnz377LMkk0kEURxV44ZRyB1REOjuCxOJxnn0kX/w6CN/P+ixBINBfv/737N27Vp27NzJli1bINcWkIfH4+G5557ja1/7Gul0mtVnn8PZ567F6/MiAA211Tlnm9GdeIaiMfZ09aCqKo/87WE2vfgCX/7KV2hqqEfX9YLw4Zo1a+jq6uLSSy9mx44EK1Z+l9KyRViW5hIALly4cAmAA8G0TIxcWdVoi3pe4VzTnN1IXc9SWVmL1+s/Jj3IXtVzXAM9URDJaBm6ezpIp5MsP+MMPvTBD1FVXoppHl7yD9A3EKEnPIAoiRi6wR9+9zte3vQCiqJSXlGDz+tDkWQ3mD1Gyb8oikRjg3R2teFRvFz1trdx7bVXF0T+9g1+egci9EeGaG3Zwc9/8mMkSaWsrMrZ9VdkBN68YMC2bQzTJKtlGRwMk0zGmTZjJm+75jqKi4vJaFlKi4poqqtFFA9fo0NVVSKRCN/9/r0889STDiEg+2ia8HYmTn4XRUVTHAeDI076R8v1hQP80T609zoQARB7gR3bPsvHb/7wCAJgx+52Wts7C5aipwoBkD8/qVQCvz+4n3PCiQ6fz0fQ72fRnBl4Pao78R1lPPXU0/ziFz9HEKCktIwz116E1+c7rLVdFEUnAX38UZYuWsiVV17pDiwQiUR4/PHHj8lab9s2CxcupKmpCXCEHbdt24YoSWMm/8Nfm39c0zTaunrZsmUzP//JD9G1g5M/X/rSl/iP//gPtmzdyvbm5oJGVB6yLLN582a+8IUvYCNw1dXXMGfuXBRFpjgUpDgU3K/0fzTs6eomFk+iaxr3/+gHlBYX89nbPovP48EwTUzTZOrUqcydO5cNGzZw9dVXkM5MZNWZP0NWgo5jjEsAuHDh4s0gAE50HQCBXPm/bWGP0kssiRKiKKDlPFhPO+N09uxp5eWNL1Jc7FiiCQJHZVdJFEU8inrcEmMBRy4mlU4RDneTyaRYtnw5H/7IR6iqqDisXsh8MtrZ00f/0BCyLGMaJn984AE2vfgcsqxQXl6N1+vHoyhu8n+Mkn9yivPtHbtIpZOsWnkWN3/8o/j8Xixzf4Irq2nsbu8ikUzxf7+4n9adLdTUNKCqHjzKiZNsWJZFRssQjUaIRgeZOm06b7/unYSKishqOhVlxTTWVnM4t6HH46G1tZVv33MP27ZuBaCm5nRmzLolt4NijrqLUkj8j+SeFw6mnmAfilT1mCSCKKokYpvYvu0/RxAAumHw8pbtDEZjp0T//6jXkGE4we1x1lU5GgSAz+Nh0ZyZBPxed/I7yjAMg+985zts3rwZSRKZOW8h8xcvxzQPff0TJYlwTxfNr7/Ke959fSEpPdUxODjI+vXrj/p6n9+YOe2006iqctwxXnjhBbq6uvb7rLGSWSuna5NIpnl9azO/+OlPaN+ze8xKgTzmzp3Ls88+S0dnJ6+//jqyJI34jPza/JnPfIY9bW188CM3U1tXh8+jUltVgZoTIz1YzCgIApmsRmtbOzYCQ5EI933vHubMmcO/feIT+Hw+9FxcOn/+fCZMmMA993yH/3fL11h55g8pK5uPZekuAeDChYs3hwDI25+cyMhks1i2iTDKrpokipiWhWEYLFm+jJVnrsQ0TR5f9xhPrH8MSZSH2aMdeTWAJEl4FGXUYzgmwbBtY5oGyXSSwUiYbDbDijPO4CMf/ghlZSXo+uEl/6Zp0d7dw2A0jqrKWKbFg7/7LZtefN5J/iuq8ag+VEU57sKGp07ynxNxjA3R0bWH2po6bv/c7TQ2NuxX+g/O7n/fQIS+yBAvPLeBPz/4ACUlFQSDRXhUz1FR+D+aZJVp22SzWWLxCIODA8yYOYu3v+Od+PwBNF2nobqSqoryQ9q5U1WV7du3841vfIOOjg4kSWXGzA8zddpNCKIH00wfvaR/PwJg2Psd8BszekvAmASAjSgoJJObad5yKx+/+UMFAiCeSPLSlmayml4I7k41AiAX1Y/LCgCPR2XxnJkE/T53AjwGaGlt5e6770bLZlFVDyvPPZ/K6ppDto4UJYkdW7fgEeGGd7/LTaCGEQCPP/74MRuPJUuWUFdXh2maPPfcc/TlWjkOlvznZ19BEEimMjzyr0f51c9+MmKd3Kv0P3IOvuqqq7jjjjvY9NJLTnXoPp+RX5/vv/9+/va3v3H1te9g4aIlTGqqQ5Hlw64sGYgM0t7Th6qqtOzYzq9/+XOWL1vOe9/7HoqKijAMA1mWWbBgAb/93V/4r89+i5WrvktJyUy3AsCFCxdvHgFwolcA2LZNOuuopo6VfOu6zrwF8zlzzerC4iKJEptff42///UhBvr7KS2tJBAIFt7zcKDICoqiHPNCawFHad0wTQzTIJ1OMjjUj6HrnH/++dx4442EgkH0wyBsRFHAMAz2dPYQjSfxqAqGYfDH3/+ejS9sQFE8lJdXoaregpCci2OT/OfR1rGLdDrFLbfcwpo1ZxdEg/a/Fmz2dHXT29fHz378QyL9ESora1EVBUVWTtj8TTc0BiJ9RKODzF+4mLe+/RokWUYUYEpTIz7fgUU6FUWhra2NL37xi3R1dVFUPI2Fi75EZdVZaFpkdOu+o9U3vt8ccwQkwKgEgENOCIJCJr2T5i238LGPvZdbPn0LAH0Dg7y6bUfh2adk8j9O4fP5kGWZJXNnUhQMuANyjPDAAw/wj3/8A1mSqG1oZMXZaxFH6SUfbU62TJNtm19jwfz5rD7jNHcwc4hGo6xfv76wY380YZomkyZNYsGCBSQSCZ5++mmy2Wzhcw72eXYufklnNB5/8il+/IN7yQ6zx80f877nf9myZdx+++2FOGmsT5k+Ywa333Ybv3vgAVasOpOrrnorM6dPxbasw24dbe/pJTIUw6uqbNu2hd/93y+57trruPLKK9Fyoq6pVIpPf/o/sMXzmL/g31GVwH6bUi4B4MKFC5cAyC8ilkVWy+SO1bHmGl7Sr+s602fOYM155+bUxu1CbK7KCv39YR775z95eeOLKIpKaVkliuLJvd4+SPIsosrKCMb6WMGyLAzTKFQzJBJRYrFBPF4Pb7/67Vx55ZUosjyqFeKBjj+VydDR1UsyncajqiSTSf7wwO94/dWX8Xh8Ti+5ojhCcm7yf0yTf0EQiMaG6OpuY9WqM/n0p2/N9a9boz43ncnQ0RPm8fXr+Ouf/ujoWnh8eNRDb0MRBOG4i6rlWxd6+jpIJROsXH0Wl1x2OaZlEQz4mVif1wPY/7WSJDI0FOWLX/wi27dvp7JqBctO+w5+fyOaNjSs5N8+ekn/AQmAQyUChh3PaARALtATBIVMppXmzbfwsY/dUCAAdu7poKWt49Ts/x/n8Pv9AMybOZXq8jJ3QI4RYrEY3/zmN+nq6kKWJBafvpIpM2dj6PpBbmmRZDxGX08Pp59+GnOnT3EHcxgB8Pjjj2NZ1jFJKiVJor6+nnQ6TV9f336l+AckAHLVQLZlEQgV84tf/Iyf3X//QT8zEAhw++23M3fePIdwGCPeqq6uZtq0abz//e/nz3/+MyWlpbz16rdzwdq1+H3eQ461RFEkq2m07GkHQeS5Z59m/aP/4tZbbmH+/Pnouo7H4+HRR//JN77xHZacdg/19eciiftrIbgEgAsXLlwCoDBRm2S0bIEAyKv/KoqKrus0TZzI+RdfgM/nHVUQT5YkLMvi9dde5dF//J2+vl6KikoJhUqQJHlMIkASRVTVg3QIOwxHdILIlflbeUs1sG2H7IjHBkmnUzQ0NPDuG25g5RlnFLxlDzn5FwTiyRRtXd1ouonXoxLu6+PBB35L684d+HxBysoqkCQ5V/bvJv/HOinOZDO0dbTi9Xr50hf/h+kzpqNp2phBRSyRoHlHKz/6wfcZikQpL69GkSXUQ+j9fzMS/5GfL5LJpuns2oOmZbnsiqtYtfosMtks5aUlOT2A/YWgRFHke9/7Hg8//DCBQBNnnvVbAsHJGEZ8r3/ysfxeB2zxOYTPLZSwCyNfVxC1kslm2ti25f/xsY++i1s+fSuGafLylu1EhqKnbP//eCcAbNtm2sQmJjbUugNyDLFx40Z+9KMfYds2wVARZ669gGBRMdYBYhhBEIn09yHJCtOnTmHu9MnuQA4jVdavX3/MCIA8wZ2f20dbpw5IALBXTLCktJS1557Lxo0bD7rWzZ07l/+67TYCfv+Y10ZeoK+pqYlvf/vb/PjHP2b37t3MnTuXmz78YZoaGw8p5sprAexu70TTdX7yw3uxbfjMZz5DTVVl4T0+//nb2LJNY8Wq71McmjTqeuISAC5cuHAJgBwMw0AzHC9vSZJJJGLE40OEQqXU1tVz2VWXUxQKHZCtFQRQZJXBwQjPPPUkzz3jlKKVllYQCAQRRWnEgjN8bGRJRpYkR0X20FKAAyb9NvndfqfMP59W6JpGMhUjEY+iqipnnnkm11xzDQ0NDWiadljJnCAI6IbBrrYOUhkNr9fDzu3N/OF3v6W/P0woVEJxcZlDcijqcalwONUhiiL9A2H6wl0sP20Fn/2vzwDW3oqVUZ6fSKX5018e4je//DkVFdWEgqV4FHnc9EiLgkgiFaejcw+qR+Vd77mRqVOno+kaE+prKS0uGhFgeTwqGza8wBe/+AVs22bZ8ntomng1hpHAsnQsM3s8mAs4aLPPQUQCERjLMUAQJDS9j+bXP8mHP3Itt376VuLJFC9tbiabKxV1CYDxRwBYls2kxjqmTWx0B+QYwrZtfvKTn7BhwwYkSWTi1BksO+NMbNsagxcUsEyDRDxGIFREZXkpi+fMdAcyh3g8zvr16zFN801NKkf77HzMY1kWRUVFnH322bz00ktccskl9PX1HfQ9L7r4Ym768IcRxqiyy5MA06ZNY86cOXR2dnLdddfx0ksv8Y5338Dac87B71XHXKP3rtU5rZ6BQbo6O7jvO/dw/kUX894bbkCWRGRZZseOHXz605+ipv4GZs/5JF7P6HanLgHgwoWL40YA5CfYExFZLYtpmcMmWmc3PxLpI5VKMGPmPN75nuuRZAnLPPjXlSQRURDZ07aHJ9evY/Orr2DbNiUl5QQCIaTcLvjwSTcfzkuiiJSzxhOHTcCHkirYto1lW5imhWmZ2JaFLTjmbbqukUzGSSRigM2sWbO4/PLLWb58ObIsH5FAoygIxFMp9nR0IckKL23ayB8f+C2ZdJry8mr8/hCiKKAqCpLoJv/HiwDo7u1kcLCfFStX8+EP30RJUXDMey9PANxx551sfP45qqsbKC0uHZffe3BogO6eDuobGrnhfR/AHwzgVRQmT2gsVNiIokg2q/Pf//1Ftm59mbq6Czltxb2AjWUbmEb6OM6eh9JecVArgFEFAgVBwtAjbNvyKW768Fu59dZbCUeGeHXbdizL4R/c5H88EgAWExvqmD7JVZc/1ujr6+Ouu+4iEokgyzLLV55F05Spo7YCCIJAdGgQj8eL6vEQDPhZNn+2K3SbQyKRYN26dW86ATAaCTA8DjNNk4kTJ7Jw4UIefvhhrr32WpLJ5AHXHYDrrruOd7zznRi6Pmoyna9QqK2t5bTTTuORRx7h2muvZdGSZVxz3TuorSw72CyPZdvsau9E003++Y+H2fD0U/znZ29jwdw5mKaJ1+vlZz+7n1/96rcsXv5t6urOQ5G9o4pSuwSACxcuTnkCwDRNsnp2n0ldyv3NoL+/B03LctGll3PWOeeg69qYlcG2bTvhei7R8Hm8KKpCV9sennxiPS++uBFNy+L3BQkVFaOq3lGtZvJkQJ4AEARxxGRcmJRtGxsby7axLSf5H+5ra9k2WjZDKhUnmYwjihLTpk1l7dq1nHHGGZSWlh72rv++C4RhGDS37Obvf3uYZ596AlGUKC2tRFU9BW0D1+rvOBMAPR0MDg0wa/Y8bvzgB5ncVI88iidy/vmpdIbPff5zbNuyhYa6iRQVFZ+wZN3Brsfung6GohFWrj6LS99yBZph0FhTRUVZKZZloaoqTz75HF/5yhdQlCCrVv+asrJFmGbG2f0f0+7vmBwwHLLkp1W450e+Lr/7L+xHAOjGIM2b/50Pf/hKbrn1VnZ3dLF9V5tb/j+OCQDTsphYX8uMyRPcATkOeOqpp/jlL38Jtk1xaRmrzr0AfzA4otxbEAR0XWcwEqGyqhLbBlVVWDZ/Nn6va9cIkEwmWbduHUbOgvNEWCtGIwHytnyLFi2iqamJ++67j4985CNjJsh5UlmSJG688UauuuoqstnsqOunbduYpsnMmTOZNWsWZ555Jq+88iqf+PdbmD9ntlMFMJarT36zpbMbXdP53j3foqa6hs/813/hVR2hXk3T+I//+Hc6u70sX/FtioumIAoybguACxcu3nQC4ES0AhyLAMgrv+q6RjjcjW1bXHX1NSw97fRRSQDbtpEkEY+q4vd68Pt8+L1eVFVBVVUMw2Dbtm08+eRTPP/88/T29iAIEsFgCL8/iKKMFFzbd0I+BI3w3IIEpqmTSqVIJmPoukYoFGT27NmsXr2aRYsWUVpaiq7rRyXJU1WVZ57dwP988QtIkkRNTSOyrCCJYs7RwF1AjjcBMBAJ09vXRU1tPe/94IeYPKGR6jFs8fL35Oc//wVeeeVlGusnEQoWYdnjkwAwDJ09ba3YgsW73/t+pk6bgaJITGlqQMxdk1/68ld5+qknmDnrE8yd9xkMI4ltW2NY/h3rgx7NDnD0vv4Rs8AwEnC02UAQJAxjkG2b/50P33QFt3z607y8pZm+gUGXABjHBIBlWdRUljNv5jR3Zj0OsCyLH/7wh7z44otIksjk6bNYcvqqXCvAXrI9nUohShIej6fw+MJZ06koK3EHMTfXrFu3ruBXf6KsF6ORAJZl4fF4WLlyJaFQiH//93/nrrvuOuB7VVXX4PF6WLp4MVdeeSUlJSVjkgCyLHPeeefxve99j09+8pOsveAi3vq2t+WqAIQxj7W7r59INEZH2x6+e/ddvP+DH+SqK65A0zRUVWXz5s38x3/cQuPEG5k6/UME/dVjHq9LALhw4eI4EwAChnFi6QDY4DC2w3xSJWmvR6sgiGSzacLhLkRR5Iq3Xs2y005HN3Rs23m9KstUlpUQ9PtRVAVZFB1V2RybnJ9MZVlGEAT6w/288uqrPPvMM2zesoVodAhBkPD5fAUyIN8GMOoxjzJZG4ZBJpMinU5iGAaBgI+mpiYWLlzIwoULmTRpEj6f76gl/sMTyHgyxffv/T5Prl+P3x+ksqIGv8//porDncoEQCwepaNzN6rq4drr38O8eXNpqqvB61FH1Z+wLIv/+Z//YePGjTTUTaCoqGRcVgDkv380NkRn1x6mTJ3Gu9/7fiRFYkJdLWUlxfQPDPDJT36coSGNc9b+leLimZhmGsvSMM03KTgdQQJYgDgGAcD+RMCYwa2MYSZo3vz/uOmmi7nl1k/z9IuvkMpk3P7/cU4AlBYXsXD2dNdK9Tiht7eXu+66i8FIBEVRWbbqLJomTxnRCmBZ1oj12rIspk1sYlJjnTuAublm/fr1Bau6EyaAHXYsw9dGwzCoqqpixYoVaJrG29/+dv7617+O+h6yLPPBj3wM0zK5955v84EPfIC3vvWtZIZZCQ6HaZrMmDEDv9/P6tWriUZjfPjmjzNv7hyKg4H91t7hWkumBf/8x8M8uX4d/3vHHUyZNAnDMPB6vdx//0/49a9/x+LTvkVV5Sp83rIxYzCXAHDhwsVxJgBOvAqAfDhtmgamaWJaFpIkjhBkEQSBTCZNf383ABe/5QpWrjoTy86JqwlQXlJMXVUlYq70/kCQJAlZltF1nfb2DrZu2corr75Cy84WBvr70XQdSZZRVQ+qqiJJThm9E2AMt7cRsUwD3dBQFInS0mIaGhqZMWM6U6dOpaGhgWAwWCg9O1ZJnSiK9PQP8J177uGVTRsJBELUVNejKqpLAhz3gEYkk0myu60F27ZZueoczr/kIspLi8dUxBcEga9+9Ws888zT1FY3UFpaPm4JgNy3orNrN/FEjKuveyeLliyjKOhj6sQJbNy4kf/6r/+ipGQeZ635A6IoY9smppktlP8LgvRmnDhGlPU7EekBnjsGOVD4m4ggSLRs/xLvuWEWn/jUrTz1wkuFHlzbtkmn0+4NM84IANu2Cfr9LJo9A69XdQflOOHJJ5/kV7/6FWBTXDJ6K8CIJM+yqK4oY+Gs6e7gAel0mvXr15PJZE64lsADkQBTpkxh/vz5tLS0sHbtWtra2lAUBT1H/gQCfq659h3MnLsA0zT42pe/yKIFC7j11lvJZkcXk81XAZx11ll85atf5Stf/jIrV5/F1ddeR0N1BYqsjDgOURAYiMbo6O4F2+a7d99FSXERX/7KVxBzx26aJp++9VN09cgsXv5NQsGJeNTiUfv/XQLAhQsXx50AONGdAPILt41dKFUbvoOfyWQYGOjGNE3WrD2fc887H1GSMEzTEfkLBWmocfzuD9XWRcop/xuGwcBAhLY9bezatZtt27bR1tZGMplCEPaSBrIi41E9BIJBykpLqKmppraulkmTJlFZWUkwGESW5WOe9O9HasgSnV09fOtb32Lr5tcJBIqoqqxBVT1uqeoxCFbGIlbyugx72nai6RoNDZN423XXUl1dRWNtDUUh/35qw6qqct99P+CPf/wD5WVVVFXWjhk4jAeIokgqlWR3204amybw3g98iKJQkJlTJ/Pss8/ypS99ifKK5aw+6wFs2wRMLMvca/+XIxEEQXwzTjBjKfvvfc6+FQLWsNeKw8bBQ2f777n2aov3fPAjbHptK6Lo7v6PZwLAsm2Cfh+LZs/A5/W4g3KcYFkWP/7xj3n++eeHtQKsHFHlt2+S5/WoLJ032z1PQCaTYf369aTT6RNSE2g0EiB/bufNm8fkyZN59NFHeec730k4HKa0tJSzzjqLj3/8ZlSvn8effAbDNLjnrjsI+P184447UA8QB+ZdAbxeL+etXUt3by8f/MhHWTh/PpVlpftdU7s7ukhlMnR3dXLPN+/kXddfzzuuu45sNouiKOzcuYP/9/8+ScOE65kw6b2EAvXIkgcbtwLAhQsXbyIBMHwSOdEJgOHHnLfS03QtpwkgomkZ+vt7MAydxUuXc/FlbyEYDKEbTml9KBCgsb4aj6IeVvLt+NcKiJKEgEM29PWFSaczCAKOkr4kIUoSqqLg8XpQFAUl93heZXasgOR4QFEUOjq7uPPOO2netpVgsIiysio8qgfJFQI8utfmAc6xIAi0d+wikYxTVFTGOeedz7LTl+H3+ZjYULufLoPH4+Hvf/s737r7W4SCxdTXN70xH8oTZIy6ejqIRiNc+653s3jJUqZObOS1V1/l9ttvp6R0IWevedCporH0XPLvJNTDyQ+HBHgz2gJGqQgo/D5Gi8A+xIAgKPT3PcklF3Vz2dXX0Rvud8v/xzsBYNmEAn6WzJ2JmhP/cnF8EA6H+da3vkU4HEZRFJaesZqJU6eN6gqQTyBnT5tMfXXlKT922WyW9evXk0qlTlhR4LFIAEEQmDFjBtOnT2f79u289tprzJ07lxkzZgDwwgsv8PRzL5DWNP7vZz9l6+bX+fr//i8zZ8484LWhqipr167l7rvv5pZbbmHBwsW889030FBbTTDgtPuIgkAynWFXeweirPD4o//k7399iP/9xjeYNXMmuq7j9Xr5wx8e5N57f8DCZXdSVraEomADIIFLALhw4eLNIgBOxL7/Q4Es79UBsCwLzdBz5bMihqExMNBHNptm0uQpXHbFVdQ3NqLrGqZpEfB5aayrwef1HvEOfL7k35mA7UKM70zUzv+HL1InClRVpau7mzvvuIMtW7YQDBZTWlqBqijIkuwuKMeBBBBFkXB/D+H+XrxeP9NmzOHyt16Jz+ehoaaa0uKiEdeloihs27aNz3zmM9g2TGiagizJ47p9I9+2s7ttJ1Onz+Bd73kvM6ZMIj40xGc+8x8MDlmcu/bPBENTMYwEppndJ0CzRgRPb0pbwH5EwBiwrVGfJ4oKgwObmDN3AxdffimyrCIrCoIougTAOCYAAn4vy+bPRlVcAuB4Y+PGjdx///0Yhk4wVMyqcy+gqLh41I0Ny7IoLy1m0ZyZhVLtUxWaprFu3boTmgA4EAlgWRbFxcVMmjSJxsZGbNumr6+P3bt3E4lEGIxG6ekf5KWNL/KbX/6cd7/73Vz7jnegjaEDAE6LwaxZs2hsbGTt2rU8//zzvPeDN7F48WLqqiqQJQkB6B2I0NM3gCgK3PvdbyPCiAoDRVH4/OdvY9NLvSw/424C/joC/joOxOK7BIALFy6OAwFwYvb9H2oSPmIR03V0Qy8Ipw0N9ZNIxCgqLuGiSy9j0eIlWLaFrht4VYXGutoCkztekqZ8YpkrQj6iJFBVVfr6+rjzm9/k1VdeIRgsoqSkAlmSnTYG1xv5qAUqY1n7JRJx2jpakWWVqqo6Ln7LpUyeOhmPqjKpsR5JFAqkkiiKJJNJPvvZz9LS0sKkCdPwen0ngX6DQG+4m2QyyvU3foBzzz6LoqCfO+64g3Xr1jFp0jtYtOSrmGbWqQAQhP3K7kcSAW9SW8AIMmDvdzv402X6+jaxYOFrXPOuy8hmDEeI1CUAxi0B4OwcKiyZO4ug3+cOypuA3/zmNzz66KOIokjTxMksX302giBij7HOz585laryslN6zHRdZ926dSSTyXFDAOy7vuYrLFVVRRCEQo+/JMtYpsnuzm7C/WHuvuMbNDU28rWvf92J/cZYR/Pvdd555/Hcc89xzjnnUF1bxwdu+gg11ZXUVJQD0NreSSqdZiAc5lt3foO3vOUtfPADHyCbzToizPE4n/zkR7GE05k155ME/VV4veUHbONzCQAXLlwccwJgPIuJSaN4p5umiWYYWJbD+CcSUQYH+xFFkRWrzmTNuWsJhYrIahqyLFJXVUVZSdGIHfsTkeiwbEf3IJlKE0sk8Xk9lJUUo8jSfj3jhwJFUYhEInz729/m+eefx+8PUlpaiSRJjkVgzirQlQg8NkGMaRrsbmtB0zTKyqqYt2AhF1xyAaZp0VhbQ1nJ/lUA3/nOd3j44Yepq22ipLh0nAsBOuOQSqfY07aTM1adyc0330xZSTHr16/nK1/5CoIgsmDRF5kw4e2YtpbL80dX3T8h2gIOSAoIo/xJpL+/mUWLm7nuhvPQso5WST75dwU6xycBIEkSi2bPoLQ45A7Km4BEIsF3vvMdWltbkSWJ+UtPY/qc+ZiGPmr8U1pczOI5M5CkU7cNzjAMHnvssROeADgYCTD8/8OfJ4oi4YEB+iJRHv7zn3j6ycf5+te/zqzZsx3ngzE+yzRNpkyZwrx58/jyl7/MbbfdxoWXXMq5511AeUkRRcEgLXvasYEXn3+eB37zKz7/hS+wbOnSYfZ/W7n11n9n+uz/oKZ2LaFAPYpyYBcmlwBw4cLFMScAxoPw3+EQAHsnUB09V9mQyaQZHAyj6xoNjU1ccMklTJs2A9MysSybyrJSairLD8kh4HgucvlKhngyycBglHQmi42NgIhhGfhUD3XVlQQDfmzLOuxkXVEUYrEYP/jBD3jsscdQPV7Ky6pRcqWriqwgy9J+PekujgKpI4h09XQwFB2gqKiUiopqLr7iUmpra/GoKlOaGhBzOhfgVG08+cQT/O83vkEoWEJNdd24TxBFQSSRitPW3sr0mbP479tuo6S4iGQyyec+9zm2bt2KLPuYv+BzNE64CssyhiX644wIGEEIOPU7giAyENnD/AU7eMe7V6BpzvfZd/ffJQLGGQEgiiycM4Oy4iJ3UN4ktLa28t3vfpdEIoHP52fFmnOpqq4dtdrRtm1mTZ1EQ03VKTtepmny2GOPEY/HkcZBBeDBSIDRYilN09nT2U17Rxt333EHq89azS233IKm5dxlRnmtbduIosiqVasIBoNcfNFFPPrYY7zvQx9m1py5KJJIIplEkmR+8dOf0N3ZwbfuvpuiUAjLsvB4PDzyyGN885t3sGjZtygpnUtRsAlBkHFbAFy4cPGmEgDjuQXgQASAgOMYoOXE/0zTJBodIJGIoaoqK888i5WrzyIYCqFpGqGAn7rqSnxe7xEl00c18cfxlY3F4wzGEyTTaQRAlhV6e7rZ8vrrLFy8hKKSYgTbpraqkrKS4iNKFmRZRtM0fvWrX/Hggw8iiBIV5dV4PN7C4qfIMrLkelof1eRXFIknYrR37MLj8VFaWsnsuXM494K1mKZFU30NZcXFhV1+SZLo7+/n85//PN09vUxomHzA63+8jMHgYD/dvZ2cu3YtH77pppytpsTWrVv52te+RjgcRpQU5sy5mUlTPui0vVjmiKT/WLUF2Ji5d5CO9k0OOOc1Fo8wY+YO3vWeBQUCYCz7P5cIGB8EgCJLLJo7k+Jg0B2UNxHr16/nt7/9LbZtU1FVzcpzzkNVPftVTlm2TcDnZem8WXjUU9O60bIsHnvsMWKx2LggAA6HBMg/TxRFunrDRIai/P63v+alF1/gm9/6FpMnTy7YBgpjkCPV1dWsWLGCXbt2sWbNGvoHBvjgTR+lrqERw9RJp9J8646vs2D+fP7zP/+z8H6qqvKjH93Pg39Yx/Izvk0gUEdRsOmg380lAFy4cHHMCYBDrQAYTe/6zYZ8iOXvhmmgG46VWCqVYGhwANMyaGhs5NzzL2TGrNm5nXWbmvIKykqLnbL741hi7UzmoOsmQ7E4kaEoac3pIZMliXg8zksvbuTJ9euIx6NMmjyVd77nvQT8fgzTpKq8lMryMqds/zAThbyg4d///nd++tOfEo/HKS+vwu/fW8IqiWJOH0Au6A+4eGPn2zRN2tpbyWoZKivrKCoq5rIrL6e8qoKQ38/E+toR4yzLMj//+c958PcPUlfbiN8fHPcEQFd3O0PRCDfddBOXX355oW9TVVVeffVV7rrrLnp6egCYOv29zJz1KSQpgGmm90vXc1Fg4f95Qc43SgQcfewtUY3Fh5gyfRc33DhzvwqA0YI7lwQYBwSAIrN03mxXA+DNvstsm5/+9Kc888wzyJLEtNlzWbD0tFGdeEzTYtrERiY31Z+yBMC6deuIRqNHhQBQFOWwWwls23Y2o2z7kCsxRxMFHOvvgiCQzmRp6+qhvb2Nb9/5Dc477zw+8W//hqbrhbVDGGN8pk+fzqxZs3j66ae55JJLEESRd9/4PqZMncG2LZu59zt384lPfIILL7yQbDbrEE8VFdx55zd46OHXWX7GXfi9FQcVAHQJABcuXBwXAgAgk83mkl17tBkWAaEw2Qj5SVXIBdX7TrYCx6xkfF8SYrgTwMFDbhtdNzAsE0PXiMUGSSRiiJLE4qXLWH3WGqqqazBMHb/XS1V5GaFgoFCGf2ySQKdM2bZtMlmNaDxBNBYjo+s5Wz6BwcEI27c289yGZ+jp6gCgpKSCdDpBfWMjb3v7dZRVlKNpGkXBAHXVlXg9nsM+ZlEUURSFl156iR/96Ee0tLQQCpVQXFyGOIxUcAgJRyhweIn60SdDjmzcD2bBd6IlwOH+XsL9PRQXlxEIFDNvwTxWn3s2kiAwZUIjqqIUvo8sy+zatYuvffWrZDI6lRU14zYhdM6vya49O9F1jS984QssWbKkUI4Jjv3htm3b+M53vsPOnTsBqKxayazZn6KsfDGWpWNZ+ugJdl4v4IRrC7BHHEsylWTC5J28533TRm0BOJxSVxcnCAEgyyyeO5OiYMAdlDcZ0WiU73znO+zZswePqrLkjDOZMGV/a0DbtvF5PCydPxuv59SrArBtm3Xr1jE0NPSGCQBRFGlpaTlsIVOPx0NtvdP65vd53/BcN1pyLAgC3X1hItE4f/z9Azz/7NN87etfZ87cuWjZ7H6x5r7z7owZM5gxYwaPP/44b3vb24jFYlx3/Q2Ew308+o+/c8ed32TK5EnouuNKtXTpUv7jPz7Fn/6yk2VnfJOArwa/r8pxhjkANF2ktibMe67v5fTTzxo1FnIJABcuXLwhAiCraeiGdshhq3DA1Dz/W54IGOU5Avs/9yBZf/55wjDSIU82SKI0YjI8UKVCvi1ANw1M0ySdThIdiqDpWYqKijnjzNUsXrqMoqIiTMsk5A9QWV5KwO8Fjh4RkD9W0zRJpNIMxeLEk0lMy0IWJXRDp7urmx3N29ny+ut0de4BwOv1U1xchtfrwzRNeno6CQT9XPKWy5m/cBG6ruNRFOpqKikKBo/oeD0eDz09Pfz85z9n/fr1KIpKWVklqrrXMtEGREHYSwQcJdGgg7H5J93NKQhoWpbdbS1IkkRFRS0+n49LrriMuro6GuuqCfn9I3ZDZFnml7/8JX/+81+orW5AUdRxOVbDWyDq6ur42te+RvGwlof8NaCqKv39/fzyl7/k0UcfxTRNJMnHhEnXMHnKDQSDk3JEgHaQ2cseoQIuHIp933EgADKZLPVNO3jvB6ag6/ZBg2aXADjxCQBJFFkwezrlubYsF28uWlpa+P73v08sHqO4qIQz1pxHcWkZpjmy9dG0LKZPbGJSY90pOU7r1q1jcHDwDRMAHo+Hf/u3f6O5ufmwXtfQ2MRH/+1TKJLE9MkTjkq8tW+CLAoCGU1jd0c3fX29fPvOO5g+fRqf+/znkSRpxGeORQI0NDSwaNEiXnnlFd75zneybds2vD4fkyZNcsRrc8+1bZtzzjmH//mfL/Ld7/2G2vpzkCQvsqhi2yZ2rn3NMbexMUwwDRPDsDBNiYb6INdfP4EbbngfwVHiOZcAcOHCxRsiANKZNORUyTmUhHyUQPZ4h84jqw7EEZUJoigiCCJSrqx9rHJ10zQxTBPN0EkmYkSjEWzborq2lpWrzmLO3Ln4A0EEAUIBH8VFIYJ+f2E33D7MErX8T8uyyGY1Yskk0VictKYhICBJEslkkt2tu9mxbSutra0MRvoxDA1JkigqKiUQKCp8fp5ACIe7sUyD8y+5lJWrznQIEwFqK9+YLoBhGPzrX//it7/9DeFwP6WllQSDRYBQ2FG1c+dCylUFSJJ0RAvSqZb47/vde3o7GRwaoLKyFkXxMH3GDM67+DwmNTQQ9PtGEAB5LYDPfe5z9IcHqK9rQpKUA1oKnaBfnM7O3cQTMS6//HJuuummQvn/vtdCPiB98cUXefDBB3n99dcBUJRSJk66msYJbyVUNA0BG9PUDmEsLGx72HV3XK85ay/1KYhomkF5VQs3frARQYBkMnWg7N9tvTnhCQCQRIH5s6ZRUVriDsoJgieffJJf//rXWKZJbUMTp61eg5LzaS/cmZZNKOhj6bzZKPKpp3mzfv16IpHIUSEAbr31Vl577bXDep3X5+PGD36YWTNnMqG+5qhuuOz7/86ePqKJJE+uX8df//xHbrrpJq648sr99FfG0gQIBAJMmTKFgYEBPvrRj7Jx40bWrFnDpz/9aTKZTEE/ac2aNfz2t7/jhz+8j1gsgqZlMQwDy3QIAGcdcra1FFXB5/NTVlbGpIkTOWPlak477QwmT55caKnI/3MJABcuXLxhAkA3DHRDL9jmGYZeiIfzc4swzMqqsAu/z89DOJRD+Lt9WESDJO3fAjCcJNi3XH1v0upUD9i2jWlZGKZBNpshFhsikYgCUFffwNLlpzFrzhxKSkoRBBGPRyEU8BHyB/B41APvfOf62CzLQjdMMtksWU0nkUw6LRe2jSTJ2LbFQH+E1p0tbHl9M91dHaSScQxTRxRF/P4QoVAJyrBS8Pz3EHNl8pFIH6lUgmWnr+D8Cy4iGCrCMA2qK8qoKi87orL4fEtAa2srv/3tb3j66WeQRJnS0gpUjzdHBNiM3NF0iAxZkpBE6ZC0AvLX1pEm/sM/YzyU/w8/RsuyMEyTdCZNb28HPp+PoqJy6hsbufqatzFtUtOoQn+OsvAjfPOb3yQQCFFX24giKVjjhAQQRZFobIjOrj0EAgG++tWvMmnSpP3ESEf73qlUildeeYV//etfbNz4PJpmIooB6hsupLHpMkrLFqMoRdi2iWXp2PbhOJzYI+7fY01jCoKAYdj4gnt4/4cq8HgFkonUCUC1ujhyAsBGliUWzp5BaZFrA3iiwLZtfve73/Hoo48iSSLT58xn/pLljuDv8HXVtpk7fQq1VRWn3Bg9/vjjDAwMHBUC4JOf/CTbtm077Ne++30fYPny5TTVVh9TAiCTzbKrvYtsNssPv/9dBvrDfP1//5eJEyeOaEMbK3LNH5s/EOCxx5/g61/+Eh/72Me45JJLCkS2bdvMmzefSZMmYlkW6XQaXXdibcsauYkkCAKyLOP1evF6vSOuR13XD7qeqqeoeKULFy7eAAHgBJg2mqYxEAmTTMZzO8zsl/QP///ex/YlA8aaeIX9Hs+X4UqShDRsB1kQRERRyLGd0pjT8L7J0WjJXz5RliQJcZ9qgfw/GxvLsjFMg0wmTSIRJR53iIDSsnLmzp/PrDlzqK2rx+vxIUsiiqri86h4FAVREgoJsW3bmKaFbprouo5umBiGgZkLNAQELNsiHovS2dFJ89ZttO7cydBQBCPXiiHLCj5fgEAghKp6crlIrg9ckpBlGdM0CzaHIBCLRYhGI0yYOImLL72cCZMmoZs6xcEg9dWVKLJ8RBaHiqKg6zpPPfUUDz74IK2trSiKSlFRKT6fH1F07Gz2Hfu8eKEkyQXy5Wgm/naOXHHG1cK0nHGWJBm/14coiJxo+6X55N/KkU6GaRZ2CoaGBohGI5SWVnDdu2/gtKWLKS0OjRoE5Ymn++67j4ceeoiAP+iQAIp6XIUrj3QMDENnT3srmpblmmuu4YYbbtgv6Brr2hAEAVV1vmdLSwuPPPIITzzxOPF4AoBQ0Uxq686hqvpMiopmoqjFuZJMK0cKmIeRUtvHlAxwdBAkbHEX7/9QCSWlMvF40l21xjkBoCoKS+fNIuCKAJ5QyGQy3Hfffbz++ut4vF6WrjiTCVOmjtADMC2LqrJSFs6ewam2uXq0KgAkSeKpZzbQ1z+AII4+iIqs0N62h4f/8qcRj7/nAx9i6dKlR5UAGI0EEEWRvoEBwgNDtLfv4Xt3f4s5c+Zw++c+h6oomKP13O+7DgsCGd3gL399mN/86ufcccedTJ40qZCwO2SgwuTJk6mrq8Xr9aLrOoZhjIg/h693+fgg/7skSfh8vsIxuxUALly4OKoEgChKJJKOH/eJsN/kEABi4aco5kkBqUAWiDlVehCGTYzSPqRFftq2C+G8kA/ohYKyQEGBHxxRO9u20LQsqVSCRCKa6zuWqGtoYNr0mUycPJmKykpCoVDOHi9X3o/lJHe6jq7raJqGrmlk0hlS6RTJeJxwOExfbw+93d0MDQ0OS7RVVNWDz+dHVX3Od7MdckYURERJRMl970KwkmthsCwLQRBIpRL0D/QSDAQ49/wLWbr8NERJxKMo1NdUE/D7jmhRzVcDhMNhHnnkER566KGcWJBCcXEJPl8QSdqfCLABEQFJcioxRElEzCmxH2nib1pWjlAxC++j6zrJZJx4fAhBEKmtqae4qOQNfc5Ru5YBC7tgRWlaFrZlO64TuWtQ1zUGI2Ey2QyXXH4Fb7/6bZSEDqzwL0kSqVSKu+66i2effRa/P0BdTeOoNlcnGgHQ1d1ONDbIzJkz+dznPoff7x/1mPcl9/YNdhRFcco5Ozt55plnePLJJ2hpaS38PRCYSln5fMorlhEKTcLrq8frrUAU1QIZ4xADxn7VLAcmBeyjNE0KSJKHgegOLrnUy2lnBInHXAJgvBMAHlVl6bxZ+H1ed1BOMPT19fHd736Prq5OSkrLOGPNuRSXlBdaIPMVHMvnzznlCJxXXnmFHTt2oCjKG3ofURTZ09lDIpkcFpPtQwB4PDRv3cy999x9XAiA0UgAgD2d3aQy2UIrwJVXXcX7P/ABdE0bnYDe53sOxRP86Ec/oqejgy9/5cv7tZXkE3pZlgsbN4cak1iWRUlJCWeddZbrAuDChYvDn/OaGqbYhURXFEYwj/l/kiRjmnt35cYLnH54cgSBNIIhdcgCMUcWSAVCYS+pIO5nETPaYmHm2gOSyTjpVLKQuJWVl1NZVU1RcTGBQABBEMlmM2TSaVLJFOl0inQqTSabRstm0TS9EGQIglhI+FXVg6KoyLIyrAJCQBQEJ/EvaBnsbVsYmY7YaJqOYTqssq5rRCJhtGyG+YsWc+5551NZXQ22TU1FOaUlRUdcKi/lqg/a2tp46KGH+Ne//kU6nUaSZEKhEgKBIJKkMFpFgHO+BCTRqfSQBNERvznUxN800Q29wMznBfTi8SjJZIzSsgpWrFzFts2v0traSmlJOVWVtYii9Kb1x+dL/E3TwMr1bwvDri1d10jEo8QTUcrKK3j7tddy9tln4fd4nNLUg4yHoihEo1HuvPNOXnrpJXxeP3W1jXg83hOSBBBFkYFImN6+LkKhELfffjuzZ88edfe/kPTnSJ/89Zcnu4YjH1wlk0m2bdvGiy++yCuvvExb226GO5x6PDUEQxMIBCZQXDKDYHAyXk8FXl8NilqEIMj7EAMm+7oIjEoIHGn7iiAgiBK9/TuZPVvmiqu8COJxliRwcdQJAMcFYAZFwaA7KCcgmpubue++H5BMxqlvmshpq85GHpa4mZbFrCkTaaqrOaXGRdM01q1bRzKZfENVAKIosnN3O/Fkcsw2SVVRaW7eyo/v/d5xIwD2jfMEQSCb1djV0YWm6fzmlz/ntVdf5hP/9m9cdNFF++kB7EsCOFUEEb721a9SFArxudv/u7B7P9padrgwTZPS0lLWrFnjEgAuXLg4/Pnu4x/7pJ1KpUimUmSzWbJZjWwmSzabcX7PZslkMuiaTjKVIBobxDKtwk54Yfc8txst5HfX97MF3LvrXihZz72mMHnlRayG/7Ttkc85zIXmcBaJve0FUq7FYC9pIElOErH3MWnE3wtJqK45iX4mha5pmJYxYmEQBBFBFJAkpZDc599Hkva+9/7lX86YiYKAIIrOz9zxCsOsFYWcsOGIBc220U0TTddyiadNIjHE0NAAZeUVrL3gAubNX4QkiwT8PuqqKvGoR14u7oyTY/Xz0EMP8fjjj5PJZBAEsUAEKIo66sKXv4ZEQSzoBRxIS8G2bTTdITjy39e2beLxKNHoALZtM23GLK648ipWrFhOTWUlt912G48++iiBQIia6nrU46SULwCWbTvtCKbpsP3DAoa9iX+WeDxW0JtYuHgp73jHdcyaOQPbsg56XiRJoqamhnQ6TTQapb+/n29961u8/PLLeFQvtbUN+H2BE4oEyKv+d3TuBuDmm2/moosu2k/4r/B8QcC0LAZjcfoHBhFFkZKiIEXBgGONOBpZkOujFEWRRCJBR3sHu/e0sX37Dvbs2UNXVwexWHSfV3rx++sIhOoJBCZQUjwbf6Aer6cC1VuBLAeRJE/OPjB/PTvkQP6asm3roLZOo89HIpqeIDLUyRmrgpx3gYpputn/eCcAZFlm8ZwZFIdcAuBExRNPPsVvf/MbbNtkxtyFzF24JEf6ObpAFaUlLJk785Qbl56eHp599tk35OxzIhMA+5IAoigyFI3R2RsmHo/xkx/cS19vL/99++0sX7aMdCZzQAKgdyDCPXd/m0Qixpe+9GWCfh+maYwgcfcVgh6t/H8sAqCkpIQzzzzTtQF04cLF4c919rDMx7ZthwTIZB1Ruty/TCaDltVIZ9LEYwnC4TDJZJJEMkEiniSZTJFIxEkmk2QyWbIZJwnWNIdQyGSyaNre97Qsa9g2Vj7JZ9hmWU6KTxgewFtYttMbbVkWlun061q2hWU6Pd5Wrt87/5WOlehb3k1gOAmQJwgkSRmhdu/8tIeJutgFMTxH10AeSYrs8/vhHpdQ0GBwiAYxr5cgiMOSZTPHbqcZjIQxLYMFi5dw9jnnUlFZhSyKVFWUUVZc5BAGRziG+VLBHTt25HqxnyCRcHqxg8Ei/P4QHo83lzzZo5ABORcBSXJaBMS9Gg02ttPioOvDzreIYWgMDvaTTidRFIWzzz2fs85ew5RJTfi9HlatWoVt29xww3v4618fwuPxUlVZR8B/7Dy58xoSjrOEsc/3FHI2P6BpaRKJGMlkHIBp02dw4cUXc8aKFYSCfkzdOOhVYVkWfr+f1atXI8syW7ZsoaOjg4GBAb73ve+xYcMGJEmmprqeolAJHCG5dnSTf4l4YoiurnZMy+Tqq6/mhhtuGLUcMh/UpNMZesL9RBMJrJxwvgB4FJniohAlRSG8Hs+YjhzDCTeAbFajv3+Qvr4I3d19tLTuIdzXSSTSQzjcPYr6vgefrxKPtxyfrxqfv55gYAKB4AQ8nnJUTxmyHESUVERBylXoCAWizi7c6Hvnhbzt096KAoFMNkw0PsCac4s5+1wZXXMJgPFOAHhUlSVzZ7oaACc4HnjwDzz6z3+iqipLVqyiadKUnAiyU8WxfMGcU7KN4/nnn6etre2IWwFOdAJg38RcFEX6BwbpHRikp6eLH33/e9i2xWdvu42FCxeO6QwgiiIDQ1H++ehj/PaXP+eiSy/j0ksupaGuOifwbBcSecNwrKczmQzZbBZN0xw3gBzhP/y7OrGjU21ZVVXFpZdeiizLY66VLly4cHFQAuCwE5tccJ1MjuxLtUyLrKYVCAQtX1mQzZLVsiQTKZKpJIlEgmQiSSqVIh5PkEwmHWIhkSSbyaBpeuE12ayWe58smYyGpmcLibJDBli5hMEqlATruuaUVw8jBizLIRIOvaf3jZIEciHR2Jv0K0jSyHaDfC/ccEeF4cd3pKRALsV0yADR6bF3xPHMQsIYjw8RjQ1SUV7B2eeuZf7CRSiKQtDvo7K8DL/Pe1jWhqMRAYIgsHv3bh577DEef/xxwuGwk0Z5vAQCRXi9PmRZGXFtjUVw5FTbRhATgiCi61kGBnrRtCw1tXVc/JYrmD59OtWV5ZSXFKPrOhMmTGDRokX09/dz7bXXsm7dOlTVS3V1HQHf0SMBbMCyTMzh5BT77vY7Vo3ZbIpEIkom4wQSM2fN5IILLmLF6adTVBQqBAKHc182NjYyf/58JEli9+7d7Ny5k4GBAX7xi1/w8MMPA1BRXkV5WRWSKL0pDgH5Cp3BoQF6+7oAuPzyy3nve9+7X/WOgFPdYhgmkegQ4YFBspqeaxuRCiWp+R06AQj4fZQUhQj6fQjigWvn8/dr/r507g2bdDrLwECE/v4wQ0MRWlpaaW/fw+BghP7+PuLx0Wz5VBSlHFkOICs+VDWA11OK6ilHVUvwemvweiuQZB+S6HF+SgFkyZv73ZdrTbFJpfuIJsLMnuPnqrd5C2TRSYVhmisnOwFgWRahYIBl82blNGpcnKjIajr3/+znvPTi8xSXlnH66jWUlDp6AKZlMWfqZBpqq065cUmn06xfv55MJnNElQDjhQDYd23o7g0TicXZ1bKDH993Hz6fj8985jMsXLSATDqznw21IAhktCx7Onr48x//wFOPr6OquoY5s2dTWlZKNpMhmUwQj8dJJlOk02nS6TSZTNpp28zbAQ6zdxUAUZIQJQmvx4PP5+Mvf/kLy5cv3288XALAhQsXx4wAONYwDCOX8O+tRsjmfs9ksyTiCRJJh0RwCIQEiUSKZCI3qaZSZDKZva/PZEilUqRSzmSbSqXIalks08QwdHTTYWEdG5bDUQN/IwuLhCCIo5AE8oiWgL06BcJ+sfPhHue+CvtONUCGoaF+DENn7vwFnLXmHGrr6h09g5IiykqKURXZafU4wksmX37d29vLs88+yxNPPMH27c1YlpMaBwJBfL4AquodERwf7POc5D9DONyTO/6FXPqWyykuLSUU8NNYW10gMDweD2eeeSZ+v5/nnnuej3/iE7z4wvP4fAGqq+rxejyHQKgwaom5bdtYtoVpWgWiaf9xF7BtC13XSKeTxOMxLMtAFEXmz5/P+RdcwLKlSwkGgzlLoCMLckzTpLa2lgULFuD1ehkYGGDLli1EIhEefvhhfvWrX5FKpfD7g1RWVBPwB98QyXO4158jSpkk3N9DMpXA4/Hwjne8gyuuuCKnfm8NCxgFLMsmlkjQ1z9IMp1GEEUUWUYAhgYH2dW6k56eXsrKy2hoaKK8sip3Ddl4VZXiUIBgwI+qKIeVRI90G3HOn2VZZLNZBgcH6evrIxqNEotFGRoaIhIZIB6PEY0O5WxDnTlp7NMooyheJMmPJPmRlSCKEkCSvIiiQnnlGfgDS5k8Vebt13hRPAKWdRItQIJA0Oclkc6Mqt9wMhIAZSXFLJ4z4w2VUbs4PhgcivKTn/6UHdu2UtfYxLKVq1FVD7phUF1exsLZ00/JcWlvb+eFF144Ii2A8UYAgNNyhgBtXb3EEknadrXyo/u+j8fr4dZbP81py5eTzmQKujTD14+BoRi72tp59aWX2L2rlYH+AQYHI0g5tyhVVfGoHnx+Hx6vD5/Xh8/vx+NxNKAkWcrFikJhDRJz7gnBUIh//+S/MXPaVJcAcOHCxclDABwtaJrmVCRkRlYkZLJZMum9LGw87lQlxONxEvE40ViMaDRKIpEoEAbxeCzH2CZIplKkkkk0/dgJI+7bbiDLMoriyQmbKQXHg3xyubeN4PBJAcuySCZjRKMRioqKWHXW2Sxeuhyvz4csipTmiABFlg8qQncg5MvXEokEW7ZsYcOGDWzatIne3t7Csfh8AXzeAKqqIitKoUIiT3jkfzq2cRp9fd0Yhs7Z557H2vMvRJAEJEFgyoRGpyc8Nx6WZbF06VLq6+uJRqP87W9/5/bPfY6dO7ZTXFxGeVkVaq600c7rVNh7XSLylQf2PvoUoyfPw9wjbAvD0Mlm06RSicJufygUYunSpaxZs4a5c+fi8/neUOK/LwlQVlbG/PnzKSkpIZPJ0NzcTE9PDxs3buTnP/8Z27fvAAQqyqsoLSlHyY3VsWqdccQZNSKDYSKD/QDMnz+f6667jgULFoyodhAFAcu2SSST9EWGSCRTjs2fomAYBl1dXWzbspmXNr5AZGCg8Dlen4/GpgnMnDWbyVOnUVZekbOcdNwqAj4Vn8eLx6MWSIThAiX2IX2X4WKh4ggiyLIsdN0gnU6RyaQZGooSiUQYGhokHA7T2dlN/0CYocEI0Wh0TB9nRamjvHIJ02e+nbUXVLBoifekSv7zmDVlIgCt7Z2kM9mTNjEeTgAsmj39DdupuTg+6Ont4yf330972x5mzp3P3IVLME0Tj6qyfMHsQyKNT0Y888wzdHd3H3Yly3gkAPLrkW6YlJWXM3/+fO686y6+/tWvIAAf/8QnWHvuuWiatleIeO9iQXggwsBgtNDCms04MaOiKiOqQPMtYoyWt4/sHMSyTHyBEJddfBFTJjRguwSACxcuXALgWBEJOplMmnTa6dNKp9OkkklisRhdXd1sa97G9u07aNvTRkdHB729vU4yZxvHZkEapj0gy2rOLUAuVBDkBQJHrCGHsJuuaVli0QiZbIpJU6Zy1ppzmDJtOmDjURQqykopLgoh5XZm38jx53vXwuEwmzdvZtOmjWzZspWenp7CscqyitfjxeP14lG9iJKUc3dwysT7+rowLYNLLruCVWeuxrAMDNOisbqKivLSEYFCfmd8+fLl2LbNS5s2sf7Jp/jSF79INDpEVVW9sxuOPYLk2Ne+UBgjwd27eud6/g29IAqZyaQKz5s8eTIrVqxgxYoVTJgwAVEUD7vUP5+4HuicmqaJz+dj9uzZNDY2AtDR0cHu3bvZs2cPf/rTn/jrXx8mk0mjKiplZZWEgsXIilIQ4Txaib9pGkRjQ/T2dWPbFrW1tbztbW/j7LPPxufzFdT+xdw4xpJJ+iNDxJMpBMHxhk6n0+zY3syLz22gtWUnuq7j8/kJBIqxbZNUKkE6vbcsPxgMMnHyFGbMmkVD40RKy0qRZcURmhSdqhSfR0WVZRRVQVVkFFnO6XiMjMQONhZ7K9nzOhxCgcATxL0igbZlk9WyxKIxBgeHSKZSuf7PNLrmtDf5feUEQzPYvvMVikp8XHbFeRiWcSK4sB5d2DZzpk2hqqKURCrN7o5uwpFBbMsqjJlLALh4s9He2cX999/PQH8/S1espL5pklNtNmMKtZUVp+SYJJNJ1q9fj6Zph0XajVcCwDRNampqOP300wCBP/zlYR755z944P/+j0hkgOuvv56rr74aSZJGkLr5uCAaTxCJxjB0wyFN8q5NIzY1KLQ45pSwnLUkJ+5caIFkL8H/lksupqS4yK0AcOHChUsAHC1YTr37Ye9IJZMp2js66ezsYueOnTRva2bXrl30dHfT1d1NPBbDMA0MQ8+VvTqTvplXhrcs7DcQ6ecJAKdawCEGhrsY7N9GsL94jG3bpNNJotEIiiKzcPESVqw8k4qqKizLxOvxUFlWSnEo6Dz/DVQEOMcsFXxwBwYG2LVrF83NzezYsZ2Ojk4ikcgIO7i8W4Np6qiqh8vfejWLly7FMJzkP+T3MbmpAUkS9/OLlySJM888k6KiItrb23nt9dd56K9/497vfRePx0tlZe2Yto8j0++91RZOv79j6adpGrrukER5a0dRFGloaGD+/PksXbqUmTNnUlxcvPecH+JtmF/U8zvNe20uhcIR7fte+dLqCRMmMHPmTDweD5lMhpaWFjo6Onjttdf44x//yHMbnsOyLRRZpbiklFCgCNXjQRKlYZUX9gEpieEJcP6zNS1LIhmnf6APy3KUiy+66CIuvvhiKisr0TStcIyCIJBMpekfHCIaj2PbjoZEdGiI1197lZc2vkBHWxtAwVFClj3kq0Fs20bTsiSTcbLZFIaxl3wLhkLU1zcwYfJkmpomUVVdjS/gR8iV9du2cy8qkowky0iSiCoreD0qqpIjBxS5UA46PPHP/2IPC+SGC4Hao5zHkbakuUmg8GYWuqGzo3UPWd1gweLlJ6R149EgAGZNm0xNRVnhXuodGGRPZxfJZLrgIHMyEQAVpSUsnD3dbQEYZ9i1Zw8/++nPyOo6p606i0CoiLrKCmZPm3TqjsmuXWzatOmwqgDGIwGQjxtOP/10ysvLSSaT/Ob3DxIeGGKgv48HfvNr9uxqZeWqVdz4vvdRV1ODpmkj1ktRFLBtRqx1Iz+kEFGMurbu+3ieADj77LNza+1IXSuXAHDhwoVLABzXeHbvFG5ajuq+bhjoms7Q4BCJWIzOjg6atzXTvH0HnR2d9PT00t/fnyv9dpwNREHAxnYSWkPHNA2HNND1goDfYZ1oYXi1gJIjBpRRqgWGLzQClmUwNDRAIhGjvKKC089YxaIlSwgEQ5imQdDvp6ykmFDAjyRJR6V8PK9y62gTOL3W/f399Pb20tvby+DgIOl0urC7PW/BIiZOnkwqncHKGbtXlpVQXlY6apBgmiYLFy5k4sSJaJrGM888w9BQlLvvuYfH1z1GWVkVgUAoJzLo7NjatlUQmsxrRDjKvQa6ruesfUZ+VllZGY2NjcycOZM5c+YwZcoUSktLAQ57t18UBCxsMhnNaUVJpdF1vVAJoaoKoYCfolAQWRL3q8zIEwbFxcXMnDmT2tpawLF12rFjBwMDA2ze/DqPPPJPNm3aRCrl7KL7vP6cY0MAVfEg5Uvm98/jHAFO08QwdXRNI51xxD6zWafdoampidWrV7NmzRrq6+tz42YWgkJN0xkYijIwNIRumHgUlWwmzUsvbeKpx9fTH+7LJVIBQqFSPB5vbgzz95yNgIgkSiiKjGkYpFIJYokYmUx6xPmRZZnyikqaJk5i0uQpVFVVU1pWhsfrLYyXI97okIB5YkBRHUJAkZ1KAY+qoijO9SrldmmGV43k7QdHWHqOERTvO6CiKNDcsovBoQSrzj67MFYnHQEwdTI1lWUjHs5kNTp6eunqHUA39JMiWfb7/ZiWRW1lOfNnTnMXy3GIna2t/OqX/4fq87Fw2emUFBWxZN5MlFNU0NG2bZ566in6+voOmQQYjwRAfvf/tNNOQxAEOjs7efHFjfT0DxCNJ0glk/z94Yd4YcOzVFRW8p733sg5Z59diBMOnMof+TENJwAcEsByCQAXLly4BMCJBKdvHCRx5IScTqfp7u6hq6ubHdt3snXrVvbsbqO3t5eenl7S6UzB9i6/w2nbJlkti6ZlnN1mQy/YEx1+si3ndt8VFEVBltWCtkBehDDvFBCLDmLZFg1NTaxctZpZc+fhUT0YloFP9VBeWkxxKFgQX3sj7QHDF7HhO6X5RS6fXOUfMwyjkOQOF8kZ9VxYFsFgkMWLF1NaWkpLSwtbt26lfyDCPffcQ8uOVsrLq7Asg0w2QyqXxOaT/3waJwhOT7nP5yMUClFaWkp1dTUNDQ1MmDCB+vp6Kioq8HodF4XDTfqdYMnZNcjviieSSXQjl/QO2/V3klSRoN9LRVkpRcEAoijm3C9GBg2SJFFfX8+UKVMoLi4mnU7z6quvMjg4iGEY7Nmzh02bNvHyy6+wq7WVaCxaCF08Hi/KsEqSgvCh4RAhhrm39FGUJOrrapk7dx7Lli1j1qxZlJaW5kitvZURlmUxGI0THhggndVRFIdk2N68jXX/+ie7d7U6QaHqJRQqwe8PDLsX8v2WYu46lhAFsdAe4WhbOPZK6XSSZCpBVttbmZGH1+ujrLyc6ppaGidMoKq6hrKyMoLBEJIsQ85dwLQsbMvO2Q46158kOp/rVAkoyLKAIitOO44oIomic1yiuH9bwT7J8PAqUEEQaO/spru3n5Vnn+2QWydbQLdPBcC+GIol2NPVTWQw5lRojGMiwO/3Y5oWNZXlLJjlEgDjFdt37OQ3v/sd5VXVzJo7n4WzZlBaHDplxyMWi7F+/fpDFvEcrxUACxYsYMKECQBs3ryZHTt2IMsyA4ND9PZHsGyblza+yEN/fJBMJsNb3vIWrrnmmkKV21iVfvu09h/w7yPimFEIgOEbMC4B4MKFC5cAGIfo7e2jt7eX1pZdbNvWzPbtO+nu7qK3p4/BwaGRNoaCs0ttmgaZbBpNy6IbemFn+kiS7nxlgKIoKIoHRVExDJ1kMkY2mwFg8tSprFh5JtNnzMTj8aKbOqokU1wUpCgUwudRnT7XfSz7jtrFO0r/+74OBwciAVRVpaqqCl3XCYfDSKJIMpVmV+tuZFnK2ReCbugFf17DMBwhOtWpoPB4PASDQYLBIIGAI1roJN72MGvKw//uYq70OZVOE4445fCmmSsdFAWknGiQZVmFnnndNLBMC1EUCQb8lJUUEQoEkMT92yAsy8Lj8VBdXU1lZSWpVIqWlhYsyypUYGQyGfr6+mhtbeX555+nubmZ/v7+Ea0YeQSDQUKhECUlpdTUVjNxwkSmTJnChAkTKCsry4k17iVAnOAEkqkMPeEBJxiURBRJobu7iyfXPcZLm17MHY9MKFRMIFCU8092WmRERGRFyvXzS4gHCJaEAhngtCRkMmkSqTjZTBrd0EcJUiWKS0qorKqmobGR+oYGKiqrKC4u2et/nbMTsGzLIfgsu2DZJOT+LIoiUs7lQ1ZkVFlCVZwWA1FwyJ38+fT7vIWAOE8ARIaidPb2s3jZ8pOWAJg9bTLVYxAAAKZl0T8wSEdPH9F40iHfxiERkK8AKCsuYun82bih+fjFlm3N/Pkvf6G6oYlzVq9mQn3NKT0ezc3NvP7664dUBTDeCADLsvD7/axatQqfzwfAiy++SEdHR2GTJJ5I0NXXj2nZ9HZ387eHH2Lb5tepq63lHe98J/PmzaOiogJRFHOVeyPFmo8kOjJNk7LSUtasWbN3fc+1Y7oEgAsXLlwC4CRCMpl0qgU6u2hu3s7WrdvYs6edvt4+env70LQshQIzwVlWLNNC03PuB3oWQ3eqBY7E992pDJByu9l7leonTprM0tNPZ+aMWQRCIee9LQuPR6U4FCIU8OPzeBFE4ZiRAUeWezhCfcOrC/JWjHkHgOF93GO9x95+/DfW/jC8vz+b1RgYihKJRjEMs+BRL4kSpmUyOBBh9+5Wtm7ejNfrZ9acucycMwsRAcN0StdFEYJ+P1XlZYSCgf2OL3/cgiAUxBiH/90hgqTCOR8aGmJgYIBodIhUyvEqliSRoqIiysvLCQQC+HP2RXuvE2PUssRsNkt4cIjIUBQbUGWnz/+F55/jmaeeIJlI5IiFIkKhEhRFLRybKIrI+coVSdqvxPJQx9mybXRdQ8umnUqPdApD19ANY9SQLBgMUV5RQUlZGSUlpZRXlFNSWobf58fj9eL3+VG9HsThrgA4rRF5gsDKiz4Nu5yEXCJcV11JZXnJCA2Bk58AgDnTJ1NVXnrQp+q6Qd/AIF19YRLJNOMtg85rAISCAZbPn4MkuRoA4xmbt27l7488ysJFizh39cpTeiwsy+Lxxx8nEokclAQYbwSAaZrU19ezbNkywHGVevrpp4nFYiPiBl3Xc2R2Ct0wePWlTTzy94eJDg1RXl7OihUrWL16NU1NTfh8PlTVWdOGEwKHQwaMSgCw1ynJ1Rhx4cKFSwCcxLCx6el2euNbdraydes2du5soburm97ePoaGooVn7t0dz1nSaRmyWhZd1xydAcM8ZPHB0XbaKyormbdgEbNmz6amtg5FUTBzvrh+r4eioOPF7vV4nNefQGTAm3LzCXlV37x4nU4ynSaWSJBIptANC1l2kl3TshgcGGDP7l00b9vGnl0tuXNr5wImD4uWncaZZ612qhoMHctyEnxZlqgqL6OitGRMnYZ8r/rBAre8NsOInvYckZAPyA6kRpzJZhmMxYkMDmFaFoqsEI/FeO21V9nw9JP09vTkkqUgoVAJqseb73bIJfzyiF57x13AfAPnIHdsNli2I7ynG1rOKjRduD/G+gxBEBx3Co+XQCBAUXExoVARoeIiSkvKKCktwevz492HIBhZ6i8iSyI11ZWUlxSNqJLo7u2jq2+AxUuXO+0nJ+GOzpzpk6kqKz3k56fSGV7Ztp10RhtXO1x+vx/LtvF7PCydP+uUtY87uUiAbTzz3PNceuEF1NZUn9JjMTg4yBNPPHHQtWQ8VgBMnz6dWbNmAU7Lw5NPPolpmiO+Z34tGYrFCQ9EMEyLWCzGM089yTNPPUE2k0FRlIIWkNfrZeHChaxdu3ZUEvtg1QFjEQD512azGj6f171JXbhw4RIApxLisTjdPT10dnTmqgWaaWtro6+3j76+MLpuFIiBvSXrBpquDasWcHZDrcMUHVRUlcamJmbNnsOEiZOprq5G8ajYgIiA1+shFPAT9PvwqGrBDutY+c+fUDccTsk3OIlrJpslmU6TSKZJZzLohokoCsiSXNh137N7F81bt7CrtYWhwUEnQFK9hELFKIpKLDZIKuXsmJeXV7Fy9WoWLl5MMBhEN3RM0wmUAj4fpUUhQsEAqqoM66O3j/53zKu32zaaYZBMpYknksSSSSzbRhZlotEhNr/+Ki8+9xxdnR0AOcHBEB6P1+nlFwVkSUISpZww5v4J+NEUx3PcFISCRZNlmWi6hq5lyWRzbSCmjmkYmNbB2ztEUcTj8eDxegmFQgSDIVRVRVZkZEnG41EJBkNUVVdRU12F3+cvVF14vV6QFWKJFIuWLHcqa4aVep4smDt9CpVlJYf8/HQmw0tbmslm9XE1Dn6/H9u2UWSZRXNmUBwKugvVSYAt25rp6u5m9cozUFX1lB6L1157jebm5r1tUicBAQCwePFi6uvrARgYGODZZ58dU/Mgb+nbPzhENJZEVhX6enrY8OzTvLxxI4ODEYqLikjlhIy/8Y1vMHfuXNLp9EGPY/h6Y5ompaMRAILjCNDV2U1jY717g7pw4cIlAI4ndMPICYSdOGVYlmXR3d1Db08vO3e2sHXrNlp2ttDT3UtPby+xWLxACuRdAezcrmhWy5DJpMfsmR4LHo+X2ro6Jk+dyoSJk6iprSMQChaE2hRFIRjwE/B58Xu9KLJUSByHW6qN65ts2A64aZqk0hniyRSJZJKMpmGaNpIkIhdK7Qdp29PG9q1baG3dyWAkAjiCjf5AkIAvhOrxFp5vmAaJRJRYbKig+dDYNImVq89k5qzZ+Px+DEPHMC0EQJUlZ7c6GCDg8+bsIZ0OekfN/xCrQHKJqLBPQmqaJllNJ51Jk0xlSKZS6KaJKEqATbi3j9dfe4WXNm2kv68PUZIoCpXi9weQZcVpyRCc8RD3UdYfK6A83DaAwzl3hZ82WNhYObtHw9zrAuGMr5EjBgxMM6//cGRBqiiK+Hw+Fi1ZzqKly7nw0kvRtWE73icLASDA/BlTKS8pPuSXDEbjvLpth5MAjEMCQBRFFs+dSWnRqSscd7Khrb2dTDrNlClTCoT2qQjDMFi/fj2xWGzMcRhPBED+fl2xYgXl5eUAdHR0sGnTpgNWOeTX/ExWI5FKohs2qUyGcF8fO3dsp2XHdvp6e2hva2PWrFl85jOfobi4+JDX3nz74n4igMPWZsuy3DYAFy5cuATA8UQ8meL15p14vR5mT5uM5wBs+ImA6FCU7p4e2ts7ad62jW3bttPe7mgLhMP9ueQq50VgWximTiaTJpVOomWzh6wnIAoC5ZVVNE6YwLTpM5gwYSLFpSUF4RpVlvH5fAR8XnxeLx6P6pR75xfanMDaiXrJ5hXehyu95/vg05ksiVSaRDJFRstiWrazsy1J2JbF4GCEtrY9bN+2jV0te5N+EAgEgvj9QXxeP6rqGTkmuYRbNw2y2SzJZIxEIlao2mhsmsjyFSuYOXMWRcUlOULHKAQHqiw5QoZ+Hz6fF++wiozctyn0Wg9v+8j/My0LwzTRNUd0MpXVHMFE3WlBECVHBC+dTrFn925ef/Vltm7ZQjKRQJJkiopK8PtDjr6EmNMcEKXDsko6lgTAgUiBwrm288GXXQjMLMt0ftpmwfXANI2cVoSVc26gIOY5XDzQeV9H7FFA5Mq3v53rbriBbCZ7ck2UOQHE+TOnUFZ86ARAd3iArTt3jTuBK7/fX7h/Fs2ZQUVpibtYnkTo7+8nk8lQV1d3Side4XCYp59+esz7c7wRAJIksXLlSkpKnPt127ZtNDc3H9I5zhMBhmGg6QZZXUfTdeKJJNGhKH/6w4O8vOlFLrzwQj7ykY8UPvNQkK8AGE4AuHDhwoVLABy/GBbTstB1g2Qigerx0BcZ5LUtzXh9PmZPnTwuFYINw6C7u4eenl527tjJ1q3baG1ppaenl97ePuKxOJbl2BFmsxk0PVOwIzxUlJSUMnXGDBYsXEzTxAmoioqRU82XJBGPouLxqvg8Koqk4PEoKLKCJO0V7TvepMBYooCWlSdHTDTNWeR1wyCVzqJpWbK5lou8arBpGAz099PWtpsdzc3s2b2rUN4P4PMFCPiD+PxBPKon13sPgi2MqtPgVAKY6IaBrmdJpRIkk/HC+Sgrr2D+gkXMnjeXmto6PB5PzqXAyB27nSME5Fx5upTbiRdylndCrnUBTNNyklrTxDRMDMvENHMCfZKAKDg7+JqWpbenmx07trPl9dfo6mjHsmxU1Zsr9Q8WzqeUsxU80nNyNNsAjjpBwEiS4HDmlujQEBddfinXvvvdJx8BkOPJFs6afli74bvaO2lt60IcZyJ6eQLAtCzmz5hKbVWFu4CeZBgaGsIwDMrLy09pBfaXXnqJ1tbWUQUBxzsB8Nprr9HS0nJYlR7DbWkBsppGV98A3d1d3PfdexgaHOSTn/wkF1xwwSG1ArgEgAsXLlwC4DjCsiyiiSTJVJpMVnMEwkyLzvZ27v/hfWxvbqa+sYmrr3sHDU0TSCXT1NfXsGTurJPG8mlwcJDu7h7a2zpy9oQ76GjvoLu7m+7ubhLJBOlUkqyegcMQFJwydTqnnbGKiZMnEQwEsLExTWuEIJokiSiSk6D6vF68ioKqKng8aiFhzZMC1htV488t2Pue/3xpt6Yb6LqGblqOboJmYJsmumliWo4KPwhIkoAkOm0N6VSKvr5e9uzaxc4dzXR2dBTU7gG8Xj9+f5CAP4DX60MW5cLu+6HcpkKejMr1p5umQSaTJpmMk8mkAJBlmYbGJmbOnsvEyZOprKzE5/fnhOkcSzvbsgqtAHYheR3pDiAIAqLoJPuFoCabJR6LMhSN0tHWxvbmbXS2t5HNOu4UgUCIQCCEz+tHluWclaF4WLv944EAOJqIxqJc9JY3jwAYzWrzaGPezKlUHEYLwKvNOwkPDI67XdY8AWBZFnOmTaG+ptJdVE9CxGIxAIqKik7ZMdA0jXXr1pFMJvdLlE9FAmA0EiSZStMV7ueVl1/mFz/5EarHw2f/67MsW7aUTCbjEgAuXLhwCYDjAdOySKXTJNMZDMMslDhLkoRHVchqGn39gwzF48RicScotkGUJRLxKP/1/z7F7tYWAKpravjQxz7B6atWURwqYvHcmXhPYnEgTdMK2gI7duxky5Zt7Ny5kz17drNr1y7C4T5sxk7QgsEiDMMkEAhR39DAhEmTmDBpApVVVaiK4iSmlpVLqvfa3CAISKLgkAKyRCDgx6uqKLJMwO87okXZtm00XXfK6g2ntF0zDXTdQNOcxw3LwDTt3PHYhURJHL6Tbdtks1mGBgfp7e1mV0sLe3bvoq+3d0S5us8XwO8P4PcF8Xq8SJKMcBhJ/1gwTKNgB2jbVq4qIEUqlcAwNMCpRqisqqG2rp76hkaqqqspKi7C6/OiqJ6CQGOhDSA37qZpks1mSCQSxGJRBvoH6Onuore7m4H+MIlEopCQ50kNny+AR/Uccl//kZy749kGcNySiXiMCy+75E0jAERRdAihYxVgWxZzpk+huqLskJ6v6wabtjSTTKYQxjEBMGPyBCbU17oL70mK/C5u3jf+VERXVxcbNmxwCYAx51aBaCxBT3+EdY/+i4f/8ifKKyr47//+b2ZMn46maQeMAVwCwIULFy4BcASwLItUJks0liCaSJBMpR0Ltlh8RMDrqLaLTql53t5mn51hr9fLs089wZdu/yy67pRcq6rKtdffwLvf+37OWLoIn0c55cY4Ehmkp7uHXbt28/Irr/DqK6/S3LyVltZWEolY4Xnl5bWoqqcwrJZl4fP5qKqpZuKkSdQ3NVBaWuqUE9rOLnWeDMgv0vawXWpJEplQX0txKHRIQYKQK3NPJFOEI0Ok02nMHOGw7+2R3/122hByyTGOEF90cIjIYITBwUH27Gqlu7ODgYEBMsNK+kRRwufz4fcF8fn8eFQfsiyxV2Ph6N6ODmFh5mzubEzTcAQd0ykymRS6rhWeK8sqgUCQQCCAzx8gEAzg8/mccRfA0HWy2QypVJJ4LE48FiWZTI0QuhNFCW/u+/lzSb8gCo6o5LGcyE7SKoB4IsYFl765BMCxDLQty2JKUz0TG+oO6fmJZIqXtmx3yJ5xWGLt9/sxLYvJjfVMm9joRiAnMbScaKeiKKfsGDz//PO0tbWhKEphU0UURXbsaiOWSCDmk+jhARegygrbt2/jpz+8b8T7XX/j+1mydCkT62qOi8jdsSQA8vPrwGCUnnA/Dz/0Z55cv46GxiZuufVWJk+aiHWANc0lAFy4cOESAIeBdCZL30CEgaGYI8iW1UilkiOty44g+RBFka9/8XaeWL9uxN/WnLOW73zvu8yaPs292oBkMsnu3XvYumULzc3bCYcH6O7uoauzi67ubuLxRKH8H2xkWaaoqIiq6moaJ06gpraa4uJi/H7/CGImL8DmiLDZFBcFmdRQd3CbNkHAME16+iNEhoYwTWv/EndRLIizOUmLydDQEIORCAMD/bTt2U1fbw+R/gHi8dh+n+Hx+PB6ffi8frxeH6oyUmjvWN+C+d32wvjYThuDkdMLyGYzZLMZdF3L7aIf+vHIsoqiqHg9XrxeHx6PtyBUeLy+n0sAHNtxPZbnz7IsaivLmT1t8iE9v7c/wpYdrePWBcHv92OaFvU1lcydPsVdEE5y5KuSRuuFPyXirXSa9evXk06n8fl8eL1eBEGgvbuXdDqNnV9Z9+r8Ak7lxKuvvMwdX/vKiPf71K2f5vTTTqeyrIRsNntIpfJHmwB4/fXX2blz51FzexAEgYHBIXr7I/z5jw/y7FNPMnHyFD7xiU8wfeqUwqbSaOudSwC4cOHCJQAOAN0wGIzG6R8cIjIUI5VOk06ljjjhHw2qqtDaspNvfPmL7GppGfG35ctP4957v8/ChQvdK24MhMNhenp62bVrN9u2bmP7jhY6O7vo63UsCtOpdG7nXSJUXERVdRWVVVWEikIUFRcRCoXw+nwoikr+tDbW1VJVXpqr3Bh9pyCVztDR20cqV1KcvxpMyySVTBGPR0mnM6TTaQYHInR2tDM0NEhkoJ/o0ND+hIIooigqqurF4/GiKOpea7ucqJ4oiAX7PEfpXdgvWT/c5P5ICIH8zq5uGjm9BTMnCugo2Ou6jlXQM3BKFkVRQpZkFEVGllXH016SnWqIvCS+bfNmTConYxtAMpngvEsuelMIgOGuD8cswLYsikJBFs6ejnwIAXVrewe727vHXfn/cALAsizKS0tYPGfGKS0Ud6rANM3CJsGpiNbWVtra2pg3bx6BQABya8/wqr38epifa2RFYf26dVx44YUj3utvf/8756w5B9u2yGaztLS00NbWdkwJAFEUOe2006isdDQ7tm/fztatW4/a+RRymxB7OrtJpdLc/6MfsHN7M5OnTOX//fu/M3XKZNKZDLZtj6h6GM0G0IULFy5cAiCX3A0MRekJDxCNJ0gkEiM82Y82VFWhq6Odb9/5DV7etHHEBN/U1MS3v/1tLrvsMveqO0QYhkFfn2NF2N7Wwc6dO9mxfSe797TR0dFBd08v2WwGRVHwer34/H6CwYCTeKsqgYCfmqoKbMtCUWVKSkvwejwoioLH40HTdLrDjnWTpmlEo1H6w2ESsRjpTIpYNEYsFkXLjp14ybKCoqi5nW8viqLk+vhHWuaNtfDnK0/2/hMdAgNhhOPA8GvW0SnQCkmvQyyIe8ULj4AUyIsm7m31zyfxTnvFcBVjcd97yD48dftjRwAIGIZ5ks1hKc676EKueff1JyUBgG3j8Sgsmj0Tn9dz0GD8teYWwpHBcZtM5QmA0uIQS+bOcn26TxEU2gdPQUQiEWKxGE1NTYf1uieffHK/5Hb9+vWceeaZhf9Ho1E2bNhANps9ZuNrWRZTp05lzpw5he/z7LPPFoido7FuDQzF6AkPsO5fj/D4usfI5iobqqqqeP/738/KlSuRJKlAcFuW48RTXFzMOeec495gLly4cAkAgGQqTXd4gN7+ARKpFJnc7vHxKBtVPSpDkQF+9qMf8reH/lxI0izLIhgM8t3vfpfrr7/evfLeYDDV09PLnvYOXnt9Czt3tNC2Zw99fb0M9A/Q29tLJseYq7KKaRlEBnuPSYIkSTKKojg+9lL+p5Sz+5OGJe979+oPdMvt9YIfmYTtJQvEnAaCNeL5hbYFQRxRbfBGAhRhlN9OhET/QOfjZGsDSGfSnHfRhbz9+ncdfwIAjv3Ztm0EUWTBrGkHtQLMahovb91OMpkpWFKOVwKgKBRg6bzZh1T14MLFeCcAuru7mTVr1mG97qmnnuKss84a8dgTjz/OylWrCv/v6uri5ZdfxjCMY0YA2LaNx+Nh2bJllJWVYVkWGzZsoK+v76i1AXT19fPSy6/wk/u+X7DulWQZ0zAQRZGzzjqLNWvWUFRUhKqqFBU5VY9+v5+1a9e6F5kLFy5ObQJgKJaguy/sCLllMmQymTeFdVcUGdM0+ePvfsOvfvYTMplsIelramri8ccfZ+LEie7Vd5ShGwb9/QO88tpmXt/aTE9XF6lYjPa2Nnbv3k1PT7ezo69n9ksc84m7KEiIooCmaWj6kSVc+VYFSZKRJBlZVnL/5NxjUm6nXxg12HhDwcqw5K1AAAiCo76fIweOy87um4STrQ0gnUlz/sUXcfW73nlyEgA4bQAzp0ykrvrAtnjReIJXtu5wSB5hPBMANsGAl6XzZqOewgJxLk4NRKNRnn76aWpraykuLkYQBGKxOLppDluvcmsSNgICHo/KM888w00f/MCI9/revfdx9tln41FkUqkUXV1dJJPJYx7nWZaF3+9nxYoVBINBXnnlFXbt2nXUCICegUH+7xe/4PF1jx7webIso6oqxcXFLF26lA996ENccskl7kXmwoWLU48AsGyboVic7r5++gYGiUWjx223/4CJiCQhyxIbnnqS7999F729PYUE5dFHH3X7to4xMprO4NAQeiZNd08P/X1horEYyWSC3p4+2ts76O3tY2AgwsDAALFo3NlFz+kAWJaFpmcxTR1d19ENRyDPMIwRqveHi3x1gEMEOO0DUs7GUBTz5ICwXwp2NG7TfIWAJInD2g2EvS0HxynhO6YT2klWBZDJZLjoLZdw1bXXknkTWgCOx/JgmRZN9TUHVcXv7Olj+662cZv8jyAA/D6WzZ+Nopya4nAuTh0kEgkee+yxwi69IAiODWAq6ejhjAJV9bC9eSv3/+DeEY+/+30fYOnSpTTWVBXaKo7XJo9hGDQ2NrJ06VK2bdtGc3PzUWnhMU2Tmrp6HvrLn/nKl79ciBMP1D6Yx2233cYXvvAF9yJz4cLFqUUADMXitHX1MjAUJRqNIp4Aif++AbTP5+O7d93BHx74beHxhx9+mIsuusi9+o4DDtZ7GY/H6esN09vbS0tLKzt3trBr127Cff309/cTGYhgmEbOXcAoOA6YpoGuawXlfMPU31Di6ZTtSzkyQM5pCyiFKoKx2wk47LR9eJtBobVAFJFECUkUR4ghjkecTFUA2UyGq97+Ni668grS6cxxn7+OCwFgWZSXFLNg1rQD3qvNrXvo6Okb133zfr8fy7YJ+Lwsm+9WALg4+ZFKpVi3bh26rhfEEHfubieeTI55L6uKSnPzVn587/dGPP6eD3yIpUuX0lRbfUztSQ8US8ybN49kMklLS8tRIR9M02TqlCmYlskZZ6w8LGeD6667jl/96lfuRebChYtTgwAYjMbp7O0jHBk6IRP/4fB4PPzsR/fxq5/dX3jsj3/8I5dffrl79Z3ASCQS9PWFCfeFaW3dxc6dLezetYfe3l7C4X4GBgbQdccyzzRNLNuxLbQss0AM6LqOYRoF4uBIkzBHT0AukAOOs4CMKDqVA0ernSBPDAxvFci3EQg5TQGGkQcn6sSRJ0pOBhIgnUnznve8m/Pf8hYGIkPHtff9eBEAtmUT8HtZOHsGHnX0hNgwTV7Zsp1oPDFuHQDyBIBt23g9Ksvmz8br8biTrYuTGnkrwEwmU9CnGY8EQH5Nza+NR+vzbdtGVVXWrl3L17/+dW677bZDfu2VV17Jgw8+6F5kLly4OLkJgHgySUdPmN7wANETpNR/zIHNJUhen5c//ObX3PuduwvB9G9/+1uuvvpq9+obp8FMnhjYvXsPO3e20Nq6i96eXvrD/YT7+8lmtVxiY2Lm2gVs27HV0/Qshq6jG3rOcu/otRMM1xpwqgkkQMjdIiML/A/3thcQEEWnbSAfAOXfNu9YsC8J8WYSBSdLFUAqneamD72fy952Fa1tncd19/t4EQDYNrIss2j2dIIB/6hPSabSvLRlu+OJfQLM+Uc6NnkCwKMqLJ47i6Df506qLk5qZLNZ1q1bRzqdHvcEwPC182i2HhiGweTJk5k7dy6XXXYZ//jHPwpr6oG+51VXXcUDDzzg2om6cOHi5CQAMlmN9u5euvv6SWUyaJnMCd8Hmlf+9/q8/OtvD3PHV79UmMh/+MMf8r73vc+9+k4iaJrmEAPhMHt2t9HS0kJLyy66u7rp7x8gHO4nnU4jCGBZNrZtYuP0+BmGjqZpGEYW3TAwjKPRTiAXyAFFcQgCp5VAHMWh4PAIAnufBB9GCg4OJwSGawwMT54ONWB5I7oEJwMJkEqn+MiHP8h7P3Ajz7+y5fguDseZvJk7fQqVZSWj/q0nPMDWnbs5UXpTREEoWGceCQGgKApL5s4kNAbh4cLFyQJd11m3bh3JXMI/3gmAY0ksrFq1imQyyemnn05PTw+yLB9wDbvyyiv5/e9/7xIALly4OLkIAN0w6BsYpL2rh2g8SSaTHjcTnSLL6IaB1+vlicf+xVe+cHthwfryl7/Mf/7nf77hz4gMxQhHBvGoKuWlxUSjMVpbW/B7vdTU1lBaUoLP53O9pt9EGKZJuK+PcF8/7e0d7NzZQktLC12dDjHQ1xcmlUoWAgBHY8AC28YwDTQt67QTGDqG8cbaCZzk2xEBzFcI7NUdUIb9/40RBGMRBYJTLpCrHBBG2gzmHx+FKCgQCMNe40ghCCOIhf2/6/hvBUilU9x00wf4+Cc+xguvbCGeTI7rEvgxrxXLYtrEJhrrqkf9+47d7bR19Zwwc9kbrQCQZZklc2dSFAy4k6SLkxqmabJu3TpisVhubXEJgNFgWRahUIhzzjmHBx98kGuuuaagOzDWd73iiit48MEHXQLAhQsXJw8BEI0n2bmnjYHBKOlUatwFvT6vB003kBWZZ598gi/e9pnCJP7JT36SO++88w29/1Aszstbt5PNasiyTDaT5u5v/C9PPP4YsixTVlpKSUkJwWCQYDBIUVER5eXlNDQ0UF9fTygUIhAIEAwGKS4upry8nLKyMjwej7uYHI+Ex7YJh8P09YXp7OyiZWcrO3fupKO9k/7+AfrD/cQT8Rwp4LQQGIaJbVtYtlkQHnTaCQxMUz8qAdFezYG9ZIBjX3j0CYJDGif23/Qdk0gYoVHgPEEURGzbGoVAEMbFdT6cAHhpczOD0VhhLvR41JOG3DMti/qqKibWj04AbG1tYzAaQxRPjHOWk850yLoDIJvVRtyXhQoAWWbxnJkUhVwCwMXJv9atW7eOoaEhlwA4CPKtAAsWLOCTn/wkd9999wEdAdwKABcuXJw0BIBlWXT19bOrvYtIJDIud7ts26a0uMixjzNNNr3wHLd9+pbCJH7jjTfy/9k77zi5yrL9f0+ZPrO995ot2fRKQi8K1teK6M+KiL6KYMUXCypgQRQLKvaKBVAsgCAloZPes5vdbO99ejvt98fMTnazm0oSUs71+Wyye+bMzJkzT7uv57qv+1e/+tUreo/Wzh46evqRZQmbzc7Gl17gs5/832N+HZvNhtPpJCMjg8zMTFwuF3a7g8zMDPLz8ykqKqK4uJj09HTsdjsVFRXMmzfP7DknEYmUgVEmxifoHxhgoG+A/v4BhodH8Hq9eL0+vF4vgUAATdPQNA1VPWA4qGkqmq6haxqarqJp2gkLyKcrCKbIgAMKghOTYnCiIYoimqbOCN9SJECKRBBSfgaiODuN4ZQGw5qWqi8djoT56PXX8cmbPsHe/Z0MjowhiiI2m5Wf/OBuOtvbzo4gAZBFGY/bOeecEAyF0Qz9NKpOcXQOF9d+9AbqGxtSviDTCYBlCxrMFAAT5wTWrVvH5OSkSQAcxdrRMAyWLVtGbm4ur3/961m3bh2yLCcrEc1MDXzf+97H7373O7OBmTCR6kOJH1P4fIYRANFYnLauHgZHxolEwmcsq6nrOoV5ORgGTPj97N2xgy/d/BkUJbFL+453vIP777//Fb3H9r2tDI9PIIkiFouVjv2tfO6T/8v4+PhJ/WzFxcV85zvf4ZprrjF7z6vRR6LRFAEwOTHJwMAgAwMDDPQPMDg4zKTXi3fSy+TkJF6vl7gSQ9d0VE1Ntr+E8aBh6Klyhom/Tx5BcEBBMJsgmAqmZnb1ubPPj6fk4aFJgKMP9FKlEgURIakqEKZXSTiqUPDooGoqum6kysOFI2Guv/46brzpE4xN+tjT1oGuaTidDj5+3YdobWk2O8VpjNvu/C6rzluTKuF4wATQyrKmelymCaCJcwDPPPMM4+PjJgFwlOtHSZJYu3Ytmqbxlre8hRdffHHOOe2uu+7iU5/6lNnATJg4aK1oimLOIAIgFlfY09bO6PgksWiMM7kQua7pFBXkkuZ20d47wP59LXzxszcRiUTQdZ2rrrqKRx999BUECRqbdu4lEDwwgYqiyOYNL/HUfx/HOzlBNBolHAoRDAQIh0NEohGUuHJCPt9FF13Ek08+iSzLZg86zRCPxxMEQJIkGBocor9/gP7+fgYHh5mYmEgRBJOTk8TjMTRdQ1M1VE1BEAV0XUNTVVRNSxIE2okbcGYQBGIyqBaTxEDCvDDx2NTuu5iqHT113gGSYPogf+gwfGoyEAThOEmAw5MDUuraklUSpqUiHOvgqut6glxI/j2dAAAYGB5lf08fFquVG0wC4IwlANwuJ0vn12GzWs2bZOKsx7PPPsvo6GiyQo1JABzNPGCz2bjgggtQFIWbbrqJ+++/n1gsljqnqamJ73//+1x22WVmAzNhwsSZSwC0dSUk7dMHuDOZAKiuLKOsqIDtzW207N3D/33mk0xOTCIIAhdddBFPP/30cSscYvE4G3fsJRKLpYINAIvFgm4Y6JqGruvEYzECAT/BgJ9QKEQ0EiEWixHw+xkbHWFifAy/z08oFCQajRAOhQn4/YTCIeKxWKLk1hz42Mc+xo9//GMz7+wMhKKoyTQCLz6vj8GhYQb6++nvH2BwYJCdO/cQCAQwDD2RVqAqKSIgrsRRlWmpBqqWSDU4gQTBbMJAmBFcHyhDmDiWcJWe7ksgTpPuHzhn+vEpGaUggGEcijg4+mFxptmhkFQGJK5zqjrC8ebqH0wAAOzY20ogEuHeH/3grEkBmILb6UKWpRnHQuEIcVU5IznhuVIANE2npDCXxpoqcww1cU7gxRdfZHBw0CQAjgGapuFyuVi7di1Op5Pdu3fzj3/8g1/84hcIgsD73/9+rrjiCi688EKzgZk4J+H3+3G73abR+ZlMAEz6/GxvbiXgD5wVug1d16ksK2X+vCq27Wllb0szt3z6Rgb6+xAEgTVr1vDcc88d9+IvFImwaedeFEWdXXtdmJbfPPWTDESmu6Ybho6uH/jRNI1YLFliUVPo6R8kHosSCUfw+31EQ0GUWISysjKuu+46CgoKzN5zlqGjo4tPfvxzDA+PICWNh3RDR9e1xP+amvxbR9PUZGWCJEGgTv0dTxIDCQVBgozSTvWwlgy6D0UeCKkUhSkVS2ICEZKEgZTMwReOmxSYOvtgUkCSxAMpBMdJALR399HVN4jDaT+rTADdTieL6qpnt8u+QYZGx87Iz3qwCaDNbicvJ5tFDbWYSxYT5wo2bNhAX1+fSQAcBwngdrtZtmwZmZmZAHR1daEoCunp6SiKQklJyYy1nwkTZztisRibN2/G5/PjdDpYs2YN1qSaTtchHjew283+cNoTANF4nB3NrQwNjZw15a10Xae8tJgljXW0dHSzY/cebvn0jXS070cURZYsWcILL7yAzWY7rtcfm/SyfW/rK//yhZkl1zRdp6q0BEkS6eobRJIlBBLHy4sKDunQbeLMRyQc4StfvoP1Tz+HxWI55GIiYVKkHyhZaOgpkkBLBvu6kSAIDhgTagkPgniinOGUUWGKgDJ0jBPoQ3CsEEUxIb1P7dYf8C2wWq2pEokJskB8RaTAAYriQNqDNMMP4cgEQDAUZntzW0Khc6Yu+qa5WhskyqbOqyyjIDd7Vnvb1drO2PjkmT0/GAaarpObm4MWDoCucRpX4DVh4hUjIyODxYsXA7Blyxa6urpOGwJg6rlnAqmo6zpWq5Xq6mrKy8tnrBsNw5ih1DSrOJk42xEKhXjiiScoKipi0aLFbN++jcnJSS655BJsNhuGAapqIEmCaQR4OhMAhmGwt62T3sFh4vHYWXNTpxMAQ2MTbNvdzKc/fj0te/cAUFdXx4svvEBWdvZxvX5nbz+tnb1IknhCvwurxUJDdQVtXb2Eo9HURKLpOvMqyqgsLTJ7zFkJg5/f+zt+/cvfz3C9nzK9m6sEkZCqwzcXQTCdJJhGECTTBXRdT1YnUJOkQUKBMkUEJB5PlDpMkQr6tNdLmhjq+tT7HH8gPp0EONQCMWHKJCerHchYLFYsFmvq78T9mvoxjoMYEJBECUtycXwkAgCgZ2CQ/V0JRdHhSABDT353wtQ1CXPXVpwySjCmfYzp2RHC9HOmOexM3fukIeJRERKGgcUi43Y4UFQVu91OUX4O2Rnpc56+r7Ob/sEjE8RTl3a6Bf6SJFNckIOmG5SXlvDm113Jiy+9ZA47Js5qrFq1ipdffhmA7du3097ebhIAr2B9pus6Ho+HwsJCcnJycDqd0+YfktVhbGbDM3HWIhqN8ve//52ysjLOP//81PGnn34awzC49NJLEQQhtQ4wubDTmAAYGZ9kV0sboVDorPqmdF2norSExY3ziMRibNi2m09+9Fp27dgBQGFREc899xzVVVXH9fo7mtsYGhtHOoGTl65pVJeXkpmexqZde2e8tq7rLKyvnbU7Z+LswIsvbOCWL3yNcCicksQLgkgkEiQWj+J2pSHLlmPasTwqggAjFfDrxoFAXzcMDENLlS/UpxEK01UDujb1PGNaSouWIhX05C7rdLJgOpFwtJ9nihSZToRMeQ8kdvEPJgUS6QXHTgokvALkaakJhyIADMOgtas3ERgLc8x0ySDd5bCT5nFjtchIyVQgXU8QAoZhYCSvKRXb6waCKGDoU0G+kSQAEp9fSP1Pkkww0I1Enn4oEiYWVxNqjqlPfxApoOs6oigwr7KcwtwcdENHlqTD3pWxSR972zrQVPWwtX1kWUISBWKx00cZYeg6HpeTxY11CdLD7ebSSy9l/fr15sBj4qzGxRdfzLp16wDYvXs3+/btM1MATsDa0jCMZPldiaysLNasWWM2NhPnRNt/6KGHcLlcXHnllQA89dQThMNh3vCGN/Hvf/+bvLw8Vq9ebd6s050AMAyDXfva6ezuRRCFs66hVpaWsKhxHgBb9+zjw+9/L9u2bAIgPSODx//7BKtWLD/m11ZVlU279hIIhk8Ye63rOm6XkxULGxkdn2RXa3uKAEiu/VmxoJF0j9vsMWcZFEXh/z7/VdY9/Wxq90AURMYmhuns2YeixMnOzKO6sgFJkk9cucDDEgR6yn/ASKoBEkG/iqEnj08F9eipGBWMaQQDyWs1UiRCimBIkgwYU+kHRkppoCUND9VkqsLhPu90tcTUYjRR5UDGYpGQJCsWiw1ZTpACkiRzJF8BA5AECYfNhnEYAgBANwz6BofpGRgmHo8nPT6S1yaKlBfnU5yXh9VqORUjOpFIDH8oTCAUJhyNEo3GiMTiaKqKAYiCgMvpoKyo4JjIRCP5Obv6h1AUZU4lgK5r5GRmkJ2ZQXt3X+L7eLVJgGRB4trKMkoKE+lTbreb8847jw0bNpiDj4mzGtMVAC0tLezZs8ckAE7g+lnTNLKysrjkkkvMxmbirMe2bdvYunUr73vf+7BYLPzoR3fzwAOPMDExyW9+8xMWL17KQw89xMqVK6moqDBv2OlMAERjMbbsbmF8fOKs02lMVQFYUFcDQHf/EFe/8+1sePEFACxWK/c/+Hf+542vP+bX9geDbNnVgqpprzjXS0gGEaIosrC+ltysDPZ1dCfy/5PpBbph4LDZWLmwEZvNLFl1tmHL5u3c/NkvEwgEkaSEi76ixNi1dxPRWCR1XlPDctLTMk/ZoutIBMFU4J7wHEgG78nUgKmd/kTwP/O5M0JuAwwSKQS6oSd3s43k4kpNGR0q8TiKEk+RAkd7D6YrBxIeApYkOWBDli0pUkAQxNQFHQsBMAVvIMjA0Ci+YBBF1cAwKCvKp6Lk1UvZMQBNVYnEYoTCUTRdx26zkuZyYbEcX/nQSX+AweExRiYm0aeNf7puIFtlGmsqyc3MoKd/kPae/qkv4aQF9wdST2YWfDSSj1utVkoL8ygrKkgFOh6Ph+3bt+P1es3Bx8RZjekeAG1tbezcudMkAE4gpgiAiy++2GxsJs5qxGIx/vCHP3DRRRdRW1vLD3/4Pe6++w8sX/VjWvY+SV7uM/zrX//E7w/w/PPP84Y3vAGHw2HeuNOVAPAFQmzb04Lf73/li7TTLOFD13RqqyqYPy8h8feHIlx99Tt57JGHE5cpivzk57/i+ms/cMylrfqGRtjb1vGKd/+nAhPd0KkpK6WqrBhIqBVGJyZTCgBN18nJSGfpggbMdJqzbFCNxvjyl25n3ZPPYknuEgtANB6jvXMvPv8EALIsM79+GW5X2mmy6BLm7uoG6OjJvPcD3gO6Pt1HQE+lFDBN/j5XAIuRCMgN40ClDEVREqSAEiMejyeqHiS9DObClIfAXEj4CkhIkgWn04XD4Uw8R5Bw2mzoR0kATF1wLFmiUQAcdvvZaQZlwODoGAPDo0SSpfVcdjvFhXnkZSdcsnXDoL27j76hkUTKwZRHw5Fux7SGMN1XYroFAkJi7LTICZWHkDIeSLy4JIrY7TY8LidZGel4XM4Zb+HxeMyBx8Q5h87OTrZu3WoSACYBYMLEMWPnzp1s3bqVD3zgAzzzzDrefc2HKav8GsUlryMaHeb5Zz/AbV+/hhtuuInHH3+cvLw8lixZYt6405UA8AdDbN19YggAXdMSE8lpRADU1VTSUFOZWkC+7/0f4I+//13qnG997wd85MPXkulxHdNrN+/vomdg6BUZAE4F/5quU1qYT0N1BYIgEFcUNmzfQyQaQ0ymZWiaRnVZCTUVpWZvOcvw1z//jR/+4GfoqpZKw4nEIiiqSiQSoqu7BV3XsFiszK9fhsvpeRVK+p04gmB25QJ9BjmgG9pB/gBG6vUOds6bSivQNBVFSZRDjMdjxOMxFDWOoiipeyUIwhEXq4IgkpWVi8PhSpIAAhbZQiwe5/rrP3xkAuAcQzyuEE2mPThsVizyTFWBruuMjE8yNDpOMBxJmkwaB0wLZ978FFkjJstHSpKIJIgJgkaWscgSsiQhyyJ2mw2Py43NKqcMh6Z4AEkUkiUkZ8PtdpsO3SbOSfT09LBp0yaTADAJABMmjn2t+te/UlFRwdKlS3jd666kdX81K1begaZFkGUnbfv+jCz+mfXrHyccibJlyxYuv/xyLBaLefNORwIgFo8ndptHx87KFIDGuhrmVZaljn32s5/ju9+9K/X3LV+9jQ984IPUlhcf/YCv62zZ1YzXHzhuBcBUKKPpOoW52TTWVCHLiQXruNfH1t0tsxapy5oayEw3d67OJqx7+jm+eft38fp8KRO2SCxKXImnAtKBwU4mJ0cAyEzPpra6CYvFesYvvA6XXjCVWmBwgBzQUoaCyRSDKe+BOV5kiljTVAVV09BUhVg8SjQaQVVVFDV+yPuXmZGD25OOYRjIkoRFthCJRo5OAWBi7rFY1wlHY8Ti8aRppDFrQBSS5ouSJCaCfFFEkiVEQUAQE+UaX+kM5XK5zhjHcRMmTjT6+/t5+eWXk+VVJXoGhvEHAkmz1Nmw2Gzsa97Dz+754Yzj1/3vJ1i5cgUl+XnEYrFz+p6aBICJcwETExM88MADvP/97+eZZ9bx9ndcz8pVvyMjswFdjyEIMvG4j5de+BD3/vQm3vGOd/Hiiy9SW1tLbm6ueQNPRwIAYHdrO+2d3Wd2fedDLDqb6udRU16SOnb33Xfz2c9+NrX4v/lLt/K2d13DgppK7EeZWx+ORNm0cy9xRTn+naRkgFKYl0NDTeWMnbP93X20d/cdyP/XdTLT01jWVG8uXs8i/OeRJ/jB3T9lfHwilY8djUWJJYP/KQIgGk2oADRNBSA7K4+aykZkyZLImT9bB8VD9K0Z1QRS6QV6yodgKvXASBoPTr3O1O+xeAxVUVC1BCkQi8ZQtYSvgM3mIDsrD6vFChgpX4CjTgEwcdrCDP5NnOsYGRnhueeew+Fw0NbWxj0//knCx+hQY7AoEgmHGBwYmHG8oLAIT5qHxvp6PvKRj6AoikkAmASAibMYmzdvpr29nauvvpqPfex/uf+BDi665FcYhsaUmk+SnGzbeifLlvRy//1/oa2tjWg0yoIFC8wbeDoSAP5giN372hkbHz/7FAC6zqLGeipLD5hw/fGPf+R973tfyojshs98nre/693MqyilICfrqF53bMLL9ubWOct4H/GaDCNR4kuA4vw86qrLZ5TfMgyDTTv3zlAX6LrO/NoqigvyzJ5yFiAUDPOrX/6OBx/4J9FINFVDOBaPEYlF5wiERQYHO5lIqgAA8nOLqaqoT6WRnIND5iH8B6aXK0wQBbquoSUNCg1dT3VaRYkn7P4MEv4Bup6Qms+xGxaOhPn4xz/Gxz/xUbMBn4EwZf8mTMD4+Djr16/H5XKxefNmvvzlL7+i16urq+P73//+Oa0CMAkAE+cC/v3vf+N0Ojn//As477wLCUeuoGnhJ9G0cOocSbIzPPgygwO388ILD2Oz2WhtbWXlypXmDTzdCIAJr4+W9i5Gx8bPut3/qcB56YL5lBXlp4499NBDvO1tb0sFTR/8yPW845r3UlVeQl1l+VG97tDoODtb2lIltY60sEzsViZc/p0OGxZZJjcrk4qSwlnP9QeDbNrZjK7riZxlw8DtdLB8QQNWM4/mjId30svtX/8OTz/1DBaLJeH4DyiaSjgSSdWDP5gAiMXCdHa1oGkHdlpKiiopK6k5KE/exOEIAiNlPEiqjGE8HksaE055ECSIA3FaWVRd1ykpLaWmqta812cIrFZb6jt/JYjFYjQtaOTGT/2veVNNnNGYmJjgmWeeweFwsHXrVr74xS++otdbsGABd955p0kAmASAibMYuq7zxz/+kTVrzkOS7KxceQnz6u+gsOhiNO3AppUoyoTDw2x48SP8618/ZPXqFWzZspVly5Yhy7J5I08HAkDXDfqGhuno6cfr8521skhDN1ixuImi/AP5Jw8//DBvfOMbU67gb33HO7n2YzeQm5PFsvmzJfa6YSTdqw9A1TSGx8YZHBknEAyhJOtrJ940FX8ACTdqp91ORrqHnMwMMtLcWJI7vnNhf08f7V0z5f8N1ZWUTiMxTJyZCIXCfPOO7/Low49js9lSbUDTNcKRyGHl/KIoMjExzMBg14zjleV1FOWXndWpACeJHkj10el98YD/QMKccDohkyh3CIJgoKrqafeZEqUMp8reH346SZRG5LT8HMf6mQ/6YlNj8ImaUsPhCBdetIZf/Poes+OYOKPh9Xp55plnsNlsJgFgEgAmTBwVIpEIv/rVr3jPe97Njh17ueqq93PBxb/D46lG1+OzJuDnnrmOb9zxDj7ykevYsGEDCxYswOl0mjfy1SYAdF2nrbuX7r5BopHIWSf7n8kAwHnLF5GblZk69OSTT3LFFVekCIDXvu713PCZm/F43KxY0IjDbjv4JQ4p8zcMg2Aogj8UIhqLoShTtckT7tU2mxWPy0may3lULpiaprFxx96UK6+uJ3b/VyxsPO6a3SZOD0yMT/KDu3/Kfx79L6IopXaXdV0nFA0flaGfIAgMDfUwPjE0gxioKm8gP6/onHdjPqH0wJzqAZi++3+0kvJXGmQfDXN+vNPHkT6DIICiHP31Wywyx3MpR3v90/0cTuXiZ+35q7nnp981u4aJMxp+v5/169djtVrNFACTADBh4qgQCoW45557+OhHr+eBBx/hE5+4g8uu+BN2ey66PnN9IEkOXnj+Bj7xv0v44he/wIYNG5g/fz5ut9u8ka8mARBXVPZ399I7OEzsHAj+nS4nyxc0kJF2wDn/ueee4/LLLycejyOKIhdcdDGf+9JXsVqtLJlfR05mxqt2yWMTXrbt3Zda5Oq6Tn11BWVFBWYPOYPR1dnDXd/5IRte3IRskWcEMeFoBCVZM/5ogh/DMOgf6MDnG5824ErUVjWRk52PpmnmDTdhwiQATJiYhWAwyFNPPYUgCLS1tfGrX/3qiHPO4X6vqqri+uuvn9ME8GQtaU83Lw+TADBxtsPv9/Ptb3+bT33qJu7+/p/5/vd/y2VX/AlZdidNAA8iAJ67kWuvbeL2277Iiy++yMKFC00C4NUkALz+IO3dvYxNeolFo2d38J+YfUhLS2P5wkbcTkfq8JYtW7jkkksIBBIme8tXrebLt30TTdOoq6mivqr8VbvknS37GRwdQ0qqEzwuJ8sXNs6qrW3izMHg4DBfvuU2tmzejt1um7F4iSlxItHIMS1oBEFEVRX6+vcTCvlTx21WO3W1C/G4M1J1702YMGESACZMTA9WJycniUQi6EnT03g8jqZpqKqaKJGqKGiahqZpiXKq2lSVFX3W34qiEI/HDxvsC9N8koSj8Ew60wgBkwAwcS4QAHff/T1uuOGTfPFLv+APf/gbl11xH5JkT3kqHUwAvPe9jdz57S/z3HPPsWTJEpMAeLUIgLFJH83tnYyPT5w7ZZAMg4yMDFYsnCnrb2lp4cILL2R0dBRBEFi0ZClf//Z3MQyDzIwMli9omJUGcCoQDIXZtHNvoiSPICRy/2sqKS00c//PVIRCYb5x23d4/LGnsFgssxYquq6jqApxVUHXtKMm5QRBJB6P0tffTiQSTB132F3U1y7E6fSc8ySAbujomoqmqVgsNiRJPkerJZgwCQATZ9/yJmEsHAqFgESJyxMVXE+95tT7TAX7Uz/TCYCp31VVTZEIuq4Tj8dTP5qmpUiFqfMOpVQ7UWTBqSQFTALAxFkaQiX7UmJM+N3vfst73vN+bvrUD/nbg//kksvvQ5JshyQAPvTB+dxxx5d49tlnWbJkCR6P57DpgedykZ6TRgAMj03Q0tGNd3LyrHT6P9wEmZ2VxYqFjdisB/LvBwcHOf/88+no6ABgxarVfPn2bwFgtVqpqyqnoqTolF/vvs5uunoHkCQJXdfJSPOwtKl+RolAE2cOwuEwP/rBz3job/8GOCTxJggCmq6jKPEEEXCUefyiKBKNhuntayM2rXSgx53OvOom7Han6QlgwoRJAJg4w9cx03+fHpwfClNkwFzPmTKfPVT5WMMwTko+/xQJMKUaUFWVeDxOLBabRRZMJxOmfj9RZMHJIAZMAsDE2Q5NU3nwwQd53evexCc+cTcPPfRvLrn8j4clAD58bRO33fZFnnzySc477zxcLhdHWpIKwrlJBJxwAkBVVXoGhukeGMTvCyCI59ZdNXSd/Pw8li9omBFEx2IxLrzwQjZu3AjAkmUr+Oo370QQRXRVpaiwgKVN9UinkCyJRGNs2rmXWDyemqAW1teSl51pjjxnICYnvXz/uz/h8ceePGzwP9fiS1EV4oqCpmsYGAm3+sOQAOFwkN6+NhTlgBNrelomdTULsVisZwEJIBz41yzjbuIEBlQmAWDicG0kGAzOOD4lYT2Zu8sH7+yfm8HGzOBfVdVZREE8Hp+RqjD93MMF/icjHcEkAEycDQiHw/j9fgYHBxkfH0dV1dTa1TAM2tra+OAHr+Wzn7ubP/7xX1x6CAJAFK08u/56bvzkJXz+8x/jpZc2cMEFF6aMrxNVikwS4KQRAIqq0trRTd/w6Nlv9ncI6LpOWUkRS+bXz4obrrjiCp58MhGcLVi4kLvuuZd4PCHDTktPY8WCRlzTfANONjp6+mnr7k3l/hfkZrOgrua0M7sxcRSDaLLU338eeQLZYplRS/6oBoJk+oeiKiiqiqqpGIZxyLYgihI+3wT9A+0zZP+5OYVUVzYgCuJpL30XRXFOokM39NS1GxjTDfgPXjZPYwde/c9qGKTK8Z2sLny0rz39WqZPsHO9xvS/53reXBP1dJng1PPmep+Dz5/r7yMdO9J1H+76dUMHw8AiWzGOsZ2cDAIgHlfY39ZOcUkR6elp5sB5Ggb8R4sTIb8/2wL/Kf+AxNyVSFsTBAFRFNE0jXgshqqpaJqOxWLBarVgsVhPCFkwpSxQFCX1/5S64OA0hOlz43RiYC6ywCQATJxtCIVCNDc3097ezvj4OC6Xi+zsbKxWKzabDSm5eWqxWMjNzaWqqorbb/8e3/r2n7j08j8hy84ZJoCCIKHEfax/+oP84Q9fZdWqxWzfvpNly5YjCAJWqxW3240kCdNiNZMEOGEEQCyu0NLeydDoBLFo5JxNrNA1ndrqcubXVs967E1vehP//ndCmt3Y0MhPf/Vb4rpBOBTC5XaxrGlm5YCTiVhcYfPOvYQiUQQBrBYLy5rqcbvMmplnIn7589/x83t/iygKr8hvY0qiqWpJYyZNQ9e1OckAQRDxekcZHOqaseNfkF9KZVktgiCSiJ9PPyJA13V8/glisUjysybVD7qBpifLaiavPTFEGtMCxDkkrHMW7pwiDwQQjFfAEUy99vT/pz8kpK5PEISkgmPaacJBvx+KvziYPJjjI6UOzXEp06NmY1ZQLSAkn2RgHAic57jMQ8mED9lm57qMw4TaM64reeKcx+a+RYf86Ae/t4GR8NgA0tOyKC+tRZaP3hPiUARAPB7H7wsQjkQwdAOb3UZamgfnEcjj5uZ9/PH3f2XDS5t4w5uu4oabPnpKFWcmZo4/JyPoPpgUSBGZZ2iQr2ka4+PjDA8PMzk5ydDQECMjw8ndwlFCwSCRaJhoNEosHkNTNPQUASAm50MLomhFUVQUJYyiJIwIrRYLdocdj9tDRmY6ubn5lJQUU1lRRW5eAbm5eeTn5+PxpL3iz3CwH8HBqoJ4PD6DUJhOGsw1XgiCgKZpZGdnc+mll5odysQZAa/Xy/bt22ltbcXj8VBTU0NT03wcjiPHHY888ihXX/05Lrj4DzidBej6gQogomjDO7mHHds+y/PP/42cHA8dHZ2IYsJs1Ov1IkkSNpuVwsJiSktLUvPlwcqAc2lKPCEEwKQvQHtPL+OTvnO6LusUATC/vpbaitJZj11zzTX85S9/AaCiooKHH/0PEQ1GRsfIy8lmYX0tVsupcd7v7BugtbMntftfW1FGZWmROUKdgfjPI//lrjt/RDAYTDGnr3hgSAZqhmGg6VpKFaDr+owUAUEQmZgYYnCoe8bzCwvKKS4sBwRkSTqtVCWiKBIKBdizb+uMFAYTJk4mFs5ficedftTpMQcTAPvbOtjw8iZ27txDX+8AoVAIQzew223kFeRSWVlOUVEhaWkeXG4XOTnZlJQUk56Rxvp1z/GD7/2E3p5+BFHAarNx3Ufez3vf/64TNmaYOHoEAgHzJswRHHR3d9PZ2cnu3btobt5DX18vw8ODjI6OMbvinw1wIMkuJNGKKFkRBSuiKCOIFkTRgiDKiIKMIEiIoowk2ZAkK5JkRZQsCIKERbYiCBFisRHC4RGUuBdd92O362RlpZGTk01BQSH19Q00Ns6npKSM4uJicnJyTwrhcbBiYKrUYSQSSRAdybSEWCyGx+NhzZo1ZuMxcdpj48aNNDc3U1RUxMqVy0lPz0TXYfuOnWzbupnWtnbGRsdRFCVpAiricjmpqChh2bIFZGbmcs27byQ373pKSl+Lph3woJIkB50dD5Pm/jfr1j005/sHg0G6u7sZGEjMnZmZWVRVVVFcXIQoiikiwCQAjgHDY+Ps6+hh8hwz+zsUDF1ncVMD5cWFsx679tpr+fWvfw1ATk4Ozz33LFXVtYyMj5OVno7TYT8l1xiLK2zetZdQOIphGGRlpLFkfp1p/HcGIRQK8vjjjzMx4ecff/sPoyNjSNLJ6X/TyQBVU4kryowUAUEQGBnpY3RsYMbz8vPLyMkuQJZkHHb7YX0FTjV0XScQ9BGLR5Ku0kmCY5qEVNe1FOEBBoY+XctwYM8/MYIm/zp4a9g4sF98CI1A8h4f/PtcZx/8LGYoAA47LnH4nWzhoHedfWzme8w+NvMV536PQ7//wfdgrr+Prc0eRqRwhGNHs7t/NEoADANNUzGArIwcSourEEX5qD9VJBLh/AvW8OWv3swDf/07Tz2xnoH+IVRNTfU7gYRm0dB1NF0DBCRJxGKx4Ha7KC0toay8hI0btzA8NILFYkkFGhbZwmuuvJT3feAaKirLzUHVJABOKXp6eti3bx+bNm1ky+aN7N/fRk9vHwe895zYHYW4XEW43KV43OXY7TlYbVlYrOlIogPZ4kKS7IlgX5ASqjPEaSqI5I8wzdNl6tj0I6kUHgVdD6PExwmFhvH7evF62wkE2omE+4nFR7DIUfLzsygpKaamupqVK1czv2khlVWVZGVmnfj5VxDmLGU2VQlhqk+bMHE6IhqN8uyzzxIMBrn44gvJysqhs3OMX/zyPv7730fo7BxG0zJwOIuxWjIRJUuyL+poaph4zIuBl4ICJ5MTY1jt81m46IuAmJpLBdHC1k1fpLBwL5dfdhHRaBRJkknzpFNQWEBNTS3l5RWUl1cl+45Ka2sb7e3tCILA/PnzqaioSC3ZzhUB+ysiAAZHxtjX0Y3P50sF/8I0Oeq5yQAYrFyykILc7FkP3Xjjjfzwhz8EEsY+69evZ9myZaf8Erv6B2ntSOzY2qwWljTWk+ZxmSPVmTSoRqJ85LqP8a9//Qu73UlBfgluVxrGtPz1kzJgJOXZM0wDkwHz4FA3Xu9o6lxRECkqriIrMw+HzY54mo2qh/IASJEEs+7llIR9jiD8REStxzfgcO64FB7rZ321742R2u2XZcsx90td18nMzMCT5qGzowtBEJCmqWkSwQ5EoiF0XcfpcCWnICP1fE3TMXQd2SLP2umfKqNWXFLEBz/0Ht70ljecdn30bMPjjz9ORkYGlZWVOByOc+qz9/f3s3fvXp599hk2bnyJluY9THrDyUfTSEuvIju7kfT0+bg9FdhsBdjs2ciyE0GUp9uyHmHANaZ5t0xP3zIO2U8TfUZPnickvQOkVB8DDUUJEYuOEw73MznZysT4Lvz+/UQjfUhSmJKSfBoa6rngggs477zzqa9vOGE1yE9kuUUTJk4lHnnkEWw2K5dffgVeb5Tv3f1bfv7z+4jH0yguuZSCgpW4XMXIFtch5msDRQkRDPQRjw9jGDEyMhdjtaZjGHoyHSZGT9dfycpyEYvF8Af8aKpCLOYnFhtDVcdxuzTq6vK48MLVXHXVa1iwYBEAnZ2d7Ny5E6fTyapVq0k7RWnYZywBoGoavQNDdPQOEAwGZwxKQwP9uD0e0tIzzr1yYIaB0+Vi+YJGMtJmD/xf/epX+drXvgYkSv+tW7fulMu3YnGFLbuaCYRCSJJEY20lRXm55ih1huGvf/4b9/7k1wQCfiYmR5nwjpKelklRQRmSKCfMx5LBwMlYNEwRAZqelCzqOnElTl9/O37/ROo8SZKpqmggL6dwhlngGTREHvmIcI7G4yaOYWo4PlZoqua5LFtSuxKJQEAkFosyONzDyNgAhm6Qn1dEaXF1Mmg5+veLx+PIssw7rn4L//uJ63CcIiXauYilS5eybds26utrOe+8tVx++RUsWbKUkpLis+6zxmKxZMD/LOvXPcXOXdsYHfUBYLHkkZ3dRHbOCjIy5+NwlWO35yJJ9mmB/kFUq2FgGCqaGkXVwihKCE0NoKqh5E8EXVfQ9Tgk5z9BtCYCfF1NjcuSZEeSHciSC9niRhYdSBYnsuxClp2IogWmAn9DT5HqCYMwKUUMGIaBqoaJRoYJBDoZG9vB2Nh2gv42ZNlHVVUxy5cv4/LLr2TlytWUlJSYRICJcwr79u1jz549vPGNb6CvL8onbvghmzc3UzvvLeTlr0KS7Oi6imGos1z9Z643xVTfMwxtRv7/FETRCkgHPJCS44hhaMTjPiKRMXzeDiYndoDRyvLl2Xz60x9n1aoVGIbB9u3bGRgYZMWK5eTl5ZkEwJyLBUWhtbOHgZExouHwAWmVIBCPxWneuxO71U5tXQOiLJ32TuAnmgBIT09nxaJGnPbZi6gf/OAH3HTTTan79dRTT3HJJZec0kvs6O1P5P5LIrXlpVSUmHn/ZxpefGEjX/3yHUxOerFarYmc9nCQ3r52NF2noqwWp8N9SPO+k0UGAARCATq7WwiF/KnHrVYb1RX1ZGXmn3SFggkTZzMSbuYqY+MjDAx2EY7ONHarrW4iL6fomMk2TUsQDW952xv49Gc/cc7tTp8q/POf/+Svf/0LzzzzMgMDXQBkZ2eyfPkaLr/8Si6++ALq6qrO2M8XCATYsmUL//3vYzzzzNPs2dOSdNv2kJu7kILC88jIXILLXYXNloMgTPc8mjIs1FCVMLH4BNHIMJHIAOFwH+HQAPH4GPG4D02NoBtawuFfsCJbXFgsbiTJjcWahs2aidWSgcWehdWShiw5EERLilgwDAVVjaCoITQlhKoGMUiU8hOxIFs82OzZ2GyJlAOrNT1BDEByDtOmpcDJyeBEQNfjRCKjBPxtDA29zOjIy0TCbeTnOVi2fDmve92buPjiS18xGeDxeMzOZOK0x9///ncKCgpYs2YNf/7zOr757S3U1r4HSbaiKCFOlVxyOnEHIsHQAC17fkUwuI5Pf+p93Hzzp5Ekid7eXlpbW6mrqzshhN1ZRQAoqkpLRzcDQ6PEYtE5FycDfX309XaTV1BARWX1OaUCMHSd3NwcVixoxDKHmd/999/P1Vdfnfr7P//5D1deeeUpu75ILMbmnXuJRGPUlJdSVVZsjlBnGLZv28ntX7uT7u7eGbl/oiCiGRp9A134fONUls3D48k89bvuBkz6J+jqbiEai6QOy7KFirJ55OUWJXdyTBLAhImjX8CICAL4/F76BzuZ9I7NeZ7L5WF+3dLjTjnQVI23v/N/+PTnPmHmFp8kdPfAHd/YSUtLG5OT2xgYeI6JsS1ACKfTwerV5/GmN/0Pr3nN5WfEIjQej7N582b+8Y+/8+STj7F/fw8AdkclBQVryctfQ1p6I05nAaJoY0adDENHiQeIRAYIhroJ+PYl8u0jA8RjPgw0ZNmFzZqJzZ6Lw1mEw16AzZGHzZaFLHuwWDzIkgNRsiUMAAVpxoR0ePk/GOgYuoamRVCUAErcSzQykriGuBdNiyKIMnZbFg5nCU5nKXZHARaLO6kE0FKEAAiIopQgNgQBVQkTDnYyPv4ig4NP4vPuIivLwQUXXMLb3341F1xwIW73sadfmgSAiTNivbp9Ozk5OZSUlNDb28v1H72Ntv351NW/G7sjB12LYxjqqZ9Pk+agw8Mb2Ln9Tj79qTdw661fABJmpM3NzSxYsOCEpfCc8QRAKByhtbOHkYkJYtHYIRYpArqm0bqvmVAoSFX1PLJyclKlkM526LpOaXERS+fXzbnr+sILL3DBBRekFmYPP/wwr3/960/Z9bV19dLR209NeQnVZSXm6HSGYcNLm/jWN+6mt7cPq9U6Z/8TBIH+wW5Gxwaprqg/5SSAgIBm6IxPjNLbt59YPDLj+ooLKyktrkhKuXTzSzVh4giQRIloPMLgUC/DI32o2uEXTOWlNZQUVR4X+a7rOrqu8/EbPsL7P/hu8+af8GBZ50c/DvPU06PYbIlUDV2PEwr1MTmxjYH+pxgafBHwkZWVxpVXvo5rrnkP559//jFXawgGg7S1tdLd3YHXO4HVaiUtLY14PE7A78ditVJYWEpVVTXl5RXH/Fn6+/v5xz8e4v77/8K2bTsBcDobKCm7jLz880lLq8NiTUdAPBCM6yqx2ATBUCc+7x4mJ3YRCnUSj3kRJRt2ey4udwUeTw1udzl2e8IHwGLxJCS+gjAtlteT/jN64vdUnH885LKQFLOKiV3C5Pvoepx43EcsOkIo1Eso2EEsNo5u6NhsmXg8tXg81TidJckcZpKSZm3anGxJkhIxopH9jI+to7PzUQL+VmpqKnnLW97JO9/5LiorK00CwMRZhdHRUbZu3cratWtxu93s39/Bl798O0891UFh8VsoLbscuz2RgpxQ1kylAsxV+jKxe5/oWydmA0mWnXi9HbS2fIPvf+8DvOWtbwESSqZ4PE52drZJAEz4/Amzv0CQ+LQyf2KyhNx0iKKI3+ulrW0fFouFuvpGrDb7ObHY1zWdeTUVNNbMLeHbsGEDa9asSd2zU0kAhCNRtu7ZR3F+rlnu7wzEnt3NfOFztzIwMIjNZpsRcCcSnoREHxMEREGgf6CLsYlhaqubcDpcp1SJIwgCcUVlwjvK4GAnkWh4xuM5WQVUlNVisznOUF8AEyZOPhKliQzGJ4bpHegkHA7OOicjPRunK42hoZ5UX7JYrNRWLyAjLTOhtjnG99U0DZfLxW3f+BJrz19tfhEnEB/72MdZ/0yUtPS1ZGTWY7fnJitDCMlFsEY43M/Y6EZ6eh5hfPRZQGfNmlV8+MPX84Y3vAG7/fAeDV1d3fz+97/h0Uf+SU/vEFCMw1mI3ZGFy5WOrsUIhyeIRsYIhfpwuTVWLF/Ou9/9Xl7/+quQ5cOXIm5ra+PXv/4lf/3rfYyN+bFYSigrfx1FxZeRlt6AxTI9OE0YeIWCnUxObGd8bAuBQBuqGsJmy8aTVkNGxgI8afNwOouw2bOTKoEkYTBNbn+K3VWnEQPCQXn/ISLhQYKhLoL+ViLRkST5UUx6egNuTw0OR16S5FaTc2+ybopoQRRkRDFIwL+Nnu5/0tP9BE6nxmtfexXve9+1rFmz5ohpeyYBYOJMwdatW+np6eHyyy/H7U6kpv7pT3/m7rt/TmtbhIyMxeTmLSUzax4ORz5Wa0Yyn58Z44CmRYjFxrFY0pEk+yscDwQkyQoITE7uYPu2n/G2t1by85/dlTpjZGSEtLS0I463ZzUB4PMH2dXazvj4+Iwyf6IoMDY2ht/npaKiCiG5WEk8JtHX08lAfz9ZOblU19QmJ7ezW/ar6zqLGusPGWC/9NJLM0z/ThUBYBgGHb0DWGWJ0qICc0Q6wzA56eULn7+VTS9vxe6wgQCGbqS+20nfGBbZQkZ6TioIEASRrp59hCJB6msWIknyKe9/0XiMYMjP8HAv/sDkjMfcrnSqKupwu9JfxcWdCROn4aScNPkLhQMJIm98iIPDeLvNQW5uMR5PFqIg0DfQjndaWkB2Vj6V5XVYJMtxmVLG43HmNzXwve9/k+ycLPNLOUG4++4f8b27/8bkRF+iTFVaHbl5a8nKWYbLVZrKM4dEPnnA10pf/6N07H8ITRti2bJFfPKTn+bNb34z4kFll8PhMD/60Y/4yU9+xOSkQknZG6ipfiM2Rx0WiyfppD9lEKmjaTHC4SFGhl+iY/8DRCK7ufjiC7nlli+xevVs4qe3t5cf/egH/PGPvyMYjJGdcyGVVW8nJ/c87PZsDpQANVDifnzevYyOvsDE2GYikWGstgzS0hvIylpORkZDctfcnXyeflCwfLr3z6QhGQaqEiQc7MHn34fP14wS92GzZZORtZCMjCacziIEQZqhDEikCtiQJYjHe+jvf4z9rQ+iKN2sWXMeH/rQdbz2tVfNIPtNAsDEmQjDMNiyZQstLS0sW7aMhoYGAILBEA8//F/+9a//sn3HHvr6vOiaDZs9B6s1A0l2IssOJMmR8LkK7sLpKmB+0y1Ikm3aprKBIEiziMNUNRCmpkAxmUonomtxfP59dOz/E319G3jn1TfwrW+8m5KShOQ/EAiwdetWVqxYgdPpPDcJAF8gyJ62dkZHJxDEmasIUZTY37aP8bERyssrKSwuQdO0lCGYqsTZ39ZKKBSkvLyS/MIitLM9FcAwWLV0EfmHWDBt3ryZ1atXp+7DI488wute97qTflnhSJRILEZ2Rro5Gp1hUBSF7911Dw/e/4+UE3hMiaMoCvF4FK9/gng8QiAwSVV5wm1f07WkIZHGvv27sNudVJXVpSoDnDJCzDAIR8KomsroaD/jE0MzSAiLxUphfhmlxZWpUoKvxmJu2l/T/p1xyMSp/2Y4upIKxhznG6/qNQvH2GgMSJljiqJEPB5leHSAweFeFGVmup0kyWRk5JCdVYDVakfXNQRBJBoN0t29L5UeIEkyFeX1uF1pOGz2YzYCNQwDVdP4+Ceu4wMfeo/ZHE8g7rxrkocf2U4kvJvRkZfwenehaVHS0mvJy7uInJxVOF0lSWVAApHIEAP9/6G15ffEYl285opL+ML/fYnly1cA0NHRwQ03fJznnnuBgsKraGj8BGnp9RyQtgvJAFtNLoLl5I62jiCIKEqAvp5/s3PH97DbfXzta9/gox/9KAChUIhf/vIX/PCH32V01EdR8Rupqvl/ZGYumrYTlwj6vb69jAw9w/jYJuLxSVzucrJzVpKdvQJ3WjVWS3qyfWlJue+ZT/weMAIU0XWFSHgIn28v3skdRKNjWKzpZGevICt7SUrurOvx1GcXBBlRsqKpXoaHnqGt9U/4vVtZvmIBH/3oDbzxjf+DzSabBICJMxodHR1s2LABWZapqqqiurqajIyM5BgTZ//+blrbmmlpbqevbwyfz4+ihCgqKqR23nzu++NviSqvobb2vWhadFosKtPZcR+KEkKS8nG58nA685AtrtQYOqUgiEaGmZzczeDAS4yP76G0tJEbb/wCH73+IqbifL/fzzPPPMO8efOoq6s7u1dZhyIAhscmaOvqYXx8YsbO//RBT4nFaGnZi6qo1NbXk5aWQSwawTB0bHYHPq+X/W37kCSRurpGHC7X2WsKaBi4PW5WLGzE45rb1GXTpk2cd955KQLg0Ucf5aqrrjq5lwWoqoZFlswR6AxDPB7n3h//ij/d90ByoBPRdI1QJJwKmMfGB/H5xlDVOCBSWzWf3JwCNE1DFEXC4SD79u+irKSanKx8tFPpByAIxOIxIvEYAjAxOcLwcO8M2b8gCFSUzaMwvzQVeJzK65vKeZ4KwHRdRze0A8ZRBjN2X41ptaWndzLjqHvj1GscFLcec6+e68kz/z44HJ6rWuGhHpt57NAXOdeVzFU4cXppnkO994zXmhb7p841kkVnko8ZhwjBj+auHe7YsdyjWaSXpqLp+jFI7w1EQSLNk47FamdycpS+wS6CQd8c7VWkIL+U7OxCDCPRboVUFR6RkZFeRscGUudnpOdQUlKDy+6YtVt8NFBVlYKCfL77/TuonVdjDsgnCM+/EOZbd/YhijKiCPHYBD7fXkaGn2d8bCOKGiA9vZ6CwteQk7MKuyM/mZcO0cgo/X3/pnnvr7HKo3zms59l7doL+cQnPsb+/Z0sXPQVKqrekyoFqesKPl8L42Mb8fta0fUIIGGz55KVtYTs7OXYHXkYho4oWvH729i+5ctMTLzMzTd/gUsuuZBbb/0SGzZsI7/gSurqryUja1FCqWCApoXx+/YxNPgUoyPPE1f8pKXVkpt3IVnZy3G7yxAlGxhacgf8bE8FFRDFBMFiGBrRyAijoy8xNPgkqhIgLb2BgsLLyMxahCw70fQ4xjTVnija0LQoY2MbaNv3RyYmXuKCC17DxZd8hWuurqK4WDQJABNnLHRdp729nfb2hKpckiQyMjLIzMygoqKcrKxsLJbZ/lZe7wRXXPEmnJ5byMlZiq4fIMYlyUF31wN0tn+LBQsX0tnRzdhYEE2TQUgoXw1dQ9NjGEacNI+HhvlLuPK17+R973sjFeX21NqzpaWFPXv2MG/ePBYuXHjWfx9zEgBDo+O0tHfh9/tTZf7mgiRJTI6Ps39/K26Xi8rqWlRNxWF3JHKRRZGBvh76+vpIz8ikdl7djJJhZ1f8b5CdlcXKhY1YrXO7J2/cuJHzzjsvRYI89thjvPa1rzVHBROzEI3G+MH3fsyDD/wLSRJTC3hD1wlGwondfEFAwGBsfIyJiVEUJYhFttJQtwSPOw1d15FEiYHhXkZG+2mYtwSLxXJK+59hGIQiYTRdQxREfIFJhoe7icdj0yMbivLLKC2pRhalU6JUMDAYHu5jdGIYTVMx9GS+KdOVCMaBYH2OgO7Q99E4bOB8/Lf/XCqpOkdUPj0iP02VGcfbt1xODw6Hi/GJkVlBktVqJzeniFA4AIZBcXEVoiAiiAKGbqT6i6LE6epqJp5UDQiCSE31fPKyC46beI/FYrz5f97AF7/y2WM2oTNxqLFd53vf72Hd+iCyLGKxiEnpv0A87sU7uYOBvv8wPPIsomChoPBySsreREbGfEQxseMejQzS0/MIQ4OPEo20EImqrFr9PQoK34CmRxGQ8E5up7PzrwR8LbjdFWTnrMLpKkbVongndjIxsQUQKC6+kuLSNyfSBAQRJe5n65bPMzT4JNnZ5YhyHXkFF1BSciVOR34qsB0aWk9/7z/x+fbgcldSWvoGcvIuxOUuRxIt6HpCcXAup3clpMkWlLificltDPQ9yuTkDqzWTEqKX09B0RU4nIXoupKqbS4IifQAw1AYH9tKd9d/yM55Iz+79woaGySTADBxloyDUbxeL/39/UxOThIOh/F6vUiSRG5uLoWFhTQ0NCDLMk8+8Rjvfd/nWbzstzid+clxJQFRtBAM9NG85wb+8pe7KC2toLW1jb6+XgKBAJqmIUkymZnZlJRWUVhQRm1tQSq0VVWF/v4BWlpaEEWRJUuWkJOTc26MTwcTAF5/gN379jM+4Z0l+58LoijR29NJf18fBYWFM0r/CYKAoet0tO9nYmKMsrIKCopLzsqqALquU1JcxLJDVACYIgBWr16dWiSe6jKAJs4cMunen/yaX/3id8iyPGP3TtM0QtFwKm9eECy4M97O5OQAHW33oqohPO5sGusWIElywsnY0Glp24Hb6aG8bN6prQowpQJIlg0VRZFIJMTgUNcsU7PMzBwqy+pw2J0nVSmUMCmMsWvPJmLxqNngTJyWEAWRzMxcsrMLsdkcBAKT9PXvp6S4hrycQmRJSqpXDHTDAAGGh/vo6dufeg2PJ4P6mkXHTfxNGQJ+53u3s2z5YvNLOUHo7/fx8CN+1j0TZGJCR5JAloXkLnDC7T7g309P94P09T6EogQpyL+Yiqr3kJ2zEgMIhgZp3v1thgYeZenyb1FecQ2qGgYEerr/xujIM2RlLyc393w8aVWIojVJLgkgCMRjE0yMb2No6GkMXaFm3vW43eWAgKL4ePH5awkGO1i89E7srmKsljSsso2+nn/Q3fUA4XAPWdkrqKz6f+TlX4jF4k4Gsud20D/3nDNF8hgEgz0MDT5Bf+8jKGqAwqLXUFb+TtLSqpKkiTL1LCTJioFBOBTn9q/n0thgNwkAE2ctwuEwsVgMRVHYtWsXK1euxOPx8O1v387d33+a1Wt/O2WXOr13IQgSzz/7YT7z6bXcfPOXjvg+sViUyUkvvb29DA4OIssy9fX1VFVVnVvj0nQCQNN1du/bT2d3H6J09JJBQzfY39qCP+CnqqaWnJzclMxdFEWUWIz9ba1EomHq6htxuT1nXSqArunU1VbRUF1xyHNMBYCJo8H6p5/jtq/fScAfRD4odSMYCaFqKgIChhHHYptHWuZ7ESUHwwP/oW3fPeh6nJKiGspLq9B1DVGU8PrG6ehupq5mES6H+5T6ARiGQTAcSr2nIIioapze3lbCkdCMc51OD1XldaSnZZ50X4Cx8SFGxgbRknnTxtQuvzFVUiqhAEjt/c/4fZpK4PCfPnX6nFL3o7+LB/4TOORrvuIJgaPLpD+cnN84wvlzvd9JbH2cSrnAVDrJkQioKSXcodq30+lJmPy502ec192zD0mUaJi3GEmSDuQRIyCIAooSZ+++bQRD/tTxmqpG8nKLj5v4i8VivO0d/8MXbvk0omiaYpwIBAIBAPr64jzxVIiXN4QYH0+0G4slkbcvihYEUSYY6KS3+0F6e/6FongpKnkdJaVvIxDoYNf2L1JS8nqWrvw+hq4gihY62//IxPgW5jXeRJqnGl2PzxmUT5ENhqHS3fkAo6Mv0Nh0M05nEaIoMz62iRee+39k56ympv4GxkdfYrD/YcKhPrJzllNR+R5y885Hlp3oevS0VnZObcoYBrza5EQi9cOKovgZHlpPR8cfCAe7KSx6LVU1H8DjqU7Ilaf112jU4Pav55kEgIlzAqqqcv/993PZZZeRn5/Ptde+l6eeFli+8i40LTLrfElysPHlm3ntawR+8Ytfo+s6fX196LqO3+9H0zRUVUVV1UQZ1EAAi8VCVlYWFRUV5ObmnpP3eQYBMO71sX1vK6FgcJb0f66Sfwcek4iEQ7Q070EUBerq52N3OFLni6JIOBRif1sLVouVefUNCKJ0VqUC6LrOsgXzKS3KP2oC4L///S9XXHGF2dtNpLBzxx5u+9q36ersxmKZnUpygADQEMUM3BnvQrIWg6EjSXa6O35Pd+cfkWUr8+uX4nZ5UrnCbe27kWQL1RX1p5SAMwyDYCQ04z1FUaS3t41IJISmaWjTJF0Wi43K8nnkZhUcJMk/0YtCMZn7r8+I6RNEgJE6YGCkrt0wjFRCunGoAJ2DM/HniH4PE/kac0blr+weHCrX3ZgjmD9RYfSRnjOTPEia5xlgCAeC2rm+ewEhcY5BynDPwJj2YtPM+ISpb0qY8/Mf6t4cOf8/WdZr6r2T16LpGrqupcikGY8nA/9wJMTY+BDhSHDW57NYrGRl5ZOZkZes3JHY4ReSKXV+/wR9/e3Mq15Adlb+rKBeFCVGRvtp69iTOuZ2pdFYtxRZlo9bBZCZlcHt3/gKy1csMQfpE0gATKGnJ86GjRE2b43Q1RVHVRNEgCgmiQBBxO/fT2/33+jvexhJdiFKdkKBNtac/weyspcBMDjwX3p7/s78pltwuUvRtNhRBceiaKOj/Td4vS0sWPhFJNmBKMhs3ngDQwPryMheit+7m7T0eiqr3jttxz/2Kq/jDpgcTjl8k6p0MD2gCGMYGpJkP1BiTDjApL4apoSCICJJdjQtwtDA07S23ksk3EdF1bupqv4AdnsuqhoBDJMAMHFOYWxsjAceeIB3vetduN1urnztZQwMn8/8ppsOSQBs2/oNmho7+Oc//4WiKKxfv5558+bhSMaiU31bkiTsdjtut/u4vHHOWgJgd2sH7Z1ds0z/RFFEUxQsNhuqqs75QpIkMzY6TMf+NtIzMqk5KN9fkiR83knaWveRn59PSVnlWVUD3OFwsKSpnpzDOO0fTAA8/vjjvOY1rzF7uwkAdmzbxTe/8T3a93fMGfwnpOsK4WgQkHClvxWrYxEY8eTjErqusHv7Lfh9zeTnlVFTWYeu64iiiM8/SUdXC3W1C3DY3afEkElAQNEUQpHwjM+haRqdXXvJzsjF48mgvasZVVUOjCeiRElxFcUF5SAIJ/FaBY7NIF04iiNH9TQTZ++0OusvQRTRNJWR0QH6hrqJHqR8AUhPzyInuwiHw4VhgCgk5l5RlFFVJWXg2d3dgiAIzK9fNkMFMNW3dF2jpW0nXt946nhVeT1FhWXHXYknHo+zfPkSvnP3HXg8bvMrPsEEwIHjGjt2xnh5Q4jdu2P4AzoWC0kfmISEfGTkedrbfsvoyLNkZCxg7YX3IUkOwuEBtm7+NPUNN5CXf1EyHeDog1EQ2Lb583jSaplX/78IgkhP99/YuvmzOBzFFBRdSUXlu0hPr0HToqfc0G96+b0UtWZoaFoMVQ2jKH4ikQHCoX7isTEUNYyhK8mKFiF0TUEUE4o6UbLhdBTgdJVjsXiwWbNwusuwWNISxECSFDgV6QyCICBJDlQ1RE/X39i370dIkoP5TTdTVHwluq4SiagmAWDinMHAwAAPPPAA1157LdFolMsuuwTZej2VVe88JAGwe9ePyM16mqeefhoQ+Mc//sEVV1xBZmameUOPRAAEQ2G27GnB5/XN2P23WGT2NTfzp9/9hne//wPMX7CQSGTuvFlRFOnp6mBwYICy8gqKSkpnLDgkSWKgr5f+/j5q6+rJyMg8O0oDGgaetDRWLGzAfZiakRs2bOC8885LLdhOpALA6/XicDgOWTfWxOmNlpY2vnzLbXS0d2GzWQ8TWhhE41Gwno/DdSEws26yKDmYGHuJvTu/jizLNDUsx2l3puT3za3bSfOkU1pcc0oIOEEQiEQjROOxGY7lsViYjs69VJbNo7iwnLGJETq79xGJzgyMCvJKKSupxmKxnlWEoYlzZIJN7vr7/ZP0DXQx6RubdY7HlU5BQSlpnkzEpDJOFIWE0V/y+Qe8PyAQmKSnt5XK8jqKC8tnzaGiKOL1TdDcui1FNtttTpoalmG12o8rcEs4KRt8/v9u4q1vf5P5xZ4kAmAKugGdnTGeeirESy+H8Qd0bDYBQRSJx0MMDb/Azq2fpbDwclasugcEgbZ99xIMdLF46R3JPPJjC1wlycbk+Db27rmLJcvvwuUqZXx8M8+tfzuFxa+jat71OO252G0Zp2inXEAUJQRBBnQUJUwsNko0Okw41Eco1EMkMoQSn0RVo+h6FBCQJTuyxYUkuZFlJ5LkSCgaRBkMA02Po2kxlLgfVfWjKAEMQ0MULYiiBaezlKzsZXjSanG5ypFle4oMOJmkR0IR4CAc7qOl+Yf09TxEWfk7mL/gZhTFxte/mmUSACZmjsmpn0TYNjVfHGvZ19MN/f393H///Vx33XV4vZNceullZOd+heKSK2aUAJxOADTv/Rke5795+umnkS1W/vrXv3LVVVedM4Z+r4gA6Ojpp62rh1hspju31SLz83t+wEMPPkBxSQmfuvkWFixaQjQanXOxo2s6ba3NBIMBaufVk5GZlVqgTCkC2lr2oigKdQ3zkS3WM740jGEYZGdmsmJh42GDtw0bNrBmzZrUouzJJ5/ksssuOyHX0NHRweDgIIsXL8Z1iDKEJk5P+H1+vvzF23nu2Zew2w9H4BgYhoIr7Uok+xWEwkPMmVUtCOzZcSveia3UVM0nP5n/K4oSfQMdjE+MvCJJ8LH2jVAklCiNNi1A8fkm6OvfT2PdUjLSswEIhwN0dLXgC0zOeI30tCyqKupxOtwmCWDijIEoSsTiMQaHuhka6Ut5TUxBli1kZeVTUlSRIOmm9ZG5+qWm64STFUB6eluJx6MsaFiBzeaYNYcKgkBbxx5GxwZTx4oLK6goqz3u9J94XGHp0oXc9f07SEtLM7/gk0gATEfLvhj3P+hjx84oNqtINDbByPBL7Nz2eSoq35UK+Ldu+izFZW+ioODSORfJRxNwC4LA1s2foaz87RQUXoF3cifPrn8rWTlrqKn/BE57Lk5HzslLyxIlREEGQUDXFCKRYSYntjI+vplgoJ1IZBhdj2ORXdjsudjseTidRTidJTgcBdhtucjWdGTZhSRZU4qBREAkzjGf6uh6HCXuJxodIhTqw+fbS8C3j7jix27PIz29nqyc5aSl1WG1ZmKgp5QFJ2fcSHgE9PX+m21bPk92zkrmN93Ft79VQ32dbBIAJtB1HU3X0TQtKW8/QABIkoQkislylGcmETA4OMif//xnrr32Wnw+LxdffBn5hbdRXHLZYRQAPyQr40nWrVuPrhvcd999vO1tbzMVAEciAFRVY3tzK/0DgzPk/4IgIMsSP/rud/jPw/8CIL+ggE9//v9YunI1kUhk1iAoihLRpB+AJMnUNTRisdkwpvkBhEJBWvbuITsnZ0bVgDOWANB18nJzWLFoPvJhSiVNTwEQBIEnn3ySSy+99IRcg6qqbNy4EUVRWLFiBc7DKBFMnF7k0c9+8mt+99v7UguwQ58bw+5cRXrORxFFBz5/O9HYRFK+OXMwHBp8nNa93yUvt5TaqvpUGsCkd4zW9j3U1TSRkZ59ct3255D/T40BQ8M9+HzjLGxcgc3mTNahFlGUON197QyP9M14jsPuorK8jsyM7JNuDmjCxCtbwIsYhsHE5Ci9/R2J8n0HIS0ti9ychNzfYXdgEeUj2kkKCKiaSjgWJRj00dXdTEFeCdWVDbP6sSiKBII+9u7blkqtschWGuuX4HalHVe/n/Ii+ORNH+Vd7367+UWfIgIAIBjS+clPx9mwMYaBj5HhZ9i57QuUV7yLpcu/TSQyzI5tX6K+8dN4PJUzymQdCyTZwd5d38LpLKG65kNMTmznmWfeSlb2Kmrrb8LpONEEQGKXXxQtGIZGJDKK37+PifEt+Lx7CIV6EQCXuwy3p5q0tDpc7nLstjystgwkyZ5UCBjJgN7AQE96pkwr43rIvjXdQ0BOzKWCgK7FCIcH8Hn3MD62Cb+/BVGUycxaSn7+RaRnNCLJTgw9fpJIaQGLxc3IyAu89Px7yc1/C//657001FtMAsAM/lFUFVXV5hzHEySAiNViOWNJgOHhYf7yl79wzTXXoKoKF110CZnZ/0dZ+esPQQA42bThZpYtGePvD/2L0dFRHnvsMd7xjndgt9vNRnM4AiAUjrB17z4mJyZnmf9ZrRa2bd7I7bd+iXAosZDPzMzkYzd+mosuu5xYLJ4K7g98GTLjY6O0t+0jMzuH6urahBnTND+AoYF+enq6qa6pJSsn94wuDajrOoUF+axc2HjYznYyFQAAwWCQl19+GafTyYoVK+bMIzdxeuH+v/6dn/zol0QikcPW2TaMGBZbPZm5NyDJOYCKqkaZ9LVhGCrT845F0UI41Mf2LZ/B5ZBprF+KmHQJDwR97G3ZSkF+KeWltSd9Rz0ai86Q/0+hq6sFWZaYX7+M6XZrCTLDYGCwm57+jhnXJ8sWKsrmkZdblMzRNEkAE6fRZCqICAIEQwEGBrsYmxie1UZtNgc52YWkp2enTChdDicWyXJEAmBqcReLx4nGo/T3d+Dzj9NUv4z0tKyUR8D0czt7Whkc6kkdy8stpqay4bj7jqqqFBTk8627vk5jY535pZ8iAgDA59P51W+8PPfCBOPjL7Jz26fJyVnNeWt/QyjUy66dX2PBwltxOguOe1yXJDv7Wu4BDBrnf56R4Wd5/tl3UVzyJsqrP4DTkYvDnv2Kx15BlJBEK7quEg71Mz6xhdGhZ/H69qCpUezOQjyeOrKyl5CdvQSXswhBsianCT1pjqmdRFf/A+kHhqETjSaUCEODz+D3t2C351JQcDl5BRfhdBZhoKFrJ94vQJad7Nl9J4MDW3jsP39l4cJskwA4h2EYBoqqEo8fWYFiscgpEuBMw+TkJH/5y1943eteR1qahwsuuBDJ8iFq5/2/WQSAIIhoepxnnn43N914BV/96u3s2LGDvr4+Xv/615uN5kgEgNcfYNvefQT8gVkEwJQK4OF//J2f3fPDlJzfYrFw7Uf/lze//Z2oijqLiZIkib6ebvr6eikvr6CwuGR2KsC+ZqLRCPUNTVht9jM2FUDXdUqKCli+oPGw501XAIiiyBNPPHHCFABT6O3tZefOnVRWVtLY2Gi28NMY//rHo9z93XsIhcLIsnyYQV9BthSRkXsjFms5Rsr0TyQYGiAUHpyhAhAEEV1X2LHl8+hqHwvmr0aWZEAgHo+wa+9m7HYnDfMWIwriUQUexztZhSLhGYGJIAjEYlE6OvdQkFdMVXn9nIGLIIiMjg/S2d2KohxISxIFkeLiCkoKKxEFIVH/3ISJVxFTC6xwJMTwSD+jYwMo0wwtIWFqmZmZR1ZWPlarfUaA5rQ7sVosxxRUReMx/AEvnZ178XgyaKxbMsN0d2ociMbC7GnZQiwWTV1HY/1S0jwZx63+iUVjXPaai7ntji+ZnjOnkACYwh//FOH+B7fw8gvXYehx1px/Hxargx3bvsL8Bf+H211+/AoAyU7z3u8iiU7mN32Otn0/ZceOr1JT9wkKiq4gzV2B1ZqW2GVP1eCYGu91NC1+yCA4UW0gkSIZjY4wPraJwYHHmRjfjKrFcHtqyMxaRkbWYtLT5mG352CRnYCR7C+v3lgvCFMqBZVAoIuRoacZGnoaVY2Ql7+WkuI34MmoQ0A87D049vcV0LQYwaCPO7/VaHoAnOPQNI1oLH5UY7cgCFitFiyyfMapAOLxOPfffz+NjY0sXLiAiy66kLHxC1mw6LNoWnjWmDU2tpVtmz/MP/75By65+FKef/55nE4nS5cuNRvNkQiA3sFhtu7cM8v9f/oCR5JE7vvNr7jv97+d0cCu+9jHecs734WiaDMC+KnFyP62ffi8XubVzfQDEEUxWTpwLx5PGtW181K1t884AkDTKS0uYtmC+sOet2nTJs477zw0TUOSJJ588kkuvvjiEx50bdq0iYmJCVatWmXmv5ym2L5tF//3+VsZGx3HYj2cUkNDEOxk5N6AzbEUw4jNWOCraoRJXyuGoTFTBWBl57ZbiAR3sahpDRZLYvdEN3T27ttKNBZlQeNybFbHSSHeDif/n/SO0t/fQf28RWRn5h9it0pAFAV8vgk6eloJHySjzsspory0ZlYwZcLEqQsKEvNlJBJkZGyQ0bFB4srssmsOu4uy0hpkix3mKGvptDsSaq1jnPrCsSh9/e2Mjw9RXdlIYX7pLJ8BUZToH+yiq6c1dSwrM5e6moUcthbl4eY7XcdqtXLHt77CBReuMRvCMeDRRx+lpqaGwsLCQ54zODjICy+8wKZNG4lGQ2RmZuB2eyguLqGyshy3u4rf/M7Ofx69hb7eP9O48MuUFF/Fjm23UNdwI5mZTckg9PgIgB3bvkxaWg1VNR/guWeuxufdzcJl38PjrkBEJxwZIBoeRlF8qGoQVYvgcpWSmbWY9PT5iKIlWX7wgKpLFK1oWgSfr5nB/v8yOPgkkXA/TlcZ2blrycpeQVpaDXZbFrLsTJFqp5/KS0jm6MvEYpOMjrxAf9+/CAS6yMpeQnn528nMXIQgyieMCEiQ5gJf/2q2SQCcwziW3f8pnMkqgEcffRRRFLnyyiu57roP8u+Hx1lz/r1JxasxbcxysG3rN8nKeJ7169fhdLp47LHHWL58Obm5uWbDORIBMDA8SntPP+FINLVTMHtikNA0jZ98/y4ef/SR1HFZlvn4TZ/hqje+eaaBYHKxr8TjtDTvwTB06urnY7PbU+yVJEmMDA/R1dFBeUUF+YVFZ2RVAF3TKSstYun8wxMA01MAThYBADA6OsrmzZspLCxk8eLFZis/zeDz+bn1S3fw3LMvHdY0MjHoK3gy3oE7422pnf+D4fW3E4/7Z6gARNHKrh1fIeTbwqKmtVittqS7uEhr+27Gx4dpalyOx51+0nwA5pL/C4JIb18bkUiIhfNXHJGAEEWRSDRMe2czPv/EjMc87nSqKupxu6Y+g6kGMHHyISbzhMORIMMjfYyND88Z+LucbgRBwmKxUl3VSDgyd1k2h92BVT6+dC1/KEBr23ZEUWJh4wosFuussoCqqrCnZWvKi0AQBGqrm8jNLjxu8kxRFNasXcUd37oVt9s0nT1anH/++bS0tPCud72Lt771rSxdujSV+jU8PMzPfvYzfvGLn+Pz+SkoyEfT0olEZTQ1hqaFEcUY6enp2B2LkKRMOjt+jye9gVWr72Vf8/cpLfsfcnJXHZIASGzMcIixMqG82rXjaxQWXYGuK2x46aN40upIz2giFNxPLDqGYWhJZ30noiChaVGi0UHicT8FhZdSXXMt2bkrk5s5ArHYOBPjWxjsf5zR0RfRtAjpmYvIK7iEjIyF2B352KxpyJI9IUA1OGmqtBNNACaIjRgT45vp6XqQyckdZGYupLzqarKylyMKJ4YIiEYNswygSQAQi8dRVe2oCQBJErFZrYdNLz1dsXv3bl5++WU+/OEP86c//YGPfuxrrDn/L7hcRckqJyAIMvH4BE89cTW3fuW9fOEL/8fIyAitra2sXbv2FSkfpjakz/SKCkckAAACoTBtnT2MTEwSj8XmPFm2yIQDQe649Yts37Y1ddzt8XDLrV9j+arzZpUIFEWJYMCX3On3UDuvHiFpkjQ1IXW078c7OUF9QyMut+eMMwXUNZ2K8hIWN8w77HnTUwAkSeKpp57ioosuOvHXo+u8/PLLhMNhzjvvPLMqwOk0iOsGP7v31/z+t39OmWodesCPYXMsISP3BgTBAWhzLkKCoT5C4eHZBMD2LxEO7GBR01osSYmxJEp09bbRN9BJXc0Ccl5BEHCkyWou+b+qKrR37MbjTqdh3uKjmshEUSQYDtLb38nExNCMx+w2O+WltWRnFyAgmESAiZMX+IsihpHY8R8dG2TkEDv+FouVvJwiiosqGBjswuuboLqqaVZaQIoAsNmxWqzHeU0SfYNddPe0UlRYTmVZ3az+LIoSw6P97O/YM4M8a5i35LgrgUwZcX7s4x/m/R98t9k4jhK//OUvueOOO+jq6qKkpITLL7+cd77znUiSxCc/+Un27dvH299xNStWfoDu7hxGRu1EIyK6oaJpYWLRCQKBHnzerfh9zUx6d6LE/axY9WNi0WEE0UZF5dXJHfjZAb5hqMl5QphjLpGIxyZoaf4BVdUfZPvWm5mc3IHHU0t6egNZ2UtJS6/H7ijAYnEjirZE5SddJa74mRjbRMveu4mE+2ls+hzFJW9kfHwzw4NPMzGxDU2PkpGxiLz8S0jLaEy4+Fs9yJI11abOyEV0MrXBMDQmJ3bQ2fEnxsc2kZ29hIrq/0dW1pJEnrJ27KUZTQLAxLlKAExMTHDfffdx9dVXIwhw0YUXY3F8mHnz3oeqJspFy7KT5j0/w+/7HS+8sI7S0hJ27NhBbm4uRUVFZqM5WgIAIBqL09LexfDYOLFodJYfAIDVaqWvu4vbvnILPd3dqeNFxcXcevu3KK+qnqUEkCSZ0ZFhOtvbyM7JpaKyKkUCCIKIEo+xb1rVAFGSzqjJQNd0airLaaqrPux5mzZtYvXq1ei6jizLPPXUU1x44YUn5Zr279/Pvn37WLhwIaWlpWZLPy0GcPjLnx7kZ/f+mkg4coRBWUUQ08nM+xRWW90hd/8FQSQSGcEf7J1GACR2cnZs+RxqrJ2FTWuRJCmlAOgf6KKrt43qykYK8kpOOAFwOPm/zzdBb18b1RUNFOSXHvV7K6pKJBZhYmKEkZHeGcSCKIjk5BSQl1OEx52erKWumyaBJk5Y4A8QiYQZGuljbHxozsDfarGRk11AXm4RTocbSZTo7mtjeHSA6qr5IIhzprjZbXZsx0kACIKApmvs3ruZSDTE/PplpHsyZxFvmqbR3Lod/7QSm9UV9RQWlB236k5VVbKyMvnWd77G4iULzYZylBgYGOCee+7h/vvvZ2JigvLycvbv308wGOSuu35ERtZ7eOLJIKGQAUIMJTZGPO7D0OMIoozFmo7F4gFDIBBoY9++ezB0jaqaDzAytJ6Gps8nvF1mKEEk4rFJ9u65k9y8tZSWvXmWSkCSbAwPPcPE+Cbcnhqa99xNde0HKCp+PVZrGpoWIR7zo2lBBERE2ZnI07ekpeacSGSYrZs+xcjI8+TmrcEwNMLhQVyeKvLyLyE9YwEOew42axrSGR74zzXzSVKCCBgb20jbvp/j9+0lN+8CKqv/H5mZCxLrxWP2ZxCIRnWTADAJAOKKgqKoR91nZFnCZrWekSkAAPfddx8lJSVcdNFF3H771/ju9x7jgot+hyy7EASRUKiXdU+9h69/7aPcfPNnCIVCbNu2jdWrVx/WV8vEHAQAJEwmuvoH6eobJBQMzkkC2O02dm7dyje/fisTE+Op4wsWLeKWr95OemYmSlw5aBEl0dfTRX9/H4WFRZSWV6QkFpIk4Z2coHVfC/kFBZSVV55RKgBd06mvraK+uuKIBMCUB4DFYuGpp57iggsuOCnXNDY2xsaNGykuLmbRokVmSz8N8I+/P8zd3/sxkXDkCIOTAWi4M67Blf4GMA5tgCQIIpHoOP5Ad0pNIAgSqhJg26ZPY7UGWdCwKjVhaJrG8Ggf3b37qa1uIi+n6KQoAA4l/+/rbycYmGTh/JU4ne5j6uehaBhN0wgEJhkY6ELVZo8xGelZ5OYUkpGWhSxbTSLAxCsO/EPhIKNjA4yODR1ix99GbnYB+XnFOB2ulNeGKEoMjfTS3dNGdXVTsj0as1hBu82OzWp7BdcpMT4xTEvbDjLTs6mftxgBYYaMWhRFJiZHaWnbmUq5cdhdNDUsm5U2cCyIxeJcdvlFCUNAu2kIeLQIBAL09vby5z//mZ/+9KdEImHuu+/3RKIX88c/+dA0PyPDTzM6/AyqHkYUrMmdZgey7Eh9sy5nMS53BYoSIDNzET3dfyOv4Hxyc9fMUAGIohW/r4Xnn3sXJSVvYtGS2w5SCSTG6Zbmu8nNXQMYKPEAuqHg97eiKkEEUULXFDQ1hG6ogI6uq7g91RQXv570zEYERBTFz+5d36Cn6wFy8y8hL/9C0jObsNvyElJ/2XaWBf5zEwHxeIChwafp7Pg9kUg/RcWvp6rqfXg8FWh6/IjeO6IoIwgymh4jGjEJABOkPACOdt1ktVqwWixnrIx97969vPTSS3zoQx9ifHycK698E/7gxSxa/CkMQ2fDS1+ktLiN/z7xMG63h127duHxeKioqDAby/EQAFMYGBllX0cPfp8fQZzdeGw2K8+vX8f3vv0NwuEDO33nX3gxN372ZpxuN6qqTlv8CxhAe9s+JsfHKS0rp7C4ZIYfQF9PN/39fVTXzCMnN/eM8QPQNZ2FjXVUlRUf9ryNGzeyZs2aFAHw9NNPc/7555+UawqFQqmSgKtXrz6r81jOBOzatZfPf+bLjI6MYbUePt/XMOLYnMvJyPnYIaX/hyMARNFKMNDOts2fIj8nl5qqplSQLwgivf3t9A10Ul+7iKzM3BNOth1K/q8o8ZT8v7FuyTEvAHVdJ5hUFUxODjM41H3I1/C408nNLiArMw+bzZ4KykyYONrAPxwJMTI6wMjYAIoyW4FjtdjIzSkkN6cQp8ONIDCjL00F5vv276SyvAGH0zNr0W8kCQC79ZUEzwII0Nq2k/HJEWqrm8jPne2nIwgCre27GRs/kEZTVlxFaUn1cY8Buq7jcjr52h1f5PwLzjMbzzEQAACRSISFCxfx9re9iS/cchc3f2GUnt49tLXejSTaKCp+HWnpjdhsmYiiLalu0ojHfUQi/QT8+/FO7kI3VKyWDBAENDVMfeNNyLJzWullG+PjW3jh2fdQVHwVy1Z8N7kTbaSCzeGh9fT3PYzHU0s4MoChqzichWRkLsTlLMXuyEeS7GAYaLqCpoUIhwcYGX6O0ZHnKCy6gsqq9yHLLnzeFp5d/xYqqt9PZfUHsEhWZNl+lgf+s+dmUbQQiY7R3/cwXZ1/AUOnpvoDlJT/D7LsnDNVQxQtCIJEMNjF2MjzRGPj5OS+jrvvWkl9vWwSAOcwdF0nFo+jaUfe2BDFhPxflqUz9vNqmsbvf/97li9fzoIFC1i37lne/Z4vUN94O6HQMIN9d/K3B3/OylUr8Pv9bNu2jbVr15q7/6+UAADoGxqmeX8XkXB4zvKAdruNfzz4AD/94d0zGuOb3/J2rvv4JzEE0KctQkRRRFUU9jXvJRqLUFlVS1Z2NrquJwgCPVEaMBwJU98wH4fTeUYoAXRdZ/miJkoK8g573nQFgNVq5emnn2bt2rUn5ZricYWXX34JwzBYvXq1Wa7pVUQwGOLLt9zOs8+8cETTPwwVUc4kI/dTWG01GIZyxEVGODJCYFoKgCTZGR56in177qS2aj75ucWpYFwUJfa372bCO0r9vMV43BkntArA4d3/x+jvb6e6op6C/LJjVh4ICCiqQjgaQTd0QiEfkUiQYNBPJBqa8zl2m5Oc7DxysgpwOt3JnFUD0yfAxFwLJsOAUDjAyNgA44cw90tI/fPJzyvB6XCTKFOmz/l6fv8ku1s2U1JcQ3p69qzzTgwBkPTaCfnY3bwZq8XGgsYVyPLM0oKiKBII+tjbshU1WS3AYrExv34prmNU4xw816xctZTbv/EVsrLNqjPHQgA8/PDDvPvd7+bJJ59m156F/OMfzbQ0f4XsnBVU1XwAWbKj68pBNe+FpBpABkTAIB73EQy2oyoh7LZc7M5C5GQJvcSOtI2x0Zd5/tl3U1h0OStW34uhz8xJj0RGiEVHUNUgTmcZTlcJopSoTmEYavIapt4/OSKLMqJgwefdzZ7d36aw8DVUVF2DqkbY8PL1GHqctRfcl1RinZsErCBICIJEwN9OZ9f9DA/+F4+nhrqGj5OdvQxdV9D1hDeDJNkI+Dvo7LyPyYltZGevoLD4cmRLDd+6vYyGBptJAJzjUFWNuBJH141DkgCiKGKxyGdkCcCD0d7ezlNPPcW73/1u3G43v//Do9z61X/htHv5xjfey5vf/Hp0XefJJ5+koaHBTHk+UQQAQHf/EK2d3XOSAKIoIooiv/rpPfz9gb/OIAc+eN31vOM970U5qGSFKEoEgz5am1uw2WxUVFfjciUWH6IoEo1EaGneg8Nup7auEUEUTn/G2DA4b/kScrMyDnva5s2bWb16NZqmYbPZePrpp1mzZs1JuBwDVdPYvGkTkUiE1atX43Q6zdb+qjQNg5/99Nf89tf3JevbH24wTiyQPFn/D6fntWAcOVcwYQLYTyg8NIMAaG3+PiOD/2HRgjU4Ha4Zi/s9LVvQdY26mkXYbPYT278EiMZiRGPRg+T/At29rUTDIRbOX4nD7jyuHXlBEIjFY4RjUURBxOVwYuga45MjjI0N4Q9653yeRbaSmZlDXnYhHk+G6RNg4sCclOw3gbCfoZF+JiaGUecw7Evs+BeQm1OUDPw5YgWLcCTIzj0byckqJDev+KQRAFNza1dvK/0DXZQUVVJeWjuLZBMEgc7ufQwO96aO5ecVU13R8Ir6gqKoXP2ut/Lpz33ijM03fTUIgFtuuYV//vPv/OlPL/DLX8ts2/ZnJic2snT5t5KB/9GNkYm5xZJcoonJoDLOlPGfJNkIBnvYtf2r5OafT828D6OpUaZy9wFk2ZEiDAxDO6ZcdYvFxcjwC3S0/4YlS7+NzZ5De9tvaN13Dxde8g/s9pxzvFxr4j7HlRBj41vo7/07fm8zRcWvpar6vbhcZShxP91df2F/229Jz5hHXf1NZGYtwjAUQqE4t38910wBMIFhGGiajqqps5QAiXEALBYLsiSdNcrf559/ntHRUd7ylrcA8Kc/PUJmppWrrroCgCeeeAJJkrj00kvNBnIiCQCAzt4B2rp6iEYis0gAWZaJR6Pc9a3beeHZZ1LHbTYbn7vlK1x06WWEI5EZz5EkmdHRYbo62klLS6e8ojJVHlCSJCbGx9nf1kJhYTGl5RWndyqAYeB0uVixaD7pRyiHNF0BYLPZWLduHeedd2Jlk7quE1dUbFYLGzduJBAIsHbt2sQO7OQkgUCAeDyOw+EgKyuLjIwMsxectLYBf/zDX/n5vb8hFosjSeIRmlIMp/tS0rI/CEgpQuBIBIA/0E0kOoYgiIn8fzXE9s2fxSJ5WdC4akbFjXg8xo49G8jJLqC0uApJlDmxu+EGwUgYVdNSPtOCIBKLRWjv3E1Weg51tYte0W6QIAhEYlGisShWiwW3ww3JCgM+/wQjYwN4fRNzLjhFUSI9LZPc7EIy0rOwWGwmEXCuBv5iwg09FA4wPNLH6PjQnIG/xWIlN7uQvNwiXE53apw9mnaqqHF27tmI3e6itKTmpBIAgiAQV2Ls2rsZVVVoaliO25U2ox+Iokg4HGTPvq3E47HUfNxYt4Q0T8ZxqwASc5qV277xJS66+AKzcR0lAXDNNdcwPNTHN771FPf8xE/7/l8jilBV/SE0LXIcbdrK5MQ2du24DUUNIooyhq6SkbmIhYu/giy7EAULAwOP07L3BxiGBujohk5BwSU0Nn32MGUCD9f2JGLRUfbuvZuGxk/hdpfT3/8ftmy8gQsu+htp6fVJQuIcX3ALAooaIxTqZ2xsA137fw2o1M77GOPjmxgdeZ7auv+luub9iKKdSHgA2eImFhNNDwATs9b6um6g6VqqopQoiojJ/8+mtF9d13nooYfIzMycEeQbhsFLL73E6OgoV111FVar1WwYJ5oASJAA/bR19c5JAlgsFkZHRrjz9q+yZ9fO1PHs7BxuufXrzF+8mFg0Nmsh3tfTxcBAP1lZOVRWViFZ5BQJ0N/bQ39fH5XVNeTm5Z2+JIBhkJaWxopF83E57Ic99WAFwMkiAKY6/oYNGwiFQuTl5TE2NkYkEsFutyNJErFYDF3XKSkpoa6uDovFYvaGE4y/P/gvvvudH6Gq6hHLsBiGgsVaRWbejYhy7lHt/k/B628nHvcnJYR2xkdfYs/Or1FRXktJQcUM+f+kd5S9+7bRMG8x6elZCJzYSULTNUKR8Czp8djYIEPDPcyrWUBeduEMf4DjRSQWIabEcdmdWGVrIhVaENF1jWDIz+jYIBOTI8SVuReeblcauTmFZGXkYrc7jjqwM3GmL8KnXP2DjIwNHjLHX5YtZGbmUpRfjtvlxjA4JuJKQEA3DHY3b0I3DCrKG2YFVoZhYLfasNvsJ+SzSZLE4FAP7V0tZGflUVezcBa5JYoivf0d9PS1p47lZOUzr2bBKyLCYrEYq89bwbe+83U8HrfZ0I6CAHjzm99MMDjJzV94nF//LsDw4MPE42NUVX/gEKX8jtDmRImgv4vengeJx71YbZlYrRm4XOXkF1yELLsBHZ+3lbGxF1HiPqKxcXQtTnb2MopL30jCEPDY2oEoSoRDg3R0/J66uo9js+cwOPBfNr78US646H4ysxYf1+c5W0kAVY0SCo8QiQ7T3fk7Rgafxu2qZPGyb5KXdwHhSD9DA09hsaaRl38BsZhkKgBMHGLtOFMBcLYiEonwt7/9jZqaGlavXk0gEGDDhg3IsszatWvNGOZkEgAJEuDQSgCbzUpPZye3feUWent6UscrKiv54ldvp7SiglgsPquhtu9vY2J8lPz8AkrLK0GYCkkEOtvbGB8fo66hgfT0zNOTBDAMMjIyWLGwEccRXJC3bNnCqlWr0DQNh8PBunXrWLVq1Um5LE3T2LBhA4FAAMMwKCoqoqSkBIfDkSIA+vr66OzsJCsriyVLlpg+AScQra3t3PC/n2F8bPKIpn+gIooe0nM+hs2x+Ih5/wcvJCZ9+5PPEREEmZbd32Ri/DkWNc2U/0uixP6uZiYmR1nUtApZOrFGKQmFQZxwLDIjDAKdzs5mNF1l0fxVr8h1/GBMmQ26Ha5p0mMhmc+tE4mEGJsYYXxiiHDkUD4BDrKz8snNPuATMFXn3MTZA1EUERAIRYIMj/QfspyfLFtIS8smOyuPrPRsZFk+bmJIFEWaW7cTCPqprpqPJMkz2pVhGNisNhwniABIeFzo7GnZSiDopb52EdlZBTPk3FPKhD3NWwlHgqljCVPQvOOWahuGgSiIfPJTH+Xqa95mNrijIACuvvpqBgd7ufFTj3P/gxHGR59kcnI7jU2fS0r0j55ukiQLCCICYlLVpCKKltTjoWAPra0/IytrMWXlb0t6RwoYho5uaEiiLaEIEAR0LZ5UBxwt8WTF722mo/PPNC24BYvFzUD/Y2ze+EkuvPhB0jIa0TVTATBz/SsyOraFndu+hNWaxpKl3yYraxHjY5vo7nmQnJzV5BdcDGCWATRhAvD7/Tz22GOkp6fj8XjIy8ujurraNDk/FQQAQEdPP/t7+ojO4Qlgt9vYtX0bt9/6JbyTB+oNNy1axBe+/HWysrNRlAPBjSCK6KrK/tZ9+Pw+SkvLUpUBEqaAOq0tzcTiUerqG7E7Tj9TQEM3yM7OYtWi+Vgs8hEJgNWrV6OqKk6nk/Xr17NixYqTcl3hcJgNGzagKApNTU0UFRXNeV5fXx+7du2iqKiIhQsXmh3pBCAej3PLF77G008+g91+pIW9DkYi79+V9trkouvouqQgiITCgwRDA0nHYRsB3152bP0/srMymFe9MLVjmagFrrJ918tkZGRTWzn/hOzCH7yoCUcjxKaV/xNFkVDIT2dXMwV5JVRXNp7QXNBExYEQCAJuhxMQZt0jQYB4PMakd4yRsUECQe+cwb0sW8jKyCE3J+ETIImymR5wlgT+hgGRaJCR0UFGxwYPGfhnpOeQkZGD3e7EaXcgi/KMcnrHCkmU6OhuYXC4l+qqJmw25wwVwYkmABKfV2LCO0rzvm24nB6aGpbNIh4kSWJouI/9nXtTxzyeDBrmLUY+6NxjgaqqFBUVcMe3bmV+U4PZ+I5AAHzxi1/kvvt+x+dvfooXX84mFOqiec+d1NXfQHpGA6oaOWzQL4oSomhB1+NMTuxgbGwjmhrCZs+luOQNWCweDMNAkmyMjrzIi8+/j4LCS1m5+qfJcdhAECQmxjcxOroBDBWXu5rcvLU4nYVJL4D4YduDIIiIkpWWPXcjy05q5l2HKFrZs/s7dHf+iYsu/Sd2e94xeQqc7ZAkG6FQPxtfvh5ZcrFoyR1kZM5nZORZutrvo6zyneTlnZ+699GoYRIAJkwAiqLQ29tLTk4OaWlpR7dOnLUyNHFcBABAV98AbV29cxoDOhwOnvzPI3zvzm/OKAN4wUWX8OkvfBGbw44SV2YszuLRKG2tLURjMSoqqsjOy0PXNERRIhYJ09KyB4tspbauHovVelqRAIauU1iQx4qF848YPE9PAXA6naxbt46VK1eelOvyer288MIL1NbWMm/evMOeu2/fPjo6Oli1ahVZWVlmr3iF+OXPf8fP7/0N0hFNWAwMQ8WVdiWezHeTcHQ+2rYtoBsqXl8bqhpNBroiLXu+zdjIczQ1LCc9LXNGmc2R0QFa23fT1LCM9LTsk2LKFIqEUTQllVogiiIDg11MTAwzv34pGekn1gxKQEAzNMKRMJIk4bA5DklOCIKIpql4/eOMjg7i9U+gaeqcC9r0tEzycgrJSM9JKRYMs4zgmTOxTTPcDEdCR9zxz0jPJj0jF7vNgYCA3WbDKltfUfA/RQAMjvTS3tlMeVkdnoPy7E8GATDVhlv372RsYpiKslpKiipnKOimCMHm1u34A97U8erKBgrzSl8RORiLxVm9ZgXf/PZXSUszA5XDEQD//e9/efvb387VV38F2fYR/P4Ifb3/ZGjwCerqP056xvzkGss4wAsnVZKaFiccTuSSD/Y9QiDYTVbWQmTJjWxxM3/BzakgX5LsDA0+zYaXriMv73xWrfl5KtdflKx4J3bQ2vJjXO4qxsZeQlOj5BVcRGHh5aRnNGCxpIEgwvTlYvI6FCVEV+ef8E3uZv7CW7Dbc4nH/ax/6o24PVWct/YXyTZvnMNjkZxKPQKBcHiAzRtvxDBUVp33c5zOYkZHX6C15afUzPswublr0LQDChCTADBhwsRpQQBAUgnQPdsTQBAEZFnmL3/4Lb//9S9nPOeSy6/gozd8Ck962gwSQJIkQsEAbW37MDSdqppa0jMSkn9JkvB5J9nX0kyax0PNvHpEWcY4TUgAXdOpqSqnaV71Ec/dunUrq1atQlVVXC4X69evZ/ny5SfluoaHh2lubuaCCy6YlX+uqirBYDBRw9mVMC58/vnnU34AJo4ff/nTg/zw+/em2u5hySMjjs2xiPScjyOKbuDoF92CIBGJjuIP9CAIIElOxkaeY++u28nNzqe2uumA+R8CBga7mzej6zoL56/kePI8j0iGGQbBSCgV4AhJY772jj3YrDYWNC5Puu+f+IWgYRhE4zFEQcBmsR2S7p0KDA3dIBD2MzY2wPjkaMoQ7WC4XB5yswrIzsrDbneRKPlmlhE8fQP+hKRZVRXCkRAT3lHGxg4d+KenZ5OZmYfN6kgScuC0209I8J8gwCS8vjH2tGyloKCcnOyCOQgA6yGJq+N/X5FgOMDuvZsRRZGFjSux2RwzSCxRFBkbH6a1fVeqTzqdHubXLXlFaTqGYaAbOp/9/I28453/YzbOwxAAgUCAK664jI6Obt78lkeJRMsBhb7ef9Pb8xA2Wy5uTzk2ay5S0qVfVYJEIoMEg+3EYxNYrBnkF1xGbu5qXO5ytm6+mazspVRUXYOWVBBIkp2R4Wd46YUPkZ9/MSvPuzfZFgwEQURVI2zZdCN19Z8gPaOJyYntDA4+gc+7B1GQcLjK8LgrsFgzkUQbuqGiKD4i4UECwXbstjzqGm7A6SxCFK3s3PF12tt+ybLld1NS9qYZwey5AlGUEQQZVQ0TDnbj9bUQ8O8jGh1lcmIbqhZkzdrfk5m5EK+vhd277qCyMlGm8WDlh0kAmDBx8qBpGoqqYbNazikV9HETAJAwBtzf1UvkIBJAkiR0XecXP/4B//7HQzOes+q8Ndz4uZvJzMohHo/PeI7f76O9dR+iJFE7rw6H05UyBRwZHqSjvZ3cvDwqq2pSC41XG4aus2zhfEoK84+KAFi9ejWKouDxeFi/fj1Lly49KdfV1dWFzWajsLBwxsKsp6eHrq4uotFoYvFps1FcXMzo6CgOh+Oor2fKddTEAfznkf9y29fuRFU1ZPnIwb9sKSYj9wYs1koM41jyIwUwdCb9bShKCFG0oig+dm37P+LRPpoaV86o6y2JEiPjg7Tu30VlWR3FhRVoJ1iOKQCqphGMhFPBsSiKeL3j9PXvp6ykhrLiqhOednAwVFUFIfGZj9Q+E9Jwg2g0zPjECKPjQ6mc6INhs9rJyc4nO6sAl9OdcpBPBI2nv1+AgEBcjRNX4thtDmRROiEB7rEG6Sdq3D444FdUhWg0TCgUIBDyEYoEiU4jow4O/Kek/jabI/UaCAJOmx2rbDlhdyZRCjDEzt0b8KRlUVJcNYsAsFqsOO2OE36/RUmiqydRFjA/r4SaWek3ifbbun8X45MjqaPlpTWUFr2yvqooCg2NdXz7rtsoPIq58VwlACChDLz++g/j9aWz6ryfY7HkYxgafn87oyPP4vftIx6fQNcTyipZdmF3FJGWXkdm1mLS0xvx+1tQlSAWazqbXv44i5d+g7T0OnRdSfYXiWh0lObdd5KTt5ay8remHkv0CQfbtt6CzZrJvPobmJjYQn7+hShKkMmJbXi9uwkGOlDik8nnJa7D4SwmK2cFubnnYbG40XWNzvY/sHvXHZRVXkPj/E8jiZZzKo0q4cZuJRweYHjwaYaGniYc6sNmzyY9vYH0jCai0RFcrjJKy/4HRQmwc/uteDw11NZ9BFWNcjDBbBIAJkycxDjOMAhHY1hl+Yip3CYBMIMEmNsYUJJl4pEwP//pPTz28L9nPOe8tefzqc/fgicjnXhsJgngnZxkf2sLDoeT2ro6LFYbuq4jiiJdne0MDw5SVl5BUUnpaWEK6HA4WLGokYyjGJC3bdvGqlWrTgkBEI1GZ+Sf67rOnj176O3tpbCwkOLi4gSxMjJCf38/sViMgoICli1bNufrxWIxJicn8fl8BINBFEVJKQgKCgrIyck54o732Yy+3n5u+uQX6OrsPopSJBqC4CA95yPYnSuP2vTvwAJDIhwZIhDsQxASOaBtLT9iaOBRSktqKC2qnJX7v7t5C3ElxsL5q7BZ7Sdczp4oQaYQjoZnHOvpaSUUDrBw/kxS4mRDT34+URCP4tqn+QT4EukB/uDkIXwCZNyudNyuNFxONzabE7vNjixZEEThtCYFQpEwcSWORbbgcjgTQTQnV8swPejXDR1NVbBYbMf1OtNfS1HiRKJhwuEg/oCXcCRANBY9bHrJ1I5/VmYeVqsj+VoH+onD7sAqySf0fiT6n8bOPRtBEKismJkXb2BglSw4Hc6Tcu8VJc7OvZuIx6M01S8jPS1rRmAviiL+gI+9+7am0mFsVjvzG5ZhP8iv4FgXVJqmc8173sFNn/6YSRYfhgAAaGlu5s3/83q83gwWLfk/MrOWYLfnIAoWwEA31AQBIAiJY4KclN9PMji4jvb9v2bJsu8QDvWwd/e3WXvhn5Ek6yyHcF3XEIXZ5J8sO+jc/wf6Bx7jgov+yq6dtxOLjlPfcCMuT3nSIFDHMBR0XU3k/QtWBCFhOBhTJgn62+ns/As9XX+mpPzt1Dd+Cqc965yqrCIIMroep6/nn3R2/B5VDZOXfyHFJa8jI3MhNms2BirR6Cjx2CSS7CTgb6W3558sXPxVJMk2Z58zCQATJkycdgQAQEdvP+3dfbM8AWSLjBpX+Nk9P+DRf/9zxnOWLl/JDZ/9HAWFRQeRADLjY6O0799HWnomtbXzEJLu3oau09bagt/vp6Z2HlnZuXPm8J5C2oj09HRWLJyP03HkRe30FIC0tDSeeeYZFi9efEoutauriz179jBv3jxqa2tnPBYOh+nu7kbTNJqamuZ87uDgIA6HA4/Hg8PhQBRFIpEI4+PjBAIBXC4XTU1NOJ3Oc64TaZrOt795Nw/97V/IsoXDr3UTk7sn8xpcaa/HMNRjCsEEQURRw/h8+9ENFUlyMjTwGK3Nd5OenkVN5Xxs1gMLP0mU6BvspKunjdKiSspKa09K7r8gCERjUaJJKb0giERjITo69pKRnkXDvMWn/y75NJ8Af2CC0bEhJn3jc9aGnz5e2ax27HYHTocbl8uD3erAZrMn28LpQQoIgkBMiROORtA1DVmSEQQBiywji3IqGAVhWvsVDmrLwszfhEMOiwhCgnRUVDV5DwxGxgaIxSLUVDYm82GNowv4dQNFjRGJhgmGAgSCPsKRILFY5KiCC4vFSnpa9rQd/5kqBFEQcdjtWE5w8J/6LKJI875t+ANeqqubsMgH+qeBgUVKEDInA5IkMzDUTUdXCxnp2TTMW5xKCZo+pnR0NTM00pc6VpBfSlV53Stqr5qmYXfYufO7t7Fq1XJMTJsFdJ1QKDRrfXDjjR9nx4492OzzyM5ZSk72IlzuImSLC1GQ0A2VeDxEJDRMMLiTWLSNgcHNFBe/kVWrf8bevd9haPBJzr/wL8nvzpjVr6Zy/2e0E9lBf98j7N31bS6+7N9EQr08s/5t2B2FZGQ2kZnRhNNdgdWSnghSMdC0GLHYBD7fXibHt+Hz7UZTY5SUv4Oq6g/gdhUfsZ+fVYtpUUJTw+zZ/R2GB5+guOSNVFT+P9LSa5OkTwejQ88yNr4RXYsgiBYkyY0kWSgseg15+RceMlXCJABMmDBxUgiAvt5+7vvD/YyMjtLU1MiVr7vimGV7h1ICyLJMLBrhNz+/l3//4+8znjN/wQI+96WvUlBQMKNEoCTJjI4M09nRRk5uPhWVVanJKx6L0dqyF0VVqa9vxOFyn5SA5mgJgIzMDFYubMRuOzoCYCoFwOVy8fTTT580E8DpiMVivPzyy7hcLpYtW3bI3RhFUWbU0jQMg5aWFrxeL/Pnzz+k46bX62Xr1q2Iosjy5ctxu8+tGtAP/PUhfvj9e1EUZVopujkbDIah4PRcTlrW+zk207+piEvH6+8gHvcjy0583r3s2XkrohCjuqqJDHdGKjAThYT8eHfLZiyylfn1S09oCb6DEY5GiCvxpARSZGSkn5HRPmqrm8jPKTrp8v/jHgQT9bCmBYZCSjnhD3oZGx/G6xtHUY6ujrUsyVhtduw2Z4IUcLqx2xzYbA5kWX6VSAGD0YkBquvrKSoqJhwMEYspaJqKrhm4nQ4skoyiqGiahqqqaKqGpuvouo6u6Ymgcdql6lMBhjEjwkAUBHQMgqEgumEky+hpbN/+MmmeDGqr5h/0mYWDdvh1YvEY0WiIYChAMOgjHAkRjUWOakdaFCWsVlvCyd/hxuVKx2q1p177wB0BWZJwWO0nVb0kiRLdfW309ndSWdGAy5WWIi6mrsHlcKaMM0808aPrGrtbthAM+plX3UTeQX0xUakjwN59W4kr8dQc3Fi3hLSDTAuPZ+658qrL+drtXzpiWpRJAoDfH2DduvWsW/cMzc0t9PYN4fP6iMWi/5+9846TpKra/7dC556enHNOu7M5EgVMqIiK6Mv7U8TXgIiIkhEUkZwRECMiYgJUEBEBCYvA5jw7OeecOoeq+v3RPb2TNs7M7uxuP5/P7szcrq7uunXvrXuec85zCAQEVNWL2awjPT2BJUvKGRtz8cYbH3DaGb8lOfksNm+6HL9/lDXrf4Wq+A/b+JYkAwP9m9i6+UrWn/4MsXFL2bzxGwwMbCY+8TScjlZ83n4C/jFC9QMREBFlM7Jsw2hKIspWQmzMEuLil2EyxsG8xxctKPYYQRCp3HM33Z3/onzxTWRkXoAo6hkbq6er45+43D2YTanYokuxWLLR6aNRVS9ORzMxsRWIkmGyyGKEAIggggjmc9kaGhrWbrv1Lt78zwZ0uuDmtKi4kGuv/w4rVx1ZeHpjaweNbR0zkgBKIMDvfvVz/vr8Xya9p2LJEq6+4QekpWfg9XonPJAkeru7aGlpISMjg/TMrLCwmt0+Rn1tDQa9gaKSMiTdcRIF1DRiY2JYWVGGyXhoAmDbtm2sWbMGVVUxGAy89tprnHXWWfP+NcdL/a1evZr4+PjDfl99fT2tra2sW7cuLBY4FYODg1RWVqLX68nMzCQxMRGDwXDKTKB//+sN7rvnURwOB7IsH2K4eDGYlxEd/01EKRq0IzGIg/PJ7mzH7elHEo14PX3s23MbLmcz2VklJMYnI8u60CYi6L2ta9zL0HA/xQUVxMclzVvaTLAcnwtFVcJhz80tVWiaRkX5avTzSDwcqbE/7v0cN75VTUVTQyHqqhr+W0MLHQ8+nwe7fRi7YyS0GT+ymtaSJGM0mDAazFgsVswmKwZDKFJAOgakgAZ79m0hOT2Jy/7vm+j0ehRVQSMoZJoQF0NGSjKKoqCqKoGAEv5dVYL9omlaeIO6/+tp48MtNEIFREmkb3CIweERJEnEaDKxe+cO/vbcn4MGaGIaqqqFIwNUNWjwu90OHE47TucYLo8Dr9dzWP0QNPiNmIxmTGYrRoMZvd6AJMmT+nRKd6CXZUwG4wR17vmBKEoMDvZQ07CH1NQc4uOSJxnVoihiMZkPK13l6D5fZnCoh5r63ZhNFhaVrkKWJ5f6E0WR1vYGOrqaw20J8SkU5pXP6rMVRSE2NoZ77r+dpcsWR3ZcUzA1FWDyc7ub++9/mFdeeZmA4mXZ0pV8+sJPsnrVcpKTU4mPj+eCCy5g69YRPnTeH5FlM1s3fxu9PpaKpT8+IuE9UdRhH2tk86ZvsnL1QyTEr6et7W9s3/pdyituwxZbjsfdh8/Tz+joPkaH9+L19WKx5JOW/kni4leiN8Sgl81Ikm7GKIOTGbJsor3tRSr33kXF0tvJyDgfVQ3Q3f0mvd1vERu3jOSUszEaE0LrpxIiIyeuTwfurwgBEEEEEcz5fnjvnn3aDdf9iP6+/rAB43F7SElL5s67f8iy5UuO6ITN7V00tE4vERj0Aqn88emn+PMfnpm0+SgsKubam35Adl7BJBJAFEU629vo6uokNy+fxKQUFCWAJEkMDg7QVF9HXEIiuXn54Q39sbX/NeJiY1lVUYbRoD/k8Rs3bmT9+vUAZGZmsmHDBnJzc+f9e+7du5fBwUHWrVt32MZ5X18f27dvp7S0lJycnBmP6e3tZdeuXaSlpVFaWnpIA/hkw77Kaq65+mYGBobQ63WHGCs+dPo8YhK/jaRLhyPK+w8a8w5nD05XN6IYzDOsrryb4cGtpKbmkJyYPqmUmCTJ9PZ1UN9cRWZaHpnpufM6PxRVwel2oWlaMK94bJi29jpSk7PIyyk5flE6IQRUJWjsKwoBJfi7NtHY1iYERQtM88YG8+WDJQcDfh8+nxevz43H48bnc+PzeQ+aKjDjplHSYTAYMRrNWExWzKFIAf00UmCq6Tq9SZvhtYmbcFGU6OxqpqW9ngs/93nWn34G3pAIq6ZpGHQ6CnKy0OnkoxP4DDn7BFHA5/PT2NKGLxBAFEWUgMqvfv44ne0dLKtYj15nwONx4fI4cThGsTtHcbtd+HyHZ7CI4bQLc4hIMaPX65FCfTZ+3TONdw0NURAx6PQY9HqORXVgURRxuhzs2bcZmy2OjPT8SQSAIAhYTZZDRA/N8kEvCNTU72ZouJ/szAIy0vImzUlBEPD5vOyr2Y47pOMhCiKlRUuJiYmfVRSA3x/g4+efx823XofRaCCCgxMAg4ODPP/88/z2t09RXV1Dbm4O3/nOd7j44oux2aLDxzU1tXPG6WuJS/gsy1bcBmhs33otRmMC5YtvIhBwHREB4HR2sHXTFSxbcTdx8csZHa3j3XcuJCX14+TkXxom+EDD7e6mt/t1ertfB2TSMs4nN+dibDGlgICi+E4ZAkAQJPy+ETa+fxmZ2Z+loPDraJqf5sZnGRmporD4cqxROaiK76g1NSIEQAQRHL5dNsMkJaJCM0O31NbUa7f+4A6aGlsmqR96PF4KCvJ46NG7yMhMP6KTNrV1Ut/ajneG6gCapvHnZ37LH555etJ78goKuP7mH5JbUIDH4w1vSgBaW5ro7+ujsKiE2Lg4FEVBlCR6Ojtpa2shIyOTtMwsVOVIyqiJB9wkHvZAU1UyM9JYWlqMKB56eL333nucccYZACxevJgNGzYQGxs77zd5y5YteL1e1q1bd1hGeiAQYNOmTQiCwNq1a2cMj/V6vbz//vtYrdZjksaw0OB2e7j15p/w1psbJoktzrwg+ZHkRGISLkdvLDtC0b9gaLTT1Y3D1RP0EmpQX/cEvV3/JiE+hdSUHMxGU9iAEEUJt8dJZdU2zGYLxfkVSFM8fnO6iCDgC+wXABQEkfaOeuxjw5SXriTaFrMghKBULRjOHlACBAJK0NOvqWFv9mEbvSEyYNygVFWFgN+Pz+/F5/Pg9brw+YK/+/1HFimgk3XoDSaMBhMmowWzyRw2bCcq3+//WwwJgwkIoog4/rcohj3bAsH8VK/Pze69mzFbzXzjW98mLj6BQGjNVFWV5IR40pITZ3WvRFGks7ePvoEhRFFEr9NTuXcPv//trzGbrcTGJAY9/G7HAUsvTkVYZ8FkwWSyYNCb0OsNoTJbwgSChtA9ndnwFxCQJRmj3jDNAz6/BkIwDH/Pvq0oqkJebvmU3GgBi8mMTpLmzWQSRQm7fYTKmm1Ikszi0lUYjZNF/iRRoru3ncaW6nBbtC2O0qIlsyrfqaoqsk7H9Td+lws+fX5k1zVho+pw7K860tvbywsvvMDTTz9NbW0tFouFr371q1xxxRWkp0/fg+3atZuzzjqDwuLvUlZ+NaDR3PB7Ojr/yao1j6PTRaMdZpSZKBlobf4Lba0vsHbdr9AbonG5evjvO58hOnYpZeU3YzYnoWkqgiAgSXrQNPoHNtFY/xR9ve9iMMSSnnEBGVmfJjqmDFHQoaq+ORecXWiQZRMNdb9mYGAzq9Y8jiQZ6ep8lY72f1Cx9HZMplRU1Ru650ro35HNpQgBEEEER2n8H3APF4FwxeXf16qranG73NM2wG63h/M+fBZ33PVDDEfA3GtoNLd30dzWhdPpmEYCIAi88Iff8+zvngqW7RonAfIL+P6NN1NYUorH7QlvnoLif7U4nQ5KSsswW6JQNRURgebmBvr7+sgvKCQhMfmwRAE1VcXv8yHrdMj64IPsaDa9BoORJaWFpCQeXlj9m2++yXnnnQfAihUr2LBhwwFD6+eaAHC73axbt+4wFOqhq6uLXbt2sWTJkhk3HgBtbW1UV1ezdu1aoqOjj+p7jVcSkGX5hKsg8MJzL/LwA4+jHtJbqiAIZqLjv4rRsu6IRP/GvZlOVxdOd28w51KUaWn8Le2tzxMdHUdGWgEWkxlZkoNGjiAEtRvqdzNmH6a8ZAVR1ph59cBPFAAc9yQ2NlVitURRXrKChZQLOp7vr4XmvKJOyHMfD/9n/OtOzVPfHwmAACICghg0wmVRQhDF/cr6morP78Xj8eD2OHG67LjdTrxHQQpM7evpJEDwO4miGCSBhOBPcQJBMH6MwzWGz+dl1Zq1fPbiL4bXX03TkCSR3Mx0rGYTqqod5Tjw0tjWQSCgIIoCmgpP/+aXNNbXhcfm4Rn8JoyhkP5xg1+SpCABJgTvhRQiPCRRQtU0fH4fgSnr/0TDX6/ToztOUUqiKFHfuJe+gR4K8hZhmGJ8BwkA3byWZhRFicbmKnr6OkhJyiB/SlnA8dSdqrqd2O0j4fb8nFJSkzNnpeHh8/kpKMzlsZ89SGJiPKc6Jub/19TU8Pzzz/OnP/2Jjo4OoqKi+PKXv8w3vvGNg0YI1tc3cPrpa4mNP5/Vax5GVX143H188P5lFBT+H7l5l+D3Ow5jXMgE/C42fnAZySkfoqT0KjRNYWR4H//dcBGSLpnSsu+QlfVJZNmCqo5X2xCQJAOq6qWv932aGn9Lf98HSLKJ1NSPkJn1aeLiViDrrGhaIPSekysqQBBEAgEXO7ZdQ17+l0lOPQePu4fK3T8hv/DrmC2Z2O31BPxORFGH0ZiM2ZyOJBtD5Mjh9UeEAIgggjkkACKkQPCSVy07S5OkmWtmq6qGqga46upv8f++/MUjPnl7dy+1Ta24nM5pJIAoirz0wnP8+udPTMpLTs/I4JqbbmVRRQXuEAkgiiIBn5/amioAikvKkPW6cEhvfW01TpeLopJSoqKiD2rsCIKA3+ulsbEeVVEwmMzExycQGxuLdpgDSFODObGJCfGsXlIeCiU9NF5++WUuuOACANavX89bb701Z/nyXq8XSZJm9PBXV1fT0tJy2BoA27ZtY2xsjNNOO23G76eqKps3b0av1x+wbODB0NbWRmdn5yQCICUlhby8vHkNg50rbN+6ix/degd9vQPIB60ZqgIiUbGXYLZ9NJTzf/jGv6qpOJyduN39oXJ/etpa/kBr0++xWmxkZBZiNUeFSpftV/1vbW+gvauJ3Oxi0lOyj4n4ntPtwq/4kUSJ/oFuenvb5sRwmP8N3P7ScuF/+58mMxrfQuhhMYEb2J8yoE1pE8ZzPEFVA3h9HjxeDy63A5fTgdsze1LgaCBJEpdcehmLFi3G5/eH13ub1UzuEUZ8hQ0JQaCtu5fB4RFEUcSg17Nrxw7+9OzvDrquyrKMXm/CZLJgNlkxGs3odcbwcyIc4TCJ2Aj+0wCf34dnql6ABogCOklCr9MHUyqmqN8f0/4WJXr6OmhoriIjPZ+YmIRJpLPJaEKv0x9QBGyujBWv182eqi0EAgEWl64kKmoyOSiKEgNDPdQ17A33p8lkobx4OXq94ag3WOOE23U3Xs1Fn//0Kb9R7ezs5IMPPuC5557jlVdewe12k5iYyKWXXspll11GZmbmIc/h9wf4xCc+xubNVZx9zp+xRZciCCJ1tU/S0vxnVq95nJjYChTFc4BIgKAnX9UUqvc9SE/3m6w//RmMxkQEUWbPzh/R3PR7snOKaW2pJzpmGfkFl5CUfCYGYzyaOl4SUECSjCiqj/6+jbQ0PUtf739RVT/xCSvIyPg0CUmnYbGkhcrkBQ47MmGhQ5L09Pdvornx9yxbcR96vY3Ojn/R0/MONlshfb0bUFRvsGRiaFkymlKCqv9JpyFJRlT10BGBEQIggggO4zlzgL1bhBQ4wOWtW3WudvCHjJ+EhHgeeexeiksKj9zY6+qhvqUNp2MyCSCKIpIk8eJzf+apX/18UiRAUnIKV3z3+6w7/Qy8Xm8wr1iScDsd1FZXYbJYKSwqDofAelxOamuqEEWJkrJyZJ3uoBsVQRBpbmzA7XIi63W4nE6iomxkZmZhMJkOGA2gqSoms5m4mGj0Oh2J8TGkJiYcdl/86U9/4pJLLgHgzDPP5M0335yzvPm+vj6Gh4cpLi6e9trg4CBbt24lPj6eFStWHNTI9nq9bNy4EYvFwqpVq2Y8xm63s3HjRkpKSsjKyjrs7+j3+6mqqmJkZITs7GyioqLw+/20trbS399PdnY2ixYtWtA1o9vaOrj++7fS0NB4iGgKDU1TsEZ/GmvM5xhX8D9co1RTFcYc7Xi8g4iiDkGQaW/5My1Nv8NstpKZUUSUJQr9hLEuSTJ9/Z3UNVaSlJBKQd6iUG77/Bo9mqbhcDtRQ0Jxzc37UFWVivI16PX6BV/+b/q2ePpvzEEv7o8e2C/8pCgKXp8Hr9eN2+3A7rTj9bqPCSmQlJzC1y+/AktUVJiE1TSN9OQEEuPjjigKQBRFHE4nTe2daBpIkojb6ebXP/8Z3d2dk47V6wwYTWaiLNHBsokh0T5RlMLRFcKUh+9EoiZ4Z4IEmdvrwRfwTdJsEEURnSSj0+mQQufUjrPnMdg/Y+zZt4WY6ATS0/P2P2c0MBqMh00kz5b4ae9sorW9gbjYREoKl8xQK16lrmEvQyP94fas9HwyM/JmlR7i8/lYvnIZ997/Y2JjY07JDerevXv561//yosvvsju3bsRBIGzzz6bCy+8kI9//OOkpKQc0fleeeVfXHLJF4mNW82adT9Db4jD77Ozd/dtOJ2tZGZdRErauRgNCRNI6eAapCp+xkaraG15nqHBnZSWX0Nq2rkgiLQ2v8DO7ddy5lln8vNf/pqXX/wb9913F4ODY0TZysjOuZCU1I9isaSjaWrIiA0SAZrmY2Skit6et+jqeA2nswWzOYPEpDNITj2b6OhSDIb40HwOnHDPh8nzyUhL4x8Ys9dTsfQ2NM1P5d57GBneg14fTWr6+cTHr0Snj0Gvs+D1DjE8tIPeng0IgkhB0Tew2UpQVQ9+vytCAEQQwXyQArNdY05SIuCQBEBw8fHwkY+eyx1333pUBmt33wB1zW2MjIwgTDA+RVFEkiVef+Wf/OLxR3G73eHXzGYz19x0C2eefQ5ujydMAowMDVFfV0NqahqZ2TlBPQBRxGEfo7GxnujoGHJy8w+6URFFkcH+fvp6eigsKcHtdtHa3IwoChQWlwYJBFXdHxGggclswmQ0kJKUQH5WBtJReKqffPJJrrjiCgA+9KEP8eabb86Zsevz+di6dSuLFy+eVq5P0zT27dtHS0sL6enplJeXH9B4HRsbY+PGjWRlZVFaWnpAsmHbtm2sXLmSpKSkw/p+iqKwc+dORkdHWbVq1aTvqKoq9fX1NDY2UlZWdkDRweMNVVG5/bZ7ePHvr2A2mw5h/PsxR52LLe7LgHwExr+EorixO9rx+kYRxWAERmvTM7S3/gWTyUJmRiE2a/QU419iZHSIfTU7iLLaKCteHsrbnd/8SwEBv+LH6XYhiiJ2+witbbWkJGeSn1N63MX/FvwCPAMpEFACYQ2BQCBAQPHj9/sJKAEUVUFVFFRNC97bUBWD4E8Nl2sMUQzmzI/nw2vhn/t/V5TgxnvVmnV85qLPh44NrhU6WSInMx2L0Rgq9Xd4aO7oYszuCHv/X//3v/nPa/9CFCVMJivRUTHYomIwmyzoDQYkcQaVfu0wqBYhqFPi9nrDKV9BL6SETtahk3XBKAEWTsDxuGE97n3PyytHCuXVa5qGQW+YJOI5n98jEAiwp2orHo+TkqIlxMemoKqBSc/HsbFhqup2hftXrzNQXroCs9ESHG9HSRQiwBXf/jpfuvSLp+R8/+QnP8krr7xCTk4OF1xwAZ///OdZsmTJrM75wx/+iEceeZiU1HNYtuI+DIZ4vN5BerrfYaB/Ez7fIDZbEdHRZRhNSQQUNy5HC0NDe/H7R4iJWUxyylnExFUgCjId7f9k25ZryMhI5O9/fzHsVKivr+fee+/h+eefR9PAbMkiPeN8MrM+iy0qHw0VRQl6s0VJhyhIeL3DDPRvprvzXwwO7QRNxRZdTGLiOhIS1mK2ZiPLpvDadKKlCEiSkbqaJwgEXJQvvgGvd4hdO25Ap4+lsOhyoqPL8PtH0OnMiKIZQZAADb/fTlfnv+jqeo3iku8QHV0e1gkIkp/BfhgnBSIEQAQRHCdi4CSOAjgsAkBVVURR5Laf3MRHPnruUX1Qz8AgNQ0tjI6OTiIBBEHAaDTw71de5qcP3D9JSTsqKorvXX8z6888K1wdYLw8YGtrC7l5BSQmBUubSbLMYH8fzU2NZOXkkpSUfMCSZ+N1j+tra8kvKMIWHYPb5aSmeh8Wq5X8/ELMFgsGvQ6jwUCUxUyMLYrY6KhZeWl+9KMfcfvttwPwsY99jFdffXVOb2ZlZSWKosy4oQgEAlRWVtLZ2UlUVBTFxcUkJydPO25oaIhNmzZRUlJCXl7ezPeyp4cdO3YcEQHQ0tJCVVUVy5YtIzU1dcZjtm/fztDQEKeddhpms3nBTZaNH2zhBzf+GKfTdVDNAk3zYrSsJTruqwiSDbTAYawxIpqm4fUN43B2oygeJMmEEnDQWP9zerv/g9lsJSOjgCiLDcOEsnqSJGO3j1BVuwOdTk95yQr0esMxEd6bnP8v0tnZyMjoAItKVxJti10Q4n8nNikQNpHDYdQevw+f3zfpoSQIAj6/j+bmfcTGJpOUmI4aqnwQ9NBpkwxtr9dNZ3cTSiDA5y7+ImvWnYY3JMqnqio2q5WcjNTDIihFUWRweJS27h5EQUCn09HW0sJTv/wFXq+bjPQCYmMSsJqt+3UAjiIyZTyGxuvz4vUFI8MkUUKSJPSyLpwyMJNHcWFEAUg0tlTT09tObk4ZFktUOGrGoNdjMpiOkdEi0dMbTEewWmwsKl0xTeRPEESa22rp7mkLt6UkZ5CXXTorUjEQCJCcnMh9D95BaVnxKTe3f/KTn5CWlsanPvUpTKa5ud+KonDttdfxm9/8mtjYlaxe9wgWcy6q5icQcDI6XMnA4FacjjZU1QOIGAxxREeXkZC4BpM5DVHUAypNDc+we9etpKQk8fvf/4E1a9ZM+7znnnuO+++/n9raWgBMpjTSMz5BRuanwmkIquoNVRMRESUDmurDPtpIX98G+nr/i9PVgcEQT2zsEhKTTgtGBRjjEQTpqETyjicBUFP9KKripbziJuxjjfT1vkNG1ueQJT2tzX+mr3cDkmzBbMkg2lZGUspZmM2ZIAj0dL1Od9cblJZfi04XNS01IsQL4/Fq3HdPCuVlhnClnQgiiCCCeScAghtGL4srynn4p/ccdfhe7+AQdU2tDA2NIIhT0wFEHrz7Tt58/d+T3hMTE8NNP7ydpStX4fHs1wRobW6kv7+fkrJyLBYrqqIgCCItLU0MDvQH9QBs0aiBwKTUAwEQJAkJqK+vpbi4hLj4ePQ6HfaxUZob61m9ajXpaano9ToMOt2ceem/9a1v8fOf/xyAiy66iOeff35Ob+bQ0BBbt25l5cqVM+b6q6pKa2srzc3NeDweMjMzKSgomLQRGScAysvLyc7OnvFzBgYG2LJly0GPmfq5GzduBILaBwfqz5GRETZv3kxRUdExKY94JBgdGeOmG29jy6ZtBw391zQfemMZMQlXIMkJh1T8FwQRDQj4HbjcfXi9IyAISJIZh72ehrrHGRupIsoaTVpaHhazFYNOP2EDIjM6NkhN/R5EUaK8eDkmk+WYet5dHjd+JYDf56WpqRKT2cqikhUHNMYimB054PK48YYEFyeuoQ7nGK2tNWSk52OLjkcLEbeSJCGLMrIk4Qv48fp8SJLIwGAP3d0tWKxWvvSV/yM3Ly+sB6BpGqlJCSQnHDwVQBAE/IEATa3teHx+ZFnC4/by9K9/SVtrMwnxqaSkZmPSG9FN0Ko4iitH1RTcHg8BJYAsyehkGVmSgzoBBzXwhbB6+fEmAAaH+6ip20VKchYJCalhAkCv02M2mo7ZGFJVlX0127E7RoNaHSmZkwhzQRDxeF1UVm8LV2sQRYmy4qVE2+JmRex5PV4+ecHH+OGPbzzhxF/nClMrAMwFCfDQQw9xzz13IEppLFr0TeITz8RszkAUzCFNGT+K4kEUZUTRGEqjCeDzDTM6WkVTw3N0df6NZctW89hjj1BRseiAn9fX18czzzzDs8/+gaamRgBkOZrUtA+TnvEx4hNWo9PZUFVvKLpECFXtkPD5RhgZ2Ut/73sMD+3CH3BgMWcQl7CK+PgVWKPykWVriLBc2CkCkmSkqfF3jI5UsWzFvSiKG1m2MDK8j3377sXnHSA6ZjEGUwaa4mZ4aAeK4iI//1Kycr+IJJlobvw9giCSnXMxijJzKVSPR+P+e1NYVG4kgggiiOCYEgCapuH3+7n6+1cclSDgOAaHR6lubGFwcHBSJIBOp6Onq4vbbr6BttbmSe/JzMzkx/c8QHJqGj6vN2xYtLW1oCkqS5cvx2IyIUgiakBhX+UeAgE/S5YsIz4+DkkUg5tFWUaSgqrRw8ND7Kvcy5o1a4iNiUUUg6JSmzdvJiY6muKSkjnv7C9+8Yv85S9/AeCyyy7jqaeemtPzj4vzeTweVq1ahdVqPcDDxENPTw9NTU1omkZ+fj4ZGRnIsszw8DAbN26koqKCjIyMmQ0+l4uNGzdis9kOqBMw0/Hx8fEsXbr0oMdu3LgRo9HIsmXLFtRm7Ymf/pLf/+7PiJJ4QENC03zo9NnEJH4bWZd1UOM/6PGHgOLE7e7H6xtBVZVgDiUqvV2v09L4NH7/KDExCaSkZGM2mMMRKOOl3gYHe6ltrESWZMpKlmE1246p6N54/r8GDA5009PbRnZWERmpOZHw/3mC0+3ErwSm5b339XcxMNBJXm45FnNU2EAOVw7QQNEUnG5XyIAT6OpuYmRkgJSUVC79v68TExtHIJQeIMsSOelpwaoAB9iEi6JIR08f/YNDSJKIKEi8/OKLbHx/A0ajheysIswmM0b90W9cNYL6K16/D0EQ0MlyMLf/MKoKCIJAQAnQ1l5PanIWZnPUcRuXgiDi83nYXbkJvcFETnZJOAXgWBIAwfsmMzTcS3XdLoxGM4tLV6LTTdbrEEWJjq6gXsA4YmMSKC6omBW5pygqtugoHnnsXsrLS07puTyxGsBc4L333uO+++7inXfeA0xE2UqJiSkjLn4xtqgcjOY0AgEnLmcbIyN1DA7sZWSkhoC/lYSEOL72tW/x7W9/m+ho62F93sDAAC+99BLPP/88W7ZsJBAIjglb9CKysy8kJe2jWCyZaFoARfEBoagAURfaiwwwOrKPgf5NjIxUEgg4MZlTSUhYRWzccqxR+ehkC4TKrY6n0mnTqrQcLwJAz9DgdqoqH2DZivuxRuUyOlLN1i3fISq6hOy8/0WWbOHSsYriYXDgAzpaXyApaT0VS4MRoQ31vyY943wsltxQpaAIARBBBBEsEAIAgnnmOTlZPPbkg6SmJh/1hw4Mj1BZ18ToFE0AvUHPts2buPvHPwxWDghtMAHOOOtDPPL4E0RHRWEyGjAaDXg9Hnbu2E5CQgIrJ6jRu1wutm7ZgizLLFu+DLN5eqm9hoYGOjs7WL/+NHQ6Xbi9pqaGkZER1q5dO+edfcEFF/Dyyy8DcOWVV/LYY4/N+WeMC/5ZLBYqKioOWqLP7XZTX19PZ2cnVquV3NxcZFlm586dLFmyhLS0tAO+d9euXfT09LBy5UoSEg4uhDguGpiSkkJFRcVBj33//fcxm80LigD477sbueXGH+MJVVo4kPEvySnEJFyB3liMpvkOaAQA+AOuCYZ/IOSVMeB0NtLW/Ef6e/8LQFJSBokJaRj1RvShcTpeQ7y7t53m1joMegOlRUuxWo6t8T+e/+/yuFFVleaWalRVoaJ8FXqdIeL9ny+Dwe2aMQ+7pbUGTdNCiu06gp5vbeoAxOfz4vZ6wmXf2tprcbkcFBQVc8mXvozJZCagKKiqRpTFRE5GOpIoTNtui6LI8OgYbV09wfVbp2fj++/z4l+fQxIlMrMKibLGYDYag+X7jhKKqgYjt0Kk15GMK0mU6Bvooq6xkmhbLHnZJceVBBBFkeq6XYyMDpGftyicqqPT6bAYj23akyAI1NTvZmi4n8z0PLIyCqaVBfT5fFTV7sDldoTnfFH+olD0wuzKAn7ms5/k5luvXdCir8cSE8e1pmlHTQyoqsoHH3zAK6/8g23bttDS0kZv78A4hQM4AD8mk0xWVjZFxaV86OwP8/GPf4z09NSj/sxt27bx8ssv88Ybr1NVVR2cf3I8OTkXkpF5AdExpYiiDkXxhkPdg9VtglogPt8I9rF6hod3MTK8B693EFkXRXR0KbGxS7BYc9DrY0PPSn3ofYR0TY5T2oAggKaxY9v3ESULy5bfzY5t1+F0dVKx7A50shVBlNHUAH6/A0X1IUlGPO4uqivvJS3tXCqW3k5n+z+xOxopLLocVfVNOH0wJSJCAEQQweFsFvyTUtSCjxZh2s6VSc3CDK8JM+54D/zaKUAAQDAV4PIrvsbXv3np7AzV4VFqGlsYGBoKhyQaTSaiLFZe/ttz3H/3ndO8TnfecQc3/+AHk9r6+/vZu3cvpaWlk3LLh4aG2LFjB5IkUV5ePilX3ev1snnzZmJjY1m8ePGk87W1ttLZ1cWaNWtQNQ27w4nL7SU+NhqjYXYqzeeddx5vvvkmADfeeCN33333vNzU8Xx7o9E4rV9mQn9/P83NzQwNDaHT6fD5fJSXlx9U4X94eJgtW7ZgsVhYuXIlRuOBH0wOh4ONGzcSFxd30LKBLS0t1NbWUlRUREpKCoqihD1k45t/nU53CPX9uYXX6+X679/Ke//diMFoOMDGzY8kxRKdcDkG05IZjf9xwz8QcOP29OPxDKNqAQRBRJJM+P1j9HT9i862F/D5xpAkidTUXOJjkzDoDchiMFVAFCX8fh8t7fX09XdiNJopLqggyhKNogaO7eIhCHh9Xjw+H07nKC2tNaSnZpObVbygS/+dsIv1BMHFqWPL63XR1FxFSnI6eVmlhxwLnlAevSiIeLxu2trr8Pk8LF+xkk9/7mJ0ehlFUVE1jZSEeFIT4yetx6Ig4HR7aOnowh8IYNAbqKmu5k+//x0ej4vUlBzi41MwGgzo57m+/cF6DE2lqm4nbo+fQMCN0WCkKH8xFovtuJAAwXKA7TQ0V5ORkU9MdAKKohwXAkAUJcbsw1RWb0eWZRaXrsJoNE/aQEmiRHdfB43NVeG2KGs0ZcXLkCT5qI0uVVUxGgzc+uMbOPe8syOT+1Ck3yyiBHp6+mhvb2XXrp3s3r2TuLgE1q5ZR2FREenp6YcQtD1yuFwuNm3axF//+ldee+0V+vqGAIhPOJ3snAtJSj4DozEZTVNQVV94vAUjA2RAQlW9uN092MfqGR3dh8PeBqgYDPEYTUmIoowkWTGbUzGa0jAaE5BlS0hkDzRU0JQQORBsmbd5JOkZGdrNti1Xk5r+cbq73qCk7GrS089HlvQQEv5TFB8e7zAudy+iqGdwYCPNDb/itDP+iEEfS2PjMxQU/h+yvH8Oejz9GPSxeH1ShACIIIIDGf0+B6rfBYoPJjpHBEA7kMEvTLf/D/jadJJAmOk1QThw27TXhOltE9PVBSG46zPYQJgfzY8jJgD8fj9ZWRk8+atHSEpKnNWHD4/a2VffiMvjIT46msT4WBLiYpFFkcu+cil//NOfJh1vNBr561//yvnnnz+pvaGhgd7eXsrLy4mJiQm39/X1UVlZic/nIysri5ycYNWA2tpaxsbGWL169aQw+YCisHvPHlpa28ktLMLt8aKqKkW52SQlxDIbLUhFUTj99NPZtGlTkMy4805uvvnmeZsTnZ2d1NTUhK89Ly/vkKJDw8PD9PT0MDQ0hNlsZunSpQf1zjQ2NlJTU0N8fDyLFy/GYrEccAOzefNmXC4Xy5YtIy4ubtoxTU1N1NTUIIoiRqMRVVXDBMD+Det+AsBms5GcnEx8fPy8epDe++9GfnDT7Xg93pmFd7QAgmQlOv5rGM1rQmH/2jTD3x9w4nYPhjz+vpDnw4CmKQwNfEB763PYx+oBMJujSE3JJtoWi17WIYZ0AiRJZMw+QnNrHXbHCFaLjaKCxZiNluNmcLs8bgJKgM6uZsbGBllcugqr1RYR/5snwsXj8+L2uKfl/w8M9tDT00p58fJQjflDjwePz4vX60GUJJxOO+0d9QQCftasP41PXnAhkiwRCChIkkhORhpRFjOqqiEKAj5/gJaOTpxuD0aDgc7OTn7/1G8YHh4kPi6FlJQsDHoDRv3xiwSRRImhkQGqaneQX3Q5in+IlubnMJusFBdWYDZZjzkJIIoiLpeTPVWbibLGkpGRj6Iq6ORjTwCMkwANTfvo7e8kNTmTvCmVO8bJ+Zq6XYyMDYXb87KLSU3JnlX/+f1+8vNzuf/hO8jMzIhM8HkkAY4Xurq6eP3113nhhefYvPl9vF4NoymdtLRzSUn7MDExi9Hro8OlBPeL4AnBsqCCBKHQeY+7B5e7E5ezE593AI93EK+nn0DAiSjK6HSxWKNysFiyMZvTMRgS0OmjkSQDgiCHx/PM6t/awYlEATQ1MKlaxqS1RjbS2f4v9u6+DWtUDutO+z16fXSoPOIEClcQ8fpGsDva8fmG2bPjBopLrqCw6Js0NT5DfPxKrFG5aBq43V20Nv+ZwuLL8fn13H9PcoQAiCACAFVBC7jQvA60gBtUhQn1gw/x5iPYj2hzfuCRQdMQbWkIeuu8nP6ICQAIekW/feU3+OrXvzTrLzA8ZkfTNOKiJ5eu6+jo4Pzzz2fv3r2T2nNycvj3v/89qd693++nurqaQCBARUXFpFKFTqeT+vp6enp60Ov1YaGjiorFJCenEFAUhkftDAyNMGK3s3PHdhRVpbCoFKNBT3lRPolxMbO+TqfTydq1a6msrATg4Ycf5uqrr57XOeJ0Oqmurqa3txeTyURGRgZpaWkH1AaYuNlwu92YzeaDGteaplFTU0NTU1P4/LGxsRiNRvR6PbIczD/2+/00NDTQ2tqKLMusXLlyGgnQ29vL2FjQ8+33+/fX+w7l+Y4TAl6vF7/fj8/nw+/3Ex8fT2Fh4SGv6Whgtzu4+Ybb2PjBlgNEHaiAjuj4yzBZzwzl7mmhB70Q0s1w4PYO4vWOoGmBsOEPGmMje+lo+xuDA0FSSJJkEhJSiYtNDpZKC41jMVQhoLe/g9aORgIBP3GxieTnlqHXGY5bOLOmqTg9bjweN03N+7BFxVBatDQS+j/PhIsvlAs/ES2tNaCpLCpdhSwfvmd2PBJAEEQcjhHaOxpQVYUzzj6Hj3/ik2ho+AMKNouZnMx0ZElEUVTaunoYHrNj0OkYGx3j9799io6OVmxRcaSn52EyGDHoDce1r0RRpLZ+F8OjLpatehSjOYXayjvo79uE1WKjpHAJBoPxmJNVgiCwr3YHLpeD/LxFiGKwfOGx1ACYREi4neyt2oqqqiwuXTmNwBNFkdHRIarqdobbjQYT5SUrMBiMs5rvXq+Xiy6+kBtv/n4kFeAkJQHGUVVVxS9/+UueeeYpAiE72mYrIjFpPUkpZwXLFBoTQ1F/gdBzTZtACIggSMFqIKqConjw+8fwenqxjzVjdzTgsNfjdvXg99sRBBmd3oZBH4PeEI/BkIDeEItOtiLJZiTJhCgZEAUZUZSCXrZQtICGiqYqqGoAf2AMt6uLlJRzsUWXhCocqNNIAlk2sXvnD7Hb6zjjrOfDz8iZCIUxRws+n53G2icwGhNYsfphWpv/hNWaT2xc0PHS37eR1pY/s3zlA7jdSiQCIIJTG5qGFvCg+exofheESo7Ol3d8YVyzimCIQrSmLBwCwO/3k5qaym+efpzEpIR5u/a3336bz33ucwwPD09q/9jHPsaf/vSnSd5+p9PJvn37SEpKmrGOfH9/P3a7HZ1ODpb4M5jp6R+kb2gIp8sdFGQL+Knet5eEpGSKCosoys0kPiZ6Tq5lcHCQ1atX09TUBMCTTz7J5ZdffgzmjEZXVxctLS2MjIyg1+uJjY0lMTGR6OhobDbbrErKaJpGa2srbW1tYVVjWZbR6XRhbYVxg91qtZKQkEBubu6sw/j9fj9utxun04kgCCQkJEwifuYCv/rF0/zmV79HEJhxc6ppPqzRF2KN/WIwEkAAEIObBr8dt3cQn8++3/CXDKCBY6yGro6X6O97D1X1I4oCMdGJxMUlYzJZMer1yJIcIgUkXG4n7R2N9A8Gc63TUrPJSs9HkqTj5mkfD0d3e70MDnbT3dNKUcFiEuNTI+J/8ziXnW7XpGgPQRBxux00Ne8jPTWbnKziI+7/iekAo2NDdHQ2omkq5370Y5z34Y+iqAqKopGekkBSfDzdff309A+i08m4nG7+8odnqa+rxmSykpVZiNlkwbgAjH+Xy8mefRuxxa6ivOKHQQVy7yD79tyKw95MbHQ8RQUVoVD2YzePJFGis6eV5tZacrJLsVhs6GQZk8F4nPpKoqWtjs7uFhLikikqqJjWH4IgUN+0j/6B7nBbWko2OVlFsywLqBAbF8Ojj99HSUlhZJIfYv7PZeWA44Vdu3bxxz/+kZdf/gednV3h9qioXBIS15CUck6IDEgGQUBTA6Expk1+AgnjEXZiSFQ3GEXg94/icffidvXgcLbgdLTg9fTh848SUNwoAU8wz15TJmgRCIAcjthTNT9KwBV6PViLzxqVT27el0hN+yg6nQVF8U6ZR3qcjkZ6ut+hsPhb43dtRgLQ5e7D5R6gu+MlfN4BVq5+lLbWv2K2ZJKQsDZY0ar5jwwP7WLZintxOt0RAiCCUxOKD9VnR/O5QPEGo3dC4fGnwKoPooxkywRx7ivmHBUBAEFBwK989X+58qpvzstlq6ESVo8//jjf+c53pr1+0003cdddd01qGxgYoK6ujqKiohmF6QKKQv/QCN39AwyPjBEIBMK55aIoMTo6zL69eygsKOS8s88g/ijLHc6Ezs5OVq1aRXd3cAP11FNPcdlllx2zYRQIBOjv76enp4f+/n68Xi/Z2dksWrRoTmrK+v1+BgcHGR0dRVEURFEkEAigqioGg4GYmBji4+Pn3EifuDmaSw/Si397mUce+hlut2dG4b9xxf+45JuR5JjQhsGLzz+GxztEIOAK1euVQ6H+AcZG99Hd+S8G+t4PpQGALSqe+Pig4S9LEgadAVkKeiMEAQYGe2nraMDtcaHT6cnJLCQpMS2sjXC8MJ7/7/a4aW6tQVNVKspXIcu6SATAvBAuEFAVHC7XpE2lKIr09LYxMNDN4tKV2GyxR0wKCYDH78Pr9YIgMDo6QGdXsELIJz79Gc4462z8fj96WSYuJprewcGQgKDG3577C7t2bMVoMJOdXYzVbEWn080qXWqujOy2jgbaOpsoLL2a1LTzURQ3omTEMVbNvt0/xOcbIykxjYLcMtA4ZjoFoijidDnYs28L8XHJJCdnopN1x400CYYlu9lbtRW/30dZ8TJioxMmEU2iKGJ3jFJVu5NAIOh5kWUdZcXLiLJGHzURqWkaAUXhs5+7gOtu/G5w7YvgoPuiEzkKYCL6+vp49dVXQxUENuPx7DeobdG5JCauIiFhPbaYxRgMyYiiPkQEqKFnjDbNCAjuAUQEUUJgf8WecXJAVYOlEBXFG9QfUAOT0g6Con4KqupFUdwhokFGEg0MDG6hteV5LJZMCou/RVzcUtQJ79fpzGiaMMFAOfB883iHcDi7aW/5A6IgsmzF/dTVPkFs3FISEtchILJ92zVER5dQUPh1nE5XhACI4BRa6AJo/vEQfw+ME3FzGSV2JPvU4xmdpqmIUanzkgZw1ASAoigYDAZ+9ouHWLS4bP7IH0XhS1/6En+aQQ/g6aef5gtf+MKk9nE9gNWrV6PT6QgoCiNjdvoGhxkcHsXlCdZZFcdLY00xkn1uFyZZwGo2UXgAIuFoUFdXx9q1a8PRDH/84x/5n//5n2M+lurr62lubiY/P5/c3Nw5Mf5PJvj9AZ7789/49S9/h9PpQpalGVk5QRCIivsqetNafL4hfD47/oALVfWHxIz0CIKM3z/KyNAOenv+w/DgjmA0AGCLjic2JhGzOSoUAixj0OmDZJQg4vV5aO9qoqe3A4BoWxw5WUVEWW2T6nUfT3h8HoZHhmhprSYjLZfszMKI938eCRef34fL457UpigKTc2V6HUGFpWuPOrybAICvoAftze46R0dG6CzswkEgc9edDGr163H5/OhaRqSFAyVfeUf/+CD9zZgNlkpyAuWHgz6yrTj3leBgJ89+zajqCaWrnoYgzERLZS/K8lm+rr/TW3VQ2iaRlZGAZnpecd07I6nAfj9PnKySzEajMdXL0GSae9spLW9gZjoOEqLls1ouLS019HV3RpuS4xPpTC/fFbfW1EUrFYLN99yLed++OzIZD8E7Hb7SXdNVVVVvPvuu7z66qvs3LmDkZHR/WSALZ3YuHJiY1dgi1mC2ZyFTheLKO4XF90fJXCIVU4Y/ynuN/oPMD9nem1wcCs1+x7G4WwlL+9L5OT9Lzpd8BkerLoSykM+yHwQBBGPZwi7s5PaffeQlv4RCosuZ9fOH5CZcQHxiatxubrY9MH/sWTp7cTFL8fp9EQIgAhObmgqmt+N5neEQvwDx9foXyiEwDymARw1AQDgcrr53MWf5tYfXT+v19/W1sbHP/5xqqqqJrXn5OTw9ttvTwr5V1WVjRs3YrJYiYlPpHdgEIfLjaooCKKIOGMoN6iaSkJsDIuK85FFkcrKSnp6eigtLT2oGv7hYvv27Zxxxhm43cEN/N///ncuvPDCY0eoqSqVlZW0t7dTUlJCfn7+cZ/vXq8Xl8sVzuv3+/0EAoGQ51xEkiSMRiMGgwGz2YzRaJzXPNHamnqefebPvPXmBvz+wLRohaBxA4riRTaswGD9FP6AN1S2R0CSgka/orhx2BsZHtzCQP8HuJxt4fdHRcUSF5+CxRwFCMiSiEFvQBKlkPEGQ8O9tHU24XI5EEWR9NQc0lOzkSR5wYjraZqGy+OmvbORsbEhFpeuxGKJioj/zaPB6PK4Q/n6wTkgiiJjY8O0tdeRnVlIZlrurMQgg1EGKh6fB1VVGR0dpKOzCVmWuPiS/0fFkqX4A35EQeKtN97gP6//C6vVRlHeYsxmy4IhpkRRon+wm7qGvSSlnEdx2TUhtXEtRN5JiJKelobHaW/9J4IgUJi3iKTENBQlcMy+Y3dvG63tDeTllhEdFYted/yiZ8KkSdVWPB4XJYVLiI9LniYI6PV52Fe9HY/XHR6DpUVLiYmOn9Xc9/n8FBTm8eAjdx11KbpTZp8civ46WSIBpqKlpYVNmzbx+uuvs2XLFtra2ibOHKJsWcREl2KLWYTVWojZnI7RlIxeHxMSDQyRAqHNXbAiwP6ogf3RA0dDlBnxegaor/sFrS1/IjZuBeXl15GQtDZU3lA9rJXW5e6jt/d9GmsfZf3pv0Onj2Pf3jsoKfs+NlshdbW/oLvz36w7/XcAeDxqhACI4ORczwIeNF/I6A/4gnNzrkP8D/ZcPdQz92A2xzEhAuYvDWBWBMA4c/+rpx4nLz9nXrvg1Vdf5Qtf+MI09vuuu+7ipptuAsDt8TI0MsbOPXuob2ikqLgUvUF/SKNR1TTSkhIozs1Gp5PDD9n6+nqamppYunQpKSmzY1/eeecdzjvvvPAm+Z///Cef+MQnjtkkq6qqoqmpiYKCAkpKSo7LRHe5XIyNjTE0NMTY2Bgejwe3O1hDXghFZEiSFErJEMNt4ykFer0eo9EY1i6wWq2YTKajJgUURWFocJj6+ibefee/vLthI329fcg6ecbIiICi4PO7QEzDbPs8khyPIIKAiKr6cDqaGB7cweDABzjsDeHNgCzriLbFEx0dh9FoQRRERFFAr9Ojk3WhNBQJt9tBR3cLff1daJpGlDWGrIx8YqLjQ+WMFkZovYBAQFUYtY/Q1LyPGFs8hfmLjmke9akIp8eF3+8Pj3dBEOnobMBuH6GifDUWs3WOCBgNn9+PLxBgLKQJYDDo+dJl/0dBYRHvvPkWr7z8d6JtcRTklWM0mBZU5IcgCFTV7mRkdJDyituIT1xHIODGYIhGQMDjHQ56DzUfNZW3MTiwB52spzQczq4cg+8o4vG4qKzZTlJSBmlJmciydFznuCRJdPe209hcTZQ1hvLS5WEB0qnERVNLTbgtxhZPSVEFonj03z8omOrnS5d+ke9+74rIZI8QAUCwnHNNTQ3vvvsumzdvpra2mo6OrilHyRhN6VisaZiMyZgt6ZiMKeiNcRj0ceh0NiTZgiQZkCQjkmRAFA0H9PJraCGjYLLmQFD8L5jWhwZdna+yb9/9oPlZtPhWMnMuQlOVkBjwgec9wMhoIzu3X0uUNYe1639Ne9vf6O97nyVLf4IvMMZ7G75AYdE3yMq+GEVx4fFoEQIggpMHih/N7wwa/gFvqHSfMPcG9UzPo6ltB3pmzfRdDvT95psImKc0gFkRAEGjzs3/XHIRN9z8vXkfM3feeSe33HLLpLbY2Fh+/4c/UFxeQWd3L16/n4DfT0NtDWkZGcTFJ8y4KRZFEVVVURWFgpws8rLSZ/zMHTt2YLfbWb9+fVjU7mjw0ksvTfL4v/7663z4wx8+JnOto6OD3bt3k5qayrJlyw5NiKgqLpcLt9uN3x/M9zSZTGFV//F8e0mSkGU53D4T/H4//f39dHd3MzIygsfjQRRFzGYzJpMJq9VKVFQUBoMBnU6HLMth7//4ORVFwePx4HK5GB4exuFw4HIFa6GbzWbi4+NJSEggJibmoCkNb7z+Nm+/+S4WqwUlEGB4ZISuzm66OntwuVzh65lqTGiahsfnxef3IkpxWGO+gKxLxePuxO3qZnRkDyPDe3A6mkPRAEEYjWZiohOw2eLQh/J7RUFEJ+vQha5TEEQUxU/fQDdd3a14vG70OgOpKZmkJGUgy/oFF1YvCEECoKOrhZ6eVsqKlxN9FLnnERzZZt/hdob7OFhdw0tDUyW2qBjKipbNrfEoCChKAJ/fj90xSkdnE7FxMZSULmbLxvex2WLJyshHlnQLivgJ5qqPsbdqCyZzFktWPIAkGREQiIkuRJaNOJydOF29SJIRj6eDfbtuxuXqx2KJoqxoWbCyxjG4JlEQqWvci6pBfm4psiQdd10PVVXYW7Udp2uMgrxyUpIyJkVFjBOyVbU7sDv2h2nn55aRmpQxqwiUQCBAenoaDzx8J/kFuZFJHyEGpqG/v5/W1lbq6+vZtm0bzc3NdHS00dvbxfDwgQQSdej0Meh1FmSdFVk2IUlGRFFGEOTgT6SQjo8HRfGgoSKKekBDEg2kZXyS1LSPIMtGFCUY8SfLRlyuNvbsup2e7rcpKrmCsvJrECUT6hSBQEEQEQQJRQ3gcLZTX/Mk/X1vc9oZfyAqqpC9e24jKekMMrI+w97dtzPQv5H1p/8eUQwKlEYIgAhOeKgKWsC939uvzkNe/+Ea/tNIgKkPw0MY+UdCDswRATAfaQCzJgAURcVsNvKzXz5MaWnxvI4ft9vNZz7zGV577bVJ7ctXrubOBx9GlnXBuomiRHtbC36fn7yCgmmGiSAI2MfGGOjvIz46isy0FGJjY0hLS8dkmlyKaXR0lC1btlBRUUFycvJRf/dnnnmGSy+9FAiq5L/11lucccYZ8z7n3G43mzYFy8ytXbt22vXtv48Kw8PD9Pf3MzQ0hNvtxufzodPp0Ov14dxiVVUnhemPG+06nQ6z2RwO1dfr9djtdtrb27Hb7ZhMJmw2GwkJCdhsNiwWy6wqAbhcLkZHR8Pf1+v1YrVaSU9PJzU1FYPBMI2I+PY3r+GDDzaHP1cQCJMNMxEHoiiiKAHGHHZ8fi+KqoKQhdcn4rA34nZ34feNTXqPJMlEWWOwRcdjMUchSTKCALIYJBckSUYUBERBRNU0RkYH6exuYcw+gizLxMYkkJqcGRbWWoiCesF8dD/VdTvRyTpKi5ZGHm7z/exUVRxuZ3g8iKLI0FAfXd3NFOSWk5yUPi9EkYZGIKDgdNlp72jE7XaRmpZFalImuiMoN3jsCACJ5rZaurpbyc69hOy8rxAIODEZE7BFZYfJS7ujDZe7D1m2MjL0Afv23IGiBEIq+IvDhtR8f9fBoV56+joozF+8IPpTkmT6+ruoa9yL2WRlcdkqpCnEhChKDAz0UNe4N5yDbTZbKStejl6nn1UUgKKofPGSz3H196+I6NPMISEAnBQVBA60FxgYGGBwcJCuri6amppoamoKVX4apbu7m9bWFtxu36w+JzX1XIpKriImdlE4GsBojMfvd1JX8zNqqh8hJe08li67A4sle9I88PnHGButo6fnbTrbX8LvH2HZinvJyrqI9ra/MjpaTUnpdxkdrWbLxstZuvwukpLPCgkREiEAIjhRV59giL/XjuZ3g+KbYCzPk8F8MA//+O/aDFb/+GszGvLC5K87fszUY+eNBJifNIBZEwAAbpebT3zqY/zkrlvmvZbv7t27OeeccxgaGgq36fR67n/0CZavXIXX60UURQYHBuju6qCkbNGkDYwoijgdDhob6ijJz2Xl8qU4nS7a2trw+/2UlJSQlpYWPncgEOCDDz4gLS2NgoKCo/7eTz75JFdcEQxttFgsbNiwgRUrVsz79Kurq6Ouro5FixbNWB7R5XLR3d1Nd3d3OL3CarUSGxtLfHw8NpsNnU4XNvwDgQCKohAIBMJeeafTGc7j9/l8YYJAEAQSExPJyMggLi5umlE+V/D5fOGH//DwMHq9nszMTLKzs8ObyHfefo9bb74dvz9w2BvL0bEhOrtbcLocIfJDmXFzKwgiRqOJKGsMUVFxGI2mIKkgiMEICXE/wSAKIqqqMGofpre/k5GRIfR6A1FRMcTHJhFji0UIRacsVIiiyMjYMDV1uynILSUhPiUi/jefhEuo5KLT7ZrU3tpWi8/npqJ8DQa9ad488YIg4A/4GRjqQxIlrBYber0BaYEZaON57LsrN+MPaCxd8QCWqHxUVSHGlodeHxXqo6Cax5ijFY9nCFm20Nn+LI11zwCQnVFAZkbevGsajH/f1o5G0lOyMRpNx50AEAQBVdOoqtnOmH2E3OwS0lOyppSeFFBVldqGPQyPDITb50JMUVEUoqKs/PC2Gznz7NMik3+eyMSTOW1gpj1OW1sbDQ0NVFdX09XVxejoKB6PB5/Ph8fjwePxhPcw43sfnU6HoigMDg6yZcsWvF4vFmsmRcVXkZl1AbIcTH0SBBlJMtDZ8U+2bbkaWWclNfXDiKIOVfXj9Q1hH2vC6WhC1QIkp5xFSenVJCatx2FvpqbqYYpLvoPZksHGDy4jJnoRZYtuQFE8YSMlQgBEcEJB8aH5HKg+Z9Do19RjU7rvQMb/TIb/1NdmfiBOMewnEAHHmgSYhzSAQxAAAocjlqKqKpIk8fCj97B67fwbtd/5znd4/PHHJ7VdcullfPPK7+ILEQAOu536uhqKikuxWCfkxgoCQ3196EWV8845G6s1KmxE1tXV0d7eTnl5eVj4z+v18sEHH5CdnU1eXt5Rf+eHHnqIa665BoCEhAQ2bNhAWVnZvPZTIBBg48aNKIrC+vXrJ3nc3W43ra2tdHR0hL3nycnJJCUlYbPZjrhcn6qqYQLA4/Fgt9uJiooiISFh3kmhibDb7djtdgKBAGlpaciyjNPp4pYbb+e/736A3nDoqANBEPD5vFTX7cLpsk8y9MfLRkqSjF5nwGS2YDbbMJusGPR6BEFEEvanMAihBSPo8VcZGRuis6uFMfswVouN6Og4YmxxWCzRyJJ0QoTRi6JEa3sDo2ODlBUvn+YhjGDujTKvz4vb6wmPQ4/HSVPzPhLiUyjKXzTv42Z8HI8X3lqI91sSJfoGuqhrrCQ2bjnlS25H1QIYdDaibXnTrkhDYXSsCZ/fiSSI1FXfQ2/P+4iCSHHhEuLjkuZdFFAURHoHOjEZzdisscck9eBw5vfgUC819bsxGkwsLl+Nbkp5T1EUGR0borp2V5gc0OuDlSiMBvOsyCifz0dJSREPPnIXySlJkQXgGOBU0BM41P7F7Xbj8XiIj4+f9vrTTz/NjTfeiMvlQqczkV/4DUrLvgfIoZx/AVm2MDy0i+3bvsfI8F5S0z6CXh+LzzeCTh9NTMwiEhJWEx1ThiSZCAScVO69i5iYRaSknkvVvvtQFR9Ll9+NIEgTyhNGCIAIToRJdAxK9x2u8T+j13/Cz0m/hw+cbPseyNAfJzIORgTMS1rD3KcBzEkEAIDH7WHdaWt45LF7ZpUrfzh44403+NjHPjZp07t0+Qrue+RxpFAYpd/vp3pfJemZmSQkJAbz/VWVKKsF0e9B0FRWrV49yTjVNI3a2lra2tpYsWIF8fHxDA8Ps337dpYtWzbjg+Fwcccdd3DrrbcCkJaWxrvvvjvvSvyjo6Ph6IUlS5aEH3Tt7e00NDTg9XqJj48nMzOTxMTEeb9vxwvbtu7kxut/hH3MjnSYdaaDGwIHfiUQNPqFoDChoqoEAgqCKCBLMjqdHr2sRxSFsLE2PpZEQUQQBQKBAKNjg3T1tjM6OoTZbCUlKRObNRq9wYgs6divTrzwjVFVVait30tCfDLJiemzyvuN4PD63O114/X5wsZXX18Hff2dlBQtJSE2KXIPQv1UXbeL4ZEBikquJiX9fBTFhc2ag9EYN80oDepveBgdayag+FGUESp33YzD3obRYKK8ZDlGo2Veo1sEQcTpsuP1uomPTVoQBMA44VNVFxRSzMksJCM9d1pEhCCINLXW0NPbHm5LTc4kN7tkVgTA+PP765dfxjcvvyyyABwnQmAmnKxpBIeDl156ieuvv57u7m5EEfIL/o9Fi28FQYemBbWSZNmExzNI5Z47GBney7IVd5OYfBZqyJuvaUrI/ghQW/M4quqlrPwGxsZq2Lblu6Smnkdx6VWIon6SnlCEAIhgQa8XATeqvRdU/7E1+g9FAIQNfG2/4T/x70nHjv83Mdx//PfQT0HY/2+q8T/vkQBznwYwZwSApmkE/AFu/fENXPDp8+f1Pvf29rJ69epJ5WESEhN5/FdPk5ySSiAQVMqura7CGhVFRmY2/oAfi8nE0rIiGuvrUBSF5cuXz3gdH3zwAUajkRUrVrBv3z6GhoZYt27dEXvFJ+KGG27gvvvuA4LlC999910yMzPntZ+Gh4fZuHEj5eXlZGdn43K5qKqqoq+vj7i4OHJzc0lKSjqmHvrjgSce+yW//c0f0OuPjOAIhu0L09jBcTJp3LM/MU5mnCzQAI/HxeBwH739nbjdTiymKFJTs4iPTQqnBIyLDJ4oEEWRMfsIXT1t5OeUIMu6iPf/GMDlcePz+0LipQpNzVWIgsDistXICzAX/3iMS6fTwZ6qTchyNEtXPoreEI8o6oiNLpxUHmyqEesPuBgdbUQTJRwje6nc/SMCARcx0fGUFC1FnOc5qqoqI6ODxMbET6hPfrz7U2JkdJCq2h3o9QYqylajm5Lfv7+SwTZ8vqDomSTJlBUtxTZLUVC/309uXg4PP3oP6RmRsoAnInFwMkYUbNu2jauuuorKykpEUSS/4AuUL/4JomhBVb2huaMDBBrqf01jw1OUlH6X3LxLgn0jCLhdnTTWP4WmaZSUXY0kmRAEEZezne3brkGS9KxY9QgGQ0KYBIgQABEsbALAgzrWwbyH+B/K8A8b/Qfw+k/7N04GMGWffwDDP7jpn2LwTz1mHkmAOU4DODICQFPQ0ELhoOK0m+3z+sjLz+GXv/kpMbEx83rPL7jgAl5++eUJ/Sxw90M/Zf0ZZ+INKc031tehahq5+YWYjQaWlBYSZTGzadMmoqKiKC8vn/HctbW1DA0NUVpayo4dOygoKAinBBwtvv71r/PrX/8agOLiYjZs2DArUcEjIQBWrlyJ0Whk165dOBwOioqKyM3NPWxv+ImM/v5BvnPFtTTWN6HTz0+EQ7BcoYgggN/vY8w+Qt9AF8Mjg6iqQrQtjtTkTGKi45FlecGK+x2WYSCIdPa0IssyyYnpEeX/Y/OEw+F2EVAUJFHEbh+hta2W9NQccrKKIvoLBMP/2zqbaOtoIDn1bIrKbkQJuLGYU7Fa0g7gkQ6y/YIg4fUNMzrWjCSZ6O78B/U1wRSzjLRcsjML5zkKQMDuGEGvN2LQGxdOuU9BpLZ+N4PDfWSl55GVUTAt0kQUJdo7G2nraAy3xcYkUly4GBExLBJ4NIakoih86dIv8p3vXh5ZAk4ycuBEJgg6Ojq4/PLLeffddxFFkazsD7N02f2IUjKq6g7PHUky0d39H/bu+iHJqeeRk/NFBge3MNC/hbj4pWTn/A+iqA+XDZQkE05nGxvf+womcwqr1jyBTmdFVQMRAiCCE4AA6DxeC8v03yeSAOq4sa9ON/61mUp+MrNhf6h/zEACzAMBMJdpAEdAAKiIUgyiGI2qjqEqw2haUABlIhHgdnv49ne+zte+cem83vO7776bm2++eVLbZV+/nK9efgUetxtRlGhpbsRuH2PlylUsKSnEajGjaRqbNm0iMTHxgKJ+4yHysiyTmJhIcXHxrL3kF110EX/9618BWLJkCe+88w4xMfNLkoyOjrJp0yZyc3Pp6QmWuquoqJgkcniy4w+//wuPPPQzZFk3p3NxXA9AgKBAm9PO4FAvg0P9+Pwe9HoDCXEpJCakYDXbEEThhDb8xw0Vf8BPd08bKcmZs1L8juDwoWoazlAJQFEU6exqYmRkgMVlq8LVIk5ljIvSVVZvxeG0U15xC3EJp6NpAWKiC9DJBxLX28/2C4KIy92Pw9mJKMrU1zxMT9cbCIJAUUEFifHJ8yYKGNR48KAEApjN1gUzp0RRZGxsmMqa7ciyjoqyVRim5PeP66VU1e7A5XaG24oKFpMQlzJrQUCLxcKtt93Ah845I7IQnOzr3AkkTuhwOHjyySd5+OGHcblcpGesYPWaR0AoJBBwhfcasmxldKSSrVuuxO3qJi//K2Tn/g9mSwaa6ptGTEqSmeHhnbz/7v+Sk/e/lJVfEyxD7FEjBEAEC5sAGO04vqH/U8P+NXWCkT/B+FenkgGhvcBEgcCJef6TDH0xVD5MmKGdY6AHMLdpAIdHAGgBjJZ1WKI/hSjFoqp2FH8PHtdWPM4P9rMlBIXn4uJiefKXj5Cblz1v9/zNN9/kox/96KRN2ep167n7wUdDCvQiba0teFx2vvi5zxETHRU+bpwAOFAOfnNzMw0NDeTn589K+G8cgUCA888/nzfeeAOAVatW8fbbb2OxWOZ1Xvj9frZs2YLTGSwfVlFRQWrqyRdO6XA4eO6553jppZfw+/1cfvnlXHDBBdjtDr777evZvXvvrCsQhL38gKqpeH0enC4Hw8P9jI4N4/G6kGUdMdFxJMSlYLPFhg3kk8VAEwWRkbEh/H4vifGpCyZf+aQ2boGAouBwBzeVgYCfxqZKzCYr5SXLIx1E0As9OjrIvprtmMyJVKx4CEmKQa+3Eh2VB4fphRYEEbujA493MCjQtesHOOyNGAwmyoqXYTZZ5m0ua2h43C5MJsvCGn+CSF3DXgaGeg4YDSGKIj19HTQ2V4fboqwxlBUvRZJml57i9fooLing0cfuIzEpITLYIyTAgsKWLVu49tpr2bNnD8kpOaxbfy+y7nS8Xh+CoIWMeiMeTy87t12Pw9lGxZLbSE45G1X1TRL6G4ess1Kz7yGam//EutOewmYrxuXyRgiACBYuAeAZRXX2hSLDj4PxHzb8p0QATDT2VXWGNm2/8T/xXMLEFICJBr8Y/F0UpxMCB0oFWMBpAIckADTNh06fQ2zStUi6ZDTNH0oBkNFUL6MDP8fteBdB3L8wud1uLrr4Qn5w63Xzdt/7+vpYvXo1ra2t4baEhER++svfkJqegd/vR/V50Xwuzjj99LCxraoqGzduJCUl5YAEQEdHByaTaVaifxPh8Xg455xz2LhxIwBr167l7bffxmic/8V827Zt9PX1UVZWNmMZwBMZHo+Hl19+mYceeohNmzaF2/Pz83n//ffo7urnqm9fi8/nP+Ka0hM9/Kqm4vf7cHmcOOyjjNqHcDjHCAQC6PUGoqNiiYtNwhYVg15vDM0b9aT0jg8M9GCzxWIwGCPe/2NCAAj4FD8utytYfnFkgI7ORvJySkhNzoqE/xMM/29sraW7p5X0jHPIL76BQMCNLSobkzH+CATpgmoeo2NN+BUP9tEa9u2+hUDARWxMAsUFFYiiOE/jXsDv9yKKEpIkHzZpMf/kiojdMUpl9TYkUaaifOYoAFVVqK7bzejY/vK8+TmlpCZnzkqgclwQ8DvfvZxLL7sksiCc7IaEpp1wQoN9fX1cc801vPTSS8TG2jjr7B9ji/lfxsb8gD80j/Qoips9u35EZ+crFBZeTkHR15Akc1g7IDyfRB1eTz/v//f/Ub7oelLTPoLT6Y4QABEsWKiOXjTv2PEjAA6U6z9u7Id/qlPatBnSAKaE8wsTSIBxw18UJ5MAonBggcC5JgHmMA3gEASAgijFEh3/LQymRWiab4qRpEMJDDPcfz9+bzOCEMyxVhQFk8nII4/dy9JlFfN2788//3xeffXVSRuRO+57kPVnnk1SXAzJcdHs3rWL5cuXh8PtFUVh48aNJCUlUVRUdEzGqMPh4IwzzmDXrl0AnHHGGbz11luzEhU8XNTX1zM4OMiaNWtOGrE/v9/Piy++yBNPPMGGDRumvZ6fn8/bb7/N3194had/++xhES2TDH5Vxev34Pa4cDpHGbOP4nTZw0JXRqOZGFs8cbGJWC02dDr9SW30j88tj9eNy+UgLjYxYvwfy373efF4PQiCQGtbHV6Pk8XlazAaTLNSWz9Z+kdRAuyp2orb7WTxkhuIif8QoBEbXYgk6o4wD11EVb2MjDWiAV3tL9JY93MAMtPzycrIm78oAE0NldSVF1Qfi6JEQ1Mlvf1dB9SdEEWRkdFBqut2hfvHaDBTXrp81roGfr+fgsJ8Hn70blJSkyOLwsluTJxgUQAQjPK86667eOCBB5BlkdVrvkR2zvX4/Ikoiits2KMp1FY/Rn3dL0lKPoNFi2/GaitACbiZSPpJsona6scwm9PJzPpMhACIYOFCU1HGOiHgPbYpADPl/k8N71dnMP5VdX80wDgRMEkIkJlD/8WJhn/op3gAAmDG0oFzduFzlgZwcAJAC2CNuQhrzEVomnfmE4gmPI7/MjLwxHivAcEogI989Fzuuf/H82Z43njTTdx7zz2T2r79vWu5/rrryEpNwul0snXrVpYvX47NZgs/XD744ANiYmJYtGjRMRmnw8PDrF+/npqaGgDOOecc3nzzzWPy2U6nE5/PR2xs7Im/zmgab775Jg8++CCvvfbajJvKsrIy7r77bhYvWsLVV91Ad1fPAYmWcZV/VVXw+by43A7G7CPYHaO43A4CgSB7L0kyFksUsbY4om1xmMxR6CQ5FDWknhLGsCAIjI4NodcbMRnNEQLgGMLt9eAP+PF43TQ17SMxPoXC/PKIACPjavUD7KvZgdkcw5LlDyHKiRgNMdiiso+KIBEEEZ/fzuhYM6BRW3U//b3vIooSRQUVJMQmzlvZRVVVEEVpgfWxiNNpZ2/1VgRBpKJsNSajeVoKkCAI1DdW0j/YE25LT80hO6sQbZZjNeAP8L9f/gJXfe/yYARiBBESYAHiD3/4A9ddd11IF2ARZeU/JMp2JorqR1N9CIKMIAi0NP+FutonkEQDZYuuJzXtY2ioaKo/TBa4HG14vQPExi3F7Q5ECIAIFiYUH8poB8c8au1g3v+JXv5xg3/qv4lpAVP3s9PC/8X9xr8oBA3vaYTAsY0CmIs0gIMQACqCYCY2+Tr0hqJp3v/9kNA0F0M9d+L3tYSjAIKeDImHHrmLNetWzcv9/8Uvfsnll39zUtv3vn8tDz14PwA+n4/NmzdTXFxMUlJS+Htt3LgRs9nMsmXLjsk47e3tZc2aNeF0hfPPP59XXnklsnAcAd544w1+9rOf8corr+D3+6e9XlJSwje+8Q2+9KUvkZCQwO+f+TM/ffjnyLJ0QAJqeHSQoeE+XC4Hbo8LRQmq8RoNJoxGM1aLjShrNCaTBaPBFCrvp6Fp2ilmAAe9rA7nGNG22MhgPMZwul0oqsrAQDe9fW2UFS8jLmb+jNATCZIo0dxWS2d3K2np68gvvgVVDRBty8WgjznqCAlBkHB7enG4evB5h6jc+QNcrnaMRgvlJeNe7bknYMbXlYUWrSWKEg3N++jt6yQtJYvc7JIZowDs9lGq6nYQCATXUlnWU1a8dNZilYqiYLaYufVHN3DOuWdGFoVTACdiOgDAjh07+P73v8+uXbuQZT35Bf+PvPxvYzJnoSjO8PrS3/cBzU2/p7/vfbJyPk9JyVXoDQkoijt0/QH8/lH0+lg8HiIEQAQLc5767Kj2nmMb/n8g7z/aZON+EgGgzEAEaIdBAEwJ+xdFkMTJf08kAMbTjedTC2CO0gAOSABoWgCdPovY5BsRJRtoykE2SwacY68wNvRMmAAA8Hi8nHb6Gh54+C4MBv2cj4FXX32VT3ziE5OMsa9+9av85je/Cf+9efNm4uPjw4r/qqqyZcsWJEli1apVx2SsNjU1sW7dOvr6+oBgRYDnn38+snIcBrZs2cLDDz/M3//+d7ze6VEoeXl5XHnllWHDH4LheFd9+zq2bN6OXq+fYbwKKIpCVe0O7I5RjEYz0VGxRNtiMZmsGPRGZFkXrP8d2oicyqHWgiDgcjsQBRFjxPt/zDfBLo8bf8BPS2s1IgKLylYhSdIpfx/Gc8/3Vm3D6bJTvuhy4pIuRBAgNrowVKFGm8X5RUbHWvAHnAwP7aB6749RFB8J8SkU5i9C0DjqMncnGvZHAWxDEAQWl6/GbJg5CqClrY6unrZwW1JCGgV5ZbMerz6fj8KifB557F6Sk5Mii8MpghMxGsBut3PzzTfzu9/9DlEUsViyKCz+DlnZn0OSTKiqF0EQ8bj76e7+D7U1j2LQx1O26HqSUz6EIARTkVRNRUCIlAGMYOHOT2c/mmfk+BIAk5T/ZzL+QwSAMjUKIFgpQJhKAggC2qT8f3H6v4ORAFMjAeaaAJijNICDEABejOZVxCR97yB1EsfPIqEpDoZ678Hv268FMO4pveveH3HOuWfN+RiorKxk/fr12O32cNt5553H66+/HvagbN++HZ1OR0VFRfhhsnPnTvx+P2vXrj0mY3X79u2cffbZYTb70ksv5emnn46sHAfB1q1befLJJ3n++edn9AKkp6fz1a9+lW984xtkZGRMeu2D9zdzw7U/xO8/sPifpmmMjA4iiiJWazQ6WR+SADsVPfyHYYS6HJjN1pNGR+KEebiGCACHY4TmlmqyMwvITM+bt5J0J5pROmYfobJ6G3q9kaUrH0DWZWMyxhJlzZwD0k5A1fyMjNSjIdDe+kdaGp8BIC+7hLSUbBQ1cAr1t0RTSzXdve0HjAIQBBGv10VlzXa8Xg8QTKFaVLICq9U267QVr9fLFVd+nf/7+pcji0OECFjw+POf/8wdd9xBR0cHqqqSnHIOZeXXEZ+wElX1o2kBBEHGYW+kat/99Pa+Q3Lyhygo/Bpx8SsQBBFF8UQIgAgWLJSxDvB7jm/+/4zh/6F/ylTjP/R7KEVA0KaUAAw9+xEnkADiRA0AaQoBIB1cD2BeCADmJA3goASANfqzRMX+zwHz/yc/+I24HP9hbPA3TNQC8Hg8rFm7ikcfv3dGb+xsMFMlgIqKCt5//32s1mCn7Ny5E0VRWLlyZfghsmvXLtxuN+vWrTtidfijwRtvvMH5558fDou88soreeyxxyIrxwyoq6vj0Ucf5dlnn2VsbGza60lJSXzta1/ja1/7Grm5udNe3/DO+9x398P09w0g6+RDGhAgnDJ5/Ee1QITqfGuaisFgivTTsex7giUA3V4PXd0tjI4OsLh8FWaTNZL/TzD8v6O7mZa2epKSF1NcfjuqKhFjy0Ovt81J1I4giHi8g4zZ2wGoqbqXwb73kWUdZcXLsFljTplUDFEUcbkc7K3aCsDislWYzdPHoihKdHQ109peH25LSc4gL7t01vfE7/eTm5fDQ4/cRUZmemSRiGDBkwQ9PT3cfffd/OEPz+Lz+ZFlK0XF3yIn738xm9NQFB+CIKKh0tezgYb6XzM2Wo0tupS8/K+Qkvoh3G4lQgBEsACt/wDKWHsoQvw4EAAz5v9P9P6Hwv6VmQgADWE8XWDiucKG+gQSYCoBIM1EBIiTUwbGzzUvQoCE0gBsiNajF8Y9AAGgIiAH8/+Niw6S/z/psQ+an+G+B/F69iII48roGpqq8ZO7buHDHz1nTq/f7XZz+umns2PHjnBbRkYGmzdvJi0tDYC9e/ficDhYs2ZNuITT3r17GRkZYe3atXNOSsyEF154gc9//vPhv2+66SbuuuuueXsAHgtSY65RW1vLb37zG5555hl6e3unvR4TE8Mll1zClVdeSWlp6bTXR4ZH+MWTT/G3v76Moqjo9brI4jxH8Pm86HT6iPf/mBMAAgE1wJhjjKamfdiiYigqqDjllf8nklPVtbsYHh2guPh/Scr4EgIQG12EIEjMnSiRwJi9BZ/fjs83ROXuW3E5WkO17pedUukYoijR2FJNT287qSlZ5M0YBSDg9XmorN6O1xvMZ9brDJSXrsBktMxq/GqahqIoXPzFz/K9a76NJEmRiRDBvJIAVuv+yLfx6MCjOf9//vMf7rnnHrZs2RI8b1QeuXlfIjvnYozGJBTFiyjqUFUfI8N76Oz8F0rATUnZ91DVKO67JzlCAESwoKD5nahjXQun/N9U7//UCABlvw6AoE6sAKDNtMHYnwowLfR/BhJgkvdfnFxJYOI5564TZp0GMCMBoGl+9MZSYpOuRRAMwOE9sAXBgMe9jZG+xwjWPw0OCq/Hy4qVS3n0ifswmUxzOAY0PvWpT00S1LPZbGzatClsJNbX19PZ2cm6deswGAxomkZtbS3d3d2sXbt2Tr/PgfDb3/6Wr371q+G/77zzTm6++eY5/YzGxkZuv/12mpqayMjIYPny5RQVFZGTk0Nubm64CsJCgcPhoKmpierqat5++23+8Y9/0N3dPe24qKgoLrnkEr71rW+xZMmSGc/19pvv8vhjv6ChrgmT2YwoRgzVudxMqaqCLEcIleNh4PoDAXr6O+nsbKS4cAlxMYnTDK5Ts29EfD4Puys3o2oBlq64B5OlHKMhZo7C/yd/lj/gYmS0AVGUGR2ppGrPbfj9jlAofPEpE5ERjAJwsrc6GAVwoIoAoijS0l5PZ1dLuC0rI5i+Mtvxq6oqRpORa677Dp+64OORhSKCeSMBJhr/M+0/j5QMcDgcPPvsszz88KN0d3cCEBNbQVHxt0hN+wg6nQ1NCwDBssSBgAtNU/B6xUgEQAQLb565B9FcQwuIAJioATA1/H/yT2H8uKnnmeq9FwS0GfP/p5AA4gTv/0wEwHw40GaZBnAAAsBHVMwXscZ85jC9/+HTAQKjg7/C7XhnUhSAoij8+I4f8PHzPzyn13/VVVdNCqcXRZE333yTs88+G4DOzk6qq6tZt24dFosFgJaWFhobG1mzZk04VWA+8dhjj3HVVVeF/37wwQf5/ve/P6ef8dWvfpXf/va309qjo6PJzMwkKyuL8vJyKioqyMnJIS8vj5SUlGMSLaAoCu3t7dTX17N37162bt1KdXU1zc3NM4b5AxiNRi688EKuvvpq1qxZM+Mxg4NDPPn4r3npxVdQVW1ehCZPdShKAFGUIt7/40QA+Px+Gpr2oSgBykuWh6OYTnWIosTwSD9VtTuJjs5k8bIH0QQzMVG56PVRcx4lIQgiDmcnTlcPsmyht/sV6qp/ChoUFS4mMS7lFEoFkGhqraG7p+2gFQGcTjv7arbjD5VTNZsslJesQKfTz3oM+/1+UlJTeOiRuygsyo8sFhHMOQlwMON/tkTAyMgoT/zs5/z6V79mcDAY8Rgfv5KMrAtJTj4TszUHSTKCpqKq/nAZwLLSYCRe5HkcwYKYY2OdaH7X8a8AcKQEgKoiqDMQAJMf+hMIgJBRP9XwXwAEwGzSAGYgAMbL/92A3pCPpvmPcKOkx+9rYbjvftTAEAjBPGyv18vSZRU89rP7MZvNc3b9DzzwANddd92ktt/97nd8+ctBkaD+/n527tzJmjVriI6OBoJl+fbu3cvKlSuJiYmZ9/F69913T/L4/+xnP+Nb3/rWnH7GV77yFX73u98d1rF6vZ60tDSys7MpKChg6dKlFBUVkZ2dTVZW1qyjIoaHh6mrq6O6upqtW7eyZ88empub6ezsPKzvduGFF3LFFVdw1lkHFo58/d9v8sTjv6KlqRWzxRx5IM7LOhvc2JyIKSUnBwEg4nDZqa3bRXpaDmkpWRHxvxAkUaKts5G2jkYysj5CbuH3EQWJ2OgCgpFnc02SCMHQ3LHGUKiunrbmJ2lt/gdGg4my4uWhChknfyTAJC0AQaCibBUmo2XGigANTVX0DXSF2/JzS0lJypyTKBa328NnPvtJbr3thsj6H8EBn2FHWkrQYrEc1TPvaAiHvr5Bfv6LX/KbX/+C4eEhAAyGeOLiV5Kcchbx8auwWnMIKFbuvSuWrKygQy4qKipycyM4zta/Esz/VwMc0/z/mQz/8d9nJAAOkgKgHaAM4AQCQJupCoAkzSACOIEEQDg2BMAs0wCmEQCa5sdgWkJs0tWAjsMN/59KAjhG/opj5AUQJIJCaxqBQIAf/vjGOQ3be+aZZ7j00ksntU0MsR8eHmbr1q2sXLmSuLi4cNv27dtZtmwZ8fHx8z5Wr7/+eu6///7w37/97W/5yle+MqefUVdXx0033cR7771Hf3//UXlYEhMTyczMJC8vj4qKCsrLy8MpBLGxM9d/d7lctLW1UVtby44dO9i1axd1dXW0trbidrsP+7OtVitnn302V155JR/96EcP8sDs54mf/pJXXn4NBI6JhsMpvH069gt7BJMMrZ7eDrp72ykrXoZeb4h4/yeQI9V1OxkeGaBs8XXEJ56LyRiLxZw6b0a4IIi43L3YHZ2hXN0hWurvpKurhsSEVApzy0+hsoASza01dPW0kZ6WQ25m0bQICFEUGRkdorp2Z5gcsEUFdRNEcfa6CYqiYLFauPve21izdmVkUkQwKyLAYrHMiXf9aCICWlpa+elPH+XPf/7zpO+pN8QRZc0jIekzvPTiDaSluiIEQAQLY04F3KijncdW/X8mAmAiETCVAJgpCmC87UAigGFjPWjEaxPF/caN/2lpABM0AA5EAMwXCTCLNIAZCIAAUbFfxBr96SMM/594VhlVGWWk9358vqZwWUCv10f5ohJ+9vOHsEbNTej9f/7zHz760Y9OysG86qqrePTRR4FgztXmzZtZsmRJuE68w+Fgy5YtlJeXk5ycPO9jdWp4/l/+8hcuvvjiefmsxsZGWlpaaGpqYseOHdTV1dHS0kJXVxcej+eIz2e1WsnIyCA7O5vy8nKWLVtGTEwMnZ2dbNq0icrKSlpaWhgYGDiCjbRAamoq+fn5VFRUsHLlSpYuXcqiRYuQ5QMr97/y8ms8+cSvaW/vwGyOeP0jONmNXIH6pipMJjOZabkR5f8J/RIIBNhTtQm/X2PZyocxW/OxRWWjk+fTCy+gaX6GRxsJKG4kwYDL8Sq9XS/S399HVkY+SYlpp8R9EkURl9vJ3n1bEASRxWWrZoiACBZWranfzfDIQPjeFRdWEB+bPCdRAD6fj5WrlnH3vbcRGxcbmRwRHLaRPnE9mS8caVTArl27ePbZP/DPf/6T7u6uSd/z3vt+yrcu/0qEAIhgYcwhzzCqc+DY5/8fjACYSAJM9f5P/f1QZQAFQt7/8fJ+4syG/8R/E4UA4RhEADCrNIApBIAK6IhNugaDafHREwAEBQHdjncZHfzFhM1TMArgBz+8jgs/88k5ufba2lrWr1/P0NBQuO2iiy7i+eefD5EOXjZv3kxhYSGpqanhTcPGjRvJzc0lKytr3h80n/70p3n55ZfDbX/729/4zGc+c8wedL29vTQ3N9Pa2srevXvZu3cvLS0ttLe3MzIyMu/fwWazkZubS0lJCatXr2bx4sUUFBSQlZV1WCrOXV09PP7oz3nt1TcRRDGi8B/BKWHken0e2tobyMoswKA3Rrz/E4xPh9POnn2bsFrzWbz8PgyGeKKjco7BfdmvBSCIOjRlhOG+X1Pf8B5mk5XSolOnKoAoSjS1VNPd205GWi45mYUzRgH0D/RQ17Q3vL9KiEumqGDxnPSRpkEg4OfzX/gM113/XYSIAGwEC5BsONKIgPb2dl599VU2bdpEY2MjTqeDuLg47rrrblauXBkhACI47lAd3Whex/ElAKYa/5NKAR6gGkC4TdtPAkw9pyAEH1fjxv+kCABxSjnAGUoATvw34Zzz1BlHnQYwiQDQtACyLpm4pBuRdEkhNdKj3h4AAUb6H8Pj2hYWBPR6vSxaXMZjP3sAm232i9jg4CBr1qyhsbEx3LZ69Wr++9//otcHxYY2bdpEcnIyeXl5wYGrqmzcuJHExESKiormdZz6fD4+/OEP8+6774bbXn75ZT75yU8e18k7NjZGa2srra2t1NTUsGfPHurr62lvb6enp+eoc431ej2ZmZlhbYHly5dTXFxMfn7+UQkuvvi3f/KLJ5+iq6sHs9kU8fpHcMoYuUPD/fh8XlKSMqblV5/afSMxNNxHdd0uklPOpqjsBsymRMympHnPwRcEEbdngDF7K4IgIkpGBnpepnrf40Tb4igrXsqpkjYzUQtAEEWWlK9GrzdNugeCIBBQAlTV7MDhDAq+SpJEWfFybFExcxItoSgKOp2ee+//MaedsTYyQSI4aYgACJa79nq9+P1+fD4fqampYT2rCCI4PoNZRRntANV3fJ53MwkBjpf0m2TcT9UCmPLvMDQA9hv/E7UApCne/0MIAM4rAcBRpwFMIQB8GIyLiU26NiTeN7uHsyDo8Xn2Mdz3MJrmBoIK1n5/gJtv+T6fvejTs75uj8fD6aefzvbt28Nt2dnZbNmyhaSkJAC2b9+OwWBg0aJF4WO2bduG0Wic1DYfcDgcnHnmmezcuTPc9sYbb3DeeectuDnt8/no6uoKV0kYz+dvaWmho6MDl8s17T2JiYnk5+dTVlbGqlWrWLRoEUVFReG+P1q0t3Xw00ee5D9vbECWJXS6iNc/glMLff1dREfHYTSYIt7/CZBEic7uFprb6sgr/BqZ2V8kypqOTrYcEwLA4xlk1N6CIIhIkpGe7teoq3qIuNhESouWnlKpGhOjALIy8slKz58hCkCiq6eV5tbacFtKUgb5uaVz1lcej4czzzqNBx6+86BpZBFEsBCIgCMVJpyKSARABMd1DAe8qGMdx3siTf95MC2Aaf9CJIHGZBJACP0njOfxT4kAmPGfcHzC/ycQAEeTBjCNADBZzyI64XLQFGavpCwgIDI69DQu++uTogDKF5Xy+M8ewBZtm+UYmB5iHxsbGw77B9i3bx8Oh2NSObnKykq8Xi8rVqyY1/syPDzMunXrqK0Nbn50Oh1vv/02p5122gkz2QcGBmhubqa9vZ19+/bR19dHRkYGixYtoqCggJycHAwGw5x8lqqq/PX5l/jVL56mt7c/4vWP4JSDIAh4vG6cTjvxcUkR43/Kei9JMo3NVfT0dVBecRtJKedgs2YgCBLMswifIIh4vEOMjrUgCAKiZKS5/pd0tP2VlOQM8nPK5iS3/cQhAIJRAHuqtiJLMhXlq6eV+Qums3jZV70NjzcoDKvXGVhUugKjcW5IGy1Uv/nWH13P+Z/4SGSiRLDgMZsyhRECIILj+hz2jqE6eo9P+P9UAmCq8R8mAaZEAagTCAFtBgJgBg2A/R79maIAJub8TzD+ZzL8592GObo0gCkEgJ+omIuwxlw0q/z/yRsmHX5fG8N996EGhkGQQlEAfm6+9Vo++7kLZv0ZV199dVj0D0CWZTZs2MD69esBaG5upquri3Xr1oXLu9TX19Pf38/atWvntcxZT08Pa9asoa2tDQiK6m3YsIHly5dHVpEpaGpq4acPP8mGd95DlnXodBFPTgSnJgEwOjaMXm/AZDRHCIApm2ZBEKhr3MPImJOlKx4kIWElZlPyvBv/4wRAMAWgDUEQEQSJqj0/ZmhwC7lZRaSn5kzzgJ/8JIAUJmRysgrJSM2dMQqgtb2ejq7mcFtWej6ZGXlzFgXg9/vJyEzn4UfvISc3KzJZIjgxjKmjiAiIEAARHNfnsLMPzTO6sAiAqUTAJAJgf77/ZALgMFMAJhIAwgxh/+M/j6X6/7T+OPI0gAkEQLCDbPFfwxx1zpwRAMFr12Mf/jOO0RcnVATwsriinMeffBCr1TKr8z/00ENcc801k9r+9Kc/8cUvfhGAvr4+qqqqWLNmTbjGfWdnJw0NDaxdu3bOvNczoaGhgXXr1oVV8uPj49mwYQPl5eWRVSSEQCDA83/5O7/+5TMMDg5iNpsjnRLBKWzkKjicdqKiYiJFGGeA1+ehvmE3AS2WJSseIC6mFIMhZt7D/8cJAJe7D7ujA1GUCQQc7NlxPS5nG6VFS4mLTTqlIgCCxn1QlLGyeis6Wc/i8tXoZN0k4koURJwuO5W12wn4/QCYTGYWlaycFjEwG7jdHj75qY9y2x0/QBLFyGSJ4IQiAg5XIyBCAERwHEdqMP8/4D0+JQAPRgKMK/pr6gxEgDbZ8J+oAYA2LQBgfxqAMN3LfzDRv2Pu/d9PABxpGsBkAgCNmIRvY7SchqZ553DTJBPw9zHcdx8Bfw9CKApAURRu+8nNsw7Ze/bZZ/nSl740qe2+++7juuuuA4KCd1u3bmX58uXhevaDg4Ps2rWLVatWYbPZ5u2ebN26lQ996EPhRT0tLY0NGzZQUFAQWUeAutoGHnn4Z3zw3mb0el0kfzOCUxqCIOD2BLU2It7/mfvH43Gxr2YL5qilLFryE6JtOcck/3+cAHA4u3C6upEkIw57A7t3XAuaj8Vlq7FabKdkuUZRFGloqqK3v5O8nBLSUrKmCckKgkBDcxV9/V3htvzcsqDI5RyRJoqiYtDrefCRu1i1JhJlF8HJSQRECIAIjhsUP8pY+8xe8+NNAEwiAmaIBpj6+0TSIGwHjxv/TDHsxclkQPj3gxj/x5IAOIo0gCkEAMQkXo3RvHJOIwCCfaDHMfo37MPPhaMAPB4vK1ct46dP3IfRaDzqc7/11lt85CMfmbThuOqqq8JpAS6Xi02bNlFaWhouBehyudi8eTOLFy8mISFh3m7Ja6+9xic+8Ynwd8vLy2PDhg1kZGSc9OuEz+vD4XDgcDix2x2MjozRPzDAQP8gA/2D9A8Msmv7bgYHhzCZTZGFNYIIALfHhdEQ0b44kAHu83nYtfe/xCV8iOJFN2IxJWAyJh4zAmDM3oLbM4gsm+nteZPaffdhMppZVLZqmuf7VCIAHM4x9lZtxWAwU1G2EkmSJ0cBiCJjY8Psq90RJkmiomIom+PSiV6vl499/MP85K5b5jW9L4IIjhcRECEAIjhu49LnQLV3H9/w/5kIgInG/1QiIFwhYKLRPyX/f8YIAKYQAOw3/icSAMcz9H/S9R9ZGsA0AiA26VoMpqUTCACNuSjzIAgygUAfw733E/B3IQihzYGmccc9P+Tc884+6nPX1taybt06hoeHw20XXnghf//734FgbuCmTZvIyMggNzcXCOaSjrdlZc1fvuBzzz3HF77whfDfpaWlbNiwgcTExBN2AVAUBbs9aNg77A7GxuwMDgzS3z/IwMAg/X0DDA8P47A7g8c4HNjtDrxe37T5oNfrkSQpsqpGEAECihJAVRV0OgPHIqf9xCMABAKBAHsqP0CQU6hYfi9GYwLRUbmIom6O+0ybuBsI/z461oDXN4Ysm2mse5LO9heJjUmgtGjpKR2xIYoidY2V9A90U5hXTnJS+iRSXkBAQ6Wmfg/DIwPhtpKiJXOaOqGqGjqdxA9/fBMf/siHIpMmgpOKEBifaxFEcDygugbQ3MMLgwA4EhJg2r+pxr82dbPBzJEAUz3+E46ZavQfBwLgSNIAphAAIrHJN2AwlocJAE3zhtT754IE0OMY+Sv2kRcQhGCot8ft4fQz1/HgI3cftejbwMAAa9asoampKdy2atUq/vvf/2IwGNA0jc2bN2Oz2SgrKwsfs23bNsxm86S2ucZvfvMbvva1r4X/rqioYMOGDcTExCzIyR001oOGvcPhYHBwKOit7x9koH+AgYGh8Gvjnn2324OmaVPGuoAoioji+E/xmHs0gx5BIeJJjeCEQSDgR5IkBCGywTuYoVnfuI++gS4KS64iJe18jIZorJYMNG2u8+9VQAyvaZqmMDJaT0DxAAKVu37A6MheMtJyycksPOUEAKfeF7tjlL1VW7FYolhUshJRFKdFAQwM9lLbuDe8SYuLTaK4YPGcfhe/309WVgaPPn4fGZnpkUkTQQQRRDAXT0R7F5rPuXAIgCMiASYa/RNfD79xv607NQpgJjJgIRn/49//CNIAJhAAKgg64pJvRm8o2k8AqB4E0TgnXy2oBdDFUO99qIEBECRUVUWWZe578CesP23NUZ3X6/Vy5plnsmXLlnBbTk4OW7ZsCXvad+zYgaZpk8r+HYtSgD/96U/57ne/G/57xYoVvPPOO1it1mM6LNwud9Bgdzhw2J0MDw0HvfX9oZD8gUHGxuxhr77d7sDldKGo6rRxPG7Qi0LIsBcXpoGtKAEkKaIpEMGJAU3TUFU1EhFzyOeIwOjYKDX1OzAYM1my4n5k2UJ0VC463fxpAQSjDzwMj9YDAh53F7u3X4PfP0ZJ4RLi45JPOQHA6X0kUte4h4HBXooLKkiIT5nUJ4IgEFACVNXsxOEcBUCSJMqKl2OLiplT/QSPx8PnL/4MN91yTWTSRBBBBBGcrATAVBJgonE/9ac2weM/1fM/LehPmDkdAA5u/B83AoAjSgOYRgDEJ9+CzlAw5xoA+/tEx+jgr3HZ30AQgur7breHj51/Hnfd86Oj9tZ++tOf5h//+Ef47+joaDZu3EhpaWnY2Lfb7axduzb8GXV1dQwODrJu3bp5uxd33nknt9xyS/jvdevW8dZbb81K82AifD5fyCMfyrMfHZtk2Pf3DzA6PIbDGTLsHQ6cdif+QGCG8TrZY38ih5lpmoqqahFjKoITigAYN5IiOMRzRBSpa6hkYLCbguIrSc34JDrJgC0qj/lKnRAEEa9vhNHRJkTZyEDvf6muvBNZ1lFRtgqT0YKqqaf0fQnm+Y+wt2Yb0VGxlBUvm/GYrp42mltrw20pyZnk55TMKQGgBBSiY6N58hcPkV+QF5k0EUQQQQSz2aMEPKj2roUhAHgwAmBimzYxy12bTgpM4gCmMADCBGN+quEPC8jzP5kAONw0gAOIAK6a0yoAkzdRBtzOdxnpfyIsBqgqKiazkUcfu4+KpYuO6rxXXnklTzzxxKRNxr///W8+/OEPA8FyfN3d3axbty6sNN/R0UFjYyPr1q1Dr9fPy/Ved911PPDAA+G/zzrrLN56661DGteqomK328OGfTDPfoiBgWAofl//AMNDI8FQfPvB8+wFQZjktRfEkz8sPqD4EQUpkisXQQQnpaEpMTI6SFXNdoymDJasfABZthBlzcJoiJ2XKABBEHG6enA4O5FlMw11P6Or/SVsUTGUl6wI7RYiug2CIFBTv4eh4T7Ki5cTE5MwLQrA5/NSWbMdT6jihU6nZ1HpSkzGuY3g8Hq9fPF/LuK6G78bmTQRRBBBBLOA6h5CcwWjtxcmQ6EduG0qEXCg46c/0A5u5C8k43/8Ag8zDWACAQCa5sMc9RFs8ZeBpszLZkYQ9Pg8+xjueyAUZRA00NxuN5+76NPc8qPrj+q8d999NzfffPOktqeeeorLLrsMgK6uLmpqali3bh0mU1BxfnBwkB07drBmzZp5KwV42WWX8fTTT4f/Pu+883jjjTcO+p6/Pv8SLzz3Ij6fP2zYL9Q8+wW5BqDh9/vR6/REEEEEJy+qancyOjZEbv5lZGR/AVEQiYkuQBCkeXh+CYzaG/H57Giawt6dN2IfqyMtJZu87OJTOv9/JnJmX80O4uMSKS6omCaOKIoire0NdHQ1h9sy0/PIyiiY0zQKVVUxm83cfd+PWbN2ReTmRLCw9iquQbSAe+GFU0cQwUzjVfHBifCcOxwiYCoZcIBn/mQN4IMY+wvJ9jrMNIBpBIDRvIqYxKuYL2+GIEgEAgMM9dyNEugNiwEqAYWY2Gie/OUj5OXnHPF5f//73/PlL395Utudd94ZJgWGh4fZvn07q1atIjo6GoCxsTE2bdrE8uXL56UUoKZpfOpTn+KVV14Jt3384x/nX//610Hfd/89j/DUb57FarUgCCLSAs6zX3gQUNSQkrp8dErqQaIl0t8RRLDQDc3BoV5q6ndjMCZQsex+DMYEzKZkLOaUOY4CEFBVH8OjdWgIOO2N7NlxHYrioaRoCfGxkfz/yb0lUF23k5GxIRaXrSLKGj0pvF8URZxOO5U12wkE/ACYjBbKS1eg1+nntJqC1+Nl1ZrlPPDwXVitlsjNiWDBQB3rRPM5IgRABCfIwh4Svjsh2Art0G2H+5w5lJd/odkLh5kGMI0AMFnPJDrhm/uVEud+2wYoDPXeh89TGaowEITH4+H/vn4p3/7O14/4rG+//TbnnXfepE3G1772NX71q18B4HQ62bx5MxUVFWFj3+VysXHjRoqKisjMzJzzK/X5fJx77rm899574bbPfe5zvPDCCwd93wP3/pQ/PPuXcKRCBEeyPgl4fR5EUTqqmtzjpXYiqQMRRLDQjczgE2o8CiAj6yJyC74GKMTYCpFlw5wZkoIg4vEOMTrWjCxb6Op4iYbaJ9Dr9SwuW41Bb5o38cETlZwZGumjunYXyYnpFOSVTcvvFwSRxuYqevs7w235OaWkJGfOKZmiaRqqpvKjH9/E+Z/4SOTmRLBwCICFKqgWQQQnCw60BzjSvcGBjPwF6Sw8vDSAKQSAF3PUh4mO/z80LTCPRprM2ODTOO3/DgsBQrB0T2ZmBk/+6hGSkxOP6JxVVVWsXbsWu90ebjvnnHN47bXXkGWZQCDApk2byMvLIy0tDSDclpiYSHFx8Zxfp8Ph4IwzzmDXrl3htq985Sv89re/Pej77r3rYf78pxciBMBRDXsNj8eN0WA6Ki9+QAkgCgKiGBEPjCCChQ5JlBgeHaCqdieSbGHxkjuxRBVgMMRgs2bMoSdZYMzRgsczjCTpqdp7B4P9HxAbk0Bp0dI59VifTPTMvpodOF12KspWYzZbpkUBjI4NU1W7I9xui4qhrHgZoijNbRSA18u69au574GfYLaYI7cngggBEEEEESLgaI3YE+B6D50GMC0CwBL9CWyxX563KgDBvjPgdrzFyMDPJ0UAjD+or7n+Ki75388f0Tm7urpYvXo1nZ37vQmLFi3i/fffD+f3b968mdjYWIqKikLXq7Ft2zZkWWbZsmVzfp3Dw8OsXbuWurq6cNtVV13Fo48+etD33Xn7fbzw/EsRAuCIt5wCAcWP1+fBYopCO4oIFq/Pg16nj9RhjyCCEwSiKNLQtI/e/i4Sk06nuPwGQCDGlodOZ521Zz64rngZGatH0zS83gF2b78Gn3eQ3Kwi0lNzIvn/ByBn+gd7qG3YQ3pqLjlZhVM8+0GSoKZuN8OjA+G+Li5cQnxc0pxHAYiiyA03f48LPn1+5OZEECEAIoggQgScfIb/BALgUGkA0wgAa8zniIq5eJ4JAJmAv5uhnjtRlZFJipJer4+KpeU8/sQDWI4gX8/pdLJ+/Xr27NkTbktPT2fjxo3h8P5du3bh9/tZtWpV+JjKykocDgdr166d8+vs6elh9erVtLe3h9tuuukm7rrrroO+78c/uocX//ZyhAA44nEl4HY7QRAwGc1H5UFSlACSJEc6M4IITph5L+L1uthbtRV/IEDZ4h8Ql3AaOtmELSp7Ts7v9vQzZm9Dks0M9L5DdeXdiKLI4tJVWK22OS1fdzKtx6qqUlm1DZ/fS0X5avT6yWkZoigxONhDTcNexlMO42KTKC5YzFzrEPn9AdLTU7j7vtspLSuK3KAIIgTAqbUiTbSOIt0RIQJOTsN/4hg/RBrAFALAjy32f7BEf3peCYCgsqLASN9P8bg2TUoD0DQNDY277vkR55x71hGd9ROf+MQkgT2z2cxbb73FmjVrAGhsbAyXAhyvD9/a2kp7eztr164NlwecKzQ0NLBu3ToGBgbCbT/5yU+45ZZbDvq+W39wB//8x6sRAuAoxpXdMYLJaEY3x0JSEUQQwcKFJEl0dLXQ0lZHVFQhi5bdhSSZsUVlYdBHzyIKIGiEjowF1f8lyUhd9YP0dr+B1RLNotIViKIYWWsOcl96+jppaNpHTlYRGWm5KEpgEkmgKAGqandid4yGSYGykmVER8XOObHi9XrJL8jj2uu/y+o1yyM3KIIIAXAyG/xC6KemoQy3Tl6b4rKn8AGRNTyCk43kOHgawAQCQANNxRb/VcxR580zATCeBvB2KA1AF94MaJqGx+Ph3PPO5p77fxw21A8H3/jGN8Kif+P4y1/+wsUXXwxAb28vVVVVrFu3DqPRCMDAwACVlZWsWrUKi2VuFYK3bdvGWWedhcvlCrc9+OCDfP/73z/o+26+4ce8+q/XIwTAkT5MVYXRsWFiouMjKv4RRHAqbfUEAUVR2FezHYdzjJy8L5GZ87/Ikp5oW94szivi9zsZGWsABPz+UXZvvwaPu4eMtFxyMgsj4f+HvC8B9uzbiiDA4rJVSJI8LQqgq6eV5tbacFtKUgZ5OaXzIqzo8/lJSU3ixpu/z+lnrIvcpAgiBMDJs+CEzZmpBv+hECYEImRuBCcRAXCwNIDJBAAC0QlXYLKsOwYEgIzi72Ow9ycogeFQ3ebg/A0EFMxmM48/+SDli0oO+5y33HILd95556S2Rx55hO9+97sADA0NsX37dlavXh0uBeh0OtmyZQuLFi0iMTFxTq/x9ddf5+Mf//gkL8bPf/5zvvnNbx70fddfeytvvPZWhAA4wo2m2+PC43UTGx0f8chFEMEpBlGUGBruo6Z+N7JsYfHSu7BEFWK1pGM0xByVMSkIIg5nJ05XD5JsZrD/far23I4gCJSXrCDaFhcp/3eo+yJJdPe00dRSQ2H+IpIS0ib1mSAI+HxeKmu24fG4AdDp9CwqWYHZZEWdFxLAR15+Lvc98BNycrMiNymCCAFwghv9ylDrnJxOis0OBX5F9pARnPAMwEHTACYQACoIOmIT/z97Zx0mSXW18V9VtU33uLu7rju+QYJr8MUTFk344oEIhBASNGggQBJCkOCyQZbdhSzrPu7uPt3TXvX90TO90zuys8pKvc+zCX2nqrqr6so57z3nPXej9ytCUZyHetSCINLf+Ri24Y3eNICxUQDXLLuCH95z27Sv+Oyzz7J8+XKfth//+Mc8/PDDXmd/w4YN5OXlERXlYURcLhcbNmwgNjaWlJSUg3qHb775Jt/73vd82l555RWWLVs25Xn33P0Lvly5RiUA9sn4F+nt60ajkQg8BKGjKlSoOBpsQZGq2mK6utsIC59Ndv59aLX+BAem4ilBuy9GnYCiuOgbqMLltiGJBqrKH6O99VNMxgDyc+YgSZJKNu71nQg4XQ52Fm9Er/cjL3sWe+b3i6JEQ1MVza113rbEuDQS4lMP2VzucDi46JLz+NkvfqSWfVWhEgBH16zinUL2dadfJQJUHF8cwORpAD4EgCD4ERL1E3T6jMNAAHjSAMwDbzPU97oPATC6OCcmJvDcC48TERk+reu9+uqrXHPNNT5tF198MW+99ZY3RHT9+vVERUWRnp7uPWbLli2ees4FBQf1/p5//nl+8IMf+LS99tprXHHFFVOed9ftP+GrNWtVAmAfF4TunnYCAoIw6P1Uo1yFiuOUALDZLBSXb8HhsJORdSvR8RdgNIRh9IvcpygAQRCx2XsZHKpHEDSe8P/NP8Jm6yAuJomUxCw1/H+6xrQo0dRSS0NzNbnZswgJCveJAhAFkWGbmeKyLTidnuhDP4OJvJxZ6LT6QzKfu91uTCYjf37sQWbNLlJfkgqVADjyJ3jP2O1tOGxfqaYGqDjaCYDJ0gB2EwCKG0EKJDTqZ2h1iSiK67AQAHuWAxQEAVEUcblcOJ0ufnXf/3HBRedO63qvvPIK119/vU9bUVERX331lbcU4ObNm9HpdBQWFnqP2bVrFzabzac6wMHAo48+yj333OPT9p///IeLL754yvNuv/Ue1v5vvUoATLsfCbhcLrq6W4mKjFfz/1WoOJ6dTUlDW0cjNXVl6HWB5M98EP+AbAL9E9BoDPvgTAoMDtVjs/ei0Rjp7lxD6a4H1fD//SRm7HYrO0s3EhgQQlZ64TgyxlPOsZSOrt2lfFOTc4iJSjhkz9lus3PCSYt44A/34e9vUl+UCpUAOPJmj0O+27/XNcUbDQCqWKCKo4wBAFGLFBTvU3EPQFg0b6miKAoobkQpmNDoX6LRxhw+AsDyDQNdT478MI/jptVqcTqd2Gw2Fi2ez6NPPIROp93r9TZs2MBpp52GxWLxtgUHB/P111+Tn58PQEVFBYODgz7Ofk1NDa2trcyfPx+dTnfQ7u/BBx/kl7/8pU/bhx9+yDnnnDPlebfe8kPWr9uEn59B7bvTNC4tw4OYzYNERcapu/8qVBzX84Enjayiaie9/V2Ehc8gK+8+DIYIAv0Tp2XAeUhFG30D1SiKC1HUUVH6EJ3ta/A3BZKfM0dV/99HiKJEfWMFbR1NFOTOxd/kWz5RFEUGBvsordjmdfgD/IPIzZp1yFItRq9514+Wc/kVF6svSYVKAKiO/zSIAHXeV3E0DSURKTAOJN3EBICiuNBoYwiN+jmSJhRFOfQ7G4Kgw2bdRn/nY4CMJ+dSQafTIssKDocDvV7PX579M0VF+Xu9ntls5uSTT2bLli0+7WMrAbS1tVFdXe3j7Hd1dbFr1y5mz57tFQc8GLj33nt54IEHfNpWrlzJqaeeOuV537/pLjZu2KISANM2LEW6etoRBYmw0Ag1/1+FiuN9ThBEhq1mSsq34nDaSU1fRlzilZiMEfgZwveaCuAhFdsxW1oQJR0OWyfbN9+NwzFAQlwqSfHpavj/fszTFquZ4pJNRETEkpqUPeHOfnnVDvr6u0ddADIzCgkPjTpk87rT6SQnJ4tHn/wD4eFh6otSoRIA36qzcvjD/FUiQMUxv/4GxiFoDJMRAE60+lRCI3+KIPoDh4cAcNiK6et8ZKTqgDhCVghoNVocDgdWq41rl13OD//v9mld86abbuJvf/ubT9tPf/pTHnroIQAGBwfZsmULs2bN8jr7ZrOZDRs2kJ+f7xUHPBi4++67eeKJJ7yfNRoNq1atYsmSJVOed/P1t7Nly3ZvqUIVe+tHAq3tjQQFhuJvDDgkqtEqVKg4ujA2FUCjMZBX9DuCQmYRaIpDqzVNSQIoKPQPVON0mtFoTLS3fkxl2ROIokRB7pxxu9cqpk8CVNeW0tffRUHefPQ6g897EEWR7t4OKqp2MRqpERoSQVZ6IXsKBx4sKIqCJInc99ufcfoZp6kvSYVKAHw7lhwIR7bjP26NCU1S0wJUHPlQZA8BoDX6jrhRDQBFcaL3yyc44m4EwYBnR/5QO25anI5aejseRnEP+eQn6PQ6nA6nRwwwKYHnXniCiIi9s/PPPPMMt93mWzng9NNP5+OPP0aj0eB0Olm/fj1paWnExsYCYLfbWb9+PTExMWRmZh60+7v++ut55ZVXvJ+NRiOrV6/eq9bAjcuWs23bLgwGvdpxp+H8O11O2tobiYtJQhQ16mSsQoUKQEAQoLKmmO6edgIDM8kt/C1+xmiC/JNG1htlgjlFxO4YZGCwxuOUChLFO35JX+8OggJDyc2aqT7aAyAAhswDFJdtITE+jbjYZGS3b0lAl9tFWcU2hswDI+dI5GXPIjAg+JCQLoriqQZ08aWeigAqVKgEwGE35I6oUP99IgHUaAAVRwMB4B+NoA/wHXa7IwAcGIwLCI4Y3WlXDsOY1+ByttPb8Qfcrm4EQeNjKIyKu7lcLn79259zznln7vWa33zzDUuXLsVqtXrbEhIS+Oabb4iPjwc8QoB+fn7k5eV5j9m6dSsAs2bNOkhGhcIll1zCO++8420LDg5mzZo1PgKEE513w7Ll7NherBIA+2BQ9g/0EB+bul+1vlWoUHGs2pUiDoeNkvItWG3DxMafS2rGDzAYQgkwxU04XwiCwJC5mWFrJ5Lkh8VcyfYt9yC7naQmZxMblaiG/x/gO6ms3onVZiE/Z+64/H5RlGjraKS2vtzbFhUZR1pyziHTXHA6nSxcNI9HHnsQ7TT0hlSoUAmA49vxV4kAFUcVAWAKRzCETE4AGAOWEhh2Iyjuw0IAIEgo7iF62n+Py9mEIGjHGWKKomCz2Tj55BN4+NH70Wg0U16yu7ubhQsXUl1d7W3TarWsWLGC007zhPeVlJQwPDzssxNfXV1NZ2cnCxYsOCg1gZ1OJ2effTaff/75biMmKoo1a9aQlZU16Xkul5sbly2nuLgUvV4lAPa+fgh0dLWg1eoJC1Hz/1WoULGHYSZJ9PZ1UV61A1mBrJwfERXzHYx+E+kBCCiKi76BKlwuGxqNifqav9JY/xZarY6ivHnodH4q0XgAEEWR/oFeyiu3k56WR3hotI8WgCAIOBx2isu3YLMNj6zhOvKyZ2Py8z8kKV4Oh4NZs4t44qmH1eo7KlQC4NBbbkdduP/0SQAB1PVBxRFGAAh+IYjG8MkJAFPgOQSGXjOSj3+YJgEE+jr/hN263VsKcE+43W6MRiNPP/cIuXnZU9+nonDRRRfx3nvv+bQ/8sgj/OhHnvC+pqYm6urqWLBggVcIsKOjg5KSEhYsWIDRaDzgO7NarXznO99h7dq13rb4+Hi++uorUlJSpjBEnNywbDllpeUqATCdBVR209hSS3REHH5+/qphftCIldHxpD4LFceAYTamDr1OH0Je4e8IDMomwD8BrcbonTc84f8DDAzWIggisnuY7ZvvZni4jciIODJS89TSfwcJZZXbAcjJnMmeGw6iKNHYXE1TS623LSEulcT49EPy/B12B0Uz8nnq2UfwM6oEgAqVADh0xoUIinJM7PpPut6EJqnGk4ojiwDQByL6R01OAAQEX4Z/8CUoiv0wOhp6hvpexzzw7rgIAF+H2sb1N17FnXffutdr3n///dx3330+bVdddRWvvvoqAL29vWzevJn58+ePEwKcMWMGYWEHrgQ8UUWC1NRU1qxZ401FmAg2m50bli2norwKvV6ndtwpIAoCQ5ZBuns6SIxLRRAnzulVsT/jUlBLnKk4xvozVNXsoru3g8CgHHIK7sVkjCMgIBEBEVAQBJEhSzPDwx1oNCZ6Or+kZNdDCIJATuZMQoLDVQLgYMzdokR3TxtVdaXkZY3P7x+t4lBcvgWn07Mh4WcwkpczG51Wf9DnJqfTSWpaCk8/+wjhEWolABUqAXAIJmHg2Nv1n5QEUFMCVBxR409E0OgnJgBQXASGXY8x4IzDTADosA1vo7/rcRTFiTBGCHAsHA4nKamJ/PXFJwkJDZnymh9++CEXXHCBj0FRWFjI2rVr8ff3x+FwsG7dOtLT04mLi/NMSm4369atIyEhgaSkpAO+r/7+fpYsWUJJSYm3LTMzkzVr1hAdHT3pecOWYW5Ytpzq6lpvdMKRCwXPDPdtGZEibR1NOBx2khLS1fB/lQBQoWLK+cLhsFFauR2LZYjo2DNJz7wNg18Y/kbPOqAobo/6v2sYSdJRtus+urs2E+AfRF7ObEREFJVkPCjzi8vtYlfJRoICQ0hLyR03fwuCQE1dKR1drd621ORsYqISDzoJ43a7CQ0N4ZHHH9xrlKEKFSoBsO/Ox7G+66+SACqOeOwRIT1CAMiASFD4D/AzLTqMKQAeIUC3q5P2pvtxOdsx6E0TGliKouByubj3Nz/lvPO/O+U1q6qqOOGEE+jo6PC2BQUF8dVXX3kF+DZu3IjRaCQ/P997zJYtW9BqtVOK9E0XPT09LFy4kKqqKm9bXl4ea9asmTLCwDxk5oZly6mtrT/iCQAFZcT9/3ZIAAGBqroSQoLCiAiPUQkAFSpU7IUEkBgy91NWuR2n00Fq+s3EJ12MQR+GyRiDwzFA/2A1oqhjaGAXO7b9AkV2jYj/JeGWXepDPFjGsShR21hBd3c7Bblz0ev9xpUEHBjso7Rim9fhD/APIjdr1jjhwAN2xGQZg8HA7x+6j8VLFqgvR4VKABwkK+1YzPXfdxJgeroAirI7/VKFikM+Oj0EgBsEHSGRP0RvKEBRnIfTJANcNDf8Dpe9BKNf0KQLu91mZ/7COTz+5B/RTREeb7PZWLp0qU/+PcCrr77KVVddBUB5eTl9fX0sWLAAYWTEVVRU0Nvby8KFCw/4rjo6Opg/fz4NDbsnvpkzZ7J69WoCAwMnPW9gYJAbli2nsb5JVSOequMKIjbbMOXVO0hPySXAP0glAFSoULF3g0yS6Opup7JmF4KoJzvvp4RHLMagD8HlGsZm70WjMVJf8zyN9e8gihJFefMwGQNU9f+DSsaIDA71U1K2haTEDGKjkybc2a+o3klvX5f3c1Z6IeFhUQd1vpdlGa1Oy+//cB8nnrRYfTkqVALgwI20Q6rw73J7xr9GOvKf3XRJAFmWD4oIuQoV+0QACKKJ0Kifo9UlH2YCQABEWpqexmFdickvcNJoGVlWEEWRR594kAUL50551dtvv52nn37ap+1HP/oRjzzyiNdBLy0tZcGCBV7V37a2NiorK1mwYMEBC/A1NjaycOFCWlt3hy/OnTuXVatWYTKZJj2vr6+fG5ctp6mpBa1WJQAmNx4lOrtbaWtvJDd7FhpJo4asq1ChYtrzR0trPfVNlegNkeQW/hp//zRk2TYSlWZm59Z7sFhaAIiOiic1KQsUQU0BOGj+gYAsy5RWbAMUcrNmIop7lgQU6e7poKJ6F6P6LqEhkWSlFxxcR0xW0GhEHvrT71hywkL15ahQCYAj2Pn3jNnROeLoeCTTSQdQFMW7IalijI8o7Okzep/YZA/yIHzP6Hcpe3ydsv/3MfmbP/Dxth+/UThh4RmKy2lH1IQSGvVLNNooFMV1WF+uokBHx/tYB1/HZPCb8qdbrTbOPOs0Hvzjb6YcKH/729+46aabfNpOPfVU/vvf/6LVarFYLGzYsIHCwkLCwz2lEQYHB9m8eTOzZs0iODj4gO6qvLycJUuW0NPT422bP38+q1evxmAwTHpeb08fNyxbTktLq0oAjPRmDysq7WHAi1TWFIMCWekF6s6cChUq9mndEQSB+sYKWtsbCQjKJjf/XnT6EARBoqvjS8qK/4hGoyUyPIb2jmbi4pJJjEs7qiONZFnG5XJ5n4EoCoiiiCAI34rhKYoSre2NNDRVkp05g5Cg8HElAd1uN6UVWxkyD3gMaUlDXtYsAgIOXtSXLCtIksiDf/w1J528RB0eKlQC4ACckeM55P9ASYCj9Z3D+FQPKTRpLz6vMrVDewAkkvdZT/RdgrDbud+P79h97dFrKJM65PsyFqb8zePICs93j3vm+9DHhJOXfFex2SxodHGERv0MUQoB5fA5UwICbtlJd886rAOv4qd3gjK50JLbLWPw0/PM84+RN4VYz5YtWzj55JMxm83etri4ONauXUtSUhKyLLN+/Xqio6NJTU0FPLWA169fT1pamlcccH+xceNGli5dytDQkLdtyZIlfPnll1M69l1d3dywbDkd7Z1oNJrj3UTH7rSBAjqdwTsYBEHA5XKyq3QTkeGxJMSlqgSAChUq9tFm8Qhd1tSX0dnVSljEIrJy/w+NxkTpzvvo7tpAeGgU2RmFVNeV0t7ZQnpqHtGRcbjdR998I8sy/gH+ZGSkoCgwbLXS39uPxTKMxTKM0+lCFEU0GumwkQGCIGKzD1NctpngoDDSU/LGlXIVRYm2jgZq6yu8bYnxaSTEpR40AsBTCUnh57/8EedfeI46OFQcnjFp6UKx9R8jBMCIE7iPzpTN7sSgP342u6Zy0Ebns6MrDUA4eE66wCGLHNn93A/+9fe8j4N1fd/rKtOupDHdMpTCqSd8Vxm2mtHpswiJvAdBNAKHb4dDEAScLht9/aVYB19DkFsQRS0aaXLnd3h4mGuWXcE9P75j0mP6+/tZvHgxpaWl3jaNRsPHH3/M6aefDsDOnTtxOp3Mnj3be8zmzZsxmUzk5OQc0H2tXLmS7373uzgcuwUVTznlFL744ospB3dHRyc3LFtOV2f3cU4ACMiyi66edsJDo5AkrZcA8IpDlW8lK6OQ0JBItTSXChUq9n2BlTR097RTUb0TRVGIjT+PuPiz2Lb5R7jdNnIyZxIWEoHdaaesYjuW4UFyMmcQEhx+1JEAdrudM848ldNOPwmz2YzR6IfL5cbpcNDR0UVdbSNVlbW0tXZgs9oQJfGwrEGiIFJdX0pvXxcF2XPw8zMhK3uUBLRZKC7b7C0JGBQQQk7WTERRPGipX06nk9vuuIXrbrhKHRgqDgsUWz+ypfvoV347gJB/l1s+KvL4DwcJMDqXHTFpAIKAu7dxqh6sDuIj2IcaTwwk+vQ54cylFyr9/T0YjLMJjriLcTkPh7x/iTidFvoHa7D0/xubtQRR1OHvZ5rUUbbb7RQU5vHXvz05pVL+5ZdfzhtvvOHT9qc//Yn/+7//A6CpqYna2loWLVrk3ZUvLy+nv7+fBQsOTAn4gw8+4IILLvAxTpYuXcrnn38+5Xltre3csGw5PT29RzwBoCgywiFirkVRpKu7jd6+LlKTc9Boduf4i6JEU0sNTS21FOTOI8A/UBUAVKFCxT4ujwKyIlNRswvzUD9OlxNR1BMQkMLAQDnBQWHkZM7wzjmW4SFKK7YAAjmZMwkwBR41kUejuaU333oN27bsYse2YkLDQggPDyM+IZaExFhi46IxGAy0t3Wwa2cZu3aU0t7WiYKCRqM5ZEapKEr0D/RQVrmNhLhU4mNT9yB0PTZJeeV2+gY8KXUajZb87NmYTAEHbe53OBz8YPmN3HTLMnVwqDgskId7UKx9RzcBcBjy/b/19yQffK2BoyEdwN3XqA7SYwxSSOLuoXv2mZcoPd0d+PmfQlD4LSPh/4eXAHA4Bukfqsfc9x8cth0IggaTnxGtpJ0wFcDtduMf4M/zLzxBekbqpNd++OGH+elPf+rTduWVV/Kvf/0LgL6+PrZs2cKcOXO8Of9tbW1UVFSwcOHCAxICfP3117niiit82s4880xWrFgx5Xktza3csGw5/f0DSJJ0RHckp8uBVqM7BH1CwOVyUVqxFZMxkKTE9HEif+VVOxgeNlOYNw+tVqcKAKpQoWLfFkJRoqunneq6EtxumcCAYIx+Rto7PcJ/2ZkzCBsTXSRJEj29HZRX7cTPz0Ru5kz0esNRQT66XC7iE2K5Ztll/O2Ff9He1oEgiN7Qd51OS1BQIMkpiRTOyCU9IwVJFCkpqeSb/22krrbBo5R/CHRpxooByrKLvOzZSHvM96Io0dJWR33j7rK6aSm5REfGH7ToL4fDwe13fl+NAFBx+BzLwVYU5/DRSwAcB87/IV+HphmurRIAKg46AXD+2d9TOjpaMQWeRWDodSiK4zDPHyJWWw9D5haGBz/CNrxhrwQAgN3u4Mc/vZPLr7xk0mt/+umnnHPOOWNEjyA/P5///e9/BAUF4XQ6WbduHUlJSSQlecQqLBYL69evZ8aMGYSFhe33fb300kvceOONPm0XXHAB77777pTnNTU2c8Oy5QwODh3xBIDL7ZoyVWO/O6gk0dLWSF1DOQlxqSTEpY4JjRKx263sKtuEn8FIXvaccTmjKlSoULE3p9PtdlNWuY3BoX4EQSAnayYB/kHU1JUCAukpuYiCrx6NKEm0tTVQ21BBUGAIWelFaLXaI54EcDgcLFg0l5NPXcSTj76Aw+HwibBTFI/YqtvlRpREIiLCKZqZx/yFswkOCaK0uIIvPl1DQ0MTkqRBOsghu548/0bqGivITi8al9blLRlYvtXbHh4aTWZ6/kEjf+12B7ffeQvX33i1OkBUHAbvyoF7sPnoFYRTnf+xVM6eM9qYtr3PlUcqCaASAMc4AfC9i5cpjQ11+Adfgn/wpSiK/bAbYkOWFqzWHqzmVVjNqxFFCZOfCUmc3AG22ewsWDiHvzzz50kd5YaGBhYvXkxLS4u3LSAggDVr1jBz5kzAI9an1Wq9n2VZZt26dURHR5OWlrbf9/Xss8+yfPlyn7ax0QeToaG+kRuWLcdsthzxBMCh6g8Oh53iss3Y7FZio5NIScryGn2iKNLX301Z5TaiIhNIT85RBQBVqFCxb4ugJNHW0Tzi7ENURBzpqbkjofIiiixPQj57lPPr6ito7WgkPDSajLQ8r6DgkUwAnH3e6WRmpvL0E3/z6C1Nsevocrlxu10EBgYwc3YBJ52ymKCgAL7+agNffv4VQ0PmKdPvxmI6ea27id3NBAeGkJ6a70PsCoKAy+2itHwrZssgAAa9H/k5c9Dp9Afl2TscDq646tIptYVUqDhYUBxm5KH2o2b3Xxhx+pVRMbJpOv97pvJqNBIuhxMZT817ERHXBASqRhSRAZdLPiJK/ek0Ei7ZzfifKoFO580TEGUXyG5kJBBBg4yo0YBe6yED7FZcDvc40ngsCSBJkpeUVQkAFYeMALjysuuVuro6AsNuxOi/9DATAAIobvoGa3C57NitGxge/ARRkPA3+k9pMMiyjN6g569/e5KsrIwJj3E6nZxxxhmsWrXKp/3ll1/muuuuA6CiooKOjg4WLlzoDW/cvn07LpeLOXPm7PedPfbYY/zoRz/yafv+97/Pc889N+V5tbX13LhsOcPDtoO+y3I0QBRFWtsaqGusBCApId0nJ1QURZpb62loqiJ9JARUJQBU7I1UUlNEVIztD06ng+LyLVitFvQ6A/k5c9Dr/aYVTSQIAoosU1lbTE9vJ9FRCaQmZ8NIOP2RSgBccfXFhIQE8ddn/zHtsn+yLON0uggKCmDRCfM45dQl9PcP8NYbH1BVUYtOp53wOm63e0QkUfBWFXC7PUavgICkkcY5BqIoUlNXRm9fJ/k5czEYjD7vQxRF6ho8ZRtHfBGy0osIC406KGkADoeTs767lN8+8MujTIVbxdEIebh7JP9fPMzznyeSCVnBvQ8OpqTReITIdRqwtE7zJmVkqx1RI3qS6B0y5bX1xMZEYvQz4nA4GRgcJCI4EFl2jSEJNPQPDTNkHiYmKhS+VUdYxOF20tjSTWZqAiAju+TRSQkpNBFBY0D0CwdJi9vlRNJqPP6NLDPU301fez27SspQJB2p0cHkJgWByd9XWMDlBG04sstFd08fJpMJP4P+W11TVALgGCcArl/2A6W8tJaQiDvQG2cf1hQAjyE2TP9gNaDBMvg1HW2vYtCbiI6I22vHt1ptLLv+Su7+0fJJj7nnnnt49NFHfdruuusuHn/8cQA6OjrYuXMnCxYsICAgAID6+noaGhpYuHDhtHc59sRDDz3Ez3/+c58J7fbbb+exxx6b8rzq6lpuXLYcu91xXBohgiBQUbWTnr5OADLTC4gIi/EaeAICVXUldPe0k5c9m6DAULUCgIpJ+xLsTlVRSQAVHptNorG5mqaWWoARIjEB94gBOuocK1M49KIo4nA4KK/azpB5gIS4VBLj047YVACHw8F1N16Jn5+eF57757QJgLEOvcvlJiEhlgsvOYek5Hj+8+YHrF+7Ge0YEkBRFJxOJxGR4eTmZZGSkkhQcIBH68fuoL29k+rqOqor67BYhn0IBFGU6B/soaxiO4nxacTFJO+RBjCqwbDD2xYbnTgSISYflGd02tKTeOAP9x0SrQMVKnx848FWFIfZNwJAEBAFAVk5VHOfx6asrGlAo5FISYiZ1rooGf155vl/UlPfzEmLF+NyuVFGNERkRcHtcqMoClarDbvNgd1hxzpsxeFwYrPZkCQJUdTQ0FhLVm4mP/3J/6HR6fhq9RqiY2PITB+T5omA0+nki5VfkpefT2J83KSpwIfFjkDALcus/HIVbqeTM888w7M+jPxNGakDL2gMIAjU1dWxbv16Tj/9dMLDwujv7+e3v/k1b775Hm5ZJiw0iNBgE4EB/iSnpJCXl0tycgoR4RGkpaUQGhnHs089QXyEP+eedybu4eED+vWj/yeJEgpMb65UFASdEXmwCXnYDCohemwSAD+4+Q5l545qQqJ+ik6fgaI4D6OBLmIZbsdsaUGS/GiofZ7W5veJjEggOTETZS8d1eVyERISzPMvPklySuKEx/zrX//i6qt9c/pOPPFEPv/8c3Q6nTfnPzc3l5iYGMAjDrh582bmzp3rFQfcV/z617/md7/7nfdzdnY2l112Gb/97W+nPK+yopobli3H5XIddwSAR/zPSXHZFoatZgByMmd480FHd5GKy7fgdNgpzJuHTmdQNQBUTGjoOJ0O6horcTrsREXFExYSpfYVtV8wPGz2zCFOB6EhEWRlFCEooKB45yCrbRg/gxGtVjepwSSKElabmdKKbdhsVlKSsoiNTjoiCUmHw8H1N12Fv7+R555+xYcg2xc4nU50Oh3fPWcpJ5y0kHff/piv16xDpxt9TgKnnLaYJSfMx2qzU1fTQG9vP7LsRqfXExMTSUxsFE67k2/WbmLTxm3YbXa0Oi2iKI6IAW5FVmTysmZ7Q2FHf6/dYadkJD0MwN8USF72rHGigfv1jOwOzjjrNH73+3uPy+g7FYeZALB0ojhtCCM6SoqiILtlbHYbfjoRjUZCkT0O9vj88H2v1iVpNTjMFr783xbcOhPzZxcSFmzca+q5IIBLETntrEuoqGgiMT4VQQRlhKVQRn67d/wpI+76SF13YWSu7O7pxK3Y+GTFhxQU5NHU3MyWLVs495xzx423L1etRhQETj75pCPmffX19/Pyyy8zf/4CFi9aOOUc+frrr6MoCldeeSUajYbSsjIuvOASjLpgFEXGPGzGZrNitw9js1txOB1otRpSUpLJyMhElhVMeoFXXngc6UBSRBQFRXEjKDLdPb34GXQEBAchOxxTvndBEEHjN0IADKoEwLFKANy5/IfKlq11hEb9Ao02FkVxHdYf0z9Qg9M9jNMxQNmue7GY60iMyyAuNmVahpTVauPm7y9j+e03T/j34uJilixZwsDAgLctNjaW//3vf6SkpKAoCt988w0hISHk5uZ6jaV169aRnp5OXFzcft3X7bffztNPP+39fOaZZ3L++efzgx/8YMrzyssquWHZcmRZPu4IAFEUMVsGKS7bgtvt6Yd52bMIDgofIQA8eaI7Szei1/lRmDdX3dVVMSGRJMsyFdU76evvxmT0lApLjE8jIjz6qKvfruIg9g1RpLq2lM6uFvQ6A3k5szDoTV5iyOl0UFVbwpC5H6NfAClJmQQGBE9KAkiSxOBQH2UVO3C6HKSn5nnSktyuI+q+HQ4Hy264gsjIMJ587AVPKP5+GpZut0cscOnpJ3LmOUt5/dW32bhhG1qthgsvPpsZswr4+IPP2L6tmOFh6+4NTgUEUSAwKJD8gmwWLp6D2+Vm9ZffsGN7MYIgoNPpaG1vpK6hkpzMIkKCI3zsAEEQqKwpprun3UvC5GXPmvIdTRd2u51zzzuL39z/C3WgqDj0UJTRQbGbFFCgp7ub8pIdBOncZKfEoTX4oYykHe0XASB4dEuGOzv55L9fMeTWcOVNN2Pw95/2T62qqmLRosVEhiUQ4B+EguLV6NqbxocgCDicDioqd/LnR/7ELd+/CVmWef/995kzZw4JCQk+x1dXV7N+/Xouu+yy/Y7APVTYsWMH7777Ltdeey2pqZNXIOvp6eGFF17g1FNPZd68eQD8+te/5blnXiQrI89Llo72A1mRcTodWG1WZLen2kpreyOPPflnrr7qygPsZzIoMtXV1Xz80UfMnZHNgtlFiLhwu1yT9xm/cNz9dcjmXpUAOFYJgJ/c8zNl3bomQqJ+jigFjZQBPBxGuojTaaF/sApB1NPe8jE1lU8hihK5I2rM01nQnU4nmVnpPP3cowQHB437u8ViYcmSJWzfvt3HaPvoo48488wzAdi1axcWi4V58+Z5ne5NmzZhMBgoKCjYr/u74ooreP31172fL7zwQq655houvPDCKc8rKSnnxmXL9zlE89ggAHxDPAUgP3cugQEhyLJ7RAm6j12lmwkLjSQnY4aa/69inLGhKArVdSV0dbeTlpyNyRRMdW0xLpeTtJRcwkIjVBLgeFz4RIm+gR5KK7aCIJCVVkh4WKS3LwgINLbU0Nxa5z1HrzeQlpxLSHD4pIS0pzxgFxXVO1AUyEzLJyI85ogiARwOB5ddfj5p6Sk8+dhfDzjFTFEUT878OadxwokLeOKRvxIXH801113GSy++xvatxRgM+gm/w+2WcbmcmExGFi6eywknLqCivJr33lmBw+HE7Xayq3QjwUHhpKfm7aEDINHe2URNXZm3LTkxg7iYlAOOvLDb7Sz9zsk89KffHXdrr4ojCwODg6z+ciXmpmoWZiURl5WJLigYWZH3WS1eEEXMTY2s+vIb6m0Cy264keCIiH26xt/+9hK33PJ9sjIK6O3rIjYqET8/4142YAQEwTOvVteWc8FF5/L0M39BkkR27txJV1cXp5122jh7/bXXXuOUU04hPT39iHw3b7/9NpWVlSxfvpygoKBJj1u7di3r16/nmmuuITIykva2dpYuPR2nTSAiPMrzLvewXUaJHVEQGTQPYHX08/bbb1JQUHhQfnt5RQXvv/8+/kY/Lr/0IkJDAlHcTg9J4A3ZEBEkHYLOH1fbNmRzD4iSOiiPRQLgvl/ep6xZ00lw5D0Igp7x5Sz220TYzXBNQgBYhtuwDHcgu60U7/wFQwM1hIVEkpk+fafbE3oE9/7mp5x9zukTHnPttdfyz3/+06ftoYce4qc//SkAbW1tlJaWsnDhQoxGIwBlZWUMDAywYMGC/br7Sy+9lP/85z/ezzfccAOXXXYZZ5xxxpTn7dpVyo3LliNJ0nFIAIg0tdTS2FzjNfYKcufgbwociYiQ6OhsprqulPjYFJITMlQCQMU457+2oZyOzhZiohNJTcpCEAR6+7qoqi1BQCAzvYDgwFC17xxnfUNWZErKtjBkHiAxPo3E+HSvk+4pR2uhpGwLDqevEK5eZyAjLZ/goNBJiSNJ0tDR1UJVbQmiIJKVXkBYaNQRQwI4HA5O/c6JLF16Ak889le6OnvRaA7MqJNlBVl2c9W1lxIaGoxer6e5qYXXXn0HnU47jfNlHA4XMTGRnHvBGYiiyJv/fg+z2UJdQzn9A73k5czBaDB6jWVRFLFYhigp34LT5UlXDAkKIztzBvsTFr3nM5oxs5Cnnv0zBoNBHTQqvlW4ZZk1a9ZQ9s1q5saGkD17Jv6JifskNipKEkNNjez8ZgtfN/dy+fU3kJKSMm3behQnn3wy27bsIjg4lI6uZgq8oqmK13H1mKu7w31GCbmW1kbSM5N4+53/EBwcjMViYcWKFZx55pn47xGF8NFHH2E2m7n88suP2Pdis9n4y1/+QmBgIDfccMOkeiFOp5OXX36ZyMhIzj33XCRJ4ssvV3HD9TcRFZ4wUr1k7POWfZ65IAiUVewgLz+Tzz7/HD8/v4Py++12O1VVVSQmJhEYGDDlsSoBcIwTAL+977fK6jVmgsJvH+O4H2oCQEBRZPoHKpEVhdam/1BT9SKiKJGTWURwUJjP7v+eKt57hhzZbDZOOHERjz350IQ7Do8//jg//OEPfdouu+wy3njjDQDMZjPr16+nsLCQyMhIANrb2ykrK2PBggX7PPDcbjfnnXcen3zyibft7rvv5qyzzuL0009XCYApjPTKml1093QAoNPpKcidi17nUecWRZH6xkpa2hrIGhEHVJ04FWPngtqGCto7mrxE4ujcIYoSHV0t1NSXodcZyMkowmgMmHDXUK0acAwuepKGhuZqmpprCAoIISdrJqIoet+zKIo0Ntd4hQH3hE5nID0ll5DgsMnTAUSJ1o5GauvL0UgastILCQkJPyKiTRwOB0Uz8rn+pit47ulXKC+rnpaTPp21zmj0Y/kdNxAaGsJfHn+BlpZ2tFrNtBwMp9OFy+XC39/E2eedTnx8NK/+/W3qG2qprN1FSmImsdGJ3mc+mt5TVrmdgcFeALRaHfnZc/DzMx2QxofT6SQrK4Nnnn+MwKAAddCoOCKwdfsOvvrkQ4oCBYrmzyE4I3NaJIAgSVi7u2jYsIVPyhqZcfJSlp526j7NGTqdjv/+97+cc/Y5ZGYU0tJaj8NhpyB3Lga9wTOGXZ7QdavVk8/udDiw2ixYLEO4ZDcREWF88snH3qpaq1atIiAgYFyVrYaGBt59910uv/xyoqOjj+h30tTUxLPPPstJJ5004abeaApvTU0Nr7/+OldddRXJyckA/OGhh/jDg39AEjWgCGg0egL8gwgODsXoZ9xN3ogiQ0MDbC9ezw9+8AOeffbZw36fKgFwjBMAD//hIeW/n9kJCrv5sFUAEAQJm72HIXMrNlszxdt+hs3WS0R4LBl7hPx5BpMbcaQDjoo0KShoNToURcHtdhMYGMALLz9FcvJ4McBVq1Zx5pln4nDsvr+cnBzWrl1LSEgIiqKwYcMGQkJCyMrKAvCKAxYVFREeHr7PDOEZZ5zBV1995W174IEHOO200/YaUVBWVsmN1y1HkZXjigDwCPy5KBlT59nfP4j87FmIouRlmssrd9Db30Vh3rxpp4moOD6c//rGSlrbGwkMCCYncwYajXYPIlGkqbWWpuYa/E2BZGcUotf7qX3omHf+Jfr6eyit2IYkeXLG/U1BuyuLCAJ2u42S8i1ecTmNRoskarA7rLtJAK2e9NTccXnpYyGKEs2tdTQ0VaHVaslKLyQ4KOxbJwFcLjdR0eHccffNrFr5Pz7772r0+oOTX2uz2Vly4nwWLZnH00+8iMvl3uva5XA4MPgZyM7JIDMzDUkj0dHRhUGvZ/vWXbS2tlNauRWdVk92ZpFHwXoMWdPUXEtjS433ehlp+USGxx5QGoDD4SAnN4tnnn+MgAB/deCoOGJQXlnFJ2+/SZ5BZta8mYTm5ExJVAuiiMtmo23jRtaW1tMXGMHNN9+Mbh+rWwwPD7NkyWJqq5sIDQunrqESo95IcFAENruV4WEzsuImOCSY8PBwIiPCiYiMQKvVYDSaiIqK5IILLvQ6+y0tLaxbt44LLrgAjUbjQwa+8847REVFsWTJkqPinaxatYrVq1dz8803Ex8f7/O3Ub9Eo9Hw2muveaqwjJQet9vt7Nixg7q6OrZv387OXTvp7OiksaEJh10mwD8InU6HyeiPyRRAU0stza11PProo+M2MlUCQMUBEQCP/flRZcWnEqagy1AU+2H7Ef2DNThdFqrLHqaj/X/odAbysmdhNJi84X6eMoFO2jubiI5MQKvVTjjhKYqCy+ni1/f/nHPOPXPc31tbW1m0aBENDQ3eNpPJxOrVq70TU3l5OYODg17BDlmW2bBhA8HBweTk5OzTvZnNZk455RQ2b97sbfv73//Od77zHW+lgclQXV3LzdffgdVqPa5EAEVBxGI1U1K+GafTE9oZHhpFZnqB1/mXZTc7SzfhcjkpypuPVqtTd2qPd+cfj1ZGQ3M1za11GP38ycmcgcEw3rEfNZjqGspp72whOCiMzLT8KZXeVRzl84ooYrUNU1axHavNQmpSFrExyT6h+Z7Uozoam6u9bTHRiUSFx1JRvQurzbKbBNDpyUjJI3hSTQCP4NZoNIFWqyMrveBbJwFkWUan03HbXTfS19vHyy/+G0k6OEad2+0mPCKMxUvm8uH7n03p/MuyjNstU1iUy5ITF2C1Wtm1s5T62iaGhoaw2RxoNBIarZa6+nI6ulrJzZrpI/IniiL9A72UVWzz2gqR4bGkp+Ye0HrgsDuYObuIp579M3q9Xh08Ko4oVFXX8P4b/6bQKDNjThFheQUjWS/j+7wgSfSUllK1vYQv2wa57NpryUzP2OfvfOCBB7j33ntJScyiobkGP70fDpedzMwMZsycSV5uLvPmzSMlJZXIyEhMJhOTDf9RJ3/GjBmkpaX5/K20tJStW7cekcJ/k8Fut/P8888TGhrKVVddNW7ec7lcaDQaOjs7efbZZ7n88su9G4wTzYvl5eVs3bqVHTt2smb1V2zfsR2tRotOp6N/oBdBEPjvf/+71yhilQBQMW0C4InHnlJWfOqPn//phyUCQBBEbLYezNZOutreo6LsWRQFUpKyiYtO9AnpliSJzq42unvbPeG8U2gK2O0OrrzqEu75yZ0TGijnnnsuK1as8Gl/8cUXufHGGwHo7u6mpKSEBQsWeBf/srIyent7Wbhw4T454/39/ZxwwgkUFxd77+ODDz7gu9/97l7Pra2p58brbjv+CABRorevi7LKbd62xPg0EuJSRxSrPRUAthevx2QMID9njlrSTQWiKI3oRlQjiiJ52XMICgye1NkSRRGXy0llTTF9/d1EhMWQlpLjEw6u4hghhwTPu66q9bzr0JAIstILfXbOPKXlbJSUb8VmGx6ZrzXkZc8iKDCUgcE+qmuLGbbuJgG0Wh1pydmEhUZPmkIiIFDfVEVLWz1arY7MtAJCgr9dEsDhcHDZFReQk5vJk4/+lcFB80Erd6cARj8DVqttcmPS5UKn13Pu+aeTnJzAZ5+upnhnuddQFsXdwreiKDIw0EtJxVbiY1NIiEvzzvejUYAl5VuwDHvKxRoNRvJy5hwQKexwOJg1ewZPPPXHg5Zvq0LFwURpeTmfvPUG80O15M6bTUjG+HLZgihi7e2lZf16vqzpIDAjlyv3I6f+888/5/LLr8RmteNw2snMSGfZsut55e8vs2LFJyQlJXmPHRoawuVy4XQ6cTgcPmUBJUlCkiSKi4sZGhoaJ4Rtt9t56623mDdvHpmZmUfX+ygt5Y033uCKK64gOzt7QsdeFEW+/PJLampquPnmm6d1XafDxerVa/jZz3/K1q1bCAwMRFEUDAYDH3zwwX5rk6kEgAofAuC5Z15WPvg4GL3f/MNAAAgoipOBoWbMg5so2fk7rNYhQkOjyEzNQxRERiqIehf50optRITH7LW+stPhZPbcmTz6+IMYTcZxf//Vr37F73//e5+22267jaeeeso7CW3YsIGcnBwiRhRSu7q62LFjB/PmzSMwMHDad9nT08PChQupqqoCwM/Pj08//ZQTTjhhr+du2bKdO5f/H/JxlgIgiiItbQ3UN1Z627IziggLjfKmgHgqAGwiKjKejJRcNf//eJ/IRImW9gbqGioASEnKIi4maa9OliiK2OxWKqt3MWQeIDoqgdSkbEBRSYBjx/0HFBqaqmhtb0Sn049EmPn7qC9LokRzW73PvBMZEUt6Su6IdoSI2TxIZW0x1rEkgEZLemoeYSGRE85DoyRAXVMlrW0NRwQJ4HA4mD2niGuuu4wXnv8nJbsq9qoDsLcSXxMZuxPB7XJj8jdyxdUXoygKb/37PXr7+tHpdBNe25MS5qa4bDOSJJGVUYRWox3ze0Rq68to72z2Hp+TOWPK9Iy9Gt1OJxmZ6fzlmT8RFhaqDiEVRyTWbdjA+hUfcnJCCOmLFuIfG4s8OqeMjKXOrVuoLK/l624bN9xyC7F7iTzdE/X19SxZshiTyR+nw0lTcxOfffYZBoOeJ554kh//+Mc0NzczODiIy+XCbrejKAqSJBEQEIC/v78PmTc6/8yfP39cFOzGjRtpaWnhggsuOCpt3n/961/09vZy8803jxMPHZ0TLRYLb7zxBhEREYiiSG9vL3V1ddTX1+NyuTAYDISEhJCXl0dSUhKJiYmkpKRw7bXX8vrrrxMfH8/111/PG2+8QWdnJ59++ikzZ85UCQAVB0gAPPsv5aMV0Wh02aA4D61JJogMW7sZHNxMTcUf6eyswc/PRG7WTAx75OKKokhNXRlmyyC52bPQSJopjXO3WyYgwMQjjz1I0czxVQTeeecdLrnkEp9rLF68mJUrV3p3/Ddv3ozRaCQ3N9dLCqxbt46kpKRpK6cCdHZ2Mn/+fOrr6wEIDg5m9erVFBUV7fXcf/793zzx2HNotVqOJw1AQRCpri2ms7sNAI2kIS97Nv7+ngoAkijR2d1KZU0xKYmZxMUkqwTA8TyJjaiuV9eWoCgKcTFJJCVkTF8dWZSwDA9RVVOMZXiIhLg0EuNT1VSAYwSiKNLR2UJDcw1Op530lFyiIuPH1ZR3Ou0Ul2/1Oveju/9j9UVEUcQybPb2ld0kgI60lBzCQqKQlYlJAID6xipa2xvQaLRkphUQ+i0JA7rdboJDgvjh/93Kzh0lvPnv9/YabiuKIm63G4fDiUaSkPajcoAse+paX3fj5VitNv796js4HU40exEKFEWJuoYKOrpayMmcQVBAiE81gO6ediqqd3mPj4tNITkhfb/HsMvlIj4+lief/hPxCXHqIFJxyLBbPX//8M5779O7cwOnFaQTv2gRks4T+SKIIta+Xlq+Wc+q2g6Cswv53qWX7NO1zWYzF1xwAQ0NDZx//vn84x//4OGHH+a6665jxYoVNDU1kZ+fT0hICIGBgZhMJvR6PZIkjUTyTD+qyGKx8J///IelS5cSF3d0jrn29naef/55vvOd77Bo0aJx73mUSO7v72dwcND7N7vdTmdnJ+3t7VgsFtxuN8PDw5jNZgwGA1FRUWzevBmz2UxNTQ2SJLFs2TJ+97vfYbfb+fDDD8nLy1MJABX7TwA8+8zbyorPYhE1CaAcupJFgiDidjvo7l1PffWfaG3ZgSiK5GTOHLcrIkkaOruaqakv9ygpT5PVt9sdXLPscu7+0fJxf6uoqGDx4sX09PR426Kiovjmm29ITU0FoK6ujra2NhYsWOCdxLZt24bL5WLu3LnTvtfm5mbmz59Pa2vrhN8zGZxOJz+5516+WrP2uMpBHM3vLynfxpC5HwCjnz/5ObPRjOz6SKJEQ1M1Ta21PpEBKo5P57+3r5OK6p243W4iwmNITcr26AGI0zeqRFHCbBmkuqYYi9XsyQ+PTlKJpWPA+R8yD9DYXEP/QA8R4TEj4rIwtsqNKEq0ttdT17B79z8iLIaMtLxxRNJkJIBG0pKanE1keMykkQAADU1VtLQ1oNFoyEjNJyw08lshAVwuF9de/z0Sk+J54pHnMZuHJ00DcDqdzF84h1mzC9i5o5Tqylo6O3uQ3W402ukZ+ori+c5LLz+PiIgw/vb8qzhdrmnpD4iiRP9AD6UVW0lKyCAmKtH7/gRBxGYfprhsCw6HJ+0gMCCY3KyZXtHY/Xk2sbEx/OWZP5GQGK8OJBVHLAFgtlh45cUXSXf3M++EBQRnZqG43QiiSHdxMdW7yljVYeGaG24iMTFhn65911138eyzzzJr1ixKSkr48Y9/zH333YfFYuGll17ikksu2auW1XTxzTff0NvbyznnnHNUv8PPP/+cbdu2cdttt2EymQ7Kux4aGuLrr7+msbGRlJQULr30UqKjo4mNjeV///sfGRkZfPDBB2RkZByye1QJgGOcAHjqL58on62MRpQigENokAgig0M1lBf/ktaWbwBISkgnPjbVx5ETRQnz8CCl5VuJCIsmJSlr2oz+aAjfs399nKA9yvhYrVZOOeUUNmzY4GPUffDBB5x99tkADA4OsmXLFmbNmkVQUBDgUS2trKzcp3KAFRUVLFmyhO7ubgDi4+PZsGEDsbGxU55XU13HrbfczcDA4EETaDo6CAARm22YkvIt2EeMudCQCLLTi7wpIaIoUl61k57eDrUCwHHt/EsMDPZTXrUdp9NBaHA4aSm5CIK4X2NGFKWREO9dWK0WMtPyiYyIO2Lqt6vY17lEwOG0097RTFtHE3qdntzs2ei0eh/NkInyyEVRIjdzBkFBoRPOLaIoMjxspnJPEkCjJT0ll/DQqClIAIHGEaFKSZRIT80lIjz2sPczT637Aq678XL++cpbbN60fdJqAA6HgxNPXkzRjFwcdgeh4SH0dPeyfWsxpSWVDA2Z0Wg0U+oIOOxOimbmccFFZ/Hs06/Q1dkzrRKB3nfkdrGrdBN+ej8y0vIRRY0PiVNRvZPevi4vMZg/Jmpsn41dp4uEpHiefu5RoqMj1cGk4ojGth07WPP2G5yRE0/qiSeiCwjAYTbT8s1a1tW0Y42I58brr98n5/PBBx/kvffe46STTuKTTz7h/PPP54EHHkAURdasWUNjYyPXXHPNQSE6hoeHee+99zj11FOP+LJ/e7u/4eFhXnzxRQoLCzn55JMP2vUbGhr497//za233sqTTz7Jgw8+yLnnnovZbGbFihXk5OTw9ttv77NQuUoAqAQAgPDwn75Q1n4TjSAGAofGoRIEEafTSn39S5Ts/COKAmGhUWSm5Y8TZJJlmZLyLQDkZs1CkqbP5suyjEaj4Q8P/5YTTlw47u+33HILL7zwgk/b/fffz69+9SvAEyK5fv164uLivDU7h4aG2LhxI3l5edOepDZu3MjSpUsZGvIYiampqaxbt47IyKmNio8+/C+/ve8PaDSa4yz/X6J/oJvS8m1ehz8+NpmkhIwRQ86Tz7uzdBN2m5UZBQvQ6QyqCOBxBlGUGB42U1q5DbvdSlBgCOkpeQiigFajGzfnjA4hRVa8/WrCCVGUGDT3U1G9C6fTTlZ64be2Q6viwA2y/oFuGptrsdmt5GbNmFCBXxQl2jubqKkr87aNrkl77YNWM1U1JZgtAz4kQEpiJhERseNEuUbXNgHBI1jZUoMgCKSl5BAdEX9YI05kWUav13HHD29haHCI55/5B4IwcY6/w+Hg1NNOwGjy44P3/ktSciJ5+Znk5ecgiAK7dpSyYf0WBgfMaCZIDVAUBY0k8YPbr2fH9hK++GwNBoN+n8d8dW0JfQPd5GbNwuhnGlMOUKJ1jAYIeHRA9qYXNBmcTiepaSk89eyfiYgIVweTiiMabrebl196iYi+JpactIiwvDx6Kitp3radFQ29nHrehcwbqXI1Hfzxj3/kpZdeoqioiPLyci699FJ+8YtfIEkS/f39vPjii1x44YXjFPz3F8XFxbS2th5WVftDSQLs2LGDlStXctNNN/lohnlErIX9suntdjuPP/44J554InPnzuV3v/sdn3/+ObfeeisOh8NLzrz99tuHRBNAJQCOcQLggd//T9m0JRJB0AOHQgDL0+n7+svZtvlOBgcqCPAPIidzJlqtb53usaJeuVkzCQ2J3OcdEpvNxnkXnM1vfvfzcX975plnuO2223zaLrzwQt5++23v4CwuLsZutzN79mzvJLtp0yZMJhMFBQXT+g1ffvklZ511Fg6HR1QxOzubtWvXEho6tbDQH37/KG+98e4+G0nHgmPX1tFIbX25ty0zLZ+IkbrOgiDgcNjZXrwevc5AQd5cRMQpnToVx1of8ZRzK6/cwbDVTIB/EBmpHgJRq9P5VAjxaI0MMTDQi06nJyQ4fK9hwaMikxVVO5EVN9npMwgODlVJgKMKAjb7MI3NNfT0dpCSmElsTAqy7BrnjHsEZrditgx5+1du5iyCgkL2unssiiJW6zCVNbswWwZ9+lBaSjZR4XG4ZXncejpqBDa31tHQVA0CpCZmEx2VcFjJTLvdzoknL+LiS8/hr8/+g9LiCnQTRAF4IgAWkZWVxgvPv4ooCrjdMn5+BtIzUpi/cDbBwUH8540PaGpq8anr7TnfyczZBZx51qk89cSLWIdtiPtYdUAUpZFc/51kpRcQFhrprXo2mupRUr7VayeEhUSSmV6wX89lVAPgiaf+REKiqgGg4sjH1u07+Pqdf3NWfgoJCxfStWM7VbXNbLQI3Lp8OcEjkax7IxLuv/9+nnnmGfR6PRqNhgceeICrrrrKe8yrr76Koije3X+Hw4HFYsHhcGC3273q/6P/ZFlGlmWcTidut9ubCz9qZ8uyTH19PaeffjqJiYnHDCHz2muvERcXx6mnnnrQrvvee+9RX1/P3XffDcALL7zAo48+ygknnMCpp57K3/72N8rLy3n99ddZvHixSgComD4B8Kt7NyjFpRHAoSk5JwgiTtcw7e1fsW3zXQiKg7ycOQT4B/kY1x5BJic7SzciiSIFufP2afd/7CIeFRXJX1/6CzExUT5/W7t2Ld/5znewWq27Hc3MTP73v/95lf87OzspKytj7ty5GI2eagKVlZV0dnayYMGCcUbORHj//fe58MILvb+9qKiIr776aspKAuYhM7f94B5KSsqOmjqoB7OPjFV0lkSJvJzZ3jB/URQZGupnZ+kmQkMiycksUsP/jzOCyGq1UFG9E8vwECZTINkZRWi1Hn0IURDHHKuhb6CLuoZyrNZhBEEgKiKO5MQMRFEzpaMlSRJ9/d2UV+1EFCVyMosIDAhWSYCjwvUXkBWZ5tY6mlvriAyPIT01f2QOVsb1p86uFqpqS7xtoyUCR6ONpkVIWYepqi1myDwmEkDSkJKcTWRYDPIE3+0hAUTa2hupbShHQKAwf9649fBQQpZldDodt991I3a7g2effhnZPV7B3+l0kpuXxZlnn8bzz/wdm9XmLZfpdLqQZZkzzjoVo9GP99/9ZNy65XK5uO7GK+jp6eW9t1dMmmqwt7XBbh9mR8lGwkOjSE3O8hIAo9oxpeXbGBzRjtHrDOTnzEavN+4zqeJ2uwkNC+WRxx8kNzdLHVQqjngMW6289NwzFGjtpGWmYe3u4pvGXohPY9nVV+31fKvVyp133snLL79MdHQ08+fP595772XGjBneY1asWMHnn3/OhRdeiMlkoq+vj6GhIWw2GzqdDp1O5y31N5qGJwgCoigiCAIajcYb1Tra7nA4CA0NJTMz85iKdq2vr+ezzz7j+uuvR6vVHpRrtra28uyzz3L++eczZySiY+3atfzmN7+hvr6egoICNmzYgCiK/Oc//2H+/PkqAaBiegTAnXdtUhqbw4FDMwgFQcQ83E531zp2bPk/TEY/8nPmjZhZvoJMff1dlFZsIyYqntTk3P0K41MUBZfTxY9/dheXXX6Rz986OztZvHgx1dXV3jaj0cjKlSu9dTVHywFmZGR4hU4GBgbYtm0bBQUFhIWF7fU3vPbaaz7s6YIFC1i5cqWXUJgIpSXl/Oiun9PX13985f8jIKNQWr6VwaE+APwMJvJzZntrOkuiRGdPG5XVu4iPTSE5IUMVajtOnX+j0Z/sjCL8DKZxiu6CINDT10VNXRlOp93nOhHhMaQkZaLV6KYkjyRJQ9dIX9PpDORkFuFvDFT721HQT7p72qms2YXJGEBu1kw0Gt04J9ArOFqxjaEhj9MoCiJZmUWEBofvlVgcjTRR8Cg722zDVNWWeueu0d+SkphBdGSCT8nBsVeRRJGOrmaq68oI8A8iO3PGSN88PP3MYXeQV5DNTT+4hvffWcGXX3w1roSV2+0mPCKMG2+5itf++TaNDc0+BLjT4SQ9K5XTlp7ISy/8y2eHz+12ExQcyPdvXcbbb31EVWXNfhvEgiBQWr4Np8tOfs4cHx0AURSpb6yipa3ee3xWeiHhYVH7TBK73W6Cg4N4+JEHKJqRrw4qFUcF3v/gA4bLtjArJgSnW2ZFQx8nfPdcFsybN+V5o3XpV61axYIFC7jzzju55JJLfMbpxx9/zMqVK5k/fz5JSUlotVpCQkIICAjAYDCg1+uPuw2rvfkfb775JoqiEBkZidPpRJZlbwTE6Bw5SoTodDoMBgMBAQEEBwdjNBq9bWPfw6pVq/jmm2+48cYbvanIdrudNWvW8Pe//53169dTW1tLaGgojz/++D7pNKgEwHFMANx480alp/dQCd4IKIqbIUsLHe1fUrLj1wQFhpCbNWtCA65rpMxbemruAeVG2u0OCovyeeb5R3yE+2RZ5uKLL+a9997zOf7555/nlltu8X7evHkzBoOB/Px876Detm0bfn5+0xLbePHFF7n55pu9n0877TQ++eSTKSfKd9/5kIf/8LjX4DluCABBwG63UVK+BZvdE5kRHBRGTuYMRnfjJFGivqmK5tY6MtMLiAyLUR2y48SpG7aaqajeyfCwGaOfP1kZhRj9/Mc5/yDQ3tlMQ1PlpDupwUFhpKXkYtAbpiYBRIn2zmaq60rx8zORnVE07jtVHEELmiQxNDRAaeU2BARys2diMgZMIuQn0dXVSmVtsbctJDic7IwiJtv9H9Wpccvu3fnngogoiiMkgJXKmmJvBZNRxzQ1KZvoyHiPATjBdSVJoqvbQ1r4+weRlV6IXmc4bP3M6XByzgVncOJJC3nx+X9SVlrpQwIoioIA3HrnjezcVsyqlf/zSRVwudzExEZy6ffO55+vvEl//6BXENDpdJKTl8XZ536H555+BeuwdZ/Kg+05HhtbamluraUgZ66PyN/oxkFZ5Xbvu4mOjCc1OWe/IgBCQoJ55PE/kJefrQ4sFUcFSsrKWPPuG5wSE0ifS2Z1h40bbr6Z6KioSc956623WL58ObIss3z5cu644w4fjaqenh7eeecdGhsbufLKKw+6yJzT6Txmta5aW1spLy9HkiTvPDU2kllRFNxuNy6XC7fbjd1ux2azYbfbcY1USBklBQIDA4mOjiYqKorPPvuMlpYWrrvuunEbkTt37mTVqlW8/PLL7NixgzvuuIP777/fK2auEgAqJiQArrp2m2KxhBxiAqCJttYvKNt1P4EBQeRlzxlnbEmiRHNbPfWNleRkziA0JHKcITRWMHAqjNYdfub5Ryko9K2Tef/993Pffff5tN16660888wz3s/19fW0tLSwYMEC7258c3MzjY2NzJs3b69pAH/5y1+48847vZ/PP/983nnnnSkNoN/++g+8/+7H43Zhjn0nT2RwsI+Siq3eyTI2OtGn+oMoipRWbKOvv1utAHAcOf+W4SEqq3cybLXgZzCRnVGI0RgwgfMPre2NNDRV+xj9Op0ep9PhM2cEBgSTnpqHn8E4ZR8SRYmWkfnIZAwgK70QPz+TSgIcgfOHzW6jvHIbw1YL2RkzCAuNmJAEEgQBt9tFacU2b9i+IAgjoo/jy4p6opNkXC4XDqfThwAQBAGtRoNeq0er0WK1DVNdV8rAYK9PH0pOzCA6KgEmEaL0pJ10UV61C73OQFZGISaj/2FJB7DbHQgCXHfjFaSlJ/OPl9+kuqrWZ+fJbrdz3vlnEhsfw3NPv4xWo/Xm8bvdbkJCg7nuhst549/v0dLc5l0bRwUEs3IyeP6ZV6aVOjfVOx4Y7KO4bDNpyTlERyV435UnddBBcdlmrLZhAExGf/Kyd5eQnbax63IRGRnBk0//idS0ZHVwqTgq0Nvfz6t/fZbFwSKtwy7qtSHc+v1bJhxznZ2dPP7446xevZrzzjuPa6+91qc6lSzLbNiwgU8++YSoqCguv/xywsMPviDmaGqnit1zz6iegs1mo6+vj56eHiwWC2azGZfLhcFgYOfOnZhMJq699lpv2vJY9Pf389577/Hggw8SFRXFH//4RxYtWqQSAComJgAu/V6J4nSZDukXDpqb6O8vYcfmexAEG4V5C8YZ4JIoUdNQTlt7I/nZswkKCjsgY9tus3P3PbdxzbLLfdo/+ugjzj//fJ/vXrRoEStXrvQ63xaLhU2bNlFUVERISIi3bevWreTl5e1VzO/Pf/4zP/7xj72fr7nmGv7xj39MerzVauX7N95FaUn5hGJMx7qj1zGy2zqK9JRcoiLjvQKAbrebnSUbcLtdFOUv8KYGqDh2+8Tw8JBn599qwWAwkp1RiMkYON75VxSaRvK+fRz9wBDSkrIZGOyjvqnSZ7z7mwJJT80b2SV2T+l4NLXU0dhcjckYQHZGIQaDSgIcSc6/y+WivGoHA4O9pCZnERM1sQK8gAACNDRV+4SLBwWGkpNZNKFIpNPlxO50eESsUHyEJgFvepKfwYBOq8fusFFVW8zAQK9PH01OzCQmOhFGQkDHLcgjVSjKq3aCIpOZXjhSueDQlAgcFeVKT0+haGY+sfHRREdHYh4y8583P6S6sg5pRNXf6XSSnpHCdTdcwZtvvE9VRS3Dw1YEQBBFAoMCuPn7V/POWx9TW9vgLfHncDi44OKz0Wm1vPn6ewcUJjzq5O8s3UiAKYisjEKf8SwIAtW1JXR2t3n6hSCSkz2T4MDQfSKKXS434RGh/OXpP5OWnqIOMBVHBWRZ5qW/Pk+KvZtGq5uAzCIuuejC8URBby9//etfCQsL4/LLLycgIMBnLquurua///0vHR0dnHrqqZx00knHVTrqkfx+LRYLw8PDdHZ2snr1aux2OxdffDEpKRPPU6NlAsvLy1myZAnz58+fMgVZJQCOUwLgoksrFFk+dKrzgiBiGW5n2NpBRcmf6epcQ1JiBvExKT6GmiRKNDRX09RSS172LEKCwg8ozNtutzNv3myeePpP6HS7dzRqa2tZtGgRHR0d3rbIyEjWrl1Lenq6t23Tpk34+/v7hD7t2LEDjUZDXl7elN/9+9//3ltaEODOO+/kiSeemPT46qpavn/TnZjNluNuwhVEkbqGCtraG739JS9rtxq3KIpYhofYUbyBAP8g8nPmqM7/Me78W4aHqKjaidVmwaD3IyujkABTkM98IAgibtlFY1M1bR1NPtcICQ4jLSUPg86AgkJ7Zwt1DRU+842fwUhaai5BAZOrvo/m6jU0eeq3+5sCycooxKA3qiTAtz1vjESDVdeW0NXTTlxMMsmJGZO/S1GkpbWexubqMfOHQHZmIWEhu3f/BcCtyNjsdpwu5/QWVFHEaDCi0Wiw221U1ZbsEQkgkpKYSXRkAgqTkACShGXY7O33mekFRIRFe/NHDxacTidBwYGcc+7pJCTGUVFRQ3lZJX29A0iSiM1qZ2Bg0BtZoygKkiRx4cXfJTc/G/OQmbraRnbuKKW2pg5J0nD73Tfy3tsrfKIHHA4HV1x9Mf19g6z4+PMDzhMWBJHyyu1YbRYKcj1ReGPLAXZ2t1JVszutIyE+jcS41H0iANxumYAAE39+7EFmzCw46sdI/+AQtU0tGA0GwoKDMJn8MB5nEYbHC17/5z8Qmytoc2lYdNZ5zJ0ze9y4b29vx2g0jgsfr6qqYvXq1VRVVZGVlcU555xD1BTpAyq+XdhsNtasWcO2bdsoKipi8eLFUwqMd3R0oNPpCAgI2OdILJUAOMYJgAsvqVEU5dC9XEEQcLqsDA41MjhQws5tv8Cgl8jJnIleq/eGRUqiRNdIuZ/U5BxioxIOiACQZRmDwcDzLz5BVnaGDzFw2mmnsXbtWh8D7b333uPcc8/1tjU2NlJXV8fChQu9xktfXx/FxcXMnTt3ylD9n/70pzz88MPez7/61a+4//77Jz3+0xVfcO8vH0CSpOMq/38UZZXb6R/oAcCg9yMvezZ6vcGj8C5K9PR2UF61g+jIeNJSclXn61idmEQJ8/AgFVW7sNos6PV+ZKUXEujv6/yLoojT6aS2vpzu3nafa4SFRpKalI1Opx8x/gVEUaCzu426hgpcY5w6vU5PWkouIcERk/YpT/12qGusorW9gQBTIJkZRRj0fmo//LacfwQEUaCuoZLW9gYiwqJJT82bNEVMFCXaO5uorS/3+XtMVAIpSVk+bU6XC7vDjkt2jdvxnwwKCgadAYNOjyiK2B12auvK6O3v8nFgkxLSiItOnpQEEEXJE0VQs4uBwT7SkrOJjkpEUQ4OCeBwOImKjuTyK8+nob6Z1V+upa9vAFHcXaN6VNfAdy1VEAQIjwglITGegsIcEhJiGRw0U1pSQX5+Nq+9+jZNTa34+Rm8BMCV11xMZ3s3X3y+5oAJAEmUaGr1ROMU5M71SQMTBZFhm5ni0i04XZ7Su57IjhneqgX7YjP8/qH7WLxkwVE7PuwOJ3VNLTS3d46kkggj850Wk58fQQH+hAQFqITAMYQvVqygett6bBo/Lr7yahLi4/cgt9w+m0uyLFNWVsaqVauoqakhPj6e0047zUf9X8WRjfr6er7++msGBwfJzs6mqKjooKdrHPEEgCyDmkqy/wTABRfXKYeqAsBYk23Q3IDDMUR1xdN0tH1Cako+ocHhaCXNiKKyNFLqbSMR4TFkphUcsIFts9n58U/v4oqrLvFpv/3223n66ad92n7+85/z4IMPej9brVa++eYbMjMzSUhI8LZv2rSJ4OBgMjIyJv3ea6+9ln/+85/ez3/84x/5yU9+Munxf332Zf76/MvHYfm/0fzNLVhtFsATup2bNQsRAWVEAHA0MiQ9JZfoyHhVAPBYdf4tg1RU78RqG0avN5CVVkhgoG8ZPlGUcDrtVNeX09vb4XON6MgEkhLTkSYI5xZFif6BHqprS7A7bN52rVZHWkoOYSFRkzpao85RXUMlbR2NaiTAtwxRlGhqqaGxuYbgoDCy0gvRaDQT7vZKokRPXyeVNcU+IfVhoVGkp+T6lJq1OezYHQ6mUwZwT2gkDUaD35gyV3aqaku8xOZoP0pKyCA22rMAT0wCeNIaaupK6e7tID42hcT4tEmPn7Yh53ITHBzINdddxuaN2/h6zQa0Os20I85GhatkWUYUJMIjQyksymXGzALCI0LZumUXa79aT0tLO6IoeAR3LzuXvt5+vvzi6wNe20bHb0n5FlKTs4mJShwz9jx6QmOJZK1WR172bEx+/pNUYpiKALiXxUsWHnXjQlEUWjq6qGtqwWK1IY2UYRv7d1lR8NRRFFRC4BjCrl27+Oy/H6M3+nP9dddjMpmmPPbTTz+loaGB1NRUTjnlFHJzc1U1/6MUFRUVbNiwga6uLuLi4pg9ezaJiYno9Qce2S0PteFqLwZR8+3f6P7qfqkEwbdLAAiCiM3ej9nSykB/McXb78Xf30BCfCZGgx8ajeQRXJLd7CrdPJLrPR9J0hyQ0WO3O5g3fxZPPPWwz+T20ksvceONN/ocm56ezhdffEFSUpLPRDk0NMSCBQu8uyKtra1UVlaycOHCCQeY0+nkrLPOYuXKld62PasM+K7a8Iuf/ZZPV3yB3qA/rjqiKIoMDvVTUr7Va8xFRcaRlpKLMkYAsKxiG7393RTkziUwIER1uo5B53/IMkhF9Q5sNqtHDC19IudfxGobpqa2lIExZdcEIDY2mcS4tCmFQiVRon+wl5q6Uq9gGHjCr5MTMqYM0Z6QBEgvxGBQSYDD7fy3tjdQ11CBv38QORlFY6I9xh/b299FdW0JTqfD2x4aEkF6Si5a7e6SkFa7DceYY/ZnLvP3M/nspNsddmrry+jt6/LpR4nx6cTFJE3q1AuCiIJCfWMlbe2NRITHkp6cgyiK03Zm93QMFWDZ9ZfR2tLBxx9+jkGvP6Bl3+1y43K7MPr5kZ6ZyqIl84iNi6KstIo1X66lob6JM757GqIksvKzNQclBcDhsLGjZANBgaFkpRf4vHNRFGluq6ehscrblpaS4ynFOM3xKbtlTP5G/vToA8yaPeOoGhf9g0NUNzTT0z+AMPI8ptMvVELg2EB9fT0vv/Q3klNSuf6662CCSNK2tjbeffddiouLycjI4PTTTycnJ0cV4ztGUFVVxapVq2hqaiIwMJCsrCyKiopITEzc78hieagNxWkBQRxjbe3dJ3P3NrB7gTmA6LWDKfat9nOkkCSf9yFccHH9YUio9lQDGBisw+myUFH6MN2d/yMpMYvAwFC0koROp0cjSrR2NFJbX05+zhyCAkMPyLgerbn5q1//hO+efbq3fcuWLZxyyikMDQ35HH/XXXfx+OOPez8PDAywceNGioqKvCVSXC4X69atIzo6esIogMHBQU488UR27NjhNfjeeecdLrjgggl/o8UyzO233sOunSXHHQPrKf3YRmXNLm/b2N2dUdXuHSUbvQKAOlUA8NiakEZKuFVU78Rm9zj/memFBE3g/JvNg1TXlWAZNu/hUKURG5PsWZr20jdEUcRiGaKqrgSLZcjnOnvbnd2TBDAZA8nKKMBPFQY8bH2lvbOF6toS/PxM5GTOmPTZi6LEkLmfiuqd2O27Iz4C/IPIHkMaKIqCzW7DMSY1ZOxut4AnPF7B4ygJoogkSgiiMCUBMNrmcjmpriujZ0y0ioBAQnwa8bHJU/Y1QRBoaWugvrGSkOBwMlLz0Gr1+9zXHA4PET5vwSxeeO4fuN0HT4FblhVcLieSJJGensIJJy8kLj6GTRu20drSjn+Aif99tcFHh2f/rQiB4ootuJxOCvLm+kT6eMjkvhEy2WM0hodFk5mWP+31wu12ExgYyJPPPExOTtZRMSb2DPc/EA2hyQiBwAATEWEhhAYFqpPQIYbL5ZowDWdv6Ojo4Mknn2TOnDlceKGvAKDVamXlypWsXr2a0NBQzjzzTIqKilSBv2MQbreb2tpaSkpKqK6upq+vj6ioKIqKisjNzZ2wcsDUBEArimMsAXBgM/hY0tlDEhyg8z9KiE/j90lhybuJMWV/iYnRe9hNhOz1Pg6VPRSa5PkdirLfJMthIgA8DL7V1o1luJO+3i2U7Pg1RqMfSYmeertGgx96rR6Hy8Guko0EBYaQnpp/wIa1w+EgLS2Vvzz7JyIjI7yO/aJFiygtLfU5NigoiI8++oglS5Z427Zt24bT6WTu3Lle4662tpaGhgYWLVo0Lgqgvb2dhQsXUl9fD4DJZGLlypXMnz9/wt/X3NzCnct/QlNTi1dB+fghAESvwNqogZebNZPg4HBk2e111naUHBsCgIqiIMsysqzsLlengEarOS5ZeEmSGBzqp6J6F3b75Dv/kigxMNRHdW2pN1UEQByzc88kO/cT9jtBZMDcT119BZbhQR+nKyE2hfi41KlJAAXqmjy7s0ajP1nphRj9/FUS4BD3lc6uVqpqS9DpDORkFo2rCjF2Xhm2Wqio2smwdTdZZPTzJyujYORdyciKjNVmwzUmNcDtcqPRSkTHxJCQlEhYRDh6gx6n00l/Tx/NTc20NDVjs9lG7A95xP4QMegMaDWesTyq5yKKIg6nneq6MvrGRAIAJMan750EEEW6utuoqinGZAogK60QPz/jtMsEenRURG7+wTWsW7uJzZt2oD8ElWYURcHlciEIAhlZaZx22glERoVTWVnLW6+/j8vl8ikvuH/rhURdQzntnc0U5s3HZPT3OvuCIOByuygt34J5hNgz6I3k58xGp9NPa25wj0QAPPbEHyiacWSLAO4t3P+grVeKgjJSVnnBzAJMfmpEwKHEwMAAa9asITY2lqKiommPmb6+Ph555BHOOOMMTjjhBG97cXEx77//PlarlaVLl04auari2CST2tra2LlzJ1VVVQwPDxMdHU1eXh5ZWVkEBwcfZgJg7w6115mezPmfMAJO8Dj3PiFtisfZn8zRP+haa5Pcx0F3+A+EvPgWCQBPFIDLGwVQVvwgvd0biI9LIygoHEkSMRmMSKKGlrY6Gpqqyc+dQ4B/8EHRArjtjpu58eZrvW333HMPjz766LhjzzzzTN5++21vyYzBwUE2bdpEYWGhlz1zOBx88803JCYmkpqa6nN+WVkZJ5xwAj09nlzE6Oho1q1bR3Jy8oS/bdfOEu687cdYrbbjzgkUECiv2uEVy9Jp9eTlzMbPYEJRZB9hyJioBFKTc44qJ0uWZW/JLUEQ0Oq0+JtM+Af4YzDokCQJSZJoamzBYhk+rt6/JEkMDPZRWbMLu92GXudHVnrBHs6/R8Cvr7+HmrpS39x9jZa0lFzCQ6OQ90EkbdTpc8syTpeD1tZazCM14UcRG51EYnzapAJio4Z2fWMlre2N+PmZyEovxN8UcFjqtx9/zr+Gru5WKmuK0Wp1ZGcUERgQPOGzFkURu91GZc0uBof6ve0GvR+ZafkEBoTglt243W6sDpv3GrIsI7tl4hPjOXHpyRQUFhAQFIhGq/XYCorHoBq2DFNVXsnXq75icHCQ6NgYwsPD0Ol1OOwOzIND9Hf30dHejtPp8o5xp9NBbUMF3T3t+0Q4jY6V/oFeKqp2IkoS2emFBAQET6tMoNPpJDMrnXPO+w5/ffYfe11nFEWZMiJhOk6j0+lCq9Uwc1YBp37nRAYHBvnwvU9pbGxBp9WOi57YFwKgq6eNyupdZKUXEB4W41sWVBSpayinrX13VZDsjCLCQqOmtW7IsoxOq+X3f/w1J5y46IgdD/sS7q8oClarFQA/P7/9JglcbjfJcTFkpyWrE9IhRktLC19++SVDQ0Pk5eWRnZ1NWFjYlAruQ0NDPPXUU3zve9/z2qQff/wxn332GTNnzuScc8456AJxKo4uMqC9vZ3y8nJqa2uxWq3ExsZSWFhIWlrapH3r0BMA4yYsX6d6z3bBa8hN7gRPNMdNNu8Jh17/bqpUO2+qhLDbsfc6+gfZ2f+WCQBPFMCwtYthaye9PRsp3Xk/er2WpMQctFqthwCQNLjcTnaVbESvM5CbPQsUvNUC9gdOp5OExHieee5RomM85U0aGxs55ZRTqK2tHWfovPDCCz4aASUlJQwPDzN37lxvW3V1NS0tLSxatMiHpf3yyy8566yzcDg8+aSZmZmsW7eO0NDQCX/bV2vW8pMf/QrhEDD4R7TzLwi4XE6Ky7cwPBLSHeAfTF72TG9NbkmUqG+qorm1jozUPKIi4o54AUBZlnG5XICAyWQkJjaK+IQYklMSCQkJJiDQn8DAAAwGPYIgIEkSKz7+gvffXXHcpICMOjSV1btwOO0jav8FPk7dqMPR2dVKXWPFyDP1QK/Tk5qcQ2hI5D4RQoqiYLFZvY6Tp5qAg7a2egbHaAoARITHkJKYhVarnTC/fHSsjtaVN+iNZKbnE+gfglt2oeJgOv9tVNbuQiNpyUovJDgodFLnfyLxPZ1OT0ZaPiFBYbjdbhwuJza7zevout1uJFFi4YmLOPOcMwmPjPRG64x1zEf7pCiKWMwWHA4HJn+TZ9wKAm63G6fDSYCfnrbGJt5+4z2qq+vQaDwkgNvtorrWI+43FglxqcTHpkytXyFpsFgGKR9JacjKKCQsJGKvhJPD4eD0M08lOjqCf7zyxrg5RpZl3K4RklIU0em0aLUabwSDh8T0zGkOh9MT8SAISCNRDpMZN4qiYLc7CAkJYunpJ5JXkMO6tRtZ/eVa3G55n8tRjb5fs3mQnaUbiYyIJS05x+d5ja0YM5bMS0nKnFY5wNGSh7+5/xcs/c7JR9xYmFa4v6IwPOLwT/RqlP0kAhRFQaORWDCjAD+DuoN8OFBTU8PWrVtpaWnB6XRiMBgICAggODiYmJgYYmJiiI2N9Y6ll19+mbPOOouAgAA++ugjNm/ezLnnnsuSJUvUPH8VPmO5paXFmyag0WjIz8+noKBgXDnBw0oATLT2jW2bbJNnEs5gQgd/X8iB48EPO5wEAAjIsoP+wRrcbjvlxX+gp3s9UVEJhIfH4qfTo9PqEATRu+OTmpxNbHTStHY7plw8bXYuv/ISfvyzu7xt//rXv7j22mvHGQc5OTl88cUXxMbGAmCxWNi0aRP5+fleFtVqtbJu3TpSU1N9dvdfe+01rrrqKu/n+fPns3LlyklVWT94/xPu/80f0Wg0xxUBMGrMlZRv8YbgRoTHkJGaN8bgFimt3EZ/fzeFufMICAjap7rOh29CBbfLhVv21JFOTkkkJy+T1NQkoqIj0Rt0KLKC2Wyhp7uPgYEB2tu66OzsYtbsIgwGPU8+/sJIvvFx4Pz391BZU4zDaccwUuovICDI1/lHoL2rmbqGSh8n389gIj01l8CAYBRZGZn/FR/HfMIdTMDqsGNz2H3WiFEnp6Ojkd6+Tp9zwkOjSE3JQauZnAQQEGhsqaGppRadTk9mWsGkDqqKfXf+O7vbqK4pRtJIZKUVEhwcNqnz73K7qK4poWfMe5QkDZlp+YSFRuFyObE7R5X+PXC5XAQFB3Hexeez6MQlXhX+6cxfgiB4ok9kBbcsY/QzkBIfS3y0Ry+muamFF57/O598/BmiKKDVaj3lKxvKfSIBAI/af1zaSErf5CKWNoeNyuqdDA71k5aaS0xE/JQRMA6Hg0suOw+bzcZHH3zmJQBcLheyWyYwKICExDiSUxIJCw8lJCTIS04qI5OboijYHQ76ewfoHxikqaGZpqZWenv6cLvcSCMEx0Rwu924XG4yMlP57jlLsdnsvPfOJ3S0d+5zKPIoabyrdBOiKJKXPQeNRuND0NgddorLNmO3e5xgf1MQedkzpyUoLMsKWq2G+x+8l5NPWXJkGex7C/cfcfynu3wY9oMEcLncpCbGkZmSqE5OhxHDw8O0tLTQ0tJCc3MzZrMZt9tNf3+/h0BMSOCkk06is7OTwcFBNmzYgKIofO973yM9PV19gCqm7Fvl5eVs2bLFG3GycOFCLxFw2AiAqZx/HxJgT49/an9zD2NPJQG+XQLA49SZLS1Y7X0M9O2gZMevEUWF5OQcAkyBGHR672JeVrmDwaFecrNmHbD6uyzLSJLEHx+5nyUjNX5lWebqq6/m3//+97jjf/zjH/Pwww97P1dUVGA2m5k9e7a3rby8nI6ODp8ogCeffJK77tpNMpx33nm8++67kzKwL//tVZ564vnjsAKARHdvOxVVO71tyYkZxMUke8S3BAGXy8WOkg0oskxR/ny0R5gA4Gi4qySKxMZHUzQzn7y8LGLjY9BqNJjNZlpbOmiob6S+romuzh56e/ux2WzIsozD4WDhonlcec1FPP3kS9TVNhxwnuyR7vz39nVTVVuM0+nAz2AkM72QAFOgN7Jj1ChtaWugqaXGx/H29w8kPSUXf1OgN7XC5faokXs0FQQ0koRGGq+p4JbdWKzDk4Y3K4pCZ2cz3T1tPn8LDgojLSVn0pJ/o7vCza31NDRVodFoyUzLJ3Qau7Mq9uL8d7VQVVuKRqMhK61gUud/9P3VNVbS3rE7/FsURFKSs4mOjMfpcmK1W73ne8auk6DgYK6+4RpmzZ3tcYr3kWAc7U+RYaGkJcXjb/Tbw8Cy8uzTL/L2Wx/gdDrQ6TyVB+oayunoavUlAWKSSYifupLFKEFRVVtMb18XifFpJMSlTVrC0uFw8L0rLqSvr5/P/rsKjUaDy+UmPiGGhYvmkp6ZgiiIdHZ209XRTXdPL+YhMw6nC0WWEUQBjaTBz89AYFAg4RGhJCTE4mf0o7Oji+KdZZSXVdHV1YsgMCmR7XA4MRh0nHzqEnLyMvn8v6sp3lWOJI2m2XjIT3EvkXAeu2A7Q0P9FObPx09v9KmMIAgCFdW7vKKLkiiRmz2LwIDgvb5b2S1j9Dfy6OMPMmNm4RExDvYW7j8a4r+/5uu+EAGK4iFIFswowKBXS8Z9m3A6nQwMDFBcXExJSQnt7e3ExcVRVlbG7NmzueSSS7xprCpUTGds19XVsWHDBnp7e1m8eDFFRUVgaUe2mw8tATAd53+ySAAfQmASh39su0oCfNsEgIDLZaN/oBoFhcrSR+ns+JLQ0CjiYlPw0/shiSKiIDJss7CrdBNarY6cjCL8DlBoy2azk52TwXMvPEFgYADgCeU/5ZRTaG5u9jX8g4NZsWIFCxYs8BpSGzduJCsry6sFMDw8zPr160lOTvbmXd13333cf//93uvcdtttPPXUU5P+pr888Rx/f/m147ACgEhTSx2NzdXetpzMmYSGRHgFAM2WIXYUbyAoIJi8nNlHjPM/6jxotVrS0pNZsHAO2bkZBAYFYLEM01DXRElxBbXV9bS3d2C3O7z3LIoS4kgOrMvlIjo6ijvvuZmvVn3DJx99ccz2A0mS6Ontoqq2GJfLidHPRGZ6If7GAB/nX5ZlmlpqaWmr9zk/MCCY9NQ8jH4mnC4nTpcLp9OJW3b79ItRh9ygN6DT7CZTrHYbdod9UmN31Onq7m6ls6vF52/+/kFkjHz3pJEAgkBbexO1DRWIokh6ai4RYTEosnxA6UvHHzzh5e1dzdTUlaHRaMlKLyA4aArnH2hqrqa5td6nPTkxk9joRBwOB1a7zesojl4nKiaK8y++kNnz5+ByufZ5fpEVBZ1GQ2piHPHRUd5xPRH5vOKTz/nHy69RU1OPXq9Dlt3U1JfT1e1LOMVGJ5IYnz6p/oTn3kQURaa2vpyOrhaiIuNJTc6esAqGw+HgwovPRpFl3v7PRxiNfpz2nZOYv3A2Lc1tbN64jbraRgYHh3C73F4ho7FCx8pYw0sAk7+JpKR4imbmk5WdjigIVFXVsmmD51o2mx3tBMKmsizjdLpIS0tm6RknsXNHCRVlVQQEBHgcWZsNi3l4SuJsbFrYRJWCRFGivbOJmrqyMcRy5gixPLXt4Ha7CQ4O4sln/kRWVsa3Ogr2Fu5/oI6/z7WYflqAy+UmPTmB9KR4dao6glBdXc3nn39OfHw8Z599thryr2K/UVVVxaZNm0jPyGR2Vgy4rByyUvF7rnHjHP+R/xn3eazjP5kjP+L47+n0j53nJvtvlQA4tEbekLkRu2MQs7mG4m2/QJaHSU7KJjgwFP1IFIAkSXR0tlBVW0KAfxBZGYXodYYDCgO3WW3cftf3ueGma7xtL7/8MjfccMO4Yy+44ALefPNN765sZWUlPT09zJ8/3zvBVldX09TUxOLFi9HpdNx000387W9/817jgQce4Je//OWkv+fhhx7nzdffOe4IAEEQqKze5c2H1Wp15GXPxuTnj6zII/mc7ZRXHVkCgE6nC1EQyMpJ58STFpKZnY7BoKejo4udO0rYsbWY5uY27HYHoiii0UiTGlayrKDTabnzhzdjNlt47ulXpi22dbQ5/929HVTXluJyOTEZ/cncQzl/dGezvrFi3M5oaHA4qck56HR6b8m26cwBJj8jWo0Wt9uz+7+3Guqe5y7Q09tGR0fz7koNgMkY4Ik+8A+apB96HNeO7haqa8tAUUhJziImKmFSYTUVUxEp5Z6UivRCggNDJnUKRUGkua2OxuYan2ecGJdKXGwKNsdoyL/iJd1Cw0I58dSTmbtwLuEREd5okn2BW5Yx+RnITksmPCR4mkZ6LY/9+Wk2btiMVushAeqbKuno9CWcYmMSSYrP8Dr6kxJWQENjFa3tDYSHRpGemockST5jw+FwsmDhbGbMyuevz/yDy668gKzsdN7497tUlNV4xFYlCUmUpm3jjeoGuFwu8gtzWLBoDnq9nqTkeDo7utm4fis7dpRgHjRPWOHE4XDiH2Bi3ryZJKcmYTIZsFptGPz8KC0uZ9XK/00aCSWKEt0jwrAZaflEhcf66MKMVo4pLtuCy+0p7RgcHEZOxgz2VsPa7XYTFBTIo0/8gfyC3G+NXJ4q3P9gOv77QwQoimfNWjCjAL1Oq05aKlQcg3A6nXR0dhIgWAgwiCiHYsbZq/M/5v/HEgFjnX9lnBk2gbM/lgiYhBQ4TkmAb4UAEAQRh2OQgcFaBFFHbdVfaWl6hwD/YJKSsjAa/DwGyciCXtdQSWt7A8GBoWRmFE6akzsduFwugkOC+cszfyYrK91r0Fx00UW8//77exgbIv/4xz+8Of1Wq5X169eTmppKUlLSiDHjYN26dcTFxZGWlsZZZ53Fp59+6r3GM888w6233jrp7/nVLx5gxcefHlelWQRBwO12UVK+FbPFU4bNZAokL3sWmpFcTUmUaGiupqmllvSUXKIj479VAUDP7pVHTPK0pSdQNDMfvV5HU1OLx+DdVkx3dx+iKExbz0FRQJbdLL/jBgIDA3jisb9iO8aqQYyKuFXXleJ2u/A3BZKZXuBTv10URZwuJ3X15XTtkRsdFRFHcmImsqJ4Q7in9WxR0Eoa/I3+OF1OLNbhfXJC+/u7aW1rQB4j6GfQG8lIzSUoMHTSvihJEj09HVTVeciOhLhUEvai8q5ibCqFpwKMweBHZloBgf7Bkz5rUZRo7/CQBWOfbUx0Aolx6dgcdpwup49Rk5CUwKVXXU5ufu4Ywc59s1kURSY4MICc9BQCTPsWZtvW1sFv7/sDGzdswTCS9uUpbedLAkRHxpMUn46k0U5JAgiCQFNrHY1N1QQFhpCZVoBeZ/A+s9Fd7auvu5SmxlZmzMjnxef/SV1dozfXf3/hcrmIjYthztwZfPDeClJSk5i3YBYFhTlYLMN8tXodWzZuZ3jYilan9fmu0fU7IMDfU5HBamPZDZdTW1PPl198PSkh7okMG2RnyUbiYlJITkj36R+jUURlFdsYGBH23LO6zFRzvNFk5KGHf8u8+bMP+xiYKtz/UDr+ExEBRj+/SY1hl8tNZmoiqQlx6sSlQsUxDPdgCzith8YxnjSsX9nD+R/7b5QImIAE2JvzP/pPJQG+XQJgFANDdTidFuz2bnZt+xk2azuxsalERcRhGDEAPKG5UFVbTHdPO6EhEWSmFYwoxe8fCWC12TjpxMU8/OgD6EZY7OLiYk466SR6e3t9js3Ly2PlypVERXmqB9TV1VFfX8+CBQvw8/PkezY1NVFTU0NaWhoXXnghW7Zs8Z7/1ltvcckll0z6W358z718+cXq44oAEAURi9VMSfkWnE5PeHxYaBRZ6QVeQ14URcqrdtDT2zlhqOdhZUMdTgx+ek44aSEnn7qYkJBgmpvbWPv1BrZu3sFA/yCaEeXsfWdaXVx/0+Wkpafwl8dfpLOjG41GOibesyRp6Ohspra+HLfsJtA/mMz0AvR6vzHOv4TNPkxNXZmPcjtATFQC8fFpuJwu7E77fv0Gfz8TsqIwbBvet4lRkBgY7KatrQG3e7cTqdPpSU3OJjwkakoSoG+gh6qaEhwOG9GR8aQkZSIK0l6jEI5X5x8EGpuraW6tw+jnT2Z6Pv7GwCmfcXdPB1W1JT4CseFh0SQmpON0uXC53V6bwO1yExYexrJbricrN3u/Qv5Hj4+NiiAjKcG7duwrmpvbeOKxp/lq9TcjTrxHv2DPSICQ4HBSkrLxMxgnnftGSYDW9ibqGsoxGv3JSi/EZPT3Rk04HA7Ou+BMzvjuqfz7n+/w1Zp1XvLhgIxDt0xISBAXX3oOb/z7Pfp6+xFEkaiocE44aSELF8+lo6OTLz79ip07PATgnjv7Hi0UJ9k5GVy97BJeePaftLS0TVolYKw2jL8pkJyMonF9RBRFGptraWqp8bZlpuUTER4z5caBLMsYjX48+MffsGDh3MPW/6cK9z9Yjr8wYvwKgoA8TW2SyfQBZEXBT69jwYz8Y1qzRoWK4x2HVARwIgJg3G6/MgUJMBEBMMlu/0T/YO9pASoBcKiMPhG7vZ+BoTpEyUBb8wdUVzztMbBT8wgyBXkZ8FG15crqYnr7OgkPiyIjtQBB2L9dtdEc7p/87G4uu/wib/tDDz3Ez3/+83HH33vvvfzud78DPLseGzZsIDAwkIKCghFDyM2OHTtoa2vjjjvuoK6uDgCj0cjnn3/OokWLvLXgfQwoWeZHd/6M/3297vgiAESJ3r4uyiq3eds8YlapPqW3dpZuwmG3UZQ/H73eb9qEj6IouN1u5D1qhY6W3ZvuDruiKDgcDpKSEzj/orPIzslkcGCQtV9vYO3XG+nt6UOr0x7Qjr3T6eSKqy5i9twinnrib9TXNR71RpWAgCCKdHQ2U1NfjqLIBAWGkpmWj05n8Nn5Hx62UF1XwpB5wOc9xcWkEBUZh8PpxOV27ddOpYKCVqNFq9FitVn3/T5EEfPQAK1tdTjHEBAajZbU5BwiwqM9Of4TzEGSqMFsGaCytpjhYTNhoZGkJeeg1eqPiFSWI8f594S51zVU0N7ZjL9/EJlp+T4RIhPPH51U15b47PCHBkcQH5+GPKaEn9dxV+DC713EGefsLtG6T4aQrKCRRFIS4kiOjzngNB2zxcLfX/43r//rLex2OxrJE/HU2t7oS2CZAklNzibAf/IKKKPjrau7leq60hEhylHdBBcul5vomEjOOe90Xvvnf7DZ7AclyshTNk/khpuvZvXKrykrq0ar1WC32wkLC+H6m66kra2TzKw0Oto7+fS/q6itbkCSRK+TO+p0/+D262mob+LNf7+PVqvZa58pLd+CgkJ+zpxxz0UURfoHeiit2OYdm1ERsaSl5E5pL7jdboKCg/jTI/dTNKPgkPf9qcL9D6bjL2k0uF1uzJYhQCEgIBh5H6oqTUQEuNxuctKSSYqLUScxFSpUAuDgOP9eEmCPf/Ien33SASYhAKbzD3z/+zgjAb7FCAABRXHTP1CNy21DUVyU7PwNA307iYyIJz4uBb1W57Poy7Kbyupd9PZ3eUvGeQ28fYTL5SI8PIxnX3icpKQEj1FmNrN06VI2bNjgc2xYWBhffPEFM2bMAKCjo4OdO3cyY8YMH0HA9957j1tvvZXBQU9Ye2RkJGvXriU9PX1CAsBms3PbD+5h+7ad6I8jVV1RFGlpq6e+scrblpVRSHhoNLLsCfG22a3sKN6An8GPgtx57C1/c/SdyrKMwWAgNCxkd0krUcTldDI4OER3dx9Dg0MjjtzkofqjJNHceTM5/6LvEhwSSPHOcj756HMa6pu9tb0PFE6nk+9dcQGLlszjmb+8RHlZ9X7vLB4ZDp2AIIi0tjdS31iBoiiEBIWTkebZLRo11kVRwmwZpLquBItlyKdvxMelEhYajcPp2O+w+bHn6XQ63C73fu2+e0gKMy1ttdjHkAiSpCE5MYPoiHgUlElIAAmrfZjq2hIGBvsICAgmIyUXo5//t5rOciTNAy6Xk5q6Mrp7OwgKCiUjJR+93jCp8y+JEgNDfVTW7MJut3nbA/yDSUrMAEEc5xB6QtXjuO2eOwiLCMe9j2H/8kiJv8yUJCLDQg6qA/jOfz7gr8+/Ql9vHxpJQ0t7PU0ttT79yaD3IzU5m5DgiEnV/j190kOsVtWW4Ha5PEKU4bEoiowsKwQEGBkashxUjRGHw8HlV17EwMAgn3z0BXq9DpfLTUxMJFddewl/e+FfiILAGd89laycDLZv3cXKz77CbLaMvH83cfExnHraEt75z8dYrda9khOSKFHbUEH/YA9FefMnnINcLifF5VsYHjYDYPQzkZc9e8pKMi6Xi4SEOJ546mHiD3F4+2Th/gcz1F/SaHA5nWzftpWqygoG+/tpbW7ipuW3k5SSgtM+fSJsT32A0TExf0Y+Wo1G9ZRUqFAJgAMnAMbu8ivyHgSAPEk0wFQEgAii4PtZEDxtU6UCqATA4XEWBocasdq6kTR+9Pdup2THr5EkmbSUAoICgpBEyauiPUoCVNeV0t3TTnhYNBlpeYiI+2XcD1uGOee8M7n/wXu9C9uqVas466yzsNt9Q44vueQSXn/9dSRJQlEUNm/ejN1uZ/78+d4d2w8//JCLLrrIm1eanp7OunXrCA8Pn/D7rVYbt/3gR+zYXnxcEQCCIFJdW0Jnd6vXEc/Lno2/KRBZlhFFkYHBPorLNhMRFk1meuGUu6ajzzs+Ppaimflk52QQFh6C0WQcMaw8/cduc9DfP0BtdT2bNm6nproOFJA04xWWXS4XJ5+6mPMv/C4ul4tPV3zJV6u+wTGi/n+w4HQ6+d6VF7LkhPk8+9TLlBSXH7WCkHuWxANPakdGSi6ipPFGcHjeby/VtWXY7LtD8zUaLQnxaQQGhPrs7O6LQzUa9iyJIoIojtmh90z2+7PzKYoiNtswLS21WG0Wn/tNjE8jNiZ5QgV2Xye3nO7edgwGP9JTcidVtT9+nH8Ju91KdW0J/YO9hIVEkpaai1ajm2Ln3xMxUl69A6t193sw+vmTkJCORqOfMErIZrPx3fPP4eLLL9lnwT9Z3v98/+mgb9DMl2v+x/tvvkdlaSWCAF297dQ3VvmkNkiShsT4dGKiEoDJRSUlUWLQ3E9VTTFW2zAJcanEx6UgIOJ2uRClg2vIORwOFi2ZR9GMfF547h8jIeYy4ZFh3HjLVbz52ntUVNSg0UhkZKax5MT5aDQa/v3qO1itVmRZJikpnozMVD77dPW05j5RlOjqaqWhpYaivHloNNpxz0MQRGrry2jvbPaO1ZzMmYQEh00aSeFwOMjJyeSZ5x8jYKRK0KFAW1cPxRXV3tLEPjbJ8PBB2fXXaLW0tTTz4Xtv09/bz7xFi4mKjuXj99+lu6ude35xL+HhEbic+zbPjo0GcLvd5GakkhATpXpKKlSoBMC+EwCThf6PdfhH/3scCcB4IcE9d/jFPUgAUVRTAXwJgAaFw16mSvAu0jZ7DwOD9QiCiCjqqK58mrbmDwkPiyEhPg2DTj9ucQOoqi2hq7uN0JAIMlLy0Gh1+xxaK490qIcffYATT1rsbb/77rt54oknfA0rSeLNN9/koos8KQODg4NeQcD0dI+Y4Jtvvsn3vvc97zlz5sxh9erVmEymiQmIYSu3ff+H7NpVetxUARgVaSop38qQud9rwOfnzPYacqIojdQALyExPo3EuLQJd0xdLjdut2cH6ZTTFjNzViGg0NLcRn1dI+1tXdjsdlBAq9UQFh5KekYKScnxaDQaNq7fyicff8HgwJA359Sz8+/itO+cyAUXnUVXVy9vv/kBxbvKJyxtdeAEgIurl13C/AWzee7pVyjeVXZU9oU987gBIiNiSUvOHgnzVrzGe3dPO7UN5V79B/BUgYiPTcU/IHi/HGOXy4UoiqSkpZCelUlkVCQ6vQ6n00lPVw8NtfXU1tRiMVumrMwwFQlgt9toaa1leHjI529xMckkTlG/fTTMvbG5hpa2eiRJIjUpm8iI2OOyQoAkSViGh6iqKcFsGSQqItZTxk6YXNdFFEVsdisV1cWYR+YNAJ3OQGJ8OvpJBN6cDgfxiQnccscPiI6N2SfRP1mWiQgLISct5YDrnrvdMsNWG4MWM30DQzicTvRaHV29fSiCgG3Yyoavv+GrlWsY7B/EYh2kvrESm903dSU2OomEuBQkaXJxQEmSGLZaqK4tYXCon7DQKFKTMtHr/Q466eRyuYiNjebKay7hlZf+TU93r6cMp5+BO+6+idVfrmXd2k3odDpsNjuRkeFcvexSXnv1bXq6e5FlhazsdIpm5k0r/H+0LwyZB6io2klu9kyMBv9xGwCiKNHV3UZlzS5vW3JCBnGxyVMSAFnZnjLBAQH+h6TvO5xONmwvZthmR9pjLVEUBZvVemDzsCgiSRq2bd7A+++8TUJiEqedcRZBwSEIgmfT4+nH/oTJ35//+/mv0Gi109YE2JMEkGUZf5OR+UV5ByUaToUKFccBAbDX3X9lYsdflsekAsh7JwB8nP+R//cSAKIaBQAI519UpwjCbqf80Dv+nvwNZaSmsN0+wJClCRQZQdRht3Wya+vPsNs7SEnOJTw0ctxCOeps1Dd6qgP4GwNJT/WU6HK79y2802azMWv2DJ55/jFv6HVHRweLFy+mpqbG59iZM2eycuVKQkI8YaC1tbXU1dWxYMECTCYTTz31FHfccYf3+O9+97t88MEHky6OQ0Nmvn/TXVRWVB1HBICIzWahuGwLjpG86tDgCLIziryRHmNrPWelFxIeFu1D7nhy851ERoWzaPE8Fi6eg9vtZuP6rWzdsov2tg6cE+1sKKDRaoiNi+akkxcxf9EcaqvreOWl1+nvG0Cj0eCwO1hy0gK+d8UFtLa088+/v0VTQzN6w6HRaHC53Nz0/asoKMrjuaM0AkAQBFCgvqnSm8McE5VIcmKmV6djNDWgq7uVmvpyn3Gq1/sRH5uKn9F/v6p7OJ1OIiIjOOv8symaNROTyYggit4ZbTSstqaymq++/IqSnbsm3H3bq+MhiDhdDtra6xkc7PP5m+d+Jy/d5i1x19FMXUMFiiJ7d2fFCcLWj13nX8PAQA9VtSXY7FbiY1NIjEuDKfRcRFHE7rBTVVPMwGCvL2kUl4bRGDjhM3c4HKSlp3Hp1ZeTlpG2z85/bFQEWalJ+x3i7HbL9A4M0N07wKDZzLDNjtPp9NEsGu0XoiSikSQsPb2s+nwV69dtprevh6aWagaH+n2uGxoSQWpS9kiqxGSEiYTTaaemroyevk5MpgBSk7IJCghBniKNYN9tOQVREPnB7dfxzdpNbNqwFZ3OQ7zd/INr6Ors4e23PsRgMOB2uYmICueqay7mX/98m66ObmRFpqAwl1lzCvnHy29MKv6351hyOh0Ul28hLTlnQoHY0SiykvKt3r4RF5NMcmLGpM/M6XSSmpbCcy88Tsg0SzvuKyrrGqltbBkn9HownH9Prr+LFR9/wNo1qzl56RnMmb8IQcBL/Gi1Wjra23jsoQc48dSlXH3dDbiczn3uD6MkgNvtJj8rnbioCNVbUqFCJQD2nQDYkwTw2f0f6/jvSQKMagGMWVAZ4/iP7vh7HX9xfETAZJEAxwsBcOJpnynimPIIAiNCNILn0xjfafd/CBMHDShjjxwJ51AYK8QmeF7iyE6ZoriRZaeP8SZJfrS1fERV+ZP4+ZnIyijCaDBOEOInIAoirR2N1NaXI0ka0pJziAiPmTJPciIDxu128/uHfs13Tj/F2/7aa69x9dVXj7vO7373O+69916vkbh582Z0Oh0zZszgt7/9Lb/5zW+8x95yyy08//zzk363xTLMrbf8kNKSsuOGAJhIoCk+NoWkhPQx+eG7KwAU5s71iBaN/M3tlgGFBYvmcNbZS/HzM7D26w18tWYd3Z09CKI45Q6voii4nC4QBJZ+5wQuuORstm0p5h8vv47NZicnJ4Nbli+jt7ePl198jdbmdnSHKD1jdPf31tuvJzUtmWf+8hLVlbVojyINAI/D66amvpzOLk9Kx56l70YJu7aORhqaqn2MdaOfidjYVAwG4347/8Ehwdx82/fJKcjD6XAg7yHMN+pkSRqJYbOFNStX88WKLxgcHJh2ycax9yu7XbS21zOwR9WCiLAYkpMy0Wl1E96LIAiIougRsKsrw+Gwe3Znk7M8pduO4ZSAUQKop7eD6pESicmJ/8/eWYfHdV5b/3doSEwjZskiMydxHGZmTtMkTRtqyvcWbvHr7S2HGRpmZoc5MZPYYmYcDR34/hiwRizZYe3ncWIfjc4ceN9z3rX23mstIDU5c8oqCF8LhUp1bSm9fZ173xOiRKq/XWRc5Zdh4PF6KV5YwnnfOX9Omf+UxASKcrOR5lgy73S5qKxpoLt/AE3T/WsMYcqxpus6mWkp5Kan8MpLG7jrjvtpamqkpb2e7jH2mJER0eRkFhIeNrlTgiiIaLpGo19c0KSYyEjPJyEu2V+tsn9IJ4/Hw7HHHY49OYGH/vMUsizhdrs57oQjWbZiEdf/4w5GHCOIkkh8QhwXXXI2jz/yLG2tnRi6zrIVi1m1eil33/nQDEk5XyJhZ9km0lKygtoxYwmQ/oFuSiu2Bdcfmel5pKVkT0kA5C/I5bY7rycqKnK/z4Ehxwgbd5Si68a4taVzZGSf9i0rCsPDQzz24P3U19Vy6pnnkregwEc4jZlbZouZzZ9+zL133MY1P/k569avx+2avcuKxWrFMAwiw8NYtaRkXKJmPuZjPuYJgBkRAIHy/8nAf/Dv+qgKgDFtAEIgmz9B1j/wRxhLBkwhBvhtIAAOPPQ5I8RTcf/uPvi/QO5fCKk0GE00BNoCJMCgdMcf6O35jCR7GrnZRZO+tCVJpre/i+qa3Xi9HpISff7JsjzzlgCP21f6d9Otfyc2Lja4GDvzzDN59tlnQz4bHx/Pe++9R3FxsR/EO9i0aRNFRUX84Q9/4Lbbbgt+9ve//z2/+93vJv3ekREnV//gJ+zaUfq5gcyvHgEg0eYnbQKxIG8hCXEpIfdrV/lmXE4HSxcdgMlkwTB8nt1mk4mTTzuWdevXsntXBa+/+jb1dY2IojQr+zxd1zF0nUuvuJClyxZy/32PsXtXBdf95AoiIsK587YHqKtt/Fy1GXTdwGRSuOra7xKfEMfNN9xNa0v7jLJgX4l7KYiousqemjJ6+joQBIHM9HxSk7OCJFygLL65tY6mlrqQ54zNFk5qSg4mk3VOYERVVcxmM+d95wIOXH8QXlUdXxI29pglEVEUqSqr4pXnX6KqshJDN2bV2hHIfHV2NdPb2xHys5joePKyizGZzFM8syQcjiFq6ssZHOonzBZBbnYRkRExs65g+vqAf59VXX1jJYIgkpddFBSomwz8B8ZObUMlHf5e7sD25OQsYqLt48ZNQL9jQWEBF152MSmpKbNS/dd0jWR7AsV52cj7UNZcUVNPXUsbsiTNuLbOMAwUWWbVkhLCrBZ27Szj3/+8he3bdtDa3kBnd0uoOKDFRm5WIdFR8ZNex+C1b2ukvqkKQRBIScogOTFjyjE6OwLAy8JFhaxas4wH//OEn3jQiY2N4twLTsdkMvHJx5vYsmk7iqJwxZXf4eknXqSpqQVDN1i2YjFrD1zJXbc/EDzmmawsdpVtJiE+mZSkjAmsACV6ejuoqN4R3JafU4I9IXXSdYHH42H1mhVcf9PfPhch1u1lVXR09+z3vn/FZKKzo4P77rwNj8fNWedfjD0pCa/HO+m8kmWZZx9/lK1bNnHdz37BgsIivHNwx7BYrei6zuLCBSTb4+YR03zMxzwBMDMCYMry/1FZf00fQwCMrQIgFLQHwf8EBMBElQCTtQF8GwiAgw9/xVeLvy8na0y1MZDdCSxQfDfNxzrstXwzDA1D96LrHgRBZqBvO1UVN4KhkptdTFJi+qSLY0mSGXEOU1NXzsBgL2G2CHKyCn2lgZoWLC2fKpxOF2eedQq/+p+fBRcgu3bt4pBDDqGvL7Tc9+yzz+axxx4Lfq6lpYWamhr+9Kc/8eabbwY/d8stt3DVVVdN+p1DQ8P84HvXUVnx7WoBqKkvDy7oRVGipHA5kf4sf0DBecfuz5AkicUlaxBFEa/XS1h4GOdfcDo5eVm8/OIbfPLRJlRVnbMon9frJT0jjauvu5S2lnZ6uvtYtWYZ99/7GJs2bt8vXtlTA1gNuz2Oq6+7DJfTza033cvg4PCcs45fNJHj8frKsvsHehBFkdysIhLtqcEMfCDL2NA0kb1ZFCkp2XMDIQZ4VS/h4eGcctZpHHzY+ln10guCgKIoDA4M8PaGN3nztTfxur2zEkjzzX2D7u42OrtCgVl0VCy5WcX+qobJrey8Xg8NTVV0dLUiSTI5WQXY479ZugCiKKJpo7LQJjP5OQuJiZ5aBDEA/hub99DS1hDygk9KzCAuNnHcNQpUcy1duZxTzzqN5Flm/jVdJyYqgqVFCzDtg9Cnpuls2V1O/+DQrDVDNF0nJz2V/CyfM01fXz+PPfI0Tz/1AhWVu2nvbAi5bpIkk5meR5I9LXgNJrqWoijS09tJbX05bo+bhLgkUpOzsNnCJ/29mRMAHk474wSGhx28MUrIT9M0TCaFRYuLOfiQAzAMgx3bdlO8sIAnH38h2AKweEkJhx52IHfe/gCqqs2YANhdsYWIiGiy0xdMSAC0dzRRU18e3Fa8YCkxMfZJ56TL5eb0M07iN7/7xX6fB509vWwvqxo3Hva19N9kNlNfV8M9t99KREQkZ19wMeGRkb4qt2me37qmseHVF6kqL+PK635MckrqrEUBARSzmZjICFYtLkEUvz0e2vMxH/MEwBzB/1QEQEi5/0R/jFGVAEYo+A9UAAgTAH9xDCkQ4gzAt7INQIi3rzdEQUIIXDR8pZqw15MWw9h7IYLgnVH/1oP9GAa6PxsR+KOBofkAvv/fgZ+B5l/s6hiGiu4nAAxdRRBEvN5BDMMn7rUgdxHxcUmTkgCi6OujbWyppaW1zq/QnUdKciaiX7BmyoHuBy1/+NOvOPb4o4Lbf/e73/HHP/5x3Hc9+eSTQUFAgO3bt3PuuedSWVkZ3PbYY4+FiAKODcfICFdd8WNKd387WgAEBHR0yiq3BXuorZYwFhbttWcSBZERl4Mduz8lIjyahUUrUFWVyMhIzr/4dCRR4onHnqexoRmLxbzP4kMet4ezzjuFAw9ahSCIvP3m+7zw7GtfSEWGx+OhqLiAK6+5hJo99dx2830T2kV+1UISJZyuEaprdzM41I8sK+TllBAfaw+Ck0B1QH1jdUj21geQ40lKykCS5FkDjwCgS0lN4aTTT2HpquWjlP5neR6yjK5pvPnqG7z07AtBIcHZkQACff0dtLc3hjxjwsMiycspIWwKXQNBEBEEaGlroKFpD4ahk5yYQUZ6LrIkf+11AQLEbF19JX0D3YTZIsjPKZmybH30tWluraOpeU8IfWtPSCUhIXVC8K/rOgcdejCnnXU64RHhswL/hmGgKAorFhbuk9q/rus0tbSxq6oGXdOwTSIAO/nvG4TZLKxaVByShd68aRvX/+tWPv74Q9o66nGNskAEgdTkDNJScvxzaorKk5Eh9tSWMzTcT1RkLKnJmURGRCOK0pzmkK7rWK0Wvnflxbz8/AbKy6swm80hdnFer4rNZmHp8kWsW78WDIPbb/kPTqcLTdMoLMrnuBOO4M7bHsTlcs14DpZWbMFkslCYt3gCAkCksbmGppba4FwtKVhOVFTspPPK7XLz3csv5Joffn+/zgNN09i4o5Qhx0jIue0P8F9ZUc49t91MRlYOp591LiaLJWTcS5KEJEvomj5uPgQcjR5/+AFGhga58kc/ISwsfNY2mQAmk5mlJQUkxsfOo6b5mI95AmB6EmBSAsCPJzV94goAfQI7wCABIIzv/RdFEKXx24R5HYDpzdW/yIPx90nKkoIoSUiSgqp6cbudSJLMgrxFxMUkTJo52ttj20VdQyVO1wix0QlkZxVgtYRNW17r8XhJT0/h5tv/RWpqMgB9fX0ceuih7Ny5M+SzixYt4v333yc6OhqAzs5O1qxZQ319PQBms5kNGzawfv36Sb/P5XJxzQ9+yrZtu74VNoCCIOB2uyit2BJUt46OiqNowdKQhdvgUD+7yjZhT0glP6cEj8fN6WedyKrVy3jh2Vfp6uplZGSEnu5enE7XrMv/x4LwgoI8rrz2UlqaW7jlpntxu7xfSBbe4/Gw/tADOfu8U/j04y08/MCT+9Vi8PMCdcOOQapqdjEyMozZbCEvp4SYqPjg/BJFEY/HRU19Bb19XSG/HxOdQFJSxqwBh67raJpGYlISK9asZO26A0hKTpq1rdtExKGh6zz5yBO8+8Y74ywhZ/IIlSSRgf5umlvrQrKLVmsYef7S/slJAN8zq6+/m9r6CpyuESIjYsjOLCAiPPJrqQsQKDvv6e2kvrESl9tFTHQcudnFWEzWacG/KEq0tTdS11gZcm9j4xJJTsz06/7s3a5rvmu77rCDOfWcMwiz2WYF/gNgrDg/m9RE+z6sawyGh4cpq66jtbM7+Ayx2WZHKOi6TmFOJhn+d1Agqqtr+fMf/sann35KS3sdw47BkJ/HxyaSnVkwZVVNQBywvrGazu5WrJYw0lKyiImOR5LkWS8JPB4vS5eVcOgR67j/nseRZYnhYQculyvkWRYgAiIiwkhOSaK5qRVN0/B6VbJzMjj1jOO5986HGR52zJwAKN+CKEmUFK4Yl9UfW2kmSTIlhcuJCI+anABwe/juZRdyzQ+v2K/zoa6plcq6hnEtJfvS928ymyjbtZu7bruJkkVLOfG0M5Akee8zWJKQRIHW5mb2VFaQkZ1NZnbuuOelJEk4R0Z44J47SExK4juXXRG0T50VyaHrpCYlsnJx8VeewJ6P+ZiPL4kAmFEFwOgs/zQEwOjn1P4mAL4NLQAFeYsM3X8xdV33KwTrwTLUQNm+EaoCOOr6CKP+7//j/zt+4SfB3+cf/Hnwj+hfAEtBqzCP14OBb1EsihKartLcXIPDMYAkyeTnlBAfl4iu6ZOW9kuihNvjoqmlhvbOFhTFTG5WIXGxdr/OhD4lKD/ltBP47e//O/gie+aZZzjrrLPGLRz+8Ic/8Nvf/tb3kq+r44ADDqCjw9cTHB8fz8cff0x+fv6k3zU4MMQPvncdVVU1n0vP4VctJlJmTknKIDuzYJQAoERvXyflVdvJTM8nPSUbVVNJz0ghKiqKmNgoMjPTiU+IQVV1Kiv2sH3rLtraOhBFcdYVAZqmER0TxY9/9gPe2vA+b735PhaL5Qu5Hl6vl4u/ey6r1izjsYef4cP3P/1KV4JIkszAYC/VNbtwuV3+jO5Cf0Z3L/h3u51U15aFKLYDxMclk5CQ6gPdswDtXq8Xi8XC2nUHcNhRR5CYkoQA+w0cy7JMX28f99x2F5WlFXOq/pAlGYdjgMbmPSH2hhazhbzsEqKj46ckICVJwuVyUtdYRU9vB7Isk5VRgD0+OWi59fWY4xIej4uWtgZa232l+0mJ6WSl5yNJ0rTnEbCJ3FNbGkIUREXFkZKcNY44UlUVq9XKEcccyZHHH+1Tm5/FuPCtITQyUpIoysvex7WNweDQIFt2ljPkGEEQ50oA+KoAVi4qwjzmedDc3MpN19/Om2++Q21dOf2DoUKU0ZGxZGcVEmYNn1Ic0MCgrb2R+qZqBEEkPTUbe3wysjy7se/xeDj62MM4cN1qenv6kCSRnp4+Nn66jarKPei6gaLIIRUBuqYj++3+VK9KemYqZ51zCvfd/Qj9/YMzJl93l2/2kfHFqyYUCa7cs4sev0aHyWRmYeEKLJPYRQbO5ZLvXsA11+2/CoARl4vPtpeiqmoIMN6X7L/JbKJs927uvOVGlixfyQmnnB7UJfH190sMDg6w6ZOPaaivJzw8nJbmJlauXsNBhx6Boesh81BRZDra23ngnjs44KCDOem0M9BUddbEqq7rHLhyGQlxMfPIaT7mY54AmJoEmI4ACLQBzLkCYDTgl6ZoAfgWVwActObo4FN+Et109tUi0JjFJzRNw+P14PZ6/OXQIrqu0dpay8BgL4IgkpNVQJI9fRoBKR/x0NvXRUNTNSNOB4n2VNKDiuMTZw51XUcUBH7/p19x9LFHBLedc845PPXUUyGfjYmJ4YMPPqCkpISPP/6Yo446ihE/q5+Tk8Mnn3yC3T55RqmpqZkrLr2Onp7eOWewv14EgERHZzN76sqC2/Kyi0m0pwUzOJIo0d7Vwp7aUgryFpMQl4Sma6iqr3VEQEBWZGJioskvyGH5isUkJMSxa2c5b7/1Ad1dPSiKMuMsRKCE9bIrLuTpJ1+kpbntCxHh03Udi8XMVddeSnJKIrfddB9VVbVfWSJIkiR6eruort2NqnqJioghL7cEq9kWBBqiKDEyMsSeujKGhgdCFuP2hDTi45ODi9+ZhKqqYEBmbhZHHXs0y1YtR1EU1DksTqcLRVFoqGvggbv/Q2N9w5wqMcyKGZdrmJr6CjyevSXaJsVMTnYBcTGJ0yre64ZBe3sTDc0+t4T4uCQy0vKwWcP8wParqQ0QAJV9/d00tdYxPDyAKIpkZSwgOTF9RroGAeG2gEtAICIjY0lJzg6WLI8mhuIT4jnzvLNYunI5CHurAWYK2AGS7fH7aPen0d7di+ivcNpVVYOhjxa7nJwACGgdTPR8yM1IIzczbUKg+uzTL3L7rfewq3QrPX2hQpRWSxg5WYXERMWiT3Ld91ae9FBbX47TNUJCfAppKVlYzNZZkRXx8TGEh4ejGzqO4REURWbp8oVEREZQuruCirJq3G4PJkVBGNMjrqoq6RmpnH3eKdx396P09fbPgMT1VSnsLt/ssxEsWo0oCCEJAUEQKK/cTt9At+8eWMMpKVyBoiiTjkOv18v3r7yUy6/4zn6bF7uramhu6wh5p+wb+DdTUVbK7Tddz+LlKznp1DOC7S+iKCJKIuW7dvHR++9gt9s56rgTSU5Lo6WxgVdeegGLxcbxJ58aXFcF92tSqCgr44mH7uecCy9m7bp1eN2zEwXUdJ205CSWLyya1wKYj/mYJwAmB/9TEgAz0ACY1AVAmEAIcDINgAlEAL91LgCrj94PK0qDqUsHA8yK3wdgQk5hr1WgAHg1FafLiaZrwUVSZ2czXd0+q7HU5CzSU7NHZROFSReVXq87mJFSFBNpKTnY45ORJHlCQSC328OCBbncfPs/ifO7AuzevZvDDz+crq7QkubTTz+dp59+mmeffTZEE2DZsmW8//77hIeHT3rVtm7ezg+v+cWse4+/vgSASF1DVTAzKIoiJQXLiYzcWyItiRINzTU0tdSwsGjlhB7PgQWPpmqYzCZKFhVx7PGHY7GYeOmFDWzZtMNfQSLO+LiyczLZU133hc15r8dLTl4WV117KV1d3dx6472MjDi/cuMgABQ6ulqpqStD13XiYuzkZhejKEqIdePQUD/VtWU4XY6Qa5uUmEFMjH3G4F/Xff2qqWlpHLj+IFauXUVcfNznAvxDSACTidqqPTxw939obWmdExFkNplxuUaoq6/A5R4JIVAy0/NJsqdNmdEXEBAlicHBPuoaKxkaHsBkMpORluevBhBn7G7yRY4Pp3OE1o5GurpaUTWVMFu4z3c+Km5GzgaSJDEw2EfVnp24Pe5R4DmC9PR8ZEkJZm4Nw0BTVdLS0zjj/LMpWbLQNzb0mY+NwDjKTE0mLzNtn+ZdY2s7ZXvqkEQRCYNhpyvk51MRAG6XE5PJHKwWGH18iiyzYlHRpJoEH77/CTfecBsffvQ+bR0NIT+TJYXMjHySElJ9ZrzG5NVyTtcIdY2V9PZ1YbOGk52xgKio2BnPNV3T0XTdr7+0l9DIW5DLAQeswGRS2LZ1F6W7KxkZGUFRlOD1VlWV9PRUzj7/VO67+5FZEwCarrG4eHVIVVFgfpVWbAkSkRHh0ZQULp+0+sgwDERR4Fe/+RknnHTsfpkbvQODbNlVvl8z/3U1Ndz8739SVLKQU848J/gulBUZVdX44O032L1zB8ccfyKr1qxFlHxif5Ii4xwe4fFHHkDXdE4842xkSQpplTGZTXz4zju8984bXP2jn5CdkzdrZwBD1zlw9XLiY6Ln0dN8zMc8ATA5ATAR+J/MBcCYjAAYZUk/Nps/EegPKf8fZQXIt5QAWLXsMGMvdg+I/Rl+GG4A4hiAL4z63Ni/GmAEPmfshfWBdoLAQsTQfZmJQMuBbqAbGpqu+zLzus/r3aupeLxeJFFCkmQkSWZoqJ/unjYMQyc6KpaczCJstrBpFaVFQWRwuJ/m1jr6+rsJD4skPTWX6Kg4BIFxC3K328OFF5/Lj3+6V8X/z3/+M7/5zW/G7fuFF16gr6+Piy++OLj9mGOO4aWXXpoSRDz+6NP8/a83oCgmvi1tc+VV2+n3+6dbzFZKCldgNluCizJJlKis2UVvbydLFq7BagmbsmXDMAw8Hi8REeEcf+IRHLBuNe+98zGvvPgGmqbNuCVgNp/dH+Fxezj8qIM546yT2PTZNu6/73EU5atl/xeYNy1t9dQ1VgGQZE8nOyMfQZSCgEwUJXr7u3wK46PEyURRIjkpk+johL0OINOAMk3VUEwKK9es5PhTTyIxKTHY/z8RgNvf/aaKorBt8xYeuPt+RhwjcxoTFrMFzethT10pjpHhEOCSEJdIWko2YbYIf7uVMTlxqXpoaa0LquDHxthJT8kmPDwqKJ765RJ6vhat7p522jubGR4eBASSE9PISMudsRWrKEo4HINU7tmJ07WXNLFYbKSn5YXYRAbeFUuWL+PE004mPTMdVdOmtX8cO3YEQSA9JZH8zPR9Jt0qahpoaGlDkkRGHCMhXPR02f/O9jaiY2MxmczjxoKm6yTGx7KkMH/Scd7a0sYjDz3Jgw8+xO6yreiGFrL/tJRsUpOzpmy78VWe6LS2NdDYXANAelouKYkZM2rbmJTk9HoRRYmi4nzWHLACW5iN3TvK2LplJ/39g8iyT7AwPT2Vc84/lfvufpTe3r6ZEQDGXgJgUckqpFGtIYIg4PV62F2+JUhGxvi1ZoxJn/86ERFh/OPf/8vSZYv2wzrXYNPOMvoGhkJaGuZq+aeYTLS3tnLjP/9KWmYWZ553IaLgEz6WZZmWpkbeefN1HMPDnHPBReTmL8Dr8YY8IyRZRlO9PP7IQzgcDo467kSioqKDJIAo+loyn3r0Ifp6urnmpz/HZgtDn0VLjabpJMRGc8DKpd+KpMZ8zMc8AbAPJEAIiDdCwf1oLQB9NAkQ+B19/JJy0goAYWILQOFbTgBERcYawT5/RhEBIf8V9joBjC63mHTRFbov32J179/HLeD9QEOUJGRJRlFMmExmzCYLimJC8/t0i6KPBBge7qe1rR6v143FbCU7s4C4WHtQyX/yhabvhTkw2EdTay3DwwPExSaSlpLlW5CPWuj4LIxM/Ol//4dDD1sH+AQBjzrqKLZs2RKy36VLl3LwwQdz0003Bbdddtll3H333VNe/L/8+Z88+fizX1jP+ZcNJscuyiIjYiguXI7I3vJNURTZXb4Fj8fN4oWrQxZ20wF4XddZd/BaTjvzeLZt3c1Tjz+Px+P9QoH9TBeHhm7wvSsvYuGiIh5+8Ck+/nDjV6r/P6Bw39BUTUtbPQAZabmkpWSHgChREOnu66Smriyk911RTCQnZxERHj2j+xeogsnIymTdoQezau0qLFbrhGJuuq6TZI9HEkVaOroQ9+ODOqBP8uoLL/Pisy/4MvJzWMjaLDZ0TWVPXRmDQ6E2omaThdTkLOwJKVMCrIBOSt9ANw1N1TgcQ0iiRHJSOkn2dMxm65RtUJ/n2BAEgeHhQVra6ukf7EFVVWzWcDIz8omLSZj2WeyDcQKiJDLsGKa6ZheOkaHgz0wmC+lpeVitYcHr4+txhsOPPooTTjsRW5htWruzieaeKIrkpKeSmZaEuB8WNk1tHcEKgJExwm7TEQBtzU3ExidgtlgmbgUwDIpys0hPTpzyGN579yP+8r9/4+13NuBVQysQ7AkpZGUUoEhKCEEwjuwTRfr6uqltrMTpdBAbnUBmRj5htvA5620YhoHXqyLLEgUFeRx48Cqio6PYvauCzz7ZQkd7J9m5WZx/4encd/cj9M6gAkBAQPcTALqusqh4dUh7iCCIOF0OSsu34PH6qkni45JYkLtw0jGpqip2ewK33PEvMjPT93lMNLd3UlpVE3Iuc83+S4rC8OAAN/3r7yiKmYsu/R6K/12h6zqfffQhn378AQsXLebo408kNi5uUju/QEXAWxteZ/euHRx86BHkFxTi9X9ekiRGHA7uvvVGFi9bxpnnXIBX9c6KYMMwWFpSSGpy4jwJMB/zMU8ATE8AhJABo5wAxhEAE2X/91aPh9oAjgL6o8H/fP//3lMsKVxuGIYRzMj7svS6//oaexeYwQz+3hs4VWnhaBAhBkT//GXZoij5AL8oIYmiX7FWRpREJFHyiQKKYpAp96peHE7nqIyj7wXf1lrPiHMYQRBITswgPTXbRxhMuVgR/ESASld3O00ttXhVLzlZhSQmpIQsxt1uNwsW5HHjLX8nwR4PwEsvvcSZZ56J2+0O2Wt8fDzd3d3Bf//2t7/lD3/4w5QLo//++W958433vhUOAKLoq8AoLd8azAom2dPIySoK3tdA6eausk0oionigmWzAje+agAPq1Yv47wLz2D7tt08/sizwf7I/R2apqGpGrIiz2r/qqqSlJzI1ddeCgLcetO9tLV2fCHaAzO6V4KIbmjU1FfQ2dXqa5HILCTZnhrsKQ6IfbZ3NVPfWB1S5m0yWUhNySYsLHLa7KFhGP7rkcxhRx/OkhVLiYmJCZa2jrvmuk5iXCyLCvLwqipbd1cw7HTuVxJAFEVUVeX5p57lnQ1vB0HjrEkAqw1D16lrqKS3r3Pcz2Oi40hPzfWTJPqUZdper4eW9npa/XaDVouN5KQMEuKSkWXlCyMCRFFCVb20dTTS0dWK1+tGFCWS7GmkJmehKMqMwGKAjPWRGzU4ncMh5FFaah42W0Tw2aB6VWxhNo447iiOPv6YGX/PWOJIURQKcjJJ8T/P90f0Dw6ztbSC4aGhcYuG6QiA5sZ64uLtWG22SQkAs8nEioWFhNum7s2vKKvi97/7My+89AxO13DoWIuKD7rhTFWVERCjrG/aQ3dPG4piIjMtD3tCyj6JUQaIAEkSyc/PYd0ha0lIiGPjp1tpb+/k2OOP4N67H2ZoYBhxGhFAHwGgj2oBWBViKSqKIkPDA5RWbA0+l5IS08nJKpxU3V5VVZKTk7jljn+Slpa6T+PB7fGyccdunG5P8Lk0V/AvyjJet5vbb7qB3t4eLvvBNYRHRADQ29PDhldepLOjnVPOOINlK1YH22OmvH6iiKIofPLRh7z20gscf/Jp5BUU4PV4/c9vhfLSUh5/8D6uuu6nFBQXz6oVQNN07PGxLCrIJcJ/rPMxH/MxTwBMSACMBf+TCgKO/v8o4mAcASCMKfGfKOs/Qfn/RP//phMAB605yhj7ev3iwhgzDkKrA0YfkVdTcbicQSE4URTxejy0dzYy4C8pD7OFk5m+gJiY+Gm9wQOK8U7nCG0dTfT1d5ORnkdMVHxI2Zzb7eH4E4/h1//zMywWMwA///nP+cc//jHlmd14441ce+21k/7c4Rjhh1f/nB3bd39LHAAkurrbqKrZFdyWk1lIclJGcEEqCD4F+R2ln5GYkEp2xoJpLcMmCpfLzdoDVnDBxWfxxoZ3efmFDfvNXk9TtWC7QGxcDEXFCygvr6a3txdJnFmlgdvt5pDDDuKc805l965y7rr9wWBW9atwn7yqhz01pfT2d6EoJvKyi4mLtaNpvtacwHG2tjXQ0LwnZJ5ZLDZSkrOx2cKnBAuGYfiuoyyxdPkyjj/1RNIzM9A1bVJgp+s69rhYCnOzsPhJs9bObsr31KEbxn59ckmShNfr5bknn+HdN94ZRWjOkgSw2JBEkY6uFtraG3F7QrOzsiSTlJhBcmI6JpMJXZ+4VSJQDTA41Edjc03QYSEyIoaUpAxiouODoPrzIoUQoK+/h+bWWhwjQwiCRFREFGkpOURERE8qrDrRfgaH+mltb6C3r2ucLVlaah4RETHB/alelbSMNE487WSWrFiGIAqzKksOjB2zyUR+dsZ+Bf8B8LhxZxldXd3jevnDw8LQJxOqFUWa62uJjokjImpyezpN17DHxrKkKH9aIqqjvZNbbr6Du+6+k/aO5jGEVDg5WYVERcZMKcooCL62v46uVhqaqlFVL3GxiWSm5WELVgPMjWwK3E9BFCkoyuOgdatIS0+lt6ePO269H13Xp51nIQSAprG4ZDwB0D/QS1nl1uC2jNRc0tNyJr3GqqqSlp7Kzbf9k5SUpH0aD5W1DdQ1te4V9jUMnHMA/4IogmHwwD13UVFRxmVXXktCQgKCINDS2MTjjzxAWlo6p519LvakRFSPd8YkoCAIyIrCh+++wxuvv8qpZ51NVnYuHo836CTw5CMP4XAMc+2PfzapWOVUsXxhIanJSczHfMzHPAEwJQkwOps/VgwwRBhwAvX/EBFAP2IcDfTHVgNMlvn/lmX/AYQDVh1hfF0OVtU0nG5n8CXusw7U6e5po7u7Dd0vGJiYkEZqShaKYgoqGEz2EgxUKThGhhgc6ifMFk6YLSK4CDIMA6+qcsopx/Nfv/oxJpOJoaEhzjzzTDZs2DDpsT788MOcf/75k/68qnIPV//gJwwODn3lStQ/H2Ap0tC0h+bWuuAirrhwGdFR8UECQBQlBof62FW2iYK8xcTHJc1J8MwwDLweL8efdBTHHHcY9939KNu37pqTvVsAPARsnOLj48jNz2LR4iIyM9OJjonmnjsfYtvWnTMq4Q8sor535UUUlxTy+CPP8v67n3wlqkAChFhVzW6GhvuxWsLIzykmMjI2mEkLLASbWmtpaakPUd622SJIScnGYrZOCUQDAD8tI531RxzCqjWrsdqs4zyqx96D5IR4ivKyQxwzDMOgur6J+ubW/V7lIUkSw0PDPHzvA2zdvHVOJJKAgNVixWIyMzwyREtbPd097ePOM8wWQVpKNrExCVMCeVGU0DSVzq5WWtobcLudCIJIbHQ8yUkZREbETKhpMucXhL/Nw+V20uw/djAIs0WQmJBKfFzSjIQJA/txukdoa2+io6tlnDigJMkkJWUS7SdhA9UhRSXFnH3hOaRnZOBVvXOyJwuzWVmQnUFC7OdjUbajvIq6xuZxY3CqCgBRFGlpbMAWFkZMXPyU90zXdRZkZ5KVljz9M0Y3eP65l/n973/Pjl2h7WqKbCIrI5+E+BSYpoJPkiSGHUPUN1bSP9CLLCtkpuWSaE/bZzHKABEgShKFRXnIssTuXRUzehcGKhEmJwD2WskGYqzbzNjwer0UFxdywy1/JTo6es7nNTjsYNPOUnRjbyplLn3/gr8y8vknH+fdt9/kkiuuJDM7FwydlqYmHrn/XhYtWcpZ512ArCiTlvzPhAR447VX+ODdtznt7HODJIAsy3R2tHPv7bdw9gUXsWrt2lm5AmiaRqI9nrXLFn8liO35mI/5+AoTAKOJAJig1H80ITD6s2Pz1wEgL+xV+BfHEgGjPiPwrS3//9oRAIGFkNPtwquq/vvoA/FDQ/20ttUF+5AjwqPISM8nzBaBNAUw2HuffWSC2+3EwKfmLfgHvaEbuNxuLrjobH76s2sQRJHq6moOP/xwmpubx+3TZDLx6quvcvjhh0/6vffe/SC33nTXnEHp126gCQIV1Tvo7fO5KJhNFkoKV2Cx2IIVF5Io0dnTTk1dGYuKVhIWFjFnIKPrOpIk8f2rv0NUZCQ3XX8Xw0OOactLQxcxOqrXiy3MRn5BDqtWLyMnNwuLxUxrSxvVVbUUFS/g6SdfonZPfdDbeqrwqf9n8oOrL2FkxMUtN9xNT3cf0pdsAylJMkPDA1TX7GLE6SAiIpr8nGJs1r39v4FFf0NzNW3tTSG/HxERQ0qyj3Sb7J4FAF1MbAxHHnc0qw5YTXRMNLqmT/E7oBs+MbTivGxME4BwVdXYVVlNV2//ficBfPaA9dxz6120tbShmOZGAljMZixmC4au09PXRXNbPQ7H4Lg5Eh+bSGpKFmG2yEnL+seC6c7uVlTViywpxMclkpyY7p87+yYUGCAiunraaGltwOUeIcwWQXxcEgnxyZhN5mBVCNOQrB6Pi66edto6mnG7x2dDbbYI7PY0/3kbqKpP/HXNQWs54bSTSLAn+HuRZ/8ciAwPoyQ/h4jwsM9t/uxpaGJ3RfUsCQCJ9tYmMCApNX1KQG0YBrIksbR4ATFRkTM6ps2btvGzn/6C9z54c9w9SU/LJTUpc9rMriiKaJpGa3sDTS11GIZOTHQCmem5hPtbfPal9cR3r33aDjNtgRrdKqbr+oQEQEdXM3tq99rNFi5YSlyMfdJr7HF7OOa4I/nD//v1nC15DcNge1kVnT29QSJjLqX/giCgmBQ2vPoKzz/1JOddciklCxeh6watzU08/J+7KVm8lHPOuxBRlmZdDTPuWSJJvPLi83zy4fucfvZ5ZOfl4/V4MZkUXnz2GZob6vjxf/0KxWSatIVi3LXwr60OWbuSyCmckOZjPuZjngCYkAgwGE8CTJb9n4gAEEZrArCXBAhpE5ik5H+eAPiKHjC+vkiXx43H68EAJFHE6XTQ0dmEKEoMD/f71XEV7PGpJCQkY7PYZlTG5ltcaOiGjihIQfZa130g5TvfvYCrrrkcQRB48MEHQ5T/AxEbG8uHH35IUVHRhN/R2dHF1T/4CfX1jfutNP2rDv5V1cvu8i2M+Ht9I8Kj/LZMUogDQEPzHvr6uyguXIE8alE3l/B4vOTmZXHVDy/lrQ3v88qLb8yIcNF1Ha/XS3R0FMtXLGbtQStJSrbT0d7Frh3llO6uoKmhBavNwjXXXc4zT71EZcWeGd1Lj8fDWeeewmGHr+O9dz/i8Uee/9JbQCRJpq+/m+ra3Xg8bmJjEsjLLkZRzKOqM0Q8Xg91DZX+LPDeiIyMJTkpC0VWJnVsUL0qkixRUFTAcaecwIIiXz/uVH3cvue/TrI9gYKcjAnBfyAGhofZWV6Ny+35HJwBTOzavoNH73+E7q6uOWs1WM0WP7Eo4PF6aGtvpK2jaVwm3GSykJKUSZI9xW9Vqk8KzkBgaHiAto5G+vq7UVUvJpOFxIRkEu1pmE2zFwoMgNjBoX6aW2rpG+jBbLaQEJeMPSEFm1+Yb9pyf1FC07x093TQ1tEUIvI3+lzjYhOJiopHluVgtU1ERATHn3IiBx2yDrPZjKqps77euq4TFRFOcX42EWFhn+scam7vZPOO3bMmAHq6Oxnq7ycrL39aslPTdaLCw1lavCDYAjNdVFfV8qc//i+PPv4gqhqawU1KTCMrfYH/GaxPQ+KIDA72Ut9UzdDwAJIkk56ajT0+FUVWYD9Wnew7ASDS1FJHY/OeIAFXXLic6Ki4SQkAt9vNlVdfzuVXfGfOx9XR1cv2iqqQhINzjCjkTMJkNvHJRx/y0H33cOqZ57ByzVo0TWdocIAH7rmDzKwcLvjOdxFEcULwH9Bomer6jZ67gl/9/5UXnuPD997h9HMuZEFRIbqm09/Xy503X8+xJ5zEYUcdM0stAI287EwWFuTNI6n5mI95AmBmJMDYVoAQQsAY9bPRK0U/OhRG/X8cGTB2O9/q7P/XkgAYHV7Vi9vrQVVVWlprMCkWEhMzGBzspau7BZffUspqDSPJnkF8XCLyPpTbBxanl15+EVdd8z0ALrroIh566KGQzyUmJrJx40YyMjImBIB//cv1PP/sS18p1ffPM0RRZHh4iNKKzcGFvD0+hbyckpCFpyiKVFTvRBQE8nMX7RebM6/XywUXn0VBYR7X//N2+vsGpiwz1XUDs1nhoHWrOfDgNdhsVsrLqtiyaQc1e+oYHh4JWmplZafzvR9cxIP3PUFl5fQEgKqq2BPjufqHl2E2m7n9lv9QV9vwJZJAApLk02aori1F1zWS7GlkZ/hAgT7K5s/jcbGnroy+/u5QsivGjt2eHqLCPXbO6JpGZk4WBx58EMtWrSAqOgpVnbqPONCjnJacSEFO5pRVPIFo7eyioqYBVdP2qyggAiiyQunO3Tzyn4fp6uycEwngawewoMgKgiAi+Hvhm1pqg9aYoyM6Kpa0lJxpe7YD43FoqJ+u3g4GB3txuZ2YTBaS7GnY45MxmczTgvYA0HO5R2htb6SjsxkMSIhPJsmeRnh4ZPCeTjffDcNgYKDX7xLQO+4zsqwQHZ1ATIwdk2IGfKKPqlfFnpTI6eeczoo1q4LuHrNbV/gaU+xxMeRnphM2jXje/ojWji42bt816xaAocEB2pqbyCssntk7SNNJToynJD9nxtUuIw4nN1x/C3/+3z/hGAmtOomNTiA7cwGWacQBA88BVfXQ3NpAa3s9hmFgs4UTH5tIfFwSVovNv1b7fIkAQRDQdI1dZZsxDH2cCKAgitTVV9DW0RQ87pKiFUSGT6yzEKhM+vVvf86pp504p2NSNY2N20sZHhkJ3pe5ZP9NZjNlu3dx+803cMhhR3DokUdjGOB2uXjk/ntRTAqX/+BqrDZbiNifIElgGOj++TKtk8IEJIAoirzywvO8+9YbnHn+hRQU+hIYH773Lhs/+Ygf/fyX/ootbcbzUBRFDjtw9RcyB+djPubja0QAzIoEGA3+Cf3/2MXa2LL+seX+8+D/m0EABF5kLW2NtHU0kp6Wj8ViQxB8wK+3r4O+vq5g5iM5OZ2U5CxkUZkzQAh4kn/3sgu58urLcTpH+O53L+WJJ54IfiY3N5eNGzcSGxsb8rudnd3cd/eDPPfsSxgGiOK3Y7CJokRPbwcV1TuC27IyFpCanDVu0VlauZXoiBjS0/L2qcd0NAGQm5vFVT+8jBeee5V33/poyioAr8fLGWefxKo1y/j0481s/Gwrba0dQb/lwOLO4/GwbPlizrvgNG6+8R6aG1unbQHwuD2cdubxHH3sYXz84SYefvCpL035P1BG3trRSG1DJRjGOJs/8FVljLgc1NaVjwFyAgnxydjtqcDElTWqqmI2mzng4AM55sRjiYuLQ9P1GTkDAKQmJVCQkzUj8B+IlvZOquob8Xq1/Tq/AsJYGz/ZyCP3PYTT6ZyTdkegHcCkmIIgUNNU2jtbaW2vx+MJdReRJJnkxHRSkjJCKjImm2eGoeMYGaKvv5vevi4cI0NYLWEkJ6UTH5uIIpvQx1QEBCzgvF4PHV0ttLY14vG6iYmOJyU5k6iImBkpwPuAPwwND9De0UhPb+e4ihBRFImKiicuNhGzxeZzl/E7Pui6zsIlizj+lBPJycuZU3l5UPQtJYnczLR9InxnE9NVABj+hc3ozKwgCHjcbmqrK8hZUITJZJrR+eq6QUF2Bpkz0AMYHXfcdg+/+c2v6e7tCNkeZgsnJ6uIyIjoSUUox5JEA4M91DftYXh4wHee1nDs8cnY45NRTOZp97PPBICmsat8E4ZhsHicDaBAdc1uuvyVSibFTEnhCqzWsAnJiQC59ts//DfHn3D0nI6ptrGFqvrGkPE2295/xWSiubGBG//5d4oXL+GkU8/wiaXqOi8+9TgdHW1cdd1PiYqJQfP3/AfaBXq6exAEgYjIyEnL9AW/dfPbb71BfkEBmVk5oSSCXxj52Sce4/VXXuTK635GVk4OjmEHd916IyvXrOWkU0/DMwstAFVVOeSANcRGz7sBzMd8zBMAUxAAU5IAo/4+0e9NRAJMSgbwrS/9/0YQAIFsVUXVdqKjE4iLS/aLtQUWtRIdnU10du7t0w8LCyc1NZvI8FgkQUQSxWmXKWNL6nRd95Vyn30a//WrH9PT28Ppp53Ohx9+iKIo/P73v+dXv/pVyD5ee/VNHn34SSrKq4IL7m9L+Eoya2lsrgluK1qwlNhRPZm+PmE35dXbSUvO8gsA6vvh+WIgCHD1Dy/H0HVuvelef3+iMCG5Y7VauOLqS3j7jffZ9Nk2TCZlQpDu8Xg48eSjWblqGTf8+w4GB6YWc/R6vaRnpHHVNZdgALfdfB9Nja0oivwlzBvfuTe11NLUUosoiGRnhdr8BQDlsGOQPbWlIeXbgiBgt6cRH5sMwnjXjgBJlpKWyuFHH8Hagw7AZDahqurM7hcCWenJZKenzhj8j56jze2dVNY0oBv6fm0HEEQBDHjpmRd49cVXgj72cwmL2YLZTwIEQJVjZJDm1np6ejvGXdPwsEjSUnOIjY6fFowHMvBOl4Pevm56ejtwjAxhs4WTnJhBXKwdWVKCgFTVvHT3dtDa1sCI00FkRDTJSZnERsf7KkFmIvAnioyMOGjraKSrp23Cex0REU1cbDJhYZH+e+Y7B03TEEWRI445kuNOPh5bWDiaps4J/AuCSGZqEnmZaV+o+Fhdcys7dleMGw8BAkCWJERRwO3xovszo4J/HVNZuoP0zJwpnQDGnqcsSSwpXkDsDPUAAvHYI0/xy1/9mvqGqpDtJsVMVsYCEuKTpqw2CRJTooRX9dLaXk9LW2NwjESER5OSlE5sjP1zc6UIEgBlG0EQWFS0ahwBUF61PVitZLWEUVK0HJNinvC8ApnqP/3v/3D4EetnfTwjThefbd+Nqml7x9wslf9FScIxPMzN//o7MfHxnHHOBb41giDw+ksvULpzOz+49jrSM7NR/TpHoiyjqyplu3fxwrNPs+bAgzj2hBNxu9yTPL9E3C4Xf/qfX7JqzQGced4FeMbYGfvaCnT++qff4fZ4uObHP8dis7Lxo4947+03+Ml//5romJgZVwFomsYhB6wmJmqeAJiP+ZgnAKYhASYC+BNpBPj5gEkrACYC+fPg/5tEAAiAwZ7aUkZcDooXLEOUFEZcjmAJsKap1NWXY7NZ+d6VV/PBe+/yyUcfAGC3J5OYmIFZsSCJko8ImGTRo6oqCD7LrtEgx+v1cuppJ/LTn1+L2+vm9ddeJyYmhiOPPDIIBj1uD/fd+zAP3v8oLpcLRVG+daq4giBQtWdXMPOkKCZKClcQZg0fVWYu+kXoSsnPLSEiPGq/LR7dbjdHHXMoxxx7GDf86y5aW9smBPVer0puXhYXXHwGd972AB1tXRNm9QML5Cuv+S6KSeHmf981KakQ+Lyu61z6vQtYvmIRL73wBi+/uOFLaQEJOGfUNlTS0dk8oc1fYIHfP9DDnvryYCtN4PeTEjOIjU1kIhVx1evFFh7OukMP5sD1B5KYnAQGMwY2CJCTlkpuZtqszisAIn2lrT5Rtvrm1hDCY7+QWZKI1+Pl5Wdf5K3X30TX9TmReQJgMVtDdA1EUUTTdXr7OmlprR/XMy8IAglxSaQmZ2GzRUzb2y8KIgYGLtcIfQM9dHW3M+wYIDwskpSkTCLCIxkaHqC1vZFhx2Bwe2xMArJfe8CYQTbY63XT2d02oc2hDwRHEBubSER49Lh+c6/XS0RkJEcffwyHH3MEsixPqQsx6f3XdaxmMzkZqaQkJuzfFpAZRHlNPZXVtRMSAJquEx8TTVFeFsPDI/QNDdHe2YPH60WSJCrLdhMTE0tiSuqMz13TdKIjw1lWXDBrDZHXX32LX/zil+wq3TKmBUsiMy2X5KSMvfNxBsTP4FA/jU019A/2BMdxXGwiqcmZhNsix1Wc7B8CQGVn6SZEUWRR8cqgloyAgI5BacUWhob6feRZeBQLC1cEibGJnh2RUZH864a/sGhR8ayPZ3dlDc3tnSHigbPJ/geciB6+/17a2lq46LtXYLZYECWR0u3befqJR/n+1T+keNFCPH6NE9mk0N3ZxYZXX8br9dLR2kpqehoXXXr5pASAJMs0NdZz/d/+j+iYWH78X78kLCx8HJg3mc1s/ORjbvrn37jqxz+noLgY94iL/9x9KyWLlnDiaWegzlALYJ4AmI/5mCcAZkwATAr+R4H9cZ8ftaiaEMxPQQp8i8H/15oAkESZts5G6huryc8pJi42MQi0RtxONE2nt7eDtvZ6Tjj5VH77//6Cw+HghWef5PYbb8DlcmG12khOziQyPAZRlFFkeUoiYCLAoqoqy1cs5YKLzmHNmhWYLWYABgeHqCiv4uknn+f99z6aUV/eNxX8a5pGacUWhv2q5+FhkZQULh+n3NzX30Vj8x4K8hZjNtv2Wy+p1+slJyeTq6+7jCcff4FPPto0Ifj2eDysW7+WI49ezw3/uovBgcEJ75mmacTERHPdT69g544ynnzs+SnBvMvl4vAj13Pm2Sexp7qWu25/ELfb84VXgYiiiKqq7Kkrpae3E6s1jPycEiIjYkYJ0QlIkkhffzd7astCAJ0sKyQlZRIVGee/b0YIIabrOolJiZxy1umsWL1iL3k2w7kkiiLZaSlkpafsM4BTNZ26phYaWtqmFcWa9bNHktA0jddefJVXn38JbY5ze2w7QGCbIIq43U7aOppo72weJxJo9osE2hNSgsJ505E+YOD1ehkY6qW9o4nh4UHwC55arWGkp2QTG2P3AX9jZgJ/quqlp6+Tto5GHI7xAn9mk4XY2CSiouL8x7l3zPhs4Lxk5+Zw4uknU7J4YXAczXqRouuEh9kozM2adUZ8f8X2sirqmya2AdR0nYTYaJaXFPoISY+HTTvKGHG7UWSZ+to96JpGTn7BrMgPTdPJTE2iMDdr1sf7wnOv8Mv//h9q6spxe0Iz1SlJmWSk5U4rDjh6LOi6RndPO81t9Tidjr3jNDmTxIRUv5iltl/mok9UVmVX2UZESWJR0aoguA8KzlZsYWTEJzgbHRVH0YKlk+7P4/FQVFzATbf+g+joqFkdS0//AFt3V4w7p9kQAIrJxMcfvs/rL7/E+RdfSkKiHd2AwYE+7r7lJg44eD0nnXY6qseL6H/O7Ny+lbc3vE5qegaHHX0c77+1gZbmJq7+0U+DbTUTfc9bG15l57btjIyMsHjpUk4540w8bk/I5yVZprO9jf/5759x7PEnc/gxx2IAZTt38NH773DlD39MVHQ0Xs/0lpyaprF+7Spio7+ceTkf8zEfX3ECYCJQPxMiYJrV1aSEwDz4/3oTAL7S5AHKK7cTE5NAblbh3vI//w0dHhmmvHIbgqDzjxtvY+mKlXi9XqxWKx++/y7//N8/0dHR4fd29wmZyaIJSRRRFNOURMDoUsMACaCYFDIz0klOSfJ56HZ20djYzNDgELIsf2u9cEVBxOEcprRiS9CiMT42iQV5C0OuryhKtHc00d3bQUHeYmRZ3m9Zo0Bp/w9/cgV1NQ08+tAzE9q5eTweTjvzRBYU5HLjv+9E9ai+su8JPrd02UIu+/6F3HfXo2zdsmNSAsDpdLF0aQmXXH4+LpeLO297gIb6pi88+y+JEi6Pi+o9uxgY6iMyIpq8nIXYrLZRNn8CAgJdPW3UNlSFqIYrionk5Gx/n7AeSoJ5VUwWEwsXL+LoE44hJy8HTZt51k83DBRJoiAnk5TEhP34UoH61jZqGprRdX2/kwC6YfDai6/w+kuv4XI65yzmaDGZMZvM40B7QCSwubVunPgiQFRkLOmp2URFxPo1cqYjAny6D6quMjw8iMMxiCCKxMcmzkgkMEAiGYZB/0APLW0NDEwh8BcbY8dkMo8rKQ8IQy5ZvpQzzjubpJQkVHUOJf/4XCIiw8Mpzs/6Uu3GtpVW0tDcMiEBoOs6MVGRrFhYiCiKtHV2s6uyBlH0WbB1trXS3dlO8eJlsyJAAjoyiwrzsMfGzOp4NU3n+n/cwj33/oem1ppgL38gYmMSyM4owGKxzUiLJdByF6wG6WgKVg7FRMWRnpZLRHj0rB0pJicAvOwo3YgiKywsWoUoCBj4WkBcrhFKK7YEycu42EQK8hZN+r1Op4uzzzmNX/7mp7N7rxgGm3eW0Tc4FNKqNFPxP0EUMZkU+np7ufv2W1m5+gAWL1uG16siCAJPPvIQIyPDXPvjn6GYzYiCQFdnJ29teI3G+joOPPgQCksWoSgyH773Hju2buJHP/svTBbLhDoAitnEg/fcharpFC9czOMP388ZZ5/HgesPQfCDdcMAWZbo7enlj//z36w/5DAOO/pYvF7f/Hzx6SeJiY1h7UEHk2C3o5jNaN7JiYB5AmA+vslhGAYOhwOr1fqNTPB9YQTATEiAyT4z9ctiaqD/LQb/X0sCIFD+V161A1X1UlywLLjIHL04b2lroK6hkrUHHsT/+8f1Iay41WajfNdO/vbnP1JdVenbZrWSkpJNeFg0mqZhkpWgZddecsG3yLDZrLhdbjR9bw+rwzmC2WJmZHgERZExm8xIkvSt6vWfjKzp7e+ivHJbcFtGWi7pqTkhi11RlGhsqcHhGKQgb/F+f0jrusEPrv4OZrOJm6+/e8KSfVVVueSy84iKjOCmG+4JaklMRACcc/7pLF5SxPX/vIPe7j6kCbyjXU43hcX5XHTJ2SiKzIP3P8GObaXYvmBFZEmScDiGqarZhWNkiLgYO7nZRSiKKXgPAufZ3tFMfVNVyL0xmSykpGQRZosKAZkB4mBBUQHrDjmYksULCQsPm3HW3wcGDWRZoiA7k9SkhM/l/OuaWqlpbN7vlQCBloNtm7bw0nMv0dzYNGeyz2q2hFQCjP4OTdPo7G6lpbV+XIm9JEkk2tNJTcrAbLKgzVA409eD7rc4nQEoEwRfz/qQY4C2jiZ6ejvGgVVRlIiKiiM2xo7FEsaELSKqiqzIHHzoeo47+QS/I4Q6pzltAEkJceSmpxFms3ypz7nG1g627y4LWVCIoojFYkE3DMKsVlYtLsKkKJRV19LU3onkV14fHOinrrqSkiXLkWZJfOq6TnRUBMuKC1BmKSg6ODjE//7pH7zy8uu0d/q0G0ZHmC2C3KwiIiJm3o4VIAI8Hjdd3W20dfqIAFGUSEvJJjkpHVlS9kngVRAEvKqXnaWfYVLMLCxaSaAlMNBKVlqxNVg5k5iQSm528aQEmcvp4kc/vYqLLzl/VsfR1NZBWXXtuIX/TLL/sqIwNDhATXUVH77/HmaLhdPOPA8DA0mWKN2xnRefe5rrfvoLcnLz6OrqZNNnn7Dpk0+Itydy6JFHExcfj6pqKIrMJx9+wPYtG7nuZ/+NeTICwGTi7ltvRpIVzjzvfN57+03eev1VFi1ewoHrDyMh0Y5J8VXqNNY3UFFWypKVq4iJjUPXNGRFpra6mnc2vMbg4ABJKSkUFhez+oCDsNnCJvzOeQJgPr7poaoqkiR9I5N8XygBMBsiILDNL2w6Jaif7L58y8H/15IAEAWRusZK2jtbKMhbFCIkF1ioejwudpVvwuNx8+e//4v1hx0xTpDHYrHS1trMv/76v3z60YfBxbTdnoLdnorqNXx9uiYzoiQiCCK6rqFrOonJdqw2G5UVVUFLIo/Hw2FHHU5vbx87Nm8jJioaRVam7KH9dhAAIq1tDdQ17hWdKsxfQlxs4rj7Vt9UhdfjIT934X63kvJ4vJx97sksKMjjxn/fyciIM4ScCWQpf3D1Jaiqyl23PzhuYaepGh6vl4iIcH76X1fR2dHFnbc9MGHmV9N1li9fxFnnnExYeBgVFXt4960PaW1tp7enz68q//kLAEqSzMBgL1V7duH2uEiyp5GVkY8kykH9hcCLq6Wtnsbm2pBrb7WGkZKcjdXv/R64VqqqEhEZyWFHHcahRx1OZGQkqqrOKoOp6zpms4mC7EySEuI+v5eYYVDf1EJdcxuaru/X/vCACndrcytPPvQYu3funtNiYKJ2gBBQ5a+kaW6ppbunY9xzJcwWTnpqLrExCTNS7J/N+QmCyIhzmPaOZrq6W4NWnqOPPjIimrj4ZGzWCP8YGf/9Xq+XmJgYTj7zVFYfuGbO/f4BIiczNZmcjNRZuUR8XjHkcPD+Z1uDquqyImM1mVD9t0mWZdYsXYjFbGLjjlIGh4aDBJLH46ZsxzYWFC8kLDxiDraHsLgwj8T42Fkfd2dHJ7/46W/ZvbuMzu4WWlrrQ5wbTCYLOZkF/ha7mWfvRxMB3T1ttHY04nI5CQ+LJCMtl5jo+OAzYE4EgNfDjtLPsJptlBStGNVKJjIw2EdpxdbgGExPySYjPW/S7/K4Pfzilz/i7HNPn/ExuD0ePtteitvjmVX5vyAIaKrKW2+8Tm3NHhSTiaTkVBYvXUZ4RBS6rmEym3jxmafZuW0zBx18CCMOBy3NzUiKzAHrDiG/oAhB2EvAms1mXnv5Bdqam7jmxz/3r4knaAEwm7jrlpuQZYXTzjkPTdWo2VPF+2+/RWtLEyZFQTGZsdlsLFq6nJWr1yIrSsgcFQQBXdXo7Ginonw3Gz/5iOt+9l+kpmeEOAqMJgBWLComPTWZ+ZiP+ZgnAOZMAszkZzMF+PPg/+tHAEiSREdnC3tqy0hLzSYjLXfCLFRdQwWt7Y0sX7mKv/77ZkRpYjVik9mMY9jB3bfdyDNPPB5ULY6IiCQvvxiTHEZfbw+SLIf0xqpeldwFeURGR7Jz2040r5ec/FwuueJSFJPCnTfdQX1NHTFR0d/a0v/RC4bq2lK6un3ZJVmSKSlaQXhY5Lh7sqeuDFlSyMkq2O/q0R6Ph6OPOZSDDz2Qm66/i56u3pCsfWDBdPV1lzM8NMy9dz0cBCiapiGJEnEJsWRkpLJ4STErVi/jiUef4923P8RsNo9b9KSkJnH8iUdhtVr8izozycmJuFwuSndX8O5bH9Ha2v65ikJKkkRvbyeVNbvRNJX01BzSU3NCzjdQ4dLYUkNLa30oqAyLIiUlC7PJErwfqtcniJlXkM/Rxx/LwiULg1nqWb1YdB2b1UJxfs4X0rdtGNDe1c2ehmacLtd+r8xRTCb6+/p4+pEn2fjJRsCYU0ngRO0Ao8k0w9Dp7umkua0u2OM8eq7Z45NJTcnG5ids5lpuHSAdPF43HV2ttHc0TSnwFxkRM6nqe+CZmZKeyhnnnMni5UtQNW1Su7Lpxo0sSWSlp5CdnspX5ek65HDwwWdbg9UMFosZi8mEW9WC927NkhIEQWDTzjK8qhoy73dt3UxqRhbxiYlBUTafQ4PmczLyuwZMFJqmk5ZspyQ/Z07H/u7bH/CH3/0fLpeLnp4O6pqqUFVv8OeyJJORnk+SPY2JqjpmSgR0dbfS0t6Ax+MmIT6ZtORsnwidbsyK8BUEAY/Xzc7dG7FZwyguXBH8fVGU6O3rpLxqe/DzOVlFJCemT1h1ECB+//jn33D0MYfP+Bgqahuob24dZzM5Xfm/IIqoXi+33vhv7IlJHHviKYiSiKZqwbkTqAppbWqiqakR3dDJys4lJzcPs9WCpmrBeyArMo6hIe65/RYOPvQwjjz2OLyT2PSZzCbuvuVmPKrK+d/5Li6XB1mR0FSN3p4eujvbGR52kGBPIC0ja9L5LAgCJpOJrs4OHrz3Ln5wzQ9JSkmdJwDmYz7mCYD5mCcAPgcwI0oMDPVRXrWd8LBICvMXB5V/Qz4z2Etp5VYEQeAv/7yeAw4+ZMoXsizLCKLI8089wR0338DIyAiiKGIymVixai2pKdlUVVYz2D+AKPl8cjVVZeHSxVxyxaXU19bjcbvIyc8jNi4WSZJoamjk3tvvpr2lnaiIb2/pWyATWVqxlaHhfh9gsIazsGgFsqyEtFbohk7lnp3+DFHePpWITkYAHHDQak4+9Rhuuv4u2ts6QzLwgWO59kffY2BgkDtvewBJFImJjSZ/QQ6Ll5aQnZNJVFQETpeL8tIqnn7iRRyOkUnBpNerIkm+Ml9FkYlPiKNkYSFr1i7HarOy4bV3ePftjzGM/SsQGbTA7GpmT20ZIJCTVUCiPc23UDb2AkpV9VLfWE1HV0vIPsLDo0hJzsFkMgWBpOr1kpqRzsGHrWfF6pVEx0TPqXdb13XCbFaK87KJ+YJF2/qHhimvrmPI4djvJIAsy7hdLt5/5wPefeMterq6EedQDTBZO4D/7iJJIi6Xk9b2Rjq6WsaLBJotpCZnkRCXPCORwImIBlVV6e3vpK29keEJBP6sljCfsn9EzJTf4Rs7sHTlMk449UTSM9L9vcazf+1omk/sLzcjlcSEOL5K1OrwyAjvf7YV1evFAMJtFiRRxqPrCIAkiqxeUoLH62XLGNE4SZIo27GNsIgIMnPy0DQNXTdIT04kPMxKe1cPA0PDaJqGIIrjKlg0XcceG8OykoI5HbvX6+Vvf7mBZ595EYvZTG9/F3WNlbhcztEPFVKTMklPzfHpX8xyTAUcAzweNx1dLbS0NaDrOimJGSQlpmExW/0WpPoM9uUTydxR+hkR4VEUFywbBZ4lOrtaqa7dHfx8Qd5iv62sNiFAjY6O4t83/R/FxYUzOpfBoWE27iyb8GczLf//4J23aG1t5ejjT8TrVSecg2MJal3bW7Hlu54CbqeLxx5+gPbWJv77t38kIjJqUos+xWzi3Tc28PILz3H5VdeRmJSIx+MNXjef66CAbhghJMPE5LJMV0c7D/3nbq6+7sfzBMB8zMc8ATAf8wTA/g9RFHG7XZRVbUPTNIoLlgUzXKMXGJqmUV61jcGhfo485lj+509/wTtGoGZ05nP0/q02G2+9/ip/+p9f4/G4g+z32gMP4qTTzqazrZPqyio62jvp6+3liGOO4qLLL/aJiyEEM8UAJpOJ+to67r39Hno7ewgPC4dvYStAQJBpd8VmPB6fNVFsjJ3C/MUh92SvrsN24uOSJ83W7CsBsGLVEs465xRuuv4u2lo7xhEAuq5z1TWX4hgZ4c0N77N6zTIWLSkmNi6a3p5+qitr2LWznO7uHtrbOoNgbKoInKdhGL6FvaYTERnBmgOWc8RRh1BeVsWTjz2P128Jtj/AvyCItLbXU9dQhSzL5GYVEx+XOEZzwZeJqqkvD9ozBiI6Op6kxAwkScEwdB/wEATWHLiW4089kcTkRHRNn1P5dkAQrSAnk8jwsC9lXA46HFTU1NM/MDRlZnWuzypRkqivqeXFZ16gdGcpoijMigSYqh1g9NwCg8GhPppb6+kf6Bn3meioONJSsoiKiMFAmBZcBQT+evu7aWtvnFDgz6SYSYhPIioqAdHvvT6VfaqiKBx9wrEcc8IxmK1WVK93bgsR3SA+JooFOZmEf8EaGjMjJzQ+2rSN7r5+BEEgNspX4eT1OVuiKDJrlixkaNjB9vKqEPJJkiTqa6oZcTgoXrzU/y7RyUpLpiAnE13X6e0fpLOnj96BAZwut89RQdg7p7LSUiiagxtAINraOvjNL//I9m07sVptOByD1NSXMzSBOGB6Wi7htojgd8+FnHS7nbR3NNPW0ei3Fk3DHp+CxWIDjCn3KwoiIy4HO0s3Eh0VS2H+kpDseUtrPfVN1cHPFxcsJyY6fsJ3itvtYdnyxVx/018Jn8HzyDB8go9dvb0TPq+dIyPTE4UmE599/CEfvP02F3z3cmTFNCPiQ1NVPF4PXo8Xx/AwzU0NbPr0Y3q6Orn0B1eydPlqNNUb8s4JkAXgqz7wejzcddvNdLa3c875F5GSkemrAsPA0PG3FujTHo8ky3S1t/kJgJ+QmJKKPgUBkJaS9K2vhpyP+ZgnAOZjngCY5YJB13WqanbRP9BDQd5iv2e5NmbxKtHQVE1zax0xMbFcf9tdZOXm4nG7Q8CHyWRCEgRcY3r3RFFEMZn4+bVX8tknHwe/2zAMcvPy+cVvfkvJ4qXU7amho72TpJQkkpKTJl38mswmaqr2cP+d9zHQ04/NZtuvXshfhxBFkf6BHsoqtwXPPS0lm8wx/ZiCIOD2uCiv3E5GWg5xsUmfCwGwbPlizjznJG66/i46O3qCvs26rgcdIs45/1QKC/ODLgHVVbVs3bKDPVV19PcP+OzqBF92Zq4LGk3T8Xo8ZGalc9ElZ9Pa2s6jDz0T9LLfl7kC0NhcQ3NrHWaThbycEqKj4kKuZ2ABXlNfQV9/V8g+4mKTSExMD459TdOwWCwcd8oJHHrEoVgsVrzq3EBcwA+9JD8Hi9n0pY5Np8tNXXMrrZ1dGLqx3xeniqLQ093DU48+yeZPN85JEHSqdoAQIkdV6eppm0QkUCYxIZWUpAwsZqtfuNQYtw+AYccgrW0NdPd2jgMAkiQRF5tIfFwysmKaMosf0IiIiY3l2JOO4+DD1getE2cbvu8QSIqPpSA3E9McnRa+iGjr6KSuuRVd00mIi6GxpQ1ECcOAMJuFtUsX0tXbz46K6hDdAkmS6Gxvo7mhniUrVwM+e8bIiPBg20AQsHq89A8O0T84hMPpxDAg3GYlPSUJm8W8T8dfVbmH//r5b2luasFstuD2uKhvrKK7p33M2DYRF2PHHp9CeHikXx9HnxXJHagIcLmctHc2097ZDEBCXBL2hBTCbJGIgjChQKUoijhGhtlR+hnxsYksyF0UfL6JokhdQxWt7Q2+aytKFBcuH+deEgiXy8VZ55zOL3/9kxkdd3tXDzvKqyYE/zNV/1dMJt5/+y0effB+fvKr/yEmJnaauSGgqV52bt/K+29tYGh4mPT0TBIS7cTGxbP2gINITEnB43ZPOCdHkwCiLOMYHuTxhx6gsrycvAWFZOXkkpCQgMVqY3h4mMioaOISEqZs0ZknAOZjPuYJgPmYJwA+z8NDEKC+sZrW9gayMhaQmpw1DhxKokxPfyeV1TvQdZ0f/vTnnH3+xTidIyGgy2oxUZyfiyyJbC2tQNNCrcGsVhvPPPEI//rrX8jKzqa5qSm40LXabFzzo59y6pln+xZibve0C1qzxUzpzt3cd/s9qC4vFovlW0UCiKJEW0cjtfUVwW0LcheREJ88BpCKDDuGqKje7gOskbGfgwaAl6XLF3HSKUdzyw33MDAw6BeTUomICGPx0hIOWrealNQkenv72bmjjG2bd9La0o5XVZFlab/bvHjcHpJSErniyospK63k2adeDgqDzR78+/rDaxsq6OhswWoNY0HuwnFaC6IoMjIyTHVd2Tjrr/iEFOzxqUHwr+s6iqJw5vlns/7wQ9ANPViGOlsQZxgG9rgYCnKzsX7J4H/0cbW0d7GnoQmPqu5XcUDwtQQMDgzw/JPP8tnHnwXVgmcTU7cDhIKpEaeDltY6Orvbxj1nbLYI0lOyiIuxI/irmwLAwOl00N7VQmdXa0jvd2DfsdEJJPldBjyqd8q5GQD/BcWFnHjaySwoXDBnLQLdMFBkmczUJDKSE78Q0cx9iaGhva0Sg8MOtpZWBp/5cTFRLClaQFl1LW1dPSEEgCiKDA0OULFrB4uWr/KpuPvnTGFuFunJiTMf00Bf/yCqphEbHTmuR326eP3VN/nD7/8PXdORJBnD0GlqqaGlrWHcPZQkmdiYBBITUogIjwq25M1OI8DXIuV2OenobqWzqwWP10NUZAyJCalERcWiyEqIToDvfTHIzt2fkZaaQ2ZaXtD9YqzmjCIrlBSuICwsYlIC4KprvsflV3xn2mP1qhqbdpQyPDJx29dMyv8DBMBD/7mHyvJyrv7Rz5AUBWMGc8TjdtHU2MT2zZ8xNNTPukMOZ83aAzFZzLicrgmrG8dW2gmCgKwoiKLAjq1befP1V6mqqCAsPJz0zCySklNYsmw58fbEKed5oAXg4f/czVXX/XhaAiA1OfFb74g0H/Px9SMA2vwEwDx5N08AfAkAsrXdZ+eXZE8lJ6vILwAZ6h/vco1QWrkVl2uEdYccyh/+8nff4B1l0xcXHU1hXlawfLSuqZWq+sbQTIzsy8T86//+THh4BPmFxdx/z51BVt9kMnHG2edw0aVXYAsLwztNOasgCCiKwkfvfchj9z+CIsmYTKb9bkf2lR1cgkhtfXkwuyOKEguLVhARHjUOlPb7leqLFiwd9/P9RQCsWLWEg9ev5fZb/sPIiJOwcBtLly3k0MMOJCUthabGFj75aBO7d5bT19ePIIjI8udr7+J2eygsyueyK87nmSdf4pOPt2CeJUAOZIH31JXR09tBeHgUC3JKsFrDxxEtQ8MD1NSW4XAOh4xTuz2d+LikEMCu6zrHnnQ8J51+8pyV5YOVH8mJ5GWmzdqq7IuIzp5equqacDid+11RXpZlvB4vn370CW++uoGO9o5ZkQACYJkBCRC4v4Zh0NPbSXNrHY6RoXHPo/i4JNJSsgmzheP2uOjobKWjs3lCgb+I8GhSkzOJjorDo3pxuV1TLxY0HV3XWbPuAE4/53Ri4+LGtWDNeOGh69isVgpyMkmIjf5aPO9GEwAdPb2UVdViCwtDNwzioqNQZIn2rp5xQEgQBFSvl+2bPiW/uIToGF+5umEYiKJASX7utC4Zuq7T1ddPc1snfQODGAasWlxMdGT4LJ9Hbn7zq//H22+8i9liDj77OrtaaWqtw+12TjjuoqPiSExIJToyFtFPHMyFCPB6PfT1d9PZ3crQcD9mk4WE+GTiY5OC7QEAg0P97CrbxIK8RdjjkkMIgIqqHfT6K5ssZislRSsxj7EK3vte8PCzX/yQc88/c9pjrGlsprq+aVJSZSbl/4Io4nI6+ef//Znlq9Zy0PpD6GhvIzw8Ikj8TLee0DSN0p3b+fiD91AUmSOPPY6Fi5cDBoauwRgaIvA89zmWmBhxONixbQtbNm1keHCQtMwsFi9ZRnRsLFZb2ITP+gDJGCDzJEmiq6Odxx66nyuv/RH2pKQpNQCiI8OJiIj4eoAeXcfhcMyjg/n4VofVaoWuXQjmiHHPlPmYJwA+15BEia6edqpqdhMdGcuCvIXBnuTRLyVd94nH9fV3k5SczL9uvoPU9Ixgz7mm6yQnxFOcnx3y4tY0nY07SxkaDhUD83g97N6ymd07tnL86WdRW7OHN19+kTCbjbDwcLweDzn5CzjwkMOJjbfj9XqmJQEkSeLFZ17gledeJCoiCpvNhtPp/IaTAD5f5tKKrQwO9fkeKJYwFhYtR1FCF2OiKNHd00ZtQxULi1Zgs4SFWFHtLwLgwINWYU+M57lnXmHp8kUcedR6MrPSqa9v4v13P6F0VwUOhwNZlvd7tn/KRbfHw6mnHc/S5Qu56d93MTAwNK22wOhr5/G6qK4ppX+gh+ioWPJyFvqV+7WQ+TQw1Et1TRku90jI7ycnZxIdlcBohW+P28OKNSv5zhWXYrGY96F8G7LTU8jNSPtKj/fBYQd1TS109vQF5+3+IzJ94GZPVTVPPfIEtXtqJ7SOnOz6CYKA2WTGYjLP+Nnp8rhobW+go7N53L2zmK3ExdoZGOxj2DE4/sVvsZGUmE5CXLKvssDlxKt5EaZYBKheL7awMNYfcSjHnHAstjBbUBF/VmMGMHSdqIhwCnOziIoI/9o88UYTAHXNLdQ2thIeHh4CLCbLggqCyI7Nn2JPSiE1IzN4z3TDQJYkinKzsMfH+n7f8JlAaqqG0+Wmp3+Art4+BoaG0XUfaRATFUlxfjY2i2XW57FrVxm//Pnv6OjoDLqUCAg4XQ66etrp6m7DNQERIAgCUZGx2ONTiImO9wu96nNwDRDRdQPHyCDdPR1093Sg6xpxsXYS7WlERUTT3dtJWeVWSgpXjGpx8r1zyiq3MjDom8fhYZGUFK5AkqRxx6HrBrIs8cc//5rDjzhkyuMacbr4bPtunyvDBM+G2ZT/b/7sU15+4TkuvuwKYmJj+ej994iIiGDhkqUTCgKOvjbB/SgyLoeTjZ99zKcfvs/yVas49qSTCY+IQhtLuhkGoqKgqSrbt27hvTc3MOJ0snDREpasWElsXFzgYwiigKEbIS0+oiiiqSq9Pd3ExsUjyTKCIPhcAO65g8uvuoasnDy0CRIiX0cCYPQ8nglIEtUR0FWYL3CYj29Y6D01CNbY+QsxTwB8seC/f7CXiuodmExmihYs9akEj7P8E6lvrKalrR5Zlvn9X/7GoUcchXNkBAPQNY205ESKcrMmXHg1tXdSVl0bkvVzu930dnXx4duvk52/gNUHHUJfdxeffvAOTocDSZbxuN1YbDaWrFxLZm4ehq5PLVrkt0l75D8P8ekHH5OXm4uhG/T09H5jSYBAX39p+ZbgYjE6Ko6iBUsnvD4tbQ20tTewsHgVZpN1VrZQMwLZbjeHHHYgYWFhJCXbWbZ8Ec3Nbbz71ofs3FmGc8SFoshfSpmipmlEREbwo59+n02fbeOVF95AMU8PECVJYsTpoKpmF8PDg8TFJpKbXewvmfVnxPCVffb0dVLbUBEkxnzzTCYlJYuoqFCBLFVViYuP53vXfJ/c/Fw8Hs+czsliMZObkUZakv1rMWY1Xae+uZW6ptb9XqUjICApMk31DfznzvtorG+Y0gLSMAwiIiIwgOGhIQRBmFE7wGhAKQADg700tdZNKOg3DpwoJpLs6SQmpGCxWHG53TjdzmkBnNfrJTklmdPOPoNFyxYjiMKcW0UAku3x5KSnYrNavlbPvNHAoay6jrau7iABEKioGQt0985lmYrSHQgIFJQsDnF2CIzFcJsVWZZ9+/K3WrjcHlS/pWBgf6IoIksiZpOJkvxcwsNmL5r40guv8fe/3oBzxImsyHvHlCDgco3Q09tOV3d7SCXR6IgIj8aekExstD1Y9TbbSpBAO5TH46Gvv4uOrhacrhES4pIQRYmunjYWFq0Mvi8CYrK7y7cEq1+iouIonuCdE3jO2RMTuOGmv5Gblz3lsfQNDrFxe+mkxOxMyv8FQQDD4PZbbiQ2LoHjTz4VVfXywD13oms63/nelXsJE8NA8LvH+LRYDP85ioiigGGAgYEiSzTW1fPKi88gCAInnnoGxQsX+QVnNURBQJJlWluaeeXF56mvq2XlqgNYtmoVUdHRaJoOCIiSwNDAAE2NjbQ0NpCdl09uvq99x+N28c6bb9Db0409MYlDDj8SWVEAg6ceeYgEewJnnHch6gTviW8DAUDHDnRHNwgS8zEf36gQJaTYTPiyW5d93O7cCxGMffzuz/s75gmAwEtfwjEySEXVDl8PZP4SIsKjgiV+oxdM7Z3N1NSVYRgG3738+1x25dW4XC50XUc3DDJTkliQnYkoTnwH3R4vn23fjTsgCGgYOF2+XrpP332TgYF+Djn6eCKjYxge6OfT99/BMTSI5Le9EoC8ohIWLl+JJMmT2u+ArxR4xOHgvjvuZefW7dgT7Oia/o3VBBBFkcHBfkortwQXvilJGWRnFkxYXljfWEVffzeLileFWATuaxiGgcfjJTY2mvMuPJ38glwGBwZ5+80P2fTZNhyOERR/T+SXGR63h5NOPYblK5Zw/T/vwDGNTZ0kSgwOD1BdswunawR7Qgo5mYX+PtxQu6iOrhbqGqpCQIWimElJziJijDiWruvIssxZF5zDusPWTzmmJ2SMdQMwSIiLIT8znfAw29dq3BoGNLW1U9/citPt2e8tASaTibqaWh75z0PU1dT5bEgnySharVZ/j/7ezKLFbMGsmGY1D1XVS2dXK63tjROW+ouiRHxcIqlJmcFeaZfHjdvtxpjirWboBqqmkleQzxnnnkV+QR5erzqnuRsoK87JSCUjOelLn4/7Ahw0XWd7WSUDg8PYwsMRBYHcjFRMioJX1XB7PAwMDdM/OBScp5Ik0dxQR1dHO0tWrp2QANV1PXg3hACtJAgTtmcahoGq6djjYlhWvGBOxObTTz3Pjf++HafTFRRMHf1c8Xg99PR20NnVxrBjYMJ9hNkisMcnExebiNls8QFXY24WgrquMzjUR0dXq6/VKSySRcWrgs+vgD3g7vLNwXE+kevMXlLYw5JlC7n51n9im8ZZYnDYwcYdpZP+fCbl/4rJRHnpLh64+26+8/0rSUiws+GVl3hrw6t4PC5+/Itfk5mdg9erIooifT09tLU24xh20N3VidPlYGhwCLPZwpJly8nKziU8MsL3jBgZ4cN332bTZ5+w7pDDOPq4E7CF2RgeGubdt9/kkw/fJzUtg8OOOoYEe2LQ2UWSRLq7u9my8TMqy3aTlpbG4OAghQsXs/agdWiqxtsbXmVkZJgTTz2T5596gpiYWA458mif4GJtNW+8/BLfv/Y6IqOix70vvhUEQNcu9OEeEOcJgPn45kUIASDsI+ANtHAbM0DOxhz2LUzw93FAXpjk7+w9z7HHGbQsn/h7DMG/H0H4WuklfKUIgIAqcEX1DlxuJwV5i4mNiR9XwipJEv0DvgoBVfWy/tDD+e2f/y/YC60bBtlpKeRnpU+bxdtVWUNrRxeSJAYrB2RZpr6mms0fv8/ilWtYULQQm81Kb08Pn77/DoN9vciKD6RqqkpqZhYrDliH1RY2YR/cXtCl0NHewe3X30JbSxvRUVFTltV+vQkAid6+Tsqrtge35WYVkpyYEULmBOwb99SV4nY5WVi8ClEQpwQeMw1V1QCDxUuKOfGUY4iOiebjDz7jvXc+pru7xw/8vxp1e16vSkZmKldfeymPPfocWzfvwGSaGOhJkkRfXzdVtaV4vW5SkjLITF+Aj8MaLQQl0NbRSEPTnpAMv9lsJS01F+sYK82A6v/xp5zIiaeeGBSLmymA03SDMKuZ7PQUUhPtX+vqlv7BYWoam+nx27rtz3PxOQR088LTL7Dx40/9vd7ihNd0773cG7NpBxgN2Bwjw7S2NdDT1+F3nJCIjowlOSmdqIhYBFHwZZU97mmdHjRNQ5JE1q47kONPOZG4+Lg5lfwHgK3FbCI3M53UxISv7ZgJAAeny8W2skrcbi9Wmw2TycTqxUVYR5Xj64ZBU2s79U2tuDxeFEWmr7eH6rLdLF19AIqybySojwDQsMfGsKykYM7Pufvve4Rbb75rXMXC3nEl4vW66R/ooaOrlcGhvgmP22KxkRCXTEJ8ElZLGNNZ/U31XgHo6m5F0zUSE1JDStWHHUOUVmwJilnaE1LJyy6ekHRwudwcfuR6/v7PP0+7Zht2jLBxRymaro+bjzPO/gsid95yA7KicP5Fl/LJR+/x2ScfccBB6/jkow+x2xM5+4KLcbs9KIpM+e7dPP/ME5xyxlnExsahaxptrS1s27yJ+ro6EhLtHHzo4SxZvipIBO2pqmLDyy8Sb4/ngHWH8O5bGxgaHOLQI4+hoKh41LELdHW2sW3zZirLS7EnJrH+0MNITU/nwfvu4ZDDjyIzJ4fuzk6efuwhLrj4UrLzcmlqaOCBe+/i6ONPIjPb57L08P33sOaAg1h3yKF4x1QBfGsIgKEe38J/XuhwPr4WC/TAi2j0Bn3sixkMkOIyQTeCQFgYDY79fxcMY2JwP1qEdBzAHoXcp33VzfJdOI4AEGZABowC/iFfOc3xGQaG6GuTM0QBJAndLPueBcLUh+4jxA10Q0eaowD4N4IAEEURj8dN5Z5dDA0PkJ9Tgj0heQK7PxGX20lZ5TacTge5efn8/cZbiI1P8NvgQF5mGjkZqTP63tbOLnZV1iCJIiN+Fl8URTwuJ++98RqyLLPuiGOQFYWIyEgG+vr47P236e3pQpZ9Zdqq10ucPZFVB60nOjZuSq9rk9lM6Y5d3Hvb3bicTiLCIr6ZzxdRoq+/i7LKbcFtOX4CQB9DAHi8biqqdiIIAguLVuyX7/e4PcTGx3Dc8Uewau1y6msbefnFN6iuqvWVyMpzY+tHC+QFBClDhSn9lI4gIIrCjFX9AxnQH/74e9TXN/Hko88HrQgZtWdBFOnqaaOmrhxNU0lPzSE9NWcMYBT96t21tLTWh5ApFouNtNRcLBbbOPDv8XhYc9ABXHz5d1BMyozKuH3XwsBmMZOcmEBakv1Lt/jbb6SMqlLb2EJTW8d+bwmQZRmn08XLz73IO6+/iabrs9KdmG0lQOC5pus6w45B3G4nZpOFsLDIoNq71y/0p00DzFSvitVm5YTTTuKwow5HluW59fv7s8HRkRHkZ6UTExX5tR4vAeDQNzjEjvJqDN3AYjETHRXJioWFE97fIccI9c2tdPf1MzzsYNeWjRQvXkZkdPSchVB13UCWRNJTkshMTdon60Sn08Vvf/Un3nrrfSyT2AwKgoAoiKial/6BXjq7W+kf6Jnw+E0mCwlxScTHJhEWFj5ncdEAGTFWTHZwqI/Siq3B7anJWWRl5E/iAODm1NNO4Ld/+O9pv8/hdLFxR2mw3WK2BICsKFRVVnDfHbdy8WXfx2wx8/B/7uGkU09n7br1bN34Gc8+9QTfu/KHCJJPM6Svt5fXXnyOC797KbFxcaiaT0NC1zQqy0rZtnUzVRXlLFy0hPWHH40oiUiSxPDgIO+98yY7t29j9doDOHDdIVjDbEHXo/bWFjZ99jE11dUkp6Sybv0hlCxchCXMRkVpKU8+9jDnXXQJ0TGx7Ni6hR3btvC9H1yNYjYjKzJPPvIQfb29nH7OBUiSyIfvvUtzYz2Xff+qoBDpN50AEAQBdC/hzkForYJRujq6JKCbFXSLAtJ8VcB8fAnAnvF4fi+oN0AFEQNU3fc5Q0fUNd/fdd23G8MAXYPUAjD0GQDhqSbMt+geGIAoYCgShiJjyNJ4IkDgK9Ey8JUgAAJlqlU1pfT1d/mBYvoEpeIimqZSuWenT/AsOpr/+/dNLFy8BIfDgSAIFOVmk5Y8857jwWEHm3eVo2laSKmtJMuUbdtC+a7trD74EDJy8jApJiRZxjE0xMYP36WjrTUo5qWqKuERkaxedwiJySlTOgSYTAobXt7Ak48+gc1sDckMfXMIAJGBwV5KK7YGFwQZqbmkp+WMt6VzOiit2ILNGkZxwfJ9ynzpuo6maixaUsRpZ56I2Wzi9Vfe4dNPNuNxe8aB6pkAXFX1lTUL+Popw8KshEeEYTaZMJlMyIoSJBQ0TcPj8eB0uhhxjOAYHsHt8fht16Z2FfB6Vb5z6TlERkVw6433hmSeA39v72imtqECwzDIysgnNTkrpL82oKRd31hNZ3dryP6t1jDSUnMxj9HT0DTNd82WLebiyy8hOiZ6WkDn09jQMZsUUhITSE9OxLqPPuRfyWe5YdDU1kF9UytOz/5tCZAkCY/by4ZXXuOt1zbgHHEF+60/LxJgL3gSCIg+GoaBR/XidrvQp5h7hmHg9XpJSk7mhNNOZPUBa8aBsNlcV4AUezz5WRmYTMrXfqwEgENrRxcVNfXBCpqczAwWF+ZN+bv9g0NU1TXy9huvk5aZRWp65pyENzX/nCxZkLvf3BMqyqv49S//SEN946RVSXufUSK6rjE42EdHVwt9A90TnocsK8THJmJPSCHcFjmq2mjuz/6JSOfsjAWkTGAdDD5dmEsuu5Brf/j96YkQl5uNO0rxeL3jbPamE/8TBAFRknjg3rtwOl2cff5FPPHwA9jCbFx4yWWIokhHWxv33H4r51z0HaJjfDa4uqbx7JOPceC6dSxcsgzV6w0SypIsoxsGzY31PPrAf8jKzuPI407wV+ZI6LrO0OAAUdExwW0et5sP3nuLirIyUlNSOGDdIeQtWICsmNA1DcWk8MZrr1BVUcHZ51+EbFJ45YXn0FSVi757GarXiyTLNNTV8uB993DWeReRnJpCa3Mzzzz5GJd//6pxbgBfZQJgsgqr6QgAQQCpvxNrRx04BvzqiULoy1EAZBE13IIe9s1b383Hl4XuJ87SB5+bOoi64duu6oiBZ6+q+wC/5v8d9NBdGVMBdmP+0s8Ggxh+El4EXRDArKBbzb57Y2i+bbKMbhL2MjajtWXEScibbyIB4FswqOypLaO7t4PM9DzSUrLHg39/qUZNXTkdXS3Issyvfv8njjnhJIaHhxEFgZIFuSQnxI1/IE8RXlVl084yhh0juFyukMV5f18fH2x4hZj4OA449EhstrAgOeByjrDpw/dobWr0C+L4XnYms5mVBxxMenYOmjpxP2ygVeGe2+5i68YtREdGY5KV/VL2/lUiAIaGByit2BrsPU9OTCcnq3AcATDsGGR3+WaiImMpWrB0zpkvr1fFbDZx7PGHs/7QA9i9q4JXXnqDtpYOFNPMy/0DoF/3Z/CSUxJJSU0iPz+H+IQ4bDYrYeE2ZMXnFiAKom+4+cecrml4vSojIyOMOJx0d/VQs6eehoZm2lo7gj21YzOCHo+H0844gQWFudz4rztRVS2EBGhqraOpuQZBEMjOKCA5KX0M+JfweFzU1JUHbbACER4eRWpyDorJFHJ9VVUlMiqStQcdwNEnHEtEZMS04D+gZp4YF0tWegoRX7M+/7lE/+AwdU3NdPcNTLho3Jd5AgbbNm/jtRdfpbG+AUmaufWkWTFjNpvm3EqkGzputxvPNCX/vnYnH0l00uknk5GVFbSqm/13GkiiQHpyErkZqV+o48YXQQBU1jXS3NqBKPlA7eKiAnIyUlFVbcrKI1XTePTxJxl0jFC8aGmIZsd09ybwJzoygoKcrFnb/00XH7z/CX/7y79pa23HNG2Fj6/yydA1hh1DdHS30NPbGSzLDyXBZGKi40lMSCUyIjqoYTKXcRUQBqzasyu4bUHuIhLik8cRAIH9//LXP+XkU4+fdt9uj4eNO0pxuj2Io+bmTLL/kizT2dbKTf/+J6efcx6yJPP4ww/w/Wt/SEZmNoZh0N7aym03Xc/537k02KMvKzIvPPkECUl2jj/p1HHthT5bP4XaPdU8eO89nHH2+SSmpgb7+wPiw4IgMNDfzzOPP4zVFsbJp51ORmYWgiiier3+94GA2WLmsYfuxzHk4LRzzkUQBJ594jEsVivnX3wJ3oBWkiBw3523EhUTy1HHncjIsIOH/3MPRxxzDMtXrkEd5Yz0VSYAdH87x6wIAEPH0tOI0rIHNG1G60zdqqBGhYEifmEL+/n4hoVXQ3Z6wKMiji5N1xkD5qcA9vNOfl81kOT/48MOuv/fuiKhW+RQUuCbSAAEyv9q68vp7G4jLSWbzLQ832JmDBiWRInGlloam/cAcPmVV3PJ5d/H6XSiGwaLC/JISvD5TiuzLHncVlZJZ08fbpdr3OJ88ycf0lxfw0GHHkVialowAyJJEh6Pmy2ffERj3R4kSQ6ejySKLF65hvyikhA7ndGhmBQa6xu5+R83MjQwSGREBKLwzekfEwURh3OY0ootQavEhLgk8nMXjrEAFBkaGmBX2SbiYu0U5C+ZMFszXXg8Xuz2OM4852QSk+y8+tKbbNq4HcPwidrNJFRVQ9M0rFYLaekpFBUvoKAoj5SURERRoqO9k66uHjo7uhgYGMLhGEH1qj7FZf9iQpJlFEUmPMxGfEIs9kQ7MbHRxMfHYhg6LS3t7Ni2mx3bSunq6kaW9zoPeDweTjjpaJYsLeHGf9+Fy+UK2lfVN1XT1t6IKIrkZBWRlJDqL9XeC/6dTgc19WVBC6xAREXFkZKcHSIQGPBsL1pUwrEnHUdBUUFwwTYV0NB1g6jIMHLSU7HHfbvsYVRNY09DE81tneiGEQIE9vU5KMsKba2tPPv4U2zfvB3RXwY8MxLAhMU8uyyTgICma4y4ndNmmgM/P2j9Ok479wwiIiPwerxzXnRbLRZyMlJJtsfvt2v4VSEAdF1nR3k1fQODCH7LvjXLl5AYH4uqadP2+W3espW333ufFWsPCi2lDpRujh88yJJEmNVKsj2O1ET7nNubpotPPt7I9f+6lT3VtZhn2ObjKwkHh2OQ7t52unraQ5xIRn8uJioOe3wKUVGxyJKCPksiQBQlWtsbqGuoDG4rLlhGTHTCuHeKpmlERITz7xv/j0WLS2ZELn+2o5QRpytEoHImBIDJbOL1l19my6bPuOKaH/Hy88/gco5w6fev8ln0SRJtrS3ccv0/ueiSy0lITkFTVWRZ5qVnn8JqtXLWBRdNqLKPYSApCg/ddw9hYWEcdvSxIVaCPiJA4slHHsQxPMQPrr2O8IgI1FFWgQFC2GQ28/D99+Jyujjj3PMBeObxR7FabZz3nUuC36+YTXz4zjt8/MF7XHjp97CGhfHkIw9iT7Bz6lnnhOgAfJNaAARBQOluxNxYzqwlyWUZNdKCbjUxH9+SGJvIGtMquvdzhj8RPLYZ3VelJ494EIfdMLYlcx7QzwWZEMqQjBZDGCeMsH+GwUzXiqOHhklBjbT6tAS+iQSAIAgYhkFtQyUdnc2kJGWQlbEgCDRCwL8k09HZzB6/4v8JJ5/Cz371W3Rdx+v1siA7g+z0VByOEWw266yzc9X1jdQ2tuJ2hxIAkizT2drCR29vIDUzm1UHrcdsNgf3L4oSmqayfdOn1FZVBMvzDF0HQaBk6QqKFi3x94uPv8xms5nXXnqNJx9+jMjwCMyK+RtTBSAIAm63i9KKvTaAEykyi6JE/0A3pRVbSYhPZkHuokkJgADQHt1zLyCgGwb5C3I469yTaW/r5OUXNtDR3o3JrEw7FgzDQPWqIIA9MYGShQUsWlxMVnY6siLT1tLBrp3lVJRV0dLShtPpnkBQanJpVEmSsNls2BPjyc3LYtHiYjIy0xgaHubD9z7hg/c+Y2TE50Tg8Xg49fTjKSzK54Z/3Ymm6eiGRm19BV3dbciyTE5WEfa45BAhRR+J0s+eunJGxthyxcUmkZiY5tcFMIKZXKvNykHr13HUCccQExsTbHOYHATqmM0KGclJpKckosjyt/L1oRsGLe2d1De34XS59quIpKIoDA4M8PyTz/HxBx+jaeqMqwFmKwzoVb24Pe5p+/29XpWIyAgOP/pwDjv6CGw22z6J/UVFRFCUl0VkeNg3bmwMDQ3hdLvZXlaJ0+VB8L9DDl69nMjwsElLjkdHc3MLDz3yKItXrcFstqDrOiaTQmJcLLIk+axKBTFIOMqyhM1qISIsbFKLuv0Z1dU1/O+f/sGO7bsn1QSYjAgAcDlH6Ohupbu3A5drZML3RmREDIn2VGKi4pBl04wrAkbbAgf+XVKwnMjImHFVZV6vSkpKInfccxNJM7ApVTWNjTtKGXaMhMz56QiAwL2+9YZ/kZicwmFHHsNtN/6Lk08/g2UrV+F1e5BkmbaWFm7+19+5+LLvk5CcjOb1IisKLz37NBarmXMuuHicwF5gnWEym/nwvXco272LU886FxCC10uSJPp6e3n2iUc458KLyMrOweP2jHsHGoaBYjbz8H33MOxwcO6FFwPw3FNPIMsyF373siABIMkKTY313H3bLZx/8XdJzcjg1ReeY2R4mO987/sTtgCkJid+ZQR350IAKIqCydGPWL0Z3K45K33rYWbUSCvI4ueBNebjyw5NQxzxIrq9iIax9/6KfkJg9L8DYHSybYHpos4Pkv0D/Oe86mNf6vJVTUOeS5WjKKLGhn+uJMCXQgAEwH9dYxXtHU0k2tPIySwIbh8LoHr7u6ms3ommqaxas5Y//vUfWCxW3G43GSlJFOVl43a5Ef0LpNlGa0c3u6v2hLQABI9T1/j43Tfp6+nh4COPJSYuHrPZHLLoMAyDXVs3U1W2M+iV7Hup6hQuWsrCpSuD/x67YNE0jduuv4WynbuJiYr5Wiunj712qqpSWrHXkzk6Ko6iMZ7MoijR09tBRfUOkuyp5GWXjLN8DEQgkx4ZFekTmhOgq7MHSZI49PCD2LZtFx+9/xmGYUyb9feRR76WgaycDFasXMKiRUVERUfidDnZvbOCLZu2U1vTyPCwA1EUkCR5TvZkuq77yQtfS0F2biYHrVvN0mULqatt5LFHnqGttQMBge9+7zzMZgt33f4gmualpr6M3r5uFNlEXm4xcdH2MeBforevg9r6yhCLN0EQsNvTiI9LDi7ygtaVBfkcfeJxZGZlYDabkfze4pMBXgFIjI8lOz31W1HuP6NFomOEmoZmOnv7fOKM+2naSpKEpmls3bSVN1/bQFN9o1/8cfovMCkKFpNlymeIYRi4PG48Xs/0xJiqkpaexunnnkXxouLgWJ5t+Cq6ICE2mgXZmYRZv5k9sUNDQ/QNDLGjwicAaBg64WE21q9dOWPCzOl0cuddd5OSnU9cQgKaqmI2mVi9pBiL+auhsVFdVcN//ey3NDQ0hrwLZ7SmEXzKyG6Pi+6eTjq7WsaRloGICI8iIT6FuFg7JsU8LREgCCJ76sro7GoBfDoDJYUrCPdbW4YSAF6ysjK4454biY2NmdEzfOOOUgaHHbMiAERJpq+3m7/9vz9wxrkXIooiG15+get+/l9YrDYMXcdkNrFrx3Yef/ghLv3+VYSFR2LoGqIk8czjD5OWkcEJJ5+GZ/T6ZFTpuqwobN28kc2ffcqpZ5yLIO0V4lMUmZ1bt7Jj+xauuOpaFJPJRxxMcH6K2czLzz3Dzh3buPwH12KymHn3jddpaWrkB9f+KDiXRT+pcNuN13PkscezcPES3n/nbWr3VHLFVdcGq9ZGEwBpKUlfm7XNRASASZYxN2yDjtZ9tvnSzQp6mNlX8iv73HpCB/LMAcKMgI84FswwNaCZx5tzYbcRhz3ITpcPsO+LZ/18fP6AX5wE40/HA3zBE0W3mlFjw2Z7YDO+Rl84ASAIAgYGDQ3VtHY0jvIvFycE/0NDA5RX78DjcZG3YAH/968bSbAn4XSOkJpkpyQvBwPfYnUqgaKpom9giG2lFQwPD497uMuyTN2eKjZ//D4LihaxeOVqTCZTyMss0EdWvnM7ZTu3+awyRDEI+gtKFrNo+Sqfa8aYl6/JZKK5sYl//e8/GHGMEB4WPje26KtHAQAGpRVbGBzqDy7oSgpXhNxrSZTo7G6lqmY3KUmZ5GQWjCMADN1AMclcdMk5JCTEMjg4jC3MhixLaKpGfV0jn3y0mfq6RhTT1Fn/APCPjAineFEBq9csJyc3C0kSqattYNfOCjIyUnjhudfo6OjGbDbt18xFQEhNEARWrV7G2eedSm9PH7fdfB9ut4ef/dfVbN2yk6effIHGlioGh/oxm8zkZpeEWGIGBLe6etqora8I6a+VJYWk5Eyio+JCsv6KSeGwow7nqBOORZKgpaGB9OwcFMU04cJa1w0URaYgJ5MUe/z8O2Uss6tq1DQ209TWiW7o+62c3edSIdPZ0cmGl1/j4w8+QvWqM+qVNykmLGbzhJoAuqHjcrnwatNrPGiaRmFJEWeedxZZOdl4R5UMz3a8S5JEerKdzNTkfVKk/zoAh5aOLipHCQAmxMVw0Mpls9rPgw89hFeQyc7NR9U0RAGWLywiJvKrU0L9yccb+ePv/o/Ozu4ZtwOMXQcIgojH46K3v4vOrlaGhgcm/KzNFk5CXDLxsYlYLLYJyfTAPiuqd9Lb1wmA2WxhYeEKzGbbuM97PB6Kigq4/e4bCJshqfnZjlL6B4dChECnIwBkRaGyvIxbrv8n1/38l2zbshEROOPcC/B6PIiyjMfl5o6bbyA2Pp7jTj4NzS+219/by8P338OFl1xKbv6C0BaAUc8axWzio/fe4+MP3uPiy3+wtwoRX/vBhldfZqCvN9hyMNE8NgwDSZapr6vl7ltv5uwLLyYnL5/6mhoefeA+vnfVteTk5aF6vQiShGNokNtuup7Va9exau0BfPLh++zeuZ0rr7kOxWwOfv83hQCw6l7k8o/3Kfs/MQgRpwAnY0C6KIaCFZ/dUOjyXxbHkQT66OMN9ByP5gFEMbQAWhTGl6QL4sySqOJkMvRfYcJB3Adspeug6cgDTkS3l/n4it7I/bWE1z8PID71fPLYIyZwExktGiiAOCbBIEq+uRjQiMAApFGVKBqo3i+WAAhkxhuaqmltbyQhPoncrOIJwb8oSjhdDiqqdjDiHMaemMhf/nkDCwqLcTiGyUxNZkFOJqK/735fQJrL7WHLrnK6e3vHvaREUcTtcvHBm6/h9bhZf/TxhIVHjit/DIjuVFeUsWvLRjRN9fdcGxi6zoKSRSxesTpEtC0QFouFTz78hLtvucNXMm6xYlK+/r1igiBQXrmdvoFu30LOGkZJ4coQj2tJlGj3t3ekJmeRnbFgwgoAr9fLeRecTkRUBPfe8TCyIiMrMoos43S5cLvcU2b9fTZ3XsLDw1i2YhEHrVtDRmYqjpERynZVsGnTdqoqaoiNiea0M0/gsUee9Wf+P5+yRcMwcDpdrD1gBZdcdh6ffLyZ0t0VXPSds/nrX/7N2+9swO1xYrHYyMsuJjoqNgT8A7S2N9LYvCcku2UyWUhNySIsLCrYeqKqKmFhYRx78vEcddzReDweairLSE5NJzouHn2CHnBd1zGbTSwqyCP2a27P9rkytLpBW2c3dc2tOJzO/eoSIMsyLpeLt157g9dfeg2Xy4Usy1Nn+PFlqyxmS4imiKqpuNzuSatrAuETH1NYd8g6jjnpOGJiY6e0NZ2OSLCYTBTkZpEY/83XixgYGKC0upbOnj6/CJ5OdkYKi4sKZ7Wft99+m53lVSxesSo4NxcX5mOPi/lKne8nH2/kb3/5N42NzbOuBBhLBKiqN0gEDA71TQhSLWYrCfHJxMclYbWEIQjjK1LKqrYzMNADQJgtgpLCFcgTVDi5XW4OPGgNN9zytxk/4zftLKN3YHBWBIDJbOL1V17mw/fe5eof/Yznn37CZ7u3ZAkYBiOOEZ56/FHamps5+8KLsIVFIAg+YdAnHn4AXde48oc/nhS4AygmE5998hFvbXidy6681ke9+zw2MZlNPPv4owiiyCXf+z5et3scgRDUlhAEn57AvXcxODTEBd+5DN0weO7xR3A6R/jeVdf6rI8FGHEMc/uNN7Bs9WrWHngwn370ATu2buGqH/4Ik8XyjSIABEFA7mnGUr97/4H//baQGIXTJxoeE9mPTQuQxPHbAp7mjCIdxpANuiSNIRdGkQa6n2IQRXRR8CnSB34kC+MPWpiCWAjuazTu0if4zATXauwGfe8+RIzQ39PxlfSP3qeu+1T2jVGf0dX5qomvIvj/IjqO9M+XCNBF8ERHglVE9E8u0RaLGJUOgS2iDOKoxIqu+QgBEXQ9MNcMH1EQXBB6wOP44ggAQRDAL2YWCv6lCUvjPR43FVU7GHIMEBERwR/+7++sWnsQw8NDZKclsyA7c7+9UAzDYMvuCppb2yZcDEiyTPmOrezevoVFy1dTtHgJJlkZ9zIQBF+ZeH1tNTs2fhIi4mYYOsVLllOyZMWE6tlmi5kXnnqOZx5/GrPFjNVsnZPF11eNAKjcs4ue3g7fOZoslBStwDIqIyP5hZtqGypJS8kmKz1/QpDi8Xg45NADOeX047n1pnupqqzBZFIwDBBFYcqx4PV4kRWZRYuLOPTwg8jKzmR4eJitm3ew6bPtNDW1+u6JbrBq7XIOPGgVd972QFBB+fMMt9vNaWecwPpDD8Q54mTTps386f/9CY/HTZgtnLzsEsLDo4K6CAGhyaaW2mCvayCsFhspKdlYreFB8G/oOtl5ORx70vEsWroYA9i56TPMVgsFJYsnLOnWdR2TorCwIJf4mOj5d8sMYnjESU1DMx09vQjsX5cAw4DNn27kzdc20NzYHNw+VUiShNVsRRIFXB4PHq9n2gy+1+slMjKSk844hXWHHhxsUZpLaLpORFgYC7IziI+J+laMgdr6RnZV7vGJ//mBVcmCXHIy02c1HqqqqnjuxZdZuvqA4PuxOD+H1MSEr9w5l5dW8vvf/S81e+rmXIE3mgjQNJWBwV46ulroH+iZ8PlkUszExSWSGJ+CzRaBb2lhoGkapRVbGHYMAhAVEUNx4XImMl12uVycdMrx/OFPv5rxMW7ZXUF3b19IJc50BIBiMvHAPXchijIHH3YYTz32CBdecimGrtPYUEdjQz1dXV0ce8LJRMf4SN6O1lbefvM1RoaH+O73ryI+wT7OAWAsyfDS889Ru2cP533n0pDPmkwKzz35OE6Xkx9c8yM01TuuCtFXlekHuv6KhZv/9Q9OOu1MDlx/CN1dHdx3520ccvgRHH7UsT7x0OFhbrvxBpavWsXag9bz6ccfsGPLFq689jrMVus3hgBQFAXJ40Kp/AxGhr56BMCXSTxMRDaM/tmMyIYJNoiEVjsEPyKEgvYAoNGNCT6jzwKX6ZP/fKrznI+vFugX5/A7+472J/mxvk97D9oxCxJqfAQokm9KiCBGpUFkdoht/Zzfu18EARDI/Nc3VtHW0URCfDK5WUWTgn+v10vFnh0MDvZhMpn49R/+H0cccxyO4WEyUpIoyMnc7y+Tsv/P3nvHx3VX6f/v26ao996LLVnucu92bKf3QgqkBxISEmBZ2GX3u/tl97f7ZXfZBBIgkEAgEAKBBAhpTuzYsR2XuMtW7733kTTtlt8fUyxZxZItO3ai83olskajq5k7934+53nOc55TWUN5Vc2YibUoSdj6etjzwTbMFgvrtlyFYrZgtVjGfK+SJNPa3Mixg/uw9ff5SQBBgEXLV5M5OwdN1Ua54YuiyK9//hJ7du3GavUQAGaT+bL1BRAEkaqaYtom6MmURIkmr3NzSlImKYmZYxIAqqoRHRPJ1//uKzQ1NPPiz3+Lpk2s/PAY20FmdhpXbF5H3jxPJa68rJI//eEt2lrbvUZaMoLgmSRw6+3XERIazMsv/WHS0wPOJzRNIyDAyje//ThlZcX8+7//B/39fQQHhZKVPoeAgGA/+BdFEbfqpra+nPaO5hHHCQoMIT4+3W8c5ju/K1av5PpbbiAyOgrDMOju7OTYwY9ZumY9wSGhXvWMgK77HKENFFkiJzON+BnZ/5RCVVWqGpppbGlD07RpU4/4rtG21lY+2vERB/bsw263n7UlQBRFJFHEfRbTPo8Rppvk1BSuu+UGFuYv8ntGnAuZChATFUFmSiJBAZ8fz4hTJWVU1TUiShJ4fUgW5c0iLiZmSmt4f38fv/zVy6Tn5BESEoqqamSmJpKZknRJvu8jh47z3X/8Hr09vee9Zvra6TRdw2bro72jme7ejjFHIsqyQmR4DDFRCYSEhOF2uzhZdBiH02MuGBEWRc6shWMSXw6Hg1tuu4F//pdvT/q1nSgup62za9IEgM+B//nnnmFO3nxi4+PZteMDHnjkK/T19vCrX/ycsLBwNm6+CrPFjK2vj5KiUxQXF5KWls5Nt3+BsPAIVKcTQRRRTCbPnua9L32Ava62mpd/+SIbNm1h3qLFuF2n23VMJoWCY0d5+69/5qm/+zYp6WmjTADPvH8lWWb7e+/y1l/e4Pa7v8jSFas4dGA/Rw7u44m/+3vMZgv2wSGef+6HzF+8mFWr13Fg3x4Kjh7hsSe/8ZkiAEyyhLnmJHTUgyAxE58y6TCW37IwwXNm4rNPAIjnAPinmppNpf//LESAn68SxnbkGCnGEVEjgtHN0unjyVbkxMXoyOdNAlxwAsBv+FdXRmt7IzHR8WSkjg/+VVWlvPIUPX2dSJLEN7/zXW689XYGh4ZIT0ogKzXpgmwkDS1tHDtZdLp6c0ZIksTRgx9TXVbKsrUbSMvKnlCmL8sKvT1dHD3wMZ1trX6jNZPJzMKlK0hOzxzldi9JEi6nix//748oPlWMxWpBljxyXkm8/EYEiqJITV05za113u8l8nIWExIcNoIAaG6rp7q2lNTkLJITMsaVKbtdbq6+fjPX3bCVd97azrZ3PhwTBOm6jqqqxMbFsGHjapavzMftdvPxnk+YnZtJS1M7v335NSzDCBzDMBBFkSe+/jClxeW889b286poTeX+0DWD4HATh4/sp7e3j7DQSDJSc7BaA4eBfwmXy0FNXRmdXkWFL0JDo4iPS0GSZP9UA5PFxIYrNnL1jdf6ndslSebEoQMMDQ2ycsMV6F6Fg38clGEgSxK5WWnER8+A/3PKUQyD1o5OahpbsQ16WkiEKV4Pw4H0iPVBllBdbvbt2cdbf36TAdvAWQHX2fIhXdcxdIPlq1dw9Q3XEJcQP+7o0sm8d0EUSE9KID0p4bJx/Z6uOHisgNaOLr/8PzgwgIV5swkLDZ3SuTAMg9/+5reI1iASU1Jxud0kxcWQl51xyb73P7/+N57535/gdDqnhTj1GF+KGIaObaCPjs4Wunra/SNlz9w3I8JjCAkOp6GxCpfb6SWhEsjKyBvTL8DhcHDTzdfzL9/7zuQJnrJKmts6Jk8AiCIuh4Of/fhZ1l+xBcPQOXbkEPc+8DDWwACKT53i97/5NZquoSgKZrOF6JgYFi1dyrx5C5EVxV/Nd7tdVJaXk5aRQVhYOLrhIXlLCgv54+9fIW/eAjZtvYaeni6sFgtmixX70CCCIGC2WPnNL36Owz7Eo09+g+iY6BEkgSidblU0dI+UWgDefetNPvzgfRblL2XB4sWcOHqEzVdeRUpaOg67neef/SF5CxawcvU6Du7bwwkvAWAZgwBIToy/bO5jHwGgKAomWydi2VHQ3TPIciZm4tMG/OMi5bOge5Ex2KKpsk+TJAO8Qxx0Qz/dgi8a6DqYhsnwJ+0nblZwRYUOew8SosWKaI5AD0rA7nRdmgSAT65cU1dGW0cTsdGJpKfOHrPnXxBENF2jouoU3T0dCKLA409+kzvuuRen00FGciIZKYkX7NLq7u1n35HjGLox5jUiSTLtrU3s27mdqJhYVm3YjCCKWK3WcY8pyTL2oSEKjhykoboKwTsmMCAwiPn5y0hISR3Vf62YFDrbO/jh95+mtaUVk8ljQhdgCbjsSABRFGlsrqWuocKf1M3JWUxYaKQf2EqiREtbA1W1JWclADwjsUzcdc/NWAOs/PwnL3vaxYYRQm63G6vFworVS9h4xVqCggM4eqiAXR9+TGNjC9/41qMMDdn5xc9fGTEvW1VV4hNiefzJh/jTH/7G8WOnMJkurGGZr9rV3FJHTX05AgKREdGkpszG4q3k+87j0NAglbXF2LyGir6IiIghNiYF0Ws6pmkayakpXHndVSxemu+XcYuihK2/l70fvs+s3Llkz5k7Qiqq6wayLJGTmUpCTPQIMIIgzKQ+Uwy7w0llXQMtHV2TagkQBAGHfYiGmmpSMrKwWK1jVuB9o0b37f6Yv/zxDWz9trP6AowXmqqimExsunIz19x4LRaLBfd59PubTAoZyYkkJ8R97q4XVdPZfeAQA4NDfgPA2KhI5s7ygPapzkDfsX07FbUN5MxbgMvtJjYygoVzZl3SxNfvf/cnfvrjX+B2uydlWDmVfQQMBocG6ehsprOrbcTEk/HIs4S4FNJTZ495H9ntDu6861a+891vTPp1FFVU09jSNmkCQJQkent6eOn5n3D9bXfQ1dVJUcFx7nvoy0iShChJDNhstLY043I5iYyMIio6BklR0FXVQ9CKIpKi0NbcxPe++w/Exsez5Zpr0VSVwpMFHD9ymOWrVnPLF+6hq7OTfbt3sm7TZsIjImhvbaO6qoKVa9bR19vNH1/5Df39fdz1pfuYM38hkiigqho9Pd2IgkhwcDC6pmF4z7kkyxQcP8oH775FV2c3mqaxMD+fL97/ELb+Pp7/0dOsXLuBRUuW8dGH26ksK+WxJ55CNimjpgBcjgSAySRjriuElroZ6f9MzMTFBPqcDeRPAviLkwD8E2GqCRWQxgiw7wH5Oqquj2y3Nzyd+p7v9XM+HbrVjB5oQVckT4+/oYEkIyfmM+g+9732ghEAgiCi6ypV3hnmcTFJpKXOQhTGA/8qFVVFdPe0IwCPfPVr3HP/Q2iaSlZqEsnxsRc8Yd/zyREcTteYybTPWffARzvoaG9l9cYtxCQkYR6nSuyR/AuIkoSuaZQVnqS06CSqNzkKj4xiwdIVRI7R32exWCgvKePZH/wI+9AQsiwjiiJWk+WiyNKnL3GTaOtopLK62P9Y7qyFRITHjCAAWjuaqKwuOisBAB4VQGJyPKtWL+PNv7znn4ftAyHpGals2ryWWbMzqa6q5cPte6goq0bTdKwBFp78xiN0d/fyyxdeGXEuXS4XK1cv5bobr+S5Z16kva1zBEFwIcC/YRg0NFXT2FyDopiIioglKSEdk8k8Avz323qoqikdOS5LEIiJSiAqKsEjmfWOGZy/aD433XELSclJ3haI01WewmOHqa0sZ/m6jcTEJfj7u3Vdx2wykZuVRkzkZ9+s7eKBQo3qhiYaW9pRVW1SIyQLjx9BMZnJnb9wTHNG37UjyxKFBYW897d3qKqoRsAYV7001tqkulXiEuLZeu1Wlq9eiSzL59Tv7/Ea0wkLDiYjNfFz6xnRZxtg76Fj/vVI1zSyUpNI8QKfqRIAZWWlvLttO3Pzl2EAEaHBLM7LueRVFS/+/Ne8+PNfI4nSpEZXTpUIMACHfYjO7lY6OluwO4bGfX5qchZJCeljEgAOu4MnnvoKDz78pcl/JtV11DY2T4kA6Ghr45WXX+K2O++hoa6OolMneOCRr/jVWr6igP9+0k+POvQZBsuKQntLC8/98H8wKWbKS0sQJInQ0FCuvPYGVq1djyRJvPPmX8AwuPrGm9E1DVV18/rvf8fWa64jNj4e+8Agb7/5Boc/OcCsWbNJz8pC0wxKiwu59oabWbx0md/w06eIU0wmnA4HnR3tdHV2YgkIICMjE7t9iJ/+6GmuvPYGMrNn8e7f/kpvTzcPP/rEiHGNlzMBYBEElLIDMNA3QwDMxExckuB/rOcLUwf7nDm9YpypFbo+huekcfb+f32Cn00q0QI9yIwaEYZoCQLJgmgJRQ+IxG53XloEgEfK76aqpoTO7jYS4lJITc4eITf2P1cQUTWViupCuns6AHjgkUe59+GvIAkwKz2Z2KjIC37Z6brOx4eO0dPXP24iLSsytZUVHP54N2lZs8hftRbzGSMBDcPAajEjSRL9A4NI3g1elCSaG+o4eeQQ/b09CKJIZHQ0C/KXExUXjzYMrAFYrFYO7NnHL59/0T9hQEDAbPL4AlwuBEBXdxulFQX+x7Iz5xITlTCCAGjvaqG88hSpydkkJ6RPSACoqkpaWjKbtqzl1d++gdut+q8rWZZ5/KmHsA/Z2bf3EGWlFdjtThRFRtd1wsLDePIbj1BeVsmrv3kDZViFX3W7ufeBO4mMjuDHP/zFCGJh2s+LIKIZGrV15bS2NxJgDSQmKoGYmAQUyYRu6Ah4PvPu3g6qaktwOk9XvCRRIjY2mfDwGA8p4nZjMplYscbT7x8SForqVkckor3dXRz+eA+CKLBi3UaCgkP8XgFmk4m5szOJDPt8mLVdzDAw6Ozupaquif6BAQRBHDeXFCWJ3q5OTh49xOIVawgKDh63D9/T/yvT1dHFjvc+4OOP9uJ2u88KEH2f+aKl+Vx/8/UkJCX6DSPPCfxjEB8dyaz0VMwm5XP7Odc3t3L8VDGa6hnXKIgic2dnER0Rdk4EQF9fH7/57W9JzZ5DQFAwAVYzS+blXvJjFAcHh/jnf/weuz/aP2pSzvSRp557yOl00NndRkdnC4NDo0e3zc6aR1Rk/KhWO9+1/v3/+R7rN6yZ9N+tqG2gur5x0gSAJMs0Nzbyxh9/z6133E1tTRXHjxzioUcfx+QdlefbZ8bdawwDUZJoamzk+Wef4d6HH8XpGGLAZiMuIZHw8EgQoLe3m1de+gXX3XgLaZlZqKqKYlL47S9fIDNrFms2bMTt9qgKik+d5MTxowwNDZKQmETRyRM88tWvkTVrtp90HP66BK8/kUdlZiCKAqdOHGfb229x930PEhgcxOu//x2hoSHcfveXcA8bV3g5EwCiy05gxaHpHf03EzMxE2MDcHEKzx1FEAhnAfziaWAvDP+dszVJGiO+jADxo3IzY3ygPxUPgXHIC1dEEARakSNnoVsiLk0TQF+vcmVNMT29nSQnZpCUkOF36j2TKHCrbioqC/2j4u576BHue+RRrGYTszNSL+rs46Mni2hoaRs3ifaNBNyzYxsuh511W68mODQcyxkjkERRJCs1iZ5+G63tnX7ZrizL2Pr7KTx+hIbaanRNIzgklLmLl5KSnoEBI6p+FouFv73xJn9+7XVMw4gGk2LCarZcFgRAb28nRWXH/I+lpcwiMT5tBAHQ6SUJJjIB9IXb7WZ2ThZXX7uZF3/2WxwOh1/+braYeeobX+bI4RO8+/Z2rBarvwrldrvJzEzj8a8/xLZ3d/L+uzv9Pf66rhNgtfLUt75CcWEZb/zp7Qsm/xdFCbfbSVVNCV097YSGhBMTlUBERAySKGMY3sQLgfauFmrry0f0vUqyQmJ8OiEh4ei6jtvtJjE5kSuvvZr85UvGrOSKokjBkU9oqK0hPCKSZWs3IMseUsRiNpObmUaUF6jMxIUJp9NFRV0DLe1dgDGuykhV3ezftYOk1AyycudM6P4NIEsSTpeLD955n21vvYuu6YjS2OuX6laxWC2s2biOa2+6jsDAwHOX/BseIJAUG0NmahLKZaRMuhBxoriMusZmGmursVgDSEhKZuGcbL8J4lQJAMOA3/3uFQRTAHHJKciiyJJ5uQQGWC/5c1F4qpjv/sP3aG5quaA+Kr7JAW63k66eDjo6mrEN9mEYBuGhkWRl5qHIplF5h9vtJjU1hedfeJromMlPVqhuaKKipn5ke4NhjJuISbJMQ10t7739N2667U6amxt5/+2/8ejXvk5IaOgI0n8i4k6SZdpbWvjv//w3vvTgI2TPzsXldqG6Va9CQKaooID9ez/iiw88gtniaR+zWMz84bcvI0kSd3zxXuxDdgRBQFFk/9+srarmD6/8iq9/6x+Iio0dQQAgCIhjTDpCEPjl8z8hKCSEa268GceQnd/9+pesXLOG1es2fCYIAEVRMA32IpZ8MtP/PxMzMd1gH/3cQP+Ib4UJAP+w3xHGeu4Yx2QckK6PQQoY4xEBxrDfmV4lgBpiRQ9UEEOTsVunpx1+WgkAUZRwOAaprCmmr7+H1ORsEuNTvfukMSZRUFFVSG9/txf8f5n7HvkKYcFBzEpLvujJTlllNaVVtRNKaWVZpuj4UYoKjjFv0RJyFi7CJCsjEnpN14mLjiQvO4PK2gbqm1v9bLooSRi6Tk1FOaWFJ7D192EymcmYlUvOvAUEBgXh8s7qFUQBWZJ5+cVf8dGOXSP8BkyygtlsHjHr+9IjAET6+nsoLjvmr2QmJaSTmpw1TOIu0dPbSXHZMZITM0hNyjprC8Dc+blcd8NWfvrcSwwODnn73HWCgwN58huPcPzYKd568/0RyafL5WL5ynzufeALvPDT31BwotD/c7fLzezcLL782L28/NIfKDhRfEEIAEmUGHIMUlldRL+tl+jIeKKi4ggJDkMSJX/bCEBzSx11jVUjDKxMJjPxcWkEB4ehentE8xbM5abbbyU1IxVN1UZVjCVJoqujnROHD6KpKuGRUSxZtdZfCY6LjmJ+TtbMnnQRQtN0aptaqG9uwe1WRyX9oigyMGDj6IGPMZnMLF+3wbNxnaU6L4oiuqbxzptv8/7b29A0bUR7i88bIj0zgyuu3MzCJYtQFOWcR/x5CDML6UkJxMdET6q14bMcQ3YHh08V09fbT1lhAdagIHLn5LE4b7b/c5gqAQCwe/duisoqmD1vIYaukz83l/DQ4MvinHy4Yzff/8+n6enuvWheKm7VzcBAH5quERIcNib4B7Db7Xzpvrv45reemNLfqWtqpbSqZpS/gX1o7DYEWVGorqpk357dXH39Tdhs/fz2pRe57Y47mTN/AS6HY8Trn+j9GYbBy798gabGBu645z7iExLQNM9arygyb77xJ9xOFzfdcaef1LNYzPz5td/T0tLEA498FZPZjOp2e3wFJAlJEtn+3js4nU7uuPuLiMMNYYe1oJ1JRrS1tPD8s89w6xfuJjU9g46ODl59+Zfc99DDpKRljCAtL0cCwOFwILldKA0noaN1pvo/EzMxbcB//G8n/MF48v6xQP+ZgP9MsD/VNrrhOfWZYH84EeAzBBCHY3xjbALAexzd0FF1A5MkjO46MIb9viCgxydBdBwExDDoVC8tAkAUJQaHbFRUFTJkHyA9NYf42CR/H9uZQMjuGKK86hS2gT4AHvzKY9z70JeJiQgjKyXJz1JfzGhoauFESfm4RoA+QNXT3cXe7e8REBjE2s1XoZjNI0YCGoaBJEksmZdLSFAgtY0tVNY1+AGeZ1SgRG9PN6WnCmiqr8HlctHW3snma65nYf4SHHYH4DmO2+XmJ08/R2HBSSxeEsDAQJZkrCbLtBouTTcBYBvop7j0KKp3jFNsTBKZabl+YCuKEn39XRSWHCUpIZ205OwJCQCXy83i/Plcf9NWnvvhL+jr7UeSpLMSAE6HkzvvuZlF+fN59ukXaG1t9yfnLpeLa6/fwoqV+Tzzg5/R12eb9nMqSTIDA32UVxVidwyQEJ9OeFgUQQHBflNMn2lmQ1M1zS21I5YOiyWAxIQMLJYAj9Gh1cKyVcu55sbrCIsIHyH5H3GDiyJH9u9laGgQl91OcnomufMXnk7SDIOEuBhmpaVcUM+DmTgdXb19lNfU+1uEhq8tddWVdLa30dzYwIYtVxMUEjKpcXyiKKIbOnt37uH9t9+jp6sHSZbQNR1ZkVmxZiXX3ngdEVGRHqLIOIcRf3h6lCPCQsjJTPtcjfibKJpa2ymurME+ZKfwxGGCQ8PJz1/CvNmZ/ucEBQVNuaWotraGv7z5FnMWLUGUZObPziI26vLx6Nj14V5+/NzPqaupR1bkC+5f4FMEeJa1sdta3G430dFR/OjH/032rMwpHb+xpZ2iiqpJEwCSolBVXsaJ40fZuPkqEAT+/NrvCAoK4s4v3Y/bS/RP5ryIkoTN1serL/+aqooKlixfSWb2LIKCgnA4Hbz/9t+Yt3Axq9etx+U6TQD87Y0/sf/jvcxdsJAtV19LVHQMmqbR2d7O0UMH6Onu5o677iE6NvYMU9ixCQCTxcyuD95nxwfv8/BjTxAaHkZNRSXb3nmLx558ipDQsBEqxsuRAHAPDqDUnICuGfA/EzMxbcD/nHr6JyPtZ6SsfwTgF0e3Ckx6IoAx4tdOj500Tv/bl5vpmge8ayou1cBl6Oiqjks30DQdTQCnZuAywKWC2xDQBRF0FQWDWJOGSZYQRYEgk4yoSJ73qUge4z+rBTk5H1UOmBbp/7QSAJIk0dvXTUV1EarqJis9l+jIeE9vKWeCf5mBwT7KqwsZGhpAFEUeeexrfOnBh0iOiyE5PuZTmxfb2dXNsaJS7A7nhK9BFEU+2buLprpalq3dQEp6JooyWgWQnpTArPQUAJrbOymtrEHVdb+sTpIkdF2nuaGOsqJCXn7pF/T12/in7/07q9dtwOl0YhgGiqLQ1dXFj77/NM1NzSOArSgIWM3WS9IcUBBE7PZBikqP+kczRUXEMitr3jDpo0S/rYdTxYdJiE8lI2X2WQgAF8tWLOa6G7by7DMv0tPd6yUANMIjwnjyG19mz0f72fHBbkwmk0cm73ITFhHG177+MKpb5Yf/+zNUVUcUBXTdwGRSeOKph2hsbOEPv/vztJ5LAQFREunu6aCiughN00hLySYkOAyLOWAY+BfRdY2a+jLa2ptGHCMoKJT4+DRMihlVVUlOTeGq669mQf4iJK/L/5j3pSzT0drC0QMfk5SWQVVZCctWryM+KcU/V9s37z06Ipy05ARCggKRpRki4ELH4JCd0qpaunr7PD22XvKn8PgRIqKiOXHkExYuWU5KRtZZ2wCGr0uSJFFRVs5rv/kDNdXVJCQksGHrRlatW4vF4rl+ziV80yBiIsOZlZ6C1Wye+RC9UVBSTltnDw77ECcOHyQ8OoYNa1eTlpR4XgSAw2Hn1y//hpikdILDwpmVlkTqZQSkAMrLKnn5V6/y4Y6P0HX9U92nDMPA7XLz+JNf5oGHvjjl329p7+RkacXkFQCyQkV5KUUnC1i7aQuCKFBSVMT2d9/iiW/8HeHhEVPympFkGbfLxcF9ezl0YD89PT3IskxSSgr1dXXceMsdZMzK9pPBZrOZV1/+FbrmJik5heKiQv9rj4iMIm/efBYvWYLJbBm1xoxFAIiSjMM+xLP/+9/MmbeAtRs2giDw8Ue7aG6s5+GvfBXO8Hm6/AgAA8qPQEsNCDP74EzMxIUF/5M08Ru30j8G6Pc9169MFIZ98RIC/uMJw57vW/y8/9MNUHVcmsaQU8Pp1nCoGgNONza7G80aiGYIaIjoCLg0HVXV0Q2vgSug6ga6ISCJApLkab+SZRmrxYTVbCIk0EKg1YyCG1mRkSQJxWRCUCQMBEwmM4gChmjCEEzn3LJ5QQgAH+Pe2d1KVU0JkiSRmTaHiLCoMUGcJEn09HZRWVOE0+lAURS++tTf8cX77ic1IdZvmPRpRX9/PwUl5XT19k/IysuyTENtFZ/s+YiE5FSWr9+IoRsEDKuI6bpBUICVJfNPGze1d/dQVFaFW9P8JIBPDeByuTj48R5++6tfYOvv5/FvfIv1mzbjdnvm9ZrNZiorKnn2v3/I0ODgsETKQBREzGYLJvnSMogSBAGX20lRyVG/W3N4WBS5sxaO6H0cGOinoOgT4mOTyUzLPSsBsGr1Mq669gqefeYFPwGgqhoxMZE8+Y0v8/62XezcsRdRFAkNDWZR/jzWrV9JRGQ4r//xbfZ//AmK9zPRdZ2AACtPfP1hdnywh08OHME8TeDGd3+0tjVQXVeKIptIT51NUFAIimzyg39RlHA67dTUldHV0z7iGCEhESTEp3m9A1QWLF7ILV+4hYSkxBEu/2P+fVHk8L7d2IfsxCYkUnrqBFdccwPBIWGjjLF0XUcURYIDA0hJiCM+Jmpm77rA4XS5qKz1jApEEBgasFF4/CiZs3M5cfggwaGhrFy3aWpSfcHjEVJXU0fxqSLmzJtDYnLSiKR+quEzikxLSiAxNnpGKTIshuwODp8sxq2qDA4McPTgPmLjE7ly6xXEDpuoERgYeE4V8Dff/Ctd/UOkZGSTEBvFnKz0y+4cud0qf379TX72018yYBscYb56McM+ZGfLlZv413/7RwIDp65eae/s5nhx2SgCYDwjQFlWKC8r4cTRo1xx1TXohoGmuvn1C88zJ28uN956xwh/l8mGbDLhtNvp6+0FQcDhGOKXP3ueO+7+EvGJSX6Sz2RS+M0vXyQoKJAvP/EkdVXVdHa2IysmUtPSCAkNxe1WMcZYF84kAERJRtdU/vj7V2hvbePu+x5ElCQEQeCNP7xCYlIy1910y4j+/8uSABjqh2M7PMn/TMzETJw76J8Q+J9JDkyi0u+X9vvm7Imngb/vGIIX0MviSPDvO5YOuqrjcGsMqQYOt8qgS2PQpTHg1HCoOi5dQDVAM0ATRNyaZ8yv5l0TDAQQBURRQpIEfzuVSVEwmRTMZgWTImMymbDZBqmtb2XtivkEBVk9BIAkYVLkT63QPS0EgO/Ft7Q1UFdfgdUaSFb6HIKDQkcBOB8Q6uhsoaq2FE1zY7EG8M3vfJc7776btIRYggM/fTmpzWajvKZ+QiNAH7BSnU727NjG0OAA67ZcTVhE5AijPvC07s7PGSnb7Oju5WRZBZqmjzDY8Y3c6e7qZP+e3VSVl7F6/QbmL1zsZ9WtViuf7DvIiz/+mceg50x5nmLCYjJfEheW73PXdY3CkmMMDHpaPUJDwpkze/GI9z00NMCJwoPERCWQnZF3VgJgw6Y1bLxiNc8+8yK9PX2jFADb3v2Qo4cLWLl6CevWryQ0LISCE0Xs//gwVZW1o9pL3G43d91zC6qm8ac/vOknB85rCfRW5usaK2lprScwIJj01NlYLYFIsoSIiIHhff+DVNYU+dthfBEREUtMdJJnvZNElq5Yxk133OKV/E/MBEqyTEdbC5/s2UXewiW0tTTR293FFdfc4G+ZOLN32zfSTRAEEuNiyE5PQZlRA1zQMAyDlvZOaptbqa2uprq8hPlLVnDq2CH6e3v9n9dUXfolSfKbY56ryz94lEzBgQHkZqZfNv3nFzMqahuoaWhCFCUGbH0c3r+X5NQ0rr/makKCAkc891x8AE6dPMnOPXvJWZBPTEQ4i/JmX7bn6t233+dHzzxPZ2c3ZrPpot5jdruD1WuW8y/f+wdiY2PO6ThdPX0cOVU8eQJAUSgvLWHvrp3ccNsXPGS/LFFUcII33/gTjz35DTKys1FdkycBDJ85nyQh4BkH2tzUyHNP/4B77n+EuIR4DwFgGJjMJn794s8JCw3hwUcfR9M0j0Go4ZmmY0xACPoIAEEQUEwmhgYH+evrf6SxoZ7rbrwFk8VKaFg49qFBXvr5T7jhlltZvHT5qPdyeREABrTXQ8khEMSZxW0mZuJ8CICJqv6T6ukXT7fgyN7fEYZX7r1fdUAzGFINBpwq/S6VAU3A4dYYdOk4EXGphgfUI6LqpwG9bhggeCacCKKIKImYFBmL2YTZbMJskjErCopJxmxSvP+ZMJsUJFlElkSvp4robecc+X6aW7vYd+gkN1299lNpa78gBIAH3KjUN1bR3FpPRFg0GWmzsZgDxgH/Ao3NtdR7Tc3CwiL4+3/+F+64/TZS4mMumdFGNpuNxtZ2yqrrzlqt8ZgBHqHwxDHyFuYzd1E+qqqOUAFouk5CTPSIXlCAlvYuiiqqRpi+DU/cFUWhr6+P2upKgoJDSExK9v/cYrHwzl/f5k+vvjaKcABQZAWr2eLthbw0WOzismP09fcAEBQYQl5Ovh/UCIKI02nnROFBwsMimZ21YFR1+kwC4MqrN7FiZT7PPvMi/f0DSJJ3CoDZxGNPPIDNNkhYeAixsTEUF5Wyc8fHVFfXgcGYhlQul4tNV6xl7YaVPPODnzHkNRY815AkmSH7ANW1pfT2dREWGkl66ixMihlRlIbdR572h6raEoaGBkbcM9HRiURFxqNpGhFRkWy9eiur1q/BZDJNSsYtiiKHPt5NX083y9Zs5MCeD4mOiWXxijWEhwSBINDe1T2m3N/TFmAQFR7KrIzUS4Kc+yyH261SVFnNJwcP0NLYyLK166kuK6W0sIAt191E8Bl9tRcLNAFEhIaQnZ4yCszOBDS2tlNSWeuZcKMb9Pf3cmTfXjKzZ3Hj9deMmg5zLgRAb28vv33ldyRn55AQH0f+3NwRvhGXW+z7+CDP/+QXlBSXeUjvC7z3a5qOqrq5+totfP2bTxB1Hh4KPX02DhUUTpkA2L1zBzfccodnb/Aq9/72xh/p6e7iyW99x9MKOMn72+ep5NufBFGks72NZ//3f/jCF+8jKSXVQw57lYW/+OmzJCWn8MUHHhpVnZ8ofIowxWSisb6O1197FQyBG269ndbWVgRgztx5lBYX8Zc/vso3vvNPREVHj3oflxUB4HZCazVUF84QADMxE9MO/s+U5g8D/QIgSqMN+3RwaTq9QypDqgfQD7hU+t0GDkHBqQsYgohbB7em41J1XJpHhu8zUTcrMiaTjNlswmIyERBgwmI2YzYpBFhNWC1mTCYFRZa9Un3JO0np7IVUXdPQDQ+RYOg6huGZkKTpOiICja2dnDhVwdaNSwkKCECSBH9+flkSAD4n85q6Mnr6OomPTSElKRNZlEcZS/mqoLUN5bS2NQKQkJjMd//vv3PLTTcQFxl2yVSrfQRAe1cPhWWVE04C8AH17q5OPt6xjYCgINZecRWKyYzFcroCbxgGZpPCknlzCLCOHNvX3N5JSWWNh5Uf4295Rgd6quOyrPiTDt84wZdf+BUffThyMoA/8ZBkrBbrqBE+n8oFJgiUlp+gu7fTS2AEMDc3H5Ni9hMgbreLE4UHCQoMYc7sRRNKlV0uFzfefDVz5+Xy7DMvYLc7/OdPVVW+9vVHyMxK4/ixU3y85xOqq2rRNX1C2anb7SYjI5XHvvYgr77yBseOFJzT+Cof2dXZ1UZNXRkut5O4mCSSEzOQpNOSH58iprevk6qaEhxO+whSID4uhbCwaNxuNylpqdx61+3k5uWiadqkZNySLNPZ1spH77/D/CXLCYuIYPf775K/YjVpWbNJSYglIzmBk2VVtHV2eeaWj5M8WywmMpITSYqLuaTu1c9K2B1OTpVVYRsc4sThA9iHhshftYa25mYO7tnJ2k1bSUhJnbQPwHSEbhjIkkRqYhzJ8bGX/Oz5TyP6bAMcLSxF1TQkUcTtctHX18vxT/aRmJLO5k0bSYqPPW8CAOD3r/4epyCTmT2L/LmzCbBYLutz19LSxp9f/xs7PthJU1MLquptifNKPAXBQ7Cf73qjqiqyLHP/A/fwwMNfPG+yoc82wKGColGv62wtADu3f8BNt36B5pZGkhKTkRQFp8PBa797mdi4eG6/825kRZn0Pa77fIQEAUEUsfX386MffJ/1m7Ywf3E+qsuNKEm4HA5+8sP/Ye3GK7jm+htwOSdBAAybVuS02/lk/8d89OEOMmfNZvOV16Cqbg7u38vSFasID4/gzT+/jtvh8CgMVPcopdFlRQDYbdBWC/VlzIz9m4mZOAfwPxZs8lXGxTOIAEBVdQbcBj1uFacuY9d0hgQFt2DC7lZxuHTsbg2HS/X02OuGX0mlyAomk6dabzWbsFhMBFjMBAdZCbBaUBQJRZZRFNkjuRfPomY1dA+Y9yomDeM04er73pfj+7YAw/DkyR6PJK8Pk+hdQ0WRppYODh0v5YYrV19U1du0EwA+0NLT20F1XRmq6iY1OZvY6AQ/2D0TINvtQ1TVldLrBX+zZs/he//5fa65ajMhl+A8Y5vNRk+fjRMl5ZM6HwAHdu+ktbGeles3kZiaPkoFoOs6c7IzSIobLTvs7OmluKIau9M1blVHOMNUx3dunU4XP/7BDyktKsE8RkIoiiIWkxnlU/YFEASB8qpCOrtaATApZvJy87FaAv1yc01TOXHqIGazlbm5+RPKlV0uF3fcdRPp6Sk8+8yLqKrq/yx0XWfp8sX09fZRWlKJoXsc0MdLJH39jz4p/pPf+DIDtgF+/cvf+ys1k176RAm320lDczUtrQ3IkkxKUhYx0fF+Z+rT141Ae2cTtfUVqKp72OeqEB+fSmhIBC6Xi5TUFL708P2kZaSdtd//zM/+8L49tLe2sv7Kq2mur+PE4YNccc2NRERHMzs9maS4WDRdp7SqlsbWdsRxRlF5zEwEEmOjyE5LwaR8vue9T2d0dPdQVdfonwbw0fZ3CQ4JY17+Umx9fezd8T5pmVksXr7qnEf2TTUMA6wWE7PSUoi5jBznL2Zouk5BcTkd3b1IXgmgfXCQvr5eTh75hNiEJPKXLGXx3JxpIQAOHTrEwaPHmbNgMYvmzCIyLPQzcR5bmls5fPgYJ08UUl/XyODQIIZh4LA7aWlpRVXVcwbtmqahyDIPffm+czL8GzM/GBjkk4IijDPg4UQEQEV5KR+89y633/0lik8VIIoi8xctRtMNbP29vPe3vxIdHc2mrVcTGhY2Ql1gGAa6po1a9w1PZoogiv784Cc/epqIqGhvH77HUKqxro4Xn3+Wb/z9P5KRlT1u25goSUiyBIZnDx0YsFFXXc1HOz+ku7uTjZu2Mmf+AgRRYPf2DwgJC2XxshU4huy88tILXH39jcxduGjMVobLigAY7PW0ADSUzxAAMzETk8T8p0G+CKI+YirekFvH5jQYMGDIEHBoIkPIqKKCw63hcOvYXRpOVcOteSrpgiAiy54+eZNZIdBiITDATIDVgjXAQmCAxzjPpCjIsnT2XN3QcauaN9c/vYa63J5R2gaCV5TgJVW9XLQHzHvaAjyPCYiiMHJsqzefHy+amtvYf6SYG65ag9l06RVSJkUAiKKEqrlpbqmnqbWOAGsg6SmzCAkOH2PcjkdC0dfXRWVtKXa7R9q8eMkK/uO//psr1q9GkS5NeZXNZsM2OMTxojJPwn2WCoQsy9RUlnNk3x5SMrJYuno9uq5htVr9F4im68RGRrBwzqwxj9FnG6SovIqBoanJzk0mE20trTzz/R/Q2dE1ZqIkCAKWT9kcUBBEqmpLaGtv9IJcmbycxQQHhXqr2R5Tj4LCg4iixPy8ZRMCXbfLzT333kZcQizPPfPiKBdlt1sFjAkrSJqmoaoaWdnp5M2djabpdHX1MCdvFikpifzo6Rf8rQWTIThEQaSnr4u6hnIGBm0EB4WSkpRFaHDYiCYM3+tpbq2jrqFyxPs0mSwkxKcREBCMrunMmjOb2+66nZT0VNyu8fv9fcmob0qJT5my4503yZ23kNlz53H44z10trex9YabsVisLMjJJjI81H+AqvomqhsaR7zGM0GhYeiEhYaQk5E6Iwc/z+gfGKS+uZXWji50XfeO+nSx8723SUhNZdacuaguN/t2bsdstbD12huxOxwXRYEhCAJ52RnERUfOfFDjRENLGyWVtX4PDVEU6e3uxmbrp+jEEWITklm2fMWoNf9cJgEAnjnrf3iNjNx5zM+dddlNAphMuN2qf+qN2+3mwP5P+PVLr1JdVYOimEb5lUx8LDcWq4V777uL+x/84rT1Xg4M2TlU4JnkMvxzHI8AkBSFuuoq3vzz69xx15dwuhy8/de/sGb9BtKzPG79mqpSWV5Gb083IaEhBIeEEBAQiNliRhYlwiIiMZvNo0kArxeAr0f/9d+/Qk1VFfd9+asAKIrMO2/+haqKcr7zT/+CbDKN2fMviCLtrS3s/3gPkihhG7DR3tqC262SlpHFitWrCQuPwDCgvraGj3fv4vqbbyUkLIzSoiIOfrybh7/6BFZrwJjHnyEAZmImLr/weWCKfuf8M+5tHVTDwOHW6XXrDKDg1MGhS9hFEy5DwOHWcbo9FXyXqqMaBobhAdGKLKOYZEyK4gH0ASasZgsBAWYCLF5nfJPHMX+8kdyGrqFqul8VaxgGLpeKOow0HenJ5nlMEj3VeVkWvepXL7AXPbm8MOZe482wx4Umwhj/FGhsbuPA5UoACIKH+bDZ+qhvqsJm6yUmOpGkxHRMinlUr7bglaW1dzRTW1/m71XeuPka/vP7/48V+fMv6YveZrNhtzs4VlzmmaV7lmRN9FZ+9ux4D1VVWb/1aoJCPP26PhWApw3AxJL5cwiwmMdNLE6VV9FvG5hSf6fFYqGw4BQ/efo53G73mDeKgIDFbMakfDryE1EUqauvoLGl1n9N5eUsJjQkfITTcEHhIXRdY/7c5YgIo8ZHDk8U73vwC0RFRfDsMy+O6aMwXqiqhqqqRESGsWrVUvLm54JhYLaYvSPSNFwuF7/51Ws0N7Wd1e1cFCVU1UVTSy1NLXUYhkF8bDIJ8WmYTSOTNkEQMQydhqZqmlpqR/wswBpIfEIGZpMVQYA1G9Zy5fXXEH4Wsz/DMJC8jqIOr7xTlCSOHfiYhrpa1m25CkUxsWfHNixWKxuvvBZZksifm0PQGX39Ta3tlFbXjduS4iOzLGYz2WnJJMxMCZhy9PZ7PEY6unpwuVVvm4/n+h8csLHjnb+RO38BKelZGIbBkf176evt4Yknn0LVdGoamy94/7duGKQkxJGTkTrzgY0RTrebIyeLGRxynCYAJInWxgYcDjslp04Ql5DM0uXLWZSXMy0EgGEYvPK734E5kMULF5KXnf65ONeVldX8/KcvsXfPfr8aYKLzp2kabrebxKQE7rv/Hm665dppHTs45HBw6EQR7mGqswkJAFmmpamJ3/36l9x61xeJiIyiuOgUB/buZt3GzWTNmuUH8S6ni/6+PpxDQ9idDmoqywkLj2DV2rVYxgHXvlYA2Wym+GQBv3npRR74yhPExsXS39fHT3/0AzZs2so1N96Iy+Ecdw8rKTrFCz99jqDAIFasXU9yaiox0bEEBAX6pa+q2827f/sLqenpLMxfim7Am3/8A5FRUdx4+x3jGhlqmsa6FUuJCAu59C84xyC01UBdCZMcWj4TM3H5hr/fXveDekTfSHsPuB9wG/Tr4NQFnIbEkCGhSmbsqobTbeBwazhVHbfXNV9AQBYlZJOEoshYzSYCAiwEWsxYrGasFhOBARYsZhOKIqPI8tj5pmGgqpp/lLyqarjcKoZuoBs6AgK6YSAKHqzgk9ybFHlE3i4IIEsi4lgkgjHGA8ZoPD8u0D8rCeAlAA4Xc8NVl1ELgE/u73I5aG1rpLWjEbPJQnJiBuFh0YAxipEWRRFVValvqqKltd57IInbbr+b/+8//43ZmWmX/P1gs9lwutycKCljcNAxDhN0xiYvSRz7ZD9VpcUsWrGa7Nw5qG51hApA13Xmzc6acLTaoN1BYVkVvf22SVWefWG1Wtmx7QNeeem3EyZIJsWE2WS+6L4AoijR3FpHTV2Z/7G82YsJC4vyE0iiKFFYchiH086CvBXIsjyuCkBVVe5/6C7Cw8N47oeTIwB88vmExDjyly4gPT2VivIq9u75BIfdQUCA1VNlwcBisdDd1Y3L5R73uL77o6+/i7qGSmwDfZgUM2kps4iIiPb8njGSSFNVN/WNlbR6lRC+CAwMJTEhHVGUEUXYcs2VXHPjdSgmBU0dX/at6zomk4n4qEjaurpwutxIskxfTzfb3/orGdmzmZu/hO6OTvbseI/snDwWLVuJ1WJiybxclDES4/auHoorq3E63eNeg7r3fCfGRBETFUF4aMhlbUp2UdaVwSHqm1pp7epCdWt+GdnwNaS7s4Od294mf8UaYhOTEIDSwpOUF53iW3//92RlZlBSWXPWCSXnGz5FSUJsFJkpSZhNppkPcDgorWukqr5xxDUvSRJVZSUYhkFZ0Snik1KYM3cua5blTwsBAHDgwAGOnCxixcpV5M/NuWRMhC50DA0Nse3dHfz1L29TUV6F0+k63f/uyUS8e4VAVFQEq9es4I47byEnd9b040Onk08KikbtDeMRAKIk0d3Vxa9feJ7rbr6N6Nh4DAxOHT/C+++8xdwFi1mwcBGh4eGYTGYkRfGMAi0ooLe3m2uuv4nQ8DD0cbwBfL2pkizjcjh4+r/+k1m5c7jmhpvZ+9FOPvzgPb79T/+XyOiocY8BPrPCUv70+1eIjolh0ZLlBAUFo+sepYPFaqHwZAHtra1cf/NtKCYTHe1t/P43v+K+hx4hLTMLbRyi+rIiAFQ3tFRB9akZE8CZuLxBvThm0ujH+kMujV5Nx6ZKOBFwqQYO0YQqmrGrOm5Nx+kdl+dUPY75hiAgChKyLKOYJEwmhQCzmYBAC1aL2QP2rZ4qvsk7716R5XHrqJqmoXmr9b7KvaYZfmTuW99FrzGfSVH8pLuAgCh5qvingfc4tWzDOH8/dGGKJMBwAuCIlwAwXeIEgA/YqKqLzu42Wtsa0TSV2OhEYmMSUcao+vsSoIFBGzV1ZfT1d3uBaTBffvQJ/vG73xoxBu9SJwA0TedEcRl9toGzGgGCpw2gpbGe/bt2EBMXx8qNW7zVXsOvAtB0neS4WOacpXJjdzgpqqimq6d3XNnLWGBUURReffl3fPDOtjFNAU9/TjIBFgviRdzcRFGivbOZiqpC/2M52QuIjIj1X0uSKFFUdhzbQC8L567AZLJgGPq4YP6Bh+8mLCyE55550QNYxuldV90qgiiQlJzAqtVLmZWTRW1NA7s+3EtDfZO/TcAwDAz/jE88fb3jrFq+Xv/mljqaWusxDJ2I8BjSkrOxWgLGNMJ0OB1U15bQ4/XC8EVISATxcakIiFisVrZcu5UtV23xGEJN0POtaToWs4m5szJp7+r2g0JJljlx6ACVpSWs3XIlYeGR1FSWc+yTfaxYu4m0zGzCQ4NZPMEosb7+AYoqq7ENDE54DWreilRkaAiz0lMJCZ5pCzgzevptNI2o+I/tsyDJMi0N9ezd+QGr1l9BRHQMCALNdbV8sm83jz76VZbke8wxS6pqaWptv+AAUFVVYiIjmJ+bPeakiM9jDNkdHDlVgtPlGvE5ipLEqaOHsAQEUF5cSEJSKsnJyWy9YsMocuxcfQA6Ojr4/R9fJ2feQlYvXUSg1fK5Ove2/gGOHTvB0SMnqKqopq+v3zv5xUxcQizz5uWxfEU+mVkZF+w1OF1uDhUUYXc6RxDp4xEAgnfE7Us/f5416zeRnpmNpmnY+vv4659eI3fuXHq7u+nq7PSP9R0YsBEfn8jmK68kNj7hrNMBfES5yWxmz84PefvNv/Dgo4/zh9/+mvkLFnHT7V9AU91nfW+SLNPcUM/OHR9QXlqK0+VRDPiUg263m3vuf4jk1FQEQWD7e+/Q1NDAE9/4uzF9ii5PAsAFzZVQUzRDAMzE5QPswQvsdVyawYBLpc9pYEfCrcOgIeOSPLJ8p8vjku9UDVyajlsHzQuoJVFCUTw99SZv9d5qUQiwmDFZzARazVitFswmBUX2+IacLTfQdR1N09F0DVXVUVXV07YrCh5crnuq+IpJRvFW7gVAlqWxq/YjVz8PuB/j4QuHmM9GBAxXAVwmCgBfMuNyO+nt66arqxWX20V4WBQxUQlYrYFj9Pp7CQMEOrvbqK0vx+lyABAeHst3/uEf+cY3Hr+sTMNsNhsGcLKknM6evkkl2YIgoLpd7N3xPgO2ftZuvoqIqGg07bQXgK7rhAQHsWz+nLMe0+VWKa2qoaWja9KVVUmSUDWV55/5MQXHCrBM4BItSRJWsxVZlMaV2U83AdDd005J+Qn/Y1npc4iLSfKPjJREidLKArp7Olg4dwVWa+C4bveqqvLgw/cQGhYypgJA1w1U1Y2iKGRkprJy1RIyMtNoaGjio537qaqs8RM3U3ofgmdUSU9PJ3WNlQwO2ZBlheSkDOKikxBFAV03Rr33IfsAVTXF9Nt6R/wsMiKOmJhEdN0gPjGBG2+7mfmL5vsXzYnAf0hQIHmzM8CAI6dK0DQNSZIYHLCx7c0/k5CcwsKlKxAEgeOHDtBUX8v6LVcTGR1LXHQEc2dlTvheHU4XpVW1tHV2jwtahxMBJlkmMzWJpLiYz01lcqKEvKu3j5b2Tjq6e3CPUfEfK/muqSjjyIGPWbv5SoJDwxGAnq5Odm9/j2uuvY6bb7zB//mXVdd5SB9JvKCdqpqukzeOgennMUqr6qhrajlDHeOpUxzZv5ewyEjKiwpJTEkjJCSE667eSlBg4LQQAIZh8Nof/4ihBLBl4zqiwkM/t5+Dpmk4HA4M3UAxKZjN5ovyd92qyqGCohHtHxMSAIKApmn87LlnyMmbz9IVK3G7VYYGB3jzjT9y6+13Ep+YSEd7G/39/WiqSnBICLFx8UiKMmHVfiyywdB1fvnzn9JQX090dAwPPPIogcFBY7YPjLcOGUBfTw9Dgx7vJkM3eP21V0lOTWPj1qvQNR1NVfnlz3/CilWr2XzlVRNOF7isCACXA5orZqYAzMRFBPVnAPthinw/sNd1Btwa/arOgCrgVMFtiNiRcEkKLl3A6dZxax5Q7/J+1QxAEJFECVmR/MZ6FrMZq9WE1WzGZFawmhUsFgtWiwmTLPuB/WSVyMNxoU+2r+ueUXi+Cr/HuV9EFiXveD5pWIFpLBBvjP1vYTIg3zjLw8bkDubP2YRzIwGEy0ABsDx/o6GqbgaHBrAN9KIbOoEBwYSGhGMxW/0GYKOBnYiqqTQ21dDcWue/CLKz5vF/v/cv3H33bZfd/Wiz2QA4VV5Fe2f3pMGMLMucOnaY4pPHmb9oCbkLFvv9DwICAjC8Y7Xy5+VOykBN03RKqmtpnkKlT1EUuru6eeb7/0tLU/OEY+wu5oQAUZTo7euiuOyY/xpJTc4iKSHdD3QlUaKiupC2jmbm5y0bZhA4NgHw0CP3EOJTAHgXF13X/a0XuXOzWbV6GUlJCdTU1LF7534qKqrRdf0cxkt5mFGHc4jG5hq/hD88LIqUpEz/ax3dEiNhG+ilsqaEoSHbiKQwJjqJqMg43KpKemYGd913N2mZGahu94QGiJqmExEewtzsTKwWMwUlFbR2eogiWZYpPHGUU8eOsPqKK4mKjsHtcvHxzg8QBIE1m7ZiDQggPTmRrNSks75rXdcpq6mnobl1pOvpOBuArhtERYSSlZZMaFDQ524v13Wdzp4+Glvb6O7tR9P0swL/4etH0YljlBQWsG7LVQQEekCifXCQXe+/w4KFC/jKI4+MAOZl1XU0trT5fVrOaxMYp4Kn6zpBgQHkz829JA1sLmZ09/Zxorgc7QzTUUEQcTkdHPr4I+KSkik9dZLktAwQBK7esomkxMRpIQAAjh49xuETJ9myZQuZKYkzCfRFJx50DhUUYhscadg7EQEgiCI/+p/vExufyDU33IjL6UIQRf72xmukpmew9eprPGMQRREEAUPXx3T+nyyA7+3p4YWf/Ijrb7qVvPkLcLtcU14LfMpHxaTw8a6P2LdnF3ff/xAmswVBFGluqOe13/2Gx5/6JnEJCROOL7ysCAD7gKcFoLFihgCYiakmumMA+2H/PjOd9ZriDbl1BjQdm1tgSBVwiDIuXcAtW3C4NE+VXvOY6XlAvQCiR4ovSRIms4zJpGAxmVAUCavFgsViwmxSsJoULBYzJpOnL96TJ0qTxhSnx+F5SoWG7vu3gYBnnZBEAQP8U6RGFMEEb2/+WE75xmmpv+fLJNe7CdfFSRxjqsuqfzrAGWBfmIgA8P3OZUAALJ6/2vCYKnjG1iiK6bQseoyT7XFMFOkf7KOuvsIv+ZdlK5uvuJJ//dfvsmLl0svyHvYRACVVdTS3TR58S5JMR1sL+z58n7CISFZv2uph0w3DrwKYajVN03VKKmtoam2fdDuA2WKmorSCZ//7Gex2+1mq3AIWk8cX4MKuiyL9tl6KSo/5Jf8Jcamkp84aQQBU15fR3FJHXk4+YaGRY7aa+AiABx+5h7CwEJ595kW/o39QUADzF85l7brlxMRGUVZaxZ6P9lNVWYumaec0V1oUJQxDo72zlcamahxOO2aThYT4VGKjE5EkaRRRIeBZCLt7O6iuLfWrYnxgIS4uhfCwaFwuF1mzsrj7/i+SkpbinV4wMcBOio9hdkYqsiTR1dtHQXE5mm4gSSKOoSHef+vPhIRFsGzNBs957+tmzwfvkZyeyYKlKzApCnOyM0iMjZ70OahtbKGqvnFCc8Dh16xJUUhNjCctMe5zoQYwDMPbhtFOT1+/15hmaqBckmWO7t9LY30t6zZfjWKxgHcE2J4d24iOiuQ73/72SKWLYVBeXUf9JAia8wI9uk5GciLZacmf29xOVVWOFZXR228bdU2LokR/Xy9H9u0mNWsWhcePkpaZjdPpYM3KFSyYP2/aCIDevl7++PpfWJi/lKUL5iLMYJSLfq9/UlBEv21g0gSAJMv8+JkfoJhM3HH3l7wj+hQ+fP9d7PYhvvTAw552L2N61HiCKGKz9RNgtSKK5966I4oiXV1d/Oy5H7Jm/UYWL12G0+nCZFL48P33aG1u5tEnnvSQFhOS1hrrVy4jPDT40v+AbV3Q0QCNlTMEwGcKnJ/DD8UpHEPV6bW70RHRdR2HDoO6gMMNdkHChYIqKai6gaobOL3u+KpuoBmevdwQRBAlJEXCYjZjURRkk4zZpGA2KZhMCkEBnl57WfZU8xVZRJGVKXmG6frpOfc+Y3tfDqt7MZ/fw8p7C4iCJ3f1kJSnc9yzT2YxxgDdxhj/NM4B7J8F1U+3uFlg9Mi/CUmAy4QAGN4C4NvkJtoUDN2gtaORhqZq3G4PuxwXm8r99z/AN775ODGXsTu4jwCorGukrqll0gBGEAR0TWPfzu10d3WwetNWYuJPM+MBAQFomk5SfAx52ZPvUdQ0jZKqWprbOjwzfyfxO1arlb279vCrn/3SM+LiLDep2WTBcgEvTFEUGRi0UVR61D/zPiY6gaz0PL+yRBIlGpqrqWuoJCd7PpERceMSAG63m3sf+AIxMVH84L9+itlsYtHieazfuIromEiKi8rY89EBqqvq0DUdWZk68Be8o0AGvNMveno7EQSRqMhYEuJSCAoMGZMg8wGxto5maurK0LTToF6WFeJiUwgODkcURBYuWcQNt91EbFws7gmc/n1Op2lJCWSmJHrIOTxtKq2d3V5WV+HU8SOcOnqI5Ws3EpecAkBjbTWHPt7NklVrSEnPxmw2sSA3m+iI8Cmdj/auHkqra7HbHWclowzDM8s1JiKczNRkQoICPpM5habrdPf0Ud/cSrcX+J+rGaIoSuz/aAe9Pd2sveJKREnCMAxEUeLg7p1obif/9M//NEpObhgGFbUN1DY2XzASwDdpYuGcWUSEhvB5jOqGJiprG8bcDyRJor21hYLDB8meM5cThw6SmjULh93O7OxMtm6+YtoIAIC33n4HQzazdeM6LOYZg8aLHYcKiujpt42418cjAAAUk4kXfvIs/f39PPiVr6JpOoIgUlZcyJ5dO3jsqa8TFByKcZZe/ymtJ5LkmXl9jqSCbx35wyu/od/WzzU33ERnezvJqelg6Lz8i5+zZPkKNm258qwKg8uKAOhuhZ5WaJohAC4doD5B3/vwx3X8ffAM++LJoc58mgFePzxV03EZOm5N8ANHA9BFAYdqYNPAaci4BQlVB0OSPGBdEHFqOi7VYMip4nBr6N7cR9NB1Q10by4py5IXxJuwmBWCAq0EBVgJCLAgSQJmxVOp94H9s02fGpFreavyukeq7a/QGwb+n401Ek8QBCTJ08JtYPjH34leBdC5mYUbZwHgZ/78fID/Re799+N8YeR0uHFJgPEIAOOSWlsmHAM4/M2IosiQfYD6pmq6ulq9oMbM+nWb+eY3n+Kaa7Zc9mumjwCoaWyipr55UiaAfoCnyJScOM7JY4fJW7CIuYuX+tsAwDOyLyQoiKXz50yJsdN0nVKv8ddkSABBEDCZTLzxhz/x1p//NqEfgJ8E8E4IuBAAQhBEHI4hikqP+qvhkRExzM6aP2wup0RzWz3VtaVkpucSH5Ps9wc4M1wuF7fecT2zc7LYuX0va9YtJyExnuKiMnbv3Ed1dd05Sv1Pq1tcbifNrfU0t3qOFRwURnxsEhHhMWNW/Ycvri1tDdQ1VI4gMEwmC4kJ6VgtQUiyxBVXbWHrtVcSEBAwIfj3VNRlZqenkjCsat/TZ+NYUSm67nFIdbtc7HjnTURJZs3GzQiSx0Dl1JFPqKksZ+3mqwmLjMRiNrN4bs45ATnb4BBl1XV09fRNStru8wZIiIsmJT4Oq8XMZyFcLjdtXd00t3fSbxs4L+Dvu24MXWfP9m243W5Wbdri3Rs97t6njh6ioaaaf/rnfyYhPm6MPc+gsraBmoYLRwJouk5EaAgL58wac3rEZzn6BwY5XlSGy+0e18CxtrKcqtJiZs1dwOF9u0nPno3L5SQkMJAv3XP3tBIAJSWl7D98lOuuvZrYyAhm4uLGkVMldPX0jdjDDcPAYbePSwD8/rcvU1FWyiOPfY3evl5i4+Lp7+/jpZ/9hJtvv4NF+UunLNW/kKGYTBQcO8af/vA77nv4UYpPFWC327nquhuoq6nhL3/6PV/56teIPYv8/7IjAFqrYah/RgFwzoBdnADIT/C46kHjuuHD7Qa6Dqqu49LBoRqoGLh0gQFd9DxdENENMAQRVRDRENEEEUOQcOu6p7JtePZHTz+6BxRruuGvdOsGuDVP77zuk7l7J4p4Wu91D+g3DP+4Tt9YTEWR0DUDWZYIDrRiMslYLWYCAywEBFixmhUUxeNcH2C1YDIp3pF3419X/t55w3My/K/T+9pPg0djZP7gfX0+Gb6nYi+czge834teo9ELF8a5g/+zgn7jnH409pOFKRxonP5/nxpgIhWAINLY1MaBo5cxASCKIrpu0N7ZQkNTFS4viEtNyeKhhx7hkUfuJy7+s2ES5SMAGppbqahtmBIBIEkyXR1t7N2xjdCwCNZs2oqknB5nZ7FYkGWZxXNzCAueWo/08J7fydzAvue88NzPOXzgIJYJJgP4CQxJxnoBJgQIgoCquiksOcqQ3WMsFB4WRe6shSMIgDbvpICUpExSEjMnJADWrl/JF+66iYGBQWqq69m9ax8V5dVomo5yDhV/32vQdI3O7lYammpwOIawmK3ExiQSFRGHxWIdvy3Guwg3NFXT1FI74jlWayAJ8emYzQEYhs5V113N1TdeOy6RMPwzDwkKJCc9lfAz+idPllbQ0t6FJHmq/2XFpziybw8Llq0kI3u2x3hF19m3azsup5N1m69CNpkIDAxkydwcQoLPrUdf1TSq65uoa271uLeeRV3i27wsFhOJsdEkxsZctkTAkN1Bc1sHrZ3dDHqT/XMF/qevexEDcLtd7N72NrLZyvJ1G/3O37IsU1VWQsGRT/jq44+zeNGicY9ZVd9IdX3TCDJqOkPXdTJTksichH/EZyV0w+BUaYVfaTPmuuH1b+hsa2FW3gL279pO+qwcBEFgsK+Hx7/6VZRhRrjnMwrQcx3a2fb+duYtmE92etoMCLnIcbyojPau7lFKKPvQ0Nhg2mzi3TffZO+uD3n0qW/y4fvvMXf+QrJzc3n91Vdwu908+sRT6Lp2zhX7ad2vRRGHfYjnn/0huXPnk5s3lxd/8ixXXnM9S1esYsf779Lc2MAjX31iQvf/y44A8E0A0FRoKgf9M0YATEYGL07i99TTo+R8gN0jKweXoWNXDdyGwZAuYddAMwR0QUA1PNeWZuAB65KCgYhqGLhUDVXzVM19AF3TTwN31fAayumnZeoGwoj+dE/5xoOtfCBeFDy5sCiKSJKIIsvIiqcXXhQFZFlGFkUkryGd2SR73OhFCUESkUQRRZExK57RdxaLyY9VFUniwNEidF1n64aliOLYk6N0w0DX9NP99Bh+rOu/dQzDo0owTueTorca7yMeBHygnhFg/9IJ4yxg/Cz9/mOuI2cz8ztHwmDqq+I433rVAMJnkAAQfGNpBgdobK6m01v1t1qCuO66m/jG17/GytXLPlNrpI8AaGnvpKSy9qzy+TPPl65p7Nv1Ad2dnay54kqiY+NHyMDNFguz01NIS0o4hwTcoKy6dtJzwGVZxmaz8cPvP01dTe2knJIlSSLAYp1WEsBn0FdUegzbQC8AIcFh5OXk+9lMUZTo6m6jtKKA+NhkMtJyx20B0DSN2Nho1m9cxdHDBVRX16Gq2jkDf9+57O/voaG5ht6+LkRRIjY6npjoRAKsQd6xjvo4v+8ZC1hbX0F7Z/OInwUGhpAQn44sm8Aw2LB1EzfdfguKIo875s8n54qOCCM3M30UYO4fGOTIyWI0XfeSczq7tr3D4EA/67ZcjdliBQQGB/rY/cF7RMfGsXT1BnRNJSwsjPx5uec9Qqy1o4uK2gaG7PZJ+VP43pPVbCYhNuqyIQIMoKevn9aOLtq7enA6XX6Z3LkBf9ANj09CfHQkXX392B1O7EODfPDmG8TEJ7J45Rp/VU2SZVob6tn30YfcdfddbNm8ecLj1zQ0U1nXcEFIAJ+R6fycbCI/Jw70rR1dFJZXTbhlS5LE4f17Ud1uMmfnsnv7e2TOnkNQcDDlRaf42pNfIzI8fNoIAICTJ0+iGjA3bw6mz5ki49OO4soaGppbJ08AmEx8+P67bHvnHR596ht88M7bSLLE1quvo7enh1dffokvP/41MrNnobrdn/r7U0wm3n3rTYoKCvjSg4/w9l//zKlTJ3jsyb8jOiaG3770IrNzcvyGhmeLy4IAcDuguwVjsN8DGxoqECXhtLHb5WhlMwyo+8A6nK6we3JKz/cuzQPch3SdAU1CNQQ0RFQDDEFAM0Q0SUYXJJzeirmqecC5/z/DQNMMVEP3g3fVW7n2m8gNx4G+XnMf2PWqW31AWhIFRFHyfvXiEUnyzIQXPIBe9LrJm7yyeVmSUGQJRVFQTAqK13XeZFYwm0xIsohJkZFEyYPbhLMXMHyVd8MYmcuIAuw5UMDAoJ1Na/ORJHGU1N4np/d9f1pB7pHeD//+8o9JVP8nVfk/H2n/RZr/d2bVfzwS4HIlAERRQtM02jqaaGyuwe12AgLz5y3h8Se+yj333EFg4Gevt9dHAHR09VBYXsVUXZZkWaa44Binjh1h7sJ88hblj2gDMJnNxERGsChv9jldArpuUFJVQ2NrG9IkDH7MZjO11bX86L+exmazTWr0nWdMoGVSx59KlJQdp9drGBkYEExeTj6y1yjRMymgk6LSY0RGxJKTPX/C6rhhGGiaDnj6k89lAfURXEP2QZpa6mjzuvtHhEUTH5dMcFCY1wRQn5A4GBi0UddQQW9f14ifh4ZEEBeXiih6NqSt117Flqu3opiUCcE/QEpCLJmpKchjtIqUVddS29iKJIlIkkxddSX7d20nO3cucxblo6mqBzg21nPgow/JW7SE2XnzcLvdREVGsmRezrSYkQza7ZRV1dHR3Ttpt/vhREB8TBSJcTEEXGJEgKbp9A8M0Ns/QFdvH739Nr8B4vls1LqXsImOCCMtKQFZkjhSWIKq6fT3dPP+394gPXs2cxcvO00ASBLdXZ3s/uBdNl1xBXd94QtnfQ11jS2U19RfkMRC03VCgwJZlDf7kjS0mVZM4FY5VlRK3xmGb2cmBYIA+3Z9QGBQCElpGXy07W2ycucSHRvHgd0f8pVHHyPzjEr9+bYBdHZ2UlRSyvz5Cy4PafVnKKrrm6iorZ8SAbBz+/t8+P42vvjgI+zZtYPg4BBi4+NZsGgJr73yMgGBAdz38JfR1U9XBSDJMh1trTz3zP9y42134BgaYs+uD1FVN3fd+xCSKPDrX/yM+x9+lPSsLLRJEBaXKgHgAaDepL2vjbrSCoo7HKi6gcNhRxFFZPm0nBq/RNy7//tl1aBMqlDklW77iivCSEAkAIa/6DF8PNnoY8u60wcf/c/XDANDlL396QIuXzVd8xjNaV7J++m+cE91WjNOg3W35pOgn/75qMvRZwInCsiSiCzJyF5g7vtPEkUk2QPGRUFElkQkWUZRJMxecG42Kd4cRkQWRUxmE5J3jxVFEVES/Ga6fmm7JPql7JPNNwyvekDXDHRDP90zP6w/3hhWfTfO8gn4XodJkdj3SSEDQ0NcfcVKj7v+ZPdbw+NDIPBZAf/eNzVd4N84h799ceDy2CTAWAaBlyMB4JGYiNgGeqlvrKa3rxOAuNgU7rzzLp544lEys9I+s5u7jwDo6u3jZEnFlAmA4dMAwiOjWb1pi9/Qy7cgRYSHs2Re7jlXQHVdp6iihua2yU0HsFqtHDrwCS8897MRwHWiEAURi3n6xgQKgkBpxUm6e9oBsJit5OXkYzZb/ARAv62HU8WHCQ2JIC9n8QVLhHwbjNPppK29kea2elTVTVBgKInxKYSFRiJJ8rCeq9HA3zAMBgdttHc209HVhqqOrIRERsQRE5sMhoHVauGG225m3cZ1HnOZcYgNXy95dloyKQlxYz7H4XRx6GQRDqcLURBwOJ0cO7iP5vpa1m29htCwcP/Eg+KCY5QWFrB64xZiEpJQXS5iY2PIn5szbX3cuq7T0NpOTX0TTrd70pJ4HxFgMZmIi44kMTaGoEDrp3vvDwzS0d1Le3c3AwN2TwuKcLoycT7nSBAEwkKDSU2IIzoiHEEQ6Ojp5URRGbI36d7x9l+Zs2Axs/Lm+UlDURQZGrSxa9u7zJ2bx2OPPjqp+7e2sZmK2vGVAJOR7k5EAiTGRpOXnfEZSl5GR1VdI1X1jROeb0EQcLtd7N2xjcSUdCJjYtj13ttkz5lLUmoaO997hzu+8AWWLcmfVgJA13UOHzlCZHQsWempM6j8IkZTaweF5ZWj9t7xjAAVk4nt296l4Ngxrr/ldt7+6+ts2rKV0pJi5s1fjMNp5/VXX+GrT32T5NTUT1UFICkKr73yG3q6u7n5tjv59S9/xpy8uRQcP8Zd9z5Ia1Mju3ft4Mlv/T0BgcGTMi68FAkAjxGjB39Ikgiam1MnS9lfWIsoCAwODZ6BT0YDE+NMWCAI/rY+/YzzIsmSB3CeOTHISxwYurfH3FdpFibGNIIgjIMhvJVmYXg+f2ZfuMfgzVNBF5FEj2mk7P1e8VXSFQWLRcGsKJjNphHGdKIoYJJl74g5BVkW/cf1KeQuRK+5ZxSdB8T7WgEwTrcK+E6a/3GvB4DH28lDKOAnFHx7ozDsMe9/ojApcL7nQAEdXb1ct2WlZyy6rp3u49c0VE1D1XTP5y54iBGL2YRJkZFl2UN0fF6r/yPyj7OZB36aoH8SBIDvphMmSwBwyZAAfgJAFEXcqpuWtgZaWj2gKCQ4knXrN/H1px5n0xXrPtMJ33ACoKfPxomS8nMCl5rqZu+HH2Dr62Xt5quIiIoeUfG1WCzMz8kmLjrynF+nqmmcKquivbNrUiSAxWLhrT//jTf+8CdMJtOkPkdBELCYLZimgQQQBIGK6iI6Ols8SZFiIi8nn0BrELrhqYwODvZTUHSIAGsQ8+Ys8Vbfp+8m92yCnmu8s7uVppY6HI4hzGYriXGpREfFIcvKOH3+ghf469gGemlrb6a7pwNVc4/6G9HRiURFxvslbjfcehNbrtnqT9zHS+gDrBZmp6cSHRk+QfLZTmFFtYcpF0XaW5vZu/09YuKTWLJqrf/4oihy4KMP6e3uZN3WawgMCkZTVRLi41iclzMlE8rJRP/AEOU1kzcIHEEE6AYmRSYmMoL42KiL6jTvdqt09fbR1tlNd2+f3+htOpIX3bvphwYFkhQfS1xUxIh7ta2zmxMl5ZhMJhpra9j9wbssXrGatKxZfgJAEAQ0t5uPtr9HTHQ0j3/1MUJDJye/r6pvpKq+adxE5nxIAMMwmJ2ROi5RdblHT7+NguJy3Ko64bUsiiKDAzZ2b3+PuQvzsQQEsOu9t5mVN4+s2bnsePdvrFixihuuu2ZaCQCAutpaWru6WThvHmaTwkxcnOjs6eXoqZIpEQDb3nmL+tpaVqxay1t/fZ3Hv/5NDu77mM7OLq689gZe+tmzKIqJJ7/1D2Don4oKQFYUqioreOWlX/CFe+6jsbGewwcPcOeXvsRLL/yc+x7+Cvv37MbpGOLhR5+YtGeBYRisX7mU0HP0nbkgcMUYnau7VY1+2yC6rtPX138GzDgNYgQvYPQAfd0DMAURl9tFT083wUEBBAWFoapujzM7cKygjPi4KOJiItB1A1kWkWUZu93llcuriIKEokj45ObD56772QofN+AjC/yAX/AA+WEAFwFEPBV0j6u7p6ouiSImRUGSRT/olSQPgBfOQTXm28OHA3J/wctr5ucDxYahe0C5oXsLoR4VwQjg7e13F4eZ7vkN+nTd626ve3MyAVmWRqgChGEkxAUjkHQd1a2y/3AhDc3tLF2cS0CACbeq+8+BIIgosudcm80mLGYTsiyjnKNi9fIkACZT/Z8M+Dcukfd5DgRAczsHjhRdugqAVcu2GODtgW6qon+gn4CAYObNXcQjjzzIHV+4maCgwM/F5u4jAHptA5woLvczd1PaSGWZgiOfUFZ4kgVLVzB77jzUYTPedU0nJzuDnMy083qtTpebgpLyUSOJxvyQRQ87/auf/ZK9u/ZgtU6u2jpdJIAoilTXltLS5qlKipJE3uzFhASHeSukIg7nEKeKDiOKIvPzlqEopmlKhDybnqZpdPW209RSx+BgP7KsEB+bQmx0AmazFWOMxMvHmOu6Rl9/D+2dzfT0dowp4VcUE9HRiYSHRXvcY1WVNevXcee9dyIryrjgX9N1wkOCyc1KJ/gsbTWnyippbutEkkScLhelJ49TeqqAlRuuIDYxGU1VPeoGu50929/DEhDA6o1bEEQRXdNISoxncV7OBXOKr29qpaaxCVXVpgSifUmELEtEhocSHxNFTES4RwovCJNqXZnSfT44RFtnNx1d3diG7H5Dw+k4L77kJCQokJSEWGKiIpDHIOmaWtspLK/CbDZTWVbCwd07Wb52Awmp6aedtb3J0P6dH2AYBk899RTxcbGT3pIraxuobWgetx3gXEkAwzCQZZlFc2YRFvLZkqCrqsqJkgq6evvOuq5KkkRXRzv7dn7A/KUrsVgs7Nr2DrPz5jFnwSJ2vvcWSYmJPPjA/dNOADjsdo4VnCQ1PZPE2Chm4uJE/8AghwqKRj0+HgEgKyb+8qfX6O7s8FRaZZkvPfgwtTXVvPTz5/nig4/Q0drK8889zT/88/9l3qJFuJ0XdyKArxf7Vy/8FLMlkKuuu4FfPP8cixbns3bDJv77P/6NK6+9gcMH95ORmcUNt9w6qakFhmGgmBQ2rlyKxXxptXr5TdmGFeR897vNZjsDsxijSAPP9wKqqtHZ1cnLv/4tH+2uZEn+am6/fT4LFy70P/fdHQeYPyeTpASPWXZvbx9//vOHlJX3kzcnizvvXIOvo+rM12WcxQhthIwdH0HhAce+ee3DFQXD2yd9+4uPYNANj1Qe72Qavyu+t5JuDKuo+/+uMRz8+16vt4Lu7e2XfD3+PkWdn6Tw9Pr78qyxCIjh+9OnCZxdbjdOlxu73YHT5ULVdYpLa2lr7yUrI5GsjAREwWM0KEkiZpMJRZHH3Ps/H+B/AgJgrOq/cSkC/ikSAMO/+giAS70FIH/BGqO3r4vO7nYMQyA5OZ1bb7uZBx78ImmpyZ+rzd1HAPQPDHKiuNwD9KbaBuDtv963awdxCYms3LDZP9YLL4sZFxvDkvlzzmt8GMDgkJ3jxeUM2e1nBVwextnOs//zQypKyjFPugVB8MwnVc59TKAoitQ3VtPQVOVfyOfkLCYsJMIvkXarbk4VHcKtupmft4wASyC6oZ8n8SCh6xq9vZ00tdbRb+v1GPzFJJIQm4LFEjAh8Nc0N339PbR1NNHT2zWmH4CimAkNjSQsNAqz2YqmaQgCrFi9klvuvI2g4KARPhDDNzbDgJiocHIyUs+aILncbj45UYjd6UIURfp7etjz4TYURWHNpq2Ikuyd2X56GkVa1iwWLluJpqrouk5qUiKL8mZf0Huop6+f8pp6evttk1KnjEUEiKJARGgIZlkgKz1tUqMsz35sz2trae+ko7sHp8vtd9udLgJEEARCAgNJjIsmLjpywlaL+uZWSiprMJvNFJ04xvHDB1hzxVVEx8WPGK0lSRJH9u+ls72VJ596iqyMjCkpLCpqG6htHH9E4LmSAJqmEx4azMI5szApn50KdK3XQ2Ey14UkyzTV13F0/x6Wrd2Iruvs/uBdcuctZM7CRezd8QGyJPD4409gGValnw4CAKC0tIxBp8qCuTmfg0Tz0oghh4NDJ4pGqUPGIgAEUcTtdPHSiz/DbrfT39fLA498hZS0dFSXix/+4L+YlZPLhs1b+Z///DcsZgvf+ed/RZLlUXLxCxmKyUR5aSkv/fynPPjo4/T39fLnP7zK1/7u2yQkJfLyL16kuakRt9vN5iuvZuWatZMiAHTvJJsNq5ZdMlVPA9BUFbeqoWn6aVd53UDXdZwuF729/RjoeArVp9dGn7Tdl2vJsoTZbOL9bdv48U+LiYy8CsMQEIVdrF4VyJVXbSIiIoZPjhWSlhRLQnwMR48V8Kc/7qW5OZ7BQTMuVxE/f/5b5OQGYre70fwEwGkDvXE3NK/BsqqpaJqnOi6JokfCb/IAUZ8qwH/+vWBsuDu+JIoYPosCTrcmCH7mYPj8+NOEkXAJAPMLFb4qv9PtxuFyoWs6Pt2FosgYusG+Q6fo6BggKiqY9asWEBhgQZIkb7uF+DlZEc9CAEym+n+5g/+JCIBLXQGQljLL0DSdoOBQNmxcz0MPfon8JQs/l5u7jwAYGLJzvLjMU7mf4uImesfoeOZ6u1i/9RqCQkJP94V553uvXbaYkGlQVvT22ygoqcDpcp81aTWZTLQ0tfDM939Ad1c3yhQSd0VWsJot5+i0L9HaVk9Vban/sTmzF3mr5Zp3UoDGqeLDDA4NMH/OMoKDQyc0ApzoRvXJ9Xv7umhurae3rwtBEIiJTiA+JpnAwBA8s2b1sYG/6qa7t5O2jib6bT1jbsJmk4XQsCjCQiNRFMuI462/YgPX33Ij1gDrmGoBw/CI91IS48lMTZoUEdTW2UVBaSWiIOByuWioqeTQvr0syF9GVm6en2SQZZnqilKOHdhH/qq1pHsl5bquk5qcyKI5sy/4feR0u6mua6SxtR3DmzhNNVRNo6+7i9TUVJLiYomPiRyTUBgaGsJqtY57XWq6Tk9fP40t7XT19nnVCdNT7R9OWISFBJMYG01URDgm5eyKhdrGFsqq6zCZFY4d3E95cSFrN19FeGTUiGtGkmWKjx+lorSYxx5/nIXz503pteu6QXlNHfXNbeck8TxbkpQSH0tuVvpnYv0fGBziWFEZTpdrUudJkmUqigspLzrFyg2bGRoaZM/2d8lbuITc+Qs5dnAfHa0tPPnUk9M+CQCgt7eXk6XlzJk9m6jPyWSGTzvcbpVPCooYsjtG7LdjEQCyYqKw4DgvvfgzrJYANl91Jes2XIGu6ZgsZt547VVqqqp5+PGvcfL4MX727DM8+Xd/z8o1ayflsD8tCaAgIEgSv/nFz3Grbr5wz328/vvf4XQ6+coTTyKKIo319TzzP/8Pt9PJN//hn0jLyJyUV4GmacRERbLqMsondd2gv79/BPD3w2Fh+NfT5+/AgY/5n6fLQdhAYEAwLncfne37mJvXwWOPXUN96yApCQns3nWI1147gtmylsCQFNpaC0A7zEsv/QtZmSGfI9B4CcJYw/CSKbpn5KDmyUtlb3uEYei43KqnZVUQ6e7t58ChIurrVSIjYW5eEolxUd7pTAImxeRXPJgUxTN9QPKOHBQ/S5/zFOX/Z1b/LzfwP1UCwKsAuHbLSgKslkuPAFiev8GYnTObe+79Aps2rZ12ue3lSAAM2T2VdZfLPWUCALyjofbtoa6qguVrN5CSkTWiCmzoOvnz55IUHzMtr7ulo5Oi8uoxe9vODIvVQsGxAp5/5jlUVZtSlfZcSQBRlOjsaqWs8qT/sdlZ84mKjPOP+xMEgcKSo/TbekaQA1NJZERBRDc0evu6aWlroKe3ExCIiYojPjaZoKBQ7yY/NvB3uZ309HbS3tFEv6137PNnCSAsLJqQ4HBMJvMIzwDV7SZ/2RK++NC9WAMCxgT/PrO/rNQkUhPjJ/3+hsv/7XY7B3fvpLenk/VbryEgMNj/niRJ4tgn+6mvrmTt5quIjI5B0zzmNGkpSSzMnXXR7qfm9k4qaxuwO5xT8h0QBAGXy0lvdzeRMbFgGISFBJOenEh0RNiI53Z1dmK2WAgKCjojkdNp6+ymsbWdPtuAZ2Oeptm5uuExdFIUhfDQEBJiooiOCJtS20NFbQPV9U2YTAoHdn9IQ20N66+8hqCQsBEmUh5Cp4zjn+zni/fdz/o1q6fsUaAbOhU1DdQ1tU4rCeBTNuVlZ5AQG33ZJ4CF5VU0t3dOmKD5eoANL5F74vBB2pqbWLVhM91dnXz84Tbm5S8jZ+58yosLKTpxjMefeIK0lJRpJwAMQ+dkYQmi2cy8WVkzWfxFuk4OFRSNmg5xJgEgeAsBf/r9q3R3dbFpy1bmzl/g3y8Us5nCguP8/jcv88jjTxIaHs4vf/ocvT09/J9//08Uk+miqAAkWaa+rpZfPP8TbrvzHuITEvjps8+wadNm1m/ZgupyIykKf3ntVV5/7Q/8x/88TXpm1qQUAJqmkZGSyPw5OZdlHjh5UsjFL375Mi/84jhJyfcSFpqFqjppad1PcFAByakOWpt1mhpjSUi4GkSB7u5yhgaPc/PN6Xzrm/d+plRUl9O97AP+w6GnPEafvqqq6IDkNfMrr25k/+FCDu4XSEkVmD8/kPl5WX51wGms6xsNKCKIoEgKkiR4DRdlvzmh5J2kcLHUFMYoMD5hQjYWDD5PAuDM37vcwP/UCIAt6/MJ8xuhXkIEwPYPdhnLli0m5CKab13qC7/d4eRESRl2h+ucbkhZlqmpKOPwvj1kzs5l8Yo1aJo6ApzERkWyYvH8abvhK2sbqGpomhS7aLVa+eCdbbz68u9QFGVKr0GWZCwm85SIA1GU6OntoLjsuP+xjLQc4mNT/CBfFCVKyk/Q3dNOVnoecTGJHif2sx5b9Pbiuent66a1vdFf8Y+OjCMuNpngCYG/gNPlpLunnbaOJgYHbeOcsyDCwqIICQ73+xMMVwa43W5i42J55ImvkJKWOqbsX9cNzCaFWRkpxEdPvm/X6XJzqKAIh9OJy+Wip6uTvTu2kZyWwaLlq/xEgyAI6JrGvp0f4HDYWb/lGsxWq9+wKCM9hfmzLy5QGByyU1ZdR0d3z6RH6QmiyKDNxoCtj9iEJK/zr8csMi46kqS4GIICA5AlCVu/jd6+HpKTTwOsnr5+ahpb6Orp9czsPU8nf1+y4DN1CrRaiImMIC468pxVPMWVNTS0tCFLEnu2b6Onu5N1W67GYg0YcZ1KskxLQx37P/qQ6268iS2bNp6ThNwwDMpr66lrbPH3W05H6IaBSVFYmJt9WfsBNLV1UFJZMyE/bxgGwYEBOF1u3F6/jYN7duFyOli6diNtTQ3s37WD+UtWMHvuXJrqatn/0Yfcd//9LFywwH+cwMDAaXPJbmtrp7qxmQV5uZfcSM3PahwtLKWzu3cEqTkWAdDb20NHayspaekEBAaiqap/rZZlma6uLn743//JTXfcTU7uHJoaGnj+Rz/gjru/yJqNmy64F4BvtvoffvsbOjs7+OIDD9HW2sqvXvgpjz35ddLSPZV+UZIYGhrkf//ff5A7J487v3TvpBQKmqYxLyebzLSUzzQBAOBwDPG/T/8vf3r9OJHRdxMYmILT3U9n+xG623cQHbuZjMy7sDs6aW8/hiQWc90N87j11s1kpSWfMdZvJi48+PeATt96P9U8fPf+ExSVtPL+uxAdK7B+AyxdnENOVuoEZIP3b3pzCZ8xIoAkegmA4d4NFxvoDwOzwtT+wrkRAJdk9V+Y5I/GAP++x33jRQWBhuY2Dh4pZvmSHKIjwrBarJfUfSAYn+bg2Ut04Xe63JwoKWNw0OHvh5pKSJJEX08Puz94l4CgINZdcSWy2exn9A3dwGo1sXbZknMeBzhWIl5QUk57Z/dZwbkgCCiKwisv/YYd27ZP2hTQD7oFEavZMmm1iCiK9PV3U1R6zA+akxMzSEnKPF25FiUqa4ppbW8kKTGDtKSsCQkAUfQ45tqHBunsaaOzq5Uh+6Bn1npkPHExSQQFhYwD/D0AyOlw0NHdSntnM3b74Jh/JzAghPDwaIKCwpAk2b+An5nomC1m7rr3blauW43b5R4D/OsEWq3Myc6Y8kiklvZOTpVXIeDxAig6dpiK0iJWbdhCTHyin1wSRYkBWx+7P3iX8IhIj/+EdwHWNZ2sjFTmzsq86PeVruvUN7dS09DsB05nu156u7txOh3Exif4Pz+fA7AiS1gtZsxmE4os09fVybIlixlyOqlraqWzuxdV085bajfc6MikKISFBBMXHUlkeOh5V2xOFJfT3t2Doevsfv8dHA4HazdfhawoI64vSZLo7uxg9wfvsnrtem675aZz7iE3DIOy6jrqm1vH9QQ418/XarGQPzfHK3O7vGJgyM7xojIcTue458QwDEwmhfSkBGoam3G7VQzDYO+ObVgsASxeuZr6mioO7f2IhctWkp2bR3tbK7vff5drrruOLVdsGnG86fIBcLtcFJdXERsbc16TZWZi8lFUXk1ja9uIfXY8E0BJlj0VRu8aNlypNTQ0yH/9f99j1doNrFq7DgSB3ds/oLSkkK9989uYLZYLqgIQZZmO1jZ+/MMfcM0NNzNvwQIKT57k7b++zje+/V3CIyL8aiRRlqmtqqTo1Emuuvb6Sa8d+fNySZikcenlTAD48oA3/vxHnvnhrxgYykGRg9HVAdLT78RsjcM2UE9392HCwmq59Y71rF69lOyU5BEj9mbi0o/uXhsf7jlEaYnGnt06igIbrxDIyQ1g89pl05bTn0/eMn0AfxIEwGQNAC9p+b8whR8Lo87n6H97CICm5nb2fnKKRQuyiAgNJjoyYoYAuNQXflXVOF5chm1gEOEcQITgdVHd/9F2ujraWXPFVUTFxI1QAWAYzJ2dSUbq9LHjdoeDo4Wl3v7EsztYq243P3n6OU4VnJqy0ZooCFgtVmTp7CSAKIrYbL0UlR3zV0DiY5NJT8vxJziSKNHcVk91bSmREbHkZC8Y1QLgl/ljMGDro62jic6uVjRdQ5JkYqMTiIlOJDAgaEzg76sED9oH6epupb2jFYdzaMzPLzAw1AP8A0OQvAZ7Y90quq5jtVq58fabWbdpvd/Fd0RioOuEBgeSl515Vqf/UcuoblBQVkFbZzdulwunw86eD97DbLGwetNWROn0uERJlmlramDfzu1kz5nL/PxlfiWCrulkZ6aRl53xqd1ffbYBSiprPPJZSRp3yRVFkY62VkRRIDI6dtTneNr52PPczrZWYmOikRQzDqfrvKR0w0G/LMuEBgcSFR5GVHg4QYHTw95qms7RUyX0DQ7idjrZ9uYbWAMDWL1x6yhTPh+p89H775CTO4eHHrh/FHj0jZycLFgvr6mfdk8AVdOIjYxg4ZxZl5UplKbrnCyt9BKn4oTnLTMlieiocI6eKkHTDdwuJx+9/w6x8UnkLVrsUX19vIfFK9aQOTuH/r4edm17h8WL87nzC3dcEAIAoK29A8VkIiJsxgfgYkRlbQNV9Y2TIgDGuo58+6/D4eDf/vkfmTNvPjfeegeqpjFos/HrF5/n6utuYPmq1ZOS2p9rKCYT7/7tTY4dOczDjz2BxWrlo+3vU3DiKH//3f+DyTySgPC1Zsny2VWDumFgMZtZMjeHyEss6b1QBIAv/vT6H/jOd/6NoOArmD37K4hyIL29pdTV/AlZbuAb336IKzatJzEmBmUG/F92ceh4MUWlNez/WKaq0rNXZ2ULrFqjkz9/FvPmZH4qr2vMar9wIbUlk5kAcCn3/wvn8LQJwP84BMCegydZvDCboAAL8bHRHmPOGQLg0l34dV3nRHE5vf22cyIAwCPxKzx2hOKTx1m4bCWz5swdIQvXNZ342CiWLZw3rQlzV08fJ4rL0Q39rMdVFIWujk6e/v7/0tbSisk3i2YKRMdkxgSKgsigfYCi0qO43Z6EJjoynuzMPD/YEUWJ3r4uikqPEhQYwtzcJV4zPwNR8My9V1U3ff3dtLU30d3bAYDFbCUmOoHoyHgslgDGMvfzHcduH6S9s4WOzhZcbueYwDMoKIywsCiCAkP9vzfeLeJ7/OobruXqG65BFMVRf9vnlp43K5PAc6iO9g8McqywFJfbjaqq1NdUcujj3czPX86svLkjRkzKskxZ0SlOHT3E0jXrSM3IHkEAzM5K/9QN29yqSnV9I/Utbd7xe+KYn0NzQz3WwEDCIyInNIMURZG+nh4GB2zEJyWf8+hI3TtjWJElgoMCiQwPJSo8jKDAgGmfKex0uTh8shiny83ggI1tf32diOgYVqy7YgzSS8TtcrJ7+3tERUby2GOPERkRPuLengoB4EvOK2vrqW1qPSf540RgOjstmYzkxMtmza9paKaitn5CwlTXDUKCAlg8NxeH08WRU8UYwKCtn4/ef4eUjGxy5y+gsrSEYwc+ZsnqtaRlZuN0eD63hPg4vvKVr4xIHaaTAHA4HAiCgNk80wJwMaKhpY3iiuoxCQDfvTTePenbT0RJwuVw8C//+G0ys2dx55fuw+1WUUwKf/3Ta7hdTh569PELpgAQRBGXw8GzT/83uXMXsHbjJkQBXv/9q7Q0N/KP//rv/pnmkyFNx1oLwoKDWLdiybS1u1wOBMC2bTt54cXtDNrzCQ9fjMs9SGfHcbo69qCYw5HkMKKj+vjHb9/G+vXLZm6myyx6+mzs2H2YpmYXH74PqmpB051IksH6jQY5uQFsWbeMwICLL/U2pgZrp/EvMkELwKVIAAjn+LSzgP/h8n/vzz0EQAGLF87CajGREBNzSSl+ZgiAMRZ+wzAo8M6CPtfNS5JlWhvq2ffRdhJT0lm+dsNIIGMYmMwKS/JyiYqaXulmbWMLZTV1k5JAWywWSopK+PEPfoTT6Zzy6DYAs8mMxWSekChwOh0UlR7F4bQDEBEeTU72An/yIAgiTucQBUWHMAyDBXOXExQQjKppOJxDXnO+ZgaHPJ9RUGAosTEJRIbHYFLM3nE+ZwJ/CQwD22A/7R1NdPW0+wmIM58XEhxOeHg0VmuQ10zw7ImX2+1mzrw8HvrqIwQFBY0y/dN0nejwcOZkp2Mxm6a+vBoGNY3NVNY24HB45Mmf7NlJV2c767dePcowzmc+2Vxfy9otVxMRFe1/TWazhdSkeHIyUi+Je62ju4fymgYGBgdHeQMIgkBDTTVhkZGEhIZNSAAI3qkIbc2NJCSn+u9XYRJbit/FXxIJslqJCg8jOjKMkKDAC5q0DtkdHDpZjK7r9HR18sHf/kJiair5K9eOuoZ8aqJ9u7YD8LWvfY2EuNgRr2+qBIDvd6rqm6htaPbMdp6mqQiCILAgJ5voyPDLIpk7UVyG6nV8Hvs9gSgKzMvJIiYinD7bAEcLSwGB7o429uzYRt6iJaRlZVNeXMiJTw6wbO0GktMy0HWd/Tu3IwgGTz35FNZhBOB0EgC6ruNwOAgICGAmLsLa1dXDsaLSEXul3W4Hw8Dtdvvdv8e7RwyvL4nL5eT/fvc7pGZkcvd9D6G6XMiKQvGpArZve4envvUPhIWFjWkmO9n7cbyQFYXykhJe/c2vuOeBR4iMikKSJF773W/o6erkO//8r2iaNuoYY601Y71fTdOIj4lm2aJ5l92YuHMhAJxOO08/8yJvvFFLbNwthIZnYLPV09KyD8fge9hsQyQk30ti4nrsgz10db7F/fcv4MEHbsZkmj7izjg/yDMTZ4n9h09RXt3A8SMCxUUmIsJScTp7sA12kJomsnqtztzcFJYvnvs5OSNn8wCYgAAY8XsXGoYK5/E0YazEc+znjEkAeBQAFrOJuOgozKZLx/BzhgAYZ+EvKKmgs6f3nIGAKIrYBwfY/cF7iJLIus1XYwkYafBl6Do5mWnMykyf9k2yuLKGhubWSQF6q9XK7g938esXfoUsy+f0WsyKedxZ9h6TPpWi0qN+AB8WGknurIWjnldYcoR+Wy8ZaTkeeXdXO/22bnRdRxIlIsJjiI6KJzTE05M/WnLvSUZ0Q8dm66W9s5nu7g5UbXRfviwphIREEBoWidUS6B/3MpnQVI2gkCC+/LXHmJ07G/ewsUgGoGsaCbEx5GalnfOMbofTxcnSCnr7bbjdbvp6e9jz/rvEJiaxdPW6EdeSIAhoqsreD9/3jJ/cfLXfANBDAJjJSksmMyXpkrnfXG43NQ3NNLa2n9GzL1BbWU5sQgIBQcFnrYIJgkBjXQ3hkdEEBQdPSBj4DHgEwGIxExkWSkxkOGEhwSgXaQKKbWCQwyeLQRTpaG1m+1t/JSt3DvPyl6ONYR4pSRKHPv6Inq4uvvbkk8TFRI8AkOdCAPiirqmViroGDF2fngkJXj+AxXNzzknxcrHCraocLyqjp882ofRf03TSkuKZ7SXOfASAIAg01dfxyd5dLF65loSkZEoKT3LyyEFWrb+C+JQ0AI4f3E97SxNPff3rxAwz/pyuSQCnAYgTRVEuu2rr5Rh9tgEOFRSNqPYP2GwM2e04vWqMyREALn7wn/9GUnIqt951D263iiSJdHV28cdXfsWXHvwySSkpY64J50MACIKAJMu8++ZfaW9t5Ybbv+BpeVJk3v3rn7H19fHw41/DGKOdbay/ERAYQGBA4IjnappGdloyc2Znfy4IgN//YS/P/fgwCYnXI4gGnV2naG3eSVKSnc1XLqWzvY2//XUnZvNaZs2+G03TaajfxqKFbv7l/3yJ5OTk0zDoYqTkwozt4FSjpb2bXR8fpbNDY8f7OgJxBAXFYRgatoEGnK5eVq8VmTVbZP3KRSTERX8OzsqlPgVAOI+nCOPeO2M+VzjjdwSBxuZ29h4sYPHC2ZhMMvHRkePipBkC4BJa+E+VVdLe1XO6onhGb+6kTq4ocPCjnbQ1N7L6iiuJiU8YsZnruk5UWCgrlyw8p8r7hABV8/gYdPX0TcoU0GQy8cffvca7b749ZT8AP5FgtmBSTGPcGgI6BkWlR7F5x+sFB4WSl5Pvl9l7SBOJ8spTdHS1oCgmBAREUcJqDSAiPJrQkAgPUMcz2mz45+EzNdN1DdtAH63tTXT3dIw5StCkmD3APzQKqzXA/1lMBeQoisItd97Ghs0b0VTVv3z5AGZyfCw5GannlZC3dXZTWF6FpuuoqpuywpMUHjvC8rUbSErLGNFSIkoStr4edn/wHhGRUSMMAAEsZjO5WRkkJ1x6hkw9ff1U1jXS3deP6L3PairKSEpNx2K1nvW+E0WR9pZmBFEkOjZuXM8A3TAwyTKhIUHERkUSFR52TsqM843efhtHC0sRRYmm+hp2vvc2cxcvIWfugjGnR0iyzKmjn1BTWcFXHnuc7Iy0UQTAmfOppxKNLe2U19Shekclnm+omkZMZAQLc7MvWUBaXlNPTWPzhCopTdMJCwlm0ZxZmLysfW+/jWOFpQiiRGVZMUXHj7J07QYio6MpOXmCU0cPs2bTVmKTkhGAsqKTFJ88wVe/+jhZmRkXjADwVYmnex+ZidExaLdzqKAIVdUQRRG3201LS8ukSLQzCYD//o/vkZ6RzU23fwG3240oigwM9PPab3/NNdffyJx5C9FU97S+flEUcTgcvPyLF5gzdx4LlixFdatIksTBfXvoaG3l7vsemFTOYxgGQcFBBFgDRhEAC+bMJi058TNPADQ19XD/gy8gm1ajKCba2w/S1bGDxUuiufu+u9A0M+FhQVRVFvGzH/+C9rYo5sz9MqGh2dTX7mdpfg0/+MG3MJksI+HT+abmw1V1ZyGFZgiBs+d82/cco6W1nSOHBMpLTUSEpyOKJkBA05309NYQFu5i4yaD1NQwNq3Jv6TA3qVFAHgfv6BtAMI5/Wji35sI/A/7XS8ZUN/Uyr5PTvkJgLioyE/dJHKGAJjEwl9YXkVbZ/d5EQCyLFNy8jinjh9hwZIVzM6bNzLB9yYCi/NmkxAfN+3vZ8juMQW0O85uCihKEoau8/Nnf8rRT45iOcfqndlkxmwyjRprIyBQUn6cnr4uAAKsgeTlLEEZ5nouCAJ2+yC2wX6slgBMihlFMSFJskfSbRijpPke4C+i6yo9fV20tzfR2989JqA3m62Eh0YREhKJ4vU7mOpnerrv/xquu/mGEQoEX3KXnpxIVmrSeSU+mqZTWl1LU2s7TqfTM95v13acDgfrtlyF2WIdNS6utbGB/bu2kz0nj/n5y0dda8sWzSNuCuMHL2Zomk5Tewd1jS309vXRWFtNevYs/8jFsyW0/X299PZ0k5yW4a9c6d4eVkWW/X390RHhUzZinO7o6u3jeFEZkixTVHCcYwc+ZtGK1WTOyhmTAJBlmcrSYk4ePcS999/PogULxiAAzq+Xv62ji5KqWlxeEHLen+cl7AfQ2d3LydIKtAkAm8cEUmJh7izCh43IPU0AiJw6dpiG2mqWrdlIcGgoRSeOUnzyOGuuuJKYeM/7bqqt5pOPd3PXPV9k+dIl/uNM5yjA4UnqjALgwodvLKvd6UTyEQDNzZPePzzVdoW2lmae/v5/cOW1N7B05Wo/AeAYGuIPv3mJdVdsYcmKlajTbAQoyTINdTW8/vtXufH2u4iIjETztsHUVlVSVVHGTbfd7je/Pdv7CQkJwWKxjNgHRVEkf14ucTHRn3kC4OjRQu6972kCg5fidDXicn7MFVuWcP1NN5OZnkZxSS2zMlMIjwimsaGRF372c7ZvbyAm/iYkMYJ5c2r40Q+/jNl88faliQiGy+3zuhhRWtnAoWOFtLcL7NxuYFYSCAiIHNHCand002drYt48WJivk5udyvLFeTMEAJNtA5guEkCYXtA/LvCfCPx7/lFV28ihY6UsXjjLQwBER2KdUQBc+gt/cWUtLe0d/oRqLIO3yWy07c2N7Nu5nYSUVJat2TiqIm3oOmnJCSyYk3NB3lNPXz/Hi8tRNe2s1T1Zkenv7eeH//U0DbX1mM6xOmpSFKxm66hNpazyFF3dbV6iwEJebj4Wc8AI2b0gCAwO2TCZzJgU87gmfD7g71Zd9PZ10d7eTJ+te8znBliDiIiIISgoDFlWJjT2O1uoqsrC/EXc+/D9BAQG+CtvvuNlpSaRPg2gxzY4xMnSCgaG7KhulY62Fvbv/IC07NksWLpilCzUZwB48sgnLF2znrTM7DMIAFi5ZAHREZd2b7bD6eJUSRmHDx8iO3fupJIRnzt1U30dialpyJKMLMsEBwYQGRZCZHgYwYEBl0xi097ZzcmySiRZ5sThg5w6dpjlazeSlJYxdguALNNcV8OBvR9x0823snH92pEEwOS2sEkB4+LKau8khfMfoShJHgAdERZySYG3E8Wl9NkGJ3yPhmGQnZ5CWmL8iMd7+20cKyoFQeTwx7vp7elm+ZoNmKwWTh09TGVJIauvuIrouHgwDLo629nzwTY2bdnC9ddcPeJY0+kDMF1E0ExMjmg5VFBE/8CgZ5qOqtLc3Dzpiq2u6ygmE++8+Rc+2b+Xhx9/imCvn4soijgdDv7w8kusWr+BFavXTPskAMVkYs/OHZw6eZI77v4Sgih61AuiSF9vDwf2fsQNt9xGYGDQWXMewzAICwvDZDpN1Oq6gdVqZsncXMLDwz7zBMDg4BA//vHv2LZjD6HBcOvt17Bp0xVYzBYiQoPZtvMTFuRlkxAX6V2vdf7y5zd5+Tfv0tpu48tfvpGH7r/r04VwY127M6oA75o/wIe7j9Dbb2fvR9DaEkB4WBqCIJ0BWAUGBppwqV2sXSeSnimwPH8emakJn18CYEISYDwTwXOFpFMB/pP1BBAm/lvjgn/PN0Vl1ZwsqmbxwlmYzTLxUZGXlFnvDAEwzsJfVl1PY2ubP0mUJBFNmxoB4PEBGGTP9veQFYW1m69EOWO0jqHrBAUGsG7FkgvWg9zU1kFReRWCdwzeRGE2m6mprOKH//1DBgcGkM/xNZ1pDCgIIlU1xbR1NHkBq0JeTj5BgSN7tg3DwO12Ictj97P6gb/bSU9vJ63tTdgGesd8DYEBIURFxhISEo4gSGi6xvlc7pqmERgYyINffYS8eXNRvdJMXTeQJJHczHQSYqOm7TMrrqjBbh9ClmVOHv2EqtISVm3c6mkl0UYCRUmSOHpgL/U11azdchVR0SPHTgrA6qWLLykwNi5Abm/jgw93EZcytZGFjbXV5OTmkpyYQFhwEAFWyyWZfHo+22pkReHQx7spLzrlqRonJI7rAdDV0c6e7e+xcfMWbrj2mmmXkPuiu6+forIq7E7neZMAmq4TGhTE4rzZfgn9px1l1XXUNrVMLP3XdeKjo5g7K2PUOfAQAGXohs6+D7djtw+xauMWZC+ZU1NRxtrNVxEZHYthGAwO9PHRtnfJzcvj/vvuvWCTAGbi4saRUyV09fQhyx4CoKenB/vQ0CRzSpGhoQF+9twPyZu3gFXrN/qnufhyhldf/iVXXHU1i5cun14FgCAgSRIvv/gzREnmxtvuQNMMj5msIOB0DPHOX9/gxlvvIDo2doTJ7NiH+//Z++/ouK4zTR99TqgckXMgACKQYM6Zkkgly7YcZNmy5Zy7p6e775q+oefO+s3c23eme6aT26HdtrudLdtykCUrkRIlkhJFiplEzjlWzlUn3D8KAAkSkRGkuNdiAFBVqDp7n7339+zve18Bl8s1LZNv0vlmfX3tHTnGr9UFYHBoGJNJJitz+h7gxYPHWL2iguIryu/i8Sg+vx+3OwOL2bIkPvtshy3v1aaqKm+8fYaBoVGaGkVOvQsOewlmk2uGayWgaSl8gR7s9hh77ofiQjN7dmwkK+NunesX4gQwGwCYCyAsBgQsNPC/3qB/7mD/yq91NM43dNDY0jPlAlCQk4XBcE8EcMlP/G09/fQODE1tAGVJQlm0Gm+6LvfYGwcZHx1h176HpymzX962rV9zU5Wz27r76LzCu3i2ZrZYOH70bb7/rX+DOQSN5n0dkxnThCaAKIp09bQyONwz8bXEytr1OB1Xq7zPVG4hCAKiIJJIxhn3jkxzBLiyOexu8nKLcDoy0HSNlKJwvcNcVVVSyRS7H9jLU5/95JR2gappmAwG6msqyc5w35C+0jSNhrYuBkfHSCaTpBJxDh94GUmW2fXAQ0iyfJX+ga6pHH3tANFIiD0PPorlitMbQYBdmzfgdi79hainp5tjx98lp2TZNFimaZOZGzqCICKK050DfGPD7Ni8gYKCpU3cewaGae3qQZZljr5+gN7Odnbtf4SsnLyrwA6ky3PCQT9vvPIia9au41NPfeKmAYDJIPdCSzux+I2BAKUFebfdfhLSzhPnm9vRNH3WNV7TNBx2G+tWVM9Yv+kPhjjT0EIyleLwqy8iGY1s3rkXAYHTx4/S19U5Nc9rmoaSTPLmwZfJyMjgq1/5Ctab5ARwr93adqGlncGRMWRZRlEU/H4/0Uhk3ueJooSmqTz/u1/T39vPRz/xqWlirZIkEfD7+PkPf8BHP/FJltfWoaZunAaAKIrEYlH+6e/+J1t37mb12g0MDvRRWFQyZXn83LO/YO2GTWzYvHVe+CCKIi6XC/myNUlVVYomNHDubgCgXwpuBOFSRKBrl4IcUeKPB95mVW05pSWFcHkGqChdeh1Nn9lvXFhE4HKjw7oZ9mDvtXauoY0Lze0MD4i8cUhFIBOHvXjW4FQQRJLJIF5/L2WlOtt3a5QWZ7Fn2zpMs2TUTl7rO/f6LqQMYAEQYDEx/6J4wEKEAIWFv/BMrz/D9xLJBBeaOmnvHGTdmuVpAJCbg+GeDeDSn/i7+gbo6hucWhSvJQMA0qnZDWdO0XjhDJt37pnmzT616VQ1igty2bjm5lmH6Hpa12BgeHRBPpRms5nnnv0dv/3lb65ZFBDS7gAmkxFJlOkf7KSnr30SjbCidj1uV9aMQn1Ta6QggiAQj0fw+EYZHRsiGgvPhFpwOjPIyynC7cpEA+KJ+KLLNqZfMx1VUQEdV4abtRvW8b7H34/T5URVVVRVw2oxs6q6Erfrxm10IrEY5xrbCEWiqKrCUF8vb7/5GrUrV7Ni3YarTolFUSQaCfHmKy9id7jYcf/+dFqnfsmKRZJldm1ej9NuW/L3YXNTEyfPXaCwrGKq/0RBwGIx47BZkSSJZDLFqMc7tWgKgkjQN05dZTm1tbVL+vO1dvXRPTCIJEm88cqLjA4NsOfBR3FlZM4IBwVBJJVM8OarL1JUXMyXv/QlJFG4qZtrXyBEQ1sHkVh8QXai820k66qWUZyfe9uueSKZ5HRDC6FwdBo4uvJ+l2WJNbWzly34gyHONLYSjUR445UXyMjKZc3mraDrvPvWYYb6e9m9/xHcmVlpfRDgnUMHSKZSfOWrXyM/55Ll682EOPfazb6He+nqG0CSpLSdp883LwCQZBlNVXnpD7+noeECj3/k4+QVFqCqGrqmEYtFsdrsjA4N8ewzP+Erf/pn5OQVXLMLwIzrqSTh83n5x//1N3zwI0+yrLKKZ3/xUzZv38GyquWIgsChA68QCgT45Gc/P2e5nD6xrmS4p6f5q6pKTUUZNVUVd6QmxfwAYBbxMn2GCGYSANSUU1paAKo6a8AwPbgQZvjxbQABV/b9e6gsoL1ngHdPNxAKaRx6TcczbibTXTYh/KfPEUsKRKNjhCLDrFkrsHqtRu3yMjavX3nVtbvyIOfObYvUApgLAlwLCFhMmv+irrMwP1iY5Xf7giHauvro7By6DABk3zK3qXsAYJETXTh8KbDsGxyhrbt3CgCIgpAWFVtkk2SZod4e3n7jIMtX1LN649VWX7quYzEb2bN18031iFRUjTMNzXj98zsDiKKIIAr84Nvf5+3DR7FYrj1FzWQ0YbNYGR7pp72rcer7ddVryczInREAiIKILkA8FmXMM8TY+BDxRGzG4MjtzCQvp4iMjGx0IBqPziimtpixoCgKsixTVFzE6vVrWLdxPUWlxaCnNziKquKy21lVW4XdemPT94ZGPTS0dRCNRpEkiTMn3qa3o50dDzxEdm7+DOn/MuMjwxx57WVKyivZuH3n9EBS1zEaDezasgGbxbLk78WTJ9+lsa2L4vJKNE1FnXDLWFVbhXEifSqeSHLiXAOJZDJdFiKKhPw+8jMcbN26dUl/vsb2TvqHxkgk4hx74wB+n4+9Dz2K1TazhWE6w0Pj6OsHMBkN/Omf/ilWi/mmn64FQmEa2joJRaLXBwEmhBjX1C2fJqh3a695F31DI3N+Dl3XqV5WStkVdf9XAoCzTW34fV7efOVFipdVULdqLZquc+LIIUYGB9jz0PtwuTNQVRVJljn59hFGhwb4/Be/THXlpUyImyEEeK/dmtY7MExTRxeSJKHrOj6fj3AoNOMmXhRFDEYjAb+PF//we7o6O3j/4x+loKQEXdMRRYGWpiYcDgd5BYVcOHuak++8xVf/7M+xWu3XBbFnBABeL9/4P/+L933wI9StWsWvf/ojVE3jw09+EkmW6Ovu5sXnfsunPvcFCotLZ3UhmBQzzHC7p31fVTXW19dQUlR4RwY1cwOAuYL/GQIeSeKPB45dAQAuCyCEpQ8BZgIBdzu47Owd5OSZJqKxJMePCbS1gstZjNmUsWCr6GC4H0XxsXOnyLLlsGF1HbVVZXfpNb2GLICrIMAskb9+A4L+Gxr4MwvEu/QzTdMYHvMwMDxOx0QGgMkkU5CTjcloXDK9dg8AzAIABkfHaW7vmgIAwjWCKVGSCPl9vPnqi2RkZbPtvv1TivZX/v6t61eTl511Uz9nLJ7g9MVmwrHYvJt6WZaJRqN84+/+kfbW9usSr7Bb7YSCXprazk19b3nlSnKzi6YBgMkNcSQaYnRsCI93mEQyMcOmSiLTnUVubjFuhxtBlIgnE+lT/wmf98U2TdNQFRWT2URldRWbt21m5ep6MjIzp6CAruuoqkam20F9ddUNt/TQgYaJTI1UKkUiFuPwgZcwmc3suP/BtFvDFWNHlmV6Oto4cfRNVm3YTG396qscAMxmE7u33Bm2NG+88QZ9I+MUlS1Dm8i0qCgtYnl5ybTHtXT20DNRpiMIAtFIGIsI+x64b0l/vgst7QyNeohFIxx9/VUS8Ri79z+C2WKddbMvSRInjr5JJBTkP/3Zn5Hpdt2S9NpwNEZDawf+YBhJuvZgNW2pZ2fdypopiHOr2tDoOBdbO+dcs1VVoyg/h5XLK+bciE0CgLGRYY4cfIXaVWspr1qOpum8c/g1PKMj7HnoUewTom6TTjAtDRf42CefZsv6tfcAwF3QRsa9nG1smRcATNr9nT5xnLffehOr1c7+R99Pbn4+uqYRj8U48dZRBof6+cCHn8ThdPD8735LPBrms1/+2pSjyY0EAMFAgH/71j+z6779rFy9mjcOvEJLYwM79txH/dp1JBNJfvvLn5GTk8OHn3wKJZWa8T3ouo7BaCTD7Z7mACDJEhvra8nNybm7AMBswcpswX964p4DAMwUmMyT+n87IcAM1+BuBAFt3f2cvdBCLJbk7CmB8+c0rNZs7LZCFlOXrukp/IFezOYIe+4XKSqU2LllHYX52dPvp7siq+IatABmva+uJdK6ntP+axAPFOZ+rVAkisfvZ9wToL1jkHVrqzHIEvnZmdPKAO8BgCUKAMa8fi40tyOI13drCoKApqocee0Vkok4u/c9gtl69UZfUzUK8rLZsm71Tf+sgVCY0w0tU7ZDczWj0chA3wD/+Ld/j9/ru2YBC1mWScSjtLafn5r8ykurKSoom7Kv0nWdcCTI2PgQ495hUjPUPsqSTEZGDnk5hTjsGYiSiKooxBJxUtfol6xpGqqqYrVaqVlRy7Zd26ldWYfVap1I9Ven5ilNU8nLyWJlVQUGw41P5YnG45xuaMHj8WIwGBjs6+HYm69Tt2otdWvWzaoSf/H0CVouXmD73gcoKC2f9jhd07HbLOzasuGWB1/X0l744x8JRFMUlJSgqSqaprF2RTW5WZnTHucLhjhzsRl1YvzEYjHUSJDH3vfIkvZDP9vYypjXRzgY5PDBlwHYve9hZOPVloeTGggGo5GLp9+lr6eLP/1Pf0Zhft4tq6+NxeM0tHXh8fmv67qqqkZ5SQE1y8pu2bUOR2OcudhMLJmc1QUlLVZoY+2KGszzOJ/4giHON7fT39PDO0deY+3GrRSUpOewtw8dxO/zTMvmkGSZ3s42Tr59lEc/+DgP3rd32uvd0wG4M5s/GOLEuYap9dPn8xEKBi8rSRLQdWhvbebgKy/S0dpKzcpV7H1gPxarmWQiyejwEI0NF/GOj1FVU8u+hx8jmUjwkx98l1Xr1vPgI++74Q4AoigSj0f59c9+yvIV9axctZojh14HXaO56SIf+MjHKS4upbWlgd/98hc89ZnPU7dqNalEYsZDC5PZjMvpvMwBQMNms7Cxvg73FZkBdzYA0BcW2FwZ5EgifzzwDqtryykpyQdFnTmIvxICLMEsgMv7/cr3fjdgAE3XaOnso6Gpg0gkwelTAhfPq5hNDpyOUgRBXlRgKggiihLF6+8lJzfJ7j2Qn29l99Z1ZGak75m7C6AsQNBvURBgLihwrbZ9c0T4wo15nKZpDI6Oo6jKVQAgO8O1pMpw7wGAWQCANxDkXGPbDZlr0wrtR+nv6ZpVCFDXdSwmI3u3bb4litljHh/nmtsWNAmZLRbOvHuKf/3nb6fTWq8hCBAEkVgsTHdP0xT8KC5cxrKyalRVJRQOMDI6gMc3OqMQmiwbyZoK/N0IooCiKiRTKZLJJKqusthl6PLAv7a+jt337WF5bTUmkwlFUa5yJ9B1naL8XOoqy2/ayd3gyBgNbZ3EYjEkSeLsiWP0dLTNmv6f3tRJHD/8OiNDA+ze/wgZWdnTxpeuaTjtNnZt3Yi8hAPjyfbLX/4KzWAmb0IVX5YkNq1ZeVWphaqqnLzYTCAYQpIkUqkU3pFBHn/sEaxW25KdZ840tOAJBAl4vbx54CXMFgu7HngQQZSuqglMxuMIAphtNrpaW7lw+l2++vWvU7ms/JbWkCdTKRraOhkd911zJsCkP/jaFdVkuV235D2fb27D4w/Omu00aVe4bmUNGQsQyJwEAB2tLZw5/hYbd+whOy8fTVV5+9CrBAMB9l4mwpm2gh3g6KEDbN+1lw8//n7ky97LPQBwZ7ZwNMqJcw2oalpQ8koAMPW4cJiWpgZ6uruIhsPEolEUVUEQROx2O/Wr1zI6OoLN7mDjlq10tXfw7C9/yhe+8jWKrwC5N2bHly4nevmF58jKzWNF/Wpef/Ul1q7bQMOFc7Q0N/G+D36E0vJyDr36CufOnOKJpz5F7YqVKIqCqihTn1HXdSxWCw67Y5oDQFaGi7Urqu/Ysb0oAHDV6f8VQmeSxIuvHWd1bTnFxXlpALCQoH8JA4DZQMBSC2Yn92yCIM4bDyZTKZraumnv6sPvT3LyBLS2aBgNFpyOEmTZfE2ZOIIgkkgG8Af6WVahsmWbTkG+k93b1uOwWe/GSGqBEOB6QMC1Bv3Cgr61+MB/+g+9gSC+QAhZFhkb908DAG6HfUk5cd0DALNM+oFwmDMNLdyIqyPLMu3NjZx99xhbdu2luLxyxoVd1zS2bVxHbtat8WrvHRyhqaMrnUI9z2MtFjMvPf8Sz/z45xiNxkVP9pMAoKe3eSo4zcstIicrn+GRfnz+cdQZtACMBhM52fnkZBdgtdgRBBFNU0kpKRLJ5IzPWUjgrygKDoeDNevXsHXndiqrqzAajaRmSHec/HpZcSGVZSXczHXuXHMbQ6PjKKkUyXicwwdfQpYN7JxB/X9y0dUUhcOvvUIqkUinkl+RYaJrGm6ng51bNlxXLfctWT40jR/99KfY3Dlk5eSiKClcDjsbV62YMfBs6eimZ3B4KoOkv7uDDzzyEFlZWUvy8ymKyqmLzQQjEbzjY7z56ou4MzLYtnf/VX0riiKRcBBd03FlZDLU38fxI4d4+tOfYc3qVbdcRE5RVBraOhge814zBFA1jQyHg3Ura25KBs3lram9m96h4TnHvKZp1FSUzVn3f3nzB0Oca26n8fxZzp86wa79j+ByZ6KqCm8fepVIOMye/Y9O3YOSJBHw+Xjz1T9Ss2IVn/rkJ7BclmVwTwjwzmyXa5CIoojP5yMYCMxYAiDJMkoqRTgSJplIoKkqoijhcDqRZYlfP/NzVq9ZT3llFQdefJ7RkRE+/+WvThdyvYFNlCRe+ePzZOfkUlVTx4EXX2Dj5s2Uli/jD7/9NQ0XL1C7op7KqmoaLpyjo62ZjVu2sW7DZrJzcqYU/3Vdx2a3YbPapjkAlBYVsHZl7R1b3nI1AJijvlm/8v9XgABZ4qWDx1k1EwC4MmiZ+v8cZQDCgqKR9zwE0CbGpygI876neCLBuaY2+vqHGR1ROPEO9PZqGA1GnI5iDAb7dd6HAvGEj1BokLqVGus26BQVZLFr69obXkK6tAHAAiHAYmDAdan3LzC6X8TzQpEoY14/AJIkTAGA9WurkWUJq9k0TQj4HgBYopN+JBrj1MWJYPU6JzVJlhkdGuSt11+lrn4NdWvWzShSp6kayyvKWVldccs+d1rNeHDeDb0gCBgMMj/+/o94/dXXFi0KKAgCiUSM7p5mlIlUfYNsSJ/CzxDEm00WcrLzycrMx2a1T23WU6pCKpW6pnT/yRp/m8POqjWr2H3/HiqWVyLJEkpqZqtATdeRRJGqsuIFBwnXvKlMJjl5oRGPJ11qMTzQx9uHDlK9op769ZtmHDOiKBEJB3nzlRdxul1sv+/Bq2wUdU0jw+Vk55YNs6ZBL5mNdTzOj378E3JLluFyu0mlFIrzc1hZXTnj49P13R3pRV6AnvY2Hrx/DyXFxUs2cDh1oQlvIEAo4Ofwqy+SnVfA1t33XVUWJIoSAb+XVDJJXkEBPo+XIwdf5rEPfJDdO7fflhrylKJwvrmNce+1lwNoqkZFWTFVZTevj/qHR2ls70oLRM4GI1SV/NxsVtdULXjjOgkATh9/m87WFnbtfwib3YmqKBx9/VXisRi79z88pecgiiLxWJTDB14iKyePL37xCzgvO/m5pwNwZzZV1Th+7iLhSFqo1e/3E/D7Zx1HwmQgIgjpWFHXEESRoYE+XnrhDzz82ONYbXZ+8eN/Z8PGzWzbtYfUDNo3N6LJBiMHX/4jskFm7YbNvPzCc6zfsImalfUoySRNDRc5c+pdPONjCIJIKBggHovxyGMfYNuuPVPzlK7rOJwOLGbLNABQW7WMmspldyzYmhEALDb9/zIA8PLrJ6ivLqW4OP8aAMAVQcYSAwBLEQToE/2wkPcQicW40NRGV88Qne06p06B36dhNMrYbUWYjK7rCP4vy+ZDJBr3Eo4MsnatTv1anaL8bLZtXIXNarnLZscbCAGuA7rMH8Bfa9A/8wPC0ThjXu+EzbAwIwAwGmQK83KWzD78HgCYZdKPJxKcuthMMpm6bgAwZdP26ktk5+azaecetBnEYHRNIzs7i61r629ZDbOu62l7wJGxedPD0/ZrSb7599+g8ULDouwBBUEgpaTo7m4imYzP+jiL2UpudiHZWQWYzRZATwf+ikIylURRFXT0RaX7a2r6xN/udLB2w1q2795BRVUlssEwq8ARpE8rzUYjNRVlt4TajXl9nGtsJRqLIcsy508dp6O5ie33P0huQeHM9f+SzPjYMEcPvEzJsko2bNt1VZmApmlkZ7jYuXnDkr8P/X4/P/rJz6ioq8c6cYpaU1lOaUHejI8PhiOcutiMoihIkkRnawt7dmxheVXVkvx8kViMk+ebCIUj+DxjHDn4MgXFpWzeueeqsiBRkvB7xgn4fSyrqiYWCfPmwVfYtXMnDz/0IHB7UshjiQTnGtsIhK5NGHAq7X5F9U1xBfCHwpxtbCGZUuas+3dYLayvr12UMKY/GOJsczvHjxxiZGCAXfsexmAyoyopjr72Cslkgt37Hpnydp/UgDn6+qtIosiXvvLVqzK87pUB3Jnt3fONeANB5AUAgKvWJE1DlmVOHn+H9vY2Hn7/4/i9Hg69+hKPf+zjZGRkzrhHuJZg7MpmMBo59e47dLS18+Cjj/HqH5+ndFk5W7fvQlUUJFlGVRSCwSCpRAJBEJCNRux2+1Sm1eTvcblcmEymaRoA6+vrKLnJsHxpAgD96sfLEq+8foIVy0svaQDchQBgxnG3hLUBEskknT0DtHf10tcX5eIFgY52UJT0yb/NVjgR/F+LA4c+Y7AoIBCNeYjGh9m4WaN2hU5hXi7bNtVjNZvvstlxgRDgqi+vNxyd25rv2gP+2R+kA8FQBG8gMBX8p/fmVwMASRIoystdMqW49wDALJO+oqqcuthEJBKbcgK45os8ZeP1CroOu+5/EGEGNffJRWT31o24nbduU6ioKmcaWvD6g/Nu6A1GA2MjY/zj//w/jI2MYViwXoGArmt0dzcRi1/tl2yzOsjLKSQzIxeTyTKRYpgO3JNKKq3Av8jJQdM0lJSCw+lg1brV7Nyzi4rqKuQ5Tvwvf67VYmbl8koyXLemL1o7e2lsa0eSpHRAcfBVVE1h9/5HkI2mKUG4y5ssy/R2d3Di8BvUr99Ibf2aqzIFNE0jO9PNzk3rl/x9ODg0xM9+8Uvq12/CYDQiABvqa2e9H5JJhVMXmwhFo8iyTFdbC1s3rGPlirol+fnCkSgnzjcQjcXxjI5w5ODLlFcuZ92W7VcBAEmS8IyNMjLQx4q1G1BVlbcPHWD92jU88sgjtzV4DEWiaVgVj1/TCbaqaWS5nKxZWYPhBi6G8USCM42tBMOROev+RVFkbd1ysjLci4MLwRBnGls58tqrhIMBdtz/4FSK99HXXkFRUuze9wgGs3nqfhVFkeOHDxEM+PnSV75KWXHhPQBwF7RzTW0Mj40jyzKBQAC/z7dwAKDryLLMy8//gVgsyv5HH6O9rYXB3l4efuwDacvhm7Q1MxiNtDY38cbBV/nIJ57m5Dtvk0omeN+HPoI2sXZMWqtOBaW6PqMjgcvlwjghXqrrOgaDzIYJB4B7AOC9BQBmAwFLKRMkkUjSOzhEW2cfPT1BOtoE2loFQmEdSQaT0YbNUoAsW68h+NfnCRoFBAGiUS+J1BBbt2tUVkFxYQGb19W9d8sBZvxy4W4LU//oM90Wi1H4X/wDE4kk3mCIaCw+1b+X9m/TAYDBIKHrUJSbdV2OavcAwC2Y9HUdzja24AsErxsATG7mT79zlNHhIXbvfwSL1Taj5ZemqqxaUUtladEt/fzReJyTF5qIx5OI8zgfmM1mGi808M2//wbJZHLB2QqCIDI21s/o2MClza/dTV5OIRnuHExGE/rUiX9q4sRfXfSJv65ppFIKVpuF1evWsuv+PVRWVyFPbNTnG/KqquJy2KmvrsR+i4RaNE3jdEMzA4PDyAYDnrFRjhx8mbLK5azbsg1Vmfk0aNJmrOHsabbuvp+i8mVXZQpoqkZudibbN65d8vdhW3s7v33uedZt3oYgiFgtJjauqpvVO1XX4UxjM+NeP7LBQHdHG2tX1rF+7ZqlOc9E0uJh8Xic0aFBjr7+KstrV7Bq45ar+m0SAHS1tbB+63ZEUeLUO2+xrKSIxx9//LYHj75AkPPN7VN10Ncy5ivLiqksvTGlAKqqcr6lndFx77Q56cqSGE3TqF5WSvkVgfiCAEAozKnzjbzx6ouoisLWvfsQRRElmeTwa6+ga1o6K8BomtpASrLMuXffoberg8994UusqFl+DwDcBa2pvYvewWFkWSYYDOLzehcV7IiSxHPPPoMkGdmz/0FOv3ucSCDAox/8EKqm3TTLNdlgoL21hed/+yyf+vyX6exop7ujjQ9/7BOIorDglGdBEHC73VOaAJqmYbdb2bNlI7Is37H9eqNLAF55/QR1VaWUlubfdRoA84V2S+FdqqqGPxBicGSEnv4RurrDdLRBV6dAKKgjSWA0WTAZszAZXYiidAOCf2HWgDINAfyo6hCbtyksqxQoLspj45o6bJb3WibAPD/U54jLdRZ+0n+DAn5Iu0XE40lCkSjReBxV02fMNJwJAGiaTl525lWC1vcAwO0colc4AEy2xrZOhkY9iNL1AwBZluloaaLx3Gl27nsId0bWVSd+k5vTgrxcNq9ZecvJ6bjXz9mm1gU5A1gsFl5/9TV+8v0fIRvkBb5XAU1T8QfGSCWTZGXkkOHOTmsB6GktAFVVSaZSE6n+i1tAdF0nlUxiMpupX1PPnn33UV1XgyzJ6QyCeYb65ClGdlYGdZXlWG4hpYvEYpy80ETAH0A2GGi5eJ6LZ06yZdd9FJcvm7H+fzJIPPn2EQZ6uti5/xGyZnCY0FSN/Nxstq5fveTvxTNnz3Hg9UOs37IDTVPJycxg7cqaOcdBQ2snAyOjyAYDvZ0d1C1fxpZNm5bk5wuGIxx+5ySCKDIy2M9brx+gbtVaVqxdf1UfTwKA5vNn2LRzLyaLmZaGizjNBj72sY8tieBx1OPjYmsHiqLOCw5nut8MsszaFTW4nfbr3GbotLR30zM0Mu3kX7hiD6GqGsUFuayourYa5UAozPGzF3n9pecxmkxs3nUfuq6jJBMcOfgKALv2PYRsuGTpKMsyrY0XuXjmFJ/6zGfYcAWcuicEeGe27v5BWjp7kGWZUCiE1+NZcD9OQqlnfvojikpKWb95K0def41EIsaHPvrk1Fp0M5oky/T39fDrn/2ET33uy/T0dNPR2sRHnnxqWor/vABDFHG73UgT2YyqqpKTlcH2jevu6PF8zSKAlwf+kz+bCwBMC/BnUP6/gwHA7W6plII/EGbE42FszMvwaIje3gQd7TAwIBCNaMiyiMlowWjMxGR0IIqGibG/mPtuoYH/lfe/SDweRlGHWL8pQdVynZKiPFavqLql2b9LBwLMh5D0y3jopSPBqXnmJs83mq6RTKaIxBLEYjGSioqm6VN7HmGGjzcbAMhyOXG7lkYf3wMAcwCAzr5+uvqGbohIkyRJeMZHOX74EBu37SK3oGhGSzcm6mN3b914W2xCOnr6ae/pX5AooNFo5Jkf/5yXn38J84LJZXqhkyUJh9WOroOmqSRSSVJKCk3TFn3iD5BMJpElifq1q7hv/wPUrKjFYDDMqOo/e/APxfk51FSU3XIf+VGPl3NNbcRiMQRB4Ngbr+H3edn70CNTnuIzbyLh2KFXCQUD7H7wUawT9mNXAoDCvGw2r1v6AODwkaO8e/oM6zZvJ6WkKC8qoKZibt/4rr5B2rr7kGWZ/p4uqsqL2b5165L8fP5giCMnTiOKEoO93bxz+HVWrtswY+mGJEl4x8c4e/wYW/bsxeF009/ThRIN86lPfXLJBI8DI6M0tXeh64s/pVQ1jdzMDFbXLb8uh4rOvgHau/vmnKtVVSUrw82auuUYrvGEMhCK8PbJ07z0+9+Qk5fP+m070xlLiQRHDr6MIArseuBhZINhat6RZJn+7g6OHznMhz76BHt37bgHAO6CNjQ6zvnmNmRZJhwO4xkfX3A/iqJIPB7nZz/6d9as30jNipW8c/QoAb+Hj3zsE1Nr0s0CAIMD/fzyJz/iqc9+kcHBPi6eOc0TTz09lc6/kPVSkmUy3O6pz6yqKuUlhaxdWXdH9+uiAMDUPzPYAJK2AZwRAFwZ3M9lCXhVfHlvrpgpQAsEo3h9AXyBAOMeH6FQjHGPQnc39PaAZ1wnldIxGCRMRjtGowujwYEoyrcs8L8SAiSTcRKJAVasjlG3EirKc6mpLCPD5cIgS3dZL+nX9TBd19F0HUVRSCRT6exgTZ9wfNCuuGcuHR8KgoAoClOOEOn5Km0NOSkeLUxL378UfWi6TjyRJJ5IkEwpaLo+HTzMGfNNBwBGg4Si6Tht1lvm9HYPAFzThJ9ugyNjtHT23BC6JIgiqXicY4dfp6K6htKK5bN6/GqaxtqVdZQX33ohnUlRwMGRsXmDYEmSUFWV7/zTNzl76uyiRAFlWcZsNKOoaXG/mQLchbRUKg0NKpcv5+H3P8zqdWsWFfhfvtFK2/wV35bNeFt3H40tbUiyPKHq/xIZWVls3fPAlKrtbGNqPqtATdUoys9l09r6JX8vPv/HF+no7mXNhrTrQX1NFQXzCDAOj3m42NKBKIkM9vdRVpjLrh07luTnG/P6OXbqLJIs09fVzokjb7J64xaqV9TPCAB8Hg8njh5i8869ZOXk4BkfJzA6xCc/8XEkWV4ywWNX3wBt3f0I4uKFn3QdVi5fRmHetdUND46O09jWOWfm0qSmx7qVNdgs155+FwxHePPYCV7+/W8oraigfv3mKQBw+ODLyJLIzgcennYfSpLM+Ogwhw+8xL6HHuaxRx6e9pr3nADuzOb1B3n3fAOyLBOJRBgfG1s4AJAkvB4PP/vhD3jw0fdTVFpKw7lzdLa38LGnnl7USfxim2ww0NLcyPO/fZanP/dlgqEgr77wHB//9OfIyFyY+KCu68gGAxlu9zTAtrK6kuUV5XfhfnCBZQBXQgBJ4pXXj1O3vJTSknxQ1RmCxdlO/28NANBhQq9EWHQW120JIyeyTQLhKMPDHuLJBP5AAH8gTDSWIhYVCIVkhgd12jtUAj4NQdQxGIwYDQ5MJhcG2YYgiNcQ+F+5F7u+6yUIIoqSJBwZoKA4wqZNEqtW5VBSkIfTacdutS556+abAgHmueS6rqNOuHolUiniySTJRBJF1ab0U/RZAY2wqPcxiRIWu8+6HACsWV1JKhFHkg1kuJ0U5GQviX3bPQAwBwDwBoKcb267YVo8oihy+vjbuDMyqaxdMScAKCksYH197W0ZJClF4Wxj68JEAQ0GfF4v//A//56hgUGMs9Rqz3QtrifNUVVVUskUJeWl7Ht4Pxu3bsJms5FMJhf1mtpEGvLy8hKK83Nv25R4tqGF3v4BZKORge5O3jnyBqvWb6Rm5epZ0/9FSSIU8PHmKy+SnZfP1t33z6wroWmUFuWzvn7Fkr8Xf/nrZxn3BahbvRZ0nY2r6nDabXM+x+MPcLaxFUEQGBropyQvm927di7JzzcwMsrJsxeRjUa621o5dewIazdvo6p2xVX9LEoSIb+Ptw8dZN3mbeSXlBAJhQmMD/HBxx7DbDYvmeBRR6etq4/u/sFFvx9N03A57Kyvr130yfylEgRl1t+raRpGg4HVdcvJvE7XgWA4yutH3uLl535L9cpV1NavRtW0CRD3MrJBZuf900GcKEmEg34OvfxHNm7cxMef/NhVr3tPB+AO3DdEIpw414CuC8RiUcZGRxcOAGSZsaEhfvajf+cDH32SvIICmhsu0nDuDE99+vNIsnTTAIDBaOTtI2/y9uE3efoLXyEWi/KH3/yKJz7xKXLz8xcMAIwmE26Xa5orwK0WML69AODK788AAaYBgIIJADBb8D8LDLjqyxsMACbe61LNQlI1DSWVIpFSicXjE5miOk2tPQyOeFFTMj6PiM9nxOvR8fl0QiGVeDyBKJJO8zc4MRqdSJJ5InNyMQdOcxWi34AgTBDQVAV/cBCTKci2nQa2bcugID8bq8mM3WbFYbPehZD4Bin+T7yWqqooiko8mSSeSJJKKaQUFVXXESf2AWgqiAKiZLjpn24SAHR0DlFTVUgsHsNmtZLpdlOQl33Ls4zvAYBFAoBILMaZhlZSqdQNyQKQJJm2pouoSoraVWtn1ACYXDzsDgebVq+4LWUAkBYFPNvYSigSnZdAmswmWppa+Jf//c8kYnGkm5i6pOs6iXiCjMwM7n9oH3v23YfL5SSZXHwWgapp2Cxm6qqWkeV23bbxF0+mveE9Hi+ywcDZE8fo7mhl5wMPkZWTN+s4kSY2kUdff4Wq2hWs2rB5RqikaxoVpcWsqqte8vfiT372c+KKRkV1LVaTkQ2r6jAa5p6sA6Ewpxua0XUYHhygJC+bXTuXZgZAz8AQZy42YTQa6Wxt5vTxt9iwdSfLltdcDQAm7EOPvvYqtavWUl65nFQyScg7xv7792K1WpdU8KhpOo1tnfSPjC7a5kbTNOqqKigpWDiE8wVCnG9pI5GYXYQwrfgvsHJ55Q2x8gyEIxw4dJgDL/yeVes3UVFdOwEAYhw++DIGo5Gd9z+IKF0CAJOZOode+SMVlRV88fOfvwcA7oIWiyc4ca6BlKKkRT1HRhYcREmyzPDgAM/89Md88KNPkpObR0tjA+fOvMsnP/N5DAbjzQMAJhMvP/972ltb+fhnvoCWSvH8737F9l17qVlZj5pKLWgdNlssOB2OKZBvNBrZs3XjHa9mPisAmDFmmcPTXAckkVdemwAApVcCgBmC/7kC/fdQ+n8ypRBLJIhG0wF/UlGnXFVkWSKZVDh3oZPm5rO8c7QXWf4YsUQMTUsiCCqSJGMy2DEYnVNp/uk68oXeU/oCA88bFIhNOIUFQ8NouofN24xs3GShtCgHu92KUZJxOO3YrZY7KiNg4XDpRsx103+HpqfFwIcHhxnr78Nq1NFUDV0HyWbH6M69qVAlDQACtHcMsKwsB01TsdvtOB128nOyZhW2vgcAlggASCZTnGlqIRKN3xA6KkkSwwN9eMZGWbFm/ZwBq67rrF1ZR1lR/m27LsFwhDMNLQtS+bZYLBw5dJj/+O4PkEQJ4SakkiUTSWSDzJadW3nk/e+jqKSIVDI1O0iZJ/jPcDpYUbXslin9z9b8wRAnLzQRjcXQFYUjr72Cqmns3vfwhJjYzONElmV6Ott59603WbdlO5XVdTNmC+iaRm1lOTVVFUv+XvzBf/wQ0WShpLyCnAwXaxYALSKxGKcuNJNSVEaHBynOzVqyAOBCUwsdvQMYjUbamxs5e+IYm3bupqxi+VV9Nxk4Hj30KkUlZdStXoeiKAS94+zZvgX3RPrtUgoeFVXlYksHI+OeRRFuTdOx2yxsqK9d0MIYikQ539RGJBabM/jXdZ3aynJKC2/MPBoIR/jtH17g2BuvsX7rDkqWVaZLAOIx3jzwMkaTaQIASNM2P7qmcfjgy+RkZfL1r3/9HgC4C1pKUThxLm3pmUgkFgcADAbampt4+YXn+ciTT+Fwu7hw5jTnz57ms1/8MiaT+ZrL4uYFAEYjv/jxf5CIJ/jQk59AUzVefO63lFdUsH33XpQFAgCrzYrdZp9Kx3XZbezZtumOP6mcbT84ZxbAbBBAlHjl9XeoW152KQNgLuXyuU7573IAkFIUovEEkWiURDKFqmqIoogsiciihCRLGA0G7DYLZy+209Y5yL9/9+85cewt1m3671isq5AkCaPswGB0IEuWyxxg5gtzFhIG3exrny6fi0THSSoBysph+06VlbUFuN0uNE3DZDDgcNiwWczXrGNzZzV9UX2ipxJogoQoywS9Pmw2KxrQ0tSCEhjHKqfLAwKKiKtoGUaLaVqG95XT9/VEx5MAoLW9j/KSbEQRzCYzLreL3KzMJeH4cA8AzDHh6+icb25n3Ou/IYuaKIoE/D6G+nqpXrlqng2xRllxEWtXVN/W1Kxxn58LzR2kFGXO+jBBEDCZTPz2l8/y3LO/X5QewLxBhaKgqio1dbU89qEPsHLNSnRNT2dmLHY6magNKsrLoXpZ6ZKYRPuHRzl1vgFJlgl4PRw+8BLFZctYv3XHnHBDlmWaLpyl6dwZtt+3n7yi4pnLSnSd+poqKspKlvZUr+l89/vfw+7OpqC4hLKifKoW8J7jiSSnLjYRSyTxjAxTmp/Ntm3bluRnPH2hkd7BYYxGI61NDZw/eZwtu/ZSXF5xVd9NBo5vHTqA053B2s3b0FQVv9fD9g1ryc3NWZLBY0pRuNDSzpjHtygIoGoaFSVFLC+fu89j8TjnmtoIhCJzlihpmkZlaTGVZcU37LMFwhF+/Zvfc+KtN9m8cw8FJWUTACDOmwdewmQ2s/P+/Qji9BRuUZI49sZrmCSBP/+Lv7xqo3FPCPDObCfONeAPhUklk4wMDy+4D2WDkaOHDtLc1MjjH3sKg0Hm4rmznDx+jC989etYZ7EJvhF7kFQqxb996xtULK9m5977EYADLz6P0Wji/R95AiWZXNA6anfYsVqsUzXZeTlZbNuw9q7dD86tZj7Tz/SrAYCmzh7AvAeDf13Xp9K2E4nkxL5GQpZlZElEEERkWZp26h2NJfjDS0fJzsrgzUMv8c//8LeUlu+nfvX/RkBa4Gn/4gLLWxiSIQgC0ZiXSHSY++5XWbfBxcrqZSiahqqmA1hZFrGYzdisFkxG48S1eu+uH1oygRAaxzPuRcwqwp2VQaCzGUUXyK6sJhRN0NXZTTIUQNIUDE4XVnfmhCjgJVcWTZv4o2tIooQsp8UCNU1fNAyQJIExT4CW1l7KS7ORxLRwusvlJsvtXBKlUvcAwJwTPrR09tA/PHpDAIAgCCTiMfp7ullWuRxxBsG2S8GQhtPpZOu6Vbc9pW5gZGxC5Xtue0BRFEEQ+P43v8vxt45htlyf16WmaSQSCfLy83josYfZuXc3JpOJRCJxTa+nahoGWaaqrJiSgnyWynzZ1N5Na0fnVF346WNH2LBjN+WVy2et/09PMDKn3zlKf08Xux98FHdG5qzAYO2KakqLCpf0faikUvzr975HdkEJufmFrFy+jLzszHmfl0wpnLrYRCQax+cZpaqkkHXr1i3Jzc6JsxcYGh1PA4DGi1w4dYJte+6noLR8RngjCCLHj7yOIAps2XkfOhAK+Flbt5yS4uIlCQAAkhMQYHwREEDXdWRZYt3KWtwO+6x9faElDWXnC/5LC/OprSi/oXs5XzDML599ltPvvM22PQ+QW1CUTjWcyABIA4AHEa4QcZNkmTMnjhELBfjLv/hLjEbDPQBwF7TTDS2Me30oisLw0NDCAYDRyO9/9QsSyRQPPfYBVEWjv6+Ll5//A1/86p+QkZW1oFr8xTZJlhkbGea73/oGH/jIxygrr0AQ4JUXnsdkMvL4E0+SWiAAcDqdmM3mKQBQWVbMqrqau3o/OHsWwCwQQBTTAKC6jNLiywHAIur772Lrv8mgCwFEQbx6TzaDF/T5xg7eOdnArm3riEV8PPzgPiTJzp77foEkl6HrqWsM+q/vOgsCN0gvLK1R4PF1sGJljB07zezdsQ6nw05q4jAspaQts0VRxGwyYjIa5i2VvFtbxO9D9w1j0JL0hDTK6tJaV4m+dpRUkqAxg6KyEgZHx0imlAmAIk3cngLxeIrhUS/hUDQtLKhqEyVNBswmIzabGbfLgdVqXBQImMwAaGnrpbwkG0kSMRhk3O4MHEvECeAeAJhnwu/uH6SzdwDhRqS1CQK6qtLf201BYTEGk2l2SqnrxOMx7t+5nexM922/Rp19A7T39CPOs8GRZZlIOMw//e0/0tXRiclkumrCv1w0SNf1iTV18v/6hCqtjsVqYceeXTz8/kfIzcslkUhc06nI5CLjcthYvqz0ttb7zxSonGlsoX9gCNlgmAjou+cN6JmwLTl26CDhcIg9+x/BZLHMYhcI6+trKcrPX9L3YSwW49++932KKpaTk5vH+pXVOGy2+cGBqnK6oZlAKELY56WqrIhVq1Ytuc+naRrvnD7PqMeL0WikpeECF8+8y/a9+8kvLpkRAEiSxKl33iIeCbF1735EUSQSDlFVVkR1ZeWSBQCQzgS42NrB6Lh3wRBA1TRyszJYU1t9VcbRpfIC75zBv6qqFOfnUbd82bzz1aIBQCDEz3/5a86fOs7O+x8kMyd3QpckxuEDL2O2WNhx3/6rAIAsy7Q0XGSkr4u/+Mu/nNJvuLwtth+XunjXe6FNOuaoqnoVALgcmF8+FiZPm372H98nv7iELdt3oqQU/AE/v/rJD/nEpz9LeUXlrCLB19MMJhNvvXmII2+8ztOf/wpmixVJEnjp+eewmM2LAgBut3vKNlBVVbZuWHtDdDaWNgBYIASY/K8oThcBvHJ9FhYQeN7g0/9USiGlKigTQaQgilhMRoxG45JHDIqi8sobJxj3+Hl0/3acNjN79txHY+NF1qz7GuXL/guqGrs9wdQNAwDpOcLn78Wd6ef+B2Drplrqayu416a38eFhdN8IbrPIcCCBraCEzLw8IuEIgZ4Ocq0CjWNJlq1YQTAcIp5MpS0BRYFUSmNk1MvQsIdINMaUJod+qT8n7z+ryURhYTZ5OZnIBjGdiXENAECWJdzuDCwmI4V5Obd97X7PAwBd1wmHw7P+fHjcS1NbJzfquFgQYKivl8zsXEwWy6wAQBAEQsEAG1bXL5na7dau3gWpfBtNJvp6evnH//X3eEbH06KAejpDQDbIGAwysmxAnvjXYJCn/i8bZGRJxuFysPv+PdSurENV1DlPwucLukRJoigvh6qy4iVXNxVPJHn3fCM+vx9NTdf/C4LIzvsfnNHS7/LxoaRSHHntZQwG44xBxyRIkmWZDfU15OXmLul70e/38+//8UPKa1ZSXFTIupU1C+ovTdM43dCCLxAiFvJRXV5Kbd3S86IOhUKca27D4/VjmAIAJ9l5/35yC2cu35BlmQunTzA2MsyO+x7EYDQSi0YpyM5gzYSrw1KuH1dUlYbWTobHPQsWL9J1nVU1leTnZE/r46aObgaGRhHnDP41CvOyWVG17Kao7PYNDvOb3/2epvNn2L3/EdyZWWi6nnYBOPASZquF7fc9eFnt6cRmQJbp7+qgveki//k//2dcLtd1AwBNSwdeBsN7oRZ0abaWzh56BobQNA2/3088Fpt1TE9u9gRRJBoJ8x/f+1e2bN9NVXUNqqKg6zrP/OQ/WL9hI7vu34eyCCvbBe09RBFVUfi3b32DwqJi7n/oEZSUgsFo4KXnfo/FaubxJz6+IAAA4Ha7MRgMU97Ye7ZuxDlL5s5dBwCuiPVnfYwwAQCqS9MZADPq+cyxt7wBwb+m66SSKaLxBLF4nKSSQlV1dE3HajGR6XZiMpoWvcW9cmzeimBmzOPnlUMncNitPPLAVowGmf/2f/1f/NM//AMOZwE7dz2DbCiYIwvgTgEAItGYl0Syj/seEKirc7J/z2ZMxjv5lF9HT8QhFUeNx9ANRgyubJKJBAajkWRSIej1YDcKSBYbstk2ry1lb3MzdjWCKkjI7lwyCtNZrrFojO6mRpY5ZXpDKaz5Jai6NnHQCAF/mJ7+UXz+0ERQbic7w4kOJJMKiUSKWCJBLJogpajoaAi6gNttp6QoF7fbPnGAOQ8AmCwBmAAAkiSRkZGBwSBRmJtz2+ORewBgHgDgC4Y419SGPpGmdCMW4bGhQWwOB1a7Y0rZdKYALxoJk5eVwd6d25fMtWrq6KZvaBhJnHtzbTQaaWtppb+3H5vdhslkwmQyIckTAMBgwCCn/5UN8rT/S6IEQtq//lrq/Cffq67ruBx2KkuLF5xFoes6CMItI+GhSJTDx09OTEpeDr/6EiXLKli3ZcecJ0CTJ8GHD7xETn4Bm7bvnjFbQNd1LGYj61fWkZWZsaRPC0dHR/nRT35Kdf06lpWXsrqmcsEbnDMNLXgDQaIBLyurK6mqWr4k55lzTW2M+/xTGQANZ0+y84GHyMkvnDkDQJZpvXiens42dt7/IGarjWQiidtuZtO6NUseAEwG743tXQyMjC0IAmiahtvpYH19HbKUhlotnT30Dg7PCR9VVaUwL4cVyytumlJy3+AQv/zVs3S0NrF7/8M4XBnokwDg4EuYLbMAAElidGSYxtMn+NM//VMyMzNvAADQCEWiuO6CoOtObV19g7R1984LAKbN3ZKMZ3yUH37vOzz+0adwZ2aSTMSxO5288vxzRMMhnv7Cl2cMsq4Mvi7PMJgp22DyMbquYzSbOXn8GH/4za/5zJe+RjKZRBAECoqKeOF3v8FqNvH4xz6xIAAgiiIulwtZllE1DbPJyN5td3qAslAAsFAIkI4KXzk0kQFwFQCYZy2+juBf0zQSyRTRWJx4IkEipUyBGl0HUQCXw06G27moLKlEMjUlqidLMtItrj2/2NTFO6cusmpFJVvWpwF4c0sr+x54gGAwwLr1/4WyZV9HUaK3PPiHGwgAEFC1JB5fJ3UrUmzYBOvq61i9svxODLKIB7zE/R7MWgJR1+n3x8kpW4bd6WC0ow1XQSGyI4OBjjbcahjJYCQpm7Bk5mFxzp6xm0rESYbDGK0WDBbbtPvTMzhE2OdDMpvRLGkxwEg4Tl//KGOedAlhhstOXm4mTqdt2lie1KaIRhMEghE8vgCRSBxFVTEaZPJzsygpycUoS6iaPu2W1S8HAJdlAMiyiK6Dy+XCbDaRn5OFxXR7y7vf8wBA0zQikcisP4/G4pxuaLlhVoCiKOLzjGMwGrA7XHOmtGuaRjjg5SPvfx+W66ynv3HXS6exvZOB4dF5T9gMBkP6tE6/IjCfSKGbDNL1iUni8vKA65hr0PT0hqS0IJ+SglzkRVC2+XQObnQb9/p5+9RZJEmmr7udd48eZsO2nZRXVc9T/y/h84xz5ODLVK+sp27VulkdAFwOO2tX1uByOpc0ABgcHOCnP3+Gles3U1tVQWVp0YL77ExjKx5fgHDAy/r6OsrKypbkPHOuqZVxX2ACAJyn4expdu17iOy8glkBQE9HG43nTrPzgQexO90oySQ2i4mt6+8MADAJaZrbu+gbGkUUhXnHoa7rrFtZg9vpoLmjm8GRMQRRnHU7rGoqhbk51FUtW7QF4WJa78AQP3/mF/R1dbF7/0PY7OlTg1QiPlECYJ4RAIiiRDDg48LJd/jKl79MVlbWdQMAXdcZHB0nPyfrjrKGupta//AoDW2doOv4/X5i0fkDD0mW6evt5lc//TEf+9RnMZnMBENBcnJz6e7s4MXf/5anP/9FikvLblgZgCjLBAN+vv2P/4falfXse+Qx3jr8BsXFpVRUVvHcb3+NxWziw08+NSsAuDKLwe1yIYoiqqbhdtjZu33zXdGnCwMAC4QAgsDLrx9nRXUZpcX5C4sQr7HmX9d1EskkkWh84qRfRdP0K0TONMxGI1mZLqwLEGpWNY1IJA0RNF3HbDJiMZkwGuVbvpfQdJ2Db56kf2iUfbs3UlqUN/WzL3/5KzzzzC/IylrOtp2/RBBs6Lpyy97bjQYA6dcUCYb6EQQP+x4WyMm2sG/3FnKyLXfU/eQdGSE82EOey4KiqIzGdBz5RWTn5RIeHULzDJIwOcipqCYRjzPW1U6mrCCi41WN5FTUYDBe20m5Dox5/Yx5fIyN+Rkc9qJpKvm5meTnZ2G1mBDFSZE/YVqIJ1xWEZBKqfj8QYZHvITCURRFIzvLRXlpATabacZ+nwYASrORJXHC7ciGzW4ny+287fD+PQ8A5pvskymFM43NRCLxG2JtJ4gi4aAfXQeHyz1rBsAkLBgbGmTH5g1UVy+dE01V02ho7WBwdPymbravJciSRInc7EzKi/MXVD9+u1vf0AhnLjQiyQbOnXyHno42du17mIys7DkdACRZZrivl+NHDrF++05KymeuGdU0jewJO72lLjTW1dnJr3/3e1Zv3Mq6lbULEgCcbGcaWxjz+gn5PGxbv5bCJSZ4GAqF0HWdc02tePzBqQyAxnOn2fXAQ2Tl5qOqMwOAod4eTh9/m+337SMjKxslpWA2ymxaU4/BIN8xAnKaptPa1UPv0AgCc6eMarpOpssJuo7HH5y15n9S36O4IJe6yvKbbkHWOzDET376M4YH+ti972EsNhu6DkoyweGDL2M2m9l23/6rAIAgiCRiUS6cPsFnP/002dnZ1w0AANq6+yjMy8ZmubM2hXdLGxn3crapdVEAQDYaOXvyOEcPH+bJT36aeDzO8NAgldU16JrOb3/5U1yuDJ546mk0VbluKC6I6ZOtZ37yQwb7+/jMl76GklJ45cXn2bn3fvILCnnuN7/CajHz4Sc/SSqZmDfQlGQZt8uFIAhpAcBlZayqqXqPAYAFgICpDIAFAoBFBv+6DslUimg8TjQaS5/0a9qEunk6oFFVjZSiYjYayHQ7cdit6TlrouxEv+wwRtU0YvEE4XCMaCyOKEo4JkTQbLbb60EfCIZ58eBxTEaZR/dtxXyZOPbbbx/jfe97FFVVWb32P7Gs4s8m1lPtlry3G5n+f+k1BVJKDK+vi7oVGus3amRnlPDIvlXcSQ6AQY+H+NggBoNMTDDhys3DZreh6TrDHe1kCzF6gwp5y2tx2K2EIzH8o6PIKMhWO1m5uYve36QUhVAoSt/gKL0Do4TDMRAgK8NGQV4GDqcDBBFN09C1+Q/9JiFaMqXi9wfp7R0lFIliNhlZWVuO02VLi1leAQBGRn20dfRPZQBomo7FbMbhdOFyWMnOcC/6etoMOigxQALZCKIMiGhielDEYgvXwLgHAOaZ7DVd51xjK75A8IYIAQqCQDwaJaWkcDhdcy7uk7aBDpPE+9/3viW1ydc0jQutHQxdKwSYSLO/EcNvknK7HHbKigoWFTje7tbW3UdTazsAbx06QDKZYPcDDyMbTej67IuXLMt0tjZz4fS77Lj/QbJycmcEBpqqkZ+bxcrlFdccZNyq1tTUxAsvvcyGbTvZuHoFzkUAnLONLYx6/YR8XnZt2UDuEtI7mEz/T88laa0Cg9FIa8MFGs+fYee+h8nKzpmx/yRJZnRogHffepNNO/eSm1+IqqSQJJGNq+qwWix3lIK8rut09g3Q2TcIV2TbCFfsoSc3pbMF9ZM/LynIo6ai7KYH/7qu0zc4zI9+/GPGR4bZve/hKR0XJZVMAwDTbABAQFUUGs+d4uNPfJScnJyrXv9a+rGhrZPsDPcdNefdTc0XCHLifCMCaQ2TSCQyb+gmG40cO/ImF86d5Ymnnsbv8/LmwQNs230fRcUl9PV08ZtnfsZHP/EUdStXzxuQzxf8S5LMgZde4NCBV/jk575EZVU1p0+e4O3Dr/Pxpz+HKzOTP/zm15hNRj76iU/NWwKg6zqywYB7QsdCVVXWrKxjWUnhXdGni8sAEGaHABP3cloDYB4AsBAxwMuufzKZrlGORuMklBSqpk9B1XSwAsmkSiKRxGgwkOFyYLNaSCopYvEEiqKg6RogoGo68WiCUCRKNBpHkiTcTjv5uVlkuB0Yl4jGSGtHH4ffOUdNZSm7tq6+6pp89atf5xe/+BmiJLJ56/+H/PxPoChxFq7+v6A7CgRxYu+q3lQAkH5dkVB4EEUd4759ItnZsH7VatbU3/h7TdM0osEQBlQEownRYEA2GOd9XiKZIhKNYbNYMJlmLgFKJZIggMF46fUSiRQ9LY0sd4q0jsfJKK8iNztjIu6aAI1XHLqmUgoef5BYLIGiqoiCiCSBLMkoioo/ECYQjhIIhQkGo2i6jt1qItttIctpwmJQEXQVTTCCwYJgsIAgLaI/0n9i8RTdPUMMDntYXllMWXHutFIAAEkUGBwep7N7aBoAMJtMON1ubBNlAIsGAEIMZaQBENO1PKIMogiiCdFkQTRngtmNhjgvDLgHABYw2Te2dzE0On7DrABTyQSJeBz7PABg0jWgo7mRT378CfLy8pbUtVNVjYttHQyNepAlcXHXIJVCSSYnTtCubQhOBgBWs5nSwjwK83OXVEbCQtrxM+cZGfcRi4Z489WXyMkrYNPOPfNaQEmyTMPpk/T1dLJr38NYbfYZy0k0VaO4MI+aZaVLHgCcPXuWg4feZMfe+9mwsvYqq7S5AUArox4f4YCXPds2z5hifTthWSQSmQYTDRM2gE3nz7Bz30NkZs0GACS8nnGOHTrA+i07KJhKC9bZUF+H0267Iy3kOnv76egdmJoPruXeBygvLqSqrPiWfH5N0+gbGuGHP/wP/B4Pu/c9jDyxoVGVFEcOvoLRaJwRAEwBv4bzPP7+980IqK6lHy+2diDLMrUVZdxrt74FwxFOnGtA13UCgQChUGjGmurLx4LRZOKF3/2G8fFRPvzkpxgc6OfI66+iqhp79z9MaWkZB176I61NDXzh6/8JV0YG6jVo4UwG/6/88Q+8+doB3v+RJ1m1Zi0tTQ0cfPmPuNyZfOTJpzBZzDz/m19jMpl44qmFAQCjyYTL6ZxyANi5ecOScCu6tQCAiahPnxYfqqqGPxDCajZjsZp55dAJVlSXUVK00AyAq8ePoqokkwqxeDodP5lSUHV9WiaVKKYPVWLxJJFoDEkQcbvtWMxmVFUlqVzKJlEUjVg0TjAcJR5LIMsyGU47eXlZZGY4lqSl3BtvnaGje4C9O9ZRWX51eWA4HOHP//Iv+dUzv8DucLNl699hd+xDVa8XAgiIooGUoqKpUXQtjCBKGAwZU697swAACOhaCo+/i5zcBHvvA4fDzL7dG8jOci5+3QRIRFFiERKCCbvLSSQYRNBULG43A+2dGKMe7FYzCV1AsDiw5xUhzzIehkY8nLnQii8Qxm41p1Prc7PIznJjs5rnWU91uts7cSR8jKckiqprcNqtMz42Eo3T2z9CV+8g494gqVRqCr+Jopj+I4lYTCZcThuCAMGAF6sUx2VSyS8oRtfSOhjTbjbJiGC0Ihhs6UBaWNhQMcgi/YPjNLX2UlaUS0VF4VX9L4oC/QOj9PSNTCsBMJmMuFxuLCYjBbnZi17zbSYBZeAsaFeAYW2ih0UJ0exEtGWD0QayFUR5RiDwngYA8wkATm1W+/rp7hu6MVaApOuyY7EIVtv8wZgkSbS3NFFbuYyHHty/5K6hqmpcaGmf15pr+o2RzmyIx6LkFRRdk7WfpmnIskxhbjZlhflYLOY7cvy99e4ZfKEw40ODvPXGQerXbaR6Rf28rgeiJHHyrcNEIyF23PcgoiTNGHBomkZFaSHLiouWPAA4ceIER44d54EHH2ZN3fJFVUCea2pleNxLNBTg/h1bZ1RZXwobyrONLVMlAG1NDekSgDlKPkRJIhTwcfS1V1m1fiMly6qmSj3Wrqgmw+m4Yz3kO3r60pkAixTdTAt1QlVZCcuKC29pP454fPz4xz8iEgqx64GHkCZyMTVV4ehrryLL8qwAQBAE+ro6eOiBveTOkAFgs9kWDZmbOrqJRGNsqK+9Zwd4G1okFuPEuQZUVSMYDBIIBOa3yjUa+dl//ACDwcBjH/ooDRfOEwx4MRmMvHv8OHse2EdZRSXP//ZZBAE+9tTTGM1mtAXqAei6jijLiKLIS3/4Pe++c4wHHnqE7Nw8Tp04hmdsDIfdjs3pZv8j70OSRJ7/7bMYDAY+9qlPoywAAJgtZhx2RzrdXBS5b/sm7Fbrew8AXBVepUsiBoZHSCkadquZE2daWFVXQXlJwYJfSVFUUuolNfJUKjWhRs5V5VOSKKCjEw7HCYQiCAi4XTYcNgs6pNXP9fSJayQSJRxKlwqYjQYyM1zk52aS4XJMeaMvxRaNxfnjq++g6RqP7tuKY7ZAMRLlq1//E5773W9wuXPZtOXvsNl2X7M1oCCIqJrO6Mjb5NibWLncxshoC6OhzRht759wGxAuAwESomhA19WJP9dfgiAIIvGEF3+gn7oVAhs2aeRkOdm1dS0up32Bc4JGxDOOHglgJcGgJ4Ixv4zcgnyCA90kIyEyK2pBEBjp6caSDGIziviiCqbCStxXeNZrmkZjazfnGzuIxZO4HXbiiQSxeAJRFHHYreRkucnPyyI3KwOnwzrj+Eomk3jHx7HaHTidV+9Nvb4gXX1DdPcM4wsEkWSJrAwnLqcDm8WI2WzBaJQJRxJYjRJlhS7cVoGB7k60hB+rETr6vURiSbKLy6++tpNrtCgjGKwIRhuCbJ4XBEym9zc0d5ObnUFdTdkM/Qa9vUP0D3mmAQCj0YDbnYFRlinMz1l0WY3NYkIZOgPxcPrkf+YIiXSGgASiEWQDosmJaHaB0T5VNvCeBgDzCQBOtoGRMVo7e26YFSC6TjwexWyZP8VZFNNib8N9XfzJ17+GdQnWeiqKwrnmNsa9/gVZb4miyOhw2k4wOzd/UQBA0zQQBHIy3JQXF5Dhct6x4y+VSvHWu2cIxRK0NzfQePYU2/fuI7ewaE7xp8ng4tihgxhNJjbt3IumqbPCpuqKMorzc5c8ADh65DCnzjfw8KPvm8pYWGg739zG0Og4iWiYB3btwGZbOpvRyzeUk/eJ0WikvblxCgC4M7NmBgCiSDQc4shrr1BVV09V7YqpsbGqporsDNcdCwDQobW7l56BoQW//0khsuqKMkoL8m55Pw6Nefnxj35IPBZl1wMPIkppAKCrKkcPHUASxdkzAAQB39gou7dunFED4Fruz/aefgaGR9mydiXm26wo/F5s8USSE+caSKRSRMJhfD7fnABAEEWSiQT/+s1/Ys269WzdsYdTx4+RTMV58JHHeOftt3n78CGysnMoKCqmq72NgqIi7nvgQUwWK9qETsjk+Jqp1ARBIBaL8off/Jq3jxympm4FJrOZcDBIUUkpDzz4MKfePY7f7+eh970fURR5/re/QZJFnvzkp+cVHtR1HavNis1qQ1U1rFYTe7dtXnIWu7ceAFwK3gdHx0gpKpIkcOZ8O2XFeVSUF2GQZSRRQEC47NhYR9N1kimVRDKJoiikFAVF1aZikCuDfkFInzCqqk4gEMHvDyGIApkZTlwuKyICSUUjHk+n9kfCcVRNxWI2k5PpIjcnA7fTftPLphbSVFVNjzlBwmCUZ4TB7V0DvHnsLMtK8rl/54Y5qyQCgSBf+spXefnFF8jILGDTlr/HYtkykQmwyBhBF4kEDvLJhyM8vH89/d0dfOunr5Iy/jmRRB4C6sR9KKat+8LdeL3nMdsqsdvLMZsdoGvTygWuEQMQCvcSi/tZs1akfrVOdqaDrRvryclyz32/qiqDXZ1YkiFsJglPNIXuyKWwvIRkIkm0pxWUFDFHHoUlRaQUlbGREUjEkM1W3NnZ07IxQ+Eop8+30t7Vj9FoYFVtBTXLS4lE44yM+Rge8TDuCRCORtMuVFYzLrsNl9NOZoYTh82C02HDZjVPs7DV0UkmUgRCEQLBCIPD4wwMjxGJxLBYzBQX5FBZXkhebhZGgzwljC6KCmLcB+ERtEQYTUldin8R8UfijHsDaIAmCKBraQtdTUuX06RUFE1DSaooCKiSjeyS5QiyZdZDX1EU8HqDXGzqwum0Ub+iIg3i9Ev3p6Io9PUNMTwWpKw4a6oEwGCQcbszMRokCnJzMCwSvFksFhi7iBb2zAEAroABE9cDZJBNIJvSGUPvZQCw0IneGwhxvvnGWQECJBNxjEbTvFBBEAR0TeX0iXf44GPvY93aNUtzI5RMcuZiM8FwdN5MAFEU6evuxOF0pX20FwAAJhVsHTYb5cUF5OdkLYnF63ra2LiHs00txJMKp48dZXR4iN0PPozN5pjzmgiCgJJM8tahA+QVFrFy7YbZMwZ0nfqaSnIyM5Y8AHjttddo7uji8Q9+kKK8nEU990JLOwMjYySjEfbt3oHValmS88z55nbGvD6MRiOdrc00nD3Frn2PpNN8ZwEA8WiUo6+/SsmyCupWrU33ta6zYnkFedmZ13RyvHQgrE5DWyeDI2PzzhuTegC1leWLHh83qh9HPD7+4wc/IJVKsvO+/QgTwFPXNN5+4wAA2/fuRxDFGQFANBRg89rV5GRn3RAA0Dc4QnNnNxvq68h0O+/o+TAWi9Hb27uosZxKKcSTSZKpFOggG2TMRgNGg+GGQjFN0ygtLb3KjSelKJw410A0FicWi+HxeOYEALLBQEtTA7/6+U/55Ge/QG5uPkfeeI3MrGy27tiJruuMj49x8expenq6iYYjhENBMrOyef+HniA7N2dB5WEtjQ0ce+sIefn5WCwWsrJyyS8sIDMrG7PFzLO/+BnxRJKHH/sgggDPPftrZFni45/6TLo2fGLsXmk3OPk9m92GxZxW9S4qzGfT6hXvuX3hrHu7lMLg6CiqBrIkcPZ8OwX52eTkuNBUHQEBQZy2RF9yQ+LSFnOm8SuK6e8nEgoeXwCvN4iuaxTkZ5GTlYGiaoTDUULhGIlEcuI01kJ2lpsstwubzcytMzmeI+jXdQLjXsRYAFlJomoaKgJSZj6uzOmnzR5vkDffPoMvEGLP9rVULSuef8/u9fH5L3yB1187SFZ2KZu2/ANG4zo0beEQQJJM9A8co77sAv/y95/m4Isv8PfffxNH1pcxmOsnXAaSDPT9iuycB7DayvB6L+IZ+gZb1uTTO6ThDa8kt/BRjAbrdUEAAQFFTeAPdqNpKdaskVm9TsNuNbFhbQ1lxfmzX+tkkqH2FhyyThwJ2ZlDVl5OGkh7/aSGu3EaoC0isXJ1PeJE3b2qXV2D3z84yrtnm/F4AmRluti0rpbiwtwruT7hcJQxj5+hEQ+j4z7CkRiJZAo0HVESMZtN2KxmnDYLmRnpbM1xX4BAMEwkGieRSIIgpHW9SvIpLy2Y+owicYiGIBlCS0XQ4iFQUpdukBn2UOLMYfHUPlsDlJRKNJ4kkUgQSaTwp0SiopOsvLIZ78NQKMb5hk7MJiOr6yunbP4mAUAsFmdwcJRRT4iykqypDIA0AMjAIEsU5GYvutzGYrGApxktOLJAADALEOA9XAKw0PR/gEg0xumGlvTG+wZtKlRFSZ+WL+D1JEmmpeE8VpORr3zpC0v2tC8SjXGmsZVILDZvWktnazP5RcXYHc55AcBkun9RXg7lxYV3hdewrusMj4xytqmNRCLB0ddfRRRFdt6/H0GU5hWHjEXCHHvzdWrrV1NUXjHnqc3auuVTmRJL+bT4pZdeondolI999MNkOBcXCDW0dtA7NIKaiHP/ru1Yl0hJyJXzzCQAMBiN9LS3cvHsKXY98BAOd8aMG/tJ2HP09VfJKyikfv2mKfXmmmVlFOXnLHmws5AN84WWdsa9vlkziNLBv0Bd5TIKb0PwP9mPo14/P/je91DVFDvue3DqhEBH551Dr6Hp6uwAAIFUIsbalTXk3qAMgFGPl7ONrSxfVnpLyyFuRmtpaeFv/uZvMC3BTIZEIsFf//VfU1NTc9W4OHGugUA4QiqZZGxs7DIh96vnWaPRwO+f/RWjw8M88clPo6QUXvjdr9m8fSd1K+tRUilESUIUJZKJGD6fj2AwiJJMUlBUlBYOXmDGnGQwTMGISYCuaRqywcDvnvk58WSSRz/wIQQBDrz0Ap7xMT77xa8iStKcBc26ruNwODCZTCiKQk1VBXVVy+4BgMmxkkwyODKOTjpV+Oz5dgoLssnNcaOq17bdnqzvj0QTjI758PlDyLKAy2HGbDJiMJqIxRVSyRQGg4EMt4OsDCdupw2j0bhkrq2up12kJEnEM+ohMT6ETVCxyCKhpEoqo4CCwkuZXePeAEeOncPjC1BTVc72TSsWlGUKMDwyyuc+/wXeOvImOXkVbNz0TxiN9QvWBBBFmWCwg4DneapKzHQOQHb+xzCZctC0BKJoIhx4nf6uv6Wk4v+NzbkDRVUZG/oFX39CY/fmtfzk96/whzcl8oq+giSZuB5XAkEQicf9xBJDjI/+itWrrex84GEMosjyyhLqqstwzJL5qCYTpOJxZItlmrDf+JiXUF87hQ4DrSGRmtX1GGc4kU4pCheburjY3EkyqVC1rJg1q6spyMlEDA+gJUIgGSdSzB1oonGq3jyRVAgEw4QiUYLBCD5fiGA0SjSaIJ5IprNXdZBkCavZjN1uIdPtQBQlaiuLKMx3g5ZEjIZQYh60ZBguF0YVp/66rjYJnidfSVEUznQNYcxfjSibrmT5JJIpzp3rQBBhzaoqjEZ52rQZCgYZG/enAcBVGQAZyLJEQU4Wpmu4Py2xPrTAYDrF/zraexYALDT9f3JCP93QQiyeuHHB04QC60IAgChJ+MbHaL54jq997WsUF+Qv3cUzHOFccxuRWHxGCCAIAslEgs62ZiqW12I0meYMdlVVxemwU1tRdken+880/voGh7jY2kk4GODwgZfJLypm/bYdqIo6z0QlEQr6OHP8bdZs3IYrM3PmUyFdR5Qk1q+snrJEXMqnxc899xz+cIwnPvwhrJbFBQGN7V109w0goXP/zm3TUsuW0jxzrqmNcZ8fg9FIb2cbDWdOs+OBB3G43LMCAE1VOfr6q2RkZrNm81ZURUHXNKrKiiktKrjjAQBALB7nbFMbwXDkqnlD19OnZrVV5VOlLLerH8d8fr7/b/+GrmnTUv1FUeSdN19HVVJzigCqqsKa2uXkZM2s2r9YQOcPhXn3XAM5mRmsXVF9R4+BtrY2/u7v/m7JAoC/+qu/Yvnyq+14T55vxBsIoaoKIyMjs/ZfOptP49+/+20Ki0q478GHGejr5fnf/pqnv/AlcvLy02J/E88XBAFxwsJvci3UteuvKTYYjfz2mZ8TS8R53+MfSX+Gd97m7MmTfOlP/hSb3THn79F1HZfLhcFgQFEU1q+up7Qwj7ulXS8AiMbiDI15EAQBSRI5d76dwsIscrIzUNXF9Z8oCqCn067HPekTf4NBxO2yYjTIaV0AXUSUJArzssnPzZxYO5cW5J/MclCTcXzjHhw5uVhMRlKKgs/rJxmNYrbZyMjKmJr/Pd4gh4+dxeMLUF1ZyraN9RgMiwt4BgYH+fSnP8u7J94hv6Catev/FrNlLaqSmqjfny/oltB0SCZTmE0WQJk4yRcQ0Bnr/6+UF/jp9nyA3PzH0HWVaNRDxP9D/upzNex7YCf/7X9+g1dPVlFZ+dSEJsC1hlwikizR3/dPnDrxbYxGE//1f/xvsnKLSSYTOG1WykrzqSovIjNjYXtlVVUZ6uxAjYSw5BaQW1h4xbqcYGjEQ3tXP30DY5iMMgXZDh7dXY+ROMnQGMQjlz6TKIHRgmi0I5psIJoRZXEiqhbS+EOBaDzFwNAYI2PjBEIxEEUyMtyU5meTm+3GLGughCEWRIlHJkpcL09lv/l7WFkU6Rnx0h6xkVtYNl3rU0gLaZ6/2E4ikWJ1fSV2u5mJCmUURSUQ8BMIRBgZnw4AZFkmIyMDSRIpyMm6ptI9S2IAzdd/DwDcikleUVXONbYSCIVvmBDg4sifgKYqHD96mC2bN/PB979vSV/bcCTG+eZWQpHoVbRWFEWCfj993R3UrVo7KwCZHJaFeTksLy9dMlY0N2YxTJ8mDo97aO3qY3R4kLcPHWTV+k1U1a6YVwBQkiQ842O0NV5k/eZtyEbjzBBFTwuOrFtRM+1EfKkGi8/+5jdogsSHP/iBRblKALR199La2YPDamb31k1Ldp650NzO6EQGQH93JxfPnGTH/Q9id7hm1HGYDBrefuMAVpuDDdt2oqoqmqaxrKSAipLiuwIATMLD883tRGKxKUilaRqiKLK8vJSyovzb3o9jXj/f++53EQSBrXsfuAQAJIl3j75JMh5n2337ZgUAuqaxqrZqqiTnegFANBbnxLkGRElky5qV13SacA8AXB8AONvYyojHC7rO8PDw7PO2LDM2MswPvvNN3v+hJ6ioqub420doarjAF77ydQwm08L1cPQrdqNX/mym70081mgw8Nxvf43X6+ODH/kYggAN589z5NBBvvDVPyEza56yPEHA5XQiy2nrrd1bN97x5Sc3EgCEIlFGPb4pAHD2fDtFhdnkZLsXBQAkSSQSSaufB4MRbDYjLnta9ExRVUTRgNVqwWQ2kZvlIsO5BPtA19CDXkbHfdjyizGjEhvoJIIROTt/VueIqZN/b4DqqlK2bVp5zRoTXd09fOYzn+XsmVO4XDksr/0UBQVPIIr5qGoSWHxqviAYiEZasPPPfOL9D/P/+3cvpWWfBrT0AU1omKDvWfZvUunsG+bdpkxW1P/ZhEDgtUA8AVk2MT7+c04c+x8kUwr/47/+3/n4+3ZwoSuMJy4RSaRr2m0WE4V5WZSW5pGfk4XFPP98qiRTyBOZtYqiMjruo29wlIGhMfzBSDrrxyKzrtzG+soMtGTaSnLmYHyWQF3TYFKxXxSmZ6+LYvqxmoaiqWiKNvH4S/DjVjdRFAnH4pwf0XDmVUxDaoIAqqpzsbGDUDhKfV0FGRmOKUvySCRKJBImHI7PCgBEUSQvOwPbNei6WVKjaJ7uaywBuAcAFj3JX2hpZ8zjuy0AIL0YyDSeO42mpviTr38du9WypK9vLJ6goa0Djy8wDQJIksTQQD8+zzh1q9bMbF2naVjMJqqXld2V/taTp4k9A0N0D4zQ3d7CuZPHFyQAOHkNRwYHGB0eYOXajbNmUOiajt1mZu2Kmml1Rks1WHzml7/E5nTz/kceWvRzuweGuNjcTn52BhvX1C/ZeaahrYvh0XEMJiPDfb1cOHOSbXsfwGafWfdhMpB8543XMJiMbNqxJ53Kq6qUlxRSWXr3AAAAfzDE+eZ24ol0ip/FbKaqvJiCnOwl0Y+jHh/f+7fvIooi2/buSx8K6DqSJHH6nbeIRSLTwMBM92R9bSW5swCAxWboKKrKyQtNBENhNtTXkZXhumP7/k4FAI1tnfQNjyIAIyMjs87HRqOBd95+izcPHuDpz38Zi93G7375C+x2Gx996lOkkqlb8lkMRgNvvPoKFy9e4GOf/AwGo4GRoSF++ZMf8snPfpGKqsoZ9Ugun5NcTieiKGKz29m6tn7JlFwtBQDgD4bw+IPTAEBhQRa5OQvPABBFEY/XT2fnEAaDSHamHaNJnijl0LFarTgcDkRJJNvtXJIODJqmER/qRY766YuJlK2sR03ECfe2Y5d0moNQU78C8xXe8Tcy+J9s7e2d/NX/4684+OqrAOQXVFO5/Gmysh5BEDImQMDCA3NRMjPY9xwPbjjFJx7/OF/4b2fJzv8ooqBN9J9EMpVgZPg4yeQIuTlrsdkrubbTfwFJMhEM/JHj7/w/iUYi/PmffIV//OvPpeGFkmLEE+dEm5fhiEQslXbnkmUJ54Qav8thxWgyIksSsiym/53QSzGZjMiSSCgcY2BojN6BkQmrPQWTScYkqhS6BDZUZpLrMpJUNN47TaNxOAXuZdOY6qRJQGNLN+PjflbUlpOXm4GqpkutfD4fmqZeAgCXaQBMAgBBEMjNypi1bGOuZlP9KGOt9wDANUHJRdT/T7bWrl76BkcQpdsFACRGR4ZpPHeKJz72cTavX7vkr3MypXC+uQ2P75I7gCRJtDU1IEkSFdW1V200dF3HaDCwum75ouvA77QNRktXD0NjXi6eepf+ni52738Y2ywnwVeOhb6eTlLJJBXLa2fdrOmahtvpYO2K6mlBxVLVAfjZz39ObkER++/bs+jnDo2Oc/piE1VlxdRULluy80xzRzcDw2MYjEZGB/u5cOYkW/fcj9Vmn/XUTRAEjh8+BAJs2XU/up4GAKVFBSwvL7mrAACAxxfgQks7ZrOJVTWV10TIb9Y9O+b182/f/Q6SZGDrnvungj1Jljl/8jihgH8aGJjpnqyvqSQ3a3awudi+PNfUxuDIGDWVZVSUFN0DALcYALR19dLZN4goCoyOjswY5AmCgCAI/PB7/4rVauexxz+C1zvOj3/wXT74oY+wev1GUqnUVfPHTCr/17tlMxgMtDQ18ZtnfspTn/kC7qwsouEIP/33f2P7rj3s3HvfVe/lyuDU5XSiAznZWWxZs3LBddnvBQAw7vUTCEcuAYAL7RTmLxwACIJAJBKjb2AYs1HGZjOhI6RFqNGw2+xYbTYEUSQvK20npiQTyJKIaDBNibjdiKYoSlrLANJ7X2Fh+19V0/EN9OGI+wgkVMgpJjcvl1QqRW9jI8ucMr3+OIbCcoryLgmijo77efvEBca9/nTa/w0I/qf2o8kUz/7mt3zjG9+gseECAKVlG6ms+gwu9wNomhFNSy4oSJckC+2t3+G/fslGWXE5f/Y/e8gv/gRcVlaQdgaQ0xm8mnLNIoCSZCEaPcLxY39BMODlU5/4GN/971/HapVIxtO/T5bTp+rjgQTvtngZCgskNJGUoqFqGmgTBpIT7hGCICJLArIkY5AlREkgnkgSjSaRZRGLEdwmjRVFNiry7ZjNEpqio2jvpeAfZBEGQhptYQdZbtcV9ym0dwzQPzhGbXUphQVZaJpOOBwhHA4jSSKhUGzWDABBEMjOcOFy2Bf9vmxCDGXkAtebGfGeBACLqf+fbL0Dw7T39N22DIBJMbB3jhyifs06Pv7ERzBIS1/5O55I0tDWybjPjzRRz3j+1AnyCoooKC65KnjVNI3aynJKC/PvyrF3eVB4obWDcY+Pdw4fIplMTNmKzXdLipJEd3sLNpuDnILCWVWhNU0jO9PNmtrpm9alqgPwk5/+lGWVy9m5bcviN10+PyfPNbKqtpKi/LwlO880d/QwMDyKwWhgbHSExrOn2LxjN2arbVYAIIoiJ46+iZJKsnVP+nRZVVRKCvOonrBLvJsAAEAwHMFgkLEsgWDw8nvWGwjynW9/G1k2sGX3/VPpnJIs03T2FF6vh627H5hw+JoZAKysrpwzs2mxfdnW3Ud7Tx+FeTlX3ev3AMDNBwDd/UO0dPYgSSJjY6OkUspVqvlGo4Huzk7+/V+/xYef/CTLa+t49aUXaG9p5k/+/P+GcTHp//OMVeEy4b+ZAwqJSDjEt//p79myfRfrN29FVVVe+N1vUJQkn/7Cl9Oq9Fc8fxI+SJKEy+lEVTVKiwtZX197V8091wsARsa9hKIxxMsyAAryM8nLzVwQANB18Pv9pFJpFX9FUdESUaREGFE24cgvxWyzIKsqxUX5xBWNsc52sgwaqmxEsDqwZeUgXRY4Xz4upgXqqoqupJDUFIFQFJPdgcVmxR8I43TYSCRTjPb2kiklUQUJyWrDkpWHPI9y+eiYF224C4dRJmh2k1daiigI6EB/WxtaNIRgtJBRugyHzYyqqrR2DnC+sZ1QKHLDg//Lm9fr48c//inf+/6/0dfbgyBA1fIHKV/2NDb7ZlRVnNAH0OcIys30dv+CnfUnGPEk6A88SVbOTnTtRmbxiMiyhXj8NO8e/894xvv4wPse4Zv//euUFGaTjMZmCFhFRFkgGEnRPhjCH1NIKRopVSep6EQTKilFAElE10W0CfcJVRcQBR2LoFKZb6S+zI3TZgQtHfS/x+L+y3oA4hg45zVjszmmlQFIokBP3yjtnf1UVZZQVpJLIpHE5/NNiRZPAYBZMgCy3E7c13DQaRFiaCMN1x9XvhcBwLVM8KMeHw1tnbf1fUuSxLmTx1EVlU996pOUlxTdEf7fKUWhqb2bkXEPiqJw7t13qFm5CldG1rTTbk3TyHA5WbuiZlZvzEkxmbTd8Z3nfT4ZFGqaxvnmdkbHPLx16BXsTjebd+2d1+JpEj32tLeRk583UTuuzfq7CnKzWTGDQvNSCxh1XecnP/0ZK+tXsWHd4q0uI7E4p843srK6csmkQc80zzS2dzE0Oo7BYMDnGafp/FnWb9mO0WKZVXhLlCROvX2EeDQyJTCnKirFhXnU3KUAYCnes5Ng4tvf+haiJLNl931T954ky7Q1XcQzOsKmHXsu8/i++rVWLl9Gfk72rJvyxfbl8Ng455rbcdpsbFxdd8f6sd+pAGBwZIwLLe3Issz4+BiJRPIKz3YRQYAffu9fSSQSPP35LzMyPMSPvvevvO+Dj7Nt526SyeSsgfxcwfy1NqPRwLO/+Bk93d185ktfRZYNdLW38cLvn+WLX/tT8goLUVLKjPO0wWDA6XCgKAp11VXUVJTdAwBX7BWDkeg0ALAQDYDJ/o6Ew0SiUTRdJxlLQGgcgxJHNprQ7Tm4CwtxGiUsoXGwOXGXlOPz+EiO9JFpEojGk6Ts2WSXpftF03WisTg2q2UqgFEVhcDIMEI8jE3UiMTieEUHZVUV6JpKoLcDkzsLR3YunqEh1PFBMm0mEimFqGgic9nyaYDhqvU4GifiGcNssWDPyppmjamrCsFwDJPZjNlkYMzj59zFdvoGhhFEibrqMjasrka+yfNYX38/3/nOd/nxj39EMODHaDJStfwDlJZ9FrO5Fk0DTUsxc2mAiKIECPjPYDQ6cbjWgC5y7QJ/V44FA5KkEQy8wYXzf8vYaBfbt23l2//f/8Sa+kqSoejcgasokr58whXrj46ipAN6RdcmvtZJpDQMBpFMmxFRFlAU/YYAybsCAsgGmkNuFMEwrQxAkgQGBsdpbu2loryQ8tI8vD7f1Pw/GwCYdAEQBIFMl5MM1+L3bjZJQRk6z/W4SrwnAcC1pP8DBCNRzja2pBXab1PgKcky/d2dNF+8wOMf+Si7tm66Y/y/R8d9XGjtIOD30nzhHOs2b5vmAKBP0LbVdctnFcjSNC39uIkN1Z28uUimUpxvbmdoeJijB1+hYnkNdWvXz1v/nw7+FAb7eikoLkE2GGbdHGqaRllRAVVlxXcEAPjpT3/Gxk2bqKutWfTzFVWlobWDqrISbEtEH2OmjeTF1g5Gxr3Iskwo6KetqYFVazfOLuRIWv/jzPG3CAUD7LgvbTGnKipFBTnUVpTfAwC3sB9jsTjf/Na30AWBLbsuAwCSTF93O6NDQ6zbsn32e1LVqKsqpzAvZ0rg8HrvTX8wzKmLTQiCwOY1K5ZkPfDdDADGPD5ONzQjyzJej4d4YrpbkNlk5vTJEzz7zM/49Je+itlo5uc/+ncys7J4+otfntoY3qx5daYyAlmWGOzr41v//A888v7HWbthE/F4jF/8+D/Iys7mE09/Nn06fMXzdV3HZDJit9mRDQZW1VRRdJucOZYqAPD4/PhDl0oAzl1op7gwh6ws11UAIH1Z9al5IBIOE56AjaqmE/UHsCR8yFYnxsx87BkuzCYjxmScjISfoZhGfnUdJrOJ8TEvyaAPUdewZmTgykrrpsQTCXyBELnZmVMK+yODwyjDveQ4zfhjKRJGBwWVFWmINTyMNTCCVzOQt7wGWRIZGRpB8XswiRopyUR+RQWiND3DQNM0JFFasAFBMqXQ3NZNQ0s3kXCM3NwMVq+oorzk1mZ/nr/QwHe+8x2e/fUvSSQS2B0ZVFV9iLyCRzFb6kA3T6TwK1fsxUQEwYiONnHyfyPuYQlJMqIo7fR0f5/mxt+gKCqbNm7g7/5fX2PvntUkfeHr+g3TtfnES19rLKkU/9nWx1vdFE3jot+G0ZYxPQNAEugbGKe1rZfllSVkZdoIBIJTc38aAMQZGQ9OKwEwGg243ekYx+2wX9OB1T0AcB2DarHp/5AWtTvT2EIikbxtAEAURSLhIMfeOMTaTZt57KH9ZGVm3BEn4b2DI7R29zHU18PwQB/rt26fdkCmaRpZGW7WXVGvPrm4JJIKRoN0xwCP+cZeJBbjfEs7A339vPPma6zbsp2SZZULAgCJWAzP+CiFJWVzngzpmsby8hJKZiinWGo6AJqm8fNf/ILt27dTsWzxNfy6rjM0Nk5uZsZNPzm4HtB4vrmdMa8PSZaJR8L0drZTWbsCSZ4d5EiyzLkT7+DzjrPz/v2YTCYSiSQFeTnUVd4DALcyIEimUnzzm99E0WHLzr2XAQCJ0aEBRobmFubUVI265csozJ09A2Cx92YsnuDkhUZi8STrVtaQM4uy9j0AcHMAgD8Y4vi5BmRJwu/zEYvHp+Zqk9FIb3c3P/z+v5JfWExhcTHHjhymsKiQT3z68zicjhlPha8M2Gf63vVrAci89PwfePvIm3zys1+irHwZbS1NPPPTH/KlP/lTllVWk5ohM8FsNmGxWDGZTGxes/KaUljvZgDg9QfxBUNTNo4XGzspLsrG7XJOO1Wd7D9RFNE0jXA4RDQau3TvC6CrOhazCYvNjsFoBF3DYbcRGRmh2JikwxMlu6KarKz0Pa8oGghMc9EZGh0nlkhSWpiLPBG0J2JxwmPDCOjIVgeOrKx0mamqMdjaQpFZpd2bIKeqmsyJE8pYIomqKFgsFiTx0pjsHRihraOfeDKJ1WLCZrXgsFkwmUwYDNLEKbOKqmokk0mi8QTJRApvIMT4uA+T2UhtVRn1dRWYTbfPxeTIW2/zL9/4F15+6Y8AmMxmioq3Ulj4EO7MnchSwTxZAdcViiGKRkQxjmf8DzQ2fAfPeB8mk5mnn/oYf/rJh1izav6T/7stVrvd+31RhHBM4YLXiCMzfxoAEEWB7p5hunqGqCjLx2Y1oFyWwTstA+AyAGA2mXC53Wk7VbttVieMewBgCU3uiqpytrGV4G2yApxY9RGA44cPYbHZ+egTT7C8vOSOCIrbunrpHRql+eI5NFWhft3Gq+r/V9VUkpedNetmSLhTj/1nGHv+YIiLbZ10d7Rx9sRxdty/n6yc3DnVlyc3C6GAn3gsRk5+wZxpWrqmsaK6kvwZ6o2Xmg6Apmk886tfsXPHTkpLiq/pNWKJBGajcUmMk9lAY0NbJ8OjHiRZIpmIM9TfR0l5BYIkzZgyPgkALpw6zvjICDvufxCnw0EsESc7I4OVy5fdAwC3EOSkFIV/+ZcJAHBZyY4oSvg844wODVC9ctWswZmSSlFVVsSy0pJZf+diAYCqapxuaMLjC1JTUcayksJ7AOAWAoBQJMKJcw3oOoSCQSLRaLp2O6Vw5tQJfvWznxDw+8grKMTpcLJ523a2796LyWxCUdTb9pkEQUBRUvzixz+ko72N93/oI1TXruDl559jfHyUL3zlTzCZzVetSWazCZPJjMvpZPOalQuyGXsvAQB/MIzHH5gSfmzr6KO4MAeLxTxtXtD1dJCgKAqhUIjEZZkjaeE4HVXVcLudOJ0OVFVFliTyc7Lp6+zGrQQYj0NeVTUup/2q9cfrD9M7METfwBiSJFBRWsiy0kIsltn7S1FUOhoaqLBBVyBJZkU12bN4ynt9QS42ddLVN4SqaMgGCVVNB/roOoIoplP/BdDUyzQlhMksFJmC3ExWr6gkPy9rSfS9oqgcOPg6P//JD3n9zTcIBdNjISu7lJKS/eTk7cNqqwfdepmw37WEUOJE0C8jCBKiqBCJnKGj/V/paHsdgE0bt/C1z32Uz31oJ8CMNf/32k0GAEBSUzk7ZsLqzkXg0vmvIEBb+wD9Q+MUFbhxO63TMrlmAwBWiwWny4mm6WmXhlkynu8BgJu8mVtsu9DSwZjHe/sAwEQw0HzhHEP9vXzww0+wdmXNklV1n37t2hka83D2+DFy8/Mpq6xGVZWpxcrlcLBhVS3yXaQmPNfYG/P6ae7soencGbo6Wtm972Gss1jBXQkAvJ5xZFnG6XLP/XhdZ1VtFdkZMxPGpRQ0qqrKs7/9Lbt37aIgP/+ar/FSuQ9m20ROigBKsoSSTDI6Mkh+Ycmcc4osy1w8/S7DgwPsuG8/uTnZxBJxHDY79dUV9wDALQQ5yVSKf/mXb6ILIpt27rkMAIiEQwHGhocpr6qeEQCIoojP68EmC+zf98Dsi/s1wLlJJ4DiglxW1VTdkde6paWFv/mbv7kKAIgT4rHXMfsiCCKSJJFKpaYB5ZlfN221dnkfJhIJ/vqv/5qamqvLk6KxOCfONZBSVVRFwev1AjDQ28MrL76AbDSwes068vLyycrJwWZP189fT43tjdq2SZJEMpHgpRd+z6kTJ8jJy8flcnP87aM89OhjPPrBDyGK4rQSAKvFgmwwkJeTzeY1K+/orLybAQCC4QhjXv9UBsCFhg5Ki3Nxuaav74IgkEgkCIVCKMol4UiBdPr/6HiQcCSOzWImPy8Lt9tOUX4OTruNlKLgG/dgtlhxTpzQ67qOLxBmeNhD39AI494AiXgSUZLS/aeD02GjuDCH8uI8srMzkGYQkh4dGSE+MoRmcVC8rBz5Cj2mRDJFa3svDa3dhEJRsjNd1FaXk+myk0imSCRTxONJQpEY8UQcSZAwmoxYLQZMRhOyLCGJIhazkews91Wvf7ubxWJB9jfz/B9f43hDD7/74ys0NjYCae2MgqJNFBU/RGbmbmS5EJ109p6uqROisPplfyZ7VEyXDIgSogA6CTTVRyzWQTjcScB/np7uV4lGwuTk5PC1L32Wzz++m7LlRWi+4HtOfX9JQQARGgJ2dKMTdJ1kMokoChgMRppauhkbD1BUkIHLaZkBAEyUAFymAWC327HbbfcAwO3ezC22tXZPWAEuYsGbFPa6UdBAkiTGhoc4+c5Rdt+/j317duN2OZf0IqzrOmeb2hgYGub0saPUrV5Ldm7e1MmCpmlULyujvLjgPTP2BoZHae8d4PQ7bxH0+9j5wENI8vwOAIIg4Bkdxe5wYLJY5ny8IAisqa0iw+Vc8gBAURSe+8Pz7Nq1i9zb7Pl+MzeRLV299A+OIMoSmqIwPjpCTl7+vACg4ewpBvt62X7ffvJycgANWTawqqbyHgC4hf04WQKgCxKbduyemsMEQSAejTI+OkxR2cwlLKIkMTYyjJCK8ZEPfWjO37vY/mzp6qWrd4AMl5ONq+pm3Ngv9dbf388zzzyD4TKFcVEQCEdjxJPJdPrlRBbc5LQ3k1r9xMMQJizLBEEgmUwQ8HnJyy+YOImFRDJJSlEQpiV2puuxHTbrtDU1lUrx8Y9/nOLi4qtAYyKZ4sS5BuKJBADj42NoWrom2mCQMRiMoOtouoaqqguu978VW7O0qr+IIIr09/Rw4dxZxsfGiEZCZGRl8eCjj+Fyuafes67r2Kzpa1NWUszaFdV3/T2/2BaOxhgZ904rASgpysXlSlu9pk/3NaKRCNFYbEa3hXFviHFPCEmSpsaM3WqmoCAHp92CLEmIUrokUgCSiRRDYx5GxnzEonEkWcJuteDOsON22UmlVHz+EIFgmEgkhslkJDc7g5LCXLKz3LhddowGeWpcK4oyrZROUVWCwQgjYz7au/sZHfVhNBmoqSxhZW0FNqt5lvHFHafXZLFYkL0XQY+DyURXczcHT3bwx1eP8tobhwmHfAC4MwooLNqJ01mL2ZyPxVqGbMhBFCwIggVdlyb6U0XXI6RSo0QjrYTCbfi8F/B62ggG+9HUSStZiQ++7xE++9GHeP9jOyASmbL5u9duJwAQGRFyGYuKREIhItEokiQhyzLdvaOEwnGKC9w47BY0fZYMgMsAgNPpxGpNwwKHzUpu1j0AcEdM7L2Dw7R3L9wKUBAEopEQCAJWq/2GLOiiKJKIxXjr0AFKK5fz4Q9+gAynfclau0E6bfZMYys93d00nD3Fxu27sdrStme6rmOQZTasqsNhs96V426mzJOuvgG6+4d45/AhRFFky577Z1WBv3JF9XrGycjMmnscTtg1rVmxHJd9Zp/RpZQ5kkqleOnlV9i5YweZ10BEl3p/T7amjm4GR8bSp2qahtczRlZWThozzwEAms6foa+7ix337ScrKwuXw0YylaK++h4AuJVrhqKofPNb30JDYOP2XdMAQDIRZ3x0hILi0hlfS5IkRoYGUWIhPvHkkzcUAAyMjNHQ2oHJaGTj6jpsFstdcf0j8QQXmtuJxeOIoohBllEmAiJd15ANMrYJEDolqCaIqKpKJBYHdGSDgfOn32Wop4v/8ld/hXPi2g6Pe2ls75quUD7Rlxvq63DMEtRcBS9VlRPnGghHYggCeL2eqUBvIYH8ZJB0M3diM4kBXrlXkWQJSRDRdI1kMjXt5H/a5tNqxWy1UlVaTFV5yb194hUtGosz4vFNBQFNLd0UF+Zid1hRFTVdBx+Nkkwmr1p/RVEgEIwxPJouIaiqKEYUYWTURyAYIZFIXtEnQnrU6ukA0uWwkZ+bRVFhDjoaGjrShGiyzWpF0KF3YISevhG8/iCqqqZFHa0WnE4bOVkuMlwOMjJc6LqGxxtkdNzH6LiPQDBMLJZAEkWKCnNYVVdJwRJJ3b/RAICxC2hhD4gSRrMBbDa0UIzfHzjPqeZuXnj5Vc5fOHPF82xYrDk4HAW43Mux2soRBJlIuB2P5wJ+bzeRiG/q8QajTFFBEXU11axfW09lSR6feGgz5gw7yUCYe22pAACI2iroGo8zPj6OqqoTc6nGwGCAaDxJSUEGVptp2r05UwmAroPL5cJsNt0DAEtlU77QNjLupbGtc8FIUxRFgn4fgiDgmC9de5EQ4N23DqNqKk88+SQVxUVLLqCbviDGONvUTnNTA8N9vWzetXdqMzIl/reyZtpG7G5qM/rBd/bQ2z/IsTcPkpmdy5pNWxckAKikkoRDIdyZWXNvLHUd2SCzbkUN9llU8ZfSeEkmkxx87XV2bN+Oa5aMhTu5vyfbpAuAKIqg6/i8HjIyMucFAM0XztHT2c6O+/fjznBTlJNNJBanbsLi8U4oA7ob1gxN0/jWt79NUtXZdAUAUFJJPGOj5BYUzQoAhvr7iYe8fPrpp+fsr8UCAG8gyOmLzei6zpq66mvaVCy1Fo7GONvYSiQWQxJFJHHCt3rijySKUyVOl8+Fmq5zsaWdUY8PWZZJxOMc+ONzbNywgac+8fGpx8UTCd4933SVar+qapQX5VMzIbA57zgBTpxrwB8MIYniFAC4cixdOZdf79ZrqqT6RsMD4ZKQ+0yvOwkAVtdUUZCbfdfd99ddAhAK0zc0jICArmm0dQ6Sm5uBw2YikUyhKMqM5WqCIBCOxBgeCaKoGjnZdpaVFmKz20il0pkqmqpPHZxouo6qqCgTAYnbaSc3J2NKk8EfCjPu84MO2RkuXM5LPubJlMLwqIfBYQ8eX4BwOEo0FkdVNSRJwmoxAzrRaBxV0zAaDbgcdrKzXBQX5lKUn73kUvdvFgC4tA6LiBYzyEa6Woc4dKqVC83dNDS30tvbx5hnDK93DPSZ9/kul4OysjLW1K9k3eo6sl1W1tWWUl2WjzHDCZqGForcVl2Qe22WmCunlpahMEPDI+l7d2Kd6RvwkUimKC3MxGwxLggAZGRkYDQa7gGApbIpX2gLhMKcbWpL130uYLMtiiLe8fRpnzsz64YBAEmWaWu8SFd7Cx/8yBNsWrMqPSiWaBaAPxjiXHM7Z08eR9NU1m7cOi39v6q8hIqSort27M1sB9dJT18fxw4dpKKmjqq6lQsCAPFYFFVRsDmc8wIAg8HA+pXVWGc5DVxK4yWVSnH0rbfYtHETdrvtrt1AnmtqY9znnwIAwYAfp8s953wiyzKtDRfobGtm5wMP4nK5qSwtJhyJUjlh8biUM4DuJgCg6zrf+c53iKXUaQAABHRVwesZJysnd8b+lCSJwd4eQt4xPv/5zyHNoXeyWAAQicY4eaGReCJJZVnJjNafd1JLplKcbWzFFwilU9SvCJhVTaO6vHRGwcPB0XEutnYgCgKybKDpwlmaLpzlz//iL6goL78KyA2MjCFP1klPbOysJhMbV69YsCr5yQtNeHwBJEnE7/OhqMqCMwDmG4OTc//1vtb13w/pTa3FYsVqs7F59QpcDvs9ADADAGhsa0dTNSRRpLffi9ttwelIp/3OBP5EQSAUjjE8mg7+M902crIdE6eFZjRNw2GzkJuVueD3EUskGB7zYjUZyMnKnHV9UFWVSDSOPxDGFwgx7g0QCkUmTitt5OdkkZXpIsPtwGiQudvbbADg8mY0G8BiAVEkOhahfyTIwPAYncNeguEEvQNDtHV2kEzEWbWimurKcoqy7GxYWf7/Z++/o+S6q3R/+HNCVXV3Veccpc5ZrW5lybIky5EwhsEMGRubYBsbBwbufe9EZuDO795hYGAYZi6ZwYBNMoyxcZKsbKnV6pxzzjlUPue8f1RQtzpLnd17LS1DVXXVOeeb9vPsvZ9NdFQIGH3A7gCbA9XpcHVv2LaNih6RIzNoGnDS3tGJoiiIooCiaHR0DuNUFeJjQzDodfMTAPGhSG4tm6CgoG0CYL0duZsxVyvAWmw2x5IJgKGBfgBCwyNWjgBw15JeOf8Wt5+8m3tPnvC2fdmIkcChkTFKquu4cuEMUdGxJKVnorhZcEmSyM9KJzhwa6Ywz0U8qapGRX0TLa2tXDl7mt37DhKdsGNJBIDFPIkoShh8fBclAPR6HQVZ6fj6+qwY0FhNAuBKYSEFBQXzEhZbYa8pqa5jeHTc7YxpTE1OYDT6L7ifSLJMY00VjbXV3HbybgICA8lM2onFaiU2KsK73rfLAFYfCGjAf/7Hf2C2O28gAFx6LyPDQ4SEhs1LAHS2tTI+2Msjjzwyo9b9RlvuPu5wOrlWWcPI2ARRYaHszk5H2MRrqKq+ma6+fiRJmg3+FYXw0GDyMtO8fc1nPodaxicmkWUZs9nMqZf/QGZWFp955OFZz7RvaJjymsZZw6WqKulJO9gRuzRdmvLaBnr6B5EkifGxMRxOxy0/g7V61svJRhBFER+DD8HBwezPy17Xtm0blQCYNJuprm9EcSpIkkhb+xAhIX6uGuE59B8EUWBywkLvwDhOp0JwkJGIsACMfn4Y3eV7mqYRFOhP6DKy4zRAcToRRQlRFJY1JxxOBU3TZugCvFNsKQTAdJNlEVGWQJZBJ4GsA1XDOTaB067gExrklpO3g82B06msGBbYtrUhAPThaXRM6mhubcVmc4kAOhWVjo5hNDQSpkX414YAsOHsqbjlO3tHEAArEf0HdyvAqjrGJ6eWpAPgygDox+lwEhEds6IlAFaLmQunXmdnciof+YsH3ClbGwvUeZ2swWEKS8u5euEsObv3EB4V7Ra2cfW03ZebtWXTyeZyJuwOJ5V1TTQ3N3Ht7QvsP3p8SS0AASzmSXx8/Badf5qq4ednID8rA4Net+EJAKfTwbXiEnbt2oWvj8+mHe+FCABN0yipqmNkfMIbjbFazPj4+C5KADTVVdNQXcltJ+/G5B9IVspO0CAk6LoA6DYBsL4EAJrG2OgIgYFBc5Z0SJJMR2sTw71dfPazn12w3d3NELkl1XX0DQxjMvqyNzdr04Kz1s4e6lva5wQtqqbho9ezJycD4xylTV29/VQ3trhr2mXKrl6mpaGep555hqSdO+YkTooqapiYMiNNq3l3RVz92JObiX4BosZjNY0ttHf3IkkSE+PjSyIAVtr1mq8LylJ/ZzoRMB8pIIoiAYFBBAf4sz8ve0uCwxUhAOoaUZTFCQBRFDCb7XT2jOB0KoQEm9gRH4aPj69LPNI9fiY/X8JDgrazvDYgAbAQMQDCdkr/ViAAQpPod/rT0NTqbfNqtzvp6B5GFEQS4kKQJGEOAsDdBSAu1JvJtiIEgGDD2bdNAKwZ+PdYRV0T/UPDS9qIRVFieHAAq3mSmIREVFWZ69T2nL7LGzhB4PK5txCATz70ENHh18VYNlo6cEdvPxcvF1JVUsSBo8fxM7rUcBVFJT4mkqyUxC059+YDgxaLlfL6Jpoa6qkuK+HwiZMYTQGLE0SahtVqxsd38RR5TVUJ8DexOyttwdaKGyVjxOl0UlZeQXZ2Fj6GzdtXeiHnUdM0iitrGZuY9BI4TrsdWb8wUJNkmZb6Wuoqyzly8i5MAUFkJu3A5OeDj8GwTQCsNQHwn/+J2Wpn75HbvW0APetzYmIcf/+AuTMAZJn25gb6Ott5/LHHXI7mfAf8Tezh1Q3NdPT0IcsS+dkZhGxCLY2RsXFKq+u9dc2zj0qN3PQUosJD59hDFIqrahkdn0Cn1zPU38epP73EXXffw5+/7/55f7Olo4v61o4ZZQAe3yEzJZH46MhFr7uxrZOmtg4kSWJqchK7w77qgH+1v3fOvUiU8A8MJDo8jF0ZKe+YdX/rBIARf5PPDAJAEAQcdiddvSNYrA5MfgZSUmIICgzy6lx4tC5iIsOWRERt28YhALZty4BI5OBYpow7qCivcpHFkojV6qCjexi9LBEXu7YEgK9gQe2r2iYAbgaA3Yo1tHbQ0d275AyA0eEhxkZH2JGUMifAu9k2gbIsU11WQntrEx/7xENkudXANxqwA2hq7+L0W2/R29XJwdtPeNWFNU1jV0YqkWEhW3TfmJt8mpgyU17XRH11Je0tTRw6dhK9j8+iXQA0xSX4o9MvHtnTVJWQwAB2ZaYuCCQ2ClnkdDqpqKoiKzMTg37zppUu5DyqqosAGJ+8TgAoTieSLC9KALQ21FFTUerNAEhPTCAkKBBZEr3jty0EuDZnx/e+9z3GzRb2HT42i9Q1T07gZzTNSwC0NTXQ09bME088gZ/fwl1PlkvotHR00dDaAQikJyUsOX19o5jD4aS4uo5Rd93/jaaoKskJsaTsmFt5vqd/iMr6Jq9C85nXXyE0OIgnPv959AvsKWaLlaKKGmx2+wzle1VVCfQ3UZCTgW6RNdre3UtNY4uXAHA4HGjuPuCeNoMa2orMSw94XCxav1oEgCkggNQd8SQlbE3dnlslAKbMFqrrG3A65ycABAGcTpXe3jEmzFZ8ffTERAYSHhGKweDj9Y9kSSI0KADTFu2QtE0AbNtmIABEUygjciw1DU1Yba5zwmy20dkzgo9eR1xs8JwdPaaLAK5oBoBkcZcA3JrvvqUJgJWO/gN09vS5nKwlagCMjQ4z0NtLcnrm7ENaEFA9tfA63bKkfCVZpqejjasXz/Fnf/5Bbj98YEMCO3Ap3v/xpf9GFATy9x9ypf9rGn4+Bvbvykav33rM9kIAYmR8gsqGZmpKSxga6OPgsZMI87RcmjFXHK60UnEJc8VmsRARHkZe1uw62VsFGqthiqJQVVNDRlr6pp0PixGOiqJSUlU7s4RIU0EQF13rbY2ubJEjJ+/CP8AlAhgV7hJ28nTP2CYA1ubs+OGPfsTw6Dj7bzs2i9S1WcwY5inpkGSZ1sZ6ulsaeeLJJzGZTCu6LvuHRiiraUDV1E0ZofUQGHOdW4qiEBMZTnZq0pzvq6pGaXUdgyOj6HR6qstLsE6M8sgjjxAUFLTob9e3tNPS0Y0siTNg+lK7KvT0D1Je24AkSZinplwEwAq4VitBGqykyZKMn8lEflbasgTp3kkEwFIyAARBYGBwgoGhCXQ6iZgol8iev3+Al4TyN/oREuiPLG994b1tAmDbNrA3gCobGTfspK23nxG3iPPUpJXO3hGMvgZiooNnHfmrqgEgmHH2Vd4aASDqti4BsBrgH1ztlspqG1jKuSyKIpMTY3S2tpCWlet29GemgDkdDjRVRWcwLMthECWJibFRzr/5Knv2HeCBP3/frDZ6G4UEKKup5/e//Q0xcfFetXtVVYmPjvS2MXsnzb/BkVGqG1spv1aIzWpl7+GjS9KHUJxOl3L4YiBPEBgZGiQmOoqCnKxFlXs3AnBUFIWaujrSUlI3LQGw2J7jcDoprapjYsq8rIwfT+S4qvSaKwMgIIik2Gjiol0CgNPHbrsMYPVBwM+e+xk9fYMcOHp81rp12GyuDJ15CICWhjq6Whp54oknCAgIWFECYHxyiqvl1SiKgsnox94l1q9vBJs0WyiurMU2R290RVEICwkmNz1l3r1sYNhFfiAI2M2TTA4PcN999y35GU7PApj++yGBAaQmJuC/SAR2cGSUaxU1LgLAbHad60s4z9fC/VoqiSAgLPpZWZIJCAxgf142/kbjO27tL5kAmCUCODsDYGh4kuHRKUKCjUSGB2M0mVyZJgIEB/hvyhKebQJg27YiAYBsQI4toKGlh7bOLkRRZGLCQlfvKP4mH2KigubAf7MJAFEUCQ4ORpalWyMAtEmcfVU3Pz9VBdEUtjUJgNUC/y5HwcK1qnqcjsU7AQiiiNU8RXN9LakZ2bNAviAIOO12FMWJwddvWc6AIAgoTicXTr9OcEgon3nkYW//140G7i5eLeaPv3+RvL37iYyOcaXGiQJ5WemEBm29Q26xSHDPwBB1Le2UFb6NrJPJLdi/JAFATVEQpKUt+N7ODhJ27mRvXjaGRUDARiCKFEWhoamZpMSdm7bWcTHH0eFwUFJdx+SUZdkEQHtzA1Ul1zhy8m6M/oHsiIkkKT52lvDXNgGw+uv3+RdeoLW9i0PHTswiAJwOB/I881eSZZrra+lsrufJJ79AYGDggtex3L3bYrVRWF6FzeZAkkQKstMJ3iQgoq65jdbOnlmp/4qiEhRgIi8zbV5RQ9Utrjk0MkZUeDAGQSM5OXnZkdOm9k4aWzu916CqGvnZaYSHLO6gjU1McqWsClEQMJvN3i43a6nmvxZmNJnwNxnZn5e9ZWvSb5UAMFusVNbV43QqyJJIa/sQoW4CQPFoAGgaep0OWZbR6XQYjX4Y9Ho0TcXfaNxO+d8mALZtQ5mIHLuL5t5xmlvakESRsQkzXb1jBAX4Eh0ZOCspd64SAEmSCA4ORpREtFstAeirBadjTsHhdywBsBp1/9PN7nbip6asCIu0VvFE+GurykhKTZ8l9OYhABwOO75G06KH+I21fqIkUXTxHFOTEzz66KNEhIXO+XfrDQpePXWGM6fe4PDxk5j8A3A6nYQEBpCfk7FoevpWJKA6untp7Oim9MolAoKCSc3KWbQFoMdpWJR0chND7a3NZGZlsndXzoIigBtljqiqSmt7Ownx8Uu63s3oOLp6m98cAdDR0khFcRG3nbwboymA+OjIOXu9b5cBrP76/e1vf0d9UzOHjp1E09QbzlUFcZ75K8kyzXW1tDfV8eSTTxIcHLyiBICiqlwtr2Z8wnX+pSUmsDMuZsM/b6vNxtWKGixW24wsNkVRCTD5kZeZNqPLzY02MDJKdX0zyQmxRIQGL1jvv+jZXlXH6PgEgigSHhJEbnrKkvajiSkzhWVVqKqKxWJBVVa21ddGcdOMJhOhwUHs25W1Zdf/cgiAsbExNE1zlWK5/1mtNtq7ukEQUBSVzu4hAvx9CPD3A3eWhdHPl/iYaExGI4qiIkoi27v2NgGwbRvWK0AfnkbLCNQ3tSDLIiOjU/T0jREWYiI8LGDWHj1XBoAsSwQHh3ix3E0TAEZfsE+ijnWiTg5sEwBrAf49v1Fe08DQ6NiSnfjq0mvE7kgkOCx8hmq0hwCwWi2YAgIXPeSni+eBSwiwrqqc+uoqHnr4EbLSU+eZLOsb4f31i3+gvLSU2+68G1mSURSFlJ3xJMVvPRGhpczBpvZO2jp7KSm8RGRMDAmJqSjK4gTAUsSeBEHEZjHT3FDHgYMHKchdmqO23sBRVVX6+vuJiozclAB2KeNus7sIgCnzzREA5deKOHryboz+8xMAG60DyFYEAC/+4Q/U1tZx6Pids9fjAiSdJMs01VbT1ljHF77wBUJCQhY55Jc/lsVVdQwMjSAIEBkeSl5G6oZ/3i7tgvoZ615RFIIDA8hOS8K4QLcETdNo7ugiwGRcUqR+MRsZn6Csph6L1UZiXAwZyTuX9HcWq43CsirsDgcWiwVNVZdFAGwUN2yhVoKCIOBnNBEfHUl2WtI7ngBobW2lsrLS1XJSkrwEgKcsSxRFHE4Fs9VFCBn0BmRZRpYkjCYjJqMRSZKQJQlRkpDm+DedWLjx3/Tf2SZ9twmAbVtN/1TBJziK8n6Z3r5+JFFkeHSK3v4xIsMDCA0xzdni80YCQK/XERQU7N1TA4x+hIfe/LllNPqiDjejjnWwLD2ArUYArAX491htUxvdff1L7gRQXXqNkLAIouMTZqR6ewiAqalJAoNDFnUCfH30KIqK3e4qP5Bkmd7ODi6fe4v3feAD3H7k8Io6kytlP/jxT+gfGODg0TtQVQVRFNidlb4la9yWUn5S09RGV08fZVffJj4xmajYuCWVADjtdld68QKHvSiKTIyN0tLYwO3Hj5OXmbbEjWR9gaOqqgwNDxMWGropnZmljPutEACdrU2UFRVy9OQ9GP0DiIuKIHXn3Gro22UAq3uO/PcfX6ayopJDJ+5clgK7JMs01lbTWl/DU089RWho6KJ/s9yxrKpvorN3AEEU8PPxYf+urA2vqTE4PEppTf0M8B8aFEhOevKiLUEVRcHhdK5o69C+oRFqG1uQZIl9uUvrSmJ3OCgsq8JstWF1EwCeebFeLtZq/K6fyURG8k52brIOE8t5ZmazedHP9fT0UFJS4vXj5nzW08lAz//2zAn3by0l6DMX4F/on4c8kGV5TlLB80+n0xEYGDjnub+W5SsblwAYBHFbgHEb/KuMT1kJCw2lbFBicMyKIAgMDo0zMDRJdGQgwUHG+QmAATcBIAn4GHwIDAr0rq8Ao/GWCAAAo68v6kAF6uTw0ssBVCeiKXxrEACeh7ladf83WmdPH/Ut7Uty4iVJoq6yHJ1eT1Ja5oxIr4cAmBgfIzgsfMENV3O3JJJliaERV/aBSwhwhLOv/YkDhw7xwJ+/f8FrWY8or8Ph5Nvf+Td0PkZyC/bisDswGX03lUDVSpNQlfXN9PT1U36tkKS0DELDI5ZEAPT3dBESGr6gYKQkSQz09dDZ2sLxk3cumQBYr/kx/dmNjo4SFBS0KQmApUSNbHYHpTV1TE1tEwCbmch59fU3KCoq4vCxk4iyvGRHWZZl6muqaPMQAGFhK04AtHZ0U9fSjiiJiALkZ2dseKLV6VS4VlnL2MQEmqYRFhJMTmoSBsP6tQOdNFtwOJwEBSxtT1QUlcKyKiamprBaraBpt1wCMD0avxHcNB9fXwRRZG9uFmHBgVtmzdvt9mURJ8PDw1y9ehWn07lmpPn0a5rv+pY7RzRN48CBA0RERMz5nn4Tt+O9GZsuqKtOdKHZpxbt0LNtW980TWNiykKgv5HucY22vnFAo3dgjOHhKWJjggkO9JuTABifsNLbP0ZiQhiSJODnZyQgIMCLWQNNRiJWoA265rSgTvS4ukot6Q9UBL1p8xMAaw3+AQZHxqioa1ya8y7JtDbWYZ6aJCuvYHYGgMPB6MgQoeGRi4yXSwwpLDiYpvZOcG9WToeDc2++SlRUNJ/5zKfRSRur5/vwyCjf+ta/kpiWyY6kVBwOO1HhoezaBKmpqwEeAMprG+np66eq7BqpmTkEBAYt6Cx66vo7WpuJjd+xCAEg09nWRH9vL/fc9y4yl5jCul7z40YQvRnB61KJn1vNACgvKuTIyXswLUIAbJcBrO44nj1/gfPnznPw2B3IOt2yCYCWumqeeuopwsPDV5wA6B8aobS6DlEUUVWV1J0JJMZvbB2Aju4+aptbUVWVmMhwMpJ2otNtvshbYVkVI+MT2KxWBFzZCdOjw8vJFtmIa8PXzw+DQc+BvJwFNRk2OwGwkI2NjXH16lVsNtuaENXTf8MT/VenZZfcijmdTtLS0khPT59zvA0rmFWz6Xy5ie5tAmDb3GsBxifNBJh8GLZJdA9bmTK7OgCMjVuIiw4mKNB3XgKgf3CcxAQX2W8ymfD39/fi1iB/0y1nAHguUp3sQbObl9SifksQAOsB/gGmLBZKqupxLKETgCRJ9HS009vTSd7eg7O7ADgcDA/2Ex4Zw0IqMJqq4m8ykp60k8r6Rmw2O7gPhLfPnEJRHDzx+ScIDPDfUCCvpa2N//iP/2D/kdsJDY/E4XBsGnGq1QAPqqZRUdtAd28/9dUVpGXl4Gc0LUoA2KwW2psbSUxNR9bp5ycAZJmG6krMU5M88MADRIeHLus+1jMLwGw24+vru+kyAJZK/FwnABYXEF2MAIiNiiBtHgLgZoDjaj+fzUBILHUcS8vKeOnlVzh49Dg6vWF5BEB1Jc1uAmCuyNutjuP41BRF5TUoioKqacSEh5GbkbKhn3tlfTNDo6MkREexIy56VjvbzWLFlbUMDI+4wKF7Pq3U2TJXJsBaEwoGX1+C3S0AxS1Uc75UAsBsNlNYWMjExISrHe8amCcqrdPpsNvtXpJ8Jcbe6XQSFRXFvn375pxzer3+HastsE0AbJt3LeBqsevv58uYQ8eUU6ZvYJDWziEmJiwkxIVi9DPMKQJ4IwEQEBCA0Wj0YtfgAH/CQoJWZs5O9qHZJt4ZBMBC4F9VNVRNQ5ZWZ/E6nQol1XVMTE4tGsmTJInB/j6a6moo2H8IaVrEyEMADPb1EBkdu2D9hqZq+PkZKMjKoKGtg96BIURRRJZlyq9doaO1hcc//wQJcYsL660lCXCtpIQXXvg1t995D75+RkClIDtj07SnWmnwoCgKZbUN9Pb109pYR2pGzoIRfddGIjI1OU5rYwMZOXmIkrRgCUD5tUJ8DD589MN/sexIzXpGj61WKwaDYVM5HcvRHlnJDIDFCICNkgWgaRrjk1MEmIwbflyXKv5VU1fHb3/7O/Ydvh2Dnx/aEoGeS7S1gua6Kp566mkiIyNXnABwOJwUllUxZbG6/t7ky97cLFd/8Q1qTqeCqqmbviSsoq6J7r5+lxK8xTKr489cAH4j7mdzXZumaRh8fIiLiiQnPXlLnd1LIQAcDgdXr15laGhozcC/Z89wOp2UlZVx+vRpGhsbOX78OH/xF39xyySAqqr4+/tz+PDhOVtmyrL8js0k2yYAtm26jU2YMRkNjNskzJqBvoEhxicsOJwKRqNhTkJ0OgGwMyEMH4OBgIBAb5tZRVUICwokNHgFCABNQZnoAacV2OIEwGJOt9OpYLZaCTAZV+0aymsbGRweWdSRF0WRifFRKkuukbd3P35Gf69jIAgCqtNJV2c7MbHxM8iBue7Z18fAnpxMRsbGqapvRhAFZFmmtbGB4sJLfPLBh8jP27Wk61+rSO8rr77Gpbcvc/ud9yCIIr4GPft2ZWPQb536/6WCf3CJRZXVNDAwOEhXWysp6ZkgSQiA02FHQJg1D0RJYnRoiPbmBnLy9yK4u0HMZYIocvXCWRIS4vngB/78piI165UFYLfbN13d4XLH/mbbAHa2NlNWdIXbllACcLPgcbWeT+/gEFFhoRvamVwOkdPQ1MyvfvUC+QeOYDT5LznSK8syNRVltDbU8vTTT69KBoCmaRRVVDMyNuFVJ9+3Kwv/LdRXXHPX10sbrF1obVMbbV3dSKKIxWLZUg6wBhgMBjJTkkiIidxS97YYAaCqKsXFxfT09KzpnPPx8aG3t5fnnnuOM2fOeMtHQ0ND+da3vkVAQMAtZZlomoYkSRw5cgSTyTSn7yrL70wRvG0CYNum2/iUGaOPgXGLg0nNj96hMZcGiCCgaa790btRev12gYkJK/0D46SlxhAUGIgsywQFmDDodZgtNkxGX/x8br2cSrOOopqHZ17AViQAluKoOZxOevsHiY2OXLVUNVcrt55FHXlBFLFbLFy7cpGsXfkEh4Z5N3JRFFEVJ61NDcQm7ERv8Jmf0dU09Hode3IyEASBa5W1WG12ZFnHQF8PF06/zrve/R7uOnnHhgJ6//Wz5+jo6uHQsTtwOh2EhwaTn5W+pZzR5XSfsNrslNbUMTQ0zGBfLwlJKV4yaHJiHJ2sw+DrO2MeSJJEf08PXe0t7Nqzf14CwKMVcOnsKQryC3j3fffc1D2tV/TY6XRuKodjuWN/KwRAl5sA8GQAJMREkpwQtyGJnJnOs0Z7dy8xkeHoN3Bd93KInIamFn79q1+xa99+/AOCUVVlSX8nyzI1ZSW0NTesWgkAQFV9M529fUjuTKHc9BSillkKtG3Lt+b2Lhpa25EkCcsSlOQ3k/m4z6T9edkEBWwtkdGFCABN06ioqKCtrW3NwL9Hob+0tJTvf//7NDc3z3j//vvv5+GHH/Ze362eufMJAQLvOCHAbQJg2+ayKYsVH4OeickpJmwwYhUw21wdzTzIXxBAFAR3Br6GoAmMjJvpH5pif34aJqMf/iYTppUk4zUVzTaOahlZugDgZiUAluqkORWFuuY2EuNiVk2spqd/iNqmlkXrLTxR/qtvnycxOZWouOutAAVBQFUUGmuriE9MXrgWXNPQ6XXsyUrH19eHmsZWuvsHkGUdU5NjnHntFXbnF/DRD39oWfexmiBBA77znX/HoUH+vkM4HHaSEuLm7F++aQ+KZQAH10bi0o8YGx9ldGiQ2IREd42nyPBAH35GEz5+RrRpi1mSJLrbW+np6mT3/kMz2glNN1EUsZinuPjWm9x7330cOXjgpu9rPcDjfD2ot8rYO5xOSqrqmJwy3xQBUFp0hdvuuAdTQAA7Y6NIjF+83Ge9swA0TaOxrYPYyIgNKxy2XCKntrGJ3/z6V+QW7CMoJAxVUZY8jpXFV+lua+XpZ54iLGxxEcCbIeOaO7qob25DlmVUVWVnbDRpSTvW9Rn/9re/paWlBd0KpPlrmoa4QBbUSpvD4eDDH/4wcXELn1sdPX1UNzQjSRJms5mtVD1t8PXFx2DgQN7Wyt5bjACoq6ujvr5+zcC/TqfDarXy6quv8otf/GJGS0JBEPjABz7ARz/6Ue/avlVzOp1kZWWRnJw85zp7pwoBbhMA2+Zdd4DdqSBKIlaLleGxMRBknLhKZDRVA01BEEFEQwA0NCRBoHfURnu/jfcdSwNcmm2uTwhu7Ci45pjg+q8w/fXrC//6lUzzjzXFgeaYAqftpoiDTUUALMfZVhSFsuoGYqIiiAoPWZXrGZuYpLSmweX8LUYCiALXLl0gNCKSpLQMFKfz+sCqKjUVpSQkJuO/kBq8piHrdBRkp2H09WVgeJTK+iZX1Nfh4OybrxIeFs5jj30OeRmH1WpGey1WK9/85r8SGhlNWlYuitNJbkYKkWEhW2JjWC4ABBgZm6CsrhHz5DgTo2NExsZ5gW9fdyeBQcFuAkCbARzamhoY7Osh/8CReR1fUZIYGxnm8rnTPPiJT5KennbT97atJL+yoNHlbC1dO2Q+AuDIHXfjHxBIUlwMO+IW78W93lkAmgZ1za1ER4QR6G/aEuu4sbWDX/3yF6Tn7iI8MnpJLTw941hedIX+7g6eeuppQkOXFpVfLonT2dNPZX0jsiyjqCrhwUHk52SsKyD9+te/Tnl5+aYEFDabjb/6q7+aUy19uvUNDFFaU7/lCABX+r8PocGB7M3N3HJ7+XwEQEtLC1VVVTPaw60ayBAEDAYDHR0d/OQnP+HSpUuz9oAHH3yQe+65x1sCsxLmdDqJjY2loKBgzvffqToA2wTAts2JLVWV4ZExbDYbkiTib3L5yVabDadT8frmkiji5+vDuEWltW+SI7nRKIo6R4a+Bss5KYQb/nQGQbAFCYCbUfpXFIXiyjpMJr9ltUFbnlNgp6S6DrN18XYwkiRRdvUyOp2erN17UBSnd9PXVJXK0mvE7UgkJDxi/miSpiHJMgXZ6Zj8fN3RxFomzVZEUeLts6dw2m184amnlu1orxbYGxwa5l+/9a9k5OwmJmEHArA3N3NL1KPeDPgHGBgeobK+GYt5EvPEJOHRMaiqiiAIdHe0ERoWMbsEQJZpqKlkfGSEgoNH5j38JUmmv6eL0qtv8+ijjxIXG3tL97gRUsg3qi1VMO7Gw6O0qo6xicmbIABaKL92hcN33I1/QBCZyTuWRKRtBCKnqr6J8NBgIkJDtsQ67u4b4GfPPUdiUgpRcfFLJwAkmZIrFxkZ7Ofpp58mKChoVfbnweERrlXUIMkymqbh42Ng364sfNYxnfdb3/oWlZWVm5YA+PKXv0xq6sKta4dHx7laXrVFCQADiXEx655JslYEQHd3NyUlJV4/bTVNkiRkWebq1av84Ac/oKOjY8b7iYmJPProo+zatQuHw7Fi4N/jKwcFBXH48OE59xhPB4JtAmDbts2zZlRsdhuSJGFwd8pwkXKaF5W7SEMR0R3gV5QNBrM3AwFwM1E2zwCVVNWiaC7F+dVQQNY0jdLqekbGxpfQCUCmtrwEi8VM/oHDM0oANE2jrOgysXE7iIyNm9+Z1DRkWWZ3VpoXQNe3tNPR3YfeoKesyNUJ4MknnyQudvkt9lYDKLS1d/Dd736XvYdvJyQsHD9fA3tzMze0IvVqgn+A3sEhahpasVgmsZjNhEVEeQ/0rvYWwiOi59AAkKkuLcJqtZJ/8Mi8JJEnU6Clrponn3yS4OBb6y+6nQWwsuOvAaVVdQyPjS/ruUqyTHdbK2VFVzh8x10EBAaRm55MyBI7aaw3kVNR14i/0cjOJWQsbIbzZXRiip/89KeER0YRvzPZS+guhQC4eukslolxnn766TmFt+az5WQBTJrNXC4u96YaiqLAnpyMda3dfidkAExOmSksq0JRVSwWy5YjAPIy07aklsSNBMDg4CBXr171EvOraXq9HovFwu9//3t+85vfYLVaZ7x/+PBhHn74YWJjY7Hb7Ste9qJpGjqdjiNHjuDn5zfn++/EMoBtAmDb5jPXljC7q4v3PW3JUnzbBMBqgCxFUSmtrmN8coo9uZmr1g2grqWNzp7+RZ15SZZpqa+lt7uT/UeOI4jT27cIlFy5SER0NAmJqfM7k+66x/zsdO/9DI6MUVHXiCTLNNfVUFZ0hU898ml25WRvCMBXU1vLj3/yU44cvxM/f38iQoLIy0zb1Iv/ZkHDdQJgmJqGFiyWSexWG8Fh4V4CoKOlicjo2DlFAEuuuFICpxNIN5osy1SVXmNseJAvPPkkvr6+t3y/21kAs+1mov8eK6upZ3BkbPkEQHsrZVevcOjEnQQGBbMrPYXgQP91WdfLvufaBgw6HRmrlI211mfMlMXCf/3s5/iaTCSlZi6ZABAlictnT6M6bDz99NPLWp/LGUOnonDhyjXsiuqtlc9KSSQ2KmLdnvVKagCstS1VA8DucFBYVoXZasO6hQgAHx8fREniQF4OJqMvW82mEwBjY2MUFhZit9tX9dwTBAG9Xk9bWxs/+clPuHLlyoz3dTodH/rQh7j//vvx9fXF6XSu2rUoisKhQ4fmLEnyEATvtEDANgGwbVvaNioBcDMp/3M5QKVVdYyMT5CdmkxMZNiqXGtnbz/1zW1LygDoamumqa6WA0ePozP4eEXeRFGk6NJ5gkPDSMnMvq4PMBcBIEnkZaYS5E7xdzidlFbVMWWzM9DdxcUzb3L/+/6cE8dvv+l7WkmwUFhUxO9+9yJH77wHvcGHHbHRC/Yu3+rg30UADLkJADNOh4OA4BBXH3FNo7WpgZi4hFkEgCiKXL14DoOPD3l7D8xLAEiSRNHb5zGIAo89/viKjeNGaCe32UGjxyrqmugfGl42AdDT3krp1SscPnEXgcHB5GWkLKvUZz2JnNKaegRBIC8jdUuMo9li5fnf/BZV00jLzF0aASAICMCl02+gk0WeeuqpJStsK4qCJEnLWoeXiooZn7J6xcJ2xEaTvgXTtzeaFZZVMTI+gc1q3TIEgMHHB5PRjwN52Ruu9eJKEgBms5nCwkImJydXFfBKkoQgCJw9e5bnnnuO3t7eGe+HhYXx6U9/mttuuw1VVVc05X9Of9npJCcnh8TExHnJindaGcA2AbBt2wTAJnOuvRu6u93W2MQUO+NiFu2XfbM2PDZOWU3Dkjb8gb5eKq4Vsv+2Yxj9r/dvFUWRoovn8DOayC7YuwAB4BITzMtMJXhaKmdTeyft3f1Mjo9y5vVXOHjwEB984AO3dF8rRQKcOv0Wp8+c4ejJe5BlmYzkncStYxRqI8zP7r4B6prbsFotOJ1O/AOCAA1VUWhuqCMuYecNXQBcbUUunz1FQFAwOQX75pwjgrsf6dtn3iA2KpIHH3poxe57uxRg5Qig2qY2unr7EaXlEgBtlBZd5vCJuwgOCWF3Ruqy2sms5xgWV9XhcDjYtytrQ8yjW13HFquN3/33S0xNTpGem7ekLgCCIKApCudPv06gycgTTz65JDClaRrDY+OEBAZgMpmW/Pwqaupo6+5zRQ8VhYgt1n51o1pFXSPdfQMuYSiLZfPvebjS/yPDQ9m9ybP3FiIA7HY7V69eZXh4eFVJDkmSsNvtPP/887z44ouzyPxdu3bx6U9/mpSUlAW7E6w0AZCQkEBeXt68e9A7rQxgmwDYtm0CYBOCf4+DVlpTx9SUlYjwEHalp6zKNVusNoora7E7HAsqMYqSxPjoMEUXz5O//zAh4eHejV8UJYovX0AUJfIPHFpUUCovM3VG7e/I2DjldU1YzWbOvvEn4uLj+dxnP4sk3lr8YSUAwx9ffoVrJaUcPnEnoiCQn5VOSFDAplwvKzU/O3v7aWhpx2a1oihOjP6u56E6nTTW1ZCQmISP0eTKCuB6q8hLZ94kPCKarN35c6YDerpBnD/1Grt35fK+979/Re9/Owvg1lL/Pdbc3klLR8/yCYCONm8JQHh4OHnpKfgus63eemUBXKusZdJs5mBeDgbD+vaVXgkSx2p38PJrbzDQ20tmXv6SInSe9XnmjT8RExXJY489tuR9p7Onj9ioCCRJWvIYtnV0UlbTgNFkQlFVTL6+7N2Vif4dKOi1ltbc3kVDazuSJGGZ1sJtsxMA6Uk72BkXsyXHzGq1UlRURF9f36qCf0FwtQH74Q9/yB/+8IdZ79933308+OCD+Pv7e8H/WuzXiqIQEhLCoUOH5vy9d2IZwDYBsG3bBMAmA/4em7JYKKmux2q1ERoUyO7s9FVJx1NVl9jg2MTCbb1EUcQyNcXl82+RlZtHVNwOb9qoJEmUXn0bu83OviO3L+hMCgjkpCcRFhzkfc3VDaCeickp3j7zBqIo8uQXvrAiSvu3Chh++/vfU1tXz8GjdyBJAntzMpcVtdxq4B+go7uXxrZObFYrqqbiZ3SlcStOJw3VFexIScPPaPLOA0EUcVitXDzzBvE7k0h1t1Oca45NTY5z/o3XuPeeuzl2/PiKPoN3ehbASs2Bts4eGts6b5oAOHjsTmJjotiVkYpOt3wxzfUgcq5V1jAyNsH+vOxV02NZK/APoKgar791huamRrLz9ixJmEsURWwWC2dee5mUlGQefvjhJf2W06nQ0tlNYnwMsiQteR2OjIxysajE21JUkiT2rqIezra5bHorwK1AAPi4y9H25mYSEhS49fxgTaOoqIj29vZVL2/w8fHh4sWL/NM//dOMQI+Pjw8f+chHeN/73ocoijMI/rUgAFRVxcfHhyNHjuDj4zMvefFOKgPYJgC2bZsAWOWN91Zr/eez8ckpSmvqcdidBJj8yM/JQF6lzb2msYXuvsEFHXpBEHDa7Vw+f5q4nckkpWV4QZwky1QUFzI+Msqh43e4lJvnGxJNIyc9hfCQoBkvN7R20Nk7QPHl8wwNDPD4E08QFx21Ivd3KyTAL1/4Fe2dXew9dBQfg469uZkY9PrNtU5WCDR4rL2rh6b2Lux2G6qq4uvncsgVh4O66nJ2pqZjNPrPKBExT01y8fQbpGXlsDM1fU4CQJIkBvv7ePvMm3ziE59g165dK/4s3qmCgCs5Bzq6+6hvaUNcxn7kJQCKCjl47CQ74uPJTU+6KUJmIQCpahriKoxvUUUNw6Nj7M5KJyI0eEus47cuvE1lRQU5uwsQ3EJ7CxMAElMTo7z12ivsLSjgQx/+8JJ+x2az09TeRVpiArIsLTqGHrPb7Zw+fwlR74soCqiaxq70lDVXcbdYLLS3t29Z8lBVVRISEryCjmMTkxSWuXrHb4VWgD6+vuh1OvbvzsZ3C6aBl5WV0djYuOrgX5ZlBgcH+fu//3va2tq8r4eGhvL4449z8OBBnE7nrADQfOet53WXIPnM5uCudmTLn8dHjhyZtzXpViwD0DRt3ue7TQBs2zYBsIqH5moAf4+NjI1TVtOIqir4+hjYnZ2+aodXz8AQNQ3NC2YAeNr9XTl3muCQMDJ3F8wgAGrLSujr7ebw8Tu9vZvnIwCy05Jm9dMeGB6lpqmVmrIS6moqeehTj7ArJ2vdgd9//fwXDA6NsGvvAQKMvuzJyUSSNs+GutKgYToB4HDYXcy7rysjwulwUFtZRlJaOkbTNI0ISWJidISLp19n1579xO5MmpsAkGW6WpsovXqZz3/+CRISElb8ebxTswBWIvXfY509fdQ13wwB0E75tUIO3H4HSTt3kpOWuKLrWdU0LBYrRr+VVflWVdVLAGSmJLEjNmpdxnClz5xLV69xtfAqOXn5SDrdogSAJEmMDA1y9vVXOHHiBO9973uX9DuTZgsNLe1kpyXNSN9fyp781oVLWJ2u9F1FVUlOiCVlx9qKsNbV1fG1r31ty9YQ39gi0GqzcaWsCrvdselbAWq4BACDA/zZtytry5G/9fX1VFRUrDr490TPf/SjH/Hb3/52xp7wzDPPcOedd2K1WufdQ6Y/d8/561QUFKeCU1GwOxxef0GnkzH6+iFOKwFdiovvdDrZvXs38fHx8/pCG7kMwHOPnsDijfc8/f/fSLKIoui9L89c2CYAtm2bANgEgGou6x0YoqaxBQ3Q63UUZKXh57s67WvMFgvXKutcaVsL6QC41f4lSabg4PVWbpIs01BdSVtzI0dO3ImPr9/8ZQCaRmZK4qwojtVmp7y2kdqaaq69fYH3feCDnLj9yIre582QAD/52XNMTJnJ3JVPWFAgu7M2l4jQahBVbZ09NHV0oTgdaKqK3sfXTQDYqS4vJTk9A5N/oHcOSJLEUH8/l8+dYu+ho0TGxc9LANRXltHZ2swXvvAFQkJCVuWZvNNIgJWeA119A9Q2tS67C0BvZzvl165y4PYTpKem3FI3jbnG0GZ3YLZaZwiMroQ5nQpFFdWMjE+QFB+7Lkr0q7GOr5VVcv78ObJyd6P38VkCASDT39vNhVOv8r73vZ/jSyzRGRkbp66lnbyMVHx9ZoLoxco5ikpK6R4YwWgyeYUAd2elrykobWho4P/+3/+7pQmAL3/5y6SmpnrnWmFZFeOTU1g3eScAT/1/fEwUWSmJW2rcOjo6uHr1KoIgrDqxYTAYKC8v5x/+4R8wTysLuffee3n88cfRNG3h0k9BQBQEVGBicoqxiQksFiuKoqJyHfCqqoYgCkSFhRIZFjrvnjTX606nk6SkJLKzsxf0YWVZXvt56L0/dUGQPx9pspzf8exT2wTAtm0TACu8gFcz6j/dWjq7aWnv8jKv+dlpGFeJANDQKKtuYGh04d7ekixTce0KkxOTHDh63Lt5SbJMW1MDteWlHDl5F0ZTIKqqzOvIZqUkEh0xu61hfWsHZWUVXHzrdW47doIH3n//uoI/DfjxT3+GzamQmplNdHgo2alJ72jwD64MgMa2LlRVQdNUdHrXgeO026ksKyYlIxP/gKDrBIAs09vZQdGl8xw8dgdhEZFzCkWKkkTRxbNoTgdf+MIXltxibJsEWHjfWmnCsrt/gJrGmyAAOtqpKL7KgWN3sCsrk4SYyBUdw9HxSTRNJThwZUU6HQ4nVyuqGZ+YJCIslPzsNIQ1hEWrtY4r6xp48/XXScvOxWjyn+3Ae45VtyMqyTKdLU1cuXCGj3/8E+zbt29Jv9PTP0RjWwcF2emzsjMWW4dNLS2U1TQQGBSCqioY9Hr252Xhs4Zg/J1GAACUVNXRPzSMzWbbEgRATloKsVHhW2bM+vv7efvtt1FVddXBvyRJWCwWvvrVr1JRUeF9PTIykq997WtERUXhcDgW/A5RFLFYbfQNDmG2WAEBDQ1NVXE4HFjMZiRZws/oEvwMCQwgIWbpmVaapqEoCmFhYRw8eHDBz96KXzEdtN8I4Ke/Ph9JcbOgfinmydL1EgDj3WiObQJg27YJgA3pgC1kdS3tdPX0IQgCsk4mPysdk5/vqv2eq663fUEdAEmWqassp7+nk0O3n0R0p/p7WnyVFL7NoRN3EhwSOm8nAE1VSU/eSWzk7MN4YHiUK8UlnH39VZJTUnn44U+hl1c+tW2p4E8DnvvF8zhU2JGUzI7YaFJ2xL2jwb9rrvTS0NoJmorqHn9BEHDYbVSUFJGWmYN/4EwCoL2lkfKiQm67426C5pgfrk4BTs6/+RqxMdF8+tOfXvVn5JkHrnpDbUsSAiuZ+n8d0A1S3dhyUxkAFcVFHDp+kj15uUSuQC399Kyejp4+/HwMhE4TGF0JszucFFVUMz45RYDRuKZK9Ku5jls6OvnDH14iKS2dwKDgGQSApihobuwviK49WJZlGmuqKL9WyOcefZSMjIwl/U5zeycdPf0U5GTMKey60H48NDTEmYtXCAwLB01D01xdZNZSh+GdSADUNbfR2tm96QkAH19fBEFYd/HOlbTR0VEuXLiA3W5fkzPLYDDwu9/9jh/84AczAP0XvvAF7r77bmw22yLgX2B0bJK+oWGsNhu93V001NfT1tqC3WbH4bAzNTWJTqfjwMHD3Hn33USFh+Hn68NyXHtVVfH19eXIkSPzgvzpZQBzgfmlgPi1AvTLtdkEQNf1DIB3oO7RyoJNbfsZvtMIgPUA/h6rrG+mb3AI0Z0BsDsrbVUJgEmzhWuVta5+0PNMdE+kv6m2mkPHTuLj50r1lySZ/p4url48y/7bjhMeFePtEDAXAZCWtIO4qIhZ71lsdq6WVvLGy3/AaDLx+Oc/T8AqKe4vlQT4ze//G7uiERkdQ/o81/1OAv8eAFjT2ApoaJqKKLkJAJuN8uJC0rJ3ERAY7M0CkWWZhpoqGqoruO3OezAFBM3qOy6KIubJCc68/jKHDx3m/vvvX5NnZTQacToVbA7HinSdeCfMg96BIaoampdHAEgyvV0dVJYWcejYSQ7uzSfY37Ri61gDahqaiY4IJzhwZUsAHE4nRRU1jE9M4mPQsyc3E5Of3+ZfxwND/OY3vyFuRyIh4RHX16SqYrGYkWUdoiQhu/UBJFmmsriQ5vo6nn76aeLilkaGVjU00z80QkF2OoHzjPl8+7HdbudPb5zC4B+ELEkoqsrO2Og1LcN4JxIAnb39VNU3bXoCwODji5+vgQO7c9CtQ+r3StvU1BTnz59nampq1ev+wRUtb21t5W/+5m8YHh72vn7bbbfx7LPPIknSgqn/oigyNjFJd/8APV3dvP7qKzTU1c7ZBtizD3z1H/+R9IyMRbMK5gLWgiBw6NAhAgMDlwXAbzWLYiN0Ip9FAEx0o9mmrvvzGwXA3pBZtmlA/0a77ulzznNNc722EZ/rSlzfahEA6wn8ARRFpaymntHxCQRBQK/Xkb+KGgCeDay0up7hsfF5HXtJkunr7qSs6DIHb78D/6BgVEVBkiSGhwZ5+603yd9/iJgdO+es8fY82/TEBOKi507/rahv4r9/+2ssFguPPvbYinUCuFkS4I+vvoHZ7iA0PILctOR1UwDfSHN3YGiEivomBDehI0gSgiBgt9kov3aF9Ow8AoKuEwCSLFNVXERXeyu33XkPvn7GWU6DJMkM9HZz8a03+NCHPsSBAwfW7JnJOh09A8MkxkVvGZGo1ZwHN08AtFNVWsxtd9zF4X35K1bSZDQasTucFFfWkpWaSNBKawAoCkXl1YxNTiFLErsyUwlf4SyD9VjHw6PjPP+rFwiPjCEyJtaVlSMIqE4HE+PjGE3+7gw0FwEgShJXL5xhdGiAZ555ltDQxdX4VU2jrKqe0YkJ8rPTFxyb+TRa3jz9FlNO1/uKouBvMrJ/V/aaibG+EwmA4bFxrpZXIwoCVotlU96XK/3fh/CQIApyMjb9ONntds6fP8/IyMia1LF7ouTf+ta3eOutt7yvh4aG8pWvfIXExETsdvucINzj36uqRlt3L5WVlbz46xcYHhpa9Hf/5m/+hsOHD8/4bo+Lv9j57HQ6KSgoICYmZl5wvtB3bAQgv3ScoOB0OnE4HDgcDhdZJwhe8eQZGgDrDQxvfK5zXcNGANhLeU7rfZ2b6RoX+v1bvcaVJADWusZ/IbNabRRX12KzOdAAXx89uzPTZwkorbS1dfbQ2N65AAHgAvpXL5xlz6EjhEVEoSiKS+V9bJSLp14nY9duEudp84YbMKbujCd+nvqu7oFhfvXC83S2tvDgw58mNyt9Ve95MRLgzTPnGZmYJDQsnPystBWvL96MxNXw6DhlNQ3gFu8RRBFBELHbLJRdvUJ6bh6BwSHeiKIkyxRfvsjI0ABHT97rBRQz5pYs01JfS8W1Qh57/HGSk5PXzrFyOGjp6iUzJXHVdDbWdu9dXaHSvsFhKusbEUVpyalxHgKguryEE3e/i0N7dqPXrZwTa7Y5KK9tZHdWKuEhK0vSKarqIgAmJgGBjOQdy6pP3ajreMJs4Ze/fB5jQCDxO5NQFMXb7nV0ZJiQ0DBwlwB4oksXT7+OJMDTTz/tbRu3ILi02ymprsNisbF7CfvnXCRAcUkpDW1dhEdGoqoqmgYFOemErlFP93ciATBlsVBYVoXTqWxyAsBA8o74TVO6txDYu3TpEn19fWsmYmcwGDh9+jTf+MY3ZhD2jz32GH/2Z3+G1Wqdde7I7nJAp9OJKIpMTJmpqKrhRz/4fwz09S3pd/Py8vjSl75EQEDAsuvpnU4nqamppKenbyowf+Nz9IB6h8OB0+nEarVitVqx2WxYrdZZ7zudTux2OxEREZw4cWI2AbBUEL4ewH+54Ha9QPVmu871uMa1fI4rQQCsd7R/Tsds0sy1qlo0VUXTNIxGX3ZnpmPQr27d6eSUheKqWm8k6EZz9XOf4NKZU2TvyidmRyKKe6O3TE1x/tRr7EhKJnNX/rwpXqqqkrojjoTY6Dnft9js/Pp3v6fo7Qv8xUc+zm2H9q/68zYajfMq6Z6/fJW+wWHCI8IpyM7YsGnia9WdAmB0YpKy6nq3U6CBICKIInaLhZKrl8nM3U1gyHUCQBRFrpx/C7vVypE77kIQpTkJgNLCSwz2dPPU008vKbq4UuZwOCmqrCEjJWlVgd1WmQcDQyNU1DUu2DZ0LgKgp6ON6soy3v1n72P/7twVvab61nbaOnvYvzt33uyiWzkjrlbUMDbu0lOIj4kkM3l1FMXX8jyy2Oz86je/Q9U0ktMzvQSAw2ZjeGiAiOhYL8EjCCIOu42zr79CeFgoTzzxxJJSkMcnpyiprkdVVPIyUwkJWpxAvZGUbW1r4+zFK8TtTELTVBRFZUdMJBlrpOr+TmsDCK6yl8KyKqbMlk3bCcBDABTkZKw4KbjWe/qVK1fo7OxcM/AvyzIjIyP89V//Ne3t7d7X8/Pz+Z//83/i6+s7p85TZGQkQ0NDLgJAEOgfGeWFF37Fm6++sqzff+ihh3jggQdm/MZS3HxFUYiIiGD//v1L/pu1NovF4gXvdrt9BrC32WwzovqOae0RbyQ/pvurgiCgKArh4eHcfvvtcxMAawkMlxrxXyyCvdrg9Vauc60B9kIR8/W+xlvJSrjZa7xZAmAtwdLNWN/gMNUNzSAIaKqKv8nI7qy0Va9h0zSN8poGBufpBuByAq1cOvMm8TuTScnMRnE6vVGj86deIywyirx9BxfMAEhOiGVHXMy81/H66TP894u/5Z773s1733Xvmj33uaJPhaUVdHT1EBkVxZ7s1c/C2OjgH1zRoZKqeleNnifdTxSxWcwUX7lE1q58gkLDUN2AQtM0Lr31BqIocej4SbQbFv306KKfj4Enn3wS3RqJrF0nAKoJMJnYvzt304oBrlUW0+DwKOW19V5xuOUQAHXVFXz8E58kaQV7uTucTkqr6xkbnyBlZzzZ6akrOoaqplFUXs2omwAICQqkIDtjRp/qzQb+AZyKyot/eInhkWEyd+VPIwCsDPb3ERWX4P2sKIpMTU7w1qt/JDMjnYcffmRJv9HTP0htUysAuZmphC0xaj+dBBgbG+f3f3yZqPid3ppjf6Mf+/KykKXVB0QWi4X29vYt2zVEVVUSEhJmZXQUlVczNDqOzbY5CQAfHx9kWWb/7hyMvj6bdnxKS0tpaGhYszNREAQkSeJHP/oRL774ovf1gIAA/u7v/o6MjIxZqf+qqhIZGYksy3R3dyMKAhrQ0dvPt7/5DRrr65Z1DcnJyXz1q1/FaDQuWZDPcx0mk4kjR454yZKVJAE8vspyCbbx8XEGBgYYGRnBYrHgdDpRFGXe8oQbwf2N5/xcf7NkAmCpwHc9wOBagdfl3P9GICqWcj+rmW5/q+O9FAJjuc9xqQTARkrvX4o1tXfS1tmDIIpoqkqgv4nd2elIa+CAdPb2U9fcNg8B4Nr8Lp89RWBwCDkF+7wEgKaqXDz9Br5GP/YeOTZL5G06AZCYEENiXOy811BeVcOPfvB98gsKePATH1/TZ39j9KmytoHGtnaiIiIpyElfM/XvjUxm2ewOSqprMZttCG4QJIoiVrOZ4ssXydpdQHBomBdQKE4nF069htE/gH23HZtTANBinuLMay+TlZnBJz/54Jrej8Ph5GplDZIosCcnk8CAgE3n7K/lPBgcGaGsqh5xGYSkJMl0d7TS0lDP5z73WUJWMH17eGyc8tpGFKeT+Jgo0hIT5iX0bvbZFlXUMDw2jiAI+PkY2JubhY9h5dpUrkcmmgb88dXXaWlpIW/Pfm9LMYfNSn9fDzFxO663AJQkhgcHOPvayxy57TYeeOCBJf1GfUs7HT19iIJAbkYqYcFLH/frXTpUnv/1b/ELDCEgMNAbEcvPXrsygHeiVTU009nTtymFADU3ARBgMrI/L3tF9/OqqirMZjORkZEEBQVhNBpXTZCvvr6eiooKRFFcM30ag8FAUVERX/va12Yo/H/iE5/gox/96Jyp/zqdjqysLOrr67FYLIiiiFNRaOno4tvf+Bc62tuWdQ06nY6//du/paCgwJtNuhTgrWkakiRx+PBh/P3914UA0DSNiYkJhoeHGRwcZHx8HIvF4tJRcY/jdK2EG4G9Z3+78fOe3/eUWUwH/qqqLo8AWA0Au1xQvdTfXGmQvRrkx2boErBZnuNSv28+AmCzAf4braKukYGhEQS38xMSGMDurLQ1OQAsFivXqupmRHdvBGtFl84DsPfwUddmJbi6Yr999hQAh47NjvJOd3QT46NJip+/Jq9/YIhvfftfCQ1xpZquZK3wckmA5vYuquobiQgLY09uBvIaKO8uB5isxzxXVJWSylrGJ6e8aeAeEF9y+SKZu/cQ4iYARHdmwLk3XyMiOobd+w/Nyg6RJInBgX7Ov/En3v3ud3PnnXeuOQFwraoGu93BntxMjL6+S+4SsRFsrcHj0MgoJZW1SEshw9x7gCTr6G5voaeznc999jMrKmja2NZJe1cPmgaxUeFkJO+csZbnK+9ZjhVX1jIwMoooCMiyREF2xryK9psB/Hvs1JnzlJWXkr/vkHctO+yuVl2x8TvcWR6uDgB9ne2cO/U673//+7njjjuWdF9lNQ2MuImTnPQUwkOCln2NJpOJP776GuNTNqLj4lAVZV26AbzTrLWzm7rmtk1LABgMBmIiw8lNT1mZc09RKCoqorOzcwZQ9fX1xWQyERwcTHh4OEajER+fW884aGtr49q1ayuyfy3VJEnCZrPxD//wD1RUVHhfz8jI4G/+5m8ICAiYVd6pKAppaWn4+vpSXl7uBa1ORaGptYNvfePrdHd1Lvta7rnnHh5//PE5QfJC5nQ62b9/P5GRkQv6TitpNpuNsbExb5R/cnISh8PhJUc8mUuqu6x3+h7p8Z8kSUKWZXx8fPDz8/OSS562hZ7x0ev13jkhCAJVVVV0dHQALJ8AWClgeDNgcDmgeSXA5koC1vUC/DdDnMzVyWAlx3uulP7ljut817ggieQmAMbHxzen2sdcYMSdzjrhBleqqhIVHkp2atKaXUNVQzO9A0NzAiBPK6jR4WEOHb/Ty06KkkTRxbOYp6a47cRdCJI05yarqSo742JISohd4Bko/Nt3/o2RkRGeeebZFY0WLocEEASBvqERiitrCA8OZk9uxoYBhetJcmlAWVU9Q2PXS0VcOhCTFF++QFb+XkJCw90EgMTkxBjn33yVxOQ0MncXzCIAZFmmpaGe4ssX+OxnP0tWdvaar7niqlqmpizsykwlzK3wvlLgcSuBf4CR0TGKyquQ9YuXw2huB0fW6+lqa2F0oI9PP/IIuhUi9ewOJ6XVdUxOWdDQSIiJInVn/Lzr+WbHsqymgd6BIa/yfE5aMlHhoZt2DXvs4pVrXLxwjvx9B9G5a9wddjtd7a3E7diJrNN7xb2a62spunSBTz38KQoKChb9bovFSnF1HTa7AwFumgAAqKiupbyqmrTMHFTVFfEK8DexNzdzQ5GyW8kGhkYorqrd1ARAZkriiui6WK1Wrly5wuDg4Ixo/43940VR9AK4wMBAwsPDCQgIWDah3NfXx+XLl71ZOWthoigiyzI///nP+cUvfuF93dfXl7/+678mPz9/RkaA5/6NRiMHDx6kpKTE+3w8fmFTWwff+Of/e1MEQExMDF/72tcIDQ31PoelEgAZGRkzRC1XGvxPj/IPDAwwNjaG2WyeEdnX6/XeLASn04ksy+h0Ou/88AB7URS9pJHn/cXO/OlzrqSkhK6uLjRNuzkC4FZJgMX+diWj/TddL74I8N3o4nrLBser9ByXAv5XggRakjbDFiQAJs1mSqrqXSyrIKCqKkmLpMyvtA0Oj1JR1zjnQ5dkmabaKtqaGjl84i70Pj5oqooky5QVXmagr4ejd96DTu+Dps0WL1EVlZ3x0SQnLKzK+8vnX6Cw8ApPPf00OxMS1m08FA0Ky6oJCfKnICcTcQOAwY2gYVHd0ELPwOAsAqDo7Qvk7N5DSHgEirtF5OjwEOfffJWsvHxSMrJnRRAkWab0yiV6O9t55tlnCQ8PXxcCYGLCTMrOeHbGRc8CjxstG2A958D4xCRXSsqRdQYWRAaCgOpwgAA6gw9dbS1YJkb51IMPrphT2z80QlVDs9cxSk6IZecC+iI3SwRU1jfR1TuAJLlI2eQdcYvuYRuNuJnLSiqqee21V8nN34PJ36W67XQ4aG1qICExCb3Bx0sAVJVco7ayjCeefJKUlMWjqoMjo1TUNXkP81shAFrbOjh97hyZOXlIsoyqaoiiQEFOBsEr3PZx21w2MTnFlTJXuvtmIwB8fH3RNI19edm3PD9GRkYoKipifHx8San+N5ICer3emyUQGhpKWFgYfn5+84pKjo6OcuHCBex2+5qdO7Iso6oqv/vd7/j5z38+44z+wAc+wMMPP+yNaM/wjxSFgoICfHx8uHz58ox9VRRFBkZG+crf/R0dba3LviZ/f3/+4R/+gdTUVJzuUtOlAHin00l0dDR79+5dUfBvtVoZHx+nv7+fkZERxsbGvD6Or68vfn5+3vR8nU5HYGCgN4LvAf3zzR+PIKDNZsNsNmO1WrHb7TNa/TmdTm+qvydzQFVVbDab93M3TQDcLHhbDKTdDAmwkr+7nte5KZjSZd7vegkfzkk2bEECoGdgkNrGVu/NappGVkoSUeEha3YNTkWhpKrOm4VwI1jraW+lvLiIQ8fvwD8wGFVRkGWZ6tJi2lqaOHrnPfgZTXOql6qqSmJcNEmLOM8XL17kF7/4JZ965BH2FuSv23jYHU6ullcREhLMvl3ZMxwhh/tQWssI1EYBDs0dnbS09yBK1wkA89QkRZfOkZO/l9DwSPfhKDPQ18PbZ95k9/6DJCSlzsgA8OhHnD/1OkYfPV946qk1FQD0jGNJVS1jE1PEREaQnZo4L3jcCETAes+BKbOFS1evIet9FjwEPPXkCCI+vr50trWgOax89MMfXjkiqrGF3v5Bb7ZUetIO4qIilvS3y9EIqG1qpa27F2laVtaujNRlETYbsSytvqWNF3/3O9IyswkNj3ClqSoKjbXVxCcm4Ws0uQheSeLqpfP0dbbz9DPPzOizPf8e0UVrR7frDNEgNyPZm12zXBsdn+CFX/+G2ISd+AcGoaoqeoOB5IRYUnbEb+gsnc1qNrudwrIqht2lL5vJDL6++Bj0HMjLuaXuST09PRQXF2Oz2W5677+REJAkCR8fH4xGI4GBgURFRREUFITD4WBycpKSkhKmpqZWTVfgRtPpdExNTfHcc8/x0ksvzXgvOTmZv/u7vyM4OHgWca+qKqGhoRw+fJgrV67Q19fnvWZP6ntubi5f+cev8uMf/mDZ1xUaGspXv/pV4uLivN0AlpIFoCgKgYGBHD58eFa2xnLHbXx8nKGhIYaGhhgbG/Pu376+voSEhBAeHu5N1TcYDNczYueZKw6HA4vFwuTkJBMTE0xOTnoBv8Ph8IL7G691ugbA9P96/ren9eItEQDLAXjr0VLwZn5/o4j0bQYSYKM+x/l+eysSALXNbXT39rudJldqfX5WGgEm45peR2tnD03tnbM2Mo8YVOH5M+w5fBvhkdEobgKgsbaK2spyjp68B/+g4DmFAF0aADEkxS+c0dDc0sK/fvNfufOuu/iz975nXcekor4Ju81OQW4mpmkg0GK1YrM7CQowrcEa2FgAoqu3n9ppYpEeAqDw/FlyCvYSHhnlIgBkmZ72NgovnmX/bceIjt8xgwC4ri7+Mnm7cvn4xz++5vfidDoprqpjfGKKkMAA8rLSvKne8xEB61EasFG6l1itNs5fLkTS+3pFIOcjAKwWM6Ig4ms00tHagkHU+MCfv39FrsNitVJcVYfd7vB2TMlKSyYqbHlk6VLGs6mtk8b2TjcBoBFg8mNPbuaCnVk2gxZNZ28/L7zwAjFx8cQm7HQ52ppGfVU5sTsS3WBbQxDg4unXcdqsPPPsswQEBCxKUnnr/917xK6MlJsW7XM6FX79+9+DIHmvU1NVggL82Z2VdsvEnMlkmuVYb/uFGoVlVYyOT2C/IfV7Q183YPDxITQwgL27sm76exobG6mqqlqVNPzppIAnguyJAnvOxbUwHx8fOjo6+P73v8/Vq1dnvBcUFMRf/uVfkp+fP0v133MPhw4dwul0UlhYOOuaNU3j9qNHmZya4uDBQ/T29izr2o4cOcKzzz6LTqebEUxajATwZCwdOXIEo9G4ZPDvOV89oH98fJyJiQlv5oPBYCAsLIzo6GjCwsK8e8Zi++DExAQjIyMMDw8zNjbm7QJw4z3dqk+xIgTAUsDeRlK+X4gE2Ab/KzPmG+E5zjXWW40AUBSV0qo6xiYnvR0ATEY/8rPS1jwqara4nOsbxQA9QO/SW2+SnpPrjehKskxHSyOlhZc5cvJubw34rA1RUUjeEbdgmi7A2Pg4X//nrxMbH8ejn/3suo5Ld/8gfQND7M5OQ3DnABiNRmx2Bz0Dg4uSGVsJ+HtsYHiUymllIp4SgMvn3yJn914iomNRlOvzouTK2xw6dpLwqBgU5ToBIMky/d2dXDj9Bu9///s5duzY2hMAikJJZS1jk1P4+fmQn7n0do9rlRWwUTI/wJUxcebCJUSdD+ICUSpBEDBPTSKJEn4mE52tLZh8ZN77npUh9Dp7+mho7bi+P2kaeVlphAQG3PJ33wgI27p6vN1RNE1DJ8vsyc3E3+i3qQD/jTY8OsEvn/8lfiZ/ktOzvGuzrqKUyNh4QsIj0FQVp8PB2ddfIcDfxFNPPYVev3AHhIkpM6XV9d6ooSCK5GWm3lI69lvnLtLQ1Eh69i6X86xpCJLInuyMGeNwK7YZdD/W0lzaF4ObjwAwGNgZF3NTIpGaplFeXk5TU9OMvV2DVSuFuDHCu9omCAI+Pj5UVlbyne98h9bW1hnvx8TE8Nhjj5Gfn+/yAec4jyIiIsjPz+fixYtMTk7OOgcVRSEyMpLDhw/zs5/9jIceemhZ6/Cv//qvycnJmdOPXNyXVjh48CBhYWHzEgCqqjI5OcnY2BjDw8PeiPz0rgOCIGAymYiJiSE2NpagoKBFf3tqasrb9m94eHjGd64E0J+ve8CKEQALgb6NBqqXcp3bBMDNP8uNPN5oW4sAmDRbKK6qc0VI3fX/kWGh5KQlrcv1VDU009s/5E3z9mw+itPJpTNvEhEZRebuPV4CoLejncKL5zh4+wkvAJw1fqpK2hLSdDVN4zvf+Q5jY2M8+8Uvrqhq+HLNYrXR1t1L2s74GYec3eGgo2+Q9MQdSwaMmx34ew85i4XiyjqvVoWLAJji8vnTZO8qIDI2HkVxujNDaqgqLeLonfd62wN6TJZlaivLqCkv5fHHH19SbfHKEwAqpe4SAFknsysjZdlAZS7g4HA6GRkbJzwk+KYP/I0E/Kdf0+lzF9AkPbJO73aN53ZUJsfHkGUdRn9/OttaCDH5cc89d9/yNSiKSnnttAizO5JWkJOOyc9vxe+5Z2CImobm6yVRmkZWahKRYSFsZps0W3jhN7/DZjWTk7/P3bpTpKbsGuFR0UREx6JpGpapSU796Y8kJyXy6KOPLvq9be4Msuljs/sWM9mq6xs5dfo0Gdm56PQG1x6pqqTsiCchNmrFnslGKPVRnE409/64ntbY2kFTe+dNCQHO1ersZs/B5YyHhwDIy0xbtlCn0+nk6tWrrl72a9h6by1NFEV0Oh0XL17ku9/9LiMjIzPeT0tL48knnyQ5ORm73T4neFYUhUOHDjE6Okp1dfW881RVVQoKCkhISOBzn/scP/jB0koBPv3pT/O+971vVtnBcsYxOzubpKSkGa9NTU0xOjrqBfxTU1OzwLkn4yMoKIiEhARiYmIWFeYbHx+nr6+P/v5+xsbGvGKJgts3Wot5tKIEwFzgb6NG1Be6zm3wfwsAm4093lstA6C7f5C6ptbr9f+qSlpiAnHRketyPYMjo1TUzhYDFEWRwgtnkESJPYdvR1Vdtd79vd1cPnuafYePEp2wY5bau2fwctKSCQ8NXvT3f/vb33Lx0iWefeYZ4uLi1m++AX0DQ4SFBM2o91dUV8ZGbFSE19G4lQjSZoogOpxOrlXWYDbbEETXIWc1m3n73CkysnYRszPRSwzVlpXQWFfN7XfdN6s0RBQlLp87jWVynGeXkFq8Ks62exxHJyYRBYG0pB3ERt68EKFnDkxMmqlpaiUvM3XJPeM9ztZGnwenzpzDgeQV25r7zBAZGxnCYPDB6O9PV1srkaFBnDh+61kew2PjVNQ1ueaSOyXUx6BnT3YGhiU+6+XY0OgY5TUNM/bmnUvQMtnoZrE5eOnlV+jq7CD/wGE09/5eU1pMUEgIMQk7ARgZHuLMq39k3759fPSjH12UIJqR/q9pGAx68jPT8PW9+fZoI+MT/OqFXxMRG09IeDiqu142NCiQ3VlpK/pc1psEqK+rY3xyiuTU1HUVOezuG6SirmHZBIDnLFvKWTj9/el7yXK+40b/0GgyciAvG9MyMkPMZjNXrlxheHh4wfp716UIa6rQv1ImyzIOh4M//OEP/PKXv5yV2r9//34+97nPER0dPUvxfzr4j4uLIyUlhbfffhuHwzHvc1BVFZ1Ox6FDhzAajXzmM5/h5z//+bzXJ0kSDzzwAB/+8Ie9rfNu6kxXFKKjo0lJSfGm309MTGA2m+eNxmuahqIoBAcHk5ycTExMzIIE3NTUFF1dXfT19TE6OuoVKlwv4mjFCYD5AOFGnPObCbhu9D1jMxAomrb1CIDapla6+wauR01kmd2ZaQSY/NblehRFpbiyhokp8wwxQFcrwKsMDw5w+PidiJKEKIoMDw1y8dTr7N5/gPjElLkJACA/O52gJfTQLi6+xo9+9GMe+tTD7N1TsK5jMzFlxtdgQJZnisoUV9bh62sgKyXxHUYUapRU1TE6PoHgbmVjs1h4++wpkjMyZ5SGVFy7QmdrC0fvuhejKcB7qAuiiN1q5czrLxMfG8ujjz66LgfndMACED9PK7llgyurldKaBrJTEgnwN22p8T974RITVjumgEBvq7+5CIDhwT78/IwY/QPo7mgnPjqCwwcP3PLv17j3Sg9I01SV4EB/dmelr8ocGp+c4lpl7fX5r6qEhwavWI/x9TJF1XjzzFlKiorYe+g2ZL3eRQCUFWP0DyAhKRUE6O/q5Oybr3Lvfffx7ne9a+FnNTVFaXU9ilPxajMEmIzszkq7pYi2qmn87vcvMWG2kJyW7tUrkGSZPTnpGFc4S2w9SYCSkmL6+ocICI8iJiJ00ZK51bLR8QkKy6qwWq03RQDA/PXsgiQhSxKKonjPClmWUBRXyclif7/Qfh4eHsb+vOwlC/QODw9TVFTExMTEguBfFARUTWNoeJSgoECMfr7Y7fabBqpraZIkYbPZ+OEPf8irr746y8l/73vew0c/+lECAgLmrPn3AOvQ0FD27t1LTU0NbW1ti65pVVXx9fWloKCAsLAwnnvuOX70ox9x4cKFWc/t2LFjPPvss95I/Lzzi8XLMTzngKeEwQPM59IQ8Kj5p6WlkZycvGDJ7cjICK2trfT09LiIsXUE/atOANwICDcyeN0swHUzPcuNfI2qsnUIAKeiUFpVz/i0+v9AfxO7s9IXFCRbbWvt7KaprWtGGYAky7Q21tNQXcGRE3fhazSBIDAxOsL5U6+SuSuf5LTM2elbmoask9mTnb6klP7u7m6+8Y1vcPDQIR74wAfWdXzsDgeSKM5yDkqr67HYbOzLzZpBDrwTrLaplS43CBMEEYfdyttnTpGQnEpSWobXqSt++yIDfT3cfte9+Pj6eQ92SZIYGuzn3Ot/4uTJk7znPesj9qhqGuXV9Qy7CYCQoEB2ZabesvJ1V98AdU2tZKelEBkWvKXG/srVa3QPDBMSFjavoyYIAgM93fgHBuLnH0BfdxfJCTEU7N59S79ttlgpranDZruuT6KqKrGR4WQk71yV+72x5EVTVfyNfuzOTl9QCHAz2NtFJZx6/VV27z+If0AwggC1FaXIej0p6dkIArQ2NXDl/Ft89KMf4/Dhwwt+X3Onu0OIG7ipqkpYcBC7MlO8Gio3a4XXSrlaVEhW3p5pfoBKyo5YdqwCSF5Op4iVtIryciqra9iRlsWk2Ux+ZtqSsuZW2sxWK4WlVYyPjy/7OSwUwZd1OsbGRrhw5gxdHR2IkoCASFBIMAcOHSEmLh6nw3FTBIyiKOxMiF9yVkh3dzfFxcWLtt0TBAGb3cHQ6Bg9vf2MDvYSGBBAXl4efn5+c7bJ2yjmAag//OEP+cMf/jCLGPjIRz/KBz7wAWRJmjftXlVV/Pz82L9/P6qqcvHixSVlQXjAvCiKxMbGUlBQwNWrVzl58uSsLLcPfvCDPPzww/NmH3jAv/e7lzAHF7s+h8OByWQiLy+PyMj5s20HBwdpbW2lr68Pu92OJEkbKgNkTQiAjQwKNwO4nq/v/TYBcBPXqCLojFuDAJiYMlNSXX+9/l9R2REbRcoKRCJvxSbNFoora13RFvdkkCSJwf4+rl48y77bjhEWHommwdTkGOfffI2ktEwycnbNOkg0TcPo50N+Vjr6JYga2u12vvnNb6I3GPjCk0+uWVuc+UAiMAsUVtQ1MTA0TH52BsGB76x+1J29/dQ1tSFKLudCcTi4dPYUUXEJpGfnuggASaLwwlnGx0a4/eS9yHq910mSZZnm+lpKCt/mkUceITc3d932uvK6BoaGRxEEAYNBR352Br6Gm9d1UFSVsuo6hkbHSUtMYEds9JYa+4qqaqrrG4mKjV+QAOjpaCMkLAJfo4n+ni7SknawKyf7ln67vbuXxtaOGVlJqqqSuiOOhFV6zlabjeKq2uukg5vMzM9Kx+Tnu6nHsrK+kf9+8XekZWQTEeMSNK2tLAMgIycPQRCoqSijovgqjz3+OFmZmQuAL5XS6nrGJia846MqKgmxK5NV09s/yG9+9zuS0tK92UQesdw9ORkrfkasVxZAc3MTf3rtdfL2HWLKYsXXoCd/BcUOlw6mVa6UVTIwMHhTz0HTNJdY4/QMQp2O7o52fvmznyAIImmZ2YSEhDI42E9jbS1DgwN86OOfYPeefTjmiUQvRgDkZWeQuARx3vr6eqqrqxcFioIg4FQUOnr66O3p5U8v/5Hy0mJEUeTw4cPcfvvt7Nu3b0lt6tbDDAYDb775Jt/85jdnXJ+vrx8f+fjHuf+970VAm1dwT1VV9Ho9e/fuJSIiguLiYtra2pa03oRpJK1Op+Oee+6lpKSY2267bZbA4Hvf+14ee+yxeTMQlksALDY3FUUhKirKS+LMZf39/bS0tNDf34/T7dNsxNKPVSMANottlhT7bVs5AmCrZAB09vbT0NI+Q30xOy2ZiND1jxyW1dQzODw2s+f75AQX33qT9Jxd7EhORVNVLFNTXDj9GnE7EsnevWc2AaCq3jZrS91Af/GLX1BaVs6XvvQlwsNCN9y4VTU00903QNrO+FWJQG1kGx4bp6ymwXvIa6rK22feJDQ8kszdBShOJ6IocvnsaaxWM7fdcQ+SLM/oh3zt7QsM9nXzzDPPehV71wcENdM/OIQgiAgi5GWkEnwLavJj45OU1jbgdDiIi468KTXqjWxNzc1culpMQmLy/KmaqkpHeytRMXH4+PrS39tDVloyWek3X6/tUBTKq+sZm5icASrQNHLSUwgPCVod50pRKK6sZXJ6OZQG2WlJG2KPvtWz51cvvEBwWDjJ6ZmgadRVVaA4HGTtdkXaS65cpK25kaeffpqEhIR5v2t8coqS6nqvNoNn389I2UlMRPiKjMPzv/4tkk5/vW0hoKkaOemrc176+689sTs6OsqPfvQjMvL2YPAz4nQ6CTD6kZeVhp+Pz5pey7XKWgaGRnDYb70TgChJWMxTfOebXyciIpr3fOCD6HWyN5KsKBqnX3+FyxfO89knvkB6ZhbOOVToFyMAjh7YS2hw4ILgr7S0lJaWliURGzpZZnh8grfOnuXVP/6Rnu6ume/rdDz77LMcO3Zswej1epher6ejo4O///u/p7e31/t6QGAQH/vkJ7n3rjtB0+bdx1VVxWAwUFBQQGRkJH19fRQWFi5ZA2F6jb1er+fuu+/m6tWrc2YSvetd7+KJJ55YMgGwGAmgzfMZz7UnJyeTmZk55xwYHBykqamJ/v5+FEXZ8KKQ73gCYNu2CYDNap5Isqf+X6/XkZ+Vjp+vz7pfW1ffALVNrd5NUhAEVEXh7bNvEhQSSu6eA6iqisNq5fzp14iMjiF3z4FZGgCqohIdGbasevnCwkL+62fP8dnPfoZd6xQhXsjqW9pp6+rxClGtt3r0WprFaqWkuh6rze4CzgJcPnsKk38Au/YeRFUVNODymTdxOp3cduIuBEnyRlsUp4Nzb75KaHAwn//859c1w2N6TbmmqqTujCc+5uaVxVs7u2lq70IAwkKC2ZWRsqXGvqenl9dOn2FHcuq8Tp/NYqG9tZnktHRknZ7+nm52ZWWQlnLzXU36Boepbmy50ZtHb9BRkJl+SyJzLOJIllbVMTw2PkN3ICkhhp1xsZt6LCfMFn75/K+w223s2rMfBIGG6kos5il27TmApqlcOvMmk2OjPPvFLxIaMn/ng5bOLprbu6/vgxoIonDLLQCn24W3L1NZVUPmrt1e0KIqKmGhweStwjpbDwJA0zS+973vYfAPYkeyS09FUVRCggLYlZGKQa9b072xvavnpjoB3GiyTscr//0H3r50nkc//zQ+RuMMP0EURURJ5Ne/+BmT4+N84YtfRhQlNE1d8nOTdTInDu2ftzOPp299T0/PoqBOEARkWWZoZJQXf/8H/vTyS9isVu+1BgQEMDo6CkBiYiJf/epXCQgIuGn1+pU2URRRFIV/+Zd/4eLFizPG4WOffJD73/sepAXq7T3gf+/evYSHh2O327l48SJjY2PL8nU8mRGSJHH33Xdz/vx57rrrrlmfu/vuu3nqqafmbD24XAJgLlAguMff19eX3NxcYmNn792Tk5M0NjbS2dmJw+HYsBH/bQJg27YJgC1AAFhsNkqq6rDZ7N72f6FBgeRlpm6Ijcdis1FcWYvd7phRBlB8+SJWi5mDx066UuTsds6ffp2QsHB27z80mwBwK2cnL0M526MDcPTo7dx//59tuLHr6O6jobUdWZbJz05f8xTN9TRVdaX7ThcCLLxwBkmS2XPoKJrmSs+9dOYNBAQOnbjL6wiIksTEyDBnXn+FI0eO8P73v39d76WhtZP2bpdDqKoqMRHhZKbsvGWwKIBLyyM7HWkLkUNj4+P8/qU/ErMjCZ1OPyvtVZQkhvv76elqJzd/LxrQ39NNQV4OSTsSbnK+aZTXNjA8OjYj+u8RAMzLXF0CrrK+ib6BYW8mlKqoRIaHkJOWvKnH0qko/OHlP9FYX8f+I8eQdToaa6uZGBsl/8BhHHY75954FYNe5umnn8Z3Hv0WTzeN6dkZmqbh46MnPzN9xVqldvb08uIf/kB6Vi56g483zdzVBjJjxUsy1oMAADh16hRXrxVz4PaT3pa6iuIRn0xeM+2J9u5eahpdkXKrxXLT3yNIEubJCb75f/6JvQcPc/j2Y9htsyO9Or2O5sZ6XvjZT3n2f/wvIqNj5hUUnmsOBvqbOH5o35y+01KV/l3gWUAQRBqaW3jh+ecpvPz2jPdvP3aMLzz5JA899BCTk5MAfPzjH+cjH/nIghHstTQfHx9efPFFvve97814/fjJu3j4Uw8RHOCPc4G0/+mRf1VVKS4upqOjY9lk/fQsgHvuuYc33niD+++/f9bnTp48ybPPPrssAuBGEmCh951OJ6GhoezatYugoKCZc0dRaGlpoampCbPZvKGA/1LKHrYJgG3bJgA2ofUPDlPV0OJd2aqqkpQQS+IGSimvbmyhp/96HaAkyzTWVNHaWM+RE3fhYzSiOhxceOsN/AODKDh4ZE4CICN5B7GREUt3Tp1Ovv3tb6PT6fj85z+/4SLsnjR4VVFI3hHPzrjod9QarGlqo7uvH9EtkFh85RI2i4UDt58ABFTFyYW3Xkcn6zl0/KTrIHMrd3e3NnH5/Fk+9fDD5OXlret9eCL2ngyAoAATuzLTkW9CgHPKYuFahUs3Q9PAz89AfnYGBp1uy4y73W7nNy/+nqDwKPxM/rM6AUiSTFtzA5PjY+w7eBiz1UZ/bw/7dueyIz7uJtfaBGW1DaCqM+r8VFVlR2w0KTtWtyVfQ0s77T19MzIAAkxG8nMyNj25c+HKVc6cepM9h47gHxhEY00No8OD7Dl0G5apSU6/+jKxMdE88cQT8zrFoxOTlNXUoyrqjPT/4MAA8jJTV2zvdjgVfvHCCxgDggmPiva2FVUVleQdsSuumL9eQoC9vb189z/+g/1HjuHnH4iqKl6gEh0RTk5aMqK4+tc1NDJGUUU1kiRhMZtv+nskWaa3u4tv/cv/4RMPfZbouLg5I+WSJDE+Nsr/+843+cCHPsb+g4eWrAWgKAoxURHs3z07W3BoaIiioiImJycXbfMnCCJ2p5PComs8//Of09He5n0/KCiIgv0H2Lkjge//53/O6G8fGBjIV7/6VZKTk1wBnXU0g8FAdXU1//iP/8jY2Jj39ZT0dB59/AnSEnfMWfOvucsBTCYTu3fvJjw8HEVRKC8vp62t7abWsWf9OBWFe++5h5deeomPfOQjsz53xx138Oyzzy6YQbEQwF8M/MfFxZGXl4deP7NV7MDAAHV1dQwODnpV/dca2N8UqbZNAGzbNgGwuQmA+pZ2Onv63On/rpTJXRmphGwgUbmB4VEq65tmHNIDvT1cvXSOA7cdJywyCqfDwcW33sBo8mfPodtmHS6aqpKTkUJEyPLqNF/+4x+5cPEiX/ziF9e1Tnwus1isXKuqw2azuRzdrLQtFeldzDq7+6hvbUcQRWR3e8ghd3tISZZRnA7On3odH19fDt5+hzfVUKeTKb96ma72Nldacej66jt09vRR19LuOvi9JThpS+pWsZTvKsjOWLEI6EaxF3//BwQfI8EhobNSSCVJoqasGB8/Pw4cPEzf4BAD/X0czM8j7iaF+qobW+jtH5xZ+++2nLTkVav/91h7Vw8NbZ3T0ts1dDode3LS8fXx2dRjWd/cxm9eeJ607Fyi4+Npqq1hqL+fvUeOMjY6zJlXXyYnJ5eHHnpwfoKktYOO7t5Z4owJK9RWc7qdOXeehuZWl9ioVwfATchkZ6xo55z1IgAAvv/972FzqOzad3BGVFlRVNKTdqwJ4Tw5ZaawrApFVbFYLMsqAxAEAdENtmVZoqujk299/Z/45COPEhkdMyfQE0URq9nM9/792xy/805O3nMvDtvSCYDMlETSbygz6uzspLi4GKdbl2Y+E0UBRVEZm5zi8uUr/PLnzzE+Nup9Pz4hgfv//IPo9DoGe3v4yY9/RENDAydPnqSry6ULcNddd/H45z8/f2/yNTBZlhkdHeWrX/0qdXV11+eyvz8PPfJZbjt8EF+Dfta+rWkasiwTFRVFeno6JpMJm81GeXk5XV1dNw2Mr7fkc3Lffffy61//mk996lOzPnfixAn+8i//ct4MgOU80RvBcUJCArt3755B/jgcDurq6mhtbfUK/K012JdE0ZtBuZx9Rph2D6qqbhMA27ZNAGw2c6kmX0+b9Cga52+w9lJOp0JJdR0Tk1PezcoyNcXFt94gOT2T5HRX279Lb72Br5+RvYePzmaXNY1dmWmEBi1PXK2pqYnvfve7fPSjH2XPnj0bavxUVaW0pp6R0QlknczuzFQCt1jP94VscGSUitpGEAQkWaahppL2pkaOnLgTHz8jDrudC6dew9do5MDRO9xRLAFZhLOvv0JgYOCGyOzoHRympqF5RmQ5O/XmBN5K3er/HgJgOa0vN5O98cYbjJnthEfHeqOTbm8PNI3iK5dITkll7549NLZ2MDTUz6G9BcQsIwPIY1abnaLKGhzTypA8e4rBoKcgOx0fw+oSLL0DQ1Q3NM8iIAqy0zf9mh8Zn+Cn//Vf+AcEkZGbR1NdDf093ew/epyh/j7OvPYyJ46f4H3vf9+cf293OLhWVYvFYpvhxGqaRlZKIlHhK0vwdXZ28vs/vkJmTh6STuctQREEyMtMWzG9gfUmAGpqavjJT37C8XvehcHXeF3zwJ3qvicnc9Xbz9odDgrLqjBbbYiAZQllAIIootPJ2G12hgYHcTgc6A0GxsfH+OkP/h+ffORzhISGeX0EURS9bQM9pQbf+/dvc+LOO7n7Xe92lR+671ubJ2XdM9/25GYSG31dv6W2tpba2toFlf4F9zWbzRYGRsdobW3jJz/4fwwPDV1f53v3cec99xEeEUFjQz1TY6P89Cc/BuDrX/86/+N//A/AJQj4uUcf5667TqKp6pp3BRAEAZ1Ox49//GN+85vfzHj93fe/n3vvvY+4yLC5o+WCQF5eHvHx8QiCQH9/P1VVVcuu+Z+fAHBw77338dxzP+Oxxx6b9bnjx4/zpS996aYJgLlG1+FwEB8fz549e2bcw8jICBUVFQwNDa1aur82FyHmDpZ42iOOjY0xPj7O6OgofX19DA8PMz42xsTEBGazGavNhtPdYlKSJPR6PT6+vpiMRgICArjrrruIiIjAZrNtEwDbtk0AbCab1f5PVYmPjiQtMWHDXev0NGlPLfflc6fx8fFlz6GjKIqTt996Ax8/I3sOH/WmZk7HBbsz0whapnNmtVr513/9V+Li4vj4xz++4Z5LfUs7Hd19IEBifDRJ8XHvmDVosVi5Vl2Hw+5A0unoam2moqSIwyfuJCAoxCUMeepVTAGB7L/tuEtNV5JQrVO8/PvfceKOO3j3u9+97vcxPDZOeW2j11nTVJWd8TEkxS9P4G180kxxVa0rJd7TLs6tD3GrtclL6Wm8lnbl8mWaO7qI2Zk8Y60LoojdYuHa5QvcfuIOUlNSqKxtYHRkmCMH9hEZFrJ8wNfbT31z2yzwfb3HfCqr/WRGxiYoram/4QxSyUpNWnGAu9bmVFR+9dvf0dPTw4HbbqelsYGezg4O3n6C7o42Lp5+gw888ADHjx+f8+/7h0aoqm+aRc6IkkR+VhoBJuOKXq/D4eDnz79AYGgEIWERXgJqJVsObgQCAODf//3fmbJYOXj7HdjdwEhzZ5/szcnEZFx9YrGwrIqR8QkkUcRsNi+41kRJwma18vbF85QVX2NoaBBJktHp9FgtZvp6e/jCX/5P4nfs8AL7yYlxDAYfdAYDkigyPjbK977zr/zZn3+QzOwcJifGQRAIDAoiICDQC4hm7gUavr4G9uZkEhIS7CLnS0tpbW1dELx6fJnBkVGGRkax2x389lfPU1ZSDLii6Xff924OHj6CrNMhAI0N9TisVn78I1fq/+DgIPfddx/Fxa6/SU1L5x++8hWMRr95W+utlvn4+HDlyhX+6Z/+aUZHgj379vP+B/6CHXExBJiMs6L/iqIQGxvL/v37cTgc1NbW0tbW5hXCu1VSwrVundx737386Ic/5KmnnloxAmChuvjo6Gj27ds34x46OjqoqKjAbrevaNR/ruvzlEdKkoTNZmNwcJC2tjaaGhtpaWmho6ODMTfgvxn7x3/8R/bt28fk5OQ2AbBt2wTAZrLuvgHqmttmOE5rkc56MzZlsVBSVe/anN0R36qSIgb6ejhy4m4knY5Lp1/Hx9dvNgHgZi93Z6UTYFq+UN6LL75IVVUVzzzzDEajcUM9l57+QWqbWtE0jQCTkd3Z6cjrqGi/pmtQ0yipqmNkfAKdTsdgXy+FF8+y78gxIqKjsVmsnH/zVQKCQth32+0oTicGg56+jhbOnj7NY489Rnp6+vrPbbOFa1W1KE5X+zJNVQkNCWJXesqynP86NxnkTUFeRRC03lZbW0PhtVJ2pGbMcCYlSWJooJ/qsmI+8rGPEeAfQGlVLVOTk9x+aD/Byyxt0jSNspr661kVNwDwlB1xJMRGr8n+d63y+hzxEBAbTa/lZu3cpcucO/sWh24/SV9PJx2tLRy8/Q5aGxu4dvkCjzzyyLxaHZX1zfQNDs0Yn9XOZjv91llaO7tJycicUQZgMvqSn52xor+5GkKAmqZhttqYNJuxWm1YrDacTtd9GAx6Av2NhAQG0tPdxb/927+xa+9+4hJTvOBXFEX25mauSfZJRV0j3X0DSO4uLvOJAXr2yp98/z85e+Y0tx8/SWZOLqFh4egNelqbG/njiy8SFh7Opz77ODqDAcXh4Pe/fYGc3Dwyc3YhyRKXL5znxV/9kvgdOxjs78dqs6EoTnx9/bj7Xe/h3ne9x7tPXwewKqHBAezOSsfHx4fCwkJ6e3sXTK0WRRGb3UF3/wDjExPIso63L5znpd//zvuZE3fezT3vejeK4kRVXL3sKyvK0Ynwg+9/30vM/v73v+cv/uIvvHPx8ccf593vfveaCgLqdDr6+vr4u7/7Ozo7O72vR0ZF88mHP018fBzxUeFzQmZVVSkoKCAhIYGSkhJaWlpWLDIuePdLjXvuvYfv/b//xzPPPLNsAmAukL0Q+I+MjGT//v3I7r3AbrdTW1tLa2urdw2tBuj3dI+QZJnJiQna2tooKy2loqKC1tZWb+eIlbCvfe2r7NmzB7PZTFhYOEePHt0mALZtmwDYFE60u/2YJ/3f6OdLfnY6+g0qGFbT2OoSfZMkl6hPZzulhW9z8PidBAWHcPHUa64MgBs1AG6xtWFzczPf+973ePDBB8nMzNxQz2RicoriqjpXb1lRIC89leCggHfMOmxo7aC9qxdZp2NyYpSLp98ge3cBO5JSsJotnHvzNYJCQ9l76CiK04HRz4+rl84y2N/PF7/4RUym9U+fdjoVrlXWMGW2uNaipuHro2f3MtTLLVYb1yprvQTZdAJgK5aGdHV18dobp0hMz5pBYEqyTGtDHYP9vXzus59hymyltKoW1Wnn2JGD+C4zVX9iykxJVZ1rP7khwuwiFdeGXLHZ7BRX12Kx2q87tIpKTGQYmctobbpRrbmtg1/84ufk7N6L3WqhuaGOg8fuoL6ynJrKMp588kmSkpLmmPdWiqvqZnSJ8QCK6IjltX1djnV0dvLfL79CZm4+ohuYejzyXRkpC/aBX08CQNE0evqHGBweYdJswT5HNBtAFESMfr7ER0dy6cI53r50kdvuuJuQsAh3X3KBfXnZ+Bn0qz832rtoaG33RkvnywLQG/Scf+s03/7G13nw05/jyO3H0DQNRdW82VCTExNcuXie+J2JpKSnMzk2zr998/9y7I67OHr8BBPjE3zj/3wNHx8fsnN3ERwSisloAjTqamt47eX/5qHPPMp73vfnM8QBFUUhaUcccZHhlJaWMjIyMm90VxAEBEFgfGKS7r4BLHYbBr2B7s5OfvLD7zExPg7AzqQkPv7gw/ga/VDd5IxOp+NaUSFhwcF859++jaqqXgL0wx/+MC+++CIASUlJfPWrX8VkMq1JFoCnjOLb3/42p0+fnjYmBj7+4KdIy8gkJiKMQH/TnLX/AQEBHD16FLPZzLlz51AUZcUyXzxZFrIsc8899/Cdf/s3nv3iF2d97tixY3z5y19eVgaAMA/4DwsL48CBA17Bv6GhIUpLSxkfH18RYmOua5FEEVmnw+Fw0NraypUrVyi8csWrMbBU0xsMGNz/dDodsqxDEAUUp4LT4cDusGOz2TBPTfHEF54mNy8Pp8NOQnw8737XfQjbBMC2bRMAG9ucikJpdR3jE666elVRiYuOID1px4a9ZpfSs0v1XpQkpqYmuXT6DdKzc9mZksaFN1/F12hydQGYduhpqorR6Et+Zjr6m+hh7HA4+Pd//3fi4+P5wAc+sKGeicPhpKS6lskpK5qmuRTJd75zygAGhkeoqG1ElCQcdhsXT79BTFwCWbsLsJrNnHvzVULCwik4dJtLIVxxcOrVP5K4cycPP/zwhrmPpvZOWjt6XG3e3GKcuenJhAYtDUhML5GZDlIFUSQ/O53ALZYBMDExwa9/+ztidqbg4+vrBTGiJFF29QqhwUF87CMfort/kPLqevSyyLFD+5adcjnnc3XvKWvZYlFVVIqrahl366B4QG5YUCB5WWmbfjynLBZ+9KOfYgwIICAoiIbqSg7efgdl1wrp62zn6WeeITIyctbfdfYN0HBDFpvn2WQm7yQmMnx19l2ng1/88lcEhkcQHBI2oz4+NjKCjOSVO0eXSgCUlpbOG93T6XQEBAbR0dvP8OgYohuEXn9sNwASTUN1R5dF4Nrli+j0BrLz97ij2pC+cwfGeUoAVFUlISFh3raNy7G+gSFKa+q9a3euLACXD6Pw93/1PwgJDeOzTzyF1WKdRW7IsowoCtisNnR6PV3t7Xzlr7/MJz/1Ge645z6aGuq4dOEc97zrPYSGhbsi7FwXFHzuxz/i8qVz/PO3/p2w8AhvtyFFUSjIyURx2CgqKkI3TxDFm/I/PEL/4DCKpiLLOpxOJ7987r+oqawAXKUfDz7yGXbsTMRut3vvQ6fTcfat02RmpPPP/+f/m6FdcOXKFe666y6mpqYAePLJJ3n3u9+FzWpDXWUtAL1ezyuvvMJ3v/vdGc/8jrvu4c6778HX18DO2Jh5CHAn2dnZpKenU15eTmNjozdqvpIm63Tcd++9fPOb3+RLX/rSsgiApUb+FUUhJCSE/fv34+MWZ+3r66O4uBibzXZLKf8LCfnp9HrGxsa4du0aZ8+coby8HKvVuuD36fR6AgMDiYiIJCIykpDQMELDwjD6GdEbDK5/Op17zYg4nU4cDid2hw27zYbZbCYkJBQfPz+cDgeBwSF85IMPEBUesk0AbNs2AbChHegpM6XV9S5m0O0F7Epf2cjFij9zXP2w+weGEGUZAbh87jS+fkby9x/m4unXMPoHsHvfIW/vYo+zHhTgf0sq+WfPnuXatWs8/vjj3o19o1hFXRP9Q8MIsCFFHFfTpkcABVHk7bOn0OsN7L/tGDaLhXNvvkpoeCT5Bw+DBoO93Zw/9RoPfPCDHDlyZAPdh42S6lpsNoc7vVQjKSFmSW3F7A4nxVU1mM02BPGGKLUssScnA+MWEwFUnArP/+pXmEIjCAoOcWXACAKK00nhhTMcPXo7tx0+SHtXL1X1TfgbfTm8Lx9xGZGXG0VSbwQ4a625UVbbwODw6IxWgCajHwXZ6aviMK/13v7if/+RlpYWdiQmU19VwYGjxyl6+wIOm2XO8itN0yivbWRoZHTm+HjFLzNuKuNrqfbWmbO0dvWQnJZxnXDWNPQGHQVZK9d5Y6kEwMGDB7ly5cq87ycmJnL0ttsw+fsvIyqsIeAquXNFmxUv/FEXEJmz2Wz81V/91YqUWI1NTFJYVjUjanpjS0BJlhno7+Ovv/QMf/GxT7Lv0BFsVtss8G232bA7bOj1Pvj6+tLb3cUv/uvH/PmHPkJSSioOhwNfHx9UVcNmt6Opqhfs6XQ6ert7+Pu/+hKf+uyj3PeeP8Nus7kAuCRxcHcOA/19VFdXzwn0REHAoSj09A0w4o4Ey5IOs8XM2dOnOHPqDe9n73vv/Rw7fgKH04EoiNM62Oh45Y8vcfKO4/z1//pf3nXgeTYf/ehHeeGFFwBISUnl//dXf4W/yYQsiaumJaHT6WhtbeVv//ZvGR4e9r6+u2AP73/gL5BkibioSIIDA+aM/kuSxO23344oipw7dw6Hw3HT1+r5O9d/hFl7zB133MF/fve7fNktmjjdFioB0BYA/dPBf1hYGHv27PESX319fRQVFS3aAeJWgP/g4CDnz53j9ddfp7W1dd7vEUWRsLBwdiYmEb9zB3GxcfgHBuHv1hnR3OOhaSqqm1jSXC96Hq6bDHO1qhQEAUVRUFUVRVEICg7hIx/6IJGhwdsEwLZtEwAb2abX/2uqir/JyL5dmUvY5tbXRsYnKKtpQFNVJJ2O2opS+nu6OXzsJIUXz2L0DyBv30EvM+9xVCJCg8lNT7np3x0dHeXHP/4x999//5ypqOtpzR1dtHR0ew+Y3PQUwjYwkbPiwKimnsGRMXQ6PWVX32ZsZJgjJ+9BcTg4d+pVwsIj2X3gMKIA1cVFNDfW8dTTzxAdHb2h7qOts4fmjq7rOgDBwezKSF7UGersHaCuebbYlKqoRIaHkJ2atKEE/FbKXnrpJcxOiI6L9wo8jo0MU37tCg994pPExcXS0tlFTUMz4SFB7MvLXfZeU17bMKO3vMcjE0SBvIzUZWsK3IrVNbfR2dPvyhLxgM0t1OaxtKKSl//4R3ampNLe1ET+gUNcvXQef6MfTz755CxQNTE1RWl1wwwS2zXvFSLDw8hJW919urOzi5de+RPpOXkzygBU1dUmLy4qYkV+Z6kEwIkTJzhz5syCn0lKSuLo0aMEBgYuCOBv1Ww2G1/+8pdJTU295e+y2mxcKatykbzucb6xDEDW6WhtbuL/+8rf8unPP0VyatoMICeKIp0dbfzke//B6PAwCYmJfPqxJ/Ez+eO021GcTs6dOU1XRxuiJJGRlUPOrjz8jCZvrb8oSjjtdv7uf32JvQf285nHv4DDbnf3rfdj/65s6uvraG1tmzVXRVFkymyhq3/Aex9W8xTVlRVcuXyZjvY272czsnP4yMc+gayTXXuPF92CJEr85le/4qMf+zDPPPnkrGd1/vx57r33Xm/094Mf+RiHjhwhPioCnSyv+HgLgoAkSfzHf/wHr7zyyoz3PvPYE6SkpiGJkJQQ5y0TuJFIDQ8P5/Dhw5SUlNDa2roomSl4wOgNJVke0OpwKjicDlRVm/F7DqdCdEwMVy5d4B++8pVZ33vy5EmeffbZWQTAUsF/UFAQ+/fvx8/PpTM1MDBAYWHhTYN/bQEgr9frGR0d5fSpU7zyyiveNpBzfTY6JoaMrGxS09KJiIzCZDSiaaBqCoqqoqkgii5CQZIkRElEQEQUBRfQdz/068lCgreMRXD/BmjExcby7vvudY3rNgGwbdsEwMa1qoZm+gaHXRFxQcDoYyAkOJDgAH989HpwtwwRRc9/xQ1DDVQ3tdLT249Or2egr5eyq5fZf9sxqspKMPn7k7tn/ywCYCX6Qb/++uvo9fp51ajXywZHxqioa/Tea1zUxi7lWGnr6OqjvrUdnUFPc30NDVWVHL3zHnR6A+fe+BNhEVHs3n8Qp9PJxVOvEeBv4vOf//yq9t29GXM4nZRW1TMxNYUgCBgMevIz0/BdIIqpKArFlXWuv7lBBM3X10BeRtqqRkHX0y5eukR9cxvJ6S4hNkmSaW1uYGywn89+5jMY9Dqa2jqpbWomISaa3IzlgZGGtk7au3rmTP8PMJnYnZW26m3QbiSIGts7r1+PO/V3T04GJqPfph/PoZFRfvyTn2I0mhgdGSYrL5+iSxdI3JkwZ7lOU3snLR3dM9fxGpIzTqeT53/1a0wh4QSHhF4vA3ALwu3KTFtWxslaEACAV5k8NjYWnbuNoeffRiQAVFWlsKyK8cmp69kvN5QByDodLc2N/NNX/pbPfv5pktPSXG073etVkCSG+vt4+8I5JEkmNDycPXv3ozMYEAQRi3mKS+fPcPniBXq7u0jPzOaBj3yMqNg4VLcvIYoiToeT//2Vv2L/ocN8/KFHcNjtKNMIp9LSUvr7+71z0pPyPzFlZnh8AovZQndXJ8VFRdTX1jAw0D/jXkPDwvn4gw8RFR0zq25bEAVUReE3z/+Sp595lgc/8bFZz2pycpJ3v/vdXLhwAYDEpGQ+89jnSd4Rj0GvWzUC4J//+Z85d+7cjPc++fBnyM7NJTTQn/DQkFnRf8/5lZWVhZ+fH8XFxXMS1cINYF9RFBRFxeF0YrPbcShOFMUF/BV3NFp1R6adTgWr1YLFYsFqs6I4nTTW13Hq9ddmPYv3vve9PPbYY8sWTlQUBaPRyMGDB71rdXBwkKtXr2K321cU/OvcNf6XLl3iN7/+NS0tLXN+LjAwkKzcXeTm7iI2Ph5fH18UdwaPIIroZRmdXo+vQe9O85eQJcmb7u953qIr3I/guSZXSgBo1xkBQXDpGIWFhW2LAG7bNgGwUc2pKExMmhkaHaO7f9CVNute2JqqoqoaoiQiu0VKXOBfQBRE9DodBoMefz8/ggJN+BoM6wagpiwWiivrcCoqisPOlQtnSErLoKO1BX//ALIL9s4gADRVJS1xB3HRtxaRGRwcpLi4mDvuuGNDpdyaLRaKKutQnE40wM/H4FIjXgOBpo1gk1NmrlXVgSAw2NdD4fkz7D96gpDQMM689jLhUdHkHzjEUH8/59/8E3fddTd33333hryXvsFhqhtbXAetIJCVmkhk6Pyt60bGximpqp+V+i+IIjlpSYQFB23Zca+vr+etcxdIy93tBsMSJYWX2BEfy/vvv98F4ls7qWtqIjMlieQdSycAp2trzHi2rE/6P0DvwBDVDc2z0t3zMtMI2QLCn4qq8fyvf0N7SwsIAklp6ZRevcyBfft43/vfPxNg2u2UVNUxOjaOYVpJlqqoxESFkZm8NsKI586fp6m9a1YZwEp231hpAgBc7doSExPZuXMnYWFh+Pv7o9PpvFkBtwoUV5IAACipqqN/aHiGzzE9C0CUJEZHRvibL3+Ru9/1Xu645x4sZov3/AcQZRmd7BIQ1lQVq9WGKEmI7lRmUZSwWy04nE50OhlZp7+e/ow77RmB//PVv+U997+P43fehd3mIgDSk3YQHxNFYWEho6PXy3QEUcBqdzA2MkZNTRWXLl6kqrKKKfPULGCXmJzCiZN3sWPnThRVmYUCRUlkYnycV176b77x9X/hxIljs55TZ1cXP/jBD/jfX/uaV0jvI594iMNHjhAa6I+vQc9KO6wGg4GioiL+8R//cUb0PDkllYc/9yiZKUmIbiLkRpMkiaSkJDo6OjCbzS6BPA+qBDRVQ1EVbHYHFpsNh9P1vx1OJ6qi4HA4mZqaZGx0FIvVwtTUFKPDwwz09zMxMY7dZsNisWAxm7FarTgc84P7D3/4wzz44IMz2hcuhZySJIn9+/cTERHh9ROLioqwWq3L9pEXSveXdTrq6+t5/pe/5PLly3N+LiY2jr3795OVnUtQcLA3pV8nyfj6+WL0MWDw8cGg17kCe26A7/E3PG0DEVzP3m6343Q63QS7hF6n8+pbOJ1OL6njdDq32wBu2zYBsOGuU9MYnZhkcGiU4fExzBabV0QPBG+E3yMIpGnuOiC47gh4IgSqi/2TZRlfg54AfxNBASYCjEZ8fAxrmmbc3N5JS0cPOr2OqpIiZL2BkeFBAgODyMwrmEEAoGmu9oahwbf8u2VlZcTGxhIWFrZxHGe3QNiERyBM08hMSdz0/cGXM8ddAmlmbBYzF06/TlJaJompGZx742XCIiLJP3CE6rIS6ivLeOLJJ0lISNiQ96JqGhV1TQwNj6BpEB8TSVri/Nd6Y/mHZ62uVXu69bT+gQF+++IfSMnIRu/ji91mpfDCGe7/s/eSk53tJgA6qG9uYW9uNpHLWA9z9pafBu52Z6YR6L+2woqj4xOUVNffcA6pZKQkEhMRtiXG9O2r13j9T68gyTIJiclUl5fwZ+99D4cPz9Tr6OoboL65zYPMvGNjMOjZnZmK3xppXnT39PDff/wTadm5M8sAFJUdcdGk7Lh1ksjkrtFdSQJgOgAzmUyEhYWxc+dOYmNjMZlMyLI8rX3a8kmBlSYA6prbaO2cme0xVxbAL3/2Uy6cfYvHnnqWhB2JM0CKB2j39fWgOhUiY2Iou1bE6MgIR0+cZGJ8lNOvvUp6Vg4ZObmIguts1dz6IgYfH5obG/j3f/1n/vL/9zekZ2Z5SwD27srC5OfD5ctXXMSEG0xNTk3x1ltvcf7cORoa6lHVmc8wODiYvXv3cuL4ccKjYxgaGcPusCPMkW8pyTLdXZ1cPHeWnz/3HOlpM5+t3W7n7cuXGRwc5J/+9/+mpKQEgIzMTL7w1NNERoTj4+PjUml3dw9YiTIQj0DcV77yFaqrq9Hr9ZjdGg0nTp7ki888460Tn+tvZVn21v0rioLd4cBqs2O1293p/C71ebPZzMBAP5OTk/R2d9PZ0c7U1CSTExOMjY4u2L5vKfbII4/wwAMPLIsAUBSF3NxckpOTAZfa/9WrV5cN/hcaAZ1Oh9Vq5aWXXuI3v/61V+RxusXv2MmhI7eRlZWNr58fiqqgkySMRj9MRj/8fHy8a9oz3h7tCFmWkSQJu91OX18fXZ2dNDc309bWxuDgIGazGUVR0Mky/gEBxMfHU1BQQE5ODkajEYfDsU0AbNs2AbCRzKko9A4O0dc/xPjkFKqqIkoSOp3sZvhcglkWs4WpqUksU5PYbFYQQOfeKGRJRtbrMRh8XK1BfHyRZdmdCuTZQECSRHz1BvxNvgQFBBJg9Fv11Fib3UFJdS1Wm5PB3m6GBvsZGxkmODSc9Ny86wSA5spqyMtMI2gFWqENDw/T2dnJrl27NtR4Vze20NM3iCi5BIMiwkLISUua05HYijZdrf3ymTfR+/hScPAIF069Rmh4OLl79nPu9T9h8vXh8088saFF08bGJymrbcDhcBAY4E/+Akrz5bWNDAyNuLsHuJz0hNiVAR4b3cwWCz//5fNExCYQGhZOX083zXVVPPq5z+JvckVNG9s6aGnr5PDe3Rj9lgYKNU2jsr6Z/qHhOdP/gwMDyMtMXZE+zssxi8XKtaq6Ga0eVVUlJSGOHXFbg+zpHRjkpz/9KRNjYySnpdFcX8cnPvEJ0tLSZpJktQ0MjYzdkA0BaUkJxK6S8v+chJ2q8stf/Rq/wBBCQq93A9BUDV8/A3uyM265ra7RaFzSXFtMBHApZjAYiIqKIiQkBD8/P/z8/AgICMDPzw/d/5+9s46Xq7re/vfY+Nx757prXEhISCAJIUIS3B2KtMVKaSnWUn9/FajQFmkLpYVC8eJW3CEQd891d5mZO3Ls/WMkV5MbIwFm9ZMmjJw5Z5999l7Ps9Z6lqL0EVkT9kgAHCgRQIC6phY2bS8fBKr6igEKooimqjz673+yZdMmjltwPOMnTcHhcMTTyCvLd/L2G69y0mlnMXHyFB76x9+p2LmNn/zyNyAIPPzPv9PR0UFhUQkzZ80hNzcPm92BYRhs3rCep5/8D0cdNZPLr7ommjVpYLEoHD11EpoaZtmy5aiqGi+bfOzRR/nvM88Mup6SkhKOPfZYZs2aRX5+fhxEd3b30NDcim7og/ZuRVHYsnUzO7du5dlnniEzoz/pV1lZybr167HZbHz88cf87o474u/l5uZQUFhEfl4e2dnZpKSmUVJSQlqqJ5IFuo8kQOxbDpuNF196iZaWVjKysvnPIw8TiGY5nHXWWVx66aVYLJY4SI/dD9M0CYdV/IEAXn8vmq6jaTqGYdLb66elpYmmxiZ2bt9GR3sbrS0tew30LRYLdrsdp9OJ0+ns095ulw9gt9s555xzKC0tHbFApqZpFBQUMH36dARBOODgXxAELBYLFRUVPPTgg6xevXrQZzKzs5k7bwGTJ0/BZrcDJg67jSSXE5fTERGD7hPYix1Xiqb7B4NB6uvr2bRxI0uXLmXH9u30BgIIgkCKx0NSUjLuJDdWqw0ECAaD+H1+wqEQ+Xm5nHrqqUyZMgVd10lLS0sQAAlLEACH0sJhlZa2DupbW/H5ehFFCYtVQZIkAoEgTQ111NVWUlW+jcqKCtraWgn4A+i6gCjacTgcWK12ECJCIAgikiQgKwI2m4zdbsHhsJGalkZaejqp6Zl4UjNI8aRhd7qwKBJ2qy1CBrhcuJ2OfWq9NxJrbGlna0UVajhEU0Md9TXVZOXkMWr8xDgBYJomNquFIyeMwX4A1PtN0+SDDz5g6tSpeDxDZxS0trbS3t5OR0cHPT1dBAIBdN1AliUcDiepqalkZmaRk5MzbLugvbXahia2V9ZEMjtME0VRmDZxzBcWCevu7qatrY2Ojg66u7sJBAKEYgrJoojFomCz2XG73Xg8HlJTU0lNTT1gZSQdXT2s27IdSVHYvGYlTQ11zJ6/mFWffUxqegZFZWN49/WXOWHJEhYtWnTYry/lNXVU1tQjyTITRpeQ4UkZBAJ0w2Dd5u10eX2RjR0ozs+hpCDva7EG64bB0888B5JMUdkoNq1di8smc/FFF8U/s7O6jsaWVo45cvKIO2OENZ01m7YRCqsYht7POTYNkzGlhQdM4G1vTNU01mzahs/f268VYNFXiPDRdIMnn3mGjWvXMGb0aFpaWrjqqqv6ZVx1eb2s3bwjkpEm7CJmsjLSGV9WjCh+saTnp0s/Y2t5JaPHTegHHiJigIXkZ2ft92+MpAxgd20AR7q39W0rF0sHtlqtcQKgLzjZEzFyoNoAAnR097Bi/eZBROhAMUBRktBVlQ/ej6jq+33+CIEiSRiGQUtzI9k5eVx/461YbVb++Jv/IxQK8eP/9xskWeKNV16mo6ONoqJitm/dAggkJyfT2dlJbU0Vs+fO4+xzz0eUZQw9UnPuSXIzbdI4enp6WLZsWXzsgsEgv/rVr9i0aVP8/EaNGsU555zDlClT8Hg8qKoa8VFsNiwWCz6fl/bObuobm9FNox8JoCgKn3+2FME0ePzRR7H2KfELBoN8unQpPT09yLJMOBzmt7/9LevWrh1yPBWLhbFjx3H2OWczfdq0eAeVfSUAJFGku7ubHq+foG6wZdNGnn36Sbqj8/Goo47i2muvJS8vL1I2Yej4envp6vERjLYpNAyT9vZWGhvq2bp5Cw31dTQ1NuzxHGJZLDG/wuPxkJmZSUZGBh6Ph6SkJJxOJw6HA5vNFhG6i96j2DWIfQjVkRJ/DoeDY489FrvdTldXF8uXL4+XMewP8I+NpyTLvPfeezz04IN0dnb2e99udzDnuHkcPWsWSUnJiIKA2+UkOSlSniuKYlwUsa/J0e5ZVVVVfL5sGStXrGDH9u3ohoHNbmfMuPGMHz+B7JwckpJTsNls8ZLgyHWb6Hqk7KKuro7OjnamTZ3CxIkTyM7KTmgAJCxBABwq4N/U2k5dcwuBQBBJUbBZLQSDQSrLt7Nq+VLWrVlNQ10LqurCbi/A6cwjJXUcNlseipyEpDiASATZNGIiKhq6HkLTAmiaH13rIRxqQ1Vb0PRmDL0Tqy2A220hIyuN0rLRlI4aR15BCWnp6dhtduw2C0lOB6lJ7t0Kmu2LwxJpA9VNZ2cb2zdtIK+wmOJRY3YRAAegBeBAa2trQ1VVcnJy8Pv97NixgzVrVrFixeeU79xBXUMjHe0dBIIhDF0EIuUWAgYIOrIskJzspqCggEmTJrFgwWJmzZpFXt6+O/FdXi9rNm7rUztnUFqYT/FBigyWl5ezbt0aPv98Kdu2baauro7W1jZCoWAk20SUkCQZARHDjIjPGLoOAlitNjyeFDIzM8nPz2fcuIlMnTqVsrLRFBUVY7XuvaJ5KBxm9cathDSdloY6Vn72KcfMW8DOLZtJ8aTicDrZvG413/ve9w6a+n8oFKK7uxu/P+LUhMOR+kMtLiIVcaZjf5xOB8nJKYPam8WspqGJptZ2BEFgyvjRgyKJvYEAG7eX0xsMIwoiZUV5X2j0M2bNzU00NNTR1tZCZWUFW7dupbGhEV9vL7pmoihWJElGUSQURSItLYVp06YxduxYysrGkpGx7wDprffep7qmjjETJ7Py0w+ZP/dYpk+f3o9I8fcGOWLcrg4gnZ1tbNmykR07dlBVVYXP24vFaiHJnYTTaUNQrAiyg6ycPNLSM7DZrBF1aVVDlgSOnHDoVPfXbdlBW+euGmPDMMjPyWJsyd6VtHR1tdHe3obf34umhtF0rV86sChKWCxW3EnJ5Obk4XB8ceUOy1at4ZUXnseTkkxqWhqXXnppv2jdtsoa6hqb+7RDNHE57UweO2rY+2KYZuQ6tRCmqUfqvg2DUCiEqmoYuoGsREjKCBgbOXBtaGzixVdeZcyEycjKLqG1WHedIyeORd5PonOkZQBfVfMHAixftwlN0wepvwf6lAFAJBNAlmW8PV3U1dbS3NgYSYlWLGxYtxZ3UjKnnXUOpmny2MMPIQgCl1z+TRAEdmzdykvPPs3Nt/0Uq81KR3sHPp8XXVVJy8gkJz8/orUTBYq6rjO2rJiCnCyamppYt25dHGD2+Ht57vkXeOm5Z+JzIjcvj6uvuYax48bjtNsZPaqMrKxMHA4nkiSxY8cOtm/fTmdPD/WNLRh9SABFUXj15Zc45uiZ/P6O2/td8/bt29m0eRdBEhFFrODhhx9m69at8ZT8geZ0Ojnt9NM5/fTTSUlOJhwO73U2QF8SoL6plbbODiyKhcaGBp59+gnq6+oAGB8tRbA5XXT3eAmFwhimQXtbKxU7d7Jxw3rq62rx+3zD/pbT6SQzM5O8vFzy8/PJy8snMzMTj8eDy+nE7nBgsVj6iUXG/vQF97Ey1/icYe+yIAzDYPr06eTn59PT08Py5cvx+XwHBPzHCJynnnqK5559dhApMWHSZI5ffAJ5+fnIskSK20WS243Nouwq3e1zXTHCzmKxUFVVxYsvvsgnn3wSLyUoKinlqJlHM3r0GDweD4IgRMpDTGNXK8DY+MSV/wUkUULVdZw2C2kpyRQXFycIgIQlCIAvFPirKo3NbTS0tNIbCCFbFKwWhY72dpZ//ikfvPMGO7fXIogFpKfPIiPraJLco7Da0hElJZLKjwlmzPmLND3ZtccKA3qqCvElTNfDGLqfcLiZYLAOv28rnZ2bUcP1JCUbFBXnc8SRRzFu4lQys3KxW63Y7RY8SW4yPCkHJDPA1xtg3ZbteHu8rFu1jPyiYgqKR6HrWnyhzspIY9LoA9cSqqGhgTfffJ1VK5excuVKysurCYUlrNZcnK5ikpLLSE4qxmbPRFacSJIdSRQxTR1N6yUU6sbnraGjYzPdXVsIBqvJynIzd+5xnH/+RcybN39EkZPoegxEVFhXb9qCzx9AEEVMw8TptHHkhLH7nYIas40bN/DWW6/z7rtvsWnjFrp7NCzWHNJSi8jMKiM7pwy3OxNwYhh2EBQwxUhdXzhMINBLMNRLb28nfl8Dfm8tPl8dgWAjutqO261QWlrEkdOmMW/efI466ijy80cu3LZuyw46unsIBQJ88t5bFI8ag7e7C4fDQU9PD8luJ1ddeeV+O9KGYVBdXU15+U42b97Ils0bqW+oo6Ojk86OTnz+XoLBMJqmRmpIo4+VIIIogKxIKIoFl8tBcnJyPGJRWlLG5CMiREhJSQkpKSmRZ1zTsQxRUtPc2s6GrTtJTnJRVlxAavIXIwS3efMmVqz4jA8/fJ/q6hoaGprp6NBB8CCKSVisHmzWNCzWNGTZiShKUQdMxzQ1MP0YZjuYLaQk+3E64eijZ3HqqWdy1FEz9+r+rNuwic+WLSe/uJjtG9dz+aXfIC1tV61/l6+Xnu4uejpb+fzzz1m5aj0V5W00t4LDUYLLVYJhOlBDIQyjh7Bahd+7DU1rQlbCZGSkUzp6LBMnT6OkbBTTp06hKDfrkK332ytrqO0DfkeSARAKhdi4cQPLli1l6Wef0dURxN9rpzegoKpSNKqjEg570TUVXQ+hG2FMoxerVSPVYyUzM4Wi4mLmz59HaeloJk6cjM12cLKLvD4/jz76HxobGli0aBHz5s3rt9+t2riVQDAUmSfRPuJHThyLO9oJQVXDbNq0gTWrV/L5smXU1FTh8/lBsGC35WKzZSGIMpIoo+sQDAUIBH2YRi+CEMJuU3A6HbjdNpKS7IwZU8IRR0yipKSUwsLB4oK6rvPkf5/F5koiMzunXxZARKOhmNzM/SPmvu4EgKppLFu7id5AYFAm1MAsgLjnIkkRUTkhAk5DwRD3/OkPTJ56JNNnHoOm6ahRxXfFYkEQRHr9Ph74292cesaZzDluXoRwiHZAMgyjf3ch08RqsTDjiAlYLQpVVVVs27YtQgAIAr2hEJW1DXzw3ju8/cb/ohpKkJKSwgUXX8r4iRPJzsxg/NgxlJWVxjMU161bR3V1NR1dPTQ0t0Q8MgFEQeS5Z57iFz//Gaedcuqu58XrZenSpQSDwX5zRJZlQqEQNTU11NbV0dTURF1dHdVVVdTU1PQbq3HjxnHueecxc8aM+JzeGwIgVr9fWVtPIHoeNquN1pZmHvrnP2hrbQUgMyubY+YcS1JyMj6vl8rynezcvh2/f2jQ70lJobCoiHHjxjFq1ChycnPxeDyRlPTovAiHVULhMJ7kJKyKjD4AMO/uuRkIlEdimqaRl5fHzJkzCYVCLFu2jI6OjgMC/i0WC+3t7TzwwAN88vHHg8iP4084kaNmHo3T4SDZ5SQ5yY3VYtlFdAxxLTGdhXfeeYdHHnmE9vZ2AMaOm8CsY49l1OgxWCwWdF1D0wzAjAP8uD5Yv4wJE01VCasadquVwrxsFEkiNVECkLAEAfDFmKbrNLW0UdfUgr83iCRL2GxWWltaeP+tN3j7jTdoadFJS59HUfHJeFInIsuu6EKhRev3RQRBjKb7923zsadlKsaqxjYJCUGQojVdKuFwGz3d22lrW4a3exVWWyfjxpdyzLHzmTDpSNxJSciSRIYniZzMjP2OptU2NLGjqpZ1q5aTnZNHXlFxfAM7UIrdXV2dvP/+e7zyykssXbqUxkYvVlsBaWlTycw8hpSUMdgcuSiKOwp4YnVuYnRJHkygmKZGONyNz1tOY+Mn1Ne+SSi0g0mTRnHxRZdy3vkX7lZsMKrPiAlIIpRX11FV1xjvE24aBmP2sx91d3c3b731Ok899QSff76SYNCNJ/VIcnLnkpo6CbujIHrNSvw6+4rMDN6EDWAX2WQYYcLhHoKBZrzeKtrbNtLdvYNQsJa0NIGZMydx6qknsmDBItLSdu9EV9c1Ul5ThyjLrPjkQwxdx+FyYeg67a2tnHbaKcw46qh9HofVq1fxzjtvsnz55+zYUU5HRy+imITVmoXNnoXDkYPLXYjDkYOiuKLPVzQjwzTi91wN+wiHOwkEOwgF2wkEWgkG2wiHW9DUTmw2ndzcHCZMmMDcuQtYMH8h48aPH3ROO6tqUXWd0oI8rAepzKYv6fXqqy/w0ksvsHHjdsJqJklJY0hJnYnbVYjTlY/LlY8iu/vMeTN+7QZqZAzMvm5QGL+vgra2pTQ3vkdv73YmTijmm9+6mrPOOgeLZc9dLKrr6nnz7XexWK0ohsbFl1wcH/OWlmYefewR3nrzbSorvSCU4kk7hrTUKSQlF2OxuBEEqd9zaWJg6D7CahPe7u10diyjpXk5fn8FSUk2ZsyYyZlnnsPcufMOWibJbu9Dcxtbyyv7lQCUFORSOkTZx5Ytm3n88f/w7nsfUF7eisUyhqzseXg8R+B05WOzeZBECUGUEAUpvjQZhoZhaKiql1CwHb+/CZ+vnu6uTXR1bwWjheLiJI46agqXXfZtjj76mAN+ne+99x5vv/021157LUVFu1qaRjohVCJExWutVgujigpBDbBy1XL+99r/WL5iOZWVXZikYbfnkJQ8nuSk0Vjtqbgc+SjWjLgAVmT/MzENHU3zoao9EWLbMDD0AKFgGz3eHYQC23G5vZSVpjBjxhTmzZvHpElTsdsjpMOnny9ny/btjB4/KZLp1IcAcDudTJ0wBkXZP92RkXYD+Kra6k1baWnrHKQvNFAMcCiTZJmWxkb+8sc7uOSKK8krKOzXn92ICv2Josgj//oHBYUFXHDJZYR3IwinaTrFBblMHFOGxWJhxYoV1NTUxIGgaZpU1jUSDAb55OMPefO1V+PRXE9qKudfeAkFxUWEw2HSUtOYNG4MU6ccQUpKCsuWLaOpqYn2zm4aW1sjJQWBAO+8+Qb/efjfcdE5wzBYtWoVdXV1/VoPRv+BKEa0nARBwIySYz6vj08/XcoLLzxPY2Nj/HoUReGkk07iggsvJMnlQhshCRAjAFRVpaKmvp+IocVioaamiv8+8QStLc17PJYkSWRn51A6ahQTJ06koLCQ1LQ0EAQMI6IXoKoq4bAaBfrR1puGyaiSIpKcjkER8wNJnJnR8spjjz0Wl8vF6tWrqampGbGm0O68aqvVSkNDA3/5y1/YtHFjv/dKykZxymlnUFhUhNvpIN2TjNVq3aM4Z6zU4YknnuCJJ54AICMzk/kLFzF12vRItkG0DMWqKCjR7IlQMEBXZyd+n49evx+vt4dQKIhpmrhcbsaNH0dxcTE2qxVFlhMigAlLEABfhBmGQVNbO3WNLXijfXFtdhs+r49333yTl194kbZWKCg8i6KS03E68+JO+K46Ho1wuItQoIVQuI1wuBtN9aFpPkxTRxBlBIQ48ywIFkRBRpTtKLITRXFhsaRhjwLeyPE1DEOPLrgigiAjCCKq6qW7axPNTe/i7fmcrGyR2cfNZdacBaRn5aLIEpmpyeRnZ+5zpFo3DDZuL+fjD94nKyeX7Nz8PgSAybhRRfscgdm+fSv//e+TvPTSq5RXtGG3jyE3dx5Z2cfgcpegKElR0BuJbkbAjwiYaFovwUALqtaDoQcjtWaijCRakZUkFCUJiyUJSXIgCBJhtYuO9pXUVL1EW+u75OW5uOSSy7nkkst2CzZimQA9Xj+rN2/HNHSICuw47Famjt/7loBtba088cSjPPnEU5RX9JCcchT5BYtJS5+G3Z6NJFoxowBe0/xomg9NC2Dooehc0KJAX4/MPVFCFu3IlhSs1jQkyRp9LzpnxEi5gCAI6EaYYKCN7q6dNDevwO9bS0G+ybnnLOHiS75BWtrQhEZ7Vw/rt+6I9IPfuY1tmzaQmZNLr9+HIitcetmlZKXvXWeEdevW8cwzT/Pmm29QXt6AJOWQ4plIeuY0UlLGYrPlYLOlIct2BEHCxIy2MRIRkKI6GrtUyoeg0jBNFU0PEA51EQ610NtbQ69/I+3t6wn0VmG1hpgwYSKnnnoGp5xyGrm5uQD0eH0kHQBhy93Z5s0beeSRB3n11f/h9SZRWHQqGVnHkZw0CUF0gWmiGwFCoQ6CwRbUcCeq5o/OAxNBlLEoSbhcJdjsmdFnRY2uFQKCICOKCpJo4PVuZsvmR6ive405cybzy1/+Zo/gsqW9k5dffY1tmzdx9IzpnHvuuWiaxsMPP8hf/3ovLa0u8vLOJDdvPi53MYrsiIB8I0ww2Eoo2IauBzBMDQEBWXJgsaVjtaYjyy4EQNM78Xm30tb6KbU179HVtZHs7GQWLTqBiy++jNmzZ39h0dmuHh9rNm/rtx+MHtDxYfv2rfzpT3/gxZfewDAKyS84mcKC43GnjEKWnGCaGKaKrgfQtAC63ouuR1LjBUFEkmyIohVFcSLLTgRkDNTI9wyV3t4m2lo30tz0EX7fWqYfNZbzzr2YxUvmk5Vp38d9LbbXRP67rq6ORx99lKuvvnpXRocJ67ftoNPrx26z0dXRQcX2Taxa/hlr1tTQ2ARu9xgyMmaSmjaOpKQSBFGOEzyCIEadZb3Ps2eAqUdJDxVRtCBJFgRBiZDaSFHCvRevt46OtvV0dHyGQBUFhRLHHTuTk085lbSMXF559XVGjZ+IxWrtn25sGIwqKqAwLztBAOyHef29kTKvIXqrD5cFsIsAUKivreYvf/gdV133PTKzc+KlWX3NZrPyxCMP4XA4ueLqawgHQ8MCQVEUmXHEBFI9KSiKwkcffURra2u/SHB5TR2BYBBZkvn0k494/ZWX476JJzWViy+9goLCwkiPel3H7XYzbcoURpUUs3Pndvz+XhqaW2jv7qG5sYmK7Vv479NPY4tmC1RUVLBhw4ZopDbi7xiGSUiNAGVV09A1DVXXo9lokRaxkijR2NTIO2+9yZqVKwmHd13nqaedzuWXX44iS4OI/GFNEAiGQtQ3tURE5BAQRAFFtmCYBh+9/y7vvvVmXPOgr9ntdoqLiykpG0VJaRkZWdlRYi3SAjAiCqjHCXUx2irQMIz4nmqYBmVFhbgHEAAHel3WNI0JEyYwduxYtm3bxpYtW0YU+d/TCFqtVmpqavj9735HZWVlv/dmzZnL8UtOwJOaSqYnmWS3K57qvycyxTRNHnzwQV566SUkSeLYeQuYO28+SUlJhKIdLNwuJzarhY62Vlqam9m6ZQsVFZU0NtTjH6Z0JDMzk5/85CeMHj060QUgYQkC4Iuwzh4vVbUNdHT3xBlbSZZYvXw1jz38CJUVXeQXnkFxyZk4nXmYRiTqFmHIm+nxbqO7cwNeXzm6FkAUrdG65AycrkIsllQEQUY3QkiiBVlxRyJDCBiGiqp24ffX0eurRdO9gIDVlkVq2jSSk8bidBYiSpYBZICAIFgQBIFgsIXmxg9pbnoVu6OZWXNmMG/RyRQUFGO1RkoDCrIz96k0oDcY4rU33sRqd5DiSdulxmzC5HFle90PfceOrdx//9955ZX36A3kkJu3iJycOThdxciyDTPqNO4iVgQMQyMYaMbvr8br3UEg0Ew42Iam+TCijqaJEauyQFZcWK0ZOOy5uNyluJPG4XaXAia9/nKam9+kqf4FkpNDnH/BJVx22TfJzs7eLTu9fssO2rq6d0U2dIPCvGxGF48slT4QCPDEE//hgQcepq5OJjf/FPILFuNy5iOIkbmghnvw+Srp6txAd/cW/P4qgsE2dK0XE5AlKwhSBEgIMiZGNAIuIIoyFmsKbtcoMrOPIylpPBaLO5oebsTiCVGHRo78nuqno30z7W3vkpfbzPe+dwmLF5806NxD4TBrNm8jEFLp9fXw2Qfv4UpKiqiDT5jEovnHkeRy7HEMgkGVN998h//851E+/3wthpFFdu5ccnJm404qw2JJjmxsptGHxIhle5hRgq2bcLCNkNpJKNSBGu7ANA0k0YYgWpFlO4riQlGSUCwpWCweFEsSkmiNE0oQwjTbCAV30N21lNaWZbhcGieeeAIXX3w5xcUHr9f59u2b+dtf7+Gtt5ciyRMpKT2H9PRjgSRC4Q583nK83p14veUYWgBJsUdJPykyBrpKWO0mFGpFV3sRRBmbPYeMzNkkucdgd+QginJ0/KLqxKIFURDo7FjH+nV/JhRcxc9//lOuv/6GYc+zo9vLb37zG97836s8/fTTeDwebrn5e7z97mrKRl1Lccm52GzpmKZOKNSB31dFV+d6OtrXEFY7EfrMU8NUUdUewqEebPYMPJ4jyMyeT3LyRCTJHn3me/H1bKG29g2qq17DMBqZN+84rrvu+yxZsuSg7wGhsMrqTVsIBMORqJ5hMq6smNysdILBAH/721389a//RjPGMnr0JWRlH4PVkgoIhEJtdPdsobtrA91d29D13ujaLMafTUGUMQwVzMj6abWlk5o6nRTPZKzW1OjzacbX9ECgjbq6D2moewuPx+SkE+fy7SvPY1TZ3glRxnzZmL8eCoV48sknOfHEE+NrnmaYrN28nerKct575zXef/s92tsFPGnzGT36cpJTihFFOf4MRggNGTBQVT+B3gYCgQaCgWaCwWbC4a7IZxDRjRCGofXJihMwDR1RtOBw5uJ2jyYpaRxOVyGS6CQYaqGzcwMdbZ+hqpsYN9aOSZiZsxcyd/4iVF1FDavxCJ3dZmHaxHFYLZZ9vvdfdwIAoLPby+pNW9ENIy7cNpIsAElWaKqv4/e//T++dc13KSwuJhzuryYviRH9o/vu+TNTp03nzHPPIxwaum+8ruuR0sIxZdjtdgRB4IMPPqC7u7sfOVFRU4evN4AkiYiixGeffMz/XnkpTgLk5OZx2be+TXKKB13T0KPt8jIz0smIKvTbrBaa2tr5dOlnWEW4//77I+RnSwsrV66MAn0dn9+PrzdAMBTt3W7o0efKHBAVjijA+/1+Vq9YzvvvvE0gsAvoHTH1SC657AqcDjupKUk4bLY9kwCCQCAYoqm1jWAwEuzQdZ3tW7fw+aefUlVZ0Y9wkSSJMWPGcNRRR3HkkUdSXFxEY2sn3d6eiHidbvQ7tgAoViuYJj093QR6A6SmpcbLKr4IAsAwDNxuN/PmzaO9vZ1ly5bFM4n2F/xXV1fz29/8hrqoXgJEsidOPOU0jpk9B4fDTm5mOrYB5OLuwL+u69xzzz289957ZGZlc9qZZzF23HhUXUOLpu/n5WTT1dHG008/zepVqwiGQhFfzDB3e96TJk3ixz/+MW63O64VliAAEva1IwDC4bBpmuZe9Q7d6wi3blBV30BNYzOGZiBKEVX1gL+XJx9/nNdf+YwUzxxGj7mYpKSSODgVRRG/v5762lfxencgIOFyl5LimYTdnoPDWYgsO+IL7EhKAMzoxYfD3fj9tfR0b6enZyvhUAcWSwrJKZNITZuG3Z476BiCICGKFnTdT1vrCurrXkAUtjPj6AksOvEUSkeNx2azkZmaTHZ62l4rxFfXN7KzqrZfCp4kSUwdP3rEkVJN03jkkYe4776n8PWOoqj4DNLSjkCW7VGnUhuwGQpomo9wqJNQqCUeRZJlF5LsjEbTlDgwMk0NXQuhaV7C4Q5CoW40zUsw2Ewo2I7TVUh2zmJcriIEJAyjE5/vA9pbX8Bq6+Hccy7iggsuGrYDwaD+5dFIxaQxZaR5kvcQ7V7Nb377R1au9JJfcBa5efOxWpMxjEjE1jBUWls+prH+Lfz+agxTw2JJwWbLxu0uxu4swGbLxKIkI0l2RMm6CxAaGroeRFU7CPQ209tbQzjUhSQ7cLvLSE6eiM2eGQWFA+eNgCgqmKZAV9d2/N7Xufii8Vx55UV9UrgjtmF7OS1tHciyzMqlH9He0kJR2WiOmD6dKWNH7bYrgqrqPP/8W/zrwUfYuKEWT+pRFBWfGC2fcURS2aOk2kDiRdO89PprCQSaUMPd6EYAXQ9GapRlR0RkU7YjALoeRtf8qHpvPPoqAJLsxG7PIylpNE5XAbLsjERGRRlZErFYfOjqRoKBD7DZmpkxYwann342eXkHTvW/va2Z++7/K88++wGScjQlJefgco1FN6CnZzsdbZ/j99eiql4kyU5q2pEkJ4+PAvrYPBcGjI9Gb28Dvb31aKoPwwgBAnZHLk5nIYri6nPPBSTJiqGHKN/5BJs3/YFLLjmbP//57iF1MTq9Pq655lr83Z3ccsvN/PCHP6C9I4fJU35JcvK4eKS/q3M9wUAThqmhKMnY7VlYrRlY7ZkosisKgkENd+PzV9HZsYbmxvfpDTSRnj6T0rLLcblLMU0DUbQgiCKhYAuNDe+yfet/CAa3ceaZp/HTn/6yX8u6g2Hrtu6graMLURARJZFjph3B1k1r+OlPfsWGTSJjx32LzKwZiKKCYaj0dG2lvuF12ttWYBhhXK4ysrPn43AVYLGkIskOJNGCIEiR51TzY5oGmh5AVbsI9DagaQFkxUVS0jhcrsL4MxDJGLCiqn7a2tZRUf4iprGByy69iBtuuAaPZ9/EA7u7u9m8eTNjx44lNTUVw9B5/uUXeOTfD7Nlcy2qWkxh0enk5B6LzZaBYYSipPOueRQOdeD3V9LTvY1gsA1RUlAUNxZLWqRsSVKQpUiWQ2StUjCNaGaE7kdTewmFO2hvXY7fX4mq+rAoSaRlHE1u7kkkJY9BECRCoR462lfT2vIqfv9Sjps/m2PnL2H0mPEIkogaVtE1jYLcbMbspVhjggAYbM1t7azfunMQwAsME62MkIsiajjM3Xf+DqvNwSXfvBJZltA0PbJGiyKyLPHGq6+w7LNPuflHP4kL/g0JBk2DIyeMxZOchCAIhMNhli9fTiDaQm0gASAKkYi4JEp88tGHvP7qy3EgN2XqNM658CIkScSIAl/diIgdWmSFdE8KVruNl195lRlHTuGWW25h27ZtlJeX4/X56ezx0uP1EtY0iAPSwQ2AIxF5hV5/L5s2bWDpxx/RUF/X7zOe1FTOPf9CSkeNIqyq2KxWSgrysPQRtxyOAFBVlcqaenTToLG+gVdffoHK8vJ+H8vIyGD27NnMnj2bsrIynE5npNzGMNhRWYPX70McABolWaKrq4sVn39OfV0t7a2tpKal8+1rvoOqhr8wAkDXdY466igyMjL46KOP8Pv9e/RR9wT+LVYr9XV1/PpXv6K2trbfs37mOecxYfIROB128jIzUGQJYwTZGKIYyXS66667eP/995k4eTKnn30uKSmeOE5J9aRQmJPFZ0uXcv8//kFnZycul4tgMDhkZozT6UTTtPj3p06dym9+8xt0XY/6PwkCIGFfQwLAjFhcQTm2+BwoQkDTdbaWV9HU2h5ReBUELBaF+tpaHn/4AepqraSkfZuM9MnR9kdav8UvHO4mGGhCkp04nflIki1ev6/rWlzlc9ffuziAIchjJCmiAIogIIkyIGKiEQy00euvwecrxzBUMrPm43BkxyO/schuJEVaRBQjmQJdnZuoqXkJPbyGI6YWcPpZ5zB24iRkSSQnI53M9NR+TP9unUavj7Wbt8fr+QzDxOmwc+TEsVhGUH8ZDof5x/1/5dXXtqNYLyLFMz6aVjecMq6ApvkxjCCCoETrvpV4vR1xoGgOyP4WiJQJCPHol2kahEJddHdvBtMkNW0mpgl2u4zFYsVqDeG0r8XvfwdFVjn99DOYO3fuIMX8WGu4zh5vVABJwDBN3HY7UyeOGVaN+vXXX+XXv36MsDafouITURRnNC3YiAgQiSKhUCf1da+i6wGSkibgdBZgsWYgK65opJ+4mKRpGn36zsauWehXH67rIYKBRrzenRhGiKSkcVisqciyc4hs+VhmgIKqqjQ3vcm552TxvetPxWoVBxEgkqxQV13O6s+XMvXo2UyePIUJZUXD1uGuWrWKe+99iI8+biU94xgKCo/H4cglplMwvPMTidYHehtRNS+y5EJWXEhShPzpC4j7EmyRdOdIOrKuByMZA+EOvN5Gev1tWC0yKanjcLvH9CFRItk0brfEmNFdeFLWoIZbGDduAlOnTo2LBu7jisYLzz/Fffc/Q1fPBAoLz8PpKkDTVQw9QHvbCjTNh82WicNRgNWWhihaovNXja575m4ccAlRkKOf19G0QBRY+nG5S6IES3/NCEl20tL0EUs/uZ7jj5/Gww8/RnJyfxDkCwT45je/RWtTAy0t9VhtxzFh0q8QRAuGHkIQRLq7NiEICk5XYSSlPU7GGVFCb9dCJwhinMhQNT9tLZ9RVfE4JjoTJ/0Yd1Jpn+wmCUmyEg53U1vzIhvW3UN6us7vfncn559/wUHbe2rqI5onisWCRRH57MM3eehf75DiuZDCkhMQBTlCKgkinR1rqKp8Gps9k/SMY0hJmYjNlhlNf9cj5ULsypbq/6wK8ZImXQ/h91Xh85aT7JmM3Z456H5FSDqTutq32LLpQcrKUvjtb/8fCxYcuZfZABFld4cj4sy/9tqLPPDAg6xZ0056xvEUFJ5MimdMVHgs3EeLZte5hEKddHVuRBAE7PYcbPasqFaJJXqRUfGUeHaS2ef6Y9odYhxMaXoAv7eCnp4dtLevRJbslJRdjt2eHk0Hj5CdleWP0dT4CjZbB+MmFLL4pLOYMHkKhhHJnJg+aRzOfWyNlyAAdlltQzNbdlYiSGIc6O6pDEBWFCrLd3LPn/9I2agxLDrhZFI8HkRJotfn5aMP3mPl8s+57JtXMuOYWXGBwEFA0DBIcbuYNmkcLpcrovjf08OHH36IpmmR54aISGBFTT3+YIDYWUb0eQRef+VlPvnog/gxFy4+gUVLTsQw9XhUO+o5RNsE2nn/7Te57tprOH7RIl586SXaO7vx+vxoeuw3heG2KGRJQdXC7Ni2jU8/+pCK8p39PmK3O5h21AxmzppNRmYmmqZiGiayLFNamId9BFkAhmFERABDYVqaG/n3Aw/g83mBSPvDJUuWcMwxx5CRkRHtqqLG/WVRFCmvrhuSALBYrGzZsomH//mP+GvFJaV853s/iJcuHGwCQNd10tPTmTVrFqtWraK+vn6Pdf97guqKotDa2spvf/Mbdu7c2YeESeOCiy+huKQUp8NOfnZmHNSPBPxLksR9993Hq6++ylEzj+bMc85DkiRUTUMUBfKys0hyOnjsscd44YUX4hkDAzslDMwo6NslZsKECdx+++1R3a8EAZCwrzEBMJQDM1AILfZw7S0x0OP3s3rDVnRdjwh6SBI1VRW88cpLLFw4l8mTLuTxJ8MEAkHCIZMen0FUAy7i2EZrkSMAQo+mLIEogiQJKDIoioDTKeJ0idhsAhZFQJYFbFYBq1XEahOwWgUsFhGrIiBbBCQRRElAFKJ/I0XU5wEMFcPUIumYfWRJo6LNEFUr1XUBBAVdh+6uKtaueZmNGz+hsKiYBUtOItmTRmqKm/ycLDxJ7kF1f4Oil909bNiyA90wkEQRTdcpyssZcfp7W1sbn3/+CWF1Po8/FURARZLMQempQyy7mGYkUyOyyfelPOgD+AREMTr2ooAkRQgVWRFQZAFZlhAEGdPUsNkMpk93MmmCDatNor3dpKFRYPw4CZejmc1bNpKXl8fYseMGnY0/EGT99p0EAyHUaFuf3t5ePG43Y0cV47Db0VQt4jCJIs3NTbz00nNMmXox9Q1FdHYGME0BBBFdEwirBmrYiNT860YU+IjIMiiKEScJLNbIfLJaRTweieRkCbtNQJIjqcqaBpoea5EFuiGAKWEiYOgamq6jqSqSLEeBNRi6iWFGaoQ1NapyK4q4XTItzStZdHwhEyeW9nv2auqbqKxvIhwM8On7b5OTV8BxC49nfGnhIIegq6uLZ599hp07txEIzqCyahpOVwqaFo4+LyN7TiPjIUbvr4kkmpF/S5H7PXDuqCr09pqoqsku8USJsjIr48cpfPBhPc1NrdgcqTgdyVHCJKLOa5oQDAosXuThO9fYqKurJxAIkJ2dTVJS0l47Pa2tDdx55718vhw8qefiTiqJazlESltChEOd8bT9WOnL/pmAKEoYph4lyoY+Z1l20tmxjg/f/xZLlhzJY489Ea9/jdy/Hk459WS2bN7AkdOuJzvnOgxTiJ97JF1djNZ/G8M6UUMPmYAk2QiF2vH2bMPuyI/oGPQjtmJRcDtebznr195OW8u7/Oznv+DWW285KHuP19/Lhu3l+H0+7rvnT2za4GTCpFtxu3PQtEA/11PTfEiSDUVxR/eg8D7fu1h2jqb5kSTrMPdMQJIs9PY2sHP703R0LOXGG7/HDd8/l73thPfRR+9x9113s259kMyssygoXIzV5sEwwpEyhT243zEtGmJkh2nu53yV45oCaqg7KrJm6UceaVov7W2rcLnTCQfexOf7nLETJ3DKGeeRkZXFxFElpOyjbkeCAOhv5dV17Kzun/G3JzFAxWJh29YtPPnowzQ3NpKTm0d+fgHNzU3ousbpZ53L5KlHRlr9DTNfdF1nwuhScjLT490ZWltb+fjjj+M+iiAIaJrGzuq6fqJ4sYh2IBDgyUf/w87t26LrnMx5F1/ClCnTULXwIPQoCAKffPAuf/z977HYHfz32efRzch+IOyG9ogFAaqqqvj4g/fYunlznMCMkSKTp0zlmNnHUlBYGJnLhonFZkGWZJJcTjxJ7j0C3Zj+QH1TC6Zpkpmexrtvv8XSpUs5+eSTOfroo3G73fF68aGA6+4IgG3btvDQP+6Lv1ZSWsa119+wWwLgQKf/z5o1C5/Px/r16/c78i9JEn6/nz/+8Y+sXrUq/npKiodLrvgmBQVFOBxWCrIyEQeIO8ZAd9/yg9g12+12nn32Gf75z38xeepULrzk0qhAo4ZFUSjKz0MRBe66+y4+/fTTIfZBoU/gRuiHYfrauHHjuOOOO+LERIIASFiCANiDqapKMBjcq9/RdJ3qusZIe7OwikVRCPq6yc3KYNSoUVEnWCesmtTWqrz7np/mJhXdNJElAYdDxO4QkcQIiLLZBNLSZDIzZNLTJNxJIk6niN0mYrUKKErkz6HqOBRj0tva2jhq1hx8gTCyLDG+rASXw7Z7AN/ZxabtFTgcNvz+AE5HpDf03grg9XhNXnqpi3Xrg/R4DWSZKMAfQGRE/y1JYLeJZGbJTJ1ix5MiRRfNyDjGVPpFKUKcSCLIshAF0JHxttvFXeMuCDgdsRugEwqFMA2dzq5uamuaCYfCuJNcWKxWsjLTSU1L7TN+Xj75+DN2VlSxccMW/N6eKGAMoWkqNosVm82KpukEo2SUKIikpnlISXFF6yIlkpNTGDV6FCVlpVgUK4rFgceTTGqqB5tNQIheR2Tjj23ifOHzpqenB7fb3W+zD6tqXAtg55ZNtDY1ctrZ5wzZCnLdunV0d3cze/YxtLRa+McDrXR1qyS5RZKSZJKTRVwukVDIpL09Ei0WpQh5oygCVotASopEVqaCzS4gS5F7qyiR+yvLkc8OdNLCYQOvz8DnM+np0TFMsFoFJk+0kZUls2ZtiP+97qO3V6OyKkwwaJKWJhIImPj9JlarwFXf9nD8Qlc/8mNvHZ/333+PP/zhMcLaKaSmHxfVDVEHgDsh6hiMADgKe+EFjdAk2Ul761JWLLuEv/71Hi677Ir4e4899hjXXXcdp532Y1zJVxEKholFtAeeQt+V2hzwhmH2b6vZ931BECO18brapy+yia5H14SoeJ0iWzHNMJs3/Znqygf58Y//jx//+MaDMu/Xbt7GLTdez87tLmbNuQdZVtB1dUiHbjgnbn/A8J6OF6vFb29bT/nO57jookv44a1zcbn2zALU1VXxxz/ewWuvrSEr53IKi89Ake3oevAAEE9D7OXm8K/F7nXf7LhoLlK07ZbZv7OFIGEavdhsDtxuB8nJtbS0vIxAPeecfxannnDCPq+RTqdzjyT4180276ykpr4p3hlgT1kAMdDb6/dRV1uLt8dLckoKFotMenomDrcbfQihul1A0MRmszLjiPEoshwnZSorK1m9enUcGIqCQCAUZmdVDYZpDjonWVFobmri0X//i/a2NgBS09K47JvfJmuAQKEgCoQCQTZvWMsD/7iflWs2sHTZsmGz+WLrsCIrdPd08+lHH7Hss08J9fE9RVFg7PiJzJozl9JRo5AkCU1TERHIz80myeWMrGu7edaHiHzFyy5FUSQcDT64XC7CUcG54deLw5cA0HWdtLQ0xo0bx4oVK1BVdbfP4Z5W2lhrvb/97W+8+cYb8dcdTicXfeMyRo8Zh8Nuoyg/B4ssR7s3RLBDb28vqqoiCAIulwtFUQiFQjgcDmw2G+vWreOnP/0pWTk5XH3t9VhsVlRVxWpRKCnIR5El/vznP/PJJ5/seZVPEAAJS9iBIwA0TSOwB4Z6+EXIIBAKIUsiNuvu2+b5fBFAocgiihIBIV9WM0wTXTfiirS7H18db28vDpsVf28Ah922x7HanQWDJl6vjiRHEH+8K05fAoBIJoXdHgHxB8oaGxr4+KPPWLZsFe2tbWiaTiAQoqurOxJREATsNitpaWlk52RSVFREckoSyz5fyYb1mxAlMaLEKwjxjTzqyg4JFGMZKn33TIFImprFImO1WUlNS2Xc2NFMmTqZrJxMUpKTSc9Ix+l0HXbzZuP2clrbO9FUlbbWFiZNmsjksaP2/JxpJsGQid0eieYfaguHTNZtCNLVpTN+vJXaWo0PPvQyuszKmWckISv79mxrmsaDDz7Ik0++yOIlvyIpZRKa6o+DHtM04xUsRp+SINPsU9ky0Pkb6P0IffiAvqzZkISBMOh7fVXhLRY77W1Ps3BBIQsWLI4Sn13MmTOHBQsW8Itf3EMwFFV4Nwc4Y32AWxzY9RE5ipB7JtHGBLH1vd93THMX4FdVk1DQpLtHp71Dw+s18PkMOjo0erwiobDAhnX3ULHzfu68899cddXpB5wY++nPfs69977KMXPuITlpFIYRZm+6WZv7SNCIIojCHn4qmv4UKwsIh3vw+fzMmpXDd6/NICNDGmaP01i1ag133fU0m7bYKSi8CLe7CF0PRO5rvBxn8LXsz/DKcmQN7ztVI1lyMZI2sodaLAIup4TNJsRL4SRZQFHA5ZBwuURcbpHkZBlPsoDNJqIoFhQL+P11NNRXUFJSSl5e3j6Dk0QWwMBlx2Tdlh00tbUjR9OYgyPwsQRRRJLlyLIUXQsMXcfcg8CapumUFeVTUpDbj5DZsGED27dv30UAiCLdXh9VdfVDR+gFUGQLG9av4b9PPI6qRsi70WPHcuHFl2Kz23elx0sSnW2t9Hq7ufvuu3nymecpr6xAluRhAaYoSVSU7+TN116hprq63/tFJaXMPvZYxk2YhNViQdM1TMPEME1SU5LJy85EFPZM8plDLOMDI8iRUkxjBOvK4UsAmKbJuHHjaGlpoa2tbbfR/5EsqVarleeefZYHH3ywz/VLnHvhhUyfcTQOm5W0ZDe9fj8VlZXs2LGDtrY2QqEQsiyTnJxMSUkJHo+Hd955h0mTJnH66afT29vLbT/6EZVVVVx7/fcpKi4lGAqhKCIl+fkkuZzcd//9vPrqqyMihnf3mfHjx3P77bcnCICEJQiAvWESe3cjVJOwXRYKhfD7/fEFxu12j7jX6pfVOjo6Wb1yLSuWr2bZspW0t7VHBBoFMV5CoMhKfEwioESPCrFEjiFJYr/+6ZHpaUZrUPdt84v9MUwjIlIkgEWxYHfYycrOYOrUIxg/YQwZGWmkpaeRlZWJoiiHdCwr6xoor6pDitZc5uVkMKa4MPFgxcmtIC+88CJTp05l/PhxezknRggqhZEDM6EvmBvhlyoqKvj973/PH/7wB5KTkw8tUalDb8Cgx6vT3S3Q06Pzj/tv5Z133uHVV9/giCMO3Nx77733uOWWXzJv4Q/Jy5sVydo1+uiMCLvuQ5+W4P0ArihGyo4kKeKjCUIkahnLZtiVbmoiRTNeBCGa1SJFgK8kRo4z8Dcijn/f84g4geGwzhFHWCkuGjojS5JENm5sprLKTUennWAwjKrqaLpJOAxqWEMUQZZNIsuLGimjEgUkOZaBJMRL3CBGVgjxYRElAYdDwKKI8Swep1PEao2QALHyLFEGRYpk8lgsArISLY2LlmvtKzkYCASwWq37HMlPEABDk5mrN22js7sHSZJ2Kwa4v0BQkiTmzToKl6N/N5lly5ZRV1fXDxzWNjbT2d09CNDuIiEiZVDvvf0W7771RhxonXrGWRx73DxUTQUzUh5QU1lBWXEh11z7HR54+BF8Pt+Qx5UkGVUL88mHH/Dxhx/0I0PSMzKYc9w8pk6dht3pjAD/Pmr7SW4XOZnpexb8Owh2uBIApmlit9tJTk6msbFxvyL/ADabjVUrV/Lb3/62XzDw+BNO5KSTT0XVVOqrKli9ahWyLJOXl8eYMWMYO3Ys+fn5pKenk56eTkdHB9dddx0Al19+OTk5OTz55JP8+9//Zv7xizn5tNPj5cb5WRnk5ebwwgsvcN9990XXcTlOOu0LATBp0iR++9vfxt9PEAAJSxAAI7BwOHxQOwZ8NYBwB5s2bcLv98dr6UpLSxk/fvxXcy4Br7/2Fs88/QJVlTWoahhZsfRL8RPFXcJc+/or/WfqvpMCsUXfMAx0w8DQdQRRwKpYcae4GTN2FMcvnMfsY48mMzOjX81a7M/Bfga6vT6q65vQNY2wrlGUm0N2Rlri4foKWV8BqcOTZAlwwQUXUlxczN13333Ajvv3v/+d0tIyTjzxhK/MvYyB4t2RvIaxKzrfV3i3r87OV31vTRAAwz1rIVZv2oo3qrgfCAQ4kEk3JpG2bPnZWUwaWzbo/Q8//JD29vZ4erdhGOysriUQCiHu5kzEqPL/ow8/xPatWwCYeuQ0zrvokki2XlSIb/OGdVx8wflMmDyZRx5/CjAHZRaIkkQg0MtLzz3LhnVr+wG5o2YezcLFS/CkpqFrWr+ovIGJy+6gKD8nnkXxRdvhnAGgKAq6ru8xk2Ekdf8dnZ387Cc/6dfub/KUqVxy+TdpaW7ikw/fJ8nl4qyzzmLx4sWUlQ2eaz09PZx++ul0dHTwi1/8gpSUFGpra7n55puRFQvf+d4NOJwOVFXD7XIyflQpW7du5ec//zk+nw+bzYau6/tFAEyZMoVf//rX8fU3QQAkLEEAjNBp7dtOI2H9raGhgS1btqDrej9xH1EUOeaYY3A4HF+p6w2Hwzxw/8M8898XMQwDi6L027h2AX/gALs0ESd6/zZ7sV8+cESoTtMiLSjz8nMoLS1h4qRxTJw0nsKiAjIy0lAU5Qtx3mPXpxs6siRHzzVhCfvirLq6mptuuonf/OY3B4zAHEnv6QMJzGME3kifz74R7pEK3zocjr1u+zqU+Xy+YcfsQK4rA0mooYipvp8dThh44Hnt6XNWq3WQYnfftTT2Wiw7DIj/Pdx3+r4f+52+7+/utb7/1nUdWZbxeDxkZmbidDr7CXYebPP19rJqw1ZC4XB8/sU6Suw7bR4RVos9AzOOmEDKAFE8Xdd577338Hq9cQJA13V2VtcRCod2K9InCAKCKPLUY/+Jg/Zj5hzL6Wedg65r8ZPYumEd/+///ZLG1lbeff+jQfX/sfXgxeeeYeXyZfHXPZ5U5i9azPQZM5BEaUgBPgOTzFQPuZkZI2oz93UjAIS9LIcY7hiSJHHvvffy1ptvxl9Pz8jgmutvoLuri7dff5UzTj+dm2++mfT0dCCSCdva2kp3dzelpaVYLBYuvvhi3nrrLe68807y8vIQRZFHHnmEp556igu/cRnTps8gFA5hGCaFedmkuJz89Gc/Y/PmzSO+nj0RADNmzOCXv/xlfD4lCICEJQiABAmwX05VeXk5FRUV0drR/guHqqqUlJQwduzYg+7wjmSRHLi5xOrd9mbTAHjoX49y39/+hcWiRK/5iwap5jAiWLtju4U+ddrisPdT07R4n1hFUUhN9VA2qoRj585m7rxZ5OfnDetYx5zVfemckbCEHU62dOlS/H4/ixcv/lKcbwz0x8BMrORIVdU9PosDI/mxEqWhvhcTtTJNk9bWVjIzI6VDfaP7fQFs39eGA6gxh7QvEB4KHPcFwgOBe9/fGe7vkYD1gZ8d+O89EQV7+v3D2URRxGaz4XA4SElJISsrC5fLhdPpPKjkVWe3l9WbtqIbxqD2wXtDBpimic1uJ1bHoukGmakpTJ88ftD5BwIBPvjgA4LBYNwPUDWN8qpawpq6e5V+WaKro5MH7vsrXZ2dAJx/8TeYNn1GpMe9KBAOBGlrbuB3d9zBa2++w9Yd21EG1P9bLBZWr1rJf594LD5Hxk+cxImnnkZmZtZuuxqYmORlZ5GekpwgAA4C+IdI6v9HH33E7+64I348SZL55lVXk5zi4c3XXua2H/2Iiy66CIDu7m6qqqpobm7G6/VSXFzM9OnTufPOO/nRj37Ez372M4499ljC4TBer5cbbrgBUZa5/oabIlklholVUZg0bgwvvfgCD/zzn/t07cOtOXPmzOGnP/0p4WirzAQBkLAEAbCXpkUX5dghvq5AR9d1Nm/eTENDQ7xtzcDNIRZdmDt3Lk6nc6/Jhd2NbczhlWX5C4usAVSUV3L1lTfQ091zGOobmEMD//0geHTdQNc1BARycrMpLimkuKSI6UdN5aijpuFyO4cky3Rd3+vuGQlL2OFkwWDwC42G7g3Qjzl7fUH/ULYn4np3afwDU2jr6+vZvHlzRLW9D3n6RQLcvYmCHajPHaxjHpY+Uh/yRRAELBYLDocDt9tNeno6qampOJ3OA773Nbe1s37rzn4ALqJPEmtBaxIIDK8T4HS6kGQJWZKQRDGiIyNAWWEBGakpgz7v8/l477330HU98gwJAv5gkMrqenTT2O2uqSgKGzds4PFHHooo5rtdXPWd68mIgnZREmltbiY9JYnvfe/7PPTo4/R4e/qBZFmWaW9v59//+gftra0AFBWXcPm3r8ThdKFGQdpwu7wkihQX5OKy2xMEwAHwkgaRPJJEV1cXP/7xj6nvk/o/b+HxHLdgIc888Rjfu/56rr32WlRVZceOHVRVVREKheJ+6fHHH8/mzZuZO3cuCxYs4Pvf/z6qqmKxWPj000/5zW9+w0mnnsaC4xcTinZcyM3KwO2wc9NNN9HQ0HBACYD58+fzox/9KL4XJAiAhCUIgP0EwYezQGDMuRuKER3pEMQcvb5/Wlpa2LhxI52dnYMcAVEUEUWRUCiEoiiEw2HKysqYOnXqXo/tcFGokdSeHiy776//4h/3P3R4ljUc6L3THEx+aZoGJlhtVsZPGMtFF5/LscfNwm63Dwk+BkbtEpkBCdsTuO2bCjyUU9P3vwd2xRjKAfqiNCwO9pgMlWU1ciJP75eZ0/e4I0nj3759O5s3b46Xdh0uYDVhXxwhEAO/drsdp9N5wMsGahqa2VpeGdnbJQlJEpHE6N9SBNwriowsSWjhiLp6SnIysiKjSHL8czECYOA8NQwDr9dLW1sb9fX1dHR09PNbunq81NQ37nGPlWWF115+kU8+/ACA0WPGcuk3v40oiZhGRHSwrrqKxcfPZ/KUI3ni6Wf6dfURoqIYLzzzNKtWLI+Mq8XCN674FmPHjo9kEex2WzaxWa2UFuQhy/Ihew6+ygSAxWrl4Yce4plnnom/lpWdw1XXXc9br7/GkUdM5u9//zs9PT2sXbuW9vb2eCBM13UyMzOZOXMmJ554ImvWrOGuu+4iPT0dTdOwWq3cc889vPH6G1x3ww8oKCxC1TQEASaMLosLDu6TC7gbAmDx4sXcdNNNCQIgYQkC4EAczzAM/H7/YeUoxhaAmMN4oBfUlpYWVq1aRW9vbz8AHosWdHR08MYbb7Bt2zZmz57N/PnzkWWZBQsW7DVo7ptS3vd3YiTDobCrvvU9Vq9aGy87OCRg/lD5vX2Uyg3DjAgfyjLjJ4xl3vxjmbfgWEpLi0fkTH6R4oIJOzjrTex5HGqN2R1oHwrE9/1zsGxgCvrhmMXVdx0/0OvcwFT1kRxb13XWrVtHVVXVbjMNDjfQejjYociQOHDnPVyZWf9SiANdNtDji/hTAwmAoY41El0Nn89HZ2cnTU1NdHd39+vJ3nf+i6JIS3sHDS2tuxcAFEXC4RD//ucD1FRXAbDohBNZtOTEuECbKIrUVlXw3e9cS2NrG59+9nm/9n+xDIInH304Xiozb8HxnHDKqRENgT1MF8M08SS5KcjNPqTz5MtIAIzkSVQUhYqKCn58221x/14QBK749lVousHGtSt59dXXcLlcfPrppwQCgX4kqq7rHHnkkSxfvpwLL7yQa665hrPOOotgMIgoigSDQX74w1vp8fr4/o23oFgtaLqB02Zl/Ogy7rrrLt5+++347x6o9ePUU0/lu9/9boIASFiCADhQjsZwAkZftLM4VBr+gbaKigo2bNjQT+wPiLPQy5cv5+mnn2b79u1ARP349ttvp6CggNLSUiZPnvylnj/PPvMSf7nzrxiGMfKxFg4D4H5QN1QTNaxiGAbpGWksOeF4Lv7GeeTkZA9yhEdCDPR1MgdGcQ9noqBvavaernmo5edwAaN9gf3A6xgI0r/s6c4D59pw9d8HGmgON24Hi7TdV+vt7WXlypW0trZ+Zdq5fhFgXBiijv3LAPpjwF/XDUyTEQuwHqqygaEsEAjQ09NDY2MjXV1d+Hy++Jq6O5JREATqm1tp6+gYtgVgzNdpqK/nn/f9jWAwgCTJXHHV1YwePWaXQrsJvT2d3HDD9/nf2+9SXVMTJwAEMdIh6T8P/YuKnZGSh4LCIi6/8iocdkecENjTnpuTnk5GeuohnVtfNgLAHOFzIEkSf7rzTj744IP465OnTOXcCy/i3//8Bz+69RauvvoaPvjggyGzYAEmT57MpZdeyo4dO7j77rtxuVwYhoEsy1RXV3PjjT9g/MTJXHzp5YTViP+UnZFGuieFW265hcrKygNOAJxzzjlceeWVCQIgYQkC4EAdU1XVL7TWuW/q5hcVkTFNk40bN7Jjx45+zLkoiiiKQn19Pc899xxvv/12P8VaSZL49a9/zeTJkxFFkYULFx52NbUjsfb2Dv78x3t57dW3sNkG9IMWvrrgfm9N0zU0VSMvL5eTT13C4hMWUFZWesA29j0RBMM53QcCXA8V8T7QkevhxMoOBOAcGHkfCqx8lYB9wvbPWltbWbVqFX6/f1CmV/+yC4Oveib+/uoOHK4EQOxemqaJqmn0BoL4egP0BgKke1JITUneYxu1PRECcHDLBlRVpaenh+bmZtrb2/H5fAQCgUGZRSOxqroGenz+QUKEffd6q8XK+++9y+uvvARARmYWV133XZwOZ2SsBNDCYfKzM7n44ot56D+P0d7ZiSRKcZ+ox9vDA3+7l472dgDOPu8Cjp41Jw6MR3LfivJySXI79rsjUIIAYMB5W9iwYQM//9nP4oSO1WrjO9+/gc6OdlYvX8YH739AR2cH69atGxL8W61WfD4f559/PhdccAFXXHFFHCNYLBaWLVvG//3f/3HGOecye85cwqqKaZqUFRXg9/Zw0003xQOLB5IAuPjii7n00ksPQwIg3ic24Ugn7MtFAGjR/qwHO3IXq3v/otPfNU1jxYoVg8T+FEUhFArxySef8OSTT9LYOLh2bvHixVx55ZXY7XbC4TDjxo1j4sSJXyqH7+OPlvLH391FbW0ddodjt+rACds1ZzRNIysnk0XHz+esc0+jpKR4r5zmg3lfhwPXw0WGEsA4YV8nq6ioYOPGjWiaFs/0ilX/BIIh1GinEEkUcTkd8RZ3CTv8CYC+oD8UCtPj8+MPBAgGQ4Q1FdOMRJgLc3NI20cCYLjrH65sIDMzE7fbPaKygb51/M3Nzfh8Pnp7e+NifvtCxgqCgKbplNfUEgqHh97jBVBkhcrycv775ON0dkb0A6bPmMk551+AYUQzIEQRb1cXJ5+wiGOOOYZHHnuc+uYW5CgBIIoSfr+Xf973N1pbWgC46NLLmTJ12h5r/yMg1sRqsVJamIdyCOv/v2wEwN5E/3//+9/zyccfx18/evYczrvwEh7/z7+ZffRM7rnnHt599118Pt+QvrjdbueZZ57hX//6F3/6058YN25cHzLBygsvvMADDzzAN6++mrHjJhIOh1FkifGjy9i2ZQs/uu22gzIG3/rWtzjvvPMO0wyARCQtYV9CAgAOXhZALOooSdIhqb/0er2sWLGiX5qTKIpYLBa2b9/Ok08+yWeffTboeykpKZxzzjmccMIJ2Gy2eB2/zWZj4cKFB79+fj+ds0DUIfrHff/mhedfxtANLBZL4gHaWyJA19BUlcLCQo5fPI85xx7D2HGj+83jocQDDxVBkLCEfZ3NMAzWr18fTz/t59yaJo2t7XR2d6MbJoZhIgiQmpJMXlZG4lk9zAkAMSo8p2oaXp+fbp+fXn8varRvvSAIceBrYlKQk73PGQAjHZM9lQ24XC4kSRq2jj82R/d37omCgD8QoLKmHt00B8N/ARTFQk1VJf998nHaoqr9siJz6RXfZsy48WjR8zEFUHt7uepbV5CXn8/ny5bz7ocfx0UAIzXgAR584H4aouryZ557PsfMnrNb5f/4M2oapCankJ+Teejn1JeEABjp06coCtu2bePHt90Wb5Vntzv4zvduIDk5hQfuu5c//uEPLFiwgM8++2xI8B/LkP3JT35Cc3Mzd999N06nM359VquVBx54gBdeeIHrbvgBhYXFhFQVh9XKhDGjWLlyBb/85S8Pyv267rrrOO200xIlAAlLEAAHejOLtQc8EJkAe6vQfDBsKLE/i8VCT08Pb7/9Ns8++yzd3d2Dvjd//nwuuvBCcvLy6OzqJtnljKT3RBecCRMmMH78+MMK7A+0jRs2cfdd/2DDuo04nM7hUwIP9XzGHBDV3rXd9UtPP8RZC5qmousGKZ5kZs6cztnnnc748WP3mMkyFDmQABoJS9iBM6/Xi9frJTU1lVWrVtHY2DiotaooirR3dlHb2NzvGYx0BBAoKcjD7XAcsnZkCQJgz9YbDNHt9dLj9RNWw7tS5IfYG0xM8nOyD1gGwN4SAjEwZrfbkWUZv98/ojr+/SEAury+oTsARMF/fW0NTz/xOC3NTfHzWHzSycxbsDAyRmbks7qmk52RyrcuvxxJlgkGgzz/0svsqKxCkWQEUUTTVP7z4D+pKC8H4JTTz2De/IWEwiPLAMjLziItJfmQz6svAwGwNyNksVj467338vrrr8dfO3rWHM676GJqqip56rH/8Nhjj+F0Omlubh7SfxFFEa/Xyw9+8AOysrK4/fbb+81ri8XCH//4Rz748ENuuOkWsrJzCKsaKW4XY8qK4+0BD4Z9//vf56STTkoQAAlLEAAH4/ixVkv7SgTYbLYvTNBvdzZQ7C/2Z926dTz66KNs3rx50HfKyso477zzmDVrFoqiUNfYTGtHByX5ubiizqFhGNjtdhYuXHhQI+ojBfoDzdANnnziWR759xP09vYeNnoFhhnthBC7rlgZhqwgyxKyHGmPJMpSZCM2iff+VlUdVVMxdB0hpqh8iAgB3dBRwyrJSW7GjBvNmLGjmTd/DgWF+bjdrhEdYyApkCAEEpawfbfOzk4++eQTZFkepGbdBwNRWddAt9c/SBjOMAxyMtLJzkz/wsBiggDY+9+vrGugx+dDEve8/puY5GVlkZ6acsjuaV9i+2CXPAqAbppU1tTjDwZ2dQGIg/9a/vvkYzQ3NcW/cfySE1i4aHGEhI/W4RumiUWWmDdnFkcffXT8+PX19Tz9/Iv4e3uRJRkTk6cee5RNG9YDsPjEk1i85ETC4fBuAauJiSzJlBbmYbNaEwTAAQL+EMmybW5u5uabb6YnGtiyWCxcfd31FJeWsWXDel59+UV+/4c/kJaaOqxYoyzL1NfX8/3vf5/p06fzs5/9LJ5NEDvmr3/9a1atXs0NN92KJy0VVdXISPNQWljAhx9+yB133HFQ7teNN97IkiVLEgRAwhIEwMHevIYSKhtOgKuvYM2hdhT6iv3JsoyiKLS2tvLCCy/w+uuvDyp1cDgcnHzyyZx99tmkpqaiqiqaplFeU4fP10tOVgY5GWnx6JCmaUyaNImxY8ceNAdrJGB/oNXV1nPPXffx0YdLsTvscdGeQwn6dU0DBNxuJx5PCskpydgdNlJTk0nPSMPpcmFRZCRZQlGUeKkIgKZqhNQQalCjrb2D2tp6KsuraW1tR1c1JEXerdrxwb42NRxpxeRyOjhy+lTOu+AsCgvzSE1L3atj9SUEEmRAwhK2d+b3+3n//fcJh8NDg/9o2nhlTR2BUHhIhXu71UJpYf4h7UmeIAB2D9QaWlpoaescUTabiUlORjqZ6amHVGTuizRJEmnriGS5RMolwKJYIuD98f/0Af+wcPEJHL94SZwA67uvZaanc+apJ5OZ2T9F//PlK3j7vQ+QZAlZknn+mf+yYlmkfHLB8Ys56ZRT90gAGJi4HA5K8nMRBeGQV0sfbgTA/oyHzWbjueee41///Gf8tYmTj+Abl38TURRZtWI57771Bnf87nfkZGcPSwAoisKOHTv4wQ9+wOLFi7nxxhv7EQCKovD/fvlLNm7ezPdvupXklGRUVSM7I43igjw++vAjfnv77Qflft18880sWrQoQQAkLEEAJEajvw0U+7NYLGiaxtKlS3nqqaeorq4e9J2ZM2dy0UUXMXbs2LgYoiiKhFWV8qpaguEwKUluivJydm1ihoHD4WDhwoUoinJAnKl9Afx97Y3X3+Fvd/+Djs5O7HbHIQf+mqrhdjspKS1i/MQx5OZl43a5sFgt2O22fo6aaUTKT3TdiGstxDbniF6DgiRLYILP56eysob1azaxY3s5Xq8fUZKQpUNHduiGgaFr2Ox28vNzOOKIScxfeBwTJo5DUfaubdSXiQwYqh/9wVqWRnrcA1W+tKd7sLtOBF8HMmckXSyGu38xonhPLdVGqlwfDod5//336e3tHbamNRQOU1FdR1jThiQArIpCWVEBipIgAA5LAkAQ6PH5qaprGCGQMslI9ZCblfG1IQAEQUA3DMqrawmGQlgUK40N9Tz95GM0NUTGTQAWLF7C8UtOAJNB2RGarjF31tHMnTNn0POpaRovvfoaGzZvweV08dorL/PR++8CcMTUI7noG5dG2y+au/ENTLLT08jKSDs8dCUOMAGwr2u+eQCuQ9M0fvqTn7B169b4fLjk8iuYfMSRgMl777zNymWf8cc//pGMjIzdEgDbtm3jpptu4oQTTuCGG24YRAD88pe/ZPPmLXz/5ltISo4QADmZ6RTm5bJixQp+/vOfH5T79cMf/pAFCxYkCICEJQiAxGjsspjYX0dHB1arFUVRqKmp4cknn+zXCzVmWVlZXHDBBcyfPx+bzdZvgZNEEV9vL1V1DaiqhtPhoKQwD0kU4hnsmqZxxBFHMHr06L12oPYX7Pe1rq5u/nrPP3jjf28jyzKyrBy6uYmJpmrY7Xamz5jCUTOPICs7K+JUGybhsEp7WwddXd20tLTR3NSC3xdA01RUVcPQjbgSMUT6DYuigMWiYLVacbtdFBUXUFicT1qah7a2Ttau3sDaNRtoaW5DkqVDmvUQy3jQNB2b3caMmUdy2umnMGZMGalpnr3WwoiRAYcbkIwRZQcKcCfs62k2my0ugDZQZX0kJWgxnRnDMPj444/p6ekZNgMgGApRUVOHqumDnifDMHE6bIwqyodEh5TDjgCIkfKarrOzqgZV0/ZYAmCYJqkpSRTkZH+tCB1RFGlp66Cts4umpkb++8TjNDbUx9+fv3ARi088qd+z1nf/slmsnHHqyYweVTbk8bt7enjq2edp7+hk1fJlvPjcM/Fn+ZIrvsXoMWP3KARYnJ9Lktt5WBAzXzQB0L/9qHnAMiAURWHrli38+Mc/jotLZmZlc+3138dqsyJLMm+98TprV63gzjvvJD09fbcEQHl5OTfccAPHHXccP/rRjwYRAH1LAFLT01FVldysDPKys6isrOSWW245oH5uzH70ox8xf/78BAGQsAQBkBiNiMXE/gKBAA6HA7/fz//+9z9eeOEFOjs7ByzqFhYtWsS5555Lbm4u4XB40EYoSRJdPV6q6xswdAOH3UZJQT6yLPVzVJ1OJwsXLowz5bu7JQdjMfz8sxXc/ae/U1Vdg8N5aNv76boOgsDoMcUsPP44SsuKEASB7q4eGuqbqKiopqa6jtaWNrxeP2a033B0W4z8c9f/9acVYsKAZmQDdboclJQWcdTMIxk7bhTBYIgVy1fz2ScraG/vRLEoh1w0MFYiIEkSGZnplJUVM+fYWcyZewypqZ69JgEOFyLgi2oZmrCE7Y2tXLmSzs7OPRAA9RHwKAzWAEhOclOcl0uihdPICIDhWo4e6N/UdZ309HRGjx7Nli1bWLtpM72B0B7LAAzTINkduafm1+ieyrJMbyDIhx9/wrP/fYqW5ub4e3PnLWDJSScjSiKGPlgXQdM1crKzueziC+n1++n1+8nLzx/0ufqGRp598WVqamt49KEHaW9rjYPjy771baxW25Dg0sTEZrVSOsCX+qoTAENlHB3oK7fbbDz88MM89dRTu8ie4xdx8qlnEAqHsCgKb7/5BmtWLuePf7yTjIzhCQBJkmhtbeWGG26gpKSE3/72t3FdsJgPfW9UaPC7P7iRgoIiQuEwOZnpZGeko2kaP/zhD9m5c2eCAEhYwhIEwH5cb2TFjK2kg2BdTOxPEAQURWHjxo08+eSTrFmzZtCxxo0bxyWXXMK0adPiXQ+GWqxFUaSzq4eahkYMw8Rus1BSkIeiKP02LU3TmDp1KmVlZfHXDwbQH2ihUJh/PfAIzz7zIrqmYbFYD+H9iUT909I9HHvcMRw1YyoOh52G+kZWr9rAlk3baW5pxdCNuDjk/goiGaaBrmoIkkRxcT5z5x3D5CMm0NHeyVtvfMCa1RtAEJBE8TCYvxEnVtc0BEGkbFQJ551/FsceN4ukJPeXiggwTRNVVRPgP2GHna1du5bm5uYhS7IEQSCsqlRU1xFS1SEJgIxUD/nZmYkuAHsgAEyIC8YNFFM80L9nmiYlJSVMmDABRVFYs2YNn61YQUdXzx61XwzTJMnlpDg/d2RAMFqPHs8+i84RYcSUkMmhnDqxsppur4+33nqbl154Dq/XG39/znHzWHLiyciKPCT4BwhrKjOOPJJTTlzC2++8S3d3F7OOPnpIEmBnRQWv/O9NPl/6Kc8981R8TixYtITFJ56ErmuDBs7AJN3jIS8r47DJyjhYBMBQe7TJwcmkkUQRVVW57bbb2LFjR5wIuuo736WouARV07AoCh9+8B5LP/qQe+65h9TU1CH939iYhEIhbr75ZkKhEH/5y19wuVz92gC+8MLzPPDAP7n4siuYMvVIgqEQmWmp5GVnYrFYeOihh/jvf/+bIAASlrAEAbB/TseAnS6yKUfF/nbu3InNZqOjo4Pnn3+e1157bRBASUpK4txzz+WEE04gKSkpIlQzxLFji3a8ZVRDRDTHarFQUpiHZQABoOs6SUlJHHfccSiK8oWA/82btnLPXfezds26aHu/Q7fQGWaEFT7iiIksXDSHvPxc2to6+OSjz1m9aj3eHl9cMOhgkg+iJDJhwhgWn7iAvLxsPnx/KW+9+QHhcPig/fa+klmaGhEhKyouZMaM6Rw7bxbjxo7GZh9Zt4a+ZQGmGW+mkCAAEva1ts2bN1NbWzusJosJVNTU4fMHhuwCkJ2RTs4wXQCE6L4z6LWD6NQfrvuwOeD6D5bpus64ceP6tdutra3lw48+oaahcc97EyZOu53SgjxEUdzjPfL1Bunq7o5oRCAgSSKKImNVLLhdjvgxTMPsl1EgRInmgQLIkf+OjlQ04nuw5okoiqiaTmNLKy+99CLvvf0WRjS6KwgC8xYez8JFS5BledioL4CqaVx83jnkZGfzwL8fQdVUinJzGDd2DIUFBdgddqxWW5zA37x1G6+89jqPP/ofNm1YFwHNViuXffPbjBo9Jp6K3tcKcrPxJLkPG6LtwBAABbidzmGzYszd+bP7S/wQScmvqKjglltuie/NuXn5XPPd70UIH8PEolhYv34tL/z3Kf7yl7+Qn58/5P2JmaIo3H777SxdupQ///nPjBmz635aLBbWr1/PbbfdxlEzj+G8Cy8iGAqT5HZSWpCHLMtUVFRw6623DhLc3l9LiAAmLEEAfA0IgOEuTxAENFVlxcqVNDc3I8syn376KU888QQ1NTWDPj937lzOP/98Ro8ePWS6/0DwH9sU2jo7qW1oRgAsikxxQT42q2XQeWmaxjHHHIPH4zmo42EYBv996gX+/eBj+P0+bDb7Ib0/umEgigILj5/LcfNnYbUqrF61kTdee4f29g4UxXLQWx/1JQLUsEpyipvjF81j1pyj2LhxGy8//z+6u3qQFeXwmtuY6KqGpuu4XC6KSgooyM9j7NjRHD3rKAqLCkZEBJhmJArXlwg42KSAqqoHfFNPWML213bs2EFFRcWwBIAoitQ3tdDW2TUEAWCSk5lOZloqZl+X3Yy52JHormkaGNG09JhWiSRJWC1KXIvg67QXH0zwX1payhFHHNFvX+7p6eGDDz9kR2U1wVBot2VekXRzG6WFeciStFt/orW9k6bWNgzTGEDtRN5XJBlBkiCmTzEAgAlRsVpRjGQPSqKEIovIsozVYsGiyFgUZURExF6BV0HAME16/L3U1Dfw8gvPs+Lzz+LvW202Fp94MrNmz8HAhN3U3Mfa8139rcuprKrm1dffRJQlBMBhs5OemkJaqoeU5CQ8nlTSUlNJTklhR0UFjz/5NA/8/W90dXZEQHJZGZd+89tYLTYMQ48fX5FlSosKsA4IpHxpCQAh8mzEMgCGuqaDBf77znyr1corr7zC3//+9/hr8xYczymnn0kwFMSiKEiyzCcffchLzz3Dj3/8Y4477rjdEvlWq5WXXnqJ+++/n6uuuopzzjknvu+LokgwGOSWW26mtbWd62+8mZRUD7IgRIVUFWRZ5k9/+hPvvffeAb3uq6++mrPOOitBACQsQQB8Za8xhmSG2KxjYn9dXV2oqsrTTz/Niy++OGiBLSgo4OKLL2bOnDlIkrRbtnMgayuKEaegrrEFQQBJlijOz8Vptw9JABx99NGkpqYetPFoaGjknr/cx4fvf4LtMGjvp0dFmU46eQFz580iFArx7tsf8+EHSwEOWdRdN3RAYObMKZx06mLaWtt55qmXaWpqRlEsh+Vcj3VMME0DURBJS0/ltDNO5vwLz8LpdO6RBBg4f2MEwMEkBVRVHZFIW8IS9kVZdXU1W7duRZblIdbzCPCqbWikua0dURAHdS9QLBGQZhoxuEJUdsSMuNtmRKDUwESIyJEgAKIk4klOIjsjA6vV0q+LSYIA2HvTNI38/HymT5/eT88hHA6zefNmampqqKpvpMfr260OgImJRVEoLcwflLnXd9/XDYPyqloCoeF1BUZSsW32YwZ25UkIAoiCiM1qIT87C5vNekDGUxRFgqEQbV09VFRU8upLL7Bty+b4+6lpaZx82hmMnzgJWRKxWa10e73DkiaqrpGfm8dlF13AMy+8yI6KCpToPm6YkdR2i2LB5bTjtNtxOuy4nE48Hg8dXd089fR/efw/D8fn/pKTTmH+8YuibYAjJRme5CQKcrIOq7m9LwTAd763SxW/bwnAIJ2Mgwz8d52nhTvvvDMOtgVB4PJvX8W48RMxTANFEnjz9f/h83rJz8vnxBNPICsra7fZILIsU11dzY033khZWRm33357PwLLZrPx5JNP8sgjjzB33gJOPeNMwqpKcX4OyW43kiRRXl7ObbfdRm9vb7924ftj5557Lt/+9rcTBEDCEgTA1wX8xxaP5uZmVq1eTSAQQFEUnnnmGR579NFBoOjkk0/mjDPOICMjY9h0/+HAf+y1ptY2mlraI9EiAYryckkeQrk2HA4za9asg0YAvPPW+9xz9/20t7Uf8vZ+sQXcMA1OOnURCxbMobWljRee/x/btuxEUZRDLlRnYqKFVUaPLeWc809HEASeefJFdu6sPGxJgL5zP9JFQGP06FIWLJzH4hMXkJOTvddEQP97duBJAU3TvpCSly+DRVpVWhID8QVb34yuxsZG1q9fP4gAEEWR9vZ2Hn74YbZt3w4YkVUitieYkZTuSITf3KODGtGIiUR6BVEEU0IUJTwpyZSVlXH66aeTkZHxlSIBvihXQ9d1UlJSmDVrFjbbrpKopqYmNm3ahM/nIxRWI915NHUPGQAgSyIlBfk4bNYhU84FQSAUCke6Q+jaQROONQHD0EnzeCjIydr/8RSgs6uH9q4edu7czsvPP99P6b+opITTzjibnPw8FEkmLzsDu9VKZV0Dvt5exCGuU9VUpk2ZwqyjZ/LvRx8nFA4PIkTM6HMjiiJWiwVFUQgGAtRUVrJs2WesXbMmPu8Lior49jXfQZGViIAcJvk52aQlJx1WOht7TQCUlfGd638wpAbAwFKZLwL8i6JIb28vt956K7W1tQAkJSVz3fd/QFp6Oi0tLbz8/DOMGT2au+66i+LiYtavX09FRcVuuxLFtLB+9atfsXLlSm6//XamTJkSJz4kSaKjo4Obb76Zzq5urrz2OxQVl5CWkhwvpXI4HDz00ENxYcK+3V721ebNm8dtt92WIAASliAAvpLXNwz4Ly8vZ8PGjeiGgSxJGIbBn+68k08//bTfYviDH/yAE044gXA4jK7r8f6osY1rJH29BUGgvqmZ1o6uuDhQUV4OKUnufo5drCZ69uzZB7wEoKe7h7/d+wD/e+0tJEk6pO39+jkKqsrCRXM5+dRFNDQ088xTL1NTXYtisRxWDbTC4TA5OVmcf/GZpKQk8/STL7Bty47DngSIj3M4jGGaZGSmM3PmNE46ZQlTpk7eZxJgJKRAggDYBwdSELG37ETsbgNBJmFf1EahESg6Ak2JAMX29nZWrlwZ78jST8+lvZ1HHnmEnTt30tkloKlCH286AmqEOMTp68IP7YZHji0hIOJO0rBaITk5mbLSUk4//XQyMzMTBMBemmEYWK1WZs+eTXJycvy1rVu3RtTETZPeYIjaxmbCqjqivUYQBEoK83A57EO2nBMFAV8gSFVtPbph7PGYEVBnDPyRIQH14O+aKJJMaWE+1iFKCffGWtraaevuoa66micefYTurq74e5OPmMIpZ5yJx5OK2+UkK82DLEuAgK+3l4rquqH3S03l7FNPIayG+d9b7wydxScIyJIEgkBHezsb1q9jw9o11NfVDvroscfN58RTTo2DZIsczcawKIeVZsZuCQCrle3btvLg/X/fKwLgQIL/Pc0sRVGorq7mpptuiqfojx47jqu+811aW5p5+MF/MmfWMTz88CO43W7a29tZHQ2i7clXsFqtfPLJJ/z2t79l/vz53HrrrXFfGiJZAE899RQPP/wwRSUlXPHtq0lJSaYkPxfDMEhPT8flcnHJJZewZcuWAzIe06dP51e/+lU8ozdBACQsQQB8hcG/aZps2LCBHeXlkZTLaF25oii8+uqr3H/fff2+c8UVV3DBBRcQCoUwTROn00lGRgY9PT3xsgExWrM3LBEgQE19E51d3fG0p8K8HDzJSf0cO8Mw0DTtgBMAy5ev4u4//Z2KiqpD3t5vIKg+ctpkLvrG2bS2tPPEY8/RUN942IJqTVXxpKVwwUVnkZWTyROPPsf2rV8eEgAirZk0VcXtdnPc/DnMm38sEyaOIyUl+YAQAft8XppGb2+gr2/4tTObzYYQ9CFv+gQCPiDhdHyBDwbBIxegWl0AdHd3s2LFikFibPTZMxpbGnnxFRvtrS4k2Rhi7zH6MWTmcPsDAoIgousSxxxTQ2ZmgMK8QtJTPfE2mV/lfflgHF8QBGbMmEFOTg4AoVCItWvXUl9fj6IoeP1+auoa0Qx9j8K3Zp8Mj9LCfJL6KJj3nxcCXl8vVXUNe7xGExOrxUpaShKCIGIYOmFNpzcQJBgMYZgjO6+CnGxSU5KGJCRGQmiENY2KqlpUXef5Z55mzcoVQCRle9bc4zh+0WKsVhtZ6alkpHrQ+7RvEwWBmsYmOrq6+52riYmAwIXnncOyFavYXr4znv7f97cFQaCxsYG1q1exacN6Ojs6Bp1jTl4e04+ayZFHHYXNaouUxJgGnuRkCnKy+SLabJp7AaAHEQBCvClxPANgJARAkss5aI7tDxEw0u3UarXy0Ucfcccdd8RfO/6EE5m/4Hj+fs9dlBQV8uprr5GcnEx9fT3r168nFArtNvrfd2xi3QUqKir4/e9/z4QJE+JZAKIo4vP5+OlPf0plZSUnnnoaxy9aQl5WBk6HHVEUmT9/PkuXLuW8886jp6dnv+/t5MmTueOOO9B1Pd7JK0EAJCxBAHzZryvqdPXdcFRVZcWKFTQ0NiJJUj/HThJFenp6+MUvfkFFRUX89fz8fO644w6Sk5PjC/KoUaMYM2YMPT091NfX09TUhM/nixxnmIWwur6R7h4voihimCaFudmkpiT3W+R1XUfX9QNGAITDYf794KM8/dQLaGEVi9V62NwfTdPIyEzjqmsuRZIlHn7wKaqrag/71GdNU0lOSeaSy84lLS2Vxx/5L+XlVV8qEgAiugtqOIzVZqWgIJcZM6ez5ITjKSouGHQPvggSIEEARAgApWo9NFR8PQfgkD4QOsHJx8UJAL/fz/Lly+NZXwPBi27o1DTU8e67mbS1uZEkY8BnJGTZ1mcLMod0yWPPlKr1omkwe1YV6Rl+UpJSyc/O2Cdg93UG/7F9dNKkSYwePRqItNJdtWoVLS0tWBSFQChERXU9qqHtNtoeA/6yJONyOnDYbSS7XcNqAOwNAWBg4nY4KS3M26XuHz33QDBEU1v7sOn18WOYJrmZ6WSkpe7TuAqCgKppVNbU0xsI8Pgj/2bH9m0AHD1rDmeeey6GYaDrOg6bneyMNFxORzyQIggQCITYWV2LEc96iWjnpHlSWThvLq+8/iZhNdw/6CCAJEp8vvRT3n7zdQK9vf3OS1EUSspGMXXadEaPHUuSO2kQEfZFqf+bewmoD1QbwBgBIAwqm9i7Z2hvdxGr1cpjjz3G448/Hn/tG9/8Nju3b6N8+zY++ugjxowZw44dO9i6dStGVL9pb/a49957jz/84Q8cffTR/PSnP+1XKmW1Wvl06VJ+d8cdWG02Lrn8CmZMn05WehrhcJhRo0YxefJkHn74Ya6++urd6g6MxBIZAAlLEABfRQJgAPj3er0sX7GCzs7OeFrnQLNYLLz26qv91E8BfnDjjZywZEk8C0AQBI488kjyo/1sg8Eg9fX11NXV0d3dHV8U+y7eVXUN9Hj9iGJEabcgN4u0lJT4pmbG1aCNA0IAbN26g3vvuo9VK9bicDkOaXu/4e7NhZecxRFTJ/DYI8+ydvUGrIcRQbEnsJqWkcrl37wQWZJ46F9P0NbWfsDFCg+U0M3uHRwTTVXRdZ3k5GTGTxjLuPGjycrKJCk5CbfbTW5uDiWlRYPO60CP6de5BEAURZxt1VC9ObEpHQYEQDAYZMWKFQSDwUGkrigK9Hj91DbWs3RpHq2t/QkA0zRQFBcpSaUIgrQbKLGLBPD6avH62pk9u4b0jF6sip3Swnyk3SjOJwiAocF/Tk4ORx99NIIgxImczs5OFCVSP15RW4+/NzCsSJ+BCaaJ1WIhOcmNJ8mN3WqNdGbYja6DKAr0+Hqpqq3f43kamLjsdorycuLq+4IgxAMTuq5T29i8W6E9wzTISkslOzNjnwkATdepqKkjFFZ59uknWbd6FQCLTjiRJSeeHK+NNjAREUhyu/AkJ+F02JElEVEQqW1qprW9A0GI0BWqpjFm1ChSU1P4fPlKlAH+VqTO3M8//nYvba2t8dedLhfjJkxk2lEzyC8oxGq1og8A/hExRgtlRfkosnyQ98a9B9j7TwCYlBUV9MsAGIoE2JtnaW92a5vNxp133sk777wDgMvlYuGiJbzy8ovcf999XHnllWzdupWtW7futgR2d/ucruv83//9H2vXruWHP/whCxcujJcbxDJDHn7kUZ5/7hlycvO45PIrmDVzBrIQ6ZBx7LHHkpyczH333ceNN964W0HuPdmiRYu4+eabExoACUsQAF+Za4qsjoPE/np7e4cF/xDJAvD5fPzs5z+norw8/voRRxzBL375SyxRByImSDJz5sx4fSFE6tmbmpqora2lo6MDTdPii2RVXSM9vojSsGFECQDPgScATNPkuWde5J8PPIrf68Vmtx929yccDnP0MdM478IzeOvND3j79fdRvmSiZ6oapri4kCuuvIi62kaeePRZQqHwfrcqFKLz1zANdD1SHyfJMrIg71E9en9FcXRDR4/rW0jI0XZTLreLUaPLOOXUJSxcOA9Jlg44CfB1JQAURUGSJJSGbVC99eD3XUzYiAgATdNYtmwZvb29QxIA7R1dNLQ28flnhbS2ugYQACaybCMlaRSSaMHE2MNzK+LvbaK7pzFOACiSldKigoMOcg4HAiAWARykej6gD/qeAEdk3GXmzp1LUlISvb29LF++nI6ODmRZRhQE6ptbae3sHBRZjwvSCSI2m5WUpCQ8Sa5IG0jTHFGkeW8JALvVyrFHz6C0tJRAIEBFRQVdXV2R1n+SSLfXR1Vtw/DHMA0yUlPJzdoPAkDTKa+pwzBMXnvlJT758H0AZh4zizPPOR/d0PohYSPaXcZqteB2Okh2uxFFkaraekzTQDdMNF1jdFkZnV3dtLW3DeoyFBN8u/+vd+PzRrIiZ805lqNnzyEtLQNJEvvVhg+85jSPh/ysjIOe/L+3xxcOEgEwFAlwMIiAGPi+7bbb2Lw5QkTn5ORgtVrJysri448/pq6ujjVr1uxR/6r/e7tEUSPjYGHTpk38+Mc/Jisri9/97nd4PJFyp8j8EGnt6OLRxx7n/bffJL+wiOu/fwOTx48lGAzi8XiYPXs2iqLwxBNPcNVVV+11K+GYr7R48WJuuummBAGQsAQB8FVyMoYS+5NGAM5kWeHVV1/hH/ff3+c1mZ//4hfMmDFjFyOu62RmZnLUUUcNSpk2DIO2tjbq6upobW0lFApRXd/YPwMg58ATAI2NTdxz9/188O7H2Oy2Q97eb0igp2ukpnm45trLaO/o5N//fBJ9BHWYhyUJEA4zc9Y0zj3/dN5/9xPeeP29fcoC6Bvp1wwdTVNRNTWe/itLElarFVGUBjmusY1MN3VMIyJMeSDGMkY2mKYZ0aZQVQRBYPzEcZx/wdksXrwAu+PAkUtfRwLAZrOBoaHUbYP6HdFecAnwfzgQAKZpsnz5crq7uweRxoIg0NLeQUt7y5AEQOwJcjkLcDgyMQ1jt3BiKALAItsoLcxH/goSALE1JQbqFUXBYrHgcDii61x/cGEYBqFQiO7ubgKBwLDgQ9d1SktLmTJlCj6fj9WrV9Pe3o4kSYiiSEdXN3WNzUOudRbFgtNhI8nlwu10xDMv9mbs94YA0AydnMxMLr/4wnhpXjAY5JNPPsHn8yHLEj5/gIqa+mHnjmEapHs85GVn7j8BYJq8/87bvPX6awCMHT+BSy6/YlCLy4GEiSRK2GxWDMMk2eWg2+snGA6RnpZOR0fHkN+VZZnmlmYe+Nu99Pr9OJ0uvvuDG0nPyCQczbIc/pyhMC+HZJfroKb/7+uRRVGkYl8JAAEMY2gCYDgSIHaue3v/h+sA4PP5uPXWW6mvj8xhl8tFKBTigQce4Oyzz+b9998fRMwNBP2abhAKh9H0iF8nSQKSIGKxKHEyoG+pwQknnMD1118fXxdi7TQra+t543//4+03/kdRSQk333IrY8pK8Pn8ZGVlMW3aNGw2Gy+//DLXXnstzc3NI75+SZLQdZ0lS5Zw4403JgiAhCUIgK/UdQ0j9jcSCwQC/OxnP+uXBXD88cfzgxtv7NeX2TAMxowezYQJEwYRD7H3P/vsM9ra2qhpaI70Go6XAGST1kcDIEYAmKbJ7NmzSUlJ2avrffut97n3rvtob+84LNr77c7xOfucUzhy2mQefOAxKitqIlGWL+Mcw8Q0TM694DSOmDKRhx96kh3bKkZ0PUJEHSga6dcxzIgApBadA0Pt9aIoYbfZkUUpDvp1XY+SBUa8M4XDdvBKPkKhELquM2ZMGeddeDYnnrgId5J7/8kUVd1rFv/LbKIoYtWCyLWboKOFXZ3gE3Y4EAAAK1eujEePBzq7Dc2ttHe3s2w3BIAgyrjsOVitKYiiEl/nB8ILQRDx+evo8bbGCQCb1UlpYf5XakbE9jhZlklOTiY9PZ3U1FScTmdE/2IP62Zvby8NDQ2Ul5cTDAb77bWxvXfu3Lk4nU4++eQTuru7I+BfEOgNhqisrUcb0J7PxMRmtVGUl4PNaulHUuzLM93j9VFV17Dn9U5TGTdmDBecc1a/19esWUNVVRWKIuPzB6isrR/2XOLR8ANEAHz+6Se89PyzAOQXFPKta67BarHtUYTSME1EQaCsKJ/OHi+dXT3YrFYCw6znsixTW1PDg//4O6FQiKSkJK65/gY8Hs9ua7pNTGw2G6UFecgHsTRmf466zwSAGgIEDMMYlgDYHQlwIIgASZJobW3llltuoSMqyGixWEhOTuajjz6iu7uburq6IddDAF8gSH1jI9WV1Xh9PgRBQFZk0tPSycjMJDnJSVpycrzMRdM0/vSnP/Hpp5/y3e9+l9NPP51gMBj3Y7p6vDQ0t7Lss6W8+Nwz5OTmcsvNNzNhwgT8fj/JyclMnjyZ9PR0tmzZwq233srrr78+4vtkGAYnnHACP/jBDxIEQMISBMBX5Zp2J/a3JwcF08Rmt/PKK69wXx8tALfbze133EFJcTFqNFUptlBNO/JI8vLy4otvrIZvw4YN1NTUIAgCNQ1NdPV44/V+A0UA95UA8Hp9/P3eB3jl5deRZfmwae83JPhXVUaNKeGbV17C50tX8MpLbx7W5zuia9I10tJTIxkN7Z08/OBTg5zMgZulaZroho6ma33AO1HF4N2b1WJBEMT49wzDHPQ9h92BIip7LBnYHwuHw2iaSmlpKeddeBZnnHkKjv3ICPi6EACxfuRKRx1UbYagDwSJhB1+BMD69etpbGwcBEwFQaCusZlOb+duCIBdUEKSHFgtSVgUF7JsRxDkXUJqgKYH6eqpIBxWmT27mrT0XjLTMsnOSPvKdAAwTRNJksjNzaWwsBCPxzMsKR8B4AYgxKOCMYAvCALLli2jpaWlX2mGYRg4nU5mz57N1q1bqa6uRpZlhChAHapnfayVXlF+Lk6HfVjA1VekL9bmcShvaW8IAE3XKCkq4uLzz+13HZ9//nl0zo2MAEhNSaEgJ2u/NADKq+swDIMN69fx5KOPYJom6ekZXPXd63G53Bh7EFozTJNkt4uivBx6gyGqa+sxTIPhTklRFHbs2M4j/3oATdNI8Xi4+rrvkZKSslsCwMAkM81DTkbGIa/9P1QEwMEgAoQ+96WqqopbbrmlXzbeEUccwV/+8hd6e3sH3R9RENAMgx0VVXzw/vusW7OK7u5uQsFQNKXfxOF0MnXaUcydN4+S4mKyUj0IohDPzPnpT3/KunXr+MUvfsExxxyDqqrxTICm1nY6e7xs3riBJx/7D3abjeuv/x5z5x4b12cpLS1l/Pjx6LrOXXfdxe23305Xn1aWu7NTTjmF66+//mtPAAyV1ZGwBAHwpTOv1xsR/enq2m29/7APAQKSJOL3+7ntttuorq6Ov3/hhRdy2WWXxduWmDHHY4AegGEYbNiwgcrKSmRZQhBEquvr6fL2RMoQTJOC3ByS3ftHAKxauZa7/vw3du6oOKza+w29KUXG9tIrziMnL5t//O1h2ts7D7hw3qGwcDjMcfNmcdpZJ/LMky+yYvmaQV0BBARMDDRdI6yqaLq2z+XeQ5EFsWMpsoLNavvC5oKqhgmHNSZMGMv5F57NkhOPx+l07MNxvvoEgCiK2I0gYv0OaGsAXU+k/B/GBEAMSA4iABCobWzCF/Dx+WfFtLS4B7UB7AsYiRPDEpJkQZYdWBQ3FsWNLNnwB5ro8dVi6BKz51RQVKiTn52HFG0Z+2XfmocSzgXw+Xx0dnXR2tpGZ1c3Xr+fnp4e1KjwmyiKpKUkk+x2xffGWKvciO9ixNPAdV0nLy+PrKyseI1y7Jnr6OqmpqFxECAzgbzsTNL7lOINAsiaRiAUjpAQmCiShN1mi7fzHUQA+HZft98XvKckJXHqiUsoLi4GoKWlJd55QpIkunp81NTvXgPAk5JMYU72PhMAum5QXlOLputUV1bx0D/vRw2HcSclcc313yfVk7pHpXXDNMnJSIuKERo0tbTR1NY+bBaaoihs2riBxx5+CNM0SU1L4+rvfo8kd9Kwv2US0Wgqys/B7XActPR/8wCs8V8EAbAnEiB2X4b7fD+R7Pj5Wdi6dSu33nprv/swf/58br755kH3RhAEwqrGR59+ytNPPEFXZwfjJ01i4sTJuNxuEAR8Xi9rVq1iy6YNZGZlc95FF3PUtCNJTU7CMHRcroiGxA033MDGjRu54oorOPfcc/v5ww0tbfj8vVSU7+Tx/zyC3+flG9/4Bueee24ctHs8HsaPH09mZiYfffQRZ555Jt3d3Xu8X2effTZXXXVVggBIEAAJAuDLfi0tLS2sWrUK/x7E/naLrKIPgdVq5fnnn+df//xn/O3c3FzuuOMOPB7PLuAedT6yMjOZMWMGiiyzfuNGKsrLkWUZXTdo7Wino8tHR6dEMKAjyRJjSvLIz5P6tXnqqwGwOwJADav85+EneOKJZwmHwl8K9XxVDTNx0jgu/eb5vPvWx7z95vtfutZ5w260hoHdYeOqay/D0HX+ef+jhMLhfg5ABPiHIin+HJhk79h0lUQRSZKRZRlJlA8JDRTJCNAYM3Y055x7BiedspikvSgN+CoTAKIoIhgqlo5G5KYKCPYmgP+XgACoqKhgx44dgwgAURTZUVFNRdVO1qxKoqNDRhDUiNifaUT/jj6cfVP+zZi2RmQFkGUbVkvEEQ6GOjAMkYkTuxk7OpmS4lI8Hg+SJO3bXnYA7EB1IYlF7seNG4ckyzQ0NFFbX0dbRyc+n59QKBRR3o+ti0KEvjQME4fdxqiigni0sK2tjXVr1zJ9xkwsVit2q4IoiGi6TllZGR0dHXR2dsYJgIgAbwPdXm+/9dgwTZLcTorycgaRpbFz6Oz20tLeQTisxoUcRQRcLid52ZmDBBpFUaTb66WqrmGPBKxhGridLkYV55OdnYOiKDQ0NBAKhSLdAESRlo5OGppbdtsFINntpigvZ5/vi24YlFfXoWoqbW1tPPC3e/H7fNhsNr597XXk5xfECZc9kRmx8zBNk5rGZrp7eoY8d0WxsGb1Sp5+/FEAMrOyuPI738XpGB70Gpi4nU6K83IOKlD5MhEAeyIC+makmrt7vw8BsGHDBn70ox/1+9xpp53GddddFwfJsWMaJqxcs5Z77/oL6enpnH722eTk5PUbR1EQME2oqNjBC888QzAY4MprvsPsoyO+sq7reDweHA4Hv/zlL3njjTdYsmQJ11xzDVarNSIGCTS3ttPt81NTXclTjz5Ke3sbJ598MldeeWW8nl8QBI4//ng+//xzTj755D3OW4BLL72Uiy++OFECkLAEAfBlO/dAMIRhGjhsdqqrK1m/fgOqpg1Sbd4Xk2WZzs5OfnjLLTT1ERf53ve+x0knnRTPAogtdoZhMGrUKERBYPuOHUiSRG9vgMbWFnx+kw0bOti5XcFqLUFWPMyb42L2Me1ourBXBMCO7eXce9f9LF++EofT+aUQz4tF/y/75gVk52Rw/98eprOz+7AUKdx3ABzi2ONmccZZJ/LEo8+xds1GLBYLumkQDocIq+EDAvx3gX4pDg4kUUKI/s/k0D7GajhMWNUoKyvh7HNP49TTTiTFk7LH731VRQAlESzdzciNleDvTqj8f4kIgNraWjZv3jyIAJAkiY8+/YzHH/0PrS2daLoKphZNW99/sygWph45lZNOOomMjAwKCgq+8CwAURQIhSPtQa0Wyz6J4sUAUVhV8Xr9dHm99PYGCKtqJINJEBBEcdhe9zGl/NLC/HjNtyzLLF++nKWffc7Rx86lqKAAj9uFw24nxZNCa5+2crE+9zsra1CHKMsqzM0hJdk9pNhae1c3Tc2taKYx6Pz0aPu9nAHt90RRpL2rm9rGpmGvqe+1OWw2ygrz4yUOsXJFUYx0Cqqqa6DH599tu0KX3U5JQV4EaO0jAVBRXUdIVfF5vTzwt3vp6GhHFAUuueLbTJw4aY9t1mK1+WUFeZFrAFRdp7quMVJ2MeD8FYuF5Z9/xvP/fQqAnNw8vn3ttdhtjmFBr4lJbmYmGWkp/YImhxP43z8CIOJP7gsBsCcSYLg2ggPJPZvVypo1a/jJT37S7/NnnXUWV199dT8CQBRFKmpq+MudfwYBLrviW7jc7sizHT+uEN/qrFYr7W2t/P2eu3C5k7j1hz9kdGkJuh7RMcrIyGDixIk8+uij3HzzzUyZMoWbbroJj8eDqqqIokBTawcdXT001NXy6CMP0dnRwW9+8xumTZtGOBzGNE0WLlzIzTffzL/+9a8Rjdt1113HaaedliAAEpYgAL5M513X1BJh2gWBtpYmOltbSHa7kCRpv9PDDMOkp6cHzTR58fnnee2Vl+PvTZw4kf/3//4fVqt1QH/aXQuqKIp4vT4aW5rp9sm8/foyKna2UFR6MTZ7Goqczdw5GjOPakLXxRETAC88/woP3Pdvenq82A/D9n7DgzuVMWNH8c0rL+LjDz/jtVfe/spE/+P3ztBJTnbzne9+k8bGZh595Bm0/8/eWcfLUZ3//z0z637dNe5CXCDBNUBwCoVSpEiFlkJbKFC+bSlQpUWLhyKF4jQUCRAkRkLck+sue9dl7PfHSu7NvUlulIRfzuuVhs5udndmzpxznvd5ns9HkYnJcVRV26+YLwUORFHEkN7pP3yC/j5BgBxHlhXKyko5Z+6ZnDXnNLJzsnYTf6mEw+Fv3fhqjIewrP0UEI8G/kcYAGhpaWHlypV9agBsrqqhpmY7K5Y76ew0Igoyuq6i6QqiIGGz5SN1s+7UdS35uoquJcYDRY0Sj/vTi3BdNzBkaAflpVZGDBtObm5uMiA8dIvPlDZBu7eLjk4viqZhNVvIcDtxORwYjQZ0TdvjiJP6nA6vl7aOLmJyoh5YENiL8iSdwvw8sj3uHnO6xWLhiy+/5O1332X8hMmMGD6cgoI83A47SrcAJJWSX1XX0Ifwn5kBpSVIkrhTEJ9Q8q+pa0RD6/O3dg+8d7YpbO/0Ut/cusugvftvMBmNDK4o6+H0oOs60Vic1o5OuvyB3V4pTdfJynBTnL/vGgBaMgMgJseJRiM8+egjNDUmyg7mXngxk6ZMRe622bFLAGA2U1lSjCQlSy8EgUg0RnVDIzFZ7gFEjCYTX3y2kLdf/08CxJSVc+U112I2mfsMenV0TAYj5SVFWMymgwLDDtQnflMAYE8gYHfnnLqeFrOZFStWcPvtt/d43+mnn84Pf/jDdJAsCgIxWeHhRx5lyeIvueb6GykoLErU7icFIUUxmT2k6ajJen6rxcqiLz7jtVde5rQzzuT6665NQ0VVVSkoKGDy5Mn873//47zzzqOsrIw77rgjrQ2R6qsa8M6br7Pw4wX8/ve/Z+zYscRiMaxWKyNGjODkk09mw4YNfd6bna/pT3/6U0466aRdA4BgC3rM9y3U6REOcM8/2o4CgEPUQpEIX63egKyqtLU0s2njBgyiiMftIjczA6vVjKbvW+qiKAi0d3ppbGlHlAQ629t59B9/JxQKAondn9tvv50pU6b0yAJIPUqiKODzB2lobiIWN/Pmax+zeVMVI0b/FKs1H6s5E0nKYsL4RiYe04yyEwAAmDZtGi6XK328rbWdv/3lERZ8+AkmiwWDdOQMRjqJus1LvjOXIUMH8ug/nqGpueVbUfvfG3QonDP3dEaNHc7f/vI4DfWNSIZ9X7ynNosNkgGT0YgkGQ7roH9X8Ccej1NYXMjZZ5/BOeeeSW5eTq+FiqZphEKhbx8AiAWxrFkI0lGhvyMNAHR2drJs2bI+1emr6huJxyMsSmkASBoIiUDfbs3D6Sjt8xkVevR5BVkOoagRYjEf0ViYadOrKciPUJxfhNViPqQigKIooqoqjS1ttHm70kFsahq1WkzkZHjwuF0J0L6L35YKLBta2ujw+hJBv9BdE2HPv0VDx2mzUV5c2OfutsVi4euVK3n66WdwOJ3MOG4WAwcOJMPtxm41J8uiJBqaW2jZqR5dQ6cwJ4fc7Mw+d//rm1to93Yh7WLXLx3wdstMSMGD1o4uGlv2DABS35XpcWO1WBCExPwfikQIBsPIqrrHz9DQKSnIJ8vj2qdd8TQAqK0nmnR3mff0U2zbshmA086aw6zZJ/Ra5/R1PcwmMwNKi7HZrDsCRVHAFwhR19iMqqlpmGIymfjk4wXMf/tNAAYMGszl37sKg8GYtMzsDTo8LielhfmHYL1yZAOAvQUB3c/XbDL1CQCmTp3K7bffnq7JNxgMfL1qNff85m5OOuU0Zp1wIrGkfaPb6SA704NBMqQD+3A0SnunF1XT0FSNp594nPbWFh744x8pLipKp+qnbDxHjx7NggULOPPMMxk6dCh33HFHusy1pb2DDq+PTz/+iPnvvM1999/PqJEjicViZGRkEI1GOfPMM3ul/6fKkHa+prfffjszZszYJQBAldHC7ejxIIIgIhokkgNa8uLtKO9K0s0d/19PnO/hGVodBQDfGpSTAm6pfpm6v8KeHnodNA2M9iMDAKR2QrsCQdZtqcLb0cma1V8nU4REdE3HZDSQlenB7XRgMpnSKsB781gkagaDSKKIQZJ4/T+vsGTRl+n3HH/88dyctATssXsgCITCUaobGtAw8MlHK/nys+WMGvcLDEY3dmsudlse8TgcM76WieNb9ggAFn76OX/50yO0NLdgs9mOuM6pqAqFBfn84KYr2bB+My+98Pq3KvV/ZwBQXlnCrFNm89H7C1i7aj1Go2Gf+rkoCBgkA0ajEYO4QzX8SL42sViMgoJ8zpxzGnPPP4vCwoJusEMnGAweBQBH22EDAPx+P8uWLeu1oNZ1qKprIBILsriXC4COy1mOxZzZj5KAlHe2gKpG6fBWM3HiBrJzI+Rk5JCfk3VInvnUufmDIVrbOwhFon0GEFrStcBus5KTmYHbYYedxiVBENBUlbrmVrxJ15teo1t/AICuUZiXS25W5i4DIYvZTEtrGy+8+CLLly8nKzub8RMmMmrUKPJyc3HYrDS0tBIMhXoEY4IgUFlajN1m6TNwrqprIBAK7zIAT+xIG6goKcbcbUdaFAQ6fX7qm/rvR64l+4iQrJVOZEkI/cqS0NEpKyrE43LsNwCIRKMYJAOvvvQiK5Yn+vysE0/itNPP7BcAMBoMDCgroay0lJaWlvRaRhAEOrw+Glta06WARpOJjz74Hx/M/y8Aw0aM5NLLr9jtHFdcmE+my3nQxP8OFAw4UADA6bD3CUMONAjoAQDMZlZ+/TW//OUv08ckSaKsrIx7770Xq9Wazqz524N/Z9myZdz0k59is9tQVI0st5ui/JxECW7qPiUdNHyBIDUNjRgNRlavWsW/nn2KH/zgB5xzzjlp7Z/UvR83bhwlJSU8++yzXHXVVZx33nlcddVVqKpKMBSmsbWd1175N4u++Iy//OUvDBo0iHg8jtPp5IMPPuC+++7rdZ4mk6nPfvy73/2O8ePH7xoAkAjk9ZifWNBLY0MDrZ1eQqEokWiMuCyjqhqqlhDutFrMOO02sjM9ZGe6yfS4MFrMqTrhXjHD0eBVSIyzQrepQdcTFttpsesdTixpQ5bkBq/2/9m1FEURQZJ6BPdqXCYYivTqj5qm73AYY0dJjiSKiElAbpAErM6Mwx8AdBc0+fDjT3jjrXfQdZ38ggKMBgOKqib6RfJ9JqMBp9OBy+HAZrUkFJXZfVaAIAiEI1Fq6huQlYSoiMloYvv2zTzxyCPpSW3IkCH83z33YLHusA5KeepW1SXS6WprYrzw3DwGDvkxDmc5kmTC46oERBRFYMIxtUwY19onADjhhOOR4woPP/QEb7+ZmCSP1JR5OR7npFNnc+LJx/LsUy+zft3Gb136f2oRFItFESSR0885HV9XFx/OX5BOhes3kdV1jEYTZpMZUTiydvv7C4Ri0Ri5ebmcceYpnHfB2ZSUFB0FAEfbYQcAQqEQy5YtSwtMdQ+Eq+oaiMZCfQAAcLsqMZvce6kJINLla2DsuKXk5EZx2d2UHIIdz1Rr7/TS3N6Bqmp7LDlIKfR7XA7ysrOwJMvhRFFAVlTqmlrw+YO7GPv0PUZXOiAJAhWlxditlt0u8gyGBBxdvXY9782fz9dfL8dgMDBqzDgmTppMbl4eiqqmrexS6eQDykoS5Qw7fbau61TVNRKMhHdZx59SpK8oKerx+0RBoK2zi8bW1r12YVFUBTG5MNvVtUkF0Il1jIbZaKKitBizybh/JQBJAGA2mXnnrTf47JOPAZgyfQZnn3seiqrsMRoWgPKSIsaOGU1TUxOBQCD9zAiCQGt7Jy3tHelsgf/N/y8LPvhfIuA7ZgLnX3RJnxoTOjomk4mBpSUYDNI3Fjz191sPJABIry0PIOTb3bmZTCbWr1vHLbfckn4tMyuLYCDA7++9l2FDh6KqKt4uH7fc8jMGDBzMuRdcSCwWw26zUl5UuMt7lNAMaCAQDhENRfjbnx9g8KCB3HnnnT3Aj6qqeDweZs6cmeiDU6awceNGHnnkEbKysojF42yvbeAv999HPB7lwQcfxOFwoGkaRqOR3/72tyxatKjHd0uShMlk6qUxJAgCDzzwAMOHD0/DgT4BQLJt27KFL778gnhcxh8IEAwGicViyLKMoqhomoqiKAnhQl3DZrWQk5XBgLJihg4so6ggl6wMN4JBAlXrAcli8TjRWByrxYzJaODbGtemztVoMCBJErG4TCQWIxKNEwxHiMZlZEXd0YeSAEAUE6DAajZht1kwm4zYLGYsJlNintET8/LhEsbqQDwWT1qz72bcEpKloZq6a0AiSSCKgE7IH6S1o4uWtg62VtfT2tZJKBIlGAoTicaTAEBNzEnJ66H3iDASEEAURYzGxAaj1WI5AgBA8gRefvllrr/+BrzeTgwGA+OOmcixs2eTm5uHrCqg7ail0wFJErFZLLicDpx2GyajEUFM0PadT1lAoCGZ/ieKYoKWSBIf/u89Fnzwfvr9EyZM5I47bu8xcAkCNLS0097ZiSjaePmF/9HR4WDgkKvQlAguZwVmc2JRqCgiE46pY8K43hkARqMRo9HCs0+9wLq1G7A77Ie1vd+edjfMZhPXXv9dQOCfjzxLNBY/IoQL9yp20NXERJC0rzr+lFnk5ObwzmvvEA5H9wABhCQ8kolGQwhATmY+BqNxnwczLZ16tjcBSGKgkQ5RvXEKBGRnZ3Ha6SdzwUXnkJmVcRQAHG2HDQCIxWIsW7aMaDS6Q1UeEsJpdQ3E4uE+AYDLWYHVkommqf0OHQREuvxNjBm7mJzcKHabk/KiwoN+2imbvLqmlr22gtI0DbPRQF52NpkZbhRVpbahCf9uds/Ts/luglxN13HZ7btM/+9rkWQ0GFFUle3VVXzy6ad8vvAzAgE/k6ZM5dhZs3G53MiyjI6OzWKlsrSoTys/Xdepqm9MiNftZt4VBIGy4kJc9h2WdIIgJMonOjv3eo5TFBkx6XTQ64QFAaMkIYgi8Xg8UU9ttZCTlYnLbtvneaK7BkAkFsVoMPLGa6+y5MsvAJh+7HGcdfa5exQBTN23gtwcZs+cQWtbG42NjWkx5lSfauv00tLWgWQwMP+dt1n48UcATJ0+gzlzz0ukbe90Kho6ORkZFOblHFaL+0MJAPrYJjjgMEAnYc+4dds2fv6zn6UD4gGDBrNty2bOP/8Crr76+2iaxspVq/j1HXdw0WWXM3r0WBRVoby4EFcyEN/VdWnt6KChpR2jZOCfjz6Ez9vJH/7wBwoKCtLBcKrEYObMmTidTq677jqeeOIJ7rvvPkaNGoWqqnyxeCn3/f63jBs/nnt+8xtURUEQRfx+Pz/96U9pbW3t9d19wSWr1coDDzxARUVFuo/vDgCktJwSEKQLOfkspv7ouo6qKEQjYfx+H22tLdQ3NNDa2orX24VkkCjKz2XU0AEMH1xBTnYmCKB1D3i/DU00IIgGdDWeqDHvtsuvyCr+cJgufwhvIEg4mhCN1pK6MrquI8sKclxOB7Ope2ixmDGbE4K0oiBgNhmxmkx4XHYyXA5cDmvSmYVDWjq3f9dKItkJekIrgwSShBaXaWnvZFt1A2s2bKGusZX2zi4kSSTD48HtduFwOHA7nSiaiiyrOBx2PB4PVqsNg9GYKLdOjvWyLBMMBmltbaWxsZHOzs5ErHsklABomsbcuXN58803exzPyc1l9oknM3LUaIxGYw+/Ul1PkXMwG404HHYcdhs2myVdh55a+IRCYWoaG1GUxG6GwWDky88X8s4br6c7lCRJXP6973PyiSfgsCUyAARBIBAKUV3fiChCXW2MF+e9yqBhP8FkysRscuJylneb7EUmTqjlmLE9MwBSg9RT/3yBupoGbHbbET0OKLLM4OEDuer7l/LxR5/z3n8/+lbt/uvoyHKcmBxPD+CKrDJmwijGTzqG+W/Mp7mpBYNB2mXgH4/HCAa6iMcjOJ0eMjNyMe3FNVJUFV1V02lRgiThsFtxu91YrGZEScRkMmG3W7HZbFgs5sSumSiiKjI+X5Aur49YLEpbawc+nx9dS4gPSAZDv2pZ9y/uUolGo2RmeJh14rGcd/7ZlJWVHAUAR9s3DgBUVWXp0qWEQqEetnI7Mr0ivQCAruuYTA4c9mIk0YwgiLsIqnt6gshyiM6uWiZP2kR2bgSn3X1Iap4Bahqa6PIH9klsMDXuuRx2dF1PqNbv8XN6A4DU7rZBkjCajBTkZGO3WfdqYSwIAgaDAU3TaG5t5YMPP2T+u+/i8WQw98KLKSoqIhqP4bIn7f92MbZV1TcS2I36fqqVlxTistt7AoDWNto69h4AJKzadgdGICfTg9NuTwqqmfsEGHv7nSkbwFg8hqZpzHv6KbZu3gTAKWecyfEnnLTHEoAEdNbJcDs5+4zT8Xq9bN26tYcbU+pad/n8tHZ28Z9XXk6DhuNmn8DpZ83p83sEQaC0qACX056Ylw67NcChBQAHCgT01fclg4GGhgZuueUWAn4/AOMnTqK9tZVgwM/9f/wjZSUlvPXOuzz0j79z/Q9/TFFxMWaTicqdBDH7AgBen5/axiZMRhNv/OdVli9dzJ133cW4cePSAXjKDWPmzJm4XC5uv/12/vCHP3DzzTdz8sknA/CvF1/i+eee5ZJLL+W7l19OLBbDZDKxfPly7rzzzl1mIAiC0CM2yMjI4I9//CO5ubnp47sDAPu8Do6HaW9pZtvWzaxZu57tNfUJW9RBFUybMIpBFSWIBgOaonxLQICQrEtPiZrKBMMR2n0BvL4g4WgUTdPT9yMSiREMhejq8uPzBxO72ZEo8Xg3ACCJWC1m7HYbbpeT7KwMnE4HdpsFySAhCiI2i4lsj4u8LA8uuw0h6aZypFxTQRASGhNAS0s7q9ZvZfX6zVTVNqKoOkVFhQwaWMnQIUPIy80lIzMDq921z98XCoXYvn07NTU1R44I4He+8x1eeOGFPi/eyNFjOP6EkygoKkbVlF4TRirAliQRs8mM02HDYbdhtVgRBahNLYQkEaPRxIrlX/Hayy/2IOAnnXoas084CVEUKCnIx+mwo6oq1fWNBEIhjAYr7/33azZtDDB42DWoagS3qwKzyZPekd0VAACQ4zLPP/cqjQ3N35j/8wEb+BSZOeecxuSpx/DkY/PYvr0Gg8H4bRjeUPRETbuiKjuds0pZRQknnXESCz/8jM0btmAwSr0GRzkexdvVTjgcwOn0kJdbhM1i77Go3mWsoqloSiLoz87JJjPLQ0lJEWXlJZjNJuwOG263C6vNiq5pRCLR5IAaTwyoyeyY1ILZYjFjtVoJBoJ4vV1s31ZL1fZq6mqbiEQiCV/q5CB7kC4oqqISCUdwuV0cf8KxnHv+WQwcWHkUABxt3xgAAFi2bBldXV09djNlRaG6toGYEmHJ4nI6OjJ7ZAAk6mQNSJIZSTIhiWZE0ZjcKRIRBAOiaETXZFRNRlGjxGJeYjGZ6TOqyc8Lk5edh9vpOCQ7GTX1jXT6EvNeov58X+C8vpPYX/+D/1TLz85KCgyK+xXcCoKA0Wiks8vPVytX8uarr9DS3MT5l3yH4SNGYjWbEgAAegTvexvEJ3Y9ewKAlrZ2mncSHTwQTdN1LGYTA8tLE8KD/XBi6BcAUDW21dQRV2TCoRBPPPIwra0JDYMLL72M8cdMRJb7BwBsFjMXzj0HVVVZsWJFLzvmlJNNIBzhL3/5C18tXQLA8Sedwimnnd6HqLKOzWqlvLiwh9ji4bshcOgAwP6CgL6eU1EU6erq4pZbbqElaX09cswYhg4fwasvvsDc8y/gumuvYd6853n11Ve48Uc3k5GdhcfppKQgb4/ltdFojG11dYiigaWLvuS1V17m5z//ObNmzeqxxk45YeXk5HDzzTfz4IMPcs011zB37lwUReF3v/89ixct4je/+Q0TJ04kHo9jNpt59tlneemll/r8/lSpUPfvyc3N5Y9//CMZGRkHFQD07CRx2pqbWbVqFYuXLqO1zcvAyhKOn34MIwZVIBgkVFk5MtfFqZ1+IBqP0+kL0ub14QuGicXltGZiPB7D5w/S3u6l0+vD5/MTikTR1ISOgt1uJysrC4/Hg9vtxuFwIIoiwWCQ9o4O2lpb6erqQhDA7XKSn59DXm42Tqc9UdsuCLgcNopys8jJdGM0SIc9CJCMBtB0qmobWbjka75eu4lAIExeXi6TJk1i/LixFBUVIR2k+OmIAAC1tbXMnTuX5cuX7/I9breHGbNmM3HSZCwWSy810B4wADBIIjarFYvZTKevC0iIr61ZvYpXX3qRSGSHNdm0mcdyxplngwiqomExGykvLiIcjVLX1IIo6oQjZuY9+R9cGafjyRyFJBrxuAYgCFKaF+8OAMRjcZ5/7lWamo5spXxN17BaLVx3/RUoqsLjD88jLssHfUf5kIANVSYai6UFnHrGERqZWZmcMfd01q1cx/IlK5IAILH4j8ejeL0t+P1e7HYnhflluJwZiTKg3Uz4mq6hJvtyRoaHigHljBw9hLKyEjIyPOi6TlyWaWluxe8Lsn1bDc3NLcjxOOFwjGg0kiSqWhqMCYKAwShhNptx2G3YHXby8nIYMKicnNxsFFlm27Ya1q3dSF1NA6FQGFFMZAYcjLIUXdeSGQExHA4Hxx43jfMuOJuhwwYfBQBH2zcCAL7++mva2trSMDaxiFSoqqsnrsb57BMHW7fWIBDpFQ4kptSdplVBTEAARHS0RNaOICAIBnTdyLDhHVSUWxk8cAhZmZmYzeaDKgAqJBdrXYHEzks0GkPRNAT2zlJsr8IkvffYlpWRQXF+biqRKS04mBB9Sokl6n2W7vXVUqUNTW0dBIMBXnnhX2zftpULLr2MmTNmUpib1ScAEEUxIVhW37iHs9ApLSggw+NKj9uiKNDe6aO+ueWgzXPlJUW4HLZ9Ev3bFQDYWlOHoqq0t7Xy+MP/IBQMYjKZ+N6111NeUZG2VtzT9ZAEkUsvPA+Px8PHH3/cZ6ApCALoOvf+4Q8sWZIAACeddjonnHRKL7tBTdfJz84iPyfriBH7EkWRbYcQAOwPCNj53oiiSCwe5+e33EJVVVUCyhUUctV1P+Dpxx/D6+3kzt/cw7o1q/nPq69y449vJiMriyy3e48lGqlnbXttA3FZZsvmTTz1+KPceOONnHHGGT3gj6qqTJ48GavVyuWXX85///tffv7zn3PyySdTW1vLLbfcgqZp/OUvfyEnJwctKa53xx13sG7dun6ff35+Pn/84x9xuXY8wwcdAHRrsWAHq1d8xYLPF1Pb0MLIIQM47fhplJcVgqahqtourqR+mPX5xNpWVmS6/GHaunx0dPmJROXkz9UJR6J0dvpobeugo9OL3x9EURQMBiNZWZkUFBRQXl5OWVkZubm5ZGRkpJ0fdo7bfD4/jY0NbNy4iU2bNlJf34Cua+TmZFJaXEhubhYmswld03HaLRTlZVOYnYHRaEiUxvYHYqQdHfpQ09e7zWOpOvukcOHePpGSJIEoUFfXzAefLWX56vVYzDaGDx/GxIkTGDBwEHa7/eDDm8MdAPj8fl595RVuueUWurq6MJlM5BcU0lBf1yOtJ9UGDx3G7ONPpLyyEh09Ub+zKxCg6wiiiNFoJBQIsHjRF3y64KMeg9L4iZM497wLkAxS+sHUdR2bxQJAOBrFaBDZvDnAG//5kKEjfoIoGrHb8rHbCnrUY+8WAMTjPP/skQ8AFFlm0LABXHX1d/js00W8+9YHfdppHUlNRycmx3abEqlpOja7lTPPPYPGhiYWfvQZRqMJWYnj7Wihs6sVs9FMUVEFWRm5fXrTdv8+NakrYLfbKS0vZszYkQwaXElmpodYPE5jfTPt7R1sWLeZzs4uWprbiEaj3SznBQRxR52asNOAlh68Uuq0yXEtKyuDEaOGMWr0MAoK8wgEgmzetI01q9ZRVVWHpmoH9n4K9NjVSmUuWK1WZsycwrnnncWIkcOQkjtBh9Ib/SgA+P8XAKxdu5bGxsadAIDM9roGFFXl9f+sY9miJw/oT7FaLIwaPZoTTjiByspKdF3H4XBgt9sPCghIjQ2qqhKJxgiEwwQCQSKxeLrE7cDBgJ4AICUKV1lalKzf1HuMTaqmoygK0VgsIVhkNiVscNMWhfouU359gSDV9Q0YDUYCwQAvznuO+rpafvjjn3DczBnoycChezCUqouvqmtI6ADsxgrQZrFQWlSAKanX0j3N+eAAUp2i/DyyM9wHJCBOlQBsra5D1TQ2b9rIvKeeQFVV3G4P1970QzI8GX2ur/q6HuhwyYXnUVlezrJly6irq+uVxSiKIoqi8H//93+sXLkSgNPOnMOxs45HUeQea2xJFCkvKcKxByHIowBg30BAX8+0yWTirrvvZmkSzjgcDn78s1tpam7iqcceYejwEYweO5Y3Xn2Va2+8iYKiIvKzMsnJzNjjPRIEgU6vj+b2Dmpra3jkwb9y3XXXcfbZZ/daUw0bNoyqqipuuOEGGhsb+fOf/8zgwYP56KOPuPfeexkzZgz33HNPOoiqq6vj5z//eb+EhFNA1W63c9999/VbA+DgNI14oJXlX61g/kef0+XzM3v6BE6dNQWrw4Yal3vCY5MDVBldiew+sBRFkMQdtnDdlOB7CrGmxPa6W8h1e03T0XWtT+CYEFbXCYajtHb6aOnwEozEIFlSHYlEae/w0tTcRnu7l0AwiK6Dy+WkuLiYgQMHMnDgQIqKivB4PPsGUWIxqqurWbFiBatXr6ajoxO320FZSSHFxQXYbVY0Xcdps1JZlEduphshueZOCOyJCSG+xMOHoihEojFicTnhXBVXUFUVNT1PiBgNUlKrzYjJZMJiNWMymhEMhuQ1U5J/tF1mHgiCgGg04O/y88HCpXy6aAUms5WZM6Yzffp0snNyDum4dVgDgGg0yqLFi5k/fz5/+uMf0TSN/Px8rrruB2zcsJEP5v+XQMDfeyFltTF1xkymzzwWh8OBqqk9On3qlA2Sgbgss3btaj7/5GMa6ut7DkYjRnDBxd/BYrX0onJ6cqeCpBDR+++tZe2aZoYMvxFdl/G4BmA09ly4KYrIxIm1HDPm2wsAZFnm1DOOZ/YJM3nmiRfZsH7zEQsABEDRNWKxaK+U/96LNDAYJM4670zicYW3//MWPl8H7e1NoOsUFJSSn1eC0WBKTvC9H7uUarXBaKC4uIDRY0cwdNhgcnKz6GjvoKmplXVrNtLW2kFzU2vCfSC5SD9Qu/OqpqIqKqIkUViYx5ixIxg8dACZmRnU1zXyyYLP2bRxG5JBOjC2jjsBgPT0qGqEQyFcbhdPPfswRcWFey1WdhQAHG37CgA2b95MdXV1DwAQl2WqahuQtWQGwJZqBCHaKySSRBMmkwtNU9A0BR11pwB3h1CnIEjoGBk2tJ3cfJGRQ0dQWJDfY2f6YEOv9K6/kChlCoWj+INBguEwMVlGT9Zt7t+z1xMApGq83Q5H74yqJGxpbGmlKxDEIIoYTSZsFgsWkwmb1YLJlBA5Smws97QjlBWFbdWJ9Haj0UR7exsvPvcsY8eO5bprr0nYSCVtkroLtYqiSJc/QG1D0+6X7rpGcUF+IiDX9H5nD+xzqJDcEc87QPaQCUVumaraenRBYMmiL3nj1X8DUFhYxFXXX4/VbO1XICqKIq1trVw09xwmT5qUWLMtWoTP50v32xQkicfj3HXXXWzYsAGA7111FZOnzaCtvQMNHREBDR2nzU55cQGiKBwxqujfNADYXwhgNpt57LHHeP3119OvX3vDDxk8ZCjvvv0mCz74H+UVlTQ3NzHn3POYNn06hbk5/XKiEMWEy1Z1fRONDfX8429/4aYbb+S0005L2/ClvtPhsPPxJwv53W//j2OPPZZbbrkFSZJ48MEHee+997jooov43ve+RzQaxWw2s2DBAh544IF+n3Pqt5555pnceOONu7cBPEQt5Gvn/Y8+5sMFn1Kcl83F55xMRUUJmix3U8UXQZBAV9j5oZAkMbHO0HQCgRBtHZ00t3lpbe+kyxcgHo9jNBpx2C0oitYjsDUYjFjMZqw2Cy6nE5fDhsNmxmm34nQktKMQxYTIuq6jqRreQJDG1g7avH5kRUWUBBRZoaPTR2NTCy0t7fj8AXQgMyODiooKRowYweDBg8nPz+/V93RdJxKJEIlEiEajRKPRHhncoihiNpvxeDxpm/Tuzev1snz5ChYvXkRdXR0Wi5ny0mLKy4pwOBJ6atkeFwNLC3A6HSixGG2dXTQ0tVHf1EpbpxdfIEQoHCUWk5EVBTU5P3QHzYIgJjJhpUT2rNVqwW63k5GRSV5uDrk5WWQ6rbisAk67FaPJmFT619FUNTHXCAJfr97E6/M/oSsQYubMYzn++NlkZWV9MzHO4QoANE3js88/x+v18q/nn+fVV18FYPLkydzwwx/R2t5JdVUVH7z3XzZv2tjnZ5SVVzD9uFkUFxUjGQwYJCnhgWg0IgoCdbU1LPzkY9avW9trEBs6bDhzL7gIp8uFshsSnlAHNTPvmdfRGUdh0UlIogG3q7JH+n8KAEyaWMf4MT1dAARBIBaLHfEAQEdHFCWuue4yXG4njz30NF2+wIEJFL+B4F9WFaLxaL8mZF1PEOnTzzmN+tpq/vPyS0RjEbKz8ikpqsRuc/TpBavpOqoiAwJZOZkMGzqYseNHkJefi7fLx9ZN29m4YTNNjS34/YEDHvDvrinJLASD0UhBQS4TJ41lzLiRrF+3mff++xG+Lh8mk/kAAAC9T8vDUDDM6WecyK9+/fMjZuf/KAD4dgCAmpoaNm3a1AcAqEdWY31qAKSCe4s5E7erIhHoJ4yLe4ySCbeOGIoaIxJpIxqPMWNGNdnZQZz2hKd2erPmEE/PifEl8ZNlWSYYCuMLhglFwmk17H37STsAgIZOXlYm+TnZuzw/URSIxuJU1TUSi8d2LN4FAZGEhondZqUwPxdDH4FidX0T/mAAURARJQm/34/VbGL0iGEJh4FUBmAfUKO+qZWOrq4+nVE0XcNkMFJWXIjNakkGtwKBYJjq+saDcr80XSM3K5OC3JwDBgAamltp7/JiNll4v5s134hRo7n4sssTtoP9+C5Jkti+fRsXnns2J5xwAgDNzc189dVXPWw0BUEgEAjw61//murqagB++tOfcuKJJ9LR6aXd20UwFEZRVbIzPZQWFPRZancUABwYALAzBDCbzbz55ps88siO33jmOXM5btbxxGIx3n3rDRZ98RkAY8aN56Yf/oi87Mz+QSJBIBSJUtPQTENDHY/+/W/ccccd6Tr+7tfQFwhy/333sWb1Kn73u98xceJE2tvbue2226irq+Oee+5hwoQJ6fr/v/3tb7z33nt7fa2GDx/O/fffj6om4Ow3CQBSbePGjbzw4ov4vJ1857zTmDR+xC6dAgRANCRU3n1dfrZU1bJ6wza21zbQ6fUlskdtFjwuFw6Hk+zsLHJzclARkRWVcCRKJBImGokSiUQIhUOEwxHisRiapmI2GnA6bORmZzC4spRBFSWYzGbqW9po9/qTuhcCwUCYxuY26hub6ejwoigKbrebgQMHMnr0aIYMGULOTrvakUiE9vZ2WltbaW9vJxwOp0WhU2KQKb/6lIijruuYzWby8vLIyMggMzMTj8fTY10YiURYsWIFn332Gdu3V2GxmKgsL6G8rBiLxUQkEkWORmnr8OL1hUCUcDhcuD1u3G43LpcLu82O1WrFYJAQRSkJIROZ5JqWcP0KBAL4/X58fj9+ny/935FwBB1w2MxkuJ3k5WRSUVpIZWkRJYW5xGIyb/5vIZ8uWsGQgRWcPfc8ysq/Wb2rwxYALF++nOrqajRN4//+7/9Ys2YNAJdddhmXXHIpVbV1+EJh4tEon336MZ99+kmvWrLUIOd2ezCaTJjMJixmC1a7HU1V2b51K9Foz5Qai8XCtJnHMuPY47BYbXtMg5Mk6OjQefrxZykq+S6ezJGYTW6cjuLkAmPHgklRRCZNqGP82N4AIB6PM++ZV45oAKCoCgX5eVx34xVUbavhuedeSXvaH1HBvyAQl+NEYtG0k0Q/9tCIx8NoeoTq6u1YzDZKigeQlZGbnuB7XisVVVGw2ayUV5YyYeIYBg0eQDweZ/3aTaxZvYG62kai0Ug64P+mbBRTJQmqqlFSWsSZc04mI9PD22+8x5rV6zGZzft+j3cBADRVxWgy8ujjf6O8ovSIexaOAoAjGwA0Njaydu3aHgAgFpeprksAgL5sAFMBu8tZitWS3a38S+i9UBcSY4aihunorGbSpE3k5EaQBBOVZQmF7W96ak7BRk3TiCbLAmRFpqG5FUXV9iIjYEfqqYaO3WKloqQwXdaz8/VL7Rin6vnrm1p2/BZdS7KExC5+eXERWRnuHuV5kijS7u1K6POkfqMo4LTZKC3M363FYCKDQKWhuQV/MNRDz0EQBCxmCwU52TgdO2z4REEgGIlQXdeIqmkHfLY70ABA13Wq65sIhkNIosQrL73IyhVfATBz1vGccdacflkApgHAtm1cfP65zJ49O3186dKlNDQ0pAUBJYOB1tZWfvXLX9La2ookSfz6179m0qRJyEnbr2A4gi8QJMPlxNnNZvEoADg4EKD782symVizZg233XbbDtvryVO44KJLUVQZAYGFn37MgvffR5bjXHXt9cyedSwuu3WPuhSJwD5AfVMbG9av4+3XX+WBBx4gPz8/vdMriiL+UJjPPv+cxx9+iKKiYn77+99RmJ/HsmVfcccdd5CXl5eu3YdEhvAvfvELtm/fvstz29XzMnLkSO699970psx+AwBdp6a6Cl2HvIJCrFbLPn1MV5eX5+fNY+26dVw29zRmTBuPJvd0CZCSKed1DS0sXr6GFWs20tnlJ9PjprKshMEDyyksKCQzOweXx4PR6gCk3Y4H0WgSBIRC+Hx+WttaaWpsoqGhnobGRkQ0srOyGDiwjMwMD+2dXdTWNdLY2EIwGMRisVBRUcGYMWMYNWoU+fk9nWz8fj+1tbXU1dURCAQwGo14PJ503b/dbsdoNGI2m3uJiKbXzIpCJBLB7/fT0dGBLMt4PB7y8/N71MvHYjGWL1/OJ598QlVVFQ67HU+GGw0Rh8tDTk4O48aMZlBlBbYDUGefstjz+Xx0dHTQ2NREc1MzHR0ddHV1oasyY4YPpMsfYGt1A3NOO4GZx81CMju/+VjncAQAmzZtYu3atZjNZurq67n9V7/C6/ViNBrT5DAYClFd10BcURAFkY0b17Pg/fepr6vd5+8dMWo0x82aTWl5RUJxvR+CO0aDyNYt7bz4/BsMH3ULZksudlsBNmsOuq79fwUAZDnOMRPHcsllc3n3zQ/4eMFnR5z9XyL4jxGJRfsz5idrG2U6Olpo70jsAJUWD6AgrwSDwZT0BO82iMkymq6TnZvFmDEjGHfMKHJysqmra2Dp4uVsXL8Fvy+AIIoYjIbDDp4oigyCwPQZkzjhpGP58P1P+XzhYowm07791l0AgFAwzCWXnscPf/KDI/JZOAoAjmwA0N7ezooVK3YCAHGq6hpQdgkAdARBSpZ/OXrov+zuAejsqmH8+K/JzYuhaSIVxUWHXQCUCsBjsThba2qRFXXvAIC+o767rLgAp73vQCex26JiSOoC6MD22no6vQkPZJvVltZPUTQVl8NBbmYGBoMBgySmg4nuZQACCas9q8XCgNLiPToNpKBHMBxBluXE/C2AMZl1YJSkHvdGFARC0ShVtQ2omoqAsMcAZG8BQEFONnnZ+y+Kl6r/315bTzQWR5bjPPPE49Qmd+XPPOdcZh47q18WgACiJFG9bQtXf+9KJkyYkD6+fv16Nm3alF7MG41G6uvrufXWW/H7/djtdn7/+98zYMAAZFlOIPRumRxHmi3a4QIA9hUCSJJEe3s7N998M16vF0gIAV5/04+QjAYkUSQvJ4cNGzfw4QfvEwlHOf2ss5g4fhx2i3m3/VIUBGqbmgmEIrz9xuuE/F3pOv7uGhr1TS08++Q/2bxpI+dfdAkXX3QBDpuNZ555hpdeeolTTjmFH//4x+mU9s2bN3Pbbbft0kZyd31oxIgR/OEPfzggAEDXdZYt+gxfRyOF+Xl0hGDajGN3YQO95xaPx3juuXksX76cqy6Zw8TxI1DjcrK+X6K+oZmPPlvGV6vXIxlMjBo1ionHHENFeQlOtwc4MBtFmq6zbvM2tm6voqWxge2bN6GqMk6nndaWdmKxGLm5OYwePZoJEyZQWVnZI3iPx+PU1NSwZcsW/H4/LpeL0tLSdO3//pZzhsNhWlpa6OjowGq1UlxcjNvtTr8eiURYsmQJCxYsoKGhgcysbEaPn0hJ5QAMkkRxXg7lxQUHcWmh4vf7aW1tZe26dYRDYY47dgalZeWHz7x+uAGAhoYGli1bBiTSkj755BMeeOABdF0nPz+fe//wB7KystA1DV8gSG1TE7oGRoMRv9/Hgg/+x9LFi/ZqEM3OyWHmcbMZP2EiRqMRWem/HYfRYGDl15t4961FjBp3F6JowO2swGRyskNzYAcAmDyxlnE7aQCIokg0GuW5p/5NS2vbkZsBoMicfe7pTJ0+gaeffJGN67ccUfX/exP8C0JiEer3d9LaVk88HiPDk01p0QAcDneyzlfvGTgjUF5ezMQpxzBi1BBsViubNm7l84VL2LJlO4osIxmMfaaeHk5NRycWjVFWVsLcC85gw/rNfPC/T5AMxr1XwRZ6C3qpioLT6eTxJx8kLz/3KAA42g45APD5fCxdurSHDWD/AIABj2sQRqOln0GMgLerjnHjl5ObF0NVRcqLCnC7nIfECnBvg5yOTi+1Ta09auf7DwB0CrKzycnO7HeAJwgCbR2drN+8hYULPsJsNlNWUUlhUTFujweDwYCYVHBOZA2kvKhFwpEIitITwJYVF+J22vcI9xPaWGKfi/2df7sgCESSAEA5KABApzg/j+xM9367AKQ1EmrrURUVn8/H4w//nS6vF0EQuOzKqxgxclS/MwB0AeqrtvOr226lpLQ0XVaxMwBI7TDfddddxGIxsjIz+cN99/XYBT6S24ECAK4kANifu7wvpQCp/nr77bens21NJhPX/+jHFBQUIcsy5cWFeNxuOrt8bNqyFUVRGDNy+G6hxY76/0YCgSCPP/wPLjj/PObMmUM0GkUUBDq6fLR7fSz64nNee+VlSssquPmWWxhQVoqqKtx+++2sX7+e22+/nRkzZhCLxTCbzbz77rv84x//2KdrNHjwYO6///40KNgfABAJ+njr9X8za+p4Mj1OPvpyFaMnTKewsHCf72EsFuexxx6lumo7N197CSXlxYS6/Hy4cCmffLkcs8XK9BnTmTJ5Cjm5B36N1NjaxraaBmKKgiSKtDU3smbFVzQ3NiCKIuXl5UyZMoWxY8eSkZHR4996vV42bdpEbW0tJpOJyspKKioqcDoPzo63qqq0tLTQ1NSEyWSivLy8x3f5/X4++eQTPvnkE4KBAIOGj2TU+IlIkoG87ExGDKrYZdbBkdz8fj8tLc14PBm9yjAOSwDg9Xr5/PPPUZKdTjIYeOKJJ3jjjTcAmDp1Kj+/9dY0wRcFgZaOTppb2xNp0pKIpumsXb2K5cuW0tHeRiwpKtFXKr/JZGLC5Ckce9xsPBmZKJqStkrr90LfaGDxlyv4dMF2Roz5JYIg4HENwCBZQOgNACZNrGV8NwCQWlDE43Gef+bVIxYA6OhIosQ1P7gMt8fFY488R2e794h5sPof/Ccmy3A4SFtbA4FgFyaThbLiSnKyC9O7R+nBSdPQFIXS8hJmHT+NkaOGEY/LrF2zgaWLV1BVVYuuahhMxiOuVEKW4zidTuZecCbtHR3Mf/sjEIS9AxhJu5juOwihYIjrrv8eV1512RG3E3QUAHw7AEAoFGLp0qU91PBj8XgyyNt1CQDoOB1lO5UAdAuE+wQAtYwbv2IHACguwO08/AAAwPa6BgLB8F4DAE3TcDkclBUV7NXOjygKBEMRqusbqa2tYcOaNdQ31hOPxnC6XJSUllJYVEJufj4Ou61HqVRK9zp11TVNw+V0MLC0BFVLlDQdiPGlrwyAAz23lhYWkOF2HhAAEIvF2V5bD4LA5s2beO7Jf6KqKna7g2tuvInc3Ly09exuP0sUCAVDCEqcu+66Mw1eBEFg48aNbNy4MV2jazab+fTTT7nvvvsAKC4u5ve//z0ej6dfbgP/vwGAXY0WBxMCWCwWnnrqKV5++eX08XPOv4BpM44lGo1SkJvIQklBKVVV9zjXC4JAXVMLgVCYLz9byPKli3nwwQcxm81omkant4vWzi7aWlv456MPEwwE+N6113Hi7Nm4HHaqq6u5+eabcTgc/OUvfyEjI+FOYTKZuP/++/nkk0/26foMGzaM++67L73+7g8AUFWVeFzGYjH3GMNCXa28/ebrHD9jApkeN58vXU3ZkLFUVO5ffXdHRwd//OOfGViax+yZE/j3G+/T5vUz67jjOPa443C7PQe8H8dlma019TS2tCGIEr7OdjauXUXNtm2IksjQoUOZOXMmI0aM6GXX19DQwLp16+jq6iIvL48hQ4b0KgU4qDGIrtPQ0EBTUxMul4vKysoeG5A1NTW8+uqrrFu3joFDhzFp+nFoOuRleSgpTIgTGkQRs9mE6Qh3LmtvbeHLzxYwoDSfNn+MykEjKC0tOXwBQDQaZeHChQSDwbT4QzQa5Tf33MO6tWsBuPLKK7ngwgvTKT/J2IG6pma8Pn9y8gFJNBCPR4mEI4TDiZoWX5eXQMBPlzfxt9vtYfTYsQwYNCSh9r4Xk5AgJNWZBRGj2cSnCxaz6It2ho74IaIg4XFXIgjGXkN4XxkAqQEoFovxr2f/c8QCAEVVycnJ4robrqCjvZMnHnseTdeOiKBWQCCuxolEI3u474l0//aOZjo6mtB1nbycIkqKKrGYbQm3iVTWBzpyPI7T6eC42dOZcexkVFVl2dKVLPlyOc1NLSAIGIzGIyzs733fDQaJc+eeDsDr//lv4lh/A9+dAIAiy+Tm5/LPJ/+O2+06CgCOtm8EAMRiMZYsWZJIT+4BAOpRtPhOAEDo0ZcNkg2nswRJNO8U7KZ22sR0aKqj09GxjWMmrDmsSgC6C5YKgoBBkghGImyvrUfT9y7A0HUdoyRRUVqE1Wzeq/NKAdWUZ72AQDgcorGxkZqqKmqrq+jq6kISBexOF/l5eeQWFGK3O7BYzBiMRiRJSu70JUZmh9VMaUkp2dlZGJKv7TcAiESpqjs4AACgvKQQl8Ox31BIFASC4QjV9Q1IkoGPPvgfH7w3H4CyigquvPpaTEZTv75HkiSqq7YzbdIELr/8choaGyksSACeLVu2sG7durTOg8Vs5s233uLRRx8FYMiQIfzmnnuwWiyHJeg6HADAoYYAZrOZpUuXcvfdd6ef/VFjxvKd736PuCKT6XZSnJ+Xfi5Tz/burok/GKS+qRWvt5NH//Eg3//e97jo4otpbGwkHIlS29iMqqq89PxzrF2zmhnHzeL8Cy6mpDAXu83G+++/z5///GdmzpzJL37xC2RZRhRFYrEYt912W5/1//1p48aN43e/+106ltgTAKiuqaGhZhuCGicalxk8dBjFZQMTsYu/nffnv8vk8SNwOe2s3VzDsHFTcTh3pKMH/F20trSgKnE0TSczJ4/c3Lw9/s4PP/yQt956E4fNSuWAAZxxxhkUFBYflD4cCIVYv7WKYCjherVt4zo2rFlFPBZj5IgRzD7+eIYNG9ZjU0/Xdaqrq1m7di2xWIzKykqGDBlySDzsd7kmVRSqq6vp6OigvLycvLwd1zkcDvPEE0+w8uuVjBp/DMNHj8PQLdgXBAGT0YjFbMJpt5HhcuGwW7Hto6bDN9WWL/mCjqYaTj5pJus3bKMjIjF9xoxeGbqHBQDQNI0vvviC1tbWdM1lqibp1ltvpa2tDUEQuOPXv2bKlCk9lUMFIXHD6xsJhiNp4pwK0gVBTJx08sQ1VUWWZSRDoq5JUZV+qRpLkoAkSug6RKMR/D4/nd4gnR0K69asRpYHUFZ5CZJkxO3s7QCQAgA7uwB8WwCALMsMHzGEK6++mCWLVvDaK29jMBz+FE1AQFbjhHcb/CcW7H5/Jy2t9cTjURx2F6XFA8jwZCdtU7UeAxACDB8xhNPOOIG8vFyWLf2ahR9/SVNTM6Io9fJJPqJjKE1FEODcuWfgcrt46V+vEYlE+nf/k9t0CcV0CIdC3HLrj5l7/pw9LjCOAoCj7WABAEVRWLp0KeFwOL2r2QsAtDsxGiR0Xe4hFpeoazUgCEkND4FkWriIJJkxGGyYjA4kyYKshPH6Gpg+vYrc3BAGyUJFSWF6ov6mgiOXy5VOo/T5fIRCIVraO2hqbd8HRw6dwrxcsj375mMvCAJVdQ34g8E0eBdFMWkXGKejvZ2W5mYaG+ppbmwkHA4Ti0aSUF9IZCvoAgiJTASj0cR5F15MWXk5DruNwtzs/YIABxsACIJARUkhDrttvzMARFHE6/dT19gCusbzzzzNpo0JW76Zx83i9DnnJMrV+vE1giiybvVKfv3LX5CTl88XXy7itFNOwmAwsH37dlavXp0OFsxmMy+88ALz5s0DYPKUKdx2660I3fQYhD6C3iMFjn8bAIAkSXR1dfGTn/yEjo4OABwOBzfd/DOcbjdWs5mK4iL686gktCZUquubCIUjvPriC8RjYd54402qq6sJBILUNDQhywqLF33JG//5NwWFRVx17Q8oKS6kICcbk8nEn/70Jz788ENuuukmzjzzTKLRKEajkerqam655Za0cvzetsmTJ3PXXXf1CwDIsszmTRsocIlkZjppb+tk5ZpNDB46lNLBY9HlMFvWLMVgMJLpcVLd1MHYyQlBTDXqZ93atXS0NVGUl01BXhbxuMLKbS3MOHY2ZtPuNbJ8Ph/z58+npKSE6dOn71tArKrE4wqKqqAkXQ/EpAhtqqPomsbW2nr8gRDtrS2sX7WC+ppqCgsLmXP22UyYMKHXuF9VVcW6detQVZXBgwczcODAw6rk1+/3s3nzZux2O4MHD06PRcFgkC+/XMT7H7yP2Wpj/ORpmEwmQMBoNGIwmpJ6JDq6pmM0SDjsNrI8brIzPTjttsPmHGOxOAgCZlPP677ki8/wdzRw0qypVNfUU9Ua5thZJyQsIw83ALB8+XKqqqp6dB6DwcCmTZu48847CYVCAPzoRz/ilFNP7SX6IQkC0bhMbX0joWi0R0ftPbHr6bqf/py5QZJAEOjyBqirrWb7ti00N7Xi64oRl00I2JAMEqXl5+H2jMJosOF2Ve6CTO26BODIBwBxjp01nbPPPZXX//NfPl+46LAXAEwE/zLhWLjPmVbXhWQmSojW9gb8vk5EUaS4sIKCvFKMRmOP9EVN11DiMgVFBZx6+vEMGz6IbVurWfDhQrZsrkIUxW9V4N8D4ukamq5z0UVzyMnN5rln/o2vy7/nCaEbAIjFYgwYUMEj//wbFov5iA3+jwKAIxsAmM1mRFHkk08+we/3p3eQuwOAJYvLaWqE1pZ3CQW2oOlJpeYkCEgI2Gk9xprunV6UTBgNNkBEw0B5mUZmloGszCxGjhhOYUEhBoMBm8120C0wU7XzkNhtLy4uZsyYMd0ukcqSJUtYsWoNXYHgXv0eTdPJcDspKcjb998nCNQ1t9Dh7eoVXAnp2n8xMf4qKrIcx+/zEwoFURWlh3OAJBlwulxkZmaCIJDhciXSP/fn+h1EAJASTqwoKcJutex3VogoCrS2e2np7KTL6+Xxh/6O3+dDEAQuvuy7jBk3vk83pT5BgtdLyOflH39/kPkffMSateu4+orLyMzMpLq6mpUrV+4QATSZ+Ofjj6fLOc844wyuv/76hMjiHi+Cvt9ZGt8YABDAZNx3AHCoIYDJZOIPf/gDCxcuTB+78NLvMGHiZHRNo6K0GLPZhL4HMCkKAk3tHXR0dvHB/+az5MsveO211xgyZAgrVqygs8tPa2cnAZ+PRx/6B35fF9/9/tUMGzqCvJxMMjPcxGNxfvazn1FfX8+f//xnBg4ciCzLmM1mFi1axD333LNHsb9dtSlTpnDnnXf2CwDouk5DfQ3exm3kZrrIycogGouzZuN2ho2fjsudQVfjVpoaa/G4nFg9+XhyS4gHWln8xWdYLWbGDB+EyWyiwxugqr4FyZbJmLHjDvjYrus64Ug07agRjkaJywpxWUFV1TQAELr3kORmaTQSYeOalWzZsI54PM7MmTOZM2dOrxr/hoYGVq1ahaZpDB06lMrKysPWplnTNLZt24bP52P48OHYbDuC9/998CGffvwxktFIOBxC0zRMRhN2p5OsnDyycnJxeTKwWCzogKZqSJJIhstJYV4OuVkZ39i4FI1GWbt2DXIkQCwawerwJDXsEjHXmtUraa/fwuzpE9i8rQasWQweNqpHP2lsbPzmAUBK8X/nwMhoNLJ8+XJ+85vfpIOsE088kR/9+Me9/NQFUkJ6MWoamgh3gwA7bpC+V/7FkpTIHKirbWHZ0tVs37qFSETCaivH5R6G3VGCxZqFwWBDFM1JUTgFmzUHp6OkTwXovgBAqpOmAEBjQ1Nyd2PHorEvj3RBEBCSC5/DIc1eURUuuHAOEyeN45mnXmLd2o2HtQCgAMiaQiQa2YXPamJB2eltpa2tHlVV8bizKCseiNPp7tUHFSWRVTJj5mROOOlY2ts6+PD9hWzYsDlhaXeEuSHs62CLAJddcSHZ2Zk8+9SLdLR37j4ToBsACIcj3H3PrzjplNnpQeooADjaDjUAsFgsGI1GPvnkEzo7O/sEAEuXVFJd1cHmDf9HJNywn4ORhMlowGazkpWVxYjhIxg3fhwul4uSkhLM5oMDw1KL50AwSFt7B35/gEg0Qn5+PsdOn0ZWVhYejwezxcLiJUtYuWY94WgEXdP6NZfquo7BIFFZUozVbNrn4FUURbr8AWoaGnc51xkMEpIoJd17Ui6LQp8htabpaJpKdkYG+TlZB64EoLYBVT+wNoA6OgbJQGVpEZYD0A9EQaChtY0uf5B1a9fwwrNPo+s6TqeTa274IdnZOajqnuv/TWYzK5Z/xeknn8DZZ5/LY08+RSgU4ZyzTmPMqFHU1NTw9ddf7yi/AP70xz/y2WcJL/lLL72Uyy6/nGg02megqncL/nuu444gAJDw+8RkNO0XADiUEMBsNvPhhx/ypz/9KX1sxKjRXHbFVaiaSmlhPh6XE20nMUxhZzjkD1Df2Mz7783ni4Uf89BDD/Pd736Xjz76iGAoRE19I7oOn3/2Ke+8+QaTpkxl7vkXJq5NaRFOh4Pt27fz4x//mJKSEv785z+ny0nMZjPPP/88//rXv/b5mkydOpVf//rX/S4BAOjqbKW9uYFoOITdaiQqQ1g1MHbsOERBp3rrJhRVY9DQESiaxuLPFmAixtiRQ/EFo3SGZExWFw6Xm5zs7APa/8KRKM1tHXR0+YhEYyjJYD8SChEOBQkFAoRDASKRCHI8hqZqiRJdQcRgkLBYbYSCAaq3bSUjI4PzzjuPadOm9fgOr9fLmjVrCAQCDB48mAEDBhy2gf/OrampidraWgYPHtwDaHi7uvD7/fh9Plrb2qmtraGhoYGW5mZkWcbucJKbn09+YQmZOblJ28CEHW2m28mA0mI8rkNv59fc3IKvo4khRW5UTWXN+q2EZJg8fTYGk5lgMMCmVYsZMbCEzdtrKSofTFZBOQBtDdtZv34DdrP4zQKA7or/Ow/wCcXhTm7/1a9obGwEoLCwkPvuuw+324260yCZggCRaJTahibC0Vg6dXNvTlEADEYD3s5OFn/5JatXVoNYRl7eNDIyR2G1FWCQrIiSEVGQkimeQnqINkiWZPo/fQKAvlwANE0jEoky75lXyMx0k5uXi8lkxGQyIBkkQEBVFGJRmVA4TDgUIRQK4usKEAgEkWUF0BFEKTHhHuL7qKMjCCJXX/cdCgryePyR52iobzqsd7tVXSUSCfdalCas/SQikSAtrfUEg10YDEZKiirJzylGlKQe1n6qpqLICiWlRZx97mlkZLj5eMHnfLV0JbFYHOMRKO63f/GUitls4pofXI7BaODJx54nEEz4Te8OAETCYUaPHcWDD92f3jU6CgCOtkMNAMxmM0ajEUEQ+OKLL2hubsZgMKQBwPbaetS0BoATTW0nEmlC12Q0XcNscmIwONC0OJqmoOtqcn4TEUUjuq4SjXUiICIIEqJoBNHNpAltDBxkpry4DIvFss87W3sT/EeiMWrqG1iyZAntbW1Eo1Fi0YQXtByPYzQacLvdOBxODCYzBYWF5OXl48nwYDIlRLxUTd0lDNA0HafdyoDSkh4lUvsSwGi6TlVdA8FwuFcWgI6O2WSmrKgA0JFlFS3pwpIOVHQdBAFN1YjE4piMErlZmUiiiJbcYd6RGbh31z1V61xd13hQ5laT0cSAsmKMSWvE/b3vtU3NBENh3nv3XRZ+/BEAg4YM5fLvXYUoiHv8Dk3XcLvdfP7JJ/zfPXezduNmVq9ZgyCKDB8yhPPPnUNtTW0aAIiiSCwe5+67707rOV199dXMnTuXaCy210HqEQEAhB2990gCAJIk0dnZyc0330xnZ2diTLRYuOFHPyEnNw+Py0FRfl6PPtJ9R1kURYKRKOvWbeCN1/7DurWr+ctf/sKPfvQjvvzyS9ra2ujo8tHS3kE8FuPpxx+jo7ODG276MZk5OZhNRipLirBaLSxc+Bm///3vOfPMM7npppvSsMhkMnHXXXelY4d9aTNnzuRXv/oVsWT/21sXgEAgQDAYoqvLS2lpKXa7nWAohEEyYLGYUdWEw4bLZkYXBAwmS5+uIvvbYnGZmoYmmlrbkVUNTVPxd3lpa26itamBzo4OIuEQmpqwbTUYDRgMxvTaXE+O4fF4HFVVGTJkKBdddBGlpaXd4haFjRs3UldXR3l5OYMGDToiM1l9Ph9bt26lvLycrKysXb4vHo/T2NTE5k2bWL9+PTXV1QRDIWx2O7n5hRSXlpGTX4DJYkUSRbIz3JQVFeByHDrdg3AkTPXWzZi1AHk5WTicdrZsrUIWrAwfMykh8LpuJXYxCgLklQ3BYM2gZstaNq5bxaihgygsyPnmAEB3xf9dUSSj0cgzzzzDK6+8kp687rzzTiZPnrxLn1pRTCxs6ppaCYXDJISX+keQBQEMosT69RtZ8OEi4vESCktOJztrHBZzZjLoF3d6kIVeux67Gq4VRWTq5BrGjGrrAQB0XSccjvDMEy9y4imzmDp9QmIS0Hc9gsdjcYKBEH5/kMaGJrZvq6GhoYmODi+aoiImd0QOyRpa03A57Vxz/XcBgX8++hx+f+CQff/eB/8akWi4j4k2sfjp7Gymta0eTdPIzMihrHggdrsLTVPTE19C5C/hiTpl2gQmT53AhvWb+OiDhXg7fZhMpsN+1+JgNUWRyczO5IabrmLb1ipe+tfriNIuMlUE0DWdWCzK/X/6LVOmTjzig/+jAODIAwCiKysdrKSe22XLllFbW7sDAMTibK/rDgAcGAw95wOPawBmc0Y68E/342RGl66rBEONRGOdaLqCgIiqikybtp2s7CAuh4ei/NyknuDBeQYEQSAcjVJT30QwHEaOxxLQQxTRNQ05HiccDtHV1UVzUxNNDQ20t7cR8PkwGIzk5OUyYOAgBg4eQn5+AUaTKaGls1N9uqZpeFxOyosL91+8bg9ZABo6ZYUFZHncSdiw67E3PYYn/xYFgU5/gHg8jsflwmwy7hUMEEURnz9A9W4yFPa1aejYrVYqS4oQkzvp+3PfVVWlqr6RQDDIc089QdW2bQCccPKpnHTKachyfI/RpK7reNvb0RSZOWefw2eLFiGJEpquYzYZufySi4nHoqxYsQJJSmxK+AMBfvmLX1BbWwvAz372M0444YRvOQBInNWBAACHEgKYTCb++te/8v7776ePnXTq6Zx0ymnomkplWTEmk6nns6Hr6eD/008X8sLz81DiMR559FEuv/xy1q1bx5YtWxAlkeq6RqKxONu2buGJRx/m2FnHc+bZ5xCNxcjOSIx/ZrOZJ554gldffbWH/Z8oioRCIW655RYaGvY98+rkk0/m5ptv3mcA8I2vsVSVuqYWGppbicYV5HiMlsZ6arZvpaWxkWg0gsPhoKCggKKiIoqKisjJycFut2MymdKQW9M0ZFkmGo0SCoUYNGgQDseObLjW1lY2bNiA0+lk2LBhWK3WI/o5jcfjbNq0iYyMDOx2e1KvJ1GaazKZkloAPVtzczMbNmxg1aqVbN++nXA4gtvjobisguLyStwZmZiMJgpyMqkoKTxkDgKyLNPeWE1nSx2iAHablfrmdiqHTyC/oIBwKMjm9auoKC/DnVNMY2MTq5cvYuzQEtxOB00tHd8MANhZ8X+Xi2ijkc2bN/OrX/2KSCQh0nbGGWdw44037hIApCb0uKzQ0eUjFI4gyzJxRUlbOqUmw+S4RSrJXhJhxVer+WJhDVk5p1JYNAubLQ9JNKRmvj7T8fsfGIlMn1rNqBHtfQKA555+mazsTPLz8wiHw6hJD2NBFJFEAYPBgMFowGg0YjQacLlc5OZl43Q5yMhwEw5HaKhvYs2qdWzZtJ1Ob6K272DTOkVVKCzM59rrv0trSztPPPb8QVND3q+FLwIqKuFI7+BfECSisTAtLXUEAl6MBiOlxQPJzU0svLq/X5FlDEYjx0wczazjZxAMhJj/7gds2VyFwWg4bMHHoWyxWIxRY4Zz+RUX8MpLb/HVsq8xmcx9vtfv93HcrJnce//daRh4FAAcbYcSAEju7F4lS6tXr2bLli1pABCNJUoAVOIs/nJnG0AdUTTicQ3EIFl2M08IybkgTDjSTDTmQ9Mkpk6tJic3gqIKlBUWkJFMsz0owUrSmquloxOzyYjZaMJoMoAuIKsKclxOpocmhAt1XSMUDNHW1kpNdRXbtm6hsb4eXdMoLS9n/IRJDB06DJPZ3MNNR9M0Mt0uSosK9hsAJLIASGYBhHplAWi6htvpory4YK/HDkEQqG1spsPbhdlkxG6z4XE6cditaWeh3X2kKAiEo7FkdsiBnfc0XcftdCSzG/b/vkdiMWoam2mob+CJRx8iHAohiiLfvepqhg4bjizLe/wcyWCgvno7VquVvMISorFI+pxlRWbm1CmUFBawbv16JCkheJsSdG5tbcVoNPJ/v/0to0aO3O067ogFAKLYI+Q+UADgUEEAk8nEV199xd13353+LTm5uVz/w59gspjJy8oiLyezhyClJIpEYnHenf8ezz75T0aMGMFjjz3G1KlTqampSehBiCLRuExV0oLy1X+/xNdfLePGH99MYWERsqJQnJ9HVqYHURT5xS9+wYYNG/jb3/5GRUUFsixjMpnYsGEDt956aw/9pVQc0V9Lyblz53LNNdcckQCgs8vH5uo6gqEIqqLQUFvFlo3raG1uxmKxMHDgQEaPHs3QoUPJzc3dp1JcWZbZtGkTwWCQQYMG7XbH/EhrkUiEqqqqdH9JQZDUvGG1JkrxMjMze1gd6rpOfX09K1euZOXXX1NXX4fBYKS0fAADhg7Hk5WN3WphYHkxuZkZh5AGhYn52wj4/XhDCmZnJqWlZWiahj8QwONOuFEEAgFEQcdEHDQFg8l26AFAX4r/u5uYAe655x6WL18OQF5eHvfffz+ZmZm7fdi725TIikIoHCEQChONRpFVJTF46YmMAUmUMFnMdLa38sxT8ykuvY283PHJEkKhz3r+fQUAEyfUcczYlj4BwPPPvUpbc3typNZ3c25JjQBBRBJFbDYLeQW5DBpcyZAhA8kvyCXgD7B61XqWLvmapsYWBFHsvzXbPgwWQ4cP4nvfv4R16zbx/LOvIorCYQcAdHTC0chONY6J1M+urnYam6vRVJXMjBzKSwZjsznQVDW9mNd0DUVWKC8v4fSzTqKoKJ+PF3zBwk8XJVNmv/11/ntFW2Mxzjr3VEaOGsYjf3+KQCDUA/ipmko0EmXsuNH84vabKSkp/lYE/0cBwJEHAAyenF7zUXd9mj0BgES9uwWPa2AirX8PS/VE1oBGMNSMP9DKtGk15ORGkGXIyvBQkp+3X7B5T/Nqe2cnOuCw2TAajEiSmN4RisbihCOJ+TISjSIranqeFEWReDxOW2srmzZtYM3KlbS2tFA5cBCnnn4G+YUFqKqWnuuzMjyUFOQdEDcDURTx+vzUNjb1ObfoQEFuDrlZnr1Wy0/sioeSwb6esPg1GHA47BTl5ex5btF1ttc1EIpEEA8oANDIycykMC9n/+v/RZGuQICm1g5WLFvKv19M1FBnZGZyzQ034XF7+hdACQKFuTmsXbOGjNzcHvdC0zXcLjeDK8uJxxIp20ajkZqaGm677TYCgQBOp5P777+fkpKSfgGHIwsAhHpltB5pAEAURWRZ5vbbb2fjxo3p4+dffAmTJk8FXU9kARiNaLqOJEnE4nFef/1N/jXvWc4++2wee+wxcnJyaG5p4atly1BVFYPBgM8foK6pmWgkyj/+9hfsdhs/uPFH6IluRVlRIR63i66uLm688UYcDgd/+9vfMJkS1pRms5kPPviAP//5z7tc7/enXXHFFVx88cVHFADQdZ1ttQ3UNDaj6zrtLc2sW7mCxvoaXE4XEyZOZOrUqZSXl/fog5qmEQqFEu4osRiKoqSf8xSgM5lMWK1W7HY7Pp+Pbdu2kZGRcUTV+R+IOCYSidDV1UV7ezuRSAS73U5hYSE5OTk9MnojkQhr167l888/Z8OGDRiMRoaOGMXAYSOxWG2U5OdQWVLUS3X/YEc4e5tLdcgBQF+K/7trFouFt956i4cffjh97Oabb+bkk09OP7z9WfCkUvoUZYcipk4CAJgMBsxmM11dXp577i3aOiYzcPCV6JqCph04Qq0oImNGNTNlcj2q2rNjhEJhnn/uVdrbOvsdqKcDU01HU1XQdaw2K6XlxYw/ZjQjRg5B1+GrpSv5/LPFtLd1HpSadFmOc8yEsVxy+Vw+X7iUN//zbg9vzcOG/MXCxBUlffap3a3m5jo6OpsxmywU5JdRmF+SXgx3P0ebzcZxs6cxfeYkaqob+O/bH1BXW4/RbO7lr3m0JUpDzCYT1//wSrZvreaN1/6bhiTRSAS7w8GVV32H71x+ESaTkXA4/K0I/tMA4OuPwXAYAABPbmJe2Mn6Z6/mlb4OJrOn8LYeyb0UdcJpCHZ3r4VOdXU1y5cv7wkAdioB6AkArHhcA/oFAFI3QddVOrxVTJiwjty8KLIs4HLaqCguOqhnnZoTE1lt9LBiE5K2ubquE43FCIYiBEIhQpEIqqr1gAHBYJBNmzaw9MsvycrOYc65c5EMCbtcTdPIy86iMC+nl2jqvgYwmq5T09CEPxjqNeYmlj8CpUUFZLgdaRCxp+ugqirbauuJxmK9gllRlKgsLcZhs+wWKoiiSHNrO03t7UgHsNZXR08ERU7HAXEAaGv30uL18vbrr7H4i8+BhMjbJZd9t98BlI7O+NEjeeXlf1NQWo7D6eyhCq+j47Q7KCvKR5IkjEYjK1eu5K677kKWZXJzc7n//vvJyspKWOYeBQD9BgCHCgJYLBbeffdd/v73v6ePlZSWcs0PbkI0SuRlZZGfk4XRmJi3n3n2Wd56802uvfZa/vrXv2I2m/F6vSxZsoRoMnVfFAQ6vT6a29tpbm7i73/+M+MnTODCiy8lltQcqSgpwuV0snr1am677TYmTpzIb37zm3SmiNls5tFHH+XNN99MOH/sI1i8/vrrmTNnzhEDAOKywrrN22j3+tB0jS3rVrNu1ddAQtDwhBNOoKhox5wRi8VoaWmhpaUlnT2dyBw2YjKZEEUxLdCpaRpKMkM6EomgqiojRozopf7//1uLRqO0trbS2NiIqqqUlJRQXFzc4/lWFIWVK1cyf/5/2b69iqLiEsZNmoonKwePy87wgRVYLZbD9hwPKQDYleL/7prBYKC2tpZbb72VYDAIwLhx4/j1r3+NYReiOLs7pR0lAKn30m0BZ6CpqYG///0pAqEJDBl6JQ5HKbquoWnyfmcCHGgA0FfTdA1VSQh+FBTmMW36RI6ZNJZQMMz7733MsmUrEeCApqnLcpzjZs/grHNO5r13F/Dh+58cdrvh0Xg0PdkmJmyJWDRCQ+M24nKcsuKBZGbkYDKZkwtHPRnEqmiqxpBhAznjrJOw2238b/4Cvlq6Cl3X+ud1//9xi8djjBo9nIsuPZdnnnqRTeu3omkaU6ZN4sc3X8/wEUPT7w0EAt+a85bQkaJB9G8YDJksNsRvQLBH17W9XKnqvflCt1ptORY5OKDGbEGwORCl3s9xU1MTX375Zb8AQPcSAKPBho6WLi/b05K8y1fP2HFfkZsXQ5YFnHYbFSWFh4WGyA54rhGNxqlrbk3scid/mygKSJKBcDBIV5eXrJwcxOTcomkaJfl5ZGdlHBAAAEnF/WhScb+PdHsNHaNkoLQwH5fD3kssuK/zi8syW6vrUFSl9+f1MwU/9Tnba+qJyfGEmN5eh2s9v13VNRw2W6L+XxQPiABgY2s7jc3NPP34YzTU1wFw2llzOG72Cf2y/9PRkUSJM087hXt+czcFJeUUFhb2yhzQ0SnMzSEnKxOTycSCBQt44IEHACgrK+Pee+/F6XQeBQD7AAAOBQRIwb2f//znPWrtL/rO5RwzYSK6rlFSWEBLSzP/mjePdevWcfsdd/DLX/wCSHitL168OF3mqyf7X1tHJ+2dXVRVbefxh/7OSacktCdi8ThWi5mKkmLsdhvvvfcef/3rX3vt1JtMJu68806++uqr/RJK/eEPf8jpp59+RACASDTGmk3b8AVDxCIhViz+gurt2xg4cCBnn302I0aMSL83GAyydetWvF4vdrudvLw8MjIycDgc/drJj0ajmM3m/2/1q3bVOjo6qKqqIhaLUVpaSklJyU7xW4i3336bBQs+wmZ3MHH6ceQXFWMxGRkxqPIbcQo4rADA7hT/9zRpaZrGb3/723QZgNls5o477mDk6NGosgxCauJMeFpK/ejoqWQJXdd7LE6MRgP19c08/fS/Wb+hg4KC4ykpPRGXezAmkxtdBx0VXVPT6YI9pr3dQAJFERkzuokpkxp6AYBAIMjzz72Kt7PrgAXniqKg6xqVlWWcesaJVA4sY9mSr3n3rfcJhcJ7DF77m1Yly3HOmHMys0+Ywasvv8XiL786bABAQr07SjQeSwMfUZQIBruoq9uCw+FiYOUIbBZ7UtFa7xa8xnG6HJx48nFMnDSONavWM//dD/F6fZjMpv+v1P33ORAEVFXhyu9djNPl5IV5/+GS71zApZdd0AMEqqqaTlGrrq5OCIh5PDgcDmw22261Qo62XTer1XpEKvb2CMKSOxT9zfhKzRE7673saqG7q4VRZ2cnCxcuTAfBu9UAEATQwWi0YzVnYjBYEUVTN4FAIV1StmNMFdB1mQ5vdY8MAI/rwNR8H3CoJYq0d3qpbW7ttfsuikJyN717RoRIZXExVqtln9T1dwcBWju9NLW27aIUIGGdV5Sfm7As201AlaiLj7Otpq5PoLDDhq8Yi9m023MQBYFOX4DGllZUTUUUduyyIXQbEJNaQmn9oR5aajqarqFpCUG90sICHDbrfu/+p9ZRtU0tbNu+nScffZhwKITRaOTKq69jQNJjfU9N1VSys7K54Jw5fPe7l1MxeChlZeW9AvnUdSsvKSQ7I4NX//MfHn/8cQBGjBjB3XffjdlsPmBg6JteY4iiyNbquiMCAPQXAlgsFl599VWeeOKJ9LHComKuveEm7HY7a1at4oXnnyUjM5Nf/epXXHTBhQhCYt25ZetWvEkL1W4Xirb2Ttq7fGzetIGnH3+M08+aw6zZJxCNxXHYrVSUFGG1WPjbgw8yf/587r77biZPnkwsFktn69x2221s2bJlv87/Rz/6EaeddtphDwB8/iDrtmwnEovj83ay5LOP6fJ2MHv28cyZMyfta68oCps3b6apqYmCggLKy8t7eN4fbQemdXZ2snXrVhRFYeDAgeTm5vZ4/dNPP+Xf//43giAwafpxFJVXYBBFRgweQHaG+/9PANAfxf/dDa6CKPLU00/zxmuvpY+fduYcTjz5FFRF7mG7outgt1vJy85KLFJ2Bxt0HbvdTlFREYIgoChKUgxCw++P8dlnX/Huu/9l48YqdN2JxZqH2zMUh7MMsyULu60Qmy0fEJOTgGm3Vh+7AgCCIBAIBJn37CsHFADsCNBlzGYzx82exkmnzqKmqo4X//UanR2792iPy0nqajTvETScf9EcJk8Zz/PPvsLKr9ccFgBAQEBW44SjkW6LcJGOjiaaW2rJySmksnQIkiT1mHRTtf5Dhw3i7HNPRZRE3nnzA9auXo+YVDU+2vr//IZCYSoqS7n2+ivIz89n3LixOz2GOtFolO3bt1NTU0M4HE6/ZjAYsFqt2Gw2XC4Xbrcbq9WK1Wo97Ch19x3rnW2Suh9L9bXux7urju/8OXo3L+zu5UwpcJKCmH39SV2j1Hemjnf/7NTuXeq11HerqorFYqGiooLs7Oxv9HqnUhR3hgA7B/opFf8D8Vv9fj+ffvopqqoiimIvANDe7sZoNKCjoamxZCBsAkFAFAxIkilp9SchIKVt/0TJiMngQNc1AqE6wuEA06dXkZMTIi5DfnZvka3DB6bG2V5Tnyil2s011nQdu8XCgLJiRFFIgPMDvNRobGmj3evtJQiYCkAlQaQgP5cstyvR13cRtIejMbbV1CXsAHdx3hUlRf0OxKOxOHFZxpgU7ZWE3lkFurYDAuz4bTpoOsFwGEXVyHC7sFrMB+S6pQBWXVML69atZd5TT6CqKm63h+tu+hEeT//q/2VFZtjQoZw861jOPuccxkyYRFFxCWofO/kaOk67nSGV5bz00kvMmzcPgBkzZvDzn/+8x7h0JM9vKZB4KAHAoYAAoigSCAS49dZbe2QBnHXuXGYdfyJr16zmvXfexulycvmVV5GTlYXLYcdqMSfX7ULaGSR1nTo6vbR0drF500aefvxRTjn9DE448WSisTgup53y4kIEUeSXv/gF69ev57777mPUqFHE4/F0VsKtt95KfX39tx4AtHu7WLt5G6qm421v48tPPkJVZC666CKmTZu2433t7WzYsAG3283gwYOxHMYp59+W1tjYyJYtW7Db7YwYMaKHO8Ly5ct57rnnkGWFSTOOo6RiAAZRYOzwwbidjv+/AEB/Ff93N8B2dvl58eWXeP+/76aPn3zaGRx/4knEd6LWug6SKDCgrAS7zUpclvv8XiE56Ho8HqZPn77LXbJAIMx///sB785/n80bN9Dc3IA/EEFRzEgGNxZzFiQFnSwmJ8NH/gKbvRhNkw8bANA9qD1m4ljmnn8G7e0dPP/sK3S0eTEYDb0DZ00mHEkEYhazBUky9FnbqKOjaTqXXXE+I0cN49knX2Td2k37pDx6YIN/kDWVSCSMhk5KkrCpuQZvVzslxQMoyi9LnEG3R0BRFEwmEyeePJMp0yby1dKVfPTBQgKBYJ8WIUfb7ls4FCYrO5Prbvg+gwaX4/f7mTBhAnb7Ds/UhoYGNm7ciNfrTe/I7hzsdg9MTSYTFosFu92Ox+PBZrOlg9nugW73IHfn/7+n9+/p3+wcqHf/u68Av6/37SrgT533zrVmkUiEQCBAV1cXHR0dhMNhzGYzbrcbl8uV9rA3GAzpWj+j0Zj+HFVV08Bgb5okSXg8nnQNXHdl3EPZuu8Wdg/6DxaYCIfDfPrpp0SjUSRJIhqLJVLPibNkURm1tSG6Oj8jEq4nHu9CQMBiK8JiyU2AgGRG2s4S8gnxVjOCKCXV9h1MnhwjPx+MRjPDhw7GYbMdtsFRdUMTPn9gtzBf13UsJhMDykowGKQDmgGQuu+aplHd0JRQXqfvuUlAoCA3h+xMT5/fL4oC4XCUbbX1u/195cWFuJyOft2TnfUV9ioQE9ghr8GBgyYpG8Wm1nZWfr2Cl55/Dkiou199/Y047P07t5gcZ8bUqYwYMohzz53LzONPJCcnZ5fwQBd0inJzeeO1//D2228DcM4553DttdfuVUZPX9f4m84c6D7uiKLI5qpaAsFgHwDAzIaN63juicfTxwqLivnhzT9Pb7JomsbAijLcewEADgQE2BMIsFgsvPPOO/zjH/9IH3NnZHDdDTeRk5tHR3sbz/zzcSxWKxde+h1y8/IxGw1YzCasZjNOh23HNwgCwWCIhtY2Nqxfz9OPP8qU6TOYe94FaQBQWVqMz+fjlltuoaWlhfvuv58RI0cix+NIkkRrSwu33norPp+v34r/RyIAaO/0smbTNnSgq7ODzxa8j8lg4IorrmD48OHp923ZsoWmpiaGDBlCXl7e0QXnIWyqqrJp0yYaGhoYPHgwZWVl6ddWrlzJ008/jSzLaQhgt5g5ZtQwjIdRRuZBBQB7o/i/qwFWURRqG1t54V/zWLb4y/Rr5198KRMmTkZW5F4LDwGd2TOnM3TIENatW0drW9uOVLydBjxN0xg7dixlZWU9JpTug3tjYwMrV61C10WCwRiBQIhgIERrezvt3i40TaO5qYr1a3yMHP13TCZX2gd6ZwAwdnQTk3cFAJ55Ba+366DZyOnoxGMxRo4axiWXnUd7WwfPPPki/kAQg2To8XvicmLnPHUZDJIBm9XeazGbWuJcdfWlVFSW8fQTL7Bl07ZvXARQQ0vY/akaJMX+6hu2EY2EqCgfSlZGbuK390j5j5GXn8uFl5yD2WTk7TffZ9OGLUhHrf32usmyjCwrHH/isfzk5hsoLSshFAqxaNEiSktLGTx4MJFIhA0bNtDY2IimaekxQlVVotEo0WiUSCRCPB5PZwJYLBbMZnMa6vUVoO8caB+KBeD+vp6y6xQEgUgkgtfrpa2tjebmZjo7O2lubqa+vp729nZCoRDRaDT971L+tUajEbPZjMViwWaz4Xa703+Ki4sZNWoUOTk56ZT6vZ3sdF3HZrORn59PRUUFHo/nW9+HFyxYQDgc7gEANBQWLyrlq6Vv0Vj/AqJgQBAMSZ2Yva9pFkQz+fl5ZGdnkJWVxeWXfYfc3Nz9WuAe6H6e6KuJsoX2Di/1La2IYncr3d4AwGiQkqnz5oPyTKbsfqsaGolEIrvMBBAQKCrII8vjRte0HkGTKAoEQmGqanfvKV5WVIjb5Thid6xFUaSptQ2vL8DSJYt5/ZWXAcgvLOTq667HarX1Q3wuUf9/wdxzUOU4l37nO5x21tnYdwMPBFFAEkVe/tc8Vn6dEC377ne/yyWXXJIew/YWRhoMhnR2UwpqflOBf/dj4Ug08Vt2Lo8RBMLhMC3NTeljZrOZwqLiHRkluo7VasEgSXv1jByop0nYTb+Jx+P8+te/ZsOGDenjU6bN4JzzzkcURerr63juqScwmUycPfd8KgcMTAPsDLeTTLcLo8GQqn6hsbWN5StW8OSjDzNw8BCuvu564rKM2+GgsqyY5uYWfvazn+L3+/n1nXcydepUYrEYJpOJ1atWcfuvfoXJbN5t/+kLEEmSlO4rV199Needd95hCQCC4QjL12xAUVXCwSCfffQ/LGYTV33/+5Qng0xFUVi9ejWKojBmzJhvDMofbdDV1cXq1aux2WyMGTMmvfnZFwTIyfCQl52J1WLGajF/4zDgoAKAvVX87+shjssyW6pqePLxx9i2ZXOCqJpMXHnNdVRWDkj7DnffffM4HZw/92zy8/KRZZkNGzawPen7KIo9TXpUVSU7O5vJkydjNBp7QYB4PM7ixYvp9HqRpISSqSAKSasUhdrGZuJxmfXrV/Leu1s5ZsJjGAz2vQIAoiji9wcOOgBIU/xYjDFjR3LZlReyfu1GXpj3n4TicXIBJQgC0Xg0oYqcrFsNhwPYrXZczp47KTqJHcurr7uMoqJ8nnz8eaqr6r5hcTydcDSMrCZqOlVVpa4+UTNWUTYUl8MN+o6FYAKMxBk9ejhnnXMKW7ZsZ/47HxIMho/u+u/tldd1wuEw+Xl5XHfj95l73lk9Xg+HwyiKQktLC2vWrKGrq4twOEx7ezttbW10dXWlA1+v10soFEJOZvHYbDY8Hg85OTnk5ubi8XjIysoiNzcXl8vVCxCkXD8O10V796A/GAxSW1vL6tWrWbVqFfX19QSDwQPqk11cXMysWbM49thj04rBCZ2Q/k8BqTIBg8FAVlYWZWVlFBQUHPE6A7vqyx9//DFdXV0YDIZeJQBNTaCpXgTRgCBIaGqEaKQFg2RGEEQUNYymKaSyjBJDqYQoGtB1FUWJJv+tk0mTo4wa4SEnMwen07lLgdtDGjQmS+gUVSUUTpRRZbrdhCIRttXUISsKYnIuFAUJ0BOiqVrifG1mExVlJRiTAdvBgHKiKBKJxqiub0yI7+1CE0AURApyc8jyuBCSgnq6riOKAqFIlO01u84ASCvx70FP4HBvNQ1NRKIxvvhsIe+8+XoCbJRXcMXV12A2mfd4brKiMGjgAC6aew5ff/01199wA3POS2q56D1LlARBQAfkeIy2tjZeen4eba0tAPzgBz/g7LPP3msAIIpiupy0ra2N8vJyJk+eTEZGBvF4/KDfmz0B3V2XnOrJsd7YY2xRFLlH6L0znDrUEGBXIMBsNrN06VLuueeeHvZx373qaoYNH4Gu6zQ2NPD6q/+mvq6OCZMmMWjIUDIyM8jLLyDT46E4Pzd9jULRGKvWrOWvf/ojggA3/eSnuD0erGYLlaVFqLrOn//8F774bCFz5pzN9df/gGgshtlsZvPmzfzkxz/GZrMRiUT2ajxJlXrqus5ZZ53FDTfc8I0AAEVRUVQVRVGT42VC80NWFWKxOI2t7YTCCbvqRZ8sQBJ0vv/971NYWAgksqpXrFiBx+PpkQ1wtH1zTdM01q5dS0dHBxMmTMDpTIj+rVq1iqeffpp4LM6kmQkIoCZL4W0WM1aLBbvNitvpwGGzYbNaOJSVlgcNAOyL4n9fA64sK6zZsImH//5X2loTdlMeTwbX3fhDPJkZKErPQFtTFSYdM46TTjihh4jd1q1b2bhpE6qq9ikSeMwxx1BYWNgLAGzctIkNGzb0KiNI3aPaxmaC4Qgb1q3i7TeWMW36vzBbsvvcCdotAPD5mffsq4cEAADE4jFmzZrOnHNPZf67H/HRB5/2qNsPR8PIipIGANU1G7GYLQwZOKaH0GFqcXXNDy4jLz+Xxx5+jsaGpm80IIjGo8TicQRBRFXi1NVvxWSyUFoyCLvF1sNfO+GaoHDcrOnMnDWF/81fwNLFXyMZpKO7/nvZ4nEZTVM5+dQT+NFPrqewML/3IrSmhhdffJH333+fhoYGAoEAoVCIUCi0zzs5KY0Ap9NJZmYmeXl5ZGZmUlBQkN717u59ezgE/ZBQjq2urmbVqlWsXLmSqqqqtGXP7prZbMbpdGKxWFBVlXg83uPPnob07OxsjjvuOI477jgqKioQRXGvQUBKI0AQBBwOB0VFRZSVleFwOL5Vffrjjz/G6/UmAcCOEoCEBoALg0HstgTXESULGa7BGAwWdF3tlWWU0iHR0YjFvARDDcRljWlTt1FUJFNaVIKpW8D8jQT+yTKcaCxOY3MTtbUNNDU3EQ4G0ZQ44XCYQDBIPC6n69ddbjclZWWUV1RitVrRNB2bxUJ2pgeHzYYxWWZ2MM5LFASC4Qh1jc3EZLlPS1Y9mb3gtNvJ9Lhw2m3prMB4PM6WqlrkPlwAUv+2tLCADLfriAQAqXXUttp6dOCTjz7kf/99B4DBQ4dy2ZVXJVwL9vD8K6rKGaecxDHjxvL5559zy89vZe6FFydcOhQZWZZRFJloOIrX20lHe1typzbGB/PfRZZljEYjd999N2PHjt0ruJna0f373//OggUL0seHDh3KOeecw8SJE7Farf0a/w5G8P+Nw8qDCAFSc9Y//vEP5s+fnz5eUFjI96+9HpvDjiiIRMJhFi/6kq+WLKKrqwuH08mIkaM57YwzGT54YEIvRdcRBYG2zi4efuQRvlqyiPMuupjJU6cTi8XSpTYLPlnI3//6ZxxOJ7++8y6GDR2CpqqMGzeOG2+8kbfeeguDwZDOZOuP0Kuqqunnd+7cuVxz7bVEI5F0pvHBAACxuEw4EiUYDhMIhYlEYyiqiqpqib81rSf40XUEQUSURNYsX0awq4MrrrgiHfwHAgFWrVpFSUlJj5Tzo+3waLW1tWzZsoVx48aRmZkJwJo1a3jyySeJxWIce+KpFJWVoyoKmq6jqVo6njIajThsVjxOB5kZblwO+0HPEDgoAGBfFf/7nLgUlSXLV/Dwg38llLQBLC4t5fvX/gCT2dxDKEnTNFwOBxfOPZv8/Px0PW2qNTU1sWbNmnTtbCqol2WZnJwcJk2alF7cJtLyA3y5aFEivbAbNBC6/b7axiYCoTDV27fxr2dfY8r0F3C7h6Bp8T4BQF8aAKIo0uX1Me+5V/B1+Q9J4Jmo3de47LvnM3TYYJ54bB5V22owGI1o6ITCwfR1UFWVrdvXYrfaGT7kmF4AwCAZuOYHl5GVlcljDz9Lc0trz5KCZC2snlQ/7jnZdKvh7WfN5O76S1yOEYlFARFFiVPfsA27zUVRYTkWk7kXtUOA0844kYGDynn15bepranDbD4qorJXfUnXCYfCFJUUcsNN13LmWaf0ek9bWxvPPvssTz/9NOvXr+/3Z5vNZkwmU7oGfm/bsGHDOOmkkzjmmGPIzs7ep/T3AxVUSZJEKBSiqqqKlStXsmrVKrZv377HWli3201lZSUDBgyguLiYwsJCMjMzMZvNqKqKoijE43F8Ph8+n49QKJR2VIhGo9TX17Nu3bpeNotOp5MZM2Ywe/ZsBg8ejNFo3GsQkHqONE3DZDKRm5tLWVkZeXl5R7yV0Pr169m8eXM3F4CeAKCnDWDC+tBqycbpKO22JBd2sVxP7JwHQ034/E1Mm1ZLVk6YnIwcCnKy9lv1fX+CnEg0xratW1m8ZAlVVVUochyr1UqGx4PD6cRms2G1WjEajciyTDgcZtPmLXi9XgYPHca0GTMwms1oqg7omAwGbDYrWRke7ElHgJ3Hj/1dK4iiSCAYoq6phXjShq/PvoqOSKJsJsPlxON24g+EaGptZVeJ0Ec6ANiR5VCHwWDig//N56P33wNg9LhxXHjJZYm5dzd9TtVU3C43V152CS6nk5Vff82ll13OwMFD8Pt8RKORhAOEkJjTHQ47peUVVAwYwHvvvsPSRV+mA/Z77rkn7QDQ32Y0GmloaEjXf+/cbydMmMA555zDyJEjkSSpX44G34bA/2BBgJ1HLoPBQHt7O7/85S9patpRyjBl+gzOmXs+iprY1ZRECZ/PR1trK8Ggn88//ZRzzr+AGVMmYbNa0LTkmlwQWLR0GQ/cey/5hQVcf9NP0HSN7EwPBTnZbK2p56l/Psb6tWsYPWYsv/zlL7GYTQwbNoyMjAxuuukmXnnllX7dv9Sf7hsAo0eP5tbbbsPpdKIn1wQHCgCEIhE6vT46fQFC0SjRWBxN01FVBTkuoypxFFlB6+461W3tKwgCQb+PgLediy68kPz8xEZKMBhk1apVDBgwIH3saDv8WkdHB2vXrmXYsGFpl4AlS5cy77l55OTnU1o5EKNkwGKzYbXZMVusSAYJdB1V09BUDUEAu81KpttFbnYGHqdzrwX0vxEAsD+K/309vIqq8d4HH/DU44+lH+Ax48Zz4SXf6Walk5ykFIXJE8Zz8gnHQ5IYC93+Tj1E69ev57PPPmPjxo2IokhBQQEFBQUcf/zxDBo0KP15a9etY/PmzekdO6GPibWlvZPWjk462zt57OGHGDX6HxQWnYSqRvoGAKOamDK5NwDwdfl47tlDBwASv0chMzuDm370fdpa23ny8RdQNRVFkQlHoyTGaYFYLMbWbWvI9GQzdPBYNG3HQKrpOiajkWuuvxy328ljDz9HW1sHhuTuiq7rKJqS3oHtHuILJASxRFFMvF+UEAUBEWGvJ7OU6F9KuFBRFBqbtuN0ZlKQW4xppzIUVUsoe19w4Rw8GW5emPcqPp//sLEvPFJaasfl9DNP5Uc/uY6cnOwer/v9fl544QUeeeQRVq9e3edn2Gw27HY7LpeLrKws8vPzycjISO/mu93uRA1lSwsdHR34fD5aW1vTJQOhUIhIJLLbRV9xcTHHHnss06dPp7S0NLkrJh/06yMIAkajkWAwyKeffsrHH3/cr6Df4/EwbNgwJk6cyIgRI8jLy0uXo3RX8t95kbOzrkAKcFZVVfHhhx+ycOFC/H5/j++yWCxMnDiRk046iTFjxqQF1vYFBKUU81O6AyUlJT0Uco+k4D81P/SwAayrR9XiLF7UGwAAuJwVWMye3drBdh+1NF2ho2MrEydtIic3gs3qpLyokEMdd6TOce269Xy1/CvkWIwBAwYwYcIEhg8fTkFBAW63O11rmnLusFgsCILAsuXL+ejjTwmFQhjNFkQpsaBJeuWiahpWs4mB5aWJeuBuE3dXIIjbYd/vYCuVCVDf3EI0FtslBEgF9bquY0jOtbsDLkc+AEgIANY0NGIymfnv22+x8OOPEgHctOmcnQzgdjfpxhWZyROO4bSTTgTgoYce4oknn2LsMROx2qxJAVITJpMRs8WCyZSob21ubuHxhx4kEEiMOd+94gouvuiiPse/3Qn7mc1mPv7kEx64/34AJMmArms97ofJZGLGjBmcc845DBw4cL+yAY5UeHkwIYDFYmHhwoXce++9Pa7rBZdexoQJk4jLcSRRSK/pdF3nmSf/yaAhQ7jk4otx2qzp+yUKAnFV47HH/8n789/lksuvYPwxE1BUhYFlJfiCQdasXc8TjzxEKBTioosv5bLLLsVoMHDiiYk++IMf/IAPP/wQg8FAS0tLL8C98/00m81kZ2dTWlrKtGnTuOmmm1BVldWrV6Oq6n4BgFhcpq3TS2tHJ4FQBEVVkeMyoYCPLm8n3vY2/L5EuWM8FkWR5YQbiK4hIKQzqVLW5Iosc/rpp3P+BRcAibT/lStXMmDAAHJyco4uPA/z5vf7WbFiBcOGDUuLM27YsIH5782nqaGRcCSCpulYrFacTheezCwysrNxezKwO5yYzJZkhkDCbt5pt5OXk0lBdhZm84GLUQ4oANhfxf++HlpV13nxpX/zyksvpI8ff9LJnHzqGT0EADVNw2GzctF551JQUNAj6O/+35qmcd9993HvvfcSCoXSdNNut1NQUMDYsWMZPnx4giSnxGZ2Q9YDwTDVDY0oss5jDz2IJ+NKho+4CUUJd/ttOpoGqioyZlQj06Y2omnSTgDAz3PP/vuQAgBI6AHMmj2ds887jf+88g6ff7oYRZNRkuctCCKhkJ+q6g3k55UwoHzYLgGA0+ng8UeepaOjC0kUUFSFuCyjqApJ2+te17J77xMEEAUxqWJu6tN1YFctJfqnqjq6rtLUVIPD6aEgt7jXglNVVQwGAxd/5xwkycBL/3qNaDT2raxjPmgLjeSuf1lFKT/88XWcdPLxPSl4KMS///1vHnroIZYvX95rQTp69GjGjh1LQUEBubm5uN1uLBYLFosFk8mUXkDsrIyfWiTKspwWCgyHw3R0dNDa2orX68Xr9dLc3MzmzZt7LQo8Hg9Tpkxh1qxZDB48GLPZnLT+PPA7rqkd0qVLl/L222+zdu3aPY53JSUlTJkyhalTp1JeXt5jl39/AgBJknA4HOi6zjvvvMPLL7/cy0rJZDJx1llzuOSSi9Pfu68tJRpotVrJz8+nvLw8nRJ3pAX/qXuzewCgIwgGPK6BGI3WfvSnxEJZVoJ0emuYNGkzObkRLGY7lSVFhzQASaXAbtiwgXA4zIwZM5g6dSoul4tQOExzSyt+vx+DmEiXj8VixGIxwuEwNpsNs9mMosgEgyHiskwgGCISjRGNxVEVJZHmquvY7TYK83KQkraAkiTR3NYOuk5eTvYBCa5FUSQSi9HQ1EowHNotBEgFTHu60jsAgPOws2bs7zVpbm2npaMDg2Tk1X+/wIpkhuZxx5/I6Weetdt0/JSQ4kXnn8uAigrWr1/PlVd+j1PPmoPbnYGqKonAcychVpPJxCcLPmL+O28B4HS5+O3vfseAioo+4evOfb77M2QymXjs8cd56803ARg6fCTFJcWsW72a5pZm9G59JyMjg6uuuopZs2btlevJkZ6xdLAhQApmP/7447zxxhvp151OF1dcfQ0lJWXIShyjZCCuKBgNBv790gtEwmF++ctf4XE5etwLSTJQW1/PXXfeiSzL3Pijn2BzOvA4HGS4XTS2trNq1de8+Nyz6LrOz35+K7OPOxan08moUaNwOBx0dnYiimIaAKTGpkAgkC4vHDBgAFlZWRgMBnJzc3uo5be1tbFo0SI0TSM7O3uvAYCsKNQ3t1Lf1EosLoMAQb+PpvpaGutq6WhvIx5LrC2dTicetzudRZVy7OluJSlJEhaLBYfDwciRI8nNzUXTNFatWkV+fj4FBQVHF59HSAuHw6xbty5to5zajEkJPFdXV1FVVU1jQwNerxdZUTCaTLg9GWTn5JJbUEhWdi4Wux0QUFUFi8lEYW42xQW5WA6A8OMBAwD7q/i/qwFZBx577J/MT9asAcy98GImTZnaYxKRFYXxI4dz5hmn99r1T7X6+npuv/12nn/++T1+t8Fg4Pzzz+fSSy/dpYWRkAyAt9XUE1c0XnvlDepr7Mw47qk0AFBVHZfbSEmJBYvNwLDBXpy2NcTjWo8J2u8L8OwzLx9yAKDpGiajietuuByrzcpf//QYbR0dSFJKEFCko7OFpqZqyksHU1xQjtoLABi49vrv4nQ6eOShp2lrbUfVE0Inu1pg6cn/Sd0iUUgMfpIoIUoSkij2WY+5qxaJhZGVRI1XS2s9DruTvNxijDup6iqqgsVs5oqrLkaWZZ57+hUUVcEgHa333xtoJAoiZ597BtffdDVZWTsCO1mWefnll3nooYdYvHhxr4XouHHjmDNnDieccAKFhYUYjUaqqqrwer3pcWRvxoedvd9Tu9fxeJytW7fyzjvvsHz58jTs676bMXbsWGbPns2YMWNwOp0HTFE6JeC2ceNG3nrrLRYtWrTHzx04cCCzZ89mypQp6fKlA5nGqqoqFRUVjBkzBoCqqirmzZvHvHnz2L59e4/3n3jiiXz/+9/H5XQi72e5RHfRwIyMDAYMGJAWIDxSgv/+AwAJt2sAJqNjd+QsMS9oMrF4F+FIK/G4wrRpNWRlh/C4MikpyDvkAoDRaJSioiLGjBmLPxhk05YtbK+qpqOjM5ENBhTl5ZCdmZEOm1PzbGquTaQAi2RkZNDl8xGPxxAEMf1MGwwSsGNujkSifLBgAdOnTiE7K+uAaXQIgoCqaTS1tuPt8qUD2P2ZI/Nzssk/QJDimwAA1fWN+IMhotEITz76CM1NjQCcefa5zDxu1m4BgKolhJK/l9yBvfDCC4kpOrOOP4F4PLbL74zFYzz9z8eoq6kBYOZxs/jpzTcj0Hs9tbvgO5Wt9es772RDsnzs1DPOYtwxE9i4bi0lxYX899132bp1a/rfmM1mbr75Zo499tjdZlt9W4L+QwUCRFEkHA7z29/+tgfQLiwq5orvX4PL5UoLc5uMRhZ8+AFLFn3BH/5wH0WFBelnfIdQpMDb777LE489ytjxx3DJZVegagplhQV0+vyEo1FWr1zJy/+ahyQZuObaa5k16zicDgeVFRVUVFbu1z2sr6/n669XoGk62dnZzJw5s9//tqmtne21jYQiEUxGIyFfF1s2radq6xZCoRAet5uKysq0RVx2djZOp3OvRdGrkgLmFRUVRxefR1iLx+OsWbMGo9FITk4Odrsdu93eY4M8EonQ1NTEtm3b2LJlC/V1dbR3dKBrGg6Xi9y8AgpLS8nJK8Ris6GqKmajkeKCXIrzc3tlNx9yAKDrOitWrNgvxf9dL1w17n/gfhYvWgQkdtWuuPoaBg4cnF6c6rqOJAjMPftMBg8a1Gfw/9VXX3HjjTfy1VdfpY+l1MQ7Ojro6vp/7J11eBzn1cV/M7OzIFoxWZIls2WZmSlxwGFomNlhrpOGmjTU9mubhslhcByOw2ZmZstiZml5B74/dncsWbItmRKnfp9HsbJarWZnX7j33HPPqW+lSmuxWHjqqafIzs7ebzAuiiKV1TVU1taxacMuvvt6CRMnfYZksqEqKimdrAwYEIktXEJRYNIEAWfDNnbtyjNaJH5LACAwSb0MHjKACy4+i/c/+Jzli1dgtsgGAFBcnEt9QzW9ewwgNiaxBQMgpAFw3U2XoQGvv/ouDfUNiFJLPebmCX8oWBRFCVPwXzGY8HfEP9lISP1eXB436Dq1tZVYLDZSktIwiVKLloNA8m/l2hsCoM5br3+Iz+8/kfy3O5kLKPx3796FO+6+hfETxrT4udPp5IYbbuDjjz9u8bgkSQwYMICzzjqLqVOn0qtXL4MW7nK5WLlyJfX19Ue8x0mWZVRVJTc3l3nz5rFs2TKqq6tb7TG9evVi3LhxjBgxwkDcD6XiLklS0BapmNmzZ/Prr78eVLcgLS2N008/nbFjxxIXF3dUxQrN5kAPZXPxoF27dvHqq6/y0cefUFlRbjw+cuQobrnlZmLj4lCOABARAjSio6M56aSTfpeB9/6S/9A88fp87Ck8cAuAJFmQTRFIkhlRMIEQTD0FAUGQkEQLPn8Dbk81ihJwWVFVieHD8+iU6iMtNY1wm+2YAwCiKBIfF4fT7WHdxs00OpwB1xtxL51XEAXSEhOIi43Zr2K5pmkMGjQIm83Gli1bqKurC+z3+yikm0wmFixeSmFBHpdefPERT6xD4ERDUxPlVbV4g2DEocw6TddIjIslNSnxuAQAdF1nT1EJfr/Cli2b+PCdGei6jsVi4bqbp5GennHA/c6n+Bk6aCBTT5nC22+/zVN/+xtXXX8jZrM5yJAU2txrNm/axAfvvoWu6UiSxP0P/JlxY0fvl/5/IEC1sLCQP//5zzQ2NiKKIldedwO9e2ezaOECzjztVGJjY5g9ezazZs3CEdSKSkhI4KGHHqJnz55H1E3lfxkECH22hQUFPPbYY1QGhbkBsnP6ctEll2GymNFUDVmW2bp5M+/PeJMnnniCoUOG4t0HMBJFkerael56+SXWrFzBhZdcxtDhIzCbJOJi7BSXVyBJMtu3buHTDz/A6XQwaPAQxowbR5euXUlMSCQqMnKvTanBo9/b5hP6PqBFtbdtWFNVnE4Xbq8HPcgAOPXUU7Ga5YPEm3525RVSVlmNJJlQPC5279jK9i2b8Xq9dO3WjWHDhpGTk2NUfpsnex6PB7/fb7TxhfZYWZYNF6PQevD5fJSVlRltiyfG8QkCrFixgrq6OjweD4qiGPbNERERJCUlkZqaaugFhMSht23bxvbt2ykuKkJRFOwxsXTu0o2MLt2IskejqiphNguZnZJJSUw4pPj5iAAApaWlLFu27IhTqENo418eeYTduwI2blF2OzdOu43YuLiA6AwBumlSQjxXXPInbLawVgDAzJkzuffeeyktLTUe69+/v2Gt0djYSGVlJRUVFaxevZpFixYZz5syZQp33HFHQEFUb9m/Hjq4fH4/eYXF1NY5eeu1t+jR63kSE0djtaqMHhtNeISEqoCiwkmTRCIslSxbvroF9aehoZH3ZsykoeHYAwA6gV7IKWedhCoIzP7iO5wOF5IkoigquXmb0VSV/jnDsFnC0YL9rQICGhqqpnL62aegCfDdF7PxuL2IQZpnKOGXRGlvhV8UA9TMUHCsw6HI/wkI+FUfTrebJkc9Ho8Li8VKSlI6smhqlfxbLBauue4SLFYzb7zyHi63p4VY4Ymx/xFqkbjgT2dx483XEh1tb4Wk/+1vf+PVV19tkRAPGjSIU045hVNOOYX+/fsTHh5uJArFxcXs3LkTp9N5VA+3kL1naWkpS5cuZeHChQaq3nx06tSJMWPGMGbMGDp37myISR1siwxRI+vq6vjpp5/4/vvvqampOeDvWCwWzj77bKZOnUpCQoIREByt0byvPyUlhR49ehAdHQ1Abm4uH34yk7fffIOiwgLjdwYOHMQdd95BYvD6Dh9A0ggLC2PixIm/O3vNAyX/BgDg9bGnGQOgutrO3iNPMPZSI8IMtQ+E/hsEATTND81sYv1+GD++lAF9wwm3Rf5m9n8h/YaqmjrKqqpbBRShc7VTYgLxcTFtMuNCVNqhQ4caiVtpaSmNjY1GEiZJEg1NDt599z2GDBrA2DFjcHs8+733hxVDCAI+RaGypo66+oaA9ovQsUBJ03WS4mNJSUw47gCAkAPAnsIi/KrK559+wro1gSJI9x49ueLaaxEF6YAWiLqmc8mfLiAyPIzx48eTM2AQQ4ePwCSJxMVEU1Nbj9vrMYCAgMgbzPzoIzauXwtA1+49eOzRR4m2R7UJcB7oczebzcybN49//OMf6LpOTEwsN0y7jfj4eLZv34qMznnnnYeu6yxYsIB//etfRjEnOzubhx56CLvd/rtwgfmjgAA2q5UVK1bw3HPP4XLtbXcdPnIUZ593AXpQDLKmuooX//V/jJs4iWuuvppwm6WV05YObN62g//7x/M0NTRwwy230Tkzi4hwG5IoUlVbh8VioaK8jJ9mz2bzpg0ApKal07NXbzI6dyY2Lo6IiEjMZjNCG+xRgb0xZkiMWlUD4JUgBhhykVFRnHPWWXTN2D9DrdHhZNvuPBqdLiRBoLQwj41rV1NXV0d2dm8mTpxE3759jQpvXV0dZWVl1NfX4/P5kGUZWZYxm82YTKYWAGtIgDfkumC1Wo2q8Ynk//gfIcHc5i10tbW1VFdX43AERNcTEhLo3bs3aWlpxu/k5uaydu1a1q9fT3V1NRGRkXTt0YtuvfpgCw9H8fuJsUeRmZZKQmz0sQcA1qxZQ35+/hEHACRJoqamlgcffICKioCHbKe0NK698RasQUXR0E0a3L8fZ5x+aiu07YknnuBf//qXgXBLksQZZ5zBhRdeSExMjGFlFULgQkqnBUHaWnh4OH/729/o3r07vn2CYKEZUFFWWUVNfSNff/EF1VUD6dvvYaJjFEaPjkUM6iEpKpw0USQp3smiRcvxer3G326ob+Tddz6lsaHpmAMAgiDgcrtITk9hytSTWL5oBetXb8BssdDYWEth0U6iIqPp02uwsbHq6CiqH6/Ph6KqnHLmKVhtFr7/8nt8Pj+yyYQkSZgkKVDhF8QWmgxHJGDVA33/9Q21OJ0N2GwRpCanYzbJLXv+NRWzLHPZVReSkpLIqy+9Q011bQtf3hNj/0mby+Wid3Yv7rpnGiNHDWvx89raWnbu3Mn777/Pq6++agTIiYmJXHPNNYwePZr+/fsbG5qu65SVlbFnzx5qa2sNBPxYJD2SJGEymaipqWHt2rXMnTuXrVu3tkpuIyMjGTFiBBMnTqRnz55YrVYURWkz+DebzbjdbhYtWsS3337bik7f1sjMzOTGG29k4MCB+P3+YxKYNg8gFCUAhmVmZpKQkMCe3FzKKytZv2kL770zg/w9ucZz+/btx91330VSUtJhgwC6rmMymZgwYcLvyi7wYMl/mwDA8s6Ul0noeiO6pqBpXlTFHQwydXRNRddVNM0bEHoSJUymCGTZjiiZEUULomhGFGUkMZaLL3TStYuK16v/ZgBA6H0qikJuQTEen6/tvmxBICE2hqS4GEyS1EpAT9M07HY72dnZRlXD5XJRVVXFrp07aXI4Wb9lCz/Ons2111xN16wszBYLDocDv99/xIPd0Os53W6qautxOByomhagIbeDE6ChkxwXR3Li8dcCEHJHKCyroLKigjdfeQmHI6CLcvb5FzJq9JiD0v9jomOYduN1PPzQdD78+FNuuGUaifFxJMfHBWKmunqKSssMUN5sNlNaWsobL//XSA4vuewKLr3kItQ2XEYO9nnLssxrr73GN98EtAR65+Rw2RVXI4hCQBxt9SouuvAC7HY7oijyxRdf8NZbbxm/P3HiRG6//XZMv7G95h8JBBCCIPYPP/zAiy++2OK+jp0wkVOnnokYbD1787VXcLmc3PfgdHp2yWzz89d0nV/mzuOV/75AXFw8199yKzGxsYRbrSiqQpPTZViiFRTks271arZs2miIS9psNuwxMdjt0URGRREVFYXVZsNiCQhSms0ypmDyLcsyFquF8PAITCbZsAiMjLJzzlln0CW9bQCguq6Brbv34PeruJ1NbF63ij27d9OpUyqnnnoaQ4cORRRF/H4/e/bsobi4GE3TiImJISkpiejoaMLCwg6ojxYSV3W73aiqSkxMzAltqv+BoaoqtbW1VFRUUFtbi81mIz4+noSEBCNWqq2tZdmyZSxetIjyinLiE5LIGTiYtMwuaMFieHJ8DJnpnYgMDzs2AICqqsydOxeHw3HEKbySJFFVVcV9999PbbCiltWlK9fccDOiJBiFFlVVOP3kkxk8aICBoCmKwq233sqbb75pvJ7dbueaa65h4sSJxqLfd1gsFr755hteeeUV47GpU6dyyy23BHra98MCUBSF/JIytm/fxhefLWbwkLex25MZMDiM1E5WdBX8CkyeIJKZDosXL6OmpsagDTuanLz7zqfU1db/JgwAp9OBLsAZ552OIIp89/lsVFWjsGgnDkcDWZ17kpaSiaIqKFrAdiwk7qdpGlPPOQ27PYpvP58Nuo4kmYxKy9EIaHV03B4PDQ011NZVYQuLoFNKZyxmSwtlQVXTEEWRiy45i779+/Dma++za3su5iMgoPFHHx6PB4vFwkWXnM91NwQ0Hpr/bMeOHZSXl/Pjjz/y8ssvG4FkYmIid999N0OHDiU7O9sQ3amtrWXHjh1UVVWhaVqLg/BYJj2iGBCadDqdbN++nTlz5rB69epWOgFms5l+/foxadIkBgwYQHR0tEHRD1nmrV+/nm+++Ya1a9e262+PGjWKG2+8kaSkpFYtR8cKADCqIM3AF0kSUTWdtRs388mHH7Brx3bjuX365HDvvfccMRBg3LhxvxtBwPYk/80BgLyiYjQ0fvnJw5KFb+D3l4GuoelqIMxuB1tEFC2IkhUp+GW1pDNxYnf69k2ne/eeRERE/KaJiiiK1NY3UFha3uY90fWA5WG4zUZSfCyRERFBsf/WQqsZGRn06NEDqzVgrbp27RqWrlrL6jVryN2+lQfuv5/hw4cTGxtLeXk5GzZsMCiSR/x9BRMNh8tNXUMjDqcz0EYoNIcBBCNdCgnbAaQkJJCUEHdcAgCVNbVU1dazaMF8fvg2IKIXHRPDDbfcZhRB9jf8QfX/rIx0xo8fz5TTz2TChHHER9tbqPZX1dRSXdeAKEn4/T5++PZbli5eCEBMbCwP/eURevfo3i7xv32v3+Px8Pjjjxv2sVNOm8qkk6fg9/sxmUysXbmS7l0zGTVqlPH5vPHGG3z77bfG61x66aVceumlHRIFPAECHPxMMZvNzJw5k3dmzGjxs+EjR3H6mWcRHhnFvF9+ZvY3X3HDtFs5aeJEbBa5lZimKIrowKzPP+f9d98lq2s3/nTJpcTGxWMSRXRNwxOcO7JJRhCgoaGB4qJC8vP2UFxYSG1tTQBEbEe7R0REBAOHDGX0uPFYbTYUv4I9OoYLzjuHzE5tC+2t3bKDmrp6KooLWb96BT6fl4kTJzFlyhTCw8NRFIWtW7dSWFhITEwMWVlZJCUlHRFB9BPjf2soikJjYyMNDQ2oqordbjfcH+rq6vj5559ZuHAhiuKnV05/cgYMRjSZUPx+zGaZzLRUMlKTkQ6Skx82AFBXV8fChQuP2uHl9/t5/PHH2bRpk4H0XXX9jWRmZuEPosmSKHLZRReQ3qzK+NBDD/F80DIGoEePHlx//fX07dv3gHRbURRxOBz85S9/Map5kVFRPPPMM3TOzGzVD9ucBVDb0EBhSRmzPv0Ij/sksvvcgy1Mo3efMFKTrQiiwOQJIumdTGzYsIG8vDykoF2eoqi89/anlJaWH3PEz+PzBCr5foXefXsxZuJofv7uVzZtWE95RT42axh9+wwDBLw+j5H4i6IQ7LOHK6+6iNi4WN545b1jcsB6vF4aHQ2UVxZgkW2kp3Ul3BrWgvavo6MqKlPPOpkJE0cz85OvWL50NRaL9cQOc0BQT8PtdtOvfw533TONIUMHGj/TNI09e/aQm5uLz+dj/vz5vPzyy0YyGxcXx/33309OTg6xsbEMHz7coDHt2bMHn8/X5oGo/0a+5yaTCVVVycvLY8GCBSxdutRgGzUf3bt3Z9y4cYwaNYrExERyc3P55ptvWLRoUbuSYovFwjnnnMOFF14YVE1XfpP329Z9b96K5PJ42bx1O199PsugWgL07duX++67z9ApOJyDbcSIEb8LIcD2Jv8GABDUANB0hYULoti+ZT1+fzm67kdVvaiaFwEB2RSOZLJhMoUH9ABMNjRNQVO9IAioigdV8yFJYQiihE4E556VQJ/sGKKiYo2Wld9yCIJAUWk5NfUN+wX2NU1HkgSio6KIj4nGZrUYwrihuRUKXuLjA9XzbTt3UlhSxsJ580BTeerJvzJw4EDj+UuXLqWysvKoBs0h0Mvt8dLocOB0efD5fWhqQNdAEIQgW0jCbDJhs1qwR0YiyxLHW+4oCAKFZRXU1Nby/oy32BMUyhs2YhTnnH9BCzvRtj9jjXPOOJ0X/v0v5sxfwIPTHyIlIc74vELMSV3X2bpjJ0uWLGXjhnXk7dljKPOPHT+RW2+dhs1ibhV3HWzdSZJEeXk5Dz74YFDxXeKq666nZ6/e+BUFSRKpKC+npDCfe+++m6qqKiDQd/uPf/zDEKK1WCw8/PDDDBky5H9WD+BoAAEhMP2DDz7g448+avGzPjl9Oe9PF6EoKv96/hl69+nLdTfcSFpywn5fSxBFPps5k/fee4/IyEjOOOc8+vUfEDinFQVVU9GDUbcoiUEbz4BCutvlwulyBmjWHg8utwufxxt0IdHwen1oqorZYiE6OpouXbqQlJRsaAVpgsAZp51G507JbYpXb9mZy88//sDObVvokpXFOeeea9iG5+bmsnnzZux2O/369TtuHG9OjN//8Hq9VFdXU1tbS0REhCEGuWXLFmbNmkVBQT7de/Rm8MgxmMyWgCuLrmOPiiC7W5cDsgEOGwDYvn07mzdvPqLif82H2Wzm+x9+4MX//td4LKdfPy6+/CpAR1FU4mJjuPKSiwyqxAsvvMA999xjHGyDBw/mtttuMypYB3vLIWrTCy+8YDx2zjnncMONN7Z5eBhMAATKa2pYv2E9X8z8ni7d/0ZS4lgEwUdUlIzZIjF2tJMB/RqoqWmgvr7eQNEjIiJ4d8anbNuy45j1xwoI+DU/LneApqdrYLbIXHDZBeTl7mHGG6+iaQpZmb2Itsfj83sBAdkkYZJMRpVf8fu55IrziY2N5uUXZxiCfkdtQfj9OF1NlJTmoesamRk9sUe29N7W0fH7fIyfMJpzzj+NOb8uYvbXPyP/znqPf2/D7fZgC7NxxZUXcdU1lxEWttfDvbKykq1bt1JXV4csy8yZM4dXXnnFEHWKjY3l/vvvZ8CAAXi9XsxmM4mJiTQ1NRl2PfsL+H7rhCdkx1NWVsby5ctZuHAhu4K6I81HamoqGRkZbNu2jYaGhna9dmZmJpdeeikjR440VPF/q2TgoAGdIFBZW0d+YTE/zP6WNStXGD8bO3Ysd99992FRaRVFoV+/fkbgdDwk/80BgLzCYhTNx4rlmdTUxAZFAIUg3d9HmC2RiPBOCIKEKMpt7rqapuBwFuP2VCMIIj4/nHRSCUMH2BGQfxdV5pC2zZ7CYjw+f0DEbz/JhK7pyLKEPTKCWLudMJvV8LPWCTl76CiKRn5xKT7Fz1efz6JHt248/NB0evXqZbze6tWrKSoqOiZVs+bWwKqmtVAolyQJ0XAYCbEejr/Ksa7rFJZWUFRczOsv/5emxkYEQeDyq6+jT07OAcFLHZ2I8HBSExO48cYbuPGmW5gwbgyKohiJv9vtZvfu3SxZsoSVK1dSVlbW4jUiIqO45bbbGTNiWJuaEe2h/69du5YnnngCRVGIjIzipltvJzZ+rwYU6CyaP4+//fUJbDYb27dvx2azUVZWxqOPPmpoP/Xp04dHHnmEsLCw/9lWgKMGAsgyH77/Ph/tAwKkpWfwp0suY9nSxaxdtZJpd97NwP79iI5sm+UUssL79ddfefWVV3B7PAwYNITxkybRqVNaQExW8Rt6f4E5FNhXRTFgrRpat5Iso2satTU11NbU0LlzBqNHjyItNRVb0G7YbJYNm+iGJgcmWSbWHtXqusrLy/nggw8pKixg0uTJnHLKKVitVlwuF8uWLcPhcDB48GCj1fHEODGO9PB4POzatYu6ujrDTamxsZF3332XdWvX0K1HL4aNnYAoyWhawIUtKjyc/tk9CLdZjw4AsGjRIqqqqo7agS2JInUNjTz62KPkByvykiRx+TXXkZ3dB6fLTY9uXbn4gnMRBIEvv/ySq6++2lCC7dOnD/feey/JycntRn5FUcTtdvPwww8b1jJ2u53nnn+eTp06tVkBEwj1MmmUV9Xy00/fsXhhLtl9/kZ8/BAUxYvPJ9A3p5TRI4vQdRNCkCKvaRpxcbG8N+Mz1q3dgOUY0dM1dFxuVwtVf1XV6NG7G9u2bWDXju1ERsaQ2bknAgFbl1DS39yPHXQuu/JC4uNjefm/Mw7bdulAgIVP8ePyuCgty8PlbCI9vTuJcUmtQQKPh6EjBnHp5eezYd0mPvzgi2CCI57YSdoYqqridnsYMnQgd90zjX79c4yfuVwutm3bRlFRkaEe/csvv/Dqq68alf+YmBjuu+8+Bg0aZAACuq4HVKKDB/LBAtXfwwjpBNTV1bFu3Trmzp3L5s2bD7lqNHHiRK666ioSExMPaEfV4SRebylqFPh339AuEBQBCGKg37k9goaKolBYVkFDQyM/zP6WFUuXGD+/7bbbOP300w/5fiiKQteuXRkwYMBxk/y3BQC0ZQMoimZioroimcKCYKS+39fSdZWGxny8vgY0zcSw4XvI6W0lKT75d7MWRFGkoclBfnFpm846+65fXdeRZRNRERHEREUSFmZFEkMCczqllTVU19bh9/n49KMPmDx5Muefew5xcXHY7XZkWWbHjh1HxRGkvetKaPap/RGo4qIoUlZVTe6efN545UXqg64Ml155FX37DTggAKDpGvFx8Xw9ayaVlZU8+dSTAc0HTaO6upoNGzawcOFCNm/e3KqdSRRFevfuzdQzz6ZPTh/sEeEdTv4hWAD6/ntefPHFAADbqRPX3ngLtjCbQSOXTSbWr1vL4P79uOeeu5k/fz719fWEhYUxZ84c/u///s9INu+44w5OO+20I7IXnwABWn7esiwz89NPef/991u0lcTExNC3/0CWLVnE8FFjOPeCC0lLisdmsbTSDwmtu9TUVHw+Hw899BCLFi1CkiSGjRjF0GHD6JSWjg5tWtQKAsiyGa/Hw57c3axeuYLtW7cyceJ43njjTdLT0w8ag+yby4Q0jmRZ5oILLiA7OxuAPXv2sGbNGjp37sygQYNO9OqfGMdkNDQ0sH79ekRRZMiQIZjNZt566y2WLVtGn5y+DB45Fi04n1VNIzLcRt+e3dtkAhwWAOByuZg3b94RFe7RmyXUoUNCEES+/OprZry9t58/q0tXrrz2ehAFBg8YwNRTTmbVqlVccMEFFBcXAwFV7/vvv5/u3bt3uHc1lOT83//9n/HYBRdcwDXXXntAFkDodytravn2my9YMH87aRk3k5l5Lqoqk5Odz8gRJajq3gBH0zRi42KZ9ck3LF2y8pgAAALgDlL/9350IqqqUFCwA7fHgUky0bPHACLCoxAFoUXPnxLsnczO7sHoscPo2i2TrVt28tH7s0Iu0UcesNA1XB43FeVF1NRVkJyYTlqnLKSgkmxo+Lxe+g/M4Yqr/8T27bt5f8ZMFEU50Yu1n+F2uYmIjODqay/j8isvMuafqqrs3r2b3Nxc3G43JpMJk8nE3LlzW9D+7XY79957L0OHDj3kwOr3FmyHqI1ut5udO3cyZ84cVq1aRWNjY6sgtrnCfmiYTCYuvvhiLrjgAiRJOizafGjdqaqK2+PF5fHg9fnxB4UJjXun07IHPQi8mGQTkWE27FGRmIN03QPdb1EUaWpyUlhWjs/n48N3Z7AzqAmQnJzMk08+SUpKyiG9J0VRSE1NZeTIkcdN8t8eAEDXNcJsiURGpLVrLguCiN/vor5xN36/xsiR+aSlqWSmZRgVqd/LOqiqqaW4osoAuQ+2jnUdJEkg3GYjOjKCyGC1b3dBAEBsbGjk0w/f5/wLL2TiuLG43W5jHR3rxP+PPgKtiY0UFJfw0bvvsnPHNgBGjR3HmWefi6Iq+80ETSYTVVWVvPHyizz00EMMHDiQrVu3smzZMpYtW2bEWc1HVFQUQ4YMYezYsfTp04fwsDAUVWnV890RAODdd9/l008/BaBP335cfNkVCOJeDShRFKitraVozx5mvP0mLpeLpUuXGvPx73//O0uWBEDM9PR0/vrXvxIfH/8/6wpwtEGAH374gTffeKOFBa4kSUiSCbPZzPXTbqVrZhapSfHIsqnV3AiBjf369SMxMZH33nuPp556itLSUiRJov+gwYwaPYaMzpkBy95gS6rZJOP1edm6ZTOL5s+jpLgIe1QU1153Hffddx/Jyckt/obb7cbv99PY2EhxcTFRUVH07du3xbWsWbOGzz77jF69enHeeecRFRVwsVixYgXl5eWMGDGC1NTUExvNiXHMx6ZNm9i6dSuDBg2ie/fuvPzyy6xetYqBQ4aRM2RYoKVND7DkE+NjGdSn55EFAIqKili5cuURRb70NpJqURQpLC3l788+R0H+XvuuCy6+lEGDhzBx3BjiY2M455xz2LJlCxAQ+bj77rsZMWLEIQlXhcRnHn74YYMKHB0dzXPPP09qaup+WQCappGYmEhqagqbN29h5crl/PDjrzgc2SQkXs34ceGMGllC80sKMADi+On7ufz4w5xjAgComorL42oWaAqomkpx0W4czgZk2UyPrjnERLc8KHV0fF4fySmJnHLqRPoNyKG+vp75c5eyacMWnC73Uamy6+i4vV6qq0spKy8kKiqGrlnZWGRzi2DZ5/PSo1c3rr72EoqLS3nnzU/weE/Y/e0vGfN6vYwYOYy77plG7+y9G0RpaSnbt2+nrq7OsKoxmUwUFBTw8MMPU19fDwQU8++44w5Gjx7drvaa4wUAaB6khgT/ioqK+Pqbb1gwf74BAoaC2NAe6Pf7iYiI4KabbmLy5Mn4fL5Dfm9CUEW50emiyeHE7Xbj9fuNgMmoWgrs9VhvxgLQ9WZCZoJAmNVCfEw09sgIo293f9cmigLFZZXUNzkoyNvDu2+9YQA+p59+OrfccstB+4fb3HdUldjYWCZMmHDcJP8GABAUAWybAQD2yC5YLPYWrUgHg2HrG3fjdjsYObKQ5GQvnTulE26ztlkZa/fZFbRha89LtOfzE0WBiupayqtqDsoEaH6O60H2j9VsRpZNgbNBEqmsqOTzmR9z0SWXMX70SAM803X9d70XHK8AQF1DI2WV1cyb+ys/fz8bCFCzr73pZixmy37p8CZZ5qtZn1FQkMc5Z5/Npo0bWbduXQvbt9Da6NKlC6NGjWL48OGkp6cjy/IBtZba23YD8M9//tPQmRo3cRKnn3FWq+qvIAosnDOHR//yECNHjmTTpk3k5uZis9nYuHEjTzzxhJGQTj3zLC6//PLAOvsfbwU40iBASBhw1apVvPTii1RWVrZ6Tv+Bg7jo0suxR0WSFB+LWW7d9hRiD2ZlZdG/f3+qqqp47rnneOONNwLsXkFgzLjxDBw8mOSUVEySid27dvDLjz+Sn7eH5ORkrr/+eq666iq6dOkSjA191NXVUV1dTX19PU6nE5/Ph6Zp+Hw+EhISmDhxonENy5Yt4+eff2bChAmMGzcOQRBobGxkwYIFhIeHM3r06GPG1j0xToy2RmVlJfPnzyclJYWBAwfy8ssvs3PnToaNHE33nP4B0dOgEPqQvr2xR0YcOQBg1apVFBYWHnXqiyAIqJrON999xztv7WUBJCWncP3N0xg8sD+vvvhffv7lFyDQN3bDDTdw+umnH5bqq8Vi4eeff+Zf//rXXtDhwgu59tpr91vp1DWN6OhoRo8eTV1dHbt376aoqIAVy1eyanUZqakJTJjQm7S0dOO6QgDA6pUb+PD9mUd9U9EBl8eFoiohORVUVaG4OJD8Wy1h9OiWQ1RkDKq696BV1EDv3/CRgzh5ygQiIyNYsXwtc35ZQHVVDbJsPmoVHI/PS31DLUXFOzGZzHTLysYeFdPi4PD7/aSld+Ka6y/G6XDx1hsf0tjQeMLur43hcrmJjrZz7Q1XcOllFxpr2OFwsGXLFkpLS4Pq8JKxBk0mE6+//jpff/218di0adOYOnXqYSX/x0PQLwgCTreHsspq8vP2sGL5MjZv2IA7qJ8hiiKappGRkcGtt95Kv379DknlPxT0+hWFhsYmausb8fi8aDpIQdEjgxGgqfj9fhSfPyCOpAeSP1GSAq0MsgmTZDKeq2uBQNlmNhMdHUVMVBSy3Ha1uYXonabz4+zvWDh/LgBWq5VHHnmEgQMHdrgVQNM0IiIimDRp0jFl5BxO8t8cADBsAFsAADqCIGKP6obFHIWmtYcZISAIUN+Qi8vdxMiRhSQlechI7URkRHibFdP9XVdzZpau67jcHjRdRzZJhh6LrmtBQEg3QAJRkpCC9yP0Gm3PhcD11tTVU1pZhabpHbqHIS0AURAwSRIlJUV88+UXnHfhRXTt0hWLbMJiMWOWA/24gV7eE77Xh3vGC8F77vR4KC6rZNeuncx4/VUURcFssXDDLbeSlpbeZjHDZDJRUVHBu2++jtvjxtOsmhsa4eHhDBo0iDFjxtCvXz/sdnugItuG1d+hAACiKOJ0Onn00UeNIszZ513AyDFjWxV1ZJOJ9WvX0De7N3/+84M0NDSwZMkSVFVFkiRee+01vvvuOwDCwsO5/a57GDV8KOj6CcDpKIEABQUFvPLyy2zcuLHVcwYPHcakk6eQnp5ObHQUkWFhCAKt9j1FUbDb7fTv35+4uDh27NjBO++8w6effmpYdfftP4C4+Hjmz/kVm83G7bffzu23325U5v1+P3l5eRQWFuJyuQzr7+ZfiqKQkJDAuHHjANiwYQMLFizgtNNOM/RqSktLWbZsGd26daN///4nNpkT43cxfD4fc+fORVVVBgwYwGuvvUZlRQVDR4+ja89sFMWPqmkkx8fRr1e3FnvvIQMAqqoyZ84cnE7nMaHtiaJIY5ODv/71rwYdFeCkU07F7/WyYP48Y/O54ooruPDCCw0U8XD+5r4sgJiYGJ597rn9sgB0XcdqsTBmzBjCw8Px+/3k5+dRVlZOXV0tDQ11mEwWIiIiWogQxcXFUVpSyd+f/c9RBwC8fi8en9dI/jVNoah4Nw5HAzZrOD279yMiPLJF5d/v8xEbF80ZZ5/CgIE5VFXX8tP3c1m3ZhMIHNUKu9fvw+lyUFC4A7/iI6NTV1KTM1p8toqiEBNr55rrLsUeHcXrr7xHUWHJMRNUPF5GoOrvY9y4Udx5zzS6de9iPL5z50727NmD1+s13CmaB4RFRUU89NBD1NXVATB58mRuv/12I/k9rABE15slNKDroaRFRzOCNAFRwBDmai4EdDSHpmlU1NRSXVuHrgcARkkUqampZvY3X7NlUyDAGThwILfeeiupqakdboUQAA1wOJ04nG4aHQ68Pj+mYDKvKAqNDQ1UVpZTWVFBfV09bo8bNC2Y8JsCNEuTCV3XUPx+REkiOjqGrK5dSUnthBTs3w1U7iHcaiE5MZ7INvpzA/ufQElFFbX1DTiaHLz1+itUlpcDAW2Vv/zlL4SHh3fos9c0DavVyvjx4wkLCzvqn52u62zbtu2wkv/mgMj+WwB0LOZIwsM7YZKshr5LW/M7cH768HhrcLkrUfwwYmQ+KcleMjqlE2aztjuBcnu8uFxufEHlX5/PT5PLha7pSKIQYGMJLXvbg/CDIbhls1oIs1kJs1kxy3ILJf99QYDq2jpKK6vbzQRolVhKEkVFBcz++mvO+9NFxMUnoKoB2z9JlBBFgYTYWBLiotsNgpwY+x+SKOJ0eygoKaOpqYm3XnuF8rKAKN7Us89h7PiJKH4fzZsYVU3FZrXx0w+zmfPzT61eMyMjw6j2Z2VlYTabDXvUjoCcB712SaKyspIHH3yQ6upqRFHkymuvp1fv7FYMAFESqa6spLQwn7fefBObzcbKlSspLS3FYrFQVFTEww8/TG1tbSABHTaMe+6+h8jw9gkChhLF5tcf+jcUZ/4RgIQj+Q7MZjONjY18+umnfPvNN63mR3RsLKPHjmfo0GGkpCRjjwzHZrG0AgJCIE56ejo5OTmGRs+XX37J3//+d3RNo6Kykr59+/L3v/+d4cOHG59LcXExu3fvpqGh4YAtRs0BAJfLxc8//8zw4cNJSQlYAu7atYuNGzcydOhQMjIyTmwsJ8bvbixfvhyXy0V6ejpvvPEGTU1NjBg7kYyu3VAVBR3o36s7iXExhw8A1NTUsGjRomOK1JstFn766Wf+8++9FXmLxYLfrxjJwtSpU7nuuusOS6m6+bBarfzwww/85z//MR67MMgC8LQR5Ou6jkmSGDVqFDExMc1QGi81NTXU1zfQ1NREfX29kSSEAABNg3vvfPioAQD7qv4HFKm1YPJfj80aTq8e/QizRRrCgAE1fT9dumRw7gVnkJaeyvr1m/n+u1+pqqhCNpuPmuJ/SPTP7XVTXJxLY1MtiQmdyMroYVg5hQIWi9nCVddeRFaXzrw74xM2b9x6wu5vn+FyuohLiOWGG6/hTxefaxyGTqeTFStWUFtba6jh7ztkWebtt9/m888/ByA+Pp5nnnmG1NTUw/aGD1UjNU3H5XZT19AQSIC9AdeJQPuBjEk2IYkSFrOMzWrBarFgMQc8gdsjcHcoSZ/b46W0soompxMhWLWVRAkEgfVrVvHj97NxNDVx5llnccXll2Oz2Tp8P0J/p7y6hiaHA00HS9CaqLSkmO1bt7Jr1w6qK6sICwsjq2tXOmd1IcpuJzw8DKvFhizLxprw+/14PB48HjdFhYVUV1VgC4+gR8/edM7MRDaZUFQVTdMwyyYyUlMCgfA+908UBBwuN3nFJUiixOrVq/j8k4+M+3zzzTdz9tlndwjsCCWOEyZMwG63H/U5X1tby7x581oBWkcaAAi8Nw1RlJFN4chyOKIoIwgikmhGkiwBW1LVi8/fhNdbh6p6CFhYiQwfvoesLIGM1HSkZnvb/q5F0zUqa+qoqavDr2ihCwjsmgaIprfj8wjs8qIoYjaZCA8PIzoygojwsFbAnhBEAqpqainrQDvAvgBAcVEhP3z3LWdf8CcSmvVi68F7mBQfR0pi/B8aAGhun3e47KkDJdkOl4vK6jqcbhcmycQ3X3zOsqWLARgweAjnX3QxVrOFTskJCMFkKyExidqaGqbdcrMB9gqCwODBg5k4cWILm7OOXntH5ossy2zZsoVHH30Uj8dDeEQEN95yGwlJSfsBG3QWzJnD00/9lcGDB1NQUGCIZZnNZj7++GPef//9wDyUZe5/4EHGjBq53/06BJCF7KhdLhd+vz9gGadpxj4bFhZGUlKS0bJ1AgRoCUBJJhNLFi/m3XffpaSkpNVzOqWlM3LMWPr3H0hKciL2yHAsZjkYG+stQBabzUZWVhbdunVDFEXq6+txu90UFRWRlZVleKU3NDSwbds2yoOA9cHYZs0BAJ/Ph9PpNOL3zZs3k5eXx+jRo0/Y+50Yv+uxfv163G43drudt956C79fYdzJpxKXkIjf7yfGbmdQn55Iknh4AMC2bdvYunXrMVW+DG3ET/z1r2zcsKHFoaLrOqNGjeK2224jMjLyiG3EbTkCxMTE8Nxzz5HSBgsgRL0bMXw4iYmJ+33ddevWUVhYaARZcXGxiILM3XdORz5KlHUdHafbGQzqBHRNo7gkl8amOqwWG716DCA8rGXyr/j9DBrcn7POPRWzWWbOL4tYOH8ZiqIc1c9eABRdw+3xUFlZQkVlITHRCWRmdCfMtrfqGAiqVc49fypjxg3n85nfsXD+UqzWE8l/aPj9fvx+hUknjeOuu6eR0XmvEq7X62Xx4sWGtV+bQbvJRElJCQ899BA1NTUAXHTRRVx11VWH5alsMpkCzJ7GRvbk5bNlyxby8vOpq6vD4/ag6SpiUJXfYrYgmy1YrQH2THRMDPHxCSQkJpKUmEB0VBRhViuSSURV1CMy/+qbHJRXVOHxK4QKB2bZTGNDAz/9+D1rVq4gLCyMa6+9jlNPPcUIDDsMptY1UFldg19VA9U0v0Lu7p0sXriA3F07CQsLIzm1E337D6B3dh+io6MNunaIIREid+8VTw3YIem6jtPppCAvj927diCKIv0HDiajc2c0XcOvqESEhZGVnopJElv1jeu6zp6iElxuD4IOn3z0AZs3rgcgKSmJp556iuTk5A7tt4qiMHbs2APuj0dqVFVVsXDhwsPeq1q0ROg+VizvSlW1HZOktZg1ITvAkA5AIBkPWALquoamKeh6iIIqI4omFEVk/IQChgy0E2YOx3eApEoQAk4tRWUV1Dc52iXM1xFwJtD2IxIRHk5CTAwR4bYWIpeCEIB7a+obKKuqwu/XDKeJdiUEkkhVRSU/fPctp515FgkJCa00ZpLiYkn+AwMAkiThdrtZv349ERERZGdnt2jjOBIxi6ZpVNXUUlldC0EdE1EU+fqLWSxeuACA3n1yuOjyK4iLjqZzajKKqhIdHU18fDy33HwzS4JCeqIoctlll3HeeedhtVqNJPhwgIn2DLPZzOLFi3nmmWfQdZ24uHhunHYbEfYoNFVr8zxZuWwpk8aPZdq0adTU1LBs2TI0TTOqxo888ohBHR85ahQPPvBAi3sfcoFRVZXGxkbKysrYvXs3u3btoqioCKfTabx/RVFQFAWLxcLo0aM577zzSExMPKwz8Y8IAgiCgMViobysjJkzZ/LLL7+0yZ5Ny8hg6PCR9O8/gE6dUoiKiMBilo1zrDnTIiIigrS0NDIyMloxyYqKigxnivbu+/u2AITGhg0bqKioYMyYMceEsXZinBiHO1auXInVasXn8/H6a6/RtWdvho0ZH4hPdZ2cHl1JTYw/PABg4cKFVFdXH9M+TlmWcblcbNiwgWeeeabFIdSnTx+mT59OdHT0YSlutzUOhQUwaODAA1qOrF+/noKCghYAQEx0HDffcDearh2VqrrHUP0PvHZJyR7qG6oxmy307NYPe1SMcU81XUNTNUaMHsIZZ56M2+3lmy9/YNOGrYgm6ajb6enouD0eGhprKSjcQXi4nc5pXYm2x7ZIsnw+L6PHjeDCP53FsqWr+OzTr5Ek01FjJRxXh7iu43K5SE5K4qZbr+O8889s9ZwtW7awdevWA7ZKmM1m3nnnHWbOnAlAXFwcTz/99H4tMdsTAIuiSGFhIYsXL2HFypVUVlag6wHxTnt0NHHxccTExGG1WoOUdgW3x4PD0YijyYHT6TT6UiMiI0lJTaVr125k9+5Fl6xMLB2kpe4b/FTV1FJRXRuscmKwEHJ37eTbr7+kvLSUbt26ccstt5Cdnd3hfn9BEPD5fJRX1VDX2IRJkhBEkV07djBvzi/k78klJTWVsRMm0a17DyIjIxFEEUVRWth2tjchkEQJr8/Hru3b2LplMwmJiYwYPSYY0CukJycSHxfbCsAQRZGyyirKq2qwmM0UFRYw4803cDkDNquHwgJQFIXBgweTmZl51NdAdXU1ixYtOuw2NYMBUFSCx+vm15/dFBfVo2sN+BUnuuZD0/zomh9V86DraqC/GD1YZg/CM4bdnIAoWZAkG4IQzpDBNnp0j8disZGd3YeoqKj9+mTXNzaRV1RywPcUyrP2TbhC/fgHivBDAn6SJGKPjCQ+xk6YrSUQIIoiDpeLsooqHC53C4r0geeigMvp5KfvZzNm/AQSE5NaAQCJcTGkJCb8IQEASZICgdnrr/Pzzz9js9m45557GDVq1GEnjqE2jyani5q6epxuD5Ikofr9VFaWs3b1GlatWGas1QmTT+KU06bSKTmBiLAwIiIiSE5O5p577uHXX381Xveiiy7isssuAziswkpHgSpZllm7di1//etf8fv9REZGcsMttxGfmNjmdUiSRGFBHn63i1dfeQWfz8eCBQvweDyIoojFYuGrr77itddeAyA+IYHnn3uOhIQEdD3AggmJ34a+SktL27239+jRg5tuuons7OzDEn/9I4IAIYBGEATWrFnDzE8/NQS79x3xCYn0GzCQ/gMG0KVLV+Ji7IRZrUGgUUfTdKOVzWw2ExMTQ3x8PHFxcdTW1rJ9+3a0oPBZR86kfQGATZs2UVdXx8iRI/dbHDkxTozf29A0jVWrVpGYmMhHH32EyWxh6JgJxpqJjopkUE6vQMx5KACA0+lk/vz5R9T+72DDYrEEREVeeQVRFMnLyzOUyBMTE3nsscfo2rXrIQlvtSeAdrlcPPzww+Tm5gJBLYBnn6VTair+fQ4jXdfpk51Nt27d2kzKBEFoBQDExsaQ1imDm2+4i8ampgDN+AgisH7Fh8vjDgiFiSJl5QXU1JRjMsn06t6faHvs3uRf00CAySeN46RTxlNZXsWsmd+Qt6cQ2Swfk+Ta7fXg8rgoKNiOpql075KDPSqmxXP8fh9dumVyw01Xsic3n3ff/hRFVY7ovTteh8/nR9NUppw6mTvuuoXU1OQ2D725c+ceUMfDZDJRVlbG9OnTqa6uNsCvq6+++pCo/7IsU1NTw48//sjKVavweH2kdupE585ZxMfHExEVhc1mw2Kx7HNNe7uYNU3D6/XidDqoq62ltKSY0pISqqur0DWNzhmdGTx4EP369SMlJQVJktpFVQ0l5aWV1c2qqyCbZHw+H0sWL2TOTz+iqionnXQSV199NbGxsYdkfdjQ5KC8qhqvz4/FbKGyopy5v/7M+rVriImNZdJJU+g3YCBWqzUAZGhHgNUgBGjHjQ0NzJvzCy6nkzPOOgdbeKD3sktGp1b7eSjhLCgpC8wHycSsTz9mzaoVAJxyyincdtttHeqBVRSFXr160adPn+MOAMgvLqO2tpovZq2mqGAnqlqLqnrQdQVdU5s5ALRXxE9CEMxER0eQmpJIbFwcF198Menp6a2SnND8LCytwGlY54EoSkHl/4D0v6YHDnpVUVFVBU0NqPE3F4cURSmwooJewW2BDSEgwCSJREdFERtjJ8xqQRBEAxhTFJXqugZq6urxBeOBg8cEOiuWLKFbj54kJrUGAOJjY+iU9McDAEJCqh9++CEff/yx8fiIESN48MEHD58FIAhUVFVTXVePKEq43S5yd+1i3drV5O7c2QJgsFitXH3djQwePJD4aDthYWGkpKTwl7/8hW+//dZ43vDhw7n//vuxWCyHbWV6KGBJRUUFf/7znw0NgEuvuoacnL779YB3u92sX72S//7nP3Tu3Jlly5ZRUVGBJEnIssyu3buZ/ufpuN0uTCYTjz/+OCNGjKC+vp7Zs2cze/bsNpXr2wLFQ3tzc1eEmJgYbr/9dkaOHHkCBNjPPDCbzUYO8fVXX7VpJwlgtdnI6tKVPn370Ts7m87padijogJtf+xtCwgJfYda4A5F60XTNOx2OxMmTEAURbZt20Z9fT3Dhg07YR99Yhx3w+l0UlBQQGRkBH5Fo7iqzij+6rpO357dSE6IOzQAoLCwkFWrVh0T+n+IPrR+/XpeeOEFSktLefDBBzn33HP54osvWLVqFSeffDL9+/c/7F7kAw2r1cp3333Hiy++aDx23nnncf311wc2+mbPVVWVbt260TcnZ78AwL4tAHa7nX59+3HT9XdRVFR0RJXrNV3D6XYG/7ZIdXUZ5RWFiIJIz+79iItNMtT+VU1FEiVOmzqZ8RNHkZ9fxKcffUVleSXyMRDUEwQBj9eDx+ejtDTAUOjWpQ+J8SktDlNVUwmz2bhp2lVousZbr31Ak8P5P2/3p+s6LqeLTump3HrbjUw985T9Pre4uJiVK1ce8IAzm8188MEHfPTRR0aA8/TTT5Oent7hgNBsNrN582ZmfTYLXRTomZ1DRufOREZEghBoSdkr+qcddJ6IQsCeEEFAU1WamhopLysjd/duCgvyURUfXbK6MmrUSAYMGIDdbjdsf9p6vSank7KKKlwer6FELstmSouL+WH2t+zasZ3IyEiuuvpqppx8srHWOxCfoygqFTW11ASDdF3TWLVyGT/N/h6f38uwEaMYP3EycfHxwQBSO/j73wcgaR7UqLrWzA8uqGEgSeiazvfffoPb7eKs885HlmUy01KJDGupBSAIAj6/n9yCInz+AN11wdxf+f7bbwDo168fjz76KGazud3tD4qikJGRwdChQ487ACCvsBhV97NsaToVFWYEwYOmegMAgB6YC1aLHVGQAro0od8PEgBU1YfHU4NfcSKZwpBMYWialUkTGxk2OB7ZZN3vegxoRXgoKC6DYKLtcjmpr6+juqqaqspKautqcTY14XG78Xi9+P0+VFVDCCZUZosFm9WKPSaG5JQUklNSSUxMJCIyCkkUUTUVVW1tyWW0BoSFExsdRUSYrcX57/F6qWtoor6hEa/fb6j+7w9QLyrIJywsjLiERLRma0jTdeJi7KQnJx2WFeLvcdhsNn799Vf+/e9/t9g7Q8WE/QkLt6tIEXQpyS8upcnRxMZ1a9m4fh1FhUWt9gV7dAynTj2DKSedRIw9EpvNRkJCAk8++aTh8AJw5plnctVVV2E2m49p5b/5PPF6vTz55JOGkvxJp57GSSefil/x7wc0EFk4by7TbrqRqVOnsmPHDqNVVRRFGhobefjhhykMtgHceNNN9O/Xj3feeYdVq1a1CVgnJiaSnZ1N//79yczMJCUlhbi4OOLi4vD5fLz55pu8/vrrxj2y2WzcfPPNTJ48+bBcqP7IQEBIl6G2poZ58+bx448/7hcIgADLLyMzix49etKzVy8y0tNITEjAYpYxtRC3PTRXh+YMgD179lBVVcWQIUNOJP8nxnE7mpqaiIyMBGDDtl2UV1UbQtCx0QEtgEMCAFauXBlMUo++/Z/ZbGbp0qX85z//obGxkWeeeYYHHnjAQDkWL14cpMUeXT9XURRpamri4YcfJj8/H4Do6GieeeYZ0tPTWyDSqqqSlpbG0CFD9vt6+wIAkZGRTJgwgVtuvJu1a9YfUSFAl8eFX1GQJIn6+mqKi3PR0emalU1KUvre5F9VkU0mpp49hdFjh7Nj+24+++Rr6mrrjwkFKsRUcHu91NZWUlqWR1JiGl0ze++l0xLs+1cULrnsfHr27sorL75DeVkFsvy/rfgfqjhMPeNUbr/rJhIS4g/4/KVLl1JeXr7fQy6kwvzQQw9RUVEBwLnnnst1113X4UDVZDKxadMmPvzwQ7p068HAIUOx2cJQtUCFUkc/YIIv7Afs0IMVzxC4JYkiIOB2uygtLmLLli3syd1FZHg4EydNYuKECcTExODzeVtUGGtq6ymvqQkkS0FXC13XWbVyOT99Pxu3y8XAgQO57rrr6Natm+Ep3ZG57XC5Kauowul2YzFbqK6q4PvvvmXbls30HzSYsePGk5LaCQShhf1m89eQxECrgN/nw+FoorqqisaGhmCCZsJkCjgCmGQT9ugANVJnr4tCSMhNkkQ8Lg+zZn7CgIGDyOnfj6S4WBLiYtqsvOYWFONwubGYzaxbt5pPPwiIaXXq1Ilnn33WsADraLB1tEdtbS0LFy48bKZaaxHAzlRXRyJJenB+BgAYUZCJju6BbLLtJxAV0DQFp6sUl6cqoHWiiAwfsZue3U10Sko9YBArCAIut5v16zewaeNGysvLjAqkbDYTZrNhs1qxWC2YzRZjbQcqlW6cTgcOh4OG+npqampwezwB6ndqJ7JzcujRsxdx8QFBOEVVWmhC6HpApM+wkrRHERURgdViNu6v1+ejvqmJhkYHHq83ACYE1+9e9fRApdbv9REVbUdvNt80XSPWbicjNfkPBQCEhYWxevVqnn32WZqamlr9/L777mPSpEmHxCYKzYuK6hpyC4r4etZMdmzb2uo5qZ3SyOnfn8GDhzB4QH9kU4AREhcXxz//+U9mzZplPPfUU0/lpptuQpblwyqsHO66k2WZN954g6+++gqAvv37c9GlV4AAbU0Pk2Riw7o15PTuyfTp0ykvL2fFihVGVVjXdf7+j3+yZPEiADpnZtLU2Gi4AwBERkaSk9OX3r17MWDAAIYOHUrPnj0PKFr69ttvc++999DY2GRc96233spJJ510xFtS/yggQCjGkGWZ2tpali1bxpxff2X79u0HTOJNskxsbBwZnTPpnNmZLlldSElJJi42lphoOyaTTHunnd/vN6wrk5OTyc7OZvfu3QwYMOAE7f/E+MOM2oZG1m/daVhgAgzI7tFxAKA9tOEjmfzPmzePF154AY/Hw/PPP8+9997b4lpWrFhh0MOO9rBarXz11Ve8+uqrxmNnn302N954Y4Bi3AwASEpKYuSIEfs9APdtAQgPD2fKlCncedsDLFq4BKvVdkTuodfvxR3sgXMFrfRUVSG9Uxc6p3czUGtVU5FNMmedcwojRg9ly6btzJr5NU2NzmPD9AAUTcXl8eB2O8nL34rVYiMnewgmSW5RCfV6vYweM4yzzjuN92Z8ypZN235zxf/Q/DsYAi2EPLmMQ3V/XnZ6q4cFhBbWQ80TYZfTReesDG6/8yZOnjLpoNfb2NjI/Pnz0TRtv3PUYrHw448/GtoXdrudp556ii5dunQoKJQkicbGRp599lnSOmcydvxE9GAv3973EmDGBPQbAmBGU1MjTU1NuF0ufD6fMVclScRssWKxWAizhREZGYUtzBaobAc972GvWn99XR2bNqxn+dIl2KwWzj73XIYPH0FcTDRen4+yiipq6huCn6OAWTZTVVnJzz/+wMb1a5FlmYsuuohzzjkHm812SL26NXUNlFdXo6oaVouFXTt3MOvTT3C7XJx5zjkMGjq8WdKl7wOCSAhC4J6Ul5aya/dOigoKqCgvo6mxsUWAKSAgiAHnBFtYOOPGT2DkmLEGCCA060OXTSY2b9xAcXERJ51yKnHR0aQmJbSav4IgUFBSSl1DE2ZZprAgn7deexWfz4vdbufZZ5/tECNEDYqNTZw48ai3kB09AKBtFwCbLYHI8PQDhssCAroADmcJbnclqioxYkQ+qSkBG0Cbdf82gKIo4nA4WLJkCbIsk5SURExMDJGRkVgsFsxmM6Io7pcGGwp2XS6XoWq+bds2Nm3ayI4dO6mvbyAjM5OBg4fQo1cvrFYbiuJvUxxS13Vkk0RkRDjRUVFEhtsQxb2Ag9PtweF04XS58YaYCM2uSfH7MMlyi1ul6RoxQQDgj+LPbrVaKSgo4IknnqCsLNBKk5aWRnh4ODt27ABgypQp3H777YdUMQ74mKsUlJWzdvVqPnx3xt4E2mymS5du9B84iO69ehIREUlKQjwx9khEUSQhIYEXXnjBYHgBTJw4kdtuu82w9/utkn8IsMZ++ukn4wxKTErmhptvJSwirE2gUpJESkpKqK+q5O233sTlcrFo0SJUVUUUBUTJxHvvf8hnn37c5t8bMmQIF110EQMHDqR79+506tSpzffh8/nwer3ouk5YWBiVlZW88tprvPziS9TXB5wTMjMzeeaZZzpslfq/BgIEzmoROdgasHXLFhYvWcKa1asN0eGDA2zhREZFkpiYSGJCInFxsURHxxAZGYHNFogNPB4PLpeLpqYmGhoaqKys5MILL6R79+74fD5MJhNJSUnk5ORgs9k4MU6MP9LIKyplV36g6KxqGp0S4zsOAFRXV7N48eKjGriFkv9ff/2VF154Ab/f36Ly33ysWbOGoqKiY0LVEUWRhoYG/vznPxt2JlFRUTz99NNkZmaiBL0WNU0jJjqakSNH7ldcbV8GQAgA+PP9j/HTj7+22IBCwbskSG2khQcItHUVl9uFroOq+Mkv2IHH6yIhLpnuXfsGXjmYMJkkE2edewqjRg9l08btzPr0axwO1zFzeQg4FLhQFIWCwu243U769BrcQpsgEFj6SUlN5uZbr+bnH+excN5SLL+x4r+ua3i8HnRNxWoNRzbJhqWVESyzj2K7phn+9rohFtYs8dfbBgBESUSWTMG+34ArhoDAWedOZdqt1xMbF9Oua968eTPbt28/IMptsVh4//33jeBw1KhRPLCPanJ7g7gZM2aweMlSbph2K1artQXNOGSd6ff7KS4qZPeuHRQXFVNbU4PL5UQLqpeGWgRC8yHUHhQRGUVsXBxp6Rl07pxJSmoqkVFR6MH5IooSJkmiqbGRxYsWsmzxIjK7ZHHuueeRkpaBw+lAVQNK0eg669eu5ecfvqOhoYGuXbtwww030q9fP6Na0JGhaRrlVTXBvlwBk2Ri4/p1fPPVF8TFxXPO+ReSlp6O1xcIJiVRQpSkYGVYoamxkbKyEvJy91BYWEB5aUmHqoSSJHHuBX9i0NBhKIq/BQAgigGmxNJFixgyfASd09PplJTQ5n5cXF5JdW0dsmyirraO11/6Lw0N9ZhMJh599FEGDx7cblAoZOc0ceLEo2Z5evQAgBIUzdsmACAgYI/Kwmy2H7SFJdSyUdewE4/HzaiRhSQmeUhL6YQ9MvyA/e8BoEwyel6b6y+0hwIb6tMPCFuasNvtxMYG9tmysjLmz5/HsmXLqW9sJKtLN3r07oXNFki42hQV1HVEUSDMZiPWHkVURLixr4TWq9fnp7a+gZr6hhZMAFXTQA9NSQFd14iJspPR6Y8BAJhMJpqamnj66afZvHkzAOHh4Xz22WfMmjWLt99+G4DU1FSeffZZoqOjO0y3F0WRJqeT4rJK1q5ZzcyPPgj8nYgIzr/oErr36IksyyiKH4vZTFZ6J8yyTHJyMq+//jpvvvmm8VojRozgrrvuIiIi4jet/BsAhiyzfft2Hn74YTweD1aLletuvoW09AyUNu6TIIDX42XFsiW8/N8XyMjIYN68eTidTiRRRJQkfvj5V17+739agjQ2G5ddehmnnDKFnj170r1791Z7k8PhoLq6murqapqamvB4AqLKTreHukYHZWWlvPXqK1RVBthyXbp04emnnyYsLOwPAwAcTRAgNJdDMWdVZSUbN21i9erVbNu6laqqqiP+95588kmGDBmC1+ulurqaKVOmHFC8+8Q4MY7X4VMUVm3YgtPlQRAIMPc6CgBs3bqVbdu2HdXE0Gq1Mn/+fP71r3/h9Xp57LHHePTRR1s9r6mpiSVLluBrpmx/tIfFYmHmzJnMmLEXZT/99NO59dZbA60IwYAsLCyMMaNH79c6pC0NgLjYRP725N/J25PfIjHT0XG5XVjMZmTJ3C4QQEfH5XGhBC3RiotzaWyqJSIiij49BiGZgrZUwYR06pknM37CKLZt3cXMj7+kqcl5TC0e3V43fkWlorKI6upS0tO60TmtS4tgSNM1ZJOJm6ZdRWVlDZ98+DmS6bdT/A8lwjW1FRSV5uF2O7FawoiNSSAuJgFbWAS6HhArVHW1RXB+wFUntPin5cEbDJY1Tcfr9tKlaxfuf/BOpkyZ2O7rVhSFOXPm4HK5DsicsVgszJgxw1D/P/PMM7n55ps7FBiaTCZ2797Ng39+kNPOOJuRo8e0qqDLsonSkhLmz/mV3bt24vP6kKS9HsyCKBmCZwJC0G4vYMPUVlIeH59A1+7dGTxkGJ2zsowkKSSElr8nlx9mf0dpSQnZOTlMPmkKSamp1FZV8fOPP7B29UqAwxL6C2hZeCkpr6TJ6cIcpNLOm/ML8+f8SufMLC698mriEhLweTyomoooiDQ1NVJSXExxcRElRUVUVpRTH/TibmtERUVht9sRgw4BHq8XTdNwOBz4g/c5IjKSa66/kZTUToH11GyvFCWRZYsXk5KaypDBg0lJiGt1PwVBoLSyisrqWkwmCY/LzVuvv0ppSaBn87bbbuP0009vNzNC13VMJhPjx483etSO1qivr2fhwoUHZLocGQBARxBMREd1Q5Zt7UrC/YqbhoZcfH6VUSMLSExyBwGAyGOaMIQAhLCwMDp16kRmZibh4eFs376dpUuXsmt3LraISGy2MNzBdRDYd/d9HR0EsMgmEuNiiI2ObgE4qKrKnqJSmoLsQZMoYI+KxOP1oSgqit+PT1GIjookK73TcQ8AiKKIqqq89NJLzJkzx3j8X//6F1deeSV33XU3n3/+OS5X4H488sgjDB8+vMN7jSiK1Dc0UlpZzdYtm/ngnbfRdZ34+ARuvv0OwsMjgsUJndSkRJLi48jIyODtt99u4WzUv39/7r33XmJjY38XyX/zosv06dONHvELLr6UIcOG7/caJUlk/pw5TLv5Rs484wwWLFhAXV2d4bSybNUa/vPPvxutM/Hx8dxx510MHjSQqKgoRo0atTdo9vmoqKigvLycmpoa47Px+fzUNjRS39iIomkofj8zP/6I7Vs2G/fgttvv4JRTpqAcRW2qPyII0By8lmUZTdOorqpiT14e27ZtY9vWrZSWlrabHXCg8dRTTzF48GCcTidxcXFMmDDhRKZ4YvxhR25hMbsLioOtsodgA7hgwQJqamqOWsXdarWyfPly/v73v+N0Ornrrrv4xz/+0eahsmXLFnbt2nVMhTokSaKqqorp06cbfdERERE89dRTdO/ePZCQBAPc0aNGER0Mgg4EAAQSG5EvZn3Pxg2bWyHPzUX8wqw2ZJP5oMGR1+/F4/UiihJVVSVUVBYhy2b69BpERFgUqqYGeulVlSmnTGDKqRPJ3Z3PRx/MoqG+6Zgl/6E2Ba/XR5OjnoLCHdijYsjuOahVpdnv83HGOafQs1c3Xn3xHdwez+9C8V/Xdbw+N3V1NVTXluNwNgbnchgx0QlERcUiy2aD6n7YYInbiyybOPe8s5h2242kd0rBryjI7fzMioqKWLly5UE/Y7PZzBtvvMGXX34JwPnnn891113XIQq82Wzmk08+4cuvvuKW2+4kOjamRfXfJImUlZby2ScfUVZa2qF5E/rSmzEp9gUw+g8aTO/sPtjt0URERmC12ZBlM26Xi/Vr17J65XI0VaX/oEGsX7uWivIywiPCufqqqzn11FNbMA46MuoaGqmoqsHrD1TdGhoamP3NV+zYvo2srCyqa2qICI+gd58+9OjZm6SUFDZtWM9P339HXbN+1BZAidlMREQEcXHxJHfqREZ6BoMG9CMlKQlBECivqqEiKPRSXl7GrE8+orExMBdPPvV0Jp88JRA0N9tLTZLEhg3rCA+LYNTI4STExrQJAJRX11BeWY0kieiazkcfvMe2zZsAuPTSS7n88ss7NC80TWPcuHHExcX9gQAACXtUFyytGAB6G4CfTkNTPl5vHZpmYuSI/HYzAI7mPhayz4qNjaVz584BCjSQX1BAbW0tLo+XnbtzKS0vR9N0w9pr39cRRYEu6WlEhNuM9yIIAm6vl8LiMlxeL1bZRLfMDEwmE5qm4fF6cQWt66KjIjneh9lsZtasWS2KBZdffjnvvPMO8+bN5etvZ/Pzzz+xc/t2AM455xxuuOGGDrcYhQCAkspqcnfv4t03X0dRFOzRMdx06+0Ba2RVwWqx0K1zOj169OCjjz7imWeeMfbM3r17c99995GcnHxYdoRHuhAT2t+ff/55li5dCsCIUWM4+/zzjeJGK9BZktiwbh19evfkoel/ZvHixVRXV2MymdCB1es38sp//0NNdTVh4eE8NH06w4YOxelyER0dTf/+/dF1ndLSUsrKynA4HAZo6VcUauoaqK2vx+dXkGUTil/h26++YNWK5cY1/OlPf+Kyyy4PgvV/nOr/bwEEhOLuUEHA6/VSW1tLVVUV+fn5lJWWUlpWRlVVFS6nE5fLhdfr3e88DllCWq1Wpk+fTk5ODi6Xi8TERMaOHXsiSzwx/rDD4/WxauNW3F4voiB0DABwOp3MmzcPRVGOSsXdYrGwfft2nnrqKWpqarjssst46623WlTDHQ4He/bswefzUVlZedSu5WDX+cEHH/Dhhx8aj5188snccccdhhopgsDIESNISEg4KAAQQLkbee/tmTQ0NLYANAQE/Jofl3uv1UyYLRw5KFIWGqquIglSi+cLgojD0UBB0U7QdHp0yyEhPtUQGPP7fYweO4KzzzuN0pIyPnhvFjVVNUfUgeCAhzug6Coulxu/4iMvfxuaqpDTewjh4S2rYD6fj959enDZFecz482P2bM7/5i4ErQ7CBMCPbeqpuJ0OahrqKa+vhqnqwlRlLDb44iJTsBisQXfeceDAlVRcbk89O3XhwcevItx40Yd0rUuWbLEsEY6UOAlSRIvv/wy33//PRDwg77qqqs6FCCaTCb+8Y9/UFpWxnU3TcPXrBoiSSK5u3bx5ayZ1B4BNP+AwKLNRkREJMNHjmLs+AmomoYsy5SWlPDuW68bSXeXLl25Zdot5PTpc0iWoqqqUlFdS019PboOFrOZ0pISPv/sU6orK7jgkkvJzu7DyuXLWb50CRXlZZjNZrK6dqW+rp6K8rK2k39ZJjEpmR69e9O9Ry9SUlIICwvDbLEQF20nMtxGQUk5Ho8XQYCCggI+++gDqqoCllYTJp/MqadPbQUASJLE9q1bsIXZGD5kKPGx0a0CVlEQqKippbSiClEUkU0mvvvmaxYvmAfA5MmTueuuuzpsBTh8+HDS0tL+IABAaL6HYbPGIQoygiA2+5ICTJaAHB6gUdeQi9/fhKaZAhoAqV4yUg+sAXAsgYAQIJ+UlESPHj0IDw8PnBuKn5279rBm3XoKi4uM9pnm91fTdRJi7HRKDoBTodcTRZFGh4O8olJs1kBCGkryQgKVGK1Sx++QZZnCwkIefvhh6oIMnpEjRzJz5kxSU1P55z//icPtZcWKFfz0/XcAdOvWjSeffJLw8PAOgY6iKNLY5KC4vJLi4iLeevVlPB4PkVFR3HTbHcTGxOJXFTolJTJq+DBmzpzJE088Ycyxbt26cf/995Oenn5YIoRHE0j57LPPDCAlNjaW626eRkxsbCvHitC5UlJSTENtLa+89CJbNm+mpKQEk8mEomosW7mKl174N26Xi4suuphrrr0GT1DUNZTo67pu2FyHzsna+gaqampxe/2GPazT6eC7b75i/ZrVxt8fP348d955pwFs/a+MY7ViQ+1LkiQZRQBN03AHdU1cbjdejwef3x/Q5gp+BqHPUpZlAwCIjo4OADt+/zETpj0xTozfcmzekUtJRRWSJHYMACgoKGD16tVHpTpsMpmorq7m8ccfJz8/n/Hjx/Pll18ayquappGXl8eePXtwOBzGJnCsk//QtZaWljJ9+nSDhhQWFsZf//pXevfubbAABg8atN8Ad18AoLHRwfszZlJXV98SABAEfH4fbq+7RbIZFhaO2IyEqRMQ+NJ0DZfbiaqDpijk5W/D63OTkpRBl8xeaEGBNL/fR3afXlxy+Xm4XG7ef+czigqL96tZcLSGy+NCUVVKSvdQX19Nl8xedErujNJMBT1g+WflltuuYcOGrfw4+9ffXPRv/6BGQIQtRHl1uJqor6+hrr4av+LDZgvHHhWHzRYRPMBoV7DvdnuwWW1cddWl3HTLtUQdYoWsPeJ/zQO6f//738ybF0j0OlrpDQX2jz32GLLZwsWXX4k7mFSH3vfnn37C+rVrjOfHxsURERGJZDJhMpmQZRlRDGgdOB1NuJwuvN7A4a4qSod6nwHSO2dy2hlnktk5k8LCAn747lsK8vMAGDxkCLdOm0ZycvIhUP7B6fZQWh5Q+Q+JCebv2cNnn36Mz+vlkiuupGv3Hvh8XkySCYfDwa4d21izahW5u3e17++IAlarjagoO4nJycTExBAWFobdbiciIgqrzcqWzZtYsWwp7mb+1JdcfiX9BgwMiHrtwwBYtXIFqakpjB87BrPJ1Oo+ioJAZU0tJUEAwCzLzJ87hx++C1gBDhw4kIceegiLxdIhJ4CcnBx69ux5VNdjQ0MDCxYsOCoAQHVNNLJpbwuNpvmDdoCh9SM0+1dsBQioqjegGaNKjBi5m+7dRDolpgb74n8fCXCIAWOxWMjIyKBr166GPo2qquzK3cPylaspKilG0wLtPM1HdGQEsdF2wsNsLRhdDY0OTCaJiPCwFmv4jzCag6c//PADEKCZz5o1i7Fjx+JwNPHoY4+T1CmD/Px8Zrz+Cn6/n/DwcJ5++mm6du3aIQq+KAg4PR6KSsopr6jg9ZdewOl0EhYezo3TbichKRFJEJg0djRz5szhL3/5iwEwZGVlcf/995OZmfm7TP5D8VZ+fj4PP/wwDQ0BsdYpp53OpJOmtHBfar4Xe9xu1q9dw5NPPIGuqeTl5SHLMl6/wnc//Mi7b75uuB/Ex8e3EDtsLsIqCEIgPimvpL6xybC3lE0mKisq+PrLWeTu2rt3Dx48mLvvvhu73X5Y1oknwICOD1EMRMRCMC8IfcHedsrme01z68Bj6UxzYpwYv+XYmVdIXlFpxwGAo2X/F+pfff7551m+fDldu3blhx9+oGvXroEk0eVi48aNlJeX/2ZJ/75DlmVmzJjRwjpn/Pjx3HPPPUZwlJOTY7yHfUdzFwBRFKmvb+D9GZ+1ZgAIAh6fB4/Xa8Ttug5mWcZmsbVIPDU0XB5X8OARKS3dQ119FRHhUfTpNRhJMqHrgX61pJRErr7uEsLDw/j4gy/Ysnn7MU3+A8CGF7fXR0NDDcUlu4mNjqdX9wFBi5+909Lr83L+hWeS0bkTr/x3BqqmIQricbHYhKC/vV9R8Pm9NDXV4XA1IooyNls4Vqst+Lm0QBGMA0tRVNxuD0OGDOTPf76HocMGHdb1bNq0iR07dhzU4iaEqj///PMsW7YMCNBXL7vssnYHiiEQ5JG//IVIezTnX3QJnuDvCqKA3+vj/RlvsSd3dyCRHDSYqeechymo5h9aGyGxM0VRUBUFn99HbU0NxUVFFBbmU15aSmNjo9Hzvu+Ii4+nT9/+lJWWsHvnDnRdJ6tLVyqCFmqCKDJxwgSuv/56oqKiDqn/tba+gfKqGvyKiiQFxP62b9vK5zM/QfH7ueGWW0nPzMLTjMkjiiImyYTP56OkqIgtWzaxY9tWqquqDikZCnld7wvQDBw8hLPOOQ+TWW6WnAaGJEn88uMPTBo/lsGDB7cJ7rRmAMj8/OP3zP3lJwCGDRvGn//8Z8OFob0AQNeuXRkwYMBxCAD4WL4snfy8SpyOrSj+BhTVhd/fiK760PWgrWVI8LMtOU9BQJJsWCzxmOQEsrM9ZGTY6JyWQc+ePTt0L48lEBAeHk63bt3IzMw09ENUTWXnrlxWrl5DQVERIBgaAZqmI0mBXv/k+DjMshxY24IQFErVWyVex/uwWCxs3LiRJ554wrALve+++3juuecA2LhhA//417/pN3AwtbW1vP7SC9TV1SFJEo8++ihDhw7tUDIuCAJ+v0J+SRnlFRW88dJ/aWxswGKxcO1Nt5CWlk73rlkU7MnloYceMva3zp07c//999OlS5dDSv6PVRwWKva88sorBhstPiGB6266BXt0dJssAFEUWLZkCddfew29enRny5YtyLKMz6/w7/+8wOKF87nsssu54orL98v0Ct3XwrJyGh1Oo29WlmWKCwv47JOPWzC2hg8fzq233kpsbOwfxvrveAUDWn2W7TiPTgAAJ8b/wigoKWP7ngIksQMAgN/vZ+7cuQcVDjvUAzNEqQ8LC+Orr75i8uTJANTU1LBu3TqampqM4NZq/e2rvyaTicLCQqZPn26g0larlUcffZQBAwbgdrvp2q0bfXNy2vz95gwASRKpqqrlvbc/xe32tLq/bq8Ln6K02sRsFitm2WIETm6vG5/iRxQkGhqqKSrejShK9Ok1CHtUTEA8Tdcwy2Yuu/J8evXuzjdf/cjCeUuPOZ1eRwvYQ/k87MnfigD07T0EmzUcTW9O/ffSq08PLr/iQma8+RF7cvORZfNxtuSCAnZCiP6ro6gKPq8HIZjgas387ENfqhrox73wovO4757bCAsPO6yr6MgaDlXdn3nmGVavDtAbr776ai666KIOAQAAjz/2GIJk4uLLr8Lr8+4FBxSFd956g7wgABAbF8+kk06m/8DBWCzmwD1RVXw+X0Dwz+ejvq6OwsJ8igoKKSsroamxsc2k1WQykZqWRr8BA+mT04/YuDhUVWXtyhV88/WX+ILvwWazcdppp3PJJRdjtVo7HLhpmkZZVQ01dfVG4Gkyyaxbs5pvv/ycyKgoIiOjSEpO5pTTzwz0jKpKq/tkkkwgCDQ1NlJUkM/OnTsozM+npqbauNaOjuiYGMaMm8CgIUMxW8zB6rywT+CuM/+Xn7jw/PPplJbWZtVKEATKKquoqK5FkkTQ4ZMP32fzxg0AnHvuuVx//fUdAk4URSElJaWF4NbxAgCoup9lS1NZt/pnaqp+QVEcaJoXVfOD3jHKr2SyIZtiSUm1Ex4u0aN7dy6+ODAXf4/04VDFLCkpiezs7Bbe6IriZ8u27axas47yysq9cy0IJtojwsnolGIAfPsDGo7nERL1fe6551i+fLmRaM+ZM4esrCwAXnzxJRYvX8nQYcOob6jnzZdfojKoHH///fczceLEjgEABFouCssqKCkp5Y1XXqS+rg7JZOLKa69n4KDBVJUW83//+DvOICsoNTWV++67j169eh2SwOmxHrIss3PnTh555BEcDgcAp55xJhMmTm6TBSBJEls3b6JH9+5MGDua2traAKit69x3733U1tXyn3//m5iYmLb3PEDRNApLy2locuxN/k0mykpL+ej9d6iqrDSeP2XKFK699loiIiJOJP+/QzDgBABwYpwYgVFdV8/6rTsD66K9AEB1dTWLFi06Ksn/mjVrePLJJ/F6vTz33HPcd999AJSVlbF+/Xq8Xi8mkwmPx0N1dTVpaWm/eaAgCAImk4lXXnmF7777znh85MiRPPDAA+i6TmpqKkOHDj04AGCSKC+t5L0Zn+L3t9Q0CDkAhLzN90krCbOFYRJNuH0Br2UBAUVRyMvfis/nIb1TFzqndzMOOcXvZ8rpE5ly6iRWLl/LrJkBGu+xrKgLAni8Hrx+PyUle6hvqKZrVm9SkjIMfQIIiB9azGam3XEtu3bs4cvPZx9127BjO4fEFkfi3jkdqBm6XW6eeuZRzjjz1CPy94qKili1alW7RDNDYjt//etf2bQpIPZ2/fXXc/7553coYJRlmWeffZaKykquv/lWvM2SdZNJYvXKlXwx85MW67l3dh8yMjvj8fhoamygoaEBl9OBy+XG6XTsV1VZlmUSkpLo0bM3vXr1Ijm1U9ByUEXVVMyyhaVLFvDNF18gSiZiY2O4+KKLmDJlSou+5/auf5/PT0lFJQ0OJ0Io+ZdMLF+6hG++/Jwu3bpx2ZXX0FBfz+czP8YeHcOZ55xLTGwcvqDtX1v3XZICdoQOh4PqqkrKSkuoqKigvrYOh7MJt9MVtJ3UDLq4IIiIUoACKZvN9OydzegxY0lKTkVRmzsl7AUAJMlEaXEh5cVFXH75ZQe0d8wvLqOhyYHJJOJyOHnztZepKC8H4M477+SUU07pkDaEqqrExsYeddXlxsZGFixYgKqqRwQA2FNYjKr5ghoAkQi4UFU3mubF729CVT1YzNHIpjA03Y+mKei6aogCCoKIKMrBLwuqrqHrVkaOLCE+wUNqYjKJ8bG/iQhgR4aiKNhsNvr06dPKNsvj8bBq9Wo2b91Oo8OBPyjWJssSXTLSsVksf1gAwGq1snjxYp555hljzT311FNMnz7duG9XXn0NsQmJdO6chcPZxIzXX6OkuAjY66jRYScAQaCsqoY9BYW89epL1FRXIwgCV113IzHRUbz9xutGoSIhIYG77rqLAQMGdGjN/pbMS1EUkWWZl19+mW+//RaAxKQkrrvxFiLsUWj7sAAkSaSivJymxiZOPXkSVrMZQRSpr6vj9jvuYNz48dxy8837vc97hU9rEMXA+zZJEvX19Xz8wXsUBtvGRFHkoosu4k9/+hMmk+l/mvb/ewYDTgAAJ8aJERg+v5+VG7bgcnvaDwBs3ryZHTt2HFH6vyiKuN1uHnnkEXbu3MnUqVMNxfFdu3axe/duVFU1aP9ut5uioiJ69OjxuwgU2kKlzWYzDz/8MIMGDSI6OpqRI0e2eXDuCwCUlVTw3oyZe0UNA4XiFg4AbR/8gQpyqKooCCJlZfnU1FYQHh5FTq/BBp3U7/fRvUdXrrr2Ympr6pjx5kfUNzRhOgQXBaE5T32fzVzYZ5fflwKr6gFae31jNUVFu4mNTqBXj/6tnuv1ejnz7Cn069+HF/71Om6P93eh+n+shtvt4f2PXienb/YReb32iP/tuzYff/xxtm3bBsAtt9zCWWed1WEA4O2332bpsmVMu/0uBEk02h1C62Lx/HnMn/vrIYnuRURGkpKaSlaXrmR16UZySgo2W8CGTVH3agSYpEBw9u7bb7B750765ORw1ZVXkpOTg8/n69B+IggCTpebkvJKXB4Pohj0VBdNLFw4l++/+YY+fftywUWXYbEGAKumxgZ++elHiosKGTdhIv0GDEIKrtv9rm1RRBQlxGDlyu/14va4cbvceDwefD4viqLsVTW22RAQMFvM2O3RCIKIqimtV27QUlGSTPz8w/eMGz2SwYMHtwmACEIAUNydX4TX70c2mSgpLubN117G43ZjtVp58sknyc7O7hADQNM0wsPDmTRp0lF1HGlqamL+/PlHBADweH3kFRaj4mP50gAAYDLpgGiwe3Rdwx7VBZs1Hl1XWwB6e/fGvboADY17aHJUMmpUAXEJLhJiEkiOjz0uRPBC86Vr16707t271b6ybdtW1q3fSFVtHX6/gj0qkqT42IN+DscrCCBJEi6Xi8cff5ztQWX/fv368eOPP5KUlBSIo7Zs4bY77mTC5MnYrGF4fV7ef+st9uzZ3QJk7eheKIoitQ2N7MzN463XXqYy2C45asxYtm/dQnV1NQDR0dHcddddDBs2rMNMrt8i6Q/tDW63m6amJhYtWsQ777xjJNqnn3UO4ydMwuf37XPN4PV4KCwoZNKEccTYo5AkyYjXHn3sMfrsZ88ywL6C4gDzUhAQJRGv28MXMz9h86aNxnMvvvhiLr300hbr4cT4/YEBJwCAE+PE2DtyC4rJLSxuHwCg6zoLFiygtrb2iFruWSwWZs6cyYwZMwgPD+fHH39k1KhRrF27lvz8/BbKwiEAYPfu3eTsh1Z/rEdIZOQ///lPC5/fIUOG8MADDxAfH8/IkSPb7K1fu3YtRUVFBwQABL21A8D+Nk8hmPy7XE3k5W8HdHr3GEhMdDyaFqL+y1x93SVkdO7EezNmsm3rjnbT6ZtXB3X0IBVUQ2tDfE0w7o1o9O8ZDAMdXF43bo+LvPytaKpKTvZQwsMiDYHCwIbsJz0jjRtuvpxPP/qaTRu3YDZb/qcWqcfj4e13X2bAwH6H/VodpUKHGABPPfUUGzYEqN6XXXYZl112WYeqRrIss3z5cmbMmMEll19JTHxCqyqJKAjk7dnD/Dm/sHvXzgNek9VqJSY2jvTOncnsnEVqWhr2mGjMZkuwiq+2CsTMZgvVlZV8+/WXFBUWcOqpp3L+eecRExPTcforUNfYRFlFJT5VQxRAEgMA2y8//ciCub8ybMRIzjr3fMMVAgLPEQSBLZs3sWj+POwxMYweM5b0jM5IkoSiKgcNIENrSgzSqoV9A6jmAkf6/hT5A3uWxWxh3bo1NNXV8vhjjyLLMvn5+a0FAEWRmroGisrKEYLiV+vWruHTD98HICUlheeee47o6OgOBcC6rmM2mxk/fryhLv97BwC8Pj/5hcX4D+ACoOs6kRFphNkS97ECbA2genz1OJzF+HyqAQAkxyWSGB933CQTIeZMcnIy/fr1IyysZZvSzh072LJ1G6qmYulAm9nxCAJYrVa+++47XnrpJWPOvPDCC0ybNs14zowZM/jwk5lMOfU0VDXADPnovXfZtnULAFdeeSWXXHJJxwEAQcDt9bFt127eePVlSouLjcJJaL+NjIzkzjvvZNSoUQcFPX+rpD8koCiKInV1dezYsYPt27eza9cuioqKaGhoaJG0J6ekcv3N0whr0zlBpyAvjwH9+5PRKQVZllm2bBnffPMNjz/++H4ZT6IoUl1TS1F5FaIoGNpLP30/m0Xz5xnPO/nkk7npppswm80nkv/fORhwAgA4MU6MvUPVNCqqatoHADgcDubNm3fYQVTzIUkSVVVV3HfffdTW1nLhhRdy5513Ahho9b4Hg8fjYevWrfTr18+wavmthyzLbNq0iccff9w4tE0mEw8++CCTJ09myJAhbQa47QIACAnltTcYECgo3InDUU9iQirdu/QxDia/z8focSM474KpLFqwnK+//P6gdn+hA1JDQ1NVFFUNKqeqRoXqQB9BaKqIooRFlo3X8/j8lFcUUF1dRkanbmSkd2lxeOvo6LrGjTdfSU1NHZ9+9NUxdyf4PRyCfq+Pt959mf4DDh/w2rhxIzt37jyo+F/zz14URV5//XWDcjlkyBAeeuihDtkbBRwuGnnxv/+lT78B9Mju0wxA2OuPLptMeNwe1q1dxY7t21D8CpF2O5GRUYSFWbFZw4iIjCImNpbo6GisYWGBftugrsWB6PS5u3by7VdfYLFYufrqqxg2bBiaqh4SXbOmrp6yqmo0TTesoFwuF199MYtN69cx+ZRTOenkU1G1NhJ6QUAOqv+vXrWCLRs3EmW3M2DgILp27054eASapqFq6lHb2wQhwBZYu2Y12zZt4MUX/8uokaOor69n8eLFLQCiQG8x7CkqxuFyB9WvZX7+cTZzf/kZgKFDhzJ9+vRDEq3TdZ3x48cTExNzVAGABQsWHBG7WF3XKSwtp8nZwIrlnfcLAJjlCOxRWQiCqc1wVhBE3J4amhxFARBVkxg5Ip+EJDcZKelERYb97lsAWgUUqordbqdfv37ExcW1+FleXh7btm3D7/e3u4XweAMAJEmisbGRRx55hLy8AD187NixfPbZZ4YVsM/n4+577qWuycHAgYOMOfn5zE9Yu3oVEKgoX3nllYfUl6/pOtt25fLayy8ZFPXQCA8P584772TMmDEHTP5/y8Q/FNOVlpayfPlyFixYQF5e3kHPmlHjxnP6GWciCGKL54qiQGV5BQkJCfTL7oHJJPPTTz+hKApnnHHGfu+xKIoUlJRRW99gCLUW5O/h7ddfNc6uIUOGcNddd/3Pq/0fL2DACQDgxDgx2lgX7QEA8vPzWbNmzRGlalqtVt59910+/vhjYmJjefbZ50hNTsLn97fJMgj03PpYs2YNAwYMMGi+v/kNDB6Yzz33HEuXLjUe79evH48++iiTJk1qIZQUGmvWrKE4iNI3BwCMICnYAuDxefD6fBzsXBYEkcbGWgqLdmEyyfTLHmoI6qmait0exY03X4Egirzx6nvU1tYHhMfa2ChD2tWqquBX/Chq84RE2O+1tO/zEPF4nOzJ24rNGkbf7CFBFfy9v+vzeRk+YhATJo3l1Zdm4HC6/qeo/yEQRFVU3nr3ZfoeZgvAoQp4ms1mo59V13Wio6N59tlnSUtL65DQkSzLzJkzh/UbNnDK1DPxKUqoZB0EAHQj8BJFCb/Pi6bpyGYZSTIZc5Ig20TTtQMGhYFgUsbtdrFk0UJWLF3K0GFDufrKq0hMTDikVgOAyppayqtrQA+AW2bZQmVlOZ998jHlpSWcfe75DB42HEVTDe/hvWsj8G9URDhxMdF4vD4Ki4pYsWwpGzduQBQlsvvk0CenL4lJSUY/6f4r+YcAVppkNF1j4fx5FOzJ5cX//peJEycCgZakgoKCFnuvKIrUNTRSUFoWsLcMfhAff/AeW4I02AsvvJBrrrmmQ6yQUMIYFhbGuHHjWlWNj+RwOBzMnz//iAAAgiDgcLooqyrn1zlJVFYEWgD2CnyG5rKEPaoLshyx38+uoTEXn68hMN8VgdGj9tC7l5mUhORDC26Dn81veSKG7AJzcnJa6QLU19ezYcMGamtr2x1HHE8ggNVq5euvv+bVV1819s4XX3yR6667znhObm4ud951N916Z5OSnIKqqsiyzLdffcmSRQsAOOecc7jxxhsPSZVfFEXyikr473/+TW4zJpXNZuPOO+9k/PjxeL3e31XyLwhCwJ7P62XHjh0sXryYZcuWGfbK+47wiAjs9mhESaK2ugpXUNRw/KTJnHLa1OB+uRcAaGxswCSaGNivDxazmYULF9KjRw+SkpL2e4aIgkhuYRGNDmfQ9cTETz98z7xfA6BnSkoKjz/+OGlpaYfkGHNiHHsw4AQAcGL8LuZwKIbVtBbfN7ekbP7z0OOqUXwNfB/6av67of/f92ehwr3FYsFmsxlfVqu1fQDAihUrKC4uPmIAgCiKNDU1ce+991JeXs7Z557Hjddfh+L373eRh6hsixcvZtCgQURFRf1uaFdms5lVq1bxt7/9zQiEBUHgvvvu44EHHiA2NrZNAKCoqAhJkgwA4J23PgYERFEwrG1cHhd+VTnIBhaorOcVbMPtcpCWmkXn9O4Gpd7v9zH55AmcdsZkvv7iexbOX9aqoh6qziuaihpM+lUt5Ie7l+qpa1pApV/XIUh/JmjpFKI5B0ACfT/e7CLFxbtpaKyhZ7d+xMeloDXrU1Y1DZvVwk3TrmLenCWsXb0es8Xyv7dRoKNrOm+/+zLZfXod1msVFRWxcuXKDq9fSZKoqanhgQceoDKoeHzXXXcxZcqUDiV8oiji8/t57dVXkS1Wxk2cjBqk6jcHANoKRDuaBIRArdxdu5j76y84nQ7Ov+ACppx8EiZJRFEOrVpTXlVDZU2tEVhazBZ27tjBzI8/xGSSOP/Ci+naowd+f+vqWuh/46LtJCfEIZtMaLqOqmn4FZXy8nJWrFjByhUrqK2tJTk1lT59csjq2pXomBhMkumQmQEhhwFBEMjL28OcX34mIzWFf//73/QJtlLt3r3b0HloHjBpuk5uYTFOtwcx2Afrcjh57aX/Ul0VmA933303J598cofmg6ZpmM1mRo0adVSr//sDAEItFIcMqCkeFiyyUV1txmw24XA14PV6jCzcZDITH5uJWW4NUgcq+wIOVxn1DZVBW0aZMSNd9OoRiSCYDqD3Emz9aH7tgc3Z+F5s5n/dVjBxLAIcQRDo2bMn3bt3b3Gtbreb1atXU11d/YcCASRJoqGhgUceeYT8/PxAQjp+PO+88w4ZGRnG877++mv+898XGT/5JMyy2WiD+fH72UZyedJJJ3HnnXcG2wP0Dl6HSFVNPS+88B82rFtrgK933HEHJ5100n6T/9+yx1/TNNatW8dPP/3E+vXrW4GzZrOZXr16kZ2dTVZWFonJyVjMFjx+hZKSEjZu3Mi61auorqrkrPPOZ8zY8YbQrCAEmI8+v5/ePboTHRlORUUl8fHxB3zPoiCQW1hMo8OJySTh9fh4583XKCzIN0DPa6+99pBAmhPjtwEDTgAAJ8b+Eu+2Hj+SyXdbr9v8sX2vra3HjsY5KEnSwQGAo2H/Z7FYmDt3Ln//+9+JjIzkmWefJbNz5wNWFUO+5D///DNDhgwhISHhdwMAiKKIoig8/fTThmUaQI8ePfjss8/a1CxYu3YthYWFSJKEySRRWFjKl7O+Z+jQQSxetCwQUAvgdDvb0RssUt9QQ3HxbmTZTL/sYVgsNvRQ9T8qghtvuQqfz88br76H2+Pd25MfTO4VVcGvKKhqgOKvKH58Pg9erwePx4nP70VR/Ht7rPW9wlaBPjkRs9lCWFgkYWFR2KzhwRaDIJ8gqFTucDSSX7CNaHss2T0HtZrYXq+XKadNJK1TCu/O+ATJJCP8D25Wmq5jkkTeevdlevbsflivtWjRIqqqqjqs3xFKJP75z3+yYEGgQjVp0iTuvvtuY2Nqd2JuMlFZWcm///1v4pOSmXTSKYiSGFzzh7+5SaKEKElUVVayZNFCdmzbwoD+A7jgwgvokpWJz+c/5E20rLKayto6hOCmKYkiK5Yt5buvv6RzVhfOPf9C4hMSWglRhZJ/QYDEuDiS4mNahSJCEEQTRJGGxka2btnK0mVL2b59Oz6vj6SUFLp2705mZhZx8QlYLFYIanCE7DJD7yv0eQmICGIgGfR4PRQW5LNh7Vp8Xg+XXnwJt91+G+Hh4Wiaxu7du9m+fbuRuDXf0yqqayitqDZUsM2yzIYN6/n0g/dQVRWbzcbTTz9N9+7d280I0TQNSZIYMWIEiYmJR30dORwOFixYgN/vN9paSsorcbrdB3Q+0dEN5fHQOahpWpAJIQSo/4KOgIDX68XXDFgyiSJWqzmQhDd3+dB0OiUnEma1oagK9Y0OVFUjPMyG1WxDp3VPcijp13Udr99PfX0DVdU11NRU09jYiMvpwuV24vf5QdcxmUxYrFaiIiNJiI8nOjqauLhA24zNZjOSrlCQcjSrHFlZWeTk5LSIGzweDytWrDB87/8IIMC+1X+LxcLf/vY3pk2bZrjWNDU18cILL7BkxUomTJxsrBfZbGbuLz/z8w+zgYCX/IMPPogoih1+36Io4vJ4WbhoCR++9w6gc/nllzN16lT8/tb732+t6g/wxRdf8MEHH7TaP+Li4hgxYgRjxoyhe/fuBkuoedDuVzWamhzkFxWzdPEiNm/awOVXX0NMTKxRQAHwuF2kJieTnpLULnFNURDILSqmscmJ2WwmPy+XGa+/hs/nw2Qy8dhjjzF48OAOs55OjN8ODDgBAPy2iXd7qt5tPb5vQq0oSptJt67rKIpi/E57kvvQfniwhPxInD/77rVt7b3tec6RHgcFACorK1myZMkRtf8zm80888wzLFq0iDFjxjB9+nTjwzvQDdR1ndmzZzNw4EDS09N/V71XFouFxYsX8+yzz7a4rua2hgcCAHJzC6iprCc2Lpb33/kYs8WMqqk43a6DbnG6DgUF23G6mkhMSCMzo7vhtez3+xg9djjnnH86n8/8luVLVmMO2jBpemBB+ZUA1d/rdeN0NuJwNuDxuFHVQNBsli3IZjNm2YwkycgmGTFY7Q8ABV58fg9ujxtF8QcrD2YiIqKJiozBagtHNskENAp20NRUR3avQcTY41sI/6maSlRkBFdffwmzPv2WkuLSg+oU/HEBAA2rxcLb771Cly6Zh/w6DQ0NzJ8/v1WC15G1Onv2bEPYKiUlhaefeZr4+ATUDvody7JMSUkJL774IpJsZsrpZxAbE4PP7z+gYNoBgQXJhChK1NXWsGb1KtavXU1CfALnnnsOw4YNw2QyHTJNU9M0SiurqalvCNjrBV/rp+9ns2zJIoaPGs0pp03FYrUa837fdSlJIinxccTGRLcrKA7pK1RVV7N961bWb9jAzp07qamtJTYunozOnemcmUVycgqRUVFIoogQ3JsVRcHr8eB2u6itraUgL4+a6ipSkpM468wzOf/880kMqpE7HA62bdtGaWmpARw0vw6ny82eomJUVQuyCAIWWO+8+ToV5WUA9OnTh8cee6zdnvWh/X3IkCGkpaUdk3XkdDpZsGABPp/PAAB25hXS5HAc8EwTRBG3y0lZaWlg3qemYgsLb9Xa0Rx42XfutDWfumV1xh4ReB0hxETQ9VaJiSiKaLqG2+OlyeGirKKC7du2UV1VidvtDgY9QSKDrqNpARBX8flwud24XC48bjeqqmAxm4mJjSWtUyd69OhBt27d6NSpE5GRkca8OdJgQCiA6ty5M/37929xr10uF8uWLaOpqem4BwHaqv5PmDCBxx57jLFjxxrzYufOnTzz7LMIJjO9svsYVqZms5mF8+cz+5uA+1Hfvn159NFHD0lYThAEfH6FgpIyXE0NxNij6Ny5c4sg9rdM+vc9V3755RdeeOGFFvFS165dGTt2LKNGjSI1NdVgfrZ1L0LgWJPTRVVdA5s2bsTpaKJv//4tNDQURSHcaqVLZjpyO7SjRFFkT2ExDU0OLGYzc+f8ws/fBwCarKwsnnrqKSIjI08I/x1HYMD/IgCwb2Id+r6tqvS+yXdbVe+2Ht/3Oc1fv63Ee98kW1VVJElqAVAezcT795R8/x7GQQGATZs2sXPnziNK/29sbOTee++loqKCO++8k9NOO61dfbmiKPLVV1+Rk5NDjx49OtSHfCwQbY/Hw5NPPmn4pgPk5OQwd+7cVsJIzXtuJUmiqLAYETNLl6xgy5btWCxm/IoPl8e9XzAk8L1IU1M9BYU7MJlksrKyCbdGYLNa0QlUhG646Qpks4k3XnkPp8uNjo7iV/CrCm63C4ejnsamWtzuQM9bmC2CyAg7kZHR2KxhmGULJpMcDOKENjdTTdfw+bw4XQ5q6yqpq682/Mdl2UJkZDRm2UJ5RSH2qED1f9/t2uv1cMppk4myRzLr06+Pa9X/9tHY9VYHVqjXXVM1wsLDePn1f5OZlYHXF7iX4TYbVkv7BRE3btzIrl27Dnn9mkwm8vPzmT59Ok1NTQiCwLTbbueUKSejq2qHa/eyLFNVVcW777zDlq3bGDNuPH0HDMQa1PTQNR2dvehsW1UrURARJQld16goK2ftmlWsW7Maq8XCOeecw0knnURUVNQhUzRFQcDj81NSXkGjw4kgClhkC3W1NXwx61MK8vI4deqZDB81CnQMpf+WyZ6O1WwmNTmRyPCO97iH9gVd16mvr2fXrl1s2rSRgvwCqqqrURQVW5gNWTYjm2VMJhlVCaxnn89PeJiNIUOGcPHFFzNx4kSjkt3U1ERpaSmFhYW4XK5WCZgoivh8fvKKS3B5vAHqvyiApvPl57NYvXK5AXhOnz6doUOHtgtgCR3o/fr1o2vXrsdsHbYFAOzOL6LJ6TwgAGCWzWzbtoV33ngNgKtvuInevfu0yfLoCKDUtXM6URHh+00eAv38Ao0OJ9W19TjdLjRNp662Fo/bRZQ9GqvNikk2BZgjiHuj2+BaUTUVn8eLx+vB6XRQW1NLWVkZZaXFVFdWovj9JCQk0KdPHwYNGkSPHj2w2+0tqihHaiiKQpcuXejXr1+LPbG+vp5lywJMt+NZGHDf6r/VauWRRx7hjDPOMJh/iqIwb+48/vvyy/TK6UdsTIzx+ZvNZhYtnM93X33ZAlSzWCyHlGBquo7T6SLaHmUwE39vw2w2s3HjRp555hkaGhoASEpK4oorrjDsk/elz+7Lctp3z/L7/dQ2NLInvxDJJGG1Wo3OmBD4nZXe6YBrr/nr5ReXUt/oQNc1Pnh3Bru2B1qkzj77bG688cYTvf/HGRggtGNvDg8PJysrC03TDKaUruvG96G50fyMbh7XhH4WKOqZWsyn5ntXW9+HXn/fynXzivfBku4D9ZE3X0f7aw3bN0E/0sn3vv+vqiopKSkAVFRUGK4lh/S3gqD9IaAkx4Xl7m8CAOi6zvz58ztE12tPYLtwyVL+/tyzWMxmnn/+ebp169auDVUURT7//HN69OhB//79f3eHm8Vi4ddff+X//u//Wizyl156iZtvvrnFc9evX09+fr5hedPU5GTntjx+/mkOuh6g1Xt8Hjxe70HaVUWKinfR2FhLXFwyKcmdAZ1wWziaqtKjVzeuvf5SZn/7C3N+XQiCiM/vxelspL6hiqamBnRdIzLCTmxsItFRcdhs4ZhECcP0T9fb7NVuveD3LmCfz4Oi+HG5HVTVVNDQWGMg/YHe/+QW1X9ND/T+X3XtxXz5+feUlVW0KVJ4PAxV11CVvXoWgbmwV/FeD97T5m0Uoc1INzZHjcjICO5/dDrJQXFMRVGIi7YzILtHu9ajz+dj7ty5uN3uQ2bwhIKrp556inXr1gEwYvQYbr75ZmLth6bDIUkSmqaxdu1avvzyS1weD2npGXTqlEZMbBwRkRFYrVYkSUaSxL392kFGS319AyXFRWzeuIGC/DziYmMYM2YskydPJiUlxaBrH+pJ0tTkpLSiCo/PhySJmGUzeXty+erzz/D5/Jx7/gV079kLv9J2W4GmQbjNGqB726yHnbg098P2+/3U1dVRV1eH0+nE6/HgVxSjPcFssRAVFUVqairDhg0lOTkFj8dDTU0NFRUV1NTUGEnXvnNCFAQUVaWgpIxGp9OgyMsmEyuWLeWrzz8z3su5557Ldddd165e5VBQ0bt3b3r37n1M1+LhAAA7dmzj7ddeAeDam26hZ8/eRx8AEAUqqmspr6oJsARE0bBVFUWhRTK0v9u+V5RQaNYWIqBqCk2NTVRWVJC7eye5u3dRX1tLQkICw4YNZdSo0WRlZRmsmSOVcKuqSs+ePVt99mVlZaxevRpFUdqcj793ECCk/P+Xv/zFqP5PnjyZW2+9lf79+5OZmQkEWJRfffUV38z+gVFjx7bITmTZzM8/zGZuUANg5MiRPPDAA/u1qOto0P17GyaTierqap544gnDLSE6Opo///nPDBo0CI/H0yIxCYlXmc3mAMMpqGMQ+nlo3oTmeaPDSXFpOd59HCc0TSMlKYHkdlhshmwAS6qqcTucvP7KS1RXVRq6ThMnTjxB//8jAgaHmPw2tyo/2FpsK/nfX7HjSCXe7b22Y7l3qKpKdHQ0w4YNY8uWLZSUlBxyjimKIk63m5LyygO29bUGSwMFtU7Jif+zbJ4DAgBHykO5+QTTgY8//YxPP/qAtLQ0nn/+eSIiItr1AZhMJmbOnElmZibDhw//3aGwIXHDxx57jN27dxuP9+nThzlz5hh2QAAbNmwgLy/PmPSSZGLWJ9+yefNWQ6DP7XXjU/wHQC9FvF4Xe/ICHsJZmX2wWsMADZvFiiSaOO/CM+jSLYt//9+rVFSU4/Y4qKurwuVqQpbNxMYkEB+XQmR4lGHDE6jC6vtBVfepyO7n6oRmYlSaptHU1EBB8W5kWaZ7lz6IotRK+X/kqKFkZmXwyUdfIMvHp+2fgIBf8+Nyuw5okRi6bfv7bBVFJSYuhnsfeoD/Z++sA+SosjX+q6qulnHJZHwmbsSdKJAQIBCcxSW4JbDsIrvLYoss7gSCs7g/PAlxd/dkMu7SM+3dJe+P6q7MJJNkYiTA3PeyCd09Pd1VdW+d87vnfF9Sm2RUxfCMtsoyQ/r2xGE/cHVEQ0MDs2fPPuTyfzMZslr5+JOP+fB/HwLQNjWNu+6+hx5dOh3ywimKItnZ2VitVtauXcvqVavYsXMnxcXFOOvrDQgmieaCrmoqSkghGAyiaRpJiQmccMIJ9OnTh06dOhEbG4uiKIfcFiQAqqZTWVNLVW0tmg4WybCAWrl8GT98962RCN5wMx06dcLjce/zfeJjY0lr2warbOFo5CuGvaG0z3PaeMcgsvsQ2dltHDDvOV9VTaOkvIJaZ4MZPFskiYryMt59ayr1TidgaJvcf//9JCYmtuh4K4pCx44d6du3728+H71eL3PnzsXv95vf/XgFAKIo4mxoIL+47LADMl3XkSQhrFkghgUkMYVbxbCtbkV5GZs2bmTzxg34fT569+7FaaedZlrtKkrosK/hyPrTv39/MjMzmzxXV1dHSUkJpaWlps7Qgb738QIB7HY73333HVOmTDH/++GHH6Znz54MGDDAvN+vW7eeb779hh27CujVe/fGRaQF5ItPPjJF+y644AKuu+66P2SCGYHJzz//PAsWLDAhyl//+lfGjBljJvcRd4SEhASys7NJSUnBZrOhKCE8Hi+qqhIMBGhwuaipqcHpdJrXRKSCKb+4BE+4giky9xLiYmmflXHAHT/DcjpAfkkZ5eVlvPnaq7jdLux2O48++ijdu3dvrQBoHUc8Ud/Xfzd+fF//3vN+ezwntBER4KFDh5KYmMjixYupqKholAtJBwVjRFGk3u1hx66Cg9ro0jSN2JgYurTPaQUAzY28vDxWr159BMv/BQIhlZdffoV5c2bRu3cfHn30Py3u97BYLHzxxRe0bduWk0466bhchG02W5OgIDKeffZZ7rzzTvO/161fT97OneFSX5HKiho+ePcz/P6AGbR7/d5my4t3LwAilVUlVFYWExubSE52ZyI7zRZJJDU1jQsvO5+5c+bxw/99i8dbj6oo2G0O2qZkkZKcGgYGeyf9mq6hNdrdExAQJMNXXRJFQDecAsKJaeTziJJk3nT3nKQR1ffITlYTqKDDdTdeztw5i9iyadvvFgBEhi/gIxgKHbLYuKKopLRty9/vv4e4+Dgz0Uptk0yPzu3D5+DAgfeiRYuaLK6HMmRZZuWq1Tzy8MNmr/tp48/i+usmYpPlQ148FUXB4XCQlpZGSkoK0dHRuN1uKisrqa6uxul0mrvXNTU1OBwO/D4fiUlJ5OTkEBsbG9a5OLzdSkEQ8Pr8lFZW4fZ4TWuqYCDA7JkzmD9ntvkd23foyOlnTiCnXTs0VUNt5GCh6yBLEjmZ6cTGHHsv98bHZH/BhigIBEMhSiqrqW9wmc9JkoiqqHz60f9M27+YmBjuv/9+evfu3aIkRVEUsrOzGTRo0DHZnfy9AIBIr3NexHXhMDR3dF0nJiqK9LZtjOqB8HkMBIP4gyH84fYARdWQwpDN43GzY8cOVixdQllpCb169uTcc8+jZ88T0FQV9TADpEiJ7YgRI7Db7Xs97/F4yMvLo7CwkNA+rIAPFwI0hl/N9cQfjPBTpPf/gQceMHeyx4wZw6RJk7Db7YwcORK73Y7H42HJkiV89/0PWOxRtG3b1lzLRVEkEAjwztTXKS4qBOCWW27h7LPP/sMpzEeO8wcffMBXX31lPn7hhRdy1VVXmcBSkiSysrLo2LGjqVERGaFQiGAwSDAYNCuP/H4fhYWF1NU5myRMdfX15BeXmY9puk603U7H3KwWr0MllVWsXLmKD95+06i+S07mySefJDU19bjSn2odR25ESvmPJmRsrix/z7L/xmrzjXvwFUUxn2+c6Ed+NhQKmS1dx2NSGzmuER03XddZsGABNTU1hwUAGtwedhYUHTwAiI6mU7vsVgDQ3FiyZAklJSVHtv/f4+XJ/z7J+rWrGTV6NPfec0+LE3lZlvnyyy+Jiopi/PjxxyUAEEWRuro67r//foqKiszHO3fuzOzZs82el8YAwGKxUJBfxAfvfr5711zX8fjc+1mIjJ31Xfmb8Pu9ZGd3Jj4uyUzGdQ3ad2kPBJnxy08Eg0FsNgfpqdmktEnDJtvRdL2J+JqqqWiKCoJAVJSD1LQUkpMTSU1vS0pKG2TZYrQsSGK491nD7/NTUVFJWWkltTV1VFfV4vf70DRjt1GySI2qBISwUZa+x409SPceXRk7bhRvvPYBmq7ts7Lg9xLs7Eu/oaUjFFLIys7ib/ffg91uR1VVUtsk0b1Te+SDmI/FxcUsW7bssACAKIpU1dTy9NNPs2XTxjCMk7n+xhuZcOb4Q+4bbixKIwgCdrud+Ph4kpOTiYuLIzo62hSYi0CAqqoqAoHAIdlk7WvU1jkpr64hpKiIooDVaqOyvJwfvv+WbXvY44FRETFo6IkMOXEYKSltTYs+c52SLKQkJ5KUEI8Yrno6Hq9RYwPSEPwrqajE6/PvtsqTRARdZ/ovPzFn5kzz566++mouvvjiFiX/oVCIjIwMhg4dekRFZA8KxPl8zJkz57gHAKIoUlPnpKis4rB3/mWLRIecbBx2W6NE11h/I58jFFJwe33Uu114vMZ6LVssKIpCQf4uFi2YT3lpKSedfBLnn38+CfHxh32/VRSFrl270qNHj32+prq6mi1btlBTU9Nsv/fBQgBJFJEshg2mx+uloaEBVVHMINPj9aHrOna7DYfdQXR0VLj9SGpWlbox6J8xYwbPP/88sHv3v0ePHsTFxTFixAgACgoKWL58ObPmzCUtKxvZIpvvI0kSdc46pr7yEvX19UiSxAMPPMCgQYP+cBUAsiyzcuVKHnnkEbMCYsiQodx1119xOByoqkpcXBydO3cmISGB+vp6Kquqqa2rw+124/b68Pl8BIJBI/EJi2CKkogl3EZpkSTsNivRUQ4EQWBnQRGBYMgEPhZJpGNuNnabrUVCgC6vj6+/+ZavPvsEgNzcXB577LHjyoK6dRy5IUkSv/76K6WlpaYYbygUIhRuv9xz3dlTtG7P5H5P8TwwSt8jGxaNdS4ibYuNE/vGyX7jeOdALY6PPvooAwYMOC4hoqqqdOzYkV69epn3hPnz59PQ0HBYbaqtAOAoAIDFixebk+GIAQC3h0ceeYRtWzZz5lkTuO3WW1p8s5Nlma+//hqA888//6gBgD19lA92WK1WvvzyS955550mj//nP//hn//8JwBrwi0AljAAKCwo5v13P0dgdy+ux79vBwBBEPF4GtiVvxlZttGxwwnhEn5jEXJ76mlwVeOsq0W2WElPyyE1JQOb1Y6m716wVE1DUxVESSIpKYGsrAw6dm5Pdk4mKSnJ2B3hm6XeTNAlhFP6cM+pz+unqrKaiooq8nbmU1ZSSXl5pdFzHC6nbj5RCHL1dZdSWVHFT9/P+F2L/9EIdQSVAL5AgEOxuQsGQ7Tv2IG/33+PWT0R5bAzsGd3bAchAqiqKjNnzsRzgITnQPPW4wuwaMkSPnj3HeqddQAkJCZx511/Y2C/PoeUkO/5+j3JeKT3PVLCHunhPlLtSIFgkPKqGpwNrnAAYFyjmzas58fv/o+amuomr9/z88YnJDB46IkMHDSEuIQEVFUxq1wA4mKiSUlOJNrhaGLXfnwk/wZAdLpcVFbV4A+GmogYKaEQ03/5iQVz55g/N3ToUO6++27kFlR9KIpCmzZtGD58+BG7fxzKCAQCzJkzxywvPx4BgCAY7Se7ikpwe33NVlC1/HfopLdNJi2lzX7PUeN7nNfnx9ngoq6hAUUxyq81VWXnzh0smDcXu9XKxGuuoWvXLodVbaNpGlFRUYwYMQKHw7HfNWvXrl1s27aNQCBwwOunOaFQi8UCgoDb7aaoqIiNGzawYuVKysvKDc0BSTRBK+hIoojd7iAlpQ05OTmkp6ebf+Lj44mOjkaWZTPmiNijzps3D4Dhw4dzzz33oCgKnTt35oQTTkDXdZYvX8769evZsHUbqanpTc6JRZbZlbeTd6e+TigUIiEhgf/+979kZWUdl+J9h7PeSJLEG2+8wffff28m0w888EB4N13BbrMTHRODy+2htLycmjon/kAAJWKvKQimFkbk3/v6XVaLhfj4WLw+Px6vz7xf6LpOh+xM4mJjWmCtbMyPd977gG+//hIwBJ0PR6CxdRzfw2azceedd7J169YjChUiLXsRxXu73d5Ek8bv9xMbG2u29ZkQvlElQuR1Xq+X2NhYrFarqaVUV1dnQktFUbj33nvp1avXcQcRI+t/pDoKjDbzhQsXmsejFQAcRwDgaDgA+AJB7r//frZv3cL5F17EtROvQQ2FWpQiybLMN998g9/v59JLLz0qAEAQBGrr6lE1lfi4WGxW2UyqD2bSV1ZW8q9//Yvy8nLz8aysLObMmUP79u1ZsWIFRcXFzQMAUSQQDOAPBvYLACoqiqiqLiUpKZWM9HboOoSUIFVVxdTVVSGKAmmp2aSn5uKwRaHpu5M0RVXQNZ24uFi6dOtAz17dycnJIi7BKKuuqqyhrtaJ1+OjtLScmpo6w6mhCRQxFitHlIMOHXJJTUshMyudqGgH6OByuakor2Trlp1sWL+ZyooqBFHC0mg3WlEV2rZN4dZJE/nwgy/YvnXn7778v0kipCr4g/6wndpBJC7+IN17ncDf/vl3k/g67DYG9e6B3XZwgGTTpk1s2rTJVII/lDkRUhQKSytYumQxX3/+qTn3snPbcdukSXTt1BFJFNE1rcW4oyXicY0/w5EBM0Y5aF2Di6rqWnzBEJJo2AkqisL8ubOZ/euvzdr67Wukpqcz9MTh9O3XH7vD8Hg3bDaNVpzY6GgS4mKJiXIYlRi6fkyqAgRAF0BVNNxeL7X1LrxhlfnI8bVIFlyuBn758XtWrVhu/mxubi7/+Mc/yM7OPuC6qygK8fHxjBw50vRBbwUARmLbqV3OXgBAFATcXh+7iktM28VDGbquY5NlOrXLNsFZi+7L4aTK5/dT62ygtr4eRdWwyTKBYJBVy5dRVJDPhLPPZkC/vodl0aRpGieccAKdOnU64Gvr6urYtm0bFRUVJhDc33ePJP66rrNz1y6WLVvOqlUr2ZWXR6AFLkPNxSsxMTEkJiaSk5PD8OHDGTp0KDabjaqqKu677z5KwzaRkyZNYvz48Xg8HgYNGkRWVhb19fUsWbKErdu2U1FbR0xMbBMbSVm2smL5Ur789GNzjv0Rd5gjyctDDz3Epk2bALjyyiu54oorCAQChEIK9S4Xtc4GPD4fmq4jNtIQOpR5EAG6jduwNE0nKy2FlOSkFh1fq9XKJ599xv/efx+Adu3a8eijj7ZWAPxBhyiK5OfnoygKsbGxVFRU8Msvv9C3b186depEdnY2n3zyCVlZWZx11lkAVFVVMWXKFCZOnEh8fDzV1dVER0fz9ddfc/rpp9O7d29UVcVqtfLee+9ht9sZM2YMpaWlJgiYM2cOd911FzExMYCh3fTMM88wcuRIxo8fb0KE6dOnM2PGDC677DKSkpKIjY3F6XTy0EMPMXLkSHJzc81KGlmWjzvXFFVVSUlJYdiwYea8rqysZMmSJYcV37UCgKMEAHbu3MmaNWuOGACI0Nt//vNfbNywngsvvoQrLrsMgZYFFLIs8/3331NXV8dVV1111ADAzrAHbJTNRnJiPIkJ8aZ/bEsnldVq5aOPPuKjjz5q8vj//vc/LrvsMubMmYOzvh4pvMsZAQCicTTw+LyoumpS7713S2FX/mZ8Pje5OV2Ji0siFApQWrqLBlcdUdGxdMjpQnxcctjqQgsnpCpoGm3T2jJoSD969+mOw+GgqrKGyooqtm7dSUN9PTU1ddTXu9BVjZZU4+s6SBaJtLS2tO+QQ48TupKTm0VUlANN16mvq2f9us0sXLiMqopqZKts7JIHA5w+fgz9+vfi1ZfexuvzH5SS53E/wQANnUAwQEgJhZOtA12DIooSou+A3tx8x2RCoRAWi0Sn3Gyy0toe9GfweDzMnj3b3EU/tEVWoLyqlqraOubM/JUZv/xkPten3wAuueIK0tumEB8TbZbPHkyC/1sNvz9ARU0dDW6X6aNus9qoqqzkp++/Y9PG9Yf83u06dODE4SPo3uMEZNmKoipomqHJIYkCDoeduJgooqOisVvlcDXD7vlzpNexyBvr4aTcHwri9fqpd7nxB4LokeQvsr5aLFRXVfLt11+xY9vuXZCOHTsyefLkFrm1qKpKVFQUw4cP36uH988MAERRIDkhgbbJieb8aBzA1DrrKSwtP6xA6GATnH2BAI/XR2VNLfUut7GjKsuUFBezbetmRo4YSe+ePQ65B9oot7fTvn174uPjiY2NxWaz7fNcaJpGYWEhW7duNW0rhX1ozEiiSGFREdOmTWf2nNmmaOVer5V2t6VFWmEiVUYHCjTHjBnDxIkTKSoq4l//+pfhMR8dzRNPPGFaiI0YMYKEhAS2b9/Opo0bySsowu0P7NZtEXZfYzOm/cyv034BYMiQIdx77717XR+/9yFJEmVlZdx3333U1tYiSRIPPfQQffv2o7yyihqnk0AwBIQtR4/S0DSNpPh4crPSWzQ/ZFlm9erVPPTQQyiKgs1m4+GHH6ZXr16tIoB/sKFpGnFxcZx88snmY9u3b+ehhx7ioosuolevXnTo0IH77ruP3Nxcbr31VgAKCwu5+eabefDBB8nKyqKkpITy8nKmTp3KGWecQd++fQkGg0iSxDvvvEN0dDTnnnsuoVAIq9XKli1bmDlzJrfccgvR0dGAYZH6xBNPcOqpp3LZZZeRnJyMw+Hg//7v//j222+59tprzeuzoaGB5557jrPOOou+ffuam0XH4/qhqiqpqakMHTrUXMMLCwtZtWrVYbeotgKAowAAysrKWLRo0REFAJIk8eBDD7FyxQouuORSzjvnHOKio1pMZH/88UdKSkq4/vrrj3iZnBAWw9qRXxQWcBPQdXDYrbRJTCAxPq7FyY0oijidTqZOncqSJUvMktjvv/+ewYMH8+uvv5pl2REAENEA8AcNkabIzXBvACDi93vI27URi8VK507GDam4ZCc+n5vk5DTS2mYTH5dg7jhoumb4P7dNYdToE+ndtwdOZz1rVm1g+9Y8KiqrCAVDZq+oKIlI4sFPykj/kihJZGVl0OOEzpzQqxupaSlYJAs1NXX8Om0Oy5evQVNVbDY7t06+Fp/Hy9TXP8Bikf+wk03V1d19XWFV7qaxrPEfdXVVWGSN62+5jVGnjCUYDNKlfQ65memH/LuXLVtGUVHRIc9lQRAIhULkF5fh9fn4/ttvWL50sfn8aePP4uSxp2K3WUmKjyU2+sAg4Le6SUXmdU1dPbVOJ6FwNYYkGqKWG9et5cfvv6Outmaf7xEbG8eAwYOpr69n47q1+yyvE0WRrj16cOKwEXTo2AlRlFDUUHgOGq+xSCI22YrdbsNulbFarVgj+hqCodoeSRp3XxnCfkGcqacQ7iMMhRR8gQCBQJCgoqCEQoRUFVXVGiU+QqOEV6a4qJCvvviM0uJi8/FevXoxadIksrKyDlhSGFH3HTZsGImJicfFnAsGg8yePfuYAADZYkEQRHRdo01SAqltkptNnEVRoLrWSXF55SEDAEPkzEaHnGwk6fBErERRRNd06lwNVFXV4gkEsMoyXo+b8rIyRpw4pImX/aFAgIhDhc1mIzo6msTERJKSkoiPj8fhcOx1HFwuF9u3b6e0tBRVVZucO1EUqa+v5/vvv2f69Ok490j8BUEgMzOT3n360LVrV2JjDVFVfyCILxAgGAqhqRper4e62lpqqquoqqqkvs6Jx+PeK9nr2rUrbdu2Zf78+QB069aNRx55BFmWiYmJYfTo0YiiyMKFC6msqCC/uAxfMLCXgrcoiHz52Sdmpc3555/P9ddf/4fs/1+2bBmPPvqosQvYpg33P/ggKiIujze85u0BLvdxnzicW4am6URHhYUAW7CrIYoiXq+X+++/33R1uuqqq7j00kv/cCKNf/ahqippaWkMGTLEvAZ/+eUXnnnmGW644Qaio6OxWCy89dZbpKamct555wFQWlrKSy+9xE033WTqe3k8HqZOncrYsWNNu3KLxcJHH31EXFwc55xzTnhTx8LGjRuZOXMm11xzDVFRUYChW/Pyyy9z8sknM3ToUBM+zZs3j+XLl3PzzTebTmENDQ28+uqrnHnmmfTr1++4bh1SVZXk5GSGDx9urt+bNm1i27ZtrQDgeAQATqeTefPmmX6sR2JYrVaeeuop5syZw4WXXsZJJ51MZts2LRLLslqt/Pzzz+Tl5XHzzTcfcSVWQRDwBwKUVlbh8fpQVSNI0cKe7dEOO8kJ8cTFxSJbpAO2BkRK3zZv3kxeXh6DBw/m2muvxel0snz5clP8rDEA0DRtv73/xucUqa2rpLR0F8lJaSQmtqWwaCuKopCR3o74+GRsVhs2qw10HUUJIctWhp44gNGnDKOh3sWcWYvYvGkbAb8fUZL2EOs7MkNRQoaffVwM3Xt0ZuCgfrTvkIOuw6ZNW5k1YwGSJHDTbdcwf84ifv5x5h+q/H9f15ima+FETQlXBWgIgkgwFKSkJI/4+Bj+9o9/MejE4QT8fnRdJzczjS7tcw/591ZWVrJw4cLDEmMzbMpclJZX4XK7+OiD98jP22kEeVYr4844k4GDhmC325AtFuLjYoiNjsJmsxowKbwbfaR9bw806hvcVNbU4vX7zR0/2SITCPiZPfNXFsyds8+1xGKxcELvPowafRKZWTmoqsKuvJ0snD+PLZs27vM7yFYrffr2Y8iw4WRkZoVtBtVwoh6e3eGyZRNGiJKR9AsikiggiCJiOFEQRSGcwBq7ZIavu0ZIMUSGNF1DVTVURUVRFUPbQ9+9jIRt4WmMFETRALKSKLFjxza++uwzaqqrzFcMHz6cG264gZSUlAPueEUUvIcOHUrbtm2Pm/l2rACAbLHw3TdfURYuEbdZrdx880107tx5r2MpCAJuj4e84lI0VT+kXVBd18lOTyU5MeGIBTOGbZtCVW0dtU4niqajKiGS4mJpl5N9RObvnpofdrud6Oho4uLiSEhIID4+npiYGDNALC8vZ/369fh8viYQ68MPP+SLL75ockyTk5Pp378/gwYNolu3biQmJjY65zqaphMMKbg8Hhpcbry+3R70gaAfn9dPvbOO8vJy1q5aSf6uvGa/w9lnn82NN96I3+8nKyuLQYMG4XQ6WbhwIT6/n12FxQTN6ivBhD4Bf4B333ydokLDAeCmm27i3HPP/cMllzabjc8//5x3333XACbdezDxRiN+0xsJLO6+FnbrqIiiAURFUTQ2JSQJAdFwKYpYWx7EHJEtFjrlZmO1tqxE2mq18uabb/LNN98A0L9/f/71r3+1SAeldfy+AcCHH37I1KlTue2224iJiUHXdd566y3S0tI455xz0DSN0tJSXn/9dW699VbS09MNYVGPh9dff51x48Y1AQAffvghMTExnHfeeSYA2LBhA7/++ivXX3+9CQC8Xi8vvvgip5xyCsOGDTNfO2/ePFauXMktt9xiAgCXy8VLL73EWWedddwDAE3TcDgcjBgxwvyuS5Ysoby8vBUAHI8AwOPxMHfu3MMSaGjuZvDBBx/wySefcPZ5FzB85CjSUpJJjD9wX5XVamXatGls3bqVW2+99bB6EQ80fP4A1XVOnA0utHCgrms6CBBlt5EUH0d8bCxWq2W/IKCxZ7eu62FvZaXJMbXIFvLzCvngnc/xK0ap+P6EoARBpLh4J876atqmZOGsrwZdJyurE1FRMQiCQJQjCgEIBUNkZWdw9rmn0zY1hVm/zmPp4lUEAn5kq/U3UdvXdA0lGMJqs9Gnbw9OHjuStPRU6usbcNbWk5GVxkfvf8H6dZv+8ABgd/oVFibCaM+oqqkkb9dm0tIyeOiJ/9KjZy98Ph9g7OqmJCUyoGe3w+oPnj17Nk6n87AWW0EQqK6to6rWSWlJMf97790mO+c9TujJ2NPOID0z07jxSUZQHxvlwOGwY7dam1QhHM2F1+f3U1XrpMHlRtV1RMGYj7JspbiwkB+//z/ydmzf58/n5OZy0ilj6dy1myGwoyphYCejKgpbNm1k7uyZ1NXWkpiUTHFR4V7rQFRUFAMGD6Fv/wEkJ7cxe+IjSftuGNLoXDX5h97kqmnmVY1Pzm6/DWHf508SJYSwJ3ddTQ2bN21gwby5uF0u83UTJkzg8ssvJyYm5oBBReQ7DBw4kKysrONqnh0rAGCVrbz8/DOmvRvAI488wuDBgw0tlWZGbX0DtbVOvMEAuqa3OJjRdZ0ou40OOVlHvHw8kmT7/AGqamtxNrjIaJtCUkL8UQsSG39+q9VKTEwMSUlJpKamkpycTEVFBStXrjSrCHRdZ8qUKUybNs38ufj4eCZNmsTo0aNRFIVQKNQs5It8P1XT8Hi8VNU6cfu8CGDOE1E0bBKn//wTSxYu2Os97rnnHk466SQ8Hg+9e/emU6dObN26lS2bN+PxB8gvLm0WEBXk5/PO1CkEAob17wMPPMDgwYP/UBUAkfvV888/z5w5cwDIys6hc7du+Lxe/D4fwVAQVVFRTcVzBTXcKmeRLFhkCxbJgtVmIzYujozMLLKyskhMSsZqtYY1V1r+mTrkZBF7EFWnS5Ys4dFHHzXLxJ944glyc3P/UEKNf/ahaRoxMTGMGDHCvEd/+OGHvPHGG9x+++1mf/7UqVNJT0/n3HPPNQHAa6+9xm233dYEALz22mucdtpp9O3bF0VRkGWZDz74gJiYGFPA3GKxsH79ehMARFoAIgDg5JNPZvjw4YRCIWRZZu7cuSxfvpxbb73V/Iwul4sXX3yRs846i/79+x/316Su6wwcOJCMjAwCgQALFizA7XYf9sZUKwA4CgBAURRmz5592CdoTwCwaNEi/vOf/zD4xGGce8FFOGxW2mVlHLAKwGq1Mn36dNavX8+kSZOa7Y0/UiMSWLg9Xqrq6nB5vOhhsSwt/DsdVitJiXEkxMYdEAQ0vuj2PJYGACjirakfElSC+w3gG9v/BQJ+LJIFSbKQldUJuz0KXVeJskchihKaqjBocD/OPHscJcXlfPPVj1SUVyJbrYelNH3Ikx+dYCBIUlIC55w/nh49u6KEFHRN4523PiJvZ+EhC9X9HocoiOjoFJfuorB4J9279eTFl1+hW68eVFfXGqWpuo7DZqNddgYJsTGH9ft27NjB2rVrD7ulRxAEamqdVDvr2bp1C19+8jH19U7z+YTERMacejp9+vXDIlsIhZWcJdHoJ7bZbDhsVmzh0neLJDVSwN37eodGLhT7/VzG64OhkCFmVuckqKiIohHMWywWPF4vq1YsZ86v03G73c2+T1x8PCNGjqb/wEHExMYSUkLNKo3LshWvx0O900lcfDx5O7ZTWlrC5o0bKS8r3QsEpGVkkJWdQ2ZWNunpGcTFx+8TCBzpIDySzAQDQWqqq9iVt5Md27dSWFCAp9FxkCSJyy+/nPPOOw+LxbLfKqvGyVqfPn3o2LHjcTfHFEVh1qxZZrvVbwkAXn/lRXaFK2QAbr/jTsaOOQVhH+BaFAUURaXe7aHWWY/X5zfF7fYPWHWyUg+9979la5VRPlLv9mARJaIc9t+kgqfxzrDFYiE2Npb4+HgqKysJBAJmW2F+fj6vvPJKEwXvdu3aceWVVzJ06FDTjmtPaNV4lRFEEVVVqXe5qaqtw+c33l8Izwsd+O7rr1i6eOHuRF6WefLJJ+natSt+v5+RI0eSlJTEggULqKuro7KmjvKq6ibXmiAYa/9XX3zGymVLAUMA8D//+Q8JCQl/OAFAj8fD/fffz86dO4/Y+8bExJKZnU2v3n3o3a9fWBH9wNejputkp7WlTVLLWlgkSaK6upp//OMfpqDz7bffzvjx4/9wrRqtEECjX79+5OTkAIZeVwQAxMYa4thTp04lIyPDBABlZWW8+uqr3H777aSlpRk5g9vNlClTGDdunLkrL8sy77//PjExMVxwwQUmAFi3bh0zZszgxhtvbAIAXnjhBU455ZQmAGDOnDksX76c2267rQkAeOGFFzjrrLMYMGDAcQ8AVFWlU6dO9OzZk4qKCpYuXXrYm8utAOAoAQCAOXPmmMItR2JIkkRtbS333nsvqqZx4y23ExUTTUZKCslJ+7/5RQDA6tWrueOOO34TsRxRFFE1lbq6ekqrqs22gEgQoYdBQGJCHInxcVjD6psH87lk2UJeXiFTXn0Xnf2XgAqCSCDgI2/XJsM+xx5FdlYnbDYHuqZht9mwSDI6cMb4kxkx6kRm/Tqf2TMXoKrqMbXkahyUSxaJ08efwshRQ6msrObNKR/g8fr+UAKA+7+uJEKhADt3baamrpJTx4znmWefonefE5r4y0aU5I9EBU4gEGDWrFmmJ/rhJJSCIFDjrKeyupbCwgKm//wj2/ewz+nZuw9jx51OWnoGihoyA7Td3uQCkiiEk3MJWbZgschYJEPQK1I9I4VL3yO98XvqJghhuBRSVNweL/UuV9j/2dhBEkURZ10dmzdtYMXyZZQUFe1jHsr0GzCQ4aNGk5qaFhbxa5w07AkbjPVBFIySVEmyIAoCdbW1rFq1nGWLFuMMWybuOWJjY2mbmkZWTg7Z2TmkpqcTFxdvWGAK7NXsqusRhNb0uUhZsdDM1r8QPtbBQJDqcNK/besWigsL8Hq9e4OPuDiuvPJKTj/99L0sGfdc0yRJwmazIUkS7dq1o0uXLsflPDueAMDV19/Imaedht227/Jhc0daUXE2NFBV68QXCO7znqDrOlbZKGv+LZSfxUYA/FgF6bqu7xWPWCwWampqePfdd82dZgC73c5VV11lqnbvL74wYItxj1VVlepaJ5U1tWi6hoBg2m699/ZU8vPy0DSN+Ph4Hn/8cbKyspBlmZNOOgmv18uCBcb9dldxKS63t8n5ky0yW7du4n/vvoMSbge57rrruOCCC/5wSaUoigSDQZ566imWLVt2VH7H8FGjOePMsxFEDggBNE0nIS6GdlkZLZorkfvuc889x9y5cwE4+eST+etf/3pUK1Bbx7FJTrOyshg4cCAAH3zwAW+88QaTJk0yAcAbb7xBZmZmkwqAV155hUmTJpkVABEAcOqpp5q78rIs8+677xIbG8uFF17YBABMnz6dm2666YAAYPbs2SYAiNjoNTQ08MILLzBhwoTfDQBo06YNw4YNY+vWrWzduvWwc8tWAHAUAcDixYspLS09okKAoijy/vvv8+WXX3LZVdfQq09fLKJI+5xMU21/fwBg5cqV3HnnnQdldXS4n1kAauqclFVXEwo1FSEyQYDNSlJCPIlxsWYw1jJ3Awtbtuzgjdc/wGKR9qsSLwgSDQ01FBZtR5Zt5GR3xuGIRtM1bLIVq8XwBz3n/DPo1bs7X372PWtWrz9mu/77nHy60a886qQTyW2XyYcffIVFsvwpJp0oSrg99WzbuQGfz8ON19/GI48+SGpqyl4J8pEeq1evJi8v74jM54h4WVWtE7fbzZLFC5k/ZzZ+n898TWJSMqeMPZV+AwYiyzKqphrK+GG7QLME3kxsBTN7FRon2nv4P5uieGZlgNEqoWk6kiQiW2RUTaO8rJR1a1azYd1aaqqrzRtGUx92gc5duzFsxEg6d+mKIAgoqmIm3rpu+ITHxcYQ43BQ53Lh8fqIfNo9T5MkGhUNFeXlLF+6mI0bNuCsq93nWiAIAjFxcaSlpZOZlU1iQgKyLCNZLFhkGTn8t1W2YpHlRkroOoqi4vP58Hk9BPx+/IEAwbDjRCioEPD7qK6qorSkuNmkHyAtLY1+/fpx8skn07Vr1ya7pbIcFim0WnE4HMTFxREbG0tMTAx2ux273X7EqsP+6ADgmhtuYvxp47Bb5Rb7kAcCQSpr66irr0dtRh9A03RSU5LJaJvcoh3QP/KwWCyEQiG++uorPv/8czOZFgSBCy+8kL/85S/Y7fYWaQdF1t56l5uS8gqCIaOSyGa1sWHDOj7/+EOCgSDt2rXj8ccfx2q1mgrX27ZtY/PmzSiqxs6CIkKN3FcEATRV46P332Xrls0AtG/fnkceeYSEhIQjrmt0PAxJkti+fTvffPMNtbW1xMbGmutIZP0wYW+jP5qmGYK5qhoWNg1RUFDA9u3bqaysbPI7zj7/QoYNH0GoBe1KdquVTrnZSJaWbSDZbDZ+/vlnXnrpJXO9fPLJJ0lKSvpDnq/ffXwVjhUOBS7Gx8czbNgwLBYLH3zwAa+//jqTJ09uAgAyMjI477zz9gsAXnvtNcaNG9cEALzzzjvExcU1AQBr165l+vTp3HzzzSYA8Hg8pgZAcwDg9ttvNysAGhoaeP755zn77LN/FwAgcoyHDh3K6tWrqaioaAUAxzMAWLduHdu3bz+iO8eSJFFYWMgDDzxASmoaV1w9EQ1om5xIRts2+wxkrFYrM2bMYNmyZfz1r3/FarX+pidOFEV8Pj+llVU0eLwINC1ZjuyMRNttJCcmEB8bg8Vy4NI0i0Vi2Yq1fPrRV8jy/o+zrukUFe/E7akjK7MTCQlt0DTjJiRbZCyShYsvPY8OHXL46H9fsSuvELvddlxefDq64VsaG4PX6//jTzbBEHarqi5j244NyLKNf/3j39z7j781OUdHEwA4nU7mzp3botLiln4nl9tDVa0Tb8BPwa48Zs+YwfZGNnKCINCzdx/6DRxEWloacfHxWCwyuqY1EsbTW3C90KQHoPGutyhEBKIEXK4Gdu3cwdo1a8jbsQ2fzxe23BP26jHObd+eoScOp/sJPbHZbOF+0rBQnw6yRSQmOprE+DhioqMQBQFFValvcON0ufD5/SiKthewMECABUEAZ10dpaUllBQXU1RYQEV5GS6Xq0WS1pHg2BDBksKCgCKCKIBuzB9FVVHC9j8tHSkpKfTq1YsBAwbQrVs30tPTzWC8caIfHR2Nw+EwA47f21BVlVmzZuFyuUw/5d8DAGguEa2sNoQsI48bZfEiHbKzcdhtrbuR7NbcWbhwIW+++SZVVbtFLU855RQmTpxIUlJSi23cRNFQqi8sKSOoKFjCbRpvvv4qxYWFDB48mAceeIBAIEDHjh3p1asXCxcupKamBpfHS35JaROdHVmWWbNyBZ99/KF5vv76179y6qmn/qFLykVRNB1wLBaLATgbaSM1/nt/98BgMEh1dTXbtm3j888/Z9euXQDExMZy1TXXkdOu3X4hgI7RitYhJ4tou71F1SwWi4WCggLuu+8+cx25//77GTJkSGsbwGHM0YOJcSIxgqIo+42PBEHA6/MbYOYg4xtNU0lKTOTkk07Cbrfz1ltv8c477zQBAK+//jqZmZkmACgrK+Oll15i8uTJ+wUAFovFrAC46KKLDggAIhUAI0aMaAIAli1bxu233/67rQDQNI3o6Gh69erFhg0bjkh7eSsAOIoAYPv27axbt+6w7MP2/BO5Eb7//vt8/vnnXHPDTXTo0BFN12iflUnMPgRarFYrv/76K4sXL+auu+7CZrP95idOFARUXaOqxklVbQ2quncipek6AhAd5aBNUiJx0VFIETeBZo5PSFWZv3AZv3w/HYtF2ucCKAgiDa46SkrziI1OICuro5kR6boR7I4eO5Kc3Gzm/DIbZ20DsvX4F9XTdO0PX/ovhPUtyiuK2VWwhfj4JJ54/Eluuvm6vXb1jiYAAJg/fz5VVVVHrK1HDPfO1tU34HR7cdY5WTBvDgvnzSUQ8Dc5BgmJiWRmZpOd247MrExS2qYSHRONJFmaSYgb7fILTR5FDy/gmmpYK3o9biqrKtm+dSvbtmymOhz426w2Q4SyUeAAkJ6eweATh9G7Xz+io6LDbgwRNXIBu9VGXGwMcTHROOy2vfRGIlogPp8fl8eLy+MhEAwaMKARCDAU/qXwjUkgGAzQUO+krKyM4qIiiosKqSwvx+12HfVrsE2bNgwYMIBhw4bRp08fcnJySEhIML3YbTabqS78Rxm/dwCwZwJVV99Ada2TQMi4XpMS4snNTGtN/vdYa61WK5s3b+all14iPz/ffK5///7ccsstZGZmtjh5E0URl9tDQWkZoZCKw25j+i8/8eu0Xxg37jT++tc78Xq9dO3alezsbNM5qayqhopG/f+SJOL3+nj3rakUFRYAhnbG/fffj91mQ/0dBKGR5G1PTYWDiQUPxwUmUkFqs9lYvXo1jz32GA0NDQbMbdeey6+eSExsjGl3uq9YKjsjleQW6i2IYcHUhx95hHVr1wJw2WWXccUVV7QCgEbHNHIsG4OcPWMMXdepra2lsrKSYDBo/kzkutBNZ5ym91tZlomKijJB9b7iI1EU2barENchJJaqqtG1Qy6njRtLYmISL7zwAl988cVeLQCNKwD2BQBeffVVTjvttCYAIFIB0BgArFmzhhkzZrQIAMyaNcusAGgMAJ5//nkmTJjAwIEDfxcigBaLhczMTIqLi49I/tYKAI4iACgtLWXx4sUtBgARUZ7IiVAUBZ/Ph8fjwe/3mxdoXFwcAM8+8wyOmFjOu/AvBBWF+Jho2mVlNB9UhQHAokWL+Nvf/nZMAEDjG1m9y01ZRSW+YPOq/RHBv7joKFKSk4iOcux14xNFkYqaWlatWsesaXOaBQACApJoQZYltudtQFV1MtLbh7+/sfsfCir0Gdibjl06Mu376XhcHmJiorDJ9ta703EQkIYUleLSXZSV55ORnsNLL77IBRedu89F8mgCgKKiIpYtW3ZEq3oiAn7BkILL7cHp8rBxw3p+nTaN/F3Niz9ZZJnExCQys7LIys4mKSkZBFBCxk6RqigoalgdWjMCTlUzvOyVYAh/wI/b5cLVUE+902nsqjcaksWCpqpN5ltSchuGnHgi/QcMIiYuLqw4raFrOrJFIiY6mvjYGKKjHKbV536/d/h/VE3H5w/g9fnw+vwEgyFCSghFbVRxIAiITYCAocvQUF9PWWkpxcWFlJWW4na5jEoE1bDI0sJVEsb310y1bE3XsVhkbFYrNptRph8VFUVMTAwJCQkkJiaa/urdu3dnwIABZGZm4nA4zM9kt9v/0MKbfxQA0HiO+QNBqmrrcDa4yMlIJz42+k9f/r+veKGgoIBXXnmFjRs3mo937dqVSZMm0aFDh4OCAPUNLorKyxEEifxdO3njlZe56KKLuPbaa/F6vXTu3Bmr1crGjRuRJImdhcW4PV7zOrNZrcybO5sfvjUs5RwOBw888G/69euP2+0xq/+OV5hjsVioqKigtLSUDh06EBsbe0wDZ1mW+eabb3jrrbfMx4aPHMWZZ5+Hpu/bIlDTdFLbJJGR2qbF88ZqtfL222/z1VdfATBixAj+/ve/H1Uh6uN9aGELR1EUsVqtpn1npP1VURTKy8tNxytRFHG73UydOpVFixYdNDxJSEjgpptuYuTIkYRCoX0CgJas783eKzSNTjmZjB41itjYWF555RV+/PHHJiKAr7/+OhkZGZx//vkHDQDefvtt4uLi+Mtf/nJAAPD8888zZsyYvQDAsmXLmDx58l4tAL8XABAZDocj7HJ1ZKBkKwA4SgCgrq6OefPm7bdkOEJ1ZFnG6/VSXFxMfn4+O3fupKioiIqKChoaGvCHPc0lSSI2Npbc3FwcDgelJSWcf8mlJCWnoKoq2empJCXE73VSrFYrM2fOZOHChccUADS+8ILBIMUVVdQ3uPcp1KRpGrJFIiEunpSkeGxWq2ktGAiFyC8qZVdeAbOmzd4LAIiiiNViJS42DvAyf/ECkpJSkSQLDnuUofyvQUZ2OsNHD2P6j79SV1OHRTaSF7vNhk220TqOweRCQEfHHwxSXJpHVVUJXbv04Nlnn+PMs07bLyU9mgBAURRmzpxpWqMdDTimqiqBUIjyikoWLFjAqpUrKSsp3u+i30Rc8wgHVbFx8QwcPIRBg4eQmJQU1gtQ0TSQJIGkhASSE+KwWa2HHNRFYICuG8FEKBQiEAwRDAbxBgIEg2GoEdFB0PUwFBDC310nEAgSCgXRNN1M/o0KCCFc+i8iYrQNJcbH0y4nizbJycTExJil+jabDYfD0aLd/D86ANA0jdmzZ1NfX/+7BwCN55iu63h8Phw223GtwXCshyzLVFZW8tZbb7Fw4W71/uzsbCZNmsQJJ5xwUO0ANXVOyqqq8Xo8PP/0k5xz9tlceeWV+Hw+MjMzcbvduFwu3F4fu4pKItwPWbZSsCuPj95/z3RMyc3N5fIrr8RitSGKEqltU0lrm2xUCx4nAakQdn+wWCzk7czj5ZdfpqCggFGjRnHzzTf/ZjpM+zofoZDC8y+8wIL580xIcfHlV9K7T799zlVN04iLiaF9dkaLf5fNZuPHH3/klVdeAaBDhw48+uijxMTE/KmSBz3cdiaKIjExMaSkpJCSkkJcXBwOh6PJWpSfn8/WrVtNt47Iz0cqAEKhkJmwNn6+ubgnUgGQlpaGw+HYZ3x0OABA0zQ65maRlZGBxWJhzpw5/PTTT9x++23ExRn5yJQpU8jKzOT8Cy4wNQBeevFF7rjzTtLT09E0DbfLxSuvvsrpp59uugBEKgBiY2ObAIC1a9cybdo0brnllhYDgEmTJv1uKwD2vIe1AoDjHAB4PB7mzp3bxLe+SWIry8TExFBdXc38+fOZM2cO27dvJxQKkZCQQFpaGm3btqVt27YkJiYSHR2NJEn4/X4KCwvZutWwourVtx8Tzj2fkKIS7Wje07gxALjrrruw2+3H/MRFVJHLq6qprHECzS9gkb5iu1WmbZskEuPjkESR8uoayiqrKS8pY+YeFQCCIOCwGn25Q3vkMH3RArbuKiQmJhqPx40gCNhsDmzWaEaOHgVIbN64FatVBnYnUdGOaCyiJaIh3jp+k+TfSAL9AT9FpXnU1lYwZMgw3nn7HYqK8+nYsSOdOnU6JgAAYOPGjWzZsuWouUJEdisFwWh9qa1zUlxczPYdO9i5Yye78nZSVVVJ6AiXUAqCgMViQbJYkCSJqKhounTrzoCBg2ibloaua2Z5qICAw2EjLSWZuOho9EaigkcgVGrkXqibCb2iqgRDCkooRFBRwxUNOlr4V0uSAVJl2YrNbiXKEUVcTDQxMdHERkcTHeXA4YjC4bAjHYHLoxUA/P4AwNEIov7Iw2Kx4PF4+PDDD/n+++/Nx9PT07nzzjvp1atXi3cjBUGgtLIKZ4ObKS+/yMjhw7jiiitQFIU2bdpQU1ODoijkF5dS73JjsRi6HZs3bmDazz9RUV7WJHAVBAGb3U5cXDztOnZk1KjRDB7QH5tVPuYCc6Ig4A+GqHe7KSkp4f133mZXXp6ZkD322GMHBVCO1rktLCrmP/95hLJSw3o1ITGRqydeT1pGpinmuuf91W610jE3G0sLhQBlWWbNmjU89NBDhEIhEhMTefLJJ0lPT2/2PDWG2XtB4qZ3iWZfdzyuo7quY7VaSUlJITMzkzZt2uwFmRVFoaamhl27dlFZWbnPJP1QNQAaX2tHGgAYrSFphEJBRFFi06ZNzJk1i6uvvtoAALrG/z74gLS0NM4YfyaaplFRUca777zDtddeZ8QXmo7H4+bDD97njDPOYODAgWia4b711ltvERcXz8UXX7y7AmD1aqZNn94MAHiOMWPGmtUOsiwzc+ZMli5dyuTJk7GH2xKdznpDBHDCBAYMHGgeH+E4Evz+LUBgKwA4SgBgTxXlxotV27ZtURSFr7/+ms8++4zKykp69+7NuHHjGDlyJJ06dTJEv8Ll/o1HWVkZ69evp7a2lg3r17Ng4QL6DhhMVk4uISVk2gIe7wDATHaAqto6yiqrzd39fS0ygiCQEBdLckI8xeWV+AMBli9eybbN25oAAJvVhiRaOLVPe6IsIR546yOsdjs2m80sCQ6FQoYAmKohyzZiYuOJiY7Dbo9GDu/822QrjuPkWP1Z0v+QEsIfDFBamkdtXSWnn34mb731JpmZ6Tz//POMGjWKAQMGHDMA4Ha7mT17NqqqHvWbRaQqQJREdA38fj+1zjqKi4vZsWMnO3Zsp7ioGK/HY7T9CyKSJCKKjVShLRazyshqtWK327HZHciyjEW2YLVasVmt2O0OoqKicURFYXfYiYqKJjYuBkmQAN20FZQkEZvVSmxMNBZRbHHev6clXnPLpyRJWMKfN/LHarWau/M2mw273YYkGc8hCGbVgKppphmCLElGaf9RtO602WzIsvyHDRj+yACgdbR8RPrWP/vsMz799FNz3mZmZnLXXXfRvXv3FkEAo51LoaSimk8++pCuHdtz8SWXIAgC0dHR1NXV4vL42FVYHF7vdObPncP8ObPw+XwHTPRiYuMYc+qpXHThBSTGxx+z5FoQBJTw98wvyOeLTz+mqKCgyWuuueYa/vKXv+D1+bAcIT2ZQxlWq5WFixbxzNNPEwgEAOjcpSuXXnk1dod9Lz0AXdexSCIdcrKIaqEQoCRJlJeXc++991JbW4vFYuGBBx5gwIABZjl6BD7rum5Wu0Y0mAxRWQMAa2rEXlVDEEQskmGDK4oi6Poxtdnc1xoaExNDZmYmmZmZxMbGNnne6/VSV1dHXV0dNdXVNLhchpaOIIYr4vRm45sjcY0ecQCQnkpldS2qDjt2bGXpwoWc/5eLiYkx2l2+/eoL2qa0ZfQpY9E0jerqSr749BMuuuRS2qS0Rdd1vB43X3/xOSNHn0S/fv2QBAGbw85HH3xAQmIC559/AaFQEFm2snbtWmbPmsm1111PVFSUCQBefeVlRp90MkOHDiUYCmGRZRbMm8vKFSu4/vobkW1WdB1crnqmvv4G404/3bAv1DUkUcIqW/40a3srADiKAABgzpw51NbWmjvysizTrl07VqxYwRNPPMH27ds57bTTuOmmmzjppJP2WiB0XTeVuCOlK9XV1SxdujTsYyzj9nhwOp3EhkttREHYS73+eAUAEbIriAJ1TqNPUNP2r7Ku6TpWi4SiqjjrnMz4cSaKoiIIEW9nG4Ig0iMznrvOGcE9Uz9h5sq1xMbFmf1UmqaZu0CapqGEgoQUBV3TkSQZuy2KqOhYYqPjSEpsg2yxmp7prR62R28EQkECwSBl5fnU1lZw2WVX8PrrU4iNjQHg8ccfZ8yYMQwZMuSYAQA48hafLbtpG7MlsvuFIOD3+3G5XPh8fkKKgqYbln6RYEgPl8ALYbX/yA6CKImIooAkilgkC1ZZNhJuyQg8JEEgIhkYmTN7HtN9+dw3NzdEUTSAQyMVa1mWcTgcpiWePQzojF182XzdcX0T+APvFui6zuzZs3E6na0A4Di99iIior9FoCgIAp9//jkffrhbhT87O5u7776bzp07mwnkAQNOj5effvmF+CgHEyZMIBgMIooiuq5TUFJGg9uNpur8+P23LF20MAzb7KRnZJCdnUVDQwM11dXUNzTg9XpR9yjd7dmrNzfdeAMdOnQ4JhBAEATKq2vZsmULX33+KYV7JP8AAwcO5F///CeCJLXI0eRoflaLxcJnn3/OB++/bz5+yqnjOPW0M8JOM3uvCzkZ6SQlxLVYCNDj8fDvf/+bHTt2AHDrrbdy3nnnoSgKoVAIp9NJXl4eGzZsJC9vJ6qmERcXT0xcHDExscTHxxEXn4DNbsfhiDI3ckRBwCJbsNusRrVXOBE8XtbP9PR0evfu3cQJxu/3U11VRXlFBTXV1fgDAcOuUdMIhRR8gQCBYAjZYiElKaFJq8jxDADSU9pQVlGJ3+9jy9YtrFq+jBGjT8YqyyiKwuKFC4iNi6Nb9x6oqoaroZ5lSxYxaPCJRMfGoOs6wWCQVcuX0b5jJ1LT0tF0FVEQWbdmNTabja49eqCpqmkVnL8rj779BhjHCAiFQqxctpTcdu3IzM5BUzVEi0RR/i6qKis56ZRTkGULgiCiKCFm/DKN3n360LVrFyRRZNCgQTgcjj+NRWUrADjKAKBxomCxWNA0jWnTpvH222/Tt29f/vWvfzF+/Hjz9aqq4nK5qKuro76+HpfLZVYQxMTEIMsy9fX1TfqBG1cXCMJu/+3fCwBo/D1q6pyUlFeisXfJ154XoChJrFyygk3rtyDLRpm+iIRkkemencx9540gv7yKS/7zIiFVJSYmptmFrzEMMARYjMoARTEWAbs9ipjoOOJiEoiKisFhj0KWreE+dQNR65Ga5cjb67S2DRwMKdc1/IEAiqpQXl5ITW05119/A6+99mqTMusHH3yQ0047jWHDhh1TAFBWVsaiRYv2mRz/lnPGdAjR977iNM24NnVNZ3fR5G5f7UgFzm7bn93l93sl+M28/5479o2rDOx2u9lbHymXj/xp7b1uBQCtAODwzk1kXtXX1/8m609krfn000/5+OOPzbU2JyeHv//97y2CAEK4YmfL1q0I6HTv3h01HNC73B4KSw3hs68++5R1a1eT274DQ4ePICszi66dO5KW2pZgIGAkUTW1bN62gy2bN7Fy2dImbiC5ubn881//Iiszg1BI+U3XY6fLzarVa/ni048pKS4yv3dsXByuhgZ0XSchIYEnn3ySzMzMY957LIoigUCAZ599liVLlgBG2f7Fl19Jr95995q3mqaT3jaZtJQ2LZqLkWvzueeeY+7cuQCcc845nHvuuaxbt45169axZcsWysrK9vl+QngDzGF3kNQmma7detCtxwkkt2ljVAcoKqIk0j4rg7iY40PYU9eN67t9+/aEQiEaGhooLy+nvLwcZ30DQUVBCSn4QyFUVSWkqE0cIlRNpV1m5PtoxzUAsEgWFsyZyaaNGxBEkYb6ehrq63FERRlVepqGz+9Dtsjmbr2iKLjdblP/wIgxwOf3IVksiI0cDSIgz2q1GrGJphnQRFWx2x1mWb+ua7hc7vBmghGji5KEz+cjFAqRlJRkxiwAlRUVRMfEEBVlQKWnnnoKm82Gx+P5U7QCtAKAowwA1qxZQ15eHlFRUZSWlvLGG2+Qn5/P7bffzqTbbycqOoqy0jIKCgvJz8/H6XQafbiShN1uJzY2FqvVaqhYh1W5BVP4quXj9wAAIgtTZU0tZZXVB5iAOg31Dcz4aSYBf9AUERRFC706pHPpCSn06tmTxz77gTe/m0Z0dDSWFpbrNqatxiITVlZXVdAF7DY7Dns0MTFxxETFYbc7kGUbiqZg7NBKiGZyZfxfY5rRWj3Q6HwDiqbg8wfQdJ3KqmKqqkq45pqJvPnmm3sJO/7zn//kjDPOYOTIkccUAGiaxooVK6itrUVV1Sa2PJHfv6d957E8xpH/aZzI768cP9I+ENm1j5TiN96tjyT3kaQ/sm61jlYA0AoAOOrrT0pKCtHR0eTn5/9mQC3yez799FM++eSTJhDg7rvvpmPHjgdsBxAARVUJBAJmMiAIAsXllVRV1/DZx/8jPy+P08ZPoP/AgcTGxZGZ2gZHWLh497oKxeVV1DrrKSkuYtaM6WzeuMH8PUOGDuVvv2GsI4oC/qDC0mUr+OSjDygtKTGfO3HESDRVY/3aNXi9HgDuuusuxo4de1zY4cmyTGFhIY888ghlZYbWQlJyMldNvJ609HRCjSCFpukkxMXQLjOjxZscVquVDz/8kI8//hiA+Ph4LBYLNTU1h/yZExOT6N2vH/36DSAtIwOrzUpGShscdttxE2NF4vhQKESDy02D243L66O2ppaqqirKSkuMahZnHR6PB0UJgW7Mh9zcdkyaPAmHzXpcAwBDnFyka8f2JCcmEB0dw8qVK/jiiy956KGHSEpKQtM0HnzwQU444QSuu+46FEVh06ZNPPzwwzz99NPk5OQAUF9fz/33/5szxp9Bj+7dKSouJhQM8tlnn9GjRw8mTZqEpmm4XC5++OEHfvrpZ2648Qb69+9PdFQUHo+He+65hwsvvJAzzjgDRVEQRZGvv/6aX375hZdeeomEhAQkSaK+vp5bbrmFE088kd69eyNJEjExMQSDwT9NjN4KAI4yACgoKGDt2rUUFBTw+uuvU1xSwvDhIzihZ09sVisul5uS0hLq6xtQVQXZYiE6JoboqKhw4C2RlJhEu3a5ZGRkIIfLaQ72ArVarcyaNYsFCxbs1wVAEHQkSeeobl4LoKoCui40GxzoQHF5JTV1zuYvSl1HEEVWL1/N+jUbTQsgVRPo1zWHq/pmkIiClpLJpY++REF5BbHx8UiHECRpuo4YXsgj9iyKEiIYpra6FrETsyPLNuyOKOy2KKyyDdlqMwJnIdyTLe5WIxf0/SSpf5LqAQEIqQo+v5+QEqTOWUVlZTGXXnop77//frMCa/fccw9nnnkmo0ePPqYAIDIURcHv9xMIBPB4PHg8Hlwul/lYKGQo2TcuKYt8tiMNCPZM6PdVir9nGb6pCxDeUYyU5f+eSvFbx9EZs2fPpq6urhUAHGdDVVW6dOmCLMumdd5vGTQ2BwHatWvH3XffTfv27Q8MAQTBTOZFUcDl9rKrqIRvv/oSr9fDhHPOI6lNGzRVIScjndhGu6CNE+56l5uC4jIkyUIoFOTnH79n8YL55muuuuoqLrnkkqOeZAuCgKbD0hUree+dtygPi+oBjBh9EoOHnMiaVStoqHeyYvlyAMaOHcsdd9xhisQd62Gz2Vi2bBlPPPEEfr/fOKftO3DFNROJjo5BCd/DdF3HbrPSMaflQoA2m41ffvmFF198cZ+vsdvtpGVk0qFDB+Li4gj4fNTUVFNTU0NDuN3D4/Hs9XMxMbH0HzCAsWNOoVevXmaMfDwkV6qq4fF5cbo8lJeVs3XrFrZs2sSuvB24G1nvRkVFYbc7sNmN9lUlFKRN21QefPDB3wUAEAS47KILaZdrJPIzZ87k+eef56233iIlJQW3280tt9xC+/btueqqq3C5XOTl5fH000/zyssvk5Obi6Zp1NXVcd9993LWWYYyf11dHQBvvP46Obm5/O1vfzMrB6ZPn87333/P7bffTmJiIlarFa/Xy3/+8x/OOussxo4di9/vx2Kx8MMPPzBv3jyef/552rdvj67r7Nq1i0mTJnHGGWcwePBgQuGYvlUEsBUAHBEAUF9fzxdffMG0adOYO3cu/kCQE4ePIDsnh7i4eGLj4pCtMk36egn37mpGKbrX7aG6uoq62lpiox1079adbt26YrVaD2qRk2WZOXPmsGDBAu66665mAYAgQCAgUl1jRzyKc0DToU2yH5tNa7b9zRDRUckvKcXt9SE2MyHdDW5m/PQrPp8fURQIKRondM7mxqEdiA56Se/SnR+XreXOl99BDnt8H87ENhJ5Ya9e50gZUigURFEUU7FcEiUsshWLJCOIgqFMbovCZrUhW6zIsjX8vAVRFI1yJ9Hou46UZAtmoiwccPHeEyD8HhBCSAniCwTQNI3KyiJqais466yz+OKLL0y9iz3H3//+d8466yxOOumk4wIAHChI9/v9BINBPB4Pbrcbj8eD1+ttAgf2nMd7Vg8cTGK/p3he4x37yJ9IUm+1WlsT+9ax39FYw6YVABw/Q9M0hg4ditvtZv369b/5PI6U7H788cd8/vnn5prUoUMH7r333oMubS8qq2Dp0qV4vV4GDTb0XYKhEG3bJJGZ2pbd/XV6E4SsaRp5hcW4PF6ssozP5+Pj/73Hjm3bAMMz+5///Cf9+/c/qnoAoiSyeesOXnn5JYoK8s3Hhw4fwYRzz2fnjh3U11aTkZbKyy+/DEBWVhaPP/44CQkJx801LcsyX331Fe+++655Tnv37cdFl1yGZLGEq1AN+9cO2VlEO1omBGiz2Zg1axZPP/10k8fjExLIzM6mY6cudOnSlQ7tc2nbJhm73Y6AQDAYMGF6pIR+1apVLFmyhPr6+r0AwqBBg7jgggvo2rXrMdvJjcQeHq+P2gYXu3bls2L5UtasWGHaWLZtm0qnrl3JzsklNS3NBACy1ahSDQaDCDp07dSeKIfjuG8BCIVCjDxxMKeE47J3332XKVOmcNddd5GYmEggEGDKlClkZmZy3nnnoWkaZWVlvPTSS0yePHm3DaDbzZQpUxg3bhwDBgwwYmlJCrsAxHHRRReZLgDr1q1j+vTp3HrrrURFRRn2ro1sAIcPH04oFDI3PxvbABouAE5efPFFzj777N+VDWArAPidAICamhomTpzIDz/8gN1uJzo6mmAwhEW2kJiYRG779nTq0oWMjCxDeEJTm6iumj26YcGKqooKCgsKsMoWThwymM6dO5sidi1Z2OfPn8+iRYuYPHmy2VbQeFgkjeKSOL7+riuyfPQWzlBI5LwJm8nOcqGo4j4uTAG3x0d+cQmKqjVasHREUWTtynWsWbkOWbYQDCm0y0rn+pFdyBKC+EMq2V27Mfm1//HL0lVEx8RgsVgOKykUBKFZtd7ITkbjiaGZ/UkKoZAS9kzfDTsEQUCSLEgWGdkiY7FYsdnsBhSwyFgk2fxblESzlcDwPY8s3o0AgbA7IDL+X9gNEISm+EBoRlmh2eOyp/BPoweERv9LCw5pE2gSFlEMhoLhhEDA43GRX7CZ0aNH88MPPxATE7PP95o8eTJnn302Y8eOPe4BwIEW0EhgE9nZiPwJBAIEg0GTSEd26iN/y7Js+tU3TuytVqv5/G8pTtg6WgFAKwD47Uak/3/06NGUlJQcEwAQCR4VReHjjz/myy+/NB8fPHgw99xzT7MxRnP3+XqXh535BQQCAeLjE1BUA6RbLBK5GenIFolAWJMnsluu6bvjI5fHi8vtMe/R5WVlfPDuW9TV1gLQo0cPHnrwQeyNEqkjfRyqaut44/XXWbZksfn4kGHDOePMCURHRzNrxnTOO+ds+vbtw6mnnmo6azzwwAMMGjTouGgDiHwXgFdffZVp06aZj/cdMJBzzrsAm92GGlbiz05PJTmxZfDCarXyxhtv8H//939GApyaxkmnjKVd+/ZkZKTTJimJmGiHudkTAd17wvCI6GVBQQHz589n3rx5ZstCZCQnJ3PLLbcwbNiw8KaM9hseP2Pzqqa+gaKiEhYtXMCiBfPwejxERUXRd8AAevXuR3pGBg6HA03X0XQNPVwNI4etbKMcNuJjY7DbbPuMpY4nABAMhTh5xImMDrdmvvXWW7z55pvccccdxMcb4uSvvfYa2dnZnH/++WiaRmlpKS+++CJ33nkn6enp6LqO2+3m1Vdf5bTTTqN///6oqoooirz11lvEx+9hA7hmDdObsQF89tlnGTu2eRvAO++80xRkbGho4LnnnmsFAK0A4OgAAF3X+fvf/05+fj6jR48mFApRWVnJqjVr2bhpI5XhhSs7tx19+vbnhJ49iU/YfQNsOmF3U/eSomLyd+XRLjuLESOGE98CyxtZllm0aBGLFy/mtttua6Is2hgAlJTG8t1PnTmaThghRWTCGVvIynTvEwCA4aVbXl1LWVW1eWMQAK/Hy4yfZ+Jxe1AUlTbJiUw8uTcn2BR8gSB2m5VQQlsufuR5KuqcxMXFHZEeSYvF0pJ8dy8oELmZ7QkHVFVD09SwanvTSSlJsml1ZglXDMiyzagYkKRw5YAU/iPuhgJCYxDQqNx8H58z4sCwJyYwZQvCrxFFaQ82oJv/oe/xb13TjCqWiKCcbgjQ6fpuAKDpOkJ4B2f7jvW0TUth9uw5dOnUcb/HdtKkSZx77rmMGTPmdw0ADrRuROCAoihNduxbE/vW0QoA/twAQFVV0tPTGTJkCNu2bWPTpk3HrJInAgHef/99M7kTBIEHH3yQwYMHm+1PQrjKrbmRX1xKvcuNZJHCYqWReEREtlgIKSEUNSxG2gycFvcoV7RZraxds5pPP/zABKj/fuABBh+FRFsURXyBIJ9+/jnffPH57oS5/wDOveAirDYbihJizowZvPDcM5zQsydjxoxhzpw5AFx++eVcfvnlxw0AiMQ5FRUVPPTQQxQVFZmPn9CrN3+59HJkq0wopJKSnEBWWtsDCu6Joojb7eb+++8nLy+P1LQ0LrvyGrp370ZsdBRRNhuCKLTYXcnYQJEMvajKShYvXszMmTPZuXNnE+Bw+eWXc84555g2lr/FXPB6fZTX1LF27Vqm/fQ9pcXFOKKiGDZiJAMGDjbaWjQj7rOIElarlSiHHZvVgk22YrNZkSQL4j6Ox/EMAE4ZMYxRI0cA8OKLL/Lpp58yefJk4uPjUVXVBAAXXHABqqpSWlrKCy+8wJ133klGRga6ruNyuXjttdfMCoD9AYDVq1czY8aMgwIAd9xxh1ld2goAWgHAUQcAxcXFbNq0CUVRTIJZWl5JYXEJBQUFLFm8kO1bNqOqKiltUxkybDj9+g8gJiaGkBJqtkTeIkkEQ0F2bt+Op97JiScONdV093UyZFlmyZIlLFmyhFtuucXsaT+eAYAggKrp5BeX4nJ7EUUBURJYv3ojq5atRhAFbDY7l5/cl1NSbTS4jP6wnO49mL56E7c9PxVBFIhyRCGGA9j9LYAHGpE2gMNZdPc8P43hQORv4zxGFGH1Zqs8DE0BCVGSkEQLoiQawECSw2JslnAFQViDIOIJH/aH1yKJeQQCCEKzx3/vi3p3wn/gm9FukBDRexD2EEMsKtqOx+fitTff4cZrrjzgMXz33XcZPHgwJ5xwwh8WALSO1nG8jLlz51JTU9MKAI4zANCnTx/at2/Pxo0b2b59+zFt5ZEkCa/Xy0MPPcTmzZsBOPfcc7nhhhsIhUKGY08z14sY3r3fVVxi7OgfofVcFAXUkMI7b75B/q48AM4591xuDH+eIxYAhnel5y1awpSXX8LjcQOQmZ3NFVdfS0JCAjo6VZWVbN+0kY8++pCYmBjuu+8+sxT+lFNO4Y477jiiyd3Bfv7mjq3dbmfbtm088sgjVFRUmI8PHnoi515wEaqmEeWw0yE702iN3N98tlpZvnw5Dz/8MA6HgxtvvZ2hgwbhsMnQTEx0sNeexWKhrq6OWbNm8fHHH+P1es3nTz/9dK6++mpiY2OPaoInCAJ19Q2UV9UwZ9YsZvzyE6qq0G/AIE4eO5bUtHRCSggBiIuJIS4miiiHA9liaTQ39GYdvH4PAEBRFPr27MHokcNxOuv53//+x08//cSkSZP2CwBefPFF7rjjjr0AwJ4VAG+++SYJCQl7AYBIC8CeAODUU09lxIgRrQCgFQAcOwAQGY13USIHzx8MoagqLreH7du3sWjBAlauWI6qKGRl53DyqafSvfsJYcE8rdnkTBIlKisq2LRxPdmZGZxyyinExcaabgF7AoAVK1awZMkSbrzxxt22G8cxAIgsVH5/gPziUoKKgt/vY/oPM2mor0dHZMLovlzSOYmGWmekJpDcbt359/++4ZMZc3E4ogziqqrh7NMoK7PabE3s21oSYIiieEhCggezIDcHCCJ/N4YExt9qmCbvfsz401RbIdJGYnx+o2qAcFuBKImIghQO8MN/S1JTeBCuMjCOV1jEMOwrbyb6NO1Rj3yOCMzQNBVFCRmOCqpCwO/D6/OgqgGefvZ5/vbXO1t0nGbMmEHnzp1p165dKwBoHa2jFQAc+0Cg0T3kaH82TdNwOByMHDkSh8PBqlWrKCwsPOZaHjabjU8//ZT3w17ynTp14tFHHyUqKmrf1m6CQFF5BTW1ziPuYiBbLMz8dTozfv4JgHbt2/PYo48SGxt7xM6RJEkUFpfw7LPPkBf2t4+OjuaKaybSvmNnI/mwWFizeiWpyUk899xzADzzzDPce++9RkI9eDD33XefaRH9WyT8kd3zQCCAy+VqIiotAHr4OrbbbCxYsIB33nmnCTg5Y8I5jD7pZHRdp2NOFjabdb+JqdVq5bXXXuOHH37guhtv4qzx45HEIztXRFFElmWWL1/OlClTmrQFDBgwgJtvvpn09PSjkuSJgkBdg4uColJ++uF7liyaT1R0NGdOOJf+Awca/vSKQlx0FGkpbYiOcjSJlQ5mHK8AQNM0OuZmkxgXC4LAypUr+fHHH5sFAHu2ADQHAPasAGgOAKxZs4Zp06Y1CwAOtgJg0KBBR1UjpBUA/IkBwKJFiygrKzPLd408teludCCksG3rVn768QcWLFgAGD1kY8aOIzZc4t/cpJUkkWAwyIplS/G4XJx55pl06tDeFA8zk/vwhFmxYgXXXHPNXs8frwAgcpHW1tdTWl7Fxg2bWb5wBaquM2pwd24Z2A53VTW6IJj0PzanA1c8/gpbCoro2LEXskUmGPTj83nR9BCiBBVlZSAaEEWySOGyK3H/VQKCgBTxXT+GgWZzoGBPWNDcH6PXLAwLjBc29Xk33whUVdntGh8GCAZEEHaDACEiXmgkB7qmo6OZrQ6RxB/d2N6JPA6GOJPVaiUYDPDSiy9x2eWXm5ZQrQCgdbSOVgDwewEAwXDg6GxwEQiGyGjbptkWuyMxVFWlU6dO9OzZE03TWLBgQZPNhWM1ZFlm/fr1PPDAAwSDQex2O4888ggnnHBCs4G1IAj4g0HyCooIKUdeedtisVCwK4+3p75OKBjEYrHw4IMPHjExQFEU8fj8vPHGVObM+tV8/KxzzmPEqJMIKaFwTCXx4/f/x20338hf/nIxAC+99BJ//etfAejTpw///ve/W6SXcDifNQIYXC4XJSUlbN68mU2bNlFYWNjEwrbxRoQe/vxOp7PJMbPZbNxw6+1kZmaRmZpCQnzcPj+7JEnU1dVx55130qdvX/565537jF8OHP8YiCIilr27ZmT3v61WK/n5+Uyd+garVq02f7ZTp07cdddd5OTkHFEIIAgCwZDCtp27+OrLz1m1fBlpGRlcePGl5OTkEgi3dqSlJJOSlIgoCgdsmfg9A4DY6CgkSWLVqlVmBUBcXNw+AcC+WgBaUgGwPwAwZswYRo0atV8AUF9fz/PPP98KAFoBwNEFAKtXryYvL2+//buiaPS7qWF/8Q8//JAdO3aQmZXNRRdfQrsOHXF73OFqAMEUwIkkvaIgsnHDenbl5XHquHH0OaGH2UcUuSFu3LiR1atXc+mllza7mBzPAMDpcrFtZz4zfppJeVkl/Xt35q8ndUevqUZp9DUcVgvlUhSXPvoiGhY6d+wZPg4CqqLQvXcPOnZpz2cffIqi+PH6PAQCPkKhILqumrvgESjQuESu8aIZqR44VjDgSACDZn7CvKFG2kmMkrQ9qwt0U4hJEkXDvUBv3t5OEAVEBIKKgtfrRQ9/jmtuuIkzJpzD7BnT+frzT2iTnMzdd9/NZZddhtVq3ecnnDZtGl26dKF9+/atAKB1tI6jPObNm0dVVRWWcKlqKwBoel+qqXNSVlUNQCAYIjbKQcfc7AOWRR9q8C9JEiNGjCA+Ph6Xy8WCBQv2uTnwWx8Lt9vNv//9b7MXe+LEiVx00UXN9reLokBVTR3F5VV79fAfKAncU+9G2EP7JvJ5QsEgb099nbwd2wG48MILmThx4mEH+pFWzu9+/Im33ngDXTeux74DBnLhXy5BCCd5gijg9XiYP3sm773zjgmtp0yZwu233w4YAoUPPvigIQh3hK9rQRCwWCzU1NSwZcsW1q9fz+bNmykpKcHn8x3We/cbMJALLrmElMQk0tsm7zOpjdj/vffee7zwwgukpKQcVAJuxBHGHoKmaQRDIQLBULi1JHyvj2zkhFs0rVYrbreHDz/8H3PnzDb7/w9GnLJFnw0QRJHC0nI++OB9li1aSG679lx8+RUkt0nBHwggWyQy2qaQFB+HfgQS+OMdAMTFRCNJUrMVAFOmTCErK+uIVQDsrwWgJRUArQCgFQD8JgBg27ZtrF+/vkUCXkJ4AXO5XHz77bd88cUXOBwObr7lFgYPHkpdvZMGt6EUHlI086YoigIWycKuvJ3s3LGdM844gy4dO5iLnyRJbN++nfXr13Puuec2u5AcrwAAoLSiisVLVjB/1iLat8vgjnG9SQm48QeVJo3lud178M3i1dw95X2SEtuSkdHevEAVRWHUmJHEJyTww9c/Ioe/pKIqhIIBAgEfXp8bv99LKBRAVRWzZM6AAuF+rcgdCcP+RwhTaVEQ9lLd/11f4PtoSziYnw8EArjdbqOk0G6nb9++DBk8mDPOmkD33n2prq1n3drV/PR/36ArQQYM6M8ZZ4ynT58+zb7n9OnT6dKlS2sFQOtoHa0A4JiPvKJi6hvc4YRfILVNEplpbY/KZ1QUhdzcXPr37w/Arl27WLt27XFj5SnLMm+88QbfffcdAMOGDePuu+9utt1QB/IKig2b330AAFEUkESpyX1ICYUIhkIoioKqKISUED6fF6/Hi8/nJeAPEAgEUDUV2SKzdfMm8nYa5fmdO3fmkUceITo6+rD7zvMLivjPfx6hsqIcgNS0dK657gYSEhNRwjGXRZLYtm0LQY+b999/3/web7/9NjfeeOMR/UzN3XslSWL+/Pl8/PHHTcT8mjtvzc1nIQyxJNHQF/L5fCjhygarzcYV11xL/379yUpL2W/8cP/999O7d2+uuuqqFoMHQTBgjqKoeH1+3F4vXq+fYCiIomrh5F/fnYo3Ei22SBK6prFy+TJ+/O5bAoGA+Z733nsvo0aNOiKii6IoUuNs4LPPPuOXH78nLS2dq667nuTkNvgDAexWK9kZacRERx2xc/t7BwDZ2dmmDeC+KgAiLgAtBQC33HKL6Rzl8Xh45plnOPXUU/cCAEuWLOHOO+9sbQFoBQC/LQAoLi5m6dKlB6XgLYoiNpuNDRs28Pbbb7N1yxYmT57MGePPwO8P4PH58Hq91Lu8eP0+1LBVnlWWKSwooKaqkvPOmWD24EmSREFBAdu2bWPs2LHNnrTjVQMgEAyxZWce3331M6oS4LYzh9JbDuHy+fdSqsvt3oOHP/6O//0yiw7tupGSnEFIDYKuE1IVzr5gAl6vj5++/RnJIpkAxWiJMGizpmkoSohA0I/f58Hn9xAM+lGUoLkLI0YE9SwSAgI6unkDEkXRFNYT/mBQoKU3qUi5YSgUwuFwcNZZZ3HNNdcwduxYrFYrHo+HGTNm8NMv04hLSKBd+w5YrTZqq6spLS6ge7eunHnmWeTk5DR5719//ZVOnTrtFwC0Jv+to3W0AoCjDUdDIYWdhUUEgsYOvK5ptMvOJCEu9oh/xsh9Z/jw4Ya4nK6zZMkSKioqjhsAYLPZ+Pzzz3n33XcB6NevH//617/22nEVRRGX20NeUcm+k1KLBZfLxa68POpqq/H5/XjdblwNDbjcbgJ+H8FgECWkEAqFUJTQAY+5zWbj0f/8hx77aEto6XkXBJGPPvmEzz752IibZJlLLr+Cnr36mqX/xneQmTnjFy489xyuv+EG8/EPP/yQq6++GoB27drx2GOPHVFtgsgm0syZM3n55ZfNBLjxccjMzKRbt25069aNNm3amPM5EtJG2gb8wRDOBjearuHzepn+y8/s2LYVgN59+nHFNdfQIScLuZmWF1mW2bhxI2+//TYPP/zwfvUg9gQ/oZCCs8FFXb0LXyBg/Nx+BIsNMCMCAkUF+cyZNZPNmzayp4p27969+de//nXYFReiKOL1B5g5Zw7vTH0Dh93BxBtuJDsnF5/fT5TNRnZmOlEO+xFdC35PAGDPFoDmKgCef/55/vrXv5oAIGIDuGcFwNSpU0lMTGwxABg7duwBWwAaGhp4/vnnmTBhQisAaAUARw8A1NbWMm/evENKTGxWKx6vl08/+4xffvmF08aN47LLLsNutxtWcpqG1+fHWe+i3u0ipGhYLRby8/LQNYXxp59mntjKykoKCwsZOHDg7wYAiKKIs8HFr7MWsGThUv5ySn/OzYmjvt61O/lvZHWX3rkr1z47lcUbttCzxyAS4hKN3nNdwyrL3HDLlRQWlPDFp98iyRZ0XduttN+oxD1c4GVu9quqQjAYIBD0EvD7wm0DAZP2Gy0DjcXyBBr7FUWgAOGSNvMT/4HggBb2svX7/bjdbgRBYPz48dxxxx2ceuqpAJSUlPDWW2+xaNEi2qakMOHsCYwaNRpdtFBcXkWDx0N1RTnrVq3AU+9k1EmjGDfuNGLCJV4zZ86kQ4cO+20BaAUAraN1HJmxcOFCysvLWwFAM/elmrp6isrLDQCs61hliY45OVit8hHv/1dVlfbt25uVUXV1dSxatMiw2DtO1jtZlnnzzTf59ttvARg7diyTJ0/eS2NGFEWKSiuorqvb6zoSBAHZYmHnjh1M++kHCvLz4Qg1U9jtdh5+5BFO6NHjkPvARVGkoqqaxx57jPzw9dlvwEAuuvgyNHaL7woChEIh5syYzpRXX6Frt27me3zyySdcccUVAGRnZ/P444+bXulHIrGTZZn58+fz4osvmor4drudXr160aNHD7p3705OTg6xsbHNukE1eT/AHwxSVlUTBi8Bfvr+O5YuXojD7uDaW25h1LATcdhse31+q9XK+++/T3Z2NmPHjsXv97coKXU2uKiqqcXrD6DrHLBFJNLq4GpoYPGC+SxZtKCJE4AsWwmF157Y2FiefvppMjMzD9kaUBAEVE1j49YdvPLic1SUlXHRJZcxaMhQfIEAdlkmNzuDKLv9qIDA3wsAaIkI4OFUAKxatcq0AWwMAFpFAFsBwHEFANxuN3PmzDGtAA96sVFVCsur2LZ1C//39VfkZmfxt7/9DbvdTigUCp84Ha/PT1Wtk3qXC4AN6zfQLiuDEcOHoWkaTqeTiooKunbt+vupABBFduYX8sH7n3NCdgq3DmlHoKHB2G/f41haBAE5I5tLH32RoopaBvQZhiwbCrWqppKYmMAtt1/D6lXr+em7GcjhXnNTPC/iUa+pqGE7PlVr7KjQGAroKEqIYNBPIODD7/fiDxhVAkYibFj1WSxSuBfeENBrHMvogm64CugRMCA0ufE2gQPHOSiIBHkNDQ2EQiHGjh3L3//+d8aOHYskSbjdbl555RV++eUXTjzxRK644oq9rPwURaWssprSqmrqG1zk79zGhjWrSYiLZcLZZzNo4ECWLFlCampqKwBoHa2jFQAc05FfXEa9y4UoimiaRnxsDO2yMo7K2irLMiNGjCA2NhbguLD/ay5O+e9//8uyZcuA5j3uBUEgpCjszC8kEGoaD0mSiKqorFqxgmk//YDX6zkgcLDZbFitVqxWKzabDYfDQXRMDFZZRlEUAgGjJUAQRQYPGsxZZ52JzWY7pEQqUs03Y9YcprzyEqqiIIoiV193A1279Wiy+y9JEgX5efgaGnj77beazJcPPviAiRMnApCens5///tfkpKSDturPpL8L126lOeeew5XOA5MTEzkzjvvpG/fvsiyAaciTlEtOQ6iIKALUFvXQFVNLSFV5btvvmLpooWMPmUM1113HQmxMXtVedTV1bF06VLGjRvXrOh0c9dPeVUtNU4nmqYfWBtCAFmyEAqFWLd2DQvnzaW0pLjJSzp16cqok09m+9atrF29mmEnnsi1107EfhjJuSiK1NQ38NGHH/HrtJ/p238AF192BYqmIgDtsjKIi4k5KuvU760C4Pbbb28CAHJycvbbAhCJE1sKACIaABEA4Ha7TQDQKgLYCgCOCwAQCoWYNWsWXq/3kO1uyqqqqat3EfT7mfbzT6Br3HTTjaSltsXvD4RPpoCuGwS1srqWerebDWtXM27MKeTm5OB0OqmrqyMnJ+d3AQAEQUDRNH6aNoedGzZy+6gutBVUQvs46nZZotYez8WPPI8o2elzwmBDhR6jfzI9I41bbr+GmdPnMWf2AmTZut/FUdd1NMJ2e2oYCmiNb5yCeScSAE3XCIWCBEMBgkE/fr+XYNCPqoTMnzNotYws28LIQWskGKXvNTlpDAB0/bgEBQYMUWhoaMBut/PMM89www03mC0v8+fP56mnnqJLly7cdtttdOjQYb/vFwyGKCqvpLSqhtqaGjauWUnRrp0MGTKU7JxsunXtSmZmZisAaB2toxUAHJNk1+vzkVdYghquetJ1nfS2bUhtk3zEP5+iKHTu3JmePXsCEAgEmD9/Pp5DCNSPZiDpcrm4//772bVrFwCTJ0/m9NNPbwIAjL5pJ0WlFU3WaYskUe90MmPaz6xcsXy3xo4okpvbjsQ2ySQnJ5OckEBCQgJxcXHEx8cTFxeHw+HAYrGYfyI97ZFEt7HzzKFYrzX+7E6Xh9defZUliwynpuzcXK694SasNlsTITyLxcKiBfM4fewYbr755ibv89prr5mVEampqTz55JMkJycfNgCwWq2sXr2aZ599ltraWsDY8b777rsZMmQIgUgp/WGcY4/XR0lFFT6fl/ffeZuKinIefuQxOnfIbfL5RVGkpKSEqKioA8INURTxB4KUlFfQ4PYiiAeOYSLl/oW78lgwby4bN6xvcl7btm3LmWdNoP+ggWi6iM/nBVWhfW7OYZX/R9o6l69Zy7NP/hcBuOm2yaS0TSUYCpKakkxG25Sjtkb9XgDAihUr+Pnnn/cCAIdaAdBcC8DhAoDWCoBWAPCbAACA2bNnU1dXd0jE3qgmFyitrKLG6cQiWVi1cgUb1q/lkr/8hcGDBhEIBJr0b/mDQcqratiydQvehgbOO+ds0/e1TZs2vwsRQFEUqaqp5X/vf8bYDkmckh2PL6Tua2Uk2mZlW1DgqsdfJiMtlw65XVFNABCiXftsbrz1Gr758geWLVm1TwCwN2g2avZ1XTdSdl1D1zRU0+pOC7cPNIUCxsfSUFXFBAMRscGQEkRVFOPndQ3Qd1cKmBUDYhNFffNi2KOccs+LRdhjkRcatUgcaUig6zrBYBCXy4UkSXz22Wecf/755vMvvPACP/74I3fffTfjxo07qPeud7nJKyql1tlAceEu1q1cTtDv46wJEzhtH+/VCgBaR+s4cqOxhW0rANi9rpaUVVBV5wwnmiAK0DE3i2iHA+0Ilv9rmkZUVBQjRozA4TD8w3fu3Mn69euPm91/IyGTKCsr47777qO2thZZlnnooYfo27dvk8BaQCC/pBRng8u8hiySRGVFOV998RmF+fnma5OSkpg4cSL9BwxAsliIstuRZdlc5/e0sG0c0zQnBns4yX/kXrtmwyaefeq/1DudAJx25gROHjOGUEhpEq8pisLyJYt57JGH6NWrt/mc1+vl2Wef5aGHHgIgLS2NJ5988rArAGRZZtu2bTz99NOUlpYCRtn/HZMnc8qYMU11AHT9kBXpRVHE5w9QXFZBrdPJh++9wxlnnMGEM8fvlUB5PB5iYmL2+3tEUcDrD1BcWoHH5ztgEiIIYJEsOJ11LF6wgKWLFzZpLbDZbJx00kmcd955puWfqqrogCxJ6HB4EEQQCKoaU15/nZnTpzFm3GmMO+NMAmHF/4652dht1sOy+vsjAIAjLQJ4uADg119/ZdmyZa0AoBUAHBsA0DiQOpwJW15VTa2zAafTyVuvv4bb7WLiNddw9tlnoyhKEz9XVdMoKa9k2dIlDOjTm3bt2+N2u4mNjT3iAEDXNdA1QwxPEBAEqXHKeUgAQJYtLF62msIVS7iufzaqpu/OfZv5/LF2G0tqvUx+8W26dupNSnKaCQBCoRCdu7Tnhpuv4sP3v2Td2g0tBgD7Oh+6eTONaAhoYa97FU0LgwJdN21qdV1ocrxUVUFRDAGjUChgQgJFCRn6Dmr4fOp6RC4AQTBs90RBbAILmrMqbC5I2wtRRGDAvqBAM483nvCqquJyuVBVlbvvvoennnrSfO6BBx5gyZIlvPvuu/vcsW/JQlNaWU1xRRXV1TVsWrOSvO1bGTBwIBdeeCGJCQmtAKB1tI5WAPCbJf/BUIidBUUEwyXsmq4TZbfTMScLSRKPaP+/oij07t2bjh07AhAMBlm4cCENDQ3Hze5/JAFdu3YtDz30EMFgkMTERJ588knS09PNxFYQBPyBADsLi1EUNWynJxAMBPn4g/fYHhaXA+jevQc33XQD3bp1JxQMmgnrkdZWOJjEL6CofPLpZ3z9xWcARMfEcMPNt5GalmZqARn3WZHy8nK0YIAnHnuUqKgo87mdO3fy7LPP8sYbbwDQpUsXHnnkkRYL5O3rvl5aWsqTTz5JXl6eMYesVi6+9DJOP/2McGJj3BcNRX+jNdFiMYSMDxaOmJUA5ZUUFReRv3MnV195RZNrvyVuPJG5VFBc1qLkP2J3vWH9On6d9jMV5eVNnu/duzcXXXQRffr0QRRFU+chEt8ciWvHIknsKizin//4B5qqcNsdd5GQlEgopJCcGE92etpRvUb/aBoAe4oAtlYAtAKAPyQAWLNmDTt37jxkABCZtIIgsLOgiKlTplBaWsL4s8/h119+ZsTwYVx77bWmAvvuSS6wZds2igsLOPnkk1FV1aToRwIAGB64Wvj3Ni71syKKlmYhQEsAgCBASNX4+qPPOLmNSNfUBMP2sLlDHt4Vz+3eg4/nLuOBtz+mZ49BxMcmmi0AoVCQLt06c+PNV/LOmx+zaeOWwwIAzX7mSKUARtJvVAvo6GERQgMOaLvBQBOW0RQOaJpqQgBFMSoIFCVo/G3CAdWsQNB1rREEAIQwHBCEMDAICw4KYtOKgj1uBnveGBovCpHrSg/bMQWCQTO469CpMz/89DPdOxuB6pQpU/jiiy/46quvSExMPOxjGwgGKa2spqisku1bNrNu1TKio6K48KK/0L9vn1YA0DpaRysA+A0CJoGKqlpKK6vNHmVV00htk0hmatsjuvMXCoVIT09n8ODB5m7/9u3b2bhx43G1+x9JOKdPn84LL7wAQG5uLo8//ngTdXtRFKmsqaGkotq4H2Eo5S9buoSvP//EfK+TTzmFaydeS3Jy0hGxaztSgXJJeQVPP/mkaSvYt/8ALrzkMkBvEpaIokBBfgFDBvTlyssvRwrHfD6fjxUrVvDKK6/w5ZdfAjB69GjuuuuuQ07uIvfy119/nZ9++sl8vG//AVz4l0uxWGVCodAeIowCFlHCIltw2GzExEQTFx1lCgK2SBdAFKl11lNSWUVZcTED+vUhOTHxIOemQHFZOTXO+gMmH5IkEQoGWbxgPr9On2baEYKho3D++eczcuRI4uLi9vq+R3JYZJmvv/0/3nlzKkOHj+C8C/5irmu5melHxQHk9wgAVqxYYQCAyZOJj4tD0zQTABgVADplZc1XAEQ0AAYOHLhfALBy5UqmT5/Obbfd1iIAsC8bwHPOOYeBAwe2AoBWAHD0AMDWrVvZsGHDYQEAMEqcvvv+B6a89iqnjB3HWeeez47tW3jvrTcZf/rpXHX11U0WcVEU8fp8zJ49m4EDBpCamrrPE3awAEDXlb0S/6aLtj1cCXDwAECySCxZuorgtjVM6JJqJP/NJf6Nsujc7ifwwnczeOXLH+jb60Sio3YLsUQAwA03X8nbUz9ky6ZtRxwAHGixbVwxEIEAerh9QDMhQdjftpHuoFk5YBoLNHq9qpowQFENb2RVDRFSQmiqUf6m6Y1aFUxRQ73JcWxsWxiBBgLhf0sigiCCrhPw+5sslLHx8eiqygOPPcl5555Lp5wMVqxYwa233spnn322T7G+Qx1en5+i8kp25OWzbOE8KstKGHfGeM4af4ZpRdQKAFpH6zgyY8mSJZSUlLQCgPD6qCgKOwuK8QeDu9d1TaN9dibxRyj4j/Sup6SkMGDAALP0v6GhgcWLFxuidsfZGmez2fjwww/56KOPABg0aBD/+Mc/sFgsTY5JXlEJLrcXUTTuMUowxHtvv2kq6vfo2YsH//1vYmKij5uA3GDnEjPnzuWVF15AVRVEQeCyq6+lZ69ehPZwFFA1DZ/bxZAB/ejTp49pWbtlyxa2bNnCc889x8KFCwG49NJLufLKKw8ZdET0J5577jnmzZtnPm53OGjXvgN9+g+gS5duREdHoekaqqrtjkPCsYQgCETZbSQlxBMfG4MsW9D1AyeboihQWllDSVk5HbIySU5uOQAQBYEGj4f84lI0nf22JFosFhrqnUz/+SdWLl+2+zva7YwbN44JEyaQlZVFKBQ6qmuDIWCp8uhjj7Fm1Upuun0y7dt3JBgKYrda6ZDbvB3inwkAxMfGGMn5ihV8/8MPTJ48mYSEhN0VAFlZnH/BBc1WAESso1999VVOP+00BgwciKIoSJLEK6+8QnJyMldccQXBYNAEANOmTePWW281xVEjAGDcuHGmC4ABJ6exePES7rrrLux2O4IgUF9fzzPPPMO5557L4MGDzfXmz5TQtgKA3wgAFBcXs3Tp0sMCAKIo4vF4+Oc//0l1dTU33jqJ5JQ2WK02PvnoA6rLy3nmmWewNbJkiSjXLly4EEkUGT58+D4tcA4OAOhomrLP5N8AADYEwXLQAEAQBAKhEEumTWNEdJDEKPvuvsp9BT5hAPDQx9/y4S+zGdBnBDabI1yhAEooRIfO7bjh5qt4/+1P2bxp628GAPbNv00/QDMp1zAqAHTNsCRUw5BA1xvrDNBEb0Aw30PY6xxFJuvuFgUFTW3cqmA4HRgVB2r4nGomRFLVEMFAgJCy+zzntmtPh44d6dCxEx06deadN17j3489ydDBg8lKSeTfDzzAhAkTOPnkk4/asWvweNlVWMLs2TPZuGYVQ4YO46KLLiIuJupgguMQUAu0EoPW8WccOpAEyPt6wdKlSykuLm4FAOH7b3Wtk6Ky8ia+6TarTMfc7CMS/Ecq+LKysujVqxc2m81cw5ctW0Z5eflxt/tvlPKLvPzyy0yfPh2Ac845hxtvvNEMqkXB6PXOKyxCUbWw3Z/M+vVr+eSD9wznHFHknnvu5aTRo/byrj+mQbIgEFAUpk59ixnTfgYgMzuba2+4GbvD3qTqQxAgEAiSmpxEZnoqnTp1okePHlRVVbFy5Urq6+t54IEH2LHDqCK4/fbbGT9+/GFVOkiSxObNm3nttdfIb6ShEBnZubn06dufE3r1IjExyXRFanyparqOANitMvFxcSTGxWK3WferFSCEf66orILEuFji42IOqgKmoKQMZ4N7n2r/ggAWi0xFWRnfff0lO8OVFwAZGRnccsstDBgwAE3TDtnW8WCPc15BIf+49x6io6K5/c67sFhlFEWlTWICWWmpRvXn0Vywj1MAoOs6WWltURQVm83GunVrmTF9GjfceCMxsUYFwDtvvUVmZgZnnX0OmqZRVlrCG6+/wU0330xGRia6ruPxuHljyhTGjhtH//79UcJOG6++8jJJiUlccdVVBgCQZdatWcOsWTO59rrrwxUAAh63m+efe4Yxp45j5MhRBIMBrDYbs2f+ytIlS7h98h0mAKirrePZZ57inHPPY+iJJ5pzMC4mGku4XbYVALQCgCMCAGpqapg3b95h9e3ZbDbmzJnDk08+yamnnsrlV11DaUUFHo+Ht19/jRtuuIEThw7d62YiSRJbt21jyeLFXHXVVUeuAkBTULXAfhbMQ68A2LxpM0ml2+keLxPS9H0n/nsAgHvf+Yyv5ixhUL8RpgUgRCoAOnHDzVfxztSPjgsAsG8wsDurj9B649+79QYMXqCbYAB0NPMx479NkaTwGzUuJGgeGOzWGQDweBooLSvA73fTJrkNF19yCZdccgmdOncmJaUNkihSU1vL2RMmMPGWSYweNYrKol04nU7OPPPM3+RYlVfXMv3XX5k/81f6DxnKeeeeS1qbpJb+eAXwE2ChdbSOP99QgPFA6u8BAJx1+mnYrPLhBcG6fkgifRGbsh0FRfgCQbOEXVVVUtskk5nW9rADIU3TEEWRLl260Llz5ybHeNOmTWzbtu24S/4jQWQgEODhhx9mw4YNAFx33XVceOGFZiJvCPrWUBwu/xcE0DWdjz98n83hn+narTuPPPIwjqPgn36436+qto6nn36aLRuNzzrq5DGMn3B2s1UKuq7RISebhLhYhg4disViYfHixQSDQaqrq7n33nuprq7GYrHwwAMPMGDAgMOudpAkidraWpYsWcKsWbPYunXrXq9JbtOGnr370Lt3X9IyMpAkKQz/m4on6jpYZQtJCXEkxcdjs8n7rAiIVMVEPkPLjqdAg9vY/d/XVBQEAYsksX3rFn74v2+oqKgwn+vZsyc333wznTp1aiJ+fdQBgMXC3PkLeObJ/zJsxCjOveAiAkHj92enp5KcEH9EBUB/TwAAICs9lcqaOiRRYs3qlfz6y89ce9MtJCQmoSoh3nnzDTIys5hw7nnouk5RYQHvv/0mV19/A9lZuWiahtvdwLtvTmX0KWPo23+AaZ3+3ltTiYuP56JLLjPL+tetWc3c2TO5auL1xMTGIiDQ0NDA66+8yMiTTmbEyNGEQkFkq5W5s2exavlSrr/ldqKijE2imupq3nj1JU4bfyaDhpxIKBRCURU6ZGUSGx111M9lKwD4EwEAl8vF3LlzzQv6UIbFYuHZZ59l9uzZ3HvvvZx00klszy9i2i+/sHPrZp566slme7hEUaS6pob333uPa6+9lsR99GodvAaAHhb/0/cCAYYGgASIBwUAdF2nsqoWa00h7dwVuydhCw51bvce3PXmJ3w3fzmD+o00PW8jAKBbjy5cf9MVvP/2Z6xft/G4BQAtAgSNqgd2n41Ipr/7Ec0UKWwGGGh6k5u+IIromobH66K0tACf30V2djYTJ05k4sRradcut9nPc+rYsZx10WWMHjWSkrxtZi/egYo2jtQIhEJ8/8NPzPjlJ4afcirnjD+d+NiYlvxoJTCtFQC0jj8xADgNaLuvFyxfvpzCwsJjDgAm3ngzJ40ahSyJhx6Y6TqSJBHlsB90IC2KIjW1dRSWliNKknlLEgTolJtNtMN+WAGjqqpER0fTs2dP0tPTmzy+adMm8vLy9tJuOZ6CSKfTyX333Wcq0N93332MGjWqyWbEruJSGlxuRFFEtljYuXM777051Ux+b580mTPHn3HUd/8bu+tE4qD9BbGiKJJXUMjTTz1JSVERAGefdwHDRo7aK3HXdR2HzUq77AwyMzLp378/q1atorS0FIfDwYYNG3jggQcIBALEx8fz5JNPkpWVdUR2sA1xPwtOp5O1a9fy66+/sm7dur02hBwOB12796BPvwG0a98eR1RUuAJQ2wsE2KwWkhMTSIqPQ5Ytze7wC4cgsLe/3X9REhF0WLpwAdOn/YzP5zOfO+2007jiiitISkr6TVtEjO8I//v4E776/FMuvvxK+g8YRCAYwGIR6ZCVheMQ1pU/CgCQJJFtGzdQVl5hiI8XF5Gfl8cJvXphtdrQdI1NG9YTFRVNu/YdjN1+r5sdW7fSqWs3osMimMFgkG1bNpOekUlymzbheSlQkJ+HRZbJzMpGD1cL1dbUUFFWSsfOXZCtVgQEgsEAWzdvIjUtnfRwVYFkkSgpLqK6soo+/fvjcDiQJIlAIMDSxYs4oWdvOnbuTDAYoFv3E+jfuydRDttRc3JoBQB/QgAQDAaZPXs2Xq/3kOiaKIq43W7uvvtuqqqqeO6552jfvj07Cop4+r9PMHrUSK684oomliiNf9bn8/HUU09xySWX0L1HD5RmFs/DcwFQzXJ7AUOZvrnkf38AQNd1ECUcEjg2zkd1OtEPojo7p3sP7nj9Q35atJIBvYZic8SYn6lxBcDnn3zD8qWrf7cA4OCBgdB8kXsjnQFRFCmrKKKwKI+QEqB9+/bceuutXH311aSkpOz3/e+84w7adetJp86dcQgqY8aMMVsUfqt4VdM03nvvfTZv3cbNt91Gx5ysVgDQOlrHYQKAZcuWUVRUdMwBwLU33ULnLt0IBgOHtUbExsTQpX3OQQUtxi6nys7CIvyB3b3/qqaRnBhHTnr6YQXmkX7/Xr16ERcX1yRmWLt2LcXFxUiSdNxqm1gsFvLz8/nHP/6By+UiKiqKRx99lC5dupgbHv5AkLzCIkKKaqq5f/3F56xYtsS4d+fk8thjjxEfH3fEA8pIi0JE5M7tdlNfX29aLEZFRWG325EkaXe7XFiwN1KNt37zVl549hmqqyoBuPjyK+nXf8Be/f+appEYH0duZjpWq5WoqCicTie6rmO1Wvn111957rnnwt85h8cff5y4uCP7nUVRRJZlvF4vW7ZsYdasWSxbtgyXy7XH6yRy27ejT9/+dOveg/jERKM1YM+KACDabic1JYm4sNjaoV7vgiDg9fvJKyxGVbW9rmlLODGb8ctPLFow3/w9sixz6aWXct5552GxWA7LMvHQjqmAP6jw0ssvs3DeHCbddTfpGZkEQyGi7TY65GSZ19efEQBYZZk3p7zKrrwd6Jr+u9k9t8hy+Ho3Nk5vum0SY08+CdkitgKAVgBw5AAAwKxZs3A6nYdUxifLMnl5edx11120adOGp59+moSEBNZt2sLj/3mYOyZPZsSIEc3Sc1EUCQaDPP7444wfP55hw4Y123N2OACgaVa5/0Bl3wDAEFRK91UR3LQS5SDnX073Htz5+kf8uGg5fXsMJDp2d6WDooRo1z6bG2+9hpnT5/Hr9Dl/GgDQkhtBeUUJeQWb6d69O7feeiuXX355i9X7ly5dwoIly0lum0rPLp0YOKD/MfkupaWlPPvcc1x59TX07dWzFQC0jtbxBwIAB/MeoihgkXZLGyhqCEVRDyloEUWBiupaSsoqkSzS7rucrtMxN5uY6EO3cNN13ez3b+zO4/V6WbNmDRUVFYctHHy0h9VqZfHixTz22GNomkZqaipPPvkkycnJpop3rbOewtLycGm3hbLSYt56/TW8Xi8AV11zDZdefPER2f2P7O5LkmRuftTU1LBr1y62bt3Kli1bKCsrM6suUlJSyMnJIS0tjYyMDFJTU0lKSjLtkkOKwoo163j5+WdpqK/HYrFw9fU30Llz12YAgE52WlvaJCca/vO6bs4Vu93ORx99xP/+9z8ABgwYwD//+U9k+ejoWkSgh6qqFBQUMH/+fBYuXEhJScler01p25YhJw5nyInDsFgsTWwNI99LFAVSEhNo2ybpkJNdoxWkluKKKrONJjIkSaShvp5vv/ySLZs37v5sKSlMnDiRUaNGmWDmWCRKbq+Pxx9/nJ3bt3PH3+4mLiGeUEglIS6G3Mz03+RzHK8AQNU0slNT6Bd2ZKqrq2P23PnUNzQ0sco2bLGbumZENCkSExI5ccggoqOj97KRjORMoiiaFTwRq8eQEmLNmvXsys/HYmlqP26aWIuNbLLDLUiCIJrvJ4kSiQlxZGdm4nDY/zQBgCiK1Ls97NhVcPAA4BBg+p8aACxcuJDy8vJDuqFbrVZWrVrF/fffT6dOnXjiiSew2+2s27SF/z72KHfeeQcnnngiwf0AgKeeeoohQ4ZwxhlnHEUAcODRHADQdB1JFEmsKyYh4KIqP6/pBafroIUXjwgtiJwIUUS0SOR268Hf3/qEb+ctoW/PoURH71ZlVlSFtiltuOX2a9i+fRcfffDFnx4A1NZVUeusIhgI0KlLJybfMYlzzjmH+LjYg3qfiooKXn71VVIzshk6dCiD+vY6NtmMorBgwQL69OnTUnjRCgBaRysA+B20ABzMe8gWC4VFhfz83f+Zj51x9jlkZWVht9oOCgAYyt8KOwuM3f/I99Z0nYS4WNplpB+y8JemadhsNkaMGGHaWOm6TkFBAdu3b8fj8RyXPf97DpvNxhdffME777wDQI8ePXjooYewh3v5RUGgqKyC6jonoihisVj45YfvmTt7JgBt2qTw+BOPk5Geflil8IIgGMmrouB0OiksLGTbtm1s2bKFvLw8ampqWhQQx8bG0rZtWwYOHMiYMWNom5rG/EWLeeWF5/H5vERFRXPDLbeRlp7eJFHWw3lGx5y9W0IiZfJPPPEES5cuBeDss8/mpptuOuql7I1hSGVlJStWrGDu3Lls2rRpr530vv0HMO70M0huk0JICe2RqBnXZ1xMFBlpbXE0Eps+mJFfXEq9y9Ok/N/I8wQ+/+RD1q1ebT7eo0cPbrjhBrp27XpU7f1acl00eLz8+/5/4axzcsff7sZilVEVlbbJSWSkpvwmn+14BQChUIjRw4Zy0uhR5mNLly6lqqqq+fdq4uBl6FtZLBbapqSQkJCA3W5HluVmK580TSMQCODz+aivr8cf8ON2ecLVYY1f2/hY7evxpt//WAGmY5bECgKKquLz+Q+uV/cw2un+tABg1apV7Nq165AAgM1mY8GCBTz22GN069aNxx57DJvNytad+Tzy0INcffXVnHbq2GZvJhEA8Pzzz9OlSxcuvPDCZl93rACAoqjYHTYy1Qb+n72zjo+rzP7wc2V8kkzcpWnaNHWlTgu0WAuluLs7u7DAIsvi8lt2YXEolF1skRa3Qt1b6pJa3F1mMnbl98dkhqRNDap0zm4/tKN37n3v+57zvOd8j1xViqKq1LY7fwKBmjDRIGMwmpDNRiSjCYvNisFuw2A243O7qdiwmYzcXjz435l8NGseffOGEhUZg6ap7Q6bhslk5KZbrqKtzc1rr7yLfBQ4VwfTNE2joqqE0vIdDBk6jDPOmsrI0WMZ2L8vCTGO/VqUXn75JVrcPiadMYX+vXIOm6z+frYBDAOAsIUBwB4AQMc162gBAEaDkc2bNzL9zddDj1153Q3k9srDZDDsFwAQRZH6xiaKKyqRxA67/0C39FQi7bbf7DAGU9BHjRqFzWYLpWyXlZV12jk+0h1IQRB44YUX+PnnQEB/2mmncfPNN3eA7yqFJWW0ebzIskRDfT1vvfoKTU2NAJxx5hRuuP660I75bw3QFEXhl19+YdGiRWzdupWamprdAgVRFJENhi43TDpaSkoKp02ahKYLvPfuO/j9fqIcDm64+TYcMdGd6uY1XcdmMpGduWs6uNFoZPXq1Tz22GOhMs2//OUvjB8//nd1ANhfC+oEOJ1ONm3axJw5c1i+fHkoEwMgITGRk0+bRJ++/UItincBVwYDGanJ+5X9IggCXp+PHcWBUpCO67TRYCA/fzPvTnsDrf2cZmVl8fDDD5OcnHzYu0IEAcC999yDoijccfc9qFqgW1NqYhxxMTHHPAAYP2YU48aOCT22ePFi6urq9gti7jwHBEtwdg7f9Z3gWjAr4ECc3z9SQCu2Zzzsy+uC61pIOHwfIIB2jAb/vwkA5Ofns3Hjxt8MAGbPns1zzz1HXl4ejz/+OGazibKKKu67717OPvc8zpx0egcV+F0BwEsvvURWVhbnnHNOlzVUhwMAeLw6VrORIXkZmNuacTY2IIoSbbUVyAYDksmIZDJhtFow223IZhOCHCCDiAKibKC+oJB1M78mvVcez834njc+/57cHv2Jj0lC1X79nYqicM11F5OYnMhrL71DY1NzyKk7Fk0URVRNZd2G5aRmpJKQkERycjLHjRjB4EEDGTSgPzH7WAZQWFjIm2+9xWlTzmbU0EFIh8l5DQOAsIUtDAA6fn/w/T165u43ABAEgeLyShoam5Da121N04mKsJGVlvK7Tr6madhsNsaMGYPBYGDJkiXU1tYe0fX+Xa0hbW1tPPjgg6HWdjfccANnnXUWXq8XURBwtrkpKC1D1wPZGXNn/8z333wFgM1u59FHH6VX+w7vb7FgQPvBBx/wzTff7LY+PDIyksSUFDIys8jIyMBitdHY0Eh9XS31dbXU1NTQ0tyEy+ncBRzExMbS3NQU0GtISOC6G2/BFhHRaRxpmkZ8TKAd3M67/5qm8cwzz7B0aUDzIDs7m0cfffSA1//vz3ULZkts3bqV9957jzVr1vx6Tg0yx48/kdFjx2G12lDUXbUOzEYj2ZlpGA371plDFEUam1soKa/qtCErigKKX+XdaW9Q0N7qTxAE/vrXvzJ27Nguda0Ox/lyuT3cc/fdaJrG7X+6G7+ioOs6GclJRDsij2kAoCgKg/v14cQTx2O1WCksLmbx4iUoakfRc+EgbQwJdBK0CmECdnps58c7PyeKAhazCYP8x3AHBUGgze0JzIf7up6Ed/YPHgAoKSlh+fLlnWr9fgsACJYAWCwWGhub+PPdf2bkmOM55+ypOCLsuywoQQDw+uuv06dPH8aPH9+lcuuhBgDJya2YJJmRA3sQabegBW9lb9NOnlIw7V8LCHN0OG5JlmkoLmH9V9+T3rMX781dyt/f+YiMtBwyUrM7AQC/38fosSOYeu4kXn/5HbZtLTjmywBEUaKmroKyqkIee/o5MrO6UbRtC3V1tciiQFpKCj1zc+nevTsJCYl7rI/63//+R3VtHbfccgvSYfJfwwAgbGE7cABg9erVFBQUHJMAINjibPtO6f8AmanJOPaz73lXACAiIoKxY8ciCAILFy6kubn5qNj57xh8l5SUcN9999HS0oLBYODvf/87AwYMwO/3B9LO6+spr65DlkS8Hi9vv/4aZWUlAIw74UT+fNedv3nnTZZlWlpaeOutt5g9e3an5yxWK/EJiWRkZpGekUlySjIORzRGo4mg6JcgiCCApql43B7c7jaamhrZuH49q1euxO1u2+U70zMyueq66zGZzbu00MtISSLGEdVpfJlMJpYuXcoTTzwREkW8/fbbOfXUU0O7/4fL2RYEAYPBQEtLCzNnzmTmzJmdMhJ65OZy+qQzSU5LR1F8nUoCNE0jLtpBWnJSSGx5b0F0RXUt1XX1nca40WhkyeKFfP7Jx6HHxo8fz5/+9KfQ9xx+P0nA61e4+89343K5uOPP9yCIApqmk5maTHRkxCHZDT1SAYCm62SlJiFIMgaDkfLyClrb2hAFset4/Qg0XdeJjoggMy2ZP4KJosjWwhJanc59vp7h2v6DCABaW1uZM2dOQF12Pwm/0Whk+fLlPPLIIyQlJfHcc88RHR2N2+3mz3/+M9Fx8Vx25VWkJyViMRk7TUYdAcC4cePo37//AWoD+NsBwCkTN9C/l4/j+uZhMRsCqXTtx6y5G/d9kMsyzeUVrP3iG+ySxIomL7f8601iYxLo1WNgqAQgCAB69Mzm+puvYM5PC/jmq1ntzsAxPpAFgfWbf8EeZeWpZ18gJzcXp7OVxvo6qivKqa+twetxY7fZSE5Jpnv3HNLS0ohPSCAyMiLU68HtdvPiiy8wceLJDB58eIQAwwAgbGE7cABgzZo17Nix45gFAF6fj4LiMrw+H6IkBdK8LeaA6rco8Hv8cU3TsNvtHH/88ciyzOLFi0MZAEeLGY1GFi5cyFNPPYWu6yQkJPDMM88QFxcX2okPtnwzGQ0U7NjO22+8hqIoyLLMAw8+xIjjhuH9DWnwweD/1VdfZcGCBaHHk5JTGDl6DGnpGcTExmK2WBAQ0HS1XeW/q2v9azmDKIjouk5JcTEL5s9h0/r1ncZLdk4PrrzmOkRJ5NcuxTpGWSY7Mw2T0RgK1IK+12OPPcbatWsB6NevHw899BAWiwVN00L1+aqqhroQHI5gQZIkli9fzptvvhlq5wgQHR3DmWefS25eXqfsCh2QBMjOTMdm3rc2mDvX/8uSRGNjA2+++jKNDQ1AIFPj6aefJjMz85C2+tvbXKDp8MADD1BaWsIdf/4LFqsFVdPITAkDAIDEuFhq6xvQdA1JlDp8hrDHoP9g8wC901/0PZ5bURD2K6vlSAcA+3s9w+r+BxEABB2q7du373cWgMFgYPv27fzlL39BVVWeffZZcnNzEUWRF154gQWLFnHTrbeTlZlJWlJCpx3+4CL0xhtvcNJJJ9GnT58ua+NkSaOsPJIZX/bkNyQp7PPd2ObWueXaKs46xYGoy5129fcn+IeAPoCztp61M77CoGuUCmYueuxfmExWBvQ5DlEUQ+dB1TQiI23ceMtVOFtdvPry9MDCj3BMD2RREHG5naxZv4yMrExefvNtohzR7bsVIqqq4GptpaGhjrqaaloaG1EUBZvVSlJKKumZmcTFxZEQH8+W/M38/OP33HTTTaSnp4cBQNjCFgYAR20JgA5U1tRS19gcEqBNT0ogLib6dztIHUsAzGYzS5Ysobq6+qgDAO+//z7vv/8+AIMHD+aBBx7A0O5A+3x+CkpK8foVTEYjc2f/zHdffwlAalo6Tz31FNFRkaj7eS4NBgONjY289NJLobR6gKxu2Zxz/gUkJqWgqgpaMGtwv707kCUZxe9nS34+s3/6gYqyMiCQAXDltddhtlhCn61pGlER9l3KQkwmE3PnzuXZZ58N+SE9evQgIyMjFExHRUWRk5NDz549SUxMxNgOEIJA4FAGuUajkaKiIt59991O59VqtXL5VdeS2a1bJ+FDTdNIjIslJTF+j8cqCAKqqlJQXEab19tJ3f2LGZ+ybPGi0GvPP/98rrzyykOqjbAv50YURZ5+9lmWLl7CXffcS0xcHIqihDMA2gGas7mF5taW9nERVP3XQiJ/oQ4Awd/RHpB3/je/iqru9Fs7/1Pf/e9p1wwIPhYEe7T/d+eCgWDtu6Kq5HTPIa9Hd2RZCgOAMAA48ACgra2NOXPm4Pf79ysLINjO5v7776egoIArrriCiy++GL/fT1lZGXffczf9Bw7mjClTiY6KJCk+DkEgJCbk8/l48803mTBhAnl5eV0CAEEAr1ekvsGGJB74oFhHD6RMpcQxblgUFouGpv724D8IALytLtbM+BK11YkvLpmLHvsXdU2tDOo/ErPJ0ik9TVEVrrz6QnJ75fDqv9+hpKQMWTYc84NZFERq6qvZtmMdJ06YyCNPPoOiau1OioAoCgiiGJgoFQV3WxutLc24nE40VUEUJUwWC47oGLZsXIerpYk7br99n1sJhgFA2MIWBgBHGgAQAEXTKCwpx9nWhtVsJjszDYMs/24HMdgbfvTo0URERLB06VKqqqqOGgAQ3GR45plnWLJkCQDnnHMO11xzDT5foGSiqaWV4vLKQAmqDh/89102bVgPwNjx4/nzXXeFhKf2J/ivqanlxX+/yOpVq0KP9+yVx9RzzsMRHY3Pr7Db3b6dAoS9BTYGOZAi/9F7/2XH9q3YIyK48prrSE1LDwXDmqaRmhhPQlxMCAoENx8efvjh0O7/niw6OpoePXvSt08f8vLySEtLIzIyUFv+e7oj7K8ZDAZcLhfffvst//vf/3C73QAcN3IUZ51zXucsAF3HbDKSk5m+x9aAoW4aRaV4231fWZbZmr+Z96a/HdrpT0xK4rlnnyU6Onq3Wg6HE3a9Ne1tZnz2KdfddAvdc3rg8/vby4EijmkNAKPBwLTXX2Xrli3tavoqR4sFu2Qoqsqf7r6H48eMQUAPA4AwADjwAABg48aNbN68eb+zAEwmE++++y4fffQRqampPPvss0RGRmI0Gpk2bRoff/wx5110CUOPO45Im42k+DgkKXDhvV4vb731Fqeeeio9evTY7YIiCDqiqMGBHPtCgAhqmkr/3HSyMxLAD6rG7wr+Qyu0rrNu5tc0l1WQkNuLy59+hdXbCsjLHUiMI6HTZOTzeRk1ZjjnXXgmH3/4OUsXrzzmdQACl0hA1TQqqkspLdvGWWefw91/fQivX0HbeSEWBMQgTRVFREFEUfwBpw9obKwnf/1abBYLV1x1FfGxMWEAELawHYUAYN26dWzbtu2YBQBBB7G2oZGK6loS42JJToj9XbX/HecqSZIYNWoU0dHRLFu2jMrKyqMGAIiiSEtLC/fddx9l7bvjf/rTn5g4cWJAADBU892AwSDR1NjIm6+8RGNjYK2/+rrrOeesKfuU5h082yajgfKKSp5//nk2b9oUer7/wEGcMWUqlgg7aBpmowmTyYChHe6rmoaqKqiqhqKoqKqCommhncrQLuHufC+jkYKCHUx77RX8fj/nXngxQ48bHmhNRyAVvltGGnaLJbQTbDab+fLLL3n11Vf3O5gwm82kp6czaNAgxowZQ3Z29iFtUSaKIiaTif/+97+89957geA8OZlrb7gZq826y/jvlpZCZBf6U6HPEwTaPB52lJShqhqiKKBrGu+/+y75mzeGXnfNNddw7rnnHnbV/9353z/8OIt//fN5Tp18JieeNAGP10t6ciIxjqg/BADoqmZcEMS9asgJokBlWTlOp7P9OLX2tpFae2CpAzp68L8dfsvO+h+Bv+t7Lq8KvkcIYtqu4S07ZQEEEgHE9owOCUkSESUJuV14NTUtjdzu2dhtlgMyx4cBQBgA7GI+n4/Zs2fjdrv3i7TJskxFRQX33HMPzc3NnHvuuVxzzTWoqkpTUxN33nknDQ0NXHDxZQwaOgyjQSIuOopIux2Px8M777zD5MmTycrMRPkdLXf211RVQ9dUhvbtRmZygJDr7YPrNwf+HUwyGsj/7ifKN2wmu39/7p/+KZ/MXkhWRk/SkrM6dwJQFeLj47jl9qspKizhnTc/wGAMA4Cgef0+qmrKqago4IKLLuauv9yP2+tHUfydFo/gJOrzeqivraairBSPuw1F8eP3+YiNSyA3N5exo0cSGRERBgBhC1sYAByVACDowDrdbVhNJgwGmQO5dA4fPpyEhISjDgAYDAa2bNnCX//6VzweD1arlaeeeoru3bujKgqarlNQWo6zzY3JYGDTpo28985baJqOxWrl4b89Qv++vfH7lX2a041GIyUlJfzrX/8iPz8/9PygocM446yzsdusWC0WHJF27BZLYIx26jceCDxUVUNRFVRVxa+ouL1emptbcft8oRThLn+vJPHef6azYd1aRo4Zy5lTz0Fp/507t/8zGAzkb93K3x56CKfTSUpqGpndumGz2dC0X9coTVOpqa6mrLSE5qamLr/X4XAwdepUTj/9dKxW6yGrizcajWzevJm//vWveL1eDEYj19xwI5mZ2Z26AgS6H0STlpy4ewAgijS3tlJYVoGAgCSJNNY38MYrL9HcHPjd/fr1469//Wv7OdKOyPG+bfsO/nTXnfTMzeOKa67FrygBKBgfe9SXAHRUjQ9s7gjomo7b66GpuRW317fH47KazcTHRiOKEqAjihKC2DHJfl9+4O4OeNfXBH/CLpUBwq9v0ffwMYF/C6GSA6F9M9FkNBw1XVjCAOAoBAAAW7duZf369fvdEtBkMvH+++/z3nvvYTAYuPfeexk7diy6rrNs2TKefPJJvF4vk886m8FDhmK327HbbSg+D99+/TVnnjmFhIRAvZZBNiCJwkGduLxeH3a7hcG90kmKjULrAB4ORPAPgU4Ales3svmneWT17cuMxau497X/EB+bTG5Ov04AAEBR/Fxy+blkZ2fx0gtv0dTccky3A9x5Ind7PTS31FFUvJWLL7mUa2++Hdlowuv1IEkSqqribGmmuryMkqICmpubsNrsJCQmk5WdTa/cnmRnZWI1mw7L8YcBQNjCdmAAwPr169m6desxDwAgsMuFfmAV2zVNY9iwYaSkpBx1AMBkMvH999/zwgsvAJCRkcGTTz4ZSlv3eL0UlJThV1SMBiM/fPcNc376EYDuOT145JFHiIqM2KdrYTKZ2LZtG//85z8pLCwMPT567PGcff75xERGYrVYMJuMCLBHnyZUG9whivD7FWobGqlrbETVAmJgXQXE69eu5b3p0+jRM5fLrroGURJRVY3YaAfpyYmhkstWl4snnniS/E2bOGPqVAYOGoLVau0yzlH8fpqaGikvK6OwYAdFhQXU1dTskqV53HHHcckll9CzZ0/8fv9Bd9BFUaS1tZUHHniAoqIiACafdTZjjh/XCULouo7FZKT7HsoARFGkoamZ4vIqRFHAIMts2bKZ/0x7C1VVsVqt/P3RR+nTu/cRVfu/82/weL3cfffdVFVWcec99xLliMIgyWRnpLWDwYMLAQ4mAAj+RlEIxAQtTieNza04XS4UVdvrcZkMBkYMG0yk3Y4kSdTU1uLcDwX6w+z5AsJv7kYSBgBhALB/npeiMGfOHFpbW/drwRdFEY/Hw2OPPcb69euJjo7m7nv+wqBBAxEFgfXr1zNt2jTy8/OJiY2lb/8BZHbrjq5r7Ni6lRMnTiQyIhJN17BarCTGxWAxmw74oNd1Hb+iEh1pY3CvdGIcVlRF+/0p/12dE1mmtaaWNZ9+jlGAOmMk5z/6TwTRyKB+w3d5vd/vo2dud6678XK+mPEd8+ctxmQyh0c0ASLqU/14/T5aWxsoKtrCoEGDOefCizlx4sls37aVkoLtNNbV4vF6iY1LoGdeb/oP6E9aUqA11uGEp2EAELawHTgAsGHDBrZs2RIGAAfJVFVlyJAhpKenH5UZAG+++Saff/45AGPGjOHuu+8OpdvWNzZTWhkI+FRF5T/vvMWObdsAOPX0Sdx84w375HDLsszWrVv5xz/+QXl5ORAQjxt7/PFceNFFRNrtGGQZs8WC3K7NEEyX31eHPpge3NzqoqqmjjaPZ5cxLkoibU4nL/7j/zBbLFx/0y1Y7TZUVSM9OZHY6Ch0HVQdPps5kw/+8x8uufwKBgwejM/n221KsSAEAy8JXddwuZxUV1exbcsWflmxnNaWltBrHQ4H555/PhNOPImICDtKey/6g+ILtAvfvfjii8yaNQuAgYOGcN5FF7eLunV+fbf0VCLtXe/eh9pBVtUiiiIGg4EFc+fwzZeBsdOjRw8ef/zxUGeEI9XMZjNvvjWNzz79hKnnXcDIUWNwe9wkxMaQkhh/1AKA4Pj3+RSaW1tpdrpwtbnbO5btvQRA0zSsFgtXXnoxMdGOEDzesWPHUSVqeoj9zzAAOFYBAEBxcTErV67c7ywAg8FASUkJf//736mqqiIuLp5b77iDwQMHYDIYcLpcLFgwn6+//obt27cH3mM0IUsSffr3Y/KUqYhioKWRQZbonpGGdR/buOzrDaBpEBtlZXBeOnarKSDooh/YwL/TCqrrrPnkc1qraojvmcsVz77K6q2FDOo/Equl86Kkt//v2usuJSoqgpdemIbH60M6ivovH2zz+Lz4FD9NTbWUlxcQFRnJg4/8ncb6egwmE4IOY8aNp1+/vsQ4opDFI2PSCwOAsIUtDACOJgAwcOBAsrKyjqouAF21t7v00ku5+OKL8bWn0pdVVlPX2BQQ7auu4s1XX8bVXiN82513ctrJJ+91t1cURdra2njkkUc6pf3Lskx8fHxgXAoCVpuNlJQU0tPTSU9PJyUlBYfDgc1mQ5blQKq+tm+96n1+PxXVtTS3tLJz5GM0GHjv3XcoLSnmplvvwB4ZgQBkZ6RhtVjQ0dm0ZTv/ePYZRo8dx5jjj8ezn/XsoiggiRKCKFJWUsyP33/Hls2bOr2mX/8BXHjRhfTp3Xu/RRT3x4xGI9999x3//ve/AYhPSOS6G2/GFhmB1mFXWNM0kuLjSE6I2y0ACOhB1CNKIpIoMuPjj1m5PNBpYOLEk7n99tsOWxvE/fG98/Pzufvue8jIzOTaG29uT3OHbmmpRNitB7V2/GAAAEEQ8Pn9NDS10NzSgscX0LUQ9yOQ1TQNs8nElZdcRFxcLADbtm1j06ZNR0kGwIG5NiaTqR32aYf9dx8MACAAwr7+Ll0/JGUxRy0A0HWduXPn0tjYuN+LvslkYt26dTz11FM0NTURHR3DZVddxYjhw7FbzJjNZtxuN5s3bWLZ8uVs2rSJlpYWDEYDF19+FXGx8Xh8HgyyTFZaCmaT6YCoGgfVNJNjoxiUm4bJJKMq7Uq5ByP4bzfJaKBgwRIKl6yk+8CBvPz1Tzz/vy/Jye5NUnzaLmUAPp+XfgP6cNXVF/HF598zd/aCcBbATtbm9eD1eiivLKDN1cINN9/KuRdciLOlGavRwEknnXhETsJhABC2sIUBwNECAPr160dWVhYLFiygubn5qHCYJUmitraWe++9l9raWgRB4K9//SujR4/G7/cHWr6VlNHm8WIyGln1y0r+9/5/AYiKcvDIo4/So3v2XtXtg99z55130tJhJ3xvwU1kZCTx8fFkZmbSq1cvhg0bRkJCwj6BgMAGhkZhWQWtzrZQz3oAgyyzadNGVixZzPkXX4psMGAxm8jOSEOWJJpanUybNg2f18tZ55yHT/F3Khvp2H6sq2Bsl4BTlvF43PyyciVzfvoRZ2tr6LmExCRuvPlWBvbvg9Sh3fGBNFmWKSgo4P7778flciHLMldddwPdc3rgVzrrAETYbWSnp+42GCkur6ShqRlZlvB5vLz95muUlpQAcN1113H22WcfkeJ/XQXOjzzyCKtXr+bKa28gr3dvPF4vdpuVbmmpSKLAwQp7DgYAEEWRypo6KmpqkUTxN+1ga5qO0SBz+UUXkJSUCAQ2ONeuXfuHqKffl8DZZrMxdOhQmpqa2LZtG672dfJw/f4DDQBEUcTV5qam4dd4VdO0QEe7ndQVNF3DZrGQmpTwh8wkEATh9wMAgIqKCpYtW/abFn2z2cwvv/zCP/7xDxoaGrBYrZwxZSpjjj+eCJsVi8lEhN2GwWDA4/HgdDrx+XxYrVYkWcbv8yPJEgZZ/t2TUrDPpqbpZCXH0L9HCqIohCjxwQz+oT09r7GZ1Z98jqQqNFsdnPvIP5BkK/37DOvUCjCwEAcu3VXXXExqWhIvvTCN+rr6cEvADgPc6/Oyo3ATrc4mEhOT+PiTTxgyZAiffvIxkydPxuFwhAFA2ML2BwYAmzdvZtOmTWEAcBABQF5eHvHx8SxZsiQkwHWkm8FgYNWqVfz9739HURQcDgdPPfUU6enpqKqKu13xXdN0ZFnmy5mfsWThAgD69O3HAw8+iN1q2adgXNd1Pv30U3744Qd8Ph+qqqIoCooSEPLbFzcsKyuLM844g+OPPx6bzRZQ79/D+0RRpLSyirqGpp0U0cHv91NZXk56ZhaaphEX4yA9OQlN11n+y2q+//YbTpt8Jharpf07BAyS1J7mH/iQQJmCjqKp7eUKHfDATm0KRVFAlg2UlpTw43ffsDV/c+h4evftz+2330ZaSvJBaRUYzMB46KGH2BYs35h0BuNPPKkTANB1HaMs0z0rHaPBsMu5FQWRgtIymludGAwG6mpqeOOVl3A6W5Flmb/97W8MHjz4kAkc/h4zmUwsWLCQJ598gu49enDlNTcgiKBqOikJcSTGxhy0nc+DBQDKq2uoqWv4zfBR13VkSeSSC84jLTUAgUpLS1m9evUfHgAEr8mAAQPIzMwEwOl0smPHDsrKyvD7/YcFBBwMANDqamPewsX4fN72GNRCSlpaSNS9MxC007Nbxh8OAARFXg8IANB1nYULF1JTU7PfpQBBCLBp0yZefPHFkFDL8JGjGXfiicTHJyBJEkaDhNVsxmK2YDBIiO01PcFBub/CFx1fG3h/+7EYZTJTYumVlRBI/9AOfL3/nkwyGtj83U9UtHcDeOS9z3nvx7n0zRtKVGTMLr1J/X4fPXpmc90Nl7Nhw2b+++4nSJKEwB+fWO598pAoryyipGwHoijw8ssvc/3117Nw4UIaGxs544wzjtibc3cTbXDcdng+DADCFgYAYQBw2EzTNOLi4gCoq6s7atJlTSYTM2bM4M033wwEor17h2q4dV2juraB0soqJEnE6w7s9paVBnZ7z5x6NtdedeV+1ecDNDY24vP58Pl8tLW14fF4Qn9aW1upqqqiqKiIqqoqmpqaugwmBw0axFlnncXAgQMD2Yq7bYcsUFxeSWNzyy7XJFBx+KtoWHpyInHRDtq8PuYvXIQoSvTKy0USRCwmEwajjEGSEcVgq8GA8riuaaiahqIo+Hx+2rw+fH4/qqLiV/woqhZqnyYIAgaDAa/Hww/ffsOSRQtCxzNl6tlcecXlSKJ4wMd1sEf6q6++yjfffBMAOP0HcNEll4HArjoAu2kHKAgC24tLcbraMBmNbNy4gfenvx0a/8888wwJCQmBUtEj3jcSURSFhx/+Gxs2rOe8Cy9m2PCReLweZFmkW1oaNqv5oJQCHCwAECrP+B0AQBQFLjz7bLp1yzymAICqqqSlpTF48OBdzl9dXR07duygpqbmkJcFHAwA4PH5ufOOO6goD7R9TUvP4La77t5lXf4jawkESz0OCAAIDpKFCxf+5hvFaDRSU1PD22+/zfz58wGIiY1l1Nhx9Onbj6j2ndpAcASyKLUPiACdT4qPxWI273Fy6Rg8iaKIqgX6fBoNEjGRNpLjIkmItmM1G9E0FV0/dIF/CADIMg2lZaz7/BuSe/SkpsnJ5U+/TIPLF8gCaF9Md4YAU8+ZzPHjR/K/D2eyeMFyTOZwKQBA/ta1NDbXcfbUc/n0s49RFIU333yTSZMmhUjnkWB+RaGpqYnqqioKCgsZOmQIKSkp+/LWMAAIWxgAhAHAYXcodnbKj2TrShxu2LBhnHfeeQBERUWh6ALNTieiIFJaWsxbr74a6iJz+11/4qTx4/Zrxzr4nUKHvt47/1dVVdxuN62trVRWVlJWVsbmzZtZunQpHo+nk780fvx4zjvvPFJSUnaz6yxQVFZOc+vuVcwDJY8i2Rlp2CwWPF4vTc0tRDscmIwdMwl339O8YyeC4GeGoIDfj9frw+3x0ubx4PUFdhI9bjcf/Gc6O7YHduRNZjM33HwrJxw/FlE48HoARqORH3/8kX/9619Auw7ATbdgs9s6BbmappGcEE9SfGyn+yvYlWFHcSmu9pKQOT/9yA/fBoBCv379ePjhhzGZTEdNsGA0Glm58hf+9sjfcERFcd1NtxIdE4PXrxBlt5KVFsiAPdCJAEcyABAEOGfKmeT2yAGgrKyMVatW/aEBgKZpWK1WRo4cid1u3+3rqquryc/Pp7m5+ZCdj4MFAO65+26KiwKdWLpld+fGW+/4QwCAfV2Hg9f8gAEAgKVLl1JeXv6bsgAgUKulqioLFizg888/D4n/2ex2evXuQ5++/UlMTMRmsyEa5PZWH4Cuk5WagiOq63Y8wZ8oSRKaFhB1kCQRh81MUlwkibERRFrNgZ6hun7IUv53M6uBrrPu829oKC6l+8ABfDhnOQ9Oe5+c7D4kJaShqp2dDlVTsVrNXHvDZcTFxTLt9f9SWFCCwWg8ZqMCURRxe9pYv3EFkiTz8cefcMaZp7Nhwwbmz5/PjTfeeFh2qjQdPF4PDfUN1NbVUV9bS3FJMdXV1bS0187Gx8dz0UUXkZSUFAYAYQvb7wQAW7ZsYcOGDWEAELZO68POaeEGgyEUoFssFjKyujFk2DB65fVl6eKFzPjkfwDExcfz1wcepEf37IOy2xs8BlEUEUURv9/Pxo0b+eKLL1i2bFmnACojI4Mbb7yRgQMHdilGWFhaQYvT1UkDoPN6pGMzmcjOTAu1vxPba/F/j2sY8D+FXx3R9o5Kbq+HVqeLNq+PooICpk97i9aWZgCyc3rw57vvJj0l+YCP7aDw3YMPPojb7cZisXDdjbeQnJqK0uEaapqGIzKCrLSUXbJEFUVle3EJXr+CJAh8/OH7rF29CoAzzjiDG264YZ/LOY4UCCZLMi+/9irffv01ffsP4KJLLwcBFEUlMTaGlKSEA95W7kgGALquMeX00+nXtzfwx88A6Cr1vytraGigvLycqqqqTiAyDACOjGsYzMyQJKl9rlJCc/nuzpHdbj+wAKC5uZm5c+f+rjYSgiBgNBppbm5m7dq1rFixgoKCAurr69F1DYvVhs1ux2I2YzZbOOGEExh23DCMBnmXtPed6/oFASKsZhKi7STHRRIdYUWSRdB11CAF1g9tyn9XJsky1flb2fzDz4iiSHRWd659/k1WbS1gUL8RmEzWXfQAfD4fOT26cc31l1JbW8+0N96jtcX5m2HM0e/gSdTWVbJ1x3pGjxzH199+icMRyXvvvYfD4WDy5MkHP9gH2traqK9voLa2ltqaGopLSqitrqa5uQmnM3B94uLiSEtLIy8vj7y8PKKjo8MaAGELWxgAdAIAV91wEzk9emAyGP+QdYmHGgB4PB7+9re/sXnz5j0GjgOHDKW5qZGt7Qr+AwYP4Y477iAu2nFIroEgCMiyjNfrZfHixcycOZMdO34dV3Fxcdx5550MGTKkkwCdDhSWlu8iArizIxjjiCIzJemgq10HWysCKKpKq8vNd99+y0cfvBd6zQ033cSUM87Ya2eF/fapJImGhgbuu+8+KisrAbj4sivpP3AQfsXfGYiYTWRnpiMJvwrhiaKA0+VmR0kZoijQ5mpj2uuvUlVZAcAtt9zCpEmTDvhxH2yTJYmGxiYefuRvFBUUcNLJp3DyqZPwK4GWj4lxsSTFxyAgHLDxcaQCAAC/X2HSyRMYOmQQACUlJaxZs+YPCwAURSE9Pb3L1H9VVamqqqKsrIy6ujp8Pl8owAwDgCPDNE1DkiSSkpJIS0sjJiYGSZJoaWlh+/btVFRUdJp3O74vKirqwAIAgFWrVlFQUIDBYPjdF95gMKBpGi6XC6fTSXNzM8XFxRQVFYW6DkyYMIH+/fvv0ks2WN8mCAIWs4G4KBvJCVHERtowGeVAOz9d65DepO+xxZ+uafveOuL3z2zoip91n39DY1kl2QMG8MOqjdzyzzeIjU4kt0e/9uPufOm8Xg+jxhzHeRdMYfOmrbw3/RO8fh+ydOzFhoIosmXrWuoba3j80ad44KH7UFWVF198kYkTJ9K3b98D/p1tbg91dbVUVVdTWlpGaWkJdbV1OFtbcbvbMJvNOBwOYmJiQu2ekpKSiIuL65R6FRYBDFvYjm0AYJANbNmymXfeeC302LU33cKAAQOQRfEPq0x8KE2SJFasWMGHH35IQ0NDyO/w+/00NTXt9n1TzjmXiy64AKv50KZ7i6KILMvU19fzxRdfMHPmzFAGQkxMDHfddRdDhw4NQYB9BQDpSYnExUYflN8SdD6D2QxASANBlmU8Xi/PPfccq1cFdtIHDBjAQw89hNFoPKDH01XLx5NPm8RJE0/G16F8Qtd1DLJM98w0TEZjyKcURZGGphaKyysxGmQqKyt467VXaHO5MBqNPPbYY/Tt2/eoEADcZa4yGlm3fgNPPfUkzU1NnDH1bMYcPx6/34eq6UTZ7STFx2K1mA9INsCRDQD8nHLSCYw4bhjwx24DGFT9HzlyJDab7Vc/tq2NiooKysvLaWpqCu0kHw4IEgYAe79+AwcOJC4uDkVR2Lx5M4sXL6ampoZRo0aRnJzcCRZ3hDsxMTEHHgC4XC7mzJmDoigHbMB0TIkLCv4FF76OE9Lu6vrjHTZsFmMoE2CXnxz8t6cJQZICYXVwh13T0QBdVQ8dAKA9C2BTPptnzUEQBBJ65HL/tI/5atEy+uQOxuGI20UQUEdHVRQmn3kKE04+nlW/rOeD/36GoqrIR0Ff5gPpdPgVH6vXLsFgNDLrxx8ZPWYUzc3NvPHGG1xyySX7Wl+/W1M1jfq6empqaygsLKKgICCS0tTUhOL3ExUVRVxcLImJSWRmZpKcnExMTAxRUVEYD2xpRhgAhC0MAPYAALZt28a6deuOIgCgY7Pa2bRxPW+99kro0dtuv5PTTj0Zj8cTckg6Blhh+20QwOl00tbW1iFQ9LN4yRJ+/PFHKivKO71elg3c/8CDHDd0yC6leIfymAVB4KuvvmLatGkhHQKHw8Gf/vQnhg4dis/n2ycAAJCdkUqEzfabndyOqacd12Bd11EUBbfbTUNDA2VlZRQVFVFcXExDQwOSJBEZGUljYyObN28OBRr33XdfqBXjgfQJJEnitdde4+uvvwZg8NBhnHvBRZ02ggK94yE7Iw27xRLa9RZFkfqGJkoqqzAZjWzZks9/pr2Fqiq/SQBwZ5+2o1OvadoBT7vfm8mygdnz5vPqy//G3dbG6WecyfHjT0TTNfx+BaNBJibaQZwjCkN7h4TfenxHOgA4adwYxowaBQRayG7fvn2/W5wf6RbcZBo8eDCp7R0Pgmn+lZWVtLW1HRHrShgA7Pn6jR49mpiYGN566y3eeustNm/ejNPpBCA+Pp5nn32WjIwMWju0Xg0CgLi4uAMPAII3TbDv8sEM8oILRqe6fruZpNjOdf2aFqiRCDpLgkCgXKC9nQ2+JhBEtBYnrvp60DUkswWTxYJglEGUEY0GtHYgoOvtyrYHc4Ju1wLY8Pk31BWXktGvH4VV9Vz7/Ju4PDp5PfsR+AGdj0HTNQRB5IKLpjB8xBBWrljNR+9/jl/xHzOZAKIo0dLaxPpNyznppIl8/fVXmM0mysrK+PDDD7nxxhuJiIjYr890ulzU1tZSXlbGjh07KC0ro6a6BpfLidVqJTU1lfT0NLp3zyExMZHY2FgiIyMP6s0fBgBhC9vRBQB69OwVaj/U9b0N0VERpKck0draSmlJSUixt1+//iQmBnb+jUYjJpOJ5uZmGhsbcblc7YJuUnhE/AYnU9hJxM7rV6ivq2Pu3Ll8++03tDQH6tRTUlN55umncTgch1XtPRh0z5o1i9deey1Ul+twOHjooYfIy8vD6/PtEQDouo7JINM9KwODLO9XYNZxV7+pqYny8nIaGxtxOp243e5QZ4OOtcPN7edwb3baaadx8803hwLhA2Umk4mZM2fyxhtvAJCekclV192AyWzaRe2+W3oqkfZfoYgoilTX1VNRXYvJaGTN6lV89N5/AEhLS+Opp54iKiqqy0ChqywIj8dDS0sL5eXllJaWoigKSUlJpKamEh0djc1mQ26/JqqqHvBzsct4EgR0QeDHn2YzfdpbuFxORo4Zy8mnnIbVZsPr96NrGmaTibjoKKIdkciS/JsCoyMdAIwdOZwTx48DYNmyZVRWVv7h5lVN08jJySE3N5e6ujpKSkqoqakJtfs7UoByGADs/h6SJInhI0bw4gsv8MQTT3TthxiNnHjiiVx66aVERkaGfkdwvjkoAMDr9TJ79mw8Hs8BG0jBw+xIHjVNQzYYOtf1R1qRpEBdv66DIHYI9NUAzWysKaOx2UVjq5NWp5sWlxtnmx9nQxN+jwdRAJtRIsJkwGKQsEoSDpuR2DgHjoQ4bNExGGxWMMjtGQVaSDjwQJokyzQUFLH+mx/QNY3M3n34cN5KHntvBtmZPYmLTkDVdnVCFFXFaDBwwcVTGDJsIGtXb+STjz6npcV5oHefj1gA0NhUy6Ytq7n33vt4+umnANi6dSvffPMNt956615LVJqamqiurmHbtq1s3baN6qoq6uvrUVUVu91OfHw86Wlp9MzNJScnEPT/XlNVFY/HQ1tbGw6Ho8tjdLvdNDU1kZycHAYAYQvbUQQArrr+RsYffzwGSdxjPa3FZEKWpdCuZUpKCn369NmtE+rz+aitraWwsJC6urowBDgAvkbQCZZkmdk/z+aFF1/A7/Nx+eWXc/7556Gq2mEXewu21Vu4cCEvvvhiaOdn6NCh3H///RgMBnYUl+1WBDAAAAx0z0zHYJD3uZ1hcHxVVlaycOFCFi5cSHl5+QETBwuc4/P3q8PCPt2TRiMrVqzg0UcfRVVVIqOiuP7m24iJjUHt4L/puk639FSiOrQCFEWRkooq6hubMJlMLF20kM8/+wSAnJwcHnvsMWw7ZVFIkoQsyyiKgsvlor6+npKSEoqKiigoKKCkpISGhoZQpoMgCERFRZGQkEBmZiYZGRlkZGSQnp5OfHx8SOzrYAZbiqoxb9FiPvjPu9TWVJPZLZvTJp1Bt+xsNE3D315qa7NYSIiLISrCvt/3wcECAMHr83sBwIihQzhl4kn4fD4WLFiA0+n8Q2VY6bqOxWIhISGBpqYmmpubQyJyR5rWQRgA7Dk+nPXTz7z4r3/u9bUXXnghl1xySQgkKopCamrqwQEA0Lnuck8DsWNgv7vJISiCE5xQgwuz3WohPd5GjN2IyWRol55t71Grg9vjo7nVSUNTC1u2bqe1zYvX68OvBoCA0WRGNhiRpMBnG4wGDAYjoiSiqRp+vw+/x4Pi9aA4W/C1NmPU/dgNMtF2M0kJUaSmpxKZEIfBbgVRaqe1u8kOEIT2Dft9P+WiJLLp+5+p2rQFk8lAZGZ3/vTqhyzcuIUBvYdgMpm7HJyqqiLLMmedfTojRw+lqKiEL2d+z/ZthRhNRkThj5syKokStfWVbNm+nldffZUbb7wRgPUbNjD755+57bbbdplMnE4nlZWVbN++nfwtWygrLaW+vh5ZlklISCA1NZWcnBwyMzOJiYkhNjb2Nznafr+flpYWmpqaaGhooL6+nrq6OlpaWmhra8Pr9WIymbj66quJiYnpcnILTmTtVg18GwYAYTuGAcDpwG4J3I4dO1izZs1hBwBXXncDk089BZPR0MU6pyMIIiajEa19XfT7/WiaxogRI4iPj98nx2f9+vUUFhaGIcCBckCFgPjZmjVr8Hg8DB48GLPZfMQ4hIIgYDab+frrr3nppZdC8OKee+5h/PjxbC0ooqmltcuxrus6Rlmme1Y6RoNhr4FZsEtAYWEhc+fOZcGCBdTV1e3TcRoMBqKjo0lLSyM7O5vo6GggsFmkKAoejwe3201aWhonnHACdrt9v87xzi0Vd/YvIdBlqry8nHvvvZempiZkWebKa68np0dP/B1gg6bpZKYmE+OICGUGiKJIQUkZza1OTCYT8+b8zHdffQkEdAsefPBBTCZTKDtPlmWqqqpYu3Yt+fn5FBYWUlVVRUtLy/75MpJEbGwsJ554IlOnTsVmsx1wMLJzgORXVNas38jMzz5hw7q1SJLEqLHHM3LUGGLj49FUFX97iW9KQhzxMdH7JRB4sABAaUUVdQcAABw3ZBCnnTwRl8vFvHnzDmg585FiwZajO/mSR978GwYAuz0vTS2t/P3vj7Jj25a9vj4nJ4cnnngCi8WC1t6iNTMz8+ABAEVRmD17Ns3trc26osjBgL7j34OpjTv/MRgMyLIc+u+vDo4Kfiea30+rs43G5lZq6xvYUVCMT1EBkcioSOw2O5FRkURERGKzWbFarBiNhn0qU9ABtzuQslVfV0tFcTE1ZaW01lZhQCPGbiEpxkpWcjxJWalYYuPAIKOr6u/ODBBlmbbaOlbP+Apfm5v0Pn3YXFLFrS++Q4tHoU/uQERR2qUrAATaAwqCwEkTjuekk4/H5/Ux+6cFLFqwHK/X+4fNBpBEicqaMnYUbuL999/n4osvBmDNmjUsWLCA2267DU3TqKqqYseOHYEFuqiImupqVFUlOjqarKwsevXqRU5ODsnJyVgslv06BpfLRUtLC83NzdTV1VFVVUVNTQ0tLS34fD5EUcRsNhMZGYnD4SAuLg6Hw0F0dDR2u53Y2Nh9nfD8QEM7+Qpb2I4104EYwHA0AIDTTzkZs9Gwi0NhMBjYunUrb7/9duixq666itzcXOLi4khJSWkvPQuUsgXL2oLvtdlsoZKjBQsW0NTUFNYFOIDOsizLofZKR6Iz6PP5ePTRR1m3bh0AvXv35pFHHqGuqZna+sbdAgCz0UhOVnoouN/d7zcYDJSWljJz5kwWLlwYyjYIjXejkbi4OCwWC1arNbSu2e12HA4HGRkZpKSkEBkZidls3uV4grvbwcBkT6n0kiSFWhUGHXVN01BVtVO6vNlsDrWWDu5wulwuHnzwwZAw1pRzzmPk6DGd9AY0TSMtKYH42JhOWhs7SkppdbZhNpmY9cN3/PTD9wCMHTuWu+++O3Bf6jpOZxtLlixm5ozPqKio2OO1i4yMJCEhISTu2NjYuNsAf8SIEVx77bWkpKQc1G4DgUwAldKKKubMmcPsWT/S0tyE3W5n2IhRDBw0mITERARRRASy0lIwmYz7HNgfLABQWVNLVe3vKwFQFJXeud2ZMnkSNTW1rFy5MjyPhgHAETfnS5LEhs1bePLxx0JtVPdkmZmZPPXUUyGwqigK3bt3P3gAAAI9NIuLi7FarZ0Ce7PZHArkOwb1++X1tacx1NbWUd8uMKMofmTZQEJ8PA5HFHa7HavV+pt2QwIb9ToIQpeRlaoo1NVUU7x1Czu2bKG2qhJRU4iPspEZYyMnM4mk7t2QHZHoiGiqukfNAD0w4n6d3DoMdslooHjJCrYvWoYgS2Tl9WZJfiG3/OsNJIONXj367xYCaLqG6lcYctxATp88gbi4GPLztzPr+zls31qIIArIsuEPNWlIokRpRQHFpdv54osvOPPMMwFYvXo13333HYMHD2bLli0UFRXR0tKCJEkkJCSQm5tL79696datW5e777ubbIJBfkVFBaWlpdTU1NDc3IzX6w0F+UHl/8TERGJiYnA4HNhstvDiErawHWQ7GgCAyWRi5cqVPPTQQ6HHHn/8cfr160dpSQlVtXW4vX5MRhNRkTZiYx1ERkRilI3oBOoBo6KiyMzMxOPxsHnz5j9s66qwdTHejEaWLl3Kk08+GdqxvOP22+k3cDBlVdVdjnVN04iw2+iekbbboCzYjWn16tW8+uqrlJaWdno+OjqaMWPGMHr0aFJSUkI+ndFoDN1vAWD1q7jd7pzpoK7Tzo8F9Q5UVaWhoYGCggKKiorweDydyuY8Hg9erxev14uu6yQkJDBq1KhQ1oaqqui6zvPPP8+8efMCwfu4E5h05pSdMgA0khPiSIqPa4cSgayAHcWltHm8GA0GvvnqSxbMnQ3A5MmTufnmm2lsaWXDps1899VXrFn9yy6/z2AwEBMTQ3p6OtnZ2XTr1o309PQQ7G9tbaWyspKysrJQqUBpaWkn2JKTk8Mtt9xCr169AkKPB8l9F9pbIDa3utiydRsLF8xj5fJltLlcyAYDub16kZvXh6zsbvTNy9uvlpgHDwDUUVVb97t8Kk3TSYqPpXtWBj6fD6/XG55HwwDgCAQAMkuWr+Afzz2Ddx9Kr/r06cNjjz0WAr2KopCbm3twAcCBto6H6na7cblclJaWEhUVRUREBFar9XcHVKHAfx8nHgD8fuqrKtmxeRNb8vOpqa0hwiiRERNBTmIUaTlZRKQmIZrMaKqK3pV4kCjuFgAE9AtU1n35HfXFpYgGmezefZmxZBV/eXU6UZGx5Ob0Q5aNu3QGCPwmHb/PT2JSAuNPHEX/gX0wGGRW/7KehfOXUV5WgabpSLKEJB79qaOSKFFYspWKqmJ++uln8vJ6sX79en755ReKi4tDAhpJSUn07NmTvn37kpWV1akV3+7M6/VSX19PaWkphYWFlJWVUV9fj9vtxmq1EhcXR3Jyckj5PzY2loiIiPAiErawHSYrLCxk1apVRzwAWLVqFQ888EDosSeffJKePXuybVs+y35pIn+zEV13I4qt2O0uUlIgLy+TAf0GEmG34/V6EUURu91OW1sbR9HSHrYD4CgrisLTTz/N8uXLAeiRk8NNt91Om9fXpUujaRqOyAi6paV0mcIdDN5//PFHpk+f3klJOiUlhRNOOIExY8aQnp4e+v6OvtrvGX/BrAOv10ttbS1btmxh/fr1bNy4kcrKyn12yEVR5LjjjuPMM8+kX79+WCwW3nnnHd5//30AcnvlcckVVyFKYugcaZpGYlwMKQnxaO0p/T6fnx3FpfhVFUkS+ezj//HL8mUAXHTRRZx+xhR+nDWLb7/+kvra2tD322w2hg8fHiofTElJISoqCpPJ1AmMdIQdoiiiqiput5vKykref/99li1bFvrM+Ph4brvtNoYNGxYqEzooEKDdD/X5FRqam9m+vYD169aydvUqKsrL2gFQDPfdfz99+/TG5/N1gjjBbI6dN+COdACQkhhHfIyjff8v7LeFAcCRmQGwdOUqnn/2Gdzutr2+/rjjjuOhhx7qpAHQu3fvwwsA9tbvfOeA/3DBhn2CAO2mul2Ub93CutVr2F5UhIRKVpSZ7vGRJKUlE52dhTkqUFvWCQTsCQDQXgpQX8+aGV/jaXUiGWTSe/XmrR/m8ez7M4iwR9Gzez8sFutu1YkVVUHXdNLSUxg99jiGDO2P36+yJX8ba1dvoqy0nPr6RgSBozIrIJAiKCIKAlu2r6euoYrTTjudXr1yQ7WGkZGR9O/fn/79+5Odnd2p/2lX5vF4qKuro7i4mO3bt1NeXh6qe4yNjSUhIYHu3buTkZFBfHw8UVFR4Vk7bGE7gqy4uJiVK1cecgDw73/+H2WlJaHHLr/mOiafduo+A4AnnniCYcOGUVlTwfyFfjZuSkMWdTRdxedz4fUWI+iryUhv48QTxpHbsxeKoqCqajiz6Bg0o9HIqlWrePzxx9sF+QSuuf56euT2xq/4u3SUo6MiyErdFQBIkoTf7+eDDz5gxowZofEqyzJTp05l0qRJIWG64M76gXRu/X4/S5cuZeHCheTn59PQ0PC7PtNsNjN+/HjOPfdcCgsLefLJJ9F1nbj4eK676RbskZGhck1N00iIjSE1MQAARFGgrc3D9pJA9oOmanzw33fJ37QRgJNPPRW/orFg7uxOEKRv375cdtll9O3bt71b1d6zIDr7MoHSk5aWFj744AO++uqr0Hm22WxcffXVnHzyyQdfHLBdW6vF5aK6roHW1lYaG+pZvWoV8+fO5k9/+jMTTjoxtFve0a/vysc/WACgpr6e8qra3zX36bpOenIisfuR0RC2MAA4HOdlW1EJzz/7DOVlpXt9/ahRo3jggQdQ2kU8FUVhwIABRxYA2PlQDnXQv9vjDBzcPkMAAPw+aouLWLtyJRu35CPpKrkOM2kOGzGpCcTl9sDqcKApCrqm7RUAQKAUoG7bDjZ+9xOKX0GWJdJ65fHPz37k1S++xWS20rN7X6IiovfYo1hR/CAI9OjRjbHjRtEztzsGo0xNdR11dfVs31rI/HlLjppsgAA5l1AUP03N9dTWV9LYWIema4wePZqJEyeSnp5Onz59yMnJITY2do9jsra2NhTwB3sWG41GYmNjSU1NpWfPniQmJhIXF7fXbgJhC1vYjj0AYJBlvpz5GZUdaoBPmXwGJ4wdg8Vk3GcAMHToUGrqqli01M+atQlIgoaOjiBICIIBXVfR2YCoz2fIoGxOGD8hFGyE7diyYPD11FNPhXaMJ55yKhNOOQ2fv2sAEOuIIiMlqRMAkCQJp9PJ66+/zty5c0OPR0VFcdVVVzFhwoR2P0I54MdvMBhoaGhg+vTp/PTTT12+LiIigqysLJKTk0PlpTvrSCmKwooVK1i/fn2n98bFxdG/f3+WLl1KW1sbFouFa268mdTUNJT2jZMAAIgmNTGhHQCItDhdFJSUIUoifq+X6W+9SXFRIYIgYLFaaXO5fr33DQamTJnC2WefjcPhwO/3d/Jtg62o2//VZdlDR+9TaheX/u7775k+fXrILxZFkalTp3LRRRdhsVhCzv1BGVvtPml9QyMVtXWYjCbmzZ3NV5/P4Oabb2XypNP3WZfgYAGA5pZWCssq9u6b78HPFwXISk0JtIAMZ1CFAcCRLALY6mLmF18w8+OP9vr644YP595770XuUAIwePDgww8AjsSAf19hQFeTjL7zc6pC9batLFu8iC1FhSTZjORGmIi0GIlKSya5Xx4mqzVQGqDrIQgg7GawS0YDZavWsnXeInTAIInEZ/fkhZmzePPr70GQ6Nm9NwlxyXvsHasDit+HbDCQk9ONIcMG0KNnNlGOCOpqG3ntlek01jcd0WrSgiC2CyB5qW+sprqmHKfrV5XdESNH8vhjjzFw4MA9Bv2NjY2UlpayZcsWCgsLqa+vx2AwkJiYSFZWFjk5OSQlJYWUi8MWtrAdPVZSUsKKFSsOKQAIQgChQ7cVn9+3S3/xvQGAwYMHo6geNm+2M3d+OoKooigePJ4GFMWJLggIggmjoQlX60z69rZw5hlTwxDgDxDMd/UnuIu8u2trMpn473//ywcffADAkKFDOef8i9DQd9nDCO10JyV0SkPXdZ2XX36ZWbNmhV6b070711x7LQMGDNgloD2Qwf+mTZuYNm0amzdv7vR8bGwsvXr1YuDAgeTl5ZGYmIjZbEaSpF20A4Lnqrm5mUWLFvHll19SVFS0iwOtaRoCcOFlVzBg4OBQloSmacTHRpPWAQA0NrdQVFaJLIu4XW28+dorVFdV7vI7unXrxsUXX8yIESMC7l87VAgeU6C7h4LH58Xj9eHzK6HMzEAAGhA5NBkCIENqL8OQJAmL2cTy5ct54/XXqelQZjB27FiuuOIKEhMTD2o2QLAUoqCkFE2H+fPm8N1XX3L9DTcw9ayz8Hq9hw0ABD+3oqaOhqbmwHXbTwig6zoGWSI7PQ2z2RQuoQoDgCMWAATXgm1FpXz0wXusWrF8j6+fcMppnDX1bNKS4kPwdvjw4YcHABzO1P7DBg68HravWcWc+fNxu1oYmhJDpKYg20wk5XQjIbdHqP3g3kySZYqXrWT74sBFNxhkEnJ68sHPS/nnp1/R5nGTnJhBRlo2BoNpj9kAOjqK348giiQmxDNs+CDGjh/JO299yOaN+RgMR16ngGCav8fnprauipractyeQB2MgMjJJ5/Cfff/heHDh3ep3q/rOpWVleTn57Np0yZKS0vx+XyhdP6+ffuSkpKCw+EIz8BhC9uRMod2aBW7P2mepaWlLF++/JADgK4ck+6Z6fsPABQ3BQUO5szvQaBdoICuKbi99bS1VaNqPsCILPtxtnzMyOFRnHrK6bstBQvbkRfsB4Xugo6dz+cLidq5XC7q6urwer0kJSWRmpoaaue0c/q90Wjkyy+/5LXXXgOge04Ol199LZIsdwkAUhLiSYyP7dRRIj8/n/vvvz+0o5vXpy/XXncdvXN7HhThuWDd++zZs5k+fXqndP8BAwYwceJEcnNzSUhIwGg0dlL639OxiKKILMvU1tby008/8e2331JfX7/L60465VRO7pAlsTMYEUWR2voGyqpqMBhkmhoaee3lF2lpbu50DU899VQuvPBC4uPjQ5AkGKT6/Qout5tWl4u2Njc+RUFVdfbYEloQQkGsIIAsydjtdipKS/j4fx+xY/u20O9PTExkwoQJnHHGGVgsloMSvAqCgNfno6CkDF2Hn378np9//IFrr7uOc84++7ADgIBwoU5rq4uaxiZcrrYuX7en47KYTGRnpCLLchgAhAHAEQsAaIeFTreH7QVFzJs3l9UrV9BQ37kta0RkJH369WfciSfRLTOD5Pi4ECQcMWLEoQUAx2Lgv7O5G+qY+9NPbNiwjkGJDtIjzbhdbUTGOug2fBAWhwN1b6l17US4dMUvbFuyAl3VkA0S6bl5LN9SxBPvz2RTUTFms4XM9B7ERieEhGX2ZF6vh7i4WG676zo2bMjn04++wGg0HVGOkiCIeLxt1NRWUFNbgdcXUMCURJnx40/ixhtv5IwzT8dk2hVc1NTUsGHDBtauXUtpaSmSJJGRkUHfvn3Jzc0lKSkpXDsbtrAdYcF+1/PAvu/u/BEAQFFxJD/PzUHXaE8fDsyFPn8rrc5iFMWDIBjR9TY8be9xwfmj6JPX56D2DA/b73dug23qKioq2L59O9XV1TQ1NVFTU0NdXR2tra243W7a2tpQVZWIiAhycnIYNmwYAwYMICUlpVNQbDAYWLBgAU8//TS6rpOUlMS1N92CxWoN9bTvOB7TkxKJi40OjUej0ch/33uPD9szCBKTkrnmhpvI69mDqAjbAXeEZVnG4/EwY8YMPv7449B4FUWRM888k0svvZTIyEj8fv9u/BedX9Po9S7FDoNtA0tLS/n222+ZNWtWJ/9z2PBRnHPBBaFWgF0BgPKqGmrqGzAZjRQXF/L266+FAl6bzcYVV17JqaecEhJDFAUBDR13m4cmp4vWVifedsG+/Z2/Os57kiiiaTrr1q7iq5kzaGvrLAD28MMPM3z48E5tDQ+k/6VqGgUlZfj8fr77+isWzJ3DPX+5lxNPGH/YAcCv95WAomg0NDdRU9+Ioqj7dL41TScqwk5WWnJ4cgoDgCMOAHSV1SeIAh6Pl7rGFsorKiguLqKxoQFN04jq0H7VYbcTFWVHEsRQVtNxxx13aABA8CuO1aC/ixPC2pUrmfXDd/SONJATG4GzuQWT1Uz34wbiSEvdKwQQBQHJZKRyw2a2zV+M1+VGkAQy83pT72zjta9+5r8/zEbTdBxRMaQkZeKIikUUpXZ6rnWxlAaI+rXXX4ojOopXXpxGm9uDKIhHwOCX8Hjd1NZVUF1bgdcbHEsCJ4ybwM0338TkM0/HbO4MLDweD/n5+axcuZItW7agqiqZmZmhVMKEhITweAxb2A5zoN+VY9jRafs9asxlZWUsW7bsqAYAJaUR/DS7B1oIAATPi4jf30ZzayGa5kEQzLhdm0hPX8Fll5yHLIV3so4k69jH3ul0smXLFhYsWMAvv/zS5e70niwqKop+/foxdOhQ+vXrR0JCAiaTiQ0bNvDAAw/gdrtxOBxcd/OtRMfEoO6UXahpOhkpicRGR6FpAafQ6/Px8MMPs3nTJgDGjDuB8y64kPSkeKQOSvkHwgwGA5WVlbz77rssWLAg9HhERATnX3ABE08+GUVR8Xq9qJoWOv5gxoQggCSIyAYZo8GA0WhoT5kPVGnuPO6Du7r5+fl89dVXLFy4EE3TGDh4KOdffEkIMAS6AMSSkhgfAACCQEFpOc2tTkxGI/Pm/Mys778LiApHRXHnnXcyasQIfMHSCF3H2eamoamZVpcLvxJoJfjbgv6A7yOJIi3NzWzdks/qVb9QUlyEr4uA+4EHHmDUqFEHBQAEg5DSymqaWlv5asYM1q1ZxaOPPU5ebs9OrRQPJwAIYiFRFHG1tVFZU4ezzb3XkoBQ+8e42HD9fxgAHDEAILhmBDVLdi7tDsBG8Pn9eL1+vD4fOjoG2YDZZMBkMAbmbk1Db7//ZFk+uCUA4d3+vduOHTv4asZn5Fqge4wNZ3MLstFAzpB+xOR0Q/X5d1kNJEkCUUBXVTytLrytrVRtzKd663YkABGSuudiNMjM27CF5z/5mnXbiwCw26JIjE/BERWL2WwJXaeO18rv8zFy7HGce/4ZvPPmh2xYv+mwlgEEb/rq2nLKK4txu38V2xkxfDS333Y7U6aegdXaOdW/pKSEzZs3s3z5cqqrq0lISGDQoEEMHjyY1NTU8OALW9gOQ5C/Owewo2r0gc7CKS8vZ+nSpUcvAPC7KauwM+vnHqiqwM5+rCBIeLwNtLQWtX+PgN/7OddfexzJSanhUoAjIOgPKroHd/tXrlzJ4sWLyc/P3+P1EUQRk8mE2WwGoLmpqcv7JyEhgSFDhnDaaacRGRnJn//8Z+rr6zGbTVx13Y1kZGaFRO46AYDkBGJjHGiajixJVFRVc99999LQDiPOu+gSpk45E7vVckCdYEmSKC4u5l//+hfbt28PPR4XH8/Uc8+nb/8B+Lxe/IqCrmuomh4QS971DLWnx4sYDUasVgsRNitWixmDJIUc3o7XQpZlNE1j1qxZvPHGGySlpHD5VddiMpvQtEB6bFJ8HMkJceiahgbsKCrF7fPibfPwn+lvUVJUhCRJ3HzLbUw6/dR2BXxwu73UNjbR1NKCqv623X5BCLQyDmZt1tbWsHH9etavXd1JVDRojuhoHFFRDBo0iPPOOw+73X7QAhZRFKmuq6e2oYlPP/qQhvo6Hnr4YeJjY/b5Ow8FAOi4liiqSmW7NsDe3peZkoQjKjKsnxIGAEcEAAhqo8yZM4fPP/+cSy+9lKFDhyIIAoqidDouMUAZO2OwdhCq7/S7zGbzwQEA4cB//2x7QQHffvE5/SIEUi1GnC3tEOC4AcR0y0T3KwjtQb/q8dJaW0dLRRWuygrcDU1EJachCAIeRaPJ7cbrVzGYTciyjCxLVNU38dY3PzN7+Sq8Xi+6pmMymbHZooiKjCbWkdBeHxi4bqqmEu2I4ubbr6GkuIz/vPPRYWkJGKT8bW1OyquKqa4pDz3Xp09/7rzjDi686ALsdlungT1//nxef/113G432dnZ5OTkMGrUKHJzc7vUAwhb2MJ24Of/3S0re9vVD6bchgFAZwBQXmlj1s89URQRQej63Da3FuL1NiEIJlytqzl7isCQIf3x+8NlAIfLeRPFwK55U0szO7ZtZ9GihaxevbrL3f6IyCiSkpKIiY0jIjISm91OZGQkUY4orFY76DoVFeXkb9rEju1baeyiNV5sbCwXX3wx3377LTt27EAQ4OLLrqDfgEG77NBquk56UgJxMdGh+66guJR/PPcspSXFAEw99zyuuuLywO7RAQzcdF3n+eefZ/78+Z2ei46JJT0jgyhHNNExMcTGxhITE0tEZCRmszlQv6pru5QzhJzc9qDPYjYRExWJIzICWZZ2eb0oihgMBp588kmWr1jBzbffSUJCIkp7KUVyfBxJCYF6Wb+isKMoIHy3aeN6PvjPdFRV5cQJJ3PbrbcgiQKqqlDX2ExdQyM+v4IgiOxP3C+KQqjrktfrpaG+nrKyUnZs38qObdtobWnZ5T1pGRn0HziIvn0H0Ds3h2hHVEhD4mAGZPUNjVTVNfDZJ/8jIiKS66+7FpvFfMQBgI5ERdd1auoaqKlv6LI1oabrWE0muqWnYjCEs6bCAODIAABGo5F169fz6N//js/nQxAERo4cyamnnkpeXl4oIyDYAWRP47ajmKzdbmfUqFEHDgCEA//fbhs2bmLOj98xLNZEtCTgamnBYDLQY+QQ7HExtNbU0VpSSmt9Mz63B59fpbiklDK3j4o2PyvWb6KmsYlmpwuPomIwGRFFCb+ioPj96LqG2x1Io+s8IESSE9LIzOjR6XG/z8fks05h1Ohh/Ptf06iqrEaW5UPnNAkifsVPeWUxVTWlgbaFQFZmN2699VauvuZqoqMdofe0tLTw3Xff8corrzB//nwSExN5+umnOfXUU0lKSjoqg6jwrl3YjqZAf+fuJ781fX93ACCYBvdbrKKigiVLlhy1AMDvd1NZaePHPQCAgDZKEy2thSBIeNqq6dtrHeeddxKKoh2W8RF0tH9P+cbRHPyrus7m/K2sWvULq3/5hcLCgl12sQVRJCMzi779+tMjNxdHdDQGg/HX3ZxAVEtwD0cURDRdo6mhkaKiQvI3bqCwYAetra2hz4yMjMRisVBdXQ3ApDOmMPaEE3dJC/8VADhAB5fHQ3FZJTM++ZjlSxcDMPb4cdx9959hp+sptqvT7+3aBoN9VVVDa1qwTv4f//gHixYt2uP7JUnCarUSn5hE95we5PTsQUJCUgjmB4FAYLx1vNd0BAGsFjNx0Q4ckRG7dAswmUysWbOGhx56mMuuuprcXnn423fVkhPiSIqPA6DV5aKwtBxRFPn4ww9Y88tKEpOSefSxx0lPScLV1kZ5dR3NTmegXd5+jHdBAEmS8bjdlJeXUlhQQFFBAVUV5bg6tBYMmtlsZtCgQYwZO5b0zCwQJMxmIwkx0Z1+n76HTlW/GwA0NVFeVUt1ZQVmi4VB/ftht5p3gSxHDADo8Nq6hkYqa+vax8evWWeCIJCWlECsIyqc/v8b5/uDMc8fywBAkkQKikp45umniLDbueWWW5gzZw4zZ84EIC8vj+HDh5OXl0dKSgoREREYjcbdXgdFUWhpaaGqqora2lpSU1N/PwAIB/4HxpYuX8Evi+cyKiECq67ibocARoOI0+Wj3u3DpUNFq4cGj48mjx8NAV3TKS4txev1EhPtIDYmloioSFQkvH4FUZIwGoyIYsChEEUBj9vNyuXLWb50CfFxyWRl9EDg10GjqArx8XHcduc1LFu6ii9nfo/JdHDFAIMCf6qq0NBUR2VVMa3OQMpWdHQ0t9xyK7feeguJiYmh99TV1fHBBx/w8ssvs3XrVpKTk7nzzju55JJLjuo0f13XcTqd4ZsibEfMeOxqZ3/nYP9AOAC7E8kym80YDL8tE6myspLFixcf1QCgqtrKD7Ny95ABIKDrCo3N21BVHx53M9kZK7nttik0NTkPmQMTVBg2GAyYTKaQeNuxtqMmSRJz5s7lrbem0dLctMvz0TEx9Ovfn4GDh5CZ2Q2bzRpq7xcMlv1+Bb8aVIsnVEceqAsXEUUJVVGor69j3Zo1LJg7u0shtsFDh3HO+Re2a/x0vlbpyYnERjvQdZ3SympanC6WLl7IlzM+A6B79+48/cwzREZEoKoqPp8Pl8tFS0sLlZWVVFRU4Ha7dxsACIJAUlISeXl5IRgfBAHFxcV8+eWX7Nixg+bmZlpbW/faS95oMpGcnEK37t1Jz8wkNiYOq82K2WzBYDSG/JdgzmtA20DAEWEnMS4Ws9kUuhdEUUTVNP7+90dJSknjhJNOwtcu1JeaFE9Ce+vgiuoa6puaqa+t47WXXsDtdnPL7Xcw6dRTaGpuprSiGrfXu9+ZS5Ikgq6zYcMGliycT2lJMcpusnXi4uIYNWoUY8eOJScnB7PJhF9RUDUNUQh1pu5yfj7QAVljcwvF5VWIUmCezkxOJjLCekQDgJCPCTQ0N1NeXRsSB5RlifiYaOJjotsh286p1Efdir3P1+JAmdlsxufzoarqAR13xyoACIC2Zl584UU2rFvDk08+ycCBA1EUhbVr1zJjxgyWL/+19V9cbCwJiYlER0cTGRmJ1WrFZDK1t+700djYSG1tLdXV1dTU1CDLEmecceZvBwBhYb8Db9//8D1Fa1cwOikKSRCobW2jtMlJg1fBpUtoJjMJcQlkpiSTlpFOdEwMyUnJWCIju/w8Z5uH4rIK6ptb2nfWAzemLBuoqqzk1uuuQlclumX0QNtJFNDv83HO+WfSp18uLz7/Bi2tzlCK2oEO/EVBRNVUmloaqKwqoam5vv04Zc477zzuu+9++vfvF3pPVVUVb7/9Nq+99hqlpaVYLBbuuOMO7rnnHmJiYv4QAVcYAITtcAf7Hef5jkH5wdzR3d3OVRgAWPlxVi7+PZQAgEBLayFeXzNudys9s9fy+GPXkp+/Db/ff9B34oM1t926dSM9PR2r1UphYSFbtmw5pgCAKIq43W4efvhhtmzZ0um57OxsTj3lFIYMHUp8fDySJAUC4o73XPu5VFQVj9eH2+PB6XLj8XrwK2qnnfhgvbggSaz5ZSWff/YJnp18suSUVK694WbMO+3S6rpOZkoy0Y5I2tweCkrKEASBgoLtvPPG6wGRu8hIbrrpJhRFoby8nNLSUsrLy2lsbKS1tXWfHePExERGjhzJqFGj6NmzJ0ajMfAbFQWXy0VbWxs1NTVUVlVRW1NDRUUFFRUVNDY20tjY2OX3CIKAxWrFZrcTHR1DYmISuXl5dOvevYuMAA2LyURSQhxREfZO53rOvAWsW7eOiaeeiqoGIExGShKx0Q7cHg8FJeWIosSsH77jpx++Y+jwEdx7zz14vF7KKqvw+ZX9Dv4NBgOtLc3Mnf0zSxct2qVVsyAIJCYm0qtXL/r27Uv//v1JSUkJ1f7uVldF6LiVczDGtkCrq42C0nJUVUWWJLLT07DbLEc8AOh4f7a0OmlobsFoMBBhs2KzWkLlE62utk7ZMns/2kAnit8SqAfeF/ivQMdabaHTa4Quj6Pz9woEsnqMskxURAQcIoahaRoOh4PY2FgKCwsPaDbAsQgAREHAr2p89MmnfPLh+1x11VVccMEFeDyBjmdGoxFNUyksLGL16lUsX7GS0tIympsa93q/xCckkJScwtixx3PXnXfsHwAI7/YfXPN5PPznzddpriojOsKGYo4gLimZ7t1zSEtPJyLKgXE/69hVVaWkooqyqhr8/kB7GkEQsNps/P2B+/ll2Qr69Rm6ywD3+/1kdUvjpluv5ofv5vDTj3MxmcwHLvBHQBAFVDUQ+FdXl9HY/GsPyxNOOIE///luJk06PfRYRUUFb731Fq+88grV1dVER0dz8cUXc/PNN9O7d+8/VBAWBgBhO5TB/s47R4ci2N/TMe282IcBgJUff+qJ3y/tHgAIAq2tJbi9jXjaGhjYbzOP/O0m1q3bcNABgK7rSJLEgAEDSEtLAwLdFzZt2oTH4zmmygAEIbCuvfDCC8ybN6/Tc2lpaUyaPJkxo0cTHxeHoiqoqraHdpeB1VLTNLw+P21tbbS42mhzu/EpashhDAjhGdiwfi2fffwR7g7t4YxGI9fedAvpGZmd2kLquk5WegrRERGUV9dSXVePwSDT0tzM6y//O6QxIMvyAWsnabFYGDBgAOPGjWPgwIE4HI5QhkiwrCDof7S1teFyuSgvL2fNmjWsW7eOkpKSPSrcG41GTp10BiNGj25Xy94ZUAkkxccSFx2DKIDPr1BYWs7WrVtITUtHkmU0TadbegqOyAiKyipodjrxtLl56V//QFVV7n/wYZITE6moqemUSr6vAbQoiGzftpVZ339HSXFRJ68ou3s2/fv1o3///mRnZxMdHY3BYAi1eexqnBys9OvdzmO6TlNzCz6/H7PJRFSEfb++/3ADgOA9o3dxDlVVpaC0nFZXG4d6xtoTRtgbYtA7/A6ryUSP7ExkSTpk4FXTNPLy8nC73RQWFv7mcr1jHQAIgChJLFq+gv97+mkG9OvLQw8/HGoBGPTNvD4fHp+C1+fD6WqjoaGBurpamhobqa+vp762lpaWJkRRwm63Ex0bS073HiSlpGI0GYmLi2fgkKH7DgDCO/6HxmorK1mxahXdsrLo1i0Ls9V2QD7X4/WxvaiE6roGJFEkIjKKr2bO4Pmnn2DggJGYjJZOrQH1gHwk11x/KbFxMbz0r7dwulwHIAtAaB/MKo1N9VRWl9Lc8qsg0ogRI7jttts4++yzQ8rHtbW1vPLKK7zyyivU1NSQkpLCxRdfzFVXXfWHCvzDACBsB2Ms7fz3IyXYP1QAoLa2lvnz5x/VAKC62soPewQAArqu0tS8HUX10ebaxmknN3PXnTezdOkyFEU5qNdXVVV69uwZmo+LiopYs2ZNqF78WDNRFKmrq+Pzzz/np59+2qVfe2pqKidNmMjo0aNJTk5C0H9tw7snAc3gLqXP76fV6aK51Umbx4OqBrQzjEYjmzas55MP3+/0nadOmswJE07ulGKv6zrZGWlYzWa2F5Xg8fmQJBGvx8ubr77UpeJ80AwGAza7nShHNBEREZ0cfh09VFLodrspLyvF1cV61r17DiefcjLjx48nMiICf3v6fcffGtT+0HWdlpYWCgoKWLduHZs2baKqqorW1tbQzljHYzvrnPMYMuw4FFXZBQIAxMdEk5wQh6pp7Cgqpc3rAV1HkgIAoHtGKqqmUVJRidFoYsHcOXz9xUzOvfBijh83juaW1v0OvA2yjNPpZOmihSyYN6dTuUZScgoXXXQRw48bRkRERCgY1Q6g+OKBhlzBgGV/a+aPBACwJ3N7vbjdnt1s/e9+H17vIpjr+I6ud/F3/zh7+NxdHxPwKQotrU7iYxxEO6IO6XjQNA2r1crAgQNZv349ra2tB2TeP9YAgCxJlFVV88Tjj9HU0MAzzz5LVmYmPp8PURTx+Xw0NLfS4nTR0NhASXExJUVF1FRX0dLSjMftxuv14vf5UTUVs9mMzWbDYDQhikK7ALwtkAUw/sR9AwC6rocD/z+AtbS6WLUxH3SQDTL1dfXcet1VmE12umX0RNM6C8/5fT6GHjeIiy8/h2++nMWsH+b85iwAgXbnRddobm2ksrqMxsaa0PNjx47lpptu4swzz8RmC0APRVF46623ePLJJyktLSU6OprLLruMq6++mgEDBvyhg7YwAAjb/gb2e3KuDka9/sF0JsIAoCMA8FBdbebHn3Lx7QYACIKI19dMc0shYKDN+RX3/GkEkyZNYfbs2Qd9918URcaOHUtUVBQ1NTUsX74cVVWPyeA/aJIUaOX2y+o1fPPNN6xe9csuvdsTkpI4ftx4hg8fQUpyMkaDjEGW2rsH7B0GqKpKW5ub+qYWmp1OdF3HZDKxfu0aPvnw/VCQ2SuvNxdccjlGkyGUqq3rOt0z0gPppGUVgXpoSaK8vJT33nmbtra2kOMZl5BAXFw88fEJxMbHERcXj8MRjcVqDdyXws5BkQ66gK5p1NfVsnHjBtavWUN1VeUuvyWvT1+mTDmToUOGYDGbu0xxDzrvcnvHora2NpxOJ3V1dVRVVVFQUMisWbNwOgNiiFabjfMuupi83n13yRgIfnZCbDTxMTHsKC7F066wHQzY0hLiqW9qwuMLQIl/P/9/WG1WbrzlDjRdZX9iWEEUMEgGiosK+f7bryjo0PZQFEXGjRvPBRdcQGZmRicIciysXUciADhahUt1TcevKhjkw9PFIAiBIyIiWL169QE5h8cSAAhokui89PLL/DzrR2697TYmT5oU6N6m6zS2tNLY7KSuvo7VK1ewfOli6ut+zZqOjonBZrNjsVqxWi0YDSZEKbCOmMwWZElCkmUEQcBmj8AeYQ8DgD/qBLu7m2/j1gKqauuRJBF7RCRP/u0hZn33DUMGjcVgMHSaODRdw2I2cf3NV2CzWXnl3+/Q0NCILO17R4DgcaiahqutleqacuobqkI31OjRo7nrrruYPHlyJ6HBefPm8cgjjzB37lxMJhOTJ0/m9ttvZ+zYsX/4dNIwAAgH9vsa2O/OIToaAv09LeBdOWF2u/03/Z6Ghgbmz58f2o3+IwIAEGh1FuH2NOP3t2AxfMp/3v0Hqgpr1qw5YCmZu/tddrud448/Hr/fz6JFi2hrazumg/9OwYQo0uZ2szl/C3N+/pllS5fsItaXlJzCmHHj6T9gIHGxMVhMJmxWM0aDYY8wQGgPMHU9oFZfVVuPq82D0SCTv3kTX8z4lKbGRqIcDi64+FK6ZecERPII7NxmpSbjbHNT19AYaI0ny/z04w8snDcHv99PZFQUZ5x1DhlZWZiMxvZgPyA+rOkqqhbIFAzWnotCoLOBiBB6TBDFQNp4YyPbt21l3ZrVFGzf1qmsQBQlhg0fzhlnnEH/vn0QBQFV232gHSwXCIghBv7+08+zeemlf4c0EKKjY7jw0svIysrGp+wEAQBB10mIi6HV6aLN4+0wZ4LZaMTt9WEwGNi2dStvv/4K1950Kzk5PfZrDhBFEVVRWLliObNn/YCzQ7eGxMRErrjiCkaPHo0kSQeszCIMAI7t+eZwZYwE4ePw4cPZvHkz1dXVv3vdOZYAgMlk4vsfZ/HCP59nzNjjuefuu5FEaPN4qW1ooqGpmTWrfuGnH76nuamRpORkBg0aTJ++fUlJTsLhiMZkNgXmREEklCsiBLvHBHRl/D4fmVndGDBwYBgA/BEt2BfS2K6K29FanC5WbchH13Uio6JYsnAh9/3pNrIyepKanLlL+zmfz8uoMcdx3oVTWLRgBZ99/OU+7cQFJE1A1VTa3E7qGqqpr6/C336T9e/fn7vuuosLLrgg1NIHYNu2bTz//PN8/vnnmM1mRo8ezfnnn88pp5xy0DsRHMkAwGyU0RUnEHaqjwoTAQ0QRQRRRtFEJIMJUQRNC/wJva7TzbuHx9sfk3daCP9oI0IDFE3DuPPv/I0BZXNzM/PmzUPTNCRJOioBQE2NmR9+ysXn2xUACIKIX3HR1LwdkCkrncH1V2fyl7/cx9y5c2lpaTmowbiqqqSmpjJs2DC2bdvGxo0bDypwOCqnA1FEkmUUv5/8/HxmzZrFwoULd0lf79a9O2PGnUBOj57YLBaMxoBImd1mxWgwBDoD6ux2h1xVVarrGqhvasIgG9ixYzvT33wdn9fLCRNPZuIpp6G0r/G6rpMYG0OrKxAAB9L/PUx/601KiovIzevNlKnnEJeQgN/vCwnrBVvsmY1GLBYzdksgO+fXoDxQ5x7MCgh2NvCrGj6/j+bmVvLz85k3ZzbbtuR3+g1Wm40JE0/h9NNPIzE+PqBwv4+BjyzLfPvtt7z++uuhYDohKYmLLrmc5JRU/MqumQCSJCJAAGR05ZQbjXz28f9oamrk6utuwLcH/YFdr4eAqqh8+/WXLF20sNNzo0aN4rLLLqNbt274fL4//K5/GAAcG6aqKr169SImJoZly5YdkHnzWAAAsixTXlHJX/96PwBPPfkUaWmp1NY3UNvQRGFhAT9+9y3btm5hwMCBnHrqaQwc0J+oqChoF1M1Go04HA7sdjtWqzUEFevr66mqqgptDCuKQl5eL3r1yts7AAgH/0fvJLvbLIBtBVTW1LXvLkjcdcv1bN+yjUH9R4bq7UI3ga5jkGWuvu4iMrMy+M87/2PDuk0YdxOMB7VMVU3D6WqlvqGaxqZafL6Ao5OUlMTtt9/OTTfdhMPhCL2vvr6e6dOn8+mnn6IoCgMGDOCUU07h5JNPDgzyY+za7QwATKIHcdMCRH+YARwREWqHWD34r53XCC0YnosSiDKiIEFoEetcG/3rw+JugnrxmDrBiqogSzsBTEccGE2BP3Fp7KvMscvlYu7cufj9/j8kAAiI/xXj9bdSW72Jbpmr+fD9f9PY2Mzq1asPejCuqirdunVjwIABrFy5krKysjAA2EPQYpBlFFVlc34+P3z/PQsXLuxUmy9JErm9+zDm+OPJyOyGKApIgojdZiXSbsNmDaRzBtcKfafPFwSBNreHsooqNGDenNl88+XnZGZlccU112Ey/9oNwG614PZ4ULXAOr9t6xamvf4quXm9ueSKKzEajPiVXzMGREHAbrUSHRVJhN2KQd45G1AP/n+3wZqm6SiaSlNTM6tWr+KH776nYMeOThpEx40czYUXXUx6ciJGo2GfM6AkSeKzzz5j+vTpofekpqdz0SWXExMXt8sGx54/D1RF5e03XmPiqaeT06NH6Fzsk1MvScybO5vvv/4q9FhERCQXXngBp556KmazeY+ChmEAEAYAR93K3a4FMHLkSDZt2kRFRcXvWgtEUWRrYQmtTuf+AQC7nZ7dMo4KABD8Xc8+938sXDCf2++8i1NOnkhFVTVlldUsW7KYuT/NIiU1lQsvvpjhw4ZiNBjw+/0oioLNZqNnz55kZGTs9jtKS0tZt25daHO4X79+9OzZMwwAjkVztrlZtSEfVVWJio7mi08/4f+eeozuWXkkJ6Xvskgqfj/de3TjqusuprG+ibde/y/NLa27lAIEA3+Px01dfTX1DVWhwD8mJoZLLrmE22+/nZycnF8/W1H46KOPePfdd3G5XPTo0YMxY8YwYcIEunXrdszCm10BgA95/TxEtxYGAL/v7O4ung/9Q+s6wv/1oa4WA7HrwL3jmiX+npheO4YukQiKT0WUBcSOJyk6ASLaoWFyd7BG7tPHeb1e5s6dS1tbG7IsH5UAoLbWzPezdgUAgiDi87fS0lpCS0sVuvId7/3nAXr06Mns2YG+8Ac7Fb+jAOCiRYuora0NA4B9AQHtTtzatWuZMXMma1av3mVM9B84iFFjjicxORlVU0EHi8lIhN1OhM2KxWxCksRdsgIkUaSuoZGy6lokUWD6tLfYtiWfm26/g/SMrNAOuVGW8QX/bjDw6ccfsWXzJm69809ERESGsgU0TcNqNpMYH0uk3Y4oCnvUKNibw2swGBCA8ooKZsycyQ/ff98pBT4xKZlrb7qZXjndibLb9lloLpiF8P777/PRRx+FHu/ZqxfnX3QZlp1aIXa+P1XEDiLHsixTVFjIiqWLOfeCi1D3IwgwyDIlxcW8O+0NXC5Xe6CRzc0330yf3r1RFOWY2vUPA4Bjx1RVpV+/fkRFRbFkyZLffY3b3J5ATLKv17u9I43VYt5lrB2JAMBsNvPdDz/wwj//yfHjT+TWW2+hsbmF/C1b+PG779i4fi2nnjaJSy+7lBhHFIrfD+2w0+FwkJ2dTXNzMyUlJZSUlFBaWkpLSwuSJBEfH09GRgZms5mGhgYSExPRdZ1BgwaRmpoaBgDHqm0tLKWkvBKjyYii+Ln1uqupKC1jUP+RyPKuxN3n8zH+hNFMOfs01q7ZyPv//RRdB0kQUHUNRVHxq36aWxqpq6vA5WoBIDY2lssvv5zrr7+eXr16dfrMefPm8dxzz1FQUECvXr0YNmwYJ598MoMHDz6mJ/c9AgCvBuF1r2sHbqcx29Wk/Xvn8UAsJbb/N3AhxPD1OGjXUtx5HkjJDmRJ2CIhKXufPktRFObMmYPT6TxqAcCeMgBanKU0NhbQ2vwt//rH5Zx22qksW7aMysrKQxKIq6pKXl4eubm5LFy4kLq6ujAA2E8Q4HS5+Onn2fzw/fchxzRoERGRDBs+ghGjxxAREYFfCSjby5KAxWwmwm4jwmbFbDKF9AIEQaDV6aKwrBxJlKmtreLlF/7FiRNOZvxJE0IZB6IooGmB9njutjZefuFfnHTyKQwfMRKP1xva9Y+LdpAQG4PBIO+zM9wxCzFYry9JEh6Ph+3btzNv3jwWL15MY2Pn/tVGo5Gzpp7NhJNPJjbagbSfACtYCvHmm2/y7bffhh4/Y+o5jB4zdre7+LquIQhihyDewPJli7FabfTtPzBUvrj37w+k/n/wn+nkb94UYJfR0Tz00EP06dPnmPenwwDgD752axoOh4NRo0axYcMGioqKkGX5N3+eKAj7Hvx3gADabsqkjiQAIMsy1dXV3HPPPRiMJu574AEi7BEsW7GCb7/8nJqaGi644ELOPeccJCkwr5lMJlpbW0PdUGpqaqioqKC2thaXy4XBYAiJJvv9flwuF4qiYLfb6d27N3379uXKK68M6KmFAcCxaT6fn9Wbt+J0thEdG8OXn33Cc08+RkpyJtkZvVC1zoukjo6maUw9exJjx41g1g9z+OrLH9F0PaBE7HFSX19NU1MdoGM0Grn00ku5++67ycvL6/RZBQUFPPXUU3zyySdkZ2czYcIEJk4MtESyWq3H/LU5kABAUdX9Cnq79rXE0OPi71x0d9180XcTpGu7WVx+y/Hv3lHs4E7sPpAXwdnmp6gGcpJNmE3asbUjf5gAgKZpoVTnkCWkg8kSKIRO6Q5m+z7dT3PmzKGpqQmDwfCHAQCCIOLxNlJdvRpny9c8/tgFnHP22WzcuJHt27cfMhE+VVXp3bs3PXv2DAOA3wwWRSRJprqmlh9+/IGff/6ZuprqTq/J6pbN5LOmkpaW3g4B2tP/dTAYRCxmM5E2GzabFYvJhKKobC8qxutXsJjN/PTjDxQWbOfKa64P7WYHNQUMBgObNqxn+dLFXH7VtWi6hqoGRIBTE+OJsNv3e8c/WI4gywFoUF1dzerVq1m6dCkbNmzYRf/Abrdz3HHHceKJJ9KnTx8kSfrNjrckSbhcLp566mnWrl0DQGa3blx17fUYjMYuswCCv62jGOCyRYsYMHgwZotln5X/DbKB+fPm8O2Xn4ceu/7665k6deou4o9hAHDkAoCOn38ktmI80q/x0KFDiY2NZf78+UeMKOyRBACCJUv/+Mc/mDNnDjfdejuDhwxh2fJlfP7pp7jaXFx77XWcMnFC6PtlWWbZsmW8++67FBUVkZCQQF5eHt26dSMlJQWHw0FkZCRWqxVZllFVFafTSX19PeXl5RQXF7Njxw5aWlq4+OKL9wwAwsH/H9uaW52s3bwNXdeRJZk/334z69eupnevwcQ4dq2X0zQNg2xg8tSTSctK54fv57BkwRKammpobKpFbVcXHjNmDA899BAnn3xyp/c3Njby+uuvM23aNFwuF2PHjuWss87ixBNPJDExMXxB9gAALCYdcfU8RI9nn2mopusoyh8jUt0bmDgQcCJsR5Yp7W3kOl3X6ASwOwIkKCIaEjL36bPmzZtHfX39HwYACAiomo/6xm3UVH3KM09NZsqZU8jPz2fLli2HtJWVqqr07duXnJyccAnA7zRJktCBgqJivv/+BxYtmEdrS0vo+di4OM48+xxyc/M69bgPCvQhgEGWsJktRNisNLS00Ob2BAT+vB5++PZbTjhpIhGREZ2CYFmSWTR/Lqnp6XTL7o7P78dkMNAtPRWz2bRXB3jn8SYIgcyCVmcrO3bsYOmSJfzyyy/U1NTs8t74+HjGjBnDuHHjyM7ODolX/d6gy2w2s3DhIp588omA72IwctV119Gte4+9Ku4LQkA7pKKsjJ69eu22bGDX4F+mvLSUd6a9EVL8P+6447j33nsxGAzHbNr/0QYABEGgzeOhvrGJqIgIoqMiEdrXpDAM2Lc1ITk5meHDh1NZWcmKFSsOCbQ5mgCAyWRi/vz5PPXUU4wddwLnXngRO7Zt471338HlcnLXXX9i3PFjQ61YVVXlgw8+4JNPPqFHjx6cfvrp9OnTh7i4uE4C6ZqmdTrejp1Sgi1UIyMD5ZNhAHCMW1llNVsLS4h0OFi/ehV/vv1mBF2gb95QTCbzrwNJCAwsj8eDqusMH3McXq+Tzz/9FKcz4KD07NmTu+66i8suuwybzdZpHH3yySe8+OKL1NTU0KtXLyZMmMDpp5/eSQ8gbLsHADabDXHdAmisgn10rhVV3XUHdX8Clv1a54Iv3vcJPpw6H7a9AawuwU5iBhjNgb+n9gCjZa+ftXjxYiorKzEajX8MACAIuNpqKC75jiGD3Dz6yNU0NjRRWlp6yPtYq6rKgAED6NatG4sXL6ampiYMAH5n8CFJEj6fn035W/jii89ZsWxph7XAzuSpZzNw0GDUDhCg4/oR6MwnIIqEnpckkZrqaixWK3a7PRTUCkJAJ6OooJDcvF6h12emJuOIjNit8xscZ7qu41cUvF4fPkXF7XFTUVnJ+rVrWbdmDcXFRWhdiO9lZ2czbtw4Ro8eTXJyMnp7NuGBCrBEUaS5pYW/3v9XSktLABh/4gROnTR5r2J+oijQ0tQMAkRGRe0TABBFAcWv8OF775K/KZD673A4eOSRR+jRo8cxKfh31AIAoKiikoamVgyyiMfVSpTdTvfu3UMZLWHb8zWWZZlRo0bhcDjYsGED27Zt+12lAH8kACBJEi0tLfzlL3/B4/Nx6x1/QhAE3nr9VaoqyrnvvvsYM2YMXo8HsT2b6YUXXmDNmjVcddVVnHTSSVit1pCWyL7eU3q7PsLEiRMxm81hABA22FZUSklFFdHRMXz433d45YV/4oiKpVePAUiihKqr+P0+PD5fwPF0OamrK6fV2QRAREQEd9xxB7fffjvx8fGdPnvFihU8/fTTrFu3jp49ezJixAgmTpzIsGHDwk7iQQQAO6dQd1kPFd4xD9sRDgC6LAPomAUQFdfeEWDPtmLFCkpKSo5aAFBdY+HHWT3x+aX2tG2NltZiKivnMWJEA1PPGI+iaIdlTlVVlUGDBpGZmcmSJUsOSP/nsLXv3EgiTc2t/O9/H/P1l1+ElPINRgOnn3EWw0eOQte1fd6hFkQBXdN3CVybG5tAgCiHA0VRiY6KJDM1eRfHMhj0a5qG1+fD1eam1dWGz+fHp/gpLChg9S8r2ZK/GWeHzIXQrRsdzYABAxg5ciR9+vQhJiYGVVX3S51/fwJEUZJ47bXX+aZdiT85JZVrbrgJi9Wy13OmqgqStO8Bi9FgYPGiBXzx2aehx66++mrOOeeccPB/FAGAYKu0gpIy/KrKogXz+emH7xFFkcmTJnHJJZcgimIYAuzDupCbm0teXh4+n4/FixfT1NR0WNeGIwUAmM1m3n77bT7++GMuu/paBg0eymf/+5BFC+Zxxx13Mun002hzu5EkCa/XyxNPPEFZWRkPPPAAvXv3xuPxhAJ/TdNCGivBf+98vwWzAIJgZty4cUREROwZALS1tYVH8THiaOfvKKKxuRVZNvDPZ5/kq89nEBudSE733qALuH0edE2jobGa6poylPaeuueddx5/+ctfGDp0aKfPrK2t5dlnn+Xdd98lOTmZCRMmMGHCBMaOHYvdbg+f9IMIAILBvqbR3nde65RKvdud1bCF7QizLssAouICIoCiFPiT1gNk0x4/Z82aNezYsePozgCYldsOAHQEQaTNXUt19WrMptncdccULGbLYXFKDwUAkGU5tEN8rJkkSaiaxjfffMN//vMfvO2186IocsLEkxk37gRkowFV/e3X3uv1YDAYQ/dEdkYqETZbyLnsFPS72mh2teH2ePArKrIk4vf5+fnHH1i2dDG+nercDQYDvXr1YsSIEQwZMoSUlBRkWT4kSvhGo5EFixbz7DNPoyoKkiRx2dXX0qtX3j609GuvqdiX8SnJVFaUM33aG7Q0NwPh1P+jGQC4PV7KqmpYt3YtH743Hb/vV4Bz2223cdppp3Vq3Rm2rtc7h8PByJEjMRqNVFVVhUoBjmUAYDKZ2Jyfz1/uuYe+/Qdw2dXXUrBtKy+/8E+OP34c9977F1RFgXYQ9dJLL7F+/XoeffRRunXrFtJO0TQNm81GVlYWDocDg8EAQGtra6jjUbCcqra2lvr6ehRFwWw2M27cOKxW6+4BQHj3/xijdZpG/o5imp0uVEXh6cceYe7Ps4iKjCGnW2/8fh/FZTtobqkHoFevXjz88MNceOGFnSZiRVF49913efrpp6msrGTixImcffbZnHTSSaSkpIRP9CECAIE6IJDlzsFTOPgP21HlROxuvMamgNUOmgrRSRCTvMfP2bRpE5s3b/4DlQCI+JU2Gpu2UV76P26+cTh9emfh9x/6APlgAwBN04iIiMBkMlFXV3dEiEkdDsdVlmWWLFnKyy+/RENDQ+i5YSNGcuppk7DabKG2ffu/5gQU8HVdx2IykZOVHhLh8/p8OF1ttLraaPN42sdYoAzFaDDgbHXy5eczWLdmVedbNDaWoUOHMnbsWHJzc7Hb7aHd/kNVRy2JItV19Tz66KOUtDv8I8eM5cyzzv7N56qrgFFVFD587z/kb9oIBLIiH3nkEXr16hXe/T/KAIAoCrg9PpatXMX0t96goaG+0/Px8fE88sgjZGVlha/tXq6zIAgcd9xxofZzv/zyC2VlZYctC+BwAwBRFPF6ffztkb9RXl7OzbffiWww8tF/36W6qpLnnvs/0tJS8SsKsiQxffp0vv/+e/76178yePDgTsKpuq6Tnp5OZWUlmzdvxuPx4PV6O82vkiQRGxtLSkoKuq5jNpuxWCyceOKJGI3GMAAI26+mqCr524tweXz4vF7eev1lPv/sEyRRRtMCZQCyLHPttdfy8MMPk5zc2eleuXIlTz/9NEuWLKF79+5MmTKFKVOmhOv8DwEA6Jjiv/OO/87Ph4P/sB1NAKDLMoCoOLBGgCSDLENqbuDvu7Ht27ezdu3aPwwAaJ8paG4toXDHDMaOkbjogpPw+Q69Q6qqKgMHDiQrK+ugAoCcnBzWr1+PqqrHZAswQRAwmUysW7eOF198kbKystBzvfv248yzzg6k8P+OwFbTNJLiY4lxRNHqdNHc6sLt9YTAUqAjV+DcG2QD1VWVfD7jEwp37Ah9Rnp6OhMnTmTEiBEkJyeHdqEOxy540OGf9vY7/PDt14EALiGRa2+4CftOQoi/1YwGI0uXLOLzTz8OOd5XXHEF55133l7FBsMA4MgCAMGuFdW1tTz19NNsy88PXGOjEQQhlN0yYsSIQOu2cHbHXteGbt26MWDAACAgBL548eLDNocfbgBgNBp5/4MPeP+99xkxajQej4ctmzfhdrdx1tnncMN11+L1ekMCgf/3f//HHXfcwcSJE3eJx2VZpry8nAcffJDa2to9fq8kSTzyyCMMGDAAs9nMCSecgCzLYQAQts7XfEdJObUNTVhtdpYtXcTjDz1AfV1gcPXv359HH32UKVOmdHpfU1MTr776Kp999hnR0dGMHTuW008/ncGDBx+TuzWHCwCEWoV0eF7bqSZol3TqsIXtCLcuywAAYpICpQCaCrGp4EjY7WeUlJSwYsWKPxQAEAQRt6eO0tK52CzLufeeCzAYxAMS1Oyvk3cwRQCDqY6jRo1izZo1x7zIoMlkoqCggBdffJEtW7aEHu/eoycXXHQp9kj77yoHsJiM+BUFn18BhE5BfxACGAxGCrZvZcYnn1DboV3h6NGjufbaa0lOTkZRlEO627+7gE5RVeYvWsJrL/8br8eDIAhcdNkV9B8wcB/KAPZssiRTVVXB9LfeoLmpCYBBgwbxwAMPYDQaw8HhUQQABAF8fgWvX+GjDz7g66++DD132uQzkWWJrz6fGXrsiiuu4Pzzzw9nAexl7rbb7YwePRqzOSDcu3r1aoqLiw/LHH44AYDNZmPDxo38/ZFHaGpqwmQyY7FayMjMoldeb8aOHUNGagqCIIQEAnv16sXdd9+N3+/f5b4RRZHW1laeeOIJtmzZstfyuDvvvJMJEyZgsVg44YQTAqVdYQAQNgC/X2FrYTFOjx90lU8/+oB33noDd1sbRqORm266iQcffJC4uLhO75sxYwbTpk2jpaWFESNGcNpppzFixAisVutuJ38hHIAeUADQVZp0MPDfufa/K0gQtrAd0U7EnrIAgloABiOk9gz8vQurqqpi0aJFRzUA+H5WLn5/ZwCgKB5q69dRXjKdv9xzJt2yklGUQ1sGoKoq/fv3Jzs7+6ABAKvVyvjx4ykpKWHdunWHXU36cJvRaKSyspI33niDZcuWhR4/bsRIppx9Ljo6vzXOCrqEXa3TgiBgkGXWr1vL5599Emp1BzBp0iSuvPJKrFbrERMUCYKAX1HYWlDM22++zvatAWAydvwJnD75zN+VLSEIoKkaH3/4PhvWrQ3AE4uVv/3tb/Tv3y9cI34UAQBRFPH7/ZRX1zF79s98/tknofYZvfv24/yLLyXCbuOTD99n6ZIlANjtdh544AEGDhyIdyfdi7B1vt6DBw8mLS0g1ns4swAOBwAQRRGDLLN63TpefeUVysrKGD5iFCeceALZ2d2IiozCYjaht3+H3W7nyy+/5OWXX+b555+ne/fuXc4lQeG/5557jgULFuz1vrr55ps5/fTTsdlsjB8/PvAZXQGAcPB/bJnb42XzjiJURCrLy3jlX/9gwbw5AGRkZPD8889zzjnndHrPtm3bePzxx1m2bBkjRoxg8uTJjB8/fhdAsK+ORdh+GwDoane0Y6AfDHLCOgBh+8MBAIC4FLDYA4qXCekQEdvlZ9TX1zN//nxkWWJ7Udk+AYDNmzcy/c3XAbjyuhvIy+tzRAGAdjeAFmcJmze+ynnnZHLaqWPweg9t8KWqKr1796Znz54sWrSI2tragwYAmpubWbRoUTizjEAKqMvl4vXXX2f27Nmhxy676hpy83of8CBcEAUEHZYvW8J3X38VSoeWZZlLLrmEqVOnBgQLjyChxqB4YUFpOf+d/g5rVv0CwKix4zhjylm/CwAYDQaWLVnMzA6p/1PPOYerr7oKLdwv/qgBAIIg0NzqpNXlZv26dbz/n+m0tgY6WCQlJXPZVVfjiIkhwmZH1BX+/sgjoZTrnJwc7r//fpKTk8PAZw/rQ1paGkOGDAm1DV2+fDmVlZWHPAvgUAOA4Bj9bMYMPv30M5KSk7nooosYMngwZqMhkCHV/jqDwUB1dTW//PILX331FSkpKdx///17zKIymUzMnDmTadOmddkBoKPddNNNTJo0iYiICI4//vgwAAgbNLa0srWwBE2HpYsW8O/nn6O6qgqDwcCZZ57JM888Q/fu3Tu95/vvv+dvf/sbgiBw5ZVXMnny5BDd25dJPwwA/p+9846Posz/+HvaliSbTW+EECAiEAJIk6YUARFBmoKKp3IK6gnqqWdDsKLoed6p50/FLvbeD0SP7tFb6C2U0BJCerJ15vfH7k6yaQQIkOB8X4RsdmdmpzzzzPN5P9/S8AAg0GEFOjlREFA1Tf8d8AbQO0LjGhjWhKzWMICIGLDafPeEOQSSLvBNzVWxwsJCFi5ciCAI7Nx7gOKSkjpFpCCKlJeVcvjQIQASk5KwhoTqlP5UhWxayxbYGywHgM8LwOkqYseOT2iVuou7ptxwTjwAWrduTUZGxhkHACUlJSxdutTwJPOboijk5+fz2GOPsdsfh39hu/ZMuPFmREmkoTSoIICmaiz47VcW/PqL/jy32Wzcfvvt9O/fH6/X2yhd3gVRZOvO3bz68r84sG8fAMNGjKTfgIG4ThGSyJLEsdwc3n7jNQr8rv+pLVsx7dFHSYyPPev3oAEATn0bTqeLfYcOk5m5if/88C25OTkAWKxWJtx4E20ubIfD5SLMaqFtWivmzZvHK6+8oh9Hp06dmDp1KklJSQYEqKX/tlqt9OrVC5vNBsCBAwdYu3btWQe5ZxsAmM1mfvjhB957/30uGzyEa66+mpioyKCcKJIkkZ+fz88//8zChQt1gHrTTTdx2WWX1eldoigK27dv5/HHH6e0tLRO+Dp16lQuv/xyoqKi6NWrlwEA/uh2JDeP3QcO4XA4yFy7mt9++RmX00VKSgrjx49nxIgRQZ1scXEx33//PQsWLCA1NZVRo0bRoUOHenf45eXlWK1WY+DWgABArRoXVGWm30gEaNh5MYioywsgOgFCwkHVfK8j4msUqStWrODw4SO4/bHJ1HUP+Gvnyv7SOh632/fAPp37RtOwWi3IklRtEHyqAMBXpkxj/4EFlJfM4dFpt2Cz2c6qEPN6vcTHx9OrVy+WLl3KsWPHzhgAKCsrY+nSpX/YRIC1DTLnz5/Piy++qIuaa2+4kU6dLzrtGHd9oCnLbNywnk/mvK+33djYWO6++266deuG0+lstDPeoiiyduMmXnz+OYqKChFFkRtu/jPt0zuc0vkRfLccX372ie5RYLFY+eu999G3Ty8jJrwJAQBFVjh45Chff/sNC3+dH5RlfdhVo7ikXz88Hi+qqhEWYiUttTmCALNnv8mPP/6oL9u2bVvuuusuUlNTDQhQSx+ekZFBq1atdC2wdOlSysrKzioEOJsAQBRFSkpKePTRR0lIasa9f/0rZv+sf8AkSeLYsWM89/zzlJWWMnbsWDp16oQkSYSEhOjlb+s8HoeDxx57jK1bt9a5Pw8++CCXXHIJcXFxdO/evWYAYIj/P0YHvO/QEfYfzsFRWsamdSvZt2c3CALp6emMHz++Wob/HTt28PXXX1NSUsJll11G7969MZvN9Rb+ATMAQMMCgBOJJkPoG3beQ4BALgBJBk31JQeMSKhRqK5duYyDR44jSuI56Yc0VUWrRcSdGgAAQZAoKMxi25YnufuuwWR0SMftPnvZxwMCvVevXmzYsOGMegCUlpaydOlSvT69YRWDwKeffpqNGzcCkNqyJTfdMhmT2XTaSSEFATSvyocfvMf2rVsAn2v03/72N9LT2weJpsZoJkVh2f+WM2vWs3g9HkLDwph0+53EJyScUgiAIsusWP4/vv3yM93DYuToMdwycSKaphqu/00EAJhMJnJzc3n3vfdYuGBB0P3U/7LBDBw0GEEUUFXNBwBCrbROSUaSJEpLS3nttddYtGiRvl5qair33HMPF154oZEToIZnb3x8PF27dvVVVADWrFnDgQMHzmoYwNkEACaTibVr1/Laa6/xlzun0Kljhp7MLwA9zGYzX3/9NZ9/+SUzHnucjuntcblc/jLe9etLzGYzb7/9Nl9++WWdyz311FN07tyZ5ORkOnfubACAP6J5vF527z/E4Zxcco8eZvO6NeQfP4YkyVx22WVcddVVQcLe6/WydOlSlixZQvv27Rk4cCARERH17uSrtiUDABgAwDDDTqf/qjEUIDrRVxYQzecJEBkHUUnVN1ByiM1bt7PzUCGa6qv53Bjs9ACALxng2rVPM/RyK1ePGYnTeXZnoTRNo2PHjhw6dOiMJgEsLi5m2bJlxo1Qw2Bz+fLlzJw5U59hGn3NeHr26n3Kbu6VBe+uXTt4/6039dnte++9j6FDL6esrKzRnxufG+6P/N//veqDF0lJ3Dr5DqyhIScNR2RJIi8vj7ffeI18f3345JRUHnnkYVKSmxll/5oIAFAUhR07dvDGG2+wzV/qDyA83M6QYVdyUddugKa3D1XVsIWF0Kp5M8A3c1tSUsL777/P3Llz9fWTkpK455576NChQ42Z2//I11yWZbp3705sbCwAe/fuZcOGDeetB4DZbOa///0v77//Pk888QQDBw7EbDazc+dOCgsLkSQJi8XC7Nlvsuz337nn/geIjIzAFmIlzGpBFMVqHr619f1r1qzhiSeeqLP/ee6552jfvj0tW7YkPT3dAAB/NHO6XOzcm83+gwfZt2sHWTu343A4sNlsjBs3To8LCVheXh5btmyhpKSETp06kZSUdFIdfE3tyAAABgAwzLAGhwD2GLCGguKHl6rXVxYwulnwvVWeh6C6OHAgm407D+FwextFRYwTAYDcXF8SwJoAAAiIosy2bXOIi13MfX+9HVXVzurgU1VV4uPj8Xg85OXlNeigzgAA9RNDqqry3HPPsXz5csCXt2LipNsJs51GWUABJEHimy8/Z9UKX/bzli1b8vTTT5/1UJPTgSPvvvsuX3zxBQDtO3Tkuhv+hCAKJ50jQRJFvv/2a5YvW+q7by0Wbv/LFC7r3w9N82LovcYPAGRZZvfu3cycOZMcf7w/QPMWqYwYOYqU1JZ4PO6ga6mqKhHhNlo0q/CMlSQJl8vFp59+ypdffqkfV0xMDHfeeSfdunVrVAkxz7UFcsWkp6cjiiL5+fksW7bsrHpznU0AoCgK27Zv575772X48BF89923ADgcDrZv3052djbgK4s4c+ZMOnTsxOXDhhMZGYnZZCI2KoKw0JATfncg1GDatGlkZWXVui9///vfad26NW3atKFNmzYGAPgjmcPpYtuefezatYvtmevJzTmqZ+ecMGGC3iACtmfPHrKyskhLS6NFixYn3bnX1obOFgDQNA2Px4ssS00OOBgAwDDDam/LtYYCRMSCLcKnWnxPcD8EqAFcah4KCwpYtWY9BQUFKP5Y/8YKAOryAPANAkwcPbqaY7l/59Fpk7CHR5xVcaZpGoqiIEkSDn+t9TMBAIqKili2bJkBkWsRuuvWrePJJ5/UXZCHDh9B/wGXnXIuAFmSOHrkCG+9/qr+TLr11lsZO3Zsk3Bz1sHI88/r5dv6DxzE0CuHn/Q5UWSZrD27ee+t2fqx9xs4iDtuv40Qi7lJwBADAPj62k8++YQPPvhAf699hwxGj70GW3h4je1CVVWiI+w0T0zwl9jUdAigqirffvstn332mT7ujYqKYsaMGaSlpRleIZXOYVhYGL169SIkJOSc5AE4mwDAYrHw22+/MfvNNwGBf/3zRW688Ub98+PHj7N9+3aOHz/OwgULeO311zFZLFzSbwAXtmtLQmw8SYlxhIWEnPCeCbFaee311/nmm2/0e6PyOmFhYbzwwgskJiaSkZFBy5YtqwMAQ/yfv+J/087dZK7fwK5tmygpKsJssXBxz56MGD68Rpf+nJwcQkNDCQ0NbTDxf7YAQED8S5LYJMtFNQUAYMAFw86m+K8q+GuFAPHNwWSt/BT3eQdEJ+tcoLK5XC5Wr16tlyQ6V8LyhB4AxyzM/aV2ACAIEg5HARs33Ms9dw2iffuzmweg8gCroYVQZQBQUFDA77//bpQBrEUQCYLASy+9xG+//QZATGwsf550OxFRkafkBaDIMr/+Mpdf5/ncnGNiYpg16zkSEuKbhLARRZHi4mIemTaNfXv3AjDmmvH06NX7pJL1BRL/ffrRHDZt3ABAdEwsDz78EO0vbGNk/W9CAEBRFFavXs3MmTP1hH3JzVO4dsINxMTG1QoAYqMiSYqP9T13ZLkCkskykiQxc+ZMFi9erL9/ww03MGHCBCMfQJVr36lTJ1q0aIHX62X58uUNnjOmMQAASZIoKCjgiSefpEu3HsRERzLnvfe45dZbueuuu4ImVdeuXcvRo0fZvXs3n3/2GStWrkCUZHpfcikjrhpFarNEZFmq9b4RRJED2Qd5c/ZsNqxfVyMAiI2N5YUXXsBut9O1a1e9apsBAM5zK3O6WJu5hTUrlpO9dzdORznxic0YN+4aOnXs2KAden3azpkGAIF9acozRI0dABji37CGbEv6w7mWNhVI1FVV7NcIASLiICwchEoCUVPBFgUxzWvM4q9pGpmZmXoZtXMhLk8EAI4ds/CfOgAACAiCzNo10xkxPIRhVww7b7JRq6pKaGgo/fv3Jzc3l5UrVxoAoA5xs23bNmbMmEFpaSkA466/gS7dup90dnpRFCktLubN11/VS6ONGjWKSZMmNZlM97Isc+DAAR566CEKCwtRFIWJk2+jZauTm5k1KQqZmRv4+P33dDEw7trrueH6a9E0zYj1bkIAIADKvvjiCz788EN9f1qktuTaG/5ERERkteSQqqoSGx1Jm1YtadeuHSEhIfo94nK5mDVrFq+99lpQToybbrqJa6+91gAAlczr9ZKUlESPHj0AWLVqFQcPHjzvAIDJZOLd995j+YqVTJ8+g7RWLfjll/nMmjULu93OuHHj+NOf/kSPHj04fPgwmzZtQhRFvF4vO3fu5Nvvv2fTpk1MuuNO0i+8kEh7zeFWoiiQV1DEO++8w5KFC7BYLDUmZU1LS+P5558HoE+fPsTFxRkA4Hy3opIyVqxdx4plS8jLOYqmabRt155rrx1PUpUs/2dD/J9pAKBpp1el63wDAGdCrNVais0ww05S9NdVsrKyudxeZFms8fMa26SeELDygl6wRUJsi1o7iT179pCZmYnX6z2rmYnrAwBO5AEAIEkWtm+fQ6sWy7jttlvPiQfAmQYAR48eZdWqVWf9+jQVC8z8PPPMM6xcuRKA/pcNYuiwU3N5X7liOV9//ingczN96umnadu2bZMBAIHkiE8//bQvjjsiksl/mXJSHhGiKOByuvjgnbfI2uODhCktUpkxYwYJcbGnVEnAAADnDgAEhKDX6+XNN9/i559/0t+/sF17xl8/AYs1JCh+X1U14mMi6dwhne5+8QqQnZ3N448/zrvvvhu0/RYtWvDII4+QlJRk5AGocu0VRaFPnz6Eh4ezevVqsrOzzzoAuOfuuzl00BeDn9w8hal/vb/BAICiKGzdvoMnn3iCcddey9VjRlNaUsxbb73N4iVLiItP4PDBbBwOBxkZGWRkZNC9e3dat26NpmmYzWayjxzlsRnTadEilbHjriUlMQ6zyRS0H4IgoGoqW7bv5qUXX+BY7lFkWakR/Hfp0oWZM2ficDi45JJLiI6ONgDA+WxH8/L5/X8r2LBmBfnH85BlEwMuu4yrRgzHcoLyfWdK/J9pAHA+dZKNDQAY4t+whmhDVUW//mCudfbf1+5MilT/tmmPAUsImCzVIUBoBMS3CPYQqGQ5OTmsXbuW0tLSIDfPcw4A6kwC6D+Hkpkjh1ficb/MQw/cgSybzou45EDsaP/+/Tl06BBr1qwxAMAJRO8HH3zAp5/6hHv7jAyum3DjSSW9E0QBdxXR26t3bx568MEGFXFn41x8/fXXvPXWWz5hlprKzbdMxmQx17sCgKIorPh9Gd98+bn+3pS77mbY0MuNmu9NFACAP5N/aSmvv/Y6ixYt1N/v3KUro68eh2JSdEikqhrJ8bHExURxUZcuJCYmkp2dzQ033MCSJUuCtpuRkcEdd9xBSkqKEf9fg3m9XtLT07ngggtYu3Yt+/fvP6sAoMzh5B8vvkjOkSOAryrIVWPG4qkCzFVVxRYWRpuWKfV+jgYy98+c+QyFRYXMnDkTSRCYNetZ1qxdx7jrJ9Dv0ksxiQJr1qxh7ty57N69W4/RT05Oxuv1ogLffv8jH3/wHjdPup2OHTvSLC4aWZL0cZMgCHi8XlatWc+/X/4nJcXF1Vz/A5aamsr0xx4jNjqaSy+9FLvdHgwADPF//lhW9iEWLljE9i0bKSstxRZuZ9To0fS7pG+Dd+Kn0mYC7lOGnVkA0FCu+rW5YBtm2MkCgBMJ/qrmcvsy/suSUC9ApVcHiIyDUHv12X7VCyF2HwQQa27PJaVlrF61iry8PGT57LT50w8BAEGQKSs7xv69D3DfvWOIj292Xsw+VQYABw8eZO3atQYAOIHo/eWXX/jXv/4FQHxCArfefichJ1H2TpZldlcq/SdJEg89/DB9+/RpUi7Nsizz2muv8dNPvlnert0vZuz48f4a2/URiSLFhUW88+brHPULho6dOjN9+qPVZuQMa1oAINA+SktLefXVV4Pi9zM6d2bsNdeimBS9okrzxHgi7Tas1hDi4uKYOnUqS5cuDdre0KFDueGGG4iMjGwyXjLnAgDExMTQt2/fsw4ABEHA4/Hg9qp6GJmmqbhd7upjBU1DkiRCrJZ6t1mLxcL8+b/y8isv8/Ajj9L1ok48++wsMjdlcvMtk+jZowfhYSFIkoQsyzgcDjZs2MDf//53xo4dq4eMiKJIbt5xnnvueYoKC5j0lynEx8XQLC4WURT1/fGoKmvWbeSVf/2DkuLiOnPw3HjzzVx/3XX06d2bsLAwAwCcdzeWqrJ1x25+++1X9u3e6Yu3aZbM+PHjad+ubYN24KfTVgwAcOYBQE1u1qci2IJElWGGNSAIOFGbcrn94EmWEOvZ/IJKBMY2A0sNSUxVL1htEJ2IJkn+2KHKgwQRj9vNylUrOZxbiCQKZ9xrqSFCAEBA0wS2bH6YP9/clo4du5wXg1BVVbHb7fTr14/9+/ezbt06AwDUYYqisHnzZqZPn47T6SQkJJTJf5lCfEJCvd3VTYrCkkUL+fE7X1bpVq1a8fTTTxMWFtZkRK8oijidTp588kkyMzMBuHzYcAYOGoyrnveFSVH49Zd5zJ/7s68vUhSmTXuUi3t0N2b/zwMAEIAAxcXFvPTSS3oJTYDLhgxl8OVX4Pa40dBIbZZIRHg4kiTx2WefBVURUBSFCRMmMHr0aCRJMmb+T3D9JUmiW7du7Nq166wmAfQ9JX2J8+q5s0ETF3WZJEkcOJDNY489RnpGR/7855v5v1dfZcfOndwy+Xa6X9QZizkYGoqiiKIo/OMf/2Dz5s3885//JMSf9V8QBFauXc/fZ82kQ8fOjLlmPBG2MBJiY1AU2Q8xNfYfzuG9d95i3epVtfdjJjMPPPIwl/buTZ8+fXQNZgCA88Rcbg+rN2Sy8Lf55Bw+hKZpdOjYiXHjriExPr5BO+7TbScGADg7AOBciH8jQaBhDdFOAq7/9Zn9rwkCAEiRcQjW0OqhAP4HO6KAN9QCkkjV6UBRFEEQyNy2jz1HCn2Li2euXTdECIBvvy3s2vl/DBlUyMCBQ3C5mj4A8Hg8tGzZks6dO3Po0CFWrlxpAIATDESPHTvGgw8+SE5ODoIgcMPNt5DeoUO98wDIssyP333DssWLABg0aBB33323PuhsKuchLy+PBx98kKNHjyIA1954E506XVSv8yBLErk5Obz9xmsUFhYA0L//AP76178CRuK/8wUABAT88ePHeXrmTLZv2+Yfc4Vxy+TbSWzm86RKbZ6E3RaGw+FkxowZbN26FfCV/Lv11lvp16+fz33b8Aqpl5lMJtxu93lzH5nNZj766CM+/PBDrr3hRvbs2sG+ffu4dfLtdLuoM5IoVGsbgZj/TZs28cADD3DLLbcwbtw4ysvLEQQBt1fl+x9+5IN336ZX30u4YvhVhNvCiI4IxxYa6p/x19i1dx/vv/sumRvWVW/bJhMjRo1lyOBBtExJZsCAAXrZYwMAnAdW5nSxbPlKli1cQP7xXGRZYcCgQYwcPhzzOYz3NwDAuQEApzv7fzIu/1XpqCH+DTtdAKBqGh6P70FZV+x/fQCWEBGLZIsAqYZ4fg2QBLwhFpClahBAEAREUSDrwFE2Z+Xg9qhnDAI0jAeADwDkHfuVtNa/Mmb01U0+EWBgJuTiiy8mLi6O7OxsVq9ebQCAOkwURRwOB0888QSbN28G4IoRI+k/YGC9Zr4FATRV4+M577HVv/6ECROYMGFCk5r1VhSFrVu3Mm3aNJxOJxarlUm3/4WkZskn9IQQBJBEie+++Yrly3xu3mFhYTz55FNceGEbw737PAMAPkFq5pdff+Plf72oC7VuF/dk1NirEUWRlsnNsIfb2L59O4888gjl5eVIksS9997LoEGDcDgcBhQ6hb79fOp38/PzWb16NT/++BNZWXu47c6pDB82FLxevDWIf1EUsdlsvP7663z55ZeEhYXxj3/8g2bNmuFyuXyVWModfPnV13z1+ae0z+jI8KtGERMTg0lRiLKHYwsLQZEVDufksnrNGrL2ZuEoL8fhcCBLMl26daNt23ZE2EKJi42hV+/eOFxujuUX+ACAIf6b4ABaVXF7PBSWlPH78hWsWLqY0uIiwmzhXH3N1fTt06fBO+yGaiMGAGicACAgvGrLuF6TwAp0fIbwN6whAEBl8V+fdlgfmCVEJyCE2msuHadR4Qkgi76/q5gkixzLK2LVlgM43Z4zMmhpiBwAvkGxifKyTCLC3+P6669r8rNRHo+H1NRUOnfujCAIZz1mtCmaD1yJ/Pvf/2bevHkA9OjZm1FXX1OvnBCiKFBeWsbbs1/n8KGDANx1110MHTq0SQEAk8nE/Pnz+ec//wlATFwck2+/k1Cb7YT3hSLL7NubxXtvzdbHPSOuuorJkyejer2G0DsPAYAoiuzdn82zz8zU231ISAgTbprIhW3b0aJZArbQUL7+5htmz54NQEpKCs8++yzh4eFGtn/DEEURs8nE3n37+OSTT9iTtZerx42jvz//WqDf0fzj5/T0dH788UemTXuUkWOu5rdf5pKUmMBjjz+O2WzG6w9pLHe6+PGnn/h4zgdYrSEMuvwKOnbuRGiYDUWWkSXR3+9LgIbq91hUZAmzyYSgaZQ7nEiKiXYZHSkrd+L1ehC279mnaZrmT+wiUH0EVPd7GkHhk9Vv0sprV7phhUrjL6ptQ6jyiVb7J/5tCppvTzQB8JMlvaMRBNBAqLTP1fcgqGepYZ+q7GctnU/lt4Vaj6/Sh76D0BcQKv9XqaP0qhoerxevx4vH68XlduP0eNi5dSub1q3CUV5GdEwsN0y4gYyMDo1W/BsA4OwAgFqFU0AEiaKvjYkAIgQGRIpMUMC1qoFXBY8btZJ7W0BMGcLfsAYTe94KqNQQ4l+/n8KjURUTgj8fQKAOdBAEEAS8oWZQpJohgCKxfM12Dh0vQ5IavgZ9QwEAUPB69yGo/+LGG69GUcxNUqxomobX6yU0NJQ+ffoQGhpKaWkpS5YsweVyGZVk6tGePvnkEz1OOa3Nhfzp5olIsnzC5HeSJJKfd5w3Xn2FoqJCFEXh8ccfp3Pnzk1q5ttkMvH+Bx/wmb8aQpu27Zhw481IslTnORD8Y7NPP5rDpo0bAIiOieWpp54ipXmyEd99Hou34tIyXnrpZVYu/93Xm5pMXNS1G9deP4FWzZsB8Pzzz/P7777Phw0bxpQpU84rV3bDTt8URcHj8fD555/z3fffM278eK4aMQLRn4RQlmU6derEnj17GDFiBN0u7sX1EyZw9GA2M2ZMZ8CAAdxzzz06NBBFEQ1YuXoNH3/8EVm7dhEdHUO3iy+mTdt2RMfE+oS+KPpyHPjHOIHnpMfroaysHKfTSfOUFqS2SsNsMSN898t/NcD3UK0ih+uLA2oTydoJlq/vZ/V9Ta3YgBNJ/jo/qxEA1PqhUL0g/UkUqBcq6f7AKpX7FR1saBqHs7PZlrkOp9NJTGwcN918E23btGm0wt8AAPU996ofAAgnDQBqnP3300aP203+0aNk791L3uEciooKKS4upbzcgaZqmM0KFouZsLAwbPYIouJiCIu0E26PJDI+DlO4zZc5XfSDAbcbjMFQ0zF7jC8eXlagvAQKchvFblWe9Q8MxE427r8+x66ZLGiV8gEEHo66mBRAtVrQTNUhgCSJbN6xn+0HjjdqAKBpIopchtv1AleP7YPdHt3ovAA0TdN/avtckiRiY2Np27YtkZGReL1e1q1bd1ZrRjd1APBNpZnKFqktufnWSZjMJy5/J8sye/fs4p3Zb+B2u4mMjOS5554jKSmpyYjfwD399xdeYKm/TFvfS/tx5chReDx1z9SaFIWtW7bw4Xtv68c7/roJ/GnCdXiN2f/zGgCUlZUz47HH2LHdlwegZavWIAjcePNEul/UmZKSYqZPn87OnTsB6N69O/fddx9hYWGndW+Ioogsyzr4rKt/NKzptCdZlvnuu+94/4MPuG7CDQwfdiUmReLiiy/G4XAwZMgQJJOFmyf+mdTmzQi3hTF//nxeeOEFhg8fzm233aZ7CwiCgCRJ5B7PZ/HChcyfP5/sA/sBSEhMIiExibj4OJ9XgKLoFQ+KigopLiyisLCA0NBQRo+7jl59+nJBi+YIf3vwIS1YruuP4QrdqgmBSRLQQAsaHVVdr7oUr5h5r11mBwlf/xv+7ASVxLBQRQxr/n3zx5JU2jehYirdF2tSFW7o3xd8zPrEvCBUOcZKxxdEHYKPXzihZ4BQN0DQKrZTcQyC/5/gOy+ql/LyMspLS/F4PCQ2S+bmmyfSumWLRi/+AaxWqzGDU/vJD/YA8J+nkwEA1Wqtq6qPIvpJoKPMgaOslNLiEkpLSigtKsJZWoajrJySkhKKi4opKi6huKQUp8NX8sliNhMWaiUmLoZWbdKISUwgvnkKYbHRFfHVqurzFlC9FR4FDSwU9c7VaD8nL/4tIRUJ8VQvlBadUwhQVfifMfEfdA6saEpFWZ8AUBUEwde/ijVDAEkSOXj4GCu2ZJ8TAJCXZ+bneW3rAQAEZFnD6/knI65sR1xc4yoFKAgCsixjtVpRFMUXPlQpNEPTNEwmE82aNSMuLg6A/Px8tmzZwrFjx2oO4zCsuog1mfj888957733gPrPfgMossLqVSv48tOPgQo3Z1s9XOcb0+C7pLSUadOmkbVnDwAjRo+lzyWX1unFIIoCLqeLD959m6zduwBISm7OtGmP0qJ50gnhgWHnrl/xiWbfNTwV8WwymVi+fDnPPPsMHrcHUZIYf90E9uzZTe/evRk0oD8ej4fXXnuNuXPn6uv16tWLO++885RL/wUSEO7Zswer1UpSUhIRERGIoqgnFTRgQFOGAArvvPcu337zDff+7UHuu3sqdrudq666ih27dnPL5NtIS21BqNWC5m+H//nPf3jllVcYNmwYt912G6Io6oBJEkUEUSS/oJDMTZtYtWoVWzZvJjc3B7XKs14QRVq2ak1iUhJJzZK5uGdvhl81goToSOy2MITHnnjCp5mrNDCtiqN8sAN9haj3vR94z7eeUGmt4L+rwAKhQpyjC/jKCKEmfwSBqktV/m5q9GOous2a9r+mLdYi0mvxL9AnkgSRmoIjgjWLUMffvtf6DBUCgiggCiIaAkVFBZSXlSGIIsnNmzN2zFiaJzdrEuLfAABnFgDUo0cK/i1Jleqha37hLoLXTVlBISWFhRQfP87R7GxyDh8lNyeXwvxC3B4PFquFiMgIYmKjSWqeTFRCAvaoKMIiwjFZQ0BR8LsLVDo+/2u1CliraWCpqkZVgTMh/vXze24gQG3CXxQFROEsnAtrGCgmHRhXTkYkCILfE8CMZpL1JiqJAvlFpSzdkIXXq9HQTbKhAIB/b1HdrzByZEvi4pIbDQAQBAFFUUhJSSEuLo7Q0FDMZnOtz4Li4mL27t3LgQMHcLlcxsz/SYqZDz/8kI8/9on4zl26cvW11xOY2DmRIFnw6y/M+/knALp168YjjzyCJElNRojIskz2wYM8+OCDFBYUIEkSN90yiTYXtq2zAoBJUVi1sgJ+CILA5NvvYNgVQ/Vns2GNTGQJAmXlDnKPF+DyuImJtBMRHn5S1yogsGbNmsXKlSsBaNk6jZtvmURhQQGtUlNo0TwZgNzcXP7973+zdu1aff1OnToxZcoUPXlbfftDk8nExo0beeutt9i1axcmk4nExETS09NJT08nLS2N2NhYLBYLqqoaVQaaKARwud1MnzEDWZJYumQJjz32GG+/8y53TLmLjPR22MNC9QmuwHPyt99+46WXXuLiiy9mypQpREZG4nQ69XYd8DDweL3k5xdw6NAhcnJyKSouxul0IAgCsXFxpLZsRajVismkkNa6NT0v7lHRBo8cPaoFhHfgf4vZUh9fd6op9poc9LXKylerELpaMGwIzOBXfrfydwV2UhCEIKgQeK1V2peqn1VT90GHUfMDMWgbNQxQqocfVHyPUBVSCNSGQILogFBDB1G5EQmCgNfr1cWhBkRFRuolHZqC+DcAwIkugloFAIgVAGDTEig44hPsfp1eoaoCDaWWvwPiRxNAEnzb1QLtU6uYvS88VrGeLIMg+WCBKFRsq9xBQU4u+UdzKC8pRvWq5B45SlFhEcVFReDVsIRYMJvNKCYz1lAr4RGRhEXaCQkJQVZMCIovcYksyoiKiCjJvtk9PbeAhGiSEAWfMFRVLeiGE4NfBJ8HsYbX1HFeOMVlavvuys/nE+0fJ7m/J7uMPQbMIaDU0qdrKpQUQX7OidvPidpcbftXdXe9Gh49lwT6Na7xPIoncf5PtExgfyNiwRoKsikIRAf6QAFf7JwOAfx9scvlYdHaHZQ5PA1eDaChygD6uJmEoM3mlj93AkyNasAYcGNUFAWz2YwkSdWeBYLgK5dUWFiIw+GocRnDTgwA3nzzTb755hsAeve9lKtGjzlx+TsBJEHk+6+/ZPn/fHHOo0aNYtKkSU0u/n/lypU89dRTeL1ebOE2Jt8xlejYGLzemu8HSRIpLirm3dmvc+TIYcDn4v3www8jy7IhvBqhCYKAw+Fk38HDlDmdoGlYzWZapiRjNin1hgAmk4l169bx5JNP4nQ6EQSBq6+9nk5duxJmsZKanIjVatX7o6KiImbPns3ChQv1bbRu3ZopU6bQtm1bf061ukWhJEksWLCA2bNnU1RUVONyUVFRtGnThoyMDNq1a0ezZs0ICwvTtYDhHdB0+qPtO3Yw69lnyejYkZUrVzLq6nEM7N+fKHtYtbCsABxat24dL730EqGhoUycOJEuXboCGh6PJ+i6m81mbDYbHo8Xt9vlCyMBVK8Xj8ejhwO0atWKTp06VXxPaWmpZgg0w86W+Dfa14lESxUAIFYFADmVZuyriHtR9H0m+IV0INGfEPgR685Foang9YLX4//x+lRTYV7Vp5cPIoj+hIGBzsvppKTwOKX5xeQfy6XgWB5FBYU4HQ4cDgcet7/T8lMwRZIwWa2EhIUSHmnHFhGBzR6BNTwMi9Wqx+mIggSoiLKMKEmIoqTXaRdrE9oYrsK+2e5KQrf2Cw9lJeB1V7/WZ6yZq+fWndseDSYrmK219IX+pLKWCgggigILVm+joNjZ4GEAtQGArl274nY7yMmxMO/XgAeAT6mpmlApZCwYAEjCG0ydcjHl5d5GJ9wqx7fWNXgNQG/DTl4UCYLAyy+/zK+//grAgEFDGDrsyhOWARQEAY/bzQfvvMUevwv85MmTGT169AlFTWMys9nMN99+y+w33gCgWXJz/jz5dixWS605EEyKwoLf5jP3px99f5vNTH/0Ubp27dqkqh/8ocatwL7sQxQUlyCJIpqmIUsiqc2bEWq11kscB/qYF198kUWLFgFwYZs23H3f/ThdHmIi7YTbwggNDaWsrAxVVZFlGafTyTvvvMNPP/2kbyshIYGpU6dy0UUX1ZoYUJIkvF4vX3/9NR9//HFQ7gBfXXe11nFzixYtaN++PRkZGbRq1YpI/wRgAAYYkKrx6iu73c5bb73Fxx9/zMAhlzN+/LXER0dRV+a5kJAQMjMz+dvf/oaqaQzo358xY8aQmpqKLMu6d1/Xrl2JiYnB6/Xicrl0QODxeNiyZQv5+fkAZGRkkJaWRk5ODrt37zYAgNEwz57wN9pXPR5n1QCAVDMAsEf7fssmX1I3UYIzcU69HnA7fQn/Ck/gKh7wFBAqZvJ9igRwu/G4nb6HlNdbAQ0kX+kSWRRBkvz5BTVUj6diAtcPM0R/eavTEn2S4nOFF0VwloPHdXqi1x7tO/+a5jtXZ0lAn3CfRMnn6i6ehNu0owzcjsZxDGfrPAm+doclrMb7R9M0tFALmiwiiSLLN+ziUF7pGQEAq1evZvr06fp7Tz75JF27dsXpLOXIUYWf516AT4N5kCQPYaHlKIoLr1fA4RD9+ThFEBTstnlMnTKA4mIHZWVlRn/7B7Ka3JmHDLuSywYNqQYARFHQ46dVVUOUREoKi5j9f6+Ql5eHKIpMnz6dHj16NDkPgNdff4Pvv/8OgE4XdWXcddf7Q36oQZSJHMvJ5e3Zr1FYUADA4CFDmDplipGQrRG387LycnZk7UeWJd0T2Gwyk5qciFzPkBVFUdi2bRvTp0+nrKwMgDvvvJPhw4fjcDj8OQUgMjKS4uJi3G637snk9XqZM2cOX331lb69iIgIpk6dSu/evYPG2AHxf+zYMd5//31++eWXoP3o06cPI0aMICsriw0bNrBz507y8vJqPfb4+HjatWtHhw4daNOmDYmJPi8FI5HgmdFIVYHRyZrFYmHZsmXMnDmT8Tf8iWFDr8AeFlIjtAl8Z1hYGG+99RY//fQzQ4cPZ/mSxeTk5tK1a1e6d+9O69atiY2NZcCAAXrOnKq2atUq8vLyKC0tRdM0tm/fTkFBAVdffTWC6sehlQWgIdAM8W8AgHNyQUD1BgMASQIEHwDYmwmlBaCY/SL2bMbEauB2gcvhix0/WZF4IuGu6v9VXin4PbGGReor8mQTmMzVz5mm+o7L4zo5AW+P8W3TYtXDNHCU+mDJuRTQ9mifu7/lFCttuJ2+4/ijQIDAtQy119xGNVBDzToA2LJrP9v25zc4AFAUhR07dvDOO+/o740bN86fxbcAVbWQlWWl3KHi9ZYTHl5GuK0U8CAIIqJowmSy4PF4CA0Jo/NF6Qwdejnr1q0zyub9AYVReXk5TzzxBFu2bAFg+KjRXHJpf1xuN4IAkr8fLC0txVFeTmhYKFZrCKIosTdrN++88RoOp5Pw8HBmzZpFSkpKk6kAIIoibrebp2fOZJ0/TnvQ5UMZdPkVtUIMWZL44btv+H3JYgDCw8N56qmnSEtLa1Lg4w/TxgUBl8dD9pEcysrLyTl6lE0bN6BpGpf0vYTu3S5CU7Va26zg9y4U/HHUL7/8sp7YLyUlhWeeeQa73a7PsAqCQEpKCkePHqW8vFzvTwMTEp988gmffPKJvv3Q0FC6detG+/btsYWH4ygvx+v14vV6WbNmDatWrQran0svvZQpU6YQ7s9d4HQ6ycnJYefOnWzatImtW7dy8ODBWttieHg4rVu31nMHNG/eHLvdrkMKI1Tg5LVRIPO+LMt6slqPx4Pb7T4l7zRBEHC73UybNg2TJYRJt99O88T4apGZgevUoUMHsrOzGTx4MN0u7sXUqVORUPnvf//LwoUL2bt3L5IkERUVRWJiIq1atSImJobw8HDCwsKQZZmcnBwOHTrE0aNH2bt3L0eOHCEhIYHevXv7Ql00nxkAwBD/BgBoDADA60bToKSkxJcgS1b0hxRH90B5cYXgPFemesHj9glm1esT0YHcAacqwALhCYFQBdGfe0BTK76rvt8RHu0PU1AqPCTqff49wcelqRWJOwL5EGSTLz9CTUH1Xo/Ps8DrhqKzKKLD/bP+ltCKqgync33Li315IYrOdxAgQEJqnedMtVQAgENHjrN864EzUglAFEU9n4sgCDidTsrKypAkiR49umO3h+Fxe/WoHlUFr1dDVb36gKSsrBSv14PT6SYv77ju+mfYHwsAFBcX8+ijj5KVlQXAmHHX0rN3H1Svisfj5vChg2Ru3Miu7dsoLikmKiqaDh070blLV3bt2sFnH84BoHnz5jz77LOEh4c3GfdiSZLIz8/nwQcf5PBhXyz/NddPoGvXHrg91QWUIssc2L+Pd998Q58BHjduHDfeeKNR9q+x9db+HGCoGscLijiYm0vm+vX89stc8o75xgdRUVEMGjSIwYMH06xZM1146+trGg6nE7PZjNlkYsGCBfz73//Wx8ITJ07kmmuuCQr7EASBjIwMsrKyKCwsDPJEDIjDzz//nDlz5px0e+nbty9TpkwJKiUo+L0dAwK+qKiIffv2sXnzZjZt2sSePXsoLi6ucXuBKirt2rUjIyODNm3aEB0djclk0sMEjFCBOoY//hCP+Ph4UlJSiIqK8o2//Z8dOHCAzZs36yDgZMxisfDOO+/wy/xfmXL3X2l34QXYQq1BYUmqqtK6dWs6dOjAxIkTmTPnQx6c9ig9u3VFknxaoKysjKysLLZs2cLmzZvZt28feXl5NQIim82GzWbDarUSHx9PZGQkFouF9PR0HwAICMLADWAINEP4GwDgXFwcv9gFPB4PkiQjKKYK1+SjWY0DANTca+JL+un/CbwOCOvg+p3BeQrqdTy+h75eRaDWEUIlkHCuz4fb6fMu0M6gkA6ENSjm+oOO+pqjzHcM5zsEiGvuO3+1AgAFTRYRBZHC4jKWbNyL1+s9K31YIJ47PDwcRZH93yvqMxSqquLxePRBbuVYUOF0Q2YMa7IAoKCggIceeohDhw4hCAJ/mvhnWrW+gG1bt5C5YQO7d+7A4ag+BoiNj8dqsbB/3z7AlwTvoYceQlGUJiMaFFlm567dPPzIw5SXlWE2m/nzbXeQktICT9UyWf58zZ9/+jEb1/m8BRISEnjmmWeIjY1tVCU0jXYtUlpWRk5ePhpQVFTMr/PmsmzJohqvU3x8PEOGDGHw4MHExcXh8XgoLSvjSO5xyh0OQiwKq1cs57PPPtfzW8TGxvL888/r8dSBMbMkSXTv3p0dO3Zw7NixahVJAhnZv/jiC9577716Q4C+ffty++23ExERUae3QmAmGqCsrIwjR46wfft2MjMz2b59O0eOHKn1O2NiYmjTpg3p6em0a9eO5ORkwsLC9HGmESoQrI/sdjsdOnQgOjqa7Oxs1qxZw8GDB3E6ncTGxtKhQwfi4+PZsGHDSXvXBUpNPvvss0ycfAddu1xEYkyUXgFAVVXsdjv9+vVj3fr1XNK3L526dmPKnXf6KgXoyZN9cEgURVwuF4WFhRQXF3Pg4CHefOMNMjpmMHz4cEyKQnh4OCEhPo/QPn36kJSUVNG2DADwx2vg51L8G+2rLtHo1QGAPjqRKwCAltOIAYBhtZvHDR4neNxoDSCmhfBo34y1bApqH2cMSrmd4PGA6mmQ/W9MJoRH+7wm6kiUqJkVkEQEBFweLwvX7aLM4W7wSgB186SaXTiDyheC0a8apscZP/DAA+Tm5iIrChkdO5Fz9AgHs7NPalsjR45k8uTJTS7+f9GiRTz33HMAREVHM/mOKYRH2KtVAFAUhW1btvDh+2/jcfsE2KRJkxg9erSR+K8xiX9BIL+omENHc9AQOHLoIHN//okd27YGXXeLxVIto37r1q0ZNWoUF7ZrR0m5C6fLRW5ODr/O/ZmNG9YH3TeTJ0/myiuvDBLjAQDQt29fdu/ezf79+2ssSRoQZZ999hkffvghqqpiNluQZZnS0hJiYuOIjIpCEkXiYmNIT0/nkksuwWaznRRoCngcSJKE2+0mLy+PrKwsNm/ezLZt29i/f3+t3gEhISG0aNGCDh06kJ6eTmpqKlFRUUYiwSrX2W6388YbbzBz5kwOHjwYtJzFYmHChAlMnDiRgoICPSdEfUyWZbKzs7n//vsZfMWVXNqvPy2S4nW44/V66dKlC8nJyYy/9jq++/ZbHn3scbp27ljndRFFEZNJITcvn/vvv58+fXpz5x134HCUo6q+yQJN1ejX/1LCw+01AwDwzQwbAs0AAAYAOEcAwF0p07Ig+mYmDQBwvtx9fhjgD2nQ1HoJaiE8kKxOrhD+5+T+CZSLDIRIaBWeH4E4iUAVCrfjnMACIdyflFGU9fwZ1YCGqlacP1E6YciEZlYqylOKIgvWbCe/xHlGwgAMM6whAMDhw4f529/+RmFhYa3LpaSk0LdvX1q0aMHatWtZvnx5teWnTp3KFVdc0aTEsNlk4uNPP2XOBx8A0Kp1Gjf++VZkRa7iiCbg9Xj44N232b1zBwBpaWk8+eSTJy3KDDuD4l8UKSgs5lBOLh6vl8wN65n3048UFFSEN8XGxTNqzFg6dmjPooULmT9/frW23Cw5mR69+mC3RzD3px84cviQ/lloaCh33HEH/fv3rxb2oWkasizTv39/jhw5wsaNG2sEAJXF+ccff8xnn31GSEgI3Xv2wuPxsnvnDnr26UuXrt2IjookOSHutAV35VABTdMoLS0lNzdXDxfIzMzkwIEDNcJjURRJSEigbdu2dOzYkTZt2hAXF0dISMgfNpGgKIq0b9+euXPnctddd9V5bQYOHMj9999fa7WH2rZfXl7OAw88QFLzFoweezVRETYURcHj9hAXF8uwoUOZN28eV155JQMHX851113nr3BRdzsRRJHy8jKeefpp2rVP58Ybb9TBraZpCILIxb16ERER4TsurRIAqCwODYFmAAADAJwD83rAVV4hWkTRV6pMBwB7wWEAgPPoZgTVX24xkGugcl23QC4ESWp619zrhvKSMw4BKuCIAori+93Ql0nxl7sERElk5eY9ZB8rNQCAYY3SZFkmKyuLBx98UI9pr/zs7dixI3379qVz585ER0fryakOHDjA0qVLWbp0Kfn5+bRt25YpU6YQFRXVZGYFA4LopZdf5tf58wHo2acvo8Zeg8fjDgIAJkVh9aqVfPnpx2iahiiK3HfffQwcOLBJlTw8Xy3g+l5YUsLRnDzyjuexeNECli9dGgRn0jM6MmToMDp2SCc+JhpVU8nKyuLnn39m8eLFlJaWVgNklddPTExkypQp/oorzmpiTtM0TCYT/fr1o6SkhP/97391jl9FfznCd955h++++47IqGjGjhuP0+lk/tz/0LJVay4bMoTUlObEREZSVxm4UxGwgXAEWZYpLy9n//79rFu3jtWrV7Njx45qfULA7HY7rVq1Ij09nQ4dOpCSkkJ4eDiiKP5hEgmKosixY8d46KGHyMnJOeHyt9xyC2PGjKm3h1Sgf3r88ccpLitj4i234VW9gIbb7eGy/v3odlFnBg8ZwpYtW5h6z72EhIb6l8GnDYTK0xoVr0R/fovZ//dvWrRsxYhRo3G5nICApqnIskJG566EhYXp/bkBAAwAYACAxmIeV3UAYA41AIBhTdNUFZxlvsSWJwEChPBo3wy+YvLNzqtef5UGr+414ZvpN/k8ZE436eFJAoBte7LZciDfAACGNdpBbHFxMdOnT2fPnj26yOnVqxc9e/YkLS0Ni8VXMUIfCPrLmgUGwPn5+cTHxxMSEtKkXIJFUcTpdDJjxgy2bvW5hw++Yhh9L+mnJ9n0qr78HaUlJbwz+w0OH/K5+Hbp0oVp06Y1qXwH520bFgRcbjc5xwsoLSsnK2sPP3//HXuz9ujLWKxWLht8Od0uvhhbmI3mSfFYTCZd5ANs2ryZL778io3r1+N2V/di6dChA1OmTKFFixa1Qp8AALj00ksRBIHFixf7MqjXMYYNuOe/9NJLLFq0iITEJG66ZRIet5tvv/oCj9fLyNFj6HJRZ6LsZy7BpiiKWCwWzGYzmqaRm5tLZmYmy5cvZ926deTm1lza2WQykZycrCcSTEtLIzY2FpPJdF6HCphMJhYuXMjzzz9fr+VjYmKYNWsW8fHx9fYYMplMvPLKK2zYmMmkO6YgiAKaquL1eOiY0YHdu3byyEMPMnzkKLr16InT4UBVVbz+EtqqpqKqXr9rv4amqX5PDZ9U+Om7b4mJjaN7z564nE59GVGUSGnZCrM/GWQ1ABBo7IEHgmEGADAAwFk0t9MnmIRKAMBiqwAAufsMAGBYEwQB/tAWj9sn4IuP1yL8YyrKNdbWxgNucGflHvA9CzVZ8t+DAqIkciQ3n9+3ZSMZCfYMa8RCePeePaxetYq4uDg6duyo14kODODrWlcUxSY5yJdlmQ0bNvD0zJmU+2c6w+12wmw2oqKiadc+nbbt07Hb7fz26y/854fvATCbzTz66KN07drViP1vBOLf6XZz8GguxSWlZG5Yz9yffqSosEBfJiExkRGjRpN2wYW4PG7ioiJJiI3R9UtAEOUcz+dY3nGy9uxm+e/L2Lc3ixJ/fHy/fv247bbbsNvtdc7gapqG2Wymb9++hIaGsmjRIvLz82sNA6jcFouKipg1axYbN26kbbv2XH/jRDRN5acfvmP3zp1cNXoMgwddRpjVcsbutcqazmKxYLPZMJlMFBUVsWPHDpYvX87vv//O7t27a92HmJgYLrzwQjp06MCFF15Is2bNCAsLQxCE8yqRoMlkYs6cOUElHU9kM2bMoGfPnvXuN8xmM2+99RZfffUVsfHxviGSqoKm4fWqFBUVonq9hNvtvvzZqopX9UMXr69P9sGGUz/fkiShKIoBAAwAYACARmMuR3UAYLXpYscAAIY1/Q6oSg6BgJiXpDPivt8guyyL+j0pigKFJeUs2bQPj1c1+jHDGq1JkqSLlMql0M5XC3gxfPTRR3UO4FNSU2mfnsHK5b9zPM/nmTRgwADuueeeoDGwYefmGnq9Hg4ezePQ4cMs+G0+K//3e5Aw7dylK4Muv4LY2FicLhdmRaZVSjImRcHrd1O3Wq3k5B1nX/ZhRElAkRVCQyz88vOPzJs7j9GjRzN+/HhMJlOt2fcrj5lNJhN9+/YlLCyMtWvX1poIsCZBeejQIZ544gkOHDjAJf0GMHzkKLyqytJFC1i6eBFXjhjJ1WNGocjyGQduAaEuCAImk4nIyEiioqLQNI2srCz++9//smTJEjZv3kxJSUmN2wgJCSE1NVUPFWjZsiURERHI/v1vyt4BJpOJt99+m6+++qre69x///0MHDiw3gBAURRWrVrF119/hSwrQRV9fPcAvko/fhgmyxKiKOkeWrIs6wJekWUUkwmTyYQsy7qHRiAhpiSKSLKMKIrYbDa6dOlCSEiI/nk1ABBoJMbAxgAABgA4y+YsqwAAmh8AhNorAMAxAwAYZthZ7zPFCgAgCAJur5cF6/dQ5jy7lQAMM8ywE0OP9evX89prr5GTk3NCcQcQHh7OU089RVpaWpOqdnCeEgAO5xxj3fp1/PLzz8Eu/xYLA4cMpWev3r6kaf4kdYlxMcRE2tEQsIeH07x5cwoKi1i6fAXFJaXIiowsiixfuphFCxcybtw4RowYcUJPmNoAwJ49e+pMBFjVzGYzmZmZPPnkk5SWlnLNdRPo1uNiNFVjzaqV/Pzjd1w1ajTXXnM1wFkVz2olYJKcnExKSgqCILBr1y4WL17MggULWLVqFYcPH671fgskEgx4B8THx2O1WvVEgk0JBphMJj765BM+mjOn3uucrAcAoJfnDeigmjwoAjkwqi5bEzQ7kXm9XiIjI+ndu3fwugYAMACAAQAaCwAo9dVeD5wbwQ8ARKkSACgxAIBhhp1VAEBQ1QVRFFiwfhf5pS4jDMAwwxqdhhTIycnhyJEjFJeUcryggIKCArZt2cK2rVuqQYExY8Zw6623nlQ2b8Ma3mRZ5vDRHL7/4Uf+++svlFaagW6e0oIhVwwj7YI2/hhoDVXTCDGbSUlKID4+jrS0NOLi4ti9J4uf5v1CSWkZFrOZ0tIS/vPD92zfuoXb77iDAQMGBOW/qM+YWVEU+vbti81mIzc3l6VLlwYBgBONZy0WC/PmzeOlf/2LsPBwbr5lEs2SmyMIAmvXrOaHb7/i2uuuZ+zo0We1HWqV6s97vV4kSSI2NpZWrVqRmJioewasXLmSJUuWsGTJEnbu3Fmr2LXb7bRu3ZqMjAzatWtH8+bNsdt9ZedcLheqqlYTto3JFEVm9boNzHqmIoSoLouIjOS5554jKTHxpD2s6quBGqIteL1eoqKi6N+/vwEADABgAIBGaeUlwSEAggChEXqSMy3PAACGGXbW+8wqfZUoiazeupf9x0sNAGCYYY3QAu6ygiD4kmepKg6Hg+3btjF//nzWrFlDWVkZaWlpPPTQQyQkJNTLW8CwMyW8FA5kH+Td995nxf+WBX3Wo2cvBg8dhs1mw13lGiXGRtMqtQU9e/bEbDazMXMTc+f/htPtxmqxcPTIEb747BMcZaXcfffdeo6HukRV5dnYwGtFUejXrx82mw2Xy8X69evJycnRM/4H4uAri7vAT+BvRVF49913+eKLL2h9QRv+dPOfUcwmZElm1YrlzP3pR6ZOnUK/Sy/VExJWHSdX/ruuMXTl/a96TDXdK7IsoyiKHjZksViIjY0lPj4es9msL5ufn8+GDRtYvHgxixYtYuPGjRw/XnNOH5PJRPPmzencuTOXXnopvXr1QlF8Lu8lJSW1rncuTRRFHE4XH37yKd9//eUJlx899mom3nRjvXMgnCvA6PF4iIuL49JLLz0xADDMAAAGADgHVlYcDAAAQsLBZDEAgGGGNRYAIIps33eIzQfzDQBgmGFNwAJiTJZlXC4Xu3bt4vDhw7Rr1+6kMngbdmZgzY6dO3n11VfZs3u3/n5oaBgDBg+mV+8+CKKI11sxY69qGmEhVtpf0Jo+ffoQEhLC+vXr+e/iZZQ5nYRYLOzYvo3PPv6I+NgY/nrvvbRq1arWTP8Bb4CAAFYUBYvFgslk0gVx27Ztg2b9CwsLEQQBVVUpLS2luLiY4uJiysvLcTqdOJ3OoNhuSZJwuVz848UXWbF8OYMuH8rlw4ajqSqSovDfX+axZtUKHn7oYdLSWuvrB7wVAnk8KsfZB4RnVVf7wAy7oiiYzWZMJhOhoaHYbDZsNhuhoaF6dQCr1YrZbEb2x4qfjKjcuXMny5YtY8GCBaxYsYK9e/fWKHJtNhvvv/8+I0eOBKC4uJilS5ficrkanSeAKIocLyzi22++Ze7PP+Fw1KyXLunXn9smTcJmC9P7j9rkdABG1gfenI42qm1dr9dLYmIiPXr0MACAAQDKjRPRyMxqtSKUF4HTUQEANM2XET00wvfnsX3gNACAYYadawBwNK+A33ccQjRApmGGNTkYEPAQ+CMkR2zMJooi5Q4ns2bNYt3aNfr7zVu0YNiVI0htlYaq+Uqe6f0xIAmQkpRIWutWxMbGcuTIEdZs2EhhcRkmRWbF8v/xw7df061rV/7yl78QExNTq9u6KIqEhoYSFRVFVFQUFotFr4QRAEeBRG01zfIHhLaiKDpMcLlcOggoLS2lpKQEh8OBx+Ph119/5YUXXsCrqvQfOAhRFCh3OHA6ylm/di0RERFc2KYNZWVluN1uPB4PHo9Hb6uB15UT+gWSw5nNZmw2GxEREYSGhmK324mMjMRutxMXF0dCQgLx8fHExsYSGRnpSxTnhxoB9/zK262cFL7ysUuSRFhYWNB5PHz4MGvXrtW9AzIzM3E4HPrn99xzD3/5y1/weDwUFRVx9OjRRhtyI4oibq+XLVu2sXLlCvbt24fL6UQxmYiKjiY9PZ2B/fsRHmZD1dQgDwqz2ezLsO/vZwIQJgCXKreryl4ildtUXYI+cC1OFhQE2ogBAAwAYJyIxggAygp9lQCq3tiyGQ0VinMryqAZZphh5wgACBSVOFi8xagEYJhhhhl2SiDG37fuyz7Eu2+/xfq1a5Akia7de3DZ4MuxR0T4XOurrKdqGrGRETRLiNOFee7x4xwrKMLr9jB/7n/4feliRo4cyYQJEzCbzXWGd8iyjNVqRZbloNn0gOAOCOLKUqmySA4IPVmW9QztlStwBLwEVFWluLiY+fPnszEzk9+X/Y7L5aRdhwwkQUAFJFFk29Yt2MLC6NChA6qq6sItIDIDgtJqtRIaGorVasVqtRISEqK/FxISoi9fVfRVDXE4VYgWGhpKQkICSUlJ2Gy2oM/Lysr8me6/Zs2aNYSHhzNy5EgSEhJ00FDfJIrnDAIIApIs4/WqON0uVFVDEHzhKmZFwW63Y7PZgs5/wGukMY4JaoKdBgD4AwIAwxrpA7G0BgAQeOlxo7mKKr1hmGGGnQsAIAgCHq+XBRuyKDUqARhmmGGGnZLAOnLsODl5eRTmF7Bjx3YioyJp3foCJFnyz7hXH79aTAotmzfzCS2gpKycg0dzyc3N5buvviB7/z5unTSJIUOG1DsLfWB2v66Y+/qOrWsbYwdgQWCm+Icff2LOnA8YOfZqOnfuisvtRJZk1q1by+IFvzHj0em0aJGC2+2u5kJe2/fX9HOmxv2Bc2axWIiKiiI2Nlb3PAjkDdA0jdWrV3Pw4EEURWmS5QGrzspXhj+BGX1RFINeVw4fkSQpyEuj8ntCUHLhim3U1P4q55Ooa18re29U9twwmUy6l4oBAIxhbdCvoPc1zf8b/2vV91pV/e+rvve1KstW3aZQ81caVot53VDj7SiA6kZzFhoAwDDDGgEIEEWBhet3klsSqASgVRmMnWSHd7LLG3ZeWWObMWpM+2Ocm/NT/OcXFXPg8BFUVUOSRGTJNwPv8Xqq9KPBIjc5Po6YqAg0fJUADufksSkzk2+++gJbWBi33XYb6enpOJ3ORu1i7nK5+PCjj8nMzOSmW25FkmVf9WcEPv1oDkmJiUy58y+6F0KjfS76vTCAoDAEs9mM2WymtLSUI0eOnJ9jghoAS03XqnIoRdU+JAAUAvDgdPqaqqEaurTweklPT6dNmzYGADCMSqK96t+VRX3gR/WJf63Sj1et+ExvQpoxhj29kUVtHxgAwDDDGtOtKops3LWfQ0UOFFFEFAUUUcAkiyiSgMVswRwaicVq9VF3UfDd34KIV9V8XaZAcMWPwL0OJzVrdTrLVB68ne4yp7svlZepbeBTkztubds53X0JuAPXdxB4ut91uue3obZT3++pz3ZONICtbx32s3VuGuq4T3YbjRUqnIn9EgWBMoeTfQcP4XS5/aJH0/s+32ypEJT0L9BWwsNCadEsUZ8tLS13MG/ePBYvXEC3bt0YNWoUdrv9pGqyn6vzJYkiBUVFPPvss3S7uBft0zvg9niQZZnsA/v59ssvuO+++2hzQVqTqVBRU//cWEv+NWag0NDm8Xjo2rUrLVu2NACAYacKAKrCgMoAwBD/Z/CxYgAAwwxrZKZqPiEvSyIEDXA0UMxgjdZFvw8AiP4foeK3cT8bdpYHkGdLdNd3XxpqO03lmPbv309RUVGQKGoo+NCYtxUwr6qSdeAgRSVlvvCpyh6jmoYiy3i8VRL/aRqyJNGyeTNsYSF4PB4KCgrYtn07x3Jz6dixIxdccIGeJK9yMruGOsaTEcD13Z7ZbObnefNYvXotI8eMwe32gCCgyBLffPkFLZKTuemmG09YutAww04EAHr37k3z5s0NAGCY3gudGgCo9rcBAM4ZAAice8MM+0PeGuK5vCv9g1ZQg2Z+NATZjGCNOjEACPIAEGrYuGGGGWbYyQzrGi9MEATIOnCYXfsPIFKpzxNAU1UsZrMvUbXDETSbrqoqrVok0zK5GYIATqeTvLw8TCYTsbGxvrwsVWbJGzMwCQArURQpLinh/gceZMCQK0hulozH60FRTOzcuYN5P3zLq6+8jN1ur3Vb9fFSqi8gayjPs4bcVn33vyG3Vd/KIA25X/UN9TgVCOn1euncuTORkZEGADDsVACAFhwCoGmVcgJotUMAoWLzhp2G1PC6QBZAMgdfM8UComScIsP+mF1Y4RFwlZ8VEFA5B4BQ5bGp1QUAxJqEvwEADDPMsD+WOV1uVm7cTGlZebBbuAaSJGIPC6OguNg3+y8ExIxGhC2Ubh3bI0vn51jnk08/Y/uefQwcfDlOl9OXIA6BD995k1sn3kifPn2MxmNYwysLAwD8oYfPwcK88myyVjXZn1oDCKiyTH2Ufi057ur9eU3LCFRPPHgq33OyyzTENuq1jN8DwBHsAaBpGmJcS1CsRlM27I/Zg+XtR3OWgCBWE+X1Ee7VxXv9ljnBUxVBsiCERFWI/Npm/wPCv6rgNwCAYYYZdp5ZSVk5u/dno3rVamOgEKsFQfAtExRLr0FyYhyxUZHn7Xk5duwY737wIQMHX44oSYCGIits3LCOssJ8br31VqPxGNbg9v8DAITg7TZNyySoAAAAAElFTkSuQmCCAADOdS6+mYWYPylwr7ziPSi+RpaXP179CL34akG+WwCXPwQICb2mmUm+sleYP9n+7Lw12De+MQuaP3IfdbwQuFG+wK+ZP5f/Cb2A/EC+tZKbPxk/sbxEQRy+tUOaP+f8r7z7viO+Z1qZP2TclbxU2i2+/v6aP1PGOLwciyW+r8ebP0FQdrxhuje+3aScP8LPl7ySqS6+xkudP/jIsbxkPxa+p1CZP/DvCL1AUR2+e12YPxT8Ab3w+A6+lCKcP77297xXcAm+vjGbP6BRGr3BxxW+MkOdP9Tq1LyHmBy++WCePzxL+bzLryC+jlGWP5rTlL30wie+JpOXP3ZIqL3t90C+1/6WP81Nqb0wkzq+H+2VPx+dkb1gHzi+FoGVP6tEbb2a2hy+QaaVP086bL1+1Tq+z+6VP6uPN700+yC+eVOWP3QxL723hw6+RBKYP6dalL16xRS+XPWWP54Il735kxC+RzuWP6/Ka72CpQq+oGeXPxKja73bFhW+bveWP1nxKb2v0g6+LRSYP6/1Lr00xRW+hE2ZP525p70wzhy+JlqYP8Rpq7292wS+VHeaP8REkL1gFwm+DTGbPxkEn72iZwS+2UiaP0OHb73wqAa+mbOaP+SbQr1vY0C+oJObP2kKwr2KQEa+GZqcPyoJqr0Smli+veKaPwndlL0uzFG+5caZP3Bwq70TQUm+qF6YP3STs70g/za+qwWaP3nizr3dvS2+64CYPyc2wb2y8i2+H0edP43uwL0h8za+zJ+cP2m7x70T7yy+AvmaPxka1r0csyS+McKbP+ojzr209yK+VlWZP4k+x71dihu+Dj+aP4l7wL1cxjO+jT6ePw91qL0CCD2+EamdPxxfrL12Dhy+dl2ePzxurr2dciG+ECifP0CAnb2pJxW+ID+dP9Iwt73ebg6+EB+cPx4Zrr0gIE6+AMOdP7moMb05aEa+Eo6cP012Cr31Vli+EMyaP7TMOr2VIlu+G0ibP5fncr0HMlK+2W+ePzy7b72VIlu+G0ibP5fncr14GU6+ps2dP33mlr3bsTu+AHifP10mMb1H9kW+7gOfPwtULL3vQ0q+c7ufP5Sdbr0hoT++byGgPxs5br0hoT++byGgPxs5br25r0W+1wOfP9JbmL3cZju+GHafPwdzlb2eQDS+qUGeP9JmCr3nfD2+06mdPxCOA70Jkya+ZwugP0kyQL2p0iG+giqfP4IDH70BIym+cn6gP05hbb2NWya+/QmgP5Ymjb3hPSg+RJaXP/38CL3NdS4+l4WYP1hvr7z9akE+WQCXP5EHCb2qmUk+sVeYP+n97Lw02Dc+LwuaP7QddbwPuFE+vq+ZPxn/Cb1+/EA+spKbPy4+sbxT2i0+/P6aP6vEOLz5viM+ZVqZP6PblbxCQRw+s0OaPyv8r7wTiyU+rcebP6xOdrxgujc+26ScP9rOl7yQqS4+xEudPyHIsbxGUR0+eV2YP7f7Ab1oPxY+plCZP5XvCL1UcAk+vTGbP1BRGr31+A4+kiKcPw/297zAxxU+MEOdPxTq1LyNmBw+92CeP3dK+bz390A+1v6WP5RNqb3+wic+JJOXP0RIqL3OryA+jVGWP23TlL07kzo+Hu2VP+mckb1lHzg+FIGVP0JEbb2e2hw+P6aVP/U5bL2E1To+ze6VPz2PN703+yA+d1OWPxgxL738kxA+RjuWP2HKa72ExRQ+WvWWP3QIl727hw4+QxKYP31alL2FpQo+nmeXP8Oia73fFhU+bPeWPwXxKb2y0g4+KxSYP131Lr07zhw+JFqYP5Zpq709xRU+g02ZP2+5p71qFwk+DDGbP/ADn73H2wQ+UneaP5tEkL2lZwQ+10iaP/WGb73zqAY+l7OaP5KbQr0Tmlg+u+KaP8fclL2VQEY+F5qcP+0Iqr2AY0A+n5ObPy8Kwr04zFE+48aZPzNwq70dQUk+p16YPzmTs70q/zY+qgWaPzzizr3nvS0+6YCYP/U1wb0c7yw+AfmaP9wZ1r0q8zY+yp+cPyu7x7288i0+HUedP1juwL0tsyQ+L8KbP7sjzr3E9yI+VFWZP1g+x71nihs+DT+aP1l7wL0LCD0+D6mdP+FerL1lxjM+jD6eP9h0qL2gciE+DiifPw2Anb1/Dhw+dF2ePw1urr26JxU+Hj+dP6Ewt73obg4+Dx+cP/IYrr0+aEY+EI6cP9B1Cr0lIE4+/sKdPzioMb3yVlg+DsyaPy7MOr2gIls+GUibPxDncr0PMlI+12+eP7i6b72gIls+GUibPxDncr2EGU4+pM2dPz3mlr30Q0o+cbufPxSdbr1L9kU+7QOfP45TLL3gsTs+/3efP+YlMb0moT8+bSGgP544br3Er0U+1gOfP5RbmL0moT8+bSGgP544br3nZjs+F3afP8tylb3mfD0+0amdP5mNA72dQDQ+p0GeP2FmCr2u0iE+gCqfPx0DH70OkyY+ZQugP94xQL0NIyk+cH6gP+Fgbb2QWyY++wmgP2Amjb3+UUY+BZiePw6znL15oEg+zWaeP1Xoor153Es+zWCeP5rYnr0EZUk+95KeP9DKmL18t04+nUueP2AImr35w00+73qeP6Rrlb17U1I+yUKeP54mk71FY1A+nYaePyDHjb2Vu1M+XjaeP5dKib0TKlI+Y2eeP8Jghb3b5VU+kiieP2mAf70vSFM+aW6eP06Cd720blU+OBiePyoEar0LRVM+iUqeP9WfZL2Ks1U+PgOeP2n0VL0XhlI+dUueP4XNUL0iWlM+2uydPzsQQb0L61A+ZB+ePyBXPr0L61A+ZB+ePyBXPr0iWlM+2uydPzsQQb1JGlI+hMydP14aLL387k4+thaeP3NLK71ExE4+962dP3BdGr3BcEw+4OKdP2kBGr2ctkw+1omdP1YSBr1430k+rtidP+BYCL0B30g+aW+dPwq17rx7wkY+8KedP8II87xN9kU+TFKdPyfKyrzSeUM+NaWdP+491rznp0E++kGdPwX/tbyE5j8+Xn2dP70vv7wZ9D0+kC2dP50Gmrx4Jzw+YIOdPy6/qryAzTo+FjOdPx6okbwwezo+2HCdP3fznrx5oEg+zWaeP1Xoor0qAEg+dwWeP7ohoL1vmEo+aACeP43xnL153Es+zWCeP5rYnr05NEw+vBSePxm6mb18t04+nUueP2AImr0FGE8+hAyeP1HEkr17U1I+yUKeP54mk73PP1E+9AKePxWeir2Vu1M+XjaeP5dKib0vsFI+XeKdP0m+gb3b5VU+kiieP2mAf701NVM+m+idPzfyb720blU+OBiePyoEar3U3lI+0MGdP7DsXL2Ks1U+PgOeP2n0VL0unlE+hcKdPwuXSb0iWlM+2uydPzsQQb0iWlM+2uydPzsQQb0unlE+hcKdPwuXSb2h008+KpKdP8Y4N71JGlI+hMydP14aLL0biU0+/oidP3m5JL1ExE4+962dP3BdGr13CEs+qFOdP8KBE72ctkw+1omdP1YSBr1VOkg+J0udP+i+Ar0B30g+aW+dPwq17rxuQUU+KxudP1W457xN9kU+TFKdPyfKyrz8v0E+IhydPx5kzbznp0E++kGdPwX/tbzEID4+8vWcP+H5t7wZ9D0+kC2dP50Gmrz+8zo+OwudP768p7yAzTo+FjOdPx6okbxvmEo+aACeP43xnL0qAEg+dwWeP7ohoL3+UUY+BZiePw6znL0EZUk+95KeP9DKmL05NEw+vBSePxm6mb35w00+73qeP6Rrlb0FGE8+hAyeP1HEkr1FY1A+nYaePyDHjb3PP1E+9AKePxWeir0TKlI+Y2eeP8Jghb0vsFI+XeKdP0m+gb0vSFM+aW6eP06Cd701NVM+m+idPzfyb70LRVM+iUqeP9WfZL3U3lI+0MGdP7DsXL0XhlI+dUueP4XNUL0unlE+hcKdPwuXSb0L61A+ZB+ePyBXPr2h008+KpKdP8Y4N70unlE+hcKdPwuXSb0L61A+ZB+ePyBXPr387k4+thaeP3NLK70biU0+/oidP3m5JL3BcEw+4OKdP2kBGr13CEs+qFOdP8KBE71430k+rtidP+BYCL1VOkg+J0udP+i+Ar17wkY+8KedP8II87xuQUU+KxudP1W457zSeUM+NaWdP+491rz8v0E+IhydPx5kzbyE5j8+Xn2dP70vv7zEID4+8vWcP+H5t7x4Jzw+YIOdPy6/qrz+8zo+OwudP768p7wwezo+2HCdP3fznrz1tza+eU6VP/RTVr3k6TW+mzGVPwekbr1g1DS+l32SP1Xla71BSDi+svSSP6t8R70NPDa+pkOVP52lg70y+ja+IuaSP61Lib0NPDa+pkOVP52lg70i5ji+QGuTP0ASiL0qJzu+PkCTPwTLlb1dgju+LnyTP2sAqb0tmTu+zVOTP2Hvmb3Yozi+mbCVPyiymr0+rjq+fAmWPzv/pL2nFz2+lMqTP+SbvL2kkT2+t4SWP8LNrL1HLUO+z7eUP4Tkw72kkT2+t4SWP8LNrL0klEa+cRaVP9VGtr1NyEi+MFeVP/2Zx72A/km+GIqVP2R4yb3gGFC+uZSWPzdyxL1XRUS+sp+XP2E2t71XRUS+sp+XP2E2t7079ke+QDqYP6Cfub0s2VG+6ieXP4YV3L2LmUy+i0CWP1I70r3UuUu+cNaYP2VWuL1gnFe+uBOYP4oe1L3UuUu+cNaYP2VWuL2+ylW+lLSXP4lVx714Aly+DayYP9VCzL2yRl2+f+CYP6DFyr2n2GC+ZHuZP/Khtb1PzFK+rfmZPxACsL1PzFK+rfmZPxACsL0k+lW+ZHuaP/Qdqb30N2e++qyaPw4aw73+N2G+Q7SZP5MNyb1iaVi+Ed2aP9h9n72XwWm+6QebP/QBsL1iaVi+Ed2aP9h9n73nOma+2OqZP1Lcrb1D0Wu+0hObP0Etob1u5W2+ZdKbPznnkb2pamy+JiqbPzYwnb2FtVu+XV6bP89Nib3GdFy+fYObP35Uer0OIHC+q4+cP4ZKgL1rH1y+OnObP0CvYb1lLG6+Fi6cP9M9Wr1rH1y+OnObP0CvYb2zLGq+U7SbP7fbZ71+nGy+AJubP7VHP727cmu+D0ebP7mAF71XWmy+9HObP8D6Nr1Xylm+1/uaP8KKM73wv1e+9KKaP6HwHr09K2q+D9qaP4AV47yF3FS+uSeaP4pTD70Ji2S+FuaZP5VKxbyF3FS+uSeaP4pTD73ZUWO+PbKZPyC7/LxgKGG+xhKZP+rstrw7xFq+c3OYP/LFhrxv8F++PuCYP5xVr7zYKE6+vQyZP5kE9bzzd0q+L3KYP6xf67wHAlW+hZGXPzvCPLxntEa+99WXP52E8LyGGU++6aCWP8E1fbxntEa+99WXP52E8Lwr0lG+YOyWP2ZDs7zhzEq+eeuVP1eEnbzCH0K+TRaVP4mVo7x++ki+kbqVP4Y0obwHVz++8bOWPwNICL0mNjy+CzKWP38sFr0qozy+EBiUP8HBwbzbATq+bc+VPw/tKb2Fnju+WauTP18JCr0JZD2+r2iTP2dPKL1zwzy+oFGTP6U7ML31bze+IHqVP+Qrj73Yozi+mbCVPyiymr0wCUK+HyWUP+BAor1mBTy+je+TP9uKlL1960C+NBKXPxICsr1XRUS+sp+XP2E2t73gGFC+uZSWPzdyxL2Fvke+oOiVP1sIwL2Y9k6+N1eZP2sisb1PzFK+rfmZPxACsL2n2GC+ZHuZP/Khtb1Yllm+7c+YP851wr1rD1q+vB2bP9RllL2FtVu+XV6bP89Nib2AbWq+h4ybP7QXib14u2a+7BCbPyMfm73h9Fq+iTebPwGdSr1Xylm+1/uaP8KKM72wvGe+DXeaP4nsHb0GjWe+fU+bP5l1Qb2yglG+O5qZP+zqBL3YKE6+vQyZP5kE9by4kVi+3v6XP0A8ubzraFy+1A+ZP+FV1LyuBUO++ESXPylFAL0HVz++8bOWPwNICL0hS0a+cjeVPybo5LwuAEq+0ieWP4+10LzlXDi+846VP4QgQL31tza+eU6VP/RTVr1h+jm+f1KTP0AgUb3NNTy+gw2UP90pMr1XWmy+9HObP8D6Nr2wvGe+DXeaP4nsHb1Xylm+1/uaP8KKM71+nGy+AJubP7VHP71gKGG+xhKZP+rstrxv8F++PuCYP5xVr7y4kVi+3v6XP0A8ubzYKE6+vQyZP5kE9bzhzEq+eeuVP1eEnbx++ki+kbqVP4Y0obwhS0a+cjeVPybo5LwHVz++8bOWPwNICL3bATq+bc+VPw/tKb2wxUG+5V2UPwh8Fr0JZD2+r2iTP2dPKL1zwzy+oFGTP6U7ML1h+jm+f1KTP0AgUb31tza+eU6VP/RTVr0qJzu+PkCTPwTLlb0tmTu+zVOTP2Hvmb0wCUK+HyWUP+BAor3Yozi+mbCVPyiymr1NyEi+MFeVP/2Zx72A/km+GIqVP2R4yb2yRl2+f+CYP6DFyr1D0Wu+0hObP0Etob14Aly+DayYP9VCzL2pamy+JiqbPzYwnb2AbWq+h4ybP7QXib2FtVu+XV6bP89Nib0wMCO+EmyVP9K7qr3Yozi+mbCVPyiymr1y3yK+0ESVPx82m71y3yK+0ESVPx82m73Yozi+mbCVPyiymr2Liya+e2KWP6Qbp71R+yK+kTGWP/ZSlL2Liya+e2KWP6Qbp73Yozi+mbCVPyiymr31bze+IHqVP+Qrj720aiK+KDCVP2PXlr39oiK+e7GVP4Sogb0NPDa+pkOVP52lg71+tR++gM6UP15lib20aiK+KDCVP2PXlr0NPDa+pkOVP52lg70nPB6+h42UP2BUar3k6TW+mzGVPwekbr2GfyC+IOCUP1D3Qr31tza+eU6VP/RTVr2ouCO+Qk2VPx66Kb2ouCO+Qk2VPx66Kb31tza+eU6VP/RTVr2TGCO+uruVP9naVL2zDSS+SDmWP0+zL72TGCO+uruVP9naVL31tza+eU6VP/RTVr3lXDi+846VP4QgQL3SWCS+t2WVPyFQIb0wdSi+JI2WPxHBDL3bATq+bc+VPw/tKb1nRSW+ipqVP1HIAr3SWCS+t2WVPyFQIb3bATq+bc+VPw/tKb0mlyi+AyKWP50mvrwmNjy+CzKWP38sFr05bC6+Nw2XP6TcmbwHVz++8bOWPwNICL2XeTO+e8qXP7eWkLyXeTO+e8qXP7eWkLwHVz++8bOWPwNICL3JyC2+52SXP0vS2ry3LzK+cFuYPxzWsrzJyC2+52SXP0vS2rwHVz++8bOWPwNICL2uBUO++ESXPylFAL3Z0DS+sAGYP5BFirwSWDm+VkGZPzFGnbxntEa+99WXP52E8Lzgpji+ebKYPwZYU7zZ0DS+sAGYP5BFirxntEa+99WXP52E8LygyD6+67OZP4kyK7zzd0q+L3KYP6xf67wLzkS+F62aP84EYrzYKE6+vQyZP5kE9bzK50i+JEebP0tmlrzK50i+JEebP0tmlrzYKE6+vQyZP5kE9bxLWUC++WSaPw/1qLx0lES+l3ObPwb5xbxLWUC++WSaPw/1qLzYKE6+vQyZP5kE9byyglG+O5qZP+zqBL0SLUq+zXybPzFLnrzhPEu+tjCcPyqa7LyF3FS+uSeaP4pTD72Pf06+W0acP/45rbwSLUq+zXybPzFLnryF3FS+uSeaP4pTD7190FO+5CudP0I/2Lzwv1e+9KKaP6HwHr2diFa+JaCdPxCnEb1Xylm+1/uaP8KKM72CdVe+Z7idP/C9ML2CdVe+Z7idP/C9ML1Xylm+1/uaP8KKM70p6k+++fmcPyWqGL18QlC+D3qdPwr/Pb0p6k+++fmcPyWqGL1Xylm+1/uaP8KKM73h9Fq+iTebPwGdSr1B6le+EM2dP3J7Ob2s0lO+AKudP2qQY71rH1y+OnObP0CvYb1MA1q+uT2eP/5TVL1B6le+EM2dP3J7Ob1rH1y+OnObP0CvYb3nXFu+vYGePwfIfL3GdFy+fYObP35Uer04OVm+ICyeP7QTkr2FtVu+XV6bP89Nib0UtFa+ra2dP+24nr0UtFa+ra2dP+24nr2FtVu+XV6bP89Nib0UXVO+wqCdP1ADib3XEk++n1+dP6P6mr0UXVO+wqCdP1ADib2FtVu+XV6bP89Nib1rD1q+vB2bP9RllL3nE1a+N5WdP+7tor18AE6+UM+cPzYQrb1iaVi+Ed2aP9h9n71cc1S+rnGdPzgrsr3nE1a+N5WdP+7tor1iaVi+Ed2aP9h9n73mAVG+QO2cP4kExL0k+lW+ZHuaP/Qdqb2STEu+AP+bPzMYzb1PzFK+rfmZPxACsL1d20a+vTKbP3Nvz71d20a+vTKbP3Nvz71PzFK+rfmZPxACsL3trEi+jPebPyW8vL0ZUkG+jjKbP09xw73trEi+jPebPyW8vL1PzFK+rfmZPxACsL2Y9k6+N1eZP2sisb0UhEW+h/uaP7cD0b04Lz2+Wx6aP7xEyr3UuUu+cNaYP2VWuL3kEUG+vlmaP2Ak2b0UhEW+h/uaP7cD0b3UuUu+cNaYP2VWuL1t0Dq+WVuZP+In3r079ke+QDqYP6Cfub256jS+H1+YP8dO171XRUS+sp+XP2E2t70ibTG+FLaXP4D7zb0ibTG+FLaXP4D7zb1XRUS+sp+XP2E2t71nHDa+fPeYP28zyb2qDi++MjmYP62vwL1nHDa+fPeYP28zyb1XRUS+sp+XP2E2t71960C+NBKXPxICsr3bJzC+aoCXP1MCzL3NOCu+viuXPytKuL2kkT2+t4SWP8LNrL08OSu+3MWWP+RAyL3bJzC+aoCXP1MCzL2kkT2+t4SWP8LNrL2XyCW+YOOVP2J+vb0+rjq+fAmWPzv/pL18AE6+UM+cPzYQrb1iaVi+Ed2aP9h9n71iaVi+Ed2aP9h9n73nOma+2OqZP1Lcrb3NOCu+viuXPytKuL2kkT2+t4SWP8LNrL2kkT2+t4SWP8LNrL0klEa+cRaVP9VGtr04Lz2+Wx6aP7xEyr3UuUu+cNaYP2VWuL3UuUu+cNaYP2VWuL2+ylW+lLSXP4lVx739oiK+e7GVP4Sogb0NPDa+pkOVP52lg70NPDa+pkOVP52lg70i5ji+QGuTP0ASiL0wdSi+JI2WPxHBDL3bATq+bc+VPw/tKb3bATq+bc+VPw/tKb2wxUG+5V2UPwh8Fr0SWDm+VkGZPzFGnbxntEa+99WXP52E8LxntEa+99WXP52E8Lwr0lG+YOyWP2ZDs7zhPEu+tjCcPyqa7LyF3FS+uSeaP4pTD72F3FS+uSeaP4pTD73ZUWO+PbKZPyC7/Lys0lO+AKudP2qQY71rH1y+OnObP0CvYb1rH1y+OnObP0CvYb2zLGq+U7SbP7fbZ71i1DQ+ln2SP/Pka73m6TU+mTGVP5yjbr37tzY+d06VP4pTVr1GSDg+sPSSP0R8R703+jY+IOaSP3lLib0XPDY+pEOVP2mlg70m5jg+PmuTPwwSiL0XPDY+pEOVP2mlg70zJzs+PECTP8/Klb03mTs+y1OTPyvvmb1ngjs+LHyTPzYAqb3iozg+l7CVP/Kxmr2+Fz0+icqTP66bvL1Jrjo+egmWPwX/pL1SLUM+zbeUP03kw72ukT0+tYSWP43NrL0ulEY+bxaVP55Gtr2ukT0+tYSWP43NrL1XyEg+L1eVP8CZx73qGFA+t5SWP/dxxL2K/kk+F4qVPyZ4yb1nRUQ+sZ+XPyo2t7012VE+6CeXP0AV3L1E9kc+PjqYP2Sfub1nRUQ+sZ+XPyo2t72UmUw+iUCWPxQ70r1nnFc+txOYP08e1L3duUs+btaYPylWuL3UylU+ibSXP0tVx73duUs+btaYPylWuL2GAlw+C6yYP49CzL2v2GA+YnuZP62htb3BRl0+fuCYP2nFyr1bzFI+q/mZP88BsL38N2c++KyaP8kZw70r+lU+YnuaP7Qdqb1bzFI+q/mZP88BsL0POGE+QbSZP08Nyb2dwWk+5webP6oBsL1qaVg+EN2aP5Z9n73wOmY+1uqZPwvcrb1qaVg+EN2aP5Z9n71L0Ws+0BObP/Ysob2wamw+JCqbP+wvnb145W0+Y9KbP/Hmkb2MtVs+XF6bP4pNib0XIHA+qY+cPz5KgL3GdFw+e4ObP/dTer1mLG4+FC6cPz09Wr1uH1w+OXObP7uuYb28LGo+UrSbPybbZ71uH1w+OXObP7uuYb2AnGw+/pqbPyRHP71YWmw+8nObPy76Nr21cms+DUebPyeAF71bylk+1fuaPzyKM704K2o+DdqaP2AU47zrv1c+8qKaPx3wHr0Ei2Q+FOaZP4FJxbyK3FQ+tyeaPwlTD73VUWM+O7KZPxC6/LyK3FQ+tyeaPwlTD71bKGE+xBKZP9jrtrxr8F8+PeCYP49Ur7w1xFo+cXOYP+vEhrzXKE4+uwyZP54D9bwGAlU+gpGXPz7APLz5d0o+LXKYP7de67yFGU8+56CWP84zfbxttEY+9tWXP7CD8Lwq0lE+XuyWP3JCs7xttEY+9tWXP7CD8LzmzEo+d+uVP2uDnbx9+kg+j7qVP5kzobzGH0I+SxaVP62Uo7wGVz8+7rOWP5VHCL0pozw+DRiUP+nAwbwlNjw+CTKWPxQsFr2Enjs+V6uTP/YICr3ZATo+a8+VP6TsKb0ZZD0+pWiTP/lOKL14wzw+n1GTPzg7ML07CUI+HSWUP6tAor3iozg+l7CVP/Kxmr0AcDc+HnqVP6wrj71vBTw+i++TP6aKlL3qGFA+t5SWP/dxxL1nRUQ+sZ+XPyo2t72H60A+MxKXP9wBsr2Ovkc+nuiVPyAIwL2v2GA+YnuZP62htb1bzFI+q/mZP88BsL2k9k4+NleZPy4isb1nllk+7M+YP411wr2HbWo+hoybP2sXib2MtVs+XF6bP4pNib11D1o+uh2bP5JllL2Bu2Y+6hCbP9oem72yvGc+C3eaP/nrHb1bylk+1fuaPzyKM73k9Fo+hzebP3ucSr0HjWc+e0+bPwl1Qb23kVg+3P6XPzg7ubzXKE4+uwyZP54D9bywglE+OZqZP23qBL3paFw+0Q+ZP9dU1LwgS0Y+cDeVPz3n5LwGVz8+7rOWP5VHCL20BUM+9kSXP7dEAL0zAEo+0CeWP5y00Lxl+jk+fVKTP9kfUb37tzY+d06VP4pTVr3qXDg+8Y6VPxcgQL3TNTw+gQ2UP28pMr2yvGc+C3eaP/nrHb1YWmw+8nObPy76Nr1bylk+1fuaPzyKM72AnGw+/pqbPyRHP71bKGE+xBKZP9jrtry3kVg+3P6XPzg7ubxr8F8+PeCYP49Ur7zXKE4+uwyZP54D9bzmzEo+d+uVP2uDnbwgS0Y+cDeVPz3n5Lx9+kg+j7qVP5kzobwGVz8+7rOWP5VHCL2vxUE+412UP5p7Fr3ZATo+a8+VP6TsKb0ZZD0+pWiTP/lOKL1l+jk+fVKTP9kfUb14wzw+n1GTPzg7ML37tzY+d06VP4pTVr0zJzs+PECTP8/Klb07CUI+HSWUP6tAor03mTs+y1OTPyvvmb3iozg+l7CVP/Kxmr1XyEg+L1eVP8CZx72K/kk+F4qVPyZ4yb3BRl0+fuCYP2nFyr1L0Ws+0BObP/Ysob2GAlw+C6yYP49CzL2HbWo+hoybP2sXib2wamw+JCqbP+wvnb2MtVs+XF6bP4pNib3iozg+l7CVP/Kxmr0zMCM+EGyVP6S7qr183yI+z0SVP/I1m73iozg+l7CVP/Kxmr183yI+z0SVP/I1m72WiyY+eWKWP3Qbp73iozg+l7CVP/Kxmr2WiyY+eWKWP3Qbp71U+yI+jzGWP8hSlL0AcDc+HnqVP6wrj70AoyI+ebGVP1aogb2+aiI+JzCVPzbXlr0XPDY+pEOVP2mlg72+aiI+JzCVPzbXlr2ItR8+fs6UPzBlib0XPDY+pEOVP2mlg70wPB4+hY2UPwdUar3m6TU+mTGVP5yjbr2XfyA+FuCUP/j2Qr37tzY+d06VP4pTVr2ruCM+QE2VP8G5Kb37tzY+d06VP4pTVr2ruCM+QE2VP8G5Kb2XGCM+uLuVP37aVL37tzY+d06VP4pTVr2XGCM+uLuVP37aVL22DSQ+RjmWP/CyL73qXDg+8Y6VPxcgQL0vdSg+Io2WP67ADL3QWCQ+tmWVP8JPIb3ZATo+a8+VP6TsKb3QWCQ+tmWVP8JPIb1tRSU+iJqVP/PHAr3ZATo+a8+VP6TsKb0rlyg+ASKWP90lvrwlNjw+CTKWPxQsFr04bC4+Ng2XP9nbmbwGVz8+7rOWP5VHCL2VeTM+ecqXP+SVkLwGVz8+7rOWP5VHCL2VeTM+ecqXP+SVkLzHyC0+5WSXP4TR2rwGVz8+7rOWP5VHCL3HyC0+5WSXP4TR2ry1LzI+bluYP03Vsry0BUM+9kSXP7dEAL0QWDk+VEGZP1RFnbzY0DQ+rgGYP7xEirxttEY+9tWXP7CD8LzY0DQ+rgGYP7xEirzepjg+d7KYP0pWU7xttEY+9tWXP7CD8LyeyD4+6bOZP8YwK7z5d0o+LXKYP7de67wKzkQ+Fq2aP+4CYrzXKE4+uwyZP54D9bzJ50g+IkebP1ZllrzXKE4+uwyZP54D9bzJ50g+IkebP1ZllrxKWUA+92SaPyL0qLzXKE4+uwyZP54D9bxKWUA+92SaPyL0qLxzlEQ+lnObPxT4xbywglE+OZqZP23qBL3lPEs+tDCcPy+Z7LwQLUo+y3ybPzZKnryK3FQ+tyeaPwlTD70QLUo+y3ybPzZKnryOf04+WUacPwE5rbyK3FQ+tyeaPwlTD7140FM+4iudP0I+2Lzrv1c+8qKaPx3wHr2eiFY+I6CdP4emEb1bylk+1fuaPzyKM71+dVc+ZbidP2q9ML1bylk+1fuaPzyKM71+dVc+ZbidP2q9ML0u6k8++PmcP6OpGL1bylk+1fuaPzyKM70u6k8++PmcP6OpGL2BQlA+DnqdP4f+Pb3k9Fo+hzebP3ucSr2u0lM+/qqdP+KPY71C6lc+Ds2dP+d6Ob1uH1w+OXObP7uuYb1C6lc+Ds2dP+d6Ob1OA1o+tz2eP3dTVL1uH1w+OXObP7uuYb3vXFs+u4GeP3nHfL3GdFw+e4ObP/dTer1MOVk+FyyeP3ATkr2MtVs+XF6bP4pNib0dtFY+q62dP6e4nr2MtVs+XF6bP4pNib0dtFY+q62dP6e4nr0dXVM+wKCdPw0Dib2MtVs+XF6bP4pNib0dXVM+wKCdPw0Dib3cEk8+nV+dP2P6mr11D1o+uh2bP5JllL2JAE4+Ts+cP/QPrb3wE1Y+NpWdP6vtor1qaVg+EN2aP5Z9n73wE1Y+NpWdP6vtor1kc1Q+rHGdP/Mqsr1qaVg+EN2aP5Z9n73vAVE+Pu2cP0cExL0r+lU+YnuaP7Qdqb2bTEs+/v6bP/UXzb1bzFI+q/mZP88BsL1r20Y+uzKbPypvz71bzFI+q/mZP88BsL1r20Y+uzKbPypvz733rEg+i/ebP+e7vL1bzFI+q/mZP88BsL33rEg+i/ebP+e7vL0kUkE+jDKbPxVxw72k9k4+NleZPy4isb1JLz0+WR6aP35Eyr0lhEU+hfuaP3kD0b3duUs+btaYPylWuL0lhEU+hfuaP3kD0b30EUE+vVmaPyIk2b3duUs+btaYPylWuL190Do+V1uZP6Un3r1E9kc+PjqYP2Sfub3K6jQ+Hl+YP4pO171nRUQ+sZ+XPyo2t70zbTE+EraXP1D7zb1nRUQ+sZ+XPyo2t70zbTE+EraXP1D7zb1yHDY+eveYP0Azyb1nRUQ+sZ+XPyo2t71yHDY+eveYP0Azyb20Di8+MTmYP3uvwL2H60A+MxKXP9wBsr3cOCs+vSuXP/lJuL3lJzA+aICXPxUCzL2ukT0+tYSWP43NrL3lJzA+aICXPxUCzL1GOSs+28WWP6ZAyL2ukT0+tYSWP43NrL2hyCU+XuOVPzJ+vb1Jrjo+egmWPwX/pL2JAE4+Ts+cP/QPrb1qaVg+EN2aP5Z9n71qaVg+EN2aP5Z9n73wOmY+1uqZPwvcrb3cOCs+vSuXP/lJuL2ukT0+tYSWP43NrL2ukT0+tYSWP43NrL0ulEY+bxaVP55Gtr1JLz0+WR6aP35Eyr3duUs+btaYPylWuL3duUs+btaYPylWuL3UylU+ibSXP0tVx70AoyI+ebGVP1aogb0XPDY+pEOVP2mlg70XPDY+pEOVP2mlg70m5jg+PmuTPwwSiL0vdSg+Io2WP67ADL3ZATo+a8+VP6TsKb3ZATo+a8+VP6TsKb2vxUE+412UP5p7Fr0QWDk+VEGZP1RFnbxttEY+9tWXP7CD8LxttEY+9tWXP7CD8Lwq0lE+XuyWP3JCs7zlPEs+tDCcPy+Z7LyK3FQ+tyeaPwlTD72K3FQ+tyeaPwlTD73VUWM+O7KZPxC6/Lyu0lM+/qqdP+KPY71uH1w+OXObP7uuYb1uH1w+OXObP7uuYb28LGo+UrSbPybbZ70KNNi+p5yXPy7Xxr2X7d2+Ag+TP4XPtb2SEdW+lfSTP9x2xb29nNq+EEWbP6dfyb2mDtW+1j+RPxfGwL2LgN++La6NP7jyqb0yY9O+du6OP4dlv70SONO+xAOMP8+Wur1TneC+yxiIP4J2nr0h09S+SyqJP5gTs72nzdi+NJeGP31EqL0Vsty+6/KEPxA4n730g+C+ZyiEPzbEl73Pq7C+HFiLPyroKLyHVaa+3xuMP8QEp7uhB7i+51OJP8sKk7wc67q+apiKP7cnfbwHbsG+usiHP1lszLyTHsK+oMWJP/etoryU3ci+olyJP/mZvLzqYs++7daFP1ACDb2XrtC+h4CIP5kL47zhPte+0DGHP9YQCL3vtde+qU2EP37/Kb0sStu+fneFP2cKIL09ZN++NGaEPwneML0s8+C+1b2DP1QEOr2DFaE+XXSKP4a6oL0pl6M+pMGJP7TDmL0kW6g+d3mLP3jysb17lJk+9SONP+uyvr1Oopw+1WCMPx35ub1d0Zw+rw6NPwcpwL2kH6A+leCMP37Svr2TmZ8+z2OLP8ZRsL3SvaQ+g2qMPyEdu70o9KI+iLSJP3RNZ72AFaE+XHSKP8IhPL1Xm6U+hp+KP5uEKL1Lopw+1WCMPzYCBr14lJk+9SONP+zA97xZ0Zw+rw6NP8F88byTmZ8+z2OLP6u0Gr2kH6A+leCMP3Q597zSvaQ+g2qMPxmQA73AUqg+go+LP0ncE70ju/E+x1CAP9eBR71mSeU+p46CP6IPOL27Y+Y+tziDP4ZBdb20FPI+r6CAP2F1dL0X8PA+bAF+P3+fDb036e4+20h8P8AV4by3tOs+Jn18PxNut7xHx+g+3cZ+P+l617yul+I+sGp8Py449LzUV+I+/V17P5IZGb1sYN4+/X19PxduLr1Ymd8+irB+PzYNCL3rX+U+1MaAP7CZsr1Udt4+OFiAPzezrb37L+M+YEx+P2Zrs72SMv8+Kvp2P+EDZ72nb/w+fBN4P+DEYb1B2/4+XZd6P6+RYb1B2/4+XZd6P6+RYb3H6AA/STR5P+MMab2f4gI/SgJ1P7DCaL3rWAQ/opd2P7ObbL2GhAU/N6l1P04Ibb33cwQ/T/9zPxenab2WyQk/eEhyP6u9br1D5wg/PuRwPwI8bL0ucwc/lcxxPzxKa70UoAg/LDJzP950br2SMv8+Kvp2P+EDZ73iDv8+G6B1P5kPgL2zKvs+/OZ2P0Xrfb2nb/w+fBN4P+DEYb33cwQ/T/9zPxenab1j1AM/U/9yP5kkgL0cGQI/FPlzP10kgL2f4gI/SgJ1P7DCaL2gyQY/0+9wP1W6f70ucwc/lcxxPzxKa71D5wg/PuRwPwI8bL0eXQg/NP1vP4vFf70Luw0/0pxvPwbtfr37Eg0/vrduP2avf72S2Qw/CgxvP12Qcb2S2Qw/CgxvP12Qcb09JA0/XKNvP3CUcL2WyQk/eEhyP6u9br0UoAg/LDJzP950br1Kzwg/p15zP1C6f70t4wk/wHpyPxCWf70ZtgU/yeF1P5YkgL2GhAU/N6l1P04Ibb3rWAQ/opd2P7ObbL2InQQ/h8Z2P10kgL1B2/4+XZd6P6+RYb1L+/8+MsV6P1QLgL3QNAE/+3d5P93Jf73H6AA/STR5P+MMab2nb/w+fBN4P+DEYb3gafs+M1B4P6HhVr2YXf0+nCx6P7WCV73MbvY+Dhp3Pwu6er0LWvc+c453P9O6WL275Po+FL58P+r9Ur275Po+FL58P+r9Ur2A+Ps+MO18PyXXfL3gafs+M1B4P6HhVr1euv8+BsJ2P0AAjb3wuAA/7yR5P7tpir1y9/0+t656P/YCi73uFPw+Sq53P6Zfjb29hAU/hal1P0fQib0tWAQ/hZd2Pxfmib2f4gI/SgJ1P7f1i70kdAQ/e/9zP++Bi72XdQc/PM9xPzEEir236Qg/JuRwP2Kmib2/ywk/9UhyPy33h70YoQg/7zJzP5l1iL1euv8+BsJ2P0AAjb3uFPw+Sq53P6Zfjb2zKvs+/OZ2P0Xrfb3iDv8+G6B1P5kPgL0cGQI/FPlzP10kgL1j1AM/U/9yP5kkgL0kdAQ/e/9zP++Bi72f4gI/SgJ1P7f1i72gyQY/0+9wP1W6f70eXQg/NP1vP4vFf7236Qg/JuRwP2Kmib2XdQc/PM9xPzEEir2NQQ0/rpJvPwbxhr0w3Aw/yuZuP27Ihr2/ywk/9UhyPy33h70YoQg/7zJzP5l1iL0tWAQ/hZd2Pxfmib29hAU/hal1P0fQib0+1fo+Ex54P0Q0kb07vvs+YQ96P50ukb1lqPY+Yml3PxE2ir1lqPY+Yml3PxE2ir3sjvk+uZh8P9oakb3uFPw+Sq53P6Zfjb0+1fo+Ex54P0Q0kb1Zev8+Uh13P3wJH713LPw+Azl4P9urFr18bf4+5X96P2JEHb0CGgE/cA15Pz6aJr03TwI/A711P35kIb3TmwM/WCV3PyAOKb3JoQQ/U2t2P2lgKb07vAM/y+B0P4D4Ib0PiQg/WdVzPxgrK73i2Qc/aVVyP50PJb1bdAY/NxJzPzC1I703eAc/Qn90P94yK713LPw+Azl4P9urFr1Zev8+Uh13P3wJH71vZv0+m1V2P2dsNL2Bnfk+1Zx3PwBiMr26eQE/QLZ0P75tNr03TwI/A711P35kIb07vAM/y+B0P4D4Ib01HAM/e85zP6vqNb3i2Qc/aVVyP50PJb0MaAc/lGpxPzyLNb3N2QU/by5yPzSfNb1bdAY/NxJzPzC1I71V6gs/97VwP7WsOL2HwQs/4BBxP2rnK72o/Qs/o6RxP1TBLb0nOgw/AHVxP705O70PiQg/WdVzPxgrK703eAc/Qn90P94yK72plQc/fax0P4reO73rjwg/lwh0PyKgO716wwM/0Ex3P6VEPL2kuwQ/q5t2P3waPL3JoQQ/U2t2P2lgKb3TmwM/WCV3PyAOKb3XTQE/NDl5P1WKPL0CGgE/cA15Pz6aJr18bf4+5X96P2JEHb0Vtv8+O4d6P0m5Mr0nOgw/AHVxP705O72o/Qs/o6RxP1TBLb0BXvQ+b853P5IJNb306vk+Z8x7P56AGb1wzfo+9LF8P+LmL71+u/4+oTt6P/zXSb0YjPs+wRF4PyyeTr3Q0v4+3e52P7R0Sr231QA/oLN4P2mnT72O+gE/UkF1Pxl3TL18awM/DG50P33PS70+bgQ/BSh2P+sDTb1tZQM/nN92P6GqTb1pYAg/nKNzP3ikSr21UAc/QU90P97nSr2RRQY/W89yP1NnSb1frwc/LhdyP6B4SL2Bnfk+1Zx3PwBiMr1vZv0+m1V2P2dsNL3Q0v4+3e52P7R0Sr0YjPs+wRF4PyyeTr26eQE/QLZ0P75tNr01HAM/e85zP6vqNb18awM/DG50P33PS72O+gE/UkF1Pxl3TL0MaAc/lGpxPzyLNb1frwc/LhdyP6B4SL2RRQY/W89yP1NnSb3N2QU/by5yPzSfNb131ws/UmFxP43aSL1CsAs/rM9wPwYtR721UAc/QU90P97nSr1pYAg/nKNzP3ikSr1tZQM/nN92P6GqTb0+bgQ/BSh2P+sDTb1+u/4+oTt6P/zXSb231QA/oLN4P2mnT72YXf0+nCx6P7WCV7131ws/UmFxP43aSL0YjPs+wRF4PyyeTr3e0vs+3U56Px4gl73e0vs+3U56Px4gl72s3Pw+vP94P5tQlr0sZ/s+XOd2P2aOlL0pOvo+T6l3P+lsk70rXwE/Ep90P7XXl72AhQI/aTx2P1K0mL2n2QM/CVd1Pytmmr2U6QI/g7NzP6s4mr128QU/grFxP/Msnb35AAc/bypzPy3snL2gRwg//GByP16wnb0RZwc/zPhwP3Aqnr0pOvo+T6l3P+lsk70sZ/s+XOd2P2aOlL0GYfo+wKJ1P29yor216/c+m/R1P7KqoL2U6QI/g7NzP6s4mr33bQI/zuhyPw8bpb0c1wA/NOVzP57no70rXwE/Ep90P7XXl711cQU/XPxwPyJWp7128QU/grFxP/Msnb0RZwc/zPhwP3Aqnr1y7gY/W09wP2XWp715HQs/cK9vP2Dbn72kiws/5jlwP+JZoL207As/pkRwP8Dhpr2qcgs/5XhvPw2ep70WcAg/b71yP1xSpb2gRwg//GByP16wnb35AAc/bypzPy3snL2SQQc/G39zPxfepL2AhQI/aTx2P1K0mL3C2AI/4al2PzSior1PFwQ/T8R1P50Yo72n2QM/CVd1Pytmmr3e0vs+3U56Px4gl70i3fs+sH16P7ecpL1y3f0+z3R5P5D9oL0pOvo+T6l3P+lsk7207As/pkRwP8Dhpr2kiws/5jlwP+JZoL2vVPQ+A5t2P215lL34rPg+hVB8P5Mqor0+1fo+Ex54P0Q0kb0XTf0+/uJ4P1SHrb1eOPo+h2l5P0bzsL2S+vY+cjx3P4IfrL00VPs+HeJ2P35Fr71Z5AM/J4J1PwWgrL3PoAI/qWN2PzYbrb3PoAI/qWN2PzYbrb1newE/S850P2HPr73W7AI/EOhzP0lRr707/wU/dddxP4FksL3zcwc/yR9xP501sL0FUwg/q4ZyPye3rb3kEgc/XkhzP+WGrb216/c+m/R1P7KqoL0GYfo+wKJ1P29yor00VPs+HeJ2P35Fr72S+vY+cjx3P4IfrL2S+vY+cjx3P4IfrL3W7AI/EOhzP0lRr71newE/S850P2HPr70c1wA/NOVzP57no733bQI/zuhyPw8bpb3zcwc/yR9xP501sL07/wU/dddxP4FksL11cQU/XPxwPyJWp71y7gY/W09wP2XWp72/Ows/08JvP15Brr0yjgs/nFtwP+Jarb0FUwg/q4ZyPye3rb3kEgc/XkhzP+WGrb3PoAI/qWN2PzYbrb1Z5AM/J4J1PwWgrL0XTf0+/uJ4P1SHrb1CrfU+7Fl3P85pr73qVfc+B1J5P2dRsr0yjgs/nFtwP+Jarb2vVPQ+A5t2P215lL1bqPE+MKx2P+FLpL1J4/Q+qXt7P2vLtL1CrfU+7Fl3P85pr71uVvU+vfJ2P5UDs70iHfU+Syp3Py/Hsb34yPY+WFl5P6LLtr19ofY+StJ4P5XptL1zlf0+dPd1P8Tcur08xPs+XZF0P3Mnu700ePk+ZnJ1P0uGuL1nrfs+aap2P2dYub3myQE/UORzP4e4vr3dNAE/A8JyP8Vpv70dq/8+DmpzP/7Kvb1ntgA/5ZJ0PzNSvb3GEvQ+BR52P3cGv73FfPI+/Wd2P5yRu73FfPI+/Wd2P5yRu70iHfU+Syp3Py/Hsb0iHfU+Syp3Py/Hsb0iHfU+Syp3Py/Hsb1uVvU+vfJ2P5UDs72K8/o++flzP8rcxL04H/g+o8N0P+Qtwr00ePk+ZnJ1P0uGuL08xPs+XZF0P3Mnu70dq/8+DmpzP/7Kvb3dNAE/A8JyP8Vpv72i4AA/WShyPy1byL04tf4+feByP5Loxr2sagQ/5QxyPwk0w72irQQ/3BFyPwkIyb0mQQQ/DGxxP5Mjyr29GgQ/IodxP8Kew71Z4gE/c0B0Pzwmxb3myQE/UORzP4e4vr1ntgA/5ZJ0PzNSvb2l5gA/L+10P37pw71nrfs+aap2P2dYub3QEPw+Z/92P71ewL383f0+eVV2P23Awb1zlf0+dPd1P8Tcur3ptfU+xa55P1VNvb2SvfY+/ip5P13Ou73qVfc+B1J5P2dRsr2irQQ/3BFyPwkIyb2sagQ/5QxyPwk0w714TO8+UwR3PwXXsb0zvfM+82x5P2m3xb2OW/I+g5B3P4Ycx71hWPQ+gxh3P67Nx70pNPY+6/t4P1xnxL1db/0+gi52P4VDyb0cfvs+Tt92PwLlx71cDfk+QZp1P9Bkyr2ssvs+G9R0P9VnzL11wgE/LBt0P1dqzL0VswA/rMp0P8Y5y71pof8+fatzPy8Zzr3eKQE/9/lyP/hDz72OW/I+g5B3P4Ycx73FfPI+/Wd2P5yRu73GEvQ+BR52P3cGv72OW/I+g5B3P4Ycx71hWPQ+gxh3P67Nx72ssvs+G9R0P9VnzL1cDfk+QZp1P9Bkyr04H/g+o8N0P+Qtwr2K8/o++flzP8rcxL04tf4+feByP5Loxr2i4AA/WShyPy1byL3eKQE/9/lyP/hDz71pof8+fatzPy8Zzr34ZwQ/OTtyP+yIzr3PGgQ/jrlxP4C5z70VswA/rMp0P8Y5y711wgE/LBt0P1dqzL1db/0+gi52P4VDyb0cfvs+Tt92PwLlx70pNPY+6/t4P1xnxL34ZwQ/OTtyP+yIzr0Oye4+x1N4P0vLwL1Z4/E+ypd6P6Usw71T3Ok+uSh4P7PI07xrguY+ySB6P3Te5LwTseg+pRV8P/7rpLxuC+s+vrV5PyGGmLzS0vE+BrpzP6zfnrwALe8+cih1PxDdrrwysPA+4QZ2P3PifbyZivI+NMd0P55pbry4dew+r2V4Pyu1B70iYOk+y4h5P1LQFb1rguY+ySB6P3Te5LxT3Ok+uSh4P7PI07zS0vE+BrpzP6zfnryZ3PM+B/VzP6e2yry4+PA+Sah1P94u4bwALe8+cih1PxDdrrwGOvo+NwtwP9A+O7xhVPo+XoJwP/JnH7xFLvw+IPRwP6ZaKbwwGfw+/GRwP50KVLwH6fI+5e52P/pJiLyplvQ+Trt1P3DEgbyZivI+NMd0P55pbrwysPA+4QZ2P3Pifbwuku0+NK96P8/rpLxuC+s+vrV5PyGGmLwTseg+pRV8P/7rpLwGOvo+NwtwP9A+O7yLfPg+h2dwP7JUUrzU1vY+siZyPyUYPrxhVPo+XoJwP/JnH7yGnvY+0C1xPz1bdrwwGfw+/GRwP50KVLwwGfw+/GRwP50KVLzMwvo+c3ZwP4PJh7yLfPg+h2dwP7JUUrwwGfw+/GRwP50KVLwGOvo+NwtwP9A+O7yGnvY+0C1xPz1bdrzhivg+bmJxP5s3pLxhVPo+XoJwP/JnH7zU1vY+siZyPyUYPry1pvg+ATZzPzg6U7xFLvw+IPRwP6ZaKbyq9O8+Yt15P1tTBr3O6e8+XBx7Pwd4xby3UO8+k/J5P03TD70TRvY+U2t1P2DQx7znefY+kEl2P/o0nLxFtPQ+C5J3P0LmpLw5+fM+5/92P9DF27wiYOk+y4h5P1LQFb24dew+r2V4Pyu1B72q9O8+Yt15P1tTBr23UO8+k/J5P03TD705+fM+5/92P9DF27y4+PA+Sah1P94u4byZ3PM+B/VzP6e2yrwTRvY+U2t1P2DQx7yBDf0+8JZxP+l6V7wnF/0+hyVxPz3tdLxFtPQ+C5J3P0LmpLznefY+kEl2P/o0nLxDZ/o+fIJzP3E2gbyTPfw+Du5xP1kGkLyBDf0+8JZxP+l6V7zikfo+sLxyP6i3oryTPfw+Du5xP1kGkLzMwvo+c3ZwP4PJh7wnF/0+hyVxPz3tdLzikfo+sLxyP6i3orzhivg+bmJxP5s3pLxDZ/o+fIJzP3E2gbyBDf0+8JZxP+l6V7zeMPA+YWmAP4mnnb2G1O8+DI5+P9Snrb3PLew+kDR5P2oPd70hue0+Gcp4P7PTPL1BC/c+7Ip6P8KRDb2MLPI+NGl7P39RCb0zVvE+rk9/P6T3I72PKvE+8sx5PyLvFb14QvU+xip5P8HyFL0G7ek+Qkp5P0V1mL3HbNw+td1+Pxz/h73XWd0++0x+P67dZ72k3+A+/IB8P76da71OVuA+/m98P4mNi73JbeA+xaF8P6tqoL39Vtw+0iB/P5bGlr37L+M+YEx+P2Zrs71Udt4+OFiAPzezrb2iwOc+J6F7PwK2ub3+9+c+yfB5P3gNrL0Oye4+x1N4P0vLwL3Qpus+Tzp9P3SUur2iwOc+J6F7PwK2ub2PKvE+8sx5PyLvFb0Oye4+x1N4P0vLwL1TLuc+5iF6P2DyMb28tec+ap2AP7aRA70Luw0/0pxvPwbtfr09JA0/XKNvP3CUcL2NQQ0/rpJvPwbxhr3v+gk/XmlxPyKpJ72wnAk/U31wPz7NNb3v+gk/XmlxPyKpJ7251wk/0zRxPwAcR72wnAk/U31wPz7NNb251wk/0zRxPwAcR71TMAs/KsVvP9KPbr1TMAs/KsVvP9KPbr2dhQo/lbxuP5fXf72dhQo/lbxuP5fXf72bIAs/VKlvP0aUiL2bIAs/VKlvP0aUiL2dhQo/lbxuP5fXf70iVAk/ki1wP5jdnr0iVAk/ki1wP5jdnr297Qg/A45vPwYVqL1ZbQk/yUxwP53Yr71ZbQk/yUxwP53Yr71ZbQk/yUxwP53Yr7297Qg/A45vPwYVqL25ugI/3A1yP6eqwb25ugI/3A1yP6eqwb3LdwI/imRxP/ndyb33qgI/akxyPx1t0L3LdwI/imRxP/ndyb3LdwI/imRxP/ndyb3eKQE/9/lyP/hDz733qgI/akxyPx1t0L1pof8+fatzPy8Zzr14QvU+xip5P8HyFL0rXwE/Ep90P7XXl70sZ/s+XOd2P2aOlL1bdAY/NxJzPzC1I72HwQs/4BBxP2rnK71V6gs/97VwP7WsOL1CsAs/rM9wPwYtR72S2Qw/CgxvP12Qcb0w3Aw/yuZuP27Ihr37Eg0/vrduP2avf737Eg0/vrduP2avf715HQs/cK9vP2Dbn72qcgs/5XhvPw2ep72/Ows/08JvP15Brr29GgQ/IodxP8Kew70mQQQ/DGxxP5Mjyr3PGgQ/jrlxP4C5z723UO8+k/J5P03TD713LPw+Azl4P9urFr2ul+I+sGp8Py449LxZKuQ+kpl9P/Kj1bxYmd8+irB+PzYNCL0uaeI+A0KAP3It+LyrQ+E+/96BP6mBE72o/Qs/o6RxP1TBLb2HwQs/4BBxP2rnK71CsAs/rM9wPwYtR7131ws/UmFxP43aSL2S2Qw/CgxvP12Qcb0w3Aw/yuZuP27Ihr2NQQ0/rpJvPwbxhr2kiws/5jlwP+JZoL15HQs/cK9vP2Dbn72/Ows/08JvP15Brr0yjgs/nFtwP+Jarb2sagQ/5QxyPwk0w729GgQ/IodxP8Kew73PGgQ/jrlxP4C5z73PGgQ/jrlxP4C5z734ZwQ/OTtyP+yIzr2S2Qw/CgxvP12Qcb3PGgQ/jrlxP4C5z72dXNs+FWaBPwGGM72dXNs+FWaBPwGGM70JBN8+F8OCPzu8I70u8+A+1L2DP08DOr3VQOM+EvyCP5ZBlr0GauA+9sSCPxLPpr27hN0+yuCDP5Lnp71FMNo+FzuCP4rqpr1Z6dc+ZlGBP+ttkL0YHdk+kyGBPxADb71FMNo+FzuCP4rqpr2CU+I+e0GEP6xHdb34g+A+ZiiEP7TDl724Y+a+uDiDP5JCdb1nSeW+qY6CP64QOL0lu/G+yVCAP+uCR721FPK+sKCAP3l2dL3SQOO+E/yCPxpClr3dMPC+YmmAPxaonb0CauC+9sSCP5PPpr3pX+W+1caAPzSasr09seu+rnd8Pxs9trye8+6+B0R8P29q4bx89vC+PP59P/3EDb2VlOi+HrR+P56l07zXWd2+AU1+P6neZ70THdm+lCGBPwYEb71Y6de+aFGBP2VukL3GbNy+ud1+P5r/h71sYN6+AH59PxJvLr2XXNu+FmaBP/mGM72MWOK+9197P1cyGb03ieK+0E58P6458rxVmd++jrB+PzUOCL1Mdt6+OViAP7Szrb31L+O+YUx+P+lrs730g+C+ZyiEPzbEl71ZgN6+drKDPyBfqL2AU+K+fUGEP7VIdb0s8+C+1b2DP1QEOr0EBN++GcOCPzu9I72XXNu+FmaBP/mGM72mQ+G+/96BP6uCE734Vty+1CB/PxLHlr1AMNq+GTuCPwbrpr1AMNq+GTuCPwbrpr1Mdt6+OViAP7Szrb2Y5P6+U5h6Pz5kYb2vgPy+PhV4Pxe8Yb03tP++Xgd3P1saZb3H6AC/TDR5PwwOab2GhAW/PKl1P4EJbb3qWAS/p5d2P+acbL2d4gK/TgJ1P9zDaL32cwS/U/9zP0aoab0scwe/m8xxP3VLa71B5wi/Q+RwPzs9bL2UyQm/fEhyP+m+br0SoAi/MjJzPxl2br2wKvu+AOd2P2Hsfb3iDv++HqB1PykQgL03tP++Xgd3P1saZb2vgPy+PhV4Pxe8Yb0dGQK/GflzP/IkgL1i1AO/WP9yPy8lgL32cwS/U/9zP0aoab2d4gK/TgJ1P9zDaL1B5wi/Q+RwPzs9bL0scwe/m8xxP3VLa72fyQa/2O9wP4u7f70dXQi/N/1vP8LGf72P2Qy/DAxvP5yRcb36Eg2/w7duP6mwf70Juw2/1ZxvP0fufr07JA2/YaNvP7OVcL1Hzwi/rF5zP4u7f70SoAi/MjJzPxl2br2UyQm/fEhyP+m+br0r4wm/w3pyP0yXf73qWAS/p5d2P+acbL2GhAW/PKl1P4EJbb0YtgW/zOF1PzElgL2HnQS/jMZ2P/MkgL3PNAG//Xd5PwbLf71M+/++NcV6P+gLgL2Y5P6+U5h6Pz5kYb3H6AC/TDR5PwwOab3PgPu+i1J4P3ndVr2vgPy+PhV4Pxe8Yb2ubf2+Qi56P6I4V73Obva+Ehp3PyO7er2hZve+wI93P0w+Wb2Z+vu+a+18Pw/WfL0J6Pq+br58P673Ur3PgPu+i1J4P3ndVr1VCf6+i7B6Pz06i73xuAC/9CR5P09qir1buv++CcJ2P9IAjb1TD/y+vK13P2BXjb2d4gK/TgJ1P0z2i70tWAS/ipd2P6/mib28hAW/ial1P+DQib0kdAS/fv9zP4eCi729ywm/+0hyP8v3h7216Qi/K+RwP/+mib2VdQe/Qc9xP8wEir0XoQi/8zJzPzV2iL2wKvu+AOd2P2Hsfb1TD/y+vK13P2BXjb1buv++CcJ2P9IAjb3iDv++HqB1PykQgL0kdAS/fv9zP4eCi71i1AO/WP9yPy8lgL0dGQK/GflzP/IkgL2d4gK/TgJ1P0z2i7216Qi/K+RwP/+mib0dXQi/N/1vP8LGf72fyQa/2O9wP4u7f72VdQe/Qc9xP8wEir0t3Ay/z+ZuPw/Jhr2JQQ2/spJvP6bxhr29ywm/+0hyP8v3h70XoQi/8zJzPzV2iL0tWAS/ipd2P6/mib28hAW/ial1P+DQib01a/q+TBN4PwKYkL1iufu+6g56Pwojkb3VpPa+CWl3P28+ir3Djfm+oph8P4cZkb1TD/y+vK13P2BXjb01a/q+TBN4PwKYkL3Xav6+o396P/YmHb3bB/y+TzV4P12EFr1Kev++VR13P4UKH72WGQG/XQ15P8WNJr2/oQS/U2t2P3thKb3NmwO/XCV3PzwPKb0vTwK/B711P41lIb0yvAO/z+B0P4/5Ib1UdAa/OxJzP1C2I73a2Qe/a1VyP7IQJb0HiQi/XdVzPz4sK70veAe/Rn90P/YzK71MZv2+nFV2P49rNL1Kev++VR13P4UKH73bB/y+TzV4P12EFr29nfm+4Jx3P7tZMr0yvAO/z+B0P4/5Ib0vTwK/B711P41lIb2yeQG/QrZ0P8VuNr0tHAO/fs5zP7vrNb3F2QW/ci5yP0KgNb0GaAe/l2pxP12MNb3a2Qe/a1VyP7IQJb1UdAa/OxJzP1C2I72i/Qu/p6RxP4DCLb1/wQu/4RBxP4roK71P6gu/+bVwP+StOL0gOgy/AnVxP+s6O72ilQe/gax0P6vfO70veAe/Rn90P/YzK70HiQi/XdVzPz4sK73ijwi/mAh0Pz6hO72/oQS/U2t2P3thKb2duwS/rJt2P5wbPL1ywwO/00x3P75FPL3NmwO/XCV3PzwPKb3Xav6+o396P/YmHb2WGQG/XQ15P8WNJr29TQG/Mjl5P2R8PL14tf++L4d6P5djMr2i/Qu/p6RxP4DCLb0gOgy/AnVxP+s6O72lXfS+ac53Py8ZNb396/m+hsx7P0ODGb2yyvq+r7F8P52zL71Ln/6+o+l2Pw7xTL08mPu+ARN4PyyJTr3Av/6+FDx6P9miSb3i1QC/rLN4P6ecT701bgS/Ayh2PwYFTb10awO/EG50P47QS72G+gG/VEF1Py94TL1lZQO/oN92P7SrTb2JRQa/Xs9yP2toSb2vUAe/RU90PwXpSr1hYAi/nqNzP4+lSr1Xrwe/LxdyP7l5SL1Ln/6+o+l2Pw7xTL1Ln/6+o+l2Pw7xTL1MZv2+nFV2P49rNL29nfm+4Jx3P7tZMr08mPu+ARN4PyyJTr10awO/EG50P47QS70tHAO/fs5zP7vrNb2yeQG/QrZ0P8VuNr2G+gG/VEF1Py94TL2JRQa/Xs9yP2toSb1Xrwe/LxdyP7l5SL0GaAe/l2pxP12MNb3F2QW/ci5yP0KgNb06sAu/r89wPyYuR71w1wu/VGFxP7zbSL2vUAe/RU90PwXpSr1hYAi/nqNzP4+lSr01bgS/Ayh2PwYFTb1lZQO/oN92P7SrTb3Av/6+FDx6P9miSb3i1QC/rLN4P6ecT72ubf2+Qi56P6I4V71w1wu/VGFxP7zbSL08mPu+ARN4PyyJTr1O3/u+mfN2P+5Dlr1z0Py+gv54P1fslb2Kyfu+8016Pwn6lr2Kyfu+8016Pwn6lr1hS/q+Fat3P6iIk72t2QO/Dld1P7Zmmr2FhQK/bzx2P+C0mL0wXwG/F590P0LYl72Z6QK/ibNzPzk5mr2jRwi/AWFyP/Wwnb36AAe/cypzP7/snL168QW/h7FxP4Etnb0WZwe/0PhwPwArnr3OX/q+paJ1PydPor3OX/q+paJ1PydPor1O3/u+mfN2P+5Dlr1hS/q+Fat3P6iIk70A6fe+VfR1P1vAoL0g1wC/OeVzPynoo737bQK/0+hyP5kbpb2Z6QK/ibNzPzk5mr0wXwG/F590P0LYl70WZwe/0PhwPwArnr168QW/h7FxP4Etnb15cQW/YPxwP7NWp7117ga/YE9wP/bWp7247Au/qkRwP17ipr2piwu/6jlwP35aoL19HQu/da9vP/jbn72vcgu/6nhvP5yep736AAe/cypzP7/snL2jRwi/AWFyP/Wwnb0bcAi/dL1yP+5Spb2WQQe/IH9zP6XepL1UFwS/VMR1PyoZo73H2AK/5ql2P8Cior2FhQK/bzx2P+C0mL2t2QO/Dld1P7Zmmr3+3f2+4nR5P3HdoL3+3f2+4nR5P3HdoL0p3fu+tH16P/dypL2Kyfu+8016Pwn6lr1hS/q+Fat3P6iIk72piwu/6jlwP35aoL247Au/qkRwP17ipr3PUPS+pZp2P82HlL1vrPi+eFB8Py4kor01a/q+TBN4PwKYkL2Gvfa+PjZ3P6eBq72OOfq+pml5Px3rsL2gT/2+QON4P1d3rb3LV/u+fuJ2P2o+r71sewG/UM50P+nPr73ToAK/rmN2P8Abrb1d5AO/LIJ1P5KgrL3Z7AK/FehzP9hRr70JUwi/sIZyP723rb34cwe/zB9xPys2sL0//wW/eddxPxZlsL3nEge/YkhzP3aHrb3LV/u+fuJ2P2o+r73OX/q+paJ1PydPor0A6fe+VfR1P1vAoL2Gvfa+PjZ3P6eBq70g1wC/OeVzPynoo71sewG/UM50P+nPr73Z7AK/FehzP9hRr737bQK/0+hyP5kbpb15cQW/YPxwP7NWp70//wW/eddxPxZlsL34cwe/zB9xPys2sL117ga/YE9wP/bWp73COwu/18JvP/NBrr02jgu/oVtwP4Rbrb0JUwi/sIZyP723rb3nEge/YkhzP3aHrb1d5AO/LIJ1P5KgrL3ToAK/rmN2P8Abrb2gT/2+QON4P1d3rb1AyPW+r1x3PyCkr72+R/e+nFB5P+Qzsr02jgu/oVtwP4Rbrb3PUPS+pZp2P82HlL0imfG+qap2P49vpL1F3vS+KXt7P5S7tL1AyPW+r1x3PyCkr71Qnva+CVV5Px4otr2MxvS+gCF3P4LKsL0XR/W+MvF2P9Kvsr33efa+R854P9VHs71hd/m+VHJ1P32JuL3cwPu+CZF0P1cou71slf2+d/d1P/Pcur0hrPu+S6p2P9NXub0Kq/++D2pzP2XKvb3mNAG/B8JyPz1qv73tyQG/V+RzPxK5vr0itgC/25J0P5tKvb2MxvS+gCF3P4LKsL2GfvK+L2h2P854u73wFfS+Wx52PwUFv72MxvS+gCF3P4LKsL2MxvS+gCF3P4LKsL0XR/W+MvF2P9Kvsr1hd/m+VHJ1P32JuL0pH/i+psN0P8cxwr2n8/q+AfpzP8vNxL3cwPu+CZF0P1cou72o4AC/XihyP69byL3mNAG/B8JyPz1qv70Kq/++D2pzP2XKvb1Ltf6+guByPwfpxr0tQQS/EmxxPxQkyr2qrQS/4RFyP5IIyb2zagS/6wxyP5Q0w73FGgS/J4dxPz2fw70itgC/25J0P5tKvb3tyQG/V+RzPxK5vr1h4gG/dUB0P7cmxb2v5gC/Ne10Pzviw71l3v2+h1V2PxDGwb19Efy+ff92P7hhwL0hrPu+S6p2P9NXub1slf2+d/d1P/Pcur0VxPa+rCt5Pw5bu72Ar/W+Hq55P/XpvL2+R/e+nFB5P+Qzsr2qrQS/4RFyP5IIyb2zagS/6wxyP5Q0w73KMu++uAF3P8C0sr3yifS+kx13P0q3x73LaPK+3pF3P7g0x71CxfO+ym15P8Skxb1HSva+MP54P3gLxL3pDfm+UJp1P11oyr1yfvu+W992P8Hkx73mb/2+mC52P3VAyb2Ytfu+Z9R0P4ZpzL13of++gqtzP64Zzr1KswC/vMp0P/01y72RwgG/NRt0P61ozL3lKQG//flyP3hEz73wFfS+Wx52PwUFv72GfvK+L2h2P854u73LaPK+3pF3P7g0x73LaPK+3pF3P7g0x73yifS+kx13P0q3x70pH/i+psN0P8cxwr3pDfm+UJp1P11oyr2Ytfu+Z9R0P4ZpzL2n8/q+AfpzP8vNxL3lKQG//flyP3hEz72o4AC/XihyP69byL1Ltf6+guByPwfpxr13of++gqtzP64Zzr3WGgS/lLlxPwK6z70AaAS/PjtyP2eJzr2RwgG/NRt0P61ozL1KswC/vMp0P/01y73mb/2+mC52P3VAyb1yfvu+W992P8Hkx71HSva+MP54P3gLxL0AaAS/PjtyP2eJzr1ry+6+CVR4P7XhwL0TwfG+UJR6Pw4ew72XwOi+PRt8P9IZpbwBgea+8iN6P9Dl5Ly9/+m+XB94P8pd1bzQN+u+vp55PymGmbw7sPC+7wZ2P2/nfbwGLe++fih1P37frrzZ0vG+E7pzPyrinrydivK+Qcd0P55ubrwBgea+8iN6P9Dl5LxzTOm+SYN5PxmuFb0zc+y+AGV4PxafB729/+m+XB94P8pd1bzA+PC+VKh1P10x4bzA+PC+VKh1P10x4byg3PO+FPVzPyW5yrzZ0vG+E7pzPyrinrwGLe++fih1P37frrxj1vu+Xa1wP8RfKbxnVPq+a4JwPwRtH7wKOvq+QwtwP+BDO7xTwfu+OR5wP8wPVLydivK+Qcd0P55ubryslvS+W7t1P/fGgbwM6fK+8O52P41MiLw7sPC+7wZ2P2/nfbzQN+u+vp55PymGmbxbke2+u696P1zmpLyXwOi+PRt8P9IZpbzY1va+vSZyPy4dPryPfPi+lGdwP7lZUrwKOvq+QwtwP+BDO7xnVPq+a4JwPwRtH7yMnva+3C1xP1VgdryPfPi+lGdwP7lZUrzQwvq+gHZwPw3Mh7xTwfu+OR5wP8wPVLxTwfu+OR5wP8wPVLxTwfu+OR5wP8wPVLwKOvq+QwtwP+BDO7yMnva+3C1xP1Vgdrzmivi+e2JxPyE6pLy5pvi+DjZzP04/U7zY1va+vSZyPy4dPrxnVPq+a4JwPwRtH7xj1vu+Xa1wP8RfKbxL6e++/Bp7P2Fjxbzd8O++wNd5P6MZBr1XQu++F9Z5P0dCD71HtPS+F5J3P8/opLzrefa+nUl2P403nLwYRva+Xmt1P+nSx7xB+fO+9P92P1jI27zd8O++wNd5P6MZBr3d8O++wNd5P6MZBr0zc+y+AGV4PxafB71zTOm+SYN5PxmuFb1XQu++F9Z5P0dCD72g3PO+FPVzPyW5yrzA+PC+VKh1P10x4bxB+fO+9P92P1jI27wYRva+Xmt1P+nSx7xFv/y+xt5wP2DydLyHDf2+/ZZxPwyAV7zrefa+nUl2P403nLxHtPS+F5J3P8/opLycPfy+G+5xP+oIkLxJZ/q+iYJzPwI5gbyHDf2+/ZZxPwyAV7zmkfq+vLxyPza6orzQwvq+gHZwPw3Mh7ycPfy+G+5xP+oIkLycPfy+G+5xP+oIkLxFv/y+xt5wP2DydLzmkfq+vLxyPza6orzmivi+e2JxPyE6pLxJZ/q+iYJzPwI5gbyHDf2+/ZZxPwyAV7x80+++8o1+Pwmmrb2ltu2+IMF4P86uPL3LLey+lDR5P3cQd73BLPK+Q2V7P1BSCb1UC/e+Bo96P2CYDb1+WPG+mU5/P90GJL14JvG+WcZ5P5LXFb0QQvW+vCp5P+L2FL0G7Om+LEp5P1R8mL2h3+C+/IB8P8Cea71LVuC+AXB8PweOi73EbeC+x6F8PylroL31L+O+YUx+P+lrs72ewOe+K6F7P4a2ub3P9+e+x/B5PzYUrL3Lpuu+Ujp9P/uUur1ry+6+CVR4P7XhwL2ewOe+K6F7P4a2ub14JvG+WcZ5P5LXFb1ry+6+CVR4P7XhwL3YLOe+pxt6P7D8Mb28tee+a52AP8CSA70Juw2/1ZxvP0fufr07JA2/YaNvP7OVcL2JQQ2/spJvP6bxhr3o+gm/YWlxP0mqJ72pnAm/VX1wP2XONb3o+gm/YWlxP0mqJ72x1wm/1TRxPyEdR72pnAm/VX1wP2XONb2x1wm/1TRxPyEdR71RMAu/L8VvPxCRbr2bhQq/m7xuP9TYf72bhQq/m7xuP9TYf71RMAu/L8VvPxCRbr2ZIAu/WalvP+OUiL2ZIAu/WalvP+OUiL2bhQq/m7xuP9TYf70lVAm/lS1wPy7enr3C7Qi/CY5vP6AVqL0lVAm/lS1wPy7enr1bbQm/zExwPzTZr71bbQm/zExwPzTZr71bbQm/zExwPzTZr73C7Qi/CY5vP6AVqL3CugK/4Q1yPyqrwb3SdwK/kGRxP3veyb3CugK/4Q1yPyqrwb39qgK/bkxyP55t0L3SdwK/kGRxP3veyb3lKQG//flyP3hEz739qgK/bkxyP55t0L13of++gqtzP64Zzr0QQvW+vCp5P+L2FL0wXwG/F590P0LYl71O3/u+mfN2P+5Dlr1UdAa/OxJzP1C2I71P6gu/+bVwP+StOL1/wQu/4RBxP4roK706sAu/r89wPyYuR72P2Qy/DAxvP5yRcb0t3Ay/z+ZuPw/Jhr36Eg2/w7duP6mwf72vcgu/6nhvP5yep719HQu/da9vP/jbn73COwu/18JvP/NBrr0tQQS/EmxxPxQkyr3FGgS/J4dxPz2fw73WGgS/lLlxPwK6z71XQu++F9Z5P0dCD73bB/y+TzV4P12EFr03ieK+0E58P6458rzwKOS+2Zd9PxN+1bxVmd++jrB+PzUOCL1raOK+0UGAP3Mf+LymQ+G+/96BP6uCE71/wQu/4RBxP4roK72i/Qu/p6RxP4DCLb06sAu/r89wPyYuR71w1wu/VGFxP7zbSL2P2Qy/DAxvP5yRcb0t3Ay/z+ZuPw/Jhr2JQQ2/spJvP6bxhr19HQu/da9vP/jbn72piwu/6jlwP35aoL3COwu/18JvP/NBrr02jgu/oVtwP4Rbrb3FGgS/J4dxPz2fw72zagS/6wxyP5Q0w73WGgS/lLlxPwK6z73WGgS/lLlxPwK6z70AaAS/PjtyP2eJzr2P2Qy/DAxvP5yRcb3WGgS/lLlxPwK6z728eda+sSyFPwqTpL2d3Ni+AfOFP6O1k73yg+C+aSiEPy7El71VgN6+eLKDPx1fqL1P29K+k8SCP4PVbb24TdK+JPCCP0hokr1V6de+Z1GBP11ukL0PHdm+lyGBP/cDb72mytq+PfqFPyBsdL18U+K+f0GEP6VIdb03Ytm+jSGFP6f0Rb0q8+C+0r2DP0UEOr24x9e+A0SEP2//Kb24x9e+A0SEP2//Kb0MOdW+4DSDP+/uN72VXNu+FmaBP+qGM70BBN++G8OCPy29I70BBN++G8OCPy29I724x9e+A0SEP2//Kb0BBN++G8OCPy29I70kF9S+qeCDP+/6pL09MNq+GzuCP/7qpr1P29K+k8SCP4PVbb0PHdm+lyGBP/cDb70HBN8+FMOCP0e8I72bXNs+FmaBPw6GM70POdU+2jSDPxXuN727x9c+/UOEP5L+Kb2g3Ng++vKFPzG1k73BedY+sSyFP5aSpL24hN0+y+CDP5bnp733g+A+aSiEP7rDl72B6Kw+t0iNPyFhsL0gW6g+dHmLP3vysb0nqLU+LzmJPw6Fr71psrk+A9WKP6Wvrr0nl6M+ocGJP7fDmL2OPLM+ZN+HP9OIlL0n9KI+hrSJP3xNZ70BOrI+WNaHP74pbr2vQbo+v1OKP+lNH72ebqo+UzCMP9QrEr2Aiqw+INGMP1F7EL29Uqg+gI+LP1LcE71n9bU+R/iIP7yZJb0r2q8+HQ2OPynmKr0HAb0+ZmaLP8S4Nr1Wm6U+iZ+KP6WEKL0BOrI+WNaHP74pbr0n9KI+hrSJP3xNZ70exL0+2/GLP22Amb3u+LA+x6eOP7kimL2Kj7E+3tuOP2+RW72HXr4+iwyMP3m6Zb0cUdA+thSIP/Incr09ec4+jouHP4aGRL23388+a96HPzXrlL008cw+XfGGPxvupL1F+7E+n/mOP4xpgL05Ytk+jSGFP8bzRb0q8+A+0r2DP1wDOr27x9c+/UOEP5L+Kb3UE8w+j7GGPxx4Lr0eGck+L6KFP5VHOL1mGco+ctKFP/Ikpr1328Y+/9aEPwf4kr2m6cY+vc6EP2Andb2m6cY+vc6EP2Andb29TdI+HvCCP91nkr0pF9Q+qeCDP4X6pL1U29I+k8SCP6rUbb0UHdk+kCGBPx4Db71V6dc+Z1GBP/BtkL1U29I+k8SCP6rUbb0UHdk+kCGBPx4Db72syto+PfqFPz5rdL1CMNo+FDuCP4rqpr1+U+I+eEGEP7lHdb3H9Mu+ug+FP0szOL04H9C+xSaFPxKoMr042ci+UJeEP9ffbL04ici+yYeEP1wpdL3Nesm+EmOEP93WjL04ici+yYeEP1wpdL2wfcq+cDyEP6nKkr3qT8y+SwuFP1nSoL2h38y+OEiFP33Spb1eI8++SwCGP1bypL2c28++62aGP4vSpL0BItC+Rq2GP1VSoL2c28++62aGP4vSpL0+YNG+S4yHP9O3lL1qtNG+OY2HP/xwkL0+YNG+S4yHP9O3lL0rkdO+pG2HP5Lccr3ritO+DAiHP6FuYr1ZmdG+g9qGPwTwRL0mGtG+bp6GPwYJPb1mvM++P++FP9YSLb1mvM++P++FP9YSLb1X+0I85J0lv8UvQz9Oz0Q+Ap86v30wKD/BZO4+GN4Ev3WBNz9JbrC+VIHRvv1JWD/dp6S+wQqEvpY8aT8fxdG+yNQKP3vHOz/5fxu/kBKWPvECPT9vQB8/GyaAvlzrPT8Hw6Y+lJQHv9mASD9pH6c877vaPP7afz9yMKY+VGSIPldWaD+fzJC+bSESPyRVRT9pEce8kxsuP8+SOz+AGx8/WbSqvnh7NT9zRuM+P/sKv0mANj9CAc8+q7bEvr97VD8ofR0/SDDovowXJT/nGWs95x0jPsBNfD+QOr++xTjjPrmIUD+uKhg+/3pUvzqgCb9WklQ+izkuv9HhM7+40L4+/+MQv2JBPL807AA/5OfbvjHmP78EBYE99K99v5N58r0oMlU+Zld6v98anrxG1/0+w33ovqSCPT81ZEg+aUpHv6CsGD8mfzg/NK7Fvh1nE787St0+oRcov3M8Hr/iMyI/+wpGv/t0EzzGhGc/foTYvmWxaj0asQ8/DaYKvyU0ID+XkE4/t0WlvtFI/T69Fig/GAXDvr2nJr/O9Oo+/DUMv+EYM7+x8CQ/g5sUv4Ts/r7IrhM/URTbvtIeMr9MMXI/qg6Jvn/fOj6QIgg/aQc5v7n84T6fDxm/qo9gPs5fRb+ioRi/DBjZPh2FLr8becO+BjcGP9TbQr+7IZ2+WJkZP64hPb/nI+i+VZxivqUHXb/O/qG+pOVuvs5ja783vQE+IXIov70GPr9JP4K99RksP0bRPL+vksu+jVbuPsVrSr9O/Sk9j02mPAW6f7+W1LQ+Dwt+PmvtZr9ro/Y+zfHWvuvrRL+pLCQ/GWZIvqbtPb/6WQa+lno3P39WL7/fnL6+1EMYPzhlNr84hIm++NQEP2zCT78wZYi+7PYkP6x/N7/MTTc+kaqkPPzPe790ZKw+3jzdvg0sVr9Q30W/uty7PiKDBD+RbyK/Rfe3PlUvLz/p0Ka+FmsOP6ixQz/UOm6/34+vPlNGAz6qLmC/yuP2PqaGyTzUOm6/34+vPlNGAz5ETyu/kDLgPoiyGb+JxTG+tkRMP37EEz9gPwW/Ic8WP6o7Hj+zJhC/Co5TPwqWf7su6FW+qlV6P2kMPrwu6FW+qlV6P2kMPrxZBbK++f0zP6PLHr8Abvi9QPNSP7CsDb8OrCm++Uc9P5sPJz9Ki9K+rnUVP1A1Mz8yHdi+VKkyP+0eFD9wcpm+yHcsP7/tLD9hHfS+hdBfP7rFur3rMgO/bY8hP0sRFb9Oz0S+Ap86v30wKD9X+0K85J0lv8UvQz/BZO6+GN4Ev3WBNz9JbrA+VIHRvv1JWD/dp6Q+wQqEvpY8aT8fxdE+yNQKP3vHOz/5fxs/kBKWPvECPT9pH6e877vaPP7afz8Hw6a+lJQHv9mASD9vQB+/GyaAvlzrPT9ONKa+f2eIPi5VaD+CypA+2CUSP0JSRT9pEcc8kxsuP8+SOz9zRuO+P/sKv0mANj+FHx+/obGqvpV4NT/8fh2/3iXovncZJT9CAc++q7bEvr97VD/nGWu95x0jPsBNfD+QOr8+xTjjPrmIUD+40L6+/+MQv2JBPL9WklS+izkuv9HhM7+uKhi+/3pUvzqgCb807AC/5OfbvjHmP788OYG9i699vy958r0oMlW+Zld6v98anrxG1/2+w33ovqSCPT81ZEi+aUpHv6CsGD/iMyK/+wpGv/t0Ezw7St2+oRcov3M8Hr8mfzi/NK7Fvh1nE7/GhGe/foTYvmWxaj0asQ+/DaYKvyU0ID+XkE6/t0WlvtFI/T7O9Oq+/DUMv+EYM7+9Fii/GAXDvr2nJr/IrhO/URTbvtIeMr+x8CS/g5sUv4Ts/r5MMXK/qg6Jvn/fOj6QIgi/aQc5v7n84T4becM+BjcGP9TbQr+ioRg/DBjZPh2FLr+fDxk/qo9gPs5fRb+7IZ0+WJkZP64hPb/nI+g+VZxivqUHXb/O/qE+pOVuvs5ja783vQG+IXIov70GPr9O/Sm9j02mPAW6f7+vkss+jVbuPsVrSr9JP4I99RksP0bRPL/D2LS+7BB+PjLsZr9ro/a+zfHWvuvrRL+pLCS/GWZIvqbtPb+Vkb4+R0UYP/VmNr/6WQY+lno3P39WL78wZYg+7PYkP6x/N784hIk++NQEP2zCT7/MTTe+kaqkPPzPe790ZKy+3jzdvg0sVr+RbyI/Rfe3PlUvLz903UU/Eui7PuOBBD/p0KY+FmsOP6ixQz/UOm4/34+vPlNGAz6qLmA/yuP2PqaGyTzUOm4/34+vPlNGAz5ETys/kDLgPoiyGb+zJhA/Co5TPwqWf7tgPwU/Ic8WP6o7Hj+JxTE+tkRMP37EEz8u6FU+qlV6P2kMPrxZBbI++f0zP6PLHr8u6FU+qlV6P2kMPrwAbvg9QPNSP7CsDb9Ki9I+rnUVP1A1Mz8OrCk++Uc9P5sPJz9wcpk+yHcsP7/tLD8qK9g+C6oyP/cYFD9hHfQ+hdBfP7rFur3rMgM/bY8hP0sRFb+Cy24+tLFtP4T3k75kaG8+oNhtP7K8kr437o0+FUttPxJ9gb5jS5s+ZKlnPznWmL6XHbo+WqVfP5yipb6wl8E+tLxXPys0xL6jjf4+5X9RPxyak76JsRI/gLtLP4FnSL4lrB0/XclGP5sxCL7UrxU/ckRMP9DqFb7nQhw/V+FJP8NemL096iM/50VEP4iCQD0jBSc/YGQ/P1gq/j2vyR4/8NJGP/8P4T2Igh0/dV5EP7AnOj4FKxo/fZk9P7CUmD6d/RY/Bs84P4xLuT5s1hM/BW8/P3y6pz5s1hM/BW8/P3y6pz6d/RY/Bs84P4xLuT6OLBA/8vg8P2Ymvj73qwk/xz01P41i6j53EAY/04cyPyiE+j77mgk/wI44PyP13z53ZwU/xpQ3P0r17D6iMfM+16gxP6SECj93L+Y+tIcwP8JZET+gmO4+DEY3P8QYBT/eEuE+SCo4PwetCT/M974+1Gs0P1B9Gj+/Ea4++8AyPyVFIT+Xnr4+NFM2P9xYGD+aCLk+Myo3P0wPGT9zqbM+EOYvP0PeIj/W16E+b3ErPyoILD8S2r0+aQUkP18cLD+wmeg+Fhnivu4QRr9Yr+U+V0DkvpJMRr+3Lgw/gnfpvgqbM797kwg/FnoGv9ezKb9koAo/+Ykhv+o1Dr+gUdo+crM7v76aB79hO98+hWNNvwu+0L75TO8+7shRvxvTqb7vAgc/lkhMv95Ylb5AIxU/VK5Av8ISnb4SnBY/b2hFv+c/eb4yMRY/GH1Mv+BkCL7xPxY/hX5Ov/xcj72UDRw/yzVJv/FY072nuhg/uRRNv1cERb3l+A4/mhBUvwHDMT3zhQw/1P9Uv+oMpD1HBBY/MkJPvwlyCj1HBBY/MkJPvwlyCj3zhQw/1P9Uv+oMpD3RlBM/h7ZQv1k6Xz2rhwY/GclXvyWM7D3njQU/tK1Xv7OFCT4dlxI/y0lQvw4Jzj3Cdg8/GbFRv/Ph+j0Vzf0+HxdZv4YAQD6yE/o+8E5Yv9wkXz6V2Aw/ixJOvwxsYz5OMgU/iE5Qv8q1hD4VI9k+y4VYv5W7pT4NgsY+7vZZv/DXtD6w/OM+IIFRvxcBuj7t5L0+YsZXvzWfxz7PI2g+4nthv2rW1D4iDa09JoVnv+4p1j46z7M9GPtnvwDP0z7OqQC/5uzrvrtCOz/5ofi+jiTqvme5Pj+vVPq+taLrvuS0PT8kxPG+zfnevr4yRD883RS/nu2cvv/rQD/25S6/Pow5vu0XNT/9t1O/pyFSvTdQDz9OAmG/jP1LvWHa8j69/Gu/WYdJvK9axj6dl3O/dRmVvHcwnT7u9nm/UEqdPFoqXD5+XH6/RgWjPMG84z3noX+/5qhPPW63jTx4Pn+/Lm0aPYUEib0ag3y/KUyEPWbtGr77LXi/iCCFPVswcr7IUnO/UBC2PX94mL47wG+/jeSlPfOlrr40IGu/SuDHPbg9xL7IUnO/UBC2PX94mL6hw2+/8K2lPYqWrr68+mW/cmHMPe4F277z7WG/rBXhPaMY6r71fl+/YqDNPcdV9L72T1u/W+riPZv4AL87Y1O/NSvcPbrADb/ZNE2/jVPSPRzIFr/8r0W/FvSOPd+qIb8Rbz2/lmqJPdNVK79RBDC/Gm95PX47Ob+y7yS/NSagPW/CQr9BjRq/FuiMPTxSS79I1xC/0ROdPZ4rUr/Tfxe/TKHFPfPfTL+bVRu/6h/sPfBVSb+knC6/oOgVPgFrN7+J2G4/Q0OLvPUPuD5HrX8/XWmzPG4lOb25t34/jdr5PMP3wj2ufmA/opeyPAnS9T4Fum4/goG3vUIas77xQ3Y/VXmlPA53i76ECnO/jXoDPoXJkj6ECnO/jXoDPoXJkj6ECnO/jXoDPoXJkj5C4nw/eTn4vX+vx70r4nw/LZ8eviFMarxn/HU/Kjowvjc0Xr7qQ1o/oHIoPp7z/b7ut2o/h5/WPTs3xb5uITs/AkZhPUsgLr+NODo/X96EPuydIr9P/QW/RYBGP2zjtD4d302/1v7/PsqNpD4d302/1v7/PsqNpD6fj0++v+LUvin3Yj+fj0++v+LUvin3Yj+iDjE+FFVWvopidj+yvj0/ZRXqPYpXKb9H5RE/bP0GPyJVIb/Udyo/I+nVPkA7Hr8RTFI/7BaVPfPJEL+2c7M+EigcP2XvNb+kB90+9XkmP3QGIL9i8l++ynxuPlyVcj+5NAK/g4UNvlqOWT+5NAK/g4UNvlqOWT9BPB8+ZZFgvymO6D5BPB8+ZZFgvymO6D5eQww/VEgwv4gz8z7MxtY+a38GP56CPb8ZGqQ++kpeP47Mwb4yZMo+sRtLP5EA7b4xyQM/OMIEP3DELr8ons09vw5rP3MyxL4L/1A+RgR0P7tzZL7fen8++1Cnvr1caT9CzLK9SuoYv3wXTD9CzLK9SuoYv3wXTD82opI+Ge5IP0GrDL/eF5U+jJ48P8A1HL+aJ4s+Fq5gP6ggyr5uDro+sCZuPx0GTj3Fobo+HLxrP3zUDb61qFs+dz5vPzVdkT5M6Kw+AspnP7Gwgz6e7wW+MEh8vwnL3b2e7wW+MEh8vwnL3b2e7wW+MEh8vwnL3b14SV0+zyxzP0U4Zz77vkE+vmB4Pz3VGj7Hehg+ngFyP3yJlD6eUrQ++ClHP68xBT8g9Kw+mUxVP1Mn4D7l+IQ+JkAoP8EgNT8hGdM+E+UhP6DiJz+ukwc/BiU1vyeD774GuY09xtpbv1jyAb8GuY09xtpbv1jyAb9CsIU+j/tPP0Z1BT/DJRc+jnBiP1OR4j6mm6A+18Y2P+c/ID8Mpyo/S0rdPrJ4Gz8pFhY/V1UMP5myGD+wvCI/FkRYPtgTPj8y2zs/PheZPrEpHD+aaXy+GZD+vqX2VL+aaXy+GZD+vqX2VL+aaXy+GZD+vqX2VL9Moyg/9abyPhyXFT922fA+ihEXPwD3Jz+jrzM/MPqtPnZBID/Z5XE/yZsVPon3lT4up2k/QLJuPhzUqz7eoHA/IA8HvnkroT7S234/+YuOvIjbvT0U5Xc/jX0yvgj/Nr7Jkk0/nnFOPUwEGD9mghM/cJAxv0JX3b5n/HU/Kjowvjc0Xr7k9Uo/A7WovuxAA7/JPVs/Nc4qvqMq+r4Ab4M+CB94vviEb7+yvj0/ZRXqPYpXKb/+bfw+MhbyPYmoXL+ZtiM/eT/GPEG2RL+5O1++cIe2Ps2TaL/MxtY+a38GP56CPb84hA0+lKQOP8GcUb936mY+xT0rP+5TNb+YdJM9T0FwP9rmrL6aJ4s+Fq5gP6ggyr4C0qI9x5hvPwGsr74ScQo99BFhPx9Z877KlfC+EvBEPzOk3T5qlBg+swByP+uIlD5P7Ws7ZvhgP91S9D6zgwA+PONoP0mnyj4aAFG+eAKrPs6Saz+mm6A+18Y2P+c/ID8PgWI+1vwFP3aoUj8aJUI+RyEcP4f8RD93Vls+42yFvrv+cD/XtTM/2fmtPpg6ID+akxQ/+39iPen9Tz8+pRA/c5S6PY/tUT/bz2o/SsQ1vgOWtj6j2G4/m3GKvAkQuD6Lhmo/TCktvnoduj58Plw/D01IvqEB8T533ca9nQQnv+1pQL933ca9nQQnv+1pQL/wyZI+YhbIvrjrX7+A0aA++BJRP6Db9z7v1fQ+9n/mPicMQT9v98++6hqLvgBaX79v98++6hqLvgBaX788MwC+GEoIPqWwe78sjkg/vpZDPvNmFz+rrVq/sS+dPp7W1r6rrVq/sS+dPp7W1r5xbg+/STkwP5ve674CQYS+LmK0PpFHZr/j5R+/6OW/PTF6Rr/j5R+/6OW/PTF6Rr9aJm+/tuApPra8ob5aJm+/tuApPra8ob5aJm+/tuApPra8ob7BG1c/RvZCPZ1CCr/UK/K+Qsy7PQ9UYD/UK/K+Qsy7PQ9UYD9oo06+eZi5PsvtaD++1hE/aRq8PqA0PL9BuFo/wSwQvHgDBb/Adw4/UT/ZPpndNr8YErY9cud+P/ZCz7yVgZc+UHdBP36PFb8zj7m9rnhyvyeNnT4zj7m9rnhyvyeNnT4zj7m9rnhyvyeNnT5jKlS+ltZvv7k5kL41lTI8I8h1vw8aj74Yqhy+IyB6v96/F74vYMs99mgUP2UJTz9oo06+eZi5PsvtaD8vYMs99mgUP2UJTz90EFg+btNsv3ujob6UK1g+Nuxyv9whcL41lTI8I8h1vw8aj75jfBM/F5Exvy5l3b4sJhO+LXFsPxb3tb4sJhO+LXFsPxb3tb4sJhO+LXFsPxb3tb70RT++xtpyv/G0gr5zoEW+vJ1rv2cgrr7cF9G9i8x3v6Xlar6vRlC+DZ56vwDyfbzG1k6+V9h5v0+5pz1vWlO+NEBzv4Yabz6Qrba89P1xvxinpj6uhGK+vpZmv8Rkvz6aXi2+2AFxP/5NlT6aXi2+2AFxP/5NlT6aXi2+2AFxP/5NlT6v2CM+aFppvwb0wT6Smhk+GLZnv7qtyz6Qrba89P1xvxinpj5zjiQ+cA9qv3dcvj710yc+XtoIPxI+VL/10yc+XtoIPxI+VL8oP4S+jFK0PuVKZr8cPk6+uTZxv2cEiT5QZiq+cr13v2m/QT4/lhC+FYNuvzddqz4wqaa++zNVv6g65T6YYbu+e2NGv8LoAz/o/9u+TsUrvzCyGj9gHJq+fzsev+LnOT9Kl/2+rd8NvyJDKz9LwQq+iLVoP53Iyb4icA+/XTswP0fU675LwQq+iLVoP53Iyb6CEja+N84Lv0aRUT8xafe9j4IWv1bCTD9gHJq+fzsev+LnOT93Vls+42yFvrv+cD+UnBM/yaaKPSVwUL+UnBM/yaaKPSVwUL+UnBM/yaaKPSVwUL9Upt++7vgkv+OrID8MgsC+0Ww0v6QBGj+t8tS+DMMXvyWLMD8MDxu/EU7xvgQfJD87WCm/yGXIvovDIz8Q+j2/JlmGvnDmHT84vy2/TOXQvUQwOj9Xjk+/MrcNvkybET9GUEA+PQcBP63QV788MwC+GEoIPqWwe79GUEA+PQcBP63QV79hqBS/NFUfPVktUD+Yhxe/eExIPdj0TT84vy2/TOXQvUQwOj8aAFG+eAKrPs6Saz+LYl0/VkTHvmx0or6LYl0/VkTHvmx0or6ukwc/BiU1vyeD776QYkG/Ex1rvvwbHT/W/jK/ODqSvlvIJz/sTkC/l8MTvvrjJD/pqGK/DPHSvUIW6D5iImy/nwE8vRhaxD7nAne/agsTPYM4hT5kR26/91OBPndRhz7qmHy/idnOPTZbAj6esxo/01UfvdS5S7/wyZI+YhbIvrjrX7+esxo/01UfvdS5S7+RjFi/y5bfPgHGnD7kNV6/hUfjPrPXYz5kR26/91OBPndRhz7KlfC+EvBEPzOk3T7Ji1g/xqDFvqF2vD7Ji1g/xqDFvqF2vD7Ji1g/xqDFvqF2vD6Mgni/saloPdfobj71dnK/n6ArPTnfoj4Gbne/oeQUPol6WD63on+/ORVZPXeaxLuaRX6/gG9nPQZ5z70zkne/25BLPWuVf75zuWe/H0duPvEctr5rNWy/fy7dPMHpxL5nIV8/OefMvqHykL5nIV8/OefMvqHykL5nIV8/OefMvqHykL5ug1G/1gvVPpLoyr70HE2/BFe/PrVD777htme/b2VuPhMgtr7/GFS/NEzXPs1Wvb6eVgk/mRYVPI8HWD+eVgk/mRYVPI8HWD8BfX8+RUWnvq9eaT8TX3S/CAZOPd9elr5Cu3i/i8SxPVViYb5Hn22/0w3gPckRtr4y8WC/Aui3vUgS8L6J8lS/LDURvrVfCb8VfT6/BZ9rvvePIL9JWRe/78U+vqLiSL9xXyW/Hjilvu4YMb8FEFY/2RO9voyczz5eQww/VEgwv4gz8z4FEFY/2RO9voyczz6V7/a+LiSXvfl1X7/lSeq+7guCvUALY79JWRe/78U+vqLiSL+5O1++cIe2Ps2TaL8jdPk92s0MP2yDUz8jdPk92s0MP2yDUz+481++AGRuPs6Wcj9UbDi/xPt6vu8XJr+CgEO/200vvhJbH7/M5TC/Ss83vr1AM7+DoBi/HLvnvt3AKb/Hiwi/6u4GvzldKb8EHty+5Xwjv65iI79RTXO+0C0gvyw1Pr/KWai+Yts8vzXxFr8ADAQ/NLwWPSQdWz+iDjE+FFVWvopidj8ADAQ/NLwWPSQdWz/HLpC92u4Lv5OcVb+Q3xy9Qn0cvwxdSr9RTXO+0C0gvyw1Pr8Ab4M+CB94vviEb7/2ESW++xRuP3AdqT72ESW++xRuP3AdqT5P/QW/RYBGP2zjtD58uM2+Au8ov5yIIr9qe+G+iyoXv3YhLb8nnaK+tV0tv/XoKb8jDaK+mydSv8xb8755hIu+rmFfv6GPz75l0FW/r23WPq96tr5Hn22/0w3gPckRtr4ons09vw5rP3MyxL5loNa8VIY2Pz9gM7+BxNO9LXsFvyXWWL8nnaK+tV0tv/XoKb9uITs/AkZhPUsgLr+7Kjo/YY+kvmFEG79Wrxm/9A/xPbaBSr/M5TC/Ss83vr1AM7+2c7M+EigcP2XvNb+9WqA+JbC/PmluX7/qY0M+1Xtqvwu/tL7749C9Mc13v0Pmar4Fum4/goG3vUIas75ML14/OWWqvaO6+r5q2CM+1nNqv2aTvD4/lhC+FYNuvzddqz7OonA/NhAHvqsfoT5nNzk/uLtWvh9fKD/zR1C+lM8Fvx3xUz+t8tS+DMMXvyWLMD+SvSI/CytYPt8UPj+J7AA/oE0EPuGtWj942xO/EPD9PEXVUD82TkC/Q90Tvl7jJD/l+IQ+JkAoP8EgNT+0Cqw8uyY4Pz3AMT9GjFe/mtXUPtASsD4Gbne/oeQUPol6WD61qFs+dz5vPzVdkT65uNo9bvZzPzMzkT65t36/jdr5PMP3wj1HrX+/XWmzPG4lOb2J2G6/Q0OLvPUPuD6ufmC/opeyPAnS9T7xQ3a/VXmlPA53i74Fum6/goG3vUIas768CHM/lnkDPo3Vkj68CHM/lnkDPo3Vkj68CHM/lnkDPo3Vkj4r4ny/LZ8eviFMarxC4ny/eTn4vX+vx71n/HW/Kjowvjc0Xr7ut2q/h5/WPTs3xb7qQ1q/oHIoPp7z/b6HNTq/N9yEPtWhIr9uITu/AkZhPUsgLr8d300/1v7/PsqNpD5P/QU/RYBGP2zjtD4d300/1v7/PsqNpD6fj08+v+LUvin3Yj+fj08+v+LUvin3Yj+iDjG+FFVWvopidj/Udyq/I+nVPkA7Hr9H5RG/bP0GPyJVIb+yvj2/ZRXqPYpXKb8RTFK/7BaVPfPJEL+kB92+9XkmP3QGIL+2c7O+EigcP2XvNb+5NAI/g4UNvlqOWT+4818+AGRuPs6Wcj+5NAI/g4UNvlqOWT9BPB++ZZFgvymO6D5BPB++ZZFgvymO6D5eQwy/VEgwv4gz8z4/b8q+ohlLPyr+7L6xCqS+aU5eP9bJwb7Mxta+a38GP56CPb8xyQO/OMIEP3DELr8L/1C+RgR0P7tzZL4ons29vw5rP3MyxL5CzLI9SuoYv3wXTD/fen+++1Cnvr1caT9CzLI9SuoYv3wXTD/eF5W+jJ48P8A1HL82opK+Ge5IP0GrDL+aJ4u+Fq5gP6ggyr7Fobq+HLxrP3zUDb5uDrq+sCZuPx0GTj1M6Ky+AspnP7Gwgz61qFu+dz5vPzVdkT6e7wU+MEh8vwnL3b2e7wU+MEh8vwnL3b2e7wU+MEh8vwnL3b37vkG+vmB4Pz3VGj54SV2+zyxzP0U4Zz7Hehi+ngFyP3yJlD4g9Ky+mUxVP1Mn4D6eUrS++ClHP68xBT8hGdO+E+UhP6DiJz/l+IS+JkAoP8EgNT8GuY29xtpbv1jyAb+ukwe/BiU1vyeD774GuY29xtpbv1jyAb/DJRe+jnBiP1OR4j55vIW+K/pPP2J0BT+mm6C+18Y2P+c/ID8pFha/V1UMP5myGD8Mpyq/S0rdPrJ4Gz8y2zu/PheZPrEpHD+wvCK/FkRYPtgTPj+aaXw+GZD+vqX2VL+aaXw+GZD+vqX2VL+aaXw+GZD+vqX2VL922fC+ihEXPwD3Jz8Cpyi/3aLyPpaUFT+jrzO/MPqtPnZBID8up2m/QLJuPhzUqz7Z5XG/yZsVPon3lT7S236/+YuOvIjbvT3eoHC/IA8HvnkroT4U5Xe/jX0yvgj/Nr7Jkk2/nnFOPUwEGD/k9Uq/A7WovuxAA79n/HW/Kjowvjc0Xr5mghO/cJAxv0JX3b7JPVu/Nc4qvqMq+r7+bfy+MhbyPYmoXL+yvj2/ZRXqPYpXKb8Ab4O+CB94vviEb7+ZtiO/eT/GPEG2RL84hA2+lKQOP8GcUb/Mxta+a38GP56CPb+5O18+cIe2Ps2TaL936ma+xT0rP+5TNb8C0qK9x5hvPwGsr76aJ4u+Fq5gP6ggyr5wQJO9v0FwPyvnrL4ScQq99BFhPx9Z875P7Wu7ZvhgP91S9D5qlBi+swByP+uIlD7KlfA+EvBEPzOk3T6zgwC+PONoP0mnyj4PgWK+1vwFP3aoUj+mm6C+18Y2P+c/ID8EG1E+7vWqPpeTaz9fPkK+hSAcP5P7RD+akxS/+39iPen9Tz+jrzO/MPqtPnZBID8BVVu+G3mFviD9cD8+pRC/c5S6PY/tUT+Lhmq/TCktvnoduj6J2G6/Q0OLvPUPuD7bz2q/SsQ1vgOWtj58Ply/D01IvqEB8T533cY9nQQnv+1pQL933cY9nQQnv+1pQL/wyZK+YhbIvrjrX7+A0aC++BJRP6Db9z6q2vS+aYTmPlMJQT9v988+6hqLvgBaX79v988+6hqLvgBaX7/MMgA+2WMIPsuve78sjki/vpZDPvNmFz+rrVo/sS+dPp7W1r6rrVo/sS+dPp7W1r74cA8/1zUwP8Pi677j5R8/6OW/PTF6Rr8CQYQ+LmK0PpFHZr/j5R8/6OW/PTF6Rr9aJm8/tuApPra8ob5aJm8/tuApPra8ob5aJm8/tuApPra8ob7BG1e/RvZCPZ1CCr/UK/I+Qsy7PQ9UYD/UK/I+Qsy7PQ9UYD9oo04+eZi5PsvtaD++1hG/aRq8PqA0PL9BuFq/wSwQvHgDBb/Adw6/UT/ZPpndNr8YEra9cud+P/ZCz7yVgZe+UHdBP36PFb8zj7k9rnhyvyeNnT4zj7k9rnhyvyeNnT4zj7k9rnhyvyeNnT41lTK8I8h1vw8aj75jKlQ+ltZvv7k5kL5+kBw+HSF6v3bAF75oo04+eZi5PsvtaD8vYMu99mgUP2UJTz8vYMu99mgUP2UJTz81lTK8I8h1vw8aj76UK1i+Nuxyv9whcL50EFi+btNsv3ujob5mexO/dZYxv5dW3b4sJhM+LXFsPxb3tb4sJhM+LXFsPxb3tb4sJhM+LXFsPxb3tb5zoEU+vJ1rv2cgrr70RT8+xtpyv/G0gr7cF9E9i8x3v6Xlar67X1A+pZx6v/uTf7w0104+29h5vzuFpz1vWlM+NEBzv4Yabz6QrbY89P1xvxinpj5ym2I+O5Nmv/Vuvz6aXi0+2AFxP/5NlT6aXi0+2AFxP/5NlT6aXi0+2AFxP/5NlT6QrbY89P1xvxinpj6Smhm+GLZnv7qtyz4Y1yO+JFhpvz//wT5zjiS+cA9qv3dcvj710ye+XtoIPxI+VL/10ye+XtoIPxI+VL8CQYQ+LmK0PpFHZr/qYio+D793v1WhQT4cPk4+uTZxv2cEiT4/lhA+FYNuvzddqz4wqaY++zNVv6g65T6YYbs+e2NGv8LoAz/o/9s+TsUrvzCyGj9gHJo+fzsev+LnOT9Kl/0+rd8NvyJDKz8icA8/XTswP0fU675LwQo+iLVoP53Iyb5LwQo+iLVoP53Iyb5gHJo+fzsev+LnOT8xafc9j4IWv1bCTD+CEjY+N84Lv0aRUT93Vlu+42yFvrv+cD+UnBO/yaaKPSVwUL+UnBO/yaaKPSVwUL+UnBO/yaaKPSVwUL8MgsA+0Ww0v6QBGj+kot8+xPwkvz2pID+t8tQ+DMMXvyWLMD8MDxs/EU7xvgQfJD87WCk/yGXIvovDIz8Q+j0/JlmGvnDmHT84vy0/TOXQvUQwOj9Xjk8/MrcNvkybET88MwA+GEoIPqWwe79GUEC+PQcBP63QV79GUEC+PQcBP63QV784vy0/TOXQvUQwOj+Yhxc/eExIPdj0TT9hqBQ/NFUfPVktUD8aAFE+eAKrPs6Saz++YF2/tkLHvjWAor6+YF2/tkLHvjWAor5OlQe/Mic1v+p4777W/jI/ODqSvlvIJz+QYkE/Ex1rvvwbHT/sTkA/l8MTvvrjJD/pqGI/DPHSvUIW6D5iImw/nwE8vRhaxD7nAnc/agsTPYM4hT5kR24/91OBPndRhz7qmHw/idnOPTZbAj7wyZK+YhbIvrjrX7+esxq/01UfvdS5S7+esxq/01UfvdS5S79kR24/91OBPndRhz7kNV4/hUfjPrPXYz6RjFg/y5bfPgHGnD7KlfA+EvBEPzOk3T7Ji1i/xqDFvqF2vD7Ji1i/xqDFvqF2vD7Ji1i/xqDFvqF2vD71dnI/n6ArPTnfoj6Mgng/saloPdfobj4Gbnc/oeQUPol6WD63on8/ORVZPXeaxLuaRX4/gG9nPQZ5z70zknc/25BLPWuVf77htmc/b2VuPhMgtr4ZM2w/UyzdPOz0xL5nIV+/OefMvqHykL5nIV+/OefMvqHykL5nIV+/OefMvqHykL5zuWc/H0duPvEctr70HE0/BFe/PrVD775ug1E/1gvVPpLoyr7/GFQ/NEzXPs1Wvb6eVgm/mRYVPI8HWD+eVgm/mRYVPI8HWD8BfX++RUWnvq9eaT9Cu3g/i8SxPVViYb48XXQ/ewROPddqlr5Hn20/0w3gPckRtr4y8WA/Aui3vUgS8L7W7lQ/3UwRvuBjCb8VfT4/BZ9rvvePIL9JWRc/78U+vqLiSL9xXyU/Hjilvu4YMb9eQwy/VEgwv4gz8z4FEFa/2RO9voyczz4FEFa/2RO9voyczz5JWRc/78U+vqLiSL/lSeo+7guCvUALY7+V7/Y+LiSXvfl1X7+5O18+cIe2Ps2TaL8jdPm92s0MP2yDUz8jdPm92s0MP2yDUz+4818+AGRuPs6Wcj+CgEM/200vvhJbH79UbDg/xPt6vu8XJr/M5TA/Ss83vr1AM7+DoBg/HLvnvt3AKb/Hiwg/6u4GvzldKb8EHtw+5Xwjv65iI78MZnM+1SwgvwI0Pr98Zag+zNk8v/HvFr+iDjG+FFVWvopidj8ADAS/NLwWPSQdWz8ADAS/NLwWPSQdWz9RTXM+0C0gvyw1Pr+Q3xw9Qn0cvwxdSr/HLpA92u4Lv5OcVb8Ab4O+CB94vviEb7/2ESU++xRuP3AdqT72ESU++xRuP3AdqT5P/QU/RYBGP2zjtD5qe+E+iyoXv3YhLb98uM0+Au8ov5yIIr8nnaI+tV0tv/XoKb8jDaI+mydSv8xb8755hIs+rmFfv6GPz74azlU/fnjWPrp4tr5Hn20/0w3gPckRtr4ons29vw5rP3MyxL5loNY8VIY2Pz9gM7+BxNM9LXsFvyXWWL8nnaI+tV0tv/XoKb9uITu/AkZhPUsgLr+7Kjq/YY+kvmFEG7+Isxk/QgzxPZt+Sr/M5TA/Ss83vr1AM7+2c7O+EigcP2XvNb+9WqC+JbC/PmluX7/qY0O+1Xtqvwu/tL7cF9E9i8x3v6Xlar4Fum6/goG3vUIas75ML16/OWWqvaO6+r5TvSO+lXJqv4CfvD4/lhA+FYNuvzddqz7OonC/NhAHvqsfoT5nNzm/uLtWvh9fKD/zR1A+lM8Fvx3xUz/q7tQ+XsAXv5SOMD+SvSK/CytYPt8UPj+J7AC/oE0EPuGtWj942xM/EPD9PEXVUD82TkA/Q90Tvl7jJD/l+IS+JkAoP8EgNT+0Cqy8uyY4Pz3AMT9GjFc/mtXUPtASsD4Gbnc/oeQUPol6WD61qFu+dz5vPzVdkT65uNq9bvZzPzMzkT4VQ7y+2NLNveqrbL8VQ7y+2NLNveqrbL8VQ7y+2NLNveqrbL8VQ7y+2NLNveqrbL8VQ7y+2NLNveqrbL8VQ7y+2NLNveqrbL8VQ7y+2NLNveqrbL8VQ7y+2NLNveqrbL8VQ7y+2NLNveqrbL8VQ7y+2NLNveqrbL8VQ7y+2NLNveqrbL8VQ7y+2NLNveqrbL+Pcia/WCUDP26jD7+chxa+Tr2jvmeebz+chxa+Tr2jvmeebz+chxa+Tr2jvmeebz+chxa+Tr2jvmeebz9hhha+E8mjvnCcbz9hhha+E8mjvnCcbz+chxa+Tr2jvmeebz++MRm+4KKlvtkvbz+chxa+Tr2jvmeebz9WJw++J16pvhjsbj/asAO+LcGsvl+6bj9yd/G9DzCuvmjUbj9jOfi9C1GtvkHhbj/nNfi9WEKrvjVAbz+EuFG9xSIuvzIxO7/vacS+5jVDv4xbBb9ESp29wdzIvrWnar/FbRa+77z2vjIjXb8U/1S9N6f7vp+LXr94LDK95iYAv7JVXb+KUPy85KgEv9jNWr/7+we86ZwPv4vpU7+VK928eX4Gv+a2Wb/RjNW+M1tevwYCiT6SXim+m2BUv0+GCD+uWYS+sEYyv8tjKz+6DmC91nsEv8aaWj+/Tx6+itEBv10QWT9KLju9MNsGvxBJWT8sq1i9pGsVv21tTz8BtQS9AWoLv1aMVj/dgh69C/QKv1DHVj/Dfoy9LGucvpcgcz/fxxw/7Zk9P8SFjT7guQY/Z2onPwohCz9v9Cw/0aU8P9ZqvDzM3CU/qPhBP1gnoL3caPM+ca7pPpmKQD/9rFw/Z8w/PvUn8T5DU8c+mRXuPqCMSz+g4A8+Vp0DPxycWD+RPTq/arbTvg4pDD+Quyi/eSI+v4rf8T1fWFq/jcL3vqqaSD74i0K/jZjUvZJCJD8kJDk9RxycPg+Jc7/nmQa/R307vkunVL/10wm/QOdZvhu9UL9OAF69oPHBviqEbD80IFs9SNREv5gdIz9pbxI/XE8AvqSETz/hbxI/jjUAvk6FTz8/Sy4+cBnZPFcsfD/hHQW+NYuKvj8xdD+Ssr89/OSDPaBXfj+6Aqs9e+qVPbBqfj/6azi+57SmvlCebT+jEpQ9/CcgPTwifz90YlC+rxbZvq7rYT87QUa+AWmkvnNSbT9Cuqc9VxeVPV91fj9OAF69oPHBviqEbD837su+XfYnv8QYJD8dSYq+nR8+v9XeHD8SjVs9VdFEv5QgIz9waji+n8CmvlWcbT+S1da+1xEkv1qOJD+A/se+JdElv5Z0Jz/hHQW+NYuKvj8xdD/Vms++6dokv3gVJj93Wka+MWikvkZRbT90YlC+rxbZvq7rYT+h2q6+j1skv3W5Lz8lWVU/xbgMv6Ubaz122eE+yxllv4/ViT0+/vo+S38Nv5mGLD8yCPs+hH0Nv2+ELD8r/9I+fRGWvlPaXD9Tuhk/To9CP+6Qfj5onxs/c49CPwRraz7oDCE/g89GP53OCL29Fh4/8FpJPxa6UTlZuSA/FRNHPwPQCD0rqxs/C/dBPyWucj5YFRs/RwVCP3vodz7nvh0/AoxJP3yVsrzcqjo/8bQiP5TjgT7W2Dw/Y/QpPyR9+73M5y8/VrY4P+hKrr0HVSM/loA5Px9hhT4wdUc/idS+vn8HAT/4B0A/PNYov2apRr3QrEk/C/RbvYoUHT/PWtO9IHd+v8vdEz0+nJE9+aN9v2Ih7D2sMkI/cZolP7K9nz3kNUI/oZYlP1jAnz0X1jE/4sY2P9hls734B0A/PNYov2apRr1JJco9PaesPYjVfb9hGc8+e/z0Po+FR79s2wo/ekONPtYjS7/YAok+cAukvoWgaL98o7Q9rSuYPbdKfr8bnaI9xQu1PbEvfr8Kywy+F36Ivko2dL86hC++s3+qvv1dbb/tiDi+ByGlvmDjbb/+/1S+VO7Pvh3MY7+u1cU9XECCPTZIfr8wNs093xxrPZJJfr+Ieti+d2U7vyXCCL8s/hi+98Jrvw1HuL4ieKu+CYROvyJL+b5zT9q++k4svzyyGr/x58i+2e8lvzQQJ783OtK+azIlv1XqJL86hC++s3+qvv1dbb8AzAy+6nGIvvU3dL/2Bs6+7vAjv1J5J78hh7i+/eokv1GzLL/H/VS+RvnPvr/JY79nhzi+xSylvmnhbb9mkEo/m6z0vtBRw76c8co+Ay1Kv/mz775OhBo/I7VCP+budL51UBw/eIJCPwKpZL5zzhc/Bo5EP3treL4VQRw/CPZBP06ibL75jzM/CqSyvogbH7/ahHE/t2waPaWoqL4eI5c9Nk1+v5ugtD2ZV5c9Tk1+vz5stD0oaUE/TZARP3Cbpr7YAok+cAukvoWgaL8ejTM/M6Gyvo4fH7/Wf2I+vJALPnk1dz8Dwpc+1QDvvQGqcj/Vq9g9x0qmPZS2fT+IJy0+Q+nzPfJ2ej98ld29IRCFvpqldT9TIB8+D+0rPvc1eT/GWyA+U8hHPv/bdz/S4SU+PYpKPvR9dz/7Oxs+3kg7Pv2reD9oOBq+IYPVvi52ZT86woa9m1oTvmTGfD/OyyE+y/pPPgthdz9LlYO+UxNQvwLWBT/qEqG++Voxv/cdJj+Hd6++WT0tv1rQJj+u2Zu+8Mhzv76ttjzq7LG+lH4ev95HND98ld29IRCFvpqldT/AUri+pWQcvz+CND8lb7u+prAcv4RyMz9oOBq+IYPVvi52ZT+DX5a+o7slvxELND/qkqm+gGcjv9PkMT+inpy+7ngov3EgMD9DyG8/8Uqzvp2T/zsYnMQ+8MA6v7TlED+76GU/9w2cvh5aoj5w92s/9HXGvitXQbzVkgo/RMNUP4uPAj4Aawk/9/BRPxYOSz7z+gw/Z4hUP0Insb0kNAw/jGxQP96ERb4dUxg/k+9LP2Ee2r2VlQ8/eL1MP3AgW76S+g8/SmtOPwiAOz7vZRY/myJKP1xzNT5lDyY/eGE9P1oVN75cACI/eYRAP7vUPD6ruhY/fKM+P/DqoD64ACw//CA9P/JxVz3ukQ0/3bdRPz+MG75Gpwg/D0VYP6AkF718oCu+OaJ4v+xDLT7gZts+RBDvPmAGRj87YhI/nx06P3adwj4bqCU/E6FWPNAlQ79rxro+qvwGv6VzRL9FJSi+PinPvt5NZr9qln+7iVe5vZTyfr/Ygbe6GdIzvcDAf78yXxg87yVkvWyXf7+fits7aEpIvSGwf7+I4Me7qw1pvZ2Uf7+laLy80OzJvUOvfr+dgTc7plhsvY2Sf79/3oS+6fcGvzkjT7+DGWK+BdMNv9p9Tb/lIfe+IOMxv9V3CL8Hy/i+pY08v2ro8L7HPii+XyjPvudMZr9y+xi+H6Z3v3qBUb5D9uC+YGRFvy34677hn9q+pslEv6TQ876KENq+nf1Hv06u6b4TRue+D8tCvzd+7r6yAbi+LuhFv4TOBb+DGWK+BdMNv9p9Tb+56oS+BPcGv9khT7+yKM++hYpAv3MsBb9RxmE/n8m4vn0+m74MIGs/NWSXvgd/hr6A9P0+1k5BP0B/274EtQM/qYxEP4iGw7795wU/Hvo3P9+V6r5lsQE/FVg8P2Im5r7pays/GVIqP9wDqb75rQs/g+gtP8o/+74RMUk/EATnPNchHr9muwY/qblKP8WQnr5rxro+qvwGv6VzRL/sI2I/LwdoPnEQ0j48JWI/Ue5nPqkR0j5qlfA+izLCPqANTD+o3OA9pxFQviAUeT9kDiA+OAIuv5J0Nz+95AM9S20nvqBrfD84YeU9CTBdvKNdfj+2y/c9Law2vdbcfT9B4ym+cTnpvtjnXz+qNDy+JiPmvufJXz8iGoQ9DTtWvaIdfz92gms9opoivdVffz9CPEq+f9kLvxVhUD9kDiA+OAIuv5J0Nz+Ymrm+41syv6J3Hj8Yao2+8/Q6v+fyHz+/Qy09UK45v8jmLz9y3ym+NzTpvmLpXz8Ozc6+oa44v78AED8MT76+JhhEv1hFBj/up7e+3AlJv78tAT/N0LW+nHBAvz5DDj+qNDy+JiPmvufJXz9CPEq+f9kLvxVhUD/rkpy+/mZIv++6Cj/nJsA+R+NUv2yc0T5EGUI/fv8QvyZgpT7dA1w/j74Cv9kPvrw7i1s/5qgDv4sNvjulmA0/TQ1SPxfEEz7y9gg/GflEP5Cksj6CtAU/8gNDP4I+xD45NA8/SjJTP3ncpD0xsgs/aWk8P14nzT7//hM/4CJNP6OYHT6n6BU/kGdPPym42jyLNA0/qkg7P+8mzT6UQD8/biIpPz0dlj0h1zU/JFwhP6hpoL7/jCQ/GchDPzhyNb2u7HY/BbtBvvFnPD6NWRI/DDJRPy26lj2q9As/3a1IP6Gulj4D+kI9y5Jvv/3Lsj7SuyI/tfQnP0dG0L7czts+T3smv51wID/EUFE9MDI7Pc5lf7+sfMM+cvNBPoGVZ7+OeRw9+SEivz7fRb9IcAq+kOemvkuHb79DSeE9bK0LPvYJfL+Rklg+EfWoPieEa79klFg+YumoPiOGa7/vjNs9dscLPk0dfL/cTcA9KU0iPk+ee79RpDm+q2SGvuWfcr9f1Su+1DPGvh0ZaL84md09Oq4pPtDver/fVqg9uNwxPqQ6e7+z3bm+C3Q7v+CDE78ExbO+OzM3vwuUGr9wcQq+2NumvkqJb792dhw9xB4iv+PhRb8q3xw9nB4iv7HhRb/nhNy+Yiwkv4CPIr+XcMW+IlExv74KHL8BldC+R4MsvxXLHb8ftuK+s/obvyplKL+s0yu++j7GvtEWaL/RqDm+7WeGvjmfcr+n0bq+1Qglv8T4K78t15S+rBsuv1xKLL/c51I/RO/Qvp9oyb61YFQ/Lrm8vqS71r4r9wc/Z9lRP0mNW76iYAg/GKdOP+0agr4bVw4/qhdKP9kshb63qw0/lD1KP/4dh75z0+k+ArJLP4+4y75M5i8/5hsdv3wex76yuWc+osflvQqzd79oLw0/qolRP1LDJL4EAA6/j7o2vyXt2r5qiPS9eht+vzqWsrwx9Qo/8VkFP2unKL+M5C8/VRodv5spx74LfD8+o+AKvwOpUT+utgI/3pM3v4/k8j6kz3s/4T8oPlhalz1/vi8/dOebPnMJKT9xwQY+1x7SvSppfD/xlCW+vEEAvwynWT+pTaa81//Uvta8aD8s8CM+w6zHvVt2ez+qX9Q9AugIvhhPfD/iYxm+99QVv+3/Sz8UBwq+5XIDv7nyWD9td749FUjyvb0VfT9YHRa+AUNZv48YAj8cW369DUhdv3d7/z6o8n29Z0hdv997/z6grYs95n99v4kL+T3Q4Ys9dH99vxkL+T2utgI/3pM3v4/k8j4LfD8+o+AKvwOpUT+YxMK+/m5Dv1iiBT9jB6y+rls+v6z9Ez+pTaa81//Uvta8aD/xlCW+vEEAvwynWT8UBwq+5XIDv7nyWD8CZxm+BNgVv4j9Sz+RtqC+dABMv+skBD9joLa+uENIv4W8Aj/M9E0/Ws4KvwQ5eD6tO1o/06r6vnqxO77eIxQ/LZRQv8jbE71EM4A+/Dxmv4l+tz7ROBc/ZQNKP9pxLD4EwhQ/32g9P0uQrT60Gw4/7ek3P2Si1j4d2BM/yy9PP9hY2z1MFRs/UVQxPw1lyD7hkR0/sB1JP4gGgT00jxc/i19NP7Z/nT0S+BQ/iR81P8xQzT7u0SQ/sNcmPxJFzb4aySg/95E/P6tNlb3xWH0/E/6HPTpcAr75ARs/WD1KP9Y4xT3nQxc/1cBFP9VGbj6IKs2+Md5nv3NrDb60GRE+fejoPhgTYb8nGKS+TF/WvmGFWb+gHIe+2PCBvow5br/8DPk8yxxRPgF8er/djqA8StSHPq3Gdr8bL9Q8/hSBPlGkd79CPUG+W6ffvKBNe79CX1y+Oewzvvfrdb/fU589z0uTPgBedL/SlEs9EKiKPuUadr/H/qG9p4CVPUODfr+04ce9kRcVvGbEfr9xkw6/jLUsv4cH+L4vNem+WoY0vwAbC79jdOy+GYsiv6+MHr8nGKS+TF/WvmGFWb+gHIe+2PCBvow5br9BRly+N+0zvlLtdb9nOEG+vaHfvN9Ne7/rUvi+eAwTvx3PKL98Wte+P+UTv8QTM7/rjMi+xRcWv5iHNb8QCb++z8Ebv2JPM7+jMcC+VA0av0J4NL8ZmMy+eM8Vv/ahNL+0fFQ/UGu+vlrL1L7M2R0/JZsmv1TR4r7lHQc/PRNRPy7mbr5gvww/UVRRP1+xLr7bZwg/VYdOP/jFgr4/HBA/PUdJP/x2gr7f8f8+lxFTP8DHh765RRM/aDJRPwk5Er0O/+O+1/CFviQ3W7/t7po+sSP7Pr80Ub/guzO/B9HPvlPIFT8Hlh6/VI5Av4wVZj5+RyS/gDzwvfYGQj+gnjq/56q8vtauEz8j0TO/s1LYvoyjEj/kQDS/5AbSvnthFD9QQDO/GpXUvlCvFD+fUja/7ejXvraqDz/YBgu/BIQ4vwiP3L6m9zW+Mf9jv4RT1r4Hlh6/VI5Av4wVZj59RhK/a54rvzFg8r65Cga/XWkvv/OcAb/8eQa/oScvv5eCAb+bmbm+BqMivwGRLr+jXwi/sEkuv4WxAL8XwOY+N54qv3kIGD+wjtU+CxIlvzz4Iz+MPyI/zxwXvwvx/z7v7zc/tgAvvxZHAz7l1oU+IyK/Pr3eYz+D4oc+4ZzRPmF2Xz+BcIE9/J2CPgAAdz/N3Vc95VWBPnFUdz+W02c+ApK4PralZz8Y7AA+8kKNPpHxcz8Y/nI+s4rMPoCvYj8FmA+/py/fvlgtND/bfRm/p5TQvv1ZMD8cRyO/BGreviXRIj+y9yC/E0H8vi0BGj/NWTW/ATfavqIGED/v7zc/tgAvvxZHAz6K8Dc/SQEvv00tAz7t+IK+1mZovyUkqr6ZFQy+jmFjv6iQ4L6FE1A9brkrv/VpPb8EpWi88Vw5vwiIML9yv9W+Y8VHv6hf7r5q1u6+Ubw/v8nv8L4RIHQ82SWVPiDedD8qTnw8QzeWPs+zdD+9yDo+kg7RPnP5ZD9RqJc+LZfyPhxOVD/AnWM/AxbOPp8IX745uC8/6qQOP19C7z6Fa30/fI4GPglGWL08bE4/yAHzPoyxtL6Xdk4/AQr3PiPzrr5hfVM/bmztPsTlo77rjlU/xcrjPt/Ppr7+LZ8+sy7dvmG6WL8GqZU+gNaWvrbpaL/yFZs+X/LBvpLfX78/nfg96eR5v3dPOL5bSJQ+Da9LvuCtb7/mMJc+gAFavi9vbr905ow+fcMxvt8Rcr/v45A+aKA0vvBYcb9nIWQ/zVCvvqdtmD5dXXk/zp9nPqmaxDrMqto+DvHuPsVDRj/a8sw+d/X1Pg7HRz8wglQ/jOD+Pr6dgL5oHlU/wtsHP9/qIr4DXVE/sKDcPmtIw745jUs/inYBPxpfq75cAs0+U933vhssR79FVgA/fTG7vgPDSL+oVuw97nAcvxd5SL8zt7E+6gmIvjg/Zr8Df6w+gqtgvu1lar/rENI+7ygJP9brPD+n/tQ+hscKP3LoOj/FxQ8/BdwpPzUW/b4nOcM+XEsHP3UsQr9UUMC+CCtsv4J1tT2/jWC+fUVwvzZxiD7w1wU+TG2avZQRfT96Fso+/AZwvpduYz9tvv8+TsEoP8PlDz9P7p493UQsvyBSPD8T/Eu+Yqwdv3wgQz9syAu/yEFWv/NgGD3dbEy/WhEav+2dRLzaEFK/yDgSvwfupzw75CC/fRxHvyyfCbx/ZCe/z65Bvze10Tu8XTy/3d0Tv0n+tL75pku/1NXpvvXhy7710wm/QOdZvhu9UL/nmQa/R307vkunVL/J2+S++bFqvqFbXb/2oBm/dhNDv/Mkeb4O/+O+1/CFviQ3W7/c7I091/6hPhkzcr/J2+S++bFqvqFbXb9Q6549n0EsvyJVPD9lhOS+FHhivwQlCr5ahce+CE9rvwvgab2OaaI+zr0UPwbhPz/XnRw/k31KPwrmDDzWoBU/Lbk5P2AOuj4w+BY/8KA8PzVGqb5cn9Y8FUqIviqsdj9+bIm9NixXv+ygCT9cn9Y8FUqIviqsdj8qhwm+3CX5vqb8XL+BmIi+D3BJvzd1Dr8qhwm+3CX5vqb8XL9rbgW+tKjIvnslaT9rbgW+tKjIvnslaT8lXT6+vVw/v81AIz+cXD6+wWI/v8o5Iz9lUA2+Ax3LvshSaL9lUA2+Ax3LvshSaL88gEy+0hBMv+bfEb/CgiK+2KoQv5ZCTz/CgiK+2KoQv5ZCTz97oSO+xi18v4gRgz3KDc+9XUjQvnBsaL/yD8+9bT3QvtxuaL/KDc+9XUjQvnBsaL/ZAou+198wvxyGK78j+3a91s8Cv1mDWz+okna9CdACv66DWz9CKSm+ACZwv5Lmmz719bm9xOYuvjEqe7/kL52+8H4cv+S6Or9uLZ2+C4Mcv/i3Or+04ce9kRcVvGbEfr/19bm9xOYuvjEqe7+uyqG99ICVPcaDfr8T/Eu+Yqwdv3wgQz+95AM9S20nvqBrfD+o3OA9pxFQviAUeT+8wYa9RnQTvnbFfD9Gp8Q+G786v0jkED8ustk9yYl7v8onHD5Xazy9wy9uv5wqur513Pm9g3vFvugdaj8L9Mo+cC9Kv7+p775K1OE+GRtlv2fSiT122eE+yxllv4/ViT3nJsA+R+NUv2yc0T4Omv+8El9/v1NqgL3RRba9AQhdv51C/r5EM4A+/Dxmv4l+tz7eIxQ/LZRQv8jbE70Onpq9NLRivu/leL//3/o+WREEvzrjMz8Ntpc+pQLvvdircj+RPTq/arbTvg4pDD+ft/y+EVzcPByJXj+8jkK/apTUvV8/JD+L/Km+75ahPs+PYz8WYdS9/Q3vPinSYD+/wQo+c8wQPtYKez+rtSI+nr4sPt8HeT//h0m9Z5sIvh5mfb/nu5a9zXolvnzue78bEPq95XrFvi0daj8pJsI9UKstPaidfr9tpxs8ccYPvajUf7/kVew9x/GwPMk6fj+/K7I9++UMvBcFfz/C5wg+lnEoPrMuer8iStA9ZUAGPodzfL8jYMs9GhUhvgSIez8i7+M9yBYVvhmqez+LhUk+ELy0PlIpar8Onpq9NLRivu/leL/EhZY9V0N2Pv3Fd78+/vo+S38Nv5mGLD/M2R0/JZsmv1TR4r4+Ej2/ooxCvuuYJT9fFT2/2o9CvhqVJT9Ecwo9tPeXPnlPdD90hPY+cxggP+0zHT/HTyw/GjohPwiAxr4yC9U+zj7XPs9pTr/Lfaw+vri8PuzLXb9Easu+Ji4uvqPbZr9wsVO/hEUJv2NeLb6VJFS/AtoKv5GDDT5Easu+Ji4uvqPbZr/VYTQ/yhI1P8Q/aD30NzU/GqwKP68V6L5EbUe/p4MgP2FlqjrguQa/Z2onPwohCz/fxxy/7Zk9P8SFjT7M3CW/qPhBP1gnoL0Z9Sm/upcdP9lk2b7zww+/39kpPxwg/b5JTOK+42DQPhWkTL9+uzi9dRycPliJc793lMm+6K7pPp1ETD8POl2/F508Pq/C7z4A6vO+qS/qPm46QD9igg2+t7X8PsnQWz/aEFI/yDgSvwfupzxW3VY/JI8Ev9GTKT74KEw/wVsQv+WlW77dbEw/WhEav+2dRLx3WVo/zMP3vnWBSD5+vTE/MktIvhVOMT/5Vik/FYM9v2j19T3VczY/O73jvvnaCj/4i0I/jZjUvZJCJD/nmQY/R307vkunVL/10wk/QOdZvhu9UL+Pcia/WCUDP26jD7/nX4O++j5xPk/3b7+Xuyq/bOo4P+5LOz50hPa+cxggP+0zHT83XeW8qoqoPjmgcT9+vTE/MktIvhVOMT/+Y10+bSvHPvg/ZT9hqUs/ENHpvs7dy75k3dE+/y8ZvitYZr8y3tE+XhYZvg5ZZr/nmQY/R307vkunVL+OMxG/uwUBvhVbUD8Amju95RJFv0f5Ij9WdAI+DsfHvtVwaT8/Sy6+cBnZPFcsfD/2maq9alOWPdJqfj+K5r+9q+SDPQRXfj/hHQU+NYuKvj8xdD/6azg+57SmvlCebT87QUY+AWmkvnNSbT90YlA+rxbZvq7rYT+jEpS9/CcgPTwifz+Ruqe9MOOUPdh1fj8dSYo+nR8+v9XeHD837ss+XfYnv8QYJD9WdAI+DsfHvtVwaT9bMTu9HxNFv3j5Ij8v+8c+89Qlv89xJz+S1dY+1xEkv1qOJD9wajg+n8CmvlWcbT/hHQU+NYuKvj8xdD90YlA+rxbZvq7rYT93WkY+MWikvkZRbT9Ok88+ydgkv+4ZJj+P164+rVgkv+28Lz8yCPu+hH0Nv2+ELD9K1OG+GRtlv2fSiT0lWVW/xbgMv6Ubaz0r/9K+fRGWvlPaXD/oDCG/g89GP53OCL1onxu/c49CPwRraz5Tuhm/To9CP+6Qfj4GIh6/ElJJP6y3UTlYFRu/RwVCP3vodz4rqxu/C/dBPyWucj4CqyC/qR5HP/bOCD3Qvh2/5YtJPxlns7zM5y+/VrY4P+hKrr3W2Dy/Y/QpPyR9+716WDq/hYkiPyCPhD4HVSO/loA5Px9hhT61aEC/bqAovzDzDr0E+kW/x/y+vsM7Az99bEe/erBhvb7lHz9sWtM9qXZ+vzyvFD2T7I29r7d9vwMP6T2o3DG/5cY2P3HCsb2vLUK/HYglP93jpT21aEC/bqAovzDzDr2V4wi/W1iMPiWhTL9hGc++e/z0Po+FR7+5Jcq9LnOsPRTWfb8rp4q+98qjvphtaL8Kyww+F36Ivko2dL8bnaK9xQu1PbEvfr98o7S9rSuYPbdKfr86hC8+s3+qvv1dbb+u1cW9XECCPTZIfr/H/VQ+RvnPvr/JY7/tiDg+ByGlvmDjbb8wNs293xxrPZJJfr8ieKs+CYROvyJL+b7SjBc+ybhrv0rHuL6Ietg+d2U7vyXCCL9zT9o++k4svzyyGr86hC8+s3+qvv1dbb+VSNI+3Cwlv1LrJL/x58g+2e8lvzQQJ78Kyww+F36Ivko2dL/H/VQ+RvnPvr/JY78hh7g+/eokv1GzLL/2Bs4+7vAjv1J5J79nhzg+xSylvmnhbb+39cq+jCpKv9O4775mkEq/m6z0vtBRw75dgxq/8rNCP54Hdb51UBy/eIJCPwKpZL5zzhe/Bo5EP3treL4VQRy/CPZBP06ibL6QmEC/GoyuvgRQEL/g0XG/Zj0bPd7ppr5W8Ja9+09+v9vQsz2oe0G/+5URP5Uxpr4rp4q+98qjvphtaL9nm0C/voiuvjxNEL+C6dG9CBClPYPQfT+c54a+oST+vejmdD/Wf2K+vJALPnk1dz+bpiy+l4n0PRB6ej9YdSC+hcdHPv/adz9TIB++D+0rPvc1eT98ld09IRCFvpqldT/S4SW+PYpKPvR9dz86woY9m1oTvmTGfD9oOBo+IYPVvi52ZT9eIhu+mEk7PvOseD9nsSG+xRRQPsJgdz9rq68+7Uktv6C1Jj/qEqE++Voxv/cdJj8TI4w+rUhRv7W3AT9K3Js+d8Zzvz1XwTzAUrg+pWQcvz+CND98ld09IRCFvpqldT/q7LE+lH4ev95HND/LY7s+HrIcvzN0Mz/qkqk+gGcjv9PkMT/aHpY+RdAlv5EFND9oOBo+IYPVvi52ZT+inpw+7ngov3EgMD9R8WW/IvWbvlhBoj4YnMS+8MA6v7TlED92x2+/PU+zvr6Z/zuB92u/AnbGvsazP7ykDg2/VntUP0snsb0Aawm/9/BRPxYOSz7Vkgq/RMNUP4uPAj4kNAy/jGxQP96ERb6S+g+/SmtOPwiAOz6VlQ+/eL1MP3AgW74dUxi/k+9LP2Ee2r1KXxa/BilKPwdZNT4Eeha/8ZA+P48zoj4j8yG/VYRAPxmMPT6AGCa/YWQ9P6pgNr757Cu/yhM9P7g/cT1Gpwi/D0VYP6AkF73ukQ2/3bdRPz+MG77j7ys+U6N4v9TbLD6g19u+ziTvPujgRT80/hC/76Q5P+J9yD5YLHs+TaXVvl0DYL8LE8G+63kGv6dGQ78R2ya/5AFnPHAeQr9pKUs7rCO5vVrzfr/litu7zeFHvXOwf7/Muxa8/SVkvXuXf7+jgbc6wDo0vXfAf78JJ8s7JXZpvTOUf7+56oQ+BPcGv9khT79fDz67o1hsvYmSf7+laLw80OzJvUOvfr+DGWI+BdMNv9p9Tb9YLHs+TaXVvl0DYL/4MXs+FqrVvtMBYL//oPg+mIs8vzka8b6r2/c+3vExvzoQCL+YMhU+kIB3v1fwVr6KENo+nf1Hv06u6b7hn9o+pslEv6TQ876v6+A+l2ZFv9T6674TRuc+D8tCvzd+7r656oQ+BPcGv9khT7+DGWI+BdMNv9p9Tb+yAbg+LuhFv4TOBb+yKM8+hYpAv3MsBb8MIGu/NWSXvgd/hr5RxmG/n8m4vn0+m76A9P2+1k5BP0B/274EtQO/qYxEP4iGw74VqgG/iF08Pwkl5r506gW/8/Y3PzGa6r5u9Su/p2UqP3uBpr6wvwu/MvMtP8H6+r5Uaku/SmX3PJc8G79muwa/qblKP8WQnr4LE8G+63kGv6dGQ7+NrH6+KRI2vhu+cz+KAum+REHAPnqxTj9UE2G//B1nPuPV1j4HEmG/2zZnPqXU1j5AcCy+umItvwhYNz+2y/e9Law2vdbcfT84YeW9CTBdvKNdfj8w5AO9zoYnvpJqfD9B4yk+cTnpvtjnXz92gmu9opoivdVffz8iGoS9DTtWvaIdfz+qNDw+JiPmvufJXz9CPEo+f9kLvxVhUD/dhJo+L7I7v/YAHD/Eh5o+J687v+QDHD8ZJIg+u6Quv6RcLj9AcCy+umItvwhYNz8WtQS9IyI6v5CPLz8MT74+JhhEv1hFBj/Y284+lKk4v+sBED9B4yk+cTnpvtjnXz/up7c+3AlJv78tAT9CPEo+f9kLvxVhUD+qNDw+JiPmvufJXz/N0LU+nHBAvz5DDj/Ij5w+h2lIvye4Cj/8AFy/Z8MCv10NvrxEGUK/fv8QvyZgpT7nJsC+R+NUv2yc0T47i1u/5qgDv4sNvjuCtAW/8gNDP4I+xD549Qi/iP1EP4iVsj6lmA2/TQ1SPxfEEz6FNA+/uzJTP2OopD2n6BW/kGdPPym42jyV/xO/ryNNPwt/HT4xsgu/aWk8P14nzT6LNA2/qkg7P+8mzT4ytSS/e7VDPzs/JL2FsSS/57hDPz3ZI739jja/5JAhP0JEnL6d8j6/sDYpP3AjqD2Qrne/vSBBvmNxLD6q9Au/3a1IP6Gulj6NWRK/DDJRPy26lj3q4T69Gqdvv7hwsj7bESO/WBYoP0DLzr7dSL++rfUpv4rWJT+d3oK9d9Igv4qBRr9FtsS+jHVCPkFMZ7/Y1F695Q8+PUBYf7/RiwY+C2SmvqDBb7+Iwdu9Wa0LPn4dfL+Rkli+EfWoPieEa79DSeG9bK0LPvYJfL/cTcC9KU0iPk+ee784md29Oq4pPtDver+s0ys++j7GvtEWaL9RpDk+q2SGvuWfcr/fVqi9uNwxPqQ6e7/RiwY+C2SmvqDBb7+sWKg+lG01v8PLH7/2wLU+TPM6vw1sFb8E3IK9Rc8gvyeERr8BldA+R4MsvxXLHb+XcMU+IlExv74KHL/nhNw+Yiwkv4CPIr+pwOI+7/gbv0JjKL+n0bo+1Qglv8T4K79RpDk+q2SGvuWfcr+s0ys++j7GvtEWaL8t15Q+rBsuv1xKLL/c51K/RO/Qvp9oyb61YFS/Lrm8vqS71r4r9we/Z9lRP0mNW77RXQi/YKlOPz0Ygr63qw2/lD1KP/4dh76PXQ6/+BBKP9w5hb4Bjeq+WbpLP0/Byr7xsCG/NKsfvz7H674FzWa+vS/mvVe/d7/9Lw2/h4pRP8mpJL7tpA0/Tq42v2oB3L49svI9Px1+vwdyzryggwu/JoYFP5UOKL/xsCG/NKsfvz7H677XT3u/1dQnPrHbxj1ohOm+K345v5ZFBD9oHyO+5ncLv57DUj9seCC/ZiGUPpQzOT/sT688ORnVvmC1aD8TfSo+FnsAv4hIWT/rjQa+QSDSvd1qfD9xGiK+F4HIvb+Gez9JVwo+YnQDv6DuWD8CZxk+BNgVv4j9Sz9kYNS9Q84IvvVPfD8pmbu9DeXyvfQbfT9pjFu9/ih+v40j2z2dnk09rO1cvwKxAD9Ugx4+Z2RZv6tAAT9/h+m+oIA5v8hABD9ohOm+K345v5ZFBD+VAyO+FH0Lv4rBUj/sT688ORnVvmC1aD9YP6w+I2Y+v+7fEz/icL8+nyBDv/lFBz/HgCo+4H0Av7JGWT+RtqA+dABMv+skBD9BShk+idUVv7QATD9JVwo+YnQDv6DuWD9joLY+uENIv4W8Aj/eIxS/LZRQv8jbE72tO1q/06r6vnqxO77M9E2/Ws4KvwQ5eD5EM4C+/Dxmv4l+tz7W8w2/rOI3P6Uk1z7VxBS/52U9P5WTrT7ROBe/ZQNKP9pxLD6tzxO/Ji1PP1Fi3T2+mBe/Q2FNPwmemj0Llx2/dyJJPz4Uez3z5xq/0UcxPzwdyT4s6xS/WCY1PzFezT651Cm/yBo/Px8gUr1iHye/XVonP/3yw77IUX2/UcmHPdlHA775ARu/WD1KP9Y4xT3nQxe/1cBFP9VGbj41Psg+Irtnv4FKKr4fyFQ+Flh1vr7Icr9e25s+xjrUvieNW7/tlx2+9gjqPn1BYL/fenK9ubRVPmPneb+O/z8+TgDevDdde7/H1N684DuBPumcd7+XrK28lwqIPvq8dr/eoFY+s68yvphLdr+uyqE99ICVPcaDfr8lbk69HL+KPkYVdr/s8p+9jFqTPidadL+04cc9kRcVvGbEfr+vWOg+WMQhv2rYIL/Hs+4+/3s1v8t6B7/fXgw/WfYrv6gJ/75e25s+xjrUvieNW78fyFQ+Flh1vr7Icr9wBfg+mwYTv67wKL+O/z8+TgDevDdde7/Oh1Y+qLAyvutMdr8Ests+AWAUv41aMb+aNMA+Jgkavwp7NL8QCb8+z8Ebv2JPM7/rjMg+xRcWv5iHNb8ZmMw+eM8Vv/ahNL/M2R2/JZsmv1TR4r5yelS/SWm+vjLW1L4txQy/M1NRPwN8Lr5bKQe/PxdRP/9Fbr7Hfgi/dY9OP6Mygr6yMxC/7klJP4T+gb5dowK/qutSPylrfL4wTRO/JS1RP/E5Er0Ul+E+6nqFvinoW7/2XHq+RT71PlTUV7/nHiM/qUDgvadMQz8UQh8/oL4/vwd5aT7QsS8/Jl3evhdaFT8hVDQ/oP7Uvjg6Ez9QQDM/GpXUvlCvFD/kQDQ/5AbSvnthFD+AzjM/iE/YvvSnEj+fUjY/7ejXvraqDz8UQh8/oL4/vwd5aT4adkI+IE5kvzI70r4FXws/M2c4v60Q3L5iXA8/pJgsv42H9r6bmbk+BqMivwGRLr/8pLk+g6Eiv2GPLr8paAY/sD0vv0B3Ab/VEQY/iWMvv3udAb+jXwg/sEkuv4WxAL+MPyK/zxwXvwvx/z6wjtW+CxIlvzz4Iz+jtea+L6AqvzkKGD+K8De/SQEvv00tAz6ob4G9PaqCPmP+dj+D4oe+4ZzRPmF2Xz/l1oW+IyK/Pr3eYz/N3Ve95VWBPnFUdz//jAa+aXV+PpKtdT+hPmi+QUu5PgZ6Zz/Ckn6+hdrOPuZcYT8cRyM/BGreviXRIj+PgBk/VJjQvotWMD8FmA8/py/fvlgtND+y9yA/E0H8vi0BGj/NWTU/ATfavqIGED+ZFQw+jmFjv6iQ4L6s7II+XGhov0Ilqr6K8De/SQEvv00tAz7v7ze/tgAvvxZHAz6FE1C9brkrv/VpPb9UqWg801k5v06LML9yv9U+Y8VHv6hf7r670O4+urs/v0f38L69yDq+kg7RPnP5ZD8qTny8QzeWPs+zdD8RIHS82SWVPiDedD9RqJe+LZfyPhxOVD+gKDC/hFAOP6XA7j5HeGS/WlXKPgDQXr7PTn6/+sjUPf/hR72le1O/fGrtPofxo76Xdk6/AQr3PiPzrr48bE6/yAHzPoyxtL5Xk1W/ZLvjPjbOpr45bJq+Y9fFvn0iX7/dXJq+gdTFvsolX78/jpW+fxCYvvS6aL/CHZi+etDkvqcDWL8o88G9EMh7vw6zHb505oy+fcMxvt8Rcr/mMJe+gAFavi9vbr9bSJS+Da9LvuCtb7/v45C+aKA0vvBYcb9dXXm/zp9nPqmaxDpnIWS/zVCvvqdtmD7a8sy+d/X1Pg7HRz/Mqtq+DvHuPsVDRj9oHlW/wtsHP9/qIr4wglS/jOD+Pr6dgL74WlG/iZ7cPp9Tw745jUu/inYBPxpfq76xUwC/ui27vonFSL9H/sy+Y9j3vrIuR79F88y+7tr3vrwwR7+oVuy97nAcvxd5SL8zt7G+6gmIvjg/Zr8Df6y+gqtgvu1lar/iFNK+hSsJP9roPD+n/tS+hscKP3LoOj8nOcO+XEsHP3UsQr/94WU+TJxvv+vZij7EUMA+kStsv31BtT1sZMq+p99tvnaBYz9z+we+2UedvU74fD/X8/++g8goP43FDz9hD5y9tHgrv6gVPT8uL0w+7LEdv6sYQz8Wxgs/wkRWvyBSFj075CA/fRxHvyyfCbx/ZCc/z65Bvze10Tu8XTw/3d0Tv0n+tL710wk/QOdZvhu9UL+C3+Q+AtBqvq1YXb++lBk/lxRDv0CPeb7c7I291/6hPhkzcr+TleE+IoeFvrLmW7/J2+Q++bFqvqFbXb+0DJy9Unwrv2oSPT86AOQ+/3Ziv62fDb4rpsw+c1hqvwWQQr2OaaK+zr0UPwbhPz/XnRy/k31KPwrmDDw6ohW/6Lo5P/8Cuj4w+Ba/8KA8PzVGqb5cn9a8FUqIviqsdj9+bIk9NixXv+ygCT9cn9a8FUqIviqsdj8qhwk+3CX5vqb8XL+BmIg+D3BJvzd1Dr8qhwk+3CX5vqb8XL9rbgU+tKjIvnslaT+cXD4+wWI/v8o5Iz8lXT4+vVw/v81AIz9rbgU+tKjIvnslaT9lUA0+Ax3LvshSaL9lUA0+Ax3LvshSaL88gEw+0hBMv+bfEb9pgCI+Tq8Qv5g/Tz97oSM+xi18v4gRgz1pgCI+Tq8Qv5g/Tz/yD889bT3QvtxuaL/KDc89XUjQvnBsaL+uQc8900fQvtZraL/+Dos+nd4wv+uEK7+oknY9CdACv66DWz9CKSk+ACZwv5Lmmz6oknY9CdACv66DWz/19bk9xOYuvjEqe79uLZ0+C4Mcv/i3Or+04cc9kRcVvGbEfr/zKbo9XOYuvpspe7/H/qE9p4CVPUODfr9mMkw+2q0dv78bQz+95AO9S20nvqBrfD+NrH6+KRI2vhu+cz86woY9m1oTvmTGfD8ustm9yYl7v8onHD5Gp8S+G786v0jkED9Xazw9wy9uv5wqur7s3vk9W3DFvjggaj8L9Mq+cC9Kv7+p77522eG+yxllv4/ViT13mv88e19/vxk2gL3nJsC+R+NUv2yc0T7RRbY9AQhdv51C/r7eIxS/LZRQv8jbE71EM4C+/Dxmv4l+tz4Onpo9NLRivu/leL9GovS+q/gBv9CGNz/W24a+uPL9vVbpdD9McTY/EbrjvpnfCj8xePw+/57NPKCeXj/4i0I/jZjUvZJCJD9L+qk+XmChPuiZYz+zpp++Hv4qP1T9LD+rtSK+nr4sPt8HeT+/wQq+c8wQPtYKez9Oh0k9J7UIvkBlfb/nu5Y9zXolvnzue7913Pk9g3vFvugdaj8pJsK9UKstPaidfr9tpxu8ccYPvajUf7+/K7K9++UMvBcFfz/kVey9x/GwPMk6fj+Wzgi+qFgoPpower/VStC9oSYGPmB0fL8i7+O9yBYVvhmqez8HW8u9DxEhvkCIez+LhUm+ELy0PlIpar8Onpo9NLRivu/leL8f7JW9hmN2PnHFd78yCPu+hH0Nv2+ELD/M2R2/JZsmv1TR4r4Ht5G+FNTaPlmsW7+A3wu/IRYmPxeZB7+5YRK/n3Q0P0Tj1r7f0Oa9J7GSPqeQc79u8Sk/gAs7v7hwIz6soxM/voQvv9Fv474FFjQ/GUsjv8uAoL45fjU/MoEuv/06OT6MrSe/FgxBP5jVRT3meB6/0xVBP08qYD5zYfi+YMUiP8OuGT+RWMS+KwUwP0HYHT9gZgQ+dSI5vViWfT+HZgQ+0Lk4vaOWfT/2G+s+ken1vs9OPz9/oAo/UGLjvpi8Nj89W9w8gSM1Pmneez/KX9w8dkE1Pg7dez9HYNq+sYAJP1BMOj/R7sW+NHUPP5aDOz9WFoo+VJ98vkpJbr82mcQ+NgmVvmpSYL8Z9Sk/Ugg7v/BtIz45fjU/MoEuv/06OT7qSR08Hd1GPjUdez8Xlhy//s4Cv36dGj9LeNy+o+zgvjfVST/pIJ8966gTPteKfD9a9A0/3fsrP5ly+76qcRs+9LGOPhzEcr+cjZc+rjPzPhomVL/Rxxk/iXUyPwZmyL48CHk+ayKqPtlJab93rDa+wBOMvvP1cb+8KS2+0G+yvkADbL/VypA+7Nh9Ph81bb9IYNy+e+xFv3eA7r4Rz9u+CYZNv0fS076q+u2+4cBav5h3bT5/C+a+bj1cvy6Vdj4EZB0+Zm8BPSLUfD9pm0Q7IciHvYJvfz+yaUA+p2srPtLCdz8UQfm91+iMvksidD878n2+4vINv51cSz8VlvQ+YtgBP7ehNz/EeAg/TJgLP6qaJT+CL6y+KvYnvx70LD9/C+a+bj1cvy6Vdj6q+u2+4cBav5h3bT4J9xU/wzcoP6Pk8r6kzAc/Kb4pP+o1B78BQiA/T8QyP5y3sT4HByw/H+06P0gg/T06YSI/yhw5P/gHjD5Vff8+N7MLPxtXLD+mLxo/ihQsP6B23L5nNYs+5FuNPtH/a7/iPCU/KbpCP3+2jb2kXfg+4cIiP/SyGT+RWMQ+KwUwP0HYHT/R7sU+NHUPP5aDOz+vr/I9uM/EPcQAfT9eVoy+kgTjvrJ3Wj9GkCS+R+SnvvlRbr80fPS+NKhIv7BEy77R9we/MjFOv5Kphj4E9Qe/fzNOv8ymhj7yOR6/kyM0v6Jys76a8mO+RB9nvsfLcr9XXim/+QI4v5m5Wj6Jkjq/noQsv/9r+D3jCze/oOUjv1DGj75DXym/+wM4v5SgWj6Jkjq/noQsv/9r+D2FWiY/sdlAP3lDzz1trbq+/CiNvmywY781vSM/zcpCP8ek3z1fycU+szL1vkvOST9kGEg+TFRWvtNHdT8ihQw/ApQ4v/+G2D4gThA/GMVNvxbDQj513w4/SVNUv0GezbzUThA/GcZNv9KpQj4+LgA/c9FCv80z077bJNM+dhYXv/KoMb9w3GA+yCSivh06bL8trxS95gq1PMvEf7+KLn++7BemPtWZab+1xOC+n6AIP4EJOb+KLn++7BemPtWZab/PXBG/n/8kP8ITA791JiG/TBJCP9l8Lr7PXBG/n/8kP8ITA79n0h2/kLxCP/ESUD5PYRK/BiMqP1dF9j5wMQq/vVIZP8FtFz8CMcy+yvj1PqL3Rz/cj0K9uBbqPQYIfj/cj0K9uBbqPQYIfj+8euE+/HtaPi2k6T5Ae1w+X6HiPpzgdj7mrtk+yK11PreM2T5IM1k+Hr/QPrAjdz6spdE+vNhaPlCx4T4IwEI+5l3hPoypTT7cf9k+AL1NPm502T7s2UM+KKPRPiQOTj6oMtE++CxDPvkg6j7QSEE++xPqPsjLTT5WteE+/DooPuhb6T4k8Sc+BVnZPoh3KD454dA+zIQoPo9s8j6YUl0+6LPpPgBTXD5foeI+nOB2PpaQ7D5I7Xk+dQD1PgSwfj6Y9fs+YAJhPpaQ7D5I7Xk+hmXyPux/XT7LUfM+jAdCPqSU8z40yk4+iA7+PtjoUD4Ocv0+hBVCPsiD8z7wME8+8yzzPvjTQj5rMuo+RPVAPhIm6j6Agk0+XO7vPjgOJj7oW+k+JPEnPq2s+D4QpyM+rZvwPlDGJT6ad9E+eCZbPo9SyT78P10+i4/GPoR6ej4ev9A+sCN3Puau2T7IrXU+yInZPlBnWT7ri+E+qHdaPpco0T7AV0M+no7RPoBSTj6Me9k+kNhNPlhy2T606kM+mWfhPlSfTT73teE+mLBCPt6tyD6kZ0I+mNnIPkjeTj454dA+zIQoPkr1yD7MtCg+BVnZPoh3KD5WteE+/DooPhLfwD5gq14+Bo/JPow4XT6Lj8Y+hHp6PqfWvT6oWn8+r2a3PsiRYj5t4b0+eAN/Pne9wD4EyV4+bMK/PkBJRD7fo78+QJhQPstgtT7YD1M+e7i1PkzNRD54uLU+TM1EPlKOvz5U11A+Mba/Prx4RD5cvcg+QEBCPn/1yD5Mq04+I+nAPlSSKD5K9cg+zLQoPqjxuD5odSg+I+nAPlSSKD4tpOk+QHtcPrx64T78e1o+X6HiPpzgdj7mrtk+yK11PreM2T5IM1k+Hr/QPrAjdz6spdE+vNhaPtx/2T4AvU0+5l3hPoypTT5QseE+CMBCPm502T7s2UM+KKPRPiQOTj6oMtE++CxDPvsT6j7Iy00++SDqPtBIQT7oW+k+JPEnPla14T78Oig+BVnZPoh3KD454dA+zIQoPl+h4j6c4HY+6LPpPgBTXD6PbPI+mFJdPpaQ7D5I7Xk+dQD1PgSwfj6Y9fs+YAJhPpaQ7D5I7Xk+hmXyPux/XT6IDv4+2OhQPqSU8z40yk4+y1HzPowHQj4Ocv0+hBVCPsiD8z7wME8+8yzzPvjTQj4SJuo+gIJNPmsy6j5E9UA+6FvpPiTxJz5c7u8+OA4mPq2s+D4QpyM+rZvwPlDGJT6Lj8Y+hHp6Po9SyT78P10+mnfRPngmWz4ev9A+sCN3Puau2T7IrXU+yInZPlBnWT7ri+E+qHdaPox72T6Q2E0+no7RPoBSTj6XKNE+wFdDPlhy2T606kM+mWfhPlSfTT73teE+mLBCPpjZyD5I3k4+3q3IPqRnQj5K9cg+zLQoPjnh0D7MhCg+BVnZPoh3KD5WteE+/DooPgaPyT6MOF0+Et/APmCrXj6Lj8Y+hHp6PqfWvT6oWn8+r2a3PsiRYj5t4b0+eAN/Pne9wD4EyV4+y2C1PtgPUz7fo78+QJhQPmzCvz5ASUQ+e7i1PkzNRD5Sjr8+VNdQPni4tT5MzUQ+Mba/Prx4RD5/9cg+TKtOPly9yD5AQEI+SvXIPsy0KD4j6cA+VJIoPqjxuD5odSg+I+nAPlSSKD69S+4+x4RFP3HR6z7HhEU/cdHrPiYGSD+9S+4+JgZIP3HR6z6Lh0o/vUvuPouHSj9x0es+5whNP71L7j7nCE0/cdHrPkWKTz+9S+4+RYpPP3HR6z6lC1I/vUvuPqULUj9x0es+BY1UP71L7j4FjVQ/cdHrPmcOVz+9S+4+Zw5XP3HR6z7Hj1k/vUvuPsePWT+9S+4+rKBZP3HR6z6soFk/cdHrPk4fVz+9S+4+Th9XP3HR6z7unVQ/vUvuPu6dVD9x0es+jhxSP71L7j6OHFI/cdHrPi6bTz+9S+4+LptPP3HR6z7MGU0/vUvuPswZTT9x0es+cJhKP71L7j5wmEo/cdHrPhAXSD+9S+4+EBdIP3HR6z6wlUU/vUvuPrCVRT9x0es+x4RFPyZX6T7LhEU/JlfpPicGSD9x0es+JgZIPyZX6T6Lh0o/cdHrPouHSj8mV+k+6whNP3HR6z7nCE0/JlfpPkmKTz9x0es+RYpPPyZX6T6pC1I/cdHrPqULUj8mV+k+BY1UP3HR6z4FjVQ/JlfpPmcOVz9x0es+Zw5XPyZX6T7Hj1k/cdHrPsePWT9x0es+rKBZPyZX6T6soFk/JlfpPk4fVz9x0es+Th9XPyZX6T7unVQ/cdHrPu6dVD8mV+k+jhxSP3HR6z6OHFI/JlfpPi6bTz9x0es+LptPPyZX6T7MGU0/cdHrPswZTT8mV+k+bphKP3HR6z5wmEo/JlfpPg4XSD9x0es+EBdIPyZX6T6wlUU/cdHrPrCVRT8mV+k+JwZIPyZX6T7LhEU/vUvuPseERT+9S+4+JgZIPyZX6T6Lh0o/vUvuPouHSj8mV+k+6whNP71L7j7nCE0/JlfpPkmKTz+9S+4+RYpPPyZX6T6pC1I/vUvuPqULUj8mV+k+BY1UP71L7j4FjVQ/JlfpPmcOVz+9S+4+Zw5XPyZX6T7Hj1k/vUvuPsePWT8mV+k+Th9XPyZX6T6soFk/vUvuPqygWT+9S+4+Th9XPyZX6T7unVQ/vUvuPu6dVD8mV+k+jhxSP71L7j6OHFI/JlfpPi6bTz+9S+4+LptPPyZX6T7MGU0/vUvuPswZTT8mV+k+bphKP71L7j5wmEo/JlfpPg4XSD+9S+4+EBdIPyZX6T6wlUU/vUvuPrCVRT8fViY+QEQWPhvBGT5ARBY+jcEZPlBwvD3Jui4+UHC8PbUbDT5ARBY+fKoEPlBwvD3Alx0+wK6pPQgEIj6AWuY8AAcoPoBa5jwAzi4+UHC8PeJbOD5QcLw9G2EmPkBEFj6uuxk+QEQWPu+2GT5QcLw9YhYNPkBEFj7enwQ+UHC8PYmLHT7Arqk91/chPoBa5jzJ+ic+gFrmPM7YCT6AWuY8rJwPPoBa5jxWEhQ+wK6pPdlfJj5ARBY+jboZPkBEFj6utBk+UHC8PaTLLj5QcLw9QhUNPkBEFj6WnQQ+UHC8PeqIHT7Arqk9OPUhPoBa5jwp+Cc+gFrmPHvaCT6AWuY8554PPoBa5jy3DxQ+wK6pPal0Jj5ARBY+Xs8ZPkBEFj7x3Rk+UHC8Pef0Lj5QcLw9EioNPkBEFj7gxgQ+UHC8PQy4HT7Arqk9WiQiPoBa5jwdJyg+gFrmPHeuLj5QcLw9PDc4PlBwvD0rUSY+QEQWPtirGT5ARBY+gZcZPlBwvD1yBg0+QEQWPmmABD5QcLw9pmcdPsCuqT300yE+gFrmPOzWJz6AWuY8utcuPlBwvD0TZzg+UHC8PfRlJj5ARBY+qcAZPkBEFj6pwBk+UHC8PTwbDT5ARBY+kakEPlBwvD2glh0+wK6pPe4CIj6AWuY83wUoPoBa5jzHAC8+UHC8PeuWOD5QcLw9qnomPkBEFj5Y1Rk+QEQWPrbpGT5QcLw9DDANPkBEFj7A0gQ+UHC8PZPFHT7Arqk94TEiPoBa5jzSNCg+gFrmPIy6Lj5QcLw9J0U4PlBwvD0lVyY+QEQWPtmxGT5ARBY+fKMZPlBwvD2ODA0+QEQWPoaMBD5QcLw9YvD1PVBwvD27RTg+QHC8PZ7CGD7Arqk9DCAUPsCuqT2Ejw8+gFrmPJ7CGD6AWuY8lIgYPsCuqT1WEhQ+wK6pPaycDz6AWuY8nsIYPoBa5jz1hRg+wK6pPbcPFD7Arqk9554PPoBa5jyewhg+gFrmPJ7CGD7Arqk9ij0UPsCuqT2hcQ8+gFrmPJ7CGD6AWuY85mQYPsCuqT027xM+wK6pPTm/Dz6AWuY8nsIYPoBa5jyewhg+wK6pPcsdFD7Arqk9xZEPPoBa5jyewhg+gFrmPJ7CGD7Arqk900sUPsCuqT3LYg8+gFrmPJ7CGD6AWuY8bXIYPsCuqT0M/hM+wK6pPcGwDz6AWuY8nsIYPoBa5jy7+Ak+gFrmPDm/Dz6AWuY8Nu8TPsCuqT2Y1PU9UHC8PX009j1QcLw9Fc4JPoBa5jzFkQ8+gFrmPMsdFD7Arqk9LJT2PVBwvD2noAk+gFrmPMtiDz6AWuY800sUPsCuqT1cdR0+wK6pParhIT6AWuY8ouQnPoBa5jwU6gk+gFrmPMGwDz6AWuY8DP4TPsCuqT2INvY9UHC8PbrKCT6AWuY8hI8PPoBa5jwMIBQ+wK6pPdcd9j1QcLw9Llk4PlBwvD0hiTg+UHC8PVV49j1QcLw9cBj2PVBwvD05sAk+gFrmPKFxDz6AWuY8ij0UPsCuqT3JrgQ+KGW9PbUbDT6ovhY+20H2PShlvT1rBSc+YC3qPJSiHT6Yo6o91CchPmAt6jz8/xg+YC3qPNQnIT5gLeo8lKIdPpijqj38/xg+mKOqPQ57Cz5gLeo8130RPmAt6jzmKhQ+mKOqPVPSLj4oZb09rWE4PihlvT0bYSY+qL4WPjy7GT4oZb09rrsZPqi+Fj6qwAQ+KGW9PbAmDT6ovhY+m2f2PUBlvT0GJyc+YC3qPJTEHT6Yo6o91EkhPmAt6jz8/xg+YC3qPNRJIT5gLeo8lMQdPpijqj06UBk+mKOqPUOdCz5gLeo8NaARPmAt6jxETRQ+mKOqPUrwLj4oZb09mIQ4PihlvT1CcCY+qL4WPlTZGT4oZb099soZPqi+Fj5DwgQ+KGW9PaslDT6ovhY+UG/2PShlvT0B1CY+YC3qPM12HT6Yo6o9H/ggPmAt6jz8/xg+YC3qPB/4ID5gLeo8zXYdPpijqj38/xg+mKOqPTtNCz5gLeo8/U8RPmAt6jwN/RM+mKOqPQ+qLj4oZb092zI4PihlvT3DTCY+qL4WPhmTGT4oZb09cacZPqi+Fj4jfAQ+KGW9PSUCDT6ovhY+ysv1PShlvT1rBSc+YC3qPNWkHT6Yo6o9YSghPmAt6jz8/xg+YC3qPGEoIT5gLeo81aQdPpijqj38/xg+mKOqPQZ8Cz5gLeo8934RPmAt6jwHLBQ+mKOqPTfTLj4oZb09kWI4PihlvT2NYSY+qL4WPie8GT4oZb09J7wZPqi+Fj4PpQQ+KGW9PdsWDT6ovhY+eCv2PShlvT3fMic+YC3qPGrTHT6Yo6o9mVYhPmAt6jz8/xg+YC3qPJlWIT5gLeo8atMdPpijqj26XRk+mKOqPfOqCz5gLeo88a0RPmAt6jz6WhQ+mKOqPWb8Lj4oZb09g5I4PihlvT1ddiY+qL4WPk/lGT4oZb0999AZPqi+Fj5ZzgQ+KGW9PasrDT6ovhY+J4v2PShlvT154iY+YC3qPBaFHT6Yo6o9MgYhPmAt6jz8/xg+YC3qPDIGIT5gLeo8FoUdPpijqj38/xg+mKOqPcJaCz5gLeo8i10RPmAt6jyUChQ+mKOqPe+1Lj4oZb09pUA4PihlvT29UiY+qL4WPt6eGT4oZb09cq0ZPqi+Fj4DiAQ+KGW9PSYIDT6ovhY+Xef1PShlvT2iESc+YC3qPOmyHT6Yo6o9WzUhPmAt6jz8/xg+YC3qPFs1IT5gLeo86bIdPpijqj2sPBk+mKOqPbWJCz5gLeo8rYwRPmAt6jy9ORQ+mKOqPTnfLj4oZb09l3A4PihlvT2OZyY+qL4WPiHIGT4oZb09QsIZPqi+Fj4ssQQ+KGW9PfccDT6ovhY+T0f2PShlvT2/Dyc+YC3qPEqwHT6Yo6o9GjMhPmAt6jz8/xg+YC3qPBozIT5gLeo8SrAdPpijqj0GOhk+mKOqPRaHCz5gLeo8B4oRPmAt6jwXNxQ+mKOqPfHcLj4oZb09/204PihlvT1tZiY+qL4WPuDFGT4oZb09IsEZPqi+Fj6LXRE+YC3qPJQKFD6Yo6o9DLgdPsCuqT1aJCI+gFrmPAeKET5gLeo8FzcUPpijqj2Jix0+wK6pPdf3IT6AWuY8rYwRPmAt6jy9ORQ+mKOqPeqIHT7Arqk9OPUhPoBa5jzXfRE+YC3qPOYqFD6Yo6o9wJcdPsCuqT0IBCI+gFrmPDWgET5gLeo8RE0UPpijqj1cdR0+wK6pParhIT6AWuY8/U8RPmAt6jwN/RM+mKOqPZPFHT7Arqk94TEiPoBa5jz3fhE+YC3qPAcsFD6Yo6o9oJYdPsCuqT3uAiI+gFrmPPGtET5gLeo8+loUPpijqj2mZx0+wK6pPfTTIT6AWuY8jcEZPlBwvD0bwRk+QEQWPh9WJj5ARBY+ybouPlBwvD18qgQ+UHC8PbUbDT5ARBY+CAQiPoBa5jzAlx0+wK6pPQAHKD6AWuY84ls4PlBwvD0Azi4+UHC8PRthJj5ARBY+77YZPlBwvD2uuxk+QEQWPt6fBD5QcLw9YhYNPkBEFj7X9yE+gFrmPImLHT7Arqk9yfonPoBa5jysnA8+gFrmPM7YCT6AWuY8VhIUPsCuqT2utBk+UHC8PY26GT5ARBY+2V8mPkBEFj6kyy4+UHC8PZadBD5QcLw9QhUNPkBEFj449SE+gFrmPOqIHT7Arqk9KfgnPoBa5jznng8+gFrmPHvaCT6AWuY8tw8UPsCuqT3x3Rk+UHC8PV7PGT5ARBY+qXQmPkBEFj7n9C4+UHC8PeDGBD5QcLw9EioNPkBEFj5aJCI+gFrmPAy4HT7Arqk9HScoPoBa5jw8Nzg+UHC8PXeuLj5QcLw9K1EmPkBEFj6Blxk+UHC8PdirGT5ARBY+aYAEPlBwvD1yBg0+QEQWPvTTIT6AWuY8pmcdPsCuqT3s1ic+gFrmPBNnOD5QcLw9utcuPlBwvD30ZSY+QEQWPqnAGT5QcLw9qcAZPkBEFj6RqQQ+UHC8PTwbDT5ARBY+7gIiPoBa5jyglh0+wK6pPd8FKD6AWuY865Y4PlBwvD3HAC8+UHC8Pap6Jj5ARBY+tukZPlBwvD1Y1Rk+QEQWPsDSBD5QcLw9DDANPkBEFj7hMSI+gFrmPJPFHT7Arqk90jQoPoBa5jwnRTg+UHC8PYy6Lj5QcLw9JVcmPkBEFj58oxk+UHC8PdmxGT5ARBY+howEPlBwvD2ODA0+QEQWPmLw9T1QcLw9u0U4PkBwvD2Ejw8+gFrmPAwgFD7Arqk9nsIYPsCuqT2ewhg+gFrmPKycDz6AWuY8VhIUPsCuqT2UiBg+wK6pPZ7CGD6AWuY8554PPoBa5jy3DxQ+wK6pPfWFGD7Arqk9nsIYPoBa5jyhcQ8+gFrmPIo9FD7Arqk9nsIYPsCuqT2ewhg+gFrmPDm/Dz6AWuY8Nu8TPsCuqT3mZBg+wK6pPZ7CGD6AWuY8xZEPPoBa5jzLHRQ+wK6pPZ7CGD7Arqk9nsIYPoBa5jzLYg8+gFrmPNNLFD7Arqk9nsIYPsCuqT2ewhg+gFrmPMGwDz6AWuY8DP4TPsCuqT1tchg+wK6pPZ7CGD6AWuY8Ob8PPoBa5jy7+Ak+gFrmPDbvEz7Arqk9mNT1PVBwvD19NPY9UHC8PcWRDz6AWuY8Fc4JPoBa5jzLHRQ+wK6pPSyU9j1QcLw9y2IPPoBa5jynoAk+gFrmPNNLFD7Arqk9quEhPoBa5jxcdR0+wK6pPaLkJz6AWuY8wbAPPoBa5jwU6gk+gFrmPAz+Ez7Arqk9iDb2PVBwvD2Ejw8+gFrmPLrKCT6AWuY8DCAUPsCuqT3XHfY9UHC8PS5ZOD5QcLw9IYk4PlBwvD1VePY9UHC8PXAY9j1QcLw9oXEPPoBa5jw5sAk+gFrmPIo9FD7Arqk9tRsNPqi+Fj7JrgQ+KGW9PdtB9j0oZb09lKIdPpijqj1rBSc+YC3qPNQnIT5gLeo8lKIdPpijqj3UJyE+YC3qPPz/GD5gLeo8/P8YPpijqj3XfRE+YC3qPA57Cz5gLeo85ioUPpijqj2tYTg+KGW9PVPSLj4oZb09G2EmPqi+Fj48uxk+KGW9Pa67GT6ovhY+qsAEPihlvT2wJg0+qL4WPptn9j1AZb09lMQdPpijqj0GJyc+YC3qPNRJIT5gLeo8lMQdPpijqj3USSE+YC3qPPz/GD5gLeo8OlAZPpijqj01oBE+YC3qPEOdCz5gLeo8RE0UPpijqj2YhDg+KGW9PUrwLj4oZb09QnAmPqi+Fj5U2Rk+KGW9PfbKGT6ovhY+Q8IEPihlvT2rJQ0+qL4WPlBv9j0oZb09zXYdPpijqj0B1CY+YC3qPB/4ID5gLeo8zXYdPpijqj0f+CA+YC3qPPz/GD5gLeo8/P8YPpijqj39TxE+YC3qPDtNCz5gLeo8Df0TPpijqj3bMjg+KGW9PQ+qLj4oZb09w0wmPqi+Fj4Zkxk+KGW9PXGnGT6ovhY+I3wEPihlvT0lAg0+qL4WPsrL9T0oZb091aQdPpijqj1rBSc+YC3qPGEoIT5gLeo81aQdPpijqj1hKCE+YC3qPPz/GD5gLeo8/P8YPpijqj33fhE+YC3qPAZ8Cz5gLeo8BywUPpijqj2RYjg+KGW9PTfTLj4oZb09jWEmPqi+Fj4nvBk+KGW9PSe8GT6ovhY+D6UEPihlvT3bFg0+qL4WPngr9j0oZb09atMdPpijqj3fMic+YC3qPJlWIT5gLeo8atMdPpijqj2ZViE+YC3qPPz/GD5gLeo8ul0ZPpijqj3xrRE+YC3qPPOqCz5gLeo8+loUPpijqj2Dkjg+KGW9PWb8Lj4oZb09XXYmPqi+Fj5P5Rk+KGW9PffQGT6ovhY+Wc4EPihlvT2rKw0+qL4WPieL9j0oZb09FoUdPpijqj154iY+YC3qPDIGIT5gLeo8FoUdPpijqj0yBiE+YC3qPPz/GD5gLeo8/P8YPpijqj2LXRE+YC3qPMJaCz5gLeo8lAoUPpijqj2lQDg+KGW9Pe+1Lj4oZb09vVImPqi+Fj7enhk+KGW9PXKtGT6ovhY+A4gEPihlvT0mCA0+qL4WPl3n9T0oZb096bIdPpijqj2iESc+YC3qPFs1IT5gLeo86bIdPpijqj1bNSE+YC3qPPz/GD5gLeo8rDwZPpijqj2tjBE+YC3qPLWJCz5gLeo8vTkUPpijqj2XcDg+KGW9PTnfLj4oZb09jmcmPqi+Fj4hyBk+KGW9PULCGT6ovhY+LLEEPihlvT33HA0+qL4WPk9H9j0oZb09SrAdPpijqj2/Dyc+YC3qPBozIT5gLeo8SrAdPpijqj0aMyE+YC3qPPz/GD5gLeo8BjoZPpijqj0HihE+YC3qPBaHCz5gLeo8FzcUPpijqj3/bTg+KGW9PfHcLj4oZb09bWYmPqi+Fj7gxRk+KGW9PSLBGT6ovhY+i10RPmAt6jyUChQ+mKOqPQy4HT7Arqk9WiQiPoBa5jwHihE+YC3qPBc3FD6Yo6o9iYsdPsCuqT3X9yE+gFrmPK2MET5gLeo8vTkUPpijqj3qiB0+wK6pPTj1IT6AWuY8130RPmAt6jzmKhQ+mKOqPcCXHT7Arqk9CAQiPoBa5jw1oBE+YC3qPERNFD6Yo6o9XHUdPsCuqT2q4SE+gFrmPP1PET5gLeo8Df0TPpijqj2TxR0+wK6pPeExIj6AWuY8934RPmAt6jwHLBQ+mKOqPaCWHT7Arqk97gIiPoBa5jzxrRE+YC3qPPpaFD6Yo6o9pmcdPsCuqT300yE+gFrmPHF8BD9AEbw84CUNP4DYBD2gFQs/AA17PB+0+z5g5O48HBIQP4DfaDzEIxc/4MsIPRhFFD8A3SM8yKQZP8DNCzwMfSE/EK8IPVT4Hj+A+iw8IOgjPyBCjjx0HCc/gMHHPKy+KD8gegE9b7YeP6DXRz08KyQ/IGYyPQQbGT/g7is9jFAZP+BeXT0jFRM/oPcmPWcnFT9ggGQ9hKwRPyC6dT3Kkgo/gKAqPSovDT+gZn49mroIP4BedD1uDAU/YK4hPTzmBD8AZFM9GNgBP2AfRj3rYQA/INg5PZ8WuD6QP4M9jqa3PkAMlj0fw8I++FeGPbvGvD5Ak+k8DDS8PiBbHz14Hb8+AKcMPZIOwT4A9SY9vta6PsDtVD03W8M+YMtRPY6mtz5ADJY9nxa4PpA/gz3gY70+IO+MPQw0vD4gWx89u8a8PkCT6Tx4Hb8+AKcMPb7Wuj7A7VQ9kg7BPgD1Jj03W8M+YMtRPR/Dwj7oV4Y9KwhpP1y1zD4c8Gc/2DrcPpSAaz/EPt0+W6xrP45QzT58+GQ/NCrKPgNyYj+gU8k+HFNhP/ikzD5xgWI/KpbRPuQmTj+YCM0+bQFNPyDYyz7OBUw/FFnPPg19TT+EfNA+XAZzP7g12D7TpnU/2P/cPoUsdj/+n9Y+nIZpP4KGsz7da2k/eCu1PqTCaj86Uro+pMJqPzpSuj4bjGs/oFm2Pty3aT/4Ea4+fOJrP9TsrT6c5Ws/6viqPmTdaT+4gao+QzFsP5g7oD5bmmo/CH6fPnRJaj8+7qI+lBJsPxAhoz5Uuks/FP+2PltwSj9QmrY+CFVKPzh8uT49mUs/DB65PkzGSz/UZbA+HLVKP6QzsD5vl0o/iNmyPum5Sz8A0bI+dvNKP1hRqz627Es/ZFurPqr+Sz9gEqk+fw1LP/TrqD4sNW0/bBuXPtw6bT+woJU+nCJsPyzjlj6cImw/LOOWPg12bD9wrJc+QzFsP5g7oD6UEmw/ECGjPoQMbT9MOaM+nBltP3SHoD4892w/tBurPpzlaz/q+Ko+fOJrP9TsrT606mw/ZPetPqTCaj86Uro+radsP5j+uT4svmw/BJ62PhuMaz+gWbY+3WtpP3grtT6dXGk/3Ga1Poy0aT+AJLo+/BFKP3SAvT6FYUs/TF68PtXKaT/mfMA+1cppP+Z8wD50ZGw/gBbAPsXVSz8QZ7k+w9hvP9i8tD6r3G0/+I22PkQQbj8Y17o+o9VvP2yltj6UCm4/kiGrPrT0bT+kFq4+HSBwP0qerj6MFXA/zOyqPl3Qbz/YQ6M+pJlvP47Fnz5U/G0/TFmgPuMGbj8uRqM+1StJP9iStj40MEk/oOG4PghVSj84fLk+W3BKP1Catj5vl0o/iNmyPhy1Sj+kM7A+9aJJP4wCsD47eUk/rGmyPnbzSj9YUas+fw1LP/TrqD4EHEo/rL6oPtn8ST8kAqs+de5tPwiKlz67WW4/qruWPlT8bT9MWaA+4wZuPy5Goz609G0/pBauPpQKbj+SIas+rP9vP6ADtz40YG8/FEi7Pk8oST9M5rw+TyhJP0zmvD4U3G4/nk3BPjQwST+g4bg+2f9IP6xHuT4r/GI/nPO3PmQuYz+s87o+JO5lP8yHuz50PmU/hl23PhSIYj9+9bI+E1ZkP8x4sT6V82M/rA2vPpw1Yj+cu68+DMViP1QOpj78T2E/+C+mPhyPYT/AZKk+rBFjP8R9qD65OE4/zjm7PlhlTj+E1rg+A1VNP7QbuD5k90w/+iy6Ph7oTT/47LQ+kPVOP0RwtT4iRE8/nEyzPqZNTj94nLI+qhZQP8AerT5ESU8/KIesPkf0Tj+Yqq4+79NPPxAnrz7IcmI/uBGcPnSzYT9Yq50+3CJiP2wfnj7TrGI/qECdPgzFYj9UDqY+rBFjP8R9qD7z9GM/QOmnPtujYz+cvqU+vUtlP8S1sD5c7WQ/sGquPpXzYz+sDa8+E1ZkP8x4sT4LWWY/QJu2PnQ+ZT+GXbc+JO5lP8yHuz69EWc/9ES6PtOsYj+oQJ0+3CJiP2wfnj5jhUw/qOK+Pqk+Zj8CHME+zLlnP7rRwD6cfmg/XN25PjswaT/sMrU+hPBoP5ybsz69VWc/eLy1PuMcaD/ECa8+BIVnP/Q6rD5932U/7K2tPt89Zj/UB7A+vHVkP4T9pD4o02Q/oE+nPtxYZj8MYKY+xMFlP5aKoz5k90w/+iy6PgNVTT+0G7g+4WhMP6g9tz6QFkw/5gu5Ph7oTT/47LQ+pk1OP3icsj7VaU0/dvSxPmkHTT/s9bM+RElPPyiHrD5phE4/RASsPp0tTj9Y/60+R/ROP5iqrj40WWM/qECdPvSFYz9+aJw+KNNkP6BPpz68dWQ/hP2kPt89Zj/UB7A+fd9lP+ytrT6cfmg/XN25Pr1VZz94vLU+jLRpP4Akuj40WWM/qECdPpAWTD/mC7k+hEpwP8b2uz6ESnA/xva7PpRQcT8yObk+BE9wP4QytT6EKHA/IKG2Pl1jcT+wBK8+rE5zPxzRsD635nM/oO2tPlsocj8WDKw+m9FzP1SxpT6NXXU/ovmmPpz0dT/kSqQ+jKF0P7Djoj5LwUg/rDS5PgeUSD/cabg+PjJHP+A6uT5JbUc/5M+6Ps6ORz+EBbE+z3hGP7SWsT76rUY/0Bm0Pr/WRz/IRbM+FxhGP8DfrD6aAEc/Fl2sPrzJRj98Q6o+tPBFPzTKqj7dP3c/qJ2cPvSRdz+uaZ0+XDN4P5SInT4beng/wFWcPpTCdj+AOqU+nPR1P+RKpD6NXXU/ovmmPixMdj/Wvac+rE5zPxzRsD7fTnQ/SMKxPgnidD+I4a4+t+ZzP6DtrT6ESnA/xva7PtTfcT9cNb0+1HFyP+xmuj6EKHA/IKG2PlwzeD+UiJ0+9JF3P65pnT6qJ0g/Yn++PvwccT/QRcI+2f9IP6xHuT6Iw3M/MBm7PizCcz/W/70+taN1P+yKvD5UvHU/HIq7PiPvdT8Uwa8+q2B1P3ahsj6rYHU/dqGyPsxcdz+QQLQ+7NZ3P1jysD7M1Hg/fsapPrUleT9MiKY+7Kx3P3zLpT79Qnc/qIqoPkltRz/kz7o+PjJHP+A6uT4H5kU/WrS5PkQvRj/MYrs+RC9GP8xiuz5RXEU/pPexPkx9RT/WTLQ++q1GP9AZtD7PeEY/tJaxPugRRT/C36o+LClFP3gKrT4XGEY/wN+sPrTwRT80yqo+nDJ5P9Afnj51sHg/fHOePuysdz98y6U+/UJ3P6iKqD6rYHU/dqGyPiPvdT8Uwa8+iMNzPzAZuz4NwHU/0O28PsyWdD8S5L8+dbB4P3xznj6qJ0g/Yn++PlUPRz94jb4+WdRzP7iqxD5VGkY/cOu7PnQudj+sULw+9O11P+DivD4QLnU/ILDAPu3edT/C+r8+zOV4P+BouT6c3Hc/lGu3PpX+dj+GX7k+tC14P3o2uz50Bns/BMezPpROej8YF7I+rUB5P8ImtD48Q3o/RKu1Plv2RD8Y07w+dmNFP1S0vT52Y0U/VLS9Pk/3RT+k6Ls+T/dFP6Touz5P90U/pOi7PmbBRT98oLs+xuZDP/gfuD7JUEQ/1Aq6PuIMRT/eJ7k+sqdEP3B5tz5IFkQ/yM20PgS7Qz/o+7I+HQJDP/iKsz7XYkM/CIm1PoT0fD+kBq8+q3Z9PyJgrz7D2H0/zH+uPn3bfD/aJ64+o497PxzutD50Bns/BMezPjxDej9Eq7U+9OB6P4a6tj60LXg/eja7PmzKeD9CSbw+LYF5P+CMuj7M5Xg/4Gi5PnTZdT8YXMI+BH12P4JBwT7MlnQ/EuS/Pqt2fT8iYK8+hPR8P6QGrz4UX0Y/rqDAPhvgdj8SecQ+g754P2IFxT7dBXk/1JLDPiVFdz/kZcI+pCh6Pwiguz61aXk/oHa9PmyHej9Ij78+LV97P7QuvT7UO3w/ZMm1PmyIez9w0Lc+FI98P6pguT5kRn0/eLO2PkJrRD9UPL8+dmNFP1S0vT5b9kQ/GNO8PkJrRD9UPL8+bzNEP8z3vT6lM0M/WOC4PiqRQz+As7o+yVBEP9QKuj7G5kM/+B+4PtdiQz8IibU+HQJDP/iKsz7jVkI/IDW0Pv6tQj+8FbY+XMh9P/xesD7EP34/aFawPmyIez9w0Lc+1Dt8P2TJtT6kKHo/CKC7PrVpeT+gdr0+JUV3P+Rlwj5cyH0//F6wPngfRT9cacI+fLV1P7IkyT4GoVw/KLbNPjbEXT8CatE+BkVgP5z4zj5rzV4/+sTLPvmpWT/IN8Q+Tr5aP4hVxz6i9Vs/DC7FPr74Wj8C8cI+Y+FOPwBqxD4Kpk0/AMnGPkWVTj+wlMk+XtRPP2w+xj46dVE/eDu/PoClUD/U270+1/lPPwJawD5u6FA/CKDBPp43Vz9goLk+V7tXP3jQuT5ZO1g/rGm4PjDKVz+sYLc+7+hcPyB1wz7n+ls/cFXBPr74Wj8C8cI+ovVbPwwuxT7u818/uvnJPmvNXj/6xMs+BkVgP5z4zj6eN1c/YKC5PnxfVz8607s+0etYPzTMvT5Xu1c/eNC5PoPNVz/ATr4+dXJSP+T7tj51clI/5Pu2PnApUj8gHLg+3dpSP5RMuT51clI/5Pu2PgnvUj+I/Lc+/X1SP4zwuj4+rlE/PNW5Ple7Vz940Lk+0etYPzTMvT7K/lk/JIO8Plk7WD+sabg+tZdhP6y8wz5LwmA/3LbHPkQZYj+AEcQ++ppdP5AbvT711lw/+IG/PlrPXT84xcE+j/pePzqqvz4Kpk0/AMnGPmPhTj8AasQ+rvVNPwgVwj6Nt00/GNrCPrwfTz/wp74+1/lPPwJawD6ApVA/1Nu9PoqsTz9cwbw+1PNYP3Cltz7C5Vg/BJ62PlrPXT84xcE+9dZcP/iBvz7DmVo/YLK6PoH5WT+qV7c+1PNYP3Cltz4yEFs/CJW4PiZJUT/gc7c+cClSPyAcuD5i1lE/lKG2PsvRUD8E67g+Pq5RPzzVuT7DmVo/YLK6PtTzWD9wpbc+xdBvP5yAzj6bWXI/FELMPqvoST/MHcQ+1ApMP7xSwz7T2GQ/lPvCPoAZZD8MLsY+bLdmP8pmyz7za2I/TMPDPoT1Yj9orcE+XZlHP5AzxT7tX0g/7PrQPrvsST+QStA+fvJJP7jnzD5KTEg/2NnMPgXTRj8kv8w+j1BHP7QN0T4P/kQ/JNXMPm1ZRT9kYdE+YMJEP2ARyD5wGkY/HpjGPoSkeD86l8k+5L10P4Jbzj59vnY/6kLQPt23TT/0FsI+eB9FP1xpwj6wV0w/ABXIPjNqZD8gTdU+LDVtP2wblz4Ndmw/cKyXPnXubT8Iipc+RERhP2B5oT5Gu08/HqmpPj11UD+IEao+XblkP1B7nz5Gu08/HqmpPokRTz8sD6k+XF9rP4KRmj7OEEw/RJulPgEqSz9QxaU+ASpLP1DFpT6kEW8/LLiaPgpaSj/ESqU+ASpLP1DFpT5M33U/bIefPsB/Rj9gjac+Z8RFP7gXqD4jT3k/0jOiPpwDRT/A/qc+nANFP8D+pz5nxEU/uBeoPkyOez9o7q8+VEZDP3D0sD5So0I/OH+xPt3dfT9ImbM+UqNCPzh/sT5So0I/OH+xPuNWQj8gNbQ+C/xBP6gdsj7+rUI/vBW2PtP0TT/oKMA+v9ZHP8hFsz4HlEg/3Gm4Pu/TTz8QJ68+xp5QP4yppz75LFA/7gSnPgKkTz8I1KY+iOZLP1Aqoz5i1Eo/rN2iPnVdSz9EsaI+dV1LP0Sxoj7eLUY/HDelPsiURT9k/KQ+yBdFP9x+pT4yxEI/sFCvPr9JQj8agK8+ceRBP5ASsD5EGWI/gBHEPrk4Tj/OObs+XAtfP/Du1T54ZWA/QLbUPnJmYD9IhNo+7J9iPzz12D7f52Q/YpvdPtwiYj9sH54+dLNhP1irnT70hWM/fmicPjRZYz+oQJ0+nCJsPyzjlj67WW4/qruWPnXubT8Iipc+9JF3P65pnT7dP3c/qJ2cPpwyeT/QH54+dbB4P3xznj6E9Hw/pAavPn3bfD/aJ64+xD9+P2hWsD7EP34/aFawPlzIfT/8XrA+iOZLP1Aqoz5x5EE/kBKwPkTESz+oE9U+leNiP5z04j5s8mU/CjzhPqUlaD/oJ+I+VDBvPzq13j5EaXE/Bn/gPjSocT9cVuQ+TMZzP0Tu4j5OZEc/BADVPvaEST+8htQ+Ck1FP1TP1T4Ukms/GHTiPhT4bj/6qeM+DBg/P3CV8T1aEkA/KHjwPYfFPz8wcN89DAw/P3ga4D0pFT4/UDDzPSfpPT8gaOE9bHY9P6AQ9T3IBz0/AA/sPcniQT9AXt89E5RBPzi62z284kA/sKXcPdePQT+IyuQ98K0/P2CQcT0N4j8/EEqBPZHzQD+wPYI9NnVAP+BUdD08oD4/QMZtPSbBPj8gZYI94CE+P8CyXz2Ajj0/AHpkPcnjPT8gWXI9Tk88P2BQ8T2jKjw/2FHqPe0+Pj9Qp/g9rLE9PyBF+T0BGD8/kKL3Pfj/Pz/o1fY91ZZAP4g19j2QmkE/8LT2PUznQD8I+/E9ff1AP2CgdD1yszw/+Lr3PV4AQj8Q3oM9JvpBP6DwdT0oTD8/QEPLPTCqPz8wnMU916I/P1DOwz3kFD8/wOfGPVT8Pj+wa7o9L/0+PyCpvT1VlT8/4NG9PQuLPz/g6Lk9ZG0/P9CYsT01Vz8/8NKtPZbnPj/woq49APA+P5DQsT2PeT8/APEVPdhrPz+AXAo9I8Y+P2DxCz3A1j4/wHYUPTlYPz9AkfY8UEk/P4BK4TwgwD4/wN3iPFjGPj/ATPY80qM+P4AAqDzTrD4/QF26PAEqPz+ADLo87Rw/P8DLpjyc6z4/0GGkPbyePj/w/6I9SKA+P5CfpD231D4/sD6lPXCrPj8g67E9APA+P5DQsT2W5z4/8KKuPdinPj8w9q49L/0+PyCpvT1U/D4/sGu6PUixPj/gkbo9tbQ+P8C0vT3wwD4/wDLHPRjHPj9w58o9KEw/P0BDyz3kFD8/wOfGPWCuPz9g3cU9MKo/PzCcxT1Alj8/EBHLPTubPz8AFCY9u/I+P0CGIT2M2T4/IJfRPSGQPz9oB9I9XLg+PyCcFT0vZD4/ENXLPVdyPj8wIcc99OY9P9AixT3Q5z0/4DrHPWTTPT/ga749v2s+PxDXvT27ZT4/UJi6PUjWPT9wXro9qGk+P5DDrj1G+D0/cCGuPUTpPT+w9rE9w2Y+P1D5sT2PeT8/APEVPZ4MQD8AhBM90A5AP4A+Cj3Yaz8/gFwKPfzSPz8AwN88UEk/P4BK4Tw5WD8/QJH2PPTnPz+ADvM8MJY/PwBgpTztHD8/wMumPAEqPz+ADLo82KU/PwCQtzwIUD4/gDakPXVtPj/wGKU9qGk+P5DDrj3DZj4/UPmxPb9rPj8Q1709u2U+P1CYuj1I3D0/QKLHPQcIPj8AUcw9lRBAP6CoIz1HLD4/iOzSPZ4MQD8AhBM95yRAPwAeFT1Yn0A/4JbMPWVgQT9g9Ms9K25BP6CpyD2Mz0A/8ATIPU8qQT8Q5r49SA9BP3CNwT0DjkE/MC/DPaWkQT/wpL89UtJBP0CwuD2j40E/kCu1PUx9QT+wBrU9SWhBP8Cytz3l9z0/wGgQPSRvPT9gVxM9jIU9PyDvHD3qJj4/QLcYPUD/PD8ALvo8tCY9PyCvBT0Erj0/oJ8DPQp7PT/ApvQ8Wic9P0D01Dyu/Dw/wMXDPImVPD/Ah8g8C7c8P4Dc2DzKqUE/QFKsPVnIQT/g0qs93JNBP2ARqj3xg0E/0F2rPe0pQT/QD7c9SWhBP8Cytz1MfUE/sAa1PStAQT9Ar7Q9TypBPxDmvj3M5UA/QDO+PeTLQD9wt8A9SA9BP3CNwT1Yn0A/4JbMPYzPQD/wBMg9BoJAP8Avxz1cT0A/oDTLPcqpQT9AUqw98YNBP9Bdqz0tYD4/AKMrPUKJQD8QttI9QSFAP5Bk0j0EzD8/cOXDPYq6Pz9gpMU9Res/PwDDyj21PEA/UDvGPV6jQD8gZL09vS9APxDNuz0TBkA/0OG+PXqJQD+Q+L89E4JAP2BgtT367EA/QGe2PZoGQT9g27M9hKtAP1BEsj19bj4/wOwMPX1uPj/A7Aw95fc9P8BoED3qJj4/QLcYPdCXPj/gLRQ9ce09P4Bg7zwKez0/wKb0PASuPT+gnwM94B4+P0B+/zwgiz0/gJTPPIdfPT8Aqr88rvw8P8DFwzxaJz0/QPTUPGBIQT+gcKo9qFRBP9Bdqz367EA/QGe2PZoGQT9g27M9XqNAPyBkvT16iUA/kPi/PUXrPz8Aw8o9tTxAP1A7xj1Alj8/EBHLPahUQT/QXas90Jc+P+AtFD2Fxj0/8KPFPdx/PT/gDso9wMc9P7AQzT3Axz0/sBDNPRTRPT8wNsc9Pco8PwCqvT3w8zw/cNXAPbh6PT9A3L49rkQ9P6CZuz33OTw/YBezPWhjPD/gCLY9BdA8P6CgtD37ljw/MI2xPbYMQT+A6hQ9tgxBP4DqFD0NW0A/wKIRPVFEQD+g0RQ9EO9AP6BFGz0iT0E/QE8APdVpQT+Ab+w8PN5AP8Dg5zwZukA/APf5PDNBQT8AlLE8pCVBP8BzwjxomkE/gI3GPC+uQT+AzrU8Tpw7P7Csqz2VyDs/0IqrPRrfOz/wqqo944g7PxBcqj1oYzw/4Ai2Pfc5PD9gF7M9eAE8P0AetD30ITw/MOC2PUqFPD+gtb49qK08PxDewT3w8zw/cNXAPT3KPD8Aqr09gzA9P/BZyz2DMD0/8FnLPZBYPT9Abs49wMc9P7AQzT0U0T0/MDbHPZXIOz/Qiqs9Tpw7P7Csqz13kUA/IBQqPQOOPT/I/NM95yRAPwAeFT0qUDw/OLPNPULUPD9wTM894dM8P4AdzD1oSTw/cJnMPSrXOz9wmsQ9jGI8P/DSwj14Ozw/8Kq/Pai1Oz/g+cA9McE7P2C9tD3UWTs/gIy1PQRwOz+AG7k9PN47P/DAtz2Ms0E/oNIWPbYMQT+A6hQ9EO9AP6BFGz3EjkE/4JMdPSJPQT9ATwA9I+hBP2AcAT21+EE/QHrvPNVpQT+Ab+w8aJpBP4CNxjxiEkI/wOTHPBEeQj/Ae7Y8L65BP4DOtTxIVjs/sFKsPf55Oz9wrqw9McE7P2C9tD083js/8MC3PXg7PD/wqr89jGI8P/DSwj3h0zw/gB3MPWRIPD/AH8497pk8P8Bf0T3+eTs/cK6sPXeRQD8gFCo9Ph5BP8BMKj1Fzzw/SJ3WPUeZQT/AuB89cXA8P6A/0j3MOzw/wBPOPRgqPD9Qc8097D88P7B40T0B8Ts/4DjKPRq0Oz9QFMg9XGs7PzBDyj3cnTs/sD3MPWxSOz8gfsQ9ZAg7PyA7wj3x1To/EBXEPYALOz9wKMY93apBP6CtHz0c9UE/YOQmPekrQj+AWyM93apBP6CtHz3dqkE/oK0fPe/FQT+gix49lyBCP0CeFD0Mf0I/AC4YPUi0Qj8AehA9aFNCPwDdDT0dJ0M/ACP8PETKQj+Apfc8bpxCP2AiAz2M9kI/oBIGPcsPOj9wSr49tyo6P5BAvz1sTjo/YN6+PUhVOj/g6b09gAs7P3Aoxj3x1To/EBXEPVCwOj/gWMU9O+A6PxBSxz28QDs/kIPLPd1yOz8wa8093J07P7A9zD1cazs/MEPKPYwUPD8439I9bUE8P0gV1D3umTw/wF/RPbcqOj+QQL89bE46P2Devj2/dkE/4KIyPZBiOz9IatU9IHY7P9AA1z1e+Ts/4GbWPandOz8IINQ9y/g6P7AC0T0rRzs/2LXOPc0SOz+Ascw9nL06P/Bmzj0+ajo/MDrKPUyyOj8Ag8g9FIE6P3BJxj30Nzo/UErHPekrQj+AWyM9HPVBP2DkJj3AcUI/QAstPcBxQj9ACy09yo1CP2DzJz0Mf0I/AC4YPUjfQj+g0xo9Pw5DP8B+Ez1ItEI/AHoQPR19Qz8gvQA9HSdDPwAj/DyM9kI/oBIGPVxRQz/gRwg9jPM5P9BOwD1OFDo/MFjAPRSBOj9wScY9TLI6PwCDyD3NEjs/gLHMPStHOz/Ytc49qd07Pwgg1D1OFDo/MFjAPUIXQj+gzTk9SEs8P8CG2z3eLEI/2OvhPafcQj8QmuQ9hyxDPwCK4D3ok0I/aGjePYtbQz9oLdc987BDP5CK2T3A/EM/QB/WPeygQz+wuNQ9EFc9P+CaVj00zz0/oF9LPdcwPT8A2UE907Y8PwAzST0DpDw/4IYxPQOkPD/ghjE9zE08PwCDJz165Ts/wActPS8sPD/ApDY9VGFEPyAryT1vhEQ/0LTKPZSoRD8ggMo9XIBEP2AIyD3soEM/sLjUPRpaQz8Q9dI9zBhDP5hJ1T2LW0M/aC3XPeiTQj9oaN49HENCP4hw3D3eLEI/2OvhPeswRD/QE889pJ1EP7DpzD2UqEQ/IIDKPW+ERD/QtMo9dH9EPwijzz3iMTs/wDEVPfyKOz+AahA9UGY7P6DkCz1QZjs/oOQLPVBmOz+g5As9wCc7P6DrDz2IYDs/4MgbPdrIOz+gVhc9fOVDP7CqzT3rMEQ/0BPPPW+ERD/QtMo9VGFEPyAryT2ACkI/WPXZPfbPQT8omNU9aqxBPzj11T2Y2UI/wG/TPb0dQz8g9NA9+edCP/BRzj2Eh0I/UCDRPTanPT/Aejg9Nqc9P8B6OD3XMD0/ANlBPTTPPT+gX0s9aMY9P4CSOz3MTTw/AIMnPQOkPD/ghjE9iRE9PyC3Kj3Syjw/QBQjPZUyRD/AMsc9uC5EP9BTyD29HUM/IPTQPZjZQj/Ab9M97+ZDP4D+xz35ukM/wKzLPbguRD/QU8g9fJpDP8BayT38ijs/gGoQPZ77Oz+gxg09nvs7P6DGDT2xtDs/wHkKPY43PD/AqRM92sg7P6BWFz35ukM/wKzLPbguRD/QU8g9LDc9P7Dx3j22nT4/IHc9Pf2vPz/gpkA96B9BP1hG2D1t60A/OMTUPSBoQD8gAd49vJVBP3Cf1T3/b0E/iFXTPe3YQD/AAkU9DKs/P+D1Yz0Vf0A/IL5jPYg8QT/gUmM9DShCP0CrYz0BRkI/4IZQPTiZQT9Am0o9NI88P3A/4T1FfTs/aATcPZcCPD9IVuM9QMY9P4CCOD1CF0I/oM05PR13Pj+AlVA9xQlBP/jd6D1IoD4/kJ+kPbfUPj+wPqU9dW0+P/AYpT3X5kE/oP+vPWzDPD/Au6w8CGY8P8ACsDwN9EA/8M+tPWzDPD/Au6w8qhg9P8DmpzwqIT8/0GuoPZwOPz+Aeo08nA4/P4B6jTy0mj4/wCiMPJQdPj9Alqg9DXc/PwCiiTycDj8/gHqNPNA/PD9A3a09b8RBP4AioDxYZkE/AMubPHdOOz9AzLA9QCVCPwBanzxAJUI/AFqfPG/EQT+AIqA8r7A6P7Dcvz24VkM/wLLrPNwEQz/AV+c8aA46P+Diwz24VkM/wLLrPB19Qz8gvQA9u6pDP8Cr8DxcUUM/4EcIPaOnPT+gwTA9GbpAPwD3+TwNW0A/wKIRPQu3PD+A3Ng8VIo8P8CClzwwUTw/QK2cPBvPPD/A+ZU88K8+P4AWcTycOT8/AEdsPMX0Pj8AfWk8WNxBP0Ashzx4j0E/AASJPCAbQj+ARIs8tINDP8Cn2zw2RkM/ACvaPJS2Qz/AQOA8aqxBPzj11T2MhT0/IO8cPeiCQj94j+k99yNCP2A46D20I0I/+JbuPXyHQT8g4ew9TOdAPwj78T1ZyEE/4NKrPcqpQT9AUqw9YEhBP6Bwqj2oVEE/0F2rPZzrPj/QYaQ9CFA+P4A2pD11bT4/8BilPRrfOz/wqqo9lcg7P9CKqz1IVjs/sFKsPf55Oz9wrqw9SFU6P+DpvT1sTjo/YN6+PYzzOT/QTsA9jPM5P9BOwD1OFDo/MFjAPfCvPj+AFnE8lLZDP8BA4DyU5m0/LIRUPxzNaT8shFQ/9MdpP0gWWj9x4W0/RxZaPyDkfD/bblU/QIp3PyuEVD8bhXc/QxZaP/zefD9DFlo/w7dkPyyEVD9sE2U/SBZaPzTmXz8shFQ/FeFfP0gWWj/IhFw/LIRUP8iEXD8shFQ/JAFYPyyEVD9shFg/SBZaP6N/XD9IFlo/o39cP0gWWj/IhFw/LIRUP6N/XD9IFlo/ZCdzPyuEVD9EInM/RxZaP4DLUz8uhFQ/gMtTP0oWWj/uWVY/qswVP18NWz+qzBU/t4taP11fEz8RlVY/XV8TP5EmSz9dXxM/PsFHP11fEz+WLUg/qswVP5EmSz+qzBU/vW1HP2w/Bz9gJkM/bD8HP7WLQz/b1A4/gUdHP9vUDj/s4z4/bD8HP2MUPz/b1A4/sPs5P2w/Bz9jvzk/29QOP0wLVj/b1A4/HAtYP2w/Bz9giVY/bD8HP/GtWT9sPwc/RSRaP9vUDj9AMlM/bD8HP4gmUz/b1A4/SMVbP2w/Bz9Bnl8/29QOP0GeXz9sPwc/GTFLP9vUDj+ciUs/bD8HPzgVUD9sPwc/Ee9PP9vUDj+oq08/CXwRPxdyUz8JfBE/t+BKPwl8ET9M80Y/CXwRP2nPTT9sPwc/AGRTP11fEz9lyVM/qswVPxGVVj9dXxM/eKtWPwl8ET8whFo/CXwRP5kQQz8JfBE/vE0/Pwl8ET9jvzk/CXwRP0GeXz8JfBE/UGI/P11fEz9CREM/XV8TP2O/OT9dXxM/Y785P6rMFT+MRj8/qswVP4ySXz9dXxM/jJJfP6rMFT9ji08/XV8TP39mQz+qzBU/b0ZPP6rMFT+beFg/epxMP6y4Wj9Tv04/Sl1UP4eSSz+Ay1M/N5RLP/4YeD9Mokw/kuh8Pxy0Sz9uAXc/53RNPwztcz+L9kw/UL9yP5ULTT9EyG8/xFlNP0Mrbj8kVk0/HBZtPxvxTD9CK24/JFZNPxHqaT/X5ks/0A9pP1zoSz8S6mk/1+ZLP/qnZD/yYU0/IvJiP2baTT8+SmA/3SJNP19WXz8wGE0/msNcPxhoTT+aw1w/GWhNP+gH5wfmB+kH6AfmB+wH6wfqB+0H7AfqB+gH7wfuB+cH6AfuB/AH7gfvB/EH8AfvB/UH9AfyB/YH9QfyB/kH+AfwB/EH9wfwB+kH5gf6B/sH6Qf6B+wH+wf6B+sH7Af6B/UH/Qf8B/QH9Qf8BwAI/wf+BwEIAAj+BwQIAwgCCAUIBAgCCAgIBwgGCAkICAgGCAsICggHCAgICwgHCAsIDQgMCAoICwgMCBAIDwgOCBIIDggRCA8IEQgOCA4IFAgTCBAIDggTCBcIFggVCBYIEggVCBUIEggRCBgICQgGCBkIGAgGCBoIEwgUCBsIGggUCBwIGwgUCB0IHAgUCB4IGAgbCBwIHggbCB4IHwgJCBgIHggJCBgIGQggCCAIGggbCBsIGAggCP4HIgghCCMI/gchCCQIHQgUCA4IJAgUCCUIJAgOCBIIJQgOCB0IJAgBCCEIHQgBCCQIJQgACAEIJAgACAkIHwgmCAgICQgmCAgIJggnCAsICAgnCCcIKAgNCAsIJwgNCCkIJQgSCBYIKQgSCCoIJwgmCCsIKggmCCoILAgoCCcIKggoCCoILggtCCwIKggtCP8HAAgvCDAI/wcvCBwIHQghCDEIHAghCCkILwgACCUIKQgACCsIJggfCAMIKwgfCB8IHggCCAMIHwgCCDIILggqCCsIMggqCDMIMQghCCIIMwghCB4IHAgxCAIIHggxCAMIBAgyCCsIAwgyCAIIMQgzCAUIAggzCDUI9Ac0CDQI9Ac2CDYI9Af8BzcINgj8BzkI6gc4COoH6wc6CDgI6gc6CDoI6wc7CDsI6wf6BzwIOwj6BzwI+gc9CD0I+gfmBz4IPQjmB+YH5wc/CEAI5gc/CD8I5wdBCOcH7gdCCEMI5wdCCEII7gdECO4H8AdFCEQI7gdFCEUI8AdGCPAH+AdHCEYI8AdHCEcI8wdICPIH9Ac1CEkI8gc1CAIAAQAAAAMAAgAAAAQAAwAAAAUAAwAEAAYABQAEAAkACAAHAAoACQAHAAsACQAKAAwACwAKAA4ADQAHAAgADgAHAA0AEAAPAAcADQAPAAoABwAPABEACgAPAAwACgARABIADAARAAEADgAIAAAAAQAIAAQAAAAIAAkABAAIAAYABAAJAAsABgAJABUAFAATABYAFQATABcAFgATABgAFwATABkAFwAYABoAGQAYAB0AHAAbAB4AHQAbAB8AHQAeACAAHwAeACIAIQAbABwAIgAbACEAJAAjABsAIQAjAB4AGwAjACUAHgAjACAAHgAlACYAIAAlABQAIgAcABMAFAAcABgAEwAcAB0AGAAcABoAGAAdAB8AGgAdACkAKAAnACoAKQAnACsAKgAnACwAKwAnABUAKwAsAC0AFQAsADAALwAuADEAMAAuADIAMAAxADMAMgAxADUANAAuAC8ANQAuADQANwA2AC4ANAA2ADEALgA2ADgAMQA2ADMAMQA4ADkAMwA4ACgANQAvACcAKAAvACwAJwAvADAALAAvAC0ALAAwADIALQAwADwAOwA6AD0APAA6AD4APQA6ACkAPwA+AEAAKQA+AEMAQgBBAEQAQwBBAEYAQwBFAEcARgBFAEkASABBAEIASQBBAEgASwBKAEEASABKAEQAQQBKAEwARABKAEcARQBMAE0ARwBMADsASQBCADoAOwBCAD4AOgBCAEMAPgBCAEAAPgBDAEYAQABDAAwAEgBLAEgADABLAAsADABIAEkACwBIAAYACwBJADsABgBJAAUABgA7ADwABQA7ACAAJgAQAA0AIAAQAB8AIAANAA4AHwANABoAHwAOAAEAGgAOABkAGgABAAIAGQABADMAOQAkACEAMwAkADIAMwAhACIAMgAhAC0AMgAiABQALQAiABUALQAUAEcATQA3ADQARwA3AEYARwA0ADUARgA0AEAARgA1ACgAQAA1ACkAQAAoAFAATwBOAE8AUABRAFIATwBRAFIAUQBTAFQAUgBTAFcAVgBVAFgAVwBVAFgAVQBZAFoAWABZAFcAXABbAFYAVwBbAF4AXQBcAFcAXgBcAF4AVwBYAF8AXgBYAF8AWABaAGAAXwBaAFYAWwBOAE8AVgBOAFYATwBSAFUAVgBSAFUAUgBUAFkAVQBUAGMAYgBhAGQAYwBhAGMAZABlAGYAYwBlAGYAZQBnAGgAZgBnAGsAagBpAGwAawBpAGwAaQBtAG4AbABtAGsAcABvAGoAawBvAHIAcQBwAGsAcgBwAHIAawBsAHMAcgBsAHMAbABuAHQAcwBuAGoAbwBiAGMAagBiAGoAYwBmAGkAagBmAGkAZgBoAG0AaQBoAHcAdgB1AHgAdwB1AHcAeAB5AHoAdwB5AHoAeQBhAHsAegBhAH4AfQB8AH8AfgB8AH8AfACAAIEAfwCAAH4AgwCCAH0AfgCCAIUAhACDAH4AhQCDAIUAfgB/AIYAhQB/AIYAfwCBAIcAhgCBAH0AggB2AHcAfQB2AH0AdwB6AHwAfQB6AHwAegB7AIAAfAB7AIoAiQCIAIkAigCLAIwAiQCLAIwAjQB1AI4AjAB1AJEAkACPAJIAkQCPAJQAjwCTAJUAlACTAJEAlwCWAJAAkQCWAJkAmACXAJEAmQCXAJkAkQCSAJoAmQCSAJoAlACVAJsAmgCVAJAAlgCIAIkAkACIAJAAiQCMAI8AkACMAI8AjACOAJMAjwCOAJgAYABaAJcAmABaAJcAWgBZAJYAlwBZAJYAWQBUAIgAlgBUAIgAVABTAIoAiABTAF0AdABuAFwAXQBuAFwAbgBtAFsAXABtAFsAbQBoAE4AWwBoAE4AaABnAFAATgBnAHEAhwCBAHAAcQCBAHAAgQCAAG8AcACAAG8AgAB7AGIAbwB7AGEAYgB7AIQAmwCVAIMAhACVAIMAlQCTAIIAgwCTAIIAkwCOAHYAggCOAHUAdgCOAJ4AnQCcAJ8AngCcAKAAngCfAKEAoACfAKIAoAChAKMAogChAKQAogCjAKUApACjAKYApAClAKcApgClAKgApgCnAKkAqACnAKoAqACpAKsAqgCpAKwAqgCrAK0ArACrALAArwCuALEAsACuALIAsACxALMAsgCxALQAsgCzALUAtACzALYAtAC1ALcAtgC1ALgAtgC3ALkAuAC3ALoAuAC5ALsAugC5ALwAugC7AL0AvAC7AL4AvAC9AL8AvgC9AMIAwQDAAMMAwgDAAMQAwgDDAMUAxADDAMYAxADFAMcAxgDFAMgAxgDHAMkAyADHAMoAyADJAMsAygDJAMwAygDLAM0AzADLAM4AzADNAM8AzgDNANAAzgDPANEA0ADPANQA0wDSANUA1ADSANYA1ADVANcA1gDVANgA1gDXANkA2ADXANoA2ADZANsA2gDZANwA2gDbAN0A3ADbAN4A3ADdAN8A3gDdAOAA3gDfAOEA4ADfAOIA4ADhAOMA4gDhAOYA5QDkAOcA5gDkAOcA5ADoAOkA5wDoAOkA6ADqAOsA6QDqAOsA6gDsAO0A6wDsAO0A7ADuAO8A7QDuAO8A7gDwAPEA7wDwAPEA8ADyAPMA8QDyAPMA8gD0APUA8wD0APgA9wD2APkA+AD2APkA9gD6APsA+QD6APsA+gD8AP0A+wD8AP0A/AD+AP8A/QD+AP8A/gAAAQEB/wAAAQEBAAECAQMBAQECAQMBAgEEAQUBAwEEAQUBBAEGAQcBBQEGAQoBCQEIAQsBCgEIAQ0BDAEJAQoBDQEJARABDwEOARMBEgERARUBFAETAREBFQETARcBFgEUARUBFwEUARoBGQEYAR0BHAEbASABHwEeASEBIAEeASMBIgEfASABIwEfASYBJQEkASkBKAEnASwBKwEqAS0BLAEqAS8BLgErASwBLwErATIBMQEwATUBNAEzATcBNgE1ATMBNwE1ATkBOAE2ATcBOQE2ATwBOwE6AT8BPgE9AUEBQAE/AT0BQQE/AUMBQgFAAUEBQwFAAUYBRQFEAUkBSAFHAUsBSgFJAUcBSwFJAU0BTAFKAUsBTQFKAVABTwFOAVMBUgFRAVUBVAFTAVEBVQFTAVcBVgFUAVUBVwFUAVcBWAFWAQgBWQELAVwBWwFaAV0BXAFaAWABXwFeAWEBYAFeAWQBYwFiAWUBZAFiAWgBZwFmAWkBaAFmAWwBawFqAW0BbAFqAXABbwFuAXEBcAFuAXQBcwFyAXUBdAFyAXgBdwF2AXkBeAF2AXwBewF6ATkBfQE4AUMBfgFCAYEBgAF/AU0BggFMAYUBhAGDAYgBhwGGAYsBigGJAQ0BjAEMAY8BjgGNARcBkAEWAR4BkQEhASoBkgEtAS8BkwEuASMBlAEiAZcBlgGVAZoBmQGYAZ0BnAGbAaABnwGeAaEBoAGeAaQBowGiAacBpgGlAacBpQGoAakBpwGoAakBqAGqAasBqQGqAawBqwGqAa8BrgGtAbIBsQGwAbMBsgGwAbYBtQG0AbkBuAG3AbkBtwG6AbsBuQG6AbsBugG8Ab0BuwG8Ab4BvQG8AcEBwAG/AcQBwwHCAcUBxAHCAcgBxwHGAcsBygHJAcsByQHMAc0BywHMAc0BzAHOAc8BzQHOAdABzwHOAdMB0gHRAdYB1QHUAdcB1gHUAdoB2QHYAd0B3AHbAd0B2wHeAd8B3QHeAd8B3gHgAeEB3wHgAeIB4QHgAeUB5AHjAegB5wHmAekB6AHmAewB6wHqAe8B7gHtAe8B7QHwAfEB7wHwAfEB8AHyAfMB8QHyAfQB8wHyAfcB9gH1AfoB+QH4AfsB+gH4Af4B/QH8AQECAAL/AQEC/wECAgMCAQICAgMCAgIEAgUCAwIEAgYCBQIEAgkCCAIHAgwCCwIKAg0CDAIKAhACDwIOAhMCEgIRAhMCEQIUAhUCEwIUAhUCFAIWAhcCFQIWAhgCFwIWAhsCGgIZAh4CHQIcAh8CHgIcAiICIQIgAiUCJAIjAiUCIwImAicCJQImAicCJgKYAZkBJwKYAfsB+AEoAikC+wEoAmkBZgEqAisCaQEqAh8CHAIsAi0CHwIsAmEBXgEuAi8CYQEuAg0CCgIwAjECDQIwAmUBYgEyAjMCZQEyAqEBngE0AjUCoQE0Al0BWgE2AjcCXQE2ArMBsAE4AjkCswE4AnkBdgE6AjsCeQE6AsUBwgE8Aj0CxQE8AnUBcgE+Aj8CdQE+AtcB1AFAAkEC1wFAAnEBbgFCAkMCcQFCAukB5gFEAkUC6QFEAm0BagFGAkcCbQFGAkoCSQJIAksCSgJIAkkCTQJMAkgCSQJMAlACTwJOAlMCUgJRAlMCVQJUAlICUwJUAlUCVwJWAlQCVQJWAloCWQJYAl0CXAJbAmACXwJeAmECYAJeAl8CYwJiAl4CXwJiAmYCZQJkAmkCaAJnAmwCawJqAm0CbAJqAmsCbwJuAmoCawJuAnICcQJwAnUCdAJzAnUCdwJ2AnQCdQJ2AncCeQJ4AnYCdwJ4AnwCewJ6An8CfgJ9An8CgQKAAn4CfwKAAoECgwKCAoACgQKCAoYChQKEAokCiAKHAokCiwKKAogCiQKKAosCjQKMAooCiwKMApACjwKOApMCkgKRApMClQKUApICkwKUApUClwKWApQClQKWApYClwKYAkoCSwKZApwCmwKaAp0CnAKaAqACnwKeAqECoAKeAqQCowKiAqUCpAKiAqgCpwKmAqkCqAKmAqwCqwKqAq0CrAKqArACrwKuArECsAKuArQCswKyArUCtAKyArgCtwK2ArkCuAK2ArwCuwK6AngCeQK9AoICgwK+AsECwAK/AowCjQLCAsUCxALDAsgCxwLGAssCygLJAkwCTQLMAs8CzgLNAlYCVwLQAmACYQLRAmwCbQLSAm4CbwLTAmICYwLUAtcC1gLVAtoC2QLYAt0C3ALbAuAC3wLeAuEC4ALeAuQC4wLiAucC5gLlAugC5gLnAukC6ALnAuoC6ALpAusC6gLpAuwC6gLrAu8C7gLtAvIC8QLwAvMC8gLwAvYC9QL0AvkC+AL3AvoC+AL5AvsC+gL5AvwC+gL7Av0C/AL7Av4C/AL9AgEDAAP/AgQDAwMCAwUDBAMCAwgDBwMGAwsDCgMJAwwDCgMLAw0DDAMLAw4DDAMNAw8DDgMNAxADDgMPAxMDEgMRAxYDFQMUAxcDFgMUAxoDGQMYAx0DHAMbAx4DHAMdAx8DHgMdAyADHgMfAyEDIAMfAyIDIAMhAyUDJAMjAygDJwMmAykDKAMmAywDKwMqAy8DLgMtAzADLgMvAzEDMAMvAzIDMAMxAzMDMgMxAzQDMgMzAzcDNgM1AzoDOQM4AzsDOgM4Az4DPQM8A0EDQAM/A0IDQANBA0MDQgNBA0QDQgNDA0UDRANDA0YDRANFA0kDSANHA0wDSwNKA00DTANKA1ADTwNOA1MDUgNRA1QDUgNTA1UDVANTA1YDVANVA1cDVgNVA1gDVgNXA1sDWgNZA14DXQNcA18DXgNcA2IDYQNgA2UDZANjA2YDZANlA2cDZgNlA9kCZgNnA9gC2QJnA2gDOgM7A2kDaAM7A2oDqAKpAmsDagOpAmwDXgNfA20DbANfA24DoAKhAm8DbgOhAnADTANNA3EDcANNA3IDpAKlAnMDcgOlAnQD4ALhAnUDdAPhAnYDnAKdAncDdgOdAngD8gLzAnkDeAPzAnoDuAK5AnsDegO5AnwDBAMFA30DfAMFA34DtAK1An8DfgO1AoADFgMXA4EDgAMXA4IDsAKxAoMDggOxAoQDKAMpA4UDhAMpA4YDrAKtAocDhgOtAooDiQOIA4kDiwOIA4wDiQOKA40DiQOMA44DjQOMA48DjQOOA5ADjQOPA5EDkAOPA5IDkAORA5QDkAOTA5MDkAOSA5cDlgOVA5gDlwOVA5kDlwOYA5oDmQOYA5sDmQOaA5wDmQObA50DnAObA54DnAOdA58DnAOeA6ADnwOeA6ADoQOfA6EDogOfA6UDpAOjA6gDpwOmA6sDqgOpA6oDpQOjA6oDqwOlA6gDqQOqA6cDqAOqA64DrQOsA7EDsAOvA7QDswOyA7IDrQOuA7UDsgOuA7IDtQO0A7IDswOxA68DsgOxA7gDtwO2A7kDuAO2A7wDuwO6A70DvAO6A8ADvwO+A8EDwAO+A8QDwwPCA8gDxgPFA8kDyAPFA8wDywPKA80DzAPKA9ADzwPOA9ED0APOA9QD0wPSA9UD1APSA9gD1wPWA9kD2APWA9wD2wPaA90D3APaA+ED3wPeA+ID4QPeA+UD5APjA+YD5QPjA+kD6APnA+oD6QPnA+0D7APrA+4D7QPrA/AD7wPHA/ED8APHA/ID1APVA/MD8gPVA+wD9gP0A+sD7AP0A/cD8wPVA/oD+QP4A/sD+gP4A/4D/QP8A/8D/gP8AwIEAQQABAMEAgQABAYEBQQEBAcEBgQEBAoECQQIBAsECgQIBA4EDQQMBA8EDgQMBBEEEATeA98DEQTeA+UD5gMSBBME5QMSBBQE6gPnAxUEFATnA/oD7APtA/kD+gPtA/oD+wMWBBcE+gMWBPIDGQQFBAYE8gMFBOwD+gMaBPYD7AMaBBwEGwQYBB8EHgQdBCAEHwQdBCMEIgQhBCQEIwQhBCcEJgQlBCgEJwQlBCsEKgQpBCwEKwQpBC8ELgQtBDAELwQtBDMEMgQxBDQEMwQxBDcENgQ1BDgENwQ1BDsEOgQ5BDwEOwQ5BD8EPgQ9BEAEPwQ9BEMEQgRBBEQEQwRBBDkERgRFBDwEOQRFBCkERwQsBEgEQwREBEkESAREBEwESwRKBE0ETARKBFAETwROBFEEUAROBFQEUwRSBFUEVARSBFgEVwRWBFkEWAQsBFwEWwRaBF0EXARaBGAEXwReBGEEYAReBDUEYwRiBDgENQRiBGQEOwQ8BGUEZAQ8BD4EZwRmBD0EPgRmBGgERARBBGkEaARBBEoESwTwA2oESgTwA0UEawRlBDwERQRlBFkELARHBPMDWQRHBEQESgT0A0kERAT0A/MD9wNsBHAEbwRtBHEEcARtBHQEcwRyBHUEdARyBHgEdwR2BHkEeAR2BHwEewR6BH0EfAR6BIAEfwR+BIEEgAR+BIQEgwSCBIUEhASCBIgEhwSGBIkEiASGBIwEiwSKBI0EjASKBJAEjwSOBJEEkASOBJQEkwSSBG8ElARtBJUEbgQXBBYElQQXBIsElwSWBIoEiwSWBHoEGQSYBH0EegSYBBoEbgSTBJkEGgSTBHoEmgQZBJ0EnASbBJ4EnQSbBKIEoASfBKMEogSfBKYEpQSkBKcEpgSkBKoEqQSoBKsEqgSoBK8ErgStBLAErwStBLMEsgSxBLQEswSxBIgEiQS1BLYEiAS1BI0EigS3BLgEjQS3BJAEugS5BI8EkAS5BJwEkwSUBLsEnASUBJwEnQS8BL0EnAS8BJYEvgS3BIoElgS3BKsEqAS/BMAErASYBMEEmQSTBJwEwQSTBMIErATABMUExATDBMYExQTDBMkEyATHBMoEyQTHBM0EzATLBM4EzQTLBNIE0QTPBNUE1ATPBNgE1wTWBNkE2ATWBNwE2wTaBN0E3ATaBOAE3wTeBOEE4ATeBOQE4wTiBOUE5ATiBOgE5wTmBOkE6ATmBOsE6gTFBMYE6wTFBMUE7AS8BMQExQS8BO0E4gTjBO4E7QTjBNMEwATvBNAE1ATvBOoEwQTFBNQEwgTABPIE8QTwBPME8gTwBPYE9QT0BPcE9gT0BPoE+QT4BPsE+gT4BP4E/QT8BAAF/gT/BAMFAgUBBQQFAwUBBQcFBgUFBQgFBwUFBQoFCQXfBOAECgXfBAwFCwXlBOIEDAXlBOcE6AQNBQ4F5wQNBfAE6gTrBA8F8ATrBO0EEAUMBeIE7QQMBe8EEQX/BP0E7wT/BOoE8AQSBcEE6gQSBRUFFAUTBRYFFQUTBRkFGAUXBRoFGQUXBR0FHAUbBR4FHQUbBSEFIAUfBSIFIQUfBSUFJAUjBSYFJQUjBSkFKAUnBSoFKQUnBSwFKwW8Ay0FLAW8AzAFLwUuBTEFMAUuBTIFLwUwBTYFNQU0BTgFNgU3BTUFNgU5BToFNQU5BT0FPAU7BT4FPQU7BbsDQAU/BUEFuwM/BUQFQwVCBUUFRAVCBUgFRwVGBUkFSAUcBUwFSwVKBU0FTAVKBSYFTwVOBSUFJgVOBSgFUQVQBScFKAVQBUAFuwO8AysFQAW8A08FUwVSBVQFTwVSBVUFUgVTBTMFVwVWBVgFNwVWBVkFVgVXBVoFWQVXBVsFPQU+BVwFWwU+BfYDGgRdBbkD9gNdBfYDuQO2A/QD9gO2A10FmQTBBF4FXQXBBEcEYAVfBfMDRwRfBboDYgVhBUgEugNhBboDSARJBGMFugNJBGEFYgVkBWUFYQVkBV8FZgXABJgEXwXABEkE9AO2A2MFSQS2A2kFaAVnBWoFaQVnBWsFagVnBWwFawVnBW0FawVsBW4FbQVsBWsFbQVvBXAFawVvBXIFEgVxBXMFcgVxBcIDcgVzBcQDwgNzBUkFYAV0BcEEEgVyBV4FwQRyBV0FXgXCA2YFcAV1Be8EZgURBXAFZgVqBWsFcAVqBWkFagVmBV8FaQVmBXYFHAUdBb8DdgUdBXYFYAVJBRwFdgVJBb0DLQW8A7oDYwV3Bb0DugN3BXgF5gPjA3kFeAXjAxIE5gN4BXoFEgR4Bb4DvwMdBSYEewUlBDEEMgR8BX0FMQR8BVUEUgR+BX8FXgRfBIAFfwVfBIEFzgPPA90DgwWCBdwD3QOCBQEEAgSFBQ0EDgSGBYcFDQSGBXkEiAV4BIUEigWJBYQEhQSJBaUEpgSLBbQEsQSMBY4FtASMBcwEjwXLBJEFkAXbBNwEkQXbBPsE+ASSBZMFBgUHBZYFlAWVBfkE+gT3BPQE+QT3BAsFDQXoBOUECwXoBOkE5ATlBOgE6QTlBAQFAQUIBQUFBAWXBcgEzQTOBMcEyATOBNkE1gTdBNoE2QTdBL8DwANpBWAFRwSYBXQFYAWYBfID8wNfBZgEGQRfBe8EwARmBckDxQPKA8sDyQPKA9kD0gPTA9gD2QPTA+4D6QPqA+0D7gPqA/kD/QP+A/gD+QP+AwcEBAQLBAgEBwQLBPkD7QPqAxQE+QPqA3IEcwRvBHAEcgRvBHwEgASBBJoFfASZBW8EjgSPBJQEbwSPBKAEogSeBJsEoASeBK4ErwSpBKoErgSpBJQEjwS5BLsElAShBMYEwwTJBMoExgTJBNUEzwTXBNgE1QTXBOcE6wTGBOYE5wTGBPME9QT2BPIE8wT2BAMF/gQABQIFAwUABQ4FDwXrBOcEDgXrBB0EIQQiBCAEHQQiBCsELQQuBCoEKwQuBD0EQQRCBEAEPQRCBFEETgRMBE0EUQRMBFcEWARdBFoEVwRdBD0EZgRpBEEEPQRpBEoEagT0A/EDxwP1A/oDFwQaBBcEbgQaBJwEvQTBBOwExQTBBBoEmQRdBcADaAVpBf8D/AMDBAAE/wMDBBUE5wPlAxMEFQTlAw8EDAQJBAoEDwQJBOQD5QPnA+gD5APnA9sD1gPXA9oD2wPXA9EDzAPNA9AD0QPNA5EEjASNBJAEkQSNBJAEjQS4BLoEkAS4BHUEdgR3BHQEdQR3BKMEnwSnBKQEowSnBIMEfgR/BIIEgwR/BLIEswSwBK0EsgSwBFMEVARPBFAEUwRPBDsEZARnBD4EOwRnBFsEXARgBGEEWwRgBDsEPgQ/BDoEOwQ/BJsFLwQwBDMEmwUwBCQEJwQoBCMEJAQoBHwFnQWcBZ0FfAWeBYIFgwWfBaIFhwWgBYoFpAWjBaQFigWlBZEFpwWmBZQFlgWoBRkE8gNfBWAFdgVfBRoFFwUyBTAFGgUyBToFOQUfBSAFOgUfBTwFPQUoBSkFPAUoBVUFQgVDBVIFVQVDBVoFTAVNBVkFWgVNBVsFUQUoBT0FWwUoBRgFGQUWBRMFGAUWBSIFHgUbBSEFIgUbBSsFLAUqBScFKwUqBUQFRQU/BUAFRAU/BUgFSgVLBUcFSAUhBUAFKwUnBVAFQAUnBboDuwNiBWIFuwOpBWQFYgWpBWkFXwV2Bb8DaQV2BW8FEQVwBWEFZQUeBJgFRwSqBawFqwUUBa0FqwWsBa4FrQWsBRUFvQOsBRQFFQWsBXcFtwOvBa4FdwWvBWMFtgO3A3cFYwW3A64FrAW9A3cFrgW9Ax4EHwRIBGEFHgRIBPAE8QRxBRIF8ARxBbEFsAUlBHsFsQUlBLIFfgVSBLMFsgVSBLQF4gPOA4EF4APOA7UFhQUCBLYFtQUCBLgFtwV4BIgFuAV4BLkFiwWmBLoFuQWmBLwFuwXLBI8FvAXLBL0FkgX4BL8FvgX4BMIDXgVyBaAFhwWGBZ4FfwWABXwFnAV9BcAFhAWhBYoFowWJBaUFigWNBZEFpgWQBZEFwQWnBcEDwgXAA68FxAXDBbcDxQXEBa8FtwPEBcMFrQWuBa8FwwWuBcYFuAO5A10FxgW5A8cFxgVdBcIDxwVdBccFyQXIBcIDwwPJBccFwgPJBWgFywXKBWcFaAXKBcADwgXLBWgFwAPLBWwFZwXKBcwFbgVsBcoFzAVsBcYFzgXNBbgDxgXNBbcDuAPNBcUFtwPNBccFyAXOBcYFxwXOBdEF0AXPBdIF0QXPBdIFzwXTBdQF0gXTBdQF0wXVBdYF1AXVBdkF2AXXBdoF2QXXBd0F3AXbBd4F3QXbBdwF4AXfBdsF3AXfBeIF4QXfBeMF4gXfBeUF1gXkBeMF3wXgBdUF0wXmBecF1QXmBc8F6AXmBdMFzwXmBegFzwXQBekF6AXQBewF6wXqBe0F3QXeBdUF5wXuBe4F5AXWBdUF7gXWBe0F8AXvBd0F7QXvBfMF8gXxBfQF8wXxBfcF9gX1BfgF9wX1BfsF+gX5BfwF+wX5Bf8F/gX9BQAG/wX9BQMGAgYBBgQGAwYBBgcGBgYFBggGBwYFBgsGCgYJBgwGCwYJBg8GDgYNBhAGDwYNBhMGEgYRBhQGEwYRBhcGFgYVBhgGFwYVBvEFGgYZBhsG8QUZBgAG/QUcBh0GAAYcBh8GHgYWBhcGHwYWBiAGAAYdBiMGIgYhBiQGIwYhBicGJgYlBigGJwYlBisGKgYpBiwGKwYpBi8GLgYtBjAGLwYtBjMGMgYxBjQGMwYxBjcGNgY1BjgGNwY1BgsGOgY5BgoGCwY5BjsGEAYNBjwGOwYNBhMGFAY9Bj4GEwY9BhUGFgYhBiIGFQYhBj8GJAYhBkAGPwYhBi4GQQYcBi0GLgYcBkIGIQYWBh4GQgYWBkQGQQZDBkcGRgZFBkgGRwZFBksGSgZJBkwGSwZJBk8GTgZNBlAGTwZNBlMGUgZRBlQGUwZRBlcGVgZVBlgGVwZVBlsGWgZZBlwGWwZZBl8GXgZdBmAGXwZdBmMGYgZhBmQGYwZhBmcGZgZlBmgGZwZlBmsGagZpBmwGawZpBm4GbQZjBmQGbgZjBlMGVAZvBmwGaQZwBnEGbAZwBnQGcwZyBnUGdAZyBngGdwZ2BnkGeAZ2BnwGewZ6Bn0GfAZ6BoEGgAZ+BoIGVAZ/BoUGhAaDBoYGhQaDBokGiAaHBooGiQaHBowGiwZfBmAGjAZfBmQGYQaNBo4GZAaNBpAGjwZmBmcGkAZmBmsGbAaRBpIGawaRBhkGcwZ0BpMGGQZ0Bo4GlAZuBmQGjgZuBm8GVAaCBh0GbwaCBh8GdAZsBnEGHwZsBh0GlQYgBpgGlwaWBpoGmAaWBp0GnAabBp4GnQabBqEGoAafBqIGoQafBqYGpQakBqcGpgakBqoGqQaoBqsGqgaoBq4GrQasBq8GrgasBrIGsQawBrMGsgawBrYGtQa0BrcGtga0BroGuQa4BrsGuga4Br8Gvga8BpcGmAa9BkAGmQbABj8GQAbABsIGwQa1BrYGwga1BsMGQQamBqcGwwamBr4GmQZCBsQGvgZCBqYGQQbFBsgGxwbGBskGyAbGBswGywbKBs0GzAbKBtAGzwbOBtEG0AbOBtQG0wbSBtUG1AbSBtgG1wbWBtkG2AbWBtwG2wbaBt0G3AbaBt4GswawBt8G3gawBuAGtga3BuEG4Aa3BuMG4ga4BrkG4wa4BrwGvgbHBuQGvAbHBuUGxgbHBuYG5QbHBuAG5wbCBrYG4AbCBugG1AbVBukGwwbVBr4GxAbqBscGvgbqBusG6QbVBu4G7QbsBu8G7gbsBvIG8QbwBvMG8gbwBvYG9Qb0BvcG9gb0BvoG+Qb4Bv0G+gb8BgAH/wb+BgEHAAf+BgQHAwcCBwUHBAcCBwgHBwcGBwkHCAcGBwwHCwcKBw0HDAcKBxAHDwcOBxEHEAcOB+wGEwcSB+8G7AYSB+UGFAfsBu0G5QbsBgsHDAcVBxYHCwcVBxcH6Qb4BvkGFwf7BhMH7AbqBvsG6QbrBhoHGQcYBxsHGgcYBx4HHQccBx8HHgccByIHIQcgByMHIgcgByYHJQckBygHJwckBysHKgcpBywHKwcpBy8HLgctBzAHLwctBwcHMgcxBwYHBwcxBw0HNAczBwwHDQczBzUHDgcPBzYHNQcPBxIHEwcaBzcHEgcaBzMHOAcVBwwHMwcVBycHOQcXByUHJwcXBzoHGgcTB+oGOgcTBz0HPAc7Bz4HPQc7B0EHQAc/B0IHQQc/B0UHRAdDB0YHRQdDB0oHSQdIB0sHSgdIB04HTQdMB08HTgdMB1IHUQdQB1MHUgdQB9cFVQdUB1YH1wVUB1kHWAdXB1oHWQdXB1sHVwdYB14HXQdcB2EHYAdcB2IHXAddB2MHYgddB2YHZQdkB2cHZgdkB2kHaAfYBWoHaQfYBW0HbAdrB24HbQdrB3IHcQdwB3MHRAdvB3YHdQd0B3cHdgd0B3kHeAdPB0wHeQdPB3sHegdRB1IHewdRB9cF2AVoB1UH1wVoB30HfAd4B34HfQd4B38HfAd9B4EHgAdfB4MHggdgB4AHgQeEB4UHgAeEB2cHZAeGB4cHZweGB9QFQgYeBtIF1AUeBtEF0gUeBh8G0QUeBuoGxAbUBYgH6gbUBYoHiQdvBh0GigdvBowHiwfZBXAGjAfZBXEGcAbZBY0HcQbZBY4HiweMB48HjgeMB+kGkAeKB8MG6QaKB9EFHwZxBo0H0QVxBt4F2wWRB5IH3gWRB94FkgeTB+0F3gWTB+0FkweUB/AF7QWUB5UHlAeTB5YHlQeTB5gHOgeXB5kHmAeXB5kHlwfWBeUFmQfWBXMHmgeJB5cHOgfqBogHlwfqBtQF1gWIB5sHlgeQBxcHOQeQB5IHkAeWB5MHkgeWB5AHkgeRB4oHkAeRB0MHRAecB+EFQwecB3MHiQecB0QHcwecB9oF1wVWB50HjQfZBdoFnQfZBQ8GEAaeB58HDwaeB54HEAY7BqAHngc7BuIFQwfhBU4GTwahB6IHWgZbBqMHogdbBn0GpAd8BogGiQalB6YHiAalB6cH+gX7BaoHqQcIBgUGqgcIBioGqwcpBqwHNQY2Bq0HrAc2BqIGnwauB7AHrwevBqwGsAevBs8GsQfOBrIH3AbdBrQHsgfdBvUG9ga1BwMHtwe2BwIHAwe2ByMHuAciBy0HLge5B7sHuge5Bx8HIAchBx4HHwchBw4HNQc0Bw0HDgc0Bw0HCgcRBw4HDQcRBzAHKwcsBy8HvAcsB/cG9AbxBvIG9wbxBgUHAAcBBwQHBQcBB+EFkQffBb0HbwaJB5oHvQeJBxwGigcdBsMGigdBBhcHkAfpBvcF8wX0BfYF9wX0Bf4F/wUEBgEG/gUEBhQGEQYYBhUGFAYYBiUGJgYiBiMGJQYiBjQGLwYwBjMGNAYwBhQGFQYiBj0GFAYiBpcGnAadBpYGlwadBqsGqAajBr8HvgekBrkGugaXBr0GuQaXBskGygbLBsgGyQbLBtMG1gbXBtIG0wbXBuMGuQa9BuQGywa8BvAG7gbvBvMG8AbvBv8G+gb9Bv4G/wb9Bu8GEgcPBxAH7wYPBxwHHQcbBxgHHAcbBygHJAcpByoHKAcpBxIHNwc2Bw8HEgc2B0oGSwZHBkgGSgZHBlYGVwZRBlIGVgZRBmoGawZnBmgGagZnBnIGeAZ5BnUGcgZ5BoYGfgaABoUGhgaABpIGkAZnBmsGkgZnBnQGHwaTBhsGHwbxBSEGQgZABkAGQgaZBscG6gbmBhQH6gbsBkIG1AXEBt8FkQfbBSwGJwYoBisGLAYoBg0GEwY+BjwGDQY+BjIGNwY4BjEGMgY4BhMGDQYOBhIGEwYOBgIGAwYGBgcGAgYGBvgF9QX8BfkF+AX8BbcGtAa7BrgGtwa7BuEGtwa4BuIG4Qa4BqAGoQaeBpsGoAaeBtEGzAbNBtAG0QbNBqkGqgatBq4GqQatBtkG2gbbBtgG2QbbBncGegZ7BnYGdwZ7Bo8GjQZhBmYGjwZhBocGgwaEBooGhwaEBmUGZgZhBmIGZQZhBlgGVQbAB1kGWAbAB1AGTQZMBkkGUAZMBqIHwgfBB8EHwweiB6oHxAepB8YHxQetB68HyAfHB8cHyQevB7YHywfKB7kHzAe7B0EGigccBokHigecB1sHQQdCB1cHWwdCB0oHYgdjB0kHSgdjB1EHZAdlB1AHUQdlB2wHbQd/B30HbAd/B3cHdAeFB4QHdweFB1EHegeGB2QHUQeGBz4HPwdABz0HPgdAB0UHRgdLB0gHRQdLB1MHVAdVB1IHUwdVB2kHbgdrB2gHaQdrB3UHdgdwB3EHRwdwB1IHVQdoB3sHUgdoB9kFiwfYBYsHzQfYBY4HzQeLB5EHnAeKB+EFnAeRB5UHlgc5B4wHRgaPB70HzgdvBtAHPAfPB9EH0AfPB9IH0AfRBzsH0AfaBTwH0Ac7B50H0wfQBdIH7AWdB9AF0QWNB50H0AWNB9AF6gXpBewF6gXQBesF0gfRB+wF0gfrBdIH2gXQB50H2gXSB0YGcAZFBowHcAZGBhoHmAcZBzoHmAcaB08G1QfUB6EHTwbUB3wGpAfWB9cHfAbWB/sFDAbYB6cH+wUJBikGqwfZB9oHKQbZB58G3AfbB64HnwbbB84GsQfdB94HzgbdB/YG4AffB7UH9gbfByIHuAfhB+MHIgfiB9YFlweIB8UHrAetB8MHpgelB6IHowfCB+QHxgeoB68HsAfIB8kHswevB7YHtwfLB7YHygflBzfkob5E2ZA/JnEjvVainr6Fto8/oOMSvYKKrL4g0Yw/B3wQvSrar74dDY4/4uYqvUXeor6opZE/dtuSven4sL7Op44/GCOYvXvorL63SI0/dGGwvb0Wnr4iPZA/4POpvYQopL7XpZE/jlFRvYqPsb7k244/KZJbvR1bqL57eYs/z/KxvS8nmL6JyI0/lJ6svSKXo76nwYk/CsSYveYolb6CxIs/KX+XvXn9lb6G3Yw/z6Evvfgdlb5f7os/NJdfvSL0or6MtIk/Jk5nvVKbpb6Jn4o/SYUovcBSqL6Hj4s/AN0TvRl/mb7tNo4/dx0SvSL0or6MtIk/Jk5nvfgdlb5f7os/NJdfveYolb6CxIs/KX+XvRvEvb7b8Ys/zYCZvWayub4D1Yo/D7CuvQUBvb5sZos/irk2vYVevr6SDIw/QLtlvSKotb4vOYk/bYWvvRwZyb4vooU/ZEg4vc8TzL6PsYY/83guvapBur7GU4o/q04fvWf1tb5H+Ig/dJolvTt5zr6Oi4c/XodEvRVR0L68FIg/zyhyvZ7pxr7EzoQ/Kih1vf45sr5Y1oc/cCpuvbTfz75r3oc/ouuUvXTbxr7/1oQ/a/iSvZ7pxr7EzoQ/Kih1vf45sr5Y1oc/cCpuvYc8s75k34c/MImUvTLxzL5d8YY/he6kvWEZyr5y0oU/XCWmvXcqcr5GnpI/zvIzvYbxd76osZM/h6UQvZBWWL7FQ5Y/29wOvaKnUr5EEpU/HaY7vYs6hL5HeJY/dPGRvbOdgb5vfZU/No+lvXiAYr5NGJg/aVupvY66aL5LMZk/6hqTvdTKhL4iuZY/ivtZvfSyar4teJk/wMdmvYH5Zr5NBpk/quUxvfB/gr6GJJY/SbYovS8nmL6JyI0/lJ6svT/ij75DNI8/qwqnve5Ilr4Dt5E/ubalvb0Wnr4iPZA/4POpveYolb6CxIs/KX+XvVCSjL4dro0/FKGVvSVOd75EWJM/ZkCpvcWpVr6Q3JU/HjCtveFSbr4t+pE/36WUvTwrT75ZaJQ/Nu2SvQJghL6cy5M/JE+svb8mg74STpM/VnOsvQaXjb7d7pA/Vy6svTffj75DmJE//CqsvWQBgL7AP5U/zrAOvYoUYb6mD5g/vBYQvfgdlb5f7os/NJdfvXn9lb6G3Yw/z6EvvX/Cjb50+44/0+w1vUvWi760xo0/c4tevUvWi760xo0/c4tevfgdlb5f7os/NJdfvWn+bb4q2pE/YshevbPKTr4HVJQ/OdtivWn+bb4q2pE/YshevbPKTr4HVJQ/OdtivetNiL7S6ZQ/4m4rvfI2ir4xmZU/4URYvQ30jr5Oy5Q/r4tWvWnYjL7r9ZM/OTAuvanKhb6eFJQ/tFkVvQvsir4k/pI/i4cZvZMLir7kUZU/JiyTva9rjr5clJQ/O2SSvb/5gb6wtJI/vt8Uvcbrh75J1pE/b4gava9GiL5HgZQ/hCigvVu+jL7r1JM/00Cdvefcfb590ZE/b004vR5HhL7g8pA/23U6vdD2hr7JnpM/b+2svXzhir6bB5M/6R+uvVkpgb7GQJA/z/5dvR07eL52GpE/zLxevaxzhL7PxJI/GzSvvRuCh77NCJI/UiWwvTcVgb4RR5A/HyyUvVkpgb7GQJA/z/5dvR07eL52GpE/zLxevYypeL4ZH5E/wyKTvauigL5eBZI/k72qvRqHhL5JLJE/TeWovXZdk75uHJQ/dNRUvQQ+kb6cQ5M/vfcsvf4UmL42eZI/2y4pvSgrmr6lM5M//E9SvYq8jr4CVJI/UMsbvYc+lb7Jb5E/rgUavWrJkr4JDpQ/1mqRvcgkmb5nIJM/koqQvUhqi759J5E/UMsbva2QkL44C5A/RgwavXeRkL7DB5M/VRmevW4miL78HpA/a+04vdrYjb5wRJI/z5itvTQ+hr4XWY8/ZbtdvTzQir7wM5E/Bp2uvTQ+hr4XWY8/ZbtdvW9Uhr7EOY8/qwmWvYP7iL4cUJA/abCmvVainr6Fto8/oOMSvTfkob5E2ZA/JnEjvRl/mb7tNo4/dx0SvUXeor6opZE/dtuSvYQopL7XpZE/jlFRvZtMw71P5KY/ZPVivcraqr37qaY/pPEovceiwL1KU6Y/8xghvZnAp71W76U/oabwvGuhu73CXqU/uB/hvKQ9t71DFaM/+wfEvIu7pL28dKM/dabAvObFrL3wIac/4b9pvYTRsr0pPKA/bsquvAc/s72SA54/aBaUvWtCvb0v9J0/i/2Uva7bu722350/pblmvQc/s72SA54/aBaUva7bu722350/pblmvVT1tr1lPJ0/kqVeve5Pt72WLaA/fTqtvUSe2r0wt6M/7kDZvHm3y72urqQ/1+nZvOAZxL0+TqI/M5rGvH260b2+DqE/JOPNvD550r2z26U/5m8cvYai473pFqU/60ccvTej5r0tzqU/cNJmveLg1L1bjaY/kNNhvdxxu723DKA/ClbRvKd2xr09ap8/rjDuvP0f0r0XDKY//LuRvTjSvr2yZKY/2AGRvRDdub3vxKQ/WNurvXShy73+aqQ/He6qvQ88wr2S2J8/DWmtvYGHMb58zZc/GUIpvbPqOL7TFJk/GbcCvW7sGr5d4ps/6r3svDlNEb7ClZo/Eoceva2AKr7Wip4/8RmavTF0Er6kG6E/VXeWvQAJFb72r6E/T5dpvZLsLL68LZ8/cppyvdIAEr5ALqE/8NAkvZyZKr4Jh54/5E4rvUe+Fr6vbZs/98ervVu5Nb6Zq5g/tCasvf0LLL53Xpc/j1eSvQDoDL6z85k/FvySvWFGJL7WX50/Jvv6vO/qCb4iKKA/goH2vKsdSb4e3ps/SYMtvfueS76yUZw/wxBuvcUJQr4Rq5o/hwMHvY3cSb4g8Js/7sCZvSFYDL7m9Zk/YRpmvUBzLb6ULZc/gqpjvSFYDL7m9Zk/YRpmvUBzLb6ULZc/gqpjvebdIr5nQZ0/BAquvQ2pQr7Ho5o/1BOsvZ3C4b0gmpw/zhVnvXsp4b0nypw/bbWRvUr4973SWJ4/2cWsvVkP9L1h86M/NE8dvc7O+b0XnaQ/d69nvTgd6b0Hk6I/2PffvEr4973SWJ4/2cWsvXsp4b0nypw/bbWRvZ3C4b0gmpw/zhVnvdIAEr5ALqE/8NAkvQAJFb72r6E/T5dpve/qCb4iKKA/goH2vK7bu722350/pblmvYQUvL0C/50/YLcrvbnbt71zcp0/+7EjvVT1tr1lPJ0/kqVevTgUvL3YHp8/hFAFvfXu/b1rn54/Y4fpvC9s6r3map0/5yYYvZ3C4b0gmpw/zhVnvSL14r1ErZw/+/NDvYQUvL0C/50/YLcrva7bu722350/pblmvZ3C4b0gmpw/zhVnvSL14r1ErZw/+/NDvS9s6r3map0/5yYYvfXu/b1rn54/Y4fpvKEj5L05F6U/d+qTvbwy3L1QfKM/GRKrvR2wxL1qp6E/XdKzvaYe0L0gBKE/q+qyvXum9L336qM/b0eVvY/q6L3hfKI/4oirvYgoCr5rKaA/ovSrvYgoCr5rKaA/ovSrvTF0Er6kG6E/VXeWvXBLub3CIaI/yiK1vZWzt71A154/9wn2vDgUvL3YHp8/hFAFvdvtqb3dkaY/v/+QvYSHpb2q9qQ/7latvU9opb1Ef6I/BsW3vdoYgz3GJZ0/s+pmPeaFBj2635w/93mJPaewHT0dM50/pq2EPbSTQD17G54/TDZPPVgLaT1fhp0/hV1uPSVrTT2Ahp0/dwF2PTfvAz2Zlp0/cFt0PeSYMj0JXJ0/hhOAPdLLnzygl6s/QgIUvWZy1zC4Nqk/4a3GvESPWC7Hvqo/Idm7vAkWJDz3+6o/E4HTvCYlpTw98aw/VSgFvUU/uDyupa4/5FO/vLUw5jyALK8/d/Qpve+KzTySdK0/AC85vW7YKDxbgaw/ptezvK3xLTwHoq0/jKlkvGCMvjweq68/o2Novc3LszyW+a0/iWtuvXnQpLEnXaw/9ImYvP0MTLL8aK0/MjpEvNtLBD3QXrA/J54nvSYW5Ty4G7E/uWBgvQ5nJjzkALA/t2+DvVguKTwHU64/XYeHvUZDVjOpDLA/QR6IvV7YYDMLca4/REWMvatwQzwcYLE/JWmDvQvx2rLXTbE/eC+IvRsabzMS9Kw/wyeSvSD1NT07jqc/arUivZsVOz1JMag/XhNOvY9btD1w6Zg/IlcZvWY2rj3LeZs/lx+NvTNhtz0+TJw/N59Qvde9qj1OqKY/c/EovaG/kD30Hac/Btg3vfnFrD3wIac/p79pvfBgkT0pZ6Y/KgjuvMCvkD2t0KY/YtYVvc8Mtz1bdZ0/xrEjvV31tj1lPJ0/WKVevcr5sz35bpk/7eCHvPKCsj1XdZs/GaCCvA8/sz2SA54/TxaUvT13oDxufqg/UoCovTdkkDNtxqk/vsimvVNn0jySaaY/2Pe6vRsUID1zSqg/egyfvf++mTMCp6g/hY2uvTtuqjM9uKY/mWi8vZM5pz2W5KU/O6bwvJJDtTPdfKM/tEPFvWDiGrOJr6M/R4ALPPiddjyzw6E/rbOFPGu5TLOUx6E/qIeYPKcMojx34J8/Qd3rPCszBj0yxaE/9Co3PPCmFT2ZMaA/GDq6PIm7pD28dKM/FKbAvEyHmz1QCqE/YUKPu1mFlj0e3aM/4PaxvJgppz20+J4/IGAHvJOztz1A154/hQn2vMW2rT1BRZ0/nqVJvLd4rD2ckZ8/QQV+vBt1sj00P6A/C8quvDUQcz3FFaQ/TFl0vDTnaz10XqY/OKLFvCpfbT2yM6g/4iF/vdeDZj1Spqc/1edFvYS2Yz2GzaY/w2H/vCTAQz2qvKg/Hw+EvaK3WDxFy6M/PVbxO4G+rj3SL54/QQ+fvetPtz2WLaA/YDqtvTTgbD2Om6U/+5myvUW6kT08lKc/FMR1vUW6kT08lKc/FMR1vcn/eD2lWKc/GHaYve3tqT3dkaY/pP+QvSTAQz2qvKg/Hw+EvSpfbT2yM6g/4iF/vZeHpT2k9qQ/0FatvfnFrD3wIac/p79pvfR1Jz19DZ8/XpscPYtii7MIaZ8/UMcJPZPAvTztZp4/of1BPaX+LDxNuJw/yxd7PQpPvrMmsJw/q1hePRQArTtueJs/FMGJPXWo1bNRdJs/8JCCPUkjrTzsMpw/bSuRPQ8KjDxi5Js/UlaSPURrtT1gHpo/xv8IO0C6rz2QNpw/HWQyOznXpj2v350/yYXPO8my0jyrY6M/IZPGvZUTtTM5zZ8/2D/FvSC/yzxhq58/92bGvcAvaD14y6I/HXO/vd44YT26ZZ8/7fS/vbaApT2se6I/88S3vdHtoj1BBp8/M5WyvfIYg73GJZ0/jupmPR2GBr2635w/73mJPdywHb0dM50/m62EPYsLab1fhp0/Xl1uPeaTQL17G54/MjZPPVlrTb2Ahp0/WQF2PWnvA72Zlp0/YFt0PRyZMr0JXJ0/eROAPcLLn7ygl6s/TAIUvQAWJLz3+6o/HYHTvJww5ryALK8/ifQpvUQ/uLyupa4/+1O/vBwlpbw98aw/YygFvc+KzbySdK0/Dy85vcnxLbwHoq0/rKlkvG3YKLxbgaw/sNezvJ3Ls7yW+a0/mGtuvTOMvrweq68/sGNovQIW5by4G7E/x2BgvdBLBL3QXrA/O54nvbBmJrzkALA/u2+DvektKbwHU64/YoeHvTVxQ7wcYLE/KWmDvRX1Nb07jqc/hrUivV42rr3LeZs/sB+NvYdbtL1w6Zg/V1cZvSpht70+TJw/b59QvZS/kL3tHac/M9g3vcraqr37qaY/pPEovebFrL3wIac/4b9pvd+JkL35zKY/jNYVvd+dkb3KbaY/fgjuvLnbt71zcp0/+7EjvVT1tr1lPJ0/kqVevfSCsr1XdZs/hqCCvM35s735bpk/XuGHvAc/s72SA54/aBaUvfJ2oLxufqg/WYCovfxm0rySaaY/1fe6vfkTIL1zSqg/hwyfvZnAp71W76U/oabwvFuedryzw6E/nrOFPEEzBr0yxaE/pio3POkMorx34J8/Jt3rPA2nFb2ZMaA/6zm6PBXUm70mBaE/10OPu4u7pL28dKM/dabAvFmFlr0e3aM/RPexvJWzt71A154/9wn2vCHFp70+9J4/62AHvMe2rb1BRZ0/Z6ZJvITRsr0pPKA/bsquvLl4rL2ckZ8/DAZ+vELXpr2v350/NYTPOynna71uXqY/eaLFvBAIc70bJaQ/6Vl0vBJfbb2yM6g/AiJ/vYoVO71JMag/eRNOvcaDZr1Spqc/++dFvSFdY72AxqY/BmL/vAbAQ72qvKg/Lw+EvfW3WLxFy6M//FXxO3m+rr3SL54/WA+fve5Pt72WLaA/fTqtvQrgbL2Om6U/DpqyvVfWkb1plqc/QMR1vXTXeb1rZKc/KXaYvVfWkb1plqc/QMR1vdvtqb3dkaY/v/+QvQbAQ72qvKg/Lw+EvRJfbb2yM6g/AiJ/vYSHpb2q9qQ/7latvebFrL3wIac/4b9pvRt2J719DZ8/SZscPerAvbztZp4/kP1BPWr/LLxNuJw/xRd7PdABrbtueJs/EMGJPb0jrbzsMpw/ZCuRPYIKjLxi5Js/TFaSPU9rtb1gHpo/XvwIO0q6r72QNpw/0GAyO2qy0ryrY6M/KpPGvcq+y7xhq58/9GbGvZsvaL14y6I/JXO/vU9opb1Ef6I/BsW3veLLm71xx5s/KS2lvSElo71KBJ8/RpWyve5Pt72WLaA/fTqtvbM4Yb26ZZ8/APW/vYHorD63SI0/IWGwvSBbqD50eYs/e/KxvSvarz4dDY4/KeYqvVabpT6Jn4o/pYQovSf0oj6GtIk/fE1nve74sD7Hp44/uSKYvYqPsT7e244/b5FbvUX7sT6f+Y4/jGmAvde9qj1OqKY/c/EovcRMwz1P5KY/KfVivdCiwD1KU6Y/thghvZM5pz2W5KU/O6bwvPJNuz0zWqU/TB/hvKE9tz1DFaM/igfEvIm7pD28dKM/FKbAvPnFrD3wIac/p79pvRt1sj00P6A/C8quvBt1sj00P6A/C8quvJXbuz29350/a7lmvV1CvT0v9J0/b/2UvQ8/sz2SA54/TxaUvZXbuz29350/a7lmvQ8/sz2SA54/TxaUvV31tj1lPJ0/WKVevetPtz2WLaA/YDqtvd0ZxD0+TqI/vpnGvHe3yz2urqQ/W+nZvE+e2j0wt6M/cEDZvMzx0T2wDqE/quLNvFKb5j12zqU/KdJmvYmx4z0zFqU/pEccvUal0j3A26U/p28cvVsK1T1AjaY/U9Nhvc5xuz23DKA/mVXRvKV2xj09ap8/NTDuvFXSvj2yZKY/uwGRvQYg0j0XDKY/2ruRvSTduT3vxKQ/RdurvYahyz34aqQ/AO6qvZzZwT1U2p8/72itvZjD+T1Sn6Q/LK9nvU4P9D1h86M/6E4dvTgd6T0Hk6I/UPffvI4p4T0nypw/TrWRvVz49z3SWJ4/vMWsvZvC4T0gmpw/kBVnvQUJFT72r6E/+ZZpvdIAEj5ALqE/nNAkve/qCT4iKKA/5YD2vM8Mtz1bdZ0/xrEjvXUUvD0C/50/K7crvZXbuz29350/a7lmvV31tj1lPJ0/WKVevStKuz2RIp8/S1AFvZvC4T0gmpw/kBVnvZXbuz29350/a7lmvXUUvD0C/50/K7crvRX14j1ErZw/vvNDvSJs6j3map0/pCYYvevu/T1kn54/04bpvNQQ5D0kGKU/UuqTvc4y3D1QfKM/8hGrvTCwxD1qp6E/QNKzveljzz1iBaE/juqyvWGf9D208KM/RkeVvb3U6D1we6I/xYirvZEoCj5rKaA/e/SrvUB0Ej6kG6E/LHeWva8TuT2OJaI/rSK1vStKuz2RIp8/S1AFvZOztz1A154/hQn2vO3tqT3dkaY/pP+QvZeHpT2k9qQ/0FatvbaApT2se6I/88S3vcAWnj4iPZA/hvOpvTUnmD6CyI0/Rp6svesolT6CxIs/3X6XvSeXoz6hwYk/t8OYvf4dlT5f7os/nZZfvSf0oj6GtIk/fE1nvesolT6CxIs/3X6XvYCKrD4g0Yw/UXsQvVminj6Fto8/9+ISvTrkoT492ZA/eXAjvf4dlT5f7os/nZZfvX/9lT6G3Yw/NKEvvRt/mT7tNo4/2RwSvb1SqD6Aj4s/UtwTvZ5uqj5TMIw/1CsSvUjeoj6ipZE/H9uSvYQopD7XpZE/3lBRvZVWWD7FQ5Y/adwOvYbxdz6isZM/BKUQvXwqcj5GnpI/UvIzvaWnUj5EEpU/raU7vYCAYj5NGJg/MFupvbadgT5ofZU/846lvZA6hD5HeJY/LfGRvZe6aD5LMZk/qxqTvdTKhD4buZY//fpZvfmyaj4teJk/Qsdmve5/gj6GJJY/vrUovYH5Zj5NBpk/KeUxvfNIlj4Dt5E/aralvUTijz5DNI8/XQqnvTUnmD6CyI0/Rp6svcAWnj4iPZA/hvOpvesolT6CxIs/3X6XvVaSjD4dro0/y6CVvS5Odz5EWJM/IkCpvdOpVj6Q3JU/5i+tvfJSbj4t+pE/oKWUvT4rTz5ZaJQ/AO2SvQhghD6cy5M/4E6svcUmgz4STpM/E3OsvT3fjz5DmJE/riqsvQuXjT7d7pA/CS6svWYBgD7AP5U/R7AOvYUUYT6mD5g/RRYQvYTCjT50+44/QOw1vX/9lT6G3Yw/NKEvvf4dlT5f7os/nZZfvUvWiz60xo0/5opevUvWiz60xo0/5opevf4dlT5f7os/nZZfvbzKTj4HVJQ/zNpivXP+bT4q2pE/6cdevXP+bT4q2pE/6cdevbzKTj4HVJQ/zNpivfQ2ij4rmZU/TERYve5NiD7S6ZQ/UG4rvRD0jj5Oy5Q/EItWvWzYjD7r9ZM/pC8uvQvsij4k/pI/94YZvavKhT6eFJQ/JFkVvZgLij7kUZU/3SuTva9rjj5WlJQ/72OSvcjrhz5C1pE/4Icavb/5gT6wtJI/Nd8UvbRGiD5HgZQ/OyigvV6+jD7r1JM/hkCdvR5HhD7g8pA/U3U6vezcfT590ZE/7Uw4vdb2hj7JnpM/IO2svX/hij6bB5M/mx+uvVkpgT7GQJA/S/5dvSc7eD52GpE/T7xevaxzhD7PxJI/1zOvvR6Chz7GCJI/DiWwvSc7eD52GpE/T7xevVkpgT7GQJA/S/5dvTcVgT4RR5A/3CuUvZKpeD4ZH5E/gSKTvauigD5kBZI/UL2qvR+HhD5JLJE/CeWovXxdkz5uHJQ/19NUvQc+kT6cQ5M/IfcsvSsrmj6lM5M/UE9Svf4UmD4veZI/Ni4pvY28jj4CVJI/tsobvY0+lT7Jb5E/DgUavW3Jkj4JDpQ/h2qRvdAkmT5nIJM/QIqQvUhqiz59J5E/vMobvbKQkD44C5A/rgsavXyRkD7DB5M/BxmevXAmiD78HpA/4ew4veXYjT5wRJI/gZitvTQ+hj4XWY8/3bpdvULQij7wM5E/uJyuvXRUhj7EOY8/ZgmWvTQ+hj4XWY8/3bpdvYb7iD4WUJA/JbCmvVminj6Fto8/9+ISvTrkoT492ZA/eXAjvRt/mT7tNo4/2RwSvUjeoj6ipZE/H9uSvYQopD7XpZE/3lBRvXTsGj5d4ps/Qb3svLXqOD7TFJk/t7YCvX6HMT51zZc/vUEpvT5NET7ClZo/xIYevQUJFT72r6E/+ZZpvUB0Ej6kG6E/LHeWvbSAKj7Wip4/whmavZvsLD68LZ8/D5pyvZ6ZKj4Jh54/hU4rvdIAEj5ALqE/nNAkvQUMLD53Xpc/YleSvWK5NT6Zq5g/hiasvVG+Fj6vbZs/xMervQnoDD6s85k/8/uSvWRGJD7WX50/cPr6vO/qCT4iKKA/5YD2vP2eSz6yUZw/UhBuva4dST4X3ps/2YItvccJQj4Rq5o/GwMHvZXcST4Z8Js/t8CZvSdYDD7m9Zk/FxpmvUlzLT6NLZc/J6pjvSdYDD7m9Zk/FxpmvUlzLT6NLZc/J6pjve7dIj5nQZ0/3gmuvRSpQj7Ho5o/nBOsvZvC4T0gmpw/kBVnvY4p4T0nypw/TrWRvVz49z3SWJ4/vMWsvevu/T1kn54/04bpvCJs6j3map0/pCYYvZvC4T0gmpw/kBVnvRX14j1ErZw/vvNDvZEoCj5rKaA/e/SrvThZDj7l91w/Wy6ZvLOhCD5mal0/Bed2PBk8Aj79A2Y/3ZiMPLz1Bz7JOGY/nFVMvDfcAD5LJm0/T4wHvMnT+T0dN2w/it4EvaZApjMqkmo/VPC4vWwNZTzcCWs/MBXDvUtrpj0YHms/zQC+vaUTaz3noGs/8G/Mvaaw5z1Uu2s/NU9pvfif0T14NHQ/nr9GvbOFxD3MTnA/uXGXvbeI8T35DXM/zuKjux7Y5z3DRHM/dHDivHlR0D0GuWs/wZ2gvebICz1HXGs/697MvSdDnz0ijnA/zvasvSnEXT2JNHA/1/m5vaJbQjw9wm8/hDazvewg/TzAMnA/UH69vVw51bNw9mg/qTKCPbP71TxLDmk/3L59PTSe9j3v4Gw/5PaXPJ5z2D3msGs/efwvPZVNzj2FBHE/93kzPQoh5T0Ju3I/2ROvPNcJez1zpWk/OFxQPd4opj39uG0/AvxSPTTRqT3Jkmk/b7BPPUV73jwnhm8/8suGPUBPbD0ObHA/5B9gPeuW3LMKbW8/gFCIPWezmTPAPW8/3oOuvTfcAL5LJm0/ho0HvNTT+b0dN2w/1t4Evb4MZbzcCWs/OxXDvXMTa73noGs/DnDMvTlrpr0YHms/3gC+vQag0b14NHQ/279GvZ6w571Uu2s/eU9pvauFxL3MTnA/1XGXvcGI8b35DXM/GOWjux7Y573DRHM/AHHivGZR0L0GuWs/4Z2gvbbIC71HXGs/897MvRNDn70ijnA/6/asvf7DXb2JNHA/6fm5vQVbQrw9wm8/izazvZwg/bzAMnA/WH69vbNNzr2FBHE/uXkzPbJz2L3msGs/OPwvPUCe9r3v4Gw/UPaXPBQh5b0Ju3I/TxOvPPIopr39uG0/y/tSPQMKe71zpWk/EFxQPUfRqb3Jkmk/O7BPPRf81bxLDmk/zr59PXNPbL0ObHA/xB9gPbB73rwnhm8/7MuGPVw51bNw9mg/qTKCPcTBHDM9h4A/wMxfvcoc+bwuq4A/8j1lvc3AorxOcHs/u4mHvaofdj26fIA/Rr9GvTC/Wj33KoM/uCogvdfu0Tz+HYM/O4U+ve4c+Twuq4A/3j1lvZv0lD0benU/J6aVvRwTiD2dBHs/ZwZ8vbRoJj0csHs/djaIvSHDRj0uj3U/Dm+gvdtQ8DJSFIM//GdBvQbBojxOcHs/tImHveIO1Ty0S3U/5J2kvXPcazPrzHM/+r6QvQ9/8zuhhHQ//ZSavST5RjPZrHo/4G2BvVB82T1poX4/UtvPO+DSxj29moI/noobPI4Avz0E4YI/1+YDvIeP0T0lYH8/oMJuvAmmnD3AHoM/F9XYvCfrsT0vIoA/t0QRvSdDnz0ijnA/zvasvbOFxD3MTnA/uXGXvd22uD3iHHU/6VSCvSnEXT2JNHA/1/m5vfif0T14NHQ/nr9Gvewg/TzAMnA/UH69vaJbQjw9wm8/hDazvYJYwT2H/Xk/Pl4uvR7Y5z3DRHM/dHDivLeI8T35DXM/zuKju5yX5z0zMng/jViwODuy3D1MKHk/oHCvvIVSWz1DCXk/QJx1PZnW3TwTlng/IjyRPTIByjxQ04A/DMSVPRKVRD1r/IA/jWmGPT3q0j2yi30/xy3YPJJ5xT2UNII/73nYPGSHwj0Z93s/zno2PQEZtD1Ar4E/PLozPUIPnj0cJno/E4pmPbhrkj0bP4E/gE9uPdRO8rMLz4A/CmqaPXWC7LM8YHg/W5mVPeuW3LMKbW8/gFCIPUV73jwnhm8/8suGPUBPbD0ObHA/5B9gPXMXoj1FmXI/6thZPd4opj39uG0/AvxSPfKvyD05TXU/5hM2PZVNzj2FBHE/93kzPUd33T0lB3c/RQHEPAoh5T0Ju3I/2ROvPGezmTPAPW8/3oOuvVL6qj0BslE/6H+dvfUZOT246U8/W/+JvRhbPD2bQ0Y/qaSSvTv2qz2AHkc/SZyjvVhrjzysQ08/pIQevWlDkjyyqkU/RMYmvTgOPjz82k8/9seJu0RSVTzCOUU/T1YQvITAVT0Yz0U/1fE5PdvnTD3FGVM/Cn9IPW3srT2GF1Q/tIhkPcYRqz3wbEY/xGFSPS7RsDyu6FA/vWq8PHQGszzkWEU/l8mjPI9opT0VKjo/qfo3PWvgmj1TYy0/cPgMPUzHUj0+Zy0/AAvxPPiwUT3AxTk/Fu4dPVNm5jx8sy0/+QizO6koyjyGhDk/wDVePKwh9j0md1M/kw9xvVL6qj0BslE/6H+dvTv2qz2AHkc/SZyjvU7v9T01Skc/Kqp+vagQED6b9VM/xV2/vNkzED7FlUc/wLfrvNIE6T2Fr1Q/MpsoPXO66j0HG0c/JF8YPboUDD5AelQ/su9dPLrbDD4Kikc/WesGPO/R5D1nPDo/cIT5PDj81j0mkS0/oKitPNqSCj6PvDo/11kCvb9cCD5Egzo/u4sWOzyI6j3c/jo/fFmDvc7OqT0HDjs/AxKjvc7OqT0HDjs/AxKjvdc/Rz29HDo/xyeXveEbrzzHRTk/Kb80vTB4gDx5Zjk/IuJPvLzu0bz+HYM/SYU+vSa/Wr33KoM/3CogvZkfdr26fIA/ar9GvZloJr0csHs/gDaIvRETiL2dBHs/jwZ8vYv0lL0benU/PKaVvf3CRr0uj3U/G2+gvZsO1by0S3U/7Z2kvQ9+87uhhHQ//5SavXPcazPrzHM/+r6QvY4Av70E4YI/wecDvOvSxr29moI/rokbPFB82b1poX4/QtnPO4eP0b0lYH8/osNuvCrrsb0vIoA/8EQRvQemnL3AHoM/dNXYvKuFxL3MTnA/1XGXvRNDn70ijnA/6/asvcu2uL3iHHU/BVWCvf7DXb2JNHA/6fm5vQag0b14NHQ/279GvZwg/bzAMnA/WH69vQVbQrw9wm8/izazvYVYwb2H/Xk/dF4uvZyX570zMng/Ic2vOMGI8b35DXM/GOWjux7Y573DRHM/AHHivDuy3L1MKHk/KnGvvKsByrxQ04A/AsSVPQ7X3bwTlng/HDyRPb1SW71DCXk/IJx1PUuVRL1r/IA/f2mGPaV5xb2UNII/e3nYPEXq0r2yi30/Ry3YPHeHwr0Z93s/lXo2PRQZtL1Ar4E/CrozPdJrkr0bP4E/T09uPVkPnr0cJno/4IlmPbB73rwnhm8/7MuGPXNPbL0ObHA/xB9gPYsXor1FmXI/s9hZPQWwyL05TXU/qxM2PfIopr39uG0/y/tSPbNNzr2FBHE/uXkzPVJ33b0lB3c/vgDEPBQh5b0Ju3I/TxOvPPhaPL2bQ0Y/uaSSvdUZOb246U8/av+JvUr6qr0BslE/AoCdvTP2q72AHkc/ZJyjvUhrj7ysQ08/sYQevVBDkryyqkU/UMYmvWlSVbzCOUU/d1YQvG4OPrz82k8/MsiJu4rsrb2GF1Q/fohkPQXoTL3FGVM/535IPbDAVb0Yz0U/s/E5PdkRq73wbEY/jmFSPaUGs7zkWEU/fMmjPGfRsLyu6FA/oWq8PGrHUr0+Zy0/uwrxPH3gmr1TYy0/QvgMPaJopb0VKjo/ePo3PRyxUb3AxTk/9O0dPXRm5rx8sy0/bgizO9UoyryGhDk/gjVePDP2q72AHkc/ZJyjvUr6qr0BslE/AoCdvaUh9r0md1M/3Q9xvUXv9b01Skc/cKp+vagQEL6b9VM/b16/vNkzEL7FlUc/a7jrvHy66r0HG0c/3l4YPeME6b2Fr1Q/65ooPb/bDL4Kikc/AuoGPMUUDL5AelQ/ZO5dPET81r0mkS0/HqitPPnR5L1nPDo/6oP5PL9cCL5Egzo/mYYWO8+SCr6PvDo/L1oCvTSI6r3c/jo/nVmDvcbOqb0HDjs/HRKjvcbOqb0HDjs/HRKjvbU/R729HDo/1ieXvcobr7zHRTk/M780vTl4gLx5Zjk/U+JPvCTPkT2JpsM9RyR1vMcmhz1lblg9XDW3PJsIXz0MnZM9lZMFvBDojT0XKpo9lWxCu9CZxT2u03U9uX+EvJ5Bsz3izY09b+gBvCbPkb2JpsM9AyV1vNYmh71pblg9DjW3PKYIX70OnZM9GZQFvBTojb0YKpo9QW9Cu9CZxb2003U9MoCEvKFBs73kzY09ROkBvEQBg7xzjFo/KN6ivd+nFL0QaVU/7nWVvYEVmbz0GlY/d3tsvX34Fb0OJlo/YtK0va0gg73KKVY/ObKkvWMngr1UWVo/VTO4vWeY1r3HP1g/I3SNvcX4171+i1k/pI+Tvbn0972KfF0/OydqvdTr970Ae1s/5SNivc7mfbwG01U/KV0WvQUyFr3HlFQ/BwCJve2Pi7ykClU/foUZvandZrzPgVU//sF3u6nRWbyC31Y/ocR2u1Yusb0mH1Y/rPqevTK3sb2hflc/W6akvQZrg718CVU/d2advZAktbzH0lc/gAvEPKnRWbyC31Y/ocR2u6ndZrzPgVU//sF3ux88Ar79A2Y/PpiMPLmhCL5mal0/xeV2PDhZDr7l91w/Bi+ZvLz1B77JOGY/61ZMvMsU370qeGU/BK8uPYsC5b0Y7Vw/GxUvPUFOB77LJ2A/1JcEvSKC9719IFk/uFNjvRmG1b1hoVY/2dmMvUr6qr0BslE/AoCdvTn0r72kuFQ/bnWcvXcKhL0JvVM/ICCbvUhrj7ysQ08/sYQevW4OPrz82k8/MsiJu4rsrb2GF1Q/fohkPeME6b2Fr1Q/65ooPQWOrL23TVw/u4loPd6lTb3VUVo/oepAPQXoTL3FGVM/535IPcUUDL5AelQ/ZO5dPKgQEL6b9VM/b16/vKUh9r0md1M/3Q9xvWfRsLyu6FA/oWq8PG4OPrz82k8/MsiJu0efF73Hn1M/OHuGvdUZOb246U8/av+JveI6Ab6OCGE/dJQ6va3jsr0UFVs/t/euvakd2b2FPl0/abSevXMm9b0CvmE/aWR5vcH09z2KfF0/8yZqvcz41z1+i1k/go+TvXCY1j3HP1g/AXSNvdLr9z0Ae1s/myNivf+nFD0QaVU/4nWVva0VmTz0GlY/cntsve7mfTwG01U/Hl0WvSAyFj3HlFQ//P+IvXPRWTyC31Y/G8R2u33dZjzPgVU/d8F3u/2PizykClU/dIUZvWkusT0mH1Y/kvqevUW3sT2hflc/Paakvb8ggz3KKVY/JrKkvRhrgz18CVU/ZGadvXPRWTyC31Y/G8R2u1cktTzH0lc/ngvEPH3dZjzPgVU/d8F3u3gC5T0Y7Vw/YRUvPbgU3z0qeGU/Ra8uPUFOBz7LJ2A/gZcEvReG1T1hoVY/utmMvSCC9z19IFk/cFNjvU30rz2kuFQ/UnWcvVL6qj0BslE/6H+dvYgKhD0JvVM/DCCbvVhrjzysQ08/pIQevTgOPjz82k8/9seJu9IE6T2Fr1Q/MpsoPW3srT2GF1Q/tIhkPeeNrD23TVw/8IloPdvnTD3FGVM/Cn9IPbKlTT3VUVo/wepAPboUDD5AelQ/su9dPKgQED6b9VM/xV2/vKwh9j0md1M/kw9xvS7RsDyu6FA/vWq8PDgOPjz82k8/9seJu2CfFz3Hn1M/LXuGvfUZOT246U8/W/+Jvec6AT6OCGE/J5Q6vcDjsj0UFVs/mfeuvXcngj1UWVo/QjO4vbAd2T2FPl0/R7SevXsm9T0CvmE/IWR5vYMBgzxzjFo/I96ivab4FT0OJlo/WdK0vbMlP71tDp8/eOkSPQ8hNb2bXJ8/nQgGPfZRIL2NNKA/fqKyPHQZD70CnqE/9RJAPGmmDL3ZxaE/E30vPFD3Cr3c/6E/QZoaPKZqAb07caI/yZ8FPJfHq7z4/aI/Q28RPBxgXrz5aKM/z20UPDFqAbwZwKM/OUEAPLw9BrPNpaQ/eduNO4viATwnwKM/zzYAPEmEcbvOF5s/sXCNPfVm4bM11Zo/BlaMPZ1bazsfEps/MqiNPYbuPT1gDp8/4GgTPQAdNT2EXJ8/MA8GPZCbHz1aNKA/ZiSzPLFMDz0gnaE/qUZAPHDUDD3dxaE/hEYvPCknCz0qAqI/UnsZPPHrAT0OX6I/+9sKPO69qTyQBKM/zaMQPOqPXjy0ZaM/PVoVPOdgQz0H+qY/oRkLveIeST1SuqY/WyHuvMdCTz3CkqY/JwDTvMYZVT2wVaY/8P6zvAZVXD0KtKU/sGabvN5lbD1FFKQ/6aNkvEJ4bz3K36M/oppUvN5lbD1FFKQ/6aNkvCyeeT2pWKM/iu8rvECFjD2HY6E/gF65ukZ2mj1WAKA/O6KiO7D4nD3SVZ8/Xca7O7j2nz1StZ4/YVEHPNp8oz0W8J0/4hEoPLt+qT1hGp0/9fxfPE12sj3Om5s/87ZsPDKDtD11P5s/x6wsPHPprz1H55s/MqOLPCsvsz2Cg5g/HkNgvHNWtT3/D5s/K9vyvC1tsz0JsJg/pz5EvA54oj2AoJw/rwWjvb6Spj0Bmps/2RmXvUX/nj1BPJ0/LTGrvYqflD3JK54/fu2yvfnXhj2LO58/Lgy6vYqflD3JK54/fu2yvR5xcT0qAqA/JuK9vaIeMD13Op0/raC6vaqgwTzcdZs/dRm5vYFgwjw50Js/Kii7vW0AgDzBmZo/HU+zvTAc6DzS0Js/tQa6vQ+6KT1CxJw//aG5vQKfMDzT0Js/JCK6vTZ8nztJkpw/Tdm7veQZqzNGC50/IPe8vb3OobsZlZw/5OK7vTj2J7zZ0Js/dxe6vS9gwrw50Js/Mii7ve+0erxfjZo/Av+yvcWTwbzub5s/8Pa4vXjE6rzd0Js/W/K5vTl0L70PQJ0/uLu6vS8fKL1prZw/V3a5vSSfiL1uN58/QJq5vcpzcb20+p8/HOO9vSzmlb1OO54/s+ayvWUvn72nRZ0/1FurvYfror0ur5w/eOCivZlmpr27mps/ilOXvVeYtb3G85o/a3DxvKmSs71R0Zg/HQI9vO6WtL18O5s/RrsuPDB0sr05nJs/oZ1sPKF+o70N8J0/+O8nPL5FoL28q54/LeYFPDNXqb3gJZ0/QvtYPLP6r70r5Zs/vyeLPCCFQ725+qY/aVYLvad+Sb1zt6Y/mHruvGmDTr1YjaY/RMrRvCANVb2pVaY/Z/WzvBviW70cr6U/SS+avMmkbL0WIqQ/+EllvOO7b7078qM/fDJXvFefer0zRaM/8psgvDBsjL38YqE/xES0unmUmr1OAaA/XmafO88xLr2Lu6g/rj5uvb1SLL13G6k/NHaGvbSrLz3rDak/Rh6GvS+kID2G66g/RkCQvbSrLz3rDak/Rh6GvQC3AT2Uz6g/ohKfvTmvIL3796g/ShuPvb1SLL13G6k/NHaGvY0yA70Tyag/YRKfvQu7trt2m6g/e9SsvTOaG7xhQqg/HsmuvfsuuTtNm6g/ks6svbbWIjxqO6g/tuKuvd44Lrwcdq0/xvGKvRl9h7w+fK0/f76BvVk0s7yNea0/CqdxvSSNwbyGHa0/LkNUvTjczLzzyaw/wF8/vdvxvrwccqw/sD0vvfzyJLyNoqo/3W3WvH2SSry7yao/cPLsvAF7kryAGqs/jUgPvWZgLjxrb60/OwyLvfDTizyFiK0/araAvWUwszwNdq0/nL1xvRsuwTzTGq0/EBpVvRfUzDzgwaw/q6o/vX3Lvzzrbaw/c6Awva8EJTxmm6o/qqnWvOR3RzzHzao/C+XqvJBUlTwGGas/kgMRvbv8yb3YIzU/j/eOvdhZpL3hJjE/XHOevQE55L01vTM/N8SBvbv8yb3YIzU/j/eOvUp3CL53FTg/69oGvUQnBL49sDc/mHkgvcSbBb6bKTY/BoQ5vP+yAr6r7zI/dUVVuwXS873A1jI/IMoDPH+Fib19yzQ/ORWdvdhZpL3hJjE/XHOevTcWSr2B9zM/TtyWvWs5I71e/jE//TWBva2vwbxmJzU/IRU7vWs5I71e/jE//TWBvcTxn7xkrDU/dEbFvLxarr0gxik/jBbaPD1ctr2q6yw/0iDkPPYTmb1FfCc/ePzzPJdbj73c2iM/5ITWPLSUer0doic/EifhPHKxgr0p7SM/BPbNPDu6U71bgyo/aTjhPGlgRL3quis/p6fDPDu6U71bgyo/aTjhPHabiL1Q1R8/nuC1PIczl72kdR0/V4mpPBkFl72F7xs/OVedPJe2nb3rbRs/Dt2HPOcspb2p4hw/k7SAPETjnb2QHx4/p8ydPEWxj73PqiE/daDHPISVjr0Qax0/VFqlPHLfiL2L+hk/f3SHPJs3gL2sExw/DUOUPCGJNL1d1yw/cOSsPPTICr23Giw/tlkePNeWkLygOjU/UN51vLcPuLztDjI/gnrqu9eWkLygOjU/UN51vEH/1rzuqjA/KZ1+O95Sw7xyiDA/2VKgu/ALpD1kmTA/QTGevXBtyj0eODU/Os+OvRBe4z1dwTI/H42BvUmPiT1hzTQ/9BadvfALpD1kmTA/QTGevd71ST3PPTQ/oN+WvUcbHD2nrTI/Yh17vamkvzxgmzU/sGI6vXx+nDz7FDY/IQu7vLfvkTxe4TQ/4Ap5vOCgtzxH4TE/p7T6uzPuAz4glTc/NoUhvbsr7T0CDzM/IcplvaJc6b03mjI/NR9wvYFWCD4m7Dc/tyAHvWNtBT5U4DU/kDFIvGfjAj5zMDM/HhpJu9Tq8z2AyjI/+moBPD58rj3lvyk/86jZPIvYtD3KuCw/XlXlPMIcmT1XmSc/tbf0PLp2jj0m3CM/merVPEb1jT3lNyE/pUjDPJ7xgz1Z6yM/tM7OPD3eeT1hkCc/WXjgPGlvhj1lRR8/EHCwPJ7xgz1Z6yM/tM7OPFB8iT0CzBk/x0iGPI0Tlz1qaRw/FSehPATEnj1gtxs/D4iHPFs1lz1shR0//AeqPGJznD2e6B0/QbmfPIqCpD2ULx0/7+uEPGnVjj0Wwh0/HiuoPFoygD30Bhw/lNuTPK64Uz29hyo/r1DhPK4RRT2Fzys/3NbFPLaXBz0ZKyw/ODwSPByHxzyddTA/mT1Ru9kb1TxujTA/a+w7O0uB0L3kc1U9qxrAvEti0L0Zl0s94GGWvPn+hb2Cx6c9MescvIWAP70etnk9Yi5evIuXNr3KRXE94epyvIuXNr3KRXE94epyvBWoOL3ua049e/zKvA35J70Fzzo9qvbMuykrKb2ZYk0919qEuxjpRL21c2Q9sB7XOiAdUL0cy209+6fiO+fBsL1ykmw9sxPfO56Mw72MfFg9Un/0uu3Iyr1pIEo9kMauu3tqz70KXzw9E0ELvCF+0D3rclQ9ONu7vEti0D0Tl0s9ZGGWvA81yz2ckEY9DNGRu4Uyzz2e7zg9HZfNuzvYwz3zRFc9jA7mug81yz2ckEY9DNGRu+vVhT0kDqg9fBwfvOvVhT0kDqg9fBwfvH0wPz2m8Ho9L5NsvKH9Nj21VnI9vih4vAmOOD1HPU09ENnLvMW5Jz24kTs9jeW8uxM3KT2Lgk09dxSGu0t0RD2ePmY9gnK8OU+eUD2pvG892fLRO6eZsD04nWk9HnP9O8f0y766D4U/SzM4vTgf0L7FJoU/EqgyvTjZyL5Ql4Q/199svTiJyL7Jh4Q/XCl0vc16yb4SY4Q/3daMvTiJyL7Jh4Q/XCl0vbB9yr5wPIQ/qcqSvepPzL5LC4U/WdKgvaHfzL44SIU/fdKlvV4jz75LAIY/VvKkvZzbz77rZoY/i9KkvQEi0L5GrYY/VVKgvZzbz77rZoY/i9KkvT5g0b5LjIc/07eUvWq00b45jYc//HCQvT5g0b5LjIc/07eUvSuR076kbYc/ktxyveuK074MCIc/oW5ivVmZ0b6D2oY/BPBEvSYa0b5unoY/Bgk9vWa8z74/74U/1hItvWa8z74/74U/1hItvRdour5QDwU/WtlFPyPjUL0l4hQ+afF8P762Jr6QhOI9Dv56PxWW9L5i2AE/t6E3P8gK8b634jM/X5IIvywTEL+9WjE/ldvmvuWlV76ONpg+32duv1LmEL4O9qo+jpJuv8moFb/FZUk/wg9LPkAsJb9tZDw/tDpSPhWTNj5jFIy+DPdxv3XwWj4APj2+dZB1v+1b3D4e70W/wHvuvr4vCT+roiC/O5wQv5Pr3j5TIwi/X/Q5P5IfDz99V0W/h06cPoXu5D66qlm/UjGOPhYFqT4mUR+/SbE1P/QkAj4AsHu+KwF2P8XaOT7pkza+YJN3P4Xu5D66qlm/UjGOPpIfDz99V0W/h06cPrZu+D4IZV+/d+1iPS7nHL96DDI/NADAvntenL50vZQ+qSVovwcLBL8zCgY/YZctP6ygKb91Nzo/DK82PrwpLT7Qb7K+QANsv15WjD6SBOO+sndaP6+v8r24z8Q9xAB9Pya5QL5NALM9dW16P37raz6hvgu/oTlOP6O7Bb8MaBE/cdAiP6yHIr+LGjw/SYZ0PpbQBT8ZF0u/qsyfPj2C7z71LV2/cMQ+PvQtGr+lEiw/ToHcvtRh/T57Gky/TPGwvpbQBT8ZF0u/qsyfPj2C7z71LV2/cMQ+PhHP2z4Jhk2/R9LTvmc1i77kW40+0f9rv0aQJD5H5Ke++VFuv3rEvj6U9iS/F/QqP5oQJT6Ea6e+qmFuP4gnLT7g3aC+UiZvP5ULyD5ZBiS/OTIpPy06AL9xYi0/fPQJv8AGbL73BME+8aZlvyRyaL61eZY+nrFtvyC1CL+cgDk/bwjfviUJGL8O7Us/EjfnPZdkFb/uWU0/SocBPkO26r41FSE/WawgP80C+r4/rBw/KkIfP3kJWz73PD2+HI91v76pHD7Dw42+dNpyvxFHUL7Sw6A+62htv1LmEL4O9qo+jpJuvxErCT/fpCC/Np4Qv/OoJj+ntSe/Mk7EvmhhMj51oPi9rCl6v3M1TT6p56q++cxrv1wm7z5/MkK/rJjovu+A9z54wTm/srr6vl9qiT1xmxE+3dB8v/VRuD0jDSA+Qs17vydUFr5PCc69y+l7v3kVO76yvo692A57v8IMgL4mlYM+NfluP0v9Nr4EcF8+dJt1P5IfDz99V0W/h06cPvLg3j7XJAi/cfY5P9b38z5zePq+EQI7PzR6Ij80bi+/POG2PjR6Ij80bi+/POG2PpIfDz99V0W/h06cPlw0Az+/uU+/ZdOPPnfBBz/XRlK/zAlXPlw0Az+/uU+/ZdOPPnfBBz/XRlK/zAlXPpsb775LOgM/cnM4P5gjFr8xgEM/Ki+KPjVJC7+PnUw/s6iCPoXNzL4TzA8/02U5PzdzhL6VTS8+CF9zPyTmZb4wp04+dQ50P87sC785KDo/baDUvl7y7r7hqj0/0Er3vtrYzj1RSJ++PetxP2cOHD5gWZW+Hb1xP0qi1L6SLww/bvU5vwC34L7+xwc/2aw5v7fqsz7yWiK/qU4wP+QHzD7AwhS/FKg1P9eNwr2nsI4+2KZ0v3OAir4svKk+5mFnv/dqCT8UqEO/Hvy2Pu0eAD/rgE6/t/agPgmQAj6rnMQ77Od9v0wGvT2J/u69kSZ9v0+SDz8LCj2/prO/vvdqCT8UqEO/Hvy2Pu0eAD/rgE6/t/agPpG1Bz8kxz2/r77SvoLBtz5b1tS+KfBVv0WgnD7mz9m+4wpav57U677gBFY/Oq6YPr3HmL59+BE/EPFDP/dcab6pTf4+4WRWP2LN6r4GLFQ/hSWkPrlB170o+zE+26l6PwvgHL2NShk+5ex8P8kt1L74OUY/atj0vnMJ6L4UiEM/TlDrvmRxSj43qGS+ill0P45ncz7JozC+yrV0P8PKpb6FoQk/wk1Hv7iU7D6DtQC/twU7P5y0k74VnHw+Pddsvx2XIj+LTzG/zg6vPiL0sLupIh++0uJ8vwabIj+pTDG/9guvPhVxDD9uOy+/uc/1vkBXij4idt6+4/NbvyPjUL0l4hQ+afF8Pxdour5QDwU/WtlFP8XaOT7pkza+YJN3P8gK8b634jM/X5IIv8moFb/FZUk/wg9LPmP3cb4PwHg/hEidukVZRr6GKG0/IVOlPi/aiL4bPFg/1XTtPupMIr50+xg/KzZJP/DhLb6+DuI+qYthPyUrNr7o4Po9+vR5P2/Ct74fN6s+6RRfP6vyX746x3k/vXVgPEkUPb9mWJe9H4srPxZuAT6aH1+/GIfyvtEBnD6y4Ey/8TIEvwh1tT6hXW+/xiQ5vK4jbL/m3YS+Ym+SvhZhY7+zcui+vpaQvcwtd782nXe+ugbFvS2Jfb3LO7u+tb1tv+4ku77qDqA+8nFgP6G3kb6jFvs+yd5SP1O2nr2eXkM9GPB+P9k+tb3sUjS+nPp6P3/E3r53WEY/v9nqPkB6F79/Nxo/LiQJP8jZKL8URkA/CwTwPH7G8b57XWE/rFM4vUEcZ75dQqu+xTtqP0A07zvHNwe/FF5ZPxNYu773fEE/qQILv5S4K75VWVM/Be4JvwgkKL5fVAI/W0tYv1V2eb5gl6U+XxNqv2D+Mj5emLu+1vRpv8lU0j76cC2/0C8cP+ejHz4YHbi+nIRrPwRNFT7gpYy+G05zP2YH5T4Cryq/8JsYP/Sy975kpic/MqEUv1ldDb9oqiE/nFcLvw3OKb+ekD8/U9ERvF0cGr8Wakw/9ihLO3TqFb9nPB4/lz8GP77qD78m1y4/VMnuPoI0gj6cVbK+LPhmv9FtMD7IUoO+F3lzv3N1BT9SDUW/F6G8vsfzCT9H2ja/JabkvolLnb7lcbA+ohVjP+BLs74JEaM+u4BhP3xZBL/Y1y8/K8MCPzbqF7/tCE4/YVAvvKpEdr5DB2w+8mBxP7r+A79IxDI/8jX+vm4hED+vKE+/xO4rPqBpDT+tsE+/7xdEPm4hED+vKE+/xO4rPqBpDT+tsE+/7xdEPmBnL74wwmA+ruB1v0KNir7/YrI+9b1lv1rxBz9r61i/bASaO4Zl8T4wekC/OvjrvgYgND4c66S+xCJuvyL6Hr/mRRY/ovcEP23/Mb9s9jc/8hNQvHbEwr6G8oE+86ljP205ND5e6qS+siFuv2Bo8T52fEC/6O3rvlrxBz9r61i/bASaO3TqFb9nPB4/lz8GPw3OKb+ekD8/U9ERvOBLs74JEaM+u4BhPxZhY7+zcui+vpaQvZiLar+AFL2+RlUfPsT5er80/y6+IFDJPT4ud78Yl3e+3AHFvdRXyj3zEDe/ECcxPyG52jwTGAS+4MR9P+mikD63TRC/w7NGP1rxBz9r61i/bASaO+SD5z4tgky/vxnLPgQgxz7yzV+/GsuUPgh1tT6hXW+/xiQ5vFrxBz9r61i/bASaO5+I5z7Nf0y/5R3LPsilkD6VUBC/KLFGPyG52jwTGAS+4MR9P9Z1D7/1FyQ/IUUGv3/ktL7pP8Y+XwNav3I1Cb1kgo29gT5/v+mynb0ewqg8eS9/v9cvFb9O8ho/z9EKv1XJuL6qX7o+7s5bv3jEjb6F05g+VNJpv8jHjb4X15g+PdFpv1ldDb9oqiE/nFcLv/J64b0H13A9g/99vzKrb7/bCJu9MrivPqyJXb/tL5m+2dHNPv3rb77jf1c/8/v4vvqLKL4BXPw+wbhavz0bPL4YAF49xEJ7v9X9xT4QOlM/3uTSPlbl6b3UOkg/Ps8cP9OT/7unUVI/LvARPwki9D1d12k/fDrHPjP/kj7mHFs/tTbcPhaHsD3hBVo/NlgEP8Tkg702gVc/YzEJPz6m6DwIPVk/KT4HP15TWT+l2xu+4JABPwAAAAB4tlG9DKp/PwAAAIA0Ul6+xuR5P8zDDz/KFTe+xtBOPzwQYT95jYy+rW/HPu0kVD+RY9u+Xl64Ph5rcj8IAqC+jZuZvWZCfj9fW7G9olWfvYqzHj/c0tO+w64qP9JY3T5jbRm/eHksPzGETz8AWNu9lWETv7EdQD8DcbU9ZKsnvwAAAIAv3/6++QZePwAAAIBpdiG//qhGP22MaD89Nc2+M+rzvbKcNz/oDFe+Ohgqv6UU2T57W9w8vL9nv88stD59tkQ+R4ZqvwAAAAARQ4s9UWh/vwAAAIAWgUw+xNd6v1RonD55piS9k4tzvwAAAICERFi7pv9/vwAAAADs24Y+xvV2v5syij6D31c/L/7tPsUZpD7o2WA/j5y1Pg8vfT+pN/i9l6utvbreXz9IOoG+ixHUvlFhfj8sn4m9nFC4vZEnSz4YBmw/CUmqPhgRRz65IHE/1TyMPg+EXj5T23k/3ANnPImMlz7aRiE/6M03P5eYHT4Ja20/JYuuPpvCej/m3zG+1EnQPTjSdz9fXnK+3pCpvULYfz/tfQy9U5vEO56mfj8fflA9CUe2PT8lbD+t0YS+W3CSvnvwST4YSvA+rVhcvwAAAACcsNI+C1Jpv0NhAz5PG74+Pmtrv4Jtpz7lqCY/K10vvwAAAAAPi+Q+rhRlvwAAAIDKCpU+2ul0vw8IHz4A3Rc/RjhKPwAAAADk1M09LLR+vwAAAIA8ygM/g3hbPw9YCj67WRY/UkpMPwAAAIDqpRg/r4JNP4nNuz2VE0E/y3MmPwuxbj5YAB4/uWFAP+u56z0T7U4/uNATPxzHuD4ASaw+RqpeP35zMz+uOt0+HkARP12g2D56WfU+Ad1EPw5RcD+5h1o+eY2KPgzdcT+O/n+977SkPhMZej80gRk+uqcbPmgLZz9dIHQ9T1/aPnEXPj8L4IK9g68qP9y2zz4yxwg/idg9P0ENej6xGT0/yNYgPzgBqz7ngXA/a0KcPV6aWT5sgWY/nVvCPlg4xT2O+W0/4Cq2PvsD1D6I/GU/OekVvr7aPT47/wM/RSZWP+STQz9frqO+v3sPv0KYKj5ZXse+zOdnv2gQaT67JfU+YBBZv/nFnj4MinE/PAHvvfnFnj4MinE/PAHvvc2isj7fFUo/FE4Bv5Toaj4x41c/yNX4vvsD1D6I/GU/OekVvjgBqz7ngXA/a0KcPdLvJz58Q/w+Vcdav/uDXj4823k/NqdoPA4X8z3LyV8/5BfxPgAAAACxPTo/fKQvP1DQkb0tRFY/4+YKPzpMpr4rsDI/HWEjPwAAAIDhDDM/mvc2P+lW27540SA/YUUmPwAAAACGaTM/wpw2PzU8X75uKD8/at8gPw2crb5Wtxs/lbg3P87dfj/cSGo9ycaYvTAYeT9TZmo+1B3rPGu9aD+277w+Qb5FPkq6Wj1V7us9i+19vwAAAIA22b290OV+v5LrQD1pRNi9cEh+vy/ULz6ME6U9MVp7v6UbLz6wPN+9T656v9iGPD4ojls93z97vz0MxD7O3Fe++z9mv9X9xb4QOlM/3uTSPhQZ6j09Okg/yc4cP9OT/zunUVI/LvARPzP/kr7mHFs/tTbcPgki9L1d12k/fDrHPhaHsL3hBVo/NlgEP/oYhD3cgFc/KTEJPz6m6LwIPVk/KT4HP2ZRWb8FwBu+QpYBP0+/D79sGDe+wNNOPx5rcr8IAqC+jZuZve0kVL+RY9u+Xl64PjwQYb95jYy+rW/HPmZCfr9fW7G9olWfvdJY3b5jbRm/eHksP4qzHr/c0tO+w64qP9QaQL9/dLU9na4nvzGET78AWNu9lWETv7KcN7/oDFe+Ohgqv22MaL89Nc2+M+rzvaUU2b57W9w8vL9nv0s4tL63tEQ+KoRqv1RonL55piS9k4tzvw4hjL6DKFg/fdHrPlvcX7/qOIG+ZxzUvt/0fL/1OgG+BdGzvToKfr9C35O99zfNvXUXRL5X0HA/cmiPPkVZRr6GKG0/IVOlPqvyX746x3k/vXVgPIGfDb6CNm8/AQuoPs40k77oWyQ/a/I1P8T5er80/y6+IFDJPT4ud78Yl3e+3AHFvVprfr9DJFs9GxLHPVTQf7/1XRi9MJ8JPIQjbL+00IS+Y3ySvnvwSb4YSvA+rVhcv0NhA75PG74+Pmtrvz1rpb7G4CY//qEvv+pMIr50+xg/KzZJPw9YCr67WRY/UkpMPwuxbr5YAB4/uWFAP4nNu72VE0E/y3MmP+u5670T7U4/uNATP4inOr8VlNo+HfAIP2/Ct74fN6s+6RRfP5rB274vXPM+/ZxEPzKrb7/bCJu9MrivPr+gcr/jrUM+kMKCPmF+er8a1xI+mNsXPqQUPb9BJJe9cosrP+iBZ7/OaYA9MCzYPo9nab+K7LM+QdBZPlWrbb67dUA/oQAeP7nzzr6ghgg/MTw+P5Qoqb6MoXA/9RivPU9Vn77VEmE/b7q4Pil6XL6o+WU/vg3EPjF9yL1+Hm4/BjC1Pk7s0b4Ew2Y/w3AOvg70Pb6a/gM/QSVWP4QKRL8kyaO+2NEOv+K5Tb8xNdG+GYzdvgYiaL6DZfM+Qp5Zv4Tln74Go3E/KfTbvcJisr5fMUs/U0r/voTln74Go3E/KfTbvTfTb74vgVc/cv34vk7s0b4Ew2Y/w3AOvkcsqb5CoHA/OVGvPfqLKL4BXPw+wbhav6vyX746x3k/vXVgPA4X873LyV8/5BfxPieckT2RRFY/JOcKPzpMpj4rsDI/HWEjP0NT2z7LziA/K0kmPzU8Xz5uKD8/at8gPw2crT5Wtxs/lbg3P87dfr/cSGo9ycaYvVJTeb/bTWY+LU/zPEq6Wr1V7us9i+19v5LrQL1pRNi9cEh+v68FI75afb89V5l7vz0bPL4YAF49xEJ7v06UEb8M2qa+qFhBvywHxb5PE1i+Ngdmv6Dxfb1/O7u+VL1tvwl/Lr4jCd+92bV6vzwIeT5rIqo+2Ulpv3esNr7AE4y+8/VxvxWW9D5i2AE/t6E3P4IvrL4q9ie/HvQsP6r67b7hwFq/mHdtPqTMBz8pvik/6jUHvwFCID9PxDI/nLexPuI8JT8pukI/f7aNvZEnSz4YBmw/CUmqPj9TcD6H2Xg/XxGDuhyXgz4hIFg/Gc7wPg8IHz4A3Rc/RjhKP8kkJD5gMuI+ZfdhP5CDMz797/w9aAt6PxzHuD4ASaw+RqpeP/uDXj4823k/NqdoPDIUPj/P3YK9J7MqP3EXPj8L4IK9g68qPwh1tb6hXW+/xiQ5vGZRnL7t4Uy/hRkEv6hvAb5OIl+/7Xzyvoy8YD+tPvO+npJ2vT8lbD+t0YS+W3CSvjjSdz9fXnK+3pCpvcZ+Kj4zX8e+yehnvwC5nj3uP0Y92O1+Px2Yjj59/Po+BW9TP4Qiuz5s2J8+KHxgP5RvtD0mOzS+Av56P8vHKD8XVUA/kXvyPFXcFz+f6Bk/TxAJPzwF3z79NkY/Vg3rPq4R8j6aRmE/4pc7vSUhWz6wVK6++WJqP/dvAbxWUwe/lExZP5S4Kz5VWVM/Be4Jv0wTuz4Qc0E/lCcLv8s8KD5aYAI/7kJYv24vez7TUqU+AAJqv1VCNb65m7u+QNhpv4oAMj+T9zc/86wtvHvjHj8RQxY/5RUFPw3ewj42/4E+qqJjP1x08b4DdUC/6/nrviVUNL4KBaW+zxtuv1rxB79r61i/bASaO5HfKT8WgT8/e88RvCjpFT/uLR4/FlIGP+BLsz4JEaM+u4BhP5vCej/m3zG+1EnQPcU0Yj/utNm+QLVIPoy8YD+tPvO+npJ2vTjSdz9fXnK+3pCpvSfu2r2MwTe/lSAwP1rxB79r61i/bASaOwh1tb6hXW+/xiQ5vHEQx74ty1+/lfCUPipb5759h0y/ujLLPumHkL7uTBC/PblGPwHp2byc5AO+ucZ9P0oHDz+dLCQ/sKEGv7YltT5gr8U+pRZav2BwCj1/5Yy9Mj9/v/Ybnj0fkaA8yC9/v4aVFD97PRs/OCMLvwRntz5Qc7k+9Upcv1pCjT56UZg+OPtpvzGtDT8BiyE/6ioLv97l4T0/t3M9SPt9v1qcYT9Lq42+OyXEPm/dcT8aln+9MrWkPpToaj4x41c/yNX4vlYJKD5uQvw+a8ZavxmHPD6YJVs9N0B7v1LmED4O9qo+jpJuv3XwWr4APj2+dZB1v74vCb+roiC/O5wQv+1b3L4e70W/wHvuvpIfD799V0W/h06cPqr67b7hwFq/mHdtPrx4+L5CYl+/pepiPd9oQD4ihSs+wsF3P6fCSj0cOhY+sOl8Pxdouj5QDwU/WtlFP5IfD799V0W/h06cPvLg3r7XJAi/cfY5P6snHL6rJxy+1vl5PxRB+b3X6Iy+SyJ0P2mbRDshyIe9gm9/PwvU+j43/Dg/r7P5viwMEz8q9kg/4pFtPognLb7g3aC+UiZvP5oQJb6Ea6e+qmFuP3rEvr6U9iS/F/QqP5ULyL5ZBiS/OTIpPyRyaD61eZY+nrFtv+/taz4cBsE+Tahlv0Q1AD+pZC0/QPYJvyC1CD+cgDk/bwjfviUJGD8O7Us/EjfnPalnFT+YV00/9IkBPs0C+j4/rBw/KkIfP0O26j41FSE/WawgPxFHUD7Sw6A+62htv76pHL7Dw42+dNpyv3kJW773PD2+HI91v1LmED4O9qo+jpJuv74vCb+roiC/O5wQv/OoJr+ntSe/Mk7EvmhhMr51oPi9rCl6v3M1Tb6p56q++cxrv1wm775/MkK/rJjovu+A9754wTm/srr6vl9qib1xmxE+3dB8v/VRuL0jDSA+Qs17v3kVOz6yvo692A57vydUFj5PCc69y+l7v8IMgD4mlYM+NfluP0v9Nj4EcF8+dJt1P9b3875zePq+EQI7P/Lg3r7XJAi/cfY5P5IfD799V0W/h06cPjR6Ir80bi+/POG2PjR6Ir80bi+/POG2PpIfD799V0W/h06cPnfBB7/XRlK/zAlXPlw0A7+/uU+/ZdOPPlw0A7+/uU+/ZdOPPsC8B7+xSVK/twxXPpgjFj8xgEM/Ki+KPpsb7z5LOgM/cnM4PzVJCz+PnUw/s6iCPoXNzD4TzA8/02U5PyTmZT4wp04+dQ50PzdzhD6VTS8+CF9zP87sCz85KDo/baDUvmjv7j6IqD0/2lT3vmcOHL5gWZW+Hb1xP9rYzr1RSJ++PetxP0qi1D6SLww/bvU5vwC34D7+xwc/2aw5v+QHzL7AwhS/FKg1P/jqs766YSK/WkgwP9eNwj2nsI4+2KZ0v5mMij7/uqk+TGBnv/dqCb8UqEO/Hvy2Pu0eAL/rgE6/t/agPgmQAr6rnMQ77Od9v0wGvb2J/u69kSZ9v+0eAL/rgE6/t/agPvdqCb8UqEO/Hvy2Ps2WD79VBz2/5rC/viO0B78kxT2/ksnSvoLBt75b1tS+KfBVv0WgnL7mz9m+4wpav57U6z7gBFY/Oq6YPr3HmD59+BE/EPFDP2LN6j4GLFQ/hSWkPvdcaT6pTf4+4WRWP1871z0dEDI+A6l6PwvgHD2NShk+5ex8P8kt1D74OUY/atj0vnMJ6D4UiEM/TlDrvmRxSr43qGS+ill0P45nc77JozC+yrV0P8PKpT6FoQk/wk1Hv7iU7L6DtQC/twU7P5y0kz4VnHw+Pddsvx2XIr+LTzG/zg6vPiL0sDupIh++0uJ8vxVxDL9uOy+/uc/1vgabIr+pTDG/9guvPkBXir4idt6+4/Nbv6fCSj0cOhY+sOl8P5Jquj6HCgU//NtFP6snHL6rJxy+1vl5PxXK+j6J/jg/0bb5viwMEz8q9kg/4pFtPgRNFb7gpYy+G05zP+ejH74YHbi+nIRrP+NJ0r7Nci2/dTEcP2YH5b4Cryq/8JsYP5HfKT8WgT8/e88RvDGtDT8BiyE/6ioLv/Sy9z5kpic/MqEUv10cGj8Wakw/9ihLO0HtDz+m0y4/gM3uPijpFT/uLR4/FlIGP3N1Bb9SDUW/F6G8vtFtML7IUoO+F3lzvz8ogr7FVrK+rPlmv032Cb8R1za/U6rkvutxnT6gVrA+RxRjP+BLsz4JEaM+u4BhP2vuFz++BU4/FvEwvHxZBD/Y1y8/K8MCP6pEdj5DB2w+8mBxP7r+Az9IxDI/8jX+vm4hEL+vKE+/xO4rPlFqDb+xsU+/rv5DPm4hEL+vKE+/xO4rPlFqDb+xsU+/rv5DPmBnLz4wwmA+ruB1v0KNij7/YrI+9b1lvw72B7956Fi/VQKaOytq8b5Wd0C/xPzrviVUNL4KBaW+zxtuvwHp2byc5AO+ucZ9P+mHkL7uTBC/PblGP1rxB79r61i/bASaO7xQ577biUy/EzXLPlpCjT56UZg+OPtpv8kNeT/a+bo95rFZvhsjaz/ctLc9EizFPusncD+ZvRI+Z2+hPoKeez/RKjY+SslDvVTvdD/R4pQ+TZ+Ju2z2az+Wi44+jT6KvgAAAICW5gw+opB9v/7Ljr7vSG4+6oNuvycIyD60CLc+XShZv8VYGz6iEak+rX9uvzkNXD98N5Y+CjfWvtqMTT/4stA+X63evvthHz98/OU+tgokv2Bmdj/3foo+UcGoPCCpZD+Jrak+CJmbvgo0MT/H9Yg+zZgrv/1bAr4jtoY+EdJ0vy/snD778/c+58hRv9ICFj4C2fk+2kdcv46roL6qINQ+/bRavzws9r3/E+E+Wd5jvwAAAAB1DjG+6SR8PyEBHj7YG02+kK53P58/Zj+nWHk+lNu5Pt0JGT++/gM+q4xKP4QnLT9TteI9NGo6P0JTaj8OpnA+FW6nPqmPJD5iPgq+QUx6PzZxaD5JRz+91wd5P4ndBj6GU7g8YrR9P+34Qj5KgAi+N/14P4KNZD6H0d69mvt3PwAAAIDKCBe+OzN9PwAAAID6D9w+viVnv1TvdL/R4pQ+TZ+Ju730a7+tl44+kD2Kvv7Ljj7vSG4+6oNuv2FWG77sAak+j4JuvycIyL60CLc+XShZv9qMTb/4stA+X63evjkNXL98N5Y+CjfWvlpbH79h/OU+MREkv2Bmdr/3foo+UcGoPCCpZL+Jrak+CJmbvgo0Mb/H9Yg+zZgrv/1bAj4jtoY+EdJ0vy/snL778/c+58hRv7IEFr4Gz/k+m0pcv9upoD6HK9Q+rLJavzws9j3/E+E+Wd5jv4QnLb9TteI9NGo6P90JGb++/gM+q4xKP58/Zr+nWHk+lNu5PkJTar8OpnA+FW6nPjZxaL5JRz+91wd5P6mPJL5iPgq+QUx6P4ndBr6GU7g8YrR9P/ABHr6vAk2+1a93P8iOZL7pad69/Px3P0L4Qr4Jmgi+Xfx4PwAAAAB1DjG+6SR8PwAAAADcDrw+LRtuv+5xpL1X+ec+GUpjvwCrnD2KIN0+sA9mv4tmsz5xA/Q+bmhOvzYguD7zPPQ+WUxNv7nWIz4YKO0+TSdfv+5xpD1X+ec+GUpjv9hApD6DUwY/TNxJv3zFuD4mUAg/XgJEvySD4j1c3/E+jtlfv82K2z1vHwI/pb9avwAAAACsBsw+38tqvwCrnL2KIN0+sA9mv2Js1r0f3PU+tfJev9mKCr4ihPg+ByBdv4ce1L4Z374+8I1UvwAAAACtLrs+U0duv+bicz9Gxpo+6KgCvYnzcz+2c5k+rDE7PbeGXz+uLsU+h/6YvjLPVz/tosM+LNjBvu8sIT/mevI+Gqsdv4v0Hj8as98+IZwmvy/snD778/c+58hRv/ddHz8mAOY+Uw0kv4fdFT+CggM//ZAgv9ICFj4C2fk+2kdcv9qMTT/4stA+X63evjws9r3/E+E+Wd5jv9upoL6HK9Q+rLJav63rMD9JVd8+MIgTvy+nZD80uak+tpebvmBmdj/3foo+UcGoPNl7eD+1kHU+WTKZPA/JYz8Z0aA+SYWpvnRZkz6cisq909tzP8NkUD7X59C9WEd5PwUqhz4v44O9C152P9Hchj4EnaK9Ix92P4/Mbj8BwUo+JyqaPiGsaT9+7mc+hwauPj38Nj+GnO89NYIwP9rgLz9r8RY+iyY2P5aGuj4yNu+8QkpuP0/59z7loQk9aM5fPwAAAIDWzHe99od/PwAAAIDxvv29CAd+PwAAAIDKCBe+OzN9P0L4Qj4Jmgi+Xfx4P8iOZD7pad69/Px3P7o8qD5KlDK9BYdxPzZxaD5JRz+91wd5P7y3LT+iGo09ZzU7P4QnLT9TteI9NGo6P0c4bD9EJBs+nnW1PkJTaj8OpnA+FW6nPgAAAAD6D9w+viVnv5qutj03+8u8W+Z+v3U+Cb8FuNG9kYFWv9p/6r6RuC89RE5jvynZPT5TVR89Wl17vyVRZr9DjBc9x7bevvCXZr9RITm8rEzevma4f7+lLNQ86VUfPVbffr9qE1C9tGGhPeEc3L6r0NW9wZVlPz9Q6b4aTq+8QM9jP2mKPT5wdWC9VS97P7OqcT1rfPK9CMB9P4PaWr/jttG5888EPx9GVL9aPKy9+nYNP84c6z1UBTS+IEt6P0bPJj6eu1a+SM92P5XIBb/8WDW+LYBVP9fy6r5UzhW+vllgP5bkXb95pBu+/TDzPtXUXr/9Zgi+haXyPpKRLD86rjY9bL88v5qutj03+8u8W+Z+v3jyPT6RVB89KFx7v82sLD8Viw48hfs8v4wmej83CmA9qlFSvk/ieD8hCQq9+EJtvtW7KD9rrvq89FxAPz8CGT8RKNy9h2NLP7KTbD8/oYk8vW/DPkBSbT+2Zpm9vR28Pv2WHz9k/1C+ZDpBP2GtKj9nc2i+kbw1P5gRdj/NvPS9Z5F+vjeGbD/p/zK+6TyuPsY3Nj+nc6S9SaIyv9UQFD7Jvey8njN9v9UQFD7Jvey8njN9v2mECb9pQli7OO1Xv+qsZb/9hlK9WJvgvgYmfr9bRtC9fKiCPbnWI74YKO0+TSdfvzYguL7zPPQ+WUxNv4tms75xA/Q+bmhOvySD4r1c3/E+jtlfv3zFuL4mUAg/XgJEv9hApL6DUwY/TNxJv82K271vHwI/pb9av2Js1j0f3PU+tfJev4ce1D4Z374+8I1UvzscFj/PgF4+hsVHv7eGX7+uLsU+h/6Yvonzc7+2c5k+rDE7Pebic79Gxpo+6KgCvTLPV7/tosM+LNjBvov0Hr8as98+IZwmv+8sIb/mevI+Gqsdv1pbH79h/OU+MREkvy/snL778/c+58hRv4/bFb9VhwM/4I4gv7IEFr4Gz/k+m0pcv9qMTb/4stA+X63evjws9j3/E+E+Wd5jv9upoD6HK9Q+rLJav63rML9JVd8+MIgTv/d7eL/TkHU+smCYPGBmdr/3foo+UcGoPC+nZL80uak+tpebvg/JY78Z0aA+SYWpvgUqh74v44O9C152P8NkUL7X59C9WEd5P3RZk76cisq909tzP9Hchr4EnaK9Ix92PyGsab9+7mc+hwauPmbObr+Rwko+PB6aPj38Nr+GnO89NYIwP9rgL79r8RY+iyY2P4b5974nOQk9mc5fP7qGur6nZO68cEpuP0L4Qr4Jmgi+Xfx4P8iOZL7pad69/Px3P7o8qL5KlDK9BYdxP/26Lb9GHY09WjI7PzZxaL5JRz+91wd5P4QnLb9TteI9NGo6P0E5bL+bIBs+VXG1PkJTar8OpnA+FW6nPtp/6j6RuC89RE5jv3U+CT8FuNG9kYFWv5qutr03+8u8W+Z+vynZPb5TVR89Wl17vyVRZj9DjBc9x7bevvCXZj9RITm8rEzevlbffj9qE1C9tGGhPWa4fz+lLNQ86VUfPWmKPb5wdWC9VS97Pz9Q6T4aTq+8QM9jP+Ec3D6r0NW9wZVlP7Oqcb1rfPK9CMB9P5RGVD9LCKy9R3cNP4PaWj/jttG5888EP5XIBT/8WDW+LYBVP0bPJr6eu1a+SM92P90d673s6zO+QEx6Px346j6x0RW+OlhgP69kWj9WqiC+VcX+PtXUXj/9Zgi+haXyPnjyPb6RVB89KFx7v5qutr03+8u8W+Z+v5KRLL86rjY9bL88v82sLL8Viw48hfs8v4wmer83CmA9qlFSvpLjeL+wcgq99Cltvj8CGb8RKNy9h2NLP9W7KL9rrvq89FxAP0BSbb+2Zpm9vR28PrKTbL8/oYk8vW/DPmGtKr9nc2i+kbw1P/2WH79k/1C+ZDpBPz2JbL88/TK+NC2uPpgRdr/NvPS9Z5F+vsY3Nr+nc6S9SaIyv9UQFL7Jvey8njN9v9UQFL7Jvey8njN9v2mECT9pQli7OO1Xv+qsZT/9hlK9WJvgvgYmfj9bRtC9fKiCPY0AEb1NDvE+e6thP/GSbbxJBlQ/MmoPP7aEHb9jTRQ/59sIP0fivr2vhR8/c8tGP550YD9i9cY+1AuRPgpkED/QSws/UgIfP40AET1NDvE+e6thP/GSbTxJBlQ/MmoPP7aEHT9jTRQ/59sIP0fivj2vhR8/c8tGP550YL9i9cY+1AuRPgpkEL/QSws/UgIfP8KO5D5rzya/YgEdvw5QrT5/4Uq/jd4Bv9fJDz9VV0W/SdmZvk/HNj4IFxW/DQdLv7e10TiJSRq/Y0hMvxz+ur23mv++5pRcv9/RIL8rn3y+Muc8v5MWLb/OTaa+m0wpv7EgWr9u6gC+VBECvxK9Tr/lyW69xD0Wv87aLj9YxjC/qrhzvtMu4z6tRBy/yPcnv5f7aj/FtmK+E5qovg2xfj+dX2W8OszMPdCNRT+igx6/Ea8UPmdOkb5EC7W+gCxkvyo1nL4sCNm+2E9av+ev6j1mINm+HPplv3M2Sj+EL7s9sjwbP9CNRT+igx6/Ea8UPg2xfj+dX2W8OszMPesncL+ZvRI+Z2+hPhsja7/ctLc9EizFPskNeb/a+bo95rFZvoKee7/RKjY+SslDvUU+S78QMbs9oeIZP3jQ/L6mIQo+d+tbP3O+bL+77wU9YBjCvjy1RL/0vR894Icjvy0QCL+CdBO9yaZYv5qutr03+8u8W+Z+v+ZFh74Wd+C90U11v5isGD7rFCq+vIp5vyVRZj9DjBc9x7bevma4fz+lLNQ86VUfPdNwPb4L32C9KzB7P9W7KL9rrvq89FxAPwHWo7tOUgU+WNF9P02D+D7rROE9NAtePz9Q6T4aTq+8QM9jP7KTbL8/oYk8vW/DPjYoer/aol892ThSvpKRLL86rjY9bL88v5zXWj8atNG5vNQEPyS4fz9uLNQ8nL4fPYjhGD9u9Iq+3DlBvxk+CT/n69G9AYFWv0qMar9Ht1G7uyjNvv2liL5VMMa+NfBhv8lzIb8275S+Ii84v2KtWL9hHNq9gZQFv4cjWj8b7AC+eAwCv5MWLT/OTaa+m0wpv9/RID8rn3y+Muc8vxK9Tj/lyW69xD0Wvw5Qrb5/4Uq/jd4Bv9fJD79VV0W/SdmZvs7aLr9YxjC/qrhzvgIr474NQhy/g/snv9CNRb+igx6/Ea8UPg2xfr+dX2W8OszMPZf7ar/FtmK+E5qovllCkT6VDLW+KC5kvyo1nD4sCNm+2E9av7e10biJSRq/Y0hMv+ev6r1mINm+HPplv9CNRb+igx6/Ea8UPp9fUr84sC4+sS4LP7Sxfr80YGW8UpjMPXjQ/D6mIQo+d+tbP547Sz8y+ro9LOcZP3O+bD+77wU9YBjCvi0QCD+CdBO9yaZYvzy1RD/0vR894Icjv+ZFhz4Wd+C90U11v5qutj03+8u8W+Z+v5isGL7rFCq+vIp5vyVRZr9DjBc9x7bevma4f7+lLNQ86VUfPdW7KD9rrvq89FxAP9NwPT4L32C9KzB7PwHWoztOUgU+WNF9Pz9Q6b4aTq+8QM9jP02D+L7rROE9NAteP7KTbD8/oYk8vW/DPjYoej/aol892ThSvpKRLD86rjY9bL88v5zXWr8atNG5vNQEPyS4f79uLNQ8nL4fPYjhGL9u9Iq+3DlBvxk+Cb/n69G9AYFWv0WMaj/8RFi7tyjNvv2liD5VMMa+NfBhv//Fuj2tlf++G5dcv8lzIT8275S+Ii84v2KtWD9hHNq9gZQFv8KO5L5rzya/YgEdv0/HNr4IFxW/DQdLvyXORL6qIFs/JcD1PsAVKr43v1w/UPD0Pl8qNr7q+Us/MdYTP060Vb7xYDE//68wP76/V7414iQ/bkE8P35Mk75ByhA/idtFP2rvnr5RfAY/BdFKP6zygb5g/wI/6yBSPxZVEr5gmP8+IMhaP5MJNb3cLfs+J8pePwAAAABzFfk+1qlfP5MJNT3cLfs+J8peP+/E2T52uiA/cN8mPwAAAACGaTM/wpw2P+/E2b52uiA/cN8mPyXORD6qIFs/JcD1PsAVKj43v1w/UPD0Pl8qNj7q+Us/MdYTP060VT7xYDE//68wP76/Vz414iQ/bkE8P35Mkz5ByhA/idtFP2rvnj5RfAY/BdFKP6zygT5g/wI/6yBSP2g7Ej5Qmf8+7chaPy+0Kj5Qt2M/Bc/ZPtBg5TwG+m8/hbexPuJEiz1sPm0/3zC9Ph58TD5o/EM/QZAcPwnXuD7OkAI/K95HP50Y1z5AJQc/PPU8PwwZvj7uHx4/QHoxP9EN1z60Jgc/RPc8P7yZ1T4kaB8/o3cpP27q9T6vliE/xucbP87mPj8PlfY+TLrrPub+aD9+DKY+1P+DPs18Yj/lB78+Ng6PPstoWT++6d4+Je2YPuJrYD8YUt8+LfZPPu5+cD+gbKs+Y+uVPYTtdz/i0ng+xUVhvdD8bD/zH7Y+enwDPhBXfz+hJYa97QfwvJjNfz8upBK9eBODPAJ2fz/HuHy9ztajvKGxPD8cEIe+sUcfv9t2OT9Ilp2+7OQdv+ymBz/9GY++w/lMv5Bvgz6OMnu+kFFvv4y9eD7L8+O9PLF2v5Bvgz6OMnu+kFFvvwEUgz6cfvK7EXZ3v0+D0T1YbEm+66B5v9EICj2Pqq++T05wv2jdtTzEaY++wa91v+1yLL0J1K++fDBwv58o7T3VEIe+WCV1v/EJ8T3uxDq+YuV5v2EBGr2+Aoe+bsB2v8ZCC70ycTm+3517vwAAAAAd7zy+15p7v4GrCz0IcTm+pp17v2EBGj2+Aoe+bsB2v8oLtbzYaY++5K91v5nbLD3Y06++OTBwv9EICr2Pqq++T05wv58o7b3VEIe+WCV1v0+D0b1YbEm+66B5v/EJ8b3uxDq+YuV5v/V8d75D7uO9d8V2v8yPgr6lNe+7l4d3vygGg750HXy+k1Bvv0w/CL+DcJC+ZFhMv8QtPb86uoe+4Y8ev16/Or/RUZa+LCcevyKtf7/3G0C9zkeUPCJ2f7/nuHy9LAWjvITtd7/i0ng+xUVhve5+cL+gbKs+Y+uVPfdmWb+X7t4+ePCYPiq4X78nj7M+CFesPuJrYL8YUt8+LfZPPtD8bL/zH7Y+enwDPtY/Nb50o2I/YincPhaBQL0jU28/YSq0Pjhzk70eWm4/kiK3PiSaSL5WEUY/jD0aP3o0tb4e3wM/t9dHP7/Pz77lkQg/F/g9Pzfgur7jBh0/ZEwzP5qH1r5sLx0/YD0rP3L89r68jyA/1YocP7DqM7+tJQQ/up/6Pi2Ps756VWA/Sx2pPp9j7r4rDWE/YbHQvZ9j7j4rDWE/YbHQvbLY4T7S9Dw/nbACvwBj7j6VDGE/ROXQvX5+rD422hw/CwQ3v0Hj4b6x8jw/JK8Cv59j7r4rDWE/YbHQvX5+rL422hw/CwQ3v2inJL4gAOs+h69fvzQiI75kEwY/BTxWv2inJD4gAOs+h69fvwQgIz4mGAY/JjlWv8EZ077wLXI+ZTthv7pyG7+n3Dk+tgVGvzmuWL8bJLk9olkGv7rUeL9LeiU9FQ5tvoWUf7+/kfa8m3dHPYP7bb8UQRO+pLmtPnKIEb8vZsS9XCxRPwAORb+EVMm993chPwJAQr+pUgW+emAjP8EZ0z7wLXI+ZTthv7pyGz+n3Dk+tgVGvzmuWD8bJLk9olkGv7rUeD9LeiU9FQ5tvoWUfz+/kfa8m3dHPYP7bT8UQRO+pLmtPnKIET8vZsS9XCxRP4ENRT9wiMm9j3chPwJAQj+pUgW+emAjP51v3b5wIJ+97PVlv18mMb5MuI29W4R7vxyGJ78OmLu9kyZAv51v3b5wIJ+97PVlv1M0dL/gmya+EBSBvt3kVb/SWNu9V/YJv0uxer+Iski+U7VRPQ2Lar84+W2+RiqnPnKES7/Clm6+PWIPP8FECz6tgPu84H99v18mMb5MuI29W4R7v5vC8z5lpZu8iRJhvyOGPT8K/ge9ieIrv3ZMZT9gpay96InfvvGIPT80ZAi9I98rv2eceT8MY9S9HwVJvr7j1r4vVVK+P1ViP5Vrz76YoF6+glZjP0oCDb7FAk2+yVN4P3sgMD4twEq+1Ql3P3ZdPj6OyTa+Clp3P3sgMD4twEq+1Ql3PxvQAj+T0R6+YXFYP32/PD9voiO+pwkoPxvQAj+T0R6+YXFYPzN1Dz5gXmW+cud2P9BzZL4mWXW+a+RxP9BzZL4mWXW+a+RxP12UB7/nUVq+0y1SP12UB7/nUVq+0y1SP12UB7/nUVq+0y1SPzN1Dz5gXmW+cud2P3H83D3hdXW+HP92P3H83D3hdXW+HP92P3H83D3hdXW+HP92P7YQNT/xFUi+TOwtP7YQNT/xFUi+TOwtP/+GfT+IdgK+fQ9gPYD0cT+V7g2+nnSXPv+GfT+IdgK+fQ9gPfa3dD82svK9HoeJPva3dD82svK9HoeJPl8mMT5MuI29W4R7v51v3T5wIJ+97PVlvxyGJz8OmLu9kyZAv8FEC76tgPu84H99v18mMT5MuI29W4R7v5vC875lpZu8iRJhvxqJPb93+we9SN8rv3ZMZb9gpay96Infvmeceb8MY9S9HwVJvv+Gfb+IdgK+fQ9gPYD0cb+V7g2+nnSXPujvVT/989u9WuEJvyWnVT8rD9i9imoKvyWnVb8rD9i9imoKv1M0dD/gmya+EBSBvkuxej+Iski+U7VRPQ2Laj84+W2+RiqnPnKESz/Clm6+PWIPP77j1j4vVVK+P1ViP5Vrzz6YoF6+glZjP0oCDT7FAk2+yVN4P3sgML4twEq+1Ql3PzN1D75gXmW+cud2P18hML79pkq+FQt3P3ZdPr6OyTa+Clp3PzN1D75gXmW+cud2P3sgML4twEq+1Ql3P3H83L3hdXW+HP92P9BzZD4mWXW+a+RxP12UBz/nUVq+0y1SP9BzZD4mWXW+a+RxP12UBz/nUVq+0y1SP12UBz/nUVq+0y1SP3H83L3hdXW+HP92P3H83L3hdXW+HP92PxvQAr+T0R6+YXFYP32/PL9voiO+pwkoP7YQNb/xFUi+TOwtP/a3dL82svK9HoeJPva3dL82svK9HoeJPphTdr8QgXc+TmkAPihfdr+oOHQ+jzgFPkrF0z5ugwI/jBtBPyZFTD/mugs/YOyCPlagaT/cnc8+1s9VPeqdaT/RqM8+n81VPfoKez+wKgs+rGMQvjZ0eT9v0hE+AvoxvlagaT/cnc8+1s9VPSZFTD/mugs/YOyCPozPIj9WtSI/XRjgPkJABL+Ocyc/B3ENP8qjQ7+6ygM/rOrGPhmyWb/NxOs+51mCPjBodr889HA+BAoKPphTdj8QgXc+TmkAPihfdj+oOHQ+jzgFPhmyWT/NxOs+51mCPjBodj889HA+BAoKPsqjQz+6ygM/rOrGPhmyWT/NxOs+51mCPkrF075ugwI/jBtBP0rF075ugwI/jBtBPyZFTL/mugs/YOyCPuqdab/RqM8+n81VPfoKe7+wKgs+rGMQvjZ0eb9v0hE+Avoxvlagab/cnc8+1s9VPSZFTL/mugs/YOyCPozPIr9WtSI/XRjgPkJABD+Ocyc/B3ENP1/JxT6zMvW+S85JP2QYSD5MVFa+00d1PyKFDD8ClDi//4bYPiBOED8YxU2/FsNCPnXfDj9JU1S/QZ7NvNROED8Zxk2/0qlCPj4uAD9z0UK/zTPTvtsk0z52Fhe/8qgxv3DcYD7IJKK+HTpsvy2vFL3mCrU8y8R/v4ouf77sF6Y+1Zlpv7XE4L6foAg/gQk5v4ouf77sF6Y+1Zlpv89cEb+f/yQ/whMDv3UmIb9MEkI/2Xwuvs9cEb+f/yQ/whMDv2fSHb+QvEI/8RJQPk9hEr8GIyo/V0X2PnAxCr+9Uhk/wW0XPwIxzL7K+PU+ovdHP9yPQr24Fuo9Bgh+P9yPQr24Fuo9Bgh+P/uKYD84dT4/fMpdPzh1Pj/1c10/1wdCPxu5YD/XB0I/pLpoPzh1Pj/NNGk/1wdCP+3BbT/XB0I/RGRtPzh1Pj/Mz2M/OHU+P/QrZD/XB0I/LH9yP9cHQj8YEHM/OHU+P/xndz/XB0I/ech3Pzh1Pj8wW1Y/OHU+P4DLUz84dT4/gMtTP8nWQT/NOVc/1wdCP8TBWT/XB0I/QO9ZPzh1Pj9F6Xw/1wdCP0XpfD84dT4/ech3Pzh1Pj/Xlmk/oNFFP0TsbT+g0UU/GsZgP6DRRT81VmQ/oNFFP/AOcj+g0UU/c51YP1EsSj8s4Fw/USxKP5eRXT+g0UU/tAdZP6DRRT9ocmA/USxKP+GgZD9RLEo/gMtTP1EsSj+Ay1M/1v9FP+HvaT9RLEo/zMF2P1EsSj9F6Xw/USxKP0XpfD+g0UU/VAF3P6DRRT+FSW4/USxKP0yXcj9RLEo/nNN6P5d2DT8EtXg/l3YNP0zMeD9sCwg/nNN6P2sLCD+kMnA/l3YNP0O1bT+Xdg0/rN5sP3ALCD80WW8/cAsIPwSXcj+Xdg0/VL5xP3ULCD9E+HM/cAsIPyS8dD+Xdg0/jUFqP/TCFz98+2k//wQVP6u/bT//BBU/7Y5tP/TCFz/sgWc/9MIXPxWiZz//BBU/Ow1qP5d2DT8sAGo/cAsIP+VoZz+Xdg0/pFZnP3ALCD+MgWw/zQEPP8TGaz+hFQ8/DXJrP9ANEz9bzWw/0A0TP2Rsdj+Xdg0/k0F2P3ALCD+r53w/9MIXP8X4ej/0whc/5Nx6P/8EFT+r53w//wQVP3yFZD//BBU/fIVkP/TCFz98hWQ/l3YNP3yFZD9sCwg/q+d8P5d2DT+r53w/awsIP3DadD+Xbw8/BNZyP5dvDz+E93I/KMkQP+vxdD8FuRA/pGh2P5dvDz9UhXY/dbEQP6tOcD+Xbw8/XGBwP6DLED+Dvng/l28PP/OgeD/+vBA/M/9tP5dvDz+NNW4/dAIRP1zdej+Xbw8/tOx6P8LSED+dNW0/l28PP5s9bT90IRE/q+d8PxEGET+r53w/l28PP0yFaz+Xbw8/tG9rP845ET87fmc/L2MRP3yFZD8ZdhE/fIVkP5dvDz8Ta2c/l28PP8ToaT+Xbw8/NJhpP8BrET/9CnM/zVoSP2TxdD/qQxI/zOp0P/8EFT+NGXM//wQVPxSBdj8gMBI/7Xd2P/8EFT/UdnA/JUISP/NhcD//BBU/a7Z4PzoVEj9rwng//wQVP9w1bj+6XxI/Gwl7P0A6Ej/8EG0/NTQSP6vnfD8hphI/RFVrP/5kEj98hWQ/yOASP+SLZz8y+hI/9H5pP3PIEj97pHY/9MIXP0QKdT/0whc/VeN4P/TCFz/8RXA/9MIXP/0icz/0whc/nz5xP4Cu7j6XvnQ/ZCXrPn8/dD+cte8++yp3P1hj7T4Ue3Y/HBvyPrRVeD8wyvY+yNN5P1iw8z48+XA/isHpPsy8ej8a2/w+aLNlPwVaAD/UEGY/85MAP2DRZD+jXAE/aLNlPwVaAD9g0WQ/o1wBP2DRZD8IFwE/pzZnP7C1+z7E6nU/Tmn4PukOdj8UM/U+1Bl4PyZ5+T5YEHg/TBz9Prj2cz8mQPM+hL1zPw6X9j4EAHE/uob1Ppw7cT94EvI+9BJ6P7T7/T4to3k/zPv/PoSnbj9ecvI+dExuP0TF7j5xPGs/oKjxPsHqaz8YmPQ+G7NnP8j7/D4jqno/vsAGP3RweD+5wQY/TEV4Pxl1BT8UmXo/9WMFP+Thbj+QfQU/1DJvP5AMBD9LkHE/kAwEPzRTcT8QawU/kPlzP5AMBD+T9nM/2HgFP5QBaj9taQU/4+lpPy7ABj/0N2c/T5wGP0VWZz8MVAU/tDF2PxZ7BT88C3Y/kAwEP0n3cz9/zgY/XIlxP6jPBj98MXY/wMYGPy3+bj9j1gY/q+d8PyxcBT+r53w/Rb4GP3yFZD8JRAU/fIVkP9SwBj9tnWw/y3sFP+TEbD+V1wY/fIVkP5AMBD8ci2c/kAwEP6Rvaj+QDAQ/qaVzPyA7+j7Q7HA/aKP5PnXidT/K1vs+g0FpPzbIAT/IgWY/hFACP2DRZD9UtAI/A09zPwPRAT8TzXA/TakBP/tzdT/h3wE/9NB7P8P5AT/w83o/SnQBPzAzez9ySAE/9NB7P8yLAT9sWno/YT8AP3s+eD+QDAQ/LWV6P5AMBD+r53w/kAwEP3QdfD+QDAQ/8PN6P0p0AT/00Hs/w/kBP/TQez8gfQM/IPx6P/wfAz+vj3k/pZ4CP4Sgdz/OOAI/dY5uPwBC9j5ICmw/oCb4Pr0RaT/wPfk+oE5pP96T+z5tY24//Ab6PuPwaz+gSPs+WR9sP1e5AT8cIm0/kAwEP89Pbj8H2QE/VatoP7QN9z5zuHo/8CkAP2xaej9hPwA/GHttP0zB6j4bFGo/dIPuPtSNZz8aRfQ+NcmIPsi8UT4e4Jk+3MFQPmB9lj54v04+ZCePPgBUQT62eow+sHtOPqffjz4IRE0+y9iYPrB7Rj5IgZM+cLdNPlAqMT9Igus9MS03P2B+/D1cfjY/oIPpPetMND+IuOo9ZNowP1iH2D3QITE/6Ey+PbxRLT/YM8M9PM0tP+g02z3s9jM/kAjWPf1UND9IZ8M9qPQpP5jqyD3rwyo/aKPePVchNj+I+9Q9A1s2P3BfxT1Dqiw/WNqzPVWxKT/oXLU9TAAnP/iLzz2T3yc/CO/iPVAzJT8ARdU9XvIlP9At5j2QXCY/+LG/PeFiJD+ogcg96E4mP4Av9j3sCWQ+YGNUPbBGXD6gHiI9HfkVPgQVVD5wN/I9yAQxPu5jED400y8+ch02PkA8lj0MK0M+gKl8PSHCLD7gp2Y9n0dLPpAUpT0qz0c+UPSRPfCeID7YySg+8fAOPlwFJj6OSjA+mE1XPmI3Nz6Y4EQ+men4PUDqGD5cHBg9oCUnPW7kUTzARuM8vBsyPfAphT1+5YE9wMErPez1UTxwOSM9crpRPFAHeT0g1D0+YEOzPXJhUTzgsb49XdGbPpD0wz0ropY+WPn7PcJjoD7gnfA9d4CYPjAOGD6ns4o+YNsCPvO6jD4UAhk+9AJHPmA25T1ZuFk+cPQSPoegTz54Dds9IWpMPrg+Jj4MgzA+HLkePsJ3QT5gEjU+ARlFPsgUHT4xvj4+yDsUPmURZD5QfdU9/3VePgDPoj2Z5kc+oO0MPV2SUT4AHkk93otcPnAUjj2xgVE+wAnOPH59kz7IgM09TE/tPWidFT7K4u49zJkAPn5srD3QaZQ9bmg6PiCHOT2YwuM9AGkbPQ8vvT0gHk49wM/4PQBAbz2NMKM9wNrrPG+Uvz3g5gU9MoLnPXBvoj0MVgQ+AM8rPWbXjj5Epi8+MUqmPrB7Fj6sbZs+GL0zPj3ipj58y0Y+omitPhjXPD6Tgqw+oGpUPqjyrz541k8+pVqhPsgTVT6kB6Q+wLNWPsw0SD5AGFg+l79PPtguRj49T1o+GPw2PnxUMT2wKcI9b85QPABNBD79niw9aBUFPu7xoz0wlco9cveePdi7Bz7Dy909sKnSPSCw1z0kJgs+NcmIPsi8UT4e4Jk+3MFQPmB9lj54v04+tnqMPrB7Tj5kJ48+AFRBPqffjz4IRE0+y9iYPrB7Rj5IgZM+cLdNPlAqMT9Igus960w0P4i46j28US0/2DPDPdAhMT/oTL49ZNowP1iH2D08zS0/6DTbPf1UND9IZ8M97PYzP5AI1j3rwyo/aKPePaj0KT+Y6sg9VbEpP+hctT1Dqiw/WNqzPUwAJz/4i889k98nPwjv4j2QXCY/+LG/PewJZD5gY1Q9cDfyPcgEMT4d+RU+BBVUPu5jED400y8+DCtDPoCpfD1yHTY+QDyWPSHCLD7gp2Y9Ks9HPlD0kT2fR0s+kBSlPfCeID7YySg+8fAOPlwFJj5iNzc+mOBEPo5KMD6YTVc+men4PUDqGD5cHBg9oCUnPbwbMj3wKYU9fuWBPcDBKz0g1D0+YEOzPSuilj5Y+fs9p7OKPmDbAj53gJg+MA4YPvO6jD4UAhk+WbhZPnD0Ej70Akc+YDblPYegTz54Dds9DIMwPhy5Hj4hakw+uD4mPsJ3QT5gEjU+Mb4+Psg7FD4BGUU+yBQdPj1PWj4Y/DY+/3VePgDPoj1lEWQ+UH3VPZnmRz6g7Qw9sEZcPqAeIj1dklE+AB5JPd6LXD5wFI49sYFRPsAJzjx+fZM+yIDNPUxP7T1onRU+yuLuPcyZAD5+bKw90GmUPW5oOj4ghzk9Dy+9PSAeTj2YwuM9AGkbPcDP+D0AQG89jTCjPcDa6zxvlL894OYFPTKC5z1wb6I9DFYEPgDPKz1m144+RKYvPqxtmz4YvTM+PeKmPnzLRj6Tgqw+oGpUPqVaoT7IE1U+pAekPsCzVj7MNEg+QBhYPpe/Tz7YLkY+fFQxPbApwj39niw9aBUFPu7xoz0wlco9w8vdPbCp0j1r7dI9kMUqPiCw1z0kJgs+yuLuPcyZAD5y95492LsHPr1tRz9sPwc/YCZDP2w/Bz9AMlM/bD8HP0jFWz9sPwc/QZ5fP2w/Bz+ciUs/bD8HPzgVUD9sPwc/ac9NP2w/Bz+XvnQ/ZCXrPp8+cT+Aru4+fz90P5y17z77Knc/WGPtPhR7dj8cG/I+tFV4PzDK9j7I03k/WLDzPjz5cD+Kwek+zLx6Pxrb/D7MvHo/Gtv8PmDRZD+jXAE/1BBmP/OTAD9os2U/BVoAP2DRZD+jXAE/aLNlPwVaAD9g0WQ/CBcBP6c2Zz+wtfs+1Bl4PyZ5+T7pDnY/FDP1PsTqdT9Oafg+WBB4P0wc/T4EAHE/uob1PoS9cz8Ol/Y+uPZzPyZA8z6cO3E/eBLyPvQSej+0+/0+LaN5P8z7/z50TG4/RMXuPoSnbj9ecvI+cTxrP6Co8T7B6ms/GJj0PhuzZz/I+/w+0OxwP2ij+T6ppXM/IDv6PnXidT/K1vs+yIFmP4RQAj+DQWk/NsgBP2DRZD9UtAI/E81wP02pAT8DT3M/A9EBP/tzdT/h3wE/MDN7P3JIAT/w83o/SnQBP/TQez/D+QE/9NB7P8yLAT9sWno/YT8AP/TQez8gfQM/9NB7P8P5AT/w83o/SnQBPyD8ej/8HwM/r495P6WeAj+EoHc/zjgCP3WObj8AQvY+SApsP6Am+D69EWk/8D35PqBOaT/ek/s+bWNuP/wG+j7j8Gs/oEj7PlkfbD9XuQE/z09uPwfZAT9Vq2g/tA33Pmxaej9hPwA/c7h6P/ApAD8Ye20/TMHqPhsUaj90g+4+1I1nPxpF9D5Ewkc/dBgAP4yjQj90GAA/mGA+P3QYAD+0tz4/bD8HP2O/OT90GAA/Y785P0UXBz+YYD4/dBgAPxAmVj9sPwc/7ddVP3QYAD/kW1M/dBgAP0GeXz90GAA/RI5cP3QYAD85U1k/dBgAP0d8WT9sPwc/LdFXP2w/Bz/r90s/dBgAP2loUD90GAA/TMx4P2wLCD8EtXg/l3YNP5zTej+Xdg0/nNN6P2sLCD+s3mw/cAsIP0O1bT+Xdg0/pDJwP5d2DT80WW8/cAsIPwSXcj+Xdg0/VL5xP3ULCD8kvHQ/l3YNP0T4cz9wCwg/q79tP/8EFT98+2k//wQVP41Baj/0whc/7Y5tP/TCFz/sgWc/9MIXPxWiZz//BBU/Ow1qP5d2DT8sAGo/cAsIP+VoZz+Xdg0/pFZnP3ALCD+MgWw/zQEPP8TGaz+hFQ8/W81sP9ANEz8Ncms/0A0TP2Rsdj+Xdg0/k0F2P3ALCD/k3Ho//wQVP8X4ej/0whc/q+d8P/TCFz+r53w//wQVP3yFZD//BBU/fIVkP/TCFz98hWQ/bAsIP3yFZD+Xdg0/q+d8P5d2DT+r53w/awsIPwTWcj+Xbw8/cNp0P5dvDz+E93I/KMkQP+vxdD8FuRA/VIV2P3WxED+kaHY/l28PP6tOcD+Xbw8/XGBwP6DLED/zoHg//rwQP4O+eD+Xbw8/M/9tP5dvDz+NNW4/dAIRP7Tsej/C0hA/XN16P5dvDz+dNW0/l28PP5s9bT90IRE/q+d8PxEGET+r53w/l28PP0yFaz+Xbw8/tG9rP845ET98hWQ/l28PP3yFZD8ZdhE/O35nPy9jET8Ta2c/l28PP8ToaT+Xbw8/NJhpP8BrET/9CnM/zVoSP2TxdD/qQxI/jRlzP/8EFT/M6nQ//wQVPxSBdj8gMBI/7Xd2P/8EFT/UdnA/JUISP/NhcD//BBU/a7Z4PzoVEj9rwng//wQVP9w1bj+6XxI/Gwl7P0A6Ej/8EG0/NTQSP6vnfD8hphI/RFVrP/5kEj/ki2c/MvoSP3yFZD/I4BI/9H5pP3PIEj97pHY/9MIXP0QKdT/0whc/VeN4P/TCFz/8RXA/9MIXP/0icz/0whc/TEV4Pxl1BT90cHg/ucEGPyOqej++wAY/FJl6P/VjBT9LkHE/kAwEP9Qybz+QDAQ/5OFuP5B9BT80U3E/EGsFP5P2cz/YeAU/kPlzP5AMBD/0N2c/T5wGP+PpaT8uwAY/lAFqP21pBT9FVmc/DFQFP7Qxdj8WewU/PAt2P5AMBD9ciXE/qM8GP0n3cz9/zgY/fDF2P8DGBj8t/m4/Y9YGP6vnfD8sXAU/q+d8P0W+Bj98hWQ/CUQFP3yFZD/UsAY/bZ1sP8t7BT/kxGw/ldcGP3yFZD+QDAQ/HItnP5AMBD+kb2o/kAwEP3s+eD+QDAQ/LWV6P5AMBD+r53w/kAwEP3QdfD+QDAQ/HCJtP5AMBD/JRa8+jOZ3P6MnuD5W1Xc/DRG5PpiPcz9vW7E+dm9zP4W8VD+YAh8/k39ZP/g4Hz/PNnY/+1MdP8J5cz92CR0/jXFnP5FHHj+6tWs/JFkdPwGAXj+yBB8/sihdPwDIGT88oGI/GtcaP1G7Uz/CQBo/XXFYP36JGT/79mI/KYceP6bBbz+qER0/SsdmP30IGj8SlGs/TqIZP+vvcz/CQhk/gRtwPyZMGT9BbDY/ZjYhPzTyOj8jNiE/RHpPP25oHz8IB0o/BUIgP5NTST9bNBw/10JOP7TFGj8jfUE/cV4hP+MyRT9Mlx4/dG9FP1mhIT/1QDs/GKocP3sMQT9zixw/f202P0OdHD/PNnY/AIkZP4W8VD+YAh8/k39ZP/g4Hz/CeXM/dgkdP7q1az8kWR0/jXFnP5FHHj+yKF0/AMgZPwGAXj+yBB8/PKBiPxrXGj9Ru1M/wkAaP11xWD9+iRk/+/ZiPymHHj+mwW8/qhEdP0rHZj99CBo/EpRrP06iGT/r73M/wkIZP4EbcD8mTBk/k1NJP1s0HD8IB0o/BUIgP0R6Tz9uaB8/10JOP7TFGj/jMkU/TJcePyN9QT9xXiE/dG9FP1mhIT8Q8jo/OTYhP3sMQT9zixw/9UA7PxiqHD9/bTY/OTYhP6W00D7Ymko/bqfMPrT6Sj98SM8+ygFMPwfqyD5/d0s/Tf3HPuDyST+M98s+hMpJP26nzD60+ko/d5nKPmZNTj+96ck+uv5MP4/NzD4ja0w/RCrNPnjnTT8rDtA+8KZJP3xIzz7KAUw/+qnPPpOXTT8lAdM+FztNP4fw0T5nTU0/j97RPt2DSz/FT8A+2KdMP3odwD5dxUo/OSfCPmLoSj8RvcI+iHlMP0MNxT5pf0o/AaHFPmEQTD91NMs+QnJPP/s6yT5qtU8/l5LIPhiZTj8plM0+MzBPP2OLxj7E6U4/6N7PPkHfTj/a59E+AZtOP7E2xj5qkU0/5gzEPj82Tz9MgsE+2U1PPz76wD61Ik4/knPDPhbjTT9EKrY+aWlNPxvUsj7fWE0/wqayPtubSz8Mj7U+79tLPx/zvT7g0Ew/VP69PlsuSz+blrs+7w9NP7aFuz4Zl0s/swG5PmBNTT+Rxbg+au1LP1POrz4Rb0s/U86vPgxWTT9Tzq8+y1hPP0Ktsj62X08//Fq2PlBmTz8a7Lg+HwlPP4fquD4PJ1A/f3y7PhGVTj/oiLs+25FPP2Qvvj6RTk4/pXW+PmNMTz/4cdM+yHBOPyQ4fT8ATPo7wl95PwBM+jtBW3k/ABe7PCQ4fT8AF7s8LAl1PwBM+jvtBnU/ABe7PMNtcT8ATPo7tG1xPwAXuzyjWWk/ABe7PMNUaT8ATPo7e+NlPwBM+jt742U/ABe7PAc1bT8ATPo7oDdtPwAXuzx742U/oPJAPc1TZj8g+ZE9nuppPyD5kT1Lemk/oPJAPRtIbT8g+ZE9G0htP6DyQD33pVQ/AEz6Ow7IUD8ATPo7DshQPwAXuzzTqVQ/ABe7PCHjWj8ATPo75ORaPwAXuzwqKWI/AEz6O5slYj8AF7s8bTFfPwBM+juoMF8/ABe7PM4QYj+g8kA9zhBiPyD5kT3W71o/oPJAPUsRXz+g8kA9w8NUP6DyQD0ByFA/oPJAPSQ4fT+g8kA9Gjp5P6DyQD1w93Q/oPJAPSRtcT+g8kA9jPfLPoTKST9N/cc+4PJJPwfqyD5/d0s/j83MPiNrTD+96ck+uv5MP3eZyj5mTU4/RCrNPnjnTT/6qc8+k5dNP4fw0T5nTU0/JQHTPhc7TT85J8I+YuhKP3odwD5dxUo/xU/APtinTD8RvcI+iHlMPwGhxT5hEEw/Qw3FPml/Sj/7Osk+arVPP3U0yz5Cck8/l5LIPhiZTj8plM0+MzBPP2OLxj7E6U4/6N7PPkHfTj/a59E+AZtOP7E2xj5qkU0/PvrAPrUiTj9MgsE+2U1PP+YMxD4/Nk8/knPDPhbjTT/CprI+25tLPxvUsj7fWE0/RCq2PmlpTT8Mj7U+79tLP1T+vT5bLks/H/O9PuDQTD+blrs+7w9NP7aFuz4Zl0s/kcW4PmrtSz+zAbk+YE1NP0Ktsj62X08//Fq2PlBmTz8a7Lg+HwlPP398uz4RlU4/h+q4Pg8nUD/oiLs+25FPP2Qvvj6RTk4/pXW+PmNMTz9BW3k/ABe7PMJfeT8ATPo7JDh9PwBM+jskOH0/ABe7PCwJdT8ATPo77QZ1PwAXuzy0bXE/ABe7PMNtcT8ATPo7e+NlPwBM+jvDVGk/AEz6O6NZaT8AF7s8e+NlPwAXuzygN20/ABe7PAc1bT8ATPo7nuppPyD5kT3NU2Y/IPmRPXvjZT+g8kA9S3ppP6DyQD0bSG0/IPmRPRtIbT+g8kA9DshQPwAXuzwOyFA/AEz6O/elVD8ATPo706lUPwAXuzwh41o/AEz6O+TkWj8AF7s8myViPwAXuzwqKWI/AEz6O6gwXz8AF7s8bTFfPwBM+jvOEGI/IPmRPc4QYj+g8kA9SxFfP6DyQD3W71o/oPJAPcPDVD+g8kA9AchQP6DyQD0kOH0/oPJAPRo6eT+g8kA9cPd0P6DyQD0kbXE/oPJAPYC9zT2HuWI/sK53PSAQbT/h8849ztRpP34euj3HdWc/QEfgPW4ubT9ggc49KZNqP4C9zT2HuWI/sK53PSAQbT/h8849ztRpP34euj3HdWc/QEfgPW4ubT9ggc49KZNqPyQ+iD4QJXU/cZiKPmqgeD8Ls4U+E4h3P/EijT54uHU/RlCSPqENeT/1QZM+2mt2P3ZFnj72MXk/YhmePrFNeD+ndKQ+7vd2P+vgpD7rFHg/my+APk4DeT9ItYk+IcJ5P26kgD4epHk/WktxPpA4ej9aS3E+6sV5P9dEmD7hyHk/E3yYPlLheD9h9JE+DjJ6P5oS2z5eW3k/RTnfPjivej+R294+JYx7Pw0RuT6Yj3M/oye4PlbVdz/JRa8+jOZ3P29bsT52b3M/o0XBPqCdcz+LTME+tPd3P9/Pqz60J3Y/8uijPtQ/eT9qnZ0+Lwd6P8RZlj6nTn0/N8iXPpKSej+JvpE+H/J6P5m4gT6nTn0/WktxPqdOfT8H38k+p059P/lawT6nTn0/SzvJPkAReD93ItI+Lbp4P/T40j6nTn0/IaG3PqdOfT9RYa0+p059P3L7oT6nTn0/HaPaPqdOfT+s/d4+p059P5yMiT6HVHo/lZ+LPqdOfT+NTqg+T391P3YQmT7m0XY/XVGePm1adj8gaKQ+ud10P6d0pD7u93Y/YhmePrFNeD92RZ4+9jF5P+vgpD7rFHg/cZiKPmqgeD8Ls4U+E4h3P6UsgD5xAHk/SLWJPiHCeT9aS3E+6sV5P1pLcT6QOHo//qGAPsKheT/XRJg+4ch5PxN8mD5S4Xg/RlCSPqENeT9h9JE+DjJ6P0U53z44r3o/mhLbPl5beT+R294+JYx7P4tMwT6093c/o0XBPqCdcz/fz6s+tCd2P2qdnT4vB3o/8uijPtQ/eT83yJc+kpJ6P8RZlj6nTn0/ib6RPh/yej+ZuIE+p059P1pLcT6nTn0/+VrBPqdOfT8H38k+p059P0s7yT5AEXg/9PjSPqdOfT93ItI+Lbp4PyGhtz6nTn0/UWGtPqdOfT9y+6E+p059Px2j2j6nTn0/rP3ePqdOfT+cjIk+h1R6P5Wfiz6nTn0/jU6oPk9/dT92EJk+5tF2P/VBkz7aa3Y/XVGePm1adj8gaKQ+ud10PyQ+iD4QJXU/8SKNPni4dT+FFos+WI0wPhxIiz7Ayyo+w/SKPoiHGT71sIk+AHoFPvijiT4kRQM+TF6JPhxnAD45DYo+GNL1PfABkD4wx+M9uxWUPoBL1j1O2JY+KKjJPXy2mT5wSq89q9OWPnityT2Hyq0+2OtYPllasD6sqFk+0N2tPqgvWT7PR4s+fIEwPiJJiz4ozSo+FBOLPpx+GT4hq4k+GIkFPmKciT4YSAM+4lCJPmxOAD7OHoo+8H/3PZMekD4AEOM9yxqUPliW1j0dFWQ+EO98Pc5aZT5YFYw9EaJlPtDzlT0SQGY+IIShPSKdZj7QLrE9u4xmPhB41T0Cf2Y+wMLaPbuMZj4YeNU9r6ZlPmA26T08D2Q+0JYOPuPIYT6oSSE+sSNgPlxUKD5akmA+XIkvPluKXz4U8Dc+RBtfPrDrQT5/K1s+2O9OPuA3VT50d1E+XqdePjALTj6jBzE+BNJgPrStJT6IFUM+rIozPuzfXz7GN9w9SFIjPrc85T1obS4+ShDVPeiUHD6V1sc9EFsTPkwHuD0oPgk+lNbHPRBbEz7IB6o9PNAAPqjOgj2geBw+V1ooPYhSLj4bZig9/LMqPki4AD2s2zc+5cs+PXSTKj5sL349EAIhPuT50Ty0his+toSXPPyNJD45yFA8CO0fPs40mDxgcSQ+/8zMPEyPKz4bZig9/LMqPl5G/jz4YTg+klkoPVCPLj7jX0A9KJEqPp9ogj38Qhw+FT18PXgZIj7Q6rk9QFsJPstGqD3IxAE+TBLJPZi3Ej5oH9U9fDAcPqLY3D1M0SI+x/HkPXBeLj4akSU+kCJEPuxvND4I2l4+Zk5VPuilUT5WK1s+cOtOPqiHXz6Y7zc+bkpgPujeLz67014+nEhBPu6RXj7AE04+BAJkPqC5fD1cLWU+qB+MPZDhZT7QKpY9YkRmPmiDoT1N2WY+4JixPZZyZj5QeNU9RkxmPqBU2j0X5mU+UEzsPTMyZD4MiA4+GbNhPvAiIT4A4Vo+YEvoPIzaVj7gLaA8+hZWPkC7pjzgv4c9APv8PEhRlT3gRtc8v+FbPTBiFT3IM4g9IPr1PFMBkz3A2NM8z9RdPfB5Fj3ss6E8UFckPWAGyDzQXjQ9eHaiPCBbJD1XZsw8AJk1PewqKD+Afu099pUpP8jK6D1m8io/4H7lPVSsLD9wguQ94votPxjE5D0tEC8/6EXmPaJtND+4K+89BKgzP3h37z0v2TE/MGzwPTQtKD9g0O09h7MpP0DM5z2r8yo/2K7lPV6jLD9AzOQ9DP0tP+A35T0WAS8/0LnmPUBwND/Ahu89ULUzP3gV7z2BvjE/wNHwPRL2Uj8gxW09AchQP/Azhj0A5VQ/oOV3PRL2Uj8gxW091u9aP0BvVT1Ahlk/AH9YPRCkXT9AJGM9HiRfP3BffD26V2A/IER8PXJOez+wYXA9JDh9P7Azhj0aOnk/gCJzPRK3dz9gaIA9cPd0P1ApZD0Rt3c/YGiAPamNcj/QdmA9kc5kP3Czoj2gW2Q/qHmUPURIZj8IYaw9hPBmP4DWvD0if2g/YGusPejyZz+A1rw90+RpP8g7nz1ThWo/sKuZPdLkaT/IO589gHhnP3DGzz0UQWY/cNPbPRRBZj8wROM9zqtlP4AN5j2uCmU/kEjfPQavZT+g5Ng9wOhmP6gIxz1e9WY/uMLbPVpkZz/AY+w9xh5oP5De4T1GzWo/sHmWPbxrbD+QcZs9wGxxP0BWZD3t5m8/MJp/PcBscT8wVmQ9XONtP5iQhT22WG8/eCyGPQHIUD8IT4g9UfxSP/ApbT2C6VQ/oFh/PQZPez9gU3A9JDh9P8BOiD0aOnk/YORwPeJ0dz/Azno9cPd0P8BJYD0JbnI/YAJdPbdscT9wS2c99vZvP9CMgD2weVk/cFBZPe3AVT84oYE9k19VPwikgT3W71o/UK5WPQiMXT8wZGU9fSNfP2Bjej3gVGA/YKZ8PfLLZD9A0KI9N3VkPzBclT1+SGY/AN+rPcECZz+A1rw97wtnP2AsyT1j2Wc/gNa8PdGFaD/gvKw9kaRnP2h00j1k2Wc/gNa8PRJXZz8ATO09FEFmPxDx4D1JlWU/CLPkPRRBZj9ohts9Oc5lPxDg2T0uGmU/qMjdPfzwZj+AG9o9Ex9oP5Ac4j3c5Gk/qCefPeF9aj/oTJk98YxsP+Asmz15DW8/CHmGPbYLbj9gDYY9ktXuPYQ+bz9kp+Q9E+hvP+qKyj1gNmY/Q67YPazhbD+1gdw9cXFtP7WB3D1ycW0//FLwPcmgbz9NKcs9GsVwP6LQxj3YnW8/Lxq3PT8Nbj/AJaw9rF1tP+YHrT1mYm0/UmTCPd7ebj9E2sk93t1vPx9U0D2Ex3A/WMztPcZPbz9kp+Q9E+hvP14GyD3mFXA/q73LPfP5cD8YLMI9z/JuP14GyD3lFXA/H+DKPeYvZj8g4Mo95y9mPxef2j1c0Gw/sCbdPelgbT/4h/A9irNvP5kuyj2juHA/9ePGPeibbz8L77k9/PNtP0hTrT0OP20/BO2qPaCPbT+beFg/epxMP6y4Wj9Tv04/Sl1UP4eSSz+Ay1M/N5RLP/4YeD9Mokw/kuh8Pxy0Sz9uAXc/53RNPwztcz+L9kw/UL9yP5ULTT9EyG8/xFlNP0Mrbj8kVk0/HBZtPxvxTD9CK24/JFZNPxHqaT/X5ks/0A9pP1zoSz8S6mk/1+ZLP/qnZD/yYU0/IvJiP2baTT8+SmA/3SJNP19WXz8wGE0/msNcPxhoTT+aw1w/GWhNP/IA9gD1APYA+gD5APUA9gD5APkA+gBcAfAA7wDuAPMA8gDxAPQA8wDxAPEA8gD1APQA+AD3APMA9AD3APwA+wDzAPcA/ADzAPsA8gDzAP0A9wD4AP4A/QD4AP8A/QD+AAAB/wD+AP0AAQH8APcA/QD8AP8AAgEBAf0A/wABAQAB/gADAe0A8QD1APAA7QD1APAA9QD5AO8A8AD5AO4A7wBXAVoBWQFYAVsBWgFYAV0BXAFZAVoBXQFZAV8BXgFbAVgBXwFbAV0B+QBcAVgBYQFgAV8BWAFgAWEBWAFZAV4BXwFiAWMBXgFiAWMBYgH/AAABYwH/AGABZAFiAV8BYAFiAWQBAgH/AGIBZAH/AAABAwFjAV0BWgFWAVcBXQFWAfkAXQFXAe8A+QBXAUcEYwEDAUgEXgFjAUcESARjAUkEXgFIBEoEWwFeAUkESgReAUsEWwFKBEwEWgFbAUsETARbAVYBWgFMBE0EVwFOBO4AVwFNBE8ETgRXAVcBVgFPBAMB/gBQBP4A+ABRBFAE/gBRBFEE+ABSBPgA9ABTBFIE+ABTBFME9ABUBPQA8QBVBFQE9ABVBFUE8QDtAFcE8ABWBFYE8ADuAPAAVwRYBFgE7QDwAAIAAQAAAAMAAgAAAAYABQAEAAcABgAEAAgABAAFAAkACAAFAAMAAAAIAAkAAwAIAAoABgAHAAsACgAHAAsADQAMAAoACwAMABAADwAOABEAEAAOAA4AEwASABEADgASAAEAAgASABMAAQASABUAFAAMABYAFQAMABgAFwAFAAYAGAAFABkAAwAJABoAGQAJAAYACgAbABgABgAbAB4AHQAcAB8AHgAcABkAIAAdAB4AGQAdABoAIQAgABkAGgAgAB8AHAAiACMAHwAiABoAFwAkACEAGgAkACcAJgAlACgAJwAlABgAKQAkABcAGAAkACUAKgAbACgAJQAbACoAKQAYABsAKgAYAAIAHgAfABIAAgAfAAMAGQAeAAIAAwAeAAkABQAXABoACQAXAAoADAAoABsACgAoABAAEQAfACMAEAAfABEAEgAfABQAJwAoAAwAFAAoAC0ALAArAC4ALQArADEAMAAvADIAMQAvADIALwAzADQAMgAzADMANgA1ADQAMwA1ADkAOAA3ADoAOQA3ADsANwA4ADwAOwA4AD0AMAAxAD4APQAxAD8APQA+AEAAPwA+AEEAMAA9AEIAQQA9AEQAQwA4ADkARAA4ADUANgBFAEYANQBFAEYARQAsAC0ARgAsAEkASABHAEoASQBHADsAPABLAEwAOwBLAE4ATQA/AEAATgA/AC4AKwBPAFAALgBPAFIAUQA2ADMAUgA2AFEAUgBTAFQAUQBTAFYAVQBRAFQAVgBRAEUANgBRAFUARQBRADMALwBXAFIAMwBXAFMAUgBXAFgAUwBXAFYAWgBZAFUAVgBZAEUAVQBZACwARQBZAC8AMABbAFcALwBbAFwAWABXAFsAXABXAF4AXQBZAFoAXgBZACwAWQBdACsALABdAF8AWwAwAEEAXwAwAFsAXwBgAFwAWwBgAF0AXgBhAGIAXQBhAGIATwArAF0AYgArAEIAYwBfAEEAQgBfAGQAYABfAGMAZABfAGcAZgBlAGgAZwBlAGgAPwBNAGcAaABNAD0AaQBjAEIAPQBjAGMAaQBqAGQAYwBqAGUAagBpAGgAZQBpAGgAaQA9AD8AaAA9AFQAUwBrAGwAVABrAG4AbQBsAGsAbgBsAG8AbABtAHAAbwBtAFYAVABsAG8AVgBsAGsAUwBYAHEAawBYAHEAcgBuAGsAcQBuAHMAbwBwAHQAcwBwAG8AcwBaAFYAbwBaAFgAXAB1AHEAWAB1AHEAdQA5AHIAcQA5AHMAdABJAHYAcwBJAHYAXgBaAHMAdgBaAHcAdQBcAGAAdwBcADkAdQB3AEQAOQB3AHYASQBKAHgAdgBKAHgAYQBeAHYAeABeAGAAZAB5AHcAYAB5AEMARAB3AHkAQwB3ADwAewB6AEsAPAB6AGYAegB7AGUAZgB7AGQAagB8AHkAZAB8ADgAQwB5AHwAOAB5AHsAPAA4AHwAewA4AGoAZQB7AHwAagB7AH0AcABtAH4AfQBtAHQAcAB9AH8AdAB9AHQAfwBIAEkAdABIAHIAOQA6AIAAcgA6AHIAgACBAG4AcgCBAH4AbQBuAIEAfgBuAIQAgwCCAIUAgwCEAIYAhQCEAIYAhwCFAIUAhwCIAIMAiQCCAIcAigCIAI0AjACLAJAAjwCOAIsAjACRAJQAkwCSAJUAlACSAJgAlwCWAJkAmACWAJoAlACVAJsAmgCVAJIAkwCWAJcAkgCWAJQAhwCGAJMAlACGAIcAlACaAJMAhgCEAJYAkwCEAJYAhACCAJkAlgCCAIIAnQCcAJkAggCcAJwAnQCeAJ8AnACeAJEAjACgAKMAogChAKQAowChAKcApgClAKgApwClAKoAqQCnAKgAqgCnAK0ArACrAK4ArQCrAKkAqgCvALAAqQCvAKgAsgCxAKoAqACxAK8AqgCxALMArwCxAKgApQC0ALIAqAC0ALMAogCjAK8AswCjALUApAChALYAtQChAK0ArgC3ALgArQC3ALkAqwCsALoAuQCsALsAtwCuALwAuwCuAK4AqwC9ALwArgC9AJgAvwC+AJcAmAC+AJcAvgDAAJIAlwDAAIwAwgDBAKAAjADBAMMAwgCMAI0AwwCMAL8AxQDEAL4AvwDEAL4AxADGAMAAvgDGAMkAyADHAMoAyQDHAJoAmwDLAMwAsACvAKMAzACvAM0AzACjAKQAzQCjAM8AtQDOANIA0QDQANMA0gDQAJUAkgDAANMA0ADLANQA0wDLAMAAxgDVAJUAwADVANQAmwCVANUA1ACVAMsAmwDUAJkAnADWAJgAmQDWAJwAnwDXANYAnADXANkA2ACgAJ8A2ADZANcAnwDZAJgA1gDaAL8AmADaANsA2gDWANcA2wDWANwA2QDBAMEA2QCgAKYA3QC5AKUApgC5ALkA3QC9AKsAuQC9ANsA2QDcANwA3gDaANsA3ADaAL8A2gDeAMUAvwDeANkA2wDXAJ8AngDfANgAnwDfANgA3wCRAKAA2ACRAIcAmgCKAOEA4ACKAJoAywCKAOEAyADJAOAA4QDJADUARgCzALEANQCzALEAsgA0ADUAsQA0ALMARgAtAKIAswAtALIAtAAyADQAsgAyAKIALQAuAKEAogAuALoAMQAyALQAugAyAKEALgBQALYAoQBQADEAugCsAD4AMQCsAK0AuABOAEAArQBOAEAAPgCsAK0AQACsAIIAiQDiAJ0AggDiAOMAngCdAOIA4wCdAOMA3wCeAKUAuQC6ALQApQC6AKQAtQDPAM0ApADPAOQA3wDjAN8A5ACRAOkA5QDoAOoA6QDoAOYA5wDrAOsA5wDoAOcA7ADoAOgA7ADqAAcBCAEGAQsBCgEJAQkBDQEMAQ8BDgEIAQ4BEQEQAQ8BCAESARIBCAEHARYBFQETARgBFwEVAQkBDAEZAQkBCgENARUBGgEYAR0BHAEbAR8BHAEeASABHwEeASMBIgEhAQwBIwEhARkBDAEhASYBJQEkASUBKAEnASUBJgERAQ4BJQERASgBIQEiAScBKAEiAQwBKgEpASMBDAEpASIBIwEpAScBJAElASIBJAEnASwBKwEFASwBBQEEAQoBLAEtAQ0BCgEtASoBDAENAS0BKgENAS4BBQErATABEgEHARIBMAExARUBFgEyAQoBCwEzASsBLAEKATMBKwEKATYBNQE0ARYBNwE1ATcBOAE1ARYBNQEyATIBNQE2ATkBMgE2ATUBOAE0ATYBNAE6AegA5QA7ARwBHQE8AR4BHAE8AT0BOwEgAR4BPQEgATwBPQEeATsBPQHrAOgAOwHrAD0BPAE+ATwBPwE+AT8BQQFAAT4BPwFAAUIB6wA9AT4BQgE9AUMBPgFAAT4BQwFCAeYA6wBCAQYBCAEOARABEQFEAUQBEQEmAUUBRAEmASQBRgFFASYBJAFFAUcBGgEVAUkBSAEaAUcBSQEaAUoBRwEVATIBSgEVAUkBRwFKAUsBSQFKAUwBSgEyATkBTAEyATABTQExAUwBMQFNAUwBTQFKAVIBTgFRAVMBUgFRAU8BVAFQAVQBUgFQAVABUgFVAVIBUwFVAWYBZwFoAWsBagFpAWoBbQFsAW8BaAFuAW4BcQFwAW8BcgFoAXIBZgFoAXUBcwF0ARgBdAEXAWoBdgFtAWoBbAFpAXQBGAEaAR0BGwF3AXkBdwF4AXoBeQF4AX0BfAF7AXwBfQFtAXYBfAFtAYABfwF+AX4BggGBAX8BgwF7AXABgAF+AW4BcAF+AYEBewF8AYIBewGBAYUBhAFtAX0BhQFtAYUBfQF7AYIBfgF/AXsBggF/AYgBhwGGAYgBZQGHAYkBiAFpAWwBiQFpAWwBbQGEAYkBbAGEAYoBhgGHAYwBZgFyAXIBjQGMAXQBjgF1AWkBjwFrAWkBiAGGAY8BaQGGAZIBkQGQAXUBkAGTAZMBkAGUAXUBjgGQAZIBkAGOAZUBkgGOAZABkQGUAZIBlgGRAVIBlwFOATwBHQF3AXkBPAF3AXoBlwGYAXkBegGYATwBeQGYAVQBmAGXAVIBVAGXAZgBmQE8ATwBmQE/AZoBQQE/AZkBmgE/AZgBVAGbAZkBmAGbAZwBmgGZAZkBmwGcAU8BmwFUAW4BaAFnAXEBnQFwAYABcAGdAZ4BgAGdAZ4BgwF/AYABngF/AZ8BdAEaARoBSAGgAZ8BGgGgAXQBnwGhAY4BdAGhAY4BoQGiAZUBjgGiAYwBpQGkAaIBpAGlAaIBoQGkAaEBnwGgAaYBoQGgAbEBsAGvAbEBrwGyAbMBsQGyAbMBsgG0AbIBtQG0Aa8BsAG2AbQBtQG4AbsBugG5Ab4BvQG8AbsBvwG6AcIBwQHAAcMBwgHAAcYBxQHEAccBxgHEAcMBwAHIAckBwwHIAcYBwQHCAcUBxgHCAbMBtAHAAcEBswHAAbQByAHAAbEBswHBAcYBsQHBAbABsQHGAccBsAHGAcsBygGwAccBywGwAcwBygHLAc0BzAHLAb8BzgG6AdABzwHEAcUB0AHEAdEB0AHFAcIB0QHFAdMB0gG6Ac4B0wG6AboB0gHUAbkBugHUAdYB1QHPAdAB1gHPAdcB1gHQAdEB1wHQAdoB2QHYAdsB2gHYAcgB3AHJAd8B3gHdAeAB3wHdAcMB0QHCAdwB3wHgAeEB3AHgAeIB1wHRAcMB4gHRAcMByQHhAeIBwwHhAdwB4QHJAeMBywHHAcQB4wHHAeQBzQHLAeMB5AHLAeYBzgHlAeYB5QHNAeQB5gHNAecB4wHEAc8B5wHEAeMB5wHoAeQB4wHoAekB0wHmAdMBzgHmAegB6QHmAecB6gHpAegB5wHpAeoB5wHPAdUB6gHPAeYB5AHoAesBzAHNAeUB6wHNAb8B6wHlAc4BvwHlAbQBuAHIAbcB7QHsAcgBuAHcAdgB2QHsAe0B2AHsAe4BtgGwAcoB7gGwAcoBzAHvAe4BygHvAe8BzAHrAfAB7wHrAesBvwHwAfEBpwGoAfIB8QGoAfQB8wHyAagB9AHyAfQB9gH1AfcB9AH1AfoB+QH4AakB+gH4AfwB+wGrAaoB/AGrAf4B/QH8AaoB/gH8Af4B/wH9Af8B+QH9AfkB/wH4AQACrAGnAfEBAAKnAa0BrgEBAgECrgEAAq4BrAEAAgEC+gGpAa0BAQKpAQQCAwICAgUCBAICAggCBwIGAgkCCAIGAgoCCAIJAgsCCgIJAg0CDAIKAgsCDQIKAhACDwIOAhECEAIOAg8CEAISAhMCDwISAgYCBwIUAhUCBgIUAhUCFAIWAhcCFQIWAhQCBwIYAhkCFAIYAg8CGwIaAg4CDwIaAhwCDAINAh0CHAINAgMCHAIdAgICAwIdAiACHwIeAiECIAIeAiICEwISAiMCIgISAhYCJQIkAhcCFgIkAiYCBAIFAicCJgIFAgwCKQIoAgoCDAIoAioCKAIpAisCKgIpAikCLQIsAisCKQIsAikCDAIcAi0CKQIcAi4CCAIKAigCLgIKAi4CKAIqAi8CLgIqAjECMAIsAi0CMQIsAjECLQIcAgMCMQIcAjICBwIIAi4CMgIIAi4CLwIzAjICLgIzAjECNQI0AjACMQI0AjUCMQIDAgQCNQIDAgcCMgI2AhgCBwI2AjcCNgIyAjMCNwIyAjgCNAI1AjkCOAI1AgQCJgI5AjUCBAI5AjYCOgIZAhgCNgIZAjYCNwI7AjoCNgI7Aj4CPQI8Aj8CPgI8AiUCFgI/AjwCJQI/AjoCQAIUAhkCOgIUAkECQAI6AjsCQQI6AkACQQI+Aj8CQAI+AhQCQAI/AhYCFAI/AkICKgIrAkMCQgIrAkMCRQJEAkICQwJEAkUCQwJGAkcCRQJGAkMCKwIsAkYCQwIsAi8CKgJCAkgCLwJCAkQCSQJIAkICRAJIAkcCRgJKAksCRwJKAjACSgJGAiwCMAJGAkwCMwIvAkgCTAIvAg4CTAJIAkkCDgJIAh4CSwJKAk0CHgJKAjACNAJNAkoCMAJNAjMCTAJOAjcCMwJOAk4CTAIOAhoCTgIOAiECHgJNAk8CIQJNAjQCOAJPAk0CNAJPAlACOwI3Ak4CUAI3Ak4CGgIbAlACTgIbAlICUQITAiICUgITAlECUgI9Aj4CUQI9AlMCQQI7AlACUwI7AlACGwIPAlMCUAIPAg8CEwJRAlMCDwJRAlECPgJBAlMCUQJBAkUCRwJUAlUCRQJUAlQCRwJLAlYCVAJLAh8CVgJLAh4CHwJLAhECDgJJAlcCEQJJAlgCVwJJAkQCWAJJAkQCRQJVAlgCRAJVAlsCWgJZAlwCWwJZAl8CXgJdAmACXwJdAl0CYgJhAmACXQJhAmUCZAJjAmYCZQJjAmcCYQJiAmgCZwJiAmoCaQJgAmECagJgAmoCYQJnAmsCagJnAmwCXwJgAmkCbAJgAlkCWgJrAmcCWQJrAlsCXAJtAm4CWwJtAm8CZgJjAnACbwJjAmQCZQJxAnICZAJxAmYCbwJzAnQCZgJzAnUCZQJmAnQCdQJmAmcCaAJ2AlkCZwJ2AlkCdgJ3AlwCWQJ3AnkCeAJtAnECegJeAl8CcQJeAnUCegJxAmUCdQJxAmsCHQINAmoCawINAgsCaQJqAg0CCwJqAgICHQJrAloCAgJrAgkCbAJpAgsCCQJpAgUCAgJaAlsCBQJaAgkCBgJyAmwCCQJyAicCBQJbAm4CJwJbAmQCcgIGAhUCZAIGAiQCcAJjAhcCJAJjAmQCFQIXAmMCZAIXAnICcQJfAmwCcgJfAnkCbQJcAncCeQJcAk4BlwHdA90DlwHeA94DlwF6Ad8D3gN6AXoBeAHgA98DegHgA+ADeAHhA+EDeAHiA+IDeAHjA+MDeAHkA+QDeAF3AeUD5AN3AeUDiwHkA3cBGwHmA+UDdwHmA+YDiwHlA+YDGwHnA+YD5wOLAecDGwHoA+gDLwHnA+kDmgGcAUEBmgHpA+oDQQHpA+sDQAFBAeoD6wNBAUMBQAHrA+wDOwHlAO0DOwHsAyABOwHtA+4DIAHtA+8DHwEgAe4D7wMgAfADHwHvA/EDHwHwA/IDHwHxA/MDHwHyA/MDLwH0AxwBHwHzA/QDHAHzA/QDLwHoA+gDGwEcAfQD6AMcAfUDLAEEAS0BLAH1A/YDLQH1A/cDLQH2AyoBLQH3A/gDKgH3A/kDKgH4AykBKgH5A/oDKQH5A/sDKQH8A/0DKQH7AyIBKQH9A/4DIgH9A/8DIgH+AyQBIgH/AwAEJAH/AwEERgEkAQAEAQQkAQIERgEBBAMERgECBEUBRgEEBAUERQEEBAQERgEDBAYEBAQDBEQBRQEFBA4BEAEIBAgEBgEOARABRAEJBAkEBwQQAQoEMAEHAQsECgQHAQwETQEwAQoEDAQwAQ0ETQEMBA4ETQEPBBAESwFKAU0BDgQQBEoBTQEQBBEESQFLARQEEwQSBBIEEwQVBBUEEwRJARYEFQRJAUkBEQQWBBcEEwQUBBgESQETBBcEGAQTBBkESAFJARgEGQRJARoEoAFIARkEGgRIARwEoAEaBBsEHAQaBB0EHAQbBB4EHAQdBB8EHAQeBKYBoAEgBCEEIASgAaABHAQfBCEEoAEfBKEBIgSkAaEBIwQiBKEBpgEjBCQEpAEiBCUEpAEkBCUEowEmBIwBpAElBCYEjAElBCYEowEnBGYBjAEmBCcEZgEmBCgEcQFuAW4BZwEoBCkEnQFxASoEngGdASsEgwGeASoEKwSeAS0EgwEsBCwEgwEuBC4EgwErBC8ELgQrBGUBiAEwBDAEiAGJATEEMASJATEEiQEyBDIEiQGEATMEMgSEATMEhAE0BDQEhAGFATUENASFATUEhQE2BDYEhQE3BDcEhQF7ATgENwR7ATgEewE5BDkEewGDAS0EOQSDAYoBhwE6BDsEigE6BAUBLgE8BDcBFgE9BD4ENwE9BD0EFgE/BD8EFgETAUAEdQGTAUEEQASTAUIEdQFABHMBdQFCBEQEFwF0AUQEQwQXAXQBcwFEBBQBFwFDBEYEEwEVARcBRgQVARcBRQRGBEUEFwEUAcoEHAAdAMsEygQdAMwEIgAcAMoEzAQcAM0EIgDMBM4EJQAmAM8EzgQmANAEJQDOBNEEKgAlANAE0QQlANIEKgDRBNMEKQAqANIE0wQqANQEKQDTBNUEKQDWBCQAKQDVBNcEJADVBNgEJADZBCEAJADYBNoEIQDYBNsEIQDaBCAAIQDbBNwEIADbBN0EIADcBB0AIADdBN4EHQDdBMsEHQDfBH0CfAJ7An4CfQJ7AocChgKFAogCfwKAAokCiAKAAokCgAKFAoYCiQKFAooChwKFAocCigKDAowChwKDAoMChAKNAowCgwKNAosCggKOAo8CiwKOApQCkwKSApUClAKSApgClwKWApYCmgKZApEClgKZApkCmwKQApECmQKQAn8CiAKVApICfwKVApgCkwKUApcCmAKUApYClwKaAoQCiwKPAo0ChAKPAoICgQKcAo4CggKcAqQCowKiAp4CnQKlAqYCngKlAqMCngKmAqICowKmAqcCowKkAqECpwKkAqkCoQKkAqoCoAKhAqkCqgKhAqsCnwKoAqwCqwKoAq8CrgKtArACrwKtArMCsgKxArYCtQKyArQCtgKyArcCmwK2ArQCtwK2ArACpQKdAq8CsAKdAq0CrgKzArECrQKzArICtQKxAqwCqAKgAqoCrAKgApwCgQKfAqsCnAKfAroCuQK4Ar0CvAK7Ar4CvQK7AsECwAK/AsICwQK/Ar4CuwLAAsECvgLAAsMCvQK+ArgCwwK+AsICxQLEAsECwgLEAsECxAK+AsgCxwLGAsQCyAK4AsQCuAK+AsgCxALFAscCyALFAssCygLJAswCywLJAswCzgLNAssCzALNArwCzQLOArsCvALOAtACzwK/AtEC0AK/As8C0gLCAr8CzwLCAtEC0wLQAr8CwALRAscCxQLUAtUCxwLUAtMC0QLWAtkC2ALXAtoC2QLXAtcC0wLWAtoC1wLWArsCzgLWAsACuwLWAs4CzALaAtYCzgLaAt0C3ALbAt4C3QLbAsoC4ALfAskCygLfAuEC3wLgAuIC4QLgAuIC5ALjAuEC4gLjAt4C2wLjAuQC3gLjAtwC3QLlAuYC3ALlAtwC5gLnAugC3ALnAuMC2wLpAuoC4wLpAukC2wLcAugC6QLcAuwC6gLrAu0C7ALrAtgC2QLuAu8C2ALuAu4C7ALtAu8C7gLtAuEC4wLqAuwC4QLqAt8C7gLZAskC3wLZAt8C4QLsAu4C3wLsAukC6wLqAskC2QLaAswCyQLaAtECwALWAtIC1ALFAsIC0gLFAtUC8ALGAscC1QLGAvMC8gLxAvQC8wLxAvUC8gLzAvYC9QLzAvYC+AL3AvUC9gL3AvsC+gL5AvwC+wL5AvgC/gL9AvcC+AL9AvoC/QL+AvkC+gL+AgEDAAP/AgIDAQP/AgMDAQMCAwQDAwMCAwcDBgMFAwgDBwMFAwgDBQMJAwoDCAMJAwwDCwP7AvwCDAP7Ag4DDQMLAwwDDgMLAwoDCQMNAw4DCgMNAwADEAMPA/8CAAMPAw4DEgMRAwoDDgMRAwoDEQMTAwgDCgMTAwgDEwMUAwcDCAMUA/MC9AIVAxYD8wIVA/YC8wIWAxcD9gIWA/gC9gIXAxgD+AIXA/4C+AIYAwQD/gIYA/kC/gIEAwID+QIEA/wC+QICA/8C/AICAwwD/AL/Ag8DDAP/AgwDDwMSAw4DDAMSAxsDGgMZA7kCGwMZAx4DHQMcAx8DHgMcAx0DGwO5AhwDHQO5ArkCGQPDArgCuQLDAroCIAMfAxwDugIfAxwDuQK6AsgCIgMhA7oCuALIAiADugLIAiEDIAPIAiUDJAMjAyYDJQMjAygDJwMmAyMDKAMmAycDKAMaAxsDJwMaAx4DKgMpAysDHgMpAx8DLAMqAx4DHwMqAykDLQMrAx4DKwMdAy4DIAMhAy8DLgMhAy0DMAMrAzMDMgMxAzQDMwMxAzADLQMzAzQDMAMzAzADJwMbAx0DMAMbAzQDJgMnAzADNAMnAzcDNgM1AzgDNwM1AzoDOQMkAyUDOgMkAzkDOgM7AzwDOQM7Az4DPQM8AzsDPgM8Az4DNwM4Az0DPgM4A+UCNQM2A+YC5QI2A+cC5gI2Az8D5wI2A0ADNwM+A0EDQAM+AzYDNwNAAz8DNgNAA0MDQQNCA0QDQwNCA0UDMQMyA0YDRQMyA0QDQgNFA0YDRANFA0EDPgM7A0IDQQM7AzEDRQM6AyUDMQM6A0IDOwM6A0UDQgM6A0EDQwNAAzQDMQMlAyYDNAMlAysDMAMdAyADLgMsAx8DIAMsA8YC8AIvAyEDxgIvA0kDSANHA0oDSQNHA0cDSANLA0wDRwNLA04DTQNMA0sDTgNMA1EDUANPA1IDUQNPA1QDUwNNA04DVANNA1MDVANQA1EDUwNQA1cDVgNVA1gDVwNVA1gDVQNZA1oDWANZA10DXANbA14DXQNbA18DXQNeA2ADXwNeA08DYgNhA1IDTwNhA2IDZANjA2EDYgNjA2QDXwNgA2MDZANgA2YDZQNWA1cDZgNWA2gDZwNjA2ADaANjA2kDaANgA14DaQNgA2oDaQNeA1sDagNeA2sDSgNHA2wDawNHA2wDRwNMA20DbANMA20DTANNA24DbQNNA24DTQNTA1oDbgNTA1oDUwNRA1gDWgNRA1gDUQNSA1cDWANSA1cDUgNhA2YDVwNhA2cDZgNhA2MDZwNhA3IDcQNwA28DcgN0A3IDcAN0A3gDdgN3A3oDeAN1A3gDegN2A30DfAN7A3wDfgN7A3wDfwN+A38DgAN+A4MDggOBA4QDgwOBA3wDfQOFA4YDfAOFA4kDiAOHA4UDiQOHA4oDgQOCA4sDigOCA4sDfwOMA4oDiwOMA48DjgONA5IDkQOQA5MDkgOQA5EDlQOUA5ADkQOUA5MDlgOSA5gDlwOEA4EDmAOEA5gDmgOZA5oDmwOZA4QDlwOSA5YDhAOSA5wDhwOIA50DnAOIA5UDnwOeA6ADlQOeA6IDoQOgA54DogOgA6MDnwOVA5EDowOVA6QDowORA5IDpAORA6UDpAOSA5cDpQOSA6cDjwOmA6YDjwONA6gDmwOMA4YDqAOMA6gDhgOFA4cDqAOFA38DfAOGA4wDfwOGA6gDqQObA4cDnAOpA6gDhwOpA6kDmQObA6EDogOmA40DoQOmA5YDqgODA4QDlgODA5cDmAOlA6UDmAOZA5sDmgOKA4wDmwOKA5oDmAOBA4oDmgOBA38DiwOrA4ADfwOrA4sDggOsA6sDiwOsA4IDgwOtA6wDggOtA4MDqgOtA7ADrwOuA7EDsAOuA7QDswOyA7UDtAOyA7gDtwO2A7QDuAO2A68DsAO5A7oDrwO5A7wDuwO6A7kDvAO6A78DvgO9A8EDwAN8An0CwQN8An4CewLCA7EDxAPDA7ADsQPDA8MDxgPFA8UDxgPHA3sCxAOxA8IDewKxA7cDuAPIA8kDtwPIA8sDygPAA8wDywPAA8wDzgPNA8sDzAPNA8ADygPPA3wCwAPPA3wCzwPQA3sCfALQA3sC0APRA8QDewLRA9MD0gO/A9IDvgO/A7wDxwPUA7UDvAPUA7QDtQPUA7gDtAPUA7UDsgO7A7wDtQO7A9QDxwPVA9UDyAO4A9QD1QO4A9UDxwPGA9IDzQPOA74D0gPOA64D1gPCA7EDrgPCA8QD0QPDA9EDxgPDA7kDxQPHA7wDuQPHA7ADwwPFA7kDsAPFA9cDugO7A9gD1wO7A9kDrwO6A9cD2QO6A9oDrgOvA9kD2gOvA64D2gPWA7MD2wOyA7ID2wPcA7ID3AO7A7sD3APYA1sEaQNcBF0EaANeBF8EZwNoA10EXwRoA2AEZwNfBGEEZgNnA2AEYQRnA2UDZgNhBGMEawNiBGIEawNsA2QEYgRsA2wDbQNlBGQEbANlBGcEbQNmBG0DbgNoBGYEbQNoBGoEZQNpBGoEaQRWA2UDagRWA2sEVgNpBG4EawRsBG0EawRuBG0EVgNrBG8EVQNWA20EbwRWA3AEVQNxBHQEdgR1BHMEdgR0BHMEdwR2BHkEeARzBHgEcgRuBGwEeARuBHkEcwR0BHoEeQR0BHsEeQR6BHIEeQR7BHIEeAR5BFUDcAR8BH0EfARwBH4EbgNaA38EfgRaA2gEbgOABFoDWQOBBFoDgQSCBIIEfwRaA3wEfQRZA1kDVQN8BIQEEwOFBIYEFQOHBBYDFQOGBIgEFgOGBIkEFwMWA4gEiQQWA4oEFwOJBIsEGAMXA4oEiwQXA4wEGAOLBAQDGAOMBI0EBAOMBGkDWwSQBI8EhQQTA44EEQORBBEDEgOSBJEEEQOSBGoDWgRZBFkEaQNqA4QEgwQUAxQDEwOEBI4EjwQTAxMDEQOOBF4EaANpA2kDkAReBJIEEgOTBBIDDwOUBJMEEgOUBJQEDwMQA5YEEAMAA5UElgQAA5YElQQQA5UEAAOXBJcEmgSYBJcEmwSaBJcEAAObBJkEmASdBJwEmQSdBKMEnwSgBKMEoQSfBKMEogShBKQEoQSZBKQEpQSeBKQEnASlBKQEmQScBJ8EoQSkBJ4EnwSkBAADAQOmBJsEAAOmBKYEAQOnBKgEpwQBAwEDAwOoBKoEqQQDAwQDjQSpBAQDqQSqBKoEAwMEA4IEgQRZA6sErAR5A3UDeAOtBK0EeAN3A7IEsQSwBLMEsgSwBLMErwSuBLQEswSuBLQErgR3A7UEtAR3A7UEdwN2A3YDegO2BLYEegO3BLcEegN5A7gEtwR5A7gEeQOsBLkEuASsBHMDuwS6BLsEcwO8BL0EuwS8BHMDdAO+BL8EcwO+BMAEcgNvA3EDcgPBBMMExATFBMYEwwTFBMcEwgTDBMYExwTDBHEDwgTHBMgEcQPHBHADcQPIBMkEdANwA74EdAPJBAAA8XAGPvQdYj8HRoA8bLwCPt0WZj+wSY88a4MIPhRMZj/ZY0u8kvIAPqDNYD+ZsOI8YmkVPuyOVj98UyW865MSPiwAVz9k1KY5w6sOPodJWD8OrmU8ee0FPqktWj8cmtU8j36APKWCWj9E5qO9Cau8POLbVT/gdJG9RscVPYkkWj/p+rS9rRWZPPQaVj9ye2y9SLcLPWIzVj8UmKm9d18zPQeYVD8AJbS9MveBPeRQWj83iLm9nR9WPbsmVD/HP7m9alV/PS5jVD/qG729XFSZPZSvVT+OFLi9bS0VPls+Vz/VWM28yQnBPYnxVT9eJLi9E/zTPbdNVz8t46y9eSWzPVAOWz8AN7C9UgSuPR4/VT/0YLu9xivjPawLWT+pnZu94bjZPdc8XT+ZzZ+9WcIRPolWWD8dzgu9btoHPu4sYD/FGQW9wz8MPustWj/0ISm927gBPr0PYT+3lDu9Fy8LPqqTWD9Y51O9c4r6PX31Vz9WKZW9uWsFPp25Vz9Lp4W9RQP2PdLGYT+i93q9UhgCPqohZj9gKw29N9wAPksmbT9PjAe8ydP5PR03bD+K3gS9pkCmMyqSaj9U8Li9X2kaO0DBZT/CZL29Gxh4PPDMZT+418m9bA1lPNwJaz8wFcO9djKsPezeZT+Ctse9S2umPRgeaz/NAL69pRNrPeegaz/wb8y9h8p2PaXVZT+TKdW9uNiwPdXYXz+mkb+93W3YPSRZYT/zG6i93pDVPW/wZT/LxKW9JWV/PVVyXz/u/Mu9kIMWPTADXz+XSsm9prDnPVS7az81T2m9eVHQPQa5az/BnaC9e0wRPdTNZT9g8tS95sgLPUdcaz/r3sy9SeNAO4ajYD+cnq+9qaaBPIdAXz/FgLi9oGHvPaYzZj+vYHa9bCp5M0uQXD92WJa99PALM7uTWT909lG9hYZtOyxvWD97qFu9otpWOzQ7XD9QwZe9uanDs6XLYT9uOmc9XDnVs3D2aD+pMoI9s/vVPEsOaT/cvn09c9/DPAT0YT/SQGU9NJ72Pe/gbD/k9pc8nnPYPeawaz95/C891wl7PXOlaT84XFA9NNGpPcmSaT9vsE89WNtCPer/YT9uHkI9ZA+dPNnaXD/Kezs90+Crs/e8XD9tuT89SWPoPX05Yz98HJO9y/uZM9vVYD8EwK69gCqqMxjAZT9PMLy9bSnIPPCeUz+TQg490sGDPAHjVD/K5M88VyS1PMfSVz+eC8Q8sqVNPdVRWj/B6kA9muULPZKRUz95qS49EMZdPKROVT/vCFE8afk7PRsNVT8ghUw9r4NkPa8XVD+VAWI9f4eEPZvoUz91m289542sPbdNXD/wiWg9MqSXPaTTVD/XqHY9snHQPSygVj9ENmY9vX+9PccsVj/YG3M9gECpPY5MVj8S5Hc9eALlPRjtXD9hFS893TDfPbf+Vz+OgFQ9ZZPyPYC1Xz/X/B494L3fPbmJZT/p+zA9ks/rPTJGWj+G4jk9HQn/PYqHXD+vJgw9u4mcOw9UVz9JYwq9h1u+spsKVz+YUGu7AlE6PIVKVz/AV3S7AvU/Ms8OWD8tmgW9c9FZPILfVj8bxHa77uZ9PAbTVT8eXRa9nbdePW4eYj/ukUU9h1u+spsKVz+YUGu7+d5ss54JWD8d7M08w154PBC1WD/VksU8AlE6PIVKVz/AV3S7rSQOPStwXT8EfCo9rq2rPQq+ZD80PFk9VyS1PMfSVz+eC8Q8c9FZPILfVj8bxHa7c9FZPILfVj8bxHa7crwCvt0WZj8USY8893AGvvQdYj9jRYA8cIMIvhRMZj8pZUu8nfIAvqDNYD/9r+I88JMSviwAVz9GqKY5YmkVvuyOVj/yVCW8yasOvodJWD+4rGU8ie0FvqktWj95mdU8y6q8vOLbVT/ndJG9R36AvKWCWj9B5qO9HccVvYkkWj/y+rS9gRWZvPQaVj93e2y9JLcLvWIzVj8cmKm9T18zvQeYVD8TJbS9HfeBveRQWj9KiLm9bB9WvbsmVD/PP7m9QFV/vS5jVD/yG729R1SZvZSvVT+hFLi9bS0Vvls+Vz+FWc28APzTvbdNVz9W46y9qgnBvYnxVT98JLi9ZiWzvVAOWz8dN7C9QASuvR4/VT8SYbu9vivjvawLWT/OnZu9zrjZvdc8XT+5zZ+9TsIRvolWWD90zgu9adoHvu4sYD8WGgW9yD8MvustWj9KIim927gBvr0PYT8FlTu9Ei8LvqqTWD+s51O9tWsFvp25Vz9yp4W9aor6vX31Vz97KZW9PAP2vdLGYT/s93q9UhgCvqohZj+uKw29N9wAvksmbT+GjQe81NP5vR03bD/W3gS9XRd4vPDMZT+418m9rmYau0DBZT/CZL29vgxlvNwJaz87FcO9cxNrveegaz8OcMy9OWumvRgeaz/eAL69YjKsvezeZT+gtse9V8p2vaXVZT+lKdW9y5DVvW/wZT/pxKW9ym3YvSRZYT8QHKi9m9iwvdXYXz/Ekb+9Y4MWvTADXz+eSsm99GR/vVVyXz8L/cu9nrDnvVS7az95T2m9ZlHQvQa5az/hnaC9tsgLvUdcaz/z3sy9R0wRvdTNZT9p8tS9VqaBvIdAXz/NgLi95uBAu4ajYD+cnq+9l2HvvaYzZj/1YHa9VYVtuyxvWD97qFu99PALM7uTWT909lG9bCp5M0uQXD92WJa9qdhWuzQ7XD9TwZe9F/zVvEsOaT/Ovn09XDnVs3D2aD+pMoI9uanDs6XLYT9uOmc919/DvAT0YT/GQGU9snPYveawaz84/C89QJ72ve/gbD9Q9pc8Awp7vXOlaT8QXFA9R9GpvcmSaT87sE8919/DvAT0YT/GQGU9httCver/YT9OHkI9F/zVvEsOaT/Ovn09uQ+dvNnaXD/Aezs9uanDs6XLYT9uOmc9QWPovX05Yz+hHJO9YoLGPQkjLD59uZ293NrNPYRiDz6V4Zi9vmTVPdIVED48pYS99fzLPcHVKz5Ja4y94ZtqPTdODD4lI0+9XjNnPUCyLT4UTYO9npN+Pfx2LT63S1G9wYFhPXAbET7tPoO9b2fNPYHiDD4C/FK96hrGPdT6Ej5kOj69bSbJPUQ/LD774Vm9x57GPe1GAD70iSW99GZpPUu5Dz7fP5i9NYB5PWGpLT5nnaC96Tu5PeCILD6c37K9Di+4PUe9DD5wLrC9oPq3PSNWFT63QBq9bTS4PRt5BD6peAa9Wm+hPdBqGD5JIAC9LSScPfwHBj6VlNm8LSScPfwHBj6VlNm8NeSGPfRfFT6qEiC9Wm+hPdBqGD5JIAC9wCOBPfxcBD6W0RC9lVp4PXZ6Ej4GEz69mZRuPegkAz5GSiy9HwGNPUQgLT4LbrW9zGyNPXOODT5XS7S9ouClPXhxLT48X729eDylPaCsED5XE7y9eDylPaCsED5XE7y9ouClPXhxLT48X729gfu7PSv1LD4keiu92IumPSLNLT4vGxG9Z3KJPTT0LT7SBjC9jhOEPXTD3j6HluW9Ca1tPYHF9j576NC9iakpPX789D7r/q29rbc7PW/m3T4vO769zHUVPTn+8T5sDXy9r/QkPdV83D7Kvo+9eHOyPZOO3z6dw+u95H+mPeAk9z5udti9MJiWPeJcGD/Lv4A8AJ2XPa9rDz9daVk8ZVJRPdchDz90mRA85VZVPYkVGD8Xw1U8MyZCPTMA7z5kjhi9hu9TPZwL2j55DzS9eeZ+PSHc7T7bgJy8ejCMPRiU2D6z8Ne8j+ukPWvw7T49dHq8wsuwPady2D7zl728SyxvPa8d/z4vTwa8owidPWwS/z60J9y7dYlcPQ+NBz+TCIQ7XsaYPVSlBz8itsU7BAUtPaPR/z4OH+O8nAkMPdYVCD8UVpW8gwMJPWRIAT+uple9gOjWPNwfCT8qtDi9XjwqPXlgAj+wYZ29uMciPRORCj9ASYi9hAZhPc5eAz9tib+9apxePfavCz/Nj6S9nZaaPeTYAz+eFcO9JpKXPckNDD+tKqS9mOQZPQt7ET+0O4C9DwLHPDtaED8bLyK9pyZZPfdYEj8jf5m9v5iXPT+eEj/Qb5q95u8EPac/GD+tlRy8Z9YEPYSfDz/mBHS8hIzRPDGsGD+XXgy9EKaiPecPLj8+Ap297NhMPWT9LT/Kkpa9XO9PPWbSJD9il5W9WVKfPXySJD9iA5i9d1bjPIexLT8Ej0a9dKL9PLN8JD9LU1a9JpCtPDm7LT8wEp28QgPHPJM1JD+9E8q8U2bmPHyzLT/5CLM775MCPQoWJD8HMbu690UFPbdeGT8BZ2G95ZdOPbd3Gj90qJO9/hGZPduQGj9JKpW9OdhVPYQPJD8h5r08nbiSPcJ1eD6TfcS93RSzPdS/eD6LQ8m9HN6zPX00lj4E2Ne9p2+PPdARlj5nMtK9vodxPU1Jlj7bwLy9/ud/PS7reD5mqrO9MNtXPc1Clj55KJi9dG9lPU8eeT5fjpC9cmt6PZtPlj4yL1G9lnyBPX4xeT6VdlG9foyePeYreT54Fx29fdSaPfhSlj5p7iC9t22HPbw1yD6Udei90Oe0PUUYyD7j2u29W/JKPeK0xz4cIce9gDWRPfNXxT5lIv28iY1lPSUFxj5doUW9Mw4xPTTzxj5GMJu9Z2e3Pf7wrz5ykOe90wmJPcYTsD5d++G9D5VhPQ9jsD55t8e9F7lFPZkYsD4JEp29vrx1PZPgrz6HtUm9PzeVPW0JsD7j2Q29Pt24PQRSlj45UyC9qdO3PTdPeT5WQCG9PneyPVI3xT5UYuq8fPCtPavFSz6dWBy9Z4SfPRtHSz5raRu9FFaCPdiKSz7HZEu9wu9mPXlPSz4lNYe9HrF7PW4vSz6hMKi9tnSPPSusSz5Grrq91cG3PbAfsD623Qu9ar76PXX+3T4dJ6G9ElnpPYKJ9D5fDZK9nF/QPb1t9j5eZL69K4TiPZ5l3z78R8+95H+mPeAk9z5udti9eHOyPZOO3z6dw+u9tFfwPQ/I2z4YRFi93ebePeXr8T5XxD690B7IPXWD7z7K3uC82ebVPXWq2T6s6wy9zYa8PXluCD9rAB+8sgu+PR32Dz8Z76K6TXe/Pf8qAD8gnJ+8soXOPY18CT/nqfu8hA/VPfkdAT+QNSa9sAbUPXSHCj+QQli9TyPbPX9zAj/0x3+9zSvDPf0/Az9dUam9uBK5PWx9Cz/ba5K9JpKXPckNDD+tKqS9nZaaPeTYAz+eFcO9OPzWPSaRLT+gqK08RZnFPaBVGj99SHy9/hGZPduQGj9JKpW9v5iXPT+eEj/Qb5q95nDAPapMEj/wx4O96crhPUieGT8q9Sq9s3TaPVeCET/HbTy9Z4e/PcXAGD8y5lI7i4bbPcM7GT9wPp68Bp/UPbC2ED8Lw7u86tr9Pe7jLT+8xOO7oWMAPuHqLT9oHBi9Kn7yPUT5JD/o8h692abuPR2QJD/QnUm8pcnMPYIgJD9lpWw8JSrfPfDrLT8Tf4C9dEjUPU/vJD/GGn+9WVKfPXySJD9iA5i9EKaiPecPLj8+Ap292/SXPW7OIz/FVNw83RSzPdS/eD6LQ8m9nNrJPekHeT68PLy9kK7TPR4qlj5v2sa9HN6zPX00lj4E2Ne9ix/oPYQ6lj6J+aS92VvbPQFJeT5QMJ695fbWPRNgeT6MxnO9hpPiPdlGlj4npHi94PjKPXxoeT5lnj69hbrTPY9Nlj6eikK9SS3jPROvxz5uwdS9eSD9PSnSxj5Bpqm991LwPZAgxj43OWy90Oe0PUUYyD7j2u29ssLXPeB+xT5kOB+9Z2e3Pf7wrz5ykOe91CzdPQfdrz4budG94gj4PX6Vrz4ZJqq9/ZvsPXfvrz5CfHG9hCzaPYYYsD4HEzO9oZ3BPU9fTD44uja9PB3NPWttTD5VMWi9zEbPPRkzTD73yZW9noapPbN3Sz6cT8C9Xn/APeL1Sz7QhrS9noapPbN3Sz6cT8C9tWTVvdIVED5dpYS9ydrNvYRiDz614Zi9UILGvQkjLD6cuZ295PzLvcHVKz5oa4y9RDNnvUCyLT4jTYO9z5tqvTdODD5KI0+9jJN+vfx2LT7iS1G9p4FhvXAbET79PoO94RrGvdT6Ej6eOj69ZmfNvYHiDD49/FK9bybJvUQ/LD434lm9wJ7GvfJGAD4viiW9DIB5vWGpLT55naC91GZpvUu5Dz7xP5i9+y64vUe9DD6OLrC91Tu5veCILD6537K9mPq3vSNWFT7uQBq9bzS4vRt5BD7ieAa9Vm+hvdBqGD55IAC9KyScvfwHBj7zlNm8KyScvfwHBj7zlNm8Vm+hvdBqGD55IAC9MOSGvfRfFT7QEiC9vyOBvfxcBD690RC9hVp4vXZ6Ej4yEz69jJRuvegkAz5tSiy9CwGNvUQgLT4ebrW9tmyNvXmODT5pS7S9heClvXhxLT5ZX729ZTylvaCsED50E7y9ZTylvaCsED50E7y9heClvXhxLT5ZX729efu7vSv1LD5beiu924umvSLNLT5gGxG9YHKJvTT0LT79BjC9YqkpvX789D70/q2916xtvYHF9j6C6NC9dBOEvXTD3j6bluW9grc7vW/m3T5BO769kPQkvdV83D7Wvo+9tnUVvTn+8T6BDXy9xn+mveAk9z6Bdti9W3OyvZOO3z67w+u9clJRvdchDz/3mBA8C52Xva9rDz+zaFk8PZiWveJcGD9xv4A89VZVvYkVGD+ZwlU8e+9TvZwL2j6cDzS9KiZCvTMA7z5/jhi9ezCMvRiU2D4K8de8fuZ+vSHc7T4pgZy8xcuwvady2D5bmL28kuukvWvw7T4JdXq8pwidvWwS/z4uKdy7Vyxvva8d/z7DTwa8asaYvVSlBz+0tMU7h4lcvQ+NBz+JB4Q7AAUtvaPR/z5MH+O8nwkMvdYVCD8/VpW8bgMJvWRIAT+8ple9YujWvNwfCT88tDi9OzwqvXlgAj+9YZ29oscivRORCj9LSYi9VwZhvc5eAz+Aib+9SZxevfavCz/Uj6S9FJKXvckNDD/AKqS9hZaaveTYAz+yFcO9/gHHvDtaED8nLyK9guQZvQt7ET/AO4C9hiZZvfdYEj8zf5m9sJiXvT+eEj/mb5q9bdYEvYSfDz8rBXS87+8Evac/GD/7lRy8bIzRvDGsGD+nXgy9PO9PvWbSJD9yl5W9zthMvWT9LT/Xkpa9AKaivecPLj9WAp29S1KfvXySJD93A5i9UqL9vLN8JD9dU1a9XFbjvIexLT8Oj0a9LZCtvDm7LT9LEp28PQPHvJM1JD/UE8q8/JMCvQoWJD99M7u6dGbmvHyzLT9uCLM75EUFvbdeGT8TZ2G9yZdOvbd3Gj+DqJO98BGZvduQGj9eKpW9UNhVvYQPJD/k5b08/d2zvX00lj4h2Ne9yhSzvdS/eD6dQ8m9hbiSvcJ1eD6wfcS9jm+PvdARlj6FMtK90+d/vS7reD55qrO9k4dxvU1Jlj7kwLy9V29lvU8eeT5vjpC9D9tXvc1Clj6IKJi9jXyBvX4xeT69dlG9YWt6vZtPlj5VL1G9e4yeveYreT6mFx29ddSavfhSlj6Y7iC9s+e0vUUYyD732u29mm2Hvbw1yD6ndei9LfJKveK0xz4vIce9fI1lvSUFxj6BoUW9fTWRvfNXxT60Iv28Dg4xvTTzxj5TMJu9Sme3vf7wrz6QkOe9twmJvcYTsD5w++G95pRhvQ9jsD6Nt8e99LhFvZkYsD4XEp29rrx1vZPgrz6vtUm9OzeVvW0JsD4P2g29odO3vTdPeT6RQCG9N924vQRSlj5yUyC9NXeyvVI3xT7CYuq8ZYSfvRtHSz6caRu9c/CtvavFSz7PWBy9pe9mvXlPSz42NYe9ClaCvdiKSz7vZEu99LB7vW4vSz6pMKi9onSPvSusSz5Zrrq92MG3vbAfsD7v3Qu9iV/Qvb1t9j58ZL699FjpvYKJ9D6CDZK9TL76vXX+3T5CJ6G9GYTivZ5l3z4lSM+9W3OyvZOO3z67w+u9xn+mveAk9z6Bdti91ebeveXr8T6YxD69q1fwvQ/I2z5gRFi93ObVvXWq2T7s6wy90x7IvXWD7z5H3+C8zYa8vXluCD9EAR+8vAu+vR32Dz9A9qK6T3e/vf8qAD+PnJ+8fA/VvfkdAT/SNSa9tIXOvY18CT9sqvu8UiPbvX9zAj80yH+9swbUvXSHCj/QQli9uSvDvf0/Az97Uam9phK5vWx9Cz/3a5K9hZaaveTYAz+yFcO9FJKXvckNDD/AKqS9RPzWvSaRLT8eqK08sJiXvT+eEj/mb5q98BGZvduQGj9eKpW9PJnFvaBVGj+7SHy93nDAvapMEj8PyIO94crhvUieGT9v9Sq9q3TavVeCET8Gbjy9EJ/UvbC2ED+Qw7u8i4bbvcM7GT/5Pp68coe/vcXAGD+X4lI7N37yvUT5JD8y8x69nGMAvuHqLT+0HBi99Nr9ve7jLT8ex+O72abuvR2QJD/pnkm8r8nMvYIgJD9rpGw8d0jUvU/vJD8HG3+9HCrfvfDrLT82f4C9S1KfvXySJD93A5i9AKaivecPLj9WAp29AKaivecPLj9WAp296fSXvW7OIz9sVNw8fa7TvR4qlj6N2sa9ftrJvekHeT7ZPLy9yhSzvdS/eD6dQ8m9/d2zvX00lj4h2Ne9gx/ovYQ6lj6n+aS90FvbvQFJeT5yMJ693PbWvRNgeT7OxnO9fZPivdlGlj5ppHi9h7rTvY9Nlj7eikK94vjKvXxoeT6lnj69ciD9vSnSxj5qpqm9Ny3jvROvxz6hwdS941LwvZAgxj5+OWy9s+e0vUUYyD732u29tMLXveB+xT6lOB+9Sme3vf7wrz6QkOe9wSzdvQfdrz5CudG90Aj4vX6Vrz5BJqq99JvsvXfvrz6KfHG9fCzavYYYsD5JEzO9mZ3BvU9fTD5zuja9NB3NvWttTD6SMWi9z0bPvRkzTD4XypW9i4apvbN3Sz6uT8C9S3/AveL1Sz7uhrS9i4apvbN3Sz6uT8C9EMKDvAHjVD+z5M88synIvPCeUz+DQg49kCS1vMfSVz+AC8Q8wOULvZKRUz9nqS493qVNvdVRWj+h6kA9ZMZdvKROVT/YCFE8k/k7vRsNVT8GhUw94INkva8XVD9vAWI9mYeEvZvoUz9Qm289SqSXvaTTVD+mqHY9BY6svbdNXD+7iWg90H+9vccsVj+eG3M923HQvSygVj8ENmY9nkCpvY5MVj/b43c98DDfvbf+Vz9MgFQ9iwLlvRjtXD8bFS89bpPyvYC1Xz+O/B49873fvbmJZT+n+zA9pc/rvTJGWj8+4jk9Jwn/vYqHXD9jJgw9hImcuw9UVz9NYwq9MFE6vIVKVz8uWHS7qdFZvILfVj+hxHa7zuZ9vAbTVT8pXRa9AvU/Ms8OWD8tmgW9x7devW4eYj/OkUU9Pl94vBC1WD/CksU8MFE6vIVKVz8uWHS71SQOvStwXT/weyo9y62rvQq+ZD8CPFk9qdFZvILfVj+hxHa7kCS1vMfSVz+AC8Q8qdFZvILfVj+hxHa7u/zJvdgjNT+P94692FmkveEmMT9cc569ATnkvTW9Mz83xIG9u/zJvdgjNT+P9469SncIvncVOD/r2ga9RCcEvj2wNz+YeSC9xJsFvpspNj8GhDm8/7ICvqvvMj91RVW7BdLzvcDWMj8gygM8f4WJvX3LND85FZ292FmkveEmMT9cc569NxZKvYH3Mz9O3Ja9azkjvV7+MT/9NYG9ra/BvGYnNT8hFTu9azkjvV7+MT/9NYG9xPGfvGSsNT90RsW8vFquvSDGKT+MFto89hOZvUV8Jz94/PM8l1uPvdzaIz/khNY8tJR6vR2iJz8SJ+E8crGCvSntIz8E9s08O7pTvVuDKj9pOOE8aWBEveq6Kz+np8M8O7pTvVuDKj9pOOE8dpuIvVDVHz+e4LU8hzOXvaR1HT9Xiak8GQWXvYXvGz85V508l7advettGz8O3Yc85yylvaniHD+TtIA8ROOdvZAfHj+nzJ08RbGPvc+qIT91oMc8ct+IvYv6GT9/dIc8mzeAvawTHD8NQ5Q89MgKvbcaLD+2WR4815aQvKA6NT9Q3nW8tw+4vO0OMj+Ceuq715aQvKA6NT9Q3nW83lLDvHKIMD/ZUqC78AukPWSZMD9BMZ69cG3KPR44NT86z469EF7jPV3BMj8fjYG9SY+JPWHNND/0Fp298AukPWSZMD9BMZ693vVJPc89ND+g35a9RxscPaetMj9iHXu9qaS/PGCbNT+wYjq9fH6cPPsUNj8hC7u8t++RPF7hND/gCnm84KC3PEfhMT+ntPq7M+4DPiCVNz82hSG9uyvtPQIPMz8hymW9olzpvTeaMj81H3C9gVYIPibsNz+3IAe9Y20FPlTgNT+QMUi8Z+MCPnMwMz8eGkm71OrzPYDKMj/6agE8PnyuPeW/KT/zqNk8whyZPVeZJz+1t/Q8unaOPSbcIz+Z6tU8RvWNPeU3IT+lSMM8nvGDPVnrIz+0zs48Pd55PWGQJz9ZeOA8aW+GPWVFHz8QcLA8nvGDPVnrIz+0zs48UHyJPQLMGT/HSIY8jROXPWppHD8VJ6E8BMSePWC3Gz8PiIc8WzWXPWyFHT/8B6o8YnOcPZ7oHT9BuZ88ioKkPZQvHT/v64Q8WjKAPfQGHD+U25M8rrhTPb2HKj+vUOE8rhFFPYXPKz/c1sU8tpcHPRkrLD84PBI8HIfHPJ11MD+ZPVG7wBdtP+0AMz5THqs+v71hP6xlSD4Ys9s+3HN4P8tGdj5VQYK8/u9TP8L0KD4IPQk/N7d4Pwd/UD7U0fc9aKB1P5XZSj5/NE0+LeZqP8gJNT50UbY+aN1cPylhOj5+hvE+WoEFv6YFA7/cxS6/AdMuvxGfzb58Nhy/6wOlvvJJqr7B42K/18kPv1VXRb9J2Zm+ctUjv8yjLL556j+/lk+evjbHOr3VLHO/Aqutu8TZm70LQX+/AzFmvs9Wyj2PKXi/hXJOvME+mz05Pn+/zL+fPVNoBD5zEH2/ieV3PwS+Zz4pqte9rtpsPnpGhT47+m+/xUTWPisvuz7G1VS/ymmcPhJ0kztHwnO//ODHu0zQbz4z4Hi/SoD9PoJtWj6UnFe/x10dP5w5Vr3aeUm/CgNnP5M6kD4c9qa+DWRnP3Aegz7ndK++Cx1mP4wPmD5+9qS+orZoP1zfgj6Lgai+y5VkP/s4lj6g2a6+FCsHP5+5iz4o4E2/faJIP1JHhT4jXRC/ngZRP11/Kj6fhA2/QAJtP2tQXj5cap6+VO90P9HilD5Nn4m7bPZrP5aLjj6NPoq+AAAAgJbmDD6ikH2/Hh+0vgfXI77WG2y/AouwvinacL0C1G+//suOvu9Ibj7qg26/2nnlPlhc7T2A6mK/JwjIPrQItz5dKFm/xVgbPqIRqT6tf26/efEFPqcDmjxAwX2/XGjVPuEPHL56aGW/yH8qP1C8ljwZ5z6/T1Y8Pwsl5D0fCCu/nGOyPcz0n75jKXK/dn5qvk03uL7OjGe/OQ1cP3w3lj4KN9a+CjQxP8f1iD7NmCu//78svmB1gr2nzXu//VsCviO2hj4R0nS/zT65vsq5zb79WVe/y52+vuAOq75Bq12/MVdWP+xlhD4SrPa+68NCvrCgOL+lhSq/QbpPv5IKCr/d0Wa+EKYgvzB8N78mtZu+7JnuvmdxH79s4CC/AAAAAJQdmr6RIHQ/AAAAAHUOMb7pJHw/IQEePtgbTb6Qrnc/hBVIPqyIv75KFWg/nz9mP6dYeT6U27k+3QkZP77+Az6rjEo/qY8kPmI+Cr5BTHo/id0GPoZTuDxitH0/y1HaPfxKir4t+HQ/BD8xPn9aLr+yIjY/AAAAAAztEL/0BlM//+Q9PxJtgz7DnB6/AAAAgLT2+74D216/AAAAABXsRL7DOHu/4kIev/9fpz6//TY/2Lc9v5J45z70Jv4+n19SvziwLj6xLgs/TYP4vutE4T00C14/UuAZv8GTcj7jZUM/UxZYvzUv+z5Vl10+Tuz+vhMtYT7HwVY/sEW4vr7ZXz5BMmg/Y+qXvpmkYz5bwW0/1BynO0pSBT5Q0X0/EF9Lvrx/Oz6Ze3Y//3ChPnssmD7mt2Y/cBVQPstIMj4MqnY/PTk0vLtNIj6Lv3w/eND8PqYhCj5361s/xhimPkhLuz5rUF8/KVUpP2rPTT4k+Tg/uJEdP5Fa5D2Vu0c/v9WDPjVToT7Z2Gk/899jP9eRoD4nRqk+95sIv8l1WL+URYu8AAAAgIyFf78ERno9rxmvvs/Xbr/hx+U9nqAJvseffL9mu7i90I1Fv6KDHr8RrxQ+uNcuv8bJML9dtHO+kBkzvooOvrzn+3s/AAAAAPOFf7+N3Xk9AAAAgOo4Yr97qe8+dKK9vfLFZb8Zttw+rxmvvs/Xbr/hx+U9KMRcvQ9l5L6zs2Q/3wI4PvHSvD1ouXo/G9W0vo/rPb9K6hE/0I1Fv6KDHr8RrxQ+e99Wv3xzAT92Rkw+v71hv6xlSD4Ys9s+wBdtv+0AMz5THqs+3HN4v8tGdj5VQYK8/u9Tv8L0KD4IPQk/Jp91v4vYSj6pTU0+N7d4vwd/UD7U0fc9LeZqv8gJNT50UbY+aN1cvylhOj5+hvE+AdMuPxGfzb58Nhy/WoEFP6YFA7/cxS6/6wOlPvJJqr7B42K/18kPP1VXRb9J2Zm+ctUjP8yjLL556j+/lk+ePjbHOr3VLHO/AqutO8TZm70LQX+/bTBmPrmKyj3uKHi/hXJOPME+mz05Pn+/zL+fvVNoBD5zEH2/ieV3vwS+Zz4pqte9xUTWvisvuz7G1VS/rtpsvnpGhT47+m+/ymmcvhJ0kztHwnO/yifLO0LQbz4p4Hi/fYv9voG6Wj5olFe/nFodv0s1Vr1ZfEm/CgNnv5M6kD4c9qa+DWRnv3Aegz7ndK++Cx1mv4wPmD5+9qS+orZov1zfgj6Lgai+y5Vkv/s4lj6g2a6+faJIv1JHhT4jXRC/FCsHv5+5iz4o4E2/ngZRv11/Kj6fhA2/kQNtv3A3Xj49a56+VO90v9HilD5Nn4m7vfRrv62Xjj6QPYq+AouwPinacL0C1G+/2x+0Pny9I77NHGy//suOPu9Ibj7qg26/YVYbvuwBqT6Pgm6/JwjIvrQItz5dKFm/2nnlvlhc7T2A6mK/efEFvqcDmjxAwX2/11Y8v0Px4z2bCCu/yH8qv1C8ljwZ5z6/XGjVvuEPHL56aGW/dn5qPk03uL7OjGe/nGOyvcz0n75jKXK/OQ1cv3w3lj4KN9a+CjQxv8f1iD7NmCu//VsCPiO2hj4R0nS//78sPmB1gr2nzXu/y52+PuAOq75Bq12/zT65Psq5zb79WVe/MVdWv+xlhD4SrPa+EKYgPzB8N78mtZu+ZLdPPzkPCr+uzma+tgVQP2EEBL+YDou+MKTuPoFvH7+B3iC/8AEevq8CTb7Vr3c/AAAAAHUOMb7pJHw/AAAAAJQdmr6RIHQ/hBVIvqyIv75KFWg/3QkZv77+Az6rjEo/nz9mv6dYeT6U27k+qY8kvmI+Cr5BTHo/id0GvoZTuDxitH0/hBVIvqyIv75KFWg/y1HavfxKir4t+HQ/8AEevq8CTb7Vr3c/BD8xvn9aLr+yIjY/AAAAgJQdmr6RIHQ//+Q9vxJtgz7DnB6/msBpP81y1zzpVNC+qHZZP3o7Gz1Auga/BX19P9mf+D1TuI29iDx+P0YhMD0IPN+9radrv/FnFT7mjbk+3MZ/v52/Hz3iIHQ8UPdgv88Ptj3SEfA+1Ol9vy52iz3sjty91C1nP/U33j0fzNQ+dPZXP5Kt6T3qUgY/JTZ0P9gfST1Jgpc+ENRRPyWpOT4XHgs/JL9cv6aAFT3pTQG/JcNivyu7Fjy7kO2+cvs0P8bjLr3puTS/8B8iP3nyML2oz0W/gQMrP1bPGT46lDo/FikWPwDcTz6pt0g/zP/lPUEaVT43vXg/Pr2BvoFjjD4CfW0/+bCBvmpkjD6Lfm0/5SI1v0DfWD4bliw/J5kKv1dUkj5Da0o/+wo+v1I0iz7Rwxw/Ow1Zv1hOWj5RkPg+3bFav98IiD5bweQ+LegMv5mHybyOo1W/PhHwvn5dmLyQEGK/Qw21PaT0ML36wX6/GFZ9PrDXAb296He/GFZ9PrDXAb296He/Qw21PaT0ML36wX6/kUVFP4OlGz2c3SI/NzVJPl0ewT2N2Hk/Ra4mv4ea5j0RJ0A/4c7mvgRvcD2KBGS/xlP0vnvBKD7f+ly/b59kv2xaDz0erOW+mEJev8xKarz78/2+H+Z5v4QmD752+ik+5/h9vynVxb1yc6Q9eVw+PnDL/z1Cf3m/2k9JPgoHjD63CnG/zwQnPndIMr6tm3g/EgKePuwSJb5Z+28/G/L/vgk0AL6tY1s/INHGvtr+Nr64bmc/SilQv8sqbb6EtQg/eKVWv+hZIL5BoAU/+KDjvrKahL6Kg1s/8UX2vlyONb58zVs/CHNkPkMfQb491XQ/Eh04Pi6nF74x9Xg/cYbtvqcXqr4PPFI/WuCPPgb2ir64p2s/OVXOvloGn74YY1w/5X7GPoQCh779HWI/bY9Xv7EtlL5CEuk+ZYtdvxxtZ7719+Q+iTJ9v4efFr5oUkG8XLx9v2HcrL0XutG9y7tav7jkpT0tYgO/h+FMvw2Q0z1ZMhe/cc7zvj8mgD4JzVe/yKWsvpa5fD7dk2i/uzNvPkdtwz7I72S/ci2sPu3okz63d2W/OP1Kvy3FUz06bBu/6kx+v1YnS7vEguu9Z+m5vifX1j22Am2/Cc1yPn6EAD6PnXa/S7Jgv3Z7pb3B0vE+xzJhv3ocuL1OGe8+L6l/v4p0YLwVKEu9evc1Pvguf72Va3u/fzXtvq7w9LwVvWK//D7xvg8UjLwywmG/yW1JPrP8bb2ljnq/X4Fjv+zUZ71H9ei+yz1nv9HxsLyFY9u+xP59v+08171TPIo9fmB/vxelir0/zYg8luRdv3mkG779MPM+AShev7ZUAb4OEfY+YyxUv9OL2zt+Ow+/mmmivoudxDsgxnK/1F9cPrGp6Dur/nm/FcH/vhihK75GlVk/zvvevsMC3r34xGS/rHgtPq07Ab4EOXq/f/HSPZ/jFL4653u/cUzbvtbSEb4tcGS/HbhWv6aO7L2oOQi/1uJUv8ebor2LuAy/0zx/v3t4nL0oCSw8OcZ/v4epJL0DQEY8o11Qv0ynG72QaBQ/ftxSvwgCZ7xSHxE/N0anvsZlKruD83E/BjXevnR5R731S2Y/JTvfvpN46bxhRWa/1HNCPowRg7z9Tnu/qhpbv/3ljL3MOAO/Jz/qvuyoBr4BImE/CCpXvw2E672yjAc/mkh+v/tdur2OBZI9NqISPj+4671/pHu/HbEKv2s66L1oNVW/HXBgv4KS3L1OB/C+tbV+v9V0vr0HmBk9UGFTvzloor0E+g4/yxHYviwb0b1WnGY/PwBEPnIDPL3p/Xo/BCmtPmWWMrwG5nA/OJk3PjOJ/b2B2Xk/wRy+PolWQTzFrW0/iYmwvhpMJj2JE3A/Z5pVvy24DT3O0gw/Gbl/vw1KHTqrdz49Rp5avx4WN735tAS/oR78vr1dj73tFl6/pNxsPs9W0r1jqnc/w0R9P+VHAz7ZuY29CGx3P6I3Zz4MD/q9XtY2P9Nkmz4MdiG//xs4P4r/HT48by2/2k9JPgoHjD63CnG/eVw+PnDL/z1Cf3m/Z+FnP2VLJj0k9dc+i51tP5Zjuz3rrLg++M47PxU377wFzi0/5OMzP/D3Qr2/uzU/kDpOP17eD76jWRM/JtJOPwYnIL5JdRE/z+VGPzUH1r0P7x4/4qR2Px7QgL1/UYU+9JRzP83lLj1JAZw+omF5P7N5iz18lFy+Pu56P4f4MT7RWsK9H+M3P9w3qT6puRy/Ul80P8kYQD6JMy+/ci2sPu3okz63d2W/ZTFvPnl4wz6M7WS/Ya0qP2dzaL6RvDU/JacqP+TsQL0ucT6/1F9cPrGp6Dur/nm/Cc1yPn6EAD6PnXa/9w4sP72pgj0l2jy/4r51P+No972EcIG+INh3P0vhYL2HLHq+Y5MoPw6ONb70PDs/hURuPwmfQL6jkaA+xuZyP3B/DL40npE+V0NsP35SZ75dpJ8+rsdzP7l7Lr5Xr4G+QFFzP1nIMr4/roO+jwZtP7YcZ74EIps+8s8nP1Q5eL6LGDc/LzwvP7w8zr3U1Ti/dAMpP1266716AT6/yW1JPrP8bb2ljnq/F941PiEwf726bHu/1TdjPowmbb6meXI/rHgtPq07Ab4EOXq/rBY6P77REb6a+yu/eygfPw13D775RkW/f/HSPZ/jFL4653u/V9t0P6WVEL7OwoK+W/p6PyvuCb7aWRO+th51PxFhw73LXYs+A4BxP78B1r3OOKE+B3VEP/ljbr1RdSM/IvEzP8ctkL1CMjU/ak4wP7AtELxcmTm/E3J9P7ZR/Lt6FBC+K4prP+WkG72zn8c+GY1CPukQg7zFTXu/jZgyP7sBkb1OgzY/NqISPj+4671/pHu/iPMtP9+20b22+zm/Sfl5PwQq1L2eu0G+yKxqPx5cj72qa8k+NvAoPwi2pr36NT8/1rJBP2AM+byLMyc/rfJ1P2ihib3W1Yk+hTt2P2n3yr3ykIK+idj5Pdcnur0mBX2/xOMqPwwE3r2PlDy/2975PYwsur3/BH2/BX19v9mf+D1TuI29qHZZv3o7Gz1Auga/msBpv81y1zzpVNC+zzx+v5u4Lz1HPN+93MZ/P52/Hz3iIHQ8radrP/FnFT7mjbk+hvpgP/rdtT0lCPA+1Ol9Py52iz3sjty9dPZXv5Kt6T3qUgY/1C1nv/U33j0fzNQ+JTZ0v9gfST1Jgpc+ENRRvyWpOT4XHgs/JcNiPyu7Fjy7kO2+JL9cP6aAFT3pTQG/8B8iv3nyML2oz0W/cvs0v8bjLr3puTS/gQMrv1bPGT46lDo/FikWvwDcTz6pt0g/zP/lvUEaVT43vXg/+bCBPmpkjD6Lfm0/Pr2BPoFjjD4CfW0/J5kKP1dUkj5Da0o/nx81Py7jWD47mSw/+wo+P1I0iz7Rwxw/Ow1ZP1hOWj5RkPg+3bFaP98IiD5bweQ+LegMP5mHybyOo1W/PhHwPn5dmLyQEGK/Qw21vaT0ML36wX6/GFZ9vrDXAb296He/GFZ9vrDXAb296He/Qw21vaT0ML36wX6/kUVFv4OlGz2c3SI/tTVJvmjqwD0p2Xk/Ra4mP4ea5j0RJ0A/b59kP2xaDz0erOW+xlP0PnvBKD7f+ly/4c7mPgRvcD2KBGS/akVeP8ZNarwa6v2+5/h9PynVxb1yc6Q9H+Z5P4QmD752+ik+2k9JvgoHjD63CnG/eVw+vnDL/z1Cf3m/G/L/Pgk0AL6tY1s/EgKevuwSJb5Z+28/Ux4nvrlHMr6jmng/N9DGPjsYN76pbWc/eKVWP+hZIL5BoAU/SilQP8sqbb6EtQg/8UX2PlyONb58zVs/+KDjPrKahL6Kg1s/Eh04vi6nF74x9Xg/CHNkvkMfQb491XQ/WuCPvgb2ir64p2s/cYbtPqcXqr4PPFI/5X7GvoQCh779HWI/OVXOPloGn74YY1w/bY9XP7EtlL5CEuk+ZYtdPxxtZ7719+Q+fDN9P+GFFr4iU0G8XLx9P2HcrL0XutG9y7taP7jkpT0tYgO/h+FMPw2Q0z1ZMhe/cc7zPj8mgD4JzVe/yKWsPpa5fD7dk2i/ci2svu3okz63d2W/uzNvvkdtwz7I72S/6kx+P1YnS7vEguu9OP1KPy3FUz06bBu/Z+m5PifX1j22Am2/Cc1yvn6EAD6PnXa/xzJhP3ocuL1OGe8+S7JgP3Z7pb3B0vE+Gal/P+IXYrwDKEu9/D7xPg8UjLwywmG/fzXtPq7w9LwVvWK/evc1vvguf72Va3u/yW1JvrP8bb2ljnq/yz1nP9HxsLyFY9u+X4FjP+zUZ71H9ei+xP59P+08171TPIo9fmB/Pxelir0/zYg8WR5ZP1QwDL4XBgM/r2RaP1aqIL5Vxf4+YyxUP9OL2zt+Ow+/mmmiPoudxDsgxnK/1F9cvrGp6Dur/nm/FcH/PhihK75GlVk/f/HSvZ/jFL4653u/rHgtvq07Ab4EOXq/zvvePsMC3r34xGS/JVfbPj3REb6rbWS/1uJUP8ebor2LuAy/HbhWP6aO7L2oOQi/OcZ/P4epJL0DQEY80zx/P3t4nL0oCSw8ftxSPwgCZ7xSHxE/vmJQPxMPHL35YBQ/N0anPsZlKruD83E/BjXePnR5R731S2Y/1HNCvowRg7z9Tnu/JTvfPpN46bxhRWa/qhpbP/3ljL3MOAO/CCpXPw2E672yjAc/Jz/qPuyoBr4BImE/mkh+P/tdur2OBZI9NqISvj+4671/pHu/HbEKP2s66L1oNVW/HXBgP4KS3L1OB/C+GrV+P82ovr2plxk9UGFTPzloor0E+g4/ABzYPspM0b09mWY/BCmtvmWWMrwG5nA/PwBEvnIDPL3p/Xo/zZk3vpNV/b1M2nk/iYmwPhpMJj2JE3A/wRy+volWQTzFrW0/Gbl/Pw1KHTqrdz49Z5pVPy24DT3O0gw/Rp5aPx4WN735tAS/oR78Pr1dj73tFl6/pNxsvs9W0r1jqnc/XtY2v9Nkmz4MdiG/CGx3v6I3Zz4MD/q9w0R9v+VHAz7ZuY29/xs4v4r/HT48by2/KkM+vqjM/z1ygHm/2k9JvgoHjD63CnG/i51tv5Zjuz3rrLg+Z+Fnv2VLJj0k9dc+e+ozv/v3Qr07tTU/+M47vxU377wFzi0/kDpOv17eD76jWRM/JtJOvwYnIL5JdRE/aOhGv/MC1r3l6x4/9JRzv83lLj1JAZw+hqZ2v/rQgL1HRYU+Pu56v4f4MT7RWsK9omF5v7N5iz18lFy+H+M3v9w3qT6puRy/Ul80v8kYQD6JMy+/ZTFvvnl4wz6M7WS/ci2svu3okz63d2W/Ya0qv2dzaL6RvDU/Cc1yvn6EAD6PnXa/1F9cvrGp6Dur/nm/Jacqv+TsQL0ucT6/9w4sv72pgj0l2jy/4r51v+No972EcIG+INh3v0vhYL2HLHq+xuZyv3B/DL40npE+hURuvwmfQL6jkaA+Y5Movw6ONb70PDs/QFFzv1nIMr4/roO+rsdzv7l7Lr5Xr4G+V0Nsv35SZ75dpJ8+jwZtv7YcZ74EIps+8s8nv1Q5eL6LGDc/dAMpv1266716AT6/qz8vvx85zr2X0ji/yW1JvrP8bb2ljnq/evc1vvguf72Va3u/F941viEwf726bHu/1Tdjvowmbb6meXI/eygfvw13D775RkW/rBY6v77REb6a+yu/rHgtvq07Ab4EOXq/f/HSvZ/jFL4653u/V9t0v6WVEL7OwoK+W/p6vyvuCb7aWRO+AR11v7Vfw73vaYs+A4Bxv78B1r3OOKE+IvEzv8ctkL1CMjU/B3VEv/ljbr1RdSM/E3J9v7ZR/Lt6FBC+ak4wv7AtELxcmTm/hIxrv3KmG72VlMc+GY1CvukQg7zFTXu/jZgyv7sBkb1OgzY/NqISvj+4671/pHu/iPMtv9+20b22+zm/Sfl5vwQq1L2eu0G+yKxqvx5cj72qa8k+NvAovwi2pr36NT8/ma9BvzcI+bxNNyc/rfJ1v2ihib3W1Yk+hTt2v2n3yr3ykIK+idj5vdcnur0mBX2/xOMqvwwE3r2PlDy/idj5vdcnur0mBX2/2Lc9P5J45z70Jv4+4kIeP/9fpz6//TY/czZKP4Qvuz2yPBs/UuAZP8GTcj7jZUM/TYP4PutE4T00C14/UxZYPzUv+z5Vl10+Tuz+PhMtYT7HwVY/sEW4Pr7ZXz5BMmg/Y+qXPpmkYz5bwW0/EF9LPrx/Oz6Ze3Y/1Bynu0pSBT5Q0X0/cBVQvstIMj4MqnY//3ChvnssmD7mt2Y/PTk0PLtNIj6Lv3w/xhimvkhLuz5rUF8/eND8vqYhCj5361s/KVUpv2rPTT4k+Tg/uJEdv5Fa5D2Vu0c/v9WDvjVToT7Z2Gk/899jv9eRoD4nRqk+95sIP8l1WL+URYu8rxmvPs/Xbr/hx+U90I1FP6KDHr8RrxQ+ztouP1jGML+quHO+Md9OPwuxD7+8/Da+kBkzPooOvrzn+3s/dKK9PfLFZb8Zttw+rxmvPs/Xbr/hx+U9KMRcPQ9l5L6zs2Q/3wI4vvHSvD1ouXo/0I1FP6KDHr8RrxQ+0ZzZPkqUXr/W7YA+e99WP3xzAT92Rkw+nW/dvnAgn73s9WW/XyYxvky4jb1bhHu/HIYnvw6Yu72TJkC/nW/dvnAgn73s9WW/UzR0v+CbJr4QFIG+3eRVv9JY271X9gm/S7F6v4iySL5TtVE9DYtqvzj5bb5GKqc+coRLv8KWbr49Yg8/wUQLPq2A+7zgf32/XyYxvky4jb1bhHu/m8LzPmWlm7yJEmG/I4Y9Pwr+B72J4iu/dkxlP2ClrL3oid++8Yg9PzRkCL0j3yu/Z5x5Pwxj1L0fBUm+vuPWvi9VUr4/VWI/SgINvsUCTb7JU3g/eyAwPi3ASr7VCXc/dl0+Po7JNr4KWnc/eyAwPi3ASr7VCXc/G9ACP5PRHr5hcVg/fb88P2+iI76nCSg/G9ACP5PRHr5hcVg/M3UPPmBeZb5y53Y/0HNkviZZdb5r5HE/0HNkviZZdb5r5HE/XZQHv+dRWr7TLVI/XZQHv+dRWr7TLVI/XZQHv+dRWr7TLVI/M3UPPmBeZb5y53Y/cfzcPeF1db4c/3Y/cfzcPeF1db4c/3Y/thA1P/EVSL5M7C0//4Z9P4h2Ar59D2A9gPRxP5XuDb6edJc+/4Z9P4h2Ar59D2A99rd0Pzay8r0eh4k+XyYxPky4jb1bhHu/nW/dPnAgn73s9WW/HIYnPw6Yu72TJkC/wUQLvq2A+7zgf32/XyYxPky4jb1bhHu/m8LzvmWlm7yJEmG/Gok9v3f7B71I3yu/dkxlv2ClrL3oid++Z5x5vwxj1L0fBUm+/4Z9v4h2Ar59D2A9gPRxv5XuDb6edJc+6O9VP/3z271a4Qm/JadVPysP2L2Kagq/JadVvysP2L2Kagq/UzR0P+CbJr4QFIG+S7F6P4iySL5TtVE9DYtqPzj5bb5GKqc+coRLP8KWbr49Yg8/vuPWPi9VUr4/VWI/SgINPsUCTb7JU3g/eyAwvi3ASr7VCXc/M3UPvmBeZb5y53Y/XyEwvv2mSr4VC3c/dl0+vo7JNr4KWnc/M3UPvmBeZb5y53Y/eyAwvi3ASr7VCXc/cfzcveF1db4c/3Y/0HNkPiZZdb5r5HE/XZQHP+dRWr7TLVI/0HNkPiZZdb5r5HE/XZQHP+dRWr7TLVI/XZQHP+dRWr7TLVI/cfzcveF1db4c/3Y/G9ACv5PRHr5hcVg/fb88v2+iI76nCSg/thA1v/EVSL5M7C0/9rd0vzay8r0eh4k+XMJQP4VcJz9hMlA/9H0kP/LjVT/qLyQ//VlOP6E1KD8bDFY/MtQvPxIMVD+MgC8/5WlRP0qPLj9TyE4/7wItPwx5cz/Q8Sc/d2ZyP2oYKj/kWnA/iPQnPxwSdD85FSs/tcdwPw3kKT9vmm8/T7EqP/FXbD+ghCg/g2NuP/NPKz+v0Ww/jJ4rP15eaz+/lys/+c1YP+0zLz/dYGg/c6IsP59vZj+jRyw/qkloPyYIKT/k6Gk/T0wsP/yZZD9vlSs/e19kP6KEKD9Hf1o/UDQuP8UIWj9AQig/M+RbPxCWLD96pVw/rj0nP9DtXT8WkS0/IZtiPzMRLT/wsWA/cr4tP4SxXz+UTiY/siVaPyjIIz+FvFQ/mAIfP5N/WT/4OB8/zzZ2P/tTHT9q0nU/t6EgPxFIcz8rmyA/wnlzP3YJHT+d8Wc/FNAhP41xZz+RRx4/urVrPyRZHT823Gs/xiohP8ocaD+lriU/JTVkPxCXJT/+mWM/74wiP+wHbD/0HyU/aPJvP2DuJD8BgF4/sgQfP/v2Yj8phx4/9MtvP068ID+mwW8/qhEdP+LCdT9BsSQ/12dzPxgMJT9UQV8/EQ0jP882dj/yPic/zzZ2P81LKz9jgHU/FDsrP4u1dT8ycSc/iWw2Py0EJj9BbDY/ZjYhPzTyOj8jNiE/92I6Pw7uJT9Eek8/bmgfPwgHSj8FQiA/I31BP3FeIT90b0U/WaEhP3W1Pj8uoSY/0Wk5P8ROKT9/bTY/fO0oP8K2YT+21CQ/zzZ2P1C3JD/PNnY/2ZkgPxsVOz+6gi8/aAI6P70NLz8GiDk/Zc0tPwLNPj+zIyw/gpg8PyGPLz/DdDk/zckvP6huPj/v2y4/VSFAP8inLz8OokE/Uu4vP9p3RD+xyis/NS9DP+J8Lz+C7Ec/86AuP75KRj//1i4/L6hEP0KjLj8Tg0k/etUqPwlUST+2xC0/qOZLP2axKD/nUko/oMEkP9PSSj/FQyw/hghNP3UuKz8XcnU/hP0tP882dj9svDI/MIV0P2y8Mj/PNnY/hP0tP8gNdD9svDI/3Wh0P4T9LT/a8j8/5J0mP39tNj+nKjE/f202P0JILT8JfTg/3lwtP/vRNz+ABTE/NxM8PwHJKT9sZUU/Ox8lPwaIOT9lzS0/CCY4P3/8MD8IJjg/f/wwP2EyUD/0fSQ/XMJQP4VcJz/y41U/6i8kP/1ZTj+hNSg/EgxUP4yALz8bDFY/MtQvP+VpUT9Kjy4/U8hOP+8CLT93ZnI/ahgqPwx5cz/Q8Sc/5FpwP4j0Jz8cEnQ/ORUrP7XHcD8N5Ck/b5pvP0+xKj/xV2w/oIQoP4Njbj/zTys/r9FsP4yeKz9eXms/v5crP/nNWD/tMy8/n29mP6NHLD/dYGg/c6IsP6pJaD8mCCk/5OhpP09MLD/8mWQ/b5UrP3tfZD+ihCg/R39aP1A0Lj/FCFo/QEIoPzPkWz8Qliw/eqVcP649Jz/Q7V0/FpEtP/CxYD9yvi0/IZtiPzMRLT+EsV8/lE4mP7IlWj8oyCM/hbxUP5gCHz+Tf1k/+DgfPxFIcz8rmyA/atJ1P7ehID/CeXM/dgkdP7q1az8kWR0/jXFnP5FHHj+d8Wc/FNAhPzbcaz/GKiE//pljP++MIj8lNWQ/EJclP8ocaD+lriU/aPJvP2DuJD/sB2w/9B8lPwGAXj+yBB8/+/ZiPymHHj+mwW8/qhEdP/TLbz9OvCA/12dzPxgMJT/iwnU/QbEkP1RBXz8RDSM/Y4B1PxQ7Kz/PNnY/zUsrP882dj/yPic/i7V1PzJxJz+s0TE/OTYhPwRZNj85NiE/BFk2P/4DJj8vYTI/HO4lPwgHSj8FQiA/RHpPP25oHz8jfUE/cV4hP3RvRT9ZoSE/jmI6PxzuJT91tT4/LqEmPxDyOj85NiE/wWk5P8ROKT9/bTY//gMmP8K2YT+21CQ/ZKBhP6R+jj6hN2I/0H+SPnyCYz8UYJI+tNliP+Z0jj7M6Gw/fFmSPmQ3bj9qfo0+dEJsP7y3jT4kgm4/NnKRPiA5ZT/OtZI+hPhlPzzgkT5sAGU/KEyOPkRzZj9AXZQ+pNZvPzyHkT6FRHA/xk2NPtD9Xz+clo4+tUhgPxz2kj7TYmc/AJiRPvSnZz/c3pM+VAlpP/w7kT6MZGk/9LyTPoxkaT/0vJM+JAVrPxhnkT5UCWk//DuRPhw7az+ktZM+5DFsPxCfkT7FMWw/wLiTPqv+cT84QY0+rUtyP0ykkT5zqHM/xCiNPmzTcz8wGZE+/+FeP7iJkj4al14/WKuOPhPZZj+oJo4+zJ1oP2wFjj4E6mo/BMyNPoPhdz9oYlA+Hcd4P7wwPj4phnQ/vDA+PoQOdD/0QE8+DDRxP7wwPj70pHA/0MlOPgQmez9MFFE+zKd8P7wwPj4UQWY/4LX0PRRBZj9I9gc+RatpP0j2Bz7k12k/4LX0PW2FbD+8MD4+215sP6BOTz7Mcmk/vDA+PmQvaT8Y408+DBlmP7wwPj49U2Y/SHBQPuTXaT/A0yI+FEFmP8DTIj5Fq2k/xP8VPhRBZj/E/xU+lFZtP8DTIj70KW0/xP8VPixlcT/A0yI+W2ZxP8T/FT5w93Q/wNMiPnD3dD/E/xU+Gjp5P8DTIj4aOnk/xP8VPiQ4fT/A0yI+JDh9P8T/FT5w93Q/SPYHPnxncT9I9gc+Gjp5P0j2Bz4kOH0/SPYHPiEvbT/gtfQ99CltP0j2Bz60aHE/4LX0PSQ4fT8g+ZE9Gjp5PyD5kT0aOnk/gNa8PSQ4fT+A1rw9cPd0PyD5kT1w93Q/gNa8PQxscT8g+ZE99GpxP4DWvD0bSG0/IPmRPRtIbT+A1rw9cPd0P+C19D0aOnk/4LX0PSQ4fT/gtfQ95NdpP4DWvD3lCXM/WOyDPvVAdT8cMoQ+jOx2P0DLez78a3Q/4M56PsNAcj94Kno+A0pxP3S+gz4Ff28/sNt5PmSibj80rYM+NNVrPyjPeT48l2s/KL+DPuTHaD/43oM+nARpP0DreT4lDXc/eO1dPsQkej/wVl8+CdBzPwT6XD7sLmk/3KBcPhMybD/IZFw+BaJwP8B0XD5M3ng/AMttPl2/dT/4M2w+rFJzPxREaz58LnA/+MVqPr3Oaz8Im2o+te1oP4Roaj4zy2Y/wDB6PhT3Zj/w7oM+zFdmPzASXT605mc/MFGJPs3waD/MWYk+RKBrP+oliT5ULm4/hAWJPgSLcD8k7og+c0FyP3rYiD7ccGY/uLpqPvtyWz8oM1I+CtFaP7wwPj5q6FU/vDA+Pr23Vz9MC1M+tJ9RP7wwPj4vnFM/WHFUPodvXz9Qb1E+zB5fP7wwPj7EtWI/vDA+PuQZYz80DFE+SbliP8T/FT5JuWI/SPYHPji5Yj/A0yI+qDBfP8T/FT6oMF8/wNMiPtbvWj/E/xU+1u9aP8DTIj6Z/1Q/wNMiPqb/VD/E/xU+AchQP8T/FT4ByFA/wNMiPs4QYj8g+ZE9pv9UP+C19D0ByFA/4LX0PQHIUD9I9gc+pv9UP0j2Bz7W71o/4LX0PdbvWj9I9gc+SbliP+C19D2oMF8/4LX0PagwXz9I9gc+qDBfP4D5kT3W71o/gPmRPdbvWj+A1rw9qDBfP4DWvD1lbmI/gNa8Pab/VD+A+ZE9pv9UP4DWvD0ByFA/gNa8PQHIUD+A+ZE9FEFmP4DWvD0Rm1w/5L+FPv9OXj/cJYU+R6tcP3jMfT5+SVo/RIp/PtdcXz9AP3w+6qRgP8CNhD78LmM/qDWEPgRAYj/IOns+4D1lP7gDhD4dd2Q/qKF6PpDpWD9ommE+V2FcP/BVYD5nC2A/hPpePqo6VT+EYWM+LEVjPyT3XT62klc/vNBxPh5+Wj9k0m8+JrJdP0Abbj6wIGE/iIFsPqOiYz+AgWs+XDNmPwBHiT4sRGQ/IGCJPoTqYT9snYk+7AF0P7b4iD4Nn18/agaKPsb5XT8EiIo+fIJjPxRgkj6hN2I/0H+SPmSgYT+kfo4+tNliP+Z0jj5kN24/an6NPszobD98WZI+dEJsP7y3jT4kgm4/NnKRPoT4ZT884JE+IDllP861kj5sAGU/KEyOPkRzZj9AXZQ+hURwP8ZNjT6k1m8/PIeRPrVIYD8c9pI+0P1fP5yWjj7TYmc/AJiRPvSnZz/c3pM+VAlpP/w7kT6MZGk/9LyTPoxkaT/0vJM+VAlpP/w7kT4kBWs/GGeRPhw7az+ktZM+5DFsPxCfkT7FMWw/wLiTPqv+cT84QY0+rUtyP0ykkT5zqHM/xCiNPmzTcz8wGZE+/+FeP7iJkj4al14/WKuOPhPZZj+oJo4+zJ1oP2wFjj4E6mo/BMyNPimGdD+8MD4+Hcd4P7wwPj6D4Xc/aGJQPoQOdD/0QE8+9KRwP9DJTj4MNHE/vDA+PsynfD+8MD4+BCZ7P0wUUT5Fq2k/SPYHPhRBZj9I9gc+FEFmP+C19D3k12k/4LX0PdtebD+gTk8+bYVsP7wwPj5kL2k/GONPPsxyaT+8MD4+PVNmP0hwUD4MGWY/vDA+PhRBZj/A0yI+5NdpP8DTIj4UQWY/xP8VPkWraT/E/xU+lFZtP8DTIj70KW0/xP8VPixlcT/A0yI+W2ZxP8T/FT5w93Q/wNMiPnD3dD/E/xU+Gjp5P8DTIj4aOnk/xP8VPiQ4fT/E/xU+JDh9P8DTIj58Z3E/SPYHPnD3dD9I9gc+Gjp5P0j2Bz4kOH0/SPYHPvQpbT9I9gc+IS9tP+C19D20aHE/4LX0PRo6eT+A1rw9Gjp5PyD5kT0kOH0/IPmRPSQ4fT+A1rw9cPd0P4DWvD1w93Q/IPmRPQxscT8g+ZE99GpxP4DWvD0bSG0/gNa8PRtIbT8g+ZE9cPd0P+C19D0aOnk/4LX0PSQ4fT/gtfQ95NdpP4DWvD2M7HY/QMt7PvVAdT8cMoQ+5QlzP1jsgz78a3Q/4M56PgNKcT90voM+w0ByP3gqej5kom4/NK2DPgV/bz+w23k+PJdrPyi/gz401Ws/KM95PuTHaD/43oM+nARpP0DreT7EJHo/8FZfPiUNdz947V0+CdBzPwT6XD4TMmw/yGRcPuwuaT/coFw+BaJwP8B0XD5M3ng/AMttPl2/dT/4M2w+rFJzPxREaz58LnA/+MVqPr3Oaz8Im2o+te1oP4Roaj4U92Y/8O6DPjPLZj/AMHo+zFdmPzASXT7N8Gg/zFmJPrTmZz8wUYk+VC5uP4QFiT5EoGs/6iWJPgSLcD8k7og+c0FyP3rYiD7ccGY/uLpqPmroVT+8MD4+CtFaP7wwPj77cls/KDNSPr23Vz9MC1M+L5xTP1hxVD60n1E/vDA+PsweXz+8MD4+h29fP1BvUT7kGWM/NAxRPsS1Yj+8MD4+SbliP8T/FT5JuWI/SPYHPji5Yj/A0yI+qDBfP8DTIj6oMF8/xP8VPtbvWj/A0yI+1u9aP8T/FT6Z/1Q/wNMiPqb/VD/E/xU+AchQP8DTIj4ByFA/xP8VPs4QYj8g+ZE9AchQP0j2Bz4ByFA/4LX0Pab/VD/gtfQ9pv9UP0j2Bz7W71o/4LX0PdbvWj9I9gc+qDBfP0j2Bz6oMF8/4LX0PUm5Yj/gtfQ91u9aP4DWvD3W71o/gPmRPagwXz+A+ZE9qDBfP4DWvD1lbmI/gNa8Pab/VD+A1rw9pv9UP4D5kT0ByFA/gNa8PQHIUD+A+ZE9AchQP4D5kT0UQWY/gNa8PUerXD94zH0+/05eP9wlhT4Rm1w/5L+FPn5JWj9Ein8+11xfP0A/fD7qpGA/wI2EPvwuYz+oNYQ+BEBiP8g6ez4dd2Q/qKF6PuA9ZT+4A4Q+V2FcP/BVYD6Q6Vg/aJphPmcLYD+E+l4+qjpVP4RhYz4sRWM/JPddPraSVz+80HE+Hn5aP2TSbz4msl0/QBtuPrAgYT+IgWw+o6JjP4CBaz5cM2Y/AEeJPixEZD8gYIk+hOphP2ydiT7sAXQ/tviIPg2fXz9qBoo+xvldPwSIij5oAjo/vQ0vPxsVOz+6gi8/Bog5P2XNLT+CmDw/IY8vP/3MPj+0Iyw/w3Q5P83JLz+obj4/79suP1UhQD/Ipy8/DqJBP1LuLz81L0M/4nwvP9p3RD+xyis/vkpGP//WLj+C7Ec/86AuPy+oRD9Coy4/CVRJP7bELT8Tg0k/etUqP6jmSz9msSg/51JKP6DBJD/T0ko/xUMsP4YITT91Lis/F3J1P4T9LT8whXQ/bLwyP8gNdD9svDI/3Wh0P4T9LT/PNnY/hP0tP9ryPz/knSY/Bn04P95cLT/70Tc/gAUxPyYTPD8CySk/bGVFPzsfJT8IJjg/f/wwPwaIOT9lzS0/CCY4P3/8MD8S9lI/IMVtPQHIUD/wM4Y9AOVUP6Dldz0S9lI/IMVtPdbvWj9Ab1U9QIZZPwB/WD0QpF0/QCRjPR4kXz9wX3w9uldgPyBEfD1yTns/sGFwPSQ4fT+wM4Y9Gjp5P4Aicz0St3c/YGiAPXD3dD9QKWQ9Ebd3P2BogD2pjXI/0HZgPZHOZD9ws6I9REhmPwhhrD2E8GY/gNa8PSJ/aD9ga6w96PJnP4DWvD3T5Gk/yDufPVOFaj+wq5k90uRpP8g7nz2AeGc/cMbPPRRBZj9w09s9FEFmPzBE4z3Oq2U/gA3mPa4KZT+QSN89Bq9lP6Dk2D3A6GY/qAjHPVpkZz/AY+w9xh5oP5De4T28a2w/kHGbPcBscT9AVmQ97eZvPzCafz3AbHE/MFZkPbZYbz94LIY9AchQPwhPiD1R/FI/8CltPYLpVD+gWH89Bk97P2BTcD0kOH0/wE6IPRo6eT9g5HA94nR3P8DOej1w93Q/wElgPQlucj9gAl09t2xxP3BLZz329m8/0IyAPbB5WT9wUFk97cBVPzihgT2TX1U/CKSBPdbvWj9QrlY9CIxdPzBkZT19I18/YGN6PeBUYD9gpnw98stkP0DQoj1+SGY/AN+rPcECZz+A1rw97wtnP2AsyT1j2Wc/gNa8PdGFaD/gvKw9kaRnP2h00j1k2Wc/gNa8PRJXZz8ATO09FEFmPxDx4D1JlWU/CLPkPRRBZj9ohts9Oc5lPxDg2T0uGmU/qMjdPRMfaD+QHOI93ORpP6gnnz3hfWo/6EyZPfGMbD/gLJs9eQ1vPwh5hj0CAAEAAAADAAAAAQAFAAQAAgAAAAUAAgAAAAYABQAHAAYAAAADAAcAAAAKAAkACAAJAAsACAAJAAoADAAMAAoADQAKAA4ADQANAA4ADwAOABAADwAQAA4AEQACAAQAEgAVABQAEwAWABUAEwAOABUAEQARABUAFgAUABUAFwAYABcAFQAaAAIAGQACABIAGQAaABkAGwAaABsAHAAcABsAHQAgAB8AHgAXACAAHgAXABgAIAAcAB0AIAAdAB8AIAAhAAIAGgAiAAIAIQAjACIAIQAmACUAJAAnACYAJAAqACkAKAArACoAKAAuAC0ALAAoAC4ALAAKADAALwAOAAoALwAyAC4AKAApADIAKAAnADQAMwAmACcAMwAsAC8AKwAoACwAKwA2ADUAJQAmADYAJQAaABwAIQA3ADEAIwAhADcAIwAxADcALgAyADEALgA6ADkAOAA7ADoAOAA+AD0APAA/AD4APAA/AEQAQgA+AD8AQgACACIAQAABAAIAQABGAEUAPwA8AEYAPwBHADcAIAAgADcAIQAVACwALQAYABUALQAzACsALwAwADMALwAIADYAMAAKAAgAMAAVAA4ALwAsABUALwAIADsANQA2AAgANQA7ADgASAA1ADsASAA3AEcALQAuADcALQAtAEcAIAAYAC0AIAArADMANAAqACsANAA2ACYAMwAwADYAMwAcACAAIQBJACUANQBIAEkANQAlAEkAJAAIAAsAOwA7AAsAOgBMAEsASgBKAE4ATQBMAEoATQBLAEwATwBNAE4AUABNAFAAUQBNAFEAUgBSAFQAUwBNAFIAUwBTAFYAVQBTAFcAVgBTAFQAVwBVAFkAWABTAFUAWABbAFoAAwBYAFwAWgBYAFkAXABbAAMAAQAHAAMAWgBdAAcAWgALAF4AOgBhAGAAXwBgAF4AYgBjAGIAXgA6AF4AYQA5ADoAYQBCAGQAQwABAEAAQQBbAAEAQQBnAGYAZQBoAGcAZQBpAD8ARQBEAGQAQgBFAEYAZgBnAEUAZgBEAD8AaQBqAFsAQQBDAGoAQQBsAGsAZwBoAGwAZwBpAEUAZwBpAGcAawBEAGkAZABkAGoAQwBhAF4AYABjAF4ACwBMAG0ATwBNAGkATABNAGQAaQBTAGQATQBTAGoAZABYAGoAUwBYAFsAagBaAFsAWABwAG8AbgBxAG4AbwBwAHMAcgBvAHAAcgBvAHIAdABvAHQAdQBxAG8AdQB4AHcAdgB2AHcAeQB2AHoAeAB6AHsAeAB4AHsAfAB7AH0AfAB8AH0AfgB+AH8AfABwAIAAcwCDAIIAgQCEAIIAgwB8AH8AgwB/AIQAgwCBAIUAgwCGAIMAhQCIAIcAcABwAIcAgACIAIkAhwCIAIoAiQCKAIsAiQCOAI0AjACFAI0AjgCFAI4AhgCKAI4AiwCLAI4AjACPAIgAcACPAHAAkACRAI8AkAAkAJMAkgCUACQAkgCXAJYAlQCYAJcAlQCbAJoAmQCXAJsAmQCdAJwAeAB8AJ0AeACXAJkAnwCWAJcAnwChAKAAlACSAKEAlACYAJ0AmwCXAJgAmwCTAKMAogCSAJMAogCIAI8AigCRAJ4ApACPAJEApACZAKQAngCfAJkAngCnAKYApQCoADgApQCrAKoAqQCsAKsAqQCvALIAsQCzAK8AsQCuAJAAcABuAK4AcACxALQARgC1ALEARgC2AI4ApACOAI8ApACaAJsAgwCGAJoAgwCdAJgAoQCcAJ0AoQCcAKIAdwB4AJwAdwCdAHwAgwCbAJ0AgwCjAKgAdwCiAKMAdwBIADgAqACjAEgAqACaALYApACZAJoApACOALYAmgCGAI4AmgCgAKEAmACVAKAAmAChAJIAogCcAKEAogCKAI8AjgCjAJMASQBIAKMASQCTACQASQB3AKgAeQCoAKUAeQC5ALgAtwC6ALkAtwC9ALwAuwC7ALwAvgDBAMAAvwC/AMAAwgDEAMMAvgC8AMQAvgC5ALoAwQC/ALkAwQC4AMYAxQC4AMUAtwDCAMAAxwDIAMIAxwDIAMcAyQDLAMgAyQDKAM0AzADOAMoAzADOAMwAzwDQAM4AzwDQAM8AuwC7AM8AvQDEANEAwwDSAMMA0QDSANEA0wDUANIA0wDGANUAxQDFANUA1gDAAMEA1wDHAMAA1wDHANcA2ADJAMcA2ADJANgA2QDMAMkA2QDMANkAvQDPAMwAvQDcANsA2gDdANwA2gDfAN4A3ADdAN8A3ADbAOEA4ADaANsA4ADkAOMA4gDlAOQA4gDnAOYA3gDfAOcA3gDpAOgA5gDnAOkA5gDrAOoA6ADpAOsA6ADqAO0A7ADoAOoA7ADtAO8A7gDsAO0A7gDsAPAA5gDoAOwA5gDwAOwA7gDxAPAA7gDwAPIA3gDmAPAA3gDxAPMA8gDwAPEA8gDcAN4A8gD0ANwA8gDzAPUA9ADyAPMA9ADbANwA9AD2ANsA9AD2APQA9QD3APYA9QD3APkA+AD2APcA+AD2APgA4QDbAPYA4QD7APoA9QDzAPsA9QD6APwA9wD1APoA9wD3APwA/QD5APcA/QD7AP8A/gAAAfsA/gDkAP8A8QDuAOQA8QADAQIBAQEEAQMBAQEDAQYBBQECAQMBBQEHAQUBBgEIAQcBBgEIAQoBCQEHAQgBCQEIAQYBCwEAAQgBCwEDAQwBCwEGAQMBCwEMAQMBBAENAQwBBAH+AOUADgEKAf4ADgEKAQgBAAH+AAoBAAHuAO8A4wDkAO4A4wAAAQsB+gD7AAAB+gALAQwB/AD6AAsB/AANAf0A/AAMAQ0B/ADzAPEA/wD7APMA/wDlAP4A/wDkAOUA/wARARABDwESAREBDwEUARMBEgEPARQBEgEWARUBEwEUARYBEwEYARcBFQEWARgBFQEXARgBGQEaARcBGQEcARsB2gDgABwB2gDdANoAGwEdAd0AGwHnAB8BHgHpAOcAHgEgAd8A3QAdASAB3QDfACABHwHnAN8AHwEbARwBIQEiARsBIQESASIBIQERARIBIQEdARsBIgEjAR0BIgETASMBIgESARMBIgEdASMBJAEgAR0BJAEVASQBIwETARUBIwElAR8BIAEkASUBIAEXASUBJAEVARcBJAEmAR4BHwElASYBHwEaASYBJQEXARoBJQEZASgBJwEaARkBJwHpAB4BKQHrAOkAKQErASoBKAEZASsBKAEWAS0BLAEYARYBLAEYASwBKwEZARgBKwEUAS4BLQEWARQBLQEPAS8BLgEUAQ8BLgEnATABJgEaAScBJgEwASkBHgEmATABHgEzATIBMQE0ATMBMQE0ATYBNQEzATQBNQE4ATcBMQEyATgBMQE6ATkB6gDrADoB6gDjAO8AOwE8AeMAOwE9ATsB7wDtAD0B7wA5AT0B7QDqADkB7QA/AT4BOwE9AT8BOwFBAUABPgE/AUEBPgE/ATgBMgFBAT8BMgFAAUEBQgFDAUABQgEyATMBQgFBATIBQgFCAUUBRAFDAUIBRAFFAUIBMwE1AUUBMwFJAUgBRwFKAUkBRwFKAUcBSwFMAUoBSwFPAU4BTQE8AU8BTQFMAUsBTgFPAUwBTgFSAVEBUAFTAVIBUAFTAVABRgFUAVMBRgFWAVUBUQFSAVYBUQFVAVYBVwFYAVUBVwFIAVcBVgFHAUgBVgFHAVYBUgFLAUcBUgFTAU4BSwFSAVMBSwFOAVMBVAFNAU4BVAFNAVQBWQFNAeIA4wA8AU0B4wBEAUkBSgFDAUQBSgFDAUoBTAFAAUMBTAE+AU8BPAE7AT4BPAFAAUwBTwE+AUABTwFcAVsBWgFdAVwBWgFbAVwBXgFfAVsBXgFgAV8BXgFhAWABXgFhAWMBYgFgAWEBYgFlAWQBNAExAWUBNAFmAWUBMQE3AWYBMQFkAWcBNgE0AWQBNgE6AWgBZgE3AToBZgFcAV0BaQFqAVwBaQFqAWkBZwFkAWoBZwFqAWsBXgFcAWoBXgFrAWoBZAFlAWsBZAFrAWwBYQFeAWsBYQFsAWsBZQFmAWwBZQFjAW0BMAEnAWMBMAFtAWgBKQEwAW0BKQFgAWIBbgFvAWABbgFfAWABbwFwAV8BbwE3ATgBOQE6ATcBOQEoAWIBYwEnASgBYwHrACkBaAE6AesAaAFsAW0BYwFhAWwBYwFsAWYBaAFtAWwBaAEqAW4BYgEoASoBYgE4AT8BPQE5ATgBPQEvAQ8BEAFxAS8BEAFbAV8BcAFyAVsBcAFbAXIBcwFaAVsBcwHYACoBKwEsAdkAKwErAdkA2AC9ANkALAEuAcQAvAAtAS4BvAAtAbwAvQAsAS0BvQBuASoB2ADXAG4B2ADFAHIBcAG3AMUAcAFwAW8BwQC6AHABwQBvAW4B1wDBAG8B1wC6ALcAcAEvAdEAxAAuAS8BxABxAdMA0QAvAXEB0QDWAHMBcgHFANYAcgF2AXUBdAF3AXYBdAF6AXkBeAF5AXsBeAF+AX0BfAF9AX8BfAF7AYEBgAF4AXsBgAF+AXcBdAF9AX4BdAF1AYMBggF1AXYBgwGEAXwBfwGFAYQBfwGGAYQBhQGHAYYBhQGKAYkBiAGLAYoBiAGMAYoBiwGNAYwBiwGNAXkBjAF5AXoBjAGAAYEBjgGPAY4BgQGQAY4BjwGRAZABjwGCAYMBkgGDAZMBkgGUAX4BfAGEAZQBfAGVAZQBhAGGAZUBhAGWAZUBhgGKAZYBhgF6AZYBigGMAXoBigGZAZgBlwGaAZkBlwGXAZwBmwGaAZcBmwGeAZ0BmAGZAZ4BmAGhAaABnwGiAaEBnwGcAaQBowGbAZwBowGkAaYBpQGjAaQBpQGmAagBpwGlAaYBpwGqAakBqAGmAaoBqAGsAasBqQGqAawBqQGkAa0BqgGmAaQBqgGsAaoBrQGuAawBrQGcAa8BrQGkAZwBrQGvAbABrgGtAa8BrgGvAZwBlwGxAa8BlwGxAbIBsAGvAbEBsAGxAZcBmAGzAbEBmAGyAbEBswG0AbIBswG2AbUBtAGzAbYBtAGdAbYBswGYAZ0BswGyAbgBtwGwAbIBtwG0AbkBuAGyAbQBuAG6AbkBtAG1AboBtAG8AbsBtwG9AbwBtwGuAbsBnwGsAa4BnwHAAb8BvgHBAcABvgHDAcIBvgG/AcMBvgHCAcMBxAHFAcIBxAHHAcYBxQHEAccBxQHIAcIBxQG9AcgBxQHIAckBvgHCAcgBvgHBAb4ByQHKAcEByQHLAaIBvAHGAcsBvAG9AcUBxgG8Ab0BxgGgAasBrAGfAaABrAG4AcgBvQG3AbgBvQG5AckByAG4AbkByAG5AboBygHJAbkBygG7Aa4BsAG3AbsBsAG7AbwBogGfAbsBogHOAc0BzAHPAc4BzAHPAdEB0AHOAc8B0AHRAdMB0gHQAdEB0gHTAdUB1AHSAdMB1AHWAdQB1QHXAdYB1QGZAdkB2AGeAZkB2AHZAZkBmgHaAdkBmgHcAdsBowGlAdwBowGaAZsB3QHaAZoB3QHbAd0BmwGjAdsBmwHeAdgB2QHfAd4B2QHeAd8BzwHMAd4BzwHfAdkB2gHgAd8B2gHfAeAB0QHPAd8B0QHhAeAB2gHdAeEB2gHgAeEB0wHRAeAB0wHdAdsB4gHhAd0B4gHhAeIB1QHTAeEB1QHbAdwB4wHiAdsB4wHiAeMB1wHVAeIB1wHlAeQB1gHXAeUB1gHmAdwBpQGnAeYBpQHkAegB5wHWAeQB5wHqAekB0gHUAeoB0gHnAeoB1AHWAecB1AHpAesB0AHSAekB0AHrAewBzgHQAesBzgHjAe0B5QHXAeMB5QHcAeYB7QHjAdwB7QHwAe8B7gHxAfAB7gHzAfIB8QHuAfMB8QHwAfUB9AHvAfAB9AGoAfcB9gGnAagB9gH4AasBoAH5AfgBoAGrAfgB+gGpAasB+gGpAfoB9wGoAakB9wH4AfwB+wH6AfgB+wH8Af4B/QH7AfwB/QHvAfQB+wH9Ae8B+wH/Af0B/gEAAv8B/gH/Ae4B7wH9Af8B7wECAgEC/wEAAgIC/wHuAf8BAQLzAe4BAQIGAgUCBAIHAgYCBAIIAgYCBwIJAggCBwIMAgsCCgL5AQwCCgILAggCCQIKAgsCCQIPAg4CDQIQAg8CDQIDAg8CEAIRAgMCEAIOAhMCEgINAg4CEgIUAhICEwIWAhQCEwISAhQCBQIGAhICBQINAhICBgIIAg0CBgIIAgsCEAINAggCEAIRAhACCwIMAhECCwIXAhECDAKgAaEBDAL5AaABDAIHAgQCAgIAAgcCAgIJAgcCAAL+AQkCAAL5AQoC/AH4AfkB/AEKAgkC/gH8AQoC/gEaAhkCGAIbAhoCGAIcAhgCGQIdAhwCGQIcAh0CHgIfAhwCHgIhAiACHwIeAiECHwLxASMCIgLwAfEBIgLwASICJAL1AfABJALyASUCIwLxAfIBIwIkAiYC9gH1ASQC9gEnAhsCGAIoAicCGAIlAicCKAIjAiUCKAIcAikCKAIYAhwCKAIjAigCKQIiAiMCKQIfAioCKQIcAh8CKQIiAikCKgIkAiICKgLtASsCIALlAe0BIALmASYCKwLtAeYBKwIsAiECHgItAiwCHgItAh4CHQIuAi0CHQL3AfQB9QH2AfcB9QEgAiEC5AHlASAC5AEmAuYBpwH2ASYCpwEgAisCKgIfAiACKgImAiQCKgIrAiYCKgIhAiwC6AHkASEC6AH6AfsB9AH3AfoB9AHNAc4B7AEvAs0B7AEuAh0CGQIwAi4CGQIxAjACGQIaAjECGQKVAecB6AHqAecBlgHnAZUBlgF6AeoBlgF4AYAB6wHpAXgB6wF6AXgB6QHqAXoB6QGVAegBLAKUAZUBLAIuAjACgwF2AS4CgwF+AS0CLgJ3AX4BLgKUASwCLQJ+AZQBLQJ3AS4CdgGAAY4B7AHrAYAB7AGOAZABLwLsAY4BLwIwAjECkwGDATACkwE0AjMCMgI2AjUCMwI0AjYCMwIyAjcCNAI2AjgCNQI2AjkCOAI2AjoCOQI8AjsCOgI2AjwCOgI8Aj4CPQI8Aj0CPwI8Aj8COwJBAkACPgI8AkECPgJDAnEAQgJBAkICRAJBAkQCQAJDAm4AcQBCAnEAdQBFAkICdQB5AKUARgJhAF8ARwJHAkgCRgJJAkYCSAJhAEYCpQCmAEoCpQCvALAASwKtAK4AbgBDAq0AbgBlAGYATAJNAmUATAJOArQAsQCyAK8ASwJmAEYAtABMAmYAtACyAE4CsQCtAEMCTwKwAK0ATwJMAlECUAJNAkwCUAJOAkwCtABOAjQCTAKyAEsCTgJLArAATwJhAEcCRgJJAnkARgI0AjcCUgI2AjQCTgI2Ak4CSwI8AjYCSwI8AksCTwJBAjwCTwJBAk8CQwJCAkECQwJUAhUCUwJWAhYCEwJVAlYCEwJYAhMCDgJXAlgCDgJXAg4CWQIOAg8CWgJZAg4CWgJaAg8CWwJbAg8CAwK/AcABXQJcAr8BXQJeAr8BXAJfAr8BXgLDAb8BYQJgAsMBYQJiAsMBYAIDAhECYwIRAhcCZAJjAhECZAJkAhcCZQJnAssBZgJmAssBaALLAcYBaQJqAssBaQJrAqIBywFnAmsCywFxAhcCbAJlAhcCcQIMAm4CbwJwAmwCFwIXAgwCbwJwAhcCbwJyAm0CoQFyAqEBogFzAnICogGiAWsCcwLGAXQCaQLGAccBdAJ2AsQBdQLEAcMBYgJ3AsQBYgLEAXYCeAJ6AlgBeQJVAVgBegJ7AlUBegJ9AgEBAgF8An0CAgF8AgIBfgJ+AgIBfwJ/AgIBBQGAAn8CBQGAAgUBgQKBAgUBBwGCAoECBwGCAgcBgwKFAoQCVQFVAXsChQKGAlUCEwITAlgChgJRAVUBhAKHAlEBhAKIAlEBhwKJAlABUQGIAokCUQGKAlABiQJGAVABigKLAlQBRgFZAVQBiwKMAlkBiwKNAlkBjAKOAlkBjQKQAg4BjwIOAeUAkQKSAg4BkQLiAJQCkwLlAOIAkwKWAlkBjgKZApEC5QDlAJMCmQJuAgwCoQGhAW0CbgLiAE0BlQKVApQC4gCYApUCTQGYAk0BWQGXApgCWQFZAZYClwKaAg4BkAKbAgoBDgGaApsCDgGcAgkBCgGbApwCCgGdAoMCBwEHAQkBnQLHAcQBeALnyso9hFocPhBGAr19h709bxklPvKH3bzeS7g9TWUSPo5QAb1Zn6A9W2MrPoITxLzlPZ49Df0UPpLe57wtJJw9/AcGPpWU2bxtNLg9G3kEPql4Br0nk9Y9D94tPgx36L3mTOM9i4lLPt1nDr6mOu8924tGPvMd/r1Za/U9F/c+PoRh4709a+E92BY2PuZMx70i2sA9nAgrPjV++r1Tsqc9hnkqPgbL/70pYq09M91IPpQGJL6Zcsw972JLPkdGHb7y6u09AKcWPj2/ir2+ZNU90hUQPjylhL3c2s09hGIPPpXhmL0O4eU9HAodPpI0pr2T7Pc9L3o8PlXhx71XDwk+O0QzPplGsr3vRfc9ifwmPhdxrr09a+E92BY2PuZMx71FENc92JIePsR2vb3nEg4+rcs+Ppjbvb2Vibs9NGcdPio+270EnKU9biQdPp3l4L3CQ8w9rtIdPsaczr0OL7g9R70MPnAusL14PKU9oKwQPlcTvL1TjYM9ZysmPpJW5rzPJmw9N0MePrVnCL2floQ9shwUPtWfB73AI4E9/FwEPpbREL1rWms9RgVPPircEb4yzXA9/KwvPj6V7r2PgEw95uRJPoMIAr7ex049YsI/PrCr5r0ltGA9ME4zPpP2yr23sI49K7YsPuv/+70I8Y09ZeRMPh6OH74rOio9Q0EiPgnilb1Aqxw914c0PgdAt71n3Tg9SRkqPsmbtL1z9C89BV47Pu0Ex70uk/Q8Ln08Pn7IuL0nbag87tozPvkynb0sZfw8gAQtPo+Nlr3hm2o9N04MPiUjT70GZ3M923AUPh4kMr1c2UQ94msVPj0RZr28jUs9NBgZPibQkb3BgWE9cBsRPu0+g72SKhw9bvsaPgG5Zb0w3yI9CGcgPuHuHL2K3us8SnslPmIvOr3dqeM82ksjPv5Rcb1QfF89NHcaPtzirb05nKA8NuEnPowBd73koJE9DmEfPm6m3b0RyIA9GQIhPrgf0b30Zmk9S7kPPt8/mL3Ybmg9IlAhPp7Gwb3MbI09c44NPldLtL2Eehk+nX88Pjfmrb2yhiI+AtQ0Pm+fir20lhM+QrknPihpjL1QQwE+B94dPtYPjb0GXxI+DgIePtzEUr2k9iI+HT8rPj43Yr2XQxs+6tYhPrwkMr0iIA4+fO0cPshkFL1vZ809geIMPgL8Ur0Ppsc9GWwSPqHgKL0nRuc9M74RPs/wQr1QmeA9JsAWPs/VFb2iz/k91UcZPqFMB73id/89fLoXPrm8RL3lkMw9+kobPlhR4Lz8JL496bwkPoJAuLx9h709bxklPvKH3bznyso9hFocPhBGAr38JL496bwkPoJAuLwOt549u4UrPsU3nrxZn6A9W2MrPoITxLx9h709bxklPvKH3bw1Nuc9FC1LPtxXEr6BLvQ9+DFGPmnZAb6mOu8924tGPvMd/r3mTOM9i4lLPt1nDr6XCPo9tGc+PpDR5r2cUeU9sBU1PoGfyL09a+E92BY2PuZMx71Za/U9F/c+PoRh472BLvQ9+DFGPmnZAb6XCPo9tGc+PpDR5r1Za/U9F/c+PoRh472mOu8924tGPvMd/r3ylqw9rdVHPg9cKb5hXc49861KPuA1Ir6Zcsw972JLPkdGHb4pYq09M91IPpQGJL5hXc49861KPuA1Ir41Nuc9FC1LPtxXEr7mTOM9i4lLPt1nDr6Zcsw972JLPkdGHb6cUeU9sBU1PoGfyL3Mtv09qvg7PuVyyb2T7Pc9L3o8PlXhx709a+E92BY2PuZMx73Mtv09qvg7PuVyyb20gxI+WaM+PhfFvr3nEg4+rcs+Ppjbvb2T7Pc9L3o8PlXhx70qN349BtslPo3Ywbwr6WA9u0sdPmnA7bzPJmw9N0MePrVnCL1TjYM9ZysmPpJW5rwOt549u4UrPsU3nrwqN349BtslPo3YwbxTjYM9ZysmPpJW5rxZn6A9W2MrPoITxLzgfz49mLNJPpkZBb70CmA989BOPt8bFr5rWms9RgVPPircEb6PgEw95uRJPoMIAr7l/FM9ilAyPntDzL0b+kA9PTc/PqFd6r3ex049YsI/PrCr5r0ltGA9ME4zPpP2yr0b+kA9PTc/PqFd6r3gfz49mLNJPpkZBb6PgEw95uRJPoMIAr7ex049YsI/PrCr5r1mZ4o9ODxMPsStJL7ylqw9rdVHPg9cKb4pYq09M91IPpQGJL4I8Y09ZeRMPh6OH770CmA989BOPt8bFr5mZ4o9ODxMPsStJL4I8Y09ZeRMPh6OH75rWms9RgVPPircEb4Bdh89j+I6PhliyL3l/FM9ilAyPntDzL0ltGA9ME4zPpP2yr1z9C89BV47Pu0Ex71iOMo8OT48Phg9ub0Bdh89j+I6PhliyL1z9C89BV47Pu0Ex70uk/Q8Ln08Pn7IuL1T2m48xVYzPvdnm71iOMo8OT48Phg9ub0uk/Q8Ln08Pn7IuL0nbag87tozPvkynb0r6WA9u0sdPmnA7bxL/mI9lisTPvsOHL0GZ3M923AUPh4kMr3PJmw9N0MePrVnCL11PBE9hIAfPpPoDL1CwcA8WcAkPm6bLL2K3us8SnslPmIvOr0w3yI9CGcgPuHuHL1L/mI9lisTPvsOHL11PBE9hIAfPpPoDL0w3yI9CGcgPuHuHL0GZ3M923AUPh4kMr0z2108fe8mPgDNbb1T2m48xVYzPvdnm70nbag87tozPvkynb05nKA8NuEnPowBd71CwcA8WcAkPm6bLL0z2108fe8mPgDNbb05nKA8NuEnPowBd72K3us8SnslPmIvOr20gxI+WaM+PhfFvr346B4+QmA8PjSfrb2Eehk+nX88Pjfmrb3nEg4+rcs+Ppjbvb346B4+QmA8PjSfrb1Evyg+SpY0Pj+fh72yhiI+AtQ0Pm+fir2Eehk+nX88Pjfmrb1Evyg+SpY0Pj+fh71tOSk+76QqPhTrV72k9iI+HT8rPj43Yr2yhiI+AtQ0Pm+fir1n3yA+CdYgPunWI71JphI+7p8bPpDqA70iIA4+fO0cPshkFL2XQxs+6tYhPrwkMr1tOSk+76QqPhTrV71n3yA+CdYgPunWI72XQxs+6tYhPrwkMr2k9iI+HT8rPj43Yr1wjss9k90QPqBIEr3lkMw9+kobPlhR4Lznyso9hFocPhBGAr0Ppsc9GWwSPqHgKL1iZeQ9VhUVPou+BL1wjss9k90QPqBIEr0Ppsc9GWwSPqHgKL1QmeA9JsAWPs/VFb1JphI+7p8bPpDqA72Y4/89FMIXPgFf67yiz/k91UcZPqFMB70iIA4+fO0cPshkFL2Y4/89FMIXPgFf67xiZeQ9VhUVPou+BL1QmeA9JsAWPs/VFb2iz/k91UcZPqFMB71bktg9dw4FPq0dOL0wT809ZqraPaqDML1Ghrc9KT7dPUR75Ly5wcI9dWIFPi34BL0S0pY9+dLhPQIVs7x8tbQ94GgGPnsC6bwCtps9J2oIPtzozLz8JL496bwkPoJAuLzlkMw9+kobPlhR4LxcOrk9qJ4TPkVq5LwOt549u4UrPsU3nrxq7Jw9pSEWPmXFw7ykf+Y9iMwFPlK2h71+bN89ubAIPg9vp73Z/NY98jPgPcvah72e+do9Zz4qPnWf673YU+490jQsPiVP3701Nuc9FC1LPtxXEr4Ppfk9LwQtPs21w70kNOY9uqkZPtJDwL0jqvE9u6obPl63pb2BLvQ9+DFGPmnZAb7ylqw9rdVHPg9cKb5gY8E9nGAoPqHE/r1hXc49861KPuA1Ir6G/6Y9ThkoPin5AL4id/U9CY8TPtf3i70QogA+j6QkPpCGrr2fnww+9jcxPmqjtr3Mtv09qvg7PuVyyb2cUeU9sBU1PoGfyL0Ppfk9LwQtPs21w72cUeU9sBU1PoGfyL2XCPo9tGc+PpDR5r0jqvE9u6obPl63pb20gxI+WaM+PhfFvr2ZIMM9qcPlPTxFt70Qp6Q9h5gYPgqL5b2+vbw9eTcZPk624L0yAdA9E6cJPqDvuL3/Y6M9j34IPrntzr3uEaM9a18EPor9zL3U4Lk9IlcIPq6Kx72KkKM9PnD2PcTt0L2JmqM9jBTnPSSOyL0mqbw9G8D6PULvxb0cvNU935kZPn5/0r1SgXc9cKvgPTVw8LxdA1Y9Yc7ePQe9Mr0OGkg9h0QHPnuBVr0PqWw9MdUHPgT0Db3EMIM9VuEHPpn687wr6WA9u0sdPmnA7bwqN349BtslPo3Ywbz3QIE9u2QVPn2K8rwd+jw97R4LPt8nkb0OaVc9niMtPqsI8b30CmA989BOPt8bFr7gfz49mLNJPpkZBb7l/FM9ilAyPntDzL18KTE9oZAwPpOny70b+kA9PTc/PqFd6r00jjY9Z4gbPpDxrL3Grow93XopPmDg/71mZ4o9ODxMPsStJL6/0Qo9r+EzPq2Ot703Dhk9VlIgPhACl729CCs96kIpPhJJtr0Bdh89j+I6PhliyL3l/FM9ilAyPntDzL1iOMo8OT48Phg9ub1T2m48xVYzPvdnm72JHds8ikkrPlKamL3zczE9LWUTPoKTXr1L/mI9lisTPvsOHL1TkTI9zvQWPghik71CwcA8WcAkPm6bLL11PBE9hIAfPpPoDL3U5g89gVUaPl3fX73ZJcM8auMgPuyMar00jjY9Z4gbPpDxrL0z2108fe8mPgDNbb3Ntow9FGoZPoKT5b1vYIo9LcYIPnc6yL3eWV49ieUbPkU42L1A4IY94RP+PZT9yL1vfUg98GkLPqHxqb2vmko9xVHePQzeir1LYT090kkdPu5zwL3gfz49mLNJPpkZBb6ZbjY9rrEwPiWE3r18KTE9oZAwPpOny73FB2A9O7HgPaOqoL0KDWU9HX4KPlyuvr2ftok9BrXjPQJdvb0ObyY9nxcTPAf0jj37YCI9M7cMPF1ikT37MwI9/E7ZO8d0WT07mQY99N7hO8lZVj0+i+Y8UL23O+2kDD0X1e48HN7AO6p9Cz3K5fQ8iu+zO846czyu5fs8/NW1O703gDyjjRE9UzDdO1D/KLwI5RQ9+IzfOzCPILzYrEQ9ILerPF+pEr1NYyc9kIoKPD3DoLy89yo9HTAIOzAcl7xNYyc9kIoKPD3DoLxVoT89TxXfPN1qDr2WACo9CkAKPEKnmLxVoT89TxXfPN1qDr0bpGY9RhUdPF8Koz3BRWU9kFEWPDsbpj0SV8Q9sFzNO51SXz3i+p89lncEPOmmlj01UJ89UmYNPJG9kz2S4cI9xTTcO4+aWz1X2tg9uEDQO8cp/DzXxtY9HnvbO2bm+jw5Vdk9wQj5O3kGhTr3bNc9PwQDPMkozDolrtU9byYhPCKbZ7zlA9c9p0wcPPW8fbxgMhU9HG6MOWocDbx9Bdc9HBKBOK2EyTq+ONM96aQKO+1dgby89yo9HTAIOzAcl7zUPe88M2O1uqW0Cz3h18I9y9urumeTXT1XGdc9NAxsuj35+Tzb/f88cMpYurLrWDzTJCI9ExCAOjwbjz2z2J89RapjOE8plT0pQgQ9AkXVub25Vj04OWY9ySS8OsbVoz1AhYc9QAg4OapDz72EwLg9dAc5Oe8/yb1ExaE9Tvw2ORKC172mqsY9hRM3OTsfir1nYsU95Sg8OQ+kpL1YY3M9sCk7OQTKqL2bAWw9Cxw2OWlpjb1SdtM9W5ogPYvnhb3OlU89zYwhPXKZib3YrEQ9ILerPF+pEr2YwtQ9Aj2tPCl/C71OSaM9Mt3SPXv3y70nMrw9SxTMPTCRvb3b3ok9AabMPWaYwb1GP189ru/FPcjyoL2Qx9E9pIrBPaVWj71zbc49AS2+PXkkPr2l5Sg9zn6nPN3Tiz27AzE9l6wLPXQDfD1ntW49UNcPPfnbkT2SbWg9XD22PC6rnz3tewA9t6SqPOFepjylrP48stGgPG+jET0X1e48HN7AO6p9Cz2u5fs8/NW1O703gDzvpw89wlsLPbpmET2wRTo984ErPWTuRj2tXhg9h18JPRfxRj2J/Qs9vdKdPNX+Uj0c0Xk985IvPX3JYD2PIg49+E8WPaWDujywT5091mkJPYxXgz3Htp49h5anPITujz0mBrk9528CPQ+MXD0qRcA9Dy+qPB4IXj22zaE9RRYlPae1VD3Zkcs9Du0MPcRWDz1s5tI9vVK4PBEBBz0I5RQ9+IzfOzCPILxQihw9vqfNPAGc0bsObyY9nxcTPAf0jj07mQY99N7hO8lZVj0bpGY9RhUdPF8Koz01UJ89UmYNPJG9kz2S4cI9xTTcO4+aWz3XxtY9HnvbO2bm+jyWACo9CkAKPEKnmLxL8qM9RU2wPWWz2b3JWoY9y2yrPXCDzL3mKYI9vYd/PUza2L0FsKU9rfiBPSFK6L1ExaE9Tvw2ORKC172EwLg9dAc5Oe8/yb2uTMU9aVtLPSVk2L1B5qU9NQxPPfIB6L2kIMU9i017PfVB1r1nYsU95Sg8OQ+kpL1iC9Q9Mxs/PQp/p71AhYc9QAg4OapDz7344YA9UE1NPe9m2b1qYlY9NBU9PXlJrb2BwlM9eINlPXm+rr1YY3M9sCk7OQTKqL3Z/E09bT47Pchkib3OlU89zYwhPXKZib0KlU49K+rAPd15cb2Jm1k9i0CpPeIOpb35qdA9EmibPdoHk733bNc9PwQDPMkozDqrf9U94CTMPBAxLDslrtU9byYhPCKbZ7zYcb89PimqPYtzyr2QRtQ9HCU4PZWfhb1SdtM9W5ogPYvnhb2sQNM9+O1dPQ/Op72bAWw9Cxw2OWlpjb2bAWw9Cxw2OWlpjb3OlU89zYwhPXKZib1SdtM9W5ogPYvnhb2mqsY9hRM3OTsfir2mqsY9hRM3OTsfir1TYUc9nkdMPTZ/hr0u0zM9UFAWPSzs87yYP0g9rcyfPRggGr0Sk9Q9wvjXPHDvAr2YwtQ9Aj2tPCl/C72+ONM96aQKO+1dgby8+2w9vXbCPXOZuLwkz5E9iabDPUckdbyXTCU9awpDPZLbeLpELD097W6BPXi4pLytQEk9EGJTPQ/eYjzHJoc9ZW5YPVw1tzybCF89DJ2TPZWTBbwZ0NA9x4luPaQcFb0mc7U9C0+7PS8dsbxvXs49lOkrPcuqDTvQmcU9rtN1Pbl/hLyeQbM94s2NPW/oAbz2Rq89M7ZQPQuOfjz46B4+QmA8PjSfrb1Evyg+SpY0Pj+fh717Axg+1hAlPnYujr2yZwU+VK8ZPiI+j73w/xU+/VwcPuXoT71tOSk+76QqPhTrV71n3yA+CdYgPunWI71JphI+7p8bPpDqA73r/+s95N0QPruzOr1wjss9k90QPqBIEr1iZeQ9VhUVPou+BL2Y4/89FMIXPgFf67y3qQI+BjUWPu9HQL19Bdc9HBKBOK2EyTo5Vdk9wQj5O3kGhTpXGdc9NAxsuj35+TxX2tg9uEDQO8cp/Dzh18I9y9urumeTXT0SV8Q9sFzNO51SXz3i+p89lncEPOmmlj2z2J89RapjOE8plT04OWY9ySS8OsbVoz3BRWU9kFEWPDsbpj3TJCI9ExCAOjwbjz37YCI9M7cMPF1ikT37MwI9/E7ZO8d0WT0pQgQ9AkXVub25Vj0+i+Y8UL23O+2kDD3UPe88M2O1uqW0Cz3K5fQ8iu+zO846czzb/f88cMpYurLrWDyjjRE9UzDdO1D/KLxgMhU9HG6MOWocDbyXCPo9tGc+PpDR5r2Ah729bxklPmWI3bzeysq9hFocPklGAr3XS7i9TWUSPsVQAb1Xn6C9W2MrPuATxLziPZ69Df0UPvje57xvNLi9G3kEPuJ4Br0rJJy9/AcGPvOU2by1TOO9i4lLPvBnDr7+kta9D94tPip36L2LOu+924tGPiMe/r08a/W9F/c+Pqxh470Ua+G92BY2Pg5Nx734Ya29M91IPqIGJL4rsqe9hnkqPhnL/70F2sC9nAgrPlN++r1qcsy972JLPlRGHb7J2s29hGIPPrXhmL21ZNW90hUQPl2lhL3q6u29AKcWPmC/ir0F4eW9HAodPrs0pr3cRfe9ifwmPkBxrr1NDwm+O0QzPs1Gsr117Pe9L3o8PnPhx70Ua+G92BY2Pg5Nx70cENe92JIePuF2vb3YEg6+rcs+Psvbvb3wm6W9biQdPrzl4L2Eibu9NGcdPlI+272lQ8y9rtIdPuSczr37Lri9R70MPo4usL1lPKW9oKwQPnQTvL3FJmy9N0MePthnCL1SjYO9ZysmPtxW5rycloS9shwUPvqfB72/I4G9/FwEPr3REL37zHC9/KwvPlKV7r0dWmu9RgVPPi/cEb5OgEy95uRJPocIAr6qx069YsI/Prir5r35s2C9ME4zPqb2yr2ZsI69K7YsPgkA/L3f8I29ZeRMPimOH74Zqxy914c0PhBAt70KOiq9Q0EiPhTilb1B3Ti9SRkqPtybtL1F9C+9BV47PvQEx73YkvS8Ln08PobIuL3rbKi87tozPv4ynb3uZPy8gAQtPpmNlr35ZnO923AUPkQkMr3Pm2q9N04MPkojT71H2US94msVPlgRZr2ngWG9cBsRPv0+g72ejUu9NBgZPjPQkb1w3uu8SnslPm4vOr0m3yK9CGcgPvnuHL16Khy9bvsaPhm5Zb2yqeO82ksjPg9Scb0mfF+9NHcaPu/irb0NnKC8NuEnPpkBd73IoJG9DmEfPoGm3b32x4C9GQIhPssf0b3UZmm9S7kPPvE/mL2rbmi9IlAhPrLGwb22bI29eY4NPmlLtL16ehm+nX88Pmrmrb2nhiK+AtQ0PqCfir2wlhO+QrknPlJpjL1GQwG+B94dPvsPjb0BXxK+DgIePjjFUr2U9iK+HT8rPqE3Yr2RQxu+6tYhPhwlMr0iIA6+fO0cPh5lFL0Spse9GWwSPtngKL1mZ829geIMPj38Ur0gRue9M74RPhfxQr1TmeC9JsAWPhLWFb2iz/m91UcZPu1MB73bd/+9fLoXPgq9RL2Ah729bxklPmWI3bz+JL696bwkPvJAuLzdkMy9+kobPstR4Lzeysq9hFocPklGAr1Xn6C9W2MrPuATxLwLt569u4UrPis4nrz+JL696bwkPvJAuLyAh729bxklPmWI3byLOu+924tGPiMe/r1bLvS9+DFGPnfZAb4PNue9FC1LPulXEr61TOO9i4lLPvBnDr4Ua+G92BY2Pg5Nx72JUeW9sBU1PrSfyL2FCPq9tGc+Pq7R5r08a/W9F/c+Pqxh4708a/W9F/c+Pqxh472FCPq9tGc+Pq7R5r1bLvS9+DFGPnfZAb6LOu+924tGPiMe/r1qcsy972JLPlRGHb47Xc69861KPu01Ir7Elqy9rdVHPhxcKb74Ya29M91IPqIGJL61TOO9i4lLPvBnDr4PNue9FC1LPulXEr47Xc69861KPu01Ir5qcsy972JLPlRGHb517Pe9L3o8PnPhx72vtv29qvg7Phhzyb2JUeW9sBU1PrSfyL0Ua+G92BY2Pg5Nx73YEg6+rcs+Psvbvb2rgxK+WaM+PkrFvr2vtv29qvg7Phhzyb117Pe9L3o8PnPhx73FJmy9N0MePthnCL0s6WC9u0sdPqrA7bwqN369BtslPtvYwbxSjYO9ZysmPtxW5rxSjYO9ZysmPtxW5rwqN369BtslPtvYwbwLt569u4UrPis4nrxXn6C9W2MrPuATxLwdWmu9RgVPPi/cEb6pCmC989BOPuQbFr6efz69mLNJPqQZBb5OgEy95uRJPocIAr6qx069YsI/Prir5r3k+UC9PTc/PrRd6r21/FO9ilAyPo1DzL35s2C9ME4zPqb2yr1OgEy95uRJPocIAr6efz69mLNJPqQZBb7k+UC9PTc/PrRd6r2qx069YsI/Prir5r34Ya29M91IPqIGJL7Elqy9rdVHPhxcKb46Z4q9ODxMPs2tJL7f8I29ZeRMPimOH77f8I29ZeRMPimOH746Z4q9ODxMPs2tJL6pCmC989BOPuQbFr4dWmu9RgVPPi/cEb75s2C9ME4zPqb2yr21/FO9ilAyPo1DzL3QdR+9j+I6PiFiyL1F9C+9BV47PvQEx71F9C+9BV47PvQEx73QdR+9j+I6PiFiyL0QOMq8OT48PiA9ub3YkvS8Ln08PobIuL3YkvS8Ln08PobIuL0QOMq8OT48PiA9ub3V2W68xVYzPv1nm73rbKi87tozPv4ynb35ZnO923AUPkQkMr1B/mK9lisTPh8PHL0s6WC9u0sdPqrA7bzFJmy9N0MePthnCL1w3uu8SnslPm4vOr0mwcC8WcAkPnubLL1vPBG9hIAfPqjoDL0m3yK9CGcgPvnuHL0m3yK9CGcgPvnuHL1vPBG9hIAfPqjoDL1B/mK9lisTPh8PHL35ZnO923AUPkQkMr3rbKi87tozPv4ynb3V2W68xVYzPv1nm73k2l28fe8mPgbNbb0NnKC8NuEnPpkBd70NnKC8NuEnPpkBd73k2l28fe8mPgbNbb0mwcC8WcAkPnubLL1w3uu8SnslPm4vOr16ehm+nX88Pmrmrb3u6B6+QmA8Pmefrb2rgxK+WaM+PkrFvr3YEg6+rcs+Psvbvb2nhiK+AtQ0PqCfir03vyi+SpY0PnGfh73u6B6+QmA8Pmefrb16ehm+nX88Pmrmrb2U9iK+HT8rPqE3Yr1qOSm+76QqPnjrV703vyi+SpY0PnGfh72nhiK+AtQ0PqCfir0iIA6+fO0cPh5lFL1EphK+7p8bPufqA71i3yC+CdYgPkvXI72RQxu+6tYhPhwlMr2RQxu+6tYhPhwlMr1i3yC+CdYgPkvXI71qOSm+76QqPnjrV72U9iK+HT8rPqE3Yr3eysq9hFocPklGAr3dkMy9+kobPstR4Lxzjsu9k90QPt9IEr0Spse9GWwSPtngKL0Spse9GWwSPtngKL1zjsu9k90QPt9IEr1bZeS9VhUVPs2+BL1TmeC9JsAWPhLWFb2iz/m91UcZPu1MB72C4/+9FMIXPplf67xEphK+7p8bPufqA70iIA6+fO0cPh5lFL1TmeC9JsAWPhLWFb1bZeS9VhUVPs2+BL2C4/+9FMIXPplf67yiz/m91UcZPu1MB71Jhre9KT7dPbR75Lw+T829ZqraPemDML1Tkti9dw4FPu8dOL28wcK9dWIFPmX4BL1+tbS94GgGPukC6bwS0pa9+dLhPV0Vs7wBtpu9J2oIPjnpzLzdkMy9+kobPstR4Lz+JL696bwkPvJAuLxeOrm9qJ4TPrVq5LwLt569u4UrPis4nrxm7Jy9pSEWPsbFw7xsbN+9ubAIPi1vp72cf+a9iMwFPnW2h73S/Na98jPgPe3ah727U+690jQsPkRP372L+dq9Zz4qPpOf670PNue9FC1LPulXEr4GNOa9uqkZPvBDwL3ypPm9LwQtPvW1w70SqvG9u6obPoe3pb1bLvS9+DFGPnfZAb43Y8G9nGAoPr7E/r3Elqy9rdVHPhxcKb47Xc69861KPu01Ir5p/6a9ThkoPjP5AL4bd/W9CY8TPvv3i72vtv29qvg7Phhzyb2Wnwy+9jcxPpOjtr0BogC+j6QkPrmGrr2JUeW9sBU1PrSfyL2JUeW9sBU1PrSfyL3ypPm9LwQtPvW1w72FCPq9tGc+Pq7R5r0SqvG9u6obPoe3pb2rgxK+WaM+PkrFvr2GIMO9tMPlPVlFt72gvby9eTcZPmu24L3zpqS9h5gYPieL5b0UAdC9E6cJPr3vuL3XEaO9a18EPpz9zL3mY6O9j34IPsztzr3B4Lm9IlcIPteKx71wmqO9jBTnPUGOyL1wkKO9PnD2PeHt0L0Jqby9G8D6PWDvxb0KvNW935kZPpx/0r39GUi9h0QHPpeBVr1QA1a9Yc7ePSe9Mr1OgXe9cKvgPXtw8LwLqWy9MdUHPif0Db3CMIO9VuEHPuP687wqN369BtslPtvYwbws6WC9u0sdPqrA7bz1QIG9u2QVPsuK8rz9+Ty97R4LPu0nkb2pCmC989BOPuQbFr7UaFe9niMtPrQI8b2efz69mLNJPqQZBb5KKTG9oZAwPqany721/FO9ilAyPo1DzL3k+UC9PTc/PrRd6r0Pjja9Z4gbPpjxrL2nroy93XopPnPg/706Z4q9ODxMPs2tJL4YDhm9VlIgPhsCl72W0Qq9r+EzPrSOt72YCCu96kIpPiVJtr3QdR+9j+I6PiFiyL21/FO9ilAyPo1DzL0QOMq8OT48PiA9ub3V2W68xVYzPv1nm71OHdu8ikkrPlyamL3iczG9LWUTPp6TXr1B/mK9lisTPh8PHL0wkTK9zvQWPhVik72/5g+9gVUaPnDfX71vPBG9hIAfPqjoDL0mwcC8WcAkPnubLL2tJcO8auMgPvmMar0Pjja9Z4gbPpjxrL3k2l28fe8mPgbNbb2ytoy9FGoZPpWT5b1WYIq9LcYIPn46yL2wWV69ieUbPlg42L0o4Ia94RP+Paf9yL1JfUi98GkLPqnxqb2Umkq9xVHePRzeir0gYT290kkdPvdzwL2efz69mLNJPqQZBb5lbja9rrEwPiyE3r1KKTG9oZAwPqany72eB2C9O7HgPbSqoL3gDGW9HX4KPm6uvr2Ltom9BrXjPRVdvb0oNAK9Jk/ZO7d0WT00YSK9TbcMPFBikT1Kbya9sBcTPPzzjj1pmQa9IN/hO7VZVj1g1e68Rt7AO5d9Cz2Gi+a8e723O9+kDD3b5fu8Jda1O5Y3gDzy5fS8sO+zO5A6czwP5RS9Io3fO42PILysjRG9fDDdO57/KLxPYye9oooKPG/DoLzPrES9KberPH2pEr3E9yq9czAIO2Mcl7xNoT+9XBXfPPpqDr1PYye9oooKPG/DoLyZACq9G0AKPHmnmLxNoT+9XBXfPPpqDr0FRmW9qlEWPCcbpj1bpGa9YBUdPE0Koz1QUJ+9a2YNPHu9kz0A+5+9p3cEPNGmlj0lV8S921zNO2VSXz2k4cK96zTcO1iaWz1q2ti94kDQO0cp/Dzexta9R3vbO+rl+jxOVdm96gj5O03+hDoBbde9UgQDPLcgzDrlA9e9uEwcPAC+fbwlrtW9gCYhPCGcZ7y+ONO9PKUKO25egbyHBde9ZByBOKF8yTpmMhW9uHCMOb4cDbzE9yq9czAIO2Mcl7xeGde96gpsurz4+Tz018K9Hturui6TXT0UPu+8jmK1upK0Cz0C/v+8JslYumvrWDzP2J+9ib9jODgplT0KJSK9vxCAOjIbjz1XQgS9YULVuay5Vj13OWa9dCW8OrTVoz1wwLi9iww5OQ1Ayb0phYe9Zg04Ob1Dz70pxaG9ZQE3OSWC1701Y3O92C47ORbKqL1KYsW9AS48OS2kpL2eqsa9oRg3OVkfir2AAWy9MyE2OXppjb3PrES9KberPH2pEr2wlU+90owhPYGZib1KdtO9X5ogPaznhb2PwtS9Cz2tPGl/C702SaO9Mt3SPZj3y70VMry9SxTMPU6Rvb3E3om9AabMPXmYwb0iP1+9ru/FPdnyoL2Jx9G9r4rBPcRWj711bc69AS2+PbckPr2jtW69VNcPPenbkT3uAzG9nKwLPV0DfD3c5Si9136nPNPTiz3PbWi9ZT22PB2rnz1g1e68Rt7AO5d9Cz3urP68vtGgPFyjET0JfAC9wKSqPL1epjzb5fu8Jda1O5Y3gDzbRTq994ErPUnuRj0VqA+9x1sLPaJmET3ZXhi9jV8JPQbxRj22/Qu9ytKdPML+Uj1O0Xm995IvPVTJYD2nIg69/U8WPXyDujzjtp69kJanPG3ujz3JT5293WkJPXVXgz05Brm9628CPduLXD1HRcC9HC+qPOQHXj3LzaG9SxYlPXW1VD3tkcu9Eu0MPYZWDz105tK9ylK4PNAABz1Wihy9y6fNPL2c0bsP5RS9Io3fO42PILxKbya9sBcTPPzzjj1pmQa9IN/hO7VZVj1bpGa9YBUdPE0Koz1QUJ+9a2YNPHu9kz2k4cK96zTcO1iaWz3exta9R3vbO+rl+jyZACq9G0AKPHmnmLzOKYK9wod/PV7a2L2wWoa9y2yrPYSDzL0t8qO9RU2wPXiz2b3nr6W9r/iBPTRK6L2bTMW9bVtLPUJk2L1wwLi9iww5OQ1Ayb0pxaG9ZQE3OSWC170k5qW9PAxPPQ8C6L2QIMW9kk17PR5C1r1FC9S9Nxs/PTN/p71KYsW9AS48OS2kpL0phYe9Zg04Ob1Dz73f4YC9VE1NPQFn2b1CYla9OBU9PY1Jrb1XwlO9foNlPYG+rr01Y3O92C47ORbKqL2wlU+90owhPYGZib27/E29cj47Pddkib3ylE69K+rAPf15cb1hm1m9lkCpPfYOpb3yqdC9FGibPfsHk70Bbde9UgQDPLcgzDq3f9W97STMPA8tLDslrtW9gCYhPCGcZ7zFcb+9PimqPZ5zyr1+RtS9IiU4Pbefhb1KdtO9X5ogPaznhb2ZQNO9/O1dPS3Op72AAWy9MyE2OXppjb1KdtO9X5ogPaznhb2wlU+90owhPYGZib2AAWy9MyE2OXppjb2eqsa9oRg3OVkfir2eqsa9oRg3OVkfir00YUe9pkdMPUZ/hr0r0zO9V1AWPWDs87ySP0i9rcyfPTggGr0Uk9S9z/jXPK7vAr2PwtS9Cz2tPGl/C72+ONO9PKUKO25egbzD+2y9vXbCPb2ZuLwmz5G9iabDPQMldbylTCW9cgpDPb3heLpBLD298G6BPbS4pLzBQEm9FGJTPZzdYjzWJoe9aW5YPQ41tzymCF+9Dp2TPRmUBbwc0NC9zoluPeIcFb0pc7W9C0+7PZsdsbx7Xs69mekrPfCmDTvQmcW9tNN1PTKAhLyhQbO95M2NPUTpAbz9Rq+9ObZQPUONfjzu6B6+QmA8Pmefrb03vyi+SpY0PnGfh719Axi+1hAlPqMujr2uZwW+VK8ZPkk+j73r/xW+/VwcPkHpT71qOSm+76QqPnjrV71i3yC+CdYgPkvXI71EphK+7p8bPufqA73i/+u95N0QPgK0Or1zjsu9k90QPt9IEr1bZeS9VhUVPs2+BL2C4/+9FMIXPplf67yyqQK+BjUWPj1IQL2HBde9ZByBOKF8yTpOVdm96gj5O03+hDpeGde96gpsurz4+Txq2ti94kDQO0cp/Dz018K9Hturui6TXT0lV8S921zNO2VSXz0A+5+9p3cEPNGmlj3P2J+9ib9jODgplT13OWa9dCW8OrTVoz0FRmW9qlEWPCcbpj0KJSK9vxCAOjIbjz00YSK9TbcMPFBikT0oNAK9Jk/ZO7d0WT1XQgS9YULVuay5Vj2Gi+a8e723O9+kDD0UPu+8jmK1upK0Cz3y5fS8sO+zO5A6czwC/v+8JslYumvrWDysjRG9fDDdO57/KLxmMhW9uHCMOb4cDbyFCPq9tGc+Pq7R5r1LgdC95HNVPasawLxLYtC9GZdLPeBhlrz5/oW9gsenPTHrHLyFgD+9HrZ5PWIuXryLlza9ykVxPeHqcryLlza9ykVxPeHqcrwVqDi97mtOPXv8yrwN+Se9Bc86Par2zLspKym9mWJNPdfahLsY6US9tXNkPbAe1zogHVC9HMttPfun4jvnwbC9cpJsPbMT3zuejMO9jHxYPVJ/9LrtyMq9aSBKPZDGrrt7as+9Cl88PRNBC7whftA963JUPTjbu7xLYtA9E5dLPWRhlrwPNcs9nJBGPQzRkbuFMs89nu84PR2Xzbs72MM980RXPYwO5roPNcs9nJBGPQzRkbvr1YU9JA6oPXwcH7zr1YU9JA6oPXwcH7x9MD89pvB6PS+TbLyh/TY9tVZyPb4oeLwJjjg9Rz1NPRDZy7zFuSc9uJE7PY3lvLsTNyk9i4JNPXcUhrtLdEQ9nj5mPYJyvDlPnlA9qbxvPdny0TunmbA9OJ1pPR5z/Tv/jwC/kq7lPn9CPb9YH1a+YI6GPochcb8WfNC+qDiFPk4gYL9nUmM9AMxqPizGeL8jQJM9tCF9PcvYfr/MPqQ9ulT9vfUzfb+08yC/A0e2PQ7ERb+ekTq/GmERPxTjwz4zby2/BRkQP5Vs8j7LHzK/O9MMP9dw7D73DD6/bPAjPyKfST4IFGC/nFfbPkevZT5KXry+73o2P0fcGD9eBgE9CXxCP+tFJj/2mmY9Uv9xP4eBpD5LxKK+8c1rP3gYZj65pP2+NyZSP1t1kT63x+e+axhjP1G6uD0ULgu/H0VBP529uz61pgy/GaEaPzrLEz9aj5W+46QAP1hQUD+/bda+suQTPzBbMz+Lese+kPoeP9AbLj8QOTQ+UBYJP2h0Uz9cQjy/EYsLP7Egzj5scWy+OQ4+P9j/ID9JtYS+RY1FP6muFD/0tS894qRIP1ecHj8cJRO/mp4qP1wX8z7YjOa+yQw/P4r6+j6JQos8OEFNPw7uGD8svZI+/ZKJPs5qa79HeBw/dxfZPnIWK7+v4gY/7FpxPlYMUb9Q2zs/mBriu4fnLb/F+zU/KunxPvZeBT94v0I/a0EEP38syT78qlA/vQ3gPnpbwj7TJGM/tb/ZPq/HNj7eYUU/XKrEPswGAj/j/8E+NuUyP0JRGz8uzrU+iSlmP3cegz5ErCE/UaUiP5yL4z6EJQU/gEUXP1fgHT9RNiA/zCLyPkvHHj+L2u4+imD4PpRXPT9QMmI++6M9PxtnIj/XK2k+tclHP6sSFT+IpOw+CjkzP7BWCz+nYlk/ZK7/PoMEML7Pj04/tEzCPvXG577KMhQ/6NlMP/d1IL5C/y8/deUuP8oafD7WpEk/tHwcP0l8nT0gVRE/pjpSP2FXbD2i6fc+XotdP6v+Az4H2LI+fWNvP+sfdD0XBAI/xQROP3BUnT5V2is/y7oYP3wt4T6CcDA+gXBxP62QkT56rak+UYw6P+xrGT+/KCw/suALP9KW/z5njjE/UmIdPw9AwD4obyU/mTn6PkYMFj+fffc+t1YoP7bvEz++CSy+w5hgP/Am5j51Waq+Rd1JP55oBD8mdwC/5tkwP7dABT98MN2+a5ZUP0AgtD5NTNm+SmNhP8yUWD7lRpa+eX9NP9vkBD+ZjpG+ZipkP0jitD4AhTy+qntzPxr0fT4A7gm/CoFSP7OXO764wBu/aqU+P5txjL4E76m+yRRuP7+wIb7jTWa+51l5P/ii1jxtm3e+jW13Pw7trz0nbcG+pddsP01RFj2Vk2M/+hToPuG6hb0w6Qw/bZFVP+m3BD167y4/MuQ6P5TTETz2cnE/HOmTPnM8KL7B7Qw/a45VPwq2BD3CY6G9P/Z+P0HGMb10kDU+MvF7PzBjZTt67y4/MuQ6P5TTETzsCIg+jw92P3CSmD29A9o+nNtbPynSkT7669M+DLhiP9SoVz4n11I+Enh6P4cwmbwhdP4+PIIeP0OkGz+BSsY+4ygZP/uTMz8QOTQ+UBYJP2h0Uz8J/Qk/L0IyPwOl8j69A9o+nNtbPynSkT4hdP4+PIIeP0OkGz9c+wk/BEAyPyyv8j7669M+DLhiP9SoVz6XHac7h7J7P+/gOr5SeOk8sDR+P1Hn6r07xaK+TM9rP5T/ZT59A2c9+f5xP0uBpD7cSeo8gDR+PyXn6r3sCIg+jw92P3CSmD0n11I+Enh6P4cwmbyCuKK+3c9rP1gaZj5vLpA6GG34vQUcfr9FQou9wsk/PxOsKL/cRwO+UrAEP1d0WL8Z5ze+sgaMPvDocb9FQou9wsk/PxOsKL8kUa88Y+9/P/1i5Tugybo7OphkP6p25r7cRwO+UrAEP1d0WL/Enwu/iPNPP5mPU76IQES/bOf9PvHY0L6p7Ti/9xobP9+kqr7X+9y+ebdjPzKAGb7CY6G9P/Z+P0HGMb3Enwu/iPNPP5mPU77X+9y+ebdjPzKAGb50kDU+MvF7PzBjZTs+vda+eEZYP2wXqj78zne9aGl/P0bb+bx/Uhq+ryR8PzGtrT1ngsC+FrxTPyPp1T4qJoK+oHkmP75ENz+6Y9m+D/AzP2wYEj/ZL8y+kOEqP035ID+jYq6+i0wkP0vlLz+6Y9m+D/AzP2wYEj8+vda+eEZYP2wXqj5ngsC+FrxTPyPp1T5cLMy+MeUqP432ID89NBE+4lF5PzB0Nb6XHac7h7J7P+/gOr59A2c9+f5xP0uBpD4uzrU+iSlmP3cegz78zne9aGl/P0bb+bw9NBE+4lF5PzB0Nb4uzrU+iSlmP3cegz5/Uhq+ryR8PzGtrT2JgkA92L4dP9hDSb93IaG+qUM+voxKbr/F/cM9Uza6PvE0bb9ZgDc7GMFZP++aBr9o4Wm9R5B/P9Y+RryRhUA9x7odPwNHSb9ZgDc7GMFZP++aBr+goxK9aoB5P8JOYr42umO8xKpZP3+zBj/ieGm9pZB/Px8/RrxQMmI++6M9PxtnIj/XK2k+tclHP6sSFT89Q0S/cuL9PtnU0L6EuUa/IvHOPgqy976hP02/Qba8PrHh8L6p7Ti/9xobP9+kqr6WRYc+nNdTP8Cl/T5jDPk70JZ3P/Eagj4H2LI+fWNvP+sfdD2q8/c+nohdPwj9Az5DBgE/rtIeP7jUGT/fQ4c+7dRTP6Wv/T7Q6Pc+oopdP3EYBD4fqAc/HaImP/spCz+AbgE8OllkP6Vr5z42umO8xKpZP3+zBj+yRGk+i8hHP80RFT/yiTA+cG9xPwmQkT5jDPk70JZ3P/Eagj7mEQM8LllkP5lr5z7yiTA+cG9xPwmQkT4H2LI+fWNvP+sfdD2Cf648hu9/Pxxj5TuomUS8cStwPx4lsT6+CSy+w5hgP/Am5j5scWy+OQ4+P9j/ID+omUS8cStwPx4lsT4DCei9KOJWP3UWCD8zV6q+mNpJP2ttBD++CSy+w5hgP/Am5j4DCei9KOJWP3UWCD+pZia+2etRP2F+DD/lRpa+eX9NP9vkBD91Waq+Rd1JP55oBD/q6gS+MLFiP0lo5D4fh+O9J5JoP8BHzj4AhTy+qntzPxr0fT6ZjpG+ZipkP0jitD4ugCa++upRP8t9DD9m6QS+mq5iP8py5D6ZjpG+ZipkP0jitD7lRpa+eX9NP9vkBD9xYXc/IdHmPdPbbL72k2M/XRXoPqyGhb05cXE/D+yTPgZaKL7KiXI/fRcIPqoLlb5rd8C+MMZQP2JJ4T6ZSMa+boJYPyHxuz7YxBu/cqI+P2tvjL5HwuS+dYk/Pw8i+z4fh+O9J5JoP8BHzj5r+nK+/l9cP3x85j5tm3e+jW13Pw7trz0AhTy+qntzPxr0fT42/XK+h2JcPwhy5j5AdcC+1cNQP/NT4T7jTWa+51l5P/ii1jxtm3e+jW13Pw7trz1ebVY/P7ivvgWa2T5Pdms/cK/QveMKwj4K9Bk/IWvWPVfFSj/sLh0/In2uvd3hSD/cnGa9SLpePnl0eT8fsdA+Cx4nvB7BaT+92Ve9CMD1PGiHfz/Udws+prWkvurebz/59qY+5n3uvmqWUj8eR6E+FN2TvktyZz9br2G9opeMvkXBdT95k4e9/lj1vTqXfT8Ie2w/btvCvpe1L72UEVE/QwHJvrqR2L7bqHc/73NovuqV5b2wSBA/2kUXv/7DE7+km0A/Fafzvk416b7jJis/F+cHvzZRBb84GFo/wlvVvn5cor4y1DY/fl8Ev6KN8b7SuDU/NMsGv+yH775O4lU/SxnAvmyQzb74eHK7hK1Dv8EPJb8AdKI+M2cxv9e6Jb8kdAU/Q4gkvya4D78OKoe8Woo7vwU0Lr9Ggi4/WNwyv51nXr7NR6w+kEcdvwGzNr8GT9w+naAGv7HSO7+xgnw+yA/lvosTXL9qSp06bzn4vc4cfr9vnKY+ay8gPzd8NT+BSsY+4ygZP/uTMz9Bav4+QIQePz6mGz8EnJE+KLQWP/O1QT9CQsA+iuTUvkQMVL9GUzI/dkhMvlFuML8PwzE9s6ckvwW1Q7+OoaM+T+sfvzllNr9d9Bs/ORvNvqc0L79lzCE9XCX7vlnbXr/Z10U9KWaqunSzf792ZsY+CfeVvhfFX7+PWYY9SXd+vntmd7+yCE69r5nMvcJkfr9tJ/c+JafOvXK0Xr8POQU/ApQXv3OEHb+rtzC/nfdkPn0nMD8WXne/R0umPHdtgz4UD3O/U6wxvjPyhT7FS0W/kn0MveHjIj+RTfW+Lt4TPfaDYD8qzsy+m933vnA5Rz/LNU2+nNCzvmIjaj8/Xum+0phqviovXD98hHq/rnJGvv4gjr2Bqyu/5Aj3vr9AEL/VRj2/U4vVvoxQB7/P7F6/j+uRvn8bzb4qJoK+oHkmP75ENz9lMZe+mHYuP7hqKz+6Y9m+D/AzP2wYEj+6Q7a9P2UVP3+iTj8QoI++pEApv+MiMr9uYgC/Ie4bv3lJHb9gSwO/g/UTv7t/Ir+WNS6/ojAav8Oo1b6f1Ry/M17ivg63J7/VNO2+jeb7vu6xPL9GLaG+IUI+vqBIbr/1Z+K+DnwRv12jMb+Blta+eqQzv9J8E7+s7P6+LQEtv8YiC78m2ki/PIESv9xRdD5CEjK/FkDCvgAvHD8/QF2/C132vtA2Fr6CfAG/RYFWv2EGUj6WIwe/4hhQvwYAfD6eWRm/GOlMv3Nps7xlHgG/MkpTvxjwgb7uO16/KL6wvn2htr7TjfW+J+dbv/l/N76qiIG+tygbv+ELQb8pr5S+TayLvmLNar+hABO/u0cFv7G/Ib9Xld++pR0FvlDiY79OkWC/vcWPvm9gx74yfne/mpozvj11Pr7tal+/5ZGvvtfssb4LyNa+JURYP5gVqj4uRGa/XGiPvna4q75XvHm/hv0YviItJb5ZdVK/9Lo4vpM9Cr8JVyG/UDbCvoBsLb8/9Qa/jh9OvnFYU7/R5ne+1at3P86Flj16rGC+VLd2Px2NGz71Uom+bZ12P2dyzjs3sHa+bXR4P3L/1Lumg02+t796P0R0k7zxbYW++R53P5Bvgbz0G6+95gh/PxnacDyw2BK+kFh9PxhwAbxGIQG+/Xh9P6Cuej0KkfW9haF9P0NCgj0DAm+/W88Ivnkxqr7k4Vi/B1UwvkaqAL/3bVS/rJxivjYmA7+X1K++lP9oPxhGbT5Kby6/PtYTP9Y95j5ik+G+2apYP9o7mT5binC/d1QjvhMJm74WefK7Pht3P5G6hT57YWW85fd2P4ybhj67HLY+uS5pP+FQVj41lGU+q+xtP/8dlj52DJE+PwFsPxtShz60gKo+eadtP+YrKT4WKqk+TflvP/l74T3L3K8+JbtvP7YDkj2poMU+wL5rP9ILYD1rXVU/kBkNP5rIIT1ywW0/M6m3Pojnvz0kHnc/B6+FPmOXfzsxGBU89Eh+vwTu670b5ww8bml/vz6gib3g2qw87/Jiv82m7L6oqa08nchgv8HG9L690d66Fv9/v3TWozsP0F68oLt/v+6TMj2OU8E7tep/vxMoy7yJ2KM7dtR/v/HeE70ccs68Dip/v1IWnT0IqPG8VDl/v4tzkz1ht4S8+VF/vxxqkT0UNgC9fK5+v+ZvxT0AAAAAAACAvxe3UTkAAAAAAACAvxe3UTkAAAAAAACAv1JJnTkAAAAAAACAvxe30bkAAAAAAACAvxe3UbkAAAAAAACAvxe30bgAAAAAAACAvxe30bkRE4M8LTBdv1fSAL8l1F48LrRcv+yqAb/bUrg8lKFIvwDnHr8NZbM8CoNJvx/KHb/gwgI+iC6MPsMJdL/mo04/mlPSPYfPFL9S7xu/FB84Pra9Rb/dlmS/dsT1Pdwp3r7BBHg/vximvVa5b771Yno/dM2IvJCTVD4OLTe/e9uMPoFiJD9J8CG/7FwZP3hU+z7lGWu9bQE4PxxgMT/oFci9+QadPjxgcj+Nc3u/XuMYPnzd6L3lDnm/CI5TPgj91D16vn2/ZOriPdaulD0NnXq/FJ/WPX1LM74u61u/5rz7PnPPET5ztwS/uOFPP/A4iT50DV6/rGvYPjhzhj6/2HG/ksMkPs5Hkj41ttE4ATNxP4GRqz7xR12/M3X+Pg6rnD0RIN8+VL8bPy/NKT8HMfs+Uv2HPkN1VD/AmiY/2iYBPw9BET/A+k4/w7UmPjzFED9nrbg+bVJWP2R70j7EVEU/il4MPwIMpj6oAng/XycPPlqcUT4UEW2/RRsiPktrr75YN3a/inryPSXSfL7F5VG/I08APvUADz8H1nK/Z172PQHplT5OSdm94e4WPjC+ez+dchk/dHbgPfD7Sj897F0/xqxYPVbL/T69hXk/6r2wPe0lUz4KjG2/6HzyPE1Dvr68+lQ92EGpPns9cb//wy6/lbyBPvF0L7+G+S6/rYUJPrutN78Ja149xib1PWTHfb/U1W8+UucyvtzTdL+jBFc/gVo1voxUA7/lQS4/oRGUvT+fOr/V4gO9ukzAvVW8fr96ako/JSslPu8wF78OWHg/Drgevi5IP768zns/6KOSvaVfKb6b0BS/wAwCvgLATb+cHDG/r+hQvfNhOL+2dHS/GFXBvf8gkL773XC/0liGu3pprb6coXC/SLEMvmnxn76JE3m/r3MbvtJJMr6+n3y/IifCvbpZBr4vVn+/bpOpPMMbjb3gWXG/2KvpPeNnoL7hlH0/wXaTPa4D771rXVU/kBkNP5rIIT3mh34/WIPaPZWU/ztywW0/M6m3Pojnvz1bA0o/piSIPuq/Db9Y938/xrSEPF1jqrr0j34/i9vGvVdwLL2fl3s/aVPSPZhIHb4Y9Hm/JMIkvmyoE76KABq9jPhLvU2Afz8LTw29rbhavW97fz+KABq9jPhLvU2Afz9ctSa9ttM8vfeDfz8gmnw/6wEevmJDT72ESX2/2IvbvBAgEr5kEHq/48GoPJs3Wr79EXq/AJFTPuUnZD1oen4/H43CPbzlWT1wy34/KDSAvf2Ml71YXXU/lONtvll7Kb5ytUm/3rm+PqMK+z6NABG9TQ7xPnurYT9SFG+/v8K1Ps2rLb1QZHG/a8WiPovCyj2bVgy/yaZIP5BmlT7xkm28SQZUPzJqDz+2hB2/Y00UP+fbCD+QIHo/jaIfPoOTFD5M0EY/jiZ1PpssFT8RJWg/irfCPpkqOj6edGA/YvXGPtQLkT4KZBA/0EsLP1ICHz/+7N4+bFVQP9QRxT5yLwA/9QINv3vwKr+GSxQ/cQImv/Dd/L7SPQs/iSktv8xD/r7xKtY+S5hbv97umL4uL+E+Wfphv+hfKb7sMQY/E3VCv6Yexb5qte8+ZpRgv9ff2L3enI8+CbR1v1vhRzx/BgE/neBNvx9IoT67LAQ/EnCwvvm0SD+qiB8+qvFtvwE1qz7nM4Q+Y3Z0vyXrFT6gN7I+B/Zvvz54cjxgIXs/XZk3videmL1fX30/FSkPvvx98rzPoXs/esMGvsyWAz6sOnU/2rHyvSzXhT480FU/X/jTvVxECj/aBVU/jOzivSUdCz8VOAk/sZ/NvYCVVj8mrgk/0KmkvTLXVj81Vx89mQ0Cvki7fT9vR4W+bNQNvjOedD+W7T+/rsfcvYolJz/v8j+/Y4a4veLOJz+aj3C/pLSmvbUVqj772HW/n/DrvaMAgj6Aq3y/g6EFvj1OwD3WlXy/KJkmvok3tLu8Nnq/A1okvu7mDL7xbne/cewzvpJkP74Q/2e/4j1OvmFRvr5HF2e/UxlivtUUvb77Jl4/+gO0vo3Ps75YH1Y+YI6GPochcb//jwA/kq7lPn9CPb8WfNA+qDiFPk4gYL9nUmO9AMxqPizGeL8jQJO9tCF9PcvYfr+08yA/A0e2PQ7ERb/MPqS9ulT9vfUzfb+nay0/hBsQP8lw8j6ekTo/GmERPxTjwz7LHzI/O9MMP9dw7D73DD4/bPAjPyKfST4IFGA/nFfbPkevZT72mma9Uv9xP4eBpD5eBgG9CXxCP+tFJj9KXrw+73o2P0fcGD9LxKI+8c1rP3gYZj4ULgs/H0VBP529uz7BvOc+hRpjP3XwuD25pP0+NyZSP1t1kT61pgw/GaEaPzrLEz+Lesc+kPoeP9AbLj+/bdY+suQTPzBbMz9aj5U+46QAP1hQUD8QOTS+UBYJP2h0Uz9cQjw/EYsLP7Egzj5scWw+OQ4+P9j/ID/0tS+94qRIP1ecHj9JtYQ+RY1FP6muFD+eJxM/9poqP4Eb8z68j+Y+Lw8/P5Tw+j6JQou8OEFNPw7uGD9HeBy/dxfZPnIWK78svZK+/ZKJPs5qa7+v4ga/7FpxPlYMUb9Q2zu/mBriu4fnLb94v0K/a0EEP38syT5nADa/NuLxPsxbBT/8qlC/vQ3gPnpbwj7TJGO/tb/ZPq/HNj7eYUW/XKrEPswGAj/j/8G+NuUyP0JRGz8uzrW+iSlmP3cegz6EJQW/gEUXP1fgHT/GtiG/J5wiP/SH4z5RNiC/zCLyPkvHHj+L2u6+imD4PpRXPT9QMmK++6M9PxtnIj/XK2m+tclHP6sSFT+IpOy+CjkzP7BWCz/Pj06/tEzCPvXG576nYlm/ZK7/PoMEML7KMhS/6NlMP/d1IL47pUm/A30cPytInT1C/y+/deUuP8oafD4H2LK+fWNvP+sfdD2i6fe+XotdP6v+Az4gVRG/pjpSP2FXbD0XBAK/xQROP3BUnT5V2iu/y7oYP3wt4T6CcDC+gXBxP62QkT56ram+UYw6P+xrGT+/KCy/suALP9KW/z5njjG/UmIdPw9AwD4obyW/mTn6PkYMFj+fffe+t1YoP7bvEz++CSw+w5hgP/Am5j51Wao+Rd1JP55oBD8mdwA/5tkwP7dABT98MN0+a5ZUP0AgtD5NTNk+SmNhP8yUWD7lRpY+eX9NP9vkBD+ZjpE+ZipkP0jitD4AhTw+qntzPxr0fT64wBs/aqU+P5txjL7Kwgk/4KVSPwj+Or4E76k+yRRuP7+wIb7jTWY+51l5P/ii1jxtm3c+jW13Pw7trz0nbcE+pddsP01RFj167y6/MuQ6P5TTETzB7Qy/a45VPwq2BD2Vk2O/+hToPuG6hb05cXG/D+yTPgZaKL50kDW+MvF7PzBjZTvCY6E9P/Z+P0HGMb3B7Qy/a45VPwq2BD167y6/MuQ6P5TTETz669O+DLhiP9SoVz69A9q+nNtbPynSkT7sCIi+jw92P3CSmD0n11K+Enh6P4cwmbwQOTS+UBYJP2h0Uz+BSsa+4ygZP/uTMz8hdP6+PIIeP0OkGz9B9Am/2UUyPzKu8j7u9Qm/BEgyPwmk8j5Bav6+QIQePz6mGz+9A9q+nNtbPynSkT7669O+DLhiP9SoVz47xaI+TM9rP5T/ZT5SeOm8sDR+P1Hn6r2XHae7h7J7P+/gOr59A2e9+f5xP0uBpD4n11K+Enh6P4cwmbzsCIi+jw92P3CSmD3cSeq8gDR+PyXn6r2CuKI+3c9rP1gaZj6lYQM+468EP6FzWL9FQos9wsk/PxOsKL/iLpC6cTn4vdAcfr+N6zc+FgqMPjzocb+gybq7OphkP6p25r4kUa+8Y+9/P/1i5TtFQos9wsk/PxOsKL/cRwM+UrAEP1d0WL+p7Tg/9xobP9+kqr6IQEQ/bOf9PvHY0L7Enws/iPNPP5mPU77X+9w+ebdjPzKAGb7X+9w+ebdjPzKAGb7Enws/iPNPP5mPU77CY6E9P/Z+P0HGMb10kDW+MvF7PzBjZTt/Uho+ryR8PzGtrT38znc9aGl/P0bb+bwLyNY+JURYP5gVqj5ngsA+FrxTPyPp1T7ZL8w+kOEqP035ID94btk+Gu4zP9YWEj/mGYI+tXomP+9FNz+jYq4+i0wkP0vlLz96hsA+BbpTP6vt1T4+vdY+eEZYP2wXqj54btk+Gu4zP9YWEj9cLMw+MeUqP432ID99A2e9+f5xP0uBpD6XHae7h7J7P+/gOr49NBG+4lF5PzB0Nb4uzrW+iSlmP3cegz4uzrW+iSlmP3cegz49NBG+4lF5PzB0Nb78znc9aGl/P0bb+bx/Uho+ryR8PzGtrT3F/cO9Uza6PvE0bb93IaE+qUM+voxKbr+JgkC92L4dP9hDSb9ZgDe7GMFZP++aBr9ZgDe7GMFZP++aBr+JgkC92L4dP9hDSb9o4Wk9R5B/P9Y+RrygoxI9aoB5P8JOYr5QMmK++6M9PxtnIj/ieGk9pZB/Px8/Rrw2umM8xKpZP3+zBj/XK2m+tclHP6sSFT8aQk0/iLi8Pn7X8L6EuUY/IvHOPgqy9749Q0Q/cuL9PtnU0L6p7Tg/9xobP9+kqr4H2LK+fWNvP+sfdD1jDPm70JZ3P/Eagj7fQ4e+7dRTP6Wv/T6q8/e+nohdPwj9Az7Q6Pe+oopdP3EYBD7fQ4e+7dRTP6Wv/T5DBgG/rtIeP7jUGT8fqAe/HaImP/spCz+yRGm+i8hHP80RFT82umM8xKpZP3+zBj+AbgG8OllkP6Vr5z6CcDC+gXBxP62QkT7yiTC+cG9xPwmQkT7mEQO8LllkP5lr5z5jDPm70JZ3P/Eagj4H2LK+fWNvP+sfdD2+CSw+w5hgP/Am5j4CPUY8XitwPxAlsT6Cf668hu9/Pxxj5TtscWw+OQ4+P9j/ID8zV6o+mNpJP2ttBD8DCeg9KOJWP3UWCD+omUQ8cStwPx4lsT6+CSw+w5hgP/Am5j7lRpY+eX9NP9vkBD8ugCY++upRP8t9DD8DCeg9KOJWP3UWCD91Wao+Rd1JP55oBD8AhTw+qntzPxr0fT4fh+M9J5JoP8BHzj7q6gQ+MLFiP0lo5D6ZjpE+ZipkP0jitD6ZjpE+ZipkP0jitD5m6QQ+mq5iP8py5D4ugCY++upRP8t9DD/lRpY+eX9NP9vkBD85cXG/D+yTPgZaKL45lmO/kQroPm68hb1xYXe/IdHmPdPbbL7KiXK/fRcIPqoLlb7YxBs/cqI+P2tvjL6ZSMY+boJYPyHxuz5rd8A+MMZQP2JJ4T5HwuQ+dYk/Pw8i+z5tm3c+jW13Pw7trz02/XI+h2JcPwhy5j4fh+M9J5JoP8BHzj4AhTw+qntzPxr0fT7jTWY+51l5P/ii1jxrd8A+MMZQP2JJ4T42/XI+h2JcPwhy5j5tm3c+jW13Pw7trz0K9Bm/IWvWPVfFSj9Pdmu/cK/QveMKwj5ebVa/P7ivvgWa2T7sLh2/In2uvd3hSD8fsdC+Cx4nvB7BaT/cnGY9SLpePnl0eT+92Vc9CMD1PGiHfz/59qa+5n3uvmqWUj/Udwu+prWkvurebz8eR6G+FN2TvktyZz/iF2I9bpeMvuvAdT95k4c9/lj1vTqXfT+UEVG/QwHJvrqR2L4Ie2y/btvCvpe1L73bqHe/73NovuqV5b2km0C/Fafzvk416b6wSBC/2kUXv/7DE79DIyu/a+kHv39TBb8y1Da/fl8Ev6KN8b5xFlq/BlrVvkhoor7SuDW/NMsGv+yH775O4lW/SxnAvmyQzb4AdKK+M2cxv9e6Jb/4eHI7hK1Dv8EPJb8kdAW/Q4gkvya4D79pLIc8nY07v4AwLr9Ggi6/WNwyv51nXr6xgny+yA/lvosTXL8GT9y+naAGv7HSO7/NR6y+kEcdvwGzNr9qSp26bzn4vc4cfr+BSsa+4ygZP/uTMz9vnKa+ay8gPzd8NT9Bav6+QIQePz6mGz8EnJG+KLQWP/O1QT9CQsC+iuTUvkQMVL9GUzK/dkhMvlFuML+OoaO+T+sfvzllNr8PwzG9s6ckvwW1Q78W+hu/Bg3NvrgzL7/Z10W9KWaqunSzf79lzCG9XCX7vlnbXr92Zsa+CfeVvhfFX7+yCE49r5nMvcJkfr85K4e9+Vx+vmNmd79tJ/e+JafOvXK0Xr8POQW/ApQXv3OEHb8UD3M/U6wxvjPyhT4WXnc/R0umPHdtgz6rtzA/nfdkPn0nMD/FS0U/kn0MveHjIj+RTfU+Lt4TPfaDYD/LNU0+nNCzvmIjaj8qzsw+m933vnA5Rz8/Xuk+0phqviovXD98hHo/rnJGvv4gjr3VRj0/U4vVvoxQB7+Bqys/5Aj3vr9AEL/P7F4/j+uRvn8bzb5lMZc+mHYuP7hqKz8qJoI+oHkmP75ENz+6Y9k+D/AzP2wYEj9+R7Y9VWgVPzegTj8QoI8+pEApv+MiMr9uYgA/Ie4bv3lJHb+WNS4/ojAav8Oo1b5gSwM/g/UTv7t/Ir+f1Rw/M17ivg63J7/VNO0+jeb7vu6xPL9GLaE+IUI+vqBIbr/1Z+I+DnwRv12jMb+BltY+eqQzv9J8E7+s7P4+LQEtv8YiC78m2kg/PIESv9xRdD5CEjI/FkDCvgAvHD8/QF0/C132vtA2Fr6eWRk/GOlMv3Nps7yWIwc/4hhQvwYAfD6CfAE/RYFWv2EGUj5lHgE/MkpTvxjwgb7uO14/KL6wvn2htr7TjfU+J+dbv/l/N76qiIE+tygbv+ELQb8pr5Q+TayLvmLNar+hABM/u0cFv7G/Ib9Xld8+pR0FvlDiY79OkWA/vcWPvm9gx74yfnc/mpozvj11Pr7tal8/5ZGvvtfssb4LyNY+JURYP5gVqj4uRGY/XGiPvna4q75XvHk/hv0YviItJb5ZdVI/9Lo4vpM9Cr8JVyE/UDbCvoBsLb8/9QY/jh9OvnFYU7/1Uok+bZ12P2dyzjt6rGA+VLd2Px2NGz7R5nc+1at3P86Flj3SeHY+/nd4P1koy7vxbYU++R53P5Bvgbymg00+t796P0R0k7yw2BI+kFh9PxhwAbz0G6895gh/PxnacDwKkfU9haF9P0NCgj1GIQE+/Xh9P6Cuej3k4Vg/B1UwvkaqAL8DAm8/W88Ivnkxqr73bVQ/rJxivjYmA7/Hay4/0tgTP9pB5j5+0K8+tQBpP5FAbT5ik+E+2apYP9o7mT5binA/d1QjvhMJm757YWU85fd2P4ybhj4WefI7Pht3P5G6hT52DJG+PwFsPxtShz41lGW+q+xtP/8dlj67HLa+uS5pP+FQVj60gKq+eadtP+YrKT4WKqm+TflvP/l74T080a++QL1vP/8Ekj2AlcW+FMFrPwgOYD1qW1W/kxwNPw3MIT0kHne/B6+FPmOXfztywW2/M6m3Pojnvz3+2Ky8Bfdivx+X7L4b5wy8bml/vz6gib0xGBW89Eh+vwTu672oqa28nchgv8HG9L4Mxrq78ep/v41WyrwP0F48oLt/v+6TMj3E0d46Hv9/v6CPoDuJ2KO7dtR/v/HeE70IqPE8VDl/v4tzkz0ccs48Dip/v1IWnT08tIQ8eVJ/vz0ykT0UNgA9fK5+v+ZvxT0AAACAAACAvxe3UTkAAACAAACAvxe3UTkAAACAAACAv1JJnTkAAACAAACAvxe30bgAAACAAACAvxe3UbkAAACAAACAvxe30bkAAACAAACAvxe30bnbUri8lKFIvwDnHr8l1F68LrRcv+yqAb+E44O8mTRdv4vKAL8NZbO8CoNJvx/KHb8WqQK+/S6MPo8KdL/mo06/mlPSPYfPFL9S7xs/FB84Pra9Rb8olmQ/Ivj1PS0p3r7BBHi/vximvVa5b771Ynq/dM2IvJCTVD7lGWs9bQE4PxxgMT9J8CE/7FwZP3hU+z4OLTc/e9uMPoFiJD/oFcg9+QadPjxgcj96vn0/ZOriPdaulD02EHk/8HRTPij+1D2Nc3s/XuMYPnzd6L2nm3o/fqPWPWRpM75ztwQ/uOFPP/A4iT4u61s/5rz7PnPPET50DV4/rGvYPjhzhj6/2HE/ksMkPs5Hkj41ttG4ATNxP4GRqz7xR10/M3X+Pg6rnD0HMfu+Uv2HPkN1VD8RIN++VL8bPy/NKT/Amia/2iYBPw9BET/A+k6/w7UmPjzFED9nrbi+bVJWP2R70j7EVEW/il4MPwIMpj6oAni/XycPPlqcUT5YN3Y/inryPSXSfL4UEW0/RRsiPktrr77F5VE/I08APvUADz8H1nI/Z172PQHplT5OSdk94e4WPjC+ez+dchm/dHbgPfD7Sj897F2/xqxYPVbL/T69hXm/6r2wPe0lUz4KjG0/6HzyPE1Dvr6G+S4/rYUJPrutN7//wy4/lbyBPvF0L7+J/FS9LDapPoU/cb8Ja169xib1PWTHfb/lQS6/oRGUvT+fOr+jBFe/gVo1voxUA7/U1W++UucyvtzTdL/V4gM9ukzAvVW8fr96akq/JSslPu8wF7+8znu/6KOSvaVfKb4OWHi/Drgevi5IP76b0BQ/wAwCvgLATb8IIDE//ORQva9eOL+2dHQ/GFXBvf8gkL713XA/qJ+Ju3Zprb6coXA/SLEMvmnxn76+n3w/IifCvbpZBr6JE3k/r3MbvtJJMr4vVn8/bpOpPMMbjb3gWXE/2KvpPeNnoL7hlH2/wXaTPa4D771rXVW/kBkNP5rIIT3mh36/WIPaPZWU/ztywW2/M6m3Pojnvz1bA0q/piSIPuq/Db9Y93+/xrSEPF1jqrr0j36/i9vGvVdwLL2fl3u/aVPSPZhIHb4Y9Hk/JMIkvmyoE76KABo9jPhLvU2Afz8LTw09rbhavW97fz+KABo9jPhLvU2Afz9ctSY9ttM8vfeDfz8gmny/6wEevmJDT72ESX0/2IvbvBAgEr5kEHo/48GoPJs3Wr79EXo/AJFTPuUnZD1oen6/H43CPbzlWT3ry36/ZjSAvdlYl71YXXW/lONtvll7Kb5ytUk/3rm+PqMK+z6NABE9TQ7xPnurYT9SFG8/v8K1Ps2rLb1QZHE/a8WiPovCyj2bVgw/yaZIP5BmlT7xkm08SQZUPzJqDz+2hB0/Y00UP+fbCD+QIHq/jaIfPoOTFD5M0Ea/jiZ1PpssFT8RJWi/irfCPpkqOj6edGC/YvXGPtQLkT4KZBC/0EsLP1ICHz/+7N6+bFVQP9QRxT6jLQC/hQcNvxLuKr+GSxS/cQImv/Dd/L7SPQu/iSktv8xD/r7xKta+S5hbv97umL4uL+G+Wfphv+hfKb7sMQa/E3VCv6Yexb5qte++ZpRgv9ff2L3enI++CbR1v1vhRzx/BgG/neBNvx9IoT67LAS/EnCwvvm0SD91jB++xvBtvxM5qz7nM4S+Y3Z0vyXrFT6gN7K+B/Zvvz54cjxgIXu/XZk3videmL1fX32/FSkPvvx98rzPoXu/esMGvsyWAz6sOnW/2rHyvSzXhT480FW/X/jTvVxECj9ABVW/VSDjvb8cCz8VOAm/sZ/NvYCVVj8mrgm/0KmkvTLXVj81Vx+9mQ0Cvki7fT9vR4U+bNQNvjOedD+W7T8/rsfcvYolJz/v8j8/Y4a4veLOJz+aj3A/pLSmvbUVqj772HU/n/DrvaMAgj6Aq3w/g6EFvj1OwD3WlXw/KJkmvok3tLu8Nno/A1okvu7mDL7xbnc/cewzvpJkP748AGg/GDlOvvdMvr5HF2c/UxlivtUUvb77JF6/WwK0vgnbs76YU3a/EIF3Pk5pAD4oX3a/qDh0Po84BT5KxdM+boMCP4wbQT8mRUw/5roLP2Dsgj5WoGk/3J3PPtbPVT3qnWk/0ajPPp/NVT36Cns/sCoLPqxjEL42dHk/b9IRPgL6Mb5WoGk/3J3PPtbPVT0mRUw/5roLP2Dsgj6MzyI/VrUiP10Y4D5CQAS/jnMnPwdxDT/Ko0O/usoDP6zqxj4Zslm/zcTrPudZgj4waHa/PPRwPgQKCj6YU3Y/EIF3Pk5pAD4oX3Y/qDh0Po84BT4Zslk/zcTrPudZgj4waHY/PPRwPgQKCj7Ko0M/usoDP6zqxj4Zslk/zcTrPudZgj5KxdO+boMCP4wbQT9KxdO+boMCP4wbQT8mRUy/5roLP2Dsgj7qnWm/0ajPPp/NVT36Cnu/sCoLPqxjEL42dHm/b9IRPgL6Mb5WoGm/3J3PPtbPVT0mRUy/5roLP2Dsgj6MzyK/VrUiP10Y4D5CQAQ/jnMnPwdxDT//E5M9TJNlP174lD37yWU/3i+RPfTTZT9eJJY9WjlmP158kT3gMmY/vdqNPUAsZj8+6I09xMplPx5RgD08YmU/e9BuPdxGZT98EnU9gv1kP7v/ez2962Q/Hg6CPVrqZD876n492cZlP329fj2cHWY/3PFpPVc3Zj8boWo9HrxlP73zij1wDWU/PbKLPQJxZT8e74k9t5VlP77fhz3rO2U/Hl6CPYWJZD9eEYY9iWhkP56khj1u4GQ/Hg6CPVrqZD/evYU9PmVlP56fhD1iEmQ/noGDPZDPZT+eV4M96BdmP959hD2BkmU/PjWIPT/gZT9eLIc9ZAZmP56mlD1GomY/vrCSPYzPZj++E5E9yI1mP55kjT1RiGY/vINwPRcWZz9e3oA988ZmP7zrdz2+S2c/PNZ/PYU+Zz/e2oM9wAlnP7uBfz0ScmY/nHtrPR6uZj/+xYk9YDdnP37vhT0gXmc/PoGGPZEbZz9eIYQ9sTpnP13BhT3Ynmc/vvSIPeblZz9+cYk9+4tnP51mjj1p1GY/HnaQPQi9Zj/+qY09MwpnPz4vij1BAWc//t6LPe7GZj9eqY09mFBnP54Qkj0cU2c/nl2QPfqmZz/+C4095KRnPz7Thz392GY/Ht+MPTPtZz/eg4M9pVpmPx6khD1+mWY/XTyKPXWlZj9e6YU92sBmP50yiD0zU2Y/vtCGPdzwYz/eE4s91sVjP17Kij3XRWQ/3pmKPazDZD+epI49akxkP70Ljj2TwmM/3deQPQz8Yz8ekpI9H15kP761jj0WZWU/XgORPdaXZT8+no89FStlP36Ekj3GPGU/fVaTPaneZD+dkI89FNFkP77qkT0IjmM//WiGPQiOYz/9aIY9M1VjP77qkT0zVWM/vuqRPQiOYz/9aIY9CI5jP/1ohj0zVWM/vuqRPTNVYz++6pE9CI5jP/1ohj0IjmM//WiGPTNVYz++6pE9M1VjP77qkT0IjmM//WiGPQiOYz/9aIY9M1VjP77qkT0zVWM/vuqRPQiOYz/9aIY9CI5jP/1ohj0zVWM/vuqRPTNVYz++6pE9CI5jP/1ohj0IjmM//WiGPTNVYz++6pE9M1VjP77qkT0IjmM//WiGPQiOYz/9aIY9M1VjP77qkT0zVWM/vuqRPQiOYz/9aIY9CI5jP/1ohj0zVWM/vuqRPTNVYz++6pE9CI5jP/1ohj0IjmM//WiGPTNVYz++6pE9M1VjP77qkT0IjmM//WiGPQiOYz/9aIY9M1VjP77qkT0zVWM/vuqRPQiOYz/9aIY9CI5jP/1ohj0zVWM/vuqRPTNVYz++6pE9CI5jP/1ohj0IjmM//WiGPTNVYz++6pE9M1VjP77qkT0IjmM//WiGPQiOYz/9aIY9M1VjP77qkT0zVWM/vuqRPQiOYz/9aIY9CI5jP/1ohj0zVWM/vuqRPTNVYz++6pE9CI5jP/1ohj0IjmM//WiGPTNVYz++6pE9M1VjP77qkT0IjmM//WiGPQiOYz/9aIY9M1VjP77qkT0zVWM/vuqRPQiOYz/9aIY9CI5jP/1ohj0zVWM/vuqRPTNVYz++6pE9CI5jP/1ohj0IjmM//WiGPTNVYz++6pE9M1VjP77qkT0IjmM//WiGPQiOYz/9aIY9M1VjP77qkT0zVWM/vuqRPQiOYz/9aIY9CI5jP/1ohj0zVWM/vuqRPTNVYz++6pE9CI5jP/1ohj0IjmM//WiGPTNVYz++6pE9M1VjP77qkT0IjmM//WiGPQiOYz/9aIY9M1VjP77qkT0zVWM/vuqRPQiOYz/9aIY9CI5jP/1ohj0zVWM/vuqRPTNVYz++6pE9CI5jP/1ohj0IjmM//WiGPTNVYz++6pE9M1VjP77qkT0IjmM//WiGPQiOYz/9aIY9M1VjP77qkT0zVWM/vuqRPQiOYz/9aIY9CI5jP/1ohj0zVWM/vuqRPTNVYz++6pE9CI5jP/1ohj0IjmM//WiGPTNVYz++6pE9M1VjP77qkT0IjmM//WiGPQiOYz/9aIY9M1VjP77qkT0zVWM/vuqRPQiOYz/9aIY9CI5jP/1ohj0zVWM/vuqRPTNVYz++6pE9CI5jP/1ohj0IjmM//WiGPTNVYz++6pE9M1VjP77qkT0IjmM//WiGPQiOYz/9aIY9M1VjP77qkT0zVWM/vuqRPQiOYz/9aIY9CI5jP/1ohj0zVWM/vuqRPTNVYz++6pE9CI5jP/1ohj0IjmM//WiGPTNVYz++6pE9M1VjP3/rFD66jVc/wTYPPrN4Xz+eO/Y9pr5fP1weAz48Mlg/YoXbPc7cXj955PQ9NCxYP7fC2j3k6lc/HHnwPW/pTj8QeQM+hB5RP3ts9j3KElQ/ftbJPQ8fTj++T9U9yRxUP1H1Kz5e+FY/TPc/Pv/JVj8i2Co+h3FeP354aT63608/8YdiPgOgTj/gTYM+Kj9KP04NVD7Fo04/QMtRPo55Uj9uF0I+D3ZRP/Dxdj717Uk/PsuPPhZeTz9+TXM++01SPyfnij76Qkw/sTB5Psi0VD8B1DE+9hVSP4IESD7mRk4/AEBJPuiqST/8qVk+mBJKP95HXD573Uw/Tg1UPsWjTj/eR1w+e91MP0z1aT7LMks/bhdCPg92UT9tMk8+ZL1GP47LSD4aYl4/TPltPsaFVj+eW2U+zvVUPxHySz4vY1c/YQZhPr1+WT8Pql4+3HNaPwGgVz49xlg/MDBePngrXD9wZ10+0CVfP1zhUj4zfFs/UAFbPh+RUz+eO/Y9pr5fP+FvDT7gR18/v0YaPqMMVz8swgM+7udXPx/V9T2wClg/EHkDPoQeUT8cefA9b+lOP/qt9z147lM/sTYuPsybVT/OuGo+LJZPP+BNgz4qP0o/8PF2PvXtST/eR1w+e91MP3rzVT7MB04/TPVpPssySz+a8UE+zNxQP54Scz7NJ1I/J+eKPvpCTD/fQkg+F9pIP5wpNj6elU0/so5JPlgJTT/iOFU+aMdIP95HXD573Uw/HUxEPk4URT8eFTQ+JWhEPw19Nj47w0g/caYePiP5UT/BQQk+JHhUPyE/Mz70X1E/sAwYPv4sSD9uIhE+NT9LP51EIT5E5E0/UBIkPkxyST+a8UE+zNxQPyyMIz7XokU/vNllPuy8VD8/qVY+R4JYP169Wj7yzFI/n2BSPhbgWj+e6kA+MjhVP98cKT5g7l4/jqVRPpdpUT/w8XY+9e1JP79LZD7Gq00/evNVPswHTj9Q/jY+ysteP1FmSz7k1lY/XRVNPpLwXj/6kcg81Th6P3oVvzwy9Ho/ew0nPTL0ej89FSo91Th6P70kdD0y9Ho/u0R1PdU4ej9eAqE9MvR6Px5mnz3VOHo/f0XTPTL0ej8YPtI91Th6P0I7BD4oY3Y/gd7lPTL0ej/jg+M9wCt8P4He5T0y9Ho/X/YBPikDdj+cgNs91Th6P1/2AT4pA3Y/7Rk4PNU4ej9wLSA8MvR6P91qHj0y9Ho/erSkPDL0ej95ELA81Th6P3sLIj3VOHo/viyBPTL0ej99e4E91Th6P36jvD0y9Ho//o27PdU4ej/j59o91Th6P4He5T0y9Ho/cIckP1SdIT/J+RQ/bxggP3CeFT9iBiQ/NXIjP6DrIz+RrCU/ZN8XP2yTFj+xDRQ/5ZoUP6KDGT8xdCU/8JkcP5LsIj9K5Q8/Aj8aP5+fDz8bwiQ/qsATP+8WHz8Rww0/R+4eP9xEQj8lfxk/UN1BP74XHD9bT0M/TKQXP0ICOz+U6xc/muk9P5k/ID+K+T0/54IgP3fzOj8lKRY/wDkyPyb/IT+qFzI/30IiP05zKj9zrxU/QqsqP3BnXT5AvGE/Xp1LPg5DYj9NA00+l01iP376ND7kwmI/4W8tPk4aYz+MWBI+1aRjP/fD1DyhXXc/PFgFPVbJcz+37I88CQpyP29pUjzX5HY/fhiWPdVDdz+7RW89UJR3P7tEdT3snHk/HmafPeyceT/8gG89gs5zP3wfOT3Kv3E/vBw5PQrvcz/cWi093Kx3P5u7KD0TdW4/3i6RPQkbcz+2C/A8Yu5zP7rsvjzcXHc/2x8hPaxgdD9drR89mEd3P3wfOT3Kv3E//INxPdW0cz89pXk9xNN2Pxg+0j3snHk/vnHLPQQldj/6kcg87Jx5Pz0VKj3snHk/7Rk4POyceT95ELA87Jx5P3sLIj3snHk/fXuBPeyceT/rsN097Jx5P3BnXT7DKGY/jZlMPlLwZj+NGEw+FptsP3BnXT7mFmw/cGddPgGufD/BRUU+4a18P2z8Sz4blW8/cGddPoJ5bz9wQ0w+ENtsP+9qMz6srXw/8PczPkdwcD+xNEg+8q18P4EoSz5OjW8/8PczPkdwcD+S2DQ+EhhuP+5wNT6+rXw/f1ciPlIGcT8wcSI+7WJyP3zcHT69ZmM/rEo0Pt/VZj/NWCw+gIJoP/6Nuz3snHk/3Wq5PWgxdj/rsN097Jx5P5+bTD5JGmc/vYAgPogXcT/eoyA+cnJyP+0GMz6fjm4/HE0kPhCufD/ngiA/d/M6Pyb/IT+qFzI/JSkWP8A5Mj9MpBc/QgI7P2KyIj4Arnw//9MgPumjbz8BJvo9BhtzP573BT7HQGg/X/YBPikDdj9COwQ+KGN2P+OD4z3AK3w/YLvqPV3EYz+Avc09h7liP/6PwD06PnA/JCTnPalgbD+EJJw9xf1uP7Cudz0gEG0/4fPOPc7UaT9CXQQ+P49tP/oU6z3JbGQ//li6PSi5cT9AR+A9bi5tP2CBzj0pk2o/GjSZPWkMbz8dTEQ+ThRFPx4VND4laEQ/vEUzPn6FST+ejDM+mrVOP94rIT4v0Uo/LIwjPteiRT+wDBg+/ixIP24iET41P0s/b2IYPnbzUj/BQQk+JHhUP4BgCz6+xFE/EnwNPu0XTz8/exw+gnpPPz6Yuz3AK3w/fqO8PTL0ej9etYE9wCt8P74sgT0y9Ho//B4gPcArfD/dah49MvR6P3q0pDwy9Ho/eoWqPMArfD/t5jE8wCt8P3AtIDwy9Ho/+PjHPMArfD96Fb88MvR6P3sNJz0y9Ho/XLcpPcArfD+9JHQ9MvR6PzwPdT3AK3w/XgKhPTL0ej9+N6Q9wCt8P39F0z0y9Ho/Id/PPcArfD9M9Wk+yzJLP174lD37yWU//xOTPUyTZT/eL5E99NNlP14klj1aOWY/XnyRPeAyZj8+6I09xMplP73ajT1ALGY/e9BuPdxGZT8eUYA9PGJlP3wSdT2C/WQ/u/97Pb3rZD8eDoI9WupkP9zxaT1XN2Y/fb1+PZwdZj876n492cZlPxuhaj0evGU/Hu+JPbeVZT89sos9AnFlP73zij1wDWU/vt+HPes7ZT+epIY9buBkP14Rhj2JaGQ/Hl6CPYWJZD8eDoI9WupkP969hT0+ZWU/np+EPWISZD+eV4M96BdmP56Bgz2Qz2U/3n2EPYGSZT8+NYg9P+BlP14shz1kBmY/vrCSPYzPZj+eppQ9RqJmP74TkT3IjWY/nmSNPVGIZj9e3oA988ZmP7yDcD0XFmc/vOt3Pb5LZz881n89hT5nP97agz3ACWc/u4F/PRJyZj+ce2s9Hq5mP37vhT0gXmc//sWJPWA3Zz8+gYY9kRtnP14hhD2xOmc/XcGFPdieZz++9Ig95uVnP35xiT37i2c/HnaQPQi9Zj+dZo49adRmP/6pjT0zCmc//t6LPe7GZj8+L4o9QQFnP55dkD36pmc/nhCSPRxTZz9eqY09mFBnP/4LjT3kpGc/PtOHPf3YZj8e34w9M+1nP96Dgz2lWmY/HqSEPX6ZZj9dPIo9daVmP17phT3awGY/nTKIPTNTZj++0IY93PBjP94Tiz3WxWM/XsqKPddFZD/emYo9rMNkP56kjj1qTGQ/vQuOPZPCYz/d15A9DPxjPx6Skj0fXmQ/XgORPdaXZT++tY49FmVlPz6ejz0VK2U/foSSPcY8ZT99VpM9qd5kP52Qjz0U0WQ//WiGPTNVYz/9aIY9CI5jP77qkT0IjmM/vuqRPTNVYz/9aIY9M1VjP/1ohj0IjmM/vuqRPQiOYz++6pE9M1VjP/1ohj0zVWM//WiGPQiOYz++6pE9CI5jP77qkT0zVWM//WiGPTNVYz/9aIY9CI5jP77qkT0IjmM/vuqRPTNVYz/9aIY9M1VjP/1ohj0IjmM/vuqRPQiOYz++6pE9M1VjP/1ohj0zVWM//WiGPQiOYz++6pE9CI5jP77qkT0zVWM//WiGPTNVYz/9aIY9CI5jP77qkT0IjmM/vuqRPTNVYz/9aIY9M1VjP/1ohj0IjmM/vuqRPQiOYz++6pE9M1VjP/1ohj0zVWM//WiGPQiOYz++6pE9CI5jP77qkT0zVWM//WiGPTNVYz/9aIY9CI5jP77qkT0IjmM/vuqRPTNVYz/9aIY9M1VjP/1ohj0IjmM/vuqRPQiOYz++6pE9M1VjP/1ohj0zVWM//WiGPQiOYz++6pE9CI5jP77qkT0zVWM//WiGPTNVYz/9aIY9CI5jP77qkT0IjmM/vuqRPTNVYz/9aIY9M1VjP/1ohj0IjmM/vuqRPQiOYz++6pE9M1VjP/1ohj0zVWM//WiGPQiOYz++6pE9CI5jP77qkT0zVWM//WiGPTNVYz/9aIY9CI5jP77qkT0IjmM/vuqRPTNVYz/9aIY9M1VjP/1ohj0IjmM/vuqRPQiOYz++6pE9M1VjP/1ohj0zVWM//WiGPQiOYz++6pE9CI5jP77qkT0zVWM//WiGPTNVYz/9aIY9CI5jP77qkT0IjmM/vuqRPTNVYz/9aIY9M1VjP/1ohj0IjmM/vuqRPQiOYz++6pE9M1VjP/1ohj0zVWM//WiGPQiOYz++6pE9CI5jP77qkT0zVWM//WiGPTNVYz/9aIY9CI5jP77qkT0IjmM/vuqRPTNVYz/9aIY9M1VjP/1ohj0IjmM/vuqRPQiOYz++6pE9M1VjP/1ohj0zVWM//WiGPQiOYz++6pE9CI5jP77qkT0zVWM//WiGPTNVYz/9aIY9CI5jP77qkT0IjmM/vuqRPTNVYz/9aIY9M1VjP/1ohj0IjmM/vuqRPQiOYz++6pE9M1VjP/1ohj0zVWM//WiGPQiOYz++6pE9CI5jP77qkT0zVWM//WiGPTNVYz/9aIY9CI5jP77qkT0IjmM/vuqRPTNVYz/9aIY9M1VjP/1ohj0IjmM/vuqRPQiOYz++6pE9M1VjP/1ohj0zVWM//WiGPQiOYz++6pE9CI5jP77qkT0zVWM//WiGPTNVYz/9aIY9CI5jP77qkT0IjmM/vuqRPTNVYz/9aIY9M1VjP/1ohj0IjmM/vuqRPQiOYz++6pE9M1VjP/1ohj0zVWM//WiGPQiOYz++6pE9CI5jP77qkT0zVWM/njv2Paa+Xz/BNg8+s3hfP3/rFD66jVc/XB4DPjwyWD955PQ9NCxYP2KF2z3O3F4/t8LaPeTqVz8QeQM+hB5RPxx58D1v6U4/e2z2PcoSVD9+1sk9Dx9OP75P1T3JHFQ/TPc/Pv/JVj9R9Ss+XvhWPyLYKj6HcV4/8YdiPgOgTj9+eGk+t+tPP+BNgz4qP0o/QMtRPo55Uj9ODVQ+xaNOP24XQj4PdlE/8PF2PvXtST9+TXM++01SPz7Ljz4WXk8/J+eKPvpCTD+xMHk+yLRUPwHUMT72FVI//KlZPpgSSj8AQEk+6KpJP4IESD7mRk4/3kdcPnvdTD/eR1w+e91MP04NVD7Fo04/TPVpPssySz9uF0I+D3ZRP20yTz5kvUY/jstIPhpiXj+eW2U+zvVUP0z5bT7GhVY/EfJLPi9jVz8Pql4+3HNaP2EGYT69flk/AaBXPj3GWD9wZ10+0CVfPzAwXj54K1w/XOFSPjN8Wz9QAVs+H5FTP79GGj6jDFc/4W8NPuBHXz+eO/Y9pr5fPyzCAz7u51c/H9X1PbAKWD8cefA9b+lOPxB5Az6EHlE/+q33PXjuUz+xNi4+zJtVP+BNgz4qP0o/zrhqPiyWTz/w8XY+9e1JP3rzVT7MB04/3kdcPnvdTD9M9Wk+yzJLP5rxQT7M3FA/nhJzPs0nUj8n54o++kJMP5wpNj6elU0/30JIPhfaSD+yjkk+WAlNP+I4VT5ox0g/3kdcPnvdTD8dTEQ+ThRFPx4VND4laEQ/DX02PjvDSD9xph4+I/lRP8FBCT4keFQ/IT8zPvRfUT+dRCE+RORNP24iET41P0s/sAwYPv4sSD9QEiQ+THJJP5rxQT7M3FA/LIwjPteiRT+82WU+7LxUPz+pVj5Hglg/Xr1aPvLMUj+fYFI+FuBaP57qQD4yOFU/3xwpPmDuXj+OpVE+l2lRP/Dxdj717Uk/v0tkPsarTT9681U+zAdOP1D+Nj7Ky14/UWZLPuTWVj9dFU0+kvBeP3sNJz0y9Ho/ehW/PDL0ej/6kcg81Th6Pz0VKj3VOHo/u0R1PdU4ej+9JHQ9MvR6Px5mnz3VOHo/XgKhPTL0ej8YPtI91Th6P39F0z0y9Ho/gd7lPTL0ej9COwQ+KGN2P+OD4z3AK3w/X/YBPikDdj+B3uU9MvR6P5yA2z3VOHo/X/YBPikDdj9wLSA8MvR6P+0ZODzVOHo/eRCwPNU4ej96tKQ8MvR6P91qHj0y9Ho/ewsiPdU4ej++LIE9MvR6P317gT3VOHo/fqO8PTL0ej/+jbs91Th6P4He5T0y9Ho/4+faPdU4ej9wnhU/YgYkP8n5FD9vGCA/cIckP1SdIT81ciM/oOsjP+WaFD+igxk/bJMWP7ENFD+RrCU/ZN8XPzF0JT/wmRw/Aj8aP5+fDz+S7CI/SuUPPxvCJD+qwBM/7xYfPxHDDT8lfxk/UN1BP0fuHj/cREI/vhccP1tPQz+ZPyA/ivk9P5TrFz+a6T0/TKQXP0ICOz/ngiA/d/M6P99CIj9Ocyo/Jv8hP6oXMj8lKRY/wDkyP3OvFT9Cqyo/cGddPkC8YT9enUs+DkNiP00DTT6XTWI/fvo0PuTCYj/hby0+ThpjP4xYEj7VpGM/t+yPPAkKcj88WAU9VslzP/fD1DyhXXc/b2lSPNfkdj+7RHU97Jx5P7tFbz1QlHc/fhiWPdVDdz8eZp897Jx5P3wfOT3Kv3E//IBvPYLOcz+8HDk9Cu9zP9xaLT3crHc/m7soPRN1bj/eLpE9CRtzP7rsvjzcXHc/tgvwPGLucz/bHyE9rGB0P12tHz2YR3c/fB85Pcq/cT/8g3E91bRzPz2leT3E03Y/vnHLPQQldj8YPtI97Jx5P/qRyDzsnHk/PRUqPeyceT/tGTg87Jx5P3kQsDzsnHk/ewsiPeyceT99e4E97Jx5P+uw3T3snHk/jRhMPhabbD+NmUw+UvBmP3BnXT7DKGY/cGddPuYWbD9s/Es+G5VvP8FFRT7hrXw/cGddPgGufD9wZ10+gnlvP3BDTD4Q22w/8PczPkdwcD/vajM+rK18P7E0SD7yrXw/gShLPk6Nbz/w9zM+R3BwP5LYND4SGG4/7nA1Pr6tfD8wcSI+7WJyP39XIj5SBnE/fNwdPr1mYz+sSjQ+39VmP81YLD6Agmg//o27PeyceT/dark9aDF2P+uw3T3snHk/n5tMPkkaZz+9gCA+iBdxP96jID5ycnI/7QYzPp+Obj8cTSQ+EK58PyUpFj/AOTI/Jv8hP6oXMj/ngiA/d/M6P0ykFz9CAjs/YrIiPgCufD//0yA+6aNvPwEm+j0GG3M/nvcFPsdAaD9f9gE+KQN2P0I7BD4oY3Y/44PjPcArfD9gu+o9XcRjP4C9zT2HuWI//o/APTo+cD8kJOc9qWBsP4QknD3F/W4/sK53PSAQbT/h8849ztRpP0JdBD4/j20/+hTrPclsZD/+WLo9KLlxP0BH4D1uLm0/YIHOPSmTaj8aNJk9aQxvPx1MRD5OFEU/HhU0PiVoRD+8RTM+foVJP56MMz6atU4/3ishPi/RSj8sjCM+16JFP7AMGD7+LEg/biIRPjU/Sz9vYhg+dvNSP8FBCT4keFQ/gGALPr7EUT8SfA0+7RdPPz97HD6Cek8/Ppi7PcArfD9+o7w9MvR6P161gT3AK3w/viyBPTL0ej/8HiA9wCt8P91qHj0y9Ho/erSkPDL0ej96hao8wCt8P+3mMTzAK3w/cC0gPDL0ej/4+Mc8wCt8P3oVvzwy9Ho/ew0nPTL0ej9ctyk9wCt8P70kdD0y9Ho/PA91PcArfD9eAqE9MvR6P343pD3AK3w/f0XTPTL0ej8h3889wCt8P0z1aT7LMks/ktXuPYQ+bz9kp+Q9E+hvP+qKyj1gNmY/Q67YPazhbD+1gdw9cXFtP7WB3D1ycW0//FLwPcmgbz9NKcs9GsVwP6LQxj3YnW8/Lxq3PT8Nbj/AJaw9rF1tP+YHrT1mYm0/UmTCPd7ebj9E2sk93t1vPx9U0D2Ex3A/WMztPcZPbz9kp+Q9E+hvP14GyD3mFXA/q73LPfP5cD8YLMI9z/JuP14GyD3lFXA/H+DKPeYvZj8g4Mo95y9mPxef2j1c0Gw/sCbdPelgbT/4h/A9irNvP5kuyj2juHA/9ePGPeibbz8L77k9/PNtP0hTrT0OP20/BO2qPaCPbT8CAAEAAAADAAEAAgAEAAMAAgAGAAUABAACAAYABAAJAAgABwALAAoABwAHAAoACQAOAA0ADAAPAA4ADAAHAAgADwAMAAcADwASABEAEAATABIAEAAWABUAFAAXABYAFAAWABcAEwALABgAEwAZABQAFQAbABoADAANABsADAAHABwAGAALAAcAGAAdABwAGgAMABoAHAAHAAwAHAAcAB0AGAAbAB4AGgAdABIAGAASABMAGAAeAB0AGgAhACAAHwAhAB8AAwAEACEAAwAEAAUAIgAhAAQAIgAlACQAIwAnACQAJgAkACUAJgAoAA0ADgApACgADgApACMAJAAoACkAJAAsACsAKgAtACsALAAnAC0ALAArAC0ALgArAC4ALwAwACsALwAzADIAMQAyACIAMQAiADIAIQAgACEAMgAxADUANAAzADEANAA4ADcANgA5ADgANgAyADMANwA5ADYAKgA0ACoANgAzADQANgAqACsAMAA6ACwAKgA0ADoAKgAwADkAKgA5ADAALwA7ADkALwA4ADkAOwAzADYANwAoADwAGwANACgAGwA9ADwAKAAkAD0AKAAbADwAHgA0ADUAPgA6ADQAPgA/ACcALAA6AD8ALAAkACcAPQAnAD8APQBAADwAPQA9AD8AQAA6AD4APwA+AEAAPwAeADwAQAAVAEEAGQBCAEEAFQBDAEIAFQBDABUAFgBEAEMAFgAWABMAEABEABYAEABDAEQARQBCAEMARQBGAEIARQBIAEcARQBFAEcARgAGAEoASQBKAEsASQACAEoABgAAAEoAAgAQABEASQBLABAASQBLAEoATABNAEgARQBOAE0ARQBFAEQATgBEABAASwBOAEQASwBLAE0ATgBMAE0ASwBRAFAATwBSAFEATwBVAFQAUwBWAFUAUwBZAFgAVwBaAFkAVwBdAFwAWwBeAF0AWwBhAGAAXwBiAGEAXwBlAGQAYwBmAGUAYwBpAGgAZwBqAGkAZwBtAGwAawBuAG0AawBxAHAAbwByAHEAbwB1AHQAcwB2AHUAcwB5AHgAdwB6AHkAdwB9AHwAewB+AH0AewCBAIAAfwCCAIEAfwCFAIQAgwCGAIUAgwCJAIgAhwCKAIkAhwCNAIwAiwCOAI0AiwCRAJAAjwCSAJEAjwCVAJQAkwCWAJUAkwCZAJgAlwCaAJkAlwCdAJwAmwCeAJ0AmwChAKAAnwCiAKEAnwClAKQAowCmAKUAowCpAKgApwCqAKkApwCtAKwAqwCuAK0AqwCxALAArwCyALEArwC1ALQAswC2ALUAswC5ALgAtwC6ALkAtwC9ALwAuwC+AL0AuwDBAMAAvwDCAMEAvwDFAMQAwwDGAMUAwwDJAMgAxwDKAMkAxwDNAMwAywDOAM0AywDRANAAzwDSANEAzwDVANQA0wDWANUA0wDVANgA1wDXANgA2QDYANUA1gDcANsA2gDcANoA3QDeANwA3QDeANkA2ADcAN4A2ADhAOAA3wDTANQA3wDfANQA4QDkAOMA4gDnAOYA5QDlAOYA4wDmAOIA4wDoAOMA5ADrAOoA6QDpAOoA7ADrAOQA4gDqAOsA4gDgAOcA3wDfAOcA7QDwAO8A7gDxAPAA7gDuAOcA8QD0APMA8gDyAPMA9QD2AO8A8ADhAPcA4ADqAPkA+ADsAOoA+ADgAPcA+gD9APwA+wD3AP8A/gAAAfcA/gDiAOYAAQH5AP0A+wD6APkAAQEBAfkA6gDiAAEB6gABAeYA+gD4APkA+wD6AOYA4ADgAOYA5wD9AAAB/AD8AAAB/gD9APkA+gAAAf0A+gD3AAAB+gAEAQMBAgEFAQQBAgECAdcABgHXANkABgEGAQUBAgEJAQgBBwHdAAgBCQHeAN0ACQEGAdkA3gAJAQYB3gAEAQoBAwENAQwBCwEQAQ8BDgEOAQ8BEQETAekAEgESAekA7AALAQwBEwESAQsBEwEWARUBFAEWARQBFwEYARYBFwEUARkBFwEaARkBFAEbARoBFAEcAQQBBQEdARwBBQEJAR0BBQEGAQkBBQEHAR0BCQEeAQoBBAEcAR4BBAEhASABHwEiASEBHwEdASABHAEiARUBIQEhARUBHgEcASEBHgEVARsBFAEVARYBIwEeARUBIwEbARUBIgEaARsBIgEkARoBIgEfASQBIgEcASABIQH4ACUBEgHsAPgAEgEmAfsA/AAlAfsAJgESASUBJwELARIBJwH4APsAJQEmAfwAKAH8AP4AKAEqAQoBKQEKASoBAwEeASMBCgEpAQoBKwEQASwBDwEuAQ0BLQEYASMBFgEpAS8BKgEvASkBMAH+AP8AMQEoAf4AMQErAS0BCwELAS0BDQEnASsBCwEwAScBJQEnATABKwEKASMBKwEpASsBMAEmATABJQEoATABJgEoAS8BMAEoATEBLwE0ATMBMgE1ATQBMgE3ATYBNAE1ATcBNAE5ATgBNgE3ATkBNgE7AToBOAE5ATsBOAE+AT0BPAFBAUABPwE8AT0BQgEzAUQBQwEyATMBQwE7AUEBPwE6ATsBPwFHAUYBRQFIAUcBRQFIAUUBSQFKAUgBSQFKAUkBSwFMAUoBSwFDAUQBRgFHAUMBRgFOAU0BTAFLAU4BTAFRAVABTwFSAVEBTwFVAVQBUwFWAVUBUwFQAVUBVgFPAVABVgFUAVgBVwFZAVQBVwFTAVQBWQFXAVgBWgFdAVwBWwFgAV8BXgFhAWABXgFfAWABWwFcAV8BWwFkAWMBYgFlAWQBYgFmAf8A9wBnAWYB9wBoATEB/wBmAWgB/wAxAWgBLwEvAWgBaQFnAfcAagFqAfcA4QDhANQAawFqAeEAawFuAW0BbAFvAW4BbAFyAXEBcAFzAXIBcAF2AXUBdAFxAXcBdgF3AWwBdgFtAXUBdgFuAXUBbQF2AWwBbQF1AW4BeAF2AXQBcQF0AXUBeQF7AXoBbgFvAXsBbgF9AXwBewF6AXwBfgFuAXoBfgF8AXoBewFuAX4BeAF+AXwBfwF5AXABcQF0AXkBcQF9AYABfwF8AX0BfwGCAYEBcwFwAYIBcwGDAWwBdwGEAYMBdwGFAW8BbAGDAYUBbAF7AW8BhQGGAXsBhQF9AXsBhgGHAX0BhgGAAX0BhwGIAYABhwFyAYQBdwFxAXIBdwGBAYIBiQGMAYsBigGNAYwBigGQAY8BjgGRAZABjgGNAZIBkAGRAY0BkAGUAZMBjwGQAZQBjwGRAY4BlQGWAZEBlQGNAZEBlgGMAY0BlgGMAZYBlwGYAYwBlwGYAYsBjAGWAZUBmQGXAZYBmQGXAZsBmgEvAWkBnAEqAS8BnAGcAQMBKgGdAZwBaQGdAYsBmAGaAZgBlwGLAWgBZgGKAYsBZgFpAWgBiwGdAWkBiwFqAWsBngGAAYgBnwGgAYABnwGhAaABnwGSAY0BigGiAZIBigGeAaIBZwFqAZ4BZwGiAYoBZgFnAaIBZgGkAZQBowGUAaUBowGjAaUBngGSAaUBlAGQAZIBlAGlAZIBogGlAaIBngE8AUIBmgGbATwBmgFRAVIBZAFlAVEBZAGXAZkBpgGbAZcBpgGpAagBpwGqAakBpwGUAaQBqwGTAZQBqwGsAZoBQgGtAawBQgGJAYIBrQFCAYkBrQGdAawBnAGsAa4BnAGsAZ0BmAGsAZgBmgGhAa8BoAGwAaQBowGvAbABowFNAU4BrwGvAU4BsAGxAbABTgGcAbIBAwEDAbIBAgGzAdcAAgGyAbMBAgFwAXkBtAGCAXABtAGuAbUBsgG1Aa4BrAGyAZwBrgG2AbQBeQF1AbYBeQF4AbcBtgF1AXgBtgGyAbUBuAGeAWsBuQGvAaMBuQG5AaMBngHVANcAswG6AdUAswG6AdQA1QC6AWsB1ACAAaABuwF/AYABuwGgAa8BuwG8AbkBugG5AWsBugG6AbMBvQG+AbcBeAF+Ab4BeAG+AX4BfwG7Ab4BfwG8AboBvQHvAPYAvwHvAL8BwAHBAe8AwAHuAO8AwQHCAe4AwQHtAOcA7gDCAe0A7gDBAcMBwgHDAcEBwAHEAcMBwAHGAcMBxQHDAcQBxQHWANMAxwHIAdYAxwHYANYAyAHcANgAyAHbANwAyAHTAN8A7QDHAdMA7QDHAckByAHDAcYBygHLAcMBygHDAcsBwgHHAe0AwgHLAccBwgHHAcsBygHJAccBygHMAbEBTgHNAcwBTgHOAcwBzQHPAc4BzQHQAc4BzwHRAdABzwHQAdEB0gHTAdAB0gHUAdMB0gHVAdQB0gHWAdQB1QHXAdYB1QHWAdcB2AHZAdYB2AHZAdgB2gHbAdkB2gHbAdoB3AHdAdsB3AHdAdwB3gHfAd0B3gE+Ad8B3gE9AT4B3gHlAOMA4AHgAeMA6AArASMBLgEtASsBLgHjAeIB4QHjAeEB5AHlAeMB5AHlAecB5gHjAeUB5gHqAekB6AHsAekB6wHpAeoB6wHvAe4B7QHwAe8B7QHwAegB6QHvAfAB6QHzAfIB8QH0AfMB8QH3AfYB9QH4AfcB9QH1AfQB+AHsAfQB+QH6AfYB9wHvAfwB+wHuAe8B+wH5Af0B6QHsAfkB6QH+AfwB/QH9AfwB7wHpAf0B7wH9AfkB/gH7AfwB/wH+AfkB8QHxAfkB9AH/AfwB/gECAgECAALkAQECAgLlAeQBAgIDAucB5QECAgMC5QEGAgUCBAIIAgcCBAIEAgcCBgLtAe4BCQIKAu0BCQIEAgUCCgIJAgQCCgINAgwCCwINAgsCDgIIAg0CDgILAg8CDgIQAg8CCwIRAhACCwIUAhMCEgISAhMCAwIDAgICEgIAAhICAgIWAhUCEwIUAhYCEwIZAhgCFwIaAhkCFwISAhgCFAIaAgwCGQIZAgwCFgIUAhkCFgIMAhECCwIMAg0CGwIWAgwCGwIRAgwCGgIQAhECGgIcAhACGgIXAhwCGgIUAhgCGQL7AR0CCQLuAfsBCQIJAh0CHgIEAgkCHgL7Af8BHQIfAhUCFgIbAh8CFgINAggCIAIbAg0CIAIEAh4CCAIIAh4CIAIhAh4CHQIeAiECIAIbAiACHwIfAiACIQL/ASECHQL2AfoBIgL2ASICIwIkAvYBIwL1AfYBJAIlAvUBJALzAfQB9QElAvMB9QEkAiYCJQImAiQCIwInAiYCIwIpAiYCKAImAicCKALmASsCKgIqAisCLALjAeYBKgLiAeMBKgIrAvIB8wEsAisC8wEsAi0CKgImAikCLgIvAiYCLgImAi8CJQIsAvMBJQIvAiwCJQIsAi8CLgItAiwCLgIyAjECMAIzAjICMAI2AjUCNAI3AjYCNAI6AjkCOAI7AjoCOAI+Aj0CPAI/Aj4CPAJCAkECQAJDAkICQAJGAkUCRAJHAkYCRAJKAkkCSAJLAkoCSAJOAk0CTAJPAk4CTAJSAlECUAJTAlICUAJWAlUCVAJXAlYCVAJaAlkCWAJbAloCWAJeAl0CXAJfAl4CXAJiAmECYAJjAmICYAJmAmUCZAJnAmYCZAJqAmkCaAJrAmoCaAJuAm0CbAJvAm4CbAJyAnECcAJzAnICcAJ2AnUCdAJ3AnYCdAJ6AnkCeAJ7AnoCeAJ+An0CfAJ/An4CfAKCAoECgAKDAoICgAKGAoUChAKHAoYChAKKAokCiAKLAooCiAKOAo0CjAKPAo4CjAKSApECkAKTApICkAKWApUClAKXApYClAKaApkCmAKbApoCmAKeAp0CnAKfAp4CnAKiAqECoAKjAqICoAKmAqUCpAKnAqYCpAKqAqkCqAKrAqoCqAKuAq0CrAKvAq4CrAKyArECsAKzArICsAK2ArUCtAK3ArYCtAK0ArkCuAK5AroCuAK4ArcCtAK9ArwCuwK+ArwCvQK/Ar4CvQK4AroCvwK9ArgCvwLCAsECwAK2AsECtQLBAsICtQLFAsQCwwLIAscCxgLHAsMCxgLGAsMCxALJAsUCwwLMAssCygLLAs0CygLEAsUCzALKAsQCzALAAsECyALBAs4CyALRAtACzwLSAtECzwLRAtICyALVAtQC0wLUAtYC0wLXAs8C0ALCAsAC2ALaAtkCygLNAtoCygLAAtsC2ALeAt0C3ALgAt8C2ALhAuAC2ALEAuICxgLZAt0C3gLbAuIC2QLKAtkC4gLEAsoC4gLiAtsCxgLaAt0C2QLbAsACxgLAAsgCxgLeAtwC4QLcAuAC4QLeAtsC2QLhAtsC3gLYAtsC4QLlAuQC4wLmAuUC4wLlAucCuQK5AucCugLnAuUC5gLqAukC6ALqAugCvgK/AuoCvgK/AroC5wLqAr8C5wLjAuQC6wLuAu0C7ALxAvAC7wLwAvIC7wL0AvMCywLzAs0CywL0AuwC7QLzAvQC7QL3AvYC9QL4AvYC9wL5AvgC9wL2AvgC+gL2AvoC+wL8AvYC+wLmAuMC/QL+AuYC/QLmAv4C6gLnAuYC6gLpAuoC/gLjAusC/wL9AuMC/wICAwEDAAMDAwIDAAP+Av0CAQMDAwAD9QL/AvUCAAP9Av8CAAP1AvYC/AIEA/cC9QL/AgQD9QL8AgMD9QIDA/wC+wIFAwMD+wICAwMDBQP9AgADAQPzAgYD2gLNAvMC2gIHA9wC3QIGAwcD3QIIAwYD8wLtAggD8wLaAgYD3QIHAwkD3ALcAgkD4AILAwoD6wLrAuQCCwP/AusCBAMKAwwD6wLxAu8CDQMPAw4D7gL5AvcCBAMKAwsDEAMQAxEDCgMSA98C4AIJAxID4AIMA+0CDgPtAu4CDgMIA+0CDAMRAwYDCAMIAwwDEQPrAgwDBAMKAxEDDAMHAwYDEQMJAwcDEQMJAxEDEAMJAxADEgMVAxQDEwMWAxUDEwMTAxgDFwMWAxMDFwMYAxoDGQMXAxgDGQMaAxwDGwMZAxoDGwMfAx4DHQMiAyEDIAMeAyMDHQMlAyQDFAMVAyUDFAMhAyIDGwMcAyEDGwMoAycDJgMpAygDJgMqAygDKQMrAyoDKQMsAyoDKwMtAywDKwMnAyQDJQMmAycDJQMtAy8DLgMsAy0DLgMyAzEDMAMzAzIDMAM2AzUDNAM3AzYDNAM3AzQDMQMyAzcDMQM5AzgDNQM6AzkDNQM2AzoDNQM5AzsDOAM+Az0DPANBA0ADPwNCA0EDPwM9Az8DQAM8Az0DQANFA0QDQwNGA0UDQwPYAt8CRwNIA9gCRwPfAhIDSQNHA98CSQMSAxADSQMQA0oDSQNIA0sD2AJLA8IC2AJMA7UCwgJLA0wDwgJPA04DTQNQA08DTQNTA1IDUQNUA1MDUQNXA1YDVQNSA1cDWANYA1cDTwNOA1cDVQNNA04DVQNXA04DTwNVA1kDTQNXA1IDVgNWA1oDVQNNA1wDWwNQA00DWwNeA1sDXQNcA18DXQNNA18DXANdA1sDXANNA1kDXwNfA2ADXQNSA1MDWgNWA1IDWgNgA2EDXgNdA2ADXgNUA2MDYgNTA1QDYgNYA08DZANlA1gDZANPA1ADZgNkA08DZgNmA1ADWwNnA2YDWwNnA1sDXgNoA2cDXgNoA14DYQNpA2gDYQNYA2UDUQNSA1gDUQNjA2oDYgNtA2wDawNuA20DawNxA3ADbwNyA3EDbwNvA3MDbgNyA28DbgNwA3UDdANvA3ADdAN2A3EDcgN3A3YDcgN3A3IDbgNrA3cDbgN4A3cDawN5A3gDawN5A2sDbAN6A3YDdwN4A3oDdwN4A3wDewN9A0oDEAMLA30DEAN9AwsD5AJ+A0oDfQN+A3kDbAN8A3gDeQNHA0kDbANtA0cDbANsA0kDSgN+A2wDSgNLA38DTAOAA2kDYQOBA4ADYQOCA4ADgQNtA24DcwODA20DcwNIA4MDfwNLA0gDfwNHA20DgwNIA0cDgwOFA4QDdAN0A4QDhgOEA38DhgN0A4YDcwNvA3QDcwOGA4MDcwOGA38DgwN8AyMDHgN7A3wDHgNDAzMDMANGA0MDMAOHA3oDeAN7A4cDeAOKA4kDiAOLA4oDiAOMA4UDdAN1A4wDdAMjA3wDjQOOAyMDjQOOA2IDagMjA44DagN+A30DjQONA30DjwONA3kDfgONA3wDeQOCA4EDkAOEA4UDkQOQA4QDkQMvA5ADLgOQA5EDLgOSAy4DkQN9A+QCkwPkAuUCkwPlArkClAOTA+UClAOVA1oDUwNiA5UDUwOPA5MDlgONA48DlgOTA48DfQOXA1oDlQNVA1oDlwOXA5gDWQNVA5cDWQOTA5kDlgN/A5oDTAOQA5oDhAOaA38DhAOUA7kCtAKbA5QDtAKbA7QCtQKbA7UCTAOcA4EDYQNgA5wDYQOBA5wDkAOdA5sDmgOaA5sDTAObA54DlANZA5gDnwNfA1kDnwOfA2ADXwOcA2ADnwOdA54DmwPQAqAD1wKhA6AD0AKiA6ED0AKiA9AC0QKjA6ID0QLRAsgCzgKjA9ECzgKiA6MDpAOhA6IDpAOlA6EDpAOnA6YDpAOkA6YDpQOoA7YCtwKpA6gDtwKpA7cCuAK9AqkDuAK7AqkDvQLOAsECtgKoA84CtgKoA6kDqgOrA6cDpAOsA6sDpAOkA6MDrAOjA84CqAOsA6MDqAOoA6sDrAOqA6sDqAMuA5IDrQOuAy4DrQOuA60DrwOwA64DrwOwA68DsQOyA7ADsQOzA7IDsQO0A7MDsQOzA7QDtQO2A7MDtQO2A7UDtwO4A7YDtwO5A7gDtwO6A7kDtwO7A7kDugO8A7sDugO9A7sDvAO+A70DvAO/A70DvgPAA78DvgO/A8ADHwMdA78DHwPHAsEDwwLBA8kCwwIPAwQDDAMOAw8DDAOdA5oDwgPCA5oDkAOQA8MDwgPEA5MDlAOZA5MDxAPFA5YDmQPGA5YDxQPIA5YDxwPJA44DyAPKA5UDyQPLA5cDlQPKA8sDlQPMA5cDywOYA5cDzAPNA58DmAPOA5wDnwPNA84DnwPPA5wDzgPQA5wDzwPQA8MDkAOQA5wD0ANiA44DyQPJA5UDYgPIA44DjQONA5YDyAPRA7kBvAHRA9IDrwGvAbkB0QPTA7sB1APVA7sB1gPUA7sBrwGvAdID1AOzAbIB1wPYA7IBuAG4AbUB2QPZA7UB2gPaA7UB2wPbA60B3APcA7QB3QO0AbYB3gPdA7QB3gPeA7YB3wPcA60BggGCAbQB3APbA7UBrAGsAa0B2wPfA7YBtwG3Ab4B4AO+AbsB1QPgA74B1QPCjZI9yZDLPQYoBLzpPJk9k9b6PW6iubykD6Y982HRPblOfLxJL5A97+21PUPsmrsyn5w98xi1PcXGJ7wGIaQ9IoSmPX4RFLwZrI09ORCbPcTXUrtGwqI9y7C5PQT+Prz4eK09NPzOPWm3e7zF8ak9Kpm7Pfx5RLwa0II9BVTUPWbMibwmr4U9iQq3PTcnNrxJL5A97+21PUPsmrvGIXc9+PWpPVNaLbwCdIE954G8PW74U7wZrI09ORCbPcTXUrtFanY95CfTPSxujrzbmXQ9a6S/PR4EYrzcxGM9ZW7MPTpRjLxUn2c9fK29PUZlfrws5lI9h3m0Pcawibw7Cms95oTXPfQopbxniV89Bq/fPfuxxrxhZFg9DSXJPX22qbxGOE89iuy/Pf25o7xLcVU9csnUPW8KwLyHbrQ9jsbGPWDFb7wierA904K4PYJYWbxedrk93KatPYoKY7zAAbQ9kEfSPX9ekbzu77w9CjvZPW92rrz347s9Ow/CPVI/k7zLML49dJG4PVEbibwNyL89tYHNPQKUprzmPJm9k9b6PdKiubzGjZK9ypDLPcgoBLymD6a99GHRPZBPfLw3n5y99Bi1PZTHJ7xQL5C98O21PcPtmrsKIaS9JISmPVoSFLwirI29PRCbPbjaUrtJwqK9zbC5Pdv+Prz7eK29NfzOPVO4e7zG8am9K5m7Pd16RLwd0IK9BVTUPbvMibxQL5C98O21PcPtmrspr4W9igq3PeonNrzLIXe9+fWpPfNaLbwEdIG96YG8PRj5U7wirI29PRCbPbjaUrtHana95CfTPXxujrzhmXS9baS/Pb4EYrzexGO9Zm7MPYpRjLxbn2e9fa29PeZlfrwz5lK9iXm0PQyxibw7Cmu95oTXPT4ppbxkiV+9Bq/fPUWyxrxhZFi9DiXJPcS2qbxKOE+9i+y/PT+6o7xKcVW9c8nUPbUKwLyHbrS9j8bGPUzGb7wlerC91IK4PW5ZWbxgdrm93aatPYALY7zAAbS9kkfSPfpekbzt77y9CzvZPe52rrz347u9PA/CPdI/k7zLML69dZG4PcsbibwLyL+9t4HNPYGUprzhzjO94bGqPqYXcT9KCKy8l1EJP9j8Vz+PQbo+5S0bP0APNT/BcBc/iWRiPot9Rj98SRY/QjBRPkyJSD9Taww/ab6BPkr8Sz8y9uI+LuV7Pc7uZD8+/pY+jhf7vbOXcj8sF6w+vHYSP5CFPz9idqI+xK76vN+kcj8jsLu+O+UqP1vnJT/jFiq/KqShPt9qLT+nqSi/K3ynPrFsLT9NXR2/0ka0Pq2vND9n++u+vzqBvcacYj/kLA+/Ns4VPlfjUD9FBqO+B3smPzSRMD/SROW+lnklPITiZD/wxBC/5j+1PjOyPj86gOC+j3QPPvtDYz90NQy/AChcPoL/Tj/ctbG+xNkKPz3cQz/RqAO/g4b2PmuuNT9NQFC/la+hPhYO+j6hc0G/juW7PubfCj/aTT+/o+OSPlBxGT/8+vo+OwSFPoX9VD/Usqo+3Gm8PZ4zcD9XAuA+2EETPiA8Yz/Hxa0+uTvuPpxHUT9uMu4+tUrBPlX3TD9jcjo/TyhPPuOaJz9EBy0/pmeCPisMMT/F4Cc/rhIuPlVOPD/p2aw8hFEJP7v8Vz/hzjM94bGqPqYXcT+PQbq+5S0bP0APNT98SRa/QjBRPkyJSD/BcBe/iWRiPot9Rj9Tawy/ab6BPkr8Sz8y9uK+LuV7Pc7uZD8+/pa+jhf7vbOXcj8sF6y+vHYSP5CFPz9idqK+xK76vN+kcj8jsLs+O+UqP1vnJT+nqSg/K3ynPrFsLT/wEyo/XKGhPmtuLT9NXR0/0ka0Pq2vND9n++s+vzqBvcacYj/kLA8/Ns4VPlfjUD9FBqM+B3smPzSRMD/DROU++BwnPHbiZD/wxBA/5j+1PjOyPj86gOA+j3QPPvtDYz90NQw/AChcPoL/Tj/ctbE+xNkKPz3cQz/RqAM/g4b2PmuuNT9NQFA/la+hPhYO+j6hc0E/juW7PubfCj/aTT8/o+OSPlBxGT/8+vq+OwSFPoX9VD/Usqq+3Gm8PZ4zcD9B/d++gT4TPoU9Yz/Hxa2+uTvuPpxHUT+yPO6+aEjBPuT0TD9jcjq/TyhPPuOaJz9EBy2/pmeCPisMMT/F4Ce/rhIuPlVOPD+cu7E9todQP5y7sT1U610/LQaLPVIWVD+cu7E9SUFLPyO/kj1bC0w/fQmFPat7SD+cu7E9kPBEP/1OiD2Si00/ZAN5PdKnUz8bgXg9y4ZOPysGiz1SFlQ/Ir+SPVsLTD+cu7E9SUFLP3sJhT2re0g//E6IPZKLTT+cu7E9kPBEP2QDeT3Sp1M/G4F4PcuGTj/khFc9x+BRP+z5Wj1/UE4/7cwtPYBpTD8mk1896Q9VP+FzPj1ki1c/zgQvPRTKUT9+niE9YoNPP13fKT1051Q/5IRXPcvgUT/p+Vo9f1BOP+3MLT2AaUw/JpNfPekPVT/hcz49ZItXP84ELz0UylE/fp4hPWKDTz9d3yk9dOdUP5y7sT1U610/nLuxPbaHUD8tBos9UhZUPyO/kj1bC0w/nLuxPUlBSz99CYU9q3tIP5y7sT2Q8EQ//U6IPZKLTT9kA3k90qdTPxuBeD3Lhk4/KwaLPVIWVD+cu7E9SUFLPyK/kj1bC0w/ewmFPat7SD/8Tog9kotNP5y7sT2Q8EQ/ZAN5PdKnUz8bgXg9y4ZOP+SEVz3H4FE/7PlaPX9QTj/tzC09gGlMPyaTXz3pD1U/4XM+PWSLVz/OBC89FMpRP36eIT1ig08/Xd8pPXTnVD/khFc9y+BRP+n5Wj1/UE4/7cwtPYBpTD8mk1896Q9VP+FzPj1ki1c/zgQvPRTKUT9+niE9YoNPP13fKT1051Q/AgABAAAABQAEAAMAAwAEAAAAAwAGAAUABAAHAAAAAgAAAAgABwAJAAAAAQAKAAAADQAMAAsADgALAAAADAANAA8AAAALAAwACgAQAAAAEQAOAAAAEwARABIAEgARAAAAEgAUABMAFgASABUAAAAQABIAGAASABcAEgAQABUAEgAZABcAEgAYABQAGQASABYAGwAaAAkAGgAbABwAAAAJABoAHgAdABoAAAAaAAgAIAAfABoAGgAdAAgAGgAhAB4AGgAcACAAIQAaAB8AJAAjACIAJwAmACUAJgAjACUAJgAnACgAJQAjACkAJAAqACMAKQAjACsAIgAjACwALwAuAC0AMAAjAC4ALQAxAC8AIwAtAC4ALAAjADIAMwAjADAANQA0ADMANAAjADMANAA1ADYAOAA3ADQAIwA0ADIAOgA5ADQANAA3ADIANAA5ADsANAA2ADoAOwA4ADQAPQArADwAPAA+AD0AIwA8ACsAQAA8AD8AIwAqADwAQgA8AEEAPAAqAD8APABAAEMAPABCAD4AQwBBADwA7CENtMrplD+C5ak9ySULtGsLlT/t6KY9uBfJOytvlD+rLqQ9EiXCO7RSlD+9Z6o99xcUPBt9kz/2taA9F/oOPGhtkz+7nqo94BnJuytvlD+nLqQ9ySULtGsLlT/t6KY97CENtMrplD+C5ak9RifCu7RSlD+7Z6o9BhkUvBt9kz/1taA9MvsOvGhtkz+3nqo9T+lnvJr8kj8OyZ49M+ZfvLvzkj/gr6o9XtiWvFDMkT9kPJ89ZNiWvIHRkT9r96s9ZNiWvIHRkT9r96s9M+ZfvLvzkj/gr6o98ZsevD9jkj/tu6s9RehnPJr8kj8VyZ49EuVfPLvzkj/kr6o93deWPFDMkT9sPJ892deWPIHRkT9z96s9EiXCO7RSlD+9Z6o9huUNtH2Vkj9wp6s97CENtMrplD+C5ak9F/oOPGhtkz+7nqo9EuVfPLvzkj/kr6o92deWPIHRkT9z96s90poePD9jkj/wu6s9RifCu7RSlD+7Z6o9MvsOvGhtkz+3nqo97BH0PGjQjz/iyKw9QJ7PPHvukD8eVKw9Rp7PPEnpkD8YmZ898hH0PDfLjz/eDaA92deWPIHRkT9z96s93deWPFDMkT9sPJ89ZNiWvIHRkT9r96s9zp7PvHvukD8UVKw9x57PvEnpkD8NmZ89XtiWvFDMkT9kPJ89cxL0vGjQjz/ZyKw9cxL0vDfLjz/SDaA9+FAAvUmTjj9JSq099lAAvRiOjj9Dj6A9eBL0vCpWjT+5y609cxL0vPlQjT+yEKE9zp7PvB84jD98QK49x57PvOcyjD93haE9ZNiWvBhViz8rna49XtiWvOBPiz8k4qE98ZsevFLDij+q2K496ZsevCK+ij+kHaI9eKsQtB6Rij8t7a49kTUItOWLij8mMqI9eKsQtB6Rij8t7a490poePFLDij+u2K493JoePCK+ij+oHaI9kTUItOWLij8mMqI91NeWPBhViz8wna492deWPOBPiz8p4qE9N57PPB84jD+HQK49PJ7PPOcyjD+AhaE94hH0PCpWjT/Fy6095hH0PPlQjT+9EKE9rVAAPUmTjj9USq09r1AAPRiOjj9Oj6A9KX+4PMCEjz9qNrE9LfGcPP1ckD8k3rA9QJ7PPHvukD8eVKw97BH0PGjQjz/iyKw9rgxkPJ8IkT8WmLA92deWPIHRkT9z96s9k8jvO9B2kT8ba7A90poePD9jkj/wu6s9XJ4QtMickT+ZW7A9huUNtH2Vkj9wp6s90srvu9B2kT8Ya7A98ZsevD9jkj/tu6s9zw1kvJ8IkT8QmLA9ZNiWvIHRkT9r96s9t/GcvP1ckD8c3rA9zp7PvHvukD8UVKw9sn+4vMCEjz9eNrE9cxL0vGjQjz/ZyKw9VP7BvAyVjj84mLE9+FAAvUmTjj9JSq09sn+4vFeljT8P+rE9eBL0vCpWjT+5y609vfGcvBvNjD9TUrI9zp7PvB84jD98QK49zw1kvHkhjD9imLI9ZNiWvBhViz8rna490srvu0+ziz9cxbI98ZsevFLDij+q2K492kMTtFeNiz/e1LI9eKsQtB6Rij8t7a49hsjvO0+ziz9exbI90poePFLDij+u2K49pQxkPHkhjD9mmLI91NeWPBhViz8wna49IvGcPBvNjD9bUrI9N57PPB84jD+HQK49HX+4PFeljT8Y+rE94hH0PCpWjT/Fy609wf3BPAyVjj9AmLE9rVAAPUmTjj9USq09x3ARtAyVjj88mLE9g2QGvaj/iz8yGk69g9cFvTkAjD8GJj29p6fMvOjniz9ZVEm967LQvLLoiz9JnFm9B2OIvK8WjD9XBk691/yMvEITjD+Al1+9IHiCu+Sfmj82zKg9zJ0Cu7JEmj+Sl6U9750Cu5QMmT/cK689d3iCu2r9mD9tpLU9d3iCu2r9mD9tpLU9750Cu5QMmT/cK689ZpkCO5QMmT/eK689IHaCO2r9mD9upLU9IHaCO2r9mD9upLU9ZpkCO5QMmT/eK689g5kCO7JEmj+Sl6U98HWCO+Sfmj84zKg98HWCO+Sfmj84zKg9g5kCO7JEmj+Sl6U9zJ0Cu7JEmj+Sl6U9IHiCu+Sfmj82zKg9hzXmu/KLmj+TZ6M9IHiCu+Sfmj82zKg9d3iCu2r9mD9tpLU9rjXmu0zFmD/ZW7E9om+nux2ImD+iPLM9IHaCO2r9mD9upLU9U22nOx2ImD+mPLM9YTPmO0zFmD/bW7E98HWCO+Sfmj84zKg9azPmO/KLmj+WZ6M9WG2nOyLJmj/khqE9cm+nuyLJmj/jhqE9EniCu9xTmj8DH589hzXmu/KLmj+TZ6M9rjXmu0zFmD/ZW7E9aXiCu2KxmD8796s9om+nux2ImD+iPLM9U22nOx2ImD+mPLM9MHaCO2KxmD8896s9YTPmO0zFmD/bW7E9azPmO/KLmj+WZ6M9/3WCO9xTmj8GH589WG2nOyLJmj/khqE9cm+nuyLJmj/jhqE9zJ0Cu7JEmj+Sl6U9EniCu9xTmj8DH589aXiCu2KxmD8796s9750Cu5QMmT/cK689750Cu5QMmT/cK689aXiCu2KxmD8796s9MHaCO2KxmD8896s9ZpkCO5QMmT/eK689ZpkCO5QMmT/eK689MHaCO2KxmD8896s9/3WCO9xTmj8GH589g5kCO7JEmj+Sl6U9g5kCO7JEmj+Sl6U9/3WCO9xTmj8GH589EniCu9xTmj8DH589zJ0Cu7JEmj+Sl6U90HksO9ccnD9mL6A9g/wAtO3Kmz97KZ49Y3UHtEuMmj8H8ac9qnksO9Jzmj/XOq09qnksO9Jzmj/XOq09Y3UHtEuMmj8H8ac9mDACtLpSmj9EnaA90HksO9AAmj9ol5490HksO9AAmj9ol549mDACtLpSmj9EnaA93nL3s1uRmz+21ZY9+3ksO9Wpmz/9i5E9+3ksO9Wpmz/9i5E93nL3s1uRmz+21ZY9g/wAtO3Kmz97KZ490HksO9ccnD9mL6A9ydYGtOBanD/KOaU90HksO9ccnD9mL6A9qnksO9Jzmj/XOq09Y7oOtLWNmj9HYbM9lHINtNc0mj+AvLE90HksO9AAmj9ol549JuAAtD6hmT9J8549Mgj7s8fCmT/9jJk9+3ksO9Wpmz/9i5E9Qtnrs/GPmz+AZYs9wN7ts8fomz9QCo09HzMDtGh8nD+G0589eX4su9ccnD9lL6A9ydYGtOBanD/KOaU9Y7oOtLWNmj9HYbM9l34su9Jzmj/WOq09lHINtNc0mj+AvLE9JuAAtD6hmT9J8549bX4su9AAmj9ll549Mgj7s8fCmT/9jJk9Qtnrs/GPmz+AZYs9T34su9Wpmz/5i5E9wN7ts8fomz9QCo09HzMDtGh8nD+G0589g/wAtO3Kmz97KZ49eX4su9ccnD9lL6A9l34su9Jzmj/WOq09Y3UHtEuMmj8H8ac9Y3UHtEuMmj8H8ac9l34su9Jzmj/WOq09bX4su9AAmj9ll549mDACtLpSmj9EnaA9mDACtLpSmj9EnaA9bX4su9AAmj9ll549T34su9Wpmz/5i5E93nL3s1uRmz+21ZY93nL3s1uRmz+21ZY9T34su9Wpmz/5i5E9eX4su9ccnD9lL6A9g/wAtO3Kmz97KZ49MniCuyt9lz8YtrU9950CuwtJlz+TCrA9z50Cu3LulT8PTK49eniCu3KslT9eX7M9eniCu3KslT9eX7M9z50Cu3LulT8PTK49SZkCO3LulT8PTK49KXaCO3KslT9gX7M9KXaCO3KslT9gX7M9SZkCO3LulT8PTK49dpkCOwtJlz+UCrA94XWCOyt9lz8ZtrU94XWCOyt9lz8ZtrU9dpkCOwtJlz+UCrA9950CuwtJlz+TCrA9MniCuyt9lz8YtrU9mTXmuzCYlz+KcLA9MniCuyt9lz8YtrU9eniCu3KslT9eX7M9qTXmu0yflT8X5q09oG+nu1lblT+Ljq09KXaCO3KslT9gX7M9W22nO1lblT+Ojq09ZDPmO0yflT8b5q094XWCOyt9lz8ZtrU9WzPmOzCYlz+OcLA9R22nOyLclz8XyLA9h2+nuyLclz8UyLA9I3iCuwmLlz8996o9mTXmuzCYlz+KcLA9qTXmu0yflT8X5q09bXiCu0m6lT+CoKg9oG+nu1lblT+Ljq09W22nO1lblT+Ojq09OXaCO0m6lT+FoKg9ZDPmO0yflT8b5q09WzPmOzCYlz+OcLA98HWCOwmLlz8+96o9R22nOyLclz8XyLA9h2+nuyLclz8UyLA9950CuwtJlz+TCrA9I3iCuwmLlz8996o9bXiCu0m6lT+CoKg9z50Cu3LulT8PTK49z50Cu3LulT8PTK49bXiCu0m6lT+CoKg9OXaCO0m6lT+FoKg9SZkCO3LulT8PTK49SZkCO3LulT8PTK49OXaCO0m6lT+FoKg98HWCOwmLlz8+96o9dpkCOwtJlz+UCrA9dpkCOwtJlz+UCrA98HWCOwmLlz8+96o9I3iCuwmLlz8996o9950CuwtJlz+TCrA9j3ksO24XmT+Fp7g9Vi0QtDLcmD/zlLQ9ZCYQtDN5lz/wlLQ9i3ksO+89lz+Jp7g9i3ksO+89lz+Jp7g9ZCYQtDN5lz/wlLQ9a1MKtDN5lz82a6w9tnksO+89lz+gWKg9tnksO+89lz+gWKg9a1MKtDN5lz82a6w9W1oKtDLcmD80a6w9vnksO24XmT+iWKg9vnksO24XmT+iWKg9W1oKtDLcmD80a6w9Vi0QtDLcmD/zlLQ9j3ksO24XmT+Fp7g9Q0sWtJgrmT9b4749j3ksO24XmT+Fp7g9i3ksO+89lz+Jp7g95pcZtM0plz9b47495AsXtKPllj/89ro9tnksO+89lz+gWKg9hQsJtKPllj8rCaY9omkGtM0plz/MHKI9vnksO24XmT+iWKg92WsDtJgrmT/MHKI9q9AFtMNvmT8rCaY9V34TtMNvmT/59ro9uX4su24XmT+Ep7g9Q0sWtJgrmT9b47495pcZtM0plz9b4749tn4su+89lz+Hp7g95AsXtKPllj/89ro9hQsJtKPllj8rCaY9iX4su+89lz+dWKg9omkGtM0plz/MHKI92WsDtJgrmT/MHKI9jX4su24XmT+hWKg9q9AFtMNvmT8rCaY9V34TtMNvmT/59ro9Vi0QtDLcmD/zlLQ9uX4su24XmT+Ep7g9tn4su+89lz+Hp7g9ZCYQtDN5lz/wlLQ9ZCYQtDN5lz/wlLQ9tn4su+89lz+Hp7g9iX4su+89lz+dWKg9a1MKtDN5lz82a6w9a1MKtDN5lz82a6w9iX4su+89lz+dWKg9jX4su24XmT+hWKg9W1oKtDLcmD80a6w9W1oKtDLcmD80a6w9jX4su24XmT+hWKg9uX4su24XmT+Ep7g9Vi0QtDLcmD/zlLQ99neCu1QunT+QbYk9gJ0Cu8fHnD+7H4g9sJ0Cu7LNmz+yOJc9V3iCu/bemz/5q509V3iCu/bemz/5q509sJ0Cu7LNmz+yOJc9ppkCO7LNmz+yOJc9QXaCO/bemz/6q509QXaCO/bemz/6q509ppkCO7LNmz+yOJc90pkCO8fHnD+9H4g9G3aCO1QunT+SbYk9G3aCO1QunT+SbYk90pkCO8fHnD+9H4g9gJ0Cu8fHnD+7H4g99neCu1QunT+QbYk9YDXmu+gAnT8prYQ99neCu1QunT+QbYk9V3iCu/bemz/5q509kjXmu5GUmz9Cq5o9gm+nu4Zjmz8GoZ09QXaCO/bemz/6q509b22nO4Zjmz8IoZ09gDPmO5GUmz9Eq5o9G3aCO1QunT+SbYk9kzPmO+gAnT8trYQ9hW2nO+oxnT+Ut4E9SW+nu+oxnT+Tt4E97XeCu4K2nD9/rIE9YDXmu+gAnT8prYQ9kjXmu5GUmz9Cq5o9TXiCuyRnmz/n6pU9gm+nu4Zjmz8GoZ09b22nO4Zjmz8IoZ09UHaCOyRnmz/o6pU9gDPmO5GUmz9Eq5o9kzPmO+gAnT8trYQ9JnaCO4K2nD+ArIE9hW2nO+oxnT+Ut4E9SW+nu+oxnT+Tt4E9gJ0Cu8fHnD+7H4g97XeCu4K2nD9/rIE9TXiCuyRnmz/n6pU9sJ0Cu7LNmz+yOJc9sJ0Cu7LNmz+yOJc9TXiCuyRnmz/n6pU9UHaCOyRnmz/o6pU9ppkCO7LNmz+yOJc9ppkCO7LNmz+yOJc9UHaCOyRnmz/o6pU9JnaCO4K2nD+ArIE90pkCO8fHnD+9H4g90pkCO8fHnD+9H4g9JnaCO4K2nD+ArIE97XeCu4K2nD9/rIE9gJ0Cu8fHnD+7H4g9MnosO5Rnnj8quXQ9oubRs7APnj+1AnQ9M1Xms1kQnT8Ka4k9/HksO/4SnT+26449/HksO/4SnT+26449M1Xms1kQnT8Ka4k9yores6C1nD/ri4M9HnosO7RdnD/AMIM9HnosO7RdnD/AMIM9yores6C1nD/ri4M9vBjKs/C0nT91RGg9T3osO0uynT9BQ109T3osO0uynT9BQ109vBjKs/C0nT91RGg9oubRs7APnj+1AnQ9MnosO5Rnnj8quXQ9heDWs1q7nj878Xs9MnosO5Rnnj8quXQ9/HksO/4SnT+26449zNH3s8tJnT9vR5Q9Uu73syftnD+2apQ9HnosO7RdnD/AMIM9aTTjs4YEnD/oXIU9yq7bs+8JnD+OKX89T3osO0uynT9BQ109U3+7s357nT/ki1I95vW6syLYnT91RVI9htPOs8PAnj8TYXA9D34su5Rnnj8juXQ9heDWs1q7nj878Xs9zNH3s8tJnT9vR5Q9SX4su/4SnT+16449Uu73syftnD+2apQ9aTTjs4YEnD/oXIU9K34su7RdnD/AMIM9yq7bs+8JnD+OKX89U3+7s357nT/ki1I97n0su0uynT9BQ1095vW6syLYnT91RVI9htPOs8PAnj8TYXA9oubRs7APnj+1AnQ9D34su5Rnnj8juXQ9SX4su/4SnT+16449M1Xms1kQnT8Ka4k9M1Xms1kQnT8Ka4k9SX4su/4SnT+16449K34su7RdnD/AMIM9yores6C1nD/ri4M9yores6C1nD/ri4M9K34su7RdnD/AMIM97n0su0uynT9BQ109vBjKs/C0nT91RGg9vBjKs/C0nT91RGg97n0su0uynT9BQ109D34su5Rnnj8juXQ9oubRs7APnj+1AnQ9x3eCu9Zenz8c80w9I50Cu6D3nj/dy0o9VJ0CuzkGnj/gE2o9J3iCuyQbnj/Q5HY9J3iCuyQbnj/Q5HY9VJ0CuzkGnj/gE2o9/5kCOzkGnj/gE2o9cHaCOyQbnj/T5HY9cHaCOyQbnj/T5HY9/5kCOzkGnj/gE2o9MpoCO6D3nj/by0o9R3aCO9Zenz8e80w9R3aCO9Zenz8e80w9MpoCO6D3nj/by0o9I50Cu6D3nj/dy0o9x3eCu9Zenz8c80w9MDXmu8Qunz80p0M9x3eCu9Zenz8c80w9J3iCuyQbnj/Q5HY9ZjXmuxPPnT+COHE9V2+nu8SfnT+MWnc9cHaCOyQbnj/T5HY9nG2nO8SfnT+SWnc9qzPmOxPPnT+JOHE9R3aCO9Zenz8e80w9vjPmO8Qunz88p0M9s22nOxVenz+FhT09GG+nuxVenz+ChT09v3eCu7Tinj8E+z09MDXmu8Qunz80p0M9ZjXmuxPPnT+COHE9H3iCuwKfnT+z7Gc9V2+nu8SfnT+MWnc9nG2nO8SfnT+SWnc9e3aCOwKfnT+37Gc9qzPmOxPPnT+JOHE9vjPmO8Qunz88p0M9VHaCO7Tinj8G+z09s22nOxVenz+FhT09GG+nuxVenz+ChT09I50Cu6D3nj/dy0o9v3eCu7Tinj8E+z09H3iCuwKfnT+z7Gc9VJ0CuzkGnj/gE2o9VJ0CuzkGnj/gE2o9H3iCuwKfnT+z7Gc9e3aCOwKfnT+37Gc9/5kCOzkGnj/gE2o9/5kCOzkGnj/gE2o9e3aCOwKfnT+37Gc9VHaCO7Tinj8G+z09MpoCO6D3nj/by0o9MpoCO6D3nj/by0o9VHaCO7Tinj8G+z09v3eCu7Tinj8E+z09I50Cu6D3nj/dy0o9j3osO8eToD9m4Sw9Z5Cjs7o7oD+Ejiw9eby4s0tFnz/FfUw9XHosOw1Lnz9eelc9XHosOw1Lnz9eelc9eby4s0tFnz/FfUw9PjOxs0znnj8NKEE9eXosO0CPnj9E1UA9eXosO0CPnj9E1UA9PjOxs0znnj8NKEE99Qecs7zdnz/DOCE9rXosO/rXnz9VPBY9rXosO/rXnz9VPBY99Qecs7zdnz/DOCE9Z5Cjs7o7oD+Ejiw9j3osO8eToD9m4Sw9Mpyps5DpoD+OuTM9j3osO8eToD9m4Sw9XHosOw1Lnz9eelc9Sq7Ls9aEnz8c8mE9LcPMs1Eonz9noWI9eXosO0CPnj9E1UA9xrC4s1M3nj/KkUU95Hqws3c5nj88/Tk9rXosO/rXnz9VPBY9az2PszGenz+txAs95BePs636nz9/FQs9Z0Ois7TroD8cJSg9sn0su8eToD9k4Sw9Mpyps5DpoD+OuTM9Sq7Ls9aEnz8c8mE9730suw1Lnz9celc9LcPMs1Eonz9noWI9xrC4s1M3nj/KkUU9y30su0CPnj9B1UA95Hqws3c5nj88/Tk9az2PszGenz+txAs9lH0su/rXnz9SPBY95BePs636nz9/FQs9Z0Ois7TroD8cJSg9Z5Cjs7o7oD+Ejiw9sn0su8eToD9k4Sw9730suw1Lnz9celc9eby4s0tFnz/FfUw9eby4s0tFnz/FfUw9730suw1Lnz9celc9y30su0CPnj9B1UA9PjOxs0znnj8NKEE9PjOxs0znnj8NKEE9y30su0CPnj9B1UA9lH0su/rXnz9SPBY99Qecs7zdnz/DOCE99Qecs7zdnz/DOCE9lH0su/rXnz9SPBY9sn0su8eToD9k4Sw9Z5Cjs7o7oD+Ejiw9m3eCu+KQoT9Ywwg9x5wCu7croT/zagU98pwCuwskoD/XwCE9+HeCu1YvoD/bwS49+HeCu1YvoD/bwS498pwCuwskoD/XwCE9XZoCOwskoD/XwCE9n3aCO1YvoD/dwS49n3aCO1YvoD/dwS49XZoCOwskoD/XwCE9i5oCO7croT/zagU9dHaCO+KQoT9bwwg9dHaCO+KQoT9bwwg9i5oCO7croT/zagU9x5wCu7croT/zagU9m3eCu+KQoT9Ywwg9BDXmu+1noT8B5f08m3eCu+KQoT9Ywwg9+HeCu1YvoD/bwS49MzXmu9Xnnz9EOSg9Jm+nuya0nz90xy09n3aCO1YvoD/dwS49y22nOya0nz93xy093DPmO9Xnnz9JOSg9dHaCO+KQoT9bwwg97zPmO+1noT8H5f083m2nO5yboT9LyfI8626nu5yboT9AyfI8j3eCu2wgoT/90/A8BDXmu+1noT8B5f08MzXmu9Xnnz9EOSg97XeCu+i+nz+CaB49Jm+nuya0nz90xy09y22nOya0nz93xy09q3aCO+i+nz+EaB493DPmO9Xnnz9JOSg97zPmO+1noT8H5f08g3aCO2wgoT8C1PA83m2nO5yboT9LyfI8626nu5yboT9AyfI8x5wCu7croT/zagU9j3eCu2wgoT/90/A87XeCu+i+nz+CaB498pwCuwskoD/XwCE98pwCuwskoD/XwCE97XeCu+i+nz+CaB49q3aCO+i+nz+EaB49XZoCOwskoD/XwCE9XZoCOwskoD/XwCE9q3aCO+i+nz+EaB49g3aCO2wgoT8C1PA8i5oCO7croT/zagU9i5oCO7croT/zagU9g3aCO2wgoT8C1PA8j3eCu2wgoT/90/A8x5wCu7croT/zagU95nosO0Ldoj+wqdg8z6tts9eFoj/799U8hgGKs6l4oT9e6Qc9tnosOz12oT/i6hI9tnosOz12oT/i6hI9hgGKs6l4oT9e6Qc9zMqBs4kjoT9QEPc813osOx7MoD/JXvQ813osOx7MoD/JXvQ8zMqBs4kjoT9QEPc8Zjdds7cwoj+QNb08CXssOyQzoj/LMqc8CXssOyQzoj/LMqc8Zjdds7cwoj+QNb08z6tts9eFoj/799U85nosO0Ldoj+wqdg8GLZ+s5Itoz/sSeg85nosO0Ldoj+wqdg8tnosOz12oT/i6hI9noies/mnoT86Ax499OSes11LoT8anh0913osOx7MoD/JXvQ80gqJsw1xoD9dwfs8i+KAs857oD/KvuQ8CXssOyQzoj/LMqc8MhNFs2cBoj9DApE8ZThGswReoj+3zJE8KR9ws1Q4oz+MR9E8W30su0Ldoj+uqdg8GLZ+s5Itoz/sSeg8noies/mnoT86Ax49kH0suz12oT/f6hI99OSes11LoT8anh090gqJsw1xoD9dwfs8cn0sux7MoD/FXvQ8i+KAs857oD/KvuQ8MhNFs2cBoj9DApE8OH0suyQzoj/GMqc8ZThGswReoj+3zJE8KR9ws1Q4oz+MR9E8z6tts9eFoj/799U8W30su0Ldoj+uqdg8kH0suz12oT/f6hI9hgGKs6l4oT9e6Qc9hgGKs6l4oT9e6Qc9kH0suz12oT/f6hI9cn0sux7MoD/FXvQ8zMqBs4kjoT9QEPc8zMqBs4kjoT9QEPc8cn0sux7MoD/FXvQ8OH0suyQzoj/GMqc8Zjdds7cwoj+QNb08Zjdds7cwoj+QNb08OH0suyQzoj/GMqc8W30su0Ldoj+uqdg8z6tts9eFoj/799U8+PonO1fjlT8dG7Y9uIF+uCa4lT9iSrE9i5I3tadelD/0Mqw9pDktO34WlD99UK89pDktO34WlD99UK89i5I3tadelD/0Mqw9GdietqJ8lD/9QKQ94LEsO2NSlD8BcZ894LEsO2NSlD8BcZ89GdietqJ8lD/9QKQ9N7+HuCDWlT9qWKk9OXMnOzwflj+pO6Y9OXMnOzwflj+pO6Y9N7+HuCDWlT9qWKk9uIF+uCa4lT9iSrE9+PonO1fjlT8dG7Y9tquQuJjflT/ndbw9+PonO1fjlT8dG7Y9pDktO34WlD99UK89ALqVN4Xrkz9eF7U9RgvmN5W3kz+AS7A94LEsO2NSlD8BcZ891/CON28ElD+y7Js9q7hvNi9VlD9uFZk9OXMnOzwflj+pO6Y9oZyuuDtJlj/3c6A9XbDCuCt9lj/SP6U9memsuFEwlj+enrk93fswu2bilT9VGrY9tquQuJjflT/ndbw9ALqVN4Xrkz9eF7U9Qb0ru4wVlD+2T689RgvmN5W3kz+AS7A91/CON28ElD+y7Js9/kQsu2lRlD86cJ89q7hvNi9VlD9uFZk9oZyuuDtJlj/3c6A9oIMxu0Ielj/hOqY9XbDCuCt9lj/SP6U9memsuFEwlj+enrk9uIF+uCa4lT9iSrE93fswu2bilT9VGrY9Qb0ru4wVlD+2T689i5I3tadelD/0Mqw9i5I3tadelD/0Mqw9Qb0ru4wVlD+2T689/kQsu2lRlD86cJ89GdietqJ8lD/9QKQ9GdietqJ8lD/9QKQ9/kQsu2lRlD86cJ89oIMxu0Ielj/hOqY9N7+HuCDWlT9qWKk9N7+HuCDWlT9qWKk9oIMxu0Ielj/hOqY93fswu2bilT9VGrY9uIF+uCa4lT9iSrE9cHeCu6Dzoz+F55I8cpwCu16Poz9SaYs8n5wCu56Aoj8b9ME8zXeCu5yIoj/BCdw8zXeCu5yIoj/BCdw8n5wCu56Aoj8b9ME8tJoCO56Aoj8g9ME8y3aCO5yIoj/CCdw8y3aCO5yIoj/CCdw8tJoCO56Aoj8g9ME845oCO16Poz9XaYs8n3aCO6Dzoz+K55I8n3aCO6Dzoz+K55I845oCO16Poz9XaYs8cpwCu16Poz9SaYs8cHeCu6Dzoz+F55I82zTmuzfNoz/g6X08cHeCu6Dzoz+F55I8zXeCu5yIoj/BCdw8BzXmu85Coj98aM48+26nu7QNoj8KGtk8y3aCO5yIoj/CCdw8+W2nO7QNoj8MGtk8BzTmO85Coj+HaM48n3aCO6Dzoz+K55I8GTTmOzfNoz/w6X08C26nO0kCpD8TiGg8xG6nu0kCpD8LiGg8ZneCu2mHoz+cp2I82zTmuzfNoz/g6X08BzXmu85Coj98aM48xXeCu10coj8Hdro8+26nu7QNoj8KGtk8+W2nO7QNoj8MGtk81naCO10coj8Ndro8BzTmO85Coj+HaM48GTTmOzfNoz/w6X08rXaCO2mHoz+kp2I8C26nO0kCpD8TiGg8xG6nu0kCpD8LiGg8cpwCu16Poz9SaYs8ZneCu2mHoz+cp2I8xXeCu10coj8Hdro8n5wCu56Aoj8b9ME8n5wCu56Aoj8b9ME8xXeCu10coj8Hdro81naCO10coj8Ndro8tJoCO56Aoj8g9ME8tJoCO56Aoj8g9ME81naCO10coj8Ndro8rXaCO2mHoz+kp2I845oCO16Poz9XaYs845oCO16Poz9XaYs8rXaCO2mHoz+kp2I8ZneCu2mHoz+cp2I8cpwCu16Poz9SaYs8PXssO2pKpT9kGzg8OGwas2DzpD/LUzE8vVE/s/beoz9iWJA8CXssO7TZoz+GU6Y8CXssO7TZoz+GU6Y8vVE/s/beoz9iWJA8UtMsswONoz8v1208KnssOwA2oz9GEGc8KnssOwA2oz9GEGc8UtMsswONoz8v1208qPQHs22hpD/m8/w7YHssO66mpD9iCaU7YHssO66mpD9iCaU7qPQHs22hpD/m8/w7OGwas2DzpD/LUzE8PXssO2pKpT9kGzg8qxwss66YpT+1nlg8PXssO2pKpT9kGzg8CXssO7TZoz+GU6Y83Zlbs5sIpD+b5rw8VNVZsyesoz+gX7s8KnssOwA2oz9GEGc8wikuswXaoj+7X3Q8+dkfs73noj94jEY8YHssO66mpD9iCaU7tBrjssd3pD9/eBU7dXvkskLUpD/ysSE7gq4cs12mpT/wyyo8C30su2pKpT9ZGzg8qxwss66YpT+1nlg83Zlbs5sIpD+b5rw8OH0su7TZoz+QU6Y8VNVZsyesoz+gX7s8wikuswXaoj+7X3Q8F30suwA2oz8+EGc8+dkfs73noj94jEY8tBrjssd3pD9/eBU76Xwsu66mpD9UCaU7dXvkskLUpD/ysSE7gq4cs12mpT/wyyo8OGwas2DzpD/LUzE8C30su2pKpT9ZGzg8OH0su7TZoz+QU6Y8vVE/s/beoz9iWJA8vVE/s/beoz9iWJA8OH0su7TZoz+QU6Y8F30suwA2oz8+EGc8UtMsswONoz8v1208UtMsswONoz8v1208F30suwA2oz8+EGc86Xwsu66mpD9UCaU7qPQHs22hpD/m8/w7qPQHs22hpD/m8/w76Xwsu66mpD9UCaU7C30su2pKpT9ZGzg8OGwas2DzpD/LUzE8RZU+vIIKkD/dg4S9Zi+dvFP4jj+vpHq9pPlOvOBZjj+eGXi9CmLYOMX0jj83WYK94zuYvL2akD+saYW9BAXQvNw/jz9SE3q9XAvRvEDtkD8WJYW984wHvc/6kD899H29bK0FvZpMjz/KcG69/BYlvVm5kD9z6269crc8vREwkD/BrF+9HwMYvYfsjj+rAWO9UCBLvVRvjz+CPlK9LglPvZGOjj+3D0i9O6UZvWU7jj+mmFu9ktVIvU+pjT8QAUK9a1c4venxjD9pD0K9oFMhvcZTjD9O2EW9p4wEvWCOjT+JAF69g2QGvaj/iz8yGk6967LQvLLoiz9JnFm96ZDPvBSCjT94NGm91/yMvEITjD+Al1+9ajMQvOiIjD/1fmi9W1/YOP9KjT/PjXS9XlxSPOBZjj8UGHi9XvqvPGMUjz/jmHq9S+l6PJxSkD/99YS9vbzSPEjtkD9IJIW9K1jiPGJRjz+grHe9omUIPc/6kD8h7329ZIYGPaJMjz+Ma269qe8lPWG5kD9P5m69IJA9PRkwkD+hp1+9zNsYPZDsjj+V/GK9+/hLPVxvjz9XOVK90+FPPZmOjj+VCki95H0aPW07jj+gk1u9Na5JPU+pjT/q+0G9DjA5PenxjD9BCkK9RSwiPcZTjD8q00W9UmUFPWmOjT9s+129Kz0HPbD/iz8eFU69N2TSPLLoiz+qmlm9nkHRPB2CjT/yMmm9Ka6OPEITjD/rlV+9G5YTPOiIjD9qfWi9CmLYOMX0jj83WYK9IFXwOJE0jz/TJXK91Ao3vDxJkD8vr3i9RZU+vIIKkD/dg4S9DLqTvDLgkD9SAHy94zuYvL2akD+saYW9swDNvPM1kT/5zHy9XAvRvEDtkD8WJYW9Yw4HvUNEkT8Lv2+984wHvc/6kD899H29Ng8mvc/+kD+VGWC9/BYlvVm5kD9z62694to+vXFtkD9XLlC9crc8vREwkD/BrF+9ifpNvZGhjz9gGkK9ifpNvZGhjz9gGkK9UCBLvVRvjz+CPlK93BRSveizjj/9Xje965JLvZfBjT9H6jC9jUM6vdj/jD8Q1jC9a1c4venxjD9pD0K97Rsivd9YjD8ApTS9oFMhvcZTjD9O2EW9p28KvPyUjD8UsFW9ajMQvOiIjD/1fmi9HFLwOBJWjT/dAWC9W1/YOP9KjT/PjXS9S+l6PJxSkD/99YS9jjlxPBqZkD/L2Hi9IFXwOJE0jz/TJXK9CmLYOMX0jj83WYK9vbzSPEjtkD9IJIW9OOvLPEk+kT9OKnq9omUIPc/6kD8h7329tk8GPZlMkT/FHG29qe8lPWG5kD9P5m69YB8lPSQHkT9Od129IJA9PRkwkD+hp1+9BsQ9Pc91kD8pjE29+/hLPVxvjz9XOVK9ZctMPeepjz8reD+90+FPPZmOjj+VCki9kt9QPUa8jj+rvDS9Na5JPU+pjT/q+0G9cmdKPe3JjT8USC69DjA5PenxjD9BCkK9vTM5PTYIjT/OMy69RSwiPcZTjD8q00W9NDIhPT1hjD+9AjK9Kz0HPbD/iz8eFU699RoFPZAIjD/Egzq9N2TSPLLoiz+qmlm9GJLLPEfwiz9QsUa9Ka6OPEITjD/rlV+9AkKIPF4fjD8NG0u9G5YTPOiIjD9qfWi9ri8OPPyUjD8cr1W9W1/YOP9KjT/PjXS9HFLwOBJWjT/dAWC9Zi+dvFP4jj+vpHq9JdegvKTgjj9rsGa9JdegvKTgjj9rsGa9FVl0vFZnjj/HO2+9BAXQvNw/jz9SE3q9ZuHSvN8pjz+z1GW9bK0FvZpMjz/KcG69uWAEvbAvjz9wCly9HwMYvYfsjj+rAWO9qtEOvSbwjj+Mk1G9O6UZvWU7jj+mmFu9C8wPvfRljj8BTku9p4wEvWCOjT+JAF69T/f4vAbKjT+Oik296ZDPvBSCjT94NGm9OATJvJDGjT/EkVe9FVl0vFZnjj/HO2+9pPlOvOBZjj+eGXi9NXh3PE9njj8eOm+9UwGxPBL4jj+pfma9XvqvPGMUjz/jmHq9lHLiPPI5jz/cFmS9K1jiPGJRjz+grHe9wwAGPVQxjz+SzVu9ZIYGPaJMjz+Ma269VKoPPS7wjj9wjlG9zNsYPZDsjj+V/GK9saQQPf1ljj/3SEu95H0aPW07jj+gk1u9xab6PAbKjT8uhk29UmUFPWmOjT9s+129FLPKPJDGjT8vkFe9nkHRPB2CjT/yMmm9NXh3PE9njj8eOm+9XlxSPOBZjj8UGHi9z9jPvIa9oD/1Hsy9ME3GvJnJoD/GotS9fsTmvOskoT/SVdS9iuDxvD8doT+ezMu9tDyMvHSNoD931tS9UxO4vPv5nz9AVdW9cQaUvHlXnz/44NW9T1NuvIYOoD+VQ9W9wiabvJc5nz91bM29cQaUvHlXnz/44NW9UxO4vPv5nz9AVdW9ou/AvO7jnz8K2sy9bGCZvBmLnj9lAs69qVSSvACxnj+scda9ME3GvJnJoD/GotS90xw/vHQWnz/XGNa9Vf87vFnvnz9pXtW9qVSSvACxnj+scda9bGCZvBmLnj9lAs69OVBIvGz1nj8Lp8290xw/vHQWnz/XGNa9qVSSvACxnj+scda9q2IUvCAsnz83Bta9nkAbvDELnz9TlM29q2IUvCAsnz83Bta9KRKQu/mGoj/mI9O9PQMfvPCioj/XC9O9ar3jMwAsoT8rTtS9ar3jMwAsoT8rTtS96Y47vAAsoT8rTtS9mbwtvCWcoD/VydS97aO2vH2XoT/B8dO9YsSHvMgioT8SVtS9HttcvOV6oT9SCtS9Q2GAvNNToj/XT9O97aO2vH2XoT/B8dO9Q2GAvNNToj/XT9O9oI+GvLZaoj+4u8q93G6/vFGVoT9vZcu9iuDxvD8doT+ezMu9fsTmvOskoT/SVdS9fsTmvOskoT/SVdS9i+tnvG4YoD+A4sy9HguHvDmLoD/Nf8y9tDyMvHSNoD931tS9T1NuvIYOoD+VQ9W9KQ2DvKMRoT9iDMy95qxdvH1eoT/Aycu9HttcvOV6oT9SCtS9YsSHvMgioT8SVtS9y01BvIgBoD80As29Vf87vFnvnz9pXtW95qxdvH1eoT/Aycu9ADFFvKQboT/UA8y96Y47vAAsoT8rTtS9HttcvOV6oT9SCtS9PQMfvPCioj/XC9O9KRKQu/mGoj/mI9O9h3qQuxmVoj8yv8q9gh0SvNutoj/pssq97mQ4vJCUoD/Nd8y9mbwtvCWcoD/VydS985xOO3vmnT/7j869tx9FO/ATnj8O99a9JvtiOUSSnT8maNe9vOVtOY5enT/ABM+97MWeO977nj+wL9a90ToZPL9Mnj8+xta91ZhqPMLcnj9uSta9HfIOPARQnz9T59W9AOR1PPa4nj8A28291ZhqPMLcnj9uSta90ToZPL9Mnj8+xta9OpsgPAcinj/BXM69nqKmPAnAnj/c1M29T/uePIbjnj8zRta9tx9FO/ATnj8O99a9zZSFPFSunz9KltW9xY4ePI60nz/0kNW9T/uePIbjnj8zRta9nqKmPAnAnj/c1M29EgOMPKCUnz8nHs29zZSFPFSunz9KltW9T/uePIbjnj8zRta9WSeAPKQDoD/pTNW9D5CGPJjunz/Y0My9WSeAPKQDoD/pTNW9mbwtvCWcoD/VydS9+bw7vHDunz8rX9W9EB+INGe1nz8wkNW98BOQOwfRnz9veNW93UVXu3lSnj9Mwda9Jb6TObUNnz9XINa9wgQeu+dynz9QydW9sh8UvDYrnz/4Bta93UVXu3lSnj9Mwda9sh8UvDYrnz/4Bta9nkAbvDELnz9TlM29IaNhuwkonj+bV869vOVtOY5enT/ABM+9JvtiOUSSnT8maNe9JvtiOUSSnT8maNe94GYGPK5Vnz/qic29NtaZO20Jnz9yy8297MWeO977nj+wL9a9HfIOPARQnz9T59W94dUZOmgZnz/mvc29Sd/muhlqnz8ieM29wgQeu+dynz9QydW9Jb6TObUNnz9XINa9Pp4TPD6mnz+1RM29xY4ePI60nz/0kNW9Sd/muhlqnz8ieM29leSGNASbnz+qTs29EB+INGe1nz8wkNW9wgQeu+dynz9QydW9+bw7vHDunz8rX9W9mbwtvCWcoD/VydS97mQ4vJCUoD/Nd8y9y01BvIgBoD80As29PHyQO5a0nz9hOM298BOQOwfRnz9veNW9PdnPPNGLoT+Zbcu9ok3GPGaOoT+T+dO968TmPBQzoT+mSdS99eDxPBcsoT/Yv8u9Jz2MPIvKoT/ixdO9yRO4PAReoj8ZR9O93waUPIYAoz9su9K9NVRuPHlJoj/CWNO9KyebPLcPoz8cIMq93waUPIYAoz9su9K9yRO4PAReoj8ZR9O9DfDAPGhloj+Fssq922CZPD6+oz8Sism9HVWSPP6moz/XLdK9ok3GPGaOoT+T+dO9uR0/PIxBoz+Bg9K9Dt87PB5poj+UPdO9HVWSPP6moz/XLdK922CZPD6+oz8Sism9DVFIPONToz+F5cm9uR0/PIxBoz+Bg9K9HVWSPP6moz/XLdK9kGMUPN8roz8hltK9d0EbPB4+oz8++Mm9kGMUPN8roz8hltK98BOQOwfRnz9veNW9JQQfPA+1nz+AkNW9z487PAAsoT8uTtS9dL0tPNq7oT+E0tO9XKS2PILAoD+KqtS91sSHPDc1oT85RtS9+dtcPBrdoD/5kdS9tmGAPCwEoD90TNW9XKS2PILAoD+KqtS9tmGAPCwEoD90TNW9D5CGPJjunz/Y0My9Rm+/PP2zoD8hJ8y99eDxPBcsoT/Yv8u968TmPBQzoT+mSdS968TmPBQzoT+mSdS9ZuxnPEAxoj8FFcu9iAuHPHa+oT+5d8u9Jz2MPIvKoT/ixdO9NVRuPHlJoj/CWNO9mQ2DPAw4oT9i68u9wq1dPB73oD/QLMy9+dtcPBrdoD/5kdS91sSHPDc1oT85RtS9zsRBPB9Noj8d/cq9Dt87PB5poj+UPdO9wq1dPB73oD/QLMy90jFFPAsuoT/988u9z487PAAsoT8uTtS9+dtcPBrdoD/5kdS9JQQfPA+1nz+AkNW98BOQOwfRnz9veNW9PHyQO5a0nz9hOM29Pp4TPD6mnz+1RM29wmU4PB+1oT+4f8u9dL0tPNq7oT+E0tO9k5lOu9xipD+T/Mi9KxxFuw9EpD87pdG9NcJiubvFpD9bN9G9pq9tucnqpD+zh8i9JMSeuyBcoz+lbNK97jkZvEALpD8b1tG975dqvD17oz/rUdK9OfEOvPIHoz8FtdK9LON1vGCQoz+Qscm975dqvD17oz/rUdK97jkZvEALpD8b1tG9ZZogvEcnpD/PL8m9NKKmvE2Joz+Ot8m92vqevHl0oz9SWdK9KxxFuw9EpD87pdG9WpSFvKupoj8PBtO9540evHGjoj9wC9O92vqevHl0oz9SWdK9NKKmvE2Joz+Ot8m9pwKMvLa0oj9cbsq9WpSFvKupoj8PBtO92vqevHl0oz9SWdK95iaAvFtUoj9wT9O9oI+GvLZaoj+4u8q95iaAvFtUoj9wT9O9dL0tPNq7oT+E0tO9Dt87PB5poj+UPdO9wAIys4+ioj8mDNO9KRKQu/mGoj/mI9O9a0lXO34FpD8J29G9raGTuUtKoz/ye9K9TggeOw/loj/40tK9lyAUPMksoz9TldK9a0lXO34FpD8J29G9lyAUPMksoz9TldK9d0EbPB4+oz8++Mm9gKZhO04hpD/1NMm9pq9tucnqpD+zh8i9NcJiubvFpD9bN9G9NcJiubvFpD9bN9G9CGYGvAD0oj+Pbcq9h9SZuzlAoz8GLMq9JMSeuyBcoz+lbNK9OfEOvPIHoz8FtdK9aMgZukcwoz/qOcq9C+bmOo7foj/rfsq9TggeOw/loj/40tK9raGTuUtKoz/ye9K9gh0SvNutoj/pssq9540evHGjoj9wC9O9C+bmOo7foj/rfsq9+GNUs6uuoj+Nqcq9wAIys4+ioj8mDNO9TggeOw/loj/40tK9Dt87PB5poj+UPdO9dL0tPNq7oT+E0tO9wmU4PB+1oT+4f8u9zsRBPB9Noj8d/cq9h3qQuxmVoj8yv8q9KRKQu/mGoj/mI9O9ubkIvVswij+9M5s9ubkIvVswij+9M5s9bJoQva8Miz/2npY9LFQJvY3hiz/d9p0904/yvNNMiz+TfK49ePDfvNYMjT/OWZg9hZTnvForjD+ivJk9LFQJvY3hiz/d9p09vocjvX3qiz9TNpM9ZpgDvTbrjD/ZwJU9ABnGvIxSiz/bNJ4904/yvNNMiz+TfK49ubkIvVswij+9M5s904/yvNNMiz+TfK49br+0vK/rij+Aeqo9QHrcvCcuij8bOqQ9br+0vK/rij+Aeqo9B+QmvZm9jD/qo5c996EVvS0kjT8M5JE9B+QmvZm9jD/qo5c99ak1vZczjD+Ifos9ZEocvTNNjj8w+ZA9IbQovT+Xjj8KlpM9qxMTvahLjz+eOZM9LpUwvSayjj9f8409UpUjvcYMjz/91Y89IbQovT+Xjj8KlpM9oaJLveoOjD+CjIE9QoJrvYs+iz/yx1o992ZcvfeujD+IjIk9ZPFcvaQxjT/jF38992ZcvfeujD+IjIk9QoJrvYs+iz/yx1o9FTxOvcwsjT/mWpI9x70yvS0Mjj+HJpQ9R+EdvSC5jT/rK5A9x70yvS0Mjj+HJpQ9Qac0vY8bjj+L+449pWZVvT0ojj9tUY09fDxNvW7wjj/rnYg9wDBpvasijz83vX09K9JlvW8Wjj9rGXw9Qac0vY8bjj+L+449a0A9vfFCjT/T6ZM93C5LvTZ+jT9sNow9a0A9vfFCjT/T6ZM9a0A9vfFCjT/T6ZM9FTxOvcwsjT/mWpI9SqxqvBAlij+UHLI9FhKlvHXciT9PjaU9e3aHvHptij82ta094RJSvIsTiT+Lhq09xIINtBbdiT85d6o9SqxqvBAlij+UHLI9bEdvvAlfij/LPKE9e3aHvHptij82ta09ZCyZu2OKhz/Az8A9HoSpuw/Bhz/9ab09TtMbtLXqiD9KAcA9qq0gtI/rhT+hTcc9sC+zu3Tbhj+YnLs9TtMbtLXqiD9KAcA9lNgGvCVJij8dJLk9gGgOvLhPiD8hirA9lNgGvCVJij8dJLk9DrW+uyANiD+eUrE9DrW+uyANiD+eUrE9lNgGvCVJij8dJLk96VMJPY3hiz/o9p09K5oQPa8Miz8Bn5Y9drkIPVswij/IM5s9drkIPVswij/IM5s9PY/yPNNMiz+efK49ApTnPForjD+qvJk98u/fPNYMjT/XWZg96VMJPY3hiz/o9p09focjPX3qiz9gNpM9KJgDPTbrjD/kwJU9eBjGPIxSiz/kNJ49PY/yPNNMiz+efK493r60PK/rij+Geqo9PY/yPNNMiz+efK49drkIPVswij/IM5s9uHncPCcuij8lOqQ93r60PK/rij+Geqo9uaEVPS0kjT8X5JE9xuMmPZm9jD/5o5c9xuMmPZm9jD/5o5c9uKk1PZczjD+Xfos94rMoPT+Xjj8ZlpM9JEocPTNNjj89+ZA9bBMTPahLjz+pOZM9FJUjPcYMjz8J1o8975QwPSayjj9t84094rMoPT+Xjj8ZlpM9D4JrPYs+iz8ZyFo9ZKJLPeoOjD+SjIE9uWZcPfeujD+bjIk9uWZcPfeujD+bjIk9K/FcPaQxjT8JGH89D4JrPYs+iz8ZyFo91ztOPcwsjT/3WpI9ib0yPS0Mjj+VJpQ9CeEdPSC5jT/3K5A9Bac0PY8bjj+a+449ib0yPS0Mjj+VJpQ9Z2ZVPT0ojj+AUY09PjxNPW7wjj/9nYg9hzBpPasijz9cvX099NFlPW8Wjj+TGXw9Bac0PY8bjj+a+449L0A9PfFCjT/j6ZM9nC5LPTZ+jT9/Now9L0A9PfFCjT/j6ZM9L0A9PfFCjT/j6ZM91ztOPcwsjT/3WpI9ixGlPHXciT9XjaU9IatqPBAlij+bHLI963WHPHptij88ta09yhFSPIsTiT+Shq09IatqPBAlij+bHLI9YUZvPAlfij/QPKE963WHPHptij88ta09toGpOw/Bhz/+ab097ymZO2OKhz/Bz8A97ymZO2OKhz/Bz8A9Si2zO3Tbhj+ZnLs9qq0gtI/rhT+hTcc9ZtcGPCVJij8gJLk9XWcOPLhPiD8lirA9ZtcGPCVJij8gJLk9ZtcGPCVJij8gJLk9xrK+OyANiD+iUrE9xrK+OyANiD+iUrE9ZtcGPCVJij8gJLk9+wKtu9lJpT/7VtC9TpPdM/wbpT/OxNC9yhDWMxxepT8TLsu9r7CFu4eBpT8p2cq9cNUVvBTHpT/ZKs+9hI/nu1LipT9J8cm9aQMtvDZypj/mkM29G7EFvJJmpj+AtMi9c9UVvE4dpz/z9su9h4/nu8nqpj+1d8e9BAOtu5Kapz/Sysq9trCFu4tLpz/Jj8a9TobUM2/Ipz/yXMq9SgnPMwBvpz/gOsa9V1XUu9T6pD/yG8y9chjYM47CpD+7osy9TpPdM/wbpT/OxNC9+wKtu9lJpT/7VtC9J+M3vI+UpT+dq8q9cNUVvBTHpT/ZKs+9ylVUvJJmpj+AtMi9aQMtvDZypj/mkM29J+M3vIs4pz9Uvca9c9UVvE4dpz/z9su9YFXUu0fSpz8BTcW9BAOtu5Kapz/Sysq9zhnNM44KqD84xsS9TobUM2/Ipz/yXMq9CQOtu4oypT8gnsa9O53QM7QEpT8BDMe9chjYM47CpD+7osy9V1XUu9T6pD/yG8y9dtUVvM2vpT8NcsW9J+M3vI+UpT+dq8q9cwMtvOZapj8T2MO9ylVUvJJmpj+AtMi9edUVvAYGpz8dPsK9J+M3vIs4pz9Uvca9EgOtu0qDpz/+EcG9YFXUu0fSpz8BTcW9lJvHMyCxpz8lpMC9zhnNM44KqD84xsS9r7CFu4eBpT8p2cq9yhDWMxxepT8TLsu9O53QM7QEpT8BDMe9CQOtu4oypT8gnsa9hI/nu1LipT9J8cm9dtUVvM2vpT8NcsW9G7EFvJJmpj+AtMi9cwMtvOZapj8T2MO9h4/nu8nqpj+1d8e9edUVvAYGpz8dPsK9trCFu4tLpz/Jj8a9EgOtu0qDpz/+EcG9SgnPMwBvpz/gOsa9lJvHMyCxpz8lpMC9tgStO9lJpT/7VtC9WrKFO4eBpT8t2cq9S9YVPBTHpT/cKs+9K5HnO1LipT9N8cm9RwQtPDZypj/pkM297rEFPJJmpj91tMi9StYVPE4dpz/19su9JpHnO8nqpj+td8e9rwStO5Kapz/Vysq9VLKFO4tLpz/Nj8a9BVfUO9T6pD/0G8y9tgStO9lJpT/7VtC9/OM3PI+UpT+hq8q9S9YVPBTHpT/cKs+9m1ZUPJJmpj91tMi9RwQtPDZypj/pkM29/OM3PIs4pz9Yvca9StYVPE4dpz/19su9+VbUO0fSpz8ETcW9rwStO5Kapz/Vysq9qwStO4oypT8knsa9BVfUO9T6pD/0G8y9RNYVPM2vpT8CcsW9/OM3PI+UpT+hq8q9PQQtPOZapj8P2MO9m1ZUPJJmpj91tMi9QtYVPAYGpz8ZPsK9/OM3PIs4pz9Yvca9oQStO0qDpz/9EcG9+VbUO0fSpz8ETcW9WrKFO4eBpT8t2cq9qwStO4oypT8knsa9K5HnO1LipT9N8cm9RNYVPM2vpT8CcsW97rEFPJJmpj91tMi9PQQtPOZapj8P2MO9JpHnO8nqpj+td8e9QtYVPAYGpz8ZPsK9VLKFO4tLpz/Nj8a9oQStO0qDpz/9EcG9Es8wvRQTqj9wlnG9h/ApvXg2qj8XW429NWI2vU0Yqj/L25K95f0/vdLmqT+KMmy9/YUkvVPQqT/wbnC9Es8wvRQTqj9wlnG95f0/vdLmqT+KMmy9PNwkvVhTqT8Apmm9cqcdvbjzqT9Xx4y9/YUkvVPQqT/wbnC9PNwkvVhTqT8Apmm9nUAbvdSEqT+ElZG9h/ApvXg2qj8XW429cqcdvbjzqT9Xx4y9nUAbvdSEqT+ElZG9NWI2vU0Yqj/L25K95f0/vdLmqT+KMmy9NWI2vU0Yqj/L25K9iYc6vdCjqj+4o5O9DQVFvcVtqj9Demi9PNwkvVhTqT8Apmm9q5M/vWBAqj/331694F0cvf2AqT8mkVu9nUAbvdSEqT+ElZG9/O4TvfxiqT+y3WO9eXEJvQaZqT9wVZG97+IOvWvGqT9YIpa9uBgyvc6Fqj/EyZe9DQVFvcVtqj9Demi9iYc6vdCjqj+4o5O9RpopvXOzqj97v5C98zUzvfeBqj/u+We94F0cvf2AqT8mkVu9q5M/vWBAqj/33169SRQYvX7uqT9hbWW9eXEJvQaZqT9wVZG9/O4TvfxiqT+y3WO9q3gOvfkfqj83eY+9uBgyvc6Fqj/EyZe97+IOvWvGqT9YIpa98zUzvfeBqj/u+We9RpopvXOzqj97v5C9h/ApvXg2qj8XW429Es8wvRQTqj9wlnG9SRQYvX7uqT9hbWW98zUzvfeBqj/u+We9Es8wvRQTqj9wlnG9/YUkvVPQqT/wbnC9q3gOvfkfqj83eY+9SRQYvX7uqT9hbWW9/YUkvVPQqT/wbnC9cqcdvbjzqT9Xx4y9RpopvXOzqj97v5C9q3gOvfkfqj83eY+9cqcdvbjzqT9Xx4y9h/ApvXg2qj8XW4294JcmverrqT/SM5S9RrUUvZ1tqT88caW9vQ4WvTzoqD+yDqe90hIvveaYqT+38Y69qaEZvd4dqj8/RZK94JcmverrqT/SM5S90hIvveaYqT+38Y69zXISvTgHqj97rYq9Db8HvZKfqT+pgqO9qaEZvd4dqj8/RZK9zXISvTgHqj97rYq9l93yvJZWqT93yqK9RrUUvZ1tqT88caW9Db8HvZKfqT+pgqO9l93yvJZWqT93yqK9vQ4WvTzoqD+yDqe90hIvveaYqT+38Y69vQ4WvTzoqD+yDqe9T2gjvX4BqT8v4ay9bbg+vVzCqT9djZK9zXISvTgHqj97rYq9E0s7vRL6qT9ztY29FCUWvUSJqj/7K4i9l93yvJZWqT93yqK9mu4Kvf2Jqj9L1Yq9Bj3fvCDJqT8dKaW9JhjmvHKRqT/UAKq9CjIYvTgCqT9Jiq+9bbg+vVzCqT9djZK9T2gjvX4BqT8v4ay9LOQbvUKEqT/wCK29QOg0veU0qj/365S9FCUWvUSJqj/7K4i9E0s7vRL6qT9ztY29O0gYvUCjqj+3p5C9Bj3fvCDJqT8dKaW9mu4Kvf2Jqj9L1Yq9b4j+vJ3yqT+2xKi9CjIYvTgCqT9Jiq+9JhjmvHKRqT/UAKq9QOg0veU0qj/365S9LOQbvUKEqT/wCK29RrUUvZ1tqT88caW94JcmverrqT/SM5S9O0gYvUCjqj+3p5C9QOg0veU0qj/365S94JcmverrqT/SM5S9qaEZvd4dqj8/RZK9b4j+vJ3yqT+2xKi9O0gYvUCjqj+3p5C9qaEZvd4dqj8/RZK9Db8HvZKfqT+pgqO9LOQbvUKEqT/wCK29b4j+vJ3yqT+2xKi9Db8HvZKfqT+pgqO9RrUUvZ1tqT88caW9OAkLvTAtqT+3lKa9faLfvJd3qD/Nx7G9LdTHvIsuqD+Avq29IPwJvY8sqT9WFJ6985gHvauNqT9Pmqq9OAkLvTAtqT+3lKa9IPwJvY8sqT9WFJ69HmQCvZ4Bqj8Y9qa988HYvAnYqD9kzbW985gHvauNqT9Pmqq9HmQCvZ4Bqj8Y9qa9NKS4vJIDqT89oLa9faLfvJd3qD/Nx7G988HYvAnYqD9kzbW9NKS4vJIDqT89oLa9LdTHvIsuqD+Avq29IPwJvY8sqT9WFJ69LdTHvIsuqD+Avq29U5bbvDm3pz9nta69IFwXvY7MqD8Em529HmQCvZ4Bqj8Y9qa9oFcbvZQqqT9scJ29yHwRvQ4/qj8396i9NKS4vJIDqT89oLa9CJ8JvQdOqj+zrK29KRzAvKs4qT8Ux769yiW4vK7aqD+N8b69eNvLvCvGpz/CarO9IFwXvY7MqD8Em529U5bbvDm3pz9nta69agzqvKIDqD/8a7W9PRgbvacBqT/QwaW9yHwRvQ4/qj8396i9oFcbvZQqqT9scJ29PYATvbfWqT+Uo669KRzAvKs4qT8Ux769CJ8JvQdOqj+zrK29cNzavKrYqD+4Tb69eNvLvCvGpz/CarO9yiW4vK7aqD+N8b69PRgbvacBqT/QwaW9agzqvKIDqD/8a7W9faLfvJd3qD/Nx7G9OAkLvTAtqT+3lKa9PYATvbfWqT+Uo669PRgbvacBqT/QwaW9OAkLvTAtqT+3lKa985gHvauNqT9Pmqq9cNzavKrYqD+4Tb69PYATvbfWqT+Uo66985gHvauNqT9Pmqq988HYvAnYqD9kzbW9agzqvKIDqD/8a7W9cNzavKrYqD+4Tb6988HYvAnYqD9kzbW9faLfvJd3qD/Nx7G9BO45vordnD9A3Mm9vRI2vp7gmz/9ude9x1w1vu8FnD8Ly9+9ync6voBenT8hZsy98M48viGYnD8U/Me9BO45vordnD9A3Mm9ync6voBenT8hZsy9TtNAvjDFnD+yQci9cu04vl6amz/F2dW98M48viGYnD8U/Me9TtNAvjDFnD+yQci9W6o7vslqmz+pptu9vRI2vp7gmz/9ude9cu04vl6amz/F2dW9W6o7vslqmz+pptu9x1w1vu8FnD8Ly9+9ync6voBenT8hZsy9x1w1vu8FnD8Ly9+9RvIwvnoNnD+wMN69uXM2vjeCnT/eA8m9TtNAvjDFnD+yQci9NcQ4viSNnT8Y8MS9VQRBvi/GnD/nj7+9W6o7vslqmz+pptu9LfRBvuBsnD9XhcG9pVk8vr/0mj8msta95Ag6vpnqmj/Txdq9zdoxvvazmz/9JeC9uXM2vjeCnT/eA8m9RvIwvnoNnD+wMN691QsyvuO0mz9HdNe9myw3vkkMnT9ZD8S9VQRBvi/GnD/nj7+9NcQ4viSNnT8Y8MS9E4g9vgJznD/r6r+9pVk8vr/0mj8msta9LfRBvuBsnD9XhcG9dVk4vrQZmz/XT9O9zdoxvvazmz/9JeC95Ag6vpnqmj/Txdq9myw3vkkMnT9ZD8S91QsyvuO0mz9HdNe9vRI2vp7gmz/9ude9BO45vordnD9A3Mm9E4g9vgJznD/r6r+9myw3vkkMnT9ZD8S9BO45vordnD9A3Mm98M48viGYnD8U/Me9dVk4vrQZmz/XT9O9E4g9vgJznD/r6r+98M48viGYnD8U/Me9cu04vl6amz/F2dW91QsyvuO0mz9HdNe9dVk4vrQZmz/XT9O9cu04vl6amz/F2dW9vRI2vp7gmz/9ude9J03FvNSlqD9eUbO9HlaIvOr+pz8lPL29RV9fvKBEqD+kLsG97vTEvBkuqT+tT7O9PcLZvLxnqD88GLe9J03FvNSlqD9eUbO97vTEvBkuqT+tT7O9qSLyvPOkqD/npru9OsucvNLApz8BA8G9PcLZvLxnqD88GLe9qSLyvPOkqD/npru9RN2cvHm7pz/Thcm9HlaIvOr+pz8lPL29OsucvNLApz8BA8G9RN2cvHm7pz/Thcm9RV9fvKBEqD+kLsG97vTEvBkuqT+tT7O9RV9fvKBEqD+kLsG93UEzvO0vqD8uMbq9xrq2vNwuqT8pDKu9qSLyvPOkqD/npru9Uo3PvB0wqT+ZBau9bBcFvRl+qD+e2LW9RN2cvHm7pz/Thcm9uTsEvbg2qD83I7q9ll2rvMo3pz85SMm9wouSvIk2pz+rTsm9htQvvIXopz+te769xrq2vNwuqT8pDKu93UEzvO0vqD8uMbq99etfvKvBpz9wrbi9UDvFvCWrqD95zqq9bBcFvRl+qD+e2LW9Uo3PvB0wqT+ZBau9BmnyvP0hqD+zJbO9ll2rvMo3pz85SMm9uTsEvbg2qD83I7q9oCOdvIQ4pz+mBMG9htQvvIXopz+te769wouSvIk2pz+rTsm9UDvFvCWrqD95zqq99etfvKvBpz9wrbi9HlaIvOr+pz8lPL29J03FvNSlqD9eUbO9BmnyvP0hqD+zJbO9UDvFvCWrqD95zqq9J03FvNSlqD9eUbO9PcLZvLxnqD88GLe9oCOdvIQ4pz+mBMG9BmnyvP0hqD+zJbO9PcLZvLxnqD88GLe9OsucvNLApz8BA8G99etfvKvBpz9wrbi9oCOdvIQ4pz+mBMG9OsucvNLApz8BA8G9HlaIvOr+pz8lPL29BpMUvjwkmD/Z4t+9ddEGvqVolz9b3929JbwDvrKTlz9CD+O91DEVvrKCmD9B4OW9ch4WvrK4lz9SV+C9BpMUvjwkmD/Z4t+91DEVvrKCmD9B4OW9e5gYvgiVlz+B4ea95jQIvtn6lj/gU969ch4WvrK4lz9SV+C9e5gYvgiVlz+B4ea9Ic0GvjChlj+AEOS9ddEGvqVolz9b39295jQIvtn6lj/gU969Ic0GvjChlj+AEOS9JbwDvrKTlz9CD+O91DEVvrKCmD9B4OW9JbwDvrKTlz9CD+O9zzQCvsrrlz8Pqdy9GcEUvm3qmD9AvN+9e5gYvgiVlz+B4ea9R6wXviXMmD84buC9FhYcvrWXlz8SvOG9Ic0GvjChlj+AEOS9bugavng8lz+pjeG9BcEHvgk1lj97et69E+EEvoJXlj+AyN29WuYAvjiSlz+nety9GcEUvm3qmD9AvN+9zzQCvsrrlz8Pqdy9p2QEvuGPlz8sVde9F9sVvth/mD8rJtq9FhYcvrWXlz8SvOG9R6wXviXMmD84buC9aEIZvjmSlz9rJ9u9BcEHvgk1lj97et69bugavng8lz+pjeG9o3UHvl+dlj9rVti9WuYAvjiSlz+nety9E+EEvoJXlj+AyN29F9sVvth/mD8rJtq9p2QEvuGPlz8sVde9ddEGvqVolz9b3929BpMUvjwkmD/Z4t+9aEIZvjmSlz9rJ9u9F9sVvth/mD8rJtq9BpMUvjwkmD/Z4t+9ch4WvrK4lz9SV+C9o3UHvl+dlj9rVti9aEIZvjmSlz9rJ9u9ch4WvrK4lz9SV+C95jQIvtn6lj/gU969p2QEvuGPlz8sVde9o3UHvl+dlj9rVti95jQIvtn6lj/gU969ddEGvqVolz9b3929akoFvp05lz/dDuK9h/ntveXtlj+1xd+99xPqvaaClj/pROO9cZMHvm/flj9md+a9p6QFvpdFlz9Trtq9akoFvp05lz/dDuK9cZMHvm/flj9md+a9m1oIvtn5lj+4LNa98rXuvXD5lj8rZdi9p6QFvpdFlz9Trtq9m1oIvtn5lj+4LNa9FLTrvSSclj9H+tK9h/ntveXtlj+1xd+98rXuvXD5lj8rZdi9FLTrvSSclj9H+tK99xPqvaaClj/pROO9cZMHvm/flj9md+a99xPqvaaClj/pROO9l2vnvWXTlj/7N+q9BngHvmY0lz+ete29m1oIvtn5lj+4LNa9AOcJvptFlz98Cuq9l+kKvudnlz/r5dS9FLTrvSSclj9H+tK9g+AIvjNklz8MPNC9blzqvYABlz9pvsy9pHHlvV7zlj+ZadC9nFXjvVDSlj8rjuW9BngHvmY0lz+ete29l2vnvWXTlj/7N+q9M7zovUA9lz9PR+S9XqwGvoqYlz/Beee9l+kKvudnlz/r5dS9AOcJvptFlz98Cuq9hnMHvvuylz8SL9e9blzqvYABlz9pvsy9g+AIvjNklz8MPNC9VFzqvbRWlz+u/NO9nFXjvVDSlj8rjuW9pHHlvV7zlj+ZadC9XqwGvoqYlz/Beee9M7zovUA9lz9PR+S9h/ntveXtlj+1xd+9akoFvp05lz/dDuK9hnMHvvuylz8SL9e9XqwGvoqYlz/Beee9akoFvp05lz/dDuK9p6QFvpdFlz9Trtq9VFzqvbRWlz+u/NO9hnMHvvuylz8SL9e9p6QFvpdFlz9Trtq98rXuvXD5lj8rZdi9M7zovUA9lz9PR+S9VFzqvbRWlz+u/NO98rXuvXD5lj8rZdi9h/ntveXtlj+1xd+9TMOdvQDDlz8Ba9i9g0SKvVc5mD8kP9a96dyDvQj8lz/EWdq9dyGfvYlWlz89Y9299nSevX69lz9nAtG9TMOdvQDDlz8Ba9i9dyGfvYlWlz89Y9290KmgvUxKlz/XBs29LPaKvdYzmD+Y1s699nSevX69lz9nAtG90KmgvUxKlz/XBs29QmWFvdTvlz9r/cm9g0SKvVc5mD8kP9a9LPaKvdYzmD+Y1s69QmWFvdTvlz9r/cm96dyDvQj8lz/EWdq9dyGfvYlWlz89Y9296dyDvQj8lz/EWdq9DBeEvdJgmD8yxeC9l9yhvRmslz8JFuS90KmgvUxKlz/XBs29M3+mvTiPlz/5X+C9YHyovV5/lz9pJMu9QmWFvdTvlz9r/cm9b6KkvQSWlz9cfMa94tyGvb1KmD+EK8O9gDqCvZ5nmD+e4ca9VD2AvXl3mD8wHdy9l9yhvRmslz8JFuS9DBeEvdJgmD8yxeC9vw+IvYmsmD+1Otq9TFSjvQIHmD8vRN29YHyovV5/lz9pJMu9M3+mvTiPlz/5X+C9ptykvc76lz/H58y94tyGvb1KmD+EK8O9b6KkvQSWlz9cfMa9F5iJvVagmD9c3sm9VD2AvXl3mD8wHdy9gDqCvZ5nmD+e4ca9TFSjvQIHmD8vRN29vw+IvYmsmD+1Otq9g0SKvVc5mD8kP9a9TMOdvQDDlz8Ba9i9ptykvc76lz/H58y9TFSjvQIHmD8vRN29TMOdvQDDlz8Ba9i99nSevX69lz9nAtG9F5iJvVagmD9c3sm9ptykvc76lz/H58y99nSevX69lz9nAtG9LPaKvdYzmD+Y1s69vw+IvYmsmD+1Otq9F5iJvVagmD9c3sm9LPaKvdYzmD+Y1s69g0SKvVc5mD8kP9a9MpeFvaQtmD/sSNG9yUFnvb3YmD8ms8+988FcvUG/mD8OL8m9joCHvfbPlz+YZsu91FqJvSCUmD8+1dG9MpeFvaQtmD/sSNG9joCHvfbPlz+YZsu9qdCPvUSymD99nMy9D8luvTE/mT94P9C91FqJvSCUmD8+1dG9qdCPvUSymD99nMy9HmJtvY+hmT/zZMq9yUFnvb3YmD8ms8+9D8luvTE/mT94P9C9HmJtvY+hmT/zZMq988FcvUG/mD8OL8m9joCHvfbPlz+YZsu988FcvUG/mD8OL8m9ZYNSvVZsmD8Ods693a+EvRVnlz+y4dC9qdCPvUSymD99nMy96biKvbd7lz8+idG9r4KVvWehmD9lG9O9HmJtvY+hmT/zZMq9B7qTvYAAmT9VEtO9uJdwvcAFmj+zptC9CYZkvR3xmT8m/8+9hfJOvW7LmD8Abc693a+EvRVnlz+y4dC9ZYNSvVZsmD8Ods69SVZavZK6mD/p69S9t0qGvUbLlz9zI9e9r4KVvWehmD9lG9O96biKvbd7lz8+idG905qOvZStmD9VWdi9uJdwvcAFmj+zptC9B7qTvYAAmT9VEtO9cvZqveCcmT/LIda9hfJOvW7LmD8Abc69CYZkvR3xmT8m/8+9t0qGvUbLlz9zI9e9SVZavZK6mD/p69S9yUFnvb3YmD8ms8+9MpeFvaQtmD/sSNG905qOvZStmD9VWdi9t0qGvUbLlz9zI9e9MpeFvaQtmD/sSNG91FqJvSCUmD8+1dG9cvZqveCcmT/LIda905qOvZStmD9VWdi91FqJvSCUmD8+1dG9D8luvTE/mT94P9C9SVZavZK6mD/p69S9cvZqveCcmT/LIda9D8luvTE/mT94P9C9yUFnvb3YmD8ms8+98M7qvSujlj8AeNu9xubTvXuxlj8V1Nm90w3QvV5/lj+C6NK9Uk3vvYhplj/hM9W9JhbrvR8Ylz8Mzdy98M7qvSujlj8AeNu9Uk3vvYhplj/hM9W9m+rvvdRrlz8LJdi9zkDUvYQmlz8hKdu9JhbrvR8Ylz8Mzdy9m+rvvdRrlz8LJdi9k9TQvc6Blz+52dW9xubTvXuxlj8V1Nm9zkDUvYQmlz8hKdu9k9TQvc6Blz+52dW90w3QvV5/lj+C6NK9Uk3vvYhplj/hM9W90w3QvV5/lj+C6NK96eHNvbcHlj+XZte9EOLvvWPvlT/c59m9m+rvvdRrlz8LJdi9KZP0vaAtlj/iA9u9QF/1vd58lz9T1d69k9TQvc6Blz+52dW9pv7wvbLClz+LOt+9iUnPvULblz9Eudy9wo3KvbCdlz8+ndu91IvJvVZOlj/Py9e9EOLvvWPvlT/c59m96eHNvbcHlj+XZte9IgTPvXxelj8XfN69LEnuvYJIlj91x+C9QF/1vd58lz9T1d69KZP0vaAtlj/iA9u9Tubuvc5Klz+euOO9iUnPvULblz9Eudy9pv7wvbLClz+LOt+94srPvetglz9ObeG91IvJvVZOlj/Py9e9wo3KvbCdlz8+ndu9LEnuvYJIlj91x+C9IgTPvXxelj8XfN69xubTvXuxlj8V1Nm98M7qvSujlj8AeNu9Tubuvc5Klz+euOO9LEnuvYJIlj91x+C98M7qvSujlj8AeNu9JhbrvR8Ylz8Mzdy94srPvetglz9ObeG9Tubuvc5Klz+euOO9JhbrvR8Ylz8Mzdy9zkDUvYQmlz8hKdu9IgTPvXxelj8XfN694srPvetglz9ObeG9zkDUvYQmlz8hKdu9xubTvXuxlj8V1Nm9IKS2vQeFlz8hyNe9a3Givcjalz/FHNa9lNOevfYkmD+CRty9zhO7vfuslz9MnN697da0vccSlz+Up9a9IKS2vQeFlz8hyNe9zhO7vfuslz9MnN69RRm3vbmwlj8AH9y9NaSgvY9olz8p/NS97da0vccSlz+Up9a9RRm3vbmwlj8AH9y9Dtmavawolz83ydm9a3Givcjalz/FHNa9NaSgvY9olz8p/NS9Dtmavawolz83ydm9lNOevfYkmD+CRty9zhO7vfuslz9MnN69lNOevfYkmD+CRty9X9GfvXecmD9SXNe9sKm+vYIZmD/46Nm9RRm3vbmwlj8AH9y9rQrCvU3Glz8Po9m93OC8ve1+lj/1Z9a9Dtmavawolz83ydm9+Ha3vRhRlj/5Z9W9p56YvRXUlj9T29K95z2VvUEnlz9JIdO9tmeavaFumD9UXNa9sKm+vYIZmD/46Nm9X9GfvXecmD9SXNe9Ji+gvdU8mD9KpdC9Xm+8vePElz8V+9K93OC8ve1+lj/1Z9a9rQrCvU3Glz8Po9m91XS4vaLIlj/HfdC9p56YvRXUlj9T29K9+Ha3vRhRlj/5Z9W9nTScvZRAlz/+J869tmeavaFumD9UXNa95z2VvUEnlz9JIdO9Xm+8vePElz8V+9K9Ji+gvdU8mD9KpdC9a3Givcjalz/FHNa9IKS2vQeFlz8hyNe91XS4vaLIlj/HfdC9Xm+8vePElz8V+9K9IKS2vQeFlz8hyNe97da0vccSlz+Up9a9nTScvZRAlz/+J8691XS4vaLIlj/HfdC97da0vccSlz+Up9a9NaSgvY9olz8p/NS9Ji+gvdU8mD9KpdC9nTScvZRAlz/+J869NaSgvY9olz8p/NS9a3Givcjalz/FHNa9V7vQvaYAlz+4uNS9giK6vSc0lz/PfdK9ZXe3vYCdlz9iy8294DTWvUdVlz/l6dC9VejPvSn+lj+BH9y9V7vQvaYAlz+4uNS94DTWvUdVlz/l6dC92GLUvc1Plz9eQuG96U65vcsxlz+X5Nm9VejPvSn+lj+BH9y92GLUvc1Plz9eQuG9HaS1vVeYlz/OI969giK6vSc0lz/PfdK96U65vcsxlz+X5Nm9HaS1vVeYlz/OI969ZXe3vYCdlz9iy8294DTWvUdVlz/l6dC9ZXe3vYCdlz9iy829j/O1veVFlz940ca9HmTXvf72lj9POcq92GLUvc1Plz9eQuG92GfbvZDqlj+h4869FQvZvXXjlj8dGuS9HaS1vVeYlz/OI969DBnUvRrtlj/ly+e9JKayvYU8lz8AZOS9vaOuvZtJlz+8ud+9KwKxvVZQlz9Lg8q9HmTXvf72lj9POcq9j/O1veVFlz940ca9+Zm1vSbjlj/+Ws29pHXUvdGalj+BedC9FQvZvXXjlj8dGuS92GfbvZDqlj+h4869p6PSvVaVlj/50eC9JKayvYU8lz8AZOS9DBnUvRrtlj/ly+e9ssazvf7dlj93s929KwKxvVZQlz9Lg8q9vaOuvZtJlz+8ud+9pHXUvdGalj+BedC9+Zm1vSbjlj/+Ws29giK6vSc0lz/PfdK9V7vQvaYAlz+4uNS9p6PSvVaVlj/50eC9pHXUvdGalj+BedC9V7vQvaYAlz+4uNS9VejPvSn+lj+BH9y9ssazvf7dlj93s929p6PSvVaVlj/50eC9VejPvSn+lj+BH9y96U65vcsxlz+X5Nm9+Zm1vSbjlj/+Ws29ssazvf7dlj93s9296U65vcsxlz+X5Nm9giK6vSc0lz/PfdK9boFkvVEsmT8qNsy9iahDvcH8mT9mYcy9vKpEvWFzmj/UN8i9J5xyvdZPmT9h+8e9byFkvfkmmT+QptO9boFkvVEsmT8qNsy9J5xyvdZPmT9h+8e9K8hxvRFEmT8kadi9h0hDvXD3mT/M0dO9byFkvfkmmT+QptO9K8hxvRFEmT8kadi9vdZDvZ1nmj+Xpdi9iahDvcH8mT9mYcy9h0hDvXD3mT/M0dO9vdZDvZ1nmj+Xpdi9vKpEvWFzmj/UN8i9J5xyvdZPmT9h+8e9vKpEvWFzmj/UN8i9B5A7vas7mj90SMG9dLltvVr9mD9yBsG9K8hxvRFEmT8kadi9gql0vfnMmD+FMMW9ZpZzvbe9mD+Vgtq9vdZDvZ1nmj+Xpdi99DlsvRbomD97v969gBA6vV8mmj+EAd+91yAzvcFWmj9l19q98jM0vQJmmj9hhcW9dLltvVr9mD9yBsG9B5A7vas7mj90SMG94gE2vajfmT/Snse9UvNjvR28mD9gYse9ZpZzvbe9mD+Vgtq9gql0vfnMmD+FMMW9Wx9jvViwmD8i0Ne9gBA6vV8mmj+EAd+99DlsvRbomD97v9695i01veTTmT+HDNi98jM0vQJmmj9hhcW91yAzvcFWmj9l19q9UvNjvR28mD9gYse94gE2vajfmT/Snse9iahDvcH8mT9mYcy9boFkvVEsmT8qNsy9Wx9jvViwmD8i0Ne9UvNjvR28mD9gYse9boFkvVEsmT8qNsy9byFkvfkmmT+QptO95i01veTTmT+HDNi9Wx9jvViwmD8i0Ne9byFkvfkmmT+QptO9h0hDvXD3mT/M0dO94gE2vajfmT/Snse95i01veTTmT+HDNi9h0hDvXD3mT/M0dO9iahDvcH8mT9mYcy9WK6AvIrwpz8BYsi9R8Hlu61Qpz9YHs29D3Lfu2UFpz9ANdS924GbvAblpz+Ulc29emSAvC+/pz9bmsG9WK6AvIrwpz8BYsi924GbvAblpz+Ulc29uN6avAZ4pz+SnL690pnku1Afpz+1Vsa9emSAvC+/pz9bmsG9uN6avAZ4pz+SnL69lOXcu2aYpj8+PMW9R8Hlu61Qpz9YHs290pnku1Afpz+1Vsa9lOXcu2aYpj8+PMW9D3Lfu2UFpz9ANdS924GbvAblpz+Ulc29D3Lfu2UFpz9ANdS9YmCcu3twpz9ghdi91eOTvJ5kqD/7SdG9uN6avAZ4pz+SnL69vzujvIprqD/vbcy9DWiivBPepz+Z/7i9lOXcu2aYpj8+PMW9ubySvGmfpz9NM7a97MOXu0Wrpj+1br29Js80u1ukpj+0SsK9qmw7u9Axpz8BudW91eOTvJ5kqD/7SdG9YmCcu3twpz9ghdi9fLJ3u92Xpz8XHNC9opuCvHZ3qD9rfMm9DWiivBPepz+Z/7i9vzujvIprqD/vbcy9hviBvH4KqD9kg7q97MOXu0Wrpj+1br29ubySvGmfpz9NM7a9iplyu90qpz8YI8G9qmw7u9Axpz8BudW9Js80u1ukpj+0SsK9opuCvHZ3qD9rfMm9fLJ3u92Xpz8XHNC9R8Hlu61Qpz9YHs29WK6AvIrwpz8BYsi9hviBvH4KqD9kg7q9opuCvHZ3qD9rfMm9WK6AvIrwpz8BYsi9emSAvC+/pz9bmsG9iplyu90qpz8YI8G9hviBvH4KqD9kg7q9emSAvC+/pz9bmsG90pnku1Afpz+1Vsa9fLJ3u92Xpz8XHNC9iplyu90qpz8YI8G90pnku1Afpz+1Vsa9R8Hlu61Qpz9YHs294WlDvZ5Qmj9L0c+98GslvQI7mz/qpc+953slvU6cmz+enNW9/m5PvX1Umj9F2dW9+QE5vWf7mT8TqM+94WlDvZ5Qmj9L0c+9/m5PvX1Umj9F2dW983M4vTeYmT9SftW9CQQbvcLlmj+9fM+9+QE5vWf7mT8TqM+983M4vTeYmT9SftW97YAOvQngmj+gQdW98GslvQI7mz/qpc+9CQQbvcLlmj+9fM+97YAOvQngmj+gQdW953slvU6cmz+enNW9/m5PvX1Umj9F2dW953slvU6cmz+enNW9JxotvXn4mz8y2M+9VOdavY2Smj9uGtC983M4vTeYmT9SftW9E45bvWYvmj+VDNC9ULs9vRI7mT+Pls+97YAOvQngmj+gQdW9wlMxve49mT/Xdc+9mYYDvdujmj+cM8+9MuACvQIHmz9lQc+98bIgvVb7mz95t8+9VOdavY2Smj9uGtC9JxotvXn4mz8y2M+9EPolvSmemz+rz8m9Iu1PvVlWmj9dDMq9ULs9vRI7mT+Pls+9E45bvWYvmj+VDNC9G/I4vRKamT9escm9mYYDvdujmj+cM8+9wlMxve49mT/Xdc+9Ev8OvePhmj+3dMm98bIgvVb7mz95t8+9MuACvQIHmz9lQc+9Iu1PvVlWmj9dDMq9EPolvSmemz+rz8m98GslvQI7mz/qpc+94WlDvZ5Qmj9L0c+9G/I4vRKamT9escm9Iu1PvVlWmj9dDMq94WlDvZ5Qmj9L0c+9+QE5vWf7mT8TqM+9Ev8OvePhmj+3dMm9G/I4vRKamT9escm9+QE5vWf7mT8TqM+9CQQbvcLlmj+9fM+9EPolvSmemz+rz8m9Ev8OvePhmj+3dMm9CQQbvcLlmj+9fM+98GslvQI7mz/qpc+9chDovPM7nD+7htG9JpWwvDs3nT9ZONK9bmeWvNQ3nT/bxMy9WAHkvGTYmz9rzMu9DE7+vOCKnD9ACdG9chDovPM7nD+7htG9WAHkvGTYmz9rzMu9oY8KvbGGnD89t8q9ytLGvCCGnT/eutG9DE7+vOCKnD9ACdG9oY8KvbGGnD89t8q9PoXHvCLmnT+7r8u9JpWwvDs3nT9ZONK9ytLGvCCGnT/eutG9PoXHvCLmnT+7r8u9bmeWvNQ3nT/bxMy9WAHkvGTYmz9rzMu9bmeWvNQ3nT/bxMy9MqaAvDwDnT8lI9O9V2DVvISDmz/cE9K9oY8KvbGGnD89t8q9LgPuvGt5mz9XptG9i+AWvZlbnD+rPtC9PoXHvCLmnT+7r8u9hh4Xvde+nD90HtC92YLZvJA+nj++LdG9reDAvLBInj9Cm9G9zCKBvHtmnT/uAtO9V2DVvISDmz/cE9K9MqaAvDwDnT8lI9O9OcSZvGI7nT9citi9Jl7nvPnbmz/skde9i+AWvZlbnD+rPtC9LgPuvGt5mz9XptG9CT4MvT+KnD/AfNa92YLZvJA+nj++LdG9hh4Xvde+nD90HtC9CeLKvLDpnT88dde9zCKBvHtmnT/uAtO9reDAvLBInj9Cm9G9Jl7nvPnbmz/skde9OcSZvGI7nT9citi9JpWwvDs3nT9ZONK9chDovPM7nD+7htG9CT4MvT+KnD/AfNa9Jl7nvPnbmz/skde9chDovPM7nD+7htG9DE7+vOCKnD9ACdG9CeLKvLDpnT88dde9CT4MvT+KnD/AfNa9DE7+vOCKnD9ACdG9ytLGvCCGnT/eutG9OcSZvGI7nT9citi9CeLKvLDpnT88dde9ytLGvCCGnT/eutG9JpWwvDs3nT9ZONK9Ng0ave4zmz/YZtO9jgj9vOcvnD/CzdS9QdHgvJQfnD+7d9m95usWvTG/mj+4gde9wJgZvVs7mz91+Mu9Ng0ave4zmz/YZtO95usWvTG/mj+4gde9tuoVvYXPmj+HGMe9oR/8vEs3nD9gX829wJgZvVs7mz91+Mu9tuoVvYXPmj+HGMe95s7evO8vnD+KDsm9jgj9vOcvnD/CzdS9oR/8vEs3nD9gX8295s7evO8vnD+KDsm9QdHgvJQfnD+7d9m95usWvTG/mj+4gde9QdHgvJQfnD+7d9m9u+HvvDRnnD+OTeC9dv0hvXTmmj99Kd69tuoVvYXPmj+HGMe977knvcazmj8Aqdm9LmwmvQLJmj/hXMS95s7evO8vnD+KDsm9JywgvQUEmz+reMC9ID/svMaEnD++nMK9zMbgvGy3nD8qHce9WGLjvDeinD9Kady9dv0hvXTmmj99Kd69u+HvvDRnnD+OTeC9dTICvbWbnD+urdm9t7UovUs7mz+rt9e9LmwmvQLJmj/hXMS977knvcazmj8Aqdm9h7QnvaZLmz99Tse9ID/svMaEnD++nMK9JywgvQUEmz+reMC9RDEBvQisnD+ARMm9WGLjvDeinD9Kady9zMbgvGy3nD8qHce9t7UovUs7mz+rt9e9dTICvbWbnD+urdm9jgj9vOcvnD/CzdS9Ng0ave4zmz/YZtO9h7QnvaZLmz99Tse9t7UovUs7mz+rt9e9Ng0ave4zmz/YZtO9wJgZvVs7mz91+Mu9RDEBvQisnD+ARMm9h7QnvaZLmz99Tse9wJgZvVs7mz91+Mu9oR/8vEs3nD9gX829dTICvbWbnD+urdm9RDEBvQisnD+ARMm9oR/8vEs3nD9gX829jgj9vOcvnD/CzdS9QN4RvfsbqT/UMRG9nSEivQeHqT/OcjW9abEyvU2mqT/nPTa9LfIbvZAQqT+0iAO9y0EMvXm8qD9oHhi9QN4RvfsbqT/UMRG9LfIbvZAQqT+0iAO94I0PvaU9qD9M0xK9KIUcvYYnqT9dXzy9y0EMvXm8qD9oHhi94I0PvaU9qD9M0xK9JU0mvWnTqD94iEW9nSEivQeHqT/OcjW9KIUcvYYnqT9dXzy9JU0mvWnTqD94iEW9abEyvU2mqT/nPTa9LfIbvZAQqT+0iAO9abEyvU2mqT/nPTa9V9IuvVAyqj8PojS9XfwVvc2OqT+7ifq84I0PvaU9qD9M0xK990YPvZNBqT+uk/K8M2T+vNYvqD8LIg29JU0mvWnTqD94iEW9IiL/vDkRqD8k7xi9CmcYvbS0qD9UTFC9QRwfve8BqT/wRlS9HTEvva0Tqj++bkC9XfwVvc2OqT+7ifq8V9IuvVAyqj8PojS9a9Uevd4Fqj/JvTq9LhYIvSFwqT+VCAi9M2T+vNYvqD8LIg2990YPvZNBqT+uk/K8xmP3vDadqD8wUxe9CmcYvbS0qD9UTFC9IiL/vDkRqD8k7xi9KHESvfIyqT9bCEq9HTEvva0Tqj++bkC9QRwfve8BqT/wRlS9LhYIvSFwqT+VCAi9a9Uevd4Fqj/JvTq9nSEivQeHqT/OcjW9QN4RvfsbqT/UMRG9xmP3vDadqD8wUxe9LhYIvSFwqT+VCAi9QN4RvfsbqT/UMRG9y0EMvXm8qD9oHhi9KHESvfIyqT9bCEq9xmP3vDadqD8wUxe9y0EMvXm8qD9oHhi9KIUcvYYnqT9dXzy9a9Uevd4Fqj/JvTq9KHESvfIyqT9bCEq9KIUcvYYnqT9dXzy9nSEivQeHqT/OcjW9JxL3vDdlqD+Zac+8xC8PvWawqD8Plwy9aT4TvcRLqD+vVhe9JtnvvETjpz9eH8i897/hvI20qD8KuNW8JxL3vDdlqD+Zac+8JtnvvETjpz9eH8i8NMPAvHySqD+zDNa8pIYEvbz/qD9Pvg+997/hvI20qD8KuNW8NMPAvHySqD+zDNa89Gb3vPz6qD9eTR69xC8PvWawqD8Plwy9pIYEvbz/qD9Pvg+99Gb3vPz6qD9eTR69aT4TvcRLqD+vVhe9JtnvvETjpz9eH8i8aT4TvcRLqD+vVhe95DgkvfZMqD/EYRG9pm4Gvf7apz+l77K8NMPAvHySqD+zDNa8cHP4vM73pz85yKa8U1i7vC7bqD8327i89Gb3vPz6qD9eTR69Ya23vAUYqT8JIsy83EHzvPSJqT/++h29x9UDvS1tqT+FDiS9VmMivcWJqD8LBRu9pm4Gvf7apz+l77K85DgkvfZMqD/EYRG9960fvXfSqD9pbAy9IlwEvfdpqD/dSrK8U1i7vC7bqD8327i8cHP4vM73pz85yKa8UKLZvC8ZqT83OMC83EHzvPSJqT/++h29Ya23vAUYqT8JIsy8CSMIva+BqT8YYxO9VmMivcWJqD8LBRu9x9UDvS1tqT+FDiS9IlwEvfdpqD/dSrK8960fvXfSqD9pbAy9xC8PvWawqD8Plwy9JxL3vDdlqD+Zac+8UKLZvC8ZqT83OMC8IlwEvfdpqD/dSrK8JxL3vDdlqD+Zac+897/hvI20qD8KuNW8CSMIva+BqT8YYxO9UKLZvC8ZqT83OMC897/hvI20qD8KuNW8pIYEvbz/qD9Pvg+9960fvXfSqD9pbAy9CSMIva+BqT8YYxO9pIYEvbz/qD9Pvg+9xC8PvWawqD8Plwy9AtQovQtQqT+cs0C911AwvXOzqT+3AWm94OM0vaZWqT8cnXS9MHsqvX3MqD+vlDy9eokbvc6FqT+KGUG9AtQovQtQqT+cs0C9MHsqvX3MqD+vlDy9BiENvS1DqT8Fdj29RQYjvS7pqT+nZ2m9eokbvc6FqT+KGUG9BiENvS1DqT8Fdj29tokXvVfNqT9KfnW911AwvXOzqT+3AWm9RQYjvS7pqT+nZ2m9tokXvVfNqT9KfnW94OM0vaZWqT8cnXS9MHsqvX3MqD+vlDy94OM0vaZWqT8cnXS9WSdGvZd8qT+VznK9rs06veflqD8YtTW9BiENvS1DqT8Fdj292bMxvRjvqD+hWC29D5wLvSSJqT+mfC69tokXvVfNqT9KfnW937IFvaq8qT9cTDe9kAwRvVBTqj/bZXS9WyYavSlKqj8rwny9Mz5AvR2wqT8gnnu9rs06veflqD8YtTW9WSdGvZd8qT+VznK9N7k+vRP2qT/npGy9nVA0veJrqT/EnDS9D5wLvSSJqT+mfC692bMxvRjvqD+hWC29VfYWvZPiqT/SfTW9kAwRvVBTqj/bZXS937IFvaq8qT9cTDe9FV8hvcRsqj89hm29Mz5AvR2wqT8gnnu9WyYavSlKqj8rwny9nVA0veJrqT/EnDS9N7k+vRP2qT/npGy911AwvXOzqT+3AWm9AtQovQtQqT+cs0C9VfYWvZPiqT/SfTW9nVA0veJrqT/EnDS9AtQovQtQqT+cs0C9eokbvc6FqT+KGUG9FV8hvcRsqj89hm29VfYWvZPiqT/SfTW9eokbvc6FqT+KGUG9RQYjvS7pqT+nZ2m9N7k+vRP2qT/npGy9FV8hvcRsqj89hm29RQYjvS7pqT+nZ2m911AwvXOzqT+3AWm9gRW+vD41qD/BvnW86ZTrvOamqD/OU7u8arsGvYquqD/GT7i8wtPNvJcPqD+nUTy8h/mwvAHmpz/h24y8gRW+vD41qD/BvnW8wtPNvJcPqD+nUTy8XeCwvJdgpz9z4YW88HjevKlXqD9MUM28h/mwvAHmpz/h24y8XeCwvJdgpz9z4YW8goPwvJP/pz9cCOC86ZTrvOamqD/OU7u88HjevKlXqD9MUM28goPwvJP/pz9cCOC8arsGvYquqD/GT7i8wtPNvJcPqD+nUTy8arsGvYquqD/GT7i8h5oFvYk7qT9mYLG8D7rFvPSNqD9z5B28XeCwvJdgpz9z4YW8rmu0vHdIqD82Jha8d9mOvGBlpz8jP328goPwvJP/pz9cCOC8YlmRvF1Rpz9Jz5a8adTWvOr+pz9yPfm8PCLovGdEqD/PG/28N9oGvX4nqT9kj8m8D7rFvPSNqD9z5B28h5oFvYk7qT9mYLG8y63rvEcsqT8OTsK8wAqsvFONqD8iTlC8d9mOvGBlpz8jP328rmu0vHdIqD82Jha8WxePvFPepz+r34+8adTWvOr+pz9yPfm8YlmRvF1Rpz9Jz5a8e7rOvEd9qD+YBuq8N9oGvX4nqT9kj8m8PCLovGdEqD/PG/28wAqsvFONqD8iTlC8y63rvEcsqT8OTsK86ZTrvOamqD/OU7u8gRW+vD41qD/BvnW8WxePvFPepz+r34+8wAqsvFONqD8iTlC8gRW+vD41qD/BvnW8h/mwvAHmpz/h24y8e7rOvEd9qD+YBuq8WxePvFPepz+r34+8h/mwvAHmpz/h24y88HjevKlXqD9MUM28y63rvEcsqT8OTsK8e7rOvEd9qD+YBuq88HjevKlXqD9MUM286ZTrvOamqD/OU7u8pVEivifhmD+F+N29xncXvtL6lz8AANy9cpcUvnsbmD+HF9a9R8kivoFMmT8u2di9AKEhvhDtmD9mQOW9pVEivifhmD+F+N29R8kivoFMmT8u2di9XEQhvu1mmT+A7ei96coWvl0HmD/uR+O9AKEhvhDtmD9mQOW9XEQhvu1mmT+A7ei9VBgTvis3mD/bK+a9xncXvtL6lz8AANy96coWvl0HmD/uR+O9VBgTvis3mD/bK+a9cpcUvnsbmD+HF9a9R8kivoFMmT8u2di9cpcUvnsbmD+HF9a9PTcWvv22lz9gk9C9q5MlvhsCmT/MldO9XEQhvu1mmT+A7ei9QAcnvu8ymT81INi9uQ4lvjpVmT83/uy9VBgTvis3mD/bK+a9HtQivvUxmT8SrfC9K4ITvg/plz+Zqu29ehsRvlCtlz8wIOm9GfYTvpWVlz89QtS9q5MlvhsCmT/MldO9PTcWvv22lz9gk9C967sXvsmAlz/yUti9fQ0mvlS0mD+LFNu9uQ4lvjpVmT83/uy9QAcnvu8ymT81INi9fIgkvsfOmD/rKOu9K4ITvg/plz+Zqu29HtQivvUxmT8SrfC9/TwWvnKclz9FZ+i9GfYTvpWVlz89QtS9ehsRvlCtlz8wIOm9fQ0mvlS0mD+LFNu967sXvsmAlz/yUti9xncXvtL6lz8AANy9pVEivifhmD+F+N29fIgkvsfOmD/rKOu9fQ0mvlS0mD+LFNu9pVEivifhmD+F+N29AKEhvhDtmD9mQOW9/TwWvnKclz9FZ+i9fIgkvsfOmD/rKOu9AKEhvhDtmD9mQOW96coWvl0HmD/uR+O967sXvsmAlz/yUti9/TwWvnKclz9FZ+i96coWvl0HmD/uR+O9xncXvtL6lz8AANy970M4vn2Xmz8p5uC975swvvVkmj8YMOW9tT8yvqr2mT9O7ei9VWU8voCTmz+V7eK9Chs3vmmVmz+G0tm970M4vn2Xmz8p5uC9VWU8voCTmz+V7eK9otU5vuiOmz/GTNO9OHMvvp9jmj+CHN69Chs3vmmVmz+G0tm9otU5vuiOmz/GTNO9fLAvvrnzmT+KTNm975swvvVkmj8YMOW9OHMvvp9jmj+CHN69fLAvvrnzmT+KTNm9tT8yvqr2mT9O7ei9VWU8voCTmz+V7eK9tT8yvqr2mT9O7ei9eLQwvm4imj/U6vC9D5o7vkfgmz8UXuq9otU5vuiOmz/GTNO9i0Q8vqAYnD8FcOW9lfE4vq4SnD/nJ9G9fLAvvrnzmT+KTNm9x/c2vvfXmz/KF869CRMsvhodmj+KpNS98F8rvkflmT+Oktm9TbIuvhbpmT+q2u29D5o7vkfgmz8UXuq9eLQwvm4imj/U6vC9peMtvjBtmj/Yteu9svQ3vmUHnD8htuW9lfE4vq4SnD/nJ9G9i0Q8vqAYnD8FcOW9/mQ1vs4CnD9QFda9CRMsvhodmj+KpNS9x/c2vvfXmz/KF869a1QrvkBqmj8JFdy9TbIuvhbpmT+q2u298F8rvkflmT+Oktm9svQ3vmUHnD8htuW9peMtvjBtmj/Yteu975swvvVkmj8YMOW970M4vn2Xmz8p5uC9/mQ1vs4CnD9QFda9svQ3vmUHnD8htuW970M4vn2Xmz8p5uC9Chs3vmmVmz+G0tm9a1QrvkBqmj8JFdy9/mQ1vs4CnD9QFda9Chs3vmmVmz+G0tm9OHMvvp9jmj+CHN69peMtvjBtmj/Yteu9a1QrvkBqmj8JFdy9OHMvvp9jmj+CHN6975swvvVkmj8YMOW9QjswvgYLmj/0EuG9T1slvrHSmD9Q/+G9bQwlvq51mD/B09u9LfQyvrwMmj8uidq9U5ktvvJdmj8i5OG9QjswvgYLmj/0EuG9LfQyvrwMmj8uidq9dyctvjLEmj8rV9y9i9givv4omT990OK9U5ktvvJdmj8i5OG9dyctvjLEmj8rV9y9Xn8fvh40mT/Aod29T1slvrHSmD9Q/+G9i9givv4omT990OK9Xn8fvh40mT/Aod29bQwlvq51mD/B09u9LfQyvrwMmj8uidq9bQwlvq51mD/B09u9RB8nvksVmD9PBOG9CRc2vovNmT9Um9+9dyctvjLEmj8rV9y9uzI2vm4wmj8F3t+9eawuvpAemz+SNeK9Xn8fvh40mT/Aod29gpkrvoAZmz8k3+K95BMdvsZtmT8dSOS9udgcvlALmT9hBeS9MA0kvjMUmD/greG9CRc2vovNmT9Um9+9RB8nvksVmD9PBOG9kq0lvlRsmD9TjOe9gJgzviQEmj+zQea9eawuvpAemz+SNeK9uzI2vm4wmj8F3t+9K80tvr67mj+yD+i95BMdvsZtmT8dSOS9gpkrvoAZmz8k3+K9MyAgvrQqmT9FWum9MA0kvjMUmD/greG9udgcvlALmT9hBeS9gJgzviQEmj+zQea9kq0lvlRsmD9TjOe9T1slvrHSmD9Q/+G9QjswvgYLmj/0EuG9K80tvr67mj+yD+i9gJgzviQEmj+zQea9QjswvgYLmj/0EuG9U5ktvvJdmj8i5OG9MyAgvrQqmT9FWum9K80tvr67mj+yD+i9U5ktvvJdmj8i5OG9i9givv4omT990OK9kq0lvlRsmD9TjOe9MyAgvrQqmT9FWum9i9givv4omT990OK9T1slvrHSmD9Q/+G9cBOuvGOynT+QR829ZnuMvCBznj8HN8+9/ruUvFvdnj/lA8u9PqLIvCHJnT/9dsi9/n2zvAiZnT/Gz9S9gqqzvNCYnT9kZs+9GeHRvOCdnT9EeMu99HLRvGmenT9m3Ni90jiMvJlznj+YRdW9dLetvAyznT+z59a9FAbIvOLJnT8Gz9u9YEWUvO3dnj8nfNm9PqLIvCHJnT/9dsi9/ruUvFvdnj/lA8u98lp0vKjInj88Ece9RTS/vGdknT81QMO99HLRvGmenT9m3Ni9GeHRvOCdnT9EeMu9jwPLvLMtnT9Zbse961LKvJUunT9h6Ny9YEWUvO3dnj8nfNm9FAbIvOLJnT8Gz9u9QUS+vIllnT8QBeG9efRyvILJnj/lVN29RTS/vGdknT81QMO98lp0vKjInj88Ece9xr9hvJxinj9i+sq9mbikvDJOnT/AaMi961LKvJUunT9h6Ny9jwPLvLMtnT9Zbse9RiuuvFAinT/5asu9JL2tvOAinT8qz9i9efRyvILJnj/lVN29QUS+vIllnT8QBeG9vhqkvPROnT+wwtu959RgvC1jnj8ka9m9mbikvDJOnT/AaMi9xr9hvJxinj9i+sq9ZnuMvCBznj8HN8+9cBOuvGOynT+QR829JL2tvOAinT8qz9i9RiuuvFAinT/5asu9gqqzvNCYnT9kZs+9/n2zvAiZnT/Gz9S959RgvC1jnj8ka9m9vhqkvPROnT+wwtu9dLetvAyznT+z59a90jiMvJlznj+YRdW966aIvBSEnj8HPdK9AEVPvJKMnj+qK9K966aIvBSEnj8HPdK9sk6LvAQInz/nONK9sk6LvAQInz/nONK9nL5cvKL9nj91KtK9nL5cvKL9nj91KtK9AEVPvJKMnj+qK9K9ve1HvtIonT9Xrq29SwVJvnSfnT+mobS9lKhKvtQtnj8iQay9Kt9JvrbRnT9NvqO9cLhCvlnpnD+Ku7e9XaFEvvZpnT+5Gr29kNs9vvAanT8nery9/odAvsaTnT+iGsG9TiA6vrvPnD/zPMm9qwQ7vmvunD+FrMq9+yY8vjbQnD8pZ8q9RFA7vrCvnD889si9vuM0vtKnnj8tN7i9wPg4vk7inj/0gr29KbY6vnsxnj+8l8K9LvQ2vgXWnT9KPr69K9U2vrZQnz8kR669C5w6vq5wnz9rIrW9gAo8vi6Qnz/uOaS98/8+vjamnz9bqay9UoZCvgVOnz9e5p29JXdEvm1unz8wVKe9ys5Hvnqjnj8lt529IutIvq7enj9XLKe9Kt9JvrbRnT9NvqO9yhY+vtEUnj8WUaq9ve1HvtIonT9Xrq29cLhCvlnpnD+Ku7e9LvQ2vgXWnT9KPr69vuM0vtKnnj8tN7i9K9U2vrZQnz8kR669gAo8vi6Qnz/uOaS9UoZCvgVOnz9e5p29ys5Hvnqjnj8lt529SwVJvnSfnT+mobS9JXdEvm1unz8wVKe9lKhKvtQtnj8iQay9XaFEvvZpnT+5Gr29/odAvsaTnT+iGsG9PCo/vrWhnT/rb8K9Kw0+vqvFnT/cecK9KbY6vnsxnj+8l8K9wPg4vk7inj/0gr29C5w6vq5wnz9rIrW98/8+vjamnz9bqay9IutIvq7enj9XLKe9Kw0+vqvFnT/cecK9fuo6vh1WnT/bGr69fuo6vh1WnT/bGr69Zek4voLGnD8llMK9riM6vkKjnD83X8K9mDw8vnornT8TD769Zpo8vlA1nT+nnMu9fuo6vh1WnT/bGr69Kw0+vqvFnT/cecK9Zek4voLGnD8llMK9qwQ7vmvunD+FrMq9TiA6vrvPnD/zPMm9z7I9vm0YnT/rU8u9Zpo8vlA1nT+nnMu9kNs9vvAanT8nery9qeo+vsYGnT/+VMq9/odAvsaTnT+iGsG9W487vjmRnD8GHcG9hGo9vi2+nD/hWMm9uaU8vgWdnD/L18e9fuo6vh1WnT/bGr69mDw8vnornT8TD769kNs9vvAanT8nery9kNs9vvAanT8nery9W487vjmRnD8GHcG9hGo9vi2+nD/hWMm9uaU8vgWdnD/L18e9qeo+vsYGnT/+VMq9Zek4voLGnD8llMK9riM6vkKjnD83X8K9W487vjmRnD8GHcG9duibu+5Coj8Aati9oHIiu3l9oj+dN9i90IA1u/meoj/bFNO9JTKuu4tdoj8eTdO91GToMw2Ooj9rKdi9j4LhM3mxoj/zBNO9wrbAu+beoT/3v9i9olHXu87toT8prdO91GToMw2Ooj9rKdi9oHIiu3l9oj+dN9i9duibu+5Coj8Aati9wrbAu+beoT/3v9i9aaG0uxGHoT93C9m9cNHJu6mLoT+CAdS9Kb6Ouyc6oT+TR9S9koN/ux4+oT8sStm9aaG0uxGHoT93C9m9koN/ux4+oT8sStm9+Xjfu4u8nz+ij9W98wLIu5bonz/Pb9q9+Xjfu4u8nz+ij9W9feblM4u8nz+ij9W9uFLsM5bonz/Pb9q98wLIu5bonz/Pb9q98wLIu5bonz/Pb9q9uFLsM5bonz/Pb9q9WYQ1O/meoj/bFNO9RHYiO3l9oj+dN9i9SeqbO+5Coj8Aati96jOuO4tdoj8TTdO9lLjAO+beoT/3v9i9aVPXO87toT8prdO9RHYiO3l9oj+dN9i9SeqbO+5Coj8Aati9lLjAO+beoT/3v9i9O6O0OxGHoT93C9m9OdPJO6mLoT+CAdS98L+OOyc6oT+TR9S9OYd/Ox4+oT8sStm9O6O0OxGHoT93C9m9OYd/Ox4+oT8sStm9zgTIO5bonz/Cb9q9xHrfO4u8nz+ij9W9xHrfO4u8nz+ij9W9zgTIO5bonz/Cb9q9zgTIO5bonz/Cb9q9GPQ0u2XjpD/BbUE8ZMxDu9lSpD8vMRs8IFLWvHa+pz95M4S8lQHFvKEMqD+YWkK8L37CvKYmqD8cK528ZMxDu9lSpD8vMRs8S2wqs2EtpD/wJC08t/8GsaYmqD8JK528IFLWvHa+pz95M4S8K+MDsu1sqD+QgHC80vo2s96+pD+47lI8gq6yvO1sqD+sgHC8GPQ0u2XjpD/BbUE8lQHFvKEMqD+YWkK8gq6yvO1sqD+sgHC84NfFvH5IqD8TDV+8XqnXvCoDqD+mqpS8L37CvKYmqD8cK5280vo2s96+pD+47lI8S2wqs2EtpD/wJC08XqnXvCoDqD+mqpS84NfFvH5IqD8TDV+8t/8GsaYmqD8JK528K+MDsu1sqD+QgHC8GFLWPHa+pz9TM4S8G8tDO9lSpD85MRs8ufI0O2XjpD/LbUE8hwHFPKEMqD9XWkK8G8tDO9lSpD85MRs8K37CPKYmqD/7Kp28GFLWPHa+pz9TM4S8da6yPO1sqD90gHC8ufI0O2XjpD/LbUE8hwHFPKEMqD9XWkK8V6nXPCoDqD+FqpS82NfFPH5IqD/SDF+8da6yPO1sqD90gHC8K37CPKYmqD/7Kp28V6nXPCoDqD+FqpS82NfFPH5IqD/SDF+8WGI2PU0Yqj+625K9qvApPXg2qj8JW429Ls8wPRQTqj9SlnG9/f0/PdLmqT9rMmy9/f0/PdLmqT9rMmy9Ls8wPRQTqj9SlnG9GIYkPVPQqT/YbnC9VtwkPVhTqT/jpWm9VtwkPVhTqT/jpWm9GIYkPVPQqT/YbnC9lKcdPbjzqT9Lx4y9vUAbPdSEqT94lZG9vUAbPdSEqT94lZG9lKcdPbjzqT9Lx4y9qvApPXg2qj8JW429WGI2PU0Yqj+625K9q4c6PdCjqj+po5O9WGI2PU0Yqj+625K9/f0/PdLmqT9rMmy9JwVFPcVtqj8iemi9xZM/PWBAqj/Z3169VtwkPVhTqT/jpWm9910cPf2AqT8LkVu9FO8TPfxiqT+b3WO9vUAbPdSEqT94lZG9m3EJPQaZqT9mVZG9FOMOPWvGqT9NIpa93BgyPc6Fqj+1yZe9ZZopPXOzqj9tv5C9q4c6PdCjqj+po5O9JwVFPcVtqj8iemi9DTYzPfeBqj/P+We9xZM/PWBAqj/Z3169910cPf2AqT8LkVu9YhQYPX7uqT9KbWW9FO8TPfxiqT+b3WO9m3EJPQaZqT9mVZG9zHgOPfkfqj8teY+9FOMOPWvGqT9NIpa93BgyPc6Fqj+1yZe9qvApPXg2qj8JW429ZZopPXOzqj9tv5C9DTYzPfeBqj/P+We9Ls8wPRQTqj9SlnG9Ls8wPRQTqj9SlnG9DTYzPfeBqj/P+We9YhQYPX7uqT9KbWW9GIYkPVPQqT/YbnC9GIYkPVPQqT/YbnC9YhQYPX7uqT9KbWW9zHgOPfkfqj8teY+9lKcdPbjzqT9Lx4y9lKcdPbjzqT9Lx4y9zHgOPfkfqj8teY+9ZZopPXOzqj9tv5C9qvApPXg2qj8JW4295w4WPTzoqD+pDqe9cLUUPZ1tqT8wcaW9ApgmPerrqT/EM5S99BIvPeaYqT+m8Y699BIvPeaYqT+m8Y69ApgmPerrqT/EM5S9zaEZPd4dqj8yRZK97XISPTgHqj9trYq97XISPTgHqj9trYq9zaEZPd4dqj8yRZK9N78HPZKfqT+egqO95t3yPJZWqT9uyqK95t3yPJZWqT9uyqK9N78HPZKfqT+egqO9cLUUPZ1tqT8wcaW95w4WPTzoqD+pDqe9emgjPX4BqT8k4ay95w4WPTzoqD+pDqe99BIvPeaYqT+m8Y69kLg+PVzCqT9PjZK9NEs7PRL6qT9ktY297XISPTgHqj9trYq9NCUWPUSJqj/wK4i9uu4KPf2Jqj9A1Yq95t3yPJZWqT9uyqK9WT3fPCDJqT8UKaW9eRjmPHKRqT/KAKq9NzIYPTgCqT87iq+9VuQbPUKEqT/kCK29emgjPX4BqT8k4ay9kLg+PVzCqT9PjZK9Zeg0PeU0qj/n65S9NEs7PRL6qT9ktY29NCUWPUSJqj/wK4i9XkgYPUCjqj+rp5C9uu4KPf2Jqj9A1Yq9WT3fPCDJqT8UKaW9yYj+PJ3yqT+qxKi9eRjmPHKRqT/KAKq9NzIYPTgCqT87iq+9cLUUPZ1tqT8wcaW9VuQbPUKEqT/kCK29Zeg0PeU0qj/n65S9ApgmPerrqT/EM5S9ApgmPerrqT/EM5S9Zeg0PeU0qj/n65S9XkgYPUCjqj+rp5C9zaEZPd4dqj8yRZK9zaEZPd4dqj8yRZK9XkgYPUCjqj+rp5C9yYj+PJ3yqT+qxKi9N78HPZKfqT+egqO9N78HPZKfqT+egqO9yYj+PJ3yqT+qxKi9VuQbPUKEqT/kCK29cLUUPZ1tqT8wcaW9htTHPIsuqD93vq2926LfPJd3qD/Cx7G9YgkLPTAtqT+tlKa9SPwJPY8sqT9LFJ69SPwJPY8sqT9LFJ69YgkLPTAtqT+tlKa9IJkHPauNqT9Bmqq9SGQCPZ4Bqj8N9qa9SGQCPZ4Bqj8N9qa9IJkHPauNqT9Bmqq9VcLYPAnYqD9ZzbW9lKS4PJIDqT81oLa9lKS4PJIDqT81oLa9VcLYPAnYqD9ZzbW926LfPJd3qD/Cx7G9htTHPIsuqD93vq29q5bbPDm3pz9dta69htTHPIsuqD93vq29SPwJPY8sqT9LFJ69RlwXPY7MqD/3mp29x1cbPZQqqT9fcJ29SGQCPZ4Bqj8N9qa98nwRPQ4/qj8t96i9N58JPQdOqj+mrK29lKS4PJIDqT81oLa9jhzAPKs4qT8Lx769Kia4PK7aqD+E8b690NvLPCvGpz+5arO9ygzqPKIDqD/wa7W9q5bbPDm3pz9dta69RlwXPY7MqD/3mp29ZxgbPacBqT/EwaW9x1cbPZQqqT9fcJ298nwRPQ4/qj8t96i9aIATPbfWqT+Ho669N58JPQdOqj+mrK29jhzAPKs4qT8Lx76909zaPKrYqD+uTb69Kia4PK7aqD+E8b690NvLPCvGpz+5arO926LfPJd3qD/Cx7G9ygzqPKIDqD/wa7W9ZxgbPacBqT/EwaW9YgkLPTAtqT+tlKa9YgkLPTAtqT+tlKa9ZxgbPacBqT/EwaW9aIATPbfWqT+Ho669IJkHPauNqT9Bmqq9IJkHPauNqT9Bmqq9aIATPbfWqT+Ho66909zaPKrYqD+uTb69VcLYPAnYqD9ZzbW9VcLYPAnYqD9ZzbW909zaPKrYqD+uTb69ygzqPKIDqD/wa7W926LfPJd3qD/Cx7G90lw1Pu4FnD/cyt+9xhI2Pp3gmz/Aude9Du45PondnD8P3Mm923c6Pn5enT/kZcy923c6Pn5enT/kZcy9Du45PondnD8P3Mm9As88PiCYnD/X+8e9YNNAPi/FnD90Qci9YNNAPi/FnD90Qci9As88PiCYnD/X+8e9dO04Pluamz+V2dW9a6o7Psdqmz9rptu9a6o7Psdqmz9rptu9dO04Pluamz+V2dW9xhI2Pp3gmz/Aude90lw1Pu4FnD/cyt+9VvIwPngNnD+AMN690lw1Pu4FnD/cyt+923c6Pn5enT/kZcy9xHM2PjWCnT+hA8m9QMQ4PiKNnT/b78S9YNNAPi/FnD90Qci9YARBPi3GnD+tj7+9N/RBPt5snD8chcG9a6o7Psdqmz9rptu9tVk8Pr30mj/1sda99Ag6Ppjqmj+Vxdq93NoxPvSzmz/AJeC94AsyPuG0mz8KdNe9VvIwPngNnD+AMN69xHM2PjWCnT+hA8m9qyw3PkgMnT8iD8S9QMQ4PiKNnT/b78S9YARBPi3GnD+tj7+9Iog9PgBznD+y6r+9N/RBPt5snD8chcG9tVk8Pr30mj/1sda9gFk4PrMZmz+ZT9O99Ag6Ppjqmj+Vxdq93NoxPvSzmz/AJeC9xhI2Pp3gmz/Aude94AsyPuG0mz8KdNe9qyw3PkgMnT8iD8S9Du45PondnD8P3Mm9Du45PondnD8P3Mm9qyw3PkgMnT8iD8S9Iog9PgBznD+y6r+9As88PiCYnD/X+8e9As88PiCYnD/X+8e9Iog9PgBznD+y6r+9gFk4PrMZmz+ZT9O9dO04Pluamz+V2dW9dO04Pluamz+V2dW9gFk4PrMZmz+ZT9O94AsyPuG0mz8KdNe9xhI2Pp3gmz/Aude9CWBfPKBEqD+gLsG9flaIPOr+pz8hPL29fk3FPNSlqD9XUbO9S/XEPBkuqT+kT7O9S/XEPBkuqT+kT7O9fk3FPNSlqD9XUbO9oMLZPLxnqD8zGLe9DCPyPPOkqD/cpru9DCPyPPOkqD/cpru9oMLZPLxnqD8zGLe9nsucPNLApz/5AsG9rt2cPHm7pz/Xhcm9rt2cPHm7pz/Xhcm9nsucPNLApz/5AsG9flaIPOr+pz8hPL29CWBfPKBEqD+gLsG9nkIzPO0vqD8qMbq9CWBfPKBEqD+gLsG9S/XEPBkuqT+kT7O9Gbu2PNwuqT8hDKu9po3PPB0wqT+QBau9DCPyPPOkqD/cpru9nBcFPRl+qD+P2LW96TsEPbg2qD8rI7q9rt2cPHm7pz/Xhcm9AV6rPMo3pz8uSMm9LYySPIk2pz+gTsm9RdUvPIXopz+pe769uOxfPKvBpz9rrbi9nkIzPO0vqD8qMbq9Gbu2PNwuqT8hDKu9pDvFPCWrqD9wzqq9po3PPB0wqT+QBau9nBcFPRl+qD+P2LW9aWnyPP0hqD+pJbO96TsEPbg2qD8rI7q9AV6rPMo3pz8uSMm9ACSdPIQ4pz+eBMG9LYySPIk2pz+gTsm9RdUvPIXopz+pe769flaIPOr+pz8hPL29uOxfPKvBpz9rrbi9pDvFPCWrqD9wzqq9fk3FPNSlqD9XUbO9fk3FPNSlqD9XUbO9pDvFPCWrqD9wzqq9aWnyPP0hqD+pJbO9oMLZPLxnqD8zGLe9oMLZPLxnqD8zGLe9aWnyPP0hqD+pJbO9ACSdPIQ4pz+eBMG9nsucPNLApz/5AsG9nsucPNLApz/5AsG9ACSdPIQ4pz+eBMG9uOxfPKvBpz9rrbi9flaIPOr+pz8hPL29MLwDPrKTlz8dD+O9htEGPqVolz8439298ZIUPjkkmD+p4t+9gTIVPruCmD8S4OW9gTIVPruCmD8S4OW98ZIUPjkkmD+p4t+9lh4WPrO4lz8hV+C9cpgYPgaVlz9P4ea9cpgYPgaVlz9P4ea9lh4WPrO4lz8hV+C9+DQIPtn6lj+vU969M80GPi+hlj9dEOS9M80GPi+hlj9dEOS9+DQIPtn6lj+vU969htEGPqVolz843929MLwDPrKTlz8dD+O94DQCPsnrlz/rqNy9MLwDPrKTlz8dD+O9gTIVPruCmD8S4OW99cAUPmjqmD8OvN+9WKwXPiTMmD8JbuC9cpgYPgaVlz9P4ea9JxYcPrSXlz/hu+G9QugaPnQ8lz95jeG9M80GPi+hlj9dEOS9F8EHPgg1lj9Ket69HeEEPoFXlj9dyN29ZOYAPjiSlz+Fety9s2QEPuCPlz8HVde94DQCPsnrlz/rqNy99cAUPmjqmD8OvN+9ENsVPtZ/mD/8Jdq9WKwXPiTMmD8JbuC9JxYcPrSXlz/hu+G9KUMZPkKSlz87J9u9QugaPnQ8lz95jeG9F8EHPgg1lj9Ket69tXUHPl6dlj9HVti9HeEEPoFXlj9dyN29ZOYAPjiSlz+Fety9htEGPqVolz843929s2QEPuCPlz8HVde9ENsVPtZ/mD/8Jdq98ZIUPjkkmD+p4t+98ZIUPjkkmD+p4t+9ENsVPtZ/mD/8Jdq9KUMZPkKSlz87J9u9lh4WPrO4lz8hV+C9lh4WPrO4lz8hV+C9KUMZPkKSlz87J9u9tXUHPl6dlj9HVti9+DQIPtn6lj+vU969+DQIPtn6lj+vU969tXUHPl6dlj9HVti9s2QEPuCPlz8HVde9htEGPqVolz843929GBTqPaaClj/FROO9q/ntPeXtlj+Sxd+9fEoFPp05lz+sDuK9Z5MHPm7flj83d+a9Z5MHPm7flj83d+a9fEoFPp05lz+sDuK9n6QFPpZFlz8urtq9ploIPtj5lj+HLNa9ploIPtj5lj+HLNa9n6QFPpZFlz8urtq9FLbuPW/5lj8HZdi9N7TrPSOclj8i+tK9N7TrPSOclj8i+tK9FLbuPW/5lj8HZdi9q/ntPeXtlj+Sxd+9GBTqPaaClj/FROO9uGvnPWXTlj/YN+q9GBTqPaaClj/FROO9Z5MHPm7flj83d+a9BHgHPmQ0lz9ute29EecJPppFlz9KCuq9ploIPtj5lj+HLNa9oekKPudnlz+75dS9euAIPjJklz/cO9C9N7TrPSOclj8i+tK9j1zqPYABlz9Gvsy9yXHlPV3zlj91adC9wVXjPVDSlj/5jeW9SrzoPT89lz8sR+S9uGvnPWXTlj/YN+q9BHgHPmQ0lz9ute29XKwGPomYlz+deee9EecJPppFlz9KCuq9oekKPudnlz+75dS9l3MHPvuylz/uLte9euAIPjJklz/cO9C9j1zqPYABlz9Gvsy9alzqPbRWlz99/NO9yXHlPV3zlj91adC9wVXjPVDSlj/5jeW9q/ntPeXtlj+Sxd+9SrzoPT89lz8sR+S9XKwGPomYlz+deee9fEoFPp05lz+sDuK9fEoFPp05lz+sDuK9XKwGPomYlz+deee9l3MHPvuylz/uLte9n6QFPpZFlz8urtq9n6QFPpZFlz8urtq9l3MHPvuylz/uLte9alzqPbRWlz99/NO9FLbuPW/5lj8HZdi9FLbuPW/5lj8HZdi9alzqPbRWlz99/NO9SrzoPT89lz8sR+S9q/ntPeXtlj+Sxd+9B92DPQj8lz+5Wdq9oESKPVc5mD8MP9a9bMOdPQDDlz/qati9lSGfPYlWlz8mY929lSGfPYlWlz8mY929bMOdPQDDlz/qati9E3WePX69lz9QAtG97amgPUxKlz/ABs297amgPUxKlz/ABs29E3WePX69lz9QAtG9SPaKPdYzmD+B1s69XWWFPdTvlz9U/cm9XWWFPdTvlz9U/cm9SPaKPdYzmD+B1s69oESKPVc5mD8MP9a9B92DPQj8lz+5Wdq9KxeEPdJgmD8bxeC9B92DPQj8lz+5Wdq9lSGfPYlWlz8mY929t9yhPRmslz/zFeS9Un+mPTiPlz/iX+C97amgPUxKlz/ABs29e3yoPV5/lz9TJMu9iaKkPQSWlz9FfMa9XWWFPdTvlz9U/cm9+9yGPb1KmD9vK8O9mzqCPZ5nmD+J4ca9cj2APXl3mD8ZHdy93Q+IPYmsmD+sOtq9KxeEPdJgmD8bxeC9t9yhPRmslz/zFeS9aVSjPQIHmD8YRN29Un+mPTiPlz/iX+C9e3yoPV5/lz9TJMu9wtykPc76lz+z58y9iaKkPQSWlz9FfMa9+9yGPb1KmD9vK8O9MpiJPVagmD9F3sm9mzqCPZ5nmD+J4ca9cj2APXl3mD8ZHdy9oESKPVc5mD8MP9a93Q+IPYmsmD+sOtq9aVSjPQIHmD8YRN29bMOdPQDDlz/qati9bMOdPQDDlz/qati9aVSjPQIHmD8YRN29wtykPc76lz+z58y9E3WePX69lz9QAtG9E3WePX69lz9QAtG9wtykPc76lz+z58y9MpiJPVagmD9F3sm9SPaKPdYzmD+B1s69SPaKPdYzmD+B1s69MpiJPVagmD9F3sm93Q+IPYmsmD+sOtq9oESKPVc5mD8MP9a9JsJcPUG/mD8FL8m9AkJnPb3YmD8Ps8+9TZeFPaQtmD/VSNG9qYCHPfbPlz+CZsu9qYCHPfbPlz+CZsu9TZeFPaQtmD/VSNG98FqJPSCUmD8n1dG9w9CPPUSymD9mnMy9w9CPPUSymD9mnMy98FqJPSCUmD8n1dG9QsluPTE/mT9hP9C9V2JtPY+hmT/cZMq9V2JtPY+hmT/cZMq9QsluPTE/mT9hP9C9AkJnPb3YmD8Ps8+9JsJcPUG/mD8FL8m9m4NSPVZsmD/4dc69JsJcPUG/mD8FL8m9qYCHPfbPlz+CZsu9+K+EPRVnlz+b4dC9BLmKPbd7lz8pidG9w9CPPUSymD9mnMy9zIKVPWehmD9PG9O9JLqTPYAAmT9AEtO9V2JtPY+hmT/cZMq975dwPcAFmj+cptC9QIZkPR3xmT8P/8+9u/JOPW7LmD/pbM69fVZaPZK6mD/d69S9m4NSPVZsmD/4dc69+K+EPRVnlz+b4dC91UqGPUbLlz9cI9e9BLmKPbd7lz8pidG9zIKVPWehmD9PG9O98JqOPZStmD9AWdi9JLqTPYAAmT9AEtO975dwPcAFmj+cptC9rPZqPeCcmT+1Ida9QIZkPR3xmT8P/8+9u/JOPW7LmD/pbM69AkJnPb3YmD8Ps8+9fVZaPZK6mD/d69S91UqGPUbLlz9cI9e9TZeFPaQtmD/VSNG9TZeFPaQtmD/VSNG91UqGPUbLlz9cI9e98JqOPZStmD9AWdi98FqJPSCUmD8n1dG98FqJPSCUmD8n1dG98JqOPZStmD9AWdi9rPZqPeCcmT+1Ida9QsluPTE/mT9hP9C9QsluPTE/mT9hP9C9rPZqPeCcmT+1Ida9fVZaPZK6mD/d69S9AkJnPb3YmD8Ps8+96g3QPV5/lj9e6NK96ubTPXuxlj/w09m9Bs/qPSujlj/dd9u9S03vPYdplj+wM9W9S03vPYdplj+wM9W9Bs/qPSujlj/dd9u9ShbrPR8Ylz/pzNy9lervPdNrlz/mJNi9lervPdNrlz/mJNi9ShbrPR8Ylz/pzNy95UDUPYQmlz/+KNu9qtTQPc6Blz+V2dW9qtTQPc6Blz+V2dW95UDUPYQmlz/+KNu96ubTPXuxlj/w09m96g3QPV5/lj9e6NK9DOLNPbcHlj9zZte96g3QPV5/lj9e6NK9S03vPYdplj+wM9W9B+LvPWLvlT+559m9PpP0PaAtlj++A9u9lervPdNrlz/mJNi9gUL3PbKElz8w1d69lf7wPbLClz9bOt+9qtTQPc6Blz+V2dW9nUnPPULblz8hudy95Y3KPa+dlz8bndu9+IvJPVVOlj+qy9e9RgTPPXxelj/ze969DOLNPbcHlj9zZte9B+LvPWLvlT+559m9JknuPYJIlj9Fx+C9PpP0PaAtlj++A9u9gUL3PbKElz8w1d69cubuPc5Klz97uOO9lf7wPbLClz9bOt+9nUnPPULblz8hudy9B8vPPetglz8pbeG95Y3KPa+dlz8bndu9+IvJPVVOlj+qy9e96ubTPXuxlj/w09m9RgTPPXxelj/ze969JknuPYJIlj9Fx+C9Bs/qPSujlj/dd9u9Bs/qPSujlj/dd9u9JknuPYJIlj9Fx+C9cubuPc5Klz97uOO9ShbrPR8Ylz/pzNy9ShbrPR8Ylz/pzNy9cubuPc5Klz97uOO9B8vPPetglz8pbeG95UDUPYQmlz/+KNu95UDUPYQmlz/+KNu9B8vPPetglz8pbeG9RgTPPXxelj/ze9696ubTPXuxlj/w09m9stOePfYkmD9rRty9iHGiPcjalz+gHNa9PaS2PQeFlz8KyNe96xO7Pfuslz8qnN696xO7Pfuslz8qnN69PaS2PQeFlz8KyNe9Cte0PccSlz9wp9a9ZBm3Pbmwlj/cHty9ZBm3Pbmwlj/cHty9Cte0PccSlz9wp9a9UqSgPY9olz8S/NS9LdmaPawolz8gydm9LdmaPawolz8gydm9UqSgPY9olz8S/NS9iHGiPcjalz+gHNa9stOePfYkmD9rRty9e9GfPXecmD87XNe9stOePfYkmD9rRty96xO7Pfuslz8qnN69zqm+PYIZmD/h6Nm9ygrCPU3Glz/rotm9ZBm3Pbmwlj/cHty9+eC8Pe1+lj/eZ9a9FHe3PRhRlj/iZ9W9LdmaPawolz8gydm9w56YPRXUlj8829K9Az6VPUEnlz8yIdO902eaPaFumD9AXNa9QC+gPdU8mD81pdC9e9GfPXecmD87XNe9zqm+PYIZmD/h6Nm9eW+8PePElz/y+tK9ygrCPU3Glz/rotm9+eC8Pe1+lj/eZ9a983S4PaLIlj+lfdC9FHe3PRhRlj/iZ9W9w56YPRXUlj8829K9uzScPZRAlz/nJ869Az6VPUEnlz8yIdO902eaPaFumD9AXNa9iHGiPcjalz+gHNa9QC+gPdU8mD81pdC9eW+8PePElz/y+tK9PaS2PQeFlz8KyNe9PaS2PQeFlz8KyNe9eW+8PePElz/y+tK983S4PaLIlj+lfdC9Cte0PccSlz9wp9a9Cte0PccSlz9wp9a983S4PaLIlj+lfdC9uzScPZRAlz/nJ869UqSgPY9olz8S/NS9UqSgPY9olz8S/NS9uzScPZRAlz/nJ869QC+gPdU8mD81pdC9iHGiPcjalz+gHNa9gXe3PYCdlz9Ay829nSK6PSc0lz+4fdK9e7vQPaYAlz+UuNS99zTWPUdVlz/C6dC99zTWPUdVlz/C6dC9e7vQPaYAlz+UuNS9eOjPPSj+lj9dH9y9+2LUPc1Plz87QuG9+2LUPc1Plz87QuG9eOjPPSj+lj9dH9y9B0+5Pcsxlz905Nm9PKS1PVeYlz+qI969PKS1PVeYlz+qI969B0+5Pcsxlz905Nm9nSK6PSc0lz+4fdK9gXe3PYCdlz9Ay829qfO1PeVFlz9h0ca9gXe3PYCdlz9Ay8299zTWPUdVlz/C6dC9NWTXPf72lj8rOcq972fbPZDqlj994869+2LUPc1Plz87QuG9KwvZPXXjlj/5GeS9LhnUPRntlj/By+e9PKS1PVeYlz+qI969QqayPYU8lz/cY+S93KOuPZtJlz+Xud+9RgKxPVZQlz8pg8q9FJq1PSbjlj/nWs29qfO1PeVFlz9h0ca9NWTXPf72lj8rOcq9xnXUPdGalj9dedC972fbPZDqlj994869KwvZPXXjlj/5GeS9vqPSPVaVlj/X0eC9LhnUPRntlj/By+e9QqayPYU8lz/cY+S9z8azPf7dlj9Us9293KOuPZtJlz+Xud+9RgKxPVZQlz8pg8q9nSK6PSc0lz+4fdK9FJq1PSbjlj/nWs29xnXUPdGalj9dedC9e7vQPaYAlz+UuNS9e7vQPaYAlz+UuNS9xnXUPdGalj9dedC9vqPSPVaVlj/X0eC9eOjPPSj+lj9dH9y9eOjPPSj+lj9dH9y9vqPSPVaVlj/X0eC9z8azPf7dlj9Us929B0+5Pcsxlz905Nm9B0+5Pcsxlz905Nm9z8azPf7dlj9Us929FJq1PSbjlj/nWs29nSK6PSc0lz+4fdK97apEPWFzmj/KN8i9vqhDPcH8mT9PYcy9oYFkPVEsmT8TNsy9XZxyPdZPmT9K+8e9XZxyPdZPmT9K+8e9oYFkPVEsmT8TNsy9qSFkPfkmmT+FptO9achxPRFEmT8Oadi9achxPRFEmT8Oadi9qSFkPfkmmT+FptO9wkhDPXD3mT/C0dO999ZDPZ1nmj+Apdi999ZDPZ1nmj+Apdi9wkhDPXD3mT/C0dO9vqhDPcH8mT9PYcy97apEPWFzmj/KN8i9OZA7Pas7mj9kSMG97apEPWFzmj/KN8i9XZxyPdZPmT9K+8e9p7ltPVr9mD9eBsG9tal0PfnMmD9uMMW9achxPRFEmT8Oadi9o5ZzPbe9mD+Mgtq9LDpsPRbomD9yv96999ZDPZ1nmj+Apdi9vRA6PV8mmj9sAd+9FCEzPcFWmj9Z19q9JjQ0PQJmmj9KhcW9GAI2PajfmT/Hnse9OZA7Pas7mj9kSMG9p7ltPVr9mD9eBsG9h/NjPR28mD9JYse9tal0PfnMmD9uMMW9o5ZzPbe9mD+Mgtq9kh9jPViwmD8L0Ne9LDpsPRbomD9yv969vRA6PV8mmj9sAd+9JC41PeTTmT9+DNi9FCEzPcFWmj9Z19q9JjQ0PQJmmj9KhcW9vqhDPcH8mT9PYcy9GAI2PajfmT/Hnse9h/NjPR28mD9JYse9oYFkPVEsmT8TNsy9oYFkPVEsmT8TNsy9h/NjPR28mD9JYse9kh9jPViwmD8L0Ne9qSFkPfkmmT+FptO9qSFkPfkmmT+FptO9kh9jPViwmD8L0Ne9JC41PeTTmT9+DNi9wkhDPXD3mT/C0dO9wkhDPXD3mT/C0dO9JC41PeTTmT9+DNi9GAI2PajfmT/Hnse9vqhDPcH8mT9PYcy91HPfO2UFpz9ANdS99cLlO61Qpz9cHs29wq6APIrwpz/4Yci9RoKbPAblpz+Klc29RoKbPAblpz+Klc29wq6APIrwpz/4Yci94GSAPC+/pz9VmsG9Ht+aPAZ4pz+KnL69Ht+aPAZ4pz+KnL694GSAPC+/pz9VmsG9cJvkO1Afpz+rVsa9MOfcO2aYpj9CPMW9MOfcO2aYpj9CPMW9cJvkO1Afpz+rVsa99cLlO61Qpz9cHs291HPfO2UFpz9ANdS9L2KcO3twpz9ghdi91HPfO2UFpz9ANdS9RoKbPAblpz+Klc29Q+STPJ5kqD/wSdG9KjyjPIprqD/kbcy9Ht+aPAZ4pz+KnL69bWiiPBPepz+S/7i9Fb2SPGmfpz9HM7a9MOfcO2aYpj9CPMW9csWXO0Wrpj+0br29S9I0O1ukpj+0SsK9NHA7O9Axpz8BudW97LV3O92Xpz8XHNC9L2KcO3twpz9ghdi9Q+STPJ5kqD/wSdG9DZyCPHZ3qD9gfMm9KjyjPIprqD/kbcy9bWiiPBPepz+S/7i95/iBPH4KqD9dg7q9Fb2SPGmfpz9HM7a9csWXO0Wrpj+0br29rpxyO90qpz8YI8G9S9I0O1ukpj+0SsK9NHA7O9Axpz8BudW99cLlO61Qpz9cHs297LV3O92Xpz8XHNC9DZyCPHZ3qD9gfMm9wq6APIrwpz/4Yci9wq6APIrwpz/4Yci9DZyCPHZ3qD9gfMm95/iBPH4KqD9dg7q94GSAPC+/pz9VmsG94GSAPC+/pz9VmsG95/iBPH4KqD9dg7q9rpxyO90qpz8YI8G9cJvkO1Afpz+rVsa9cJvkO1Afpz+rVsa9rpxyO90qpz8YI8G97LV3O92Xpz8XHNC99cLlO61Qpz9cHs29InwlPU6cmz+HnNW9KWwlPQI7mz/epc+9GWpDPZ5Qmj9C0c+9NG9PPX1Umj872dW9NG9PPX1Umj872dW9GWpDPZ5Qmj9C0c+9LwI5PWf7mT8KqM+9LnQ4PTeYmT87ftW9LnQ4PTeYmT87ftW9LwI5PWf7mT8KqM+9QAQbPcLlmj+zfM+9JoEOPQngmj+UQdW9JoEOPQngmj+UQdW9QAQbPcLlmj+zfM+9KWwlPQI7mz/epc+9InwlPU6cmz+HnNW9YBotPXn4mz8b2M+9InwlPU6cmz+HnNW9NG9PPX1Umj872dW9iedaPY2Smj9XGtC9TI5bPWYvmj9+DNC9LnQ4PTeYmT87ftW9ibs9PRI7mT94ls+9+1MxPe49mT/Odc+9JoEOPQngmj+UQdW90oYDPdujmj+SM8+9bOACPQIHmz9pQc+9KbMgPVb7mz9wt8+9QvolPSmemz+gz8m9YBotPXn4mz8b2M+9iedaPY2Smj9XGtC9V+1PPVlWmj9GDMq9TI5bPWYvmj9+DNC9ibs9PRI7mT94ls+9T/I4PRKamT9Tscm9+1MxPe49mT/Odc+90oYDPdujmj+SM8+9R/8OPePhmj+udMm9bOACPQIHmz9pQc+9KbMgPVb7mz9wt8+9KWwlPQI7mz/epc+9QvolPSmemz+gz8m9V+1PPVlWmj9GDMq9GWpDPZ5Qmj9C0c+9GWpDPZ5Qmj9C0c+9V+1PPVlWmj9GDMq9T/I4PRKamT9Tscm9LwI5PWf7mT8KqM+9LwI5PWf7mT8KqM+9T/I4PRKamT9Tscm9R/8OPePhmj+udMm9QAQbPcLlmj+zfM+9QAQbPcLlmj+zfM+9R/8OPePhmj+udMm9QvolPSmemz+gz8m9KWwlPQI7mz/epc+93WeWPNQ3nT/exMy9m5WwPDs3nT9cONK93RDoPPM7nD+whtG9wgHkPGTYmz9hzMu9wgHkPGTYmz9hzMu93RDoPPM7nD+whtG9gU7+POCKnD83CdG91o8KPbGGnD8zt8q91o8KPbGGnD8zt8q9gU7+POCKnD83CdG9O9PGPCCGnT/VutG9q4XHPCLmnT+wr8u9q4XHPCLmnT+wr8u9O9PGPCCGnT/VutG9m5WwPDs3nT9cONK93WeWPNQ3nT/exMy9pqaAPDwDnT8pI9O93WeWPNQ3nT/exMy9wgHkPGTYmz9hzMu9x2DVPISDmz/SE9K9mQPuPGt5mz9MptG91o8KPbGGnD8zt8q9xuAWPZlbnD+hPtC9vh4XPde+nD9rHtC9q4XHPCLmnT+wr8u9S4PZPJA+nj+zLdG9HOHAPLBInj85m9G9OiOBPHtmnT/lAtO9rcSZPGI7nT9giti9pqaAPDwDnT8pI9O9x2DVPISDmz/SE9K9l17nPPnbmz/ikde9mQPuPGt5mz9MptG9xuAWPZlbnD+hPtC9Qz4MPT+KnD+1fNa9vh4XPde+nD9rHtC9S4PZPJA+nj+zLdG9e+LKPLDpnT8zdde9HOHAPLBInj85m9G9OiOBPHtmnT/lAtO9m5WwPDs3nT9cONK9rcSZPGI7nT9giti9l17nPPnbmz/ikde93RDoPPM7nD+whtG93RDoPPM7nD+whtG9l17nPPnbmz/ikde9Qz4MPT+KnD+1fNa9gU7+POCKnD83CdG9gU7+POCKnD83CdG9Qz4MPT+KnD+1fNa9e+LKPLDpnT8zdde9O9PGPCCGnT/VutG9O9PGPCCGnT/VutG9e+LKPLDpnT8zdde9rcSZPGI7nT9giti9m5WwPDs3nT9cONK9udHgPJQfnD+vd9m9AAn9POcvnD+4zdS9bQ0aPe4zmz/MZtO9IOwWPTG/mj+ugde9IOwWPTG/mj+ugde9bQ0aPe4zmz/MZtO99pgZPVs7mz9r+Mu96eoVPYXPmj9+GMe96eoVPYXPmj9+GMe99pgZPVs7mz9r+Mu9ECD8PEs3nD9UX829UM/ePO8vnD+BDsm9UM/ePO8vnD+BDsm9ECD8PEs3nD9UX829AAn9POcvnD+4zdS9udHgPJQfnD+vd9m9NeLvPDRnnD+ETeC9udHgPJQfnD+vd9m9IOwWPTG/mj+ugde9tv0hPXTmmj90Kd69LbonPcazmj/3qNm96eoVPYXPmj9+GMe9YGwmPQLJmj/TXMS9WiwgPQUEmz+deMC9UM/ePO8vnD+BDsm9hT/sPMaEnD+1nMK9NcfgPGy3nD8hHce90GLjPDeinD9Oady9rTICPbWbnD+lrdm9NeLvPDRnnD+ETeC9tv0hPXTmmj90Kd698rUoPUs7mz+it9e9LbonPcazmj/3qNm9YGwmPQLJmj/TXMS9vbQnPaZLmz90Tse9WiwgPQUEmz+deMC9hT/sPMaEnD+1nMK9eTEBPQisnD91RMm9NcfgPGy3nD8hHce90GLjPDeinD9Oady9AAn9POcvnD+4zdS9rTICPbWbnD+lrdm98rUoPUs7mz+it9e9bQ0aPe4zmz/MZtO9bQ0aPe4zmz/MZtO98rUoPUs7mz+it9e9vbQnPaZLmz90Tse99pgZPVs7mz9r+Mu99pgZPVs7mz9r+Mu9vbQnPaZLmz90Tse9eTEBPQisnD91RMm9ECD8PEs3nD9UX829ECD8PEs3nD9UX829eTEBPQisnD91RMm9rTICPbWbnD+lrdm9AAn9POcvnD+4zdS9e7EyPU2mqT/LPTa9riEiPQeHqT+ycjW9S94RPfsbqT+7MRG9NPIbPZAQqT+ZiAO9NPIbPZAQqT+ZiAO9S94RPfsbqT+7MRG92UEMPXm8qD9QHhi9640PPaU9qD8x0xK9640PPaU9qD8x0xK92UEMPXm8qD9QHhi9OYUcPYYnqT9FXzy9OU0mPWnTqD9eiEW9OU0mPWnTqD9eiEW9OYUcPYYnqT9FXzy9riEiPQeHqT+ycjW9e7EyPU2mqT/LPTa9Z9IuPVAyqj/zoTS9e7EyPU2mqT/LPTa9NPIbPZAQqT+ZiAO9ZvwVPc2OqT+Lifq8/kYPPZNBqT99k/K8640PPaU9qD8x0xK9RmT+PNYvqD/2IQ29OCL/PDkRqD8O7xi9OU0mPWnTqD9eiEW9IWcYPbS0qD87TFC9WBwfPe8BqT/XRlS9MDEvPa0Tqj+gbkC9fdUePd4Fqj+vvTq9Z9IuPVAyqj/zoTS9ZvwVPc2OqT+Lifq8NhYIPSFwqT99CAi9/kYPPZNBqT99k/K8RmT+PNYvqD/2IQ293WP3PDadqD8dUxe9OCL/PDkRqD8O7xi9IWcYPbS0qD87TFC9PHESPfIyqT9CCEq9WBwfPe8BqT/XRlS9MDEvPa0Tqj+gbkC9riEiPQeHqT+ycjW9fdUePd4Fqj+vvTq9NhYIPSFwqT99CAi9S94RPfsbqT+7MRG9S94RPfsbqT+7MRG9NhYIPSFwqT99CAi93WP3PDadqD8dUxe92UEMPXm8qD9QHhi92UEMPXm8qD9QHhi93WP3PDadqD8dUxe9PHESPfIyqT9CCEq9OYUcPYYnqT9FXzy9OYUcPYYnqT9FXzy9PHESPfIyqT9CCEq9fdUePd4Fqj+vvTq9riEiPQeHqT+ycjW9dT4TPcRLqD+YVhe9zC8PPWawqD/3lgy9LxL3PDdlqD9vac+8LNnvPETjpz8zH8i8LNnvPETjpz8zH8i8LxL3PDdlqD9vac+8/r/hPI20qD/kt9W8O8PAPHySqD+XDNa8O8PAPHySqD+XDNa8/r/hPI20qD/kt9W8rYYEPbz/qD83vg+9D2f3PPz6qD9ITR69D2f3PPz6qD9ITR69rYYEPbz/qD83vg+9zC8PPWawqD/3lgy9dT4TPcRLqD+YVhe97jgkPfZMqD+rYRG9dT4TPcRLqD+YVhe9LNnvPETjpz8zH8i8p24GPf7apz9177K8dHP4PM73pz8TyKa8O8PAPHySqD+XDNa8VVi7PC7bqD8b27i8Z623PAUYqT/rIcy8D2f3PPz6qD9ITR69+EHzPPSJqT/r+h2909UDPS1tqT9wDiS9YmMiPcWJqD/yBBu9Aa4fPXfSqD9QbAy97jgkPfZMqD+rYRG9p24GPf7apz9177K8IFwEPfdpqD+wSrK8dHP4PM73pz8TyKa8VVi7PC7bqD8b27i8VKLZPC8ZqT8QOMC8Z623PAUYqT/rIcy8+EHzPPSJqT/r+h29FCMIPa+BqT8CYxO909UDPS1tqT9wDiS9YmMiPcWJqD/yBBu9zC8PPWawqD/3lgy9Aa4fPXfSqD9QbAy9IFwEPfdpqD+wSrK8LxL3PDdlqD9vac+8LxL3PDdlqD9vac+8IFwEPfdpqD+wSrK8VKLZPC8ZqT8QOMC8/r/hPI20qD/kt9W8/r/hPI20qD/kt9W8VKLZPC8ZqT8QOMC8FCMIPa+BqT8CYxO9rYYEPbz/qD83vg+9rYYEPbz/qD83vg+9FCMIPa+BqT8CYxO9Aa4fPXfSqD9QbAy9zC8PPWawqD/3lgy9/OM0PaZWqT/9nHS98FAwPXOzqT+YAWm9FtQoPQtQqT+As0C9QnsqPX3MqD+UlDy9QnsqPX3MqD+UlDy9FtQoPQtQqT+As0C9jIkbPc6FqT9wGUG9GCENPS1DqT/vdT29GCENPS1DqT/vdT29jIkbPc6FqT9wGUG9XgYjPS7pqT+MZ2m90okXPVfNqT80fnW90okXPVfNqT80fnW9XgYjPS7pqT+MZ2m98FAwPXOzqT+YAWm9/OM0PaZWqT/9nHS9dSdGPZd8qT9zznK9/OM0PaZWqT/9nHS9QnsqPX3MqD+UlDy9wM06PeflqD/3tDW96bMxPRjvqD+CWC29GCENPS1DqT/vdT29H5wLPSSJqT+QfC697rIFPaq8qT9GTDe90okXPVfNqT80fnW9qwwRPVBTqj/DZXS9dyYaPSlKqj8Owny9Tj5APR2wqT8Bnnu9T7k+PRP2qT/FpGy9dSdGPZd8qT9zznK9wM06PeflqD/3tDW9rVA0PeJrqT+lnDS96bMxPRjvqD+CWC29H5wLPSSJqT+QfC69ZPYWPZPiqT+4fTW97rIFPaq8qT9GTDe9qwwRPVBTqj/DZXS9MF8hPcRsqj8jhm29dyYaPSlKqj8Owny9Tj5APR2wqT8Bnnu98FAwPXOzqT+YAWm9T7k+PRP2qT/FpGy9rVA0PeJrqT+lnDS9FtQoPQtQqT+As0C9FtQoPQtQqT+As0C9rVA0PeJrqT+lnDS9ZPYWPZPiqT+4fTW9jIkbPc6FqT9wGUG9jIkbPc6FqT9wGUG9ZPYWPZPiqT+4fTW9MF8hPcRsqj8jhm29XgYjPS7pqT+MZ2m9XgYjPS7pqT+MZ2m9MF8hPcRsqj8jhm29T7k+PRP2qT/FpGy98FAwPXOzqT+YAWm9a7sGPYquqD+bT7i865TrPOamqD+nU7u8eBW+PD41qD+KvnW8tdPNPJcPqD9mUTy8tdPNPJcPqD9mUTy8eBW+PD41qD+KvnW8hfmwPAHmpz/F24y8VuCwPJdgpz9S4YW8VuCwPJdgpz9S4YW8hfmwPAHmpz/F24y8+HjePKlXqD8mUM28ioPwPJP/pz81COC8ioPwPJP/pz81COC8+HjePKlXqD8mUM2865TrPOamqD+nU7u8a7sGPYquqD+bT7i8iJoFPYk7qT82YLG8a7sGPYquqD+bT7i8tdPNPJcPqD9mUTy8+7nFPPSNqD8x5B28nmu0PHdIqD/7JRa8VuCwPJdgpz9S4YW8cNmOPGBlpz/qPn28X1mRPF1Rpz8yz5a8ioPwPJP/pz81COC8ddTWPOr+pz9LPfm8TiLoPGdEqD+pG/28OdoGPX4nqT84j8m8063rPEcsqT/nTcK8iJoFPYk7qT82YLG8+7nFPPSNqD8x5B28tAqsPFONqD/nTVC8nmu0PHdIqD/7JRa8cNmOPGBlpz/qPn28VBePPFPepz+U34+8X1mRPF1Rpz8yz5a8ddTWPOr+pz9LPfm8h7rOPEd9qD94Buq8TiLoPGdEqD+pG/28OdoGPX4nqT84j8m865TrPOamqD+nU7u8063rPEcsqT/nTcK8tAqsPFONqD/nTVC8eBW+PD41qD+KvnW8eBW+PD41qD+KvnW8tAqsPFONqD/nTVC8VBePPFPepz+U34+8hfmwPAHmpz/F24y8hfmwPAHmpz/F24y8VBePPFPepz+U34+8h7rOPEd9qD94Buq8+HjePKlXqD8mUM28+HjePKlXqD8mUM28h7rOPEd9qD94Buq8063rPEcsqT/nTcK865TrPOamqD+nU7u8a5cUPnkbmD9kF9a9nncXPs76lz/O/9u9klEiPiThmD9H+N29QckiPn5MmT/w2Ni9QckiPn5MmT/w2Ni9klEiPiThmD9H+N29/qAhPg3tmD83QOW9bkQhPuxmmT9Q7ei9bkQhPuxmmT9Q7ei9/qAhPg3tmD83QOW9PsoWPlAHmD+9R+O9ZhgTPio3mD+pK+a9ZhgTPio3mD+pK+a9PsoWPlAHmD+9R+O9nncXPs76lz/O/9u9a5cUPnkbmD9kF9a9TjcWPv22lz8vk9C9a5cUPnkbmD9kF9a9QckiPn5MmT/w2Ni9pJMlPhgCmT+PldO9UgcnPu4ymT8GINi9bkQhPuxmmT9Q7ei9yw4lPjlVmT8F/uy9Y9QiPvcxmT/UrPC9ZhgTPio3mD+pK+a9NoITPg7plz90qu29AwUSPny5lz8LIOm9JPYTPpSVlz8MQtS99rsXPseAlz/BUti9TjcWPv22lz8vk9C9pJMlPhgCmT+PldO9ew0mPlK0mD9bFNu9UgcnPu4ymT8GINi9yw4lPjlVmT8F/uy9jYgkPsbOmD+uKOu9Y9QiPvcxmT/UrPC9NoITPg7plz90qu29+jwWPnCclz8UZ+i9AwUSPny5lz8LIOm9JPYTPpSVlz8MQtS9nncXPs76lz/O/9u99rsXPseAlz/BUti9ew0mPlK0mD9bFNu9klEiPiThmD9H+N29klEiPiThmD9H+N29ew0mPlK0mD9bFNu9jYgkPsbOmD+uKOu9/qAhPg3tmD83QOW9/qAhPg3tmD83QOW9jYgkPsbOmD+uKOu9+jwWPnCclz8UZ+i9PsoWPlAHmD+9R+O9PsoWPlAHmD+9R+O9+jwWPnCclz8UZ+i99rsXPseAlz/BUti9nncXPs76lz/O/9u9xj8yPqn2mT8Q7ei9+JswPvNkmj/pL+W98EM4PnmXmz/r5eC9YGU8Pn6Tmz9Y7eK9YGU8Pn6Tmz9Y7eK98EM4PnmXmz/r5eC9BRs3PmaVmz9J0tm9tNU5PuaOmz+JTNO9tNU5PuaOmz+JTNO9BRs3PmaVmz9J0tm9SXMvPp5jmj9FHN69hbAvPrfzmT9MTNm9hbAvPrfzmT9MTNm9SXMvPp5jmj9FHN69+JswPvNkmj/pL+W9xj8yPqn2mT8Q7ei9ibQwPm0imj+X6vC9xj8yPqn2mT8Q7ei9YGU8Pn6Tmz9Y7eK9Hpo7Pkbgmz/XXeq9lUQ8Pp4YnD/Hb+W9tNU5PuaOmz+JTNO9nvE4Pq0SnD+qJ9G92Pc2PvbXmz+ZF869hbAvPrfzmT9MTNm9EhMsPhgdmj9YpNS9AGArPkblmT9cktm9XbIuPhXpmT952u29tuMtPi9tmj+bteu9ibQwPm0imj+X6vC9Hpo7Pkbgmz/XXeq9wfQ3PmQHnD/kteW9lUQ8Pp4YnD/Hb+W9nvE4Pq0SnD+qJ9G9DmU1Ps0CnD8TFda92Pc2PvbXmz+ZF869EhMsPhgdmj9YpNS9dlQrPj5qmj/ZFNy9AGArPkblmT9cktm9XbIuPhXpmT952u29+JswPvNkmj/pL+W9tuMtPi9tmj+bteu9wfQ3PmQHnD/kteW98EM4PnmXmz/r5eC98EM4PnmXmz/r5eC9wfQ3PmQHnD/kteW9DmU1Ps0CnD8TFda9BRs3PmaVmz9J0tm9BRs3PmaVmz9J0tm9DmU1Ps0CnD8TFda9dlQrPj5qmj/ZFNy9SXMvPp5jmj9FHN69SXMvPp5jmj9FHN69dlQrPj5qmj/ZFNy9tuMtPi9tmj+bteu9+JswPvNkmj/pL+W9fgwlPq51mD+S09u9YFslPrDSmD8T/+G9+zowPv0Kmj+3EuG9LfQyPrkMmj/wiNq9LfQyPrkMmj/wiNq9+zowPv0Kmj+3EuG9RZktPu1dmj/w4+G9dyctPi7Emj/uVty9dyctPi7Emj/uVty9RZktPu1dmj/w4+G9nNgiPv0omT9M0OK9TH8fPho0mT+Pod29TH8fPho0mT+Pod29nNgiPv0omT9M0OK9YFslPrDSmD8T/+G9fgwlPq51mD+S09u9Vh8nPkoVmD8SBOG9fgwlPq51mD+S09u9LfQyPrkMmj/wiNq9Bhc2PonNmT8Xm9+9xTI2Pm0wmj/U3d+9dyctPi7Emj/uVty9iqwuPo8emz9hNeK9hJkrPn0Zmz/y3uK9TH8fPho0mT+Pod290hMdPsJtmT/uR+S991gcPlQCmT8vBeS9PA0kPjIUmD+ireG9nK0lPlNsmD8XjOe9Vh8nPkoVmD8SBOG9Bhc2PonNmT8Xm9+9kJgzPiIEmj+CQea9xTI2Pm0wmj/U3d+9iqwuPo8emz9hNeK9PM0tPr27mj+AD+i9hJkrPn0Zmz/y3uK90hMdPsJtmT/uR+S9NCAgPrIqmT8VWum991gcPlQCmT8vBeS9PA0kPjIUmD+ireG9YFslPrDSmD8T/+G9nK0lPlNsmD8XjOe9kJgzPiIEmj+CQea9+zowPv0Kmj+3EuG9+zowPv0Kmj+3EuG9kJgzPiIEmj+CQea9PM0tPr27mj+AD+i9RZktPu1dmj/w4+G9RZktPu1dmj/w4+G9PM0tPr27mj+AD+i9NCAgPrIqmT8VWum9nNgiPv0omT9M0OK9nNgiPv0omT9M0OK9NCAgPrIqmT8VWum9nK0lPlNsmD8XjOe9YFslPrDSmD8T/+G9bbyUPFvdnj/nA8u91HuMPCBznj/9Ns+92xOuPGOynT+UR829pqLIPCHJnT/0dsi9heHRPOCdnT84eMu98qqzPNCYnT9bZs+9c36zPAiZnT+7z9S9anPRPGmenT9d3Ni9hAbIPOLJnT/8ztu96betPAyznT+q59a9RDmMPJlznj+cRdW92UWUPO3dnj8dfNm9x1t0PKjInj8zEce9bbyUPFvdnj/nA8u9pqLIPCHJnT/0dsi9qzS/PGdknT8uQMO99QPLPLMtnT9Qbse9heHRPOCdnT84eMu9anPRPGmenT9d3Ni9YVPKPJUunT9X6Ny9vUS+PIllnT8UBeG9hAbIPOLJnT/8ztu92UWUPO3dnj8dfNm9dfVyPILJnj/nVN29ocBhPJxinj9Z+sq9x1t0PKjInj8zEce9qzS/PGdknT8uQMO9BLmkPDJOnT+1aMi9sCuuPFAinT/8asu99QPLPLMtnT9Qbse9YVPKPJUunT9X6Ny9lr2tPOAinT8hz9i9NxukPPROnT+zwtu9vUS+PIllnT8UBeG9dfVyPILJnj/nVN292NVgPC1jnj8ma9m91HuMPCBznj/9Ns+9ocBhPJxinj9Z+sq9BLmkPDJOnT+1aMi92xOuPGOynT+UR8298qqzPNCYnT9bZs+9sCuuPFAinT/8asu9lr2tPOAinT8hz9i9c36zPAiZnT+7z9S96betPAyznT+q59a9NxukPPROnT+zwtu92NVgPC1jnj8ma9m9RDmMPJlznj+cRdW9XaeIPBSEnj8KPdK95kVPPJKMnj+hK9K9IE+LPAQInz/rONK9XaeIPBSEnj8KPdK9gr9cPKL9nj9rKtK9IE+LPAQInz/rONK9gr9cPKL9nj9rKtK95kVPPJKMnj+hK9K9oKhKPtMtnj/iQKy9VQVJPnKfnT9nobS9ye1HPtAonT8Yrq29Nd9JPrTRnT8NvqO9ZqFEPvRpnT98Gr29e7hCPlfpnD9Nu7e9DYhAPsWTnT9mGsG9m9s9Pu4anT/ueby9BSc8PjTQnD/5Zsq9uwQ7PmnunD9HrMq9WCA6PrnPnD+1PMm9TVA7Pq6vnD/+9ci9M7Y6Pnoxnj+Cl8K9yvg4Pk3inj+7gr29yeM0PtCnnj/0Nri9PPQ2PgTWnT8TPr69FJw6Pq1wnz8wIrW9NNU2PrRQnz/qRq699/8+PjSmnz8cqay9igo8Pi2Qnz+yOaS9K3dEPmxunz/yU6e9XYZCPgNOnz8g5p29LetIPqzenj8XLKe9z85HPnijnj/ntp291BY+PtAUnj/bUKq9Nd9JPrTRnT8NvqO9ye1HPtAonT8Yrq29e7hCPlfpnD9Nu7e9PPQ2PgTWnT8TPr69yeM0PtCnnj/0Nri9NNU2PrRQnz/qRq69igo8Pi2Qnz+yOaS9XYZCPgNOnz8g5p29z85HPnijnj/ntp29K3dEPmxunz/yU6e9VQVJPnKfnT9nobS9oKhKPtMtnj/iQKy9ZqFEPvRpnT98Gr29DYhAPsWTnT9mGsG9Rio/PrOhnT+vb8K9PQ0+PqnFnT+hecK9M7Y6Pnoxnj+Cl8K9yvg4Pk3inj+7gr29FJw6Pq1wnz8wIrW99/8+PjSmnz8cqay9LetIPqzenj8XLKe9PQ0+PqnFnT+hecK9h+o6PhxWnT+hGr69tyM6PkGjnD8AX8K9buk4PoDGnD/tk8K9h+o6PhxWnT+hGr69ojw8PnkrnT/ZDr69h+o6PhxWnT+hGr69cJo8Pk41nT9qnMu9PQ0+PqnFnT+hecK9buk4PoDGnD/tk8K9uwQ7PmnunD9HrMq9WCA6PrnPnD+1PMm9cJo8Pk41nT9qnMu92bI9PmsYnT+uU8u9suo+PsQGnT/BVMq9m9s9Pu4anT/ueby9DYhAPsWTnT9mGsG9ZY87PjeRnD/NHMG9k2o9Piy+nD+yWMm9xKU8PgSdnD+O18e9h+o6PhxWnT+hGr69ojw8PnkrnT/ZDr69m9s9Pu4anT/ueby9m9s9Pu4anT/ueby9ZY87PjeRnD/NHMG9xKU8PgSdnD+O18e9k2o9Piy+nD+yWMm9suo+PsQGnT/BVMq9buk4PoDGnD/tk8K9tyM6PkGjnD8AX8K9ZY87PjeRnD/NHMG9gIIlPt4nnT/v7Iu8t/QcPkWXnT/y+qG8UPobPuffnT/OQqu8zkgdPr/cnD/YjYy8y2AgPigqnT8E4pG827cbPryYnD90m4a8vicfPia7nD8pr4a8E4YlPsJinD/3Tmu8FGkjPj61nD9+ToG8ZiAtPs6UnD8ZxWW8opE7PjtImz8UWPW7Rr40Pr0BnD+BrzO8d0Y+PrRJmz+SCOq7wnE1Pk0Kmz8XfvS7RMM2Pv95mz+LjBC8b9kzPs/Gmj/lFd27h6czPlkvmz/Qlga88GUuPm23mz/59DC8E9oxPmeemz8wqiO87f4gPh/Ymj/gNBy8ZrEnPuCrmz9EMz28ouQgPmSImj/nbQq8MzwfPjuJmz8+Gki84fUiPqlomz+Hfzi8pgcdPm60mz/qv1a895ggPhnAmz+9elG8OXokPoz7mz+qT1a8JGsjPlSpmj/ARgy8YsgpPpS9mj+9wAK80FInPmsUmz+r0Bu8PgIsPjiTmj/hh+i7OAgrPqL2mj+U5Qy8NnkrPnZ0mz8bTyi8wsUcPtbSnD+dhqC80VUfPlkUnT8eGKW8y2AgPigqnT8E4pG8zkgdPr/cnD/YjYy88FEcPlplnT90kLG8VqYaPtPgnT8BXcG8UPobPuffnT/OQqu8t/QcPkWXnT/y+qG8AlEaPhJmnD979pa827cbPryYnD90m4a8DvskPu4+nD8YwIa8SUwjPieAnD/G9Y+8FGkjPj61nD9+ToG8E4YlPsJinD/3Tmu80VUfPlkUnT8eGKW8y2AgPigqnT8E4pG8PnofPsd+nD9YCZS8vicfPia7nD8pr4a8AlEaPhJmnD979pa827cbPryYnD90m4a8UNU3Pl47mz8HFym8ObI2PlLemj+pmRa8wnE1Pk0Kmz8XfvS7RMM2Pv95mz+LjBC8eS9APhUMmz/g7gu8oJQ7Ps4Jmz/ilBW8opE7PjtImz8UWPW7d0Y+PrRJmz+SCOq7pSA0Pr5zmj9ULwS8b9kzPs/Gmj/lFd27RpAxPsJsmz/NF0K8MtQuPs2Amz/gtky88GUuPm23mz/59DC8E9oxPmeemz8wqiO8UNU3Pl47mz8HFym8RMM2Pv95mz+LjBC8gfcyPncGmz927Se8h6czPlkvmz/Qlga8pSA0Pr5zmj9ULwS8b9kzPs/Gmj/lFd278BsiPoUxmz/s+Fa8BAIfPsVNmz8sO2S8MzwfPjuJmz8+Gki84fUiPqlomz+Hfzi8UwcgPpI4mj93VSO85DUgPjPAmj8klkG87f4gPh/Ymj/gNBy8ouQgPmSImj/nbQq8voYbPn6Tmz9OsHu8pgcdPm60mz/qv1a8fSQkPivtmz8c23y8OXokPoz7mz+qT1a88BsiPoUxmz/s+Fa84fUiPqlomz+Hfzi8t5UgPge+mz8LF3q895ggPhnAmz+9elG8voYbPn6Tmz9OsHu8pgcdPm60mz/qv1a8gFUpPmWGmj9fVSC80z8nPkfOmj8SKzW80FInPmsUmz+r0Bu8YsgpPpS9mj+9wAK821IkPslwmj9Tiya8UwcgPpI4mj93VSO8ouQgPmSImj/nbQq8JGsjPlSpmj/ARgy8NOUsPiZEmj8bewm8PgIsPjiTmj/hh+i7+YMsPoFLmz/wzUW8NnkrPnZ0mz8bTyi80z8nPkfOmj8SKzW80FInPmsUmz+r0Bu80FgsPuvamj+Cvyy8OAgrPqL2mj+U5Qy8NOUsPiZEmj8bewm8PgIsPjiTmj/hh+i7JK8ePmDhnT88b6i8Cs8kPk4fnj8Spai8gn0jPp2vnT/0fZ28YmcmPsVinj8Af668WJkmPjv6nT+CeaK81NorPi5ynT90So28vmYoPi2LnT/d75O8HEw9Pk6Smz/rkwe8Bfg8PtRMnD+UbTK8G+A5PmT/mz/vzCe88og+PuCQnD/3Uj68IRk7Pm5unD8lKz68xro0PtLGnD/qOmC8t9c2Pl10nD/N7Ei8a48yPrR9nT9PK4e8tNU2Pj+Anj+SoZ+8N1w5PjChnj/4jaC8b3gwPgdsnj+WZKS8/O0yPjAVnj+w3Je8rT4uPlSWnj/Jpqu8pzgvPvEynj+qVJ+8kMcuPia1nT8LnZG82UE5PnxRnj+Eqpe8ngQ7PmGgnT+mt4G85Uo3PvLAnT8nhYm8Kzk9PiZ1nT/4yXS81Kc5PntpnT+SD3q8ksY1Pg8unT84OnW8gn0jPp2vnT/0fZ28fgAjPpCxnT/rw7K8jyMkPp0Onj+8Bby8Cs8kPk4fnj8Spai8UPobPuffnT/OQqu8VqYaPtPgnT8BXcG8G0EfPiLjnT9lhLy8JK8ePmDhnT88b6i8E7UmPjB5nj84OMW8YmcmPsVinj8Af668vmYoPi2LnT/d75O8VkUpPj2AnT8lPqa8lwEsPhtsnT+Z9qC81NorPi5ynT90So28fgAjPpCxnT/rw7K8gn0jPp2vnT/0fZ28WJkmPjv6nT+CeaK8Tt4nPnDmnT9JXLO8YmcmPsVinj8Af668E7UmPjB5nj84OMW8Bfg8PtRMnD+UbTK8EhA+PhIanD+Sl028BIA7PpDYmz/yc0S8G+A5PmT/mz/vzCe8HEw9Pk6Smz/rkwe8xYM+PpWHmz/Wdiu8eS9APhUMmz/g7gu8d0Y+PrRJmz+SCOq78og+PuCQnD/3Uj68s4RAPt6GnD9FsmC8xro0PtLGnD/qOmC82do1PvKtnD/JmYC8gIk3PsBsnD99uW68t9c2Pl10nD/N7Ei8G+A5PmT/mz/vzCe8BIA7PpDYmz/yc0S8hVs7PilunD+PlGa8IRk7Pm5unD8lKz68s4RAPt6GnD9FsmC88og+PuCQnD/3Uj68b3gwPgdsnj+WZKS8W4AxPoNmnj8rJ7e86ZUzPqgenj8Luqy8/O0yPjAVnj+w3Je8tNU2Pj+Anj+SoZ+85oI2PiZ8nj9TC7S8ac46Ply0nj/3pLW8N1w5PjChnj/4jaC8rT4uPlSWnj/Jpqu8jfAtPsuonj+ClcK8z1EuPmahnT+Ca6S8kMcuPia1nT8LnZG8/O0yPjAVnj+w3Je86ZUzPqgenj8Luqy8BX0uPv0Rnj9w8rC8pzgvPvEynj+qVJ+8jfAtPsuonj+ClcK8rT4uPlSWnj/Jpqu85Uo3PvLAnT8nhYm80rk4Pmq7nT/30pu82NM7PiKfnT92NJW8ngQ7PmGgnT+mt4G8N1w5PjChnj/4jaC8ac46Ply0nj/3pLW83Z86Pr0snj8Thqa82UE5PnxRnj+Eqpe8Ak8/PnFZnT+Nd4m8Kzk9PiZ1nT/4yXS8ksY1Pg8unT84OnW8PrE2PsT/nD8N4Yi80rk4Pmq7nT/30pu85Uo3PvLAnT8nhYm81Kc5PntpnT+SD3q8EEA6PuIunT8tSIq8Kzk9PiZ1nT/4yXS8Ak8/PnFZnT+Nd4m8L9xkvDw8fj8+lA0+o6yUu4AygT+l2QI+6krlu8BrgT+wj/s9vaSZvCGofT/uJws+p4IMvGN5fT9k1A0+L9xkvDw8fj8+lA0+vaSZvCGofT/uJws+D8j+u3UbfD+Qqgs+wTVgOhTRgD/LGQM+p4IMvGN5fT9k1A0+D8j+u3UbfD+Qqgs+LX+CO2mlgD/1lPw9o6yUu4AygT+l2QI+wTVgOhTRgD/LGQM+LX+CO2mlgD/1lPw96krlu8BrgT+wj/s9vaSZvCGofT/uJws+6krlu8BrgT+wj/s94rYtvOwAgj/wBQE+nHC5vEWzfj97tg4+D8j+u3UbfD+Qqgs+ngSrvJwyfT+mWBE+oZwMvH52ez/p6hE+LX+CO2mlgD/1lPw98Kskuzvcez/opQ8+Yf8bPGeVgD9d9QE+w0/+O8NVgT/npv49+4mUu9Izgj9ggv09nHC5vEWzfj97tg4+4rYtvOwAgj/wBQE+9PCvu/fhgT+1AQU+UFGMvHCUfj8/YhI+oZwMvH52ez/p6hE+ngSrvJwyfT+mWBE+RHPHu4AFfT+d5RI+Yf8bPGeVgD9d9QE+8Kskuzvcez/opQ8+QeC5O4cagT8ThQU++4mUu9Izgj9ggv09w0/+O8NVgT/npv49UFGMvHCUfj8/YhI+9PCvu/fhgT+1AQU+o6yUu4AygT+l2QI+L9xkvDw8fj8+lA0+RHPHu4AFfT+d5RI+UFGMvHCUfj8/YhI+L9xkvDw8fj8+lA0+p4IMvGN5fT9k1A0+QeC5O4cagT8ThQU+RHPHu4AFfT+d5RI+p4IMvGN5fT9k1A0+wTVgOhTRgD/LGQM+9PCvu/fhgT+1AQU+QeC5O4cagT8ThQU+wTVgOhTRgD/LGQM+o6yUu4AygT+l2QI+W/DyvIbPeD+TqhQ+lbmMvPcSfT8RFw8+SYWivAJTfj8PaQ0+XvkQvVsCeT+vXBQ+SzfZvFTidz/VshA+W/DyvIbPeD+TqhQ+XvkQvVsCeT+vXBQ+T5LtvFwfdz90SAw+6QBmvMYlfD9SHws+SzfZvFTidz/VshA+T5LtvFwfdz90SAw+C0pcvANwfD/bVAU+lbmMvPcSfT8RFw8+6QBmvMYlfD9SHws+C0pcvANwfD/bVAU+SYWivAJTfj8PaQ0+XvkQvVsCeT+vXBQ+SYWivAJTfj8PaQ0+msihvKftfj+hvBM+MBoSvQl9eT8O2ho+T5LtvFwfdz90SAw+YXAUvXLXdz/SPhk+wjvuvKq6dT8WMxA+C0pcvANwfD/bVAU+jjXEvMMHdj9uCww+rJMDvGJ4ez/67QQ+hnH0u+kdfT9wiQY+3oJvvLk6fz8slQ8+MBoSvQl9eT8O2ho+msihvKftfj+hvBM+IxNxvHLXfT8rhhM+Gfv3vKqGeD8Geho+wjvuvKq6dT8WMxA+YXAUvXLXdz/SPhk+Ik/DvOegdj8kWhI+rJMDvGJ4ez/67QQ+jjXEvMMHdj9uCww+YLsHvL7xez9LZgs+3oJvvLk6fz8slQ8+hnH0u+kdfT9wiQY+Gfv3vKqGeD8Geho+IxNxvHLXfT8rhhM+lbmMvPcSfT8RFw8+W/DyvIbPeD+TqhQ+Ik/DvOegdj8kWhI+Gfv3vKqGeD8Geho+W/DyvIbPeD+TqhQ+SzfZvFTidz/VshA+YLsHvL7xez9LZgs+Ik/DvOegdj8kWhI+SzfZvFTidz/VshA+6QBmvMYlfD9SHws+IxNxvHLXfT8rhhM+YLsHvL7xez9LZgs+6QBmvMYlfD9SHws+lbmMvPcSfT8RFw8+HpZJvWp0dD+uYBg+pMwLvQJTeD8tvBU+P5AJvaXreD+aUxA+gZdWvasYdD/3nhM+Pmg4vRd+cz9g8Bo+HpZJvWp0dD+uYBg+gZdWvasYdD/3nhM+oJwzvRsjcj8O1hg+eT31vLRcdz/fSxg+Pmg4vRd+cz9g8Bo+oJwzvRsjcj8O1hg+8CrNvBX2dj+yihU+pMwLvQJTeD8tvBU+eT31vLRcdz/fSxg+8CrNvBX2dj+yihU+P5AJvaXreD+aUxA+gZdWvasYdD/3nhM+P5AJvaXreD+aUxA+bbwavRIsej8N3hE+6ZJpvRQ8dT8/PRU+oJwzvRsjcj8O1hg+rzdrvfKmcz/0sxc+Lw1EvVx1cT/Sih0+8CrNvBX2dj+yihU+gXYpvdKkcT8wzB4+CkC1vMKUdj8AbRs+UvexvO4peD+L9hg+NyYAvYFbej+sHxM+6ZJpvRQ8dT8/PRU+bbwavRIsej8N3hE+Qq8QvV6veT9w0Rc+ALldvT3cdD/sHBs+Lw1EvVx1cT/Sih0+rzdrvfKmcz/0sxc+pos6vdjjcj+LWyA+CkC1vMKUdj8AbRs+gXYpvdKkcT8wzB4++wPbvPy2dz8QEB0+NyYAvYFbej+sHxM+UvexvO4peD+L9hg+ALldvT3cdD/sHBs+Qq8QvV6veT9w0Rc+pMwLvQJTeD8tvBU+HpZJvWp0dD+uYBg+pos6vdjjcj+LWyA+ALldvT3cdD/sHBs+HpZJvWp0dD+uYBg+Pmg4vRd+cz9g8Bo++wPbvPy2dz8QEB0+pos6vdjjcj+LWyA+Pmg4vRd+cz9g8Bo+eT31vLRcdz/fSxg+Qq8QvV6veT9w0Rc++wPbvPy2dz8QEB0+eT31vLRcdz/fSxg+pMwLvQJTeD8tvBU+GQqGvXuZcT8pVRg+Yo8+vWs3dD87Phg+cxguvXC7cz+SbRQ+L16HvT14cD8kihQ+MS2FvcVpcT97lR4+GQqGvXuZcT8pVRg+L16HvT14cD8kihQ+ZpyFvSAXcD+jRCE+lNU8vbkHdD+Nfh4+MS2FvcVpcT97lR4+ZpyFvSAXcD+jRCE+4pQqvVNacz8LKCE+Yo8+vWs3dD87Phg+lNU8vbkHdD+Nfh4+4pQqvVNacz8LKCE+cxguvXC7cz+SbRQ+L16HvT14cD8kihQ+cxguvXC7cz+SbRQ+ZjY2vbjUdD/9sA8+x4+MveZ9cT86zg8+ZpyFvSAXcD+jRCE+XcqUvT7CcD9YXRQ+wNKSvYBVcD/JnSI+4pQqvVNacz8LKCE+aVeJvebLcD9gIic+qcUvvbkidD8iBSc+QFEfvW7edD8SdiI+gkAjvSxLdT+aNRQ+x4+MveZ9cT86zg8+ZjY2vbjUdD/9sA8+nq89vRWKdT+xhRU+VyuPvcdGcj9JohU+wNKSvYBVcD/JnSI+XcqUvT7CcD9YXRQ+BGeNvR3lcT8nbyI+qcUvvbkidD8iBSc+aVeJvebLcD9gIic++yY6vWsodT+OUiI+gkAjvSxLdT+aNRQ+QFEfvW7edD8SdiI+VyuPvcdGcj9JohU+nq89vRWKdT+xhRU+Yo8+vWs3dD87Phg+GQqGvXuZcT8pVRg+BGeNvR3lcT8nbyI+VyuPvcdGcj9JohU+GQqGvXuZcT8pVRg+MS2FvcVpcT97lR4++yY6vWsodT+OUiI+BGeNvR3lcT8nbyI+MS2FvcVpcT97lR4+lNU8vbkHdD+Nfh4+nq89vRWKdT+xhRU++yY6vWsodT+OUiI+lNU8vbkHdD+Nfh4+Yo8+vWs3dD87Phg+j33hvbssbj8TKAo+0Om5vWUnbz9ZABM+N3qwvbuTbj95OxA+KdHhvT1bbT+tNAU+Ra3lvbCpbT8Ovw8+j33hvbssbj8TKAo+KdHhvT1bbT+tNAU+V1fqvWlQbD9flhA+hBm+vVukbj9Zlxg+Ra3lvbCpbT8Ovw8+V1fqvWlQbD9flhA+XQC5vemIbT8snRs+0Om5vWUnbz9ZABM+hBm+vVukbj9Zlxg+XQC5vemIbT8snRs+N3qwvbuTbj95OxA+KdHhvT1bbT+tNAU+N3qwvbuTbj95OxA+Sruuva/8bz/ZlQw++Drhvde8bj+2TAE+V1fqvWlQbD9flhA+zE/tvXgkbj9fVgM+Gdv2vbf5bD/FFBA+XQC5vemIbT8snRs+edrwvc7TbD/yKBY+wVq+vaITbj8PciE+PEayvRSsbj9zaB8+6rqovdTWbz8HqhI++Drhvde8bj+2TAE+Sruuva/8bz/ZlQw+Jzi1vR6BcD+lIBI+uJDmvZdIbz9/GQc+Gdv2vbf5bD/FFBA+zE/tvXgkbj9fVgM+LiPvvUI8bj+gixI+wVq+vaITbj8PciE+edrwvc7TbD/yKBY+nMq9vct0bz/Hkh0+6rqovdTWbz8HqhI+PEayvRSsbj9zaB8+uJDmvZdIbz9/GQc+Jzi1vR6BcD+lIBI+0Om5vWUnbz9ZABM+j33hvbssbj8TKAo+LiPvvUI8bj+gixI+uJDmvZdIbz9/GQc+j33hvbssbj8TKAo+Ra3lvbCpbT8Ovw8+nMq9vct0bz/Hkh0+LiPvvUI8bj+gixI+Ra3lvbCpbT8Ovw8+hBm+vVukbj9Zlxg+Jzi1vR6BcD+lIBI+nMq9vct0bz/Hkh0+hBm+vVukbj9Zlxg+0Om5vWUnbz9ZABM++fe3vcuwbz8aSBg+VNmOvWddcT87ehw+r8aLvaK3cj8Skxo+9wm/vVShcD8GWBU+GHizvWFbbj+rxRU++fe3vcuwbz8aSBg+9wm/vVShcD8GWBU+hOC1vSLqbT/nOxA+cVmKvfcHcD/G9xk+GHizvWFbbj+rxRU+hOC1vSLqbT/nOxA+Rp2CvXAAcD/6dhU+VNmOvWddcT87ehw+cVmKvfcHcD/G9xk+Rp2CvXAAcD/6dhU+r8aLvaK3cj8Skxo+9wm/vVShcD8GWBU+r8aLvaK3cj8Skxo+P1KPvQxrcz/OeiA+z8nDvS5IcT9HIBs+hOC1vSLqbT/nOxA+ZOrJvVzubz+WWBg+Sqi/vfjjbD/vnxI+Rp2CvXAAcD/6dhU+Hv+yvQVObD/HwhE+FQ99veBwbj9OHRc+OM5wvafKbz855Rk+OamCvQ7Vcj/gnR8+z8nDvS5IcT9HIBs+P1KPvQxrcz/OeiA+tnaMvcrQcT+EBiI+obu/vWm6bz9Dyxw+Sqi/vfjjbD/vnxI+ZOrJvVzubz+WWBg++IS2vUr/bD/Gpxc+FQ99veBwbj9OHRc+Hv+yvQVObD/HwhE+EECDvasVbz8F4xw+OamCvQ7Vcj/gnR8+OM5wvafKbz855Rk+obu/vWm6bz9Dyxw+tnaMvcrQcT+EBiI+VNmOvWddcT87ehw++fe3vcuwbz8aSBg++IS2vUr/bD/Gpxc+obu/vWm6bz9Dyxw++fe3vcuwbz8aSBg+GHizvWFbbj+rxRU+EECDvasVbz8F4xw++IS2vUr/bD/Gpxc+GHizvWFbbj+rxRU+cVmKvfcHcD/G9xk+tnaMvcrQcT+EBiI+EECDvasVbz8F4xw+cVmKvfcHcD/G9xk+VNmOvWddcT87ehw+cdkEvr3SbD+dcfo9QDfovc5XbT9GYgs+4y/pvVikbD82mBA+7XYJvnL+az/04P09ix0Fvl1kbj/qOvk9cdkEvr3SbD+dcfo97XYJvnL+az/04P09nQEKvjgwbz9JaPs9gL/ovW/pbj/sxgo+ix0Fvl1kbj/qOvk9nQEKvjgwbz9JaPs9RUXqvRzWbz/nWw8+QDfovc5XbT9GYgs+gL/ovW/pbj/sxgo+RUXqvRzWbz/nWw8+4y/pvVikbD82mBA+7XYJvnL+az/04P094y/pvVikbD82mBA+QODivZVFaz+mKw4+oswGvsqbaj9vM/g9nQEKvjgwbz9JaPs9G9EKvvugaz8u2fA9W2wLvp00bz/PFO49RUXqvRzWbz/nWw8+x8oHvpx2cD/9q/M9i9zkvWYgcT/m5ws+V9PcvTUbcD/NlA8+y5zbvZCHbD/89hA+oswGvsqbaj9vM/g9QODivZVFaz+mKw4+nG/evauJbD/ATQo+dxcEvr7jaz/hSvE9W2wLvp00bz/PFO49G9EKvvugaz8u2fA96KIEviIabz+vzu49i9zkvWYgcT/m5ws+x8oHvpx2cD/9q/M9fobfvQrAbz+nDwk+y5zbvZCHbD/89hA+V9PcvTUbcD/NlA8+dxcEvr7jaz/hSvE9nG/evauJbD/ATQo+QDfovc5XbT9GYgs+cdkEvr3SbD+dcfo96KIEviIabz+vzu49dxcEvr7jaz/hSvE9cdkEvr3SbD+dcfo9ix0Fvl1kbj/qOvk9fobfvQrAbz+nDwk+6KIEviIabz+vzu49ix0Fvl1kbj/qOvk9gL/ovW/pbj/sxgo+nG/evauJbD/ATQo+fobfvQrAbz+nDwk+gL/ovW/pbj/sxgo+QDfovc5XbT9GYgs+kqIUvriCbj+d2NY91isFvhTTbT+du/U9rgb/vX3QbT/ZIvI9j8oSvnerbj9locs9+qUXvnw6bT/SDts9kqIUvriCbj+d2NY9j8oSvnerbj9locs9UO0YvhwPbD/cNNQ9Py8IvtiKbD/S8fk9+qUXvnw6bT/SDts9UO0YvhwPbD/cNNQ9EKYFviU0az9Dtvo91isFvhTTbT+du/U9Py8IvtiKbD/S8fk9EKYFviU0az9Dtvo9rgb/vX3QbT/ZIvI9j8oSvnerbj9locs9rgb/vX3QbT/ZIvI9edb9vQZ7bz8jPPQ9bKYSviNbcD8p08w9UO0YvhwPbD/cNNQ98l4YvvmUbz+308g9qT0fvqOobD/qbdI9EKYFviU0az9Dtvo9ROUdvjCSaz/5itw9FSoKvhOyaj/6+QE+wnEEvkZ4az/T+QM+Cib7vZtkbj90Wf49bKYSviNbcD8p08w9edb9vQZ7bz8jPPQ9Ed8DviUAbz8sjvw98CYXviHbbz+CC9Y9qT0fvqOobD/qbdI98l4YvvmUbz+308g9hlIdvgI7bT9cq949FSoKvhOyaj/6+QE+ROUdvjCSaz/5itw9rQoKvgZgbD8DlwI+Cib7vZtkbj90Wf49wnEEvkZ4az/T+QM+8CYXviHbbz+CC9Y9Ed8DviUAbz8sjvw91isFvhTTbT+du/U9kqIUvriCbj+d2NY9hlIdvgI7bT9cq9498CYXviHbbz+CC9Y9kqIUvriCbj+d2NY9+qUXvnw6bT/SDts9rQoKvgZgbD8DlwI+hlIdvgI7bT9cq949+qUXvnw6bT/SDts9Py8IvtiKbD/S8fk9Ed8DviUAbz8sjvw9rQoKvgZgbD8DlwI+Py8IvtiKbD/S8fk91isFvhTTbT+du/U9OYokvlekbj9UUq896d8Zvts2bT9wItQ9u8wbvs4BbD/Q3tk9iRgpvmvJbT8L+qs9JDslvsMbcD8pw7M9OYokvlekbj9UUq89iRgpvmvJbT8L+qs9vIAqvt7FcD/VBLU905Aavkeubj9Jk9g9JDslvsMbcD8pw7M9vIAqvt7FcD/VBLU97jQdvj3+bj+Q6eI96d8Zvts2bT9wItQ905Aavkeubj9Jk9g97jQdvj3+bj+Q6eI9u8wbvs4BbD/Q3tk9iRgpvmvJbT8L+qs9u8wbvs4BbD/Q3tk9qnYXvoYDaz/uJtM9cxIlvt7VbD8mLqQ9vIAqvt7FcD/VBLU9hwIovvI5bj9m/p491pUpvuCRcT82Hqk97jQdvj3+bj+Q6eI9oKYnvu9Ocj+vwLQ93goavpl8cD99ueM9lRoXvowYbz/j6Og9R4cVvp3Aaz8Oyd49cxIlvt7VbD8mLqQ9qnYXvoYDaz/uJtM9UZoUvnuKbD8K3NI9jeYhvixSbj/C9aQ91pUpvuCRcT82Hqk9hwIovvI5bj9m/p49ylAjvu5ScT+cDa493goavpl8cD99ueM9oKYnvu9Ocj+vwLQ9jQQWvjyLbz/h89s9R4cVvp3Aaz8Oyd49lRoXvowYbz/j6Og9jeYhvixSbj/C9aQ9UZoUvnuKbD8K3NI96d8Zvts2bT9wItQ9OYokvlekbj9UUq89ylAjvu5ScT+cDa49jeYhvixSbj/C9aQ9OYokvlekbj9UUq89JDslvsMbcD8pw7M9jQQWvjyLbz/h89s9ylAjvu5ScT+cDa49JDslvsMbcD8pw7M905Aavkeubj9Jk9g9UZoUvnuKbD8K3NI9jQQWvjyLbz/h89s905Aavkeubj9Jk9g96d8Zvts2bT9wItQ9vjIqvuqbcT+sTH898KgjvnMgcD/NAqg9vx4evqqcbz8cJKk9XkUmvrt1cT/hpW09bVQvvge0cD+H2IA9vjIqvuqbcT+sTH89XkUmvrt1cT/hpW09RbgwvpCdbz/OhHI9pcoovo84bz8ANak9bVQvvge0cD+H2IA9RbgwvpCdbz/OhHI9npEovoLEbT+Pk6s98KgjvnMgcD/NAqg9pcoovo84bz8ANak9npEovoLEbT+Pk6s9vx4evqqcbz8cJKk9XkUmvrt1cT/hpW09vx4evqqcbz8cJKk98L4bvpgocT8q8as9nRYkvsYMcz+74nA9RbgwvpCdbz/OhHI92E4pviK7cj+CLmA92QE1vniqcD+somU9npEovoLEbT+Pk6s9Kj03vmOrbz8X0Hk9fuUuvjfHbT/WZ7A9cK0pvukYbj8Gwrg9Z/odvpQpcD/yB7Y9nRYkvsYMcz+74nA98L4bvpgocT8q8as9xDwivvA3cT/Hlq89qmMqvhQRcz/wh3o92QE1vniqcD+somU92E4pviK7cj+CLmA9peU0vkA2cT/lbX89fuUuvjfHbT/WZ7A9Kj03vmOrbz8X0Hk9t74sviNdbz++CbI9Z/odvpQpcD/yB7Y9cK0pvukYbj8Gwrg9qmMqvhQRcz/wh3o9xDwivvA3cT/Hlq898KgjvnMgcD/NAqg9vjIqvuqbcT+sTH89peU0vkA2cT/lbX89qmMqvhQRcz/wh3o9vjIqvuqbcT+sTH89bVQvvge0cD+H2IA9t74sviNdbz++CbI9peU0vkA2cT/lbX89bVQvvge0cD+H2IA9pcoovo84bz8ANak9xDwivvA3cT/Hlq89t74sviNdbz++CbI9pcoovo84bz8ANak98KgjvnMgcD/NAqg9MPgyvv11cz/BRCo9pq0uvpKqcT+Vxns9wHMqvqdgcj82/IM9Rs0vvmmddD+vWyI9pE0yvh3+cT9ebiE9MPgyvv11cz/BRCo9Rs0vvmmddD+vWyI973EuvgygcT8FXRA9EwMuvq8ycD8s8HI9pE0yvh3+cT9ebiE973EuvgygcT8FXRA9aRgpvkxjbz/M+XU9pq0uvpKqcT+Vxns9EwMuvq8ycD8s8HI9aRgpvkxjbz/M+XU9wHMqvqdgcj82/IM9Rs0vvmmddD+vWyI9wHMqvqdgcj82/IM92/0uvqlscz+Hi4k9i3c0vt62dT8lFys973EuvgygcT8FXRA9zvY0vu4OdT/CDRI963Ezvvu1cT+qz/s8aRgpvkxjbz/M+XU98voxviE8cD8fHAo9QoEsvunxbT8DHHI9RgIsvtmZbj+kkoU9L4ctvs7ycT+dpY89i3c0vt62dT8lFys92/0uvqlscz+Hi4k954gyvs4Kcj+7coY9m+I3vqFHdD9mRSc963Ezvvu1cT+qz/s8zvY0vu4OdT/CDRI9VIU2vvNFcT/ILBU9QoEsvunxbT8DHHI98voxviE8cD8fHAo9oSsxviUJbz/ezHo9L4ctvs7ycT+dpY89RgIsvtmZbj+kkoU9m+I3vqFHdD9mRSc954gyvs4Kcj+7coY9pq0uvpKqcT+Vxns9MPgyvv11cz/BRCo9VIU2vvNFcT/ILBU9m+I3vqFHdD9mRSc9MPgyvv11cz/BRCo9pE0yvh3+cT9ebiE9oSsxviUJbz/ezHo9VIU2vvNFcT/ILBU9pE0yvh3+cT9ebiE9EwMuvq8ycD8s8HI954gyvs4Kcj+7coY9oSsxviUJbz/ezHo9EwMuvq8ycD8s8HI9pq0uvpKqcT+Vxns9yag4vsdpdD8tF7s8EoA0vgNQcj9NRS09Dqc4vjB/cj/K/D09ZdY9vpsddT9EMbU8ghUzvtkmdT84v7s8yag4vsdpdD8tF7s8ZdY9vpsddT9EMbU8M3wyvpOedj9wh7Y8yuwuvhcNcz9OmS09ghUzvtkmdT84v7s8M3wyvpOedj9wh7Y82UwtvisAdD/dpz49EoA0vgNQcj9NRS09yuwuvhcNcz9OmS092UwtvisAdD/dpz49Dqc4vjB/cj/K/D09ZdY9vpsddT9EMbU8Dqc4vjB/cj/K/D09VIs7vs8DcT+t1Dc929lAvvixcz+ANaQ8M3wyvpOedj9wh7Y8x8A9vhK2dD+dQYA8ygoxviJldj+3wIE82UwtvisAdD/dpz49XAssvopzdj+gqKY81rwmvmnFcz85Djk9x9UpvkPBcj9zB0s9zYs2vjUScT/kR0o929lAvvixcz+ANaQ8VIs7vs8DcT+t1Dc9FyI1vmzXcD9l5C89nVE6vux1cz8C+pg8ygoxviJldj+3wIE8x8A9vhK2dD+dQYA8AecuvhP5dD8dUpo81rwmvmnFcz85Djk9XAssvopzdj+gqKY8grcpvpdacj9wkDA9zYs2vjUScT/kR0o9x9UpvkPBcj9zB0s9nVE6vux1cz8C+pg8FyI1vmzXcD9l5C89EoA0vgNQcj9NRS09yag4vsdpdD8tF7s8AecuvhP5dD8dUpo8nVE6vux1cz8C+pg8yag4vsdpdD8tF7s8ghUzvtkmdT84v7s8grcpvpdacj9wkDA9AecuvhP5dD8dUpo8ghUzvtkmdT84v7s8yuwuvhcNcz9OmS09FyI1vmzXcD9l5C89grcpvpdacj9wkDA9yuwuvhcNcz9OmS09EoA0vgNQcj9NRS093Rg2vo5gdj9z+d+6Ctg1vosDdD+WJZE8zVM6vlwZcz9MwZs8oqQ6vowLdj9Tlqq7r1I1vtDKdz+3E2463Rg2vo5gdj9z+d+6oqQ6vowLdj9Tlqq7IBE5virteD9GswA52xE1vs5tdT/KlaY8r1I1vtDKdz+3E246IBE5virteD9GswA5SsA4vgD7dT8raMc8Ctg1vosDdD+WJZE82xE1vs5tdT/KlaY8SsA4vgD7dT8raMc8zVM6vlwZcz9MwZs8oqQ6vowLdj9Tlqq7zVM6vlwZcz9MwZs8C982vkrBcT/P0ok8yzE3vjnFdD+HegK8IBE5virteD9GswA5kLA2vmxWdj+tECy8xOw0vl2QeT9ZoJS7SsA4vgD7dT8raMc8OE40viANej/QQew6gPszvjcJdz8u1Nk8bXw0vvl3dT+nnu48OUA2vhg+cj9Tvr08yzE3vjnFdD+HegK8C982vkrBcT/P0ok8FxwyvhPfcj+weJc882wyvmzRdT9l0ru7xOw0vl2QeT9ZoJS7kLA2vmxWdj+tECy8Jtcwvi+3eD8TqcO5gPszvjcJdz8u1Nk8OE40viANej/QQew6UIYwvtPEdT+OXsM8OUA2vhg+cj9Tvr08bXw0vvl3dT+nnu4882wyvmzRdT9l0ru7FxwyvhPfcj+weJc8Ctg1vosDdD+WJZE83Rg2vo5gdj9z+d+6Jtcwvi+3eD8TqcO582wyvmzRdT9l0ru73Rg2vo5gdj9z+d+6r1I1vtDKdz+3E246UIYwvtPEdT+OXsM8Jtcwvi+3eD8TqcO5r1I1vtDKdz+3E2462xE1vs5tdT/KlaY8FxwyvhPfcj+weJc8UIYwvtPEdT+OXsM82xE1vs5tdT/KlaY8Ctg1vosDdD+WJZE8BcMqvpmPeT9Sl5S8e+wvvqpodz/kF4Q6jYErvpjPdj9jTYY7GBIlvox+eT/R9aG811Yvvtu1eD/BL6q8BcMqvpmPeT9Sl5S8GBIlvox+eT/R9aG8K2QuvhDDdz+77s28U4A0vtuOdj8CcNW611Yvvtu1eD/BL6q8K2QuvhDDdz+77s28mdM0visUdT9GV6a6e+wvvqpodz/kF4Q6U4A0vtuOdj8CcNW6mdM0visUdT9GV6a6jYErvpjPdj9jTYY7GBIlvox+eT/R9aG8jYErvpjPdj9jTYY7U2EqvuBFeD+Kje07K8sjvuAEez/kvYy8K2QuvhDDdz+77s28IvAlvqnkej+dQMC8xF8wvjP0eD+mfPG8mdM0visUdT9GV6a6VeA0vjTYdz9uVd28fXY7vh4ZdT9PoSm7rVE5vmE5dT8Pc3I7C+IuvuApdz/pFB88K8sjvuAEez/kvYy8U2EqvuBFeD+Kje07ptcwvlVceD9XhLA7+GcqvlsLez+Ebpe8xF8wvjP0eD+mfPG8IvAlvqnkej+dQMC8gcczvmpNeT/ZpsO8fXY7vh4ZdT9PoSm7VeA0vjTYdz9uVd28JDc6vnWedj+KnDm3C+IuvuApdz/pFB88rVE5vmE5dT8Pc3I7+GcqvlsLez+Ebpe8ptcwvlVceD9XhLA7e+wvvqpodz/kF4Q6BcMqvpmPeT9Sl5S8gcczvmpNeT/ZpsO8+GcqvlsLez+Ebpe8BcMqvpmPeT9Sl5S811Yvvtu1eD/BL6q8JDc6vnWedj+KnDm3gcczvmpNeT/ZpsO811Yvvtu1eD/BL6q8U4A0vtuOdj8CcNW6ptcwvlVceD9XhLA7JDc6vnWedj+KnDm3U4A0vtuOdj8CcNW6e+wvvqpodz/kF4Q6jgcjvuEzfT8/FBW9uQ0uvorbej8wVqW8lwwsvnQbez+JsXK8Sk4evtUHfj8jdw+9jp0ivrTNez8YoCC9jgcjvuEzfT8/FBW9Sk4evtUHfj8jdw+9fXYdvpguez/K+Sa9uaMtvm51eT/ybby8jp0ivrTNez8YoCC9fXYdvpguez/K+Sa9yzQrvjdCeD/yXai8uQ0uvorbej8wVqW8uaMtvm51eT/ybby8yzQrvjdCeD/yXai8lwwsvnQbez+JsXK8Sk4evtUHfj8jdw+9lwwsvnQbez+JsXK8wiIwvtdxfD/h5Wa8yREivtVvfz8xdg69fXYdvpguez/K+Sa9NUAfvvX0fj95BCa9l04evnTEez9eV0C9yzQrvjdCeD/yXai8QYYgvkY3ej8bjTm9O5cuvkc5dz/FoMm8Amkxvje0dz+2hZq8ployvrnkej/Nv0u8yREivtVvfz8xdg69wiIwvtdxfD/h5Wa8YjQzvph8ez90eZi8oHUlvhlpfj8yCh+9l04evnTEez9eV0C9NUAfvvX0fj95BCa9mJwkvsWLez/Erja9O5cuvkc5dz/FoMm8QYYgvkY3ej8bjTm9W1syvkOfeD95wse8ployvrnkej/Nv0u8Amkxvje0dz+2hZq8oHUlvhlpfj8yCh+9YjQzvph8ez90eZi8uQ0uvorbej8wVqW8jgcjvuEzfT8/FBW9mJwkvsWLez/Erja9oHUlvhlpfj8yCh+9jgcjvuEzfT8/FBW9jp0ivrTNez8YoCC9W1syvkOfeD95wse8mJwkvsWLez/Erja9jp0ivrTNez8YoCC9uaMtvm51eT/ybby8YjQzvph8ez90eZi8W1syvkOfeD95wse8uaMtvm51eT/ybby8uQ0uvorbej8wVqW8AMUSvsYcfj+KQky9nuMgvlXZez/2JhO9to0fviCAej97yQq9gPMNvnJSfT8r+1G9foUXvt1ifj+MR1y9AMUSvsYcfj+KQky9gPMNvnJSfT8r+1G9cqAXvjLhfT+TmXK9FKQlvmsffD/+KyO9foUXvt1ifj+MR1y9cqAXvjLhfT+TmXK9qTopvuAOez/LZyu9nuMgvlXZez/2JhO9FKQlvmsffD/+KyO9qTopvuAOez/LZyu9to0fviCAej97yQq9gPMNvnJSfT8r+1G9to0fviCAej97yQq9gFgcvl0pez+KzOq8a1QKvqwMfj81RD69cqAXvjLhfT+TmXK92Y0KvvLDfj9V8Va9OWMVvs5jfz8Gd3u9qTopvuAOez/LZyu9KBAcvkMSfz++DHq9PRQuvvUufD/NLjG90NotvrB3ez9wgRi9aQUjvuLXej9s9+e8a1QKvqwMfj81RD69gFgcvl0pez+KzOq8scEgvi9afD+Sffm85yYPvqEsfz/T8kO9OWMVvs5jfz8Gd3u92Y0KvvLDfj9V8Va91+EYvjS8fz9HwGS9PRQuvvUufD/NLjG9KBAcvkMSfz++DHq9m3wqvsHpfD8rjB29aQUjvuLXej9s9+e80NotvrB3ez9wgRi95yYPvqEsfz/T8kO9scEgvi9afD+Sffm8nuMgvlXZez/2JhO9AMUSvsYcfj+KQky91+EYvjS8fz9HwGS95yYPvqEsfz/T8kO9AMUSvsYcfj+KQky9foUXvt1ifj+MR1y9m3wqvsHpfD8rjB291+EYvjS8fz9HwGS9foUXvt1ifj+MR1y9FKQlvmsffD/+KyO9scEgvi9afD+Sffm8m3wqvsHpfD8rjB29FKQlvmsffD/+KyO9nuMgvlXZez/2JhO9iZUHvqf9gD811ne9QlQWvokcfz+JM0m9CdQVvikmfz+CizG9NXIDvhhdgT8Hr2u9LVUGvqtZgD9i2IK9iZUHvqf9gD811ne9NXIDvhhdgT8Hr2u96OUAvjUPgD808oO95xMVvo/UfT8UDle9LVUGvqtZgD9i2IK96OUAvjUPgD808oO9v0cTvmKKfD/QwE29QlQWvokcfz+JM0m95xMVvo/UfT8UDle9v0cTvmKKfD/QwE29CdQVvikmfz+CizG9NXIDvhhdgT8Hr2u9CdQVvikmfz+CizG9vhEavoA7gD+r1C+9W0EHvkYQgj/lVWu96OUAvjUPgD808oO9hPoCvivtgT9IBoC9ISAAvlR3gD8P0Y+9v0cTvmKKfD/QwE29zZUCvqtYfz+UhI+9MmYVviCvez/uh2O9La0Zvmf1ez8h0k69kYccvhXhfj+LPC+9W0EHvkYQgj/lVWu9vhEavoA7gD+r1C+9osQbviezfz8z50a9OWIJvqejgT9QhoC9ISAAvlR3gD8P0Y+9hPoCvivtgT9IBoC9OdIGvuBTgD9btY69MmYVviCvez/uh2O9zZUCvqtYfz+UhI+9qjQZvpsTfT83RWO9kYccvhXhfj+LPC+9La0Zvmf1ez8h0k69OWIJvqejgT9QhoC9osQbviezfz8z50a9QlQWvokcfz+JM0m9iZUHvqf9gD811ne9OdIGvuBTgD9btY69OWIJvqejgT9QhoC9iZUHvqf9gD811ne9LVUGvqtZgD9i2IK9qjQZvpsTfT83RWO9OdIGvuBTgD9btY69LVUGvqtZgD9i2IK95xMVvo/UfT8UDle9osQbviezfz8z50a9qjQZvpsTfT83RWO95xMVvo/UfT8UDle9QlQWvokcfz+JM0m9QkHivSgpgj+US5K9seMCvm6/gD9PWYW9iDAIvg4QgT9ZJoe9whfkvf7Sgj81Spe9HSHdvQcRgj+D3Ia9QkHivSgpgj+US5K9whfkvf7Sgj81Spe95qfZveyhgj8tAoC9mFMAvlWngD9u1HO9HSHdvQcRgj+D3Ia95qfZveyhgj8tAoC9ovgCvvvegD/CvF+9seMCvm6/gD9PWYW9mFMAvlWngD9u1HO9ovgCvvvegD/CvF+9iDAIvg4QgT9ZJoe9whfkvf7Sgj81Spe9iDAIvg4QgT9ZJoe9ydcIvpmugD90LZO96VvkvRx8gj9ZsqO95qfZveyhgj8tAoC9fYXYvUK9gj99Wp697NXMvUaGgj85SYS9ovgCvvvegD/CvF+98jrRvSwigj+3DXK9po7+vaJUgD/nA1G9VjIFvnwTgD8AtFu9JAoLvnBKgD9N64e96VvkvRx8gj9ZsqO9ydcIvpmugD90LZO97aQEvtIugD9eQ4y9F//cvdLxgT++Z5y97NXMvUaGgj85SYS9fYXYvUK9gj99Wp69L4DSvXfAgT8a/oS9po7+vaJUgD/nA1G98jrRvSwigj+3DXK9AMv+ve76fz+Ss2m9JAoLvnBKgD9N64e9VjIFvnwTgD8AtFu9F//cvdLxgT++Z5y97aQEvtIugD9eQ4y9seMCvm6/gD9PWYW9QkHivSgpgj+US5K9L4DSvXfAgT8a/oS9F//cvdLxgT++Z5y9QkHivSgpgj+US5K9HSHdvQcRgj+D3Ia9AMv+ve76fz+Ss2m9L4DSvXfAgT8a/oS9HSHdvQcRgj+D3Ia9mFMAvlWngD9u1HO97aQEvtIugD9eQ4y9AMv+ve76fz+Ss2m9mFMAvlWngD9u1HO9seMCvm6/gD9PWYW9taLWvZCfgT+YJJG9IeHdvePjgT+0mZC9B5vcvZTfgT8QvYq9tYbXvU6xgT/MI4y9J3rVvdTMgj8QHYy9ZJTJveAkgz//uIm9KdzJvcv2gj/9n4W9pOfUvX2Zgj8c94a9krfFvfvogj+PZYq9B9/DvUmXgj+rlou9YV3FvfSTgj/p4oa9zjfHvUHGgj/9HoW9B9/DvUmXgj+rlou9h87MvTsOgj/si469SZ7OvUwPgj+3uoi9YV3FvfSTgj/p4oa9wLzNvbI9gj9ryZO9aaTEvQS6gj/J9I+9hFXGvdD0gj9TN5C9vcjQvd+Hgj+jHZS9SZ7OvUwPgj+3uoi9ptvRvVBPgj/mooa9zjfHvUHGgj/9HoW9YV3FvfSTgj/p4oa9hFXGvdD0gj9TN5C9aaTEvQS6gj/J9I+9aaTEvQS6gj/J9I+9wLzNvbI9gj9ryZO9ONHWvaXWgT/YCZW9xb3bvRgNgj8UlpW9GQbUveTHgj/QBZK9JCPJvdscgz/bsY69ONHWvaXWgT/YCZW9taLWvZCfgT+YJJG9tYbXvU6xgT/MI4y9B5vcvZTfgT8QvYq9spPfvSRkgj9Boo695+TdvVI9gj9ZWoq95+TdvVI9gj9ZWoq95+TdvVI9gj9ZWoq9Zy/dvaBigj9iQJO9xb3bvRgNgj8UlpW9Zy/dvaBigj9iQJO9spPfvSRkgj9Boo69pOfUvX2Zgj8c94a9KdzJvcv2gj/9n4W9ZJTJveAkgz//uIm9KdzJvcv2gj/9n4W9JCPJvdscgz/bsY69JCPJvdscgz/bsY69GQbUveTHgj/QBZK91UKGvSKchj8leni98ISEvd0nhz/UE2i9UEaRvYfPhj/Ddne9LROPvZ7EhT+wgIO9V56Jvewwhj/uwIC9npGgvXADhj+GBoO9MLOVvc90hT/zPYO9n/KbvQyUhT8XrIy9l1ySvdyYhT/Fj5C9pbyNvXSdhT+eZ4e9MLOVvc90hT/zPYO9qwuavVXEhD+ntou9N9WNvfYLhT/Yc5G9l1ySvdyYhT/Fj5C9n/KbvQyUhT8XrIy90ROgvVZ9hD8QW4u9RVervbtjhT8P2Ye9RVervbtjhT8P2Ye9RVervbtjhT8P2Ye9mRGzvagDhT8L9ou9Ljuhvcfhgz8yLJW9o7yBvag3hT+ACJm9oNeJvZl/hT/Px5S9hJ2FvZyKhT/g2Y+9oNeJvZl/hT/Px5S9o7yBvag3hT+ACJm9oJPCvSqAgz8Dzo+9ZriwvYLegj+cn5m9AASnvTxbgz9Mdpm9+Ea8vf9XhD+JZI+97yy5vV+tgj9QnpW9ywDDvbK4gj9pMoy98ISEvd0nhz/UE2i9+fCOvT3Xhj8O/2C9UEaRvYfPhj/Ddne9BwWWvWKFhj/09V+9UjycvUUehj+JZ2O90KKfvXm4hT8Pm2u9npGgvXADhj+GBoO9Gfyfvb0Zhj90cl29ltipvdI4hj9imGG9lqepvWHxhT8HRHS90KKfvXm4hT8Pm2u9ltipvdI4hj9imGG95p2rvc3WhT8dVlK9WdOrvWk9hT91VGe9lqepvWHxhT8HRHS9FoauvbTfhD/boW+9FoauvbTfhD/boW+9RVervbtjhT8P2Ye9mRGzvagDhT8L9ou9G3u6vcGNhD/HCma9cJitvWBihj+SbDu9QTmrvfFihj+vQk+9UC6lvZdhhj9KUEq9QTmrvfFihj+vQk+9cJitvWBihj+SbDu9rafCvXoXhD8OKGi9HUPIvdB+gz9LkHO9+Ea8vf9XhD+JZI+9vl7IvdYUgz8iEYG9bZ84tOxyhD8dVus9HfIFvNS5gz98xPc9gBaCu0tRhD+UtOg9geRDtK3zgz9SS/w9bZ84tOxyhD8dVus9m/AFPNS5gz98xPc9geRDtK3zgz9SS/w9geRDtK3zgz9SS/w9phOCO0tRhD+UtOg9cvW3OxoAhD+EWuI9x2s9PCAugz/b1uw9txOCO+mugz9zANw9q/AFPGyigj8r6eE94K4stEmNgz/pXtk9r1kvtItogj9hYt09chaCu+mugz9zANw9DPIFvGyigj8r6eE9r1kvtItogj9hYt094K4stEmNgz/pXtk9QPi3uxoAhD+EWuI9O209vCAugz/b1uw9gBaCu0tRhD+UtOg9XQkytLIShD8ZbeE9bZ84tOxyhD8dVus9phOCO0tRhD+UtOg9cvW3OxoAhD+EWuI9txOCO+mugz9zANw94K4stEmNgz/pXtk9chaCu+mugz9zANw9QPi3uxoAhD+EWuI9HfIFvNS5gz98xPc9nxaCu1etgj9Brf09Wfi3ux5cgj8jU/c9O209vCAugz/b1uw9jxaCu+0Kgj8T+fA9DPIFvGyigj8r6eE9wp46tE3pgT+KV+49wp46tE3pgT+KV+49mxOCO+0Kgj8T+fA9WPW3Ox5cgj8jU/c9x2s9PCAugz/b1uw9ihOCO1etgj9Brf09m/AFPNS5gz98xPc9Uo9GtPfOgj9lJwA+Uo9GtPfOgj9lJwA+K45HtHF1gj+n9QA+Oexau1Nagj+izP89BOZaO1Nagj+izP89K45HtHF1gj+n9QA+hcmaO+0Ygj9mrvo9IuZaO3/XgT83kPU9U+89tGC8gT99cfM9FOxau3/XgT83kPU9U+89tGC8gT99cfM9kcyau+0Ygj9mrvo96WxqO1gRgT/G6wM+BzVPtIRagT9uyAY+i8IlOxdFgT/X8QU+nMIlO6DdgD+95QE+YcNHtC3IgD8mDwE+68glu6DdgD+95QE+RXNqu1gRgT/G6wM+/sgluxdFgT/X8QU+/sgluxdFgT/X8QU+RXNqu1gRgT/G6wM+68glu6DdgD+95QE+YcNHtC3IgD8mDwE+YcNHtC3IgD8mDwE+nMIlO6DdgD+95QE+6WxqO1gRgT/G6wM+i8IlOxdFgT/X8QU+BzVPtIRagT9uyAY+BzVPtIRagT9uyAY+Ew4+O9WBhD/1bNE9vHYmtIF/hD9GA9A9BasqtN7zgz+zVtY9BA4+O6EIhD8G69Y9Bw4+O5QKhT/YPdU9gWIptPschT9kaNQ98A0+Ow4ahT+yjN49foIwtNEuhT8FId894Q0+O9KghD+1CuQ9x7Y0tC2jhD9ydOU96g0+OxsYhD/gOeA9CssxtLQFhD9UD+E9BA4+O6EIhD8G69Y9BasqtN7zgz+zVtY9BA4+O6EIhD8G69Y94Q0+O9KghD+1CuQ9Ew4+O9WBhD/1bNE9Bw4+O5QKhT/YPdU98A0+Ow4ahT+yjN496g0+OxsYhD/gOeA9ThM+u9WBhD/1bNE9fRM+u9KghD+1CuQ9XBM+u6EIhD8G69Y9WBM+u5QKhT/YPdU9bxM+uw4ahT+yjN49eBM+uxsYhD/gOeA9bxM+uw4ahT+yjN49WBM+u5QKhT/YPdU9ThM+u9WBhD/1bNE9XBM+u6EIhD8G69Y9XBM+u6EIhD8G69Y9eBM+uxsYhD/gOeA9fRM+u9KghD+1CuQ9DaIYtLcRhz+LM7s97BUZtMTIhz/t4bs9CUH7OwmThz+tar495ni1O+bqhj8gCL09FZhZPDIAhz8SV8U9SSkdPNuAhj9JCMI9PykdPBpfhT+9sc89fHk1PPfvhT8E3cg9WMJ4PNg3hj9P0c49BZhZPAZvhT9hQdg93ED7OzbchD/PLd89xXi1OxD1hD/ssdQ9KToytHOmhD+JtuE9xMoqtD7OhD93htY97BUZtMTIhz/t4bs9A0EStEfdhz9QmrE9l3waPDebhz8buLQ9CUH7OwmThz+tar49ScqFPJ/mhj+uO709FZhZPDIAhz8SV8U9sAaQPI5vhj892cI9qwaQPGdwhT/Q4M49WMJ4PNg3hj9P0c49vle2PPfvhT8E3cg9BZhZPAZvhT9hQdg9P8qFPE/5hD9iftQ9fHwaPL5EhD/yAd093ED7OzbchD/PLd89xSsxtKYChD+0H+A9KToytHOmhD+JtuE9A0EStEfdhz9QmrE9oDIRtIM5hz94A7A9G0H7O8ADhz84jLI9l3waPDebhz8buLQ9FZhZPPBwhj+keLk9ScqFPJ/mhj+uO709sAaQPI5vhj892cI9qwaQPGdwhT/Q4M49YMJ4PB6ohT+36MI9DphZPMTfhD/1Ysw9vle2PPfvhT8E3cg9P8qFPE/5hD9iftQ970D7O+xMhD9VT9M9fHwaPL5EhD/yAd093FYqtDIXhD8c2NU9xSsxtKYChD+0H+A9oDIRtIM5hz94A7A9DaIYtLcRhz+LM7s95ni1O+bqhj8gCL09G0H7O8ADhz84jLI9SSkdPNuAhj9JCMI9FZhZPPBwhj+keLk9YMJ4PB6ohT+36MI9fHk1PPfvhT8E3cg9PykdPBpfhT+9sc89DphZPMTfhD/1Ysw9xXi1OxD1hD/ssdQ970D7O+xMhD9VT9M9xMoqtD7OhD93htY93FYqtDIXhD8c2NU9d0P7uwmThz+qar49T3u1u+bqhj8eCL09UJlZvDIAhz8VV8U9giodvNuAhj9FCMI9psN4vNg3hj9S0c49t3o1vPfvhT8H3cg9jCodvBpfhT/Asc89XJlZvAZvhT9kQdg9oEP7uzbchD/PLd89bXu1uxD1hD/ssdQ9vn0avDebhz8XuLQ9d0P7uwmThz+qar494MqFvJ/mhj+nO709UJlZvDIAhz8VV8U9TweQvI5vhj812cI9psN4vNg3hj9S0c49VAeQvGdwhT/T4M49YVi2vPfvhT8H3cg9XJlZvAZvhT9kQdg92X0avL5EhD/lAd0968qFvE/5hD9ZftQ9oEP7uzbchD/PLd89ZUP7u8ADhz81jLI9vn0avDebhz8XuLQ9SplZvPBwhj+eeLk94MqFvJ/mhj+nO709TweQvI5vhj812cI9ncN4vB6ohT+w6MI9VAeQvGdwhT/T4M49UJlZvMTfhD/rYsw9YVi2vPfvhT8H3cg9j0P7u+xMhD9ZT9M968qFvE/5hD9ZftQ92X0avL5EhD/lAd09T3u1u+bqhj8eCL09ZUP7u8ADhz81jLI9giodvNuAhj9FCMI9SplZvPBwhj+eeLk9jCodvBpfhT/Asc89t3o1vPfvhT8H3cg9ncN4vB6ohT+w6MI9UJlZvMTfhD/rYsw9bXu1uxD1hD/ssdQ9j0P7u+xMhD9ZT9M9l8/2PNPKVz9zxDQ+gXVVudPKVz9txDQ+7x/xPItGWD87zzM+7x/xPBlPVz+kuTU+0qHGPBgZVj8KIDg+wMI/PBOGWj+QWi8+oYV1PAvCWj+74y4+xV2cPArKVD8XuDo+PIS4PDhdVT9klDk+QIS4PG84Wj909C8+zV2cPJzLWj/J0C4+kIV1PJnTVD8ipTo+16HGPIx8WT/WaDE+uMI/PJAPVT9HLjo+R11VuQDAXj9P+iY+f2kXuz2XXj8YSyc+qnv5Oj2XXj8YSyc+/VrrO6JmXT/Npik+wG1GvBOGWj+QWi8+DClXvMRGWz+t3C0+/ShTPKs3XD9B/ys+NhkqPHIBXT9Ybyo+K8QwvHIBXT9Ybyo+89NZvKs3XD9B/ys+D35QPMRGWz+z3C0+4rD4u6JmXT/Npik+cGZVuaXVUD+JjkI+i3r5Omn+UD/APUI+DmoXu2n+UD/APUI+HbH4uwIvUj8N4j8++31QPOBOVD8rrDs+B9RZvPtdUz+XiT0+ScQwvDKUUj+GGT8+GRkqPDKUUj+GGT8+4ShTPPtdUz+eiT0+ISlXvOBOVD8rrDs+w1rrOwIvUj8N4j8+021GvJAPVT9HLjo+IiX6vNPKVz9txDQ+e3X0vBlPVz+duTU+dXX0vItGWD80zzM+XPfJvIx8WT/PaDE+tzB8vJnTVD8dpTo+TrOfvJzLWj/J0C4+wNm7vG84Wj909C8+xNm7vDhdVT9klDk+UrOfvAfKVD8QuDo+ojB8vAvCWj+74y4+XPfJvBgZVj8CIDg+ByO+PHn3WT/Etiw+NR7MPNQ8WT+zKC4+16HGPIx8WT/WaDE+QIS4PG84Wj909C8+/SK+PInfVD8KzzY+lF+ePO87VD9OEzg+xV2cPArKVD8XuDo+PIS4PDhdVT9klDk+Mh7MPC6aVT8nXTU+0qHGPBgZVj8KIDg+Ltn9PIJrVz/twjE+fE73PKnXVj/n5zI+7x/xPBlPVz+kuTU+l8/2PNPKVz9zxDQ+nF+ePBSbWj+Gcis+zV2cPJzLWj/J0C4+fE73PFX/Vz/tnTA+7x/xPItGWD87zzM+0pBuPJeOWj9Kiys+oYV1PAvCWj+74y4+HftWPPt5Wj8itCs+wMI/PBOGWj+QWi8+d5BuPGxIVD+E+jc+C/tWPAZdVD+y0Tc+uMI/PJAPVT9HLjo+kIV1PJnTVD8ipTo+qTw5vGzKXD/5HSc+bCkFvKUuXT9WVyY+4rD4u6JmXT/Npik+K8QwvHIBXT9Ybyo+vZEyPGzKXD/5HSc+uTZgPLvmWz8+4Sg+/ShTPKs3XD9B/ys+NhkqPHIBXT9Ybyo+Bv38O6UuXT9WVyY+/VrrO6JmXT/Npik+JFxVuSGTXj/VlCM+i6YXOztkXj/F8SM+qnv5Oj2XXj8YSyc+R11VuQDAXj9P+iY+qeFmvLvmWz844Sg+89NZvKs3XD9B/ys+FFIyuztkXj/F8SM+f2kXuz2XXj8YSyc+QGVjvILOWj+UDCs+DClXvMRGWz+t3C0+E6ZdvPt5Wj8ctCs+wG1GvBOGWj+QWi8+SbpcPIXOWj+UDCs+HftWPPt5Wj8itCs+wMI/PBOGWj+QWi8+D35QPMRGWz+z3C0+qpEyPJcMUj/bZzw+yvz8O16oUT9+Lj0+w1rrOwIvUj8N4j8+GRkqPDKUUj+GGT8+xjw5vJcMUj/VZzw+u+FmvEfwUj+VpDo+B9RZvPtdUz+XiT0+ScQwvDKUUj+GGT8+iSkFvF6oUT93Lj0+HbH4uwIvUj8N4j8+kmVVueBDUD/+8D8+p1Iyu8dyUD8JlD8+DmoXu2n+UD/APUI+cGZVuaXVUD+JjkI+njZgPEfwUj+VpDo+4ShTPPtdUz+eiT0++KUXO8dyUD8JlD8+i3r5Omn+UD/APUI+OLpcPH4IVD85eTg++31QPOBOVD8rrDs+C/tWPAZdVD+y0Tc+uMI/PJAPVT9HLjo+VGVjvH4IVD85eTg+HaZdvAZdVD+y0Tc+021GvJAPVT9HLjo+ISlXvOBOVD8rrDs+jXjBvInfVD8KzzY+tXPPvC6aVT8hXTU+XPfJvBgZVj8CIDg+xNm7vDhdVT9klDk+gnjBvHn3WT/Etiw+ErWhvBObWj+Gcis+TrOfvJzLWj/J0C4+wNm7vG84Wj909C8+tXPPvNQ8WT+tKC4+XPfJvIx8WT/PaDE+WpcAvYJrVz/nwjE+2KP6vFX/Vz/lnTA+dXX0vItGWD80zzM+IiX6vNPKVz9txDQ+HLWhvO47VD9HEzg+UrOfvAfKVD8QuDo+2KP6vKnXVj/i5zI+e3X0vBlPVz+duTU+ijt1vGxIVD+E+jc+tzB8vJnTVD8dpTo+HaZdvAZdVD+y0Tc+021GvJAPVT9HLjo+dDt1vJeOWj9Kiys+E6ZdvPt5Wj8ctCs+wG1GvBOGWj+QWi8+ojB8vAvCWj+74y4+94f5va4mWD/OoB4+NGETvtzXWD+GhAk+NO/4vSSkWD8XhR0+jzL8vVWxVz8mxR4+mgIEvm+fVj/zuRw+JuQFvnBAWz+rRQ4+qAwDvh5oWz+8QBA+6xAKvs50VT8S1Bo+m4gGviTxVT/0eRw+Naz8vQ61Wj/iMRY+FNv/vYlZWz9EDxM+tw8NviWWVT/U7Bc+tJT8vZ7yWT/uVxg+zhwPvibkVT+dVhU+pKIHvqKrXz+khAA+kXkJvvKPXz/ug/49UlUGvlR3Xz/DMAI+32cEvpktXj9PZwc+maUXvo/LWz/4ZPs9RCMXvpiOXD+VBvg9SiYCvvziXD/J5ww+BbACvqC3XT9GJAo+v3gSvkozXj9j0PY9t6sVvu57XT9lXfU9/9sDvo73Wz9fAg4+RWsPvuWDXj/GPvo9ux8fvhIEUj90hBI+1EgdvsIfUj8bxxM+FG0gvmE4Uj9W2BA+e1oivhyCUz/KoQs+HZ8Pvh4hVT/NBRc+HJwkvrnMVD9JIQY+WxIkvhX4Uz/S5Ag+oUkUvmt8Uz/goBc+rxYRvsczVD9mWhg+YOYivim4VT+yBgU+FFcXvtArUz+06RU+O94gvkVvVj9twwQ+bf4pvgqJWT+g0Og9wUoqvpcLWT8DCOs9E6kovmL+WT/mh+g9x78ivkYQWz9Knuw9ubUjvpdHVj9WyAI+fbEcvuk6XD8LavA9xjkgvpK+Wz88Hu09Rmwovqn6Vj9grvk93dQmvitWVj+n8/89qbIZvpAZXD+KOPY9AHgovhW9Vz9UYvU9vGn3vV5qWj8kQhQ+ZlT3vUCpWT+iYxY+tJT8vZ7yWT/uVxg+Naz8vQ61Wj/iMRY+5k0EvuBqVT/A2Bo+F0YIvv7gVD+G+Rg+6xAKvs50VT8S1Bo+m4gGviTxVT/0eRw+Gc0BvgwYVj9rFxs+mgIEvm+fVj/zuRw++2n0vS+9Vz8n9xw+4I33vcowVz8TKB0+jzL8vVWxVz8mxR4+94f5va4mWD/OoB4+jgn7vY4hWz+xuxA+FNv/vYlZWz9EDxM+wKfzvepSWD+iqRs+NO/4vSSkWD8XhR0+pCgBvikxWz+seQ0+qAwDvh5oWz+8QBA+Il4CvlwlWz/Vkww+JuQFvnBAWz+rRQ4+wr8LviEJVT8plxU+tq8MvsElVT8MfBQ+zhwPvibkVT+dVhU+tw8NviWWVT/U7Bc+aawQvmL5XT+PKvE9oKQNvilJXj/ek/Q9RWsPvuWDXj/GPvo9v3gSvkozXj9j0PY9Vh4Avqt3XT+NCQg+1BX/vfmHXD9wIAs+SiYCvvziXD/J5ww+BbACvqC3XT9GJAo+y9MBvpTsXT+dUQU+32cEvpktXj9PZwc+cmIFvqp4Xz9YAfw9INEDvvI7Xz/B+/89UlUGvlR3Xz/DMAI+pKIHvqKrXz+khAA+gEAUvjsqXT/Zlu89t6sVvu57XT9lXfU9G5IHvltZXz+X+fg9kXkJvvKPXz/ug/493/AVvgUWXD+Ut/I9RCMXvpiOXD+VBvg9mTwWvgfBWz8+D/Q9maUXvo/LWz/4ZPs9howBvkF2Wz/6ZAw+Il4CvlwlWz/Vkww+JuQFvnBAWz+rRQ4+/9sDvo73Wz9fAg4+8T8SvmTtUj9p7hU+wEcVvp2dUj+8ORQ+FFcXvtArUz+06RU+oUkUvmt8Uz/goBc+C84ivhxvUz8eegY+a2EjvsxeVD87YwM+HJwkvrnMVD9JIQY+WxIkvhX4Uz/S5Ag+jxghvjL6Uj8OMgk+e1oivhyCUz/KoQs+4okdvhluUT//ghA+NBsfvtSqUT/LhQ4+FG0gvmE4Uj9W2BA+ux8fvhIEUj90hBI+1qsOvoy8Uz9EuBY+rxYRvsczVD9mWhg+OVobvmuNUT/gBhI+1EgdvsIfUj8bxxM+ffsMvsDQVD/gJxU+HZ8Pvh4hVT/NBRc+tq8MvsElVT8MfBQ+zhwPvibkVT+dVhU+1l8hvoVwVT+xHgI+Lo4gvmvBVT/c7wE+O94gvkVvVj9twwQ+YOYivim4VT+yBgU+cDcnvmZ8Vj8Og/Q9KUInvoY9Vz8SQPA9AHgovhW9Vz9UYvU9Rmwovqn6Vj9grvk9b54evuZ7Wz/UVec9PaYavsoFXD89FOs9fbEcvuk6XD8LavA9xjkgvpK+Wz88Hu09PB8hvrnOWj+B2OY9x78ivkYQWz9Knuw9XrcovpUpWT8UGeM9ZSUnvvu1WT8vt+I9E6kovmL+WT/mh+g9bf4pvgqJWT+g0Og9j2clvjjFVT/0j/s93dQmvitWVj+n8/89dhgpvtyTWD8TtOU9wUoqvpcLWT8DCOs9scMhvp21VT8GCgE+ubUjvpdHVj9WyAI+Lo4gvmvBVT/c7wE+O94gvkVvVj9twwQ+jSwXvqTdWz8C2fE9mTwWvgfBWz8+D/Q9maUXvo/LWz/4ZPs9qbIZvpAZXD+KOPY9HAlWvqdOXT+1Nrk85EZYvmoyXj/z5/O74PVUvlTJXT8Nn7Q8mTZXvmXeXD/AibI8O2tavgLfWz9404U86wdRvupwYD8APqY7FT5QvjSRYD+pZQk8t9ldvqDHWj/AQTI8rkFcvo45Wz+ghGw8N/BQvvPVXz8MuoA8NNpPvnx7YD+VJkw8ARFevoTvWj+Mp987goVSvp4WXz9pIY08UsNdvhVBWz9MR247oA9Ivo/NZD+h6be7fJZIvq+2ZD8VsP27xkZIvgqXZD8exGm70qhKvjBOYz8F/rA6c8pSvrsjYT+/vJe8sBxRvlniYT87Z568BP9MvrIDYj8iSts7IVhLvhjWYj+Bt5A7oehMvhJ1Yz/wp4e8UO5OvkzIYj9Hsp28hzNPvjAgYT9K4807RsBLvh29Yz9lq1m8Jn5ovkKXVz+G8he8R/dnviSuVz+ZHuq7/EZovsfNVz9Ldjm89+RlvqAWWT+KA4W8G3FfvneCWj89zpE7xY5jviFhWj8PxrC8pzVlvriOWT+MIZ68K6VjvsHvWD9ARNs6dZ9hvoWcWT8S+447OVphvqFEWz+AbK28fs1kvrWnWD9q39G614VfvunzWz9Tg6O8qYRaviwWXz8ylRm95pdbvn2bXj9cSRe9MldZvm6GXz+3Pha9kCJWvtKFYD9Hx/+8q09gvp3TWz+Apr68E7RSvjKdYT+KFNO8F0xUvkUrYT/9NfC8j51fvuCOXD+7rfq8jLNgvlXpWz/1BuC8wnxSvk91YT+P3bG8SghevjROXT+gigO9psJNvoB/Xz86TIM8XFVPvnjBXj8flI88goVSvp4WXz9pIY08N/BQvvPVXz8MuoA8pqFZvnWpWj9Ao3A8RWhbvkArWj+t8C48t9ldvqDHWj/AQTI8rkFcvo45Wz+ghGw8WM5XvtlNWz8Qvoc8O2tavgLfWz9404U8BR9TvhPaXD/k7rw8qoZUvrVTXD/PNLU8mTZXvmXeXD/AibI8HAlWvqdOXT+1Nrk8s45MvvI3YD+QaEo8NNpPvnx7YD+VJkw8mdVRvnJsXT9Fsrc84PVUvlTJXT8Nn7Q8FAZNvulPYD9vefk7FT5QvjSRYD+pZQk8VFFNvilHYD+pC8o76wdRvupwYD8APqY7bqVbvu9aWj8YYMM7pJBbvk95Wj8PVpU7UsNdvhVBWz9MR247ARFevoTvWj+Mp987qbpJvhQxYz8YxI68+5RIvl54Yz/dP2i8RsBLvh29Yz9lq1m8oehMvhJ1Yz/wp4e8nBZIvliKYj8h2ZU7lfRJvj6dYT/Fn+g7BP9MvrIDYj8iSts7IVhLvhjWYj+Bt5A7KmlHvl4BYz+FHsg60qhKvjBOYz8F/rA6PsBEvlWPZD/gOcO77f1EvulPZD+HJWa7xkZIvgqXZD8exGm7oA9Ivo/NZD+h6be7BwJMvtBtYj+2S6e8UO5OvkzIYj9Hsp28LV1FvrV1ZD8URQu8fJZIvq+2ZD8VsP27HItOvixiYT+e7ae8sBxRvlniYT87Z568d0lPvkUPYT/2yqW8c8pSvrsjYT+/vJe8qoVMvsqUYD+rR9g7VFFNvilHYD+pC8o76wdRvupwYD8APqY7hzNPvjAgYT9K4807bx9hvoBXWD+47OQ6JkVivjUQWD8lWMW6fs1kvrWnWD9q39G6K6VjvsHvWD9ARNs6fMNivjz+WD+S66W8h+VgvlTrWT9mnbq8xY5jviFhWj8PxrC8pzVlvriOWT+MIZ6883BjvjWHWD9a94y89+RlvqAWWT+KA4W84hlmvj75Vj+mTR+8NNxlvqs4Vz99YUe8/EZovsfNVz9Ldjm8Jn5ovkKXVz+G8he8EthevsQaWT8YWZs7dZ9hvoWcWT8S+4479Hxlvt0SVz+hS+u7R/dnviSuVz+ZHuq7BU9cvmsmWj+z4J07G3FfvneCWj89zpE7pJBbvk95Wj8PVpU7UsNdvhVBWz9MR247blRevsrzWj9ch7a8wohdvmtBWz9c+LK814VfvunzWz9Tg6O8OVphvqFEWz+AbK28exddvhMJXD/F4AG9voRbvhzHXD+0BAi9SghevjROXT+gigO9j51fvuCOXD+7rfq8ezhRvh3fYD/rxvi81HFPvlRdYT/H7de8E7RSvjKdYT+KFNO8F0xUvkUrYT/9NfC8wAtTvrg6YD+vGQS9kCJWvtKFYD9Hx/+8FLtXvoGuXj8Xsh69cFNWvt00Xz/71Bq9MldZvm6GXz+3Pha9qYRaviwWXz8ylRm9bktevqJQWz+7qeW8jLNgvlXpWz/1BuC8hwRZviIcXj+zExy95pdbvn2bXj9cSRe9AdRdvqo4Wz+k0768q09gvp3TWz+Apr68wohdvmtBWz9c+LK814VfvunzWz9Tg6O8rDRPvqUtYT94TbG8d0lPvkUPYT/2yqW8c8pSvrsjYT+/vJe8wnxSvk91YT+P3bG8+XAnvukiXj/SXQK+AukPvpDNXT96mBa+JPglvquMXj/C2gG+F9Ynvjy1XT/mzQO+uSYmvr6YXD/btAm+RN8Tvt1PYD/jJAm+H/cVvkyNYD+tewa+Pa0kvoVmWz+dyQ++aTsmvlLwWz8RVgy+FtocvrMqYD8yigK+XhMZviuhYD8CrAO+DGwhvkxjWz+5chK+NpsfvvuLXz8B3wK+imwevkaOWz8GKhS+qXgCvk/cYz9tjwi+8yQBvuSyYz9dSQq+0GkEvr6+Yz/yeQe+mc4KvmnEYj8PWwa+f2UBvtkMYD/tBhm+Bk3+vbuxYD+eMBi+8oQRvq/MYT8R8AS+cg0OvlB1Yj/uBAW+vEH7vb05Yj9/IxO+wmn6vQWDYT9yZha+7DUTvn76YD/U8Qa+r7H+vdeaYj8gNRC+bVkdvtK+Vz+GoSS+Ha0evjzoVz+W5yK+QGgbvmHcVz8AtyW+dwMVvrjWWD/d1Sa+jasgvmXpWj9bABW+F00OvnLOWT/cQCi+l8QRvtAlWT8LLCi+MjEivmJhWT9tDRq+Lp0ivh0YWj96yha+JJwMvqGgWj8gPya+MnkgvkkAWT/S+xy+xvILvkRLWz8QDCS+IMLwvTh4XT8h0yq+yrPzvXQOXT8wViu+4/fvveTlXT8NYym+oVbzvWECXz8RfCO+69oJvtMNWz9GtSa+p0n2vZ00YD9QZx2+TC3zvc6qXz/i2iC+8/cCvmtwWz/Apiq+q74GvvX5Wj/yhCm+/Mv8vdM3YD85vhq+1DYAvicPXD/rUSq+CIQbvhDBXz+KmP+9fj8evmAjXz9oIQC+NpsfvvuLXz8B3wK+FtocvrMqYD8yigK+oVolvs9RWz+mEgq+j5Qjvnm4Wj+p8g2+Pa0kvoVmWz+dyQ++aTsmvlLwWz8RVgy+D0Ulvhz5Wz+/dge+uSYmvr6YXD/btAm+6XcmvlSfXT85f/+93vYmvl4cXT8rcgG+F9Ynvjy1XT/mzQO++XAnvukiXj/SXQK++UUXvpdEYD9CGAG+XhMZviuhYD8CrAO+x7skvskdXj99O/69JPglvquMXj/C2gG+a6oTvkksYD8rYAS+H/cVvkyNYD+tewa+UrQSvkwWYD+DfwW+RN8Tvt1PYD/jJAm+tcgfvuy1Wj8pCBG+EYMevs/DWj9j1BG+imwevkaOWz8GKhS+DGwhvkxjWz+5chK+YJH2vVzVYT8EHxG+svz5vZA1Yj8pNg6+r7H+vdeaYj8gNRC+vEH7vb05Yj9/IxO+poIMvtcTYj/dTwK+t2MQvnNVYT+BPwK+8oQRvq/MYT8R8AS+cg0OvlB1Yj/uBAW+0EkJviliYj9bpAO+mc4KvmnEYj8PWwa+h3MAvjmCYz8iHga+GMICvntgYz/szgS+0GkEvr6+Yz/yeQe+qXgCvk/cYz9tjwi+Ya71vUoHYT/txRS+wmn6vQWDYT9yZha+Q7T9vU9SYz+QKgi+8yQBvuSyYz9dSQq+XT36vesTYD/j1ha+Bk3+vbuxYD+eMBi+PA/8vVDLXz+ERRe+f2UBvtkMYD/tBhm+tFYSvuRgYD8YmQS+UrQSvkwWYD+DfwW+RN8Tvt1PYD/jJAm+7DUTvn76YD/U8Qa+/kEhvsG5WD/o+he+VowfvpBZWD+94xq+MnkgvkkAWT/S+xy+MjEivmJhWT9tDRq+CQgQvkl7WD8Kyia+9yYMvq45WT9e2ia+F00OvnLOWT/cQCi+l8QRvtAlWT8LLCi+30ATvvcsWD+LdSW+dwMVvrjWWD/d1Sa+LRccvuUMVz/E+yK+ncgZvqUuVz/zSiS+QGgbvmHcVz8AtyW+bVkdvtK+Vz+GoSS+frMhvtSHWT/yUxS+Lp0ivh0YWj96yha+jbAdvs88Vz9W7yC+Ha0evjzoVz+W5yK+/2sfvjR7Wj8CQxK+jasgvmXpWj9bABW+EYMevs/DWj9j1BG+imwevkaOWz8GKhS++zMKvjwuWj/HgCS+XdYJvtJ4Wj9kmiO+xvILvkRLWz8QDCS+JJwMvqGgWj8gPya+pgYBvgzOWj+bTSm+YZb8vcFrWz99+Ci+1DYAvicPXD/rUSq+8/cCvmtwWz/Apiq+G2DuvU49Xz9ABx++PezxvafWXz89Jxu+p0n2vZ00YD9QZx2+TC3zvc6qXz/i2iC+MIvuvQKWXj8noyG+oVbzvWECXz8RfCO+jCXsvczvXD9FWim+qyfrvcByXT+0pye+4/fvveTlXT8NYym+IMLwvTh4XT8h0yq+tUQFvodKWj+dASi+q74GvvX5Wj/yhCm+2Z3vvVRxXD8i/Cm+yrPzvXQOXT8wViu+ROAIvtdiWj+0uSS+69oJvtMNWz9GtSa+XdYJvtJ4Wj9kmiO+xvILvkRLWz8QDCS+84P5vTPZXz+3ERi+PA/8vVDLXz+ERRe+f2UBvtkMYD/tBhm+/Mv8vdM3YD85vhq+ymX+vL0kXj8Nj0G+4Gg9ur0kXj8Gj0G+Irb4vDOXXj8kWkC+Hrb4vEeyXT/vw0K+ADjOvHiTXD/nyUW+J+9OvKqrYD9AvTq+BVmCvCTjYD+JJzq+9/OjvH5dWz9qDkm+ahrAvKblWz/4nke+dBrAvNVjYD8Zfzu+AvSjvP3rYD+nDzq+/ViCvFdmWz+J9ki+CjjOvAC2Xz8wVD2+FO9OvNCdWz/SYEi+PG89upyUZD8SMDC+tG+1OuduZD/YlTC+dW85u+duZD/YlTC+59kEvBlVYz9OjjO+WUE3PKqrYD84vTq+pvxHPO5dYT8n3Di+ZVVivMw8Yj+9gja+nEU5vHz3Yj/yijS+xZchPHz3Yj/yijS+jqdKPMw8Yj+3gja+dapfvO5dYT8t3Di+D1jaOxlVYz9OjjO+WWw9ut60Vz8A7lK+wW45u5TaVz85iFK+HXG1OpTaVz85iFK+XFjaO2H0WD+9j0++YqpfvI7rWj/kQUq+qadKPK8MWj9Xm0y+4JchPP5RWT8kk06+gEU5vP5RWT8gk06+SlVivK8MWj9Um0y+ufxHPI7rWj/mQUq+wtkEvGH0WD+9j0++bUE3PNCdWz/VYEi+647yPL0kXj8Gj0G+Rd/sPEeyXT/pw0K+Rd/sPDOXXj8kWkC+KWHCPAC2Xz8qVD2+TgRtPFdmWz+L9ki+Gx2YPPzrYD+nDzq+i0O0PNVjYD8Tfzu+lUO0PKblWz/7nke+JB2YPH1dWz9tDkm+PQRtPCTjYD+CJzq+LWHCPHiTXD/lyUW+ObnFvNcHYD9iazi+abTTvCtbXz9hPTq+CjjOvAC2Xz8wVD2+dBrAvNVjYD8Zfzu+M7nFvH1RWz/bIkW+wfWlvCG6Wj9Su0a+9/OjvH5dWz9qDkm+ahrAvKblWz/4nke+ZbTTvCv+Wz/dUEO+ADjOvHiTXD/nyUW+sLcCvausXT8ixz6+quT+vOYjXT83OEC+Hrb4vEeyXT/vw0K+ymX+vL0kXj8Nj0G+yvWlvDOfYD/r0ja+AvSjvP3rYD+nDzq+r+T+vHA1Xj8GVj2+Irb4vDOXXj8kWkC+Ob19vKKTYD8g8ja+BVmCvCTjYD+JJzq+hSdmvJSAYD+PJTe+J+9OvKqrYD9AvTq+07x9vLLFWj8dnEa+ZidmvMDYWj+uaEa+FO9OvNCdWz/SYEi+/ViCvFdmWz+J9ki+RBAqPK+kYj9wXjG+B/rrO2kBYz84ZDC+D1jaOxlVYz9OjjO+xZchPHz3Yj/yijS+Lb5BvK+kYj9wXjG+I2NvvAfSYT/pljO+ZVVivMw8Yj+9gja+nEU5vHz3Yj/yijS+66oNvGkBYz84ZDC+59kEvBlVYz9OjjO+gW89ujVLZD8z6iy+LFhUu9MfZD9NXy2+dW85u+duZD/YlTC+PG89upyUZD8SMDC+QbVXPAfSYT/pljO+jqdKPMw8Yj+3gja+5UDrOtMfZD9NXy2+tG+1OuduZD/YlTC+2zhUPMnOYD+FUja+pvxHPO5dYT8n3Di+rnlOPJSAYD+PJTe+WUE3PKqrYD84vTq+s+ZrvMrOYD9+Uja+hSdmvJSAYD+PJTe+J+9OvKqrYD9AvTq+dapfvO5dYT8t3Di+B75BvKa0WD/NL0y+xKoNvO5XWD8AKk2+wtkEvGH0WD+9j0++gEU5vP5RWT8gk06+ahAqPKa0WD/JL0y+XLVXPE6HWT9X90m+qadKPK8MWj9Xm0y+4JchPP5RWT8kk06+VfrrO+5XWD8AKk2+XFjaO2H0WD+9j0++imw9uiEOVz8CpFC+V0LrOoQ5Vz/vLlC+HXG1OpTaVz85iFK+WWw9ut60Vz8A7lK+/WJvvE6HWT9U90m+SlVivK8MWj9Um0y+dVdUu4Q5Vz/vLlC+wW45u5TaVz85iFK+leZrvIuKWj+3O0e+YqpfvI7rWj/kQUq+ZidmvMDYWj+uaEa+FO9OvNCdWz/SYEi+6zhUPIuKWj+7O0e+vnlOPMDYWj+paEa+bUE3PNCdWz/VYEi+ufxHPI7rWj/mQUq+WOK5PH1RWz/dIkW+id3HPCv+Wz/dUEO+LWHCPHiTXD/lyUW+lUO0PKblWz/7nke+UOK5PNcHYD9cazi+5B6aPDOfYD/r0ja+Gx2YPPzrYD+nDzq+i0O0PNVjYD8Tfzu+hd3HPCtbXz9bPTq+KWHCPAC2Xz8qVD2+fpj5PKusXT8cxz6+pQ3zPHA1Xj8BVj2+Rd/sPDOXXj8kWkC+647yPL0kXj8Gj0G+7R6aPCG6Wj9Pu0a+JB2YPH1dWz9tDkm+og3zPOYjXT8wOEC+Rd/sPEeyXT/pw0K+Kw9mPLLFWj8bnEa+TgRtPFdmWz+L9ki+vnlOPMDYWj+paEa+bUE3PNCdWz/VYEi+Dw9mPKKTYD8g8ja+rnlOPJSAYD+PJTe+WUE3PKqrYD84vTq+PQRtPCTjYD+CJzq+jJfvPfnfXj8iHB6+gnYQPhejXj9cQgu+z1zvPaxRXz/0shy+ShTyPX1rXj91qB6+Xev9PbRAXT984x2+xvACPndFYT+vHw2+x+L/PdWDYT8ysA6+qf4EPqr+Wz+0VR2+b2QBPniOXD8jTh6+pSL1PfQSYT98dhS+zBv5PfiUYT9+KRG+R0cIPlP/Wz+mtRq+S2X0PaRnYD9tBRe+H54KPoQwXD8VMhi+Y68GPgAcZT/lUPq9T58IPtvxZD+4V/i9DTIFPlD6ZD+BlP29DpMCPo/pYz+BewS+104WPqcVYT9hpfy9rxQWPtvGYT9jU/i96jH/PS/bYj9PbQq+J4cAPtyRYz+cRQe+uL4RPlxnYz+uOvS9DeQUPp6mYj8dT/S9aQ0BPsT6YT+gOwy+a5YOPufLYz+Vmva9mT0aPisqWD9SXBm+rU0YPlBUWD/pWBq+9robPtxLWD9+uhe+7lkePp1cWT9ECRK+TtgKPlJ/Wz8NWxq+B1QhPv1qWj93Fwy+22UgPlC0WT8pPw++Si4PPtLeWT9uZxy+7wgMPo+fWj83XRy+kt8fPmlLWz8eSQq+kFYSPkR6WT90Nxu+MPwdPrQAXD8XZQm+NyEpPjJmXj840fC9nD4pPoD0XT+io/O92OInPq/aXj+guO+9TvchPngFYD+TQvG9l/sgPlfCWz+N1Ae+VO4bPoJHYT8jXvK9jogfPrW3YD9FbfC9qVsmPjczXD9JDgK+Fl8kPjSxWz9HWwW+tqUYPtlGYT8ynve9V7omPoreXD+w/v693jLwPSW6YD/idRK+2HjvPfMPYD+w/xS+S2X0PaRnYD9tBRe+pSL1PfQSYT98dhS+uIP+PSv9Wz+ZyBy+/k4DPjNdWz9Eqxu+qf4EPqr+Wz+0VR2+b2QBPniOXD8jTh6+k7D5PTiuXD/eXRy+Xev9PbRAXT984x2+AbXqPUVrXj+XdBy+FaHtPSbgXT8uIR2+ShTyPX1rXj91qB6+jJfvPfnfXj8iHB6+e7X0PYxKYT9vwQ6+zBv5PfiUYT9+KRG+D2LqPS7zXj/uyRq+z1zvPaxRXz/0shy+gJv8PVk1YT+M4wu+x+L/PdWDYT8ysA6+xyz/PUkfYT9QKAu+xvACPndFYT+vHw2+7B4HPj5fWz/Gmhi+oi0IPoVvWz/9ixe+H54KPoQwXD8VMhi+R0cIPlP/Wz+mtRq+VzMQPl0VYz9vku69xxANPvh4Yz+F7/C9a5YOPufLYz+Vmva9uL4RPlxnYz+uOvS9Akn8PfBBYz//FQW+7kD6PbtzYj+2ngi+6jH/PS/bYj9PbQq+J4cAPtyRYz+cRQe+XS0APsqYYz80UQK+DpMCPo/pYz+BewS+G6oEPoDUZD/3I/W9498CPuytZD8lA/m9DTIFPlD6ZD+BlP29Y68GPgAcZT/lUPq9S7cTPvg7Yj/htu69DeQUPp6mYj8dT/S9HvgGPtKjZD8LwfK9T58IPtvxZD+4V/i9zBQVPrs3YT9navO9rxQWPtvGYT9jU/i9k0IVPsvpYD+zMPW9104WPqcVYT9hpfy9G639PaRuYT/HtAq+xyz/PUkfYT9QKAu+xvACPndFYT+vHw2+aQ0BPsT6YT+gOwy+3TwNPvNDWT8e2xq+Zl8QPlXgWD+NrBm+kFYSPkR6WT90Nxu+Si4PPtLeWT9uZxy+rEsfPl4XWT9XDg2+tk8gPpflWT+ihQm+B1QhPv1qWj93Fwy+22UgPlC0WT8pPw++0UIdPobAWD8j0w++7lkePp1cWT9ECRK+GMYYPs+EVz9bkhe+S5AaPmSrVz/EohW+9robPtxLWD9+uhe+mT0aPisqWD9SXBm+47gJPlgdWj/nyBq+7wgMPo+fWj83XRy+FXgWPn61Vz/Xwxi+rU0YPlBUWD/pWBq+YlsIPpUhWz8ibxi+TtgKPlJ/Wz8NWxq+oi0IPoVvWz/9ixe+H54KPoQwXD8VMhi+oZkePq/qWj+Qbwe+y9kdPgU6Wz8N/Aa+MPwdPrQAXD8XZQm+kt8fPmlLWz8eSQq+vlYlPiqfWz/qXP+9ybMlPl5JXD9MSfq9V7omPoreXD+w/v69qVsmPjczXD9JDgK+Ui4ePiRcYD97t+q9MCEaPh38YD8Y8uy9VO4bPoJHYT8jXvK9jogfPrW3YD9FbfC965cgPhirXz/9jOu9TvchPngFYD+TQvG9rhUoPgvuXT9wX+u9pJ8mPit5Xj9eBuq92OInPq/aXj+guO+9NyEpPjJmXj840fC9chUjPsIOWz/oYgO+Fl8kPjSxWz9HWwW+Jj8oPiBmXT/ctO69nD4pPoD0XT+io/O9biIfPvgjWz/KQAa+l/sgPlfCWz+N1Ae+y9kdPgU6Wz8N/Aa+MPwdPrQAXD8XZQm+SFEWPhP6YD8vE/O9k0IVPsvpYD+zMPW9104WPqcVYT9hpfy9tqUYPtlGYT8ynve9JGQpPj55WT/nMe09aeASPv0LWT/77As+JwUoPuDrWT8+qOw9ULspPp4BWT9Mr+89jwYoPnLJVz+0xfo9AuEWPuHMWz/HjP49WOYYPngRXD+nM/k9aYMmPql5Vj9GEAM+ywsoPl4RVz+Bfv89fXIfPlmqWz+1SPA97OAbPkspXD/UUPM9/WYjPvBzVj/E4wU+nQYiPqz+Wj/MKPA9R40gPuSgVj+E1Ac+lI4GPkGiXz+ZBwE+ZEYFPhR0Xz+rwgI+HmcIPkKDXz9YmP89m20OPuV1Xj/B5fs9kTMFPhh3Wz9pBRA+VxwDPtUpXD99jw8+QsIUPqFrXT+GlPc9voARPqEhXj/Oovg9yckBPl7VXT9pNAs+2VIBPlANXT+LMw4+5E0WPvuGXD+uwfo9nHYDPrBAXj/5VQg+RDIfPrt1Uj9U0hY+dHogPuejUj88FxU+ulkdPrmUUj/IDRg+RFMXPhOiUz8G5xk+h6QiPibuVT9xSgg+lv4QPlusVD+rDxw+GkAUPlj2Uz+HiBs+D/cjPpxCVD+KpQw+/m0kPqsKVT9ipgk++nIPPgGRVT8WeRo+QkoiPknXUz/0gw8+3N8OPhtLVj+Dkxg+dbn4Pb2eWD/7QCE+Y3f7PRwsWD/JhSE+EAv4PV0WWT9HAiA+oHT7PYlOWj8Udxo+gNoMPoUGVj8SQBs+4Hr+PVOeWz+gyRQ+GWr7PZ4GWz+sGhg+W04GPqRtVj+ZtR8+7d8JPqzuVT+DMR4+4lkCPgykWz8p9hE+QboDPkwZVz+HxR8+aNsdPn1YWz/zrOo9MmogPu+tWj8cj+o9nQYiPqz+Wj/MKPA9fXIfPlmqWz+1SPA9OOAmPgWGVj8Dofo9ICElPizdVT+rCgE+aYMmPql5Vj9GEAM+ywsoPl4RVz+Bfv89DtomPt48Vz/38fU9jwYoPnLJVz+0xfo9riMoPkQLWT8Ct+c9rpEoPm98WD+Bpeo9ULspPp4BWT9Mr+89JGQpPj55WT/nMe098dgZPmblWz+GIO497OAbPkspXD/UUPM9JoYmPlmUWT90B+c9JwUoPuDrWT8+qOw9V2QWPmHIWz+M/fQ9WOYYPngRXD+nM/k9R3cVPrKvWz9YRPc9AuEWPuHMWz/HjP49QYAhPtDXVT8ZUgQ+PEogPiTmVT/rNAU+R40gPuSgVj+E1Ac+/WYjPvBzVj/E4wU+Ann+PZSIXT+PLwk+C+cAPufyXT90VgY+nHYDPrBAXj/5VQg+yckBPl7VXT9pNAs+9rcPPo/YXT/jJPM9gFwTPgoLXT8UA/I9QsIUPqFrXT+GlPc9voARPqEhXj/Oovg9iaoMPv4rXj9PY/Y9m20OPuV1Xj/B5fs9lFEEPvBgXz+ZK/09AIMGPpw9Xz8YNPo9HmcIPkKDXz9YmP89lI4GPkGiXz+ZBwE+mHz9PfymXD+jiQw+2VIBPlANXT+LMw4+QMYCPnkrXz9mpAA+ZEYFPhR0Xz+rwgI+4tYAPnWeWz8nGg4+VxwDPtUpXD99jw8+Nq8BPrNPWz9iXw4+kTMFPhh3Wz9pBRA+OyQVPv0AXD9SvfU9R3cVPrKvWz9YRPc9AuEWPuHMWz/HjP495E0WPvuGXD+uwfo98bwiPkGtUz/DZAo+bhIhPutCUz/ePQ0+QkoiPknXUz/0gw8+D/cjPpxCVD+KpQw+g0ESPkZdUz/gARo++JwOPswqVD/Okho+lv4QPlusVD+rDxw+GkAUPlj2Uz+HiBs+8E4VPtcJUz+rYhg+RFMXPhOiUz8G5xk+5KcdPubUUT+L/hQ+fnYbPjn4UT9GehY+ulkdPrmUUj/IDRg+RDIfPrt1Uj9U0hY+LDsjPtmOVD+1Cgc+/m0kPqsKVT9ipgk+PzMfPl0KUj/t7xI+dHogPuejUj88FxU+kCIhPl2XVT8tegU+h6QiPibuVT9xSgg+PEogPiTmVT/rNAU+R40gPuSgVj+E1Ac+N9UMPtg0VT+rtRg+MYIMPiSGVT8n8hc+3N8OPhtLVj+Dkxg++nIPPgGRVT8WeRo+EB4EPlvdVT/ZPR4+P48BPueHVj/GTB4+QboDPkwZVz+HxR8+W04GPqRtVj+ZtR8+czL2PdKvWj/XQxY+pbD5PalYWz+viRI+4Hr+PVOeWz+gyRQ+GWr7PZ4GWz+sGhg+xz72Pfj4WT9Ymxg+oHT7PYlOWj8Udxo+lavzPZIqWD/SuB8+l8/yPWa5WD+NQR4+EAv4PV0WWT9HAiA+dbn4Pb2eWD/7QCE+hyAIPm5QVT8WhBw+7d8JPqzuVT+DMR4+oub2PXyhVz+ZECA+Y3f7PRwsWD/JhSE+KJULPnRtVT+NFRk+gNoMPoUGVj8SQBs+MYIMPiSGVT8n8hc+3N8OPhtLVj+Dkxg+N3kAPgReWz9AQg8+Nq8BPrNPWz9iXw4+kTMFPhh3Wz9pBRA+4lkCPgykWz8p9hE+mRtRPntCXj/i6Aq9V15RPhxxXT9h2nW7Iu5PPm6wXj92SAe9G0xSPvXKXT/L4Qi9rk5VPquHXD/jg+u8u5NKPsZLYD9PZG28q/lJPgeaYD+7ppC8io5YPlctWz8K0cW8kB5XPorNWz9U6N+8FDpLPnNOYD/41s+8M9lJPji/YD/Z8bG8JYBYPuQZWz+kRqS8YgJNPhysXz/mTeC8hvRXPtc6Wz9SxYi8c1RAPubkYz93xXa65LxAPo6wYz8ny446obNAPqXNYz8TNku78pFDPpzXYj/8rhC8JMhKPmKnXz8hnRY8hfJIPgRTYD9YOyw8UmtGPgnmYT+beXW8tIJEPtuPYj90bUe8SrFEPrn9YT/kfhE89aRGPkwxYT+bHDU8nLlIPoIFYT/FDHm8dLJDPqVxYj+h9787O2hiPlP9Vj9SAte7xP9hPqsxVz/lxgy8DAliPpQUVz/2P5C7tSpfPp0KWD9cDq46JcpZPjWPWj+PlJO8VVFcPjL8WD87GPU7+zlePl1SWD/k/5g7ZQtePoHkWD8vNoa8uxdcPu6wWT8LBZi8CgNaPrjcWT/nPfw7MwpfPpVwWD9O6Vq86yhYPnSWWj+Z7eQ7F6FRPr2fXD/hWtg8jM5SPswxXD8AGtE8j3BQPkUXXT+uTNQ8Am5NPo5aXj8mDa48AsNYPjNIWj+nXyY8IC5KPuS0Xz9LWog8GZ5LPq8UXz9scaI8mIJXPsaTWj8NYJI8c+NYPgIjWj8u9mg8hTxKPlfIXz93n008R7pVPh02Wz8m16I8OCBIPg/6Xz9KZta8h+VJPsBYXz/4tua8YgJNPhysXz/mTeC8FDpLPnNOYD/41s+8aplUPtdAWz9mQOe8lTJWPluOWj/kx8m8io5YPlctWz8K0cW8kB5XPorNWz9U6N+8mcxSPrT5Wz8pvvK8rk5VPquHXD/jg+u8s0tOPiHTXT8tFw+9ebdPPoZEXT8Lywy9G0xSPvXKXT/L4Qi9mRtRPntCXj/i6Aq9HZhGPgJ3YD8us7S8M9lJPji/YD/Z8bG8buNMPrdWXj/n4Qq9Iu5PPm6wXj92SAe9NcFGPnxKYD84/Y28q/lJPgeaYD+7ppC81fZGPnAtYD9zh4K8u5NKPsZLYD9PZG28gB5WPgJ5Wj8fv6K8N+9VPiyCWj9GwZa8hvRXPtc6Wz9SxYi8JYBYPuQZWz+kRqS8xIFBPjuqYT/NOxg8U4VAPh0dYj+qE847dLJDPqVxYj+h9787SrFEPrn9YT/kfhE85FBBPoFDYj9PiVG8YHhDPpeDYT/SZ4K8UmtGPgnmYT+beXW8tIJEPtuPYj90bUe8eGJAPoCKYj/HKRu88pFDPpzXYj/8rhC85wo9PmaeYz8HyIa6OXg9PkeEYz8+TGy7obNAPqXNYz8TNku7c1RAPubkYz93xXa6e7VDPtjDYD+GvD889aRGPkwxYT+bHDU8TYM9PodhYz+Uprc65LxAPo6wYz8ny446QWNGPnPBXz/HBjU8hfJIPgRTYD9YOyw8fDFHPn11Xz9+IC08JMhKPmKnXz8hnRY8CydGPkB+YD9YS4S81fZGPnAtYD9zh4K8u5NKPsZLYD9PZG28nLlIPoIFYT/FDHm8555bPm5NWD/FToy8WJtcPozaVz8zbGe8MwpfPpVwWD9O6Vq8ZQtePoHkWD8vNoa8x89bPim0Vz8fT6I7UqhZPhJ0WD/mbQQ8VVFcPjL8WD87GPU7+zlePl1SWD/k/5g7O75cPiltVz9MO9Y6tSpfPp0KWD9cDq46whVgPkRZVj+7Et+7d6hfPmFzVj9inYq7DAliPpQUVz/2P5C7O2hiPlP9Vj9SAte7OGtZPs8zWT8mD6C8uxdcPu6wWT8LBZi8ZZ1fPiCWVj/hVhe8xP9hPqsxVz/lxgy8c71WPjQ2Wj9qtJq8JcpZPjWPWj+PlJO8N+9VPiyCWj9GwZa8hvRXPtc6Wz9SxYi8nvlWPmZ5WT+kNAg82ylWPjjKWT8prQQ86yhYPnSWWj+Z7eQ7CgNaPrjcWT/nPfw7eQBVPpv9WT9nNZY8JDtTPumeWj/zhaY8R7pVPh02Wz8m16I8mIJXPsaTWj8NYJI8RIdIPtK2Xj+HD6c8GO5GPk5pXz/Wlok8IC5KPuS0Xz9LWog8GZ5LPq8UXz9scaI8GVRKPvT9XT8hjbI8Am5NPo5aXj8mDa48+NROPoYkXD8p/d08M2lNPiSzXD/kZNk8j3BQPkUXXT+uTNQ8F6FRPr2fXD/hWtg8k4hWPqaAWT/9A2k8c+NYPgIjWj8u9mg8Pj1QPvKgWz+hktU8jM5SPswxXD8AGtE8c19WPi6tWT9hmBs8AsNYPjNIWj+nXyY82ylWPjjKWT8prQQ86yhYPnSWWj+Z7eQ7MwJHPqZ+Xz+BHEU8fDFHPn11Xz9+IC08JMhKPmKnXz8hnRY8hTxKPlfIXz93n008Eo7yvhJegD/pwk695uL2vnc7fz8vW3e9mwPzvhJJgT+MhXW9TkrjvpXEgz8u3jy9c/LnvmKzhD9Pn3G9tLDcvisDiT9M02y9qy3mvvCSgz/zIFG9NOXrvjcpgj9alAO9NOXrvjcpgj9alAO9K2rmvgCdgj90ahu9WK3mvtDYgT90Lw69gyzpvmcDgT+vIA+9+d7rvlm7gD/mTRy9NOXrvjcpgj9alAO9NOXrvjcpgj9alAO9gvPrvj04gj+ySS+92Yzqvh9ogj+qCTS9LETpvrZVgj/3uCm9fGbmvloggT8TO/y8fGbmvloggT8TO/y8K2rmvgCdgj90ahu9NOXrvjcpgj9alAO9+d7rvlm7gD/mTRy9nqjrvjeJgT8moCq9nqjrvjeJgT8moCq9+UTvvu4PgT+1zl+9EmLxvk5Rgz8uwHi9EmLxvk5Rgz8uwHi9cjrovs0OhD/FRXK9Movnvr/agj/X5VK9EmLxvk5Rgz8uwHi9xUDsvpLWgT8urjS93aDtvnySgT+FbFC93aDtvnySgT+FbFC9gvPrvj04gj+ySS+9U3/yvrRxgD95/Y69mwPzvhJJgT+MhXW9c/LnvmKzhD9Pn3G9dDbjvg3fgz/k15O9tLDcvisDiT9M02y9NyHmvoujgz8oD4q9skrmvpHIgj9ONaW97rjrvkhggj9F4rG9lYbmvuYKgj94i6y93b7rvn3ngD/X4Ka9wQXpvn01gT8XBK297rjrvkhggj9F4rG97rjrvkhggj9F4rG9+3nqvmWIgj/qYZm9+d3rvtpagj/CBJy97rjrvkhggj9F4rG97rjrvkhggj9F4rG97Cvpvsx6gj+Ug569CjfmvkJagT9kOLW9CjfmvkJagT9kOLW9skrmvpHIgj9ONaW93b7rvn3ngD/X4Ka97rjrvkhggj9F4rG9XJDrvk+ugT8p95695zzvvrQagT++pIW9EmLxvk5Rgz8uwHi9EmLxvk5Rgz8uwHi9HH/nvtvqgj+984m9cjrovs0OhD/FRXK9HH/nvtvqgj+984m94i3svtn2gT8rtJm9R5PtvpakgT8fvYy9+d3rvtpagj/CBJy9/4QZPwjBNj+AIrk+D/QaP/2mJj++iuo+GUU8P6EDGz+WtJs+1uBXP0zQAT+meDY+ouZZP91MAj/kRQM+SGI8Py5PKz+DwdM9GUU8v6EDGz+WtJs+D/Qav/2mJj++iuo+/4QZvwjBNj+AIrk+1uBXv0zQAT+meDY+ouZZv91MAj/kRQM+SGI8vy5PKz+DwdM9RZ85vzBVLj+F6tE9ua5Qv9SGEz9LMm89DY5Xv2D8CT+tC7U8iM5FvzZ0Ij8atYS8iMruvXLiVD4Nn3g/Hw2+vMq9nz2mJn8/tJ5NvYGvVD5ZFno/RZ85PzBVLj+F6tE9ua5QP9SGEz9LMm890sdPPwqDFT9NnkQ88ZBNPwGGGD/cCHm8hwZ5PMh1HD2ZyH8/WAt5O8Bh9j2MI34/AAAAgHLrQD1Ft38/xqv6PBp0Ez3Ptn8/hju9POK9nz3OJn8/lOkIPrlMSD7ntXg/TJWHPVleTz5PH3o/hwZ5vMh1HD2ZyH8/xqv6vBp0Ez3Ptn8//PVuP3uctz7YGRW8lONGP+UgIT/fEoO8ZMJWP0tKCz8UvWO8uUx3P4NNhD6kRdi78ZBNPwGGGD/cCHm80sdPPwqDFT9NnkQ8iM5FvzZ0Ij8atYS8Zr9Wv+hOCz/ouWO8lONGv+UgIT/fEoO8DY5Xv2D8CT+tC7U8uUx3v4NNhD6kRdi7/PVuv3uctz7YGRW84KR/v3zcV70tZao64KR/v3zcVz0tZaq67vVuv3Cct75CvRY8uUx3v4NNhL6kRdg7f+NGv9QgIb+I5IM8Zr9Wv+hOC7/ouWM8slcLvy+vVr9XIbA8VCwhv2nURr8tBKM8DFqEvv43d7/Xhck8sqm3vnbibr+G+sI8+tpXPW6Pf78jttE8H9tXvZmPf7+R5NA8H9tXPZmPf7+R5NA8sqm3Pnbibr+G+sI8u02EPnk5d7/FWMo8H9tXvZmPf7+R5NA8iS8hP8/RRr9rB6M8xlcLP02vVr+4T688ZMJWP0tKC78UvWM8f+NGP9QgIb+I5IM8uUx3P4NNhL6kRdg77vVuP3Cct75CvRY84KR/P3zcVz0tZaq64KR/P3zcV70tZao6eYAZPj+UqT3ZN3w/o5j/PVU7AT5073s/+wxkPnsPLT6+ynU/ykWDPhbevj0uSnY/z/yyPQi7Iz7Ktns/lOkIPrlMSD7ntXg/b/0pPTqiOD5/lHs/TJWHPVleTz5PH3o/2kMLvBP0PT4njHs/WAt5O8Bh9j2MI34/3Otrvc5LMz4UnXs/tJ5NvYGvVD5ZFno/fA7PvRuAGT7Wx3s/QP7uvdHhVD5Rnng/sO0JvviY5j0pBnw/lyhTvlNPRD6zpHU/UtQevoubiD0dU3w/w719vjxY9T3WHHY/WUAkvtDOiDwspnw/y7yHvugcHj1OpHY/O34Zvt20BL3F+Hw/2UWDvvQ3NL2nL3c/f5X/vXZwm70jQX0/qwpkvkWN9b01rXc/cQCzvaFD4L2QeX0/hjQrvjvzOb4bFHg/GvopvRgDBb7Um30/8/nCvVt2ZL6uWng/8kILPDtxCr7no30/uF5lvMQpdr6Td3g/Pu9rPRZk/73Fkn0/nH+MPW9fbb4maHg/XwzPPfb5y72waH0/iPcTPiLASr6xMHg/7e8JPoLHfr2fKn0/9CRTPrvqEb4Q1Hc/GtEePl+Ghbwt3nw/gcF9PgCYkL0NW3c/Ej8kPnafCT3+iXw/8LmHPgWqLTyK03Y/AAAAgAjk0Dyx6n8/28w7vmmle7+YpRs8Ae+LvlY6dr8PG2I8/aTou6j9f784upa7ROKcPVQ+f78dEL67z8N+Pn3nd7/FL5m8aRWoPhvPcb86upY7ZEJMP08JiD4AhQo/AUBMPxYMiD7Uhwo/ZEJMP08JiD4AhQo/ZEJMP08JiD4AhQo/AAAAgEpMfT9nYhQ+AAAAgEpMfT9nYhQ+AAAAgEpMfT9nYhQ+AAAAAEpMfT9nYhQ+ZEJMv08JiD4AhQo/ZEJMv08JiD4AhQo/ZEJMv08JiD4AhQo/ZEJMv08JiD4AhQo/AAAAgA78+r6sIV8/AAAAAA78+r6sIV8/AAAAgA78+r6sIV8/AAAAgA78+r6sIV8/ak4gvzUx9z7quBw/qaikvqrlTz/QSvk+s+L/vhqMhj3HGF0/H+Eav3MD5z1Ex0k/6U03vjS4gr6WPHM/JqqkPlOK472KuXA/miKKPsy7Y76Z128/qU8gPxbZQT4ankE/peT/PpOuJD84ehQ/0OMaPyQDDj8ANhI/SGU3PslxaD9T8cE+MDGKviCYYD+hKss+39j/vtONhr2bG12/H+Eav3MD571Ex0m/60cgv0wx976Gvxy/OpykvvbfT78MZvm+oiOKvmWXYL8TN8u+nUw3PjFtaL8tDcK+Atf/PjyuJL93gBS/MdsaP8wHDr+bOhK/kkggP3DYQb4CpEG/rqmkPhq+4z3auHC/miKKPsy7Yz6Z12+/tkw3vnXEgj7+OnO/ZEJMP08JiL4AhQq/ZEJMP08JiL4AhQq/AUBMPxYMiL7Uhwq/LT1MPzQKiL51jAq/AAAAAA78+j6sIV+/AAAAAA78+j6sIV+/AAAAAA78+j6sIV+/AAAAAA78+j6sIV+/ZEJMv08JiL4AhQq/AUBMvxYMiL7Uhwq/ZEJMv08JiL4AhQq/ZEJMv08JiL4AhQq/AAAAAEpMfb9nYhS+AAAAAEpMfb9nYhS+AAAAAEpMfb9nYhS+AAAAAEpMfb9nYhS+ClEaP/QRtL7PWDe/ClEaP/QRtL7PWDe/ClEaP/QRtL7PWDe/ClEaP/QRtL7PWDe/SfkQP9xjPT/HArq+SfkQP9xjPT/HArq+SfkQP9xjPT/HArq+SfkQP9xjPT/HArq+ClEaP/QRtD7PWDc/ClEaP/QRtD7PWDc/ClEaP/QRtD7PWDc/ClEaP/QRtD7PWDc/SfkQP9xjPb/HAro+vP0QPxxhPb8UALo+SfkQP9xjPb/HAro+SfkQP9xjPb/HAro+ESdDP1J62D6H4vo+JoZLPzR5Gj/+9H09AOBNP7FJjL1rJBc/S9dBP2AvOz3FziY/4IU9PwSyAL9Vg+Q+tItLP+RxGr/A8329pC8+P1Q3K7897OI8ESdDP1J62L6H4vq+AOBNP7FJjD1rJBe/S9dBP2AvO73Fzia/T349P+K3AD84j+S+gS8+PzU3Kz/LveO8geFNv79OAj8AFp0+SthBv0Kn+T5ihN4+LClDvxdPBD7xViI/Q4pLv83Io77J6QM/izA+vxKh3L7QIAM/aoM9v0scKb9gyv89geFNv79OAr8AFp2+3tVBvz+x+b6agd6+LClDvxdPBL7xViK/LIVLv/nJoz5J8QO/ci4+v76r3D5eHwO/aoM9v0scKT9gyv+9ClEav/QRtL7PWDe/ClEav/QRtL7PWDe/ClEav/QRtL7PWDe/NlUavywPtL77VTe/SfkQv9xjPT/HArq+vP0QvxxhPT8UALq+SfkQv9xjPT/HArq+SfkQv9xjPT/HArq+ClEav/QRtD7PWDc/ClEav/QRtD7PWDc/ClEav/QRtD7PWDc/ClEav/QRtD7PWDc/SfkQv9xjPb/HAro+SfkQv9xjPb/HAro+SfkQv9xjPb/HAro+SfkQv9xjPb/HAro+aEFMP1w9Rr1A0xk/aEFMP1w9Rr1A0xk/aEFMP1w9Rr1A0xk/aEFMP1w9Rr1A0xk/AAAAAP6oRj9pdiE/AAAAAP6oRj9pdiE/AAAAAP6oRj9pdiE/AAAAAP6oRj9pdiE/aEFMv1w9Rr1A0xk/aEFMv1w9Rr1A0xk/aEFMv1w9Rr1A0xk/aEFMv1w9Rr1A0xk/AAAAAGf4Xb/uEf8+AAAAAGf4Xb/uEf8+AAAAAGf4Xb/uEf8+AAAAAGf4Xb/uEf8+R0ogv11/0D0H5kU/hZukvu7I5T7Ac1U/ftr/vlQ6xb48nEY/HuEavxTGnL7DKDw/sUk3vgqTNL8klS8/fqmkPpyPE7+CT0A/yCWKPmaVK79O/DA/jEwgP66RZb7IKz8/Qtf/PtAegz7d1VM/OeIaP+8IPT7XRkY/o0s3PjIeFj9KPUo/DCKKvpQGDT+bLko/ftr/vlQ6xT48nEa/HuEavxTGnD7DKDy/Q04gvwZ80L3b4kW/RKekvgrH5b79cVW/Cy+KvgUNDb/kJ0q/+GU3PtgkFr/dNkq//9r/PtUtg75o0lO/OeIaP+8IPb7XRka/jEwgP66RZT7IKz+/EKekPvyTEz+rTEC/aCOKPgKZKz9E+TC/sUk3vgqTND8klS+/aEFMP1w9Rj1A0xm/aEFMP1w9Rj1A0xm/aEFMP1w9Rj1A0xm/aEFMP1w9Rj1A0xm/AAAAAHzvXT/1MP++AAAAAHzvXT/1MP++AAAAAHzvXT/1MP++AAAAAHzvXT/1MP++aEFMv1w9Rj1A0xm/aEFMv1w9Rj1A0xm/aEFMv1w9Rj1A0xm/aEFMv1w9Rj1A0xm/AAAAAJqrRr82cyG/AAAAAJqrRr82cyG/AAAAgJqrRr82cyG/AAAAgJqrRr82cyG/3VAaPwAAAADcQky/3VAaPwAAAADcQky/3VAaPwAAAIDcQky/3VAaPwAAAIDcQky/d/0QP677Uj8AAAAAA/kQP73+Uj8AAAAAd/0QP677Uj8AAAAAhQARP5P5Uj8AAAAA3VAaPwAAAADcQkw/3VAaPwAAAADcQkw/3VAaPwAAAIDcQkw/3VAaPwAAAIDcQkw/DO0QP/QGU78AAAAADO0QP/QGU78AAAAAgfEQP+UDU78AAAAAgfEQP+UDU78AAAAA1ylDPyNqJz5XTCA/CI1LP32jAz/AnKQ+7+FNP163pL4F2/8+E9hBPyIcfL504Ro/s4M9P83iJb9pZTc+RIZLP+ipA7+uqaS+FS4+P9nSHL/jL4q+GCdDP2dtJ753TyC/QORNP/qzpD7A1f++E9hBPyIcfD504Rq/rIo9P53cJT+ZSze+UDU+P9vMHD9GI4o+7+FNv163pD4F2/8+E9hBvyIcfD504Ro/GCdDv2dtJ753TyA/RIZLv+ipA7+uqaQ+FS4+v9nSHL/jL4o+l309v7/pJb/XZTe+POBNvx7DpL7p2P++E9hBvyIcfL504Rq/9yxDv9JsJz5bSCC/CI1Lv32jAz/AnKS+UDU+v9vMHD9GI4q+rIo9v53cJT+ZSzc+3VAavwAAAIDcQky/3VAavwAAAIDcQky/3VAavwAAAADcQky/3VAavwAAAADcQky/d/0Qv677Uj8AAACAd/0Qv677Uj8AAACAA/kQv73+Uj8AAACAA/kQv73+Uj8AAACA3VAavwAAAIDcQkw/3VAavwAAAIDcQkw/3VAavwAAAADcQkw/3VAavwAAAADcQkw/DO0Qv/QGU78AAACAgfEQv+UDU78AAACADO0Qv/QGU78AAACADO0Qv/QGU78AAACA9EFMP6xr1j5+/90+OERMPw1u1j7Y9N0+kj9MPwxw1j4GBN4+TT1MP6tt1j6qDt4+AAAAAL99fD999Si+AAAAAL99fD999Si+AAAAAL99fD999Si+AAAAAL99fD999Si+YT1Mv9x61j6lAd4+HTtMv3t41j5JDN4+9EFMv6xr1j5+/90+9EFMv6xr1j5+/90+AAAAAHEwTL7f23o/AAAAAHEwTL7f23o/AAAAAHEwTL7f23o/AAAAAHEwTL7f23o/3Eggvz+2JT8Rkt4+cZukvo4bbD+dpVs+uNf/vj2Tpz4aT00/oOEav2qjsj6FODc/Sko3vsNrRT0vkHs/YKqkPujIOj7W220//SSKPrehmj0lv3U/TEwgP5Pu0j5adik/Ytb/PrtISj/Ts7U+8OAaP4MEND/3Or8+lkw3Ppr8ej/JJKg9TiKKvjXvdD8waN49uNf/vj2Tp74aT02/oOEav2qjsr6FODe/t00gv/CtJb/RnN6+RamkvgoWbL8B21u+rzCKvuvqdL+IB9+9bUs3PgP7er8Cwai9PNn/Pm5ESr/0wrW+wuAaP8H9M7/1VL++TEwgP5Pu0r5adim/daakPnbEOr683G2/3CGKPsppmr0hwHW/g0o3viUDRb1+kHu/kj9MPwxw1r4GBN6+TT1MP6tt1r6qDt6+9EFMP6xr1r5+/92+9EFMP6xr1r5+/92+AAAAAEYXTD4n3Xq/AAAAAEYXTD4n3Xq/AAAAAEYXTD4n3Xq/AAAAAEYXTD4n3Xq/9EFMv6xr1r5+/92+9EFMv6xr1r5+/92+kj9Mvwxw1r4GBN6+YT1Mv9x61r6lAd6+AAAAAL99fL999Sg+AAAAAL99fL999Sg+AAAAAL99fL999Sg+AAAAAL99fL999Sg+i1EaPwPnDb+I6xK/i1EaPwPnDb+I6xK/i1EaPwPnDb+I6xK/i1EaPwPnDb+I6xK/BAARPzDCFz/KjxK/XfkQP6PIFz+xjxK/BAARPzDCFz/KjxK/NwIRP/C9Fz8EkhK//FcaP+jmDT/f5BI/WF4aPy3gDT+w5BI/i1EaPwPnDT+I6xI/i1EaPwPnDT+I6xI/cPkQPyrCF79SlhI/5P0QP/e/F78ylBI/cPkQPyrCF79SlhI/cPkQPyrCF79SlhI/xiVDP4N9DT/EcKw+k4dLP1fkFz+zBwG+Gd9NP3Mn7T3MPhU/cdhBPywKeT5jMBs/PYM9P1Lyrr6DOBQ/k4dLP1fkF7+zBwE+pS4+Px7LIL9FDm0+xiVDP4N9Db/EcKy+Gd9NP3Mn7b3MPhW/cdhBPywKeb5jMBu/lIE9P+X9rj43NxS/pS4+Px7LID9FDm2+duBNv20fFD+mKQs+LNhBv3TvGD9UOIc+lydDv4CDoj5qYxA/woZLv04FFr6zrxY/wC0+v8migb7fox4//349vwEsF7+8nKQ+duBNv20fFL+mKQu+LNhBv3TvGL9UOIe+lydDv4CDor5qYxC//oVLv/QeFj4irxa/wC0+v8migT7fox6//349vwEsFz+8nKS+i1EavwPnDb+I6xK/i1EavwPnDb+I6xK/uFUav9PkDb9E6RK/uFUav9PkDb9E6RK/5P0Qv/e/Fz8ylBK/cPkQvyrCFz9SlhK/BAARvzDCFz/KjxK/mAYRvzbCFz9CiRK/6Vcav0jgDT9Z6xI/6Vcav0jgDT9Z6xI/i1EavwPnDT+I6xI/i1EavwPnDT+I6xI/cPkQvyrCF79SlhI/cPkQvyrCF79SlhI/cPkQvyrCF79SlhI/cPkQvyrCF79SlhI/uEFMP44m3j4aRNY+/ENMP+ob3j57RtY+JT1MP7Yo3j5KU9Y+JT1MP7Yo3j5KU9Y+AAAAADPVej9ss0y+AAAAADPVej9ss0y+AAAAADPVej9ss0y+AAAAADPVej9ss0y+uEFMv44m3j4aRNY+uEFMv44m3j4aRNY+uEFMv44m3j4aRNY+uEFMv44m3j4aRNY+AAAAADiLKL4xgnw/AAAAADiLKL4xgnw/AAAAADiLKL4xgnw/AAAAADiLKL4xgnw/o0kgv5OHKT9Fv9I+oZqkviLlbT/XQjo+G+T/vsv1tT6PNUo/CuYav7d6vz4s7zM/Fk43vp7JqT0b+Ho/oaikPjldXD6RDmw/miKKPhgM4D0w6XQ/rE0gPxPE3j7KoCU/7Nf/Pl9cTT/VUac+8dsaP6lGNz8ZfbI+o0s3PgmSez8S+EI9MSOKvoDCdT8iZZk9R9r/viD4tb4mOEq/4+Eav619v7718TO/o0kgv5OHKb9Fv9K+oZqkviLlbb/XQjq+MSOKvoDCdb8iZZm9o0s3PgmSe78S+EK97Nf/Pl9cTb/VUae+8dsaP6lGN78ZfbK+rE0gPxPE3r7KoCW/iamkPjlEXL7eD2y//iKKPkzY373g6XS/ek43vouVqb2j+Hq/uEFMP44m3r4aRNa+uEFMP44m3r4aRNa+uEFMP44m3r4aRNa+uEFMP44m3r4aRNa+AAAAADiLKD4xgny/AAAAADiLKD4xgny/AAAAADiLKD4xgny/AAAAADiLKD4xgny/uEFMv44m3r4aRNa+uEFMv44m3r4aRNa+uEFMv44m3r4aRNa+uEFMv44m3r4aRNa+AAAAADPVer9ss0w+AAAAADPVer9ss0w+AAAAADPVer9ss0w+AAAAADPVer9ss0w+rFcaP8j+Er9nzA2/rFcaP8j+Er9nzA2/rFcaP8j+Er9nzA2/gFMaPw4BE7+Yzg2/yf8QP+Z7Ej+c1Re/yf8QP+Z7Ej+c1Re/lv0QP615Ej/c2Re/lv0QP615Ej/c2Re/gFMaPw4BEz+Yzg0/gFMaPw4BEz+Yzg0/rFcaP8j+Ej9nzA0/rFcaP8j+Ej9nzA0/IvkQP8x7Er8P3Bc/j/IQP1SCEr8J3Bc/IvkQP8x7Er8P3Bc/lv0QP615Er/c2Rc/CStDPzhuED99TKI+LYlLPxemFj8caxa+pOBNP6CSCz4AGRQ/2thBPz1thz7i4hg/BoQ9P99ZpL7kNxc/PoxLP86hFr9gbRY+FjA+P7aYHr+0y4E+CStDPzhuEL99TKK+pOBNP6CSC74AGRS/5NVBPytrh74Z5xi/BoQ9P99ZpD7kNxe/2i4+P66XHj/314G+iOFNv5BAFT+JWOw9Dt1Bv2M1Gz/Rnng+wCtDv5WXrD5waQ0/hIlLv+ybAL505xc/NjE+v2WObL7Y0yA/BoU9v0AmFL9mKK8+iOFNv5BAFb+JWOy9QdpBv2U4G7+jo3i+AilDv/KarL4ybA2/GodLv4qeAD6L6he/CC0+v2ejbD7c1iC/BoU9v0AmFD9mKK++rFcav8j+Er9nzA2/rFcav8j+Er9nzA2/rFcav8j+Er9nzA2/rFcav8j+Er9nzA2/lv0Qv615Ej/c2Re/lv0Qv615Ej/c2Re/lv0Qv615Ej/c2Re/yf8Qv+Z7Ej+c1Re/rFcav8j+Ej9nzA0/rFcav8j+Ej9nzA0/O1Eav3IFEz+CzA0/O1Eav3IFEz+CzA0/IvkQv8x7Er8P3Bc/IvkQv8x7Er8P3Bc/IvkQv8x7Er8P3Bc/yf8Qv+Z7Er+c1Rc/SkJMP202yT7/B+o+SkJMP202yT7/B+o+SkJMP202yT7/B+o+SkJMP202yT7/B+o+AAAAAGqBfj+G+Ny9AAAAAGqBfj+G+Ny9AAAAAGqBfj+G+Ny9AAAAAGqBfj+G+Ny9SkJMv202yT7/B+o+SkJMv202yT7/B+o+SkJMv202yT7/B+o+SkJMv202yT7/B+o+AAAAAO7sgr4YfXc/AAAAAO7sgr4YfXc/AAAAAO7sgr4YfXc/AAAAAO7sgr4YfXc/8k4gvyf6Hj/LW/E+zqekvgKFaD8UAok+euf/vm6Ejz4kzFE/C+Mav+QwnT7iEDw/mmU3vpEtELzH2Xs/66mkPjh8Az4FKXA/qiOKPh80ojxJdHY/N00gPyf4vj7wRi8/LNn/PrCvRD8yzcw+TeMaP2oqLj8kxtM+MUw3PqBYeT/oIQ4+DiKKvgzpcj/60yc+SNj/vkKDj7760FG/WOEavxAinb5hFTy/Bkkgv8j6Hr/bafG+7ZqkvlOFaL9fD4m+PySKvlrmcr8TCyi+40o3PtpWeb9TVQ6+jtb/Pq2tRL812My+LNkaP/IsLr9329O+PEkgPzj7vr7ASS+/wpqkPl1gA76ULHC/qiOKPh80orxJdHa/Okw3vjsuEDzv2nu/SkJMP202yb7/B+q+SkJMP202yb7/B+q+djtMP0NDyb7KFOq+djtMP0NDyb7KFOq+AAAAAC/5gj55e3e/AAAAAC/5gj55e3e/AAAAAC/5gj55e3e/AAAAAC/5gj55e3e/djtMv0NDyb7KFOq+djtMv0NDyb7KFOq+SkJMv202yb7/B+q+SkJMv202yb7/B+q+AAAAAGqBfr+G+Nw9AAAAAGqBfr+G+Nw9AAAAAGqBfr+G+Nw9AAAAAGqBfr+G+Nw9UFcaP/okBb/w4Bq/I1MaPwgnBb9T4xq/310aP/wkBb9k2hq/310aP/wkBb9k2hq/XfQQPxMCID9Hjgm/l+0QP2MIID8Sjgm/0PgQP8L/Hz9IjAm/0PgQP8L/Hz9IjAm/UFcaP/okBT/w4Bo/I1MaPwgnBT9T4xo/tFkaPwonBT/I3Bo/310aP/wkBT9k2ho/XfQQPxMCIL9Hjgk/l+0QP2MIIL8Sjgk/0PgQP8L/H79IjAk/0PgQP8L/H79IjAk/GitDPy49CD85g7w+r4lLP+N9GT+GYru9JOBNP9WGpz0ctRY/P9ZBP8DHVD4giR4/W4U9P6PMv77+5g4/KopLP0B+Gb+JLrs9ri8+PxryI7+vekc+GitDPy49CL85g7y+JOBNP9WGp70ctRa/P9ZBP8DHVL4giR6/W4U9P6PMvz7+5g6/ri8+PxryIz+veke+DOJNv0bZET9yRC0+DNlBv+HDFD+brpg+aytDv8CBkT6x1RQ/ZopLv2ifOL75PhQ/8S8+vz63k77CoBo/qYM9v+qrG7/ZyZI+DOJNv0bZEb9yRC2+DNlBv+HDFL+brpi+qyhDv5aEkb6Y2BS//odLvyqjOD79QRS/ii4+v0LDkz6dnxq/qYM9v+qrGz/ZyZK+UFcav/okBb/w4Bq/QVUav8EpBb/f3hq/310av/wkBb9k2hq/310av/wkBb9k2hq/X/IQv+D/Hz/wkgm/X/IQv+D/Hz/wkgm/0PgQv8L/Hz9IjAm/Q/8Qv6T/Hz+ghQm/FVEav9ArBT9D4Ro/FVEav9ArBT9D4Ro/tFkavwonBT/I3Bo/310av/wkBT9k2ho/XfQQvxMCIL9Hjgk/X/IQv+D/H7/wkgk/0PgQv8L/H79IjAk/Q/8Qv6T/H7+ghQk/AR0aP0T6Pj6Uwka/AR0aP0T6Pj6Uwka/AR0aP0T6Pj6Uwka/AR0aP0T6Pj6Uwka/1NIPPycpTj/P2EE+1NIPPycpTj/P2EE+1NIPPycpTj/P2EE+UdcPPy8mTj8F1kE+v4caP+sFOL6q2EY/6osaPxMDOL6Y1UY/v4caP+sFOL6q2EY/rIQaP0ECOL5C20Y/LCESP/qMTL/VikG+LCESP/qMTL/VikG+LCESP/qMTL/VikG+LCESP/qMTL/VikG+lBdDP3Eyojy1rSU/CuFKPxjT3D78xdw+BHZOP/i52L69WdM+V1ZCPxOZv77ZWQg/TXY+P/TtKr9FiNI8uypMP5U52L66k9y+i/s+P9W1B7/XV86+5ThDP2Z/N7z1kyW/NElNP2dj3T7dGNO+N1RBP63wwz7bPQi/GYo8P0QNLT+pQM+8GWM9P9LaCT/5ic4+MzFOv1qqRj7nXQ8/EQVCv4rVxT1CKyU/D8NCv7tInb5hWhI/W7lKv80rFL/ZXkc+xkE9v5qLKb/4cPk9l6M8v8EBGL/QeKW+ZIpNv8PeT76bfA+/SqRBvzEL173HRiW/3I5DvwfimD4UdRK/iFNMvynpET9G30e+Mxw/v+xtJz98evq9fFw+v9DpFT/cOKU+rIQav0ECOD5C20a/rIQav0ECOD5C20a/rIQav0ECOD5C20a/rIQav0ECOD5C20a/TCYSv/qKTD+6bkE+TCYSv/qKTD+6bkE+lyUSv/yJTD8BiEE+/ywSv6GETD8jiUE+AR0av0T6Pr6UwkY/AR0av0T6Pr6UwkY/AR0av0T6Pr6UwkY/AR0av0T6Pr6UwkY/YcsPv2suTr+Z10G+E8wPv2ovTr9SvkG+YcsPv2suTr+Z10G+1NIPvycpTr/P2EG+wkJMPwmjwT60VPA+wkJMPwmjwT60VPA+wkJMPwmjwT60VPA+NkVMP1ylwT58SvA+AAAAAHdAfz+ydpy94LXROHdAfz+ydpy9AAAAAHdAfz+ydpy9AAAAAHdAfz+ydpy9wkJMvwmjwT60VPA+wkJMvwmjwT60VPA+wkJMvwmjwT60VPA+yEBMv0WuwT5hUvA+AAAAAGKjkr6nRnU/AAAAAGKjkr6nRnU/AAAAAGKjkr6nRnU/AAAAAGKjkr6nRnU/BUkgvw4QGz/PZfs+VpukvhY4Zj+Pzpc+JNj/vh8Zgj7r/VM/yOAav1YZkT64fD4/nGY3vnNAJL27pns/uaakPnSDyT3VFnE/RzGKPrLzMLzAe3Y/Mk4gP8W1sz6qOTI/9tj/PnJOQT8yS9k+NdwaPwq1Kj+r1N4+VEo3PvoUeD/k+C0+OySKvsFwcT/P3UY+o+P/vjMLgr6W/FO/yOAav1YZkb64fD6/fk8gv2wJG7+uZfu+FqekvjE2Zr9PzZe+YjCKvhdvcb9w3Ea+tGM3PtcTeL8Y+C2+y+L/PvpLQb9rSNm+KecaPx2sKr+S0d6+Mk4gP8W1s76qOTK/JKekPopPyb1xF3G/ryGKPuuTMjzcfXa/C003vuSpJD2gp3u/yEBMP0Wuwb5hUvC+yEBMP0Wuwb5hUvC+yEBMP0Wuwb5hUvC+yEBMP0Wuwb5hUvC+AAAAgGKjkj6nRnW/AAAAgGKjkj6nRnW/AAAAAGKjkj6nRnW/AAAAAGKjkj6nRnW/wkJMvwmjwb60VPC+wkJMvwmjwb60VPC+Zj5Mvzmywb5JV/C+Zj5Mvzmywb5JV/C+AAAAgHVCf78zpps9AAAAgHVCf78zpps9AAAAgHVCf78zpps9AAAAAHVCf78zpps9FlgaP64nAL9pBx+/FlgaP64nAL9pBx+/o1UaP6UlAL9vCx+/o1UaP6UlAL9vCx+/IPkQPxtNJD+/YAS/NPcQP+5KJD+MZQS/IPkQPxtNJD+/YAS/IPkQPxtNJD+/YAS/dlEaP54nAD/iDR8/dlEaP54nAD/iDR8/dlEaP54nAD/iDR8/dlEaP54nAD/iDR8/IPkQPxtNJL+/YAQ/IPkQPxtNJL+/YAQ/gfsQP0BJJL/rYgQ/gfsQP0BJJL/rYgQ/eipDP1kqBT+HHMU+NopLP6woGj/2EJS9YeBNP1kGgT0ETBc/BtdBPwhoQD6iJiA/3II9PwXayL6YxQs/l4pLP/UoGr/P3JM9ADY+PwVuJb8xYjI+eipDP1kqBb+HHMW+YeBNP1kGgb0ETBe/BtdBPwhoQL6iJiC/3II9PwXayD6YxQu/Ei8+Pz50JT8NfDK+TuBNvwppED+YsT8+k9hBv0JBEj/+GaI+5ydDv+Hwhz7AGBc/1IhLvyt1S76htBI/dC4+v6eKnb71MBg/d4U9vyHuHb8swog+S+JNv+FjEL+pzT++19lBv6k7Er8pKKK+pipDvzruh77OFRe/a4ZLv055Sz6dtxK/dC4+v6eKnT71MBi/K4Q9vw3tHT9Xzoi+o1Uav6UlAL9vCx+/o1Uav6UlAL9vCx+/o1Uav6UlAL9vCx+/dlEav54nAL/iDR+/IPkQvxtNJD+/YAS/IPkQvxtNJD+/YAS/IPkQvxtNJD+/YAS/wfIQv09NJD93ZwS/e08av4gsAD/ZCx8/e08av4gsAD/ZCx8/dlEav54nAD/iDR8/dlEav54nAD/iDR8/NPcQv+5KJL+MZQQ/NPcQv+5KJL+MZQQ/gfsQv0BJJL/rYgQ/9f8Qv99GJL8AYQQ/R+P6vQSDk755IXO/n2+MvmEKE7/ocUW/3naLvjRMk746DWu/AAAAAN2flL4Y+nS/R+P6vQSDk755IXO/LDl8vsI8kL50Zm2/LlN9vuKUkL5HRm2/10e9vq5jir66k2O/bUi/vmzHib44QGO/jNzAvqOrib787mK/jNzAvqOrib787mK/jNzAvqOrib787mK/toxGv+fQ770syx6/XA9GvxCJbL7VCBe/jNzAvqOrib787mK/OOVFv+gg5b4sNOa+jNzAvqOrib787mK/jNzAvqOrib787mK/9Mm9vpm4ib6UkmO/ITW+vggWir4LbmO/ClOSvhIGjr4G0mq/9uY7vtfDkb473nC/R+P6vQSDk755IXO/R+P6vQSDk755IXO/WLXRONuTlL7p+3S/iqqLPkXL6L4FDVm/20MYPoutlr4Fr3G/6hb7PY6Ck761IHO/wqptPoabk74V0m2/+xiiPi8GkL546Ge/7n2/Pswdib6aTmO/jNzAPqOrib787mK/jNzAPqOrib787mK/jNzAPqOrib787mK/jNzAPqOrib787mK/jNzAPqOrib787mK/jNzAPqOrib787mK/jNzAPqOrib787mK/jNzAPqOrib787mK/jNzAPqOrib787mK/jNzAPqOrib787mK/4eS9Ph25ib7hjGO/XVG+PmQKir7naWO/i26SPlMHjr6LzWq/6ueIPh+Q7b1q4nS/R+P6PQSDk755IXO/R+P6PQSDk755IXO/fO8TP5nlOj/VxLq+4KgYP6anPD8Y+qK+nNAQP34uOz9EOMO+DnoHP9CtOT+rb+G+GD/mPgk0QT8dlfS+gOq3Pn7/RD8QLAe/S9MRPndxUj/sIw2/s9usvLvLVD+5Ng6/9lCHvopMUD8zjQS/OPi3vuweSj8ou/6+zY0Jv0E6Nj8Slue+/mcevxMBKT8kANq+kR1Ev2boBj//aLy+t2hUv7DR5D6uN6u+hx9tv5Cfhz75Qom+mh5tv8iihz47Rom+Nh9ivxqmuT4aKpi+cxh8v6sfDr0ylS6+fFduv1yctb5t7a+9EKNDv3ELJb+qjZe8nMM1v/FANL+MNCK8lfoPv9aqU79M1N47ih3tvgPgYr9/lzI8opjuPrp8Yr/ZTy88h8kDP1s8W7/SBCM9KH0RP45pUr+6eBw9DbwQP8OzUr+//V09pLAAv11NQj8X3dO+y+vivqaDQD/Hzvm+7NEQv43hOj9lWsS+MLIPv+rEQj8ew6a+RPdTvhGiUz8X8AW/N47bvKgzWD896gi/oE6APlEXVz98OPa+qluxPuQmUj8dc+i+AWwGP5avQD9dXMu+MRUcP/iUND9mFrm+hB9DPxwfFD8vopS+VrhUP69l/z43U3y+9yNvP/59oT4KBCu+nSx4P26vWD6jXv69NqV/P+SAtzroc1e9SIl+P4s31r33H7C8eJxwP1vSrb4WuxY9my9iP4TI7b6COng9xx9CP68rJb/nE789lgQ0P1VgNL/d98I9WQgMP6e8VL/ADc89T97kPtawY793lsM99d+APm3Rdr+Rcqw9jtAmPtXie7+etpU9b/Cwu2Suf78EJ0s9it21vfO/fr9eijA9Yvt6vmEdeL9GbcU8as2qvrozcb9GNAA9Dq3rvjwtY79Vzcw8HnoFv8IvWr8HNis9t4cRv8NYUr+Xvyg9+r0Tv8+RUL/FM2Y9M0onv67ePL9ZWy2++zTmvm+6YL/49yi+zS/mvu+7YL8r9Ci+eF4Xv2DDQL+l3JO+K3SGvjzYc78qzR2+2c07vjVMeL/P8SO+5dSrPSrCer+WZTu+6g6NPhNJcL/3lVS+uYciP+DONL+vWqC+ckVJPwus776Ei86+IBFYPxKzjD0RKwi/clE7P+qXvz5y2BG/Wl28PkSvRD+7Fwa/uFDiPVtLXz/R7fO+3VKDvnj1ZD9OpLu+yx7nvlR4PD+/EwG/n6Ubv5JYtz6AZjW/J1UBv/k7Tz8RJJm+oroXPxOCIb9oLQC/3RT/PoedUb8wBpK+9+7HPkkjaL8mtiK+LHFbPgrcdr9lVR++e833PXLmer/KRiG+5Molvo3KeL/vUC++GP6hvlnRbb+LtES+obUovxbGML/WoZi+QAhJv8LJ8L5+Lc6+JfpXv0kykT2iPAi/Mms7vx5wvz5txBG/2CK3vhteRj8xbAW/u3bpvXiBXz8Nu/K+Q2uNPpBiZD/DC7e+clKyPmr+XT+pQ7a+n7MJPw6vND/cB+y+FPL7ProhGj949yC/8NNKv3kBDL/Rfoq+8NNKv3kBDL/Rfoq+ndAQv6HSSr+NLmq+2tgQv3DOSr8PF2q+AAAAAB/yWz1zoX+/AAAAAB/yWz1zoX+/3bnROE5gXD0UoX+/AAAAAB/yWz1zoX+/6WdZvwLM5b7rZI6+5iVwv5wJdb7HQIC+3chYv6st474YLJa+3chYv6st474YLJa+mxN6vxPT57xZFFm+9xR6v1bU57xQ+1i+FbVROZGJWz3NoX+/AAAAAK1aXD0ZoX+/AAAAgJGJWz3NoX+/ib7jPgDTYb9Mnx6+4a7jPgfXYb+FnR6+v5vAPjgbab/dZy++2AGePsGsbr9lB0G+abhRORRrXj1On3+/AAAAAJGJWz3NoX+/94NzPqghc79WflC+x+94PpOjcr/LQFO+AAAAgJGJWz3NoX+/AAAAgJGJWz3NoX+/AAAAgJGJWz3NoX+/AAAAgB/yWz1zoX+/AAAAAB/yWz1zoX+/AAAAAJGJWz3NoX+/FbXROJGJWz3NoX+/AAAAAB/yWz1zoX+/AAAAgB/yWz1zoX+/AAAAgB/yWz1zoX+/znkZv/2nST+6GhG+U7wkv1f5Pz8FLx2+rbskv5b4Pz+dSB2+j6ANv56sUj/qTgS+7E0Bv9ztWj8fLu697E0Bv9ztWj8fLu69BUgdOgEhWz0jon+/DZgtP+mzOT/3EvK9d0J7Pwyv8j38Gxq+4QRtP7YCtD420Q2+zEz7PlckXT8mdei9rkFRP5/GDL9guC++NoMvPxuhNr+nehS+B/UqP3a6Ob/ZZCq+xrlsP5X0rL7BtjO+kL6SPs7fcz/6SdC9MNGVPlRJcz+7GNm9/XlHv6uzGr/WSiq+i7xuv7+Uob4XgDO+gENdv4F88r6PXS2+1ohCvxUtIr9nMhW+dyYkPh4xez8mwdu93XiLvbEpfj++Usm9m8pMPYYyfj8t8tu9jJ8nPkDsej8FweS9hVB9v+C+Hz2YcA6+2Cl8v1DYgb15QCS+doIPP0A9R78915C+doIPP0A9R78915C+RKlNP9sSDr9cEl2+8qZNP8cVDr/oFl2+AAAAgB/yWz1zoX+/AAAAgB/yWz1zoX+/y7RRuR/yWz1zoX+/AAAAgJGJWz3NoX+/dhztPiicVb/5/Ji+MTqBPpGKbL+NGJO+V+bqPizIVL+y0KC+V+bqPizIVL+y0KC+jTIiPTPUdr9PS4a+3MkhPXPUdr9yS4a+lLnRON3IXD26oH+/y7TRuB/yWz1zoX+/AAAAAJGJWz3NoX+/YaFjPwxY5j6zzKq93qFjP4pY5j6imKq9UR9rP0Oywz46f9C9m+twPxuWoT47oPi9ZUsdukxgXD0RoX+/AAAAAB/yWz1zoX+/45J1P/CWez7UvQ6+yRt1P9uogD5/TBG+AAAAgB/yWz1zoX+/AAAAAJGJWz3NoX+/AAAAgB/yWz1zoX+/AAAAAB/yWz1zoX+/AAAAAK1aXD0ZoX+/AAAAgB/yWz1zoX+/AAAAgB/yWz1zoX+/AAAAAB/yWz1zoX+/S2xHv2m7Fr/4xVy+fZI9v8jYIb/zX2m+fZI9v8jYIb/zX2m+a5ZQv/IOC78Pdk++MwBZv2DW/b6fbEG+MwBZv2DW/b6fbEG+abhRORRrXj1On3+/NTg2vygtMT9HWfW9RbDhvQkOfT/8K9S99PavvrXVbj+QiNu9CDtav23WAT9t1gG+ZO4OP/vmUj+rTci92Vc4P3W9MD+JVY69SLg7P/58LD/Pxbq9c4OxPoCLbj8Twdu9pVVxv6GlnT7BewO+4SByv4PBmT6K7vy9X1okP7ZvQL/GhRq+30iwPvNra79JpEG+hyUBP3W4WL8w3i2+7/AjPyC3QL869Bu+Sk57vxrIFD66tvy92Cl8v1DYgb15QCS+bFF9v3G/Hz3jVg6+pa58v2aEAD7rzsy9S7ravCuZe7//FTu+I62LPQvweb83O1K+XNRKP5ucEj9Mc1e+XNRKP5ucEj9Mc1e+39EQP5HsTz+t6xG+VNYQP47pTz+R6RG+AAAAgJGJWz3NoX+/AAAAAJGJWz3NoX+/XrXRuAQhWz0non+/AAAAgB/yWz1zoX+/4GhZPy7A8z5pxGm+iCVwP9yShz5EwWS+usdYP3T48T4r9Xm+usdYP3T48T4r9Xm+wBJ6P7d5UD2pxlS+aBR6Pz0SUD3brVS+y7RRuR/yWz1zoX+/AAAAgAQhWz0non+/AAAAAB/yWz1zoX+/J7/jvk/FZD+gIXS9J7/jvk/FZD+gIXS9dpzAvpd2bD8a45S9vPOdvrx7cj/M/rK9grZRuch+WT2Ko3+/AAAAgB/yWz1zoX+/5oFzvmJSdz/+0s29cgx5vuvldj/zxdO9AAAAgJGJWz3NoX+/AAAAAB/yWz1zoX+/AAAAgJGJWz3NoX+/AAAAgB/yWz1zoX+/y7TRuB/yWz1zoX+/AAAAgJGJWz3NoX+/AAAAAJGJWz3NoX+/AAAAAB/yWz1zoX+/QngZP+maRL9kzma+G7wkP/OlOr9SsW6+G7wkP/OlOr9SsW6+jqANP5HpTb/M6V2+UlsBP3pzVr81LFS+wlUBPxx1Vr8KSFS+ZUsdukxgXD0RoX+/nUExv3TlMb+zwka+vEJ7v2JH0L1pMSa+bARtvxpgq756njO+jMkCvzNyVr/NukW+BzxMv4oxFj+aVQ6+DIcdv/d2Rj9HCBK+0vEhv9yoQz87NAC+3rhsvwebtT5ang2+AR6jvl/kbb8hez++BDaYvjBmcL8XvDC+uew+Py2AJz9pNAC+2/trP1kxuT5Xvw6+7oFYP/wmBD8FWQq+DfdAPyu0JD91AQm+ZAcBvoRTer8hOCu+uKqLPWD/eb86F1G+S7ravCuZe7//FTu++rrBvVLJfL9vhwG+dE99P3fMzLwQ0RG+FC18P8EDoz3iWxy+O4MPvyPZTT/ypUq+gYIPvxjYTT8iv0q+NKdNvywuEz+dCB++LqRNv5AyEz9HBh++AAAAAB/yWz1zoX+/AAAAAB/yWz1zoX+/FbVROZGJWz3NoX+/AAAAAB/yWz1zoX+/yxztvhOTXD+GsFS+2TuBvkYOcz8rMD++X+rqvlcrXD8CkWS+i+bqvk0uXD8Tc2S+9zMive2YfD9AYiG+9zMive2YfD9AYiG+XrXRuAQhWz0non+/FbXROJGJWz3NoX+/AAAAgB/yWz1zoX+/rKFjvwp14L5QJAa+rKFjvwp14L5QJAa+uiBrv//4vL5fgRG+Ku1wvyT2mb4PNh6+BUgdOgEhWz0jon+/AAAAgB/yWz1zoX+/1pN1v9DMar732ii+nBx1v+o4cL62Biy+AAAAgJGJWz3NoX+/AAAAgB/yWz1zoX+/AAAAAB/yWz1zoX+/AAAAAB/yWz1zoX+/AAAAgAQhWz0non+/AAAAAJGJWz3NoX+/AAAAgB/yWz1zoX+/AAAAgB/yWz1zoX+/pmtHP/XFGz/oBxu+/JI9P2csJz+cgyK+N5I9P7krJz8qnSK+jZdQPyLMDz8G2BK+t/9YPypfAz/L7Am+0AFZP+NZAz9YCAq+zLZRuTkWWT3ko3+/xv01P6kbLb+v8EW+x+bhPca8eL8+Ola+RPivPvWDar+HjVO+jBBaP3Pb+773bDi+He0Ov+8AT79oDj6+W104v9HKLb96hxK+0b87v4H1KL8Bzya+ZYOxvto3ar8JqlO+8S9xPyW9lr5fJyS+MCZyP/k5kr74sR2+FlEkv+d+Qz9NiI69sCuwvodFbz/tfbe9QBkBvwMoXD+iJqC9ovAjvzHJQz+dypC9Jj97P00yCL5+hQ2+FC18P8EDoz3iWxy+dE99P3fMzLwQ0RG+UKR8P5q+7L0yzua9m8pMPYYyfj8t8tu9W6yLvW4hfj+Ixsu93D1Lv5lI4bwzfxs/szpLvxhF4bxWgxs/1pA+vy+4Hr5+RSY/vbkev+V+Lj2xjkg/yddovzvSVb2EG9M+YViGPDLsjT7D7nU/xJGJPu6Caz4ldG8/EhOyPgH7/D5a+0s/M00lv1FulL5L1zQ/vcHkvfYUCz9cA1U/aEbYPkaBSD/FlOk+0yXRPlHfXD+OhZg+m/PKvaojNr84GDI/m/PKvaojNr84GDI/bd61vv6ptb6LZV0/uFDLvovJFL7B/Gc/3kYEP6eIVD8yOVY+DyAwPaZNET/aelI/V+GcPfGJAT8171s/nlwhv97vur4bZC8/4F/wvrR9976kJj0/KVuTPilbE76IYnI/DG+OPqxEJb4HZnI/QpifvisLeT53JGs/v8YLv6hjvT6Jb0A/smHwvuvwgz6bMFg/kFQhv9v4AD91Phc/1iGMvnNbL7802Sw/5mNyvsJTOL/M/iY/FyE9vkQeNL/3qS8/8Jtlv81JHbu7aOI+qOhjv073wD7v6YI+8Jl6v0D4Ez4J3hM+HNhnvhfjGr/paUM/avqaPolw+b19/XE/LhB6PuvysLvePng/MhRdvxlgtD4Xrbg+rRttv5wCmj6QwWg+IwAUv87w6zyPwFA/6tSrvmHC2T5zLFc/90Q2vwpZNT4T8y0/DSpdvz85J75a7PM+V1SwvTJVfT6YD3c/iQSSvXDOFT5Mlnw//8BMv5PKZT7MhA4/EpFqv/Of1rwcpMw+6ZBqv4Nx17z5o8w+sG4TvyWxMT/AIt0+Ujgav38bYr7wW0Q/++0Fvy0Phb7Ex08/Qmwbv+ihSb5UE0U/FBsMv5ooi74tpUo/AAAAAECSfj9yEdg94XufPrU+cz+EU0G8lED+PtTzWT8gDS0+3UYWP5mgTD9dfAM+soclvytm9z3a0UA/B3JPvz7izT41Odo+NxIQv66nkz6/UEY/gmSdvnB0Vz1EO3M/O+9Nv0H8HL6W7BI/PB5GP5+2oj6SPAw/M1UjP8o7IT+b0uI+2Kjgvj8qZb5yyl4/Ex74vjzsgL4DdFY/x/hRvyFU4z3oqg8/6PuWvoueeL5zlmw/xKI0PfgBbT8HNcC+vbkeP+V+Lj2xjkg/1pA+Py+4Hr5+RSY/szpLPxhF4bxWgxs/3D1LP5lI4bwzfxs/yddoPzvSVb2EG9M+xJGJvu6Caz4ldG8/YViGvDLsjT7D7nU/EhOyvgH7/D5a+0s/M00lP1FulL5L1zQ/vcHkPfYUCz9cA1U/aEbYvkaBSD/FlOk+0yXRvlHfXD+OhZg+bd61Pv6ptb6LZV0/m/PKPaojNr84GDI/m/PKPaojNr84GDI/uFDLPovJFL7B/Gc/3kYEv6eIVD8yOVY+V+GcvfGJAT8171s/DyAwvaZNET/aelI/nlwhP97vur4bZC8/4F/wPrR9976kJj0/XmKOvmFfJb7AZnI/KVuTvilbE76IYnI/QpifPisLeT53JGs/smHwPuvwgz6bMFg/v8YLP6hjvT6Jb0A/kFQhP9v4AD91Phc/bl9yPulWOL+3+yY/1iGMPnNbL7802Sw/FyE9PkQeNL/3qS8/qOhjP073wD7v6YI+8JtlP81JHbu7aOI+8Jl6P0D4Ez4J3hM++/BnPjHiGr/HaEM/7vmavi+k+b28/HE/LhB6vuvysLvePng/2RltP4gOmj7Fv2g+MhRdPxlgtD4Xrbg+IwAUP87w6zyPwFA/6tSrPmHC2T5zLFc/90Q2PwpZNT4T8y0/DSpdPz85J75a7PM+V1SwPTJVfT6YD3c/iQSSPXDOFT5Mlnw//8BMP5PKZT7MhA4/6ZBqP4Nx17z5o8w+EpFqP/Of1rwcpMw+sG4TPyWxMT/AIt0+OukFP/YQhb6Nyk8/UjgaP38bYr7wW0Q/QmwbP+ihSb5UE0U/Kw4MP5UOi76Ssko/4XufvrU+cz+EU0G8lED+vtTzWT8gDS0+3UYWv5mgTD9dfAM+B3JPPz7izT41Odo+soclPytm9z3a0UA/tI4lP9dm9z3Sy0A/O+9NP0H8HL6W7BI/O+9NP0H8HL6W7BI/M1Ujv8o7IT+b0uI+2KjgPj8qZb5yyl4/CxT4PtXtgL6sdlY/Ex74PjzsgL4DdFY/x/hRPyFU4z3oqg8/6PuWPoueeL5zlmw/xKI0vfgBbT8HNcC+rLqYPp19PT/iQxq/AAAAgN3TTT9jOBi/AAAAgFDZTT8FMRi/faPQPgKELT/Fqxy/8WYUP0frAT/lMiO/gYUkPy2IzD7pXCe/pqg0P4bNKj79RzC/aac0P8RvLD1EEDW/mYYkP8kQQ76p+D2/tmAUP/DHmL4DIEK/0ZbQPor5774yp0i/uruYPnbwB7/dCUu/AAAAgAUxGL9Q2U2/AAAAgAUxGL9Q2U2/uruYvnbwB7/dCUu/AAAAgGM4GL/d002/AAAAgAUxGL9Q2U2/0ZbQvor5774yp0i/lF8Uv9/TmL6HHkK/mYYkv8kQQ76p+D2/N6c0v2/YLD0SEDW/4ac0vwHnKj48RzC/Qogkv5mLzD4oWSe/c2YUv0rkAT/oOCO/2KPQvsB9LT+Xshy/NLuYvrl3PT/6Shq/AAAAgN3TTT9jOBi/AAAAgC7WTT9BNRi/vbuYvtZxPb8TUho/AAAAgGrOTb/BPxg/AAAAgLzQTb+fPBg/TJXQvhuDLb+BsRw/c2YUv0rkAb/oOCM/Qogkv5mLzL4oWSc/pqg0v4bNKr79RzA/fKo0v5DbLL3LDDU/Z4ckv4b3Qj6W+T0/0GYUv5PUmD7dGEI/b6PQvhYG8D4soEg/tq2YvjP2Bz+nCEs/AAAAAGM4GD/d000/AAAAgGM4GD/d000/prmYPir1Bz8aB0s/AAAAAJ88GD+80E0/AAAAAJ88GD+80E0/gJjQPpYI8D5Dokg/8mcUP6LImD5YGkI/mYYkP8kQQz6p+D0/fKo0P5DbLL3LDDU/pqg0P4bNKr79RzA/QogkP5mLzL4oWSc/GGIUPzjmAb9UOyM/pZXQPtd8Lb9TuBw/cq2YPltwPb9tVxo/AAAAgLzQTb+fPBg/AAAAAN3TTb9jOBg/rLqYvp19PT/iQxq/faPQvgKELT/Fqxy/8WYUv0frAT/lMiO/gYUkvy2IzD7pXCe/pqg0v4bNKj79RzC/aac0v8RvLD1EEDW/mYYkv8kQQ76p+D2/lF8Uv9/TmL6HHkK/0ZbQvor5774yp0i/uruYvnbwB7/dCUu/uruYPnbwB7/dCUu/0ZbQPor5774yp0i/lF8UP9/TmL6HHkK/mYYkP8kQQ76p+D2/fKo0P5DbLD3LDDW/4ac0PwHnKj48RzC/QogkP5mLzD4oWSe/c2YUP0rkAT/oOCO/2KPQPsB9LT+Xshy/NLuYPrl3PT/6Shq/6KyYPj92Pb9UUBo/TJXQPhuDLb+BsRw/c2YUP0rkAb/oOCM/QogkP5mLzL4oWSc/4ac0PwHnKr48RzA/fKo0P5DbLL3LDDU/mYYkP8kQQz6p+D0/dWIUP9fWmD6+G0I/gJjQPpYI8D5Dokg/prmYPir1Bz8aB0s/prmYvir1Bz8aB0s/gJjQvpYI8D5Dokg/8mcUv6LImD5YGkI/mYYkv8kQQz6p+D0/fKo0v5DbLL3LDDU/pqg0v4bNKr79RzA/Qogkv5mLzL4oWSc/GGIUvzjmAb9UOyM/pZXQvtd8Lb9TuBw/YrmYvuluPb8/Vho/lIanPp6ccb8nsT+9u62nPtOVcb/1sD+9B6KnPtmXcb+Qsj+9lIanPp6ccb8nsT+96n43vkoCx77QXWe/VoE3vgYSx75QWme/6n43vkoCx77QXWe/6n43vkoCx77QXWe/6ul7vzp1V70zFi6+6ul7vzp1V70zFi6+6ul7vzp1V70zFi6+6ul7vzp1V70zFi6+7Znkvg+WD79bejI/oY7kvqaQD79TgjI/NZ3kvpKRD7/rfDI/gajkvvyWD7/zdDI/bmRnv4xAz77Gtw0+bU8cv6CO0b51kC2/AbRnvysbfL4vgrG+A9Zzv7WFmL6+C4I9u4Z4vnqwYr8K28o+ZFInv7O9Eb+zVf8+SleMvnyJUr83PP8+0h4nPVqvZ78Uydi+Qwu1PRY8fr9bsp09CuUQPvvRbr+nkqm+YL4Ovs9TIr//tUK/NocFvy0exb6T6kK/FjsSvphHdT+/KX4+viF0vW5MfD/HaSK+75OHPaNReT+TT16+k9aSPf2FRj/HlSA/aYXgPh2U3D5Z6kk/YsuQPWoGMT8dCjg/FwJMP3f7qz7piQA/4Jt1P9L5jz6CT688h+ReP9QTez54T9o+dhFIPx34BD9w87C+3H+1PkvBRT8O4ga/npk5P5YYBD8Rk+m+6ul7Pzp1Vz0zFi4+6ul7Pzp1Vz0zFi4+6ul7Pzp1Vz0zFi4+6ul7Pzp1Vz0zFi4+gajkPvyWDz/zdDK/s6fkPu6PDz/gejK/bKTkPmuUDz9ReDK/N6XkPnmbDz9icjK/FZKnvk2acT8rGEA9B6KnvtmXcT+Qsj89B6KnvtmXcT+Qsj89YIanvlKccT/GGUA9i2U3PjQDxz7fXmc/6n43PkoCxz7QXWc/6n43PkoCxz7QXWc//003Pvz4xj49Ymc/83hXP8eeK74zZwM/83hXP8eeK74zZwM/83hXP8eeK74zZwM/83hXP8eeK74zZwM/Rlf7Ph7iSL/GysG+U037PqXkSL82zcG+Rlf7Ph7iSL/GysG+Rlf7Ph7iSL/GysG+3LsKv52XVb9/p8492cAKvzSVVb+7cM49fsAKv6eUVb+hpM493LsKv52XVb9/p849XTpSvtwuLr7Vu3Y/XTpSvtwuLr7Vu3Y/XTpSvtwuLr7Vu3Y/XTpSvtwuLr7Vu3Y/CrLEvoagP7+EWwo/szIIPn8EfL/uHuu9J1iXvouuc78ZrqU9rxnpvsk0SL8Q5dk+6UaDPoicor7ns2k/fXmDvjQy3r7dEV0/OGgePjeAhL5VFnQ/iDdHP8qIEb+4pog+VhwrP46ulr643y4/llRTPxVF6b6UjKo+hWMeP/yuRr9Vp/m9UIBVPkiUdL/QN1a+1lBPvzqj1j7BIdK+yc0cv5/2iD7faj6/4cv/viI5pT6kzE2/cpczv0zlNT9leGC9CDCbvq+ebT/V+lw+Kicvv6TnOT8j1Ik9zXjYPXuQfj/KX2W7Es3fPrG3Uz8q/7S+dTV4PjlWeD+AeXK8Ks2fPg1uFz9bUT6/fNZwvQVHkD4DKnW/PFmkPs3Z+T52yk+/5rgKP5yZVT8Vo869fsAKP6eUVT+hpM69fsAKP6eUVT+hpM695rgKP5yZVT8Vo869XTpSPtwuLj7Vu3a/cjlSPlFILj7Buna/cjlSPlFILj7Buna/eVNSPvItLj6Juna/83hXv8eeKz4zZwO/83hXv8eeKz4zZwO/83hXv8eeKz4zZwO/83hXv8eeKz4zZwO/Rlf7vh7iSD/GysE+1GP7viHbSD9118E+1GP7viHbSD9118E+U037vqXkSD82zcE+TH4fP4wLSD+H9A69c4IfP4oISD+GiQ69cH4fP7kLSD/Liw69TH4fP4wLSD+H9A69vdlyP3cIn769LXa9vdlyP3cIn769LXa9vdlyP3cIn769LXa9Z9pyP5sEn77EJ3a9NwSDPpKBAb/H4lI/dxCDPriAAb9k4VI/dxCDPriAAb9k4VI/NwSDPpKBAb/H4lI/IyPjvY+/Ej9r1U8/llPjvYvDEj/H0U8/zR/jvfbDEj9e0k8/ax7jvYK8Ej+n108/yJN+Pp/qWb2Slnc/qqFVP0ddvL6bBdI+2PkBP9F/3b4auj4/c9p0PjXnQ76Gs3M/mZmdPhHdOT+5ax0/mdKAPTb0vz7ex2w/dVNFPgRsOT8ZeSk/ay5oP86s1D4LJo89sOkVP1qARj9Q+HE+XrxYP34eCD9GU7g8RKx/P+XaLL0gvuM8LVlfP9bfx74ohZY+xgxNvy+FGL8kqHG9rrwFv3ZXTb/gH5S+Dk33vjPeRL/0YNa+ODt8v0XcJL7Qg2u97z1qv1fuqz7h92S+maZ/v6LRVb3ESp06IygsvxhH0D4nSB6/OraVvuOJgT6GFmy/OjoQv9Fv7D7NYS+/1cUgvh7WSb4SvXe/Gx8WvkgqK7+8oDq/AzCIveJGkL4CCXW/OxODvnODAT9J31K/7hSDvpN+AT8E4lK/OxODvnODAT9J31K/OxODvnODAT9J31K/ax7jPYK8Er+n10+/ax7jPYK8Er+n10+/ax7jPYK8Er+n10+/ax7jPYK8Er+n10+/TH4fv4wLSL+H9A49T4Ifv1wISL9A8g49T4Ifv1wISL9A8g49TH4fv4wLSL+H9A49vdlyv3cInz69LXY9vdlyv3cInz69LXY9vdlyv3cInz69LXY9Hdpyv7YInz5BxXU95/hzvwD8S75Prmm+RHBzv0i3Vb6y42m+RHBzv0i3Vb6y42m+Jvpzv9TiS76Br2m+mQ2cvd8Znr7ltHK/mQ2cvd8Znr7ltHK/mQ2cvd8Znr7ltHK/mQ2cvd8Znr7ltHK/BJ+JPvi+Oj/QBCG/016NPhkfOj8H7iC/7mqNPsgdOj/k7CC/BJ+JPvi+Oj/QBCG/j7ATv75dTj8h3QY+f68Tv9FiTj9PcwY+j7ATv75dTj8h3QY+kK8Tv1pcTj+mEAc+Z4UavvrsXT8cQPO+4AcBvYeyMj5b8Xu/CeLpPePPFT+ahE2/unecvFjUWj8TwwS/oY5Zv6HLAj+8ggS+A/Huvtv9Xz9PFwS+gwtPvxI3Fj+/AyO9xp88v2WhOL4C0Ca/Qkh2v72qkz2Xw4a+J41Qv9L5V77jTAq/SzqyvnSUdr7J72e/k51EvBLeVz0zoH+/wqZcP1E8Hz7JGPc+UBJ4P56IBb5FvVY+wUtwP4QviL7owWA+l+0IPxxsUj7UzlE/8SyQPf+f1jzZRn8/B0DePjLuhz6iYVw//Ds9vXxS1r7gMGg/RvlCvFrgT78RYRU/StoGvmsQA78rTlk/WBq1PiZQY7/6iJY+x+1AP1X+J7/vAxo9xlfKPru7Zr9zqDU+7mqNvsgdOr/k7CA/BJ+Jvvi+Or/QBCE/BJ+Jvvi+Or/QBCE/7mqNvsgdOr/k7CA/LKERP3XVT7/apQa+M6QRPzrTT7+nqAa+LKERP3XVT7/apQa+vZwRP3zYT7/Ppwa+RHBzP0i3VT6y42k+5/hzPwD8Sz5Prmk+5/hzPwD8Sz5Prmk+RHBzP0i3VT6y42k+JoOVPdJenj4hunI/7bSVPTt2nj7UtXI/7bSVPTt2nj7UtXI/v7OVPRWCnj7ps3I/rdoKv2/ixzu3EFe/rdoKv2/ixzu3EFe/rdoKv2/ixzu3EFe/rdoKv2/ixzu3EFe/pb8YP4jwsLtfbk2/pb8YP4jwsLtfbk2/pb8YP4jwsLtfbk2/pb8YP4jwsLtfbk2/n6QMP7a6VT/i2Qq9vqQMP+S6VT8lcQq9n6QMP7a6VT/i2Qq9n6QMP7a6VT/i2Qq9zwMXvyqRTj+fCfm8TPwWv2mWTj/C2fm8zwMXvyqRTj+fCfm8zwMXvyqRTj+fCfm8ZI/tPZnYej/9ZCa+2bMbPy/96T7GJSa/hKQPP2SBRT/HjJm+vPZ5PsCidj+Cg+K9JVcZv1/JIj9AL/m+0VayvqTPbT+dagC+PXoiv8cMLT+9vL++/YbavSWeAD7Xf3y/ImQNv/iYjD4+gEm/3gpxviVqmj1/Dni/Dby2PjaQsT2hG26/g6kkP52rrz4zPC+/oVafPosO4L2Jq3E/BzgZPwTXpb4fkzs/KtwUP3ez5r7naC0/BG0jvkbK7r0m83o/dR0bv6Mpjb5wCD8/mB2JvgNkbr3kMnY/fDgXv32uJ7+4QfE+zdajvqvEb7/zORI+23gbv68EN79qabE+bgQaPv/xeb8ACR8+UfAYP3VrPb+cUJ4+hbaEPsP+db/IEcc9cqwMvxW2Vb9rCQo9JbEMv0OzVb++ngk9cqwMvxW2Vb9rCQo93aQMvxO7Vb9pCAo9bwsXPxSMTr/zZ/c8UQsXP+uLTr96Ofg8bwsXPxSMTr/zZ/c8jQsXPz2MTr9qlvY8rdoKP2/ix7u3EFc/rdoKP2/ix7u3EFc/rdoKP2/ix7u3EFc/rdoKP2/ix7u3EFc/ycIYvyv0sDsKbE0/pb8Yv4jwsDtfbk0/pb8Yv4jwsDtfbk0/ycIYvyv0sDsKbE0/NdSFvs36Nb99KCe/5MxqvvnaOL/UFie/5MxqvvnaOL/UFie/4diFvpr6Nb/FJye/RP9MP6mkqr4Y0P6+RP9MP6mkqr4Y0P6+IQBNP32yqr4PxP6+4gFNP9emqr48xv6+hO26Pg1BPz+VNA6/kd/LPm3MOj+NTg6/kd/LPm3MOj+NTg6/be66Pm47Pz/VOw6/JG4vv8v8oz5+cSe/qWovv6v/oz5udCe/qWovv6v/oz5udCe/E3Evv4n/oz69bSe/uHHOO5CtGz/xN0u/OX0wP9Rg9j0X3Ta/J7DyPngCCj8uOjK/3A/pPTzaKz96fju/wxAEv7u6hb3Dqlq/RbTdvl1O5j4P+Ee/bsgWv7mCwDycy06/QPpLPpVtE7+r+kq/sa+nvsnV/L46N06/I56rPeNEJb8FU0K/MvkdP0Q0zb7OWy2/4y9BP0GJBT3Zwye/oGHuPCn+IT+DFkY/G9u/PorX6T4PjU4/4ubMPrB/qD7N9Fo/snnYvuWJAD/DIEE/yKo/v6LGyz1GyCc/mTcHvxEa/j6iYTA/yxEYv9GTq742ODs/k14tvq4XKr9eWTo/7UEQv3LN7L7eOy8/Vq6JPk23A78JcVA/E6IWP/lhw73Ni00/RXrFPkhvAL9TOEY/kd/Lvm3MOr+NTg4/yvm6vqU5P7+BOg4/be66vm47P7/VOw4/cNXLvprIOr8wVw4/U30rP4yAs74ajCc/3X4rPwt1s76ajSc/3X4rPwt1s76ajSc/MoArP42Ds75aiCc/T+VqPh3gOD8ADyc/5OSFPqr/NT/aHyc/p+KFPqD8NT+dIyc/0dBqPhDeOD8REyc/XatQvzMemD5Jn/4+XatQvzMemD5Jn/4+XatQvzMemD5Jn/4+XatQvzMemD5Jn/4+vzwsvj7kA7+bJFc/ZCUXvte8Bb94/lY/ZCUXvte8Bb94/lY/LT4svuTrA7/YH1c/Jrw2P3G4L79yVg4+ErU2P36+L79BcA4+Jrw2P3G4L79yVg4+zbw2PxG5L7+8PA4++EgdPEU1Lb+9fTy/zV2PvBr2LL8xrjy/GVuPvNfyLL8wsTy/+EgdPEU1Lb+9fTy/YWdfv6Mu+b7yAyO9zWJfv/E9+b4/biO9DWhfv2Mv+b7gySG9YWdfv6Mu+b7yAyO9nDDKvsHHSb9RqvG+DqbqPoC4Xb+7Y0y+IzAQPoM2U7+AFwy/cISavrYkQ7/glBK/LTgqvwXcKr++ras+/pc9vxYLJb8b8kG+DMQ/v7E1G7+Is4g+V9s5PjX3Rb9LhRs/3V6tvnxAJ79OWC0/EAjOPTkSNb8kIDM/RhsMP3WTRr9E66A+TJEOPzSQUb+H3w++66JWPHhvMz8Hjza/2w7JPs/AJz92MSW/hmDtPjyRND9zRgm/J7q4vt45UT/fCea+F+EMv1FuVT/nxzo9VU/xvgPjSD+GIs6+fLh8vmHkYT/pGs0+GmU/Pi5aSj8DVRU/TjhBvi2SVT+loAQ/eLwSP0vQQT88gqA+fgpAPyyGIz8+GC++zJArP9ZgMD+yTo0+GVuPPNfyLD8wsTw/NkkdvBc8LT94dzw/+EgdvEU1LT+9fTw/GVuPPNfyLD8wsTw/eDVkP54g5z7KYyE9xzRkP+sf5z7jnSI9eDVkP54g5z7KYyE9IDZkP6Ua5z4tmiI9XyMXPpnBBT+X+1a/vzwsPj7kAz+bJFe/ejosPg/pAz/GIVe/mSQXPj7JBT/J9la/WKc9v0ZAKD/c7g2+/6U9vxQ/KD9IIg6+WKc9v0ZAKD/c7g2+9Kg9v+Q7KD+WHw6+nwARPi6NGr9s1kg/8v8QPumFGr8K3Eg/8v8QPumFGr8K3Eg/nwARPi6NGr9s1kg/tel2P18Tgb4w+aA9heZ2P+srgb4c96A9Huh2P6Yfgb4n+KA9tel2P18Tgb4w+aA95V+UPkWgB7+wDUy/5V+UPkWgB7+wDUy/5V+UPkWgB7+wDUy/5V+UPkWgB7+wDUy/fKsNv5r3U791I7m9XLMNvwbzU7/A8Li9fKsNv5r3U791I7m9fKsNv5r3U791I7m9TaXfPG0sVr9oDwy/mMVLPziFCb9Y2I6+8qH2PoXtHb/4VR+/fDC7PUl8Qr+T0CS/lfNwviGLb79WjoY+O2Wqvh1ZaL+wBYO+pbOuvsoea7846Uw+JzYKP8g9J7/J4Qc/eOJgPTv4Sr9RYBs/8griPkfwI79r5CA/k59aPzoi7L4WlHY+vTZdP+f26L5BRFy+PQC6vrcFLT9IKiS/Tpu7PPUIUT8nqxO/nQiKPYI5Yj/dJ+2+oi88v8ZHET+65r2+O0Vjv8SG4z5fjPU9mCdQv2wE9j57Pqi+024ivyQwGz9fgfU+fFsxvgbhOz8uJCg/dUkOv0daFT8Amxc/Fa8yPu/GZz/QMMY+Y8C7PtalbD8j1ta9AbGUPkKeZD90+68+5V+UvkWgBz+wDUw/6WGUvo6bBz91EEw/6WGUvo6bBz91EEw/5FOUvkehBz80D0w/fKsNP5r3Uz91I7k9fKsNP5r3Uz91I7k9fKsNP5r3Uz91I7k9Q6QNPyf9Uz8n7rg98v8QvumFGj8K3Ei/8v8QvumFGj8K3Ei/8v8QvumFGj8K3Ei/8v8QvumFGj8K3Ei/tel2v18TgT4w+aC9tel2v18TgT4w+aC9tel2v18TgT4w+aC9Tet2vxkHgT46+qC9sJLtvvjeMj8aZQs/YI/tvnrcMj+3aQs/YI/tvnrcMj+3aQs/sJLtvvjeMj8aZQs/mNYjPwF33D6r6iI/mNYjPwF33D6r6iI/mNYjPwF33D6r6iI/mNYjPwF33D6r6iI/eOGtPsQqK79xWSk/cOGtPkkxK7/cUik/ft6tPmMuK7+LVik/eOGtPsQqK79xWSk/PC9CvybIzb7kTgM/sSpCv3DQzb5fUgM/PC9CvybIzb7kTgM/BTJCvyfEzb5XTAM/BdXWvSdZFb/vLU4/DQoIP5NJnTvl21g/YIjFPrTE4r4fL08/Ou2ePJnrIr9nZ0U/32Uxvx58DD1ZXDg/O7kLv/nq8b6DJjE/jcw+v9Gjgb3A6Ck/sgdwvbB9Hz8Hr0c/SVcKv1T29T7L1zA//igxvhRzLD/H8Tc/q43KPkpIAj/Ot0M/0zcYPxlkzD3HPEw/2CyDPnBMJr/yPje/es8ZPxV81r6NSi6/hD4eP1JwlL7QCzu/YvBNvvgOEb93jky/FjQUvyK8Sb7bjUq/KPqivrPmEb/T7UG/gM/ovgQ1gD6fzlq/wxTQvWqzHD9lwki/1AHlvuZrwz6mEU+/qMC5PgsKBz95qES/dKU6P8yNJD5VUCq/QSLwPr+NCD/nMzS/Ee2tvkcpKz/4Vym/ht6tvt4nKz8hXSm/ht6tvt4nKz8hXSm/Ee2tvkcpKz/4Vym/sCxCP3LFzT64UwO/sCxCP3LFzT64UwO/sCxCP3LFzT64UwO/ry5CP3W6zT4SVQO/sJLtPvjeMr8aZQu/b47tPlLiMr+cYgu/sJLtPvjeMr8aZQu/F4XtPpneMr9fawu/dNcjv0WF3L755CK/mNYjvwF33L6r6iK/mNYjvwF33L6r6iK/dNcjv0WF3L755CK/7Oynvak8Yz8cBug+XfS5vToRYz8s1Oc+XfS5vToRYz8s1Oc+vPCnvUQ7Yz9gC+g+DxpDP7AMEz7EnSE/DxpDP7AMEz7EnSE/6BZDP1AKEz61oSE/DxpDP7AMEz7EnSE/km6BvHHmLL8Qvzw/vlC4vCTFLL8l0jw/vlC4vCTFLL8l0jw/km6BvHHmLL8Qvzw/JthcvyvLTD0+1wA/JthcvyvLTD0+1wA/JthcvyvLTD0+1wA//9pcv8/NTD1a0gA/RaW/vmyrwL7r9lg/ZgruPiTWGr7lUV8/364DPlTh9r4R2F0/yGGUvlwf+L5zSFM/SF8Zv70I3T6tnyw/nYk1v/xyrL02NTM/heMwv1Lfuj7KvB8/oThsPtdvKD+ogzc/o+SBvjtiPz+ZIR0/fS4dPpqwPz/3ECU/f2wUP9BZsT4tyzw/HcUQPxrm0L1lg1E/XA2cvTLIQ797yCO/mMKvPsLFN78EDRu/D3jWPgETHr9HcCq/j6ngvvbG+L7ygUG/QKcYv9VAgjxgd02/VDELv6fp275TlTi/LcCMvnI1rz7kBGa/OiNOPoa4AD9GM1e/NKpTvqrB6j7aQ12/uqMSPywwXT5LbEq/d845P2auh76jgiK/70krP49LNz7mpji/WCK5PArFLD8J0jy/km6BPHHmLD8Qvzy/km6BPHHmLD8Qvzy/WCK5PArFLD8J0jy/d6lcP8QDcL1u6gC/UKxcP9wGcL2K5QC/d6lcP8QDcL1u6gC/+qtcP1pvcL1Y5QC/lSy6PUwPY7/l2Oe+vPCnPUQ7Y79gC+i+3u6nPUw/Y7+w++e+lSy6PUwPY7/l2Oe+z8lCv/btGr7FiCG/z8lCv/btGr7FiCG/z8lCv/btGr7FiCG/9MxCv3bwGr7UhCG/szCGPh3AVr8jRPS+vCWGPv68Vr8mVfS+vCWGPv68Vr8mVfS+VzKGPr3CVr8DOvS+x09aP6u/Cj6THwG//U1aP7PCCj5lIgG/x09aP6u/Cj6THwG/BE9aP2bZCj4gHwG/KuX6vYlyLz+WxDe/Axn7vbB4Lz+bvTe/ZhT7vXZ1Lz/JwDe/KuX6vYlyLz+WxDe/IUU4v1ZIkL5RaCK/SEs4vwZIkL5pYSK/SEs4vwZIkL5pYSK/IUU4v1ZIkL5RaCK/4/6wvo/Tmj66ZmO/qakDP4udsT6kyEi/A0C+PbVNDj+veFO/PAibvufm2z6CzVm/pX+qvk/UC7++w0S/2IcXvwqRsb13I02/Zgblvu6CA791bDu/m3MHP7wTAb/6uC6/RxOlPakpP7+SBCm/M07zPtl9Hr+fDSC/569CP/4iyr3QTCS/Hc4dPzzXpz46Rze/sufMvtdyKT9CQSI/X5zEO/0uPz8RPio/eszMPfDMKz9zDjw/sRwsvzcOjz7JfS8/0jQsvwP4fr4yYDI/F6s/v/PoSD6iGSI/4hiRvqtT8L5mFlY/ViRoPjcn8b64PVo/p5Q2vvWkDr8gnk8/r3L7PtbXo70CD14/IBQBPxRe3j5dFT8/yGEUP5rCKLxOmFA/Axn7PbB4L7+bvTc/Axn7PbB4L7+bvTc/Axn7PbB4L7+bvTc/Axn7PbB4L7+bvTc/IUU4P1ZIkD5RaCI/IUU4P1ZIkD5RaCI/IUU4P1ZIkD5RaCI/SEs4PwZIkD5pYSI/lTOGviy+Vj9iSfQ+VzKGvr3CVj8DOvQ+VzKGvr3CVj8DOvQ+8jGGvo27Vj+CU/Q+BE9av2bZCr4gHwE/BE9av2bZCr4gHwE/BE9av2bZCr4gHwE/BE9av2bZCr4gHwE/kNLeujAYFT8+GlC/Gwz5u28tFT/MCFC/Gwz5u28tFT/MCFC/4tXeutsTFT9YHVC/9WU3P0bRMT9FWYY9dWI3PzzUMT/wj4Y9X2o3PzPPMT//hYU9aWw3P6DKMT8yWYY9S4U8vgopHT8LgkQ/MRE2vtmKHT8VlUQ/MRE2vtmKHT8VlUQ/S4U8vgopHT8LgkQ/0l9kv3Wc4D6Sy929v2Fkvz+R4D7gAd690l9kv3Wc4D6Sy929Ql1kvwun4D4Vyd29P3/9vn6yPz+pl+E+f9CzPtA7Xj8RnLM+t13cvMCTSD/87B4/Zy7ZvkQINz9hRw4/ktoXv9VmMT9kz9G+3QlGvxTRID+EmKo9vzswv45pID9pCbu+YWqAPmlCVD+Yzv++1BlRvt3wND+NYy2/AnpHPpJnRD9UcRy/CmkMP+cjUz+O5Qy+c9nsPj2bVD9W354+x9X4vV7LQb+iWiQ/cTCXPtLQL7/AByo/Iq3HPjBXOb9MqRE/Qz3dvp7VWb/v75g+QSsEvySuU79qWGS+BgIIvyaBUL/IyW4+VAQWvqb8WL+QjwK/zmy0PtTmOr+G4hW/1P2HvdpfSr+V2xu/ejYsP6AzM7+BdHW+ylY9P4gBHb9v7Y0+42BBPyhuIb8ceTa+6BE2PgSSHb9Mj0S/Amk8Pt0tHb/hf0S/Amk8Pt0tHb/hf0S/6BE2PgSSHb9Mj0S/cjpjP6E55b6imN095TljP/kr5b4/nt49cjpjP6E55b6imN095jVjP6k75b7AoN49Ywj5O8IxFb+xBVA//+3rOi4YFb87GlA/5gr5OpsfFb/lFFA/Ywj5O8IxFb+xBVA/7qA1v8GhM79fu4W9HJo1vwyoM7+a74W9oKA1v3ShM7+S74W9tao1v9eXM7+/vYW9vYi2vlSs4D7pJ1O/LpS2vkeq4D78JVO/LpS2vkeq4D78JVO/vYi2vlSs4D7pJ1O/FJ2PPhSNdT8/CxO93pCPPpyOdT8FdRO9FJ2PPhSNdT8/CxO9J6mPPk+LdT8wChO9XA3LvqaHAj90bEM/AhDLvs2CAj8Bb0M/AhDLvs2CAj8Bb0M/XA3LvqaHAj90bEM/KYt/v2QaYr0s9rm8KYt/v2QaYr0s9rm8KYt/v2QaYr0s9rm8KYt/v2QaYr0s9rm8inpDv1n34j5hYfA+Sdu1vYqMdD87bpA+WHK1vp+yOD8MShg/UB0tv56O6j5QsRM/ytFjv2Yijj4ETLm+sDh5vx1CMT704hg+zYpvv9olNT6tQ5y+DthnvqPBTT+F2wy/BhEVv7HM6j6i2Su/JA6CvhexNj9IICe/dBKDPVn8eD833WS+mT69PAIGeT+aP2w+PR+lPsMjKr/Piyw/SjIlPzl9zr6rFyY/uu08P7m5y74+hQs/FkiUPfMQbb8pp70+sN5gvdchfb+AIQ6+BbwWvXjEcr9YYqE+VAWBPj5dWb87t+2+R0IdP0rqA7/W+xi/nt+RPny3RL9WsRK/XAloP3YHnb4cvJS+jeN2P5eQIL4EA1o+rRBzPxggTr59kna+AhDLPs2CAr8Bb0O/AhDLPs2CAr8Bb0O/AhDLPs2CAr8Bb0O/9QTLPiCEAr/9cEO/hot/P9uxYT1v9rk8hot/P9uxYT1v9rk8hot/P9uxYT1v9rk8hot/P9uxYT1v9rk88Ya2PgGd4L5hLFM/vYi2PlSs4L7pJ1M/vYi2PlSs4L7pJ1M/8Ya2PgGd4L5hLFM/SamPvoiLdb93oRI9wbiPvgWJdb++DBM90KyPvgOLdb8SpRI9NZ2Pvk2Ndb+GohI9EM6fvjmvTL+SXAM/Cb6fvnurTL9HZwM/9sufvomsTL9mYQM/EM6fvjmvTL+SXAM/ytzGPjJTVr8kH8W+6+fGPhBRVr8uHcW+6+fGPhBRVr8uHcW+ytzGPjJTVr8kH8W+7aynvlBhEL6lLG+/7aynvlBhEL6lLG+/7aynvlBhEL6lLG+/7aynvlBhEL6lLG+/uIR/vwQUcr06iIW8uIR/vwQUcr06iIW8uIR/vwQUcr06iIW8uIR/vwQUcr06iIW8xuMzvxcggb7AUCq/PFXKPJ12Ob+kWTC/FqiGvuI1zb6kqmC/iPQcv92vVL4MIEO/xA9bvz7T/r7+/xA+KBFyv6RQOL6ozIq+kYVpv99Lxr6mAgk+WVANvtPue7+9w+Q9U1AIv+DaRL8nI7U+Xgs1vsM5dL986Xc+zHYxPgaxdL+wGnO+QpkMPoGeQL9W6yS/iGmAPh1RbT+fv46+o+8ZPzlGNz9VqbW+3V8xPzRBLD9YtIS+ZU/8vPu9fj/TtsA9vsYtvuE8Tj/+ThE/WrcRvqSZej+UHhY+TnQXPiE8ED9RFVA/VnkLP+2ieD4meU0/LzlBPiUx5D7xBGA/Wa5cP1iPaD4o/+c+FStxP00OqT5yEHK94eBqP3moJD6tQ7o+iK2nPp5HED6BLW8/iK2nPp5HED6BLW8/iK2nPp5HED6BLW8/iK2nPp5HED6BLW8/uIR/PwQUcj06iIU8uIR/PwQUcj06iIU8uIR/PwQUcj06iIU8uIR/PwQUcj06iIU8Cb6fPnurTD9HZwO/NL+fPmymTD/LbgO/NL+fPmymTD/LbgO/3cmfPtipTD86ZgO/cALHvtdKVj97HcU+0xHHvr9GVj++H8U+cALHvtdKVj97HcU+cALHvtdKVj97HcU+g2kRP50gE79c0Ba/JXARP7IgE7/jyRa/JXARP7IgE7/jyRa/g2kRP50gE79c0Ba/9IUYP0CJED/JORK/NogYP/KRED/XLhK/9IUYP0CJED/JORK/7oUYP6yCED9RQBK/Q/AKv5sVED9LmR+/C+4Kv04TED9NnR+/C+4Kv04TED9NnR+/Q/AKv5sVED9LmR+/plwSv+pvE79xlhW/plwSv+pvE79xlhW/plwSv+pvE79xlhW/floSv0t0E788lBW/TlQSv91aAj5fg0+/tGAlPmorFz/ca0q/qFuevmIZED82OES/RHQXv6Cjgz6RnUO/vK8DvtYiG7/J9Ui/TbQUv38TrL5myj2/NmlzvrnyIr/81Du/etwaPz9wEr6diEi/Un2uPiPkE78J4D2/YnUfP4Eoi74LzDu/HYQcPzy1pD7SFTm/CV+JPuA7Hz/bUDy/+/4Tv4sasT7lLz0/5/yHvvXsHj+a0zw/nTYNvjZmGT8P40k/9Cwev4BN/L0RzUY/BVq3vnLKFL9REDs/M3smv6tybL6rRTk/sjjWPXttFb/AIU4/V+4LP32Tqb5A5EQ/4wVwPn4vG7/SjkI/pMIVPz3tDT7ukUw/G62nPs5xGD8fzDs/M50eP7RIez6N3j4/C+4KP04TEL9NnR8/4/IKPxUYEL/HlB8/Q/AKP5sVEL9LmR8/C+4KP04TEL9NnR8/DVYSP95vEz/ynBU/EWESP8NtEz9BlBU/plwSP+pvEz9xlhU/S00SPzN0Ez9AoRU/g2kRv50gEz9c0BY/g2kRv50gEz9c0BY/g2kRv50gEz9c0BY/X2cRvwElEz8kzhY/aowYvymJEL8kMxI/aowYvymJEL8kMxI/aowYvymJEL8kMxI/aowYvymJEL8kMxI/keEMv6HeAz8HOSg/NN8Mv2rcAz/BPCg/NN8Mv2rcAz/BPCg/keEMv6HeAz8HOSg/G8UUPwW2GT/yoAw/0sIUPza6GT/Jngw/G8UUPwW2GT/yoAw/G8UUPwW2GT/yoAw/9PwiP9W4Cb8Rbw0/Qv8iP8e6Cb+Cag0/Qv8iP8e6Cb+Cag0/M/8iPy20Cb8DcQ0/wGH/vnROH79IcRo/G0r/vg5QH79leRo/wGH/vnROH79IcRo/iG//vuBOH78kaxo/8xJhPrOMGL++u0U/qC0lP/5vIz4QRD8/8T8jP5sGn77sczQ/iT6xPmaJG78DATc/wHEIv4fWQb4XHlM/b598vqUnIL+Udz0/3/kPv5VsmL4Ne0U/ebPZvZneED/pTVE/ErwHv3Z9kD5drUw/6Vl1viFNFD9Ec0c/brezPvUQGT9tejg/cMYqPwlKij79vDE/tRKfPsvaB7/230m/WecRP2IjUr7Fr0u/rs8JP8YWnb1j2Fa/00YhviugF795SUq/yi4fvwglt75+WzK/K5yEvvDRIb+s9Tq/NOEmv7W32j10MkC/Zh7WvjwhDz9MRTe/MDgtv+cDbz5mxjK/ESQ5PcM7Hz/1HUi/lnsEPxlHxT6MlkO/FegdPjvqKD/wRDy/KAMjv4m4CT80aA2/9Pwiv9W4CT8Rbw2/9Pwiv9W4CT8Rbw2/dgUjv3y6CT+mYw2/0WX/Pm9KHz++cxq/wGH/PnROHz9IcRq/wGH/PnROHz9IcRq/4GH/PvpHHz/qdxq/keEMP6HeA78HOSi/I+YMP8bcA7+pNii/keEMP6HeA78HOSi/keEMP6HeA78HOSi/6cQUv1+8Gb81mgy/G8UUvwW2Gb/yoAy/0sIUvza6Gb/Jngy/bsIUv+vGGb9OkQy/0V/2Pja9sr552U0/0V/2Pja9sr552U0/0V/2Pja9sr552U0/nV32PrnIsr6h100/3K54Px/Nbj7JdDW9YK14P+nlbj60czW93K54Px/Nbj7JdDW9JK94P2TNbj4hDDW9Y4DdPuJV5b7BTUi/83vdPklR5b5MUEi/83vdPklR5b5MUEi/Y4DdPuJV5b7BTUi/ygfOvagofr+Q6oQ9PNTNvbspfr+ytoQ9ygfOvagofr+Q6oQ9ygfOvagofr+Q6oQ9gtu9Pkv2TL8J9fC+yixtPzTOFb4JjrG+LmooP7o30r6OoSG/fXvDPnvIN7+oBBW/CbCFPja4Y7+H9L8+w1nsPdlMfL/b9v29fRoePtajbr9loKc+saBUP/sFfb44iP8+QSf1PoKwFL+1hyg//kc/P29/iL7n2Rs//Qd9P6dqvDzwsxk+n/dzP+gICr2pKZq+jlsyvxPIqT4F2CK/A5XWvgVHJD9XbiS/NK3Nvs/UPD917wq/ZklyvyV72D1wN5y+JTF6v8W30bnN4lg+sTx4v8S1UblpQnq+Q7BMv7vQnj6rpwM/70XhvljnKD9T8xs/Lag1v1KDrz7Rlx0/reR2vrscbj/1040+wlMBvsKLdj/nf3O+8v8MvqBWdz+RU18+83vdvklR5T5MUEg/C4vdvldT5T6JS0g/Y4DdvuJV5T7BTUg/83vdvklR5T5MUEg/jNPNPeMofj8cH4W95NPNPU8pfj/n6oS9jNPNPeMofj8cH4W9Tp/NPR4pfj+pU4W90V/2vja9sj552U2/0V/2vja9sj552U2/0V/2vja9sj552U2/0V/2vja9sj552U2/qK14vy7mbr4MCzU9qK14vy7mbr4MCzU9qK14vy7mbr4MCzU9qK14vy7mbr4MCzU9W45Xviercb/rDIK+3MFXvh6qcb9A/4G+0KhXvmyrcb/0/4G+W45Xviercb/rDIK+qn5NvymqAr1ecxi/qn5NvymqAr1ecxi/qn5NvymqAr1ecxi/qn5NvymqAr1ecxi/lUNPv4YrqT7+YPg+lUNPv4YrqT7+YPg+lUNPv4YrqT7+YPg+lUNPv4YrqT7+YPg+y6stvv+KDb962FA/QcUtvmGKDb+S11A/y6stvv+KDb962FA/y6stvv+KDb962FA/+To8vyXRzb1Hlys/cAZ9v2l68jzcrBi+0Clwv3qiOD50Wpc+eK9Dv7KTBz1r1iQ/rcusvnO7U79eI+Y+lA7cvtWQ3r4JmUo/qYmMvicASr/7sAw/lSEbv4fBNL9Jl7u+9mypvoiRcb9GWga8XOf9vpR/Sr+lc7e+tmlNvxHTnL5NHwO/LT92v231OT0RCYq+IkPrPqZ5Vj/Y/JY+NrqaPtBNcz9qh5a9TpW0PvIcaj8u9Uq+pwI+PwHw/D6j1+c+b2FwP9GcgDyz668+AIdBP8gayT6rDwY/DRB9Pyz83L21eti9ljpPP96SmL2XFxW/GEZ1P8MeRb7KMFm+l2YVPyBkmz5v0UC/HSCWPn6vOT+8cR+/svb1PvOosz6XxU2/lUNPP4Yrqb7+YPi+mEdPP1gcqb7yXfi+VkVPP9kfqb4XY/i+lUNPP4Yrqb7+YPi+VZItPpyLDT9i2VC/VZItPpyLDT9i2VC/VZItPpyLDT9i2VC/VZItPpyLDT9i2VC/W45XPiercT/rDII+aadXPtqpcT84DII+aadXPtqpcT84DII+W45XPiercT/rDII+qn5NPymqAj1ecxg/qn5NPymqAj1ecxg/qn5NPymqAj1ecxg/qn5NPymqAj1ecxg/c29jPy9Axj1KveW+c29jPy9Axj1KveW+c29jPy9Axj1KveW+D3JjP3VCxj3QsuW+NCiPvcTMbr4wTHi/YFyPvVfMbr6+S3i/YFyPvVfMbr6+S3i/NCiPvcTMbr4wTHi/SJN/vlw7dr83keW9+Hl/vjk8dr9zxuW9s3p/vu48dr+ukuW9kpl/vt06dr/eluW9FMUtPzlYF7/+Bd8+FMUtPzlYF7/+Bd8+FMUtPzlYF7/+Bd8+FMUtPzlYF7/+Bd8+YD9TPsJwer8GqKQ8V5FtvfJDKr+Alz6/uZkIvoqrbL9v1ba+BZKPPbRef78Igre6gWdjP+sB6743nYA88J4OPwJ6Sb/eroc+TxNeP3Li9L6QFAw+PDMiPxecIr5p10G/E5JtPwkJG75mSa6+OBk4P0Bqkb2t9DC/IKhbPn7lg77sL3G/SBW/vXLsEb9c+lC/eZxGv80uoT3dQiA/WsFyvyPTOD6quoU+5+Fuv1Gumj7ClUc+abTRvoi2az5K/GE/6VA4PaKI/z6jiV0/eZKYvk7wUj6SnG4/od++PYzCVT8q1Ao/p9KavIxMfz8obZI9idAiPnhTYz8V7dw+omfXvu3eZD9gsx2+phFRv1+rCz/Pm0C+UdLzvpeiVz+LO4G+kpl/Pt06dj/eluU9s3p/Pu48dj+ukuU9s3p/Pu48dj+ukuU9J7J/Pko5dj9mleU9A8ctv+hZFz9e+96+A8ctv+hZFz9e+96+A8ctv+hZFz9e+96+FMUtvzlYFz/+Bd++c29jvy9Axr1KveU+c29jvy9Axr1KveU+c29jvy9Axr1KveU+4m5jvx90xr23vOU+O12PPY2zbj45TXg/O12PPY2zbj45TXg/O12PPY2zbj45TXg/YFyPPVfMbj6+S3g/+0R2P0L6HL7ua2e+XUd2P5HhHL71U2e++0R2P0L6HL7ua2e++0R2P0L6HL7ua2e+iOfIPXaPgL7LhXa/PebIPb2bgL40hHa/iOfIPXaPgL7LhXa/iOfIPXaPgL7LhXa/KdXpvqTZXr+tzTu+He/pvtbSXr93zTu+v+TpvnLVXr+qzzu+KdXpvqTZXr+tzTu+Dj/EPgl4Ob/xqBI/Sz7EPt99Ob/SoRI/Dj/EPgl4Ob/xqBI/skLEPux0Ob+qqxI/ud6CvZMif7+uW1M9v89evUlCKb8xjj+//x+QvloFYL/3kcm+pkpEvpNAe7+TtNG6uP81P71SK7/3S10+TBqEPqztY7+cD8A+EJIoP/5ULb/ePKg+hGM6PybJsr6uAhe/J/JoP47wy75Cjuy9IttQP3n0kL4FFQG/4ES0Plwlsb62ol6/CqM9vYtGEL/VI1O/ZBxav6esmj4b7to+CjNnvzgk2z4Ofww9pJ1XvzLdCT85t8i8bVAHv1uwuz4oAkQ/WEnqvAh7Aj9HIVw/MAzivsBNoj7S4lY/4l02PvyoTj+OCxA/m/RkPhWkeD9JUKc92dmOPo4sVj+fXPE+fREDvmDAdj8eM2++eOMUvzsPOj9fFbu+yrAuvkh2bD/Tqa++puPpPmbUXj//6Ds+Be7pPsvRXj/N5js+Be7pPsvRXj/N5js+cN7pPv3VXj/Q5Ds+/k/Evqd7OT+znhK/HU3EvvB4OT8aoxK/HU3EvvB4OT8aoxK/iFfEvvJ8OT+KmhK/+0R2v0L6HD7ua2c++0R2v0L6HD7ua2c++0R2v0L6HD7ua2c+ZkZ2vyr7HD4MU2c+5bTIvYCDgD7+h3Y/5bTIvYCDgD7+h3Y/5bTIvYCDgD7+h3Y/5bTIvYCDgD7+h3Y/oNWrvcytbr/5E7S+BaCrvSmsbr/ZH7S+FNSrvaarbr91H7S+oNWrvcytbr/5E7S+/DZbv3qY3b37RwG//DZbv3qY3b37RwG//DZbv3qY3b37RwG//DZbv3qY3b37RwG/FqRIvyL8/z3AvRs/NqdIvxAAAD6fuRs/NqdIvxAAAD6fuRs/FqRIvyL8/z3AvRs/0NnwPH1FKb8E5z8/0NnwPH1FKb8E5z8/0NnwPH1FKb8E5z8/WqvxPFxFKb/f5j8/+t8dv2Rxm7627jk/YaF9v4W9Bb4Gjxe9ksNov6ZWwbySy9Q+uKYrv4BoM77MjTg/imQMvl8qa78XwL0++b19vpbbFr8r3EQ/tOWMvcaaYb8KZ+8+LiwGv7z5Qb/tEce+KkguvhUOe7+FbMW9953NvgduUr9Svs6+LedMv596xb4g9eq+6J17vzzbxr3XWiC+fk2zPgFJXj+s3bM+R70FPrLBfT8nNaI8nd4tPqudej8Pn+e9DAc0P46lED8w8Nw+IL91P/QPFD4gv3U+kQY+P9/f6z6UIvk+5pN4P6HBqD2FyWW+da46P8hECz7rrSu/TgVxP/eaxDuqiqy+SVfZPi3o9z7l3EO/bGu0PeGYVD+F0Qy/m12ePmiPBD/YMEy/FqRIPyL8/73AvRu/NqdIPxAAAL6fuRu/NqdIPxAAAL6fuRu/j6FIP6MAAL7gwBu/uzbvvL5FKT9N5z+/RgjwvJ1FKT8p5z+/RgjwvJ1FKT8p5z+/sDLvvG9JKT8P5D+/P2+sPUSvbj8IA7Q+MDusPcevbj9qA7Q+P2+sPUSvbj8IA7Q+TKOsPcCubj+kArQ+/DZbP3qY3T37RwE//DZbP3qY3T37RwE//DZbP3qY3T37RwE//DZbP3qY3T37RwE/qab3PgLrET9qCCq/LBfwPiIAFT8OEiq/FxPwPpn9FD+2FSq/Rqr3PpXmET/mCiq/BH97PyIukLugLj8+0H17P3ItkLvuRz8+0H17P3ItkLvuRz8+0H17P3ItkLvuRz8+4a42PtXD0z4Hj2Q/UItBPrhq0T53imQ/5YZBPvBl0T7Mi2Q/0LA2Pvi40z5zkWQ/GCm6viVVbj8XhwU90E+6vs9Nbj/MHQU9kR26vilXbj8U8QU9mTi6vqZRbj+HWgY90NmsPbkJSD/TSB4/yY1KP4pUpT728QQ/3ZLYPnmE6z5o20c/WwLNPTLgLz9FPzg/m6SbPbbzeD93lGG+if0hvk8wdD8/qII+av4yvfo1ez+f/z++adNJPwMQBz8+/qG+xfjNPi8QRT9wvf2+s+E3P8yyCj/ze9++pMF2Px/Vhz4barw8AK1aP9pQaz4lzO4+SMQrv1H8E7+Nwu0+UQadvgHjUb8Ai/c+Juh/vuU0ZL8Ai8E+4ONrv97ivL51dfk9gJlnv6ZeR76FC8K+qE92v5LNhr6l9489sLgcv7Pyzr7D+S2/N84Zvij+JL+T7D+/jOsAv+guzL41MkS/lhSMPSKMZ783jNe+VWDuPSjxfL+q1s4938I1PoaFa7/d5LK+5YZBvvBl0b7Mi2S/0LA2vvi4075zkWS/4a42vtXD074Hj2S/5YZBvvBl0b7Mi2S/ofutPiyfcL+giAW9PxOuPpWbcL8RTAS9ofutPiyfcL+giAW92eutPgeicL+ShgW9FxPwvpn9FL+2FSo/UbT3vsfkEb/LCCo/Rqr3vpXmEb/mCio/qxbwvkT5FL8/GCo/H297v8O/qLzvYD++H297v8O/qLzvYD++UXB7v5HAqLyhRz++UXB7v5HAqLyhRz++WZlVviatxb6dCGY/yGhNvmN4x77ZHGY/yGhNvmN4x77ZHGY/WZlVviatxb6dCGY/AWwaPX+yf7+wf/u8AWwaPX+yf7+wf/u8AWwaPX+yf7+wf/u8AWwaPX+yf7+wf/u8Tk4yv56evr40CB2/wEc0v6KOt76X4Ry/wEc0v6KOt76X4Ry/Tk4yv56evr40CB2/eNdpv+mJij5yo5s+YdZpvyaNij4Vp5s+Stlpv/2Kij6Nl5s+eNdpv+mJij5yo5s+cJ5yv5yqZL6DYGm+1f2/voXGZb+EdG2+X2Aov62UGL+l1eu+hmBmv/Q6gb69Eba+vS5Lv2MmoL34cBo/4gJ9v2ZpkT3qCQo+Ud5Tv+fOCD1PcA8/Wxpzvh6kQr/xxxo/fHzuvmTEr75qylA/2YtbvgPhK79jmzU/DsTCvcQJeb8cRVg+1CqFvuQKcb8sIVu+jSKMPnHhGj92aT+/FNcCP5wzkT5St0+/qhkgP/yigT548zy/ir1BPnm7Zj+mhse+fidpPp7mdj/sTwk+gP/dPYIecj9QxZy+sb4RP5YCPT/3JLk+CexaPwJOrT61AMk+a0wcPzZwJT/MaOo+s/5+P5SOsT0JopI8ZDpgP0hUQb0h3PW+Wbh/P9FqvLxUtSa9wEc0P6KOtz6X4Rw/Tk4yP56evj40CB0/Tk4yP56evj40CB0/wEc0P6KOtz6X4Rw/CnVoPxffk77RWJu+PHNoP/Hdk763ZJu+CnVoPxffk77RWJu+CnVoPxffk77RWJu+yGhNPmN4xz7ZHGa/dptVPv+hxT7jCma/ibRVPvGgxT6pCWa/gW1NPvl8xz6XG2a/t1RsvRV0fz+aqvo8t1RsvRV0fz+aqvo8t1RsvRV0fz+aqvo8t1RsvRV0fz+aqvo8768gP40+FT8xEQQ/UXgaP3Z+Gz9dRgQ/XXoaP4WAGz+PQQQ/DrIgP4VAFT9iDAQ/QxIiP0s7Dr9p+wk/MRIiP8lBDr/N9Ak/9Q8iP9M/Dr9z+Qk/MRIiP8lBDr/N9Ak/wUjyvrrhC7915jA/snz9vq4JB79SvTA/Eov9vlsKB7+ntzA/wUjyvrrhC7915jA/qtQHv0M+Fj/3kBw/qtQHv0M+Fj/3kBw/qtQHv0M+Fj/3kBw/qtQHv0M+Fj/3kBw/Q6T/vqIar70nuVw/cWV3PqHSDb8U9Es/kS9qvmY9Cb/gBVA/xI0Gv5ljXb4Vo1I/MMhDvcm7Ij+7PUU//J0Bv/6yvz4Q3kY//ickvrOoKj9HWjo/32YqP44+PT7RGDk/iGLUPsyUGD+MATA/bjMtPxeVnz5tyyo/HmItP722j76eGS4/dxOwPmH9Fb8c2js/wHslv+seuL6CRCy/OdOgvpQsJ7+EajC/coBEvmeIIb9xbkC//EAuv10t3T3tfTm/gOrRvo6jDz8LFji/6dg0v21YXz6RXyy/L/0yPW75DD/sZFW/ViLwPrVqnj7CxFO/BFs1PjR2Ej+3Ak2/rsgDPyG1Ir4GrFe/v9qMPuLTHb8I2zy/G28OP1Zlhr790km/IYz9PnkRBz/VsTC/XUXyPlPmCz/74zC/XUXyPlPmCz/74zC/Eov9PlsKBz+ntzC/UcMBP324G79UXBy/VsUBP1y0G7/DXhy/NcoBP1eyG7+7XBy/GNEBPzGsG78jXRy/XXoav4WAG7+PQQS/768gv40+Fb8xEQS/qa8gv9lEFb9qCgS/LH4av0+EG7+nOAS/AI0nv52TBz/4Igq/8IYnvwOUBz/tKQq/AI0nv52TBz/4Igq/D5MnvzeTBz8CHAq/jA3tvi+J/z5/hDu/4AVevwhsRT13sP2+OXo5v048MD4C3Cq//ECtvhKJLT+hFSe/2lVKvYXRez+MPzE+0pELvtnzaz/Q9Lm+lb1jvacjez/9Qj6+JIgWvuBlaz/zoLo+Gcc5v/rJMj7cXSo/70C1vscjLD+5ZyY/ifHuviDa9z5ZfD0/ZS9ev35FWD1B4fw+ef0Uv0LwtD72fTs/2VfkvWJxVj+94Ag/9zyZvsXSKz+EnS0/Jrs8v1BcdT7PuCE/moR4v+wjBr63602+lTduv7gTA7xNc7s+q4Z5v7YVDL5g8TQ+V5FsvzZ78rs3osO+iCGfvqcDKD9lADC/zF48v5zHbT6q2CK/67QWvzvlsD6OFTu/hJ3nvaHLVz/upQa/SXnSPrfuFb9m1TI/jghOP2NEi73l8BY/N0NLP7LqYr02+xo/vanXPiydFL9QYzI/mnOTPYi6dL/dqJG+cFdsPWuidb/pKI0+f7OMPdwmdb/ENY8+laeTPfvac79fZJe++0dNP9b7h71JAhi/A0zXPijVGL9j5i6/qdLTPoMzFr9wNTK/xNtKP9l0tb3Ffxq/QpUWP44Br76QoDu/pdhFPknSVb+MywO/swmqPouUJ78z2i2/Qig+P1Qqab6QLSG/5Qx6P1+Xqj1IO0o+D+tuP+d+N7yMzbe+RVx7PzGwvz1PwCi+PS5tP3DWI7yUnMA+imqpPgfcJL9/lTA/ZaE7P0yJZ76zQSQ/RqwYP4BLpL6rWzw/I+9FPhsDVb9LFwU/t6J4PQjIfb+dme69P3J5PXMUfr+AFtk9oqB9vxKtrb3FTNk9bFB9v0Kvpb3OJfW9g/9dPdZ7fj/L6sC9rnaCPaBzfT+WhAA+lCZ4P6O3VT5w0QQ+HcZ5Pwp9TD6gIrm9brNiv2t7274mSTe+RPtIv0DbB7+Mh6O+1ft7v2JAJL6dh5Y9M4x7v1MOvjtTDj4+4DgFv+qpIb8IJhO/v2u2vkVaIb+RlTC/Nz09vjbvGr+TOUa/Nz09vjbvGr+TOUa/YDPIPmsbEb83ojm/Br0SPhhJnb7t13C/qtM8PaFJvb7LkW2/m7qcPl0fSL8CFwu/anAdP4P+sj6W8DS/UN8dP9oKBD+MPRi/ZpwCP+8qhzxJIly/sVTQPk0cGr5ip2a/R5oEPyWySD8HM6++sMzVPrvNYj/HoU6+F5EcPsGdfD+D81s9YYA3vIZQfD/cvyw+cn2uvpdoYT9UtKg+kYoBv1TRRj84HMA+XEdGvz19AT/XdsI+EbFgv2WErT5Kd60+Q8OgPqd+CL9lG0k/2CUDP8LdAr8PqjA/5raxPsJ8H7+LdDM/VhLfPrwiKL8ukB0/zdEiP0PjB7+DYw8/jdMrPzqu1r73fRw/g1sjPyOoqL6VJzI/rakMP3Vjl74IDUg/29DgPhVrqb5o1VU/zryyPnDb176QPlY/ruQAv2Uv+T4qwTa/ruQAv2Uv+T4qwTa/ruQAv2Uv+T4qwTa/ruQAv2Uv+T4qwTa/B5ABv+T4AT8OfDK/fv8Cv/1HAj8ANTG/8jIDvwLZ/T7yejO/ruQAv2Uv+T4qwTa/ruQAv2Uv+T4qwTa/ruQAv2Uv+T4qwTa/ZOEAv5ko+T7LxTa/yd8Av5oy+T6Ewza/q5qVPstcnL5kAmi/q5qVPstcnL5kAmi/WIj2PnMx6r6hYz8/J5CtPhSGlr7ex2Q/n+HNPiEHgb6CVmE/IMf6PjXC5r6PDT8/sqpOP+PVBT8pL4y+UEdOP4uGBT+VnI++HGNLP/TtCT+AdY++669OP/5+Bz9ihoW+6WpNP0ygCj9gaYC+PUhLPzTRDj8KFXe+fwu+vtLSCT54M2u/qriPvip2Qj6I2XC/YrRWv4IEBL/dTDM+3IxWv6dtA7/O7Dw+ythZvyCI/b58SzM+NdZWv5RbAb9S000+d15Yv2rG+r4JCFs+nH1av8PW8L52rWU+j3n2Ptov6r7gaD8/IMf6PjXC5r6PDT8/+3//PvNp5L74MD4/+3//PvNp5L74MD4/uUnuPsc9W74R21s/FdYSvhMO+L6D61y/cwwPPuc9Vb/0Dgm/rNjUvj5Q0T0aW2e/izYcPzI9PL+Y/Za+/ajrPrD/WL/sG4e+CRaZPgV2br+PK1S+t0gxv3hCID9ijre+/eygvoemXT+kU8e+1crjvohjTz8PfMO+zaNNv4XF+j47g62+AAAAAFIjaz9Ncsq+AAAAAPAgaz9cfcq+CHFvv4N0Rj4Ujpe+dwR2vz2jEj0nZIy+AAAAAB/yWz1zoX+/gbTRuK1aXD0ZoX+/AAAAAJGJWz3NoX+/AAAAAJGJWz3NoX+/b55ov8Aptr5rvF++jKBov0wetr50vl++ylJ2v2hLSL5UDEK+ylJ2v2hLSL5UDEK+AAAAgB/yWz1zoX+/AAAAgB/yWz1zoX+/qFt2vx7QWT6lXi2+qFt2vx7QWT6lXi2+AAAAAM3tXr8vtPu+AAAAAM3tXr8vtPu+AAAAAM3tXr8vtPu+AAAAAM3tXr8vtPu+AAAAAB/yWz1zoX+/AAAAAB/yWz1zoX+/1crjPohjTz8PfMO+/eygPoemXT+kU8e+t0gxP3hCID9ijre+zaNNP4XF+j47g62+CHFvP4N0Rj4Ujpe+dwR2Pz2jEj0nZIy+gbTROK1aXD0ZoX+/AAAAgJGJWz3NoX+/AAAAgJGJWz3NoX+/b55oP8Aptr5rvF++jKBoP0wetr50vl++ylJ2P2hLSL5UDEK+ylJ2P2hLSL5UDEK+AAAAAJGJWz3NoX+/AAAAAB/yWz1zoX+/qFt2Px7QWT6lXi2+qFt2Px7QWT6lXi2+AAAAAM3tXr8vtPu+AAAAAP/qXr8fvvu+AAAAAB/yWz1zoX+/FrQpv5d0pL5GIi0/CsAovwVYpr4wnS0/Ma5mv4i8YzxS5t0+LJ9mv0DYrDyx/t0+AAAAgNQmMb9azji//rbRuNQmMb9azji/AAAAgGsjMb+h0Ti/AAAAgCUgMb/E1Di/AAAAgNQmMb9azji/AAAAACUgMT/E1Dg/AAAAgCUgMT/E1Dg/AAAAgNQmMT9azjg/1bbRuCUgMT/E1Dg/AAAAgNQmMT9azjg/bjl4vvUxaj9oYaW+IdVZvz7n/T4AdjE+aGkvv1teOj/JI7m8US5uvo3AaT+9d6u+AAAAgDQI7L6oLGM/AAAAgOOM6L4CEmQ/AAAAANQmMb9azji/J7dRuYQtMT/xxzg/AAAAAIApZz8zANy+AAAAAIApZz8zANy+Ma5mP4i8YzxS5t0++MIoP+hapr6lmS0/FrQpP5d0pL5GIi0/LJ9mP0DYrDyx/t0+/rbRONQmMb9azji/AAAAANQmMb9azji//rbRONQmMb9azji/AAAAANQmMT9azjg/AAAAgCUgMT/E1Dg/AAAAANQmMT9azjg/aGkvP1teOj/JI7m8IdVZPz7n/T4AdjE+bjl4PvUxaj9oYaW+HUduPim/aT+4dqu+AAAAANQmMb9azji/J7dROYQtMT/xxzg/VJanvuCZcb8stD+9B6KnvtmXcb+Qsj+9SJKnvpeacb+Lrz+9SJKnvpeacb+Lrz+96n43PkoCx77QXWe/VoE3PgYSx75QWme/6n43PkoCx77QXWe/6n43PkoCx77QXWe/6ul7Pzp1V70zFi6+6ul7Pzp1V70zFi6+6ul7Pzp1V70zFi6+6ul7Pzp1V70zFi6+NZ3kPpKRD7/rfDI/oY7kPqaQD79TgjI/7ZnkPg+WD79bejI/gajkPvyWD7/zdDI/AbRnPysbfL4vgrG+bU8cP6CO0b51kC2/bmRnP4xAz77Gtw0+A9ZzP7WFmL6+C4I9ZFInP7O9Eb+zVf8+u4Z4PnqwYr8K28o+gFWMPs2GUr8SRv8+Qwu1vRY8fr9bsp090h4nvVqvZ78Uydi+CuUQvvvRbr+nkqm+YL4OPs9TIr//tUK/IIEFP/orxb5B60K/75OHvaNReT+TT16+viF0PW5MfD/HaSK+FjsSPphHdT+/KX4+k9aSvf2FRj/HlSA/YsuQvWoGMT8dCjg/aYXgvh2U3D5Z6kk/FwJMv3f7qz7piQA/h+Rev9QTez54T9o+4Jt1v9L5jz6CT688dhFIvx34BD9w87C+45E5v00eBD+xnum+Z3S1vhbDRT9H4wa/6ul7vzp1Vz0zFi4+6ul7vzp1Vz0zFi4+6ul7vzp1Vz0zFi4+6ul7vzp1Vz0zFi4+7Znkvg+WDz9bejK/NZ3kvpKRDz/rfDK/Ap7kvp+YDz/8djK/N6XkvnmbDz9icjK/B6KnPtmXcT+Qsj89B6KnPtmXcT+Qsj89FZKnPk2acT8rGEA9YIanPlKccT/GGUA96n43vkoCxz7QXWc/6n43vkoCxz7QXWc/i2U3vjQDxz7fXmc//003vvz4xj49Ymc/83hXv8eeK74zZwM/83hXv8eeK74zZwM/83hXv8eeK74zZwM/83hXv8eeK74zZwM/Rlf7vh7iSL/GysG+U037vqXkSL82zcG+Rlf7vh7iSL/GysG+Rlf7vh7iSL/GysG+fsAKP6eUVb+hpM492cAKPzSVVb+7cM493LsKP52XVb9/p8493LsKP52XVb9/p849XTpSPtwuLr7Vu3Y/XTpSPtwuLr7Vu3Y/XTpSPtwuLr7Vu3Y/XTpSPtwuLr7Vu3Y/eFiXPg2vc78EeqU9c0wIvqQDfL8iHuu9CrLEPoagP7+EWwo/ORzpPvg2SL9V2tk+fXmDPjQy3r7dEV0/6UaDvoicor7ns2k/OGgevjeAhL5VFnQ/Vhwrv46ulr643y4/iDdHv8qIEb+4pog+llRTvxVF6b6UjKo+hWMev/yuRr9Vp/m9PGdVvpWVdL/0OFa+4cv/PiI5pT6kzE2/yc0cP5/2iD7faj6/1lBPPzqj1j7BIdK+cpczP0zlNT9leGC9dycvP/XnOT/xn4k9CDCbPq+ebT/V+lw+zXjYvXuQfj/KX2W7dTV4vjlWeD+AeXK8Es3fvrG3Uz8q/7S+Ks2fvg1uFz9bUT6/PFmkvs3Z+T52yk+/fNZwPQVHkD4DKnW/fsAKv6eUVT+hpM69fsAKv6eUVT+hpM695rgKv5yZVT8Vo8695rgKv5yZVT8Vo869cjlSvlFILj7Buna/cjlSvlFILj7Buna/XTpSvtwuLj7Vu3a/XTpSvtwuLj7Vu3a/83hXP8eeKz4zZwO/83hXP8eeKz4zZwO/83hXP8eeKz4zZwO/83hXP8eeKz4zZwO/41n7PqjdSD/l2cE+1GP7PiHbSD9118E+Rlf7Ph7iSD/GysE+U037PqXkSD82zcE+cH4fv7kLSD/Liw69c4Ifv4oISD+GiQ69TH4fv4wLSD+H9A69TH4fv4wLSD+H9A69Z9pyv5sEn77EJ3a9VNxyv8L4nr64KXa9vdlyv3cIn769LXa9vdlyv3cIn769LXa9dxCDvriAAb9k4VI/dxCDvriAAb9k4VI/NwSDvpKBAb/H4lI/NwSDvpKBAb/H4lI/zR/jPfbDEj9e0k8/llPjPYvDEj/H0U8/IyPjPY+/Ej9r1U8/ax7jPYK8Ej+n108/2PkBv9F/3b4auj4/qqFVv0ddvL6bBdI+cJN+vjFTWr08lnc/c9p0vjXnQ76Gs3M/mdKAvTb0vz7ex2w/H5edviXaOT/Nbx0/dVNFvgRsOT8ZeSk/sOkVv1qARj9Q+HE+ay5ov86s1D4LJo89Ob5Yv4obCD9HT7g8RKx/v+XaLL0gvuM8LVlfv9bfx74ohZY+Glf3PsTbRL9OXta+cMIFPz1WTb/jEZS+xgxNPy+FGL8kqHG9ODt8P0XcJL7Qg2u9maZ/P6LRVb3ESp067z1qP1fuqz7h92S+IygsPxhH0D4nSB6/OjoQP9Fv7D7NYS+/OraVPuOJgT6GFmy/1cUgPh7WSb4SvXe/ADGIPdE6kL7ICnW/TxwWPhcnK7/Pozq/dxCDPriAAT9k4VK/KRKDPtd7AT8f5FK/OxODPnODAT9J31K/OxODPnODAT9J31K/ax7jvYK8Er+n10+/M1LjvRi8Er8Q10+/ax7jvYK8Er+n10+/ax7jvYK8Er+n10+/T4IfP1wISL9A8g49T4IfP1wISL9A8g49TH4fP4wLSL+H9A49TH4fP4wLSL+H9A49vdlyP3cInz69LXY9vdlyP3cInz69LXY9vdlyP3cInz69LXY9HdpyP7YInz5BxXU9RHBzP0i3Vb6y42m+RHBzP0i3Vb6y42m+5/hzPwD8S75Prmm+5/hzPwD8S75Prmm+mQ2cPd8Znr7ltHK/mQ2cPd8Znr7ltHK/mQ2cPd8Znr7ltHK/edmbPS4anr5etXK/7mqNvsgdOj/k7CC/016NvhkfOj8H7iC/BJ+Jvvi+Oj/QBCG/BJ+Jvvi+Oj/QBCG/kK8TP1pcTj+mEAc+j7ATP75dTj8h3QY+kK8TP1pcTj+mEAc+bLYTP8dcTj/cjQY+CeLpvePPFT+ahE2/4AcBPYeyMj5b8Xu/Z4UaPvrsXT8cQPO+znmcPEDXWj9IvgS/A/HuPtv9Xz9PFwS+c5BZP8jIAj/afwS+ng5PP8YyFj8xBiO9Qkh2P72qkz2Xw4a+xp88P2WhOL4C0Ca/RIpQP9X2V76HUQq/SzqyPnSUdr7J72e/k51EPBLeVz0zoH+/wUtwv4QviL7owWA+pRN4v1aJBb41pFY+4aVcv+ZVHz7NF/c+l+0IvxxsUj7UzlE/B0DevjLuhz6iYVw/8SyQvf+f1jzZRn8//Ds9PXxS1r7gMGg/Od0GPkUTA79XTFk/OPVCPJbiT7/2XRU//Bi1vnBOY7/0lJY+xlfKvru7Zr9zqDU+x+1Av1X+J7/vAxo9BJ+JPvi+Or/QBCE/BJ+JPvi+Or/QBCE/7mqNPsgdOr/k7CA/7mqNPsgdOr/k7CA/LKERv3XVT7/apQa+M6QRvzrTT7+nqAa+vZwRv3zYT7/Ppwa+vZwRv3zYT7/Ppwa+5/hzvwD8Sz5Prmk+5/hzvwD8Sz5Prmk+RHBzv0i3VT6y42k+RHBzv0i3VT6y42k+yICVvYd2nj5KtnI/94GVvaxqnj41uHI/94GVvaxqnj41uHI/JoOVvdJenj4hunI/rdoKP2/ixzu3EFe/rdoKP2/ixzu3EFe/rdoKP2/ixzu3EFe/rdoKP2/ixzu3EFe/pb8Yv4jwsLtfbk2/pb8Yv4jwsLtfbk2/pb8Yv4jwsLtfbk2/pb8Yv4jwsLtfbk2/n6QMv7a6VT/i2Qq9vqQMv+S6VT8lcQq9n6QMv7a6VT/i2Qq9n6QMv7a6VT/i2Qq9zwMXPyqRTj+fCfm8a/8WPyCUTj/q3vm8zwMXPyqRTj+fCfm8zwMXPyqRTj+fCfm8hKQPv2SBRT/HjJm+2bMbvy/96T7GJSa/ZI/tvZnYej/9ZCa+vPZ5vsCidj+Cg+K90VayPqTPbT+dagC+JVcZP1/JIj9AL/m+PXoiP8cMLT+9vL++ImQNP/iYjD4+gEm//YbaPSWeAD7Xf3y/VwtxPgQ2mj37Dni/Dby2vjaQsT2hG26/g6kkv52rrz4zPC+/1NcUv+e25r58ay0/BzgZvwTXpb4fkzs/oVafvosO4L2Jq3E/BG0jPkbK7r0m83o/mB2JPgNkbr3kMnY/XBwbP781jb4WBz8/wTwXP/SrJ78SPvE+23gbP68EN79qabE+zdajPqvEb7/zORI+bgQavv/xeb8ACR8+v8KEviH9db91EMc9UfAYv3VrPb+cUJ4+cqwMPxW2Vb9rCQo9kawMP0S2Vb+toAk9cqwMPxW2Vb9rCQo9cqwMPxW2Vb9rCQo9bwsXvxSMTr/zZ/c8UQsXv+uLTr96Ofg8bwsXvxSMTr/zZ/c8jQsXvz2MTr9qlvY8rdoKv2/ix7u3EFc/rdoKv2/ix7u3EFc/rdoKv2/ix7u3EFc/rdoKv2/ix7u3EFc/pb8YP4jwsDtfbk0/pb8YP4jwsDtfbk0/ycIYPyv0sDsKbE0/ycIYPyv0sDsKbE0/5MxqPvnaOL/UFie/5MxqPvnaOL/UFie/NdSFPs36Nb99KCe/F+WFPmL5Nb+nJie/IQBNv32yqr4PxP6+RP9Mv6mkqr4Y0P6+6vxMvymoqr5S1f6+4gFNv9emqr48xv6+d+LLvhXPOj8GSg6/kd/Lvm3MOj+NTg6/FvG6vic+Pz9NNw6/hO26vg1BPz+VNA6/JG4vP8v8oz5+cSe/qWovP6v/oz5udCe/JG4vP8v8oz5+cSe/JG4vP8v8oz5+cSe/J7DyvngCCj8uOjK/OX0wv9Rg9j0X3Ta/uHHOu5CtGz/xN0u/3A/pvTzaKz96fju/RbTdPl1O5j4P+Ee/wxAEP7u6hb3Dqlq/bsgWP7mCwDycy06/kq2nPrLf/L6gNE6/FOFLvlZuE7+0+0q/I56rveNEJb8FU0K/Mvkdv0Q0zb7OWy2/4y9Bv0GJBT3Zwye/4ubMvrB/qD7N9Fo/JNe/vrXS6T5Yj04/KTPvvAv+IT9eFkY/snnYPuWJAD/DIEE/mTcHPxEa/j6iYTA/yKo/P6LGyz1GyCc/CBYYPzWRq75dNTs/o0MQPyPD7L7xPS8/V1stPoIUKr9yXDo/d6uJvo60A78+c1A/RXrFvkhvAL9TOEY/E6IWv/lhw73Ni00/be66Pm47P7/VOw4/yvm6PqU5P7+BOg4/kd/LPm3MOr+NTg4/cNXLPprIOr8wVw4/MoArv42Ds75aiCc/U30rv4yAs74ajCc/U30rv4yAs74ajCc/U30rv4yAs74ajCc/p+KFvqD8NT+dIyc/5OSFvqr/NT/aHyc/T+Vqvh3gOD8ADyc/pulqvvrcOD8WEic/XatQPzMemD5Jn/4+XatQPzMemD5Jn/4+XatQPzMemD5Jn/4+x6lQPyYqmD5anf4+Az0XPhjBBb/H+lY/ZCUXPte8Bb94/lY/vzwsPj7kA7+bJFc/LT4sPuTrA7/YH1c/Jrw2v3G4L79yVg4+8Lg2v+i7L7/yUw4+Jrw2v3G4L79yVg4+zbw2vxG5L7+8PA4+GVuPPNfyLL8wsTy/zV2PPBr2LL8xrjy/8EsdvIo4Lb+9ejy/+EgdvEU1Lb+9fTy/WmVfP68z+b752CO9WmVfP68z+b752CO9DWhfP2Mv+b7gySG9zWJfP/E9+b4/biO9IzAQvoM2U7+AFwy/DqbqvoC4Xb+7Y0y+nDDKPsHHSb9RqvG+cISaPrYkQ7/glBK/6Zg9P+ILJb/U2EG+LTgqPwXcKr++ras+DMQ/P7E1G7+Is4g+d2qtPgg/J7/OVi0/V9s5vjX3Rb9LhRs/EAjOvTkSNb8kIDM/RhsMv3WTRr9E66A+z5EOv/aQUb/WxQ++z2rtvhePND/SRAm/2w7Jvs/AJz92MSW/qvtUvEJsMz9Qkja/J7q4Pt45UT/fCea+VU/xPgPjSD+GIs6+F+EMP1FuVT/nxzo9fLh8PmHkYT/pGs0+TjhBPi2SVT+loAQ/Zn4/vjZZSj9LVBU/eLwSv0vQQT88gqA+zJArv9ZgMD+yTo0+eQ5AvwKDIz+oAS++8EsdPIo4LT+9ejw/NkkdPBc8LT94dzw/GVuPvNfyLD8wsTw/GVuPvNfyLD8wsTw/eDVkv54g5z7KYyE9UDRkv3If5z5GbyM9izRkv64f5z6UBiM9AjVkvyYg5z4wNSI9ejosvg/pAz/GIVe/vzwsvj7kAz+bJFe/XyMXvpnBBT+X+1a/mSQXvj7JBT/J9la//6U9PxQ/KD9IIg6+d6o9P8lDKD85aQ2+WKc9P0ZAKD/c7g2+9Kg9P+Q7KD+WHw6+tv0QvhSKGr/x2Eg/8v8QvumFGr8K3Eg/nwARvi6NGr9s1kg/nwARvi6NGr9s1kg/Huh2v6Yfgb4n+KA9Huh2v6Yfgb4n+KA9tel2v18Tgb4w+aA9tel2v18Tgb4w+aA95V+UvkWgB7+wDUy/6WGUvo6bB791EEy/5V+UvkWgB7+wDUy/5V+UvkWgB7+wDUy/fKsNP5r3U791I7m9XLMNPwbzU7/A8Li9fKsNP5r3U791I7m9fKsNP5r3U791I7m98qH2voXtHb/4VR+/mMVLvziFCb9Y2I6+TaXfvG0sVr9oDwy/fDC7vUl8Qr+T0CS/O2WqPh1ZaL+wBYO+lfNwPiGLb79WjoY+pbOuPsoea7846Uw+6N1gvav6Sr8pXRs/JzYKv8g9J7/J4Qc/8grivkfwI79r5CA/k59avzoi7L4WlHY+vTZdv+f26L5BRFy+nQiKvYI5Yj/dJ+2+Tpu7vPUIUT8nqxO/cwO6PigCLT8dLSS/oi88P8ZHET+65r2+1yVQP1kC9j4sSqi+10NjP++L4z7zkfU9024iPyQwGz9fgfU+dUkOP0daFT8Amxc/fFsxPgbhOz8uJCg/Fa8yvu/GZz/QMMY+AbGUvkKeZD90+68+Y8C7vtalbD8j1ta95V+UPkWgBz+wDUw/5V+UPkWgBz+wDUw/5V+UPkWgBz+wDUw/5V+UPkWgBz+wDUw/fKsNv5r3Uz91I7k9CLMNv4nyUz/BJLk9fKsNv5r3Uz91I7k9Q6QNvyf9Uz8n7rg98v8QPumFGj8K3Ei/8v8QPumFGj8K3Ei/8v8QPumFGj8K3Ei/8v8QPumFGj8K3Ei/tel2P18TgT4w+aC9tel2P18TgT4w+aC9tel2P18TgT4w+aC9Tet2PxkHgT46+qC9YI/tPnrcMj+3aQs/oJPtPh/ZMj81bAs/sJLtPvjeMj8aZQs/sJLtPvjeMj8aZQs/mNYjvwF33D6r6iI/mNYjvwF33D6r6iI/mNYjvwF33D6r6iI/mNYjvwF33D6r6iI/ft6tvmMuK7+LVik/cOGtvkkxK7/cUik/eOGtvsQqK79xWSk/eOGtvsQqK79xWSk/PC9CPybIzb7kTgM/sSpCP3DQzb5fUgM/PC9CPybIzb7kTgM/PC9CPybIzb7kTgM/YIjFvrTE4r4fL08/DQoIv5NJnTvl21g/BdXWPSdZFb/vLU4/Ou2evJnrIr9nZ0U/O7kLP/nq8b6DJjE/d2IxP5x+DD2fXzg/3Mw+P5lvgb0G6Sk/SVcKP1T29T7L1zA/sgdwPbB9Hz8Hr0c//igxPhRzLD/H8Tc/q43KvkpIAj/Ot0M/0zcYvxlkzD3HPEw/kUIev/ltlL7aCDu/UNUZv/ht1r69SS6/2CyDvnBMJr/yPje/YvBNPvgOEb93jky/KPqiPrPmEb/T7UG/FjQUPyK8Sb7bjUq/gM/oPgQ1gD6fzlq/1AHlPuZrwz6mEU+/wxTQPWqzHD9lwki/qMC5vgsKBz95qES/eizwvhuMCD+9MTS/dKU6v8yNJD5VUCq/ht6tPt4nKz8hXSm/ht6tPt4nKz8hXSm/Ee2tPkcpKz/4Vym/Ee2tPkcpKz/4Vym/sCxCv3LFzT64UwO/sCxCv3LFzT64UwO/sCxCv3LFzT64UwO/ry5Cv3W6zT4SVQO/sJLtvvjeMr8aZQu/b47tvlLiMr+cYgu/sJLtvvjeMr8aZQu/F4XtvpneMr9fawu/mNYjPwF33L6r6iK/mNYjPwF33L6r6iK/dNcjP0WF3L755CK/dNcjP0WF3L755CK/XfS5PToRYz8s1Oc+XfS5PToRYz8s1Oc+3u6nPUw/Yz+w++c+vPCnPUQ7Yz9gC+g+VxlDv10mEz4snSE/VxlDv10mEz4snSE/VxlDv10mEz4snSE/DxpDv7AMEz7EnSE/vlC4PCTFLL8l0jw/vlC4PCTFLL8l0jw/km6BPHHmLL8Qvzw/km6BPHHmLL8Qvzw//9pcP8/NTD1a0gA/hN9cP+3LTD2cygA/etZcP7LPTD0X2gA/hN9cP+3LTD2cygA/364DvlTh9r4R2F0/eQnuvsHvGr4HUV8/RaW/PmyrwL7r9lg/ym2UPoUd+L7iRlM/nYk1P/xyrL02NTM/SF8ZP70I3T6tnyw/heovP2NAvj550B8/o+SBPjtiPz+ZIR0/oThsvtdvKD+ogzc/FkgdvtqvPz9SECU/f2wUv9BZsT4tyzw/HcUQvxrm0L1lg1E/D3jWvgETHr9HcCq/mMKvvsLFN78EDRu/XA2cPTLIQ797yCO/j6ngPvbG+L7ygUG/wy4LP5jl2754mDi/l4cYP6bFsTz6hU2/LcCMPnI1rz7kBGa/oI5TPkPN6j5uQl2/OiNOvoa4AD9GM1e/uqMSvywwXT5LbEq/70krv49LNz7mpji/d845v2auh76jgiK/O0CCvF7mLD/8vjy/km6BvHHmLD8Qvzy/WCK5vArFLD8J0jy/WCK5vArFLD8J0jy/yKdcvw8JcL1G7QC/I6lcv0FscL096gC/yKdcvw8JcL1G7QC/d6lcv8QDcL1u6gC/3u6nvUw/Y7+w++e+vPCnvUQ7Y79gC+i+lSy6vUwPY7/l2Oe+Wyi6vbQQY7+i0+e+z8lCP/btGr7FiCG/ts9CP3LtGr6vgSG/z8lCP/btGr7FiCG/z8lCP/btGr7FiCG/vCWGvv68Vr8mVfS+vCWGvv68Vr8mVfS+szCGvh3AVr8jRPS+VzKGvr3CVr8DOvS+x09av6u/Cj6THwG//U1av7PCCj5lIgG/x09av6u/Cj6THwG/BE9av2bZCj4gHwG/ZhT7PXZ1Lz/JwDe/Axn7PbB4Lz+bvTe/KuX6PYlyLz+WxDe/KuX6PYlyLz+WxDe/SEs4PwZIkL5pYSK/SEs4PwZIkL5pYSK/IUU4P1ZIkL5RaCK/IUU4P1ZIkL5RaCK/t0K+vS5JDj+we1O/qakDv4udsT6kyEi/4/6wPo/Tmj66ZmO/PAibPufm2z6CzVm/2IcXPwqRsb13I02/pX+qPk/UC7++w0S/ZgblPu6CA791bDu/RxOlvakpP7+SBCm/m3MHv7wTAb/6uC6/M07zvtl9Hr+fDSC/569Cv/4iyr3QTCS/OssdvyrUpz5sSje/eszMvfDMKz9zDjw/X5zEu/0uPz8RPio/sufMPtdyKT9CQSI/sRwsPzcOjz7JfS8/IKo/PygCST7SGCI/0jQsPwP4fr4yYDI/4hiRPqtT8L5mFlY/p5Q2PvWkDr8gnk8/ViRovjcn8b64PVo/r3L7vtbXo70CD14/yGEUv5rCKLxOmFA/IBQBvxRe3j5dFT8/Axn7vbB4L7+bvTc/w+D6vQN2L79cwTc/Axn7vbB4L7+bvTc/mxT7vSl8L79hujc/IUU4v1ZIkD5RaCI/IUU4v1ZIkD5RaCI/SEs4vwZIkD5pYSI/SEs4vwZIkD5pYSI/VzKGPr3CVj8DOvQ+VzKGPr3CVj8DOvQ+lTOGPiy+Vj9iSfQ+8jGGPo27Vj+CU/Q+BE9aP2bZCr4gHwE/BE9aP2bZCr4gHwE/BE9aP2bZCr4gHwE/BE9aP2bZCr4gHwE/Gwz5O28tFT/MCFC/Ywj5O8IxFT+xBVC/kNLeOjAYFT8+GlC/4tXeOtsTFT9YHVC/om03v8/LMT9fiIU9X2o3vzPPMT//hYU9om03v8/LMT9fiIU9GGw3v1LKMT9ljYY9MRE2PtmKHT8VlUQ/MRE2PtmKHT8VlUQ/+Gs8PscpHT/4gkQ/+Gs8PscpHT/4gkQ/0l9kP3Wc4D6Sy929MF9kP9Wb4D5i/9290l9kP3Wc4D6Sy929Ql1kPwun4D4Vyd29t13cPMCTSD/87B4/f9CzvtA7Xj8RnLM+Ynz9PlOwPz84ouE+Zy7ZPkQINz9hRw4/3QlGPxTRID+EmKo9RN0XP21jMT8d09G+BUIwP79iID8eCbu+1BlRPt3wND+NYy2/YWqAvmlCVD+Yzv++AnpHvpJnRD9UcRy/CmkMv+cjUz+O5Qy+Jc/svsGdVD834Z4+Iq3HvjBXOb9MqRE/cTCXvtLQL7/AByo/bwn5PcPKQb8fWiQ/Qz3dPp7VWb/v75g+BgIIPyaBUL/IyW4+QSsEPySuU79qWGS+XwIWPtH5WL9plAK/1P2HPdpfSr+V2xu/zmy0vtTmOr+G4hW/bDUsv4cyM782jXW+42BBvyhuIb8ceTa+ylY9v4gBHb9v7Y0+Amk8vt0tHb/hf0S/Amk8vt0tHb/hf0S/Uw42vuqOHb/9kUS/6BE2vgSSHb9Mj0S/qTZjv9A15b6Bz949cjpjv6E55b6imN09Szdjv3M25b6ym9490Tljv/845b50zN09/+3rui4YFb87GlA/Y+/rupwfFb/oFFA/Ywj5u8IxFb+xBVA/Ywj5u8IxFb+xBVA/X501P7ikM78B8oW9HJo1PwyoM7+a74W97qA1P8GhM79fu4W9cac1PyqbM79Yu4W9vYi2PlSs4D7pJ1O/vYi2PlSs4D7pJ1O/vYi2PlSs4D7pJ1O/vYi2PlSs4D7pJ1O/FJ2PvhSNdT8/CxO93pCPvpyOdT8FdRO9FJ2PvhSNdT8/CxO9J6mPvk+LdT8wChO9AhDLPs2CAj8Bb0M/AhDLPs2CAj8Bb0M/XA3LPqaHAj90bEM/XA3LPqaHAj90bEM/KYt/P2QaYr0s9rm8KYt/P2QaYr0s9rm8KYt/P2QaYr0s9rm8KYt/P2QaYr0s9rm8WHK1Pp+yOD8MShg/Sdu1PYqMdD87bpA+inpDP1n34j5hYfA+UB0tP56O6j5QsRM/vTd5P3BBMT6V/Bg+ytFjP2Yijj4ETLm+zYpvP9olNT6tQ5y+BhEVP7HM6j6i2Su/DthnPqPBTT+F2wy/JA6CPhexNj9IICe/dBKDvVn8eD833WS+NxC+vN0FeT93P2w+uu08v7m5y74+hQs/SjIlvzl9zr6rFyY/PR+lvsMjKr/Piyw/FkiUvfMQbb8pp70+zboWPYLCcr8mbqE+sN5gPdchfb+AIQ6+VAWBvj5dWb87t+2+nt+Rvny3RL9WsRK/R0Idv0rqA7/W+xi/oQdov0oGnb4dyJS+rRBzvxggTr59kna+kOJ2vyqqIL4lAlo+9QTLviCEAr/9cEO/9QTLviCEAr/9cEO/9QTLviCEAr/9cEO/AhDLvs2CAr8Bb0O/hot/v9uxYT1v9rk8hot/v9uxYT1v9rk8hot/v9uxYT1v9rk8hot/v9uxYT1v9rk8vYi2vlSs4L7pJ1M/vYi2vlSs4L7pJ1M/8Ya2vgGd4L5hLFM/8Ya2vgGd4L5hLFM/SamPPoiLdb93oRI9wbiPPgWJdb++DBM9SamPPoiLdb93oRI9NZ2PPk2Ndb+GohI99sufPomsTL9mYQM/Cb6fPnurTL9HZwM/EM6fPjmvTL+SXAM/EM6fPjmvTL+SXAM/6+fGvhBRVr8uHcW+6+fGvhBRVr8uHcW+6+fGvhBRVr8uHcW+ytzGvjJTVr8kH8W+7aynPlBhEL6lLG+/7aynPlBhEL6lLG+/iK2nPp5HEL6BLW+/iK2nPp5HEL6BLW+/uIR/PwQUcr06iIW8uIR/PwQUcr06iIW8uIR/PwQUcr06iIW8uIR/PwQUcr06iIW8tKaGPuNAzb5WqGC/PFXKvJ12Ob+kWTC/xuMzPxcggb7AUCq/iPQcP92vVL4MIEO/KBFyP6RQOL6ozIq+xA9bPz7T/r7+/xA+w4RpPzBLxr5kHAk+U1AIP+DaRL8nI7U+8k8NPhvue7+E9+Q9xCQ1Pqg4dL9e6Hc+uHUxvomvdL9tM3O+QpkMvoGeQL9W6yS/3V8xvzRBLD9YtIS+o+8ZvzlGNz9VqbW+iGmAvh1RbT+fv46+ZU/8PPu9fj/TtsA9WrcRPqSZej+UHhY+vsYtPuE8Tj/+ThE/HnIXvppAED9QElA/d1JBvgww5D7cA2A/VnkLv+2ieD4meU0/Wa5cv1iPaD4o/+c+EeNqvwGqJD5NOLo+FStxv00OqT5yEHK9iK2nvp5HED6BLW8/iK2nvp5HED6BLW8/iK2nvp5HED6BLW8/iK2nvp5HED6BLW8/uIR/vwQUcj06iIU8VoR/v4J8cj0GiIU8uIR/vwQUcj06iIU8uIR/vwQUcj06iIU8NL+fvmymTD/LbgO/NL+fvmymTD/LbgO/Cb6fvnurTD9HZwO/3cmfvtipTD86ZgO/cALHPtdKVj97HcU+cALHPtdKVj97HcU+cALHPtdKVj97HcU+T/fGPvlMVj9xH8U+JXARv7IgE7/jyRa/JXARv7IgE7/jyRa/g2kRv50gE79c0Ba/g2kRv50gE79c0Ba/9IUYv0CJED/JORK/AYYYv2iWED+5LBK/9IUYv0CJED/JORK/7oUYv6yCED9RQBK/C+4KP04TED9NnR+/C+4KP04TED9NnR+/C+4KP04TED9NnR+/Q/AKP5sVED9LmR+/plwSP+pvE79xlhW/plwSP+pvE79xlhW/plwSP+pvE79xlhW/plwSP+pvE79xlhW/qFuePmIZED82OES/tGAlvmorFz/ca0q/v1sSP6hbAj4Wfk+/RHQXP6Cjgz6RnUO/TbQUP38TrL5myj2/vK8DPtYiG7/J9Ui/NmlzPrnyIr/81Du/Un2uviPkE78J4D2/etwavz9wEr6diEi/YnUfv4Eoi74LzDu/HYQcvzy1pD7SFTm/NGuJvsk6Hz+QTzy/nTYNPjZmGT8P40k/5/yHPvXsHj+a0zw/+/4TP4sasT7lLz0/9CweP4BN/L0RzUY/OHomP3yLbL6TRDk/BVq3PnLKFL9REDs/sjjWvXttFb/AIU4/nAlwvlkrG7/WkUI/V+4Lv32Tqb5A5EQ/pMIVvz3tDT7ukUw/M50ev7RIez6N3j4/G62nvs5xGD8fzDs/4/QKv5oTEL8Ulx8/4/IKvxUYEL/HlB8/Q/AKv5sVEL9LmR8/C+4Kv04TEL9NnR8/plwSv+pvEz9xlhU/EWESv8NtEz9BlBU/5FMSvz50Ez++mhU/S00SvzN0Ez9AoRU/g2kRP50gEz9c0BY/g2kRP50gEz9c0BY/g2kRP50gEz9c0BY/X2cRPwElEz8kzhY/aowYPymJEL8kMxI/aowYPymJEL8kMxI/aowYPymJEL8kMxI/L4gYP12LEL9fNRI/NN8MP2rcAz/BPCg/NN8MP2rcAz/BPCg/keEMP6HeAz8HOSg/keEMP6HeAz8HOSg/G8UUvwW2GT/yoAw/usAUvw24GT9boww/G8UUvwW2GT/yoAw/G8UUvwW2GT/yoAw/Qv8iv8e6Cb+Cag0/Qv8iv8e6Cb+Cag0/M/8ivy20Cb8DcQ0/M/8ivy20Cb8DcQ0/wGH/PnROH79IcRo/Kkb/PplNH7+QfRo/wGH/PnROH79IcRo/iG//PuBOH78kaxo/8T8jv5sGn77sczQ/qC0lv/5vIz4QRD8/8xJhvrOMGL++u0U/ATOxvsiKG7+jAjc/Drh8PqImIL9hdj0/wHEIP4fWQb4XHlM/3/kPP5VsmL4Ne0U/ErwHP3Z9kD5drUw/ebPZPZneED/pTVE/6Vl1PiFNFD9Ec0c/brezvvUQGT9tejg/cMYqvwlKij79vDE/rs8Jv8YWnb1j2Fa/x+sRv1EgUr7MrEu/tRKfvsvaB7/230m/00YhPiugF795SUq/K5yEPvDRIb+s9Tq/yi4fPwglt75+WzK/NOEmP7W32j10MkC/MDgtP+cDbz5mxjK/Zh7WPjwhDz9MRTe/ESQ5vcM7Hz/1HUi/FegdvjvqKD/wRDy/SHoEv0JSxT6flEO/9PwiP9W4CT8Rbw2/9PwiP9W4CT8Rbw2/KAMjP4m4CT80aA2/dgUjP3y6CT+mYw2/wGH/vnROHz9IcRq/wGH/vnROHz9IcRq/0WX/vm9KHz++cxq/4GH/vvpHHz/qdxq/keEMv6HeA78HOSi/keEMv6HeA78HOSi/keEMv6HeA78HOSi/keEMv6HeA78HOSi/0sIUPza6Gb/Jngy/G8UUPwW2Gb/yoAy/6cQUP1+8Gb81mgy/bsIUP+vGGb9OkQy/0V/2vja9sr552U0/0V/2vja9sr552U0/0V/2vja9sr552U0/nV32vrnIsr6h100/3K54vx/Nbj7JdDW9YK14v+nlbj60czW93K54vx/Nbj7JdDW9JK94v2TNbj4hDDW983vdvklR5b5MUEi/83vdvklR5b5MUEi/Y4DdvuJV5b7BTUi/Y4DdvuJV5b7BTUi/ygfOPagofr+Q6oQ9PNTNPbspfr+ytoQ9ygfOPagofr+Q6oQ9ygfOPagofr+Q6oQ9Lmoov7o30r6OoSG/5S5tv4nPFb6CgrG+gtu9vkv2TL8J9fC+fXvDvnvIN7+oBBW/w1nsvdlMfL/b9v29CbCFvja4Y7+H9L8+fRoevtajbr9loKc+QSf1voKwFL+1hyg/saBUv/sFfb44iP8+/kc/v29/iL7n2Rs//Qd9v6dqvDzwsxk+n/dzv+gICr2pKZq+NK3NPs/UPD917wq/A5XWPgVHJD9XbiS/jlsyPxPIqT4F2CK/ZklyPyV72D1wN5y+Pj54P1BJnbnDKXq+JTF6P8W30bnN4lg+5q1MP/zTnj5eqgM/Lag1P1KDrz7Rlx0/70XhPljnKD9T8xs/reR2Prscbj/1040+qRkNPsJVdz/JUl8++VIBPkOKdj+kmHO+Y4DdPuJV5T7BTUg/Y4DdPuJV5T7BTUg/Y4DdPuJV5T7BTUg/83vdPklR5T5MUEg/jNPNveMofj8cH4W95NPNvU8pfj/n6oS9jNPNveMofj8cH4W9Tp/NvR4pfj+pU4W90V/2Pja9sj552U2/0V/2Pja9sj552U2/nV32PrnIsj6h102/nV32PrnIsj6h102/qK14Py7mbr4MCzU9qK14Py7mbr4MCzU9qK14Py7mbr4MCzU9qK14Py7mbr4MCzU90KhXPmyrcb/0/4G+3MFXPh6qcb9A/4G+aadXPtqpcb84DIK+W45XPiercb/rDIK+qn5NPymqAr1ecxi/qn5NPymqAr1ecxi/qn5NPymqAr1ecxi/qn5NPymqAr1ecxi/AkFPP2wpqT4Da/g+lUNPP4YrqT7+YPg+AkFPP2wpqT4Da/g+AkFPP2wpqT4Da/g+y6stPv+KDb962FA/QcUtPmGKDb+S11A/y6stPv+KDb962FA/y6stPv+KDb962FA/tChwP9e7OD7BWZc+cAZ9P2l68jzcrBi+9jc8PwXVzb2Cmis/eK9DP7KTBz1r1iQ/lA7cPtWQ3r4JmUo/rcusPnO7U79eI+Y+gIyMPq39Sb/Tsww/9mypPoiRcb9GWga8lSEbP4fBNL9Jl7u+XOf9PpR/Sr+lc7e+GWhNP/HenL5FHgO/LT92P231OT0RCYq+TpW0vvIcaj8u9Uq+NrqavtBNcz9qh5a9IkPrvqZ5Vj/Y/JY+pwI+vwHw/D6j1+c+AIdBv8gayT6rDwY/b2Fwv9GcgDyz668+DRB9vyz83L21eti9GEZ1v8MeRb7KMFm+ljpPv96SmL2XFxW/l2YVvyBkmz5v0UC/svb1vvOosz6XxU2/HSCWvn6vOT+8cR+/lUNPv4Yrqb7+YPi+VkVPv9kfqb4XY/i+lUNPv4Yrqb7+YPi+lUNPv4Yrqb7+YPi+y6stvv+KDT962FC/y6stvv+KDT962FC/VZItvpyLDT9i2VC/VZItvpyLDT9i2VC/W45XviercT/rDII+aadXvtqpcT84DII+W45XviercT/rDII+W45XviercT/rDII+qn5NvymqAj1ecxg/qn5NvymqAj1ecxg/qn5NvymqAj1ecxg/qn5NvymqAj1ecxg/c29jvy9Axj1KveW+c29jvy9Axj1KveW+c29jvy9Axj1KveW+c29jvy9Axj1KveW+YFyPPVfMbr6+S3i/YFyPPVfMbr6+S3i/NCiPPcTMbr4wTHi/NCiPPcTMbr4wTHi/s3p/Pu48dr+ukuW9YmF/Pss9dr/qx+W9SJN/Plw7dr83keW9kpl/Pt06dr/eluW9FMUtvzlYF7/+Bd8+FMUtvzlYF7/+Bd8+FMUtvzlYF7/+Bd8+tcctv/VTF79dCd8+uZkIPoqrbL9v1ba+V5FtPfJDKr+Alz6/YD9TvsJwer8GqKQ8BZKPvbRef78Igre66J8Ov2B7Sb+vooc+gWdjv+sB6743nYA8TxNev3Li9L6QFAw+E5JtvwkJG75mSa6+PDMivxecIr5p10G/OBk4v0Bqkb2t9DC/IKhbvn7lg77sL3G/SBW/PXLsEb9c+lC/5+FuP1Gumj7ClUc+WsFyPyPTOD6quoU+eZxGP80uoT3dQiA/pbXRPradaz6f/WE/eZKYPk7wUj6SnG4/6VA4vaKI/z6jiV0/Mt6+vX/HVT+SzAo/idAivnhTYz8V7dw+p9KaPIxMfz8obZI9omfXPu3eZD9gsx2+UdLzPpeiVz+LO4G+phFRP1+rCz/Pm0C+s3p/vu48dj+ukuU9s3p/vu48dj+ukuU9kpl/vt06dj/eluU9J7J/vko5dj9mleU9A8ctP+hZFz9e+96+A8ctP+hZFz9e+96+A8ctP+hZFz9e+96+FMUtPzlYFz/+Bd++c29jPy9Axr1KveU+c29jPy9Axr1KveU+c29jPy9Axr1KveU+4m5jPx90xr23vOU+O12PvY2zbj45TXg/O12PvY2zbj45TXg/O12PvY2zbj45TXg/YFyPvVfMbj6+S3g/+0R2v0L6HL7ua2e++0R2v0L6HL7ua2e++0R2v0L6HL7ua2e++0R2v0L6HL7ua2e+iOfIvXaPgL7LhXa/KBrJvWqbgL6Ug3a/iOfIvXaPgL7LhXa/m7PIvcmPgL5ohna/id/pPgnXXr97yzu+id/pPgnXXr97yzu+id/pPgnXXr97yzu+id/pPgnXXr97yzu+Dj/Evgl4Ob/xqBI/HTPEvrF/Ob9DoxI/Dj/Evgl4Ob/xqBI/4E3EvhpzOb86qhI//x+QPloFYL/3kcm+v89ePUlCKb8xjj+/ud6CPZMif7+uW1M9pkpEPpNAe7+TtNG6TBqEvqztY7+cD8A+uP81v71SK7/3S10+/JQov3FRLb/IP6g+J/Jov47wy75Cjuy9hGM6vybJsr6uAhe/IttQv3n0kL4FFQG/4ES0vlwlsb62ol6/x6U9PRJCEL/hJlO/pJ1XPzLdCT85t8i8CjNnPzgk2z4Ofww9ARpaP/Wqmj7R+No+bVAHP1uwuz4oAkQ/MAziPsBNoj7S4lY/WEnqPAh7Aj9HIVw/4l02vvyoTj+OCxA/2dmOvo4sVj+fXPE+m/RkvhWkeD9JUKc9fREDPmDAdj8eM2++1swuPjVybD/FuK++eOMUPzsPOj9fFbu+puPpvmbUXj//6Ds+Be7pvsvRXj/N5js+puPpvmbUXj//6Ds+cN7pvv3VXj/Q5Ds+HU3EPvB4OT8aoxK/HU3EPvB4OT8aoxK//k/EPqd7OT+znhK/iFfEPvJ8OT+KmhK/+0R2P0L6HD7ua2c++0R2P0L6HD7ua2c+ZkZ2Pyr7HD4MU2c+ZkZ2Pyr7HD4MU2c+5bTIPYCDgD7+h3Y/5bTIPYCDgD7+h3Y/5bTIPYCDgD7+h3Y/m7PIPcmPgD5ohnY/FNSrPaarbr91H7S+FNSrPaarbr91H7S+oNWrPcytbr/5E7S+oNWrPcytbr/5E7S+/DZbP3qY3b37RwG//DZbP3qY3b37RwG//DZbP3qY3b37RwG//DZbP3qY3b37RwG/NqdIPxAAAD6fuRs/NqdIPxAAAD6fuRs/FqRIPyL8/z3AvRs/FqRIPyL8/z3AvRs/0NnwvH1FKb8E5z8/0NnwvH1FKb8E5z8/0NnwvH1FKb8E5z8/WqvxvFxFKb/f5j8/ksNoP6ZWwbySy9Q+JKF9P2S9Bb699xe9+t8dP2Rxm7627jk/uKYrP4BoM77MjTg/+b19PpbbFr8r3EQ/imQMPl8qa78XwL0+tOWMPcaaYb8KZ+8+KkguPhUOe7+FbMW9LiwGP7z5Qb/tEce+953NPgduUr9Svs6+LedMP596xb4g9eq+6J17Pzzbxr3XWiC+nd4tvqudej8Pn+e9R70FvrLBfT8nNaI8fk2zvgFJXj+s3bM+cQQ0vwSqED/97Nw+zgg+v4rV6z6EJfk+IL91v/QPFD4gv3U+5pN4v6HBqD2FyWW+OQNxv0SZxDtIlqy+da46v8hECz7rrSu/SVfZvi3o9z7l3EO/jmuevo+JBD/vMUy/Qm+0vdiWVD+E1Ay/NqdIvxAAAL6fuRu/NqdIvxAAAL6fuRu/NqdIvxAAAL6fuRu/NqdIvxAAAL6fuRu/RgjwPJ1FKT8p5z+/RgjwPJ1FKT8p5z+/uzbvPL5FKT9N5z+/sDLvPG9JKT8P5D+/MDusvcevbj9qA7Q+MDusvcevbj9qA7Q+P2+svUSvbj8IA7Q+TKOsvcCubj+kArQ+/DZbv3qY3T37RwE//DZbv3qY3T37RwE//DZbv3qY3T37RwE//DZbv3qY3T37RwE/FxPwvpn9FD+2FSq/mBPwvncEFT+FDyq/Rqr3vpXmET/mCiq/Rqr3vpXmET/mCiq/0H17v3ItkLvuRz8+0H17v3ItkLvuRz8+0H17v3ItkLvuRz8+0H17v3ItkLvuRz8+nW1BvvNm0T7mjGQ/UItBvrhq0T53imQ/4a42vtXD0z4Hj2Q/0LA2vvi40z5zkWQ/xV+6PulKbj/6tgQ9Tl+6PlBKbj858QU990+6PgJObj8OtQQ90E+6Ps9Nbj/MHQU93ZLYvnmE6z5o20c/PZBKvzFRpT5F7wQ/0NmsvbkJSD/TSB4/wf7MvanjLz8IPDg/if0hPk8wdD8/qII+m6SbvbbzeD93lGG+Rv8yPS83ez9T5j++0AfOvnwLRT/Uv/2+79BJv70SBz+DAaK+weM3v1m0Cj9Wcd++kWR3v8gegz5pabw8AK1av9pQaz4lzO4+Juh/PuU0ZL8Ai8E+UQadPgHjUb8Ai/c+rsArP9z+E7+ixu0+3+RrP2revL6Tb/k9w1F2P57Bhr5zxI89gJlnP6ZeR76FC8K+sLgcP7Pyzr7D+S2/jOsAP+guzL41MkS/N84ZPij+JL+T7D+/UhaMvXGIZ7/9m9e+IL4svmXya7/w4rK+VWDuvSjxfL+q1s490LA2Pvi4075zkWS/0LA2Pvi4075zkWS/UItBPrhq0b53imS/nW1BPvNm0b7mjGS/ofutviyfcL+giAW9qxKuvsiacL8K7wW97gauvq2ccL/0WAa9teutvtShcL9Q7wW9Rqr3PpXmEb/mCio/Rqr3PpXmEb/mCio/RwTwPvz1FL+dISo/Ag/wPhH7FL9gGSo/H297P8O/qLzvYD++H297P8O/qLzvYD++UXB7P5HAqLyhRz++H297P8O/qLzvYD++yGhNPmN4x77ZHGY/yGhNPmN4x77ZHGY/WZlVPiatxb6dCGY/WZlVPiatxb6dCGY/AWwavX+yf7+wf/u8eNQavdmxf798Iv28AWwavX+yf7+wf/u8AWwavX+yf7+wf/u8wEc0P6KOt76X4Ry/wEc0P6KOt76X4Ry/Tk4yP56evr40CB2/Tk4yP56evr40CB2/eNdpP+mJij5yo5s+StlpP/2Kij6Nl5s+YdZpPyaNij4Vp5s+YdZpPyaNij4Vp5s+E2YoP+eTGL9Zx+u+1f2/PoXGZb+EdG2+cJ5yP5yqZL6DYGm+hmBmP/Q6gb69Eba+4gJ9P2ZpkT3qCQo+JC9LP0jyn71GcRo/It5TP6Y3CT0wcA8/Y3ruPvTPr76UyFA/WxpzPh6kQr/xxxo/2HJbPvThK79inDU/DsTCPcQJeb8cRVg+1CqFPuQKcb8sIVu+qhkgv/yigT548zy/FNcCv5wzkT5St0+/uCSMvkndGj9tbD+/ir1Bvnm7Zj+mhse+gP/dvYIecj9QxZy+fidpvp7mdj/sTwk+WL0Rv9cAPT9cMLk+lkocv0ZuJT8oc+o+CexavwJOrT61AMk+0f5+v6mOsT1k0JE8M7h/v208vbw7tSa9ZDpgv0hUQb0h3PW+Tk4yv56evj40CB0/Tk4yv56evj40CB0/wEc0v6KOtz6X4Rw/wEc0v6KOtz6X4Rw/PHNov/Hdk763ZJu+PHNov/Hdk763ZJu+bXFov8rck76ecJu+bXFov8rck76ecJu+WZlVviatxT6dCGa/WZlVviatxT6dCGa/yGhNvmN4xz7ZHGa/yGhNvmN4xz7ZHGa/t1RsPRV0fz+aqvo8t1RsPRV0fz+aqvo8t1RsPRV0fz+aqvo8t1RsPRV0fz+aqvo8UXgav3Z+Gz9dRgQ/UXgav3Z+Gz9dRgQ/768gv40+FT8xEQQ/DrIgv4VAFT9iDAQ/MRIiv8lBDr/N9Ak/QxIiv0s7Dr9p+wk/fxQiv0E9Dr/D9gk/riAiv45JDr/C2wk/Eov9PlsKB7+ntzA/LYH9PhEMB7/kuTA/wUjyPrrhC7915jA/XUXyPlPmC7/74zA/qtQHP0M+Fj/3kBw/qtQHP0M+Fj/3kBw/qtQHP0M+Fj/3kBw/qtQHP0M+Fj/3kBw/kS9qPmY9Cb/gBVA/cWV3vqHSDb8U9Es/Q6T/PqIar70nuVw/xI0GP5ljXb4Vo1I/vpwBP0S+vz4o3EY/MMhDPcm7Ij+7PUU//ickPrOoKj9HWjo/iGLUvsyUGD+MATA/hmQqv7shPT7SHDk/bjMtvxeVnz5tyyo/iMctvx26jb68HC4/mwSwvuL7Fb/K3js/coBEPmeIIb9xbkC/OdOgPpQsJ7+EajC/OnolP1QquL7sQiy/dkEuP4v53D1wfjm/59c0P2RxXz6aXiy/md/RPg+lDz/5Fzi/L/0yvW75DD/sZFW/BFs1vjR2Ej+3Ak2/ViLwvrVqnj7CxFO/rsgDvyG1Ir4GrFe/3MwOv8rDhL7U1Um/v9qMvuLTHb8I2zy/XUXyvlPmCz/74zC/XUXyvlPmCz/74zC/jY/9vr0MBz84tDC/Eov9vlsKBz+ntzC/M8oBv8erG79GYxy/NcoBv1eyG7+7XBy/VsUBv1y0G7/DXhy/NcoBv1eyG7+7XBy/sKsgPz9HFb+IDAS/VrIgPzo6Fb8rEwS/XXoaP4WAG7+PQQS/LH4aP0+EG7+nOAS/AI0nP52TBz/4Igq/NoknP0yPBz/NKwq/AI0nP52TBz/4Igq/D5MnPzeTBz8CHAq/OXo5P048MD4C3Cq/4AVePwhsRT13sP2+khDtPld//z7khju//ECtPhKJLT+hFSe/lb1jPacjez/9Qj6+0pELPtnzaz/Q9Lm+2lVKPYXRez+MPzE+JIgWPuBlaz/zoLo+ifHuPiDa9z5ZfD0/70C1PscjLD+5ZyY/Gcc5P/rJMj7cXSo/ZS9eP35FWD1B4fw+9zyZPsXSKz+EnS0/2VfkPWJxVj+94Ag/ef0UP0LwtD72fTs/Jrs8P1BcdT7PuCE/q4Z5P7YVDL5g8TQ+WTVuP30SA7ymfrs+44V4P50kBr6Q0k2+V5FsPzZ78rs3osO+BbwWP97lsD6uDzu/zF48P5zHbT6q2CK/iCGfPqcDKD9lADC/oqDnPYjOVz8woQa/N0NLv7LqYr02+xo/jghOv2NEi73l8BY/KHLSvvnyFb/s0zI/vanXviydFL9QYzI/f7OMvdwmdb/ENY8+cFdsvWuidb/pKI0+mnOTvYi6dL/dqJG+s6iTvdTcc79oWJe+ht3TvuwxFr+NMzK/A0zXvijVGL9j5i6/+0dNv9b7h71JAhi/xNtKv9l0tb3Ffxq/swmqvouUJ78z2i2/pdhFvknSVb+MywO/QpUWv44Br76QoDu/Qig+v1Qqab6QLSG/RVx7vzGwvz1PwCi+D+tuv+d+N7yMzbe+5Qx6v1+Xqj1IO0o+PS5tv3DWI7yUnMA+r6cYv2czpL6lZDw/ZaE7v0yJZ76zQSQ/imqpvgfcJL9/lTA/I+9FvhsDVb9LFwU/t6J4vQjIfb+dme69P3J5vXMUfr+AFtk9bFB9P0Kvpb3OJfW9oqB9PxKtrb3FTNk9rnaCvaBzfT+WhAA+g/9dvdZ7fj/L6sC9lCZ4v6O3VT5w0QQ+HcZ5vwp9TD6gIrm91ft7P2JAJL6dh5Y9RPtIP0DbB7+Mh6O+brNiP2t7274mSTe+M4x7P1MOvjtTDj4+v2u2PkVaIb+RlTC/qD0FP8KnIb8SJBO/Nz09PjbvGr+TOUa/Nz09PjbvGr+TOUa/qtM8vaFJvb7LkW2/2tcSvqU8nb7u2HC/yGTIvpEFEb/3pTm/ebecvukhSL86FAu/ZpwCv+8qhzxJIly/UN8dv9oKBD+MPRi/anAdv4P+sj6W8DS/sVTQvk0cGr5ip2a/sMzVvrvNYj/HoU6+R5oEvyWySD8HM6++wyM5PHNQfD/Pvyw+F5EcvsGdfD+D81s9/YcBP+7TRj9mGMA+6n6uPn1qYT+lqKg+EbFgP2WErT5Kd60+XEdGPz19AT/XdsI+2CUDv8LdAr8PqjA/Q8Ogvqd+CL9lG0k/5raxvsJ8H7+LdDM/VhLfvrwiKL8ukB0/zdEiv0PjB7+DYw8/jdMrvzqu1r73fRw/g1sjvyOoqL6VJzI/rakMv3Vjl74IDUg/29DgvhVrqb5o1VU/UMiyvoLZ176lPFY/ruQAP2Uv+T4qwTa/ruQAP2Uv+T4qwTa/ruQAP2Uv+T4qwTa/ruQAP2Uv+T4qwTa/B5ABP+T4AT8OfDK/VQQDP0lGAj+uMjG/QjIDP5LK/T6OgDO/ruQAP2Uv+T4qwTa/ruQAP2Uv+T4qwTa/ruQAP2Uv+T4qwTa/ruQAP2Uv+T4qwTa/ruQAP2Uv+T4qwTa/q5qVvstcnL5kAmi/q5qVvstcnL5kAmi/S+DNvmcTgb4OVWE/uZ+tvjeIlr6PxGQ/WIj2vnMx6r6hYz8/IMf6vjXC5r6PDT8/UEdOv4uGBT+VnI++sqpOv+PVBT8pL4y+bVxLv2z0CT+Dgo++o61Ov8uBBz8liYW+6WpNv0ygCj9gaYC+6kJLv57YDj+JFne+qriPPip2Qj6I2XC/9w++PhDWCT5yMmu/3IxWP6dtA7/O7Dw+xcBWP2jwA79CTDM+/NZZP6eN/b5kTzM+NdZWP5RbAb9S000+wVtYP2DQ+r5JBVs+nH1aP8PW8L52rWU+WIj2vnMx6r6hYz8/IMf6vjXC5r6PDT8/+3//vvNp5L74MD4/+3//vvNp5L74MD4//VPuvio7W75y2Fs/cwwPvuc9Vb/0Dgm/U9kSPo0T+L7W6Vy/HtjUPiGE0T2AWme/izYcvzI9PL+Y/Za+UpTrvswEWb8bH4e+CRaZvgV2br+PK1S+uTMAvqYY0T5geGc/44EAvljW0D6ghGc/6xkAvlIZ0T4eeWc/AjQAvlQz0T5Wcmc/wYIAvmUm0T6Hcmc/AjQAvlQz0T5Wcmc/5mcAvqtM0T7Qamc/6xkAvlIZ0T4eeWc/6xkAvlIZ0T4eeWc/uTMAvqYY0T5geGc/vQEAvr8p0T49dmc/uTMAvqYY0T5geGc/lBgAvjwk0T6xdmc/TGoAviYc0T6xdWc/WTUAvmgo0T7BdGc/GYQAvnob0T7zdGc/s7cAviEa0T51c2c/uTMAvqYY0T5geGc/DzUAvroN0T7Kemc/6xkAvlIZ0T4eeWc/VJb/vT8m0T7reGc/6xkAvlIZ0T4eeWc/AjQAvlQz0T5Wcmc/6xkAvlIZ0T4eeWc/WTUAvmgo0T7BdGc/xjQAvgvz0D7SgGc/6xkAvlIZ0T4eeWc/6xkAvlIZ0T4eeWc/8Mn/vZQl0T4teGc/uTMAvqYY0T5geGc/Pyj+vW1b0T4xc2c/7Y7+vWw/0T7Ed2c/3U4Avg4N0T4Memc/XN8tv5xjOz+EXFw9Rggevx8RST+xJDk9yF0dv9e0ST8RsBQ9yM08v00jLD+HaYA9jkVVv2n8h76Qa/g+Pqljv1IcK75t9dk+urpjv3kAK77Osdk+29xIv/P0vb4eUf4+Q7FKv/YGGz/goKM9+nZKv6yXGz+MbZI9mstsv559O74dfqo+pnG9vqtMJ79SCik/mIkfv2iqD78TcQs/Jah5v9e7uD1I2k4+TfQ2v9Y47r7KswU/IWI/v1AK9b7wxes+1BKDPbTCNr/KgjI/I48gvOpNL7/fijo/khemPS1vUL96LBM/H/8QPs2yOr8+XSs/ItVJP4ATcr0fwBw/N7Y3P0u3Vb6VFyo/pnVBP7cKBr6JRiQ/Om1JPxlcU73QcR0/q6G0vVtfJr+OQEE/X4CkviKzKL/pGS4/VmZEvkoRJL8OSD4/pJyzvWclJr8udkE/UmwsP3Mokb66wC4/wYAsP7ojjr4kSy8/H+cOv+vBGb/BiRI/ElqEPkKNJ79E4zU/lzcrvS9nN79uSDI/xaNBv7qG2L5hff8+lFXuvr+CML+qDQ4/TJHcvif9Jb+RsCA//Wdpv+RbNb6Swb0+hqt1v4A0BL7hzn8+ajh8v53Vmr3JSh0+Bdl+v9sdp71PbUW9y/y2vgsOHb8eRjQ/BG4DvwPmDr8m3CY/33PevjhKFr9a3S4/03e0vmwzHL9EpTU/lhpzv1byIz6174k+qQlsvy/PuT7fCQo+HQJwv2rygz4pUW8+xwBzvy6+Iz6OtIo+y2wWv9QxBr85zB0/+F8VvxLjBb82DR8/8dlRv+ydEj899LA7sQYiv+0YRj8Dzsy8C41ivwwS7j5qnM281yhjvzG96T7m64Q90qa3vhWQbj8cl129WtyCvm7GdD++bBK+Ngokvm9Qdz/JdE++VCp2vaH5bD+LOr++sp0xv4Nr3L6dyhM/khE/v5IRv74LEw0/DllAvzXwv76nBgs/MaEiv/y3+L4Wshk/7H7EPs7OA79kPUQ/sfOKPqRSE78/f0U/csCKPlSIE78pYEU/sCf6PmGR+L4NmDk/9kERv3HpCL8ESSA/hl8Sv92kCb+Joh4/5TRQPxrpyL050RI/qdgvP2Urtr4lOiI/llQWP3ub274Sui8/f8kUP86s+r5eZiY/ZYNjP62ejz75p7k+dXteP8l/cz4oGd4+ieVyPze5Xj7rf2o+3YBlP9sPqT6QPpc+ZgAAvqs00T7Rc2c/uTMAvqYY0T5geGc/uTMAvqYY0T5geGc/uTMAvqYY0T5geGc/6xkAvlIZ0T4eeWc/6xkAvlIZ0T4eeWc/uTMAvqYY0T5geGc/uTMAvqYY0T5geGc/QRsAvmUO0T6Ie2c/HQAAvv0Z0T7beWc/5mcAvqtM0T7Qamc/sJ0Avm2Q0T6bWWc/uTMAvqYY0T5geGc/6xkAvlIZ0T4eeWc/6xkAvlIZ0T4eeWc/6xkAvlIZ0T4eeWc/uTMAvqYY0T5geGc/9R8BvtXx0D7veGc/QRsAvmUO0T6Ie2c/Yfn+vdhN0T6rcmc/7o39vRh40T5ab2c/6xkAvlIZ0T4eeWc/J08Avr0n0T4DdGc/DzUAvroN0T7Kemc/uTMAvqYY0T5geGc/ZjYAvs0C0T42fWc/JDMAvkfj0D5vhGc/uTMAvqYY0T5geGc/hGBlvwuJ0j6Inys+yVJkvw3c1T4rjzE+K8hcv7IY+T7DDg8+RI5TvyqrDT+wMdU9mouXvHPpfz9PXZg8oESUvC/pfz9iR508+oXaPeBCfj9QDj49QnphPhqeeT/VReE8GqFHv0chHz+yKpg9ULlIvwLsHT9HFIw9L8DqPopGYz/P1iM9VVYpP/ZvOj8eZDc+JRY3vS/4fj8iIJ+9kMmwvncYbz85nby94bqrPgMIcT9zEwM9uk6iPtGdcj/bgRW9md1UP5Z14j6jFaw+Kl1fP6EIvT7G16M+PFRnP7hAlT64q6A+OPhtPzEQpT7GFTc+d7ERPyLSwr5hmjo/nfEhPyURpb7xRTQ/g9EBP1IH375uYz4/Li0AP5R13r7DqT8/5Gk8P4UIGj8i354+oFkwP/O0MT8XzVU+XExIP8kfBD97b7I+xjpIP34NBD9o9LI+pHUvPxcKhr788i0/9qQwP9u8hb7mzSw/V9BWP9o27T5B7JE+EKVjP3WRQj5bDdU+JywGP0BZWT+eA4k9E6yNPsb3dT8o/Yc8flUgP3aVRD9poAk+/PggP4m7Rj+43DU950ELvbenfz89jiC9jjoFvtxgez8Vmgy+eHxdvrRYdD8qU1K+ddSNvoN+YT+ikMS+nnoWPxtMSD/Mo1I+iaAGPzyGVT8emCo+4NUkPyRDOj9gYHI+DuokPzqMOT9rKXo+IIPxvviwYT/Vh4U89z0Xv2F8Tj8lYaG8GX7BvqoDbT/wSh07wCzBvgQUbT9pX2U7IDzsPieJYD/vswg+313rPhv5YD96EgM+ynhIv+0tHz/ssD+8xpxovxYdzz7DLtQ9XSAvv8WROj+17/S8SP83vwEJMD+8i9K9E1R3v40U8j1+6Wo+Uwp7v7Fnd7wZ/kc+UdF5vyOlAb4ISDY+fJF1vwS9jr4KaDw9k2R/PkEmdz8pPps9vAWBPuvHdj/uE649OjyoPoFscD/B/sw9VzTPPrM9aD+OhOs9a6xXP17WQT5eHwE/35pXP9ajQT5mQQE/yw1TP7dsmj1xmA8/lxFSPzNLJr018RE/EUL1Pn7vXT+3Ag0+Osv0Ph5eXj+lHwU+4lU+Pw9cj77ndxs/UMEJP8TZ7r7ItjM/0aBKP5jtHr4iUxc/9wlVP9/5HL5vawg/mSdcPixtI798ND0/hHolPl+WMb/FrzM/w/TKPdnmPL+u5yo/TelIPlBYSr8FjxQ//2cPP0xKJ786UwK/3WkPP3pMJ79eTgK/3WkPP3pMJ79eTgK//2cPP0xKJ786UwK/vUGCPgfrxj5zuGK/vUGCPgfrxj5zuGK/vUGCPgfrxj5zuGK/cUCCPif2xj4ytmK/qmFQv0z91D1gTRK/tWRQv2kA1T31SBK/tWRQv2kA1T31SBK/qmFQv0z91D1gTRK/D031vt75X79vy5C9nUz1vnb5X7+a/5C9D031vt75X79vy5C9D031vt75X79vy5C9jBA2v+UOur4DDxq/r2dzvsZi/z3imna/r9ocv39pgD1Crkm/9OlGv602fL5dTRS/I2XVvbFUXb8Gsfu+aG8Tv5TRNL/8vtK+VbEuvlUdZ7+6Isq+KX29Pk7yv77umFm/LfCUPitnQr9J/RS/AmzrPip94b68Z0W/WPqAPs6RoDuzvXe/zscYvqDBVz4xUne/3ZTfvg+HAz9pDD0/F8J9vuOSTz+wvAc/lO/rvb+XUT/6ABA/bOiZvop9Lj5CO3A/jph/PYMeOL4VUns/+g+nvtDtST3OqHE/40TpPom7p72V62I/auxBP0YKOT55lyA/jmgQP4RUAb7v5FA/slIkP3OIET8ivAM/472FPoFeYT9Atso+2jklP0I6JD+iR9Q+lcxPPzoCzb0iThM/DcxPPyE2zb3BTRM/lcxPPzoCzb0iThM/lcxPPzoCzb0iThM/h071Pqn0Xz8tpJI9fD71Poj4Xz/Z1pI9l0j1Psr1Xz8N1ZI9h071Pqn0Xz8tpJI9Q1AOv2FgJz9eaAM/ylQOv/9dJz+AZgM/ylQOv/9dJz+AZgM/Q1AOv2FgJz9eaAM/6RiCvheaxr4N0GI/pgyCvmCbxr6F0WI/pgyCvmCbxr6F0WI/6RiCvheaxr4N0GI/HP7UOwNiob7Y8XK/HP7UOwNiob7Y8XK/HP7UOwNiob7Y8XK/HP7UOwNiob7Y8XK/ghUMPqjcRj82XR2/ghUMPqjcRj82XR2/ghUMPqjcRj82XR2/ghUMPqjcRj82XR2/OCpLvxxyGz/6SR09OCpLvxxyGz/6SR09OCpLvxxyGz/6SR09OCpLvxxyGz/6SR09wl9Vv421BL95yUO+wl9Vv421BL95yUO+wl9Vv421BL95yUO+wl9Vv421BL95yUO+D1Rwv86xez5lMHe+ktPWvvNoOz+9Ywm/3ZA1v9R0KT+oVXi+6Gxuv70krD6sKQ++ieQjv7WErb7vfDC/x/xuv0diJb4L2aO+6mMvvxvz0r6HyBm/bErzvUECFj7QZ3u/Z8OTvtVmlb5Qcmm/jzlWvWYd6zxFi3+/38+Rvf2/CD9ppVe/wMWcvsmZRz9R0wu/AwzGPWAJLD3Akn4/Y9qqPg68tD6TxF8/e/rpPiSdnj6fclU/bNnXPTpNvr6iH2w/0r2BPjkHP78tmB0/HNfnPMty7L5W82I/zTYZP9GHM7+MS8Y++ellP61u0r6ZQSA+SKElPxZ5N7+iRYU+nfpzP3I4q7yhrpo+3gZAPz59vz6Qnws/cR52P5wmwj34P4Q+S3JLPwEqG78giAW9S3JLPwEqG78giAW9S3JLPwEqG78giAW9dnJLPyIqG79fHwW9am1VP5KOBD97gUQ+am1VP5KOBD97gUQ+am1VP5KOBD97gUQ+XmxVP+yNBD+7mkQ+Q9PeuuCxnz6MOnM/Q9PeuuCxnz6MOnM/Q9PeuuCxnz6MOnM/Q9PeuuCxnz6MOnM/LV4LvszPRr+fdx0/LV4LvszPRr+fdx0/LV4LvszPRr+fdx0/LV4LvszPRr+fdx0/6mwqP3OqNL8JOni+1mkqP72tNL+MNXi+6mwqP3OqNL8JOni+6mwqP3OqNL8JOni+DOozPwoXxj5w1Bi/DOozPwoXxj5w1Bi/DOozPwoXxj5w1Bi/DOozPwoXxj5w1Bi/smDOvrsRgT7sN2G/smDOvrsRgT7sN2G/smDOvrsRgT7sN2G/smDOvrsRgT7sN2G/JczwvvbbSb+p6Mq+usnwvn3gSb+F2cq+JczwvvbbSb+p6Mq+JczwvvbbSb+p6Mq+3gCzvt7fZL5i62i/zKKUPmwAUT6PVm+/Tm4BvuLIQz5nL3m/JV7PvnTCyr3mr2i/TaOBPaGjUL+WdBO/DPq6vl9rF79oCDi/QDw9vbLoWL8gcwe/WdczPyKixb49EBm/IjXrPh4rRL87/OW+bq87PySZ7746p/y+blUzPwcrSzxtqTa/rgTBPrFBjT42WWK/bm8wv5nUCT/XRPg+OSXIvowoUD+o1Nw+XpyVvgWnTD/cYAY/iHg1v42PLT6hRi8/zHrpvo+Zbr654ls/Kys/v8ImWz3etik/uMR1vXCxQ77Tz3o/3OG2PnnyDj3q8W4/y3SCPdDYfb79eHc/Ux+2PpWX4T7y/1I/YGn4PSi8Tz9OWRI/EU7VPnlUBD8lcT8/VJfMPqIMfr5e6mE/VJfMPqIMfr5e6mE/VJfMPqIMfr5e6mE/VJfMPqIMfr5e6mE/+4fwPsLZST8yQss+14zwPkjXST9ORss+14zwPkjXST9ORss++4fwPsLZST8yQss+hggqv3iHND8yDX4+hggqv3iHND8yDX4+hggqv3iHND8yDX4+hggqv3iHND8yDX4+l90zvxvJxb5P/Bg/z9szv0PUxb7M+hg/l90zvxvJxb5P/Bg/l90zvxvJxb5P/Bg/CZiwPkXzIb/5gzE/CZiwPkXzIb/5gzE/CZiwPkXzIb/5gzE/CZiwPkXzIb/5gzE/gWJ+P1qopL3uJqC9gWJ+P1qopL3uJqC9gWJ+P1qopL3uJqC9gWJ+P1qopL3uJqC9U01zPlH35L6cv1y/U01zPlH35L6cv1y/U01zPlH35L6cv1y/U01zPlH35L6cv1y/ccn0viQaYL8dOpK9ccn0viQaYL8dOpK9ccn0viQaYL8dOpK9ccn0viQaYL8dOpK9xETPPf8jT79BLhS/RXVGP8f68b4ulta+S03xPqNkCb/yKzO/xAXfPQDUOL/P6y6/UxkVPPw+e79QNEQ+ZFUfvmVAcr+cGZG+fYfjvWLter/y7ic+wnAuP4BNJL+sH7Q+Bs6IPvgQVb/srPg+bXweP3mpIL+0tfE+uDNmPwBL3b5Zp4o9M0dYP2aEwr704MC+5H4Nv6ICLT+7qPm+mXs/vjvSWz/cUfS+/FYovtNoaz/7uba+fk1Rv24vCz/RJUK+EAdgv7XPxj7t3ZM+veZhv7Rc4j4MqiS+deIdv0hHBz/6WxU/Aek7vsljMD/MfDM/JOgJv48w+T76DDA/jnwMPUCKaD9fZNU+wqwHPt8LfT9GUZa9sbIZPg1jaj+SBb8+o8F1vltE5z5D+ls/o8F1vltE5z5D+ls/o8F1vltE5z5D+ls/o8F1vltE5z5D+ls/IWL0PsY1YD95b5I9p1z0Pk03YD8xbJI9IWL0PsY1YD95b5I9IWL0PsY1YD95b5I9R56xvtnlIj+zYzC/R56xvtnlIj+zYzC/R56xvtnlIj+zYzC/R56xvtnlIj+zYzC/LF1+vwKBpj0hXKA9LF1+vwKBpj0hXKA9LF1+vwKBpj0hXKA9LF1+vwKBpj0hXKA9AlmovRyCVL+OLw0/AlmovRyCVL+OLw0/AlmovRyCVL+OLw0/AlmovRyCVL+OLw0/RsBoP56SuL7XZVU+RsBoP56SuL7XZVU+RsBoP56SuL7XZVU+RsBoP56SuL7XZVU+EJ/gPuAZpL4t61a/EJ/gPuAZpL4t61a/EJ/gPuAZpL4t61a/EJ/gPuAZpL4t61a/hv0XvwVtKL/oNu2+hv0XvwVtKL/oNu2+hv0XvwVtKL/oNu2+hv0XvwVtKL/oNu2+8pQHPjgdLL9Zczq/MhFBP430F7+Y0I++P/gRP6WpAb9AlCW/5odJPgGrEr9trku/YWSMvoSpdL8R79q9TKZ0voi+R79J+hO/Pp++vhqoab/dVyy+tnSxPr2pX78my64+M0byvU3Cc79YOpA+eKh+Ps90Xb+rEd8+TKgxP2tGML8OcVc+WjpSPy9YCb/4EEe+5L4wvrucZD+IytS+49RFPotscz/2sne+fF86Pgwyej97md29LAkNv9quSj88H4e+yGZQv/AXEj8LxNw9O2Ikv0f/NT/a2JK+LPcov17MED8cJP0+6VWOvrOqDz+5k0c/Sygjv64a9z6NyRk/naOSPTxpQT+4tSY/kh64PkN1ZT/b0IQ+r49GPrJYPD/zHyY/m6vgvnr3pj5zWlY/m6vgvnr3pj5zWlY/m6vgvnr3pj5zWlY/m6vgvnr3pj5zWlY/4c0XP++YKD8lNO0+4c0XP++YKD8lNO0+4c0XP++YKD8lNO0+4c0XP++YKD8lNO0+nQWjPflMVT+MFQy/nQWjPflMVT+MFQy/nQWjPflMVT+MFQy/nQWjPflMVT+MFQy/wrFov1v6uD6z+1S+wrFov1v6uD6z+1S+wrFov1v6uD6z+1S+wrFov1v6uD6z+1S+Bg2cPuekyL5ZOV6/fhCcPl2pyL68N16/Bg2cPuekyL5ZOV6/Bg2cPuekyL5ZOV6/qHxNP0tv/T7AVqq+Z35NP3Nx/T4XS6q+Z35NP3Nx/T4XS6q+qHxNP0tv/T7AVqq+GJ6CvgWNbz8rW3m+95qCvtWNbz8yVXm+95qCvtWNbz8yVXm+GJ6CvgWNbz8rW3m+GzpCv3jSXryMuya/GzpCv3jSXryMuya/GzpCv3jSXryMuya/GzpCv3jSXryMuya/sPPQvnimLD81hR2/16G0PorJQz8uAgq/Be70vPpCZj/RON++GZvPvptlQj+kRQK/x2GSvvweBb1RLHW/iDEUv7hYpD4o5D+/7zrMvpcmbb2cSGq/xCfzPkcFZz1D02C/SHW+PYoIV744KHm/BmbvPos3o73XXmG/zm0kPzchvz7VXSu/OFjsPkApPj9DRvi+aazLvvF+6j1jCWk/rjo0vGKtbT4p/ng/Dd+TPRfO/z1dUn0/lJwSvxwwe75oPkg/HNEDv3VxLb8kdAY/3vQnv210kb5i/TI/JSEOviysWr+xRwA/MYWrPmhJTb9tSf0+8X9QvV7faL9XD9M+OYIBPz/h+L5UbDY/ADfnPhdAgryQX2Q/uPUXP9+kzL5d0DI/2diBPsNDb79xSn8+kdaBPh9Gb7+/K38+kdaBPh9Gb7+/K38+2diBPsNDb79xSn8+FhlCPwuhVjyn4iY/FhlCPwuhVjyn4iY/FhlCPwuhVjyn4iY/FhlCPwuhVjyn4iY/T32bvvH7xT7y6l4/T32bvvH7xT7y6l4/T32bvvH7xT7y6l4/T32bvvH7xT7y6l4/2mFNv8iI/b4Dsqo+2mFNv8iI/b4Dsqo+2mFNv8iI/b4Dsqo+dWRNv+N+/b4ttKo+RJLevncvTz+YPso+RJLevncvTz+YPso+RJLevncvTz+YPso+RJLevncvTz+YPso+UHWPPjpl1T0xS3Q/YoGPPrBj1T1vSXQ/UHWPPjpl1T0xS3Q/UHWPPjpl1T0xS3Q/s6u8vvKcQL9pxgs/s6u8vvKcQL9pxgs/s6u8vvKcQL9pxgs/s6u8vvKcQL9pxgs/grx9v/xaXL1rafi9grx9v/xaXL1rafi9grx9v/xaXL1rafi9grx9v/xaXL1rafi9IhQ+vzpX6r7cavo+ehY3vgdZZL77UXU/8oS4vv4AC7+UK0I/BsIpv5yDEb+vWfk+MhRnvy9wmT78JZ4+Lzlzv/c8Sr4yS3c+2DNyv/PegD4lsVA+XlasvoTHCD8TgEY/hmQov8J8HT9+gt4+H2SuvsO9Iz/eaTA/7cyZvapWij4/unU/TiSGvShROL6LQns/iV3RPvISJr+6TiS//DA2P6GSGL+kaL6+oyRIP5Rg9r6mAsu+uhJQPgynxr7VI2a/Yp9vPVOdsz3Lkn6/B/SwPf0RuL6S222/YCSXPvJOzz6+il2/XzEbP/2jEz/SMAy/0+qTPhFtBj+97Uy/8nNgP2Nunz4zpLu+oCh3PxokJL5aUlK+CGJsP1VZkz5YGIK+nE++PkqXPz8Jnwy/90u+Pi2aPz9YnAy/90u+Pi2aPz9YnAy/nE++PkqXPz8Jnwy/CMR9P/jyWz2FkvY9CMR9P/jyWz2FkvY9CMR9P/jyWz2FkvY9CMR9P/jyWz2FkvY9iQrgPhhNTr9HOsy+RALgPv9KTr/LS8y+RALgPv9KTr/LS8y+iQrgPhhNTr9HOsy+Cg6Pvikz1b0CW3S/Cg6Pvikz1b0CW3S/Cg6Pvikz1b0CW3S/qA2PvgVn1b1bWnS/uclDvbGXfb+4RgO+uclDvbGXfb+4RgO+uclDvbGXfb+4RgO+uclDvbGXfb+4RgO+n3NgP/IV1b4hxnY+n3NgP/IV1b4hxnY+n3NgP/IV1b4hxnY+n3NgP/IV1b4hxnY+Cb0zP41Ukj7G9ia/Wb4zP4NIkj7/9ya/Cb0zP41Ukj7G9ia/Cb0zP41Ukj7G9ia/4V+YvoCwVL7Ii26/02uYvuGuVL73iW6/4V+YvoCwVL7Ii26/4V+YvoCwVL7Ii26/WtfqPqH9Xb0rD2O/Kb9oP8/JkL5Ag5y+y25QPwACmjwZjhS/Xh4EPxm1hD0JpVq/6AXnvEaUKr+1wD6/TAe9PXJwbL6I9Xe/fj7ovcXvF79L+0u/DEvXPsSNZL/peSW+RQd5PAiRab+/c9G+T2uaPmEZcr+xN/i9xi8+P3M3K7+uGuK8ivpvPy2vlr7fkT6+V/l2vpg1dD+vqzY+xbs4PVmxYj/3wOw++XDOuycaUj8/QRI/7KwdvwkSSD96X8s9/0FqvzlnwD6b6BU+wLgtvzcIPD/XRFg70ftev6rH/j2NT/M+2vYVv3U6gb3n2E4/KDZcv8178rvciAI/GR6HvstKKj4aOnM/Lq+lPXTWBT84Plk/CHQTvoJWGz53Vno/sukzv1xbj76cayc/sukzv1xbj76cayc/sukzv1xbj76cayc/sukzv1xbj76cayc/jgSYPis0VT4Bk24/jgSYPis0VT4Bk24/jgSYPis0VT4Bk24/jgSYPis0VT4Bk24/MpgyPfyAfT9iewc+l5cyPSCAfT8klQc+l5cyPSCAfT8klQc+MpgyPfyAfT9iewc+HnZgv6I/1T5fEXa+HnZgv6I/1T5fEXa+HnZgv6I/1T5fEXa+HnZgv6I/1T5fEXa+F6Ufv41VET/Fkwk/w54fv1BcET/3kwk/w54fv1BcET/3kwk/F6Ufv41VET/Fkwk/ADSRvVOGuL4CG24/1f+QvaiGuL5vG24/1f+QvaiGuL5vG24/ADSRvVOGuL4CG24/uzfnvkpgZL+WZXe8uzfnvkpgZL+WZXe8uzfnvkpgZL+WZXe8uzfnvkpgZL+WZXe8lHthv/Udlj3rgu++lHthv/Udlj3rgu++lHthv/Udlj3rgu++lHthv/Udlj3rgu++SQhQv3RoFL8GinS9RpLvvp9JH7+GqyA/TZIJv4GqTb9BU4M+S+s5vxSuLr/aBKu9Is96v9v0PT6JCZs9pzdzv2+GY77QWWC+7Nx6v9BARj40KEK9YsMhv8hZEz4990I/wFlTv7TNyD4mt88+7Qwevw3SjT73fDw//ELYvsZ/RL5tyGI/MJe/vkQjGr+VjjQ/pI4qP+RKn75ZgC2/IFhaP/h80L6VRae+xTtqPzj7mL682Yq+GKYIP6tMUT1SFVi/9GHDPk/JBj+TfEK/4BHdPhB9yD0Ai2W/1NYGPy3VOz/Bwdu+eE4xP0CaOD8QLpA80CT5PlayTz8c5KW+ZndpP4IdxT7qGBE+fjl9Pw9q570nGMA9bIVrP2qrnj6pqHU+S4PpPunNYz+aUkE86njpPpHQYz/bVEE86njpPpHQYz/bVEE8S4PpPunNYz+aUkE8TphhP1aClb25HO8+TphhP1aClb25HO8+TphhP1aClb25HO8+TphhP1aClb25HO8+OpIgP5siEL+twgm/6o8gPxUnEL+ywAm/OpIgP5siEL+twgm/OpIgP5siEL+twgm/bdeSPW6TuD5yFG6/bdeSPW6TuD5yFG6/bdeSPW6TuD5yFG6/bdeSPW6TuD5yFG6/OTCovoH/bb93siq+OTCovoH/bb93siq+OTCovoH/bb93siq+OTCovoH/bb93siq+tM0FP20iJr/HiA0/8cgFP6YkJr+tig0/tM0FP20iJr/HiA0/tM0FP20iJr/HiA0/odFyP/Ng5by0iaG+odFyP/Ng5by0iaG+odFyP/Ng5by0iaG+odFyP/Ng5by0iaG+WtDVPKl4S75sznq/WtDVPKl4S75sznq/WtDVPKl4S75sznq/WtDVPKl4S75sznq/qmY2P2OHlr45GSO/jIZNPy+pF7/MOIk90GJtPypwnb4Vn1q+yzVKP7XtSb7zpxS/CqsCPZhwMr9/YTe/zWe8Pipys74Ae1y/SoA3OzVKG783hUu/IMz2PY8efr/w9DC8WbAQvm0PaL+1uMu+jsV1vOjof7/RabO8VcfYPtI6X78jmHs+HCpHP7J+Gb+QM0A+T2xFPW11fj/chMk9G+4nPnsSXj9bevA+zmpnPdmzVT8ENQw/eCSbvlTNcT/PpAG+J003v5sxKj8XBFq+YFisvoELaT95lna+5Uxjvx8K5j6ei8o9Y/JUv5GZXT5m2AI/dLZvvwi0pj5DPgY+UNYHvxe5rz67Z0Y/V16Yve1bDj++6VM/S7nivpVhlj4M3lg/l6Ryv+gJCj3gTqI+l6Ryv+gJCj3gTqI+l6Ryv+gJCj3gTqI+l6Ryv+gJCj3gTqI+5eXZvFAtTD5dxHo/5eXZvFAtTD5dxHo/5eXZvFAtTD5dxHo/5eXZvFAtTD5dxHo/5XulPqBebj+d9Sw+5XulPqBebj+d9Sw+5XulPqBebj+d9Sw+5XulPqBebj+d9Sw+ldsFv5k9Jj+5Ww2/0tYFv9I/Jj+dXQ2/ldsFv5k9Jj+5Ww2/ldsFv5k9Jj+5Ww2/LdAvP2HJIL8sVbu+LdAvP2HJIL8sVbu+LdAvP2HJIL8sVbu+AdMvP2nFIL8uWLu+HI8yPxf1Ob5OdTE/SI4yP3EOOr57dDE/SI4yP3EOOr57dDE/HI8yPxf1Ob5OdTE/yFsFP5VjVT83Uzw+yFsFP5VjVT83Uzw+yFsFP5VjVT83Uzw+yFsFP5VjVT83Uzw+6DW+PlEduj4qtFq/6DW+PlEduj4qtFq/6DW+PlEduj4qtFq/6DW+PlEduj4qtFq/h1o0PwgCLD9w/Gm+z8VeP8EvjD50t9E+VO47P+ozIj8JEHo+TDclPw50QD/spAq+GYhBPyV/Nzvnkie/qkgjPxVu+j4NTRi/at8tP6V9ez1YPDu/Aw9rPyymyr5bEoO8sQlMP18Iv77iJ/O+iC9dPyFx/b7cary962NnP2NWaL4lsrk+wIhXP+EKSj5ekQA/ycBbv+f99j54ljI+NTdEv8UzrT4ixQs/W29Nv7IQVD4NQQ8/9ydvvwnImD5ZMUi+/Xldv5qU3L07yvq+VOxlv/bAnT7+nqC+CydRv4IX975ulqG+cQErv5j5Pb8FvGM9pPg8v2ciGL+HeaO+4JwwvzMfE79fYeE+nbgsv1cAHr5Txzg/Rs4ev68BEb9J4wo/d6AGv2q0VL+5Qjq+158Gv2yzVL8SXDq+158Gv2yzVL8SXDq+d6AGv2q0VL+5Qjq+Nay+vqUdur5Vmlo/Nay+vqUdur5Vmlo/Nay+vqUdur5Vmlo/Nay+vqUdur5Vmlo/yeAwvyGzHz+tCrs+NeQwv06wHz9eB7s+NeQwv06wHz9eB7s+yeAwvyGzHz+tCrs+yrQyv/S+OT7pUjG/bbEyv0XCOT4UVjG/yrQyv/S+OT7pUjG/yrQyv/S+OT7pUjG/o0nbPhl3XD8WIow+o0nbPhl3XD8WIow+o0nbPhl3XD8WIow+o0nbPhl3XD8WIow+FLSdvQlE8T2yc30/FLSdvQlE8T2yc30/FLSdvQlE8T2yc30/FLSdvQlE8T2yc30/8Yp1v3gEAT7aroE+8Yp1v3gEAT7aroE+8Yp1v3gEAT7aroE+8Yp1v3gEAT7aroE+cyzJvteEQT8oDAa/cyzJvteEQT8oDAa/cyzJvteEQT8oDAa/qx7JvjGEQT9DEga/JvtTv/L1DT/aLKk9YZgKv98lsT4XK0Q/Bn1VvxRdkT4rSvI+g9xkv3yW3z7qnc09JXcxvkC1ez9XQGi9daobv+P0RD89fUi+BI1Ovo6xdj/caTO+4hzrPTWVRT+jGiA/yd4kPnuwdz+Xe0c+yyFsPjcOTD9F3w4/EIqOvXZJ+z5rVV4/uP7uvtMzjz4vx1Y/2G5nvuPDV78NEvq+mP4Qvl++e7/z2ei9Ihniu1jffr+1fL+9+xIDuxffIb+RU0a/TiPGPu1lpL6UR12/z0NYvBM3CL/GuVi/8f03P9b9p76b7hy/A59lP4tMz76S2jW+vYlNPyBpfL4w9Aq/JUQ3PwfxMb+kXoc982CUPnYAcL9QOUU+Uj0uPymJNb9ahjw+mDd1PzSnBr73tYK+mDd1PzSnBr73tYK+mDd1PzSnBr73tYK+mDd1PzSnBr73tYK+AkLJPiChQb8u2wU/AkLJPiChQb8u2wU/AkLJPiChQb8u2wU/AkLJPiChQb8u2wU/f5PYvrf6XL94G42+f5PYvrf6XL94G42+f5PYvrf6XL94G42+f5PYvrf6XL94G42+u4SePdjl8r1ua32/u4SePdjl8r1ua32/u4SePdjl8r1ua32/u4SePdjl8r1ua32/Pq4Ev5YWRT+uqb4+MKgEv1MXRT+Bt74+c6kEvzQZRT82rL4+Pq4Ev5YWRT+uqb4+mcgIv14Qmr7wN0o/mcgIv14Qmr7wN0o/mcgIv14Qmr7wN0o/mcgIv14Qmr7wN0o/1P01vxmCI7/Vu5a+PfY1v7qHI78VyJa+PfY1v7qHI78VyJa+1P01vxmCI7/Vu5a+HrMNv3KC1T4hjji/HrMNv3KC1T4hjji/HrMNv3KC1T4hjji/qrcNv2p/1T6Dizi/4Qhjv16EVb5KHNO+sRpcvy9mxL52l6w+Tb1Zv3nRBb8FWmy9yq1XvySYrL4qJNe+QJFLv5RoDz97qm2+8DJQv5ARMj4fJw6/GlM/v8dFET8r8LC+6LpDv5MCxT5eXwQ/nCY1v5tjMD/vXCA+nI0xv/k/AD9ghgQ/GHVBv3L91Lshpyc/V/pMv+35zb58RuM+6oEzP0Q8Db80OOe+hEcyP76uNr+I2pu94fVEP5WAI7+MPUY894ZIP1zoKr5uSxm/I4VMPwHpqD5TvgC/1Jg7PxcCq72B4Cy/D/dgPwry7D7iye699C9aP1eUxT41ybQ+CLRVP/jYDD8MB6y8UJRePzSoG7w55Pw+Q6JEPxOR/r6cl84+jAFQP0i2pr16xBM/sws3PxqKIj/d0JU+sws3PxqKIj/d0JU+sws3PxqKIj/d0JU+sws3PxqKIj/d0JU+DuYNPxdz1b5razg/meoNPxBw1b7NaDg/meoNPxBw1b7NaDg/DuYNPxdz1b5razg/VvgFPxdcRL/XD76+VvgFPxdcRL/XD76+VvgFPxdcRL/XD76+VvgFPxdcRL/XD76+RPwIPzHomT6bHEq/RPwIPzHomT6bHEq/RPwIPzHomT6bHEq/mPcIP03qmT5gH0q/eb4svvqnYr/Uyt2+VPUsvpqkYr/wzd2+VPUsvpqkYr/wzd2+eb4svvqnYr/Uyt2+7pwiPuxdPL/Thig/m5wiPhlkPL/wfyg/7pwiPuxdPL/Thig/MJoiPr9aPL+Jiig/VGl4P2WwHb3NUHQ+VGl4P2WwHb3NUHQ+VGl4P2WwHb3NUHQ+VGl4P2WwHb3NUHQ+8fwMP+K9p72fpVS/ggENP4W7p72folS/ggENP4W7p72folS/8fwMP+K9p72fpVS/fORyP1Iggb67w0K++30nP2XiIr91S9E+X1NnPxVTp756xo0+u2B7P2a1Kr58Gbe9vZjZPpyRG79svyu/IXNHPwcrh77LjxG/VaPhPkDRAb9vnj2/PSwDPm47fb+3OZK9fWjmPY8sWL9rEga/HzOiPEDmfL98lx2+KfV5PnpXar8G5KM+d54RP6sLKL/ztP0+eocFvQi0eD86b3A+uVgGvlnMSz8HPhc/fZuGvjaDQj90OBg/ea5UvuSSdz+Thha+OhoBvw+UOD81TvO+hEgyvgrMcj/soYe+RN1Pvys99T4BzKq++AF7v5foSD6VIzk8gxVev2fDtT5QYrK++cBev1jojD40UNE+3IEEv4zv6T5WMTk/A2dVvxg3Wj5FdQI/RoB4v7E5ND3h3nG+RoB4v7E5ND3h3nG+RoB4v7E5ND3h3nG+RoB4v7E5ND3h3nG+0hUNv7xfqT3xj1Q/0hUNv7xfqT3xj1Q/0hUNv7xfqT3xj1Q/YhoNv1ldqT3yjFQ//wMnPr4FYz/xY90+2QUnPkIIYz9JWd0+2QUnPkIIYz9JWd0+/wMnPr4FYz/xY90+rDcjvjN1PD9vYyi/IB4jvvh1PD8fZCi/IB4jvvh1PD8fZCi/+VMjvpt3PD8IXyi/RQkWP2y2Tr93aom9oQwWP360Tr8cOYm9hwkWP8a2Tr9FNom9RQkWP2y2Tr93aom9TaVfPW3C6L6TlmM/RDpfPQ2z6L7qmmM/z6JfPbmy6L6YmmM/TaVfPW3C6L6TlmM/vFf3PvnOFT/TuiY/r033PtPQFT/ivCY/r033PtPQFT/ivCY/vFf3PvnOFT/TuiY/vEpkPw39gz7IZ76+6ExkP0/+gz59XL6+vEpkPw39gz7IZ76+vEpkPw39gz7IZ76+DYdVP+hDyT5gJMY+Q5TwPp+Flr20MWE/EKMOPzTVoz4LKkQ/LItAPxV19z4ZYuU+6z54P/FSZ77cQr694LN2P0KMiD5TGGI8iTZ5P93yDr7tizm+7DsaPw8YMb/B0cs+31pMP6sNGr/N4tC804cVPzfRQr/diZA+tVvNPrLsDL9NcDs/8Qe/PoqrD75EyGo/TygivyYdPj+VoF6+FNFTv47tDT+2gLc9mB1lv4cr4z4jpD09Cj8Cv/lTHj+ITxm/w47Avs4mbT42rWW/GlTQvuUmHz9ZViu/3OgJv9YYFb65blS/S8g3v9ZW7L7PZgW/kC4Bv7AVjr51SVG/ZM9tvyqgo77aXz++Jat8v1mUVD3F2Rs++vhvv2Mnr76/u4W9z3v5vtbAFL+G4Ca/hX/5vn68FL8C4ya/hX/5vn68FL8C4ya/z3v5vtbAFL+G4Ca/fWdkvxfKg74LAb4+fWdkvxfKg74LAb4+fWdkvxfKg74LAb4+fWdkvxfKg74LAb4+JwQXvx0VTj+KBoE96AMXv8cUTj/DOoE96AMXv8cUTj/DOoE9bAgXvwESTj+YBIE9zFRjvRK16D5VlmO/zFRjvRK16D5VlmO/zFRjvRK16D5VlmO/QuxivWe16D6olmO/V7L/vtD31b4ESEK/V7L/vtD31b4ESEK/V7L/vtD31b4ESEK/V7L/vtD31b4ESEK/+ufovhCUVb94fJ8+HebovluSVb9MiJ8++ufovhCUVb94fJ8++ufovhCUVb94fJ8+f+EuP3zGML82anM+BOcuP+O+ML/9gnM+7eMuP1HCML+wfnM+f+EuP3zGML82anM+iBMeP583Fr4J1UW/8BIeP0VRFr5K1EW/iBMeP583Fr4J1UW/iBMeP583Fr4J1UW/XX4qPza1NL8+/Ha+oCh2Pc73fL8YlRA+P8zsPvWCX79zAB4+EiQ2P3GIMb8/Pei9quM/PmEYAb93zFe/4rsgP2n2/r6RIRm/iCKMPneU1r63nl2/n5DWvn2JSL8nC+u+SAFrvkM3CL8po1C/IbH2viUVMb9JtQm/T1zJvtG9ar+Tnom9qNssvaYYer/oVFY+Z6ThPsLOKT/X1Bo/6y0uPrOy+T6ANVs/kOo3Pa1LCj+pH1c/4n7OPluEYT/BjH0+Pen7PYyhej9jTSa+ikbnPpfSYT8AtQg+mSWVviI0cj+w5RC+80gsvw7ZPD9AxVw9g1jMvqGqZD+M+VO+zYAmv14IHD8zF+g+e/y2vqtO3j73rlM/g8suv8LqAj9TlAU/zlYuv1exMT9G526+w1Uuv0ewMT8PAG++zlYuv1exMT9G526+zlYuv1exMT9G526+aAEevzs/Fz711kU/aAEevzs/Fz711kU/aAEevzs/Fz711kU/dgUev9c8Fz7V00U/peb9PkZ52D4WLUI/peb9PkZ52D4WLUI/peb9PkZ52D4WLUI/ZOn9PoJu2D4vL0I/GqjoPlu2VT/ZIZ++f7LoPt6zVT//H5++GqjoPlu2VT/ZIZ++uZjoPtS6VT9MIJ++LlcZP7rYTL/8B/m8LlcZP7rYTL/8B/m8LlcZP7rYTL/8B/m8LlcZP7rYTL/8B/m8EIcrvnRvFL8qHkw/EIcrvnRvFL8qHkw/EIcrvnRvFL8qHkw/EIcrvnRvFL8qHkw/dECTPoxA8z7y41Q/dECTPoxA8z7y41Q/dECTPoxA8z7y41Q/dECTPoxA8z7y41Q/NMtzP+mOlT62brS9NMtzP+mOlT62brS9NMtzP+mOlT62brS9NMtzP+mOlT62brS919IyP2A1oj6vQSQ/tElqPi5sVr4zYHM/cV2rPgZfRz60B2w/sRYaPysjzD4FITE/zRB3P3zHab4UYQM+sxpsPw9xeT71pZk+SGR9P8JtBb71HGs9nVD8Pi/sQL+duN4+uhJKPx9TG784HcA9b5UBPxETTr+ydZ4+eohWPnyUKL+NCjk/WPMBPpfnjr6Lq3M/EP8Rv/U3Rz/Vp4a+tEZVv1QVDT+rg0C9sZRiv0385T5cpfm9NMmyvhpfNT87AB2/ghUMvimmuz4gmWu/M0luvpdLOD8yZie/NJmbvtboWbxC3nO/gOcMv4AcvL4A7T+/Jg2LvkuzFb7ihHO/ltZXv7T1ir7srO2+Q2N+v+UyRD18ds+9dtdhv1NVn76G8LS+lliVvgEY8b6uI1W/lliVvgEY8b6uI1W/lliVvgEY8b6uI1W/YlqVvs0N8b4/JlW/6Nlzv1pOlb5yzLI9i9dzvwNalb4j/7I9F9hzv1lalb4dy7I96Nlzv1pOlb5yzLI9yQkav2teTD9Ecc48yQkav2teTD9Ecc48yQkav2teTD9Ecc48yQkav2teTD9Ecc48xpkqPrlnFD81MEy/xpkqPrlnFD81MEy/xpkqPrlnFD81MEy/xpkqPrlnFD81MEy/K95XPQSA3T7CaGY/MtlXPep63T4CamY/MtlXPep63T4CamY/K95XPQSA3T7CaGY/V/tovxxSFj2kWdM+V/tovxxSFj2kWdM+V/tovxxSFj2kWdM+V/tovxxSFj2kWdM+7skVvzC5Hj9m0AW/7scVvxG3Hj8q1QW/7scVvxG3Hj8q1QW/7skVvzC5Hj9m0AW/KLbgPucjZT/uYKG9lKvgPnsmZT++YqG9lKvgPnsmZT++YqG9KLbgPucjZT/uYKG9Zg2gvjrvaT82w4S+O2lav+ZzAj/vV+Q9NxM2vwq9Jz9fXIK+1t6+vkpdWj/QB7u+WJELPh1kaD/7Gss+VU1zPZdpfj8Bg8C9pFBrPi2Saz+vQKI+wjzOvl0hAD8mLUQ/Q64UPWHlLT+QpDs/Yc+VvnPZ7D6rPlY/ji89v4Qmsz5sYRM/oXRmv9Grzz5mNCI+L2FlPsiCAr8Po1S/eG7WvbQsNr8e2TG/4RGUvSjTTL+Kchi/3Z4aP/Kp3r6H+iq/V7tiPx9+yL7Len++QC8uP/WRrb5EUya/CkNJPzWKHL+JSrc9VNjlPsMUUr+3DLU+65pEP+yLGb+w/GU+PCrlPWkNe7/4WCQ+Z+BTvjJXc7+yK22+ats1vE8GfL9KZjM+aOkVP76jH7+slAQ/aOkVP76jH7+slAQ/aOkVP76jH7+slAQ/aOkVP76jH7+slAQ/JE/gvv8/Zb8bXKA9R1ngvvY8Zb9pjqA9sE7gvok/Zb82kKA92j/gvlJEZb8eJqA9oIZJvTu/376r6mW/YIRJvdbJ374a6GW/YIRJvdbJ374a6GW/oIZJvTu/376r6mW/+/VoP7+ZGb3UZ9O++/VoP7+ZGb3UZ9O++/VoP7+ZGb3UZ9O++/VoP7+ZGb3UZ9O+DHj6vtRSVb/Y1oO+wQ1kvyqD1b5qoji+Z7YxvyTwNL95dws+yzUaPufHZL+aatg+4gX/vgvtWz8aQPE9zizjvpr5Xz9LwkY+cVKpvu8x2T4I0Fc/I+/lvk+m1z46uUk/4hNVP3KCBT96NkA+LoxuPxuKsj5y1M09rKJlP3cnkT4un60+0607P7MfBT+DauA+4JQzP6l6M7/5EQO+k2IfP9CHRL8cVxu++v2pPseoKb/c1Ss/EX3sPvlRJr/tkRo/iRnoPt/dhr5X/lm/FzYSP0pwlL5tmES/LlBRPuQRej7Uq3K/X9LePBBuoz4UgnK/D/upPt2lKb922Ss/CgUBvpc6Pb7Mg3k/NP5UPRfKg776A3c/EX3sPvlRJr/tkRo/v2ZbP5blAz/mVsE79OlnP7ZZ1z7bHUk9ADUSP0t8lL73lkS/eRToPu7ahr4kAFq/OBp8PmM4FL/Y+0a/kmgjvxrkBb+RlxC/xbqYvsUHPT8q1Bq/SaVfvodESz8/OxG/OBp8PmM4FL/Y+0a/UowYPyuFSb8PtiK+UzkaPpbGZL+Ob9g++6HnvbSmu76Ga2w/7CoWv71TQj8miZA+7bU5v2C3BL0BAjA/qLI5vwm1BL11BTA/gbI5v8gdBb1QBTA/U6W5vizfLD+NbCS/DvogPfaMCj4/cn2/fV9lv2fgi72kqeC+dvp5vymhNL4/8v29xfPlvqiq1z69tkk/cVKpvu8x2T4I0Fc/mZYtP02RKj9l3p4+nwcfP7/ZHj8SDPU+OxkvPwa/Oj8VmsQ7SaVfvodESz8/OxG/xbqYvsUHPT8q1Bq/W9oKPvEWFz8AuUu/9BgiPjetKD+qQjy/I9iSPYeWAj/va1u/aTi0u810kT6lcnW/9CzdPK/C7z4yF2K/uCyhPZvgaT77ani/n7ClPb9M+z1KOH2/jkPHvR1cej9qID0+qLwfPcehfj+4x8O9/2oavTMnfz9udJM9qAcBvlyYcz9hn48+GamEvn+P073b1nW/9Yvovvmx+70M5GG/4YnQvihvAb6YjWe/GBNpvrQEib0BsXi/0UphPba3hD4/2Xa/lgAePlJ3vD6buWq/LRoePpR2vD6vuGq/ue4Fv1bJTj98Gos+6a8QPpUV9z69R12/iGJlPbMzBT9kJVq/DG8Cv+ha5L0UbFq/DYT4vrQ3Bb5hVF2/ozgaPg7Sdj8AwV++dWZAPqoQcD9EjJW+aamVPvJcYT/dSb++0fI+v5h2bT5G2B+/fTq9vq2mZD5f52a/Nllgvt2asT4wdmm/TfMfvnEZsz40eGy/8VMUv9WkX71qLlC/IgpRv624Cb4mtg+/RrXXvhjWZz8/ekc9DaoAv+KkXD+kCIo9YRAavyr8Sz9px1w9OOkmv6vkQT9e/xA9b3FIvzZ2HT+9DL49xrFTv6VVAj8lcHQ+qulHv4AkGD/j6kQ+NfWqPkaoVj/yd9y+rGhVPgYrbD+kTaa+ZNDRPiIYQz+jVAC/FST1Pq2vMT98nwm/LjV8v/zv9D0dsvu9EeV6v2Kizj0gTS++GBd7v/iURz68nMS6lL54v6tYcT6EFpU8i8hJv83VGD/o4hg+dcVJvwTaGD+R4Bg+41d2vyCMiD4iXFy9ACsav06oST8h0QQ+EogZv1KoTD9tjA49Dh14v1E8rD3rDW2+rv55v43MoT24HU2+Q6IBPntpeT8j+D6+M8OGPfNefT8V8wG+aSQ5PIT6fz8Ycc47xX9Lv6eHFz9jZgi+NxRfv2Wk3z7nqGS+2pNIv+vmHT8xN5q9zc1wvyv3yj3MM6a+AAAAAGvmfj88pb09OVnzvtiuIz8huRo/nfbtvkn3XD8gIEq+AAAAAHDKHz/cAUg/AAAAANDlfj822b09/gQUP0lDTD9ufS4+AAAAAHDKHz/cAUg/AAAAAKPNHz9P/0c/9r2/PizcZT+A82y+0PcTPxwNMD/w6+C+SCtPP9a6wT5sFOa+mvftPn0jxD4aW0y/VfwqP9ZG9r6bYhG/UQGJPSFrRT7onHq/AAAAgHDKH7/cAUi/RNS+vlaJlD56pWG/Aq4lv+memj2RMkK/AAAAAHDKH7/cAUi/UQGJPSFrRT7onHq/f/gTvzqPFD+v3hK/9StPvy+TBT/ILoq+nfbtvkn3XD8gIEq+AAAAgNwBSD9wyh+/AAAAANDlfj822b099r2/PizcZT+A82y+0PcTPxwNMD/w6+C+mvftPn0jxD4aW0y/UQGJPSFrRT7onHq/RNS+vlaJlD56pWG/f/gTvzqPFD+v3hK/lFpFv+gJSr5KCRs/g24xv5AKNT2lMDg/ZtFjvyUstr6JIJI+ZS1PvxyUBb+iIoo+slwdv0j4Qb+QdWC+eeL6vtJnVb/ggoK+sWMqPKTOZL8+k+W+sWMqPKTOZL8+k+W+ZXkiP5GPO79tr3u+yNFjP6O8tr5GaZE+SS1PP5uvwb6mFuY+pFwdP192Pj2ckkk/KdP6PnlMhD0akF4/cQpXvVcWaj7I23g/cQpXvVcWaj7I23g/Gwh5u20w1z4kSmg/Quwuv4HMez6C/y8/+EAuPzlYhj47GS8/Gwh5u20w1z4kSmg/m6x5PxiXLr7a3g8+1O0uP0HAHb8Igci+eAd5OwjMSr9lOxy/LEMuv0P1G78RSdC+G5V/OwHMSr9gOxy/G6x5v7vjMr5wiwo+AAAAgA8FSL9xxh8/AAAAANwBSL9wyh8/c7ZROR38R7+j0R8/m7XRONwBSL9wyh8/AAAAANwBSL9wyh8/m7XRuNwBSL9wyh8/9bjROA8FSL9xxh8/c7ZRuR38R7+j0R8/LroYvx3b1z7a0S4/o+17v0ISgzuH3DU+3SFKv7ek6r4T8dC+CCUGvsJBML8Pmza/CCUGvsJBML8Pmza/ZcEYP6KpEr+92A+/qex7P7SIML6Q8TC9UyJKP371lz7Gfgk/zCIGPlU0Cz8TNlQ/pSUGPkk3Cz8GNFQ/0BZqPqBVkL4oi26/AAAAgIfF072woH6/AAAAgMvBab/VvtC+7y9qPimpcr8nH2O+izFqPtx/Kj+AwzW/AAAAgMFGTz/QPRa/7y9qPimpcj8nH2M+AAAAAFq/aT/CydA+WTFqPrdIkD57i24/AAAAgIfF0z2woH4/tBRqPoCEKr92wTU/AAAAAMFGT7/QPRY/7y9qPimpcr8nH2O+AAAAgFq/ab/CydC+AACAPwAAAIAAAAAAAACAPwAAAIAAAAAAAACAPwAAAAAAAAAAAACAPwAAAAAAAAAAAACAPwAAAIAAAAAAAACAPwAAAIAAAAAAAACAvwAAAIAAAACAAACAvwAAAAAAAACAAACAvwAAAAAAAACAAACAvwAAAIAAAACAAACAvwAAAAAAAACAAACAvwAAAAAAAACAczJqvnc+TD9FzQ4/ti5qvjHJYT9P/dK+hBVqvsAHrD27Sni/0xRqvgxCTL8xyw6/0xRqvgxCTL8xyw6/LjFqvpLLYb9t8tI+3C1qvs06rL2/SHg/AAAAgIxPc71GjH8/AAAAgIxPc71GjH8/QSOMvh9GWLx2M3Y//m6/vmwqBz1LSG0/8sYIv9QwJj4zX1Q/tMcYv0VTdD7lHkQ/XS4Rv7u8Nj/KYtI+Rdopv96z5j7g5xg/zX8ovw0k6D4k2xk/i6wQvxxpNj/n5tQ+1GS/vlvaYT9sipI+sCGMvmeqbT/XtoA+AAAAAHnmeT+sM14+AAAAgHnmeT+sM14+AAAAANYHfj9Si/09AAAAANYHfj9Si/09le+aPkRxcD/T/iU++bLTPoddYz/iZk0+1WQWP8rjPz9WJ5w+WlomPyzjKD/pSME+QOkdP43EJz8FMt8+beYdP5HwdD47+T8/snMYP0W29z5TLSQ/51jqPrMQCT9rtjU/baUeP/oVDD4u10U/GtgeP4bbBj6n6EU/KKrTPlvmUL3eu2g/9PuaPv3l0L2hlnI/AAAAgHgTHb5i+Hw/AAAAgHgTHb5i+Hw/AAAAAHgTHT5i+Hy/AAAAgHgTHT5i+Hy/9PuaPv3l0D2hlnK/KKrTPlvmUD3eu2i/+6UeP0H8C77f10W/GtgeP4bbBr6n6EW/deUdP0cJdb4N+D+/fecdP67CJ7+jPN++snMYP0W2975TLSS/9FQmP1nkKL9dV8G+VEvqPvwWCb8PtjW/X18WPy3lP7+SNZy+G6jTPvBfY78PaU2+le+aPkRxcL/T/iW+AAAAAAgHfr/xvv29AAAAADkGfr+Q8v29AAAAAHnmeb+sM16+AAAAAHnmeb+sM16+sCGMvmeqbb/XtoC+1GS/vlvaYb9sipK+XSkIvwSOQb8XRcO+k2sYv1ntK7/tyeG+pKQov2+Az77jRCK/DVkov4Nx/b5lYhG/tMcYv0VTdL7lHkS/8sYIv9QwJr4zX1S//m6/vmwqB71LSG2/QSOMvh9GWDx2M3a/AAAAgIxPcz1GjH+/AAAAgIxPcz1GjH+/QSOMPh9GWLx2M3Y//m6/PmwqBz1LSG0/8sYIP9QwJj4zX1Q/tMcYP0VTdD7lHkQ/zX8oPw0k6D4k2xk/RdopP96z5j7g5xg/VjQRP/+7Nj/WVNI+d68QP4lkNj+r7tQ+1GS/PlvaYT9sipI+sCGMPmeqbT/XtoA+le+avkRxcD/T/iU++bLTvoddYz/iZk0+1WQWv8rjPz9WJ5w+WlomvyzjKD/pSME+QOkdv43EJz8FMt8+snMYv0W29z5TLSQ/beYdv5HwdD47+T8/51jqvrMQCT9rtjU/+6Uev0H8Cz7f10U/KKrTvlvmUL3eu2g/W8sevzGNBj419kU/9Puavv3l0L2hlnI/9Puavv3l0D2hlnK/KKrTvlvmUD3eu2i/+6Uev0H8C77f10W/Gtgev4bbBr6n6EW/deUdv0cJdb4N+D+/MnEYvzWy974uMSS/fecdv67CJ7+jPN++9FQmv1nkKL9dV8G+VEvqvvwWCb8PtjW/G6jTvvBfY78PaU2+X18Wvy3lP7+SNZy+le+avkRxcL/T/iW+sCGMPmeqbb/XtoC+1GS/PlvaYb9sipK+qiQIP6eQQb/AR8O+k2sYP1ntK7/tyeG+tMcYP0VTdL7lHkS/DVkoP4Nx/b5lYhG/pKQoP2+Az77jRCK/8sYIP9QwJr4zX1S//m6/PmwqB71LSG2/QSOMPh9GWDx2M3a/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgKBF4z6QZWU/AAAAAF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAACdQ4z71YmU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAgKBF4z6QZWU/AAAAgF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAgKBF4z6QZWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAgF5V4z6rYWU/AAAAAF5V4z6rYWU/AAAAAKBF4z6QZWU/AAAAAF5V4z6rYWU/AAAAgF5V4z6rYWU/JRFGPyH/IT/rIf281pBAP2NFKD8A1Dy9lSROP/LDFz9UJjm8p5EtPxnoOj+Vfa69e6AtP592Ar9KiAc/HZEtPpx8P78tRiQ/PtHEPmWyL7/cDh4/emxGPw4G0L4lwfc+C1BOPysCvL6Cxu0+Hn1APzvT3r6li/0+0xh2PyADmjwys4w+03dJP7n7x77EhvQ+OWFdPxCWjr7B9NU+8yZ2PwJQUT4E6Ts+aSfEPmpNaD+cvzC+jtAvPqCYdj/YclO+J31dP98ZAD+CtQQ9HvVIP9R8Hj/B9Lm8qpzVvcpteD897l6+1UM+vsJhdj8Vwkq+/gqEvlj3cj8uPTm+xFSSvtfEcT/XZia+7Eg/vqSSO78ghyc/bhxnvn73Mb81ty4/HJaDvo0fNb8fhyg/cyn+vYTsQb/eEiQ/gakUv2ZDTj8wze69zQccv10CST/5QOC9uEQJv/Z6VT+I1gW+7SgxvyuwNz+YzKG9YBIxP2LHNz8ZYaG9wYF0P64EhT5/0RE+uppjPy/a6D61/FQ9xDMUP1ySTj8iCPC9CQMJPw+iVT8HJQa+ThscPw71SD/l19+9/HLXPSZyeT/od0u+Ed8PP1F1UT/aa/i9O8XePs7dYj8uBSO+bHnQvVePeT8jDEu+dMhjv4ki6D4iN1Y9MG50v6nwhT7EfBA+zDPevtcDYz/VzyK+JJ4Qv0b6UD+8lfa9tFl3v9CANzx614M+jEVzv5i7Y72d35w+Okhuv01c7b0ogrE+PBtrv/vTCb4Pg74+GnNyPwiHUr1aP6I+YwltP85yir2lQ74+fB1tPybI3L3N8Lg+TZp2P9B/t7tva4k+gKgUP5y1FL98BRI/TQccP9cSEL988g4/rEMJP7TzG7/kkxU/MikxP5y7/r4O5QU/1BAxv/HB/r5EAgY/9oJ0v1WjNL3t95U+c5xjv1O4b773Xsk+qzIUv2IEFb/vLBI/9QEJv9AaHL9ZpxU/oRwcv7cAEL927Q4/eXXXvbOSP79gqSc/St4Pv26ZF78T1hM/MMfevnvcKb9xzhs/nXzQPa2QP7/tzic/QshjPwOwbr4t58g+c250P7w8Pb0nU5Y+3TXePrfoKb/39Bs/nZwQP8EjF7/SlBM/iVh3P3HaSj6G9Sg+ZkZzPxoHjj7jyhA+XEduP94ysT6PP/E9NRtrP+xTwT4vRvI9V3Nyv58LkT6Xnho+vwdtv+pjrD49aS8+fB1tv6eWtD5UMgg+NJt2v2AbXj425SE+BhNGvzDa0L7hLPg++ZBAvyGs3r6vcf0+NCJOvyp4vL4VCO4+xZItv/GWAr+4egc/HKEtv4XdOj/Jea29yKktvm6ydj9JWFO+Ts/Evj0waD9JOjC+bmpGv0WUIT8jkfa8IFFOv/uHFz/p8zC8WX5AvxJaKD8CPj29fBh2vxVHVD55wTk+QXhJvwvZHT+NTq+8eGFdv3NNAD/yBAE92SZ2v4QMtTykMIw+TyTEvo3kL7/RDB4/ONMvvgNxP79DLSQ/dn9dv137jb5u3tU+K/FIv3pTyb6rJ/U+CJvVPULXQr/94yM/tkA+PlOWPb+4USU/PP+DPgwLOL+VQCU/11WSPr6QM78gJic/DUo/Pnnrdj9n+z6+hB9nPvzQdj+EDg++xZSDPiDPcz/lCCi+Cir+PSIFeD9QjVu+O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/0VoSv4Od7z6UhCw/+2ASv8SP7z4ehCw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/+2ASv8SP7z4ehCw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/+2ASv8SP7z4ehCw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/0VoSv4Od7z6UhCw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/+2ASv8SP7z4ehCw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/O18SvwGa7z4Ngiw/0VoSv4Od7z6UhCw/+2ASv8SP7z4ehCw/2VojPwBjDz/wPgc/VYgiPzcKFj9z3gA/xPEkP/KiBD/OABA/KxUdPzT8KT90x9o+fSO5PYdwDb/2HlQ/iNHAvhq/Pb85Qg4/qipLvq4gM795si8/8mhNPmJP676EfF0/DHJ1Pt8U2b5vlV8/AsIxPu3R+L5vR1s/xbwDP+Kpcb1n+1o/2AxcPknv476GiF4/87WkPglCr75M/2E/97kXP9IZ/D0ExUs/6WLyPhFEXT8S4S0+UtOxPtQPcD+n8Gs7IYAmP8IP2D4SsCE/Ab0jP7O5Cz/Kkgo/3VEePrMaeD9qhES+i0ymPeoQeD+15m6+gRGDPMNxdj+tVoq+zLiNvDcEdj/wT42+2bQkv1aiMb+qk6U+bQUwvxD8Jr/sUqM+Weoxv3yYKb+vGY8+nDkXv6p6Ob930bU+Z9iMvpm+WT8FeOW+0u2avic4VT/mQe2+Mj5svhDNXz9qu9q+H0THvqoWRj9f5P++BkIeP3qaJj8QsOE+MeEeP4zeNT7Ag0M/0o8mP2wCwD6NCyk/xN0RP0mWPz8s0q0+4LkMPz+BRz9DA5o+ccgVPztXOT/eFLs+i8iWPp56dD9v/xC9f6oPP3rQQj+Vp6Y+WBoAP17CVj9BPVs+uwsTPkNReT+8BDS+PBYlvzdDCD/aaAy/rtxEv1D+sj6EAgm/NZIHvqS9aj8ktcC+Tx6FvhEOXD/hOeG+1rFgv85t1j03au++r61nvzHgHD3W7ti+mGNsv+9/t7yAMsS+buVuv4GSKb0eyLa+kW7wPoxuAb6SsF8//MbUPohuDr6QG2Y/N8vWPsi2N76ZzGM/Za8EP5Y2q73V4Vk/XZRtvEsQHb8wH0o/GOODPBI2Gb+yDE0/jdtwvVEoI7/9sUQ/rqvYPa+4Cr/1cVU/y+Nmv41T1r4R6dm9b/xlvz+RSz2+bt++w0tvv4PpEb6lpaa+yf5bv2npAr/r6us6vM5Wv/HgCr82ESU9MB9fv4Kd+r7LuuO8pO8Vv694N7/W1sE+GTJav8DQBb9SXY88soFJv6CuGr/Djf09zuvevrcuPL9/CgU/J+C4PvyXmb7pCWI/8Kb7PlXi+r0Qulw/OoMevkWQLr/sAjc/svL9vG8TH79Va0g/BKsbP89a7T0iDkk/cooeP15LSD6TqUI/6YEgPxmthz5Rijs/psYePxhTmD51zzk/q6hEv2rZvT4umwW/sRRDv6Ru2D66Jfu+bCI8vx8N4D43ogS/fF5Kv63gnD7uwQe/Dn5tv5Rtpb4ufT++Kd1rvxYHtL6GySm+Qwtvvxb4j76LtGK+iKBlv/863b5zR7+90Ja/vsHhSD9ZB/2+5FXKPQH0dz9wxWm+T7evvWWqbj8W6rO+5Pr6vvNTMj/8HQa/BnQHv1crKT++RQi/epTrvuVtOD/m1wS/BUFOv9RDmD4/JQO/6okBvz70Lj/FtQa/fcYbvx62Ez/ddwu/U2pivxXC7D3+e+e+StpBv8nMIb88qSg+uvEfvxvvNb96k6U+NQtwvzRhP77pApa+HT1uv51+nb5GEEu++DDZvuWdP7/WewI/fNm7vjw1PL/g6hE/3f2fvgJWOL/8mx4/S1iXvqBzNL/4ECU/eIuwPmIwcD9Fe+k8DKSuPsCPbz/ZrbY93ljCPvCpaz/snLw9Sx6jPmeAcj8WfQy91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg9qJBZv/lLAz/7NPg91o5Zv9ROAz9iOvg9+4tZv6lTAz8gN/g91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg91o5Zv9ROAz9iOvg9+4tZv6lTAz8gN/g91o5Zv9ROAz9iOvg9S0ETPlYKCT8KE1U/n2wjPsWVDz91908/3eb7Pa/F/D5zY1w/WX5MPq1aIz+/XD4/YuQFv3H2Cb/BCik/6lwxv8cZNb8AKQ8+lcklvzdKLL+L8LY+RkrsvnAe575MgkM/9mvfvkvz1b4d/ks/dz30vtHu876HET0/F71OvhSDjb2DGno/nuPnvkob4L7E1kY/uXHBvpVlrr4MZ1w/iiLBvZTC2z3WX30/qAWQPh0jVz8uNO0+UACcPhPFaj+aroM+D5+aPbg7zD5R9Gk/Uo0KPo5uBT+Ptlc/gtqXPv5xdD8CWIa8MnKKPoM5dT/VbcW9twR9PplQdD+u0Su+hb1nPgVWdD8ELUe+pNQ6vwiBJr8RqFe+cdFBv7JDG7+9oHi+kIo8v635Hb+G342+5tQ2v1LlLr/A8xu+d1EWPsTLWj+x9/6+wBALPryWVj8dMwe/CpoqPlBWYD+ybee+6ny/Pcd/SD/3XB2/UrtFPv8FID80nEE/e0tIvdk5Iz6janw/OPZbPWCJtD6RKW8/QbxsPtcTOT8RrCY/Ayt6PqcNQT+EDxw/zfpkPnLGMj+DEC4/bxCWPq62bz/+ukU+471wPrRWPD9bnCI/dCOKPmqDUD+BewM/oTqOPtvndT8yU0G8lc2ZvaAaDj9pEVS/WfU9vu6Dwj65/me/0d9TPq4laj8r07G+93QcPmbwXD8Eg/a+wDGmvi9UEj7XW2+/vHrBvprJoT1IJ2y/mB7YvglNpjx2BGi/VGzlvpxIHTsm3GS/hpCAvpa0CL4FbnU/wvKdvtoEEr4ow3A/CHmavr2zO75thG8/Z1ZKvnRNwL17zHk/fcMTv3tLGL/yNA8/NcUPv0bQFL/MuxY/jcgYv73gHb8zaAM/Kb0Dv3FzB7+VuSw/v2gdv5Cwvb6mODK/EFG6vgbptz1gVm2/XLbzvgIXyL2Lvl+/TF4pvxoo7b5L9ha/8qssv/su/b7EVgy/iUUmv/Hx4b7Mgx6/TM85vxbbLL+kjga+vfQqv2Dx8r640BK/+i4yvzOmDr/n1+e+NCU2v+TkMr9P8JY90IKxvl/omb7tdGM/1lVovo49Br79DXc/FUUiv+IuKL/F/NA+a9cVv+cdGr+2CQs/yA2cvdSKyj0//30/00o/vVeQNT7yqHs/KYyXvN+Wez6bG3g/vxaMvM5+jj7C2HU/gm5FvmN4zT5DOmW/rXJTvsgh6D4b+F2/jRorvmCv7j5zZ16/9fVTvu4ZrT6NBmu/ygATv0YQjb5rXEW/h9YVvxmZm77Nb0C/XZkNv0m6b74Prky/U+wevx+bxL5j+S6/xHbPPaUcSz//phm/pFuPPtnidD9MrqW9P7RmPgmKbT/4HJi+fsX+PEARNj/7yTO/PynLO4lwLT+dSTy/g7lRPUXCOz9Ohi2/HVhsvv8dqT7QS2q/GUqmPNzoMj/wBze/zNZFvWsQGT/z00y/esStvgM0Hj4AiW2/fPwzv2z1Fb8Tbs6+xpI3vyMOK7/zDUu++aIAv8KVEL68XFq/KFsRv6krhb5e70e/84Eyv9uGNr9Xu5Y9bO0xv/qdM79UxiA+dwUwv3FAML8oO2w+LAAxvyt4LL8flYU+3mySPvASaz/4Oow+eAR4PsDOaj/a8qE+/Q+JPmxmZj/KILA+bYOePmRpbT+cCVc+yjj6vjzGHz/vDxy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yjj6vjzGHz/vDxy/yzT6vjzKHz9xDRy/yjj6vjzGHz/vDxy/yzT6vjzKHz9xDRy/yjj6vjzGHz/vDxy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yjj6vjzGHz/vDxy/yjj6vjzGHz/vDxy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yjj6vjzGHz/vDxy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yjj6vjzGHz/vDxy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yjj6vjzGHz/vDxy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/yjj6vjzGHz/vDxy/yjj6vjzGHz/vDxy/yjj6vjzGHz/vDxy/yjj6vjzGHz/vDxy/yzT6vjzKHz9xDRy/0Cr6vjvMHz9kDxy/yjj6vjzGHz/vDxy/yjj6vjzGHz/vDxy/yzT6vjzKHz9xDRy/yjj6vjzGHz/vDxy/yzT6vjzKHz9xDRy/yzT6vjzKHz9xDRy/PdzqvujxJD98phw/T3HbvlYCKj8/0xw/YHUAvzpjHD+HxRw/27qrvkM/OT9/bBo/hTNvvzMQtr4PCrW8cg8pv0oXFr88OvC+VyBMv3CgBb8jFJu+eCB2vzZHhb5e3rU9LD93v99mZr5r5AM+tbd0v+H/kr52gHs9kPNlv7Xh8T26vdg++7p2v16ye77ZwtM9xkh3v5EwFb6661o+FiJPv69Pjz4JRwQ/9RPZvMiOXT8lEgA/EXEoPqlWZz/sb8o+oysXv31SCD+uPRs/0AzzvgUaIj/Cfhw/EH3DPo18ZT9+aGY+KhDcPqGqYz+22R8+clzxPv52YD/28sE9dtr1PuX9Xz8uWn49gLHKvhB5Fb82cjW/vmHBvvABC7/Z/z+/M4quvkO+D7/gBUG/DdHgvha5G7/nQym/lKcmP/aXPD/yYzu+8S4qP9CLNz8O1Fa+TIUhP7ZdQz/ZDw++JFIyP+VjJz/FPJe+DR+0vve0Nj8XDxs/ddhEv9dapj5u9Qw/A/Egv2aC/D5j7Rk//nBovq+eST+BqBI/PNI4vmhFTz+59w4/0qmEvlLlRD9VjxU/mOBYPvbSaT+ABLI+tLhWvnAFTD8wBBE/pcCfvXaPWT8vbwU/S5+8PoiuZz90zlk+3vQ3P+i61D5qxA6/fdstP9xGej5/LzG/C5UUP0AnUD8kgDe96ackP2k6Pz/0VSy+BFsSP+kQxzwz8lG/13kEPzcd9Lyr7Fq/EhDvPsZpor33d2G/+HXgPsmYu72+42S/5wdtv6wobT1GIb8+E3lyv3hCWD1t/aE+qJtyv3DGOjxsU6M+Mltmv1x4vj2wONo+JgNmv/9X174v0QC+cNxovzQBz76vysO9Z9pgv5L55L7D9Sy+IVBwv4BwsL4Hjdu7SdvfPWPOzr6Bgmi/dBcIP+DEsbwowli/5YnFPo1mO75efGe/q/CnvPZp8b7zsWG/jASJvVjJ/L5u9l2/E6VoPDWr6b5hwWO/vdfrvkJ1GL8VfCi/jyggvZlb9b6zd2C/IxwrvqBrCb8etlO/vykev2MmFr+QEga/MQt2vyeu2L3CnII+wYxqv2Kebz2G9co+E21TvzrK/76F1YW+51Vkv3jP2766TxG+i1VNv9k8ij5xXgg/YPlCv1b0rj719Aw/fGQ4v69Hzj5SjxA/3K80vxHN3T5efQ8/l7MrP8U3iT5PDTG/KKkmP/GOpj7gkS+/G5gtP+dkqj7hwSe/m80qP1vlUD76ZTe/kERYPqMJqL65smu/BB08PtDrs76BA2u/njKCPvv7lr5py2u/HOK+PeAh1L6+xGe/PxkxPx9XKj8+nY++iZXYPuexYz/UQjE+OfMNP1MKVT9ettG4t8I2P2ePEz/bksu+W+s3PyZ6Cj+U6N++wAk2P7yLGT9j2bu+3UAmP1qATD7I1Tu/hwo3P8RBED/u3dO+JYs4P5jl6j6w/AS/4EwPP6IYHj1751O/oDBdvlVDDr+2hU2/gZ7NvgXOGb958jC/q6SwPl8oYL7Np2m/xVRnPuyKob548Gu/z7scv9olGr/hLgO/OY0svyvSE7+N4+u+z4U5v/mkDb8fR9K+qWQ/v0qOCL8kjsq+rhQQPk3qaD/s48c+jh2nPbnMaz+06sI+/QaSPfLdZz+469U+wlhTPlvGZz87/70+AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAgDstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAgDstDz/IN1S/AAAAgDstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAgDstDz/IN1S/AAAAgDstDz/IN1S/AAAAgDstDz/IN1S/AAAAgDstDz/IN1S/AAAAADstDz/IN1S/AAAAgDstDz/IN1S/AAAAADstDz/IN1S/AAAAgDstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAgDstDz/IN1S/AAAAADstDz/IN1S/AAAAgDstDz/IN1S/AAAAgDstDz/IN1S/AAAAgDstDz/IN1S/AAAAgDstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAgDstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAgDstDz/IN1S/AAAAgDstDz/IN1S/AAAAADstDz/IN1S/AAAAgDstDz/IN1S/AAAAgDstDz/IN1S/AAAAADstDz/IN1S/AAAAADstDz/IN1S/AAAAgDstDz/IN1S/AAAAgDstDz/IN1S/AAAAADstDz/IN1S/pxJGvxl+Hz9qUus9AY5AvxE3JT8LZAg+KSJOvxELFj/dhrg90pMtv0dVNj/x9zk+/qAtvxGH3r4+sBe/M60tvpbqJ79wSzy/p9DEvocdGb9wBTS/XmtGv0U0rb54nwi/hVFOv2Wumr6uVQK/8H1AvxYXu76jeAy/DRh2v6oZYj1/MIq+KXhJv1mupb6deQa/f2Jdv3yvYb6cAue+oCd2v0t1aD49UR6+eSTEvl5aYD//cpU+DtIvvuNcbT/Ncao+2H5dv74NAD+SUA09q/FIvzJSHD9x2NY9mZzVPYDNbj/cl7A+CUI+Pj5wbT97F6Y+M/2DPjqkaj9Vg5w+MlOSPjkUaj9D1pI+TEg/PuKbI781AD+/nxlnPs0gGb+K2US/FpaDPpYVHb8GIj+/Gij+PaFXKr8GcTy/36kUPzJ0SD9mJ2Q+TgkcP698Qz87Hlo+hEQJP1ohTz/XRXY+7ygxP5JcMz+p+jE+jRMxvwp1Mz+AxDE+1oJ0vx2FjT7sHdq9tpxjvzhL6j4odRM83zQUv5m9SD9m4GQ+XQEJvzlGTz/Hq3Y+dh0cvzNwQz996lk+knLXvWF1cD+0N6c+duEPv510Sz/UnGo+e8XevvZqWz+xNY0+sHzQPe6WcD/TA6c+LcljP2Cf6T4fQws8nm50P4JWjj5pP9e9uivePsaVWz+4HY0+Tp4QP3oDSz96emk+UVh3P+30OT3H8YG+AEdzP69Karx8O5++oEZuP6rljL0y2re+ORtrPwDTq72r/MW+gnNyv+csELzlS6S+IAltv7EukLyPLsG+JB5tvwPbcL1GoL6+N5t2v2Jm9zwejYi+wqkUv4Tn/76MgiS/qAkcv4eC977H2SC/hEMJvxGnBr/GASm/hCcxv7zV2L7bqBW/qRIxP0XU2L4PwhW/S4J0P/8CmrsPqJe+IZtjP4YCOL5ujNe+/TIUPyc7AL8WtiS/vwIJPyPPBr9hFim/YhwcP9Zm975D0iC/ZnPXPYyNJ78Tqz+/h+EPP3KRAr8nsSa/hMPePlihE7+gBDG/G3vQvZ+FJ7/T0D+/oMZjv7AUN74dB9e+SG10vzuL27tLKpi+pDPevhmoE78vLDG/wpsQvyElAr+kZCa/FVl3vzeKXz4OZAy+qEVzvzZslj57WdO9TEduv0imtz4uypC91Rprv96sxz53Nom9kHJyP+0Nmj7RXeW9iQdtP/uGtj68//+9ixxtP58PvD7c4K29ypp2P/OpcT4z+AK+uBFGP7j6rb504gi/fI9AP9P6ur7+aQy/gCROP+cXm76MfQK/4ZItP1HH3r7QqBe/7p4tPy1TNj+5cjk+eawtPlx4bT+ZZao+NNDEPq5BYD9eJZU+aGlGP1UeHz87QOk98FBOP73QFT8XTbc9cn5AP7JHJT8pgQg+bhh2P+ccaz6+2hu+EHdJPy64Gz8XjdM9mWJdP3E6AD/7/hA9ZSd2P3DObj0kbYm+vSbEPshLGb9wDDS/yNMvPhfkJ79JMTy/en5dP+uQYL4g3ea+PPRIPxjbpr7l4Qa/7JvVvbBKK7//XTy/SEA+vhPoJb/VEj2/BgCEvuFqIL+MRTy/blOSvom4G78tkD2/E0o/vohebj8SXaA+4wNnvnDfbz8FjYg+VJSDvqMMbD/qKpQ+5lj+vXOAbj+R1q4+dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/lxAFPyA7DT/Z+ya/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/dxIFP5A2DT80/ia/Wmsqvwq8JT/cAL6+ebYov/pSKz9Buq++ED4tv0Z5HD8yItK+JqMgv0f6Oz8Um4S+d4JEvjB71r5kNGO/MJqVPvkvKL9F6jG/PZXUPROhF79ni0y/AnmavrJho75r/mW/8xSuvnpIkL6Er2W/xsCMvnW4sb5YiWW/lxUZv3FXqD2ZGky/Q6ahvoKbm77KG2a/7cXWvnaJSr72zWK/7Lspv46Qgj7jLTS/vibpvlXnYz//Rh085h+fvj1abz84GS8+F3Mxv37aBj/u4/u+FT4rvwSkIj/llcW+syPKvTilbj+wR7I+y8WxvH6abD9lLsM+w3Y+PbcwaT9+69E+cNejPZhfaD8T5dI+1AsVP1qvJr8/TPm+KswgP1mZHL8POva+ypQjP8y2IL+DlOO+Yo0GP5TmLL9wbQS/hMyyPmNPRD/Q3Ak/pjrBPrMaPz/ISQw/1ZibPt1dSz9uoQY/ewnuPlg9Lj/F8xA/WEIiv5kyOT/QI4y+JIYvv+X2mz5qQCm//aoyv48s+D6l9wa/dXQSvzaxTT9Tpii+ShQMvyvpUz/g8f29Ij8Xv6CaSD94tkS+3POBvkrocT+kd1M+f9EPvy5HUD+4fhm+Nov5vgRbXz9tWw+9hOO2vaVpcD8/4qk+Xgo3P++Y2z6GVg0/y49UP5CmfT6lmP8+fqlPPtuyWD8nDfw+LuaqPsMBRz96fgg/qDVsP7kuXTyzRcU+pGxxP106Pb14pag+YYJ0P0+fzb1Rso4+FSp2P41V7L2vEn8+tL8Ov0aLjjyQdVS/aMMBvw/B9Tuvqly/3OUCv4ahCb3z1Vu/WSkav8Gyaj3A2Uu/4h+wvViY+b4cb16/stLvvYWx8L5t81+/CyAnvUnfA78uLFu/XkRUvpOH0L4JtGO/60tkP/s95r7Ty0y9wypwP/DnFb3ORbA+2s10P5GlV75X3U8+8ttVP+YqBr+brCm+Dm5PP9tvDL9MJFO+KedZP8XdAb8c7gm+P7sEP/YAKr8I5wm/sY5TP2plCL9pkjq+noQ/P0GHGL8Fj5W+joK1PuVZKL83Kyq/DP3pvoftHr6HNWC/Av8Tv8DXozyf0lC//s5uPXy/Eb8r7lG/QLmNvUpD/r6Qfl2/3HgtvyGHfD4KXTG/ruwuv+fCpD46yCe/U4Uvv03YxT7R7h2/m1Qtvxqm1T5LLhu/Lz1UP2uXij5Ugvo+OV5SP9hcpz61/O4+D0tMP3cPrT58cf8+wIRZPwQ5Uj5QrPg+3MttPy93vL6IHSc9vF9rP9gryb5mWoY8r5twP8b6qb5hCqQ97JZiPyL8675OsIO9BlrmPsxOMT+nVRA/+pwivfzGbD/tlsE+1k0ePh7KXT+aI/M+bp4QP4I4GT+ZaRE/9WUaP86eDz8IKBE/nQ4JPx2cHz/43BE/eNhcP7B2Sz4KIO4+BJUUP2C1FT8tExE/0B8uPzDv8j4PDA8/g6JtPzAU2Tyq8b0+z5s2P8vTHb83p6q+0iYQP5TTKr+8mPm++kt0P0ewf76NPSg+mvluP9SAtb7fLl09VBKwPnINLL894Se/vB+QPnUJJr/DCTW/5FlkPtj/H79Lgz+/xU5RPhoWG78h10S/NB+fvm5scD/QzRU+tmegvjYecj+mtq89DmO0vreabj8QRa09y2SOvpQjcD+kq1M+/C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI/ZzQQPzzPBj+9/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI/7i8QPy7RBj8YASM//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI/7i8QPy7RBj8YASM//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI/7i8QPy7RBj8YASM//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI/7i8QPy7RBj8YASM//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI/7i8QPy7RBj8YASM//C0QP+rVBj/l/iI//C0QP+rVBj/l/iI/gUXyPpEhKz994xK/u6LjPpi3MD8HIBK/UHsDP/7kIT9adBS/LZO2Pmo5QT9G8wy/Zd9nPxNq1r5cUYW9XnkjP7RHLL/uHr8+RHNFP0UpGr8vC1M+hyBvP1pUob6C7Su+NWRwP2yFjb4calG+OJNtPx0isL5/VRK+X8hhP9MUyD3PEuy+Zc1vPztZmb7ojTm+l89wP5QKQr6AH5C+9uJMP+cJjD4glQi/SBmEPZ8RaD9hnNW+a9bwvdZ5cj+2xpi+mLQYPxFKDD+sHha/cwX6PkoFKD+EOxO/DOimvkUlcD/uOPC9g+a9voZwbT9oSD+9EfnRvsNyaT899H08kafVvhRRaD+B1UU9/kjGPqcYLb9hcyA/jpS/PvtrI7++Myw/uzysPvmTJ7/7Ty0/xTfaPizYMr8iIBM/e88Vv/D+QT8yw5M+Yl4Zv/qKPD940aA+U8UQv0VzST+a1Hw+J4ohv9PoKj+4S8o+f4K+PvF7Pj/jDA6/VgxDP+79pT5fig+/i8UhPzB9AT/9Uxa/uHSCPsibUj/4GAK/n9pXPlSsWD/Eafq+pN6RPmOlTT+J4wW/tpUlvg6QdD//V32+H1d0PtMhVT+g9v++KqToPe+5Yz98jOK++32fvsrFcT+nC9e9zzkov5U90D4tdyI/3aIfv9tLYj7H9z8/hCsEv1mmVz8sGh4+tNcTv/fQRD8BmYw+i7QGv+qJjrzmpVk/quXyvntcoL38dmA/CVTavqKBCL6VB2U/NOPLvsVgGL5It2c/V1poPzKZ/zx2VNa+nWhuP+h2nDwqQ7q+0rxtPxGUsrwAlr2+VK5hP49/lT2kye6+FNleP1Zk+7642go92pZhP00G8r6wSZ07OcNZP8kzBb/ybJo9Df5oP24v0L6KBqO9FaS9vSoj974j8l4/9gH6vgYVjL3ht14/QEW0vq7zeb7IUGc/hAX5PMhTDr9rpVQ/dimYPapsFL9btk8/N/Qwu3gXCr9sj1c/MZ7lPpXpL78VUhI/dQRFPXx8EL8r+FI/TvQsPmMaIL+IBUM/OFAZPzj5LL//Gdw+68lvP7biFL5qHqO+qpplP2C4DT0UveG+U5lMP2PrE7+feSk+lzldP+kyAL8cvko9RrJKPxMJiD4EzAy/k4BBPxjKrj5rBQ+/9Oo3P80V0D6OhBC/jto0P1LI3z7SgQ6/6w0dv0LAeT6UR0A/PQoXv5qZmT7J5T8/5TQev27lnz7Qszg/hwwdv+X0NT6w+0Q/UWZAvgO2zb7jcGU/k00mvuxS2r7Wy2M/TfxpvnVKu7759mY/2rievTPU/L55uV0/6k0gv8sgLj+nHsM+g+G6viHGbT+YEoO9dor7vgouXT/g4+E94hYmv532FD9iFPs+A2cnv+UCCz8v3QY/LFQlv0ygGz+ef+w+dV4Yv+WWLj6rCEk/cmYmv0ZOET9gWwE/e34ov3I86D5h0xk/bE4Dv4dKnbvKwVs/DipcPhgmJb/tszs/zyLIPpwLMb+cfRs/Wo+gvg4Zkb4VAmg/wnBOvsTPxr6PMmY/bnMXP5GQML8Hw9U+JQInP/4NKr9y0ro+qb4zPxKKI7/KB6E+W8A5P2iDHr9Ys5k+r92+vVl/cz/xrJa+fZMHvXsXdT8l5JK+11nTvEvxcT+4zqa+rcshvrYGcz8OHYu+QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9RwZWP77bCz/IFVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9RwZWP77bCz/IFVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9RwZWP77bCz/IFVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9RwZWP77bCz/IFVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9QAhWP8DYCz9UEVA9IQrovbjQMz9h5DO/0VsGvjz5OD+Lwi2/M+G2vVAuKz/m+Dy/UWE2vqglSD/+9hi/gckUP0JQvL6P1Dm/FsI5PzyjJL80lHq+QjgxP6wEEL+Faee+ytUFP3euhb7LvU+/4DD/PmntYr7mj1a/8qQJP7rUlL4nnUq/vmeGPmKTHD6W5nO/srYDP0z8er6aW1K/e9bhPmOzCL7QMWO/L/sYPmJ/pj7AC2+/NU2RvnFPaj9zYJK+FhKlvq2qcT+SXI+9xZcQvTvDFj8/s06/71/UvVLrMD9FHTe/JQeqvmiwaz+kHVI+ZyyfvjEUaD9TK5I+xViVvv5LYz9HKrY+9JKLvrPsYT/QM8Q+9Uk9P3n8Kb+XveM9qlZDPymzIL9atB0+qqU9P1NnJb9xHDw+Tn46Pzr5Lr9jpD09dONUvjpYOD+beCk/w9xKvrWXMj9OQzA/QgNnvp86QD/m5R4/d84ivpc4ID9feEM/3n4uvoejRT8RwRy/b+bQPRyYvz669Wu/HqstvMB9DD/s/FW/VohfvmznVz9xYvu+6qNwvtVCXT/Kr+O+YBhVvmRuUz//JAa/W3qhvgbvcj/pYiq7QfhkvpgqWj/2LfK+S2uJvm3BZj+4+a2+VWegvnx7bT+uEVA+7EedO39quD5q0G4/YADvPVHKMj6CSno/VqGFvjh8Tz+fPgY/jzhavq5YOz+5tiU/2lmGPiUgdL3AjnY/tzejPvim8b2bwXA/FWG7Pu7ILr7MMmo/Fl3JPo8gPb6FkmY/oCegPkGWsj1oIHK/mxa9PiWhmj2YHW2/WUW6Pp8iDj2lSm6/PZyEPqlhAz61EnW/cZwhP7cE474f5CK/+O4dPwMZ2b5PvCm/Gx0mP7HV8r7SUBi/ZMISPwvbtb77BT2/BdYVP886AL+JOSM/QbObPufS3r2rR3I/LyvaPi77jb54clw/akgkP/wUEb8JSAQ/iH8oP9N5Fr/j1/A+/YIgP+hcDb/1qww/ZLg9Pz25K79peOk8+zImPxz5Er9ecf8+ygswP6SiIL8Z+ro+GGs9PzEfJr8ajzW+7wLSPjRDtr3uW2i/qvmTPvUluT3d+nO/8lYuPwg4Cb8vcf++7oAjPxJK6L69GR+/IvUGPk1moj7WbHC/Lr7KPdkuyD5MQWq/Mz2KPS5l6D5XdGO/vrGDPVWr9z5Bc1+/5Iz9PVvcSj6m6ng/pJkMPvjEgj4rAHU/VnjHPeZ+iD7aeHU/3lUOPjncBj5TQ3s/MmoJP+3y2b7mfDo/otQMPzPL5b4XSDQ/LTQDP9TCyL5okEM/aK0XP9/WAr+PaB8/jEoqvvOOIz8XSEA/5pSjvpmSaD9K7ok+7LiNvk+BVT/+YPQ+45HLvQitCT9hUlY/QASave8J/z6SJF0/1k3zvcV8ED+5IFE/ER4nPsZOAD7IhXo/ow+2vUjvBT9y+lg/fJWyvDuW0D7OuWk/r+yNPiV2Pr0TrnU/QuUyP2LkJL8fSZ8+6GE6P0jQLb+tusE9Jh/pPpIHob7TOlU/znoHP6WD075Zuj0/r+05P+i/Kb9iizm+g4Y6P3Y0Ir+HLIW+GKA5P5PNGr8stKi+Bu86P8RgFb+c97W+9QebvlEEcz96dq29GlODvr9rdT8xGvy9FTSPvoaHcj/7bh++OjmpvvmLcT8gDbW89coNv40xIz+yGwk/Y3tdv2JaAD9cBiw8ElMTv919+T4EIyg/wQInv1p+uT5daio/t5pcv2aHiT67X9w+nSsiv4XGxz6jDSs/HJYxv+kMoD4bHiY/aXDXPVD/Wj+vzwE/M3PXPScCWz/RygE/vN2iPmuY2z5Vclg/cvClPmBC/j6aIU4/5ILLvkFq9r4WAUg/8OSjvjo5575oM1U/RdEhv7iP8b7yXB0/XPVMv5AkGT+R2wo9MPgjv93nOz+mOGc+5vMsvt+PcD+eRJg+FSMXvkywfD9FM4A96QmoPlGkDz/liEI/yz/xvreiAb8U4Tg/7XGsvrm4cD/OEUe961t/v3k3+Dzh3YK961t/v3k3+Dzh3YK96NZ8v3RHHb5JTfw8vdZ8v21LHb6oU/w8CXsTv7jErz5I5j0/cjIGv7Xx9D7AWjQ/BzAGv0vt9D4NXjQ/txZkv1v7pz4xtqA+hsURvxAJDT/uMBw/BuZsv2EI+b0Uzre+zRd1v+1Ex71FNos+DNlYv9AGm73vrAY/MddYvy0Km73brwY/mIJev/rFOr1iGvw+fz0Mv/prKz8bYwC/uHEWv96p+j5V6CS/SrUqv24Owj62QSS/Og0lv7pYzj7RRya//TQgv+m53D76Zia/S6wvv01vtD7w5SK/+sepPn5u9D5CT1C/Y6DnPQkzYj+Hpui+hoCsPr3pCj8a+kS/9NKcvmvSzb5z5ly/4dvEvoeP3r4ke1C/HS4fv96d3r75wSa/Uygfvwus3r7Hwia/KbsWvsjPcz/Us4i+y5SpvhEGZz/KD42+499Mv2d4GT+s90K8ctpMv8t/GT9NVUG8kIcWvlE2fT+Y7uu7cS6uPru5Gj/dazi/qhDrvvYc7b4VFEK/lA+tvmqfbz+ptcg9Yph/vy8w3TzI70k9Yph/vy8w3TzI70k9L6h8v527Gr79kGS9lS0Sv2EzpD5AdkG/yyN5vmpiMD+JxS6/IQt5voNjMD+gxi6/+3Zav91CaT4UEvC+8tUWvoRLKD9GLz2/rfqHvZ5YUD+2xxO/NL1xv7VH0L0+QaC+0hpPv5ju2r3z9xO/pApzv4VInT2985u+5Yg7P4+QNj+CUTo/EQE0P0GaNz/aDzY/vu44P7ZIOD8sWzU/4NU5P9QENz8eyDs/QZo3P9oPNj+CUTo/EQE0P+WIOz+PkDY/vu44P7ZIOD8sWzU/4NU5P9QENz8eyDs/8TYzP/J9Oz+GvzQ/ync9PyMEMT/Uuz4/0DczP9LZQD/QNzM/0tlAP4a/ND/Kdz0/W2A3P6utPz/xNjM/8n07P4a/ND/Kdz0/IwQxP9S7Pj/QNzM/0tlAP77uOD+2SDg/5Yg7P6opPz/liDs/j5A2P9QENz8eyDs/hr80P8p3PT/QNzM/0tlAP1tgNz+rrT8/vu44P7ZIOD/UBDc/Hsg7P2BGNT9ccEc/YEY1P18oRj8R/DY/XyhGPxH8Nj9ccEc/YEY1PxUkRT8S/DY/DiRFPxxENT8MJEU/HEQ1P1goRj/O+TY/WChGP8z5Nj8LJEU/HEQ1P1dwRz/O+TY/V3BHPxxENT/r20g/zvk2P+vbSD8cRDU/gkdKP875Nj+CR0o/HEQ1P4CPSz/O+TY/gI9LPyFENT/Ok0w/zvk2P86TTD8cRDU/zNtNP8z5Nj/O200/GkQ1P2NHTz/K+TY/Y0dPPzhGNT9fR08/TkY1P8vbTT/++zY/2NtNP+r7Nj9uR08/YEY1P8+TTD8R/DY/1pNMP2BGNT+Fj0s/Efw2P4WPSz9gRjU/iEdKPxH8Nj+IR0o/YEY1P/LbSD8R/DY/8ttIP2gqQT8iK0c/qiJDP3hNQz9Ggz8/rqtAPy3oPD/myEU/EDRGPxI8QD9JkkM/rZw8P7cRSj/OQz4/ga9IP5gBOj9EW04/DpY9P0RbTj+7Gzk/OxJKP85DPj/+r0g/mAE6P480Rj8SPEA/xZJDP62cPD8oI0M/eE1DP8iDPz+uq0A/5ypBPyIrRz+16Dw/5shFPyZ9QD8udEs/1gI8Py50Sz/nKkE/O71PP7XoPD94H1E/KCNDP+aaUz/Igz8/sDxWP480Rj9LrFY/xZJDP7BLWj87Eko/jqRYP/+vSD/G5lw/RFtOP09SWT9EW04/oMxdP7cRSj+OpFg/fK9IP8bmXD8VNEY/SqxWP0mSQz+wS1o/qiJDP+aaUz9Ggz8/sDxWP2gqQT87vU8/Neg8P3gfUT+qfEA/LnRLP1UCPD8udEs/RFtOPy50Sz+Qnrs+UJVeP7u5vD6Opl8/o5i3PsbUXz8ES7c+ZrBeP7s2sj70zl8/qn2yPseEXj8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxPzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxPzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxPzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxPzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/HCivPi61VD/fKLM+c49XP5IGrz53A1k/TFumPichVz/GeLM+b8FTP4zWtj4EClc/qkm3PsRYUz9xjbs+JoNTP+Ivuz6zO1c/m7S/Pg9TVD9/CMM+mK9VP2jSvT7iMlg/qBPFPq9tVz8GrcU+ZltZP1QIvj4Trlk/pOHEPuBCWz8EqMI+cLxcPx5xvz4m+F0/qQa7Pjv7Wj+Qnrs+UJVePwRLtz5msF4/07O2PlwKWz+qfbI+x4ReP6wqrT76oV0/TFumPgC6Wz+ey50+Mz1ZP/MymD7DwVc/i9CaPjp6VD/1p5Q+GtpTP7uClD6Xh1c/SnOQPn0vVD9QZpE+/epXP4ppjD4bMFU/bFSJPny0Vj+78Y4+1f9YP3Kahz67h1g/KFOHPsB4Wj+k944+Rn1aPzpoiD6XU1w/K9KKPtC1XT8zNI4+eNBePxMhkj4+rls/HxmSPqxEXz9AYZY+ui1fP2Bplj73jls/bwGbPhfOXj9IAqA+VL9dP0xbpj4nIVc/TFumPr6MVT+KVq4+aW5TPxworz4utVQ/LwSzPlaQUj/GeLM+b8FTP8+Dtz5yRlI/qkm3PsRYUz/qpLw+On1SP3GNuz4mg1M/Tl7BPq99Uz+btL8+D1NUP4caxT4jG1U/fwjDPpivVT/CZMc+hyVXP8Jkxz6HJVc/qBPFPq9tVz/kEcg+BGNZPzItxz4jmls/hLfEPv1fXT8EqMI+cLxcP+wWwT5N114/HnG/Pib4XT9Ijaw+yQVfP6wqrT76oV0/TFumPv5DXT9MW6Y+ALpbP4vQmj46elQ/iGKbPhARUz9MW6Y+voxVP0xbpj4nIVc/9aeUPhraUz+0eJQ+A45SP0pzkD59L1Q/qByPPiz2Uj+KaYw+GzBVPxRkij6oOFQ/bFSJPny0Vj9X3IY+YRFWP3Kahz67h1g/M+OEPmBFWD8oU4c+wHhaPwCShD4Smlo/OmiIPpdTXD9q14U+KNhcPyvSij7QtV0/I5uIPkiWXj8zNI4+eNBeP1iOjD6W9V8/HxmSPqxEXz9WMJE+G5xgP0Bhlj66LV8/nG2WPhaGYD9vAZs+F85ePwSumz6SP2A/SAKgPlS/XT98u6A+Nw9fP0xbpj4Auls/TFumPv5DXT/fKLM+c49XP2o0tD7U21g/ajS0PtTbWD+z0rA+ZvRYP4zWtj4EClc/s8y3PtRUWD/iL7s+sztXP0l1uz4NW1g/aNK9PuIyWD+PZ7w+Mr1YP1QIvj4Trlk/w2a8PkhAWT+pBrs+O/taP5Jfuj5r41k/07O2PlwKWz/Sc7c+o8hZP7PSsD5m9Fg/kgavPncDWT+z+5s+tUhZP5KAlz6eH1k/8zKYPsPBVz+k9pM+utFYP7uClD6Xh1c/gkuRPpwJWT9QZpE+/epXP0h8kD7Welk/u/GOPtX/WD9Hi5A+WQNaP6T3jj5GfVo/7J2SPpCTWj8TIZI+Pq5bP4p5lT5cWVo/YGmWPveOWz+z+5s+tUhZP57LnT4zPVk/AobkPvzyYz/yT98+/PJjPwBP3z6iNGI/D4bkPqI0Yj/tOQQ/GY1hP6ORBz/IXWQ/9dEEP+x3Zz+QngI/bPljPwKG5D6nA2s/60/fPqcDaz/yT98+helnPwKG5D6F6Wc/DIbkPkcxbj/2Tt8+RzFuP1SnCD9BZ2A/xtEAP8C1aD9fswA/x5FkP/ZO3z5HMW4/DIbkPkcxbj/aheQ+ZxByP8NP3z5cEHI/3bAEP4ilaj+QYf4+yUtoP8aF5D7+s3M/uU/fPlixcz82j/g+oOZXP/Uw/z77XVc/CBHzPkyGXj8IEfM+TIZePxSvAD9Whl4/MCgAP1xFYT+hdQc/BnlcP7DiAz9as14/FvQBP74EXT99UgM/oOBYP/JP3z7EBGA/8k/fPltsXD8ChuQ+W2xcPwKG5D7EBGA/D4bkPqI0Yj8AT98+ojRiPwwhCz/lqF4/WinsPoJAaj9aKew+MNRnP28V5z4w1Gc/YhXnPoBAaj9aKew+cvpkP1op7D7SS2M/bxXnPtRLYz9vFec+cvpkP14p7D62K2w/bBXnPrArbD9aKew+0ktjP1op7D48ymE/aBXnPj7KYT9vFec+1EtjP/dN7z44emg/+k3vPhbLaz/mYfQ+MMprP+Zh9D6Remg/VynsPjcLXz9iFec+NwtfPwKG5D788mM/8k/fPvzyYz8AT98+ojRiPw+G5D6iNGI/7TkEPxmNYT+jkQc/yF1kP/XRBD/sd2c/kJ4CP2z5Yz8ChuQ+pwNrP+tP3z6nA2s/8k/fPoXpZz8ChuQ+helnPwyG5D5HMW4/9k7fPkcxbj9Upwg/QWdgP8bRAD/AtWg/X7MAP8eRZD/2Tt8+RzFuPwyG5D5HMW4/2oXkPmcQcj/DT98+XBByP92wBD+IpWo/kGH+PslLaD/GheQ+/rNzP7lP3z5YsXM/No/4PqDmVz/1MP8++11XPxSvAD9Whl4/MCgAP1xFYT+hdQc/BnlcP7DiAz9as14/FvQBP74EXT99UgM/oOBYP/JP3z7EBGA/8k/fPltsXD8ChuQ+W2xcPwKG5D7EBGA/D4bkPqI0Yj8AT98+ojRiPwwhCz/lqF4/WinsPoJAaj9aKew+MNRnP28V5z4w1Gc/YhXnPoBAaj9aKew+cvpkP1op7D7SS2M/bxXnPtRLYz9vFec+cvpkP14p7D62K2w/bBXnPrArbD9aKew+0ktjP1op7D48ymE/aBXnPj7KYT9vFec+1EtjP/dN7z44emg/+k3vPhbLaz/mYfQ+MMprP+Zh9D6Remg/VynsPjcLXz9iFec+NwtfPwKG5D788mM/8k/fPvzyYz8AT98+ojRiPw+G5D6iNGI/7TkEPxmNYT+jkQc/yF1kP/XRBD/sd2c/kJ4CP2z5Yz8ChuQ+pwNrP+tP3z6nA2s/8k/fPoXpZz8ChuQ+helnPwyG5D5HMW4/9k7fPkcxbj9Upwg/QWdgP8bRAD/AtWg/X7MAP8eRZD/2Tt8+RzFuPwyG5D5HMW4/2oXkPmcQcj/DT98+XBByP92wBD+IpWo/kGH+PslLaD/GheQ+/rNzP7lP3z5YsXM/No/4PqDmVz/1MP8++11XPxSvAD9Whl4/MCgAP1xFYT+hdQc/BnlcP7DiAz9as14/FvQBP74EXT99UgM/oOBYP/JP3z7EBGA/8k/fPltsXD8ChuQ+W2xcPwKG5D7EBGA/D4bkPqI0Yj8AT98+ojRiPwwhCz/lqF4/WinsPoJAaj9aKew+MNRnP28V5z4w1Gc/YhXnPoBAaj9aKew+cvpkP1op7D7SS2M/bxXnPtRLYz9vFec+cvpkP14p7D62K2w/bBXnPrArbD9aKew+0ktjP1op7D48ymE/aBXnPj7KYT9vFec+1EtjP/dN7z44emg/+k3vPhbLaz/mYfQ+MMprP+Zh9D6Remg/VynsPjcLXz9iFec+NwtfPwKG5D788mM/8k/fPvzyYz8AT98+ojRiPw+G5D6iNGI/7TkEPxmNYT+jkQc/yF1kP/XRBD/sd2c/kJ4CP2z5Yz8ChuQ+pwNrP+tP3z6nA2s/8k/fPoXpZz8ChuQ+helnPwyG5D5HMW4/9k7fPkcxbj9Upwg/QWdgP8bRAD/AtWg/X7MAP8eRZD/2Tt8+RzFuPwyG5D5HMW4/2oXkPmcQcj/DT98+XBByP92wBD+IpWo/kGH+PslLaD/GheQ+/rNzP7lP3z5YsXM/No/4PqDmVz/1MP8++11XPxSvAD9Whl4/MCgAP1xFYT+hdQc/BnlcP7DiAz9as14/FvQBP74EXT99UgM/oOBYP/JP3z7EBGA/8k/fPltsXD8ChuQ+W2xcPwKG5D7EBGA/D4bkPqI0Yj8AT98+ojRiPwwhCz/lqF4/WinsPoJAaj9aKew+MNRnP28V5z4w1Gc/YhXnPoBAaj9aKew+cvpkP1op7D7SS2M/bxXnPtRLYz9vFec+cvpkP14p7D62K2w/bBXnPrArbD9aKew+0ktjP1op7D48ymE/aBXnPj7KYT9vFec+1EtjP/dN7z44emg/+k3vPhbLaz/mYfQ+MMprP+Zh9D6Remg/VynsPjcLXz9iFec+NwtfP2hcID/Iw0g/aFwgP8jDSD8fnSI/TfpGPwRyJT9qtUc/HAIkP/DyST/Xpyk/mudHP+BoJz9I9Ug/BHIlP2q1Rz9efCQ/dy1FP3iMKD/tckY/5CYnP7uzTT8cAiQ/8PJJP2hcID/Iw0g/HAIkP/DyST9lfiQ/145NP2kPIT/M2Es/ZX4kP9eOTT/YkyY/Li1EPxmAKD8Gs0Q/2JMmPy4tRD+tDSU/uPxCPxuLKj8ifUI/WGIqP9Q1QT/h5Cw/5ypBP1QWKj8yJEA/WIErP7lnQD9YYio/1DVBP4XLIz8oW0E/bHAiP8gDQD/1oiQ/2ZlAPxC5JD8SFz8/9aIkP9mZQD9scCI/yANAPwATJj95H0E/1fIoP2OMQT+AWSk/hlRDP9XyKD9jjEE/EOEoP+DVQD8XeCc/nCE/P9cOKT+SEz4//ccnP8D6Oz/96SU/42w9PxDhKD/g1UA/b+AmP0fkQT8VcyY/a1RAP2/gJj9H5EE/b+AmP0fkQT8AEyY/eR9BP0V9Iz/dG1E/waIgPwxRTj86/CM/Gt9PP7DNHz9ua1E/D+wlP+62VD9FfSM/3RtRP2TDJj8AZlI/OvwjPxrfTz/YZx8/EmZXP1qQHz+xuVY/OjwiP1g0Vj/dvB0/oQRbP928HT++D1g/OjwiP1g0Vj+UvSM/fNxSPwCkHz+7qFM/lL0jP3zcUj/4Eh8/ERdVP/gSHz8RF1U/lL0jP3zcUj8EciU/arVHPx+dIj9N+kY/aFwgP8jDSD9oXCA/yMNIPxwCJD/w8kk/4GgnP0j1SD/Xpyk/mudHPwRyJT9qtUc/XnwkP3ctRT94jCg/7XJGP+QmJz+7s00/HAIkP/DyST9lfiQ/145NPxwCJD/w8kk/aFwgP8jDSD9pDyE/zNhLP2V+JD/Xjk0/GYAoPwazRD/YkyY/Li1EP9iTJj8uLUQ/rQ0lP7j8Qj9YYio/1DVBPxuLKj8ifUI/4eQsP+cqQT9YgSs/uWdAP1QWKj8yJEA/WGIqP9Q1QT9scCI/yANAP4XLIz8oW0E/9aIkP9mZQD/1oiQ/2ZlAPxC5JD8SFz8/bHAiP8gDQD8AEyY/eR9BP9XyKD9jjEE/gFkpP4ZUQz8Q4Sg/4NVAP9XyKD9jjEE/F3gnP5whPz/XDik/khM+P/3HJz/A+js//eklP+NsPT8Q4Sg/4NVAP2/gJj9H5EE/FXMmP2tUQD9v4CY/R+RBP2/gJj9H5EE/ABMmP3kfQT/BoiA/DFFOP0V9Iz/dG1E/OvwjPxrfTz+wzR8/bmtRP0V9Iz/dG1E/ZMMmPwBmUj86/CM/Gt9PP1qQHz+xuVY/2GcfPxJmVz/YZx8/EmZXP928HT++D1g/3bwdP6EEWz+UvSM/fNxSPwCkHz+7qFM/lL0jP3zcUj+UvSM/fNxSP/gSHz8RF1U/+BIfPxEXVT+UvSM/fNxSPyhfBT/FG1U/RK4IPwLqVT9Ergg/kMBUP7AfBj83IVQ/BfMCP2LoUj99QAQ/2m1SPwgQAj++5k8/GJEDPyIbUD8F8wI/IuVMP31ABD9vyE0/KF8FP7ixSj+wHwY/FBVMP0SuCD9240k/RK4IP7F1Sz+gngQ/JH9WP0SuCD89fFc/RK4IPwLqVT8oXwU/xRtVP4ylAT+wy1M/BfMCP2LoUj/9jgA/IhtQPwgQAj++5k8/jKUBP45qTD8F8wI/IuVMP6CeBD8ht0k/KF8FP7ixSj9Ergg/BrpIP0SuCD9240k/KF8FP5CEVT9Ergg/y1JWP0SuCD89fFc/oJ4EPyR/Vj8F8wI/KlFTP4ylAT+wy1M/CBACP4JPUD/9jgA/IhtQPwXzAj/gTU0/jKUBP45qTD8oXwU/expLP6CeBD8ht0k/RK4IPztMSj9Ergg/BrpIP7AfBj83IVQ/RK4IP5DAVD9Ergg/y1JWPyhfBT+QhFU/fUAEP9ptUj8F8wI/KlFTPxiRAz8iG1A/CBACP4JPUD99QAQ/b8hNPwXzAj/gTU0/sB8GPxQVTD8oXwU/expLP0SuCD+xdUs/RK4IPztMSj8oXwU/xRtVP7AfBj83IVQ/BfMCP2LoUj99QAQ/2m1SPwgQAj++5k8/GJEDPyIbUD8F8wI/IuVMP31ABD9vyE0/KF8FP7ixSj+wHwY/FBVMP6CeBD8kf1Y/KF8FP8UbVT+MpQE/sMtTPwXzAj9i6FI//Y4APyIbUD8IEAI/vuZPP4ylAT+Oakw/BfMCPyLlTD+gngQ/IbdJPyhfBT+4sUo/KF8FP5CEVT+gngQ/JH9WPwXzAj8qUVM/jKUBP7DLUz8IEAI/gk9QP/2OAD8iG1A/BfMCP+BNTT+MpQE/jmpMPyhfBT97Gks/oJ4EPyG3ST+wHwY/NyFUPyhfBT+QhFU/fUAEP9ptUj8F8wI/KlFTPxiRAz8iG1A/CBACP4JPUD99QAQ/b8hNPwXzAj/gTU0/sB8GPxQVTD8oXwU/expLP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP/GyCD9KOng/Y7kIP4OVcT+vCwo/qYlwP4QJCj9MHXk/XDIHPyXVeD+WRwg/iNN4PxdWCT+cHXo/kCsGP5Yhej8gxwY/yZVxP9nFBj++O3g/q3YFP0YjeT/CeQU/EI5wP4QJCj9MHXk/rwsKP6mJcD8diQw/bdZvP46KDD8xAXo/kCsGP5Yhej8XVgk/nB16P7c1Cz/+Rns/ZEgEP15Nez/CeQU/EI5wP6t2BT9GI3k/jvACP4oKej9g8QI/bt1vP46KDD8xAXo/HYkMP23Wbz8QAgo/8olwP2gDCj+OHXk/ZEgEP15Nez+3NQs//kZ7P81PCT9SIno/QCUGP1Amej9g8QI/bt1vP47wAj+KCno/GXAFP4gjeT94cgU/TI5wP2gDCj+OHXk/EAIKP/KJcD9juQg/g5VxP/GyCD9KOng/QCUGP1Amej/NTwk/UiJ6P5ZHCD+I03g/XDIHPyXVeD94cgU/TI5wPxlwBT+II3k/2cUGP747eD8gxwY/yZVxP5/BBz8JMnE/vMEHPx7Ubz+fwQc/CTJxP7zBBz9kz28/vMEHP2TPbz9vwgc//6JuP2/CBz//om4/vMEHPx7Ubz9TwEc/z5JlPzgmSj+7kmU/OCZKP2sBaT9TwEc/dQFpP1PARz8qJGI/OCZKPxQkYj9TwEc//P5fPzgmSj/o/l8/iS1EP9rlcz+JLUQ/5cZyP3hERT8ivnI/eERFP0vkcz9TwEc/KtdzPzgmSj8q13M/OCZKP+oBdj9TwEc/6gF2P1PARz9srHE/OCZKP2yscT9TwEc/DptvPzgmSj8Qm28/U8BHP+5WbT84Jko/7lZtP1PARz8wLGs/OCZKPzAsaz/emRI/ikZNP/xcEj9ac00/IHQSP2ArTT+dRRI/cStNP1EREj9Ic00/vB8SP8ifTT+YRRI/ULtNP190Ej9Hu00/NpoSP8SfTT+bqBI/HHNNP3UoPj/oEWo/eERFP+xIYD94KD4/fXllPyHlQD/yxG0/LCpEPznKbj94REU/siZvP4ktRD+pzm4/9ONAPzzFbT91KD4/cBNqP3UoPj8be2U/0MlAP6O9YT9FyUA/vL5hPzgmSj+gXHc/U8BHP6Jcdz+JLUQ/umZ2P4ktRD/z8nQ/eERFP2LxdD94REU/KWV2PzxEEj8SLEs/kxgSP4Z3TD/0uRI/1whMP8yDET+eCEw/OegRP6BDSz9KuhE/nGdLP3hERT+5mXE/iS1EP6ihcT+TGBI/hndMPzxEEj8ULEs/9LkSP9YITD/MgxE/nghMPznoET+hQ0s/UboRP5xnSz8SHBI/51FNP9AfEj/WRk0/NikSP+M/TT8sKkQ/mmN2PywqRD/T73Q/LCpEP8fDcj8sKkQ/tuJzPywqRD+HnnE/iS1EP/PydD94REU/YvF0PywqRD/T73Q/3yv0PvaEdz/fK/Q+03d4P9vh8j7ed3g/2+HyPgGFdz/fK/Q++n95P9vh8j4CgHk/3yv0PkU/dj/b4fI+Tz92P95X9T4iR2w/+w35Pv+nbD+Qd/w+gP5tPw8m/j5qR3A/3yv0PjQhdT/b4fI+PiF1P9vh8j61M3Q/3yv0PqgzdD+8mP0+IklyP0Yu+z6783M/2+HyPnrbbz/fK/Q+bdtvP9vh8j56228/2+HyPg1RbT/fK/Q+AVFtP98r9D5t228/bXv+PizBez/oV/U+NMF7P9vh8j7ed3g/3yv0PtN3eD/fK/Q+9oR3P9vh8j4BhXc/3yv0PkU/dj/b4fI+Tz92P/sN+T7/p2w/kHf8PoD+bT8PJv4+akdwP98r9D40IXU/2+HyPj4hdT/b4fI+tTN0P98r9D6oM3Q/vJj9PiJJcj9GLvs+u/NzP98r9D5t228/2+HyPnrbbz/b4fI+ettvP98r9D5t228/bXv+PizBez/MoHE/cnB1P8z4bz9ycHU/1fhvP267bz/MoHE/brtvP4s/cj9xFn4/Nfx7P8sJbD9sVX0/KFFrP2xVfT/dHX4/EyJxP0okfD9sVX0/eRh+P2xVfT8oUWs/iz9yP3EWfj81/Hs/ywlsPxMicT9KJHw/o6BxP91hbj/MoHE/rwRvP8z4bz/6BG8/fPhvP3libj/UoHE/Did2P8n4bz8OJ3Y/CyBxP85mfT8LIHE/02Z9P2n3bz8GdGs/lJ9xP2pzaz/V+G8/brtvP8z4bz9ycHU/zKBxP3JwdT/MoHE/brtvPzX8ez/LCWw/iz9yP3EWfj8TInE/SiR8P4s/cj9xFn4/Nfx7P8sJbD8TInE/SiR8P8z4bz/6BG8/zKBxP68Ebz+joHE/3WFuP3z4bz95Ym4/CyBxP85mfT8LIHE/02Z9PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxPzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxPzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxPzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxPzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxPzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxPzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxPzJpBT9XfHA/e9cGP5+VcT971wY/ADN4PzJpBT/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT9sCgo/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxPzJpBT9XfHA/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/8+kCPzDieT9IbQQ/inR7P2wKCj/nVXk/APgKP4p0ez+ugAw/MOJ5P2wKCj9XfHA/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/MmkFP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP+dVeT+ugAw/MOJ5P66ADD+i5G8/bAoKP1d8cD8A+Ao/BDduP0htBD8EN24/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/e9cGPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwPwCxCD+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/e9cGP5+VcT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD8yaQU/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/bAoKP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT8yaQU/V3xwP/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5P/PpAj8w4nk/SG0EP4p0ez9sCgo/51V5PwD4Cj+KdHs/roAMPzDieT9sCgo/V3xwP66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduPzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5PzJpBT/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj/nVXk/roAMPzDieT+ugAw/ouRvP2wKCj9XfHA/APgKPwQ3bj9IbQQ/BDduP3vXBj+flXE/MmkFP1d8cD8yaQU/51V5P3vXBj8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD8AsQg/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwP3vXBj+flXE/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/MmkFP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxP2wKCj9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/MmkFP1d8cD/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT/z6QI/MOJ5P0htBD+KdHs/bAoKP+dVeT8A+Ao/inR7P66ADD8w4nk/bAoKP1d8cD+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT8yaQU/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/51V5P66ADD8w4nk/roAMP6Lkbz9sCgo/V3xwPwD4Cj8EN24/SG0EPwQ3bj971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT971wY/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD8AM3g/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/ALEIP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD971wY/n5VxP68LCj+piXA/Y7kIP4OVcT/xsgg/Sjp4P4QJCj9MHXk/F1YJP5wdej+WRwg/iNN4P1wyBz8l1Xg/kCsGP5Yhej+rdgU/RiN5P9nFBj++O3g/IMcGP8mVcT/CeQU/EI5wPx2JDD9t1m8/rwsKP6mJcD+ECQo/TB15P46KDD8xAXo/tzULP/5Gez8XVgk/nB16P5ArBj+WIXo/ZEgEP15Nez+O8AI/igp6P6t2BT9GI3k/wnkFPxCOcD9g8QI/bt1vPxACCj/yiXA/HYkMP23Wbz+Oigw/MQF6P2gDCj+OHXk/zU8JP1Iiej+3NQs//kZ7P2RIBD9eTXs/QCUGP1Amej8ZcAU/iCN5P47wAj+KCno/YPECP27dbz94cgU/TI5wP2O5CD+DlXE/EAIKP/KJcD9oAwo/jh15P/GyCD9KOng/lkcIP4jTeD/NTwk/UiJ6P0AlBj9QJno/XDIHPyXVeD/ZxQY/vjt4PxlwBT+II3k/eHIFP0yOcD8gxwY/yZVxP5/BBz8JMnE/vMEHPx7Ubz+8wQc/ZM9vP5/BBz8JMnE/b8IHP/+ibj+8wQc/ZM9vP2/CBz//om4/vMEHPx7Ubz9TwEc/awFpP1PARz+7kmU/OCZKP8+SZT84Jko/dQFpP1PARz8UJGI/OCZKPyokYj9TwEc/6P5fPzgmSj/8/l8/eERFPyK+cj+JLUQ/5cZyP4ktRD/a5XM/eERFP0vkcz9TwEc/6gF2P1PARz8q13M/OCZKPyrXcz84Jko/6gF2P1PARz9srHE/OCZKP2yscT9TwEc/EJtvPzgmSj8Om28/U8BHP+5WbT84Jko/7lZtP1PARz8wLGs/OCZKPzAsaz/8XBI/WnNNP96ZEj+KRk0/IHQSP2ArTT+dRRI/cStNP1EREj9Ic00/vB8SP8ifTT+YRRI/ULtNP190Ej9Hu00/NpoSP8SfTT+bqBI/HHNNP3hERT/sSGA/dSg+P+gRaj94KD4/fXllPyHlQD/yxG0/LCpEPznKbj94REU/siZvP4ktRD+pzm4/9ONAPzzFbT91KD4/cBNqP3UoPj8be2U/0MlAP6O9YT9FyUA/vL5hP1PARz+gXHc/OCZKP6Jcdz94REU/YvF0P4ktRD/z8nQ/iS1EP7pmdj94REU/KWV2P5MYEj+Gd0w/PEQSPxIsSz/0uRI/1whMP8yDET+eCEw/OegRP6BDSz9KuhE/nGdLP4ktRD+ooXE/eERFP7mZcT88RBI/FCxLP5MYEj+Gd0w/9LkSP9YITD/MgxE/nghMPznoET+hQ0s/UboRP5xnSz8SHBI/51FNP9AfEj/WRk0/NikSP+M/TT8sKkQ/mmN2PywqRD/T73Q/LCpEP7bicz8sKkQ/x8NyPywqRD+HnnE/iS1EP/PydD94REU/YvF0PywqRD/T73Q/EAEePxibrz11LB0/OGWGPRABHj+wD3k9UGMaP3iplz0MgRw/WG+cPfvfGD8oupc9Z2waP2h4oT0U8ho/OJ7APRCZGz94tbE9EAEeP/hS2D11LB0/6DYVPhABHj+UnQA+EAEeP1AnGj7ZZBo/II8MPgmBHD+sMAo+hOEYP6SDDD7sbRo/yKcHPpzzGj/gK/A9EJkbPwAX/z0chhM/MNjRPdnFGD/4Utg9h0MSP/hS2D34uxU/KBi8PTBUFj8Iq8w99L0VP6g5sD1o+hY/OGi8PSMLGT+YosU9HIYTPyjT3j34uxU/gJz0PbxVFj/IC+Q9fb8VP8Q9AD73+xY/gFH0PakMGT9YH+s9YucgP4BFlD1i5yA/AO2NPfkDID8A7Y09+QMgP4BFlD1i5yA/gJSHPWLnID/wO4E9+QMgP/A7gT35AyA/gJSHPWLnID8Anpo9+QMgPwCemj1i5yA/gKetPWLnID8AT6c9+QMgPwBPpz35AyA/gKetPWLnID8A7Y09+QMgPwDtjT1i5yA/gPagPfkDID+A9qA9YucgPwCemj35AyA/AJ6aPWLnID94HBM+Z+cgP0TwDz76AyA/RPAPPvoDID94HBM+YucgP/h0GT5i5yA/uEgWPvoDID+4SBY++gMgPxB1GT5i5yA/AMQMPvoDID8AxAw+YucgP3BrBj5n5yA/ND8DPvoDID80PwM++gMgP3BrBj5i5yA/eBwTPvoDID94HBM+Z+cgP7yXCT76AyA/vJcJPmLnID8AxAw++gMgPwDEDD5i5yA/AGLNPWLnID9wCcc9+QMgP3AJxz31AyA/AGLNPWLnID8QE9o9YucgP4i60z31AyA/iLrTPfUDID8QE9o9YucgP/CwwD31AyA/8LDAPWLnID8AALQ99QMgPwAAtD1i5yA/AGLNPfUDID8AYs09YucgP3BYuj31AyA/cFi6PWLnID/wsMA99QMgP/CwwD1i5yA/qBztPWLnID/ww+Y9+QMgP/DD5j36AyA/qBztPWLnID9wa+A9YucgPxAT2j31AyA/EBPaPfUDID9wa+A9Z+cgPwB18z36AyA/AHXzPWfnID/8EgA++gMgP/wSAD5i5yA/8MPmPfkDID/ww+Y9Z+cgP4DN+T36AyA/gM35PWfnID8AdfM9+gMgPwB18z11LB0/OGWGPVBjGj94qZc9CYEcP1hvnD373xg/KLqXPWdsGj9oeKE9FPIaPziewD0QmRs/eLWxPXUsHT/oNhU+2WQaPyCPDD4JgRw/rDAKPoThGD+kgww+7G0aP8inBz6c8xo/4CvwPRCZGz8AF/892cUYP/hS2D0chhM/MNjRPYdDEj/4Utg9+LsVPygYvD0wVBY/CKvMPfS9FT+oObA9aPoWPzhovD0jCxk/mKLFPRyGEz8o0949+LsVP4Cc9D25VRY/yAvkPX2/FT/EPQA+9/sWP4BR9D2pDBk/WB/rPfkDID8A7Y09YucgPwDtjT1i5yA/gEWUPfkDID+ARZQ9+QMgP/A7gT1i5yA/8DuBPWLnID+AlIc9+QMgP4CUhz1i5yA/AJ6aPfkDID8Anpo9+QMgPwBPpz1i5yA/AE+nPWLnID+Ap609+QMgP4CnrT1i5yA/AO2NPfkDID8A7Y09+QMgP4D2oD1i5yA/gPagPfkDID8Anpo9YucgPwCemj36AyA/RPAPPmfnID9E8A8+YucgP3gcEz76AyA/eBwTPvoDID+4SBY+YucgP7hIFj5i5yA/+HQZPvoDID8QdRk++gMgPwDEDD5i5yA/AMQMPvoDID80PwM+Z+cgPzQ/Az5i5yA/cGsGPvoDID9wawY++gMgP3gcEz5i5yA/eBwTPmfnID+8lwk++gMgP7yXCT5i5yA/AMQMPvoDID8AxAw++QMgP3AJxz1i5yA/cAnHPWLnID8AYs099QMgPwBizT31AyA/iLrTPWLnID+IutM9YucgPxAT2j31AyA/EBPaPfUDID/wsMA9YucgP/CwwD1i5yA/AAC0PfUDID8AALQ99QMgPwBizT1i5yA/AGLNPWLnID9wWLo99QMgP3BYuj1i5yA/8LDAPfUDID/wsMA9+QMgP/DD5j1i5yA/8MPmPWLnID+oHO09+gMgP6gc7T31AyA/EBPaPWLnID8QE9o9YucgP3Br4D31AyA/cGvgPWfnID8AdfM9+gMgPwB18z36AyA//BIAPmfnID/8EgA+YucgP/DD5j35AyA/8MPmPfoDID+Azfk9Z+cgP4DN+T36AyA/AHXzPWfnID8AdfM9e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/e9cGPwAzeD971wY/n5VxPzJpBT9XfHA/MmkFP+dVeT8AsQg/ADN4P3vXBj8AM3g/MmkFP+dVeT9sCgo/51V5PwCxCD+flXE/ALEIPwAzeD9sCgo/51V5P2wKCj9XfHA/e9cGP5+VcT8AsQg/n5VxP2wKCj9XfHA/MmkFP1d8cD8yaQU/51V5PzJpBT9XfHA/8+kCP6Lkbz/z6QI/MOJ5P2wKCj/nVXk/SG0EP4p0ez8A+Ao/inR7P2wKCj9XfHA/roAMPzDieT+ugAw/ouRvPwD4Cj8EN24/SG0EPwQ3bj/z6QI/MOJ5P/PpAj+i5G8/MmkFP1d8cD8yaQU/51V5PwD4Cj+KdHs/SG0EP4p0ez9sCgo/51V5P66ADD+i5G8/roAMPzDieT9sCgo/V3xwP0htBD8EN24/APgKPwQ3bj8yaQU/51V5PzJpBT9XfHA/e9cGP5+VcT971wY/ADN4P2wKCj/nVXk/MmkFP+dVeT971wY/ADN4PwCxCD8AM3g/bAoKP1d8cD9sCgo/51V5PwCxCD8AM3g/ALEIP5+VcT8yaQU/V3xwP2wKCj9XfHA/ALEIP5+VcT971wY/n5VxP3vXBj8AM3g/e9cGP5+VcT8yaQU/V3xwPzJpBT/nVXk/ALEIPwAzeD971wY/ADN4PzJpBT/nVXk/bAoKP+dVeT8AsQg/n5VxPwCxCD8AM3g/bAoKP+dVeT9sCgo/V3xwP3vXBj+flXE/ALEIP5+VcT9sCgo/V3xwPzJpBT9XfHA/MmkFP+dVeT8yaQU/V3xwP/PpAj+i5G8/8+kCPzDieT9sCgo/51V5P0htBD+KdHs/APgKP4p0ez9sCgo/V3xwP66ADD8w4nk/roAMP6Lkbz8A+Ao/BDduP0htBD8EN24/8+kCPzDieT/z6QI/ouRvPzJpBT9XfHA/MmkFP+dVeT8A+Ao/inR7P0htBD+KdHs/bAoKP+dVeT+ugAw/ouRvP66ADD8w4nk/bAoKP1d8cD9IbQQ/BDduPwD4Cj8EN24/MmkFP+dVeT8yaQU/V3xwP3vXBj+flXE/e9cGPwAzeD9sCgo/51V5PzJpBT/nVXk/e9cGPwAzeD8AsQg/ADN4P2wKCj9XfHA/bAoKP+dVeT8AsQg/ADN4PwCxCD+flXE/MmkFP1d8cD9sCgo/V3xwPwCxCD+flXE/e9cGP5+VcT971wY/ADN4P3vXBj+flXE/MmkFP1d8cD8yaQU/51V5PwCxCD8AM3g/e9cGPwAzeD8yaQU/51V5P2wKCj/nVXk/ALEIP5+VcT8AsQg/ADN4P2wKCj/nVXk/bAoKP1d8cD971wY/n5VxPwCxCD+flXE/bAoKP1d8cD8yaQU/V3xwPzJpBT/nVXk/MmkFP1d8cD/z6QI/ouRvP/PpAj8w4nk/bAoKP+dVeT9IbQQ/inR7PwD4Cj+KdHs/bAoKP1d8cD+ugAw/MOJ5P66ADD+i5G8/APgKPwQ3bj9IbQQ/BDduP/PpAj8w4nk/8+kCP6Lkbz8yaQU/V3xwPzJpBT/nVXk/APgKP4p0ez9IbQQ/inR7P2wKCj/nVXk/roAMP6Lkbz+ugAw/MOJ5P2wKCj9XfHA/SG0EPwQ3bj8A+Ao/BDduPzJpBT/nVXk/MmkFP1d8cD971wY/n5VxP3vXBj8AM3g/bAoKP+dVeT8yaQU/51V5P3vXBj8AM3g/ALEIPwAzeD9sCgo/V3xwP2wKCj/nVXk/ALEIPwAzeD8AsQg/n5VxPzJpBT9XfHA/bAoKP1d8cD8AsQg/n5VxP3vXBj+flXE/5XRzPwVCXD/ldHM/TSteP1xvdj9NK14/XG92PwVCXD/ldHM//ihiP+V0cz8Z52M/XG92PxnnYz9cb3Y//ihiP+V0cz9e0GU/6HRzP6K5Zz9cb3Y/orlnP1xvdj9e0GU/6HRzP6K5Zz/ldHM/wHdpP1xvdj/Ad2k/XG92P6K5Zz+LvHk/BUJcP8NzfD8FQlw/w3N8P00rXj+LvHk/TStePxSteT8FQlw/FK15P00rXj9DZHw/TSteP0NkfD8FQlw/0352P17QZT/TfnY/orlnP9N+dj+iuWc/0352P753aT/TfnY/BEJcP9N+dj9JK14/0352P/4oYj/TfnY/GedjP9N+dj8sjGs/5XRzPyqMaz9Yb3Y/LIxrP1xvdj9NK14/5XRzP40UYD9Yb3Y/kRRgP1hvdj+RFGA/WG92P5EUYD/TfnY/kRRgP9N+dj9JK14/0352P5EUYD/ldHM/jRRgPxSteT+RFGA/Q2R8P40UYD/ldHM/GedjP1xvdj8Z52M/0352PxnnYz/Dc3w/jRRgP4u8eT+NFGA/HeMMPUy/WT9AJC89vpFXP9ykLz0bvls/9O3vPGI7Xj+5IPY8lthbP9ykLz0cuGA/kckCPXZlYD8c1gA9IHRiPzb+yjxz92E/uRPPPJM1YD+RyQI9dmVgP4MS5zyMgWQ/uKCoPEITYz82/so8c/dhPxzWAD0gdGI/GwAAPTpJZT/cpC89JS5kP9ykLz0lLmQ/3KQvPSUuZD/cpC89ogtmP7op6jyYBWc/fUstPKgMYj+5LZk8/tVhP7qVkTySyWA/uS2ZPP7VYT99Sy08qAxiP9ykLz1bpGk/nGcBPcMAaj+7vus8VIFoP9ykLz0+ymc/nCsSPX7Raj/cpC89wElrP0AkLz2+kVc/W9AMPSXDWT/cpC89G75bP7sI9jwp3Fs/c93vPGY+Xj8SvwI9gGdgP9ykLz0cuGA/OjDPPKc2YD+59so89fZhP126AD1fdGI/Er8CPYBnYD+59so89fZhPzeWqDz4EGM/g7nmPOp/ZD9dugA9X3RiPxxuAD3HRmU/HG4APcdGZT/cpC89JS5kP9ykLz2iC2Y/OGHqPBECZz99Sy08pgxiPzpUmTx51GE/tdiRPNLIYD86VJk8edRhP31LLTymDGI/NpbrPPd+aD+bNAE9pABqP9ykLz0+ymc/G/cRPZXTaj/lHFI/Ri9dP3ApVD/FlmE/xvJUP0EvXT+VU1E/yJZhP74dUj9AL10/RCpUP8GWYT9oVFE/wZZhP2hUUT/BlmE/mfNUP0AvXT8YAFc/QC9dPxgAVz/BlmE/9dVZP0AvXT/11Vk/wZZhP9GrXD9AL10/0atcP8GWYT8p1Vk/QC9dPynVWT/BlmE/AatcP8GWYT8Bq1w/QC9dP0z/Vj9AL10/TP9WP8GWYT8ENk4/ecNuP7yGUD8umGw/vIZQP0a3bz8mOk4/ecNuP1ZGTT/idmw/JjpOP0kqaj+8hlA/fDZpPwQ2Tj9JKmo/NEJNP+J2bD9wKVQ/xZZhP3QpVD8q8GY/TP9WPyrwZj9M/1Y/wZZhPynVWT8q8GY/KdVZP8GWYT8Bq1w/KPBmP9GrXD8o8GY/9dVZPyjwZj8YAFc/KPBmPxgAVz/BlmE/RCpUPybwZj9EKlQ/wZZhP2hUUT8m8GY/nFNRPyvwZj+cU1E/1rNoP3QpVD/Rs2g/RCpUP9CzaD9oVFE/0LNoPxgAVz/Qs2g/9dVZP9CzaD/Rq1w/0LNoPynVWT/Rs2g/AatcP9CzaD9M/1Y/0bNoP3dITT/QpmM/MVJRP2pmYD9EPE4/OFphP0Q8Tj9n82U/3IhQPzjnZj90OE4/Z/NlP6lETT/QpmM/dDhOPzhaYT96KVQ/ErFwP03/Vj8UsXA/KdVZPxSxcD8Bq1w/ErFwP9GrXD8SsXA/9dVZPxKxcD8YAFc/ErFwP0AqVD8RsXA/aFRRPxGxcD+mU1E/FrFwP5NAFj/woUs/k0AWP3z0ST9MUhU/fPRJP0xSFT/woUs/1C4XP/ChSz/ULhc/fPRJPxsdGD/woUs/Gx0YP3z0ST9gCxk/8KFLP2ALGT989Ek/pfkZP/ChSz+l+Rk/fPRJP+rnGj/woUs/6ucaP3z0ST9szxg/DhFRP2zPGD8MyEw/ElYWPw4RUT9jGRU/jOxOPxJWFj8MyEw/FwwaP4zsTj8SVhY/MxFRP2zPGD81yEw/bM8YPzMRUT9jGRU/tOxOPxJWFj81yEw/FwwaP7TsTj8bHRg/CUdIP9QuFz8JR0g/k0AWPwlHSD9MUhU/CUdIP+rnGj8JR0g/pfkZPwlHSD9gCxk/CUdIP/iqET/wpUg/+KoRP+oDRz9L5A4/+tJHP3ykDz98O0k/OesMP/v9ST+wNw4/W8xKPwQ+Dj/cC08/eLQNPyPtTD9cQww/QPBMP/zzDD+j308/dPMOP9oCUj91rw8/FZdQP/iqET87x1I/+KoRP/AkUT/4qhE/6gNHP/iqET/tqUU/TEAOP4OoRj9L5A4/+tJHPzXTCz8FU0k/OesMP/v9ST+nZAs/4hJLPz1qCz9w0E4/XEMMP0DwTD/ovwk/6vRMP/zzDD+j308/+N0LP4yOUD/1Ug4/ci9TP3TzDj/aAlI/+KoRP/QgVD/4qhE/O8dSP/iqET/tqUU/+KoRP+oDRz/M3g4/+tJHP0xADj+DqEY/t+UMP/v9ST810ws/BVNJP6dkCz/iEks/PWoLP3DQTj/ZPQw/QPBMP3zuDD+j308/6L8JP+r0TD/43Qs/jI5QP/jtDj/aAlI/9VIOP3IvUz/4qhE/O8dSP/iqET/0IFQ/+KoRP+oDRz/4qhE/8KVIP3ykDz98O0k/zN4OP/rSRz+wNw4/W8xKP7flDD/7/Uk/2T0MP0DwTD94tA0/I+1MPwQ+Dj/cC08/fO4MP6PfTz91rw8/FZdQP/jtDj/aAlI/+KoRP/AkUT/4qhE/O8dSP0vkDj/60kc/fKQPP3w7ST856ww/+/1JP7A3Dj9bzEo/XEMMP0DwTD94tA0/I+1MPwQ+Dj/cC08//PMMP6PfTz908w4/2gJSP3WvDz8Vl1A/TEAOP4OoRj9L5A4/+tJHPzXTCz8FU0k/OesMP/v9ST+nZAs/4hJLP1xDDD9A8Ew/PWoLP3DQTj/ovwk/6vRMP/zzDD+j308/9VIOP3IvUz/43Qs/jI5QP3TzDj/aAlI/zN4OP/rSRz9MQA4/g6hGP7flDD/7/Uk/NdMLPwVTST+nZAs/4hJLP9k9DD9A8Ew/PWoLP3DQTj987gw/o99PP+i/CT/q9Ew/+O0OP9oCUj/43Qs/jI5QP/VSDj9yL1M/fKQPP3w7ST/M3g4/+tJHP7A3Dj9bzEo/t+UMP/v9ST8EPg4/3AtPP3i0DT8j7Uw/2T0MP0DwTD987gw/o99PP3WvDz8Vl1A/+O0OP9oCUj8Guig/rE+mPpvqOj+sT6Y+niQpP3DIoz6eJCk/6NaoPl9BLD+cLK8+8sczP6YFmD7uzzE/9MuWPtlZLz9kBbY+B0otP4ADsz4HSi0/2JuZPtlZLz/omZY+7s8xP2TTtT5fQSw/uHKdPvLHMz+0mbQ+nuo6P9jpgT7/pjk/DL+CPlKpOT8Mv4I+eX42P3z4iD6cxTM/pgWYPr8oMz+oFZQ+FhIzP3Apjz4GkzQ/0gmLPrGQND/SCYs+vw8zP3Apjz4VKzM/qBWUPiN8Nj98+Ig+nuo6P4i1yj5SqTk/TODJPv+mOT9M4Mk+I3w2P9imwz4VKzM/sIm4Pr8PMz/odb0+sZA0P4CVwT4GkzQ/gJXBPhYSMz/odb0+vygzP7CJuD55fjY/2KbDPpzFMz+0mbQ+sbcoP6xPpj5OIik/6NaoPk4iKT9wyKM+BT8sP7hynT6ZzTE/ZNO1PoNXLz/0mZY+rkctP9ibmT6uRy0/gAOzPoNXLz9wBbY+mc0xP/TLlj4FPyw/nCyvPpY9Kj8+LL4+lj0qP/BBuj7XKSg/8EG6PtcpKD9CLL4+lj0qPz4svj6WPSo/wD7BPtcpKD/APsE+1ykoP0Isvj6WPSo/7EG6PtcpKD/sQbo+lj0qP/Q4sT6WPSo/KMyzPtcpKD8szLM+1ykoPyg4sT6WPSo/wD7BPtcpKD/APsE+lj0qPyzMsz7XKSg/KMyzPpY9Kj84KcY+1ykoPzwpxj6WPSo/WJDJPtcpKD9ckMk+lj0qPzwpxj6WPSo//IvJPtcpKD/8i8k+1ykoPzwpxj6SPSo/Qiy+PpI9Kj/sQbo+0ykoP+xBuj7TKSg/Piy+PpI9Kj8+LL4+kj0qP8A+wT7TKSg/wD7BPtMpKD8+LL4+kj0qP/BBuj7TKSg/8EG6PpI9Kj/0OLE+kj0qPzDMsz7TKSg/LMyzPtMpKD8oOLE+kj0qP8Q+wT7TKSg/wD7BPpI9Kj8szLM+0ykoPzDMsz6WPSo/OCnGPtcpKD88KcY+lj0qP1yQyT7XKSg/WJDJPpY9Kj88KcY+lj0qP/yLyT7XKSg/+IvJPtcpKD88KcY+lj0qP0Isvj6WPSo/8EG6PtcpKD/wQbo+1ykoPzwsvj6WPSo/Piy+PpY9Kj/APsE+1ykoP8Q+wT7XKSg/PCy+PpY9Kj/sQbo+1ykoP+xBuj6WPSo/9DixPpY9Kj8wzLM+1ykoPyzMsz7XKSg/KDixPpY9Kj/APsE+1ykoP8A+wT6WPSo/LMyzPtcpKD8szLM+lj0qPzwpxj7XKSg/PCnGPpY9Kj/4i8k+1ykoP/iLyT6SPSo/PCnGPpI9Kj9ckMk+1ykoP1yQyT7TKSg/PCnGPpY9Kj88LL4+lj0qP+xBuj7TKSg/7EG6PtMpKD9CLL4+lj0qP0Isvj6WPSo/xD7BPtMpKD/EPsE+0ykoP0Isvj6WPSo/8EG6PtMpKD/wQbo+lj0qP+w4sT6WPSo/LMyzPtMpKD8szLM+0ykoPyQ4sT6WPSo/wD7BPtMpKD/APsE+lj0qPyzMsz7TKSg/LMyzPpY9Kj88KcY+0ykoPzwpxj6WPSo//IvJPtcpKD/8i8k+lj0qPzgpxj6WPSo/WJDJPtMpKD9ckMk+0ykoPzwpxj4Guig/rE+mPpvqOj+sT6Y+niQpP3DIoz6eJCk/6NaoPl9BLD+cLK8+8sczP6YFmD7uzzE/9MuWPtlZLz9kBbY+B0otP4ADsz4HSi0/2JuZPtlZLz/omZY+7s8xP2TTtT5fQSw/uHKdPvLHMz+0mbQ+nuo6P9jpgT7/pjk/DL+CPlKpOT8Mv4I+eX42P3z4iD6cxTM/pgWYPr8oMz+oFZQ+FhIzP3Apjz4GkzQ/0gmLPrGQND/SCYs+vw8zP3Apjz4VKzM/qBWUPiN8Nj98+Ig+nuo6P4i1yj5SqTk/TODJPv+mOT9M4Mk+I3w2P9imwz4VKzM/sIm4Pr8PMz/odb0+sZA0P4CVwT4GkzQ/gJXBPhYSMz/odb0+vygzP7CJuD55fjY/2KbDPpzFMz+0mbQ+sbcoP6xPpj5OIik/6NaoPk4iKT9wyKM+BT8sP7hynT6ZzTE/ZNO1PoNXLz/0mZY+rkctP9ibmT6uRy0/gAOzPoNXLz9wBbY+mc0xP/TLlj4FPyw/nCyvPpY9Kj8+LL4+lj0qP/BBuj7XKSg/8EG6PtcpKD9CLL4+lj0qPz4svj6WPSo/wD7BPtcpKD/APsE+1ykoP0Isvj6WPSo/7EG6PtcpKD/sQbo+lj0qP/Q4sT6WPSo/KMyzPtcpKD8szLM+1ykoPyg4sT6WPSo/wD7BPtcpKD/APsE+lj0qPyzMsz7XKSg/KMyzPpY9Kj84KcY+1ykoPzwpxj6WPSo/WJDJPtcpKD9ckMk+lj0qPzwpxj6WPSo//IvJPtcpKD/8i8k+1ykoPzwpxj6SPSo/Qiy+PpI9Kj/sQbo+0ykoP+xBuj7TKSg/Piy+PpI9Kj8+LL4+kj0qP8A+wT7TKSg/wD7BPtMpKD8+LL4+kj0qP/BBuj7TKSg/8EG6PpI9Kj/0OLE+kj0qPzDMsz7TKSg/LMyzPtMpKD8oOLE+kj0qP8Q+wT7TKSg/wD7BPpI9Kj8szLM+0ykoPzDMsz6WPSo/OCnGPtcpKD88KcY+lj0qP1yQyT7XKSg/WJDJPpY9Kj88KcY+lj0qP/yLyT7XKSg/+IvJPtcpKD88KcY+lj0qP0Isvj6WPSo/8EG6PtcpKD/wQbo+1ykoPzwsvj6WPSo/Piy+PpY9Kj/APsE+1ykoP8Q+wT7XKSg/PCy+PpY9Kj/sQbo+1ykoP+xBuj6WPSo/9DixPpY9Kj8wzLM+1ykoPyzMsz7XKSg/KDixPpY9Kj/APsE+1ykoP8A+wT6WPSo/LMyzPtcpKD8szLM+lj0qPzwpxj7XKSg/PCnGPpY9Kj/4i8k+1ykoP/iLyT6SPSo/PCnGPpI9Kj9ckMk+1ykoP1yQyT7TKSg/PCnGPpY9Kj88LL4+lj0qP+xBuj7TKSg/7EG6PtMpKD9CLL4+lj0qP0Isvj6WPSo/xD7BPtMpKD/EPsE+0ykoP0Isvj6WPSo/8EG6PtMpKD/wQbo+lj0qP+w4sT6WPSo/LMyzPtMpKD8szLM+0ykoPyQ4sT6WPSo/wD7BPtMpKD/APsE+lj0qPyzMsz7TKSg/LMyzPpY9Kj88KcY+0ykoPzwpxj6WPSo//IvJPtcpKD/8i8k+lj0qPzgpxj6WPSo/WJDJPtMpKD9ckMk+0ykoPzwpxj4Guig/rE+mPpvqOj+sT6Y+niQpP3DIoz6eJCk/6NaoPl9BLD+cLK8+8sczP6YFmD7uzzE/9MuWPtlZLz9kBbY+B0otP4ADsz4HSi0/2JuZPtlZLz/omZY+7s8xP2TTtT5fQSw/uHKdPvLHMz+0mbQ+nuo6P9jpgT7/pjk/DL+CPlKpOT8Mv4I+eX42P3z4iD6cxTM/pgWYPr8oMz+oFZQ+FhIzP3Apjz4GkzQ/0gmLPrGQND/SCYs+vw8zP3Apjz4VKzM/qBWUPiN8Nj98+Ig+nuo6P4i1yj5SqTk/TODJPv+mOT9M4Mk+I3w2P9imwz4VKzM/sIm4Pr8PMz/odb0+sZA0P4CVwT4GkzQ/gJXBPhYSMz/odb0+vygzP7CJuD55fjY/2KbDPpzFMz+0mbQ+sbcoP6xPpj5OIik/6NaoPk4iKT9wyKM+BT8sP7hynT6ZzTE/ZNO1PoNXLz/0mZY+rkctP9ibmT6uRy0/gAOzPoNXLz9wBbY+mc0xP/TLlj4FPyw/nCyvPpY9Kj8+LL4+lj0qP/BBuj7XKSg/8EG6PtcpKD9CLL4+lj0qPz4svj6WPSo/wD7BPtcpKD/APsE+1ykoP0Isvj6WPSo/7EG6PtcpKD/sQbo+lj0qP/Q4sT6WPSo/KMyzPtcpKD8szLM+1ykoPyg4sT6WPSo/wD7BPtcpKD/APsE+lj0qPyzMsz7XKSg/KMyzPpY9Kj84KcY+1ykoPzwpxj6WPSo/WJDJPtcpKD9ckMk+lj0qPzwpxj6WPSo//IvJPtcpKD/8i8k+1ykoPzwpxj6SPSo/Qiy+PpI9Kj/sQbo+0ykoP+xBuj7TKSg/Piy+PpI9Kj8+LL4+kj0qP8A+wT7TKSg/wD7BPtMpKD8+LL4+kj0qP/BBuj7TKSg/8EG6PpI9Kj/0OLE+kj0qPzDMsz7TKSg/LMyzPtMpKD8oOLE+kj0qP8Q+wT7TKSg/wD7BPpI9Kj8szLM+0ykoPzDMsz6WPSo/OCnGPtcpKD88KcY+lj0qP1yQyT7XKSg/WJDJPpY9Kj88KcY+lj0qP/yLyT7XKSg/+IvJPtcpKD88KcY+lj0qP0Isvj6WPSo/8EG6PtcpKD/wQbo+1ykoPzwsvj6WPSo/Piy+PpY9Kj/APsE+1ykoP8Q+wT7XKSg/PCy+PpY9Kj/sQbo+1ykoP+xBuj6WPSo/9DixPpY9Kj8wzLM+1ykoPyzMsz7XKSg/KDixPpY9Kj/APsE+1ykoP8A+wT6WPSo/LMyzPtcpKD8szLM+lj0qPzwpxj7XKSg/PCnGPpY9Kj/4i8k+1ykoP/iLyT6SPSo/PCnGPpI9Kj9ckMk+1ykoP1yQyT7TKSg/PCnGPpY9Kj88LL4+lj0qP+xBuj7TKSg/7EG6PtMpKD9CLL4+lj0qP0Isvj6WPSo/xD7BPtMpKD/EPsE+0ykoP0Isvj6WPSo/8EG6PtMpKD/wQbo+lj0qP+w4sT6WPSo/LMyzPtMpKD8szLM+0ykoPyQ4sT6WPSo/wD7BPtMpKD/APsE+lj0qPyzMsz7TKSg/LMyzPpY9Kj88KcY+0ykoPzwpxj6WPSo//IvJPtcpKD/8i8k+lj0qPzgpxj6WPSo/WJDJPtMpKD9ckMk+0ykoPzwpxj4Guig/rE+mPpvqOj+sT6Y+niQpP3DIoz6eJCk/6NaoPl9BLD+cLK8+8sczP6YFmD7uzzE/9MuWPtlZLz9kBbY+B0otP4ADsz4HSi0/2JuZPtlZLz/omZY+7s8xP2TTtT5fQSw/uHKdPvLHMz+0mbQ+nuo6P9jpgT7/pjk/DL+CPlKpOT8Mv4I+eX42P3z4iD6cxTM/pgWYPr8oMz+oFZQ+FhIzP3Apjz4GkzQ/0gmLPrGQND/SCYs+vw8zP3Apjz4VKzM/qBWUPiN8Nj98+Ig+nuo6P4i1yj5SqTk/TODJPv+mOT9M4Mk+I3w2P9imwz4VKzM/sIm4Pr8PMz/odb0+sZA0P4CVwT4GkzQ/gJXBPhYSMz/odb0+vygzP7CJuD55fjY/2KbDPpzFMz+0mbQ+sbcoP6xPpj5OIik/6NaoPk4iKT9wyKM+BT8sP7hynT6ZzTE/ZNO1PoNXLz/0mZY+rkctP9ibmT6uRy0/gAOzPoNXLz9wBbY+mc0xP/TLlj4FPyw/nCyvPpY9Kj8+LL4+lj0qP/BBuj7XKSg/8EG6PtcpKD9CLL4+lj0qPz4svj6WPSo/wD7BPtcpKD/APsE+1ykoP0Isvj6WPSo/7EG6PtcpKD/sQbo+lj0qP/Q4sT6WPSo/KMyzPtcpKD8szLM+1ykoPyg4sT6WPSo/wD7BPtcpKD/APsE+lj0qPyzMsz7XKSg/KMyzPpY9Kj84KcY+1ykoPzwpxj6WPSo/WJDJPtcpKD9ckMk+lj0qPzwpxj6WPSo//IvJPtcpKD/8i8k+1ykoPzwpxj6SPSo/Qiy+PpI9Kj/sQbo+0ykoP+xBuj7TKSg/Piy+PpI9Kj8+LL4+kj0qP8A+wT7TKSg/wD7BPtMpKD8+LL4+kj0qP/BBuj7TKSg/8EG6PpI9Kj/0OLE+kj0qPzDMsz7TKSg/LMyzPtMpKD8oOLE+kj0qP8Q+wT7TKSg/wD7BPpI9Kj8szLM+0ykoPzDMsz6WPSo/OCnGPtcpKD88KcY+lj0qP1yQyT7XKSg/WJDJPpY9Kj88KcY+lj0qP/yLyT7XKSg/+IvJPtcpKD88KcY+lj0qP0Isvj6WPSo/8EG6PtcpKD/wQbo+1ykoPzwsvj6WPSo/Piy+PpY9Kj/APsE+1ykoP8Q+wT7XKSg/PCy+PpY9Kj/sQbo+1ykoP+xBuj6WPSo/9DixPpY9Kj8wzLM+1ykoPyzMsz7XKSg/KDixPpY9Kj/APsE+1ykoP8A+wT6WPSo/LMyzPtcpKD8szLM+lj0qPzwpxj7XKSg/PCnGPpY9Kj/4i8k+1ykoP/iLyT6SPSo/PCnGPpI9Kj9ckMk+1ykoP1yQyT7TKSg/PCnGPpY9Kj88LL4+lj0qP+xBuj7TKSg/7EG6PtMpKD9CLL4+lj0qP0Isvj6WPSo/xD7BPtMpKD/EPsE+0ykoP0Isvj6WPSo/8EG6PtMpKD/wQbo+lj0qP+w4sT6WPSo/LMyzPtMpKD8szLM+0ykoPyQ4sT6WPSo/wD7BPtMpKD/APsE+lj0qPyzMsz7TKSg/LMyzPpY9Kj88KcY+0ykoPzwpxj6WPSo//IvJPtcpKD/8i8k+lj0qPzgpxj6WPSo/WJDJPtMpKD9ckMk+0ykoPzwpxj4Guig/rE+mPpvqOj+sT6Y+niQpP3DIoz6eJCk/6NaoPl9BLD+cLK8+8sczP6YFmD7uzzE/9MuWPtlZLz9kBbY+B0otP4ADsz4HSi0/2JuZPtlZLz/omZY+7s8xP2TTtT5fQSw/uHKdPvLHMz+0mbQ+nuo6P9jpgT7/pjk/DL+CPlKpOT8Mv4I+eX42P3z4iD6cxTM/pgWYPr8oMz+oFZQ+FhIzP3Apjz4GkzQ/0gmLPrGQND/SCYs+vw8zP3Apjz4VKzM/qBWUPiN8Nj98+Ig+nuo6P4i1yj5SqTk/TODJPv+mOT9M4Mk+I3w2P9imwz4VKzM/sIm4Pr8PMz/odb0+sZA0P4CVwT4GkzQ/gJXBPhYSMz/odb0+vygzP7CJuD55fjY/2KbDPpzFMz+0mbQ+sbcoP6xPpj5OIik/6NaoPk4iKT9wyKM+BT8sP7hynT6ZzTE/ZNO1PoNXLz/0mZY+rkctP9ibmT6uRy0/gAOzPoNXLz9wBbY+mc0xP/TLlj4FPyw/nCyvPpY9Kj8+LL4+lj0qP/BBuj7XKSg/8EG6PtcpKD9CLL4+lj0qPz4svj6WPSo/wD7BPtcpKD/APsE+1ykoP0Isvj6WPSo/7EG6PtcpKD/sQbo+lj0qP/Q4sT6WPSo/KMyzPtcpKD8szLM+1ykoPyg4sT6WPSo/wD7BPtcpKD/APsE+lj0qPyzMsz7XKSg/KMyzPpY9Kj84KcY+1ykoPzwpxj6WPSo/WJDJPtcpKD9ckMk+lj0qPzwpxj6WPSo//IvJPtcpKD/8i8k+1ykoPzwpxj6SPSo/Qiy+PpI9Kj/sQbo+0ykoP+xBuj7TKSg/Piy+PpI9Kj8+LL4+kj0qP8A+wT7TKSg/wD7BPtMpKD8+LL4+kj0qP/BBuj7TKSg/8EG6PpI9Kj/0OLE+kj0qPzDMsz7TKSg/LMyzPtMpKD8oOLE+kj0qP8Q+wT7TKSg/wD7BPpI9Kj8szLM+0ykoPzDMsz6WPSo/OCnGPtcpKD88KcY+lj0qP1yQyT7XKSg/WJDJPpY9Kj88KcY+lj0qP/yLyT7XKSg/+IvJPtcpKD88KcY+lj0qP0Isvj6WPSo/8EG6PtcpKD/wQbo+1ykoPzwsvj6WPSo/Piy+PpY9Kj/APsE+1ykoP8Q+wT7XKSg/PCy+PpY9Kj/sQbo+1ykoP+xBuj6WPSo/9DixPpY9Kj8wzLM+1ykoPyzMsz7XKSg/KDixPpY9Kj/APsE+1ykoP8A+wT6WPSo/LMyzPtcpKD8szLM+lj0qPzwpxj7XKSg/PCnGPpY9Kj/4i8k+1ykoP/iLyT6SPSo/PCnGPpI9Kj9ckMk+1ykoP1yQyT7TKSg/PCnGPpY9Kj88LL4+lj0qP+xBuj7TKSg/7EG6PtMpKD9CLL4+lj0qP0Isvj6WPSo/xD7BPtMpKD/EPsE+0ykoP0Isvj6WPSo/8EG6PtMpKD/wQbo+lj0qP+w4sT6WPSo/LMyzPtMpKD8szLM+0ykoPyQ4sT6WPSo/wD7BPtMpKD/APsE+lj0qPyzMsz7TKSg/LMyzPpY9Kj88KcY+0ykoPzwpxj6WPSo//IvJPtcpKD/8i8k+lj0qPzgpxj6WPSo/WJDJPtMpKD9ckMk+0ykoPzwpxj4Guig/rE+mPpvqOj+sT6Y+niQpP3DIoz6eJCk/6NaoPl9BLD+cLK8+8sczP6YFmD7uzzE/9MuWPtlZLz9kBbY+B0otP4ADsz4HSi0/2JuZPtlZLz/omZY+7s8xP2TTtT5fQSw/uHKdPvLHMz+0mbQ+nuo6P9jpgT7/pjk/DL+CPlKpOT8Mv4I+eX42P3z4iD6cxTM/pgWYPr8oMz+oFZQ+FhIzP3Apjz4GkzQ/0gmLPrGQND/SCYs+vw8zP3Apjz4VKzM/qBWUPiN8Nj98+Ig+nuo6P4i1yj5SqTk/TODJPv+mOT9M4Mk+I3w2P9imwz4VKzM/sIm4Pr8PMz/odb0+sZA0P4CVwT4GkzQ/gJXBPhYSMz/odb0+vygzP7CJuD55fjY/2KbDPpzFMz+0mbQ+sbcoP6xPpj5OIik/6NaoPk4iKT9wyKM+BT8sP7hynT6ZzTE/ZNO1PoNXLz/0mZY+rkctP9ibmT6uRy0/gAOzPoNXLz9wBbY+mc0xP/TLlj4FPyw/nCyvPpY9Kj8+LL4+lj0qP/BBuj7XKSg/8EG6PtcpKD9CLL4+lj0qPz4svj6WPSo/wD7BPtcpKD/APsE+1ykoP0Isvj6WPSo/7EG6PtcpKD/sQbo+lj0qP/Q4sT6WPSo/KMyzPtcpKD8szLM+1ykoPyg4sT6WPSo/wD7BPtcpKD/APsE+lj0qPyzMsz7XKSg/KMyzPpY9Kj84KcY+1ykoPzwpxj6WPSo/WJDJPtcpKD9ckMk+lj0qPzwpxj6WPSo//IvJPtcpKD/8i8k+1ykoPzwpxj6SPSo/Qiy+PpI9Kj/sQbo+0ykoP+xBuj7TKSg/Piy+PpI9Kj8+LL4+kj0qP8A+wT7TKSg/wD7BPtMpKD8+LL4+kj0qP/BBuj7TKSg/8EG6PpI9Kj/0OLE+kj0qPzDMsz7TKSg/LMyzPtMpKD8oOLE+kj0qP8Q+wT7TKSg/wD7BPpI9Kj8szLM+0ykoPzDMsz6WPSo/OCnGPtcpKD88KcY+lj0qP1yQyT7XKSg/WJDJPpY9Kj88KcY+lj0qP/yLyT7XKSg/+IvJPtcpKD88KcY+lj0qP0Isvj6WPSo/8EG6PtcpKD/wQbo+1ykoPzwsvj6WPSo/Piy+PpY9Kj/APsE+1ykoP8Q+wT7XKSg/PCy+PpY9Kj/sQbo+1ykoP+xBuj6WPSo/9DixPpY9Kj8wzLM+1ykoPyzMsz7XKSg/KDixPpY9Kj/APsE+1ykoP8A+wT6WPSo/LMyzPtcpKD8szLM+lj0qPzwpxj7XKSg/PCnGPpY9Kj/4i8k+1ykoP/iLyT6SPSo/PCnGPpI9Kj9ckMk+1ykoP1yQyT7TKSg/PCnGPpY9Kj88LL4+lj0qP+xBuj7TKSg/7EG6PtMpKD9CLL4+lj0qP0Isvj6WPSo/xD7BPtMpKD/EPsE+0ykoP0Isvj6WPSo/8EG6PtMpKD/wQbo+lj0qP+w4sT6WPSo/LMyzPtMpKD8szLM+0ykoPyQ4sT6WPSo/wD7BPtMpKD/APsE+lj0qPyzMsz7TKSg/LMyzPpY9Kj88KcY+0ykoPzwpxj6WPSo//IvJPtcpKD/8i8k+lj0qPzgpxj6WPSo/WJDJPtMpKD9ckMk+0ykoPzwpxj4Guig/rE+mPpvqOj+sT6Y+niQpP3DIoz6eJCk/6NaoPl9BLD+cLK8+8sczP6YFmD7uzzE/9MuWPtlZLz9kBbY+B0otP4ADsz4HSi0/2JuZPtlZLz/omZY+7s8xP2TTtT5fQSw/uHKdPvLHMz+0mbQ+nuo6P9jpgT7/pjk/DL+CPlKpOT8Mv4I+eX42P3z4iD6cxTM/pgWYPr8oMz+oFZQ+FhIzP3Apjz4GkzQ/0gmLPrGQND/SCYs+vw8zP3Apjz4VKzM/qBWUPiN8Nj98+Ig+nuo6P4i1yj5SqTk/TODJPv+mOT9M4Mk+I3w2P9imwz4VKzM/sIm4Pr8PMz/odb0+sZA0P4CVwT4GkzQ/gJXBPhYSMz/odb0+vygzP7CJuD55fjY/2KbDPpzFMz+0mbQ+sbcoP6xPpj5OIik/6NaoPk4iKT9wyKM+BT8sP7hynT6ZzTE/ZNO1PoNXLz/0mZY+rkctP9ibmT6uRy0/gAOzPoNXLz9wBbY+mc0xP/TLlj4FPyw/nCyvPpY9Kj8+LL4+lj0qP/BBuj7XKSg/8EG6PtcpKD9CLL4+lj0qPz4svj6WPSo/wD7BPtcpKD/APsE+1ykoP0Isvj6WPSo/7EG6PtcpKD/sQbo+lj0qP/Q4sT6WPSo/KMyzPtcpKD8szLM+1ykoPyg4sT6WPSo/wD7BPtcpKD/APsE+lj0qPyzMsz7XKSg/KMyzPpY9Kj84KcY+1ykoPzwpxj6WPSo/WJDJPtcpKD9ckMk+lj0qPzwpxj6WPSo//IvJPtcpKD/8i8k+1ykoPzwpxj6SPSo/Qiy+PpI9Kj/sQbo+0ykoP+xBuj7TKSg/Piy+PpI9Kj8+LL4+kj0qP8A+wT7TKSg/wD7BPtMpKD8+LL4+kj0qP/BBuj7TKSg/8EG6PpI9Kj/0OLE+kj0qPzDMsz7TKSg/LMyzPtMpKD8oOLE+kj0qP8Q+wT7TKSg/wD7BPpI9Kj8szLM+0ykoPzDMsz6WPSo/OCnGPtcpKD88KcY+lj0qP1yQyT7XKSg/WJDJPpY9Kj88KcY+lj0qP/yLyT7XKSg/+IvJPtcpKD88KcY+lj0qP0Isvj6WPSo/8EG6PtcpKD/wQbo+1ykoPzwsvj6WPSo/Piy+PpY9Kj/APsE+1ykoP8Q+wT7XKSg/PCy+PpY9Kj/sQbo+1ykoP+xBuj6WPSo/9DixPpY9Kj8wzLM+1ykoPyzMsz7XKSg/KDixPpY9Kj/APsE+1ykoP8A+wT6WPSo/LMyzPtcpKD8szLM+lj0qPzwpxj7XKSg/PCnGPpY9Kj/4i8k+1ykoP/iLyT6SPSo/PCnGPpI9Kj9ckMk+1ykoP1yQyT7TKSg/PCnGPpY9Kj88LL4+lj0qP+xBuj7TKSg/7EG6PtMpKD9CLL4+lj0qP0Isvj6WPSo/xD7BPtMpKD/EPsE+0ykoP0Isvj6WPSo/8EG6PtMpKD/wQbo+lj0qP+w4sT6WPSo/LMyzPtMpKD8szLM+0ykoPyQ4sT6WPSo/wD7BPtMpKD/APsE+lj0qPyzMsz7TKSg/LMyzPpY9Kj88KcY+0ykoPzwpxj6WPSo//IvJPtcpKD/8i8k+lj0qPzgpxj6WPSo/WJDJPtMpKD9ckMk+0ykoPzwpxj4Guig/rE+mPpvqOj+sT6Y+niQpP3DIoz6eJCk/6NaoPl9BLD+cLK8+8sczP6YFmD7uzzE/9MuWPtlZLz9kBbY+B0otP4ADsz4HSi0/2JuZPtlZLz/omZY+7s8xP2TTtT5fQSw/uHKdPvLHMz+0mbQ+nuo6P9jpgT7/pjk/DL+CPlKpOT8Mv4I+eX42P3z4iD6cxTM/pgWYPr8oMz+oFZQ+FhIzP3Apjz4GkzQ/0gmLPrGQND/SCYs+vw8zP3Apjz4VKzM/qBWUPiN8Nj98+Ig+nuo6P4i1yj5SqTk/TODJPv+mOT9M4Mk+I3w2P9imwz4VKzM/sIm4Pr8PMz/odb0+sZA0P4CVwT4GkzQ/gJXBPhYSMz/odb0+vygzP7CJuD55fjY/2KbDPpzFMz+0mbQ+sbcoP6xPpj5OIik/6NaoPk4iKT9wyKM+BT8sP7hynT6ZzTE/ZNO1PoNXLz/0mZY+rkctP9ibmT6uRy0/gAOzPoNXLz9wBbY+mc0xP/TLlj4FPyw/nCyvPpY9Kj8+LL4+lj0qP/BBuj7XKSg/8EG6PtcpKD9CLL4+lj0qPz4svj6WPSo/wD7BPtcpKD/APsE+1ykoP0Isvj6WPSo/7EG6PtcpKD/sQbo+lj0qP/Q4sT6WPSo/KMyzPtcpKD8szLM+1ykoPyg4sT6WPSo/wD7BPtcpKD/APsE+lj0qPyzMsz7XKSg/KMyzPpY9Kj84KcY+1ykoPzwpxj6WPSo/WJDJPtcpKD9ckMk+lj0qPzwpxj6WPSo//IvJPtcpKD/8i8k+1ykoPzwpxj6SPSo/Qiy+PpI9Kj/sQbo+0ykoP+xBuj7TKSg/Piy+PpI9Kj8+LL4+kj0qP8A+wT7TKSg/wD7BPtMpKD8+LL4+kj0qP/BBuj7TKSg/8EG6PpI9Kj/0OLE+kj0qPzDMsz7TKSg/LMyzPtMpKD8oOLE+kj0qP8Q+wT7TKSg/wD7BPpI9Kj8szLM+0ykoPzDMsz6WPSo/OCnGPtcpKD88KcY+lj0qP1yQyT7XKSg/WJDJPpY9Kj88KcY+lj0qP/yLyT7XKSg/+IvJPtcpKD88KcY+lj0qP0Isvj6WPSo/8EG6PtcpKD/wQbo+1ykoPzwsvj6WPSo/Piy+PpY9Kj/APsE+1ykoP8Q+wT7XKSg/PCy+PpY9Kj/sQbo+1ykoP+xBuj6WPSo/9DixPpY9Kj8wzLM+1ykoPyzMsz7XKSg/KDixPpY9Kj/APsE+1ykoP8A+wT6WPSo/LMyzPtcpKD8szLM+lj0qPzwpxj7XKSg/PCnGPpY9Kj/4i8k+1ykoP/iLyT6SPSo/PCnGPpI9Kj9ckMk+1ykoP1yQyT7TKSg/PCnGPpY9Kj88LL4+lj0qP+xBuj7TKSg/7EG6PtMpKD9CLL4+lj0qP0Isvj6WPSo/xD7BPtMpKD/EPsE+0ykoP0Isvj6WPSo/8EG6PtMpKD/wQbo+lj0qP+w4sT6WPSo/LMyzPtMpKD8szLM+0ykoPyQ4sT6WPSo/wD7BPtMpKD/APsE+lj0qPyzMsz7TKSg/LMyzPpY9Kj88KcY+0ykoPzwpxj6WPSo//IvJPtcpKD/8i8k+lj0qPzgpxj6WPSo/WJDJPtMpKD9ckMk+0ykoPzwpxj5y3Ew/utd6P8wUST/qwn0/mYlNP+rCfT/xwVg/m7p5P8gXWT/qwn0/UytmP+rCfT9Vilc/MfF6P3aeUj86k3Y/dp5SPzqTdj9lW1U/OpN2P8LYUz9RLXU/KWRRP1EtdT+H4U8/yHN2P3aeUj86k3Y/dp5SPzqTdj90nlI/bv54P9F0Uz9u/ng/oMtTP3X2dz92nlI/oYBzP3aeUj+hgHM/ZVtVPzqTdj92nlI/OpN2P4fhTz/Ic3Y/UXFRP3X2dz9RcVE/dfZ3P+0pTz/PKHw/dp5SP+rCfT92nlI/6sJ9P7yOVz/qwn0/cK1VPw0tez92nlI/6sJ9Px7IUT9u/ng/qbxQP+ARez+pvFA/4BF7P3SeUj9u/ng/ctxMP7rXej+ZiU0/6sJ9P8gXWT/qwn0/8cFYP5u6eT9TK2Y/6sJ9P1WKVz8x8Xo/ZVtVPzqTdj92nlI/OpN2P8LYUz9RLXU/h+FPP8hzdj8pZFE/US11P3aeUj86k3Y/dp5SPzqTdj/RdFM/bv54P3SeUj9u/ng/dp5SPzqTdj92nlI/OpN2P6DLUz919nc/dp5SP6GAcz92nlI/oYBzP2VbVT86k3Y/h+FPP8hzdj92nlI/OpN2P1FxUT919nc/7SlPP88ofD92nlI/6sJ9P3aeUj/qwn0/cK1VPw0tez+8jlc/6sJ9P3CtVT8NLXs/HshRP27+eD+pvFA/4BF7P3SeUj9u/ng/AgABAAAAAwACAAAABAACAAMABQAEAAMACAAHAAYACQAIAAYACQAGAAoACwAJAAoACwAKAAwADQALAAwADQAMAA4ADwANAA4AEgARABAAEwAEAAUAFAATAAUAFQATABQAFgAVABQAGQAYABcAGAAaABcAGAAbABoAGwAdABwAGQAeABgAGAAeAB8AGAAfABEAEQASABgAHQAbABgAIgAhACAAIwAiACAAJQAkACEAIgAlACEAKAAnACYAKQAoACYAKwAqACcAKAArACcALQAsACoAKwAtACoALwAuACwALQAvACwAMQAwAC4ALwAxAC4AMwAyADAAMQAzADAANQA0ADIAMwA1ADIANwA2ADQANQA3ADQAOgA5ADgAOwA6ADgAPQA8ADkAOgA9ADkAPwA+ADwAPQA/ADwAQQBAAD4APwBBAD4AQwBCAEAAQQBDAEAAIwAgAEIAQwAjAEIARgBFAEQARwBGAEQASQBIAEUARgBJAEUASwBKAEgASQBLAEgATQBMAEoASwBNAEoATwBOAEwATQBPAEwAUQBQAE4ATwBRAE4AUwBSAFAAUQBTAFAAVQBUAFIAUwBVAFIAVwBWAFQAVQBXAFQAWQBYAFYAVwBZAFYAWwBaAFgAWQBbAFgAXQBcAFoAWwBdAFoAXwBeAFwAXQBfAFwAYQBgAF4AXwBhAF4AYwBiAGAAYQBjAGAAZQBkAGIAYwBlAGIAZwBmAGQAZQBnAGQAaQBoAGYAZwBpAGYAawBqAGgAaQBrAGgARwBEAGoAawBHAGoARABFAGwARQBIAGwASABKAGwASgBMAGwATABOAGwATgBQAGwAUABSAGwAUgBUAGwAVABWAGwAVgBYAGwAWABaAGwAWgBcAGwAXABeAGwAXgBgAGwAYABiAGwAYgBkAGwAZABmAGwAZgBoAGwAaABqAGwAagBEAGwAbwBuAG0AcABvAG0AcQBvAHAAcgBxAHAAdQB0AHMAdgB1AHMAeQB4AHcAegB5AHcAfQB8AHsAfgB9AHsAgQCAAH8AggCBAH8AhQCEAIMAhgCFAIMAiACFAIcAiQCIAIcAiwCIAIoAjACLAIoAhACLAI0AjgCEAI0AkQCQAI8AkgCRAI8AlACTAJIAlQCUAJIAlwCWAJUAmACXAJUAmgCZAJgAjwCaAJgAnQCcAJsAngCdAJsAoQCgAJ8AogChAJ8ApQCkAKMApgClAKMAqQCoAKcAqgCpAKcAgwCEAI4AhwCFAIYAigCIAIkAjQCLAIwAjwCQAJoAkgCTAJEAlQCWAJQAmACZAJcArQCsAKsArgCtAKsAsQCwAK8AsgCxAK8AtQC0ALMAtgC1ALMAuQC4ALcAugC5ALcAvQC8ALsAvgC9ALsAwAC9AL8AwQDAAL8AwwDAAMIAxADDAMIAvADDAMUAxgC8AMUAyQDIAMcAygDJAMcAzADLAMoAzQDMAMoAzwDOAM0A0ADPAM0A0gDRANAAxwDSANAA1QDUANMA1gDVANMA2QDYANcA2gDZANcA3QDcANsA3gDdANsA4QDgAN8A4gDhAN8AuwC8AMYAvwC9AL4AwgDAAMEAxQDDAMQAxwDIANIAygDLAMkAzQDOAMwA0ADRAM8A5QDkAOMA5gDlAOMA6QDoAOcA6gDpAOcA7QDsAOsA7gDtAOsA8QDwAO8A8gDxAO8A9QD0APMA9gD1APMA+AD1APcA+QD4APcA+wD4APoA/AD7APoA9AD7AP0A/gD0AP0AAQEAAf8AAgEBAf8ABAEDAQIBBQEEAQIBBwEGAQUBCAEHAQUBCgEJAQgB/wAKAQgBDQEMAQsBDgENAQsBEQEQAQ8BEgERAQ8BFQEUARMBFgEVARMBGQEYARcBGgEZARcB8wD0AP4A9wD1APYA+gD4APkA/QD7APwA/wAAAQoBAgEDAQEBBQEGAQQBCAEJAQcBHQEcARsBHgEdARsBIQEgAR8BIgEhAR8BJQEkASMBJgElASMBKQEoAScBKgEpAScBLQEsASsBLgEtASsBMAEtAS8BMQEwAS8BMwEwATIBNAEzATIBLAEzATUBNgEsATUBOQE4ATcBOgE5ATcBPAE7AToBPQE8AToBPwE+AT0BQAE/AT0BQgFBAUABNwFCAUABRQFEAUMBRgFFAUMBSQFIAUcBSgFJAUcBTQFMAUsBTgFNAUsBUQFQAU8BUgFRAU8BKwEsATYBLwEtAS4BMgEwATEBNQEzATQBNwE4AUIBOgE7ATkBPQE+ATwBQAFBAT8BVQFUAVMBVgFVAVMBWQFYAVcBWgFZAVcBXQFcAVsBXgFdAVsBYQFgAV8BYgFhAV8BZQFkAWMBZgFlAWMBaAFlAWcBaQFoAWcBawFoAWoBbAFrAWoBZAFrAW0BbgFkAW0BcQFwAW8BcgFxAW8BdAFzAXIBdQF0AXIBdwF2AXUBeAF3AXUBegF5AXgBbwF6AXgBfQF8AXsBfgF9AXsBgQGAAX8BggGBAX8BhQGEAYMBhgGFAYMBiQGIAYcBigGJAYcBYwFkAW4BZwFlAWYBagFoAWkBbQFrAWwBbwFwAXoBcgFzAXEBdQF2AXQBeAF5AXcBjQGMAYsBjgGNAYsBkQGQAY8BkgGRAY8BlQGUAZMBlgGVAZMBmQGYAZcBmgGZAZcBnQGcAZsBngGdAZsBoAGdAZ8BoQGgAZ8BowGgAaIBpAGjAaIBnAGjAaUBpgGcAaUBqQGoAacBqgGpAacBrAGrAaoBrQGsAaoBrwGuAa0BsAGvAa0BsgGxAbABpwGyAbABtQG0AbMBtgG1AbMBuQG4AbcBugG5AbcBvQG8AbsBvgG9AbsBwQHAAb8BwgHBAb8BmwGcAaYBnwGdAZ4BogGgAaEBpQGjAaQBpwGoAbIBqgGrAakBrQGuAawBsAGxAa8BxQHEAcMBxgHFAcMByQHIAccBygHJAccBzQHMAcsBzgHNAcsB0QHQAc8B0gHRAc8B1QHUAdMB1gHVAdMB2AHVAdcB2QHYAdcB2wHYAdoB3AHbAdoB1AHbAd0B3gHUAd0B4QHgAd8B4gHhAd8B5AHjAeIB5QHkAeIB5wHmAeUB6AHnAeUB6gHpAegB3wHqAegB7QHsAesB7gHtAesB8QHwAe8B8gHxAe8B9QH0AfMB9gH1AfMB+QH4AfcB+gH5AfcB0wHUAd4B1wHVAdYB2gHYAdkB3QHbAdwB3wHgAeoB4gHjAeEB5QHmAeQB6AHpAecB/QH8AfsB/gH9AfsBAQIAAv8BAgIBAv8BBQIEAgMCBgIFAgMCCQIIAgcCCgIJAgcCDQIMAgsCDgINAgsCEAINAg8CEQIQAg8CEwIQAhICFAITAhICDAITAhUCFgIMAhUCGQIYAhcCGgIZAhcCHAIbAhoCHQIcAhoCHwIeAh0CIAIfAh0CIgIhAiACFwIiAiACJQIkAiMCJgIlAiMCKQIoAicCKgIpAicCLQIsAisCLgItAisCMQIwAi8CMgIxAi8CCwIMAhYCDwINAg4CEgIQAhECFQITAhQCFwIYAiICGgIbAhkCHQIeAhwCIAIhAh8CNQI0AjMCNgI1AjMCOQI4AjcCOgI5AjcCPQI8AjsCPgI9AjsCQQJAAj8CQgJBAj8CRQJEAkMCRgJFAkMCSAJFAkcCSQJIAkcCSwJIAkoCTAJLAkoCRAJLAk0CTgJEAk0CUQJQAk8CUgJRAk8CVAJTAlICVQJUAlICVwJWAlUCWAJXAlUCWgJZAlgCTwJaAlgCXQJcAlsCXgJdAlsCYQJgAl8CYgJhAl8CZQJkAmMCZgJlAmMCaQJoAmcCagJpAmcCQwJEAk4CRwJFAkYCSgJIAkkCTQJLAkwCTwJQAloCUgJTAlECVQJWAlQCWAJZAlcCbQJsAmsCbgJtAmsCcQJwAm8CcgJxAm8CdQJ0AnMCdgJ1AnMCeQJ4AncCegJ5AncCfQJ8AnsCfgJ9AnsCgAJ9An8CgQKAAn8CgwKAAoIChAKDAoICfAKDAoUChgJ8AoUCiQKIAocCigKJAocCjAKLAooCjQKMAooCjwKOAo0CkAKPAo0CkgKRApAChwKSApAClQKUApMClgKVApMCmQKYApcCmgKZApcCnQKcApsCngKdApsCoQKgAp8CogKhAp8CewJ8AoYCfwJ9An4CggKAAoEChQKDAoQChwKIApICigKLAokCjQKOAowCkAKRAo8CpQKkAqMCpgKlAqMCqQKoAqcCqgKpAqcCrQKsAqsCrgKtAqsCsQKwAq8CsgKxAq8CtQK0ArMCtgK1ArMCuAK1ArcCuQK4ArcCuwK4AroCvAK7AroCtAK7Ar0CvgK0Ar0CwQLAAr8CwgLBAr8CxALDAsICxQLEAsICxwLGAsUCyALHAsUCygLJAsgCvwLKAsgCzQLMAssCzgLNAssC0QLQAs8C0gLRAs8C1QLUAtMC1gLVAtMC2QLYAtcC2gLZAtcCswK0Ar4CtwK1ArYCugK4ArkCvQK7ArwCvwLAAsoCwgLDAsECxQLGAsQCyALJAscC3QLcAtsC3gLdAtsC4QLgAt8C4gLhAt8C5QLkAuMC5gLlAuMC6QLoAucC6gLpAucC7QLsAusC7gLtAusC8ALtAu8C8QLwAu8C8wLwAvIC9ALzAvIC7ALzAvUC9gLsAvUC+QL4AvcC+gL5AvcC/AL7AvoC/QL8AvoC/wL+Av0CAAP/Av0CAgMBAwAD9wICAwADBQMEAwMDBgMFAwMDCQMIAwcDCgMJAwcDDQMMAwsDDgMNAwsDEQMQAw8DEgMRAw8D6wLsAvYC7wLtAu4C8gLwAvEC9QLzAvQC9wL4AgID+gL7AvkC/QL+AvwCAAMBA/8CFQMUAxMDFgMVAxMDGQMYAxcDGgMZAxcDHQMcAxsDHgMdAxsDIQMgAx8DIgMhAx8DJQMkAyMDJgMlAyMDKAMlAycDKQMoAycDKwMoAyoDLAMrAyoDJAMrAy0DLgMkAy0DMQMwAy8DMgMxAy8DNAMzAzIDNQM0AzIDNwM2AzUDOAM3AzUDOgM5AzgDLwM6AzgDPQM8AzsDPgM9AzsDQQNAAz8DQgNBAz8DRQNEA0MDRgNFA0MDSQNIA0cDSgNJA0cDIwMkAy4DJwMlAyYDKgMoAykDLQMrAywDLwMwAzoDMgMzAzEDNQM2AzQDOAM5AzcDTQNMA0sDTgNNA0sDTwNLA0wDUANPA0wDUANRA08DUgNRA1ADUwNSA1ADUwNUA1IDVQNUA1MDVgNVA1MDVgNXA1UDWANXA1YDWQNYA1YDWQNaA1gDWQNbA1oDXANbA1kDXQNcA1kDXQNeA1wDXwNeA10DYANfA10DYANhA18DYgNhA2ADTQNiA2ADTQNjA2IDTQNOA2MDZgNlA2QDTgNmA2QDZQNmA2cDaANlA2cDaANnA2kDagNoA2kDagNpA2sDagNrA2wDbQNqA2wDbQNsA24DbQNuA28DcANtA28DcANvA3EDcANxA3IDcANyA3MDdANwA3MDdANzA3UDdAN1A3YDdwN0A3YDdwN2A3gDdwN4A3kDZAN3A3kDZAN5A2MDZANjA04DfAN7A3oDfQN8A3oDfgN8A30DfwN+A30DgAN+A38DgQOAA38DggOAA4EDgwOCA4EDhAOCA4MDhQOEA4MDhgOEA4UDhwOGA4UDiAOGA4cDigOIA4cDiwOJA1cDWAOLA1cDjAOLA1gDWgOMA1gDjQOMA1oDjgONA1oDjwONA44DkAOPA44DbgCPA5ADbQBuAJADkQNxAHIAkgORA3IAkwORA5IDlAOTA5IDlwOWA5UDmAOXA5UDlgOaA5kDlQOWA5kDmgOcA5sDmQOaA5sDnAOeA50DmwOcA50DngOgA58DnQOeA58DoAOiA6EDnwOgA6EDogOkA6MDoQOiA6MDpAOmA6UDowOkA6UDpgOoA6cDpQOmA6cDqAOqA6kDpwOoA6kDqgOsA6sDqQOqA6sDrAOuA60DqwOsA60DrgOwA68DrQOuA68DsAOyA7EDrwOwA7EDsgO0A7MDsQOyA7MDuAO2A7UDTQO4A0wDtwO6A7kDTAO3A7kDugO8A7sDuQO6A7sDvAO+A70DuwO8A70DvgPAA78DvQO+A78DwAPCA8EDvwPAA8EDwgPEA8MDwQPCA8MDxAPFA00DwwPEA8YDyAPHA2QDyQPIA2QDygPIA8kDywPKA8kDzAPKA8sDzQPMA8sDzgPMA80DzwPOA80D0APOA88D0QPQA88D0gPQA9ED0wPSA9ED1APSA9MD1QPUA9MD1gPUA9UD1wPWA3cD2gPZA9gD2wPaA9gD3gPdA9wD3wPeA9wD4gPhA+AD4wPiA+AD4QPlA+QD4APhA+QD3APdA+YD2APZA+ID4wPYA+ID3wPoA+cD3gPfA+cD6wPqA+kD7APrA+kD3gPnA+0D6APuA+cD7wPrA+wD8APvA+wD9APyA/ED9gP1A/QD+QP4A/cD+gP5A/cD9wP4A9wD5gP3A9wD/QP8A/sD/gP9A/sDAAT/A/4D+wMABP4D9wPmAwEE+gPyA/QD9AP5A/oD+QP0A/UDBAQDBAIEBQQEBAIECAQHBAYECQQIBAYECQQGBAMEBAQJBAMEBQQCBAoECwQFBAoEDgQNBAwEDwQOBAwEEgQRBBAEEwQSBBAEFQQUBA0EDgQVBA0EGAQXBBYEGQQYBBYEHAQbBBoEHQQcBBoEIAQfBB4EIQQgBB4EHwQjBCIEHgQfBCIEGgQbBCQEFgQXBCAEIQQWBCAEHQQmBCUEHAQdBCUEKQQoBCcEKgQpBCcEHAQlBCsEJgQsBCUELQQpBCoELgQtBCoE8wMwBC8EMgQxBPMDNQQ0BDMENgQ1BDMEMwQ0BBoEJAQzBBoEOQQ4BDcEOgQ5BDcEPAQ7BDoENwQ8BDoEMwQkBD0ENgQwBPMD8wM1BDYENQTzAzEEQAQ/BD4EQQRABD4ERARDBEIERQREBEIERQRCBD8EQARFBD8EQQQ+BEYERwRBBEYESgRJBEgESwRKBEgETgRNBEwETwROBEwEUQRQBEkESgRRBEkEVARTBFIEVQRUBFIEWARXBFYEWQRYBFYEXARbBFoEXQRcBFoEWwRfBF4EWgRbBF4EVgRXBGAEUgRTBFwEXQRSBFwEWQRiBGEEWARZBGEEZQRkBGMEZgRlBGMEWARhBGcEYgRoBGEEaQRlBGYEagRpBGYE8wNsBGsEbgRtBPMDcQRwBG8EcgRxBG8EbwRwBFYEYARvBFYEdQR0BHMEdgR1BHMEeAR3BHYEcwR4BHYEbwRgBHkEcgRsBPMD8wNxBHIEcQTzA20EfAR7BHoEfQR8BHoEgAR/BH4EgQSABH4EgQR+BHsEfASBBHsEfQR6BIIEgwR9BIIEhgSFBIQEhwSGBIQEigSJBIgEiwSKBIgEjQSMBIUEhgSNBIUEkASPBI4EkQSQBI4ElASTBJIElQSUBJIEmASXBJYEmQSYBJYElwSbBJoElgSXBJoEkgSTBJwEjgSPBJgEmQSOBJgElQSeBJ0ElASVBJ0EoQSgBJ8EogShBJ8ElASdBKMEngSkBJ0EpQShBKIEpgSlBKIE9AOoBKcEqgSpBPQDrQSsBKsErgStBKsEqwSsBJIEnASrBJIEsQSwBK8EsgSxBK8EtASzBLIErwS0BLIEqwScBLUErgSoBPQD9AOtBK4ErQT0A6kEuAS3BLYEuQS4BLYEvAS7BLoEvQS8BLoEvQS6BLcEuAS9BLcEuQS2BL4EvwS5BL4EwgTBBMAEwwTCBMAExgTFBMQExwTGBMQEyQTIBMEEwgTJBMEEzQTMBMoEzgTNBMoE0QTQBM8EzQTSBMwE0wTNBM8E0ATRBNQE1ATRBNUE2ATXBNYE2QTYBMsE1QTaBNQE0wTcBNsEzQTTBNsE0gTNBN0E3gTSBN0E4QTgBN8E4QTjBOIE5AThBOIE5wTmBOUE6gTpBOgE6wTnBOUE4ATsBN8E7ATtBN8E4gTvBO4E5ATiBO4E8QTwBOIE8wTwBPIE8ATxBPIE8AT0BOIE7AT1BO0E8wToBPAE8AToBPYE7wT3BO4E2wTcBPUE9QTcBO0E9QTrBN4E6wTlBN4E3gTdBPUE9gToBOkE9gT5BPUE+QT2BOkE8AT2BPgE9ATwBPUE/AT7BPoE+gT7BP0E2ATZBPsE/ATYBPsEAAX/BP4E2gQBBQAF1ATaBAAFBAUDBQIFBAUCBQUFBQUCBQYFCAUHBf4ECgX9BAkFCwUDBQQFDAUKBQkF+gT9BAoFDQX+BP8EAAUBBf8ECgULBQQFEQUPBQ4FEgURBQ4FFQUUBRMFDgUPBRYFFwUUBQ4FEwUYBRUFGAUZBRUFHAUbBRoFHQUQBRoFGQUYBR4FIAUfBRcFDgUgBRcFIQUOBRYFIgUhBRYFJQUkBSMFJwUmBSUFKAUnBSUFKwUqBSkFLgUtBSwFLwUqBSsFIwUkBTAFMAUkBTEFMwUyBScFKAUzBScFNQUnBTQFNwU2BTQFNAU2BTUFNAUnBTgFMAUxBTkFNwU0BS0FNAU6BS0FMgUzBTwFIAU5BR8FOQUxBR8FOQUiBS8FLwUiBSoFIgU5BSEFOgUsBS0FOgU5BT0FPQUsBToFNAU7BToFOAU5BTQFQAU/BT4FPwVBBT4FPgUdBRoFQAU+BRoFQwX+BEIFQwVEBR4FGAVDBR4FBwVGBUUFBAUFBUcFSQVIBUYFSgX+BAQFTQVLBUEFTgUHBUUFTwVLBU0FPwVNBUEFUAVCBf4EQwVCBUQFTAUHBU4FUwVSBVEFVAVTBVEFVAVRBVUFVgVUBVUFVgVVBVcFWAVWBVcFWAVXBVkFWgVYBVkFWgVZBVsFXAVaBVsFXAVbBV0FXgVcBV0FYQVgBV8FYgVhBV8FYgVfBWMFZAViBWMFZAVjBWUFZgVkBWUFZgVlBWcFaAVmBWcFaAVnBWkFagVoBWkFagVpBWsFbAVqBWsFbwVuBW0FcAVvBW0FcAVtBXEFcgVwBXEFcgVxBXMFdAVyBXMFdAVzBXUFdgV0BXUFdgV1BXcFeAV2BXcFeAV3BXkFegV4BXkFfQV8BXsFfgV9BXsFfgV7BX8FgAV+BX8FgAV/BYEFggWABYEFggWBBYMFhAWCBYMFhAWDBYUFhgWEBYUFhgWFBYcFiAWGBYcFiQVSBVMFigWJBVMFiwWJBYoFjAWLBYoFjQWLBYwFjgWNBYwFjwWNBY4FkAWPBY4FkQWPBZAFkgWRBZAFXQWRBZIFXgVdBZIFkwVgBWEFlAWTBWEFlQWTBZQFlgWVBZQFlwWVBZYFmAWXBZYFmQWXBZgFmgWZBZgFmwWZBZoFnAWbBZoFawWbBZwFbAVrBZwFnQVuBW8FngWdBW8FnwWdBZ4FoAWfBZ4FoQWfBaAFogWhBaAFowWhBaIFpAWjBaIFpQWjBaQFpgWlBaQFeQWlBaYFegV5BaYFpwV8BX0FqAWnBX0FqQWnBagFqgWpBagFqwWpBaoFrAWrBaoFrQWrBawFrgWtBawFrwWtBa4FsAWvBa4FhwWvBbAFiAWHBbAFswWyBbEFtAWzBbEFtwW2BbUFuAW3BbUFuwW6BbkFvAW7BbkFvwW+Bb0FwAW/Bb0FwwXCBcEFxAXDBcEFxgXBBcUFxwXGBcUFyQXFBcgFygXJBcgFywXIBcIFzAXLBcIFzwXOBc0F0AXPBc0F0AXSBdEF0wXQBdEF0wXVBdQF1gXTBdQF1gXYBdcFzwXWBdcF2wXaBdkF3AXbBdkF3wXeBd0F4AXfBd0F4wXiBeEF5AXjBeEF5wXmBeUF6AXnBeUFwwXMBcIFxgXEBcEFyQXHBcUFywXKBcgFzwXXBc4F0AXNBdIF0wXRBdUF1gXUBdgF6wXqBekF7AXrBekF7wXuBe0F8AXvBe0F8wXyBfEF9AXzBfEF9wX2BfUF+AX3BfUF+wX6BfkF/AX7BfkF/gX5Bf0F/wX+Bf0FAQb9BQAGAgYBBgAGAwYABvoFBAYDBvoFBwYGBgUGCAYHBgUGCAYKBgkGCwYIBgkGCwYNBgwGDgYLBgwGDgYQBg8GBwYOBg8GEwYSBhEGFAYTBhEGFwYWBhUGGAYXBhUGGwYaBhkGHAYbBhkGHwYeBh0GIAYfBh0G+wUEBvoF/gX8BfkFAQb/Bf0FAwYCBgAGBwYPBgYGCAYFBgoGCwYJBg0GDgYMBhAGIwYiBiEGJAYjBiEGJwYmBiUGKAYnBiUGKwYqBikGLAYrBikGLwYuBi0GMAYvBi0GMwYyBjEGNAYzBjEGNgYxBjUGNwY2BjUGOQY1BjgGOgY5BjgGOwY4BjIGPAY7BjIGPwY+Bj0GQAY/Bj0GQAZCBkEGQwZABkEGQwZFBkQGRgZDBkQGRgZIBkcGPwZGBkcGSwZKBkkGTAZLBkkGTwZOBk0GUAZPBk0GUwZSBlEGVAZTBlEGVwZWBlUGWAZXBlUGMwY8BjIGNgY0BjEGOQY3BjUGOwY6BjgGPwZHBj4GQAY9BkIGQwZBBkUGRgZEBkgGWwZaBlkGXAZbBlkGXwZeBl0GYAZfBl0GYwZiBmEGZAZjBmEGZwZmBmUGaAZnBmUGawZqBmkGbAZrBmkGbgZpBm0GbwZuBm0GcQZtBnAGcgZxBnAGcwZwBmoGdAZzBmoGdwZ2BnUGeAZ3BnUGeAZ6BnkGewZ4BnkGewZ9BnwGfgZ7BnwGfgaABn8GdwZ+Bn8GgwaCBoEGhAaDBoEGhwaGBoUGiAaHBoUGiwaKBokGjAaLBokGjwaOBo0GkAaPBo0GawZ0BmoGbgZsBmkGcQZvBm0GcwZyBnAGdwZ/BnYGeAZ1BnoGewZ5Bn0GfgZ8BoAGkwaSBpEGlAaTBpEGlwaWBpUGmAaXBpUGmwaaBpkGnAabBpkGnwaeBp0GoAafBp0GowaiBqEGpAajBqEGpgahBqUGpwamBqUGqQalBqgGqgapBqgGqwaoBqIGrAarBqIGrwauBq0GsAavBq0GsAayBrEGswawBrEGswa1BrQGtgazBrQGtga4BrcGrwa2BrcGuwa6BrkGvAa7BrkGvwa+Br0GwAa/Br0GwwbCBsEGxAbDBsEGxwbGBsUGyAbHBsUGowasBqIGpgakBqEGqQanBqUGqwaqBqgGrwa3Bq4GsAatBrIGswaxBrUGtga0BrgGywbKBskGzAbLBskGzwbOBs0G0AbPBs0G0wbSBtEG1AbTBtEG1wbWBtUG2AbXBtUG2wbaBtkG3AbbBtkG3gbZBt0G3wbeBt0G4QbdBuAG4gbhBuAG4wbgBtoG5AbjBtoG5wbmBuUG6AbnBuUG6AbqBukG6wboBukG6wbtBuwG7gbrBuwG7gbwBu8G5wbuBu8G8wbyBvEG9AbzBvEG9wb2BvUG+Ab3BvUG+wb6BvkG/Ab7BvkG/wb+Bv0GAAf/Bv0G2wbkBtoG3gbcBtkG4QbfBt0G4wbiBuAG5wbvBuYG6AblBuoG6wbpBu0G7gbsBvAGAwcCBwEHBAcDBwEHBwcGBwUHCAcHBwUHCwcKBwkHDAcLBwkHDwcOBw0HEAcPBw0HEwcSBxEHFAcTBxEHFgcRBxUHFwcWBxUHGQcVBxgHGgcZBxgHGwcYBxIHHAcbBxIHHwceBx0HIAcfBx0HIAciByEHIwcgByEHIwclByQHJgcjByQHJgcoBycHHwcmBycHKwcqBykHLAcrBykHLwcuBy0HMAcvBy0HMwcyBzEHNAczBzEHNwc2BzUHOAc3BzUHEwccBxIHFgcUBxEHGQcXBxUHGwcaBxgHHwcnBx4HIAcdByIHIwchByUHJgckBygHOwc6BzkHPAc7BzkHPwc+Bz0HQAc/Bz0HQwdCB0EHRAdDB0EHRwdGB0UHSAdHB0UHSwdKB0kHTAdLB0kHTgdJB00HTwdOB00HUQdNB1AHUgdRB1AHUwdQB0oHVAdTB0oHVwdWB1UHWAdXB1UHWAdaB1kHWwdYB1kHWwddB1wHXgdbB1wHXgdgB18HVwdeB18HYwdiB2EHZAdjB2EHZwdmB2UHaAdnB2UHawdqB2kHbAdrB2kHbwduB20HcAdvB20HSwdUB0oHTgdMB0kHUQdPB00HUwdSB1AHVwdfB1YHWAdVB1oHWwdZB10HXgdcB2AHcwdyB3EHdAdzB3EHdwd2B3UHeAd3B3UHewd6B3kHfAd7B3kHfwd+B30HgAd/B30HgweCB4EHhAeDB4EHhgeBB4UHhweGB4UHiQeFB4gHigeJB4gHiweIB4IHjAeLB4IHjweOB40HkAePB40HkAeSB5EHkweQB5EHkweVB5QHlgeTB5QHlgeYB5cHjweWB5cHmweaB5kHnAebB5kHnweeB50HoAefB50HoweiB6EHpAejB6EHpwemB6UHqAenB6UHgweMB4IHhgeEB4EHiQeHB4UHiweKB4gHjweXB44HkAeNB5IHkweRB5UHlgeUB5gHqweqB6kHrAerB6kHrweuB60HsAevB60HsweyB7EHtAezB7EHtwe2B7UHuAe3B7UHuwe6B7kHvAe7B7kHvge5B70Hvwe+B70HwQe9B8AHwgfBB8AHwwfAB7oHxAfDB7oHxwfGB8UHyAfHB8UHyAfKB8kHywfIB8kHywfNB8wHzgfLB8wHzgfQB88HxwfOB88H0wfSB9EH1AfTB9EH1wfWB9UH2AfXB9UH2wfaB9kH3AfbB9kH3wfeB90H4AffB90HuwfEB7oHvge8B7kHwQe/B70HwwfCB8AHxwfPB8YHyAfFB8oHywfJB80HzgfMB9AH4wfiB+EH5AfjB+EH5wfmB+UH6AfnB+UH6wfqB+kH7AfrB+kH7wfuB+0H8AfvB+0H8wfyB/EH9AfzB/EH9gfxB/UH9wf2B/UH+Qf1B/gH+gf5B/gH+wf4B/IH/Af7B/IH/wf+B/0HAAj/B/0HAAgCCAEIAwgACAEIAwgFCAQIBggDCAQIBggICAcI/wcGCAcICwgKCAkIDAgLCAkIDwgOCA0IEAgPCA0IEwgSCBEIFAgTCBEIFwgWCBUIGAgXCBUI8wf8B/IH9gf0B/EH+Qf3B/UH+wf6B/gH/wcHCP4HAAj9BwIIAwgBCAUIBggECAgIGwgaCBkIHAgbCBkIHwgeCB0IIAgfCB0IIwgiCCEIJAgjCCEIJwgmCCUIKAgnCCUIKwgqCCkILAgrCCkILggpCC0ILwguCC0IMQgtCDAIMggxCDAIMwgwCCoINAgzCCoINwg2CDUIOAg3CDUIOAg6CDkIOwg4CDkIOwg9CDwIPgg7CDwIPghACD8INwg+CD8IQwhCCEEIRAhDCEEIRwhGCEUISAhHCEUISwhKCEkITAhLCEkITwhOCE0IUAhPCE0IKwg0CCoILggsCCkIMQgvCC0IMwgyCDAINwg/CDYIOAg1CDoIOwg5CD0IPgg8CEAIUwhSCFEIVAhTCFEIVwhWCFUIWAhXCFUIWwhaCFkIXAhbCFkIXwheCF0IYAhfCF0IYwhiCGEIZAhjCGEIZghhCGUIZwhmCGUIaQhlCGgIaghpCGgIawhoCGIIbAhrCGIIbwhuCG0IcAhvCG0IcAhyCHEIcwhwCHEIcwh1CHQIdghzCHQIdgh4CHcIbwh2CHcIewh6CHkIfAh7CHkIfwh+CH0IgAh/CH0IgwiCCIEIhAiDCIEIhwiGCIUIiAiHCIUIYwhsCGIIZghkCGEIaQhnCGUIawhqCGgIbwh3CG4IcAhtCHIIcwhxCHUIdgh0CHgIiwiKCIkIjAiLCIkIjwiOCI0IkAiPCI0IkwiSCJEIlAiTCJEIlwiWCJUImAiXCJUImwiaCJkInAibCJkIngiZCJ0InwieCJ0IoQidCKAIogihCKAIowigCJoIpAijCJoIpwimCKUIqAinCKUIqAiqCKkIqwioCKkIqwitCKwIrgirCKwIrgiwCK8IpwiuCK8IswiyCLEItAizCLEItwi2CLUIuAi3CLUIuwi6CLkIvAi7CLkIvwi+CL0IwAi/CL0ImwikCJoIngicCJkIoQifCJ0IowiiCKAIpwivCKYIqAilCKoIqwipCK0IrgisCLAIwwjCCMEIxAjDCMEIxwjGCMUIyAjHCMUIywjKCMkIzAjLCMkIzwjOCM0I0AjPCM0I0wjSCNEI1AjTCNEI1gjRCNUI1wjWCNUI2QjVCNgI2gjZCNgI2wjYCNII3AjbCNII3wjeCN0I4AjfCN0I4AjiCOEI4wjgCOEI4wjlCOQI5gjjCOQI5gjoCOcI3wjmCOcI6wjqCOkI7AjrCOkI7wjuCO0I8AjvCO0I8wjyCPEI9AjzCPEI9wj2CPUI+Aj3CPUI0wjcCNII1gjUCNEI2QjXCNUI2wjaCNgI3wjnCN4I4AjdCOII4wjhCOUI5gjkCOgI+wj6CPkI/Aj7CPkI/wj+CP0IAAn/CP0IAwkCCQEJBAkDCQEJBwkGCQUJCAkHCQUJCwkKCQkJDAkLCQkJDgkJCQ0JDwkOCQ0JEQkNCRAJEgkRCRAJEwkQCQoJFAkTCQoJFwkWCRUJGAkXCRUJGAkaCRkJGwkYCRkJGwkdCRwJHgkbCRwJHgkgCR8JFwkeCR8JIwkiCSEJJAkjCSEJJwkmCSUJKAknCSUJKwkqCSkJLAkrCSkJLwkuCS0JMAkvCS0JCwkUCQoJDgkMCQkJEQkPCQ0JEwkSCRAJFwkfCRYJGAkVCRoJGwkZCR0JHgkcCSAJMwkyCTEJNAkzCTEJNwk2CTUJOAk3CTUJOwk6CTkJPAk7CTkJPwk+CT0JQAk/CT0JQwlCCUEJRAlDCUEJRglBCUUJRwlGCUUJSQlFCUgJSglJCUgJSwlICUIJTAlLCUIJTwlOCU0JUAlPCU0JUAlSCVEJUwlQCVEJUwlVCVQJVglTCVQJVglYCVcJTwlWCVcJWwlaCVkJXAlbCVkJXwleCV0JYAlfCV0JYwliCWEJZAljCWEJZwlmCWUJaAlnCWUJQwlMCUIJRglECUEJSQlHCUUJSwlKCUgJTwlXCU4JUAlNCVIJUwlRCVUJVglUCVgJawlqCWkJbAlrCWkJbwluCW0JcAlvCW0JcwlyCXEJdAlzCXEJdwl2CXUJeAl3CXUJewl6CXkJfAl7CXkJfgl5CX0Jfwl+CX0JgQl9CYAJggmBCYAJgwmACXoJhAmDCXoJhwmGCYUJiAmHCYUJiAmKCYkJiwmICYkJiwmNCYwJjgmLCYwJjgmQCY8JhwmOCY8JkwmSCZEJlAmTCZEJlwmWCZUJmAmXCZUJmwmaCZkJnAmbCZkJnwmeCZ0JoAmfCZ0JewmECXoJfgl8CXkJgQl/CX0JgwmCCYAJhwmPCYYJiAmFCYoJiwmJCY0JjgmMCZAJowmiCaEJpAmjCaEJpwmmCaUJqAmnCaUJqwmqCakJrAmrCakJrwmuCa0JsAmvCa0JswmyCbEJtAmzCbEJtgmxCbUJtwm2CbUJuQm1CbgJugm5CbgJuwm4CbIJvAm7CbIJvwm+Cb0JwAm/Cb0JwAnCCcEJwwnACcEJwwnFCcQJxgnDCcQJxgnICccJvwnGCccJywnKCckJzAnLCckJzwnOCc0J0AnPCc0J0wnSCdEJ1AnTCdEJ1wnWCdUJ2AnXCdUJswm8CbIJtgm0CbEJuQm3CbUJuwm6CbgJvwnHCb4JwAm9CcIJwwnBCcUJxgnECcgJ2wnaCdkJ3AnbCdkJ3wneCd0J4AnfCd0J4wniCeEJ5AnjCeEJ5wnmCeUJ6AnnCeUJ6wnqCekJ7AnrCekJ7gnpCe0J7wnuCe0J8QntCfAJ8gnxCfAJ8wnwCeoJ9AnzCeoJ9wn2CfUJ+An3CfUJ+An6CfkJ+wn4CfkJ+wn9CfwJ/gn7CfwJ/gkACv8J9wn+Cf8JAwoCCgEKBAoDCgEKBwoGCgUKCAoHCgUKCwoKCgkKDAoLCgkKDwoOCg0KEAoPCg0K6wn0CeoJ7gnsCekJ8QnvCe0J8wnyCfAJ9wn/CfYJ+An1CfoJ+wn5Cf0J/gn8CQAKEwoSChEKFAoTChEKFwoWChUKGAoXChUKGwoaChkKHAobChkKHwoeCh0KIAofCh0KIwoiCiEKJAojCiEKJgohCiUKJwomCiUKKQolCigKKgopCigKKwooCiIKLAorCiIKLwouCi0KMAovCi0KMAoyCjEKMwowCjEKMwo1CjQKNgozCjQKNgo4CjcKLwo2CjcKOwo6CjkKPAo7CjkKPwo+Cj0KQAo/Cj0KQwpCCkEKRApDCkEKRwpGCkUKSApHCkUKIwosCiIKJgokCiEKKQonCiUKKwoqCigKLwo3Ci4KMAotCjIKMwoxCjUKNgo0CjgKSwpKCkkKTApLCkkKTwpOCk0KUApPCk0KUwpSClEKVApTClEKVwpWClUKWApXClUKWwpaClkKXApbClkKXgpZCl0KXwpeCl0KYQpdCmAKYgphCmAKYwpgCloKZApjCloKZwpmCmUKaApnCmUKaApqCmkKawpoCmkKawptCmwKbgprCmwKbgpwCm8KZwpuCm8KcwpyCnEKdApzCnEKdwp2CnUKeAp3CnUKewp6CnkKfAp7CnkKfwp+Cn0KgAp/Cn0KWwpkCloKXgpcClkKYQpfCl0KYwpiCmAKZwpvCmYKaAplCmoKawppCm0KbgpsCnAKgwqCCoEKhAqDCoEKhwqGCoUKiAqHCoUKiwqKCokKjAqLCokKjwqOCo0KkAqPCo0KkwqSCpEKlAqTCpEKlgqRCpUKlwqWCpUKmQqVCpgKmgqZCpgKmwqYCpIKnAqbCpIKnwqeCp0KoAqfCp0KoAqiCqEKowqgCqEKowqlCqQKpgqjCqQKpgqoCqcKnwqmCqcKqwqqCqkKrAqrCqkKrwquCq0KsAqvCq0KswqyCrEKtAqzCrEKtwq2CrUKuAq3CrUKkwqcCpIKlgqUCpEKmQqXCpUKmwqaCpgKnwqnCp4KoAqdCqIKowqhCqUKpgqkCqgKuwq6CrkKvAq7CrkKvwq+Cr0KwAq/Cr0KwwrCCsEKxArDCsEKxwrGCsUKyArHCsUKywrKCskKzArLCskKzgrJCs0KzwrOCs0K0QrNCtAK0grRCtAK0wrQCsoK1ArTCsoK1wrWCtUK2ArXCtUK2AraCtkK2wrYCtkK2wrdCtwK3grbCtwK3grgCt8K1wreCt8K4wriCuEK5ArjCuEK5wrmCuUK6ArnCuUK6wrqCukK7ArrCukK7wruCu0K8ArvCu0KywrUCsoKzgrMCskK0QrPCs0K0wrSCtAK1wrfCtYK2ArVCtoK2wrZCt0K3grcCuAK8wryCvEK9ArzCvEK9wr2CvUK+Ar3CvUK+wr6CvkK/Ar7CvkK/wr+Cv0KAAv/Cv0KAwsCCwELBAsDCwELBwsGCwULCAsHCwULCwsKCwkLDAsLCwkLDwsOCw0LEAsPCw0LEwsSCxELFAsTCxELFwsWCxULGAsXCxULGwsaCxkLHAsbCxkLHwseCx0LIAsfCx0LFgsXCyELIgsWCyELJAsjC/IK8wokC/IKJgslC/4K/womC/4KGgsbCxgLFQsaCxgL9ArxCvYK9wr0CvYKAAv9CgILAwsACwILHgsfCxwLGQseCxwL+Ar1CvoK+wr4CvoKBAsBCwYLBwsECwYLIgshCyALHQsiCyAL/Ar5CiMLJAv8CiMLCAsFCyULJgsICyULJwsKCwsLKAsnCwsLCQsOCw8LDAsJCw8LDQsSCxMLEAsNCxMLEQsnCygLFAsRCygLKwsqCykLLAsrCykLKgsuCy0LKQsqCy0LLgswCy8LLQsuCy8LMwsyCzELNAszCzELNws2CzULOAs3CzULNgs6CzkLNQs2CzkLOgs8CzsLOQs6CzsLPAs+Cz0LOws8Cz0LPgtACz8LPQs+Cz8LQAsrCywLPwtACywLQwtCC0ELRAtCC0MLRgtCC0ULRwtCC0YLSAtCC0cLSQtCC0gLSgtCC0kLQQtCC0oLTQtMC0sLSwtMC04LTgtMC08LTwtMC1ALUAtMC1ELUQtMC1ILUgtMC1MLUwtMC1QLVAtMC1ULVgtMC00LVws3CzgLWAtXCzgLWwtaC1kLXAtbC1kLXwteC10LXgtgC10LXQtgC2ELYAtiC2ELZAtjC1ALUQtkC1ALZwtmC2ULZQtmC2gLZgtpC2gLaQtqC2gLRQtCC2sLawtCC2wLbAtCC20LbQtCC0QLWwtcC24LbwtbC24LNAtxC3ALMws0C3ALYwtyC08LUAtjC08LMwtjC2QLMgszC2QLcAtyC2MLMwtwC2MLNAsxC3MLdAs0C3MLNAt0C3ULcQs0C3ULeAt3C3YLeQt4C3YLewt6C3cLeAt7C3cLeQt2C3wLfQt5C3wLgAt/C34LgQuAC34LfQt8C4ILgwt9C4ILhAuDC4ILhQuEC4ILgQt+C4YLhgt+C4cLiQuIC4QLhQuJC4QLjAuLC4oLjQuMC4oLjwuOC4cLfguPC4cLkguRC5ALkwuSC5ALkQt6C3sLkAuRC3sLlAuSC5MLlQuUC5MLlwt+C5YLmAt+C5cLmQuUC5ULmguZC5ULmQuaC5sLnAuZC5sLmAudC34LnQueC34LmwugC58LnAubC58LoQuLC4wLoguhC4wLngujC48LfgueC48LpgulC6QLpwumC6QLqgupC6gLqAurC6oLqQusC6gLrwuuC60LrwuwC64LsAuvC7ELtAuzC7ILtQu0C7ILpgunC7MLtAumC7MLtwu2C6QLpQu3C6QLuAuoC6wLuQuxC68Lugu1C7ILuwu6C7ILvgu9C7wLvwu+C7wLqgvBC8ALwQuqC6sLwAvBC8ILwwutC64LwwuuC8QLxAvFC8MLyAvHC8YLyQvIC8YLxwu/C7wLxgvHC7wLvgu2C7cLvQu+C7cLygvCC8ELywvDC8ULyAvJC7oLuwvIC7oLzgvNC8wLzwvOC8wL0gvRC9AL0wvSC9AL1gvVC9QL1wvWC9QL2gvZC9gL2wvaC9gL3gvdC9wL3wveC9wL4QveC+AL4gvhC+AL5AvhC+ML5QvkC+ML3QvkC+YL5wvdC+YL6gvpC+gL6wvqC+gL7QvsC+sL7gvtC+sL8AvvC+4L8QvwC+4L8wvyC/EL6AvzC/EL9gv1C/QL9wv2C/QL+gv5C/gL+wv6C/gL/gv9C/wL/wv+C/wLAgwBDAAMAwwCDAAM3AvdC+cL4AveC98L4wvhC+IL5gvkC+UL6AvpC/ML6wvsC+oL7gvvC+0L8QvyC/ALBgwFDAQMBwwGDAQMCgwJDAgMCwwKDAgMDgwNDAwMDwwODAwMEgwRDBAMEwwSDBAMFgwVDBQMFwwWDBQMGQwWDBgMGgwZDBgMHAwZDBsMHQwcDBsMFQwcDB4MHwwVDB4MIgwhDCAMIwwiDCAMJQwkDCMMJgwlDCMMKAwnDCYMKQwoDCYMKwwqDCkMIAwrDCkMLgwtDCwMLwwuDCwMMgwxDDAMMwwyDDAMNgw1DDQMNww2DDQMOgw5DDgMOww6DDgMFAwVDB8MGAwWDBcMGwwZDBoMHgwcDB0MIAwhDCsMIwwkDCIMJgwnDCUMKQwqDCgMPgw9DDwMPww+DDwMQgxBDEAMQwxCDEAMRgxFDEQMRwxGDEQMSgxJDEgMSwxKDEgMTgxNDEwMTwxODEwMUQxODFAMUgxRDFAMVAxRDFMMVQxUDFMMTQxUDFYMVwxNDFYMWgxZDFgMWwxaDFgMXQxcDFsMXgxdDFsMYAxfDF4MYQxgDF4MYwxiDGEMWAxjDGEMZgxlDGQMZwxmDGQMagxpDGgMawxqDGgMbgxtDGwMbwxuDGwMcgxxDHAMcwxyDHAMTAxNDFcMUAxODE8MUwxRDFIMVgxUDFUMWAxZDGMMWwxcDFoMXgxfDF0MYQxiDGAMdgx1DHQMdwx2DHQMegx5DHgMewx6DHgMfgx9DHwMfwx+DHwMggyBDIAMgwyCDIAMhgyFDIQMhwyGDIQMiQyGDIgMigyJDIgMjAyJDIsMjQyMDIsMhQyMDI4MjwyFDI4MkgyRDJAMkwySDJAMlQyUDJMMlgyVDJMMmAyXDJYMmQyYDJYMmwyaDJkMkAybDJkMngydDJwMnwyeDJwMogyhDKAMowyiDKAMpgylDKQMpwymDKQMqgypDKgMqwyqDKgMhAyFDI8MiAyGDIcMiwyJDIoMjgyMDI0MkAyRDJsMkwyUDJIMlgyXDJUMmQyaDJgMrgytDKwMrwyuDKwMsgyxDLAMswyyDLAMtgy1DLQMtwy2DLQMugy5DLgMuwy6DLgMvgy9DLwMvwy+DLwMwQy+DMAMwgzBDMAMxAzBDMMMxQzEDMMMvQzEDMYMxwy9DMYMygzJDMgMywzKDMgMzQzMDMsMzgzNDMsM0AzPDM4M0QzQDM4M0wzSDNEMyAzTDNEM1gzVDNQM1wzWDNQM2gzZDNgM2wzaDNgM3gzdDNwM3wzeDNwM4gzhDOAM4wziDOAMvAy9DMcMwAy+DL8MwwzBDMIMxgzEDMUMyAzJDNMMywzMDMoMzgzPDM0M0QzSDNAM5gzlDOQM5wzmDOQM6gzpDOgM6wzqDOgM7gztDOwM7wzuDOwM8gzxDPAM8wzyDPAM9gz1DPQM9wz2DPQM+Qz2DPgM+gz5DPgM/Az5DPsM/Qz8DPsM9Qz8DP4M/wz1DP4MAg0BDQANAw0CDQANBQ0EDQMNBg0FDQMNCA0HDQYNCQ0IDQYNCw0KDQkNAA0LDQkNDg0NDQwNDw0ODQwNEg0RDRANEw0SDRANFg0VDRQNFw0WDRQNGg0ZDRgNGw0aDRgN9Az1DP8M+Az2DPcM+wz5DPoM/gz8DP0MAA0BDQsNAw0EDQINBg0HDQUNCQ0KDQgNHg0dDRwNHw0eDRwNIg0hDSANIw0iDSANJg0lDSQNJw0mDSQNKg0pDSgNKw0qDSgNLg0tDSwNLw0uDSwNMQ0uDTANMg0xDTANNA0xDTMNNQ00DTMNLQ00DTYNNw0tDTYNOg05DTgNOw06DTgNPQ08DTsNPg09DTsNQA0/DT4NQQ1ADT4NQw1CDUENOA1DDUENRg1FDUQNRw1GDUQNSg1JDUgNSw1KDUgNTg1NDUwNTw1ODUwNUg1RDVANUw1SDVANLA0tDTcNMA0uDS8NMw0xDTINNg00DTUNOA05DUMNOw08DToNPg0/DT0NQQ1CDUANVg1VDVQNVw1WDVQNWg1ZDVgNWw1aDVgNXg1dDVwNXw1eDVwNYg1hDWANYw1iDWANZg1lDWQNZw1mDWQNaQ1mDWgNag1pDWgNbA1pDWsNbQ1sDWsNZQ1sDW4Nbw1lDW4Ncg1xDXANcw1yDXANdQ10DXMNdg11DXMNeA13DXYNeQ14DXYNew16DXkNcA17DXkNfg19DXwNfw1+DXwNgg2BDYANgw2CDYANhg2FDYQNhw2GDYQNig2JDYgNiw2KDYgNZA1lDW8NaA1mDWcNaw1pDWoNbg1sDW0NcA1xDXsNcw10DXINdg13DXUNeQ16DXgNjg2NDYwNjw2ODYwNkg2RDZANkw2SDZANlg2VDZQNlw2WDZQNmg2ZDZgNmw2aDZgNng2dDZwNnw2eDZwNoQ2eDaANog2hDaANpA2hDaMNpQ2kDaMNnQ2kDaYNpw2dDaYNqg2pDagNqw2qDagNrQ2sDasNrg2tDasNsA2vDa4NsQ2wDa4Nsw2yDbENqA2zDbENtg21DbQNtw22DbQNug25DbgNuw26DbgNvg29DbwNvw2+DbwNwg3BDcANww3CDcANnA2dDacNoA2eDZ8Now2hDaINpg2kDaUNqA2pDbMNqw2sDaoNrg2vDa0NsQ2yDbANxg3FDcQNxw3GDcQNyg3JDcgNyw3KDcgNzg3NDcwNzw3ODcwN0g3RDdAN0w3SDdAN1g3VDdQN1w3WDdQN2Q3WDdgN2g3ZDdgN3A3ZDdsN3Q3cDdsN1Q3cDd4N3w3VDd4N4g3hDeAN4w3iDeAN5Q3kDeMN5g3lDeMN6A3nDeYN6Q3oDeYN6w3qDekN4A3rDekN7g3tDewN7w3uDewN8g3xDfAN8w3yDfAN9g31DfQN9w32DfQN+g35DfgN+w36DfgN1A3VDd8N2A3WDdcN2w3ZDdoN3g3cDd0N4A3hDesN4w3kDeIN5g3nDeUN6Q3qDegN/g39DfwN/w3+DfwNAg4BDgAOAw4CDgAOBg4FDgQOBw4GDgQOCg4JDggOCw4KDggODg4NDgwODw4ODgwOEQ4ODhAOEg4RDhAOFA4RDhMOFQ4UDhMODQ4UDhYOFw4NDhYOGg4ZDhgOGw4aDhgOHQ4cDhsOHg4dDhsOIA4fDh4OIQ4gDh4OIw4iDiEOGA4jDiEOJg4lDiQOJw4mDiQOKg4pDigOKw4qDigOLg4tDiwOLw4uDiwOMg4xDjAOMw4yDjAODA4NDhcOEA4ODg8OEw4RDhIOFg4UDhUOGA4ZDiMOGw4cDhoOHg4fDh0OIQ4iDiAONg41DjQONw42DjQOOg45DjgOOw46DjgOPg49DjwOPw4+DjwOQg5BDkAOQw5CDkAORg5FDkQORw5GDkQOSQ5GDkgOSg5JDkgOTA5JDksOTQ5MDksORQ5MDk4OTw5FDk4OUg5RDlAOUw5SDlAOVQ5UDlMOVg5VDlMOWA5XDlYOWQ5YDlYOWw5aDlkOUA5bDlkOXg5dDlwOXw5eDlwOYg5hDmAOYw5iDmAOZg5lDmQOZw5mDmQOag5pDmgOaw5qDmgORA5FDk8OSA5GDkcOSw5JDkoOTg5MDk0OUA5RDlsOUw5UDlIOVg5XDlUOWQ5aDlgObg5tDmwObw5uDmwOcg5xDnAOcw5yDnAOdg51DnQOdw52DnQOeg55DngOew56DngOfg59DnwOfw5+DnwOgQ5+DoAOgg6BDoAOhA6BDoMOhQ6EDoMOfQ6EDoYOhw59DoYOig6JDogOiw6KDogOjQ6MDosOjg6NDosOkA6PDo4OkQ6QDo4Okw6SDpEOiA6TDpEOlg6VDpQOlw6WDpQOmg6ZDpgOmw6aDpgOng6dDpwOnw6eDpwOog6hDqAOow6iDqAOfA59DocOgA5+Dn8Ogw6BDoIOhg6EDoUOiA6JDpMOiw6MDooOjg6PDo0OkQ6SDpAOpg6lDqQOpw6mDqQOqg6pDqgOqw6qDqgOrg6tDqwOrw6uDqwOsg6xDrAOsw6yDrAOtg61DrQOtw62DrQOuQ62DrgOug65DrgOvA65DrsOvQ68DrsOtQ68Dr4Ovw61Dr4Owg7BDsAOww7CDsAOxQ7EDsMOxg7FDsMOyA7HDsYOyQ7IDsYOyw7KDskOwA7LDskOzg7NDswOzw7ODswO0g7RDtAO0w7SDtAO1g7VDtQO1w7WDtQO2g7ZDtgO2w7aDtgOtA61Dr8OuA62DrcOuw65DroOvg68Dr0OwA7BDssOww7EDsIOxg7HDsUOyQ7KDsgO3g7dDtwO3w7eDtwO4g7hDuAO4w7iDuAO5g7lDuQO5w7mDuQO6g7pDugO6w7qDugO7g7tDuwO7w7uDuwO8Q7uDvAO8g7xDvAO9A7xDvMO9Q70DvMO7Q70DvYO9w7tDvYO+g75DvgO+w76DvgO/Q78DvsO/g79DvsOAA//Dv4OAQ8AD/4OAw8CDwEP+A4DDwEPBg8FDwQPBw8GDwQPCg8JDwgPCw8KDwgPDg8NDwwPDw8ODwwPEg8RDxAPEw8SDxAP7A7tDvcO8A7uDu8O8w7xDvIO9g70DvUO+A75DgMP+w78DvoO/g7/Dv0OAQ8CDwAPFg8VDxQPFw8WDxQPGg8ZDxgPGw8aDxgPHg8dDxwPHw8eDxwPIg8hDyAPIw8iDyAPJg8lDyQPJw8mDyQPKQ8mDygPKg8pDygPLA8pDysPLQ8sDysPJQ8sDy4PLw8lDy4PMg8xDzAPMw8yDzAPNQ80DzMPNg81DzMPOA83DzYPOQ84DzYPOw86DzkPMA87DzkPPg89DzwPPw8+DzwPQg9BD0APQw9CD0APRg9FD0QPRw9GD0QPSg9JD0gPSw9KD0gPJA8lDy8PKA8mDycPKw8pDyoPLg8sDy0PMA8xDzsPMw80DzIPNg83DzUPOQ86DzgPTg9ND0wPTw9OD0wPUg9RD1APUw9SD1APVg9VD1QPVw9WD1QPWg9ZD1gPWw9aD1gPXg9dD1wPXw9eD1wPYQ9eD2APYg9hD2APZA9hD2MPZQ9kD2MPXQ9kD2YPZw9dD2YPag9pD2gPaw9qD2gPbQ9sD2sPbg9tD2sPcA9vD24PcQ9wD24Pcw9yD3EPaA9zD3EPdg91D3QPdw92D3QPeg95D3gPew96D3gPfg99D3wPfw9+D3wPgg+BD4APgw+CD4APXA9dD2cPYA9eD18PYw9hD2IPZg9kD2UPaA9pD3MPaw9sD2oPbg9vD20PcQ9yD3APhg+FD4QPhw+GD4QPig+JD4gPiw+KD4gPjg+ND4wPjw+OD4wPkg+RD5APkw+SD5APlg+VD5QPlw+WD5QPmQ+WD5gPmg+ZD5gPnA+ZD5sPnQ+cD5sPlQ+cD54Pnw+VD54Pog+hD6APow+iD6APpQ+kD6MPpg+lD6MPqA+nD6YPqQ+oD6YPqw+qD6kPoA+rD6kPrg+tD6wPrw+uD6wPsg+xD7APsw+yD7APtg+1D7QPtw+2D7QPug+5D7gPuw+6D7gPlA+VD58PmA+WD5cPmw+ZD5oPng+cD50PoA+hD6sPow+kD6IPpg+nD6UPqQ+qD6gPvg+9D7wPvw++D7wPwg/BD8APww/CD8APxg/FD8QPxw/GD8QPyg/JD8gPyw/KD8gPzg/ND8wPzw/OD8wP0Q/OD9AP0g/RD9AP1A/RD9MP1Q/UD9MPzQ/UD9YP1w/ND9YP2g/ZD9gP2w/aD9gP3Q/cD9sP3g/dD9sP4A/fD94P4Q/gD94P4w/iD+EP2A/jD+EP5g/lD+QP5w/mD+QP6g/pD+gP6w/qD+gP7g/tD+wP7w/uD+wP8g/xD/AP8w/yD/APzA/ND9cP0A/OD88P0w/RD9IP1g/UD9UP2A/ZD+MP2w/cD9oP3g/fD90P4Q/iD+AP9g/1D/QP9w/2D/QP+g/5D/gP+w/6D/gP/g/9D/wP/w/+D/wPAhABEAAQAxACEAAQBhAFEAQQBxAGEAQQCRAGEAgQChAJEAgQDBAJEAsQDRAMEAsQBRAMEA4QDxAFEA4QEhAREBAQExASEBAQFRAUEBMQFhAVEBMQGBAXEBYQGRAYEBYQGxAaEBkQEBAbEBkQHhAdEBwQHxAeEBwQIhAhECAQIxAiECAQJhAlECQQJxAmECQQKhApECgQKxAqECgQBBAFEA8QCBAGEAcQCxAJEAoQDhAMEA0QEBAREBsQExAUEBIQFhAXEBUQGRAaEBgQLhAtECwQLxAuECwQMhAxEDAQMxAyEDAQNhA1EDQQNxA2EDQQOhA5EDgQOxA6EDgQPhA9EDwQPxA+EDwQQRA+EEAQQhBBEEAQRBBBEEMQRRBEEEMQPRBEEEYQRxA9EEYQShBJEEgQSxBKEEgQTRBMEEsQThBNEEsQUBBPEE4QURBQEE4QUxBSEFEQSBBTEFEQVhBVEFQQVxBWEFQQWhBZEFgQWxBaEFgQXhBdEFwQXxBeEFwQYhBhEGAQYxBiEGAQPBA9EEcQQBA+ED8QQxBBEEIQRhBEEEUQSBBJEFMQSxBMEEoQThBPEE0QURBSEFAQZhBlEGQQZxBmEGQQahBpEGgQaxBqEGgQbhBtEGwQbxBuEGwQchBxEHAQcxByEHAQdhB1EHQQdxB2EHQQeRB2EHgQehB5EHgQfBB5EHsQfRB8EHsQdRB8EH4QfxB1EH4QghCBEIAQgxCCEIAQhRCEEIMQhhCFEIMQiBCHEIYQiRCIEIYQixCKEIkQgBCLEIkQjhCNEIwQjxCOEIwQkhCREJAQkxCSEJAQlhCVEJQQlxCWEJQQmhCZEJgQmxCaEJgQdBB1EH8QeBB2EHcQexB5EHoQfhB8EH0QgBCBEIsQgxCEEIIQhhCHEIUQiRCKEIgQnhCdEJwQnxCeEJwQohChEKAQoxCiEKAQphClEKQQpxCmEKQQqhCpEKgQqxCqEKgQrhCtEKwQrxCuEKwQsRCuELAQshCxELAQtBCxELMQtRC0ELMQrRC0ELYQtxCtELYQuhC5ELgQuxC6ELgQvRC8ELsQvhC9ELsQwBC/EL4QwRDAEL4QwxDCEMEQuBDDEMEQxhDFEMQQxxDGEMQQyhDJEMgQyxDKEMgQzhDNEMwQzxDOEMwQ0hDRENAQ0xDSENAQrBCtELcQsBCuEK8QsxCxELIQthC0ELUQuBC5EMMQuxC8ELoQvhC/EL0QwRDCEMAQ1hDVENQQ1xDWENQQ2hDZENgQ2xDaENgQ3hDdENwQ3xDeENwQ4hDhEOAQ4xDiEOAQ5hDlEOQQ5xDmEOQQ6RDmEOgQ6hDpEOgQ7BDpEOsQ7RDsEOsQ5RDsEO4Q7xDlEO4Q8hDxEPAQ8xDyEPAQ9RD0EPMQ9hD1EPMQ+BD3EPYQ+RD4EPYQ+xD6EPkQ8BD7EPkQ/hD9EPwQ/xD+EPwQAhEBEQARAxECEQARBhEFEQQRBxEGEQQRChEJEQgRCxEKEQgR5BDlEO8Q6BDmEOcQ6xDpEOoQ7hDsEO0Q8BDxEPsQ8xD0EPIQ9hD3EPUQ+RD6EPgQDhENEQwRDxEOEQwREhERERARExESERARFhEVERQRFxEWERQRGhEZERgRGxEaERgRHhEdERwRHxEeERwRIhEhESARIxEiESARJhElESQRJxEmESQRKhEpESgRKxEqESgRLhEtESwRLxEuESwRMhExETARMxEyETARNhE1ETQRNxE2ETQROhE5ETgROxE6ETgRPBEwETERPRE8ETERDRE/ET4RDBENET4RGRFBEUARGBEZEUARMxE0ETURMhEzETUREREOEQ8REBEREQ8RHREaERsRHBEdERsRNxE4ETkRNhE3ETkRFRESERMRFBEVERMRIREeER8RIBEhER8ROxE8ET0ROhE7ET0RPxEWERcRPhE/ERcRQREiESMRQBFBESMRJBElEUIRQxEkEUIRKBEpESYRJxEoESYRLBEtESoRKxEsESoRQxFCES4RLxFDES4RRhFFEUQRRxFGEUQRSRFIEUURRhFJEUURSxFKEUgRSRFLEUgRThFNEUwRTxFOEUwRUhFREVARUxFSEVARVRFUEVERUhFVEVERVxFWEVQRVRFXEVQRWRFYEVYRVxFZEVYRWxFaEVgRWRFbEVgRRxFEEVoRWxFHEVoRXhFdEVwRXxFeEVwRYRFgEVwRYhFhEVwRYxFiEVwRZBFjEVwRZRFkEVwRXRFlEVwRaBFnEWYRZxFpEWYRaRFqEWYRahFrEWYRaxFsEWYRbBFtEWYRbRFuEWYRbhFvEWYRbxFwEWYRcRFoEWYRUxFQEXIRcxFTEXIRdhF1EXQRdxF2EXQRehF5EXgReBF5EXsReRF8EXsRexF8EX0RaxF/EX4RbBFrEX4RghGBEYARgRGDEYARgBGDEYQRhBGDEYURYBGGEVwRhhGHEVwRhxGIEVwRiBFfEVwRiRF3EXQRihGJEXQRjBGLEU8RTBGMEU8RahGNEX8RaxFqEX8RfhF/EUwRTRF+EUwRfxGNEYwRTBF/EYwRjhFOEU8RjxGOEU8RkBGPEU8RixGQEU8RkxGSEZERlRGUEZERlhGREZQRkRGWEZcRmRGYEZERkRGYEZoRkRGSEZURlxGZEZERnRGcEZsRnxGcEZ4RoBGeEZwRnBGhEaARoxGcEaIRnBGaEaIRnBGfEZsRoRGcEaMRphGlEaQRqBGlEacRqRGnEaURpRGqEakRqxGlEZgRpRGaEZgRpRGoEaQRqhGlEasRphGsEaURrhGtEaURrxGlEa0RpRGvEbARsRGiEaURpRGiEZoRpRGsEa4RsBGxEaURtBGzEbIRtRG0EbIRuBG3EbYRuRG4EbYRtRGyEboRuxG1EboRvhG9EbwRvxG+EbwRuRG2EcARwRG5EcARwxHCEb0RvhHDEb0RxRHEEcIRwxHFEcIRyBHHEcYRyRHIEcYRzBHLEcoRzRHMEcoRzxHOEccRyBHPEccR0hHREdAR0xHSEdAR1RHUEcsRzBHVEcsR0xHQEdYR1xHTEdYR1xHWEdgR2RHXEdgR3BHbEdoR3RHcEdoR4BHfEd4R4RHgEd4R4xHiEdsR3BHjEdsRvxG8EeQR5RG/EeQR5xHmEd8R4BHnEd8R5RHkEegR6RHlEegR6RHoEeoR6xHpEeoR7hHtEewR7xHuEewR8hHxEfAR8xHyEfAR7xHsEfQR9RHvEfQR9xH2EdER0hH3EdER8xHwEfgR+RHzEfgR+xH6EfYR9xH7EfYR/RH8EfoR+xH9EfoRkxGREf4RABKREf8RARL/EZERkRECEgESBBKREQMSkRGaEQMSkREAEv4RAhKREQQSnREFEpwRBxIGEpwRCBKcEQYSnBEIEgkSCxIKEpwRnBEKEpoRnBEFEgcSCRILEpwRDhINEgwSEBIPEgwSERIMEg8SDBIREhISExIDEgwSDBIDEpoRDBINEhASEhITEgwSDhIMEhQSFhIMEhUSFxIVEgwSDBIYEhcSGRIMEgoSDBKaEQoSDBIWEhQSGBIMEhkSHBIbEhoSHRIcEhoSIBIfEh4SIRIgEh4SIhIcEh0SIxIiEh0SJhIlEiQSJxImEiQSKBIgEiESKRIoEiESJRIrEioSJBIlEioSKxItEiwSKhIrEiwSMBIvEi4SMRIwEi4SNBIzEjISNRI0EjISLxI3EjYSLhIvEjYSOhI5EjgSOxI6EjgSMxI9EjwSMhIzEjwSPhI6EjsSPxI+EjsSQBI+Ej8SQRJAEj8SRBJDEkISRRJEEkISSBJHEkYSSRJIEkYSQxJLEkoSQhJDEkoSTBImEicSTRJMEicSRxJPEk4SRhJHEk4SUBJMEk0SURJQEk0SUhJQElESUxJSElESVhJVElQSVxJWElQSWhJZElgSWxJaElgSXBJWElcSXRJcElcSORJfEl4SOBI5El4SYBJaElsSYRJgElsSXxJjEmISXhJfEmISYxJlEmQSYhJjEmQSaBJnEmYSaRJoEmYSbBJrEmoSbRJsEmoScBJvEm4ScRJwEm4SdBJzEnISdRJ0EnISeBJ3EnYSeRJ4EnYSexJ2EnoSfBJ7EnoSfhJ6En0SfxJ+En0SgBJ9EncSgRKAEncShBKDEoIShRKEEoIShRKHEoYSiBKFEoYSiBKKEokSixKIEokSixKNEowShBKLEowSkBKPEo4SkRKQEo4SlBKTEpISlRKUEpISmBKXEpYSmRKYEpYSnBKbEpoSnRKcEpoSeBKBEncSexJ5EnYSfhJ8EnoSgBJ/En0ShBKMEoMShRKCEocSiBKGEooSixKJEo0SoBKfEp4SoRKgEp4SpBKjEqISpRKkEqISqBKnEqYSqRKoEqYSrBKrEqoSrRKsEqoSsBKvEq4SsRKwEq4SsxKuErIStBKzErISthKyErUStxK2ErUSuBK1Eq8SuRK4Eq8SvBK7EroSvRK8EroSvRK/Er4SwBK9Er4SwBLCEsESwxLAEsESwxLFEsQSvBLDEsQSyBLHEsYSyRLIEsYSzBLLEsoSzRLMEsoS0BLPEs4S0RLQEs4S1BLTEtIS1RLUEtISsBK5Eq8SsxKxEq4SthK0ErISuBK3ErUSvBLEErsSvRK6Er8SwBK+EsISwxLBEsUS2BLXEtYS2RLYEtYS3BLbEtoS3RLcEtoS4BLfEt4S4RLgEt4S5BLjEuIS5RLkEuIS6BLnEuYS6RLoEuYS6xLmEuoS7BLrEuoS7hLqEu0S7xLuEu0S8BLtEucS8RLwEucS9BLzEvIS9RL0EvIS9RL3EvYS+BL1EvYS+BL6EvkS+xL4EvkS+xL9EvwS9BL7EvwSABP/Ev4SARMAE/4SBBMDEwITBRMEEwITCBMHEwYTCRMIEwYTDBMLEwoTDRMMEwoT6BLxEucS6xLpEuYS7hLsEuoS8BLvEu0S9BL8EvMS9RLyEvcS+BL2EvoS+xL5Ev0SEBMPEw4TERMQEw4TFBMTExITFRMUExITGBMXExYTGRMYExYTHBMbExoTHRMcExoTIBMfEx4TIRMgEx4TIxMeEyITJBMjEyITJhMiEyUTJxMmEyUTKBMlEx8TKRMoEx8TLBMrEyoTLRMsEyoTLRMvEy4TMBMtEy4TMBMyEzETMxMwEzETMxM1EzQTLBMzEzQTOBM3EzYTORM4EzYTPBM7EzoTPRM8EzoTQBM/Ez4TQRNAEz4TRBNDE0ITRRNEE0ITIBMpEx8TIxMhEx4TJhMkEyITKBMnEyUTLBM0EysTLRMqEy8TMBMuEzITMxMxEzUTSBNHE0YTSRNIE0YTTBNLE0oTTRNME0oTUBNPE04TURNQE04TVBNTE1ITVRNUE1ITWBNXE1YTWRNYE1YTWxNWE1oTXBNbE1oTXhNaE10TXxNeE10TYBNdE1cTYRNgE1cTZBNjE2ITZRNkE2ITZRNnE2YTaBNlE2YTaBNqE2kTaxNoE2kTaxNtE2wTZBNrE2wTcBNvE24TcRNwE24TdBNzE3ITdRN0E3ITeBN3E3YTeRN4E3YTfBN7E3oTfRN8E3oTWBNhE1cTWxNZE1YTXhNcE1oTYBNfE10TZBNsE2MTZRNiE2cTaBNmE2oTaxNpE20TgBN/E34TgROAE34ThBODE4IThROEE4ITiBOHE4YTiROIE4YTjBOLE4oTjROME4oTkBOPE44TkROQE44TkxOOE5ITlBOTE5ITlhOSE5UTlxOWE5UTmBOVE48TmROYE48TnBObE5oTnROcE5oTnROfE54ToBOdE54ToBOiE6EToxOgE6EToxOlE6QTnBOjE6QTqBOnE6YTqROoE6YTrBOrE6oTrROsE6oTsBOvE64TsROwE64TtBOzE7ITtRO0E7ITkBOZE48TkxORE44TlhOUE5ITmBOXE5UTnBOkE5sTnROaE58ToBOeE6IToxOhE6UTuBO3E7YTuRO4E7YTvBO7E7oTvRO8E7oTwBO/E74TwRPAE74TxBPDE8ITxRPEE8ITyBPHE8YTyRPIE8YTyxPGE8oTzBPLE8oTzhPKE80TzxPOE80T0BPNE8cT0RPQE8cT1BPTE9IT1RPUE9IT1RPXE9YT2BPVE9YT2BPaE9kT2xPYE9kT2xPdE9wT1BPbE9wT4BPfE94T4RPgE94T5BPjE+IT5RPkE+IT6BPnE+YT6RPoE+YT7BPrE+oT7RPsE+oTyBPRE8cTyxPJE8YTzhPME8oT0BPPE80T1BPcE9MT1RPSE9cT2BPWE9oT2xPZE90T8BPvE+4T8RPwE+4T9BPzE/IT9RP0E/IT+BP3E/YT+RP4E/YT/BP7E/oT/RP8E/oTABT/E/4TARQAFP4TAxT+EwIUBBQDFAIUBhQCFAUUBxQGFAUUCBQFFP8TCRQIFP8TDBQLFAoUDRQMFAoUDRQPFA4UEBQNFA4UEBQSFBEUExQQFBEUExQVFBQUDBQTFBQUGBQXFBYUGRQYFBYUHBQbFBoUHRQcFBoUIBQfFB4UIRQgFB4UJBQjFCIUJRQkFCIUABQJFP8TAxQBFP4TBhQEFAIUCBQHFAUUDBQUFAsUDRQKFA8UEBQOFBIUExQRFBUUKBQnFCYUKRQoFCYULBQrFCoULRQsFCoUMBQvFC4UMRQwFC4UNBQzFDIUNRQ0FDIUOBQ3FDYUORQ4FDYUOxQ2FDoUPBQ7FDoUPhQ6FD0UPxQ+FD0UQBQ9FDcUQRRAFDcURBRDFEIURRREFEIURRRHFEYUSBRFFEYUSBRKFEkUSxRIFEkUSxRNFEwURBRLFEwUUBRPFE4UURRQFE4UVBRTFFIUVRRUFFIUWBRXFFYUWRRYFFYUXBRbFFoUXRRcFFoUOBRBFDcUOxQ5FDYUPhQ8FDoUQBQ/FD0URBRMFEMURRRCFEcUSBRGFEoUSxRJFE0UYBRfFF4UYRRgFF4UZBRjFGIUZRRkFGIUaBRnFGYUaRRoFGYUbBRrFGoUbRRsFGoUcBRvFG4UcRRwFG4UcxRuFHIUdBRzFHIUdhRyFHUUdxR2FHUUeBR1FG8UeRR4FG8UfBR7FHoUfRR8FHoUfRR/FH4UgBR9FH4UgBSCFIEUgxSAFIEUgxSFFIQUfBSDFIQUiBSHFIYUiRSIFIYUjBSLFIoUjRSMFIoUkBSPFI4UkRSQFI4UlBSTFJIUlRSUFJIUcBR5FG8UcxRxFG4UdhR0FHIUeBR3FHUUfBSEFHsUfRR6FH8UgBR+FIIUgxSBFIUUmBSXFJYUmRSYFJYUnBSbFJoUnRScFJoUoBSfFJ4UoRSgFJ4UpBSjFKIUpRSkFKIUqBSnFKYUqRSoFKYUqxSmFKoUrBSrFKoUrhSqFK0UrxSuFK0UsBStFKcUsRSwFKcUtBSzFLIUtRS0FLIUtRS3FLYUuBS1FLYUuBS6FLkUuxS4FLkUuxS9FLwUtBS7FLwUwBS/FL4UwRTAFL4UxBTDFMIUxRTEFMIUyBTHFMYUyRTIFMYUzBTLFMoUzRTMFMoUqBSxFKcUqxSpFKYUrhSsFKoUsBSvFK0UtBS8FLMUtRSyFLcUuBS2FLoUuxS5FL0U0BTPFM4U0RTQFM4U1BTTFNIU1RTUFNIU2BTXFNYU2RTYFNYU3BTbFNoU3RTcFNoU4BTfFN4U4RTgFN4U4xTeFOIU5BTjFOIU5hTiFOUU5xTmFOUU6BTlFN8U6RToFN8U7BTrFOoU7RTsFOoU7RTvFO4U8BTtFO4U8BTyFPEU8xTwFPEU8xT1FPQU7BTzFPQU+BT3FPYU+RT4FPYU/BT7FPoU/RT8FPoUABX/FP4UARUAFf4UBBUDFQIVBRUEFQIV4BTpFN8U4xThFN4U5hTkFOIU6BTnFOUU7BT0FOsU7RTqFO8U8BTuFPIU8xTxFPUUCBUHFQYVCRUIFQYVDBULFQoVDRUMFQoVEBUPFQ4VERUQFQ4VFBUTFRIVFRUUFRIVGBUXFRYVGRUYFRYVGxUWFRoVHBUbFRoVHhUaFR0VHxUeFR0VIBUdFRcVIRUgFRcVJBUjFSIVJRUkFSIVJRUnFSYVKBUlFSYVKBUqFSkVKxUoFSkVKxUtFSwVJBUrFSwVMBUvFS4VMRUwFS4VNBUzFTIVNRU0FTIVOBU3FTYVORU4FTYVPBU7FToVPRU8FToVGBUhFRcVGxUZFRYVHhUcFRoVIBUfFR0VJBUsFSMVJRUiFScVKBUmFSoVKxUpFS0VQBU/FT4VQRVAFT4VRBVDFUIVRRVEFUIVSBVHFUYVSRVIFUYVTBVLFUoVTRVMFUoVUBVPFU4VURVQFU4VUxVOFVIVVBVTFVIVVhVSFVUVVxVWFVUVWBVVFU8VWRVYFU8VXBVbFVoVXRVcFVoVXRVfFV4VYBVdFV4VYBViFWEVYxVgFWEVYxVlFWQVXBVjFWQVaBVnFWYVaRVoFWYVbBVrFWoVbRVsFWoVcBVvFW4VcRVwFW4VdBVzFXIVdRV0FXIVUBVZFU8VUxVRFU4VVhVUFVIVWBVXFVUVXBVkFVsVXRVaFV8VYBVeFWIVYxVhFWUVeBV3FXYVeRV4FXYVfBV7FXoVfRV8FXoVgBV/FX4VgRWAFX4VhBWDFYIVhRWEFYIViBWHFYYViRWIFYYVixWGFYoVjBWLFYoVjhWKFY0VjxWOFY0VkBWNFYcVkRWQFYcVlBWTFZIVlRWUFZIVlRWXFZYVmBWVFZYVmBWaFZkVmxWYFZkVmxWdFZwVlBWbFZwVoBWfFZ4VoRWgFZ4VpBWjFaIVpRWkFaIVqBWnFaYVqRWoFaYVrBWrFaoVrRWsFaoViBWRFYcVixWJFYYVjhWMFYoVkBWPFY0VlBWcFZMVlRWSFZcVmBWWFZoVmxWZFZ0VsBWvFa4VsRWwFa4VtBWzFbIVtRW0FbIVuBW3FbYVuRW4FbYVvBW7FboVvRW8FboVwBW/Fb4VwRXAFb4VwxW+FcIVxBXDFcIVxhXCFcUVxxXGFcUVyBXFFb8VyRXIFb8VzBXLFcoVzRXMFcoVzRXPFc4V0BXNFc4V0BXSFdEV0xXQFdEV0xXVFdQVzBXTFdQV2BXXFdYV2RXYFdYV3BXbFdoV3RXcFdoV4BXfFd4V4RXgFd4V5BXjFeIV5RXkFeIVwBXJFb8VwxXBFb4VxhXEFcIVyBXHFcUVzBXUFcsVzRXKFc8V0BXOFdIV0xXRFdUV6BXnFeYV6RXoFeYV7BXrFeoV7RXsFeoV8BXvFe4V8RXwFe4V9BXzFfIV9RX0FfIV+BX3FfYV+RX4FfYV+xX2FfoV/BX7FfoV/hX6Ff0V/xX+Ff0VABb9FfcVARYAFvcVBBYDFgIWBRYEFgIWBRYHFgYWCBYFFgYWCBYKFgkWCxYIFgkWCxYNFgwWBBYLFgwWEBYPFg4WERYQFg4WFBYTFhIWFRYUFhIWGBYXFhYWGRYYFhYWHBYbFhoWHRYcFhoW+BUBFvcV+xX5FfYV/hX8FfoVABb/Ff0VBBYMFgMWBRYCFgcWCBYGFgoWCxYJFg0WIBYfFh4WIRYgFh4WJBYjFiIWJRYkFiIWKBYnFiYWKRYoFiYWLBYrFioWLRYsFioWMBYvFi4WMRYwFi4WMxYuFjIWNBYzFjIWNhYyFjUWNxY2FjUWOBY1Fi8WORY4Fi8WPBY7FjoWPRY8FjoWPRY/Fj4WQBY9Fj4WQBZCFkEWQxZAFkEWQxZFFkQWPBZDFkQWSBZHFkYWSRZIFkYWTBZLFkoWTRZMFkoWUBZPFk4WURZQFk4WVBZTFlIWVRZUFlIWMBY5Fi8WMxYxFi4WNhY0FjIWOBY3FjUWPBZEFjsWPRY6Fj8WQBY+FkIWQxZBFkUWWBZXFlYWWRZYFlYWXBZbFloWXRZcFloWYBZfFl4WYRZgFl4WZBZjFmIWZRZkFmIWaBZnFmYWaRZoFmYWbBZrFmoWbRZsFmoWXxZvFm4WXhZfFm4WcRZwFmIWYxZxFmIWcxZyFlYWVxZzFlYWdRZ0FloWWxZ1FloWdhZxFmMWdxZ2FmMWeBZ3FmMWZBZ4FmMWeRZZFmoWaxZ5FmoWXRZaFnoWexZdFnoWfhZ6FloWdBZ+FloWfxZpFmYWchZ/FmYWgBZzFlcWgRaAFlcWfRaBFlcWWBZ9FlcWfBZ5FmsWghZ8FmsWgxaCFmsWbBaDFmsWYRZeFoQWhRZhFoQWXhZuFoYWhBZeFoYWhxZoFmkWiBaHFmkWfhaIFmkWfxZ+FmkWixaKFokWixaNFowWixaJFo0WjBaPFo4WixaMFo4WkhaRFpAWkxaSFpAWlhaVFpQWlxaWFpQWlxaUFpgWmhaXFpgWjhaPFpkWkBabFpMWmhaYFpwWmBadFpwWnxaeFpUWnxaVFpYWkhagFpEWoBahFpEWoBaiFqEWpRakFqMWphalFqMWnRalFqYWnBadFqYWqBajFqcWoxakFqcWqxaqFqkWqxatFqwWqxasFqoWrxauFq0WqxavFq0WshaxFrAWsxayFrAWtha1FrQWtxa2FrQWuRa2FrcWuha5FrcWrxabFq4WshazFpkWmxa7FrgWuBa7FrwWvha1Fr0Wvha0FrUWsBaxFr8WvxaxFsAWvxbAFsEWoxbDFsIWxBajFsIWxBbCFrwWuxbEFrwWwxajFsUWoxaoFsUWyBbHFsYWxxbJFsYWzBbLFsoWyxbOFsoWyxbQFs8WzhbLFs8W0BbSFtEWzxbQFtEW0hbUFtMW0RbSFtMW1xbWFtUW2BbXFtUW1hbaFtkW1RbWFtkW2hbHFsgW2RbaFsgW3RbcFtsW3hbcFt0W3xbcFt4W4BbcFt8W4RbcFuAW4hbcFuEW4xbcFuIW2xbcFuMW5hblFuQW5xbmFuQW6BbmFucW6RboFucW6hboFukW1xbqFukW7BbrFtQW0hbsFtQW7RbsFtIW7hbtFtIW7xbtFu4W8BbvFu4WzRbxFvAW8RbvFvAW5RbyFscW8hbJFscW9BbzFvIW5Rb0FvIW9hb1Fu8W8Rb2Fu8W9Rb3Fu0W7xb1Fu0W9xb4FuwW7Rb3FuwW+Bb5FusW7Bb4FusW+xb6FugW6hb7FugW+hb8FuYW6Bb6FuYW/Bb0FuUW5hb8FuUW/xb+Fv0W/Rb+FgAXABf+FgEXARf+FgIXAhf+FgMXAxf+FgQXBhcFF/QW/BYGF/QWBxcGF/wW+hYHF/wWCBcHF/oW+xYIF/oWChcJF/kW+BYKF/kWCxcKF/gW9xYLF/gWDBcLF/cW9RYMF/cWDRcMF/UW9hYNF/UWBRcOF/MW9BYFF/MWERcQFw8XEhcRFw8XEBcUFxMXDxcQFxMXFBcWFxUXExcUFxUXFhcYFxcXFRcWFxcXGBcaFxkXFxcYFxkXGhccFxsXGRcaFxsXHxceFx0XIBceFx8XIRceFyAXHRceFyIXJRckFyMXIxckFyYXJhckFycXKBckFyUXKhcpFxYXFBcqFxYXKxcqFxQXEBcrFxQXLBcrFxAXERcsFxAXLhctFxwXGhcuFxwXLxcuFxoXGBcvFxoXKRcvFxgXFhcpFxgXMhcxFzAXMxcyFzAXNBcyFzMXNRc0FzMXOBc3FzYXORc4FzYXOhc5FzYXOxc6FzYXPBc6FzsXPRc8FzsXQBc/Fz4XQRdAFz4XQhdAF0EXQxdCF0EXQxdEF0IXRxdGF0UXRhdIF0UXShdJF0gXSxdKF0gXTBdKF0sXTRdMF0sXUBdPF04XURdQF04XUhdQF1EXUxdSF1EXUhdTF1QXVxdWF1UXVhdYF1UXWhdXF1kXWxdaF1kXXBdaF1sXXRdcF1sXYBdfF14XYRdgF14XYhdgF2EXYxdiF2EXZhdlF2QXZxdmF2QXaBdmF2cXaRdoF2cXahdoF2kXaxdqF2kXRxdEF0YXRBdDF0YXOBc0FzUXNxc4FzUXZRdiF2MXZBdlF2MXUhdUF1YXVBdYF1YXWRdXF1UXSBdJF0UXMBcxF2wXbRcwF2wXbRdsF24XbxdtF24XchdxF3AXcxdyF3AXchdzF3QXdRdyF3QXdRd0FzwXPRd1FzwXPhc/F3YXdxc+F3YXdxd2F3gXeRd3F3gXeRd4F3oXfRd8F3sXexd8F34XfheAF38XgRd+F38XgRd/F0wXTReBF0wXThdPF4IXgxdOF4IXgxeCF4QXhReDF4QXhBeGF4UXiReIF4cXhxeIF4oXjBeJF4sXjReMF4sXjReLF1wXXReNF1wXXhdfF44XjxdeF44XjxeOF5AXkRePF5AXlBeTF5IXlReUF5IXlReSF5YXlxeVF5YXlxeWF2oXaxeXF2oXfRd7F3oXehd7F3kXbxduF3AXcRdvF3AXkReQF5MXlBeRF5MXhBeHF4YXhheHF4oXjBeIF4kXfhd8F4AXmheZF5gXmRebF5gXmxeZF5wXmReeF50XoBeZF58XoheZF6EXmRejF58XoReZF6QXpBeZF5oXoBecF5kXnheZF6IXoxeZF6UXpxeZF6YXmReoF6YXqBeZF6kXmRerF6oXrReZF6wXrxeZF64XmRewF6wXrheZF7EXsReZF6cXrRepF5kXqxeZF68XsBeZF50XsxeZF7IXmRe0F7IXtBeZF7UXmRe2F6UXuBeZF7cXuheZF7kXmRe7F7cXuReZF7wXvBeZF7MXuBe1F5kXtheZF7oXuxeZF70XvxeZF74XmRfAF74XwBeZF8EXmRfCF70XxBeZF8MXxheZF8UXmRfHF8MXxReZF8gXyBeZF78XxBfBF5kXwheZF8YXxxeZF6oXyxfKF8kXzBfLF8kXzxfOF80X0BfPF80X0BfNF9EX0hfQF9EX1RfUF9MX1hfVF9MXzBfJF9cX2BfMF9cX1hfTF9kX2hfWF9kXyhfLF9oX2RfKF9oX1BfVF9IX0RfUF9IX2BfXF9sX3BfYF9sX3BfbF90X3hfcF90X4RfgF98X4hfhF98X4hffF84XzxfiF84X5RfkF+MX5hflF+MX6RfoF+cX6hfpF+cX6hfnF+sX7BfqF+sX7xfuF+0X8BfvF+0X5hfjF/EX8hfmF/EX8BftF/MX9BfwF/MX5BflF/QX8xfkF/QX7hfvF+wX6xfuF+wX8hfxF/UX9hfyF/UX9hf1F/cX+Bf2F/cX+xf6F/kX/Bf7F/kX/Bf5F+gX6Rf8F+gX/xf+F/0XABj/F/0XAxgCGAEYBBgDGAEYBBgBGAUYBhgEGAUYCRgIGAcYChgJGAcYABj9FwsYDBgAGAsYChgHGA0YDhgKGA0Y/hf/Fw4YDRj+Fw4YCBgJGAYYBRgIGAYYDBgLGA8YEBgMGA8YEBgPGBEYEhgQGBEYFRgUGBMYFhgVGBMYFhgTGAIYAxgWGAIYGRgYGBcYGhgZGBcYHRgcGBsYHhgdGBsYHhgbGB8YIBgeGB8YIxgiGCEYJBgjGCEYGhgXGCUYJhgaGCUYJBghGCcYKBgkGCcYGBgZGCgYJxgYGCgYIhgjGCAYHxgiGCAYJhglGCkYKhgmGCkYKhgpGCsYLBgqGCsYLxguGC0YMBgvGC0YMBgtGBwYHRgwGBwYMxgyGDEYMhg0GDEYNBgyGDUYMhg3GDYYORgyGDgYOxgyGDoYMhg8GDgYOhgyGD0YPRgyGDMYORg1GDIYNxgyGDsYPBgyGD4YQBgyGD8YMhhBGD8YQRgyGEIYMhhEGEMYRhgyGEUYSBgyGEcYMhhJGEUYRxgyGEoYShgyGEAYRhhCGDIYRBgyGEgYSRgyGDYYTBgyGEsYMhhNGEsYTRgyGE4YMhhPGD4YURgyGFAYUxgyGFIYMhhUGFAYUhgyGFUYVRgyGEwYURhOGDIYTxgyGFMYVBgyGFYYWBgyGFcYMhhZGFcYWRgyGFoYMhhbGFYYXRgyGFwYXxgyGF4YMhhgGFwYXhgyGGEYYRgyGFgYXRhaGDIYWxgyGF8YYBgyGEMYZBhjGGIYZRhkGGIYaBhnGGYYaRhoGGYYaRhmGGoYaxhpGGoYbhhtGGwYbxhuGGwYZRhiGHAYcRhlGHAYbxhsGHIYcxhvGHIYYxhkGHMYchhjGHMYbRhuGGsYahhtGGsYcRhwGHQYdRhxGHQYdRh0GHYYdxh1GHYYehh5GHgYexh6GHgYexh4GGcYaBh7GGcYfhh9GHwYfxh+GHwYghiBGIAYgxiCGIAYgxiAGIQYhRiDGIQYiBiHGIYYiRiIGIYYfxh8GIoYixh/GIoYiRiGGIwYjRiJGIwYfRh+GI0YjBh9GI0YhxiIGIUYhBiHGIUYixiKGI4YjxiLGI4YjxiOGJAYkRiPGJAYlBiTGJIYlRiUGJIYlRiSGIEYghiVGIEYmBiXGJYYmRiYGJYYnBibGJoYnRicGJoYnRiaGJ4YnxidGJ4YohihGKAYoxiiGKAYmRiWGKQYpRiZGKQYoxigGKYYpxijGKYYlxiYGKcYphiXGKcYoRiiGJ8YnhihGJ8YpRikGKgYqRilGKgYqRioGKoYqxipGKoYrhitGKwYrxiuGKwYrxisGJsYnBivGJsYshixGLAYsxiyGLAYthi1GLQYtxi2GLQYtxi0GLgYuRi3GLgYvBi7GLoYvRi8GLoYsxiwGL4YvxizGL4YvRi6GMAYwRi9GMAYsRiyGMEYwBixGMEYuxi8GLkYuBi7GLkYvxi+GMIYwxi/GMIYwxjCGMQYxRjDGMQYyBjHGMYYyRjIGMYYyRjGGLUYthjJGLUYzBjLGMoYyxjNGMoYzRjLGM4YyxjQGM8Y0hjLGNEY1BjLGNMYyxjVGNEY0xjLGNYY1hjLGMwY0hjOGMsY0BjLGNQY1RjLGNcY2RjLGNgYyxjaGNgY2hjLGNsYyxjdGNwY3xjLGN4Y4RjLGOAYyxjiGN4Y4BjLGOMY4xjLGNkY3xjbGMsY3RjLGOEY4hjLGM8Y5RjLGOQYyxjmGOQY5hjLGOcYyxjoGNcY6hjLGOkY7BjLGOsYyxjtGOkY6xjLGO4Y7hjLGOUY6hjnGMsY6BjLGOwY7RjLGO8Y8RjLGPAYyxjyGPAY8hjLGPMYyxj0GO8Y9hjLGPUY+BjLGPcYyxj5GPUY9xjLGPoY+hjLGPEY9hjzGMsY9BjLGPgY+RjLGNwY/Rj8GPsY/hj9GPsYARkAGf8YAhkBGf8YAhn/GAMZBBkCGQMZBxkGGQUZCBkHGQUZ/hj7GAkZChn+GAkZCBkFGQsZDBkIGQsZ/Bj9GAwZCxn8GAwZBhkHGQQZAxkGGQQZChkJGQ0ZDhkKGQ0ZDhkNGQ8ZEBkOGQ8ZExkSGREZFBkTGREZFBkRGQAZARkUGQAZFxkWGRUZGBkXGRUZGxkaGRkZHBkbGRkZHBkZGR0ZHhkcGR0ZIRkgGR8ZIhkhGR8ZGBkVGSMZJBkYGSMZIhkfGSUZJhkiGSUZFhkXGSYZJRkWGSYZIBkhGR4ZHRkgGR4ZJBkjGScZKBkkGScZKBknGSkZKhkoGSkZLRksGSsZLhktGSsZLhkrGRoZGxkuGRoZMRkwGS8ZMhkxGS8ZNRk0GTMZNhk1GTMZNhkzGTcZOBk2GTcZOxk6GTkZPBk7GTkZMhkvGT0ZPhkyGT0ZPBk5GT8ZQBk8GT8ZMBkxGUAZPxkwGUAZOhk7GTgZNxk6GTgZPhk9GUEZQhk+GUEZQhlBGUMZRBlCGUMZRxlGGUUZSBlHGUUZSBlFGTQZNRlIGTQZSxlKGUkZTBlLGUkZTxlOGU0ZUBlPGU0ZUBlNGVEZUhlQGVEZVRlUGVMZVhlVGVMZTBlJGVcZWBlMGVcZVhlTGVkZWhlWGVkZShlLGVoZWRlKGVoZVBlVGVIZURlUGVIZWBlXGVsZXBlYGVsZXBlbGV0ZXhlcGV0ZYRlgGV8ZYhlhGV8ZYhlfGU4ZTxliGU4ZZRlkGWMZZBlmGWMZZhlkGWcZZBlpGWgZaxlkGWoZbRlkGWwZZBluGWoZbBlkGW8ZbxlkGWUZaxlnGWQZaRlkGW0ZbhlkGXAZchlkGXEZZBlzGXEZcxlkGXQZZBl2GXUZeBlkGXcZehlkGXkZZBl7GXcZeRlkGXwZfBlkGXIZeBl0GWQZdhlkGXoZexlkGWgZfhlkGX0ZZBl/GX0ZfxlkGYAZZBmBGXAZgxlkGYIZhRlkGYQZZBmGGYIZhBlkGYcZhxlkGX4ZgxmAGWQZgRlkGYUZhhlkGYgZihlkGYkZZBmLGYkZixlkGYwZZBmNGYgZjxlkGY4ZkRlkGZAZZBmSGY4ZkBlkGZMZkxlkGYoZjxmMGWQZjRlkGZEZkhlkGXUZlhmVGZQZlxmWGZQZmhmZGZgZmxmaGZgZmxmYGZwZnRmbGZwZoBmfGZ4ZoRmgGZ4ZlxmUGaIZoxmXGaIZoRmeGaQZpRmhGaQZlRmWGaUZpBmVGaUZnxmgGZ0ZnBmfGZ0ZoxmiGaYZpxmjGaYZpxmmGagZqRmnGagZrBmrGaoZrRmsGaoZrRmqGZkZmhmtGZkZsBmvGa4ZsRmwGa4ZtBmzGbIZtRm0GbIZtRmyGbYZtxm1GbYZuhm5GbgZuxm6GbgZsRmuGbwZvRmxGbwZuxm4Gb4Zvxm7Gb4ZrxmwGb8ZvhmvGb8ZuRm6GbcZthm5GbcZvRm8GcAZwRm9GcAZwRnAGcIZwxnBGcIZxhnFGcQZxxnGGcQZxxnEGbMZtBnHGbMZyhnJGcgZyxnKGcgZzhnNGcwZzxnOGcwZzxnMGdAZ0RnPGdAZ1BnTGdIZ1RnUGdIZyxnIGdYZ1xnLGdYZ1RnSGdgZ2RnVGdgZyRnKGdkZ2BnJGdkZ0xnUGdEZ0BnTGdEZ1xnWGdoZ2xnXGdoZ2xnaGdwZ3RnbGdwZ4BnfGd4Z4RngGd4Z4RneGc0ZzhnhGc0Z5BnjGeIZ5RnkGeIZ6BnnGeYZ6RnoGeYZ6RnmGeoZ6xnpGeoZ7hntGewZ7xnuGewZ5RniGfAZ8RnlGfAZ7xnsGfIZ8xnvGfIZ4xnkGfMZ8hnjGfMZ7RnuGesZ6hntGesZ8RnwGfQZ9RnxGfQZ9Rn0GfYZ9xn1GfYZ+hn5GfgZ+xn6GfgZ+xn4GecZ6Bn7GecZ/hn9GfwZ/Rn/GfwZ/xn9GQAa/RkCGgEaBBr9GQMaBhr9GQUa/RkHGgMaBRr9GQgaCBr9Gf4ZBBoAGv0ZAhr9GQYaBxr9GQkaCxr9GQoa/RkMGgoaDBr9GQ0a/RkPGg4aERr9GRAaExr9GRIa/RkUGhAaEhr9GRUaFRr9GQsaERoNGv0ZDxr9GRMaFBr9GQEaFxr9GRYa/RkYGhYaGBr9GRka/RkaGgkaHBr9GRsaHhr9GR0a/RkfGhsaHRr9GSAaIBr9GRcaHBoZGv0ZGhr9GR4aHxr9GSEaIxr9GSIa/RkkGiIaJBr9GSUa/RkmGiEaKBr9GScaKhr9GSka/RkrGicaKRr9GSwaLBr9GSMaKBolGv0ZJhr9GSoaKxr9GQ4aLxouGi0aMBovGi0aMxoyGjEaNBozGjEaNBoxGjUaNho0GjUaORo4GjcaOho5GjcaMBotGjsaPBowGjsaOho3Gj0aPho6Gj0aLhovGj4aPRouGj4aOBo5GjYaNRo4GjYaPBo7Gj8aQBo8Gj8aQBo/GkEaQhpAGkEaRRpEGkMaRhpFGkMaRhpDGjIaMxpGGjIaSRpIGkcaShpJGkcaTRpMGksaThpNGksaThpLGk8aUBpOGk8aUxpSGlEaVBpTGlEaShpHGlUaVhpKGlUaVBpRGlcaWBpUGlcaSBpJGlgaVxpIGlgaUhpTGlAaTxpSGlAaVhpVGlkaWhpWGlkaWhpZGlsaXBpaGlsaXxpeGl0aYBpfGl0aYBpdGkwaTRpgGkwaYxpiGmEaZBpjGmEaZxpmGmUaaBpnGmUaaBplGmkaahpoGmkabRpsGmsabhptGmsaZBphGm8acBpkGm8abhprGnEachpuGnEaYhpjGnIacRpiGnIabBptGmoaaRpsGmoacBpvGnMadBpwGnMadBpzGnUadhp0GnUaeRp4Gncaehp5Gncaehp3GmYaZxp6GmYafRp8Gnsafhp9GnsagRqAGn8aghqBGn8aghp/GoMahBqCGoMahxqGGoUaiBqHGoUafhp7Gokaihp+GokaiBqFGosajBqIGosafBp9Gowaixp8GowahhqHGoQagxqGGoQaihqJGo0ajhqKGo0ajhqNGo8akBqOGo8akxqSGpEalBqTGpEalBqRGoAagRqUGoAalxqWGpUalhqYGpUamBqWGpkalhqbGpoanRqWGpwanxqWGp4alhqgGpwanhqWGqEaoRqWGpcanRqZGpYamxqWGp8aoBqWGqIapBqWGqMalhqlGqMapRqWGqYalhqoGqcaqhqWGqkarBqWGqsalhqtGqkaqxqWGq4arhqWGqQaqhqmGpYaqBqWGqwarRqWGpoasBqWGq8alhqxGq8asRqWGrIalhqzGqIatRqWGrQatxqWGrYalhq4GrQathqWGrkauRqWGrAatRqyGpYasxqWGrcauBqWGroavBqWGrsalhq9GrsavRqWGr4alhq/GroawRqWGsAawxqWGsIalhrEGsAawhqWGsUaxRqWGrwawRq+GpYavxqWGsMaxBqWGqcayBrHGsYayRrIGsYazBrLGsoazRrMGsoazRrKGs4azxrNGs4a0hrRGtAa0xrSGtAayRrGGtQa1RrJGtQa0xrQGtYa1xrTGtYaxxrIGtca1hrHGtca0RrSGs8azhrRGs8a1RrUGtga2RrVGtga2RrYGtoa2xrZGtoa3hrdGtwa3xreGtwa3xrcGssazBrfGssa4hrhGuAa4xriGuAa5hrlGuQa5xrmGuQa5xrkGuga6RrnGuga7BrrGuoa7RrsGuoa4xrgGu4a7xrjGu4a7RrqGvAa8RrtGvAa4RriGvEa8BrhGvEa6xrsGuka6BrrGuka7xruGvIa8xrvGvIa8xryGvQa9RrzGvQa+Br3GvYa+Rr4GvYa+Rr2GuUa5hr5GuUa/Br7Gvoa/Rr8GvoaABv/Gv4aARsAG/4aARv+GgIbAxsBGwIbBhsFGwQbBxsGGwQb/Rr6GggbCRv9GggbBxsEGwobCxsHGwob+xr8GgsbChv7GgsbBRsGGwMbAhsFGwMbCRsIGwwbDRsJGwwbDRsMGw4bDxsNGw4bEhsRGxAbExsSGxAbExsQG/8aABsTG/8aFhsVGxQbFxsWGxQbGhsZGxgbGxsaGxgbGxsYGxwbHRsbGxwbIBsfGx4bIRsgGx4bFxsUGyIbIxsXGyIbIRseGyQbJRshGyQbFRsWGyUbJBsVGyUbHxsgGx0bHBsfGx0bIxsiGyYbJxsjGyYbJxsmGygbKRsnGygbLBsrGyobLRssGyobLRsqGxkbGhstGxkbMBsvGy4bLxsxGy4bMRsvGzIbLxs0GzMbNhsvGzUbOBsvGzcbLxs5GzUbNxsvGzobOhsvGzAbNhsyGy8bNBsvGzgbORsvGzsbPRsvGzwbLxs+GzwbPhsvGz8bLxtBG0AbQxsvG0IbRRsvG0QbLxtGG0IbRBsvG0cbRxsvGz0bQxs/Gy8bQRsvG0UbRhsvGzMbSRsvG0gbLxtKG0gbShsvG0sbLxtMGzsbThsvG00bUBsvG08bLxtRG00bTxsvG1IbUhsvG0kbThtLGy8bTBsvG1AbURsvG1MbVRsvG1QbLxtWG1QbVhsvG1cbLxtYG1MbWhsvG1kbXBsvG1sbLxtdG1kbWxsvG14bXhsvG1UbWhtXGy8bWBsvG1wbXRsvG0AbYRtgG18bYhthG18bZRtkG2MbZhtlG2MbZhtjG2cbaBtmG2cbaxtqG2kbbBtrG2kbYhtfG20bbhtiG20bbBtpG28bcBtsG28bYBthG3AbbxtgG3AbahtrG2gbZxtqG2gbbhttG3EbchtuG3EbchtxG3MbdBtyG3Mbdxt2G3UbeBt3G3UbeBt1G2QbZRt4G2Qbext6G3kbfBt7G3kbfxt+G30bgBt/G30bgBt9G4EbghuAG4EbhRuEG4MbhhuFG4MbfBt5G4cbiBt8G4cbhhuDG4kbihuGG4kbeht7G4obiRt6G4obhBuFG4IbgRuEG4IbiBuHG4sbjBuIG4sbjBuLG40bjhuMG40bkRuQG48bkhuRG48bkhuPG34bfxuSG34blRuUG5MblhuVG5MbmRuYG5cbmhuZG5cbmhuXG5sbnBuaG5sbnxueG50boBufG50blhuTG6EbohuWG6EboBudG6MbpBugG6MblBuVG6QboxuUG6QbnhufG5wbmxueG5wbohuhG6UbphuiG6UbphulG6cbqBumG6cbqxuqG6kbrBurG6kbrBupG5gbmRusG5gbrxuuG60bsBuvG60bsxuyG7EbtBuzG7EbtBuxG7Ubthu0G7UbuRu4G7cbuhu5G7cbsButG7sbvBuwG7sbuhu3G70bvhu6G70brhuvG74bvRuuG74buBu5G7YbtRu4G7YbvBu7G78bwBu8G78bwBu/G8EbwhvAG8EbxRvEG8MbxhvFG8MbxhvDG7IbsxvGG7IbyRvIG8cbyBvKG8cbyhvIG8sbyBvNG8wbzxvIG84b0RvIG9AbyBvSG84b0BvIG9Mb0xvIG8kbzxvLG8gbzRvIG9Eb0hvIG9Qb1hvIG9UbyBvXG9Ub1xvIG9gbyBvaG9kb3BvIG9sb3hvIG90byBvfG9sb3RvIG+Ab4BvIG9Yb3BvYG8gb2hvIG94b3xvIG8wb4hvIG+EbyBvjG+Eb4xvIG+QbyBvlG9Qb5xvIG+Yb6RvIG+gbyBvqG+Yb6BvIG+sb6xvIG+Ib5xvkG8gb5RvIG+kb6hvIG+wb7hvIG+0byBvvG+0b7xvIG/AbyBvxG+wb8xvIG/Ib9RvIG/QbyBv2G/Ib9BvIG/cb9xvIG+4b8xvwG8gb8RvIG/Ub9hvIG9kb+hv5G/gb+xv6G/gb/hv9G/wb/xv+G/wb/xv8GwAcARz/GwAcBBwDHAIcBRwEHAIc+xv4GwYcBxz7GwYcBRwCHAgcCRwFHAgc+Rv6GwkcCBz5GwkcAxwEHAEcABwDHAEcBxwGHAocCxwHHAocCxwKHAwcDRwLHAwcEBwPHA4cERwQHA4cERwOHP0b/hsRHP0bFBwTHBIcFRwUHBIcGBwXHBYcGRwYHBYcGRwWHBocGxwZHBocHhwdHBwcHxweHBwcFRwSHCAcIRwVHCAcHxwcHCIcIxwfHCIcExwUHCMcIhwTHCMcHRweHBscGhwdHBscIRwgHCQcJRwhHCQcJRwkHCYcJxwlHCYcKhwpHCgcKxwqHCgcKxwoHBccGBwrHBccLhwtHCwcLxwuHCwcMhwxHDAcMxwyHDAcMxwwHDQcNRwzHDQcOBw3HDYcORw4HDYcLxwsHDocOxwvHDocORw2HDwcPRw5HDwcLRwuHD0cPBwtHD0cNxw4HDUcNBw3HDUcOxw6HD4cPxw7HD4cPxw+HEAcQRw/HEAcRBxDHEIcRRxEHEIcRRxCHDEcMhxFHDEcSBxHHEYcSRxIHEYcTBxLHEocTRxMHEocTRxKHE4cTxxNHE4cUhxRHFAcUxxSHFAcSRxGHFQcVRxJHFQcUxxQHFYcVxxTHFYcRxxIHFccVhxHHFccURxSHE8cThxRHE8cVRxUHFgcWRxVHFgcWRxYHFocWxxZHFocXhxdHFwcXxxeHFwcXxxcHEscTBxfHEscYhxhHGAcZRxkHGMcZhxjHGQcahxpHGgcbRxsHGsccBxvHG4ccRxwHGccaBxyHGocaxxzHG0cZxx0HHEcdxx2HHUcYhxgHHkcYhx5HHocfRxkHHwcfRx8HHscZBx9HGYcexxwHH0cgRx/HH4cghx7HH8cexxvHHAcbhxvHH8ceBxtHH8cehx5HIAchByDHGEchxyGHIUciByFHIYcixyKHIkcjhyNHIwckhyRHJAclByKHJAcihyLHJUcjRyOHJYcihyUHJccmhyZHJgchBybHIMchBycHJscnhx8HGQcoBydHJ8chRyIHJ4cnRygHJAcohx+HKEcoxyhHH4cnRyQHJEcoRyjHJMcmhyhHI8cfhyiHJscAAC7lrO9HCTEPwZRWjz1Psa9xc/EP8YgN7xdIrK9tFzEP1kqUTy05bW9W/PDP+cXUTxrzb29rozDPzpaDDyESbS9KrbFP4eayrpdW7G9Hr3FP3n0kDpPEsa9NRvDP9PwjzszuMG9b0bDP7v86jsS0K693FfFPya16zspsK69/anFP4HVkDsFc8i9fDbDPxdujTo4nLC9FP7EP8aaDDxJjsm9l2LDP6HZzbplKKu9TsbHP0+cNrzYEq293MDHP86BUrxWe6q9BanHP/e8Grzt3au9ZwnHP/fpqbuZ78K97jzGP9xCqrw9osC9wpTGP8r9sLwF96y9F2jGPxB1GLoPcKu9OMzGP76QKrvAdbi9CkTHP4trobwCEr29SfzGP5UIsryNurC9awLGP+cSPLoA9LS9BF3HP3c7jLxwVeG9PtnBP+ukN7wEa9+9p97BP3W/G7yJAuK9h/bBP0KEU7zpn+C9HZbCPyCmjLye28u9wQrDP3JaRLrcht+9bTfDP85csrzJDeG9TdPCP63OobwbCNS9glvCP76pLbvga8+9PKPCP/r7IrpPw9u9GJ3DPwZAsbzgide9gELCP5SUq7tcNNi9YenDP812qrwi59i9cHvFP38kEr2JW9q90ELFP+XaD70kmNa9MqzFP0jWD710sM691xLGP5NN/byAItu9ZeLDPxAwwLyPa8a9V4TGP6wc27ymxcq9HVnGP6bf8bzKrd29qUfEP8AN8ry0zd29jvXDP9lV27zVCsS9B2nGP6f3v7yn4du9cKHEP9dt/bzHOKm96jXFP6uw2Du0Aqu9xdzEPzzhAjw4nLC9FP7EP8aaDDwS0K693FfFPya16zthDb29ogrDPwrv1zvX7MG96trCP7BpYjtPEsa9NRvDP9PwjzszuMG9b0bDP7v86jv5Kbm9b1DDPxacAjxrzb29rozDPzpaDDxqWq69RPTDPxMXUzy3F7G90rnDPzd6SDy05bW9W/PDP+cXUTy7lrO9HCTEPwZRWjxnHqm9jpHFPxdOZDspsK69/anFP4HVkDuZmKy9vTfEP1KQSDxdIrK9tFzEP1kqUTx3Pqy9OafFPyWhwrldW7G9Hr3FP3n0kDpSca29mKbFP+ofybqESbS9KrbFP4eayrqbq8S9OPvCPyGT0bkSPsW9JQzDP1nBzLpJjsm9l2LDP6HZzboFc8i9fDbDPxdujTpLdbO9Ii3HPysirryc+q+91EXHP+QVmbwA9LS9BF3HP3c7jLzAdbi9CkTHP4trobzCzKW9d6/GP0WHWbuLjKe9uT7GP4udjLoF96y9F2jGPxB1GLoPcKu9OMzGP76QKrsWO6a9HezGP0vXwLvt3au9ZwnHP/fpqbv0rqW9yrDHP00xSbwl2aS9kI7HP/TiJ7xWe6q9BanHP/e8GrxlKKu9TsbHP0+cNrxwori989vGPySawLwCEr29SfzGP5UIsrzz8ae9EKvHP1yGarzYEq293MDHP86BUrzmw7y9Z2PGP0I8v7w9osC9wpTGP8r9sLy71b29Zj3GPwrtvLyZ78K97jzGP9xCqrwC8au9m8jFP0rKo7pSca29mKbFP+ofybqESbS9KrbFP4eayrqNurC9awLGP+cSPLqCns+9bxzCP563XLsuGdO9vgPCP5iNwrvgide9gELCP5SUq7sbCNS9glvCP76pLbsER929HJrCPzmIrrxEh9u90grDP0nvwLzcht+9bTfDP85csrzJDeG9TdPCP63Ooby82Ny9bl3CP3eDmbzpn+C9HZbCPyCmjLzcZN29wpjBP0dBSryrOt69+7rBP56Pa7yJAuK9h/bBP0KEU7xwVeG9PtnBP+ukN7xUccq9oW3CP8Pvkbrga8+9PKPCP/r7IrrUIdu9hJ7BPzbsKLwEa9+9p97BP3W/G7zrT8a9LebCP43Qp7qe28u9wQrDP3JaRLoSPsW9JQzDP1nBzLpJjsm9l2LDP6HZzbrOIte98IDDP6R8v7x4otW9+6LDPyUnvbxcNNi9YenDP812qrxPw9u9GJ3DPwZAsbz92tm9oRPEP3Ll/7wSEdi9x2zEP/WUBb2n4du9cKHEP9dt/bzKrd29qUfEP8AN8rxwBsa98D7GPwe1/7zyJsG9qm7GP1cG5ryPa8a9V4TGP6wc27ymxcq9HVnGP6bf8bzZ6cm9HPnFP6mDBb10sM691xLGP5NN/bxkudS9T1XFP1eiGb0Q/NG9u4/FPx77Fr0kmNa9MqzFP0jWD70i59i9cHvFP38kEr1c9dm9BrjDP+FC5ry0zd29jvXDP9lV27wze9a91xHFP6cAF72JW9q90ELFP+XaD71Y1da9WaLDP3OuxryAItu9ZeLDPxAwwLx4otW9+6LDPyUnvbxcNNi9YenDP812qrwwaL69U07GP9Ryxry71b29Zj3GPwrtvLyZ78K97jzGP9xCqrzVCsS9B2nGP6f3v7wB7HK97xLIP5ZSG7vFtlC9x+jIPwEZJzvSFGC9dZbHP0WKBbfFtlC9x+jIPwEZJzsB7HK97xLIP5ZSG7tkwmC9Mp7HPyBRDLyOB0a9Bw7IP2ZpxrspiIC9ycfGP/vBxbsgp4K9TnXHP53D1rtPzwW9F5jJP8/AXrzYmfa8bcrJP8cRi7yMwAO9hhfKPye9HryMwAO9hhfKPye9HrzYmfa8bcrJP8cRi7xK8em8T+nJP93XMrwptzq9/svGP30D0DymQT69vVTHP5H4mzye7zm9k8nHP+atszwptzq9/svGP30D0Dye7zm9k8nHP+atszypkSe9VXXHP0nqtDwFCXE758LIP7SKyjz99Nc7flDIP0qd8zwQM5s6acPIPxMZ7TwQM5s6acPIPxMZ7Tz99Nc7flDIP0qd8zx5FZG67jPIPztu9Tz8Yz684F7JP9e6xDyXGLO74C/JPzTF2TxAfwO8dSrIP50B6jyQtWi8U0nIP3cp0TwGCeG7pj3JP2eNiDw0hze6LxPJP/kpqjyXGLO74C/JPzTF2Tz8Yz684F7JP9e6xDyfCJG8xWvJPxYOqzybD528/nrIP/RCrjxngUe8xQPKP5ebTTxG5AS8RSDKP4ukEzz354S7r7TJPzYJBzw+FPq7Qm/JP9lQRjwSoYC8s4vJP1xowDtb4jO8dcbJPx5DWDtG5AS8RSDKP4ukEzxngUe8xQPKP5ebTTxgAAC9ysjGP+RnCj2mNO68RUHHP+8p+Dz02uS8TZbHP8PlDD1gAAC9ysjGP+RnCj302uS8TZbHP8PlDD03FNS8RTjHP19kDD3murW8ILTHPwJuAT1y79W8VDvIP0nIBj0mjMy8uMzIPwej7DwGdKK8hi/IPyZL1zxy79W8VDvIP0nIBj0ngOe8FarHP8X93TwT1ee8/hLIP063wDwmjMy8uMzIPwej7DyfCJG8xWvJPxYOqzyZzkK8qyjJP1d8aTwU5mO9p0zIP9zG1LzTyVu959XIP04W+LwArGS9kLXIP+dSt7wArGS9kLXIP+dSt7zTyVu959XIP04W+LzeIlW9z5LIP8J7u7zsfG69QvnHPwtgwrxcG329Z9rHP3kJirxcG329Z9rHP3kJirzCSVe9pmzIP5J/mbzX4YW9lIfFP1n6OjyMuYe9eczFP2WBzjupt4W90AXGP1cp6zv1TIG92xnGP9cUCDxE9Yi97/XFPw7HLTteBoq9sxDGP+9b87l+MYe98HbGP/fno7qSCX29EG7GPwijoTuQ93q9Hq/GPxfQaDpphw29qifKP9ZFn7uEvRS97z3JP7ckHLz9Du68xcHJP4k8wrtphw29qifKP9ZFn7uI1By9gfzJP0/TQrrgPSy9lLfJP7X6yDrFVi69RJHIPz5GuLsk0Tq9kLXIP/togTxlVkK9/aTHP2BDTDxm2Uy9UsnHP3+Bnjvbi0C9D/LIP+5OKDyLkDm92EfIPxgrnjyLkDm92EfIPxgrnjwpZSK9hv/HP/eIlzwItCK96lvIP7f+YTwk0Tq9kLXIP/togTzbi0C9D/LIP+5OKDyvQyS9d4DIP6PCDjzeyQK9c2rJPy3KuLp0BRS9E/7IP+s9BjvgPSy9lLfJP7X6yDqI1By9gfzJP0/TQrqvQyS9d4DIP6PCDjywziq9UDnJP9lV+Tuwziq9UDnJP9lV+Tt0BRS9E/7IP+s9BjspiIC9ycfGP/vBxbt7jI+9LQPGP82Ku7vUPJa9RiDGP7jxcrwXMZe9T6HFPz2HKLyJp7G9/ebDP+X+qbx+1a69brPDP/a7nLxGIHe9BEXHP6r/Q7xiOmW9YuXHP7NGaLzUPJa9RiDGP7jxcrxGIHe9BEXHP6r/Q7wgp4K9TnXHP53D1rugOJe9wCHGPx6ksryl8K+9ouDDP36nwbyFHYO9clvHP3wosrynAPW7gO3JP6nvhDqu6KC7ZSXKP86h67rcqa67czbKP6e0hzvmkEy73f7JP+JBljpbQTW7GOnJP2Eodzvcqa67czbKP6e0hzuu6KC7ZSXKP86h67p8k8q8piDJP0q+xjybD528/nrIP/RCrjyjf/G8O1fIP/bbojx8k8q8piDJP0q+xjxiU4+8k87JPyBTfTyZzkK8qyjJP1d8aTzrtqm82D7JP+tf6TtiU4+8k87JPyBTfTx+BxC9RlDJPxiKTjwHeQ29a5DIPzyzWDydFd687ljJP2l0kDwcys28RSrJP76u3Tt+BxC9RlDJPxiKTjwr9AG9Vy/JPyK/hzudFd687ljJP2l0kDydFd687ljJP2l0kDxcvq29vpHAP0L7gTy0uKm9xrzAPy5pnDwNqrG9T43AP9emijwNqrG9T43AP9emijy0uKm9xrzAPy5pnDwNua69IVbAP8Z/izwrRti9SrC+PxYWnLyUutG9wAS/P6D8Zry4Oda9e+6+P4fXSLwrRti9SrC+PxYWnLy4Oda9e+6+P4fXSLz3YtS9D5K+PxATQLxLqL29Fd27PznX9zyXS7+9YBe7PwYHBT3P3MO9vbG7Pwlp8TzhDMW9x2K7P9hV2TwZ0Mq9RAu9PzykqzyH+8e9/GC8P68Gzzwwl8m9QMu7P1M0rDzdVMy9O2C8PxAJhDz5Vr+9Czq9PxNSujwNo729CY68Pz5K3jwdtcu9oZe9Pz7jhzwXOMu90A29P0//STzC2MG9dXC+P+Q1ujwXGLu94MG+P8T6zzy8ELa9/T++P4m/zzzpMLy9z9i9PxmrtzztsLm9XdO+P7d3kzxQyrS9Jwm/PzC0sDwXGLu94MG+P8T6zzzC2MG9dXC+P+Q1ujzSPOK9Cmm8P/XcFbz7b9y966K8P5mcirtMF+C9e1u8P1QnuLnSPOK9Cmm8P/XcFbxMF+C9e1u8P1QnuLmC/Ny92fu7PxSv/zi+dNa9yhO8P5yN4juZ+Nu925O8Pzd5qjtAwda96gm9P4cDEjxiwM+9PIu8P5nHNDyZ+Nu925O8Pzd5qjtmtNe9nOq8P3eqabqcFdO9MFC9P1K2vTpAwda96gm9P4cDEjwdtcu9oZe9Pz7jhzx0HMG9kqG9P3lMnDxtQbe973DAP8r8cDxCeLC923zAP0kdWjzeGbO9MxDAP9K6bjxtQbe973DAP8r8cDyHAL29u1bAP+TRMzzFor+9XGHAP1xCyDsGXbS9meTAP6+Rgzs127O9C4LAP1uZEDyGJdK9s4+9P4GVKDwXOMu90A29P0//STwPNM+9Xs+9P6MTDTuGJdK9s4+9P4GVKDy498a9BUW+P9+zljx0HMG9kqG9P3lMnDwJvr29ptO+PzDFYDy498a9BUW+P9+zljyT4s+9UHG/P9DMvrt8ncq9AHu/P3J5JrwO3MG99UXAP2Lo9Ls9jcm9ivK/P6pqYLtLdNO9WSa/P+a4D7xLdNO9WSa/P+a4D7x3/8+9Ca++P5jF5btp9cq9Xfm+PziffruT4s+9UHG/P9DMvrs9jcm9ivK/P6pqYLsdvMS9Sne/P9eq5bqAUMu9NGq+PwpN1joJ98y94GK+PzTGHzwJ98y94GK+PzTGHzwJ98y94GK+PzTGHzw9+L69sL3AP/rXgbovBry9t/XAP3Ny+Ls9+L69sL3AP/rXgbo9+L69sL3AP/rXgbpzdre9yYTBPwYrB7yEKba9h73BP3MrjLvm0Me98va+P+BTKTkdvMS9Sne/P9eq5boEOsa95eG/P5iSCjvQOcq9ED6/P9jlqTskIcC9Vxa/P7f0Fjzwari9INW/P1hFKjwBi729U7q/P1uwnjvFor+9XGHAP1xCyDuHAL29u1bAP+TRMzwEOsa95eG/P5iSCjsBi729U7q/P1uwnju1yr+9Bku/P2oT7TvQOcq9ED6/P9jlqTtpPrC94MvBPzt4s7oVP7K9FXXBPw4qdDmdC7K9DzTCP0bZJbx+k7K9Vy7CP8LSxrsFD6295ETCP/TlaLt0fbC9wki/Pz0AyjyAV6y9FJ+/P4I32jw8zrO9Oye/P4dA2TylQ669Rz2/P4+13zy0frC909a+P4SV3Tw8zrO9Oye/P4dA2TyAV6y9FJ+/P4I32jykKbu9soDDPyAPmL3twrq9/JDDPxmsir3eAcG9yV/DPzeCir2kKbu9soDDPyAPmL3eAcG9yV/DPzeCir3CbMC9OAnDPwazjL0P28O9SrrCP9WWfb0mSsW9xFLDP5PKdb2X88e9i1fDP3AjWr3dzcW9HJrCP5TNX70mSsW9xFLDP5PKdb3Gxbq9+6fDPzeUer2KwLu9ibnDP+xdXr2X88e9i1fDP3AjWr13jce9IWTDP2nZQb0JssO9uMLCP2egRb3PcbS9BbLEPyGRUb3PEru9NAzFP17rRL1VyMC9tJXEP83YQr0TKrm9+SbEPwEFUb3PEru9NAzFP17rRL3gprS9FLzEP/IbNr1VyMC9tJXEP83YQr1CR869xIvBP9WGMr2cbNK9pi7BP2k4NL2nTdK9ua/BP6X1OL2nTdK9ua/BP6X1OL2cbNK9pi7BP2k4NL3bvc29Ho3BP9zPQr37q869Pn/CP0CrOb3yutC9MhTCP+Q5Or0cEsq94N7BP3nYSL1T78a9x0HCPw9YSb2bQ8m99BDCP6rLK73yutC9MhTCP+Q5Or37q869Pn/CP0CrOb21oby9ArbDP0dvS713jce9IWTDP2nZQb3NVsu96vfCP3u3M70JssO9uMLCP2egRb3YKsW9BpfCP+5RH73NVsu96vfCP3u3M71AGsS9YRjEP8/pOb21oby9ArbDP0dvS72p2rm9fR/EP5shKL1AGsS9YRjEP8/pOb0E/ca9pX7DP51FJL0E/ca9pX7DP51FJL2BV8K9G+DCPx2TD72z0rS9jzjDP2zYibwZXbO9bsHCPyuih7wNvry9JfDCP+bB27x8gb+9hnDDP65m5rzmpbu9tOrDP58cGL1m8re9NKjDP5eF5bykBa+94F7DPyR0jLyz0rS9jzjDP2zYibx8gb+9hnDDP65m5rwE/ca9pX7DP51FJL2Uv6y9c9PFPxKLO73Z06+9mWnFP4aNPL2VKrS9uXLFP2rvQb23FLC9ZUXFP8bdSr1mdq69BpfFPyHwQ72VKrS9uXLFP2rvQb2Uv6y9c9PFPxKLO72HVEy/xUHpPk7SyT7pVky/YjfpPqjUyT4mUky/iUbpPm3WyT7pVky/YjfpPqjUyT7pVky/YjfpPqjUyT6YVky/IETpPj3HyT6YVky/IETpPj3HyT75WEy/vDnpPpbJyT6HVEy/xUHpPk7SyT7pVky/YjfpPqjUyT75WEy/vDnpPpbJyT5aW0y/+DTpPnfFyT7pVky/YjfpPqjUyT6HVEy/xUHpPk7SyT75WEy/vDnpPpbJyT75WEy/vDnpPpbJyT7pVky/YjfpPqjUyT7pVky/YjfpPqjUyT6HVEy/xUHpPk7SyT5aW0y/+DTpPnfFyT7pVky/YjfpPqjUyT7pVky/YjfpPqjUyT7pVky/YjfpPqjUyT75WEy/vDnpPpbJyT6HVEy/xUHpPk7SyT7pVky/YjfpPqjUyT7ZVEy/BzXpPrrfyT7ZVEy/BzXpPrrfyT7pVky/YjfpPqjUyT75WEy/vDnpPpbJyT75WEy/vDnpPpbJyT7pVky/YjfpPqjUyT7pVky/YjfpPqjUyT75WEy/vDnpPpbJyT6HVEy/xUHpPk7SyT7pVky/YjfpPqjUyT75WEy/vDnpPpbJyT6YVky/IETpPj3HyT75WEy/vDnpPpbJyT75WEy/vDnpPpbJyT6HVEy/xUHpPk7SyT7pVky/YjfpPqjUyT6tW0y/OyjpPuPSyT6HVEy/xUHpPk7SyT75WEy/vDnpPpbJyT7pVky/YjfpPqjUyT6YVky/IETpPj3HyT4mUky/iUbpPm3WyT7pVky/YjfpPqjUyT7rZrM+NlvvPjLETz/ABbg+lbX9PgluSj8Tnq0+e17YPnYqVz98IME+MZUUP3TBOD97dp6+cuwevzplOD+oHBy/gn1AvzJCgD4kEgK/FPo7v2B/5j4J/mW+hiMKv1u4Tz9tzkS+F/4Bv1T7Vj+ff3u+YCEQv04DSj8DtpU9qyQovrPUez+LNVq+bc4Gv9WuUj86yfa9E+fdvrCiZD/MmjM+YpyAPN7/ez/Vlr8+fG9PPxnp5j5SW60+1+ZnP5NMgj5U654+9n+kPgMJZT/VybA+BYXnPjmHUj/ixII+R4J3P/Tv67p7glU+hLV5P03Skb2EzSo+9xV6P1vOCL4Z9A4+t2x6PzNKHb58+D2/Qasqv/bxjr1xP0e/PhsfvzKvtr1FeES/B8kgv/itA7521TW/YB40v5t8rryFzIi8XrhmPxKv3b4oxw+9QQ9jPynK677Vp2g8vHhrP/PByL4lfsi9MGtWP3iYCb/w5b8+C+wQP670Oz86zl0+NsaPPXhGeT8oqJc+YF6LPi5faj/oqsI+xbMsP735IT9w7MI+P701Px2vFz+nU8M+E6glPwr8KD+mnp4+vg5uP6P1Sj59QsI+QFAwP5UpHj9zYsE+441HP2rZ/z5Sa3Q+g5d4P4i0BDxUzJ++19keP3grOL/kn96+PPnkPooYSL+B3KQ9Lm1zP8sImb4Pitu7v5FoP2r11b6E8xG/QatTPq6NS79Cyh2/hYgOPkVqRr/GJCe/6eadPb/lQL92jCy/lhFpPZKMPL+lULg8NOZqvlsbeT/OMBm9PI51vpNYeD8NyP68GRyPvuCqdT9S65491jhBvnydej9+Zca+GqUrv+P3IT+gxbq+0aUov2NxKD9mHta+fG8wv7d5Fz/Tapi+lZ0cv7qdOz/pVEW/CRauvnnpCb9Zsxq/5rkaPr1ESL9HWjG/gwA8vSg9OL+gzki/EkfjvpnM3b7X4Ui/fmb1viVEyb6eCki/53rWvrvN7L6NWDe/QakyvyryMDuWJEm/y+LpviSP1b4nJke/ig8NvxChmr5tWiW/uBU9v6miRT7rO6y9+e3JvglDaj/PJ0I9iKJnvqYReT/+dfa+DN84v19Y/j47fsy+1EItv4VPHj+oWkY+xrYEPIokez9+tV4+wwi1PWPYeD84vXQ+btEiPr05dT+b5XI+WgVFPm7Ecz/r+OC+myfvPqxtRL/DtOS+uv0DPwUvO7/RkdG+u9YHP60CPr/vO+q+XJzPPuOXSr+EL0G/Rn5yviSnHL9yZ0K/IduIvn7bF79BQz6/lJxEvs0SJL+g1UW/sZq1vjG7Br9CjrG9l8xYP5hRBr8MUmM+FSh5PxY/cb0EJeQ9t+91Pzozgr6/HTi+pjJFPySfHL8T/Vi+5QE9P0brI79UGx6+A5NKP2FzF7+JgfW+J9vKPhtzSL/F1EW+LjJCP+JNH784No++6XMpP3MHMr/mLBW/agJePj2BSL9XOUW/cY4Vv/O2gr5V2jm/TE4vv96igb1PHja/yAe9ve5aMr8zakC/5pdhvtcoH79bwCG/TYZAv3AdQD4cdxu/RHU/v5tDiT4xmhS/NqM9v78ZrT6lhhO/hZ06v9ssvT7GjqY+xo5nP3EpjT4V8JY+pMJlP63vpz6ok6c+hhlhP7AmsT4DHqk+oaBrP3wfVj6pqQ6/2ESUvRTBUz/f4fy+V8uyPW54XT//SSq/owcsvXnYPj9s0u+94u9XPyMyBr8fbni+13hNP69/C79oEyG+da1JP9ZyGL/tya6+oVwpP2HsKr9qhBq/XCOXvZA7Sz9IMiO/qu1JvYbVRD/dp0a/FWX5Pnoozb47Akq/m1j3PoBAwr4NX0S/JFQAP4z/zL7ku9Y+gbtnP1l+jD0kYpQ+Q4ZuP1YPYL6h+7w+QOFtP1IAkTxZhni/aW/wPYY4Vj7ZrXi/rtQJPoJLSD6w7Xi/aNUFPnEJRj6Qhkk+JMHKPvObZT8SjHU+5rXvPoq4WT/U04k+kgX/PiwEUz/NS9U+s0BgP0jueD6xfvs+XIJSPw8Zkz4bO9A+ltdiP7+iYz7ez7O9rp+JPkmNdT/dYio71WNmPoBveT+jtwC+mIqOPqPDcz9dhb6+5lOWPjFqYT+j7We+AUGePpV1bD/6eJi+n8eYPqQjaD+sS/W+2Ll4Ps/uVz9+igo+y7x8P16dq70fUJ4+XSFxP6M/Bj7+mYo+F9F1P4pKjD1NZyY++Xh8Pxf1/bw2Puy+dHZCPv3aXT8L2fS+PBsRPj3iXT/zuvQ+Vm3SPmm6Rj8nCxM/iIESP3vVFT9dqBU/ADsQP/BzFT9dRts+3LqhPpq9WD9iJeC+hohePzsaa74Jit++93VgPwRWTr7/auu+sHdcP3rMXb7ixty+vi9dP/8Rhb77fWG/YOfwPgYMV72acmu/vfbIPqEK+TspkWy//x7DPpwb6zzRXDG9tiWXvaQPfz8ztgQ+dmRMPfGEfT+0zXs+SFK4PUcRdz/LShw/OnKsPnSBNz8oIfY+DiGDPvmwVj/pBzI/f13zPgr3CT+kizg/AhYIPyqu4z4wBHC/AzKiPm4KEz4CG3O/Bd6VPrwt5T3sIG+/7/GBPguQgD4XJWa/zmezPr+Ahj4mY0w9Cwh6P9fOVb7LysM8oP51P0c2jb7dfGK/SfGlPgGGq77QHnO/PnpUPkM6cL5bqV2/doS4Piuosb76MpU+8FNFP7kGET+pqZM+Ju1vPx3PSD7z/l09HzJhP3vp8T5XwkW/wR0HP1PJtL7XYSG/1GFBP0kXNz79UXw+bW/0PobqVz/R0K++jHVdP6M7uz6gEDi/4VkFP4mS6z6qzGO/K/m1PnR9kj6bjjW/1V8XPw2PxD4xifC+u1c5PwBOAT9C016/LkDVPtVmhj6dcVW/BXHmPg67oz5Piyy//tItP/79lD5ZMOy+QmRNP8PywT5nId2+OZFcP4mMiD77j0C/fA78Pk1B4L6Gjz6/gJj3PtTE677Hx/Y+BJhLP3hCvD76EwE/BE40Px7a/z4dGjG/8kj/PrC1Bb9FkAC/do8SP//pJb+E4hS/GCIKPwnZG7/bTnS/XJnuPfnajD5VUna/BADvPTkBfD5vJWO/DhKDO7kh7D5IUV2/P2VMPV8HAD9uh3i/azwOPgYySD6PvKU+8s4YP5ruOz8o5Mw+hZwsP/vjHj8qy/Y+xUdWP9yPhD6GTOY+6l5JP8aT2D6U0eY+aVxkP3rlAz0a1uE+y4VlP8TVI73z59M+R68AP05LQj+Ky0M+0/mRPmFxcD8eyHY+DVadPuGraz98kdY+WS73PqDaRD+IexO/x/IwPOs6UT/0Ngy/WYsOPMYsVj9IhUk8UVl0P/WSmL4urou9fvN1P/muib45s+i+LQVhP77CEz5Tw02/oEL2PjpLsz4VzEC/dQgNP2AeuD4cpUq/gCvDPo6G9D7+sle/iAf5PhvYbD6oVTK/AUnyPZImNT8GGeC+I6cWP3IGLj8JnKS+8lE5P4tDHD/mHti+k+tEP9ec9b7jnZy+uNdOPxPrAL+t/9K+b/dGP8h18764tkO/QAwjP7CSy70MTEi/Ik8QPziHh77OGSy/jrQyP35nfL55agq/87tSP3l0Mb5L1yG/xEVEPwYr5b1LhRe/XGlKPzNaIL7rgCI/uaZFP+sf/TyZnSw/NjkxP5mhgz7tqCU/Xac5Px7ZcD6gOBU/zd5PPwzC9bw8cTg/6EMnP2T4bT7a9TU/+hIvP9mLKD5P2VW/9o+3Pshc1T4Xp1i/XV3cPnu3oD7OLKc+rOkqPrQqbj+LX5Y+iRbIPbFtcz/+TLW+ifBmP0SFfL6PVdC+YSJdP8IdmL6K/xa/TvUwPBC1Tj/VyyC/zIcWPuCcQz+GSD89h/t6P2P+Q76YbgG8IQ1+PzSy+719bDy8Km18P+oXKr6Spay9iiJ8P0HUGr7rCrm+mqIWPue0az+KUFe/3uW7PlN2yz4GlDq+UrB2P6QySL7951W+oo1xP1eUg7504z++nUl1P0WVXb5oxe++9PGyvs2+Tz/tm8a+nsaNvvENYT++xuW+8N+pvpVrVD+nPtu+YH1iPxuGPL4ZYve+IthYP1PNYr7vZOS++6hePzgOWL76NXG/shKFvslgWD4NtGq/jmtrvngrpz5/xme/zD9gvoxCuj7gEsm+LLPSPtiLUj/PwDq/MwW0PVmlLT8VkDC/+1BaPtAmMT97lG+/XC0dvjxmoj5721m/VX1/Pr6Y7D4ww0W/PBVuPrRFFz8KwXa/ugqkvbQLgj4VIX+/s2SqOkXBqD3ECcS+HM0YP91/ND8KQNO+msD5PpfwRD/y9H+/d5Ggu8AAkTwiyH+/fHylvIh2E724Gw2/SjC7vmAAQD/UL6q+9ZhZvlY8az9Ce8e+st1Xvt+CZT/L3iC/7Ze9viUhLz9E9wm/5+VWP7gpjz12khm/zrFMPxgx5rx3xhu/7dNKPyAXN73gRw6/Pf1SP+vQ3j0mCCm/fgw+P12l6D3dmzG/aCM3P+/6qT12XjS/Nbo0P12nkz2CyWO/QpTlvrrfrT2t41+/9IzTvtnwgT6RIVy/cW/OvghOoD6uqz6/aD+GvkcVHT81X0y/8ieivrQgAz/hZSS/r34Ivo0/QT8BOxO/3o6GvdS/UD//jEe/f1sgP7yWfzvUt0C/w1goP9CR7Tzi3FW/W1AMP49YKL3Jb1u/3EUDPyaaRL0l8Li+el8pP484KD9D17S+XdQrP2bWJj8loTS+/W97P4TphL3TkAK+66d9P9HeNb01HA6/2JbUvlGBOD+qXxu/rufhvlU5KT+Tl5C+2aZsP4Q6gz5Xg/6+B0ZEPxsG0D5GGIS+4Y5SP+fDAT+Qj/69oF14P/cWVT7o3um+3f2QPZ8CYz93MNe+kj3XPWy6Zj84wWW/M0ffPjgqh72mX2m/8MXPPgfxhb2NKES/oszUvvPk+j4+yUu/LGHJvhyI6z52RO++VetXP4Gvhz7fPQi/PSJLPwYklz6koSa/qcMzP4G2k74PSxq/XLk9P5lzl774cDu/0KEUP0NStr5bOUW/FYcXP2+Wcr4Rpwa//+pPP705gb4gWFy/Z7QqvhJH9j4nuFC/aY8TvgqRDz9+miW/vr0fvVf3Qj/B3zq/6NKavS/lLT9dwxC/HaXoPIIDUz9GmQm/8kgdPQSnVz/q7nK/U0CPPnsWFb70q1m/mV2pPp2b0T4bqlm/RWmpPtaZ0T5LqFm/9mypPmee0T6mIxW/lhAEP2nJID9knVa/kd8CPyzaQb6OWG2/aIqyPmt/DL65V22/yImyPiSZDL65qmS/bg3kPgKver3IoU2/NAsKP0aLgT5Fsmy/K7VVPm0so75Wbma/o1ZwPo3ou74AzWm/V7dePmxUsL4brnO/JBFDPiXbdb6KLtu+lgY9P/dlBT8N5kS/JLrgvr3V7T7EUnW/nMtuvu0pKT79gm2/SrOovmxMMz6qMUW/74n9vvy3zT79k6e+WCwUP/o0Pz9S8qO+fFsTP4qeQD9vNaC+7lknP2hjMD9DA7i+JqkjP1sHLj/k0x6/O6sRP/UqCj/XzwW/BF4rP6AkBz/dc2a/DvTdPnMqKb3/7k2/Iv0JP6Kzfz4V8x+/CrYUP0qOBT9uSya/Kok/PwdXCr7OGjC/uEExP0jTXr6Q1ii/il87P7BQL754aaC+HVkoPrtwbz+wP7W+3UACvcNIbz9QYaG+177sPJPWcj+g1Ku+f4WcPrgZZD9tWuK+3jFlP3d1YL26TeK++89kP2Vxm72oP+a+gspjP7i4nr0sfWu/AJBtPaeZxr5AzHG/H4D7PJRtp76a+3O/RAHVO+j9mr5SEnq/1UquvRUFSb68pHi/l38VvfbVcL6ocHy/zAgKvnwQx72mJXi/vW14vvBiIT2F1u2+LVhhPw9Cxr2+mOq+ZE1iP48Nvr32Wei+MXZjPy+nir2sYuq+U8hiP4M1mr1cHXG/JM2hviTl6T2dBmq/fCvBvjDAFz450uu+1p7JPo+kS7/1Edi+li7SPkLuTr91mBm/ISYgPg3aSL+zziq/5v+yPS1ePb+dc/m+VTTTPh0MRT+mU/a+/x0IP0FvMj/off2+EFQTP32hJj/iyhC/BY0XPvWwTz9iJgS/IXh+PmrSUT/maBq/H2M3PgX6Rj/6lz2/BgkKvTrNK7/aZUK/tQoxvu2UIL+njTu/7w8+PBY3Lr8+Zhe/M0muPiAjO7/z+TG/JvEWPukZNL/6KSq/e71SPizcN7893hK/J+jKPn+AN78qOjO/dbraPdS8ND8jMy2/DIRWPsm5ND8i6kW/35K6PSaxID9MQuK+pEdlP0GsT70uXOS+mMtkP0kGRb26c/6+if8MP2GqK7+wygC/oKgTP17CJL+KRVi/4BIDvT27CD9yfV+/KGWqumO0+T5o/ES/TR7SvaFgIb9LB0u/qHrhvaFdGb/JK+O+1rg7P6bjAz/WGAG/zcs7P6dC6T4GtHi/MIQNPsc4RT4ls3i/550NPhQ4RT4Kb2u/Xv3/vSWcvj6LKGi/MOApvopXxj6MGWm/D30Zvg1DxT5aw2m/Ed05vjnjuj6JD22/yT45vgOhqT6flPi+251RPxfUnD6Ee8O+2ZBfP5Humj49uqm+VZVjP4W9oT5vd7y+7dFfPwn/oT5V2u6+ouNXP7iaiD4uz9m+jSxWP+KxsL5m2AC/y6stPt7oWD+RWf6+lLyfPihTTz8n6vm+d6J4PnicVj+qIdW+vL0LP6AmOr+7LsO+8RUvPxc9H78CBce+THMZP7ogM7/EKsm+ofJBP79tBb8Guig/rE+mPpvqOj+sT6Y+niQpP3DIoz6eJCk/6NaoPl9BLD+cLK8+8sczP6YFmD7uzzE/9MuWPtlZLz9kBbY+B0otP4ADsz4HSi0/2JuZPtlZLz/omZY+7s8xP2TTtT5fQSw/uHKdPvLHMz+0mbQ+nuo6P9jpgT7/pjk/DL+CPlKpOT8Mv4I+eX42P3z4iD6cxTM/pgWYPr8oMz+oFZQ+FhIzP3Apjz4GkzQ/0gmLPrGQND/SCYs+vw8zP3Apjz4VKzM/qBWUPiN8Nj98+Ig+nuo6P4i1yj5SqTk/TODJPv+mOT9M4Mk+I3w2P9imwz4VKzM/sIm4Pr8PMz/odb0+sZA0P4CVwT4GkzQ/gJXBPhYSMz/odb0+vygzP7CJuD55fjY/2KbDPpzFMz+0mbQ+sbcoP6xPpj5OIik/6NaoPk4iKT9wyKM+BT8sP7hynT6ZzTE/ZNO1PoNXLz/0mZY+rkctP9ibmT6uRy0/gAOzPoNXLz9wBbY+mc0xP/TLlj4FPyw/nCyvPpY9Kj8+LL4+lj0qP/BBuj7XKSg/8EG6PtcpKD9CLL4+lj0qPz4svj6WPSo/wD7BPtcpKD/APsE+1ykoP0Isvj6WPSo/7EG6PtcpKD/sQbo+lj0qP/Q4sT6WPSo/KMyzPtcpKD8szLM+1ykoPyg4sT6WPSo/wD7BPtcpKD/APsE+lj0qPyzMsz7XKSg/KMyzPpY9Kj84KcY+1ykoPzwpxj6WPSo/WJDJPtcpKD9ckMk+lj0qPzwpxj6WPSo//IvJPtcpKD/8i8k+1ykoPzwpxj6SPSo/Qiy+PpI9Kj/sQbo+0ykoP+xBuj7TKSg/Piy+PpI9Kj8+LL4+kj0qP8A+wT7TKSg/wD7BPtMpKD8+LL4+kj0qP/BBuj7TKSg/8EG6PpI9Kj/0OLE+kj0qPzDMsz7TKSg/LMyzPtMpKD8oOLE+kj0qP8Q+wT7TKSg/wD7BPpI9Kj8szLM+0ykoPzDMsz6WPSo/OCnGPtcpKD88KcY+lj0qP1yQyT7XKSg/WJDJPpY9Kj88KcY+lj0qP/yLyT7XKSg/+IvJPtcpKD88KcY+lj0qP0Isvj6WPSo/8EG6PtcpKD/wQbo+1ykoPzwsvj6WPSo/Piy+PpY9Kj/APsE+1ykoP8Q+wT7XKSg/PCy+PpY9Kj/sQbo+1ykoP+xBuj6WPSo/9DixPpY9Kj8wzLM+1ykoPyzMsz7XKSg/KDixPpY9Kj/APsE+1ykoP8A+wT6WPSo/LMyzPtcpKD8szLM+lj0qPzwpxj7XKSg/PCnGPpY9Kj/4i8k+1ykoP/iLyT6SPSo/PCnGPpI9Kj9ckMk+1ykoP1yQyT7TKSg/PCnGPpY9Kj88LL4+lj0qP+xBuj7TKSg/7EG6PtMpKD9CLL4+lj0qP0Isvj6WPSo/xD7BPtMpKD/EPsE+0ykoP0Isvj6WPSo/8EG6PtMpKD/wQbo+lj0qP+w4sT6WPSo/LMyzPtMpKD8szLM+0ykoPyQ4sT6WPSo/wD7BPtMpKD/APsE+lj0qPyzMsz7TKSg/LMyzPpY9Kj88KcY+0ykoPzwpxj6WPSo//IvJPtcpKD/8i8k+lj0qPzgpxj6WPSo/WJDJPtMpKD9ckMk+0ykoPzwpxj6rgTE/zDtrP6Z1MT84w2Y/Gk4vPzH1aj+mdTE/OMNmP6uBMT/MO2s/OPkzP2jtaz+PczQ/eERpP7v3Lz9w6G4/zZoxP/kbbj+AZTk/IJZkP1W3Oj8q22M/WUI4P29AYz9ZQjg/b0BjP1W3Oj8q22M/DDo5P3ZfYj+SDSk/tpllPyoNKz+me2Y/wlErPy88ZT+SDSk/tpllP8JRKz8vPGU/uJUqP6YMZD/7HS0/zK9TP6tpKz+arlI/wPUrP/ZsVD/A9Ss/9mxUP6tpKz+arlI/5JkqP4/TVD9+MC0/WxZYP9GuLD/YW1Y/52AqP2vfVj+m0yo/5dRYP5pTLz/691Y/3kwuP1UZVT/Rriw/2FtWP34wLT9bFlg/dbItP3b1WT9Tpys/1pxaPx2DMT8+WVk/oJwyP3qPWD8HtjI/GjVXP3ozMT/6rVc/ogAzP2TjWj9A4zM/VtNZP6CcMj96j1g/HYMxPz5ZWT+GoiY/tM1eP8IwKD9W414/ggkoPweOXT+GoiY/tM1eP4IJKD8Hjl0/gTknP7MZXT/AeCg/6NhbP9I6KT+LD10/xpYqP1jQXD8eMCo/FwVbP9I6KT+LD10/vHYpP7riXj99vyo/ANpeP8aWKj9Y0Fw/dbItP3b1WT9G3S8/MmtYP09TOj8+zW8/N208P/7sbj91tzk/j0puP3W3OT+PSm4/N208P/7sbj9GQzo/4RJtP2rDOD/0OXA/NCc2P5WBbz80JzY/lYFvP6eEOD/er2w/jgsoPzSVbz91NSo/w/lvPyc/Kj+lLm8/rvgpP3lMbj/jpSs/5FJwPzbPLD8itnA/4LEtP7S2bz/CoCs/9rdtP09uLT+8om0/7sA2PyFEYz+PrDc/MqNlP96YNz82kWE/7sA2PyFEYz/FVTU/5rNjP/k7ND+8VWQ/MH41PwReZz+WjC0/eShlP+DeLD8iXGc/46suP1XBaD/z7S4/nollPxdxLD95HmU/F3EsP3keZT8kISw/rZZjP/ifLT8Jh2M/lowtP3koZT/z7S4/nollP444Lz/vhWM/DY41P39tYT80bzM/DPdhP/k7ND+8VWQ/xVU1P+azYz+OOC8/74VjP6zgMD9uIGM/rOAwP24gYz80bzM/DPdhP7v3Lz9w6G4/h10uP5hGcj8+YjE//2N0P+kcLz+Ui3Q/5bkuPwyefD+3xC0/dFV8P0LVMz9IrG4/9vU1P8JJbT8+YjE//2N0P0LVMz9IrG4/zZoxP/kbbj9BgzM/vft1P5S9Lz9SIH0/N4g2P7HJcT8UnjQ/Ov5YP05mNT8UPVg/H+wzP8IeWD9KwjQ/wo1XP8wZND+CJVc/H+wzP8IeWD9OZjU/FD1YPwPiKz9kxFw/U6crP9acWj+42Ss/uBJfPwPiKz9kxFw/2mEwPw6JWj9G3S8/MmtYP9F0Mj9vRFw/2mEwPw6JWj9Vpi8/OqJgP3itLT+wmGE/TEUuP8I2XT/gWTI/coZdP1WmLz86omA/DQszP8DaXz9MRS4/wjZdP0xFLj/CNl0/paonP2mscj/2ICk/WAlyP85RJz8M5XE/zlEnPwzlcT/2ICk/WAlyP1SfJz96F3E//wIWP4VacD/QPxg/x3NxPzy4GD85b3A//wIWP4VacD88uBg/OW9wPy2/GD/aSm8/ON8jP0HfYj8nPyM/PLFgP5C6Ij+ksGI/7HIhP+9YYj8wgSE/3xxnPx8VIj9u9GQ/hiEgPws3ZD9oTx8/JFRmP/R7Iz8mUGc/C/EjP6sEZT9d8yA/TQtpP30PHz/TeWg/DHUkP+aZaj/X6yU/J9hqPy8UJj8+WGk/AGEkP3zmaD+KdyQ/rcdsP0kJJj9dl2w/1+slPyfYaj8MdSQ/5plqP1TxFj8OKmo/CNwYP3hqaj9NjRk/JwtpP1TxFj8OKmo/TY0ZPycLaT/TbBk/2/1nP2jDGz9XSmc/Z28bP+TYaD/AJx0/QlBpP03FHT/hq2c/Z28bP+TYaD+LXho/lcxqP8y5Gz9db2s/wCcdP0JQaT9d8yA/TQtpPwPjIj984mg/nAUmP87jcT83jiY/1B1zP8wqJj/SknA/nAUmP87jcT/tXyQ/OgtyP/+jIj8ioXI/nCYjP45odT+P1CQ/b95zP6htHj82Nmo/fQ8fP9N5aD8Dzhw/EHFsP6htHj82Nmo/xt0iP1nPaj8D4yI/fOJoP3f4Ij+ZUm0/xt0iP1nPaj/8mhs/sEVxPwBmGj9Vt3I/aMQcP6qodD9rRR0/3nFyPyA2Gj+Bu3A/IDYaP4G7cD+IxRo/JC5vPxlvHD9AuG8//JobP7BFcT9rRR0/3nFyP2QEHj/L4XA/CakdP2DcbT/d9R8/XSBsP931Hz9dIGw/3fUfP10gbD98AiA/cpR0P/fOHT+DvXY/fAIgP3KUdD98AiA/cpR0P2A7Hj9BzXg/UCMgP2H1eD/Q9h0/j2FvP2QEHj/L4XA/R9MfP8cucT/jxx8/6whvP8/MIT+Pcm4/dSIkP6pkcD99vyE/Br9wP/+jIj8ioXI/7V8kPzoLcj9H0x8/xy5xP32/IT8Gv3A/bZ0hP5w7bz/jxx8/6whvPxr1IT/IRXk/lDMiP77Jdz8sRB4/LJZ7P6DzHz8t5Ho//JshPylZez98hic/cFlsP2bpKD8NYWw/bF8nPwRtaz8YYig/bl9rP8eoJz9Zbmo/bF8nPwRtaz9m6Sg/DWFsP6LCFz9EGVc/7IAWP4j6WD/ggRc/BJRZP6LCFz9EGVc/4IEXPwSUWT/Mexg/inJZP6GdGD98Alw/JuEWP3c3XD8kKxY/U25eP1g0GD+Ii14/JuEWP3c3XD/1TBU/yO5aP5Y+FD+hJV0/JCsWP1NuXj+oVhU/+E1gP/wuFz8VkGA/584QP9OBXT8bMRA/pCNfP8R4ET8jtF8/N3YSPzP5XT8bMRA/pCNfP+iUDz+Nz2A/xHgRPyO0Xz8Akxk/6CxkP9O9Gj8iAGQ/r6UZP7RQYz+vpRk/tFBjP9O9Gj8iAGQ/zToaP4RlYj/pxRc/PJFiP9nFGD9U6WI/uI8ZP2h7YT8qlhg/Mu1gP+DuFz9+RmQ/2cUYP1TpYj/pxRc/PJFiP6m3Ez9Yul4/qFYVP/hNYD8IZRY/fnBiP/wuFz8VkGA/8jQWP5KDZD8IZRY/fnBiP4CfEj/SpWA/qbcTP1i6Xj9hLRE//FZiP4CfEj/SpWA/0zcUP2LDYj/TNxQ/YsNiPzgFFT9UXmU/jXsRPzGPaz9EpxI/fEJsP3zDEz9XQ2g/hKcSPzcoZz9MthE/ZrljP24xET8sNWc/tFgQP0qKaz+NexE/MY9rP4SnEj83KGc/0zcUP2LDYj/l/Qw/dppeP9wIDj+mWV8/YrcOP8jKXj9Q8g4/UapdP9jkDT9DG14/YrcOP8jKXj/l/Qw/dppePwIAAQAAAAEAAwAAAAMAAQAEAAEABgAFAAgAAQAHAAoAAQAJAAEACwAHAAkAAQAMAAwAAQACAAgABAABAAYAAQAKAAsAAQANAA8AAQAOAAEAEAAOABAAAQARAAEAEwASABUAAQAUABcAAQAWAAEAGAAUABYAAQAZABkAAQAPABUAEQABABMAAQAXABgAAQAFABsAAQAaAAEAHAAaABwAAQAdAAEAHgANACAAAQAfACIAAQAhAAEAIwAfACEAAQAkACQAAQAbACAAHQABAB4AAQAiACMAAQAlACcAAQAmAAEAKAAmACgAAQApAAEAKgAlACwAAQArAC4AAQAtAAEALwArAC0AAQAwADAAAQAnACwAKQABACoAAQAuAC8AAQASADMAMgAxADQAMwAxADcANgA1ADgANwA1ADgANQA5ADoAOAA5AD0APAA7AD4APQA7ADQAMQA/AEAANAA/AD4AOwBBAEIAPgBBADIAMwBCAEEAMgBCADwAPQA6ADkAPAA6AEAAPwBDAEQAQABDAEQAQwBFAEYARABFAEkASABHAEoASQBHAEoARwA2ADcASgA2AE0ATABLAE4ATQBLAFEAUABPAFIAUQBPAFIATwBTAFQAUgBTAFcAVgBVAFgAVwBVAE4ASwBZAFoATgBZAFgAVQBbAFwAWABbAEwATQBcAFsATABcAFYAVwBUAFMAVgBUAFoAWQBdAF4AWgBdAF4AXQBfAGAAXgBfAGMAYgBhAGQAYwBhAGQAYQBQAFEAZABQAGcAZgBlAGgAZwBlAGsAagBpAGwAawBpAGwAaQBtAG4AbABtAHEAcABvAHIAcQBvAGgAZQBzAHQAaABzAHIAbwB1AHYAcgB1AGYAZwB2AHUAZgB2AHAAcQBuAG0AcABuAHQAcwB3AHgAdAB3AHgAdwB5AHoAeAB5AH0AfAB7AH4AfQB7AH4AewBqAGsAfgBqAIEAgAB/AIIAgQB/AIUAhACDAIYAhQCDAIYAgwCHAIgAhgCHAIsAigCJAIwAiwCJAIIAfwCNAI4AggCNAIwAiQCPAJAAjACPAIAAgQCQAI8AgACQAIoAiwCIAIcAigCIAI4AjQCRAJIAjgCRAJIAkQCTAJQAkgCTAJcAlgCVAJgAlwCVAJgAlQCEAIUAmACEAJsAmgCZAJ4AnQCcAJ8AngCcAJkAoQCgAJsAmQCgAKQAowCiAKcApgClAKoAqQCoAK0ArACrALAArwCuALMAsgCxALYAtQC0ALcAtgC0ALoAuQC4ALsAugC4ALcAtAC8AL0AtwC8ALAArgC5ALoAsAC5ALMAsQC1ALYAswC1AMAAvwC+AMEAwAC+AMQAwwDCAMUAxADCAMgAxwDGAMsAygDJAM4AzQDMAM8AzgDMANIA0QDQANMA0gDQANEAxwDIANAA0QDIAM0AygDLAMwAzQDLALgA1QDUALsAuADUANgA1wDWANsA2gDZANgA1gDcAN0A2ADcANsA2QDeAN8A2wDdAOIA4QDgAOMA4gDgAOYA5QDkAOgA5gDnAKIA6gDpAKQAogDpAKUA7ADrAKcApQDrAO8A7gDtAOoA7wDtAPIA8QDwAPMA8gDwAKkAqgD0APEAqQD0APUArACtAPYA9QCtAPkA+AD3APoA+QD3AJwA+QD6AJsA8gDzAJoAmwDzAP0A/AD7AP4A/QD7AP0AmgD8AJ8AnADuAO8AnwDuAAABmgD/AAIBnAABAQMB5gDoAOYABAHlAAcBBgEFAQcBCAEGAQUBCQHdAAkBCgHdAAUBoAChAAUB5gADAQ0BDAELAQUBDgEHAd0ADgEFAQ8BBwEOARABDgHdAAUBBAHmAAYBBAEFAe0A6QDqAOwA/gD7AOsA7AD7APgA9QD2APcA+AD2APEA9ADwAAwBDQGdAJ4ADAGdAN0A3AAQAd8A3QAKARMBEgERARYBFQEUAREBwwDEABMBEQHEABYBvwDAABUBFgHAABQBFwEWAeIA4wDnAOYA4gDnAOIA5gDkAOEA4gDkABgBzgDPABkBGAHPABoB0gDTABsBGgHTAMEAvgAcAR0BwQAcAcUAwgAeAR8BxQAeAf8AIQEgAQAB/wAgAR8BHgEiAR4BIwEiASIBIwEkAQIBAQEkASUBAgEkAb0AvAAmAdQA1QAiARwBJgEdASIBGAEZARsBJwEaASABIQEmARoBJgEhASMBJQEkASoBKQEoAS0BLAErATABLwEuATMBMgExATYBNQE0ATcBNQE2AToBOQE4ATsBOgE4ATkBPQE8ATgBOQE8ATsBOAE+AT8BOwE+ATYBNAE9ATkBNgE9ATcBNgE5AToBNwE5AUIBQQFAAUMBQgFAAUYBRQFEAUcBRgFEAUoBSQFIAU0BTAFLAVABTwFOAVEBUAFOAVQBUwFSAVUBVAFSAVMBSQFKAVIBUwFKAU8BTAFNAU4BTwFNATwBVwFWATgBPAFWASgBWQFYASoBKAFYASsBWwFaAS0BKwFaAV4BXQFcAV8BXgFcAWABUAFRAWEBYAFRAWIBVAFVAWMBYgFVAUMBQAFkAWUBQwFkAUcBRAFmAWcBRwFmAWoBaQFoAWsBagFoAS8BMAFsAWkBLwFsAW0BMgEzAW4BbQEzAXEBcAFvAXIBcQFvAWMBdgFzAWIBYwFzAXcBcQFyAXgBagFrAXoBeAFrAXoBfAF7AXgBegF7AX8BfgF9AYABfwF9AWcBZgGBAXYBZwGBAYQBgwGCAYUBhAGCAYgBhwGGAYkBiAGGAYQBeQGDAYoBfAF3AYsBigF3AYsBdwFdAV4BiwFdAT8BPgF0AVYBVwF1AWQBdAFlAXQBYAFhAX8BeQF+AYcBdwGGAYEBiAGJAXYBgQGJAYABfQFzAXYBgAFzAVgBWQFfAVwBWAFfAVsBhQGCAVoBWwGCAXABbQFuAW8BcAFuAWkBbAFoAXwBjQGMAXsBfAGMAY4BjQF8AYoBjgF8AZEBkAGPAZQBkwGSAY8BRQFGAZEBjwFGAZQBQQFCAZMBlAFCAZIBlQGUAZgBlwGWAZsBmgGZAZ4BnQGcAZ8BngGcAaIBoQGgAaMBogGgAaQBngGfAaUBpAGfAaEBlwGYAaABoQGYAZ0BmgGbAZwBnQGbAagBpwGmAakBqAGmAawBqwGqAa8BrgGtAbIBsQGwAbUBtAGzAbYBtQGzAbkBuAG3Aa8BrQG3AbgBrwG3AbIBsAG0AbUBsgG0AbsBugGiAaMBuwGiAbYBswG8Ab0BtgG8AbkBtwG+Ab8BuQG+AcABqAGpAcEBwAGpAcIBqwGsAcMBwgGsAcYBxQG/Ab4BxgG/AckByAHHAcoByQHHAcsBwgHDAcQBywHDAc4BzQHMAc8BzgHMAaUBxAGkAbsB0AG6AcABwQHFAdABvQG8Ac8BzAHLAcQBzwHLAcYByQHKAcUBxgHKAdMB0gHRAdYB1QHUAaoBqwHSAdMBqgHSAaYBpwHWAdQBpgHWAdUB1gHXAQAAELhRvsCvmT+X/wm9ELhRvsCvmT+X/wm9wj2BvmdZlT83+KO8HcyBvjTBlT+jzPe8WOSJvnz9lj/Anj+8wj2BvmdZlT83+KO8ELhRvsCvmT+X/wm9wF+KvtcRlj/QUlC6WOSJvnz9lj/Anj+8pplJvrJXmD/Z/uy8WRKGvjs0lD/HoBM8waWJvglAlT/m3sg7/rt7vnCAkT/X1BY8kTKCvg4Okj/p3X48YiJovizNjz89GTe805Vvvgbzjz9wdLi5+GpBvlsAlz8ECAm9+GpBvlsAlz8ECAm9/RBwvvZQkj+q6KG8YiJovizNjz89GTe8ftU6vs/ulT+rjze9EB5ovmI5kT/OXhm94SBtvgAOkj8vm/W8aCKFvrIFkz9VuH08Y5J1vuhakD/uedQ7YqZivkYakD8vnSy9DiFgvjB9jz8dAr28YqZivkYakD8vnSy9ftU6vs/ulT+rjze9AXZZvhDbjj9X79a8DiFgvjB9jz8dAr2888dEvjWnjT+vvSO9eYxOvpprjj8Gi/q8+Ac9vltpjT+h01a9YB84vhaBlT+rRG29uOw8vqlojT+9iIG9MJM6vh/tlT8fnZG9zG9fvq94jz9BKr+9G9VYvvnWjj9nY7i9MJM6vh/tlT8fnZG9FNJivmQtkD84AJq9zG9fvq94jz9BKr+9rpFsvlwKkj/grbG9yrRnvrU2kT9UJ6K9MJM6vh/tlT8fnZG97fdAvtf+lj/NTam9YW1EvuekjT/OYpu9DgJOvhVojj9wCq+9+Ac9vltpjT+h01a9M9Fuvsk2kj80+8S9szRnviDHjz9X2te9M9Fuvsk2kj80+8S97fdAvtf+lj/NTam9KnFuvpTrjz+5T+69szRnviDHjz9X2te9E0FJvqhemD90k7O9gWZ6vrl3kT84OQG+/Up0voxSkD+rkPy9kmeFvosrlD97bAG+ZmeEvif8kj/r+ge+hG2JvnD3lj8J69i9cs2JvmYKlj/0N++9LsxRvuXGmT9wcKu9LsxRvuXGmT9wcKu9LsxRvuXGmT9wcKu9xu6AvlRalT+9oca9hG2JvnD3lj8J69i9YhWEvkePlj8i8qK9gYSBvpC9lT8+OrK9EppYvr3imj8J3ZS9iXeBvosEkj+S6Ae+CgKJvrU3lT9XSv292JyHvhp9lz8d5pm9Rp6JvpsAmD/ibcC92JyHvhp9lz8d5pm9EppYvr3imj8J3ZS9sy2Lvun4mD/T47m9Rp6JvpsAmD/ibcC9bRmNvnTFmz9ar5+9cmmLvhdmmj9r0bC9Ow+NvtbBnD8ez4O9EppYvr3imj8J3ZS9lSJbvhtImz+X53K92xyNvofCnD9hYFu99VZYvhDMmj+0zDq95vaJvh0FmD+yEMK8KX6LvgH9mD8B8dy89VZYvhDMmj+0zDq96NeHvg2Flz9Bri695vaJvh0FmD+yEMK8BEqEvvSRlj9p9Bq99VZYvhDMmj+0zDq99VZYvhDMmj+0zDq9EEmNvuDHmz9ynSS9sK6Lvp1pmj930wC92xyNvofCnD9hYFu96NeHvg2Flz9Bri69/RBwvvZQkj+q6KG8FNJivmQtkD84AJq9xu6AvlRalT+9oca9wT2BPmVZlT8A96O8D7hRPr6vmT8Z/wm9HcyBPjLBlT9sy/e8wT2BPmVZlT8A96O8V+SJPnn9lj8knD+8D7hRPr6vmT8Z/wm9wF+KPtURlj8CKVC6V+SJPnn9lj8knD+8wKWJPgdAlT8Q5Mg7VhKGPjk0lD9HoxM8qplJPrFXmD/p/ey8kDKCPgwOkj9M4H4897t7Pm6AkT8f1xY8zJVvPgPzjz8uMLi5XiJoPinNjz84Fze8/WpBPlkAlz+RBwm9+RBwPvRQkj+U56G8/WpBPlkAlz+RBwm9XiJoPinNjz84Fze84iBtPv4Nkj8emvW8Ex5oPmA5kT9JXhm9hNU6Ps3ulT89jze9ZCKFPrAFkz/Pun08YpJ1PuZakD9UftQ7Z6ZiPkQakD+unCy9Z6ZiPkQakD+unCy9DCFgPi99jz8gAb28hNU6Ps3ulT89jze9AHZZPg/bjj9l7ta8DCFgPi99jz8gAb288sdEPjOnjT9BvSO9aoxOPqBrjj8livq8/Ac9PllpjT8901a9ZR84PhSBlT9CRG29u+w8PqdojT+MiIG9O5M6Ph7tlT/pnJG9JdVYPvfWjj8uY7i9129fPq14jz8CKr+9INJiPmItkD/5/5m9O5M6Ph7tlT/pnJG9129fPq14jz8CKr+9O5M6Ph7tlT/pnJG907RnPrQ2kT8SJ6K9tZFsPloKkj+ZrbG99/dAPtb+lj+UTam99/dAPtb+lj+UTam9a21EPuakjT+ZYpu9GAJOPhRojj85Cq+9/Ac9PllpjT8901a9QtFuPsg2kj/w+sS9QtFuPsg2kj/w+sS9wTRnPh/Hjz8c2te99/dAPtb+lj+UTam9OXFuPpLrjz9yT+69wTRnPh/Hjz8c2te9E0t0PotSkD9lkPy9j2Z6Prd3kT8VOQG+HUFJPqdemD85k7O9bWeEPiX8kj/C+ge+mWeFPokrlD9TbAG+es2JPmQKlj+XN++9h22JPm73lj+46ti9OMxRPuPGmT8zcKu9OMxRPuPGmT8zcKu9yu6APlJalT9toca9OMxRPuPGmT8zcKu9h22JPm73lj+46ti9hoSBPo+9lT/uObK9ZhWEPkaPlj/S8aK9E5pYPrvimj/H3JS9lHeBPokEkj9v6Ae+EAKJPrM3lT8GSv292pyHPhh9lz/K5Zm92pyHPhh9lz/K5Zm9Sp6JPpoAmD+QbcC9E5pYPrvimj/H3JS9ty2LPuf4mD9+47m9Sp6JPpoAmD+QbcC9bxmNPnLFmz8Cr5+9dmmLPhVmmj8X0bC9E5pYPrvimj/H3JS9Pg+NPtTBnD/DzoO9oCJbPhlImz8Q53K93hyNPobCnD+uX1u93hyNPobCnD+uX1u98lZYPg7Mmj8uzDq9KX6LPv78mD+r79y86PaJPhwFmD9dD8K869eHPguFlz+crS698lZYPg7Mmj8uzDq96PaJPhwFmD9dD8K8BkqEPvKRlj/J8xq98lZYPg7Mmj8uzDq98lZYPg7Mmj8uzDq9DUmNPubHmz++nCS9r66LPptpmj/J0gC93hyNPobCnD+uX1u969eHPguFlz+crS69+RBwPvRQkj+U56G8INJiPmItkD/5/5m9yu6APlJalT9toca9m/OfvDsekz+ynIC9ZvXQvB8Jkz8bUHi9lTIXvTltkD/Bh5y91dk7vSBLjT/JEMG97Aj0u/JMkD8cKbe92OUavB9Biz8X8/u9h6HGuyt4jD8vpve9qyxRvHtpij/PRwK+IrxgvRmAij/i1eW97Aj0u/JMkD8cKbe9h6HGuyt4jD8vpve9VRTJvAgOjT/ni/C9BkGcvf8Qgj+ODiq+G9+ovdxpfT9Ti0G+tDxPvUj+gT+neTK+okSEvQTShj/tQQu+BSHNvIfFhj8Akxe+UPagvKX+kj9jlnK9ZvXQvB8Jkz8bUHi9m/OfvDsekz+ynIC9wgTdvLzvkj83Pm+9wgTdvLzvkj83Pm+9kNsWNBLujz8kuwa+ncCQvIDHkT9r7cy9w+2evNTujj8I2Aa+C9bkM/3ckT/koNa9fPMfvAeOkz9pp4a91UhvM5sskz+oeoS9bhUIvZelkD8UubO9m/OfvDsekz+ynIC9EOAHvZITjj+0SPy9bhUIvZelkD8UubO9a1guvRNljT97SOO9m/OfvDsekz+ynIC9uKNaM6+4kj8TbXm9fPMfvAeOkz9pp4a9UPagvKX+kj9jlnK9a1guvRNljT97SOO9mfXQPB8Jkz8LUHi91vOfPDsekz+tnIC9ujIXPTltkD+3h5y9B9o7PSBLjT+3EMG9Xgr0O/JMkD8ZKbe98OYaPB9Biz8X8/u9pqPGOyt4jD8vpve9yS1RPHtpij/PRwK+YLxgPRmAij/M1eW9pqPGOyt4jD8vpve9Xgr0O/JMkD8ZKbe93BTJPAgOjT/qi/C9VN+oPdlpfT9Gi0G+N0GcPf8Qgj+CDiq+Hj1PPUj+gT+beTK+riHNPLTDhj/0lhe+yUSEPfnPhj97RQu+mfXQPB8Jkz8LUHi9gfagPKX+kj9XlnK91vOfPDsekz+tnIC98gTdPLzvkj8mPm+9B8GQPIDHkT9v7cy9W+6ePNTujj8B2Aa++/MfPAeOkz9mp4a9mxUIPZelkD8JubO91vOfPDsekz+tnIC9VuAHPZITjj+rSPy9mxUIPZelkD8JubO9qVguPRNljT9ySOO91vOfPDsekz+tnIC9+/MfPAeOkz9mp4a9gfagPKX+kj9XlnK9gfagPKX+kj9XlnK9qVguPRNljT9ySOO9H8XRvsjUCj97xzs/NcLRvmnZCj/gxDs/fTb8vkyxUD/L9Js+g7PZvoHTOz/krQc/Rgy3vkI0BD7hyGy/Rgy3vkI0BD7hyGy/Rgy3vkI0BD7hyGy/38AGvU0hSj/43hw/4v2yvYDBVT8FFQs/fErQPrFPoj43U1s/EFBRPlpLCz92UFA/SK0lPrftGD+QFEk/ulwSP3Eudj0heFE/AusCP1nHKT7L21c/XaBGPyq5mr4cxQ0/pQE/Pw1jcr4WUB8/Bm/uPoPcBL9Gfzc/PWcRPdHnxr6Vt2u/PWcRPdHnxr6Vt2u/PWcRPdHnxr6Vt2u/Rtf9PsN96L6kgj0/VsTgPunaub7IZ1I/YKoSP8eqEb+DBBc/1V6UPvhu6j5ZKFc/VpAcPwABmjsqiko/lU+6PpskhL7aHGU/JG06v0LzIj+QDYI+JG06v0LzIj+QDYI+JG06v0LzIj+QDYI+I6/dPtPYij0oG2Y/9uHtPkmaOz1NY2I/j55FP0mwjL0cyCE/el4NP0o4qzz2W1U/KcJ2P+THmL0C3oI+6nl/P3ltgb3g6h487vh3P3ehmr0vZHK+a7NOPy+Z/7vlBBe/RYj2PmasLT03G2C/HoHmPgKwgz3c/mO/f6cyvyLVIz/XpqS+f6cyvyLVIz/XpqS+f6cyvyLVIz/XpqS+9goXP2QmFL91IRC/JP3jPul5tL6MtVK/NOwAP+Tn274x5j+/uNC+Pv/jEL9iQTy/c7NIP1Gckb1y3x2/D24RP6f+kDyooVK/KcJ2P+THmL0C3oI+TuYpP8H1M7+d6YK+TiiPPfEm075Ih2g/TiiPPfEm075Ih2g/TiiPPfEm075Ih2g/+gtCPwW8dL6MXRu/sFNJP660m76koQm/Vz7ZPlEpnD59RFq/5RcWP3WCYj1i5k6/orYgP1XR3rolREe/aZNcPsYqCj+zVlC/QpGaPkxJ6D4Gpla/PtbFvfn9VD9U2gu/+WIhvTE/ST+p5x2/uyGdvliZGT+uIT2/Uh+dvomdGT/HHj2/PDy/viu/Hz4mF2o/PDy/viu/Hz4mF2o/PDy/viu/Hz4mF2o//t2Rvpt3Cz+o50m/Kq/fvvPzOD9mLwm/6m3Dvlc4Bj+83UK/iK4GP5eOJD4uyVW/VKQ0Piq+FD+/Zku/Zy0hvrjMzD5dJGe/8YHgPrchW7/qO4y+8YHgPrchW7/qO4y+8YHgPrchW7/qO4y+X6otPvWIzj5RMGa/hi4hPmZ+3z5IxWK/nLsJPuKxQj/vnSK/wTEiPugXAj9MuFi/RjIzPlkQdT9VuGu+DX9IPiV5dj+3xD6+YbVIPn8Dez9scU48LAI4Pjzpcz9Yq3o+VxtNPmgERT9nNhs/XsIoPvGP5D5LKGE/oys2PnTE0T5WC2U/ODLZPik3Xb89p4o+ODLZPik3Xb89p4o+ODLZPik3Xb89p4o+V72QvoiBEj+kEEU/6dCmvhZrDj+osUM/ic6mvp1vDj/frkM/9vASPsiuQz8p6yA/jIUrPr68BD94qFY/LAI4Pjzpcz9Yq3o+OlUfvtTS3D5NgWM/FGYmP4VoML8nC6Q+Aim4Pjb4bb7jVme/hQQCv8BnTj+wSJu+fTb8PkyxUD/L9Js+H8XRPsjUCj97xzs/g7PZPoHTOz/krQc/Rgy3PkI0BD7hyGy/Rgy3PkI0BD7hyGy/Rgy3PkI0BD7hyGy/2FoGPQEfSj9F4hw/4v2yPYDBVT8FFQs/SK0lvrftGD+QFEk/EFBRvlpLCz92UFA/fErQvrFPoj43U1s/AusCv1nHKT7L21c/ulwSv3Eudj0heFE/pQE/vw1jcr4WUB8/56FGv0Gtmr41xg0/Bm/uvoPcBL9Gfzc/PWcRvdHnxr6Vt2u/PWcRvdHnxr6Vt2u/PWcRvdHnxr6Vt2u/YKoSv8eqEb+DBBc/VsTgvunaub7IZ1I/Rtf9vsN96L6kgj0/1V6Uvvhu6j5ZKFc/VpAcvwABmjsqiko/lU+6vpskhL7aHGU/JG06P0LzIj+QDYI+JG06P0LzIj+QDYI+JG06P0LzIj+QDYI+I6/dvtPYij0oG2Y/9uHtvkmaOz1NY2I/j55Fv0mwjL0cyCE/Y1sNv0EGrDzbXVU/KcJ2v+THmL0C3oI+6nl/v3ltgb3g6h487vh3v3ehmr0vZHK+a7NOvy+Z/7vlBBe/HoHmvgKwgz3c/mO/RYj2vmasLT03G2C/f6cyPyLVIz/XpqS+f6cyPyLVIz/XpqS+f6cyPyLVIz/XpqS+NOwAv+Tn274x5j+/4//jvjKJtL6JsVK/9goXv2QmFL91IRC/T9S+vrnmEL9fPjy/uNC+vv/jEL9iQTy/c7NIv1Gckb1y3x2/H3ERv7QBkTyKn1K/KcJ2v+THmL0C3oI+TuYpv8H1M7+d6YK+TiiPvfEm075Ih2g/TiiPvfEm075Ih2g/TiiPvfEm075Ih2g/+gtCvwW8dL6MXRu/sFNJv660m76koQm/orYgv1XR3rolREe/5RcWv3WCYj1i5k6/5jHZvuY2nD4oRVq/QpGavkxJ6D4Gpla/aZNcvsYqCj+zVlC/+WIhPTE/ST+p5x2/PtbFPfn9VD9U2gu/Uh+dPomdGT/HHj2/uyGdPliZGT+uIT2/PDy/Piu/Hz4mF2o/PDy/Piu/Hz4mF2o/PDy/Piu/Hz4mF2o/Kq/fPvPzOD9mLwm//t2RPpt3Cz+o50m/6m3DPlc4Bj+83UK/iK4Gv5eOJD4uyVW/VKQ0viq+FD+/Zku/Zy0hPrjMzD5dJGe/8YHgvrchW7/qO4y+8YHgvrchW7/qO4y+8YHgvrchW7/qO4y+X6otvvWIzj5RMGa/hi4hvmZ+3z5IxWK/nLsJvuKxQj/vnSK/wTEivugXAj9MuFi/DX9IviV5dj+3xD6+RjIzvlkQdT9VuGu+YbVIvn8Dez9scU48shw4vqTpcz+NkXo+LAI4vjzpcz9Yq3o+VxtNvmgERT9nNhs/oys2vnTE0T5WC2U/cMAovm+a5D63JWE/ODLZvik3Xb89p4o+ODLZvik3Xb89p4o+ODLZvik3Xb89p4o+V72QPoiBEj+kEEU/ic6mPp1vDj/frkM/6dCmPhZrDj+osUM/9vASvsiuQz8p6yA/jIUrvr68BD94qFY/UwM4vsPqcz+0kno+OlUfPtTS3D5NgWM/FGYmv4VoML8nC6Q+Aim4vjb4bb7jVme/hQQCP8BnTj+wSJu+DM7MvoIrWT/1nbG+HQ8Mv6urLj92Rfi+hlfXvsdOLT/Enhq/IRuNvnrwJD/6oDa/mr/Xvk4aHD+d2Cu/feYcv0nBBz989hW/UW5UvxaIxT7CcM6+0qaOvoIUJD8fGje/GpZuvt3GKD+TAje/8UiducE7Pb8Vaiw/6NhOvXCZOb+G2C8/Jfb9PA4cQL99BCk/jdhbvuarKT8Opje/UH5ZvrO4Kz/86DW/SMBbvqsWKT9OMTi/u1hbvn2HKD8HvDi/EDBmvkg9Jz/+FDm/N1cfvUSoaz+zBcc+8CuHvNsZdT/3j5M+0wMavDQtdz8DLYU+06vevpdtZj9jidI8ravevm9tZj/3WtM8AAAAAJWPWT9k6wa/EofYvqWxUD/emcq+QN7rvs/XPD9Vtvy+AAAAAGo6bj9ecLu+LSP9vXenej/QRiW+AAAAgCZXdz+LCoQ+xjUuv8tyKT9r7KC+DM7MvoIrWT/1nbG+ED0svx58Ij/4nMK+Om8BvQAdOr9zly8/APY5PQxFOb+0SDA/L1kovX96R7/kGiA/AAAAgM/6OT9O6y8/OMoQPkwcOD8CJy4/N1cfvUSoaz+zBcc+QhpAvwUZEz9DRae+HQ8MP6urLj92Rfi+DM7MPoIrWT/1nbG+hlfXPsdOLT/Enhq/oRqNPsriJD9vrTa/mr/XPk4aHD+d2Cu/feYcP0nBBz989hW/UW5UPxaIxT7CcM6+uNSHPv8qJT+faze/knZ1PotSKz9qDTS/6NhOPXCZOb+G2C8/8UidOcE7Pb8Vaiw/Q/H9vOseQL89ASk/UH5ZPrO4Kz/86DW/23JbPmA4KT8cGDi/FIlbPuX5KT/UYze/cc1dPsMyJj8vpzq/nktmPoHiJj+3ZDm/8CuHPNsZdT/3j5M+N1cfPUSoaz+zBcc+0wMaPDQtdz8DLYU+ravePm9tZj/3WtM8EofYPqWxUD/emcq+QN7rPs/XPD9Vtvy+LSP9PXenej/QRiW+xjUuP8tyKT9r7KC+DM7MPoIrWT/1nbG+ED0sPx58Ij/4nMK+Om8BPQAdOr9zly8/APY5vQxFOb+0SDA/L1koPX96R7/kGiA/vswQvoEfOD99Iy4/oVUfPeylaz/TEMc+N1cfPUSoaz+zBcc+QhpAPwUZEz9DRae+JCgiPxQVRT4kKCI/FBVFPunnFz8cH3c+7VEWPxBkbT5D+Bo/KDSGPunnFz8cH3c+JCgiPxQVRT7VMR0/EK2LPkP4Gj8oNIY+Fd8lP7CmRz49MSI/llqPPqM0Hz/04I4+T60pP/RQjz5sNyc/qAWTPhnhMD/OEYY+bKsuP9CTiz5ZkSk/1AFFPlmRKT/UAUU+3OgzPxC+dj4Z4TA/zhGGPpRHLD9AUDg+bHI3P+wIZD7pejU/CO9sPreoJD8gCJM+dKosP7DNjj70vTk/SA5cPlBRPT/8MEw+9L05P0gOXD6URyw/QFA4PljAPT+o5kI+UFE9P/wwTD6JXD0/QDkmPqBaPT9UCzY+eUs8P2j0Fj6QzCs/EJUpPnlLPD9o9BY+lEcsP0BQOD5QUT0//DBMPljAPT+o5kI+lEcsP0BQOD70vTk/QA5cPlBRPT/8MEw+6Xo1PwTvbD5scjc/7AhkPpRHLD9AUDg+y5cpPyAVRT6JXD0/QDkmPqBaPT9UCzY+pHg/P/j7OD7c6DM/CL52PhnhMD/OEYY+3OgzPwi+dj7Llyk/IBVFPmyrLj/Mk4s+GeEwP84Rhj7b4CU/vKZHPlCtKT/0UI8+dKosP6zNjj49MSI/llqPPreoJD8gCJM+Q/gaPyY0hj7VMR0/DK2LPpQuIj/gAUU+lC4iP+ABRT6ULiI/4AFFPunnFz8cH3c+Q/gaPyY0hj5/VhQ/8IRkPvFRFj8QZG0+SVIfP6jzNz5sNyc/qAWTPqM0Hz/w4I4+IAoSP7CfXD4KYQ4/WBtNPiAKEj+wn1w+SVIfP6jzNz4a7A0/nNNDPgphDj9YG00+kC4OP5C6Jz70SA4/KPg2PttHDz8ktBc+SVIfP6jzNz7wuB8/OHAoPuBHDz8ktBc+RVIfP6jzNz4KYQ4/XBtNPhnsDT+c00M+RVIfP6jzNz4jChI/sJ9cPgphDj9cG00+f1YUP/CEZD5FUh8/qPM3PkVSHz+o8zc+kC4OP5C6Jz70SA4/KPg2PnhfDz/QKA0+IwoSP7CfXD7c6DM/EL52PvS9OT9ADlw+6ecXPxwfdz7p5xc/HB93PiQoIj8UFUU+7VEWPxBkbT7p5xc/HB93PkP4Gj8oNIY+JCgiPxQVRT7VMR0/EK2LPkP4Gj8oNIY+ozQfP/Tgjj49MSI/llqPPhXfJT+wpkc+bDcnP6gFkz5PrSk/9FCPPmyrLj/Qk4s+GeEwP84Rhj5ZkSk/1AFFPtzoMz8QvnY+WZEpP9QBRT4Z4TA/zhGGPul6NT8I72w+bHI3P+wIZD6URyw/QFA4PreoJD8gCJM+dKosP7DNjj70vTk/SA5cPvS9OT9IDlw+UFE9P/wwTD6URyw/QFA4PljAPT+o5kI+UFE9P/wwTD6JXD0/QDkmPqBaPT9UCzY+eUs8P2j0Fj6QzCs/EJUpPnlLPD9o9BY+lEcsP0BQOD5YwD0/qOZCPlBRPT/8MEw+9L05P0AOXD6URyw/QFA4PlBRPT/8MEw+lEcsP0BQOD5scjc/7AhkPul6NT8E72w+y5cpPyAVRT7Llyk/IBVFPolcPT9AOSY+oFo9P1QLNj7Y3Ts/2FoOPtzoMz8IvnY+3OgzPwi+dj4Z4TA/zhGGPsuXKT8gFUU+bKsuP8yTiz4Z4TA/zhGGPnSqLD+szY4+UK0pP/RQjz7b4CU/vKZHPreoJD8gCJM+PTEiP5Zajz7VMR0/DK2LPkP4Gj8mNIY+lC4iP+ABRT6ULiI/4AFFPunnFz8cH3c+lC4iP+ABRT5D+Bo/JjSGPvFRFj8QZG0+f1YUP/CEZD5JUh8/qPM3Pmw3Jz+oBZM+ozQfP/Dgjj4gChI/sJ9cPiAKEj+wn1w+CmEOP1gbTT5JUh8/qPM3PhrsDT+c00M+CmEOP1gbTT6QLg4/kLonPvRIDj8o+DY+SVIfP6jzNz7bRw8/JLQXPvC4Hz84cCg+4EcPPyS0Fz7gRw8/JLQXPkVSHz+o8zc+GewNP5zTQz4KYQ4/XBtNPiMKEj+wn1w+RVIfP6jzNz4KYQ4/XBtNPn9WFD/whGQ+RVIfP6jzNz5FUh8/qPM3PpAuDj+Quic+9EgOPyj4Nj54Xw8/0CgNPiMKEj+wn1w+3OgzPxC+dj70vTk/QA5cPunnFz8cH3c+zUGhPVTPvT5/zK49OEm+Pp5euT2oydE+oVe6PSxQ4j7Nymk9SGDSPn3gQz180uw+m+MfPdyy5j7Vrko99BbxPsb5tj3g//A+zcppPUhg0j6b4x893LLmPrYAxjxMgt8+D+CsPXf5Cz/27qU9cakTP48cgj1ZOww/aJqxPc00AT98tFs96C4BP+7EpT144rs+f8yuPThJvj7NQaE9VM+9Pv6mtD2GMr4+/qa0PYYyvj5cWOc9Rt70Ph0wCT4s/N8+IrQMPoBV9z5cWOc9YD3iPlGe/j22asY+XFjnPQaHxj6FRCI+NEzcPu9+Cz446sU+goghPvAP9T79lBg9TInJPu+uMTzMftc+zUGhPVTPvT5cWOc9TKfCPlGe/j22asY+fpgLPgBLwz6yBDM+bFjwPn/Mrj04Sb4+zUGhPVTPvT6eXrk9qMnRPqFXuj0sUOI+zcppPUhg0j594EM9fNLsPpvjHz3csuY+1a5KPfQW8T7G+bY94P/wPpvjHz3csuY+zcppPUhg0j62AMY8TILfPvbupT1xqRM/D+CsPXf5Cz+PHII9WTsMP3m0Wz3oLgE/aJqxPc00AT9/zK49OEm+Pu7EpT144rs+zUGhPVTPvT7+prQ9hjK+Ph0wCT4s/N8+IrQMPoBV9z5Rnv49tmrGPoVEIj40TNw+734LPjjqxT6CiCE+8A/1Pv2UGD1Mick+764xPMx+1z7NQaE9VM+9PlGe/j22asY+fpgLPgBLwz5+mAs+AEvDPrIEMz5sWPA+AwACAAEABgAFAAQACAAHAAAACwAKAAkAAAALAAkACQANAAwAEAAPAA4AEwASABEAFgAVABQAEAAWABQACgAXAAkAGAAQAAkADAAYAAkAGAAPABAAFwANAAkABwALAAAAFQAZABQAHAAbABoAHgAdABQAIAAfABQAIgAUACEAJAAiACMAJAAmACUAKQAoACcALAArACoALQAsACoAFAAfACEALwAsAC4AIwAuACwALwAmACwAMAAjACIAHQAgABQAKgAxAC0ANAAzADIANgA1AC0AOQA4ADcALQA5ADcANwA7ADoAPwA9ADwAQgBBAEAAPgBEAEMARQA+AEMAOABGADcARwA/ADcAOgBHADcARwA9AD8ARgA7ADcANQA5AC0AQwBIAEUASwBKAEkATQBMAEUATwBOAEUAUgBRAFAAVABSAFMAVABWAFUAWQBYAFcAWgADAAEAWwBaAAEARQBOAFAAXgBcAF0AUwBdAFwAXgBWAFwAUABfAFIATABPAEUAYABaAFsAYQAWABAAYgArACwAYwBEAD4AZgBlAGQAaQBoAGcAawBlAGoAbgBtAGwAZQBuAGwAbgBwAG8AcwByAHEAdgB1AHQAeQB4AHcAcwB5AHcAbQBuAHoAbgBzAHsAcABuAHsAewBzAHEAegBuAG8AagBlAGwAeAB5AHwAfwB+AH0AgQB5AIAAgwB5AIIAhQCEAHkAhwCGAIUAhwCJAIgAjACLAIoAjwCOAI0AkACPAI0AeQCEAIIAkwCSAI0AhgCNAJIAkwCNAIgAlACFAIYAgAB5AIMAjwCQAJUAmACXAJYAmgCRAJkAnQCcAJsAkQCdAJsAnQCfAJ4AogChAKAApgClAKQAqACnAKMAqQCoAKMAnACdAKoAnQCiAKsAnwCdAKsAqwCiAKAAqgCdAJ4AmQCRAJsAqACpAKwArwCuAK0AsQCpALAAswCpALIAtgC1ALQAuQC3ALYAuQC7ALoAvgC9ALwAZQBmAL8AwQBlAL8AqQC1ALIAwwDCAMAAuADAAMIAwwDAALoAtQC2AMQAsACpALMAxQDBAL8AxgBzAHcAxwCNAI4AyACjAKcAywDKAMkAzQDMAMsAzwDOAM0A0ADNAM4AzADQANEAzQDQAMwAyQDNAMsA1ADTANIA1wDWANUA2QDYANEA0ADZANEA3ADbANoAywDdAMoA2wDeANoA4QDgAN8A4ADiAN8A4ADjAOIA5ADiAOMA5gDgAOUA4ADhAOcA6QDSAOgA0gDpANQA4ADmAOMA0gDqAOgA5ADsAOsA7ADtAOsA4wDmAO0A4ADnAOUA5wDuAOUA8QDwAO8A8wDxAPIA9QDzAPQA9gD0APMA8gD3APYA8wDyAPYA8ADxAPMA+gD5APgA/QD8APsA/wD+APYA9wD/APYAAgEBAQAB8QDvAAMBAAEBAQMBBQHfAAQBBAHfAOIABAHiAAYB5AAGAeIACAEHAQQBBAEJAQUBCwEKAfkA+QD6AAsBBAEGAQgB+QAKAQwB5ADrAA0BDQHrAA8BBgEOAQgBBAEHAQkBCQEHARAB/AD9AP4A/wD8AP4A1wDVANgA2QDXANgAvj1RPq6aVT+30zu9XOpZPsqLUz8iG2a8E1MyPtvRWT92Oi28y9CJPr36Tj/ranq8Py2HPqAXTz8Jx1i9M0JGPjN1VT/C3Y69gPpxPsezTj9Ew7m9OV8pPmDUWj/9hFW9CcU9Pjd8Uz/12VG9ZmhfPu6hSj8uFC69gPpxPsezTj9Ew7m9M0JGPjN1VT/C3Y69OV8pPmDUWj/9hFW9Ca5XPsDJTj/ZHQW+JDw8PhyoUj+cTuW91rwrPuYyUz8/UBW+eO1SPlJHTj+b7y++bcMaPl7gUj8WmS++V2A9PuEsTT/cflO+XgPrPYEbWz8nLwK+YPb5PYl0Uj9ED0G+i5MMPlLTSz9nTmW+jb+uPWICUz9lOD6+Z8q6PRLBSz9ZqGG+7sWePfCNWj+Z4BO+rTIIPTWiUz9ELly+23x3PU8JUz+cl0W+piEvPY99Wj9uxR++W1egPYtZTD+lTGG+1H8oPZgXTD/JgIK+MjWHNMeKVD89rmC+OQGoNAQGTD/kA4m+h4U+NCexWj+BkiS+QxgVPYqMTz8ZokW+i9OPPWsXTz/mXSe+pzd2PZc8Wj/bvxW+piEvPY99Wj9uxR++QiMEPcrCSD8Qn12+Cr1zPa1dRD+Fm0K+QiMEPcrCSD8Qn12+QxgVPYqMTz8ZokW+W1egPYtZTD+lTGG+23x3PU8JUz+cl0W+piEvPY99Wj9uxR++jb+uPWICUz9lOD6+7sWePfCNWj+Z4BO+LOLvPZmpTz/WkS++FLcOPunRSD/XikK+Z8q6PRLBSz9ZqGG+BXTIPR3BRD/+TTi+FLcOPunRSD/XikK+LOLvPZmpTz/WkS++12BRPm+8Rz/XHy4+5hM9PkWrUD8q7dM9K+pqPopQSj8ipe49jdUoPuRCTz8oKQ8+IBBAPgL6UT/jgp09lC1iPhy4Sj+x/pg9iuCDPpJPTT/KYsg8frtJPuznUj8ksiM9RHBWPqZsUz9Bf448hQNsPisASz+krk09H4QcPu/jVz8rT5g9edoqPrdlWD9Fy9E8jYdFPsdzUj/GR508edoqPrdlWD9Fy9E8frtJPuznUj8ksiM9hQNsPisASz+krk09MuJpPuBZST9BH6U7Jfg2PuQsUD+93ro9IBBAPgL6UT/jgp09H4QcPu/jVz8rT5g9LuBPPpgKRz9Oj9o9lC1iPhy4Sj+x/pg9UPdFPjWERT9GHpw9LuBPPpgKRz9Oj9o9Jfg2PuQsUD+93ro9p54uPvNuUD+nalo9oychPuYSWD/KM0g9H4QcPu/jVz8rT5g9jYdFPsdzUj/GR508edoqPrdlWD9Fy9E8MuJpPuBZST9BH6U7uIlSPq44Rj8hEdI84RuwtElvQD84wnM+/xSTtI25Sz/yFEg+rXE5PeQCTD/clT4+sMFTPWmfQT+CbWY+UHt3PYDVSz9JiTI+sJStPUHXQj+qUEg+7vYVPTgVVD+F5xo+awBrtO7nUz8skhs+UnDPPTDQQz+mFEI+HzkRPj39QT8WlCI+TJ/oPY8LTj8wNRM+O0a+PYFcTT9nPSc+HzkRPj39QT8WlCI+8wLiPUDqPz+TExo+W3edPUUBTD8JJBI+TJ/oPY8LTj8wNRM+D4Q4PeWBSz8Y7Sw+UHt3PYDVSz9JiTI+7vYVPTgVVD+F5xo+sU0hPXn/Pz8B7jk+sJStPUHXQj+qUEg+T9KLPeQtPj+isSI+sU0hPXn/Pz8B7jk+D4Q4PeWBSz8Y7Sw+gvxXPTJ8VD9rHRY+7vYVPTgVVD+F5xo+DdYAPlgtVj/pMOg9ufwfPvCHRT+ST00+O0a+PYFcTT9nPSc+xPgHPtJeTT90lyY+UnDPPTDQQz+mFEI+H4QcPu/jVz8rT5g9U/y4PTMjVT9GLgU+U/y4PTMjVT9GLgU+6XMUPi+YWj99E8W9bZsnPqkaUz92eKO9OV8pPmDUWj/9hFW95GMXPolqWj+36JK9CcU9Pjd8Uz/12VG9ZmhfPu6hSj8uFC69S9RPPs9JRz+BboW9AQZAPkq+Sj+yKRy+lz4/PjeGRj8GvN69SQ0lPvxUUj+mUAS+Ca5XPsDJTj/ZHQW+AQZAPkq+Sj+yKRy+SQ0lPvxUUj+mUAS+JDw8PhyoUj+cTuW96XMUPi+YWj99E8W96XMUPi+YWj99E8W9X7mPPdT/VD+ARwg+U/y4PTMjVT9GLgU+7sWePfCNWj+Z4BO+Hq5cvk8RVT99yF68vD1Rvq6aVT9E1Du9E1MyvtvRWT9NPC28y9CJvr36Tj+9bXq8Oy2HvqAXTz+9x1i9dPpxvsezTj+Qw7m9KUJGvjN1VT8C3o69M18pvmDUWj9shVW9dPpxvsezTj+Qw7m9YWhfvu6hSj/AFC69AsU9vjd8Uz912lG9KUJGvjN1VT8C3o69M18pvmDUWj9shVW9vrwrvuYyUz9cUBW+Ezw8vhyoUj/XTuW9+K1XvsDJTj/9HQW+Ye1SvlJHTj++7y++M2A9vuEsTT/5flO+UMMavl7gUj8rmS++OwPrvYEbWz85LwK+J/b5vYl0Uj9UD0G+aJMMvibTSz+ZTmW+Icq6vRLBSz9kqGG+Vr+uvWICUz9yOD6+xMWevfCNWj+r4BO+Ynx3vU8JUz+ml0W+KDIIvTWiUz9GLly+SiEvvY99Wj90xR++FlegvYtZTD+wTGG+NH8ovZgXTD/MgIK+VTd2vZk8Wj/nvxW+V9OPvWsXTz/4XSe+zxcVvYqMTz8eokW+SiEvvY99Wj90xR++lLxzva1dRD+Lm0K+vSIEvcrCSD8Vn12+zxcVvYqMTz8eokW+vSIEvcrCSD8Vn12+FlegvYtZTD+wTGG+Ynx3vU8JUz+ml0W+SiEvvY99Wj90xR++xMWevfCNWj+r4BO+Vr+uvWICUz9yOD6+8+HvvZmpTz/mkS++Icq6vRLBSz9kqGG+97YOvunRSD/uikK+8+HvvZmpTz/mkS++97YOvunRSD/uikK+x3PIvR3BRD8QTji+/BM9vkWrUD/k7NM99GBRvm+8Rz+yHy4+QepqvopQSj/SpO49qtUovuRCTz8LKQ8+nS1ivhy4Sj9m/pg9LhBAvgL6UT+lgp09h7tJvuznUj+dsSM9jeCDvpJPTT9uYcg8SnBWvqZsUz8mfo48jwNsvisASz8Jrk09MIQcvu/jVz/2Tpg9gNoqvrdlWD9hytE8gNoqvrdlWD9hytE8kodFvsdzUj/DRp08h7tJvuznUj+dsSM9OOJpvuBZST9yGqU7jwNsvisASz8Jrk09LhBAvgL6UT+lgp09N/g2vuIsUD+C3ro9MIQcvu/jVz/2Tpg9nS1ivhy4Sj9m/pg9ReBPvpgKRz8Kj9o9N/g2vuIsUD+C3ro9ReBPvpgKRz8Kj9o9W/dFvjWERT8DHpw9s54uvvNuUD8yalo9sCchvuYSWD9cM0g9MIQcvu/jVz/2Tpg9kodFvsdzUj/DRp08gNoqvrdlWD9hytE8OOJpvuBZST9yGqU7wolSvq44Rj8MENI8OHI5veQCTD/PlT4+WMJTvWmfQT+AbWY+95StvUHXQj+hUEg+2Ht3vYDVSz9CiTI+YfcVvTgVVD9+5xo+ip/ovY8LTj8fNRM+PDkRvj39QT//kyI+mXDPvTDQQz+VFEI+eUa+vW5cTT9PPSc+knedvUUBTD/+IxI+IgPivUDqPz97Exo+PDkRvj39QT//kyI+ip/ovY8LTj8fNRM+2Ht3vYDVSz9CiTI+j4Q4veWBSz8L7Sw+YfcVvTgVVD9+5xo+95StvUHXQj+hUEg+O04hvXn/Pz/77Tk+O04hvXn/Pz/77Tk+jdKLveQtPj+esSI+j4Q4veWBSz8L7Sw+9fxXvTJ8VD9fHRY+YfcVvTgVVD9+5xo+INYAvlgtVj/FMOg9eUa+vW5cTT9PPSc+5PwfvvCHRT97T00+5/gHvtJeTT9dlyY+mXDPvTDQQz+VFEI+h/y4vTMjVT81LgU+h/y4vTMjVT81LgU+33MUvi+YWj+uE8W9M18pvmDUWj9shVW9YZsnvqkaUz+teKO92WMXvolqWj/p6JK9AsU9vjd8Uz912lG9YWhfvu6hSj/AFC69RtRPvs9JRz/GboW9jj4/vjeGRj9MvN696gVAvkq+Sj/QKRy+OA0lvvxUUj/DUAS+OA0lvvxUUj/DUAS+6gVAvkq+Sj/QKRy++K1XvsDJTj/9HQW+Ezw8vhyoUj/XTuW933MUvi+YWj+uE8W933MUvi+YWj+uE8W9lrmPvdf/VD92Rwg+h/y4vTMjVT81LgU+xMWevfCNWj+r4BO+jrDbPpH6Zj9mey69q0XaPsmCZT8rlvY9iZDiPr5UZD8zrL49+qupPuKbbz8AgPM9qSzDPkwDaD9M4Tq+y3vSPn6qYD/ThHy+zbDDPsxdXj/kb6G+ZvDLPmENZj9NODy+ZzIjv/jHFr84Tv6+mT4Xv91jLL9LiOO+Rxwbv46wIb+Op/e+E3IovxVDC78cTAW/yN4xvwdJ/76VrwS/3OvPPvQcaD9KeOm9dOP4PssJWz8yEja+ZA3TPhxjYj+Td2C+xMGqPqJsaz9wfFS+hI+PPtP7ZT8mGq2++/NKPnzjYj+5Uda+WkaWPnKpZT/IEKm+T0fpPQluWj/kSAK/2XmlPG12TT/9nxi/0pd/vIEpTD8sZRq/mzFdvd+dRD9fXCO/diKwPdBnaD/3IdK+IKuPPl1ZVz8Bpuy++DvbPtt3ST8UbeO+opuzPrBd2j7bbFW/TynePuHxRD/tFPC+7aiCPtpOTT9OQwq/AAAAAMBPXD8sYQK/AAAAACipUj9EdRG/AAAAgCHIaz/Kbce+enIMP0lO9z6Ksy6/5PKUPtci0j5BP12/BOQlPkIUkD70IHK/rZmzPmto2j6IalW/ETYtP00Msz644yW/zE4AP5XTvD7SZUi/d2GDPuR/Kb9vQDQ/kZCgPizmH7/KFzc/cPeTPq2kHb9rpTs/8uSuPvbFGr9kNjg/gUu5PhTeI79Cfi0/N1//vslhO79dqO0+tMUAv1/uPr8Kmd8+QhoBv2l+Pb+FsOM+zDP+vm+LOb+zk/Q+W1X5vnznNr/jmwA/kh7avfMvvz566Wu/7FCtviSoqD7NpGG/5Dhrvly0rD42tmm/U9eUPm8KWT9+E+M+vuPSPrd9Wz81AJ4+8ez8Pg8IWz9JaR4+zGyUPvhCWT/DgOI+VGoKP2VyVT9WweQ9hQskP2jKQj9x5dC9ByvJPhC6XD9nsKM+6XnWPjEOTT9Y+9o+RPDnPvG4Xj/HRUc+nbHMPk8DJj9v1SU/KbvWPtOcYD8Ql24+cTnOPiE+Yj/o53M+Dqwqvy6SOb/xjjE+RZQgv5ZyQb8vA0E+2Kgpvy9AOb+jVUU+XIwvv8NvNb+Cryk+M38svwf9Ob+h7wk+JUv+vmQ+Ib+B3xi/hrXzvg7kIr9tahu/JVLUvutGML9bShi/b34JvxWxHb9ghxO/JSUJv8QeGb8ilRi/orJgP75D7z6649i9QoVWP6Uv1z6TOLK+BFZdP4j29T6I1Ra+/j5bP32L0D5+aaI+DS9hP9mVpT4sl7I+8GBnPw3FQj4sQcQ+mS00P9nxBD94LPg+r4FtP3tjmT3cLbs+3XMwP5K5hz7fnCw/vwNJP2ALpj7UCgc/AAAAgPPNMj8YNTc/AAAAAHV8RD/lGSQ/kxKWPndoNT+BTiQ/Nm+SPqe4Lz8YKis/XxnsPpqzMT8wgA0/0rnrPv7uKT8Y4xY/p3whPkrxBD9pBFc/AAAAgKO3Tz+ZoRU/8zEMvzlFDb9jAiG/wEARv+LnCb9obx+/qiMFv/8HGL+nJh2/6pf9vvTLHr/4shu/syctvlkw9z0Wano/YnRXvWlPAD4HoH0/XRCJPqYOfj6xVm4/iCjCvRo2oD4L7nE/QLmvPsMFpb6V2WG/mX+uPhrjq74TzmC//pGtPmsIvb4MhV2/KRKyPuAjl76fz2O/FKSwPhjImL7L0GO/D1rPPqIlTz4kRGQ/vLYgPyZ/CD6gUkQ/jnL3PlFQqz4sGk8/BAbhPgoWij4eV1s/p3whPkrxBD9pBFc/wix6PkrkWT/j4u0+4m4BvKnnOj+X7C4/cpWQvYw/MT/E0zc/c7UEPlKXTT9G4xQ/uENpvo9sBj/o6lE/q15nPyTDQj5aTMQ+sCCwPQwoTj9ZKxY/FdXrviRELL8RLRS/gqY1P8IXIj/dTZ6+39pHP5z+/z7a8b++MRNfPyrJwz3hXva+am1fPywRwT6ctp6+VU0vP812+D6OLgu/GWQsP45C3j7hMBm/El87P3TH7T49Sv++awBPP465Cz8M+WA+sQRYP7GACD+dZ3e9STVcP5RnAj/N4cc8M4tfvuZwT78zNws/EMM+vhw3NL8zdC8//ESLvnG1Sr9+/As/A5mfvhtqU7+OmfA+WRnAvhF8P79UKAw/gqY1P8IXIj/dTZ6+vkvRPr0Myz4XbFI/bH8VPkcy77sOQH0/qab5PTmL7D1YXXy/PgDRvtFzZz8xVQE+4LrWvu7HZj+n7dq9KtLTvni2Zz9igcg9oA7NvlJEaj/FSD89qSzDvkwDaD9M4Tq+zbDDvsxdXj/kb6G+y3vSvn6qYD/ThHy+ZvDLvmENZj9NODy+RxwbP46wIb+Op/e+mT4XP91jLL9LiOO+ZzIjP/jHFr84Tv6+E3IoPxVDC78cTAW/yN4xPwdJ/76VrwS/ZA3TvhxjYj+Td2C+Vuz4vhMGWz9RKTa+3OvPvvQcaD9KeOm9xMGqvqJsaz9wfFS++/NKvnzjYj+5Uda+cYOPvnv9ZT9lG62+WkaWvnKpZT/IEKm+RETpvTFrWj/ATQK/2XmlvG12TT/9nxi/mzFdPd+dRD9fXCO/0pd/PIEpTD8sZRq/diKwvdBnaD/3IdK++Dvbvtt3ST8UbeO+IKuPvl1ZVz8Bpuy+opuzvrBd2j7bbFW/TynevuHxRD/tFPC+7aiCvtpOTT9OQwq/wkzVvkIxiD6dil6/me+UvjEe0j7qQF2/enIMv0lO9z6Ksy6/rZmzvmto2j6IalW/zE4Av5XTvD7SZUi/ETYtv00Msz644yW/A5ygvvbdH79zHDc/d2GDvuR/Kb9vQDQ/cPeTvq2kHb9rpTs/8uSuvvbFGr9kNjg/gUu5vhTeI79Cfi0/tMUAP1/uPr8Kmd8+N1//PslhO79dqO0+QhoBP2l+Pb+FsOM+W1X5PnznNr/jmwA/zDP+Pm+LOb+zk/Q+3TZrPvq/rD4ztGm/7FCtPiSoqD7NpGG/kh7aPfMvvz566Wu/vuPSvrd9Wz81AJ4+U9eUvm8KWT9+E+M+8ez8vg8IWz9JaR4+zGyUvvhCWT/DgOI+hQskv2jKQj9x5dC9VGoKv2VyVT9WweQ96XnWvjEOTT9Y+9o+v87Ovr/sVT+Nk74+onbVvsAQXj/RA4s+nbHMvk8DJj9v1SU/6TJbv0IYuz7v8Lo+cTnOviE+Yj/o53M+RZQgP5ZyQb8vA0E+DqwqPy6SOb/xjjE+AqgpP0U/Ob/hbkU+M38sPwf9Ob+h7wk+XIwvP8NvNb+Cryk+hrXzPg7kIr9tahu/RUH+PnBAIb9y4Ri/JVLUPutGML9bShi/JSUJP8QeGb8ilRi/b34JPxWxHb9ghxO/BFZdv4j29T6I1Ra+QoVWv6Uv1z6TOLK+orJgv75D7z6649i9/j5bv32L0D5+aaI+hXxCv6t4Gz9F+20+6TJbv0IYuz7v8Lo+mS00v9nxBD94LPg+ZQhgv9EMpD2QVfQ+3XMwv5K5hz7fnCw/vwNJv2ALpj7UCgc/kxKWvndoNT+BTiQ/Nm+Svqe4Lz8YKis/0rnrvv7uKT8Y4xY/WiDsvv6uMT8Sgw0/p3whvkrxBD9pBFc/sCUFP8ADGL8KKR2/wEARP+LnCb9obx+/8zEMPzlFDb9jAiG/6pf9PvTLHr/4shu/XRCJvqYOfj6xVm4/YnRXPWlPAD4HoH0/syctPlkw9z0Wano/+ibCPe1BoD4b7HE/mX+uvhrjq74TzmC/QLmvvsMFpb6V2WG//pGtvmsIvb4MhV2/FKSwvhjImL7L0GO/KRKyvuAjl76fz2O/vLYgvyZ/CD6gUkQ/D1rPvqIlTz4kRGQ/jnL3vlFQqz4sGk8/BAbhvgoWij4eV1s/N5YhvsHwBD+LA1c/wix6vkrkWT/j4u0+AZiQPSI8MT8F1zc/4m4BPKnnOj+X7C4/c7UEvlKXTT9G4xQ/uENpPo9sBj/o6lE/peyvvYAoTj+uKxY/FdXrPiRELL8RLRS/gqY1v8IXIj/dTZ6+MRNfvyrJwz3hXva+39pHv5z+/z7a8b++yMU+v83AGj8KIZC+VU0vv812+D6OLgu/GWQsv45C3j7hMBm/El87v3TH7T49Sv++sQRYv7GACD+dZ3e9awBPv465Cz8M+WA+STVcv5RnAj/N4cc8/ESLPnG1Sr9+/As/EMM+Phw3NL8zdC8/M4tfPuZwT78zNws/o5WfPjFsU793lPA+WRnAPhF8P79UKAw/gqY1v8IXIj/dTZ6+bKrcvk288D5kKkU/bH8Vvkcy77sOQH0/qab5vTmL7D1YXXy/VH0DP/BWqD6WNA4/8FaoPvBQDj+EyIo+ljQOP2yOxT5CbwM/bI7FPi819j7wVqg+IIfvPmyOxT5SEP8+hMiKPu4Q5T68v6U++AvjPjj3wj7jBes+OPfCPu4Q5T68v6U+KqHhPlAxiD4oGSU/bI7FPluNID/wVqg+4JUWP/BWqD4AVRg/bI7FPpY0Dj/wVqg+ljQOP2yOxT7wUA4/hMiKPlR9Az/wVqg+Qm8DP2yOxT6sifY+8FaoPiCH7z5sjsU+UhD/PoTIij7glRY/8FaoPluNID/wVqg+4AQaP4TIij4oGSU/bI7FPgBVGD9sjsU+nTQOP9Q+pz4gMQ4/kETGPj9RDj9UyIo+51m8Pry/pT7Pac4+vL+lPkCfzT5QMYg+HG7BPlAxiD6BVLg+OPfCPozoyD4498I+gVS4Pjj3wj7nWbw+vL+lPoFUuD4498I+51m8Pry/pT4cbsE+UDGIPu4Q5T68v6U+KqHhPlAxiD7uEOU+vL+lPuMF6z4498I+4wXrPjj3wj6uJtg+OPfCPuMF6z4498I+7hDlPry/pT6WNA4/bI7FPlR9Az/wVqg+Qm8DP2yOxT6WNA4/8FaoPqyJ9j7wVqg+IIfvPmyOxT4AVRg/bI7FPluNID/wVqg+4JUWP/BWqD4oGSU/bI7FPlIQ/z6EyIo+4AQaP4TIij7nWbw+vL+lPhxuwT5QMYg+51m8Pry/pT6BVLg+OPfCPoFUuD4498I+7hDlPry/pT7uEOU+vL+lPiqh4T5QMYg+4wXrPjj3wj7jBes+OPfCPrUm2D4498I+4wXrPjj3wj7uEOU+vL+lPs9pzj68v6U+QJ/NPlAxiD4qoeE+UDGIPudZvD68v6U+HG7BPlAxiD6BVLg+OPfCPkNfxT4498I+HDoOP5yWxT5GoQ0/hsanPlR9Az/wVqg+Qm8DP2yOxT4vNfY+8FaoPiCH7z5sjsU+TxD/PoTIij7kUA4/lMiKPoFUuD4498I+gVS4Pjj3wj7nWbw+vL+lPudZvD68v6U+gVS4Pjj3wj6M6Mg+OPfCPs9pzj68v6U+51m8Pry/pT5Hjd4+vL+lPu4Q5T68v6U+KqHhPlAxiD7szt0+OPfCPuMF6z4498I+ribYPjj3wj7szt0+OPfCPkeN3j68v6U+H7fYPlAxiD4qoeE+UDGIPvBQDj+EyIo+AFUYP2yOxT5bjSA/8FaoPuCVFj/wVqg+KBklP2yOxT5SEP8+hMiKPuAEGj+EyIo+HG7BPlAxiD7gBBo/hMiKPs9pzj68v6U+KqHhPlAxiD5An80+UDGIPu4Q5T68v6U++AvjPjj3wj6uJtg+OPfCPn/tvj4498I+jOjIPjj3wj7nWbw+vL+lPoFUuD4498I+f+2+Pjj3wj7nWbw+vL+lPudZvD68v6U+HG7BPlAxiD4cbsE+UDGIPkCfzT5QMYg+HG7BPlAxiD4qoeE+UDGIPpY0Dj/wVqg+VH0DP/BWqD7wUA4/hMiKPpY0Dj9sjsU+Qm8DP2yOxT4gh+8+bI7FPi819j7wVqg+UhD/PoTIij7jBes+OPfCPvgL4z4498I+7hDlPry/pT7uEOU+vL+lPiqh4T5QMYg+4JUWP/BWqD5bjSA/8FaoPigZJT9sjsU+AFUYP2yOxT6WNA4/bI7FPpY0Dj/wVqg+8FAOP4TIij5UfQM/8FaoPkJvAz9sjsU+IIfvPmyOxT6sifY+8FaoPlIQ/z6EyIo+W40gP/BWqD7glRY/8FaoPuAEGj+EyIo+KBklP2yOxT4AVRg/bI7FPkCfzT5QMYg+z2nOPry/pT7nWbw+vL+lPhxuwT5QMYg+jOjIPjj3wj6BVLg+OPfCPudZvD68v6U+gVS4Pjj3wj6BVLg+OPfCPudZvD68v6U+HG7BPlAxiD4qoeE+UDGIPu4Q5T68v6U+7hDlPry/pT7jBes+OPfCPuMF6z4498I+7hDlPry/pT7jBes+OPfCPq4m2D4498I+VH0DP/BWqD6WNA4/bI7FPkJvAz9sjsU+ljQOP/BWqD4gh+8+bI7FPqyJ9j7wVqg+W40gP/BWqD4AVRg/bI7FPuCVFj/wVqg+KBklP2yOxT5SEP8+hMiKPuAEGj+EyIo+HG7BPlAxiD7nWbw+vL+lPudZvD68v6U+gVS4Pjj3wj6BVLg+OPfCPu4Q5T68v6U+7hDlPry/pT4qoeE+UDGIPuMF6z4498I+4wXrPjj3wj7uEOU+vL+lPuMF6z4498I+tSbYPjj3wj7Pac4+vL+lPkCfzT5QMYg+KqHhPlAxiD7nWbw+vL+lPhxuwT5QMYg+gVS4Pjj3wj5DX8U+OPfCPlR9Az/wVqg+Qm8DP2yOxT4gh+8+bI7FPi819j7wVqg+TxD/PoTIij7nWbw+vL+lPoFUuD4498I+gVS4Pjj3wj7nWbw+vL+lPs9pzj68v6U+jOjIPjj3wj6BVLg+OPfCPudZvD68v6U+7hDlPry/pT5Hjd4+vL+lPiqh4T5QMYg+4wXrPjj3wj7szt0+OPfCPuzO3T4498I+ribYPjj3wj5Hjd4+vL+lPh+32D5QMYg+KqHhPlAxiD7wUA4/hMiKPluNID/wVqg+AFUYP2yOxT7glRY/8FaoPigZJT9sjsU+4AQaP4TIij4cbsE+UDGIPuAEGj+EyIo+KqHhPlAxiD7Pac4+vL+lPkCfzT5QMYg+7hDlPry/pT74C+M+OPfCPq4m2D4498I+jOjIPjj3wj5/7b4+OPfCPudZvD68v6U+51m8Pry/pT5/7b4+OPfCPoFUuD4498I+51m8Pry/pT4cbsE+UDGIPhxuwT5QMYg+QJ/NPlAxiD4cbsE+UDGIPiqh4T5QMYg+AgABAAAAAAABAAMABAAAAAMABAAGAAUAAAAEAAUABQAHAAAACgAJAAgACwAKAAgACwAIAAwAAgAAAAcADwAOAA0AEAAPAA0AEAASABEADwAQABEAEQATAA8AEwARABQAFAARABIAFQAUABIAFQAXABYAFAAVABYAFgAYABQAEwAUABgAGwAaABkAGQAaABwAHQAZABwAHQAfAB4AGQAdAB4AGwAZACAAHgAgABkAIwAiACEAJAAjACEAIgAmACUAIQAiACUAKQAoACcAKQAqACgAKgArACgALgAtACwALAAwAC8ALgAsAC8AMwAyADEAIgAzADEANgA1ADQANQA3ADQANgA5ADgANQA2ADgAPAA7ADoAOwA9ADoAOgADAAEAPAA6AAEAAQACADwAOAA+ADUAPwA7ADwAPwA8AAIAQgBBAEAAQABEAEMAQgBAAEMARwBGAEUASQBIAEUARgBJAEUATABLAEoATQBMAEoATABNAE4ATwBMAE4ATgBNAFAAUQBOAFAAUgBQAE0AUwBSAE0AVgBVAFQAVwBWAFQAWQBYAFYAVwBZAFYAVgBaAFUAWgBbAFUAXgBdAFwAXwBeAFwAYgBhAGAAYwBiAGAAZgBlAGQAaABnAGQAZQBoAGQAWABaAFYAagBpAGIAawBqAGIAbQBrAGwAbgA3ADUAcQBwAG8AcAByAG8ANAA3AHEAbwA0AHEAbgA1AHMAdABwAHEAbgBxADcAXwB1AF4AbgB0AHEAdgAOAA8AdgAPABMAeQB4AHcAeAB6AHcAdwB6AHsAfAB3AHsAfwB+AH0AggCBAIAAgwCCAIAAgwCEAIIAfwCFAHcAfwB3AH4AfgB3AHwAdwCFAHkAhgBsAGIAbABrAGIAhgBiAIcAYgBjAIcAUwBNAEoAYQBiAGkAiAAzACIAIwCIACIAJgAiADEAiwCKAIkAjACJAIoAjQCMAIoAjwCOAI0AigCPAI0AjwCKAJAAkwCSAJEAlACTAJEAlACVAJMAiwCQAIoAmACXAJYAmQCYAJYAmwCaAJkAlgCbAJkAmwCWAJwAnACdAJsAmgCbAJ0AngCaAJ0AoACfAJ4AnQCgAJ4AoACdAKEAnAChAJ0ApACjAKIApQCiAKMApgClAKMAHgAfAKYAowAeAKYApAAgAKMAHgCjACAAqQCoAKcAqgCpAKcArACrAKgAqQCsAKgArwCuAK0ArwCtALAAsACtALEAtACzALIAtgC1ALMAtAC2ALMAuQC4ALcAqAC5ALcAvAC7ALoAugC7AL0AvwC+ALwAugC/ALwAwgDBAMAAwADBAMMAiQCMAMEAwgCJAMEAiQDCAIsAvwC6AMQAxQDCAMAAxQCLAMIAyADHAMYAygDJAMcAyADKAMcAzQDMAMsAzADPAM4AywDMAM4A0gDRANAA0wDSANAA1ADTANAA1QDUANAA1gDTANQA1wDWANQA0wDWANgA2QDTANgAVABVANoA2wBUANoA2gDdANwA2wDaANwA2gBVAN4A3gBVAFsA4QDgAN8A4gDhAN8A5QDkAOMA5gDlAOMA6QDoAOcA6ADrAOoA5wDoAOoA3QDaAN4A4wDtAOwA7gDjAOwA8ADvAO4A8QC6AL0A9ADzAPIA8gDzAPUA9AC9ALsA8wD0ALsA8QDEALoA9gD0APIA8QC9APQA4gDfAPcA8QD0APYA+ACWAJcA+ACcAJYA+wD6APkA+QD6APwA/QD8APoA/gD9APoAAQEAAf8ABAEDAQIBBQEEAQIBBQECAQYBAQH6AAcBAQH/APoA/wD+APoA+gD7AAcBCAHjAO8A7wDjAO4ACAEJAeMA4wAJAeYA2QDSANMA5ADtAOMAqAC3AAoBpwCoAAoBqwC5AKgA8PgOvpQinD++9ve8V3AJvr4xmz+gURq9wccVvjJDnT/U6tS8h5gcvvlgnj88S/m8vdsEvlR3mj/ERJC9YBcJvg0xmz8ZBJ+98KgGvpmzmj/km0K9dg4cvnZdnj88bq69nXIhvhAonz9AgJ29qScVviA/nT/SMLe93m4OvhAfnD8eGa69CZMmvmcLoD9JMkC9qdIhvoIqnz+CAx+9ASMpvnJ+oD9OYW29jVsmvv0JoD+WJo29VHAJPr0xmz9QURq99fgOPpIinD8P9ve8wMcVPjBDnT8U6tS8jZgcPvdgnj93Svm8ahcJPgwxmz/wA5+9x9sEPlJ3mj+bRJC986gGPpezmj+Sm0K9oHIhPg4onz8NgJ29fw4cPnRdnj8Nbq69uicVPh4/nT+hMLe96G4OPg8fnD/yGK69rtIhPoAqnz8dAx+9DpMmPmULoD/eMUC9DSMpPnB+oD/hYG29kFsmPvsJoD9gJo29Qj/+vSk0nD/muxO9+sgXvvRQoD8uLxe9W3T9va0xnD8YfaC9Qj/+vSk0nD/muxO9p18XvkdOoD/EGaG9W3T9va0xnD8YfaC9+sgXvvRQoD8uLxe9p18XvkdOoD/EGaG91+8Rvo4Unz/93s+8VyUOvqhZoD/FMdK8SVUGvif+nz8OxYu8Db8Gvr08nT9Ux868T9IMvksenj/nOay8veD3vQ5anT/KatC8QAcAvmVXnz/m2le81Vb5vcFmnj+S04q8l2H2vVMFmz+gtkK9nmHjveuWmz8v9TG9veTWvbMHmz8uQky99f31vQ4Emz/Wyom9omcEvtlImj9Dh2+9CbDzvaGQmj8GB2u9stXivSOVmz8Xy5G9bJrWvcEGmz+jSIS9d0PRvc69mj8rRGq9d0PRvc69mj8rRGq95RsGvpc4nT8VJbi9cJ32vfJVnT+ZU7e9rL33vY1hnj+V0Mi9sEwRvmkQnz8Ba7i9iRkMvpcZnj/9EcG9soMNvotVoD9Yxbe9r4gFvvL4nz/uDMm9xk7+vbRRnz/hudC9UMcfvvBqoT82woq9qucYvlmQoj9D2pK9r84bvgXAoz9CnYW9H/kfvjVsoT9epUS9RyMjvgjYoT/VO229ny0ZviCSoj+CEzS90PMbvvbAoz9m6069DWgdvs88pD++KW29ST/+PSc0nD+ZuxO9/sgXPvJQoD/OLhe9bnT9PasxnD/yfKC9ST/+PSc0nD+ZuxO9sl8XPkVOoD+UGaG9bnT9PasxnD/yfKC9/sgXPvJQoD/OLhe9sl8XPkVOoD+UGaG91u8RPo0Unz9E3s+8R1UGPiT+nz9kxIu8ViUOPqZZoD8SMdK8Cb8GPrs8nT+vxs68TtIMPkkenj84Oay8uOD3PQxanT8watC801b5Pb9mnj/20oq8OAcAPmNXnz+k2Ve8nWH2PVEFmz9VtkK9xOTWPbEHmz/tQUy9pmHjPemWmz/q9DG9/P31PQ0Emz+yyom9D7DzPZ+Qmj/ABmu9pWcEPtdImj/1hm+9udXiPSGVmz/1ypG9eJrWPb8Gmz+ESIS9fkPRPc29mj/vQ2q9fkPRPc29mj/vQ2q97xsGPpY4nT/tJLi9g532PfBVnT9zU7e9wb33PYthnj9y0Mi9ukwRPmcQnz/Sari9khkMPpYZnj/QEcG9vYMNPopVoD8rxbe9uYgFPvH4nz/LDMm9207+PbJRnz+9udC9W8cfPu9qoT8Dwoq9rucYPleQoj8Q2pK9ss4bPgPAoz8NnYW9JPkfPjNsoT/1pES9TCMjPgbYoT9rO229pC0ZPh6Soj8cEzS91vMbPvXAoz8A6069EGgdPs08pD9XKW29YejQvn+ujz8Dx229QF7NvuW/jj+BzEa9uGPmvrg4gz+SQnW9ffHgvua/gz/UIDq9CjnIvuitjT+uxhm95Q3AvjlvjD+8Q/a86S67vhZCkT827wG9uSXFvnGdiT9kpQW9zLPXvkhQhD+8QCq9XHi7vqRAmz+Oj2+9Ve+4vp+Imj+H5Eu9mNGpvmCHpD+e+XC9lnCqviaCoj/TXlS9DaCtvia+nz9kfkS9YdK5vikalT+0qhq9DyK0vlxAmT95vya9E/XJvvxOjD9E8469tVzMvqBIjT+pvHu99IPgvmcohD82xJe9W0HGvhcmiz9asKK9vPm/vgq9iT/4SbC9r+O4vm/DjT+mKbC9/CHGvtuDhz/2ga29vnnWvrQshT8Pk6S9bUGxvlDRlT8UcZS9HuyyvkCRlj+U2YS9XR+evjL+nT9Reoq9BfGfvos7nD9IBJa94WKkvtTtmT+gVpu9El+1vpYUkT+rUqe9T/Otvit+lD+ymKS9cp6oPWxYmD95sIY978etPbYNmT/8JXg9sxqyPeOxmD9pAmA9fVWsPRV6lz+et2w9Ym2ePbO1lz+j7I89hUGgPfbUlj9Ax4Y99h+iPawkmT87lpI97ZGkPQKomT9yDI49e9CbPeCrmD856ZY9eKaVPYh3mj/CiJ49VmycPce9mT9zsJk9EBqZPcyHmT+ZPJs9IdGdPWgFmj8nlpY9BZFzPZvmnz+COpE9KxBuPWnSnz+Iu5Q9lddsPbxwoD820JI9/ZdzPRL+nz8uqY09vy6GPeDunj9853k9yumAPXDznj99xY09F8F8PY2Snz/9ZYg9XJN7PSYvnj/fKZU9t5pxPT0cnz8oopU95oiQPZKxnT+/IoM9f5OFPQotnT9pxpM9+xGRPflInj9gzFs9JsOyPY28mT9AjVQ9ztKuPZ6Xmz+Eqxg9KySsPVNAmz8BgV09AeudPVXLnD93VXM9zOKdPSaTnT/bxzM9XBGSPf/omz+gd489Tl6lPWYvmj+nuoY9G66mPb7enD+nzwQ9m3asPb49nD8hN7M8zhqyveOxmD8qAmA9CcitvbYNmT/CJXg9j56ovWxYmD9esIY9mFWsvRV6lz9ht2w9gG2evbK1lz+J7I89o0GgvffUlj8mx4Y9FCCivawkmT8glpI9CpKkvQKomT9WDI49nNCbveKrmD8h6ZY9dmycvce9mT9ZsJk9l6aVvYh3mj+oiJ49MhqZvcyHmT+APJs9P9GdvWgFmj8NlpY9axBuvWnSnz92u5Q9RpFzvZvmnz9tOpE919dsvbxwoD8i0JI9O5hzvRL+nz8aqY096emAvXDznj9nxY092y6GveDunj9O53k9VMF8vY2Snz/nZYg9+JpxvT0cnz8WopU9oJN7vSYvnj/JKZU9npOFvQotnT9SxpM9AomQvZKxnT+mIoM9FBKRvflInj8szFs9PsOyvY28mT8CjVQ9RiSsvVNAmz/EgF095dKuvZ6Xmz9Jqxg9HuudvVXLnD9AVXM94uKdvSaTnT+pxzM9fRGSvf/omz+Gd489a16lvWYvmj+LuoY9Lq6mvb7enD9wzwQ9q3asvb49nD+vNrM80GCqPmNCkT/pjIC9gLipPmwVkT+Yk5S98PiwPsmnjj+2Ipi9R/uxPqD5jj+HaYC9uF6mPjMtkD8GGqy96ZmnPt1+jD+ODbe9JFuoPnd5iz948rG9guisPrVIjT8cYbC95imgPny+jj8Bqbu9wUikPspCjz8llLa9hLOfPh4dkD9q07i9uluiPkfAjT9yNbq9mw6lPiRjjT/kwbi9ffalPkIMkz/tjIC97tGkPrXAkj/SlZa9mRGhPrxTlT/0jIC9yG+fPmwClT9orZe9pNWcPjS8lz/0jIC9W/GbPhB8lj901Ze9ZfWcPtmPlD8+GqW9r96gPqfGkT+HF6u9AIOePoMlkz/EY6m9jY+xPuDbjj9lkVu9fripPmwVkT9mL1a9LtqvPhwNjj8e5iq9tl6mPjMtkD+PvyO9goqsPiHRjD9HexC9oW6qPlIwjD/KKxK9wFKoPoKPiz9J3BO9lw6lPiRjjT9vnQi9vkikPspCjz82SQ294imgPny+jj8+ZAK9gbOfPh0dkD/fdwi9uluiPkfAjT/XgAW97tGkPrXAkj/r4FG9yG+fPmwClT+HiU+9W/GbPhB8lj+vM0+9ZfWcPtmPlD8ZwTK9r96gPqfGkT/J6SW9/YKePoMlkz8PkCm9QgHPPqu2xL6/e1Q/KH0dP0gw6L6MFyU/5xlrPecdIz7ATXw/kDq/vsU44z65iFA/sfAkP4ObFL+E7P6+yK4TP1EU277SHjK/kCIIP2kHOb+5/OE+OISJvvjUBD9swk+/MGWIvuz2JD+sfze/zE03PpGqpDz8z3u/dGSsPt483b4NLFa/Mh3YvlSpMj/tHhQ/cHKZvsh3LD+/7Sw/YR30voXQXz+6xbq96zIDv22PIT9LERW//H4dv94l6L53GSU/QgHPvqu2xL6/e1Q/5xlrvecdIz7ATXw/kDq/PsU44z65iFA/yK4Tv1EU277SHjK/sfAkv4ObFL+E7P6+kCIIv2kHOb+5/OE+MGWIPuz2JD+sfze/OISJPvjUBD9swk+/zE03vpGqpDz8z3u/dGSsvt483b4NLFa/cHKZPsh3LD+/7Sw/KivYPguqMj/3GBQ/YR30PoXQXz+6xbq96zIDP22PIT9LERW/09R4PgJsOL8TTCY/lp0evzckxj730S4/VM+VPumlKr8Wgy+/09R4PgJsOL8TTCY/3TYbv3XDxD6bOjK/VM+VPumlKr8Wgy+/lp0evzckxj730S4/3TYbv3XDxD6bOjK/JQ4ev9HJVD5uOkI/7uA0v0Z6kD5IIiY/B6shvx1r3j1CiUQ/Sf3UPIubI7/oyEQ/qP6jvmk7cL5c9Wo/vAabPbSOPr8X2Sk/yR7Fvpt1kb48y2A/Y6qTvSjgIL9HR0Y/mBXqPZM1XL84dv4+K1K4PeARRb9qxCE/E6WbPXSIYL8v1vI+bCRkPka0Vb+q5AC/Sp5JPivFeb/3n8U9M/hcPjvLeb9ZfxU987LIPcJLRL8CZyK/sy2yPYMNYb817e++6CWPPXVff7/dfTc7vPGOPetff78xfjc7RqE0PSe7Jb9XyUK/0Kq1PdxQQb/kRya/10hqvc6oIb+L9UW/vUsav7a4UT7jbkW/ZO2aviHpc76oQWy/lKUxv3Ypjz4x3Sm/dtsdv4FH2D0et0e/J228vkY1k74fXmK/iapFv+Nioz6YrQy/wKEzv+6RaT75yyy/IbRUv7uWez4rov++bFdIv3dzpD6ihQg/HYJlv93E4j6gphu8o+k2v9U8bD6uFik/RB1XvxuKfT5M7/Y+kId2v+rhiT5wkCC809R4vgJsOL8TTCY/KZ8ePxMZxj6y0y4/VM+VvumlKr8Wgy+/09R4vgJsOL8TTCY/3TYbP3XDxD6bOjK/VM+VvumlKr8Wgy+/lp0ePzckxj730S4/3TYbP3XDxD6bOjK/JQ4eP9HJVD5uOkI/B6shPx1r3j1CiUQ/pd00P+N8kD5JJSY/Sf3UvIubI7/oyEQ/qP6jPmk7cL5c9Wo/XgmbvfGRPr9s1Sk/Y6qTPSjgIL9HR0Y/yR7FPpt1kb48y2A/V0nqve40XL95df4+E6WbvXSIYL8v1vI+K1K4veARRb9qxCE/bCRkvka0Vb+q5AC/M/hcvjvLeb9ZfxU9Sp5JvivFeb/3n8U987LIvcJLRL8CZyK/zvuxvbcQYb+C4+++vPGOvetff78xfjc7vPGOvetff78xfjc7RqE0vSe7Jb9XyUK/0Kq1vdxQQb/kRya/10hqPc6oIb+L9UW/vUsaP7a4UT7jbkW/ZO2aPiHpc76oQWy/lKUxP3Ypjz4x3Sm/dtsdP4FH2D0et0e/J228PkY1k74fXmK/iapFP+Nioz6YrQy/XpwzPzt5aT6n0yy/IbRUP7uWez4rov++bFdIP3dzpD6ihQg/HYJlP93E4j6gphu8o+k2P9U8bD6uFik/7B9XPzyNfT485fY+kId2P+rhiT5wkCC8uPwnvympkz5AgjI/sZUsv3MSnT73/is/RG1Hv6eDID9hZao6DHMRv2sDfT5M8kg/c7fevoPlLj5/U2I/4YW+vsjIyz0WP2w//pjKvhnYMD4/6WY/8423vkoPnD2GL24/gQeMvuv7dj1awXU/UBoxv810pD6cjiU/9SEev6kelj4Pzjo/HBkzv+zMrD6wOiE/OiopvxVGpT48dy0/T8kTv87/jj7xbEQ/RTH7vk/4dT4bblY/PoIFv2IbgD6f01A/mhEiv7UV1z49cia/CDUcv2IkxD4KiDG/j3Imv1glAz9uow+/fr3WvrXjhz7DPV6/wCy0vnOhJz6l7mu/fhPHvqDmVD6txWW/BZeUvpDaMD6b9XC/4hSXvgQsvT6kkmG/JRYVvwDrvD7Cbzm/6Qkmv2jJ0j5r4yO/Bx4nv5fn2z6Wvh+/H1UevyFh0D5UFCy/+cwLvxzesT7DJUO/t0fwvgGblT7RUlW/fa3+vnumnT6Nn0+/lU9fP40hH76LXe0+HMdqPxSTKT0WAss+DSBwP5sr1LwP/7A+jnFgPyjNUL4YCd8+SRFIP4csdr69YRM/IH5DP62tjb5RVRU/0mZFP15Cvr0jQSE/Y3ZYP21zgj3Ysgc/tvIsP1cHG75GuTg/opQkP1QxZj1mjkM/8nE3P0JbjzwigTI/p98TPyPvDb4H8E0/jfxKP/daJD7YehY/THpZP7Lrkz60AOI+BKM+P9cMLT4rSyU/cmlfP6dshz4fINI+8IZnP+JryT5SKik+AO9bP4Mu4T4r/oU+gDtPP4r5rz5ntvM+DSZjPyiZyj7flXI+3uUvP3Y5dD5wsS8/GnI5P9FuQT41uik/4iBOP08T3z6Q+c0+6eU3P5LVjT6MXSM/LZdTP3lpAT/cjH0+/uRtP/yWTD7+Ep8+6OVhPx8A4j69tSY+K1RqP1ujlj6JwYw+D/tSP0L5xj6B9NI+zvxaP/859j5560Q+hsY6P8fwoz71sho/nsRaP5PCfj4daek+bE5oP+FD0T5HfMc935tjP9r44D7ARgM+DSBwv5sr1LwP/7A+HMdqvxSTKT0WAss+lU9fv40hH76LXe0+jnFgvyjNUL4YCd8+SRFIv4csdr69YRM/Cx5Gv8rChL6A6hM/0mZFv15Cvr0jQSE/Y3ZYv21zgj3Ysgc/tvIsv1cHG75GuTg/8nE3v0JbjzwigTI/ZZQkv9qZZj0fjkM/p98TvyPvDb4H8E0/jfxKv/daJD7YehY/BKM+v9cMLT4rSyU/THpZv7Lrkz60AOI+cmlfv6dshz4fINI+8IZnv+JryT5SKik+gDtPv4r5rz5ntvM+AO9bv4Mu4T4r/oU+DSZjvyiZyj7flXI+GnI5v9FuQT41uik/3uUvv3Y5dD5wsS8/Fek3v/bSjT6KWiM/4iBOv08T3z6Q+c0+LZdTv3lpAT/cjH0+/uRtv/yWTD7+Ep8+O1Vqv9Oflj48vow+6OVhvx8A4j69tSY+D/tSv0L5xj6B9NI+kf5av5w09j4q50Q+hsY6v8fwoz71sho/nsRav5PCfj4daek+bE5ov+FD0T5HfMc935tjv9r44D7ARgM+eMBMP4WGGT8r5tC8ilw/P0eaCD98jMq+R58dP6hrGz9blwC/l3gtP/hyOz9tFoy9MG4HP4oA1T66WD2/6aqkPta50buoZHK/sEidvdjnyL5apWq/0OahPrEXij6m12i/5hl8PnpG0D09wHa/bkefPqgHSj45/22/j5+cPnk5hT7Rcmq/HhFlPvv7mD1Zx3i/q6p1PjORwj2rVHe/dsJZPzmVBj9cEwO8ZfA1P5AR5T53+wq/qzxjP5K86z6wNSK8n4U9PxFZyj5zNwu/xSpkP3EV6D4QKEu8P+UyPznf0T7IERa/56QoP7fCrz4aYiu/XwP0PkyNxD4ld0q/q/EiP7EDpz4d6zK/03ErP3fAKz+sBaM+gZk6P6YADz+jpso+qOj+PtSo+j5IQjc/0HkFP0vN6D6j2jg/1JY7PoWP3D0tJ3o/AAQaPCSbmb2BRH8/w36MvSxrnL6XIHM/p+MUPmTiRzyeQn0/vuSjPoXXdD60rWo/MGeGPh8C3j1bdXU/J5WlPuCljD6Bz2c/UW50Poxuoz1Lwnc/dBw5P4I26T5l8AQ/egRBP84fzj6X4gQ/y+82PwCU1j6IYg8/nMYtP/kYtT4lvSQ/OkX+PqcQzT7yIEU/XV0oP6qWrD7ldSw/VrXhPvw6KD7oW+k+JPEnPgVZ2T6Idyg+OeHQPsyEKD5c7u8+OA4mPuhb6T4k8Sc+rZvwPlDGJT454dA+zIQoPkr1yD7MtCg+BVnZPoh3KD5WteE+/DooPiPpwD5Ukig+SvXIPsy0KD6o8bg+aHUoPiPpwD5Ukig+6FvpPiTxJz5WteE+/DooPgVZ2T6Idyg+OeHQPsyEKD7oW+k+JPEnPlzu7z44DiY+rZvwPlDGJT5K9cg+zLQoPjnh0D7MhCg+BVnZPoh3KD5WteE+/DooPkr1yD7MtCg+I+nAPlSSKD6o8bg+aHUoPiPpwD5Ukig+bHzmPjhEGD4DYMs+lEUYPrW06D6ksBY+tbToPqSwFj4DYMs+lEUYPmx85j44RBg+Ty/HPpwEFz5SL8c+nAQXPshK0z5Inxg+dvXPPlReDj5r79Q+dCoHPuZR3z4IuBg+f1XZPnzNFz79teI+QNcOPhFz2T5M8wM+1+bdPhBfBz6G0/A+PHoVPmyi7T7Uowc+xlbzPniLAD6G0/A+PHoVPq2s+D4QpyM+xSD4PtAAFT5sou0+1KMHPsZW8z54iwA+28T4PjBa+z3bxPg+IFr7PeZR3z4IuBg+/bXiPkDXDj7X5t0+EF8HPshK0z5Inxg+f1XZPnzNFz529c8+VF4OPmvv1D50Kgc+EXPZPkzzAz72Y74+wMoXPjwtvz4oMgg+Zj+4PmBQAj72Y74+wMoXPidNtz7Umxk+PC2/PigyCD5mP7g+YFACPo/Fsj4g9AE+bHzmPjhEGD4DYMs+lEUYPrW06D6ksBY+tbToPqSwFj4DYMs+lEUYPmx85j44RBg+Ty/HPpwEFz5SL8c+nAQXPshK0z5Inxg+a+/UPnQqBz529c8+VF4OPuZR3z4IuBg+f1XZPnzNFz79teI+QNcOPtfm3T4QXwc+EXPZPkzzAz6G0/A+PHoVPsZW8z54iwA+bKLtPtSjBz6G0/A+PHoVPsUg+D7QABU+raz4PhCnIz5sou0+1KMHPsZW8z54iwA+28T4PjBa+z3bxPg+IFr7PeZR3z4IuBg+/bXiPkDXDj7X5t0+EF8HPshK0z5Inxg+f1XZPnzNFz529c8+VF4OPmvv1D50Kgc+EXPZPkzzAz72Y74+wMoXPjwtvz4oMgg+Zj+4PmBQAj72Y74+wMoXPidNtz7Umxk+PC2/PigyCD5mP7g+YFACPo/Fsj4g9AE+PFVOP7yrRj7BxUo/wJxKPjxVTj/Si5o+CPpJPyTilD4wTEY/MClOPoIDQT8QaFA+IeNCP+itKD4tLEE/YKJpPtq0RT9s6Iw+PFVOP4jhvT3TX0s/YCzEPTxVTj8AmzY8LPBLP8Co1jxYh0o/IM1HPT0DRj88FQs+MDNHPxDezj3910o/1NNKPjxVTj+8q0Y+CPpJPyTilD5QYUY/0KNOPoIDQT8QaFA+IeNCP+itKD4tLEE/YKJpPtq0RT9s6Iw+7VRLP1BBxD08VU4/iOG9PTxVTj8AmzY8LPBLPwDv1jxYh0o/IM1HPT0DRj88FQs+MDNHPxDezj0rzTY/+N2kPZ1uNT/wEqA9W/Y0P7BmsD3UgTY/6B6zPYxKOD+wYaQ90IY4P0gVsD33Ajc/ECWYPbBLNj9wlJU9AeQ3PwAumT3H8jY/ULWHPUQWNz8AOpA9NHY3P4BdkD38rTY/gGGPPVKkLT8Aw3I8GAEuPwD7Wzw9piw/wLEuPLYTLT9gG4M8pyAtP8Ai/zwQyC4/QMjEPL1ALT8gY7c8CP4wP8BlzDwkby8/ACGUPAGKLz+w8CI9c0AyP+AWDT1iLyw/8OcvPSdOMj/giqY9uD4sP7Cbnz2PsjA/IP+MPeXELz/w/VU9U9UrP3CGaz0zmTM/kK1DPeD7ND/wvok9YiwqP0Dqiz3mjic/6NOePVv2ND+wZrA9nW41P/ASoD0rzTY/+N2kPdSBNj/oHrM9jEo4P7BhpD3Qhjg/SBWwPfcCNz8QJZg9sEs2P3CUlT0B5Dc/AC6ZPUQWNz8AOpA9x/I2P1C1hz00djc/gF2QPfytNj+AYY89GAEuPwD7WzxSpC0/AMNyPD2mLD/AsS48thMtP2AbgzwQyC4/QMjEPKcgLT/AIv88vUAtPyBjtzwkby8/ACGUPAj+MD/AZcw8c0AyP+AWDT0Bii8/sPAiPWIvLD/w5y89J04yP+CKpj2PsjA/IP+MPbg+LD+wm5895cQvP/D9VT1T1Ss/cIZrPTOZMz+QrUM94Ps0P/C+iT1iLCo/QOqLPeaOJz/o0549KHbaPrC/sz0q2NQ+8CazPUhl0z6gLug9KHbaPtiW5z2wosw+kES1Peajwj5QauM96vq/PoCG8z3rC8c+sNnsPXDewj5gYrM965DHPtiXuj1nyMY+MGWhPWBZwT7weMc9CHHCPgiP1T0odto+0CiPPdZZ1D4g4I49KHbaPsCwMz1GDtQ+IJg4PSh22j6ANKs8jlXTPkAn8zzOtM8+IEI8PXjGzD5AkJI9r1rNPuBYcz1IZdM+oC7oPS5q1D7QSbM9KEDNPliY6j1fUcw+qAi1PesLxz6w2ew9gNbEPmh74z3mo8I+UGrjPQhxwj4Ij9U9O2jHPpDtuT1w3sI+YGKzPWfIxj4wZaE9YFnBPvB4xz1yOtQ+wFKOPRD90z7gpTg9jlXTPkAn8zzOtM8+IEI8PXjGzD5AkJI9r1rNPuBYcz0AAAEAHgAMAAMAHwAEAAUAIAABAAYAIQAHAAgAIgAFAAoAIwALAAwAJAAIAA4AJQADACYAHwAmACgAJwAfACYAJwApAAAAHgAqAAIAAAApACoAAAApAB4AKwAqACYAAwACACoAAwApAC0ALAApACwAKgAqACwAJgAoACYALAAtACkAKwAGAC4AIQAuADAALwAhAC4ALwAxAAQAIAAzADIABAAxADMABAAxACAANAAzAC4ABgAyADMABgA1ADEANAAxADYAMwAzADcALgAwAC4ANwAxADUANgAKADgAIwAjADgAOQA4ADoAOQA7AAcAIgA8AAkABwA7ADwABwA7ACIAPQA8ADgACgAJADwACgA+ADsAPQA7AD8APAA8AD8AOAA6ADgAPwA7AD4APwAOAEAAJQAlAEAAQQBAAEIAQQBDAAsAJABEAA0ACwBDAEQACwBDACQARQBEAEAADgANAEQADgBGAEMARQBDAEcARABEAEcAQABCAEAARwBDAEYARwAQAEgADwAaAEkAEgAUAEoAEwAPAEsAFQAXAEwAFgATAE0AGQAbAE4AGgAWAE8AHQASAEkAUABQAFIAUQBJAFIAUABTAEgAEAAQABEAVABTABAAVABTAFUASAASAFAAVAARABIAVABTAFcAVgBTAFQAVwBUAFAAVwBRAFcAUABWAFUAUwAVAEsAWABYAFoAWQBLAFoAWABbAEoAFAAUAF0AXABbABQAXABbAF4ASgAVAFgAXABdABUAXABfAF4AWwBbAFwAYABcAFgAYQBZAGEAWABbAGAAXwAZAE0AYgBNAGMAYgBiAGMAZABlAEwAFwAXABgAZgBlABcAZgBlAGcATAAZAGIAZgAYABkAZgBoAGcAZQBlAGYAaQBmAGIAaQBkAGkAYgBlAGkAaAAdAE8AagBPAGsAagBqAGsAbABtAE4AGwAbABwAbgBtABsAbgBtAG8ATgAdAGoAbgAcAB0AbgBwAG8AbQBtAG4AcQBuAGoAcQBsAHEAagBtAHEAcAB0AHMAcgB0AHUAcwBzAHUAdgB4AHYAdwB2AHkAdwB2AHUAegB5AHYAegBzAHwAewByAHMAewB7AHwAfQB9AHwAfgB8AH8AfgB2AIAAfABzAHYAfAB8AIEAfwCAAHYAeACBAHwAgAB0AIMAggB0AIIAhACCAIUAhACHAIYAhQCFAIYAiACFAIkAhACIAIkAhQCLAIoAggCDAIsAggCLAIwAigCMAI0AigCKAI0AjgCKAI8AhQCCAIoAhQCKAI4AkACPAIcAhQCQAI8AigCTAJIAkQCUAJMAkQCUAJEAlQCWAJQAlQCXAJEAkgCYAJcAkgCXAJkAlQCRAJcAlQCcAJsAmgCbAJ0AmgCYAJ0AmwCXAJgAmwCXAJsAnACZAJcAnACgAJ8AngCeAKEAoACkAKMAogCjAKYApQCoAKcAowClAKgAowCpAKIAowCnAKkAowCTAKoAkgCkAKEAngCjAKQAngCmAKMAngCfAKYAngCtAKwAqwCnAK0ArgCpAKcArgCoAK8ArQCnAKgArQCsAK0AsACtAK8AsACwAKoArACwAJIAqgCrAK4ArQCsAKoAqwCyALEAqwCxAK4AqwC1ALQAswC2ALUAswC3ALUAtgC4ALcAtgC0ALUAuQC6ALQAuQC3ALsAuQC1ALcAuQC+AL0AvAC8AL0AvwC8AL8AugC5ALwAugC+ALwAuQC7AL4AuQDCAMEAwADBAMIAwwDGAMUAxADEAMgAxwDEAMoAyQDIAMQAyQDEAMUAywDKAMQAywCzALQAzADBAMMAxgDEAMEAxgDBAMQAxwDAAMEAxwDPAM4AzQDQAM8AygDLANAAygDPANEAyQDKAM8AyQDNANIAzwDPANIA0QDSAM0AzADSAMwAtADOAM8A0ADNAM4AzADUAM4A0wDTAM4A0ADXANYA1QDYANcA1QDWANcA2QDcANsA2gDfAN4A3QDXANwA2QDcAN4A2QDeAOAA3QDcANoA3gDeANoA4QDgAN4A4QDWAOMA4gDVANYA4gDjAOUA5ADiAOMA5ADkAOUA5gDmAOUA5wDlAOgA5wDWANkA4wDZAOkA4wDqAOgA5QDjAOoA5QDZAN4A6QDpAN4A3wDqAOMA6QDVAOwA6wDYANUA6wDrAOwA7QDsAO4A7QDxAPAA7wDyAPEA7wD1APQA8wDuAPMA7QDzAO8A7QDzAPQA9gDzAPIA7wD2APIA8wDiAPcA7ADVAOIA7ADkAPgA9wDiAOQA9wDkAOYA+ADmAPkA+AD4APkA+gDsAPcA7gD3APsA7gD4APoA/AD3APgA/ADuAPsA8wD7APUA8wD8APsA9wAAALZ6q70i88Y/UFQqvZ9Kl70kDMc/4WznvF3Nt71STcQ/j3eCvF3Nt71STcQ/j3eCvHcHv73Yk8U/fCsdvQf5vr3SMMc/5gVNvR6Lmb0z78k/mb9avTfIf715FMo/fbQcvWGptr3HWsk/d2Nxveklqr3VA8s/h4NxvfSmjb0d58s/yvtXvVewiL2CwMw/6u9HvaJYd72insw/EzArvVIGc70e98s/IXMrvReOnL0yHsw/yY1gvbdKkL0Ku8w/W9pMvdGXhb2CXM0/4Zs3vbwFir3PaMc//CNbvFDLlr1gIcY/ZbiRu0ehhb2N+sc/YXjfur3uY72Geso/xBekvF3ha72nPso/CaOOu0D2ZL3Px8s/0utEvLDlar2q18w/+QYJveY4Yb1ZTcw/iVfnvIfRcr3qHs0/FLztvEV+ab1Vqsw/HhmuvOvQeL3YfM0/7OEXvXU54r18LcQ/dAMtveTHyL09lsU/+CstvebP3r1tQMM/oQDyvPSM+b20b8M/K2Qmvepi/r1UiMU/vWKCvW4L4L2XL8c/oLGEvVKoCL5UWMQ/jL5fvaBoDL5FrsU/sY+CvVg9BL6XJcc/7IWVvQOqBL5gJsg/fnCZvcKp+L0YyMg/+TmavQww8b0KUsg/zjqYvQseC76t+cY/5xGOvaefB76T9Mc/vQ2VvbCIBL4A98g/Y4maveXCtL3zP8c/o2oivYUjqL048sY/lIPYvDChq721s8g/NToUvfKayL3XKsk/Zzp4vVJdub0USso/9DpLvcorzb0ly8o/fXpzvWtp7r1ct8k/DWuWvesD4b1u0Mk/vOuQvaUr772VQco/XeGPvYoj4L2noco/38KHvROW/L30zsk/wBSZvZRJob0ZW8M/xjtzPOaRtL1c78E/3fngO0+anr0nx8Q/Sn6tO2b0mL3UmsQ/eeO1PNbLo7200sE/ZWgiPYR4ub1YCcA/Ay77PFErm72TyMM/NFUmPfgLp70rscI/JCVPPVuks70Vs8A/3sdRPR2XwL2tLcA/0tpdPd2vyL1LUr8/vlJHPTeAwr37Ub8/leE1PTXjtL2Ql8E/1XlfPWLev71VqcA/e7dhPTXxy71h0b8/iuVjPQoQzr0V3cA/H7qLOHlz1L3hx8E/BHNMvA6z5b1JVcA/PfVMu1vG2L3z374/5pe1PD3P8b1A9r4/WeZEPO6Q8b2Ni74/HtfUPDdj1711yr4/k304PaaE2r1Aib4/1DsdPQ//4b2G674/Alw2PXct6r1eoL4/NnIXPeY82L0yIr8/+0ZTPWHK1b0pocA/S8s9vEuk2L1ilME/K/7XvMYdt719a8Q/lJ2EvOmOxL3LzcE/0qJ1u4y/2b3LIsA/cLAQOpt//b2OLb4/dBWBvIhsAL6mLb8/yEEKvZMr972Scr4/DDCYuauIB743wb0/GCHZuxdEDb6vg70/fbC2vBsnFL4upL0/e2vavKtIE75NHr4/7fEQvV0BDr4uMr4/pD8TvRfCD77Xn70/QIx1vDdhFL78tb0/2cq6vClUGb6E4L0/Rqz2vHM24b0V1MI/4pEfvcpL0r3BcsQ/gDAWvclT7b2m58M/5Og9vVaCBb6Zx8A/Ei9FvQakBr7As8I/3hpavf4KEb4CasE/AbZVvb7vFb6e2L4/57srvQ86Er5vbL8/Jq08vXspGb7QY78/DVctveOOFr7JPcA/UM5CvdXlGr4Ye74/xB4avd8ikL2psMc/tyS/u3Qdk73B+8U//FiBO0sUt70ca8Q/sb2EvKyfoL3JQsc/etOQvPTDk72wJsk/vuI8vApTcL3PzMk/9ItTPGEmc72+y8c/XmHLPHB6hb132so/C5V3OtkOfr2AZMs/hQdqPMxXZ717eMo/tUPoPPtybb0Ldco/3aQUPcJcbL3EYck/C/4mPROkZr1r9Mg/2JIXPc/DeL2bO8s/tTXTPCaEdb3CyMo/0p8LPT6udb3EXMo/IE4tPbfMnb1LgsQ/tYxtPIcOsb1zb8M/5/DdO5gvq731ssM/agq/PEZViL13CcY/j2sXPc/sn70Fs8Q/+wElPaLGlb1zGcY/ghpFPfI6er2tmsg/660+PZITf72Stcc/xG88PXuEhr2qgcg/DhhJPSSmjL2Zcsc/l7dMPd0vfb0zfck/UCxEPWy0Gb+rWBk/gqEHPwvGOL/nOxo/fW6uPtdbNL/f8RU/hCrNPv5ZNL9V8BU/hTXNPstHDL/0mCU/bMYHP0W88L5I2Qs/PXQxP9hsFb9//LY+pqU6P+eFTL8UO+M+VtPPPn1g3r6o07M+TVdUP2mEzb4mTy89AzdqP5hBFL/ARK2995JPP7/H9L6uDcu+G59IP+Q1Vr+fq0e+Kf0CPxfKXb9E3+k9oOz4Ps6omb43WL++dq1gPzqFb75aSg2/g+hMP3+QAL9ObOm+URw8PwcyU7/FuAs/sDcWPnpCTr80yRU/eNO8PUoKZb+Z/eM+QJYQvWhtdb8JeIs+yYanPWb+d7+3hms+gKy+vci8fb/sOqy94R3SvbaHY79I5OG+Xyf+PSGQer8KJCS+stwCPiuMTL+iSxm/9HZgvVksXr8glvu+TeiVvUJqXr/u8+6+EF8pPoj89r7tHzE/moUJP/GtJ79BmAw/E90EP8HR877QVzw/jZX2PhQ/k74DcUg/ejQNP4F6br5MkiY/Ogc5PxaJFL9gre0+9VErP55qq723qzw/tbIrPwnyIz7P6xI/8ZhNP75QjT3lJsQ+qs5rPx3Bmz6NZB0+9atwP8H6Nr5p8H09FWF7P5yAyL7PPog+BX1hP/1T5z5K5IU+OVlaPwnFDz/NKbo91YhSP4lkmT4dwZc91YBzP5FwSL9sfbk+L3QBP5PxUb87Prc+G5vkPkyYW7/UjyA+MZ/6Pr2pPb/Pfcg9/BoqP1jATr9HrE+9d2cWP3KBJL/kepS+Jo41P2lgg74eWcS+Yx5jP/2U9L6QLEO+lItbP7qhRb4NURq/6DFGP26Dnr6pNQy/jvxGPyCaVb4LGr6+xJ9nP1nAX78PuNM+kp2CPvufPr+91Aw/HovBPqTkY7+XorQ+RI+TPuM5dL8gq48+3RDYPYpCZ78vpNk+IHZpvX0wOr+mcyY/OflgPocEdL/di4o+AiMKvlWcWb/S/5Q+bsfgvkkDO7/ZAAA/KiPuvmYeBb8WpO4+Oj43vz+n877mnE0/wn63via+IL8b90U/czm0vQEfE78kpI4+Pf1Ev7P4zb6coYM+xvBgv4u4575lmwE/1es7v0FGE7+Dby4/IK3nPnlQDL+nCSk/XW4DP+xdxb7EnUk/gSj2Ptj2zL4gX18/EF6PPk/bcb5cg2g//9WwPoDQgL0QTX4/EzfFPVs5Er1eC3E/EXervovhVL6eJ3k/4BTIvdxrWj4+P2c/eZG+vtjEID6JbnM/Go2Ivmr/VL1ZS2w//C3DvoXBQ7+z+xY/I/aEPumCQb8difI+u1/nPrTrTr916tE+7l3YPiaaTb+AzQ4/BVVWPkNEOL9rsDA/kl6YPWdAD78/gU8/lPAwPk/TH78cERk/5rEAP2HtC7/vXlY/pkidu3abgr6nL3c/w+NQvU1OEb539Xk/H7UmPu6sOj6LPXo/DEvZPRTm0LzdbFg/65MIP8x3p748ukQ/PssMP96jMD779Ho/iQTFvdrvvD6VTGw/zKDevdX3eT4mIXU/cxYdPoZbL7/Ambc+V1oiP84dNr+leZY+u20jPyl1Eb8FYn8+ycBIP0Gw275cftU+cB9NP6ehuL4jhY0+0QxkP+zTZ71b8bA+CspvPwcjij5ZUxQ/deNEP1C7lrw7SA8/LBhUP94O7z5qEtY+yHpHP9x+tT6ryNA++WlXP6H+lD665xw/mQ88P4W5XL/giZA+QVnXPuZMVL8Ly/A+dYWaPnrcR7+gDAI/llG6Ps8kVL8+o5A++WT3PoS4Xb8qBaM9yav8PuoWdL+yXuU7DVCaPliCab97+8A+Rt8kPngsaL/vzQy+hOLLPoZ1Z79P88O+L3dCPmxldL9OmZe+Tdn5vDeqU78IqwC/UkiBvt5dcL86JP2863evvv6Her9MdzE+e4Tive8GQr8KEyS/9gr5vbpgI78n2zi/7rOIvuljTr+hjPu++cGovibqRb9WYx4/tQ0PPtwwOr8bzio/OakkPirfMb8t1jc/k2IhvdDZTL8ebhM/1Gorvs8/ML8mVSw/+i6Kvo4IKr/m8AM/X58Kv81OMr8e6eo9JFQ1v/chTL8nt6A++PADv8ZT/b6kOc49Xfhcv7TNC7/FElQ+TsxPv/i7NL+uboE9ppQ0v2KL8D7As689Na3mPvBMsT01reY+kDUAPjWt5j6QNQA+hF/zPrBp1j1+e/k+EC+tPc5g8j6AMl49Na3mPqBfYT32Ofw+YLF6PXey+T6AajE9d/jvPuDtBj3HBe0+QCzOPDWt5j5ALc08Na3mPmAgAz2wvfQ+gBH/PKjD7z5AX8I8hbzpPkCtgTxii/A+wLOvPYRf8z6wadY9fnv5PhAvrT3OYPI+gDJePfY5/D5gsXo9d7L5PoBqMT3HBe0+QCzOPHf47z7g7QY9qMPvPkBfwjywvfQ+gBH/PIW86T5ArYE8YovwPsCzrz01reY+8EyxPYRf8z6wadY9fnv5PhAvrT3OYPI+gDJePTWt5j6gX2E99jn8PmCxej13svk+gGoxPXf47z7g7QY9xwXtPkAszjw1reY+QC3NPDWt5j5gIAM9sL30PoAR/zyow+8+QF/CPIW86T5ArYE8YovwPsCzrz2EX/M+sGnWPX57+T4QL609zmDyPoAyXj32Ofw+YLF6PXey+T6AajE9xwXtPkAszjx3+O8+4O0GPajD7z5AX8I8sL30PoAR/zyFvOk+QK2BPGKL8D7As689Na3mPvBMsT2EX/M+sGnWPX57+T4QL609zmDyPoAyXj01reY+oF9hPfY5/D5gsXo9d7L5PoBqMT13+O8+4O0GPccF7T5ALM48Na3mPkAtzTw1reY+YCADPbC99D6AEf88qMPvPkBfwjyFvOk+QK2BPGKL8D7As689hF/zPrBp1j1+e/k+EC+tPc5g8j6AMl499jn8PmCxej13svk+gGoxPccF7T5ALM48d/jvPuDtBj2ow+8+QF/CPLC99D6AEf88hbzpPkCtgTxii/A+wLOvPTWt5j7wTLE9Na3mPpA1AD6EX/M+sGnWPX57+T4QL609zmDyPoAyXj01reY+oF9hPfY5/D5gsXo9d7L5PoBqMT13+O8+4O0GPccF7T5ALM48Na3mPkAtzTw1reY+YCADPbC99D6AEf88qMPvPkBfwjyFvOk+QK2BPGKL8D7As689hF/zPrBp1j1+e/k+EC+tPc5g8j6AMl499jn8PmCxej13svk+gGoxPccF7T5ALM48d/jvPuDtBj2ow+8+QF/CPLC99D6AEf88hbzpPkCtgTxii/A+wLOvPTWt5j7wTLE9Na3mPpA1AD6EX/M+sGnWPX57+T4QL609zmDyPoAyXj01reY+oF9hPfY5/D5gsXo9d7L5PoBqMT13+O8+4O0GPccF7T5ALM48Na3mPkAtzTw1reY+YCADPbC99D6AEf88qMPvPkBfwjyFvOk+QK2BPGKL8D7As689hF/zPrBp1j1+e/k+EC+tPc5g8j6AMl499jn8PmCxej13svk+gGoxPccF7T5ALM48d/jvPuDtBj2ow+8+QF/CPLC99D6AEf88hbzpPkCtgTwCAAEAAAACAAAABAAAAAUABAAHAAYAAAABAAcAAAAGAAgABQAAAAYABQAGAAkACAAMAAsACgANAAwACgALAA8ADgAKAAsADgAQAA8ACwAMABAACwAGAAcADQAKAAYADQAJAAYACgAOAAkACgACABEAAQACABIAEQARABIAEwARABQABwABABEABwATABUAFAARABMAFAAUABUAFgAYABcADAANABgADAAaABkAFwAYABoAFwAbABcAGQAMABcAGwANAAcAFAAYAA0AFAAYABQAFgAaABgAFgADAB0AHAADABwAHgAcAB8AHgAhACAAHAAdACEAHAAgACIAHwAcACAAHwAgACMAIgAmACUAJAAnACYAJAAlACkAKAAkACUAKAAqACkAJQAmACoAJQAgACEAJwAkACAAJwAjACAAJAAoACMAJAADACsAHQADACwAKwArACwALQArAC4AIQAdACsAIQAtAC8ALgArAC0ALgAuAC8AMAAyADEAJgAnADIAJgA0ADMAMQAyADQAMQA1ADEAMwAmADEANQAnACEALgAyACcALgAyAC4AMAA0ADIAMAADADcANgADADYAOAA2ADkAOAA7ADoANgA3ADsANgA6ADwAOQA2ADoAOQA6AD0APABAAD8APgBBAEAAPgA/AEMAQgA+AD8AQgBEAEMAPwBAAEQAPwA6ADsAQQA+ADoAQQA9ADoAPgBCAD0APgADAEUANwADAEYARQBFAEYARwBFAEgAOwA3AEUAOwBHAEkASABFAEcASABIAEkASgBMAEsAQABBAEwAQABOAE0ASwBMAE4ASwBPAEsATQBAAEsATwBBADsASABMAEEASABMAEgASgBOAEwASgBSAFEAUABSAFAAUwBQAFQAUwBWAFUAUABRAFYAUABVAFcAVABQAFUAVABVAFgAVwBbAFoAWQBcAFsAWQBaAF4AXQBZAFoAXQBfAF4AWgBbAF8AWgBVAFYAXABZAFUAXABYAFUAWQBdAFgAWQBSAGAAUQBSAGEAYABgAGEAYgBgAGMAVgBRAGAAVgBiAGQAYwBgAGIAYwBjAGQAZQBnAGYAWwBcAGcAWwBpAGgAZgBnAGkAZgBqAGYAaABbAGYAagBcAFYAYwBnAFwAYwBnAGMAZQBpAGcAZQBtAGwAawBtAGsAbgBrAG8AbgBxAHAAawBsAHEAawBwAHIAbwBrAHAAbwBwAHMAcgB2AHUAdAB3AHYAdAB1AHkAeAB0AHUAeAB6AHkAdQB2AHoAdQBwAHEAdwB0AHAAdwBzAHAAdAB4AHMAdABtAHsAbABtAHwAewB7AHwAfQB7AH4AcQBsAHsAcQB9AH8AfgB7AH0AfgB+AH8AgACCAIEAdgB3AIIAdgCEAIMAgQCCAIQAgQCFAIEAgwB2AIEAhQB3AHEAfgCCAHcAfgCCAH4AgACEAIIAgAD22Yk+ZOgjP4Im3L4pfHk+z4YzPytJxb5dwMs9CzorPwWI1L4Y6uk9OPwaPyyK7L5Uq7Q+DTHDPre7Hr8y1a4+76DZPs1+Fr/haz0+cKvGPpEzH797gE8+VuWwPoIiJ7+1ofY+hzxlvYXacL8ehu0+pGRTuRNkZr/YCtg+VaUivHCtaL8Sb+s+NNR5vR4Jcr9pCSc96VCMP/Bvxr1Y/o08pDuTP6tkar29wzO8y2WSP494gb1CISI7gS+LP2UM170rvQ4+gRhpPysWbr5eDtk9wJN4P4TpQL7Nsgs9tVV0PzR/UL6veU09VdRjP3a3gL6rWJQ+UzwWPxwv8L4RsQI+svkMP8eYAL9IFRM+Xc3/PqY+Cr8qnSc+gUDjPke+FL+AGaY+/aD2Pl7YC78kK50+AnoJP1JzAb9nJds+5+TZPcVfUr8EO7g+y2m5PVsaVr8Xicc+4YkePfC2X78Yp+Q+rLdUPcyaXL9cwcA++9uSPoJ3ML+mc7o+kECsPhAnJ7/ynWY+hi2bPkf+Lr/CWIE+Am2DPtWNN78SyNU+xNEOPqkoTL+LCbE+o8v7PUwLUL/32P4+5erZvZRder+h0WA+oSlBPyFWsb64XbU9WH45P15sv77nPUc+tX1OP2Lenb72e5s92X9HPw+2qr4Ezok9Tn2FP+ssC75LV4M8GPqDP9tJFr5K4y0+SiZbP2Jii75Jo4I9kPFUP57Ilr5Bysw+r9ZIPjyEQb/YmMY+mYZ3PrXzOL/nUZA+PM9dPkbbPr8H76A+ZWA0PlM7Rr8P6s8+QQQ1Pu8mRb8Gzak++k4jPso3Sb/ev8u9CzorPwyI1L7ne3m+z4YzPztJxb7W2Ym+ZOgjP5km3L6A6em9OPwaPzWK7L58az2+cKvGPpszH78C1a6+76DZPtx+Fr8lq7S+DTHDPsK7Hr8PgE++VuWwPosiJ7+SCti+U6UivIGtaL/Yhe2+ZGRTuSRkZr9uofa+hzxlvZjacL/Abuu+M9R5vS8Jcr80xDM8y2WSP4t4gb0n/o28pDuTP7Jkar0zCSe96VCMP/lvxr2rHSK7gS+LP3IM171Qsgu9tVV0Pzd/UL4kDtm9wJN4P5TpQL4HvQ6+gRhpP0cWbr4QeU29VdRjP3m3gL6EWJS+UzwWPzAv8L63sAK+svkMP82YAL9UGaa+/aD2PmvYC7/NnCe+gUDjPk2+FL/yFBO+Xc3/Pqs+Cr/7Kp2+AnoJP11zAb/PiMe+4YkePQC3X7+9Ori+y2m5PWkaVr8nJdu+5+TZPdVfUr/QpuS+rrdUPd2aXL+AnWa+hi2bPlP+Lr9zc7q+kECsPh4nJ78kwcC+/NuSPpN3ML+JWIG+BG2DPuKNN79HCbG+o8v7PVsLUL/Sx9W+xdEOPrkoTL+n2P6+5erZvaJder9AXbW9WH45P2Zsv75k0WC+oSlBPzNWsb6Ke5u92X9HPxa2qr63PUe+tX1OP3Lenb6eVoO8GPqDP+JJFr7dzYm9Tn2FP/csC74b4y2+SiZbP3Fii77rooK9kPFUP6LIlr6qUZC+PM9dPlPbPr+bmMa+l4Z3PsbzOL8Cysy+r9ZIPkqEQb/H7qC+ZWA0Pl07Rr/CzKm++04jPtg3Sb/S6c++QQQ1Pv4mRb9XgPs8YTgZPwPvTL+ZUPw8JksZP7jgTL9XgPs8YTgZPwPvTL+9ffs8rykZPwD6TL+8LAc98tYYP7oxTb//HAU9jBQZPyEFTb87WQY9sfUYP1kbTb8EKgc9Fe4YP30gTb+lbQE9ligZP4j4TL/sEQM9RQIZPxcUTb/sEQM9RQIZPxcUTb96nQA9hjcZP9/tTL9yI/08CKEZPxmgTL9yI/08CKEZPxmgTL9yI/08CKEZPxmgTL9yI/08CKEZPxmgTL9yI/08CKEZPxmgTL9yI/08CKEZPxmgTL9yI/08CKEZPxmgTL+kUPw80pkZP8SlTL9vfPs8ViIZP37/TL9MT/w8zkMZPzfmTL9qNQA9dXMZP0PBTL/CegM95VAZPxXZTL/2EQM9iBwZP34ATb9bxv48pB0ZP/oBTb81qQI9pxwZP6gATb8kPwI9VSgZPzH4TL81qQI9pxwZP6gATb81qQI9pxwZP6gATb/zCQo9CNYYP4AwTb/kZAg9xtoYPxEuTb8Pzwg9WekYP+4iTb98oAk9z84YPyc2Tb/ZqQI9vgkZP8UOTb8aQQI93wkZP/AOTb8rxf48BGUZP5jMTL8rxf48BGUZP5jMTL9R8v08j0MZP+TlTL+Twv48j3AZP/TDTL97xv48XGwZPxjHTL9yI/08CKEZPxmgTL9yI/08CKEZPxmgTL90I/080oYZP8OzTL90I/080oYZP8OzTL8i8QU95uIYP6ApTb/wzgg9yLQYPxJKTb9z/Qc9CrUYP2tKTb/h/gc9wsMYP3g/Tb+regM9JQIZP+wTTb8U8QU9n8gYPzM9Tb9XgPu8YTgZPwPvTL+ZUPy8JksZP7jgTL9XgPu8YTgZPwPvTL/kgvu80iwZP6X3TL87WQa9sfUYP1kbTb9wiAW9TP0YPzYWTb+8LAe98tYYP7oxTb8EKge9Fe4YP30gTb/sEQO9RQIZPxcUTb/sEQO9RQIZPxcUTb8J1wG9jhUZP3sGTb/0bgG9Bx0ZPygBTb9yI/28CKEZPxmgTL9yI/28CKEZPxmgTL9yI/28CKEZPxmgTL9yI/28CKEZPxmgTL9yI/28CKEZPxmgTL9yI/28CKEZPxmgTL9yI/28CKEZPxmgTL+kUPy80pkZP8SlTL9vfPu8ViIZP37/TL8Kf/u8CDEZP4H0TL/2EQO9iBwZP34ATb/CegO95VAZPxXZTL9qNQC9dXMZP0PBTL8Zxf68jDAZP9zzTL81qQK9pxwZP6gATb8kPwK9VSgZPzH4TL81qQK9pxwZP6gATb81qQK9pxwZP6gATb8Pzwi9WekYP+4iTb/kZAi9xtoYPxEuTb/zCQq9CNYYP4AwTb98oAm9z84YPyc2Tb8aQQK93wkZP/AOTb/ZqQK9vgkZP8UOTb8rxf68BGUZP5jMTL9R8v28j0MZP+TlTL8rxf68BGUZP5jMTL97xv68XGwZPxjHTL+Twv68j3AZP/TDTL9yI/28CKEZPxmgTL9yI/28CKEZPxmgTL90I/280oYZP8OzTL90I/280oYZP8OzTL9z/Qe9CrUYP2tKTb+ozwi9I7wYP5hETb85wQa98NMYPz40Tb8zZgi96rQYPz9KTb8eTAS9oOcYPywnTb+regO9JQIZP+wTTb/QlOY+S0x7P9pZzD7ESXc/6g/LPkiqtD3KOOU+cEFWPT1EKT+HjHw/xFAgP126fT8pfB8/QMfTPAB3KD+Ql4A9Z913PxPTdz/ZLm8/P+F0P8EXbz84/jk/h9V3PzAeVj/wi0s9dQsmP4FIAzvE9CA/gksDO6yG4T5Ql0w9RtbJPjSQXT4tqVA/pQsmPuK4QD9KdSY+aAmSPlULXj4A6nM+qUX9Phpvfj8Pxfs+oATXPFlQCD+AUwo8o84TPwA2HTs3pRQ/gD5/P90dCT/ecn8/vrZdPz66cz+Eel0/utQRP5ajZj/+myM/6MxmP3KVcz+/Qzw/aiV6PyRWMj9CjXs/6JYxPxD4BD6kmjs/6JViPpICWD/ctnQ/M7hXP8a6Cz8zZn8/DPB1PxEQtT52pnI/wdmzPghUAT7a2Z0+R4hrP9fZnT4w0CU++KXHPXw9LT8ZRcg9vKayPmOchz7pd2A/luKHPmDPST76v00/IL52PxQPRT+YVng/VohEPyxnsz6QSk0/egH1Pr9TUT+o33U/Nv1QPwxcBD/qD8s+SKq0PdpZzD7ESXc/0JTmPktMez/KOOU+cEFWPSl8Hz9Ax9M8xFAgP126fT89RCk/h4x8PwB3KD+Ql4A9wRdvPzj+OT/ZLm8/P+F0P2fddz8T03c/h9V3PzAeVj+CSwM7rIbhPoFIAzvE9CA/8ItLPXULJj9Ql0w9RtbJPkp1Jj5oCZI+pQsmPuK4QD80kF0+LalQP1ULXj4A6nM+qUX9Phpvfj8Pxfs+oATXPDelFD+APn8/o84TPwA2HTtZUAg/gFMKPN0dCT/ecn8/lqNmP/6bIz+Eel0/utQRP762XT8+unM/6MxmP3KVcz/oljE/EPgEPiRWMj9CjXs/v0M8P2olej+kmjs/6JViPjO4Vz/Gugs/kgJYP9y2dD8zZn8/DPB1P8HZsz4IVAE+ERC1Pnamcj/X2Z0+MNAlPtrZnT5HiGs/GUXIPbymsj74pcc9fD0tP2Ochz7pd2A/luKHPmDPST5WiEQ/LGezPhQPRT+YVng/+r9NPyC+dj+QSk0/egH1Pjb9UD8MXAQ/v1NRP6jfdT8CAAEAAAADAAIAAAAGAAUABAAHAAYABAAKAAkACAALAAoACAAOAA0ADAAPAA4ADAASABEAEAATABIAEAADAAAAFAAVAAMAFAAYABcAFgAZABgAFgAcABsAGgAdABwAGgAgAB8AHgAhACAAHgAbACMAIgAaABsAIgAVABQAGQAWABUAGQAKABwAHQAJAAoAHQAkAAsACAAmACUAAQACACYAAQAoACcAJQAmACgAJQAFAAYAFwAYAAUAFwASACoAKQARABIAKQAPAAwAKQAqAA8AKQATABAAKwAsABMAKwAsACsAJwAoACwAJwAvAC4ALQAwAC8ALQAyADEAIgAjADIAIgAHAAQAHwAgAAcAHwAyADAALQAxADIALQAhAB4ALgAvACEALgA1ADQAMwA2ADUAMwA5ADgANwA6ADkANwA9ADwAOwA+AD0AOwBBAEAAPwBCAEEAPwBFAEQAQwBGAEUAQwBHADUANgBIAEcANgBLAEoASQBMAEsASQBPAE4ATQBQAE8ATQBTAFIAUQBUAFMAUQBWAFUATgBPAFYATgBMAEcASABLAEwASABQAE0AOwA8AFAAOwBXAD0APgA0AFkAWAAzADQAWABZAFsAWgBYAFkAWgBKADcAOABJAEoAOABdAFwAQwBEAF0AQwBdAEEAQgBcAF0AQgBeAEUARgBfAF4ARgBbAF4AXwBaAFsAXwBiAGEAYABjAGIAYABWAGUAZABVAFYAZABSADkAOgBRAFIAOgBiAGMAZABlAGIAZABhAFMAVABgAGEAVACJUE5HDQoaCgAAAA1JSERSAAACAAAAAIAIBgAAAH1X0QsAAAAZdEVYdFNvZnR3YXJlAEFkb2JlIEltYWdlUmVhZHlxyWU8AAADcWlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNS41LWMwMTQgNzkuMTUxNDgxLCAyMDEzLzAzLzEzLTEyOjA5OjE1ICAgICAgICAiPiA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPiA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1wTU06T3JpZ2luYWxEb2N1bWVudElEPSJ4bXAuZGlkOmM2MmE5Njk5LTc2NDAtMWY0MS1hYTdiLTA1ZDFjNGQ3NmM1MSIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDpDRDA4RTMyNURFQjYxMUU5OEIxMkQ0M0U5QzM5QzUzOSIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDpDRDA4RTMyNERFQjYxMUU5OEIxMkQ0M0U5QzM5QzUzOSIgeG1wOkNyZWF0b3JUb29sPSJBZG9iZSBQaG90b3Nob3AgQ0MgKFdpbmRvd3MpIj4gPHhtcE1NOkRlcml2ZWRGcm9tIHN0UmVmOmluc3RhbmNlSUQ9InhtcC5paWQ6YWM4OTU0MGQtZjcwNi0wMTQ3LTkxN2QtYTdlNjA0OTRiMjJhIiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOmM2MmE5Njk5LTc2NDAtMWY0MS1hYTdiLTA1ZDFjNGQ3NmM1MSIvPiA8L3JkZjpEZXNjcmlwdGlvbj4gPC9yZGY6UkRGPiA8L3g6eG1wbWV0YT4gPD94cGFja2V0IGVuZD0iciI/PntkOawAAI0NSURBVHja7J0HXJX198cvSwVkT1FQcefeqdnWrH6V5cgyR+7+mlZmZcORWTlamtu0ab+mVmZaqZkjNXPjAgQRFFCGgorKvfd/3k/fh98VQQEFLvh8X6/He73c8Yzv8z2fc87nfI6D1WpdYjKGMYxRFobV5tF2019zOn36tEtaWpoLj3Fxca779+/3OHz4cOWjR4+6yf8rHz9+3C01NdXNbDY7GKfTZHJ2drZUrVo14+abb07u3r17fKtWrVJr1KiRJX8yy8Y5clSbMYxR7oaDAQCMYQy7NfD6c81Yy73qmJGR4SzG3fnUqVMuycnJFePj412PHTvmKs8rJSUlVRID73rixIlK6enpFc+cOeOUlZXlfOHCBScx+I7yeeMM57cQOjhYPT09L1SrVi2zUaNG6S1atEhr165dSsOGDU/5+vpesHmro349jGEMAwAYwxjGKKqxt90cLBaLozLsFTDmYsgrikGvJJ67W0JCghuGHUN/8uTJihj4s2fPOgMKyirIEaNrcnR05FF7zqN45GwWFxcXK1EKATAaiCkNo+vk5GQODw/PaNmyZUrr1q1TBBSkCiDICAgIABBYbCIEBiAwhgEAjGEMY1zV0GtepO7Bx8TEuB08eNDj0KFDHlFRUR7yf4+UlJSK4uVXwHO3N+Pi5uZ2oWrVqmdlOxcSEnLWz88vy9XV1SwG21KxYkVLhQoVtE2em/m/7WsYdYy7MvLaJkbWCgjgkY3X+C7eR9Ti3LlzTgKGKsq5cSeVQbTjyJEjlePj491TU1MrnDlzxqWkQJAcy8WwsLBMwMDNN998sn379im1a9fO9PLyuqhjBmO6G8MAAMYwxo1p6HMbfIfz5887YejJwYuhr7x//35PDJkYNE95zR0gIIbO2Z6OQwza+aCgoKzg4OBzVapUOVejRo2MBg0aZIjxOyfe73leE8OP0TMXdr0pwvusuR4dAEYYf9lcAARyLivLOXUnSsI55fHkyZOV4EGYijF/DxgSAHC6c+fOx/v06RPbpEmTUwYQMIYBAIxhjPJp4B3y8eod8FbT09NdxAC5YowOHDjgIcbeSzz6yrGxsZVPnDjhKobLLgy9eNfZPj4+58XA5xj5mjVrZtStWzczNDQ0y9/fPyswMPB8PkbeHsLeVlPefAmH7OxsJ7kOzip94goRMjIysrIeNSClkpSU5CrAq+L1PAZAU7du3WKHDBkS3bZt2zS1TwYQMIYBAIxhjDJq8HOMCwaeEDXPYdljYMTQ6+F7T8L38n9PcvcZGRkVStlAauFqMeLnCNXjzVerVu0M+WzZzikP/rz8/YKnpydG3pLLwNtu5SESow2LxULkwIXoAVGDrVu3+mzZssV/+/btfsnJye7X48crV658oWvXrkcGDx4c3bFjxxR4DQYQMIYBAIxhDPs3HBbdo4d4duzYsUo7duzwXrFiRRXxIN3FM74gHqYDBl+8STfy9AIMSmVxh6Dm7e2NF4+B10L2YWFhGXXq1MmsUaPGOdnX82x48i4uLmZbQ1gOjPz1BAdOcXFxXGefDRs2+Aso8N+7d6+3gATXa/mhSpUqXbz//vuPDh8+PPL2228/qYCAQRg0hgEAjGEMO/LuNSOAZxgdHe2GIdi2bZtvRESEt3j3XikpKZVMpcRA9/DwuEDOXYy75sVDvqtVq5aWixcvXjPwePICBLJNl4bqHfIw9MbIf+jAj8oD59jYWFfmwZo1awI3b94ccODAAc9z585VKMoXV6hQIbtz584JgwcPjurSpUsy/1cRAeOaGMMAAMYwRgkafC3ULd69Vmq3b98+T4w9Xr4YfB/xBN2LutAXdTg6OprJx4eGhp4Vzz3zpptuSm/cuPGpkJCQLIw/Gwbe2dnZ8OJLYa7IfHCBQyBAwPevv/7y//vvv/3k/54XLlxwKex17tSpUwIcgXvvvTfR1dXVAALGMACAMYxRzN69Izl7mOFi6D0J8e7Zswfvnny9W0nW0cuif4HSOTH0midPfTns+mrVqp1jc3FxuXgFI1+g+znX5015RAXy+5thiPKfT3qEwETah5LN9evX+69duzZYQEHAyZMnC5MusN5yyy3Hhw0bFtW1a9dj7u7uFw0gYAwDABjDGNfB4F+8eNE5MTERgp77P//84yMG3088fW/q6zMzM0vEu4cIRn189erVNa++UaNGaU2bNj0VFhZ2lrC9ePwXnZycLICPs2fPOsl+OSPqQxri1KlTTtnZ2Y5yHI7yaOI5in7qPU68brFYHOSRcjje46jyy5DcHKij9/X11X7Dzc3NthbfLACEWnwL7+c18UodZF+pCLjo6emZzT7lASCMKEP+gMCBCo8lS5aELl68uFZUVJR3Yb6nTZs2SYMGDYru3r17AlEgAwgYwwAAxrhRjLWtgXEswue1BVi8e2rsK1Ffr+fvxUPzOnbsmFtxE/TEwF5k4cbgVq1a9QxM+7p1656W51mIw2BQZcNrdEa9T/a1gjxW4DErK8sRlTuMO4ad5xh31O8w5GrDqOfrvWPIdREdlPSQ+pXNIa/PqH3RDH+lSpXMvI/fIxSN1K3sbzYbpEIqB+AYyOvZ3t7eFyASiqeafY3RifI6ONkWyjz/+9//VluwYEHtPXv2+BfmC5o1a5ZMRKBHjx7xzCUDCBjDAADGKDdeuXrNURduEQNNU5pKGMlWrVql169fPyMfY3JJ+BWCVnx8fKUDBw5U3rlzpzdsbXn0JXcvRrZScR0MhlMMYZaHh8dFQrbi3Z+lhh7teDGimkY/njeiP2j1s+HRY9jx0jHmtt+lVPPMGGJU9OQ5r5nFS9eU8HQjLb+XLR76Rbx0+b8GJjDkvI/Py77wHu2RaAG/BRAARBAhQEWP9AfnHVEcvVEQ4kOZmZlO+j7q4EPfT0CFrshHmSAERMCAAJ5slO8aN26cKcDngl5KCGHRAAbaHDXLua3w3XffVZs3b16drVu3BhbmCxo1apQyfPjwQ3379j0CuJSXnI2lxBgGADCGPS96plyG3kG8WoRYXBBiQRAnMjLSIyIiwgvyFN3o0LFXBsIqXnPGoEGDIkePHh2FsbP5PoyXMwSs3bt3e8nmLZ6VD4xsvK3i9O4Jl4vBxfheEE/4DEZf6dNjaDV5Wow9z/WuehhmjDagRj6nGXe8ZgyoGMoLlOoRZsdgY9CVcc/mPbrh1+Vw9Q1jnkfEJM/7ONf1yPd99BsQo6+lHrhOgBXVe4D+Apq+wZEjR9xQL+T/AhRcABZEFwQYmPR9A4AQOQAchIaGIiSEzsA5xWfIogyuiFGecgEEKCP98ccfqwAE1q5dW6UwXJP27dsnyv2wr2vXrolyzi0mQ0fAGAYAMIYdefXa3MEIpqSkuOCVx8bGuiOKg8AKMre0nkXTvoCseuuzzz67d9iwYdGE8snd493Lc2/q74uTmY9hx+DjcVGipXLlFzFwqlGN9h5l0HmfZsAxfiEhIZqxw7Dzmre390UaxfAc3Xs2vsOUd9ojr+dXeq24gNtlwAEeBeALMIAGP2VxyBfLtXDlmsJHIFqgAMq/O6wa+gDiOCeynW3YsOHpBg0anBEQlUVVgw3H4EaIElj/DVqZnVauXBk0d+7c2qtWrarKuS1g1Mn8wAMPHH3++ef3d+jQIeUGA1HGMACAMezE2GtM+lOnTuEpVqJWHq8cFj3qd0isJiYmaqI4eJdF/UGMgxjS82J4irXuXoyU5slj8PHs2ciDE97XyXN48eS9lfb9BQy7Iu8RiteIdXjsuQFRAY17WY3s6CmcSvv27ascERHhSRllQkJCJVIJRAc4JwAexJIACHrUAB4B5zI8PDwTMmT9+vU1sSLAls15cijH95LWOXD9+vV+c+bMqb106dLqlKIW5MMyPy/06dMnSgByJPwSBQIMIGAMAwAYo9iMvaZpLx64ByF8Wei9xPB7oH4nHqDdaNpfbVB7jfERI44y3jny1vIcrXskcLWwPIZeNow/OW1eJwpguYpxdzDmiskBTgFyyLt27dKiNkQLaFkMnwD+APwGRR7U+Ak6+RGAVatWrTMtWrRIa9OmTXqTJk1OK0ni8g4GNMDz999/+86fP7/Wt99+Wz09Pb1A3BWZq2dGjBhxYOjQoYeZwyaDKGgMAwAY4xoWcO36w0KHmEenur1798Kk90UBD2JdcXvj13OIcc+qU6fOaUrubrrpplO1a9c+g+cOUQ3jrpPtCOGb8s6rOxgG/prmk2NSUlIF0kBi4Ly3b9/uTSkmfAkMfmho6BnKICEz0pQHcAnPALAFf6Bdu3apd999d3LTpk0zlFpeeZbN1eYgwHrevHm1vvzyy5oCnNwK8sGGDRumjB49en+vXr2OMqdNBj/AGAYAMEY+i7PtIo0X5kSNfGRkpDuLD8Q6HmWhZjF2pVlKWTgwBHUwJoREmzdvntK6des0ea5J5NqQzxwM771U5pyutugMqNyyZYvPxo0bfaOjoyufP3/ekV4FrVq1SgOgAQ5II9CUB7BAaqVZs2bpnTp1Sr7rrrtOIpp0IwABOkbOmTOn1sKFC+sI6C6IqJD19ttvP/biiy/u69KlS5J6zQACxjAAgOGNmXRRGEdqziFwQazD2IuH7wVBTzx+94LmIEt9gjo4WKixr1ev3mnxDlOVsSeHfEbVTOfkqE1GXbpdzkeIbzTc2bx5s88vv/wSDH8AQuWtt956omvXrserV69+hjm6bNmyKgIW/EgVcH0feuih44888shxeiCUcyCgaQnQPvqdd96p9/nnn4cLWLrq/eni4pLdrVu3I6NHjz4goCrVZPADjGEAgBvP2HPTIzbDImtTNudD1zrY+PK369r7vDiPS7y+zPDwcAR1Tol3nyYe4Sn+D+Pe9L+2tfbQk94YRZivRKH++ecfr2+//bbq6tWrAymjFG/2xKBBg2IF4KUTjUJQZ8WKFUFoRaCm2Lt376M9e/ZMgKhZzj1djXvyxx9/BEybNq2BnIPQgsxxLy+vrCeffDJq5MiRkTVr1sw0GfwAYxgAoFwtnraLKK1qydtrcrfk7Xft2kV9vBdyt+L1VyqtFrWFXewg4pEbrl+//mnx7FMIDdeqVSuTkjHFELctGTM8m/IznzUZ5E2bNvksWbKk2p9//hnI9b7vvvsShwwZEiNzIvPIkSOeS5curSJbSHx8vGvLli3TBg8eHNupU6cTNhGf8jo0vYnvv/8+RIDATdu2bSuQoFBYWNjpp59++gBgilbRBhAwhgEAyrixhz0NWYoa7H379nnQyIZQIaF8yu/KQijf2dmZuvnzGHfZTterV+/UTTfdlEEeGA9PPJgLpsvrw42Fq/wPDJ3T2rVr/b744ouwv/76y5dIz8CBA2Mff/zxBEdHx4sAgcWLF4ctW7YshHvhoYceOjZ8+PAYdAbKeTRA0xGgvFaOv8b06dNvEiDkUZAPtmjRIhmiYPfu3Y8pIG3wA4xhAAA7vclzQvniuTumpKRUwNhTfkfOHgU9jH1CQoK7amZjz4YRlv1FcrZi3DHwpxo1anQaqV/U4lTHO7Nh7I2RGwggKkXYf86cOeExMTHuHTp0ODlq1Kjo5s2ba7lt2vHOnj07fNOmTX41a9Y8+9RTTx2GP6CElhzL+RphpnJi2rRp9RYtWlSngE2trPfdd9/RCRMm7IE3YzJSZsYwAID9GHvTv8IqztTbo40vnr0XjHwa2chrlW3kcu11WPz9/bPodkf5HSQ98epP49XT255ae9tIhmHsjVGA+8OC8uOsWbNqLl++PARVQQEBUY8//ng8ZFCiXZ988knowoULayBRTDvdkSNHRlepUuXcDeDlakTBv//+2+/tt99usGzZsrCCVO34+vqeE+CwfcCAAYdNRkrAGAYAKBVj74B8Kl3roqOj3WHk49lTb087UTra2XMJHiF8Ot0RwserR+KVED7hezrHoaRnY+hNhrdhjGsxdKgICgAIEiBQi2hAjx49jo4ePTpaVX2YEB16991362zZssUX/sgzzzwThYbADTLviKBxfoIhCv75558hV/sAKpsTJ07c8fLLLx9Q+s3GvWkMAwAUk8HXurAdP368IosXjHyMPXl7Mf6eaKlnZ2fbrZKebuzFq88QI5/eokULrVtfWFjYmaCgoAt4YoZXb4ySMHS0dH7vvffCxdutCglwwoQJ+1XnSFNGRobLnDlzai5ZsiQMAzdy5MioJ554Ip6OiWV8PubXMyL3yJZ1xvnzzz8Pk3PUQNYX36t973PPPbd3ypQpe5SMtUGqNYYBAK7hJtUNIQpoGHs3vWsdxj4yMtIL7fyC1POW5kBrXLz6040bN05v06bNSbTa8fTpB4+Urs1CZHj1xiiVaMB///vfEPH469Jk6ZVXXjlgUwlg/fXXX4PeeuutuomJia5PPvlkzKhRo2IQFCoDc9ViulyN0tG28yJyyqZLS19zg22NH0DlD9GSDz/8sL48v6KioJyjgzNnztyBDoMBAoxhAIDCGXztJpWbzAWVs23btvls3brVf/v27b6QdDIzMyva80EgsYqoDjl7DD7kIML51A4rzXaj7M4Y9jiy0c9/9dVXb0pISHAbMWJE1KBBg47oDZkQFpo8eXI9uR99u3fvfnT8+PEHkX22UxCgGV64PzgOBw4ccKf9MhGNtLQ0l4sXL2pRekAMrZYhPNKgChJteHj4WXpVqLXIFhBoQIFS4KlTp9ZbsmRJLXE88o0y3n///UcWLly4NTg4WC8VNIYBAIyRy+DnhPTVjVqZ3OOWLVv8KcUTj9/T3kvwPDw8siDnoY+PUliTJk00jXxufFlkDO/eGGVpmOPi4txef/31+uvWrQvo1q1bwksvvXSIfg/cpwLKKxIJWL58eZU+ffocGTt2bJSTk5M9gQALokerV6/2p6Rx165dXjTdot6fSga6TPImhJKIAKjwhwOf4ThoaoU+BhLYAt5P0UCpbt26Z9DS0B0TPaqwZs2awJdffrmprFXB+e1Mu3btEhcvXrxZ1odMAwQYAMAw+DZtO8+cOeOCXj51yZs3b9Y8/MOHD3uePXu2gr0egHgMF5V3nyGLQ1rbtm21pjg1atQ4m4ukZ3j3xiirwwK/5u23365D7r9Dhw4pb775ZoRSidQ0M6ZMmVL7s88+qz5s2LCY5557LspO5rqZngczZswI37Bhgz/NkVC4hM9AaSyAnKoZjD3lkLRT5kM06kLKmwqhnTt3eh0/ftyVTovcy3RPBAw0bdr0dJs2bVLl+07L92TpaxmdGgUsNXzvvfca5temm8ZCn3766V90ZZT/OhvTywAAN6SHn56e7kIpHjn8rVu3+soWgKqektC1y0F5D3K5hPJbtmypefd0VZNFAI/AbOMVGCQ9Y5Sre1cMmmnRokVh77//fm082OnTp+9h7jPfCaGPHz++/nfffVcVvkDfvn3jisHDzd0m+oqghYoGUhTi5Vvp4nfPPfecAJib/pdWtP0ua15fAseBCEhERERlcUz85NEjNTWV6iEHogeAoObNm6dTDSHefRoNs/jcO++8U//FF19sIeAiTwMv+3EKENCxY8cTBggwAMAN4eGDjvHwCemLh+8n6No3KirKKyMjwy4NPh3uYObLYpdBQxy5wVN4ThleLslcI5RvjBsFwFvEyIe88cYbDVAFFM8/Ah0K5j+h9ZEjRzbZsWOH97vvvrtblQheLxBgJVcvxtelVq1aZ69yv1m++uqrqm+99VY9+h2MGTMmSjU2KkoU7hIeEusXzZU2bNjgR3SB6iL+4Obmls156NKlS6JsJ8RRODt37tw6o0aNanPhwoU8Dbyfn9+5BQsWbH744YfjTYZWgAEAypmHbzp79qwmuLN9+3YMvi9iGgcOHPC2x373lNkJmqcZToZ496mUPzVo0CADD0eJ6+QmABk3qzFu1GH+6aefgl977bWGEObee++9PToIoAR38ODBzbOyshznzZu3E7Kr6drTAVbC8uPGjauXkJBQSbz6AwICzuTzvRb2DeJi9+7dE8aOHRvp7OxsMV2/lISW76fvB/ykVatWBa5evTpA1jk30gRUEKDG+cgjjxxjE7BUbciQITfnx1sihSjnb9tTTz0VbTgSBgAoUwZePxb9/6iEiUevNcohXCaevn90dLTH1UpkSmN4enpmhYeHZ9avX/9Uq1atUqi7lxs3U7yaLIOoZwxjXB0ErFixInj8+PE3BQcHn5s1a9ausLAwOAFWxHJeeumlxnQZnDlz5m7xhi9e4z1kRoAoLi7OFQMLGHjnnXciXF1dc5cdmnfu3Ok9bNiwZkQfJk6ceKCY9Qk0MHDixIlKf/75p+/KlSuDIRnSRwDQ0ahRo1O9e/eOAxTJeWqenp5eKa8vcXR0RDBop4CWfcZ6YwAAezX4Ws4eA3/w4EEPSEGo0QUGBp5HZU8ZfMJi3ikpKa72NIkJ5deoUSNDD+WTs6tTp04moXxkT00GUc8YxiiSYRajFyRediM4MeLJ7vXz8yNa5vD666/X/fTTT2sMHDgwRv5+6BruK8v+/fs9nn766cYzZszYQ0dO8aibQTREqtjme62nTp1yHjp0aFPY+/PmzduFfkEJ3c85nRYhDf78889B69at8ycqAGC55ZZbTlBi+NVXX9VJTU2tlN93GIJBBgCwB4OfI4AhnnsFSHpMasL39LpHVU9uNE0vXyaqGSKMIHJnJr89HAAiOlWqVDkLK1+MfRpEvYYNGxLKz6Su12SE8o1hjOsKAr799tuqEyZMaHD//fcnTp48eT/er3jFFcUTbyreb2Uxxjtat25Nc6FC8wHMZrN19OjRjXx9fS+MGzfuIOV7zzzzTKPY2Fi3jz/+eIdKz3EPm+fPn19TXgtbuHDhDpWSKI0yOy0qgG7Cr7/+GiBgIJheI7L2IPDlsGPHjkBZL/Otaurbt++h2bNnIxh00WSUCRoAoIS8e93D1ww+4h/ofe/atcsXVr69kvQYXl5eWbVq1dJK8Fq0aAErn8Y4GYainjGMUXJG7/333w8XQx8uRnr/Y489hmfusGHDBl/x3JuRCpgzZ86uPEL2V/1e1ZsgXIz6zqpVq2rldrI+ecv3Nu3Xr9+Rp556KoZ7GwnwPn36tHjggQcS6WZoB8ZTAwKydlYQIKBpENBpFP7TkSNHvGnHnN8H77333rhFixZtVeWFBggwAMB19e41Y49i1bFjxyoxKclbUXOPwSdsde7cObutu69cufL5unXrnm7VqtXJ9u3bp8hjGkQ9WLgmQyvfGMYoFWdC1gxHMbyNWU8WL168XZH0TO+++24tgMHYsWMP9u/f/0ghDJoW0h8wYECzzp07nxg6dGiMzWetr776aj3SjuLxbw8NDT0zY8aM2qQjPvnkk+0BAQEX7Oje19Zd+gesX7/eF97E77//HhwRERF4pQ/dfPPNiXJshmCQAQCui3fvhIxudHQ0NfeeO3fu9KEED4JeUlKSmz0bSliyGHzx7lPatWt3sm3btqksLh4eHnru3qi5N4Yx7CAKQL384MGDm8H8nz59egS6+unp6c68hmIgxlkRBQtyr5rnzp1bE6OOkff29s62+Zxl3759HnAB0Bt4/PHHE3r06NH6oYceOo4QkZ0azByewI4dOzzhR8jx1b+SdDCCQYsWLdqM4JDJ0AowAMDVbkA1yUyEl2iBi2cvm/c///zji151fHx8ZUGidi2jKx7+BTrg4eF36NDhBIQ9ULCS3jQMvjGMYb/DLN5toHj7DVEK7NSpEzoADih7og8gBvqYeO4FIQRaiU7269evuXj+R+gzkIcBtFIWyBp3xx13nOB3If6pNIG9rw2ahoiAmyoCjtrKuuyR3xsDAgLOUibYu3dvPXpirHsGALjMw9eaXFB+t3HjRn908yMiIryPHz/ubu8TBg+frni33nprEhKj6G0T0rfx8I38vTGMUUaGrGtWGPsQiMnbC6DXjN2kSZPq/fLLL0G8pgh6VwIB5qlTp9bZtm2bN0Q/Nze3vLgDWhRg1KhRTVJSUir06dMn7tlnn402lS32/EUisY8++miHQ4cO+eT3JtouT5ky5Z/Ro0cfMEBA+RiFDedcUn+PbjUsU7px/f333z6y0SjHh9fs/QYQT/58o0aN0ps0aZLavn37kw0aNKAr3lk/P7/zuTx8I+9lDGOUNc/GwcFKeR58APHKA7p27XqMexpiIII5X375ZcjEiRMzSA/kMyyxsbHugAX5jsOK28NaYN28ebM3Gv29evU6zncKkMhA6U++MxSNf1M+cr52PFxkv9OWLl36Z48ePW4RQOOXJxoymx2ff/75VhkZGc4TJkyIMByi8g8ALjH4WVlZztHR0W6Eu2DoY/AjIyM9k5OT3ex9IqCdX79+/dOtW7c+cdttt6U0bNiQGvwzeYjtGAbfGMYoBxigZcuWp0jb/frrr4EPPvhgIuVvtWvXPkuZ4Pfff1+1W7dux5XBzgsFWJHxpbyvU6dOJ/T30LDnm2++CcHp6dixY5oK9Zu6d+9+jN/ZtGmT7x133HGyLNoCIiJff/31Bjkvtx48eDC/SICDAKfmkAnfeuut3QpAGSCgnACASzTzkdA9fPiwO4S9rVu3agI75PBPnjzpaucX3RoaGppJNzxy+Lfccgva+ZqHb7LR01abQWoxhjHKIQCoWLGiGQBACJ/+H3rrYEh6P/74YxUBAVXoopfX+nH06FF3IgWU99nUwltoFiYOT0Wa76xcuTJg4MCBNBty5HdQ/YNdDxhQrPmyJqLjjFaJnJt1vXr1umXHjh3++b1x6tSpjem58MEHH2yX82wxGYJBZRYA5DSTkQtaISYmxg3NfCa6TABfPPy0tDRXu77THRwsMPTx6tu1a3eiffv2qQjuVKlS5Zzpf+E4R5vNGMYwRvkfVow+ImGAAX0dkLXizD333JO0atWqoEOHDsXL/3Mba+vSpUuDEf2hc5/t33744YfgFi1anEKye86cOTXvv//+ZNr58jcBFok//fRTCD0ABABEldFz5kQfkuXLl6978skn2/7666/V8nvjvHnz6qPKunDhwr+V2qERPS1rAOCXX34JjoqKqkzfewx+XFxc5SspRNnDEER+AZEdcvi33XZbsqD4dCatl5fXeR0TmIz8vTGMccNHAdDtDw0NzXJ1db3EQPXo0YOQfdCyZcuCX3jhBVtjbU1KSqoo3n3gsGHDYt3c3HTv33r8+HHXPXv2eMpnD8jak7FgwQLLb7/9FgDxj/c0btw446677koGWPTu3TseETBT2QyPO4eEhGQJCNowaNCg1l9++WWt/N741Vdf1crMzHT+5JNPtij5ZWPNLUsXWhDsnfYin5vXkBvwAt3xatWqlYnKXsuWLdNpbkENPtr6NgbfCOcbwxjG0Ed2RESEFzl52vDmMsRayP7OO+9MpnFOr169jtnoAlh+/PHHYOr9bXP/vP7zzz8HEhXA+FesWDG7Y8eOKcjsPvLII8fFKTHrxEP098WxChwwYEBhBIfsbTjK2mvGsFMJNX/+/Pr5vVHOS3UBRS5ffPHFJgE9hmpgWQIA9mT8XVxcsjH2ePfo51OKBzGlRo0aZwICAi7aEPZ09qlh8I1hDGPYDlJ+5qioKA90AOrXr5/ZuXPn5Lw88QcffDAJALB27Vq/fv36abl8JHPx/okQ2EQNrOnp6RUJ7Xft2vU4xp/vu+2221LFSw6hKkA8f4h/joADUpA04pHvOC7GM9tUdklytBW2zpkz5x8vL6+L06ZNa5zfG+Uchjz88MMdlyxZsik8PPyMAQLKCAAozRsVcQly9Xj2GHy5eU7THS8wMPCCTLwcboJh8I1hDGMUwPDTotfl+++/r0Z+XhyJM5MmTdqPJ2u6nPvjwHpDf4A//vjD/9FHHz1WqVKlbHnuZ7FYHLp06WLr/Vt///13fzqP6oaeFyEV04lUjJ//nXfemUKnPaIAVBm89NJLDTdt2uRzzz33JF9HAGDN57GgwyGfxyt+Bqb/1KlTd/r6+p5/5ZVXWsj5ydNp3LJlS9BDDz1065dffrmRKK2xXhsAIGcgtIOyHsa+efPmqdx41M8SMlJIO7d+voEgjWEMYxTI8OO5//DDD0HfffddtRMnTlTo2bNn/ODBg+Pc3d3za8XrUKFCBQvRgffee692ZGSkO4BAvPwgMeYnvb29z+veP9VQ8r0hYvxPyBp2Vv8+IgHt2rVL5W+JiYkV9Zx/69atT9Him7JA+gcADK7h2HKapF28eNEpMzPTiTr8tLQ0FxoPnT592pnWxLKPTuiyyHu0H6MVMcfH8Yv3ni3gRnseEhJynlw9oEix9227kuYHCrT1WEDNftqujxgxok1+Sq579+71ExBw25IlSza2bds2xQABNygAEKN+ITw8PLNZs2apbdq0SWEywL718fG5YLq8Fa5h7I1hDGMUxiBqIzk52XX16tV+YrirHDp0yOPee+9NHDJkSCyNeWyMlzmXMcvZOnTokPbRRx9l09kPg0gfgRdeeCHaxhBat27d6g0xkA5/uQ3j7bffnvLFF1+E/vnnn36PPvoo3QedKleufBF+wPfffx9CVZWsg2cL6G1foqoKkImKinKXzQ2iNsJEcrwVKL+j9fmFCxcciVbgoaPS5+zsbJXnVh1wEI2Q4YB2Ae/j/7Ium2lHDpeB6AVOGGAFfYSgoKDzAhqybc6TY67zRlOkaD7bv3//drIflfI6iMOHD3s98sgjt8p52SjnJ9kAAfY7HEzXSbUKQl6tWrVOY/DlpjrZokWLNPJv5I5sDL6hHGUMYxijSEYfr5PeImII3dDox7hu2LDBH/lxRH78/f2z4A1hCDGCYtCydE8Xo4doD2F7xH1soo4mwvXiOTuSu4blP3PmzD3kvtVaZRk7duxNeN0zZszYw+/Y7pwYVuuYMWNuSk1NrUAPADGg2r7u3LnT66mnnmo6cuTI6MceeyzBdOXyY61/iuyDs4AYd8AIyqoHDx6sLCCgIp493jwqpZQcciyenp7ZRClYX1WZowVPn/QpJXmcAxnsnwPRApj6AhqciBoAJOLj410BNTRH4j04ZkQ3VFrkFHoARDTke8ymy7uaXhTQFfzEE090SExMdM/voGR/z33yySeb7r///mMGCChnAIBSvBo1amQ2b94c7/6kPGqEPSan6dLae8PgG8MYxiis0decBgzUrl27PGHzb9++3TslJcUF4059PwaPFGJAQIBW/otHTDtgMdYuGGyMHt4vuXvq1cWQasx23g8/ABVAPPVt27Z5ffbZZ6EYWkR8bNoFW48cOeJKK2ABAZEI/Zguj1aaf/vtt8DXX3+9vgCE3ayD7Df7MnTo0KYYZwCFGNL8DL+J1udwDGgkRF8B9jk0NPQc+gTiRGUQORUwc4EcPC2Gxds357OWX+2c5ryXY+WcoOwqHrum7iqAwyMhIcGV84SXz++3bt06jfNE1YQupKTW9Wyau/Xu3bvDFVQDNTshwGizaiJkgICyCgAEVZ6vU6fO6ZYtW6agnY8QhgCAs3IT6t3xDA/fGMYoOQOZ+zG/3K1DGTsuM/n8zZs3+1JjjyednZ2Nd57Zpk2bNFmDIA6TSrxIcx4bsvAlx0wuHCNMCJznNAUS41aJXL8YdTc84JiYGHf5vEWMataxY8fcCaN/+OGHuwiLq7XMLP8PX79+vd/ixYt3KjJh7vNJhYBz3759W956660nn3/++Sj1WcuSJUuqLVq0qDrth3N1B9QAzoEDBzy++uqraigOiiddidLmTp06JSFVDkBR0VNrrmtZHIRCzaifOnUK5Vc3mrmJcfcWMOJ5/PjxSkQTSKkggNSqVau0Jk2aZISFhXE85wW8eNJE6K+//grK74dIKwg42iqAKNpkNBEqGwCAkD7d8Zo2bZrSrl27FEGCqYT0PT09je54xjBGyRpF27y3I6Sv06dPO6WlpVVQ5C9HFmnU7vCOCV/r5C+MFoQw0/8ksK+3IbkeQwuBixF2++677yjLC8B4i6E5jYfOozKgtt34CsJkt+Zj8BwAFaQO8P43bNjgh/IpWiMLFizYRZ6cNwIa+vXr16J79+4JTz755JVq+q2vvvpqPQzmp59+ul3vPIhnP3DgwGbPPfdcVJcuXZJ1YMCxCSgI/fjjj6snJSW50qOkV69eR++7774kPO9SvEaXcRCISGzZssVbzpNPdHQ0bdydSK1wTUj1cn1IPwwaNKjN0qVLa+T3xTI/6SS4Tc7FQSMSYD8j50J4eHicr1at2lk8fBXST88V0jcIe8YwRgkvxGIsnFGzU0Qw90OHDlWGqAYRjDA3eV5l9C0QwHTCFzljlSe+SO64Xr166GucgfCFyhvgIJdBLQ09EM3wi9dZmcY7GH40P4YNGxYjnuYpQt42Rr4ojboc8nmOQaKM7wxlyGLgE8XANwsMDMwiZK/ea161ahVAJHdJIHl1U64uglbIhL///nsQHAIqA/iO4ODgLM41HrV8RxIf5bq98cYbdZctW1ZVvOqzL7/88n6EhOQ6XTCVfjOyS0AH6YbbbrvtJBukQ9IF4un7bty40U8e/VBS9Pf3P9++ffuUbt26xch8dFqzZk015l/uLwZwjR49ujXPFQgwIgH2AADGjRu3Q+XD0lDDyiOkb2jnG8MYJWj0xbuvsH//fo/169fTj8MLQ08ZF+VbAHJCzRhwPFU8fEhfAuDNssiaKFlLTU11ITKAt0Z5GoCBkrRvvvkGwOBAaJn0HQCfjphE9igPE6NmNl3O/i6uY7Xg8S9atCiU3Dc57zFjxhy6++67T9Lbo4SMoaM63054+/LbJ/TfpvOpAIBAMeypqqeIdk50Yh1gy9ZwkifnvELg0wEA6YkGDRpkyLWszOflN1wgFMp1Dbj//vuPjxo1KhoAoo7THh2rHECA0iFev2yn+vfvfxSy4pYtW3yInojRD1i5cmUQgEcA5qmYmBjv/L7vlVdeaU4jpV69esUZ9sUOAMDEiRP32twMhodvDGOUgtGHuCbG3pu8N903MTQY5scffzwBRjYlWjbMdduUwNVC4dSCaeQ4SsgIS0dERFQm/4zh/frrr6nndsAbpqd9x44daaR1TnnnxZHiMyPWs2TJkjDZQmGeT5gwYf8tt9ySphjnJW0MNaIf9fVER9TxWsVr94Ar8NRTT8VecjIdHIge5E6bOnB9AFR4yEOGDInTIwmtWrVK37p1K+Fzt2nTptWhq6oAnYN9+/Y9qioNyko4PAcMEPJv3LjxaSou+vTpEw+vApImYEDOYyZzWcBOntUBAqxc+vXr12H16tVBAob2w+0wogGleFFlcVhinAZjGKPEDT+5YCeY7YSayUHL4uiIsSdc3KZNm3TK2kw2mhnnz5+H2a4JvlDSJR6/A54Z0QFqvJX4i1XloM15gINLgAMtcmltS44X8BEbGwsD3EG81kxy1uwDNe3XCQhoxwy5b8qUKXWJatBqlw56Nob/akApr9dNVwBADlf5O8MCCU/2qfbs2bN3Ew3lxenTp9eGCPfxxx/vUII5Vzt+C+2F33///drz58/fCXufz1CuOGLEiMZ16tTJgDX/f//3f4cfeeSRY6byw5/KAaTMTwGWlYlcLV26NIx0wJU+GBoamvHcc8/tE8AUo5ouGRGBko4AGKfAGMYoWcOfmJjoilY8IWYMBGF48fSPwv6uVq3aORvj7SSeo4d4lT6QsfAiIf5BIsP48x48TQhWhPYJS5MW4Dso28Krr1u3ribwQkMXUy61TTgCkHrpvUH3OmrZd+3a5bF8+fLgyZMn1+NznTt3TurUqdNJRGPUMRRlgdaIb7NmzaqNOA6hdow/OXdT3qF+i41xd6RcDeBDHpr0BuCBPDxkSNIcctwWQBB5eYiQPj4+2arWXyNAkh5B5jePqImWAoiPj5c/V0KaXCPg8b2E8m+55ZYU1Ua4IMfsAGDieogRdFcAwKTX5BM5+Oijj7ZXr169vDXLuSQygIYAKq+DBw+O/eyzz2o888wzrfLrLnv06FGPZ599tu13330XNnLkyIMdO3Y8qVor20afjMiAAQCMYYyyb/jJeVMaRk95jAKe/uuvv56ojIXGPBdD7hwZGen1559/+hIVQLiFznTk/6nJFsN2EaPCYgvRD8Oi56UxjBAGKXEj549BJzKgwtMZ5KObNWt2GjEcvaGNrXHz9fW9eMcdd6TcfvvtqYTAASniyVXBs+V1yGpiwM6YCscTMCckJLhNnDixHnl28bQjII2ZLk836pUKjoTeqf1HCAfmOeV7kOeodtAJZpAeOQ+w5jmX8B8AAAAjwIEequf/AnLMABidL0GUBeU7CHoCEEykAMhf6+z9/fv3uyPA07Zt2/TCXGREeOAyQATs2rVrogJZCKSd4XfUuXO20/mZ1+PVDH9eQEAHA9ZBgwZFyTk+O2DAgHZJSUn5CgZt2LChCltYWFhGu3btkmWuJXXo0CGFvjC55qkBBgwAYAxjlKmh5by//PLLsMWLF4dRu453dO+99yYpARut5ApvCDEYJGXxeMlHw74WLzRVPHoMlSWfhTmvUl4HjD/RBQwpBol6egRr+COKd2LkTyJjK8bprOqymeNxYTxVjvc0hnDNmjV+eO50yaPRjQCBRBWpuJKHphl0eAZvv/12XaqKpk2bFqFIxk65vX1d0pd9pNKBagaMOwYV4IMGPRUNgCH1qKnh0W2P/cXQ64+6IBARAzkHFalt53wQPYCQB88CYATx8c477zxBDT6hf/0cw9qHbElkphBGh8qL7Hr16mUQrSGKQFSC7wNo0HAoMzOzIgCklA3ZZRwSUkpEWABoXG/K/5iDXANdVpjoEtEUgCfXgvOjwKcDr3GtAJqm/5Wbah+77777ElasWPHHiBEjWl1JK4Ah4NWD7auvvqol30+pYYrcA8m0bSayoColTKaSIareEMPgABjDGMUztMVfFv6AWbNm1RQDV+nhhx8+9sQTT8Sr3L5muMX7dBdgEMr7CH926dIlESa8MrDWa1jsLqnpRg6WUDdVBQIy/FF+w4tu2bJlOkYdoJFPvl8z5LTD/fbbb4O//vrrahiGHj16xMuxHJPP5DboOZ/55JNPwhDC6dOnz1HxAuMUc97R5vyYIiIiPGipi4EkksH+tGnThmZhGYTklfqcJR/vs7AaAIACTQGPskqY7HJenOW3A/v37x/Xs2dPTbL3lVdeqc+bJ0+evL+Q594sQK/axx9/HCbHvkMPZ8s5qzp//vyaShDoXCkYrxxlRcCOACL3yMhILZ1EhIk5mJKSQo8BZ6pI4KZwLfIaXEPmjSIw/utFOjtrAADpYAAOc5eqCP5PZEWAwRn5PieZCzWmT5/e4MCBA76F2XmAVf369dM7duyYREqqbdu2qWgRmC5vIGdECAwAYAxjlOrQ1OzE2Lp/+OGHNTHs3bp1Q142Tnn8muEnpI0YDCF2ym8fe+yxeDxylasujnBnDiCgqxyGVzxuIg4BRAoQwaHZDd3rbPbzMiCAjvzChQur//zzz8ENGzY8LZ7d4ZtvvjnN5v1WQvDvvPNOLdIQr7/++n5VFudoE62wIDvL96B5j5f/n//8J5EufDZRkeJa1G3D3JakpCQ3uTbNxNgfoH+JeMMuTz/9dMNbb701RQDOUVPh8vUW2PACIBqQ6oATwIvr1q3zQypYQMAuznMJAgANOAE+N27c6CP74U8kSIy9pv9PNEY30kScAFsYcyUcpaWV2ATwmdQjxFFnUk1EOGD7EzFACRHgQD8FOBl65IDvAvAQZYJngmiQvM9x2bJlIQImw2XeVS7K9atZs6amSNuqVStEopCgzyDKIqAk2wAEhRtGCsAYxriOCy4LICVun3/+eSgL6+zZs3cRjqajnHjaqMFZMHpvvPFGPRZMVOLuu+++ZBV+Ls7a95wFURZKEx6abOkDBw6ME+Pg+8MPP1ShLe5nn30W9tBDDx0XD/+YilTYkrGc0A+QfT8AkQ8D/sILLzTEc+7bt2+8p6fneQyoGDtU8Tw++OCDPZTG2RyTGeW7Tz/9NBSDhNgPOvkACYh8ppJhgV8SPYBfgMEitcD/MWakCjBaRTEgGFTC4qQxkC7mO+AeAIoow5TvLTHDTyrjm2++CSHiI8dVgfnYunXr9Lp162YgDAXwYn9VyaKlgN+dc304b4ABIgcAAo6b50RWaNQE94P0C1LKVFoIAApHOAgQ1Lx58yTUZuPi4jSp58JcP/luLzZABNoVQUFB5+rXr3+KNvOUJjKvmacqZWALJo20gQEAjGGMYvH6rYTXqfVGP10MayxePTnwl19+ueGgQYNi5D3ZYmir8p577rnnBN6zj4+P3ne+pJnh2mKI4SMFgOcPSKG3vRj2Gj/99FOwGPU4yvSUNK6j7efQDMCYyPuCUPGjnJFjluMLoQnPggULdrDYE/pVbWlNsmBXJTxOPpfOemgAmIqu8nddBkJJ5LDFSGcrQKB5x/AuigAA6Kp3kc566C3oL1KaKcbSEWBRxKiNqRAerZkqkzlz5tRYsWJFMHn5Bx544DgpHkh1uZq1XVNLdoiNio9xwXafaf2uzxU6DhJhojyQtJNKP1RGaAn1WZkD6SdOnHAXIFGxSEjHYqHDYWW2tWvXVuU1+tbQqE7mWZoAgjT61nDs1atXP6f4LobugAEAjGGM6+Nt4Qnh8Ys3W0sWvzQx8HurVq2aKcYuHANJvpIwJWVw9I4fPnz4YcruTPYhvKXtAzldVO+QtP3777+9AAETJ05sQBh/5MiRh/GqTJemJpzQIOjVq1c84XLq5uV9zeAGTJo06YAqn8P4awbp7bffroO6IaCHVIP+HaUN3FBMxEPnWHgBIhzPIRgW5VxCSiQcjTgOMs5i/PnubHLneMkFMPiaJy5eMaS8ikSUCKfzHapM0ZJHVEdPrVhJzbz77rt1IEPKuY5++OGHE+VYLhSjF3xFYAIAwUMX7zxNAPFRWjoDCABee/bs8UCQCqXKvXv3+gj4qizXo8K1GmfIlvJ9bH4aCnF0NCMrLUAgpV+/fjFdu3Y9pnQHbnggYAAAYxij6MOMpzdlypQ6mzZt8qNhDPXtzs7O2YsXLw6H0Q4BDjIcBhXjMnXq1L3Ul5vsr6wpZyGHdS/e02k8e/Ekw4cMGdL8iSeeiEMCVjUDc7T9DMYScp0ca9wzzzwTbfNdZpTxqAKg9PCjjz7aQb8Rk33UwWsGk5JDQtdEKXiREkoZFtX5r9CD/DkRgKioKB/SCYGBgdl4yhhxuhLmByL5R7xY161bt3rReAcvmUgS6SPKGyHXkaenyoDoBECDMLds55TGgwOcE5lzQffdd18iCn3y22dzRZf0iIJDCc+rnOtNNIkUgGwZNBMyKUEqGjORNoBTwPlChEnOg9++ffu85Ty6XhNCt1gAU8hhs4UKSE8cNmxYZLdu3RLUubthgYABAIxhjCIaD3Kb4m3Vpv577ty5O2Gv8/qyZcuq/fe//60qHv9uQuOHDh3ybNiwIWHv3YQiTfYvBONE2BqDTh5bQEDNefPmhcNdmDBhwgFFZOMYNK927NixDciZ2xh/7RzR7Q7dg4EDBx559NFHE+zE69dsAkZn/vz5tZYuXVoVY6T/ATY8IW2Y7kU0ChZCzRs2bPCnvE47EYpRr5fU5QaRYvQqCTgKI2SP1gEserQDaL2LlgFRADx6wMDu3bu9Vq1aFUQlA/tItAFdAzgGGE0BaUduu+22VCIOcowVATKQ8fh5oh1s9JGwZfGXFtDUBwASHgj3iD53+vbtayJaAECDWLlx48YAeQwUYOUh5+Ka7NaWLVuC2eR+TBYgENWzZ894uebnb0QgYAAAYxijkAs8ZVLi0YdBnMMz7t27d4LeHGbdunUBkOleffXVgzCfWdhR5JPX9qgSsLKiAqd5bigKvvPOO3vlWE9+8MEHtYcPH9504sSJ+8nzms1mJwh/8AjGjBkTpT5DB0OnSZMm1QUwyON+lRO2l7XGjIdNSgLJY/FCTyQkJLiq7n6Q2pzwrq/BU6YvQBZGH8Ot/aDZrIEApQtgCyItpFiYL7xAOoVKEDoiqgjEZfoOVHAQWYiNjXWLi4urBCAgr473zHmfPn16PQGlmiIkkQjEnYjaoI1A5QkAgMoMNB5M9kOKyzONQCQGkSwIfgMGDIilbDEiIoIyVj8BWIE7d+70IfdfVKO9Y8eOwKFDhwbOnDkzZfDgwVFyH8f5+fll3UhAwAAAxjBGIYw/tfRTp06tI55I5XHjxh1AsUz3hlGto9xLFpKjnTp1SpLFmqYoFRs1anSqjBl/2+FISBb9epQEx48f3+D5559v9Oabb0bQ5AZPVAzOXuXdWhHcEfDTgPD17NmzdyI6ZCfrjGZMP//8c7QJwsTYJgwZMiR67ty5tWhHrHvpRDTE8Fy8lh8CEPF9GGodEJEaQEBH3xf6PgigqkVJXNeuXY8PGjToCG2bTVfJ1eP1wwWgXLJ169bWbt26HYdgSD0/oAAFx6SkpEroPnAtSDvRRprPQbwDFOiSx2UEhOacCySeb7nllhOyJcv5PYSCI3MQHYeNGzcGHjhwwBveRWF/BK7AqFGj/ObMmVMHIACol2ul6zWU68oBAwAYwxgFNP506ROj3wDWOB49+Vjd+CvPqh7ldbKIHGHhoJc8uXExgtnl4Pid8JjFYO5Cv2Ds2LENCXWT1lBlZFY0AsaMGdMQEt28efN2Kq1/uwj5U7M+efJkuvH5vvbaawfuuOOOE1wjlBnxjKlcgGhHBYAOZor6Y5TWMUf0CABgAAOMN276N/1QEa0A8vxvvfVWBKqMpksrIXLIgHkYw8tEkABopA3gV4hxPKkDN8pMqbvn2GjyRCtiyKjBwcFlFYzm8Am4RooDcYYQPmWOERERnr///nvQunXriA74CggqFHcAgaLRo0e3mTVrVl0Bh1F9+/Y9ItfybHkGAgYAMIYxru45WmVhCZg4cWJ98eZPE0JVgjX6Ipr9448/htFZb+rUqRF6rpe8LXlgxYgvD8NRjNg58rXI6cIHUF4rin6esng2RvJXQNJBVTpoD0bGDMv8xRdfbIh3L17eThvgRg79LMaRcjXY6nm0+i20kSKnDQAgn88LgEDy8F5eXoTinVEaFM/chVLJ0NBQnahn0Y2+AJIK5L4R3WEuAbCqVq2apZQFraa8Q+aOeUUL5DfZzv/1119+EFZHjBgRYyp74W1LPgbY0TbqAqmQlA4cAfQHIOauX78+gFSBbH6QAQvyY/JZ75deeqkVQKBfv36HBw4cGCNAQ58z5QoIGADAGMa4ivGH0Eee9sEHHzwuRi5aebxO+t/Fq/SH8Pbkk0/GKolS7W+UB5J7pWlPOTkf5l27dvl+8MEH4eJNRtLilhf379/vOWrUqMYIGj377LNRyoW2h4XSjOIgKQvx5LIQJsodldDD4aR2mjRpYsVIE56/FiNJ/p68OyI5pn/7HFSAVAkQpFwSoIgOgtLO53csGGd6QezZs8dLnlMmVwleid7sie8EfHbu3DmZJkWqGsNkurIscs7f1q5dGwAoQwCorAEAUhgClM6rtsxXjQ4A4urWrZsp2+n+/fvHAsAECPjPnTu3zi+//FKtoGkCuQ6eb7zxRrOPPvqo9oABA6K4vxVhtNxEBAwAYAxjXMH4o+MvAKCaGP7Inj17HjP9LydpTktLqzhz5syaMMllcU5/4IEHkm0XBhTO8AKLWlJmb14YZWqTJk2qJ4vhUVq3ci7wtPCuu3fvfmzYsGExJvspbzRjTFEqJMQuwCRaATFbL9CB7op4yij3CYCxoo6HoBN5dULrRRn8DgQ2WPvKkLgBLH788ccg2gy/++67EQooOhw7dswVTgIRFT7TsmXLVJlnKWK8ztDGmPJEIgH//POPF5UFEyZMaID4DqWkd9111wnC4KRcSF+YbAR+BDQ46qmMzMzMChwTsrmIM5UhAGDevXu39zPPPNOIChMAeAGjSpdwB+Tc0HkzUbZkCIQffvhhXSJ2cm8WyP5BNJw8eXKzefPm1e3du3fM//3f/0UBLkzlgCzobLq097YpH1RpqCYZ44Yz/uKt1aEDHl3sbr755pPqftG0/jdv3qzVt5PnpREKNfJKTU4HAFZCy6QBVJvZMj/EcIWjqkb9NGsCJXOoHN59993J9mb88fzJs1N+SGlcfl4beXkkcokA8Hdq7GnFjPeuGhEV+njw2In+cO35PyWHkPHE+wymWqJmzZoZGGgaByGLTHhfgEqkzLF0lVK5rAKhadOm6TSSorsj5YKUoIoRC6aygFbR5MJR+YPDAOhEzhmlRj7LsVHpIAAnSUkul4X8v4XyyKlTp9aGvyFeeHX0KapUqVIUAqOD7uzeeuutJxGu2rhx40H5zlrffvttDfn+CgX5ErQEPvjgg4afffZZuMz7PTgF6lqV2WiAsyCrpqBHbgKYyjBVQauUwhAyYvHiUZU5WXOBBQcDMBijvBl/WqMSqt2yZYvvjBkzdik9e834U2+NqA8bMrlhYWGZNNSxaYiTMyhbgoil5FfL8j1hhj2Ptzpu3LjdHAvEMtj+aK8//fTTh+3IqGjhdAhvqODZGP88Q+Skc8jDU19+9uxZFzQdODZY9EritkilgBh/pXHviAcvRthNAMnB9u3bUz7p/Oabb0JI9Bk5cmR0586dTzo7O5tNVwktk0bAqLNBXERFb9u2bV4oLFIeB2gBfJBq6NevX5zad4t4/5683rx581NlZB5aOXcTJ06shy0aP378Pjl3jQQshb344ouR13gM2jyleodt1KhRh2bPnl3766+/rpGenl6pIF+Qmprq+vzzz7eBW/LGG29E2IgJlT0AIIimke2JR7oST0aMfjbAgI5RIExBylmUkHBTABLwerg4em9oToIe+lIeT+6aV6NLkzHs3uugdEpu7oZ4TDNnztxFLlGPlNFffsKECfUQ9xHjd+A///lP8pAhQ5qh0Cb3ymWLACFgPLIyTgI0i6HxlAWyihitA3KfX6AWHe8a4/nSSy9FOeSjcFMa148SONmnmzp16pSMMuPVFmbZdQvhdkhyeOl442gCkIdHv6FI1kuMLdddO3lmsyMNh+65556k7t27a2JIs2bNqoG4jTzuUmWSBe0FkbN2IuZDW1ylseBINAbGvxyHD9EB2fcs7YRYLDSi8oEDUbt27SI1OCoNAPDhhx+G07kQ9UhIm2vWrAmkbbTcc0mQUK+D1+2kR1bmzZv3tzjCBxGGEqAbjqdfkC8Q56CRrAV+U6ZM2SnA7qSpDKYEcudAIC3RD9pZ0NDVZ6PcPAAGFSm4CGBAdxrdZQUStGgCZSd16tQ5Q75KJuK53PkqUz7lLcYwRkkaD2raxcO4CTlSFmdZMHXFO7Py4BqQz5dF4h+Zx2cOHjzoLd5XZfE0j9nM25woGXaRHK5uDMpiNIQohnhideE/wHPgsGj1K+eognhOu226GJb69cOAA95atWqVjiRzAfeLxj/niNQQKpfn6ThASNMWGTGZzQj2OOAQEf5HXEg8feaIZfny5VUJ3cs5jLAx/kUZlzhSOGmymWnxTJ5fqf9ZidogFgQAYY022X+42rxq1apA5LPHjh17ECEqjvP//u//YhBwQlhr+vTpEUq46XoM7fyjcfHee+/tePrpp6PkN2ouXry49vHjx92v9uENGzZUuffee33HjRu3S65xlIuLi71UvxQJABQW6WokJ1qAXi18AlggikC4TRbW07SkhEXM/0GnKvWQrU6gETEwRokaOrx7atvxpMTz301OVTf+O3bs8H755ZdvgoVNoxtVBYAsqwcCL/J6pv49qvOZO73tdfY/xqWsnhekjvGKyT/zAoRIPMw5c+bsVjlyuzD+hL/F82+IUYXwZyo4H8GBCA5EQIy+eHKpkO8ow7uGdVGLAHD9Mf40UmrevPlpGt6g1//cc89F43leZ0OhseBJB+Bo6UAUBj25dOa1qkgp6V4AhbqOpG+mTp1aV29Jrc8vwPiQIUNiSc1BmBRAk3yd5552LZg/kydP3i2AIxoQsmjRotrR0dHeV/ogug6kBP74448gPtukSZP0shINKLEqAMCCTEI3tp07d/rnnHUnJzM6zAEBAYCDMzVr1swEGCABSQORkJCQcyqHajEiBsYojqmJVOv48ePr0QpWFpi9agHVjD8qY+STO3funPTqq68eUhrqWhUALU4Rw2GOMg8pHxNPoB7eiQCAE5QtEQVQZWVlbZjFUw3Zt2+fhxj7Xdx/u3btwgOrTv1/WFjYtXiv1/X6AbBee+21BkQjBahFFtZpEM+ZyOVFRQS0cv0PHjxYme+V610kAECDIcAhKVHU+gjPv/3227VR/YOMVxznjv2Fu3DXXXfpAMCBjnuUxW3cuNEfwuGgQYNi7dRD1a4jYlpw0UaPHp07teTYs2fPBLkf/WfMmBHesmVLvaLhet9bGg+DfZC5tG/w4MExX3zxRdiCBQvqyL3ge6UPLl++vDolwfBkBKzEqH4Sdn3vl3oZIHriOjBAicl2QiBggRKToDKtppOoAXk5FK+CgoI0DgI3fa6IQbmWbizPhjifx4J6P0WNFGn5RvHOPAnLqpx/jvEnn4y07/Dhw2N0vXi1WDkjB0xUQEWtHAi/kktW7W61xR/yrCoHs5aha2E5duyYmyx61fFWkUWlMQv1/yzCNvLHpT5nMLbiddWltl6u427FtyjMGuBAJAOjf+jQIQ/TvymBrDVr1gSQUkDVL695xe/mR30gBcBbSBeJkdJkezl3AjQuimE4UkxrlBZ9gsAo4EwDpPAPmNcNGjQ4TcQB4iqOlepGaW8gwDJv3rxayPvKfu5S/Rhsz5MWUREwfkhATHPSUAIWDihAXhxOoAYE5NpdfOaZZw7169cvlv2bMmVKoytFu2Ueuo8YMaLd77//XkUAny46Zbfl9vasA+Bw6tSpSmwAgxUrVuRMFIiJCHrIjXpGwEEGwAC99SZNmpwmn2f6n3KUkT6wb4Ovb46EcPFeYDfjiaHMhpQutdjkU1lUMcCknMir410HBwdfCA0NzZJFNouFWhaI7EKCAfPXX39d7dtvv62Ktr3qRqYZ/02bNvmLV1kfJD9gwIDcTHIW24qEjFVonMoBF9rnmv6twdYWELgxeF8cU5m6MOK9ykJXm7rxO+64g1Crg3hB1fjbk08+edSOQLb1/fffrwVZDOMPMbko+0a+XAxj5s8//xwMCRQtAOYZPAfSk4VdQ5iruvSvzFVzZGQkErUBU6dO3aeqqYpjTbLi7XOPEDnlhcTExIrIDf/nP/9JFE82lhz6tGnT6kAGVKqC9rI2mrkHlyxZUpVzdIXokiOdKF988cVDY8aMaQxIEC/9kI0TUCx2iCni4+MD4XX/vffee1x+v9mqVatCr/ShZcuW1di+fbvvpEmTdvXt2zfOBlQYAOBakZkODGRye69du/bfFx0dzUycVq1anezUqVMiXgr5HNXYw4gO2AnK1w0+ixMhdJqXkKck9wcJj4WXxRPDz4Z3LQs0zyGcWsitYqD0kCHeNblNFN0oSevcufMJ2qMqVv6VwIB53bp1/ij8CWKP7tixY6pu/AmXiufbCBZ5HsZfG4AUFnp9sSVkTAMc5qBe/83+UqeNtGsZukbmX3/9NQhhnAULFhD6t8pzr6VLl1YRT3u/KlezC4nfRYsWVf/ll1+CZs+evYuo4LXsFz0cAHDMSaoC8Cyjo6PdcSrytArK+88rEkCpKIYeSWDeIiAzBGIinnhxnTvuCdj+eP8qCmJFM4Aa+nbt2qVRpUXJoXizTYhGvPHGG/uLKnR0va8jmhri0dOIJ0b1MrjSjjkh6BMbGxs9a9asWgA0uU/jihkE5ACBpk2bnvrxxx/Xz5w5s46cw8ZXigbExcV59uvXr8OaNWuCxMHYg+y0vdnccqMEiM6zTApPNkGT4TLhz9erV+9UmzZtTtJBChEJepaDyG3AgBEdKBlPX4vI0K1MbnYfSqCoYcbY0+ELVE9elHw6IVM4HxDt8J7xzhQYsNpKowIEMLREDfheWfy88QQJ3fIdbdu2TYOIR/MTWRCzc11vlN88xMO/CXZ0796949Xfafjj/eyzzzaCZDRs2LB8a8gJVQI66MfO31FqIyfJhjgQCzLGn4W3DHEAtEgGoX8qG8SoZpKik8U5XABSCmQ2OzH+2d98800oOe0pU6bss6nWuNIczG9R1x6RyGXe0fAJTQdIyQJM3a60Rpw8Sfm+s9Xb29ucay3SokAAgB07dvgx599///29xbjecN2cUT587LHH4v/FA1bH9evX+0KybtSokaZjL+tgKkYWw4m2RZ8+fY6W8vW0xMTEuL/yyis3yf2PZkNB98cRQiC9HQAO3G9UCZQACNAACETK0aNHH7j77rsTX3311Sbk/q+0r5988kldmQP+pAS6du16zJ6c0XIrBSzIt+K2bdsC2cRDMAUHB59p3rx5ihiFJNSgyIVRsmj6n5KTkS4oBsN/+vTpCuJp+1Hag3eFRgQNY4YPH35YrsEZPJZc7VfzC5E65PWcMCBeN9eUtqt44oABvHu8QwSuABeEQZV+utahT/WxJ78Xrb7PopTtGoihOy039sErLSj8DukmNze3iyy2gA/4AKQm/v77bx+MPiCG8izVFKYszC2LeMFhGLCePXsiu2riHNJvfvz48QftZNEyr1y5Mhg2vRiOQ9TC52M0csoxaYOLuBMRGwwzQJJ5qCSaNXDKdQIsCpDzlvfECag4A8dDEQEtua8f37N69Wq/Jk2aZMo8yrT9O+cP0MpviuEPv+OOO04CcovR2FqRZCYapsR+yEVXlGPxAcii3aD/NikcrucHH3xQm14E9BYoJRCA0l8FODaU+qGQWJjSPnmvAxEN7rMZM2bUohsn1R84CiVwr+VEA5YuXbpx/vz5xyZMmNBUjiffyhFZL3x79Ohx29ChQw/I2rJfdWQsdfvrLIvdSVn4KpKDZQGVSYSaVLkLlScmJrrLYsYWhkdIKSLpAhUdSJWbP1Nu9GwjOnB9DD86+cuWLQum5pkcOMbxueeei5LznaaAl61npoEv5h7zkIXMRkrVQaUErDzicSl1ymwbsKBdL0LupAFkS+/Xrx8LnduaNWv85Qat8cUXX4SKpx/3yCOPJOohbtjtutwrZYB4IvwOLVpV4xHHfMKt9F93VYRBK3wFjIV4BCdhe1M7z3HIPmrlrSzGGIXrWLtcLAvy0aNH3QlXjxo16jCVOXLdKhJmJ+SqIh2lfQBm9PDJY9N0iMqMPIyXRY9k7Nq1ywtipnjhPgJEnRQ5T0vN0D2uatWqZ2+77bYUpGHpctimTZs0cRZqYpggbyGqQ9c+RQS8ZAowp+W7A2lSkxu0kpKC/yGgN4B5IJ52fDGfOy3cTwSDkk1ekP974BnLnDxhG+ng2DG2NBsiAkaqQ7VGLkkQgKiWkxjCm7gmEydOzCmtLYwR5n56/vnno+EKyT1ek/sOkqCsD9klNFfp8milN8Dtt99+Qn67qax3+UYDZD1zmjVrVsP169cHyRqzQ1WDlKqtcZadWU3uFblKJjXPU1NTK3ITqP9XkJugomyV+Bv5TPJKhJwADLQ7JUxYliwUTSAiIiJ82QjPyGJwTtBcqiwGyZRvQQYjjKwWEwMQFOLGZk5A6EHnHC9JDO4xZUDOm2zUIbkGhNHxRsQYu5MSIIeOIRZjacUQAwC4yUkDEFJXnpUVo4q3RhSHfC2ejN5rXV0rR3gDqiNYBl7QggULarzzzjt1CfHCN4DVT+MVhcItU6ZMqQNjeuHChTuUHnt+c9qKt8G9IUCD0Ko1Li7OFU8kLCzsLMYeA8DCL/tJu9ksWuVyXIrZbLfzaN68edXxfFWNtYk+CBjOXr16JdjBfpvxaCdNmlQXkR/K6XJdIw14RkZGenz//fdVxHj74oHj5WPMOffMHwilqAUS7dm6dauvGOlgNB9GjBhxuEOHDqly/atv377dS9aATNa56Ohot7yIgLIWOqMWiSHLY31xYM4K0AykBJAS52I2sA4yxzzo00BEihdQqwQw50H2c2Rtk/keQXnriy++2Gj8+PH777///sQSWuc0zQ0ibdz7c+fO3alaaxfFYHOerZR+0tSJ1AaVEAIo9nMvlhCo0aIBpFRk3m346KOPEsaNG9dU5li+IkKyBvnLvLj9pZde2iPbwSs5G8UOAPCmFGKy9cguaw6EpCSeGSExfQGUDcVADSToYhMsfDBp5f+ueEayucr/Wdhd7HXxk/13XbduXVU2WWAsVBaQLqC3dLt27VIglSkVLZPJIBPmu0AjQiJGtjbqYzLBj7FI6/3iGWit79y50xPPCkYyCyhzD9Y1uUpyzJR3EqpXPdW1Gn0WbfJ9LLaQBwEKMPDhEgBcKbeT65VGdEEWwVOqzWpOkw6Iem+++eZ+5GE//vjjUICDYu9j/DUGMtwB2fe98rerErUoD2Nf1OKqpQPI94shOYfxhwQGQGauyFyi37wGCBQAsEvgBoGMXPXMmTP3QLik7I8IzoMPPphITXQpz3mzgDMv8RjrQ/hSkrq21wiipYsYkxo//fRTMMI+lCvi2RPhsVnfdA+dSCcs/4rkyX/44YcqNDUSoHMUY0/nPLnvUykzJlJE7jwPb05r9azSO5e6hQJS2R9A61133XWyuL1/jgMATUqEF2RuVgB0sgb/+eefPkpQx/Z8OTJ3p06dGjF69OhGYoQa8R1EzaiwKcZ1WrtOqG2yvzNmzNh9HVIjDsoLP1ynTp1MATZ1BwwY0ELOxQFSLyXovDlx3YcMGRItjuQJ+f0m3333Xc383izrmcuECRNayFzzfe+997Yr2ekSTwk4mwqY+8YTc3d3B6kQPruoQoL5AgY+IhNR06hmwY6Pj3cVj89dUF9l2TxiYmJgTbsSZrQnYEB4V1C/FxtkQkHU5AbTO3bsmExJFPlr6oRZlIzowL83NY07vvrqq9Cvv/66KgvnW2+9tV95Pdp5IaIk3lAACy1lSeRb27Rpk0p5DL3NlfduzZUSyC+9kBPOBHwK6HAn507O/+effw7hd6lzfuCBB5JgdqvuZ9o1YkHAs2PBULlCK13j6PpHuZ/sy8kC3IRWOR4XQAlhXr5X5rIbUQnqvPGu+G7CkbwZ4imeGJ/RBYPsDrmZzQ6LFy8Oo22uYqprpEY8YDG2x0t5n80YMxoPAdrESMfnMhhmQv3idd3EWkOJGKFVJVGcZ/UPYXA2DHzt2rUzxPtNUm2fQxVzX1vvkC/fs2ePJ85P7vSNzvyn1j73+sd7iTJARAWMFPP5s9DiFjCiV6TQxwAQTnmsrGHVSE1Bts0dCYDEKvfqPs6tPNYjkvXcc88dFsB0oRi8Z6199tixYxtg/D/44IM9lJkW8Xf0SKKjzXrhBMCX+ZuJLgRN7qjgGThw4BHlvJVYNICIk6yFm8TZSJg4cWITqgHy+4CsiTVkDfN69913/5F5qEe1Sux+cy7CAZoKuoMABtnOEY6Rm8F2AdcWb8I1sbGx7vv27fOElS1G14MOSyBXFh+Y/aW9OIrXWkEnEwpSs8oinonUY4cOHZJlO9m0adPT9Dww3ZhkQtTwUIqriUeEQhwAST9+vGBZgEKQj8UDphIDD46SKFWzbTJdg4gPQJQSJ0AH5CY6oy1fvjyIHL+AgSoQxGAXiyeYqvpPOGKo9d8lukDoH89BwEh8QRcJ9N0heWFATKqkEeOO3DXd5IiqybxGS94BT4ve7xgnewVwGzdu9KPkTTxBXUXPunbtWn+6zqnSpdK6DzHu3ugxUKnx6KOPXmb8AX9itBrjkCxcuHA70R3T1ZvrXLKOcc0gOeKNfvjhh0i/VibKA4BcsmRJNcCbSgk62Bh5q+rzkFeIm9+2Ej0pZo/aSjQDng2ENLWPJsAbHBkxfrHi5df75ptvqgJw8zgnKN5lifHZO23atNp0fKQkF3Kd3KOnruNapoE4OccNiADg+V+D8bfiRJDOUSI7tsjMCWLu+++/vwdACy8AcMTxwPVQa3RJzGUn5ocAkJi77ror+eWXX24i86hWfudSbJ+PAO3bBIjtHjNmzEElIV4iEbfiDjnkO4Eg4ciWQe5EFmmtNAKShNxszhBUCPFCSiJPRKtOWVA9EhIS3OAjlCIwcBDQ4sG2cuXKUIRnxIM4RargzjvvTMarBfGLcSjvZEJNgU28/mroZRPql8keZ8uWXr16dcC8efNqJCcnV4KBj0euGnvk5Omv5/wivI6HL15sCosYVQcrVqwIIrQLDwDgcc8995xQnpuDMnz+pC1kodhViPp2jQNAFEFAhZnoByRa1dhF2w9KASlNNKl2sxgnCImyCNmdGiDeP0YO71/mLsfgyDWDDQ9ZrBTnr5bzJ1f82GOPJeRl/FkXxONvSAUI4W/F6ne6QvTIksfc0TYWbEAguWTq5GnyBKMeToA4KJVJJ9ieC+ZRfqROzimkMABUcYf/SY2QpgAgAUDZNZr/4HQR2di8ebOfGMPq8BtshK4uAQGQB8VTPYjxXLBgQfjQoUNbPPLIIwlPP/10jCLsFnW91bg7Mr9CqTogzC1rwo5raIJk4b6S/WpCwyYBa7sUt8j2HDuSOhw2bFgMnAh4AaNGjWpKWJ4IEk5IruhBsUYDKG3+4osvNnfp0uX4uHHjmsj+e+WXEhAA0FLmvK8AmO2Kw1DsKYHSLEO4DBywqAoap8XwBYUQ9QUT/oGTDgwI28oN6smjeKDeR44cqVwaRES6Jsri4McmN059WTzOyn6nyWKRxIRDrxo9ApsJVx6iA5oBpJ/5hg0b/OjPfe+99+oEIit1vYRTxRv3xiCLZ7FPGRYdEDkV53xiYcajp5+EGI0E8WT9vv/++xDITvI8cezYsVECPLPgI8ycObMmJC2qBgqxXxoRkY3fwtsjuqHzAQg9w2lAKEiFjs0Q6wgl2+G1N8t18mNRtTH26Mb78Aj3pZT2OXvr1q1+lIhBQOzfv3/utr6kYbSSTbxAjBdrRx6Leo4GBWFxoovk7DH2hL/hZ9gIhWn3J+kDokQC6lxI9cEJgGEPyMi9VjEHlOrjJQaV0lbxuI+qfSrW80dqDc8f7QLTv+qpFQC1Dz744HFk0jGE3IuAGsLu8GXy2CdKHcmjx0JsxXv+7LPPwvDan3nmmShxbNILaTS1SgzON0qNVEsIiDs6YsSIGMXHKNIagNcvx1CLiBrRmvHjx9cn3QhoM11eJuxEVUezZs12ECGRNSlcnIBAIoKDBg06glNgKhk+l/b9ffr0iQUUCgho9PHHH9fJb14sXbq0ptg0rxkzZmy7++67k4o7JWBvOgD5phiYuCBImgXJzZish1qSkpKY8J6QmNavXx/4999/+1+JgVmcgz7Sa9asYatKdKBBgwZwBzQw0KpVqzQWBll8ssswGNBa5pLHoz2uTShPK9kTQ1tNPKYw6vsFne+h9E+/TiW8n9pNxyIPGUwASjL8g7lz59YcPny4m9yE+1EfU8SnuMIuAqocUVvkIMBShoQksW50kJWF5Cjf7yKLlZlKBTqY8V697LA0AZxuFLl3vvrqqxCukyyoZ9R50HLq5L9lXy+YSp78Z/7zzz8DxKjXF4/tqI0So60hMCEAAwEUo6auRe791CpSfv/990C59sGkqiCSAtqoXCI0jydK3hjOCLljxRdxIkXF94lxt+BFovFA1YpiazsooGclVKuXFtoOX19f2xLVYruO3Iukb4jeKI0LKyTbtLQ0Z+XparwAAVKH6JQoRr0aAjr53I/aeoTgE59dvnx5ML0Dhg4d2hyjifdMy1zTpX1Xcs8rDYRh+H/++ecgKoEw1gK0dykAdS2RPwtE3cjISLd58+bthkckhrwZ7YEF3EfnF4pHtAfSKABp/vz51ZctWxYCX4j+Ho8//ngCPIkSitQ64xgIuNpCtdmzzz7bKj8VQbFnvg899NDtkyZN2jlq1KhIxVcqlvuwLAkB5WkwYY3Lliw3QdILL7xwCG9my5YtvnLjB8kiz4TxpF1xaUQHZCH1ZxNjmCNEJAvOcepuKWPLpV1v75UFMHhpuXoT0ZgFCxbsVGIWGgv+3XffrcUiKwtGLF6b0jx3tIM540R7V1nA4ljY8CAGDx7cAmNAjrQoJVp4kUqXQIuGEOYkHaD/JuWHlAVS5sgCSB05vwdZ0JYjUdLXjwUaciILKSVqRNPgRij2uEbwFRDrisFTKnElmbLQgImAyKqI/IjnGivgLT6PxdmMURdAFTht2rQ9cm7P5XH9UHSkuVMdwuOAb7rg4fFD8gP4UXpK2Sf8FHQiMPoADgygbZi/ZcuW6ZwrOB16b3r+pldPEf0xXV24qliuJ/lteDZwDXTgi+HF0QCE62sLIAdQJwA4HGB3lbp/BKw0o0neHPC0YsWKYLmvmyKQxWeptFF9DlDn1HQP4Lj89ddf3ug0EO1CAZP7q0ePHsdVaeK1OAGa0iG9AqguQr+BF5kjRAEA+Eqy2TG/NYD0Bs2DSFeKBx42Z86ccI6LdeHhhx9OVNLhxe2oaACof//+h2UunZb9b0NJYF5vhHs2evToNmLL/GRt3amO+brb6/KgBOhge+Ho6kVd76OPPnqUcBhGSU6ij0zMQFo1yqLsURoLsK0QEWmBhg0bppMqkAXnBEZBCXjYomt7ig5o5Tti/Btg/CENqfI+B2rFYRBDgoN8owzc9crxX9c5wgKOJKsYQD9KEGWOHCvKfmIY8AYJ8cIBYCFU/AftzyzAAALSIYQhdXljvDPKFUvB8JsgTi1dujRYjIY/0Rpy2nSmU+qF2eK1VYZAiWGFxyJG40QJXkMqSRxmzJhRW/ahymuvvXYgHyNlFYNbAXKXLNoJith1mfGnb8Hbb79dl+stC/1ODJfpf5oe2oCzw/9JK4qnWvW7776rKgtyM/gqI0eOPKwWXEc5P5mUeFIiqUhn2jWGbwAIgCxYGlEcpbcRAgGWlJe6xu7oHwB2cnVFdISjg76BGMH6pDbUZxyvdL8QQeO78JQplwQsUWbHXGc+K89UAwBIcgOMiaSg8olRlvfo+flrNawWOnMCXh944IFkHRS2b98+lSgOHBYBAPsLEhUEvMg9uHfVqlWJ8+bNC5fz0YA5B1ihZFOPAhXz9aM/Q4rswx8y15p/8803tfJ749dff11r//79pHC2qcZc1zUlUB6lgHMmtZeXV3bbtm1TKO+SEx1F2SGsYTEAgZs2bQqAP4BkcEnvIL8pCwoRiqCpU6dSP55x8803n7jnnnv0Jkb2RCTUvFxKhRC5mT179m69tv+zzz4LRTkNsR/yh4ppb8+iUI6Ebbt06ZJ0LUCLvC+hX71LoR4S1hdPDD68BzGqhPg0URh4ALCz+/bt61SCTVjMYuBcqY+Hr0He8+mnnz5MTlcWZ82jwGCI8auCTDOGAa9bjGByCYoWaeVhEyZMqC+AyVUA2pUY4hYxelU458y3PPbPTASBVrFitI4CcFSpZr5GCO4GqoIyh4/TW4DukERAxo4de5DQOnMddcmNGzf6PvbYY8cIKevXm0oWVe5Z0mAXAmsA6pPk1fVpCR8Aj1wBo0sMOvs6bty4gxDo5LH+rFmzCtI9UQMCgB16ZlBOCMGWuQJJEmcAoEuqiLmDDgagS86N2XT9+D6006aaqCqqhhBs9X0mygiIh48E+LkKqMlZAwDwiJMJgEhH+fLjjz+uLvahKYx9okCUJitCZXHeqBpvSMDnZpyCiRMnNiPNlNcb9+zZ4/fggw/eMXny5B1y/SId/mUyX5c55yQ3XjdT+R0ONt6oI4saoRe5+OS04rp27XoUOWC5ESCFOZKjLQUZZEoiK+3duxdBkjBBs9UFGaK/jg651qtchdAsBQgt2rbYtZgura235rFZcv3fZLq8Ft9KqZwAJ9ipexU7FenNGrJgho0ZMyaSPK0sjCZT2RBIsgVVRTFwWt91DCeVDeRhV65cGcTiqCvGERHA+9+3b5+HLJwpLIhol2NoqQ1Xi1ix5oe5tuwXKRuMguqjjsb9aYzi6tWrg8UQNGCuET4Vry2WUkqMHSzqkjL+hOHFADdmMX/vvff2AJTyWXg1wRtqvBGsITefa76Zf/vttyDmKv0dmJPiqRZkTmrzASOG4YQLQZTkp59+CqHtOG3GifLI/6sAzm2uHdfYDTIiTadydwQsZu/fkfOAse3fv38cEw4ggkQyaS7AjLyU+7gBpllInlO9Q6pUjvdkAYmKDv/aW0cTx0+pJbwJSL6cE9IkGF8iBszz6+y0WEn5kO6QtSaadJ7td5NXRxBMnJMKSrCpoL9LtQAcjzSAHmst5cPLly8PiYiIqMzvEMkr5jJOTekUjRmUaKlKUro4lw0iPnI/V5M5V0nefxJ9muux3pbbZkBXSxdAKmTho6Z/4MCBMZRyIZ+5bt26AMiEsjB5y83tVtI7KPvh+scff7CFyM2ZLV7bKUiPgk6TbIiEZpubLId8o6sw4qlDBOIRohRMdQyVgBz6PJh0FrseykM5j3IaiDVsvKbYuuYff/wxhLCwoOx9MOvZR8r7YNa//fbbETfffHOq6QYTQ2LuELJmYxHhnObu+EdOGeJffHw8JYLZLLxEpCiPVLnkYjX+5DlhciOEQjWEEsZBoMZ9xowZ1Ef7C4BJ7Nu371HF5SjuKo3L9hGjitHCEAlAiaS06wq/r4X2MViUc+Za/CxxcXHuMkfrQvrMQymwwJFDPF2MyltvvVVHvq8+mg8PP/zwcZwHiMa2107uh7PKE3ZUHJCSuAcsYhCroNvw4osvRingYSFEj/Iq1/QKYASCY9rLL7988JVXXmnIdX/++eejCnn/lijIR2hJ5kkQZYx5aFLQJ8SMN0/0Rta+OCUq5lAYe0DEFX4AXArKmteuXRuAHSANhViZIoUW17Fr5YJy3Y7J3FozZMiQNvLbIfm9WY6zLraJKgHA17WmBG40AJD7xOeEUlBx69SpUxIbaAuEDJN7w4YNAYTb6IlOrWZJ7qAYmJwyw7lz5zYQQ53T0ZB8EN4S5BvKlGC1w3cgF6e3I2WDqEbYG6+P8KXOYGeR4H2ygDnpEs8szPxdjL+m9hgYGJhFPTiLhJpsTMAw6uunT5++V7zFYutvbs+DxR7PAK9BNTFB7dB2bmjtZckd79ixw5M8Jepq1GXTIEY82HiVLrneBkMTpnn//ffriJGgac5ePBzmOAspgjDUtSPtO3v27F14+6ZcHJqSMGCApTlz5tQWT5S8eyxerOnKRFgt9w/B7aGHHkq07W7H35i7eP5wfyjxusaF2gmCruzf7kWLFoUJ2NWaAyERTQ69d+/eCar+34FoAWF0IgSmf5VBC3wOWGO4NwsZObASJobND/BWokekoSD/BSOlrQR8rnT8Tuj+E8WSORBOCZ06/yaT/YF4C6JMbAJk4/LZP0cY/sxruoACBopwHI46aIcjQPfSzz//PFRFHvxJzaIjop/vYgICzpCHBez8+cILLzSV9b5+fsch8zBQruGd4oDtkPsn+locsBsZAOQbHcBQqkYypx9//PE4Fh+MLAxXmRCB8txXbqDKJb2DeG8rV65kCxODcp42uLL4YLSz0R/Ae4GEg/GGBISnivFnoQEA6GBAW0msVi1UjRcLeQeWOkCARh0Q/gRMuB85ckSrD7/rrrvwuEwIeogRCaEHOwJOZcj4Wwtw7Qs8T5SnClPXGQMg/7ckJCTYlvSQurlAHT012HQg5GSTr9y0aZPPb7/95te1a9fE67zgan0TJk2aVA/SKyWaKifqQCSI9sf0i6cfPPuhSIslff3MCHtBRKNUbPLkyfvU3LraAmbB+BO1IrydawG2fvTRR9XR7xdjvVN1ibzW43KE4IeCHKVvM2fODOf+gNkOr4NcN/sbEBBwUfYnSQkQFfRaWriHiMwNGDDgaCHnAA2Ggrgv0d/Qj3/nzp3eRCIE8EXkUxJ5GQiQeXCEHD5VMUQIn3rqqVhVuWNPIMBKeJ97iXUtn31zgECNcSa6JgDgxLVcd8Adnr84PGl//PEH/JgQMcr0iQlAjApRKhUxK46op1axJODzn6ZNm6YLEGiRH0dN1uhKcs1uxumT676btb0o+1PeOQDXIzqg5YowtrQOFkAQ37NnzyO333778WrVqmWKAaWZUAXxQkp0MaXMEMnklJQUt8zMzIp0v4O93ahRowxSGzJJz8LCpeyJxYxjYNGH5cqNrj+yYAAW8Ei50SiLCw0NJdJAbuyEUu2yopPOQovoimL627Pxt+U4OFBCpAv2AG7+n727AbayrvYHvs8BFEEQ5F0gfEEJXzBHvTnc1H+N5ESKTaWDM01TyUQaRSqaTFrMmGVqY2FMQSnVSDZKIQ0TWk7gvV7HujnXCERAQG4KggJW4Atw9rnr8/R7zn9z2OdlH/Y5oO49s2fvs89+ed5+a33XWt/1XRxlZk2LxXzCYLFwoEpcizcRp/R+RB7mQrwuI0IWWJqy5LPKLNlEPUOKpJCpDYbh13s//MMf/vCrKXtQLSNSJMnMCNJgyJ0/otj06dPP0PuuS4Nxi+3q6rbT7Fyo0QegPF1rpE6SNLu+rRSm6L+HCF8p4+yzz95Zsu1FhLQAEmO0LaaJdt2qaAPqCc5g2otCjRXWdkgiuJCG0Kh7V0DqbJCFMTDLjIW0ttp7/hsBOSOrTSyNY5EDoca77rprtDKeck+Z2n+LN0qFsljz5s070XRD5NAEIA4LEGBt6vNXakldG2X3DWEPUfA3v/nNMNwEJcyD3Ieszde5182g9Am44gc89thjg7xB9jW1cdd3hu8555xztse+bMW9ivPeUim6LsD+4B07dtTjtZWonNYyAJ2VHXCQ8+l1kyZNeomiHCKTVNGyZcuGBBof0NXZAZPb4kIZ4h4Oel+AgNcuvPDCl+Pi3YJ0RnY579VVJ8xHP5t1nngCPWQCLH41NFGtR8aN8JKxqQEAhquT0dc/DJ1/KZGxngqf4VNr1qzpTRZVOUcE1/ivW1a3TxkR4Ccb2UtkSo90LOzX0zTBYgsoPyNmAlayJNo5RYBKL83eW6f9TESBnZ3U7OrD8b8CAERUMTj12lfjWBbVLUUrt99++7MG3HhRVDxjxozTseoBt4OUde1w1A98SPmr4UcE9aKWtJSJas+2iHoHKWcxxs0N7v333z9CSYMUbieBmm4iftH1ggULRsjgTJw4cZu1UaiMSIqkmLXMqitz4pVsL0cdIGg00DF16tRNJZmRobFNesX/WmE5IZM/JvdrvcfnT7ZmzPMA0A6DNd7IVsl2KPu0cZzrpe5TxqB/hcCqVZsvsNI1hGAoC4VAGYDzvVoHzVfQmZCOe32V/U13ZL+49pfFOTq7tcmCc+bMOU1ZMtb+igQA273vNQDQQYSYP5H+NQMg7tvVyjkfrYaEiJAJtRrG4u2y44w3ECBkoHtEgmORCIEVhELKZmrEatPKHEnKNHOKnjPUEW11E+G6i5RlBvzPsJTx48dvP4ycf6nMK/GaPkRfzIMn+8phmIDGsVvAOB4cPsef9y1TwtMmJ41GHMfryI8Y5j6jnpoG/uxn6BGPtPph+X/iE58wc/1NhkoppUQtrs4UMgCMFCkiGRIgJrYee1wKQ4rStLiDMR6N5mPMnj37ROx416IXDdfi/BHszEtPkV23rj4/AFg4l9GyL3gjuUJdO/e5MYBb91//+tfDLr744m3NproVSdVSwotr87nUtthZWY1MKletXDbAeqk0dR9grJ+Jhcp0X/ziFzdW+HntjSOAPCOrcXNsk/NOdtu6TFLAle5/VgbU+ob8GyBx7NVXX32m42m4UOHQknsbZXc8IU/cxnZkZQCcDAJQnZGal0VVAgBCtQ5avyYOBqB/mZpo0pqoNhDoTkQsgq8nw7nvvPXWW8/EHSn3xjvuuCObjxDn7tlKzlsNAFQxO+BGcUpamFCJ1hydBdo7Hn/88SG4A1j+XRZ6NTR0Iyvp7u9wQG+effbZ2y699NIX48LdRiZURIFElLPa1QU9AgCIbZypgRZpER7yqCDdC6IVZB2yntJznLs6IIGNKVOm7BLVmymRhvw0Njtfpa2OdWnOxJGGvmB6i6i0x0kBSivHfVtq8Wta4M6zmrrPYxEDfY6XBVv6W2YNKBdIHVIx83mP5tbffffdJ4nYAbKDMFoNYYxG2NeUUaAHb9b4GECGyl9KUXdlyr9h165dPcI5jRahAlP0B9TQK7yGGpcvXz7A/iBQlu4DJ3zvvfeOVO4KkLOj0DXDXTJyZ6XOHzgkxYt0GWBsbeJftFtXX4eD8o7jmGbcO4YNyIBsDL2Dg6jfZ/aLYzMDAVibPn36OGOXlTuTxPChWPeNALZMpAxmm44sAC57Zu1ahxV2A7T7OMn8EUcS+f/0pz8duXjxYvwApLzNMlsCjkJ1iYL1bPTNN9+MdP3atGnTzg3b16fcGwPAneV8XXvttWvEKe1CNjUOQKcYiizCQcIL57CL9nMYZ5KT+pe3x+t7wkBqzTuyKxE2BvHGjRuPeeSRR4aHYT4OsZGzF82q/xsekiuciXwJVdCxTynxQ9njn9XoOZVwtP2ID91zzz0n6dLQFimtHAvjBY5VfZbzR6bJ2dolEWd9s7/rUkTf2L9//z2In2Fgt2MSq/EF+Oml7rd06dIhyifSvkk8pVEtX739Yx/72DYaEtK76o+5FkB+LeglJ1wDrJx//vk7OHvRanzXW8av4mI0q2tXlPB56qmnBhJkEuWn1G2BRoP5GKLF1J5W35XnSTnMFEYp3DBcayjJJW2BSrYjU1mMyGa0LEZyfE21f2UpTG3tgzIwXbiOKvmdRuDlxhtvPM01JgOS6tPtPQ5Zdi4M+5g4lj1vu+2251JGStvfwPi+k2UlwnlvrcI5rrNuqOGR/P7FL37xHte36z3NiagWQbC5LklLWiSNYaeGynJccsklW9tBcsuONeBOu4EibCddE026ESaPWrsAh20lLYyvoqU6ztNbheopumbgIwKcv0+cOPElpM+wTeXKzHVxzoYhKcZ2bW/PNVHLAHRRdoAzSp0FRtO+sGXLlp6yA6mzYEhEk/27SpXQlLr169cf4x4o9pSRI0fuGj9+/DYjK9Wd0oIvrYEfijRgbhC0KvZJUfRg0q0IblA4AZbkcBvbkVZubmSy/cq7IUrfJ8Uajn2zqCjOUV+aBw888MDIRYsWHffJT37yRal2LUOiDmIwiRVO7lknwN+bXwOyABHN9I5oYYiRs7YTyDBxbsGCBSMZXhK0FaZcG5577rm+4WhPpTqIv2DbY3uPffjhh4dRfUtgpcv6+jH76fgHsOwHlCHtHQQrX7/7ELoWSbK56bgArchh0t4lqerD7sZ733nnnaM5MZLEiTdQX8kxpVlPufRb3/rWKkTkwr9Gkh/17W9/+xQZnjQsqVrrk2PbR19AzdskvxkzZoyLtfCSLoG01uo7uI6ztYyLA0y7a6/Ujqg8hBMiEFGCE4C4dmmXeD1lN9q8IUArwQHu8ee2TrZd2XFApMQ/oMNw3333HR/ByUnWn4DPHITEu6lWKaW7LOfChQufmDx58r9HUDHsgIhg375uX/rSl/7NcQzgvaktH88A/qLmpw9ZVJstDByBlStX9lm+fPkgCm1hxAcEQDj6UGxULPJdJhhOmDDhZb3GIuGIWveVOs0uAARFJQiEHtKuVPdwERCnRDvqbSm139bCauoEkCoNB4UYSMa0j5Q/R+J/nJTMh8jcJD9ZhBNPPJEKWL7f9Qh1ppul0sDu6667bh1SkKErWoOuuOKKc8JovhoGc30ZI5kNpwljPkqmIo3Z9Z7i7bfffrIJZQANYNGO9HC2TzgLSH84DSK2OXPmrMR7uOqqq84cN27cPw3G6iLn36ADRp1emhoBS9khjlFeMqr0Wsn2D+v+K1/5yhnKGmkoULcSYDBIW2OAjRWtDIE55OubOA3yLAJhyTlvt9P88Y9/PIqmw9SpUzeYT+Af1kUcl9MJAf3kJz95Rimqk/a/iBxsWiTwi3+h9TB1utS3Z/sL/5IRV0Y8in0jsQwwywzh20htJwdfyMuPeEdJVyFTv/v4xz/+4s0335zL37b6mz4fa+gsvBrrKYD1nsQNKXaB7WpInQhDAAFKrnQZAAGBBN5QFddjRjoOgPGB8BfDy70h7OWen/3sZ/8VwceLrYGAGgA4TIKF3PDF+eiGSCi9DfnLDiASavvr6o3CGcBy15Lijk0ehv31pBLYGYOLsmMgghRJaoHRdkXZjT79kCFDShXr2gJXWUTOcRvkYkKkiEMKXvpOWQPxKY3nLRgOROdcxMkJG5KD8DV+/PidSQAkW8Cx4AYaK+z9EfnvIqQye/bsv5pNLwJmlFuo6RdFrQzhrFmz1iIEetGchblz547CLkaQM789OYtyKfMi7QHfY+LaTTfdlBnGQPxn3HPPPSuQIKk0hgF6pgvGDmctjI5tnKsTHQ9iKWrHieHfEaekY6D7kiVLBtNnl9o3e6Ik/YuoWm8ynf8FeFpdODwVKBtp03//+98/PhzR31LbYEXO33mMz4+WLQywuT7xOBqRPSk8Yv3L1nUiyMvWEMJbnN+TlKyMFRbxtrEvWatrgPb+gDt9AuAbwOaYDVQyN0CEj5irJGK9WAe6kjhxwMOQJWBAJiLXXWhhG0vtT2Oso2Hacv2m8hcAIGNI5plwWcpIdRa5MbNfMjSEiRYtWjRcxuODH/zgVroLqe21UCXA1kAa+7LLLrsgjvOQlux3HI8nLr74Yhm0HjUA8PbKDmQLEE+AEzMjffny5UPj+bFEIA7FRoVTeUOLGd1qbHOEO6ppafhHoXBww4sadu/e3SNQ64iInEZJN0Zk/bcJEya8WjJVrD3f22ABatlCQFOTAyKw8RkvxoDRSSSh0pJARnrEPKZ+qDyDhCT9KLWoJKDmF0blzdjOngECOO2RDMxDDz3033F+jkWgitefcUzKLHLz27t//etfH8PwRVSztrR/XFsg1TkAxOx0dW+/Kx2aA4Vwtv0WL158nFSwTAMgowU0QMM4x0sNlGIjVncnOYbMwCkhUV0zhQ27Hffhmmuu2ajbpIPnP8uGIVLG+R9pPyJq7P3d7373r4kf0RT9A2DY6uEcVySDelim/wN8ZsMxEj+horQ/vY2777775Nz5p+g3m+0wc+bM0wPwPZ9S/53l/BtIo5s3ICsZUfUmSnwJ+Le4L7Q2XMeImzYZyJZBBGg58cR/aCzszyeoa7b/zZ+3dD01xjrtK3vQ7DowOlgQdZQRzki9gAhnKTtlNLLyW7pWO0sPI7PdQFAAgeORwBFgEcM/85nP/M3k1CqBkAYE00mTJl24YsWKAeXeQD124cKF/yk7We56qQGAt0d2IDOQgYi76z0PIzh46dKlx8XFPSgcxlGHasP69u37plkKJhnSBxg7duw/LLJA2XvLlAzqWts/hiaim5Ms1HBgm0iuprav9i6UTJ+fbrg6HGOkdeyiiy7axgBxlu0oYzSlLjk50bpFrP0qjElvLGnZCDX9AAJv/f73vx9q7KzhMwGGdl5++eXnxnb/TfqxBeNcXLNmTZ8bbrhhrIikxLhnBt6+63kHPhgvKX1pUulSkT8CGO1+eu8l+9BAvzy2Ywx1RhK/sej3VDnCacyzD8iMERUOdzyUiCLifynV4TsS2WTX9fPPP98HoxrQ1c+v9AOg0Z0o/c44J43Tp08/XTSpe6IS0ZsqHYNCBce10vcXkUWpDt53332jpk6durGkXZAWwuBbbrnlVMqJt9566+oEHus6w9bENT8AxwDH5cYbb1zXznkfjTKXAK70NHKi0b3hoHMOSFUzhbIFn//8598nqxDbujqJatU3W8fZTTYgnHB/JD0g0/UD0OOoVNEZlz2nZK8fffTRwc4pDX+iQrJkFC2rpMuxj9jXxIkTP7hu3bp+5d4QYOefixYtejyB6e41APAOKBVo8ZOylhmIC2zoE088MYRU8KHcOBOqtM6FI3otHOIr0ugRAexSp2whS1CkPRBO63hpTTV+s8RTK00li7LIWUvNY0dTMPQ9OhhKUukdWeDFlHYm9tSbo6Vmh8wZTn+deQyBvPtLV9r2iMop7tVFdLoqdSCU/c4AOwO/8Y1vvDeM0JZwaBtLWriatA1MN4t7T1wF2gzDhw9/C5BR22tmNBqRCb/85S+fgfw0b968/0kli25VutZM4eu5ePHioZTWRFfAixaxNByqI1FUk+NfsGDBcJPeRHFxLDZgu998883G1f7VtVTy3UUdIBEBn4ZNX2Fa/WCPQSGJZdWLYjth8l9DOM9eBhA99dRTA66//vp1xhmn/Sv+6le/Gs4h0xDAr6A90gkOK+Pd6LD55S9/OeKyyy7bDIBU2LpJrfCIBx544DgcFal+1wlZ3UL5klaHjxf1Q0AFSFZrlxFLksz1rQRR9Vp9qTEuWbJkKP5MOOKXkExlCTsJCGS/HYHakbKSSn2ucUqrQF7JJMmDOTb7wg71u+SSS/5f2ICyLYJhE3Y+/PDDjyvBlIKAGgB4Z5QK6teuXZuBgUceeWRYGJFBL730Up/DAbBENPo6hx4XIFDwqmiRg1Kf2rx5c6877rjjZCmya665ZsNnP/vZTR1wKEXEmzvvvPMUBsCimjRp0tZ2aqJXtIiR3bB9zURA6rvgggu2T5s2bYMhNN4TKHuE3vSf//znzyQGfkvGRDp3MBEXPAOjeLULNnfshf3bolrLXBSBwXAcZxADMbmxAyBqP6cPmCFLqqfqvmBowylsueKKKzanqWyVnqcmQqb2U0YYf8B0vVzAyPGdMmXK+1wjsiPNov9iAIOxomS1/7rOmb/btP8ANmcGWOKPBMAe8P73v397RLhrk5Ry1VLFS5cuHRzrYIw23Pj+59LgrUyISzmA6IzukwB5G0taW6tqR7DyjYfGIzEtkGR0Bx2i5oeCiBspVHQKuCBzpk6Vg3F2zk0D0qwZBqStdRHMmjVrLECI+Jo6mLq1BT6ptzquZisYcUydkTxzmvNR30nXVjGi9KMBLGAaP+CjH/3oFvyAErDb0XO7L65TM0YujKChbCB4xhlnbA8b9R+lx6gGAN6BYADbXS92GJZhsRAND+l7uGykwUWGLIUxfdVgFUN0wgGuVWNM5LnmqdOWHF8+UlYafkxEpa8wkGlQR2fVRvPsS71aNOOM/CYtT+pXFHf11VePi+hkVZqU2CpZKqKRvroAtCEi0BG0KZk/XteGk2r+nqKywTe/+c0xtgmZUKSeSh8tHb/SR1LRPTgAIAcJFVtbFMeAf+QjH3ll0KBBHYmSmsATh28QDnVAEb9ySZpel+0T4p/Oirlz5/6lmZBL45YtW46MY/S+MPLPJxndap9j2g7dZRkMUwKodCJoUSOuYua9SYOtDKWp+PecLxoOyGLnn3/+KzNnzlybOAPEuOg5vOcHP/jB6HBuO5WZzj333L/Tva/yvmubO4pqJPIm8Jjq4wf7G0WlACRCXQR0/U3Vmzx58ubk7NoLIJtAGW4Ix/mjH/3oeMJSUum+R4twAKhTlADj9fUBVLem+R71bdjLOkDFVMSnn366/3nnnbc9jvPzSdWvszoGMtAXv3dM2I/jlT6VFj/1qU8h0G42NfQgjv3eWLtDAgRc0FJpOOzuVm2EqXukWw0AvHPBQOYkMOFN1AIGkAjDsB1TOIyY0wYRxQJ4Y8CAAW/GRbl71KhRuxCHEN0oEErNpYFGeTtPfqvHlFY6+NznPpeNlE3RUVfVhTO1O/r2IgkiPBG5vSpS1PbTTiKe1OARsgZJwOQfImzRTEpnlpKlMkfNkS5btmwgbkJEyRtSm1P+nqJpjoyu7VIXlaWgWXDCCSe8gVAoOssHI4n6Ahz23LhxY293jkCKPxzAm4xhONrtIvRUvqnE8TdlL6Q7//CHPwzk2JUzElfipdS+13S+OLypU6eO4/iNMW6eDdHqGJHS+0TH06dPX19tABDOqhsGubSy9jNdFDJViJjuSQyrKmlsIfL8+fNH6vE3qOrKK6/8X7oN6d/d8uPBOeGfKGvpYAFCgCZp4yplArRb9gqnN04WK5z/6ipLKmfXwapVq5R6Riif6dPX1ok7kiSNWwUCcY3iPR3tvLju4zx1RziN9VU6+6HB9assIPDRKgwwtbO+n62Z+++/36jsEwQhATLXXHrppVsLnds2mHGW8AOUFnU+xTrdce211z6fQHFHf3vvkiVLRsQx/sAbb7xxRLk3BNjcHCDgv9jdGgB494CBzBhjxD722GNDKUZFtNc3kPlhO9WPYiKFPoYiDNQ/pbXJLDPMjEIsnFER9csebCwcSDgsxzLulIyANKdIjvGRogYEtPqVzAVo6zsKugiw6kWeBFGAINGmQTeMknQ0DQOROSfNAagTE9wpUzrQitTrd7/73UDtgrIs6tc+Q/goHFzec10HJGiHFOnLWuiUIKmanH4laf6mSE3nRRg0ipODsbBtPzKmEcgB7F4vlwY2p4K0LQKndjMkrWb71SB1qkatzRG3pJpgz7Adx0TpyOwL0XCKtguFKteGU4q8ny4V6xHRE6sfKa0ZuS/7fb3zNB9wAXARsMllQpJMb0ePQeY0p02bdia1UiO+O4lb0BRtr1ixAhAYSTVTiQwHBqE1zcPYj6tjZkms7+EUCe2zrIQ2WaqAp512WrkIPXOodBdE9AIGQAHjP+mY1LeRVSuaKxEgaAwgrCQ5ZcqU/61yKbHFQALHZt68eScAhGYLuJcpC7a7HBDHbVQA5vGIuy1lAj796U+vrwGAd9etqaNAe6GUrMzA448/PvTZZ5/t0qFFVdgPw3b2RLS8nXEAEpDSzG/3N6fGCKSe9GKZ76hr47HitF44ZzPpT+CsI4p9FlmwAuORkbC0HoqY49wci72MVMhJp0FCe2QJTEeTPlY+0E7YwoTGJrKo7eFERJFK57ILsirmB3AiMgPqzyUZh4pSsz4jmyDSQ+iTTgVStEOKxmgpJMZza9+d9fgjwsmGxL6t1ApZsl+EXuppHpB5JTHcGWWAMtdHpwJzZSD1bOBRnf+GG27g2JtH4dl7Da0ySnj58uWDw3FuljVIeg8VkzA3bdp0VBzLM7WPGs1MaKsLsmcZEPjjH//YT0Yg7M4g1x9wyFGfddZZ/8hH7AJJTz75ZD9pcoqXX/jCF9aHw8pbH1vr4KFIeTQRJel1vAOExrgGdyQlxtZATgMBNiJTMg4+d/311z9fcu0WKrg+Kvl/k/gVgEtWmC1TxnNcygHm9mDaAJgjLr/88gsIFLW4ETUA8K4HAwURm8E2AQaGyg7E82N37959xNt1v2LBvkW4RPYAwUd5QS3c3yIPNTd3xhPLGVDACCYckngIxVacQV0rrxXVKckHGxpDE7zQMRJepoYmTa/DAIhhvFJZoMmAMaLz588fJW2YhuW02d7Yzv0p5xT3+7xrRg+yKYyxv/0JvojAgB5qcUoPsgqFlscql3UQIpavfe1r7/Wds2fPXnHmmWe+VuLoi+rzOihuu+221c00At62GTqEywAB2v+OnzBhwlZtfmkAzgFiUq4JQ6QefPDBEYiT4axWp+Pc7kyNKZim/rnWqSkmwmo10/6tvZYR+fyedteFCxcigw5wDMikf+hDH9pm3HKsWWtnX7FY7OF8c+YzZsxYh4gaPsu00joZLC2ynivbaLmzbmRwPI/PHItfEU69lxKdspMsgiBBdg7I2M/7x/eJ+HFftGPq8JHNu+qqq17Q/SE74zO+P5cnzp8D1j7r0Z2YmEf/I2SF2+O9sj0ycSmzUCwHkJYtWzY4rv3RunrieGxFki3JetRXcA72/va3v33P5MmTP2C91gBA7dZmZiAWTg8Md/2yf/rTnwaYYLhhw4Y+XTWnoCv3WWoQB4Hzx/4NJ/tmAgt7RSZpINIbiFkMgPqoe4qaM9BgyE0iHDU2u9eXcbSVRhEHzC5objC0Pop2tFtJeR6E0lljuUcKlMhxgAh1O73etAyQBZG8gBIlGWJAhh11wOkf4BDpIQSoOV069Ic//OFfmmnQI6qdokMh9v0vadhR3dv9WuRY8AK+973vjVYjDxDUkvxtdk089NBDw+68884x2rq+853vrCR7257ryc38CCWauXPnPjNy5Mjdhf3759ty5q1Fs5lTTuPEmx5ldjh4zpnDVmrxt/capCU7hY3/5z//eaDPIKgpCwC+3qOctXLlymNkwuiMIBT63nxqqZKW781/w2ccT47XowgYdybfWDLiHHQ5AKBElspA2ef8luMgQ5bGpzc5/Vyng3PPnX4Wqv9/p589T04/AwDps8qbRfsT9oQi4hvJ9ghY9ggcgDSEWePNBTFEoWQk4n17U2mq3LnJ1lx+bByT2I69c+bMOWXmzJnn2L8aAKjd2g0GXB/U+V544YVeFN+kpQMYDAzjf8xrr73W8112XIoMg8iBQJGMAiAAOEifqtdZqEoRKbOQgQXPvQ5MWPCMmu9wZwwOsjyROQNEInK8DAiSmOEknldiwBlI5ECpe+n8iOz7ivA5eq1WjAmDJj2Nl4AvoBxx6qmn7koEuWKhespqOhp6XXfddafbD+Q0GZ303ZnuATlg7YK33HLL2sJhqgbYgXXXcO+9955gmmMAgRWUNlOGo7FcqtvcEOJAVN7uuOOOZ1u4lprAo7ZC/e8BGE6ZPn36uosuumg758zJccra0jyKpr2eO2s6FJQoATKPSHMyNe6cZP4Znxd5eyx1zCXRufcBBN1F8TVT2/qNvQEcHEvnHFiTCQR6AX3zBaxbxzcHQ+kxv2d/O78B3I+uAYDaraOGqclRAQRIbzIE+k5JEwdK7RtRYocBQTisbaJp8q87duzoydC8Q4y6dGDRYk0Zg31AAMAAQED97nlGAWCQ+uRQlSuQshyXlKHI7qlNsLGZU5BGPnLRokVKOIOkiUmv4kL4LgYjpSgbPWeEN2zYgBNAZKi7qWv4BiJ9x57xAFB8Vr2dsxeFG72sdGK7wjA1FDp3wEoRp+CrX/3qaVLUs2bNek70lxxiA8LWTTfddKoZ7Ek/oj2DoSpJVXck1V3RpVEmO5S1ItJCYOhpAhTSBL2SaDpzph6dRwzyiJwHTJ48eROJaeePQ/A/n+GsafMj0jnXq1ev7uezrrsUMWdRO4cf39s9AYLOUsar3Q43+1QDALVbBwFBliHQnkXcAodALU+GQMmgvfMKwvlvffDBB5+UOhZ5hjM6QvSnPSki0KPVwTxu2bLlKMRFtax3evSAga804S5jIMvACQ4cODDjMgALMg6yCjIOHLXUob+RBgntiOB1fSRnkEVljD0gIPPgu73fd/ms9jugA3dBCjZ9357C/nyI9kg7V9NRYqr3jSh3LMeE6zB+/PjtOUB49NFHh82fP/89OgbIziYi2wFZFIzylJqWGm1KT3OS/s7TxiJkGg9Su6Imf6fHLKXsf3lqNU85O965Y87/l5x1aRo8u+dRtfeKnEvfm2+X3zPLgha/c2vbvT9tr+3M69+2s046OaWpa7farQYAardDmiFQMuhuVCn1NIDg6aefHlDCIdivbee8887betdddz2TRozWFcoTzvIoJqtDAwem7sW9Nz16WYOXX375qPhfz0R0eTemFtUVlSgagQUgwV0KUaHS6+qeeemC409lC3d8B2WMhrw+mUoTWf0yr2G6q3G6ByjJaqJ5OSMnRHFIeUTJQaXRrvnfmXMrdaie+wwnl10Q//p/bpcKqR7bgHsQke7xnKD6uCyKSBeokYmK662PDIW+bwBHWjRPf5bUiXOH3fQIHPmf7fE+v5dvm+fpsfR59p4yEXztVrvVAEDtVrs1zxBIM4cB76WVZ9WqVX05a9En0YtJkyZtaSeDubElcMAJmLJH8IgCnh7ePILauXPnkSm9fSTBHQDBPUVUHZlV/248lznAaAIEicxUzEFBCQAoJEdfnx73c/K5I80j1lIn28K5qCv9/VqkW7sd6lsC2g0l1/XbFhSSY68BgNqtSwEBx8CYt0PytmInVTiwNp59P5JSKYFJPVRPPHnZBBSy0oPnAIu/AyhkgAHASIzlbrVTWbvVbof0VsyZ9LJbMkEyXspYevVls/ISWd7do6wFrMoQWsfAZt62lwPZBGpzxn4GbPPfyJ8DuspkymO+P5VxMpKkR3+zLynTVJ+XiUpLPHkXhFbh2B7BScbNSLYptzUZWbIKdjHL1qVSYsZD6t279950rPZSWL3yyis3da9dU7VbZ2eZSi/mlF6uJnGsTfSt5YaqYOHAVrfmz+sTE7qJAQ0MENLJQYIFawEDB8BEvKdHIml1y6OB5u1FtVvt9o5a0KntzWNJmSjrksmdjhIRnQGOx+tY6Fu3bu2VyKiZU9KGm+4Ned987nTz8lJOoM2Jsr4TGTZnwucdNb7D/0TohYMnaLZla9oblLT4PQKKROasTxyderYl8aAyG6PsWULg7JF3XSivOeaOcepCanLsgJBj47kOJNwh5GLHyDHNj2sSSGv8PwEGAP1n+rN+hYpnAAAAAElFTkSuQmCCytSVPWeutz8yOyS9Y8iSPS+atz/ZTC69TKmXPfL8tz8AtTi99v2bPZULuD8wOTC9lvifPX44uD/Yc0y9BBSlPc1DuD8yOES97dKoPT4buD9mgWC9fN2tPW8puD/pGlm9blCtPeegtz8pCW+9Bly0PVictz9ArWu9LkC2PdLRtj8gDHS9D96uPVjWtj/AwHe95Ny0PQfJtT/Ya3a99kauPRjstT/VSnu93b6vPYHStD+HkG+9Kx6qPTPqtD8Sf3a9fECmPZvgsz/ZrmG9u4ahPcYBtD8GDmq9DBmWPSdGsz9AW1i9mGaaPdsbsz+l+VC9aoeOPVy1sj/S/UC9cqqJPXDnsj8ldEa9shp8PS+osj9rgDW9OWCAPe7Xsz9rYUq9dLyOPSkUtD8OOVq9P3OLPZ7ntT9kplm9Zx6OPcUHtz+ZXE+9NZRwPcXcsj9WPDG90JyBPSJ8sj8YGC29uXhfPYQssj/i+hq93U6SPfwctj8fdiG9INOkPQ1qtz/duTS9V7ifPdlNtj+zpji9JaSvPWQNtz9UX1G9lQWcPXR3tz8Jah69pHihPd3Ftz/q1im95PqpPSf9tz/dDDy9geGxPZ7utz+kI1C9FAq3Pel2tz+dkV69N5m4PRe/tj+eDGa9sHSsPfsOtj8pV0+9/niZPfcMtT/mwTi9Vw63PXnZtT+gPWi9JaexPT7ktD+PpGG93u6lPQeitD9LZE29i4+OPe+Ssz9KbzG9Rf15Pa10sz+LTRe9PbuEPeujsj9O6iO9fthhPb1Bsj+0Tgq9H9eRPW/dsj/cljW9OJ+dPU4+sz/Cf0W9EO6oPb7/sz8mlFa9G2GIPdvKtD8H0x+9Bly0PVictz9ArWu9LkC2PdLRtj8gDHS9fN2tPW8puD/pGlm9BBSlPc1DuD8yOES99v2bPZULuD8wOTC95Ny0PQfJtT/Ya3a9ytSVPWeutz8yOyS93b6vPYHStD+HkG+9fECmPZvgsz/ZrmG9mGaaPdsbsz+l+VC9aoeOPVy1sj/S/UC90JyBPSJ8sj8YGC29uXhfPYQssj/i+hq9XiK4PBegrj9Gqr+8DIvWPAFhrj9AUWO8fyEKPTsxrz/UaKG82PQtPASirT9TZGW8eV6ePMe4rT/GdAm8E0AkPcFHsD/m2Aa9Yz0EPTtZsD9bySe9+CQtPQUdsD8sndG8Kyo4PAsorT8LYFK7eKi5LABprT/v9ES8pvWqO/LUrD+TYxm4ZKg5LZyvrD8pK846FwxKPXchsT84Uvi8VE40Pa5ysT8Uhjy9phflPLcbsT9wj2C9S5HmPE3tsT8CYGy9Rqg6PQKKsj83T1a9uXhfPYQssj/i+hq9nHRDPCBgsT+AgIO9fthhPb1Bsj+0Tgq9NZRwPcXcsj9WPDG9OWCAPe7Xsz9rYUq9P3OLPZ7ntT9kplm9ytSVvWeutz8yOyS99v2bvZULuD8wOTC9TKmXvfL8tz8AtTi9Y8iSvS+atz/ZTC69lvifvX44uD/Yc0y9BBSlvc1DuD8yOES97dKovT4buD9mgWC9fN2tvW8puD/pGlm9blCtveegtz8pCW+9Bly0vVictz9ArWu9LkC2vdLRtj8gDHS9D96uvVjWtj/AwHe95Ny0vQfJtT/Ya3a99kauvRjstT/VSnu93b6vvYHStD+HkG+9Kx6qvTPqtD8Sf3a9fECmvZvgsz/ZrmG9u4ahvcYBtD8GDmq9DBmWvSdGsz9AW1i9mGaavdsbsz+l+VC9aoeOvVy1sj/S/UC9cqqJvXDnsj8ldEa9shp8vS+osj9rgDW9OWCAve7Xsz9rYUq9dLyOvSkUtD8OOVq9P3OLvZ7ntT9kplm9Zx6OvcUHtz+ZXE+9NZRwvcXcsj9WPDG90JyBvSJ8sj8YGC29uXhfvYQssj/i+hq93U6Svfwctj8fdiG9V7ifvdlNtj+zpji9INOkvQ1qtz/duTS9JaSvvWQNtz9UX1G9lQWcvXR3tz8Jah69pHihvd3Ftz/q1im95PqpvSf9tz/dDDy9geGxvZ7utz+kI1C9FAq3vel2tz+dkV69N5m4vRe/tj+eDGa9sHSsvfsOtj8pV0+9/niZvfcMtT/mwTi9Vw63vXnZtT+gPWi9JaexvT7ktD+PpGG93u6lvQeitD9LZE29i4+Ove+Ssz9KbzG9Rf15va10sz+LTRe9PbuEveujsj9O6iO9fthhvb1Bsj+0Tgq9H9eRvW/dsj/cljW9OJ+dvU4+sz/Cf0W9EO6ovb7/sz8mlFa9G2GIvdvKtD8H0x+9LkC2vdLRtj8gDHS9Bly0vVictz9ArWu9fN2tvW8puD/pGlm9BBSlvc1DuD8yOES99v2bvZULuD8wOTC95Ny0vQfJtT/Ya3a9ytSVvWeutz8yOyS93b6vvYHStD+HkG+9fECmvZvgsz/ZrmG9mGaavdsbsz+l+VC9aoeOvVy1sj/S/UC90JyBvSJ8sj8YGC29uXhfvYQssj/i+hq9XiK4vBegrj9Gqr+8fyEKvTsxrz/UaKG8DIvWvAFhrj9AUWO82PQtvASirT9TZGW8eV6evMe4rT/GdAm8E0AkvcFHsD/m2Aa9Yz0EvTtZsD9bySe9+CQtvQUdsD8sndG8Kyo4vAsorT8LYFK7pvWqu/LUrD+TYxm4FwxKvXchsT84Uvi8VE40va5ysT8Uhjy9phflvLcbsT9wj2C9S5HmvE3tsT8CYGy9Rqg6vQKKsj83T1a9uXhfvYQssj/i+hq9nHRDvCBgsT+AgIO9fthhvb1Bsj+0Tgq9NZRwvcXcsj9WPDG9OWCAve7Xsz9rYUq9P3OLvZ7ntT9kplm9yvt+vY9gsz8YnVA8xb53vRjQsj/mK4U8Y8Z3vVyMsj/CYYQ7ZqGDveo2tD/SkRY8k1SEvSHKsz/rcdU5GISDveuNtD/5NmI8oESIvbB7tT9wEE08nQOKvZRXtT8Ube07QGuNvXmXtj9zBlE8thGTvW/Xtj/sg9g7i0GSvSLUtz+H9Yc8aOacvSmKuD+wGNQ7Fd+IvQRwtj+3Jog8KP6EvVCVtT+yQYU8f4CKvaFltz9h1ag8CxaIvb0IuD9O48w8d1OPvUmVuD+KNLw8adh+vQecuD/Vf/c8hPaFve44uT9Bg/Q8j5JkvdcUuT8N2gw9AdJvvZiluT9Ajw89ZbFIvVBIuT8g6xo9IlZRvfDUuT8NzB89SeMrvTNLuT9t1iU9sLQxvZXOuT95jiw9GZM5vUmSuj9zDDQ9jFtbvV6Xuj/wXyQ9oi8OvZgMuT8JnyY9a2sSvbmduT8uQjA9L/3hvAKsuD+7UyQ9e33kvAdCuT8wizA9WjwXvQdvuj+U7js9PcDpvDMkuj+KRUI9RyevvGYOuD8GRyI9lsWbvN2muD+NzjI9j12SvH1Ytz9kYyY9EAF4vHCNtz91ezM9sTuFvGm5tj/CACk9qnVgvOHYtj/G2DM9DwOAvKEetj8L0Co9XmdOvK4rtj+9oTQ9v+aDvLhbtT/HRCs9IGc/vCdRtT+FYjc9eswGvHhetT+7tkA9uaUWvNs9tj/1Az89o2Truy14tD+rIEs9JQpFu1jAtD+5u1M9zn8mu3s6tD9ZIWM9VLt9u+15tT8ioUg9cPCCrZ7qtD81JVg9cPCCrcFqtD+TTGc9cPACriSTtT97yU09K6+fu/xOtj8CrkY9Ne8Crpdgtj+V8Us9IfACrkoctz/YJ1E9kiO/uzwPtz9SKUo9cPACri0ZuD80YVo96xjdu0r/tz8cpVE9b88nvIvvtj9hGD89BcBBvAvJtz9ZfUE9fGMGvClcuT/ABV095SGEvO9huT/JjUs9cPACrp1ZuT+X92U99wcdvAIKuz8KeWs9Ke6avKEvuz87Bl49NJGivKm+vD/e0GU9OQIkvHi4vD9c4HE9cPACror/uj/FzHA9cPACrji3vD+em3Y9AJ7uvLhauz/nGFE9GRobvbV7uz/P40M9LL0dvdnRvD87kkY9/eTyvIbDvD9Lulc9jww/vaCUuz+XMzY97jdCvQnevD+8wjM9K3NlvaLLvD+ayx49d3Vivduhuz9DbSM9CAeEvX6Guz+rsAk9oPp8vQB1uj8lVA49IOyTvfxNuz/Cx9M8tmeWvbA4vD/AocE8q6uFvQecvD95PgI9DuOgvXLiuj+W2oI8Ty2Nvbkhuj9L0eg8fVeYvaB5uT8dF6M8MOSlvbhhuj8GFZY7W3eqvWkavD/qffI6slumva2gvD+5yDs8t0invXPZuT/dCQS8xnOdvXwiuD9pic+7VRiUvdyItj+o2pi77VOLveICtT9wwRu7uZGsvaWHuz925Ca8FmyqvcbOvT8rmYC67V2tvULfvD+hcki8/dmovfnEvj+mBji7XD6kvbXBvj+sluc7cgugvVkmwD9ZkHk7aQiXvWrdvz+wnHI8ZN2Tvf5awT8OaSA8ydKYvbyevj/JU5Q8cWGHvardwD+wm7U8vnqEve91wj+8j4o8HFdkvRBJwz9BC8U8Lt5nvbuZwT/pC/M8fbFFvXTfwT+L2BI9SapDvafRwz/vIPY8x0EcvbUlxD8EaBM92Ysevb4Vwj+YJCo9NZBGvaoWwD8obiM9/iogvYE1wD8Upzk9o9T3vG8xwj+CODs9avn3vJdUxD9yMiU9C3mqvN1uxD+4MzE9BjKpvDs+wj8NXEg989MovKt4xD+roTc92GUpvHNEwj/KDVA9cPACrnt6xD8Gozs9IfACripMwj+9tlQ9szkqvEZNwD9+RmM90u8CrtVQwD9Fqmc9nO33vC9EwD814Es9E4apvBBMwD/gZFg93CmnvKRuvj+MyWI9CwQovE9qvj8vAW49Rv31vMdrvj8GM1Q962sfvRNhvj/QDUI9qvECrqZpvj+renI9AZ1EvU5Ivj89Xi49nIppvQnevz/jJAw98spnvf0hvj8Jphc9IquIvTxJvz9ZENk8KGWHvVDXvT8qg/I87U+YvSZZvT/+Oaw8szkqPEZNwD9+RmM9CwQoPE9qvj8vAW493CmnPKRuvj+MyWI9E4apPBBMwD/gZFg92GUpPHNEwj/KDVA989MoPKt4xD+roTc9BjKpPDs+wj8NXEg9C3mqPN1uxD+4MzE9o9T3PG8xwj+CODs9avn3PJdUxD9yMiU9nO33PC9EwD814Es9x0EcPbUlxD8EaBM92YsePb4Vwj+YJCo9fbFFPXTfwT+L2BI9SapDPafRwz/vIPY8NZBGPaoWwD8obiM9/iogPYE1wD8Upzk9Rv31PMdrvj8GM1Q962sfPRNhvj/QDUI9HFdkPRBJwz9BC8U8Lt5nPbuZwT/pC/M8cWGHPardwD+wm7U8vnqEPe91wj+8j4o8ZN2TPf5awT8RaSA8aQiXPWrdvz+vnHI8cgugPVkmwD9VkHk7XD6kPbXBvj+nluc7ydKYPbyevj/LU5Q8/dmoPfnEvj+kBji7FGyqPcbOvT+SmYC67V2tPULfvD+hcki8uZGsPaWHuz935Ca8WXeqPWkavD/UffI6MuSlPbhhuj8MFZY7t0inPXPZuT/gCQS8nIppPQnevz/jJAw9IquIPTxJvz9ZENk88spnPf0hvj8Jphc9KGWHPVDXvT8qg/I8AZ1EPU5Ivj89Xi497U+YPSZZvT/+Oaw8slumPa2gvD+8yDs8tmeWPbA4vD/AocE8LL0dPdnRvD87kkY9/eTyPIbDvD9Lulc9AJ7uPLhauz/nGFE9GRobPbV7uz/P40M9jww/PaCUuz+XMzY97jdCPQnevD+8wjM9K3NlPaLLvD+ayx49d3ViPduhuz9DbSM9WjwXPQdvuj+U7js9PcDpPDMkuj+KRUI9e33kPAdCuT8wizA9a2sSPbmduT8uQjA9L/3hPAKsuD+7UyQ9oi8OPZgMuT8JnyY9RyevPGYOuD8GRyI9lsWbPN2muD+NzjI9j12SPH1Ytz9kYyY9EAF4PHCNtz91ezM9sTuFPGm5tj/CACk9qnVgPOHYtj/G2DM9sLQxPZXOuT95jiw9SeMrPTNLuT9t1iU9IlZRPfDUuT8NzB89GZM5PUmSuj9zDDQ9jFtbPV6Xuj/wXyQ9ZbFIPVBIuT8g6xo9AdJvPZiluT9Ajw89j5JkPdcUuT8N2gw9hPaFPe44uT9Bg/Q8adh+PQecuD/Vf/c8d1OPPUmVuD+KNLw8CxaIPb0IuD9O48w8i0GSPSLUtz+H9Yc8f4CKPaFltz9h1ag8QGuNPXmXtj9zBlE8thGTPW/Xtj/vg9g7mwOKPZNXtT8bbe07oESIPbB7tT9wEE08ceacPSmKuD8EGdQ7Fd+IPQRwtj+3Jog8KP6EPVCVtT+yQYU8ZKGDPeo2tD/NkRY8GISDPeuNtD/5NmI8JBiBPVDYtD9Zmo48fVeYPaB5uT8dF6M8Ty2NPbkhuj9L0eg8DuOgPXLiuj+W2oI8IOyTPfxNuz/Cx9M8CAeEPX6Guz+rsAk9q6uFPQecvD95PgI9oPp8PQB1uj8lVA49tTsLvQlpsj+ioCI9IHwpvcoUsj/NFRI9PMwvvQLKsj+/bQw9+bUSvRgGsz81JRs9HmLvvMpOsz8J/yQ9Lw7dvK22sj/l/i89pHMzvbeCsz9n+AU9K/QWvXOusz/RGRI9d+9UvbV+sz/caOw8dBVUvYHlsj/QDe48btRRvTiIsj85+e08LshuvTtZsj/0j648EKRwvTj8sj/98rY8EBZtvXmtsz/YecM8KzB5vZJItD9EzqE82+p+vc/Zsz/GaYg81S/7vJXjsz/fhBo9F6qsvLADsz+Hhzg9Qva/vO+Tsz/AWy09yxqTvATTsz+yDDU9p+17vI1Msz+8KEI9zLnSvK0htD/ZLSA94V+wvH1xtD/APiQ9KbNGvA8jtD8X7z89L8UovF6Rsz89Zk098oeRvNnPtD+77Cg9JBiBvVDYtD9amo48a47LuzTysz8HgFo9df8CvZhltD+TUxA96HwavXU6tD+6cQo9sMY0veAhtD82aAA93J5QvSYotD/KuOk87uxmvYdetD/+Bcw8VzNyvc+ptD/1Tbg8LTQcvTubtD81ZAE9GaE0vdiFtD/mDvU8k1QGvce9tD/y+gY9Sx7svPfutD+nuwk9W3PivP6ZtD93NxM9BprFvIDctD+f1RU9STSwvA4otT/6NBk9Z26ivBKKtT8iZhw9gm+ZvEsVtj8CUR49MDuYvO6ftj/ZBR49AVGkvAEltz9ufxs9Jz66vBDEtz9yEBk9RxngvJI+uD8X4xo9p4IKvbexuD/MER89c50mvcTluD/6RR89YnpBvaHiuD/dYRY9bJVbvbCtuD/zFgk9yrtzvbc9uD/5sPQ8PS+BvX2qtz8SmNQ8BNeFveomtz8hybU8fbaEva9Wtj/37J08+iqBveCjtT+oq6A8agV6vRAYtT8KFqk8j651vWWFtz9ZbdA8Lwpkvffutz/V7us8AoJMvepJuD/5QgE90+c0vRlyuD+W2gw9Pr8dvVx0uD8p2hE9hE0EvV5DuD9iixM9JpF6vSCutT9KEqw8un+AvXtCtj9mQak8iZFyvQ5QtT/tNLU8L/pqvYIGtT8bcr08UiBfvVvFtD9voMs8jwxLvWqLtD9eWuE8TqXfvIX+tz+y1hc9k+jEvEKKtz8vEhY9mSO0vL4Ltz9lzRQ9lt+ovH6Rtj9L0hM9UCSrvKIbtj/WwxE9mJ+2vNmztT8WRA89suHEvORptT95IA09DI/VvB0otT/oXQs9fiLMvCpftz/C/A09nWzfvGK2tz+A8g49eBG+vDL6tj9AYw096QUAvbcEuD8q4gs9mLcTvfckuD/HdQc9PJ4ovZIzuD9EwwE9ldSyvDmItj8nDAw9ZBG0vFsgtj/HGQo9wT2+vFXCtT9UUwg952hCvdcSuD/4a/Q857xYvbDDtz8GpOI8+IFtvUZktz9cCMs8Qmx7vQsFtz9EubY8+8OAvbQNtz9KT7c8tuiAvTDXtj/Sy7M85V99vf7Utj9KrbM8MF99vc6ktj9QobA8cQ2Bva6gtj9ZSLA8jOp5vYQttj9ilq08DAxyvRC1tT+qSLE8PANsvZxutT9pTrU8ofVkvQ00tT9+zrs8/ThavbXztD/by8c8eORFvVi6tD9Yfdk8QGAyvce0tD8eFOk82f4cvfS9tD9yr/Y8I1sHvQvgtD8aagA97pfwvOETtT9SRgM9VYnbvFtDtT/2RwU9e4zKvEWAtT8L9QY9MJdpvZCdsT/9Rqo8M1hMvX3dsT/Px/A8CoNovUVnsT9bSP47yvt+PY9gsz8ZnVA8Y8Z3PVyMsj/CYYQ7xb53PRjQsj/nK4U8hlOEPSHKsz9mctU52+p+Pc/Zsz/GaYg8EKRwPTj8sj/98rY8KzB5PZJItD9EzqE8EBZtPXmtsz/YecM8d+9UPbV+sz/caOw8dBVUPYHlsj/QDe48K8huPTtZsj/8j648LtNRPUCIsj9K+e08PMwvPQLKsj+/bQw9pHMzPbeCsz9n+AU997USPRgGsz8yJRs9tTsLPQlpsj+ioCI9IHwpPcoUsj/NFRI9HGLvPMpOsz8H/yQ9Lw7dPK22sj/l/i89K/QWPXOusz/RGRI91S/7PJXjsz/fhBo9F6qsPLADsz+Hhzg96fG/PO+Tsz/AWy09zRqTPATTsz+0DDU9p+17PI1Msz+8KEI9zLnSPK0htD/ZLSA94V+wPH1xtD/APiQ9OLNGPA8jtD8X7z89L8UoPF6Rsz89Zk098oeRPNnPtD+77Cg9IGc/PCdRtT+FYjc9v+aDPLhbtT/HRCs9a47LOzTysz8HgFo9lGTrOy14tD+rIEs9XmdOPK4rtj+9oTQ9eswGPHhetT+7tkA9JQpFO1jAtD+5u1M9zn8mO3s6tD9ZIWM9VLt9O+15tT8ioUg9uaUWPNs9tj/1Az89K6+fO/xOtj8CrkY9kiO/OzwPtz9SKUo96xjdO0r/tz8cpVE9b88nPIvvtj9hGD89BcBBPAvJtz9ZfUE9fGMGPClcuT/ABV095SGEPO9huT/JjUs99wcdPAIKuz8KeWs9Ke6aPKEvuz87Bl49NJGiPKm+vD/e0GU9OQIkPHi4vD9c4HE9DwOAPKEetj8L0Co9fiLMPCpftz/C/A09k+jEPEKKtz8vEhY9TqXfPIX+tz+y1hc9nWzfPGK2tz+A8g49mSO0PL4Ltz9lzRQ9eBG+PDL6tj9AYw09hE0EPV5DuD9iixM96QUAPbcEuD8q4gs9mLcTPfckuD/HdQc9Pr8dPVx0uD8p2hE90+c0PRlyuD+W2gw9PJ4oPZIzuD9EwwE9ldSyPDmItj8nDAw9lt+oPH6Rtj9L0hM9ZBG0PFsgtj/HGQo9UCSrPKIbtj/WwxE9mJ+2PNmztT8WRA89wT2+PFXCtT9UUwg9AoJMPepJuD/5QgE952hCPdcSuD/4a/Q8LwpkPffutz/V7us857xYPbDDtz8GpOI8+IFtPUZktz9cCMs8j651PWWFtz9ZbdA8Qmx7PQsFtz9EubY8+8OAPbQNtz9KT7c8tuiAPTDXtj/Sy7M85V99Pf7Utj9KrbM8MF99Pc6ktj9QobA8cQ2BPa6gtj9ZSLA8un+APXtCtj9mQak8jOp5PYQttj9ilq08JpF6PSCutT9KEqw8DAxyPRC1tT+qSLE8iZFyPQ5QtT/tNLU8PANsPZxutT9pTrU8L/pqPYIGtT8bcr08ofVkPQ00tT9+zrs8UiBfPVvFtD9voMs8/ThaPbXztD/by8c8jwxLPWqLtD9eWuE8eORFPVi6tD9Yfdk8GaE0PdiFtD/mDvU8QGAyPce0tD8eFOk82f4cPfS9tD9yr/Y8LTQcPTubtD81ZAE9I1sHPQvgtD8aagA9k1QGPce9tD/y+gY97pfwPOETtT9SRgM9Sx7sPPfutD+nuwk9VYnbPFtDtT/2RwU9DI/VPB0otT/oXQs9e4zKPEWAtT8L9QY9suHEPORptT95IA096HwaPXU6tD+6cQo9sMY0PeAhtD82aAA9df8CPZhltD+TUxA9W3PiPP6ZtD93NxM9BprFPIDctD+f1RU9STSwPA4otT/6NBk9Z26iPBKKtT8iZhw9gm+ZPEsVtj8CUR49MDuYPO6ftj/ZBR49AVGkPAEltz9ufxs9Jz66PBDEtz9yEBk9RxngPJI+uD8X4xo9p4IKPbexuD/MER89c50mPcTluD/6RR89YnpBPaHiuD/dYRY9bJVbPbCtuD/zFgk9yrtzPbc9uD/5sPQ8PS+BPX2qtz8SmNQ8BNeFPeomtz8hybU8fbaEPa9Wtj/37J08+iqBPeCjtT+oq6A8agV6PRAYtT8KFqk8VzNyPc+ptD/1Tbg87uxmPYdetD/+Bcw83J5QPSYotD/KuOk8xXOdPXwiuD9Zic+7VRiUPdyItj+42pi77VOLPeICtT+GwRu7MJdpPZCdsT/9Rqo8ClhMPX3dsT/Tx/A8CoNoPUVnsT9VSP47FwxKPXchsT84Uvi8+CQtPQUdsD8sndG8aa07PZgjsD+7h2C8K+tWPWsysT/ZhJK8gHIbPXYurz/vaBO8QrMmPa0urz/moN469WYCPd45rj8kGc87N38HPVtBrj/T8448ZfHJPKJ9rT9z9Ko80DTDPIp5rT/z2DY8gWsxPZdDrz/4JGE8DBb0PD5Drj8DL3G7xwWOPMHbrD+/MII8npyPPBnorD84HMQ8AKJGPZwwsD9AUie7wJtPPco8sD879DQ8BGxfPZ5JsT+Ek8e77H9rPQtZsj82mK28PsFzPcZmsj/dxhS8ZlyAPZSHsz+4r8S8ltuCPRuesz+8Hj+8/uAzPZR+rz9Z3rk85RpPPQtbsD9kTK88cLpePef1sD9khas8k381PSGosD+l+fU8viRCPUs9sT8nffM89kAhPX3rrz/Kjvg8pvgXPdkssT9e3BY9Rz8HPTlwsD/7tRc9kxb8PL6zsT+5Nio9B9fGPCQksj+C0Dg9BpCWPMV4sj9hG0Q9b7mpPMGmsT+KukA9VLXYPNkssT8P6zA9U9pMPHjBsj/1oE89tJUGPFAIsz+iG109BGWmO5xpsz8D5Go96UTaO/KSsj+eWGg9KTRpOxz5sj9JH3o9ljAdPEeisj/QbFo905l3PDz3sT+dZ0w9ah4WPKEysj9mWVk92HZ6O8Uksj9lIXQ9asceO0Wzsj9gd4M9AAAAABmdsj+wwIY9AAAAAFDwsT+Yb3w9JRVCPJl8sT9EwFE9WLCsOyeWsT84V18991eNPO9CsT9AW0U9z+KwPMnRsD8mBjg9kmLFPKpisD+29Cw9cK5XPLDFsD8gRUo9WT+JPPaNsD8XQD89YrqKOzP5sD8vR2A9YMwQPA/tsD+gLlY9oCmVPCA4sD9lvDU96zvkPIe1rz8rKxc9HGAKPSE+rz+l6/o8MJXAPIcsrz9CCRY9u/TlPNysrj8b9/08dCICPRJKrj+V0c48szDFPHemrT/KS9w8/USOPKkrrT9cVOs8MHy0PEkhrj/ilAI9rQoaPTzZrj/KCMQ8luycPIaxrj9EexY92vmDPOSyrT9JBgg9fDpoPPBWrj8Rkhk9Bge8PEHmrz/X+yc9XqKlPL19rz/JECY9z2WKPGkSrz8nsiU9R+NNPAHQrj/wwig9wnGUPF70rz91sjI9gpeIPCe0rz89NjI9XLBxPKtorz8EJjM9HEE3POI4rz9ELTY9GwElPMpcrT+3WA89hF8VPIELrj90zR49/yScOw0hrT/gOhU93U4wPGHMrD95Z/w8gDunO0CHrD8GwQY9qYeRO6fgrT8ZACQ9AAAAAFIGrT+Wrxo9AAAAAHtirD8iSw09AAAAAEvIrT/PVSc9t8wGPCCfrj8hQCw9/zOGO/yBrj+eWi89AAAAAJx3rj8J8TE9ECD2Oxsbrz8+8Dg9vfx4O7IFrz/qoTs9AAAAACsArz9u9z09FPXTOylKrD/0qPY8ZnkzPFx/rD+rrOQ8PXM0PI9prD+9z9c83pQxPDtsrD/Q2qQ8XBvhO80mrD+druE8V4DhO2cvrD8Sprg8MunTO0WBrD9vZTw8PJ9SPMHgrD8t/QE8Usq4PDKVrT/gQ5I6OSo4PA4orT/dHlK7d16ePMe4rT/EdAm8DIvWPAFhrj9AUWO8fyEKPTsxrz/TaKG8pvWqO/LUrD+TYxm4AAAAAGozrD/UBWo8AAAAAJ2vrD+hsM46AAAAAMTtqz+7rdA8XkQYO77+qz+TEMo8AAAAAHneqz95vu88btNMOx30qz950eo8AAAAAIoOrD/JVwQ96miBO6UxrD8nUv48UyqLPeLmtD/m4GW8RxuUPWBatj+CMIe8vPySPeAytj/L1Ou8PqGJPR3UtD9g0Ni8mA6dPSvUtz+0NJq8pG6cPeaYtz9sXP283U6SPfwctj8fdiG9lQWcPXR3tz8Hah69UFukPV4PuT+ZVge90jemPXRuuT8tOq68m56pPfjDuj9QPb+8G2GIPdvKtD8H0x+9Q/15Pa10sz+LTRe9fthhPb1Bsj+0Tgq9AAAAAG3xsj/Uqok9LlRGOqEesz+uPIo9AAAAAFcwsz9ZeYs9AAAAAABtsz+9tos9s3q9OnlRsz+/1oI9AAAAAJ2Wsz8URIY9hjEJO5i3sz/3b3Q9AAAAAOrysz8j9ng9AAAAAP1nsT97o2o9AAAAAGH6sD/MBmg92HZ6u8Uksj9lIXQ9asceu0Wzsj9gd4M96UTau/KSsj+eWGg9ah4WvKEysj9mWVk9WLCsuyeWsT84V189KTRpuxz5sj9JH3o9BGWmu5xpsz8D5Go9tJUGvFAIsz+iG109U9pMvHjBsj/1oE89ljAdvEeisj/QbFo905l3vDz3sT+dZ0w9BpCWvMV4sj9hG0Q9B9fGvCQksj+C0Dg9kxb8vL6zsT+5Nio9pvgXvdkssT9e3BY9b7mpvMGmsT+KukA9VLXYvNkssT8P6zA9Rz8HvTlwsD/7tRc99kAhvX3rrz/Kjvg8k381vSGosD+l+fU8/uAzvZR+rz9Z3rk85RpPvQtbsD9kTK88cLpevef1sD9khas8viRCvUs9sT8nffM8wJtPvco8sD889DQ8gWsxvZdDrz/4JGE8AKJGvZwwsD9FUie7BGxfvZ5JsT+Gk8e7QrMmva0urz/coN46N38HvVtBrj/T84489WYCvd45rj8iGc87ZfHJvKJ9rT9z9Ko80DTDvIp5rT/w2DY8gHIbvXYurz/uaBO8DBb0vD5Drj8KL3G7xwWOvMHbrD+/MII8npyPvBnorD84HMQ8aa07vZgjsD+5h2C8fyEKvTsxrz/TaKG8DIvWvAFhrj8+UWO8Usq4vDKVrT/XQ5I6PJ9SvMHgrD8s/QE8+CQtvQUdsD8sndG8FwxKvXchsT84Uvi8K+tWvWsysT/YhJK87H9rvQtZsj82mK28PsFzvcZmsj/dxhS8ZlyAvZSHsz+4r8S8ltuCvRuesz+8Hj+8fthhvb1Bsj+0Tgq9OSo4vA4orT/hHlK7eF6evMe4rT/EdAm8Rf15va10sz+LTRe9HmGIvdvKtD8H0x+9PqGJvR3UtD9g0Ni8vPySveAytj/L1Ou8VCqLveLmtD/m4GW8RxuUvWBatj+CMIe8mA6dvSvUtz+1NJq8pG6cveaYtz9qXP283U6Svfwctj8ddiG9lQWcvXR3tz8Jah69UFukvV4PuT+ZVge90jemvXRuuT8tOq68m56pvfjDuj9QPb+8e7xwO15Srz+NNEk9Fz7rOzJfrz8lo0Q9J1crPFJ7rz/pGkA9ympmO7usrz+vZU09ruHfOyS2rz91EUk9YuNcPCebrz/LsTo9Aj92PMXSrz+3dDg9KchKPFnNrz/rwz494bJkPAffrz+H5jo9NqkgPPO+rz8PREQ9ftppPJnvrz8OLjo9QUGAPEDzrz8bvjc9Att3PBQesD9tXzo91zFjPLQNsD9CFzw94VhgPFRMsD+C6kM9y0g3PAZssD8Qx009d5j2O3SBsD9mMlo9Rl16O2+JsD+QkWM9AAAAAFSNsD9YTmg98g8lPJYlsD+NHEs9p8HjO3AssD/czVM9dQtrO+AusD8wOls9i0RMPCccsD+0ykI9AAAAAJ0tsD8bE2A9BXECPA77rz81MEk9mKPmOvP6rz9Y1FE9Rh0qPGX6rz+EiUM9AAAAAPD6rz/rAFM9h6xmO/T6rz+sp1A9VyWmO/36rz/FRE49xAvZOwX7rz/E4Es9nlcYPBT7rz83gEY9tOk5PMn5rz8T50A9KvZGPIf4rz9ZlT49pgRSPFf3rz+9mDw9JfZUPFfzrz/0IDw9HfZUPFborz/Y5js9pgRSPPnkrz9bJDw9QGFHPHLirz+t1D09TdI6PGXgrz80xT89lAwqPP7drz9C+UE9OV0XPBPcrz+ibUQ9JIUBPBjbrz9Uy0Y9knTXOx3arz+XJ0k9hLekO1LZrz/VKks9OAdkO4TYrz+0LU09KvfjOvnXrz8EXE49AAAAAPJIrz+5Ckw9AAAAAA2prz/QAVA9AAAAAG/Xrz8pik89e7xwu15Srz+NNEk9vfx4u7IFrz/qoTs9ympmu7usrz+vZU09KvfjuvnXrz8EXE49ECD2uxsbrz8+8Dg9Fz7ruzJfrz8lo0Q9HEE3vOI4rz9ELTY9J1crvFJ7rz/pGkA9ruHfuyS2rz91EUk9XLBxvKtorz8EJjM9YuNcvCabrz/LsTo9Aj92vMXSrz+3dDg9gpeIvCe0rz89NjI9KchKvFnNrz/rwz494bJkvAffrz+H5jo9NqkgvPO+rz8PREQ9ftppvJjvrz8OLjo9QUGAvEDzrz8bvjc9Att3vBQesD9tXzo91zFjvLQNsD9CFzw9oimVvCA4sD9pvDU94VhgvFRMsD+C6kM9WT+JvPaNsD8XQD89cK5XvLDFsD8gRUo9y0g3vAZssD8Qx009YMwQvA/tsD+gLlY9d5j2u3SBsD9mMlo9YrqKuzP5sD8vR2A9Rl16u2+JsD+QkWM9wnGUvF30rz91sjI98g8lvJYlsD+NHEs9p8Hju28ssD/czVM9dQtru+AusD8wOls9i0RMvCccsD+0ykI9BXECvA77rz81MEk9mKPmuvP6rz9Y1FE9Rh0qvGX6rz+EiUM9h6xmu/T6rz+sp1A9VyWmu/z6rz/FRE49xAvZuwX7rz/E4Es9nlcYvBT7rz83gEY9tOk5vMn5rz8T50A9KvZGvIb4rz9ZlT49pgRSvFf3rz+9mDw9JfZUvFfzrz/0IDw9HfZUvFborz/Y5js9pgRSvPnkrz9bJDw9QGFHvHLirz+t1D09TdI6vGXgrz80xT89lAwqvP7drz9C+UE9OV0XvBPcrz+ibUQ9JIUBvBjbrz9Uy0Y9knTXux3arz+XJ0k9hLeku1LZrz/VKks9OAdku4TYrz+0LU09p2BXPITtrz+BqTs9LlRGuqEesz+uPIo9s3q9unlRsz+/1oI9hjEJu5i3sz/3b3Q93pQxvDtsrD/P2qQ8PXM0vI9prD+9z9c8XBvhu80mrD+druE8V4Dhu2cvrD8Sprg8MunTu0WBrD9wZTw8AAAAAGozrD/UBWo8XkQYu77+qz+TEMo8AAAAAMTtqz+7rdA8btNMux30qz950eo8pvWqu/LUrD+TYxm4AAAAAJ2vrD+hsM46ZnkzvFx/rD+rrOQ8FPXTuylKrD/0qPY86miBu6UxrD8nUv48gDunu0CHrD8GwQY9/yScuw0hrT/gOhU93U4wvGHMrD95Z/w8GwElvMpcrT+3WA89hF8VvIELrj90zR49qYeRu6fgrT8ZACQ9t8wGvCCfrj8hQCw9/zOGu/yBrj+eWi89fDpovPBWrj8Rkhk92vmDvOSyrT9JBgg9MHy0vEkhrj/ilAI9/USOvKkrrT9cVOs8szDFvHemrT/KS9w8dCICvRJKrj+V0c48u/TlvNysrj8b9/08HGAKvSE+rz+l6/o8rQoavTzZrj/KCMQ8luycvIaxrj9EexY9MJXAvIcsrz9CCRY96zvkvIe1rz8rKxc9Bge8vEHmrz/X+yc9XqKlvL19rz/JECY9z2WKvGkSrz8nsiU9R+NNvAHQrj/wwig9kmLFvKpisD+29Cw9z+KwvMnRsD8mBjg991eNvO9CsT9AW0U9JRVCvJl8sT9EwFE9p2BXvITtrz+BqTs9VJaDvoyMTD8+Kgs/35Q1v6ecMj8o0809z7MZvyK5TD9RSZ25L6QBvjyXYj9hR+U+0W/Kvi33Xz9+QI++LisDPjuXeD/tbU4+br49vnhKSD8GNxi/rBvLPsgjZz+Okim+0AnXvYhUAT+0SVu/Fg0eP9N9Cz9bQBG/BloxP5oqJT7r7zO/pkiuvUbEYD4Rzni/mWE2P5wgRb5ZwSy/XKv6vAQtkLwo13+/6oksP7s8974OIA+/9HSTvLsNj77twnW/u5URPxUZMb8b1uO+czIivV8F377hNma/Oq0Lvku2Fb+8s0y/2pLHPkuyWr/DErC+KGdmPg/yc7+QLlC+gESJvk1uI79btDi/8r29vkmvMb+1/x2/tcPovji3hL50JVq/c8Tavlr0F77UUGS/sOXqvqqEuD3CS2K/aMgZv/Ft5z51zyi/huIKv868Br/rmye/xBK2PfDufr+dTaa8YIWePayIeL+lWmg+GFVcPzSPr776tcA+oKw8Pw3kZb62MyM/TsgpPyq2Zr7vtTY/BOA4PwLwEr5DOi0/7ronPwxEaT5NZTg/f1UPPxGitD4y7D8/Al8uP85jwz4h9R8/1DpTP4ChuD5YrN4+jqtwP3KWQz5SipA+ncp5P9cFrLwgHl8+BGQtPwK+Ab51hjk/H0scP5qJNL4cqkU/S9B0PyqRPr6s6WY+y+JjP7eOsb7hSpc+J3QhPyBYBr7JzkM/IloVP9/Xkr05G08/Q9JUP7rUrb79SeE+yFICPzW7A7+soTA//SocP97pO7/fyZg+YyMcP6osBb9iChk/yQM2P2wsA7/ak/Y+2d1TP4OGCL+hTTM+qHxVPw/DqL7KnuI+Sg8ePzd5Cz9hQhG/wVoxPxIRJT6p8DO/ohDLPiImZz9HlCm+cC4DPtuWeD8Oc04+L6QBvjyXYj9hR+U+mWE2P5wgRb5ZwSy/VJaDvoyMTD8+Kgs/6oksP7s8974OIA+/u5URPxUZMb8b1uO+2pLHPkuyWr/DErC+C4BmPqfwc79cLVC+3BK2PRLvfr/5e6W8fbmePS6IeL8vWmg+FWvPPq28WL9+srC+TBDiPjRPWL9FiJq+jxv+Pq4TUb/ou5a+5PV1Pqw2aL/N/rC+Fn67Pqe8Yr+TH5K+m8j6Pv8PTL+iyrS+9nXRPj41T78Ntde+BhUZP27IQr/gBIG+K0aFPnQBbb/4Voy+AAAAACrDbb9Cyr2+knhHPkAFcL8LgZO+AAAAgJehdL+K4pa+LI03P6ZLJ7/xa3i+OD4MPxCJJr94qQa/Tg7cPuVCDL/Ruje/ou3cPl3I577OwUe/MWEFPxQuEr8taSK/0cg2P16tKb/UA2e+RYzbPsFnxL53YlG/feRbP1D3AL+zyrs9+ZffPue5TL9z8tK+gwzLPk+o3r4p906/nVeuPpJio74damK/VJaDPoyMTD8+Kgs/L6QBPjyXYj9hR+U+z7MZPyK5TD9RSZ2535Q1P6ecMj8o08090W/KPi33Xz9+QI++LisDvjuXeD/tbU4+H6U9PmtLSD+/Nxi/ohDLviImZz9HlCm+0AnXPYhUAT+0SVu/Fg0ev9N9Cz9bQBG/Bloxv5oqJT7r7zO/pkiuPUbEYD4Rzni/mWE2v5wgRb5ZwSy/w3z7PI3+kLzY1n+/6oksv7s8974OIA+/9HSTPLsNj77twnW/T5gRv6oVMb8l2uO+czIiPV8F377hNma/Oq0LPku2Fb+8s0y/2pLHvkuyWr/DErC+KGdmvg/yc7+QLlC+gESJPk1uI79btDi/8r29PkmvMb+1/x2/tcPoPji3hL50JVq/c8TaPlr0F77UUGS/sOXqPqqEuD3CS2K/aMgZP/Ft5z51zyi/huIKP868Br/rmye/3BK2vRLvfr/5e6W8S4aevR2KeL/HQWg+GFVcvzSPr776tcA+Tsgpvyq2Zr7vtTY/tLA8v9LGZb6SMSM/BOA4vwLwEr5DOi0/7ronvwxEaT5NZTg/f1UPvxGitD4y7D8/TV0uvwFvwz6R8x8/1DpTv4ChuD5YrN4+jqtwv3KWQz5SipA+ncp5v9cFrLwgHl8+BGQtvwK+Ab51hjk/H0scv5qJNL4cqkU/S9B0vyqRPr6s6WY+y+Jjv7eOsb7hSpc+J3QhvyBYBr7JzkM/IloVv9/Xkr05G08/Q9JUv7rUrb79SeE+yFICvzW7A7+soTA//Socv97pO7/fyZg+YyMcv6osBb9iChk/yQM2v2wsA7/ak/Y+2d1Tv4OGCL+hTTM+qHxVvw/DqL7KnuI+wVoxvxIRJT6p8DO/Sg8evzd5Cz9hQhG/ohDLviImZz9HlCm+OUgDvgqWeD9gck4+L6QBPjyXYj9hR+U+mWE2v5wgRb5ZwSy/kqKDPjSLTD9UKQs/6oksv7s8974OIA+/u5URvxUZMb8b1uO+2pLHvkuyWr/DErC+C4Bmvqfwc79cLVC+3BK2vRLvfr/5e6W8fbmevS6IeL8vWmg+FWvPvq28WL9+srC+jxv+vq4TUb/ou5a+TBDivjRPWL9FiJq+5PV1vqw2aL/N/rC+Fn67vqe8Yr+TH5K+m8j6vv8PTL+iyrS+9nXRvj41T78Ntde+0w8ZvyfKQr8gE4G+K0aFvnQBbb/4Voy+knhHvkAFcL8LgZO+LI03v6ZLJ7/xa3i+OD4MvxCJJr94qQa/Tg7cvuVCDL/Ruje/ou3cvl3I577OwUe/MWEFvxQuEr8taSK/0cg2v16tKb/UA2e+RYzbvsFnxL53YlG/feRbv1D3AL+zyrs9+Zffvue5TL9z8tK+gwzLvk+o3r4p906/nVeuvpJio74damK/AcdyvzX6mL4ZTto9b+lyv9SAk76qFwQ+n4Nuvxv8uL5umRk9fD1yv14glr6SyAs+INRwv6eip77fDLU9zHhtv0HuXr5mZZs+/mtov6Vrib4V3aQ+/Ptvv3Z4nr57OyM+zERivxfWob6yh7A+BcZtv0kxqL7VnS8+C1FcvzGBpr7Qp8g+Z9Vvv+qinb5e3yk+j3pTv+Pmm76CyfI+qYZZvyAPbb6difI+5TRCv3Gctb5a6As/+Kglv497tL79Di0/F/9Hv0Vck74Szg0/QjryviJ6tr5vQk4/eQIdv6lPgL77vz8/iWS1vmOKyL5yYlk/8a7tvntqkb4nxVY/hL2lviH04b4HQVY/J23FvsJstr514Vk/C1VwvrDw9L5soFg/+LKOvpql0L78n14/Zdewvhs5g77CHGc/7x7uvpMOR777GF0/7W0nvtlTBr+K3lU/vihPvl3n7r6Ta1w/kqKFvtg9C78nKkw/VWmPvnKhBr8OmE0/7umKvnWtr75zNWY/EoqdvnSm1747alo/2uQDv14t1L4hDkA/668Cv0hw3b4MQj4/VLYuv9AWYr5zXzI/aMgnvwLxdL4eZjc/4Jozv168wb3jzjQ/dzQlv+rXBb7UrEA/1gEqvyvsHjwEYj8//Wgav8KNIL118Us/k4kfvySj8D3c70U/1DITv7IJ1z1it08/BQQDv/go9j1PxVk/41oBv8+lir3ZO1w/ResWv6+r0z6LpTE/xWYIv6ME+j557TA/oXIVvwh/Bz8onR0/SsXNvgPQMz6YEGY/AAAAADfpGD+gUE0/AAAAAML4Lz8S7jk/AAAAAKfUXj6D3Xk/BBOyvpyTmL0vQm8/AAAAAFWRsb01CX8/AAAAABHmd76VYng/btO+vuqmW778Hmc/AAAAAHpAj76YxnU/myfCvpFDjb6uGmI/IIsLv3LzLL5YOVI/L20Sv3ftib5hV0Y/PgesvtP3kb5mzmU/o1Xhviikwb5NfVA/AAAAACB7hb6rJXc/go2GvmZ0U75MR3E/ZYWtvvBle75DgWg/keOfvo01Vr0U1HI/hvVTvmBwCr1oTno/AAAAgEr2Nb4C7Xs/AAAAgG2Sqbz18X8/05asvmNzcb74VWk/E/u2vor1JL54gms/yJzavhvljLsRfWc/cN++vgJeOr2DQm0/tjfWvsUUjL0U22c/AZLzvjxUOD2l4WA/QgwPv0mFpz0BRVM/3OQFv4yzP7xFLFo/658jvzjfxzuA4EQ/PogSv4UDFr6niU4/eHRFvyV1k7x13iI/skBJv/GbiD2MSx0/H58qv8pyxj2GOz0/5Ctnv3K6672C69M+BUY2v46bFb5/0i8/d41bv0X5ZL5hHe0+6TJ3v0zBW75XORY+NKB8vwzdV73TrBw+IwJtv7KTKT19XMA+PEd3v6x9cr5o0dU96yVxv9yNpL5DPsY9Xf1vvysAq75y5sg97rNwv1afpb6VsNk900x+v+BJt719EJQ9CoB9vxb0sD0iD+A9klB/v1euejx3b5I9jmZ7v3DjGD7oWOw92RZsv8Q+Sj5yMao+yhFlv6fbiD59F7c+U+5Uvwi2ij4VFfg+yKZUvzuKmz774+4+3mNRvyF9Qz6y7wo/WENAv2KJlD7U1hc/jxVAvwj5pD7XxBM/pxksvxhsoz7c/yo/lugov24/lT4qTjE/XDITvwfFjT4LF0U/gO4Wv12WnT5ZLD8/9+oBv2t5lj5GW08/m6b9vlXjhz4bvlM/H60Kv1E5RT72dVE/W+vzvmzBOT42PVw/F4XFvpXGhz5QN2I/YpTJvma9lD5tQ18/yZlzvtJOnD6LDGw/PFd9vtV2jz5mcW0/OioHvtagpT7Z3W8/VLAUvvrBmT5xVnE/AAAAAKhkqj5NaHE/AAAAAMY7nz4ATnM/eW8svgZYZD5rzXU/AAAAgKFzbT6vBXk/QBjEvsKkPT6yrWc/CkmMvv4yUT6NlXA/fRKYvooW0D0+D3M/MT49vpr27D0y13k/r2fGviIxuz2x1Wo/BGrrvlZgwz3hBGI/AAAAgB5P/D3BDH4/vvkCv01K4T3EJVo/tXAfv2i+Uj6nO0E/m/UWvzf4/j1pSEw/hnc4v+2aUT4GmCk/mZIwvzFvBT49VTY//ftKv2yk8D1YEBk/eW8sPgZYZD5rzXU/glc9Pnr17D0D1nk/fRKYPooW0D0+D3M/CkmMPv4yUT6NlXA/VLAUPvrBmT5xVnE/OioHPtagpT7Z3W8/PFd9PtV2jz5mcW0/yZlzPtJOnD6LDGw/F4XFPpXGhz5QN2I/YpTJPma9lD5tQ18/KTPEPm6lPT73p2c/9+oBP2t5lj5GW08/m6b9PlXjhz4bvlM/XDITPwfFjT4LF0U/gO4WP12WnT5ZLD8/cKwKP49SRT7udFE/F+DzPgrdOT7gPlw/r2fGPiIxuz2x1Wo/Gl/rPpaWwz38BmI/pxksPxhsoz7c/yo/lugoP24/lT4qTjE/oEdAP4V6lD4J1Rc/jxVAPwj5pD7XxBM/FqpUP3Bymz6y5+4+NepUP3XAij5lHfg+yhFlP6fbiD59F7c+2RZsP8Q+Sj5yMao+3mNRPyF9Qz6y7wo/jmZ7P3DjGD7oWOw9CoB9Pxb0sD0iD+A9klB/P1euejx3b5I900x+P+BJt719EJQ9NKB8PwzdV73TrBw+6TJ3P0zBW75XORY+PEd3P6x9cr5o0dU9tXAfP2i+Uj6nO0E/hnc4P+2aUT4GmCk/m/UWPzf4/j1pSEw/CZYwP9VsBT4EUjY/Nv4CPyV74T1LIlo//ftKP2yk8D1YEBk/IwJtP7KTKT19XMA+skBJP/GbiD2MSx0/yJzaPhvljLsRfWc/cN++PgJeOr2DQm0/P4ysPrZccb5jWWk/E/u2Por1JL54gms/tjfWPsUUjL0U22c/JZzzPv1ROD3n3mA/QgwPP0mFpz0BRVM/3OQFP4yzP7xFLFo/7umKPnWtr75zNWY/EoqdPnSm1747alo/VWmPPnKhBr8OmE0/vihPPl3n7r6Ta1w/kqKFPtg9C78nKkw/rmsnPppYBr+s21U/2uQDP14t1L4hDkA/668CP0hw3b4MQj4/cbkuP9kaYr4TXDI/aMgnPwLxdL4eZjc/4JozP168wb3jzjQ/dzQlP+rXBb7UrEA/+LKOPpql0L78n14/RDxwPijy9L65oVg/J23FPsJstr514Vk/ZdewPhs5g77CHGc/ehPuPisqR76DGl0/hL2lPiH04b4HQVY/8a7tPntqkb4nxVY/iWS1PmOKyL5yYlk/eQIdP6lPgL77vz8/QjryPiJ6tr5vQk4/F/9HP0Vck74Szg0/+KglP497tL79Di0/C1FcPzGBpr7Qp8g+5TRCP3Gctb5a6As/zERiPxfWob6yh7A+BcZtP0kxqL7VnS8+FfpvP1CEnr4wOiM+/mtoP6Vrib4V3aQ+Z9VvP+qinb5e3yk+j3pTP+Pmm76CyfI+qYZZPyAPbb6difI+gzxyP+Aslr7LrQs+zHhtP0HuXr5mZZs+fAZaPzooKb5CqP4+d41bP0X5ZL5hHe0+BUY2P46bFb5/0i8/5CtnP3K6672C69M+eHRFPyV1k7x13iI/658jPzjfxzuA4EQ/H58qP8pyxj2GOz0/PogSP4UDFr6niU4/uoHxviaW/z2CdV8/CBgHvyvvaztgc1k/KUkAv23z0j1e9ls/vm/qvq2hQT4cYV4/1bnYvggTkD6kdlw/BNbfvsOGcD62P14/4sPcvgKBQD4a6WE/T1XMvt71lT6Rbl4/RDwMvzjdkz24X1U/Pn8Zvy6Rbb2lVkw/MHokv23U573rBEI/Q5Vdv+ekV75JpOg+hfhTv8DIB757eAs/Ous8v5oxIryNvSw/ZwhZv4gvqr0hFwY/atdsvzzBJL60BLA+WuvAvj5Nwj5GUVg/QwLgvmU/mT4qElk/LKHYvlcDqT7iA1g/mM/xvg+sqT5TGFE/eYkCvxQflj4HCE8/q6vPvk8s1j74DVA/Eiryvvj0xD7j60o/zZcRvz5upz77NUE/GiAjvwZLij6GyDg/4A0Rvxlpgj6jm0g/rgRav+krKb7Prf4+A3kov6ljzD72bSM/WfKsvutK8z7e/U8/0xizvqcS0j46mlc/rv+9vpldqT5AIF4/nC7jvuhVgT7CHVw/mTcKv4cmJD58iVM/G94wvygNvjyQ+zg/1A+avoBnJD8wezQ/Oo2Zvi0lFz8L0z8/gkesvmfHJD8u9y8/mDbRvgJuGD9uFTE/JWHFvi9Z+T53oUg/AYz5vrba2T7RMkM/e+wav/FCmD4DDD0/hbUyv4A7LD7mKzI/uRo/v8kehT0Ghik/l+A7v4IgsL3mfSw/x4gjvyBWX77m4Dw/FmPfvggGsr6udFQ/X/eRvlkVCb9fg0s/zqdCvgsTHr/aZUM/rCVGvlNRG78QYUU/geZ/vvWOFL+DbUY/J/BwvqvTCL8d0E8/oseJvg4nAb/5BVI/zMa4vpCVAb8rhUg/BV8Fv2uY1764Ej4/m680v6/5j77IcyY/QZs3v+5BMb6WzSw/uug6v4O1t73qai0/0N7PvTfSHr/yFkc/YkCkvatuI79k+EM/EgzPvSzdMb/qSjY/HTYavn8sQb8HgSM/mZA+vnzQQr9KGh8/ST+VvnlAMr/V6Cc/A63lvl1jKr2qjGQ/+tXjvvurOr7rdGA/0eDLvr8Z0T2OXmk/qMCqvsCXbj5V22k/8VabvqcjyD5adl4/7n6bvsBoAT9cv04/HY+xvnoxBr8rHUc/UyX7vqwFx76FqUc/000nv6W8mL4FFTI/KRBHv8dvDr4t+hw/b81Qv7Q01T0gshE/e81Av7Uhkj4EvRc/8gQmv/2W0j6l+CM/WyUGv5MmAz9VLy4/+i0vv3Cqz76LIhu/Xl/0vgn0Kr9jORK/lzFFv6OYir7mzxO/gA4cvlDfTr/BqRG/kvMwPIrwWL9X4we/QBlIPoWATL8dpRG/TcFJvzhF2Lu0kR2/xjw+v/eilD5yWBq/RAQrv0js9z64pRC/8mWoPh2DUb+lQfG+qP7/PmPfTL/xd6m+lgIkP/GdOL+q9Ia+ir5uP8VVrr7uJPU9Y+zRvbCZ276Cw2U/IjCZvdurer6seHc/AQBRPxF/e70Q/xI/cL9sP0sCmjwnj8I+PueZvi1kmb5XzWc/YTlaP+eycj5Hmu4+cEkyP9WDIz+we6c+BfYnP6J/OD/XRWU+A18YP7mfSj+TIQ4+NNb2PnJIYD+kEoO7cF1gPmwcbz9/cJC+xtjfPb3fbj9Xaa++AFTBu6JkaD+4uta+SfYovmwoXz9aPey+symcviWPVT+XN+u+u6HnvkAbPz/Yzvm+IP4Vv08vHj8LOQa/WZNgv/d/nb6xrrw+WzQmv5fAML48oT0/CdFmv1ly3b5yE4O6hclyP7DumL7vG9o9n4NuPxv8uL5umRk9b+lyP9SAk76qFwQ+INRwP6eip77fDLU9atdsPzzBJL60BLA+hfhTP8DIB757eAs/ZwhZP4gvqr0hFwY/Ous8P5oxIryNvSw/RDwMPzjdkz24X1U/Pn8ZPy6Rbb2lVkw/Q5VdP+ekV75JpOg+JHskP+ls570LBkI/Ek4AP7jw0j2L81s/4sPcPgKBQD4a6WE/vm/qPq2hQT4cYV4/uoHxPiaW/z2CdV8/CBgHPyvvaztgc1k/1bnYPggTkD6kdlw/BNbfPsOGcD62P14/T1XMPt71lT6Rbl4/Oe3APgVCwj5fU1g/jADgPlVLmT6BEFk/V5/YPgUPqT4PAlg/mNLxPkW7qT5dFFE/eYkCPxQflj4HCE8/q6vPPk8s1j74DVA/EiryPvj0xD7j60o/zZcRPz5upz77NUE/GiAjPwZLij6GyDg/4A0RPxlpgj6jm0g/1DITP7IJ1z1it08/k4kfPySj8D3c70U/A3koP6ljzD72bSM/ResWP6+r0z6LpTE//WgaP8KNIL118Us/BQQDP/go9j1PxVk/xWYIP6ME+j557TA/oXIVPwh/Bz8onR0/SsXNPgPQMz6YEGY/41oBP8+lir3ZO1w/BBOyPpyTmL0vQm8/u8O+PvCjW75nImc/myfCPpFDjb6uGmI/q5ILP6v0LL5GNFI/L20SP3ftib5hV0Y/PgesPtP3kb5mzmU/o1XhPiikwb5NfVA/go2GPmZ0U75MR3E/ZYWtPvBle75DgWg/keOfPo01Vr0U1HI/hvVTPmBwCr1oTno/1gEqPyvsHjwEYj8/+i0vP3Cqz76LIhu/UyX7PqwFx76FqUc/HY+xPnoxBr8rHUc/Xl/0Pgn0Kr9jORK/000nP6W8mL4FFTI/lzFFP6OYir7mzxO/ST+VPnlAMr/V6Cc/gA4cPlDfTr/BqRG/kvMwvIrwWL9X4we/mZA+PnzQQr9KGh8/ozgaPqgvQb8lfSM/QBlIvoWATL8dpRG/VsFJP2P+1Lu6kR2/KRBHP8dvDr4t+hw/tT8+PyOglD6CVRq/b81QP7Q01T0gshE/e81AP7Uhkj4EvRc/JgIrP1H29z7toxC/1w/PPWngMb+uRzY/8mWovh2DUb+lQfG+YkCkPatuI79k+EM/qP7/vmPfTL/xd6m+lgIkv/GdOL+q9Ia+0N7PPTfSHr/yFkc/ir5uv8VVrr7uJPU9Y+zRPbCZ276Cw2U/IjCZPdurer6seHc/AQBRvxF/e70Q/xI/cL9sv0sCmjwnj8I+EOaZPhtwmb6Ry2c/+tXjPvurOr7rdGA/YTlav+eycj5Hmu4+A63lPl1jKr2qjGQ/cEkyv9WDIz+we6c+0eDLPr8Z0T2OXmk/BfYnv6J/OD/XRWU+qMCqPsCXbj5V22k/A18Yv7mfSj+TIQ4+8VabPqcjyD5adl4/NNb2vnJIYD+kEoO77n6bPsBoAT9cv04/cF1gvmwcbz9/cJC+Oo2ZPi0lFz8L0z8/xtjfvb3fbj9Xaa++AFTBO6JkaD+4uta+1A+aPoBnJD8wezQ/SfYoPmwoXz9aPey+gkesPmfHJD8u9y8/symcPiWPVT+XN+u+mDbRPgJuGD9uFTE/u6HnPkAbPz/Yzvm+WyUGP5MmAz9VLy4/IP4VP08vHj8LOQa/8gQmP/2W0j6l+CM/0xizPqcS0j46mlc/rv+9PpldqT5AIF4/WfKsPutK8z7e/U8/JWHFPi9Z+T53oUg/AYz5Prba2T7RMkM/e+waP/FCmD4DDD0/hbUyP4A7LD7mKzI/uRo/P8kehT0Ghik/l+A7P4IgsL3mfSw/x4gjPyBWX77m4Dw/FmPfPggGsr6udFQ/X/eRPlkVCb9fg0s/zqdCPgsTHr/aZUM/rCVGPlNRG78QYUU/geZ/PvWOFL+DbUY/J/BwPqvTCL8d0E8/oseJPg4nAb/5BVI/zMa4PpCVAb8rhUg/BV8FP2uY1764Ej4/m680P6/5j77IcyY/QZs3P+5BMb6WzSw/uug6P4O1t73qai0/G94wPygNvjyQ+zg/mTcKP4cmJD58iVM/JC3jPi1igT5VHFw/gyZxP0WOpL5SCsY9Xf1vPysAq75y5sg9K7NwP1Kjpb7Ttdk9WZNgP/d/nb6xrrw+8DEmP82jML4IpT0/CdFmP1ly3b5yE4O6hRtFP/P8Hb+VGia+uR0nP8MoPL8DzTu+nFYtP33IN7/clCW+qudIP8pJGr8V9xO+fSUXP5ErSb8Bhjy+q8MiP7dGQ79hdfG9GwwTPzfzT7/WDc+9weEZP+tWTL/1YSE9/t0TP7SXT7+8GsA9dRUMPxEsVb9jd629kaYqP9fSPr8oRVg7gpIHP51yU7891EW+hfntPjQmYb8BgtG9axwMP75iUb8UqTU+9ac6PyN5LL8KYva9NGVDP/5DJb+aKdS8gpZTP6KYDb+KOda9gGRYP5dfBb9Y4/K9hGdhP5iP776HQpy9/JNhP0qv7r6mlKG9c/poP0wX075hQS29QQ8rP3/VJ78gErQ+eCE7PzCTFr+iJbE+wNhNP2n7+L79Ga8+aGcYPyVP1b5W4S8/X8YePyXDpr6TrzY/cxQPP9T29769UCw/UjkGP95Dfr5QhFA/UMr/PrtGwb5wmUc/uSb8Po6WzL12VF0/RLfvPvGcgD3TomE/eRrvPrkJKD4XcF4/5QHrPvKbs708VGI/oNX2PhQTYb7rHFk/+GgPP0TNKj57t08/eTU9Pz2aNz5cOCY/LQRJP4fOij7ShA4/XG1OPw7lDLzjYxc/CUNdP8sPOj4QIfA+Ask1PztJHbvLPzQ/p93oPqKRILzf+WM/j+UdPwJoAL627kY/FoktP0T52r74FBk/+QRIP4XdaL7JyhQ/AAAAgFXaDr+fb1Q/AAAAgPuNK79hAz4/6j7oPjJt5713TmI/JosJP/Vehb76Wk0/ZOznPpcJQr7dA18/wGrnPm0AnL64n1Y/1UzqPvMwvb78CE8/BFoEP4HoSL5wTFU/3jr0Pundtb6tzU0/PRfkPkd6cjsJMWU/3I4BP5TWcL0uSFw/UFjbPgFHxb6YO1E/6PLwPus/9b6Csj0/oO8DPyJ3Cb9i+So/nQXsPiyhA78qKDk/FZD6PiHsDL/JJi0/GuoUP4+hNb8urMs+egEOP7tANL9F+eI+9NYFPyR4Lb/xZwQ/va3yPmLSC7/5zzA/NQcdP8cRM79qv7s+cynjPjvHBb8kYjo/x7fnPjIhCr/jvzU/CifTPqcLBb/kij8/ZjLkPlXR4L5LtEc/V7rrPhkm9b7NXD8/WU/iPmWvBr8n/Tk/4NDAPrbrD79VfTw/hC7ZPl3fur4QKlQ/fu76PjM4x74qrkc/UXDwPoR/+77rzTs/Q2G9Pkh8HL9kHTM/NrTXPla7Br+FFD0/hiC/PtD5/L4uAkk/HeO0Pkh0A792MEg/se32PhfDIL/pWxw/9xTQPkdTF78MXDI//FOUPhzf8b7HGFU/AAAAAFEVB7+PdVk/AAAAgMk7Hr/UPUk/AAAAABZk8r6HfmE/g7WiPrYUC7+a7kY/HWZuPmBbBb/MPFI/AAAAAFe0Bb9IT1o/eFKWPkMPKr8h+S8/rr5SPsZ2Mb/u0jA/AAAAgJbhOL/CEjE/AzftPrR6N78gbgU/Mw0FP7cYO7/mheI+KUEAP1vUWL+rEDY+TAHJPuKkab9Npei9dHfYPkinY7+nrjI+pRimPk3Gb79gege+Du2APp5+cL+PFm6+UmimPsA/a7+cxWS+gSHlPqZ/X7+1W0a+o++nPm6zar9tRGm+EojUPs3RYL+CTXO+EokAP0qhVL9trXa+kE8PP0vuTL+YI1u+LJl7PpJVcL/yMXe+AAAAACgHeb/SWm2+AAAAAMAHd7/xV4a+AAAAAJ1Efb94MxW+RMVkPtyjdr+edBe+AAAAAGLjeb8va14+v9ykPv2qbb818z0+AAAAgE34Rr+lFCE/nbLIPm6/Ob8AyhA/2b5tPwvMvb5Oqy282exuP5qnt742oIk8ab9rP0iTx74BApq7SxxpP06i0r7GBCO9sW9wP9Uar75u2/k8W3FvPx3/tL6cqGg8Ag1qPwBnz76tUsG76ultP/3qvL7SEFA8N0B1P8fKkr7SEoM73NV3P8ZBgL5ooIk74NZ8P9t7Hb40HPS8U+VmPyUe3L5e8Se9S0leP8Br+r57Kqm9QWVUPzA1C7+YUwG+AAAAgBa08b68rWE/frBAPy2kzr1VjSY/AAAAgKaJNL5o/Xs/AAAAAM5uEz+QSFE/9hlgP9GZqD4tMrU+AAAAAP/8VT9ahAw/8Ws7P/NN9T5v6vc+AAAAAATNSD/byh4/AAAAACKb177sMWg/AAAAgDC7lrtO/38/i4UtvxD92r6fFxk/+QRIv4XdaL7JyhQ/XG1Ovw7lDLzjYxc/j+UdvwJoAL627kY/JosJv/Vehb76Wk0/CUNdv8sPOj4QIfA+TwFJv4zMij5XiQ4/eTU9vz2aNz5cOCY/+GgPv0TNKj57t08/wsU1vxZMHbsSQzQ/p93ovqKRILzf+WM/eRrvvrkJKD4XcF4/RLfvvvGcgD3TomE/uSb8vo6WzL12VF0/UjkGv95Dfr5QhFA/5QHrvvKbs708VGI/oNX2vhQTYb7rHFk/UMr/vrtGwb5wmUc/cxQPv9T29769UCw/aGcYvyVP1b5W4S8/QQ8rv3/VJ78gErQ+eCE7vzCTFr+iJbE+wNhNv2n7+L79Ga8+X8YevyXDpr6TrzY/NGVDv/5DJb+aKdS8kaYqv9fSPr8oRVg79ac6vyN5LL8KYva9gpZTv6KYDb+KOda9q8Miv7dGQ79hdfG9bNoZv3FcTL8lYSE9GwwTvzfzT7/WDc+9/t0Tv7SXT7+8GsA9dRUMvxEsVb9jd629fSUXv5ErSb8Bhjy+gpIHv51yU7891EW+hfntvjQmYb8BgtG9axwMv75iUb8UqTU+nFYtv33IN7/clCW+kE8Pv0vuTL+YI1u+EokAv0qhVL9trXa+gSHlvqZ/X7+1W0a+UmimvsA/a7+cxWS+uR0nv8MoPL8DzTu+ZxhFvwIBHr/1Fya+qudIv8pJGr8V9xO+gGRYv5dfBb9Y4/K9WGNhvzyf774uRJy9/JNhv0qv7r6mlKG9Evlov/wb074Xri29QWVUvzA1C7+YUwG+o++nvm6zar9tRGm+EojUvs3RYL+CTXO+S0lev8Br+r57Kqm9yeJmv9Uo3L6F7ye9Sxxpv06i0r7GBCO9ab9rv0iTx74BApq72b5tvwvMvb5Oqy282exuv5qnt742oIk8sW9wv9Uar75u2/k8W3Fvvx3/tL6cqGg8Ag1qvwBnz76tUsG76ultv/3qvL7SEFA8N0B1v8fKkr7SEoM73NV3v8ZBgL5ooIk74NZ8v9t7Hb40HPS8/A5xPuN7Fb/N5EY/7qWoPhXYDr9l/UI/FdXSPg5k9b66akY/of97Pr29Dr4tjHU/7iezPtvj+r24wW0/CcL+Ph0Gu74MaUk/kVQAP+vVY74nEFY/6ULtPiW1pj0a5WE/qWbVPjmxvzxmoGg/6C/ZPrlqGr0VoGc/TzLEPoTpFb5DeGk/vL/fPlPciL6Q21s/AtLpPvRE0r7JBko/g9ffPtsd9L68OEM/pkUGP+L53r4pSjs/YMALP7D+o75dMkY/cTkCP0B1gL5H1lI/ABfIPiKcc76uomM/AAAAAG+bc757png/zDTcPvD4Hr/GwCc/nze8PlPCKb/a6iY/YB2HPh2aNr/gNyY/Q+/uPjGIHb9FoCI/AAAAALY3PL/RhS0/yZ6HPpmiS79riQs/n5uZPZI5a7/nW8Y+h/zJPkplKr+PLSI/AAAAgBXNbb+DmL0+tQTfPWhQZr8Nd9g+upAtPgXyX7+tZOg+tRlRPtLiVr9t8gA/czmhPraqPL8DHBk/cP3cPgLkGL+AEC0/++HyPriXCr80tTE/2dbhPjtbz77dBk0/Xfa7PnSgnL4E4WA/WU6tPtncYD1oenA/9ZvGPgX4tT4MtVk/kjHxPucMjT79hFY/F97vPkXZWz5PY1s/VgziPtzeID6NJmI/MefOPiS3Mz7H0GU/8hC6PjGPRj4hRmk/Co2kPuVubD4eGms/CD+KPlS9lj6Mr2o/00ZQPo6IsD7El2o/uEETPq/3yD4hj2g/AAAAAEKSGb9O0kw/AAAAAKbrBL6J1X0/AAAAgC4OzT51kmo//A5xvuN7Fb/N5EY/rr5SvsZ2Mb/u0jA/of97vr29Dr4tjHU/uEETvq/3yD4hj2g/eFKWvkMPKr8h+S8/7qWovhXYDr9l/UI/Q2G9vkh8HL9kHTM/FdXSvg5k9b66akY/7iezvtvj+r24wW0/UXDwvoR/+77rzTs/Ksf+vuEJu76MZkk/NFoAvxS6Y76fDlY/fu76vjM4x74qrkc/6ULtviW1pj0a5WE/qWbVvjmxvzxmoGg/6C/ZvrlqGr0VoGc/TzLEvoTpFb5DeGk/vL/fvlPciL6Q21s/AtLpvvRE0r7JBko/PtrfvroT9L4eO0M/UFjbvgFHxb6YO1E/pkUGv+L53r4pSjs/3jr0vundtb6tzU0/BFoEv4HoSL5wTFU/YMALv7D+o75dMkY/3I4Bv5TWcL0uSFw/cTkCv0B1gL5H1lI/ugzkvgp9cjulM2U/5QvIvpKec771pGM/hC7Zvl3fur4QKlQ/zDTcvvD4Hr/GwCc/nze8vlPCKb/a6iY/YB2Hvh2aNr/gNyY/BvPuvh6EHb/VoiI/i6GHvjGgS79CjAs/n5uZvZI5a7/nW8Y+dvHJvgNnKr8yLyI/tQTfvWhQZr8Nd9g+v5ItvqD0X79EWug+ZxxRvpblVr+I7QA/czmhvraqPL8DHBk/nPncvlzhGL8OFC0/0tfyvmeZCr9ctzE/ItnhvnBqz75jAk0/Xfa7vnSgnL4E4WA/WU6tvtncYD1oenA/9ZvGvgX4tT4MtVk/kjHxvucMjT79hFY/29PvvufbWz7vZVs/VgzivtzeID6NJmI/KPLOvki1Mz5mzmU/BRC6vmyoRj75RGk/Co2kvuVubD4eGms/LkuKvkq8lj7trWo/sS1QvniJsD78mGo/ahmtPmvqAL6hwm4/frBAvy2kzr1VjSY/9hlgv9GZqD4tMrU+8Ws7v/NN9T5v6vc+TAHJvuKkab9Npei9EkYAv5TRWL9WDjY+JYfYvnKjY7/JsDI+zyOmvn/Db78Ckwe+Du2Avp5+cL+PFm6+AAAAACgHeb/SWm2+Ld5kvnSidr/Bcxe+AAAAgJ1Efb94MxW+v9ykvv2qbb818z0+n5d7vhZUcL+jSne+AAAAgMAHd7/xV4a+dBEFv+8OO78znOI+2zPtvkJ4N7/ncgU/V7bIvlO8Ob+wzBA/9xTQvkdTF78MXDI/HeO0vkh0A792MEg/se32vhfDIL/pWxw/NrTXvla7Br+FFD0/hiC/vtD5/L4uAkk/nlKUvsXP8b5eHVU/g7WivrYUC7+a7kY/HWZuvmBbBb/MPFI/CifTvqcLBb/kij8/kLHnvk4lCr++vjU/IrHyvsrNC79y0jA/9NYFvyR4Lb/xZwQ/egEOv7tANL9F+eI+GuoUv4+hNb8urMs+FZD6viHsDL/JJi0/sfYDv6x3Cb9/8yo/NQcdv8cRM79qv7s+cynjvjvHBb8kYjo/nQXsviyhA78qKDk/IOTwvjc+9b6/tz0/ZjLkvlXR4L5LtEc/V7rrvhkm9b7NXD8/WU/ivmWvBr8n/Tk/4NDAvrbrD79VfTw/1UzqvvMwvb78CE8/wGrnvm0AnL64n1Y/kPHnvusNQr5IAl8/6j7ovjJt5713TmI/ahmtvmvqAL6hwm4/slhhP0L7Wj/sg2E/FRFbP4sJYj+zWFo/5sJhP4ESWj+jsmI/rOFZPyWIYj+Hl1k/fUhjP8L3WT9YP2M/8a1ZP3epYz/yTlo/cdNjP9QEWj/nLWQ/JJ5aPzP1Yz9jv1o/KUlkP8piWz99DmQ/eGtbPyMrZD+bTVw/NAZkP95TXD9uAWQ/ISFdP9udYz/RGV0/bE5jP0GjXT9Hj2M/H8ldP9fLYj/Del4/e5JiPwlbXj8E52E/Eb9ePxDCYT+Z4l0/h51iP+dHXT/u52E/WlVcP8K8YT/mkls/Tm5hP72/Xj+K32E/zS1fP6YSYT/1N18/DGljPhkYXz+cF0s+FxFWP8giTD7KoV0/VZMtPvlCVz+iZmA+0yZVP3D8Uz7oSFM/VLlAPr7dUT/4EC0+O/ZRP9PnHj6vjFQ/OpYXPmO5WD/LnjA+/0FdP80dUz7qNmY/Bp8WPrcpXj9a6h4+whNkP7fLNj4IEGY/R8dePjKFbT91YH8+3TVvP2NmbT6/h3M/dLODPmzHcz9SBVY+w45xP3m2QT6ppW4/eWYtPmm1aT8skWs+OFZmP6qOFT4N8lI/cTIMPnYkWD+o8Ck+r3lPP4GRQT5v9U4/d/hXPpGJUD+vVQs+5PBeP6Z+Zj7zl1I/fZUUPl89ZT8iWCY+WXJrPy3qOz7cyHA/G/NSPiDacz/qNWs+k/p1P6bSgT5rAHY/C7f1PoDo9D344PY+4PrxPXRh9T7QMes9jWf4PmAI/T0QTfg+4F32PRKI8z7YiOY9zNDyPvgI7D2l3fM+MMDjPbLW+T5gp/o9id75PriaAT7T7Po+QHb9Pd/U+z647/89wu/yPhgA3T12mfE+cOfkPdxA8T4o2O89AmrwPmD67z27NfA+wPLlPdYo8T5gptk9+eXwPrhf9z1S8/A+eK/RPepv8D7Yzdo9GvPuPijj2z02i+w+mFvcPVxYYT8d+1o/kMJhP1wSWj81CWI/jlhaP5aDYT/wEFs/TbJiP4fhWT/Rh2I/Y5dZPylIYz+e91k/Az9jP8ytWT8hqWM/0E5aPx3TYz+vBFo/kC1kP/+dWj/d9GM/QL9aP9RIZD+kYls/Jw5kP1ZrWz/NKmQ/dk1cP94FZD+7U1w/GAFkP/8gXT+FnWM/qxldPxdOYz8do10/8Y5jP/nIXT+By2I/nXpePyWSYj/jWl4/seZhP+2+Xj+7wWE/c+JdPzKdYj/DR10/l+dhPzdVXD9svGE/wJJbP/htYT+Xv14/NN9hP6ctXz9REmE/zzdfPygCYz5LHF8/FxpMPvygXT/eDks+SRBWP4mKLT4uQlc/3l1gPggmVT+h81M+GkhTP5ywQD703FE/IwgtPm71UT8J3x4+54tUP3SNFz6YuFg/C5YwPjFBXT/8FFM+GzZmPz6WFj7mKF4/jeEePvISZD/mwjY+OQ9mP46+Xj5mhG0/jVh/PmE1bz+lXW0+9oZzPxSvgz6ixnM/hvxVPvmNcT+7rUE+4qRuP7pdLT6ltGk/KvtqPthdZj+xKQw+rCNYPwWGFT5B8VI/4+cpPuN4Tz/GiEE+oPROP7fvVz6/iFA/3EwLPhvwXj/YdWY+IpdSP8eMFD6SPGU/W08mPo5xaz9u4Ts+EMhwP17qUj5S2XM/KS1rPsr5dT8+zoE+n/91P6O29T7Q5/Q9BWH1Phgx6z2M4PY+OPrxPStn+D6oB/09o0z4Pihd9j2ph/M+MIjmPWbQ8j5ACOw9Pt3zPoC/4z1E1vk+qKb6PW/s+j6Qdf09Vu/yPmD/3D0PmfE+uObkPXRA8T541+89nGnwPqj57z1VNfA+GPLlPWYo8T6wpdk9kuXwPgBf9z3r8vA+wK7RPYNv8D4gzdo9r/LuPmji2z3Iiuw+4FrcPWXjbD72oQo/qSZ+Pn7dDT/Rblw+ekURPx2KWj5+ggM/4dJFPkzCBj/hcGs+C0sBP83wYT7uRvU+3UVOPnhC9z7pklk+hADnPi1VRD4kAuY+0dpXPkql0z65ZTo+6I7NPhkGaj5kj+c+AWpwPm648z4ZA2s+prPZPo0jfD62GtA+8ZhvPvSrxz5O8Yo+yGbHPsxRhj5yV74+fjWZPhwwwj6o65U+TBi6PsyMpz6uzb8+Av6kPgTVtz5U/rQ+2jDAPp60sz6oN7g+NvOxPvQ+rT46oqE+SuGtPqZJwj6aVcQ+Bt/BPpQTuz6aRs4+JADKPj6Tzz7Og8A+5qPBPhKxrj72vNA+6O6yPn442D7AtNM+cFbePphdyj54Xd4+4JPePnJC5D6c8to+uF/gPmhk5z64dOY+XLDlPpS+4D5CW/A+4gHnPoq47z6eTt4+lln7Pt7a5j6+rfs+3lLuPgrp+j4E5O0+2tfuPu517z4uuAM/3qj4PjIwAj+6dPk+x1IGP0iX9z4oHvo+AAAAP8vyAT8AAAA/AH8FPwAAAD+wI/s+4Hb2PtIq7j4AAAA/dt7tPgAAAD+8AeM+gi31Ph464z4AAAA/4DDTPnQ29D5YJdQ+arbsPkCf5D4IK+s+ShbXPkpl8j4+574+DA3lPipwvj4AAAA/xpm/Pl6q8D6g3qQ+7E3hPsYCoz5d198+FHWMPsXa8D7UsYw+AAAAP9hxpT4AAAA/eEaNPqiwzz6Y6KA+NgLAPjDpnj709L0+xrGMPnmNzj7UsIw+nPCvPhjfnj5S5Kw+FnuNPlD7mz4qC5A+0ASfPk7Cnz6E9Y0++O6hPuafkT4KBK8+bbd2PlpspT4kr2o+4oqaPmbHiD6WMpQ+MeFOPnS7qz7094A+3iWzPkmCXz54x7s+XVEnPiIwsj6R1xU+LIadPiYMNz6ybJc+jbIDPjxxuT5x4RE+NJDPPpltIj6EjeY+sREyPo7k+T6C5+s9nOqmPlG3BD7yHY4+0nPDPY6AmD6yo+w9bhKFPq6IIT7oIIA+JTUaPuwnXj6ZZ0Y+rLJdPt1iOz5k7jQ+gbBQPkBQfD6Mwms+CKg+Po2KXT4QbxY+VIuAPsAv8z3yyYo+pK4jPua4nT5gZRQ+3FuUPuAJvz1g46o+aLOXPdWZsj7MSAY+YPmjPoiERD4WP7c+tNE7Pq48xD6Q7Ps9FJ2+PnDdYj0gt9I+MMhUPddU1z4IH/M9jMLpPtDdSz1jA+s++BbuPQAAAD8AG0g9AAAAP2DW6j3Zie0+1F8yPgAAAD+wljE+A9XIPtTDNj6tr9o+MHAzPiGt3T4wGWk+P7bvPqwgaT4HFcw+2OxqPsr8uj5Yfm4+AAAAP3ihaT56Vak+MMh0Pg7nkT58alA+msWXPiQYfT7d7ng+qC9mPhQogz463YQ+ORZePmghjT4UOwk/1F8yPuAkCD+sIGk+cCkRPzAZaT4qqBI/MHAzPk5+Cj/4Fu49uh4LP9DdSz2UVRQ/CB/zPXCkFj8wyFQ9quEdP5Ds+z12sSA/cN1iPX6VGz/UwzY+UI4qP2izlz0WsyY/zEgGPo4jMT9gZRQ+EtI1P+AJvz1QAy4/iIREPnZgJD+00Ts+fPUZP9jsaj6cgSI/WH5uPla6Pz/AL/M9CJs6P6SuIz5eD0U/CKg+Pl6dSD8QbxY+SidRP2TuND4aZk4/rLJdPrhyWT/sJ14+1J1XP+gggD7g00s/QFB8PoprYj9uEoU+LNJeP/Idjj6GkWc/joCYPhCDYj+c6qY+HIpaPyyGnT6qK1Y/IjCyPl4TXz88cbk+egw3P3xqUD5KxEE/qC9mPjQdND8kGH0+9ms+PzrdhD5EVSs/MMh0PnJ6SD9oIY0+9jxSP7Jslz44VEU/4oqaPoYFIT/GsYw+RLkYP9SwjD6sJxg/mOigPub+Hz8w6Z4+sgcoPxjfnj7YjSk/FnuNPlgCMj8qC5A+mH0wP07Cnz4OLh8/ErGuPoahFz/o7rI+YjYYP86DwD5+EB8/lBO7PrTcGD8kAMo+LtseP5pVxD7C4xM/wLTTPsjUED+YXco+RNEQP+CT3j7I3g0/nPLaPiTQDz9oZOc+pMUMP1yw5T6yJSY/qDe4PtaAJT/aMMA+AIEtPwTVtz5mBic/9D6tPuQuLz9K4a0+mjksP67Nvz4sCjU/TBi6PkJlMz8cMMI+Gtc8P3JXvj5ahzo/yGbHPsQZRD/0q8c+HvdAP7Ya0D5MCUo/SqXTPjo/RT+ms9k+RptJP4QA5z626k4/JALmPopuTD94Qvc+zoNHP+5G9T6SZlE/6I7NPnp+RT9kj+c+gOVDP2648z56XUk/foIDP8gjRT8LSwE/2OFBP3h9/j5uH0g/eMe7PgaEPz/eJbM+tEdMP3S7qz4mUkI/WmylPj4FOT/47qE+Tpw7P5YylD4OMDc/CgSvPiofvT5ichM/ij2uPqPwFD/WDqo+VpsPPwbIuD4wlA4/aiLFPkGYDD+Qnck+AksRP+YIqD6Kigo/PpS1Pm6ZCT++CZg+Vs8JP/QXmT6L0g4/lpibPgShEj+c1Yk+0MIQP4oHij675ww/mHSLPgAJCD8Iy4E+UIoDP/UqeD425wY/XmTBPkgeCD9I7dM+VoIPP5gnzz6o0Qo/hvnZPhz7CD/iyN4+Wm8NP3jcyj5cRwY/AFHSPrAdBD8ay+Q+cOwFPxwm6D50Fws/kBLaPrikAT+heHg+eH3+PuQ+8T5gMQg/WuK9PhY7BD/qALM+up4FPwKgpj4U/QU/kOOZPuDhBD9+Yo8+xdwCP9TThz48vP8+3gKxPiiuAj+gSaY+broCPx7quj58agE/oFTCPi6x/z6YLMY+SXgCP5aRzD4gwAA/REXSPgpw/T6KhNY+Lin4PsTQ2T4Mm/A+buHaPobp6D4outg+BmbhPlRT1D7olNg+vujMPtoy0T7aKsI+AgvKPqIItj4gSsY+qmypPmTMxT4Kbpw+xsjHPvqTjj5+98w+5H+CPhK61T6hQHY+nirdPg0Mdj5E0ug+TVt8PmKv8j6GBoM+fE/7PqShhT4Sutg+Nj2RPkBA0T6iNJ8+2jjMPsIjqz6GAMs+vlK2Psbryj4wFMI+PvfNPphzgz6izvE+sluAPnSQ6T5Kv4g+CMX4Pjhriz50x/s+vOGRPuFAAD/iv5s+eh8CP/r6yz5eW9U+gE/RPo7k2z4MZtQ+8OPiPq6Q1T460ek+zKrTPgIT8D6gEtA+YGv1Pno9zD7ARfk+gOPHPmDA/D42784+sprePow5yz6yaNg+0DzRPgQk5D5Yb8E+LuHQPvJDtj7otM0+qCSrPnSVzT68XNI+0lrqPqiO0D5GnO8+lhbNPsjR8z6wDKA+2EXOPuLOkT46ptM+yIOGPmqv2j6jr4M+AJLdPtFjfT74+t8+tjh+Plhg4j6QRYI+TAPfPn7bgD6YdOA+mw1/PrbF5D5eN4M+HMvpPipnhz6IAfE+Bo2LPvzT9T7yo40+2kH4Po5llD7iD/0+nN6dPkyaAD8aFac+VEMBP+QzsD7ySwE/ILO5Po4lAD9YmMA+3GL9PhyFxT6UVfo+DI7JPhAx9z7kNIs+hqUVP0Rknz7c8xU/9at3PgSPGT8ox0Q/9qEKP0zkSD96RRE/VnZAP37dDT9Ii04/TMIGP0T1QT825wY/PPw6P7vnDD98Gj8/UIoDP7RFOj8ACQg/IvszP1bPCT8GdDM/i9IOPzIVOz/QwhA/tjMyPwShEj+W+Co/VpsPP477Kz+Kigo//psjPzCUDj9scCE/YnITPzzhKD+j8BQ/zG4dP0GYDD84MRs/AksRP+I1JT9umQk/0k0fP0geCD9cCRY/VoIPPzRsGD+o0Qo/PgMTPxz7CD+QmxA/Wm8NP8SRGj9cRwY/gNcWP7AdBD90mg0/cOwFP/LsCz90Fws/uPYSP7ikAT+Skgw/vq37PrLYED+WWfs+jmAHP2AxCD8KRQg/LrgDPxB/DD+KuO8+ktYIPwrp+j6SqwM/MjACP6RFAz/HUgY/XDQEPyge+j7+DQk/2tfuPpDEBD/SKu4+QGkFPx464z7G5AU/WCXUPsykCT9An+Q+fGoKP0oW1z5czQY/Pue+Pnp5DT8qcL4+0qoHP6DepD4KWQ8/xgKjPlIUED8UdYw+npIHP9SxjD62oA8/QlvwPmaIGD+ymt4+QFgXP47k2z6EAho/XlvVPjpjGj+yaNg++swVP/Dj4j6YYRc/BCTkPuj1Hj8+980+VEgfPy7h0D4I3iQ/6LTNPqLWJD/G68o+IG4qP4YAyz6sbSo/dJXNPqLRFj/SWuo+qjcVPzrR6T6suBc/RpzvPpoqFj8CE/A+sPYXP2Br9T62dBk/yNHzPrBlMD/aOMw+qPkvP9hFzj5mYTc/QEDRPpAYNz86ptM+HL48P2qv2j4uLz0/ErrYPi4oPj8Akt0+DKdAP/j63z7ScUA/WGDiPjjdPj9MA98+QpI/P5h04D6aPEA/tsXkPijSPz90kOk+UmQ+PxzL6T40Rj4/os7xPmxMPD+IAfE+XKA7PwjF+D5+OTo//NP1PmRKOj90x/s+CC45P9pB+D4iDzc/4UAAPzrNNT/iD/0+ECAyP3ofAj+yEDE/TJoAPzDbLD9uugI/dHUsP1RDAT8O5ic/8ksBP5J+Jz8orgI/cCYjP44lAD/yiiI/fGoBP9SzHz/cYv0+sNUePy6x/z5yPR0/lFX6PkAOHD9gwPw++jgbPxAx9z5E4Rk/wEX5Pox/Jj+6ngU/ALAsPxT9BT/UDiE/FjsEP7TpHD9JeAI/NrcZPyDAAD9e3RY/CnD9Pry9FD8uKfg+nhcTPwyb8D5KjxI/hunoPuyiEz8GZuE+VtYVP+iU2D6iixk/2jLRPpTqHj8CC8o+sPskPyBKxj6sSSs/ZMzFPvzIMT/GyMc+BLY4P373zD4OwD4/ErrVPthvQj+eKt0+/nxCP0TS6D4u6UA/Yq/yPr58Pj98T/s+FhY8Pzy8/z7CTjg/xdwCPzgOMz/g4QQ/pIdbPzSQzz6aZFc/hI3mPpR7Uz+O5Pk+jmU6P4alFT/eTTA/3PMVPwQVQj8Ejxk/XkVVP5rEJj/rWk4/or8vPzyESD8uESo/unFQP0oSIT/ibD4/WAkzP8i3OD+l7i0/OiQuPxguNj8p2Cc/HmAxPxqtHj886Dc/OVAkP9tDPD8enjI/FKIoPzjJMz+YPTs/mpcbP819QD8wshY/5/48P8Z8Qj+ySCU/bnw7P78EIT9YIkk/ei4dP+mmWD/LLRc/PHJQP3D/Ez/Owl8/FNsLP2qZVj+04Qk/l9YtP+D1JD+S3zM//ggfPy3lNj9ydxo/TkssP3LEHD/6Yy4/VnwZP2uvJz/MdSI/b0YlP6SlGj/t3iA/aUIgP0IpHj9icxg/MRIYP1ckFj9eGxM/uFkUP/VuFD/MBRo/EeIZPwWiHD8Xmw0/0DsSP2Z8CT/C8A8/RA0GP0DkDD9+hwc/6JsTPxz4BD8VuhA/56QKP1wXEz8Geg8/lCEYP6lCCj/RkBY/rokDPzjFFj+XYAI/muwSPwAAAD+6QhM/AAAAP90rFj/rLQw/wOAbP+/uBT8MWRs/3i0RP49QHT+gThU/nhIgPw/sFz/uqCI/GVwNPz6HIT/kxhA/iisjP91IBD8C8B8/jOsIP5olID8bgBI/oqklP+MOHD/2WSY/KaMiP/YYKD9hFRg/EBIrP+54HT9YQS0/sXkiPw47Lz/wGxs/WFI1P7xTFD/uIDo/HLsXP6RPMj/oCig/o1oqP2j6Ez8hTC8/Zd8RPzCDNj/fLw8/NM0yP0TTFj8rXCY/Zz0UP5jmKT+/CBE/2HUtP7neDD/1mDA/wAMSP/sQKD/SShA/ur4pP6hKDj8YuSs/2uEKP05ZLT+Hqws/Duc5P6UzCj8EVDU/ndcEP1g2PD8RPw0/TmM+P14KBT/ZcEI/dp0EP5DCNj/+//8+QHc8PwUAAD8PpkE/9v//PuWDNz8qsAg/uNsxPzAdBD/P7DI/+v//PoiVMz/WRwc/zK0uP/OiAz+3uy8/AAAAP7oGMD/X0wc/pZFDP4yIDj/VzEA/b2IPPzK3QT+HgxM/jU9EPx99Cj9szUQ/W+wOPzODRj+kKxc/zKNKP+ROHj+y40Y/xY8qPxr4QD/UtyU/bKJMPzDhLz+Fdkc/gFs5PzoWQj+FvkM/WGA5PwOUHj8o+k8/vGwRPweTTj9Ylhg/V/RSP7YACT+Wgko/bIIKP4EbST8AAAA/cn5JP7UOBj/z/0Y/BAAAP+xrRD9gMgU/y1REP64KXD/swf0+xspgPzSs6D5B22k//urqPn66ZD9zoAA/OvlkP5y20j6c3W0/ItPUPjg8dD8EjOU+e/1zP0Jo1T5FU3A/kvTBPklxaD9sIb4+yxlsP8Brrz6kOnI/NAbyPkrWaz+8iAg/5XhjP470Fz8AAAA/Gr8QPzItAT8oZw8/AAAAP9reDj8AAAA/4A8NP1Y1Aj8k3w0/AAAAPzbSCz+P6QI/uGcKPwAAAD+4EQk/AAAAP1ipHT8AAAA/DIggP6Ts+D44xRY/0j77PprsEj8E8fA+6JsTP6566z7RkBY/IiL0PgxZGz/ID/Y+FboQP3jl8z5A5Aw/NAftPsLwDz/SyeQ+0DsSPzK26j5cFxM/9QvhPpQhGD9Eydk+uFkUP57bzz5XJBY/fK3DPmJzGD8ic7U+pKUaPxYi1z7MBRo/3jvMPgSiHD8bQr4+aEIgPyqhsD7MdSI/ZGmnPnLEHD/HUqQ+4PUkP9xAmD7+CB8/pjWSPnJ3Gj8MOKM+VnwZPyQHiT6/BCE/xsOaPhSiKD/pDHY+skglP6F2Wz56Lh0/fJCOPqTuLT+YT7A+HmAxP6O3oz4YLjY/s6XCPjzoNz+SX7c+20M8Pzcmgz5YCTM/jG2YPpg9Oz/Z0Mg+zX1AP5qb0j7m/jw/Ee9dPi4RKj/tBXE+WGA5PwBJjT46FkI/heCqPhr4QD8RYsM+suNGP1WURj6ivy8/ieoqPprEJj8ZOT4+ShIhP11kHT7LLRc/ETc+PnD/Ez/J9AA+FNsLP1maJT604Qk/2jjkPY70Fz9YkLQ+bKJMP6A9oD6Fdkc/sk2hPbyICD/EVVw9NAbyPhIs2j1zoAA/+iWxPf7q6j5J1Q8+7MH9PtKp+T00rOg+MjbYPZy20j4iE5E9ItPUPoQ8PD0EjOU+VChAPUJo1T60y3o9kvTBPrp1vD1sIb4+qjGfPcBrrz42GAM/pvUrP85oBj/Drys/eaMJPxvlKj8EDgM/6mopP4QdBj/cQik/3MgMP/IYKj+aqw4/ULQoP+yvCz9cpSg/uJUNP8NJKD+S/Qg/2vIoPxc0Dj8Y4ic/44YPP1DgJz/oLg8/vawmP9LfDT/ESCc/zngNPy0VJT++ywo/o/8jPyHjBj+gNSM/SUUDP5T6Ij/06v8+Iu0iPwfHCT/QQiY/2KYGP9IGJj8IZwM/Jv8lPwZMDD+lriY/SwYAP+rbJT9IPQg/DsQnPzDcAT+EyCc/Tb4KP0DEJz+mAAA/F8knP9+3Az/xxyc/iE4FP6jGJz/r5QY/X8UnP1+UCT++wic/MegLP8PFJz9elQw/7scnPzZCDT8Yyic/TmINP3PLJz/2Qg0/asonP3MDDT8EyCc/jjUMP/3MJz+naAs/8NEnP3IlCj/32ic/P+MIP/fjJz8igQc/nOUnP9ofBj8/5yc/0poEP8rnJz8QFgM/VugnPxOLAT+c5yc/AAAAP4sFLD8F/f8+0V8pP04AAD/k5ic/lM/5Pqb1Kz8auvg+t7svP/jj+T7qaik/2un8PpznJz9UcPE+zK0uP2Uu8z7Drys/TDzqPk5ZLT8Nuew+G+UqP/jE8z7cQik/sGrjPhi5Kz9MbuY++hgqP8qo4j5OtCg/XGrfPrq+KT8ooOg+XKUoP5DU5D7DSSg/3ATuPtryKD/Sl+M+GOInPzny4D5N4Cc/LqLhPrysJj9cQOQ+xEgnP8r/2j6iqSU/ZA7lPi0VJT84ct4+iisjP85H5T4+hyE/hWjqPqL/Iz/oKO4+miUgP7058j6eNSM/Rm73PgLwHz9udfk+lPoiP4D42z77ECg/8nHsPtBCJj9QsvI+0gYmP/Ax+T4m/yU/9GfnPqWuJj9whe8+DsQnP6BH/D6EyCc/ZoPqPkDEJz9CkPg+8ccnP/Bi9T6oxic/KjTyPl/FJz9C1+w+vsInP54v6D7DxSc/RNXmPu7HJz+Ue+U+GMonP2Q75T5zyyc/FHrlPmrKJz8a+eU+BMgnP+SU5z79zCc/si7pPvDRJz8ctes+99onP4I57j734yc/vP3wPpzlJz9MwPM+P+cnP1zK9j7K5yc/4NP5PlboJz9Ogg0/zswnP5yl/T4oZw8/VJX7PiTfDT/iLPo+uGcKP/L42D6NT0Q/6znhPjW3QT/DBes+bM1EP2gn4j4zg0Y/sajRPsyjSj+IJt0+B5NOPxH76j6BG0k/lP7tPpaCSj+j4vM+8/9GP/rXwj4o+k8/UNPOPlf0Uj/m7+I+0MxAP1JY8D6lkUM/TJv1PstURD9D6/U+2XBCP6pQ9j5UNjw/V4HlPk9jPj/0qOg+DOc5P4yY6z4DVDU/B8X2Po7CNj+ln+4+t9sxP37F9z7P7DI/VqDhPjTNMj8OQdw+L4M2P8uJ0D6kTzI/b1jXPuwgOj8HyMk+WFI1P3MMuz4OOy8/GA7FPlhBLT+subo+9xgoPzDqrz6iWio/GQvYPiBMLz9I1c8+EBIrPyvixz71WSY/b1nSPilcJj8phdc+mOYpP4nu3T7YdS0/jkLmPvWYMD/qJ9A+7qgiP8Ji1T6eEiA/Q6TdPo9QHT8rpOc+wOAbP2T75D7OzCc/AgABAAAAAwACAAAAAwAEAAIABQAEAAMABQAGAAQABwAGAAUABwAIAAYACQAIAAcACQAKAAgACgALAAgADAALAAoADAANAAsADgANAAwADgAPAA0AEAAPAA4AEAARAA8AEgARABAAEwASABAAEwAUABIAFAAVABIAFgAVABQAFgAXABUAFwAYABUAFQAYABIAEgAYABEAGAAZABEADQAZAAsADwAZAA0AEQAZAA8AGQAYABcAGQAaAAsACwAaAAgACAAaAAYABgAaAAQABAAaAAIAAgAaAAEAGwAXABYAHAAWABQAHQAbABYAHAAdABYAWwBaAFkAXABbAFkAWwBdAFoAXQBeAFoAXwBeAF0AXwBgAF4AYQBgAF8AYQBiAGAAYwBiAGEAZABjAGEAZABlAGMAZgBlAGQAZgBnAGUAaABnAGYAaABpAGcAagBpAGgAagBrAGkAawBsAGkAbQBsAGsAbgBtAGsAbgBvAG0AcABvAG4AcQBwAG4AcQBuAGsAcQBrAGoAcgBxAGoAcgBmAGQAcgBoAGYAcgBqAGgAcQByAHAAcwByAGQAcwBkAGEAcwBhAF8AcwBfAF0AcwBdAFsAXABzAFsAcAB0AG8AbwB1AG0AdAB2AG8AdgB1AG8AIAAfAB4AIAAhAB8AHwAiAB4AIwAiAB8AJAAjAB8AJQAkAB8AIQAlAB8AJgAlACEAJwAmACEAKAAnACEAKAAhACAAKQAoACAAKAAqACcAKwAqACgALAArACgAKQAsACgALQAsACkALgAtACkALgAvAC0AMAAvAC4ALwAxAC0AMQAyAC0ALQAyACwAMgAzACwALAAzACsANAAuACkANAApACAANAAgAB4ANgA1ACYAJwA2ACYANQA3ACYAJgA3ACUANwA4ACUAJQA4ACQAJAA4ACMAOAA5ACMAOgA2ACcAKgA6ACcAOQA7ACMAIwA7ACIAPAA6ACoAKwA8ACoAPQA8ACsAMwA9ACsAPgA9ADMAPgAzADIAPwA+ADIAPwAyADEAQAAxAC8AQQBAAC8AMABBAC8AQAA/ADEAeQB4AHcAeQB6AHgAewB5AHcAewB8AHkAfAB9AHkAfQB+AHkAfgB6AHkAfgB/AHoAfwCAAHoAgACBAHoAegCBAHgAgQCCAHgAgwCBAIAAgwCEAIEAhACFAIEAhQCCAIEAhQCGAIIAhgCHAIIAiACHAIYAiACJAIcAigCIAIYAiwCKAIYAiwCGAIUAjACLAIUAjACFAIQAhwCNAIIAggCNAHgAeACNAHcAjgCAAH8AjwCOAH8AkACPAH8AkAB/AH4AkQCQAH4AkQB+AH0AkQB9AHwAkgCRAHwAjgCTAIAAkwCDAIAAlACSAHwAlAB8AHsAkwCVAIMAlQCEAIMAlQCWAIQAlgCMAIQAlgCXAIwAjACXAIsAlwCYAIsAiwCYAIoAigCZAIgAmQCaAIgAmgCJAIgAmACZAIoAsgCxALAAswCyALAAswC0ALIAtQCzALAAtQC2ALMAtgC3ALMAuAC3ALYAuAC5ALcAugC5ALgAugC7ALkAvAC4ALYAvQC8ALYAvQC2ALUAvgC6ALgAvAC+ALgAvgC/ALoAvwDAALoAwQDAAL8AwQDCAMAAwwDCAMEAwwDEAMIAxQDEAMMAxQDGAMQAxwDGAMUAxwDIAMYAyADJAMYAyQDKAMYAxgDKAMQAywDIAMcAywDMAMgAzQDMAMsAzQDOAMwAzgDPAMwAzADPAMgAzwDJAMgA0ADPAM4A0QDOAM0A0QDSAM4A0gDQAM4A0wDSANEA0wDUANIA1QDUANMA1QDWANQA1wDWANUA1wDYANYA2QDYANcA2QDaANgA2gDbANgA2wDcANgA2ADcANYA3QDbANoA3QDeANsA3wDeAN0A3gDgANsA4ADcANsA3wDhAN4A4gDhAN8A4wDgAN4A4QDjAN4A4wDkAOAA4ADkANwA5QDkAOMA5QDmAOQA5gDnAOQA5ADnANwA6ADnAOYA6ADpAOcA6QDqAOcA5wDqANwA6wDqAOkA7ADrAOkA7ADtAOsA7gDsAOkA7gDpAOgA7wDtAOwA7wDwAO0A8QDwAO8A8gDxAO8A8wDyAO8A8wDvAOwA7gDzAOwA8wD0APIA6wDtANIA1ADrANIA6gDrANQA1gDqANQA3ADqANYA0gDtANAA8AD1AO0A7QD1ANAA8QD1APAA0AD1AM8A9QD2AM8A9wD2APUA+AD3APUA+AD1APEA9wD5APYA+gD5APcA+gD7APkA+wD8APkA+QD8AMoA/AD9AMoA/QD8APsA/QD+AMoA/wD+AP0AAAH/AP0AAQEAAf0AAQH9APsAAAECAf8A/wADAf4AAgEDAf8ABAEDAQIB/gADAcIAxAD+AMIAygD+AMQAwgADAcAAAwEEAcAAwAAEAboABAG7ALoABAECAbsAAgEFAbsABgEFAQIBBwEGAQIBBwECAQABBQEIAbsACAEJAbsAuwAJAbkACQEKAbkAuQAKAbcACgELAbcAtwALAbMACwG0ALMABgEMAQUBDAEIAQUBDQEMAQYBBwENAQYBDQEOAQwBDwEOAQ0BEAEPAQ0BEAENAQcBEAERAQ8BEgERARABEgETAREBFAESARABFQETARIBFQEWARMBFwEWARUBGAEXARUBGAEZARcBGQEaARcBGwEaARkBHAEbARkBHQEcARkBHQEZARgBHQEeARwBHAEfARsBHwEgARsBIQEgAR8BIgEhAR8BIgEjASEBJAEjASIBJAElASMBJgElASQBJwEmASQBJwEkASIBJwEoASYBKQEiAR8BHgEpARwBKQEfARwBKQEqASIBKgEnASIBKgErAScBKwEqASkBKwEsAScBLQEpAR4BLQErASkBLgEtAR4BLwEoAScBLAEvAScBLgEeAR0BMAEuAR0BMQEwAR0BMQEyATABMwEyATEBMwE0ATIBNAEzARQBNQE0ARQBMwExARUBMQEYARUBMQEdARgBFAEzARIBMwEVARIBLQEuAfgALQH4APEA+AAuAfcALgEwAfcAMAH6APcAMAEyAfoANAE1AQEBAQE1AQABNQEHAQABNQEUAQcBFAEQAQcBNAEBAfsAMgE0AfsAMgH7APoA8gArAfEALAErAfIA9AAsAfIALwEsAfQAKwEtAfEANwE2AS8BNwE4ATYBOAE5ATYBLwE2ASgBKAE2ASYBNgE6ASYBJgE6ASUBOgE7ASUBPAE7AToBPAE6ATYBOQE8ATYBPAE9ATsBPgE9ATwBPgE/AT0BQAE+ATwBQAE8ATkBQAE5ATgBQQE/AT4BQgFBAT4BQAFCAT4BQgFDAUEBQwFEAUEBRQFDAUIBRgFFAUIBRgFCAUABRwFGAUABRwFIAUYBRgFIAUUBSQFEAUMBSgFJAUMBRQFKAUMBSgFLAUkBSwFMAUkBTQFMAUsBTgFNAUsBTgFPAU0BUAFPAU4BUQFQAU4BUAFSAU8BUwFSAVABUwFUAVIBVQFUAVMBVgFVAVMBVgFXAVUBVwFYAVUBWQFLAUoBWQFaAUsBWgFOAUsBWgFRAU4BWwFaAVkBWwFcAVoBWgFcAVEBXQFbAVkBXQFZAUUBXAFeAVEBSAFdAUUBWQFKAUUBXwFWAVMBXwFTAVABUQFfAVABXgFfAVEBYAFfAV4BYQFdAUgBYgFhAUgBYgFjAWEBYwFkAWEBZAFlAWEBZQFmAWEBYQFmAV0BZwFmAWUBaAFnAWUBaQFkAWMBagFpAWMBagFrAWkBawFsAWkBbQFsAWsBbQFuAWwBbwFtAWsBcAFvAWsBcAFrAWoBcAFxAW8BcgFxAXABcgFzAXEBdAFzAXIBbgF1AWwBbAF1AWkBdgF1AW4BdgF3AXUBdwF4AXUBdQF4AWkBeQF4AXcBegF3AXYBegF7AXcBewF5AXcBfAF7AXoBfAF9AXsBfgF9AXwBfgF/AX0BgAF/AX4BgAGBAX8BggGBAYABggGDAYEBgwGEAYEBhQGEAYMBhgGFAYMBhAGHAYEBiAGGAYMBiAGDAYIBiAGJAYYBhgGKAYUBiwGKAYYBiQGLAYYBjAGLAYkBhwGNAYEBgQGNAX8BjQGOAX8BjwGOAY0BjwGNAYcBjwGHAVcBjwFXAVYBXwGPAVYBjwGQAY4BkAGPAWABYAGPAV8BkQGQAWABkgGRAWABkAGTAY4BkQGTAZABjgGTAX0BfQGTAXsBfwGOAX0BkwGRAXkBewGTAXkBeQGRAWgBeQFoAWUBeAF5AWUBeAFlAWQBaQF4AWQBaAGRAWcBkQGSAWcBkgFgAV4BkgFeAVwBZwGSAVwBZwFcAVsBZgFnAVsBXQFmAVsBlgGVAZQBlwGWAZQBmAGXAZQBmQGYAZQBlwGaAZYBmwGaAZcBmAGbAZcBmgGcAZYBnAGdAZYBnQGeAZYBnwGeAZ0BoAGfAZ0BoAGdAZwBoQGgAZwBoQGiAaABogGjAaABoAGjAbEAnwGgAbEApAGbAZgBmQGlAZgBpQGmAZgBpgGkAZgBpwGmAaUBqAGnAaUBpwGpAaYBpgGpAaQBqgGpAacBqwGqAacBrAGrAacBqAGsAacBqwGtAaoBrQGrAdoArQHaANkArgGjAaIBowGuAbUArgG9ALUArAGvAasBqwGvAd0AqwHdANoArwHfAN0AqQGwAaQBsAGxAaQBpAGxAZsBsQGyAZsBmwGyAZoBsgGzAZoBswGcAZoBswGhAZwBswG0AaEBtAG1AaEBtgGyAbEBtgG3AbIBtwGzAbIBuAG2AbEBuAGxAbABuQG4AbABugG5AbABugGwAakBqgG6AakBuwG6AaoBrQG7AaoBvAG7Aa0BvAGtAdkAvQG8AdkAvQHZANcAvgG9AdcAvgHXANUAvwG+AdUAvwHVANMAwAG/AdMAwAHTANEAwQHAAdEAwQHRAM0AwgHBAc0AwgHNAMsAwwHCAcsAwwHLAMcAxAHDAccAxAHHAMUAxQHEAcUAxQHFAMMAxgHFAcMAxgHDAMEAxwHGAcEAxwHBAL8AyAHHAb8AyAG/AL4AyQHIAb4AyQG+ALwAygHJAbwAvQDKAbwAywHKAb0ArgHLAb0AzAHLAa4ByAHNAccBzQHOAccBxwHOAcYBzgHPAcYBxgHPAcUBzwHQAcUBxQHQAcQB0AHRAcQBxAHRAcMB0QHSAcMBywHTAcoB0wHUAcoB1QHTAcsBzAHVAcsBzAGuAaIBtQHMAaIB1QHMAbUBtQGiAaEB1gHVAbUB1gG1AbQB1wHWAbQB1wG0AbMB2AHXAbMBtwHYAbMB0gHZAcIBwgHZAcEB2QHaAcEBwQHaAcAB2gHbAcABwAHbAb8B2wHcAb8BvwHcAb4B3AHdAb4BvgHdAb0B3QHeAb0BvQHeAbwB3gHfAbwBvAHfAbsB3wHgAbsBuwHgAboBugHgAbkB4gHhAdkB4QHaAdkB4QHbAdoB4QHjAdsB4gHZAdIB5AHiAdIB5QHkAdIB5QHSAdEB5QHRAdAB5gHlAdAB4wHnAdsB5wHcAdsB5wHoAdwB6AHdAdwB6AHeAd0B6AHpAd4B6gHmAdAB6gHQAc8B6gHPAc4B6wHqAc4B7AHrAc4B7AHOAc0B7QHsAc0B7gHtAc0B7gHvAe0B7wHwAe0B8QHwAe8B8gHxAe8B8QHyAdQB8wHxAdQB9AHzAdQB9AHUAdMB1QH0AdMB9QH0AdUB9gH1AdUB1gH2AdUB1wH2AdYB9wH2AdcB2AH3AdcB+AH3AdgB+AHYAbcB+QH4AbcB+gH5AbcB+gG3AbYBuAH7AbYB+wH6AbYB/AH7AbgBuQH8AbgB/QH8AbkB4AH9AbkB/gH9AeAB/gHgAd8B6QH+Ad8B6QHfAd4BwwHSAcIB7gHNAcgByQHuAcgB7wHuAckB8gHvAckBygHyAckB1AHyAcoB+QDKAMkA9gD5AMkAzwD2AMkAowG1ALAAsQCjAbAAsgD/AbEA/wGfAbEA/wEAAp8BnwEAAp4BngEAApUBlgGeAZUBAQL/AbIABAIDAgICAgIDAooBAwIFAooBiwECAooBBgICAosBBgIEAgICBgIHAgQCCAIHAgYCCAIJAgcCCQIKAgcCCgILAgcCCwIMAgcCBwIMAgQCDQIMAgsCDgINAgsCDgILAgoCDwIOAgoCDwIQAg4CEAIRAg4CEQISAg4CEwIRAhACEwIUAhECFQIQAg8CFQITAhACFQIWAhMCFwIUAhMCGAIXAhMCFgIYAhMCGAIZAhcCGQIaAhcCGwIZAhgCGwIYAhYCGwIcAhkCHAIdAhkCHQIeAhkCHgIaAhkCHwIdAhwCHwIgAh0CIQIgAh8CIgIeAh0CIwIiAh0CIAIjAh0CIQIkAiACJAIlAiACJQIjAiACJQImAiMCJgInAiMCIwInAiICKAImAiUCKQIlAiQCKQIoAiUCJwImAuEA4gAnAuEAJgLjAOEAJgIoAuMAKAIqAuMAKQIqAigCKgLlAOMAKgLmAOUAKgIrAuYAKwIqAikCKwLoAOYAKwIsAugALQIsAisCLQIrAikCLQIuAiwCLgIvAiwCMAIvAi4CLALuAOgALAIvAu4AMAIxAi8CMgIxAjACMgIzAjECMwI0AjECMQI0AvMALwLzAO4ALwIxAvMANAL0APMAMAIuAnABLgJyAXABLgItAnIBLQJ0AXIBLQIpAnQBKQIkAnQBJAI1AnQBNQIkAiECdAE1AnMBMAJwAWoBMwIyAmMBMAJqAWMBMgIwAmMBMwJjAWIBNAI3AfQANwEvAfQANAI4ATcBNAIzAjgBMwJiAUcBMwJHATgBRwFAATgBYgFIAUcBOAI3AjYCOQI4AjYCNwI6AjYCOgI7AjYCOQI8AjgCPQI8AjkCPQI+AjwCPgI/AjwCQAI/Aj4CQQJAAj4CQgI7AjoCQwJCAjoCQwJEAkICRQJEAkMCRQJGAkQCRgJHAkQCSQJIAkACQQJJAkACSQJKAkgCSwJKAkkCSwJMAkoCTAJNAkoCTgJNAkwCTgJPAk0CUAJPAk4CUQJQAk4CUQJSAlACUgJTAlACVAJTAlICVQJUAlICVwJWAlQCVQJXAlQCVwJYAlYCWQJYAlcCWwJaAlgCWwJcAloCXQJcAlsCXQJeAlwCXwJeAl0CXwJgAl4CYQJgAl8CYQJiAmACYgJjAmACWQJbAlgCZAJjAmICZAJlAmMCZgJlAmQCZgJnAmUCaAJnAmYCaAJpAmcCagJpAmgCagJrAmkCawJqAkcCawJHAkYCbQJsAhUCbQIVAg8CbAIWAhUCbAJuAhYCbgIbAhYCbgJvAhsCbwIcAhsCbwJwAhwCcAIfAhwCcAJxAh8CcQIhAh8CcQJyAiECcgI1AiECcgJzAjUCNQJzAnMBcwJ0AnMBcwF0AnEBdAJ1AnEBcQF1Am8BdQJ2Am8BbwF2Am0BdgJ3Am0BdwJuAW0BdwJ4Am4BeAJ2AW4BeAJ5AnYBeQJ6AXYBeQJ6AnoBegJ8AXoBegJ7AnwBewJ+AXwBewJ8An4BfAKAAX4BfAJ9AoABfQKCAYABfQJ+AoIBfgKIAYIBfgJ/AogBfwKJAYgBfwKAAokBgAKMAYkBgAKBAowBfQJ8Ak0CTQJ8AkoCfAJ7AkoCSgJ7AkgCewJ6AkgCSAJ6AkACegJ5AkACQAJ5Aj8CeQJ4Aj8CPwJ4AjwCgAJ/AlYCVgJ/AlQCgQKAAlgCWAKAAlYCgQIIAowBgQKCAggCggKBAlgCggIJAggCggKDAgkCgwKEAgkChAIKAgkChAIPAgoChAJtAg8ChAKDAlwCXAKDAloCgwKCAloCWgKCAlgCXgKEAlwCbQKEAmACYAKEAl4CYwJtAmACbAJtAmMCZQJsAmMCbgJsAmUCZwJuAmUCbwJuAmcCaQJvAmcCcAJvAmkCawJwAmkCcQJwAmsCcQJrAkYCcgJxAkYCcgJGAkUCcwJyAkUCcwJFAkMCdAJzAkMCdAJDAjoCdQJ0AjoCdQI6AjcCdgJ1AjcCOAJ2AjcCdwJ2AjgCPAJ3AjgCeAJ3AjwCfgJ9Ak8CTwJ9Ak0CUAJ+Ak8CUwJ+AlACfwJ+AlMCVAJ/AlMCCAIGAowBjAEGAosBhwGFAlgBhwFYAVcBhQKHAYQBhgKFAoQBhQGGAoQBhwKGAoUBigGHAoUBBQKHAooBBAKIAgMCDAKIAgQCiQKIAgwCDQKJAgwCEgKJAg0CDgISAg0CiAKKAgMCjQKMAosCjgKNAosCjQKPAowCkAKPAo0CkAKRAo8CkgKRApACkgKTApECkwKUApEClQKSApACkQKWAo8ClAKWApEClwKUApMCmAKXApMCmQKVApACmQKQAo0CjgKZAo0CmQKaApUCmwKaApkCmwKZAo4CnAKbAo4CnAKdApsCngKdApwCngKfAp0CmgKbAooCmwKdAooCmgKgApUCoQKgApoCogKaAooCogKhApoCogKjAqECoQKjAqACpAKjAqICowKlAqACpgKlAqMCpAKmAqMCpgKnAqUCqAKnAqYCqAKmAhECpgISAhECpgKkAhICpAKJAhICpAKiAokCFAKoAhECqQKoAhQCFwKpAhQCqgKpAhcCqQKrAqgCqwKsAqgCqAKsAqcCrQKqAhcCGgKtAhcCHgKtAhoCrgKtAh4CrwKuAh4CrwKwAq4CsQKwAq8CsAKyAq4CrgKyAq0CrQKzAqoCtAKzAq0CtAKyArACsgK0Aq0CtQK0ArACtgK1ArACsQK2ArACtgK3ArUCtwK4ArUCtAK5ArMCugK5ArQCswK5AqsCswKrAqkCqgKzAqkCuQK7AqsCuwKsAqsCuwK8AqwCrAK8AqcCvAK9AqcCvgK8ArsCvgK/ArwCvwK9ArwCugLAArkCwALBArkCwQK+ArsCwQK7ArkCvwLCAr0CvQLDAqcCwwLEAqcCxQLEAsMCxQLGAsQCxgLHAsQCyALHAsYCxwLIApICyAKTApICyALJApMCyQKYApMCygLIAsYCygLJAsgCxwLLAsQCywLHApICzALKAsYCzALGAsUCygLNAskCzALOAsoCzgLNAsoCzwLFAsMCzwLQAsUC0ALMAsUC0ALRAswC0QLOAswC0QLSAs4C0wLQAs8C0wLUAtAC1ALRAtAC1ALVAtEC1QLSAtEC1QLWAtICzgLXAs0C2ALXAs4C0gLYAs4C2ALZAtcC2QLaAtcC1wLaAs0C2wLaAtkC3ALZAtgC3QLbAtkC3ALdAtkC3QLeAtsC3wLdAtwC4ALcAtgC4ALYAtIC1gLgAtIC4ALhAtwC4QLfAtwC4QLiAt8C4wLhAuAC4wLgAtYC4wLkAuEC5ALiAuEC5ALlAuIC2wLmAtoC5gLnAtoC6ALnAuYC5wLoApgC6ALpApgC6gLpAugC6gLoAuYC6gLrAukC6wLsAukC7ALtAukCmALpApcC6QLtApcC7QLuApcC7wLuAu0C7wLwAu4C8ALxAu4C7gLxApYC8QLyApYClgLyAo8C7gKWApQClwLuApQCjwLyAowC7wLtAuwC8wLvAuwC9ALzAuwC9ALsAusC9AL1AvMC9wL2AvQC9wL4AvYC+QL4AvcC+QL6AvgC+wL6AvkC+QL3AuoC9wLrAuoC9wL0AusC+QLqAuYC+wL5AuYC+wLmAtsC+gL7AtsC3gL6AtsCnQIFAgMCigKdAgMCnQKfAgUCnwKHAgUCnwL8AocC/AL9AocChwL9AoYC/gL9AvwC/wL+AvwC/gIAA/0CAQMAA/4CAgMBA/4CAgMDAwEDAQMEAwADAwMEAwEDBAMFAwADBgMFAwQDBQMGA1gBWAEGA1UBVQEGA1QBhgL9AoUC/QIAA4UChQIFA1gBAAMFA4UC/wIHA/4CBwMCA/4CBwP/Ap4CCAMHA54CCAOeApwCCQMIA5wCCQOcAosCnAKOAosCCwMKA7cCCwMMAwoDDQMMAwsDDgMNAwsDDgMPAw0DDgMLA7ECCwO2ArECCwO3ArYCDgOxAq8CEAMOA68CEAMPAw4DEAMRAw8DEAOvAiICJwIQAyICEQMQAycCEQMnAuIAIgKvAh4CuAISA7UCtQK6ArQCEgO6ArUCEgPAAroCEgMTA8ACFAMSA7gCFAO4ArcCFQMUA7cCFQMWAxQDFgMXAxQDFwMYAxQDFAMYAxIDGQMWAxUDGQMaAxYDGgMbAxYDGwMaA6wBHAMbA6wBHAOsAagBGwMdAxYDHAMdAxsDHQMXAxYDHQMcAxcDHAMeAxcDHwMeAxwDHAOoAaUBHwMcA6UBIAMfA6UBHwMgAx4DIAOlAZkBIQMgA5kBIQOZAZQBlQEiA5QBIgMhA5QBIQMjAyADIAMjAx4DJAMjAyEDIgMlAyEDJQMkAyEDJgMlAyIDJwMmAyIDJwMoAyYDKQMoAycDKgMpAycDKwMqAycDKwMnAyIDKwMiA5UBAAIrA5UBKgMrAwACKQMsAygDKgMsAykDLAMtAygDLgMtAywDLwMuAywDLwMsAwECLAMqAwECLgMwAy0DMAMxAy0DMgMxAzADMgMzAzEDNAMzAzIDNQMyAzADNQM2AzIDNgM0AzIDNAM3AzMDNwM4AzMDOQMwAy4DOQM1AzADOgM2AzUDOgM7AzYDNgM8AzQDOwM8AzYDPAM3AzQDPAM9AzcDPgM6AzUDOQM+AzUDPwM+AzkDQAM/AzkDQAM5Ay4DLwNAAy4DQQNAAy8DQgNBAy8DQgNDA0EDRANDA0IDQANBAz8DQQNFAz8DRgM9AzwDRwNGAzwDRwM8AzsDSANFA0EDQwNIA0EDSQNIA0MDSgNJA0MDSgNLA0kDTANLA0oDTANKA0MDRANMA0MDTANNA0sDTQNMAwsBTANEAwsBTQMLAQoBTQNOA0sDTgNPA0sDTwNQA0sDSwNQA0kDUQNQA08DUgNPA04DUgNRA08DUwNSA04DUwNUA1IDVANTAwgBDAFUAwgBDgFUAwwBTgNNAwkBTQMKAQkBUwNOAwkBUwMJAQgBCwFEA7QARANCA7QAtABCA7IAQgMBArIAQgMvAwECAQIqA/8BKgMAAv8BoALLApUCpQLLAqACxALLAqUCpwLEAqUClQLLApIC/AKfAp4C/wL8Ap4CVQPkAuMCVgNVA+MCVgPjAtYCVwNWA9YCVgNYA1UDWQNYA1YDVwNZA1YDVwPWAtUCWgNXA9UCWwNaA9UCWwPVAtQCWwNcA1oDXQNcA1sDXgNZA1cDWgNeA1cDXANeA1oDXwNdA1sDYANfA1sDYANbA9QCYANhA18DYQNiA18DYQNgA8ICYwNhA8ICYwNiA2EDYwPCAr8CYwO/Ar4CZANjA74CwQJkA74CZQNkA8ECZQPBAsACZgNlA8ACEwNmA8ACZwNmAxMDYAPTAsICZQNoA2QDaQNoA2UDZgNpA2UDagNpA2YDZwNqA2YDYwNrA2IDaANrA2QDZANrA2MDbANqA2cDaQNtA2gDbANuA2oDbwNrA2gDcANuA2wDbgNxA2oDcQNyA2oDagNyA2kDcgNzA2kDcwNtA2kDbQN0A2gDdANvA2gDbwN1A2sDdQN2A2sDawN2A2IDdgN3A2IDdwN4A2IDYgN4A18DXwN5A10DeQN6A10DegN7A10DewN8A1wDXQN7A1wDfAN9A1wDfQNeA1wDfQN+A14DfgN/A14DXgN/A1kDfwOAA1kDgAOBA1kDWQOBA1gDgQOCA1gDggODA1gDVQOEA+QChAPlAuQChQOEA1UDWAOFA1UDgwOFA1gDhgOFA4MDhQOHA4QDhwOIA4QDhAOIA+UCiQOHA4UDigOJA4UDhgOKA4UDjAOLA4cDiwOIA4cDjAONA4sDjgONA4wDiQOMA4cDjwOMA4kDjwOOA4wDjgOQA40DkQOQA44DkQOSA5ADkgOTA5ADlAOSA5EDlAOVA5IDjwOWA44DlgORA44DlgOUA5EDlQOXA5IDlwOYA5IDmAOTA5IDmQOYA5cDmgOZA5cDmQObA5gDnAObA5kDmgOcA5kDnAOdA5sDngOdA5wDnwOeA5wDnwOgA54DoQOgA58DoQOiA6ADowOiA6EDogOjAxMDowNnAxMDmwOkA5gDpQOhA58DpQOmA6EDpgOjA6EDpgOnA6MDowOnA2cDqAOcA5oDqAOfA5wDqAOlA58DpwNsA2cDqQOmA6UDpwOqA2wDqAOrA6UDqgNwA2wDrAOqA6cDrQOsA6cDrQOnA6YDrgOtA6YDqQOuA6YDrwOpA6UDqwOvA6UDsAOrA6gDsQOwA6gDsQOoA5oDsgOxA5oDswOyA5oDswOaA5cDtAOXA5UDtQO0A5UDtgO1A5UDtwO2A5QDtgOVA5QDuAO3A5QDlgO4A5QDuQO4A5YDugO5A5YDugOWA48DuwO6A48DvAO7A48DvAOPA4kDvQO8A4kDigO9A4kDzQLaAskC2gLnAskCyQLnApgCiQKiAogCogKKAogCYAPUAtMCzwLDAr0CwgLPAr0C0wLPAsICeAO+A18DvgN5A18DCgO/A7cCDAO/AwoDDQO/AwwDwAO/Aw0DDwPAAw0DvwPAAxkDvwMZAxUDvwMVA7cCwAMaAxkDwAPBAxoDwQPAAw8DEQPBAw8DGgPBA68BrwHBA98AwQMRA98AEQPiAN8AGgOvAawBxAPDA8IDxQPEA8IDwgPDAzgDwgM4AzcDPQPCAzcDxgPCAz0DxgPFA8IDxgPHA8UDxwPIA8UDyQPIA8cDyAPJA/gCygPIA/gCxQPKA8QDyAPKA8UDywPHA8YDywPGA0YDRgPGAz0DywPMA8cDwwPNAzgDzgPNA8MDxAPOA8MD+gLKA/gCzwPKA/oCygPPA8QDzwPOA8QDzwPQA84DzgPQA80D0APPA94CzwP6At4C0APeAt0C0QPQA90C0QPSA9AD0APSA80D0wPSA9ED1APTA9ED1QPUA9ED1QPRA90C3wLVA90C1QPWA9QD1wPWA9UD1wPVA98C4gLXA98C1gPXA4sDiwPXA4gDiAPXA+IC5QKIA+IC1APYA9MD2APZA9MD0wPZA9ID2gPZA9gD2gPbA9kD2QPbA9ID3APbA9oD2wPcAzMDOAPbAzMDMwPcAzED3APdAzED3gPcA9oD3gPdA9wD3gPfA90D3wPgA90D3QPgAzED4QPeA9oD4QPaA9gD4QPiA94D4gPfA94D4gPjA98D5APjA+ID5QPkA+ID5QPiA+ED5gPlA+ED5gPhA9gD5wPmA9gD5APlA6QDpAPlA5MD5QPmA5MDkwPmA5AD5gPnA5ADkAPnA40D5wPYA9QD1gPnA9QD5wPWA40DjQPWA4sD5APoA+MD4wPoAyUD6APpAyUDJQPpAyQD6QPqAyQDJAPqAyMD6gPrAyMDIwPrAx4DHgPrAxcD6wMYAxcD6gPpA54DngPpA50D6QPoA50D6wOiAxgDogPrA6AD6wPqA6ADoAPqA54DnQPoA5sD6APkA5sD5AOkA5sDJgPfAyUD4APfAyYDKAPgAyYDLQPgAygD3wPjAyUDMQPgAy0D0gPbA80DzQPbAzgDGAOiAxIDogMTAxIDmAOkA5MD7AOzA5cDtAPsA5cDRABDAEIAQwBFAEIARgBFAEMARwBEAEIASABHAEIARwBJAEQARgBKAEUASgBLAEUATABLAEoATABNAEsATgBJAEcASABPAEcATwBOAEcAUABPAEgAUABRAE8AUQBSAE8ATwBTAE4AUgBTAE8AVABRAFAAUwBVAE4AVgBTAFIAVwBWAFIAWABXAFIAnQCcAJsAngCdAJsAngCfAJ0AnACgAJsAoAChAJsAogCgAJwAowCfAJ4AowCeAEsApACjAEsATQCkAEsAogClAKAApgChAKAApQCmAKAApgCnAKEAqACnAKYAqQCoAKYAqgCmAKUAqgCpAKYAqACrAKcArACqAKUAqgCtAKkArQCuAKkArgCvAKkAiVBORw0KGgoAAAANSUhEUgAABAAAAAQACAIAAADwf7zUAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAA25pVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuMy1jMDExIDY2LjE0NTY2MSwgMjAxMi8wMi8wNi0xNDo1NjoyNyAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iIHhtcE1NOk9yaWdpbmFsRG9jdW1lbnRJRD0ieG1wLmRpZDo2MWIyM2FhZi1mZWRiLTVhNDQtYmZkOS02YmUxMTI3N2E1ODYiIHhtcE1NOkRvY3VtZW50SUQ9InhtcC5kaWQ6OUM3MjRDQ0IzRDZGMTFFREI4MkE5OTY1NTUwNzQ1MTYiIHhtcE1NOkluc3RhbmNlSUQ9InhtcC5paWQ6OUM3MjRDQ0EzRDZGMTFFREI4MkE5OTY1NTUwNzQ1MTYiIHhtcDpDcmVhdG9yVG9vbD0iQWRvYmUgUGhvdG9zaG9wIENTNiAoV2luZG93cykiPiA8eG1wTU06RGVyaXZlZEZyb20gc3RSZWY6aW5zdGFuY2VJRD0ieG1wLmlpZDpENjFERUZBODZFM0RFRDExODFCNkZFNzVGREMzMzRDNCIgc3RSZWY6ZG9jdW1lbnRJRD0ieG1wLmRpZDo2MWIyM2FhZi1mZWRiLTVhNDQtYmZkOS02YmUxMTI3N2E1ODYiLz4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+IDw/eHBhY2tldCBlbmQ9InIiPz6suq7pAAHqVklEQVR42uy9aaxs2Xmet1eNZx7uePr27bnZ7Cabg9QmKVGyqUQSbBhwIChOjCAGggDJj/wxkv8RHBgBAihIDBkGHNiwDQMSAsqETJgyI6lJShQpDmpRZJPdzZ6bPd++3X2Hc6czVX3ZNe9hrbXXHqpqV+3n0VHz3DpVu3at2nut913rW9+nOtff9QAAAABgWdi68MiCnvn+Oy/y9c0AhQEAAAAAQPpjAzAAAAAAAID6xwZgAAAAAAAA6Y8NwAAAAAAAANIfG4ABAAAAAHCltrXn8rTu/iXaqlLqHxuAAQAAAIAq6n4sQZWlPzYAAwAAAABI/4o6gSpLf2wABgAAAACQ/tXyAKh/bAAGAAAAAFD/lfAASH9sAAYAAAAAUP+V8ABIf2wABgAAAABQ/1XxAPNS/+2V3Xb7VKu902pvN1tbzeZGo7neaKzW6yu1elOphshJt3Pc6RycnNw5Ob51fHzz+Gj/6PD60eG1w8MrhwdX8QAYAAAAAED97834HRfaA8xY+rda22vrd62u762unV9ZPbeyekapWrZDiXQP7nxwcOfyndvv3bl16fatd4+OruMBMAAAAACA+scDzFn9K1Xf2LpvY+Oe9c171jcuNprr03iXk+Nbt26+devGmzdvvnlz/3WRDh4AAwAAAACofzzA7NS/UrXN7Qc3t/yf+33pP8uP5tuAG/s/u7H/6o3rr4p08QAYAAAAAED9V90DTFX9r66d39r5yPbOR3wDMN+P6RuA69de2r/20p3b7+EBMAAAAACA+q+oB5ie+t/aeXhn97Ht3Y+22tvl+bxHh9evX33h2tWf7l97GQ+AAQAAAADUf7U8wJTU/86pj+2e/pj/31qtWc4P3u0eX7vy3NUPn/P/iwfAAAAAAAAGoBIeYBrqf2f30d0zn9g9/XjmfD6zRKR79cNnrn7wk2tXn8cDYAAAAAAA9b/MHqBw9b+xed+ps586ffZTtVprsS6bbvfow/efvvL+0zdvvI4HwAAAAAAABmAJPUCx6r/V2jp97udPn/359sru4l48hwdXP3z/rz+8/NdHR/sYAAwAQKmpb9+1xJ+OvgIAlkP9l8oDFKv+d08/fubcE1s7Dy/HVbR/7eUPLv/g6ofP4AEwAABoenwCAGAAlsEAFKj+W+2ds+c/4//UG6tLNaac3Hn/vaf8n6PDa3gADAAAsh6fAACo/wU2AAWq/+2dR87ufXZ796PLekVdv/rC+5f+8vq1AuQ7HgADAEh8wAwAAAZgsdX/ub3Pnbvr8+2VU8t9UR0eXLn87ncuX/o+HqAQGjQBoO9h7t8mHgAA9V8dilL/zdbm+bs+76v/hcjymRPf4Vy8/++22jvvvfud46MbXEU5YQUAkPhQCuiLADAAM2ZeiwCFGIDV9b29C7986synqnaBXfng6UvvfPvOrVzfHYsAGABA3wMeAAAqp/7nZQAKUf+bWw/s3f03t3Y+Us3LbP/aS5fe/taN/dfwABgAQOIDHgAAMAClNgCFqP/t3Uf27v7Cxua9Vb7Sbt5449Lb37x+NZeIr7IHYA8AIPEBAAAWQ/3vnHrsrou/srZ+oeKN6fufC/f8qlL1a1d+mucbqawHwAAAQh8AAGAB1P/27iOo/zF+O/itIdLJsw5QWQ+AAQCEPgAAQNnVfz/u/wsZ1b/0/6tGv4wZPBL87+DBxfEAfpt0O8c59wNgAACtDwAAAOVS/72cP3f/zYS4f9H+6tkeldh/A7+MfUHIMJQMv038ljnp3MmcF6iaiwAYAIQ+AABAFalt7U17H3Ah6r/Z2ty78MvRnD9iFvqhp4nWCBiVvFJadzD8o0z+qUrjCvyW2Tu5/dbrf5y5PkAFPQAGAKEPAAAAJVX/Pufv+vyp059KUPwjoa/X++EYH+3TVPA4Sv9X8e2B/4S+SZDw8UN+QGbtCk6d+ZSv/n0PkOfLqpQHwAAg9AEAAKCknN373Nm9z4uL3JfoPyO/inErgNef3A/aAC9iA4aSvqf+J+8eEP1KYm/mzXaV4Nxdnz86vHb50ve5ZjAACH0AAABYVLZ2Hjl3/heV15t3l5iyjzwS+U/8Cdp/RB6UkVgPTfKroUNQYW8w+XVgDBJdwTQtgVI13wMcHly9fi3jRH6lFgEwAGh9AAAAKFq7547/abV3zp7/bKt9SiSi0ANKP/hPiWt5rdBXut+jXiDmBCT0YMgGqKAx0LoCLxhEFDu9olxBe+XU2b3P3rlz+ejwGlcgBgDRD7AYUAYYAGDM6bOf2dx6RMSm9XVyX6wGIPIH6y5i0WlzGar8wBKByHj6f2IDVMwnmF2BN9p8HDudyYYCZf0co79u73707O333n7jycy2rSKLABgAFD8A6h8AoFzs7H789NknZBD5Y5D+Dlrfizx7sIk3KrInO3s1IjsaT+Q/rRvwAF5IuIsKrxgoN1dgMAbeaMVAEj9j4K9nzn3m9q13r374DFcRBgDRD4D6BwCYETnjf5qtrd0zT6jaarcbU+OSWt/rHIPmQdMLo8YgsMc3mpdIDQ1DxBgEbMAkjkgFPMPwfWK7CwanpSKewNP4hOC51usrp889cfPGG8dH+9m+uyosAmAAEP0AqH8AgBKxe/rnNjYf9ETSqnmR4k9mfMyxuzCuGET2JwQfn+wNUCMrM/EMavw+SpM+qPcHNVo+CGt/iexiGLmFzc2HTp/5+Uvv/BnXEgYAxQ+AvgcAKDtrG/funPr0VMS9eKmOoQKK3AusLWQ5EzGcgkT2Davw08cmQTS5S1U4VZE3OZT/2+6Zn7ux/9qtm69naKcqLAJgABD9ACh7AIDCyBn/s7P7yVZr16izI1l84nI5lQcQk/Af/VEClQGUqyFRnq5gsItHUGJyIGL0KKNVhdCD0mzu7Jz6ZDYDUAUwACh+AGQ9AEAp2Nz+6PbuJ/VB+eN58q5OWZvMgEykfNQCSLzel8YG2B9NkbdTWbV/eAdwMLZHecF4o+EOgsA+A09UbG2gvxSwvfuJ/esv3rj+AtcVBgDRD+h79D0ATIvu/qXa1t4CnW3ZTmlr63GRVqejEc/RhD+J0/6hsr/iBTf7ilMqUF16/kANYBXcD2wR+UoTq2M+YRnvdBZPDJXMPCXKG838q5DuD//e3Nr+eDYDsPRRQBgAFD8g8QEAquhVpqLgc8T/bGw9urH58W5XlEGXa5PexJ4jIb/Q9cbSf6CsJ6sBojm6LsJIU7RLvFi6nuC7qpBYD/oNFfMGXqCkwDDrqWYBJFQLYbwKMnzTgBNQY8fR/+fm1uObW8/d2H+eCx4DgOgHxD0AAJSOjY2P9cR/UC4ri9TXh+GHqgaHJ/uH/7Qm/dT4DBU//uQ3FfmTiv0pEtsT8wbh5QgJnXPUO4Trj43fSmMwhmfgt9v6xmPZDMByLwJU1wAg/QFlDwBQTUoY/LO2/vD65mNDLauiW2/FUCJX5wrCUULBtP0yCLAZGwONcO4n6BcV2FirIl5AhV4S2bSrYiWKVeAtQruKVWjfghqdS/TcVOSDid2xxJcNVtcfXVt/6PatV7jsq24AkP6AvgcAgMLJE/+ztvFRz2tKKJWlbZ5edLp/EkvjRSf7JbgCMLYBxgOHZ+rDot8L+AMVMg+Rl4XOU8VtSeCFXQnIfhGtn/F0ewwkWFpY/9TG6voj2QzAEi8CVMsAIP0BrQ8AUHFKOP3fap9fX39kXAVLecO090olJO6M7AyWuNyfSPrJ9P9gY8Aoe45YlhNC6wAqaAYC23CDxkCiO4ej4lwZ3kWGCxTDSKJh/a/o9mNRBkcRt0QBj7G69pFW6wdHR5fxAJUzAEh/QOgDAMD0yDP9v77+cLO5HdDZgXK5kfK6EQMQ+Gu3I92uBHV/KMwnvCCglBr8/0S8jw8mXmRvblTHq4m2HtoANZHxA9VuStuvYruG1bgCmEyqAYtM3k4CUl4FwptExYsTxOg/v17bXl17KJsBWFaW3wAg/QGtDwAwM0qeCbSE0/+eV1vb+MhkwlxC89whKSs9ld/pC/1Op+v/dyD6B7pfRLzQBt9QNI0Kp8ys1VSj2Wg2G/259oCiD7mN4L9DDkEF6nNFXEEwIU88JEfGawgq4Gn8V3WDeYBUaB+zN5L+auKIJLzCELEZcWfQXn3Yu/Y9zxPu0OU3AEh/QOgDAOABSs7q2gPt9v3djiejhJbjOfWe4u/KyUm3c9I9Pu79t9PT+yLpdayEd9D2XcSxUqrRqCt7GFBIs3sRXe5F4vll8ClGjwc9RXhXsQpm/Zdh9p++mRnYABmvVNRGCxW932u9n6j0D1YNG3+McLm0lZX7V1YfOLjzKtfbMhsApD8g9wEA8ADxsyphW7VXHjw58cWtDEJyevK1L/pPjjt90d/pZlL8DpZAjg4nHsBzLwkcswvhLcUqIs1VeEGhH63U7X0sn043nPs/4XMO1jFUrbeCUa/VemZgYAlqvcbzf5Fu+LQDx8MALLMBQPoDch8AAA+wKChVr9fuObhz5EvhviQW6YqDEi7oO+p2j46Oa7V6bRBPr5RG6GtOOnx6Ek3PGdrJ0IvtGeXp6YcRnZx0Dg+Psn3CoVno9EKhTkbVwAbbGVTPEqh6o+8K1NAVBE+k3b7Pb+3ei2GZDADSH5D7AAB4gAVTL/WLR0envKPDqRmMwZx5z2f0g2xkzPA76s3B+3K6Jl3/ZMQXzRKL71HjNP2jVELhzQamjbiBRQE1LmjgG4CTYv3NcP9Dty/tjzr99+otCYzWB7y+N6g1Ghfa7XsODn7GVbckBgDpD8h9AAA8QOKZTO/gmVMA1eoFaJjejHdvFrzWD5Gv9eVvbZytXw3+PAzU6dE5OTk6Ohqp517YfW2cx8eLJPPvyevu6MHo3mDDPlwZJ/gJPtQP9e/2dzVM9Yvu7ybwzYB0OqEmqtVVo3m3l94ALGUm0MU2AEh/tD4AAMB81X8uJWM1ACNlrwaRL12ZpAHtR7nU6vV+JHw/6qWfPF+jhkf59YeVuvquoBZ6TteT+vAX/y+9bbgqMscfPqfQPz2ltG86LBQQLEw2qG2Wefa/v45R7xmWbuqjyGCZo3aBe2GxDQDSH7kPAACLIr7nuwhQWvVfq23GDcBgwn4QyN6fnpeg3g3o/vowP05f9w/S/1vV88gDjAR5WMaPaoR1JrV1B4p9XOpLeRNLoMZVisP7BAaPD1J5jsN+wu/YE/GdzvATDSbmh3l+IusLwZpivQ2+/qeu9SOUBusYA00/2jYhydsm/L/X63v1+lans89duWAGAN2P3AcAADzAEqj/vgE4p9RaRPoPxOpYImt0/yDlTVxa92V6zdfSteHSQb3u1Rteo+lr7sGDwyD+qx96owigwWlMBL1EpL+avCoYuSOG3yOCOyD7x6esGo2W/1mOj4994e4/ura2vndhu9FSve3CvufpDt9JvEa93uycdA4ODu7cPrhz56i/PXpwVsOFDKnVxzlDe+fYHaRJ7U7qo4VPrtNp+22OAVgkA4D0R+4DAAAeYDmk/1B518+FFXNU9A+i+fthPj3dP5hVH4f0DFW78tY3VKvd2+3a3/Daz4rTmysfiX4vFKXjv6QREMBBOxHO7TMuJ5yX4TnUhkZisMIxfsfOidrdeeDsuXMT9zMoDlardXvRSL2IH98CvP7aq5cvX+69oOb1o5T66xQivW0Pdf+Z/f3N9Xqjf7rd7jBBkP/LycnJ+J/90zjreS9zPy6AAUD6I/cBAAAPsGTqv6dwamdiWrkXNzPYy9vLzjmI76+pbmeYLD+WftM/iNraafoGYCiewztzR45Cgrk66/WJIWg0mr4TmWrW0aFdkVCtgPEffYneU/W1Rr02WrkY1TCu14fn3GqtPvRw6+jw+Nq1q8MspMprt9rHxyfbZ1ZXV7zDg4OT426nI71aaSe+qaj3wqa6vaas1+snfQZNEG9zDADSH5D7AACw8B5gIdR/T+c0ztXrDTWkNpr079FaaWxsrW7tbmzsrK+srl1684PDO0fHRyc3r986OT4JGobdUzt3X7h7kL5TTQrhqn5kfLcrHfGFcee40znpxdb0lLO6te/L6ANvsq02tpFXeSlm/t2eHA4I6u9sHsTxd7vNZn28j3m8dUCpiXHxf9/Y3Hr8U59++cUXLr93qTsomaxqG9ubn/7lz57ZO3X75v7+hx/uX71ye//64Z2Do8PDo4Nj3xKc+JbgWHW7raOjxuHBof9etfppbsPyGgCkP3IfAADwAMus/uu7a2t3RxLy1Bs1X/RffPieiw/dt33m1MraWr3hO4Sar2gPbh9cu3z15tX9Z//qx9evXBuo6dW1tcc+9nPrGxsGyT3W0IOVgZ669j3B/tUfed4HAf2ukfSemgQaebG9v7W61+2MpHxt8nv8mXoHEH7TdntVBdxPNA5qxOrq+sOPPHZy0vng/fd8Kd9oNp74lc898LGH/Zdtnjp95sK9nZPj48ODg9u3D+/cvnn9+q1rV25cu3Jw69bx4clxp3t4q371ysHJyelabbvbvY4BQPoDih8AAJbBAyyK+h8YgIH698X02npj6/T2+Xsu7t17cff82bWNjb7uDwXqrK6vb+/u9JLeKO+pb3z3pFfBt3bPvfdvbG4ppVzecZA6xxfYnUmGfOMLlTJLeS885e+wIdh+Vs1mK7gGof04g/WN1dXVe++7/+DO7f396xvbmxceuqdeaww+RK1Wb7Sa7dW19e2dbqefHqjTOTk6Orxzy7cB1z547+p77x8dX7l1446q7XgYAKQ/IPcBAGDRPcACSf+RAdjx+lP+D3/8woOPP3rm7ntX1tZr9bpezfeK8apao173Go995hOX337v1WdeXN/cuHDhoqP6Dyr7sQGYbP+NyXvXo+rsgcYzKMv5qHqjPnyZ7bSHf93e2d276+6Dw4Pz9961vr7h1UblipWS8f5hv50GJ+A/Y2fXf8HF40dv7V/rdL//2nOvNeq7nZPXUzXa8tUCK4UBQPqj+AEAoIIeYPx7HjOwcNJ/+JHr275mffBjDz7xa59f39qu15MkWd8DeL0dsa3P/OovfvDOe6dPn2m122mkvxrtBB5XFfCUMjgAHZqyYM6bBSxP628ACKl8C81m89z5vavXPrzvow+oYAHjYCtNqgpIf3dFzWs0G+1z93zkwddfeL3R2Dk8rPrdN2cDgPRH8QMAAMRFvIslWFDpP1K9m6sba5/65c9t7TpvSx0p3c2drUefeFwd9KRzhrdWE8ms3IX8MMQ/XFNMhbcKZHQAqU5eqbWN9b2LF3bPnPaCtcb6+5sjn0z1kw8NHq3X69und3u1FOpb3HFzMwBIf+Q+AADAEoj7rQuPZBFC9Y0HPvbw7rlTWcxDvfbQ4x/58JUrqqvSvlYF1Pqg8IDSqn/xtN5gXN9XeSEbEPcW7oJ+9L/K5cn+GfsS/vTZs82VVmTuP/pL7IxW1lZbK+36zQ3urzkYAKQ/ih8AAKDitNs7D3/io/VGFiXWmwXf3Lhau+p1U79Q+vtlxwZgLOtN+3fVeNZfBS3E8BcVWBDo5d2fvCBsIWxGqD5W9nYPMHhCP2Oq8o1ThtWPVru1sb157coal9+sDQDqH8UPAAAAe/c9sHsue076eqPu/3SOO+k3AatGoz4W1YHaYfFnhn4JhgAN5b0K7CLwvOF+XNX/z+ioMn6fmJ4f/E+z2RoYklQfZGVtpVfrOK0BWGntnD317usYgBkaAKQ/ch8AAAAGPPSJT7ZX23mO0K8d1snwwlZ7ZajB+2iEd0D6jyf4xxtuB+XG1Gg3gKoNvIDXlcD0/7ggwOiA4RWGSa7/ldUV97n88SJAc72V1vn0zEardeaus7X6KpffLAwA0h/FDwAAAEHO3313BgkbUP+q5hsATRXfZFZX18b1tiQW+jNR/GMDMEy0rwJPUON3Fhk+3jMC0v+XjFyEBHMOBXX85NG11VWlVKqm8D95a62VodF8p7FzZrfeWOHym64BQPoj9wEAACDO5s6pnEcIbudNZwDW1mr1eufkZGIAgqp9pP69fpVfNUjRqbxaOCJouAAgfTU//qVvDPo/Mtb9A7Uf3mYw+bXZbrpsABi9rPe0ertRa9azNdnK+urKKpuAp2kAUP8ofgAAADBo2U7eQygv2xrC+vpGq9m6MzQA3Yn+H836T4L7lRqE56i+GRiE9wykvBptHVaDjPuDjJv96P9BxWHpTib6RUUKBo/sglKtZsO15phS3W5vo3FrrZV58aS90l7fJgRoagYA9Y/cBwAAABMHt26sbuZKSK8yFQHw+iFA6+ubd+7c9n/vSeqhvA76ioHiVwPdP1wBqE1S/g+lf7AggDd0BSLjrcWql6TI/3d3GAs0XgQYuI6Bpl9ZXffShAD5n7q51szcaO3Vla1dDMB0DADqH7kPAAAAFm7fuLq7d3eeIzRXm4c3DjK8sFZT2zu7H3zw3kCL939qg1UAFVT/tV7Yz2QFQIUCjibqXyaPyCjUp/fT9brDQKJJAeKeKejK2HX4Z+KbkTRn3qsa3F7Pvnm60Wyub7e5/Io3AKh/5D4AAAAkGID9KzmP0FpvuVTw1eIbAF/g96W/9Ofja8Pp+aHQ783I1wKifzjrP9b84+q/4SSioUD/Wi8vqC/1B5uEVWBTwHgFoF6vt5orKab/laq36o3V7CsA9UZ9db3G5VewAai4+kfuAwAAgAs3r13ObwDGyXxSG4DtnWazdXTUW0A4OenU643hZL0XSv6jRtP/3kj6e16ouK4KJvv3hnP8AcE+tBODXEED5zDIPTqUoY36oBCYO83VVq2eS8GL3OHya9AEyH0AAACYtQHYv2yuweWm4dpNVevttU3/0l7gzcbm5pUPewag2z0RaY7Efn+aPTz3740rAQdPWHlj7a8Cij+UmFRNNgwE9PfQAPRKkjWbtXoKLdrbM7CTN4L/zq0PufwwAMh9AAAAmLkBuPaueKJyOIBao9ZoNY5OjjK8tt1unT23d/XKh4MooJOTk3q95QUT/4cn8pN/ie0E8AbJfwIVxAZ1ArrdzuiZtZWVlXoqA1BX7Y28Efy3rl/i8sMAoPgBAABg1uxfe8fX3r6izXOQ9tbK0e0sBqBWq589e+7Vl184Pu69vNM56Xab41JfY21vCc4fpf0cBQQNY4FkmPLfCywO1DzVmYQJjXcA1+v1U6dPtVopSno1V5r1Vj1vy199h8sPA4DcBwAAgByC8p0Xty48kvZVN2++3YveyadmV3fXbl6+kSkKyNvZPb29vfvBB5d9qe6L8pOTk1art7lWqUl0j9Lp/ujvkY3Ig2xC3nB1I7LGMdpz3HublbX6+b27ammSmbbW23nKJw8+1fUrb3LRVtcAoPgBAABgXty69Y5SkvMgrbVWrVHvHJ1keG273T5/14UrVz4YxOT4BqDRbNT7cl3iEUDKM0YrBZ6tZJTsZ7RhwP93LxFQ8Gj9jcv1Wm1zs7W1dSbdOW/ljf/pdk72r7zB5VcVA1BNuf+l3/wNy1///h98mRsAAABgLlz78PUPL7909sJjeQ7S2wbQzmgAfO66cPFnr75869YNr18QoNPpNAYR+cNKXuEdvf0IH40N0C0TDJ/ddwOjkB/PG5YdkF4B4Fbz3N7dzeaK+9n6r2rmSAA64L23nt+/zgqAt5yZUH25H/lB/Wd4AgAAAEyP9995Pv9BVrZXM28k3tjYvP+BhweJOH1d3jnpdEXG+n8k+ocB/WKqOCD6fw5KAktA/Xe7vsc48R+v1Wobm+279j6STrM267V63g0Al177CRfe8hgA5H5E2TuKezwAAADAvLj89nP5D7J2aj1zWLwv/e+7/8EzZ/cGR/DV+fFgMUFG8/cScAMy+I9onMBY9I9+6+n+0RGGTqCX/+ek0+n4b9VqNy9cvLC6upnqbFvrrVojn3AVufTmsxlet//OixiA0sl9FH8eTY8HAAAAmAvvvflM/oM0VhqNleyBMSurq4997PF2e6Uvj+X4+PjoqBMW7qPfvYkZkNGqgASXB8bP7/bj/icvlMHOguPjE/8tarXa6bPr99z7WFrfsrK1omq5dgB3O93333mWC694AzAlLY7cd5Ty2dQ8HgAAAGD2vPvm07duvJ/zIL6MXj+9nuflu6fOPPqxT9Rqveiabrd7cOfAtwHdbi9bj0j4ZxQONJjRn5iBUX3fwdN66j9kAHqbCQ4Pj/xj+m+3vbvywAOPtlvpztmX/q21Vs62uv7Bpfffe44Lz5vGCkAhAh3FP2MRjwcAAACYMftX3n77tR/kP87a6fU8sTG1Wu2ee+7fu+vCYEre9wBHh74FOPH1elfCUj68JiCj+f6x7h9K/+7IBvT3ENdq3tHRMPhnY7N93wP3nDlzX9qTrLca9Xbe1DVvvviXt25SBWw6BiCbB0Dxz12+4wEAAAAySvmsMeJvv/pU/ndvtBvtzZU8R2i124997FObm1tjD3B4cOSr9l4wj4w0fUDWR2KEuoGYn+74v14/DWhP/Xf8A/pHXl1r3ffA+YsXPz5YbUjFyvZKzg0AIvJWEa2NAcjlAVD8pVL/AAAAMHveeuUvCznO5t5Wzvj47Z2dT3z6ibW1tXFo/klvEaA71v2DbJ5Bue/1Jf5Q+gem/4d/7UcLHR2cHB8d+8dZXWvec/+pe+55vNVcS3tu/kdb3VlLVTJMYwA68u4bP+CSG5rG6R0aWb9w0t8/IMUBAAAAZsYbL3/vrVefuvjgZ3Iep73R9n8O9g8yH8HX/efO7j3x2c8/+5MfXL1ybRDRf3LcqdfF69cH821BvZc4yDcGwxIBPUHeHRYK6An+ztAVDCJ/ur5VOJFOp+cb1jaaFy6evv/+T66t7WY4t+Zqs1cBIF8J4Dde+N67b2cxAMuXAshb1joAqP+yHRYAAADidE6OXn/xL/IfR9XU5l15FwFq9fqZM+c/94tfuPf+exqNei8Q6PDo4ODo8ODo+Ojk5Lh7dOgL+l5UjzcS+t3OaNa/Mwz+GSwM9FYOur1aYq1289SZ1fseOP/Qgz+/sX7Gy6DilVo7tV5v5q0A8NpPv9XtHnPJDWjQBMUq49nMoCPTAQAAloOfPf/NX/o7/3P+46xsrbY3Vw6u38llJJRaXd345Cc/d/rMKy+/+PzNG3c6ffzHa/Vao9Hodhu1vs1QajL37wUyfsooUsj/Y7OttrabZ86d39t7tN3ayChVW/XVndWc3qbXzi9+i4tt8kUTqDMvwZ3NKsxG+hMIBAAAkIqtC49klGK1+j/8X778wKN/K/85HOwffPDi5W6nm/9Q3W7n5s0rb7310qV3L92+dXRy3DtmvV5rtVtqsEtguFVguBVAZFIMzNf+jYZa26ifOrN7/uwDm5vna7WsM85Kbd21tXVh27cfeT7Oaz/989/9p78h0snw2qUMAWIFYG6ae3xYd7U9s4l/NgMAAADMBul2Xnnma4UYgJXN9tqptZvv38x/qFqtvrV19tFHd++599q1a+9evfL+rZu3Dg46nZP+Hl9vXBtsoNKlVlfNpldv+NK/trLS3t45c/r03Wuru/V6K3OhYp/mSqOX5LSWN2T95WeezKb+lxVWAEqhuV3U9uzDfvAAAAAAjmReAfA5d/fH/5t/9Pvbpy7mP43O0cl7z106OTwpzJ+IdLsnnc7R0dGdW7ev3bp5/eDwTrdz0kv12ftTt7c5uFGrN9RKa6W9srm+fnqlvdVsrihVzyP9vf7GhlMPnF7bXVP5pv+vX3nr//2d/+ryO1lKgC3l9L/HCkBJNPfgjUyCm4h/AACAkuMrxcwe4PLbz7704z/6G7/yP+Q/jXqrsX1x98prH/SKeBWBL+Lr9ab/02qtra+fkjO9EsEyTPOp+gZh+DSlarXaQPSrQt567dT6ytZqTvXv47dtNvW/xJAFqOx+Y47qH+MBAAAwG1740VdPju8Ucqj10+trp9amcI4Did+o+yaj0W40Vgb/bTZ7P/7vvklQvQxBxaj/1nprc28rf/Ifv1X9tuUCwwCU3QMEZffcJTgeAAAAYAa88uzXf/rXXylIqHubd23XW/XFbQ3fWezceyp/7n8fv1X9ts322mWN//EIASqtDaARAAAAFos8UUA9qfqD//j4Z/5LVStAuLfWWpvnt66/fa2oQKBZUm/WT91/ur3ZzrmFwOtvsPZblSszDisAgBsBAACYP8//8CvPPvUHRR1t866ttdPr+dPnzxhVr23fvdPeXsmv/n389vRbNbOdwwAAHgAAAACmqxp9wXp8eLsYJa3U7n2nVrdXF0n9K7V5fnP9zHoh6t9vyQINFQYAAAAAAIrnhae/+uPvfbEwkVevnXrozMrWircQywDK2zi3sXXXdv60PwP8lvTbcy5GDgMASwKLAAAAADPgJ9/74tX3f1agBzj70fO9VPrljgXqz/1vbV/cqTWKkaZ+G/6kOCuFAQAAAAAAIzknj994+btPf+f3itTWNXX64bO+vC5KWxev/mtq68L29t3btUZhmYv8NvRbkqsRAwAAAACwAPzoL373lWe/UaTCVmrnnt2de0/VWw1PlWspwFf/O/fu+gagQPXvt57fhvOycBgAAAAAgMqRU0HuX33nh9/+dwe3rxUqtL2NsxunHzrTXm8VFWSfn3qzfvrBMxvnNguMUPLbzW89vw25DjEAAAAAAAvDc3/15R98898WftiVrZWzj57fvrDdaM9/KaC90T7zkXNrp9ZUoWfit5vfelxCGAAAAACABeOvvvmvX/rxHxev/Oq1rQvb5x7b29rbrDXnUy243qxvX9w5+8i59ma7WB/it5jfbnmOUIX4HwyADfLe0CAAAADz0pHXP3zzqT/9V1cuvzqN02u0Gzv3njr/2N7m+c3GSnNmqwGqpjbOb+49ftf23TvF2o9ut/vuG89978n/x283Lj8MAAAAAMBCeoCXn3ny+1//F9LtTOkMm6vN3ftPn/voue0L2/Uprwb40n91Z/XcY3un7j/d24tcNHdu3vzT//B/vfb8N7jwnBwgTQAAAABQTp76xr/cOXXPL/7tfzRFLbjS3L64s3nX1uGNw1sf3Dy6edg96fp4Uszxa/Xays7q5vnN1np7SuUIup3ut/7T77z8zJfm7tkwAAAAAACQl+8++c83dvY+8bn/eqrv4sv01Z1V/0e60jk6OT44Ptw/PLx5cHz7OLUZUL3/U3XVXG2ubK+u7q75v6hpRhn98Fu/9/R3/g2XCgYAAAAAYM7sv/Pi1oVHch7k5vX3vvNHv7O6furhx39tBuesaqqx0vR/VnfWfDNwcnhydOvw6PbRycGJbwzE9wIivpj3n6bqtaCsHzxYa9Qb7UZrveWL/lqzrqa/u+DFp//kO3/yzw4PruT/sjAAAAAAAFAK3nvrmb/46j9tr27e89DnZvm+vqD3dbz/s+7/Q3rSv/9o///6/+r///jZAxswmP+f0a7iN1/5/re/+n9ffT+vdq+U+vfYBAwAAAAwPYpSlq+/9O0//8r/+e4bT8/tkwxm/XuT/n39r3q/1+q1WmP0U+/9DJ8wE/zW+POv/PZbr34X9Y8BAAAAAFhCXnn2yW9++f+YpwcoE347fOsPf/uVZ7+G+scAAAAAAJSLAiXmiz/5/77xpX/y5ivfr3iT+i3wZ1/+35//4R+i/jEAMHWoBQYAADBfofnKT7/2td//xy8/87XKNqb/2f/0P/yTl37yJ6h/DAAAAABAJTzAm69+98kv/taPv/vFCjbjT77/+1//g3/8sxe+zRWFAQAAAACokAd4/9JzT/77//W7f/zPplcnuGz4n9T/vE/++996781nSvVdLCKkAQUAAACYnQfIXxlgwK0bl5/80m9du/Lm5371fzp17sHlbrcrl1/9/tf/xVPf+Jdlc2IYAAAAAACYKb4mvnr5tc/8Z//jRz75t5f1M7704z9+6k//1cvPPIn6xwAAAAAALB4FLgIM8JXx++8+/zfefu6JL/z3K2s7y9RWB7ev/eCb//avvvmvr3/4JuofAwAAAACABxji6+Ov/8H/9u4bP/q5X/7vHvr4f74crfTKs9/44bf/3XN/9eUCm51rDwMAAAAAsCQewMfXym+98pef/qV/+KnP/7e7Z+9f3Ma5+v7Pnv7O7/3oL353/+o7XCoYAAAAAAA8gPmYV9/58z/87Z89/61P/MI/+OQv/INme22x2uT48PaPv/fFn3zvi2+8/N3CW5tLDgMAAAAAsIQewMdXz/7Pyz/5k49/5jf9H1Wrl78ppNt59qk/8H9eePqr02hnLrYgqnP9XVpBC1VvTfz9P/gyjQAAAFAU0/AAYx79ub/32BP/xWM///cazdVyfvyT4zs//euv/PQH//H5H35lSi6LaywCKwAAAAAA82RK6wADfFXt//z447/60U//3Y988u9sn7pYng9+/cpbL/34j1740Vdfefbr02tbLjAMAAAAAEC1PIDXy6jzdf/n3J/9m4cf/7WHHv+1Bx79W/P9vK89/+evPPO1l5/52uW3n51qq3JpYQAAAAAAKuoBfHy17f9898l//uBjX7j/0S/c98gvXXzwM7P8jG+9+tTrL/7Fz57/5qs//aZ0O9Nuz2kctra15/K07v4lDAAAAAAAzN8DeP3ttq88+w3/p95o3fvwL1x86LN3P/iZux94Yn3z7DTe7taN999+7Qdvv/rUW6/85Rsvf69zcjSblpyN0M/88vk6BDYB22AfsBY2AQMAAEyPGXiAOJs7F/bu/eTePZ84d/fHzt392Jm9RzLnDvINxgeXXnz/necvv/3ce28+8+6bT+9feXvGPmqWWr8QZuwHWAEAAAAAKBGzWQeIcOPaO/7PSz/+o8E/d8/ev3vm/u0z923v3r25e9fG1vm1zdOr67vt1a1Wa73ebHWOj46Obh3e2b9z6+rtGx/e3H/vxtV3r199+/oHr1/94GdX3//ZHFtvgXR/5GRmZgMwAAAAAAB4gBC+gp+jiJ+q9C+V7jed27SdQI17DNJCZBQAAEBJ5Cw4NpevrQc/C/Fxpn2qrAAAAAAAlFTUzncdYDnU/6KIfsuZF74ggAEAAAAAwAMsm/RfXN1v+iwF2gBCgAAAAAAWUuPSMlVQ/8EPVdTnYgUAAAAAYAGULksBlZX+kQ+YfymAFQAbJLwHAACA8qheVgMqrv7HHzPnJ2UFAAAAAGDB5G81VwOWdbNvZhuQeSmAFQAAAACAxZPCVVsNQP0X+KlZAQAAAABYYE289KsBLjn+K3sNZFsHYAUAAAAAYLH18RKvBiRO/FdZ/Wf2PxiABNgHDAAAANiAcqp/vvdsRggDgAcAAAAAbEDpPgXqP4MNcHym6lx/l/Zy4Uu/+Rs0Ao4IAABgUVisvQGpfAvq34LLlgAMAB4A9Q8AAIANKLvoR/0X6AEwAMvjAXxpPu3TQ/0DAABgBmas+FH/hdsADMDyeICgOp/GSaL+AQAAMAazF/2o/8I9AAZgeTyAXaBnOGcUPwAAAN5gvqIfAzAND4ABWBIPgFgHAACAJQb1X6AHIA0oghsAAAAA9V+h1sMA4AEAAAAAoEqWgCZYAg+AFQEAAIClVatM/2MA8ACofwAAAED9Q+ZmxAAgwQEAAACgSn6AJlhoD4D3AAAAgKXVqUz/T6cxMQBocQAAAACokAfAACywB8ByAAAAwNKrVSi+bWmCBRXlqH8AAABA/QMGoCoeAPUPAAAAANmcFQYAgQ4AAABQOpEKU2xhmmDhPADuAgAAAAAy+ysMwIJ5ANQ/AAAALLc8pRGm3sg0wQJ5ANQ/AAAAAGAAFsADINwBAAAAkoUp0/8YgCWzAXM/AgAAAAAABmAxPADqHwAAAJZclTL9PytU5/q7i3RlPPmk/QndX//1kn+EL/3mb6D+AQAAADAAGIC80t+duZuEVB4A9Q8AAACof6iWAShQ+pfHGDh6ANQ/AAAAYACgWgZgZup/9n4g0QOg/gEAAAD1DxUyAHOU/jOzBBYPgPoHAAAADABUyACUUP1PzwYAAAAAYACgugagzNIfDwAAAACA+l/4Nkf9L/F5AgAAAACU1wAslqrGAwAAAAAABqBaehoPAAAAAJBLTRH/U1kDgJIGAAAAAKiKAUD9AwAAAABUyAAAAAAAAEBVDADT/wAAAAAVlaFsAKimAQAAAAAAgKoYAKb/AQAAAACqYgBQ/wAAAAAAFTIAAAAAAABQFQPA9D8AAAAAQIUMAAAAAAAAVMUALM30f/fXf50LCAAAAAAwAJVQ/wAAAAAAGIAKwfQ/AAAAQHYNShWwihgApv8BAAAAACpkAJYGpv8BAAAAAAOQ9E5M/wMAAAAAVMcALA1M/wMAAAAABiDpbZj+BwAAAACoiAFYJvXP9D8AAAAAYAAAAAAAAAADMHgDpv8BAAAAAKpjAAAAAAAAoCoGgL2/AAAAAABVMQBLpv6J/wEAAAAADEBVQP0DAAAAAAbAelyCfwAAAAAAqmMAAAAAAABMdPcv0QhLZQCI/gcAAAAAqJABAAAAAACAqhgApv8BAAAAACpkAAAAAAAAoCoGgOl/AAAAAIAKGQAAAAAAAKiKAWD6HwAAAABctRaZQJfAAAAAAAAAQFUMANP/AAAAAABVMQBLpv4BAAAAYAYQBbTABmDZrkWm/wEAAAAAA2A8BNP/AAAAAADVMQAAAAAAANkgCmjxDMDyTf8T/wMAAAAAS+y4WAEAAAAAAKgQuQwA0/8AAAAAkFeAEQU026ZmBQAAAAAAoEJkNwBM/wMAAABAMTKMRYAZNjIrAAAAAAAAFSKjASD3PwAAAAAUCIsAM2teVgBGjUL8DwAAAAAeoAJkMQBE/wMAAAAALKizYgUAAAAAAEoqVWEaTZraADD9DwAAAAB4gMWFFQAAAAAAgAq5qaobAKb/AQAAABZCtkJRzcgKAAAAAADgASoEBgAAAAAA8AAVar1KGwDifwAAAACgat6JFQAAAAAAWEghC9karboGgOl/AAAAADxABWEFAAAAAADwABVqq4oaAKb/AQAAAPAA1WwlVgAAAAAAAA9QofapogFg+h8AAAAAD1DZlmEFAAAAAADwABVqEwwAAAAAAOABKtQaqQ3AosfPEP8DAAAAgAeocjtUawUA9Q8AAACAB6h4CxACBAAAAACLqoArawPyfPAKGQCm/wEAAACQwnxkVgAAAAAAAA9QoQ9bFQPA9D8AAAAAspiPmdEAIKYBAAAAAA+woB+QECAAAAAAWB6JvKw2oMDPVQkDwJIFAAAAQKVsAK6m6gYAAAAAAKrmAZbDBkzjUyy/AWD6HwAAAAAbgPof0+DKAAAAAIDltgH+f2tbe0j/Aapz/d1sr6w9+eQCtB3T/wAAAAAQFLEldgKzWa9gBQAAAAAAKkQ5FwRmGaqUfQXAK/0iANP/AAAAAGBTsyWwAbPfpZBrBcBX2AsRCAQAAAAAkCi+Z+wH5rVBOdcKwLClSukBmP4HAAAAgLxCN7clKGEaogL2ALAOAAAAAABLyVLWFV7OOgBM/wMAAAAATNEAILgBAAAAACpkAErlAXAjAAAAAABTNwAobwAAAACAahmAMngATAgAAAAAwOwMABIcAAAAAKBaBmCOHgDvAQAAAAAwBwOAFgcAAAAAqJYBmD1YDgAAAACAeRoAFDkAAAAAQIUMwCw9AGYDAAAAAGD+BgBpDgAAAABQLQOABwAAAAAAqJYBmLYHwGAAAAAAAJTLACDTAQAAAACqZQAGHgAbAAA2RGgD4NoGAFgeAzC2AaU9GgDMGaUmOgnBBEsj+v1f/GsbAKAkg23n+rtzMx9PPon6BwAAAACYqQif43sj3wEAAAAAKmQA8AAAAAAAADNmniFAISOSPhwI8wBQCQieBq5bAIBihXdJziOtmkf9A1SFgYoabKZkWzCUXPSP/4v6B4AyD60lWQGYOBKHpQDUP0AltBQSCriSAQCqYAASbQDqHyokF5AOLi1AKwFXJr0ZACyBAQCoriZgmASACnaPeCqAGVKjCQCKM9SqgOfEn5AY+L5kkfHjQOrg54r802NXAJTmQo08qL1ul/ImTfWEDF1ftucAgAMNmgBg4X1FsHpuZMF9PGGm/cXzog+W5/MGzye+qzLy6QDmcqHGr8PBP8ePBB8vlXy3dAKRXyJhPAWqeYCKUdvam/E7dvcvGU+G7wNggRlPLvrD7eDHNACPdUlEAZR2tLZPnWZYJwEo8KZLFLvahawSzikEpw+C1sX05MEP628ApVf/9jfFAAAsMvHJcvtIHxm8g79HRvSSDO3jGcr4qcY/HcDs1XPcr46teKluorgnifQAiZMIqXoeAJi3+re/NQYAoGJEBIppCI/E28xeyoxP0lQHgNlHKJW89nR1ACKSemanFDwryz0eN9gAsETq33ICGACAihFRA1oFMBAQkbn2ovSBScSbtvxq7UdwLlMbLISagalKfNOFl3gBu/ye3+GbbmTLAgXT+QDLqP5Np4EBAKiwExjrgMheQJMGKkSjxLcpx/f4RrZOxv+b6G3ie4gBson+DFExlh3AwZtOu30//2lbbuH4LY/uB6imM6EJAKpuAzzPJkQiYUKFiOn4fGR8mj+SViVx32F8stNFtAEkmsnECywivuN5geLHia+5FW5aTDdUPEMRAFQP0oACoHVUSGd7DhsA4nP28SdYUqPEpU9kM2LkOMFg5UgGQ7sSKnyGFapA2si3SNLMeD7NuPKOBP8Er3D3u8lyM2ofNN3jAFA9WAEAgLDIiMcua7VCcNo+PjdvV05aRxHXRpEYIe0jLh+KOAdIa4lT7YuNx/NoH9Gqf9MdYVL/kTvO5A0ioT5a7w0AGAAAQPREpUO8+o/n6UNxTMkQ0zoQbT7yoHzPUFYproEAEq1pqsxX2uszKPezHTZ+x2mXs0xLZ5GXl7MkGQBgAACgvH5AawaCmiYiOCzxP6Y3ij8nPnsan1h1l1CULgIX9W+ZVre8MLKdXes5XbLumO4RbW4f02vLXIQYAMoBewAAwKxpvKTQBYuKCmqXxOdbhLvLgy6nBDC9aybuSxNDbhIf1x7Q0bpro48AAEawAgAAZvGdv6ZpHvGdSk6lOiyWAAq/JLTb04u6/jO8cLyNAfUPABgAADDK67gHiCgbu5KYgc5IzD40G2cCy3oj5DHMs7moXO7BxORXlMwDwADQBADLpmYc97wGJYs263nwmS4B9DNTEnneSLvlAA1UTdFfYCncklz89g3Bjve+9u1YNwNYLtgDALBcmib4ezwAQLuD1hKLHM8ItOhpBOOtFKzcRLzE0t8jlrpyiy5wLeUyXPYhuHQXBS7BAQAGAACK1LVxgavVQO6HLbxkaTlbD/W/9DiuZS36ZZzBqJtaxtSxcKcALDiEAAEsssT3Mi3Nuxc3XWLRD1CR7sJFrGfoQ9JmNwKAMsEKAEBpBuxIYG7hSUUKNwnLgTZhInOcS3xzxb/3as4dTOPI8d0FwSVHbi4ADAAA2MZmS/ROOdX54sqpSNp1opyX2+MtQRRQOe81y2xFYs0yAJg5hAABzFxrmgr0uATzlDYXxxJMpsaLrcJy3HTuZekWetagPO3s+Jz45iJuOgAMAMDyKA/tfxnwyi+t+Hb4QmHa345LPwkARUMIEEARw1hw5nhA5JElm4OsoILMFqtAQFHOls/T7LBYRKKztNFE8eqEAJAJVgAAipApg5kql926SJOSSxDTI9kmI9EoxX4dLvejxbPxdSyE2bY8Huxp6UsBMAAA5RqxYHG/UG2pYK2+5Dop1Z0V/2rihX75IrhOAKAPIUAADDmQ8vtNFX7ArHMG0jaa47cGy33Dcq8BOMMKAIDbGBMP8oEqy9Nsxde4fqbRSoSDAx01AAYAAGB2ajWtc8AMWER/tqB/AABICSFAAGgLmJX09yiBZG2Zwe/YACjwJuVGA9DBCgAAkgLyXSQu9Y+CehdForUBkaJ4hbQ8ABcJgA5WAAAYKiCrZh1EG48De0zKHsWfoW0tN+nALYyjhrhtIZUDBwBWAABQ/5D3grFsOtQmprRcact9ESZ+cMfCvcEG57YF+nkADABAlvGArBGQn+AG38iDkX+a5iCXPpuNZbZe2zLamgzM4AJ9PkBuCAGCcnfTUx3sGQBg2pdT5Bq2b0ysgrS1mJ/4ExLrsgHkv2enPcpgWaGUsAIAC6IV3Ad+x2eiJGAaV6x2sA+q2/FzItOQ1bkgI6FTYxEWbD1ta7B/GmZm3fMMGWw5gEWAFQBYQDOQ2OfGe2pteAZAIVemZTdqRNHGtwvHf6nOvRxsseBe6njbujc4QE4PYBksHFOLIvphEWAFAObd7WYYwsf7BSO/FP5GAC5XY1AxRGLZx2mCIolrPC+0FJDKzS6iqDJ9xnEjBK3RuK0ieivSztzRMK9RKT76ZBvIuIYBAwBV7GS9rBPzg7GfWRYoodKNuILIE0yh/5atw4t7nVs+hen+1YYAabU+ygnKc51nGI/yjIAAGABYYJ0UnzR1eW18TpGuE8p5kdtDCCxaeck0rima3/3JZPyEMl/b2UYl0wjIRQ6zgj0AMENMO/zs0yfBFX9m/WE5dLCL9Q3eLwt35Y/P2XH3jn37L8CijHGDKz/xBo/bWsf7BQADAAvvBCITJ/YqqsFeFWAJnIBp1t8xWmZRlFDiZ4mE+wMs+n2deM/aq4UAzARCgGCG/WNw15RjUG9wRRWJAEvjfk1uVquPF+7iN01/2j0PMgiWxglYxizt2JcqpwUABgAWTPe4DPOR3hNNAMunDywhv5Hrf0FvhLG9ieRI0X7YyEsAlmnUc5/DiiQHA8AAwJKIHpPiMXWCHrEBUAFxEJzgj8yFO3rm0n66+EeI6CE29sByj3rxO7qQURIAAwALpnUc1XyezMpQ7iHR4ZHqWeKIaHZ5Jp+ROwIW6C5INfbhigEDAEvV/bk/OVgyCVxlhIykgzjICDG8dupGMHYCKvC7VOum8MxlgOMJcxfU9pskfvyDV+h+D17w2jtixj2G59xjyMx7jGW53y1V//KPmwCZIAsQTF8EZK71W7oxWxV9TJX+CRLW02Idp7X62/RXsUr2VGeoDP+U2OOiO/OZyaAS2IBgkqugXLAoifJrHVM/EP+MVdT9wZsieBeIzierlLeb53ZfJ56V3QNEekWx9hjZOrqyddfTuS+KfQkABgBKpG8WXvrn1KNiUOr2gdA+EjsO7fEDy0RvKLeztr2FiokYFZP19lO1zP1LJTyAp0uYYxn1yy8IHE++ckt8kvLi93Q9gNLdaw4dhYseHh5Soj1Q6o8mzp2b/VUqh45X5b3Ts70EJwBTgBAgKI30X9TxO8+TJfzjxSJ50p+mJJ2U6N45HkOkTEdTsQN5SSsPkq5po41TyTvIJQagDDeayxlWdyu/9RqWbH2O5Y5T+vdXaW78xO4qe/8phpOYZZfLqAqAAQB6qxQoh0e0+jqr0RDz46YA/uCEYHzM9ZwnArXvKOFnDB/J9y27mh2p3L3jmApw7vPojlEKFd3V4+B7C3C4EjiI6O9Zx102ytDVBP2FMvdw4tZ95TJRkrt/ZjwFGEIIEBSqA8baZeE7rLQhKJLxHSS81m2J0rdv2JOYxDfF40iOJgkOr5K7geP/VInPVkt7B3m6XIHBQPn4bgFv3rEBpkK/wd388ScvuZqR1H/PH++mirDJpjAcZdXxjlo/Hq8UCWVKfZZp++cF7zoitz87BAADACVS/94SJPaWgHwuTvSbQvodV97zDOQytXbyKrF5b25GOng3affOqvLtcTSdcMTAVLernOad6JX+4I4JC1w3Idh3HsetzOI7gaUaamH+EAIERcxMjAf1hU9epqwjjTl0VRthr/1l+TRNho9m31pc8eXuyDKaNiVo2QZ+7YkFq5uR2NeuPGUm990CdSmedWOUmJpDkiZUFln9B3sD1D9gAGDO/ZH9kWWxOMbhRFKNUsuub1KN7u46SbTmYEnlT2SST6v1S7inVntKkfNfWg8g+tT+ktLZSpqbqIIdi2kjsfE1Sx0uWImRF6YLIUCQQ6YE1/eXpw+K597W/Z0u165LlNlMifNxItFYwxyFkSSJaglvrqCGTpUndG4eWek/xfJP/MfC+8aZNFV6vV7gEkHVup3oXgLtVoFl6S6Ca2vB/wKkgRUAyDrem0p7Lv5nK7H6l4VpQjGkK5SUH9eUJdWYK31JbzdvQZJpjk9y+eVI7ApMleXScsFr7xq1WM0yJyMm2aYlFrNDCN50qH/AAMDsph88XfT/kgzqgaFbzMVqi3xTcTiZxVEB2haTwo8/0JrLviITTwTE2ZbiEleBK3AKl/eixhMqc30Bl06voHaLThbIlLdLz2kIjlTXBkgDIUCQtetZzhFdaUf5okcNSfNgPBUfkz3B6Vf3rE2W730RzHbk8RJmAYp7gMW467PJ3P5/lRCcY+hFJVw1wKUnVEV2Dp42x+jyhg56LAVAOlgBALO4j/8zkqawdGO85MpKI+GJf886cuU6w0Rh4Y3G0ZzqdqlR42JkYrgM4v8Uc4OX+ZPGJHVpswB5izX9rwzi0XIJhS8z/HiiRwpNrCSWISy0w4124zJatPFy5F0q3/57L7zlJnEcB+jDCgCYJw+0GcfL231I+m13gSjeyEBeWFBJqqNoJ/vjZwZhqdZrFUn4fhe69YLJ9cs8yRc5z8WWrdr7V8ziEjxdAi9lXhZw7DNVAR2FMvWyqfIFlX4ZNq714zXF2TEMGACIdW6xQoOeFx3Oy5jTw7TQLEkjU7jTVFlFu9MwpsK5KkxDi4R/SVWSTFntkOkEqjAMSOwrWMB70xQLVObzXEgPIMVOACzOR9b2VMqth3FxU+M+Tax79+M9VRG3beQY48VDmw0Qa0NlKWI8u3swbsWD4zvqHzAAoJk/0GYbLKPo9xwCTB0GvKkM95aRIz7WauenTWOtWL2EfSex9jnxwX4xYxoiI3jU4yhdGyrrIUrpz7X3aal6jwXQFmK+xWIXidYsL7A1kKSZ+Pj+feNNFYu1t/ckyvCLxOp72HuqQp1ONHOoSn84KenkwriXiNtyDAD0YQ8AxCYP7H3KPIcul0KPnrWar0x6akmaiso7yFgy4aukksMuY7bEJti0LeYlnU9k5FOGAOhFED6i+9Ay2L4SaGGJbfmwrR2VYyyPRPqWypbHz6qkGUtF3yGEdjSNc3+JpiLIYlSfi+fcjacRU0nluE3dSFyOxzsl+7SKpOwVp+O9JNzbTXpRsZ6k/boqwT6BxBEc9Q8YADB6AMcH5zZyZ35yIK3nJI1agcLTRUeq2D8jub7tqlQMI71Lk4jeTEVTaoph7F/Mac9Qrvbwlg8vUlLA07msUlr0SO5d7ZBf1DZ997cIJgko6aWgNPdU6EoIhkws8FVvLpgt0dSlesnqmNrIsVOSmAkR3QpD4vSNyd4U0k4SqzEypWGo4kM5YACgXINFeFo0Mnu3EOWH0vbJqqgD2SWyNg9GbC1CP6kfSwYuKU8t8iaeeXJKUh423XuXRvt5Ye9n9EIlvk8jYTbjJf5UIiC/jNC+++DEyt9dWL7x8UpRuTygpF6hynZHi6HHSKtpJe4ExLxcoJ1AsedAc+x+U13niz3RYewuIv+MjPVQbdgDgPqPb4cNVBcvkWbP9DqHZB5p9GN8+NGOJJH1cfcje8ZJfUlaf1bmkcy+1G8KZNVunRWJJdW2t+x08nxP4zqahFnJ8L9lTvQRLwsQebDYqb7Etyu7npDAN+twPci8zzbZXRvuweBWWy/ppvaSNgLE5yVM3U68V1CeU8/mlBbZHlZk2nWQ5haWpLFDZf4eVSm6i/GYHhnxWRPAAEBFpX9k014wUcBiqX9Tvoopbu3Vbue1j6uefn1cHOLzleHxjBOWEoqEmZyaDHdHxD+W/iSzbb9W07lUissToqZ9tkWL8siugCkN6qbjl1pDiF5Jzv16K8x5iO1i1pQy9DscpXu19ROJQeWbdtS7JBSQSPZee9lw5ek7JtNshyr+q8hYj7EEUwnjMV1bqBsbUFUIAaqM1rcIiJJW+EpzDkon2AqI87Hoa8vbKNcPEZ+cSxwHPd2Cubh/HFN5LJ3YlZQnlq5htSfgpXkP+0GKUdmLdF/PIAlP/C3KHkigptAvie7yS7zPJekgkuuk7Despq90L3lm7Z7tN5/lxFIvxag0nbAYwphyXEEq87SAlKWv0NYL03YaBAhhAGBJsM/olzF4V1I/XXSyNu8Y75lz6USzSOgHVOUsTuJzZvb6tk5jsueQzs++wU731/hwLnla3uRJlLOcMn2cPN98QephqiO6NlFvJGFonps68nJtQcBS5/uXaLE/yX9AlfKa9GJ7/TOFrVv8wuTNLakITKkFtMGNytCHJJ22qWJy5KjupfmUZ+gcPE+fx025deNe9pbPeLAy5exKzNjLmgAGAJaHeL4Or7QJ+yRhgDGNSqrAE3D8q0MhGHGIfZXYGKlNy+k06op5ot60qq7Cg6gYTJVOXot5F4Nn3UHo5BbE8ONZ03Sogi6BVMHKMoc72qU6WM41AcvLI/EDc+hDUn0dUtBXpJJSxFguWgdlabpTtB9L3zOIYY4/3oEqcw9micwRp9kIUyemHD6X566zldnDTPM+VQ7jUdqhbV5OwC4PYKlhD0A11H9whB7f3vEH5zyZJ8l/VDrdX1iSenEbY5K6fG3VSe16t37UH3xBKq9wiZa7t9sp98aJFRgen6pSeh/hOYz0hVm4gip0SrCCmLuqmG28bxlm6WZ9Do6B2OEOQgq8rgrt6iSxN9DdfDLeqxO52lUalZk4oy8OF7VDpz05VS+0/cAzF0g0BfknbCxWDl9ZcQXFROcEkmuCzXtnUTyV8HjcD078UzIMAwDLoP6DN3Y854+2Uyib+vcM8Z8y1XdXTuv1cUFiielP8amTRlblrIvEUKnTou1T6N1Ac4mLeDKr88JGRtEN/yqpBV00UPwUC953kvrWjkQBzWDA1r7vDPVL7PZUVs3qroaVzUIUNMeQNEOcdJuIZ7gCJcs5qDTvb3deribBoTqKWGcHbKdhqlU8HRtgOrzKdr3NvN+ITP8F/UBcOcAyojrX36UVlln9ayf1y1ZJ1DQwTCfM2+FtlNOgnTrdkGT5MCbNaX+1sob6x58Z39+WekhT5vFZDIkJzaNglmwbGUSkwxM17aCyOaep9eJq6vl/4gLCK0P0v3ZVyvnKzzANkeEEk7uIxLvDdE+l+TTaG7zADsRLssau95jzDeXURST25KrgfiVFBeEyCWuTJGAdoCBqW3tzP4fu/iUMQMUMgFfyXXpecsT/jN40Po5JigNoXiEpjqNM43FBAS2OQ5c29XX8DFXas1NJ+ZSsB1JpvlWVeGLKcak+pXdQ85zVm9J+Pvtr59arWKVrxt2Zxjswei1JygvSdv7K2hEpp2VA0/0oBt3vzazateEmTHf/6RpdmXvg5OPkcx3FTziUWFuPlQMGYPE9QFz9e2wCroT6D0qEGSQKLEr9T+WNJNeJWbamyXjnaFK2CNFJKAnOXAYPonSjly0PiHmzrNhyiJiycYq5BcSt1lnoLbQBM5Y8RZIugFu5pBGSmFeQIi7YUqr/nIP39I5cgFvN352IeWuR7t0kg/oXQ4p6bXRLZNuPW1Sksm6PF3P2UWOXIubMYKakQNruKH5+wa5GG39i+Y4CB7H1wBmCLXOOFIsyArrd7/Hy3h4bgqcowef71qwALLsHKHuSPhUK251p9+ocviPOH8H9Q3uxXb/RU1IZjz8NsTUZBpIiduINYwz5cf9cSt88jkXQVGKQQErtrlL/YRYGIFLrZ9pdypyVQVEGQCUE+LlcWp5hAS3FCano7gXLspuLFw3dsPPuPWwZjlV0KkBlPn62O9JlFFBTaZjM/c+M+xZCgApl9usAFuOBAVg6uR9/MHgnl0v9T3VCxDG41fq4ZDh+8O8DtZQg/91Or4yDQ+ox1LLob4sHUHq9lXHEdZEpVquTEA0y1/wenmes95m5VzEduST9hqtZFsMX7RXTEekvTkl3qTtWyMruNMrQaUhSHxGO9hnYGJXjDlf5RoFi7+uyTR9YdH+wV0lUGrCAYACW1wyUVPcbRqxZ5PNxlo225yYpBhXfCTD9bznSU5us4LR6bbcdexJo3KhaCqQQVc7iYAqnmfGjlWosj1fqLXAPQFl2/aa6vaSYXiTFi5VN/QdTecZvhMGf1dQ+Wrbv3TMXnvOmHQym9C4r1T2bbp7dPl5MyQmUUlLPOMEAzBbSgKL+F139JybaUJ7jiJpwJNE/0wvniJQpf6eeeVk2MlkbH6HjF4bpChm/hZN8FNtQrVEMEkgQPlokEbvOT8gHnv2SKe6puV9VtPS3D9sRPef42nmuAMh0X1XAl2ZNGSyBDPeTe0RilQrG3Yj5bkrxoSR0L1sUXvwJ2uebvvr4WxSmF7WbBJQ5S6mui0hXq0Oso4YUk6RMk8O0fArbVCUAlgJWAJZU+pf4FIsZ1jXS05LVQVKdUbg7lqQGj8zYSfbvTtu9Ssl2iTk8yZDKMPElKu4jrC9JOcZmH7WtOx/EMc1fzooEKb+jzKtA9hcWfDVKmlbKcI9KxnORDF9QqrycjjsMvJT7XRakx8glJWP9bcKhrHepcrzxXbLGZf806Xu28o8CsACwArBkhk4t2IZ9KeqVppTXkundzSV+tdvYJF+p0ai6KvGeMO1ycHQ4t5RAMykYCTXxeFrUNtIktlKsMU21gFLMCNrO2mZp8jqZlNLfM6Tws0z5jx/RxvxEjlZYJ6Ocb3alXzbMuUtHJYbdS5qLzT5NIG6WWJmLaYtNRpez5xfz3HtGGxBYaI0vHnqW6mDmwmpOVXuV+bvIsSwpCyD4Uf/LCmlAl4tSZ+2dUtB/ZOx0mC2LZroT0x+iLxlr/aBSF0n37Qx+Cf5Eh0n36UZLzj+Z+pUWPHORLNeA7UONhnkRc4I/sWZAjAzbYtTuOVtLI+fsS09ita/F2TNLzl9TbI/2mRFjUJjQlKRmiVvtAhSX/nsX03ekzXQrustP+8dITk9xvgvcvuvxf6eu/iXp6hXnW8WLnnmwJ0x1gQXTHI17ZmVJ7Sv6TlLs2YAjG8fVFFt3Nr13/vkFWApYAVhG3V+6WzTQs6u0GlWcqzmKLsw2diTN4n4wD7cpa0cwMDexsn3s2wmGUSZ+0nErmepwjZ+vxrNoEvjrWAUG1iWGccCDg+iyaUqkzK2pyJBBcXredMJ/vcmKfwpBp5Im6gxr95kD/qMvl5SqThXZFVhCgHIetuAFRpXmxhejecvwfSmLxxCzTUzTealYHH+BBi/xQVu5vvj9HlwlC/QSEz8Z6VhGT/PGvUrg7jNVIgt1PqYlNYn2mSk2IMVmZEQlxebFTsaYA8xUVi1xHcChT4l2XTLZUVaq1YF4b89qwILDHoDl8gDlEv26XArZM1OLoTy9dT09OXTWno006+lmmREP6Pgs+kbMpT6TummXIsgaWekwthWYRjohTVBB6jNPtsHosxJzT01z+NRG+6TdA2BJ/DKlOQL9panS1IPLXNZDivkcqrjmci3kElHwhplal2K4nt0aZd1GE32d0gVtOl/S6d5YkiYRVEKvmPBC+8CU8WQ113/ZQoVQ/4sPIUBLIfdLof7F0H1KQqSG8WiStE6fdDh93gzH+ft0pxsN77EfdvgcCa+ri6bmpu2UwjUyxXLa2jKfwdqcsagb7QecLGLIZLJNrO0ZX+h3NEvxLEYSWOWQKVz5LnuVU6j/4G8zHykjcf/2lN4uzmE+43249VSqV3kJMwKFd8USkGqO6VMtN5o+ODB2lw2fpiYdi6ULisQjibbEr0s94EiRY1O/ZO7OJdz1BbtEW3+eIUzIUrzds44I4mYMxTwweV5Sh247WQmuuojTnnhECKTtYVkBWFQDEBmny5afO+XfdRNa1kItrqUx4zPqKml3b47ymZIU3euUFMdwnqagIIv5sj+Sfj7KODOliShImrKKZCeMrxVEVZR1DjJ9TiDbK11zg7g1nsyp+o+ybri0rwzMdIOpJHxfUlBefMfKHlmy/ljW3zz9hR257BO7jsiCkujuwdTdqcMETmIfYgr40b84qVzXZInA7cJO5yeD17y9QJh1rUNZ+haVVIsmpf/NPx8xve4l7eoiYACgeBtQOvUfrmyf10UoTSC8TdinDKPJvAHL1v7hFeHI5odExW/6BKFqQU5JTHSjt9LFCMWGZ6fUlva/O495djNgcwJJ+YLERc1bUwRmLvebuWjRNAxA/q5mLtMH6Qo/W4sEZ1PGlutHkkoLm6ZpXEW/yU5kak+xN6ulT7Cr9ZjnN0X3SGRlzHpvTDYMWCOFsmx3Uenvv9hnMNoE5Zy2VaU/X3uq6zl5AKQ/BgDm6QHmLP1V1lSb7krdOheuLAo+vOnNM+0qlOLaPJKiTtLLHe3u21l3C5rT0MenesYZMomPXkl6PKj7XUuNqmRN4qVN2G/5S8qdFa4OpMoGwE1/p45Wd++Ckt402WuLU6MF1ZJLMoDIHIqyr3Ba9llJ6lLoBXcmsdNIXcd37J0Sb1iV8fSUzh9pvm9lnD0Qe3fh4CuydA8l2B6A+l9YyAIEhY7frgO2iy7TKWBjauwkqa1Mp5yqVJBD/r5gHLDm84pOWGgTnkiC53KPjkgd/6NLWTj8V3C8NCfYFp3LGiTtVuYAIUuipMgEqlb2SXgCUulOMCE6SZLyAmUqLGV6u2AB6ekN4YnhPRmeWWzXYWmfLBY4Uf2bqzooQw8TzRNmvussBbYT4tfDa5viUjBRd4cOfhPrMx3dkEpTvi8hf46nO9VxnxC8CUQzfyDh/EIWyZs6O80491rgDW23fGRpV3ehKvcZLomlrrYa25w9EkDkDmYFYJG19xxvfsnxlMRFUuU8lrudjGQ6f9emluQpRkkzceglLiBrKwopg7mKN6wkR+q7TE4lhOW4SAfjtFvKqabwCKpMAQ8WF6QSzjblH/QNk+k9cvfxqqydTJpCXdkOJc6vEvskReR+TKw04pLpP7IrwHGVwxxulGhpkzsTSeo3LP2MtTNJFQsX7UXss+NTWA1IcVM6JhNzqSictOfKm18fMu1OBuYEKwBI/+mM3Al/EN38hjXNnGQ6k8mxMwXVGNtZzC5GdAO9pCz+I6PpJTEMIdpUP2MxEdsmoW92GU3JRwXO6H+V7VuSsAJQnmUqTP95QxUPHJSEcXov3A6inFSXUSilvRGS0s5oq0cnPG86K/tp04AW2WM4BLZF2kdljXfP24lZ7ETiRxDnRgj3Ia5eJb6MYA7+UcHT1opOL9ADiO1DqfAvli4l3j6i9DemSjRjoz5Q69XHqzHKsHXYkvzK5V5VKnsPoO97lc6/aUsSqgw9zTxjgSgLsJiwAoANyD12WhNgeMbRyTNMeyTuYEtrRVw2KsTKJ9mlv71l4jW5kk/P0LBeQG1P4gq0E/mR9kzcUW14xCXa3rPMWKnQyr7m2S5rDm7pgxI+oLGigflf1l0NCRbT7Y+ZtxTn6uZVWXuYpAw8kvLlCX80RMwnvCy+IcDch0hiP5M4o2EpnyLGDVHui5wiKXoDz3QLm27q2CZ+vXINDxguE+0q95pAvIdPuC9UitNL8bBKPya6zpLNzQAg/TEAMDvdP5+8n5I8q5Uwtrn0VvbgV0lxsi4VeYJTF/aGTWh2sZ2qRCL+DfJUvIl6dkyAoh3GTGkH7Xkh7cObRbYqyzCvrcKjrUikXAfy1E7ArCc8S9oi0YR/ZI4FUi6BV1OOAkqUPils8NSkf7oNq0n7ZPTSX+mX6WyOPZ/u108cSEIFPkstQvvCY/TlzmNKhh7DVUaPbzqtpI6YB0vKgeCvKku3EM80oBzCDtPNrdtzqbmNeonpiROWCedRe4R0QBgAmKLu97x5SH8xqlWn+aNUaRASk4emLMuV+ITklHzidDKmkThDthDHoVpbwikycme7VJQyDuS24VDpv1LLEzxrIL5y21GQPSm4faw02ZJMHiB+Ayn784oeR+3SzaTtZtOTeIbGyTz9L8mGINfkQopWGu8xlYSuQ1mFuyQ9ITrlodJHKLkZSFNvmS0jpHt2L+28Q+Ldpxx8gnukUKoZE9vDyvSlJh/NdcFgaj2Jiw3wWBPAAMA0DMA83jjDX6wTG0lzfe7h/saEdwW1pEseT3F+0PGvQU1WnvKKJldgWdxXKhb1rhzGRdPYVuBuPxeRYU785xW6+O6eHL3g724ufY6u5EUh/ZLRXDimBy1c/Yu1Q5Lkvi504vZAQZnJd5dPFCYvFCStsCnnBzNf/8nPTEyObD+T9KOhS4cwr0oj0+hzYIawCbjEcr8U+k/0ySudOhZtsKnElLrkOrXQAOmm/m0Z+lXS8KlLupeoJyRTslHbORgyio7/IbpZmajOVIbdme4bcAdvFMi9oyKZSZQhUEHpWj32V0k4qdB3mv0Csly6hhUATVh/+sk2ldpPF9axFNySObS7yvbRY+XAlUnnu/QzU5j7d0n8lbhYGkooLLpZjmwbkSMHUqE8m5Z+I16H2IuXADecT8LEsGg+jQp7Hok49vCDynxTR99abNUGEq7/wPeqVJIHcLwRtKOhcu7+PPPoPL8qASIpGxbmYdNYASi1+p+zBzDE/CSM2ZI0tiv9YKbcBkWj2nYIl7c8riz1egPnF8nun2swthsSSWy8IpSuaRT0DLn/7BM8yroeHRmZPE2cveVVYh1Iso8uibFAnm0V3j2XqJMHyHocx2+2KHVbVJeSXX6Lvr/J3nsUZAAmXbe79BdNyUJ7D+za1YQ7VkkbQZrJ0xrnr1UmwW2JSPT0+X+UvePyQu2gVKabxb10umdcQtToc5W0B91LiC8SL7kHnrXGVPotJYABgOQBppz7fSVx1kul27CbRTFIEVP+iRFHsQn10JR/prB+08mIN8ng6TgLZfm7Jam3BIV+mkEiHlNrieJVjg96uoQbiVmxHT2JmwbPs8c351irkoRFZjUWbxztNl/LL7k6EGXWo5JDfrtX+fXcdgkXNf0vbpVPEkuJeYYdvY5djaSunCDm6Q+n8nmea8T54LYNzS+kuYWduhoV6yWs0tkWmuioWU2pDhw6hHQbi5MKraiy7gz2iAjCAECG+aRSGYCEv1iGfNtomELdptheHNvmm0Kja0t4xlctnCfn7A4k1T4KcW92+wZta75Lse5XS8zPo+wOQSUNRip5bDaNKFmGGZfdwJ5t9LUZAHGN35WIXpnCHr65rQCIZtpT3IN/rCnGxD4H4U1l72+G/kQcPIn+A6YKJpTYhijPEDtk73Ldc1NKrhJ7lv7EqL8Ny4zR1MPKkMs/ZX/iukU4MVtA0h2dTrhnKxk2PwNQTF8NGICltwEqMQx95gZAMkSeSMKAnqBlJelVOWpwJuzJC34FnlM0v4jxe5RYbSxJE4vsns9kcPT+wUWp6BGUi74ybwZQWnUeXENIHFYNsl4lGgDD8+xTd6Z7KmGsylr7s6hFgDLYgJlJf29K0/+OBYZdapmL5lrK0Kt4Lvk6zVYh0VpElw21+5R0tVokqWeIGOR49+IiY1NlvFWxRTBLfiGnWYDA+oCIcbnAZdIh4Q5K3BmsElyTFCffSxgIlKo3hpnAJuCyObLwklmp4n8KUf8Jf7fW4BTPyYikCPgx5OKQ2J+MU/7hXlYk9rt9n4Ap/NdqEsKRFEonKZRVKklwwVpFniSa05vMDI5tTOSck1LLh6YhA2O8fmJdJh8rWMzBceQILrm4J/yWHGJbv2biPOJK5LsQ06GLGYbtdQCK7HN01X+zqP9xY+ZOH+SYdyB+I6dqFpHohRD5KqNz7mKbSnA8Q6MVMVcNj34ztp5/4vVFND2JBPsHU+ejot1I/AqfzLhLdLojPhkfLJyi4t9X4DjBd4/2Zl7se7HuEk68SmW0OznVLv/US2EZRliZ5yIAsUAl1JusAMyZSOht2bb/pp77T3qBuL1Es98gU1R9UIs4DZPaIyvbOoA4iHXT57VEAwezTYQrhKW+tBKfqJQ/qA+vuVSVgLV/0u4TiJ+MCudt0azga5Wk9nHz/kL3JN+DwyVX/E21+J5y0s7LdwT3eTh3+VvOCQXJ2v94biW6PbdSIfq0AWI4C9HNHRikv/4dxXZMtzYK3ulKpNieJDAZMOyyrItYkZ0/yhxQ5JYCWBNtKK6lzaMrkyq5bIdjYlOxFk1PV3Q8ZVYffTzn/GY2tZVqsAQYgOqqf7tkmUVJTqv6n9GQL2bl7SXU4PTMG/JMaYXsy/HaYjr6uP/41KAkZSQKz5rH5mWUpJQmWrng4h4dtrhNBvLQ08Jr9NEQdsOAGh0vw6n0IkfTDoZpPUDaTx263VzW4iOBCrm1uz5AYAqJ/OxpQAvuSZT2Os8b/OPFl8uSthQEb23LviD3mZcU6t9aJETb0YkYOg1T/6bpd4YRO4kTB46f2jQ2aXsk63SD4TpPqhYiMT9g2mNq2Q8giWGHlrofhhgkSbQZYstlNIPpgLl4gMjMpsVO4wEwAEsu9F2KqEcE5ewWAQwjaMb0fGmX6RMT5ImmfexDuEboD56fuMM4Fqw8fty+OGNSA8ExPmIh+lP7rvNw2ueYzsf9yjFlgDEP3r0ZRNPWOqVT7VobIGHpr99jYJmrs87eZZG/gatCc6uazsexVHCZ1gGU0ig/pabjAaYTTCiWr0fM31rw0ynrvIPzidkmFzxzd6pLI6afzjBELRoWRQf3phIHue+lT/dk6mdMvY2bGRisSIS+KaWie7EyrPsppUsVKua5hrDYV0qf+SBx+iBqSFSKZMdO8l1ypxtOH6OYv8+Ja5sMAgkwAMtmDDxzofVZRwGJvs5LNumfMNhb4170tXUt+fItKfyD2t1zyKijEwGWqmGm89HF9I+lcwrFnxx1qnRKLta5D/9kzRKnfa/IJF+gRxb9rlmlH7GSN/CpkI63b6SbigfQjZZOx0sc3Z3HbGV1JtPeCly89HdM55V0eees4Ov+/GLUv0O35pJdYDJhIbpJitDBlXbTgunICZUQxz2q0n+hmt5GOYk/Bz8Q7Cd1mQPEMA0vTlE6JkcRl8jKC7mI+JPF/L76ZcbEbs09tjC9DVCWZA8zNwDx0AaEPgag0gYgvpw60+n/cbeeYYrOZWjUKgPToC5ppLA1yD76VtbQf7EIDnHQ/fE/Rdfi8+ktSfPVuGWfFPuMlLjn2pfo8rol54/pmHHnYNbEtjwebsNbqq0OyfJbuYl4ty9llosAU/cATsbfVfq7q3lbJJ5k/ewWz+/pZb1nKRkuhjeVhLxA46Tz4v5BzNFXbkUUM/lYlfOaFE3QYKLcF3PYYfhOtG1hCut1L7iA4LZFwWZ7lFXWew5xQXnqgYwbYAoZxhw9QHxGDwOAAai0DTAFc8/IACSMuamHec9eTzcp0b6XmA7VPhIr/WycaSRWzsk3LPP9usm51CN0KCwyTQCVRCZXLIOEaALrI+ozEj5rOqCKJ7lQsek6TzO1rxnRreI+eZEhNi0XjRCQFMWMta9yrxHmVEzART+lMAe5RuXiOxx7lasc6t9LJehN336qWzvYI3m6xcak6Xm7SYjPF+gXCkKLisoTp/OX8GZWbSVHZSpL7BkPGOpnPNdLWhxcun1+QdMDpDmOPmTIc5h3iLxdmnkHY/pLS5kCSdOxeFkiDGV+uwLiagcwAJXT+vHkP94co//TjtAO83yOw7mXoZ6uNeu2qUiwSylfmwiwrO+H3iu68S4qsMS210JFzt/cJqkCtKLjdPo8EtbhOTLaiSbEVkVHa3tFYW31AOOWQc+4b89l5swxO5CTvi9iqFYGSzuNcXq6JUdEr2Qka6/iuWXuSh0g5NbJKOsJaLf12zP6GzP8BOcUor2EMq4bGD5Ulhxu9m42qaNQSVMPxuK88ZqDE72oS0hgLfWlrK47cdLB05botu5UztLJqHTFlQtZG8yfriCP+vd0EUGeR14gDMDyyn3LX+eT5yeuLyR9Wu7EP9rX8Q25L2ytYZb+2lVyY3FN86hsPGz43ZVmXV65BPWqVGE8XiAYN+V4nND1K32qcqXMgiAyFJrK4o5T2euKiCnPHB1kmuTzbLuKE9OGqOCHjQ0wDqmQNFYktUlI2n1hH/cl6ZPmUf9T6X8kdtpe+tK/iXuKUpbUtXfC2v5HKXNOT22PlGbPrjErsWjqkARn/cVQS8TYvcSuOhGNq1GqiPxv4Ws12He5hw+ZNviGPpLSdAWmO8Xinx2zkClTfGN6G6BZCvBiUUkWU5Ra3ZufqGa6FdjSGi5KCTAAS+IKPHMyrKnbgEjhJZOozaT+Recr4oeOJ79PzkNi3nWntBFE9glCq1IPjaPxVH1euDSOvWBQkq3KLu7FMlds0FLaC8BhkLD0v9rcOMGNwqF5u2Da7/hcoNL8Ypv1d7MBTvNwLusAynUSLn8cf0T9BiVRsWPhNFYAQjN5kY+Q1v0aruXEpznKWMundtoPYHgv/WpATL5rJukl2Dfqk3jqthgZP+i4e0m36UKZe4/EriazSUiUquEhMtzJ6KbwdSmGxbItODhJYTjd+JrApI9yy0kQz8EVuec1yw46pZ6zYLDGLMlU6o6buh1LAnS0PgZgqeS+Jb9VXDLOKPhHrMOq5SXKMzkGx9hc/T65WNHWROnvmXJrGD5SQmIfcSgXoPTSP/JtJkzz50+ypEJBAkqZDVx47NeOkbpEidZMQZ4tOFU0Oj5WFShe/Uc3zJum6DRP1p6Hbiy0VAxwGXVc8ognPKYNvja/NlovteihcXohQJGMAra5fzG3TOK0g72Oh9tcjPbMjbFGmlkAQx9iD/vR7vSd3Nea2n+hZQprryuJHYhlNkF0n9jQt0wUvKfpnXKlqbE8R4UGi+CSozIqXINGt5oBbVmx+Mqk5cz1D9qz3yjXuQNlUfRu8/rKkuB4Jupfmddm7QoKMADL4wrmEPwjKcN+xDwn4S79DbrckpMu9Fa6EdeQcFO3MmAquhluBO0E2+D1+pCeQJ3zhNIE4uqyQgnmJNmIWURmVGCpTJ280h9ZJYns+C5hTeitMk71mTyA0g2Z7iNZYhUwl9awxy47jacZMoQWvQ94KgYgQ9/iUMPL5VUuJcMTu52ErLvxvsc5vNC4MBgN91emnAQWcyKmHkBSf3vRKQpl7lvMflWrNN33DdvXHoN3q+HOFVv6HXN0UHRK3tPVKbcmJ1WxfskzxyAZE4Y6Fw7Tex5JJ+in0bek7YLQ+hiAinqAOez3VekyXkdnDEx73czTcra/pil6bwvrN2yws5Tu0rydQxofpyoBLgmddFvuojOhEhpI9JJR+0b2JYb0gbnGEUg3hhmH1dG5hhYKknYDawoOKH1okBi2C9tn/hLtgU39O8/SSb4qAXl2cs/CAGTbP2rO9K8SDYBdv1r7Xsv52MqDxGIlIn/VOAQx24DxO07yB5gDfnTnZiuNkkr8S5oeI3zjWwKBxgYp+Jn08+UOlQSUcrphk9OJevo8BMqhZzNuHTYZA2u3Y/xcLjmFte3pGYLt3KujpH9VgV0Q6h8DUDkbMCPp716iK82TLHttTcOkSwtozUB8Ylu8eG3dgP4wRVVJNNNOpOCOjKeeRDfQWiY4tZUHlH6ntfJ09Ya1bRfdqGsM9VHO10KCzDQs4gcTa4hpDd2Qh1s/Rafb6RtaXk9K6a0CfxKLY5GEwX5crSw5IlmZc5iIMR+RShRVbpuD5zVRl6GrEffuRdmC/j1T6V9THi2HOrihouDmSYHI22uSArns8fUCXYdpx7AoywxFch2SyP0o5hZzWGxJ0Y1YQoM8Uxyb7o4x9I2RC94+oR7NM6YiAULDBYjIfRRJZhB3BcFxRDsFoN0GEPpoSfML9pok+j5Eeen6gwzZh9VMqwQABqAScn/WmX8MYfoq9whtH5Uts/7pZuBiQt8+A+daNECfv0+JdRSPj57B7OCRdrDLeNvAa53Ll0AAvUgopF7EGK7j8qDr7lUxLpTrpb9nSvUj+hk15eYBYsfXqhHTB7HXC3MsFaycR9mEwVS5vNtMZ+YK6XCSbYC4T1m4vUu2uX9jCb+kO1IM0x8W9a+pBGzudgLH15gTbXBjYsUDY3YG564jWFg9EK8iXix2xXJPJhW+1RgHFU0SGq/4od0wY+x27NmELan9rSuQFmPgpV2BVIZJDXFIPZxyfsE4+z+TjQEepcEwABUxAHE/UPwknGfTu8plYHYPzBXXP+kDnwyzhsPuoJuQRChSzCs4nW+cXNesHijRJdjW6HtL6p7wrjjR+a2EfGfx4TtVYI/LMJ7k62xbXS0iWLcF0CnWdjwexwZjZd8P4Fk3zImhWlB8G5+lsk9aD6Bs34MlNjqxuSOBE+VcLo/cF66dTNJel8Ttv9nVv6bGliZPmiSZEklU/+N+KTrpoMQt4Ce0Sqls25+Se3RxUIqOtsCx51FJsXDaMSJ8nKGeNuxM0N4X+pqAo3IlkWeKIRRexexHMC4x3gFqMgXVYiem0/G2YBjlMKOR2Fm5dTKevUbYdGoRanURYAAWXvErUwLmKa0AiDkRZLL2SzE/ZxmMjUFBuohVfU5rCe2xSwi6jUyAiW4+3jPVBtZl1w7o+GBDhUKAwh8wYblDxXRObAoty0CbdLEVNTHjafcEqqRpJteCX6LR97qUoKExNewZbJl5xBita6+F6WgAPHs6Ds9hls5LXZqtzCFAWcpOpcr541Dgz9UAeA51fK0nqeJhh7pkA9GU/9Z5B1uBMM/ajcdyOiv7Zy90aEtx+er2lQUXMFV4j3XypLjOXqhI1FA8L5A2fZBnqyOm4lMbcd0fXxBQGhdh6Wo0gYiWgJ+CShDqu3FlVhRTGGii0VbTHNoAAzA3V+BNNd2nLkuPawkeh6FULPNw5jgWcd8DoIv5MY3N0Tw8BgeiKckZr6kZyFMh1g12wRlBZViRcFEkU7144qOIPfeULQ5V9DN50flCZUxYqSyVvOyzcQYPEAmxtc2kZ1rld/IA9icYBmbbVmAv5Xa9Ug2Kkj61QNL2X3HvlDKn/E8RHxjV/ZFAoGiyssgvLquOulXQqBIKdrbmNnSZ6bH0ANquw7HP8aYxfWuePlfhoUe/PWDUGapIjrVAF6QtJqAM+juY6GzYVkmzDKaIIEtzGZ2PdqnBReqrdO0tni2zauEegLl/DEAlpL/7uJVtGA6ON9lVaJoiOyIGQWOY09Lso9Wum2t1vIQiajxDdrzJg6GxWrPmHg2u9UJxt8plLjB9GYdgBURLFfSZpYg19b/RB90CT4OjnUsRTaVEk2A7NqJHPIAX22mnrMI6vv/PnpfQqTqYJOzhcxqC3aKAMgzkc7ABjubXHlHjPCUhbjU17JXFQ9uC4/t6lfmjRbpZ3ZR/dP1w+B8V3bBkKWdurnhod0r2O3qWfUu86zP1ge49leeZU+iIfj5CUyQ4utFItLP7mkmNeL5jQ6GAiA0wqvbExYHYdZgiUihrp6HpZqe2AmC5aAEDsCQeQFsDuLChV1k34+ZQ/6LzGJoJJ8Pn1ejy2BtIkhNQ5swYlrHTON8We23UGxhCDpTbjGMxUl6sxX3T9MWZF1KTFwcM6fkjy/FerIBOOF9HdBLOuI3YPNDqR7p4om5D9G3qGamUWUE9yyK+pCzcU8IBMlWRO0Mif5XWACR1c3a9q927bzkbW27i8RFMW3jDy4+R3GJimIBIOJOkTV0yg3hCe4+UVS9miAPR5guerE8mpSgI/EmTn8BhFuP/Z+/PsiPrcl5BkPB1h1CvNaQcbQ2pXnMKKWS4u2RnkwS49zF5I48wW3H/658k607DBgSB9DHmut8JGfX1ZY4QwyB3duhXeNgDiOriNywDAC/Cz6sB+B9oA35vj/GZ0j9acb+F+s6kPONWDmaj2P5YCO7thM7HLddGxvlqH8Ks6Gde7VZTV5VD1T9qsFvC97pS+Y4YspbR5e2qj1iIYH0VtTflorcGljFqWle6Dpxl2LUTPHYLJgXSGHVxSr04++5Dbrw1dv+Mqg8+l8v/QANwO/JsVYOe0iE4irSD//ewb9ARFqMXTBFG9ATyoh3u9IWuJ+KmpfpwVJHiM6BApahOXi74lJ9cTzQ0uOtXPk7K0HpULEKh/iuUUCrvZTYYoVAJiTj0kv1bVS99jEMP0YftqoBrLX5T0Ph9fuRHkfb1eDUA/1B9L6/j36v+OftB3s/EJ8mYh6nXVf8tiUoYLGgOmjfU/BnGfxrrfNcRyn+zjuzpkTZh83k4wMno5izGk/69pliH7nV5PKfieVP2QbcMd3nwcituXRJYqnDVA7DsAUf+A5wwaOGxKwndyTLlPC3NRKCTHiBOhbp51rH8rQaAtyLP/YBzUgRvG4BBxcvB/5taXP3E0AtRZpgrU5EtjolwhDuqyi2czrf8PqDFGHa8c3Aq/hd9hdipJCNauPOByHYFDibIsSiEeD/x7d24cJ0ADBbmNWi44WeE3DoYeoCjOcAvDTiulvh9Q0hHhZ0rq9fj1QB86X4gfhPnksL5Bb+I9nOiLrfmpLks7hrbiaWDYVVON05CX++a4GPV3HT6ngLw6zDeLsU+wf63Rx73SiUc52tZBGe87nlIxrrZK/Cpm/XUP8jz96T2k7FAK+YdfhSgcnB90s2F4CKUdNgDfEYOCL8fh3se+HiW/KMv8zO/Kt6E/8Xn9H5eEVYGtIqS5TifSP95AWn9VXxg/+tbCLkzGaLPqKQbqKJfkX7T4JmY83TQOwg72xi1odO06WJ/7vIs1iAWG7XiLkta5Q3Y+EWxGQ5E3jzWKmdzKP5E+V7Fgn7nVsBrGeDVAPw3VP9S4PZ3LAD8Es5PjHR/2QBMk43Ot1G5lmGVN6xBpuLnaG0fI9ahsyynzFqEQWUmSxybwhwtM/GcbTEkX2pcTXwG6grYVv7YWQ3sstEGvGlqFdrtq+bgZg6AuglgiUCu1ndJ8awHOFoIPt4H2LRnPFgg/sIUoBh4/NiUmCcNwJb3PxS+svrfW5rs5P9rxGAPMpC6QD2UMZS62oiGHGIuOnZ0bqGM/dI/DFPkkGZVDB/3IMSL2BiPgqHUPgAw4hSw2ESXF2sxkENMi3lE2a1OPCohBYt0sMUu7PCGb8l5J/DLo5Bkmb5Q/1cD8G9X/13p5fP59fg3zybvE5RuB0dN4nqd/GNGGGLZtyVObLV9pC7Hmxbtdl+4NwwYu6S7mxjX3GOo2eVMfQvXuBW90U6SRtdflMj01puNHlMEgrq9ztrNnXUL9YhLzaIOgDnVv7tqfXsNvi039zgrf90e4Jb+z3kE2/7xfX3h0LrA4zZCt9o9mCguNT1CBii59dRsv2WMengU2vaG9l6e8QUhdIpdnJljVIuSwL3AOERXLVh5QHyvMepbRQTcQODxlQovSEIVEdYauS47xUQK2m8Gb3d/R/HQT7UB9+PYIZD0Wgt+NQD/bW3Ak8kV93PnzY7C+W2Fw4HGQl/LZeSEN9TfGlET/0DQ9Amm7p/khnY2RkJaFKKSqIkPFSksWZMKITu8KOj6B4sBqZOuKLwa78PUZWzSHgQRVpJ8Hg1AyI09z4sV9pzDQfACf+6o6Tw0M45iOrt3ublw5+6vlv6b+nIXsDhf2e4FBiFR2vg5iQUP4VaZjsu3SwEni34KeGLdFuidwxYKiY2imi7gM8qwiQwmkq8V/CejVgmhZbK37kSFocok9/EDgpxGEAq4oDoBFeLonjhNLFUHsgIifQ8qYr9/vIlFGNPB0/X63LQ9KwD1Kv1fDcB/TwPwq6C1T/zJzUzcUCgcb8JN/UAu1mfb4PTvbq9jTHxllc+M803ipNkGeK5IHohddcztWx9If8k1j247Q1x/nL7v4bZHH6xnqf6yjCEJS4frp1vyjGAHKbevTgRaB+JrM6CbjZOVAJjvO+J/NiFhrvOnjPgEiva19EBP1D9vTS85eYRt4X83a+1W367aPiT9y1jHQno0i78Cd+BZON3mlFL9K1JNNHvyZDKAuL1S9lSMqtHvsYm7GqVHiqVF6JNU0p/mPkRWI7CCm2jynfvegOJZYbVHO85i3zG2Tuo6Ymgf5d+nEPrZP7qXU16PVwPwLzUAz08ARpvMExqIfU14wFuSXs7ANmuqZUbtFvg31PyfH6UkSKHp6Uv/ninXA7q+dTSPST5zuG+cFvhCCMvhenQRvz42umHxkpOoSvAa6sdRAIqov7L7XXsAZqWOPmQfSvYp+Xm/z6mG2Oa5USk1Hcl5Z4Ab7tAXnADwEPgdfumjDY/Jb0P3fuARbmLvVnuHlcdf2IkcTIILxYhTRA2/YnGVzmEU2/BbItgcoH6dN8BpBCv60XXuB7FVVW9z1QYghHKoNBFzywabUUBsFgOOAp2JNkM5jnhS3R+7yuS5HuA1AXg1AP8ldb8obZ+q1M/QtLM4vcsiOuke6991IOot4+uziHUtzZfUKKm0RUQofrxdbz8Gie7oOqRhN+foy7MCPUp9GKraOiFeT2foPqWBAfaKxvbuNacyekgnMUFfbmLe0LXmyNNfmeLnHYrbdCkSbNulXl2Vh1nL86uT+s/iYAKA31pM3QgppxOAM2stuyI8a0ZuYYjhhzIqjgtCq6mI+HkktGLYD95TEx1msWtmJOaizwyVMugyKiyLpHw2RpXQVN2+IgEEXevJOqbL28vpGQyldlH+aSX4t0JZZGcTvU8DevAZFgwqOPIRzL/hgGAZG8TBQSEWu+GvYwQ911dAl0+vx6sB+PfagM/m16OfPfNqQvR6J33dhYw2qhqtmrdae1J+h3qM/vNviibPz7yrBX+oP8Cwb2cre1Tl08NwJuPyeR4lPw2NwOhsb4XkWkXLouC5q6clU9+R+1E1N94ZFTAA3jANcC45JwvB19PPhwBD42SqkLviiWKd+4tRgDacES8uuXf1OrtZBPw/4OgHi79hdAUEVLGMEPnwlVC0H7kqgB1tiWMw73T5jUlC+BN2X0y6D7pPAxTy/hJ95Jyxtty0xEzYo+LSSIaPlAbC5SHw0B3KYZl6brD8jSPwIEbHEqNaZo0ah8Emf7FIaDwlbHCSQF+PVwPwj9X9n1L+aXjMo85G3HTbGUp/jkibF7tw4voTZOVddUmduZdSXtD9k2/AD5PgaqODNlvPT6zZ3enwcH82rQfwiGqcdIy3pkaH2tin3vK+VSjw896O3jJ8WvbVPUDKf04w2w0BKlhO4ehpJwC73YAbh7Hl3eeSZV3Y/hoUoDifXQ2gxthG3G4ABq6jtBpsH0AW5a6OXz/kpas5VP8Sg5jr/haWU6yLJlFws4+aA9Rznif9j09i4BBCt2G25l9oDSKErpU1HbHs6f74P/iWtJjgFgOUATnGUQBMP+CeYj1SWlielyWebgO04JyZOd8t/Z2a4qbNez1eDcBfr/4/NQFwW6d3GwnmDbDz6j/8EJw6s3aPm16LO6yuFAFUpb+ctlOhcW7y3hPMI81vThybMHNzAIA7Pb+DA8snuZWnbYk0uO389ZtSFZbu39C1aIP1WNJ2FeDT4/j8yg5so1DkELDZTThq5gvtX+ZQDuhrTADiKfXP8/r+PJDqolwFPRrjrdqTyPiGakiC0LI/0VwLtT6B0fqc+pZoH8B95nG2+RnQ4fcGNBNLU8hqJaYUSI02Pi3bw8UoABJfaMB8iVcKj1gYQaXU3lJ6DMICh1MMKkNx2gNEMa65yQjCE5ZwZ2mrpKoTqOv1eDUAf60H+FQQNIPpZ1x+b/r7bn24XPneM2LtE2asq77IJO3/Pg85Lv0bMlcbkiHRAppU8Fxuq6xUJcZH7ejVYU2l2HO/lDxtBpTSNs1UOjzh1dkF+NJfCYNiU5pvFff65x9K6hMQ7m4DsGkMd0vAbJfQH20GlrdbbaROloCnMu9zDcARY76pC7DtjA7axJs2g1r007YBu6K/cxcl3xIx2RqeFP1Ptm0Q7YfzFIZcFW0zVfS1hE90ERcofgJMyEnjWRvw3k7YmSST4AEPpgFovukG79hGm8k0/SAo3YaZhiWmTy4YNI7ZC/5/NQBftPr/lOr/MwjanVc4tthMeQ5q6U2ZViYZ/lHXwtv6gjNCdlL9s/GCZEfB6uM7H8xa4HKxnzwUKjlY9NwmOfRxjXmTlMkyqSxGp8n+codKO+HF9bXkRZYENdu3HPT4zjsN/Xmd4IbpZ/aJZ5D62WqGnmXKLzEEOIf/cTbSHKQ/uYm60jlEvj7nD39el4eMRdqcJD6Y+iUiaXDEDVflUTqD/J1Te5pt5kCxp5uexaKjbIUxYEYNXzoIH8AfaII1gK+/W+waRgFhJ5x0cS9GoeSicCDWl0NJnRZEf1ZJPukB7oeaz79CL/0jJi7Q6/FqAL5WD/BcQpWKWrz/Ae7CbIM9VveblB9OUF396FlAaNSlf/gVuu9uvvk1034CN0+/urV1k3hbvjiacnOnLFr7oYiSUZzC9CtpkmXKm2yC/f2DjZWlE70hLYIePSGZVWCd8IyyJ+CAMVb/4PIsNh0P2QM0yzPnEjCga7NZ/apkclKXVJbs2SbA12kA4pj9PztM6U7b3JuSEqDjsFH6F/ZYznYXiv8TbeloIP84RmKPgdIaTDZdo3eBXluiP1lSK0weoWYOA4/3G8pkquOdSlnyKIjRd91FaXPnpvAbu8iDxLNHEfj/tg1ctQ0QGkHYUzHt0x37kaPl2Z0egPfJNp35/0nl4sMlt9fj1QD8m9V/nLnqHCTjcPIa8P5fClV6NBLn8nMMgbjLdHhl07dU+ksYTCJnpQGIELP1zritgNmbKJG5Ezmuuj5eS0cmL3RGhH7dM5kOI3j3RCCWPriShTlpTShAHaoBiLCl/5MsIA99wRyO0lHIVHfiPDAU6Sf7vs68bI+gfY0GIOKssjyr/uPA82vGtmlgkbI4K29sa1fSqv+1Ft/yf3QboBoA7Vfg5T67SFqZhzgv5HvAE49D0BDBILrB1fSXB/7lweRGPEW5EvFyk/Go3UUFv9B7ouEUpQGA/4P2k6UN+Kbjld0MPlMvqAfkfDMq9D4AfxEv6JcLl73agFcD8BUbgF/i+fWLn34iBR2mnja5nL1pWX97SGy9VPOmPoGquxA0ISbtf6cF1HcA1p0wt6/8Hq8NBrmtBeF9FWQyC6VNpKWKmjvmFrnRstn9M2yrXmmBGVUvyI0Xjr02//OPS5O8TOEfgtkTVO80i0pxT8G+jRG40owg3Kvaa8HvSWL6N38lETYKDYaSMQPwOJ4A2BA3h1kK4KMrHGgjMBPESiPxVv0Hf+IX71cpb/qUa5C+aPv0cj82dCDRNqhz5/CmKi3KOtqSAjvlP+HaB+qQ5LzMhmxbXucnMOTmct3BPZQecSybuMkTAIbrn2t0+4If6W4Yftp/ZxN3AbXQSJmdNwA+pHy+B/jU043G0YsC9GoA/qsagNu2vriDwxk05RE+Ni70XVmP1WR+trOpOP33A6Ups0LdvxN7Gstf9ga11ncNyZI55tM364E+wVD8xVHsRGuSqfdw3lJ7iYmGkMnkJEfeEZoOC5gN4wahCZXuuWNBLbJFXlTOYnZgstucnpIdfgFIhrHN+71R7m684o3qPw4mAFOklRx6KbHQ2UFjDEwCxOnvMSgaY1kAkItPjhJJeegOJYNgGyF05wGcKbT+0ix5/mezRNuJ3PZVQX5L0a+gMI4RJKp8KQSEiv3Dyv5wdTXRswVjoQgZ573rlmh1BsvCuDN7vLn48TRmUfg/97wmXo9XA/CHG4B4Sv7/SdL/4MS5ZfzjAPs3DFrxatv8lLIaZunrIpeRkqVH0Zzqtvtgtttpv5JVaZpl/561JG0wTBsZB5n/OGR/Qnh/Ds64ejlYwlphtuV2snoWQouWPkd9jIkOOxoGb8/p5Oxz1qodNgCdUf3XG4CjqCUFK3F7OHkSWicx0BhD2QCoZ62zTMHHSVG+lwHNfUuNiuazyekBwsxADvPCAbYlOdndLPLX9ww0d0rLg0faOAbI8M4kdnrZQY3aA4h4Qmk5PKmlycAybzGFnwPwNC+IJ90v/Z9bAygZUF6Hr2bg/uP/vA7B78qO95+T7rVfgLZwf0MSnvov9kzHeTGthOj71lTNweC4+lZMfK+94XXa0GRG6cy/qL9jp8nqXcN4z/3s3//xxP/8vzdjPLQr46KYp8BeTnPrsvY8AiZZj3Ax3fy2KGx8BzPF7P79J2zWB42UsqbqosxdvlxpFWpFqUAgPE4G/K1Hu6SbtjXWr9zOJp7CLGVy5UF+TXOYUSSqa039+dz3+Kj70p9hkITpc9czwk+FX6q7FaFFzKb7juZgUJfI9UM00nz5Y22anuPSVh2of9LHHZ2u+bd2Os2RTK4pZ8pIg5pCMY+/AXhlEte0ZuaDMNouhFhwotGAXn/4uAHefvwEP44w8wixDFt+1tmrDtuPUEYSCn0QY2QuL2Lq8mhRen27GsTaMvc+3DwbLtI/bsYsu5E/ukC+Hq8G4N95NI7sEwU/tn46PcGEQJcBLxzBoEOMTqAvJ/VTgP+lameIacNV0/cmwah/SrCt6nuEHqcw/7YvyF4n8EcPgJZ+0JKe8h5Y6tcBD6ZxaWEaQVS/s4KXlJd8Sx+SxlheSH1Ta8/xkepqJlJV9eXMKa5/WYUAPxLnxzj7ZwJ2dXFJfnZXu7deMpseoIm1E8ZpfsWmHD5B6P5cxNrHo+Epu8KCfh56BDAzt3axKw2XexBe7LjZBiOBJuFd0ku1q/4McmmCbXxhVhToK6caCbuSKTWiv+qqwW3aOscoY1JmFU2ZClZxZHJ0FQgOE6rVh7drBgTsqhtwAUxoyBeyUETZ0SpAw9qTXPT9ZZr0HsrGKjwd/Fi+6VJSMzKcoZAake4fbNttCIqDbuEwHnwuZq332gv7/0wIf1GAfv3jU/L/GGXadhj/dndqFufZokq9RWGcrfxeWRNWCkPpe3YaTzUb5u7/Oq2MqO9rrTQrnntU7dBrO05k1rDKC2g4z0ZEbxx/D8x1CECp8m2o6DoDEagvxoUk18Yd+7C+SxdGj8itAUTT/wmrZBpKQXzTA8TZPkaIMuWcCxR/lQIUN5k/OCH3t0p3H2alm4fS0GRULSAXHsVkMhod0eh+xmgc5mQMVkRDMoX0K6tdYbq08pQ7WGd8aSFj+J1jL0OkZYtGOaBtKNbdpREALdpfNVw02o8WK1ttTCR96FtrrmpseUc0TlwCStjkiavJmd/LdjP4OSEymVaerFtvWdq/HvbxmgD85V5BabQfKmrDQvtTp8CDV46pr6D8IU9zXpfbp8m1hQIUFFN4ZqZQoeeuWfZngFiVvN8adPR20IzRETBgiQdYB9Y/PknVDwkx6C+bykIZ461OElA+nqeRSJCyTJmDaVzLBm5F82N/e6vA4fqaHxI+eVniW+URlRH5Y3tyWxBrI9KEtKUvmFhAihd0SyIjHEeIB5sA7YWHPvAOhv4nAthhpALvHQTBtZuPM3avVuZRrIhGhxXWhuHeV84hRDcSH/fRRcVZQVzWmECj7n+V5nn+5r7OEejTvq3Unrpe9U35BhR/Xzpc5P3LvjFJ/iPHQLaTSkVTRI7S4tOvEXsJoVj+M4Uv+t41spAAfUb4GAUg5wU29bZ3shb6lGABqlZeEC/kvvB/ROQ4iRccRwG8+G7YYmDy91wSFY6e2Av9vmb5qv5fDcA/+IAeLuM4zVTM4ym+bOHAVMBsu0W3s+D5KMdRVIbE2oAH7bpCkVj2HVSA1unBz+q5fP4iZtpKcPrSx9KufsTxn2XxOhHuSnnBnAkeOclk00BtQYaPF1TosukKVkLONPTPMG2nkE2IHFI5LpYEILJRPTtlE6B85scT3deJjywb6eugQMUNeKRBzjYKJGdpjnccwRpz6k+HrhidKkoRcUveYBvGBtsv7P6YkUvFnep/lixrr9IZhqUqlbSWhS9+lTJYYlE7BMUMtTcbMptEY1LNwqk4Ofj9eh1NBrAoGiF/DFniP5ofXsK/9kNw7EiZPwAUHym1T2ourT3OlmWG1RpMBOoFjGBkoKGEPqJQJ8FJWOI9pyhmKZo0RTRC4zOoeZ+XnrbFasHpPoBh19tej1cD8I9h/1EBm01O5VRHlBxgt3Wh12Fl1cjCXJdvaiClNei/h70HzfQt5cK2HpAcvqiI/qX1dwShjqLJrqO+C9LEQLCBPee1KtZ9vMk7NM5UfKzH53qXB6M93mcUfS24NAwW/Y72rHKdDDD2mHiifdQBDErc+mYikQzRWv3LdSBgwv26LZrKBW5SDKa6OyXUR4rluHiLHVS/RbsSm+CgY/gK6Q9n4e5Q3uCkT9BkFeOPi7Bb+xLeFvGNrZEeJZstnmJCUB1sejtC+wlPiFK76n/djuAWOeamEF8L3BWfSgT9t+s/e/V84SYhtJVtZmwKYNqfHh/XJFNIxHLk166mLP6CVWiozELfgz9y2P328Y5lhewjdsX7RPTHz/Jq08Tg380qC7wSeXWhRnjIMF+DEre9++hz0tGWrxLO/scQ6NcOwG+o7Q8B+IwwnKL2DvgfgZCOqg0QmiTFcphRcGT+/AilQ/kebd+3LmZJnk9fD2jwf0H9++obuTllKfEYdhYaw6QG0xbdpJdWMSOrT3EFV/GvvT9XxVbe3tHrY/btyv/A+GfdFufAIPOhpR0GL+/OYtaqrHydMFu52Jf7gyfAiR2YqFzH8QH+SkPA2GN/uSybatk7u0w8WQkwujphdpkc9V/v4KaXwqlAZ9crC8+f5PTbyUi4f0KpePZctmojO4Zd/A0/MV5jXXB3Ek1QFcOQchM43Rt1q4qAvPyqRg982APPOqEw8WeNdV5j9OF2MkkqY1JqrstR668wBi4cbPC7EHochWpnfpytihhoha5ej1cD8G80AHHf/CsDqAiNMFUdCS+hFQ3yL+DNtEUnhTUrpx/V+waiImer/rvYtoD8s672qmqX5ICyeneMg4tBcONpIBQfZPdSzM1roxKVkY6P8wd0Dl8ua7pCtuYhUzRvbHSGihzG29KYA4TzBAjtjINdA+aSZXgPSxwOAbomt79+MOBm/oWfcBD7ZPV/SBfRi7ZDfX9w6038dfpXk6DGbrm2AjTpdbCh1FNtT7kQZGSUpZWha2YGsN/qOvhTxrPYInOTOOwnk4rlquJb9Uc/QLk2t14o9qMNQdmiCyWGfBOhCZiAD7Qe4Pqb9VkpQbB2GgtJUriYhdYwwJmvueiXsLEeF5RF3ukBPhG1pGjV63Hn8aIA/Z0WoVInPw3D6V6ic0MtnaNYApu80jn6VCzVjwEmRNbpPpdj9V+sf4UVQGgZItGfvPlMr5Lf9ZMOq3ctDAW9J9G/rDTad86mxJbl6vmWqJ/c4sroa3HmkvSjWPkHD3oMYZyPsWB+3yKGna1FVV4C82UPOHsCvO+YFMJrKN1PeQs8xujpg3UVf+jzskeh5rHMubaUeepf3AE4qsBu/Yp5xWWu/mmO81yGmsFpKimyGO76mbvyj6b9QI0azM2YtGI/NoP7JjRXBTC2a2SLKB1CTiv50B/tGt3flFbB8HQ2vCm0RqrYOtBqRKGxMV5Vr1SPqafrIU4Q/lJ5xL1s3/nYB0gbwJlZio8FpHUxbOUOrRHnp9hxWu31nmvM9T3Lynss60/0yaIEXhmQtlygW3HkONxF1qW1fcvr8WoAvu4DN9HlaJHxPKyf+LO4JzVc7cgx5EMdr0p5RkO2HKgfo3Fvq/4ZjV/LOnMvLUGM03lx3B7F+lsuX1aYcJHCeP//URNGV6YPM9YUEj0PhX60iqFUqEXHhi0TuBIfSVSktCVcXzAX1jC1WqrIP1zSvmFjTNN9AFJKW8qF9en6C/KyNpPKRRtMsftGKZnR+q3RGol4L2pxT/Ti6K+fktP4BfDF0dvx9isTOnDp0SUu0wwNb/PoI9lJoGIWQUazdqNRNjuD8eLH2k+85U/CqXtCWCmF/u0Yo9xn4Zeu4sj0/dXSs81u6/08aiYPNbzFgsjQC7TxYtVfv1+ekrj+oT7DYu9Vp+5L+MUHTX/V7QlJ0889QDIL6ysBsXYF/8mkfOwPnEwFo50vngmRSeNIbY0SYjMNUTwjz+/5qeff3KpRc+jrcV6JvihAvyFB3pfavLsA0Ek4w0xgC57Rgd+lTM85qYhRVL5sJv844n7EXsdTNAyR+P3vnQabjsTSWojNhF70e7wnER6oKzlKJ3Y2Dj0bR8Uwgh51ZFoUGwiafvuqfi5sEOuBHRuSXTqRWROzv0y0r79HHSJrteymef+xCXD1LoLED/fE9p8yU87UoJlQO79U2DWAzXBAtDl/ahbQgGfeCXfc/pZ34uoA9ru3PlDWR5Ytzm+0ytOYJ4aJSFDLTgX4UKFJRlErnnZn04nFMztM3xIKLnG/WhXPTOdWOD9UAD9DU81k4L3UFIYiGebWXlmXLYgJos4jUHz7+JsWD/sywMAF2qwTrESg0JtXZF0JKJ9EpglHwplldiHr7/uUnuf8BFykfQ0BXhOAL94ZxKkWRij3Kaq4DPPzE7evaItc9ETVGFm5C9Qaees3QrBdSxp2vP/NdiDFxvA6Gf+uMtHT8+OreUYQFEmA+QPID0gJw7CRWApQFPm3qEpt0dH95heaproF92rg+uO9sCOfCFiFEz0DecqRfGoWDCy6pnUk1SkBMpXPn4hAcJSDB++I4asfCLn3igfj06X1Gc+H3S4XN+LKn8OOnpoAbNd/63X+mSZla4iOC8twn6tQ9a6P2JZrU/Xcrlt48y8qojzdF+HBxoWM+fT1k/TrlUQptBAttUeRfNZbvqnfrkRLSq8GHokykyJGXlHora05saY25DnJOwTz7QfM/wFMXNHsbWkbHNDO7FaOKhNXnNSV+PK7VXDENWrQEYlNnI0JHVg1zR5/RmfQri4tqEBgoxaPnb9wrJXWqv9X6f+aAPw7E4DGYjwZyMq0UgAwtxMcN6UzyA1gpsGzhv0/Am6V+lFk/Yr9z+3BY8fOzQ0+xgJywU5/wUcUOuQeeBwijPUsowFFYZZ9vRuuCHZqwWtVLtIQ9bgcLLfEVoCKBYvqiHtDs/7zlG9mFXgaGpR3z31CoPBt6CTtRimh+tZh9PhnNaSEh3mzqi3Gf74HrKk4vzUX0kay8OXIVIV6kH5/Gw7qN2HEErjBxcm5ekbxHlp3hYUKQrSKOcJaoX/85I1ZbLT4nKhvyqbtKJpYj+VbPCq78nWhCMnUcvlC7mqzDW26zbwMrScxud+GKD5WhcoIEZ2wgv0Dli+fJSF/qAlD/gBYFpE/LITVHMAj93KkCUyx0SW1HvSGY8g70D7c/sbNCcCrB3hNAP6VpmthvDFrwM/YGC53j30dcICfDbRLayTZ8oer/pOqfd/HDSHrGYNbMPcCPhz7h+g7xyG4TG9iL/CxzPD9T8vG2Dvagh80zUGqORIIxCU5USErDyidSiRbr2+txCQm75tNIUeNQwf1lFkb7q7/goDYk8ip0ptbj0a6nplapvXaUGrW7ztzkY0FatZbvoNmjhq4i06hn6OxWsdHY/NDR7T9OkMAnsc69wl59Lrn+Igc9cAfIyk6Kbn1l52x4+S0d0eZi5Y/oyqjkTXWWvAsegOOq2P5mf3oHewEX6GAVnia5qgOn6EgMhfiHtUuQL3me0C5QPTlq+BiZ/HnLq9uUT7GOz+5/rHSOx/bVss+D5etgIK+J53oJU0Xdkpy+e0utm0bOKJkgY85ANpAlXYZ6docM4r+p9UzhamfDGPCeSO8ccqnq/++df3qBF4NwD/VD8x9gtrEjWY8SY+fdfBsGg3LSA2xi7a65JD6/rU2NBT2N535o10CwngC9Ekxm1utUdpmMY7nVesvXFXU3eL3wIqPnLRESLUKFktBsKauvqhaas0S2rCbrdc6fJzAcisLXZLEkt7EqqvrTVUyKEye8jfYrFlYEGvYKOuNTb2eH/mbona/lVrql4KSbbkZFUSf9vtB/yE+8bgXOfmElPVsHI3g0lM945zuE8Ku28qruHLzaI7AY0fZKQ7Baph6N8em7OzU2GLpalRjRI5XWlRk152jJO2vdNUoU8wSst64FKYa5UFuV1CTwvvnwBLzL+wGy46QnPkg0sosIJ160/ZwEm94+9jyXxaCi1lY9cRwVuhMjJ2gCsVKDymKwgFU+DR2XB2tGBQaomwjO6SjoTwzRnA7BLVZ0K1A8Xq8GoA/DpoNwiNUVoumgCi8/+19JGx6zScUGI+5u3LXgUS+VHa8l7Dd1uor7KTeTtKXlqAzfPoAIb9Oqviv0FsoBCpPo7i55cj9M+vougGXOXxHj1JQblvCwsGRtWJ495zfITHMA4dQUwjRAxSEKS/PFfc05jUA7Rys6qfSHQWnInL5bO+qoMmVuQwTcB9FR2MnwzJfh3VVmw4HgI2T3NJfRLs0/8cL2vIE/veSteTYBZW7/gn50YfD61rosGL/m7mEBD5M4e4aVDcxYOd6UrMWZ0xn/SG3dwGqJYL7LqIOU9JqIoaXj0SNxYjrJNThXXqJa3STWogrMq9CPdcUiBmAV5crFi/zFRxZZ7xREP11zeCxD5Blza45wLerzVh2Ax55luveLWRl3MB19B7AR5L5Cu/vSzYhh6jIlzuD90Kxq2peYqC3H99eh+Dvgf2PXdUQYd0VEHMvLeH/+iLU3mFs1T99ViOFsW5kTv/6N2v133GgIglagfm+4MvWY8iPwdRUiDaAP6v/D8uC5X8/jwbLl12Wjx9HksWRYDmj37eQv78yONIVhnkMxojMITAvchxUiQstjp9KxDJXBuv1c7L9svvOQwTfCMgwjQ8e13Nf/Jg+alak3fpSDXKTUrMSo1WwrukPlmL52aXZ21DGkfLPIHBkhk56OOMh8L3l+egFXiIG28Tgw8+Edrk2dovOw7VNhfjsMFHxUY9p8RXzLpVc76wWzUpn/cCxMjv5xrKP/Bk2VznpNeqW2BstPq9ekFfwf//f+ysneeicj1LGoY4YJQdVKMr/ysFSKdm9pVRLPazW6Zhmr+bqr00N0G9seanv0fwBAVkRLvf3Nz3sgX3ueD1eE4Av1gngyUufxz/c/NmBd9i0THZJKIDO5EvKOVP523dISYo/qC1ePCIafcxhwmD4qNENX6gfH6wfDBfIFKZxQ4fRIEhBD1LpA6d6AEvXSKGpZdftgmHvitZX67KVoRLIazVBL1+wyErAk1CJRAxNU+iZhPCtDbty/hjQLI2jG+ar3pdQRP8JnLrDox2eaLfoqMsv/PE5wEYAlNZo4giJ58Hb08c3qKBK3eOJKqcBlhvD41ZL1b9E1vX3tbKQY1ZBGDnGYjS3CvrKKUsY1e2dA2fAiJmpn28cCuFp6leAJqZuVYBY8+r6FVb21wf6/v1jXUye5fq5vLokNL7IhlLSbyJTfdgMvFClS5P5GnJ2i2YW9rEPQAiPFPFp44ar10kYi5HNcAMGjZ2bzAEU9aL9PPt4TQD+8IMZQOPR7TVPaelhSMGrdrckK6efBu2QKtfhlP6Xv2QGM9ajsSI6sepdUFsOdwDmAkLeEtxy4UBiYoA6UmA9QWWSQAUyMdQRY/2+zBuEFXliOgIrAhQPQN+5h640AHNpIdqRb4QiOWEoAOqknu6uQ5jGyNAwBO5u4HZL5vnYyrhmL0olHds7tczBBg1cD4wXNjZngtD8438F38JBTWBIPoyYsPZ8kLftB1Wkmj5vvU4elxDoCUXweIqYRWA8GsPGC/VV1m/JMsKSCH2N0qi2jBgz12pYK+MS8kT6MoWMFO6CLR4GUlBV02ZGmuuW0C2Cdpj5QGTNusZcrXPsR35xu22hga1CcK3+lS0v0LRGWjo2lCNEGwKsx4G7YmCuInS0wzgKw67gmYui4eadw8Xr8WoAvm4z4Ej/Rj2Dd5CzWd/6Ksqbf3g8wrcTBm0Ng4hT6q4u9+oVFlfWpqr+I2ooX6tnuqWC6NNb8G3J6EzUoCtlGufgIi7Uu4sh40YpSXu3kHNPShWZzVLw9VDCgrUGevArqEcc6E2C77X0EnlJMOsXx4K8cgR+PH+j3AL4VfegaWIloa4f1RvQV5wydVAOEvdvw78Rvfa/404c8NlDNJ0CRTrBgBf+imMHhbDGlkUG0RUXwj0lQ2PW06Qthh7FffdOvlTpVqw6dIewxoTu44uFdcOyixUi6i59O6gGvxWPkDW6xzLWqroSWa8e4Me7v7WAb5bHKIO2+gC1B1hiS8pBUQcIJYFqgVc2kVl1PSAPQ5CPJ2Nqqgf5XVnP6N14epIzPnUP3lrOeT1eDcAXqPjhlwUhvL00yogjRM3WOo9Ys4bpVngJug6LKjbe3prsJseKuWD/El0uuLikZffPmQvNrhvNlZ3fIpEcapdmgMbKgBSLB0uUXQ/dpRrErlnEipNFJMak9Fde4XN3PbCtF9/SkyH3AEzveZAN5lJhwTS7WBcHBSGelX5K2R7slhDEDUH1XdwmK4Vqe5TVhhMGy9yHnOzXnv7mD6D8m99ZMRve/xrUK4WpOHNBTzLZKM5wHC74KpTdXa7rIUhcjtYzFxdCzPJEuHm3enRWxAeJ+xo1VbIdDaRbRtJ+HltY14ylr1pFqrBJNUxWGLnAcfpu2/uzrtJ/fcq1v8tq+EBO+WhFuCTTSXBfW5ak2y74+Mxvb81wUx2E3oiu+QWqcd2bCElkhJo3W3Eml5hO9Ez8HOBV+r8agH8E7+fYUrNijSzWvyM2qXODMRBwk+f+eQQGbM0Y6xPJSbM/Qg18o8I8EaLODiUGukpJ0KwNXP9Gw93Vx+jvLkvwOuJYOULpGGKdsjuew/pEuvxBUfR30b3rpd4+ECDX/6CxodpXE5OcUmGzfnLIsgNVvFzXjItvhmABncd9iLZHu92tFwByxV9MDHr1ht0HOBC2PyTj/ulxwFOvjNBVl3398QD2HlKoJHG5u8OsSFLNG3DzuFPxf5hxnNbPIW/Pd/J9LLRyju7spL4rhT7YApGIc/EwHnnLYIWk3XMXiKKGvpEdtwqIppAih7Fw7Qcty7SHdGZRZpHEyidp9jUVEeucT0U9zaTQ1BGJ2ZESy9Z3EM38x3tID0zMCRlx9UauJISaF0ydE6qieLYHeLiqvZqBVwPwxR45HwgzVwisq3I66FnRMSEfbDMEcf/yuPr3bQuZiM5VXZhaJEFIAG2Bt0IiUqYzzXv4kvpZcRe5lFyyoySiyCGJTEKdmsnMKi4kov5ENEjMXWYrh8rNWxkaa0fka4PW4HFlD8Og7PhI7qn19ZUfqcu4tMMdaZmPoS6hfETKJoA+hnMzpvIiXffMsQ+HWHHsEQCqIZxL8D+sArT5HcUWyhTu1lJ4qDyoQf0T2c3prImDrNl63cmE/baCYL+IT+tlQFO3k2lUdTgsr1voWupxd+u5RHhWKus9OJ39wnLpHUuFTiD1l2jAFwlvh9Ssoyk0o7WFV8AUKwGTAjWbqI4JI1SVupa56/OHZT2GtIU047gHoMIPOe2ZkHZPrF5LrCqglHhl9zCG0Qw9j0vNV+71eDUAXwP+X+Alaeq+SZmRKC4aqh+y5ljNSNV/ShHJC7x/Z0wK8k8r4slU2q6xplKAsrdLH4YGRX2fYBhfGldAN5aNYZXdf4JhQmlunQjPSLwywqTUINpNWjnYeSqPAkQCQTdsbEb/ir0aC4PWc1xg/XkkdY0or3XUjIJueg8xuNjjtN140meRgv1vAOwDR9XpL7CTkoRVARKspd/HB4J/0/JdoIlAEcNVeHQEeXAWKqKxVckUdqTcHEao6idHYOFk5/4tS9U3XdpK0NRWPEvPWdQyw5vDVPEc5TE/sQ1jI0NUqv8e4ji+ERvHklQh+vHPN4sRrNHp41IB5za7ADGlQ5DE17BraWyoHMv0IP9NJwL93GrTY4RIhKXSLnDbM58INFMsk3CsZDqcUdtLHAZTXf1HvAwBXg3Al+0EuFMbdDDlICBIvw1GLySy6jmoLqIS2a+4jJDj1JzL4JD7yPL5cmVqjXRv5uggwT88kQ+iCKOF2LMGU/ZcUoO/2hmIMVBW12FEA6U0KVlKlYfHt5RQKaIBiqZ5uFGcoS0Lwl9LJy8oTWTYqhP/3fvnE8IpENBX5G0EuI9KXQ5KPzV9wz6B4eOZJ/0BZOPkc+6fpvg//ejBtXzmBK1GEIAJxY02QDWm2cgO9tGZX9jdHg1RwaAt9+PefQp5f+WRXV85Q/dSGG69aLB6C+yL1qeElyywRbcqpjLLWo5XRMnQdfqI1Yn5sFheGve6d/cbZnGLENGeZr7LLCwrMP6PNiCaDMaaVuC0kkcshu11RIFypmt8EigQzxuarFwD4FX9vxqAr/lw0Bnv51Ae2HaY3FAGzZTlI5cB9Eq3+DmxpYFGIsluSMyeKyArrQOMhGhSLlIwfDp0yU4SRW+B7rBE5Vlxl7gZQhguxegWZ6FH4RbprHwbWk/NUmpT7gMwf0XUppGtSu4FB4fVWOj00GVSBepJY+bAXI6MRU/rN7iCuywChZFm6yFZIhgh9puLyCcD7ls9WD/Lv6Ut6FKMz1Wfw3fmvQVctwcFE2yZN1nZ9OOXpSAKY2xMX5NFO9/578qSl17kHvnVzbpzV5uNdncLWB3pwFPJ7VMdBG2fwsZK2k3GVhQJsY+c0TV8xvhMdXXJAUhSc/6eL8RygESy1/n2ykq1Up7tUkROCn2eUEXJKCmyqAcEFwnTeu9gxqfO7kHuCw9sA8WzbgCbtvn1eDUAfx8ia9bc1v9oK3G9VDknGCAPPt3s+SU45bLsYxa8MRPMDvAn9Ma0BJqykjdNIVCi7+PRNBOg4KGWjkI2ITWF9ymwBEsyJZGLLWVSpsuEYyoa1SOH0YuWCDkdvwQWUkiHKZfLNWidDJDbOYNjiYhvRCHe3hSxe5A5QjIX21ex1My3o5uHWvMxjIjeE0A673QG+EsqQLhT6fNubDJHzx5z3IPYQ63ozB0I16mCaQITbXL54dubuTJhoFAngPvIHYbXJFdgEXqNRMoWizUw7qr/9Q/llloK+A+XXxkML/hJ271T3bxsKsOm+C71evT9q+v//kCOsjpQsp4syUL6tYVIalLgqOfZLpHHJhA35WV6f8zujvJU/SAlIvZmKbL3N5XSE0SgF/v/1QB8yU4AysXGYKWC53ACv813b5H7RIsCMAplH3f5OmrUWEtXLlOIr5Q5Y2sDJjsVVmTrTUqLRq3+o0sJqcMra+IkT2FOSpHyJC+aKX6IbIQyFPsob1F6m7WoXa3BhJC2kl6NSGN3If7jcsCwMUCD4RUF61adCD49RDq8Sg00gUXXfmSb51Y4VrIBm2MrTd1ZlEm5w6yhVnfIZ6p17izGbgJuv6LkvxXueP+zo06ZOpkYEnT3/QD1JRHdM4O0F0wFXDDunbOK1f5c59VcxMhDtr7i2XFoWL+nyQIZE/qzBrpVgKivverV0kIof0vN0lIELwdWGXjFjyj33ma8pa5gzV9Cx7PPY3kQ1aMK+Ai0SNnVv3W5ubwW3Dmo3cSGKpd1K5hQR556iP0x64bGfdiVoHIlIBd2eTdYqdIFw1yrB7pnnQFepmCvBuCLPbC7VRR8hV6EeSb3vVlEXESIOoWAKt0gUkUZoFedx270WxCXMCW+ipguD8kok10bIXaMqCYMFMh6FFBKAWNsHULKE41YWcf0OlIjmsTE9ZSCeK1Dj15w++2LGmrZiqfQEn5QpRVNTxhNB1qLyUKL+sek7SN4SjuJEqTLT6lHzjCS1J4P7xlwkioHo18U0hGeRel+J6ZxUsojpq2nu+QlTVemC2NTL9G7OC7XyfDVumT+pFqmiJpc6EZCwHHwgQkBiq9tKjoSrO5rGQFmJnqH0muIUFvXC2oDTfFvkbC7lESXzSgYNgXOxWIV3CcVVAh95evXhTcngT0gL8I9Ria79fKgEjJiVYkNRWIsoJ5oI1HRd86IyHHnrjELiFxwozS6A/8nCOn1eDUAXwj+Dw+mcgT/IPQ3Jom6yKzKpcB9FHDVla/ICwgreHScvuZXVvlqGjygzyUirNBYKhZDpRYRx5OffBiZthXmidDcHhGZMo1EIrX0QpxVkrJ8nWUB8R31h97rEoMLCrfgDkzOVl90S+Tjfl6s8BuaooX3OjhFdHCPdK4uJF4LALAwsKj2FND4eALGY2L1i9ha/f+1dIVWFrSyTxy9FjdQ8P6ub+bWH/vlgw+SHU4uJ3/t5ffFyUq0CeZVOQ1eY0ChEp2XyBEcxfpePoZIeqRWjMBjGoDI81j2GOvpiFQ2lBWX8VG6PIFFX9jAJctfggY5kla+MWYxKl3R8ImS3VBFJsrrq4FyL45GTC9fYGgsI6jk62qPilkMY0BP5rR9/PEQ4FX9vxqAL5btlkk0JAz1JNRm/x5yzN1LEYpbqGIkvcIOQbtkKA/FsIhIDc1OT70PW7s8C80OA9V8gApVihZtaZD+Uu8eiEK6vyQPzm8bXHAR1+8flWNZXGcdqgR++ENfltUKkhHkir6n2P5S5H36TliKeQ/439gV92tmf5O5DI02FenPoAKiqEQqtg4PfCoO/EW8I3ZfRxkmAOKHdpcU3rDioEYfPjBiqnWckKI2IR48HztCHwuPzi3aKp6bNDdgqcOYja6VeyCH4rU4lEc1yxObpjwimLu47eTth7+s7USoKXSIQr/yPDlaXqq4VCvsUFsKpR4wchGy2gZqFxeRaFQ02FaC/8zCVZ9hyuLhuTpkKoryP9BTyevxagD+ex5LGHqCwMMdHOXgUpowSnObPYBkOpSikVZDanr26WfuCi5sHkr5GJpS2XNVc6BEWahaRY0oXc9oMPWoNJtCIFn9bkTSonbB5OCvuWBO0ZoudssFaAgqTeHNFh2d+hv1KLY0b8AOH13/zBmucXLidOlE1lTYeVhuzWh16l1/hSUXQpcmpb13aNl22H0qBPw18Y6bX4Qzsgj1vCJmwqUZYzt3W3TWXF3STx3bRmOQEO3VZ9So+LgOgcmtInXgJdhKfsV8vw+M/xAEUUZiECVBhfqtQQOjcOi1KNzio6kVoZG4Cj1JnheJ7zxSw9XMXJ8Bwl6TBlXpS2sQrjgBYy2MljcHnWg2paNWNjxErfQOOk1t0PuXcag1bQ8eY6SaYXWrUHpR/18NwJcDw0LR4BIOb/KjJINic+mTZ1242eZsq43vu79kKwRZl66uau9N3ZOegi8qpFLW9Sq2//FHsolQ5rsUYfGKgGzz5dXVckn7ehmr29mwFjcMYWNZpIeWAwKtHYF0FvRSr7RYNgoh7y/wtpdAgS/pii8YW8fS3a+xZO9keDyWlXVWxLNE+NEWQ/XkTgb7McViLCMXWcKivfOoDXoybbhFC+It7O2ToezmO8CoeM0/o6FDWDHWfHaw+JHD228psgRicNQKBe52VBe75mgtoNG+yjrfM3LD8F0WDoSw3iXqvdKX8DyWipyl5UDXcwMVmaeosRUDEyp3KirL5ypkt2QNRBVvWKJSjf+uGVtiC3T1r/JRccMhxw6ngWICJ3qrGTbJFuWz8CNfo+tBI852x11jzF2RDb36pe8JYyMgFiBvNRLwtcTr8WoA/i4YZnHfFJqaUI9/ynDpd3h1RS6lKDszYCA/vgSZ2LCrDgPobb+BF+S+rFdKFSC3iOMVixIgEw1rX63rweOI9ZVpQ6qQYWZM+4jUh+p6x7f6vqX3oHSyzIW4W3fbhGZctFEoaHNaJlFFG2XbwUwzhcaM0xOwuWvgt6hnqtJQLEbfSMOvL9DxVQLb5xqM3H2Rdw6adz8kdR9rsEwO3kaVbENlmK00fNdmUlSBTNhwFYlnlf6cmicljRDN+6LXmmJAt/7xW4ZOQt2e6qjRyY4NcFUOR4PCDEI5ilBvFHRZaqp3LMgRZz+sbWoe14WLHJzLlYXzQ6UQ7Srdda9DzJDLMZOW5DyoNIbUnCWG7EzmFwWaVayWfK0EvBqAv/6ggAn3mRVHZNb1uhf2pfJOU3Jjl4VeLiXfhr0xpzEc1iZMyp9BDaMFYq2YMzT5xjqfM2EzbGDeZsfOHPnwKcpqB/lAl2EthIajGvbTftu9CDaXHZsenMvKveqQiQeG7QZfYavtkW7+2pdxD0+bwGg5NpvUt/BQfSXpRZ9+0EFyjLf7PycDOnz29n3hEQ1AH9vY2otyV661M3uDfZDnk9Vzqu80lQGpvHegb8o+IghHIwzLtGH5zNjAqCV6lOK4Ni2qdL5iVztEUwE5REsKyOluKmbbLkuFL61DCA0iwzEYkmpg3tpC+ZcixcdxFv445m8ZC0O5rejNFuSNpfLy9vZfJROOAsyz8H+thV6PVwPwl4v+SNQRFpLAdhTe/U0P4H8OFV5Pe4WXnz6yFlCXcE6ByS0DpxNjFCBRAocWiGTh+GKdR0tDMRe5uc40+EzEcVvIEZsJA1kVPxoa9P0sPIyEiptyxfNKk1n4RcuJu7zJVu3UN1P0FwLGbtVP8KD64kdGeRN7m2cAG3WpR0o8DFGg0A+rgbrRW+6pIpiluB+PX5W5maObA2oYNdfbuJFw/3CE2376AZK4+nH4xYyGZVbCWN+2XJ1uZafB5eyvKwSNAkRFU4nw4yDaFq5ukqyAZSg6eCj2Sw6D5S/RDTdK4H1LWPK6H1VvnxUhynmkBFXU8cV/4hVE+Z6/i5xDhvv8J/H2uG2jl3aQDcaSUyoig9BL7aQB8iQWFjaU1UPRmwS6jvc9fUtbLXZB8Z0mmt2NaV/N+YJxRGW4bAKElIK9C1m8gP9XA/B3HhA/gYTBYj8ZOBJUGIQghvxEKz22MoFE7c6RxVTonosGhbT0KlKeUvKiFsroNR+LvUi0SXoU6c+bM5Yt5iQ0tg3EJV3iV0Sqyvl9gE9l9bawxQqLQHQUXJyM1PXDhglh2TyRC9mV5zowprJZGGmoO4txkvBr69ufDV4ybFdoENL7Yj4KIxjBrrRMgrott71O8Itq+i9OAeLB6/DgLa/DC01HqXuKNP5fNDCNqf7LWDUNaWG0zzO3BznaJ3OP1YMApsHouHv7sOne/Bi+VSDf8FhIJU3DhtSwOrayryNnw40kCRrGwozKJbBAVzy6To44335TlhfoooRKP3Ii1eaua2zSmChDZs4+DKi83JAqRmNG5srlpS8GuEFYZgm4JyqWivRD4QV4PuL81BN7Vf+vBuArzgR4P9Vj7MvDMF5+3vuIavUiPhJbGljxg8yVp8Ub7H2akGaF5UgRFZYEw0oLbroE6GU3V+9M+CNt1JDkP4avI3SQPHPG9QCILjfJi501vnV0nTgJW3OjmDnoFEkCcc2+EPUNQpdWaRuviTKh037QCpfxNuL6BVBzFE5KdllEtmFLhK+u8kvhoDQ5+ZsvG+Wm4zf/Dc4OI0UlcU80Ccta5EopOzATTRhr9/trHLDIC69VeyCUSZm/lbSqAQXiw4O720Wq7n7o6OPR4hJ+xKsaV2nacupRijQ/md/aHR+nfmNPLi7RzLaIgo4IlOP8KN/ZJOzQi+/d19nm1prK03WVZ/hqNq5B+mVUhdCTz2EVeK/oYEIB/4ko92oAXo/nkiN2TfNUgZzsDuadSIYlCArPvEX9Mw6Jswp3cdPMlKtYDW5lhUqnyU0dQDl+vOBYmIxz/8mebBvZMiLu4mkHlZcT8VNHz9KxpKtOVTdi3o2GgEJJpVfYrc0GWsIqShgb2m7fxsZcui1gP+T4mqI53Fb2iB1LlbaW7U5eHXzqlYTl8i3fzu4A4PiS+23F/X5jj+K8TSdXbfv0w5jmMEi18mGnsYL3OEcWodtgcSlig3wi9O5pCjuh6mN6+cVcs9PwLUPpgAVzEFbhIox3oQryPzknYFu+4gx+rYIK1KYr9yLwHMA5l9W+Terni+bIRD7dqr+K3B+SVpqvh9BbQsnriXjcMoAa/LanJLzjRMKcemvlvNT5fPR6rQG8GoAv9xiu7CMLIJ5d9wJnFsBVtChW9JWHWMOoiAugjRspTX9xBDxHVmVZZ8RAR/ohVdVWRE1QS2lWlnk71myF1UyJbgQxtLEX+6HjIiktls+oagtmZxxlk8wmn8cxZaZFgqLLAd0oDkXSpNTedy7ddmH9+u/Ue7oMR7tLEK5fwzQPEX3Reky8LhAPXALu//4Xh7K7fyHYC+UILMcHB6NOKq9fMQqV3H1qfOSd3oE2baBpcrrRqTdB8/pU/u7IfDl2By5zzNnkjPtTuGhuVndYY+CYsgxk6Esm82zdTkg5Zq1mPEXU2Tb+sFUoBgiFnyknlj/HsRW5x7LY09a9EKf5LiASPY21/EqSJHUYry1lzvKkvn7o8xYPkyOPzACfwEkPT/SLAvRqAL7Mg40qOqdLVrAzDnk1UsALRzdfEmKHyM5DuRyqTNc5OyxSko7DSlxZgdWPfzTCKB6tBXww+u3nmaYZC6FRiAEJoVMyAVllKK7VcOrasUiJp/2Hg7I1WNN6nQOoDrMwH2YI83EO0apwp7kBdfMgbEr78ZHwyMY8LmcnAZ+l6wA2+2q9P5x3fD+bvP66CtD22RAt+qYJzyUX2gAIx2dQfiRehZW3DiglHWSt7sv6B86N8ZLr4gqZCycQ4ib2MpdgbFyfwoOnqvZKt9y0xVKAEgpatPkRXmmXMxnsd+btsOJm6GrXD9YQlCnnYHXCOxqpHA/C2icIhAHZhuKkJIcRE3dFSL4d6liMR+HkWu56OYK9GoB//jFoy8i6Wcm0yeYeUCWUw4RCeIZT1nDfY0eb4SJnC+lT+2arbVJoS3c4ZI19yFBfOJEceltZbpoBDp8z7mMXju/U4C6R6ZTsg5kP/KR1IgZzmcbFQutDtIWZAvLZ7N5c8kDYK+r9g7/Z+vg/v5JQfnnBdZhTLpirhbAZBltyaiJdo0rQpNuhrRNUGZahDMVBQ/5Xq/1f/r77ggObwp1ZcKleLlDRIwvgYr+OjIGadd1KyPeRgo3Fdbt+9jfPMHmL8GqhpNg5qUmE2U6rjQ60nVZTExLME81RSREpFMYvth1og2ENeufV/+620Xtou6KfRta5vppUwKOIHnIIUDxbSNuT/AyV9enlpkBlkMJfUaQtEnSvvqM4hlzIyTp7G7o/PxvaXhOAVwPwNR70VvZDWcB9u6whZ7aEY24zlE+FaQI7C+TL6baAY7lUewc1DmJxkEXLRu+AHZKEAr2LSijIcMc8jo6lbTVemsrqdC5oE89auCv74dQGCM8EqiLesfA7ub8gl6jfgJ0zs+KXufRZdx9Tn5MBToSfefWOGi2RILWO+7oBvqVx5gkQcPVKA2dh+4y1Cp2o6Jl77tOV0LOI6JN/LL7UVqW3t5dY6MgQTZRE1gFfS4VXPKTub0sbwfKT7UW7jDFLgZtutOLelcJdK/4KVa8F2/o37WYXFWEzq+r0wqX0z/mq174DEMNdeMSp8ozIeibllaq9D/RcP5CzzMekSO6/PfRncVTEppzIg0w6Hg2O9heMuu9kU14/LDwdyPR1Z1vNwJQ6eK0CvxqA/47q31HiOOSg6R6bqRTkEflOGyV+n+EijCPJxDKk3/hsdSeEiGcuvNoHs4TFk/Vc3kAvtwT07ZkCTOArLhBma3lNA84ms7cB2KbJVWuZaZjDtmoCteuWNtU6nNM0iKjUP9l4xpVGX/qH7qU1NMYr1y5ryELqPDIT3mBOsq3K29pi0+zCznEpyjrgtriR+f5vBDaelGKuL8CieLiF8aCE/90wx5+sdZ0Rwvr0ujZS27C2mrC9Tb0y0Qr9aGqeUbug4szI1mCLcWhcfIl6n3asqTN8ljiAja3veleq0j+M2TmsIES0eAh/nble7jxWk3euWO6f6Ezcek6EMQgLY4hZImFFtTxPUijDfrRqVYqqf4uxbCB31LXDQ61SoTh7fL4H2Kp3vB6vBuCPPAaNfyxqzTdhNrnPhLNbq0pl13enAxiE2mPsjYdLrpLdgsUF1eJXa2AoCRVC/5t6U3nfVuETmATSYecMtSjBu1JSiy2xYJEInKaxxmW5FCUc0dAKK3L3FPUxdKItSWCnFkFO3SlFciXgq5DYXQ+0HULlLbiiR2rXYNfYHISZP5np+NQnnO5Qo8mjm2FqlSdXvGJwNcoXZbIMQ72K9MXLY3033rwLfMwvO51h1DmddToNi1KCOAbuoWBL5WPFMFvLHEfNJVriE5cmTktVmR3EU+S6c9tNJ+1xW18EvqYXY+GdNW+MsqfFE6C8ZDE52cKU+IxyBgs0qqZ5oddsnmgDXo9XA/BXH3N6kLuA9wnB5JT/BFrZQSlRsSpRiFK1rPozTFAxma0QvcBFIhehhqHuBlXt3AODJr2tQXAzXkCrf8jsQjfXVijvDY2ISG5cq0dYMWwGhMsmKYwnExEC02awVgFCljX0V2aZ6qTyHVPHtVHxQ+NYqaZuORpikXoLI21sR1H5J2st6/oNeL7frXv/6Yr8k7DGzXTvy+LHFauesNL/1poAu+8sNKl236kssGpCINvN65RPlZC/vp1ZwU6EGJSFqrYR+vXp8F3mm72rkzV38McPsZ6ABf6vRTPG1sXPTygvrzIZPlSXxP0Z75gdlHY+hFbSejQ6ft+4rNLyNi12I50UAb6giSt0ch1bZi/hqK9/jPczz8prHsQpxCib++nh5msT4NUA/OX6f6sMvRfw5rFl6AhnDtRADk0JN7VRqD3nlfIhc8Cj+MOyXrwuic57Aj0Nz/YFkBXbSbAYkaGToANpahNiA49ukNpTckNTfmhvi83gDVTDqo241k8IXQpY504nnlj8yOCX/EaxUeCoULhqAHjYb1OD1PfVlej6LLNOMEhksLSXUODccUU+/vcvqvrvv4Moj1lJ/K4NlMqVKR7KahL5lO1jhzhr5crB8CKtscdsYirvvkhEI7GVO8wKlLnsGjTQO9gtFcTW7u9MEoY1RoimJdDT0BoTahihpQOdFHMdyz8pCns/ibGKpYQeBhwh57VYiV6K6xVtVA6IeLNW8OS2BmcXzHXLfqdDsyf0/PuIaXR9+Uz9/6r+Xw3AX36cXIIYC/0JGDvuE/ocog8cF3SnBTuOKs4U6m1yKUrEoqJagAtHqS2EgXhvwJDctElu6XNNUTfMg3IxTVMZ1zqWt33scycAmdHdYHr9bbffYda1eE9jvXNYrwenFESjQdSvmZF7RrnrCS9i3T8H2DfzMN6/p6r8hvTfJYDsXBC78vrrD7W3ZsDwSN9OCAjYHHzRl+GoZcLHhRHDddt7tvwSkLYDJuqKgpz2uuVaW/dQVj7kW27RWUMF1dqVa72ayddYQnITCcmWrNS31kL1B3kUJU2cLYUfJoiTi19SrR5h5OHZkmWVja6Az6fsms4tOzdPT8iT1aPuBnnHWVvl2ZKaBPUbivgXBejVAHyBhEh/O41VMk+u7FnpH2eBDDmCYTEWQQodBbzXb8oJ62KDwFNI+3iFt7cr5FkdCS45yezRClkITtzQwd78k2jCXnrSc2+kOy8NT3Sx4UTMNsbDZckqtOj2lctgOgx1+F69SDsaBmruZB5T4KlSmYe/dkIlYWcR8qKCWx7l7vPg3qX1e9GNOxc6YzqGMBMAYDwROD5Hn+uk6kCmWC8tKIaDZhB7QHRbwXSZHWdB2Fk/7m7nxmQX2Yxc9PylA3FYBpvpL5+KlqdXpveSm3a9qCTfrKkl3PbF46Q/js/bW+nARNsQZkdOu0i241XbyyV3/zgXbW0DZ5f9oGmGAycZKQnqc0rkNvVp4BW7VcbX49UAfGnwDCeAN+qeHOUAlKO88ZWfLnKnkPGiXovsvoncLVb2z8UcxZIIRot9XEorlgK9iG+0zyYURbZ4A7KBK05RrinuSCluVx4h1/1SQtFqX0ALV0NTC8h6lBKoD/MdkdhudNqmvYaAqtqRPUoHxjySgV1vKut1/NPmaSruNhJb4r+Yn4t9wcGRiIwDGu6ne5pPhaYn/gzj9EyqDIveCXlhUd7IJ0IlkE0IhHErVCUGcer7VkNE8tsu1yfUJxlumRTnI6QpePrAzKYByC9S7ib0EIE4MOSObs9MdR/dCXcxuFztsmGylMZphIdC04pwfiUBLqB+Smrm+KR6FDpFx8i9KSC9RL7isZsnZDaWVbHckWpLCpWkH8bz0VdcTEDgJxWNfwUCu0/xrwbg9fitBb1Dy2j66eFZfY8KsdeinkVaLMlhJyfK2CwGsajRP/bJctZZiaoOOlLRn/Bwwh4KxDE8gCNU6ifwgINTIDFR9gObp7SUdr9s9Ho+NhpFTUO16UtThZRFw3I21y5LHvFDvmhKXT83NL7VlpJUhRYrRXt1txASokHJ/kEvksz1gN4Tlvsl9wNurJSKhls5CWdV96/Nczir9u9/kanuYb6bEEF/2KHfX5xNONEhSg7SeoEhF4hAl+UVEez7X35brm2c5w0/OVGwcenwi75cFyCujBGKbvlaj2ZdVCjBlvm7s69OcYx7u0AxR9fDcM1jSWidPtJXIEYxCXqpJUTFYh7KDTTWLjJcb5U/XFXA+U6Z4wDfry4cZE+p1OwxmpD35RNF/6PvelX8rwbg77UA3hz0JPIdqh73eWX6lcLJVnDo428wlT4Qxd/k/6UAbGCJffCGvrGpwy5vqcdnHliJ8MeWOsf8KrBhk6KUHW/9hFDFUFOyD9rwunelVTz5mrypLYclVHmJNn50ejR04X7GV910LqdjHemiW9hA8O9ZUWRutPYV/x5eyx8QN7bcAAZUv1Ggx0gLIf99Y2p22jfVocjbt3YPOF//8Fgv1Gbn2M+w3HQh5Q3aJYdFHrFct8y+FiLQOXL2egdhmhKEes0KInCTXPSoykFUXaadqunFhv460zI/FWPjLLzT21QPVh5L9qHJsO4zCwthXCgY5CjSawqTqgm0qvxIVhLZwT1aXKJfJOZxfXK37FmviBdj59UA/MOPbUEpN4Bv2ALQl4wNZSnGTAm4xRRhGQK4YvGpVaLsIjatQNHy3JAvTi3XUwnYzQKZB75djif6yYgzO9VPZ7Ygc7OPCZs2q0WDUD07aVA614DRTFfQVDLZ7KiH1I6p/XNYmhXzGReIcaJgc0s/3hQuJ9JSGAXy/gSc/4dinz96Ruz48OjJRnqIl8BJVaI1ZyyH2KDX3Y/viM0ystKrCStbiIBBqWkLUDldzIECHGJUOQjceYdxp1XNCZf5vcF5u9/V0S5JfJVXVMf71+s2O9KU/Wy7Ms7EtoJkuXCD8S8LCpfsD5vzTF9T5F2Qst8px3vAz+Fxj0nRqXPcqwF4PX4L5DUADP3ekXfFlqPicxtMBa8TG7UIAQ++5mC5t74IoCHPC1pAQlNWOrhXJn0HhAt8iOYkkJDXE/PRZ/u956+UoiMJlWXVxVCm/GkxcaTz3vBBa6wkW6M3TjPH7bFU2UOgieUTakiYo5XMSd0AoafOmSOrC8Dp889VyHRbb1vZr1Lh2898wtQfuFJWGNXX/uL0QZ3ug2IR5gLeD3ykhxSUQ/C8GpG/gr0yWQdxJ2GK4+JQFA+WVtJx3C4TzS2P1Sn+cHxuOYKs+Sv9GcYOAGnxAwWPMBbvaPlroAHzAISnu2logZLeP2DT5YzXEiasc7gMtj5or8erAfgH2oDhNsZ49e9v70M/oxx9iu67SI7Os7aJGJAGMFNwDrswEaocvq60kKRCc9YBaY9m0gwcVMk8hPA0wnQkiYAGqkGctsq1PQAOPXECtuiHfR3u+lchXz0ehJX4Xhka0OzPC8vBIiV+tppxvtQb29Vwpgxd3j7ldUylJGKz/PM/gY9A/Jdt21CRgnIFoFks41AxCU9dOe38M8u6Q+8Z1ysczfrQVnvmXhueOd2/euUddLx8jvtR8pTRDHzQhorYJ7ST0DqcRxvPR91tuG4c7XCtDRJa5mpNXSLxt3Ug6ZocrJX6SV6OED0M+pdtM4cbMWlXpXDEQIfT8qTqN3eZ6/V4NQB/Ah9bwGnevG1O1n8PoT/0LVJu1qTofGeKxJi2SJzmvPReUZvuJbyansLqAI/u/H7AaTIhMlKGfamuF4hUNHp0zhiWZokXw4eKqPqgF1vzHGrbsv5lqZH0JSiXc9Qv7yLrlNnYVesT9WqUzWdRNdn48kF/r/KJU+KEKQldtlZiM5vrE5v8++cz3f5NZwF+qBgFjynIhg8CyOjVZGkYsKlF0L3SNXMPuZVdb0nUZdy1mXduuFigHzl/KFsn0qWY7Z7tp+wBN1B9GK4cIS5FLer9BblaQN3gicYglIQu/0gc3l62xpJis5zKpB2E2QlbfWWnKBqG09V3LYbcPUtc9CIB9w7Z1KHdmham3IhTBY5feNm8GoDX49ckSfLJ3MzDvagDifdeNZaK7X2cudzx6DhEdi4cPgVjqvsRlwoQl1K17gSH10THUSPEBVSEie9bRtC6yVcwJOys5odoS+UNPJ1Q7pzt+xik7KXh4CrK/p0Cft0tEQph8o5a5bOMoXo2K5WlyLtrgjtV7PL8ojdi+n1OJvJ2L4K9JRQnaIAa/gq+MV9OFtULwyU4CXreWVlcD9A9wNBN3Kp10BoPubZOf+Cg6Pswi0zFltveiW0nlYWLf7AiVZkbvayfEdYDI9g1ANILwuwjanduRjoR83eE6cAvOABHtD2xeit7nsharrgIumvNvT3RblnoungoYYjv73RNU0s/6eidJ53MeC09B8bzMKiq6+FV+r8agL/9wKVFeJRQsKljJv2Wc1cVVFpn8DTUrsmjAnPIYggqeyXcKNMqEN5Gp+T2q4GBzmSFEiCP2B0zQtkSkDb9bDoEHiBJPf6OE96IvH3L9MPcTS1q0LmwoBfx7HZCZXtYko621Pl6GJs3Ranb2ByUxZiHTtqfjxwvvSPcwXf1ZXJJiqk9FslprLcsUQ2nYeceanBLuur8zzC2Xop8dajwiCYjyF2HNrsuZKI2Kzkt655YE2rqQvD9dC+/LR8Mo5FcKJOE646T96ObrdLc7+93VzX6rbTMJfJPK/usyBcPduAwXooyqJbB2r7cn69o2rY0nAV1vviAOED+36MEimQf0iyX44YAm/YxC4hz2ESxLYzh+H73loV7qhVOIwowebodJuvX49UA/PEHDxzy0KJzEV/fmtjx6F7tFEZhcxg5lq06PKX8UtzWpF4844BL0EH5s64XmZaIjTfWzboE8sd3CqySaa7Op9N/ZezDLqi6GW5Iv57UbfbnXbSBVDZB0njs4iOrAFy/PrXoquIHD9uZK7de4pqlsNCzIJgKk2comr9fyqfl4PDqYVHusFLEfamNORCV/4X5z/ilXCL66t/86K4ipNBTl1XR8ccsYbCecBUlqkMF9XcXSrU4uC96vJVlLlvnQ+tCo3SxEG1MwbbhIAKmvBPVTGMusm14VBoAMtLeq/7VZFic6Dv9MKCxqn4GV6IjexZWU1Y2VMXSdNFaUC7ZvIfBHNVPbIjUJTVWKe36jO4bvTVtuDkHeC0AvBqAv/2AZl2fJHXsfDpkvbjewC52X4Ev86fLljDXOQEr+7BaTvYA3pSG19pujXeUnvAlNUKT1+NgaezQAuyxnIebnUBvA6YTjdr2bAEVjs1khXOoFdyYawLp9CmqkPJ50GReoRhuu9GKm5yENBTbnjrYi+f0FcwPr8t1GRQUnHK+WoQOHTcdRRgk7h4G1hbxZf0/PZG3Q9bJLSZE5Xdnv3qByZa+KC8tMQ3QFTOOr4r5j3gHznRnH6MEc31lOWdDk4mEqSBFJBE7D4+KTWpJk16WoJuLuStIVbqIPmXTMQQQQfgIAIISG4iNHdhW1EGuUtSNXoj+lwURa5f0el/AzbS7QTuv3M11taO4FkDvXEkUSQAiJsnyTOR3G1gQyUX7Xv31gv9fDcBfrP7DzfrP0sVWEpsCuUpxf+B6JnewD8nna4ra8YDO3AgtBkfTNqyBg5nuLDTmPQLH+bjh1jE2f/lsrNlrB50vV9EWGYMQ5xo00d5Ur2Zx6kGhXufKVRnoKsjixtCgEFU5Akxb+ZFxlXwhvwpcasbzhjkTxmZGQq1rD3xO2bsRKPLCt1tAomkM2Lle/JwCKU7/eDWc7keMo0UDGfPITZygUrUbryPvACVg102vO/QDo51iATLEegCSOkIZQaBX1QcRgOp1uHV+pVmSPuseceDfckru312Qz+SFk+sYFVObU3YZFVDOAXIpTwlvLVr+Mmuvl9gPVAIpksfohlZwJQi+1lZRGreP8nIB4+Y52/Vsr8erAfj9DyojvbOAyFlcWd4OvBIh1/V5o7AuP4KWPfZQpasvcFimb/x7UnouxitDbkYrtsJvetkP+DvwA1xJ4sAdS2dWdlOYQ537IyhGlfsqstN0bjzBYyxT+6AxQb3SLpR3aV4h62i/O44R/7vVc66vSQNzcmf9NNVV4xXy/f/Hzap/c8Ut/4HbAfAQBUQrhlJ9/9Txn7U1PYdQTzaxnL9rIoTaP0wXkuXTiKMzvI6sI7lrRA+XNbddzRB5aGgeJ6cr0RR/T+zFYYxEpA/SN8omlCGpAF0J63OdZL0Ce+rfHWJhjCNzr3SrQMIspPQTdsX3Rg1ljkL394BfS8CvBuALPGA0rNj8ASgKUGDTVWeQ58pciMaTZqV2CNGDLgE05BKmUXsoWqpoGELPhd2tjx2OeFrK3nkO/sR1cfauw8rH1pBrW9wbxnOn5VBlK6y82/XKoenyOFS4TSaC+fVdasl4HvsdsTwPYLnmoZ+sTgvfp1583JhdaGXd1RsgZBg2PO9fHrkPp+sctvx+OwXIPQJvgRi7cRzN5gN8aQXdmq7n6CGxJc+RC1AoLQMoT1zh1ciZoYRCe59ApwTVfPTqOzBtESCPmqnaPX93o145W1ep0YDsKHAdXh5/LPAOf4HTpsm+/ophnTh2UZFqVIBC1i9SDE8RXfUuteqWySrplvpzuDCr4x6gGjDmL6cCAn4fGPd6vBqA3x5s6FE27K12p0quzg4NuqbAM5dH2Xg+NZB1H02KrMDQ3iWyOHOWhEN6YMr5+XgOAe44GzATEv7Qo+8AeCJv//wJ8BiVzpWXJ4qcBbNsa0pDLUVxViU6Wf1kulBrKaMqHlfLFUmW9bDMfnxbAVBGnpWPExza5ZiJ3vOcCYAYM7LujRz+b6jun4TicPBjGBTWoQ/+yK/MRomJnhgC1CV2pIAJIYgvap3HvwvskgaYcoWd+sPMt9jaZpOqy003dbrfhezPcDId815xx6m+15Fs3e9B4ni8EqaLe51rUg7irocXRi7hk6Na5hFtGOtzO2emsINE3jfO5YDmZ9aNnZHUuN2gkNk2Zav7/J/XHvCrAfjLj4F4OYc/ya4plVA31mXBjc4Gi7bu8dghjcaLyK8nVppu0GEm+HXm7uNsiYNowIP9SCfcj+fKIDzp+lqEd7p4azdtGNBW1rxyaVCX8yhkmJGvkFkpT94JDiwsxl5DSaogpVS+KP4PPEZlZen7l1i1RBGjk3JdiERsjNswr+fKDt+caEpPBsf8oWgVRC/RLry7i31ckX5jLIXYq6ghV6XMaChPArEffMHpG5iDh5hVF5KReT1qw70wECMLI4Wma2JdU+GlOV+Rmi3xjAyJEdSn83Mh7gl5t4Pwy51dhs4Oy9GW/SeGm3E9pWYkCBwNJTpCIQehWiSQgsJ3qqEn51FZwqjrDmk9jO3Y31RLz11L+3281+PVAPxuQHeyD9wK7kJU/1Ul/eDZdFZT2wFEVFj1sWNgJSlWdfadtn1/DfKoQO9s1+3CtMTE5v7kV5orZeow5zZMV8WTRIOoYFwVTnu1cD5Hj6/wMW5G5xs0IeoyMn4fBKOyKQrIem2zDGwQd9ItG5vR51doWlgS11x1u6M2PFxx3/bubv52W4XGM8Skoxybg8O6RHitCDNp75K+hWCVgrnX9x78BjEesSazWI9/c8xNJzpXBrUcr5QGxkC/pN5xxBh80Fbe30Wi8ktc90gkSmcJ5mxTuMddCdgxVOHrYyiCR5p7SP2uXrOqTgfjdVDx4F+E4GJ3c8GniSGo9jO+3+wvM/OD/NgzvlMDfxxzipHoPj2JD6RGwfJQVaeLE7NOWQLRH94XnP9qAP6ZB3xzizP/14OdsL6Y3+XeBs2Eqg1vfOMFymhGjVgnrUjS/mxBagrHbpaKXgrTMjWN+oqA7ubT+FwrgCm9zSTvCwljwnFm5DXxNaVZT3fPvfg8xMMeUkFEjxDMEUlzO6+R1QNT5kBSL+VC4dj4jGLTSPNYyxL9KTDVIAR+f6ofhU3vF+ezbgoxvigqjayFvvQBSGTfxftJw70UeDBu3hZb2VYeHMleVEWDkBHZMK4BpTi4NsS1JC85bLy6WaSWP44q+hBp6bvcVvRwU1znBS6DfDd9v2IsFW8K4vPTwf8K5ErXC9VkxjdR/FV4DA52f31S2MLkrFNFsbSWdryx74pLLLpMA3BxU8uQPP1nyRFmO4jcxCU0QESQ2ca2B1uTbTmmxo1AMQXIV7fwagD+8uPAa3ayxrylFFh0vtQHqUZdbA4zMkGWCbL8YLnuTJDr1hZ3h4aeCMlJ1AbPI0LqbwtM2P8XigZQ6lQaCrhM9pIRAsPyMtdWtwWo2s74yFzNoJScIjVVrF8bQuR02On48sWv+QBvVZEanvz4Ciyj9lomtqsU/lJhqNYoNImWd1yQ+ER0KVQZJm/m7/9+SzVlJfmwesry7cdT+q9CjwKeg+V48r1MLi9wIKCUBtTpEwg9amu3FkUiHs6IDA9iPSbumVg8WA0NWsGHvkw1RGbmSpV53QI6Slwq7LtzRncQKHYAIP6jJR2YtuA4FN/rGnA6s8I2xchzepz79FUq529UMV9JpckrWfqBUo2YeotC9+t9oVN7+KMy51XQvxqAf+zREdzhVsENBYajQNzvW0k8fSyBymXEPE0eqhmpeF3sw8K8/yBg12PipIyE6SliCLDOE7AfBWDmb6BVsUxqNrGgOL0siDOr1OBUSGn6yox4Xe0gp/VKhnIPMy45Z+4wKDV0aTs7+FSOEgXWW8oj7NY8dY+KTa36mM/08dS6QaG3Yp6T1TfmSszlXUJqzQSgjAj6z8VTFHywj0u8+R0VcBCZUgwIKjYWjHnzMeB7AO5jSGSHJrTojU6MzgGhFDQwq+Fbz8cEEpc/Qy7c9SGmhFgQnqpxzv852GxO5Ku+a55Hyg9seMtyxPKsvfA8BGZfdT+xl8MWtP6DRNbTnwXpaTSTuemZSdsD/7wWoYqB9RMijq7DJ2uVkRTUJ0ivx6sB+JcekxMtz8v+AxSNtaJlvu3XYaKhEmFyDArlawaBAV+4QhMWuDgkj7+fbUehizEK1Fb7AImPJzucmxZg2J6OTI0sxq4C3aaAx/qyIA72oUO+LOvbpTEOUhuo2wlPV4PrMFGc5lzvuTzjW66VjYSFnnefA36tuO9EKQz/2dtjCmkUGAqBILfQQob54KoczOSdtEL1CeB/q6h/bOWAWqsQchTQdtNt4TgMf9rxp6mxRE2Gut05c/zEIg1tk7BBiqEl/PW12gk5345uitWnSRyQ/nkdO9yof6Z+GE1aII7MofezkNy6O6+Awi5c2aQ9dvNmfJ6SC0Tkjj5gCbHz2ztJuqsJmyhdsmfJmzV79o+37kehQ3Ed1PHUnUbcXVUK5Ct/poyZYf6tE/Pr8WoAvuIDQ1ECCzkdSjI/cT90KQPKWr5nJKVYB59vJJr1aIeQvMp2Xgcnu8DmGYgNlAVZO+JkxCsGzr1SH/hBp5Y0vdLKSbc0OXSbJHmk3p1B4TL52LtOMXrNZ4dDm3w/DLgyQ2mhuPQhNd1XCNC7igLmGsfRpVi/Jkccsf+s+y+0OjEB848b7ar4wf8H3//vW/vfTytQfvyWj//9ePrb0kJ8/OfKTS89QMyNqLps5mXQU98x1zyUl/EnFxgGgIQZi1FWipg4UVU5jUdw8rUHDAXxytc48ViBOgXr7AUteuTv0otjSGDrTNdBIScihFJRcXAywW0vXbo4mBxxlFa2h33McVex/lH3s+XNJ9NuOX0Md7f0sdUT+jmbmsRsI8D2V+k03fo8L/2fVwPwtx9zZ+wD4pYkMIWhLRMDrbKEqfxaZfZeX67zZXPzd0PHNAofyyByqtoRDlFjxTy65g+O4rjWa8L+XBTu+omvV69e0Usm6oKpgzGTYSp2BaUbAS2YK1pZbLcfoasTqdqEO6p/hfhOVY3177COwrHV62wHGR12ZW0gN9fHBxMMofbpOWqAerpFF/O51qnfK/sff/dWIf8PUB9Jl+bt8cNHV5A4P4k4tHQdG8wCvieFKDEfXDvEwei/FHAUV5rzF3PqoktdCO5QBvrL8jB8S8eSTsCQFdJaKLN/cQzKvLCugtw3YAlrKGNn05CIV+V0hQwxDF4CwF0eJ8K1Fv7X/6CWSSjQ0vbCU61vXz4pRp/yAk4sTSrlHOg+MND6NDlv3J2hQ/UCbAEv91avIcCrAfhnHjiFPeife78DyC9YBPUbEjC51qtMgUy6qGUcUzLmrdAgDbxgmiID+aJ9MKfH5zj3SXATT0pPwHPILc6k1CrQpSpLxX8CqqEmJFlwFwrQNSzi/qsWPF6rrOK9aEjXSXeaC93sWUW5vGJBgfhiK6Zej7bLVb3pgiKQyNvpRKhqPqENay+e3A+0/ir93xL/Jxrd//rfA/J/S3yhWNuAdRkgiwKBZzjo8E0dyo6DY7uS3YdilDfPvrp+gFotV4tfvwIOc513GPi6U8yycpSZwzZMscC6zQLMHArEERgME51Sh9Y3fYWwrkOf4rDXniIytDhpZMrlVn1Y2/lpkr7ORDgeBNv5KCqbFyUqooFx493Z2Z510+ZA5/So1jlr9nRv8AL1Xw3Av9UD8ICo2JXsjrtpjRBvtO2qyLRBuSiyLLflIDMUJ/3CesQ/WyKE2dNaw+22qqidgMFxsa3r72QfDWQ1vI07t5obFlG9HtrEWhbIEzCC4tB+Q2I5Mp8j0i8VtILApWGMJ0Uvaz6wuk8CSDRYHZVb0HjOBaR5cMG66v/Rqr29l+x1GlDL/VCqoOvr1R2Aqw3oqjKUeybnN4UZmU1jNIqKeS8y+MzppsYjullEB+bn5XsnT9l3nXtFPkxTYaxkkykSPrzADjqrHZi9R23VB6QiCLmz/mTVh4nGkzoTH3B8yjY2EQP2NOe45fDSIx1pq2r8tFK3V2KNF5dsZcTFGKjL8eC9295qKMeoLv2sBuhreeDVAPy9FgBxptzTuIlPNBvhqcnQ0BoiVv/XFM5Qx8poiBq39f1hHMemRv/+j2+X8WohvkvCHxQ0UsM0NvjEVrD/ycJCwf/huTQxTCNgCFSGeB1m8fKRCSBfp1lEo1OSVLdmRZM8R1PuNmA1m4TGwEysp5zgI24odYijT58gYft8+CrJdkbqji419wck/1248nLeeGwFvLVy/+0qEUp70OcDC9gPLivFawQo/qAzx8+GJY633lZ/UyEdqaU8URgTBY7ZAehXe6bEkaJVmPca4GtWuaZCqgvM3LCpdzK4z7QOTfE6c6kNv/86LVzh050bDnoBaCq6gJZGq++efbhaU3+TxjWn2QTbAjoyyVY5nSe6JprF+4eh46OpsPGHB/XGrb4M6uu4hPmJBYDXMsCrAfgbD4rF2UOI8aTdnVbK+i082BLjyjFs8R2un8lyHDLQb6eNWnRRrZfN5cKCCHKd4VrFDxX3MSJPFbD8VS7BHI8YbwOafQ+YCn/jLa0MCIPVIjqhs5Rag6FRfztZfEff3mYuOBTJ1cn/u4Qh6hKO/S0U8DZUfBAXAOcbn2279KeH1FWjg935622xVyuIP8f/5Xd5FP3vOwNdiZw3r9JST2LkC0Lc75ZF3UsKqt3S4dSHMARwwyi0d8Fh2ZFh1/C9NMs1MIQpXBCJgD9wfF5afOvylCdF1Y1ohl9E7+6qXEM9XYQfxgYvQVGPFeo+8aO9y12IFujEGS+39IfIMwSYi4SsJ1HIZK0fYx4UHco2yPN854yTow7V6/FqAL7cAxXXKL1BAXfrfcJPv/mBKEFRAcIwhW8a53puUKLx3A8oxo7QVJbP2opSqzICmZIO95cY0aJzKR/3+q3cu0GetKJR+Wggf8fw68leGqK69ppt7ErCyecIDcVEjHjhAu3v94OLkEuHf9wL+L1zZ8WADNPi0P9yVqOCawbH3p6qN3iMBd6uTiDV/jmhXo6/iyutaA8iuQVfe8NlzlBEgXZDAMjWNPzk8MATvdhKwBSXk+L+wZWTiq1py9bImDLdF/peyNMz5LiHccrUYx1KWNxypRQzrdxicwiab5AYgJWYHKNOX2t7T8FgQLAO97a9DGX0seOD9ReXwATHPAhF9Ko9BmwUAUKoAMVGdu+zw2+OyRb1WkJYePEIG309Xg3A3+0B4FzAYOSW/bU+X9YFQJWohEM1GKMDlEaBRGImNfLReSCY8RJHW4RY850y91qMzviKLGoxNWk3DB67RXMzu6XkPCwBcXqTLclhkMxgKybBjeaa0voMJV/YAzegFfGuxrLJwgC2Zp6NWku+KrLrIRvX3TgeBb71wN6m/eNNjly7O36m0u/A/H/+4w1rER/KsjdUWS9Qf2ZVn6g2w48eoGwGX3/JU4QPDiE8KwE7Ds3WtZ7QDuEZz8s1Q6fkSHWhwmG6TBA1YCQXIa5JUVmuX+FsD/uHqimFlx+PelRdgGIXoNRuEzoe3MV9DtUkvCYETDwPj/1HiOVahAFr5GZzP1mGkt5n2kLk1Ciq9cYV4WUArR+c8NUpn1NfWQdqV9yhAN2gRo6eeLKh8Xq8GoCv2gUEXRWFBM0kPIUb8WBdv6oXlAVT0WyGL3cmb8gcoh3y2glF1A1+w9giS6+Ueb4SKn2wPuB7qqHgw2Fr0UO1XCdAqwhueae7V94Cz8OJm/oXYqlLyqplRT3lN0KDSA1O1k83w5zmSO/IDnAiDbjJVLFRtmG7Rqm3kRxOvbxuD+1I2/tK4kTS+C+uCx+8/+TdM4/L1/I9bKvArm6Z7cCC1iXqQLlnLi/F8YE/1JaRFbp0O7KJrXgKV6rDGtPQYGO261YkA7xTNQbnEzFNgparCuR3zAudjzb7o2uijNXcgVnbmKNfCHueql3HKlGUA4B8Fqv9ivYmO/BD86z7c7UOkOWEz97kagMYu4YB0krI89ncSKN4y9AgL71cwRY0UdgH27SBYZo9lQr2sQJX/iJf04BXA/C3y3+eZMJcx2MXj0mxg88FRShCAZDzdx+U2dqJSsnI5WnCJIwAvz4URnatatGsRR12YNgqb4wNFoiTouBwlRNKPPRsnI1DNBhNcPPwBU1stWUttAeWrheHIU9vHkKNkrEcNhgCK1PWSWi3z69VLXHM9wO//8ZOznJeaBblB72p/bw7MXMg/Lm8EVXS9V9/GMlPQIN8Sytyva/sSXZX2HRPSI1aBlU/zPMhw2jJrGs+iG5TIxSrSNqKxajZ3eoOqfeOmA2qMDHa92ycDNAAU8m9jRiIz8alU4Ufd4nIGHu8Pu7+bhYkwJpT0dONSGdFrAkDSx6e/wNzca52XabFKhvAGsho4AjDE42QtR8ohoQb6jLzUT/2Unxi2xjw7dbr8WoA/tBj4G9gdw+omhgnZA+FNglbb4MxXxjwhCnsJqdI9fr8MVmAmXzrkrkhOfSUjRQcH0lXuw2cVOl+8e7zo8kT+6f52sGNHYL2qfER/IczRV+hGSXvarmFLFGiaMozuTaazChsMmaaiTf3Lqgr1lkQwJSwRXK0z6PY2te+tTwlvtbYs1P/Ixf91AsDAuz3679UhiHrcz9+mycPTBLAWhWUMZYfbac2l1Cdi9hPAXYtVj3LEHhnlf/BMk+CAx2qSZwLrf1bl05VBk8c3Gv6irUEQnYQF8ob+KTSGnLaHNN+jbY7NoIEc2cBk8IQaYYzJwWpIoDcGK/TmzS33EZ9CH0nx2UdLD0ZZrcK4oqsNQPnlWpxU2woQDyoiAqL7KTmekH+rwbgqzw8OTJ24tkDyD3dS2zyGsON46VXOMt6rPQPCrjOVcbzyJiNjapli5h3TDEe55PC2u2EHfQANwgMY+bC9rmII5eDj4w1iOoILxvGuggudkX6dBtaMq/g9JXB3FA3FDjW4bus0BEM7bUuokCdM2xapLtJpM+asevMeUJKoslwqmpPObvfv6tGUP8fhQNAWShKt+eiMs4Dy/OTO1JTH0fA+IkRP7fFrbwnS6dqFqLKlny5OMW2Mcx8Fe1+R5stSGnj5m/Yt24+gCRopWBMCYuheE2u6SqzjhHLwM3IeYKnTdqjtzLCnEnQToEU+UHt3mfdM8BemWKoSKUurW5Bcjqz0y2Txcqs8O5YsUz5n2PCOj8pL8j/1QB8nQfdyh+mW4JmMYvH2VRmX0wFTnIDgNmpDUNLjXP9ux4ZY9LiHJ6JQWZ+xYDjYBsYFugNYx8TTqzDFDcxIk/y/aTcucy+bB2gbJkqu0zxpsg6Py06g1qC6cHt+bb8AZObWKmWeoOh1zYaf2x9QXFgwXpBDv6d5oLEeFVopAqitebK4C9bzrciSCRbn0fNxgL/R+0HLsUep/75wzD4/R8rR2j1C2up+iM64XIAoBA+fkbyD/VY1SOJXZE01KMjO0/Xdo15IXkFVN0yhwqXVVQqvXXzbcQi4YWf28k0fohovPPItzNiNQKDcgxIuANVNKNPSdDuNzjAep3BwwY9ke2TezevvTPs/kJHrnx4z/sH6CBzKnfUzmyE9XIOuTkwOMHR3Fy81x/JToODayV0z3ZL//Ml//9qAL5W7f9YBBxEkXFYHbanQ+E3091lCtxF2v1Y/sW8MtBirpG5kP+2uorYySItNetE6Nz1AEKWtEuksTFSTMMAA2hhnqv4o1GKA3gSMz2GRtGC0urfmaEtkMn6rNx9mByvlQR7Y4ysbfK4zr+pa0PXzOLDr10EzpG/c8uwcqIxAZM4ADxphG4eLPxUlEfjBXmHr87+738Zi59AGloWPzI5BHDkAfNNB9OoWDaqcRfwOz6nKLW7Qjfp5IzLZ/4mDgLK9vxwIcF45/Urn+Z+dNBsuvtYqVByYgzl2QQfgkxtyTHWRY6sGLcAKt5UOFeskRCq9D+q/s05kqvYNDCPU609QRaQu7Jwux84WvrKL7sKAPnuBZaVFG2BeNvqYztuobkecNQHpG2c1+PVAPzlB7JTZuieWPcO3Ne7DG9Q2kC7WqNDfIykbrGqIy/lndb69FnN7S2c9/R0mARsw7BC2hizdWdDouUZ4ED/B2LneKB5/BobMdOzYdk1DLOGqOsELFxq+IOTSulWrMN3DhDVQ13bhsUA2TUxOE6Nz+RmgJ0dD+8VnRyucB5cBuP6b3W5Z9Hpf7cC+Gnd9f5/P36yYv/M/+Yi8rOaf/3n/76tT4+l6OeHBlEcDAHmKHFQu/AsbkzIpZQDwlnB4tV4o5mwkpO2CdYbk62kK0eJ/gD2CRtzp43WsRvz2qmZWWtirwX0S0ouFyfZtZShZNZkod9EcPTB8ZjCCpFgKOi9UOwhGs2z1FlOjFMIfbSIQL3GyDycPKgNps8KraAgaxhX8MwLQjyemr5K/1cD8FWq/5/3Hj2hnF6cS+gWH2qurbVR32hE4hKsieg7d+Kb0CsgPwAtVISYy3tdGkQ7o6gOEVWGhv+mGPbeMno3x1yU+h71laWG/REhFcmE6wihxDgQx3Rw9BCjgToQwNqPM/7jf1cRv4oJ0pRKUMokSC2HSGBtXxazgWspR1jxsHKYHqBmn8WzfYXiByevKJbjD1MrrDdL3pTQRe2J8TPrJ9fMXSO5s8JgGvt/q7X+gwv0+IM+B2AsT2yZe1MlSOo9d5goe0BtJ5fTeVnPnVCsNddn6QmbqjK77mdoSeLl3441pAQY5PUpIGr4O122taz3+E9bgI84oIOYuNNjY8VY49VAkjyj+V+x9PDvS2tndqk7ln+SNRj7HIRhf7pzU0vW3hm9AUtpznyvtBz9n9zNxtf6kesJY7lQOpa2Cn9UgUhwrc8Tqpq0GqUyO+gd4oavx6sB+Co9gEv2cKl80PSwCJRB5X1/jAxfFXsY7dEo24wW/twcFwaAEc2CS+dR610p8v0Ic2XGXbZIZ1U7GN4qbl4AWtA6zrYdynaEn124o4SDSC2Bc+gVhFzHH4iQrqOkaiNtsLdOhChlveGBcIMumxwvFEKHqRpFuYYso8HB6Xbg/sHdyRmKo14tZQgrAN0G5PYgbQYz9QYJ0W/Cf5ccEKcxRZx8TXmhKqfkol+8Hn+740R/ciVbfbeKIyhzsgosM4dybecrnx1ugOB7DCGr3l8034tnQWy+UBVYLgeGkIc9Jkhb26fgRtCtda0JofUGhSvQWYQQemCZeLYn1uD5oIWRFSorKYKBI8BzeSXj5+28DlGxxdHbtOGcnV93mRqOAQ8K3K3+X49XA/A1HtwFXOiqV17xdZLIpGwYs5qYCkaUAHObmWJOJ57mmL47BFAqj4b8E8AoAnUYuBZ5LGPfoRzEnQh+ikY5Sv1MBd7V61AymnaZbDQt1nzWXlhAaP6UTe6VTCyqAdhqxim0HnZfQ7mJfLNcE7CPAosz/0TxKE7eV78svTHFQPxYXuFjcI/1BDFrAYm94XWjl5YIFMvGcKxsWuaXajvH66860qHVTmCbVZjiYhalJE0/vOvoHtcAFpUVQATYOL72MN7j9g7qd7e7/JqqgbiDEHWyp8YsdmnKq+zrmLNF0Lmrfe/HyV4bn+NHmLdmIfajwhgjuiMHw6diHORB5itkQNnhxxesYblnDbHgEUdwElWATT0tLR4q4vlWhPpEAUUtAb5IQa8G4C894FfHhNNkzOkObpVzR57hjG/lWnl1FKq+gC3QbITMTgxWZP5T32Vf5A2ZByYrtyAO7D9qh/DPJUFvIFhhGas+4aiWcpH++Tnox+MfjjCAU+Gj9dpwhARZYWB74KB1ogICclsdoN1tyI9auVy909rkeEYFtXdGanFgK3YGdKE4/iJVzMz3JptRwIruX+GJleJPNWro/B3mQh/OFOyslp8dNiZ7V+wyPWJekWV5KaglqxUMlf1wGV6ZGv28v0Ur4ivpTmnCDJI4gMC8f9KBSnyIFkP02dktUUCiXb8oTooh7YE1gTg+clXAsl6Osg+N0eeQ9abN47Gz4gjMrdn8x63NoUc62tbDpoUIuY0zyGcp5I+tztlk+jZ7PF/A+F99/J/XIfidD+ocswe3uMuUUMqA3KQ3JwN8+VauRRIvLiNXwtLaFVDwe1ec9RFFiaWjaITcC/BY3o7QUjhYRanz2z+eJQuCRCg0xzg9sWR3Ch2MvZr7Wf6g0SA6FVfG1D7FRVxmEtLpw2vDLIIn50gec8mv8PpUQKJz2DZgp969UQE/VH39XLYAfDOPscinYLykylvZHaQF3F6Ysyp2s0cmxZZZeySwab/y/efxLZO4aLVNrA4yd4AF7fjxeVwP700Uc9h6/0RZWoe0YRoO1lmuscc6pty2XH8LajISWSlPLJar7Y06l6N+AFQmGy90lh/R+D8RA1SJJDG2WQO12AnGx7dDHVk/7bxRM47swA+wf/FXftII+JC73WFb5o3JsWEYO0tDFWcLnXeOUfiny7SHVNqvENdMKKvS1Zedy7Yht/v0hvhH0ySghCk8GZD/ix7/1//n/zv89v/3f///n3jN1wTg9z82JoKDKCQPUHA8/SFa/aOsoK4qmSoGKQRFUn2g6rDHe8C6GCckLH9SBUVkJKOzw6FQcxxGCmghwtmo/qxDNOjmoRmcr/6xWP0KsGdASXNpLt62of5lqo72c63oSlGRo2GHPHfMGUZPUKXq+qUKUeGO+jXm+50Hk6LOq+mA2A/hnUlmkaP+BvdmwH3mLtYPVrO5Dy0g/QXl19kN9GCyPu6fjg7EODoKI2Y15FsXG1k7eUAVqcr7Ak0pC4q14u7EfsEDU6MrOKiPiOGAic9Fqrhf/UMz4bUI79EkDW2+ioztdKtvTHmHIdQOXBuM7hstT24+Xux3GjRQQooiotrA3XRuPv8z0uCMMR2TPazzP1Tu36r+T/7g1QD81Qen0vt2tTHVT6rEClWilbd3MG13YB2ieSn4HG0acr2V6n1VG9DFXvTQe+gBVG4DJuLKo+4Rmn1eyQc7o98plbZNR1lTRhe8u3LYu9BHGAc3Xf03nYqyalnPrOkWqHBlbYHUiNEFkIO9hn9+x97x5CPKfXV4vTt2NDVzIicxnO3+H0cBULcX4GeM1V/zcGWPy5SP2R7YxDGnVrRnAZ0oAQxTgkNqXC+VnLtFextpD7cQnzmsEkGByhaZhnFUbKde1vQBc4caFzw7WkyM0J9xg9orHe3+gojVGBbUENvTOIVQKDYmrADGSqbqnZhwUpEiUWZiEFlkDFubM2b4qdXu5cKwYlBh+4dJfCkoJJKkvtlYVyB2qzm7nnzYAbg7FPrfrv6f7gFeDcDfeiDheiUiS+Fb4OBuPIE9MqRKKgUAtmKIY5ILlb2iKX6iRsCa23ZMDytS5pGtj7jcKsW5IB7OGw0pE1bkB0O/gKPeqRwlRGpXYozyaPJw5WyuYFhduYYXKV8bD+ZNX2OXI3DNb2K1oPaccEvbYsGj7D+gIXMCcC1FPCtsjDnfMCxcioUp4S6IVu/yJBdmlh17ed7Vez7uIBpTMPH61qmkHg+OH9pZa7mjsbILwpVr1EFJV13laLTzLpERNlHmdqX5HgB5W1R5OX2/R76JElBU26j314UO+OsKDR4G0tgTZq8TTV13yibOPOSgii21NczNcYS24IS07xqe2tfJfaeKlQxC22OqrihJjsk1wcnZu+xeYHuMxwVTlACLSOjgpDmgRXHi0NcIdXXV/3MV/M8g9t/YBtwq6+/2AK8G4E9V+Vscfy58JxiMm7coCCibdicj29J0kGzNHFJKKAZTgzHu33RCrwsGToav1b68SK6sQhkdyBFZsEXcRxJ15x2idIDrCeIaL8w6cZQy0utHynVGKcqj7AI6BQzlMF/UfhLxwNUuc7pFFbBvyWu8A5ohpbxNkgNOWJ3NCA1KDS4/Kb31En/ppROXG/8ve2+6JEmaI4lBPauqp2eXnF0K+f4PwUfijxUhKcvdOfuoSjAzI9wMhwIfzONwj0izbimJjHC3+8OhAFQHImXaLXs3/6PkT1pE3jorAgjlJg5DR8pvo+owg0mXr06fVNM9jAnICiLJvYL8bdH0HNUjyvXTmYyKMgjFPzV0kETZWQ7fAiSOHQh0by0TmiMeBaskhAYb1gSvsmbbVClHbwkEgI46GeINeMU9bced/Q00+MJeKbW98hn+aCi8DsSgrQcEeqivFG9G0HBQmuH41WFVLzTb1zb80Lb42UY1B4Kig2H9J2L+uQHUP/SVMwF4u205H9rQAh5979GtHBXeYqgSMSRQqfMgDajcbHWEZZMxpsrWtRquu5HKklih0X9HIL7/VPW1iw+RMSHLw97yDum4aCqMK+sui6TjmkP0+LoWxpuEGXAQUWjWLxlFMp3cVXSGKILl8wchpxMmdRT+iqUuXs0l5wjjC7j3WPqtJBlBWt0hEVKbjWPRnAPiyZBVM0kvtZI8Ye0XtU42gsqYtQazu9Ro6Lp7pcVkJ1h/4LzjSLqnDEzflsWbhgSN14Ej/6uxJHzCZ1tfl7hPtMxmAFvgQjCd0qjUan1iSwGF3pbNionEAUrcpLGjwEKEPtrwZOTtBcJke6pxYAkFX8JWEL4BLF8Uz1toAMVrHNNvJnmZG0e1GNLTHse8NT6Jp4YlfjmlAe28w0+0zXOAMwF4uw1cZUMYKKUtZt+/7o5dgQnx8goA3ExklLK/EunwqJHiK5JKwFoA1X5Fg1YSamAPVUWVihD7JkvTNxKp7sCH4TgJ5iLJWY6E5jgDZUAMkJmHDItu6d7G4odWOGzjBokVA+ZBYcL3UuFIWSLBGC1A3V7t+eCjZAy6hyvfgwYSLpw0WFyLJFek9fIX2umnJWxJomQ6mIuD7njJmKtdEUD6IN7vQSffB4vvc28A4w/RFOxWxF99iXH9PmB6ERJaHJXtiqr8hrw3zA0LC9y11MtzSzXhF8i9dnotPNbCXoA3LPRVT7eRt/14Kv0sxD5aiU2RgcH2mfzAd3+p6ydEMaKW8lJgRTHUqpqUPEh5XFsTalO4JJrLbd5cM42VF6smFQB27UgOaB1zq3S8oL0OwCkE9lbbmQC8dQ7AQ7Xigz0VzsqhN1pg6NnuDfZhhwRKxrR04KrizCEeNpQWjUswkeDojgUOCS7FfIaVPiiHiTPwkwoCJQidu3F8Z07zdSBWYDIhN3KgcI377ZBDlZWhUrYCu0upZJELCHS0LtOYUDAsFJdCnxLtKyj7klGiYsfWayGUw8Fd2et4nNLOK8ctlm7qrnHPh8qG6MFpubVqhtBMUxiLscsXNGb1Aa0nYwD1jCHy3K2yWwsyzULXY6MkPUcWayIdBdPhUjZMbyfmyxyVkWvFFY04GxDPbbKix/YBrkVeqZ4U0siE+I7KkemzL0AIxOvQn2hCg5WCyfCuVvMb2TdxkA71u5fgLQgfz82eMcossp7MSiwoe/9r3V4dyW+vUrdSATsAPWhRPFnBp5MDTOcWPjOQfyYAHyEHqFy+3EqErO0ixPwMnUCS2uKAeH/GORlRC3pnc1OxCVEyNWoE2SWoV3CkA8EsgVGphH4Hyk3L1qCgbN/N9a5oeUiTyU6mok17DE+BGOJO8cJLOPNiHhfB3bJGMqTIODpvdj+Do9LnsgUI2WXhX9FMABcOSetUmX6XtPv5zh8N7fgDF1pwcpYzD7oSzeSAdE09xHmEUtuS+lc0iIjpUQBD46E4y3tWVG0BDn4PVyyWlNKHKhNs4kqqFFjhaTNRLFYSxBPNPhRNcfAQO76vX1rTyxUJKnBbD3dqpaWdG7Qq0qFmYjhYzkmrT/d+waEwUtj/rrTo0xtISTdUgV/WUZIwP/lHrUNvJEdpbGPSsNvnxdWeAHAAWe+ji5dGL8qt2TyOOQW/zgTgIbeKHkSIklSWR8WcCAgEnDuwLK0Ul/jWHyUdHUj9nU4FkwFaw/q7hGbNZBKqRluweA7MfUpE8XVTweTITBicRQc+HU4PMYj+UdMtJeX5PPQmDH+yeQ7YzENHLp4iJNLvYZtk1BcBWAeUpvVSeffr+6YoZBcq7zgimfZ8gtqocWsbRSNi1UNpCM34YhqULb9VdONIFfertz5oByGUWRUXjoDTnyiD9AYBBzL0jzZ/qRmBVBl77+xN4BhHPEslfe3URknUbEZmyIH/MDjcu6svpynenOfkqZ7Y1JctD4PwyQlXNw0pkShygJdYzo43SRp77mw+L7qCsU6D2GeeiRUywBUDEn8BUVfyE0Ez9SYmyn9qAzLMH0f6apTKmK6zRJLbBICmX92TUMYoHBMx4HM7E4C7wv89ERDcKGB0t7pelus1mekmCojLVSs1UnYinVVsutUIraEmeagi6eZeLdR5smxnvkAbv4LkQLRV1Ba1UbR+CrPF/D6jLYWDUFU40+8dmFCibiHqMMjoOBLYJowpKKRMGZWEmynMxRPAEBzlC0yIbNkvZKDH/GZaj0LTBrSwN+GAX4YmWKh68ek1tPh3HRB0rbDKQQfyKdObjtyLMu45tAWNXC1ZlCB6QUPGZ9DPRC0ZkMmVrqjlUYTy6kFuf0XaQdEVX22yS/uBMmuNZ+KyCxCBmiwvXkm2y1uAUOVApfnoXvFdaQQesKd9U6hWH7OKjS3tSgfeVIL08Lh5X8m3NwEr+Y1RXZBHA216XyPqlCaODLkpx7+3uf/wMXfJyrXD8lRhQDoatHGJ0MdztiFJe68m2MnCq/6M27B96EwA3qUCQEVkY9Cc19vBKfsmqApGpCXt1pKDLDFnIzOvV9ZTuZAjR1UzflNRHzMwqarvU+DKK4U9IXkaRuIyPIYmlKwUedB6C+oAKF13ijMiWRBqcujQKBXKKRd3aFsH4tSBgXW0Fc+6gKGSsmb6S4AfNLGEopCziRUGKaYzM8NMM+neLB3vuVV5aiGymvot9o7+iH0CEQZDU2pEOW01Oex1bVENf9GR7IJeHny8NRcMAms1RKMBl2bNtUCaecBk3sxFIEI5glO17VIb4WCIQAGX0APi++428Q33DqCAnO35ohG75XYJhWuQ1h5m41maUE9vCqmOtdv2qPOVPELV6YcCaJeq2iBFSlkM9dLKFwrXIMLIlAq2Ip6gUh6tYmy6CS0m8Uknr17N7mNUARD5lKj/OwwAnAnAO1QAlq65oFfTQ0fQMXCX4yQSZyuyKI8NHZQhSew01JIMqIPNqEgkwJA/yuFQOSo6bFTQ/4Gp3mxnmWdtSQuNjNs7CsjKIu5oM7owtUwINJraKxK5YZrMg6k7R5Y9plgZywiFCikpoGtqt1V/B1AST8nW/FOUnpcYOcLEiJ9VOFR94lGrzkoEK+hg5Nu0dJB6xI5geE40e+klC25tEeYAvx7IpDoUNlex8lik1tE7JxHWhgTG1d8Qy1YSmnzgawI07gSh9uf0NcXqRiodiB/IKUFucCozSfNIHIryFQm8wH5GjF+YlDgEwfc0LM9gYStWjibclUB7muF/JvcutqxkdBVVeY4tTIvdzZr75UIF7DuZzqVd0ANZgLYrcRIjycGVfm5nAvAwOUDVuos0JIADbzZQrqLyZGpvbfoFYft8tqPsLOBVm2OuVxY0cBmxdqbNgiCGX7IfnSz3mZgr8+yd4UmIpwJh7DSZ7ad5cKnmDtSCX4zqx1hwLaeow6iiJwvffL9SCWH2A0kYEMcqArsRzeVIK3BWc8vfte1zmt4PIbhd6VGSeh18hDpE0BvfRhcWBql4/xHNOUBmAkWJoi1P/MfWncS644j+Um+CM/QAbqIHhwr4juDSJCRNpapVQ0vGFY2NIn7h80qm7ckGJ7vMHJ2hAoDUAEMC+mKx29489XnCJvEBFNRqzuIlhuXOoPmPpMSjirydVZdYUQlsS1mpzXHcFXdVpBOIlIZOwLydWxyv4VFru8+qqllNb/tsOHhq8w6bwqmykRJiH0erSQdRSv4WwpRLY1Jm0f/Z/X8mAA+dA6gksnCwdaeeP2RQbQeNv1drm+AB+1LcNRFtWAyKNlHJ9NxiyDQBOmzJk8drk2b0vRleZDe31JcUGRI9GRLmFFozA6hGfu6tWcHyCcPA3WQXzt+z3AMVcIXY+xuwcIAPdbi2gZQY5FpBlgdq5EUZvqhoZTghAwJQ+HdD46KbSHCI1NpJ/XDkSuK4JMdSNiE9Ca57LWVNKwszgF9H7T266Asr1j7LBGhxDEdRwGAw/dPvwRSgAIZjRqoo0PHwXDM1sNs/w/Vzu78wWb3MAaBsgaOe16yUyIg+GrdLem25qXlC27egs6KpqAjEeiyksOGM6CwPLWS5Yl29tNkfabBLtcMCSu5/ynKBwv8Kk4+40qapY/bTWoexTayR+5pkNKQbFl2jKeYipbEm49n9n7ZJE9GZALz1pnxUsUTnsQOTozGAcVPsurzAMA9nWZR3wKMaVKoa9xn3GXokhtJ+S2xL4NIzwVmDDZsyYkp5pk7TWNxHQX0HQv25foaI6j+WozpT+1MTDLBSQ4jIM/8g/MAcSI2ik7IBaUFGKitXKgGu5MKcWZ8AB+m0AORb8FWFOa2EdeFgBaDUNKARQ08G5En01ffjrnF2TF8wD5d+/V2/ftVVD9sqhRjaH04k0pwt6nxejoug9elZLsOmlypwDAR8oQk+VEkAGt75LK9OynSJrSsU90QEbTyNtNJD/17oiRLwPv4Qduc42IsGkLmm+Fr2jwtscKIywiYDeT46nR8IyEU6vXIWIknQxKqk+gmNovIMSFPLpeMEmWADtPrhax5g9fBlJNCEM4fsw3ZENTdH2ygojtcfwfU/SxHgfQYAvm2/nBH6G0f/4D5eEiYYigPQMu5RL6LbNPtmQE0Te8D237TEr8RhuCKFiAU7hGZlxL4mvRYc7Tl/uzS9/nf/qzItz0QlqUlVXluYVsMX7VGezkFJxhLrHub6tn3HKQV18EqeW7B3zv6zaJnVJXO2jby1GF21vaS8QRnFsHgeLkxglUhXE4/Sb9r112IBtCv5rpbZJpi+mPg7T0N2xE8ciYlXND6HWLfVDm5m/c7ws/I/Q1nJcT+Hv//lr5fffvnyy5cXmDh0YH+2crdYTmbKSiohHexWXQlIhK1fbx9CpC6mZV/NG6qbvCr2LKGSKJZglFJ6t2mxq5APPO8W8f4i0MJcrZUGk7id/5OvQbrSzV9cI1rVqG5hj6XJUqm5NbjeDZXYeq6tecxBsHo4WQplQMwa93f7oNFSodYD4XE5q3LT9347SijmoELH0g5VWybWre8IyXgqERJWT/oHDEzZdhRtO7WCt9L40IUKsIRj6xqGwLL94dzOBOC9N2spUXaaEnUPPXYQ2yuvJjFAOpPgjUL0r8xd7dZB5Wt2tcZ0Pu/tq/nn7hSfr1Qrf52Kg5CkWhLC6yyoqTWopjFtcJ5VCI84pYHXnfIPsZE9t21Yr8D6N9DG/dE0B69Tm+m9TH8pfOHTfbgQsI2mJahbiXKv6v7Zi7kghpJ+7y0epAHiaw4hGoiR3Cpop5rTVegJKr2mshK2YAkeBtaiYwPA0jhAXGq9AMv0P/7l3377h3/47R/+NEt11s71x5HRgiAYBer2ae1B8DLQZ2hKRkyEQS0KX+Hsz1A5MAHdo6KeC3X//I9Fql/j++ZC4R8fgDj0dI+8/YiUmgWofh49f3JbVt/3f3FEz6EnJLuGCBzons8Eg/nji9tIFahoNJe/1Rzo0+a6Tgmx/KW32IqEUzRUBEVblxT0a8jLHO3OKnt7Ndpcnfp6+y+yD7ZlS65hdEo5MEQW8YrKdpjVg15pjiuEqEae26tuZwvQe1YDDgGKxQpRbUGIhJtTrQBbFbWAkOt9NPDtDpkXwW6j7EvMSg11cGXKfHWJt7FibwwfE4+aW979zEdBGSp8S7padrmyPZ10X9i67fMeKKM/4bXMXbyB9Jp15hD8vpbFdR23l6JROM8EV+gXHfsOrKPFWlAdYO61RHEjxDFRzsZB5VHi7yYdDsWfbFsCbZldowToS+3/+v/8j7/867/X3y5iFJ2bOiTpieG0dApZRlAIpsHf8ulXNORgi7oXNlBd51RPq4yPhGYdlUyRWahob+uXCJisln/O6qNtQeT4ghDaYnD1AGMzq/5JKdmBsfM1u/koOnGRm39gbL4YlRLr2jpxKxRdSFqPRtTK626pNjKghXJwHkDanvKOi9sbZ3z99hnyenhF0XjwqtGXve24zQLqdMmfwP+ZAHyE6B/rj0zWCJaqGZXgSOqQjtMzS1ftGUhU+CAR6aNAAcTWsi897oIC8e2tNvVtgfIyZwLVqFziC9q82jb9ln6+7I/o6roIP11u089yj1nYi46aIRF9OBhG/bzdpVaIy5JD2fjmSYPejWlB2h1vsgo46DgIgIuAh40NTHaHWtFPmOScaLm8c/mKL2w9YixYiBmnMvZ9/PP//f/9+//4F226B+XgDZ+cJ1hGgea7yh4iSv0gHH+s2popHNmV2JSzZq+PPdnaQScQ0p1P1yB8f3+l97ShyJaQ1GLtZJiKkQI3oX9gH0o6TZvd86K8T7bxUptQxulZ3uQsowbPk8YALMoO1K0GU13n0T9zSUH7Gf26gx8tSHVkrZiIPVCSUTBb1tbCHuVR8sYIYTacMwEvJjkAqZB/+O0VBwCWuzpbgN63AlC5+dgHeagLCNFZKsH//cc9BuB2c+3Il00d13cVbye6dfggF4jV9/rns2W9PoGLM/Skiu4Rm2oyjhYvVLerXOLUrIewde2qu0swaVLVKWSM0XOIv9W7Ey6kGLW8e+yENdDngJhoMFt/tjXyIk0/B19Td/wjw4Q1Vx0pQYDXJaiv+JEaYV81hXNVLU67QqGQAi9wwB4F92Tf358bjSpPqL2bq5h2dWQHSsrcfeHr16///t//5Zdff/3e/fFlSAF+Q91/lUKUhoqRqQudfMhfUlZGMEG2pm57l4j4ESYXA2XVVdpldO3w0esBEFhBJUmgbDvXZJ83W2r+6bh0/RRBnLkSYlfh40KVvRVqdxA/moJIjKV71gTTTRSTOXuq4lqD2LBmsI3chD4hJouwL7XiaEUYld5n1DXYpiHTgeuSTFZjoJaVc2s2lWNtW6shGyQwQ9h6bXPyHIO8fktNVaHMczQ93oMIrTl/D87+nkWAm7YzAXiHzSxd1TzX5xrEJ/I90YCG5vi24dUlCcaUfG9CtdMI+/jsNV7QCEWADd3b9vrsZiRNHYhvWQZi1wedGcjJhkiSOcvDCX6AT1nwlE9AwpAGyseU0Z0QLgDr9yRQTBB6H61DTC3CdOEtBNlX7ZJtbESYz64x6JTG96hzAE4OroqmPiBGq5h2rAobHLShEjrOx87Z19GqjisVqJW1XgKJ8c+T7PGPv//+l3/+ty+//vItE5Avl85ohPbfdTkTE4Q/3gEdXIsObwiIymkRd6agP8wpmr8qfUlkn1JIu1R4WRV+jin6J1McYAeCGz5GHsr0UwHqx3lhUBWIC+htPAoLCfmsw52DOOvq8Gk/aKu6zxtMQjrayN4Hl03KioZIqpm/qhh7VBpRYf5PBoiQeg6FZoomtwuovENLHu1nwBZWC/xWy2wCOOSNqHKkAMSsDI0bXzxzgDMBeOgcoPFZ2vmkSUEgeoWvO2INVhzUZG3J0A9aUi01+zcOTJVkPnkkzpYOKNimunsON2ubmsLdKJvyO5qIKRwwRp6RRseg4tIAR+KRz05XqI+WLqEKrHezi3LagRh0bXl+aNuVp83RQDt9KdyYEP5ykcRZvqx7iGP9lxZHR+GrkILy2AVLFxxqSOk2TV9d5wBkMbJp1xtEr1Zf+f1vf//2/285wPcEYJrnzNIV1P/W21TX9Li5bVFnAgEkDKUJtcn7xoGKTVYFmiquxAQJgUWQy5K6jywrXPUSiGZTg/UIBY08UmxNh+E0Cqog6gsU21f2AgIzg5owDi1qXL3sCcWG4uuEYqoHUxNUwgqGKIlbhiKRqEwKqrOVbqDO9g5VaHoG5jzAwhQSteyFU92bxkeUZmCUa7WF1PQEDyz5TxL9vxsB6JkAvOemnfFaM3v4z/A5YK/po+3uMxNRbpgJB42fgcEAMohuC8rqawLwRe2rz4gEQd5ukrKA7SPPQbwt95tHAEb0GfMikGjezUVoB0vb42IeQ6HgtdSYOSDh8WU0X9eOO0RK4qyFG9iVArxHHOoQIyPtOqqxcFTxuaIb2eyhQcIek5K9Ee/nkac5jI+1mawN2PjX44E/lmK5f/3X//j9r3/7Fpr+/a9//+VPv5V7wyD81yXzqWFCU3bLdcK9Q6kh9daUwTQ0RnVznwPEUgo4Nyg3szsxaMcKGmxRwFbEFGC33gll0HvgL/5e1/XNQvtVLjskbRtSmmmOdKLGqgfTZLlKXW6AyDh59AXDkTeW6/QN6PAxWenowH7OwixRd5kUZhP1WdU7tMB0kIgHC2vZ3OEwMUUBHVIzOQIVoAiZlnE/Guzm3LrtHAJ+twqAJ8E9hqpp13pe7QyDlTNbmJxiOZBgIoETEXepFTFVim8VZ4a6o7oUFy7JfPYPLXQrk7qWHLiHq1hE9p07j3Jh5EjCRoTZ6LCTHcWPSjETLXbZwvXCL5dr6F84G5HEF5RurwYa0AQNVlBfVQPZT+PCKGsHUWBuaNb+M0ca3zEIQLfVrBRcjC/ubBAVR9+6//jnf/v6x9dv///7f/x1tHPg4KsO419ArikMSOvqph26wIU6hMRkvrE5/UulypdJ8/6gml7VuFLAhE4hidunQrivy+RySUK5jHXg6XcXK/6VjEmwNu73wozVJb5FlPP+SKDITTzRLCu11Uvlx2CTG6n60mgsKwzwaRUXHiMkeGATVkI5r6nXfnE8sDZCKIOWyUPVkPDhlhM+o/8zAXjQrfNhygjI6lEb6swwgcawmOABtT7iJBU39CigI41Y1UY4IyC9ktQzSRCEz+GIcrVdalUHZD6eFVQIt+Z+AxElNjNXT8kBgqijHHoiAXbCID6eg/dgQNTmchgvp60VxEYIsKOExw3GQ1dxFGIZUGqlkiDNjEF+IRP3q3hmnnLuuQ0AtY68XVc3ykWIPryvb8urTt/+9V++E4B+/eOPpx9ex8LhyPlgQfboTJt7h+s+AZVFCsj1odKrZwN38lLVQR7KHEDXhS+kZQ73p8jCzAgcc3C/3TUNbYGMdRTw7zBzDfko0kLUCPQ1WSi3EPeNmuU5YwFhJhXGWIpAmtyE/sy1ResXVIqVNO5XCsRIVjp3+VtiKFDAm7o2tQL2zAWgztWlwxom0UVXzAEzyHoLemITb0te9Fk0gN95O1uA3nHDMD9Iv6G9p4HAC3T8t+ohTi2tsWfUHOWpi9U1IFlhSPWICAiHRhyzY31EW9wJLbqPQqdQKyoUj95OUxA5ZNtVleV/Q7BTjQJL13ijCYjK3asQLnGFlf4uFwtDEQDZE7hce376D2fWQjpGnGhhBzG3o63IUYj65xX6iUsQTuvZgLnOBt23FoHpaqG7WTeLyHx9CXmeXy+lHJWq/uVH3K9fv/7bf//n/6MyWDeiadpeAhuYVZ1eXy8JjGwE/Gdo0/mw13/blWtrQSGpLsZOJlK1hkrINg1tClzR8Erqo1JnuEKfkhuCv+zN+qGOkRfCzsBmlMsUkcOX78ec53Y4GBHZcF+xQrvQzqcuenXAbT7dYRQbrum/HFyC1uyHBk4hiY1URLdo240Q44GdpC8xF6sQLlFUN60GIsvZBmo9tBHaOB4p0cT7MwD/7zwAcCYA74z/D2grDuWxlAPxWDGi2FVwRcLoLHafZ33SV+Ny1JGEihTjvIlRLoDQ6nsFLBsPv65eJWBA6OlMmHdj4TRIQFk96kAyiNrONnWMor8/pAooetwDJSjJGUDiM7Dkira3IicelAN0kiejdNul0R9Lx0s7mnZgNVXcI21C0OjYLvoiQMS8c0eCro/3Le7/y3MF4Ot3KYDvkSmOeGOMOJGqPzVKytqE/IifpCH+OjXKy3xoe4sabhhVIgPHbJq2iSZ3VV1JAufpQNYOE3o3DyQ91fzVjvkiUmNZSqIQvm9X8YQUuK9IopaGu8OBRX4DU9TyS0pJNYVkYPsluVQHX3f885ySmbXwQeWQBC+WCg+vxRN9ii3mXPY3gVlCdfMkBexSsbsejbzlSNv9lCRtNZd19vmcCcAHxP9nA25EDTsNn4lwT9YXAaQukaPhZEhgfASrVsNk8AA8EssQQc68c3InqyNQkNQl/K0IPCHdTfD5QIn950eW99N2U0YeNAYjUeBHUIT+Tz9f4isBBmsTzjuUmvcVo381BAbp6hKb39LCH+UIA17vOvYeaOFccST6b2ICbb2UjmsBcIDd+rtmJhijWJ9uX3/fW///9m9/+ZYP4MuXScJ0HKBjlxw5SfRl9rMeekZNZkAyq/DhoKugkXggEGK6oVg25LB9GQZJIZzIPmIOSU7OLkL5N9dXrICAOyhi3UCtxbCjvWJqEcGwYz9hmt258WVNLA6Z86oP/uCSB14H6Htc0WLVLAClL+oiA6kUXYozQdZyCdfVFEYYKk+cTnUTtB3GxcgChOOWiY0Q0b0b7Oc56XsmAB85B6DVec8ymUl2dYBmWYp6FAyDmoKkZj+I3isp2qi3lk/gxFdn9F1YbxXEcuVBHFmEvUv5oNYVRcxJrZTBnkuIp9rI5I8UJglspCFQyzcKmUeo5pTMp4Ei7ldPr1GqgEmhz+VVwETKaTysInsUc41BTD7LD4ss5jJRueR2jNK9tSohkcidUSUCbbOL8eyv0udYQ5il3h9a3FSv0T9ILKIrHMCfyu9/+/2Pv//+9I+///VvX3/XyxdhWWJ6LpVlg68MVFTffATYm5FFAU32pp0DiQN2TauKh0c9Bi+pESi03yDJrmvBD2ZNEPq6hPcRT0D705nneDTYt42wPys8Cus4slcerhoWmBeWBhj9L6cFFmoRBZ0/ghEWVw3IiwjsfetZI0mjYJ0G0MW7rTNNlGsBpsnK9PFi4V5FMLwfyWITW3dhMbk7qFbRPHooHR34juZZNPdTyP1Ek3XgGPnP59rev//nTAAeqhRguoBggZ8iA9CenMIDUVr3zlooKIS5lq+TdPAHOxtCITVCOWZhd24Je+dr9o6xuJxKEDYyqCaDNRUZlhUPSS0uIdloLKzjxjZ3bxLXxl/iOrEPDqVLLQacAzLCKyfkSoPjIQcFj/638QZtawXGTXa8n2VjDDjRp0oxuCwdiIWVoA+HnAM1rZaoW4hZ86B23x5IUFut7Up4kyOTpX79uiUAv//lb1//+EPkV0bcUWRoDWdR87Di3WZ4ahnZgyQM8bbrCnhBjZ4UU4nq2Y2FBToKTkofUB7KCirCZAoNYG/J5rNwmDJ7tVdlv/LlFrUIfBAPJYiGiCP61IA7KHmZ8ygCLQvEG66uv4uqlS8j2rJRsMj+0cTcfZGBfqDGOKiAOoq8gmQF6ou9WpcRpFZdtOrFSQY7JOYcs09hesyyCsxrJAuwSuu5sue5nQnAR9ni0mrsGh0py8GoFPLy1s4qX2kA1wSI0FdNaL1DPkGyPg0DWLsTfZsm2x2kcEIDNNw12sFK1Q4LzTVosSFoE4e1s2iqZQfRoPeHjYuh61dBS8lMpN3BIHasMPV0/sELVmWo3kmnA2mvp6NVmqRMFk2KYguYi5XCh6EPxusn0jYwlBXwVO+q9O/ikhSO9nckYM83btP/+hb9/0gAesyi/hNW4X75rmat4qXqmXoSMFpYWCEsIiUTvzJzoSi6CrdHVvQXaZ1d0IHgJV5Usa+ouGLRZhJRqKHFEsGWNlssX1xXj7PDHsIPgBEPizUiTc1T6K1lbAI8iBA3a5yyWeSXWZWZRBA7EGUQDa/aXozKYoveRNMJK/CEtoZRdNCxWcj6YpV7EWSnKAf0c0aTxkkKyZ3bmQB8kMBfEm0Os/dagCvaOy3mJKKaFY196T4LsXdk+Raq+JsdF0hxgIbXysIFZQ5A82RtiIEK/WDUM7uxL0jYbLEeSA+0d/NgsjiUFLUPrSrTjwK1KuZoUflj8O8GIvOsaiyFPk5Zu/C1BVdMX53tIpcu+nMwFKdFmxHoesBDLfiN4l1CQwimuXDF5bc9ChDrftDfv/7x+3PQ//vfvv3ja8dSzAOd17KK/uVRbXHApNxXzg23OUAm4RGhdnOVkKQKQEAxAk5v07asxihSKB76+SVlWrnbS6jievqjrjmcCth+E8zkMUx2bZERkkR5nTJkAXtfBd32rpm6QI6ZTfRT5EUnW5XLa1XIRXoHGExAG424tkBdZkQGiupOesYPoZ2OyoQqJ9hqJbrpGDwI7XEc9sR3xgRdpAIdCcQH3u7S/yOnDsC7b72AVKVCb766GOhB1xZC8/gQiKuWYAlQoB1BGp3R2BPguSK5D0pb2AsFwaRyWwCmHtCwDgcGfSoH40n9rVRCOFUw2nCA01PuJNZ4FveJuw2+BKnlRsiH7YOIbNlwagxNPP30p2f9oF4AclnvXhR1NRJlyIK9dL+rfYherAubwDQzMOWvmpxc11FukHnuygXgsxxSKUvUl+8WHZ5Q/z/+9venP377YWsH8mABVkbM3VJFnmUcVlSUxB9YIin0/q/wXRpM8IpZE37l+4HBIE18w7WPYHS1rKhJD6jKk6JfD+g6bS9jJeBNXM48QdnAmHkJphKXeCASidbm1Npbt9skHcCro6ldbaHMw84H4KUM6yNU4qmWJQhE/5if43byWkFOwT4w3ESrmRYhJyOUyqJXTQGX6VAZkBwM5DXtVZzc/2cF4KNF/+lfK17Q9I+awZOvrkz5H7zLxbXWACXKtXVnXsvX0K+JlSL1xVrVQ1VXLnBzuqk8HbmG2GwA7Z112L+lqqBWPo9HhLqAHd0DZ/ihMmSqcVhwET1LYp+48LgwaOIow6VI7ywNHzORKJPqBO3mB9EuEClqF8QbaahahMH3nqd8ESRWImKpbxVYA4TVzjFBnas8AaNmFfiWDM3MLZLWCCLAnMD9bxH/12sF4NsPPxKAoicwRwNZvy/ClvbDGBtGnWRS0ay5z6O8+f3kYuiJFy36QHRRkQjWiTzP2FkU6ZUDeVrF6bmvenEwrdV/sEMLACPrlNgLKv48rSGFMsUM38BJo2GRnU1o34/6CbesQgB3RbHZfZX5oyo+V29dNXyl8f3XmiWiQdPRNOIz7B81lVAuHH0n8b3s8Pl2kr1c1/MhLqQ87qhdKy6RyixXfA/TsGiZ/Z/9P2cC8KE3jWFAUMBWbd9/tM6GNsp7NmhlK00ZS30kmIsttnq54OvXtCx1p9wBhVdNf39lkQEXylv5GMeVmTpKkdqpc/Uztg9JQsgsP6PUPDY9z3SGdvrPVNFzMzvLePctViRa1KntAzIRfyaNdipsqRqgBiHTVYWqUaoHc4p7ry0I+8rSa+R7q4ORaztYjFUsWQ12VyEiqnoCSMzH1z30+/98bgDfOpJHgRFpc/74/Q+9fuXbD3/87fcEww/0lcxbrWheaSmxZ0b1yhWu6O5UV3xBOaOvpQB5+gHWrlPlAuCcCpr4Ffw+v6sw0CFg1Mpl2+E0TTk72S9L0mBZQe28Vm7ONJ8PEImmNqo8x0XLLE970GAP/dRBfNGUaCRzf8rUxyhRcvVKN3G8fb7BPD5f3cW9+WBpwGK+CGXNzRbet3Mwues3L1w6O97qWcgmqr/zyjqdFs2Tq9g98yk5QGNGAfTpOEDv1f9zJgD3qgPYOdcGNmC5NwXMiIqt5wMVcXB7xiMzeKPKHG2CGEkTBZzKDPyKVQ9twsJa4giFXGNryi6iz0tSvvs5SOnvOQLrhy/jLAFtckjzzSGYdiAUCrAZi/gVXm0XNbxd+eNdptecHrwoWAy/tETBLV2mmPYPlZZ6IoT+NVxEugvqHg+02D/5S024pJWGQ7FD1BlDTJmRKk7oNLHcfKcna0dIoYuyVZhsuR786x9/qOnl/vr1D8/NX9DIbicMkA4r2lwxQv9CScTEuFrJHcjOGIYC1BCQVv4sqJJNKNVNjwhF8xmN+TPAczNjPMtSAEI5cVu5tlCgNYtRsrebIXUmDp6kkiVargxoqxO+WZxMGCfKh82waI7IleTVmkdohJTRnIfKDApaUgBpHVZWHAyhfkjJFWjJNJANQFjjFjP1FZmpskbfeAM1TWoV+nrRPGrJRVElS1rXuUtQZkwAem5Htv/z//2/zgTg/SN8rLrTDnT/FH/RPsvuCChiHFKozARJ4OIEHZ/d/hWNY1iayghqx9TEjhi3kbotZEtsHKIiqWClDwRNH3FuUhLCuoEiKKHFrq+UT3aBf6AEpUCVKD0jNc0kq+5kZcMJWHzR+a06jHbU0UX0n+dKdcXgoQPICTdF/yUCtSw4aPllpa6NZgs9gY+LdH+gt0iyaIE1S1wBx2EBon9Yxk/98c9aTcJF+QHOx4/pw+LOl20bWqRV/iZon6LLjPVoPs7b5gBZLbiy4qX9h6O5ZBQEsRSg6mAIoBYfDIylfgQ2gLvONhopMUfAkMqqmy3VfC2hHhUQhIvXuTPLPGtsKcoZMWSA3xPqOZH4rD+V0jDUBgH18i+JaMBf+MDyKVRQBUWEnUqFoY7KZbZkbf+Dm1i2O0aqgyLwWMTwq+++NLI64f+zAnD3bfSODrXrafNoT5cLYguU6dRqgnkmGQtIRMKkfO3d8MiHs+GpzkCcmUe1LZwZwh0p+nrtFylYaJ2TRYtCFMUJDOEpL8DZj6QdrMTYzYDF9+vpcBqQgRFl6oI6uvITzYTD9dFrpRO8v6WdVkApmsaeyhH303xkjkhhFX9OUK4kSWuJdAnWrP79DPKxoZvcBJqe5ku1yavgk7o0c5lrAi45XEkvMzA2iqLoIQDlBTlA9yGsGFdz82GuTFa8bfsV7TlARWe8F0VZMhAEs0ku4XOCXJGi5P2aB7XpjFMx0xW6UpEdpe/AVGY/xbNNOESAgiOWb5qpki/eQSzMqdBpqJnlRKHHErD/iXmnoE9zgWGGuNJT4/w/S9uFwrdOIqJZ88+2Os4ZgDMB+Lhlgh1T0SI30CP+qWMDzDoANWBQkgwWLUbfgwcgjxFzPrscsicSTM302xmZ8+2qYoeMi0wggFj8DuchBMSKQRBRtgPNEZQxFwV1sVRZbp6kB7THdCUyrw3clSYcSo0VtM7GXh05oi6kEJpKRYD/tchDtCUGXY6O4Yblu44kOP59sHc2THbiRwCoEic77ai9bZaLOcCPX+H6UlJaQ+LCMzaJ51Qd8EUhzG9fCYsg6grWO1mqBwxD/DRtwr9HI2/pGPeXOYDf0fOztB9TqgeX57aVETBoWkFSih4GaZdgPzUzzIZSKkpVBLSa6+JHs4KCDbI7y7ZXSaMgGWbD6n3EqFdwG3/ad17oo4d9UqLkbt2VVl0rqa8Kx6kW30TcV5bpUBHBx+oTFQA+FDqd7J+vtp00oG8R209eUC071CPvZxUQYFF2WEZCvG8ZDjLPhYUc5jaRpeUfROE4A9UmPf/I8hkQoDD5mh4HbztBAXcimU7lsCg14oQXRXxPai1NT+jkPO1d5lFF4mVDLeZi+f6eyfha2k2iSyB8CgJFO9OPI37ni8oPF74gjsEiQj8ZCvf4OJyNbkkOPcvwY5HGUc1zXFXbiKgz6l58xCdF3kz3+HBxlv/HP8FBTfg8E4HnNzT9g0xeTuH/dH9mNLKHnwvaPXY60OiGNUVnr25KIJkdfl4y9m5zk8ia3cMqQE0s87xCL8YmwI8YCeMjzm4IaQEiMhH30b/IPtER7TOSXRX+htPMMNyrku+fWUJOc+mLvXa9EOpe+i4FL5YNEQgxaGXVwytNl5sWE0coOMeXK0sTE0nz3QYuUR8ODSOrE/4/KwCPu6m2MI+HoJZCNrQLSJLqLUVogq435RipmHiSyqAfuXP1gucagGT5G4MVPSWcT+r0oanGqZWBw07uAo0i/YaMivi5goRvWd4DDWTnLJ9RPYbyBk9mJw6jEdci5qYsN0V3TSmGgsR6l4oGZccHg6MIElTMwqq6i0UhC4rwVkyq7b5NAVX0f3NCPobkl9RAcR2tKwKs3M6YvvyAirpJTsvEIvswgJVzMhYA/p4ABflPHEaMYaJGHYz+8cn4qhkjkA7ufFcrmPTv53U0rwNsGlvaPcS8820IMpKe2QbL6781k6T5KFD9cs59km4qNzsCeE30oPUuJQ2X5mWoXCJto56MLpLJDGdbOrHAUlmzp581ZebPeXARX8KTUsCvbrSjL7XCevXXZ07PApfZFH8rwTKRoqGIxvGV5UPLuMCkf5vzaYzApJTqnAs+TfR/d/j/TADumSWQgP5YnWH5leQhokULrhALYEy1EC193tv3XiCkirPtWLUc+U9uQIOCL6P0cQXuxAgZek83rdRnf5N6QzWTXkvNv2YnLHNgBwYoYlUYSQT/kaAzcPP7u92I+FIAPofI6k18H3xzC67E24U8B5ikSjPUthIcGDgPYJoJkHGCZfW8bmpSOiU8iYPz4pLYzb83Aj3lAJoYcs14vWsZN7OboWaQJ7wjkO/LR3JR95uC+WfNaIziBZOBMgCjRkeTKujIeJIp6pkJDnIrurLRjoah3blDTNTN+GoYiU7a55rWaWzE1xRnSzLX9gKbioelJYWnDFIXK1POTT5IFmxppnkwx5U0zLBORxGRJsBz6fjSCmH315Y4S0gFJppK2y9aLcNnZ6RlK6bl0xoM9S2oeykv9gEDNoZctFdduQnQObc1BdCZALzZZlHzrt1Tblo39Xgc4QPVNYM1P39m4kmniheL0aJlf+9I/lEE2AF7S3qN3Rtp5rBjWjnWkl5nEjyvUcLDAN6qa9EFqmWDZSB4yEh5sB+hUerC2dTmtBWQCN1BkqYPCFfPzlqI2mGgwNhY5MXH4Gotd7QqawtPcZz5p2SumK/Qtvl1vbeGBpSNP1q23Occ4PLjmX6NOYD4+WCDB8Nyh6tpAaKtR7ZC9Rwe5ei/bgY7fO0pitWXhx4oUHxZDQM0jJ9VllHLh3GaMs/yaVICRwrUpCj7RK9ybjeRODrp+IW8ZqLkBFKcgaUPJTIlpGmBZ5t2MSlHJjntWeS1Wy8YrHpq58ncbW9X4WFyinpogh7Qjvxuu71E9IePDk/nBA5CLTKo96JN5HEcy2xNQcD+z+2sAHyM6H97cSdFgKNdQKP4RFOLX+IYWcNzZvmFUE/DDg2FhQvr4/RhZPoPA8Q2js+YffBhNlFxyUamjEw8caGcnTtlRyjgLL7kqFXi93R00Shn2hr3Fo7ihCx5O7jzr88NwdLuVglEFIi03Yya8KFhzEL/UMWKvNFS01bKYPC3Cv0n8H+ddZBA5QaW64BnKsmCXB3gcs0B8P0Hpxhlozd4LkL2SiAIDyH0i2voFAdr/X8RzKHr29AFDYMigCzZmJuBYEKs5HssQx1A+KwtgVGi9vneXWnPJ5MjZyMfMXUDV2fRmCjItdVRgxiwJBmp1kRv759anlDfUCSmWktNZTVcMbHJWmBYecaJLPqm+mreKE4XQfEjSuyWCx1M5BHweIqyoSxqz5fSotkmgz2CYflUp/0/MWdAl/V9os6fp+0R+n/OBOBttkjidgiUKiIA6tJ0WaEWJpTT5BiBWAOufEzYe6xi63MsHpUBVFybvngJ+kwkuhejQ54gsXOUsJfYgIjVKESdEudeOtBFTJ+FhIcxXJ6pCKGzJI5RYYqJIrs1JxUJownaWfMKwknzCSgyiucfkLxDxVAhdTtpzTqaI2k+xq0urJkCz4i9JUP4v2zor4F/vYnmgtuAQLnoMNrrfbpce9Av169p9LU/VisuDjH9/s8wSWypPJ9zwifKf7iB0Sr6f6mnNoZopAosSRBq/EwHqQPvm4+EPOLa9/uOI8euBqIjJs5IlkxrkWMtOw7zyRBwizD5SGVG1ecnysJrlVJTsiRr3hpBxeQhoaWw7qSiqsMT7s4KFyeAS5LSA4tWqSaABJbPokMyCsZn7eH91intL81dvg7GasUWl4l0LYruXXyz2pZxzsBe2PrVOQE82Cb9P2cC8JYVgEPeDrpyb0XUntcTrTILg3xUG3SMe8h8aQ4Ge4b8fzQqKukmV9MprqnVx5WDxeFnYCr0dDiYIluZilQqEk9JEqRK7nDljapuRiCJhUliryti7h2SZ6hVPEQtNFbqEE8qxQ2UDjcEvDkq2Kbz4DgTXTT6iVu0CHHLLkoWo46utArEIeuO1Zcj4OHJRYTY6+hdI3v9Lsn1NanDqpfX/fGDbwH6/s+n1ywgjj7c153aRSIlzi20P0dygcWgVJIQlrE0mEMBdGzMkeJ46UatyjfT2jqTDOy28fmfqgJOaZDWQlW4CKO99OrgZZglwf+UUNgNpEvs9c+N7C6tQipBKJOcS9aVyjnTtwJNnzmiOyD98VgbwzVdMorBX1P+3br7QGQrFQn4EBQUFCVuIRxz14LGB4M7PMslOuz/SGQl5wzAWQH4EDmAyJE6AAqoXtcLqZ8EIOmyEqeKGqkSz6gTICVkwSyRyAt0BSZjG3pQoQ+4vu4TvWo6U2OBQkujoAFBN2KTJLgQMjaA9Bkt8iIxvCsoYg43eZxzlYFeY4NjKYuYKUE1VjnA7g+0BI0K+E1pE3Bwh4paUp4NhqKKB2vN+bVkvXqZ55W/dD8MW89fy1E1OUA8Hf1RBMAe+otpTdmzdOCyEQHh+3apW3quoT8dCWhQz9cM/yfoiOdUkBmi4VZ0EU/naD5OVaEEaBRC2ANo/G0b3vKb+dwG9Pzg6bCsFtpkYhkXPN6RvYOtRm4AcBCTDgIU/KEh5kSauHeUPS2npcgqe/Dj7MN4tFFhl3pIqcP4pfwWcgUgofv7L6+73f5pCJQZ54/GKoEWlA/VTEV3K5T3EZWOY2IOtRjNwtRQfLqI/637f4bw/5kAvOV2qAiguuYDrX5JG/phmS6Fa29lVlCl3CNt3BladHxT/jMvUDBJTqjIJANCtcy837Ujbi42YDUQ+EYCKbTAnPxwFTEgCSFXNjWr7VLST6lnyBJhS+fkQp1Xi4b7oQJxDukMhNZ12xchOGpvytk5WjbrGwbZaL34AEMIjScG1C6xqeOFPowx8NqxSw+qXZNmvf5LA9SKX77gy0V+//GFL5dv/5QoBbBH+YbrUzvg//Wjf423cY0YFhw4jUXNIuWlGZ9SKOQUwaowE/ktCWJV4YurXtAA3sfRrCClh24gIXb2w9/UpNgYaUMlLmEVR6Ap6tMMsxNF1BL+vpkeoWxvMXkKWOSVTd//Yv7VRO1KkYIizAUtmnFOIeUcaObDh2iOeYG691N15qMT+L/o/p938qiewP9ZAfiYRYDh9DoaD0cVAzyPZ7V/Owgbbb0Sl4naa4L2vwph8m7oNXDxco9J7j4T0eiWGCjpfH2mzLleZqmKEECy3P8TfmZmzlUqaraZvqc8139zwsNbRUEwSrAyQpgfoHVqLegjlNYQghQRB4SU4mfaMiapEl3MBeNnEWiixe3KyGwQK9SFgNbZ6WuXAgKpVxgJuGawhshFr90pJhN43i6//Hb58uX55y9fLr/8+i0PsDdNOdJ/Ye8VyoDp1eB/mTF4Yhap54b7+j3JlkTEd2zaDpYqH8lRsp1Y0JRyk+veWxKBTHHgBFLUR2+a8pBMchChkNyTmZXXPftQwP5DY+fexoO9IsENBYiTquJ1ZcVtiLPY/OmD2P8Gcq5EygvV8+uzqC0wPdw2cqPFm4S6fEEabnEQ+6cXizqASbylFQxE1hYcDNcEUZ+u4/9x4P8zAXiXNGBdCrCMbEe9YzV3RasQHkTU+ohh+mo5bMAv83ke4Noaozw7EjPUSHt7/FyxEzwKH0BKAzi4ZYeMC9nUeDfUR8AovT3pEkHpQvJr0HDjhMoyigg4M3tmM5rLMo2fc1UFKg9nuT6PxL1LMtPhvg4Az5QuUAfY/3HA/jWxcLemDBwrJA1wIY7u4aoRisK3oP/XZ+P/7Qd8+UWf5YcSKhlIErUK/d/iYqt4/XgSwVEVZYkDpqe0TkV0hePIGtqk54/rWIBk3Ulb2g04S5iMgu/tZIGXxWvETB1kGW9n8GqvVDUOcVFLJLymsZZZjLyaHUo239UoGscRiNp8BByrYc3Ilu3/qSgQEt9/YzwXrflYMPFq8DIaYZqF6T6y8K1uz7I0ekb/ZwXgo26UkaDXBFCtWwwqGiAGOHLsikXwwnijJeFG1SnYGTgvCmZiFN+96u6PgS01UJULmVcTxhjtrDBiNR/0hJGwEHWt4fxKK0eSHZgQ11V6etvRkY6IFGkFNjpl5BVW2gYXFrQpif6rWH8HgUh6kM+7DOV7j5UV1spkLL/nOpViwJj2J6spLz3WS5mwD5YCaBoQKZLUTJeaPPbLRb9+fX7k3374cvnRAiS89GTfhEsaXX3D0J/GDkugJI1G6awXSGouBGK6wchtMmYvkaBThZPbZIYfkjbEA2jUdA7n5teIMqxXNeWrFoWBk23JqIGaOa59etjT4WviFwrvZF6we0NUohN9/vAlqQgroT3IoDiKtUzkvYp4Glh9stZviaSfVsDbeKNdDFhqDuWWPy38g/bqoM0fekOqBfVnv744J95guZ3MP7PtEPx/JgBv6qZT/D1qBJrVrjmugQiuqDYpQ9rjUnfTjrFqEcUGLUwPWtH7Y2u1nlE0wu3WCgSZeuu3xOCeUjS50ukxa6AXzeGMDLvM91CG/sGsX3IsnYowkJJcPx/lKapTdpmBlq5q5IBUVQKV8AOdwFs1LksxuoAjq2z0exzYMx/Hxyr6f8o/9ZX6/mdpgKY0UrwYaibS/f7rL35nX3auTxLWo6SWeqfQH5HIKM8v9WZUZ3lZQ/NawTfTDs8MGizoiiLNfxxVUnV8xpq40byE+a4inLieRfg87rP1vZAm7NCFGGDj2CLlr/ySup6yQ0ER7lMegmdd+XVSv2hYX7IjYImyVxz/kmQcPYITUQ4/+xV2orJWQzsQsqP+GA2+DcXArOd/bkRJ3LKpGXz87dHg/zMBeK80YBL9d/hWBWz4AIuaUcryJsIGtgKGLcYxaFkKcM08fro3YObw8YLrEFXPLCGuGkBi90AcZMymBXuCk8vHFXmRuODSKu2trv1Xskm10eolhcgHXRcVXS95fsLgbyKCKLuJsiSkCCWu7nwCShKPDGItKTtGrnGI/U8CR+U9vm8aGcdBGiSNC8kx/ZfffrUzAN/+WYRQOIYLvnXCI35OVCexvFICng5xqejnOcNyUv+N9jLz2yg/emY3doxtSQA+n74mvTD3bU1qZeIXu3KtSUxgFG/JLZOYBrkxYQac9ZwAMnjSL30VMbAe0nOgYUYTxLSEk2HUplCMa0JFm+NRWLGF5KIe1I3J/GljeYGJ8tfdLMyHj/6Pwv9nAvC+mYCuSHUWra4tIxCZoCqOq4WbzIdwSYKWmNxutRGhJvh6tRW3D8RE8Ax0WwVgL9pq1O6N1/vU7vKVFElJK5GYOHiQA+hKByDwM5J7Dd6PFIfqcm9PRpia4m8YqoOjvc/kSDGpyKxERCxZKdgP4V5koXJQIVUTNp6D0eMt0f945663Fe9tW6QgswK/mC+//fbLn/8k/+OHD/jzn779s+1PC+Hg5aWZ8+2bxrRRjzymeS+Q3NDJ1ci0W+LLFAxFLKaarQrED87y64+HjsD5ZusAkvFpjfLDAlZMtgoSNEAXJ2oW6wyGzczSvkVBmNCYJFEQDUGqrHg8a0Ndr140qAGcl8nq7KWtDnJgi6xDyYAN68nkdHl5pWjL1QPyDRyBlkpb14sw/nTR/8NuZwLwPm5rztWlA/JNBuHP0w9XF554tIqLA+vz1EBOJ8/i9vIsF5bsvp0osAI0EocEopnYLN3FlziygEDd/aLaSoFKAXqZzqVo/VAkeJII18N4MZo2eA/WgoWhdGAXK9LPkL0wccotBiF42KHYecXY3b1X86b/I6q0vMkfi6BwxIT9LgmAC/qF6IOa7fLrr7/++c9PP3/74ds/Z7MN0mLA73nJjQpKxjiUREo6NJspOqd24Dn3u1xJVycWNauw64F3FJpqnqbZC0G3JIgPJNhF8vySxsHi3dCGkQAzf6KJA9RFsVr0HBadnP3bruwBrWNHSp0JEkwHWOT5Ixdv8RiSRZOHpms/8ihQ1ocjksbLuany5cIRyDKjSMvX+Ag+8on6/h8T/j8TgHcJ/UmMdSjET8F3H5Lwtp/wp/AtGtYrseMZ5dI6GsikpSad0Ny3Kt61QJNfTP1C4hF9IBYotbaP7k5oNOutrSPPtEu39riLSTKnCxzN0Va1XSGuyGYaDeEd/NNkrlR7T9PD9rlxSKWQzKx2mfrNOocxiAPo66pJqjm8M9UrIYP5tneKjoXIsZnty2+//Paf//Hp528/fPvnMV3kO15aUMbomBG2B+f7HnX2PjR/1eI9UKYZEjJqN72t7hVSakDajtAUoar6ofzIt6aFeiN4PLdH20xnbX8oPhNQn4vGdNSONHiDLx4ECXebkvOE0rfVs1tltJzCP3ep2zl41yQZBuW1lA2u2H7cPBVK6E1bYL7hWV4gLFoyilbU+xPhFHrGQ4IEWv764GnAA7b+nwnAu6cBIxVrM+hWOqGcGyS+ixFMWIT1XbIhLGZCKSzvaJJJoqJPdQChvNSJicyxO2OH/MXYfdtE9ATIhYqKBuNY024wB94iMYEYLvtJLeJ+LUL86gm26utlh8NSeJiF/pGbommWRQkpUU6MPA1G3RLnn60B6Wn4WiRaWu0fi7AQQ/Txjc3L+Bbg8suf/+s/Pf3x2w/f/nlLrH8X+B9Dxd+8lpU8rxyY0vtX6qOnOC9bZgjpCaRmhkqbqxQTzz6MNgnDzhAaXg/NPJ72paXSvCCYReZDC1RyWSUG4bXZrtnPAGgfsAZW6Ml4lXAupj5qj82NeVbqEg3aM76TpXkrpvxgV4tQGwxTiE2wSTR6GJRLnUVghoIJ0u8LjN+O9i241K4vz72qix9wuw3+PxOA93FXc6+5NV1oEYdjAcxj7q1DEdmzBGoKuRptdq0VCVDtR+JIAAnExQwGwJFeOL5R8BhIxScG4pk0NlsTrLyBoLQOr1HQrm9KZ7mNR8GUPgejV6q+x0ZTy42XQUACSB1PPA5AnxagwhgbDpWHUotX2loH8zlol5gqqeFM6shKYSoleUKlnI0HMzLrb+B73P/ji9sPtxz3vk5al1LpKbeDdvhGl1wZK2eZSTLPvSRWZUeLbIJmTZPK9OgqndYYta3AM/3yAlPwTmRb7ipRtszm5zBiroRwVji7JS+KSjkXESsM2+TAJdlAohnN1kiw8B6PoKhKVvUKeQg15gEDaoeMNZM4d2D/YIaq7KWsuLzAif+BFaRwdPZXRJY1dm3HqT/e9sjw/5kA3AOlG3rNY5LzCarJ8sCcyjr9XlvYVQl6tqMUvKEfqZNCLTnxXj0WJeeTJcPECIkHp0JiweTCQwtB0O3SRqrQpxwIAaB6jRjETKPsddFYe+UyNEhc77Y2HfS/JBFyo5oHjfPHLG72jRd9v+lSRLNJIbBwJ7qskMAFKDKuWVc9P/2SrOaeHzv6fzrZP/9v/4TLdyKgbz/cfu73yQE8WjGqX/qkrkwDwHFlBMvQnpgWJcQKRgkIjsoi4NNKxN3h4oVUsDhjUunSQBN/gJ9ViPq+3rJltRZu37y4mBS69YQ4Hyn3SBpnUjk738YTFnIPtzc/K4v4a2OotoWVn1IrIgR000pNVqDV+JaszTjpO5gNWc07/9HCRmf0z7ab4f8zAbiHnx76y25SDYsBMhS+mVt8dZ7Jqt5qSwDaxFTLMSzV6BGhrnu10WKUIAMspIs2RP/W68DOFls1e+lEAK5wjQ/aL2b4OPkSotqbDWHBJsHtYCoob8PHzw/qYgKCdspWi/Ai3e3nG7cmPB3EpvT1W7BtIiaZa7wdrdSXtic/9lT21b2Xr3rZQf/0n//Tlx9iwN9+eIXTuEsaoOo6gvSgSe16h9Kr0vGvB3MKL7JeFymqV7IEU/zr2V7vU3E1jgWH5CF4JaSeKNc5aIRZLKuP7fDUBHCo56yMKJhvB3Q9JCFAD31f1upeYtWi6sUX2q3nU52Qq3QgQtKUbBp9zUNU8dR2EEZwtzSnE1OcatHITbBjUul1VRYrA3sEJz23t9/OBOC9tmqSaQJx6aF1r4sFSRtYY5vpUiBMWx5rNhiQdWosLP2D5Oepe1VxIfPBxGqLd7TeLltSTrB4l3SpaowtCIqk5DTWijNayyUysr/oS8DZmi8XlwtVb0js48WKGTpGEgmDzI5kxha39GEVlbXOWv87oV8lONnOlTcmfYwp90dtVP3lH/707f9PP3xowxpD6ukDqQZt61YSSiRKxQGQTaWWSShH/QudYGeyfNe+DcqvDZZ8eiFDUQj7pDcg9Y08feDJCkWmh4DNM/4Jqi8e1IidTW5tBTHOwuADDlkVUS+SNhzIt/qulZ3i82LAFDjBeGipmB55YNtsRLLgV/Gegb1jPJOf8H4Wfz2kpiINf8bH2x4f/j8TgHvAdfoKzNUFKj+j1yXNi0092jdFWFLOLumvmwixGLx7so/7HBvJlzRi2KEbNbMPief+F5aQbHKSShF05byKWD67p39dyufOIX/qbJilxYqnsonRpSy2aqd9A6FaXovQX4prweI2grfoLnp7dNB4qjkyWA1I7O+sMr6/j7R9+fXXJyKgL985QD+0UVX3RNBjIGb8NEL1+UWq+BWWkZORvy0DKtf+mAiO8yBBlpanlkRdemNnAShfXE5gWv6oaMBBIYbt5BN9fi4IlG1I8OPCuScz34calQhk/LkmHOw2CvgAIbdZAeqe4F9LzKMmQUZf8ankuhPlNNcK6InUmqy75aIYQDIlTnq2/r9X9H8mAO8PV2lrfPPKrFzUIPmuTAbAISUIISAaFb4pWFWxA5n5sBimX4ygjDi5AHcDUy+sbhE2DG50SX2lG0NoaDb1imCZOA+4ZdBzHwhOgUIE+ZhKfAU+NR3nYEKhJYMNfPJjxWyVxesrhYQqLi9D/+SEOL+Etmho+vykLx9kxHeNL6/92juOA7/YTV5+/eVP/+t/fvrhdc7n/bqAlGgYFdyYS1WVBdKS5w2aVBtUoanPJRIoGwTOdQWRlgG05F25smZW+OZ5u1oIqBRTi+PWQSbS27TI3Qw3XR1QGFVn3id+L6Mb0RRfeJKgUsh4XaLJwMUPRpWs0EoGOWhBsi+i9vIFsrCHSzCoa7zRg0UAe8pKdCerx6T6mXKAD7GdCcD7Rv+lymNt0rhbSoTTyrwfpUsb+eym73+VjhClGKoiaaO7zEEkRg1YUMlkhj5R9emHJdBQD25RWYAgo4tMOlGNF1dBlgH+v//8Y9eXIOPFYKrqlaiG6sQkOcvo0Besv38fzlFpoOJGEfBOzDRSS64mJ4TaMyEjZNRRHXQYav3RDKPSdrTuttO4U+h/DYEuf/4v//T0w2ue2HukAegACBnE/aFX8MZmLlYHiAyYtrsSbpFKIgLKNlwHmRWqyWMEAcRrx/4OrFyzfbSPz6PIoYdQE+knvCo8fWLOCKizb0/fvcBbztbSNjY5UAbFWLSNucGuCHBdl4QhNPAlFbcxsDUsF7gbb5i/kzPrhDaRqNp4YjK8SsurE8gw2QfPAT4K/H8mAO+7ATwUXsYdEA7PdN6uAJ/squOrXRMlczvWoyxhkATzxOjfZCaRkdN2H+n1XHa2UL1csPMEwx3oktIPB+qoG9lUISAZC5GT4MD10xcQsTbUrDWoIn5ZYdUoUZxhKNxaVUUlB8NC8HwcXtmoJ6qz+tiovx9djjH3dvHvOpLzzcpl+OA01ZB//N//67ulLW+fEXhGyAVM4T+01gYu+Hz4XHuKyCG8MqASCRgoqaijOtAIbJcwjTg5dk9CqiiE7XKHTG9eYCBtZXAPPTH4PEDZEYLir/Nc/jQuSYnMRa5WCVGJ4Q360ACXItn2fPGsD8YOW1braFRj6xSeRdnE7J9A4I0k/Fg63d1PZuVK3s9WC0VX/gtjmXTLqytyRv/vE/2fCcCdtmNjAHKTcnAA2gt6u2joNWFRwbs0vEBMWhUmlLcHfbY4lx05UAP/O8aJZ4tvD/L8NzD7lbVI9io2nFUCUvetl6exFxXgIlVGjOCFxoSx1oDiIhoNJQxGhXaHc0QnN/o3El3LmDsTLqGZWEARc8+guP7lVzmuUUB/hWUmPs0uPgYccfmHf/pfnn74NBCLa7MZ5X8sKJxw7TtaZJ3cbjYrrNFou3NAodEuvHWnCtkdsVuQGzMFgQarGnkuD7K4/ST5YddO4686Di4rkU+hkWoJcFDJxcyNoy5nyEIlYKYMvqasdvA6Ne3AM6Xa7tPdJzIr2pi4ijWB+CYlwwAdMIROX2yi7KtpTGIZFJ2Dv+8Y/Z8JwD1Cf+Bwv+wufFsNDGSUynuzcjaUlq0t+5A6XwXGDRrdpm9MCjmArAjpSLdpsLnyRG8ne8N6KKownv7Qd6te3CdrK1Yy6e7zTCbT2spKeCv26dMulypoQQk3ttZToztJ91ZrMJ6cwMRn9BN1zWjyLKWZRevkLzoj7w98MDoQP377sP0Vo+Xf/tM/vv513FMZQByO3itD5cesk7rBC+5D2TqvpaSjepktZ53YHQAKvbAkAOwqAN+J1wyTplFlqV4/quBuzaAyswCJ/VHhOUFZUGubQsHGJ5hGCnFJoZslSaRXc8Nt96Pu5ZUrww+hH6Ba7NLOANDon6FF+RodqqKtBNhBwS/JZKBtxHKDcTtnAN5xOxOAu/rvY12zDWGFpnkALRhMjgiMRdip6DWCwdeD2UUK9RYXm5GqQCux//jkpJyWcB8W7ChIoRmslNzg4hOJehh3P9sLZ7OO0Fcd3E/Y0JyY/AX7SJ3acP9ZX+GYZR8VEFrIv8oTQFC0yRrpXpiB1BdNuJadP5rShvuq/r6qX/z2wH79T3+Wt6AxurNCcII8hr1AkFXaQIlBdR3Q5OSE77iiMWJpc2hKzIwO2ooP0PUCi4HAWQ8VZ2G2+YEqDQjlWQlgc8hSEKPY8ICe/chlT5aiGWe8DvFxggTtAPOlGY0q3h48+yDZR6eYEXI0EisbAtSAEetNooV3bpnHZdUKNelIUe239ZhNazR/Ps724eD/MwG4dzJwLNnt4SlqUsE94tpnJ8TIKdewronI76ndZN5WBqHgvdiZs2vMDX96RiRy5/ODnxjO8b2lu951WDzXBGGnhsfYhDeOg8b3HhLbsxoURVUpmvu5fXw63WfwSa8+KbioysTHkpEX/uzfUrT8Fb2mb5OB6GR1YCFDQ6tTaIK/WVQJKUXcPub2gQlAi8ez4w5zNYCcIpT6XHTkCYUce3qTtaVVoIuRr1CbBtT9P/y4IAQSUvYyqdE33LtcfpiIJ9glpgHSKLd49htNPYGq3kKGpMiCSmwZIqHsGYPYeB2cL2AmZfc7YACVaVotGybhM43Wkl8MAzWnF5Na65exyZE84QiaAJqb2RNZsmuNc4CODvGM/t8w+j8TgPf0UIyPLFAxHkjKq3irkLjX7AAGuN1TcOzqtupMc1djqDzrD4MY8Cr92p5SA4y5TtbNP9kcYEPH2R1DJG/mVdFgl2HIQ0AomALWFWbjqI3WHlMpePqtk+Z9orkQkQTOMiW/ethpIeg74ebz0UaJ0Cd2kSbXlZqFU2t1iknnD7+WDMJ98Do15Mtvv36C6/DPwnMB6w1fryX7VFqRYBmZVmRspTLgkxnlliEXnsVLWVG3tLfKqyGbVYPJB/agvtYai9m7krnY/SOsdJyhGVjt4Uthq5ktJQQ+5JPRlZiIX/sBWTHsEWjYb67nrDmCL4wpfzMrz2LkMqfRP6SWRTliP2eSRJnm+wM2An3Q6P9MAN7TQxUh5ij3NUXMruisaaaKNNDzHICjvNmree+lq6QitvIbJ7RfSDp00L3XrBmpXm1ewlByJA+lVo8OIUQiauP1wQwlPX+xAH9BhuPwOYxocGTgcShsI4nSB+2OILUwVtAnbsdq+TwxRgtkCS8102/0nT0a6aKqp42pLV7ddLy69f/ttzc/5/cWB6DN5ccQyVw9TfF3xYXQwiv2hqBR7EvWS+t+D8ehXElrZR6YlPZk6jZHHCSEBymvKR2+BomMIWPAWYexgmaWsoNx7EG5LVoOUFEz29APWMLQ8iiWXTSDL8tOeqxUX7RMKrRoniTeSrlW2sJY6TQNqOKic3sH3/LH//xv5114v42uumM+Ug+MqVW16f6Iqjz9cL/3QItV/lJveiLBTpHaqJenibWIRHsnQRFTu5sBwfImVwPWKrxvlUKMRF04+2+s0MHlG1A4HhCiCxKLl5H9xKxLjVQ17UwtLIQjmc8y62iS0KX3qhIANLMcHzgBeCeL964JgP+nHk0A9EUzwX0dgJpWbfes9J/N0XV28ytKCeW3M9jvquJRjQ4394EKvedHEFR7lRaWQ3JiwW/csKzU6UXW8XeVaGVfH9tQUQfJKH2otWOx9lt0W82vugr0j9Gs4UXG7aMNAX9c+P9MAD6csxyS3BWNQPvvV9RdNNbvXaAuz7D2qJXrouWRfG5OL7mY4FOBk6FXj2+06Qe/S+JVBXRdHqUqnnXFM3ogzbG1eo7wbIWHnKE6bhKt/IHyWB8tgWb2UsvQv/GXOcfkN+2QgZQ7t8h8AiTszt29elzhSxM8wWKzLgcYpgEUW5GoGaxVVoAa8Zk8hYZZjmZWibR0r0iju2kUf8mmbySRabEn+3Xtmm2KEJw6AjNRVkECMPIsM0FfztLWNPxoQR9XGeElaRvLQLqUBuu9dSAMPr9Z+/jR/5kAPIyDvEVEc1AKiP4DRJOrSr51qR1W+J5d0KT6cE1cENhIyzRA47QoyVV0gtzZfCD/0OZFBQl3771KZ2DylNKkMjyKcC+hhJOk1b7tmy9Lk72c93056t9E/+BJ5bKVdhr6a0vldCYAD5UA0Mfk5X6P5gD970DBi0EOIEeqAdoALvVRegtf5QOOZocO0vSyCUx9MuL17QnP7edkANqbVmrnte+w59gHpWuTsrq70+HbOkYztVXY+ZKqbmBOlwL2AAd0JqNTtwH/p+LvXaN/OWcAHstHYozHqA7ULius1JItaGkjmpBIbfCcPmSb5pXWUAsnAYkavWVUbfrvhWnRb9z/lYPcWT2vO3oidDMBpRMJe5Ifhq8iSEGG0wMtIzne5RPVaK8hvOMHFRl/ssXl6aFIGSoenl5Bpu6DqtiEGhWLzDVVyNIfifslzUHO5JbP7c5bwYy+v5O6DMsXGUF4FRs9YEnq5gtA4cpvkyuc+7IGG/QCh2N6Cy8Ff2gg2o/wCvwggeUvsjMY2jwWLj0mq/7vbHLBsO3rxzbBeGfGDVXa/lf07V4F6fNmypYtRrCRNFhS1LD7B78shSJvZjQa3EDiT6WtPLTLzkqbLaP/D87582m2MwF4EM+F8QoZclzQfggKM7xglVpOTKpGzFGilYkBM0wxOfEcjlEBxxDDZagM8ErAjt7hmjsYiUc1/hDP/01G2LJzO0LSJ2dTq8Q3zw5x92KnxNAikysl9jLuByd+BksJFm8yZftRzvQPjO5E75fACVqPh+yapILuQfr5OQrl9/H39AkezSU05rBay6FQReGSURQc19CCHcjqkTfJcDiHKHOunNqrrAnYRnP6/idaess0oN29oDbQWkhrM6NFLTgedvvstVDEGPr9N5mfFKzKWvI1gz9sYtwQEzmZddWjwlAatOWFaxBLl1wvtRU3Gu2A/bDbJ4D/5WwBuv+WZ5sO+EsdDQMQvzWYoA1n2B2XFdlpbyhjml6kJZq86IIEid6WfjKhdef1rd2lH7OH3Wn9rgz9yJpcKTqIHNg5hK30xbyFXU70lng/OHco9QS44ZfZuXp0igJvRAsT5V0kVRBMn/BtJKFn3H/U3N31DMqUWdvPM51DAnlkiyfVyCztt9TaOOnhX+aTQjsr3LmeQNVfdxDR9CnYNO0UKkub2djYURzcMC/VCFT8/QoOQOJN6sRMiqNoNesVzqQa/ZobE5Stm3MAZd7/Q4e5P6C5+xzRv5wVgEdByG7z/TpmtwDF4AcCYaPdMYQjClte1XmStR/fHKvMoiyYCLq/6ocfhKhgqmk6WrqxdGLkjkahWScOrxQdDwynsMCbchB651FNYWs3bpv/SRVkMgyE4bNyngBtFE5Z/3L0X42SZ53XTNrYu6WQ5JwV6Z/R8Jqnr9077WxXZRgoIXLUtNJuSWqaYXCr32gFLIZeCHm9P3nPnoyLr47SbC2LXqm/QDhOUlt+2VQXkUzrHtciFgeczUS8EHua6NthrTAl6qpF9S2wGLeKs3PQP2A14Mf0esZay57I2Jl2p4DFvpeLaB7tTKe9f+rtHaJ/OSsADwqSHSoCkMJximW1wqvEeYID0F1GnvwxqpoD+X3uJ8m8pdbc6PimefGBPYsQTt+B6nLAAD1Ufj5J1Sjv3Y+UnXSH2cfoPh0xhF5wFBZiXqHi3Ucxf7yscTczErqa4gUDZUHZTttyQecL79T88+kJsN/V5VeLt30HlrYoL/SmxBq/OJ/ZrasBhN60tpkicpSd89jDYhap4pJ2Fpv9JVtLlZGl5RTIhWR7E/QjOM1DM0siJXkos0Xanxj9PVWgH4A+9HVvCrYL9mrLg3QE/v/49u0d4P/3if7PBOAhQ/9jPnLCcdE04YQcAGNOiRTuZ0/T9x1h6DiZV8v9RSIdRY91OdoAD/XRs3MJ3MzqPwTj70Njz5CTRwoO7CGmckt4nbzOFLUCc3MHhI1LoHH5p0XoL+vitfrk6o79Pz+V9s09kT91QSpmrMqTNMBZkYZHSA/elqCimILvtR0b8pMOUpQhgpu1UJbOiwsQqxPJso8DTHOGJBVjmjCn3LKaysuU+ZzXvz16N2TUpCvBRBe2q+Nt0y76Hzb/9Ea+MXEfOQ34TNG/XNWzz+0h04C1GxNTzL0hpNM1XaNduujaREpT4uxUav6G/wuwEG51n2RnmBU3t1+6/9Kd4KrNjuhJIEzAxc8oP/8/93Qh1d+3s0r17H0n4s6ZKkraS7PXziF/JH3N/OCuh56E4Bhzd06Dv4beDsMMsa7S1McESvmIc/t05tX1aYzikOKNqsZi6XtLIraD66KzzIP97+sa3WeCraABZTCqdIgfyd6iciLWGCZTGWwpsq3z6sXunoQH93QmFx4oB3sbLtPmPKhvDpa4CeInuVY66sAe5Z5LZ83OB3WKMmz917w6VtH/B2/4+WTRv5wzAI+1ZZqzbsFQ2b/BStwXLEh/vA5Au9GJecV7d1ApqTlDhC1ow7JcLNaddcE2BZGOTPgcQA1gf/FyBAzuc3KM5jNWDoyIxmsn8sKLv0gn09LmSOCchqybUa9XoViLy5A4I02hYfWGr30Si6Ly0yBxj3Y3WegQIRZfec+1/1PZuvsXAQylpvYDIYhGAFruT4KtC63/T39lh+lZmHeTpSTNgK5yBts1BD6WQDIBKkNbey5lLDra3kt6H4PFjuoOYerMXn5rBJ5sO9KMUMVd5uoY2IXP4sBGZToQsZUOl2BdPZBpMdPe/x5DrHodD7eF4kCOah0xThrlhzHDZwvQQ6JUeuNXei6LRResLk5gKFScd8vbtXWyM+Zj+4traYUixzYWwYFqR7a52I8MeJ11beKDuQzGvalN6yD05+2eFXJZ/HtIntNLiU06jqZ9OmheAZIz3z36/zmd4t0VggMTS3U+mGt7VfjG8Xagm43twoRKMRimCyOM4sSC/cmhZ9dsmRR8dQn0jP+EnDBgZfObxYg4J93F5EXT/Dp8Z7jTKxrbhqO5pJur78QNJuuU/Wq3d4b/zwTgUf3i7Sy5R4hBF07lODeo0CFaWSllonOevOVjRd2SZYllpXO89ueIj2YixOZ6/c0XuybUiiIN5op8H2dDU9i4IPATHUE+Ex7rQw61SQwWWBva0cAUwwEk+JslFmcC8FkSAGX0sV6HCw1rcN0zptVk8DLQXwIWK4xkTQ9aXcWAH7mh2bXzY846BXDK9H9XgX4YyBn25YWQVBnd0CGyBOspOvFdYcZ5AWIsKCXQ5TGLHGDSkNk3iY2MudxEN/Sxu/8/ZfR/JgAfwUEerpWPcwBZ6gPIQXYgM10HYfmArsh2tPSpSu24Hsmj0v5DkH30hm/4vc0Hgp+DzRyucBc9BJYSKlQGWKZDvSuIqvYoengyeBjRdgzZqM8zY3tDkK1ysXrg62f0/3lygCKCP/B1KQTRqxygUTu57V4t533R4TWlIxja2NCcw3oy55fz9PnKZlp77iJ+JTO7C0PKbH7lI0aRK6GXrm2slsO/FYNCZIpb1iua0F9ivrGYMXhZ9L8kpTij//tF/3LOADy0a1xDJu0q7UbKKpQr/wkz+Eo4jJGzCytR+d12wx+IdeNGVUvrfNDw9HujyVKaAwLM7AObNXQzzWomvbzu5hPfduWEtJGMsZcjbXGZ6nhV3aUyA/WbZGNFTFRh/0Hcp3GoC7drL1ZnNWtto5gz+n/fa79bDlBYtlGJz79108gQZQzt1Hb1CBKEArgJBjnnOUlwgOwsqCkr8RHc5MpifCsLEaruBjDwRcLrmiMJnkCPvVSd8E4+sSXbQbaxlKBTI7W/mHmMqKWjrRlum0J7j3ybPaev0HB1f3zmn88a/Z8JwAPH/WHZHPCUmA0CNzmAsMld7SxpzFKSgr1WdrY6t6IaYLEQDVmKkAI9AgUq0qhAcUX50nJ/DtfiDbaPIXD54ZLwXYikqDS3q/AYZLqXhb/L1lLyCrRamChuTqYNrfKZA11aegS4alvOzuj/J8oBigBuHe4kwZPhQSRZQiQ8QhFHpNa0EMxOdqtVu94ke6oRnclLFOv5gWjQkjlqOPUloGC0fApiV4PFloHurE1gNGFVxD6bO7lQL2npHyqLisC0U8TW/TvXx/dz7P/AZ7wXeDrPTvT9obe3hv/vGP3L2QL08dKD2ed2+6GDz8iwB3TZec8KzeuyMmYdq2Xs2k7CoQv1jkYe0akYTeLewK0ryLOmlypeqQBB9LFCJpvrEfSBM+iKGAd2fXDeV1fYVZi3foCm/zP6f8lKfO3Dx0ZElcEg1iyH7D5VN7l3YgKDXqBF93wWZe9HEQrzcvRuDBuihoa0ssM3hJi8UElP8igtwbLbXgcfPtTun2n+++h/1QN5iInoc1m2zx39y6kD8El9JAh/IuhnNH6D7ORI5k+Y9SumapAeHjSXg7VpBf1KTYTpqKw7Avz4+eAYkWieu9uSKbSXLiOfHhbBMJqhLiNBEFmoayKUKNHgScGrp+9yjCobZHXqBcnGDJfCkEL73eP+M/R/rNvSipkciO0GObmspi3VUgWwMwBbesE4oC/65TYV+AWeFiaWQSBqY9XeZqcksGptBxOTCXZ4jYtbJZYm+hevU4Mjj732JsgpEaKp3EwuKZDeMOkEkrcgn0N+NPkmfIh8/oz+p9vZAvT54DGNNPAd1IJWJzgZ31vWNUQ6dIn1C1V9IFXbbmCFRw1pMf1I9zFGraPJzZRPRDmTjyPae5p8CI2YKJ4La9Yinjg05gacWzmVfuPvq7iBQl4ccss9u1jAUYsaujDqniVklTOcxwi+zxzgEe8G3AxPfqO6DFYXizdY6K7xMlPQgAwvxXXHMHjSegm23tVxAWux5KF8iXXcSOm38SjCjKTspPsi03G43IZKLHkw+yAFWOqw7BDawljV/m3JtKP57r32appo/caWpeNV048/+/vpo385KwCf0pfGLH4xFIA4ySo9eLDqtQjwtgWlmtO0WMg20kmOrwsjS3tgOIRBpTovxQSz7LiRtncpN+9qOkX4m1Zq39YiuKBIEvPu4qWFnf+mj69H9ew+BxAaQShRtiH1mOX+g66Gvyksem+qH7p89KcXHq5ULO5sP5W9Qk2Nwr6TStGLwvCE8DCZKswKmOS1B4dgqgWLZF64Lnuhbga2XitTtn+rGgeyXPtgbwsDpFVMLZeF3ZCr1nvtBZC8BrUfWL45XlBejQx8zIXoODVT9l2WOKoaLP9YC+or1Y3+WQL6d2D+eYhg8ZwB+JBu8sg3xx2cze/oPMDNp51GFFCQWK9Pc3gaK/pQ3platMOySbBy0ItobK0QozVs04MxOmCVbjzHIFBecmKsuybmMw8lclXsvsdET67PT2/xXuHYyWKCW9R1MjD/oK7n35fUzCPdgIkWSqPc0tscPXQD6ssBn7GuLO0CmGfcaGBeoPcaa9BtaWPAT+qQFmSz88rgH6BvzivgVsP1YS3ez9D887SdFYAPlKzd1iMLP4PfGCbUxr0Ps46aADhNAGKLwLvetTpNDOLC4nKrNnGgRrBAUWzPGiGJXaeiUVKheBn9eZT2gMBt2j72HaTSxc3sXkLsd6Y7UmICGfnLVUDhlEqVOXD8PPDVub3Q1KY35/pGqc4SSR2BpsgWVbt3FRZFvsFHwBDm6mJN5KGFtdnXg3ZMoqRJvoGhDb3C5pHh6jAIV9RDmuEvHHpJAriPxTFo6+krR/9NcoWuB8m9Szdpfp1gx0eI/s8E4ENF/y/KqnUGySSNsIYZZr7O+Sev9qU7Md+ESnrIsegsP+T0xV8yQpHaU/sLmLI6ip1mr5gGtY95oMSHDe+nyWmb2xiagiAHZqDHDjE9Sj3oYqVve4oRGumJegDgX2xmcm4f6F7VZJdYEr9Mku/m3dTuW8uobDoFG34BJ6wBJEAEpJcSDMgY4i9Lq7g2qpKMWzpteywsuw0PvRhChncl6JPIisWuiLOPulfUWcG8wO5O7KY1+NJA5f7bm8L/DxX9yzkE/PGc4mYXbvCRiwpzGtVS2qiaFnzfEdQZAvXwjOFUfq7/gqQBoYFyP2tq2vWW+4M2EpBa8SD4J6c8YFUCau+I4Sn6Q21jBlCfvTXHWxW8FyKOODgVRkeB+z3Qt44JZO7vzNMdeDDfc+JhN9+xB8qanl5g3ZXsVFmMV4lyaGP/PKIR7F57i+J4a3EDyexstUwaW2FnlDWF4rOcpzdFanzK8zErLQIthyKWV4abHn22fqRnh7IvwMw96345e5CtC02V5sQmvT2a6SJ0wFD0sjX7MY3eTxX9y1kB+GBOMYf+8/ogGQXLvgcc1UArFIXZaZSjoiBAjksMvA2NuFEdTyOjVS+zSpY7YuucgUfIsOIgxQTmY8AYKCvrdnMoYx3IpevQyfUo1LAXYpnW9rO/2jXqavDBG2XKqzi0M/o/cydmU1Qjw4w260i7dY4Xy9At2wLLJYxmTXurSWeLEa1rIDboTCG7Q9Jay7gzS6Cs0Qfh5Y8bybo2CQyrWtibE8QKcnn2GM1/9kEF1HLIv8uKOXSyQgNGeUb/jx39y1kB+KjbS5JsHeI1rPGGQV4efVmhVlFMtzEoTAI5iiNqyf8jvp1RK8eLozNrKcFgpjLO/lpxlg1ErKAj72qqGoM7Ui3g5YJj5m7iHe7DhUMiOwOXTMRoVqo0yl5GbCviMdh+ztD/dW/jQ5QC/DumBce/NslAetXRLgpdxff5ZdNimBgFTRm1rk8lNfQTvYz0JiPaSmNMJUw4W2nFfQCl4jJeuMrAGgXNz5nVSaiR1pgIaX4ufoahf8+XV9RNYVXWtcNwJnZ37dbPFsePFv3LyQL04dOA272jrtQimalQO7RUR72T8zl0zpQBmrQ2tr75mKdfEHffitSVJEHls8AitC/9MtBe15Xv3L5FQLWvGboGflGH79LAXztBUDlEJ3SG/h8b+HiITMALBotR7xpZCz1wKGZhZ18pPh+WvCqxDMQC90fWhYrwwm5XNuolJrc1tkfNEsF0art9gyDxvIre9ExipjbA4/6b5n2HScvDb28H/z9s9C9nBeBjbwAHcoZWDbp3A+osFEYbq/Z/7SCr2ZVu4JBS72ArsEq8gB65OQ7hQhHH0//2QW2tvaVNeN+wM13lcnDxobDUoNnTjxfyFk1cxTp8x/wtSHdVFhI5ElJQdETpD5uxn9vHvksB0E3sN7oMz4/EuGBaIktSLJ05Drl27GgzMa/Ra3z3OF+5elf4YjVKTS4q/xNtDoEBLSg14zcE/UymgN0eJuDwWmDBjNMTPZj12tH/p8A73ij6f+TQ/2k7ZwA+vrN8oRtbU0ZIQWHWsrIAL6MK7VOXXuven/aq33LtqZG9EZLDR/oTa5Dl5Ba6S9gAozscuCOeo3/boXszV2D2KBjcOhz6NbvXw7m0jyxJc0b/n/YuFa9lp2ytx3Y8X1qwRni8WHqG32BbnhAHaouYMzBnZeUUtbOKYczJ/TlE/OD2GcehH3IOA+Yg3EqaeYDiE2vWKd7EPyF2e8GK+/idPz9t9C9nBeAzOMuXrEAcwY2Csr2uvmO109fqra1BqVgsbMcRqmk8e9qeymP7qw660B1NR/g8rjREaviIzElmJAnKSJbaf0ZaHtuRfBA05SDrbX074iYcdN6MA9aFWgnlbFUNPVDgPsPWT5wbPBpBkPj3E9WbTquFM0QfoQkTRzhGseCCPFR42QYhglGKpEONjLE4jfPNKuYg3wb6lkJHwQS+Ct10Nn+RFLjUk/O0eV1UKa5Z1G4xFEhKCEuYZoy7oK3ZHA39T7v3YaP/MwE4NwTQZNXDaodB0zxu941xokJbg6xz0hSeW28kNCVoOkGVAD/5g8G8wjJOJmu63yQUk2rKTHbqDbCzy7DN7rK7w3ljq3VIOKibVjoQcD+EyXe1Rt7S3yPkd3qdc3vA5ES7hpTubR8kA0gBPbG9Kz7+SV/QFFcK1PvmJqimbp9KttdeVG43VcekzGPxwP/LqA60wIX4ncco3IcUnA1Fa+sxkzVJxsDBqUFO4blAT1v6k0b/ZwLwWRzPC8EweC+y7mHFcfdiIaJeHkVdx79qaVX3C0/7RFAzMMPBhDYoCgrEGxITIyYMJEwNJ5L0oZXaRYTHNNyEg9F6ntDq6SMwRAG19Ctr/3McerI3DI806Xujaz+3V73tj9WBsFkPHTef5CxhQM6QNFGqVIOd4BOy0JK5ZeuhegAtQGGCtEANyILX8ggbbF8K/yUQC/SWUR0TRNAK/qDUd1gXbP1Xxsg7A4tx6C+tgDNGf3kVq3Wavo8c/Z8JwOfyhRR4OOa9ZB+xXXyMOrnVZJsO3DZWhdRtD9GvmHNQ5V4GFRpXuaWKg5MWuAekE5vGTbM/9TR8cnCeTDMm1zob7YmDahzplm78QQRPRirwuOtuvtzOCeD5drQd5eEakbcwWqugdB7Ury3xsNMymCDZumh0Qe58IB+QYvCJ6abR6sVz2bOXKWSozYhNCLWFb82/eyftSHRCqXrgv5fFfJ7GPjL4wStCfXaAlxq9c/v4of+ZAJzYGLUQUvI2VJEaNO2jrWI/m87wFV1fjh1T4wXrAS+Ba4rVMcqCwZ+OiPrm3lHADTYcjKxnBjqE7/M4HjyAWDub/O9xfypCxUZfQcrtjUL/F7F3n9tN9yonug+RBiC97Tq2qFISCS1XHI+edbGabUOdDtKUG9/hwDZhOJ0P6YhPUZuDplhY8ZbYvZzhFM4oe6vqomifUh/94yCkgsYUv09QcUb/j7udLECfa9NXEZbEgB6UWhcwT4bOS7pfTfgK2g8sYt/wf31RPDkiTwJ37vZ8LPnPhBwQzP0cqxprfwR231p3o6tEa57MONT/oBe/Sw4AjF7Oc3ujJOEGwvX3SwP8IjrGSBNU0uvF0q1NHFt3gyCU29sRI6SmfABeM7gwFRjMwr7EjDsxL0QCt8OOZuKtEBXNpenwRAs56Qj1VwumvGyxnDnAZ4n+5awAfEKn2Ag9HkNrdCbJgiqiX7NWk7/fKgGD1QxWc3goQUa0b7OEp6NJu92bR6l0wE3phRVcPOZ67QksJb0KNp44pVzM25UP+NALaC/qgZv+nRjZmQO8O9gRsq9H7AVSx8UJPaxG0uQNmUUAdM0OChDkk+MlYJl/IgvQoSDdFE9ATVB9KxY2ubHtOLzqp/Z2ZdXX1rH6hI5Ma7zeW6P/kVT8Gf2fCcC5PWZ0cjM2gl55d2B35l+OHbAvVN49NBdhhas04fSF3hkqmgn7V02Dvy9jXH6JE5p+uI7+XX/OJL86ErvHG66vg1e9+srK036nU7yvoaPP4lEygRR1OkICObIkdfEZXa3ZyWDx9o/5DbwFfJmnPbkxsjDd0qouwKcKr2wzx9eFW7uecPBQWkAqdw4qzuj/TADO7X22l7pA3cFsGUrc90XuSX+Lx3t09fl53DwsjADrM9dKnUoLeObFRhNHzb/c7jwoFyePxtE+az1wQG3u4SMtqGoK5dweCvV4xC6FnNnqkVWi6+WG4mi3LUzCrzC2xq+TCUjLl4oWu6jFxdGednYTL8fRhKmWza330Q/Egi1ealFPvv9PGv1/f6p//M//dj7IMxlY+R5xnGjTmLwHurTPO9Kn9EWXn/HCnBg8WjRDT34YamBGBkf8hv2FppahZQBxQ7ePHoPl7v5cLBfKg/ag/zRmzd5/ohby4Cdv3v/DBnmVaVjLiawChrqXpnEiBwuzeWk8pr2lC/ml65o1W+pxaecJx3/OeoB+tuAWT/R5t6NiwJ8g9D8TgDMBeEk+cBy70lmaQSQq7V8azV6d3orKJ3Exy9pnHP3TKxvZRCY6wnoojSnb6zFyTznY8HNDc//9ygJnr/+HywruHG7e9G4fOFuVgzPFK3WBmSGNh50JkL2ib7rZ8FLF4hehLWC31Wuicys6s7CQY12Ub6GP/jPZunkO8Gmi/zMB+Ozh/qs7QtWDdNV66NejXe+WVld00fLS9qHKS4XRN1peyEnF60f/OBKBD1qDFvWBcSqyOOtGjP7Bmn/OcP+EP942N/ALQSd9QXp8Va5W2KFWH5J96JvkADlYb4xtpRjzGlZg7WW2GgvGRntgoacxPeSgnMtx4OMnsIeTHOAzRf9nAvB5Hd4bYmB60ODrTX8fpAFrNEuHswuH76oUowUv3OfID2mH3PMefRzohdVDgP4Yo+Kn9+DW8Wzv+SzG8ANwF+rc+MnRj04WtVYmNOUSC9t7tDShN1rOZp2+zrKlHmRoe8efGNnYQ9b1te3Vz1T/7HOATxb9nwnA543739wFqgEbdAxZlQDKq2YRuef1sF897IpeP1hE6Yx4XqArGYQ6obglJk9V76EbHUUi93MzVE353D6TebxnMqCjzHsKXGgZo8+tJXoUZnkz2/V+0MrfktS9/jotDFquOb88dl+WFiZtQvts3qveisajnebxs2ynENhnyuaw/v3rrFvlTefo1UywsHoLBAUlQY143p1NOMZxbyY1eLySrOzGDPNG0X9gx7FqzfYKjkb/sqnDFG56pFe6enKgvD6aaEpuzELeKlK84U/n9jiB/uM+PhT2S6OwxogNa7wMm0WtS42X1qfEgys3y6+7rjd7+zom1/oCK1ecPA8QCd5KqiWsW31QC+c0e0D6+pSe4XgUMYkozu0jbycN6M/nHV8BBgsqlQlEKm0Ra34Fs4mTPTx/ZSVHlWn7FRGQfojA7sreo+ocTNU5cwOZdBOjZ2GZkur0iPXXLJig6WE/Rt9/ntw4Pd8nw0FCN/kjrPcIgVzNH25LWsCbcCgv8VTrXQa6YNt/GUbjxmVxC5vQW78qz2eECKVjZVMhtUZB8bRBXOjIViNJ62Bhsm+5GyfG8TNtZwXgdI2vuPMgzHlTbJqxmPV+Dl5XrvGCgkBY2v5bsyaq7q7OZWpzcfm3SH/FaNoME2Y6TKN/fgvV/B9GmF7X5/nOS+P1Kznn9ngG8IGeMooVYZYMirU4ijSxsLQ6NLPUpGBth7PlUGGWpLeNR5EOtPZOniF/oPMIBx7f4KTWz264H1u+/phxwrk90nZWAH7W6P8NMTDl5l0bw6YjAzrSIDsCWUlygVtxgPgEZYVtjDtxacUfDkmyJ4ehnzuomAt21c2jHOZsTvIYkS2K7BAPtCiqhXAq4HyCrX+Ij4J6wlsYv2Icu8tkQmA8YoUbbCd6KIXvAj5+fT6vYIWrnsAmw1FGBp2ttO5aaQrOOoZDj2nc3H+z7BeSvdSJ/vrrhQfn9hNsZwXg3F7dk+EaziJGzgso5YjWydo3HPG82VGBuhAIuSQklg07FWDcC5BHE8okaBqUjG8aTLcoZOb3sCjWI8/4ShQlddf7AJC/BYDDTX76Z9MIdNbHP0rET6OZ8HxzhnDnuCfbh9DxqCzf7hN4DNa4twm4ISY++FAiDuDtA3wpAMF4Uu6BYJAT0bCdDTt++geifxx60O2j09arntu5nQnAub1Oov/Kns/sFtt/h7QJWGgiItWKkX1JY4zHbTzWHW/U9Xb+bLuuzcHsv7Hx/fWvOtO21+qJjHWYUXHro94V6qeAmZfaKifW7/ZeU6dX9HY5gLTaQCF2PIGxj2LiDj3N+0T//ctvDY5fU1ovwNJiNA08yj5MQuiB9a7re4EyiFoyOwexQTDBllozK/C/sQ9RndM5AMPPXMbIE92Kc1mnA/ta4vWXiZzY/0+9nS1A58YQmrdIBqYyN97/rXCrPbyMJWzKlUDrA2Bwfo0jVixGOutEXaJraPzrgHUn/tyH4DdNNVRCXkB75TlWeBvf1ru9Xgq6Yrg7/eKHRjrss356yjSje1fRAKTlhNHatDwBesBk1vssuDxRDBOvWYN0ffClhWw+qb72SL6O2myBKanRM1NyTtnjTKsl4xZNJ5X4ZmbnLGae25kAnD7yvbpgQy17oh7QY8at23D5wDwqpwpispDeXAaxUzmtoQ/XRYWEezIUl3ATAw9B+vCjP1ULd30sSHnzoHAL/jL0e/JefyZQA+iMnv1NFpa6xxm36bX5zGZCOzLKQwfVIi1hTYDdIp7Yk7G5W1rUtWw5hYhkxvQAsgOZgDjHbQWWz/0t7eFp3M4E4NzOZODN3V6AlCgR8oGsoCidQ2/Qo2ReoXISzTk0IFMVGdtKhbKJPHSp1MKT0lgftzNvEmQKbCJC2ueK936x87vdI8TV6jg95QcK/Q/lcjnof0Mx9cby5Gy5MpFm5aNOH44dOv+sB8N42uNIp4xRGZQac6nKsyiMqszs+QBvcbTR+qKgvz/9Ianoa1nFczsTgHM7t3fONhw2s0dXN3tNiQ21qL3bhF5ielCZqZoN230wONwqZ9HGuL+Ew7RJHNRfuq6Shvv5nqbro48OT6/5EeGM6k/VE38IRqAMByhZbnbgXrIFuK0agDpiDuvlhVPCGJhd1D/rbQ2UUzu/AF5eA8iAMdSqd+iEPLdz+7GdQ8DnJmv9o7f2d6KBROegJdQ1y34zDpeTiBdfz2ynjRKCh/kziQ6afMHy7r/qY9L24jqSCtxWkXmFQHCpC3uG9Weq0L8k9xkObpdSXwd9/e5xpkuQ13dLYuRkdA9E7XpLiD+5wdUlOGtGMyIM0oh6/2oN9T1i/nctbZ3bQ29nBeDcVh2x75EBbCBc30ky2Ukz++v/SevmYP2iy7Jz511QXlDVqkr3j3l4Dl8PwUufT4N5xVK/pgk2nV/Gm7zSh/DdMxn42czd0B6+q1VEvQgNj0JjKF556EZXNqu9CHp6y9EqBC6H44a3suFgNp/bUmV67DerlcHPb7y7SZST8OfczgTg3IaW4j7wQHC9OhsXXvrRrBGjxFEpa+E5pBSjM9Ltap8oGnEPeOjqn3jRvK+mroSYsTwNAcPPBsh7A1zWpS17e3r/d9YHPs22fJTLaYEwVPCuttEjGs8JiTrt8Nz8g5dPBmNV8tNjO5MW40AxIzC3sVXe1OBCkBUk87IYHfQkHjXvPbczATi301ne1VIU8DvkCIVotdtVZE1b2I+iPJO/Aql1fuJ3qpJE5bderxVgXY4Ig4nv30uGGOohMSc+xXCqo6He019+JjhjaPSqd4MKCLw3RBJgc10vUn3FI1baJVqjFwObpswq4ogtOmqQMc8tXsaUkElUiXf72fz7uT3Wds4AnJsQ3yZS0mi8uZPTpF+jhIcOR3db/fO12+WnCcn1THD0W1r4YBr6v7jzvgv9A95/D5Xf0KHRvLRVU9C5ndv83dhySLmXfFhaaCGivV3ptjI41IzknkVqnSbmZaxv+PpGWMcNjrPHQvYPxqz67q/3Y026n9uZAJzbw3rBLR+4z3AwuHGFVYl/RWeRh7/Afn+zR0XrKyr8/1DXUfV1Ob43tgPXHAUfELx7absJ0e7Wt3ZuPxlQ0rST3cFUwkfqiN2Mt9gttAHxkou531s2Lg2u81r2Ng8mvypgofZNuHqrV7ic1zCV1pWf2Me5me1sATq3wsPlduoHia6cN3mjs6o8p85I7rPMrab/UlBNBzkAHWum6YS8CHCypNdoxnlxt7fUxv2ht+f0c+f2Ri9bft/kjpBqYSUWi/dobFsp8Uphi5Z6ixW3gDIehkbmAPXI0yQ3eK04W+9rC/lZUcnz0ySem9nOCsC51chB9af7GxHjGDJK9bZ9KBONMLQYPOrP48hpoE0GZh5pbyiA+W91brjn20j7fIKAK31LQ3CW8bBzOzf6YoRMksL8OTeQu7eZgRsWutJHOuXVb/Qmm9sYvYZjB7O6BN72pvKDP8CM78Q7n9H/ufntrACc25Eg7Mm92YLAHSoDCRaqhCarH2Q8IRc/1sfxoyjjDfwEbvy70n/gLU/1Ba/f9pptOFYe3JTBVMDpBc9tGB41OWceKKev6MMkN7XU7txEHLc8r3Oqy+O2OcANph6tE4md/HoTgvN6L21wxGf989zG21kBOLehWTZekAJgdzklC8vgaoID/qUH5blu+NgrButvliWRK4oE2LjPqTZBGPVqobe1GVunL+oJ/59bZ1LSS5JfKvvKhVkpipXcP/+s0PT0x2wr3juyfe0j3WzqkWL7bWQZfk7szk7Qv1q2EnVu53YmAOf2ypGZDbyezA31am/t6jDTrm8Y/XHnKP113GUvo1l+AB9Dgj7E91u8Rd+60MURkod7RmDn9tGsHH1/aP/Y9ipuhvFjME1hYUSwgs/x0Uzl8jZITarc+Jp39XT+rdu8cHgzTyt3bmcCcG5vZYwsNGtjMnkwpfGKYQIe4MniX43neMcBs7VL05ZJiJNeBxqfF1OFvuJ7RZuwe5i/2Yl9IU+PeG43WDkpRACqb4XiQPVK3/9t1BTjF6w1aPl79H6mb/lL1L5AjOXXwjvIQ9jF0qBZzxu6Is/t3M4E4Nze1hgNrdWdHHjpIvrWfVBGe3RUzlktBy846+o3FQVfpC2l3U7mQ5B0unfMYFavTej2sT4vf5ju4SyFn9trmbt+9Lx6SxtBsbumONyEQVIDZU5y6o/09uqFlgaFvaWW2WIfaHVK4p3AEYfyjunoIed7buc22M4h4HO71R7lMCuAW3emxsvxbv6Ycv8RFRvVuQdoiXtpIv8U1oNU3RhNY2dB9xNFDqDU6cLo8rwXV8ZLXqrcq1MJsgafZ5kZz+3c3joloEyglemjb+YjvqvUuBhLQpUGtVAgVvZJGfQUCZMXa74erevVPj/9itpzpSLrugaM7kh5TEn9q4mpczu32XZWAM7tVjQi/NI2wj4oFFELMWoWpc/m1XikrPOyMeupPAvB8HAfztU+37faBdM2XWVe256eSk2uRy/+Ad6iPtann88Pi7K1nNu5vfBFzWO+y3bH5gWmgdp9XlQdJwPYo2opaG9ov2Vjh4IBRPqCSzPwfA6bpfXG93oDlZi6yOLaiL/jgdjPsrmz4093mbs7tzMBOLdzI3GYdZB0TBPvODVFzDpSvKzk78QTmP+rdVEaHZuqyxMyZQSCpcYeryMnFfBBrfmTk0MGUS/GaryPZTb3eW3yuKSlVmwwrWWfz+kLz+1NUY/JzGXFmExf+/tgIkPLaQ1U4MDJN+FqhfbIO/9JTEYRPAW1nFpY2pArBKtYMMEhf536iDu9Y+HnhtT4hPzP7QXb2QJ0bq9ntpYCmdVg3J1OPfjqQmbSAksVo5Bpn1WtW+sLmgmkIjqqc/DAGjQ6v+OR+J3hroqdk/InhpDrHH07t0cwfTlTpa9u1SB0bwjnJgtgmnJc33zWZKkIkUAgf0Kwk08WV7snTG3dZAtlx89DwvxVY4+N+7OHPU3fub1gOysA5/ZKxstGY3kM7gPYKSS3Ef7ajMwGnCw37L+EYh+1M6TnJke6eu6hXCOFVGpFukLxsNP5ndujZQLVu1opCkstX303HKRPFSqTqDOTdehM/n/23js2kizP84sXkZZJ712RLNtVXVVdVW2r/bSbmd4x683s3u3e4QRBuBMOAoTDARJuobs/ThAESCdIWNxJJ+3ptLO7t3O7O7MzPTM9bWbaVde0ry5vyWKx6L1LG/H0i4iMyBcmk0kySab5fpqoTiaTycjIyPf7ft/7vd/PO37ygmubLP9wvaElKMuLylsCIV/RTwBgAMDej1Yu0Zavh6u0txlBBSLQdjbLFp94w0t9tHst6zflFX33RHqXkvJ1ZpXKrNQsqPG5j3wXp+vydi0R+E70lvX1zDY/EG3uVG5ycN7UYbNSH23pfKPr4nEtirp2NxXoggIADAAol0Et350FNnSWWWzf9VBaS5rJd8v4hsnWaHcPynPE8+0aVuTjfZtg1N6prMCRvBTWsfhAiREPwACASgqNrvVKcSlTKvOMjtIeD+aq89uAfHeKnW5cFxUA5TncufS969L17UuNhaydHS1ZOV4qkl/nON9AieEOwACAilR43mHOVRYj3zbQahv4amMQz5flXDjp374SfDMlsN4NKvGD4L107StcTHIrcktAbWlBVlVXQr7IKKp8V96jt6IxADAAoBqGwgJ1zVwDJZRfRUc4ryQSc1i9xa2l4vr4IiKCsp3vKHC/bz63t8zLholw+T53oAzHxgKDlWtIxNsKYABAdepC3+xY12RYvrCHwbFSIly+ZR+X0Hftb9usxMFlAMrfBm9oj12VErwbPb0fJW+PYVCel0Hh5C5x2bNAfMRwB2AAQFWNjGJqY4G+rfnqCO1otAabxXc/riulx7XTUUz1KaabEgDVahXERYACn5R8fbKxFLbT/m3L46HvHIdUsLc0ahsAGABQE0NtvkKQrtGwsDEoftYNDRR3J3bmy2z2TYTAFCbAZ8d3r6ev4i/QWx2USrgXGUE2jEfeLK9876OUpyICADAAoMpVo7fkiytTPJ9zKJBe6VWWWFTdiXfQV7KIbWu8rSs3tIIA1JTozPfRcH2CvMOj78cQbH8WQ8rfw75wrPGdrhJTvCS/wlCIRwAGANR0FJTy7IiS8kzGFBhqfZ9WKmJ3KUbhzb5xviUOfXO9Cr+bAEB0SnmWOjf8lMFCb/O0SwX3ant/6jstVcy76drwhjcOwACAmhaR+bqfFJjvz1c6zXc89daSLyYGQKQWOAne98hbyQQnDYASfu68FbTyFUjA567wSdhw9sfbw8H3170lrb1BrXARi3Lv/QxgAADYk2FaHCK9TdHzdRaT/ArPF5M4W7gL45aH6WoKxqLvKmC0oP4B2CEPsKEwrTJNueVhpHDOZzFRwFvHzLfOgTg2et+mYgIcADAAABQSnd7BPV+GibfKkG/teW8XxiINSfFDdhUEY++Z9AZFtOsCYDc/kq5PnO84Vh0+fFN1AooZgnzHMd+44D2T+WaavCvMVTP+AxgAAPZYgPrq0Xx7A/IVWMhXsFLym9v2rVXqmvXZ8GiL33lcYIKqsLzefoAvsDztvZGvigUAYM9dgeQ3b13MR7tU43OBIavIOfjtjKKuSXffCpveOhPeZ8631JmvnoGvGSvVGQYABgDABuT9kVeRu4pmSJ69BN5tA751hyS/TQi+AcY3VkmetCVfZe/6677P6c2uKRDdC1gF37lDl3qAvgegKh2C1ycUGBbyeYx8RsLbucXb8qzAiOcan/Mdie9z+s7mSPmLTXsby/jGBVdZM++RFG9jAIABAGBn7YFvpPHOA0n5220WmEMqsOvLG2N81xZ8k5F8I5zrkfnkvu8cla/TkHZsnwMAoIIoJj/eV5cXX17ZpeM3HOt8H+ltGe5byc1bE6LA+q2Uv0m569lcjy+moBkAMAAA7FkwKxBgXCO7GNJcOaBiwPPW4PNNvXX9lvcwXEsBYjdcr2EoXDtC2ig/RypYYrxAxuqG9wAAKnd+JN89+cYE3/GkmCwjSfKfmC8w4rmG1nzruvmOwbeKtNiTRJJ8cv1dHUtc0aHI+AJAhY4N6tIEzgKoNj/gG+G8i7yFb+db4c1X7d73rxR5zMX0gXctJkCdAwDKcOAtMADmS7nZ1DiZb+wtMOXhmx202TEcAy+oLrACAKoo/Lhq+/gYXrbBbe80le9MuUuvb1gBs/BEUeGdzd6DLCZHH1NTAIDSDrCFB7Fi9hZvuNOgwF8sUGQz38jvtSUFSkEUefDFrAwAAAMAwC6xYUQpctqm+ETPIp/QO2lUoKV8YW/j+zDv/ZimAgDsxACbb7TJNxxtbazz/YvFHF7h+zdVF3XDUIIBFsAAAFB27P7cjLe4hDeQuPYYbBhy8q0q+O7YK7BLGAAASmgDpPyNU3zrAnm3RRUYA33LB3mH9z2pVIZZfwADAEBlRKk9/NOF1683ZSrK/CUDADDMlnYo27D6Z61FFgBgAAAoAbswkVOqULHZQ8UcFQCgfAbPUo1IuyC+MXgCGAAAqpzyn8jZ8nRX4TaZAACwHSm85RGp/McfTPADGAAAQCXp/nwb8hDeAAAll8JFDjiV6wQAgAEAAJRR3N3wtyDxAQC7Nkxtc7wCAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAACAAQAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAgAEAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAIABAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAACAAQAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAgAEAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAIABAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAACAAQAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAwATgEAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAIABAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAACAAQAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAgAEAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAwAAAAAAAAAAAYAAAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAIABAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAMAAAAAAAAAAAGAAAAAAAAAAADAAAAAAAAAAABgAAAAAAAAAAAwAAAAAAAAAoIwI4BQAAsPdwzp3fZm8wVuRtgtEN4TbBzafSfyC5b1v4/Mi+7fe0xR9S7rbwt8RvAQAAwAAAAEDNoalqJpFIrCwlV1ZS66vp9fV0Iq6mUlzTihH6ulxXVc4187Yu+jX9AXIgoIRCTJaNO2VDeut/S7cFsqLrfJ6T5FyjZ+Cyohjeg55Y/9N0AHQYWiaj/0WZ2c9Pv8+MRxZjDOgA6DCCkWiwri5UVx9uaIg0NAUikezfAgAAAAMAAAC1A+lmkvuL9+5OXb00f3c4vjifWl/LJJNZ6e9aErCnzz33i8+YfYA9y+6c8tftganLPc8g/sheBMj7tM5nyJkT3/sNGxAIh0N1sWhza+vg/q5jJ5r3DZIlYFgNAACAvYCpSxM4CwAAsPvqP7G8dP/zj+9+9OHa7Ew6vp7V/dUdcmQ5GK2LtXcMPv5k35nHIo1N8AAAALD7YAUAAAD2gNTqytinH936xRvrC/O1IP2ztkfTUmur5Hbo5XONDzx2NtzQiIsBAAB2GVQBAgCA3UZNp+dH7tx57+dr83O1o/5FG0AvnF4+nQQ6FbgeAAAABgAAAKqc1Nrq/S8+XZ2ddiX015IJ4PTy6STQqcD1AAAAMAAAAFDV0lfT1ufnZm5er8G5f9d5oJOwXpNrIAAAAAMAAAA1hKaqpHrjSws4FXQS6FTQCcGpAAAAGAAAAKhaONfS8XWoXtML6eWPOFYAAAAABgDskSqp3XRkAHYRvZWWoqD4pWQ0DdBPBSqBAoAoD2AAwF6pEglhGIDd+KjJkcamQDiCU0EnwWgFgEgEAKI8gAEAAIAqjsKKEmttb+ztw6mgk0Cngk4ITgUAAMAAAABA9RoAxiJNzb0nzyjBYC2fB3r5dBLoVCAFCAAAYAAAAKDKCUaj3cdP9pw8Xbsr8ozRy6eTQKcC1wMAAOwyAZwCAADYbfUry/UdXQeffYFrfPLyhVrrhqsEg93HT9HLp5NApwLXAwAA7HYYUpcmcBYAAGC34TyTSi2Pj41f/GLq6qWVyYlMKln1LzoQCjd093QdO9F78nRjb38gFMKuRAAAgAEAAIAaQstkEivLK1MTZADWZmfW5meTK8uZZJLu55qabZGr58gzbtTvo5tc0v+z7jarispMlo1vdTRN1VJpNZ2iX6ff0tSM/njjUfoT6rf1JQizEYGsKOKdXDMKBTK6P2A8sawEQ3IoSP/nRg1BHf1pNaOkoGQelf677iM0btNRyYocCATC4XBDY6y1PdbeQQagoasn0tBI9+MCAAAAGAAAAKg9dI2uZlJJNZ3W0rpwpxtcVbMyX3+AUTDfNXZLus7WJb+iyEYVHV3gKzL933QO9CSZRILUP93Wlb2n/re59db3fvNXyAMEIhElGDR1vP5YVTObdtEBm0doHobnFeUO2DxCehLdSOj/BgOhsH7AmPgHAIC9AxMwAACwp5ByDwRCgUC2R4+gy1nRt8XftW/b4p5JOZFu32aWVs/3gOyT+z3zdo8QAAAADAAAAABRHLNN3pb8bjseLP4dv9v5HiDl+SvbOkIAAAB7CsovAAAAAAAAUENgBQCA8uJfdQ8W+OkfT97FKQIAAADAdsAmYAAqRv3DA4A9QWnqKfKRCCgAAAADAAAosfqHBwC7oONLAoILAADAAAAASqP+4QFAWQl9mAEAAIABAFWFpqpaOs2NxkCS0TNIDgQZqnnstfqHBwBlrvhhBgDYTfQGfZm02d1P4kbfv2DQ7BACgC/YBAzcZBKJ+NJCcmU5nUik1laTq6uZZIJGFybLkabmWFt7IByhYcXoDaR3CQ1Go4FIFAPNntgGeACI/ko/cvgBADaF3jcwEU/H49lu35qm35NMrM3NJpYW9cbejFGYDtfXh2L1wUgk3NAYbWoJRCI4dQAGAPjMHmSSycX79xbHRtfnZ1dnptfn59RUisYXul9Lp2mA0fv46MNKOBSNherrg9E6ORAIhELR5pbGnr7G7t5YR2eoLkauAKcTHgBA9G/hRcEMAJA3Smtaan1tbWZ6eXJ8eeJ+fHEhk0ppmUw6vp5aXU3F1yhYm2FalhU5GKRgrQRDSihU19pW39FZ19re3D/Q3LeP7kdTDiAhBQjQmEKjxsLoyMTFL+aGb63NzqiZtJpM2j1E81w4zO70KStKKFpX197RfuBw59EHW4cOkA3Aid2UiN/+k8AGQPRXGYhNANiQ9J8fuTN97crsnZvrszOp+Lqmqrl+2wXjNT1MITMQCMbaO9r2H+o5ebplYIhsAGbrYAAwyNYu6fj68uT45KUvx7/8fHV2Wstk9NXDLV9Mslzf0dlx+Kg5vkQam3CGd80AwANA8cMMAFB9JJaXzBm6mZvXVmemtxmj5UCgvr2z96Ez3SceauzuDUbrcIZhAEDNQdKfxpTxL7+YH7m9nTHFLV+CwYbu3rahAx0PPNi2/2C0qRmrjbug/uEBIPphAwCoHjiPLy3ODd+euX5lbuTOyuS4mk6XTPnJcuvQwd6HTvecPE02ACcbBgDUClomM3Pz2siH749/+bmaThW6PhhTQiElpK8Vapm0mkoXfryNrCjhhsauo8dpfOk4fDQUQ1LQbhgAeABIf9gAACqd1NoaxeiJi19MXbucXFnO1vbZcDDRM/6DciDINU1NJdVUqnAqLz2+96EzQ08+QzFaDmBHKAwAqHbS8fjoxx8On3t38d7dfHMDgVA43NAQaWwKxeqjTc117R1KIJhcXUksLSaWl9LxdTWdziQT9FSZRCJDliDPKEPjS6y9o+fkKRplmnqNvUdgJ9U/PACkP2wAAJVLJplcGr83/uXnExcv6Fvy8s24MRYIhgKRiF6FLxxRgsFgtI5CdqSpOVzfoGbS67Mz8aXF1Noqhezkykomlcy3zt+8b3D/U88NPPYkPRXOPwwAqN55hfW1m2+9PvzBO4mVZe9PQ3Uxs6RPQ1d3XWsbfdFQEqyL0b80vmSHp1QysbiYXFtJra7S+LI+N7syNbk8eX99YV5N+Q9V9LQtA0O9px/pPnaCnhMbj3baAMADQPfDBgBQWZBAX5+fm7x6afyLTxdGRyhY+w8goVBdS2tjtxGm29qjTc2h+vpwrCHS3BwIZafY1HQ6ubqSXl+jf+k56UsP00bhIN+njTQ07n/6+cMvfQ0FPGAAQJWq/7W1m2+/fusXb6YTcddEQl17e3PfQFP/Pr2aZ2t7pKlJL/ZfYE2Q62iqSqI/ubq8Oj01N3xr6urllelJRwUhxrKLA4zFWtu6jp3of/jx1v0H7HEKBmDnnhweANIfNgCAiiCTSs4P3xn77KOpq5fW5ufsuGmvrpuVfBo6u7uOHW/bf6i+sytc30hmQO/JQw/Lv9FOy2QyyURiaWltfnZ5cnxp7N7i/dH12VnX0n0wEj30lZcPv/g15OvCAIBqIx1fHzn//pXXfkA3cookGKJxpPfkaZLmsfaOQCRC92y5pZdZUOj+hc8W7931XbikJ287cGjw8ae6HjwRaWis8c3BO6r+4QEg/WEDAKgAOE+sLE9duXT3o3Nzd27lC53N+wb7Tj1slu7Z2t/RJ+zSqUwisTY7QzZj/OIXq9NT4p8LRuse/MavDp19BqWBYABAVTE/cufLv/nL2ds37XsijU1dR48Pnn2m/eDhrOjftiJX0+mVyfHpG9dofNEXMddWvY+JNrcMPHp26KlnG7pqWhXtggGAB4D0hw0AoJxZmZoYOffe6Cfn44sL3p+GYvUtA0Ndx050Hjna0N1r5+Jux2+YZoDEwN3z709du5xYXrJ/SGLgod/4vdahA3hfYABAlbB0/971N35y/4tPbbtf19pGRn/oyWfpxo5Maayu3P/8k9vvvb08ft/nspPl3ofOHHzuxY4jx1itrgPsjgGAB4Duhw0AoAzhnM/cuHr73bfHv/zcd4duY2/fwWdf7DvzaKS+YScWzNfn50Y+fG/k/Pt0IztwBUN9px954JVXm/r24Q2CAQDVwL1Pfnnph3+9NjtjfhttbjnwzFdIf4di9TsYg9OptZmZkfP6+JJac288khWlZXD//qef7zv1cA0uOO6a+ocHgPSHDQCg3EjH1+9f+Gz4g3cW7g57q3yGYjF9hu7ss7GODhLlO3cYqbVVciB33v+Fvf4Qa+848a3f3PfoE3iPqh5Ufq1+Vmen9WW+pSVrZKnf/9Rz9LWj6t+cS2js7Xvgq99s6Oqh8WXh3l1xyxENeXPDt2n0Sa2uDjzxlL4lAOyk34AHgPSvzXcENgCUG4mV5dFfnhs+987K9JS7iDZjLfsGDzzzld5Tj4Tr63f6SEw9wDXt1jtvmSm7JBVIMLQM7a9v78Q7BQMAKpupyxdnblwzk38YY32nHh48+0ykqXl3/joNYUNPPhtr77z1izemr13JpJL2MKebk+mpW++8qamZoV08pHKAhvxdy3xCH2bofrxBsAGgXNT/0uLI+ff1SfeF+WwotDxAIBTuPPrgoa+80nH4gV2rl02RlyRBfHFh5MP3OOckFUgwkAmpf/4lvFkwAKCCIcG9cO9u0qr637xvcODxp2Jt7bt5DDSQdT5wLNLYdKfl7XuffpRcXTEkMDd18Pr83PC5d5VQeOjJZ4KRmmhE8i+N/J9d8ABM8BsA0h9vFmwA2FvSifi9zz6mkGen3duE6xv2PfL4gWdfbOzp3eWjIklAwmBxbHRhdIS+JcFAsoHEAwp2VzdoyVTlLN8fo4+0vfe3/8xjLQNDe3IkNKgdffXbB597Mdrc4vrR2tzs3fPvT1+7UrhvedXAd1iXM+sL7JyahPrHGwfA5kZ+zinMUbCjkOf6EYVFCo4UIndf/ZuQMCB5YN4mwUCygcQD3jIYAFCpaKpKH+PV6SldWDPW1Nvfe+pMILxnnj7S0HjklVcPv/BVd8Y/50vjY8MfvLM0Nlr1b8r/YE3/76gHAFCQoMCbiJMAdh8KcHqYGx9z5f1TQKSwSMFxD/fCkTAgeUAigaQCCQaSDSQevLuTAQwAqAwyyUR8ccGc/qePd8+JU/Wd3Xt7SIFQ+ODzLx199dth50jHNW3m1vXhD9+LLy3WyLtTcg+Qb+IfHgPSH8ADgL2FQhsFOApzroqfFAr1tfHnX9rzfBuSByQSzClCkg0kHkhC4I2DAQAVCdn3bI8PxiKNTa37D5ZD0X0lGNz/1LMPvvrtqHPXr5pK3f/sY71ZQSpVC7rf5QEg0yH9ATwAqEr06PbFpxTgXNGNgiCFQgqIJejwtW1IHpBIIKlglugg8YAVABgAULlikyeNwl6yLMfaOhq6usvkuJRgaPCJpw+9+NVgNCoOP4mV5bvn31+s7kQg7vYAJVkKYHnMBs//UwDpj/cXJwHsAhTUKLRRgBP7eVH4oyBIoXBHK/1vChIJJBVkowCRLh44JqZgAEDFzjqYlX3lQKCxu0d39uVhS+ifQCRCA9+Bp78iK4roAWigHPv841y10Orij7sGuccDSNtbCsiX9sOxFRjqEMDjgb2GwhkFNX1iS1D/FPgo/FEQpFBoh8U9h0QCSQUSDJLRI6y6V+MByoBWM6n1teSyXgA0EArH2jsDZVJk0yh7TKNdpL7hwHMvrM5M37/waXYEZIxr2uTli11Hj3c/eFJi1SlfdWlOHoA51Dn3VO3c8MWz/M/vehimcSD9QeF3HBVCS/WhwJl0Dsd89uZ1Cmp66r9Q8r/nxGkKfxQEKRgySSqTYEciQZcKoXAmmSTxQBIiJnXgPYQBAJVHOh7X1IxkVOIPRCKsfPQ00wsN0L+x1vZDL7yyPHF/ZXoy6wEkaW12euyzj5v3DZbLkkWJ+Bddg7Zqtz2AlF/3b9gogAvPVowxAJD+AB5gpz8I3t+t5RObWFmmcEZBzQ5wRENnNwU+Cn92KCyfyKxLBSMFiMQDSQh8FqoYpABVM0xmilFYgGta+WQZ2iMNN9YB2g4cOvj8i0ood3iaqs7evrFwd7jK3g7uFOvc+iZfOpBUREYQdg+XUPFA/eMawEdgJz4IO/fM5Q8FMgpn4m5aCnYU8ijwcaMzQLktdJNUMOsUkXggCYFhAQYAVCTh+sZwfb15ew/L/xeYbGBGKuTAY0/1nDgl/ii+uDg/csdVLq2i+e+7BjflAbw2oBihn28/wB9P3sXHAdIfwAPs+QuvKSdAIYwCGYUz8U4KdhTyKPAxIwiW2zHbUoHEA0kIjAkwAKAiCcViWV0oy0Fzp1G5Hue+R58Qe6Co6dTs7Rt6w5SqiQRO9e/Y9cuz24IL2wBpIw/APA/D+gCkP4AHKM+XXAufPgphFMjMVjwmFOYo2NmhuQwJWilAooQAMACgwjBS/6OGp4+E6urLVRrrGrV18EDr/oPi3Qt3R6avX6mmRQDRA3BvAVDuL/GLnP5n+RU/FnEh/QEuj/I0PFV8nil4UQijQCbeSWGOgp0d+MoQkgokGCRjQ7DtBAAMAKgwwvUN7YeOyIoSiEbNwl7l51GYmQFp9ikTdwJkUsmZG9fW5+eqRv271Lz/UoDxLy/iGcRfZ3myhkz+BfJ/akZzAFwnFfcaq/U8U/CiECaWtKYAl+20JcS+shOFgYAuGBSFxANJCIwDMACgUqlv72SyEgiF9M1G5TrloNdBk+W2oQN1LW3i/WtzM8mV5aoxAF7d7/IAOfXPNz3xD4qUGlD/ANq03F5dVZ5nCl4UwsR7KMBRmKNgx8u2wZZemoOTYCDZQOIBIwAMAKhgek6eburrD9XVM6Xc3+vmfUOx9g5xU1R6fX1tblbLZCr9Xfjn1g5gX/XPfefvrXvFBQHf6f/C3gD5PzUi5gAum4p+XVV2nilsUfCiEJYbkBmjAEdhrsyPnKQCCQaSDSQe8PGHAQCV/AYHAr2nHo42N8uyUrZ9tZjRHiUYjTZ294rlShPLS+uL82o6XenvAs/peZ8vlxmQPHLfd0HA91ckzwOQ/yNh4h9Am4LdhcIWBS8KYbmrKBiiAEdhjqIBK9sel4yRVCDBQLKhTNOGAQwAKPbjLEl9px+JdXSqmQqQ0S2D+10J8OIMSuWi6V9cKqj7eWFNz312CfM8CwgA6g3gKsKHYm9xBS8KbRTgKsC6ZNIkGEg2YPUYBgBUugNgdc2tetmB8leInEcamzRhvp8pSjpRJZ0I86n8AmbAxxLwvE8u5d9XULMEmnroiyEPCkA0g903AIk4hTD7Wwpt+vZfXvZjM9eL8pFsKNuUAQADAIp+j4PBxt4+uyNY2RoVbuQChYSyA0yWM8mEWEWhQtGsfH7JmQukFSwMmq8JALc2Cdj3MI/uN0fuWu7/FXTKNYQyAA9Q5q+imiwWhS0KXmIZTQptzAhzZS6sSSqQYCDZgM971YMcr+qHBp1gOFL+U8LM6EFY39FlV/7hmpZaW1OTySp4F0y5L2dvMlOyM8lHxEvOe7iwndfMImL2UwhPLm755bUteUOYqQU7KVLVpQmcB1AYClsUvMQ+NhTaKMCV/7AcrIuxsncpoCRgBaBmTED5f54ZU0JhJZSbeKDRU0unK2L3QmE07pjyN0v7uFJ9NL/OAPm8hHjLlfmj1Xb+T8TI+TH9D/MYKsQ0UBIPgIMHGxiATJqCl2gAKLRRgCt/Yc3KtUEBKDlYAQBlNfZIXNVEA5BJJbVqqAIkzNJb98iGB6Cx1tXMiwmClXvSe3KrATz7r37SPAsIvPbEbl1zj9f6sOI8FdhY0HimvWtZSmIdABSGwhYFL9EA6KENuhrAAADgiywrepU052xEpXcj/687B5i51masA8hWDNCy8nQTWl20BLbiNw0EZ+5nqZENAM3NvcaiB2dZWyVpTgvEPScQFJD1W/jd2nQClegBMP2/a1DYcq26U2jTi3EDAAMAgE98CoeD0TrxHk1VxUmUSoRbcl82BKjGcx6AZ/NScpP7bCPBKi4IMKcN4Cz3mKqn09D95pVBJ1Y1TwXL7pGQPNIflET0b/iEkJgASGb+qqo6DUAdBTicGQADAIAPjLFMMuG4R1Yq3QDQ0SuOTcC6BzDnhpxpP0Z9COMm99sB7BK1TLABDj9R1dk/Qy29qiH3ZecZliWmSVyf/jdyqlwmSjx1NbsIsDvT1TW1LFBZiwDwZrtsAJhzvl8vCoTcegADAIAv6XhcbJ2oB61gQCylXLkegDlviDJd1Ppadh6fSU61yjZS/+IiAufSv5yqtvyfY619GWN2X5F8hLyW9U5cFk9yzef/7KE8rREngM0AwBcKWxS8xHsotFGACwt1rgGAAQC1C9c080sJBiXGkitLqdVVxzAqK3KFGwDNytVh1ry1mapu7uJlzFeecuMxjHssBHOqf1fFT7PJTDXNMj3W2mdP+cv6gMVUu6cyk2SeS4WyE4Fkpq+xuH2RlS8E0Q8nUIMeANP/uwyFLdcKAIU2CnD1HZ00TKvptL5JwPjCuQIwAKCKZT7P6VyuYxcac42AxhzJumsYlQOVfZVqQr6KbQbs5HWXDXCcNmdSkHB/LvvfXj2oyjDydFu/wpjGeVb9MyljnBJuzPRzI+HH9gBWSaXcqWLCnmCHq6zGpYDy16BV7ATMV1S2bwHU/x4YgEDANXVFoS27vq0XvA65QqQYFt1BEwAYAFBxxBcXUmura3OzWiYdbW4N1ddnEgk1nVaCwWAkSkOkMe5psqzIwWAgHF6ZmnL1/aVHyoHKbknInR7A5Q28GUHcaRKYkRRkVgtlnol/7tf8qzryf55v688umBi6n4aqDF0PxmtWDKFv502J6yqamQjEsr0XXK5Jqq6dABWafFKtTgDpQEAwAEHF2UyXQpsZ4DJJvba1pqmM6ZWCtEwmnYibYTEQiaRWV+OL8/Trsbb2UKw+2tyCkwlgAEAlMX39yvLE/YW7I4nlpfjSYiaZUIIhc9pDr+ypKEogoLf9CoYMAyDrI11L6/S1y6qz6n8gElUqvCe5Zs1Dy3byj1URyKFQrRa/MstO6kvWg7llA7i1IOCCVd0G4Jct9W9u8A0wnuHZ7H9uiHvZnuxn2bUSZp0x1doLYWZQyc4+AFUg/atGZZovpJpsQBkuBWD6f29Ou67mHSWtKbRNXb1I8S6+MJ9aW9U0jQyAmk6pqaSayXBV5UYGp5pK0Z2BcCTa1BxpbGoZHGrs6et84EGcUgADAMoYzjPp1PL4/eFz786P3EksLaQTCS2T8X2sudyp5//oawAa3ZCDQXqwq+ZPuKGholOA/qhjHzNfrOAEmDD3LwvCNGsYTNnKsvKX5Znp5/m3ulY6X2/vl1l2P4O1csIU61VqxjoA55LVDy23GYBndwtkKwLRz9WcR3DcgO6HDagpGwB2GQpbFLwc4VHT5oZvL9y7a3YI1mMfY3q8M9bBvc+wPHGfnmTyypeRppbWoQP7n3qusbcvEAwhNQjAAICyI7W+PnHpi5s/f4NGLr0EMucFzQI3pX/2W1V1VU02J1EaOnsqegXAFP0q5wpjrpQVr3Z32QDXOG9tGzCXChwuQnzgv6r8/B8z28fO6M9qd+Pb3Nkz8oK4lHsAFyyWJORQSZbRqtxNwLUgJavSBuz5G4fp/z0781bwEte0tUzGnhHjnnjnEz4ymeTqanJtbWVqYmF05PALr/ScOB2KxXB6AQwAKCPSifjE5Qs33np9aXzMR/obc+Ccb276NRCJNvX2KYHKNgCS5QFIwZrz+qqVAsSE7QHiHH8280dICnIm+XCh25VjHaA6poYUo9SPbEztK7lU/twW37RRDFQTEqvsRQBL7rNs3pSVIOTF2ycYur8cXjKWAkA1vPWBIAUvCmGupNYNYcZUkSOGck5OYHFslMIr/bj3oTNBZ3IRAFsDJahAKcJ2OjV56csbb/506f49/4l/cZWz6BXMcH1DXWtbRa94ataXMVHNVessaMKXavkE7rxfs7sIC1PdPPtgLlYItafAq6O4jVHsn5kl/5lllmTrR0Yx0Gy5T/NhsmCo5FzSFGdOR8SEG2V+SZFkrFnVWH2vnWwAZuJrDsYoeG2i6r8V5sy1cd8YSuGVgiyFWgq4OMFg+2AFAGwXGrDmbt+6/uZPdPXv8peBQCAcDkVjgag+Y2HmPurDm6qlE/HU+lqhNCHG6js6K713up12wi05Sx5AFhpC2lnpmqBNxdR/yfIA5uZgKbduwCWhNFA19f+15b5qbom2tv8q1iKAnUnFzTslrhkBVObZU61a6wXZEqvcvUmae85/mWhfjCf2qUCNIFDZ73g4TCFseXK8cJgL1cWCkShT9IVecy8c3Z2Jx1PxNb1ekHMTHQVZCrXkKzoeOIa+wgAGAOwxazPTw+feWbyXSz1XgqHWof0NXT2RxqZIUzONVsFoNBCOGA1QUmo6TV+k/lenp9bmZpIry/HFhfjSoppyzGoEI5Hm/gFZrvguYFkvJGT+aEY6EHMW9JHz9Pe1la65K4D5tQDje5TQ8tsd+6Q8vYo9LjE7w/WfZ+5t+LRW7SMmG8pethS8eafZLFmxMn/006I/d07r2/5BszyAfb5YcUcL3V8+pwW7AkCFQsGLQtjMzWvpeNxxGYRC0abmaHNLuKEx1tZR39lFHkAJBo0vfY9vJpmgX0muriSWFhPLSytTE/Mjw/asP4VaCrh1rW30izjJAAYA7CVTVy9NXrlkf0uD2v6nnht47Em9gI+i6NmKfhMVmqpq6XRybSWTSMwN3x7+4J2F0RHxATQ+0gBX6Y0SNUHOy8LUvlH8yKjpybJ6VGwYzIVsFsnZLkBjYipLtvOv/Sv/eod3AJuK3wXLc1t0JuYlQK/od42ySMRf5ncCilG9xzgDTLb6/toVUU0/oFkewKwIJAubgLnn8Mo2MwpysNZsADxA7UDBi0IYBTKXAWjs7t3/9PNt+w8GIpFwrEEOBv273XOeTsQpUCZXVkY//nD43LvJlWXzJxRw2w8egQEAMABgL4kvLkxdv2K37402NR964ZWhs8+QDdhgdkRR6ItGQFMejn/5uesBkcbmaHNrxRsAQQXzbHa72LuXa8YMtcx8NKu9gVjcHCwJ1YE0Z177zslcUu08j+4v/EfNxyieqXfiOx37/iKPBwgYU/tpnl0z4YZ/ULh93vTsHoV7PZX+h1Qj9UfOnWF9xcDlRvbcIUACbuGMwQOAijMAFMIokC1PjIv3U3BsO3Coqbd/o99nwWidZOyFO/zCK8Fo9NbP34gvLUpGU2EKu72nHkabMLAdsAkYbAPOZ25es5N/QrHYgWdfGHz8qQ3Vvzu6p1KZZMJtAJqawvX1lX6Gstt5uc+WX2ubL7c3B4vbfyVhb4Brm6/GHbUvJeFHJef3Ovb9rjHr71XJPLe52XiB1hf39CWwt/O6+I7feoJkPV7J/i7L3mZZL6RYj5GtL8XaDezaByz5/VvAqOyOkIX4w6kDNQKFMApkrjsp2LnyXTd+noZGCqwUXu0aoBR2KfhKnOMkAxgAsAekk4nFsdHk6grdDoTC+x5+fPCJpyONTZtWyZl0en3dNflR19warKv4gsea4AG4IJpVwQ+4ZL14vyY56v+4viwhzl1moFTS//esiX8ueBJR8avWl6OokXkPz035K86MJibI99/P7wECzPYAgta3agSZpVHF+j8u9S8mUzE/D7DLG+igX3EaQa1BIYwCmSsJloIdhbzNPhUFVgqvFGQp1NK3FHYp+KY9E2cAwACA3SCTSNAwpDfzYqxl6MD+p5/XVyQ3X5qAnsFOIspel4pS39kdjFZ8tWPN2MZqK2PzRkaY1xducI1zcRJddZb+dDS94m4nQP/+TyXaAPAdS/pz1xEaVsM+Qm0j58N5Tu5Lniqc9p1/4PEAzDG1L0nW7L7MciVB9aYKgjGQsxsGso/2Ufwse2GyXa8HCs26E6cUJwFUgAGIRimQuVL8Kdi5Gt4XBWMUXinIUqg1WwhT8KUQjJMMYADA3sBVjatqOFbf+9CZhq6eraXspxOJtHMgC0Xrmsy25xVvABwewJ4Xd60DCF+6tjdThrgzHUhzFhXljv5WpZn9J+n/HUv6i7pfFP08f7oR93oA5/1iOX/xYa5coD+buWem/QQduUCOHQWu3B5b9DOnx2BZq8D2ZO4f0h8eANTye0ohjAJZyEjlLxDvirUAskxBlkItBVwKuxR8cc0AGACwNyihENf09PW2A4c6Dh2hb7fkIXhydUVNJcX7Ik3NNNJJlV/nWM2qfG4LelUQ05owu+9qGabxbPUbbyKQV1hrpfAAv29If3uXgin9Vb65LmOuh4kZqsxPf9v1jv6+0wPY2wACLDffz6ymyLK1K8B+mOxcFmDW6GYVUXUf+05fWJD+8FcA0CCll8NuanZct6mknje7pfR9CrIUaing6p01NXWLMRcAGACw7cFN1lQtGIm2HzpS39W9tSfRNC21tqqpqvi80ZbWQIW3AMu+Op6d6Vclroqp/5a21pyaWxLkvrkz2GUANPFb7rMlYGt8p2OfZtkVO9tnsw2GvapaE35dEx4jpuwHrEn9PxI8gN3aLGAkAsmSr5FgkqD17QQhZu0YFn6FiX/X91BLZQmgSnffBuAkgLKFAhmFM3Eyi4KdHvK0Lc7fU6ilgEthl4IvY5BwYBsXJ04B2Lq6VTOhWKyurb25b8DcmbQFOA2EqioHAnbLQ1lRos0t1dHaVjXErJwtA8oVoztVTonyXO6KLEhk1b7HaBlGv65Z1W/E1r+S9S898n+eGt3yQf6uof7t3QWS8MzSZqpkiiWJxF5mmrPRgai25fznzU71CWR7qOkFPWVhX6/sbJ/M/BopmO6r8AthJaqhBCW6tx5g+3VCy6o9HIxcdcCNnjYU1HIBjoKdqurbAJSttLmkUEsBl8IuBV8KwbhywJaBfQTbipj1HZ2N3b0N3dsIvZwHwhFxm5QSCMbaO6rEIwllQLmwJcBOthFn8V1LAZJT5Yt1eFwyZTuS5bcF9V9Y1m827IkLGhlBajNnbVAxd/8PrUWA787cE9sgyGLBH5ar9iML82pWkVAmVh11LThIbEcKAWHWv0wUpOtykvyuAZZnP7qvGQBg+1A4o6CWG6kUhULedip4UsClsEvBF9cpgAEAe4MSCNS1trcMDIXrG7buIWQ5EA7bsyP60waD9ITVMbBxwQOoQsEfVdwHzHM/ddTTtLcF8zy1gCSfuvtbO0jLixWrhAqUJXU9TOXZqkeSILYsG8CcX45EIFVY35CZf61PcQjTnFLP4zfYTmg7SP+yIiO8F2yjjC+W51vfreRgp81btb40ZnTyoqCWmxXKZCjkbafHJT0hhV0KvhSCcfEAGACwF1ePbgBaWwaH2JaWMu3pEDMLKGcAQqFgJFIFO4Cl3CZgS+g7+3850vqd1T+d6wDc2/yLe5J2Sqj+uedfX/WveTYou2yPKtQ/lfweKbZAtj2AyV9YiwCC4mfML+HHriwk1gKyFwoklzEo0WUF6V+2HiCzA+9LCZ0ALpvagjEKZ+JuXTP/R95G0KSAS2GXgq8MAwBgAMDejGyyXNfaHmvr4OIW3s2Pj/Tr4nQIDWpKsEqKGzjn8o3pcJ7TzaqwFKBJ7n23mmPWn3PPhlqviN8sv21Nt4up/4WTizTn1l7JbylAzHdSPb2QJbNuD2PZMj5M/7KK9Ov/sxOBNGfGf+6G2AWMObqMebWauRNAFnzONhdMIP0rwgZs2P55m06AbfXiwbtTa1A4E5U6BTs9Ym5jhot+ncIuBd/tLCMAgKunduHadqsI0+gTrm/Q03W2NwzR4Cj2/KLhsjpKAEmuJgDOip+W9Oe2SlYld7l9TezCyx0CXcyw/1+3ugM438ZfKc/Ev5Z/QcB4FTwj8ZTE09ZXRs/+1++0fY5sq3+nllLMaj8sV7FHEhYBRO0ludv9MnEdQBzaWJ5MD9f2AKloSQfpX0GkraUAb/a/90YBq8A2+lHxfgAXT21C4Uyc0qJgt82Z+1JF3pLIAAADACpO/vPE8lI6Ht9mBomsKEootM1hiAbEYCRnAAKRiL5Hqir45dz93Cy4uB9ASPp3zZ2bjQI0nxwbrnk2BJfiQshrDLwqn/tYAl33G3Jfoq8U/culpPGVFl6mqzOX3SRYcmbyKNlqnuzvC7uBubP0p+yXBeQ/3cty/+f2NoAtzbtB+leuDchzUWyQ9L+Faf7Cv7gn10+Rf5Rt5gVKm/HMJTzISjYAEQpquXgXiW6zyT0FXAq720kiMod+EgAkA7abRQoq98rEKahRGFudmUquLHcfP7Xn0+263BfWQ5VgSKmWFQDJEPQK45oQK82JcGYJW+P/3LhT/14x9b1xryIYA9lMX2HZ25pl37c8eP+Ws/dWYfXvnSZyVTTSPD2/uOd2rrQo839wdk6CPIDwbH82c+/3jUN1zOULRT3zTeK6SoVy5y5kqJPa8QAho0Io97vepCIK3brK2hYmU4EXDN+MPSjwLYSkL4pzBYAGr3KY4cqkUlNXL4YbGqPNLXiPahOsANQu0ZbWsc8+nrj0xZ4vAiohx/ioBINi0bRKh2fbfnG705ar1a6Q689dyfSqu/gP9zYD3vKbl92GvFHw9u4K0KzEnrSkb2nIWE3NuFN5K1ZDrgJzrpLnHms1wPHzP5+5532wuCVAdmwSYN70Hq9mKWbsg/qvDlJLEymrSKj3EpLyzP37riz5PkNVlgna/hoI0qKyES0QFKsA6TNcoT2e4aKgT6GfBIDepAzAAIBao769s/3QAzff/tncnZt7bUVaQrGYPS1MY5OaSVfNeRZ2AHPuV0LHrAFqyX09o8bV6NdE83T/1UqVBSTltQHe2j65hB+e29orHpLk3IAr1v2U8oh+r7ry8tez98SCnsyvOpBklRViG73gDSd9kfNTlTbAc+Vs0Apgw6/tyOUyl/7l9lQVHAIy6dwsG2MU7Cjk7e0hUdCn0E8CgGQARgYYAFCLDD7xVF1r+5ff/97srRt7eBh1za2BUJhZBiCTTKTX16tmc5K9wVc1PIC5I1aVnHsAuGOyXxPahOVu21k3PCfHt9MEgOdpK+b7UzU75Z+d9de44zHcL7/CW5/HylniUoHpeauI5x95MpT+dvae/fQ8/y5eJhwMYy43wrzpSV4HAulfxR7AO69vb0OXnY3npDy7hAusJJTj+LPJi5kVLejZZp6TleLYKhEKZBTOKKhZ+p9RsKOQt4eHROGegj6FfhIAGBNgAECNEozWHXv1W8mV5Yvf/97Utct7dhUGAuJCZGptTauuFQBVbPTLJbHsj+rpFqwK+301T8KPqM6lPNq9GH61fZ/q11lM8uQgWYV9spt6NZ6N5V774Qrz4iQrd/bkyuUI5dEf+RTD3+kegImrCjzPbs6cUbDut5OsfPsBs1oSJbVMYmkiYdkA2dlUzt1WwrrhMgbi/T6DalNP2Q1BG13SG9oYVkSvNFaEeag19W9C4YyCmv0tBbs9rN9PgZ7CPQV9Cv0kADAgwACA2qW+o+vAsy/MDd+68L0/H7/w2Z4UBOCa1jIwxK0/nU7EVaExcKVzZf6+5l4H0JcCbOmfsR2CMxfIbh3AhUUA7uwLtuUsILE6p6tZga37k8ZjMpZvkYQaRKrwW+aX5FwHYLk8e2aW7rF/JLPcJgHFmnn1U+T+cuJHVi5QgWwf5rcROd9gZ5/AHeohBcqQuOkBPJ3j8iUIeXvPiRVp5YKutSI8wIa6v8hsqALdl8UnqSmbTeGMglp2tOFcD3Z7sr7NOYV4CvQU7inoU+jHOAADAGoaJRjsfehMx+EHlifHL/7ge8Pn3t2LcYnXCSsAaioVX1yophYnnjSe7JYAM91fc3sD/WEZcR3AWRVU89sNvOlzbiX0ZzxfKauEv2YdktgoQBWsiOZcPRCL/Hh799pvJ70c2amxvDagsJB6bXZMlBRytnhoUWnZ+VRaGtK/xli3PQCz0tWMG/a/CsulkNme1uEZBDMgW19Kub5eX82d7wPC8rTIEF+1vJnN0/avByqzUNKWoUBG4YyCmn0PBTu+FxNtFNwpxFOgp3BPQV/clwxqE5QBBfoiwNGvfTO5skJDw5XXvk9j09DZZ3ZzjVKW5VCsvr69Y3VmWg9U6dTKZFVFCNUo32lPE5paWTGkcIZxZlQEte80Rbac/Teb4UKP0Fj2d7Mbba3K9ls2AJJTvjO/JgNi31zvZl/fp/WmVchOD2AYCpavZCcvbhr19dmxV9r7ZcuNiOrEeB5mZwA5k5SYt/MBs7aHglpjbVF/3xuae7ifGjatqcYE72p5APExvn30ytwDKEaekm91I++3LP8j8xX89Z9sMvKvavAyo3BGQS0bbds7KNjJuzu9pWUyI+ffv/rjH8SXFhu7eyncY/ofSFgBAEY8Yx2Hjz7wyq+E6mI0QFz+4d+MfPheOr6+m0cQbW5pGRjKRql0em1uJrm6WjVnWGz+xZ3FQI2seke3YHsdQBNq7duZOUIvsOxu4C2sJb/a3i9KdtEMOCb1neo/Y32pznUAz5vpk0dhz4xmG4FZWUNeD8CE5ynMG7Njvnt5uZiVwdyTkd59z1D/Nc7K4oSsZ6kxxfoyvzUXAOxvjQc48tayl6u11CUzdzJbOTsB1Uh4s5slS57sJnFZwzHrz4RlEOYtwut+EslYXksbWy9q8OqiQEbhjIKa+S2FOb3uPtu9y4RCOQV0CusU3CnEU6CncM8YijMBrAAA0wgGAv0PP0YDxPWfvZZcXbn8o79JrCwfePr5cGPT7owUwbq6WHsnk2WuafS1MjmxMjURrj9cHadX1UU8M/e8qk4xKmerAGXnxLnQ3suOoKT1SXwYDcVycl+xptK3c2CuAqC5jcXccY+p/jXnQoG3NRITMnncqdIs94TMqdS9HkArOp367Tk9F+jptn6H9Ge6fcoeIXdVB+KSsHU4AekPDJYXx1uaeyVBB3O/KW3NEvyavqQnfhKtB7DKm1QTE3KiTT3MuSrIrJPiTqhzLgTIVrKfWTGM/l1dxIfLsJdTExTOzKR/CnAU5ijY7c6fprCSXF6688E7t995k3xIMBI98vKrFOj3cAsygAEA5YgSCh187kUms2uv/4gGi+tv/Hh1eurwi19t7h/YhXT8QCjcMjAYjtWT8aBv44sLi/dG2g9WiQEwFK3Z8Dc7hSYJ6TSyPVqz3M5Xxai2GWA5CaIYaT+M2Vo2uz3gT2dGt6/+xXu4UGZUVP+SoP69F4SYi29M9jNvERWhnRnT8tcA3SwfGDbgkdY+Zh1/ru4Qy74cln0X6O9mPUAc6h8ILCyOtzX3Mo+nFZ2wnBP9zP50CA/jSoV3wxU/FGJmlOTstsGcGqKJsU6ZtTApKLHvz97DtSRCgYzCmXmbAhyFucCudAEjy7E4Nnrz7Z/dv/CpmkoFo9GjX/vmgWdeoECPNwXAAAA3NEYcfP4lORC8+dZP1xfmRz/+cH1+ljxA94MP7cKo0dS7r76zyzQAqfW1mZvX+04/Wh1dyu8ujA+29BqbevXsF5nnatxwZ8qNLHFmrLlo5ly4NWUtG7/LhNR/KxJvWm+I+T+i9BfTfsS5/5S1BCHKHc3PBogF1CWxmDrz0Q35jnvLpVQ+nb9P/54gG8ByKyPev2KuMKxD/QMPc4vjndY6ABccr+ta4n6rBNzKbatwC5BjRZjC723plf2679UxqU9mPxU25QOHoVpcoEBG4cz8lgIchbld+Luk+CevfEnqf/a23uWzrqX18Etf3//0c4G97kAMYABAGV8QofDhF14JxWI33vzp8vgYDR+rM9NHv/aNoSefC4R3duyItXe0HTw8N3zbXC1dGB2ZH7nTd/qR6jixVuoON9QzU4ylAM5yU+OqnfyjLwXo+UI5kW3lBzFhnV2zEoq2OD/kUf++vYdT2WwH/5V/zZXwk8uBZsxpA3zzhVy631vXfwtcMmzAoZY+YUOw4++uIDMB5Gd6cbynuZfn+bBwIW1PdAXckUFXhdnV4wvjuDa2AIUwCmTZy0KWKcBRmNvpP5pJJkc+fPfa668llpcYY429/Ude/vrg4+j5BWAAQBHQYFHX3HLtZz+evXWDBpEvvvfnC3dHjn/rN+pa23buj9L42HPi9P0vPl2dnqJv1+fnxr/8vG3/wUhTc3UYAFs9MOdSALdaYpmyPpAtAMpkS98zIS2eWYlApvrfZs1BseyPWOnfNCRpo1YpExYr8pUKcVX+EX/q++vczwmIN+RteBvi1sJ9fIrB1phYHO9t6WXOj15u47izIQZzboyRqmb+H2ybxNIihTAKZOa3JP0pwO10Pi39ucs//Ju7H52T9BrfofZDR45+9Vc6jhzD2wFgAECx0JARbmi68/7PRz/6MLW+NvrJ+fm7w4Nnnx547EmxZn9pIbnffvDw2sy0WSZ57POPu44dH3j0rFT5JQs0nkv9N/9viAaWTVhnWSkvmx0A9Oz/7L7grAdwLQIYz6JsqQSQ5CyD41X/WrYRmJThXLa2JRSemJet9l4+vm6juoFSHlMBSoKypca0Nd4OeXxhfKil1zTtQdf+eOFTbC8ucZ4z+bV8Af9XnQOFH/Bvp0dr5VxwPn3jKoWw7LDGGIU2CnA7KP2NrN275z9YndFn0EJ1sYHHnzzwzAuNPb2Vef7sf3LGOxuNjKiEOkYwAGAHoYHj+Dd/IxiJDp97N7G8tDI1cfOtny6Ojux77Gz7wSPh+oaS/0Umy/seeWLq6mVz15SaSg1/8G7LwP6Gru5KP5kTZmqBNWZZM/q6ypfNcc6o8KNYijlj7AeQjFwgyS5ow/QKG3btQXVLasNX/YuZDLb6tzN9JUchHYeyZ8IxWwfDXN2RPDXFmVSwVZC1vxlzqaXU9Dv0J7zvYHW0eRpZGD/Y0mdtGfdpK6HZJbwsVyBbRhrqv8BjasQDrExPUfCy+39FmpoptO3Q9H9ydWX29o17H5+fuXnNLJ8daWza/9RzR15+NRiNVpDi1ytiqzyjaqm0lkqp9G86rWUymqpxY05QP3+KzAIBORRUQiH932BQDihMpi8YAhgAUFpo+Dj+rd+gwevi3/5VJpWkweX+hc8WRke6T5zqP/No6+CBkm8Obj90pPPog/c++SV97unbuTs3r/7kB0e//q3G7t5KP5mqVaCGMbFWvaUwjF0B5ry+nf1CHkA1JJbqUOH6llzNWRW0SMwdwLb6tyv9M6ERAZ33tKH+Zecki9cDuJyA6x5Jcix6uIwEK9iHSKrJVIpdUPa7EVSMUpK+JoFuJCvHHhj1/pl1KTLJrf65mPZjfkJltsVFuVpQ/7XjAZYnx6/99IcUvLLDeCBAQY1CW+ljSio1f/fO2OefTF66sL4wb26fC4TCx1799sHnXqyIc0XaXlU5yf31eGZ5Nb2ymlpdSyeSKkl/U/a7uiabc/969wmFhQJKNKLU14ca64MN9cFoJEB+QJHhBWAAQOk4+OwLDV09n/+n/7gyNUlDzNrc7PAH78yP3Ok8cqzn5Gn6UaiurlRzG0owdOCZr8wP31mZnpT0+QB1/MLnZPBpOGvuH6joAsZ2CR271L1kTeRbYoJxa1eAuTFAEuoCyVYeUW5LAN96bpTm6fOlWe290saxuFJ68qXryH5OQPY4AeFb99It83NKklQTQqqiFT/bzMPsf6PWSzYvg/Uy3pN9Y+H+8dY+V/EfLSdcmPjxMfLxOK8941q89K8FD6BlMotjo7fffZvCFgUv80KPtXVQUKPQVqq/QlE4tb6+MjUxcfGL6RtXl+7fM+fLiIau7jO/+4edR46W+YnS5/s1nkhmllZSs/OJxaXUejydyXBD9POCq7/Wz9JSQlJX1qSZ+QRp/nBIjkWDrS3htpZIQyykOwEFPmCjwVlFOTxQ3IizND529/z7dz/6MLWW69EbbW7pPXm699TDLYP7Q3WxUv2tu7/84NLf/XVieSnrUyORtv2HBp94uufEQ8FoXeWexnaj0LhsN9F0psooVvKMzLIdtbJtR40+OwHjdsD4VtFTk5n5W3+9mcLbX2/v5/nVv5n5I5l/mrF8Uo8L6t/M/6GjCjD9X6NzavanCsslCEm5/qnMfOEhyXy8z+hu7j9OcP7/zVRVTfHqmODfUP37+kbmXAWy21m4aswzox5/Wb3SU619tl3XnB7ANqviHoCa2oC+BfVvU30eIB1fn7j0JQWvueFbmUTCvDPS2HTi279JwatUc2Sp9bWFu8PjFz4bv/iF3WGACMXqBx9/cvDsM029/bvQumcb0p+n09rKWnpmLjEzF19dS6cz2kaiv7hBiQKlzEJBpakh1NURJSdQFw0oChYE8oIVAFDcR0uWm/v2Rb/+rYaunuEP37OnHGgAuv3ez+9f+Kx16EDXsRNt+w/SA7aZF0R/i4bLdCJx7ac/TK6u0D00mE5fv0J/K7G82P/w4zu3C3nH54eE6X85V+PfkhFWuX0uNPwyf8BYru4nE1TIZkc2W/2LCoY71b+Z/FOk1GOCmZEMTyIi+0lDVrDYPxeKnELxV64xYHkuA+bpC8GMy8a+JEyTbK8jTe61H7gwf/9Rax3A1SLDPmbOsgW+rs5D/dco6wvzY599NPLh+ytT2b6/RLi+4YGvfqMk6l9NpeiZ54ZvT129ND9yx54dk4wUo6a+ffuffLbvzKPhWH3Z1syg8EJaf3klNT65Nj0bjyczRpZPKZ9fVXlczSSSmdmFREMs2NNV19VRF6sLBBQZl6jPcI0VALC5YSidWp4Yv/fJ+dGPz4tjkCnc69s7u44dH3ry2eZ9g9v8QyT6b7z9+s23X0/H4/adkabm3ofODD7xVMu+oUpMB2qxVgAkIVtGZrnb2TlyY0LdWhbQbbo5JR8w59qtJYKAMd2+qdabXzVWAOzpf1P9Z0wDYKl/RUjSYXk0upQ7WuNIjCagivC6JGulQmieml0ikLMrGO7KobauyhgrAHQ8/29FrQDUiNzf7Ny/7PR+puOVhO3gYisJ+9MhrpLZe83N3xrei5r0T7T12SJDzPNRBW9/oWbUf0mkf9WsAGiZzMK9kbu/PDf+5eeJpUX7/mA0evjFrx158WuBSGSbf2Lx3t2RD9+bunp5dXbadhfZmNjYNPDY2X2Pnm3s6S1hllHJyZD0X03fn1idmomvJ3Tpv+MjlbEg0Fgf6uuJkQ2oiwSQFAQDAEpAam118vLF0U/Oz925KQp0vWpNIBhtaWk/eLj7wZNdx05upwrB+vzcnfd+rjckXph3yOiBoYPPv9R36uFAOFLOa50FPIAkOfN/rCoiVlINy6bWWBra9AABlk0EUqyUG0Vif7cZA/BKe7898NppP5ql/iUr3WhD9S9ZR0WPCTI9n0e2pv9tTW8evP0kAeulybpbyL4ib3KRaqUAlb8BqMEJfqmI4q2uuX9mtb+QmMMP2BP/klP3y07d7/ADwlqBvUdl1ybdn2nrtz84LNfZI1ut8COo/9ozAKTFM8nE/Quf3X7nLbvhl0ldS+vAY08eePaF7TTPodg6dfXi5JWLs7dvxhcW1ExaXL2l2Np24PDAo2e7j58MxerL1yBxHo9nJqfX742vrqym1d0tlUWDiaLIbS2Rgd769rZIKKggIwgGAJSAxNLi8Ll3733yy7X5WS2ddi3m0cC375EnBs8+3djVs8VFSc4Ty0ujH5+//d7ba7MzjgtXltv2Hxx66rn+hx+rrPbmjc29otZx3LA66ZrrAIqQRh/IZf+zgCW+g4bC/tHsWPF//SVBxJg6mwvqv3Dqv+Tc4KhYBxYyjso1/W+6GnGNJpi9k9kvx5sIZJchyhg9yP5DmRmA2lT8WzMAPnWfmH1tMFH0Ky4/LOyNEb6Y92Pi+vpiHt3fKkP6V4cByKSSY599PHLuXbt7vU2svePgsy8OPHY20ti05di3PDVx9/wH9z79pd1KzFK0TA4GY63t+x59Yv9Tz5V5o8xMRltYSt4ZXZ6dT6TTe1bZgd6ESDjQ1x3b11dfHwsqMkwADAAoBQujI/c//2Ti0oXlyXHXOKgEg+2HHnjg5VfbDz8gK4pk7vRhbFM9PJIry5NXL419+tHs7Zvp+Lr4o0hDY9+ZR2kQ3H7G0W4aAMkr/cXJTmZPrrPs9D/LqW2F5XYDm4sAr23GALzclt0EbKp/TeIqz+m2wsk/ovo3DzhoqP+AsGRh/5Yr/8fa0Kz/AXH632sAzHwk/Qi59Kcz5SIRIP0LGIBiMn/sSX3JOZEvroMxp7J3zforzPGRYc5LyL5N1/D5uTG8TeUs/avAACzeuzt87l0KfImVZfH+YLSu/eDh/kce7z52ItzQuBnBrxe8NCtcaqo6e/P69Td/MnvruppOu2a+Grt7e06cosDXMjBUzqeIXlAypd6fXBu5t7y6luFl0NdFUVhrc+TgYGNbayQYwK4AGABQClJra7O3b9BoSP/GlxZ1GyDs6id1fvSr3+h96IyZtS+OdEU+v5bJLI2PjX704cTFL9bmZ0WbYS4FHHn5VRoTKyUdyPQA3ilMO/9BsW6b6wC2AbCSf1hQSAT66WYMwIvGCgAp7JQxxS7atUDR6l+yHEiQ5RJ7FOfvKsxR5EfOrlpk83+U/AbAdCaS0QqtHAwApH8B6S8VrPkjOfeIM2e1H+ZsFSfuhLH+dST8yO6fOnbRSNaTi3lo78EJbJv/snNgh0bVCjUAFH0mLl248eZPXBP/FH1ire09J08PPP5kU2//JraoOefFKNiNf/n5tZ+9Rh4j+8xGrKTnjzY1tx88QtKf/g3FYuV8ljTO19YyI2MrY+OrZAPKaBBjUkMstH+goaczFg7XejoQDAAoGcnVlbk7t8Y++3jy8pep9bXsp82wAbG2jpO/9tu9px7OrQNY41rxz7++MD9768b4hU+nb1wTS5HSyBiO1Q88/tSD3/i1QLgC0oEamnt89Yrs3BZsKX5jHcCS2uZX0N4MwKQ3NmMAXjBWANJGsX9R/RdO/Xepf1nKzuIHma3hmGvGV3Hm/1jVQplibBhgfgaAC9sSTJfy/+ypRID031D9Sxsl/9i7fr1z/7JTwcvuT0Fu4t9jDLwbhZnf0kFuceBNOIFN8g869tn79WEAbDLJ5JXXvj/60bnk2qqo/kOx+s4jR3tPPdJ+6MjmitQ5o6HR9+azi9//3trcjBhAQ3Wx7uMP9T/8WNuBQ+H6hjI/S5rGl1ZSN4eXpmbWVbXsGmPQSQ2HlKF9DQN9DdGIwmrYBMAAgBLPjsSXFqeuXiIbMHfnJg2X9o/CDY2P/sE/7DlxyhzUeFYcbPqztz4/N3L+/dFfnltfnLe7n0hG+8OOI0eHnnq29+SZ8l8KqG/uESWRJJQ6ESWRVWYnuw4g5zYDMLOQDv371ibFzbNt/Wkh719yJv8Ur/6V3KQsU5wJ34qw/Vec5aUXErKMgewRFlxIASL+r73TB4GmHo4PcxEeoJjUf5nlVf+yMLvvmviXnZsBZMknO8jsVO23V9hdRMj+6aby5WqTv9exz9yDJOfsPQyAHtrGL34+cu69mRvXMqlcXJMDgbrm1oEnnho6+8xW9vuKoZDziUsXPvnunyaFtKJAONx24DBJ/65jJ6JNzeUf2jTOF5dS128tzMwlNF6+42goKA/2N5ANqIsGa9YCwACA0qOXCh2/P/rJ+cnLF9dmp7MNESWpqbf/7H/xjxu6euyhb2segHT/7O2b9z45T8OlqxQpDcHHv/HrfQ8/WuY7g2OWAZCEyU6x4qGdEh0wM2es0p/ZFQBhM8AvNj+7+Whrn/itPf1fTOZPtoKnIA5kZzkX0QDYLcCYtcM4JOV+ZKs0u4+SbQD2Sv0HhFl/eIDiDYC34Zer3r/v3L9iXeSiRWSeiX/ZZY9ZLpVI9pv1l5ljBUCx6o2KC26bKp5bI/yuIf0VoVoXy5OqV2sGgBT//c8+ufza37r240Yam3pOnNr36Nn2g4e3UpbaVP9WBFyZmjj/7/9kaTw7nsuKEmvv7D5+cuDRs429feVc4jMXmjW+uJy8enNxdj7BebmPoIIHCNTmOgAMANgp4osLU1cvjX58fmF0WC8VauQ4dhw+evYf/eNs/qI9QGzps5dYWhy/+MXwB+8s3LsrFkera2k99iu/Ovj4U2XeKKDO8ACWfGHiBKoiaKCAZzNA0NoJYCbiv7Ol9AbbAxRI/img/iVn4wLZKQTt/B/x5ZgvM8xyGwDEosx6DxerKcGeKIOQMevP8798SH9pIwPgbffL8qh/19y/7Jn7dyX8CGsCjHmWyyRhG7GU8xLm/cwnNUgoSPpXM7XuBL7R3h+UWIAJLUesJUG2Udu+WlD/WiZz96NzV3/8A0c1asZa9g3uf/r53pOnt1iHxxn+Umtr5//vP5m5ec3cIxeMRlsG9g88dlaf+G9uqYwTpc/9J6/cWJhbSPAKGT11D7CvYai/0fAAMAAAbA27e62AmkqR+r9/4bPJy1+uzc7ISoDJ8qEXXjn+zV93j4Nb+vDR0Ewe49Y7b9G4KaYDxdo7Tv/2H3Qff6icbX20qcdW0q79kaZ2CbhtAAs4NwSbu4G3vNORPIBiKarC6p8JLckCLPsjsVyp+Az2YgVzSjHJOOCQU88JwSOr/v9k15VB2Er4gQEo3gPkm/vPXQb51b+Y5CbO/cvulaXc9cOyawXMfxuA9QDFeafsUv+5OqQOu2J+/VmNOYHn2/qtffzMrims2GmHO2kAKkj9kxyn4PXF974r1qGWA4GOw0cPPf8SqfMtTjN5ot7lH/3trZ+/wTVNUzMUvyh49Z16mDyAEgoVE2rLIf4vr6YuX5+fmYvziho6wyHlwGDjYH9DJKzU2qgekAAojUBg3nGNBq/2Qw809vY39w/ceOv1lclxRQ6NnHu3qW9f/5lHc7+41QGDBl8aKGPtnWOffXT7vZ/bqZM0WF/58Q/qWtuaevvL9oTFlybIA+htkrK9UbkdZ1UjBttbzORsWjxXJWY+yhQ0pJkz2wjNn8zfP9vWv2F0FxsSi3P2LmWQq8bIcuLMVynmDSG7rv7rmnv0YCrIfSbofgYbsCWfYCeTMcnnavFm/thZZPbed3F2X8z5UYQLMpfe49xALEmOBzNnZzFv6zH7qP5Bxz769j9UtQ043NIXZVJYr96rzx3kz+Aq1AykdtQ/sTxxn0KJqP7DDY0Hn32h/+HHG7q6t5WRL4j4sc8/obCoz4OomYbu3iMvfa3n5OlQXczfM5TlrFYimbl5Z2l2LsErbcRMptS7Yyuk/nu7Y7VWGxQrAGAHpgL8RqiF0ZHP/+rP5kfuyIrS0NXz8Hf+sG3/oVL9xXQyMX39ypUffd9OoCSGzj7z0G/+nnsYLSeiRsa52PfU3hMsTn8qluIPWN3BAkJrsF/Obav/0ZOGB/Bqca/6N/UZF/ST4iz/z6xJ/YAzb9t6KmYfOXOuAHBj+v9/20Vl0Njcq0l6HSTzT3Nh+p/nORU1K+gL3++T/JNzgExybvnwy/zJVfuRvTk/2Qcz9+qBM91fWA3wlANy7mT1zv2bx8mEtTji31d+k1qb+uYeGjdI9Ed06c+Mf6WwsYPIXNALCkuLATupj7k8VS2q/9T62pd//Zcj59+372nq7X/wm7/W+cCDwXCkVEJ8bvjWZ3/xH1emJjRVbR06cOZ3/p5/gf+ynPg3Sae163cWh0eXy7DmT5E0N4aPHm7ubIvKtdQjDAYA7B40xn3xV9+dunaZyTKNoad/5w8aOrtL5zv41NVLl3/4N2JL9kf+4B8OPflsmScCSYJsEnOBFCH3hjE7PTe3GYDu+bwU3U+fausvUv1L1jqFbQDck69CAVPJ1bbJ2LSgOA2A+Zz/y9TuyYL25l5VMvcb6HNVZsAyCxBxP7kPA1D4TrHapuSs+2nLcTlvm4vc3L8s+XwZD2ZM8isH5K4c6jYJXunvPVR7q6vkt6JViXUqg1Y+GxOmD4KWAYgwFtHVvyX6rRQgxUoB2lEDUGFlfzgf+fC9T7/7p/Y9pMuPf+s3uo6dKGFAWZmepJg4ff0K17Suo8f1mNhVYdWHVY2Pja9evj6f2rtGvyUY6JjU0xk7eqi5oT5UO5sB0AsN7B40tNEA2nbgEA12Mzev3Xz7Z2Kd0G1/gFn3sRPHXv121N6SxdiNN34SF3dulWGYEW5ZGjS7iGpLUnOiWsvWyeFml1xNyBEq+fEwj/p3CT6WZ+pXcmZZsPxSkht5//S1a+q/r6W3y2rB5tq1zAvqXVDAHrg3kBTs+eVS7dmpfWFfuK/6F1fDXOpf9qh/2bPBQNxOIGxbZ3otXeZ4Zlm47Onrn3QO/JMd6IBbcuqaeqLGV6Spx7cwa76PuXfhy7qHl9wAV5ybosBB4cOedKewQsGlu6Tqn8IfBUF946+mUVik4Fhx6p8C09Jy6tbIUkWrf/OFTM/F70+updKqVDPAAIBdpWVw/4Pf+LW2A4e1TGb0o3M3f/4zsZ3K9k1A17ETh1/8WjAaNT/T8aWFO+//opxPSGJpIheGuR10uS39NWeQtu/RrHr52+ecsI2YFVT/kqeWS+5O5qOhhflUxgSFYfNvdkUWDLX07mvp9RxbLlG9gFGpcX1f4E6Wxw/4lgRVnFPytmpXmGOly9qBqq8XBQT1L4upRCy3T8AukKXY4p65emg4rmdjbluf3g4w9zPLjoflrvN/2jnwT8vYBjQ067UEmFCYq7Ctde11EeW+6AQ0XsoN8ZW4lkKBg8KHORtDAYXCCgWXEibhUOCj8EdBkEIhBUQKixQcK+4sJVMqqf/VtXQVDHeZjDY+tT6/kNS0Wln3xSZgsLuSgrHOI8foxqUf/OeF0ZGbb70uy8rB518qVQdfJRjc//Rz6wtzt999m0bYTDI5eeVi70NnWocOlLMHiFgL95oVxTWJmynU3Jrpz3BdtRgPyO4GLmGyInmAZ4wmwbZuC1p7D7yyjzlls1f9u7oCS1JOoNge4H/feU1worUvY5w33yUL5pFKzE/osBrOAuLF2SEm7P11Tf9Lri0izr0uCvNp3yt7CgcJWWSF0n4U5mkI4Hhmxjx/Lt/14P33vzE8wL8pMyHbIqxocauYwobdPHRxz9wPMPtRadnqAu7PRa2p//mROxQ4zAVqJsuDTzxNYYWCS8m0ZjJ5+523KPzRjZaBoQe/8asUFiuuFD0J5fGptenZOK+WIZKczP3JtYaGYH1dUKoBsAIAdt0DyHLH4aPHv/nrTb39qfW162/8+Pa7b+mNAkpEMFp36IVX2g4czn6kpyenrl2uGMnF3fno4iKAahXL57oHkEq7VPn+3JidCBFwqn9R6skefc/yDCiy38y6+er+jx3WBGda+0619nFPqUfGfAQN6vwUUPb57mH532LJI6zFCv123r/CXHPzdp8vd9lQSdgxwjwNg5m9aODZKGzP+pu5/q50IOaXIJT7RWYtJjBjmcL4+m+7BuirTN6d9uZes3yq6MXtHdi+1znnwm3Pl+b41p0FxLf0Sfm3lbmdmkIGBQ7zNoUSCigUVkr15BTsKORR4KPwR0GQQiEFxPJv8etleTU9MrqSyWhVM+Jxzmfm4rNzicrdzQwDAMr+slMUcxMwja00CF57/bWRD99Lx9dL9fz17Z2HX3gl3NBozrVMXb20MjVZzidETAQSgjTXBNGcswFGvXyNPECpx6h358b0EoHGjkA5j/pnecWh4weuZBtRlOyoJjjb1v+Y1ePMNY/LPb6FIft/G+rfpfUlv8L/TEjZV7w1fCRH9r8xi88UX1HOXPuAGfP81FUjSLF9Asv9uuK0HLJfcSH78a71BPsx/6xr4J/ttQ3oNtS/9VqY5Mx0kvyK93PPZncxz1DzbAzQPAWyNuuWK1T9U7CgkGFO/1MQoVBCAaV06n+dgh2FPAp8FP4oCFIopIBYcWcpndbGJlZX19NVNu4lU+rkzPp6PAMDAMCOXXlGL5WTv/pbNPzRmHjtZ6/dfvfnydXVUj1/59EH+x9+zJxWWRwbnbp6saLmIXLzcOK0nGp1zJWkndoE/CZ5AJZNA5B8dZ41k54vQdxbNsROVfo/p0f/3c5oghfa+p9v639aKGfEBMkiOw/WpftZ/i5XoFifwBw1+CWnxGeeDbuudB1b/TNP92i/hsHe9sDuvby5xQTmdhrubsT2b5nT5+7txbmdBtmVBOvrn3cN0teejZ/MsfxiX+FcKK4louWZ77dUPuee5Ud98OHu35LyrB5UjfonKFhQyJCMxWoKIhRKSiYuV1cpzFGwo5BHgY/CHwXBMu9Yny9CLa2kxifXqjJdfmExOTsfr4VFAOwBAHtJ+6EjD/3679x6582xzz+58eZPONf2P/lspLFp+3utgpHowKNPTF29tDo9lUkkJq9c6n7wofrOrvKdeFiaCAlFPGiEVbI9d/VMFs3y63RD4ZJmxPjbC/d34khemy3UWvib7ftY/g2g9ryCkGOt/3/nCqt/tb1f47mdEvYBqMKBqZ4fMcnuqCbuvs6rcZEmlFf6+yXQM2fZTe8kulfQm+pfdnpIsbOvq0iuXQ7ItaogtA9jvhsMJO9t5vMqrOkxJhXc9/zfdQ3StfE/Tt3d5ZOveLpW8+yWIV3KK9lCt/56Xcs+jHHnIoDqs/mBPADz7jXyXVsQR4DKVf8ULyhYUMiQjI7yFEQolJREMieWl4Y/fO/mW69rmjr05DOHnn+5ed9ghZ6ldEa7N74aT1RnwZxkSp2ajbe3Rhvqq3wnAAwA2GNoEDzx7d+q7+i68/4vbrzxEy2dPviVlyNG9s42aTtwuPvYiVsz0zT4zg/fXhy7W9/RKZXxRquU5QHMaKpZGsXek6dZsV/l0sTi+J4c5I9my6VV6tfa/dsYe/t5FaiHyJw7gKH1pfznSvKofCmPD3Tofkf2jqGnmY8lkDyewbxTYf6+gjnn/t0JQs4GYWIXMNnVBYy5rxB7pcv3smEe82PaAPPbf71bTiDbdI9nxwT7FWnGJUwnzXf6Upz414Qtv5pVdUDjuXfHGn+yHoA7V9W82AUM/l3ltlHjnMIEBQvz/afwYe8l2yaJ1ZXb77596xdvBuvqDjzzlSFznqtST5K0vJKanU9wXrWD5dJyanE5GasLVHdfMBgAsPfQUHjo+Zdj7Z00RN796JwSCh1+4av/P3tX1uvIdpX3qnLZPrbPPPVwTvftvn2n3AsIouQBoUSAhAQhChIKLyAUEiBPSDwgEolJTD+CB0BIICHlgekNgSBRFAi8JCFkUG6SS/ft7tvdp6cz266qRbnKVd5Ve9dgH58+dtX3ybJsn7KPa/De37f2t9by7s/+yVd/+AP3v/7Vo8d7vZPj53ff3X7jrSnmcp2TBmiE6wBB7X9jME8POWpAT20hHl0Q+58R/PTGDofcJWFQDgqcuIoeyGK3NIiFgvePJQlY1+ch4f8Rofs/xv71Fn8yhC6WT7FsYzn8b+j6fBnhfzHU/G/lJiRzWiLqTzq6nyYjSVKPvxMqgT89ZyUwNOnRYD1QiBGV9xcJg/RojmStVDh4EPh3/CCC31Fk8Jh80u9KDF5eT0togIzCUDz/HZT7pyfeNNHzs9Haa+ve9DGVj3V6vXe+9AVvalveufbyh37i8ps/WGs25/co2bZ7/+HRyWmZXfKnXefJ09PN9YVmwyzxbkIAALNxITabu+//YGt19Xtf/Pzt//oPZr714Z88O1nfuPXq2ksvHz99wq779M7/ObY9+0t6XV8DRE/dkM24IdWoLPv/2MauE1J8UiL9nELmEzFpTWVDcH8dmSvYBCBK/00ccC0LN+Luf9nGQ2rB0PBjTa35J8X5k6j1mSYGhKQupP9LaulSrf7J7oHgHb3f9ZXAn5ybDPCbJHDf3wuWullHDH4QOODR1c1h9U8nrCYcLAIYYXkxXwMMFgGc+Lnn4QEcRHuDA5YWEv3zOWf/A6Zu29404e0rGYY3cXjTxxRExcnx25//1zv//Z+br7x+88c+PK0lhQsbGVgcHvf3npyWu1i+d7k/2+8dHfcbdbPEjYEhAIAZgjc4Ll3e+c6//fODb37d7fdf+tEPtdc3zvKBRLTzIx+4/z9fsXvd0/3n7MyHZ9HTALgYZPz8xm6Y9Mwi3k8gSpimzFolIPlj/GrG2kZK/42npSaSBEhX7z9g4aSuCci9foc/Zfm9FKsQKmcIaFWHUKoSkdKzguS+FtI+FrEAqQcnuN5+z5cBf3wOMsAn7mRIGSyy4598hdALc4iY2LcGDVz+gdffHLUVp6iogP+AayJm9zGk0AMFy2uc3Om/fHS7HFe+N0F408RAc9asQQ2JM1O/o8d773zpC4/e/vbO+z/4yo//1LBD5TzD4/1PnnWPj8tfJMdj/88PeitLDdMsrQKAAABmIKQgjbPeEPm+n/nY9htv3v/aV77/xX/feu19azdePkubsLWXbq5evxG0W+8e7C8srwhClZe5wS9s7joslymkMB2CozpIcg81N1wfUBlb2GFN0QMhX0MCwMQKQdv9l0hv6Um68NVcYUomEsQ+R9c+jMKKn2mNvUj3doqzf1kSJC4e1pW3Gm2jZJAEl2kQmz8PGWD6gf/AnRC0ADOkX4HjT+29eEuv4EXX9/M4/qlxw3IC5C8CBEfBjmsA1hzn0a/krx7dKc9lzexNEEFnem/KOGPvSLvbffL97z789je8xz/wcx9fv3Ere+KbF/T6zuOnp7bjln6U69v8fL/X33ZNs7QuIAgAYBYGXk7EWlZ3X6q3O4+/+/be977TPz3ZuPVao9OZ7MMbi0vb73vLEwCu3e+fnoL9zwV+aXPXkUqdcsjMopKF0fwjF/SMNuZMqspjFvqsmirgPMcLpaQCa9i2znuTaAksFLtO9FGmZMsRki9I3zyYNLF/0mkSkfw+FM8BSO6OUFqeCak8EIUsnJQjRTQK0f++Xy9oWjLAHPJ+8n07g8cux7SKd1+jQRtsEa8jHBQIinInIhpKfjKAI0f/eWglMiQZEO3iX5eJ+odny5sgvGnCe+hNGY0zFKLoHh7uvf3t5/fe7WxdWn/5VnttQzPlzWew7vCof3DY5wqMid458na223VKnAYAAQBc/LBLQxPrKMJr1Gqdze3m0vL+vbv779177xtf27j5Sntjc5KPN4zNW69azQWn1zNME8d7xvHLm7uOVJ0wwUeTLUs51thIZaskMfiMqjWcohOArF+WxICjXm+Gpi/YsPWvTNA5zP0lhfTLFF/o/P1GuqHfyGP/VIz9Z+f+qmkPIp4KLOJXHUUxcx7IgD+ahgYwE47/sGRquA4m/GKgZId9BUe/FxqkAhs81EuBEWiU9+zvgD2sJUqBemEa/SMPf1s+6h9dAKbpTRPeZOFNGRO35j3ae7T3ve+4tr39+ptLV67WGs1ReCuc40iIeQxFOY77fL932rUrMsSdnNpHJ/2lRYtKGjeEAABmQgMM75lHESkibyBevX7D4/2nz591Dw+8lxrtzrj1E7zPaa1vrl5/6fjxY6vVwsGeWXxiczfeh2jE7aL2ZxxGVBOdiUb3HCNtro7DyWN5WhujyrL/3AbAMsGl+GKBdgUgRrBEwtmvM+jrtqGULUkp+Z96I601iNSlDF1JUInlU6qM1IpPIZmDghFuKhrgq0/uvrV2dWBO5mHWu+vnv9OoFtDoAEYeuSj2L1f9F4O0YLbDtgDDLPvhj8kfin1/0ef27pT+4vcmCMOseZOFN2VMwPns09Pu0aE3VS1fvtpcXqm3O7GQkxThmtOF6L7tHhz1bbsqo2Ov7x4d264ryho5hAAAZk4JBNWFAxHgDaDNpWXv1js+6h7se/dmozHu0FxvtbbfeOve177ijcjhvAYj0AzhVzavycYeqaj50LcQPUiE/1mpBUQ0bG6qUnlXx+ypQLCfKiwJtG0WRmSXsnosCJ3JZ+T20cXjEx9lyASdkq0DKF5CNONmxFt9GSnsn3RKRig7q5VDGVdLrAKV/yF/cOn6H753Vg3w9Sd331y76hP9gREoMAWJUCoPNQBFP5NBvm9U/McZ6AYaWZgGFH9gxAy+uRm8ZWD+GWTaZHcGLAn8ScGbIBpLy95kUR8/VORNW9705Nr9ztZ2vdWO/SEMRc37QTrtOkfHfeaqjIWOw8fHfdspbRoABAAwW0OwiPIBpNUAn8S3vRu7rncbLs4WHk9Nq764dWn5ytVGu4PDPDv41Na1sFIhR8w+YuRR2JJHjX55ZAHiKC04Vv9EZl3ZZcshAc8uCdTc30iGGUoAXohE6R7S1OohDQUnXVNhoSvdo914Cuyfwka7OupP4winSG1ORQP875O7b6xdDQImts//A8YfNQ4PagGRH9SXm/66frKviMbawOHjO9PNcCngX6rA++PwJghvmvAmC2/KGG/mGvRKcBdWVpPGoeDcRDNasAY0n0rAm3tPTu1uz6nO9eD9IE66jm27jToEAAC8GA2QQT4Mg/z4w7jRlMbi4uYrr09s6wSmi1/1qP+Q2Y+iSYbE4+WbK5LcRcT/KnROHo6zNxHKCRGPYRcsZlGd8P8YGdIUS+SNiK+hS9JNVgUljU1Ise+PsmqJUo09RsrnGDlfXE/itaogke+b0Rwg7eix5KGPtpyKBvjmk7uv+xrACBN85S9mxhTyYHgNGgI4/haOGBp+Rm31WHz5ybuVHZcGCWOvvO5NFmO+bTApGYaRw+yJxDzHzl3m4xO713MrdUl4+9svr+UJAgCYndGXNMOlLAnkDKox0VxetfwFBModpoFzpv5i2JaIJbpGIUFJcn1XCf+LwMYQZ1eqsUek2HtIKxKQ8pvP9mMcXVULVKB3GCkBeBEPtCd4fJr7X8Qr0qR9BzX8TxKfz3D/qx4nkZ0TnCIJ1KPH0v20hqFvPbkbPd5ZvWKGZrlAABjx/hhyx99hi3Gmbz29i9lH+FH85Z3d8cL/QpqUZJe/+lSIuZ56HGewAmDb1RIAfdst8S5DAABzJQnERA5+5kFQxwXHu0j8uk/9zTD7UO6vyJLPR753pQ4Ao3UAlpqbxn0+A6Mzx5i9SEkLTlsuAMsfa2OVHCtF/Uno6voLaWWAR71+U7ICSOMIEum5v0bcd6TtR5bG3WOFgChfYGQfwES/ajUleup49+moTfjmyhXvvk7UZXalll6un9d7u6oNxbPRWlkb+qjGn2X0E1ZZ4AmAXs91uVqDpeu6ngYoa9ogBAAwP1ADKmKYYpVTVY0oCOog8n8h+LRP/YezSJxws2QEcuOxf5nfC2kD+b0qoSddiwBRbB0AMoCLxbM5vV5+8MiMM+aEo8YgzV8V9z8pnXqT7n91A5XTa9SIbvtc9l888J/ROZgnakMxMR6B4o8dcSIzaDqZTfe0k07k8CnpCrPHg/v9qvF/4bjsOO4L/NVCAABAyvCsj7WojcR0I/t0hoN+b4IF4ipTf9a16JJLdrpS/R9XKfIjhgVMwtc5RtYjru8q5YBymS5QRAPof02ZYpriCiEj3M46LcEJ1k4xASCUdAKRmfsrRFbpnrSEZkGa7SmT4ouCx61AejpwYYNzsXmCdXOQv1BV2lPq7Z9tu071VtG9ucdxuKy/VggAYG4HpGgsfoH11dhxhYWjn4Nf27pGijV/VKtnlJLLIh7Xl80/jkiagoSSFlyEzSPAf3YxoOHZHCUBkxzeTvhtRDxP14j7cBJJGrIdKGorJvReI0pUERWx/5t8nGv+ofTmX0U1g+71tKuRcEHO8+Dsd1/we2BUKR7uDCrwVU8A+JNRWfU6BAAwhyAqMtdqNMOZlQLqCOUiSvNNsH8peM9y/F5T6oflBQGW1wSEIgZYLnLCqew/QxgUmQMAITlYhOTLF3H6Hv9VjqbNjLKYunReUvm0trmYoSPxWg2jpXH6YUTX2qwg+y+4CIDw/7lMC1MZnItME1TBOhLsOuxUNY+urLsNAQBU6nd8Vg0AAZCNT0l2/wTvF2HIn+MGHm3FT6EUAxVS0U8Rf73gAE3g9GMepQn+FI+mU0Zs3tCl+Yr4+oBIJPVKVUGFzs0v5Qcn3f+pGcYJFUHJb0vpjH8s6p84XNAAsygAGANDKgN2mSt4fGiqBbsgAABgjmGUtSf4NPDJkP2rpF8ojD9B4hNFfkLT/6j0Z1TMx9UtL5C64KCbwwratcECtEcpu3glSZ0ctASaFRmg5hwnVgOItBqD0mblIlV6xkrkPSP7p/TrCpVnMTjPowyo3BhIwjRLK9UhAICKDF1TqM9QINm4uvjE5q7QlddUeTkrvXtZZ/KR3xuoAlb6dhXs5MVxBZIxrXEKjQNXE3kl/xMN3YSU4JvR6zeNlKdV309Zaoh/AiUYP2Xw/pjkIL1UKCgDRJ4kULUQMF2ydtYhWm0+A1RcVRo0EAAlvRwgAIDKCPkzL1+C/WfAVaqeqwJALtmZuHc1/n5mqfWvSFk6UIv/qOwqvZwla6k/GL9K7invlQz5lPYi6cqJCp3pn8ak6QV9/1rrP42/GiAKXGzqNp89cxtg4FyGaIzzKcfWqN6R8QRAzTTKqgAgAIDysZWUYD+G9XMWACLFeMPpvF9IFT/jmQDsSuYfVjIHVMYZbZbN4LOTB0D9c3lzDtumoiRY6I68UYxYU8pqQEHinvGUMp9ms3+ML+XguWPMKVUaATwabBiVOwK1mmFZpRU+EABANUZw4JzhhK1G9exc0QPRi1HvXtnkw7qNM56qLD/tKaVsT4pWSfs0yIDcYyvb/TlFKqQR6CIJAMW/MGV+85HeoEI8fmL2T7iWMKfM+SEwTTKrJwDqlmHVSlv5AwIAAIApgMMuv1pKLVR3EMcofrKgp67wv0jv9sXKa9r/yzppoSWy1SRqE5S10brwE5dBfHtK9Agj0vT3lRl8kSqc0dMERSGlDmmG+4jGeTqWYACAuSeLpmGY1bqivcGo0TBrEAAAAAAZcBXq7MaVQIL3i9QUYY6VBlIydFmXA5DNUFn5JtklQRGmFUoXsNyN5belUefw/BKln6Zs6kyk7QuWSrt5nL6/Im9dYlxdlPE6rjFgvqhwrUaWZRhEbmWKgXp7216oeTsOAQAAAJBDAV0dmWMl3q++l1OYPesSiydm6loJAWRrAB6/fVVa+ctRe+BixF3b8yvjf2mdGrl2nexkgOJvHEshIAMYmC+YplG3TMMk167KwGnVjHbLKnHmA7oaAVUmOGCA0ySLUc6uy8NiesHjqLR/gru7Gi7OQqkKyuliIHwPi0xdIYplC1T8alDZLeVJKc1xo5EOFHnKjdO/CUkbUMp3I0VdRD9oSn+jyPunBcVAkWOofmGYgjAFzClqJi00zRIb4lU0G2ZroVbi2kcQAECFh36kdk31cHpE35HaeLlKRf+Mdr9C6QgmlB7A6XyRshnqSFdwLPBfhB1WhyDkpj5nuPwprtkSmjCh1iY+pNoTnVEhVORtr26iMv7i1n9K5/3ArKpeggYoShYN8thwo2FW59Joty1vl8t8TnFZAwBwdqTl6XIK7xfKBsIv/ZkgoJxeTUjmlGnMldKZqMjzGgHqKRbplV4p5UpQzwsVUyAqe/ZONE1aY1TrSqLChX0mY/9V1pNA6QgxLTRrjXpVSKMneJYX63WrzIIHAgCo7niGYzBF/N3eHbWUp6tz26uxfyV2rE//FXlMvXg67+gTGLRMT5G1jFxECR6s0QDylmmnjDnL+aOVFsVPsZqwm5OMSzmapOD3LO6eCl7/DBIAMBHM4XHyLTGWWY1aQJ7aWVlqlLv1AQQAMMPA4uxc4e9DDSBS7R9J37825ddVafqYV4qWbrJu3QBXWEGmm7ROUdah4xz9FWq8FFqfvVbABWRDhjwYa6+L5AAUTzMAMIXNNaya0WlZjXolXEDLi/VO2yq3PIQAAGZ7/HRd7+Y6jndj6IGZxz9I6wCy88fNJHwyxeR09p9x+tVhWmvvyVAmVf+h5R0EtXAqSToq5RNIFXhEMctQINJyS+lndxPLqMZTsFBPhvU/973jHmeg1ISfh7OVP3OVbO9Mk5YWS26Lj6TO2mqz9FIHAgCYYRANmo8bhmGa3o38hK0B/LF1cGPGKsGs4R/jGkDk+HA4Kvwf4/qsZ/+pbn5dzFnVAGnqgsDMMtkq67gv58mJ6McZS/JmzQHnvM+kcb5nQa6eG9srwvXVtmW522OJoDxkX5mMBlNWMFv5M1fJ/EXe3rVbVqdtlb4lcKdjra2U3P8DAQDM4QgUqoLBAxyQmcQ/7d3xbrnsMG2BvEi9SInzcQZ35ESPqoSQkGQD6T4EqiD17CgKjVJ0mstFrfza1PDszs1a6l+8Ne8EFH/ct6v4bSQAlGY6CmakcD6qQjpBo26uLDUWSr0I4MmbrfWFTssq/flEIzBgjsUAjsFs4qMbu1pWHVRxEWp74GlT7USGsTbrQKDsz0QHVv3VuX4kKbhnn/HXSJ/87Q7PO7v+r1dl+aTr3cvJXsI55JvPnNQ7GRcE+8cEVHp4SmdlaWCOPzzql3UfOx1re3OhVoGOB1gBAABgmvjZjV2J0rF8E3mdfVUSL/K96aR9V0IJKFyT+Xy0x7zz+9xXimu2yAXEiaYQrCR/c9QFIsfSxzwJZUeoAACmpXparYE9ptkspz/eNOjSZmuxXa+CvoMAAABgiux/R6Z5Bek1KySPM+lmMeqZSlU5/UWg4GmizMOerPXE+iPvpudkR58jUjK5C1wGRc/nWInC2qcI/wPVgVWjzbWF5cVGKfdueanuCYBaNRoeQwAAADAdfGRjh1PodUF+qdYAFXktaQcygzXkniX3ecBB3fRWVkAukdVY8Hm0nCKUwj4ydL2fWS32mjRosZ7rp6UT5OYVFNnT84v6gf0DJRkliDpta321hIsAlmXsXO4sdqyK2LsgAAAAmA77v9gvoLX4B9zUVdhnxFszYskV1Alc+CAnGHZawF7uCpeqzTRd4cZLz4iyAtL8Q3pr01g1g8D+ASBErWZsb7RWlxtlIsrevmyuL2xVw/0PAQAAwExQdjGRU2j4oi5OzHllZBgFf86mClQ3DmvC/IH04oDxK70g2E1JCHHjjxPt2zhV7I2dlsmF/T9ZvAGXCFAxeD+0dqt2eau92KmXZqfaLev6zmIVuhxAAAAAMFu0cpJsAcEy50vEmIUuxuzi0E+FAaSwdjee7yvi7Z9jTzmWHBwohMSKQUSvXeXc6Q0/nJ9crnL3CS7FsUg/wv9A+WCaxvpq07uVI15u1QyP/a8tN4wqFXdCGVAAAC6YQRYXCZSSMaz1pUSskVmzQXa6QmUXBOzn98/7X/zQ2tVgjjUS6wZ+QD70aNGQ0FOsPCiHmwlJThjhp0Uvkvow5Syf92wP9g+UcwAnsbBg7lxqHx33H+6dzPW+GAZdvdy+eqltWdWKiUMAAABwYRiLZ1MyBsyJj2Kd+SRhARq+yGWm+875k/iz4KtP7uZu89GNXUPnKRJhGwFDoe+JdgEUP7mkY/znnQoM9g+UGAbR8lLd480np87BYW9+lcz6avPG7tJCs3J8GAIAAIALo/6U0vdXa+RIe1Hh/Vn1f7IzAcDUZwRyJ+mPb+5GcTnvPJoppy/q7hys4XMBNh8sJtBEVy/l/QnsHyg/g6wZl7Zap13nnTvuyak9j7uwvNh49eZydSr/QAAAAHDB7J/y+DeP+YFJDeDnmGpt5WqfAcrrMwCmfoH43KOhGPjFzWGH6cAaRJIqMAoktHF8HSBjAeGMshbsH6gO6pZ55VL79NR+972jfn/OcqwW29arLy+vrTQNo4rJ/BAAAAC8aOQEZQtDrSYpwpC/3IBWxNwjsaRVmbfZYPmzjb95NFoW+OTWNdYtCBj+VWFSjNjLqQJprJ1SXskVBqwISLB/oEKDuV8R6KXdJcflew+ObXtuNECnZb12a2VrY8E0K1rKCwIAAIALQLa3R03YTWwsB/Hl8jJh1D8k+iyvCWhC+32Q/vnEXzy8HTz49Na1SM4ZyvUTRfq16QFpbL7gBUzKv/sMqD9QPRhEix3rxrUlZnH/4XxogE7bev3WyqDpr1ndYpgQAAAAzJYeUKFYdPz2XlKhzyjk73DMC+Qq6b/Hz8D4S4U/C5WAh9/YuhasCcgeMwoXAaJrSUzP8EOg/gDgF9JZXqy/fH3J+0ncn/l1AO+rvnZrZXujVdnY/3AwhLcVAICpYKxmwBy/HxXu5Bihd/VNpjiq7BmwfCe89wSAI9j2n9rsvyLEk2f3cHYqhd/cumbQMPDv3wZVg6J1AGP0+igJ2Aj/mnYvlMfRK2D/AODBcfngsP/92/v3HsxoPgCRWFttvnZzZX21WXH2DwEAAMAFaABtH9kiAoCl8H9CAHi3bxaoLwlUDb+1fc0n94MiH0ZI2WOPaSgAVN6fKwA+C+oPABJc5qMj+869Q+82a3WBPMZ/Zbt98/rS8mK9mlm/EAAAAMyEBtB25gqMPa7UWVYVAF9+DKIPAAAwi2AW3Z5z78HRO7cP9memP0CzYd64trR7pbPQNInA/iEAAAC4IA2gFQAuJ6t5fuHxuzieAAAA84W+7T573n3nzsHDvZP+haYEGAZtrDZvXl9aX2taNQOnBgIAAAAAAAAAOBe4Lh+f2A8eHd++d7h/0OMX3nbRL1FqXbvaubLdbi3UYPuBAAAAAAAAAADOFx7pt213/7B39/7R/YfHLzIroFE3r2y3dq50ljp1y0LgHwIAAAAAAAAAeIEyoN93nh/07j04fu/8ZUCzYV7aau1c7iwt1q2aAcM/BAAAAAAAAABwITKAe3334LD/cO/kwd7x4WHfcafpCjIN6rSt7c3W1sbCYseqWwaSfSEAAAAAAAAAgAuXAcJx3JOu83y/++jx6dNn3aOTvuNMrgRMk9ota22lsbm+sLxYbzZM00TUHwIAAAAAAAAAmDG4zLbN3a5zdNzfP+w9P+gdHPZPT23bYTdzZcAwqGbSQrO22KkvLVoe6fcEQKNumjUC8YcAAAAAAAAAAGYdzIN6QY7L/b7T67ndnuPd+n23b7uOJwaY/W59VKt5N6NumfW64dH9umVY1iDWb8DpAwEAAAAAAAAAzK8Y8O95+GDY+V0MOb7f0JsEGP90UMMhAAAAAAAAAC4WQ54/Ivhg+ucI1EYFAAAAAAAAAAgAAAAAAAAAAAAgAAAAAAAAAAAAgAAAAAAAAAAAAAACAAAAAAAAAAAACAAAAAAAAAAAAC4K/y/AAD4XRRrJ96l6AAAAAElFTkSuQmCCAAAAAAAAh4awP7nzTT10CyA75ImwP0DKTT0tZBY77wawPwmQRD0AAAAA2wKwP5LzRD30cp47HJKwP8WVSz2+x5g7Cg6wP/AtQj2PeeI7pBmwPyJSPj0QI+c7z56wP+S+Rz1YZxQ8oKuwP+LvQT0tWBI8GSmwP2koOT2UxC88VjywPwq9Mj2LRjE8/b2wP1BxOz2UT0o8hdSwP2XwMz0tE0g8plKwPy1LKz2eVVs8vWuwP0vwIj31SF48vu2wP+6EKz0Btmo83RKxP4wQID1lYWo8qomwP3rtGD34eHM86a+wPzQZDD31CXU8gDyxP9QgET0uvnk81FyxP11EBj1lvnk8BNuwP4M7+zznXGQ7pJOwP9STST2J+706So6wP0BbSz2hTv06bw2wP4tlQj0yYoM7PBSwPwQeQD0AAAAAho2wP/ygSz0AAAAA2Q6wP7MjQz0XWro7+J6wP2DNRT1X8sw7/iCwP53XOz3iMgU8r7OwPyDaPz1eugc8ATKwP8YzNj3MDiM8j8ewPwJCOD2OiyE87kWwPx6NLz1bdzc8FNqwP0QxLz0QdDM8fk+wP6ajKD2iFz48vG6wPyvvIT1AN0Q8nP2wP6I6Jj27+0U8GZawP8KuFz1gu0Y8hhqxP2p1Hz0Evkw80iyxP6poFj3l/k08T7SwP+KgCj3vUlM81FyxP+dDBj1lUlM8BtuwP5g6+zwv81c8tnewP5JCFj3qBEw8u1qwPw71Hz0pNz0890GwP4Q1KD1h5Sc8myuwP5ysLz0yvww8FhiwP6EtNj30Etg7+QewP/eMOz2mR407l/uvP4GuPz3rkQY7ZfSvP4UTQj0AAAAAhPOvP7RfQj1bk2A8xZuwP+sqCj34iGY8ZcWwP7NY+DyhTv26bw2wP4tlQj2J+726So6wP0BbSz3nXGS7pJOwP9STST0yYoO7PBSwPwQeQD0XWrq7+J6wP2DNRT1X8sy7/iCwP53XOz3iMgW8r7OwPyDaPz1euge8ATKwP8YzNj3MDiO8j8ewPwJCOD2OiyG87kWwPx6NLz1bdze8FNqwP0QxLz0QdDO8fk+wP6ajKD2iFz68vG6wPyvvIT1AN0S8nP2wP6I6Jj27+0W8GZawP8KuFz1gu0a8hhqxP2p1Hz0Evky80iyxP6poFj3l/k28T7SwP+KgCj3vUlO81FyxP+dDBj1lUlO8BtuwP5g6+zwv81e8tnewP5JCFj3qBEy8u1qwPw71Hz0pNz2890GwP4Q1KD1h5Se8myuwP5ysLz0yvwy8FhiwP6EtNj30Eti7+QewP/eMOz2mR427l/uvP4GuPz3rkQa7ZfSvP4UTQj1bk2C8xZuwP+sqCj34iGa8ZcWwP7NY+DwAAAAA5MCvP5h0PD3O2B07b8CvP0RkOz1bnhU7/UCvPzPbNj0AAAAAgD+vP1ifNz0rmJk7xcevP94ZOj2/LpU7IkqvP01KNT1YqOU7MlGvP2CcMD15peA7Bs6vP5ybNj2+FhY8PlmvPxTFKj1N7hA8jtevP+d0MD2EPjE87eivP0pSKT0t4y488GSvP7ZbJD0Ac0g8QvivP505IT1k8UY8WHGvP8ltHT0gMVw86oOvP7/DEz0EwV48HgewP5QeGD2Khmw8MhqwP2cbDT1jhmo805WvP2M0CT3p/nI8B7SvP+qy8zyFvXQ8VDSwP0zy+zzQ+nk8FlGwPyyx2jw4+Xk8atKvP5zQ0Dx822Y8NmawP0VX3DwLMWA8zUiwP8I0/jzJDlc8hC+wPwd2DT0AAEs8rRuwP2wgGD1LRjw8BwuwPxCxID1iDyc8+/uvPwlwKD2WEwo8hO+vPwbaLj0niNU7TeOvP0ojNT2tw4873dmvP9K3OD1/3QU7DdavP46uOj0AAAAActWvP/f9Oj1bnhW7/UCvPzPbNj3O2B27b8CvP0RkOz0rmJm7xcevP94ZOj2/LpW7IkqvP01KNT1YqOW7MlGvP2CcMD15peC7Bs6vP5ybNj2+Fha8PlmvPxTFKj1N7hC8jtevP+d0MD2EPjG87eivP0pSKT0t4y688GSvP7ZbJD0Ac0i8QvivP505IT1k8Ua8WHGvP8ltHT0gMVy86oOvP7/DEz0EwV68HgewP5QeGD2Khmy8MhqwP2cbDT1jhmq805WvP2M0CT3p/nK8B7SvP+qy8zyFvXS8VDSwP0zy+zzQ+nm8FlGwPyyx2jw4+Xm8atKvP5zQ0DxLRjy8BwuwPxCxID1iDye8+/uvPwlwKD2WEwq8hO+vPwbaLj0niNW7TeOvP0ojNT2tw4+73dmvP9K3OD1/3QW7DdavP46uOj0AAEu8rRuwP2wgGD3JDle8hC+wPwd2DT0LMWC8zUiwP8I0/jx822a8NmawP0VX3DxBY/E6XUOvP6aDMz0K+vs6zcevP1M8OD0AAAAAtMOvPzmtOD0AAAAAe0OvP6F+ND3r9nU72UWvP+FAMT2Em4Q718ivP9IINz0HLcs73dCvP5PvMj3P58s7HVKvP7dXLT0ofAI809uvP5KVLD3BDAc8812vP8bzJz2JMhs8S+qvP8nPJj0QvSA8XGuvP2ANIT2SIjA8h/mvP1fhHj0pRDc8wnmvP95XGD13JD08xAmwP9iHFj2JPkM8O5GvP7cXED2v2UQ8JR6wPxVFCz2vXUg8VKavP0LIBT2PREw8NjWwPw6K/Dw9s008/ravPxel8DwHvlM8F1GwP8mx2jzivVM8atKvP5zQ0DxBY/G6XUOvP6aDMz0K+vu6zcevP1M8OD3r9nW72UWvP+FAMT2Em4S718ivP9IINz0HLcu73dCvP5PvMj3P58u7HVKvP7dXLT0ofAK809uvP5KVLD3BDAe8812vP8bzJz2JMhu8S+qvP8nPJj0QvSC8XGuvP2ANIT2SIjC8h/mvP1fhHj0pRDe8wnmvP95XGD13JD28xAmwP9iHFj2JPkO8O5GvP7cXED2v2US8JR6wPxVFCz2vXUi8VKavP0LIBT2PREy8NjWwPw6K/Dw9s028/ravPxel8DwHvlO8F1GwP8mx2jzivVO8atKvP5zQ0DwtZBa77wawPwmQRD10CyC75ImwP0DKTT30cp67HJKwP8WVSz2+x5i7Cg6wP/AtQj2PeeK7pBmwPyJSPj0QI+e7z56wP+S+Rz1YZxS8oKuwP+LvQT0tWBK8GSmwP2koOT2UxC+8VjywPwq9Mj2LRjG8/b2wP1BxOz2UT0q8hdSwP2XwMz0tE0i8plKwPy1LKz2eVVu8vWuwP0vwIj31SF68vu2wP+6EKz0Btmq83RKxP4wQID1lYWq8qomwP3rtGD34eHO86a+wPzQZDD31CXW8fjyxP9QgET0uvnm81FyxP11EBj1lvnm8BNuwP4M7+zwAAACA/Ha8PpgGbj/C4SU986Q5P8j3Lz9puho+lusiv/+jQT8AAACAFzokv45hRD/nWtw9N3Q/P72yJz8fEaM+XCQkv8u7Mj826Oo+LZYiv1QUHz9R7bg+WcfUPkWzVT+0ZPU+G9rXPuwPRT9NlhQ/UhwevxDdBz/8Ii4/YNwZv4rX1j7gUw4/dEvvPsz2Lz9Zchg/I4EEP/hIHT/eVUE/cLwWv451kz61cFA/V/oPv6d1Ez73bCU/yRUKP442Cj9yfDQ/dsMWP05Myj6Wslo/5vYEv7PAqDyoCl4/bP78vuG5c72YVDU/G+AgP/acpD5IUjU/nhgiP87Knz6Ke1s/U3oBvzzHw71FRC2+xZt5P5ZBE74EXam9X0B9P17G9r3CeiW+t0aUPhaDcb+eM6++R4toPhhqab8AAAAAiIFtP9gRv74AAACAjsenPlrdcb9l0ni+Brl2P8J54b0mTv6+3vkcPkeyWr+OFdu+4YlfPwfmbr6FyCS/4dmKPeckQ7+ZWQi/0QxVP3qzHb4kMka/nVgova2wIb9PJSe/McVBP29h5bxmgFO/o/1hvvW0BL+pUWO/0nOCvnoJxL7JOjC/s641PwFlGT4lSWu/nJqVvt5eh74wOy6/opM2PynTKz5OiS+/gM42P+t7ED5tD2C/Iz3QvgoMhr7tADO/L8AwP8jbPT6OMVq/fivpvnWwg76FBaO9wL5vv0zZrr6IopK9i3xuv3V5tr7UV0q9j7Fvv+MFsr516JW9NxJuv3x3uL5toJq9uuJpvyyMzL5d9Je902Jovx9l074BUJ698cJmv2sd2r5XpV+9MLhhv4Lt774AAACAQQ5ev87F/r5Nkli+ReFnv6IAvL7GApq78Plvv6JHsr7CeiU+t0aUPhaDcb8Vkak91D99P9fF9r1FRC0+xZt5P5ZBE76eM68+R4toPhhqab9l0ng+Brl2P8J54b0mTv4+3vkcPkeyWr+OFds+4YlfPwfmbr6txCQ/KtyKPR4oQ7+ZWQg/0QxVP3qzHb4kMkY/nVgova2wIb9PJSc/McVBP29h5bxmgFM/o/1hvvW0BL+pUWM/0nOCvnoJxL79PTA/cqs1P8tnGT68Sms/n5uVvqxSh74wOy4/opM2PynTKz5OiS8/gM42P+t7ED53EmA/3jnQvtT8hb7tADM/L8AwP8jbPT5yMFo/azfpvq2ig76FBaM9wL5vv0zZrr6x1pI9G3xuvx95tr4G8Uk9/7Nvv5f6sb516JU9NxJuv3x3uL5toJo9uuJpvyyMzL7VwZc9t2Vov6Va074BUJ498cJmv2sd2r75ol89W7xhv93d7740nk2+gk9tv10zor7GApo78Plvv6JHsr4AAAAAPQZ5PcWGfz/GcwI+xOKDPd9gfT9ZiOw9CcJQvzsyET8AAACAENlVvwK7DD9SK4k+z/X9PR2XdD+2m3M+XTVNv0tqDD8Itrk+RehPv7P+6T5rm+0+/CcpPhTJXj9N3uY+p2NRv5Dxtj4X7xc/zZ1NPhCGRz82VC4/+0KJPvt0Lj/3bQQ/MYROv3tHkj6qvD8/edCvPuMRET9h/RM/amNKv7fXTj50Jh4/OklIv3P9oT3yb08/T7vHPuzl3z5MlFk/8b7hPiC3kz5r0CM/q6hEv/jWo7xd7S0/1s06v8rmnb3W51w/7+DtPvuSSz4K82E/ULLfPr6qMT4YdTI/mQo2v7uYu70kKcs7QIV6P8iiUj7sSR068kR6P+tzVz5rs7+8n4h5P6FwYz56p0a9qnh4P/90cT7oRTa9mbR4P3xjbj40yTq9TZZ4P4UjcD47Km29pHN6P6uTSz53gpW9TeN7P97QJj4iOZK9mid7P59QOD5r6x687st5P83WXz4AAAAAogh5PwNCbT5ZiOy9CcJQvzsyET/GcwK+xOKDPd9gfT9SK4m+z/X9PR2XdD+2m3O+XTVNv0tqDD/cs7m+1uVPvxIJ6j5rm+2+/CcpPhTJXj9N3ua+p2NRv5Dxtj4X7xe/zZ1NPhCGRz82VC6/+0KJPvt0Lj/FcgS/dYFOv4xFkj7JuT+/2NOvPqsUET9h/RO/amNKv7fXTj5mIh6/ZkxIvwMAoj3yb0+/T7vHPuzl3z5MlFm/8b7hPiC3kz5r0CO/q6hEv/jWo7yW5i2/JtQ6v5bmnb2i6ly/5dztPlB1Sz4K82G/ULLfPr6qMT57bjK/FhE2v6mYu73oRTY9mbR4P3xjbj40yTo9TZZ4P4UjcD47Km09pHN6P6uTSz53gpU9TeN7P97QJj7POZI9wih7P0I3OD5r6x487st5P83WXz56p0Y9qnh4P/90cT5rs788n4h5P6FwYz65UzS+fiV1Pwt5aT73b867NoV6P8CiUj6R8jC9041Wv4s2C7/1WwK+xTYNP/0GU78AAACAfpsJP+3eV78AAAAAdJwOvy+ZVL/K+zq+ECwVv0e6Sr/lFIy+374NP3tXSb+0Pvm+94wJP0BPML9XSze+PmRav8rt+r7YGiC/FqoCP/EXF79QdvO+akcUv3yAKb+stTO/UCkKP13s7b7l3w+/G9YXvzCWE78/+ku/BvYGP/Ewl77bISG/qXgdvz4b877NHFq/0AUCP14MAr4MdTK/Mwwiv9ljrL7/yly/DXsBP4dzk7zDzTi/eD4mv7vVdL7DZFq/lIcFP18pSzx0lDa/CXIqvy92YL45Kly/jokCPw/VmjwEaDS/AscsvxgOYL6R8jA9041Wv4s2C7/1WwI+xTYNP/0GU7/K+zo+ECwVv0e6Sr/lFIw+374NP3tXSb+0Pvk+94wJP0BPML/3MTc+PmVav/Du+r7YGiA/FqoCP/EXF79QdvM+akcUv3yAKb+stTM/UCkKP13s7b7l3w8/G9YXvzCWE78/+ks/BvYGP/Ewl77bISE/qXgdvz4b877NHFo/0AUCP14MAr7JbjI/BBMivyFkrL7/ylw/DXsBP4dzk7zDzTg/eD4mv7vVdL7DZFo/lIcFP18pSzx0lDY/CXIqvy92YL4+J1w/V44CP6ykmzwEaDQ/AscsvxgOYL5puhq+lusiv/+jQT/C4SW986Q5P8j3Lz8WJ9y9v3Q/PzSzJz8fEaO+XCQkv8u7Mj826Oq+LZYiv1QUHz9R7bi+WcfUPkWzVT+0ZPW+G9rXPuwPRT9NlhS/UhwevxDdBz+CJi6/stkZv83T1j7gUw6/dEvvPsz2Lz9Zchi/I4EEP/hIHT/zUkG/uMAWv1Vzkz61cFC/V/oPv6d1Ez73bCW/yRUKP442Cj9yfDS/dsMWP05Myj6Wslq/5vYEv7PAqDyoCl6/bP78vuG5c72pzua+UddRP2DwtD44VTW/sRQiP2XNnz5iclu/wokBv8HKw73qUHw/JsqXPupQfD8Ga5g+1BR5PwZrmD7UFHk/JsqXPupQfD/oC5k+1BR5P+gLmT7UFHk/5N6aPupQfD/k3po+6lB8P+KxnD7UFHk/4rGcPtQUeT/8iJ8+6lB8P/yInz7qUHw/GGCiPtQUeT8YYKI+1BR5P4L0pT7qUHw/gvSlPupQfD/siKk+1BR5P+yIqT7UFHk/xoCtPupQfD/GgK0+6lB8P554sT7UFHk/nnixPupQfD+yFpo+6lB8PxKWmT7UFHk/EpaZPtQUeT+yFpo+6lB8P3IVmT7UFHk/chWZPupQfD+wNJw+1BR5P7A0nD7qUHw/rFKePtQUeT+sUp4+6lB8P+BAoT7UFHk/4EChPupQfD8SL6Q+1BR5PxIvpD7UFHk/QKenPupQfD9Ap6c+1BR5P2wfqz7qUHw/bB+rPupQfD8CTK4+1BR5PwJMrj7qUHw/nnixPtQUeT+eeLE+1BR5PyxUqj7UFHk/wL+mPtQUeT+UR6M+1BR5P3hwoD7UFHk/SIKdPtQUeT9Mr5s+1BR5P0yRmT7UFHk/bPCYPtQUeT/Mb5g+1BR5P8aArT7UFHk/nnixPtQUeT8Slpk+6lB8PxKWmT7qUHw/shaaPtQUeT+yFpo+6lB8P7A0nD7UFHk/sDScPupQfD+sUp4+1BR5P6xSnj7qUHw/4EChPtQUeT/gQKE+6lB8PxIvpD7UFHk/Ei+kPtQUeT9Ap6c+6lB8P0Cnpz7UFHk/bB+rPupQfD9sH6s+6lB8PwJMrj7UFHk/AkyuPupQfD+eeLE+1BR5P554sT7UFHk/LFSqPtQUeT/Av6Y+1BR5P5RHoz7UFHk/eHCgPtQUeT9Igp0+1BR5P0yvmz7UFHk/TJGZPtQUeT9s8Jg+1BR5P8aArT7UFHk/nnixPmHieD8Yspc+YeJ4P/pSmD4VpnU/+lKYPhWmdT8Yspc+YeJ4P9zzmD4VpnU/3POYPhWmdT/Yxpo+YeJ4P9jGmj4VpnU/1pmcPmHieD/WmZw+YeJ4PyBxnz4VpnU/IHGfPmHieD9sSKI+FaZ1P2xIoj4VpnU/2NylPmHieD/Y3KU+YeJ4P0JxqT4VpnU/QnGpPhWmdT8caa0+YeJ4PxxprT5h4ng/9GCxPhWmdT/0YLE+YeJ4P/RgsT5h4ng/HGmtPmHieD9SPKo+YeJ4P+anpj5h4ng/6i+jPmHieD+gWKA+YeJ4P2xqnT5h4ng/cEybPmHieD9yeZk+YeJ4P5LYmD5h4ng/wFeYPhWmdT/6Upg+YeJ4P/pSmD5h4ng/3POYPhWmdT/c85g+FaZ1P9jGmj5h4ng/2MaaPhWmdT/WmZw+YeJ4P9aZnD5h4ng/IHGfPhWmdT8gcZ8+YeJ4P2xIoj4VpnU/bEiiPhWmdT/Y3KU+YeJ4P9jcpT5h4ng/QnGpPhWmdT9Ccak+FaZ1PxxprT5h4ng/HGmtPmHieD/0YLE+FaZ1P/RgsT5h4ng/6i+jPmHieD+gWKA+YeJ4P2xqnT5h4ng/cEybPmHieD9yeZk+YeJ4P5LYmD5h4ng/5qemPmHieD9SPKo+YeJ4PxxprT5h4ng/9GCxPhWmdT84fpk+YeJ4Pzh+mT5h4ng/Zv2YPhWmdT+g/Zg+FaZ1Pwj/mT5h4ng/CP+ZPmHieD8IHZw+FaZ1PwgdnD5h4ng/AjuePhWmdT8CO54+YeJ4PzQpoT4VpnU/NCmhPmHieD9oF6Q+FaZ1P2gXpD5h4ng/ZI+nPhWmdT9kj6c+YeJ4P14Hqz4VpnU/XgerPmHieD8qNK4+FaZ1Pyo0rj5h4ng/9GCxPhWmdT/0YLE+FaZ1Pzh+mT5h4ng/OH6ZPhWmdT8I/5k+YeJ4Pwj/mT5h4ng/CB2cPhWmdT8IHZw+YeJ4PwI7nj4VpnU/AjuePmHieD80KaE+FaZ1PzQpoT5h4ng/aBekPhWmdT9oF6Q+YeJ4P2SPpz4VpnU/ZI+nPmHieD9eB6s+FaZ1P14Hqz5h4ng/KjSuPhWmdT8qNK4+YeJ4P/RgsT4VpnU/9GCxPtQUeT8Ga5g+6lB8PwZrmD7qUHw/6AuZPtQUeT/oC5k+1BR5P+Temj7qUHw/5N6aPupQfD/isZw+1BR5P+KxnD7UFHk//IifPupQfD/8iJ8+6lB8Pxhgoj7UFHk/GGCiPtQUeT+C9KU+6lB8P4L0pT7qUHw/7IipPtQUeT/siKk+1BR5P8aArT7qUHw/xoCtPupQfD+eeLE+1BR5P554sT4CAAEAAAADAAIAAAACAAQAAQAFAAQAAgAFAAYABAAGAAcABAAIAAcABgAJAAgABgAJAAoACAAKAAsACAAMAAsACgANAAwACgANAA4ADAAOAA8ADAAQAA8ADgARABAADgARABIAEAASABMAEAAUABMAEgAVABQAEgAYABcAFgAZABgAFgAYABoAFwAbABoAGAAcABkAFgAcAB0AGQAeAB0AHAAeAB8AHQAgAB8AHgAgACEAHwAiACEAIAAiACMAIQAkACMAIgAlACQAIgAlACYAJAAnACYAJQAnACgAJgAoACkAJgAqACkAKAAqACsAKQAmACwAJAAsAC0AJAAtAC4AJAAkAC4AIwAjAC4AIQAuAC8AIQAvADAAIQAhADAAHwAfADAAHQAwADEAHQAxADIAHQAdADIAGQAZADIAGAAyADMAGAAzADQAGAA0ABsAGAApACwAJgA1ACwAKQArADYAKQA2ADUAKQAbADcAGgA3ADgAGgA5ADgANwA6ADkANwA6ADsAOQA8ADsAOgA8AD0AOwA+AD0APAA+AD8APQBAAD8APgBAAEEAPwBCAEEAQABCAEMAQQBDAEQAQQBFAEQAQwBFAEYARABHAEYARQBIAEcARQBIAEkARwBKAEkASABMAEsAQwBLAEUAQwBNAEwAQwBNAEMAQgBNAEIAQABOAE0AQABPAE4AQABPAEAAPgBPAD4APABQAE8APABRAFAAPABRADwAOgBRADoANwBSAFEANwBSADcANAA0ADcAGwBLAEgARQBLAFMASABTAFQASABUAEoASAABABcAAAAXABoAAAAWABcAAQAEABYAAQA0ADMAAwADADMAAgAzADIAAgAyAAUAAgAyADEABQAxAAYABQAxADAABgAwAAkABgAwAC8ACQAvAAoACQAvAC4ACgAuAA0ACgAuAC0ADQAtAA4ADQAtACwADgAsABEADgAsADUAEQA1ABIAEQA1ADYAEgA2ABUAEgAHABwABAAcABYABAAeABwABwAIAB4ABwALAB4ACAAgAB4ACwAiACAACwAMACIACwAPACIADAAlACIADwAnACUADwAQACcADwAoACcAEAATACgAEAAqACgAEwAUACoAEwBXAFYAVQBYAFcAVQBXAFkAVgBaAFkAVwBaAFsAWQBbAFwAWQBdAFwAWwBdAF4AXABfAF4AXQBgAF8AXQBgAGEAXwBiAGEAYABiAGMAYQBjAGQAYQBlAGQAYwBmAGUAYwBmAGcAZQBnAGgAZQBpAGgAZwBqAGkAZwBpAGsAaABrAGwAaABoAGwAZQBsAG0AZQBlAG0AZABtAG4AZABkAG4AYQBuAG8AYQBvAHAAXwBhAG8AXwBfAHAAXgBwAHEAXgBeAHEAXABxAHIAXAByAHMAXABcAHMAWQBZAHMAVgBzAHQAVgBWAHQAVQB0AHUAVQB2AFgAVQB3AHYAVQB3AHgAdgB4AHkAdgB6AHkAeAB7AHoAeAB7AHwAegB9AHwAewB9AH4AfAB+AH8AfACAAH8AfgCAAIEAfwCCAIEAgACDAIIAgACDAIQAggCEAIUAggCGAIUAhACHAIYAhACHAIgAhgCIAIkAhgCKAIAAfgCLAIoAfgCLAH4AfQCMAIsAfQCMAH0AewCNAIwAewCOAI0AewCOAHsAeACOAHgAdwCPAI4AdwCPAHcAVQB1AI8AVQCKAJAAgACQAIMAgACQAJEAgwCRAIQAgwCRAJIAhACSAIcAhACSAJMAhwCTAIgAhwCWAJUAlACXAJYAlACVAJgAlACZAJgAlQCZAJoAmACaAJsAmACcAJsAmgCcAJ0AmwCeAJ0AnACeAJ8AnQCgAJ8AngCgAKEAnwCiAKEAoACiAKMAoQCkAKMAogCkAKUAowCmAKUApACmAKcApQCoAKcApgCoAKkApwCcAJoAcQCaAHIAcQCaAHMAcgCaAJkAcwCZAJUAcwCVAHQAcwCVAHUAdACVAJYAdQCeAJwAcQCeAHEAcACeAHAAbwCgAJ4AbwCiAKAAbwCiAG8AbgCkAKIAbgCkAG4AbQCmAKQAbQCmAG0AbACmAGwAawCoAKYAawCXAKoAlgCqAKsAlgCsAKsAqgCsAK0AqwCuAK0ArACvAK4ArACvALAArgCxALAArwCxALIAsACzALIAsQCzALQAsgC1ALQAswC1ALYAtAC3ALYAtQC3ALgAtgC5ALgAtwC5ALoAuAC7ALoAuQC7ALwAugC9ALwAuwCuALAAjACNAK4AjACOAK4AjQCtAK4AjgCrAK0AjgCPAKsAjgCrAI8AdQCWAKsAdQCMALIAiwCwALIAjACLALIAigCyALQAigC0ALYAigC2AJAAigC2ALgAkAC4AJEAkAC4ALoAkQC6AJIAkQC6AJMAkgC6ALwAkwBYAJQAVwCXAJQAWACYAFoAVwCUAJgAVwCYAJsAWgCbAFsAWgCdAF0AWwCbAJ0AWwCdAJ8AXQCfAGAAXQCfAKEAYAChAGIAYAChAGMAYgChAKMAYwCjAGYAYwCjAKUAZgClAKcAZgCnAGcAZgCnAGoAZwCnAKkAagC+AAMAAAC/AL4AAAC/AMAAvgDAAMEAvgDCAMEAwADDAMIAwADDAMQAwgDEAMUAwgDGAMUAxADHAMYAxADHAMgAxgDIAMkAxgDKAMkAyADLAMoAyADLAMwAygDMAM0AygDOAM0AzADPAM4AzADPANAAzgDQANEAzgDOANEAVADOAFQAUwDNAM4AUwDNAFMASwDKAM0ASwBMAMoASwDJAMoATABNAMkATADGAMkATQBOAMYATQDFAMYATgBPAMUATgDCAMUATwBQAMIATwDBAMIAUABRAMEAUAC+AMEAUQBSAL4AUQC+AFIAAwBSADQAAwAaADgAAAA4AL8AAADAAL8AOQA5AL8AOAA7AMAAOQDDAMAAOwDEAMMAPQA9AMMAOwDHAMQAPQA/AMcAPQBBAMcAPwDIAMcAQQDLAMgAQQBEAMsAQQBGAMsARADMAMsARgBHAMwARgDPAMwARwBJAM8ARwDQAM8ASQCqAJcAWAB2AKoAWACsAKoAdgB5AKwAdgCvAKwAeQB6AK8AeQCxAK8AegB8ALEAegCzALEAfAB/ALMAfAC1ALMAfwCBALUAfwCCALUAgQC3ALUAggCFALcAggC5ALcAhQC7ALkAhQCGALsAhQCJALsAhgC9ALsAiQCNR6M6LYGvPzvJMD0AAAAAhYOvPwTtMD0AAAAAtIOvP4kpND3YwJA6voavPxT0Mz0AAAAAR4evP/sRJz0ZYuk664evP1NcJz3poC87yoavPzw0MD3CRFc7fImvP+7xJz3XfRs7j5SvP7c3HT2765E7s5SvP8YiHz0AAAAAWYevP/+4HD1rFMg7opavPwA3IT27mZI7pI6vP7ThKD2iXoM7SoyvP2adLz30lCg7SoqvP+0GMz2P+4A7IJWvPzZkMT3395E6YpivP6bDNT04GSk7YZuvP3WGND1elL47r5avP8WoKT1Vr7o7ZaKvP1BkLT2id/87Za+vP5I1Jj2g9v876qCvP87QIj2SuLE7eLOvP6Q4Lz2TK3s7dKKvP6m5Mj2lYkQ7QamvP2yvEj3LaLo716WvP3RKFD2ADm07uLyvP/8YBT3ECeI7TrWvP4RzBj0AAAAAT5mvP7/jET0AAAAAALCvP+eSBD15+Bs8b66vP6mKCD3YfgA8h6OvP0xdFj0NbiQ8Z7mvP6K6Gz0Y5B48itSvP/UhHj1rZvU77sWvP1lsKD39WQk8UPevP2AcID0ecik82wewP332ET2l0EI8z92vP/QUED3ckdI70OCvP6tGKj09lJc7acavP/vTMD3H8co7GxmwPxeOIT25XJs7jvmvPwKAKz2CbV87ptKvPxvoMD1mRxQ7nQmwP7tvKz19r9g6ZeCvPy1LMT1eHEE7XLuvP43BMz1+zKM68LuvP90bND0AAAAAG+SvP8aCMT0AAAAAR72vPwBXND0AAAAAB5evP7KlNT0AAAAAZAywPzbEKz1b7Ek7kzCwP1sKIj0AAAAA0jKwP4TVIT2YZXs7KVGwP04ZFD0AAAAADlywP6ddFD1l8Ps7UzKwPylREz3EyQ48LUGwP6uXAT2maUM8KxCwP+6TAD19/148SuGvP2Yl/jzCCEg8Xb+vP2C8DT1SyGM89MCvP1I3+jxQ6EE84LGvPwcHCz2aVSI8uKmvP8RmGD0GxVg8HbGvP7J+9jy8QDE8SbWvP4dE8TzPAHE8UsOvP4GQ1TwrM2Q8gLevP1Jm0zyPRgA8fsCvP6F37Twbxzk8IrmvP7XUzzwQSwc818KvP8+HzTztKpc7jtGvP641yzyG4YY7HsuvPx736jwAAAAA+8KvP5n26TwAAAAAWdevP4tnyjxX5Yo76s2vP9SLqzwAAAAAKcqvP165qzxxbQQ8EsOvPxM+rDyQ0Xc7fbmvP1mjjzx1i+w71LGvP1eXjzwAAAAAfq+vP2K+jzyu9zc8dLevP6dFrTwexlw8wLOvP+Rkrjx+qyU8EqqvP/cSjzzQt007u5qvP2K5cTwAAAAADZSvP4ACcjwpl8Y7QJevP6PMbzz1SSI7dHyvP73QSjw++Js7aXyvPzJkSDwAAAAA7n2vPyJZSzxvfQo80pSvP7SkbDxY3SY8fpivPyViaDzdfUc8OKmvP91jjjzs21c8QrevP7RHjTx4s24818CvP9JMrzyMcm48SeOvPz24sDyg7Gs8SeOvP4x42zxzAFw83dmvP4dzizwGwzQ8bqevPwBLYzziUw08IZSvPy0OOTzEwQI8PIWvPyQmPzw37zo89sSvP8XaYDwVVs07tH6vP7c+GzxtH747oHGvP8oOITzE8dg7Zn6vP5lkRDy2EJ47bmmvP4kuJjylBGQ7BGWvPxsLKjx4FPA61GKvP9RlLDwAAAAAGGCvP7IbLTzmqFA7i1ivPy+5EDyD3B87aVSvP58HFjwdKKQ6FFGvPwJ2FTwAAAAAAk2vP9VUFTzwCoc7jmmvP+JFCDykPoU7mGCvP+u+DjwAAAAAbkuvPxZXCDxP/t06Hk+vPyd8BjwAAAAAlFuvPyac9zv1pSM7zVivP9OpATwFYCU7AGevP0ZM9ztPaJE76X6vP7etBTy4Mtk7V5qvP5B8GjxgMhE8WbKvPy59MjzFslk7i4ivP7eJ+jtti6k7ZauvP4jQDTwAAAAAa3mvP/LX6TvPveE6UHSvP+aI7TvBIig7DZivP93c9TsL7qU6aZmvPy+V8DtP+Xc72L2vP2J9CTynaK87RumvP9RlJjwyEu47u82vPyZAKzwe4uQ7ZBGwP0bfUjzgfRo8c+yvP1hiVzwwIgs8+DGwP7tViDwuaTo8gASwP8L0iTwYLhs85EWwP7DPrzzZJk88vhKwPyIJsDwdCBc8NkiwP3462zyHTE88IRewP4C22Tz+TqE7wmiwP+s/3DwEcJM7m2WwPwwoAj0AAAAA93mwPwQ+Aj0AAAAAAHuwP8lk3DzuwqM7ImywP82LrzwAAAAAynywP4+frjy/F5E7VlOwP386hzwAAAAA4k6wPyCAhTyZeGw7sCuwP7TxTzwAAAAAbx6wP1tAUDzcGzQ7JPyvP2NbIzzAxf464MmvP3jWBjwAAAAAIOqvPxboJjwAAAAAfbuvP8GVBTwAAAAADpmvPxsJ7TuNR6O6LYGvPzvJMD3YwJC6voavPxT0Mz0ZYum664evP1NcJz3poC+7yoavPzw0MD3CRFe7fImvP+7xJz3XfRu7j5SvP7c3HT2765G7s5SvP8YiHz1rFMi7opavPwA3IT27mZK7pI6vP7ThKD2iXoO7SoyvP2adLz30lCi7SoqvP+0GMz2P+4C7IJWvPzZkMT3395G6YpivP6bDNT04GSm7YZuvP3WGND1elL67r5avP8WoKT1Vr7q7ZaKvP1BkLT2id/+7Za+vP5I1Jj2g9v+76qCvP87QIj2SuLG7eLOvP6Q4Lz2TK3u7dKKvP6m5Mj2lYkS7QamvP2yvEj2ADm27uLyvP/8YBT3LaLq716WvP3RKFD3ECeK7TrWvP4RzBj15+Bu8b66vP6mKCD3YfgC8h6OvP0xdFj0NbiS8Z7mvP6K6Gz2aVSK8uKmvP8RmGD3CCEi8Xb+vP2C8DT1Q6EG84LGvPwcHCz0Y5B68itSvP/UhHj1rZvW77sWvP1lsKD39WQm8UPevP2AcID0ecim82wewP332ET2l0EK8z92vP/QUED3ckdK70OCvP6tGKj09lJe7acavP/vTMD3H8cq7GxmwPxeOIT25XJu7jvmvPwKAKz2CbV+7ptKvPxvoMD1mRxS7nQmwP7tvKz19r9i6ZeCvPy1LMT1eHEG7XLuvP43BMz1+zKO68LuvP90bND1b7Em7kzCwP1sKIj2YZXu7KVGwP04ZFD1l8Pu7UzKwPylREz3EyQ68LUGwP6uXAT2maUO8KxCwP+6TAD19/168SuGvP2Yl/jxSyGO89MCvP1I3+jwGxVi8HbGvP7J+9jy8QDG8SbWvP4dE8TzPAHG8UsOvP4GQ1TwrM2S8gLevP1Jm0zyPRgC8fsCvP6F37Twbxzm8IrmvP7XUzzwQSwe818KvP8+HzTztKpe7jtGvP641yzyG4Ya7HsuvPx736jxZ5Yq76s2vP9SLqzxxbQS8EsOvPxM+rDyQ0Xe7fbmvP1mjjzx1i+y71LGvP1eXjzyu9ze8dLevP6dFrTwexly8wLOvP+Rkrjx+qyW8EqqvP/cSjzzQt027u5qvP2K5cTwpl8a7QJevP6PMbzz1SSK7dHyvP73QSjw++Ju7aXyvPzJkSDxvfQq80pSvP7SkbDxY3Sa8fpivPyViaDzdfUe8OKmvP91jjjzs21e8QrevP7RHjTx4s26818CvP9JMrzyMcm68SeOvPz24sDyg7Gu8SeOvP4x42zxzAFy83dmvP4dzizwGwzS8bqevPwBLYzziUw28IZSvPy0OOTzEwQK8PIWvPyQmPzw37zq89sSvP8XaYDwVVs27tH6vP7c+GzxtH767oHGvP8oOITzE8di7Zn6vP5lkRDy2EJ67bmmvP4kuJjylBGS7BGWvPxsLKjx4FPC61GKvP9RlLDzmqFC7i1ivPy+5EDyD3B+7aVSvP58HFjwdKKS6FFGvPwJ2FTzwCoe7jmmvP+JFCDxPaJG76X6vP7etBTy4Mtm7V5qvP5B8GjxgMhG8WbKvPy59MjzFslm7i4ivP7eJ+jtti6m7ZauvP4jQDTxP/t26Hk+vPyd8Bjz1pSO7zVivP9OpATykPoW7mGCvP+u+DjwFYCW7AGevP0ZM9zvPveG6UHSvP+aI7TvBIii7DZivP93c9TsL7qW6aZmvPy+V8DtP+Xe72L2vP2J9CTynaK+7RumvP9RlJjwyEu67u82vPyZAKzwe4uS7ZBGwP0bfUjzgfRq8c+yvP1hiVzwwIgu8+DGwP7tViDwuaTq8gASwP8L0iTwYLhu85EWwP7DPrzzZJk+8vhKwPyIJsDwdCBe8NkiwP3462zyHTE+8IRewP4C22Tz+TqG7wmiwP+s/3DwEcJO7m2WwPwwoAj3uwqO7ImywP82Lrzy/F5G7VlOwP386hzyZeGy7sCuwP7TxTzzcGzS7JPyvP2NbIzzAxf664MmvP3jWBjxsBkU9ilF/vyZ4YD0AAACAg+5/v9E9vTwAAAAAIq9cv3i/AT/So709579Yv/sjBj8AAACA92p/v+4Jir23pV89NNR+vzuRoL0MthU+JxB7v5vQBD5aXak9b3t+v6eVkL2aTq89HNN7v8L+Ib74P0Y90ft8v/qvFL4AAAAAP659v1yHCb5hC+g9aPV9v+caYr3Yawk+up59v6Sutrw6vJI+4pxtv1EXcz6Mbmw+IIJNvzO+DD/CNNE+sBQvv4G6Gj98fb89D5guvv0cez/paHw+kZZdvlfWcT8L0Kg+heNqv8ekYz4yLg8/v6MQvwpKGz8UoyY/r+YAv3pwET98zbk+kHhov3gDVj6B4hM/QpuRvZArUD8VzNc+pm5bvm+TYT85OZI95r56v+cEQb478TC7lZZ8v6aZJr78MeY8kCh9v9FmFb6r9Fu9rZ59vxUAAL4AAACAd1d7v1B1Qr4AAAAAWvx8vxKtHL4fEL67jlh/v/3Skb3x7Gs9GKp+v0twrL1enD4/c7Xgvm/DAD/oWEM/I1x6PuwoGT8QDi8/otzXPZLVOD/V7As/LQ4qP72HAj/Q2Q4/SdJBPwrurT6C5lE/g4i2PtZU5T6VNAA/S/0GPx64Lz8rY84+WR62PgHcVz8Ex6k+P5pWP1yX3T51nYs+V6o6P8iuID8j4EI+MvsfP23TQT/hat49QSlOPy8zFT9reMc9jeMiP3zpQz/qwFc+L3q0PtRqaT+b9Jc9GN3PPlguaT8AAAAAhcUiP8mWRT8AAAAAC3XRPgiZaT8AAACAP6wpvhd2fD8AAAAAsUZTPxGQED+2UgU+6KxoPw/ayj4AAACA8e5rP9u1xj6v/Sk+x2l0P8m7fD4AAAAABKx3PyOIgT5Y5bI+H8plP6aTiT4ppa4+mEluP+VzBj6/8w0/MpdPP/t8Pz5671o/oSfiPlDOij7W1lE/zu/UvkesyT6wfGE/fSDSvtLEcT4JSJ0+M/1xv9ZF4T0NKrQ+91Nsv/eBHj5qp4Y+FrR2v1akPT0yJ0u9iGZ/v93pQL0s2WU/cc7fvnSwWD3jLWE+1rp5v9HysDt1a7S9TVl+v0k4kr1LvIW9XnB/v25PL7zz7dG9DaF+v1BHWLzT0l69eZd/v1Bmd7z6SJ28w7d+vzboyL0AAAAApUh+v3K/7L0AAAAAMvZ/v+62jbyAOxK9sQl+v3xJ8j0AAAAAnaN9v7e/Cj5MR8e9X7t9v5AluT1fZqq6LQx4v5o+fT7Ow4a90fh4v1iRZD4AAACAPdN3v6FagD5lJoa95M5+v9DMkD1X4T4+z4B7v7eLDjxtBwG9ylJ8v2HjKT4WEYM8Zs5yv58Koj4AAACAialzvwUInT5LH3S8mYF0v06Alz5rsL88GWhvv/bvtD6RxDE9Ji1zvx13nj4AAACAxVtuv3DGuj7c1iM9nTZ6v9yUVD6t4Ic+7st2v7aIW7wbx1g+bi96v5qPIDwC+Ts/8M8gv3rIg76I7FY/1CEIv4zt470uj2I/yjHmPqfO971Xil0/IBX7Pi3x0j23alw/R1qkPhr8yb5ZQCQ/T1csv5U2vL5o1hc/hNYnv4hD775E66Q+aatxvyrSkb1/sEg/um44PhQZGL9pwAs/FLkdv6lbEb8yrro+Y1Jrv7IrGL4y/vY9llJ5v+3QRD4VPEE++GB4v61yGz51Qc89k+Nzv+S8kj46sj89sOdtv4aMuz4AAAAArVFsv1nexD6KZns+5sN3v6RJYb0oNAA+Mmt5vynLPz4z/pg9K+V4vyAIYz4AAACAhWl6v//HVD4qit8+vJIqv5rAGr8t17A+pk9qvyNFVL4AAACAxeB3v/3jf75Xc8Y9Vf11v/fPhL4AAAAABK8nvxVwQb/RQYA+/kpKv5ouD79b1Ik+9a7Uvt1vXr8iA/g+LL89vijhWr//+BA/JEwmvS29Ur8rYCs/X57EPW2UPL/ok6s+Db9jPffGcL9l2NY+F1ykPq1aWb8AAAAAw4AqviNtfL96yfY9p8c6vs/Oeb9wB1I+jeaQPqDab795yYc9+fqvPqfNb79iFog+KFkFP/WpT78iXpo+fYc1P5EsI78/KeU+kOsNP5agM79xzqY+ihdUPyg26b4l2fI+w1k4P1akAb9qDq8+9d1lP+Ttjb7xlf0+S0BPP4FTob5/RrA+kiVvP3sYwL0jRAY/Z0JYP2Ox2b0vkqk+HFpxP4VIHT31sgo/dcFWP/rOVT336Tc+V8F7P4efzTw7gjw+mTN6P9vM1T0AAAAAH7x+P5pbyz0AAACA3vZ/Pw/NiDzhcSg+z3Z7Py7ot70AAAAALq5+Pzqtz72zIAE+vZV0P5W0iL4AAACAvuh1P1tVjr5h3pM9jlNnP78r2L4AAAAAZCBpPwGM077B1ec8/thPP0VGFb8QYaE8B/spPyxbP78AAAAAP25XP6RLCr8AAAAAhS0xP/HHOL8AAAAAV0yzPiPKb79sBkW9ilF/vyZ4YD3Wb729asBYv0skBj+3pV+9NNR+vzuRoL0MthW+JxB7v5vQBD5aXam9b3t+v6eVkL2aTq+9HNN7v8L+Ib61QEa9wvx8v1GWFL5hC+i9aPV9v+caYr3Yawm+up59v6Sutrw6vJK+4pxtv1EXcz6Mbmy+IIJNvzO+DD/CNNG+sBQvv4G6Gj98fb+9D5guvv0cez/paHy+kZZdvlfWcT8L0Ki+heNqv8ekYz4yLg+/v6MQvwpKGz+Tpia/xd0Av110ET98zbm+kHhov3gDVj6B4hO/QpuRvZArUD9Nwde+A3Fbvt2VYT85OZK95r56v+cEQb78Mea8kCh9v9FmFb478TA7lZZ8v6aZJr6r9Fs9rZ59vxUAAL4fEL47jlh/v/3Skb3x7Gu9GKp+v0twrL1enD6/c7Xgvm/DAD8NKrS+91Nsv/eBHj7W1lG/zu/UvkesyT56SJ2+4f1xvwsS4T3oWEO/I1x6PuwoGT8QDi+/otzXPZLVOD8RBwy/pgcqPxl0Aj/Q2Q6/SdJBPwrurT6Y5FG/85O2Pr5S5T4aNQC/ZQQHP0ayLz8rY86+WR62PgHcVz8Ex6m+P5pWP1yX3T6Qk4u+pK46P++rID8j4EK+MvsfP23TQT/hat69QSlOPy8zFT9reMe9jeMiP3zpQz/qwFe+L3q0PtRqaT+b9Je9GN3PPlguaT/xOAW+r61oP7zayj6v/Sm+x2l0P8m7fD5Y5bK+H8plP6aTiT5Usa6+UEhuP/VYBj6/8w2/MpdPP/t8Pz5671q/oSfiPlDOij6wfGG/fSDSvtLEcT5qp4a+FrR2v1akPT0yJ0s9iGZ/v93pQL1y2mW/TsnfvnqrWD3jLWG+1rp5v9HysDt1a7Q9TVl+v0k4kr1LvIU9XnB/v25PL7zUIdI9YqB+v79GWLzT0l49eZd/v1Bmd7xWd5w847d+v0/oyL06pBI9dgl+v0NJ8j1MR8c9X7t9v5AluT2Kfrc6Ig54v7QffT7Ow4Y90fh4v1iRZD5lJoY95M5+v9DMkD1X4T6+z4B7v7eLDjxtBwE9ylJ8v2HjKT4WEYO8Zs5yv58Koj5LH3Q8mYF0v06Alz5rsL+8GWhvv/bvtD6RxDG9Ji1zvx13nj7c1iO9nTZ6v9yUVD5+1Ie+ms12vzOKW7wbx1i+bi96v5qPIDwI/Du/+Msgv5jKg76Z6la/wSQIv3Ly470uj2K/yjHmPqfO971Xil2/IBX7Pi3x0j23aly/R1qkPhr8yb6pOSS/ul0sv242vL6X1Be/gtQnv8dN775E66S+aatxvyrSkb1/sEi/um44PhQZGL9pwAu/FLkdv6lbEb8yrrq+Y1Jrv7IrGL4y/va9llJ5v+3QRD4VPEG++GB4v61yGz51Qc+9k+Nzv+S8kj46sj+9sOdtv4aMuz6KZnu+5sN3v6RJYb0oNAC+Mmt5vynLPz4z/pi9K+V4vyAIYz4qit++vJIqv5rAGr8iA/i+LL89vijhWr//+BC/JEwmvS29Ur8rYCu/X57EPW2UPL/ok6u+Db9jPffGcL9l2Na+F1ykPq1aWb9Xc8a9Vf11v/fPhL7RQYC+/kpKv5ouD78t17C+pk9qvyNFVL5b1Im+9a7Uvt1vXr96yfa9p8c6vs/Oeb9wB1K+jeaQPqDab795yYe9+fqvPqfNb79iFoi+KFkFP/WpT79qXpq+RIE1P2szI78/KeW+kOsNP5agM79Zqaa+XxpUP2FG6b4l2fK+w1k4P1akAb+oD6++lt9lP8nhjb79l/2++EFPP7JHob5/RrC+kiVvP3sYwL0jRAa/Z0JYP2Ox2b0vkqm+HFpxP4VIHT2Jqwq/qsZWP8lkVT0W6je+gMF7P/DNzDw7gjy+mTN6P9vM1T3hcSi+z3Z7Py7ot72AOgG+9JR0PyW0iL5h3pO9jlNnP78r2L7B1ee8/thPP0VGFb8QYaG8B/spPyxbP7+4yag9OKhJPr+GrD0opUo+APCtPVBsST4ooKo9iItIPrc+qD1YWk4+liWjPWy6TD46XaQ9nJ9IPgP/nj1wOEs+aAqdPQwCUD6yxpc9iIJNPq6woz0oTFI+J9qTPUxNSz4G9Js9eNJJPp4+oD2orkc+8O+lPTCgRz4mTaE9qANHPnCFqz3wvEc+jLKmPdjwRj6iaZg96FVIPhh8mj248UY+30WRPUDNRz40oI89UC1JPvA3nD3wXkY+BkqiPbiCRj73spY9IGJTPlZ6jz1IgVA+x/OOPbD8Vz5d3YU9cLpUPmsGnz1oVlY+mD6ZPfxXWz6CGH49QL1RPp4Nij2A5U0+iieGPVTVST4Ea4g9EAVJPuBRkz1AEkc+h2uNPcAlST5Wh4E9DM1MPt6idz1wfkw+4nWXPVAXRz6EaJ89iFBGPsu/lD10Oko+miKdPTjkRz5UHKM9IDxHPkODpD0c6Uk+EIuoPaB8SD4ciKU9GLVGPrasqj2AAkg+zoWtPUjIST7UdK49SPlIPkq7rj1AvEg+NlOrPYCvSz4sSZ490IZMPm5Dpz34M08+BCiWPZABUT6WoKE9gBVUPvBAij3wPk4+M9l+PYAkVD7mTWo9pCRSPrpUXj3snVE+5TNzPWBVTT7eVlo9wFpSPnXFcj3wyU4+w++EPVhSSz4uXFw9eMJTPsI5aD2QzVY+OPJEPZjhWD79W0g9sA1aPtg8eD14Alo+BfVVPcjyXD5CJ2c9YPRfPli5ez2waGM+UoqGPViUXT5UV5I9eFJhPhtGiz1QcWc+tkJvPXggaj6VDYQ9MLJtPvC/WD3gyGY+a39kPeBUcD4ywU89THRtPjqIej3gknM+YpFGPbD8Yz6o1Tk9YOFhPre4Pj1ALGs+rd9cPbjEdT6qR289MHJ4PooxSz2og3M+IO9WPZSWej497kg99Od4PmaiZT1on3w+OFg8PVDUcT60NDE9MMdwPphBMj2AkWk+bRQsPZzaaD4KCDQ9WK5gPoxSNT3kLGA+OvhJPdjBVz6qRCo92MdoPgg8Kz2IfHA+WN8uPUwTdz5y6DM9cBV3PqrlKD14OHA+HSI1PWRefD6YEzk9XDx8Ph8QPT2wu3c+bPI/PVCUfD7Ot0g9eFd9Pj3wUj1ggX4+hNRdPUQAgD6VEEQ98C2APrisST1EOoA+3HRQPbTFgD4guFc9+FKBPli/PD2ALIA+ZYU+PRjEfz4AgVQ9LAWCPrQnSj1kY4E+YKtRPUiigj5AZkQ9lEWBPiz8Qj2IiIE+VZY6PfAagD7gQDM9QPR7Ph9dLD1gXHc+qjg/PYD+gD589Tg9sGp+PiZwUD2I5oI+FbJGPbgWgj74VEM9DGOBPhZWSj0UE4I+AltAPSDufz7P5T49DD17PqdpND20Snk+P7lAPXDpdD4P3zI9WJ5yPkAqRz3EAm0+J0U2PdCJaj4YS1Q9+ABkPu/2QD0InWE+491pPXCFWz4KPFQ9ND1ZPr4Jgj0kvl4+4FeMPQhBVz7KwZk9YOZaPluskD1AxGI++gxvPeSXZz7gHoY90OdrPsIJXz2IdXA+lil4PZCZdD7oRFQ9EOd3PrpVaT04BXs+UsFNPfijfT7ls0o9etiAPhB8Xj34t38+lJZVPRTJgT59VFE9GLWCPrjJqD04qEk+KKCqPYiLSD6WJaM9bLpMPjpdpD2cn0g+A/+ePXA4Sz5oCp09DAJQPrLGlz2Igk0+J9qTPUxNSz4G9Js9eNJJPp4+oD2orkc+8O+lPTCgRz4mTaE9qANHPnCFqz3wvEc+jLKmPdjwRj6iaZg96FVIPhh8mj248UY+30WRPUDNRz40oI89UC1JPvA3nD3wXkY+BkqiPbiCRj73spY9IGJTPsfzjj2w/Fc+VnqPPUiBUD5d3YU9cLpUPoIYfj1AvVE+ng2KPYDlTT6KJ4Y9VNVJPsPvhD1YUks+5TNzPWBVTT51xXI98MlOPgRriD0QBUk+4FGTPUASRz6Ha409wCVJPlaHgT0MzUw+3qJ3PXB+TD7idZc9UBdHPoRonz2IUEY+y7+UPXQ6Sj6aIp09OORHPlQcoz0gPEc+Q4OkPRzpST4Qi6g9oHxIPhyIpT0YtUY+tqyqPYACSD4sSZ490IZMPgQolj2QAVE+8ECKPfA+Tj4z2X49gCRUPuZNaj2kJFI+ulRePeydUT7eVlo9wFpSPi5cXD14wlM+wjloPZDNVj448kQ9mOFYPv1bSD2wDVo+2Dx4PXgCWj4F9VU9yPJcPkInZz1g9F8+WLl7PbBoYz5SioY9WJRdPrZCbz14IGo+8L9YPeDIZj5rf2Q94FRwPjLBTz1MdG0+YpFGPbD8Yz6o1Tk9YOFhPre4Pj1ALGs+rd9cPbjEdT6KMUs9qINzPiDvVj2Ulno+Pe5IPfTneD44WDw9UNRxPrQ0MT0wx3A+mEEyPYCRaT5tFCw9nNpoPgoIND1YrmA+jFI1PeQsYD46+Ek92MFXPqpEKj3Yx2g+CDwrPYh8cD5Y3y49TBN3PnLoMz1wFXc+quUoPXg4cD4dIjU9ZF58PpgTOT1cPHw+HxA9PbC7dz5s8j89UJR8Ps63SD14V30+PfBSPWCBfj6VEEQ98C2APrisST1EOoA+3HRQPbTFgD5Yvzw9gCyAPlWWOj3wGoA+4EAzPUD0ez4fXSw9YFx3Pqo4Pz2A/oA+fPU4PbBqfj60J0o9ZGOBPkBmRD2URYE+ZYU+PRjEfz4s/EI9iIiBPhWyRj24FoI++FRDPQxjgT4WVko9FBOCPgJbQD0g7n8+z+U+PQw9ez6naTQ9tEp5Pj+5QD1w6XQ+D98yPViecj5AKkc9xAJtPidFNj3QiWo+GEtUPfgAZD7v9kA9CJ1hPuPdaT1whVs+CjxUPTQ9WT6+CYI9JL5ePuBXjD0IQVc++gxvPeSXZz7CCV89iHVwPuhEVD0Q53c+UsFNPfijfT7ls0o9etiAPgIAAQAAAAMAAgAAAAEABAAAAAQABQAAAAUABgAAAAcABgAFAAgABwAFAAgABQAEAAgACQAHAAoACAAEAAkACwAHAAsADAAHAAcADAAGAAwADQAGAA0ADgAGAA4AAwAAAAYADgAAAA8ADgANAA4AEAADAAMAEAACABEAEAAOAA8AEQAOABIADQAMABIADAALABIAEwANABMADwANABQAEwASABUAFAASABUAEgALABMAFgAPABQAFgATABYAFwAPABgACQAIABgAGQAJABoAGQAYABoAGwAZABwAGgAYABwAGAAIABwAHQAaAAoAHAAIABsAHgAZAB4AHwAZABkACwAJABkAHwALAB8AFQALABUAIAAUACAAIQAUACEAIgAUACMAIgAhACQAIwAhACUAJAAhACMAJgAiACIAJgAWACIAFgAUACYAJwAWACcAFwAWACgAJgAjACQAKAAjACgAKQAmACkAKgAmACoAJwAmACsAKgApACsALAAqACwALQAqACoALQAnAC4ALQAsAC8ALgAsAC8ALAArAC8AMAAuADAAMQAuAC4AMQAQAC0ALgAQACcALQAXABcALQARABEALQAQADIALwArADMAKQAoADMAKwApADQAMgArADMANAArADUANAAzADUAMwAoADUANgA0ADcANQAoADcAKAAkADgANwAkADkAOAAkACUAOQAkADoAOQAlADsAOgAlADsAPAA6AD0APAA7AD4APQA7AD4AOwAgAD4AIAAVAD0APwA8AEAAPwA9AEAAPQAeAD0APgAeAD8AQQA8AEIAQQA/AEMAQAAeAEMARABAAEQAQgA/AEAARAA/AEUARABDAEYARQBDAEcARgBDAEcAQwAbAEMAHgAbAEcAGwAaAEcASABGAEgARwAaAEgASQBGAB0ASAAaAEkASgBGAEsASgBJAEYATABFAEoATABGAE0ATABKAEsATQBKAE0ATgBMAE8ATQBLAEwAUABFAEUAUABEAFAAUQBEAE4AUgBMAFIAUABMAFIAUQBQAE8AUwBNAFQAUwBPAFUATgBNAFMAVQBNAFYAVQBTAFQAVgBTAFYAVwBVAFgAVgBUAFUAWQBOAFkAUgBOAFkAWgBSAFoAWwBSAFIAWwBRAFsAXABRAFwAXQBRAFEAXQBCAEQAUQBCAEIAXQBBAF0AXgBBAF4AXwBBAEEAXwA8ADwAXwA6AGAAXgBdAGAAXQBcAGEAWwBaAGEAXABbAGIAYQBaAGMAYgBaAGQAYABcAGEAZABcAGIAZABhAGMAZQBiAGYAZQBjAGcAZgBjAGcAaABmAGgAZwBXAFcAZwBVAGcAWQBVAGkAaABXAGkAVwBWAGoAaQBWAFgAagBWAGsAagBYAGkAbABoAGgAbABmAG0AbABpAGsAbgBqAG4AbQBpAGoAbgBpAG8AbgBrAGYAcABlAHEAcABmAHAAcQBsAG8AcgBuAG0AcwBsAHIAcwBuAG4AcwBtAHQAcwByAHQAdQBzAHUAcABsAHMAdQBsAHUAdgBwAHYAdQB0AHYAdwBwAHAAdwBlAHcAeABlAGUAeABiAHgAeQBiAHoAeAB3AHoAdwB2AHoAewB4AHwAdgB0AHwAfQB2AH0AegB2AH0AfgB6AH8AfgB9AH8AfQB8AH8AgAB+AH4AgAB6AIAAewB6AIAAgQB7AIEAggB7AIIAeQB4AHsAggB4AIMAggCBAIMAhACCAIUAhACDAIUAhgCEAIcAhgCFAIcAiACGAIkAiACHAIkAigCIAIoAiQA4ADkAigA4ADoAigA5AF8AigA6AIkAiwA4AIsAiQCHAIsAjAA4ADgAjAA3ADcAjAA1AIwAjQA1AI0AjACLAI0ANgA1AI4AjQCLAIYAiABeAIoAXwBeAIgAigBeAI8AjgCLAI8AkACOAJEAkACPAJEAkgCQAJEAjwCHAI8AiwCHAJEAhwCFAJMAkgCRAJMAlACSAJEAhQCDAJMAkQCDAJUAkwCDAJUAlACTAJUAgwCBAJYAlQCBAJYAlwCVAJUAlwCUAJgAlwCWAJgAlgB/AJkAmAB/AJYAgAB/AJYAgQCAAJkAfwB8AGAAhgBeAGQAhgBgAIQAhgBkAIIAhABkAHkAggBkAHkAZABiADsAJQAhADsAIQAgABcAEQAPAD4AHwAeAB8APgAVAGcAYwBaAGcAWgBZAGwAcQBmABAAMQACAJsAmgACAAIAmgABAJoABAABAJoAnAAEAJ0AnACaAJ0AngCcAJ4AnwCcAJwAnwAEAKAAnwCeAJ8ACgAEAKEAoACeAKIAoQCeAKIAngCdAKMAogCdAKQAowCdAKQAnQCaAJsApACaAKQApQCjAKYApACbAKYAmwACAKYApwCkAKcApQCkAKMAqACiAKIAqAChAKUAqQCjAKkAqACjAKkAqgCoAKoAqwCoAKgAqwChAKwAqQClAKwAqgCpAK0ArAClAKAArgCfAJ8ArgAcAK4ArwAcALAArwCuALAArgCgALAAsQCvAK8AHQAcAJ8AHAAKALIAsQCwALMAsgCwALMAsAChAKEAsACgAKsAswChALQAqwCqALQAtQCrALMAtQCyALUAswCrALYAtQC0ALYAtwC1ALUAtwCyALgAtACqALgAtgC0ALkAuACqALkAugC4ALoAuwC4ALsAvAC4ALgAvAC2AL0AugC5AL0AuQCsAKwAuQCqAL4AvQCsAK0AvgCsAL0AvwC6AL8AuwC6AMAAvwC9AMEAwAC9AL4AwQC9AMEAwgDAAMMAwgDBAMQAwwDBAMQAwQC+AMQAxQDDAMMAxQAvAMIAwwAvAMUAMAAvAMUAMQAwAMUApgAxAMUAxACmAMQAvgCtAMQArQCnAMQApwCmADIAwgAvAMAAxgC/AMYAxwC/AMcAxgA0AMYAwgA0ADQAwgAyAMIAxgDAADYAxwA0AMcAyAC/AL8AyAC7AMgAyQC7AMkAygC7AMoAvAC7AMoAywC8ALwAywC2AMsAzAC2AMwAtwC2AMwAzQC3AM0AzgC3ALcAzgCyAM8AzQDMAM8A0ADNAM4A0QCyANIA0QDOANIAzgDNANAA0gDNANIA0wDRANMA1ADRANQA1QDRANEA1QCxALIA0QCxALEA1QCvANUA1ABIAK8A1QBIANQASQBIAK8ASAAdANQA1gBJANYASwBJANcA1gDUANcA1ADTANcA2ADWANYA2ABLANkA2ADXANgATwBLANoA0wDSANoA1wDTANsA2gDSANoA3ADXANwA2QDXANsA3ADaANgA3QBPAN0AVABPAN4A3QDYANkA3gDYAN4A3wDdAN0A3wBUAOAA3wDeAN8AWABUANwA4QDZAOEA3gDZAOIA4QDcAOMA4gDcAOMA3ADbAOQA4wDbAOUA5ADbAOUA2wDQANsA0gDQAOUA0ADPAOYA5QDPAOcA5gDPAOcAzwDMAOcAzADLAOUA6ADkAOYA6ADlAOQA6QDjAOMA6QDiAOkA6gDiAOoA6wDiAOwA6QDkAOgA7ADkAOwA6gDpAO0A6wDqAO0A7gDrAO4A7wDrAPAA7wDuAO8A8ADgAO8A4ADeAOEA7wDeAPAA8QDgAOAA8QDfAPEA8gDfAN8A8gBYAPIAawBYAPMA8QDwAPMA8ADuAPMA9ADxAPIA9QBrAPUA8gDxAPQA9QDxAPUAbwBrAPYA7gDtAPcA9gDtAPgA9wDtAPgA7QDqAPkA+ADqAPgA+gD3APsA+gD4APUAcgBvAPwA9ADzAPUA/AByAPwA9QD0APwAdAByAPwA/QB0APYA/QDzAP0A/ADzAP4A9gDzAPYA/gDuAP8A/QD2APcA/wD2APoA/wD3AP0A/wB0AP8AfAB0AP8AAAF8AAAB/wD6AAEBAAH6AAEBAgEAAQABAgF8AAMBAgEBAfsAAwH6AAMBAQH6AAQBAwH7AAUBBAH7AAUBBgEEAQcBBgEFAQcBCAEGAQkBCAEHAQkBCgEIAQsBCgEJAQsBDAEKAQ0BDAELAQwBDQHJAA0BygDJAA0BywDKAA0B5wDLAA4BDAHJAAwBDgEKAQ8BDgHJAA8ByQDIAA8ByADHAA8BxwCNAA4BDwGNAI0AxwA2AI4ADgGNAAsBCQHmAA0BCwHmAOcADQHmABABDgGOAJAAEAGOABEBEAGQAJIAEQGQABABEQEKAQ4BEAEKAQoBEQEIARIBEQGSAJQAEgGSABEBEgEGAQgBEQEGARIBEwEGARMBEgGUAAYBEwEEARMBFAEEARQBEwGXAJcAEwGUAJgAFAGXAAIBFAGYAJkAAgGYAAMBFAECAQQBFAEDAQIBmQB8AAkB6ADmAAkB7ADoAAkBBwHsAAcBBQHsAAUB+QDsAOwA+QDqAPkABQH4AAUB+wD4AKcArQClAOIA7wDhAOsA7wDiAP4A8wDuADEApgACAJJ01zsd2q8/lydJPUZY1TtL7K8/+UBIPX4KADxL7K8/ZUpGPSSFATwY268/VMtGPWNuFTxL7K8/T1NEPTldFzwT3K8/om1EPemeJzxN7K8/9E9CPZQMKjz+3a8/QvlBPVXgNzxN7K8/BRBAPU3SOjxl4K8/NMU/PeHAQjxP7K8/1Gw+PUBhRzxy4q8/rdQ9PfO0SzxU7K8/qQU9PaYEUjz55K8/WyQ8PcpSTjxZ7K8/orA8PR32VDxW6K8/2OY7PfWNUDxm7K8/9Vs8PadgVzyE7a8/gak7PbNgTjxv7K8/WLU8PSX2VDxX868/9CA8PRPOSzxv7K8/gQ89PaYEUjxX968/vZg8PaegQjx07K8/vn8+PSr2RjyH+K8/WZU+PYqANzx37K8/0y5APbTpOTzJ+a8/E+dAPbOJJzx37K8/K3RCPUYdKjxl+q8/hIlDPYmgFTx07K8/FH9EPZ5XGDwU+68/N4BGPXsuADx07K8/aXFGPQVxAjwO+68/NTBJPVR31Tt07K8/zWNIPcQL2TsF+68/xOBLPffOozt07K8/ELhJPVclpjv9+q8/xUROPThnZDt07K8/+AtLPYesZjv0+q8/rKdQPaJh4Tp07K8/1/ZLPZij5jrz+q8/WNRRPQAAAAB07K8/l9tMPQAAAADw+q8/6wBTPQAAAABv168/KYpPPQAAAABL7K8/3tlMPSzb4zpL7K8/bwBMPSr34zr5168/BFxOPTgHZDtL7K8/qyZLPTgHZDuE2K8/tC1NPXunoztL7K8/ArRJPYS3pDtS2a8/1SpLPRT6gzspl7E/093NPFUWhDt0eLA/sFuRPAAAAABQebA/mTmPPAAAAAAXqLE/9afLPCsD9Ds3d7E/lb7PPKzj8TvPcbA/BdKTPFykRzx2N7E/rGjUPCZmPjyNYrA/4uWdPF1xbzy977A//CTYPJ6dbDx5RbA/7gmvPGs3hDycl7A/nGfbPOesgzyhN7A/PenFPLr6gzvktbE/B8UFPQAAAAC9wbE/G8QFPdX5gzsqd7E/XkAtPQAAAADPeLE/F38uPWmo/DuPb7E/YPwqPfJm+DuZnLE/drcEPQFlRDz9N7E/PIUlPRKlSjyFYbE/f6EEPcEBajwv+LA/cbQgPcKUbjxzGLE/1lwEPaKvhTwHtLA/lKAZPc1BhjznwLA/wMEBPcwIizyKOrA/nQgVPesMiTxGO7A/PE//PEPWhDxdma8/Z8P9PNbaiDzhrK8/RqsVPTLMWzwBcq8/p3AWPTulWjzJVK8/9Sf6PHsQLzzmPa8/+ZUWPcuwMzx+Ka8/W9/3PMoR8TsKIq8/5pgWPZc/8jspBa8/j7T1PMfbgjshCa8/oIAWPdZmgzvg764/TAP1PAAAAAD+Ca8/x1MWPQAAAACZ664/xWz0PG+EPTyuwa8/a/4vPTSOdTw25a8/ANQsPaTLFDyFnK8/wfwyPbuCwDv3nK8/s7s0PQwJIDuCn68/mB83PQAAAADtn68/wvY4PUpkKDzdT68/Kii8PPdz7TuHRK8/LYK2PMWagDuOPq8/OWqzPIREXTxhbK8/YbHJPCXkgTw7tq8/ebXdPAAAAAAnOq8/G12yPBD6gztQr7A/XaJIPQAAAAAXrLA/IbZKPcR6ADzCr7A/PKNEPQQfPjxiuLA/XPc9PV3GZTy5uLA/s3A1PSXOhTxBkLA/jfUtPa+gijzCPrA/UjAqPX4KADxL7K8/ZUpGPUZY1Tt5y68/FHBEPWNuFTyry68/aYJAPUZY1TtL7K8/+UBIPWNuFTxL7K8/T1NEPemeJzxN7K8/9E9CPVXgNzzNzK8/Hj88PVXgNzxN7K8/BRBAPeHAQjxP7K8/1Gw+PfO0Szzh0a8/xDQ5PfO0SzxU7K8/qQU9PcpSTjxZ7K8/orA8PfWNUDxm7K8/9Vs8PXunoztL7K8/ArRJPTgHZDtSy68/xVVHPTgHZDtL7K8/qyZLPSzb4zpL7K8/bwBMPQAAAAA3y68/+AhJPQAAAABL7K8/3tlMPXkKWTwd868/EIs4PRPOSzztF7A/nD45PbNgTjxv7K8/WLU8PRPOSzxv7K8/gQ89PaegQjx07K8/vn8+PYqANzxZG7A/7l08PYqANzx37K8/0y5APbOJJzx37K8/K3RCPYmgFTxGGrA/Lq5APYmgFTx07K8/FH9EPXsuADx07K8/aXFGPVR31TtFGrA/5pJEPVR31Tt07K8/zWNIPffOozt07K8/ELhJPThnZDtCGrA/EztHPThnZDt07K8/+AtLPaJh4Tp07K8/1/ZLPQAAAABCGrA/sApJPQAAAAB07K8/l9tMPZJ017sd2q8/lydJPSSFAbwY268/VMtGPX4KALxL7K8/ZUpGPUZY1btL7K8/+UBIPWNuFbxL7K8/T1NEPTldF7wT3K8/om1EPemeJ7xN7K8/9E9CPZQMKrz+3a8/QvlBPVXgN7xN7K8/BRBAPU3SOrxl4K8/NMU/PeHAQrxP7K8/1Gw+PUBhR7xy4q8/rdQ9PfO0S7xU7K8/qQU9PaYEUrz55K8/WyQ8PcpSTrxZ7K8/orA8PR32VLxW6K8/2OY7PfWNULxm7K8/9Vs8PadgV7yE7a8/gak7PbNgTrxv7K8/WLU8PSX2VLxX868/9CA8PRPOS7xv7K8/gQ89PaYEUrxX968/vZg8PaegQrx07K8/vn8+PSr2RryG+K8/WZU+PbTpObzJ+a8/E+dAPYqAN7x37K8/0y5APbOJJ7x37K8/K3RCPUYdKrxl+q8/hIlDPZ5XGLwU+68/N4BGPYmgFbx07K8/FH9EPQVxArwO+68/NTBJPXsuALx07K8/aXFGPVR31bt07K8/zWNIPcQL2bsF+68/xOBLPffOo7t07K8/ELhJPVclprv8+q8/xUROPYesZrv0+q8/rKdQPThnZLt07K8/+AtLPZij5rrz+q8/WNRRPaJh4bp07K8/1/ZLPSr347r5168/BFxOPSzb47pL7K8/bwBMPTgHZLtL7K8/qyZLPTgHZLuE2K8/tC1NPYS3pLtS2a8/1SpLPXuno7tL7K8/ArRJPRT6g7spl7E/093NPFcWhLt0eLA/sFuRPCsD9Ls3d7E/lb7PPKzj8bvPcbA/BdKTPFykR7x2N7E/rGjUPCZmPryNYrA/4uWdPF1xb7y977A//CTYPJ6dbLx5RbA/7gmvPGs3hLycl7A/nGfbPOesg7yhN7A/PenFPLr6g7vktbE/B8UFPdX5g7sqd7E/XkAtPWmo/LuPb7E/YPwqPfJm+LuZnLE/drcEPQFlRLz9N7E/PIUlPRKlSryFYbE/f6EEPcEBarwv+LA/cbQgPcKUbrxzGLE/1lwEPaKvhbwHtLA/lKAZPc1BhrznwLA/wMEBPcwIi7yKOrA/nQgVPesMibxGO7A/PE//PEPWhLxdma8/Z8P9PNbaiLzhrK8/RqsVPTLMW7wBcq8/p3AWPTulWrzJVK8/9Sf6PHsQL7zmPa8/+ZUWPcuwM7x+Ka8/W9/3PMoR8bsKIq8/5pgWPZc/8rspBa8/j7T1PMfbgrshCa8/oIAWPdZmg7vg764/TAP1PG+EPbyuwa8/a/4vPTSOdbw25a8/ANQsPaTLFLyFnK8/wfwyPbuCwLv3nK8/s7s0PQwJILuCn68/mB83PUpkKLzdT68/Kii8PPdz7buHRK8/LYK2PMWagLuOPq8/OWqzPIREXbxhbK8/YbHJPCXkgbw7tq8/ebXdPBD6g7tQr7A/XaJIPcR6ALzCr7A/PKNEPQQfPrxiuLA/XPc9PV3GZby5uLA/s3A1PSXOhbxBkLA/jfUtPa+girzCPrA/UjAqPX4KALxL7K8/ZUpGPWNuFbyry68/aYJAPUZY1bt5y68/FHBEPUZY1btL7K8/+UBIPWNuFbxL7K8/T1NEPemeJ7xN7K8/9E9CPVXgN7zNzK8/Hj88PVXgN7xN7K8/BRBAPeHAQrxP7K8/1Gw+PfO0S7zh0a8/xDQ5PfO0S7xU7K8/qQU9PcpSTrxZ7K8/orA8PfWNULxm7K8/9Vs8PXuno7tL7K8/ArRJPTgHZLtSy68/xVVHPTgHZLtL7K8/qyZLPSzb47pL7K8/bwBMPXkKWbwd868/EIs4PRPOS7ztF7A/nD45PbNgTrxv7K8/WLU8PRPOS7xv7K8/gQ89PaegQrx07K8/vn8+PYqAN7xZG7A/7l08PYqAN7x37K8/0y5APbOJJ7x37K8/K3RCPYmgFbxGGrA/Lq5APYmgFbx07K8/FH9EPXsuALx07K8/aXFGPVR31btFGrA/5pJEPVR31bt07K8/zWNIPffOo7t07K8/ELhJPThnZLtCGrA/EztHPThnZLt07K8/+AtLPaJh4bp07K8/1/ZLPRCMpD61h2w+uhhrP6BblT5L5Mk+8RZfP9/2tT5Rs4o+WwRlPwUQuj5sqEY++URpP3r7yT4jtRU+xT1oPyjyzj5ItTM+Zs5lP1X/5T4HxVM9VlVkP1YM4j7c3iA+jSZiP5lg+j48sDY9igJfPxfe7z5F2Vs+T2NbP2byBD80Cqw9XLZZP5Ix8T7nDI0+/YRWP7j9Aj+hBHA9s29bP/Wbxj4F+LU+DLVZP4VT0j4Ol929y8BnP1lOrT7Z3GA9aHpwP8Yl1z53q/G9J1RmP2oZrT5r6gC+ocJuPyCb3j7qzm++IJteP132uz50oJy+BOFgP+HD/j7v7Ku+c75MP9nW4T47W8++3QZNP5q+/T7zpte+n3RCP/vh8j64lwq/NLUxP/FI7D5dqv6+Hw48P3D93D4C5Bi/gBAtP6rAyj70xR2/fEIuP3bxyT4DZyq/Mi8iP55FmD4mKT6/To0ZP+s7oT6arTy/zhcZP6nkYT6hBFS/+eMDP4uhhz4xoEu/QowLP+GgJz58M2K/KZ3gPrUZUT7S4la/bfIAPzw/4D1OR2y/oeu8PrqQLT4F8l+/rWToPh8flj0mFHK/mEGiPrUE3z1oUGa/DXfYPm7kLj1Oa3S/96yWPp+bmT2SOWu/51vGPgAAAIBMJXW/24GTPgAAAIAVzW2/g5i9PgAAAAAuDs0+dZJqPwAAAIA5OzM/M8o2P2ikzj0l0yw/exU7P7hBEz6v98g+IY9oP6RlJj7WJx0/qcFFP7EtUD54ibA+/JhqP8V7ZT6SvQM/zN5TPy5Lij5KvJY+7a1qP5Q6J76au16/GSXuPnFR9L0AjBe+EVV7PwAAAID7pQq+faR9PwAAAADE+GC/RVP0Pppnkb7cNle/7RPsPig3b74KThW+JBp2Px47Ar894EC/KE7VPhNg676QfAO+qfRgPzu3Pr9LrxK/MuWuPvcwOr8dota8MJEvP63/bL/nLpu+BmtnPvgzbb80SB08tIHAPql7EL7QR32/T1sPvQAAAIB0tH+/CJ5EvUnB5L1W3GK/Yz3mvgAAAIBhqmK/HfvtvlWchr5OrV+/AYXRvrB1k77bJnW/Y4E3OzRKAL8O/ky/fv+nvgvBCr+5Hle/GnslPIaCMb8z7C+/buZdvu/RQb+oOCe/ch4nPOggZ78qidi+YrqevSQDbr+/Mbu+YWkzPfzQf7/ZQ1g8zWcRvVhxf79CSh27YveGPcFjWr/J9gQ/JfpLPauEUL/Eag4/+nMovrZ09b7FP1Y/jTiHvs8oCL/tt1g/CnuuPIL8tL62jGQ/RP+Ovtq2tb4hMG8/d/EFPcrqQL7Vom8/lxyYvgPvWr40jXk/qQyCPd2bxL1uOnI/azWevnuHyb2o9X0/sy6hPQAAAIAATnM/xjufvgAAAICbEH8/0uOuPbg4w77Vw18/2xuavjTXL78UXBw/kqvJvqGwf773oWM/ckzEvqMa0b2m/Wc/rRPSvnZWbL3NZGk/wkfQvgAAAADzRGs/wdXJvpiitL4RNj0/4OQSP9edQL7gJ0A/+SYiP3QisL09Aj8/fAQpP0QOGr8xNC0/H0nZPlvKYb94gdM+2T1oPgAAAAD3pD8/ALspP9iqJL58iba+xZtrvwAAAIDWyrC+GEFwvy8in77Pnq++jOxiv9KUBb/XpK6+zSpIvx65K78uLs6+bG8fvxuaVL+IrqO+WpHpvlBCbr/XtYQ941G4vlY4hb5AmSg/KMI0v/HwGr6iPVI/rtUMv55ffr5LrU8/1IEHvxmCVb5khio/QFM3v5YOj77f8Cc/onwzvz2rq75Gkig/8nwsv5rzv77/308/WQXlvv6nwr4wyCQ/ogcqv1En075Thyg/9DQhv5K4+r58qk0/PXatvhSttr6TwTQ/KZccv19nrb5qkTY/iR8dvz9nM7+DVAE+cbwzv7onLb6Fnis/4vQ4vxTswL1wJVU/p7kLv1r//71hkSw/vF06v1hns70rGy0/SkM7vwAAAABTClU/OfMNvwAAAADHnS0/nCE8v3AjSL8qnS8+XngZvwTTG7+S/y6+WFhGv7ud3r7yFwW/Tjw8v3cz4L5UPwS/lVw8v4Tk7L6avP2+hi08vzEXCb+BlFi+P09Rv5QI4b4a8fq+CLNAv6xbxL7zQAS/XflDv2q70r7/3W2+7ZphvyWqor6/lAa/KgNKv9cSlL5C4we/Gu9Lv70Zj74Zs3e+lN5tv4RxaL6/PAq/43tPv0SfM76Zwgu/1rpRv4bsK764GXy+mV50v9aEDb51nwy/BPlSvxIM171PMA2/2NhTvwAAAAAJL4G+pbd3vwAAAADJ+g2/SAVVvxCMpL61h2w+uhhrPwUQur5sqEY++URpP9/2tb5Rs4o+WwRlP0hklb5H3sk+2hZfP3r7yb4jtRU+xT1oPzHnzr4ktzM+x9BlP1X/5b4HxVM9VlVkP1YM4r7c3iA+jSZiP5lg+r48sDY9igJfPxfe775F2Vs+T2NbP2byBL80Cqw9XLZZP5Ix8b7nDI0+/YRWP7j9Ar+hBHA9s29bP/Wbxr4F+LU+DLVZP4VT0r4Ol929y8BnP1lOrb7Z3GA9aHpwP8Yl1753q/G9J1RmP2oZrb5r6gC+ocJuPyCb3r7qzm++IJteP132u750oJy+BOFgP+jG/r4W/Ku+VbpMPyLZ4b5was++YwJNP83A/b7stde+wm9CP9LX8r5nmQq/XLcxP5z53L5c4Ri/DhQtP58+7L5erf6+VxA8P6rAyr70xR2/fEIuP3bxyb4DZyq/Mi8iP+s7ob6arTy/zhcZP55FmL4mKT6/To0ZP4uhh74xoEu/QowLP6nkYb6hBFS/+eMDP+GgJ758M2K/KZ3gPmccUb6W5Va/iO0AP1pB4L2ISWy/TuC8Pr+SLb6g9F+/RFroPrUE371oUGa/DXfYPsLplb2kEnK/sU2iPp+bmb2SOWu/51vGPm7kLr1Oa3S/96yWPrhBE76v98g+IY9oP2ikzr0l0yw/exU7P6RlJr7WJx0/qcFFP7EtUL54ibA+/JhqPy5Lir5KvJY+7a1qP8V7Zb6SvQM/zN5TP5Q6Jz6au16/GSXuPnFR9D0AjBe+EVV7P5pnkT7cNle/7RPsPig3bz4KThW+JBp2Px47Aj894EC/KE7VPhNg6z6QfAO+qfRgPzu3Pj9LrxK/MuWuPvcwOj8dota8MJEvPw0BbT/OL5u+J1JnPvgzbT80SB08tIHAPql7ED7QR32/T1sPvUnB5D1W3GK/Yz3mvlWchj5OrV+/AYXRvrB1kz7bJnW/Y4E3OyBJAD9V/Ey/MAuovgHBCj+rHle/fx4nPIaCMT8z7C+/buZdvu/RQT+oOCe/ch4nPOggZz8qidi+YrqevSQDbj+/Mbu+YWkzPfzQfz/ZQ1g8zWcRvVhxfz9CSh27YveGPcFjWj/J9gQ/JfpLPauEUD/Eag4/+nMovrZ09T7FP1Y/jTiHvs8oCD/tt1g/CnuuPAnxtD7IjmQ/kACPvtq2tT4hMG8/d/EFPcrqQD7Vom8/lxyYvgPvWj40jXk/qQyCPd2bxD1uOnI/azWevnuHyT2o9X0/sy6hPbg4wz7Vw18/2xuavjTXLz8UXBw/kqvJvqGwfz73oWM/ckzEvqMa0T2m/Wc/rRPSvvPtaz0lZWk/EEjQvpiitD4RNj0/4OQSP9edQD7gJ0A/+SYiP3QisD09Aj8/fAQpP0QOGj8xNC0/H0nZPvfHYT9WjNM+YztoPlepJD7slLa+nplrvy8inz7Pnq++jOxiv5eZBT+Coq6+IShIvx65Kz8uLs6+bG8fvxuaVD+IrqO+WpHpvlBCbj/XtYQ941G4vlY4hT5AmSg/KMI0v55ffj5LrU8/1IEHv6/tGj7DP1I/t9IMvxmCVT5khio/QFM3v6wajz6s7yc/WXszvz2rqz5Gkig/8nwsv831vz5h4k8/3frkvv6nwj4wyCQ/ogcqv1En0z5Thyg/9DQhv5K4+j58qk0/PXatvhSttj6TwTQ/KZccv19nrT5qkTY/iR8dvz9nMz+DVAE+cbwzv7onLT6Fnis/4vQ4vxTswD1wJVU/p7kLv1r//z1hkSw/vF06v1hnsz0rGy0/SkM7v3AjSD8qnS8+XngZvwTTGz+S/y6+WFhGv0eE3j5mGAW/gUM8v3cz4D5UPwS/lVw8v4Tk7D6avP2+hi08vzEXCT+BlFi+P09RvycT4T5I7vq+3bBAv6xbxD7zQAS/XflDv2q70j7/3W2+7ZphvyWqoj6/lAa/KgNKv9cSlD5C4we/Gu9Lv70Zjz4Zs3e+lN5tv4RxaD6/PAq/43tPv8GcMz4zxwu/57dRv4bsKz64GXy+mV50v9aEDT51nwy/BPlSvxIM1z1PMA2/2NhTv1sMBT/p/FA/NgAFP79WUD8A9gU/oFZQPwIHBj/b8lA/B+wGP4JWUD9DAgc/yOhQPz69Bz+/VVA/LNkHPwDVUD82eAg/ElVQPxaaCD9IvFA/UvUIP9RSUD+IKgk/NqdQP0xcCT+iTlA/5aQJPyKNUD9megk/+UdQP77GCT+PalA/DpQJP5Y7UD+K4gk/OjVQPwZ7CT/UM1A/wMYJPz/5Tz9uXQk/yDFQP+WkCT8G0E8/3vMIP3UtUD+4JQk/28NPP+hzCD9GK1A/pI8IP+K2Tz9KvAc/OyxQP+zZBz+ZsE8/R+4GP04tUD+DDQc/h6lPP573BT9QLVA/nBEGP9qpTz/qAAU/Ui1QP4EVBT8tqk8/VuMDP1QtUD/I8AM/gapPPwzGAj9WLVA/k8wCP9aqTz9ReQE/Vi1QP+CAAT/rqk8/SDUAP1ctUD9INQA//6pPP0g1AD+MGFE/SDUAPxNXUD/gfAE/AVdQPwl9AT/0ElE/+MQCP/FWUD/4xAI/XA1RP3PiAz/YVlA/j+gDPyMFUT+EDug9oFb6PYhb3j1Qx+k9wCTSPZgO8D00uds9LFMAPtiG8j0w+/Q9oNXoPYCj5D2crgA+WB/uPVUL9z3IH+A9hpcEPrD56j22EwE+KPzfPQZYBz7I+Ok9PlEFPlB24z1w1fE92KIFPnvZ5T0kGAk+7Fn+PRh6ED5Yw/I9IEcUPo5LBD4QsQw+EBL8PaRLAj5Uygk+pIQHPtwkBT7QUfw9JHEMPmA5BD5CXQg+mGf4PXJZDj4oiAA+QqsKPujV8z2olw4+cGv9PdLXCj5wGPI9kvQJPvCN8j0eTA4+wDn+PU6GCT6QJgI+QmYFPph+9j10fAU+IIkEPnquAT6g8/k9cokAPrBlBz5lYvg9IH//PYAJ9z2IQgo+0DXuPQCPAj6wGes9RKQNPrQv4j0I7AU+hNMKPiDBCj6SaQ8+lPIGPniaBz4Atg0+HBwDPtDxED54w/w9oIwUPvwU9j3oJhc+RNj3PWC96j087u09UGXuPZSO4z2gQPM90ssBPqjp6D0y4QY+4F7qPcS21z2AtPk9PIQDPtz+Fz50tfs9aAYcPo6OCD5QnxM+mBgNPiiPDj5GWA8+tCMKPuCOET5QTQY+SN8RPqiPBD50xwg+aBkUPpKLBj7ktRQ+As4JPvRjET5yJgc+JMIVPt5oCj4wcBI++r0LPpjuED6mQQw+GGoOPobcDD5Udg8+4pYNPkBxDj4ukw0+PIoMPg4uDj58lg0+ZF0OPgRcDT7Wgw4+2CYNPsIfBT5wdRc+wH4CPhAcGD6cGQM+SCgZPhylAD7g4ho+ZC37PZSQGz4cY/w9zJwcPjquDj64qAs+BpcNPqCLDD5oXw4+lFwNPuYxDj7clw0+9JYNPiB4Dj7WPQw+kHcOPrLYDD7Igw8+ysELPqT5ED6A2Qk+WG0RPmB0Cj6YeRI+5NAIPjQiFD6CkgY+rL4UPl4tBz7kyhU+MiIFPoR1Fz6ufAI+dBMYPo4XAz60Hxk+ZpwAPmjkGj7sLfs9CJEbPqdj/D1EnRw+WwwFP+n8UD8CBwY/2/JQPwD2BT+gVlA/NgAFP79WUD8H7AY/glZQP0MCBz/I6FA/Pr0HP79VUD8s2Qc/ANVQPzZ4CD8SVVA/FpoIP0i8UD9S9Qg/1FJQP4gqCT82p1A/TFwJP6JOUD/lpAk/Io1QP2Z6CT/5R1A/vsYJP49qUD8OlAk/ljtQP4riCT86NVA/BnsJP9QzUD/Axgk/P/lPP25dCT/IMVA/5aQJPwbQTz/e8wg/dS1QP7glCT/bw08/pI8IP+K2Tz/ocwg/RitQP0q8Bz87LFA/7NkHP5mwTz+DDQc/h6lPP0fuBj9OLVA/nBEGP9qpTz+e9wU/UC1QP+oABT9SLVA/gRUFPy2qTz9W4wM/VC1QP8jwAz+Bqk8/k8wCP9aqTz8MxgI/Vi1QP+CAAT/rqk8/UXkBP1YtUD8JfQE/9BJRP+B8AT8BV1A/+MQCP/FWUD/4xAI/XA1RP4/oAz8jBVE/c+IDP9hWUD+EDug9oFb6PYhb3j1Qx+k92IbyPTD79D2g1eg9gKPkPZyuAD5YH+49VQv3Pcgf4D2GlwQ+sPnqPbYTAT4o/N89BlgHPsj46T0+UQU+UHbjPXDV8T3YogU+7Fn+PRh6ED6OSwQ+ELEMPhAS/D2kSwI+VMoJPqSEBz7cJAU+0FH8PSRxDD5gOQQ+Ql0IPphn+D1yWQ4+KIgAPkKrCj7o1fM9qJcOPnBr/T3S1wo+cBjyPZL0CT7wjfI9HkwOPsA5/j1Ohgk+kCYCPkJmBT6YfvY9dHwFPiCJBD56rgE+oPP5PXKJAD6wZQc+ZWL4PSB//z2ACfc9iEIKPtA17j0AjwI+hNMKPiDBCj6SaQ8+lPIGPniaBz4Atg0+HBwDPtDxED54w/w9oIwUPkTY9z1gveo9PO7tPVBl7j2UjuM9oEDzPdLLAT6o6eg9MuEGPuBe6j08hAM+3P4XPo6OCD5QnxM+mBgNPiiPDj5GWA8+tCMKPuCOET5QTQY+SN8RPqiPBD50xwg+aBkUPgLOCT70YxE+kosGPuS1FD5yJgc+JMIVPt5oCj4wcBI++r0LPpjuED6mQQw+GGoOPobcDD5Udg8+4pYNPkBxDj4ukw0+PIoMPg4uDj58lg0+ZF0OPgRcDT7Wgw4+2CYNPsIfBT5wdRc+wH4CPhAcGD6cGQM+SCgZPhylAD7g4ho+Oq4OPrioCz4Glw0+oIsMPmhfDj6UXA0+5jEOPtyXDT70lg0+IHgOPtY9DD6Qdw4+stgMPsiDDz7KwQs+pPkQPoDZCT5YbRE+YHQKPph5Ej7k0Ag+NCIUPoKSBj6svhQ+Xi0HPuTKFT4yIgU+hHUXPq58Aj50Exg+jhcDPrQfGT5mnAA+aOQaPjQAMwAyADUANAAyADMANgAyADcANgAzADcAOAA2ADkAOAA3ADkAOgA4ADsAOgA5ADsAPAA6AD0APAA7AD4ANQAyAD4APwA1AEAAPwA+AEAAQQA/AEIAQAA+AEMAQgA+AEMARABCAEUARABDADgARQA2AEUAQwA2AEUARgBEAEcARgBFADoARwA4AEcARQA4AEcASABGAEkASABHADwASQA6AEkARwA6AEkASgBIAEsASgBJAD0ASwA8AEsASQA8AEsATABKAEwATQBKAE4ATQBMAE8ATgBMAE8AUABOAFEAUABPAFEAUgBQAFMAUgBRAFMAVABSAFUAVABTAFUAVgBUAFcAVgBVAE4AWABNAFgAWQBNAE0AWQBKAFoAWABOAFAAWgBOAFsAWgBQAFIAWwBQAFwAWwBSAFQAXABSAF0AXABUAFYAXQBUAF4AUwBRAF4AXwBTAF8AVQBTAF8AYABVAGAAVwBVAGEAXgBRAF8AXgA5AF8AOQA3AGAAXwA3AGAANwAzAF4AOwA5AF4AYQA7AGEAPQA7AGEAYgA9AGIATAA9AEwASwA9AGIAYQBPAGIATwBMAGEAUQBPAGMAYAAzAGAAYwBXADQAYwAzAGQAQQBAAGQAZQBBAGYAZABAAEIAZgBAAGcAZgBCAEQAZwBCAGgAZwBEAEYAaABEAGkAaABGAEgAaQBGAGoAaQBIAEoAagBIAFkAagBKADYAQwAyAEMAPgAyAG0AbABrAGwAbgBrAG8AbQBrAG8AcABtAHAAcQBtAHIAcQBwAHIAcwBxAHMAdABxAHUAdABzAHUAdgB0AHYAdwB0AHgAbgBsAHkAeABsAHkAegB4AHsAegB5AHwAewB5AHwAfQB7AHcAfgB0AH8AfgB3AIAAfwB3AIAAgQB/AIEAggB/AIIAgwB/AIQAgwCCAIQAhQCDAIUAhgCDAIcAhgCFAIcAiACGAIgAiQCGAIoAiQCIAIoAiwCJAIsAjACJAI0AjACLAI0AjgCMAI4AjwCMAJAAjwCOAGoAfgBpAH4AfwBpAHQAfgBqAHQAagBZAGkAfwBoAH8AgwBoAGgAgwBnAIMAhgBnAGcAhgBmAIYAiQBmAGYAiQBkAIkAjABkAIwAZQBkAIwAjwBlAHEAdABZAHEAWQBYAG0AcQBYAFoAbQBYAGwAbQBaAFsAbABaAHkAbABbAFwAeQBbAHwAeQBcAF0AfABcADUAvwA0AL8AwAA0AMEAwAC/AMEAwgDAAMMAwgDBAMMAxADCAMUAxADDAMUAxgDEAMcAxgDFAMcAyADGAMkAvwA1AD8AyQA1AMoAyQA/AEEAygA/AMoAywDJAMsAzADJAM0AzADLAM0AzgDMAMwAzgDBAM4AwwDBAM8AzgDNAM8A0ADOAM4A0ADDANAAxQDDANEA0ADPANEA0gDQANAA0gDFANIAxwDFANMA0gDRANMA1ADSANIA1ADHANQAyADHANUA1ADTANYA1QDTANYA1wDVANcA2ADVANkA2ADXANkA2gDYANsA2gDZANsA3ADaAN0A3ADbAN0A3gDcAN4A3QBWAFcA3gBWAN8A1wDWAOAA3wDWAOAA1gDTAOEA2QDXAN8A4QDXAOIA2wDZAOEA4gDZAOMA3QDbAOIA4wDbAN0AXQBWAN0A4wBdANwA5ADaAOUA5ADcAN4A5QDcAOYA5QDeAOYA3gBXAOQA5wDaAOQA5QDEAMQA5QDCAOUA5gDCAMIA5gDAAOcA5ADGAMYA5ADEAMgA5wDGAOgA5wDIANUA6ADIANQA1QDIANgA6ADVAOcA6ADYANoA5wDYAMAA5gBjAGMA5gBXAMAAYwA0AGUA6QBBAOkAygBBAOkA6gDKAOoAywDKAOoA6wDLAOsAzQDLAOsA7ADNAOwAzwDNAOwA7QDPAO0A0QDPAO0A7gDRAO4A0wDRAO4A4ADTAMkAzAC/AMwAwQC/APEA8ADvAPIA8QDvAPAA8wDvAPQA8wDwAPUA9ADwAPUA9gD0APcA9gD1APgA9wD1APgA+QD3APoA+QD4APsA+gD4APIA/ADxAPwA/QDxAP4A/QD8AP4A/wD9AP0A/wB8AP8AfQB8AAAB+wD4AAABAQH7AAEBAgH7AAMBAgEBAQQBAwEBAQUBBAEBAQUBBgEEAQcBBgEFAQgBBwEFAQgBCQEHAQoBCQEIAQsBCgEIAQsBDAEKAQ0BDAELAQ4BDQELAQ4BDwENARABDwEOARABDgGPAJAAEAGPAAEBAAHtAAAB7gDtAAAB+ADuAO4A+ADgAAEB7QDsAAUBAQHsAAUB7ADrAAgBBQHrAAgB6wDqAAsBCAHqAAsB6gDpAA4BCwHpAA4B6QBlAI8ADgFlAPgA9QDgAOAA9QDfAPUA8ADfAPAA4QDfAPAA8QDhAPEA4gDhAPEA/QDiAP0A4wDiAOMA/QB8AOMAfABdAAIAAQAAAAMAAgAAAAMABAACAAUABAADAAUABgAEAAcABgAFAAcACAAGAAkACAAHAAkACgAIAAsACgAJAAsADAAKAA0ADAALAA0ADgAMAA8ADgANAA8AEAAOABEAEAAPABEAEgAQABMAEgARABMAFAASABUAFAATABUAFgAUABcAFgAVABcAGAAWABkAGAAXABkAGgAYABsAGgAZABsAHAAaAB0AHAAbAB0AHgAcAB8AHgAdAB8AIAAeACEAIAAfACMAIgAhACEAIgAgACMAJAAiACUAJAAjACUAJgAkACcAJgAlACcAKAAmACkAKAAnACwAKwAqAC0ALAAqAC0ALgAsAC8ALgAtAC8AMAAuADEAMAAvADAAMQABAAEAMQAAAJMAkgCRAJQAkwCRAJMAlQCSAJUAlgCSAJcAlgCVAJcAmACWAJkAmACXAJkAmgCYAJsAmgCZAJsAnACaAJ0AnACbAJ0AngCcAJ8AngCdAJ8AoACeAKEAoACfAKEAogCgAKMAogChAKMApACiAKUApACjAKUApgCkAKcApgClAKcAqACmAKoAqQCoAKoAqwCpAKsArACpAKoAqACnAK4ArQCsAK4ArACrALAArwCtAK4AsACtALAAsQCvALEAsgCvALMAsgCxALMAtACyALYAtQC0ALYAtACzALgAtwC1ALYAuAC1ACkAtwAoALcAuAAoALoAuQAqACsAugAqALoAuwC5ALsAvAC5AL4AvQC8AL4AvAC7AL0AvgCUAL0AlACRAEB+tzyYYbo/bmBUPSKCpjxKS7o/EgFWPQtfrjyYaro/yslWPR7itDy5e7o/s31WPQwZ0TyEoLo/matTPXQr0Dx0Uro/eOlNPTCR6jwTsLo/hj5QPeGC6TwSXbo/E05KPXaqhT2B07k/bd4BPXoehj1Q6Lk/w7wBPYdtij3Ts7k/6tHxPH+9gj3+5Lk/4PkGPXxPgz00Abo/HwcHPSVRfz0S9bk/lsQLPfRGgD3UFbo/ZSIMPT7wdj3rB7o/+2gRPWdKeD1lLro/YToSPcc9bj2TGLo/gbcWPWCabz1hQ7o/OPwXPVu1Yj0PLbo/t/AdPYUiZD1vXLo/2IMfPeZlFj3BZ7o/k+A/PSo/Fz0Kubo/669EPWt1KD1lsLo/pUo+PY5jJz1BZro/Ikg6Pe1bBj1euro/YtFKPfqfBT2zZbo/WElFPaQDOD1HXro/+eIzPSE9OT3yn7o/kCA3PWIPST1ci7o/1FQvPXK7Rz0uUbo/FtMsPXRWWD0Hcro/67QmPSvpVj1+Pro/4tckPUSbsjydQLo/U/FRPUBrqzxBQbo/TAhUPUB+t7yYYbo/bmBUPQtfrryYaro/yslWPSKCprxKS7o/EgFWPR7itLy5e7o/s31WPQwZ0byEoLo/matTPXQr0Lx0Uro/eOlNPeGC6bwSXbo/E05KPTCR6rwTsLo/hj5QPXaqhb2B07k/bd4BPYdtir3Ts7k/6tHxPHoehr1Q6Lk/w7wBPXxPg700Abo/HwcHPX+9gr3+5Lk/4PkGPSVRf70S9bk/lsQLPfRGgL3UFbo/ZSIMPT7wdr3qB7o/+2gRPWdKeL1lLro/YToSPcc9br2TGLo/gbcWPWCab71hQ7o/OPwXPVu1Yr0PLbo/t/AdPYUiZL1vXLo/2IMfPeZlFr3BZ7o/k+A/PY5jJ71BZro/Ikg6PWt1KL1lsLo/pUo+PSo/F70Kubo/669EPfqfBb2zZbo/WElFPe1bBr1euro/YtFKPaQDOL1HXro/+eIzPXK7R70uUbo/FtMsPWIPSb1ci7o/1FQvPSE9Ob3yn7o/kCA3PXRWWL0Hcro/67QmPSvpVr1+Pro/4tckPUSbsrydQLo/U/FRPUBrq7xBQbo/TAhUPeagLb0+Hbk/3rchPaX8Jr1vIrk/sCIkPcW1Jr3CFrk/xZ4jPUFNHL2rDLk/6+YlPVm/HL0yI7k/rxsnPSt3Dr1kAbk/e8onPXckD71EH7k/gr0pPcuc/rzPC7k/JjIrPUJX/rxw6bg/uJ0oPQJx4bzru7g/lpEnPXAE4rwy4Lg/h8UqPXkV0bw8l7g/dtYmPUE/z7z1p7g/1gopPYaIxbxQebg/XPsmPS5N4bwPnrc/vfQYPfBNAL2vu7c/Vq4ZPcm9+7wVObg/6Z0fPatg2bxd/7c/WZkfPS2ivrzmtrc/iRMdPRmVyLxVd7c/HpwZPRMFrbwPb7c/pg0dPZc/s7wyS7c/eSAbPdhloLyAG7c/DmEePZ1s37xitrc/hPIOPeUFAL23BLg/QOILPXfPFL2q0Lc/vi4ZPZZcFb1pUbg/SiEePeTvLb0HyLc/otUWPYZgML3LVbg/vTAaPWtISr0HOLg/hHcSPb32Rr2Nprc/7HcPPTl7XL2nbrc/efUDPSZxYL3+Brg/x8IHPSGTcr0rzLc/Bhr3PMOCbb3ZMLc/XJXsPEVDd70hCbc/E9DbPEz1fr1LhLc/puHgPJW3E733JLg/uXUHPT6eKL2SM7g/TcMBPfuBbb1GZLc/WAjLPDtse70LBbc/Trm2POFoQr3XErg/xWv0PO68WL2ww7c/HqTiPHxDf72X17Y/KvHLPOVffb3+1LY/Sq2zPBpMgr3FobY/9Sy+PDRffb3OpLY/SaGwPO7pg728S7c/0N7OPO7pg728S7c/0N7OPKCOgL27o7c/ab3VPKordL2U+7c/d2/rPMCaYb3BRLg/OtYCPUsVS70cebg/dCsPPVt0Mb03iLg/4R0YPcuCFb0Fe7g/RHUcPf98hL0cY7c/jpjCPLxdMr1nprg/2S8UPYvEFb1torg/k4IaPUVF+rwTXbg/MaYgPTyQ+LwBhbg/Yq0ePb2707wJQrg/iVQePbSt1rykIbg/ZNwgPVQtx7y+/7c/92cgPTuzyrzp6rc/9fsePTh6urz9z7c/RhUfPfnKuLxA27c/AEEgPVQ4qrw9uLc/5FAgPWoJxLzAFbg/NCcePfTPtrwd6bc/UBAePc/Whr3BJbc/E9+6PGTyhb08oLY/zY2sPNHZiL1PzrY/xhaiPOaLib0hEbc/csOoPBsoh71uN7c/aSG1PCiLhL3PY7c/zuu9PKSOgL3dqLc/mUbSPAAsdL0K/7c/V6HpPD6+Yb05Srg/lwEAPesZS70hhbg/6bQJPZouh72VN7c/Sn2wPFSEib1SHLc/QwiiPOSKib1gG7c/MNGmPDl+jL0dBrc/gZ6SPJAPyLyHe7c/ScQTPWURsbw8Ubc/jvkXPV2Qhb1TorY/jwOkPLh/iL290bY/+w2dPMBq0rxT97c/mqMZPZW3E733JLg/uXUHPeUFAL23BLg/QOILPTyQ+LwAhbg/Yq0ePYvEFb1torg/k4IaPT6eKL2SM7g/TcMBPbxdMr1nprg/2S8UPeFoQr3XErg/xWv0POsZS70hhbg/6bQJPe68WL2ww7c/HqTiPD6+Yb05Srg/lwEAPfuBbb1GZLc/WAjLPAAsdL0K/7c/V6HpPDtse70LBbc/Trm2PKSOgL3dqLc/mUbSPF2Qhb1TorY/jwOkPJkuh72VN7c/Sn2wPFSEib1SHLc/QwiiPLh/iL290bY/+w2dPDl+jL0dBrc/gZ6SPOVffb3+1LY/Sq2zPDRffb3OpLY/SaGwPCiLhL3PY7c/zuu9PLwGvbw5urc/9UcYPfgxrLypcrc/1sQaPfIwyryH67c/YmAZPZgUurwb0rc/jSocPXdefb2Zmrc/ovbuPIy7eb0Borc/9JLcPC7Cfr04r7c/y/HhPDKSgb1Lrbc/ku3xPM9yeL1g97c/KSX0PLBVf73v9bc/0H71PLKweb1BwLc/F0vcPJASf735xrc/IWPhPGfog73Owrc/m2LzPBGRgr2rybc/ueznPP/Fhb3U3Lc/oEXzPGZdhb1r5Lc/SSLtPL9Hhb14+bc/ZUv0PMPQgr3U9rc/h5z1PHr0hL2A5bc/g9HtPJZSgr310rc/pITnPOO8h70E/7c/fZ3xPPmSdL37n7c/BNXWPLshdL2Xw7c/MmHVPEOTcL13/Lc//SPyPDtZdr0Vibc/3hLrPNkkT73lMbg/5wQTPfPlVL3dcLg/hHILPZ1iWr37h7g/qlsOPc7iVr2KWbg/b4cVPc+wRb2Tgbg/vm4YPVIgUr0Oj7g/+GUYPThOSL3ukLg/4pcOPbveUL01nLg/wjsSPfW3XL0ugLg/QoEWPZwyX72OoLg/hpQRPRwPYL1Gn7g/BGcWPcyhYb1Ys7g/2J4TPXsXWr2Enrg/P+8XPTnqXr34rbg/ABwXPRknXr0Zt7g/p5AVPaexWL3tqbg/N4cUPUZmY71+xbg//t0VPRTRTb2gZLg/dbAJPfiZPb1yiLg/r7MJPU/wRr0SEbg/vqwQPdVWNb0vcrg/JgcXPeD+HL30vbQ/dK/2PAykHL2Kq7Q/Y9n9PEdHM723orQ/HWXuPE9gMr3HtLQ/KRTpPCBbB70L4LQ/FmoAPZ77Br3c1bQ/w8ECPeOX8LzhE7U/TkYDPSTkRb1YurQ/U33ZPDUYR72zr7Q/EjLcPOk4Wr2187Q/28vHPGTyhb08oLY/zY2sPBpMgr3FobY/9Sy+PO5Ffb3mJbY/4QO7PMQmgb3FH7Y/Pc+uPNQ0dL3urbU/RZq5PAmSd73mp7U/ZvGyPLgmb71CXLU/8F62PB6Jbb07ZrU/3LC6PGnOZr2nKLU/57+8PLjPZb0wLbU/uIK+PCwRXr0NBrU/CavDPIvqeb2ELbY/W5atPDRffb3OpLY/SaGwPAcMcr0StbU/p0ixPDcDbL2cbrU/aU61PJ71ZL0NNLU/d867PJ4nZr2ZL7U/tL+6PH2dbr05Y7U/VnmxPBnLd70Hr7U/jsutPBH3gL3pLbY/Z8qoPF2Qhb1TorY/jwOkPKtjh731Bbc/AMvLPBYXib3h8bY/ktrLPGJth71vBrc/O7fIPBi1hb2i5bY/N5zLPHiMhb0lI7c/q9vGPNKEhb0rJbc/DsvMPK0Yg71e3rY/4UHMPGbmg717ULc/Cu3GPBDkg73p97Y/CmLDPOgUgb0rALc/b2e/PC9bhr2G87Y/sjfHPOagLT0+Hbk/3rchPcW1Jj3CFrk/xZ4jPaX8Jj1vIrk/sCIkPUFNHD2rDLk/6+YlPVm/HD0yI7k/rxsnPSt3Dj1kAbk/e8onPXckDz1EH7k/gr0pPcuc/jzPC7k/JjIrPUJX/jxw6bg/uJ0oPQJx4Tzru7g/lpEnPXAE4jwy4Lg/h8UqPXkV0Tw8l7g/dtYmPUE/zzz1p7g/1gopPYaIxTxQebg/XPsmPS5N4TwPnrc/vfQYPatg2Txd/7c/WZkfPcm9+zwVObg/6Z0fPfBNAD2vu7c/Vq4ZPS2ivjzmtrc/iRMdPRmVyDxVd7c/HpwZPRMFrTwPb7c/pg0dPZc/szwyS7c/eSAbPdhloDyAG7c/DmEePZ1s3zxitrc/hPIOPeUFAD23BLg/QOILPXfPFD2q0Lc/vi4ZPZZcFT1pUbg/SiEePeTvLT0HyLc/otUWPYZgMD3LVbg/vTAaPWtISj0HOLg/hHcSPb32Rj2Nprc/7HcPPTl7XD2nbrc/efUDPSZxYD3+Brg/x8IHPSGTcj0rzLc/Bhr3PMOCbT3ZMLc/XJXsPEVDdz0hCbc/E9DbPEz1fj1LhLc/puHgPJW3Ez33JLg/uXUHPT6eKD2SM7g/TcMBPfuBbT1GZLc/WAjLPDtsez0LBbc/Trm2POFoQj3XErg/xWv0PO68WD2ww7c/HqTiPHxDfz2X17Y/KvHLPOVffT3+1LY/Sq2zPBpMgj3FobY/9Sy+PDRffT3OpLY/SaGwPO7pgz28S7c/0N7OPO7pgz28S7c/0N7OPKCOgD27o7c/ab3VPKordD2U+7c/d2/rPMCaYT3BRLg/OtYCPUsVSz0cebg/dCsPPVt0MT03iLg/4R0YPcuCFT0Fe7g/RHUcPf98hD0cY7c/jpjCPLxdMj1nprg/2S8UPYvEFT1torg/k4IaPUVF+jwTXbg/MaYgPTyQ+DwBhbg/Yq0ePb270zwJQrg/iVQePbSt1jykIbg/ZNwgPVQtxzy+/7c/92cgPTuzyjzp6rc/9fsePTh6ujz9z7c/RhUfPfnKuDxA27c/AEEgPVQ4qjw9uLc/5FAgPWoJxDzAFbg/NCcePfTPtjwd6bc/UBAePdHZiD1PzrY/xhaiPGTyhT08oLY/zY2sPM/Whj3BJbc/E9+6POaLiT0hEbc/csOoPBsohz1uN7c/aSG1PCiLhD3PY7c/zuu9PKSOgD3dqLc/mUbSPAAsdD0K/7c/V6HpPD6+YT05Srg/lwEAPesZSz0hhbg/6bQJPZouhz2VN7c/Sn2wPFSEiT1SHLc/QwiiPOSKiT1gG7c/MNGmPDl+jD0dBrc/gZ6SPJAPyDyHe7c/ScQTPWURsTw8Ubc/jvkXPbh/iD290bY/+w2dPF2QhT1TorY/jwOkPMBq0jxT97c/mqMZPZW3Ez33JLg/uXUHPYvEFT1torg/k4IaPTyQ+DwAhbg/Yq0ePeUFAD23BLg/QOILPT6eKD2SM7g/TcMBPbxdMj1nprg/2S8UPeFoQj3XErg/xWv0POsZSz0hhbg/6bQJPe68WD2ww7c/HqTiPD6+YT05Srg/lwEAPfuBbT1GZLc/WAjLPAAsdD0K/7c/V6HpPDtsez0LBbc/Trm2PKSOgD3dqLc/mUbSPF2QhT1TorY/jwOkPFSEiT1SHLc/QwiiPJkuhz2VN7c/Sn2wPLh/iD290bY/+w2dPDl+jD0dBrc/gp6SPOVffT3+1LY/Sq2zPDRffT3OpLY/SaGwPCiLhD3PY7c/zuu9PLwGvTw5urc/9UcYPfgxrDypcrc/1sQaPfIwyjyH67c/YmAZPZgUujwb0rc/jSocPXdefT2Zmrc/ovbuPDKSgT1Lrbc/ku3xPC7Cfj04r7c/y/HhPIy7eT0Borc/9JLcPM9yeD1g97c/KSX0PLBVfz3v9bc/0H71PLKweT1BwLc/F0vcPJASfz35xrc/IWPhPGfogz3Owrc/m2LzPBGRgj2rybc/ueznPP/FhT3U3Lc/oEXzPGZdhT1r5Lc/SSLtPL9HhT14+bc/ZUv0PMPQgj3U9rc/h5z1PHr0hD2A5bc/g9HtPJZSgj310rc/pITnPOO8hz0E/7c/fZ3xPPmSdD37n7c/BNXWPLshdD2Xw7c/MmHVPNkkTz3lMbg/5wQTPc7iVj2KWbg/b4cVPZ1iWj37h7g/qlsOPfPlVD3dcLg/hHILPc+wRT2Tgbg/vm4YPVIgUj0Oj7g/+GUYPThOSD3ukLg/4pcOPbveUD01nLg/wjsSPfW3XD0ugLg/QoEWPZwyXz2OoLg/hpQRPRwPYD1Gn7g/BGcWPcyhYT1Ys7g/2J4TPXsXWj2Enrg/P+8XPTnqXj34rbg/ABwXPRknXj0Zt7g/p5AVPaexWD3tqbg/N4cUPUZmYz1+xbg//t0VPfiZPT1yiLg/r7MJPdVWNT0vcrg/JgcXPRTRTT2gZLg/dbAJPU/wRj0SEbg/vqwQPTtZdj0Vibc/3hLrPEOTcD13/Lc//SPyPOD+HD30vbQ/dK/2PE9gMj3HtLQ/KRTpPEdHMz23orQ/HWXuPAykHD2Kq7Q/Y9n9PCBbBz0L4LQ/FmoAPZ77Bj3c1bQ/w8ECPeOX8DzhE7U/TkYDPSTkRT1YurQ/U33ZPDUYRz2zr7Q/EjLcPOk4Wj2187Q/28vHPGTyhT08oLY/zY2sPMQmgT3FH7Y/Pc+uPO5FfT3mJbY/4QO7PBpMgj3FobY/9Sy+PNQ0dD3urbU/RZq5PAmSdz3mp7U/ZvGyPLgmbz1CXLU/8F62PB6JbT07ZrU/3LC6PGnOZj2nKLU/57+8PLjPZT0wLbU/uIK+PCwRXj0NBrU/CavDPIvqeT2ELbY/W5atPDRffT3OpLY/SaGwPAcMcj0StbU/p0ixPDcDbD2cbrU/aU61PJ71ZD0NNLU/d867PJ4nZj2ZL7U/tL+6PH2dbj05Y7U/VnmxPBnLdz0Hr7U/jsutPBH3gD3pLbY/Z8qoPF2QhT1TorY/jwOkPKtjhz31Bbc/AMvLPGJthz1vBrc/O7fIPBYXiT3h8bY/ktrLPBi1hT2i5bY/N5zLPHiMhT0lI7c/q9vGPNKEhT0rJbc/DsvMPK0Ygz1e3rY/4UHMPGbmgz17ULc/Cu3GPBDkgz3p97Y/CmLDPOgUgT0rALc/b2e/PC9bhj2G87Y/sjfHPIAkpj4XwwO/7ShLP3+TpT4UtAa/nlZJP/IMpj6otuq+a9NTPxa6pz5f29W+V/RYPxjmnz5LRfi+xCBRPxICoD7sFAG/JhdOP+1hlD4E5fa+aKRTP3JilD6ry/a+tatTP7TYHj8tTkC+oupCP++KHj+G7EC+JCBDP5PrIT/qrDq+kbdAPxwYFj+XJlO+YI1IP7KIFT9BYlS+muNIP75nCD/5s3K+MPZPP8yLBz+uuXS++l9QP2Ax9T5DVoy+JoBVPxG38z76no2+JrZVP6up6D4LS52+/gxWP46b6D6gXZ6+Mt5VP6AE4z7sXqe+r6dVP8kw4j5q4Ke+csZVP8f2kz4H7Ny+i8VaP2kTlD4Jmt2+rpRaPwwKmT5h7NG+RplcP3LamT4wQNG+8J1cP6GglD78M+u+MudWPx6ulD6Gseq+gwhXP7g2qz4lJca+ZvtbP/m4qT4OAse+fhNcPwt7vz4Dq7q+805aPzZGwT5Mpbm+kiFaP9P60z5wRK++IuxXPwMx1T6Ko66+XMBXP9p0sT6R5R6/wQo0PxiKsD40+BO/7lY9P4Akpr4XwwO/7ShLP/IMpr6otuq+a9NTP3+Tpb4UtAa/nlZJPxa6p75f29W+V/RYP9PLn76HbPi+IxpRPxICoL7sFAG/JhdOP3JilL6ry/a+tatTP+1hlL4E5fa+aKRTP7TYHr8tTkC+oupCP5PrIb/qrDq+kbdAP++KHr+G7EC+JCBDP7KIFb9BYlS+muNIPxwYFr+XJlO+YI1IP75nCL/5s3K+MPZPP8yLB7+uuXS++l9QP2Ax9b5DVoy+JoBVPxG38776no2+JrZVP6up6L4LS52+/gxWP46b6L6gXZ6+Mt5VP6sF477oeae+HqJVP68y4r631Ke+PchVP8Pqk76p7dy+KcdaP3Lamb4wQNG+8J1cP6wGmb6/59G+9ppcP2kTlL4Jmt2+rpRaPx6ulL6Gseq+gwhXP6GglL78M+u+MudWP7g2q74lJca+ZvtbP21Kwb5Yqbm+xR9aPwt7v74Dq7q+805aP/m4qb4OAse+fhNcP0D2076oQK++B+5XPwMx1b6Ko66+XMBXP9p0sb6R5R6/wQo0PxiKsL40+BO/7lY9P5GXkr5Uz7u+eJhiP3LCiL5QscO+/XZiP5Rgh76hxMS+gXBiPweYVL67GNu+kjBhP/8cWr6/Cdm+rVthPxdbJL7DsPS+NBZdP9LWJ77PkfG+tcddPxqXIb4ujwS/tT9XP0D1JL74iwa//dlVP0kjeb4aQBO/Vu9HPwnCU77JnA+/WzRNP9XEr74r4xW/cAE8P4Axpr7DSxa/9dg9P5xcyb5LbBS/qqw2P5YNq766DFy/ufvFPjnAaL5tpme/70O4Pm1G0L3OpVe+quZ4P2oAkb2fTbW+rbluP9WdwD6vl78+7vxYPz3rxL7xKUy/afvtPirkxT5G7LE+VbRaP40MAL8+Ez+/o8PgPj4lJT+LqTK/eUifPmJgsj3/cpW+idVzvwUoMT6PRXq9dqd7vz6Rqb24j2u/K+/DPmU05r3SVkG9Jxd+Pz4OPryoJWW/KzPkPvacVb6Dy0M9lRF6P8Cowr4YHnQ9uUhsPzOCwDyPOWG/4xfzPjDEUz3cb2G/1SfxPggYB78erno9MeNYP8fXIr9PDj49OixFP9n53D2s6mG/4mPqPq4gAT54MFu/20EAP31jMr/h2CO7e5w3P9jvST6ZJDm9tbR6v4T0jD5Tphs8cxh2v1UXFD+EOV+9AFpQvxDgMT/Fiw68pRg4vw33tT48kKC7lUhvv/jH9D6eM4C9q0Zgv8ka4jxRKly/ZW8CPxZZWD9ejxO+T8oDv/8GML4YYvK+HCldP/DRfz9WEoO8oNoKPbM6QL/wwzE+TR8jP/w2QL/H4DE+tSEjP0dQS797svs+i+K2PhudMb8EThI/ClzgPup1DL/KQig/3UQEP6u4zb5maCE/aAIqP4ZxaL5yg/w+D/xWPzju9L0Zi6g+AMlvP0vKVL/yrPw+6BKDPmAll71o+34/MGVMPT8Nkz1iWnk/XdxbPrhQuLzqSDs+sZ17P7jPlT4crGw/3Cl6PgEl6D6hJmQ/FnFOPNJcuj2mEr89DtF9Pynx/T21yZA9/WB9P8GAmb4WjUy/jW4FP1NTtr6UQFS/vazcPm6+nz2145Q9ZIp+P74BWD8vSfm+eDZnPpVLFT9g5E8/MMCovKdjLj+ZJDg/b3gLvsuOVr+4mbu80YULPzGEUL93qQS/TIiFPuC7RL9jAB6/btksPppaXr8NvZ+8nYj9Pk88Ur/hygQ/HGpzPh4PmL5HeFY/PZfqvmpC2r4hvFE/sVjEvjl6yb5VPV4/WeKavnlTkr77qms/hkqIvrdANb4BVHc/809Avpu7Fr6ggFY/u40Gv0M0Mz7PhF8/JffovveARb+WRRY/D0p7PtODI7/skTE+HOg/v2zkgzx5S/m+DpFfv1r4ID7jlv2+B7lav9fOrr5usNq+P1ZWvzYULj7KMOi+Gflfv/606D6vDPM+IPNAv9jvST6ZJDm9tbR6vwUoMT6PRXq9dqd7v7jPlT4crGw/3Cl6Pj8Nkz1iWnk/XdxbPpkAjT6dSB08pxZ2vy8ll70W+34/ys1MPQ33tT48kKC7lUhvv7dANb4BVHc/809AvvjH9D6eM4C9q0Zgv3lTkr77qms/hkqIvsQSFD9fpV+9y1xQvzl6yb5VPV4/WeKavhDgMT/Fiw68pRg4v2pC2r4hvFE/sVjEvmzarr6Ertq+X1RWv5u7Fr6ggFY/u40Gvy0yMz40gl8/igHpvjYULj7KMOi+Gflfv7CAI7+DjjE+++o/vzxWWD9sjRO+IM8Dv/DRfz9WEoO8oNoKPR4PmL5HeFY/PZfqvoXcJD9qzyQ/NZvTvtpMSj+qCv0+gIG5vu7v67syRN6+vZxmv7Lv2j3x/Qa/lclXv/WGNL5Un1i/Ur0AP0OU8L6p5hm/xHglv3JgBr+8Lw2/uvclv1xNqL7+RUu/HOYCPxyYf7uwj0M/ATMlP14iMD1LBEo/VdscP2/9x75Ires+BxZMv4l+pr4PpeY+h9pUv0S4+r5Hcja/3pUAP7LsD79fYsG+TVc8v0UpIL9Hmhy/+d73Pgcu8L4E2qy92Axhv6sb67wlA1c/KcAKP4GsLbxpsk8/jqIVP76dxDrQ7TA/1gQ5v2BZZL6exgo/mGhPv6PpXb9XN/8+p74ovMjX/74WrNq+QetAv4as2r6E6fU+1h5Evyjw670N52E/GIjpPoE/+b39JWe/SA3TPi/Rt746zWK/plSWPvFPAr9qAdW8M0Bcvzh8D79jSWo9zIBTvysI7L4P0ES/F+viPo+OBj4dTdc+GNFlP97t4j2h2MU+nWdqP2dPuDx7XHY/g7GKvg2d3j2UY3o/6ts1vv7+Er8oHie/D/v8PloCG7/y76c9saZKvyFwLb9CmwS/ga4FP9u7JL+cByw+oy0/v4IKYD36mbM+1VJvPxP71LyzNqU+5DZyP2vJlD4f6nQ/DqCJPJHQUT6axnk/DFWfvZWwQb94EiM/fCQXPojvx768VAE+LXJpv6M9mz01rH4/RduKvdpOL77Qkkm/PpoXP0VfGD7XIR4/N69FPzCrgL4q20w/NWULP7QEhb5qL00/5uEJP7I2Xr4C40k/0kcTP5LlXb4WzUk/f20TP77Dsb5eNko/HmgBPymGtr5hi0k/c8oAP5n0176US0Q/8b/3PrgRB77m5UI/X4MiP5Hv9L0Q8UE/mUUkP0jLIb3I1Do/5LguPzGEUL93qQS/TIiFPv8GML4YYvK+HCldPy+7Yz3qO5u9zt1+P3u1U79pUQi/Fbo4Pv9MhD23/Ic9LuZ+P0eoRb9Ruhm/4v1UPkryK78/Gjq/QjgSPkxrRb1kTg0+HUB9PxnhC79jRlW/oOyvPZwhEr5hx08+iv93P6NZSr6eu3y9UnR6P98dRT+Qpao+ikkLP/DRfz9WEoO8oNoKPVWfNz/vqP4+59j5PmfWEj+m0hs/1VUMP5/Gvj4KBjQ/BAMbP4qLfb7I8UO/yxAYv6j/D7/65ju/it3CvrNNPb/50Ru/nj6TvrxmS79KHgq/VaaOvtfOrr5usNq+P1ZWvx7f8b7qsv0+vJk6P3dacr8A8YO+DvBFPkOEJb88d+g+o/Acv2puRb7f8mK/CFrXPrvmKL/f8tk+pIgev4M3F78Dwbc+IgI5P9F+Gb4RBGS/Sb/bPuONQ7/x2+Q+uVTuvq7tfL45sNK+1ZZgv58NYL6F7uu+BTBcv2gQlL5Ob+q+wzVXv5GXkj5Uz7u+eJhiP5Rghz6hxMS+gXBiP3LCiD5QscO+/XZiP7KVVD5wI9u+Gy5hP/8cWj6/Cdm+rVthP4xBJD7EsfS+HBddP9LWJz7PkfG+tcddPxqXIT4ujwS/tT9XP0D1JD74iwa//dlVP0kjeT4aQBO/Vu9HPwnCUz7JnA+/WzRNP9XErz4r4xW/cAE8P4Axpj7DSxa/9dg9P5xcyT5LbBS/qqw2P5YNqz66DFy/ufvFPmoAkT2fTbW+rbluP21G0D3OpVe+quZ4PznAaD5tpme/70O4PtWdwL6vl78+7vxYPz3rxD7xKUy/afvtPirkxb5G7LE+VbRaP40MAD8+Ez+/o8PgPj4lJb+LqTK/eUifPmJgsr3/cpW+idVzvwUoMb6PRXq9dqd7vz6RqT24j2u/K+/DPiho5j1EVkG9axZ+Pz4OPjyoJWW/KzPkPvacVT6Dy0M9lRF6P8Cowj4YHnQ9uUhsPzOCwLyPOWG/4xfzPpxbU70pcGG/JijxPggYBz8erno9MeNYP8fXIj9PDj49OixFP9n53L2s6mG/4mPqPq4gAb54MFu/20EAPzdgMj/g1SO7q583P9jvSb6ZJDm9tbR6v4T0jL5Tphs8cxh2v1UXFL+EOV+9AFpQvxDgMb/Fiw68pRg4vw33tb48kKC7lUhvv/jH9L6eM4C9q0Zgv8ka4rxRKly/ZW8CPxZZWL9ejxO+T8oDv/8GMD4YYvK+HCldP/DRf79WEoO8oNoKPfw2QD/H4DE+tSEjP7M6QD/wwzE+TR8jP0dQSz97svs+i+K2PhudMT8EThI/ClzgPup1DD/KQig/3UQEP6u4zT5maCE/aAIqP4ZxaD5yg/w+D/xWPzju9D0Zi6g+AMlvP0vKVD/yrPw+6BKDPmAllz1o+34/MGVMPT8Nk71iWnk/XdxbPrhQuDzqSDs+sZ17P7jPlb4crGw/3Cl6PgEl6L6hJmQ/FnFOPNJcur2mEr89DtF9Pynx/b21yZA9/WB9P69xmT4GkUy/2WwFP1NTtj6UQFS/vazcPm6+n72145Q9ZIp+P30AWL+9R/m+WE9nPpVLFb9g5E8/MMCovKdjLr+ZJDg/b3gLvuC7RD9jAB6/btksPjGEUD93qQS/TIiFPsuOVj+4mbu80YULP5paXj8NvZ+8nYj9Pk88Uj/hygQ/HGpzPh4PmD5HeFY/PZfqvmpC2j4hvFE/sVjEvjl6yT5VPV4/WeKavnhUkj6WrGs/Vz6IvrdANT4BVHc/809Avpu7Fj6ggFY/u40Gv8QYM741g18/lQLpvveART+WRRY/D0p7PvZ/Iz/xpzE+Iuo/v2zkg7x5S/m+DpFfv1r4IL7jlv2+B7lavzYULr7KMOi+Gflfv9fOrj5usNq+P1ZWv/606L6vDPM+IPNAv9jvSb6ZJDm9tbR6vz8Nk71iWnk/XdxbPrPblb5Vqmw//Cd6Pr0nMb4Hrnq9Ead7v5kAjb6dSB08pxZ2vy8llz0W+34/ys1MPQ33tb48kKC7lUhvv7dANT4BVHc/809AvvjH9L6eM4C9q0Zgv3lTkj77qms/hkqIvsQSFL9fpV+9y1xQvzl6yT5VPV4/WeKavhDgMb/Fiw68pRg4v2pC2j4hvFE/sVjEvmzarj6Ertq+X1RWv9oaM77PhV8/Mfjovpu7Fj6ggFY/u40GvzYULr7KMOi+Gflfv7CAIz+DjjE+++o/vzxWWL9sjRO+IM8Dv/DRf79WEoO8oNoKPR4PmD5HeFY/PZfqvkXeJL8p0SQ/V5DTvtpMSr+qCv0+gIG5vsc27zsoRN6+spxmv7Lv2r3x/Qa/lclXv49tND5OoFi/570AP1xNqD7+RUu/HOYCP3JgBj+8Lw2/uvclv0OU8D6p5hm/xHglv+oSgzurj0M//TIlP14iML1LBEo/VdscP4sIyD7tqus+/RNMv4l+pj4PpeY+h9pUv02u+j6QdDa/epcAP7LsDz9fYsG+TVc8v0gnID9VmBy/Aen3Pgcu8D4E2qy92Axhv6sb6zwlA1c/KcAKP+ZPLzxbsk8/g6IVP76dxLrQ7TA/1gQ5v2BZZD6exgo/mGhPv8PzXT8hFP8+X8EovMjX/z4WrNq+QetAv4as2j6E6fU+1h5Evy/Rtz46zWK/plSWPisI7D4P0ES/F+viPrp3Dz/BTGo91oNTv/xMAj9LztW8wkFcv4+OBr4dTdc+GNFlP97t4r2h2MU+nWdqP2dPuLx7XHY/g7GKvtvQ3r3gYno/Z9s1viL9Ej8KHCe/9gT9PloCGz/y76c9saZKvyFwLT9CmwS/ga4FP5G8JD8i7is+di4/v4IKYL36mbM+1VJvPxP71DyzNqU+5DZyP2vJlL4f6nQ/DqCJPJHQUb6axnk/DFWfvZWwQT94EiM/fCQXPqM9m701rH4/RduKvUVfGL7XIR4/N69FP4jvxz68VAE+LXJpv9pOLz7Qkkm/PpoXP4E/+T39JWe/SA3TPijw6z0N52E/GIjpPjCrgD4q20w/NWULP5LlXT4WzUk/f20TP7I2Xj4C40k/0kcTP7QEhT5qL00/5uEJP1bHsT7nM0o/vGoBPymGtj5hi0k/c8oAP5n01z6US0Q/8b/3PkkpBz4T4kI/u4YiP5bz9D0/9EE/vUEkP/kzIj2X1Do/trguPzGEUD93qQS/TIiFPnu1Uz9pUQi/Fbo4Pi+7Y73qO5u9zt1+P/8GMD4YYvK+HCldP/9MhL23/Ic9LuZ+P0eoRT9Ruhm/4v1UPkryKz8/Gjq/QjgSPkxrRT1kTg0+HUB9PxnhCz9jRlW/oOyvPe0HEj4jyE8+cQB4P9RySj5Xuny9DnN6P98dRb+Qpao+ikkLP/DRf79WEoO8oNoKPVWfN7/vqP4+59j5PtvcEr+L0hs/L08MP5/Gvr4KBjQ/BAMbP6+HfT7N7kO/CRUYv6j/Dz/65ju/it3CvrNNPT/50Ru/nj6TvrxmSz9KHgq/VaaOvtfOrj5usNq+P1ZWvx7f8T7qsv0+vJk6PyeGJT/Mfeg+N+wcv3dacj8A8YO+DvBFPmpuRT7f8mK/CFrXPrvmKD/f8tk+pIgev4M3Fz8Dwbc+IgI5P9F+GT4RBGS/Sb/bPuONQz/x2+Q+uVTuvq7tfD45sNK+1ZZgv58NYD6F7uu+BTBcv2gQlD5Ob+q+wzVXvzNCRj0QUZs9aH8KPejCpj13kC89yNOcPRAwRz0Af5Y9MkWNPTCzgj3onYs98CqZPdj0tD3Asl89gKC1PeCNkT0teqo+ADsNPQjpqj7AU+k8E7K+PmCVAT32mKY+gPIPPcYlpz7AIek8iuafPiCjFD0Sp6A+gMvoPI61mD4Azxk9xneZPoD96jwhUpA+MNcfPU8WkT5gje08btKHPgACKT38kog+gNr2PN29Bj5ARYI99acGPuBfNz0vcSU+4MUnPYwRJT5QQW49xjPnPWDESD26luc94NyIPfiERD6wJFc9gF5FPuCXFz14Img+gPoJPX7vZj6Qe0E9MTOCPoDR/TxYdYE+MN8vPaA9RT34mKA9xBUzPbCAoj0zQkY9EFGbPXeQLz3I05w9aH8KPejCpj0QMEc9AH+WPTJFjT0ws4I96J2LPfAqmT2AoLU94I2RPdj0tD3Asl89LXqqPgA7DT0Tsr4+YJUBPQjpqj7AU+k8xiWnPsAh6Tz2mKY+gPIPPYrmnz4goxQ9EqegPoDL6DyOtZg+AM8ZPcZ3mT6A/eo8IVKQPjDXHz1PFpE+YI3tPG7Shz4AAik9/JKIPoDa9jzdvQY+QEWCPYwRJT5QQW49L3ElPuDFJz31pwY+4F83PbqW5z3g3Ig9xjPnPWDESD34hEQ+sCRXPX7vZj6Qe0E9eCJoPoD6CT2AXkU+4JcXPTEzgj6A0f08WHWBPjDfLz2gPUU9+JigPcQVMz2wgKI9zVJtP/ApHD+2sm8/LSgaP381bz9yphk/Sv1wP5JFFz/ZBnI/VSEYP8VcdD8LsRI/qdx1PxPiEz8WjXg/YToQP0ezdj8sGA8/Ood4PwuiCj+0zHo/g7ILP1lOeT98/Ac/NVp7P/GuCD/oWHo/9hgEP8tMzD7qh3c/e2/VPj5cdj+3PNM++E1zP+sRyj5KiXQ/ITvEPo6Mdj+DycY+dpN4P23pvz4wVng/PSvBPq6AeT8xobs+Whh6P0Nbzj6yLXk/cwrXPjQweD+7muA+1h51P4uj3z7wCXI/aynuPiYNdD/zze0+LE9xPzu7+z6gE3E/W2/8PrSVcz8lCgU/bLRzP7P0BD8y6XE/o5MMP8aKcz8jiQw/Zrp0P2OeEz+UWXY/QwwTPygrdT9L5+E+xO53P+N07z6Q0Xc/CbYNP8aEdz9/rxQ/jox5P+NV/j6Ab3c/xTEGP1gQdz9MGxY/APt2PxUiFz9ye3k/NZgYP26cdz+rlBk/Vmp5P55JFj/m3nQ/nkkWP+bedD8/FRM/5DdwPxFKDD8guG4/fR4FP/4Ibj+3h/w+ft1tPxev7j7WOG4/Q1ffPgwabz9vGRc/wJdxPwPh7z7Amms/L7vfPrYcbT9fn9I+7MVwPz+d0j5YOnA/2//IPlRUcj+75cg+artyP/HWwz4Ox3M/F7DEPowOdT8hDMA+DjF1P4HJvz4+j3Q/NaG7PtBZdT9lzsM+YmJzP1W2vz68VnQ/+oYZP6aSdD/bjRo/zhJ3P5sFHD/QxHU/UXwbP5Q6dD/7bRk/ZE5yP1flGD9jrHA/pWYVP2jobj+h6Q4/ktBsPxlVBz8CYGs/AyX/PggEaz+GxRo/jYFxP2XpGz/G5nE/B/MaP1qwcj/8qx0/l8lyP7f0xz5og3k/pWPCPtToeT9Vexs/All4P5X/HD9eSXY/u6HKPqUYdT+Vygs/gF9dP233Dz9U318/iX4TP6jqWj8rIA0/FLBXP/mDBT9Fcls/lW8FPwTUVT9xXf4+975bP9WO/D74N1Y/WUXyPpJxXT9dv+4+TMZXP19H5T5h7l8/5eLhPpyBWj8xbtg+iERjP+nu1j5wXV0/mS/NPg5LZT9Hmc0+ykhgP1V+yz5KqmA/FY/JPs6RYz9l/sc+fkhhPzul1D6ru2Q/RdzQPs4yZj8H69A+DWFfP5Wbwz7kH3c/7pi/PlTreD+t28M+kE51P24gvz5EQ3U/b2sQPzEWcj+n8BA/zeJ0Px5MDz9Vm3U/C+UOP+tzcz9IsQ0/Y+tuP5s9DT/udnE/LTILP4E1bj9XGQs/XMRwP2IKDj8mMXQ/fxQOP5vHdT9yKg0/Uc10Px35DD+VrHU/TYcMP1xAdD/r2Aw/pwNzP1SQCz+G73M/qy8LP2lpcj+k/ws/0nt1P+nQCD8yoHA/LTILP4E1bj9IsQ0/Y+tuP29rED8xFnI/zWAvP7fxZT/DPzM/mLxkP3dPND/W7WE/OVkxPwTcYj8vcSo/ELVkPzm5Lj9u1GE/7SYqPxKvYT+rky0/5pNfPwNlMj/sF2E/25E0PwYPYD9NPzM/hmRfP99vND8shl4/d84wPyo1YD8DfzI/bt9eP+/8MT840V0/ZdcvP+R0Xj9rLTQ/IDtdP0nYLD8gvVw/7SYqPxKvYT/NYC8/t/FlPy9xKj8QtWQ/86krP7jPbj+uzCs/LnBvP/plLj/nZ24/3QIuP/LHbT83Cyk/fXFvP/gKKT8eH3A/bAMnP6+1bz9aRTA/mKBsPwzDMD+bCm0/yKsyPzHzaj8CPJw+OVtWP/5YoT7wuFg/8y+dPhISXj9vMJg+qs9cP2nImj4ETWM/8ruWPii2Yj+8zpc+iBdnP5Ctmj7eHGc/yniZPjyEaj/0/Zo+7YJqP3K4mz6n0G0/H/2ePhnGXj86vKI+IgdZPymYnD6EwmM/OC6cPuZlZz+A/Js+nLdqP0cCmD7bpGo/EMeVPkgrZz+LZJQ+1ZpiP5PXlT5CmVw/UzKbPrBfVT+XRho//XB0P1F8Gz+UOnQ/DTUaP4wIcz+1ZRk/BKx2PyCuGD+nE3I/qnIYPw2sdD9k6Rc/H3B3P28ZFz/Al3E/ZkYYP8bAdD9emhY/YEl0PzzHGT+Ku3Q/zVJtP/ApHD9/NW8/cqYZP7aybz8tKBo/Sv1wP5JFFz/ZBnI/VSEYP8VcdD8LsRI/qdx1PxPiEz8WjXg/YToQP0ezdj8sGA8/Ood4PwuiCj+0zHo/g7ILP1lOeT98/Ac/NVp7P/GuCD/oWHo/9hgEP8tMzD7qh3c/6xHKPkqJdD+3PNM++E1zP3tv1T4+XHY/ITvEPo6Mdj+DycY+dpN4P23pvz4wVng/PSvBPq6AeT8xobs+Whh6P0Nbzj6yLXk/cwrXPjQweD+7muA+1h51P4uj3z7wCXI/aynuPiYNdD/zze0+LE9xPzu7+z6gE3E/W2/8PrSVcz8lCgU/bLRzP7P0BD8y6XE/o5MMP8aKcz8jiQw/Zrp0P2OeEz+UWXY/QwwTPygrdT9L5+E+xO53P+N07z6Q0Xc/CbYNP8aEdz9/rxQ/jox5P+NV/j6Ab3c/xTEGP1gQdz9MGxY/APt2PxUiFz9ye3k/NZgYP26cdz+rlBk/Vmp5P55JFj/m3nQ/nkkWP+bedD8/FRM/5DdwPxFKDD8guG4/fR4FP/4Ibj+3h/w+ft1tPxev7j7WOG4/Q1ffPgwabz9vGRc/wJdxPwPh7z7Amms/L7vfPrYcbT9fn9I+7MVwPz+d0j5YOnA/2//IPlRUcj+75cg+artyP/HWwz4Ox3M/F7DEPowOdT8hDMA+DjF1P4HJvz4+j3Q/NaG7PtBZdT9lzsM+YmJzP1W2vz68VnQ/mwUcP9DEdT/bjRo/zhJ3P/qGGT+mknQ/UXwbP5Q6dD/7bRk/ZE5yP1flGD9jrHA/pWYVP2jobj+h6Q4/ktBsPxlVBz8CYGs/AyX/PggEaz+GxRo/jYFxP2XpGz/G5nE/B/MaP1qwcj/8qx0/l8lyP7f0xz5og3k/pWPCPtToeT+V/xw/Xkl2P1V7Gz8CWXg/u6HKPqUYdT+Vygs/gF9dPysgDT8UsFc/iX4TP6jqWj9t9w8/VN9fP/mDBT9Fcls/lW8FPwTUVT9xXf4+975bP9WO/D74N1Y/WUXyPpJxXT9dv+4+TMZXP19H5T5h7l8/5eLhPpyBWj8xbtg+iERjP+nu1j5wXV0/mS/NPg5LZT9Vfss+SqpgP0eZzT7KSGA/FY/JPs6RYz9l/sc+fkhhPzul1D6ru2Q/RdzQPs4yZj8H69A+DWFfP5Wbwz7kH3c/7pi/PlTreD+t28M+kE51P24gvz5EQ3U/b2sQPzEWcj8L5Q4/63NzPx5MDz9Vm3U/p/AQP83idD9IsQ0/Y+tuP5s9DT/udnE/LTILP4E1bj9XGQs/XMRwP2IKDj8mMXQ/fxQOP5vHdT9yKg0/Uc10Px35DD+VrHU/TYcMP1xAdD/r2Aw/pwNzP1SQCz+G73M/qy8LP2lpcj+k/ws/0nt1P+nQCD8yoHA/LTILP4E1bj/NYC8/t/FlPzlZMT8E3GI/d080P9btYT/DPzM/mLxkPy9xKj8QtWQ/ObkuP27UYT/tJio/Eq9hP6uTLT/mk18/A2UyP+wXYT/bkTQ/Bg9gP00/Mz+GZF8/3280PyyGXj93zjA/KjVgPwN/Mj9u314/7/wxPzjRXT9l1y8/5HReP2stND8gO10/7SYqPxKvYT8vcSo/ELVkP0nYLD8gvVw/zWAvP7fxZT9vaxA/MRZyP0ixDT9j624/86krP7jPbj/dAi4/8sdtP/plLj/nZ24/rswrPy5wbz83Cyk/fXFvP/gKKT8eH3A/bAMnP6+1bz9aRTA/mKBsPwzDMD+bCm0/yKsyPzHzaj8CPJw+OVtWP28wmD6qz1w/8y+dPhISXj/+WKE+8LhYP2nImj4ETWM/8ruWPii2Yj+8zpc+iBdnP5Ctmj7eHGc/yniZPjyEaj/0/Zo+7YJqP3K4mz6n0G0/H/2ePhnGXj86vKI+IgdZPymYnD6EwmM/OC6cPuZlZz+A/Js+nLdqP0cCmD7bpGo/EMeVPkgrZz+LZJQ+1ZpiP5PXlT5CmVw/UzKbPrBfVT+XRho//XB0Pw01Gj+MCHM/UXwbP5Q6dD+1ZRk/BKx2PyCuGD+nE3I/qnIYPw2sdD9k6Rc/H3B3P28ZFz/Al3E/ZkYYP8bAdD9emhY/YEl0PzzHGT+Ku3Q/oACfAJ4AoQCgAJ4AogChAJ4AogCjAKEApACjAKIApAClAKMApgClAKQApgCnAKUAqACnAKYAqACpAKcAqgCpAKgAqgCrAKkArgCtAKwArwCuAKwArwCwAK4ArQCxAKwAsQCtAKoAsQCyAKwArQCzAKoAswCrAKoA5ADjAOIA5QDkAOIA4wDmAOIA5wDmAOMA5wDoAOYA5QDpAOQA6QDqAOQA6wDqAOkAZgFlAWQBZwFmAWQBZQFoAWQBaQFoAWUBaQFqAWgBawFqAWkBawFsAWoBbQFsAWsBbwFuAW0BbQFuAWwBbwFwAW4BcQFwAW8BdAFzAXIBcwF1AXIBdgF1AXMBdwF0AXIBdAF3AXABeAF3AXIBeQF0AXABcQF5AXABqgGpAagBqwGqAagBrAGrAagBrAGtAasBrgGtAawBqgGvAakBsAGvAaoBsAGxAa8BzwDOAM0A0ADPAM0A0QDQAM0A0QDSANAA0wDSANEA0wDUANIA0ADVAM8A1QDWAM8A1wDWANUA1wDYANYA2QDVANAA0gDZANAA2QDaANUA2gDXANUA2wDaANkA3ADbANkA2wDcANgA2ADcANYA1gDcANQA1gDUAM8AzwDUAM4A1ADTAM4A3ADZANIA1ADcANIA3QDYANcA2gDdANcA2wDdANoA3QDbANgA0wDeAM4A3wDeANMAzgDgAM0A3gDgAM4A4ADhAM0A4QDRAM0A3wDTANEA4QDfANEAkwGSAZEBlAGTAZEBkgGVAZEBlgGVAZIBlgGXAZUBmAGXAZYBkwGZAZIBmgGZAZMBmgGbAZkBnAGbAZoBnQGWAZIBmQGdAZIBngGdAZkBmwGeAZkBngGfAZ0BnwGgAZ0BoAGfAZwBoAGcAZoBoAGaAZgBmAGaAZMBlAGYAZMBlwGYAZQBoAGYAZYBnQGgAZYBnAGhAZsBoQGeAZsBoQGfAZ4BnwGhAZwBlwGiAZUBogGjAZUBpAGiAZcBpAGXAZQBowGlAZEBlQGjAZEBpQGkAZQBpQGUAZEBVgBVAFQAVwBWAFQAWABXAFQAWQBYAFQAWQBaAFgAWwBaAFkAWwBcAFoAVQBdAFQAXgBdAFUAXwBeAFUAYABfAFUAYABhAF8AYgBhAGAAYgBjAGEAYwBkAGEAZQBkAGMAZgBlAGMAZgBnAGUAZwBoAGUAaQBoAGcAagBpAGcAYQBrAF8AXwBrAF4AbABrAGEAaQBtAGgAbgBtAGkAZQBvAGQAcABvAGUAaABwAGUAbQBwAGgAZABsAGEAbwBsAGQAcQBuAGkAcQByAG4AcwByAHEAcwB0AHIAVgBgAFUAdQBxAGkAagB1AGkAdwB1AGoAdwBqAGcAeAB3AGcAeQB4AGcAeQBnAGYAegB5AGYAegBmAGMAewB6AGMAewBjAGIAfAB7AGIAfABiAGAAdwB9AHUAfAB+AHsAfwB+AHwAgAB/AHwAgAB8AGAAgABgAFYAgACBAH8AggCBAIAAgwCCAIAAgwCAAFYAVwCDAFYAhACDAFcAhQCEAFcAhQCGAIQAhgCHAIQAiACHAIYAhwCJAIQAhACJAIMAgwCJAIIAigCJAIcAiACKAIcAjQCMAIsAjgCNAIsAiwCMAHMAiwBzAHEAdQCLAHEAjwCLAHUAfQCPAHUAkACPAH0AkAB9AHcAkQCQAHcAkgCRAHcAeACSAHcAkwCSAHgAeQCTAHgAegCTAHkAlACTAHoAewCUAHoAfgCUAHsAkACVAI8AlQCWAI8AlgCXAI8AmACXAJYAlwCOAIsAjwCXAIsAlwCYAI4AjgCYAI0AmQBZAFQAXQCZAFQAmQCaAFkAmgBbAFkAmgBcAFsAjQCbAIwAnACbAI0AmACcAI0AggCdAIEAXgCdAF0AgQCdAF4AWACdAFcAtACdAFgAWgC0AFgAtQC0AFoAXAC1AFoAmgC1AFwAtQCaAJkAtAC1AJkAtACZAF0AnQC0AF0AiQCdAIIAtgCdAIkAigC2AIkAtwC2AIoAtwCKAIgAtwCIAIYAtwCGAIUAtgC3AIUAtgCFAFcAnQC2AFcAugC5ALgAuwC6ALgAvAC7ALgAvAC9ALsAvgC9ALwAvgC/AL0AvwC+ALkAugC/ALkAuwDAALoAwADBALoAwgDBAMAAwgDDAMEAxADCAMAAxQDEAMAAxQDAALsAvQDFALsAxQDGAMQAxwDGAMUAxwDFAL0AvwDHAL0AyADDAMIAxADIAMIAxgDIAMQAvgDJALkAygDJAL4AygC+ALwAywDKALwAywC8ALgAzADLALgAyADGAMMAxgDHAMMAwwDHAMEAwQDHAL8AwQC/ALoAuQDMALgAyQDMALkAAwECAQEBAgEEAQEBBQEDAQEBBgEFAQEBBAEGAQEBBwEGAQQBBgEHAXEAdgAGAXEABQEGAXYACAEFAXYACAEJAQUBCgEJAQgBBQEJAQMBCQELAQMBCwEEAQIBAwELAQIBCwEHAQQBCwEJAQcBCQEKAQcBBwEKAXEAHAEbARoBHQEcARoBGwEeARoBHgEfARoBIAEfAR4BIAEhAR8BIgEhASABIwEdARoBIwEkAR0BJAElAR0BJQEmAR0BJwEmASUBJwEoASYBKQEoAScBKgEpAScBKgErASkBKwEsASkBHQEmARwBLQEsASsBLgEtASsBLgEvAS0BLwEwAS0BMQEnASUBMQElASQBMQEyAScBMwEvAS4BMwE0AS8BNQErASoBNQE2ASsBNgEzAS4BNgEuASsBNAE3AS8BOAE3ATQBOAE5ATcBOgE5ATgBPAEwAS8BNwE8AS8BPAE9ATABMAE9AS0BPQE+AS0BPgE/AS0BLQE/ASwBPwFAASwBLAFAASkBQAFBASkBKQFBASgBQQFCASgBKAFCASYBQwE9ATwBRAFCAUEBRAFFAUIBRQFGAUIBQgFGASYBJgFGARwBRwFGAUUBRwFIAUYBSAFJAUYBRgFJARwBHAFJARsBSQFKARsBSgFLARsBTAFLAUoBTQFMAUoBTQFOAUwBTwFNAUoBTwFKAUkBTwFJAUgBTwFQAU0BUAFOAU0BUwFSAVEBVAFTAVEBUgFTATkBOQFTATcBUwE8ATcBUwFVATwBVQFDATwBVQFWAUMBQwFWAT0BVgFXAT0BVwFYAT0BWAE+AT0BWAFZAT4BWQE/AT4BWQFAAT8BWQFaAUABWgFBAUABWgFEAUEBWwFWAVUBXAFbAVUBXQFcAVUBXQFeAVwBXQFVAVMBVAFdAVMBXgFdAVQBXgFUAVEBMgE1ASoBMgEqAScBXwEjARoBHwFfARoBYAFfAR8BIQFgAR8BIgFgASEBYgFhAVEBUgFiAVEBYQFeAVEBYwFIAUcBYwEkASMBYwFHASQBYwF6AR4BYwEeARsBegEgAR4BegF7ASABewEiASABewFgASIBYAF7AV8BewF6AV8BXwF6ASMBegFjASMBYwF8AU8BYwFPAUgBfAFQAU8BfAF9AVABUAF9AU4BTgF9AUwBfQF8AUsBTAF9AUsBSwF8ARsBfAFjARsBgAF/AX4BgQGAAX4BfwGCAX4BgwGCAX8BgwGEAYIBhQGEAYMBhAGFAYEBgQGFAYABgAGGAX8BhwGGAYABhwGIAYYBiQGIAYcBiAGKAYYBigGLAYYBiwGDAX8BhgGLAX8BjAGLAYoBjAGNAYsBjQGFAYMBiwGNAYMBiQGOAYgBjgGKAYgBjgGMAYoBjwGEAYEBjwGQAYQBhQGHAYABjQGHAYUBjQGJAYcBjQGMAYkBjAGOAYkBpgGPAYEBpgGBAX4BpwGmAX4BggGnAX4BkAGnAYIBhAGQAYIByQHIAccBygHJAccByAHLAccBywHMAccBzAHKAccBzAHNAcoBzQHMATcBzAE7ATcBzAHLATsBywHOATsBzwHOAcsBzwHQAc4BzwHLAcgB0QHPAcgBygHRAckByQHRAcgBzwHRAc0BzQHRAcoB0AHNATcB0AHPAc0B7gDtAOwA7wDuAOwA7wDwAO4A8QDwAO8A8QDyAPAA8gDzAPAA9ADzAPIA9AD1APMA9gD1APQA8AD3AO4A9wD4AO4A7gD4AO0A+QD3APAA8wD5APAA+gD5APMA9QD6APMA+wD6APUA9gD7APUA/AD0APIA/AD2APQA/QD8APIA/QDyAPEA/gD9APEA/gDxAO8A/wD+AO8A/wDvAOwAAAH/AOwAtAGzAbIBtQG0AbIBtAG2AbMBtgG3AbMBuAG3AbYBuQG4AbYBuQG6AbgBuwG6AbkBuwG8AboBvQG2AbQBvgG9AbQBtQG+AbQBvQG/AbYBvwG5AbYBvwHAAbkBwAG7AbkBwAHBAbsBwQG8AbsBugHCAbgBvAHCAboBwgHDAbgBuAHDAbcBwwHEAbcBtwHEAbMBxAHFAbMBswHFAbIBxQHGAbIBSABHAEYASABJAEcASQBKAEcASwBKAEkASwBMAEoATQBMAEsATgBNAEsATgBPAE0ATwBQAE0AUQBQAE8AUQBSAFAAUwBSAFEADgENAQwBDgEPAQ0BEAEPAQ4BEAERAQ8BEgERARABEgETAREBEwEUAREBFQEUARMBFgEVARMBFgEXARUBGAEXARYBGAEZARcBAgABAAAAAwACAAAABAADAAAABQAEAAAABwAGAAQABQAHAAQACgAJAAgACQALAAgADAALAAkADAANAAsADgANAAwADgAPAA0AEAAPAA4AEAARAA8AEgARABAAEgATABEAFAATABIAFwAWABUAGAAXABUABwAZAAYAGgAZAAcAGQAaABYAFgAaABUAHQAcABsAHgAdABsAGwAcABgAGAAcABcAHgAfAB0AIAAfAB4AHwAgABQAFAAgABMAIQAFAAAAIgAhAAAAAQAiAAAAJQAkACMAJAAmACMAJgAnACMAJwAoACMAKQAoACcAKgApACcALQAsACsALwAuAC0ALwAtACsALwAwAC4AMAAxAC4AMgAxADAAMgAzADEANAAzADIANAA1ADMANgA1ADQANgA3ADUAOgA5ADgAOwA6ADgAPQA8ACkAKgA9ACkAPAA7ADgAPAA9ADsAQAA/AD4AQQBAAD4AQQA+ADkAOgBBADkAQABCAD8AQgBDAD8AQwBCADcAQwA3ADYAKABEACMARABFACMARQAlACMAZBG0vFsgtj/HGQo9wT2+vFXCtT9UUwg9ntmnvDW3tD+HRAg9GjOBvPLRtT8G+g09i9aDvLB1tD9F4OM8nGVGvMnntT/+h+k8tNnFvOeZsz9LHMc8XU/ZvOIatD8/nQM9e4zKvEWAtT8L9QY9VYnbvFtDtT/2RwU9p/cUvWb9sj9e4J48CfsZvVeQsz9ea/U87pfwvOETtT9SRgM9I1sHvQvgtD8aagA9LPqEvP1Btz9YzBQ9XiJYvG+2tz+PaOc81g6WvC4atT/Yu4I8taF5vF4wtj8PTYc8ItLCvPsutD9uSmk8fpYHve7Usz/w3jA81OmCvL5itz808IU8xX00vR4jtD+LegI8JVVOvcV+sz9YSXc826NUvXnzsz+iuMk8ueQDvfJ5tj/2iBc8akZQvY9itT9UXuY73olqvXjItD+Zekw8HfB5vSrztD/nrJs8VKGDvWXttj+QIjg8B/+Ive2wtj+92os8vFZivQahuD+qYT08LvJ+vdWZuD/ufdg85199vf7Utj9HrbM8M199vc6ktj9NobA8Qmx7vQsFtz9FubY8Qmx7vQsFtz9FubY8lWgyvYShuT+mgpI8QsFFvRh/uT9CrAM96WhCvdcSuD/5a/Q8bYQAvYKNuT99Aq08uUYLvQuyuT8HNQ89OVlavYbQtj/pYMY7ud72vBTwuD+HVlY8rVwhvRfnuD9Z3Sg8in46vVhcuD8tmgA8oPuuvM12uD+9rIA8N0OhvJz6uD8Vz888oXutvFScuD8DSRo96wUAvbkEuD8k4gs9l7cTvfckuD/HdQc9l7cTvfckuD/HdQc9fCLMvClftz/C/A09chG+vDL6tj9AYw09chG+vDL6tj9AYw09lWzfvGK2tz+B8g49lWzfvGK2tz+B8g49ldSyvDmItj8nDAw98oFtvUZktz9YCMs857xYvbDDtz8FpOI8Pp4ovZMzuD9CwwE9jOp5vYQttj9ilq08ofVkvQ00tT9+zrs8PANsvZxutT9pTrU8/ThavbXztD/by8c8DAxyvRC1tT+qSLE82f4cvfS9tD9yr/Y8QGAyvce0tD8eFOk8a4VFvcXquD/eKv08wutdvVdhuD9AZuY8Fu8tvZVJuT+HU8E8zyRTvTITuT9TXLU8QucmvZIjuT+Yygc9GcEOvck+uT/bNdE8w0cNveUJuT9PDgw9MsltvROGuD/l9K88tKBhvR4otz/gs3o8EaGBvea9tz+zX6g8YF14vTXutj/lDIE84R9IveRVtz+JwoI8SpkvvcZutz8L4I48vF5zvRustz99vco8/00TvS10tz9BV6Q8J4vovGRdtz849cc878ffvJDluD87Tuc8z4fovMa3uD+JCxA90mGvvDVZuD/PJ/s8kpW4vDU3tz97z+o8htaRvEQLtz/iewM9ElyYvOSatz9iLQE9YPKbvAL/tj/vTg49RaecvFk/tz+ZRw890lOovFiatz+ExBA9isGyvN7etz+WQBE9D0a/vDIsuD8mWhI9YIyAvW7wtj/l4Ks8Rll/vSsatz9yh7E8y5l9vedDtz8pRrg89/2Dvd40tz8Jdp080HqGvdWrtj+C+JI8UcqAvbSmtj/JYag8eORFvVi6tD9Yfdk8ntmnPDW3tD+HRAg9wT2+PFXCtT9UUwg9ZBG0PFsgtj/HGQo9GjOBPPLRtT8G+g09i9aDPLB1tD9F4OM8nGVGPMnntT/+h+k8tNnFPOeZsz9LHMc8XU/ZPOIatD8/nQM9e4zKPEWAtT8L9QY9VYnbPFtDtT/2RwU9p/cUPWb9sj9e4J48CfsZPVeQsz9ea/U87pfwPOETtT9SRgM9I1sHPQvgtD8aagA9LPqEPP1Btz9YzBQ9XiJYPG+2tz+PaOc81g6WPC4atT/Yu4I8taF5PF4wtj8PTYc8ItLCPPsutD9rSmk8fpYHPe7Usz/z3jA81OmCPL5itz808IU8xX00PR4jtD+JegI8JVVOPcV+sz9YSXc826NUPXnzsz+iuMk8ueQDPfJ5tj/2iBc8akZQPY9itT9QXuY73olqPXjItD+Zekw8HfB5PSrztD/nrJs8VKGDPWXttj+QIjg8B/+IPe2wtj+92os8vFZiPQahuD+qYT08LvJ+PdWZuD/ufdg8M199Pc6ktj9NobA85199Pf7Utj9HrbM85199Pf7Utj9HrbM8Qmx7PQsFtz9FubY8Qmx7PQsFtz9FubY8lWgyPYShuT+mgpI8QsFFPRh/uT9CrAM96mhCPdcSuD/7a/Q8bYQAPYKNuT99Aq08uUYLPQuyuT8HNQ89OVlaPYbQtj/pYMY7ud72PBTwuD+HVlY8rVwhPRfnuD9b3Sg8in46PVhcuD8tmgA8oPuuPM12uD+9rIA8N0OhPJz6uD8Vz888oXutPFScuD8DSRo96gUAPbgEuD8m4gs9l7cTPfckuD/HdQc9l7cTPfckuD/HdQc9fCLMPClftz/C/A09chG+PDL6tj9AYw09chG+PDL6tj9AYw09mWzfPGK2tz+B8g49mWzfPGK2tz+B8g49ldSyPDmItj8nDAw957xYPbDDtz8FpOI88IFtPUZktz9XCMs8Pp4oPZIzuD9DwwE9jOp5PYQttj9ilq08PANsPZxutT9pTrU8ofVkPQ00tT9+zrs8/ThaPbXztD/by8c8DAxyPRC1tT+qSLE8QGAyPce0tD8eFOk82f4cPfS9tD9yr/Y8a4VFPcXquD/eKv08wutdPVdhuD9AZuY8zyRTPTITuT9TXLU8MsltPROGuD/l9K88tKBhPR4otz/gs3o8EaGBPea9tz+zX6g8YF14PTXutj/kDIE84R9IPeRVtz+JwoI8SpkvPcZutz8M4I48Fu8tPZVJuT+HU8E8vF5zPRustz99vco8GcEOPck+uT/bNdE8/00TPS10tz9BV6Q8J4voPGRdtz849cc878ffPJDluD87Tuc8w0cNPeUJuT9PDgw9z4foPMa3uD+JCxA90mGvPDVZuD/PJ/s8kpW4PDU3tz97z+o8htaRPEQLtz/iewM9ElyYPOSatz9iLQE9YPKbPAL/tj/vTg49RaecPFk/tz+ZRw890lOoPFiatz+ExBA9isGyPN7etz+WQBE9D0a/PDIsuD8mWhI9QucmPZIjuT+Yygc9YIyAPW7wtj/l4Ks8Rll/PSsatz9yh7E8y5l9PedDtz8pRrg89/2DPd40tz8Jdp080HqGPdWrtj+C+JI8UcqAPbSmtj/JYag8eORFPVi6tD9Yfdk8tT8+vyOglD6CVRq/rP8qv7ry9z5jqBC/X46Tvgx4yT4PfF+/jLrtvhCUOj6/4V2/XClLvzIRFj926Sa+bKd6v6NAJD64zP+9x+UAv71xXD/BYpC9R1zkvTepBj9z11e/IP4Vv08vHj8LOQa/u6HnvkAbPz/Yzvm+6XlpvfGyfj+w/Kk9RqEnPuTmHT+GGEW/ljWcvnmNVT/ANeu+S/QovsolXz+sR+y+rOz+vp4DZ73Kil2/2ztyv8a+ob7fv469agAyv1JYmz7cySY/SnhGv0s4oz1tZyA/ydYOvyrC/D5PxCo/1uOQvoOxCz+n7Ek/5ZY+v7nWUr5alSI/baCJPeA04D57gWU/Kh3pPrkKVj8WrJw+6PIUPwTiDT8jYRi/pU6PvkQgsLzAtHU/dbRVPkC8Uj7TwXQ/HAErP1Hy/T6XBg4/c1JbP1wh4z4ftoa+v9c+P7Xm2b2AcSg/cHl+P+fepD29iJa9Gx/6PiSQJL+1Cxc/NyNHP8RNz76sD/a+V0d/P14Y4rue+5i9Ul1/PyFFej3QXA893+dpP1QT0L2DeMm+euhpP3Hfz70Jecm+hYQRPgQKb79MM6g+2nvHPo2RIb/jtCu/RIO6PoQ9xL5RSFm/ZYGGvqvZcL9NPls+maikvO1yN7+IezK/s01RPvSN5LxWfno/gv+svhMeE7+j0D4/EK8Dvl9HEL9W5FA/WzHmPOiAxL4YSWw/lkcSv2tZ977z1Ck/H8Esv/YjPL/dbIk9A26yvjdR2L5GMVa/Ho7CPV7+f77qrHa/mde9PZ1BHL8oY0m/j9q9PX89HL9NZkm/7a36vv8Sg74sYVW/5v4OvwzJIb7Ec1C/U/4Ov5riIb7tclC/f8hQvjAnq745j2u/X69QvhUoq75zkGu/TcFJvzhF2Lu0kR2/Ay8sPyHO976kTg+/CZMJP1ixD79YICG/TSCBPnxcvr7CtWS/YTlaP+eycj5Hmu4+y2UYP3iZSj//Ow4+BfYnP6J/OD/XRWU+NNb2PnJIYD+kEoO70EwyP+qAIz+0eKc+AFTBu6JkaD+4uta+xtjfPb3fbj9Xaa++fnvSPqWPAb80GUK/8LAPPxzAir6SMEi/le5JvTCjYb9eifA+FOyiPsIcXb8hGMg+FLNMPpY8Hb+nbkO/L5GpvkYPVb8coOM+VS6QOlmkIL/1Uke/faohP2cjO7+HWoQ+eGhJPh/A4r5G718/kp5fPyc0876HHdo9Vu/DPuhc2L5SUlI/VQ35uohv2L5eAGg/0OU/vneBxL6weWc/lyQaPwVIg71au0u/qAm5vj35oL7Jt2A/Sjz/vutaZL5EdFY/vP0Tv7i/Or8hL7s+V8kyvmgZEL9g0U6/ZFpMv7YFDb+ebnk+6zoMv4KBAL7PwFM/fDd6v678GL7lFhk+K89rvz2kkr6z94Y+o7kMvwuYf7xs0FW/E5ASv3Ffqb270lC/0y3nvj0QPr78a1+/4RzlvswZTb5jH1+/gze6vuZyub68s1u/ohk4P1oalT335zC/dP04P2/VCT56ki2/U2ouP2nc6D3FHTm/eGx0P2zDkb6Lgq8962V3P1yIg75nig48tBc1P4h74T3HvDK/ZXZgPhUbbz+wb5C+X46TPgx4yT4PfF+/rP8qP7ry9z5jqBC/tT8+PyOglD6CVRq/cbntPmmtOj634F2/XClLPzIRFj926Sa+bKd6P6NAJD64zP+9x+UAP71xXD/BYpC9R1zkPTepBj9z11e/IP4VP08vHj8LOQa/u6HnPkAbPz/Yzvm+buJpPZKyfj9w/Kk9RqEnvuTmHT+GGEW/ljWcPnmNVT/ANeu+S/QoPsolXz+sR+y+rOz+Pp4DZ73Kil2/SjxyPxC/ob6yi469agAyP1JYmz7cySY/43dGP2Vsoz0aZyA/ydYOPyrC/D5PxCo/ydeQPoeyCz8e7kk/5ZY+P7nWUr5alSI/baCJveA04D57gWU/Kh3pvrkKVj8WrJw+PvcUv+ffDT/fXhi/pU6PPkQgsLzAtHU/dbRVvkC8Uj7TwXQ/HAErv1Hy/T6XBg4/c1Jbv1wh4z4ftoa+v9c+v7Xm2b2AcSg/cHl+v+fepD29iJa9Gx/6viSQJL+1Cxc/NyNHv8RNz76sD/a+Ul1/vyFFej3QXA89Y0d/v5DR3rul+5i9V0d/v14Y4rue+5i9euhpv3Hfz70Jecm+3+dpv1QT0L2DeMm+hYQRvgQKb79MM6g+bnjHvseOIb9+uCu/ogyxvpG0N76Sxmu/ZYGGPqvZcL9NPls+maikPO1yN7+IezK/s01RvvSN5LxWfno/gv+sPhMeE7+j0D4/EK8DPl9HEL9W5FA/WzHmvOiAxL4YSWw/lkcSP2tZ977z1Ck/H8EsP/YjPL/dbIk9A26yPjdR2L5GMVa/5wTnvFPV2r6MU2e/j9q9vX89HL9NZkm/mde9vZ1BHL8oY0m/7a36Pv8Sg74sYVW/U/4OP5riIb7tclC/5v4OPwzJIb7Ec1C/YE6iPo91876NE1K/L1iiPrp9875KD1K/TcFJPzhF2Lu0kR2/q3gFvwZTv76SZES/MPkkv1QDnL5ZijO/LEJ1vu1eDL+vHU2/YTlav+eycj5Hmu4+BfYnv6J/OD/XRWU+y2UYv3iZSj//Ow4+NNb2vnJIYD+kEoO70Ewyv+qAIz+0eKc+xtjfvb3fbj9Xaa++AFTBO6JkaD+4uta+fnvSvqWPAb80GUK/c6wPvxrCir5yM0i/FOyivsIcXb8hGMg+faohv2cjO7+HWoQ++2xJvjPF4r687V8/kp5fvyc0876HHdo9Vu/Dvuhc2L5SUlI/VQ35Oohv2L5eAGg/0OU/PneBxL6weWc/le5JPTCjYb9eifA+lyQavwVIg71au0u/HZOpPrMRVb+YleM+qAm5Pj35oL7Jt2A/Sjz/PutaZL5EdFY/vP0TP7i/Or8hL7s+VS6QulmkIL/1Uke/V8kyPmgZEL9g0U6/ZFpMP7YFDb+ebnk+6zoMP4KBAL7PwFM/fDd6P678GL7lFhk+K89rPz2kkr6z94Y+o7kMPwuYf7xs0FW/E5ASP3Ffqb270lC/0y3nPj0QPr78a1+/4RzlPswZTb5jH1+/gze6PuZyub68s1u/FLNMvpY8Hb+nbkO/ohk4v1oalT335zC/dP04v2/VCT56ki2/U2ouv2nc6D3FHTm/sWp0v3jPkb5Fga8962V3v1yIg75nig48tBc1v4h74T3HvDK/cF1gvmwcbz9/cJC+cMhjP7D6Pz7dd2M/lBxLPj83Zj+cSFo+b8dkP0DmRT7pz2c//LhXPoGvZj8oaEU+yWJqP2gdZD516mg/iPlmPsG8Yz+E91U+hJpkPwCYXz7LRW8/DERtPhdpbj84J3E+szBmP6heaT7cy2g/JPRxPtscZj9Q+C8+U1JoP1CXMD7B7Go/RPFQPlnQaj80G0U+mS5sP9h6XD6nt28/ILdjPtGSaz9Afzk+2Wx0PxC0ZT73NHU/EBZuPhvDdT84GnA+6UFyP8zQSD4pLng/3LZaPvl/eT+Q4WM+B/95P5h7ZD6nKX0/MNVKPkfDfT9QMEw+S2t6P2DpND4HoXs/MOgyPs0mfj8YL0U+PVh+P1hARz5d9X0/1B1DPl31fT/UHUM+FfV1P3ROJD6XS3Y/hH0cPt/Rdz9g3Bg+0SlxP4RlID4nhnA/6C4XPoshej/8k0o+6VlxP0DbKz77+3Q/GO0tPqMxeD8oTTk+DdptP2xILz7JCWw/pMwlPuMZaj9w2CA+MwNuPyBvFT7Ap28/3B0PPsCnbz/cHQ8+EhxnP4hxHz70TmU/SHcpPvROZT9Idyk+73VpP/wdGD7vdWk//B0YPotFZD8MDTU+0u18P/ysMz61s3s/tNgqPvOndT/4/g0+DTp9P8RkVz7nR3o/MOltPmEGez/ME2k+JId3PwAVdj41Hnw/oNRiPsJGbD8E4nk++ylwPyC/fD5ZXWI/e/1xPxFdZz8atHQ/uOxgPxAYcj+ZXGI/Uv5xPxbtYD9MF3I/bX1fP8Ixcj9qfV8/EzFyP35cZz/8tHQ/h9JlP7wPdz87vWk/RbB1P3cmZz+eYXc/blxgPxw9dD968F8/hCF0P8C9aT+Hr3U/iIRfP+wFdD8K/l4/i+NzP1w8Xj9WTnE/EzxeP15NcT+F+1w/EWtwPwi6Xj8p0nM/FoNePx3Ecz9sGV0/TvVxP2bYXT9NNnM/8lNcP73HcT+DoVw/3FtxPz7XXD/CnHA/8vpcP9BpcD9zo2g/+oJ3P5oRaT+1G3c/wn9pP2+0dj/OC2k/B652P2BaaD/Iq3c/GAdpPxGmdz9SJXQ/DCp7Pj83Zj+cSFo+3XdjP5QcSz5wyGM/sPo/Pm/HZD9A5kU+6c9nP/y4Vz6Br2Y/KGhFPsliaj9oHWQ+depoP4j5Zj7BvGM/hPdVPoSaZD8AmF8+y0VvPwxEbT4XaW4/OCdxPrMwZj+oXmk+3MtoPyT0cT7bHGY/UPgvPlNSaD9QlzA+wexqP0TxUD5Z0Go/NBtFPpkubD/Yelw+p7dvPyC3Yz7Rkms/QH85PtlsdD8QtGU+9zR1PxAWbj4bw3U/OBpwPulBcj/M0Eg+KS54P9y2Wj75f3k/kOFjPgf/eT+Ye2Q+pyl9PzDVSj5Hw30/UDBMPktrej9g6TQ+B6F7PzDoMj49WH4/WEBHPs0mfj8YL0U+zSZ+PxgvRT5d9X0/1B1DPl31fT/UHUM+FfV1P3ROJD6XS3Y/hH0cPt/Rdz9g3Bg+0SlxP4RlID4nhnA/6C4XPoshej/8k0o+6VlxP0DbKz77+3Q/GO0tPqMxeD8oTTk+DdptP2xILz7JCWw/pMwlPuMZaj9w2CA+MwNuPyBvFT7Ap28/3B0PPsCnbz/cHQ8+EhxnP4hxHz70TmU/SHcpPvROZT9Idyk+73VpP/wdGD7vdWk//B0YPotFZD8MDTU+tbN7P7TYKj7S7Xw//KwzPvOndT/4/g0+DTp9P8RkVz5hBns/zBNpPudHej8w6W0+JId3PwAVdj41Hnw/oNRiPvspcD8gv3w+wkZsPwTieT5ZXWI/e/1xPxFdZz8atHQ/mVxiP1L+cT9+XGc//LR0P4fSZT+8D3c/O71pP0WwdT93Jmc/nmF3P25cYD8cPXQ/evBfP4QhdD+47GA/EBhyP8C9aT+Hr3U/bX1fP8Ixcj+IhF8/7AV0Pwr+Xj+L43M/XDxeP1ZOcT9qfV8/EzFyPxM8Xj9eTXE/hftcPxFrcD8Iul4/KdJzPxaDXj8dxHM/bBldP071cT9m2F0/TTZzP/JTXD+9x3E/g6FcP9xbcT8+11w/wpxwP/L6XD/QaXA/Fu1gP0wXcj9zo2g/+oJ3P5oRaT+1G3c/wn9pP2+0dj/OC2k/B652P2BaaD/Iq3c/GAdpPxGmdz9SJXQ/DCp7PgIAAQAAAAMAAgAAAAMABAACAAUABAADAAQABgACAAYABwACAAcACAACAAkACAAHAAoABwAGAAoACwAHAAsADAAHAA0ADAALAA4ABQADAA4ADwAFAAUAEAAEABEAEAAFAA8AEQAFABIABgAEABAAEgAEABMACgAGABIAEwAGABQAEQAPABMAFQAKABUAFgAKABYACwAKABYAFwALABEAGAAQABQAGAARABgAEgAQABgAEwASABgAFQATABgAGQAVABkAFgAVABkAGgAWABoAFwAWABoAGwAXABwAGwAaABwAHQAbAB4AHQAcAB4AHwAdAB8AIAAdACAAIQAdACMAIAAfACQAHwAeACQAJQAfACUAJgAfACcAJQAkACcAKAAlACkAHAAaACkAGgAZACoAJwAkACsAKgAkACsAJAAeACwAKwAeACwAHgAcACkALAAcACkAGQAYACsALAAYACwAKQAYACoAKwAYACoALQAnAC0ALgAnAC4AKAAnAC4ALwAoAC8AMAAoADAAMQAoAC8ALgAPAC8ADwAOADMALwAOADQAMwAOAC4AFAAPAC4ALQAUAC0AKgAYAC0AGAAUADcAMAAvADMANwAvADgANAAOADgADgADADgAAwAAADoAOQAfACYAOgAfADsAJgAlADEAOwAlACgAMQAlADkAIwAfACEAPAAdAB0APAAbAD4APQAbAD0APwAbAEAAPgAbADwAQAAbAEIAQQALAEEADQALADoAQwAmAEQAQwA6AEYARQBDAEUARwBDAEgARwBFAEgASQBHAEcASQA7ADsASQAyAEMARwAmAEQARgBDAEoARgBEAEoASwBGAEwASwBKAEwATQBLAEsATgBGAE4ATwBGAEYATwBFAFAATABKAFAASgBEAE8ASABFAE8AUQBIAFEAUgBIAFIAUwBIAFMASQBIAFMAVABJAFUAUwBSAFYAVQBSAFYAVwBVAFcAWABVAFkAWABXAFkAWgBYAFoAWwBYAFgAWwBVAFsAXABVAFwAXQBVAFoAWQA1AFUAVABTAFUAXQBUAF0AXAAzAFsAWgAzAFoANQAzAFwAWwAzADYAXQAzAFQAXQA2AFQANgAwAEkAVAAyADIAVAAwAF4AIgAgAF4AXwAiAF8AYAAiAGEAXwBeAGIAYQBeAGEAYgBNAGEATQBMAGAAXwBMAF8AYQBMAGMAYgBeAFAAYABMACEAXgAgAGMAXgAhAGAAOQAiAGAAUAA5AFAARAA5AEQAOgA5AAwACQAHAAIACAABAGQAQgAXABcAQgALAD8AZAAXABsAPwAXAEcAOwAmAGcAZgBlAGgAZwBlAGkAaABlAGkAagBoAGsAaQBlAGwAawBlAG0AbABlAG0AbgBsAGwAbwBrAHAAbwBsAHEAcABsAHEAcgBwAGoAcwBoAHQAcwBqAHUAagBpAHUAdgBqAHYAdABqAHcAdQBpAGsAdwBpAHgAdwBrAG8AeABrAHYAeQB0AHoAeABvAHsAegBvAHAAewBvAHwAewBwAH0AdgB1AH0AeQB2AHcAfQB1AHgAfQB3AHoAfQB4AH4AfQB6AHsAfgB6AH8AfgB7AHwAfwB7AIAAfwB8AIAAgQB/AIIAgQCAAIIAgwCBAIQAgwCCAIUAhACCAIUAhgCEAIYAiACEAIQAigCDAIsAigCEAIwAiwCEAIsAjQCKAI4AjQCLAIEAjwB/AH8AjwB+AI0AkACKAJAAkQCKAIoAkQCDAJEAkgCDAJIAjwCBAIMAkgCBAH4AjwB9AJIAkQB9AI8AkgB9AJEAkAB9AJMAkACNAJQAkwCNAI4AlACNAJUAlACOAJYAlQCOAJgAlgCOAJQAlQB0AHQAlQBzAJUAmQBzAJkAmwBzAJMAlAB5AHkAlAB0AJAAkwB9AH0AkwB5AJYAnACVAJwAmQCVAJsAngBzAHMAngBoAGgAngBnAKAAnwCEAJ8AjACEAIwAoQCLAKEAmACLAJgAjgCLAIgAoACEAKIAhQCCAKIAggCAAKQAowCAAKUApACAAKMApgCAAKYAogCAAKgApwBwAHIAqABwAKkAnwCMAKkAqgCfAKsAqgCpAKsArACqAK0ArACrAK0ArgCsAK8ArgCtALAArQCrALEAsACrALIAsQCrAK4AswCsAKwAswCqALIAtACxALQAtQCxALYAtQC0ALcAtgC0ALgAtwC0ALgAuQC3ALcAugC2ALoAuwC2ALwAuwC6AL0AvAC6AL0AvgC8AL8AvgC9AMAAvwC9AMAAvQC6AMEAwAC6AMIAwQC6AMIAuQCdAJ0AuQCWAL4AvwCaALkAugC3AMIAugC5ALkAlwCWALkAuACXALgAoQCXALgAwwChAKEAwwCMAMMAqQCMAMEAwgCZAMIAnQCZAJoAvwCZAL8AwACZAMAAwQCZAIkAxACHAMUAxACJAMYAxQCJAKAAxgCJALMAxgCgAMYAswCuAMUAxgCuAMUAxwDEAMcAxQCuAMcAyADEAK8AxwCuAMgAxwCvAMgAyQDEAIcAxACFAMQAyQCFAKoAswCgAKoAoACfAG4AcQBsAGYAbQBlAKcAygB8AKcAfABwALIAqwCpAMMAsgCpAMMAtACyAMMAuAC0AMoApQB8AKUAgAB8ALM0Xr3qNrc/hsXLPNxXW72klrc/O8LPPDULYL1hlLc/5fzaPJQMY73iL7c/eNrWPDyfWr3Z77c/9D/gPO4tVr3C7bc/bwfVPJcFU71HPrg/LMPmPGnwTr13OLg/J33bPHeUSb1EfLg/41/uPBPxRb2Bc7g/JPriPIu3Pr0Tp7g/ZaX2PPSVO71OnLg/ihnrPDLpMr3YvLg/rPP+PNlTML0Nsbg//T/zPP6rJr2YvLg/YlADPTduIr3HsLg/cyL8PBSEGr1Xprg/04oGPWnYFr2Xm7g/4CkBPd30Dr0Se7g/bS0JPcHWC71ecrg/F7oDPRWABL2mPLg//0MLPVbkAb3rNrg/NboFPS4897zc7bc/aLYMPYHl8rzh67c/NxUHPWZr6bwdkrc/wW8NPabF5bx8lLc/A7kHPTwo4LxuLbc/1GkNPVj83LyTNLc/YJ4HPfTq2LxY0LY/UMAGPQvY27wwxLY/Mp4MPSml3LwBW7Y/zwULPe+72bwpbLY/uxsFPTKA4rx59rU/raEIPWxk37xkDLY//7UCPbgr7bz4mrU/Mn4FPdOp6bw4tbU/PED/PCJF/Lx9TLU/BrkBPUon+Lx5arU/lff3POaeB714DrU/QQ77POIiBb1rL7U/g/zvPE+jEr2i47Q/nmnyPL+YD72eBrU/puHnPBakHr3hzbQ/gz7qPOX2Gr3n8bQ/RzngPLYFK70nzrQ/AT/jPDzxKL048rQ/EmzYPHOHNL17B7U/IEnTPPM7N71z5LQ/NZPdPCJ9P73AMLU/5EjPPI7EQr3GD7U/zBTZPNheSb08bLU/5RHMPP0nTb01TrU/h4TVPEr3Vb0GnbU/jOHSPB7BUb1Kt7U/y4vJPJzQXL3E+LU/iX/RPNlFWL2mDrY/UvvHPLVlYb14XbY/7s/RPHOiXL2LbrY/jcLHPK6BY721xrY/krjTPHmkXr2+0rY/xhLJPJQMY73iL7c/eNrWPDULYL1hlLc/5fzaPGVgKL0m27Y/xo7gPDyfWr3Z77c/9D/gPJcFU71HPrg/LMPmPHeUSb1EfLg/41/uPIu3Pr0Tp7g/ZaX2PDLpMr3YvLg/rPP+PP6rJr2YvLg/YlADPRSEGr1Xprg/04oGPd30Dr0Se7g/bS0JPRWABL2mPLg//0MLPS4897zc7bc/aLYMPWZr6bwdkrc/wW8NPTwo4LxuLbc/1GkNPQvY27wwxLY/Mp4MPSml3LwBW7Y/zwULPTKA4rx59rU/raEIPbgr7bz4mrU/Mn4FPSJF/Lx9TLU/BrkBPeaeB714DrU/QQ77PE+jEr2i47Q/nmnyPBakHr3hzbQ/gz7qPLYFK70nzrQ/AT/jPPM7N71z5LQ/NZPdPI7EQr3GD7U/zBTZPP0nTb01TrU/h4TVPEr3Vb0GnbU/jOHSPJzQXL3E+LU/iX/RPLVlYb14XbY/7s/RPK6BY721xrY/krjTPLqCC71St7Y/9LcCPYCLDb1r2LY/sGIBPW++97z03LY//m0NPY+uBb2kobY/EAEGPUm8DL1m+LY/u7wCPWi2Br1VErc/RmwHPTnh/rwJIbc/IH0LPZns8Lz0Irc/1AwOPRYxAL3TmLY/+asIPTVN8ryFlbY/k4gLPRRA4by3orY/uHQNPerD07zzwrY//ScOPXBU0LyG5bY/IuIOPVkL2LxKBLc/x60PPTva5byAGbc/pjIPPRyDZT1Qt7Y/WdPYPI/fVT313LY/7GLiPMSLZz1r2LY/k+HaPN6uXz2kobY/MhPXPIS8Zj1l+LY/6czdPNO2YD1UErc/rqDgPPRwWT0HIbc/63biPKV2Uj3zIrc//qvjPIExWj3SmLY/+c7WPPMmUz2ElbY/LAnYPKegSj21orY/nADbPGriQz3ywrY/JYXfPH0qQj2E5bY/eVXjPAUGRj1GBLc/4f/kPBztTD2AGbc/Pl/kPLM0Xj3qNrc/hsXLPNxXWz2klrc/O8LPPDULYD1hlLc/5fzaPJQMYz3iL7c/eNrWPDyfWj3Z77c/9D/gPO4tVj3C7bc/bwfVPJcFUz1HPrg/LMPmPGnwTj13OLg/J33bPHeUST1EfLg/41/uPBPxRT2Bc7g/JPriPIu3Pj0Tp7g/ZaX2PPSVOz1OnLg/ihnrPDLpMj3YvLg/rPP+PNlTMD0Nsbg//T/zPP6rJj2YvLg/YlADPTduIj3HsLg/cyL8PBSEGj1Xprg/04oGPWnYFj2Xm7g/4CkBPd30Dj0Se7g/bS0JPcHWCz1ecrg/F7oDPRWABD2mPLg//0MLPVbkAT3rNrg/NboFPS489zzc7bc/aLYMPYHl8jzh67c/NxUHPWZr6Twdkrc/wW8NPabF5Tx8lLc/A7kHPTwo4DxuLbc/1GkNPVj83DyTNLc/YJ4HPfTq2DxY0LY/UMAGPQvY2zwwxLY/Mp4MPSml3DwBW7Y/zwULPe+72TwpbLY/uxsFPTKA4jx59rU/raEIPWxk3zxkDLY//7UCPbgr7Tz4mrU/Mn4FPdOp6Tw4tbU/PED/PCJF/Dx9TLU/BrkBPUon+Dx5arU/lff3POaeBz14DrU/QQ77POIiBT1rL7U/g/zvPE+jEj2i47Q/nmnyPL+YDz2eBrU/puHnPBakHj3hzbQ/gz7qPOX2Gj3n8bQ/RzngPLYFKz0nzrQ/AT/jPDzxKD048rQ/EmzYPHOHND17B7U/IEnTPPM7Nz1z5LQ/NZPdPCJ9Pz3AMLU/5EjPPI7EQj3GD7U/zBTZPNheST08bLU/5RHMPP0nTT01TrU/h4TVPEr3VT0GnbU/jOHSPB7BUT1Kt7U/y4vJPJzQXD3E+LU/iX/RPNlFWD2mDrY/UvvHPLVlYT14XbY/7s/RPHOiXD2LbrY/jcLHPK6BYz21xrY/krjTPHmkXj2+0rY/xhLJPJQMYz3iL7c/eNrWPDULYD1hlLc/5fzaPGVgKD0m27Y/xo7gPDyfWj3Z77c/9D/gPJcFUz1HPrg/LMPmPHeUST1EfLg/41/uPIu3Pj0Tp7g/ZaX2PDLpMj3YvLg/rPP+PP6rJj2YvLg/YlADPRSEGj1Xprg/04oGPd30Dj0Se7g/bS0JPRWABD2mPLg//0MLPS489zzc7bc/aLYMPWZr6Twdkrc/wW8NPTwo4DxuLbc/1GkNPQvY2zwwxLY/Mp4MPSml3DwBW7Y/zwULPTKA4jx59rU/raEIPbgr7Tz4mrU/Mn4FPSJF/Dx9TLU/BrkBPeaeBz14DrU/QQ77PE+jEj2i47Q/nmnyPBakHj3hzbQ/gz7qPLYFKz0nzrQ/AT/jPPM7Nz1z5LQ/NZPdPI7EQj3GD7U/zBTZPP0nTT01TrU/h4TVPEr3VT0GnbU/jOHSPJzQXD3E+LU/iX/RPLVlYT14XbY/7s/RPK6BYz21xrY/krjTPK9QQL/sgUg+DV0hv+njN7/BnsA+0NAVv7OYZL8MYG4+f0PFPkjXbr8+FIw9ee+0PkiYUr/PpMM+vY/XPpUOJL+pXw0/Y4IIvw1dOb8QOQI/UnvuPiMQBr+qxzU/rP3wvoDAGb9bmBs/lv0EP5bmv77CJVY/VabMvvGe6b5VAC0/BTIUPxxKUL48Zmw/cpymvqR0l75uiTU/ttgjPzTunrzmtnc/5NKAvg1eGL4cgTI/soAzP5X6Nj5VsHk/zZkEvvDWIzsIsCI/OahFP4Nysz4Nwm8/p2KqO7xwAT6j1Qs/pvpTP4K+Aj9C3Vk/ABL6PaxHZT4lsuE+eYVeP0GIJj8suzo/Fa9YPn07mz4HAqc+pzZlPzyDRD+M3hQ/EPCJPhIOvD4xH1I+bD1oP9tEXD+3ltQ+0j+XPmGq1T6xIp89gMpnP0BybT9okXE+x26UPltWdz8UX0M9bcmBPkZ45z6tHXS9r9VjP+Ln7j70R1S+aB1cP8DBeD/p8RK+ihpAPoC16D4xZrm+V1ZQPx+AcD/Wiqi+1PXCPSnU0T7SEwS/zZJAP6PrXT9SEv++2uiVvGAcqT5XIyi/IYotP0d9QT9HfCO/6xIUvi2XYT6KokW/I6EYPwAbHT/Fgz2/34qMvlVmsz18xVq/7goDP7CY5j5oE0y/JN7NviQWe70ayWa/oFfbPlBwjD6YaE6/tyoGvy4oU765YWe/yvS/PnwzkT3vPUe/UrcfvxBr3r1EUjq/glctvyjCwL69JV2/nlurPqvHhb6UayW/4pE3v3H2CL97yEm/xbObPoN0xr6rKQy/dNo9v6lJLL8AFC+/7DqQPhbtSL9Z+A6/YXeJPvw7/776T96+GxRAv30YXr/aG9a+ANOJPgjHGb+nUJq+25A9v2x/a79clIe+kBKUPtqiL793PRe+ZV42v44kcb9cBc69w/yjPmtIPb+MBKM86Egsv3LZbr+CFYw9AuS0PlGcZL+bSW4+gjnFPl3mjL7+jPW9qDF0P3acUr9/lcM+To3XPg1dOb8QOQI/UnvuPk+8Gb+/mhs/ov8EP/Ge6b5VAC0/BTIUP6R0l75uiTU/ttgjPw1eGL4cgTI/soAzP6ZkKjsFsCI/NqhFP/1tAT6r0gs/tfxTP6xHZT4lsuE+eYVeP307mz4HAqc+pzZlPxUNvD5OOFI+NDxoP2Gq1T6xIp89gMpnP0Z45z6tHXS9r9VjP+Ln7j70R1S+aB1cP+i/6D4JZLm+61NQPynU0T7SEwS/zZJAP+QqqT4xHii/lIstP8d5YT5NpkW//J4YP1uasz39xFq/owoDPyQWe70ayWa/oFfbPi4oU765YWe/yvS/Ps7DwL6gJ12/+k+rPh/7CL+5xUm/pLGbPn1OLL9AEi+/YCyQPrXrSL9d9w6/i4OJPt4WXr+cINa+ENaJPmx/a79clIe+kBKUPiwlcb930c29L/2jPu1bDr8i+ym9eYBUP30GD79xpL29Ef5SP6Uzpr6BGwC+agJwPzUQBL82CSS+InBXPzY8Db8dOCe+5WFRP++YCb9aDvq9NJpVP8PA3b4+y8M8e6lmP0wghb7AwwY9Kw13P/Sh3b5MSoa+sslcP467hb5kT42+AMxsP3/wsL0DAwW+n918Pw8vf716hfy9oIt9P+2Lfb2MsEO+IMh6P+CRj70xkmC+UB95P5P6C76k7I29wPl8PwhGJT421sW+OnloPzZ1tT0P+JW+A7hzP/02QD7q55++TGZuPzSjzj1v/QO/DNNZP6DUOD4aIIG+l2BzP4MeFj5ont69VrN7Pymkzj3AGUC9EGl+P+S2nj0vHzC9Hf5+P7jfvj354ga/50RYP/n8mD2vWgS/fEtaP9JY0zxRi/e+Mv5fP3YDmjvpjdm+s7xnP9ePoDvMMKi+P8pxPyUqyzxqpzm+Zq17P0Lbij29Qk+9DBV/P69QQD/sgUg+DV0hv3bZNz/Hp8A+vdoVv7OYZD8MYG4+f0PFPkjXbj8+FIw9ee+0PgSWUj+0osM+hZrXPnISJD9YXQ0/JoAIvw1dOT8QOQI/UnvuPiMQBj+qxzU/rP3wvoDAGT9bmBs/lv0EPzfXvz7JKVY/6qPMvvGe6T5VAC0/BTIUP/pkUD75Zmw/3I+mvqR0lz5uiTU/ttgjPzTunjzmtnc/5NKAvg1eGD4cgTI/soAzP5X6Nr5VsHk/zZkEvvDWI7sIsCI/OahFP4Nys74Nwm8/p2KqO7xwAb6j1Qs/pvpTP1vDAr9p2lk/vA76PaxHZb4lsuE+eYVeP0GIJr8suzo/Fa9YPpUvm75SA6c+bjhlPzyDRL+M3hQ/EPCJPhIOvL4xH1I+bD1oP9tEXL+3ltQ+0j+XPmGq1b6xIp89gMpnP0Bybb9okXE+x26UPltWd78UX0M9bcmBPkZ4576tHXS9r9VjP+Ln7r70R1S+aB1cP8DBeL/p8RK+ihpAPoC16L4xZrm+V1ZQPx+AcL/Wiqi+1PXCPWTR0b6hGAS/QpBAP73rXb9wEv++NheVvGAcqb5XIyi/IYotP0d9Qb9HfCO/6xIUvi2XYb6KokW/I6EYPwAbHb/Fgz2/34qMvlVms718xVq/7goDP4+l5r6/GUy/nLbNviQWez0ayWa/oFfbPlBwjL6YaE6/tyoGvy4oUz65YWe/yvS/Pnwzkb3vPUe/UrcfvxBr3j1EUjq/glctvyjCwD69JV2/nlurPqvHhT6UayW/4pE3vx/7CD+5xUm/pLGbPoN0xj6rKQy/dNo9v6lJLD8AFC+/7DqQPhbtSD9Z+A6/YXeJPiY5/z6eWt6++RFAv30YXj/aG9a+ANOJPgjHGT+nUJq+25A9v2x/az9clIe+kBKUPtqiLz93PRe+ZV42v44kcT9cBc69w/yjPmtIPT+MBKM86Egsv3LZbj+CFYw9AuS0PlGcZD+bSW4+gjnFPl3mjD7+jPW9qDF0P3acUj9/lcM+To3XPg1dOT8QOQI/UnvuPk+8GT+/mhs/ov8EP/Ge6T5VAC0/BTIUP6R0lz5uiTU/ttgjPw1eGD4cgTI/soAzP6ZkKrsFsCI/NqhFP7xwAb6j1Qs/pvpTP6xHZb4lsuE+eYVeP307m74HAqc+pzZlPxUNvL5OOFI+NDxoP2Gq1b6xIp89gMpnP0Z4576tHXS9r9VjP+Ln7r70R1S+aB1cP+i/6L4JZLm+61NQPynU0b7SEwS/zZJAP+Qqqb4xHii/lIstP8d5Yb5NpkW//J4YP1uas739xFq/owoDPyQWez0ayWa/oFfbPi4oUz65YWe/yvS/Ps7DwD6gJ12/+k+rPh/7CD+5xUm/pLGbPn1OLD9AEi+/YCyQPrXrSD9d9w6/i4OJPt4WXj+cINa+ENaJPmx/az9clIe+kBKUPiwlcT930c29L/2jPhsuvz5FKG4/6I2/Phs1bj9yxr8+m8ttP6Vmvz7Gvm0/PybAPnHYbT+17b8+8UFuPwyGwD5H5W0/gk3APsZObj/Y5cA+HPJtP06twD6cW24/pUXBPvL+bT8bDcE+cmhuP3OlwT7IC24/6WzBPkh1bj9ABcI+nhhuP7bMwT4dgm4/DWXCPnMlbj+DLMI+845uP9vEwj5JMm4/UYzCPsmbbj+nJMM+Hz9uPx3swj6fqG4/dITDPvRLbj/qS8M+dLVuP0Hkwz7KWG4/t6vDPkrCbj8PRMQ+oGVuP4ULxD4gz24/UmvEPvbbbj/co8Q+dnJuP6kDxT5Mf24/H8vEPsvobj92Y8U+IYxuP+wqxT6h9W4/QsPFPveYbj+4isU+dwJvPw8jxj7NpW4/herFPkwPbz/cgsY+orJuP1JKxj4iHG8/q+LGPni/bj8hqsY++ChvP3hCxz5OzG4/7gnHPs41bz9Fosc+JNluP7tpxz6kQm8/iMnHPnlPbz8SAsg++eVuP1QpyD5PXG8/3mHIPs/ybj8hicg+JWlvP6vByD6l/24/eCHJPnoMbz/u6Mg++nVvP0WByT5QGW8/u0jJPtCCbz8S4ck+JiZvP4ioyT6mj28/4UDKPvwybz9XCMo+fJxvP5qlcD8MPNA+1kBpP9Awoj6WpAg/aGL/PmhCXT+4fHA+fDBNP3hzKD7Ovjk/cNnePQzHIz/Qyo89yj4MP2BiTj0WW+g+YKVNPfpAuT6wso49JT6NPuAT3T0lfkw+MEQnPlTwCz7YDW8+tEm3PcBhoT5y4XY9MF7PPpblTT3Uef8+LGp1PUzNFz/+2rU97NIuPzjnCj4mzEM/8i5LPl7OVT/Ceow+JhBkP15quD7e8W0/wXrnPhMFcz+tzgs/ARFzP8BbIz/kFG4/GF05P9xIZD+u3Ew/SBpWPxoAXT/jJ0Q/+BJpP3k6Lz8YjnA/PTwYP94dcz9QLgA/cLs8PzDGTT2cIT4/MAscPbDXOD/wzA49kF87P/AzYT3yrj0/4BfQPLBYOz/ANX88EAE6P8BuYDyaOTg/wGtcPDrtOT+wKmw9li84P3Bzaj2ubDY/sK1hPS5TND9gRDk9sBE0PxD0Az16cTU/YJKiPFjZNj/AXH48cLs8PzDGTT2w1zg/8MwOPZwhPj8wCxw9kF87P/AzYT3yrj0/4BfQPLBYOz/ANX88EAE6P8BuYDyaOTg/wGtcPDrtOT+wKmw9li84P3Bzaj2ubDY/sK1hPS5TND9gRDk9sBE0PxD0Az16cTU/YJKiPFjZNj/AXH48Gy6/PkUobj/ojb8+GzVuP3LGvz6by20/pWa/Psa+bT8/JsA+cdhtP7Xtvz7xQW4/DIbAPkflbT+CTcA+xk5uP9jlwD4c8m0/Tq3APpxbbj+lRcE+8v5tPxsNwT5yaG4/c6XBPsgLbj/pbME+SHVuP0AFwj6eGG4/tszBPh2Cbj8NZcI+cyVuP4Mswj7zjm4/28TCPkkybj9RjMI+yZtuP6ckwz4fP24/HezCPp+obj90hMM+9EtuP+pLwz50tW4/QeTDPspYbj+3q8M+SsJuPw9ExD6gZW4/hQvEPiDPbj9Sa8Q+9ttuP9yjxD52cm4/qQPFPkx/bj8fy8Q+y+huP3ZjxT4hjG4/7CrFPqH1bj9Cw8U+95huP7iKxT53Am8/DyPGPs2lbj+F6sU+TA9vP9yCxj6ism4/UkrGPiIcbz+r4sY+eL9uPyGqxj74KG8/eELHPk7Mbj/uCcc+zjVvP0Wixz4k2W4/u2nHPqRCbz+Iycc+eU9vPxICyD755W4/VCnIPk9cbz/eYcg+z/JuPyGJyD4laW8/q8HIPqX/bj94Ick+egxvP+7oyD76dW8/RYHJPlAZbz+7SMk+0IJvPxLhyT4mJm8/iKjJPqaPbz/hQMo+/DJvP1cIyj58nG8/mqVwPww80D7WQGk/0DCiPpakCD9oYv8+aEJdP7h8cD58ME0/eHMoPs6+OT9w2d49DMcjP9DKjz3KPgw/YGJOPRZb6D5gpU09+kC5PrCyjj0lPo0+4BPdPSV+TD4wRCc+VPALPtgNbz60Sbc9wGGhPnLhdj0wXs8+luVNPdR5/z4sanU9TM0XP/7atT3s0i4/OOcKPibMQz/yLks+Xs5VP8J6jD4mEGQ/Xmq4Pt7xbT/Beuc+EwVzP63OCz8BEXM/wFsjP+QUbj8YXTk/3EhkP67cTD9IGlY/GgBdP+MnRD/4Emk/eTovPxiOcD89PBg/3h1zP1AuAD8CAAEAAAADAAIAAAACAAQAAQAEAAUAAQAGAAUABAAGAAcABQAIAAcABgAIAAkABwAKAAkACAAKAAsACQAMAAsACgAMAA0ACwAOAA0ADAAOAA8ADQAQAA8ADgAQABEADwASABEAEAASABMAEQAUABMAEgAUABUAEwAWABUAFAAWABcAFQAYABcAFgAYABkAFwAaABkAGAAaABsAGQAdABwAGwAdABsAGgAdAB4AHAAeAB8AHAAgAB8AHgAgACEAHwAiACEAIAAiACMAIQAkACMAIgAkACUAIwAmACUAJAAmACcAJQAoACcAJgAoACkAJwAqACkAKAAqACsAKQAsACsAKgAsAC0AKwAvAC4ALQAvAC0ALAAxADAALgAvADEALgAzADIAMAAxADMAMAAzADQAMgA0ADUAMgA2ADUANAA2ADcANQA4ADcANgA4ADkANwA6ADkAOAA6ADsAOQA7ADoAAwA7AAMAAAA+AD0APAA+AD8APQBAAD8APgBBAEAAPgBCAEEAPgBDAEIAPgBEAEMAPgBFAEQAPgBGAEUAPgBHAEYAPgBIAEcAPgBJAEgAPgBKAEkAPgBLAEoAPgBMAEsAPgBNAEwAPgBOAE0APgBPAE4APgBQAE8APgBRAFAAPgBSAFEAPgBTAFIAPgBUAFMAPgBVAFQAPgBWAFUAPgBXAFYAPgBYAFcAPgBZAFgAPgBaAFkAPgBaAD4APABdAFwAWwBeAF0AWwBdAF8AXABgAF8AXQBhAGAAXQBiAGEAXQBeAGMAXQBjAGQAXQBkAGUAXQBlAGYAXQBmAGcAXQBnAGgAXQBoAGkAXQBpAGIAXQBsAGsAagBrAG0AagBsAG4AawBuAG8AawBvAHAAawBwAHEAawByAG0AawBzAHIAawB0AHMAawB1AHQAawB2AHUAawB3AHYAawB4AHcAawBxAHgAawB6AHsAeQB7AHwAeQB9AHsAegB+AH0AegB+AH8AfQCAAH8AfgCAAIEAfwCCAIEAgACCAIMAgQCEAIMAggCEAIUAgwCGAIUAhACGAIcAhQCIAIcAhgCIAIkAhwCKAIkAiACKAIsAiQCMAIsAigCMAI0AiwCOAI0AjACOAI8AjQCQAI8AjgCQAJEAjwCSAJEAkACSAJMAkQCUAJMAkgCVAJYAlACUAJYAkwCXAJYAlQCYAJcAlQCYAJkAlwCaAJkAmACaAJsAmQCcAJsAmgCcAJ0AmwCeAJ0AnACeAJ8AnQCgAJ8AngCgAKEAnwCiAKEAoACiAKMAoQCkAKMAogCkAKUAowCmAKUApACnAKgApgCmAKgApQCpAKoApwCqAKgApwCrAKwAqQCsAKoAqQCtAKwAqwCuAK0AqwCuAK8ArQCwAK8ArgCwALEArwCyALEAsACyALMAsQC0ALMAsgCzALQAfAB8ALQAeQC2ALcAtQC4ALcAtgC4ALkAtwC5ALoAtwC6ALsAtwC7ALwAtwC8AL0AtwC9AL4AtwC+AL8AtwC/AMAAtwDAAMEAtwDBAMIAtwDCAMMAtwDDAMQAtwDEAMUAtwDFAMYAtwDGAMcAtwDHAMgAtwDIAMkAtwDJAMoAtwDKAMsAtwDLAMwAtwDMAM0AtwDNAM4AtwDOAM8AtwDPANAAtwDQANEAtwDRANIAtwDSANMAtwC3ANMAtQCJUE5HDQoaCgAAAA1JSERSAAABAAAAAQAIBgAAAFxyqGYAAAAJcEhZcwAADsQAAA7EAZUrDhsAAFBVSURBVHic7X0LgBzFeebfPTP7mtVqdyWtXrtCrAQC2QJspKBghygYiIkItgkGAz7sOAkG53Lns30Gnx9xfA+S4OCE2AbbF0OIkW3AAhOEdECIsI0sGTBEwpKQxEroBVrErrTa5zy6r/7qrpmqmp7p90zPTn+i6O3pd3f9X/3/X3/9ldR1Hbwin8/D66+PSL8OQ4wY1UJXV5ewfvLkSbpcvHgxLjpJaWfbNE07eeLEiVP49+joKP2tublZOH5sbAyiDfF5TzutAxKJhOezJf3cyuDgIFxyyRXCb83N4xAjRrWQyWSE9VWrVnWuWbNm7c0337yWrK4AjgDIvjueeeaZxzdu3LjhoYceOoK/zZw5Uzi+vb0dooypqTZh/bnnHof58+d7Pp8vAmDaw4EDBwq/dXZ61yhixHCL4eGixvmJT3zi3V/+8pc/R1p/FP4Oed+WlpbFV1999R9efPHFzxIN4AuECH6JjRiPqGsAJ04ohb9Ry/GjwSN8EUCMGFEBCv/Xv/71bxOT4AK7fbu7u3/3jjvueID8ecOjjz76S2hg+CYAVPnb2qYK65JGFiNGoFCUJG316D+z9Xv/+99/+u233/5NJ8LPsGjRotO/9a1v/cPIyMiHN23a9Hprayv9PRPxCtzGWQBBmNuxBhCjvkCFXi8uCW688cbre3p6ftvtqWbPnr0KjyUEcDs0KGICiFFn0AUSwNb/uuuuW+v1bOTY6++///51zz777OvQgIgJIEZ9QdIASAuOnv4VPs64CM8RE0CMekYf97cC1cNBUuRO6HyYF9QVQ+1XFAVy2Rzs37+/H7iuPg/oOHr06GJoUMQEUH9gkSArSfk98+/rue3VJIAdpPy7+ffD5rLaLemMAM4xExoUMQFEGyjsc8y/mZ17OSnLSFlkrssdwdUkALwHdl9fIeUwKY+Y60gOvwDj/o6GeA+nAjjHSWhQxAQQLcwjBftULyNluVkuMrf1QLSBgTd4v8u439BEQAJYB4aQbQBDYIdICSpk9FXznH40gYPQoIgJoPrgbWZsQdGBtdJcv4GUJpBi2G1QzRbfCfjnO91cfslcftZcbjMLgmkMu91eKJVKwa5du1DT2E7Ke8ADBgYGXnnuuef+o6Wlha5nGiyQJSaA6oE56m40lyj47yVlFikt0BiYZy4/YBbEn5jLdebyV6RsNf8+bnfC9evXH77llls2XXjhhZ4IAK+7efPmhuwBQMQEED5Q8G+BoqPuNIjBY4m5/DL32xtgkMD3SdlMymilE9x99933EQJ4P7jUAk6cOPHk5z73uXXQwIgJIDyg+vtxUj4GRYddDGfA4W0fMstjpNwNhkPRkghQCyCLL/3Lv/zL/wKHJECEf9utt976hUZu/RExAQQLjNT+fTBUe/SOL4MYfnElGE7RTWCQAPoMBthGjAdAPPLII5s/+tG/uOmv/urTty5ZsgTf/awy58Phfhs+85nPfOHee+8dSKfT0MiICSAYoOBjn/zNpLyPlFaIESTQR/JBs6Aj8e/BiDsY4Hd69NF7d46PH/nU5Zdfvvbiiy9GEljU2traa24+evz48Vf/9V//dcP999//0z179kCMmAD8AvvofwsMwb8CYlQDaB78DSmfBoMIHgejG4+aB0899dQYKQ/29PQ8SFaxeee7B98cGBiAGEXEBOANS8Fw6mGJ1fzagBEBlhI/gZnoY8wsMcogJgB3YI49FPylUAcYHxdz3qXTlfu5MxnRJk6lKjrgowL0E1xKyjO6rv9fsny03I6NbvPLiAnAHikwnFCsnAUxogj0u6w1y0NghCJjF99rEKMsYgIoD2w6sTJhH/4lUCeQk1r29CwU1hVlJYgQszhnMmJAXjZb/Jtl0q0DfNgsqKn9CAwi2AsxShATQCmY4GPl+SOIIIpC3g+pnh7ht1RqmbBf2ja0VU7jfr6wNtZkmNAo/HilrJlEk5FBNvsqRwyRSwmP2tpXwfiW6yAmghLEBCACo8n+MykXQ5W68rJ8E0ugqmL3dZuZBK6zs5OWcf28grDjNl1rqnBygCmlGSpjXsWtyaxxfGdzt/FDnxHTxIYoTk29iy7Hx8cpESRzGrz99pOF4ycmJoTzadrbwjrG81cBZ4JBBBiGjc5C7EI8ADFiAuDwCVK+RspCqDG6uw1hmz17NlHhLxe2tSeiNfaHkREue4g2omZysHjxTfQ3TBff1rYLjh83QvqHhoagxsDkIXeA4cvBmzwADY6YAAzPPgr+R2t1Az0FNf6DVOgRTU3WLXvFFr8GyGbFhEDNkCv8bczOsxjw8VA7mD17HDKZY+TvZ+l2OSd/FYE9BthliCTwBDQwGp0A0FH0Dahyq4/CjSWdXkGWZxUIAJFMTs9PghoClkxGJ8/7YfO3QUIG2wmJDNbCwYjf/Luk/BMp3yTlLWhATM/aZg8MIkHH0G2kzPZzIkVX0LUOdFg+WWYyE9IexbncUNAn4V20lWdqfiKRFlL6ZKG+YetzaC6Oi5rTtwh69RU4MIeYBy/Q344e/Y2weyIhzz0ZKJAEMJPR2aR8ARqwy7ARCQDtPxT834MqAQW/ve+D9O9FrXZOucaD4eA0elrb2w0KRL9BFX0GqJLgAK5PQYUgoumIRiIADAHD7r1vgc9W3wmo0Lf/LlEA+gUVXx/PQYzyYE7PtjbDZ3Ds2AN0vQomAmqF3yZlFRg9BYehAdAoBIDCjzXpAxAymOAXhL4r6qn8ognmM0inbzKF38jbETIRIAn8DzDyN6BJMO1JoBEIAHVLVPnfF8bJdaWTLufOnUvLJPw2rbgFuz5u8SvCzmeQbG+GzvZu6Jx3GxX+ieEniFZwDIaHj9HtXV1ir0hAOf2wRwinGkMSeAimMaYzAWCqKXT0YWBPaM0wE/x02kjem1RiGz8sILHOSn8AentJ03z4p5QIQow+xPqDJgFGE07bMQXTlQDw4+GEjx8O6wJG4Mv1VPhjVB+9vQYRvHTgJdC4yMOAgb4ijBHBBK7TspdguhEAhu9iSi4U/lBG7THBlwfdxKgNaLDR4pto1GGIRIANCSOBadVLMJ0IANV8DOzAbr7A4vjHzHQSXV2Gqt/a9QeC8E9BjGpC9hmk1QV0efr8ThidsRRg4hnBRxDg8H9sUL5DynlgmATTIqfYdCEATAiBsfyBe/mZ4Kd7jVO3xTZ+JIEDo7A05fE7/ZT+xkggQGAj85dQ1AbqngSmAwGg8GPLH7gxji09EgAT/hjRg65pJb8x/4DhKNwdxmw/V0GRBH4CdYx6J4CrwYjjDlT4DTv/ciN2Pd0LMeoTSAQ43gKJIIT4gTPA8DVhHPjDUKeoZwJAFvYt/PJ4fKwwfX2X0vBURNytV1+QfQRdXf2k/DcYGHja7DYMNCswkgDWQVRD1kMdol4JAIUf+2gDbfkxem/evKLwx5g+6O+/BObO3UGIIPCRh1gHv23+XXckUI8EELjws8E6uGwai9Z4+xjBAbW7/v5+QgLfjUnARL0RAAZmYJLOUIQ/RmOgv98YXzA4uC5IIsA6iXXzZ+BgVuOooJ4IAAfQ3wM+M/SW69fXx43fp6KVcSuGT8g+ARxbgOjqmA3Z5J9C5sAPhe5Cn3EDWDexjmKmoZrnP3OCeiEAFH7s6gskSy/ftx/36zcuUOtLz7oJxg7/FHbv3h7UaVkdrQsSqAcCCFz4+8+/CWLEYMCGAMP8sJcAcxYGgLohgagTAGafxuQMgQh/09yziP0X2vigGHUMJIG5gIFDw0EFDmGd3QlGyrHIIuoEcCf4FH5m85911jk0MGQqVvljQDGCkDcB2/quISriEIweureQsdjnvAWfJOUlUh6BiCLKBIBN9ZV+T8Ls/d44nDeGAxi9QX9Myr1BpC1nA9QQkSSBqBIACj/O8trh5ySYejsW/hhuwZPA8LDvhCPYdR1ZEogiAQQm/F1dlxDhPx9ixHALRgLZ7EMwOnrI7+kiSwJRIwDMnY0RVZ6Ff8zMw9+HNn/6/Njmj+EKfNbmOe3dAP0fhtShRzmfgOfAISQB7BXAGYkiMwlJlAgAhR9Z0nfK7rPOQeG/CGLE8AtDE8Cq+WgQPgGcfBYbOJx/IBIkEBUCYMI/B3wA1X6j5Y+FP0Zw4ElgeNh36PDV5jISJBAFAsD5qTGbj2/hpzZ/Orb5YwQPRgIB+QQiQwK1JgA02P+RlD/0egLs5y929cU2f4xgUeoTuAQyux8o/OYjaAhJYAcYWYdrhloSAAo/2kNXg0/EXX0xqgVDE7gBjnEk4AM4Z8U+YNMe1QC1IgAm/B/xeyIW4RcjRrUQIAmg2Xu7+XdNSKBWBIAzsfoW/vb2WPhj1AY8CfgcO4DzECIJYPfgQagyakEAOOL6T7wePDY2QZddXYuhd0Uc2x+jutDHZxT+ntM+A0bTvaROFrsHPcYJIAn8KdRg4FAtCGCtWTwDhZ/OCBMjRo2B2aQCihHAbEKoBYQ2vZEVqk0Ap4Oh7ni+LhN+ddZlECNGrRFgoBBLd4ckMA5VQrUJ4OOk9Ps5QSz8MaIGRgKDg98Fn0AmuZiUx6FKqAYBJMzlUjCm63YFPm8/fdEtv1dXabx0PQGhQGGLPMSoHVicQE8HacDf8adwaM/f+z3ln5HyPCmBz2tmhWpqALeBQQKeQLP3tn+w/mbl1UM4p2KeN05gGilg3cTiM9Mw5sDATEJfgCqgWgSAgyA+7ucEKPxIAmHIU92BCX9MApECTk6KKccDmHcAg+NQlQhdC6gWAfxnPwej4Ndt3v5YA2g49PSgpetrzgHUlNGhEHqQSzUI4DpSftfrwel0L3R1fYAO9kFM+bwZa5tc54rq4CTc0k4IFZkBZJvdnY+AXVIxT63pNvfrmiQqH6Aosc/BCizHYDqdpiWZfC+89NJm8vek11OiMxDNgccgRIRNAMhkGNzQ6uVgFHqM9MNY/8Cg+95B3M13C+/uBOGbQIqvzTEMzJq1ijRcByCT2e31FOjswm7BuiYA1IXO8Howy+lXXejOdwlEGkMmgFhgawbssj5wYMBPqDCGzGOKvIcgJIRJAJ66/RjQm9rb+3EIHNNMA7CV79hrWjOgFnDy5Ek4duyXXk+BWgAGzuGwYc+qRCWESQB/TcoytwexPP59ff0Y9geT0CbuoNvUaLvNSq7MBmfHW17HjU/AJew8BiW3y1wCSrkd7JArHsucjTw0G59Fg/sc5LEp6d6LoH1shx+H4BIwfAF1RQA4hbfneH9M8JFmo/xKKrBPArDb4IUAvBzvEbanR18U30vg936k45XAH3B6+xxo3MqyP4fRF//Gz2k+DUZsQOARgmERAKr+LV4OtJ+7L2IEwAtZFdRtR5cISvgtz21z0joX2LDgM0BoPhgkUBcE4Kv1L3H6xRpAxcta7hBqnIC/99+IYFoAvPotPyTwPlKugIBJIGgCQI//18Fj648vqrV7LTm4qfgjsdlpD71u9tI7qWC8MKriekISCisLU4gKsLue2wrvVij9nN+LMMoajcLFHVidUg5D8OJzsDqf+Ry6hc+Bvx+N27fwQyUfhuXZ5DgQ7gq0f5/brrqL21AzhojNSeownMKxPj8AHyAsAr8m5SgEhKAJAFX/070e3NNzOQ2nFCC1rLpTgbRb2h3PVt1W6KBbwKi3qJrNdreEV+LDcPkCdJv1Esg3GLCGw51+9uzZkM36MgUwpB5jA74MASFIAsDW31e3n+VAH7cEIB/j00bX602g/Z7fpTyEAuG7+SQATxcPB93d3ZDPX04IwFe3PsrY3RCQFhAkAeCNnen1YGz9LeGFACyO80oCetRb4KARtMbjILK65HyCD6PyBUoUjMAJQKm82Q7S4QGMGMT0YYFpAUERQDcp13g5cGysi3r+m+aeBRgv1aKBaPNz+xZsPh5ubXSHH5BZgSU+Ar3UYqx4XTsVWGM7s5KwWK8AtwLGoFj8bfnA4itLSNez8qHwNno+b2Gz8+ezu0+L5xM+ofR+S84nH89uhP2tl8aFYFenUSx8DHqZOJJy0Iz9p8yTtLUtpCNbM5kH6bqHKEGU2WtJ+SYEMFowKALAkMVFXg/mPf+6RACanQYQdIvl1kdgt1/QTkQZGriHHCfgwmmmSdezfTwbArR9fJc+BtsGooQASreXOD3dOBXtTCiyvbOzE4aGwA/Q3F4BESIA7PbzlKnDCPopzuUnE4BuRwBu4VYgbT6oLQH4vZ8wwAu/WwKwOJXdpfxst4V0ghICsCIgpfI2ngBs9/cAJIDu7msICTzo5zQoc0/7vZcgCADV//d6PVju97cjgNAFRq5BNt1cvjUAv/Byfr7ll7vN7C7n1ocivT/XPsYwfICVnlcVCUCx29/ieCcIQAtAAsBwe19aQBAE8DuknOblQHSGKK0XQlO+vWAL0QyAvPBY2shF5G2+uOuMfFLcgLwssXmV0n0EH0G5+xN6KsyqJjQ5IYXUWfWKVCIrpeJqCUred94wA5gqbWuj26n8jgSM+wKadIAq7SYjX5lEErIJUfjDLNiCcdsTki9oQjdiXJpn9kAifQ1AxnNcwAJSVpPyU/CBIAgAW/+0lwNTZr8/7wjRWQUIqAV1fbjucGl3HFt1uX/UYUcArlV+tzaFW5+H/AG8+Ez4wx34EEq2c+tJjgExLmDYe1wAyhzKXu0IYHISME+Xp7Dfcv3+OiNvgCKRV4JfJ1Olg3hbudzJbAgicgQQciSib5s/6PcRcD+u5sRnwm3Xpd/yWvEDpNOzYDSFjbhnU34tkcE7yNLzhAS+CGDnzp0XDA8Pe/b+88jljO4SRTdvyamABE0A010DCPl6rgnA7f14/qBej7c4XA49FqCUmgi8SSDZQNgIDg97uxeUPZTB/v4F/woe4YsAnnzysYtHRsbShufE0H1Uxa6ftIv+v6fnJiA6AEyYaf+VirfC6VV2NqCHDyx7GCra8BYagXC8Ijow9UI4q24uE5K/ICfes+LOa6FYZQyo1ELluW38sgyS0g52XzdR6dxOvo0TG194nzWwoaxYTClzH3pC2D8nvX/MednU9AdEmzbG+Khq5RegYISCWb9Q9ogMrrziiktqQgBz169fv9a1lxTAX25/3zqmy8s5aMF5AigUjgTk/fmlJp9fcfcApdVFd6ai6hW282dT3NkMvl+/Uxs9Sj6UinEVeuX9wZAHTWtyHhTEHU9k8Pq77roLQ4Pf9HLrnglgy5YtGIhwhuJS+BlCm+CjGgRQQQOQhV+32J9flgauuHuA0teu2xOyVWWtsKsbVEUeoyT8CP59ygRgdZMS+aIjfHw86YwASsl7EZHF91544YUPe7l1zwTwox/9aC27H8Hp4eCjGHnTPaLaGkC5FiksDcDlA9hqAFZwowG4DDX2/fqdniBKJFAxrsJGA1CMxnBkpImQgMM5QSXyJrK4otoE0L13797Ljhw5QnOgC02hDZqb59Fsv4ztEokm8VjJxs6DKFCq7+5x6yx7zMvAWmy6zq7PCbPl9bn9c4p0v3Q4Oesj5q5eeF4rQ5nrV9Yq58STbfKEFMdQ8rR2Qi+Nx8/mc8adKBLZi7uJ8RC8aV7iCJN8HJpLHwa7Bn2feFP+cgZavh/5Wo7uR9oXAJzIw1izEQiXmH0LqCM4F0hlj6ButiishhAZbDpw4MB5Q0NDrd3d3RPgEp4I4Ic//OF7N23a5Mn7jxFQPMo2gGVenv/x+Q4ZpEyLXXYsgt3+5e5bt6px3uEzZ2rpeHxpXT4/5QsrjUIWisJSOoGdBlT2vdls9whbhSxEjcMYJei+S2Dnzp3Yl7iclBfdHuuJAAYGBjzF/mPL39V1ifCb5fssx6gQxPt3QAAVhNr2fqXfdHl7yeV9qzSWt1J2u5MXKNu03LpmpQFYmRPy3wUScEkA5e7P4a5u4ZuPPd4T7Q702Jv/2muv9TzzzDOrr7766qoQQPf999/vMfa/v+SXutcAnO7vWAPwB98agNxiSxqA7LMo0QDkC9lpAO7vsPT8AcL3aFMfSPVcD02Zb3iaSGTjxo2XXXzxxd93awa4JoAHHnjgd8bHx09jc/W5QTq9gtiUTYJNpcj90pLTLc/bk7qFjSaBTv3H9RPnpciLpGL2o5pFJf8r7bcvFj0v3pAOeomDr3AsmB4F7n5tLVQd7WsFFFUxloUm1rgBt91w/qEXnx+hcqsWwpCzUvstTsmWCd+PI8VRKAUvkVGkfnSlJEegUvybbedh5fQVrle6mflHFMXKqVvmfOy9ncoU7r2dPFu2qckTAbz00ksXDA0N9RIC2OvmONcEMDg4+F5SPMX+G/2dIHwQlfe+VXJQ2bXAJgo+JbYfJ/8YbahrqkAAiq4JAlyo6IwANNHNphOJ4Pcv8IUkN+wP225tvAfVEHxcJkM2Eexhp6IHenYPB+jCokTgpAqi8poJIwCuvrkMu3CmQdlB0JiY11aoPa5BCGDu5s2b1y5duvTv3RznigCOHTvWc+edd3qO/UfIBKCw53cg/GVtcA6apDEo2eK2JPmXyWUFAiBNvHW/vVlykps9kRT3VyWvvy61iE40fCb8uEym5EjAahOABLsX7vL2/JtwuvB+SyNx9dJVuSfCrr5Vup0gCFG4vkgA6fQHYHT0AU+n/fa3v732uuuu+146nR5zeowrAtixY8cF4DHzTypl5Pwr0QDMZYkNKcOpBiCNJtSJBAujDXVRA9B1Me24XvwWhkaZEF9RNpMXVX4rAuCu70RAeA0gr2LXKE8CESeAoFtQGeVS/JTTAKQrFOqXvLSrb2UQCB/aaABNHs0AghWkke7t7+9/1ekBrgjgxz/+8W8ff/tEOpFoNuxV+gSVo8M1baa5XExa0zY6GEIxhw4oitRC6jh+WmoBU1KLa+7H9s/kyHZNp/2jOEe7biYIYIOL5BY8n3cxHhRtOs0qZ5zYfS+vF37klwxyDaI2tvEPKzver0aeBWPCVdqpny85nIsSsMhPII9mEFvMEve+LtrUedXihoXjKz+P5UgGq3dh/o3PqJHvxwoaWPRb0iVmh0kW3g/ZAxJSN0RJPgjp82alQKYErxISTCWK348uVTEOoXT8f8Ko+2bR89nCdpr3gKYDUAryocmRZKbZoZhLTcox2NQ01xUBoGbNGrPdu/fOvf32ez74ve/9reN5yBwTwIEDB/qIjXE9ewhhaQN8IOY0LBnuK8ujdM7MpNhCK1JlzBGBNoTfqDCZyUnxdIp7Z2VVwauDlHB08yGNpTw4xG03eunvcr+qIm4vd0Lb81beTdiBe958ThMIoPBPNwTe8NEUCUDRK78PsCEEuRtT00Fw4imamNCjwJnckicAhTqSuO2ccNMGzuqF2GggqRSK2XfBI7CHLngCKMCl8NOLJJO0IOzG+2dzRYZGFtQVST0H8XhaPTgNQFHEiUV0t1lcg4adBsB+MyuFpssEoFQ83BEB8O/NSlURttsdX/l6jghAeF4LAuA0AFWRCaDy+7C7AdlkyIOkASgiAZSM/ycX4AkgoUgEILXwJXDi8PYB0kivwMZ68eLFh5zs74YAZhb+km0pG/BdhnYaQNZUfZgKn89LNrZMApQgihpAKpkSzhf5vP42GoAscbYagN3YBbAgAH67w5a+3O+2r1uKK7DTAEAmAPA3OEG+P7QIBQ0AJIG2yJkoaAAJRdyugqABKCUal/j8VnyLar3PGYQcwzEBPPDAA5cRZjmtuRnnP7dRCzmgCptIfKSgAWTz5oE6pX/yfpNEyPNmyRHBt+k5t0ghxWwudC7INpVtC1yiEpptgpnfQJHzYDOvkrk9UdKRLL1S2YZkOQ5NJhTSngtCihdKlAxGSli9c+4cmB+AnUqnZ5AJJC+0eHklb1kpi7edLN6SBfKqy1h8RtiskBeAajS2pAlVoxlzCt/TFHbzFwC3wl/m+jySstNCbqDkpQoFDQX/y0uPL/sMElIcCvXtqJg3Q6F/55hGYcaBqGa+DCNvBjZmDscGmFXywIGXTiNyuipcDcAH5BYsr+U5Asg7IpUwoaITrZCkEz+URVpbfnvJDVvtz/1NwRFAvrIAye/LUg4F4VUq7q+XqLTi8e7h6SDufkyJK6iG/s4XOiSytNMwNMlLqZH6XiQAzZhsFKsMEn0A/IZ47rnnVqxZs2a9k33DmB5cgDzuv4QA8iIBqC4z4pTArv7YaACGwHMtvNXMMryGUHI9ixuoQABgRwB2Z5cqo6JUJgDLe5IrdaUbKHsihyjRiLl3UQ17zW39KLdPGfO3JAep9ANqmFQLoARA6hfGfTDh57Q9n45AxwidABA8CdgSQMInAfiEyvooTSFPWI3/5bY7EoBKBGAD3ZYBQNQA7Agg8hpAxOFSA9Alr2OOagAarWdUE8DqzmsAVVaAHBPA0NBQm5f4f4DzhT5NVW1m5r8xCQjt+1Wo4KcwEMamW1BeT6hSP7Zkw2v5DAj9sgldWE+oScEmZuPVmc/CnKmgAPSBDJkzOuBsr8xZiSmeERO6+EpHj78hrGu0p1yBbJY/L6v8mrRuWPE88uUIgfflmX4smp8ASlGSqUjYKLkjAoAQK88S75tFJd+P9gTQgqHQOfF7mXEhCTMgS5H68ZVEStAgdL1ynEfe1LhYXc5rqlh/1HzhXIWb5M6fY6GrZud7QlGFr6VSkSpup0Ev3PmTzEmtGF9b0wgZoAQkjOdl94e+g0TiDLL+K1fvGp+L1M9gIwGPHj26cOvWrVeDS+DNGAlDikCbV3AC+bQBmRNEqLGcUGAFY5VJGHQD/LJYQeUWlwl4kRAMwWcC39HRUfibXrK1Qzg+e6oYOHno0CE4fNhuIhdVKjYo1wJFtDGVfRQqJXBTkypE0nAals6GkXfT/RMJ0WRqapkBfP3JTJXPqoNedRSwHBcdpiiq0KIbb1yuj8V1VVpXdJsWiv2kWy81qcVjdO+tsTVAZPX3Jicnv97S0mK7b8gmAHoyxSHA6AQRCMDOBrThA+aNNVdKWkSMNOOFHUMR+XU8ntcAdOke5s07my6ZkKPw48dBQrD6SLoutlBax4zC33PmtBJtSMcBVRWeSJGKOwgtewR9arYEwDreTRJg75qRbjIp+qKn8qNC/WlOVfZVnzp1ii737NlDl5OZIUEoVUUUcKMFL55fJoiSTiCrFy6bC9y6JvUyJbjhkvjsE65z/FCsJFrA/AULFrxht2NVfAA8SjQAhRd+982WvQagShpAUljHXgheA+junEkr2pw5c+gpEgmjQjECyOXCDixySQDTTAPABkL0sYitoexUntWOmkGx/kyNVXaqGt3YBtCUO/LGCcmHAiASQEJYV2WNVWowSl47ixR0qAFAlX1gjghgamqq5c0332xBYdJ15zUrk+klKpfKrWdAlzryVamfmXxCYbtiIwRyP2sqJQYCaSC20klVFOBmc/QdCji2Ml3zF9EsrcyZlsgb2zM5Q7W06/VOKoZWwrSbrHk9bXyCkMdJsIOi5At9usYtWFQIXsux8pmUcVBR6EWyUyyeR+7VCMIxX0LtPLdp3A6aUXRTGUCk0CdAiqrOMFr/VBZ4DYHUTfFiKfOKgg1fvBG1WaHfZvb8WTBrXje0tExgmHvhfvJaSrhBFTLFe8bba2stXKqvrw/ayPV5ghox6yML4iFyI9yeevKk8DLQh2FEQ2r02XHoCSO5lpbl1AfgZmAQyii5Zr6zs9NRgEaoGgA+CKpvQbaasvrd2mp8kMpqdflzLVmyRLDhm9ukUGKoLhQlIRRvJ4HK6r/s/bfYxBD483s8IZtKTkG3ppdemIKNrwoa6JIlK+kulAQc4IILLqCCz9A0V2xg8sdFudu7dy/1/Rw9etT6hLJmAFCVCEAGRwTw2GOPXU0EbF4gV5S+lxzrnkkbTjQmlDNmzBC2YyvNb+/p6aFLfMH0Rf/mNxUvn0gYx5155pn0HPL5MyA6kYIWALuPi04pvrhuge00AMlHUnp96YeImRKKLPx2GZOk96EqIgGgCiSQQIXTrbz0UjjtvNMKDmFs2FDj5Fto2URZvXoZLax+HnjpQGljZUECBrrM4m4GcFLH5r/88ssrL7zwwifs9q2KD4BpAdjiTmUnLfdBtRtfXtvCHqFFXrRITD/AbHOGGTMMlb+vbw4sWLAADs6fD4d37MDkJWXvhwm/E1RfA5AJwMMduCEBGw0gcHh8oW2mZqaUCL8DAhBs/FICQDASeG3/EcvToPAvXrwYWttaCwLPiEBwBltXb1o3scyfvxx++cQTMDY2Rkt54fcOnF8AewKCIoAUsbOaWP+k3dxlDEYX4IpCv7Vi9uO2KOIl2xYaKvzy5WfD0qVLIZnuEs6hNieFCtuUEG38DPfS5i6ZA3POnANLVi6Bpx58iv42dPQtukyYHw3Vt/mEJNhHy4JoXymaP07MKyAMXEokmQ8hB5OTk7T/v5JQY74C7PNOqMz7XArBRaiUbhMSnvAyYuUzsAC7d3Z13klaEqchVwcP02/jeVERRIe7Vkj4YNxAnrxQZuY5Ohc9UqG5FHV6e/niBnrq4lgI6ndsK97wwiVnwcGDb5j3ZBzQ3JyGc845B1a8+910PatNEcFvKbwcDOwRvPvtogmQhRbh+vMXt8BlN/4RHHj9AAop6EdFxsjR/BM8uWEvmnMNgMkpaXAdOQ6q3gvA96ejEC5fvpwK/vLlp9PfBiU/WQYH99iorTJw7oFLr7m0QAI8ent7ffWx2sHuFj1meokuomYiOPhFRPEBUMtA7ZB1EWJLumjRElhx0UXFszGT1TwswRiQJ4Fyt0CWzU3N9DqdXcb8GC8+vkWsEyFoBJXgiAA2bty4IqgLUrUHgAr+lVdeCWOmE+XwmMHESekFUo3DJQEgGAm8unknEHuI/oYqWGhzEpoo8aJDjGrClgBs6hCahtg9iPY6CurcuXPFwyUCUKVIv/LOldKfzjvvPNCOTBTqJ2JiMlfZfAsYtgTwwgsvoBHueh6ASq0sCj4SgBOUEIALFRNJYPXq1fTvHb/6leC9DQvlfGhIPNii+Mj3Fk1EjOFK37/7ZhQdzUgA+M341p+eXyIAxTajElSsv6x+FkggIA2ANNprP//5z+OswYcr7WdLAERocvv27cs59QFgIgNEJpOGNLHnm5LiE6/+4Adh0UUrgPnCU/Lsk1Z3VOnlSpCHp2vzVDj9wqVArG8Y0jPQpYYbyJOjj8ucVJjS0PiKGuRoD0A2mzGiD1WVGynG7D0VEknDSYW+AGNosjsJY6dkcQR5vXh22u/PVyrmGOO2Cy1PmUtX9AlY3lTl8zkBmo4Y2prVJ8xrU0ufWPhiV6nbryv7fFq6ukCdmIDZpLFYSIoqdhIZocCckOZlIZXmVpSfWUuw5zFT5J2egHfM+S0YSeRxii9IZtlBxoFT1AfwS8fPw+SUyOysY8eOJWUNRkZoPgB5DAAC+1DPuigwa8IxsKswf2aeqnYRa7Cs4cHkaRwoFXsxggCaigisr2Wvz5Gn1S4V70/6vqhpoB8MCcAKYWqNoTsBTyWN2GtU+VdeuhKqF+IggnX7ZYemINIIW/gVl9ujxpjMyRLS+0mkjSa674w+aJ/dLPQyFS7MaQBlwxDsvqNkORhO8Cvh2UcfjVYg0ODgIDbZvrIBMYdfFFDL+uzYARlyC1ffUKryfljAWdnrC2MHOPC2uwMNgN+MJPDaaytg4MUXA2nxMeDItwmwfv36lcePH+8opvWu/MbTaePGDx9eCOefD9DV9Q4447dWwYQ5NDElG2khq7kF38UsFVInU5DBsQYenYpekE2YowMTScinkrSPP49jIjCDcaUDmVFuU8HzumiTa5INr3AtTSGDtVnx6CxZmrjOclyye8tzvVw6cOcz4wzkuf5YysfCQQnub37pEBhpJ4/vqJjPwCdSoxNGuPmcZhhv0iCpl/F5KWXWy/kEyoD5rKbMRzz33HNpvMjrplMQh5sPD+cLY17yNhmk2LsaHh7uffrpp69ZsWLF31baP3QTYNVlq2gEVQwD6MyqyO66VFxCcOQ5UU8VKF95rX5yQthV7MeebsCI1m3bgjkXMSXa7PYJlQDWrFkDc2Thb7BKkcoXW6+u1i4IGwovfOWEsBIBSPvbhdqXkJR8/TpEuVwP1QJ2V7+1Zw/tNkbUpRPw/PPXQNSAL9JxrqQQ74F9WEsErQG4JYAyu5b7wcvMN26BvpNqCmQthR+BvRB7uLiRsRArrS0BGHn9E44HpUyaU3O1LmiFvnP6IOMybXzQSOWMWogRWxOtGg7wp+vJnDmiSwm3mcqrxYEnydYm8j47SKt6vJD3QckpNI8d5knAnP06GHPTKTRhpFqaNlwS1kLuAPa3VYtcySmlWsQJyPvx9ns5G7cQGCOuyyZwSXXAQDqcH0LRjDkZNO6ZFKB9/6FGb0o3ONHcAjM6OqBWGG/WYMaiGbDo3HPhDWIL5CdGiynzHYCNYcDBd3K2IStUfSxALcFyCYSf1acI+143XvwUi3yJFU7KCz63LNnXpktKuINyGkOZFt2Kb1zBocbDjyEJFBbXRMLRwvYOVwDWUzQDtgXlDKiAhiIAZttVlQAkiZg5U4PhYX67RADSv9ITissSDcBq/wo2Pv+z5WaXNn3J8XXmBwh7rEjUYEsA5IWMwzRBLWy7utMAym10SALy8baWo0+fh29EmKAMZ+BRCBO2BHDJJZc8eOedd/7F4OBgL67LfbLlkM0Okn1HoebDXpKGkccUulRHE0xNniAPXh3lJ6dBYSJJHEZRkqoZx63rxizHmm7G/9NaiXeMdl9C7OeXYvvZPCaFpXwDTtI3KFJcgPmbE1jtxvIQ4JKlNWBxCAKJsDgB2bxgag3OnJNIQGfn6VR7ozZtQNNnFe6V5Ww07eW2rk5Ipsk6S+5cZR2ZjbVZ8I4FMGvfLHgznzfnCHAWB8B6C3p6ekauuuqqF+yuZ/t4LOXWdAGqeF7yBwaF0jESZmXX2RIqtohWKr+tBmAHGxPByaEFyF2QTpYAkWiJcfhvrXsAeLC64rEL8CSR3R12OzWUDyAKKCEAQfjtpa+EACxIQDzAwU0FSQB+hL+MQ66aCM3ZGFE01tOawEqlD9XOyytC0gD4NNkWnndbDaDWBMB+NO9dryMNoNrxBnawGlEbNGwJYO7cubmlS5e+TdDr5IQTE4YNc/LAM3Dw1GdhFutSZR/YZQULGq2tzaS0w6hmjrhKhB+owMeua9pMYlYtgzff3EVbGzonHJ0LA2eZ0YxcdopuFvMETDBVaZ0XJK7wpKC5ed9MaKFYCia3Iu1nLhVNXEebno0TKPgr2BgEvdQpiJEP6OxEH0he1+hcjexcqUQTtHT2QCINdL6EMNCkGdGyk62TpHIkC+P1A3c2OIQ6ZTRM6Ato626GfMfxklTjlcB8BURmk4cOHQokH8Dhyy+/fMO2bdvOhRi+gcOSWc45hDhHIc6Mw/cCaPZzA1i58LllKHzLEY9V3EDZHgUrRGh24Kh1Afq8n1+sXLnyoN1ODWsCjNYsM4FBAsePs9luxYlKaVSgXkxdbanSWwm8LHHm30oYDMCp73YEUCLSVj/ws/tyATitrfaTWwaF9gj2/7NU+cPgHqTR3gEOEBoBVMrLX2u0taUMEhitHQkwyBoAa/kZCTg4gbVJYG7zK/+Wd8BrABYHVCSAkv2tNQBmi1dLMNva2qAR4YgAmpubR5htYVcpu7qYE2UYxg7vgFnLL4IoIZ8yWhilW4OJ3Cg0Z53nnA8CGIWIySZYf6+CeerR/sdpyzE6IWmIFJ0vLqfR8QD4D+cJwII2Mx8rL4/3F8bnMyNer7AuaxK6aLPLEl6wRrnr8sfSWH7zMmwpxwHo/G/mGWicBE6GYtreuI7zAaRSSVqyYHTM+523QYainDDH/3eD1kTet14b278E5LU0pVLQReTokIvDmJwSmcW+wyzYoCFNgFoDWxsc8YXTRSnSP9lLziYZZUu5wXfUwltoBhVH61XYLv+kuz2f1H7IkY+hmCw2iGrXHzYWYWupjp78yiuvfPiuu+76tNv5AdEMWOQs+3dVkUyqNQ0I4ruaWJQgKxScsPDCTwUENQVZA6jECE664Crtb7HZ9vwyKpzPbuwD5lDgcyqEMXoTv0eUuv/8oqen502UWSf7hkp9UfUD5Izc3ZQEssO1Ga+Mcd5eNAAVlIrybolKGoBLErC8XoAaAH8OdJZOJ8F0C4wAHBzcGuo1nPoAJufNmzeJc50rNjoaH7aYHdxIpO1T0hWjYWOl2oltOU5syxFzoscq5QdgMec4SzF5p3D4sDFvA7oEsGh6CnQtb+QG0HKgZVU6/RT6DJJqCnvLS87Jk0Feuv2SvP3S9gT/mxyrUY44uP2TSvGnwiZpf10z4pswLsCY+k8vFMwFoFDfhUJ9HLo5eoTUOVJUDAaAXIjdg9n2VlC6Z5r5+KHmRrHWXBy7MjXyKzq/BrjoscL6RerVBMqsk/1Df1wkhLa2lkKrG8MAm+++FKZeb0YG4gctljwd9OMGYccB+IVeIQ7A6QzOQQDNwqjVUTpduadOQOcIlQDQgTExPgGtLS3GbLdgkRGmhkABzCQzVc0PwAMjAnEKqjE+55M0NgCz5Gi6avQKYKScXYSaUnHVP+zMB5fQpTgApmFWU/jb29MQ1QYq7GnkHBHAggULjqxevfrhl19++XNuTj44+CocP34curvDT4bpBeiNH20arRkBGLHncwkBDHC/ShpAPk9bfk1TqRaQSLhTAULXAHySgKwBoIcDhR9n6a0G2iOcAMTQANyDyOpjKLNO9nWsAXR3d48jG6Ft5hS4f9PQFsimzij8ptZaBTB9EEwwUh0dMDU5WTXTLy/NTYjdgagp5fPHjftJKMRuJ4W2/qop8AqdK1DXiaGq4thwhdrMKk5USfMJcjH2irT020pb8A1v7yfs4gw0I64AbxXNFy1n3By29Pl8juyeFO8XMrT/v7l5HnUAZgPOKJE0B1hoTcZN5mckSSk+qFLj+sl8RJljTxTqhBugzBFZPel0/1DrPd7Mrl27YOHvQIwyYGMDUAuhg4OkbkFjbADvNxPXrSLxgrTRbaG7LA6ApFgt73+UNQCcKzAB4SKaERBVBNp/NcwPQoHq7q5dBtvLBCALfAkBuOx3jwqY2YVhzwwo9PPmza3KNO4INAHTGDk3xdn/EemlKjdRaNBwQwCO1QoeqAFcAtGGkR+gdqkPWX835oGXtQBR+EsJoIQB6kgD4B1cLGMzm5m3GpjGMQbBmwA33HDDw/fdd99/PXz0zUVCFJpWuZkZHh6Awa3fgp7Vfw5RxMyZpAGYaoNjk8YsxomJ6rYAzTMNJW/WrHmEAA5R25+G+6hG33iqSafzCGJsAHqq0Seg6AlQsaVSk5DV89R6pXEEChRj7M3AgIQuxglo8uNZOb9lm17exM6pG9dhPoiCnDOC0thvxUCfHCbczhs9GqCS51GMKD/MdYdj1+f1nQE4lYMCE2b9ClYJVszrZZOTMKOnM3I6cIeZ8+/IKz+H3Ft7IGHjcitqiUZZvHjxISKrP3F6PfePH2G10iuqkXnFDtjyYZegHOenKOLMHflcXowCTJIKoJrCxjvgTJR8Lrffr9z5OJIo0VJAIgS+sHwHmhj5h89vqP41GAwQMWDPGdaFaiB0/hsffwW2bt0KF7/zY5F1uKD8Y+tTy9BlFhp89A28B44AVLEJRs85r4GpiWRB+HXN2iIIEnrhf8VlWeG3IgFO+HGZM0f3zZ9/Oil9dLRjNdAeYeff0NBQ1a7lmACIanFwzZo1637wgx/d5uVCaN9G+aVHRQt44w30SJbXAHLZrKgjELuZ1wDk9lPOM+o60tmtBgDuNAAkLCS/ouOvOhpAlMf/owaAjYEXoIwSWX3d6f6uNIBrr712y6ZNm8YGBwcL0mI3TwAK/b59T8JFY4dhQWsHvDlavSwvTjDG/EBNmMugC0YyEvvmw+2IUfUkFZbRDEBnTx8hgTeMQUK0KU/Q0Em022ksPfkp1dxEBSer5SEzlYNmxRgDnkiSgvkEVNMnoBjme46z0616BkqeroRBQBB2Nl6JCbiqiQQgnF/Bfnegakkmn4VsJgMabfFVOvYftZee0+YTu38+scmNXgFVSwo5FMNCck4yWuP/C3gRtm+/F1paJuiaXU4Y3pHa09MzRmT0OTdXc0UAK1aswMnKMM/Y2W6Ow9Z/3759sHx5BMcGc+js7ITxt0eqP3cg57VnLSFrARSaJAOKmX9Zxg1zf/QJ8KB7Y53WwDqvpZ2PoNz+ZZay/e+m/WZz4FXT84/AhCzTtAfgoCmjjuGKAIidPPiZz3xmw2233eaKABDYr7l06VLoXvRuiCqUbgVmHu8UbLCwLVJFCqudP38+JaCDB418jolESiQANnmIuT/6BHjQrLpM+DWwlUhHTkLdYpteXPDF6nLYSrGWCrP7MCxZ0g+9sxZCMl/8LezRmFEH+steIaXdecBtASibKKNujnHtBCRqxi9IuYU3A6YTZs+eWVUnjKwBIJhDkPYKlGgAirB/LitqAFTF5jQAOwXXsbg51ABkBuCFnwc2BoZGWP1+uNmzW2AEojn4xytQ/UfZdHuc67d/ww03bP3a1752lHxUGuBv5wNgOQTf3ncPHNo+E3qIBiCMvKpx5JU8NiHRDjCrt6fQI5DIheuUkgehTU4an2TJknOJ6aTCkSOGPwenFKRvitj6GC9OE4dqOqSwoxhfcV4l2gD5I4UPpJpB+uQ38v6pP8DMN1Ay6k0HoVdBkwWczwGgc6M5ze2s57FoAjRRDkChN0wpvC+1oHJ3dLRSv1Bf39lk/3TJ2IigwWL/c6aPYapjDKa6AJrz5ujUGrsA5DCHXVs2QLrpsK3tz8DIta2t7SjKptvre6HfYzfeeOOGL33pS592cxAOeMEyPj4ZefsrCj0CKCTEniNCqwl9wnTyUJRo9AiSpa6JAo0agZogQk8kWTWjgEpaaR42FU3nhN/KBNDYeU1nYC5vVEjej8J/b3yuZctW16xHqJrDjN0Co2YPH3aUzbsEKJNk4bof25P+1d/fjxdzRQCIrVu/BWet+bjg9JmKoCYWhbgABArJBRdcQN/Xf/yH4dtR1URB+HGZaEoKKnYuly8IPy5x5iFR+N01eWV9BIwANJEAKgHVfmz5ayX8GGrc2tZKoywLmpAanV6AIz//Z89JQE2ZdA1PBHDdddftuP/++/du2rTpDHAJbM2q7fX1gihoAQzoE5iYGKb9wyMjY4IGgJJHh81mjRZX1gAwpThPAKpNhS8JJLLqzAcoSwCqeTzLtIuaAMuCjDY/qv21Akv+mZtm2ane//7370WZ9HKsVw/MsTPOOGPDjh07Pn1i+KRgQ+YrjA1Adjs5+P9g5K2TkJj9+75uICyMsLkCOwx1cfjoW+IOIccFyDYxs2GXLTuXEME4HDx4lHap0igBjAFIGv3FU6bkqjkz5j6fB50InzplCDxTw5NJyQQzE4ywvveE9PlwfDxPIIXp6WUiMDfoaodw/IIFaaGrb0qrbvIVZvsrbSrM6OmAqIz2Y2idNFL3vf76P8GWXRtsu1Fp7D8UuRjJldTTx8CD+o/wLH8f+chHNqxfv/7TTp0VDC+//DJmLIF6QLo3DVMnxmgcQxSAH5vFUiAJWAFNBCHLrknIRTNBHH5LexG5JCLy59SkQB9dEvxKFXbx4sVwzjn9EBXg0O+otv3Y/Td+5BV7zdNC3m655RZP6j/CMwFceOGFqHLsJffjygw48spW8rDnwXuu+H2oB/T1zYc9e/YX1qPQS40kgBmF0SQYGzsmhI3KBKBJLW4mgy0g++xcmDEYy5IkwnKgj5RpCNdRzeezRaPgL106i/49pdi1adVBT08PRBXY7YwNo0e8YcqiJ/jRwI9dddVVG773vXtdOwPxYVddloF6icbCyLFqxgY4Ad4TluPHjWi6Q2+9RQlh/MRJgQCSTZVVXlkDsAJPAAlmAenFY1AzwTReaDItXrwQogZjks3o+HRk4HdzDKkFIjLoWfgRvkzwyy678pkHH3zwz4ht7/jtdnVliarzc9Jq/QbOPvtsyI5Ha1BGSoqOz6Q1aEk1A0yYP4wbtm615hEoOb8+Jax2zjMma2ojZIBEMGRqA6xSvf32m8L+2WxxurhMRjwXgs0tx5x4NEcdpyUwFZV58ueffib9G2fvQUHTpfvNVznHntzvz2x/jPs3UFsfgNzvP/L2v8OBA1tBH3qNkqgd2Ptln+Q973nPRrJwnzzQhC8CIKrotq6uroOEAFyHBmOfJxJAPQA1FVQhB2udO6wCmId7timYmGYMSeDYMYNgWfcSTwBWmJiYENaRCNg01Yje3hWFbfhbLmk4sdj0XVEwkWQYtn9UrX/wrP7PnTv3rdWrV2/yc21fBNDSAigR6IBwLcmvPPZfKAEsPe18qAdgJRofb4dT4yMQJagZsUXLcF7uDkJas2adVhKKazfYSd4fCYCZa5pWWZCiRABIXrN6ohv4g1mQ0PmHfrFWb5NUbyMNk6P03+UQRC8cxh/fQoprIwu1gHohAERPzxzIj+Yi0yvgFLKvxc734mesfJQIAJ8zyrb/yMjrfpx/iGdIOeXnBEEQAMYfo+HpqDeAb13GX/ln0NZ+VNiuRmnqIITZorJp6VvmtcDo8VHInzJbwlxtvdwlPgIpTiHovPqyCa1o1fGFOMUpMy4CzZOF/fMhV0g/EY3+f6ZBdeT3wiuvbKX+sHQav5Hr+ztGCO5xv/cTBAFgAIKn0GCMez5CSGDhOz8G9QI2y9HwqRMQI5pA4Y9ytx8Dtv4+pv6i3fB+7yGoQDxPBICOqfXr18Nf1BEBIJAElJNq5LoGYxSFv7092l3MbNx/2vtteg7+4REUATA2cj02AFFvWgAC8wYg3h4Md/bWGO4RdeHHVt+n7c+0bt/wRQAY/YX9xuSB8IYeIOWrboN7jrzyb/BU7i246d1X0/XcRHSdNohJ5qQg8t+qZUGZMG1fs/dMz0Uj8q1RkDd9HMkZRjfkwmXzYQoHMLB5EUKfXKsy8qroG+nI7YWtz2+FwVfXQXvzOLgNpZ+aorEbz5NyDJ3Ris9IS98aADe+eh1Ria8fGRlxPa3r7t3bYfv27XDOOedAXaGrC3qyrZGOD2gkoOqvRHheASas2Pr76Ek6sWDBgrvJciSIKdR8EQC+8CeeeIKt7r3nnnvWfeUrX/mql3NtXfdZQgBPQb3B6GbqgcHXYxKoJdD2x2+RV3RxKqRodE4U4CfnH+LGG2/8xR133FFI/TVz5kxf9+OLAFD95/uMb7755nX33XffxwYGBk53ey6mBSw/47eh3oAVLxfB8QKNAmyIOnGaL4DIagDY+g8PD/uy/Yl5PXH55Zff3d3dHVg0WqDD8QkZ7L399ts/e8UVV6A/gMY22Q1v5Dfv+Ok34KxbRQKIWlyAPFYg2240MekzOiB7QoNTr0rdg3lFmClHjWb9rB8kxArRMbsbWvtnwJSZrVD4PhFo/Znanx3cSFt+dHinmzKObf+xsbHC39dee+2GtWvXbg7y/gLPx0FuEG9yA8HVbo8dGHgaXnnsL+GdV/4V1CNwXoH5Z3YJw4etsv7GCAaofXb1d0G9wE+/f39//6tf//rXv9Da2hpoGGooCXluueWWdYQA1oKpBTgFvhwMD37nlVC3yKXIx3rH6YTMDBJQkMCZ8EegRap3sLkSjf7+OYWWP+pgMf9eM83hlF9ksQ8CRigE4EcLQAKoZy2Aob//dBgcfAsmUIXjNAA9JgHfYMJfLxgYGPBl+5ut/zoIAWEQANVxvvnNb35hcHBwxc6dO5e5OVjXX4Nnn72XdrFh6rDRlJg+LGo+gYQm6vUa6jymkM/umwMj+SbBOZjMijHfOSVmhEpQkuL7mTGnEzpO64Ccaeqn8rXt55chj/cfHniRjnwdP7ILqzS4tQDOP/98+OIXv/jlrq6uwFt/RGg5ORcvXrwP1RZCAK6bchzHXk+5A0vAtfgsYjDuIfAPzIDUelp7IWlJvQC1Wh949EMf+lAgUX9WCDUp76c+9al1P/nJTz567Ngx1yHC6DHdet55cPaFq+rrg0tz/U215mFGH6m0s1Q69mHyTSkLT+X8HA2P0fwoDTZD4Z89uxlO1JEjFeeV2EZaf68gps4Eaf1R9Q9t/HnYWblRbfkaKd8Flw5BBGoBbQtfJjZQ/eQMoLDw+qPHGsvI5CkaBeZjFFhDgRf+esOOn33DV+tP1P5HiRYdWuuPCJUAzDRVPyJ/fogU5tuveE02cQXOj7b/1w/DjNweOOvWLYXtuQmoD5jCrzSJ2suMZZ3QPjQTTpw4QUtS6htUM+L6dPcRsBx+DPlUMeMQCn56cTt9l8P5fCRi++2Auf0Qb+35IWzZ8ANQFNdEzw44TMpfTUxMjHd1hdfVWa15OTAwyFPnHkYHLtu+G8455yyYLsBpyLu6u6BzqBNG3zoZawQWMFr9mTAJ9TmLD3b7+cTDpLwKIaNaBPCYWTyRwKsbP0H+//1pRQIIJILuGZ3QDZ0wNGRM/ZUclWZbnuY+Aq1J1HBa57XQbj40l7CPH6dHj3JsvxWeeeYZv8N9sfX/PlQB1ZyZ67+RspKURW4PRC0AwCCB5WdMLxJgwCQjWIYGTlBtoN7yDvoFSzza0TND+F2ps/BJFP6nNm4En8nu0W8WeuuPqAYBsBS0B0m5j5SveDnJ7t27Id17H6xedrvw+4hWXxVEjmOQ56efubiDEkDTeIpqBOlTogo8oYufjM1PwBA5n4EZu09bcoCS8eu59ix19OGsvTSXRKW5+6L0aGxOxFNiQpjXXvgOpLXdfsK+Mc33T6BKqPbcnPeRgllAXU8Yh0Kx42f3wcqVn6RTT01noCC0trRQjSB7yKhg2IU4nbQCfEZs9bv7jVF8ea0+bX0e3/3uNXDs2G6/p8Gx/t7mCPeAahMABsh/AQynoOtroxA8+eM/g8uu/d60JwEGbbERSJTMtOKExdAxnKdEwCb60CalZjHiPgPW4rPkqtMFP//5X8LArl2Q9qeQPgRGmv2qoRazc28wywe8HHzgwIGGIwEES7XW1K7S/AMsD0N2JBv5XgScoGPmzE7q1c/PgGkHFP4N69f7PQ2qDtg4Vq31R9SCAHB83D+BRwLQ9SHYv38IHn/8LpwYEdoW/o6wXa2PwWHlYdrA7DGSumgTa6Z3qa3NGFamzgJIZ9oK5kHmVLagHSBSo2LgRC4nSuBUmxiZmM6Iw9XkWYTGm0UzpFWRckCaefjZVGIzZyp0XAdijDxVqlw/vhqNvP126JBy/G3d/QS88NSDpOX3LLfshI+Q8hpUGbUgAASqORgg9BGvJ8DECrvOPhvOlwigEcHmBaRoNWYwGh01EknoyZN0yTQETWsXjk20JETtQVIkmCAX1rvEdZ4AUDMZzY0Js/FMtdU7I5cHaqMb131WIFyPQAf53VAD1IoA0LP1KfNvzyTw9EO3wbx5zXWXUjxIaLrkPDPlsaMnTVpvDXJzjQhsFkgrz+3XmhMjtOUWn80SXC7bc5LzOahk1w4wrjvdQU3RJz8flPCj6n8IaoBaEQCCkQC6gd/v9SQ4schVZNnIJGAFp0IoC3ZLS4uwrrnwzjeC4COY8OPSJ3BabxT+H0KNUEsCQCAJ4EAhDBByNI2r7Owa27MJHvn+r+GDf/xumhyyae5cYbs6fTVQA8nKtnNS7jtXpP3l7dL7Uu3mrLOpQSmob8jj+0dPPQrPP78R9mzzPCs373TB4LiaCT+i1gSAeMRcIhF4mssZ8/I/eu8fEBJ4AnolAogRI0hs3LiRRvsFMH3NHaT8AGqMKBAAIjASeN+fPQlnn302xIgRNJ5/8nYq/HTEn+QcdQkcF3MPRABRIQAEIwF8MZ6mdkUS+DlNwHBXTAIxAgUK/+bNm6nwK91LiC16zOupUPhR9T8CEUCUCACBJPAuUr7s9IBUSrQyMQfb9kdvgHnzHqbrXV1i1PG09wnE8AVm88/IvUWXJ98+QAX/+SfvoOt0noupN70OS8BKiY7v4xARRI0AEH9PynJS/sjrCaiX9p6r4bKbH4YYMfzAEP7bIQBgZbwJDMd3ZBBFAsDsmTeZf/smgT+88R9KogVjxHCC+++/H/Zsm77Cj4giASACIwEaJ3AVxCQQwzEwuOeRB++HbZtuIyak78ELmNzjcxBB4UdElQAQSAI3k4LD4S5xepAcJ4Ahw/9IyodvepAOHpphzqZ6KmlMLBH7BBobcmz//uH9sGfT50jLv5kKv89BVmjrf4aU1yGiiDIBIPAFYoz0ClJ8dfA/9N1rYNVlfwsf+ICnMUgxGgCoMe7Z+jlq9wcArLvo8HsIIoyoEwCCjbP8Nvgkgeef/DycPHkS51iHGDF4sGHm+/f/OojT1YXwI+qBABCBkQDadYj3XPGfaOhwjBhM+AOI7UfUjfAj6oUAEEgCGJh+Jyl9Tg+SbTi06/Zs+9+QOfYArLr2e7Bo0bnC9ibFfCUss0uU8tDFcI28ZOOr6klh/d8e/A787GffCGJUHwJH9KHNXzf9z/VEAAh8sTjN2P/xeyLK9oT137joH+GCCy4obuCn8q6vfKMxXGDfvn2wc+dO2Pn03wSZTQn9VXUj/Ih6IwAEzpWGTsHr/J4ISeCll64C7aM3Fyci7b5cJIEY0waYkXh24uXCgJ6h114wIvuCAY7qC2UK7zBRjwTAEiggfJMAYsMP7qETOdx8882xBjBNgcI/PDwML7xQFP4AgcKPdfIg1BnqkQBQNLFfFUf94P1/2M3BsrqXThvrJ/b/G3znr/fDe64YhzVr1hS2n8SkexziuIFog8Xyd+rGdOzj40YuJJxcZuvGz9K03VgHAmz50dmHdTEy8f1uUI8EwMC8rfjJrwrihMPDA/Dje66BPdvWwJkXfEogghj1Cyb8u3dvh+DkngJb/roVfkQ9EwCCpVTaQcr1YDgIfeOllzYX/n7XxZ4jkWPUGKjqb3/2Tir4AWMEjNT22ACdgDpGvRMAYg8pXwWDBHDkRmAkgOXFF2+imsDSVddCjPoA5oX49Y6fUWffqYOhCD8KPhJAXQs/YjoQAAPOp4ZhXH8H4izEriaUT6fFLLlv7/sx/ISUpf9xkBLBrFlLxQOkudsLPoI4jiAUyDn6mqXp0rZs2QD7nr+d9vBg5Q5Y5d9Myt+AMX/ftMB0IgAETj2G2Vb+nZT/TsqCoE6MlQrLhz70CTjzgi+W3zHuRagJsBdn69atMPjq/wrj9G+AMZ0dZgUZhGmE6UYAiKNgpBXD5TfARdSgE3z/+38H/Zs3U22gLBHEcQRVw6Htd1LBRwJANDdD0EDh/1NSnoBpiOlIAAyYew07e5G1XXUV2mFg4EVakAjOv+RWWLLyUujsNGa5jTWA6mDXrl10qPeWDaEl1sU51R4l5dMwzVp9HtORAPj5cTFeAGOz94LRS7AIAFxNQlcaN1A0KrFP+emHPkkq4tnwzivvor+dy48t0DHvgPiK4zgCCZKWpEk1UlFEP9vuLVuok2/7s1+mSzknZABRvcypcAMYBDCtMR0JQAZmZEFdnfUSLA76Atga7dp1Kc1EPLnqb6Gvrw8WLAjM/RADirH7r//7F6nghwictxJj+qe98CMagQAYcDJS/Lj/m5RQEgIgEbz8+s307/POO4+OL+hZ9ucQowIqmEnoyW978weCjZ8zs/WGANQdsGsPU9HVbWCPWzQSASBQG2Ax27eQMgsCxviRV+hyC1lipV255DU455xzoPeij0MMZ0DBZ5l4d23ZUI1L7gOjXuDFJqCB0GgEgMDeAZx3AJsU34FDlXwEcGI/vPDCd2D79iZY8Mw3Yfny5TBr6cfokmGsSZrLUBVdFGpWR0PYWImiU1Hu6UiQn3S9UJRk5TCM1smdhb9RxX/hhafg8I6f0veKRZGeWbb5AwDmmcCknfuhAdGIBMCAgUPMLxDIWIJywIqMNiyWWUu74LHHHqMksHTpUpi/vKvs1NsGmIRFUfotoEulDDABx/j4OIwd3lmw7xEjr6+HKgFtCbT10Xv7NjQoGpkAEBhGHPhYgko4sf97dLmFtDd7Zs8Gbea7Cv4ChNpzuXQEL0URJAGXt/TGc0ZvCQo8Cv7IyMuUCBhkDSgk4AxUKPxPQYOj0QkAEcpYAic4fvw4TBzaCkde2UpzEix852pYsODnNH05lllLL4PSZjSCJMDDQgPY9/yPqV2PJX98L+zfX1T7W1vHoYpA+x7DeEPV+OoJMQEUgSbBS6T8MRRjBhC+3pFiGrGpVM78RWzh0umxwt+YkwDLvuebqFmQ7l1BJzRhE53islvpFo6fbBW7GzVNE9ZbWsTrpUYrd5Rn20VzZHJSPJ/cQrdOviGsv629bXaL7qLr4688BmNjh4Wce2J8frgtvvn+MZiAde9thghjamqq8HcikSjUn7AQE4CIATAchFhRsJcAiQBTB/uaC9otmANsdPcvoWngRTjyc+P3p0l5x3u/Sv/GWAPEjEXnQnt7O7S1tdF1tgzrvnI5g8hQbUehVk7sF2z4yTf+peSYWoGQ6GhXV9dmML4nEsAIRBytrcXBaLOJiRg2YgKwBuspwIqzEgwyeC9UmQis8OLTRlrzHURDSCaT0Nw8j66zytLdvaRADojEGR8Rju+zmdf+0ICYHff43ruL2w4dAn3IyLSD5gvi1CkxC1YyGYkqhQ+xgQj/ukceeWQzeTeRF/xyCDt1fSS+VoSBRPCYWXCIMZIA2o9LoMZgWsLYmCGQQ6ZgKspx2LZtW2G/lhaxRQZx9HIppBnshicnhfUWXfRJBN8r5wuowX0fjP589OkgMebjqMzyiAnAORgRfAcM0wDLWaRo0n6BGrWyCl3qJR+puF6igR9zd/20zdNILodaqfy7wcjIi+U19mPl7tUYiJgA3AMr2P8Eo7IhCawiZS3EqDZwhg+061HdEQQ/hnPEBOAdjAhw/mg0DZifwE7JjuEPTPCZY+8kxPCMmAD84xQpG8GojNh1iFlEP07K6RAjSOAQwF+BkewlFvyAEBNAcEAi+I1ZfgyGWYAawYcghh/w9j0KfcOM1KsGYgIIB6+aBdXU95HyCVIw1nc+xHAKJFKcZw+7MWL7PiTEBBAuMPT0cVK2mutIAueDMbchljMhBsOAuWT9lij8r0CMUBETQHXA1FYkAzYABf0FSAKYQ+zdZkE0Qqc1ix9Gmx77639hLhFHIUbVEDoBYGwz3x+bzWahwcGCvfeaBce/YngeZhXFON5LwSCH6839eqG+wQITfmEWzIqIo/FQO8LopUBHA/H5Avi4+hjWiDWAaGDULIg95pLF4LK5yXBoIGYSiTohMHv9YXPJBB9R9zPpTDeESgBsJNOJE8Xv3hxC4vZpigPm8u+45Wmk4NRE2LuwwlxiHEJ4I4Aq400wej92cOU5blvVMTZWHF2JqdrDHk1X7wiVAHCU2ic/+Unht0kptjyGK2CacxQs1qKiqbAMjAFL1QIf/ItdcxgsvAcigpaWFmG9vb3m47cijVAJYMaMGXDrrbdCjEDBG7bMj/A4xIjhAbEPIEaMBkZMADFiNDBiAogRo4ERE0CMGA2MmABixGhgxAQQI0YDIyaAGDEaGP8fAxycJieRJ0wAAAAASUVORK5CYIIALI7vPEGjtj/cRe67DPjwPHddtT97SMa79L4EPUJwtT9HCua7Hc4PPeSgtT8mowG8A5UYPRTqtT/AZRW8pjcePXJFtj84Bx+8wCggPROqtj8cEB28pjcePR0Otz+wvw68A5UYPcFntz9m0+y7Hc4PPQGutz8Z5rS79L4EPdDZtz9cw4G7DPjwPMbmtz/rpTm7ZnPYPN3Ttz8UFwO7EFXCPKqitz/XHeu6RMewPBxYtz8fbQm7AIKlPMX7tj/2yi+7yZ+hPL6Wtj9SwFS7AIKlPBgztj8K/XC7RMewPHfatT+ks4K7EFXCPICctT+ZJ4m7ZnPYPE9wtT9216W76obuPM8StT9FpAO8nZgGPVkqtT/SORe8eWwUPStntT8miCi8NGcfPfLCtT+utT28GHMmPVA1tj+kWUe8oOAoPTSztj+Z90O8GHMmPUQwtz9c+TK8NGcfPT2gtz+48xa8eWwUPff3tz97S+27nZgGPaUuuD/wC7G76obuPOU+uD/hZ4O7YdvPPDInuD9meEG7dTK0PMLptz/hLim7NT6ePLmMtz8zYTe7oCeQPFAZtz8etV27J0qLPA2btj8fHIS7oCeQPGAetj8em5e7NT6ePG+vtT+FNKm7dTK0PPxYtT8zV7i7YdvPPOAitT/XKN67LI7vvEGjtj/cRe67DPjwvHddtT97SMa79L4EvUJwtT9HCua7Hc4PveSgtT8mowG8A5UYvRTqtT/AZRW8pjcevXJFtj84Bx+8wCggvROqtj8cEB28pjcevR0Otz+wvw68A5UYvcFntz9m0+y7Hc4PvQGutz8Z5rS79L4EvdDZtz9cw4G7DPjwvMbmtz/rpTm7ZnPYvN3Ttz8UFwO7EFXCvKqitz/XHeu6RMewvBxYtz8fbQm7AIKlvMX7tj/2yi+7yZ+hvL6Wtj9SwFS7AIKlvBgztj8K/XC7RMewvHfatT+ks4K7EFXCvICctT+ZJ4m7ZnPYvE9wtT9216W76obuvM8StT9FpAO8nZgGvVkqtT/SORe8eWwUvStntT8miCi8NGcfvfLCtT+utT28GHMmvVA1tj+kWUe8oOAovTSztj+Z90O8GHMmvUQwtz9c+TK8NGcfvT2gtz+48xa8eWwUvff3tz97S+27nZgGvaUuuD/wC7G76obuvOU+uD/hZ4O7YdvPvDInuD9meEG7dTK0vMLptz/hLim7NT6evLmMtz8zYTe7oCeQvFAZtz8etV27J0qLvA2btj8fHIS7oCeQvGAetj8em5e7NT6evG+vtT+FNKm7dTK0vPxYtT8zV7i7YdvPvOAitT/XKN672iOKPMW9sz+ZGXc71d1TPFy+sz8UDao7GwStPMnPsz+41s86HdqtPJCTtD+Pykc6LoJOPBVqtD+Zv307jTAaPLertD/M9mc7e8rJPMuIsz/rYU26gsTOPHRPtD/2zI2692ogPOfFsz+PFcI7oLKuPDIztD8UmrM6H2iJPJ0htD9m3l87vW0cPFggtD9maa47/BZRPN4btD8zNpo7GxWGPNB2tD/1QjQ7luKoPBcCtT+4wjW6ryCUPAHvtD97lE45whuAPHzctD9SFJQ61T9FPH3atD/CWfM6BnQlPDdcsz8A28Y7p4ZWPKdYsz/C/qg7MMmIPP5dsz+FzXA7ubwaPBNvtD8UHZM7L0hLPFCatD8KgU47hF6DPNuktD8Afgo7PY+XPHm0tD8eybA6IEKsPNzNtD+P8oA5dWzCPNf/tD+uH726BevJPF3BtD8Ksae6ncypPJNusz9w2cs6UB/OPJnmsz+kqGK6nZgGPVkqtT/SORe86obuPM8StT9FpAO8DPjwPHddtT97SMa79L4EPUJwtT9HCua7eWwUPStntT8miCi8Hc4PPeSgtT8mowG8NGcfPfLCtT+utT28A5UYPRTqtT/AZRW8GHMmPVA1tj+kWUe8pjcePXJFtj84Bx+8oOAoPTSztj+Z90O8wCggPROqtj8cEB28GHMmPUQwtz9c+TK8pjcePR0Otz+wvw68NGcfPT2gtz+48xa8A5UYPcFntz9m0+y7eWwUPff3tz97S+27Hc4PPQGutz8Z5rS7nZgGPaUuuD/wC7G79L4EPdDZtz9cw4G76obuPOU+uD/hZ4O7DPjwPMbmtz/rpTm7YdvPPDInuD9meEG7ZnPYPN3Ttz8UFwO7dTK0PMLptz/hLim7EFXCPKqitz/XHeu6NT6ePLmMtz8zYTe7RMewPBxYtz8fbQm7oCeQPFAZtz8etV27AIKlPMX7tj/2yi+7J0qLPA2btj8fHIS7yZ+hPL6Wtj9SwFS7oCeQPGAetj8em5e7AIKlPBgztj8K/XC7NT6ePG+vtT+FNKm7RMewPHfatT+ks4K7dTK0PPxYtT8zV7i7EFXCPJN5tT+ZJ4m7YdvPPOAitT/XKN67ZnPYPJlctT9216W79L4EvUJwtT9HCua7DPjwvHddtT97SMa76obuvM8StT9FpAO8nZgGvVkqtT/SORe8Hc4PveSgtT8mowG8eWwUvStntT8miCi8A5UYvRTqtT/AZRW8NGcfvfLCtT+utT28pjcevXJFtj84Bx+8GHMmvVA1tj+kWUe8wCggvROqtj8cEB28oOAovTSztj+Z90O8pjcevR0Otz+wvw68GHMmvUQwtz9c+TK8A5UYvcFntz9m0+y7NGcfvT2gtz+48xa8Hc4PvQGutz8Z5rS7eWwUvff3tz97S+279L4EvdDZtz9cw4G7nZgGvaUuuD/wC7G7DPjwvMbmtz/rpTm76obuvOU+uD/hZ4O7ZnPYvN3Ttz8UFwO7YdvPvDInuD9meEG7EFXCvKqitz/XHeu6dTK0vMLptz/hLim7RMewvBxYtz8fbQm7NT6evLmMtz8zYTe7AIKlvMX7tj/2yi+7oCeQvFAZtz8etV27yZ+hvL6Wtj9SwFS7J0qLvA2btj8fHIS7AIKlvBgztj8K/XC7oCeQvGAetj8em5e7RMewvHfatT+ks4K7NT6evG+vtT+FNKm7EFXCvJN5tT+ZJ4m7dTK0vPxYtT8zV7i7ZnPYvJlctT9216W7YdvPvOAitT/XKN67LI7vPEGjtj/cRe67LI7vvEGjtj/cRe67nZgGPVkqtT/SORe86obuPM8StT9FpAO8DPjwPHddtT97SMa79L4EPUJwtT9HCua7eWwUPStntT8miCi8Hc4PPeSgtT8mowG8NGcfPfLCtT+utT28A5UYPRTqtT/AZRW8GHMmPVA1tj+kWUe8pjcePXJFtj84Bx+8oOAoPTSztj+Z90O8wCggPROqtj8cEB28GHMmPUQwtz9c+TK8pjcePR0Otz+wvw68NGcfPT2gtz+48xa8A5UYPcFntz9m0+y7eWwUPff3tz97S+27Hc4PPQGutz8Z5rS7nZgGPaUuuD/wC7G79L4EPdDZtz9cw4G76obuPOU+uD/hZ4O7DPjwPMbmtz/rpTm7YdvPPDInuD9meEG7ZnPYPN3Ttz8UFwO7dTK0PMLptz/hLim7EFXCPKqitz/XHeu6NT6ePLmMtz8zYTe7RMewPBxYtz8fbQm7oCeQPFAZtz8etV27AIKlPMX7tj/2yi+7J0qLPA2btj8fHIS7yZ+hPL6Wtj9SwFS7oCeQPGAetj8em5e7AIKlPBgztj8K/XC7NT6ePG+vtT+FNKm7RMewPHfatT+ks4K7dTK0PPxYtT8zV7i7EFXCPFKQtT+ZJ4m7YdvPPOAitT/XKN67ZnPYPCFktT9216W79L4EvUJwtT9HCua7DPjwvHddtT97SMa76obuvM8StT9FpAO8nZgGvVkqtT/SORe8Hc4PveSgtT8mowG8eWwUvStntT8miCi8A5UYvRTqtT/AZRW8NGcfvfLCtT+utT28pjcevXJFtj84Bx+8GHMmvVA1tj+kWUe8wCggvROqtj8cEB28oOAovTSztj+Z90O8pjcevR0Otz+wvw68GHMmvUQwtz9c+TK8A5UYvcFntz9m0+y7NGcfvT2gtz+48xa8Hc4PvQGutz8Z5rS7eWwUvff3tz97S+279L4EvdDZtz9cw4G7nZgGvaUuuD/wC7G7DPjwvMbmtz/rpTm76obuvOU+uD/hZ4O7ZnPYvN3Ttz8UFwO7YdvPvDInuD9meEG7EFXCvKqitz/XHeu6dTK0vMLptz/hLim7RMewvBxYtz8fbQm7NT6evLmMtz8zYTe7AIKlvMX7tj/2yi+7oCeQvFAZtz8etV27yZ+hvL6Wtj9SwFS7J0qLvA2btj8fHIS7AIKlvBgztj8K/XC7oCeQvGAetj8em5e7RMewvHfatT+ks4K7NT6evG+vtT+FNKm7EFXCvFKQtT+ZJ4m7dTK0vPxYtT8zV7i7ZnPYvCFktT9216W7YdvPvOAitT/XKN67LI7vPEGjtj/cRe67LI7vvEGjtj/cRe672iOKvMW9sz+ZGXc71d1TvFy+sz8UDao7GwStvMnPsz+41s86HdqtvJCTtD+Pykc6LoJOvBVqtD+Zv307jTAavLertD/M9mc7e8rJvMuIsz/rYU26gsTOvHRPtD/2zI2692ogvOfFsz+PFcI7oLKuvDIztD8UmrM6H2iJvJ0htD9m3l87vW0cvFggtD9maa47/BZRvN4btD8zNpo7GxWGvNB2tD/1QjQ7luKovBcCtT+4wjW6ryCUvAHvtD97lE45whuAvHzctD9SFJQ61T9FvH3atD/CWfM6BnQlvDdcsz8A28Y7p4ZWvKdYsz/C/qg7MMmIvP5dsz+FzXA7ubwavBNvtD8UHZM7L0hLvFCatD8KgU47hF6DvNuktD8Afgo7PY+XvHm0tD8eybA6IEKsvNzNtD+P8oA5dWzCvNf/tD+uH726BevJvF3BtD8Ksae6ncypvJNusz9w2cs6UB/OvJnmsz+kqGK6QoifPtf3D74OlHA/Rj2fPptEvr797l8/EBbVPuHZqL4Q7Vg/XSQKP/CIVr7Gv1A/ck0WP3ot9r1I70w/3KESP1YL4L3N908/ey4RP75F+r2HhFA/amcTP3QsA74EuE4/2XkTP5/qr70vGFA/vMEHPyWgibtpCVk/h/nTPuiXkD3OU2g/tBGSPrWHwT1XKnQ/K8AKPnUNPj1bXH0/0EbYOziscb1mjH8/6jsbvWTRHr5St3w/p1zcvDf5Pr4Qans/nEKLvNdvLL6DTnw/6Jj/vLVWH75wwXw/D0k/vcdpL7627ns/gPSOPdxRi772sHU/fOJUPqDHtr5DImk/hv5YPnujJb96gDs/zY/NPpb/Hb/cOi0/4DEUPxFoAL8UlCQ/RxI2P46Ipb6EzB8/6aU9P6GuWL7sMyM/yIo/P6V88r2NHic/o9g+P9JbD71bZCo/Gts5P0fRkT2YGi8/RSMoP609Vz5RZDk/DIICP1karz7MFUo/qJibPmN10T4AQ1w/Qli5PcgYxD5+V2s/lWsJvl4mgj4gMnU/6mCFvmg0oj3zU3Y/UsOVvqcAgL2zR3Q/2wSSvtjiFL5Zh3I/ym6QvpTRXr7QM28/TxOMvvYQob7qsGg/4VUsvq196r4idV8/RkxIPeq0GL/RFU0/1YifviXeD77slHA/0mOMvrqlu77dm2M/7OzCvsMns75NHls/e9cBvzmig75MlVI/zrwVv5CgGr64Akw/SuQSv1VlCL5D304/2AwRv+GWEL5V0k8/La8Sv2HtGr7oM04/elsUvxxi9r3pV04/idoMvzlZKL36gVU/9l3pvtPSPD1PjmM/fkSnvoWwvz2Pw3A/bOI+vjSDlT1H0Xo/rkQLvdcwXbwi1H8/MTsSPeiu6b3uKX4/3XwMPclQJ74raHw/b0OLPNw8G770AH0/57TIPGWoBr4Js30/D5tEPbrKEL49IX0/zWmzvIB1aL7dQHk/n/oxvtv2qr40K20/8RmRvgFgJr8oiDQ/ZHXrvrlkFr+Gdio/gwokv6Uu274lJSM/qTI4vz6/kL7RYiI/eeo9v/OdOL5dVyU/wbA/v+Ulwr0X7yc/Uyk/v4cTg7tqRSo/MeM2v13V+D0gaTA/D0Aev6Xthz5WZz0/aw3gvv1Awj48sVA/lWZzvgwf0j7tYGE/cuWMu8glrz6AjXA/pC47PqAMPj5RKXc/olCJPpl2nDyxknY/Fb2QPmKRur2wcnQ/CPqRPslNJr6h03E/ruOUPq6Ye74MuWw/0fCHPpTdt74UDWU/5pe7PTwkBr/exlg/dzHEvUPrH78PZUY/ha7QPmqkaDw0vmk/ZyuUPm9pvD1S6XM/jAb7PmpQuLyxC18/47e6PokiiD7McWQ/spRcPrlVxT7lsWU/d25JPsVn+z7NQFk/dPgFP++wlL1xWlk/DLEDP3y2tz1NU1o/Q/9hPk+kHz4nenY/XRPsPt343D1CemE/WXqlPoT6XD6z4Gs/v1tGPtbdlz6tZW8/ioh0PmUNgD75NHA/XG6DPoQltT5iP2Y/AYlBPr3HCD/h6lI/YTowPk6YCz8EBVI/8jg4Pp7iCT8YuFI//mY3PoLSED8ND04/FfGFPgPSET2s6nY/kgytPl9YU7x56XA/R23aPl5fXL36H2c/dV5HPqPuxz4pWGY/Qd5CPj5hAz9aP1Y/6nZCPkIr/D61bVk/q8FoPrAg4T6OcF4/XKqAPgQ/5j7Zals/QT2sPkVdvj6Qfl0/wcfnPq/sTT6cYl4/DvH9Pq3rjb2klV0/l9sFP5fVo7zZJ1o/zY/NPpb/Hb/cOi0/SgiOPr0lR78gVhA/YWG/PvR3uL4YzFo/EBbVPuHZqL4Q7Vg/4DEUPxFoAL8UlCQ/XSQKP/CIVr7Gv1A/RxI2P46Ipb6EzB8/ck0WP3ot9r1I70w/6aU9P6GuWL7sMyM/3KESP1YL4L3N908/yIo/P6V88r2NHic/ey4RP75F+r2HhFA/o9g+P9JbD71bZCo/amcTP3QsA74EuE4/Gts5P0fRkT2YGi8/2XkTP5/qr70vGFA/RSMoP609Vz5RZDk/Bb0HPwOiibtaDFk/DIICP1karz7MFUo/h/nTPuiXkD3OU2g/qJibPmN10T4AQ1w/tBGSPrWHwT1XKnQ/Qli5PcgYxD5+V2s/b6YKPh0OPj07XX0/lWsJvl4mgj4gMnU/0EbYOziscb1mjH8/6mCFvmg0oj3zU3Y/6jsbvWTRHr5St3w/UsOVvqcAgL2zR3Q/p1zcvDf5Pr4Qans/2wSSvtjiFL5Zh3I/nEKLvNdvLL6DTnw/ym6QvpTRXr7QM28/6Jj/vLVWH75wwXw/TxOMvvYQob7qsGg/KjzXvbycPL5sLXo/HInDvltOEr957zk/Z+T6vV/o8L4jtF8/AWtNvkrQZr+rM8Q+B+tEPgMVDr8PL08/7OzCvsMns75NHls/f+qzvoj38746T04/8RmRvgFgJr8oiDQ/ZHXrvrlkFr+Gdio/e9cBvzmig75MlVI/gwokv6Uu274lJSM/zrwVv5CgGr64Akw/KDc4v4OwkL4AYSI/SuQSv1VlCL5D304/eeo9v/OdOL5dVyU/2AwRv+GWEL5V0k8/wbA/v+Ulwr0X7yc/La8Sv2HtGr7oM04/Uyk/v4cTg7tqRSo/elsUvxxi9r3pV04/MeM2v13V+D0gaTA/idoMvzlZKL36gVU/Ajwev8zvhz5Waj0/9l3pvtPSPD1PjmM/aw3gvv1Awj48sVA/fkSnvoWwvz2Pw3A/lWZzvgwf0j7tYGE/EeI+vlu3lT3P0Ho/cuWMu8glrz6AjXA/rkQLvdcwXbwi1H8/iS87PlHzPT5/Knc/MTsSPeiu6b3uKX4/olCJPpl2nDyxknY/3XwMPclQJ74raHw/Fb2QPmKRur2wcnQ/b0OLPNw8G770AH0/CPqRPslNJr6h03E/57TIPGWoBr4Js30/ruOUPq6Ye74MuWw/D/lkPYM7Ab6xjH0/QjLCPoatxb66Q1c/kKjXPVJHtL6gFW4/AKS0PjXxSL/IYgI/Axb7vU1zJ79OFD8/88XTvXENZr+lRto+JKyePq34E76XkXA/JKyevq34E76XkXA/zY/NPpb/Hb/cOi0/k8pqPjZ2Kr80wDU/wwimPph7vb4c3V4/EBbVPuHZqL4Q7Vg/4DEUPxFoAL8UlCQ/XSQKP/CIVr7Gv1A/RxI2P46Ipb6EzB8/ck0WP3ot9r1I70w/6aU9P6GuWL7sMyM/3KESP1YL4L3N908/yIo/P6V88r2NHic/ey4RP75F+r2HhFA/o9g+P9JbD71bZCo/amcTP3QsA74EuE4/Gts5P0fRkT2YGi8/2XkTP5/qr70vGFA/RSMoP609Vz5RZDk/Bb0HPwOiibtaDFk/DIICP1karz7MFUo/h/nTPuiXkD3OU2g/qJibPmN10T4AQ1w/tBGSPrWHwT1XKnQ/Qli5PcgYxD5+V2s/b6YKPh0OPj07XX0/lWsJvl4mgj4gMnU/0EbYOziscb1mjH8/6mCFvmg0oj3zU3Y/6jsbvWTRHr5St3w/UsOVvqcAgL2zR3Q/p1zcvDf5Pr4Qans/2wSSvtjiFL5Zh3I/nEKLvNdvLL6DTnw/ym6QvpTRXr7QM28/6Jj/vLVWH75wwXw/TxOMvvYQob7qsGg/OJxvvb2AM747l3s/lx9SvmT3875a2lo/XsAoPa59m75UrnM/t+9rPOsEJ78P+kE/PNRWPjuTxb7a+2U/7OzCvsMns75NHls/c/GQvjUQxb7F42A/8RmRvgFgJr8oiDQ/ZHXrvrlkFr+Gdio/e9cBvzmig75MlVI/gwokv6Uu274lJSM/zrwVv5CgGr64Akw/KDc4v4OwkL4AYSI/SuQSv1VlCL5D304/eeo9v/OdOL5dVyU/2AwRv+GWEL5V0k8/wbA/v+Ulwr0X7yc/La8Sv2HtGr7oM04/Uyk/v4cTg7tqRSo/elsUvxxi9r3pV04/MeM2v13V+D0gaTA/idoMvzlZKL36gVU/Ajwev8zvhz5Waj0/9l3pvtPSPD1PjmM/aw3gvv1Awj48sVA/fkSnvoWwvz2Pw3A/lWZzvgwf0j7tYGE/EeI+vlu3lT3P0Ho/cuWMu8glrz6AjXA/rkQLvdcwXbwi1H8/iS87PlHzPT5/Knc/MTsSPeiu6b3uKX4/olCJPpl2nDyxknY/3XwMPclQJ74raHw/Fb2QPmKRur2wcnQ/b0OLPNw8G770AH0/CPqRPslNJr6h03E/57TIPGWoBr4Js30/ruOUPq6Ye74MuWw/kQVOPe18DL6MQH0/qmCSPjYJt77ImmM/JbhRu/eneb4QRng/xR0FPuzjEb9ttk8/Y7MqvnKcwr6g6Gg/YFHJvUIpK792sjw/q26fPov+EL5xjnA/q26fvov+EL5xjnA/ha7QvmqkaDw0vmk/ZyuUvm9pvD1S6XM/jAb7vmpQuLyxC18/47e6vokiiD7McWQ/spRcvrlVxT7lsWU/d25JvsVn+z7NQFk/dPgFv++wlL1xWlk/DLEDv3y2tz1NU1o/MxhivmijHz7DeHY/XRPsvt343D1CemE/WXqlvoT6XD6z4Gs/v1tGvtbdlz6tZW8/ioh0vmUNgD75NHA/XG6DvoQltT5iP2Y/AYlBvr3HCD/h6lI/YTowvk6YCz8EBVI/8jg4vp7iCT8YuFI/N2M3vobPED9cEU4/FfGFvgPSET2s6nY/kgytvl9YU7x56XA/R23avl5fXL36H2c/dV5HvqPuxz4pWGY/Qd5Cvj5hAz9aP1Y/snJCvsgl/D6Jb1k/q8FovrAg4T6OcF4/XKqAvgQ/5j7Zals/QT2svkVdvj6Qfl0/wcfnvq/sTT6cYl4/DvH9vq3rjb2klV0/l9sFv5fVo7zZJ1o/xJo/P+CISj59lz8/jgiUPkvORj/4v5E+h1FNP/gbiz4LfFI/8saAPmTNVT/wgGc+rvFWP7ilSj5kzVU/4MctPgt8Uj+QvRM+h1FNP8Ah/j1LzkY/OJzjPX2XPz/gedo9r2A4Pzic4z0a3jE/wCH+Pe6yLD+QvRM+lWEpP+DHLT5LPSg/uKVKPpVhKT/wgGc+7rIsP/LGgD4a3jE/+BuLPq9gOD/4v5E+fZc/P6KUnj5pcEg/XsabPtNrUD9AppM+L8FWPzj6hj6N0lo/bAluPmE4XD+4pUo+jdJaP2g/Jz4vwVY/YFQHPtNrUD/g/ds9aXBIPzB4uz19lz8/ED+wPZC+Nj8weLs9J8MuP+D92z3KbSg/YFQHPhRdJD9oPyc+mfYiP7ilSj4UXSQ/bAluPsptKD84+oY+J8MuP0Cmkz6QvjY/XsabPsSaPz/giEo+fZc/P2hv2j2vYDg/wJHjPXLdMT/AIf497rIsP/C6Ez6VYSk/4MctPks9KD8Yo0o+lWEpP/CAZz7usiw/osWAPnLdMT/4G4s+r2A4P1q9kT59lz8/7gWUPkvORj9avZE+31BNP/gbiz4LfFI/osWAPmTNVT/wgGc+rvFWPxijSj5kzVU/4MctPgt8Uj/wuhM+31BNP8Ah/j1LzkY/wJHjPX2XPz8QP7A9kL42PzB4uz0nwy4/oPjbPcptKD9gVAc+bFwkP2g/Jz6Z9iI/GKNKPmxcJD9sCW4+ym0oPzj6hj4nwy4/8KSTPpC+Nj9exps+fZc/P6KUnj5pcEg/XsabPtNrUD/wpJM+L8FWPzj6hj7l0Vo/bAluPmE4XD8Yo0o+5dFaP2g/Jz4vwVY/YFQHPtNrUD+g+Ns9aXBIPzB4uz2Koyo/QchDP3lIFj+GDUE/5NhCP8YvRD+Sl0g/EUsrP78nGj87/Sk/2S4NP6HfHT9bgVc/CalPP1jiXT87LjY/jv4GP6H1PT8r5UU/5Lg3P2G8LD9h+TY/1H0IP4HeMT9nERg/odg0PwzKLT/UaCs/EchLP4ixGT8tMz0/0SAaP7jSLj/0ghk/CyodP6KZFj8aEAY/ONRLP58HFT9fSk4/SUcoP30dUD8bywo/NekmP6c7Gz/wtSI/LyUuPwBqJD98azs/RjElPyP6ST8ldCM/i6tbP848Hj/Q+F0/NCsnP2eoPz8uoFA/JFlbP3+qQz8gupI+8/JZP7CuXj5rqls/sK5ePmw2VT/SMYw+wNBTP/amsj5G+lQ/GD6mPqPATz+++8s+eTlNP57nuj5Sbkk/yEDcPtV1Qz+wLMg+L3ZBP/TX4T5Tojg/ur3MPlOiOD/IQNw+A84tP7AsyD6nzS8/vvvLPl8KJD+e57o+UtYnP/amsj5eShw/GD6mPjSDIT8gupI+5FAXP9IxjD6wdB0/sK5ePmyZFT+wrl4+Bg8cPxjpFz7kUBc/u/kkPrB0HT/kHrA9XkocP9DM4T00gyE/XJcVPV8KJD8uHI89UtYnP4AfnDsDzi0/9A80PafNLz9gUsq7U6I4P6SHDz1Tojg/gB+cO9V1Qz/0DzQ9L3ZBP1yXFT15OU0/LhyPPVJuST/kHrA9RvpUP9DM4T2jwE8/GOkXPvPyWT+7+SQ+wNBTP7v5JD4Wcx0/sK5ePmwNHD+wrl4+bJkVPxjpFz7kUBc/UMLhPTSDIT/kHrA9kUkcPy4cjz2G1Sc/XJcVPV8KJD/0DzQ9p80vP4B3mzsDzi0/pIcPPYahOD9gUsq7hqE4P/QPND0vdkE/gHebO9V1Qz8uHI89hW1JP1yXFT15OU0/UMLhPaPATz/kHrA9ePlUP7v5JD4lz1M/GOkXPvPyWT+wrl4+0TRVP7CuXj5rqls/0jGMPiXPUz8gupI+8/JZP3g7pj6jwE8/9qayPnj5VD+e57o+hW1JP777yz55OU0/sCzIPi92QT8oPtw+1XVDP7q9zD6GoTg/9NfhPoahOD+wLMg+p80vPyg+3D4Dzi0/nue6PobVJz+++8s+XwokP3g7pj40gyE/9qayPpFJHD/SMYw+FnMdPyC6kj7kUBc/6MhePoGZOD/oyF4+gZk4P/hiIj5iwcs+dhVkPr6e0D52FWQ+RlW+PsKDLj62X7o+oTrOPdSqvT73Tvw9MtyuPrxWYD0+sqc+6pWvPS7ynD7oBs88rAaMPuSffD3EXIY+QPx3PGCxWj4wtlo9YLFaPugGzzzoUB0+5J98PbCkKD68VmA9gPPLPeqVrz3g/PY9oTrOPXA0aD33Tvw9sEuvPfhiIj7A2+48woMuPtBPgT12FWQ+4AWhPHYVZD4g82I9/uOSPsDb7jyX04w+0E+BPdCGsD5wNGg9Tv+kPrBLrz2kCsg+gPPLPQIwuD7g/PY9nCLXPuhQHT56gcQ+sKQoPpZV3D5gsVo+sr7IPmCxWj6cItc+rAaMPnqBxD7EXIY+pArIPj6ypz4CMLg+LvKcPtCGsD7Uqr0+Tv+kPjLcrj7+45I+YsHLPpfTjD62X7o+qucxPgBOhz3lk2c+oI1vPeWTZz4gOcA82MAlPhBFBj1pcwE+AHa0Pb671D2gxnQ9yge2PTi4+j24+2w9uI7QPYCphD1QpSk+QNnnPByKHj54WGc9mLNaPpCnlDyYs1o+gKmEPSjjhT5A2ec8xnCLPsoHtj2KBZw+uPtsPSaSpj5pcwE+VJitPr671D3GGrw+qucxPuDduD7YwCU+MO3JPuWTZz6ov7w+5ZNnPkCyzj4PoI4+4N24PnSzlD4w7ck+utemPlSYrT70ZLI+xhq8Pu0Ruj6KBZw+afTJPiaSpj6EacY+KOOFPtoT2T7GcIs+1KjKPpizWj5qSd4+mLNaPoRpxj5QpSk+2hPZPhyKHj7tEbo+OLj6PWn0yT64jtA9utemPgB2tD30ZLI+oMZ0PQ+gjj4AToc9dLOUPhBFBj0g/WM+YH9aPkesZz4Ih1o+iqMqP0HIQz95SBY/hg1BP+TYQj/GL0Q/kpdIPxFLKz+/Jxo/O/0pP9kuDT+h3x0/W4FXPwmpTz9Y4l0/Oy42P47+Bj+h9T0/K+VFP+S4Nz9hvCw/Yfk2P9R9CD+B3jE/ZxEYP6HYND8Myi0/1GgrPxHISz+IsRk/LTM9P9EgGj+40i4/9IIZPwsqHT+imRY/GhAGPzjUSz+fBxU/X0pOP0lHKD99HVA/G8sKPzXpJj+nOxs/8LUiPy8lLj8AaiQ/fGs7P0YxJT8j+kk/JXQjP4urWz/OPB4/0PhdPzQrJz9nqD8/LqBQPyRZWz9/qkM/bwBbAFQAXABTAFIAWwBvAFkAXABeAFMAXgBcAFYAXQBeAFYAXABfAFYAZwBdAFYAVwBnAFYAaABjAFcAaABXAFYAYwBoAGIAXwBpAFYAYgBpAGEAagBfAFUAaQBqAGEAagBpAF8AYQBrAGAAawBqAFUAagBrAGEAaABpAGIAaQBoAFYAbABrAFUAbQBsAFUAawBsAGAAWwBcAFIAVABbAFIAXwBcAFUAXABbAFUAXgBdAFoAXgBaAFMAWwBtAFUAbQBbAFkAbgBUAFIAZgBuAFIAbgBvAFQAbwBuAFgAZABlAFMAWgBkAFMAZQBmAFIAUwBlAFIAHQExARYBFQEeARQBMQEdARsBIAEeARUBHgEgARgBIAEfARgBIQEeARgBHwEpARgBKQEZARgBJQEqARkBGQEqARgBKgElASQBKwEhARgBKwEkASMBIQEsARcBLAErASMBKwEsASEBLQEjASIBLAEtARcBLQEsASMBKwEqASQBKgErARgBLQEuARcBLgEvARcBLgEtASIBHgEdARQBHQEWARQBHgEhARcBHQEeARcBHwEgARwBHAEgARUBLwEdARcBHQEvARsBFgEwARQBMAEoARQBMQEwARYBMAExARoBJwEmARUBJgEcARUBKAEnARQBJwEVARQBcgBxAHAAcwByAHAAdABzAHAAdAB1AHMAdgB1AHQAdgB3AHUAeAB3AHYAeAB5AHcAegB5AHgAegB7AHkAfAB7AHoAfAB9AHsAfgB9AHwAfgB/AH0AgAB/AH4AgACBAH8AggCBAIAAggCDAIEAhACDAIIAhACFAIMAhgCFAIQAhgCHAIUAiACHAIYAiACJAIcAigCJAIgAigCLAIkAjACLAIoAjACNAIsAjgCNAIwAjgCPAI0AkACPAI4AkACRAI8AkgCRAJAAkgCTAJEAlACTAJIAlACVAJMAlgCVAJQAlgCXAJUAlwCWAHEAcgCXAHEAmgCZAJgAmwCaAJgAnACbAJgAnACdAJsAngCdAJwAngCfAJ0AoACfAJ4AoAChAJ8AogChAKAAogCjAKEApACjAKIApAClAKMApgClAKQApgCnAKUAqACnAKYAqACpAKcAqgCpAKgAqgCrAKkArACrAKoArACtAKsArgCtAKwArgCvAK0AsACvAK4AsACxAK8AsgCxALAAsgCzALEAtACzALIAtAC1ALMAtgC1ALQAtgC3ALUAuAC3ALYAuAC5ALcAugC5ALgAugC7ALkAvAC7ALoAvAC9ALsAvgC9ALwAvgC/AL0AvwC+AJkAmgC/AJkAhQDAAIMAwQCsAKoAgwDAAIEAwQCqAKgAgQDAAH8AwQCoAKYAfwDAAH0AwQCmAKQAfQDAAHsAwQCkAKIAewDAAHkAwQCiAKAAeQDAAHcAwQCgAJ4AdwDAAHUAwQCeAJwAdQDAAHMAwQCcAJgAcwDAAHIAmQDBAJgAwACXAHIAvgDBAJkAlwDAAJUAwQC+ALwAlQDAAJMAwQC8ALoAkwDAAJEAwQC6ALgAkQDAAI8AwQC4ALYAjwDAAI0AwQC2ALQAjQDAAIsAwQC0ALIAiwDAAIkAwQCyALAAhwDAAIUAiQDAAIcAwQCuAKwAwQCwAK4AFQAWAAEAFgACAAEAFgAXAAIAFwADAAIAFwAYAAMAGAAEAAMAGAAZAAQAGQAFAAQAGQAaAAUAGgAGAAUAGgAbAAYAGwAHAAYAGwAcAAcAHAAIAAcAHAAdAAgAHQAJAAgAHQAeAAkAHgAKAAkAHgAfAAoAHwALAAoAHwAgAAsAIAAMAAsAIAAhAAwAIQANAAwAIQAiAA0AIgAOAA0AIgAjAA4AIwAPAA4AIwAkAA8AJAAQAA8AJAAlABAAJQARABAAJQAmABEAJgASABEAJgAnABIAJwATABIAJwAoABMAKAAUABMAKAAVABQAFAAVAAEAKwA+ACoAPwA+ACsALAA/ACsAQAA/ACwALQBAACwAQQBAAC0ALgBBAC0AQgBBAC4ALwBCAC4AQwBCAC8AMABDAC8ARABDADAAMQBEADAARQBEADEAMgBFADEARgBFADIAMwBGADIARwBGADMANABHADMASABHADQANQBIADQASQBIADUANgBJADUASgBJADYANwBKADYASwBKADcAOABLADcATABLADgAOQBMADgATQBMADkAOgBNADkATgBNADoAOwBOADoATwBOADsAPABPADsAUABPADwAPQBQADwAUQBQAD0AUQA9ACoAPgBRACoACgALAAAANAAzACkACQAKAAAAMwAyACkACAAJAAAAMgAxACkABwAIAAAAMQAwACkABgAHAAAAMAAvACkABQAGAAAALwAuACkABAAFAAAALgAtACkAAwAEAAAALQAsACkAAgADAAAALAArACkAAQACAAAAKwAqACkAFAABAAAAKgA9ACkAEwAUAAAAPQA8ACkAEgATAAAAPAA7ACkAEQASAAAAOwA6ACkAEAARAAAAOgA5ACkADwAQAAAAOQA4ACkADgAPAAAAOAA3ACkADQAOAAAANwA2ACkACwAMAAAADAANAAAANQA0ACkANgA1ACkAxADDAMIAxQDEAMIAxgDFAMIAxgDHAMUAyADHAMYAyADJAMcAygDJAMgAygDLAMkAzADLAMoAzADNAMsAzgDNAMwAzgDPAM0A0ADPAM4A0ADRAM8A0gDRANAA0gDTANEA1ADTANIA1ADVANMA1gDVANQA1gDXANUA2ADXANYA2ADZANcA2gDZANgA2gDbANkA3ADbANoA3ADdANsA3gDdANwA3gDfAN0A4ADfAN4A4ADhAN8A4gDhAOAA4gDjAOEA5ADjAOIA5ADlAOMA5gDlAOQA5gDnAOUA6ADnAOYA6ADpAOcA6QDoAMMAxADpAMMA7ADrAOoA7QDsAOoA7gDtAOoA7gDvAO0A8ADvAO4A8ADxAO8A8gDxAPAA8gDzAPEA9ADzAPIA9AD1APMA9gD1APQA9gD3APUA+AD3APYA+AD5APcA+gD5APgA+gD7APkA/AD7APoA/AD9APsA/gD9APwA/gD/AP0AAAH/AP4AAAEBAf8AAgEBAQABAgEDAQEBBAEDAQIBBAEFAQMBBgEFAQQBBgEHAQUBCAEHAQYBCAEJAQcBCgEJAQgBCgELAQkBDAELAQoBDAENAQsBDgENAQwBDgEPAQ0BEAEPAQ4BEAERAQ8BEQEQAesA7AARAesA1wASAdUAEwH+APwA1QASAdMAEwH8APoA0wASAdEAEwH6APgA0QASAc8AEwH4APYAzwASAc0AEwH2APQAzQASAcsAEwH0APIAywASAckAEwHyAPAAyQASAccAEwHwAO4AxwASAcUAEwHuAOoAxQASAcQA6wATAeoAEgHpAMQAEAETAesA6QASAecAEwEQAQ4B5wASAeUAEwEOAQwB5QASAeMAEwEMAQoB4wASAeEAEwEKAQgB4QASAd8AEwEIAQYB3wASAd0AEwEGAQQB3QASAdsAEwEEAQIB2QASAdcA2wASAdkAEwEAAf4AEwECAQABiVBORw0KGgoAAAANSUhEUgAABJ0AAASdCAYAAADqsC1HAAAACXBIWXMAAC4jAAAuIwF4pT92AAAKTWlDQ1BQaG90b3Nob3AgSUNDIHByb2ZpbGUAAHjanVN3WJP3Fj7f92UPVkLY8LGXbIEAIiOsCMgQWaIQkgBhhBASQMWFiApWFBURnEhVxILVCkidiOKgKLhnQYqIWotVXDjuH9yntX167+3t+9f7vOec5/zOec8PgBESJpHmomoAOVKFPDrYH49PSMTJvYACFUjgBCAQ5svCZwXFAADwA3l4fnSwP/wBr28AAgBw1S4kEsfh/4O6UCZXACCRAOAiEucLAZBSAMguVMgUAMgYALBTs2QKAJQAAGx5fEIiAKoNAOz0ST4FANipk9wXANiiHKkIAI0BAJkoRyQCQLsAYFWBUiwCwMIAoKxAIi4EwK4BgFm2MkcCgL0FAHaOWJAPQGAAgJlCLMwAIDgCAEMeE80DIEwDoDDSv+CpX3CFuEgBAMDLlc2XS9IzFLiV0Bp38vDg4iHiwmyxQmEXKRBmCeQinJebIxNI5wNMzgwAABr50cH+OD+Q5+bk4eZm52zv9MWi/mvwbyI+IfHf/ryMAgQAEE7P79pf5eXWA3DHAbB1v2upWwDaVgBo3/ldM9sJoFoK0Hr5i3k4/EAenqFQyDwdHAoLC+0lYqG9MOOLPv8z4W/gi372/EAe/tt68ABxmkCZrcCjg/1xYW52rlKO58sEQjFu9+cj/seFf/2OKdHiNLFcLBWK8ViJuFAiTcd5uVKRRCHJleIS6X8y8R+W/QmTdw0ArIZPwE62B7XLbMB+7gECiw5Y0nYAQH7zLYwaC5EAEGc0Mnn3AACTv/mPQCsBAM2XpOMAALzoGFyolBdMxggAAESggSqwQQcMwRSswA6cwR28wBcCYQZEQAwkwDwQQgbkgBwKoRiWQRlUwDrYBLWwAxqgEZrhELTBMTgN5+ASXIHrcBcGYBiewhi8hgkEQcgIE2EhOogRYo7YIs4IF5mOBCJhSDSSgKQg6YgUUSLFyHKkAqlCapFdSCPyLXIUOY1cQPqQ28ggMor8irxHMZSBslED1AJ1QLmoHxqKxqBz0XQ0D12AlqJr0Rq0Hj2AtqKn0UvodXQAfYqOY4DRMQ5mjNlhXIyHRWCJWBomxxZj5Vg1Vo81Yx1YN3YVG8CeYe8IJAKLgBPsCF6EEMJsgpCQR1hMWEOoJewjtBK6CFcJg4Qxwicik6hPtCV6EvnEeGI6sZBYRqwm7iEeIZ4lXicOE1+TSCQOyZLkTgohJZAySQtJa0jbSC2kU6Q+0hBpnEwm65Btyd7kCLKArCCXkbeQD5BPkvvJw+S3FDrFiOJMCaIkUqSUEko1ZT/lBKWfMkKZoKpRzame1AiqiDqfWkltoHZQL1OHqRM0dZolzZsWQ8ukLaPV0JppZ2n3aC/pdLoJ3YMeRZfQl9Jr6Afp5+mD9HcMDYYNg8dIYigZaxl7GacYtxkvmUymBdOXmchUMNcyG5lnmA+Yb1VYKvYqfBWRyhKVOpVWlX6V56pUVXNVP9V5qgtUq1UPq15WfaZGVbNQ46kJ1Bar1akdVbupNq7OUndSj1DPUV+jvl/9gvpjDbKGhUaghkijVGO3xhmNIRbGMmXxWELWclYD6yxrmE1iW7L57Ex2Bfsbdi97TFNDc6pmrGaRZp3mcc0BDsax4PA52ZxKziHODc57LQMtPy2x1mqtZq1+rTfaetq+2mLtcu0W7eva73VwnUCdLJ31Om0693UJuja6UbqFutt1z+o+02PreekJ9cr1Dund0Uf1bfSj9Rfq79bv0R83MDQINpAZbDE4Y/DMkGPoa5hpuNHwhOGoEctoupHEaKPRSaMnuCbuh2fjNXgXPmasbxxirDTeZdxrPGFiaTLbpMSkxeS+Kc2Ua5pmutG003TMzMgs3KzYrMnsjjnVnGueYb7ZvNv8jYWlRZzFSos2i8eW2pZ8ywWWTZb3rJhWPlZ5VvVW16xJ1lzrLOtt1ldsUBtXmwybOpvLtqitm63Edptt3xTiFI8p0in1U27aMez87ArsmuwG7Tn2YfYl9m32zx3MHBId1jt0O3xydHXMdmxwvOuk4TTDqcSpw+lXZxtnoXOd8zUXpkuQyxKXdpcXU22niqdun3rLleUa7rrStdP1o5u7m9yt2W3U3cw9xX2r+00umxvJXcM970H08PdY4nHM452nm6fC85DnL152Xlle+70eT7OcJp7WMG3I28Rb4L3Le2A6Pj1l+s7pAz7GPgKfep+Hvqa+It89viN+1n6Zfgf8nvs7+sv9j/i/4XnyFvFOBWABwQHlAb2BGoGzA2sDHwSZBKUHNQWNBbsGLww+FUIMCQ1ZH3KTb8AX8hv5YzPcZyya0RXKCJ0VWhv6MMwmTB7WEY6GzwjfEH5vpvlM6cy2CIjgR2yIuB9pGZkX+X0UKSoyqi7qUbRTdHF09yzWrORZ+2e9jvGPqYy5O9tqtnJ2Z6xqbFJsY+ybuIC4qriBeIf4RfGXEnQTJAntieTE2MQ9ieNzAudsmjOc5JpUlnRjruXcorkX5unOy553PFk1WZB8OIWYEpeyP+WDIEJQLxhP5aduTR0T8oSbhU9FvqKNolGxt7hKPJLmnVaV9jjdO31D+miGT0Z1xjMJT1IreZEZkrkj801WRNberM/ZcdktOZSclJyjUg1plrQr1zC3KLdPZisrkw3keeZtyhuTh8r35CP5c/PbFWyFTNGjtFKuUA4WTC+oK3hbGFt4uEi9SFrUM99m/ur5IwuCFny9kLBQuLCz2Lh4WfHgIr9FuxYji1MXdy4xXVK6ZHhp8NJ9y2jLspb9UOJYUlXyannc8o5Sg9KlpUMrglc0lamUycturvRauWMVYZVkVe9ql9VbVn8qF5VfrHCsqK74sEa45uJXTl/VfPV5bdra3kq3yu3rSOuk626s91m/r0q9akHV0IbwDa0b8Y3lG19tSt50oXpq9Y7NtM3KzQM1YTXtW8y2rNvyoTaj9nqdf13LVv2tq7e+2Sba1r/dd3vzDoMdFTve75TsvLUreFdrvUV99W7S7oLdjxpiG7q/5n7duEd3T8Wej3ulewf2Re/ranRvbNyvv7+yCW1SNo0eSDpw5ZuAb9qb7Zp3tXBaKg7CQeXBJ9+mfHvjUOihzsPcw83fmX+39QjrSHkr0jq/dawto22gPaG97+iMo50dXh1Hvrf/fu8x42N1xzWPV56gnSg98fnkgpPjp2Snnp1OPz3Umdx590z8mWtdUV29Z0PPnj8XdO5Mt1/3yfPe549d8Lxw9CL3Ytslt0utPa49R35w/eFIr1tv62X3y+1XPK509E3rO9Hv03/6asDVc9f41y5dn3m978bsG7duJt0cuCW69fh29u0XdwruTNxdeo94r/y+2v3qB/oP6n+0/rFlwG3g+GDAYM/DWQ/vDgmHnv6U/9OH4dJHzEfVI0YjjY+dHx8bDRq98mTOk+GnsqcTz8p+Vv9563Or59/94vtLz1j82PAL+YvPv655qfNy76uprzrHI8cfvM55PfGm/K3O233vuO+638e9H5ko/ED+UPPR+mPHp9BP9z7nfP78L/eE8/sl0p8zAAA6GWlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4KPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNS41LWMwMTQgNzkuMTUxNDgxLCAyMDEzLzAzLzEzLTEyOjA5OjE1ICAgICAgICAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOnhtcE1NPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvbW0vIgogICAgICAgICAgICB4bWxuczpzdEV2dD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL3NUeXBlL1Jlc291cmNlRXZlbnQjIgogICAgICAgICAgICB4bWxuczpkYz0iaHR0cDovL3B1cmwub3JnL2RjL2VsZW1lbnRzLzEuMS8iCiAgICAgICAgICAgIHhtbG5zOnBob3Rvc2hvcD0iaHR0cDovL25zLmFkb2JlLmNvbS9waG90b3Nob3AvMS4wLyIKICAgICAgICAgICAgeG1sbnM6dGlmZj0iaHR0cDovL25zLmFkb2JlLmNvbS90aWZmLzEuMC8iCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPHhtcDpDcmVhdG9yVG9vbD5BZG9iZSBQaG90b3Nob3AgQ0MgKFdpbmRvd3MpPC94bXA6Q3JlYXRvclRvb2w+CiAgICAgICAgIDx4bXA6Q3JlYXRlRGF0ZT4yMDIwLTA1LTIxVDAzOjUxOjI4KzA4OjAwPC94bXA6Q3JlYXRlRGF0ZT4KICAgICAgICAgPHhtcDpNZXRhZGF0YURhdGU+MjAyMC0wNS0yMVQwMzo1MToyOCswODowMDwveG1wOk1ldGFkYXRhRGF0ZT4KICAgICAgICAgPHhtcDpNb2RpZnlEYXRlPjIwMjAtMDUtMjFUMDM6NTE6MjgrMDg6MDA8L3htcDpNb2RpZnlEYXRlPgogICAgICAgICA8eG1wTU06SW5zdGFuY2VJRD54bXAuaWlkOjY4NzE5Yjk0LWZhYWMtMzg0ZC1hMGRkLTM4MjZjZWE2NjE2MTwveG1wTU06SW5zdGFuY2VJRD4KICAgICAgICAgPHhtcE1NOkRvY3VtZW50SUQ+eG1wLmRpZDpiNDJiY2Y2YS05NjdjLWVkNDctODk3MC0yNzcxZjU2OTVhZGU8L3htcE1NOkRvY3VtZW50SUQ+CiAgICAgICAgIDx4bXBNTTpPcmlnaW5hbERvY3VtZW50SUQ+eG1wLmRpZDpiNDJiY2Y2YS05NjdjLWVkNDctODk3MC0yNzcxZjU2OTVhZGU8L3htcE1NOk9yaWdpbmFsRG9jdW1lbnRJRD4KICAgICAgICAgPHhtcE1NOkhpc3Rvcnk+CiAgICAgICAgICAgIDxyZGY6U2VxPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNlIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5jcmVhdGVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlEPnhtcC5paWQ6YjQyYmNmNmEtOTY3Yy1lZDQ3LTg5NzAtMjc3MWY1Njk1YWRlPC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6d2hlbj4yMDIwLTA1LTIxVDAzOjUxOjI4KzA4OjAwPC9zdEV2dDp3aGVuPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBQaG90b3Nob3AgQ0MgKFdpbmRvd3MpPC9zdEV2dDpzb2Z0d2FyZUFnZW50PgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDo2ODcxOWI5NC1mYWFjLTM4NGQtYTBkZC0zODI2Y2VhNjYxNjE8L3N0RXZ0Omluc3RhbmNlSUQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMjAtMDUtMjFUMDM6NTE6MjgrMDg6MDA8L3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFkb2JlIFBob3Rvc2hvcCBDQyAoV2luZG93cyk8L3N0RXZ0OnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpjaGFuZ2VkPi88L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgIDwvcmRmOmxpPgogICAgICAgICAgICA8L3JkZjpTZXE+CiAgICAgICAgIDwveG1wTU06SGlzdG9yeT4KICAgICAgICAgPGRjOmZvcm1hdD5pbWFnZS9wbmc8L2RjOmZvcm1hdD4KICAgICAgICAgPHBob3Rvc2hvcDpDb2xvck1vZGU+MzwvcGhvdG9zaG9wOkNvbG9yTW9kZT4KICAgICAgICAgPHBob3Rvc2hvcDpJQ0NQcm9maWxlPnNSR0IgSUVDNjE5NjYtMi4xPC9waG90b3Nob3A6SUNDUHJvZmlsZT4KICAgICAgICAgPHRpZmY6T3JpZW50YXRpb24+MTwvdGlmZjpPcmllbnRhdGlvbj4KICAgICAgICAgPHRpZmY6WFJlc29sdXRpb24+MzAwMDAwMC8xMDAwMDwvdGlmZjpYUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6WVJlc29sdXRpb24+MzAwMDAwMC8xMDAwMDwvdGlmZjpZUmVzb2x1dGlvbj4KICAgICAgICAgPHRpZmY6UmVzb2x1dGlvblVuaXQ+MjwvdGlmZjpSZXNvbHV0aW9uVW5pdD4KICAgICAgICAgPGV4aWY6Q29sb3JTcGFjZT4xPC9leGlmOkNvbG9yU3BhY2U+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTgxPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjExODE8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAKPD94cGFja2V0IGVuZD0idyI/PjzeagUAAAAgY0hSTQAAeiUAAICDAAD5/wAAgOkAAHUwAADqYAAAOpgAABdvkl/FRgAB0F1JREFUeNrs/XeQHOeZ73t+q9o3Gg3T8J4ACRBOAL0BnUhKohGdRiIlajRDaTRHc+aeOefcmL27dzd2Y3fjxu7Gxt3Ye8/cPSdGIzeakTTSiBS9KHpStKAHQXgQILxvg/auav94sgmIQ1IAUdVZVf39RFQ0HIlEZnbmm7983ufN5PN5JEmSJEmSpELKugskSZIkSZJUaIZOkiRJkiRJKjhDJ0mSJEmSJBWcoZMkSZIkSZIKztBJkiRJkiRJBWfoJEmSJEmSpIIzdJIkSZIkSVLBGTpJkiRJkiSp4AydJEmSJEmSVHCGTpIkSZIkSSo4QydJkiRJkiQVnKGTJEmSJEmSCs7QSZIkSZIkSQVn6CRJkiRJkqSCM3SSJEmSJElSwRk6SZIkSZIkqeAMnSRJkiRJklRwhk6SJEmSJEkqOEMnSZIkSZIkFZyhkyRJkiRJkgrO0EmSJEmSJEkFZ+gkSZIkSZKkgjN0kiRJkiRJUsEZOkmSJEmSJKngDJ0kSZIkSZJUcIZOkiRJkiRJKjhDJ0mSJEmSJBWcoZMkSZIkSZIKztBJkiRJkiRJBWfoJEmSJEmSpIIzdJIkSZIkSVLBGTpJkiRJkiSp4AydJEmSJEmSVHCGTpIkSZIkSSo4QydJkiRJkiQVnKGTJEmSJEmSCs7QSZIkSZIkSQVn6CRJkiRJkqSCM3SSJEmSJElSwRk6SZIkSZIkqeAMnSRJkiRJklRwhk6SJEmSJEkqOEMnSZIkSZIkFZyhkyRJkiRJkgrO0EmSJEmSJEkFZ+gkSZIkSZKkgjN0kiRJkiRJUsEZOkmSJEmSJKngDJ0kSZIkSZJUcIZOkiRJkiRJKjhDJ0mSJEmSJBWcoZMkSZIkSZIKztBJkiRJkiRJBWfoJEmSJEmSpIIzdJIkSZIkSVLBGTpJkiRJkiSp4AydJEmSJEmSVHCGTpIkSZIkSSo4QydJkiRJkiQVnKGTJEmSJEmSCs7QSZIkSZIkSQVn6CRJkiRJkqSCM3SSJEmSJElSwRk6SZIkSZIkqeAMnSRJkiRJklRwhk6SJEmSJEkqOEMnSZIkSZIkFZyhkyRJkiRJkgrO0EmSJEmSJEkFZ+gkSZIkSZKkgjN0kiRJkiRJUsEZOkmSJEmSJKngDJ0kSZIkSZJUcIZOkiRJkiRJKjhDJ0mSJEmSJBWcoZMkSZIkSZIKztBJkiRJkiRJBWfoJEmSJEmSpIIzdJIkSZIkSVLBGTpJkiRJkiSp4AydJEmSJEmSVHCGTpIkSZIkSSo4QydJkiRJkiQVnKGTJEmSJEmSCs7QSZIkSZIkSQVn6CRJkiRJkqSCM3SSJEmSJElSwRk6SZIkSZIkqeCq3QWjb/78+af93+zatcsdJ0mSVKYymYw7QR8n+zFfRz6Zj/x45HOy/Elfc8nn5B+P/Dx/0q9Lf3gS5fPuBBXv/ucJlo7PEjydLoMqSZKkEhl0GzqNVSeHSNVALVCXfB0HNCWfOmB88uPG5OcNQD1Qk3yqks/IyXRyuDSUfPqBXqAv+XQln+7k10/+8UDy5weBYf4wpNIYYiagYrLSKSUnB0KjEUBJkiRJKpoMEQiNBETjgInJZwIwA5gOTAWagUnJr48jgqWT/9tqTgRM1ZyoePpotdNHq5zyRHh08mcw+QwQoVQf0Am0Au3J51DyOQocB9qSP9PLiTDLMErSZ2LoVAIMoCRJkqSyMVK5dHK4NB2YSYRK84E5wDSieqmBqF46uXKpNvk68v8qtpHAKEeEUQMnffqAnuTTSwRR+4DdydcjwH5OhFL9J/1/DKIkfSqn15WoQoRPTq+TJEkqkUG30+vK2cjUuEYiRJpIBEvnAGcD84DJya/XJ39mZIrcaIVKhTBSMTVEhE/dyaeHqIw6DGwHtgE7gQNERVQnEUQNe6qUJzMBFfX+5wlW2s4kfDJ0kiRJKpFBt6FTWR0uYmpbPTENbg6wEJgLLCVCphZielwzUcE0MiWuEo1M2xsgAqYOTkzL2w5sISqidhDBVCcxpc+m5eVygM0EVMwLqidY6fuswZOhkyRJUokMug2dSt1INdN4ov/SEuBzRMg0k5gqN44Imhqp3IDpVOX5wxCqk6h82g28C7xHVEO1cmI6niFUqR5MMwEV8/7nCVY+7PekUmOwKUnSKQ66DZ1KURXRW2kiUb20EjifCJymE9VMzcmfsRfup8sR1U29RNB0BNhLBFBvA1uJUKoHA6iSYyagot7/PMHKj+GTSoWhkyRJpzjoNnQqFVmi19JkYBERMq0mQqeRaXNNRCDlQfts8pyohGoDDgK7iKl4rxNVUPuBLqJ/lNI+YGYCKub9zxOsvBlAKU2GTpIkneKg29ApTSMrzbUQQdMqoprpPKJf02ROrCqnwssRU+y6iQBqGyeqn94lAqhuDKBSYyagot7/PMEqg+GT0mDoJEnSKQ66DZ3SUENULbUQ/ZmuAC4igqbxRH8mp82NrhzQRzQibyWakL8IrCUakXcRU/ScfjeKzARU1PufJ1hlMXzSaDJ0kiTpFAfdhk6jtquJ6XNTgGXAGuBCYD7RDHwSBk2lIkcETEeJ1e+2AC8DrxHT8bqIVfNUZGYCKupF2ROs8hg8abQYOkmSdIqDbkOnYqsmmn7PIabQfR64BJhLVDrVuotKWo6YYneACJ+eA14lpt4d4sQKeCoCMwEV9f7nCVa5DJ9UbIZOkiSd4qDb0KlYqonV55YAVxNT6OYCM5Nfr3IXlZU8Mf3uMBE4bQaeIhqQ70t+z/Cp0DvdTEDFvP95glU2gycVk6GTJEmnOOg2dCq0kbBpKXAtcA1wNjCVmF6n8jdMTLHbA7wDPElUP+3Dvk8FZSagot7/PMHGDgMoFZqhkyRJpzjoNnQqyG4kpsmNJ/o1XUdUN51D9HByCl1lGpl6twdYBzwBvERUQvXjqndnzExARb1we4KNTQZQKgRDJ0mSTnHQbeh0RrsPqAdmAauIleg+z4mwqcZdNCaMhE97gbeBZ4npdxuB4xg+fWZmAirqBdwTbGwzfNKZMHSSJOkUB92GTp9ptxHVSzOJpuA3AhcAk4lpdIZNY9NI+HSQmGr3DDH1bjMRPjnt7jSZCaioF3JPMIHhkz4bQydJkk5x0G3odLpqiWDpQuBm4DKiQXgzEUZJeWAQOEIETk8QTce3EaGU4dOp7kgzARXz/ucJphEGTzpdhk6SJJ3ioNvQ6ZR3FdBI9Gz6U6Jn0zyiabg7UR9nJHw6CLwHPAQ8ABzDKXentgPNBFRE1e4CjRgJEAyfJEmSNMoyxKpzs4ArgduSr5OBrLtHf+TcqSUq4aYRIeVZwG+JEKodq56k9L5BTTX1aQyg9GmsdJIk6RQH3VY6fZoaIiy4BLiFmEo3G2hy1+gzGCKqnLYQU+5+B2zFKXefyExARb3/eYLpVBlA6aMMnSRJOsVBt6HTx6kCJgGribDpGmA+9m1SYQwCh4hqp0eJfk+7gF53zR8yE1BR73+eYDpdhk8aYegkSdIpDroNnT6qlphK90XgO8DZRADlVDoVUh7oJ1a5exn4PrAe6MKqpxM7yUxAxbz/eYLpszB4Ehg6SZJ0yoNuQ6cR1UALsSrdrUR10yKi6kkqljxwHHgTeIyYcvc+0Jf83tjeOWYCKub9zxNMZ8LwaWwzdJIk6RQH3YZOENVNi4lV6b5ANHueiFPpNDpGVrk7ALwD3EesdNfJGK96MhNQMbl6nc7Irl27DJ4kSZL0x545WoBLga8SgdNUnEqn0TWyyt08onH9XGAOscrdNqDHXSQV5wYgnZGPVrsYQkmSJClRlzzcfwG4EzgPmOBuUYoyQAOwkqi0WwD8CniLmIJnryepkN9wltKpWAyfKp/T6yRJOsVB99icXtdEhEx/CVwGzE4e9qVSMQy0AZuAR4CfAYeBobG0E8wEVNT7nyeYis3wqXIZOkmSdIqD7hIInUZr3J/JZEamMF0P/AlwMdDsWaASNgjsJhqM3w+8mc/n28fK9cJMQEU9nz3BNFoMnyqPoZMkSaX5EJnWg2UmkxkHLAPuAL5CTF2q8ww4tXNk5DwZ+fHJn2w2+we//3HHNp/Pk8/nyeVyH/745I8Bw6caqXp6Hfg58CxwOJ/PD1X69cJzQkU9nz3BlKYiB1GZ5JMl+pdVJZ+RX88lN5dhooQ2xyjM4TaokSRpbAYKaSvmuD+TyWSBScBFwF3AF4HpydhLJ50HIwFSdXX1h5/a2lrq6+upq6ujtraW2tpaGhoaPvx5dXU1dXV1VFdXk81m/yCAyuVy5HI5hoeHGRgYYGhoiIGBAQYGBujt7aW/v5+BgQH6+/vp6+ujv7+foaGhDz/Dw8P/Jpgaw/JAN7CBWN3uYWBHPp8fqOTrhcddxWQjcVWaLFBD9BCYBEwhVqdoIZpWNia/DzBArFLRDhwl5m8fTX7eQ5TZ2khQkiTp0x+Qq4GZwLXAN4jgafKYH5QmwVBNTQ21tbXU1dXR2NjI+PHjGT9+PC0tLUyaNIlJkyYxYcIEpk6dyuTJk2lubqapqYkJEyYwbtw46urqqKuro6amhqqqKqqqqv4glDi5umkkbBocHKS3t5fjx4//wefw4cO0tbXR3t5Oe3s7x44d4/jx43R0dNDT00NPTw+Dg4MfhldjMIjKAOOA1UST8TnArzKZzLv5fL7L73bp9Bk6qVJuDjVEqDQHOBdYCiwiAqcJyc2jgVgmdeSN2zAngqcuoAM4CGwHNhJLp+4jVrEYIt58SJIkaWQQFv2bzgFuBb4GLCFe8o05I9VLI1VKEyZMYMKECcyYMYMZM2Ywffp0ZsyYwaJFi5g5cyYtLS1MnjyZhoaGP6hcKrZ8Ps/g4CAdHR20trZy5MgRdu7cyd69ezl06BCHDh1i//79tLa20t7eTnd3N319fQwMDHw4bW8MPFvUJc8SXwNmAT/PZDIv5vP5o37XS6f5DWUpndJ0htPrMkA9ESwtI1ZFWQXMJ8q5JxIhU/YU/385oJ+Yy30Q2EksnboW2EJUQfVzhuGT0+skSRqDg+4KnF6X9G+6gJhOdxOxOl3NWDmm2WyWqqoqamtrGT9+/IcB09y5c5kzZw5Lly5l4cKFzJ49m+nTp1NfX082my3pf9Pw8DCtra0cPHiQ3bt3s3HjRj744AP27t3L3r17aW1tpaOjg97eXgYHB8dCCJUjXk6/A/wKeBTYnS/yP9rpdaqo+58nmNJ0BqFTLRE2nU+Ucl8ILCSm0xVqsNNPTLl7nwiengXWAceIqXefiaGTJEljcNBdYaFTEjhdCPxnYE0yBstU+jEcqWYaN24ckydPZtq0acybN48VK1Zw7rnnsnDhQhYtWkRTU1PJB0ynanBwkP3797Njxw62b9/Ou+++y/bt29m/fz9Hjx6lo6OD/v7+D3tDVaB88lywnejz9H3gSDEbjBs6qaKunZ5gStNnCJ0yRAXTcuBG4GpiOt0kTr2i6XQNE1VOG4CngaeAzUAnn6HqydBJkqQxOOiukNDpIw3DvwXcAoyv5GOXzWapq6v7sA/TnDlzWLlyJcuXL2fJkiUsW7aMCRMmVEzI9McMDg6yc+dONm/ezObNm1m3bh3btm3j0KFDtLe309vb+2E/qAozRARPPwEeoogNxg2dVFH3P08wpek0Q6caYk71tckA5xKi2mm0epMNAgeAl5MbzQvENLyiL6NqUCVJUpkPuisgdEoCp6nJOOwbwHlEAFWRx6uuro5x48bR0tLCueeey/Lly1m+fDmXXHIJc+fOpba2tiSOa9rnVEdHB2+//TbvvPMOGzdu5N1332X//v0fNievsCl4A8Au4kX0z4C1xah4MnRSRV1PPcGUptMIneqJxpRfAb6c/HhcSpvdA+wAHieWUd1ENCEv2mp3hk6SJJX5oLvMQ6dkhbppwA3A3xJtDeor7TjV1NTQ0NDAxIkTWbJkCcuXL2fVqlWsWbOG+fPnU1NTM+aDpk/T0dHB66+/zhtvvMGGDRt49913OXDgAF1dXfT395PLVcTC0MNAK9F6438GNubz+Z5yvl6YCaio9z9PMKXpFEOnkWVL7wZuJlaoq0p73EZMr9sI/B54lSi3PUwEUAMUMIAydJIkqcwH3WUcOmUymSpgLlHddBewogTGYgU9NiPT5xYuXMjSpUtZtWoV1157Leeccw719fUGTacpl8tx7NgxXnjhBdauXcuGDRvYvHkzR44cobu7m+Hh4XL/J+aBdqLtxj8BT+Xz+b5yvV6YCaio11hPMKXpFEKncUSz8HuIwGkqxevd9Fn1AR8Qq1q8QzQb30oEUL3E25AzYugkSVKZD7rLNHTKZDI1wAKi2vyviVYH1ZVwTLLZ7IdVTcuWLWP16tXccMMNrF69mgkTJlBVVeWJWwD9/f3s3r2bJ598krVr1/L222+zf/9+jh8/Xu69n0ZWtnsF+F+IqXbt5Xi9MBNQUe9/nmBK0x8JneqJZXi/Q0ypm0rpr4rSQTQcXwu8RARQ+4nw6TN/sxk6SZJU5oPuMgydksDpXODfJWOxBZVwLLLZLE1NTbS0tHDeeedx0UUXceONN7JkyRLq6uqsairi+Xf06FGee+45XnzxRV599VV27dpFe3s7AwMD5Rp85IFu4A3g58C/Ap35M/zHGDqpou5/nmBK06eETtXAMuB7wJ8QPQTKaQQwCKwn5no/BbwLHEl+/bQZOkmSVOaD7jILnZLA6RwicPoG5fHy71NVVVUxfvx4pk2bxsUXX8zll1/Ol770JebOnUtNTY0n6Sjq7u7mhRde4MUXX+T3v/8977//PseOHSvX8CkP9BMzHv4b8ADQdSbBk6GTKur+5wmmNH1C6JQB5gHfJqbVzSvjQU4P0e/pESJ8ep8zrHqSisFgU5KKPOguo9ApaRq+CPhLInCaWcZjMaqqqmhsbGTOnDlcdtllXHXVVXzxi19k2rRpTqFL2eDgIK+++irPPfcczz77LJs2baKtra0cw6d8MsZ/iwieHga6P2vwZOikirr/eYIpTZ8QOk0Ebgf+A9FAvBJGA3uJ0Ok+4HXgGNHryW9AlQRDJ0kq8qC7TEKnpMJpEfAXwNeJHk7ZctznVVVVNDQ0MG/ePFasWMEtt9zCVVddxcyZM61sKjGdnZ289957PPjgg7z66qts2bKF1tZWBgcHyykQyRMvnN8E/p546fyZKp4MnVRR9z9PMKXpY0KnWuBi4D8TS/KOq6B/7hDRYPwx4Gmi91Mb0Yh8CAMopcjQSZKKPOgug9ApqXBaAnwX+CplGjhlMhkaGxuZNWsW5513HnfccQdXXXUV06ZNo7q62pOxhPX09LBp0ybuv/9+nn32WbZv305raytDQ0Pl8k8YCZ7eBv4BeDCfzx8v9euFmYCKek32BFOaPhI6ZYDZRO+A7yQ/rkQ5oJVoOPgM8BqwjRMBlN+UGnWGTpJU5EF3iYdOmUymFliajMPuAKZThoFTTU0N06dP54ILLuCaa67h9ttvZ86cOYZNZaa3t5dnn32Wxx9/nJdeeolt27bR1dVFLpcrh80fmWr3LvBD4L7TXdXO0EkVdf/zBFOaPhI6NQDXA/874HIqZDneU7AfeJIowX07+bnhk0aVoZMkFXnQXcKhUyaTqQLmAH9GtDcou6bh2WyWCRMmcPbZZ/OVr3yFG264gSVLltDQ0ODJV8YOHDjA2rVr+dWvfsXatWs5cOAA/f395RCSjDQXfx34fwDPA/2nOtXO0EkVdf/zBFOaTgqdMsBc4D8lA54pY3B39BLB06+AVziD1e6k02XoJElFHnSXaOiUyWSywALgm0Sl+XzKKHDKZDIf9m26+uqr+eIXv8g111zDpEmTSmKfqzDeeecdnn76aR577DHWr19fLlPuRqbavQj8/4Bn8/l8dyleL8wEVEzWmapU1ADLgAuByWN0HzQAXyOqvf4J+DWwDujGqidJklRgmXiybUnGHt8iwqfyeZCprqalpYXVq1dz9913c/3119u3qUKtXr2aJUuWcOWVV/Lzn/+cZ555hg8++IDu7u5SDkwyRH/ay5Px/KFMJvN2Pp8f8ohqLPGKrFLRDFwCnE2ZrpBSQJOIiq8rgP8KPA4cIla7kyRJOvOn4ahwmk6sGPzXwFlltO3U1dWxcOFCbr/9dm6++WZWrVrFuHHjPLAVrKGhgYsvvpiZM2dy8cUX88tf/pK1a9fS2trK8HBJD5PHAdcQMxj+LpPJvJHP5wc8ohorDJ1UEmMHoo/ASqKHgMIFROj0EPAvwHpiyl0vsdqdJEnSZ9UMrAHuIRqIV5XDRldVVTFlyhSWLFnCXXfdxVe/+lWmTp3qVLoxZO7cuXzjG99g3rx5/PSnP+Xll19m165d9Pb2lmrVU5Z4qXwd0AG0ZjKZbfl83hfKGhMMnVQKaoFziDdsNe6OP9AA3EWUva8jej29BmwCDhABlDcsSZJ0yjKZTCPwOeDrydeyCJxqa2uZO3cuN998M7fccguXXHIJ48eP94COQdlsliuvvJLp06fz9NNPc++99/LWW29x/PjxUl3hLkMET9cDO4GfZjKZQ/l8PufRVKUzdFIpGEe8YZvprvhELcDVwPlECLUVeAp4AXgfOI7hkyRJ+mNPvhE4rQH+PTHlp74cAoYJEyawaNEivva1r/HNb36TmTNnks1mPaBj3OLFiznrrLNYuHAhP/nJT3jttdc4cOAAfX19pbi5J68SWQv8FHAlF1U8QyeVgknAwuSrPv1GNRGYkNywziMajz8CPAZsw6bjkiTpE2QymVpi4Za7iYqLki8Tqq6uZsaMGVxzzTXcdtttXHfddUya5JBRJ9TU1PClL32J6dOn8+ijj/LII4+wYcMGurq6SnG63cgMj7uAY5lM5pf5fP6YR1GVzNBJacsSVTzTgTp3x6mNGYm3kjOAKcS0xGuBXwDPAHux55MkSfpDVcB8onH4jZRB4FRXV8eiRYu47bbbuP3221m5ciUNDQ0eSX2s1atXM23aNBYsWPBhk/Fjx46V4nS7auKF+9eBfZlM5ql8Pt/lEVSlMnRS2rJE8/AJRJiiU5chemBNByYT4dNFwD8T/Z96sOpJkiTFeGsa8AWiSnpaSQ9wMhmampo499xz+c53vsPNN9/MzJkzqa720UWfbtasWXzlK19hwYIF/OAHP+CZZ57h4MGDDA4Oltqm1hH91P4UOJzJZN7M5/P9HkFVIq/cSlsVUelkF8gzGJsRpbpnAd8ELgV+BjwB7COm3A0CNiqUJGlsjhOagcuIyoqFlPCLvkwmQ3NzM1dccQW33347t912G1OmTHF1Op2yhoYGLr/8cnK5HC0tLTz66KPs3LmTgYGBUvu+bCL6q+0D2pIV7ZytoIpj6KS0VSUDIWulC3PzGk+8Nfm/EOXzLwBvEf2e9hPLtA5iBZQkSWNFfTI2uAu4oJTH/9lslsmTJ7NmzRr+8i//kquuusrV6fTZBsWZDFdeeSUzZ86kqamJ+++/n+3bt9Pb21tSpzzRKuMGInj6WTJelyqKoZPSVkUETrXuioLewJqBy4GVwAfEanfrgbXAZuAI0IfhkyRJlawGOBv4CtE4vLFkBy/ZLDNmzOCWW27h3//7f8+yZcuoqanxCOqMnH322fzt3/4tc+fO5Sc/+Qnr1q2ju7u71J7HFxDTXvdnMplH8/l8m0dOlcTQ6QzMnz8fgF27XOnyDIz0JapyVxR8v2aIXlmrgOVE+e61wJvAc8A7wGFgwN0lSVJFmgrcDNxB9H8sSTU1NcydO5ebbrqJf/fv/h3nnnuugZMKprm5mTvvvJNsNsvPfvYz3n77bY4fP15KDcZrgaVEf6eDmUzmWWDYI6dKYehUAIZPZ8xqm9H5Xp9FrHi3ErgQeB54EthATLuz55MkSZWjkXjxdCcwu1Q3sq6ujsWLF3PPPffwzW9+k2nTptm/SQXX3NzMt7/9bc466yz+/u//nmeffbbUVrZrTMbnX03G5occm6uSHkRVIPPnzzd4On05oseQaf7oyBKN29cA5wArgEeBZ4G9ybGQJEnlrTa5x/8lsIwSrSivq6tj6dKl3HPPPdx9991MnTrVI6eiyWQyXHPNNWSzWaqqqnj66ac5evRoqQRPGWAiscLkDuAfiJfCvpxX2TN0KjCrnk5bjlhdzSVCR/97fxZwI1HOex7wANH3qQMYSo6NNzpJkspLNrnHXw9cRyzNXnIaGhpYvnw53/72t/na175m4KRRkclkuPrqq6mtraWmpoYnn3ySw4cPMzxcEu+/q4C5xHTYN4FXk+ckqewfPFUEhk+nbJgIOXrcFemM+YBzkxvcZUTF00vAdqLf03Gi55PlvZIklYcJwJXJg2tzKW5gXV0d5557Lt/73vf4yle+wuTJkz1qGlWXXXbZh33DHn/8cY4cOVIqFU81wGLg68BR4oWw43CVNUOnIhsJn8AA6hMMA8eATndFajJAE3A+0e/pduAt4g3Lu8A2IoDqwWmQkiSVspEH1juJRURKTl1dHatXr+aOO+7g5ptvNnBSai688EK+8Y1vkMvlePrpp0up4mkCUaW4K/k4zU5lzdBpFBlAfaxh4AjQRqT4WXdJajJED4izk89NwGai8ullYB2wjwiffOMiSVJpyQILgW8RlU4NpbaBdXV1LF++nO9+97tWOKkk3HDDDUydOpWqqip+97vflUrFUxUwB/gKsBu4F2eFqMxvTkrByQHUGJcnKp0OAL3ujpLSRKyi8dfA/xX474DPEyvg1Ll7JEkqKc3AFcS0ugmltnG1tbUsWbKEb3/729x2220GTioZF1xwAd/73ve49tpraWlpKZXVE2uIFhh3AYt8blc5s9IpRa5296EO4H2gFRjn7ig5NcTKN2cRIdRDwFPAFqALy30lSSqFe/XZwC3AjFLbuGw2y+LFi7nnnnu48847bRquknPZZZcxODjI8PAwTz75JG1tbaWwWfXA54jZB7uJXquOu1V2DJ1SZsNxIFZl2ERM3ZrrWVGyGohm4wuJ3k+/JlbVOIK9niRJSksWmEZMqbuKEquIqKqqYvr06dx9993cfffdBk4qWVdddRXDw8O0trbyyiuv0N2d+sJxGWAqETq9BLwB9HmkVI43KZWAMT7dbohYLW2nF9KyMJ1oUPo/A/9HYknm2UQoVeXukSRpVI0nwqa/ACaW0oZlMhmmT5/OLbfcwl133cW0adNKZeqS9LGuueYa7r77blatWkVDQ0m0RasFVgF/Rcw68PldZcdKpxIyhque8sBBYsW0S5MLqkr/2nE28DfAnwFvA08CrxDT7lqBASwBliSpmKqABcBtRP+Xkkl0MpkM48eP56abbuKv//qvmTt3roGTSl4mk+GrX/0qw8PDdHV1sXnzZgYGBlLdJE70a/sisBdX/VaZMSktQfPnz//wM4Z0Aq8B23CqVlndm4m3qp8H/p/AvwL/K/AnRNPDhlIaAEuSVGEmJg+jn6fEqo2bm5tZs2YNf/EXf8HSpUupqanxaKksjB8/njvvvJM77riDBQsWlMK5myFmGtwCLPEZXuXGE7bEjaEAahDYSvQIOuSRL1tTial3Pwb+jljqdQ5RGixJkgqnBlgMfBmYUkobVl9f/+GKYMuXLzdwUtlpbm7mT//0T7ntttuYNWsWVVWpZ7p1xMI+N1OCq1NKn8bQqYyMgfCpFXgeWE+EUCpfdcCNwH8D/m9Ec9OJWPUkSVIhZIAWopfTpaU0pq+urmbZsmXccccdXHbZZYwfP96jpbJ09tlnc+utt3L11VfT0tKS9vTQDBEuf4lY0c42OSobnqxlaP78+ZXa92kA2ED0BjqbmJ6l8tYMfAe4GPgB8DCxSuGAu0aSpM+snqh6+DIlVPWQzWaZO3cu3/rWt7jrrruYMmWKR0plbc2aNWQyGTo6OnjmmWfo7Ey1nVINcA4xzW4LcBjIeZRU6qx0KlMVXPV0DHgGeAFo90hXjBXA/5sTU+7OIQKpGqx+kiTpdFQn99E/Bc4rlftoJpNhypQp3Hrrrdx4441MmjTJxuEqe5lMhvPPP5+77rqLFStWUFdXl/YmTSRmE9wOjPMIqVxuWipjFbji3RDRTPxBYCFwGRFMqPzVE/PQLyOmUL4KrAU2AfuBHmwiL0nSHzMBWJPcU0vmobO+vp41a9Zw++23M2/ePKqrfcxQZWhoaODqq6/mgw8+4MiRI+zcuZPh4dSGrNXJM9JXiEWY3sFqJ5U47wYVosLCp27gFWAe0ZjaVRoqx0gPiiuBVckN833gOaKf13aiws3wSZKkf6uGaEFwIyXUPLyqqooFCxZw8803s2rVKhoaGjxSqiizZs3ixhtvZP369bS2ttLW1kY+n09rc0aain8J2IGzQ1TiDJ0qzEen3JVpCJUHjgK/JQKKPwPm4zSsSlIFTEo+84iGiF8Bfpcc981AF765kSTpZBOBy4lKp5J4IZfJZJgxYwZf//rXuemmm5g0aZJHSRVp9erV3HPPPRw5coRXXnmF7u7u1L7tiND5BuLF7Wv4wlYlzNCpwpVx0/FhYBdwH5Hm34XBU6WqB2YDM5Jj/HngV8ATyTngSoaSJEEtsJiobiiZZKepqYnrr7+er3/960yfPt2jpIr2+c9/ng8++ICDBw+yefNmhoaGSuF6sJXoiyuVJKcsjQFl3HR8kFiZ4V+IEOIDrHypZFVE8HQ58H8A/s/AFUTDcUmSxrpJRIXTJZTIS7iamhoWL17MzTffzMyZM8lmfbRQZaupqeGaa67h0ksvZfLkyWk2y88Ak4EvAMuxmEQlzDvDGFKmwVM/MdXqZ8BPgI1Y+VLpqokpd18F/jfgPxD9nyYTVW9etyRJY00VMZ1mJdFIPHWZTIa5c+fyzW9+k6uvvprx48d7lDQmLF68mD//8z/n0ksvZdy4VHv51wBziNCp1iOjUn640xhSpg3H+4mKp18QvZ7uAC4i+hqoco0jmiT+j8QKPc8DbxHNxvcBHUQAmXdXSZLGwD3xc8QKsCVR5TRu3DhuuOEG7rjjDqZOneoR0piyZs0a9uzZw65du9iwYUNa0+xGqp0+DzydjJGdFaKSY+g0Rp1c9VQmAdQgMb3uN8BuIoS4DjiLSPlVmTLA+GSQvZJYoWMz8B7wRvLjw0Avhk+SpMqUJXofXktUAqf/AFFdzapVq7jpppuYOnVqmlOMpHQGqJkMV1xxBa+99hqHDh3i0KFDaa1m1wisJlpS7CNWAZdKiqGTyimAGk4ChueBPcB6Ini6BJhJlJ6rQu/tRPi0ClhBvNHZRFQ+vQC8CRwiquIkSaokTcB5ROhUEi/apk6dyl133VUK04uk1MydO5e7776bTZs28fvf/57e3t40NiObPAfdCLyI1U4qQYZO+gNlMP0uD3QRvZ32A+uIKphLiUBiLrEamipXFTCN6G1xPnAxETw9TgSRbd5sJUkVIgvMAq5Jxjipq6ur4/LLL+fqq69mwoQJHiGNaStWrOCGG27g/fffZ8eOHeRyqQxBG5PnoMuJF/O9HhmVEkMnfaz58+eXetXTENHf6TiwjQgdPpd8VgJLiVDC6qfKHoiPTL1bSlRA/RZ4gpiCacN5SVK5G5c8TH6eEqhyymQynH322dx4443MnTuX6mofJTS2NTQ0cM011/DGG29w9OhR2tvb0xoTzwBuAF4C3scXsCoh3in0icqk6fgAcISobtkCPEv0O1gBXElUQM3Avk+VLEs0UfwScC4xr/0+4G0ilBxpNm7PJ0lSud3fZhJVTiXRy6m5uZmbb76ZG264gUmTJnmEJGD16tXceeedbN26lXfeeYfBwVTee45LxsCXAnux2kklxNBJf1SZhE9DxGpmx4kqlzeIqpcrgLuIaVhWPlW2GuBsYunYS4iKpxeIue1HgU4ipPTNjySpHDQQ1dvXUALLoVdXV7NixQquv/56Jk+e7NGRTnLRRRdx5ZVXsmfPHg4ePJjGJoyE1F8kejvt9KioVBg6qdLkicqWQSJk2E9UvNxBNNhbSjTkzLqrKlY9MRVhOXAn8DrwGtHvaStRGddDNKaXJKlUNQGLiZV6U9fS0sK1117LihUraGho8OhIJ5k5cybXXXcdb7zxBm1tbfT3p7K2zThgGfECdrdjXZUKQydVul6i6fhhoun4HcCFwALiDaJr/Fb29W1+8vky0fvr90T10zqi9LgHK58kSaWnhmgcfjFQl/oNtbqa5cuXc9tttzF16lSPjvQxrr32Wl577TW2bdvGgQMH0tiEKmA60e/0XWIWiFQSD2VSpRsCDhHTrTYRvZ6+RFQ9zSaaUTvtrrLVc6LB/M3ESne/A95Kzo1+d5EkqYQ0AecR08VTN3nyZO644w7OOussm4dLnzTYrK/n1ltv5ZVXXqG1tTWtaqfJxMIDI6s6+3JVqfOuoVR9lj5RIz2mTlOeqGrZRky5e4moeLqSE2Wo04lwQpV9zVsAfJt4C3Q/ET5tJKZj2mxckpS2KuKl2JXAtLQ3pqamhmXLlnHJJZfQ3Nzs0ZE+xbnnnstFF13Ee++9x4EDB8jnR31oWU9My72M6Gva7VFRKTyASWNJjggXtgAfAM8RvRI+R5SwX0aEEn5vVLba5JjPJd4k/wsx9e4gvhGSJKWrhpgafjklUIk9efJkbrvtNhYuXGiVk/RHNDY28uUvf5nXX3+d1tZW+vr6RnsTMkRYfSXwAIZOKgHeOTRW5Yh+T3uIyqc3gHuBc4A/Ab5JlKfacLyyTSL6PZ1PrHb4EFGKfAzowwaMkqTR10wshjE39QeF6mouvPBC1qxZY5WTdIqWL1/ONddcw+bNm9mzZ08a1U6NwLnAQmIF5yGPitLkA7UUwUIPUeXyIvB/B+4BniTeDuRw2lWlXwfnAN8F/gn4KfC3wLXJgN+G85Kk0VKd3HsuIapyUzVp0iSuvvpqFixYQE1NjUdHOgXjx4/nyiuvZNGiRdTVpbIOQJZoG3I5saKdlPrDlqQT8kAbETj998D/i1hydCD5PcOnyr4eTgauAv5PwD8Cf0dUvS0lmroaPkmSiqmRWPjiorQ3pKqqipUrV/KFL3yByZMne2Sk03DJJZdw9dVXM3nyZDKZVIaPk4gpdnM8GiqFhyxJ/9YAsBn4r0TT6R8Bh4lVzqx8qvzrYh0wk1jp7v8D/G9E+HQ2NpuXJBVPC9FjcmbaG9Lc3MwVV1zB9OnTqapykV/pdNTU1HDZZZexYMGCtHqh1QNLgFXYUkcp8wRU2RnlFe/agReATUTPp5uBG4lm47VEg0+rXypThmjm2kxUP60CniKajr8CHMHwUZJUwOdUYAax8lSqY/SqqiqWLFnCDTfcwJQpUzwy0mdwxRVXcNlll7Ft2zaOHDky2n99FphI9HYaT8zkkFJhpZP0xw0Dh4jVzf4n4BvAfwB+CewABjF8qGSZZPA/GfgKMeXye8AySqDfhiSpYoxLHhCXpr0hjY2NXHLJJcyePdteTtIZfh/NmTMnrWqnZuACYLbP/UqTJ5906oaBDuBd4GfAfwTuBP4H4CViSp4q10jl07nA/0j0e/pW8nAwkQigvKZKkj7rPWYycCGx3Hmq5s2bx0033cS0adM8MtIZ+PznP8+FF15IU1NTGn99HdEa4nPE7AwpFU6vkz6bQaJMtQ3YQkzBuwP4GjF/WpX9YNAIXAOsBjYQ0+1eS86FvUAXLk8rSTq9Mflsop9TquPz+vp6Vq1axcKFC9NaeUuqGFOmTOGCCy7g+eef5/jx4+RyudH867PAFGI1zEeJl+dSKjc4SWemG1gPHCUCiD8BvkTMn1blGlnt7nJgBdHvawcRQL1MBFCtWAEnSfrjGoGFwNy0N2TatGncdNNNTJ8+Pa1Vt6SKcu211/LEE0+wb98+uru707i2LCb6xXUSCyJJo8rQSSqMQaLC5TFgG/AqEUJcTpS2qnJVEcvSTgLOAc5Ljv3zwJNEINmBlU+SpE82AVhJvMxI74ZWVcVZZ53F0qVLaWxs9KhIBTBv3jyWLVvGyy+/TE9PD/n8qLaCrSXC7KXA+xg6KQWGTlLh5DjR82kvMd3qUuDzwEVEeasqWy0wh1jqehGwBniYCJ+2Az3uIknSR1QB04Hzid6BqWlsbOTCCy9k2rRpVFXZAkYqhLq6Os4//3xmzZrF0aNHGRoa1feQWWAq0S/uSXwJqhQYOkmFNwgcJvo9bQaeJqZfnU9UPp0LNBG9gVS5DxAzgBZgAVH99K/E1LtWoim9JEkA9cTUuuVpbkQmk2Hu3Llcf/31TJniezKpkK644grOO+883n//fTo6Rr21UjPRh3QK0RZEGlWGTlJx5IlePkeJ8Gkb8CzwK2Lp0uuJpn7TcMWzSlYDzCfeMK0GHgQeIcqbO4iA0jJnSRrbmojp2ZNSvWHV1HDOOeewYMECG4hLBdbS0sLSpUuZOHEix48fT2uK3VnAHseeGm2GTlJx5Yky1k5iRbMDRLPx54jg6VZgFSn3cFDRNQLLgHnAtcRqh68RYeRBoB0DKEkai0ZWl/pc2uPycePGccEFFzBp0iQbiEuF/kbPZlm9ejVz5sxh//79DA4OjuZfn0meNT5HVN33e0Q0mgydpNEzEkAdBzYSAdR7RNPp64mVJWrdTRUrQ6xoeEly0785Of7vAW8QUzEPA70YPknSWBqLzyaaiKeW9GQyGebPn89VV13FpEmTPCpSEVx44YWsXr2ajRs30tbWNtpj0Gai3cN4DJ2Uwo1O0ujLAceAl4mm4+8BXyAajs/ze7OiZThR+bQM+GJy/N8kKqDeJALJASKolCRVrnpiGvb0NDdiZGrdzJkzqamp8ahIRdDc3MzSpUuZPHky7e3toz3F7uRrzVGPhkaTD7ZSunqIKVaHgPXAZUSz8ZXJjcH1iivfROAK4OLk+L8APJacD0ex6kmSKtkEYAlRfZCaxsZGVq9ezcSJE51aJxVJJpNhxYoVzJgxg927d4/2FLtqInA6m6iud1EbjerJJyldw0Sz8beBHcCLRJ+n84mVbJYQjaircMW7SlZLBE/Liel3jxLh0wdE1ZMkqbJUES8e5qQ9Jp82bRqXXHIJEydO9KhIRbR69WoWL17M+vXrRzt0yhKLFsxNxpy9Hg2NFkMnqXQMEpUt7cBWotn4fGAFUQlzEdH3wb5PlW0cMdXyXCJ8/Fdiyl07EVBa+SRJlaEGmAksSnMjqqqqWLp0KbNnz3ZqnVRkzc3NrFy5kmeeeYbOzs7RnmLXlIwvmzF00igydJJKz8mr3e0BXgceAS4FvkpMv2tJBquqXHOBPyWqnx4DniWmYrYm54ar3UlSeasBZhDLmKemsbGRc889l+bmZqfWSUWWyWQ455xzmDZtGvv27WNoaGg0//pxxMJFzURrD2lUGDpJpStPBAuDRMiwn5iC92XgNqICajxRnq/KfSBZDiwF7iYCyJeBd4hquKPEmyrn5UtS+RlHLB4yMc2NaG5uZvny5TQ1NXlEpFGwePFiZs+ezYYNG0Y7dKol+jrNJlp6OH7UqDB0kspHPxE0/BTYANxOTLubmwxcs+6iipUFZhFh403AbuAZ4GlgHbECYg9WPklSuRhZwnwRKb48ymazzJw5k6VLlxo6SaPkrLPOYtGiRTQ0NNDT05PWdecVDJ00SgydpPKSA44QU622EE3HbwRWEyX64/2+rng1yWDhLCJ4fAx4iKiCOkSEk5Kk0lZFTJU/J9WNqKpixYoVtLS0kM367koalYFcTQ3Lly+npaWF1tbWNPo6LQHqHDNqtPhwKpWnPmAnETKsJVa6u5poPD03GcjW42p3lSxLrGp4N3AV8CvgYWA90RMs7y6SpNJ97iSaiC9IcyPq6+s555xzGDdunEdEGkWLFi2ipaWFHTt2jPYUu0bgbKLi6bhHQqPB0EkqX3mgm2guvRv4PbAQ+BzRdPwSohqmGsOnSr+OLwD+I9F0/B+JaXcHOY2y6fnz55fsP3DXrl0eZUmVpp7oqzIhzY2YPHkyixcvNnSSRtn8+fOZM2cO7777blp9naYC+/AlpUbpYUVSecsTlU/7iaDhTeA+IoC6jaiEmUVUxhg+Va4GTlS7PQLcTzQcP5qcH0PuIkkqGU3AnOTanYpsNsvUqVNZsGABDQ0NHhFpFM2aNYt58+bR0NBAd3f3aP7VVcCk5Pqz3vGhRoOhk1RZcsRqZr3AYaLh+FPAXwFfIHo+geFTpcoCk4E/BW4B3gVeIJpFbiKmY/Zhw3FJSvta3UhUGqTaRHzu3LmMHz/efk7SKKupqWHu3Lk0NTVx7Nix0ezrlCHC7mlJFmDopKIzdJIqV56Yq/088AHwEvBdomlp9Uk3HlXmA81EYnXDC4E/I95m/Y5oPr+T6Ptk+CRJoy9DvASak+ZG1NbWsmzZMpqbmz0iUgqWLFnC5MmT2bNnD8PDo7qQXD3RA9YsQKPCE02qfIPA+8CPgFeBrwB3ElPuqk4aAKvyHmqqgHHEG63pRJ+vzcTUuyeAHUCPu0qSRlUVUZU6N82NaGhoYN68eTQ2NnpEpBTMmTOHKVOmUFVVNdqhUyMwnwifujwSKjZDJ2lsGKl6Wks0Hn8QuAH4MnAu0VTQ4KlyZYmlcWuJ4Gkx8HngX4hKuNNqOi5JOiO1xNS6aWluxJQpU5g3bx51dXUeESkFM2bMYNasWdTV1TEwMDCaf3Ud8fK5mej9KRWVoZM0tuSSm8vLwDrgF8B5RABxJbHaXY27qWJlkuM7lejxtQR4CPgl0f+r110kSUVXSwROqZUYZbNZJk2axPTp06mtrfWISCmYNGkSM2bMoK6ujs7OztHOACYRFZc7cQU7jcIJJ2nsyRE9fTYCW4nVzuYAa4ipd2uIkltVpgzxlmsR0WR+DVH19AyxfG4PMS3Tnk+SVHh1RN+91NKeqqoqpk+fTmNjo03EpRS/D6dOncq4ceNGu5n4yGIGE4npvjYTV1EZOkkaAjqSz3ai4fjtwF3ACpx2V8myRM+ni4mqpzuJRuNvAVuAvUQ4OYhvwSSpEDLES50pyTU4tYfdmTNnUl/v+yUpTTNmzKCpqYlMJjPaK9jVE5XvjvNVdIZOkk7WTzSa/jGwCbiD6Ps0wZtSRcsSZdaXAcuBPUTz+beAV5Jz4mhyfhg+SdKZPew1ATPS3Ija2loWLlzIuHHjPCJSis466ywmTpxINpsllxvVAvO65DpURbxclIrG0EnSRw0TjaWfIIKHN4im41cTb0UMnypXlii1nkg0G78QuB54DXgaeAc45uBEks7oOjueWFE0NfX19UyfPt0m4lLKpkyZwsSJE6mqqmJoaFRnudUDM4lpvn0eCRWToZOkj5MnllDdQPT4eRN4img2finRANXwqbLVEX2+ZhIrHF6UnANPEJVPnVj1JEmnq4qodGpOcyOam5uZOnUqNTWuHSKladKkSUyZMoXa2lr6+/tH86+uIarcTZ5VdIZOkj7NEFHZ8hrR4+dZYCWwCrgEWIZT78bCA9K0ZGCyMDn+DwAvEBVxNp+UpNO7pjYm985UZDIZmpqamDx5sqGTlLLm5mYmTJhAdfWoP5bXkPKCBho7DJ0k/TF5YIDo6dMGbAOeA2YD5wGfJ3oBzSDFpqgalcHJXKCFaDD/OPAQ0furgxOr3Vn9JEmfrIoInFINncaPH+/KdVIpDK5qapgwYQK1taOe/VQDk4kQXCr6ySZJpyJPVLV0ElPv9gHvElOurgW+QoRQLe6qitYILCUCqCuA54G1RBh5CGgnQsqcu0qS/o0qYmpdasvGZbNZJk2aRG1tLZmMhcpSmjKZDBMnTqSurm60V7AbmerbRMxY8KWhisbQSdJnMRJAdRFhw0EigLoN+AIRSjhHvILHSEQj3IuI6Xa3Ek3G1yVftwCHgR6iMb0kKdQSVU6pzWvLZrNMmzbNJuJSiZg6dSqNjY2jHTplgYZkPGfopKIydJJ0pnLE9Ko3gANE+HQTcAHRA8jrTGWrJ1a6Wwx8CdhI9AB7GXibqIjrw8onSRoZezeQ4nT0bDZLc3NzGj1kJH2M8ePHf1jpNIoyJ12PLHlU0W98klQI/cAHRO+n94ipV1cRVU9nAePcRRVvAtHf6wLgaqLx/JNEEHmY6PskSWNVhqhwSvV+WFVVxYQJE2wiLpWI5ubmNEKnkSxgHIZOGoUTTZIKJQccJ0KnXcCLRJ+ni4jwaRHRcNyRbmWrBVYT1U+rgUeJ8Gk70MtplnDPnz//3/zarl273MuSylEN0UMlvcF/dTVNTU1UVVV5NKQSMG7cOOrr69MKnZoxdNIonGiSVGhDxEp3x4mg4VlgAdH/5zLgEmBOMvj2Rle5GonVDRcC5wD3Am8S0zGdbidprMkQoXyqodPIallWOkmlobm5mYaGhrRCp/FEU3Gr0VXUE02SimWYaDbeDewl+j49BJxPrHZ3HTAFK58q3Xzgz4mg8R+B3xPTMA2eJI01NaS4ch3E9LqGhgYrnaQS0dDQQF1dHdnsqLd6q0quR1mPgorJ0EnSaDh5tbsuYD+xytlLwJ3EFLyRNy2qTPXAjUTI2AT8jujzZPAkaawYadybeuiU0gOupI9RU1NDTU1NGpVO2eR65KwDFZWhk6Q0DBJNx38FbAZuJ1Y+m000NHQkXJmyxNTKhuTzAHAQl+mVNIaeL5PrX3qD/+pq6uvrDZ2kUrkoJKFTSpVOjfjSV8W+77gLJKUkT/R9ehl4n2g6fgvR82kqUQ3jNaoyfQ74W6COCB4NniSNBSOVTnVj9AFX0id8T9bW1qZV6VSHlU4qMh/oJKVtANhD9Ph5C1gFXMuJZuMTsfS3Ei0C/vvk2P4c2IdT7SRVtgxRUZDq+DubzVJdXZ3GA66kT/ierKqqSuN7ciQIN4FWURk6SSoVvcAOInx4iVjxbDWwhgig5uLbmEozF/gborT7p8AuoveXJFXs8yUpT2XJZrMGTlIJqaqqSjt08oKgojJ00h+1a9cud4JGUz/RYPoo0Wz8N0RVzJeArwGLvXZVjAwwE/huckz/mZhqOeCukVSh17zUK50ymYzBk1RqF4dMxtBJFcsHN30iwyalLAf0JZ8jwEbgWeBbwM3ADHdRxTyEzQDuIfo6/QyDJ0mVfc3zAU9SKV2PvCapqAydZLikcpAHOoBXgL3AG0T4dD4pLz2tgg16ZibHdJioeNqR/FiSVMgbaj7/4UfSmP6eNHDSqDB0GqMMmlSmBoCdwC+JqXc3An8CLPF6VhHmAH9KBIy/AvZjc3FJKsoDrqTS+Z7M5XJ+X6pi+ZA2hhg0qULkgHai2mkn8BRwNXATsBJocheVrQwwn6h4Ogw8CrQRlW6SpELcRHM5H3ClEjISOqXxVyfjai8GKipDpzHAsEkVagg4BBwD3gMeAlYAVwBXEc3HnXpXfrLAMqJp/F7gVWJlQ0mqBMOkPHU4l8sxODho6CSVykVheJihoaE0gycvBioqQ6cKY8CkMWiIqIY5DmwFniCmaV0K3AZcBjTjnPVyUkOEh5uAPURFm/2dJFWCfHLfSs3g4CADAwNpPeBK+oiBgQEGBgbSCIJzaV+PNDYYOpU5QybpQyNvj/uI6qdtwMvEtLvbgc8BDe6msjEJ+DKwHjhKTKmUpHKWpwQqnYaHh+nv7zd0kkrE4OBgWtWHIyG4FwMVlaFTmTJskv7oTbQb2ED0BtpEBBg3EKukVbmLysI5wBeI6ZPv4ds4SeV/bxoGBtPcCEMnqbSMVDql8D2ZIxbp8WKgojJ0KjOGTdLpja2Jvk/PAB8A64DrgTVEJY3hU2mrAa4Bfp8cv3Z3iaQyN0hU5Ka3AYODdHd3MzzsrGWpFPT09KQVBOeS65Ghk4rK0KmEGTBJBZEHOomqp33A20SIcRlwETDba2FJm02EhK8QfbscGEkq5/vRECkvjjA4OEhbWxuDg4MeEakEdHR00Nvbm8b0uuHkemQjcRWVD1olxJBJKqohojfQSMPx3wMrk8/5xIppLUTDcZuOl44q4BJgKbCLmDYpSeUoT1Q69ae5EcPDw3R1dVnpJJWI7u5u+vr60mokbqWTis7QKWUGTdKoGwCOECvebQWeI1a7WwZ8nlg1bQZOvSslC4lG8K9i6CSpvA2ScqXT8PAwHR0dVjpJJaKzs5P+/v60Kp26cYVgFZmhU0oMm6TUDRFVT53AXuAt4AngauBu4DxgirupJNQDq4gw8KCDI0llKk+8+OhMcyNyuZyhk1RC2tvb0wqdhpLrkdPrVFSGTqPAgEkq+YeAweTrUeAlosz4ONHzaZbXypKwBJgHbCTlKgFJOgODlEDodPjw4Q+n82QyziiXUhuE5vMcOXKEnp6eNEKnkeuRoZOKygepIjBkkspGFmgAZhI9gy4kKmoWEKvbTXAXlYw5wPzkeBk6SSpXQ6S8et1IpdPAwIChk5SyXC7H8ePHGRgYSOOvt5G4RoWhUwEZNkllowpoJnoFXQVcB5xDBE1NQC0RSDkSLx2NxEp2TUCru0NSGRqprO1KHvZS6R2Yz+fp7Oykq6uLXC5HNpv1yEgp6e/vp729PY3prjlium83NhJXkRk6FYBhk1TSssnAviq55jUBi4HrgS8SU7YmAnXJn1XpHscZyfHLOkCSVKYGienbA0TlZiq6u7s5cuQIAwMDVFf7OCClpa2tjba2tjQqnXJAT3I9stJJReVd5gwYNkklKQvUAOOAycBUYFryWUCsUrcq+fUGXKWunEwhQicr0CSVqyGgnah2Si10On78OIcPH2ZgYIDGxkaPipSStrY2jh07lkal0zDQQQRPUlEZOkmqFLXElLm5RNPpFcAiojpmIjF1riUZ5I9UNBlelJeJxDS7LK5gJ6k8jSxR3kG8/EjFwMAA+/fvp6+vzyMipejQoUN0dHSQy416AfcA0Ab0exRUbIZOkspZhpgWNxVYDlwOrCYqmqYRjcBH+jOp/DUkx9uwUFK5GiaqnI6nuRGDg4Ps2LGD7u5uj4iUop07d9Le3p5G6DREhN8mzyo6QydJ5SKTfKqIEKmeCJZWA1cDFxCrm00hptep8tQk9y1DJ0nlKkcsUZ7qggjDw8McPnyY/v5+V7CTUpLP5zl06BA9PT3k86PeVmkAOIyVThoFhk6SSlkVUanURFQtTSL6NM0ips6tBs4FphM9nBw1V/j4DJtdSipvOaLS6VCaGzE0NMThw4c5fvw4uVyOqirbG0qjrb+/nyNHjtDb25vKXw8cICqepKIydJJUarLEFKrJwGzgHOBsolfTSEPwGUR/pnoimDJsGhsGk8GRwZOkctYDHEx7I9rb29m3bx8rV65k3LhxHhVplB05coQDBw6k1VutL7kO2SNTRWfoJKlUVBFNomcRTcAvIqqYFhHh0wTszTTWdSeDpJy7QlKZyifXsTYiRE9tLN7W1sbu3bvp7+83dJJScODAAQ4cOMDAwMBo/9U5oDe5DjmmUtEZOklKw0h/pmzyaQTmARcCa4BVwGJgvLtKJz8jEcGTlU6Sylk/0dNpIM2xeH9//4fNxCdPnuxRkUbZBx98QGtraxpNxEem+bY5ptJoMHSSNBpGGoDXEgFTU/KZBMwkVp67CFgKzPHapE9wOBkk+VZOUjkbaeDbntwTUzE4OMimTZvo6Ohgzpw5NhOXRlE+n2fLli20tbWlEToNAkeTa5Chk4rOBztJxTQyZW4iMW1uPlHRNDv5zCVCpslEfyanz+mT5IjeA10OkCSVuSHgCLA/uTemc1HN5Th48CCtra0MDQ1RU+PCr9Jo6e7uZv/+/fT09KTx1/cCe5IxlVR0hk6SiqGGmBo3l6hiWklMmVtCNAE3YNLp6kgGSN3uCkllLkdUGOwmppWnIp/Pc+zYMbZt28aqVauYMGGCR0YaJR988AG7d+9Oa+W6XmAnUXUpFZ2hk8aEXbt2fervz58/3510ZkZ6NFUTDb8XAhcDlwGXENVMte4mncm3cfLpdVdIKnM5IkA/kvaGdHR0sHXrVrq7uw2dpFF+Njlw4ACDg4Np/PX9wCEMnTRKDJ0kna6RBuDVQF3yGZlCN594a3spcD7Rs8mKJhXCBqLSadBdIanM5YlpLfuSh77UXsoMDAywdetWOjs7yefz9nWSRkEul2Pr1q1pNREfBo4T03uHPRoaDYZOkk7FSNBUDzQD04ipc/OIoOms5DMbaCGm1zlyVaF0AuuJxrs2EZdUCXqAvUT1Zmqh0/DwMJs3b2b//v0sXLjQvk7SKOjq6mLDhg20t7en8m1PrFp3wDGVRouhk6RPk+FEf6Y5nFhl7iJgMVHJ5HVExbYJWEe8mZOkStCfPPQdIqalp+bYsWO8++67fO5zn6OlpcUjIxXZli1b2LVrF/39/Wlde/YAxzwSGi0+LEr6OCP9mSYD5wBrgC8SU+Ymuns0igaBl4Ft2HtAUuUYIgKn94mXOKnp6upi06ZNdHV1MXnyZKfYSUWUz+fZunVrmv2cuoAtuDCLRpGhkySIkKmKqGpqICqYzgauBr4ErMBG4ErHFiJ0cmqdpIp69iSmuGwDbkxzQ/r6+ti0aROtra3MmTOHqqoqj45UJENDQ2zdupWjR48yPJxKS6UuYCv2yNQoMnSSxq4aoAmYTvRnOotYdW5R8nUeUelkI3ClpRd4mpha1+PukFRB8sSU4feJ6S51qW1IPs/27dvZtm0bixcvZty4cR4dqUgOHDjA+vXrOX48lY4Bw0A7sAObiGsUGTpJY0uW6M90FjFV7prk61yikqk6+TMGTSoFbwFPESs8OTiSVGn6gIPJZ36aG9LR0cHLL7/MZZddRmNjo1PspCLI5/O8/vrr7Ny5k4GBVDoG9AO7gVasHtcoMnSSxoYqYlW5zwG3EqX8czgRMo2MLh1lqlTsAx4G3sEqJ0mVaZBYwW4rKYdO/f39bNy4kba2NmbPnm3oJBXB0NAQmzZt4vDhw2lNresENgAdHg2NJkMnqbJkiBCpOvnUEFPkVgFfAW4GxiW/l8GQSaWpD/gd8CTRyynvLpFUic+gxApS+0rhYXjHjh1s27aNRYsWOcVOKoL9+/ezadOmtKbWQbQt2I0v8zTKDJ2k8lcF1BNLLk8HZgGzk88iYGnyqcOKJpW+YeAF4D7i7b8r1kmqVHmiv8r25GGwIc2NOXDgAM888wwXXnihU+ykQn+z5/O88sorrF+/nt7e3rTGV8eIPnI2EdeoMnSSylOGCJqmAucQfZnOI0KmFqDxpE+Nu0tl9AD2JvBT4HVczldS5esimvp2kHLo1N/fz4YNGzh69Kir2EkFNjAwwHvvvceRI0fSmlo3SPSP24X9nDTKDJ2k8pIlpsfNAy4BrgNWAtOSX68nKp98PalykwfeAH4EPEc0uXRanaRKN9LYdwcwI80NGR4eZufOnWzYsIFzzjmH5uZmj45UIDt37mTjxo10dnamtQndwBai2kkaVYZOUunKEAFSVfK9Oo5oNHoFcAMxZW4yJ4ImqVzlOBE4PUa8ifMtnKSxYBg4ALwLXEbKL40OHjzIE088wWWXXcb48eOdYicVYpCTy/H888/z3nvvpTW1bmQq71vEVF5pVBk6SaUjk3xPNgITialz04g+TXOBc4nV52YDTX7/qkL0Ai8D/wQ8TQROw+4WSWNEHmgDNhJVT/Vpbszg4CAbNmxg//79zJ8/n9raWo+QdIY6OztZv349x44dI5dL5Z3aMHA0uc4MeUQ02nxolUrj+3Ac0QD8bGK63JLk5xOJaqbJ/OGqc1Il2EcETb8GXiWm1FnhJGms6QG2EdPsFqe5Ifl8nr179/L666+zbNkypkyZYrWTdIbfUxs2bGDjxo10d6fWqrKXWJxlL7YuUEoPu5LSUQNMIhqBXwZcDCwkKpsmEQ1Fs+4mVaBe4G1iKt3jwGaima4DIUlj0SCwB1hHyqETQHt7O7/73e+47rrrmDx5sg3FpTP55h4c5Mknn2TLli309/entRkdRBuDTo+I0mDoJI2ObPKp4kTYdC5wDbAGWECETfXuKlX4g9UW4EXgCaK3wAFgwF0jaQzLEVNf3gJuJKbQp2ZoaIht27axfv16Fi1aZENx6Qzs3LmTdevW0d7enubYaz/wjuMtpcXQSSqOLBEujfRnmpR8pgNnEVPoVhEr1TRjRZMqWydR1v0G8FLydQ8xpcTpdJIU18ktxDTjprQ35uDBgzzyyCNcfPHFNhSXPqPh4WGefPJJ1q1bl1YDcYigaWSFTMdcSoWhk1Q4GSJomgjMJPoznU1UMU3jRFPwaZzozyRV5DgLOE70DthKNK58O/l6kJhKZ7NwSTqhH/gA2ADMS3tjBgcHeffdd9myZQvz5s2jsbHRIySdpgMHDvD6669z7Ngx8vnUOgh0ElVOrR4RpcWHXunMZYj+S1OBZcCFyddzgDlEE3AbgKsS5YnwqBc4RjQG308ES/uIt2o7k19rSx6qfMsmSf/WMHAIeI2Yet+Q6sU9n2f37t089NBDrFy5krPOOstqJ+k05HI5nnrqKV5//XW6urrSvK4cSK4r/R4VpcXQSads/vz57oQIjjLEdLiRsGk6cB5wBbCaCJwmEv2bpEqUB7qJSqbNRBXTNiJsaiMaVnYmf2aACJpsEi5Jn66d6Ou0nZiGn6q+vj7efPNNduzYwezZs6mrq/MISaeotbWV1157jUOHDjE8nFpxdxdR5bQFK8yVIkMn6dONBEy1RMA0jui1MIEIm5YQq84tI1aeq8WKJlWuQaLZ7TZilaUXkq+HiGqnHCcCJkMmSTo9/cAuoko09dApn8+zfft2Hn74Yc4++2zmzZtHNmsLSumPGR4e5tlnn+Xll1/m+PHjaW5KN7ApGbtJqTF0kj5ellhJbgLR7Hte8pkLzCKmzc0lptQ1YlWTKlOeqFRqI6bI7QTeJcq0NwJHgD4MmCSpIM+qRIj/DvCFZHyRqt7eXl599VU2b97MtGnT7O0knYLDhw/zwgsvsH//foaGhtLajCGiAv2dZKwmpcbQSfq33xPjiKDpXOBzyWcpETQ1YcCkyjVErCh3lAiUjgGHibBpM9EUfB8xfW4QwyZJKrTjxAqfW4kp+6nK5XJs2LCBJ598kmXLljF37lx7O0mfYnh4mFdeeYUXX3yRtra2NDelE3gzGb/ZT1OpP2BLY9nJPZrGE9VL5wGXA5cBiyiBN41SMZ8pkoHJEeJt2HpieseR5NNK9BnpIoKmgg9cdu3a5VGQpNBHBE6vUAKhE0S1029/+1uuv/56pk2bRn19vUdJ+gTHjh3jkUceYefOnWlWOZGM357HqXUqAYZOGktGAqZqovdSHSem0M0GVhFB0wVEVZMVTapk/UQV017gaeApolfTcaLiaQj7M0nSaMsRU+zeJF4IjE99g3I59u3bx3PPPceKFSuYM2eO1U7SJ3yvrF27lvXr16e5Yh3ES8J9xMIETq1T6gydNBZkiYCpCZhCBEzzk89ZyWdu8nv1yZ+XKvFBpo+YGneMaFT7PNEM/H2imsnya0lKXy+xgt16ovI6dV1dXTzyyCNceeWVtLS02NtJ+hiHDh3igQceYNu2bWlXOXUQ03QP4YtDlQBDJ1WyKk70Z1oKnA9cSqw0Nx2ocRepQuWJhrTdROVSZ/J1N9EA/C1i+dz9RA8nwyZJKh1DwAfES4ELiBdn6d5U8nn27t3Lvffey6JFi1iyZIkr2UknGRgY4OGHH+a1116ju7s7zU0ZJhqIP0+0RpBSZ+ikSlRFlKPPBy4BvgRcSaw0J1WyYaKaaSRc2gLsAQ4kn0PEHP/e5M/69kuSSk+O6MPyKtHfaWUpbFRnZydr167ljTfeYNasWUyYMMEjJSW2b9/O888/z549e9KucuoCXidWGx7wyKgUGDqp3GWIkKmaeBM4EjZdCtwMrCH6N0mVapiYu99B9AB5lGhAu4+oYjq5P5MVTZJUHnqBDcCLlEjolM/n2bFjB7/97W9ZuXIly5cvp6bGonGpq6uLZ555htdee43Ozs60N+co0avzkEdGpcLQSeV63o4jejDNARYQfZkWEqvNzSem1NkIXJUoT4RHg0RV02HgNeB3xJutvUTYJEkqXzmi/94GoufexFLYqIGBAZ599lkWL17M1KlTmTVrlk3FNaYNDw/zwgsvcO+997J3715yuVTf7400EN9CLBgjlczDu1QOskAj0fD7c8AVwMVE0DQuOZerOLFCnVQpRkKmfqJMemTVuc3AWqJR5HbizdYATpmTpErRDbxH9OG7tlQ26siRIzz11FNcffXVtLS0UF9f75HSmHXs2DGefvppNm3aRF9f6gvFtRHVkbuwul0lxNBJf9T8+fPT/OuzwCRgMdGb6SZgCRFAZZNPHoMmVZ5c8sCxk+jp8T7Rq2k38RbrIPH2e4CYYidJqiwDxEuFZ4kXbU0lcXPK5Vi3bh2PPvoo8+fPZ8GCBVRVWVyusaevr48XXniBZ555htbW1rQ3Z5BYgOCZZHwolQxDJ32iFMKmKiJEqkk+E4Bzid5MXwZmJ7/+0WomAydVkmFiHv5vk897xBSLgWRAMYQhkySNBfnk+v8K8DaxKEpJ6Onp4YEHHmDx4sV87WtfY9KkSU6z09j65szn2bhxI7/4xS94//33024eDtHb8/fElNxBj5BKiaGT/sAoB01Zosl3M7Gy3CwiWJpFTJs7F1hKhE9VWNGkytYPbAMeAx4nVp876sBBksb8vWEL0Rj4PEqk2imfz7N7924effRRVq1axfnnn09treu2aOzo6OjgiSee4I033iiF5uFDRJXTE8QqxVJJMXQa41KaOldLTJk7C1gNXEBMmZuWDKYaiT5NI1VNIz1qDJxUSXJEw++dxKpzLwDrkkHDcQybJEkxBjoKvARcT/S0LAlDQ0O8+OKL/NM//RMTJkzgnHPOobraRwtVvp6eHh566CHuvfdeDh48SD6fejvNdqLK6T2iMl4qKd4ZxpCUezMBNBCryp0HXEf0J5gJjE9+r5qPD5YMm1TuhonmjvuBHUSPjp1EwLSH6M/UmQwUbPwoSTpZP7F4xEi107hS2bD29nYefvhhFi1axLe+9S2mTp3qNDtVtHw+z5tvvskvfvELNm/ezMBA6hnPSJXT48R0XKnkGDqNASUQNtUSYdMlwC3ApcR0uibPQVW4AWLVoWeBV4npc8c4sRLdIBFIueKcJOkTn3OJaqcXiFXsSqa3Uz6f5/Dhwzz22GNccMEFXHrppa5mp4p29OhRHn/8cTZu3Ehvb28pbFI78BxRLW+Vk0qSD/wVrATCpgwwEVgF3AF8kejZNI7o5yRVqmPAa/xh2NRKhEwGTJKk09VPLIO+HlhTSuOogYEB1q5dy49+9CMmTZrE8uXLnWanitTV1cWvf/1r7r//fg4cOEAul3pxep4Ind4iGolLJck7QgUpgZDpo+fWbOBLwF1EOXgz0RBcqjRDxFvorUR/pnXEvPrdRH+mAQybJEln9nB5hFjJ7kvAolJ7GH/88cc566yzmDhxInPmzKGqyiGfKkd/fz/PP/88v/zlL9mxY0cprFYH0A28k3z6PUoqVYZOZarEAqaPqgMWA3cDXwXmANZaq1IG/f3EW6X9xFvnXcBeImDaRfRnaieahDt1TpJUKF3Ei41nicVYSqpqvK2tjSeeeILFixdz0003MWnSJPs7qSIMDw+zefNmHn74YbZu3Up/f0nkO3ngMPDbZAzqeFMly9CpzJR42ATREPw84B7gVmAKVjepAsYbyY19QzLgf4cImNqSh4De5DOAQZMkqXj3or3AU8BVxAu+kjE0NMS6deu49957mTdvHhdffLH9nVT28vk8R48e5dFHH+Wpp57iyJEjpbBaHcn4cy3wIvGiUypZhk5loBhB065du4qxHY3AauAvicBpEq48p/LWS4RLbxG9mV4nVp/rIKbU5U/6SJJUbN3Ey48niSl2JfVir6+vj+eff565c+cyadIklixZQm1trUdNZaujo4MnnniC++67j927d5dCHyeIlY4PAA8TQbTjUJU0Q6cSVQYVTR9VB6wkAqfbgQkYOKn85Ii3RQeI5t+biP5M64E9RH+mQXeTJCnlh82niFXsPldqG9je3s79999PdXU1f/VXf8XZZ59tfyeVpd7eXn7729/ygx/8gM2bNzM4WDJDwONEhdMrQJ9HSqXO0CllZRgufZwq4GzgG0SFk4GTymXg3kdMkdtH9Gg6mHzdmXz2ESvRjfRnkiQp9WdhovL2p8DfArNKbQMPHDjAk08+ybx58/j617/O9OnTyWZduFjlY2hoiFdffZUHHniA9957j56enlL8/j+AVU4qA4ZOKamQsAkiXJoB3EI0DXdKnUpZnqhU2g9sB94gqpn2E82/24FOYp58P/ZnkiSVnhzRZ/Ap4Hxi4ZaSGnvlcjm2bt3KD3/4Q2bOnMkNN9xAc3OzwZPKwtDQEDt27ODHP/4xzzzzDO3t7aU0jj0MPAC8jSvWqUwYOo2iCgqaTjYeuAK4gwifDJxUqgP040Q/pveA54m3RHuJN0bDyZ/JYcgkSSp9g0TPwd8BlwELS24DBwfZunUr3//+96mvr+e6666jqanJFe1U0vL5PDt37uQf/uEfeOaZZ2htbS2VxuEQPd3eIFaw7PJoqVwYOhVZhQZNI2qIlVO+TPQUcMK+SmbMQDT6Pk5MmdtFVDS9SvRo2k9MmTNgkiSVqy7iBcoTRE/NkhuHDQ0N8dprr/F3f/d3TJkyhYsuuoja2lqDJ5Ws9vZ2fvKTn3Dfffdx6NChUgqc8smY9oFkXOsYVmXD0KmAKjxg+jgtwLXJxzVxlaZhoj9TK3AEOJp8dgNbiMBpT/L7/d6oJUkVcu/bCzwOrCEWdCk5PT09rF27lh//+MeMGzeO5cuXu6KdSlJ7ezu//vWvefDBB9m7dy/DwyXVzvM48ALRQLzXo6VyYuhUAGMwbIJYrW458HlgumeBUpBLbrpHiVDpPeB9ooppJHRqJ3o0DWAjcElS5ekB3gF+S1Sf15XkRvb08Oijj1JXV8df/dVfsWzZMmpqajx6KhkdHR3ce++9/PCHP2THjh0MDQ2V0uYNEy9S78fm4SpDhk5nYIyGTSMmEz0ELsFpdRpdA0TF0j7gZeBpInA6yonm3yMNwL0pS5Iq2ciUm4eBs4CvUaL9NY8cOcJvfvMbqqur+d73vseSJUsMnlQSOjs7efDBB/nRj37Ee++9R19fX6lt4n7gH4nptDYPV9kxdNJnPW8WEYHTBHeHiixHBE3HibBpN9Gb6fdEhdPR5PclSRqL+oENwH3AKmBJKW5kPp/nyJEj3HfffdTX1/Otb32LJUuWUFdX5xFUalpbW3n88cf54Q9/yLp16+jtLbmZa53ElLqHkzGvVJbhgXS6xieDmvMA175VoQ0T0+aOn/Q5AGwmphBsJHpYHCeahUuSNJblk3viG8BjxEp2JVlClM/nOXjwIL/85S85duwYf/M3f8OKFSuseFIqOjs7+Zd/+Rd+/vOf8+6775Zi4JQjKvt/Q/QmddyrsmTopNOVAaYSzSrt5aRC3lT7gMPE29rNwAfElIEDwCHgGNG7YjD585Ik6cR99ADRVPwK4MJS3dB8Ps/evXt54oknaGlp4Z577mHx4sUGTxpVHR0dPPbYY9x7772sW7eOnp6eUtzMduAZ4JVknCyVJUMnfZZzZj6w1PNHBRggDxJlw9uIJqjPEc3AO4mKp5GAyZBJkqRP1we8CfwAmES0QihZ+/fv5+c//zl9fX1897vfZenSpdTU1JDJZDySKpp8Pk9HRwcPPvggP/jBD3j77bdLNXDqIlpJ/IR4KSuVdYAgnY4GolHlWe4Kne59PvkMEv0n2oF3ibeyLwA7ibDJ5t+SJH22++wxojLiXODPgJZSfvg/ePAg//qv/8rg4CDf+973WLZsGbW1tQZPKto5197ezn333ccPf/jDUp1SRzJO3gj8ilgsZ9Cjp3Jm6KTT1QQsAKa5K3QKcsmNc4ATQdN2ou/Ea0Qj8INEDyfDJkmSzvy+uw94EJgN3FnqIcBIc/HBwUG+853vsGrVKhobG8lmbRuqwhkaGvpwBcV//Md/ZMOGDaUaOAEcAX4NvITT6lQBDJ10OjJAMzADqHV36FMMED2ZthIh0+7ks5dY9rUtuYnaEFGSpMLqIyqJHyZWGp5fyhubz+c5evQov/zlL9m5cyf/6T/9J66++mqam5sNnlQQQ0ND7Ny5k+9///vcd9997N27l6Ghkh2CdgOvE20nDnr0VAkMnXQ6ssBEopG4dc/6OL3EyjkPEtVMR5LB7wARMOWwokmSpGLKAx3E1PUfA/+Z6PFU0np6eli7di3/5b/8FwYGBrjqqquYMmUKVVVVHlF99oFpby/bt2/nxz/+Mffffz/79u0r5cBpgAiMv0+0nXBanSqCodMZ2LVr11j7J2eJSqdJHn19xH4ibHoIeId4MzPgbpEkKRUj0+weIVYcvpUyqFLv6enhhRde4NChQ3z3u9/ly1/+MvPnz7fBuE5bPp/n+PHjvP766/z93/89zz77LG1tbeTzJfvuczgZT99HrFbX61FUpTB00unIAo1EXyeNbYPEVLm3geeJ1XK2ET2bRiqaJElSeoaIFWH/FZgOXEEZVKoPDQ2xbds2fvSjH7F3717+/M//nMWLF1NXV2fwpFMyPDxMZ2cnDzzwAPfeey+vvvpqqQdOEK0nHgZ+RyysI1UMQyedjgxQn3w0NuSSG99BokfTdqLcdwfRo2k/cJxoEm5/JkmSSksn8DKxAMwUYGk5bPTg4CCbNm2ivb2dwcFB7rzzTpYvX05zc7PT7fSp+vv7OXjwIE8++SQ//elPefvtt+nu7i71zT4OPEsExNvz+XzegFWVxNBJpyMDVCUfVbYhogn4c8lgdSNwGOjhRMBkRZMkSaUtBxwCniYWgvlu8rX0NzyXY9++ffzTP/0Te/bs4Wtf+xpXXnklM2fOpLraRxj9W11dXWzYsIGHHnqI+++/nx07dtDf31/qm90HrAN+AazP5/P9HklVGq/YOl15bARdyY4D64mw6SVgUzJY7fO4S5JUloaAXUR/p9nAXUS7hLLQ0dHB448/zsGDB9m2bRtf+cpXWLx4MbW1tU63Uzyc5PO0tbXx5JNP8vDDD/Pss89y6NAhhoeHy+F7cyfwS6KP03GPpiqRoZNO65pO9PKxQXRlDUQ7iOly64C3gPeSn7cRYZPVTJIklbdeomr518As4AtEr87y2PjeXt544w3ef/99tm/fzl/+5V+yfPlyJkyYYNXTGNfT08OxY8e49957+ed//me2bdtGd3d3qfdvGnmuOgL8BngcOJovg42WPguv0jodOWJ6Vbe7ouzkOREwHSTeeO4C9iSfkf5MrcnxHcTKJkmSKkkX8AZRVTEdWF1OGz80NMSRI0d44IEHOHDgAF/+8pe58cYbOeuss1zdbiwObJPV6V566SUefvhhnnjiCXbv3s3QUNm0GO0AniRCp935fH7Yo6pKZeik0zHSVNrSzzK6JyfHayOx0tzrRBnvSH+mHuLtZz+xVKtVTZIkVe6Y4BjRsHgW0Vh8Trn9I7q6unjxxRfZsmULW7du5Z577mHJkiU0NTXZZHyM6Ovro62tjUcffZSf/vSnvPfeexw/fpxcrmyGsT3JmPwXwMZ8Pj/oUVUlM3TS6cgRqfxRd0XJGyQqmt4BXgNeBTYng80BTvTmsppJkqQxIp/P5zKZzD7gXuJl03eAxeX27+jv72ffvn388pe/ZN++fdxyyy1ce+21zJ49215PlfwgksvR1dXF22+/zaOPPsqjjz7K+++/Xw7Nwk/WCTwD/APwaj6f7/PIqtIZOum0xipE6HSImKrl+VNC92GiWukI0Y9pI9Gb6R2isqmNE2GTJEkaq4O5fH4ok8nsAB4AJgJ/CbSU4b+DtrY2HnvsMd577z02b97MrbfeyuLFi2lpaaGmpsaDXUG6uro4cOAAL774Ir/4xS944403yq26iWSsvgH4KfBCPp/v9MhqLDA00Gnd34l0fh8RPrW4S1I7DgPJMThA9GI6kHx2EaHTbiKA6iLeZBo2SZKkGEhE8LQLeAiYD3wVKMuUZnBwkJ07d/L973+fV199lS9+8YvcfvvtLFy4kMbGRrLZrAe8jA0MDHD8+HGeeeYZHnnkEZ577jkOHjzI4GDZzUjLJWP2XxIrRHd5dDVWGDrpdPUQocZeDJ3SuFkdBD7gxCpze4gpcx1E76ZO4i2KjcAlSdInyufzfZlMZj3w90QF+1eBhjL9t9DV1cUrr7zC9u3b2bJlC1/+8pe56KKLmDNnDnV1dU65K7dBby5HW1sbmzdv5umnn+bBBx9k8+bN9PT0lOM/Zzh5fvpvROPwY65Up7HE0EmnayC5aG4BVrk7RkUXUcG0GXiB6M/0PrHK3BARRuUwZJIkSachn893ZTKZt4CfATOA64GyTWdyuRyHDh3ivvvu46233uKyyy7jzjvvZNWqVUyePNl+T2VgeHiYnp4e9u7dy0MPPcSTTz7JunXraG1tLbepdCc7CvwauB/Yl8/nXbhHY4qhk077XkBM49pAVNY0u0uKso+7iBXm9gBbgbXAm8nPO5M/I0mSdKa6iZW0/o6olL4BKOs5af39/WzZsoV9+/bx2muvceutt3LdddexdOnSD8Mnp92V2OB3eJju7m727NnD66+/zr333svbb7/NkSNHynEq3Yg8MUvhx8A/A/sNnDQWGTrps2gnGlRvAi5xd5zRjSiXDPBGGrQfI96G7AW2Jfv4A6I/U2/y5yVJkgozGMnn85lMpp3oM9MMzAZWAFVl/u+is7OTjRs3snv3bh544AFuvvlmbrjhBpYsWcK0adOoqamx8illuVyOzs5O9u7dyyuvvMJvfvMb3nnnHY4ePVrOYdPIOL8NeJzo4/R+Pp8f8ohrLDJ00mcxQIQhbwDnU6aNJ1O+CfUR4d37wDpiuuJ+InA6CrQSlWT92AhckiQVc2ASwVMHsZR7PfBXyRivqgL+bXR2drJ161b27t3LCy+8wJo1a7j11ltZtGgRLS0t1NfXGz6NsuHhYTo6Ojh69ChPP/00zzzzDGvXruXw4cP09/eX+z8vl4zlHwK+D2wzcNJYlrGHmU7V/PnzT/7peODLwP8eWO3eOSWDRJB0gKgUe4oI7g4QVUzDycf+TBpTdu3a5U6QVPmD7hIINf7YuD+TyWSBKcAXgb8GLqLCXlJns1kaGho455xzuPjii7n11ltZunQp06ZNo7GxkUwmYwBVxPNvaGiItrY2Dh06xO9+9zuee+453n77bY4dO8bAwEAl/DNzxAyFB4B/ADbk8/n+Ur9emAmoqPc/TzCdqo+ETlngHOC/A/4CaHQP/dvrNxE0dRHltfuAt4HnieqmA0TFk9+EGtMMnSSNiUF3GYROyXZmiRWKrwf+hgoMniDCp9raWubPn895553HrbfeyurVq5k+fTrjx4+nurra8KlAcrkc/f39tLa28sEHH/Db3/6Wl156iY0bN9LW1sbQUMUUAeWIVhn3ERVOG/P5/EA5XC/MBFTU+58nmE7VR0IniKDpWuB/AK4aw7smT6z0kiOmw3USU+c6iTcd24B3gfeI/kxtxBRFv/kkDJ0kjZFBd5mETsm2ZoHJRFPxvwEuoAKm2n3ScampqWHmzJksXryYm266iUsuuYRZs2bR0tJCQ0MD2WzWAOoznGuDg4MfTqHbunUrjz76KG+88QY7d+6kq6urksKmkeeBVmKFuv/KGQROaVwvzARU1OusJ5hO1ceETllgJvBNouJp3li8pxIBUgcRKm0CdhJVTAeI5uBHiGqnforQCNwHdkmSymDQXUahU7K9I1Ptbgb+I/A5ynxVuz+murqaiRMnMm/ePFasWMENN9zAypUraWlpYeLEidTV1Tn97o+cX8PDw3R2dtLR0cGePXt46qmnePXVV9m+fTsHDx6kr6+PXK7i1sXJEy+cHyZWgXzvs0ypS/N6YSagot7/PMF0qj4mdIJoIr6cCJ3+lGg+ORYMAj3EMqiPJZ/NRPg0QPRmGkpuQkX9JjN0kiSpDAbdZRY6JducBaYSPZ6+Adw4Fo5VNpulpqaG6dOns3DhQlatWsV1113H4sWLmTBhAhMmTDCAOumcGh4epquri87OTg4ePMiLL77Iq6++ypYtW9i1a1clVjV91AHgn4kqp7fOpMIpreuFmYCKev/zBNOp+oTQCWAcsAb4T8CXqLzy65HgaIgIlLqIVeceJ5qBbyWmzKXy2sbQSZKkMhh0l2HolGx3FpgIXJ6M9dYADWPluFVVVVFfX8/MmTM555xzWL58OWvWrGHx4sVMnDiRcePG0djYOKZ6QOVyOfr6+ujp6aG7u5sDBw6wdu1a3nrrLTZv3syOHTs4fvw4Q0NDlVjVdLJhomfrr4im4XvOtMIpreuFmYCKev/zBNOp+pTQKZMMRr5AzPtfk/xaORuZNjdATIvrJvoxvQ28TEyl25v8eqp3U0MnSZLKYNBdpqFTsu0ZYBJwCVHx9HWi2n1Mqa6upr6+ngkTJrB48WKWL1/O8uXLWblyJbNmzaKpqYmGhgbq6+upqqqqmBAqn8/T39//YdDU0dHB5s2bWb9+PRs3bmT9+vUcPHiQnp4e+vv7x0qAkUueDf4rMeNhWz6fHyrX64WZgIp67XQXqBDXKWIe8/NAHRE4XU55Bk9DwH5gO9EAfFfy2ZP8+hGgl5heJ0mSVPkDvXw+n8lk2oEXiYrvGmLK3eSxtB+Ghobo6uqiq6uLAwcO8Oqrr9LU1MTUqVNZunQpS5cuZfHixSxZsoTJkyd/GELV1tZSW1tbFg3J8/k8Q0ND9Pf309/fT09PD11dXXzwwQds3bqVLVu2sH79evbs2UN7ezs9PT0MDQ2NtdCiP3lO+BnwS+BwIQMnqdJY6aRT9imVTiOywDSi4unfAZdSPsHmAPAS8CBRybSfWH1uMPkMU6KrzVnpJElSGQy6y7jS6SP/jiaiqfhtwO3AYo9thqqqKmpqapgwYQJTp05l5syZLF++nEWLFjF//nzmzJnD+PHjqa+vp76+nrq6Oqqrq6mpqSGbzY7qOZLP5z/sxTQ4OMjg4CC9vb0MDAzQ19fHoUOH2LNnDzt37mTDhg3s2rWLQ4cOcezYMXp7exkaGmJ4eHisHu5OInz9V+BZYkpdrtyvF2YCKuo10hNMp+oUQieI4KkFuAL4DnA9pd1c/AjwArHaxFqioqmbEg2YPo6hkyRJ5RFMpK1Q4/5MJlMPLABuJVorzPEI/+Gxrqqq+nA63sSJE2lpaWHatGnMmDGDs88+m9mzZzNt2jSmTZtGU1MTNTU1HwZR1dXVVFVVffgZqZD6aKXUyI9HjutImJTP58nlcuRyuQ8DouHhYYaGhhgcHPwwXGpra+Pw4cMcPHiQ7du3s2/fPg4dOsTRo0c5duwY3d3dDAwMfPjfix4icPr/Am8Cbfl8frgSrhdmAiomp9ep0HLAUSL5byOmpt0CzCuR7RsCDgPricqmtcSqc0eBPlLuzyRJklTq8vl8XyaT2Q78hphq9zVgJfHy0f2TTFEbGhqir6+P9vZ2du3a9WGINBIwNTc309TURHNzMxMnTmTatGlMnjyZCRMmMH78eCZOnEhTU9OHlVEjodRIv6iTQ6dcLsfw8DADAwP09/czMDBAT08P7e3tHD9+nI6ODjo6Ojhy5Aitra10dHTQ2dlJR0cHvb299Pf3fxhQVXjz7890SIlWIk8Bv0ieIbrzJjXSKbHSSafsFCudPjy3iJVNFgCfB/6EmG43Wqud5Im3EYeB3cS86x3ATiII2w+0EkFTWfdnstJJkqQyGHRXUKXTSf+mGmA2cC1wJ3Al0OjRPv1zY6SiKZvNfhhO1dbW/kHlU01NzYe/d/I5NRISnVzNNPLjkyuVRj4jIZXPgadkiFg86EEiZH0nn88fr7TrheeCislKJxXt2kWEPtuAY8CmZEByI/EmrFgrngwBB4gpc78H3kl+3kU0/RtM/oyvcCRJks7sQXUwk8nsIdoUHErGXDcAM9w7p/fAPzR06n2oM5nMhyHByT9WwfURK1b/GvgtsD2fz/e5W6TTY+ikYhskqo06gPeJJt2XA1cT4dOEAv09vcSKc88TgdM6YB8RfBkwSZIkFUE+nx/OZDJHk/HXMaKa/A5gqXunaPv8Y3+swu1iomH480Tg9DxwIJ/Pu3q19BkYOmm0Ltx9RJPuw8C7wOPACuB8YgWUhcDE0zgnc0TD793J/+/t5Ou25O/oJVackyRJUjEHepF8HM9kMuuIF40Hiel2FwO17iGVkeHkWeJR4F6K3DBcGgsMnTSackQYtC+5mL8HPAHMAuYSzcZnEyXZk4EmoI7oDzVIhExtRPn2fiLE2k3Msz5GvJEYwMomSZKkf2MU+sSMVJ4fT8Z6dxK9PSe591UGBpLz936ih9Om5PkjXwo92aRyZeikNOSTi/oA8TZsN/AW0WR8HNGAsoEInKqJ0GmY6MnUl1z8u5Mfj/RpyicfSZIkpWeQ6O30BLGAy7vAt4H57hqVsG5iVbofAG8k53C/u0U6c4ZOSlsu+YxUMh0jQqaTPyNGgqUcBkySJEmlPL5rI9ofHCJeMN4EXANMcfeohPQDW4FHiPYfbybPJD5rSAWSsfmcJEmSVORB99idnlNFLBzzOeA24BZgkWeESkAX8BrRLPwponXHmKxuMhNQUe9/nmCSJElSkQfdY7snTIZonTCX6PH0F8AqoMYzQynIEbMrHgP+EdgAtAJDY3WHmAmoqDcATzBJkiSpyINuGxFDVD21AJcAX0w+i90tGiV5YuGhV4nA6TlgM9EndmzvGDMBFfP+5wkmSZIkFXnQbej04a4gqp7mABcBtxLT7urcNSqiYWAX8FPgWSJsamMMVzedzExAxWQjcUmSJEmj9nwL9ADvA4eTIGAP8CVgKVENJRXyfGsnVqZ7CHgSV6aTRpWVTpIkSVKxB91WOn3sbgHqgZnABcR0u2uBhe4aFUAXsRrd74DngS1AB1H1pJOYCaioF3pPMEmSJKnIg25Dp0+TBRqBecDFRNXTVcAsd40+g16iOfjjxFS6DUTj8EF3zcczE1BR73+eYJIkSVKRB92GTqeiChhPVDpdC/wZsAyn3OnU5IipdE8D/wysAw4BA8Q0O30CMwEV9f7nCSZJkiQVedBt6HQ6aoDpwKXAdUQAdTZRESV91MiqdK8RPZueB94jeof5sHsqO9BMQMW8/3mCSZIkSUUedBs6na6RKXdziH5P1wFXA2cRvaCkPNG36W2iuun3wCagFafSnd6ONBNQMe9/nmCSJElSkQfdhk6fVRUwjuj3dBGwBjgXWJ38usaeIWIFuteAjcALydejOJXuMzETUFHvf55gkiRJUpEH3YZOZ2qk39NMIoC6ErgGWAU0uXvGhCHgIBEyPUesTHcEOAz0Y9j0mZkJqKj3P08wSZIkqciDbkOnQqkiej5NI5qMX4HhU6UbBPYDLxH9mt4APgCOE83Dc+6iM2MmoKLe/zzBJEmSpCIPug2dCi0L1AFTgaXA5cBVxLS7ie6eijAI7CbCpheIyqZdRNg05O4pHDMBFfX+5wkmSZIkFXnQbehULFmgFpjCiV5Pi4mV7xYTwZTKxzDQBrxF9GzaDrxDhE+dGDYVhZmAinr/8wSTJEmSijzoNnQq+i4mAqbxRAC1ggieLgeWJ7+u0jXIiebgLxNVTTuIqqYeDJuKykxARb04e4JJkiRJRR50GzqNpiqggej7dHbyOQ+4kKh+anQXlYQhYsW5t4k+TRuIoGkX0E4EUT6sjgIzARX1/ucJJkmSJBV50G3olIYs0XS8kVj1bgkRPK0CFgCLgHp306gaBlqBzUTA9AawLvlxKxFEDWHYNKrMBFTU+58nmCRJklTkQbehU9qqiIBpEhFALSCqny4gGpFPwtXvimUQ6CBWoHubmDq3Mfn5IaALq5pSZSagot7/PMEkSZKkIg+6DZ1Kycj0u0nALGAhMe3uc8BKYC7RH8qD9tnkiYqmDmAr0Qj8PeB9oiH4EaIp+CCQc3eVwAEzE1Ax73+eYJIkSVKRB92GTiV5WIgpePXABKIH1AKiB9S5RDPys4gm5A3urk81TFQsHQU2Ef2ZthLT5vYSU+e6iKlzBk0lxkxARb3QeoJJkiRJRR50GzqV/CHiRA+oJmAyMBuYTwRPZwMzkq/TiUqosWyYqFbaBewEDgJbkp/vJqbNHQd6sUdTyTMTUFEvrp5gkiRJUpEH3YZOZXfIgGoiXJpAhFAtxNS7kZ5Qi5KvM4hqqdoK3RfDQD8RIu0lpsntJMKl/cmnFWgDejgxbc4HzTJhJqCiXkw9wSRJkqQiD7oNncr68BFVUFVECDUyHW8KEUDNOunTAswhgqgJROVUTZn8O3NEVVIv0XdpHxEoHSPCpgPJzw8TAVMnEUYNEsGUD5ZlykxARb2AeoJJkiRJRR50GzpVmmzyqSZCqHFAMzE1bxIwlegRNRmYmPx4WvJ745M/O46ojsoyOk3LR0KlPiIwOp58PZJ8jhLNv48QwdLIz7uSPzdSxTSMlUwVxUxARb3/eYJJkiRJRR50GzqNBdmTPjWcqIpqIAKmkbCpKflMPOnndcnvj0v+fG3y39Yn/6+qkz4ny3EiTBoGBohKpf7k002ERj1E2HScCJKOJ793cvjUk/w3vcn/Z6QXkwFThTMTUFHvf55gkiRJUpEH3YZOY1n2pK8nh0c1RLhUc9KP6076eXXya9X8YaA1cjLlOREK5YjQaTD5DCWffiJsGvm1gZP+zMh/M3zS/8uHwzHITEDFVO0ukCRJkqSiyZ30dehjfj9z0tfMR34t+5Gfn/zjk5OC/ElfP/rj/Mf8eUkaFYZOkiRJkpQeQyFJFSvrLpAkSZIkSVKh2dNJkiRJkiRJBWelkyRJkiRJkgrO0EmSJEmSJEkFZ+gkSZIkSZKkgjN0kiRJkiRJUsEZOkmSJEmSJKngDJ0kSZIkSZJUcIZOkiRJkiRJKjhDJ0mSJEmSJBWcoZMkSZIkSZIKztBJkiRJkiRJBWfoJEmSJEmSpIIzdJIkSZIkSVLBGTpJkiRJkiSp4AydJEmSJEmSVHCGTpIkSZIkSSo4QydJkiRJkiQVnKGTJEmSJEmSCs7QSZIkSZIkSQVn6CRJkiRJkqSCM3SSJEmSJElSwRk6SZIkSZIkqeAMnSRJkiRJklRwhk6SJEmSJEkqOEMnSZIkSZIkFZyhkyRJkiRJkgrO0EmSJEmSJEkFZ+gkSZIkSZKkgjN0kiRJkiRJUsEZOkmSJEmSJKngDJ0kSZIkSZJUcIZOkiRJkiRJKjhDJ0mSJEmSJBWcoZMkSZIkSZIKztBJkiRJkiRJBWfoJEmSJEmSpIIzdJIkSZIkSVLBGTpJkiRJkiSp4AydJEmSJEmSVHCGTpIkSZIkSSo4QydJkiRJkiQVnKGTJEmSJEmSCs7QSZIkSZIkSQVn6CRJkiRJkqSCM3SSJEmSJElSwRk6SZIkSZIkqeAMnSRJkiRJklRwhk6SJEmSJEkqOEMnSZIkSZIkFZyhkyRJkiRJkgrO0EmSJEmSJEkFZ+gkSZIkSZKkgjN0kiRJkiRJUsEZOkmSJEmSJKngDJ0kSZIkSZJUcIZOkiRJkiRJKjhDJ0mSJEmSJBWcoZMkSZIkSZIKztBJkiRJkiRJBWfoJEmSJEmSpIIzdJIkSZIkSVLBGTpJkiRJkiSp4AydJEmSJEmSVHCGTpIkSZIkSSo4QydJkiRJkiQVnKGTJEmSJEmSCs7QSZIkSZIkSQVn6CRJkiRJkqSCM3SSJEmSJElSwRk6SZIkSZIkqeAMnSRJkiRJklRwhk6SJEmSJEkqOEMnSZIkSZIkFZyhkyRJkiRJkgrO0EmSJEmSJEkFZ+gkSZIkSZKkgjN0kiRJkiRJUsEZOkmSJEmSJKngDJ0kSZIkSZJUcIZOkiRJkiRJKjhDJ0mSJEmSJBWcoZMkSZIkSZIKztBJkiRJkiRJBWfoJEmSJEmSpIIzdJIkSZIkSVLBGTpJkiRJkiSp4AydJEmSJEmSVHCGTpIkSZIkSSo4QydJkiRJkiQVnKGTJEmSJEmSCs7QSZIkSZIkSQVn6CRJkiRJkqSCM3SSJEmSJElSwRk6SZIkSZIkqeAMnSRJkiRJklRwhk6SJEmSJEkqOEMnSZIkSZIkFZyhkyRJkiRJkgrO0EmSJEmSJEkFZ+gkSZIkSZKkgjN0kiRJkiRJUsEZOkmSJEmSJKngDJ0kSZIkSZJUcIZOkiRJkiRJKjhDJ0mSJEmSJBWcoZMkSZIkSZIKztBJkiRJkiRJBWfoJEmSJEmSpIIzdJIkSZIkSVLBGTpJkiRJkiSp4AydJEmSJEmSVHCGTpIkSZIkSSo4QydJkiRJkiQVnKGTJEmSJEmSCs7QSZIkSZIkSQVn6CRJkiRJkqSCM3SSJEmSJElSwRk6SZIkSZIkqeAMnSRJkiRJklRwhk6SJEmSJEkqOEMnSZIkSZIkFZyhkyRJkiRJkgrO0EmSJEmSJEkFZ+gkSZIkSZKkgjN0kiRJkiRJUsEZOkmSJEmSJKngDJ0kSZIkSZJUcIZOkiRJkiRJKjhDJ0mSJEmSJBWcoZMkSZIkSZIKztBJkiRJkiRJBWfoJEmSJEmSpIIzdJIkSZIkSVLBGTpJkiRJkiSp4AydJEmSJEmSVHCGTpIkSZIkSSo4QydJkiRJkiQVnKGTJEmSJEmSCs7QSZIkSZIkSQVn6CRJkiRJkqSCM3SSJEmSJElSwRk6SZIkSZIkqeAMnSRJkiRJklRwhk6SJEmSJEkqOEMnSZIkSZIkFZyhkyRJkiRJkgrO0EmSJEmSJEkFZ+gkSZIkSZKkgjN0kiRJkiRJUsEZOkmSJEmSJKngDJ0kSZIkSZJUcIZOkiRJkiRJ+v+z9y+/tmzrlh/Uvt5jjDnX3vckmdd58+YD2QnYGEGm7TRIttMYsC0MmDSyLAq2wUIyAokSBST+FqAEQogCFVOhhhHCQq6gtHhJPIRkkFN2JjbOm3nOXmuO6L1R+L7+iBgxxhxz7bHP2Y/20113nz1HjHj06BF79Tbb176nI9FJCCGEEEIIIYQQQjwdiU5CCCGEEEIIIYQQ4ulIdBJCCCGEEEIIIYQQT0eikxBCCCGEEEIIIYR4OhKdhBBCCCGEEEIIIcTTkegkhBBCCCGEEEIIIZ6ORCchhBBCCCGEEEII8XQkOgkhhBBCCCGEEEKIpyPRSQghhBBCCCGEEEI8HYlOQgghhBBCCCGEEOLpSHQSQgghhBBCCCGEEE9HopMQQgghhBBCCCGEeDoSnYQQQgghhBBCCCHE05HoJIQQQgghhBBCCCGejkQnIYQQQgghhBBCCPF0JDoJIYQQQgghhBBCiKcj0UkIIYQQQgghhBBCPB2JTkIIIYQQQgghhBDi6Uh0EkIIIYQQQgghhBBPR6KTEEIIIYQQQgghhHg6Ep2EEEIIIYQQQgghxNOR6CSEEEIIIYQQQgghno5EJyGEEEIIIYQQQgjxdCQ6CSGEEEIIIYQQQoinI9FJCCGEEEIIIYQQQjwdiU5CCCGEEEIIIYQQ4ulIdBJCCCGEEEIIIYQQT0eikxBCCCGEEEIIIYR4OhKdhBBCCCGEEEIIIcTTkegkhBBCCCGEEEIIIZ6ORCchhBBCCCGEEEII8XQkOgkhhBBCCCGEEEKIpyPRSQghhBBCCCGEEEI8HYlOQgghhBBCCCGEEOLpSHQSQgghhBBCCCGEEE9HopMQQgghhBBCCCGEeDoSnYQQQgghhBBCCCHE05HoJIQQQgghhBBCCCGejkQnIYQQQgghhBBCCPF0JDoJIYQQQgghhBBCiKcj0UkIIYQQQgghhBBCPB2JTkIIIYQQQgghhBDi6Uh0EkIIIYQQQgghhBBPR6KTEEIIIYQQQgghhHg6Ep2EEEIIIYQQQgghxNOR6CSEEEIIIYQQQgghno5EJyGEEEIIIYQQQgjxdCQ6CSGEEEIIIYQQQoinI9FJCCGEEEIIIYQQQjwdiU5CCCGEEEIIIYQQ4ulIdBJCCCGEEEIIIYQQT0eikxBCCCGEEEIIIYR4OhKdhBBCCCGEEEIIIcTTkegkhBBCCCGEEEIIIZ6ORCchhBBCCCGEEEII8XQkOgkhhBBCCCGEEEKIpyPRSQghhBBCCCGEEEI8HYlOQgghhBBCCCGEEOLpSHQSQgghhBBCCCGEEE9HopMQQgghhBBCCCGEeDoSnYQQQgghhBBCCCHE05HoJIQQQgghhBBCCCGejkQnIYQQQgghhBBCCPF0JDoJIYQQQgghhBBCiKcj0UkIIYQQQgghhBBCPB2JTkIIIYQQQgghhBDi6Uh0EkIIIYQQQgghhBBPR6KTEEIIIYQQQgghhHg6Ep2EEEIIIYQQQgghxNOR6CSEEEIIIYQQQgghno5EJyGEEEIIIYQQQgjxdCQ6CSGEEEIIIYQQQoinI9FJCCGEEEIIIYQQQjwdiU5CCCGEEEIIIYQQ4ulIdBJCCCGEEEIIIYQQT0eikxBCCCGEEEIIIYR4OhKdhBBCCCGEEEIIIcTTkegkhBBCCCGEEEIIIZ6ORCchhBBCCCGEEEII8XQkOgkhhBBCCCGEEEKIpyPRSQghhBBCCCGEEEI8HYlOQgghhBBCCCGEEOLpSHQSQgghhBBCCCGEEE9HopMQQgghhBBCCCGEeDoSnYQQQgghhBBCCCHE05HoJIQQQgghhBBCCCGejkQnIYQQQgghhBBCCPF0JDoJIYQQQgghhBBCiKcj0UkIIYQQQgghhBBCPB2JTkIIIYQQQgghhBDi6Uh0EkIIIYQQQgghhBBPR6KTEEIIIYQQQgghhHg6Ep2EEEIIIYQQQgghxNOR6CSEEEIIIYQQQgghno5EJyGEEEIIIYQQQgjxdCQ6CSGEEEIIIYQQQoinI9FJCCGEEEIIIYQQQjwdiU5CCCGEEEIIIYQQ4ulIdBJCCCGEEEIIIYQQT0eikxBCCCGEEEIIIYR4OhKdhBBCCCGEEEIIIcTTkegkhBBCCCGEEEIIIZ6ORCchhBBCCCGEEEII8XQkOgkhhBBCCCGEEEKIpyPRSQghhBBCCCGEEEI8HYlOQgghhBBCCCGEEOLpSHQSQgghhBBCCCGEEE9HopMQQgghhBBCCCGEeDoSnYQQQgghhBBCCCHE05HoJIQQQgghhBBCCCGejkQnIYQQQgghhBBCCPF0JDoJIYQQQgghhBBCiKcj0UkIIYQQQgghhBBCPB2JTkIIIYQQQgghhBDi6Uh0EkIIIYQQQgghhBBPR6KTEEIIIYQQQgghhHg6Ep2EEEIIIYQQQgghxNOR6CSEEEIIIYQQQgghno5EJyGEEEIIIYQQQgjxdCQ6CSGEEEIIIYQQQoinI9FJCCGEEEIIIYQQQjwdiU5CCCGEEEIIIYQQ4ulIdBJCCCGEEEIIIYQQT0eikxBCCCGEEEIIIYR4OhKdhBBCCCGEEEIIIcTTkegkhBBCCCGEEEIIIZ6ORCchhBBCCCGEEEII8XQkOgkhhBBCCCGEEEKIpyPRSQghhBBCCCGEEEI8HYlOQgghhBBCCCGEEOLpSHQSQgghhBBCCCGEEE9HopMQQgghhBBCCCGEeDoSnYQQQgghhBBCCCHE05HoJIQQQgghhBBCCCGejkQnIYQQQgghhBBCCPF0JDoJIYQQQgghhBBCiKcj0UkIIYQQQgghhBBCPB2JTkIIIYQQQgghhBDi6Uh0EkIIIYQQQgghhBBPR6KTEEIIIYQQQgghhHg6Ep2EEEIIIYQQQgghxNOR6CSEEEIIIYQQQgghno5EJyGEEEIIIYQQQgjxdCQ6CSGEEEIIIYQQQoinI9FJCCGEEEIIIYQQQjwdiU5CCCGEEEIIIYQQ4ulIdBJCCCGEEEIIIYQQT0eikxBCCCGEEEIIIYR4OhKdhBBCCCGEEEIIIcTTkegkhBBCCCGEEEIIIZ6ORCchhBBCCCGEEEII8XQkOgkhhBBCCCGEEEKIpyPRSQghhBBCCCGEEEI8HYlOQgghhBBCCCGEEOLpSHQSQgghhBBCCCGEEE9HopMQQgghhBBCCCGEeDoSnYQQQgghhBBCCCHE05HoJIQQQgghhBBCCCGejkQnIYQQQgghhBBCCPF0JDoJIYQQQgghhBBCiKcj0UkIIYQQQgghhBBCPB2JTkIIIYQQQgghhBDi6Uh0EkIIIYQQQgghhBBPR6KTEEIIIYQQQgghhHg6Ep2EEEIIIYQQQgghxNOR6CSEEEIIIYQQQgghno5EJyGEEEIIIYQQQgjxdCQ6CSGEEEIIIYQQQoinI9FJCCGEEEIIIYQQQjwdiU5CCCGEEEIIIYQQ4ulIdBJCCCGEEEIIIYQQT0eikxBCCCGEEEIIIYR4OhKdhBBCCCGEEEIIIcTTkegkhBBCCCGEEEIIIZ6ORCchhBBCCCGEEEII8XQkOgkhhBBCCCGEEEKIpyPRSQghhBBCCCGEEEI8HYlOQgghhBBCCCGEEOLpSHQSQgghhBBCCCGEEE9HopMQQgghhBBCCCGEeDoSnYQQQgghhBBCCCHE05HoJIQQQgghhBBCCCGejkQnIYQQQgghhBBCCPF0JDoJIYQQQgghhBBCiKcj0UkIIYQQQgghhBBCPB2JTkIIIYQQQgghhBDi6Uh0EkIIIYQQQgghhBBPZ9EQCCGEEEL8xPmf/Q9+dpfE/v8A++p9ML5vfaexS5htt9ls90NcD7fHvXe+R+fC6X/bx75v74zyDnvaNXyE38bYv3fu1+NiXzFpb4zqB+6CPTiHp33zel98d1wfGZejOcWDMx+fXR+XcSA7mpLxGXcnYF95N3jwjD82u4/2xd/qO+/r33M/7Lnwe2zzQ11z51/67+i//z8B5HQSQgghhBBCCCGEEE9HTichhBBCCCF+HnzIOMAHfmoH/3LsPLH4/3a1l69xM3z0+7P7xvbnZMfbzef76DBem19un6nZtSfo8Hh3rE5X29v4mNeenkeHjXpUhBC/LeR0EkIIIYQQQgghhBBPR04nIYQQQgghfgbct7bcy656LJ3F3t3ind18KFDn+ntHETt3s5IeyKD64Cl8PVf2MB4YnL4uT0u2JSHEjxmJTkIIIYQQQvw0sbv/+u6XP1Za9rGjXBe82cFn9/fKh4fADvdzXQhou3P62hE38M5RPnhNHyiE4/0v2v17+zVHFEKI74fK64QQQgghhBBCCCHE05HTSQghhBBCiB8/71pz7vmH7pduTaV3u/otHuz1If/OJgz7ffMMe7B3O4+xz6u47KPzO6iFM7s3Mo+M2QM3YdoB7c73IlT8XpEjb1um+rXcL5O8f33XvqjDT7+2CFIIIQ6R00kIIYQQQgghhBBCPB05nYQQQgghhPhxYLc/CKcMp4yk7n55YAcbePOoV84hu73vYZCycS7xQzuwJZEPhJQfuXzi00PX1ZHRie+P8KFba3/pdp0PdTUsdr2De46ncaK8Ps7RWD8QlH40CG2f80fXjrHrlC27Mfbz8aZ591gC/fEUkktKiF8IcjoJIYQQQgghhBBCiKcjp5MQQgghhBA/Kg7Di27/7K6l5l6W08EmfPdMcN9IZA9c16Pd6/aX8vGzubnt4T75/gg259BkTrq6qveH/j7EXc+bPXDl3ZX03nG+x3naV1+gEOKXhEQnIYQQQgjxY8A0ANa1gL0esNVIRqndfuB4tc97Ak+Uwh1swoMd0m7dsUkluXMXHykHPKhWm0LG7fZ5PjSTDDfL5HA7RP0ZdWC8e277+/DYde7Dyefzvy4VvHNWxIfu39c/v/ZTft5VDijEV6LyOiGEEEIIIYQQT0Y6jRBCTichhBBCCK3tfoQcuXfs7hActJLfJzrbgXPojrvo3nH69zbhzdfncn1BDxg8Nju98zXbbm64Domew7vNtiNqZu9Oqk32dw+Svr72vonx+v5xe8ZbRw7fncRje94c892g8HifUzGc8V3f1Y17fFWD1++37ebf0T19JErb+NDjflQ82KeL3Z7NvLqPvDFW7z9r+7EyXO/zap5thtxu3MeDM+Ej743r+2kfGMPjeQeQtJ/v21aIHxY5nYQQQgghhBBCCCHE05HTSQghhBBC/C6531kexwk3I3OoOSWut7prsGg/2ziBbvkeDlxU/QdHzgp74Bqur+aeGcoO/9cjadHTcXh/fOZt+lhMQUPT9yMFiNc+oxseo+0x+kHGcXg7P6lt30/Jpg33BhQbAUXTYcY2N4fMru/HxoXTL8xuXt8IGZ9OItxdO9eUGbl3qh3OsXDYGMB35wbncdg63WwzgNfzmtj6gjiFeu3dc48EiNvhZObV07QfO7MH3xT7efbQc3zw/D/4QppcYXI8CfFBJDoJIYQQQgghxBVfqyvwrmz44zvfH+ocbncP5J3St+93bHXUE+LHhkQnIYQQQgjxo1mq2ke/8NVrYh5IAvvMoNt5M7zXk/7uxbyftXP8vUcsILy7BfEDmjTu7Lp/ZDesPQeXZ7dv1bvTwZ50LQxnlNlje50yvQ48OY+EFk3HRXMU3RrY/SH41Vc/8pj4vWfG/FwYblsNb3kB+UHH0g/xnuGz5pEQAoBEJyGEEEII8SPk7qJwWtPfW5fuF4+bqqxHDnRzgT//q90UDeZNedWR/rrIaBZZ7AN54/e3tdvHOVYErsvHrr5AO5YM7utDdnDT+I5Q1obj9sY7V5GbXXhzXHbx4cbrMxmll6NMrwWIPyTKcDpruxZTroZjN3Y3hJeb8uYo1Bs/M3A31NdlmdcB9NNuNoHwdjy/4zObJiR3k8KO3E12+xklD/xKdme2bp4BO9wn7szNe5rx4Zy0I7GYP8RrT+V74meDRCchhBBCCCGE+MkxC243NaxH9oPv6+vZdsCTR0gIMZDoJIQQQgghfuc8skzdta6P5fJcinSwlt4f5EZb+6N9H+3oyq0xuTto21DzjWPlyg510HbeHin6mUfLdmNwvf04l+ss6n1A9+G18zEF4V5IeXfUHISF731YnMKm70XDc1NSti1F62HPV1noDyoxdRq7/Qna/qKGdYr1aBLZ+0H5O9vO7kD7Meg2uhFqbQxPkV3dsGnrg1HcRqQfPkVH6d3bZ4AkyBo/S343Nvd/W2HI6Z5dz0W7unLjwdiRh/Pn6F3CrwwZ/22//mRt+qr/XGjYfgIkDYEQQgghhBBC/JBrYyGE+GUip5MQQgghhHg697KiNy4Pu1GTwzllaOva2e7zViTx1hczzmkbrsSDnOerzloH58LpGNc5TXNreR5cNba5RgdR07wKrbnuLz+5mPpPr3OTrt1M+ws9DH8mbo7rIxnqR5d673vHNzLG8eCLxu0PHorA3jpeevLSzcSio5l5FAYWiePWnEPmriv2fKWdk+cqmJy7mzW5nXg1T82unif24bAxlHbjarpDauMpak64Ni6cJoLduG+blKudH4m0afjeD1Mf53b1/PI6NM0mp5m7vO44FZ8p/U3X9NE4qFuP/3zucu08MPbPvqfih0eikxBCCCGEEOJntCy1Dy3hv9ean4hke97cMX+Qa5yX3g/lKdmNL+KGAPbgORztnldh4x/Z1/sJU9JmhPgpIdFJCCGEEEL87uWCw05sX7u43C7AeeezR3bDDx5226nu8Vznu2f2aOutZ92Pr/zexvXV1YPb1pNHXFNmHz8H14J4dNTrXnzNYMTWitB4/I1JDmmfVYx2ioaN/4pH8+fAPrfPPLJ3HhRimzdl7JlAvPM1z3syO7gfw4q2zYl6b2LSejKTbZ8Wbua/3ZlnzQGWNmNxW3ji/dk5He6hufWVzySvD/djlcJ+W/lHP/JhEL9LJDoJIYQQQojf5XLoeN1nt0O4b0dqz8tYXJdC2UF4953yvI1bwz6ykrtW0I5FtVvHM7tVkkbcPfBj8szVPu1oYO1q2zvLyqvF+UeXnjwoQ9wbl3jvgu1qHrgi1KSWkAeukssPXEp269xwQ3jp6fLcnYvdLPtzgWc/i6/qyPZTlxwzxcy2M5xRyXeY/j6u0yxFCR2vJUFeaUW8Hp6jEHw/RfL6yeT+f9GGNGUP6BibB9pPvT8gtrvvdv85/NCUfEBZ6QLgjYfvaM4+9AoRGrOfERKdhBBCCCGE+OkvwsT1evS6pdmI2XokYGhSPexIarOvuwd8ypr5UDS6MTfsvXnEd+fYg+Yg3lZ4+46OQsgeGjZ792zxYL7XI7NHCPEUJDoJIYQQQojfNrZfdJpdLxj3LqSuG/BIVrgOC7dD283O2XQv8XyUO9l+86M8abMjH8Ruw6Ol+36ZfuTysiulxJooYtOuuzOKvLOA3gaRH/Vrt71Zxh5bnM+B2fuw9lF2NmlBdnunhsPBJq5i0neCg5+EpfYFs40raD5PYnMyMXu4D1gPo5T1UGySbfwNBnqivI2h9HjrbhjiCEXv+eIjUHzn5DuakpznmHlq0hSm3bxcGKV2W0HKhq2I+3nDasMUZPPpX99HMsoQY7zMnVXttrcH0L9nm4LT9jWy9rtpTNvn/tA1xO15w4BkPHqcSHZ3WcJ2m4NH+3BOz65Eu/sCezBN6+Cr5P1zufNWuvlY39jPI4at7/cef86+Hj3OzdeokOgkhBBCCCGEEN+X9MACNw3ZYO6eNn/2dYvd3fftK8//h16k/5DciTHiB8aEkGQgxC8DiU5CCCGEEOK3uWC9G7FiBwvRfTDz8T6G+YI9MWbrJdjGvWzdPr79zh3E2ydjU1rx3tfU9rlxbdnWtXMYE3RdDHZcKrQzPRkPxm44o65Cq9gdL9NY7mSEq4b3h2FS14ngNhundnYyHiVj8Xhc45BbFYNH+UlXYzMMKtuMpeYwcTfO1pHFzbGHFas5nNhtSc1tE44e7nKc2nlOY7sLF49Ao3aWZiPhiFe5VH0/7aj93k/urX4Fmy9u5wFtTAXbPFG7ibi/D+w31fo1T2FJFkavlo3FuYDx+B/tSNzOO149qeyuqf1ttPnfjvsEYHKXHbjpJtcU75kQ33PU3Ih6490fHZ7tTRXya11Jm/Hhc11Jv9VsJd79VyHRSQghhBBCCPFM7KdxXgcq16bc0b7mWh/JUJqlk30HNheNOJcvbtbjO5WyC0Pzd29HwXc17267tmtl8P6Se3Mtk+qEq7R5PjJH7Phc7P6qP8LJ7eB2Wsv2fn+KDlXNNTD72NyyR8Ow7CkTWeqGEM9BopMQQgghhPgtw48tEPn+9+46Eni9hH9ksWlfufzkc0fFHl8d87F1OD9y7jxY+199YjaHPI/opWam2TTKs01rtOOLDLvMxpJlhN1SiSaP2p073ESjLnrt/UDNYmVumUrjQtwdZSMPyfp04pTTsz2t6eyurG28Mn5dG5U4XVS7Nm7+Md8la/9vKybd7jXoY+Ed78xuPBrsohOunouR8zQmwkYX3MdZ9bGzd1vX8fpptfc0R16d30PPw3Sb7J3n4lmKrz3hez8BUUz6nQAg0UkIIYQQQvy2Fh92V1z50IqLV93QuVl2blc816HaU3D5VFDUV8e74902hBz5O6Y26fdysh+75H3Z290V3XVt0d1W8kcXsdvErqSNwxV5VwMOCqoOnEfXTddaleJ2OOkSFrfa0KT3jHvdxSTModn7hG6b3DaMyHDrMySqzWw7tB6VzVmwinOx4wqvtoONE4icRbkxPtzqdTF/jF2wsan2bq4E4xwaPuY5t2NusAqEoNQ1LI7x3UsubZ/GG7PLkGx6eshJkDIk81PnfN+2vrEmOO1rPLmdZ+Pcurns2Bk1hb777TLbf3Y1H6+C5Yc2hilQ/qsVk6Ov3twdHxSZPvKGnEpT+4PAr7kUu+rV8BVv6+/53w2JVhKdhBBCCCGEED8FuBMDjF+/WNwILjeiuCK86FCzo+3dRgcHMGwygm4do+2v+32uPydsL1Rth2Yuu9u3LaOBnALA7cNiA6/9NHZHfLiy9HAe8Pe9b7dMVJzv2WMr+c2YHaiV81w6dCIZ940XiX3q2vYe82oMeHtG7/6HssmF+NEh0UkIIYQQQvwQ2PUafRtkfNRunMTV2t7s+nv7JfMm+HjXfv1urRqv5YtJiLi9ljdeLcVH3s775gA7cm3xtnhwI4b4ut7t1uI7HCnk+F7aX7dNQeC8PhVud952ZpgDtYePZwhGtj/NOs0Is3nfG+ElQrc532TbzAIX0RCepasbT2LKYuIQRzidErtDiDQHtSeA+27MmkgW398YybpLi5vMo1ZCt/FHmZntbhiv5v71PeY0XOHSsV0Yfpv6EZfUE8RtnmLdPTZPWzOO+9BPZnNDbLIQNV+YxbiYtfEwkleR9O0eWQwpK6fSOZtubDvsSBBv59QGipu7i03oO21yK27m684RttUUd3MMx+rn0fvi8Xfg0W19+HsfCRu/9zPa153DTbcWP3jueGzovtJYJSQ6CSGEEEIIIX7XpCftZ1+atV80Gu43AXv0sweup95zw6RRUkcDrN4ZkxvXUi22SQDqgZvnXtBQAuuVnvOoSIDbbp90cL0Jt51BdnBv7oVy2+47PL7/fMSNZPi4/yg9ca4KIX7HSHQSQgghhBDPJDJTvjK5ya4Di3eRPpvP9tqFzQVXWyfI7mew7Wdzdc+21ToP9ALO1pPdOeDge7a3LPEgbmn2hu3cTwdxNuzWlk1w9NaNMiw57Jk6/ebMdp92ald2m7l7mnmYdhN6yHDetI2mKJzR3r4rLpN5xvZ5W3E/eGSxai6q6T42W00Pp/bEIHchoceZR1kc220yi8/bUZJfTwu4ToxI9DhQbS6p1G/iNkTMj9/GP9kk5NCilDH5INrwZG39ZVN8Uog4fg4M99UYH9s7eWz+XuRaeUQVd36ROLpNCUzNNcZuKZo2B6cCOPdODc9UjC179aRNoV2zQWoTK3Q1p8L+VOfHsomEnMUu22Vexf/bBITZiH+y/ftjfhL7RJuerzYh9+Wmu1grPvLiwzbT7WBvj+zi5vb3NqAdvMQeazNweBn7n33AnXV/8/ez4D94ykKikxBCCCGEEOIjC74Pbnuz5mfKMWoKUA/Avv4CjwLar45nwz20iSuynUiFSSXcLVrt1jVfu2IMBwoje8nc2LfRJqXLRREXnKIubnvdTYthcwhZCE42xm0+Rs8sOjpfpiFfTBdPJrTCM3PBi9eFnEcupKvxtHksr9SGzX3m4TYHzrR2YQcr/33A+LYfXi/Ri1LDFlS+OSinXO7tHe3h1puz3ASgp2lvh131rqapffCh4cdkDakfQnw9Ep2EEEIIIcTTIPjwGvAoPfhYi+C7i0F7ZMX40YXpg2fyrO5Th1IENxYp3upHd+vw5k6bKQjpKMR6ctTsdj3dnxALanT8oxkSwzlim85wmI91dFX7TmWdNLq8WU+f2nfQczGn9jSg6ZJctGA7v3btNqSncEGFQ2qYtCZxiwwHFJkQmUUbF1U/V2xytWYVjt0dZcA2/2knl/QA81lVMgPSJpXoYFqN43EqmbO5LG/4gfo8sDG2V/NohLJzF/Q+hVXtZMDNvrZpWj1fahcGxq3ZaB5Tuy7/mzPY52dhOJx2mUxHj3tTufqOyTvdHaej9eFrlkE7aIX5/mP/UBs2u/Ma5OOvjh8t9pRvSv+T6CSEEEIIIX6h2NesMK5rQK5Tv0eZ21Go9T3FZV4BA/Ni+aqKzOZqHm622Tg12mJ1LqHjLbFqbp62c5nYgbJzq3katprQGJYeXH0s4rj4klwZaMLJ3nhCX4AzdJleYrSJ68bo4DZUFrNecpeGyNKEj1lo2SotZkeB7l1IaFk+dSp3GmHjJMhqIJOZcQhCcdAIBO8imUV5ns0ZSWw6SASdh1doCh0HawKZ4jL6NbFXEnYXVSvJm0WvVtJHM6vD+kW7kiu2XfVCZKGBkdvUxTfbR8qnaZrP39/MkTZBOTKfOELGadv5yz6/5zvWJ1l3fW0Ep+Nnr4/q/Nhyo2mGrWxcF9v9N79BcZ7cPBW9nHQIU7bTunddCeyqbG66zjaH7io6B66teyV3thsJXL8/jmQr+7gws2khiQM1lx9/d281O26KhPnAe5wP/gfi+GPJSxKdhBBCCCGEEL9TbFeKdGux+EgOy71F537l3QQsbrJvWmc4d7VwUwnn4g+4TckirrRGpu7EObqWtuLt+UrciRmbRX1u4hjMapc/ttc6hJ5RNjcJQ0wAUxc+ZvHLxzX1segd7ThEmaFPcJuatbsmbsO47eocD8eid+RrQpJZCzg/nCttvDYDf0Ne2ZfVYXPdIcK1bnK2l9AII44q7XA9Xy3in7jpqPeYr2erW/Jgrt78nnfH+4qH7gExSBqJEMdIdBJCCCGE+InDH9Fyx3C95rQ752u7KCA7bJh9YE+y431vjD52HSQ+uW6G5hDfIzancv2VG6viqyzyrQtiruwZ++J1vMxs0Lhq6dbzwDkCp7tz6OqEDWQajemt9jK4efQ3qc8tJtp2AU0cwtK+PMtDtFNPNG+OoFHD5C6RCCQKQ1LTgJo7CSCSsWY/YKqw+Xy72SIcRDXDQEteMsftfHMHFGvqYpJZnULcXRQhdwNrI/GaSEDN6OOWKixV9nFAGuVn3UXTSvbC4eRuou19sSnHaIyp+2isKSJxDeg/w7BaYZyjl/7Rs6QApBHIHYJcSDoJRI78LcKswIxjyodRa6SGR+mbWbLJaeaioh+PXWirI4u8fZejrHByVO2DtcMh56HmrQ6PPcdpLmVEHxB0686UxG7jybLxEB+kX8U8opHc1v/a7deNbVyNG9dVf+bnr3Nsz/dSte34/cIH4riPKgK3xbPHX78Slu3Oy4xbK+i9zoTbfX6lKrcbVz7+TSHRSQghhBBCCPFM5hK0IxL2ZWr3t8UDnx8c0+AumppuNLdq53HLRRWlaBWtBHD+8e74BKoLTv6zOnbfxabWKW4Eg1+v0dO2q9fGZGSoNQSaOIYlbEv86rT/q0yiuayu3BnjSWW9KrVKN8Yq3ZgDdmNBnvqYbcbw8N5yd5/3cm4c59CJhqsx2M47PjDP0iirA/F4k7jv8/xIyBDit4hEJyGEEEKIn4UO8eM6g3uGpaPcpl2js8Nr2oUUb3+4SX7Z/bZ+TqGx22vOXRTMvGvbbzQZpHDLCHXksDrKcroeO167oMJE4SVmw03Td8AoHRrZOO16p65p057IKUz7KpdoFnNSc+R0Bwqn7mztMruzqJevdfHDest7wySUuFunlcIh8o+8nG1kOLl+kUBm2wsibK4qmpELWBMAWEqczyc2cvcXa/IQpFQ2HelqyWBdRmJSmjw03TMW4eSGzXfDtTRNPTObx5yTA5DcCWQ0oEwPhgFWp7mTxlw2MkoRJ7tOcxNZuLYAMLVw8TFFLELf7aqLXe/gx6bVudNsnBOTGXe+oX3U2TbrrBvxWglhuxX+5RpTNcVnqQ1Oz+iyKT8L3XGV2DORrAJdExzlg8OhQ+4yz20zvyPSaaps3AcjDX+VvfOmbXn3c5TWjbinTQfF7QvgXgjTnQ5+R0nwdx1OuPG+Oj7UYY6TPXAuX/efDh7/F0P/jZfoJIQQQgghhMA7a9PHv3f9/VF6ZZO6Nq31YnG/CXu2oyrE+Rix6Le6L0Xqgkd0couipjrW2ByuFuvC0mwvsqZ52bWiOAtaLSeqwtKuuq8LOhmjeximsjqLuiZ3QZEp9jOHkKdWzublaM1R08vq2nksJLOfS6pTGHrCVijaObKmn1vLpr7RITDEvpELtb3fHJ3hoifb1T6a0NeuoU6qyPa+gXnIs3bQBbCf0+wA405k6PlWmEb7ak7NIfdTWSC3DqiWrRVZTiFmzY6tkaF16xma93Vbhbn3gNn2cbqhIX2/p1gIsUGikxBCCCGEeD782CrufjbTbpvDoiJ791TuugVm8xW/9hfsR3u7teUm16o5e/pKfVP51UQKzgHao1NZL09iEwiMPUQb2wgbwvN5IqOpna1dCSDjmGm6pDheL3MbYd1t6Hw1n/xCzOxoKEKkYRdxrLfO24xlCE6sNfswpWohKFkoT0S1ER7epJXmsgHCJRXiVSu7C/GsBZi7A2qhd8QrIe2xCzqVyQWpiKHain25d7nrweW3RBPCItibzS3lnfLyRruZ8qy2U7eV5G3znubucIzAd4v7RkNBKIv7U/KWhsQ0dnVqAtjEuhxzqiI1kWsIfpzPywBYGuPG3vKvX1n8Wxrn6M4xehh6ndx2k93Pr2XXI/D62WMb92HvOnjT8Poj2rXY1nZqe1GPd8Ww67n+yCuBX/lm3YbL/0je9pBDSUh0EkIIIYQQT+IxceVINHpgV/uA9KMVDHkQFn5j7XO3h/h2ib8PKbJbJ7GroOur3gfXXLPAMx3H9q3Oehcy85DtyXHUy+rMwBBnUDnMM/OCOErMmOPk6QVJU2h3KA5NmHKhYColm47DECkYxVsc3d1sxJxj8+XpHHxbL6nrZV/tThkJa8HURIZZnE0EdIdTxkvqutOI27IwoIs6pBlSD9P2uVATal1A5ihPG/tv406CLmpF0LmtvvPuLAtXUReciOtudPAAa1qIQckMhaPMcEFzWLlwNbfU487F1m9TEwttfha6kLNxdM0OtB4O7nfOx5GbTRBlbOEymxSj+dLoolWLPd9nMk2d+ULb8lNN1ucQp/yneexoW+0xRCcMkxuvy7JCzzJwzmzflpuyPzuG7TwBp0z0a83qqtRvFqy4fW7t5htsel99XJq52vpOv4P3Xpv7uG472Mu1rG+HB+JH/5uAh6sFJVpJdBJCCCGEEELC2rzN17kNhoPDrhdftI2T5OqYHG4bHJZI9e3JWQi4WtQN15QLThkkkLoYAJDLJCRsco3GohxDaLgen9SEjN7xzuxoCe5ijjuckoVuwk2oN1N3OJEWOURDuPAWgOFkQp7Ejbl0b4k/UVZnZS7LCzEvAcjmLeIqexfBTeg4ttd+WBbX7lUKiTRN5W02xmAjn7ZGf9E1z9PMN+Hm2yV6MjJvY4rslrCQtvdq1rl6eZ71cdvoYJv5kg4dRfSSvVaAOBnuLPbdnGMVx+VyQyi9mq/26HMFvO9S+lqN4/s98z/s+wh435n1NaKOPeG8xC8QiU5CCCGEEL8AVeT7wg8ej5uk7b3V6UDr2DuWDrLG587r47fu3Pxz3sfczv3qqLuQcB74BHrZmV3bCOx6YYtWS9a35aaEbrdsnkw9vS7IZpeVDTcPp7btW9PQEIiq0V1QZVv+5et+jhBmm9KQtsnmU5meoeaQQFaYEbWmcPxEBlSEfmMq2Rtjvymr27i1WBMj8BuwEhuy/V+MNliZUXmCgZZSQWo5TRGAHg4nY83hbqlIKYYtrpM1DedVaqeV+o0gMqs7buIYHmDNcGPFPTA3FTFcUBYh7DkyohglfwhzTd5rfr6/OpxcfkeSjUhudr3JkGwzZ9sc6KHsnPrKz/PbzMWzBPcxFf9Hd17R75M1IStFphJgVqy53lp5Xnzu+8Hs4JptYL4Nm7DUL8/CSWVdCJwK4zhlebXjTjlYk3Gru+as37H4V8PuueVWWgUA1l0C+KgxvDYxeuYXxv3YSGHz42vTs70pqxvvm8lZOdLLm9FyVgzbyb8vENmVO+leBPdV18j5cRzvuv66mgLK7npB5/Pkg58d/LdkPAW2e1hkbZLoJIQQQgghhHgO6Y6GN1woZLqh1BlYsQl6ds1oZOpsHEazs+XmorK7i9DL6pq+EOKW/2uN7J7pXOdz2Li14lxqQh0d5iLwe3f8cHRVJqAuUbZWJgcT+jm24PAul20cUy5KcTcuNolftebpWuGiVrumKE+rTB7wZfTPER3XkAAsXYBDqrt7ul9mp+kzAqjbf7e6dRk1aowFpjK0FgA/5/gw7bYrTV/YzTEDanNbYewnTceu4XLq82V2f+3n7cExN5/vnHvhypvDw7dPgD34fOBAevlY1tLHnlO+I8IIIe4g0UkIIYQQQnyUraMHU94Htr+8nwuneCfS28x220xLdm632R77OmqFu1bkhvlcePw92tFC9rD2K/45XB278TDcKBaaL5DdVDBcQVO0t4Wjh1NXMeslThy5SOGE6p9fO0a60GKYO8WNdvHsHcXczWQGs54vBEONkG0/tQj9jjigKP3q+245Qn5OUTAY51vrAlQzS8VDqWf3TOzLj+VlfMlazlFkAaF6+R8zaj35bbOClMq2rK47g5r7Kkrv4jorE2s5RQB4haUyXFuu2rWAcQPMktUxri1Dqgk3aZqXvH4uphynGO7SRhEtf8taFdrkM3HnTY78LYPZapjPo21XE4kTUJPrYyjDTDeUuObMiXPJkwuq9jCkJjixd5WrmL1x/fFqZYVMMKZxXs230k1PQ+gjjBYZXESkeBm3OVwwEjXcbkPI9GC4asNNhil5yDZPnU2Cq4VTilE+SJDGTfo6h1XKdoJpy3FqV1Y375bYvpkb58/6+2YyN7bcNg4RjFfvPl45nqy5p8jDLgW882JtRqurz+y69PXQg3prn7jTm2F6L94RCO3oeMpykugkhBBCCCHEL09Ye+Bz+7r9cgQm21Wbeusd1zbrwk0+T8K2+1vddLTbnBeHUGJduJh0EaQoecpdTAlBIH6+hJa0KZXiCNK2g0Wj9Swiv5alO4+SwWxTCtfcUhnkCaxLnOc65Umlfs3kCWSGbXKculA0hWnPIhnQOgCyLuOaUh2le2jjPo3tZkmdAC5t3zuR73ouTOdhQ51IO6l2G/TeK7FaeDnz6MbWyytd4IvufjEeiUBxUetQeBzh60CKfZYxZ9o9qgumTna2CYhiFzAxMqk2QkuM0X40WmnlEvlbmDvlXT0f3LioiMNyrp3qPAtO+yyn48I0HuzrWkK51kPsxkZ34fNdUbfK2OwDnz3q1rq3z48KRXKHSXQSQgghhBDi9qrD16531hyHUb98d6ViX7mMMXt407vHtYN+VjsFZbM9hwPhoHyH7y66ODl8bLvnJgDZuL5Nk7IuOhnQutCtsHQggESY9rbz2bQPY+/A5uVqGRbClJMIZqBmM6vhTnKBpneWYwtLqtNy30KjaK6kPMrqUpn238v/vENZlMyFSQqWaJbcEubnuLD6eXrMUuJUojeFi9c2Lk2U8uN5Sd0QVlIqllJFiugrNuGrZUG5OMIm8DQhyD8r4Qa7yjpimyFkjk5/Xp7nlpdNLtb0/V4y51lRdUELUUcEmNs8WXr3vl5m2JoZjs021p0YY6YIuKqY44bYx25xETNV/7Mp1WQfY//36m382v2MkHgQNKvuqDGbBMUQKCM8fHZCjcGL6495daDyTMLXEKSsXbV3k5uj5HpU+vGTmaYX3D7LCQciTerSGA+zjTBlqt1SWnij16aNw/N9wYlPea2/99KydzZ4RJD6yPGERCchhBBCCPEL156uBJ/rDNvtUoVXa7J55XG70bfdWqHxsK7DroSoES6Mq/81wn5tLzrZwT6n2pYjV4sdCWecdtur+CIcmZvKvLmjWncdmdlcUje5YGYnjpkLL15H09fooYjZkevHZmGKNKMLMYz9RSFQcwW18q7mtCFb1lQXqiKfyeaFcxMhajZ6KRxSWmGpRDnfyDRilJGxZv+5eTnVCIxmlOedWMsCGJDyOrm20hiXmptTipZqqx4EmazWM2o5heC0jrI86w4n4ySqRDc7FxZr+zwDRvPQ8Sa2pO0qmmzj7uWKVuF5TGDruGe2WgpXUoRqE6gx7uHEMg9yH2V1mR7K5NfjzqHE5kwaIlubS129YHexjYwitrJLF8NCdEKUHA4HWQtMb8JbCGmh7UTQeHT6I1oAu6GPj49FBjC5tg4FpzbvYm5H7raBPRB/dAyMUlGUzStidGjcCkaRzTUlgtuB1rMVnfz65/D+SVwMJ+BG5T2Q2sntu8GM7yros2x1XTp3JPDcFnOO/80ORay7OtnYwg4UM75/RvOF8+BcJEJJdBJCCCGEEOIXJ6490iKcj3w/lA+bFtR7+ey6rMuOSo+G24Y96+ngmJFtFGJDhII3lxLGIrqVq3kZVwW6ULBM5Xt1WjO2Ur1s2/Dw1h+s5Spl1JpJLgbkEHC2C+txrgtYFtSawrFVx+K8C1Inspyi/G8KFzc/Fuooq4t+c12Q6mJUOYE8DXEmjWW0C295Gv8pa6i5nzBcWN3B0804w0vThCUgsXXzcwdX74a4yVsa5ZJ5Ep2iFPJK08yb+8YQZ6x1gDM7mJ9m4BKCUjRQ63FhBnLxLoBM3eW0K9Uk0brtNUGuTrcwdZHyWnqOEkHmmKYF1x0q53POQxhrjqh5t2z2KTt6RMmHw8MffLYn6Zu07/Eu4Vd8Z4hO9tXHOCh7fdhxdGu/H3UsKXRdopMQQgghhBD3Fx73Q8NxpZMcpr3w+lflV6uaOaqlLyt5tOTZtEw3u/vL/qGKcHsVBG33jZ5axAMH07V56qj8xDbuKfbwZZr1sqHuJGFrMe8Op+olVVvhJQwcNCMX1LoQRia79LDv+QpaADndeRI3odimBInm+UJcWkcxM6tEqiANtSwgk1kuSFbNUu2CCuoC1mQtS2rkPI2OY7UuHhzOxLjWuEdhxaFZ5FoRdfHjAUjwUG9LaE4hFmZw7SV6Zs2VYiEyMBtrRmV2AWYuewvBKQSwVqLWNB82z02NfbC5xyaRzcc8e/h1Lw+0sZbq04VxjzLIRL+OypFpZeFca2OR4S0IMZXvJavMk8tmJ055wLxfszuOzLOvJtfXLrRniJlRVtcEJzRhcnExDhWWLl4CCfQStt1cMkucguhTzN1e0mhAsf56YCZ58u9ZGQ/0JqOfrZzOy/+QmssMcz4/ew6a0V1LtOlGsle8TW+eSbTj9JRam6vu0YoSPW5eJdObK57NboKiz/2N0NVDu3nV5QAYrjHgShQjNy/PXrXHzbvkpiTEjc3IbglE3Id2m7vveKDQjQBzjEG1awHpyiFl9oDgZFKgJDoJIYQQQgghni3c7f/sWsk3B1EXBubvJ7DayNzZ5KjsM4FCeKjhGLHxo3l/QMs3atsNjY0Ybe27M6bvd0FlO4eC1LKkWqcwtuykM2pdkKxGKVvdnYgBIRTV3TnMHfhqXVDrCawpBKWy3VdNu+soIcC44FSZwXr2Y0Rk0ub7NFT6PlBzaGLr5JIyF+aQ476UWdzZ6JFDFOmZR/FndrCtw2GFNIkui19Hd4+t0xyYxbyMTSki6tgNDs6rttK28fEQbbOvB+vJr7Flg4XAOOVMxf9e4t/L7nh7d9K4Ny2c3FpweaoHwsjcbfCeHpFw7L5Ju2eNDzyL6UA0SXeOO29fH3jehRASnYQQQgghfh78kGEY3WKx6dO9bQ0Ouz6XYf/hpv/39Rm3zKOjwJCpm7lvdH1+95t9X+U1TfaCIwfBzgx14OTa91XfJE6FVWKccHMKeFZQN4eAkxMHU2i49T3afCrecY0Msces0qKFvG0tI3FuUVZn5mHXKDCj+eKepFlkH53BmmietWQwJNaTOzeMSFYthYhgLeAcqWfetADuKEaDH9dAnsi6AMyRS1VhVrurCGHwcsFpAZGsB1e3LnKhQIX7y4+WVlguLooAHjzuYhF7xs80FBE+jloWVGYkK2Zp9WBuGFBH1z7WJYxgNUrzjHV09DNrweVXs4kcIeZTmVnz2TD3sjqvPpytfxZpWehlhKDRzAPOh6MqDkYjq4tTTaTrAePWOuSZO+sifB315P+0atYFOT8ZL6k7kd2xdVWqyU3CEZsiWOI90Bx17SzqFKjWygRzOIEicwq9ZG54hdp8bcWfG/ecvxrI+clgzOc6u6Doz5e7kNxKt30VYSq/m943ESFvoLWcqNofcfYujBZh5d0dFPuYROSr0tFrJ9D+ZTG9xOb3xmTvbF+pbRIcvpJvvFh5/bP7b0zsXscP/uflhsPp6i067VNZThKdhBBCCCGE+NnxXo6L/QD7H53G0BffvPEZDnOPCC9/6iVbPTT6+rzZsoGQIjsowsibeNWEIxcEMELCK4gM8uS+JVunEqe5c1saa8ldt7zWqa5Wz4iK4/fsJYzyKC/rqqepW1qJbmmAO7viD5fIGkK4cNq+Etr3/Toq5tB1thymGqHcDJ3GhuDXHUMh9ozxHxlL7qAi0iTwbMa86Yxceui6d4YLka+FhLdg7X1wfL8feRf4HlWInLOvMlopnAsvBXZwH0LICSFrlPXNIeN+P0/wzK19btc+Y8ls48qan5fZRTW7n3zf7PNlZEntzjf1MfBK0xKCy94JOKXu7zOpYRzb8M5T3J6nfbmXTan+4P7Z5VRnN8LGx/7s8D3yka5uBy+RkCy3Cd03S+dwW1zije0feYfxA+/PR96HEpgkOgkhhBBCCHFvgbHLtOWdpQjv7WpkXV+1nJt3wK2Tau56bveOd+VwOlxH2S3RyeyrhsqOxSYYR55OJG1vGrgPkQg9K6fnEZFMqDxFZzGD2WUSg+bTDdHH3TYRXDQ6hFnP2OmCUzPGhCWkuU2yuYDThIrWBS/3sjqz0t0oW9EpsRYvqzOr5t3qWuZUC6JOZM2sXFDLyV1OUQ43nHAJtZyi5C2Ziz7FhZ8eut3cWhmEmSWEIOXTqjIZywnVRZdtZ7eWA1RzlO9lttI9GK2JQLV4dpULYmuYqaYSrx4cbiGQuQCT/D72jnBDVNt3bPMsJC8PbNlXxbaRYD3wnU1gG7lTFZaqjXK/JqZZOOty7zw3d6NrLqRaT3G/C1JagVRibNq+krub/JpbNlcbw8gnSxGIVN29xFbWuJA8EWziWBcFp8FLI1y/C25t3u6C6yfHjLuc5mcs3Xgb7EQWWu+aONxMLSR9Fm84BDceldUNYcm6K6m5g9LmFXLUDKDvsDtG3xN33ukuZ0fvtm6fms7EOwDypgC096LedEm9KyBxqIsSm4REJyGEEEIIcWftcP2/ptZrQw2y/fKH1yuZA5VqX6o3/2bf9sc+6uP0SHDt9iJs99FVCd6+rM9dFNvzPBK0uHVKRMkVDNi7g2xyefRMHKNn5XCEfUf5WJTV2XA48eBaE4czB5ZSBazG4jaNHGV6F7fWgcyDn0H/Xp7cPqErwN1TNYSY4ZiphBnIZK2Uy8UTdyZZXpHyGm3lM0gXR3y7k+c0McHjxNtIxz9qIssJtZzcY5PekFKJmqYcuVGTWNHdVH6NLaOpHSOl6n+MMCS0ROjWCRDMsLTSu7b1jKfo6GYwvy8hlCZPdO9lZE1wmnN/0MXG3oWuOdgmR06MGd0ZZkjpEp3jgBizfs9qzAMvReyC0xx4Tn94CEYoeqiYk+BmbB0NfX/ZAENKFa3ssLmvIty7haJHntYabq2eixSdCSuHwywBHtpO0LsWpijta6H5s3uplZ2GQ6z5iuJBSpNQFPlVVqfHuXXMa0LuxiE1HpL2PI97ZC2knMghkNCaEEVsM9b8/leMYmGzIXS14r8mLu97KWwypsgjFaY1M5jzxDk7pepRKwXyffHbjjtxviNijVPk8QHq/qOpHO/ef0ZMEpREJyGEEEIIIX6q2FduY0885rb8qJcNeUTQKC/qC+aM0V1ut26ktXK3EC5KOIzmhKup9Ko7pha0/Jx5ERrZO708y8/Hu9/1MjZrQlQsss2mkq4QHjZlZmH0CRHJs4by7GoZZXVwsYg8RZaUh1KbrUiTayrylehlXznyqIYQRkSuUYmsJWzKxkiePMOpROkeZtGlCW/esS+yovyyUxPZoiSv5um7zSMyu2pqHK9lLKFnTblIGKKJzSV7k0IZ5XjkydjHbC6vbE6bds+W6FY3MrJ24iMjzNxi+zj/yWXUSyBPU9niKKvrxWkhknanFgCgbILNXWXImMKrYo4t0RFxGVlTiYbeMW90hmTrwEe4cw67NmxdJEo3BIy9y6neyBFv/Q4Pn3/bl8LNoea2HV5sRZydZ6iJZ/ZuWZ0d/ysffOfccBxt9a0b4g8f3Ce/x/ntz4H4qFNKSHQSQgghhBA/b/Hm0LE0lcV12aNvt6sb2vuJcP3vNqXUDofT5rf9m+PZZtHK/crxhjGqLwaxS0uyqyVsP5f9Amo6U26q2jamhqk3eSuJcjeIh35X79zlghOHyybK2PpJhrsoXESVCd4bvvayOnpek80L6tFqPq54cmS5GAA2ASlcI+zd2ZnMXSlxjFRslGqdoqyul0nFWCf6Pgy1nlDKK1gtXEUlSobSdKMS0YK962JkjgDz+GPsglMtJ4CJaXbz9DSdto8TDGzuoLjehbVmlHIGS8urqrFdF61c7CknVJqlRCBK33zfmSwnkIZkK1L2sj4wzWt6r0mMXKpaT7BUzMUzsJTFx9Sql+ZNQiNQR8B5PdtwEXHrMGvzx3OprHUttFZmaHUKDseUPZTY7pnfq9XdbHE/wBMqz0BNMCs0z1Bqzh3zGPJEFzETu/A2xfmzOYxGMH7Ml0Q0UXM48/zYqe3CCJL9+hjHnbLOSKPvq7mpEoBqNlVsjW6AvQbxoEC2lRPm7oiybWWbjSeojhcZd934rKeORw1dU6A8ln/j4Goz1XYC2nhYr/SZfdQ2W965S7o7gWvOrtqIQ5EPHy4ozgIapm33+eUYAf/X2+A4n4oH78qteNUC2q9fyF+ddSUkOgkhhBBCCPGLEeXuEIthzg6N/SIu2s+7cwXe9r72vCJUC0Gqd6tD2rSan/bLBNC7s/XFaLpuSV/rAhY/pnUnRgsGb93Qpu5iNM9Dqu08K1JaW36Nf7em6EB3BquHW6fkQg02OUMAQiiKHCGYMQSqcCmFA6euL6hlgaUuKCGlEJtatlQ7J6toDqXIEUJdT6jrOcrVSj+Gk1HrVAYIAFj7/ttntbmwIieqhZuP6kzzznkhHrnjB1EORwDLyF3qEVA9Jymu9QzWc+Q9rX5/03xvR3ll71YHxjVxN5faftO4Z22e9oqvll91BnhGy8nyroHE1jGUepmkC6Vlly+1hM7Sco7ClVWX2Pfi3/ESz4Og87lkLsrmNo9Wu658Q7m+99lu3s3P5CaXKd3Zd5sbJbavd/Y97x8/oJhi3/PzZ5wbP3Cu/IHHQ0h0EkIIIYQQP0UhZR+/ZEe9sPtvyO1gxcObq5Tj2rad4Wh2T+0znGxznptcE07GnynZento21zeLveJNw7Ttp3znaahiKquvg9GWdzIcdo7XSLrKUrvDLVXynn4tJePsWceebi0O42as6Ut6qKEr54jbylcQ6jToBGsAOvZajl7KVv6QjNwiBkwJC/bcstRDjfLKVxQrQhpzoZKdFHEO6AZzIWzKGNj71YXGlZd3IFUTyEkrTbEqRBwygmlnK3WjGyrRxJFxlHLq6rVS7I864mRy+6ZU7UsVsoJrJE9lQpSdxol1ppQSwZrNtJgibQwgtSaUdcl3D2tzNCm5vU22e884L11q/P7A/MAdcb33QxlYDjD6M4oL4O0yGeCodCFnyhfY7I+j+h5Ty303XOX2nO3zw6C77OeY2YWpFRifubY38mAE6znTDE6BpLs8zLurYuYZt1hNM837wZo2e8R6WWNLjh5XhjSGmJVbU4s6xaeuH5jm/9omVyMwC2A1soJm9vIptJUtq55nhXlz9DIQgr3Ti+5TOEfi0yqKDMEjL1klezlfNY6DiZMAm3sq79LIv+Jo24wtfyl6/diPzvMDQC2pXDt3WIelM75NeWGqk7dvV5bw4L5hbbJibqyhu5e5xzZVNx9eN2z4baMZByu0r3bCxKiJDoJIYQQQgjxIxfF+Fs+3ljQvaudjX+OAOLe4W0jOuW24L3aXctlYj3RnUMhRvQOZb1rFr10DSPrhyk+CneJu0E4cpROBi6R49S643lXPC9vu0zCQo5OaYttOp9ZK6uLcOtyducMQsRIayuB4iYfiAaWyHJi8k50qYQA4Ndc1hO4nkGemvDHkdXkZYG1LKjVu8GltM0pKiVPOU7DHZbSFMZdwjVE24qB8Ot1FxaG+yccSrvqyciDWiITyvOzWp4RCUup0vbd/SL0vJc4colMeWK7bR7h5PXUxqPNpV2Ok49NuNYMPLk7zgpH6DyAlh8VWU69Q1ziyI/ywG560VYrL5urSG1kPDFtzoHwkjrw1OfCmIetDWWiiyU5tl2wKV+z6fnxcRh54ptyrBx/5q5ynBx40+O0LcHbPa9pp6PsxGJgW75Gu/PsT6V4H3pJzd3kcEOg2b9jbpW/2YEQ9cjx7+33a9+Z9z5TaZ1EJyGEEEII8RNVZL4/3CzY0Bb/tzacM562ISnHcbbce5GIvRdpuwrc/wy33Ui7s9vlUk0naruT2TqX9oG3c6et7TXvjt0zaqJDViQom7c5iyQY1nBvuEujCQMu1LScp7q4iwYW5V11EnzG9ZOJtZXgGWAonqGDEZtcmVnrGbW+AMzWAruJbM1tFa4cS6n4eUbXvNoEolRodokSrI3oZL7vMywVprR6FpSLJz1jp9ZM1hNKPZPsHfNa+LeRhlpPrOUFtZ5c5mkOJYwwaxeMTmBN/rkVWKJ30KsJ1bvdGZloqSLlapaBnmjeu+YtXtyV135NtSZ3FNXFXVhWkN1hxe4EC/MGAaBmc9HJ3H2W2LusWXT3GoHg0VUuytJqOcE7uxGW4zoQzdPcHRZB6e5wAlNkVlXPYGr5QTaynGo1oJ6m8HNGOLufB6tfO8vZJ4bnaLV7NZXOjdD4keHlHf8IRHe2xKlJo7kzy515YK6+fQFQzeZosaiz8450OXKaWmB94SgRxBCeDJiynNgE3ZHnND2GI8cpVJzW2W5+fRiBBdabD3bRKrrY+YRx8aiJifHQhxjlc4azUDfEI+OduOyNKGbTa665mPx1sSkBxCZBbv/OHB/ZXqUazRUPc5qAYZkzHn2+Del7QCjaiXLcvK8n95MEJ4lOQgghhBBCPFXJ+pjidRBMO314Vf13Xzn7+Mdz+dpjozBCwxPZg48xOqq5OyiWW8MpMgWDcy5b6mVXqcJShDBbE86shxa7QHVGLwUL55DBYE0Yqgtq+QTWM8xWprx6l7EaZXM2f3cqn+JirfsZXNyJhOnhdomyr3H8XJBScacMsxmKbx8h45W5ldVFSZR5aDcTSj156R0zcn5DzhektPq4VfPcqLLM5WwjAroaSog0tS5Mici5IC8lYqMzWJuQlsPZVUaweE2oDMHGkgtwRqQWOj45X9hEsNrKI2NhHmKMhYBnoUV5y7aEJjr1vChmpHTZjkULKmc4nOp55EJZRbLCnrc1uWvYXVfLVBY438+RDeUup9VL37xUL4SWEiJNcywZzN7i3EIEYpqEl5ZzNGWPdffe6nMGdZItps5xdKeS377JDdXL+/q1MfZj1kLpu6gbgpPVO8+p2XAzFbTQ+1ay52NZzEWqFOOQ4/H30kBijGFrw2i9DC1tQr2nUjK7/T7lTgjDGN8mNs3jcbA7e9SNZBtR7eg9d/T9XbS5q9D2rlA02eGu9S/88HlXQqKTEEIIIYQQT5W77Ac+/nVb9DvHDqHFzEvc0iips31pTtpmSU2BUORiledwgZCj1f3Rca0LBK5HlSE0TJlSjIBvMiOlN5qtnicUYpU7Xi5dXGALuOYpzDS1Zyr1WCIuKOXFnTiwKP8ro+saMNwodWGtL1GCR5itLrREyVsLFi/ri5fFtVKzNESlypOHg3vwd+toZy3nqZaMsrYyP4tjREmgjytqyREenkdpWYSPs5xQy9mlvJZx1IO/t3OAzGBZXDjoZiMXiVomV7KpZK0JLswePF5b+Rk3f3pmFa11tYuyOkbpY+3Xg01kWRN9Wjh7Cwavvcsho1ud31PbHHOcXxN8lhCEwqDXtYIc55fQOzHCM5DctXUyL3kr7hKydVNa2OaEC05NzKxRhsfxfLTyPaQQrgrm8rap8+L03aNncudQtINn27gRu3riezuvuayOtlOtbdO98rozHHfCzk74YVgX5/LL25lLO8n8Vmc5HAhJt5xF75XV2Qffw7eOaTfeoUKikxBCCCGE+EUKPBs5ZL/m2Ba3NbVlSCe22co2lRb7crypXM1s3tXmLHgdZn7TgWT3yuzmrw/HRW/tPdbFV0V+sYXZ9bWMc4wUZjNDK1erEaDM7t6IsqKWyRNhwRYlPwagZShlJLvA4IHg1lfI83mnnpU0VUf5NViUIHkekIEGY43A5ErPd1pGllC6WA9Xrier5YVEoqULLK8Gi1ByXyij1mxlfUHlwpwuSPkNKRcLV5F5WV8TnM5kz3xarWUsmdXoendiWV+9Wx3gpXxd9Bkd0aKsjpZXWl5h2YWwWheU9Yyyzh3xOOQAd/lYKWdEyDeSRae4yK6q5YxaFqRckPIFXmYYTrI+b6JKqYZ4RbTyPKvFxZpk1b9vLUh6Eiu6mJfNRk4XzeYJmFswu5er0XpZXQhZ7txpDiYvbQOQ6UJRxJ57x74mZNKPew5XWzHvkjjXuE6iU43A8lZ/lszL/TCJQe0psuZUO3u2lYuU1sTSaVJ6uRtb5lQOUarYEKYSu4uuPUPza6b6ybSOdyMDq7ZXCce7KNkIE5+f6qnkdhaEazJ0oYt+DUMcChF3Eqni8W2lae4uJDCH9/eXhY/dcFZVjsyqNj/Ywsr7u2F6z9m2wwJ7IvnkHuPWCTq5pnBkq5rURNZ+P/eC01RWdy84PP6ZbIh4wwl2LbhJfJLoJIQQQgghhHiHdL3w6gtyu/2duoSbYnai+HcrhwumlQ25MLLPmEojzDkCpIcbqi3wEmo9o5ZXF5dAILUSrlPLrenHaG6dOjtsrLpbqIV900JIcvGkNsdOenOxJtXRmQ8EsKDWV5TVBQkvqytxPADw663rC+r6AhBI+YKcmyCUJtePCxWtW10TjFxwekFZX1BrQs5Ezityrj7MzKi0cEmdIp/K929AOJxy7D9FtzcipRAKZ/GgIjKhWhlZW+tHYDsj3Nw884dxr2oIjj37CgByCzifyuRcpIsSwhaGHp3ZUvU/fe7F92pGpYeZGxLQQtP7fr2TXa2vMfdWz8lKrewtbeYm+7/Tj9fdXubh7Zt5n8L1dgbrS5zT6nN75BFtj4EWHt7mcivRa5/Pz9AcyJ3Qs6Dmc7zp7pmFF954ZidRs/+puz/AsXBy9JzfKl/DwXntHVD7sfghsQfPHR8QidID20hskugkhBBCCCHEzst0UJkyJfXGmvh6fWI7F5Rvto1iMrvWZuzqa7ObiNcOpxFKbgdftN1S57r73c49ZbxacGEKYhnbbXZN6xk1aCnCbfHYgqG9fIctiyal+NB6iHULgbYo76K1rJqpdZh50R3J1mXNzAO1W7v4RDOQFSBPVstrHO87D41m9uwitrK6NYLHk3er4xnEAk9/ZvOE+WFbOV85g/VsZnMgOLpbZmybPWepnszgOU4pR8lV74B2IiI03VAt5TWcRhWgB3uv6wnkEuNSUkqVCUCtLhbVcvKsKANSWkO0mksFM2pd6O4YIKViKVUQxlIWcD1Zz89qJXfNQULEuM6ZSOECMbKVm4HmTqTEzZRkCIS1ZFSe/P5319LojIcaDp8uOJ1IpAgCpxn8/jKsJD7eadwPmo0yyAikh9E77J0M1eemH9ezlvwEU3PimXeKy4BVD41H7cHejNI6i+8jXHGVGZVn8zLAYp4B5S4v23Zz9K6JWGI+15F31h/wCDGHeRaUFcBKPHrR0Q/G2U3jL6HZhRjmrp49Vc36XEgEMz24vIQ/MTXB0E1iVr27HivGtbtQ5OdDkC1MPaxvxnAsbt8u7XvsDidMEeM999t6Wd4czI7ZcWlThtN1CdzwYDVf3yzI8eCNN4xe+4jz2//zZlbVbIGKxPjxorb+RuYPqTyZ/rMt0UkIIYQQQoifCB9tMY6xaI1w4m3LdJvCl+fSpG1WDnrnrxaQfYnypL3QFiVfPHmWU8t8SqULGD2MvE7bRCB5LS/uSrGVlt5g6RKLd3fEsJw5SpdWa2KSC2oZLC/ungoBIueLCyhzHSWzh2z3LKnUO9GNkrYFpZyjO9vJJYVcwjHVFvsLammOKnSHUjIakMF1YSmvqOvSRYFRuocePF5Ky3GKrKZEwJKHiq9ndxSlYpard8JrrrW+/m+5SEs/lzbe5AIQNKs2dxiMDnYxZieU0hxs9SpPqZe1lRwC0jIEnn6+87xLvpTvYeOe+4QmOPV5kH18yzncRXXTNbCXYRHhmlswykJb6Vmacp4SPCC8xn2OoHOe/Xpbl7s+H6Y8LC4AYgyswIWf3TOCDGJBK0PbBqY3J1KElONW0HbaPaO759TvwShF8+tqLQMxlaTt9rHNeONVThOv3h+8ckj1/Uzqd/9jt3OXHnkH7bf9mhyn499BPK4THeVC/VA6k5DoJIQQQgghfioCy8hMGj/kB5YJvPPDYW/a/O58G4XsaSQtW6m1YH9k6WJXJ2F3Vm28KlMbX2NPyDZeHW0s+G23+IxO5MnIyUEA2zRyag6ZvrjtXcWacJDpDprW6v6yEQZsWjSzzu3s0TOZMPJ7jPUMF5fOTZByJ4jlkZVjsDwEDXpXtzNrPbt4kFckW5trpoWLW62vqPXFy8jSF6R86Z3XWi5NrQmlvIDlJXKjwBTHMoOBhlIX1vUVZT2TUVaX8opkBJDJmqIT3Sk6zdVW9kaLwO1SzxEebky5Imd3MI3ueyk62rkTaFk8q8mFtNwDzN2lFGV/qQktoUuEx4vd7eOd7aKJGekOIlhezXo4erjaQNSazN1YZ8+SWqK8rQk6KJF+k6MMzkUnGGmpnW+J5yjH+CXUmsC6sJYTEe4pzyJqVjOzWk/0+7XQc65KhK8371rMIHcxWXPNdFEMNglCfd7Es5FRqwuYLtywB8434c2/x7gXJ5BnuP+nRFC3d42bnVRREjfHL00i4BLvlBJPLLnNbWqB6uY6YM9fSvGsWheVrHXdCyHKn7QC8052ACzcTMkm5yJ7htrcxc5GZzduxOHU3gfewNDlyXgt9vLBCAqb99HeTk1BpG270JnHx/n4ml01Kmjd70bO0/QyG/u8GR4+nwXvKF928IZuf+Zyu6r/1AqJTkIIIYQQ4v6y4q7IxDtSlN3e0cNHfETx4kcvyg6+ZjcWYCE4WQ+F7qV2zaXSBaepsCQWX+wt6AFLLWC55y5l1rrQhYbeKc5CPOCcAUwmunPIXSdp6hjXHTlMqOXFavnkklZagXRx0aRmdzGlNUrMCFhipbG2DCGmcDh5yHUIWah8cSGrvIT4caGXwq1dPOvnWRfUtYleHradcvHQaebIRTqjrGeWckbKb5YWF53cgWQo5eTZRsyWEobjB0ayl9VZLQvMKnIqyLmgCVK1wseiZlZ3OVkEjANMKPSyPKALWkwpJD7avPCPlPjUM6Vc1EmhE6R+u1u52OgCB9TiGU1gjnGvMRYhIpKR9xTZS2w5WS17afVyNRd9mi5srCe6S6w5ooaQyRA8aj27s42Jlr7A8hpZT2meU+aCUOumt3ZBBsjGIbJwirMGudAFp3MIVSssrQzBqQuwJBn5Y3QnYIkU7GpAFwjpz0eyLlJMnQPZO97l8BjZ7hntQoeXEzIZbAWi6x27aEZ4CWC7vuY+hPm2BdscpxCrImuJPbetieO9g9/mvUFuxJtJyzduX0AbsWZ8xkfehi482f4Ld1/K9sCL0R4UiqawcTPgZvmfXE5CopMQQgghhPgpSl8/yH7skUUW5wViD/NuToSWw9QX3VGaxCXcHeumTXvlCZUv6CVtqWDbQn04OWKhb2R2t1SITmORjO4oIU9wp8wFtOpZTfRFu5epXWCphsPmBaxncwFmErJGR7UIJX8hmc2sBYJPy15GQDkTan2NYOmElC7dxeQuKM8g8hK9xcWatA0zb2V1pXezawJMuK7qEmVxJ5gZLKGHfzfRxwPRF9Sa3YOWaK2srpaF6/qCWrOXcSUO4Y4jb8e6iLf4tiEKEs3hlIZQaNtyrJ4lVTwAPRmRUrXoQNfP00vU4h7wPM2DuVxvmn/eAY69dNHoXQ5b2LsHxbtzrp7bvPN9dWHKwrkVGV08oZWt2dzRjcm/T4u528SaE8hzzKnFkr2FO69snyOz7pIjlyHz9iynJta20jsDPEuqPQMh2DYxdBZDdiVvRIhWiUMsipNglETaiujCSC/jW9DDwzdd12wSnTA5H5N1wc5W3MhM6gLsuI75Wh94l4XIFwoobruRsHn2JwHrHUHpaJujYHM+8L7c7/O9gHIh0UkIIYQQQvxU+dq/3Y8CuClx2+zOQbhdWk6fjc7erXTvoO7Ndk3Mt4FA2yRajIBc2wZ6t812pXqH3qyuCG2veNuWHBsL1GZfNl/fCA9HMv97dPLwZYyFv7tlrIdM9xFBG5a2ID+BPJmh0suzVl9rI5nX7NlIGeaC6gtwS1aQPNCZpMEYrpQ6wqrNiocoM9VSF7AutixvXgaWL+GvWMD6aqwnS7bC8lsIXyGoGUBk0h1ZSFaR8hcXkQCQOcqCEskTPafpxWAZZtVdTunSzgNkxlpeotysldWVHro9Ouj5n5zWITrF8cp6RllPJDNTItJSzTJgKcodkaIrXmRBudOK3s1uQSlnrusZALEspe3bPMR6ipJPAGqil/lld4ctJQLOMzzEPVxcqZWJxTyt2cv66olmtJRWc+ENYZOJErR6AkvLRnIBxFJBSqt1wam1wvNwcHjwegaRYVgNUYLXAsRRz2Q5A3Xxy0jFhkjIcG7lON8TRgdEdvFluLWasyfKPWlAK5VzEZOw1SxdhuiFPMrXuESAuBFWYc1pZOa5XEzmzr0Mdw55mRtQ6TnhTRQjDKsLR71krr2MzEZpWaiF3XGUYH59MZ61l/u1UHN3avWaXnLKzkKM15ynNcoPK+c3EntUm22O589Gc6q1LCnPeffSvM3rmC6ctTI5dkdYL+ftTQUqRhkgpiw57t7tLYMqcdsRkFfC9mMZTk1833cg3AtidWvVFBKdhBBCCCGE+PnxiHvpo99rHa9G1s1GTUMTPvJoD2/FnSCpomfY1BcXkeAGDW91X6dsljgPZtTRrc67n6Wti8LL4zzLycuzxrHcrZKjSDDcVBHmXesLanWHDdIbUlphqYARHO7lYee+jXURaI01dGszn1HLC8r6CSwndy/lEvvjOF55QV1fUOviglMrq0uInKWl5zjBbHJBhXuovKCsLyjrAktEWt6Qlzl83HpXO9YFllu4eMshGvtvweY+lsAowYqQ7Zpa57so0WIvD/RyOYbDqiKl1q1sAWtzWrmQlO2CFOKWm1JSlO3FeNQzam2uruYia/lQaRIBWkC8izQbl1iMMfo9fYF3LSy9rG/jZqkuYHrAuvVMqM387sH3c+D3KZxsUQZoaw+JZ8/yYRd8wOa2KjC8uajat5uPM/KWtp83QapM4kY7xyZ4zPuaRZM8PZ+zQ2oBcI7/fVRWl3EdQG7TP3n7nXDzHbMPFa94PMh7f5xbv2Mgjsvi9u853vn8YdHpnfemHE5CopMQQgghxC9JXemrjV3v7O33h5NoGD520Ud2p37C7huOuqOK++Pz9nJoc5zrrt27IPDNCZD7DNyDTnAju9d2G41jsIf/opkYWuhxCxL24OdeUtc6jJ0iB6gC6eJdu6wCdXHBqbwQyEhWzazaJt+3D6hZ5YmezbMYUkGyC5DWJk4ZGJ3a1k9ecpYvtPTmUcX1NZxRAFJziiC6np1R65lNyEI7hwiFrnVhLa8eCs7FLDGCqDn1QveAZjKZu4tc7Mh26SV8gJH1RBdXTlbDQWWp2ixg1ZrD9XMCzJDNu9lFmRZZTpEDdUJlQraLdYEGU1ld71bnZXUphXGrZJS6ANUszyWCiWMOtDz5KKvzckLArNLL6pY+S7wsjzEzasyVxBC2SC6+Ovdxo3eXi2uhgSU6DHqWloXbKMZ5yntugmZN5oHz0WWudQM0wJDjsV2slaR1p1luHQrTeFzQg7vpguhq4U4ikdnFtfkxYwbryTyYfTELgaxdl8UzRzZnVkZzMbnDqfQSvB7gzRzPVgFQ4moTGPlMLVh8uL4mXySbkaZlQpnBVjOs2zVu7LuJYmSmMYWLaIXZxcPNEYHunvPUspzMQjAiEMbDun39xT2NcsuYC/QXA72349RZYbxcdnlQbI7MaKZg1l1CJHdvLk6GU2vz91b3uGOFilci0vx9viM4NdcWeRzgVyU8CYlOQgghhBDil6DD2RM+s512lglE17KrLBgbi+mdy8nLYVIrafPcJauRh7Pu7FKRDYQM8mTelh5I9gW9lKln8izRKa7lNr354j5a2rt09ealc1Z8IVzPqOXT6DyW5kwed/KwvISQ9eLXkL+YtRKxThruofJiLrIVWl49uNrQM5pqOYPFzyel4iV6IZqQLjiFoAGzFTmvSNkdSqVklPUV6/riDjJEhlPLPQoRp6xnD+6GwXJFynV0qyunnhO15IK0lNFpDZi7koFcUCJovHUbdEHJQhia9j05WVhPLOs5ztFa6d1Yp4dzjVF+52Hgc/e30gPJe1lU03yi1MyFMO8waFY8cZ4LWFO4q07mLqTCCCKP+q/sYk5sj/m43emUp05xNmUX5chmatlT0WUxrVd5VhHmHfsZwdv9GDRMoheGg6mJOZng0sSf6dmZVME2T4E412UWTOIZXYDolOelXsnFIcS1YYULVLP7Kveue8P5ZTZcVLOYsms0gPl7vUSR1/o+DzKkjtxI3As9N95JxONZTvd+V/FRlxNx3DdUYpOQ6CSEEEII8QsXYnYroGZZaWYh82bd8+qBdzoqzUYl2+YibVdbbD+z/S6x337XDyrOwW5cwrwMGovS7c92m3Zzy05Q4hwYvvkK+znQOPJiSjiEaKPkbiy2AdBaJnB83nJuDJF7lIr1APJubkjR9etklUv3PEWeDP14FuVWryEETNv0sOjcRYVk3l2sIrvjqJ5BJqT8HXJ6g6VCwLybWT2hlFfU+uIlYumCnN7aPmyIM+Ylb+UVlSdYrpHDVH00DSGGnMwdU5mWKnJazUu/AHBhLWeUekapCwxmrWzNBSMvH1zXM8q6eBpQXpFStfa5B5gv1krVUlrZyr5gBpYok6sLLBVGNzxvXc88Fv9sjil3+5DJUnbBhDWBNQHZO/8lq0iRRUUStebouncGaEjLajmvTKnCWx9mi1yqCJA/oXIhvRMhPcTdc43cNdPOyayLck1ETAXJ3EFF+BiX8gLWF6vM0esunGvNgkiLTonZyBzBQDWCzbtwZmQm69JdVzB6V7h6nsLOCz2Y+wKgxhFSDKB5WZ0H7NPdRGUqYUxA62bnXfPMbFtaN9xaa4hV1Wz3VE/leWEgGgHoRAIs+feao6guJE7h+KreQc9q3PX2vNlkddwLLJUeRF4nI2gXmm33ogv3ZctoIrzVITHK+YboRBiJ1gmxwl9EdSdoWbi1GDlV7V1XcMtZxE3JIXfK0L7L3r1eoLc6Bs7B6+8JYEKikxBCCCGE+CWz/bW63Vp8fMXeflfC2pWC9VB3OuxdBbHY9ZKoEDjc5dTTfzaLPIbDw3o3u1gg17lbmC+2XXipACq3rd0jp4ln7xiXaizAhzPCj+WOJdQT+zaw6GC3ROlfaQHlvvSNEq0QpKx1s4MR5OJlcOsrankdnde8TIvuoIoFOipqXbCWV9T1E82AvHxBzl9GblTNZF2slpOVcoIZuOQ35HyJbnReDle7Qyn1srHW4azWBaWcUVZ3+eR8wbKsyLnCkMDqwd6lnKzWBUTyvKUIKPcuch5M3vZveXTLm9PxWyYUa44Fu7FlRQHJYBYiDSeXlJGllfZFlpRVS6kg57U73DxcHj2fi3UBkT08O1WG84vhzHLRgRbd7U6e6cUcIfEhPoZe4KWQng9lRrN82XU2nDoDRjZYauJg36YF3y8hcpSY/y3w/gXAEmWFK80usQ3BKA/0OrAM70aXAXszswtgJcLzF9dTuBFmt3pw/yyFsrPPcuplgOhh4BbZTO6icidif/ibKLLAO9lVwIoNF1dyR+HGzQQb3etIoMYx6racbM5fa+4lduecXYd0lz5m186lNAlDvPFu4iSkJ/Qw87s5TcBx6V0CMHfI44PvRx78GsIkOAmJTj/k32rsR53Jbzf+8OAl9OiLwu7se18HfNQh4dFzxY397s+TXzEGeGe/1NhqbDW2v/Ox/d0tvKm/LwnxE9HHbglJt8J+PyI6TfvpLaDmrJue5dQWmL5hzU1UMheJWo5NAnlira+o9RRNzMIBcqD3tQ5brC+gsZXgTd3xcmQyfXLRCcaUfuPiUhMoDICtXjrXRaCzB0Hz7F6MVh7VDGpMrNUDwWs9R2bSG1K+TI4Yz5ByIeS17Y+W3sy70b252EYv9yrrSwhYS4RalyiLA2rNbOHgpAsh7mJqgtGJZXUnFesJZhHc7QHhnvddF++aV0/mYkorfSNYM0p5cUGLhpaXNMriRrdEwqzWJcSt1gHQoqws/CiJcOfTND9o9KyjExjn4C4q9lI5FywzGWPigmLLhwqHUxPaepZTCxw/wTO9MhA5Sma9FK2H0rO+gFyY0hssrV6C50INW4kcsBiwwBCiWy+rG6Wafk5tbiew2uRyinmbLjYE0CFiuBPwHBlLMV2mY7jZZ5meoVb+1q4lPkeK4kLaocDRuujhDHctjTLAIbKt/vcONpeQi73R2bELWRxB5AYr1vOYuuhUbFcS1+slQ5j0Ln4thJ7NMWa7heKtzKW94+jonXRT/LnxLnvEeWRf8ffS/XV8tDxPSHQSP3HmLg9nAK8APsWfVwAv8fNleikUAG8APgP4bvrnl/j5Ou17iX18mvbd9jvarfoLfD3Yb/tzwfa3FafYx/5827nm6VzXOLd5n+1812m/S+x3v895v7Ybgy8H5/plGgP8hMZ2/i2Txlbz9qcwtret4UKIZ9HaeR98YEM2QfsVfLP33JNrrpu2jSztXkp3IBXZWNfu9tW/t5WYbLNv8GC5c3WCffccgkr/KM6MUyXevg04po1Hxzm09u3uOoqFNwh6eQwjr6e1YLfki2rW5C6i8hpOnC/+x8KdYWnK/In3bHcjRSZUKh4azETWhawvnrvEU/sclipKWVDLKyxfkPJnWH5rLiar9RUs37hUki+w9BZ5RRmt9MvLuF786vOb5fxdiFZp3BJm1PpCz4U6TQLWGh3KANYFZT1bKZ/AekayipyKRbaPu6W8O57V4teQc2mlcyAzSzlxXV/AcjKYWc7FBaVEIlUCCZULSj2j1szuLkqFMENdF9TLC2rNLmilC1KK0sTdXXbxyLOcDGZ5eXOBrWYvaMor0rK6g8rFCgK1lfa1jm6WsrusksEdQFZdPmFmqZFbVRa4KFEspWLJSpuWEWhuTeZCpTu4YIZkF+/65/fD3Al1Animi0nWs5xSirI3RlI6s7kY6hJTy1gias9xcmGvwNz5RnIBarZKF+IseVmdWTFLiP/WV6/BYyuLO7GFSUeF5XhI2URZQzigACthNlushe+7s6iJsnO4P9mC/NmynGzleHW5+8nsLfKoqgvFWNwZZfBzDwdiCEQwJGs2tv7eiCD1VkJroyY3XlQWDjgDrMZcsCmrqm1f/V2BLlaSm2YGvUNBvK7GWzfOb2we5+v/Xo/+7mRDuQRAD0O/L8B/5Behdfq73c2ud/xd/MdNSHQSP6jQdI7F3h8H8AcA/jD+/On455+Mz/5YbLdM74MLgN8A+FsA/j0A/18Afx3AvwPg342fr9P+/2Ts9w8A/B3xs9+LhWazsdZYXP4awN+M/f6N2OffiP1+F8f/FsCf2O339wH8B2K/5+kvOCUWqL8G8O/Hfv56/Pkb8bPfxPX9XuznD6cx+BOx329iQdzeT2t879dxrvv9/lEsuE/x/T8J4E89aWwvcT7fd2zb+f578Rnju88a2/9ffJ6nsf3TMQ5fM7Z/Y7pnb/GdPx7X/X3G9q/HMf7oifN2HtvfTPP292O/f/gjG9u2378Z8/Ylvv99xvbf2Y1teeI74d+OP23/fzvGY5UAJYT4Lf096r06QA89Rnc4RR5MmtdWnuPkXchGeDjS9IsgenkXkbsYNdrHz4u3yH1qLenByMOZF5cLavmEUr6JcqraRSHyBOIEWApXkGf/+Pm9RLv7MxBd41I4nciMWt1R0wLGU/IOdGm5xHo/93Ot9QXl8i1KfYUHZl+Q88W7qYWjpdYzanlFLS++XI5Oar5NQi1ndyFFt7qW45TSKC+s6wvq+hLZUyvy6eIB4CkEsihp89I5Q0oX5MXzg7zczTOeQPj+l7H/becwYHSGy+5QQuqROgaDpdhHr8jLvRSvVj8HH/MVaRnlgV086tdzDsGJPr45utD1uRTjU3P8Ofm8sRrjM8rm/J699qynFKWJqc+9FkbfOsW5uOgB7uzzm2yiWQuWrzEmHkbP/neQS3erjfNt4slpZDm1eTvCweP5uQr93v0y6xzH6aJR+5y9TLXvJ0/CSzynMd5Tmdx0TIu/X+zOa/Mdm/7+Yth2qtuLMOnGZ3OZ7CzS1BvvILuxTbqap2P7+s4+041f5j3ilDrafubomFX/ORESnX5+f0E6AfhVLPT+TgB/D4C/F8BfBPDn4+efvkL4bS+8z7G4/FuxWPw2Fqi/2i18P7LfEovZvxn7Rezvj8X+81fu9xIL1T+Kf55in38sFr7pK/f7Jc7zb4ZI9mkag9fvObZ/K873LRbov3rS2P77MQYWY9rEiuV7ju3fDMHgNI3BpyeM7R/FeX+a7tnLk+dtE4KeNW9teh6+fcLYzvP2V3G+n3C/q9K9/X6e7tl3Tx7b9jxcnvROWGOf/xaA/zuA/0v88/8F4K+FIPcbjOwDIcR7D9YDT8rkOph+LX2dz83d9vdq1ezgl937+IHpaDdeGNz/m11tbzg6UZv3b5sIlf7b/lhMzuVA3B5n8/X+s3Ah9E5crQgrzGAtsoVm3g3sDEbIc+sa5urHKdwd2Xyx3rqF7ewGPTT77J3tYFEat07eLoI1sdRX1PKtwarl06/hLotTCAcZKa2W0ho2k+Th4Dx1UcxDsP2Pu6dOrOUVZf3WWF9cYPHOa9xUDyERNYHlxLq+oPJkeXlDXr54CR7g+6qLi07ukGEru0v5zZAIz3k6uyDFZOFwoosdnrFT64t59pGXlS3LSncatbKvZD1DiQYLwSpENKslozK38HWz7IKRJ9lbn+CVZi4cZQIWWVHNMcIQqSp7p71JIHSX08lqXQyWYC3A3O9vbBPlkuUU2VIh/FgxSzTvwtcK+Iafpzm4PFAbLiR5LpclM9SaXHSrZ9SSoyPgxTynKfWyNDJZ9XtPoMJdVR7CzgjQBnIIohZnMVzzXsLWu/iNUrOp2YD7cxYDz+HY+gKzi8GdStE5L3uAOAyAu/a684cJYLJhnwzBxPprLVyQZkDklaG6owmlBfhbF3w35XyxxrBKs9XMolyuC10G+vHorqOMHqw9xN54x7Rg7+784XBMzn8vZov/cqPScEr1fTVL2zwXdxX+1j9pt7L9vOdcsY1LE814J8POtmJZvSU82bVANV7ww+Da3KE/+tgEIdFJPE6OBeSfAvB3h8D0DwL4SwD+I/DfDHxfmrr/bfz5M086d4t51ha/eOJ+z3B3yO8/eb+trOkPnrjPeWz/tMb2BxvbX/K8beVzP4V5e5rG4C8C+GfhLqj/K4C/CuDfCCHq/4PhitNfaIQQt3Wr77evW/tM0V6+tW+vm5b23SmCxYgl8mIuMGtC0TK1mc/xWZTLbRZ27Vi5h4CbFVi+TJ2/smdG1XPk95yQ0ndI6Q2ARQ7Tq5ldkJfPHg7uIhBYXsHiv3yw5CVwhl4mBtazO6fKNwBgOX9BXt64z+1xkccdTOzumhV5eUOy1TOIwsFU1pfIcaruglreIjQ9933UejKzirx4lhMMIJf4vuc4weBld8sFaVl7GWAtJ5T1DFYPDnfhijBLqCV7GRvjs7QiZxdaWsZSv+/MXpJYM8xsch2FY6flKKXoQsgU59m61Z1cbLQIL0915GQxgyVKAMsLWCLPyDyXynLpGVPRGdH3XTNYzjHG8HmQR5A8wzlXy0sIjYC17K1UbMxLjPB6ZphdGN0WMbv42F1srYtilNvxHP+95pi3dvD3BLaQ7gWG4nlStob4M38OF4m6C8ris4zuMGpC6Ka4N3chjGyOrBYnwDjHFn7efraguRBdLFkxYg32zqgaqkkTv2oEjZdZ65m0oDTp9U31mUvhuhBjdtXp7eg9thd/bv1ilweC0WE21J3fFXwk9Hu/z5u/89B/loREp5++2PQtgD8H4C8A+M8B+EcA/CeeJDQJIcSP5V33BwD+swD+0/DSvv8DgP8dgH8dwP8zfvZFf7kR4llaC29qObZbSxx9Au7cQrHu9p/teypNrp62Da8znZo3YHZGTSnX8xkYyBHKNFbCB7/dtztaE3eLyb4YDwMDjaitS1axXQc5uiFi69II78JwmdSTsZ4jyuUNZj2EOSwU0UXKS6BYo5OWZ/3U3oWM9eSd5eqru1LSypRWWMumqS5ouNPqCyxdPPmlnj1/iWcYVqT8xXq3uigL9DDwF1Qs5sHhn5HSl9Z5jbDi6TT15GV15ZOZJSy91Kr2AOxaF5TLJ5T1xQWlfOlldWZmLAtYT/RSwIyUCv2cC2FEvSSU9Yz18gLWFGV5a7JUouzNvGMdF5aywEDz8r7Vx5Wt7MzFkpwvyEvL8dku0FkR3e+WcFR5ThdpYE1AIrKXtY3vh9TQSt8qFxpKL23rOV/+jFhluLrqyfOFrFrKBSmv1p1mzVcVuVLuFDuF+LgiWUGy1SIQfnaSmc+FVlbnAeKInDF3hC3mDjfPRTer7maiJztFOD6B6vcZNBe1zhah+DS7RClmsS64+lgbmMPNt8SwdtGIniVm1kQsWDXPW7rMWU5sOU/+XQ9KtyuhB/Ag9PCC9Qi2ZP6MtpyoNXKXzgCTWROjrEYnPEZe0xzJ5u8Zm0Wqlvvkws50V3sG03BWMhmQwKE2wlhhV7lLcze9KUx9LhP0Ml7GsW2cVzuLOrXIG67Snv/UhL3NG9i27+qPNaDhVMpn12l6+juZkOj0EybBS6P+gwD+UwD+KQD/GLx8Tgghfu4C1B8C+Kfjvfd/AvC/BvC/hTuh/l14mZ/+oiPEvDq44/85Kr3bV6s954F65Jfid7945yLufu+W6DQ7Wtqaae8wsANVbeS29A5VNnX16t3FItCYLTg5FvTRyauVtRELrDVOaCVHvcyldf3yfCC2BX3v+uVrO88v+ga1vkYe0GeYXUjvmGfwYOroXnbxAGsXRsh6JphgefVw8VQsxBmyvKIFgpvVyGdqTqmWBeQd60p5xbp+A/JkS35DXr4w5eE+cvfP2crqDpx0+ox8uljKK6Ikzh1I1fMPUyLdHVSaiOHC1npGKSemVLCcLsjLBZb8cxeEXCzzUPYVeSlIuUTOUuQTMcoMs3ezG2PdVE8jq6FW70pIJFcySZBedmao1vqUjS50BlZDLUvkeEXeVHTd82ooD37y611QVy8DhAEpu7Mr5RWW2MOoXRaIOVBPBi4+S0J4bC6jOX/L7xm6a6rniDH1+wF62Zy78NhFozbnti6+4qWAkeU0BJiVLpaGmMHUXUzuzIs8SyuAXbhzE7G5irxrXgsPJ8jM2QVl5u4l6+VvfV1kzbXkT+jsZmrP0iTw9H2m8czZGJt2zV1VZ3/eh/B91aVtKk72z6yLMNbuYa+5DXGotu0mT1JzSrV3xr6DZc9kaqJ6dMljbDtnOR11EN5nPe3L5B5p3HLkmprzt/BB8UoIiU4/Qk7wMpZ/EMBfiYXXn9WwCCF+gfwKwF8G8PcD+M8D+F8C+FcB/D8wgs2FED9xvewJ331AdPrAsSJjBnPJz6bfWbhhEKVL7oVoJUXR7a6+oPKTL/ytlScdLmK9BK6+eD6RRVt6W/sC38WjV9TyLSpfkNNvkNLnCKj+5GVsRlp+M3c/AeSJtXh4OGDWO9y5gOLdxuqZXlbneYIeHv5mo+TLBbbK1wgF/xae+eTiVFq+Q8pe/lzrCaW8opRvXIQwtJwhL1nzvCqW8gm1nolwKHlJmJfd1fqC+BxAMg8GX5mXlZFnhVLOHsZds3lZXUXKhJlFWd3Ju/El+M/n8rXZxBcCVa2LAcnD4ZlQo9mXJUap3Hb+zGV1YEYyuiQSeVJeetfznrzLYD3FMWqU61W0jKjmbmHLoorSSSCxbzvcdSAjPLy8egB7vriAZVNHsdZJrr6ASAyxp7m1rJeW9bK26hlE1sTD1+hKaOE8Kr20lE14IEAu9PLRkzsBMT8DrXRuIdzhBWzylFqMQeukW/wZs3rwjGS0kHHD2oVb9pK95hhq+25dnGv8fCVQbOyrhZlPgejRrc63L7gWneaA7qk8sH82ErHGd3cCD++JOZv5GcpVcxrtt983IHivG90jpXfYXestYemjbikhJDr9yEjw7Jj/GID/EoB/Dl5SJ4QQv3S+BfAPA/iPAviHAPwrAP738MwnldwJ8Y4oMwLB50BvuyW4TEHiEVrC66zY0cfcrpYgveTD2MvlejDK2GaUfDzQbPu6zVxP8p6ua1/5MR2ub7AZA9tu2/0NKUqSkgdJs0Q39QSgmhfdeIA46xLB4Wt37JDZKl9Q60u0Sr+EkAQAiXE8Q3ednFjrK0AzL2t7g2GNup+W4/RKVu8OakZYWsH6YqzfADCm9CXK4lYQC2t5YS3fgFwsoZrnQ1UAmaTRXTVn1Ooij3//O1p6c9EsXC5E8m5567cuYJnnONnyBSm/xXl4ude6foPKVyAl5DTEEIPRRZ4za31BrRkpf0GOUj8zA8sJZW3d7rKXiy1rdHeju5K4oFzOKOVsZrDFS+doU8ZSKQtg5oHeufaytbaYNlQP3mGUqNVsObsYV2pircmFHg837939rJVcTl3xDETOxVKimU3TqZWclRfWemr1c5aSu65GsZaX67FH4i8R+r70roQuFFq7b152V8/uJMtRYpkuvs/IZiKykSdUnjwn20VMmlVrAeiMUHnr74iWA3UiagSPN/Gzi0Xt2Uqkd0ukdw7MaIKTB3WH8MoTvaNd7aVvbezZsp6w+OAYd00C0vTkZ7pzidZK81zMOoew9CXcU+b7wxKPfCVtBXCJt1gyw2KwxT8LUciYfVwiE8qw2nBBxuuri9AWeU+Mc8zTq4f9len3mFOoeQSmxx5HbtX8DmovqF5eyL59V6y2AlCIgLyd02Rxb2265nuS/xCdeJUdZdvKZyEkOv0U78OfBfCPA/jnAfwTUGaTEELs+X0A/wyAfwDuevpX4KHjfwS17BVCPEWk6zlNbeEaZUs2FmSkeYZSbeU9nEqbspd31bOXNqULXFgJ59JUVtfLoOpLLMDrVE5VUXlCrS/ucKqfQhrw7mMuXp1AnLxsKa0eKm7e6r7W13A5AZY/w8vuovyrnuFldd+g1hcXY9KKlL/0srq+8Oz7+uRiUF6RmuBkxcejnlHXTyjrNyCXyFH67AHjKcr8ykuUhOUI3V6R0opkDPfOC9b1E2o9hZPqDcspXFLhMKrlFELRgmW5eFldd1EtKPWEWhekXJFayd1mzOEiHl3AasLL6FTmpVKtW1xzGZHJi51q5EXVJkiGKJZHt7oR9H32ToTVxTvPfPI/SHUcFyncZBZjHQHYKcYnlb5W8Bypl+YEizJL365lezFK9Hw+5Zgb1csTYyxauHgrVbO5VK6+wMUcACiwdLl2HzH30tG+lrQ6dXsLN1E9x3MUpaUY1+LHaN+dQ75nWvlfCwWvO2GkBYw351GOsrrp51YAHoWHzwHlc0e3dTpPm7afw73n72dcO5sKjkvc5uDyenA9Nu1nyn262n73vuocfP4hZ9K+ezJ35/jV9dNCSHT63fMNvAPdPwvgX4Zym4QQ4h453pP/Mtz59D8B8K8B+OvwrCchfpHwzg+PXEkj45vbz/ov1oeDyOyoesOulz8jQNy2x8V1dhTvXsPm+/C26rY9ur1zudbKkfz7/YebmPTmOGrbGhli0EjqjYzhXlLXusgtPXDJeivxTF+4hyiA2kvlzGpsFYHl4ZpheaHvi5F30wKKw/xSX1DrtwBPIRy9GRJR+QryHM3XV4OtETycPaS7nsw7lhWY1RbWbWQy0rvVlfIN+jbxuVkN4S3GAou17CKzgrR8Rlq+0LeLLmf1hbW8gOUEJFpOX5CX72DZ38m1nqx4t7pw8Fw89DqRRHSiK2erZXHZLhfk0xtyvgBGY810welkYDJLcCElRKVaMko51RBsLFmxFMJdn0vm4WYuIOWp7BEkIocJUSaXqqVEpNFFjaWmKMfLZjDfJofLKNUeCs+aokwuo0a4c+Ql0UW2YrabwoQHwTNcUbSRfQRjKy20Wk9AdPRLucb94iaTzEveliirK+E8is57nu4dAlOEmifPIotyPKKeSWTAIpS8l+WlSLxqAskJpAd7h8MpxKsUz9DJM5va68OdP/44erh4OJIunndml+gNYC1I3K/DOz966reVeA8s8O+HKGLRfY4ngOd4a13MrLpB0ZIBKZxGpAtLLbQ73gO2mqHY5jznXCpDF85qOKpsErC6a8qDwduLh7PLrolINtKgIqp8LtHrHfM4XKEVozxwFv/ike+Oqk25Xs+OYhekuKnfOxacurOq74tDcJo69v1ohCfTf/4lOol3n5FfAfhLAP5rAP5FeAmJEEKI9/kVPOfpzwL4HwP4XwH4N+HldkII8TVrldRLlNAXajtlixnkyxTAvMZC07pjh+EUmQWnFpQ9uyQ8D+fVBap0CVdJ7AtRRkXfn8EdS9m+oOIFbK4hF6JgthpgYDl7RhMXM6uwfOFoX28ATqjlk5X1W5BnGgpy/mzuXOJo3scFlZ6x1JwvqTmY8pdw1pyi9O4TWF5cdktvyMtntP2xniPr6QWAWc5v7qjKvvCv5YyyvqKs7XpW5OWCZXlzUYmGUk5WXNQymCGngrys3YVUyhmleAc0Dw5v2VWcspzYRBkvwYsyRbRFPz3APWd3I/lYWJ8XtS4opbnXgJzjHHLt4fItJ6qUU3NRWROImrPL5wIwXCxR6uf308XHtJq1bYHhLCovUXrn43yV5YQcLiYXRFu5W+uW6C6vTDLbxrXS3G/1NYLj6xCSNk6X7CWfUQboYlBp5aOhQmSfL1zY3Um9PM/iZwtGCDjD6XTkLlrg2UwW/20vGO4nTvlLzfV0ju0vcGGpuQubIymCxbuTqK2DvawOVnbvhtll1c5xzo1KO718znviEMyRrrR7m985m7DvI7fRUfbTre2wG0dM5/NeltN7eVOEspyERKef3F90fh/APwr/bf1fQQ+rFEII8YH/hv1FAP9dAH8A4H8B4P8G4DsNjZCYMq9Gdm4mw7aJ9/wt21owNttM2x12xLOHtpl/Yw6b+jpx58yaL2HkN8VCbnO4fTbTOIneYp1z23BuvzYW/9a6fYXLI+KAZmMVE1kXGLJnL6U1nC7uMqn1DHIJgeGCueOXMTpdET1XxzuQFS/BS2+jgxhPqPVThDQTZqsl81InlsxaXggryPkNlr5DSm8gM2s9o5ZXXyamL97lLl0wzu/FWD6BETCel18jL78GPFvJm+dZRamZxbOcDPWEZDXK4ZrIRrB6p7qyfiKRkfOKvHyJMHOSrctafQlXS6HlFWnxcYnueubbnGiGyEha3cmECDznYrWcUbnAcvGOd1HSxhLljFxgEVxuqXAEgNs03RJYE1tZnV8LrdQFoDHl1XLkKCUjaIkgUKOjXCtJs7TCcumB681M4p0EI1yeOULhqyWrTCGC2TilEHAMlSerdHHF0pcolSxTR7vFy/p4BpjN590bzN5CITQwcrO8m2IGUonw+CFMcSopdPGrzdsIVWd0h7OWE1Ux9daL7n0ugHn5XgTop4tnNrXyUnrIugfwr9bCxV30OgFYwj7oJWO2SURKRhis504lAmQr3SMWA7LB2vVXuvNpAewU4k4FsBqw0j1LzR2V4tEPZ5RN4nJ3dCHKXidByEbW0hCj5nK7shObOGk0vVQ1DKbFzMZ87O8si5cSUxsI+gvjutucv5RaV80mnPJAQDp60+92tXl9pyNhySZ3EyU4CYlOP6m/DP4JAP8UgP8mgH9SQyKEEF9Ngpfb/TcA/B6A/zmAvwo5noR4TJp6YAmxDSDHDbXqeypjN4/dhaX3Drj77T9vXOfmWmyrazFas1tk/HR3UPKynt5uPfl6L9XISUJrdR+L6uj61fJwWmcsL+lhE5XIxTdNxdzptFp3GZVP0VUut65yiJI2si4kcwhVXzzLqZUjlRewnmHpje4oimYLPLlwUb6h5zhlWPpiXi73nRsymAksIIhazyjrJ9Tyick8YynlIaK5UHFCKS8o5cUsFS6nL8inL7BU4hpeUcqn0c0ur10UAq27h0o5g0iRBRUB5Jg7zJ1QGQHhuTAvF1iikW3M3VXk7qOLh79PJXOtPJOtrK53KpvqGI0e9J1KdNPz77ccJxe2cghbJVxGzfVC4yw61lMXZDzQvHgZ25Qf30r6KrPnSyHBrJrv37OuvHPhYi083IUe9q6AzV1EZi/ti/B7V01rzM8o/fOcMmvZYZ4xVrsQNebtai5oXWL+p8hEQi+nbO6jER4ewdotCy3uh3823Hse8n0GkOmC1wpDsW2+Uuu+l7zLniGEpfYsNtdSE3sM4AuAk7Xzd6eTl6m5062JRPF8bwSj5sRqmUn7HCcAqDY7l6x3lev5TLbNpLLd31Ga46uG0BbzE2kEpsd3GdsbqtlVNtT8rguByEIM477T3n1n0pEUtX257yuZj8QtISQ6/Yj/ivf7ITT99wD8JzUkQgjxFP4cgH8BwCcA/yMA/2cAnzUsQvyiJbUHtw1BIhbsYz252SZ1F4l3pKs9x8bzcJrYkOKz9jlc5GiZK0yex1Rf6DlJq5nNYc2t3f0nsH6KrKXfwGz141cPSh4OkwLAjDyR9ZtwRmE6fo2socWDw9dv3V0VweF9HxYxNHVB5eIuq/oKMNHyG1L+zlL+7NvSA61LDyK3EGNc5DLUEKReUconguY5TvkNKXnJk5+PC2seHl6ifO8tXGJALUuEmJ8A80ypnFdLyTuVsYlB3v3MUq5IKTqH0e1HPQg8xKvmQGqZWmiZSDFWtqkksnBinbo7yhLRxam2WYhZLWSczJHjhCZkWRMnp1I/Fwm7mMXogOjh5Rbd0chsrC9gPVfQwsHUgsEZTqXUu9652FWnMr4mwiZrE9uMdEcd4nsvQ0iydh7r7lmKrnOM0HubgroBtNI+D/IeIksPF2/d37jE81DcUcW5pI3RL+7EKL8z3z8t1qzcBnE3UaeFh68A3iK4vI5jboSdVrbXhJXIYIqzRHc4tTLbKL3bhHsnjM6YXbE+EHd2JXA25ySF8IgURrl9SN5RidvBPg/L6mapveKxsjo7FJw+FkQuhESnH8lfgP5ECE7/fQlOQgjxdP4A3pQBAP6HITzJ8SR+sSrL1a+q56TuXpDWPpuK0qZ6iv3Oufv+5ni7dtp2kPZNXp9vczF05xGvL+3a5sT99XEkKnNaLB1YujbpKmyL/xziRY3w5jnuuXU7OwNIZlaQYkFN7zrmwgBPIUi1EOtwU+1LsOoLan2J8q4vNHtzhxOiNIpnkGf6/lak9AUGWK2vID8ZjB7onb5Etd4J5DdGeoe7ZG+wdKF/lkMwO6GWV9TyChiR8nfI+bOLUlxgqAYaWM+s9RWsn9C62ln+DMvf0dKb50bVswtY5ROBDMsFKX8xy28wq3SHTnNWLUhppQtOb9aO5w6pT3BBx5CtWFouSOnClBid2k6opZUrEslWS5Ez5B34zqjMQKpIVly4SWYjwQlE7z7n5wMgOuol1LKARkaXODNjPBBe/0Qma04jt0JVpFSSofrtbIIiM1hO0V0vjxlo9EylVKK8bFSTkmZ015oBZpZXv3arMLoY4YHbURLHFHNzpYeDG2FplLzVpQXHM3LEWulcPFSpCVIeAh/ZRKMLXXbnErxrX5xEPDoG+Pk2UYmwLzCsMVQujvXPNjlNzS2VYMNlZrAS36+20VlgBBcSZwDFQ8bB2DfCKXShu69aNlQ4n/gG2Bf2piKWu5gGthK4CDBHpfECL8OrrtvS4q1iyWyBFxQ215RF5lbi9t0S2e9NlIk7P7+vLBxJ1nPFvNyX/X3XK+7YB8K6YNQOFu/ONL/S92IXp7I67pxOdk9wGq+o+S2+z3IS4qtJGoLfGr8H4B8B8N+W4CSEED+o8PRPA/jnAfzd8RdOIYQ4xkuososzhy6KhNFmPsKPU4lFNUCeWENEApKXPm3azDdyhHOfUL3ECLDqpXGRh8N6YinfsJZvwXoK0WIIBLWeewe4lL/4cWAuYpVvUOsrACLlz+iuJCSA53AMfULlyY+bv0NavvPywH6d2UviLr+HWl9gRuS2rzQye2p58dK7eobBt8nL534+tQlKkwsq5y/hcrIQkz6hFi/zy3lFPkX5Xi9t8zyoWrwT4HBBVZAZpYQgFWPuZXXlelHNHDlDebjZ2mLaQ5fcuZSLiy1x3ytyZE55yZqPxWU6x+FUqXVBLeexbQiPKfKhkOq05G/d8xZ3WoU7yYWvKTwcGZVnVJ576ZvZGh0Mh7uoXd8IvKYfD1M+UR0uqG2Q9gle7tbK9sLhZLM7ppXMtZDu1vWvhBvqaF8FI8wbADKBM0co+By4Pea35y6142zLzoa41PaNON4ZIyD8En/moPAF12HdaRqLuSxuDhxvYsvu/Pr+2vfbnyNBZ76G3ZhehZDvSv4Oy+rSwT6vBaTBey6no31KXBI/CHI6/XZ4BfD3AfhvQRlOQgjxQ/PnAPxXAfwRgP8pgP/3jb/ACfGzxm4WmV25hHbupjmKe/7avlLEg1ymVc/GXbRLv93tc9Pn/Yab6focpkgRWquFap6k0amsp4VzmLfathEYHuYu9gKrKO+xTXlJND5PkQ9kANwpQutOEZJngoshFUMEgkcezlRLk0EsIE82yrlKczV0F5Q7iL7xqCcXGAhEplF07YqsHA9XjhItz/3JLhKlz3EO8Nb19eyZQFhgFplAEQruZXXJu5phYeW5iUFmiwtOKV3cEYYTUc+o4TICEyx9QV4+W85fYFZR65mlfEJdv4ExW0rVcr64E8kI1gUsZ3MHU3bB6PSGZXkLB06y7nKK7CqzS3S9u9BFnhNKOaPWDEurpbQi5wtHVg66C6nSwJrMAORwG1UmL+RKIQ7lgpRo7g4CyGyVCRULYIku8sU5pDWqsJKRUVpXM1gTrMWXp0oXm9bmhqO1LKcIgXYRM8MdeqPYanTZO6HyTOIUOWOe+zWynAyoyXxO5Jhl1cxo5vOJ/rC4IEUmwC7hkoJ1gYdLPAIrkC6RiQSPqQoTogeDn70jYriYLLq9eVFmOJlcFKKX3a0WgfPuXGKIQ1Zd6LF4WFuVGpNvwxNo2Vr53ggCb89ngeFC9LLA5CV4dvEAce8MSH9e0zQZWlab0XoOE/2fvVlAMlh7zkscv4lm2WDe9c+HdwXZxOcu1rR9sb8vjO7OsoJhc8uwOTsOxuiaySmQfBdQZ9OPaGN/G8Fpzql7QD261SXPdq9c3nofC/Eocjr9doS9/xA85Paf0XAIIcRvhb8LnvH0X4CXNuvvSkL8zDW2j2/PNIV8E4etwrtDJhwaNnJsyHNvY+8BPiWCk9dp8RaFK1zA8holehWW3szyFNZcT2B9RS3fRPC2u5G8y9truJjMu5altwhvTi4o8YVgIlDQQqBDwOmuI5YX/5t/fossp9nRYh4cXj5F8PcJQLWcv1hePps7WhJYXlDWb2Ibd8fk/CXK9FZ0p9T6jYeZG5GXL5bzFzMr1l1S5SWOAeRlxXL6jLx8ifyl3MLJY1wrcl5h2a+JNY/PAM+CSmsIcdtsGyL38jzrnb7Q76flFXm5mGUvrXPJKJxv5exOJACWi7ux8hrB8QyH3NLL6vo+jcipWM6rWV4nx1ubC3kSAQ2IMHrb/GKkbTNf52qWWye4KOPiYuDZmhg5z815jofDi0NESCBfQrSZhcwvcR8noQaZ4Jlo21rxro22hkiWenme0wSWNreaC+vUvz9K72ZnjpfCEaf43jp9P9PDxNt+Wy5TOAZR4FlOkwNsLrvb/Ayx/WqwsqsAbttYHH+djjU7puI6N13r5nucNkIZ7CgnyQ61+cN3EHZ9QW9u85H8JXvwmCqtE08TRMQP+xegP4RnjPyLEvmEEOK3+v79ewD8SwD+LQD/GwC/1rCInys8fAi23iGz29ve3emB9YgjaeRoBbM50i4ApZ2L7Tcf5zs5n9g3525x1XKXzK5/Ec9dEriNbXtkcOvElTyPxXOY9vFVFmVZkdRSurjhDpczyBd3P6QLUhd7xiX5It8inLt3jYtudBczq2SNwOzy2kupUvoCS9+BURpHLjRcmqhkZoyubp/oAk/1c0hrRFZlulvoE8v6LcgzzFbL+ddI+bMLJx6VDVZDLa+s6++B5TWOv3rIuHfV80DtekJZvyGL5z2l9IYQQjydur6A9dXYM5AuXpqX32AgSsn0krlXD/RORIrvtzDzWhJqObOWM0BYyh5A7p37kndyK2cX0JZ16iLn9zYuyzNzarKW15XMA7qjS+HUWe4S5WpNjGnlci10nO271ivyQNRqYF3oOU7NtQTLVmGpmoWTzW18s2kl8rV4gqH0krYQxIhwYrVzMKR2H8z6MzC689UagifeYj8tSyyFlS91i2JzQdUouUNdDGZmFsHocc4jOygEMBdwXNS01d1QfhyyuZiYwgUV42xmvVyNSwSDr+H6GSVt7BlJeXRysxWGt8i1evHXTXczwYATYGcaPTycXSAqGwHLB2L107QFnudUMcrwuBF0JqdkuO5qE73M2rlxKrlrVZrYdbnsRssamVV05YkG76AXG1gb5ylAy65yldiE8bjrNkow+5dsI3J1wY/ze3/zPmxjHe66+SUKSnASEp1+avwegP8MPMfpWw2HEEL81v8b9/cB+K8D+GsA/o8YGRNC/PyFqGlF8iiG627a26Bfu9r+Wvi6UZ53rGjZB07t6Lf+8yLp6jtbaWyjRiUjMgxW3X1RzcYiMDZueTYZFm3mXfywUbbGk3knuDcveXMpp9f8EYleVhf7MXjQc3qz1gmuO5zqqxcMupuJsALW6NKGRMvfeWC3FZCLsQd+Z6b0HSx/B0uX6FbXgsM/odZXXxLnL8jLb2DpzYu5wq3EurCu4VBiRspfLC2ts10MGTNYX6y6E8oFpeXNUr54xWI9e85TebUWQO6C02fvlFbddVTW18ilItLyFuNWYv2bwHpiKxVM6YK8fEHKkRXVg8WzlwcuXnLnS/hkoznccPiQC4gMdleKV2V6V7nVy+WMffvaOsrVxccstWymitHaDl4OFt3z3JEVXeMix8lSDYGgCV29A6J5llMCmuCUVnbX0NyVry5AKtH57+Jd+eDh4WACkelzuHVTDEHUBRQbTj76uTRBhkt040sw1BD9mmDVHpEUItASgdwAUAi72OxCYs+cIszeQpBqGUjx/CDb6BTX/ngZWgi/6A4jqyEUFQ8exznEqi/x3+8MYAnhKQQka/lRc/ZSngTt2blYzUWv5mJK8/uFvW1h/1ka74QQnGhxDbZ7RcZ9GeV5rYQv3ivcup+4OT532w9FnjhyY+7fifuOdY+8S7EXqG6+0oX4nsh588Mudv7D8N+y/3kNhxBC/E74FYC/DA8X/32ozE6IHxv25O3eW2T54pDDWOWVVzYv6rwjGHq3rSjNshZy3Vrdzy3q18ho2p1rXcD6El2/2N0kreyKzFbri9X6jQHZA8LzbzwLqL6A9cXAZGbVUrpEqZuBfAkH1Nm7X1kx7w7nIcu1nlHL74UoZbB0iYyot9Fdj62T3ier5RtjPRmsWMrfWcq/jvDwyC1iF1gMqJbyF8vLd5byWzsey/oNazl7BtIQlEgm1vJCz6t6MTKZpdVy/myt1K+JLa0cDgBSLsgtuLs7y7L7eFJByitSLugOoDC0EZ4JNcQghIspR+c+d0i5u6dnapGcv2cuHLWA7zSEEnJhDeFmlNX5OVlevRTO6iRRhahVl8hHSuG7q+2PucvODDwZahNyUp9b7qIrIaPmngnVuyX2YOnmIMqj7C324fPmDPBsQHZBzC40e+MoCd3mSrXzgIuukdNUPejHA8zN+r5WuChVrK+FeGZkUoU4VHeCxhJupnMXndoa1eDZR7YRR1pZXXLhKEoC/foTgYW9g55nV1k3WXAWvOb8omWIXpM4OYeKcxZpehnjVFbHOXPpllNo/xl24k+dd3TwFptdTEdC/HtC0a3t9/sj5HISP4AwIn6Yv0D9HQD+ywD+CQ2HEEL8TvmzITr9VQD/KoDvNCTilyHeNMNO/JsNkaWvONjq164jvnm0irnafgomseOwcM7f6+e02bvduSibd2rXyzFyW56324A2XbuRBMnkFgKvxTLbCUVkcifIJCq1DmSVyeDujupnV0JkCOcD03BX0Bf5rK8AM5KtQ5yiL3ZdyDkbeXIXVP4NUvoS4eCfwPoSncLezJLn6BCe/0SeYxir9f2CdKfTS7inTpbSBTl/5xlS060hMt0N9a15Vzu6Gyr/Bil/prtmMlhOnl2FpZXxWV5+Ex3yKsgcotIZZEJaviAtreOdgaW5oF6MWMxL296Q0mek9ObL27qwri+eBQUzyytS9o50hAH17CVpZl5+ldcQYyLLvgV195JIF1xSIsBqtWaQKVxDbyEOMcqX0EvryAyaB15HjlIvf/O542WL5NldUebTJ7UStbT20PRRBtr2fwLr4l+wNdxTI84eTObzIcSiRMCKpeZC8iwpjuubcsTQBNGIfW4uPbDljJE8gTgbeLJkgDuX3gh7wz5jabj8okzNogzSj1M9KHsxa6WvVmk9q6n63GZ2Ecgq/BgXG26kuWPcK3wg31zQGl3kDOZZTrR9BzkvwQPezFDglrzMbZe+tn01cAXQrjPeVrRZXKJ1x1SN0P5E94dxFBTbvvOeRRmjt0Lcite91tNfmSFDsjdsGCZSnwfb7nHjldl2UHdiWbjZhkNr/v5RWV3/XpTVjTYQ497zJyY26TeJPw3kdPpheIGXdPwL8b+FEEL87sgA/l4A/xV4Zzv9t0+IX/bffVunKPJWa3J3eUwBzc0hwchfquFcSm87B8c4hjuizj0027N5vkSmjbHWV9byLWr55Itjq1FadwGQUb10DkhvSOk77yIHC3fSK90Jc/HA8fQWYsELSvkWtfweavkGQIqyul8jpS9bPa6eUMrvoZRvAGRYfkP2Ej6k5KXI3inuW5T1W7CeaKl4R7sc58PkZXz1JTKQSri1PiMlX/jX+oJSXlHrOYStSxzjrYslXjr3glqX2Mebl9VFflYtZ7CV5cVnKc3uEHQBgVw866gHSU9L61SR0gUpXXp4dyvDi455fgdTE71WFxxjH6Oz3imEiVaqV1q5XiutQyvN8vyv+E64flx0m+dNGvOlnmK/cZ5p6lTGFEKQ78s7EF66C28INhlb10o4emoL32aU901Cy+b5mMK/Ub10Du18W9lbcxyV+Kyd5/z9cEnhAuvbzMc5TduVOJcUP7PY77oRh0aXty8hJNWdIJV2z6JN5ziX4XVxC9s8JEz7S5OIte4Ep6t3CnDoRsq4Tsbbl8PVg+/tg8uPXFMfKavbPP24Fpek34gfDDmdfpi/zPwhgH8OwF/QcAghxI+C3wfwjwH41wH82wD+toZE/JyZvTt84PfWvJPDtHFGtd/R9zXwvNU2QYmb3+TfXNjQrnKa7GpVNO3I3SlT6O9kLzg4nk2/0aeZu1l84RqBvFPSc+s05wHU3u/8AsNKRsZML63DYt4x6wJDifNpp+xOKeIMIhMwQ/KW95YuoK1kfWGtL6jlWxcCjPB29s0hlQlkIq209BmWPhtRzeoC1DNRT3QH1HdIyUUnckEt37CWX1ktv2fkEm6iL56thBr5MOHqqSfW9RW1vCCli+X8OUriGCHOBtYFdf2EUr5xP1D2TnMpFQMBv4ZP7uBJFSm9WbI3M6yMUkSrXFqpG1NakcPB5DMmHDX1hOpjHl3lPgNpJZsgxcU7xacVlr7ArJghMuB7CLe7gDxDyLOPzBLcptJCrqsZaghO1kQhG4JTgtnFQkCy1tLeHSu+bS+9hJmh0svwKpBqd5CMh6+Vwnm2lFf6rUC+mAdm08vPavaxrgsqEkO8M0utw6GR1Zoby0LMoQfgF/c3MQHMBixhCaye2dTWfMxsXezcFbf6Q2H0oHTvdudOIzZBBlFSdzGzNZ6jbN757kSzlT1cPOa+i2Lnlic1jTfHC6TfpxxDVThEHRe7aBe6m2k1v48ZpMV2F3MxmGFCahlUHqrtBY8gXcyhly9WGx3uevZTuJnavPBLpqXppVYBa+e39uBwdmulAT7Pdk4o0phbaLexhbwzDTFu43DqkXoR+pRj/+v16/3K8nldEndbUrraluT+Fa3SOvF0gUQ8lxcAfwn+G3UhhBA/Hv5OAP/F+Kf++yfEL1OLu5dpksC9S6Tnt0Twdg8+bm3mZ/fGaP/uAcsvvuCMNvOeeeOuDNYTWD6BdMeSd6t76zlL6KVsb0g53FFMkfPk+TdmaziOvsTi+8xSfoWy/grkOXKPPsPylyixatfhIeOlfIKLB4aU35CX3yDnL2ECax31Pvl29QyAyPkLU47j1TPK+k04pRJyfsPIeYrueuXVank1IgNWkJcvzMt3bOHgLfDcrzkBqYaTyfdRyrmHh8M8/DvnS2QU7ZbdXGLc8/RDX+C3TnUpSuVGn8M5DDvDpjK50Q3O5lyryAnKoXhy0wXPdm6UcU4tKDtyn2y6Bmaynsl6jvnHcLzFfUOUOXJhK6tzwWLOKGrzb+QTuRhUfD7zwJnkgulO7V2mbQ2w0oPGt0Hdw8U0HEQhbmHKaMLF/E8Iql1cOcV2OfZRps+sX2MTxoBTZDMR7m56m46ZMVxZgHeIy/FwF7o4vE7B3+07y3T8dpxs4+dzgPfsdNpr4bdynBKuHUv77cv0/sCNbfYi0H6fH81gOsqaEuIHRU6n54t4fwrAX4FniAghhPjx8C2Avx/APwrg3wTwaw2J+DmpKTc/a6aLucqo/0rfNp+9txLZb//gudlDne2sn4Rdf69HQx24mbb75LRw7XFW7txpbcJrFwzQUp3CXeTiQnMhVHfUmGcOsb6EYyc+cwHDzPy8rAf4JGtChqEC6Q1mX7rghLoY+MomkHip1a9htrogxDPBHPlAX8xLqBJqeSX5isoEQ7EeoGwAeHLRoryA5UxDRVq+Q1q+C6eKjdOrZ9TyLWr9NsLLi7nQE8KXmZe6Fe+q10LQXVjx4GbQUHlmLZ9Qy0tkTnlZnaWVZOzj8g1YXgEmpLzC8hc/jq0MtxVK8UB0GJDyailfYFbJOAe6E8ySRWc4G6a28ACBhLEufp+QiFS7s83A6KZ3ccHH/87OCBfvziXvLOiupQgYjwQeRolciFMRHp6MsES/D6lnarUzAmGoXKyV4rXudikcLhbOH3cvxXwxdyGltHpemK0x8V1wIheGoGRNkNo+6gmGFF3kmqj1shW+ULzUbR/sTbjoyTM8r8nDwYfAF2KOpZhKLRQ/HEfe5dDAE93B9GZoYuvGGtnK5178oBE+bt7pjrAEooBT7pO1cjv7EiLXpbvQfH4uMQCcnERrZEm92RCLUry7UrinmhtqdOQbwh3iOmnuRNy8I1smlFurtuVx4W4yovuijkTvfaD52GY4jzjeUz3g3bqL1JI7pVru07Gt1TZv18n8atv3ZD0QuIR4mkginscZwH8cwD+poRBCiB8lfwZeZvdnod/uCfGDC2H2Q+3DRk3c7tf20yfzn74Q7V3D5nZTiNIssp5IGg2FrQW9IRn4YuSL9RwlL/GKhWjT4kaWk4cwJxcQrDlWEJk93wD1k3cQS6tZ/s5zmWyN4PFPvrf0OTrSwcPL6yfU+hqLzS9m9mYwmjtwPoH1m+iUZ7D0BXn520j5NxH2Pdwbtb6ilF+BfDVL1fLyXYSCRzYQbQhTxY+X8hfvNpfeDISNoPLZdfUZlt7YXFB1/YSyfiLrie4IulhKUTLm+VhRYuh5UCmvyPlLZBglNBENzJZSsbS8maVireqJaK3nWrh2Ni89826DLczbDObCmpfNtQ537kJqXQgNKVXLsc0IAg9XSTiW0LvKMbrbFb+HNoXJR5t7F5NcwDBDdMK7RGe75lZpAeOetWRWkfKbWWqiCqKhWXPzhAPO3thFJyZDL7lrumuNP+bB82hZTtHJbg7NhtEDyluAfrvGNbKcWsh46xyXY+6/hYup2sguOiFcYC56eRaUlydOOUpmJ5gt8fxcIlutuZ+Alh9FLHHuXTAz4G0IapjGpV9/G1ua4WIjS8q4dTgBXlZXWkB6HG/x0tbutqo4Llab3ikovYSwv2+YQkBvqniCbXKf3stpmre51wXvIx3rjrrVmT22LyEkOv1I+OMhOP15DYUQQvwo+WMA/gF4GfRZwyHEUzWm356GZTePv/2EtEj0mb5vu+95c6qW2eMikpVwCCEybnrrdQIru0AzjhQOp5OhO0rq2I/RBRKeUEsTjwjPa/KSNmKZHC9091BvdX/yUjiewjHTyubWCNr+BnX9FuTZzKql/Dbte2oBT+98V+sriERLX5jyr6cSvdxL3txldIJZgec9fe7HK+UbF52aIyu/9S5vXiJ4NneGnQkDw0llyVYzIISyFz8PLlHW9iXK6po4d+6CjYePv7kgtckYSxwuoJbpM4KdLVVYXs3FoWqwChrdP8LFUEdZlqViLoy1MHDz0reRyWS9rMkqkIqHcXeHE4fo1AQt5BCcSoSCX2L7ubTvZXSjs7Xdd/OcpbgWLu6Wis5jvo8p9JqTO2e4egAsYCs9M/RSObPmjnFnFpjp4tQS+UQ1HEqtLBMYpXMhfKGHi0dW1JnAFFRu+4DsqTTPsg9jz0Cid7rzbnOxX8BwHi4nFFjkKqFlYfVS2K0INMpie/B3WHyaSNVKA9cQnxNcaMoc6+N2biu2uUv74815brttOMviocWh7kSq+S1ikU0FHIeL28HxHhWecLAviU3it4LK6547ln8XgH9cQyGEED9q/gyAvwzgXwPw1zQc4mfCpjTNlxW8qdDwrlLzvow0wsVbGQhHKVyvaRuHsxFqHim1V8G1rdRjLt1rDemtfW9uA87dJXB/buydzttnNBtXzBEkzdg2RWdzWpRYkUysOIXggCita9kuGO4SwkPKcQK4MMrzPLjY4IvZcECRL6gR8m35O1hyh1PlJ4ILDPSQ6XSJYp0FrGfzz4xmK1J6o6U380XtiaV+Qq2fzGCWlihhS57Z4xe/EPQSwcqz+bWudJfVb/xYHkQNesaSsZ58CZzfmJbvottcc0F9Qi0vZrYiLZ/pAeQVLuScgRCTXMx5Q1qaaFXdkVRfUeunUVKWeukeKxcXxngyM4vPLkzpzWgjRNm6cHMC68nrJK0CXKwJWd6hzUu8WkSz328z1sXvlVkrpWxZTj5hanb3m5emmQfCxyxONZxwK6epZ/0Z5ELUU5S6VTQxC8kFjHHeZwNPIfS0Mr0mTLljxt1HOaZuNc9hqlNieTbg5CHgtoItI6iGSNSF1LbvLlZxFF2dmhgUYehrD/Ym6CIRTzCeAJSY1xcQK/3Zbx3tFrpYNoti3U0IWOtW18SxErJvood3w+Ch3zCcaDxj6j5nwEoD6c7FBV7yxyZ8AUiEFXMnVys/TCT2AeKV5OqikwGwmAteghtj3EoU16lwzaItwXBUdj3poEzO5ldtNBuwKWycu3dYCKceAG87VxLbPmG9QQLvCUbbd991ZzzMYqms3+KHRE6n5/EJnhWijnVCCPHj5k/E+/rvwrDYCyF+nlrc3Onp1uIst/BpGwHN0d2slz5FeDhKLBqvS2OIlvuTfVFpb1HGFO4furPHu7R5WHRK3wGoqHwF6mvkD31x51GEQNf6CTWCvM3isxRt5PkSn39yx1C6IOdfI+ffTFk67jLx8PBvwXoOZ9FnpPRdlAp6sHfrqOdOrBQupu+Q0ucQS/x4HvxtsPSGnH8TglIEkJdPqOUTgBMsES0vKqWLL8Krh5SX+gogRxD3G1KU3bmo9QpgCYfQG7wsbm5V35wa7swiT7t1jUeCpXQJAW4SHabwcA84ZxO2wkk1nDmtW2HfvwFIddp+OJfGeTU3jYsrzeE0coP8PNxZ5M4hP4fIWurOGrjzqIdktzm1TgLHKFlrc7QHU/MUoeBT4Le9TWLMvB48YwR7R9A4WuZT7/SGUXJWpuux6Xotfv4F113XmjB1wggErxgZStO5R+6TWRPkLiA+ozmgtvsCtuHddXf+mMZoahKAevD5PIbzvdiP10602dz/zfrabIrCuz4udvMZ7+x374K6x5HDSYjfCXI6PQeDl9b9w1C5hhBC/NjJcLfTXwDwbwD4TkMiflZ/I/nQh/f6au9Cvzn9qnxnkeK0q9EY7OAMuglpGKMi32Z2OI0yuGEv2Hw0n5ntQtDZo5p64K65+jRX10UqUCXqaN8O8+Dmwl5qxrORJxitRmlStJjvpplmPYhSrCjrQoXhQi8HMnffeLmZHz9dzOwNZgXkmayvsOqiUUrf0Vq5Wz1FCdrJzC6w9NksfaEf/EyWb8DyyZ0uqVrK3yHlX3tweQtOjrDqWl+tlm8IZrpY9NlDyl2Zc8dOCELkmZYqkgeEG2wNAeYTWF/hGUgXegbTFyS7mOcYLSweXO1Dk1ZzsWk1M3ejEBm1Lqg1w4zI6YKULoQRZDLUk7m7B7T05oKYu5Pm6WgtVNkdZonG5iLxai8PHW+B3IxSy6WVvtFLyeCOpfxmXZiKyekTKkW5ZDKfvZwC5ktkG/WSKhosspyyEWkqBwvHWds3I/MJKcwoBWYX6y4kxqWxlc6Z33+7RCe2pmOMwGq0IG0QoJFTRzfr+UrNpefTfTxIi7uYrNLFzku4fRDHP4ej6TL2YYgcpdbNLwEoBL8Q+Ny3caGviXEuXhlbB7ocYpcZ2ljRCJzN7GSwDGAl6xuIN9CqV+WhdZLsCegcPQRaMHiJgG8zYxecaFZJlOZYgiGZW+ia2bKGW6yMGHDurZnGIU6OAHl0p1Io3ql7jboja4w5bbzebPpe3Vo6uS3p63O8v5Gn3KjxeHB8r6IV7mH/cjaV1onfCnI6PXcB8w9pKIQQ4ifBn4K7nf64hkKIn7UEd8890P4unNHDoT3vxst9XKCIblgVLhKtHuw97zdK5ojRzh69XX3POOpuJNgFlr6LMr0M1P8/e//2a1nWbflBrY0519o7Ms+l7lVg+wGMjYUQRkbAE8IC8YIQ4vIEL4gnBH8MvMALD5awwBaFhBAlDBhjkDFQAtsYiiof4QJTVNnnfuqc82Xsvdaac/bGQ+99jDHnWjsiMjMyv4z8Rpd2RsZe8zrmJfZou7VfPwW82QHgDhXfwmX15CwnEOQVnF7DPTVB21ew7dcdTA6gTBePyk2vAYCW78/cnbRtARqHYZpeME0vJBdWYSF4T7m/Ml0xzS9IAczs7NvQE1hWTNNr7MtdUqgsqHRd+TLTdAk2VYHZCWYdwyidSDEW7hQ7Nwh7iY56MOwimZjgsccUVjonCNOJdAuxpYoC4f55CgcQgbKFW2npu7SFG2pubihMIdP0y28dFynXSxB3uGi5hTMp74V+mVwu762EdrdjqOfGvKd6xlLv3DEcXUIJ33bhK0We3v22g3932+mXO3Rzww3uYurh4rm+4KJUdpjrj7M/X6A5dfJYo9sclvj/dF09OvbeldRzlazbxoF5Fefgd9Dx2PILAUXfOnFOh/fIMZq24TFzqcqWbnQikHHCxyLPI1YTcM+OAr4bx2kIS6N+qTWcTp+nngD8IwD+fWMoRo0aNeqLqN8A8O8H8FcA/M74gWzUz6iOkYy7v3zbm116c5M7NxO/X5Ajf9t/mCkpvxcGEd0DwRvN6kh8YnM3uZWhcy5QJkIo4VMi07USDhd3OvnGyLLBu5QZeiCwQMlOlJ4hzC4WlRQknHUjzcFROkMiy7QEuJvuGtKZFIIndAO4SZhk9kzpiVQBuMnjV9EhzSaYnmnbr8F0VjqkUG5sbdYNZifJ3sG2X6PsHaES+3n1L2zRZWumwuHkvKctYOUvIreAnD/BtiemIMXpfYOgmwPStX0FRBSwlBvK/J5luvg5aZbZM2TP9I50QimLu7poEXl7hjQ5+j35RmXbWd4EQVYjct6ejpAshJOysvDmohMSBp+A74kZl3Qn1xKOKKNzgRgOtxmys5roRJIQiwUbae3YSD7WCWFXguS5uajFLrJn3h0tOuGRHmcTeQN4ZbqDZDOAE6Ei34877BpbSHS70xR/ixiYVAUeMoHeC4CLX9P+0VUH9g7mU0RCBWzx3E8A5oBZLbGtjPgFu6p2lqv8oxBb8lk5yedK5+AUbYIguUMqDD4mBGOJ2Y1OKYC9AljBnUjMJlpxBrDR19/HGFV1n+xu58sQFrG9GcSsjNWpCkNbvPoqp6lxqe74clIaoYJB58MbdyyrEC28HYnr22Cqe7UeO3E+FJBI4oHw9UjA+jbC1ahRQ3T6idVXAP5DGNG6UaNGjfpSagLwFwH8ewH8zfjBdtSoUT9e8aPfeKif6YNLdd/MSdwxdpLTRAZ7qcSC5g4n774W8a7Jl+RC/9q6VEzf8t47kIFiKReg3FTFnIBi+zIl4lhXkItkz+5S0smFjMpWgjunKmi7uqzi4E/1c9NTnN8FpbyvrqOI60S3vK9h268Bznyis5z8GNzcMdP0FWz72uN/0R3PAeNXuVPrues0t9IFqVeCqyJ2p8aCIlhuEfV7DUj5BAsAuewp4OG3YFdFBz57CicWImZ46xhL3UTar53MQpwIkUPe1w2FG2osrwqIlDTTHVZzhZeXcnNoe2qccV+kw6x1lZMYEPkG+k4hi2hiVe9eCvcUj26oM6AzqDmScauznLj6yYXQA53CXZVd5Ax7cH7CrBVRuE0u8ATriHSBhVc0flIvSBS54+vk+igXgMlikprLqXazC0D3GiLwpOaCSoHouB+GAPYU23GmlN+f53j+tsP5lYirrpJeAFxivFNwSlHPQtXpeVA3QAl3L2purhw3c4EKAHcuL0BVsFprZznhkZjz6OXUQcUPirji+vNNAegI+z52wSs7cfO+DwQeHAs6wPrxsyE4jfrRa8TrPs8PTX8GwD8xhmLUqFGjvqj6CwD+MfhvYEeNGvXz+cGsCQFM188uaSefAioB4gK5yR1GztEx71jmk+9dRAudkDHHMhG9QogSleFDyJ5g9lUVcwpvIUYoupc9B9fnCpZXAYskwuwcLqgC8BZxvFsIUs/pXPIJurucYpkQrTweKFWh5wzAXASaLp0YEpyj7V2ITieRq8qUwpTRhauM5lHulMqYl69v9oTNniBMGYtjKTeyi4JJJ8qeXNDjJpZLJ7JFlNBcZEvwOGiHn7kLvBNfkVus8nsMQa9zIaW7SPTtBzy8RvCiw1llF0WHsHQsQScCkys7EW/zbYfbrGoFLY6XIo0vl0LhEfp9YvziX+Squs275UpgorKL2pbXFkeYNSt06Bh36507tt8HZ4BngLNcnLjJRaEtnp0ziASRZ+SsB2+fAJ5ITuEATNEpWVBFLtzOsYzQ9pHHiipEgQXgSeDU4oS7WF0BMYdYlOODiMVmV8k+FtfHDNWNQXb8C6fVm/Dw3WtFTcQy3Mf3fDtNyimdmGV4HKurwrUqk+rhMnxDdPqYoK9PEftHjfoxajidvn/lb8v/4TEUo0aNGvVF1W8A+PcA+HUAvxjDMepLLuntucfR5PNZZx0Pf9e+B3x/4u/T1c2V+Al7SpcHFJGWyu71tuMFEhRtx1t788rcZYCP6fElbvKIVMTqbAYwqbiQIWe9sANBVyh1OKXCAYMVkEVAxsUrs2eSxcHh5RqCk7egF2YQN/n3r4IiZmYnymawrCIvYPF4FOxMh3l/Deik4nwoslydNeQcJ0knhSOKLqAAnK7i9OKd6IgQ3GYIZ3cxbU8e4QsHErlR1eX0TghOk7uIkrE0V0eQaXLAdrk6X4prRPcmPx+dQ6AzkTeRV4AbQxCS7BROpZWluDDW4Nt+rRMC7ttJmHI6i1yk8OsVYlBwlGRnOqtqFoLdFa4WNt6TX3tYiImaSCIErFVMnhLvhQMXnE70yFZ1RKmxj0rclzOBk0e9yqaIs7FBuSmoNKg1DXsWUMk4JDLi6Y8/5Q6umcIcz1wTihJQXeNhnIgq4FCSSXLWkT8zJ5Ih2GgLF1AyrCYQeb5TJ4b00bYij96dQEwRc10FrBI2gGcSE6s7CaaeLSUk+LwXkCb4/iY01HuOz025bKPAT979DgS0+DYh1E58DEB8FZxSMG7CTms7VyKOaFTtomhqzqwS+21CVIy5ny+s3WeV/l0Fp1jPBB7h4nkyGZntXVDd+18fe2Em7T5efkN7GvXj1nA6fR7h7q8A+MtjKEaNGjXqi6rneH//GYzf/o0a9VMsfuL3dtLVg+88isIU3LdOZ0CeE96s6p7ZOx9yEnwOIDUimtRcIgiAN+wZHi+ycCNdQ4B48p8haS7ilIAzh+MHNqMCpss1XEW+ntlXMHvyiWh5QSnvgxHVtVG3M2z7Ndj2dex/Q6mRuYwrnTyit30dHekKyAUlhanq1Hrn5wKhlFffBm/x+dmB5vYOCKaV76c6s2R21rZ9BW0ZBVz8GCrX6im2XyqoG2UBsptcjrlKOJZ87FgpXqzb9XFYsHehnIDqcgJQbp0LqY1ZdCuMazp1Lrmtgsn3206a2OT3QrqLEviNI0D83C2X98wFzR2UzpwEa/dA697hUiNm0Wlxi++d98excx71gkW/H/rn7B0+PTycaMLQsr/3EeNZ4d12GPcnEO9ieymc5fHnHLRfJ/e5wbvfZdQvP+vGrj7DeZ79dT+4xeox3rrzO0LNe/i4PXhf9O+SR24jPng/9e+WYyzuY61E39rvh96V/Mg779Fno0b9aILJqO9XJwD/bgDvxlCMGjVq1Bf3b+CfAfDn0LccHjVq1Ec1IPWY27f0H92v+cHV9qGQ48SMD0Un1t/eO3ZYYrROd0NLH6lLocnb0NMFBckh1gAzmkRMLDWelcDoZsNShmHCKeTul4AsU5Cl++eZ0BzixaJSrhA3ZzXZs3tbEnhNnwxL7wA9e4otHE75mXfJew6nD4VyA8p7sLwCNEJTCB6ii1dfQ3onOD+JLFe2Lm0FptmjfxbCVNnosbrX4Cw9yewdZWdPmHERywvI6KCnk2Rnyd4BeqJj2TdnMfEqcAM0S9sJtr6DdGYpK0q5Ms/ZHU5PwbVykS3ZRuqFkjB7uNPp7P42vy4esQtIM7k2gLUocHLnV4Nd0/dxC5h0aDdS7UIInII6v1XhEXXcNuEgOamKGCVii7c4tiRKGxDOM+DkUG4aGyNpiW0WQnEPUkrBqVlf3NFHThAmCaukFe7HORXiSR6VI4iNkEO/WQWPKjrFsVSeEslFPm61a154biJWmJDw/LeT7gSUNgk3+jZCbHKXEZ3j9AxwM+kCaCN4Crp/wb47XHFgPgApYeVLE4l4gvOqBGBzvVGEZLk8gU0ekKzxwxi6LWKemx8zipxH5c4lYotxMCn4Ve2FVWJ8Fe8Da8qRWMFNCkGIFadk8T3beZbyPSJkxwKD38w6vty6LghvsZzULcCDiJ53aLbOO0LIx887o4bo9IXVGcC/C+O35KNGjRr1Jc6gv4aznQo+/FvEUaNG/eRLB5fBQzNBTqoRokOLq0gOb3aBZQ2Gz/bgvZFw4nRRbGjcp+gIVt1BdJcMrzGJnip4nNhQpitQrjHBPUN6B+EJxOLspRLuDJ3D4fS1u6jKCoTrCOFKqg6W4EHZ9lXAwy+Ypvfg9Iqej4NwKUlngIZSXlCm9ww3VnSa+wrAXLlR7mDytvbpglK4lEq5oqSDiWtwpYJblcDzcgWn1yp8oTqLCMb6qADwrHCl6RROtMJ9B8M1RKHkTHVuHZ2hg7vIQe637nr6NRNO8XP9HEKfVUGRO+dS38Y+XUHp5jlwjXaum1yu5x/17qJ+mfwsP+/32YsL6u7HnNeth+13EPMjjBs3uKtoiQGd1BxF1m0rBaKp+4qOdbp21yy/f4oI3Sxhg4tj9oARJTRnV++qugJaQ8XpGE4711a/fI5Tf365/IK7mF59OWzdOPfX7OhKEiPKp8ciuB8Pq6iU9+EjltOja4g33jOfCv3+YHe7/Xtx1KghOn2JE5YzgL80hmLUqFGjvsh6BvBn44fQdQzHqJ+bCnOYGH3un4H6DXeckbvkCT8y5+FBNOIHzqh1deJu9ySqgwnuUHH1KNaLXuTBfCLJhDe7z2Wic5YSLJ7Q6HpecvHnFAyiU3RFdxcI3ZESO5vi84zPXQXe/Bg0E3YiVMDpGqymG4ILRMMJ0CSWqzwC5mKAbHKByN4JYHR2u9Ljf8mbKpBOkp5p9s7FJFiIRe/ZxK2Mm52dkQSxlCs4vffjgTXIeQpSvNIB5BvcPfQE01fu6AKDS/XiwpYLSjKdA5R+Igi6U+oC8kYSlM6CnZ2VQ6MLc1eP2FUCjUKo82N2+NEGaPI29dy8+5wzqFRJYlLE5Z4gnel8nwUsGwPcrcbUSafSLIdZp0PGomNhD/quZj1fz7vVdcvvhCJ1IkhAqxVxuBt3cTV3OEkhjpG1Ix12+0NxoBhWuohTRRknUSujbjc2AS47qwX3CTMZopK0Si7axANdQM4hwq4u/nA5CDZTuMuMxAphZYOPFwmngJAHdFsddNt9N+7Q0g3kRG/mUaqzMAQgum48Q5hM1eGkaA9gclj/2nGUEC6vmeAZQHKqVv+2x/fcaQY0XpbWuCaWrKNwcrJ1qmwPd3VWOhmpxMLaCVAMd5J6w2c41XwM2AnenXlKSafP6GC6oPStXsyP35xDcBo1RKcvuM7w35KPGjVq1KgvU3T6MxiMw1Gjfqqi2ccYTpnCIiGGyiT5jLUXsbIzWbaaD5cBw70RgpWQcaq1a9PenA8uTJ0hTc7TcUcUg9sjYQ7AeIgHxTvPAZsLJ/YEF0CC18SrTwddBEK2gk/Ry9WTOVxFz5DmcBS9kOWSMa4UBeQOp6/lziIDy4WsEbw1ImTniPglR2lxl1N5D3CBMLfPNXnEzzlPdAj62aN79nVwkgx0YesgWr2D9I7AzFLWxnHiFtt49vUpNMj6La54qRP+FI+As3cqwxbQZneyuHPpGiKCCz3CBCHg5Sn+cfF44S5u5g4q6clB1uxdLsFz2jG9untK7ozyuFzf+SyFohRpzgBPTYRxJ4/ueUVz7HgldkDrAJG3SBiAzRnnnFysUlFsm+5c6t1WSnFN3jkvmU+rPNq3hpaWcO0JHiNbsHccZWe8OcQkB7GTvVungDyDOKHxltZDS4NeXErYNwJW3rmz2GKLDfZdtxFi2RKiDAP0XXw9lhSUAGwhbDrEfQ8PX7R3T2H/zkgFs4pNO31HD6jy6FlOVQOt23vEV9Jhe5/arY5v/JJh/7lGpG7UEJ2+9Ar7KH59DMWoUaNGfZF1AvBr49/DUaPentF815kK+YHp0FvTpm99dECHNnlzT+7MUJg5GHyWaqeZQkyCixjYDsJE248LINE5LDrWubMHzkCS85qEKYSrKwqvIUQ9Q3qOwQmhxMUoj7LpTBc5bizlKnJzAUjvnL20E2he3RnUWgRKmmT2jrZ9DamI5YIyvS8l4m6gRaOsM7R9DdlXIEJUqmBvQMl50jloOzcUXho8XLODx/UMYiLLgjJdo+Pd6kYczYSenPVE+rrxuY/jU0QJJ++Ix5s7nGB7YQfZqS3FjgbVjq6DvSuNTfg7A85nCk9eQLuDu9VccgknPwO1I1xsG2uNWd6LTgkGPwXvJ0DbtEMvyRnA2TvW0R21quDtFS0a52BrRlyMO2A5O0GIKfZ0gk0eu1Fa2aDfeWu4GMcQwFijgEvlJrGCyHuIefuSJpAzyOc494zdLfW+8vJjIuaOzRTbr4Le5lG1bDpJ+Pd0BXAJ8cm7zDFicqwCTI2lhVOsjhPB6Krn28M+DjlHd7w53I8r9rE6YR9D7MUfOwiAR2Eoo4/HZXfepyo88WFk7rjtHkL+odfgh4SlAQ8fNUSnn9kYfjWGYdSoUaO+2Hf4M4bTadSXLhD9+GRJ95o0RG7XhfsoV6k3BOyUoZ109CnTIh4B47s51mHCVWdiTNEpZn0bQKmJDpNH8yAVLiCN1W1zEJxyJ6RQSgMUSxPMTjC9c14T5YJTuQbU+SmcQzNYFhEugEiEw7jdAeXLX8hyows8T3JH0bOboHgFQwBqAk+RRJlm2OaOKXIDp2/CfeRxN4+cFUhnmt4BOpNli9jZEsrVk2S/Ft3oCshbxvzi87mJNJpQKKDcWMoS+4GgCbIToZOLWlyFco19IADkGd3b6Nu/kTXC5Zx0Z0Jl5NGjcJLCECISFt0FdwIhPYr3DODkQTmuAq8Crx7HS5FA1UGEjL8RFqLj0bkk9Y45j9TN/qcfP2pcjiVSVWTXCU5VlEiotaKrHSa6oIQQm/qubURz8IRC49EtEencOYEkkzsUPCHdofmZIo5gVRDaSJT4fopX4QLK+KniWeAElrN/z66QouNifQNNMS7ZFW6DcAM4ycUxQdogxTUIR5JCaBOugG4RxysAJ4lTiE7m7wh3I9KdXns3mItdk+uvyjFMDlVcA04V8O37WcnOaVRjdSk8RUSRCbNH6cNwISflPVTvQ3Uvpg723XOrjt3oeHgjGrkTurr3ZNt0g40HkHz/MqxU8/Ev5Khfdo0fsr9/5W8nRo0aNWrUl/nv4Dz+PRw16ouX3T702/wewowQFCymjVNMGEs4XLYH8HBgDye2DhzemDzqodi8RqRtqZ87twfuiilXeAxtDpj2HJLGEo4jq44is69CWFjB8hIcqA6OrMldVPYVXER3Z1Ep7yMyF9BsnWO5jNYB5Gu3TJF/5i4ncHUeFBNAXtp+KiT9FjDzF6RzJ11MLmLksSSAfIYzfAIozc3Pp3QCRhWQphjPc/eObhP33i3WpJV8p0ecjWtwoq6VvdX4RL3Q0suZHcy6OmmsWy+EnrxnqnOpdydNbfs1Pra6sIIbmmvH42ys92Vu53icPdgbaFG3c7snq8Npwx5gXUUXtGjdEXh+iq/87NJEtLqvUxyzxWed0Iapu66I4/Rj8XObPIZYweTstpf7u6K5v/JY8wFOTXvr9t13vzuC2nMc4/w5YR/TW7uxeiD+3EXc7PBzQzlq5odlhXsY+dE99ehz4NPB4Y+U91GjfpI1nE6jRo0aNWrUqFE/7/pOQPEPzWRqr/A+fKa7z/rf9vPNnfADG23cHeHoPKr/k6m5B+4CVfeLt1B3UUlSuLSkQilcWpQ8stVvxieH0uQOGjC6mfnkVShygPcZ7pYBSlnpwOxLCDUnSbMEA2EkFnh0rgoK4WFJ55QkFclOlD1RdgIIlBCyGJ3CBAg0b+uud4S+AjAFP+m6i/7BeVKCvQs+UgHKlSjfAPzGd6knyJ5ldvLd8QqWF7kgJUhnSl8BeidicoYQLwBfAF4drqUTgCcIya7aAC6swhdOEJ4Epnul7wzXIkpKh49OCvcKQKN3rivBxLoCvAXH2eUfhaOtABA3EDeA1wB8u3+KsMrmakymaHmfwg5DlGEfWzL1AgwpNkdQ3CcuwFQ4OTnTb6wt3Dc3uvgFiTOAUziNNgALhc2dOBVOPSnB3lSKJAR4BvEsxlzOBa2bwDVdOdFtbZILLmeAs/uWlKLaouZiKvH8bcGEutAjdAR4Uu5Lvm5RjdU5L4l8AvgE4iTJ2VIeI6TfSigQTAEej+M+EbJkOSn35+d7alwmiO3eqODzeN5p1BTCXWEX4YNHMCc4wymvvmI/a2G7ZkpdK6VHH5cDxDvwTMGQ4j48Z35/5M3IynISRO10s3svaLyfGoWpvcwemVhrVDi44494VL3DaYhSo37pNX6z+3l+kBtttkeNGjXqy36Hjx/KRo36Yiu61b39s2558LwX5zPZVIUOF0iO74O+zXxMDJmiRLildA4hZwo30gXkawCoS3R4mwAsQO1W563infE0hcMp3SXYd48DQSzhFnrt2tOHaKWncCc9kxQ4vYDTC8kbqxvEpnA4/VoIEBtQXsHyHuAVwATZV3KHUghr5bUByDEB9g6wr4KVJD+X8uLCE1ak+ObndPKJP6/xeUSm9Ax3xAhgCnM9V6c7L/S8oozdZRv65BHVTnFV8EouEbHG/l8BLF27RXfSCGcI5xh/hfBTu79hDwVv6yHW8c8S2m2H4z+15YjYZrp5tm5baQA4Oo9yf/39u3biXLqKeNj2enf/E2eQuWzHYtpFz3q3VO/w6tcHoAug1279dr4MoRFYXACrXKYKP0fvTGrfz2OP/XGOKGAP8c9nt782QEucnA5jpP0YM+HhvStte/Ai6dlMb7mgHr1benfZUQjqXVH21gsMn85yOkSM3/z5ZbCcRv1kajidvn9t8aIcNWrUqFFfXlk3YRg16leieiPRh1hQ3xckvp/9JFam/gK/243232DFPtXJWHJM2HqaO98FqD6GtuVYXwrWitzxxGAF+foFstm7s9ECSm21R11zWDlK2/cVLB0anLmS7popurjBu6PxGmBrQDY7IBxylhNvCjGK4WRyn0O5grzKQdfFYd9w8YY0FC7hsEog+CTvZnaC9ETpyZ1BvIB8v+/mJlAqNHuC6Tk60iX4++YeMT1B+hpQ7K/cRN7oDCQc44NEuQV8/BZMpUlCdIHT7JoUryRfwGRX6QzYOcDgV7kwdwtHTrrSQrDRkwtv7pRB4+us4bxa87bKDn7y+OC7EGQIcFEwt1g7uNV74hRg6VPoUGsnHKy4jz8VQM5xcj4RIawEbmKDdsedWMgQc9wqY86S0l4QYY18mQK6TYUgVTlBZDw8FvYlApxIzuHp8Q5swgJhYeuYlipscZ4SZ0hG6QbgSr+HGIymc9gFV0BrMI9QxVZyAklKa3CcUkSEoisegCncTFs4l1YQTyohVjlDanVGFyayzPHkL5CFCEQAKnQXXDiO0AxKfh03kFveM8EMi+uNG6RbgNr7bnxzuJI2VicbtuQusYK9KztMldXWfjYoEkP4VIpjJcZ5S05UOqO0e3+FjzJivT1jKVpvdi9DGj7esY7B0lPHo+pffgXNdTdEp1FDdPo5/NzmL0l8M4Zi1KhRo77IWgC84v43nqNGjfrhf4biBz57SwP7NsWInkVMLqIoio51iI51LjqtB7dUxmMSZA34hDcEqiqYdS4obhn5CulqDmZTAbiS5QpwUZ3g6hTr3tyRE93jnPEUQhJQ+VDkgl0XrWQ06V0c4xaQ8ZcAW8s5UjYphClCM8BN7mK6RBrJxRqHlTNifC9gOTiy9BQi3QaUV3J6UROtToDexTLuMnJR6QXOpzq5G0wBqubNHUgZ/6uOEcIdPOmWSm9SRK2yCx2W6AZWqsDAWE+YICa/6ehWmdU4UeHwqde9xs6w75QGNEdNFTCQrhthi+NLIWImvRudcq5A3OjnqgBKu0iDEI5UoeUplkQnNqCJKAHrJrMTngA5gFt3jCN2wtYU+vLC5swSwFM4mE7uiFN/7iXWnSOs6JE5/0X7rQpavty5HU8IQ66IzCDPkm4hdlkIcSWU5eWwzzlEotJJKFMnBi4AVu4dRBM9PgiHlNdxmOK8OpfcrqOdPXjZPHIbPepY12v3R/bT8X2VLfqMzT3FN95pR5cUHwlOH3lHcvzTMmqITj/PugH4kzEMo0aNGvXFvsN/geF0GjXqxy5+J0FKn7bJ6FaXDiuBdD6LCyTFP4+JYgpJupu41Y5cMclMp4RHxbKTGzQBVETrbgC2cHScXXSC6ILUQnATLMSoZPlwoTujJIeHt053Dtp+H2ylNZWuTgz6GtI7N8DgFiwn7zYnALBnSF9J+jUAT65DlAtL+aZjTr3zWJ1mstxQ+B4o3wSkmyE4fR3RuOLfLy4oERHN09kB43KQeQK8XYA7ywWp5xBsVrprawFhyevpOn7VCBu5A+qYiIUthsYqfABn7WJvfGVz5KhKiC5seDSNwexyI0qyhQL0rT7SRRer8BSd2TKi1QQMv2PTWZOiVo2aAbjAeUvIz10skcFdN32kyoUpBhRbWkN8TIHHRR7/fh8362HnpXarC9GI2gG4PXrGiJ6FAyq+TC6YzQBOoXbtzrl2fiTPJN85h8m7wYH1s6kTcfpzmOiOqqukK1TXmcJFVppoBoSL6AYl3Fy9i2lijp2f36aElBOncJwJ0iIXzZbunnDXUIh/EdLNbnV7p5t2bx+/X5P71AvajwWlR5G7FKwfLfexF1y/XNpEvy2IfNSoITp9QZUdHn5vDMWoUaNGfZH1CuDvYzidRv3q/NySkTp+7w2hi+dpn9rbfYZmC4hYCLpW3x0Q/E1hSYcNJTlcMfmrJPG2KXlyhTAP5TFo4aKQ0F7GZDE4TqxwYHYTyOIwYBqITaDHYxz0HaITGF3vVoGbx/mS86QSUbs1jpd0188JgMRyA8viETFN9Jjbk+LziOq9AOW1c1X54ft23vkEu1xBXNzhVOOJkDTD9BWkrwUWFFxBvmfxbnNyh9O7jNWRvIDlG4AXeezrmbJn5zlhBssK4ioXrI4d+J5C1Ln5cZTVTWU6AXoGMfv48EJw4WGCXO9LpWhSXUhSih7cCT0FwBxjlfwk8+PiC4Bri9WleMSZ7ohKF9IaM/YVGVNzkHjp5QYBE8RT3IguTPmxNGS0x8JCqGG4lGokbQmH3BzuoicohBJVPhGb8NZR9X0/hQxnUog5au6fhU0k8WiXizsnEPOBZbTGE1Kio1vrRucRvxSHZo/lYY5rfAvhRt06JHlmKU8AJJMzpeL44i500DphIEvEYwXZDaYLhSW0Xnd2OaD++OxvBK+AbupEwHCTMY67QtY9AolziHYAsMqjd1e/j6jdMy40rtue5cQa4W1RNgrVoVYdUWz3SR/L7S7rfTMH1XscovgxftRxTI7LHl1ao0b9pGqAxL9/3QD8LoaiPGrUqFFf4gT8FcAfDtFp1KifXfEwkUzZK4UbukBxN9nLSeOEFKd8Eh9dymjyjlTR/ayLi3mkLVwklX+kcAwFKLl2TZtjew0s7vDwr9wxhBKOpVewpGiR76lZLVYXUG5cgPKNR/RoIZadIDw7qwlP7ugq711UwiWO851/gTWa18DfE6Bnqbqc5JE4F6Vi3CY0qPUMciP5Spb3IWBMcYzuknL30wv28O0UEhIEPqNBndmN02sHcM9rNgF4F18lBKNrOLC6bm+Yu+M8dXOgdDeFw6k6hnL7Xbe6AI4jnUvIuFwKEb3YoW7btxA+2HW/68HdDSDu+5ibsJOCKKOrG+fQc9Zu3T5al5rVHB3lZgAbpGuIX8GM4jm6xG2ArhFzewjgRgOm7yHozXU1x7mk6JTCmuo6CQcPESi+n2PYOwq757OKatdOMLM6TmBC2m/d/TQhoo3Yx+p6Yap3CekwJz4yldgJvce5XgpUx232QhBwz2h6FIP7kDvpU2JzI1Y36iddw+n0eUSnfydeOGM8R40aNerLEp2+CdFp/GZw1Bd/M3+fFR8CxR9slHzjo8661KDfn3gI93CUO3ZJ5Yf3ISzuJ1pqNqhC+RGJGZNSwncJoUQcLSf0VWnqDsjdNpKBjHgc5IJTQJ49QudxMWKhd1NzgHmb9HpsiVgBBXQ8JtXEFkLVKnlcj7J3AR7fOlA34E4XgztKnjwyh6eIC97Mu+Jd6MybiIPVTnLn+N4V4DcELw7t1hxd904OTuarR+7o8SoXtjwyJxR3QfE96C4pAFMAzJ8ixmUAbyLfR8c4hNvriWQBtMqFhlchuVjVBTI7VB1PAaZO6Hvx+KGvB2Fj2NPEKjr5OSiYT2QCtS1ilClEPAk8ZWgr6PQbW6xubbdCuFqYXeg4l3AMSQEE1+5+nUDMTMFI2NIdlMKKu6UwxbUwuQtqCUExz+UE5xQlJNxE1ihZuLLCmYTc/lbNf/6oFBHuVBIBbQuFK6QFpEDOdEGqyOwG4SpUGPoUwtdUGKKOhVtLWhTrF+AM8gmlzCmwOe+JRS4uzbHOJVxXTyAZL4dFyV5yuP/sYxfmqPawb5SuEG+gLGKC+eQznthNCgC6O4dOAXv3OKaP4UaxRRfT8nj35umgbtqJOcWdWi4MVWfbHlLvnx3EJT3gNNX3kFsr/Znm/q3LD4tJdYjqfvirK0MNte3LqOF0+v61hug0uE6jRo0a9WXVLQSnP8Jwq44a9XOdknQOArGb3kWsjo86RZXoSJcxooRS52engICnG2VpDhxlC/rgBZUlhCVzV1RdL6HYi4sUOkP2HC6o4ryj8hLcJevmVgWwZ8m+9i5xuIUI9JrCSUytz5B9jeowwkKW982BpDOgr1xQAb3rXfkmxCLz7+tr/4qIFXgByku3zIzmMppC8HlP8oUOPZ/DRRWOGl7b185dmm6ScwhI6RTKTmPXcDpd2cDj/fI5pjcAL3SRzw7zHV+W9RfEfZQqeUbLg3lS7iPA1zsH1dYJNT2cPP99eUXjSkVXPpyQolFzVjUAeHM6ZSTORZlSzig8VWePkNd8wd6ZFYInp5B9NweNV5dTfp4uoBug13A6JSspz0OH42yg81Ke4bE6oLm58j4NXa2uq3A5FRfL9ILeNcXqcuqvSwprl8O24/kiuvtja8cejjSvg8OJOkgUj8Dh/bU/8t3QH2PAwTfcu5geyfdvOZ0+1q3uuPzQXEZ9kTWcOd+/NjjT6e8B+PNjOEaNGjXqi6n38e7+0zEUo34FS586aeEDyxLvPE/37O/HM7HKYarfTnfAoxlh2I6oaC3OOp9tdGgeWLxyqo17nRhdv2QlBSehOpx2rJXmhFIyWRiA8BAYvOMdXXSafTtcIwa3yZ0/J0izO23KNUQngzRLdgp3VHBueANhFcItvVNlQJVr63gmQHRGlWyS7AmK6B7KBYUvIWABhElqMT7GsYCXiM8tcQ5fhejkghB5BXEReINQBM10l9STfNCv0aluiQk3AU2dm0qxjyu9m9tE5zg9uzuMVwAXepfA/hbJ7oJTdEkrEWuUWrexWzm0r2dG8YizIm4m4ErxtROP7oDwhNiEyIpNyv1Y8noav4cpFK0eQ8MtwNZVTKCLhCd6/K0A2iCtcjj3QmCrPCZnSRmkK6GFDKB18KxiDCjJgvU0s3ACeRIxgTSZbjC9ALomJyyOScFqmiEW51RpgbD4/5POTqrd6Da6oLqGq6o4l8q740naAF2du0TVZ60BzWdJC6QL8hxRo3bWdd1TSDtbdT/J1rhfizu51MfbBGGN418BrDIJeW7seVlYWcU/ltpF0IHia4hpt3iGFdQryU+lxmdjGxZuycpICona4mrvWE7Jcdor3GL38uuXqy/IcHQRykOBwkX1lpGUQLdsA0a14xzw8FFDdPqVEJ3+EMDfAvCPj+EYNWrUqC+m/hjA3wbwMoZi1Khfuvj1qd//oD4WXzok8I6g3e0gOLVltOsoZQF/Nhd8REoT3WHEEJy8C5urXVOIQVN85l/JwFE6oGrnttUn23oKttIp1ruCfA0X1OaTXU0BLz+H0yqZT9+A5YU7No5mPw49IVlNYHKYAOApHExNLOrYUo1XhbMLPO5gimPqGEk6ATr78rwSvESnNnYcp7N3ssNrMJkM+6RFQeUH3blKVjSWkGEPeD/DHVanOKYrmtsrWVOl237fSS2dLSk2bWhukxRAS7e+H0tz3ewieHRe0SkA2gqx5YZ0ITmPaWICwD0Sl44pdUJJuo/MBU2BLvDMIKc74cbB6tNO+iUnkLOT9HUNoSz2E8e5h2+vfk1qJraAJZxCukG61OhddJ4LyLhH72Q3mL2CLCjljOZmCqHWRbQubnjxP2Fdt78SeotfFxfc+k57qqJPuqKEtUUXq5g2tedf6YLKeOMDgcgdddzfA/meKL2wiMbtMrZ7p78P0K+nFJzeEJAO29a3eFe+tb0hOo36SdeI132e+lMA/yoGE2TUqFGjvqSJ7u8D+K34wXbUqFGfMMO5W0bt620NiB/rxPRoz4+2+iAbw24b1aGk6FZ3+L5/Fp3mqsjQPlSJeBwdul2X8wmvNMmdSiX2sZDl5i4JwV1MIUgxHFAOcW77BjYSizt+AAjZAc8dIiyvYPkFWF4b5DyEHumZDg+foxtYilMpUFVBibCvKT2HP+UFLN/Ij6c4o0lfedc53IDKYNoAzATe0cHhM7xz2EvAw9/HJL44oBwZzwOIJcStxXlQeJKQIkSITjVqBrRYUUbYurhidGDbi05bN6mfgxH0HILNAuG1EynyiwLPAp9CcKHb9thEJCHGrnYxtFhvjg509DEIEUThXIp5lIhZhWeUcgoH0RbL3IKvhU70Qm4rPndR0QlF2bnNooOekZx8u+UU3qs1xKZbJ5LkeFFECV7TTHfQXWD2AqlF3ArPcZwLzPpIYamwbxeXOhC6boC2iP49BSydMYY3CH10DyEuXePRP4Eo0cXvFqLkFmLayTvkMRxWmNp2ddmDzzHHl7u0VAUlF6/Is3dHBCWYhDWWCQdTL0TvXl6S5PZIhWSoR++wPuLmsdxcyVffs+jigd8BydV3zjywnviQB6V0TqkXRfn4NT0Ep1E/6RpOp89Tl5i4/DGAPzeGY9SoUaN+8nWF8/j+f0BtVz1q1Bdb3xns0QO639CAWoyt/VdvKVCo0aRPOSz12+qyJeo2F59l2K4n/HLvVFIXt/NJc7Q8b9E6F6OKxXn17qec+7mDw8HaFszpFJxmSEUuSIksK8gtJq+lMoaJjS46bZDoQpXoziYKxZ1RdMHpDGH2NvflSpb3cBC37VU5lRCCnmOAL94lzoUL1Z/r9UxnMQVnCTehvIbLSYLeBTy84zTxNQSQQnddfQUHesP5S+XFhSdcYz/Psf13IVYsJK+xDZgqB6lE/CndYGu4S9DBl0t0dJvj8m/CTrxxpwodzu6f8QzyhOKOF4dNh6BFli5qNHkHNzxlR7n8jMJK6BXAK9juI4IRvQpwN7QFu2dp/C95LNDh6WeVcCK5BrFAuhFYAvw+izw5fN5jfGzw7xTdWB0/0gJho2ewTijl7K4iGExXSK+Ulu5hbFGxcFPRgd2rEK4i39cJhSeQJ0gLA2Ku1s1uSoEoHqQ1x14pKBGTGAKetEFa4tqG1lNlG+c/tWUBU46LO5Nah7uj6w1VoErAeopK/eeAHztJj/XhFPD7tn9gTeG5v8BxlSWlaKeAi3/g3dK9szIup50qle++ul7vnGPX4ZDBDTdwJyDpDcVeEauzN175CoVq1KifdA2n0+epFcC/BeD/PoZi1KhRo76I+iMAfwPAH4yhGDXqi6vDb/Y/9Iv+nYHg6Ap4c2IZ7qKeIzSxCSMrwFsIKSEc6BQuqdpBDdX9oZP/yS0ibEvse4YqOHsFcY2vvn19QYpTFbLNBSzvAzS+YN/2/eyiECaBi8AXMJlPmFNQilO+gXwF04GkCS5suYOJ2EC8gHgP7NwsT2jRtjWcUtnRLuHiTzE24cS6B17LhYJkJs3YA8HTGZWi2hqC3hnEc4C7041zia+1GwffXnPmJMcoHTJ5Hda7CT0xETwT9OsivIZDp4c+N+HERY+cD1zDdXWFR+fClYUJ92DsvO/SPQcmZwkASpm7yNgW7p90dKXwsYXaEcwoIoSvcChhDefSCc1tlWOQMTi0c0FxDlRdP3lJ4Sbi2WVlXQIIbrHvOQSnbTdG6XTzZfMeye8XFzr9vGN8enB5g6NnxLCB35dOtJzU4pN5jY/b2PHbXOOmEdx6caiJgLvv5d97aDk+IALZR5b52EvrY2J9HxcGhstp1BdQw+n0eWqDxzT+OoD/JIaYN2rUqFE/9Qnr78J/UfDNGI5R43l4PNHhwQW1Q4XHN8l9WmW/IR0/QqZDWuCuj94lXZydj6N+Em3Oj1tvHemYCZegh0u7z8yTVWynUVveq4F9g+PUnDhuYwpTQgmw+ApyVWXARDc7t0cs3eQUIUSdAJiIDeDq0GcVCn0cbwFwk3ddi6buoHOicAb05BNrGohLOKKuAWOe4lDDkYUJ4CaP3r0URoc86EkKBxS5OPgbt2D6lOiudw4hiPTPrt0EP4/lLCqFlgvB9xCvcUucyBrNe6WzpK7dxU6Q/CwXtjIyFR3XXDCh8B7ALQDLkKJlPXEC8UzCQdniVc42MkDRIRDphjozuqaxwq21yV1AS7Sr585YRxaAE72DXIHhElyjLW5LtgQVZ9Z4GKwTe64KCDhYJhSeIGwKtw88UodOeMlxiW5oElgYMTjGcUeUra5PQZYHTfAE8ARBgm4QAujOEo6js4AiaQ2XUxOHCIGcUDgHrfoG2SUcRQzR5wyUM0uZIGySLjBd5bHCZ4AFMnN2Ewlq8j9hAK6svC2/X+XHLxd+IAhmLk7dKG3dG4ARv0ur4xYsJwuAfC/YGRmcLvXPYHPWKZf3Z9xCNBPdBViU0dkUq1jdkCvFgM0rmxokBLxgH4O7E52I5mvqwOKPXsJdRC/44Z2FNBXxYM+JQ3Aa9YXUEEc+X30D4P8C/+35qFGjRo366dYV7k79LYxo3ahRP1cRrZu0AsFh6Z1Lx5+HS8zsjg6nPVDaY3dLwLGj+1pt+W5AuSWQu/ssJqR12wniTpaRAbiE42g9CICnvTsJ12A4vcZ+EpqdTqiTDwIvzobiSxzLE9zB9BTH8oImCFmIRE9A57xyoSBdToptp4uJLkbxpXM5pctqjgnxBe5u6UHg1s4rQeMNoI3GcUpHj3XjmM6lE4ANhpc4vtvhmp1Q8AxGxG8PDr9hDyfvnSk+jqyOq3TMNCh4E2FmsCQ8HOHQ6R1XldPUnXduK//dSUEy99UcTqWcUUqaA26QvXZQ8P5ciYLJ10lnll6D/WQuJpVzQL4tHEp+jE2A7e/TrVsmAOLlhFKegi0FFwbreUz+GdKFtKFg8mUhCFfYYVwQgt7+mU3G1mUncu6Xte788x4KF+HOxXYco8O7ACkWZcTtkeORh+fQ0FhhH3v/HPdb8N2A30NQGvWzqeF0+nx1A/BvAPg/AfjPj+EYNWrUqJ9s/S78lwS/PX6oG/Xz1Fq+ffETP9MBx3vIq8QyD7ZxpN/qE46bjQ9FVbdVdQEk0KYdEhX+A7JzQHkneucwIduaOwE4tqkWqfHlqgghYArgNuAOk43kBt+Ci1Gq624e16ELQdIcNqrsZLeFM+sE6VmyM8EiciV5A3ENR1e0QBfCRfWuE6euASj3rnpyZjGhJ0jvBM1KVhPxAnCRNEd3vGeCk4CrQiwiAi6uKjrN4S5a5ByoV4g3eLRwDq7USe7ySIEtYnVMESkn6CnObSEgJK4ZckHmFPsDgI0h3MijgOlEoRycfgLwTPAc988N0nsArxHNQmzbHKZdngDMqhymvBO0BqD6FjeldzOEAJYnOZx8psfErmzd3byDITiBODmQGyeQ7qKSu5gkrX7flpPH+lgCar0A2tyNBYOSo1ROgCRTxPE4geWMUp7cRaUNZldIF7rzKLhJBImSLCd3NAGAbXEsq6BwbuEUzKklBKmr34tIXpK77RRuLdPiTiFtYCkonMFyDhTSBmn1pwxFLJPAYF9pdQYTTyAh0wKzi3fRC8HOYeHZaa6EB4mAzMdcS40XssxxbDMaPDzibd6Jj+Qsd8ptMqyEblQV1PKFxVgmAUsWz3I1S/ozBPjzX7sX5iti14UuHE6UKhScsS3jHo7HELNDsL6P3unjL/U+5oeDeGUaP8N8d57hqB+1htPp89UG4HcA/G8x2m+PGjVq1E+1ksH31wH8YgzHqFE/G1VN6gJznsdLhjC7rxqZq1oZ6qI0kht7l5MLR1OIWike9Z+Hk4YrwJWkR4OkybvZQS7McAkg9QSHdT+FqOXuDaZ7ysUAj/poUkb3knXkzqUlzjhTQxO8q92zT4B5AflC8BqxobNcuJqDK/UaP6te0JxSDin3KNMtHEzZFS9dW+fWuYyX6GZ3i5nfGcRXIOZwgr3vHF+9+8MjUcno8Tgb6PtJ7s9tP+HmBPJdxLgmiCuEV0nvw5GzNWmTyf/JbnLpjknBYs3OctjxeciOi1QE3OT8pLW7QxQizym+/Pq6mJPQbgNZ4B3tzh6cc+cQvXNh02k9+lYAmkf+YCInlfIU4Ozs5PaKPJbd88BClhNZqlAYnebW/DzGLqNfC1Nwy+NkmcESPKboOqcU2tiEsRLMJrMLpCXWbR37EoxOAiWvq/LY8x6JDnR+7cmq+pmAjdDK6lAiAE4iZ7F27uuO27v0JSDex6Z1xzsINQjxZ+rmbN213zUUODocnVOl6nLrt0lVh+SbDqZHnCh94vvuuGy/f8MQnEYN0elXtt4D+JcB/N/GUIwaNWrUT7L+MASnv4WP2+RHjRr1WYoP5mvfcUsM1xTvupur4zDlRLJBmVpvPTFALTmxjG0aSWPtWBfcFBePGJPdFSwHXlMnLFV4uFx08s8sBKUlDngicKZDuDe5sHMJwclYu9a5GwqQizwudl3i6xDf0zkEp1MIEyEYZZxJZ7gDCSEoXekd57b8XNA7Qc/hJHttohEdeA49gXoOppK5iwrfELoCKqKeRDyFo+QK4MUdVbsIG+MYz3Awu9yxxhLnfUWL1fUT7pnkE0s5B7vpAqULqYs8uaARUOvkADEm6LoBSoj3BneJBRMpYlxtXQCVn5TuoryrishTOLVSFLpUB5FgHXTb3WlNdFqCKzbDWUhEMIj8/gNZOk6U0kGFW8T3Njd+wQQZiIJSnsFykrTJ7BXm0TmSJSJx5xBOblCIbcIW517IcqbH5kzWHycYsbx3KHzn46INsnRKTSiMbUcUjwVgKb3IlSKYizOcvUtfcLP8Sd583HQFtFTByZ1bs0PC5YIYdPVHgScWnpiin5/TLdZfe0FG+/9ROJGyy16+QurLSWpuPL/c3AiudJbT/o2DNGM+FJ0ewb6Py4ioHew+FQw+4OGjvsga8brPWyuAvwPgnwPwH4H/1mjUqFGjRv00agPw/wHwfwDwx2M4Ro3a1Vud3HZxOXYE8P4PdY3JPxSzQ2cxqhO9e2GpJ5BnnG5/TDkBZIOL87A1VZdT2h7q/DLhvwFxZmO85CHIXUxdnNCIEtE5IcDbk//JDSwBN3ZpQg2Y7mKVIIUQ5W4nAsQ1BKdbzGZLngqkk8fhMJNcAV5BXgAuLuRoduHGBSXlz/Tkjc5YukXs70Tv9MZY99VFJ4+8SXJIeYV/60LxBcArGcweZyM9gzjJB/EWoO+XGNAnNDZTso1esWfb5Pk9AXiiQnBwILi7ZVrnMoAoavykKdw8lOwm6YXALe5FVn69izXPIUZ0zhRZuHhCHKlhqWxnPwdoO0QMLQGrXvLiV2g1OYeTpxdMnIHk8a8CjzDOcQOvVVRxtXRGSUcVROgGagNKATFHxzpK2iS7warzaMMx6erCzwkiYXaFuSBEQhGJewI5E1ohu7pwQ/n96aIrGefisbnoWMfsSPeMUt75uArV0eWj6t83uXuKBEuZ4ElYg9nC1j2PSkEwxMAMx1JaJV0h6yD6nEDOEW1FxBJvEVN1MY85vnHfyGN5ZL4aktpdc8AWN0PGbFvjA7abIUyQiois6PeodffT8V2oB4IS1VyUSBGsf68dnosEg6OL9t69c1vfg6E3jfryajidPn/9CYB/Ad6Ke9SoUaNG/XQm1H8I5+79a91kYtSoUT8dsevjC+toYfjgdkVCJHeTwsxs1UkkndWEXQRMfSRm674s+311k9D+sxJxvGyxnl/R5a6Cj1cwhKTGaOrH44QGD79E3O3abS/h38+xXAg+CRnHhnQotV8yX+GNb97HO3CCg8G/CnFpBdFH70JEqZDyEqLQS4hKuY0nF8CwsEG6+5hTm3cwInrueOmdQr0LKdebovNaws0duA4lnHzr7glftvA5OEAb9k6oG/ZwcnUq6Tn2oepaujsWTl2sbg6Fc4Vw7Y5dnSCSsbuEkK9NuOAUsTCr3egKJ5TpHMcOSFds+gam93WZPJYW8Ztr57wGSN8CeJYcLAC6QnoJltXWrx+q7AaPHMaxysfe44GnENccZM4ab0vw+BrXYm16sC7YRR/JYDDNwXRKISZA7XWMthBsTiKfokvb0kXmsltdfgHAxnbs6yMB6MFzfPwMuO/iaWgw8mPzgbccTP1+S3eMdyynw4ofs4A+2t+oUV9UDafT568VwN8G8M8C+McA/PoYklGjRo36pdcC4G8C+F+G+DRq1K+ucvMZt/rol+6N690xllp85W7RzjwVy+it3VCuMHgqRRVg3kdkGHuTm1+opi3JEzaBsq7MJ9IithScpBCd3EgTrdO5hQeCwWoq7pdx8LijySOOl920HEq+orZj1xkJRXYY+erxncafaWAqTnQX0IYEevcTe2IDVDyCh5Mc2H2jR+digm4nQCelk6g6kHSJnSQH6pnusHgF8MKMCSoY7g7MnuGgZI/AKZxSLg480e0zrwBeFaI+9xea7mpiifWKiC3g21cCrxGxY5ugc6ZznE7hQlkgXf0YtIb7KMXBWcCZLlIpnEoWfrfNmUBV+CnukBOAQjmz6ASzxbvE4RrnV4+FHmVzl1JhgSgHe2uFsPpdyZnOhJrl0O9buH3knCiP+yn/Izkcu3AWi0fuUKZwZl0gew/ThVRwvlJI5exRQwY0XiuhxSH3DigXGawhd1o5y8kWkIXkxMInIdaXFkoLiS18NMUfncqsusHsBcIih3ufdBRbgRJ37krZJUSucK1xAssUYhtByWOIWgIcvoXLyQHeLnSdfFu4Arq184I/X4JIicIGH+u1iYj13cK43wBqxbHrH6vTMt9DmZYT5MD3eNs4aRzZ7c8ta/IXlQPEjy4m7cQuvSE4MZ8xPnq15mdk373vh3vdjxo1RKcvrv4EwD8P4J8E8J/DcJSNGjVq1C97Pv7vAPhfA/jXMVxOo0b9nFU2HiZo/Tf5xjK2/77YrXhwO6hvL39so965G9i7bHqWUUbQrgHa7p0X2R4+3VAbGufogq4jVuzn1P0sf0FzIG1wB9Q7tG5yV+zh4Xk8Ty6g8QrgT+EuqFt3PMmDmuCRvfexDfi6zH2sgHeTQ2t5n+c11f2xnmNOyG+xz2t3DRziXPCEwnfRWe/m3CT0LqQZ3pnthMJn7yjXg63rtbuiOaP6+2IKDtQUl36BFCDzgw7QhJ5TqJhLiFOv9d8UwuNu/vkVpoS+O3+JwY7y6juxFZRyQikTnNh0dZHHcv3+fi0ufBWPTDrY++JsLZhH90perxXmLKRwE4XgFjwmsUC4wcxdTH48xV1odRsG2SvM3oMkSnn2z+tYbp3g6wwqs9e4DwSUGSinEJwyProBusEsXXFrbKLE+HQuqnpcx/vdujjmcngGH70trImZDzvBuUjFqkIZ3uY+lu7efuSEKvh06Dc/25tv1KghOv3K1QZnO/0P4Wynf2AMyahRo0b90uoFwL8C4H+FwXIaNeqTJzbEDpYUH2g39eHus8NMTm9PsdhWYsdWOW5iR+lNNUiS//6fvTokSjHZYyKB6qbYTBDKNuZovKd0QoGgSrqokI6kcDRRGbmr7N8VhCkjd+1wRHIDubkBShOknEwL5A3klchtQ7U7lvAcLCcAvAi6JKA8DmqKSb9H1HzBhe4wepELIQQwg3C4uNIpxWvsb5Kzlc7hBNlCPOlFqVnUE4BneWt6UFgCxr06FBrPBJ5AzBRu8u1fumticT2KgDPIc7g28v6SgI3CShcOHOzu65xAPol8AiSZXSG9UFrCeBKiAM8uOJVnELMIi7EEgJWozKVeCLOIpp2SVyRhgbAknJxo9xJap7mIBCqic3aBdBWwCZwqHymjdS7SrbGFEz3GN4fzyq85a2xvRo2T6dag2iFYuUEo72k/FskgvcLsxcUZAiizUM6CSrCOrgA2KU+Gio55EwiFu6vvaOe8qcKzwMnh4Qo+U8K7WSRb3GFE50eBk/uXtDoTq0USSZzcqQQJLMGHWiN+dwVpFIp8DOYY9NXHUGs8owXgiSnqCqugG8Qb3ZW0czgFqYkp7DHRX6owcObLi0fdh31Tgma+bOvVV58evN36r4z4Ht+PqtTyfEFFR0w9sHmm9ZNDcBr1Bddw4Pxw9R7ODvmr8Y/4qFGjRo368WsF8FsA/qcA/k2MjnWjRn3xlZE6kgdDSodtIpUq1hvaV8CCaV1TqiM7JVwMtN180ZcyEF2sRylSyGNO3FgZTzoBmLxrHhcXf5gMmsPP5YrOdtiw70JX3RiQniCkA2gLQeklYngWgPMnAbOcaXzxbnS4xfk9wzlO5zhed0kJrxCW6PQ3i3gn4jmm2QkIT+HqCe6kmtmYQrtub91VmYPNdA6QtPn2dHUeDwPQXrvQnUE+B2epyAWIF0jJompyJDmxlCe6ywmAFrlQEZ3f9Aro9TDWATVnOK+iK5sLNwZwz+Zh8IjS4SKsHUA8XE50xxRjLLxb3Colh4nF4d4sBDbGet4Jjyck/Fy6uMspYnmNlR7pPO9xF2KEx94cIL4BLty4eEN1gHPnKrnA5aKRC2MrPXp3g7QKoEo5o0zvwHISYA751lrPwY8zo45LdFZ0B1/EHyOaiE5QmzKihnQo+XZvh22fSE4EjO7eWjoRaWrzVlkIW72Y2D+3VJvjJjvKDsJQ98LIF8lDMLi6m4a6f9kcGzD0Lj7DYwZTba/JJia91f0OGBynUUN0GvWBEoDfB/A/DvFpTHRGjRo16sctA/DbcI7Tv4TxC4BRoz7PTzd6PBFqfce/2xTpQ6tJPe9o55SCmltKjiBi3xa9rdi24RyW+GpKlTqAOBUdwyyWvZ9QupspeTYeCfLvRdxHcIeTzmF4WAjcQqza0MduGNN3qMS5dRE8bl2XwCLpDOkZwiR3HV1DyIoYkp4DWg40kevq/w/ARS2Pxbnr5gLg5tuCqQlFZ5IngkbhAuGigKIzPguR5RUNJt0D24u3vMecwo3cjaSAW793Zo+LThK2oNg8ofDrcCFtUIpTyI5yim2fnDeFOa5ZCBpYwkkTf+4A0nkrTQEQnwgtlL1S6iDj2mK4T2J5EktCubcQS24R77JgLD3TXUyLd5zTCsjUFNDSiUWrM59IlfIkj+0VSCusiU50RlOLhTG657kjbq3CT/CvwPIUAlZGDDNa52PmAtc7NbfVje7uSmbUpFKeME3PHvXTNaJyG0o5o6Ro2D2uGfVzA9it6+KnEGiZhCi4kWeRc7wWd4iFYETMLDyz0IH2CWcnCZYp3FkJA1+CB7XGdbL+BdK/J7CP1R3FHF/XjzIdVBb3y4Gf5Gpf2Jzs7vmNheK+rOBy3ndwvDOEvq2L1/cNhug06kuvEa/7YesGB9f+dwH8QwD+UXz77O6oUaNGjfpu89c/BfAvwsX/3xlDMurnXPyBH6Yq6dQd8s2jqBE8Pjg+NV2q2zzfPBcHG1fgLlrqT95xHVTAv0lGpzp2IRVlJ/QGDY7W7OAh8VIh4u6SAmpUiwdNrXcwNAaRz15XuENE4TjKTlvhjKocJ+9dn64bF7tKHNPqggZvIDfStx9qSce2EaKz1xXAGrG0dDHN7qpC7QoX1qAJwEkuSjHWdy4RA+QcrCOCU5zwNVhH1xAvJrJyp26QvoFqrK509pxg9HCOGF9j3EiXxjzKCKQ7XsTyDPKdL6lXSq8uOHk7efkxzADCPQUkJJziGrGzFJwMLenZx9OKawgSDIuDtpFw8rhPSLCcwqVV5LG6dDktvm0SpZxYePLAnCUjKWJ1LGKcv2CQTC5GyTvWlRNYWU4LPUZ4BbQ1whDk0cEawzOYrRGdM5RSlJ37wMldT1oItU6HxFnk2ZlMAKUF5lHJOOXZY3XljKmcHC5urzC90I/zGSznuK8tNJiZDhYvgDa5syrZXFOk+SyepQC62xWmi4Q1wdzyjnZT3OeIWN3Nr0E5OVC+Y6iFoEhEH8legG6aeLiJWMVn7Z/jFKMoKOHk+bxbdLxsG6dbxXzD2vC2M8mh400s7KPBO+FL5Id0dg7BadTPqYbT6Yevb+BOp/8egN8dwzFq1KhRP0q9xrv3n8aI1Y0a9bOstKw80Mj0QDPrJnFUChhvTPDC5cStT9Sozmvzs5DE2sc9vLpv744QnHqgdb/JCQj+UoKvyWvniEonytwEp13kLVrTY4Y7mJ7j89f4OTQ/n+CRuh5o/gpUOLjQWFBPscway7z4Nlzs8egehAYov6KJcbX7HMCn6EaG2NatO+YrGgQ6nUfPLa6Vgpbeo+/c54LQE6bp6xBaAjpdxz4cNzq6rxSRr3PExLaIweVxrO3a0IHa5AyW2blKsDim1xCGLK7JHA4gi+9fYnvGFjFjdWG5Sy5ieyXjaiEiqR+T/h4NwDcdEO7HkKJRAcsTWJ7inrxQ7RjQImQRr4NCOHttMT6eME3PTcSTQ9WFS6TbzvII3S32OSPdXzVq2N/bnB5kX7tYIhrYPODhkkzu3Oq6DOY1YBdt3MHD9cZzbNhD+h9p89GFLihde+D4W9I79vd4faEU3buXvotYNGJ1o36WNZxOP079EYC/BuAvA/hvAPgLY0hGjRo16gerCxwc/j+IP69jSEaN+m66TvzRAcWrm4n7uVjX8I0PxKHDZ7tf4avN3O6mhtr/tToQpI6vWz89JGsa6FywaI/Famap3Bd3OHUd1GuMp4HMY1YK0tLFIKnEukZyDRhwcz+JJSwSK4gl4m0b1f/SVwA0S3hywYdriE4rmjvC4n9nEGd6t7lYDg72dsh5dKTjDGBpcHBFBzS64ESUgJhfq/gjrXTB6QzwqxCmJKCKKHQe0ZPIc1x/d5yoCjYFYRlLgUfgGQ3+nO4bj2CRkmShicwEn+FfRdBNLoo04cNRXqig8VLeETg5BFxbjTU5q+hC70Kng5gYXegwhYC0yF1lauPNkpFAlnDsILnPWhiRNQFFxByKzgaPTwb0PWDlxETvaGeQJaybRDmplArF9s90A2UoEERJbM9f5SkVQralqBZjXVQ4o5SJmy3uDsM1HUmyuOkZOPgUuMxucjH0pFLmcEFNMltp25WyWzCuisBJkjuVQLKUZ48EYo3uduHuImsM0CNxVILyhTXulQXQGuahSS5KUu4eWyBtBCZWPhUmte54ATaH4QDojoedfg0Vz2g+jy0THM4rVli86jNm6ZzaNRcI5n04OMX2Isx3UVHc44XsxS7qoViu+/dTZcSHU6oZRofwNGqITqM+uTYAfw/APwPg1wH81wD85hiWUaNGjfrsdQPwN+AOp/8dPGI3atSoUQ/ENAA1GrfjvKSTgQcJLF0jsYx6xlMPK06HU0EDGR+cNPXzCdUtU91LvRuqP84nNDdUOpAS7H2Oz2ekW6p1owNQ3UvPsa3+83QDhaiE5ziuK9wF9RrHc0bhVxDO3XG+ojlq0I1Z6w7HiBc6YPvSrdNfhxNK+SpcVoLhFWbvQzi77caKPNFjb3PM2ANMbnDho3ZjWw7XttTubIAy6tVdO+uO5YxSnlDK3K5vuHQsXF0OL3dnkMfiXkPg2+pYZIxPsnA5IaJqTyiVE7XA7L13oavjkh3ZJrCcUHgKCTTEQu9K5/G/MoOlfSZzJ5YLKBNKmcFyjvWXEBmvTSTiHOd6grTB7BWbvY/tZZw1WEq4xbX179t2hdkvgv3knfbIyR1cnMIbuMJCKIt7O1Sg/t5395Xh5vFXTgBPsUz/jPXuv7dSxUeOE3DvIGIVQ5ur7JEj+sHzf1ele9bfcEp9qyK+n1tq1KghOv0K1wrgb8dE6DcB/BeG8DRq1KhRn11w+lsA/kdwePgfjCEZNer710N6U+339gDupAPbab+R/P19gnzuOpZLO/8Uu/Ur/4m8E5DaFtu32W2GqhuUw2CSBeXGgmCssI/skFLZdaYDLduvu1NKjE56BsLiaCYAk6gQW7g0uDJaS3Zplne2S2FjozuiViQsW3VAk6N08q5ouoK8MuHh1FkOBheBK4FLxPOkJoKdQZzljhFnQYmbjwELHMp9InmCYHKR4CWEgCm6yr0jUGR4AfQNxSsad8gAzMHIOYOY3VyDEjFEU+w32tzXyyhiEuFRPGmR7JW7yJ4snDOnEHtKjCnknJ+NSJYT1gTEd/lHdi6cqYLGEfEyv/Ekd7JRpZwwVUfUFnGz6AantcbjSplh2mS6EBYspuy2xilwZFs4dCw62J0xlSeWcgIkbLYw4nJ+bQhAxoy9lfKEwrNAwLRE5zsLwPYTWM7hjLnJ3VQuzkjBmwqRi6LMbpBdCa7RAnJG4RNdPCOEEJH0CpIudkGURae5+iBa2P8ukF0IrXRRb5J3qyshmEl17Oy1VOHNIfMgZoEF0OrXTQvA4ttgE3U9VlfFQXU8tuC1BeIpeUy7dxA7F1R1IzLB7h2QnPtWCETG5khLB5/qU9wJWdxHevuoXf0fdyPmq6gXlBSv0YTR9by3UaOG6DTqO02I/h8A/tvxkvrPYkTtRo0aNepz1AXeuOGfBvDPhuA0fmAbNernLIbVhm4f1sfQRWGw5/p2HcsB7BwS/plaZ/Mu6lZdQWn4SMFFOEDH4R26nO/THUvsMaHgjJ8Rk3m0pYwWEcATgLn48hJwFfDq8bHgMKEDezcX04a2/hOIhIevcgfRhS0W58uAc/cz62s4jdA+xwyPkb1AeI/mCEP9f9IdVe5ySmjz2oQu3dCcJtV9JI+jIbq/vYdH5FLgU902yzvXCnVt0GgZpCudGXQ7XG93XiXLStGBDpUfBDTOLUVOIQ6FE0YRZ7OX4ETJ+UgVon2D7AJUd1FxBxRPkb+6Veh4FZGKj41lx7dkNLE5ewigsPiyLI0XpVtoaLM85jZRWCBzJxa0qWZGWVC806CLP3YJx9EWotUzGNsIVpRM7+PzdyhsnKhOHYnxWyVF1z+p4y9Ntdlbcq6kGDsq3FAzwLOYLCwsbI6zKZhapUbfvDNeuLvefMYNj11OHxLRj8/1/sNe6W5dMXnYLz60jcN7ARgOplFDdBr1I9QC4LcA/HcA/CGA/yqAv4TR1W7UqFGjvksJHtX41+AMp38OwO+PYRk16od74PDmDy3HT3uA075/2P06+JQfhdyi5Ngl3m2EPYKpnwt6ECiUqnQwcd9BL+HiVPBbdifBB4IUw/mk1uWuQpFjx5uimx0aNDlOA4Q7H4rzgBismzrxzgNwBxNwiknvjc5yuoIVDp7d4QzQlQ0MbgDmcLE8uQgii20kzFuxjxOAJ/r2IoIVMT/yCcRTuH5WCDeqimQp2FgaSBwc7g4cn6praXymcOmEhATySYXP8n2keylZUzcXH4IY786iZ2cP0TvF+UWfnOSjNeJ7W/w9RYCIyrGKVS7ytLH2W4NFLCftYnsM5pJuLoZhEzGDOCk7njmjaAG0usMl4mzkORxVLoIVTijTGdP0hFJmmV2xbu9p9t5dRF2sk0TlOAVEmwpxS1oUri2VMkMgZVeYvVB2E2CqXRU5Bcwc7CHogkWE8BlleorxusF0lXfOK5jKM0t5iujgLUDkcxWdZBdK1+BXUfV4SyFRVB1KWjs3UQh2PIPlKehqKRRuDlxjPhdd5FU5xnogKB6Fnxr1TMcR1TOgPIsIZaxOdnwZhdibhk4d8Eyx38aQiueqZ8p9mxfb4YU5RKlRQ3Qa9XnqBv+N/H8fwJ8A+K8D+AfRssWjRo0aNerjZfDOTH8dwD8F4F/EiNSNGvWDaU3qI2st31bVJGk/uTr0rqqzt/isTfCO6z3cP9teoJaV2/1x4PaqxlyM3sYcByGp2/auo90+OuPLtBboEZNhi8lsYV0qzPbrHtVZwRrXS+GqxPl2PCiuJK8A1py0xmzXPLIEh3GLyYa60KNzTJErRKq+m90CRZwMfAJwCjVtIXAleQOwtvAZT7EfRHex5C4Vj7PhWQBhCoeU1v3kv94dxUWXcLy4q+hK03tAr2rOKNfdyJNK+QrgiR5Du4ZwdAO4hWRY5ALVCaWcWcrswgu2MASlA2xVg4dPaB3rWBlNpotsewnnjkU+1AHSLph4ZzuFu4YgpRWWwHFA7syaY5mV0uICIN2l4wLM7A4kOTyd4Vgq0zkA4ubspO1PIXtBBYzXY043EOX72Wh2hekmR9/3TqxVsitdkNpCqJrk3e6KU/S1wXRx4QmrR9s4x7jM8HN8lWzx7dLHi+UEapE/ScxrStMVshcKS5zv5KJTydiaKG0yuzEFtVBpo9veCSxnd6bZFcItrnHcOy7Q0l1Oayfqxbf7xgVKtXMXW2v3IxxYrxS84vn049q0fykoFKb6fBKIaB3376cWoFOIj9a9He+Er0z4onvx5fmwxZTrOQzV6dNquDaG6DTqw7XA23j/UwB+B8B/E8A/AuCrMTSjRo0a9dFaAfwegP99vEf/rxjQ8FGjfu7C11HpejjhUN8Sr+MoedSrimNHQLAd9nOM5XVupTQhcau7VDgzYpKLBjuuHbFCl0kgdsaoAtDMiNWpF6TYLSsXVHChd3/b4NDvJwCnECuu8ZXt6E/wzl+5rxs8dtcDqwPOjVM6mSS9h/ACcIOLG9GBTiukdFEdRKd0efEcLKOMO/XA8Vssn1G2YBLxGSlobS5OoQGjBeAJhe5wcqHF1CbnyUtqzqz+9kjxxv80QEvEtG44ApuJKXhRczhhVgeA6xrbX12cKycQE/3zAIhjDfNLCWfSFqYcv67k7A6nySHmpiu37b3D0nVFYR6L32PkDJYngJPzpOza4mXBhfLj3CK+l+B0d8mRT/Jlpujut7jQpiWYUw4Pn6YnkAVmV2zbN5BWFs4o01N3DRE8rVLv2TbepgaNb4KR3HVXY4PeJS/uZ54iRphw8ByjMxExS+eobcHduh7ut0fOoMexup61pIfrbHevjnv3lN7Y93Fb+oR32Me0k+FyGjVEp1GfvTYA/zaAvwrg7wL4bwH4jwH4890/yKNGjRo1av9D2yuAfwvA/xzOb/o30To0jRo16gcqPpg98VH7706JqevtfpHf/xqfdxPE5nxizceltakpSLtO6ex36U6kKgwdpprqwMMMTI07oTr0OdlCgUrhiG391JDMeeQ7kcjdUO5wMrI5e7qRmugQ5Zh0c8tzZ+Umq4QYNMXprYaY6AsLwSJgjujd7PElLHAQeS9ulYBpLxCuFF7gTKhgQXEGcPIIFiTZTS6i3HwQast6ubChVwBX8Tjh5jkieOe4bGvg1q9gOIFUhb0iB03PARtPsPcLpPdMcUqSiM2dStMzSnmCw8j9+ImJCak2XQKwjRAWrXaqK+UUjpkLoKtCmErevdObqQhtTiAnEgbTJukm2RWyJXlEZJkdLb3dvGubXcGSTqngZukaqavVo3AZuUOB6YZte2EVYyp7S+FUYgC+zx7ssivM3IXkt+2ZZXoCUZzlhKuELR4bY8ptUzkBLCbdZHaBQ8adBcXi48Li0UjTRWavIAtLeecuKy0wQKL5vRjCnTuEVgBmSHeSdxVMJpWolaYrnUF1jWfN90vWrn3OmcIWb48U06YAlW8hXAWja/cSyWe0F3wspd0IsFb3o9iYXRUIHk9yXUaRy2V7lyVYXDXa22xW7W2xe4vpA+9N9e/FvVA+dKZRQ3Qa9cOWAfj78N/W/zaA/zKA/yKAfwjAr4/hGTVq1KhaCzw+968C+J/A43S/jcdtjkeNGjVqp4890M7s8Ofxc3QT2t5ppcNkN1um5/LpoFD3eW67X3ZDawOf66V41cPBs119OnSOjikhwd97uHgIUtUFlS6nhIc766ngKY4nt/Eax/IckTvGOi26lxDwCn6GR7JQ8phXwBZAL7G9np/ksS6HWM/x/YRNvw8oewp5E0o5YyrPYDk5d8iu3edLrPd6EP58rJ3ldIKwwOwa667dNWfE0U4oZQZLiavsLi3Zq0PCsaF4bC24X3E9lK6vKVhFPi7uTPLjyGhfKScXeOwF6/onkL1Hcydhf48wYNpa3C1kr3EfzB7TK2d3eNnFha/K10pppYAZ4/MoXIhFGfN7F8ezxri8QrqhML4f4HKzNVxXEyCD2Q1mF8DSTRfxTp5CwHQnVHTJq06vHB+/Pybfr27hYkLAxbPrHSorywWnBXvnofDYqag3nt9eFM7nrncm9YpPwZ7jpgcaUnmw7+9aIx02aohOo37UeoF3tvu7cD7JfwXAfwLAXwTwPIZn1KhRv8K1waNz/y8A/wsAfy3+/xXDhj5q1C9FxKnGnwf6TjXBdBAldegn/6h3J+3NSLsQ3X5aGC6GxkjZua8aHLzym3SUnrTrepdWhUzktU52wWvqW6wr/A6qoG+aE4NEjwORauwnoTkkvNudO6JKQMotOEC3YAHlAW6dMHWKUOAKYHFGlIPMlcByP86VCd8WVkFTMIWeAJzDRrF4S3qP/SlHoiCdJ95BTLzA9zOFU+gU1rNbQMB90u9DLQWznUAJt9RkHsVbIFzocbwrIHPAtQyg0UWeZ5FzjX5lBzOHhjMcR2ePvBUXNGrnORR6J7rVHTEwvyQR7VJE60CPGMpuML1CWsJ95hE90t1ipTwrwOeVz+Ng8hucW5Rd9vzczBIQbl2GiyRKpX0BEsskF4lO9A50C8xeYPY+BJdkHRlQweEO/va45S32szJG2XlMKFCKMrrEHQoQk8gSXCU4zymEzXBRBcvpCWDBtl1qxC+YTeEKEk0LpIUljktaZfbqx681ofwBjy+B1pfMFu/Khy0e1ia6+j6MLsq9QjKB4Xoj4l4n/X7d2suhvm5qDLby4XadCuLK5wOsfB/E8UHJcjJh78z0aCxLOJf2YpLCLwiSJZhVfo/sjukNMUkH9Tv/t3TdAI8xvlGjhug06gedWP0BgH8BwL8B4D8N4L8E4D8I4M9i8J5GjRr1q1UrgF8A+HsA/mUA/zN4l7o/xvG3uqNGjfrihSx8+Lf+vBe+3liQ6NJfx5ll2wbfdjhVJ1PCwqUM7LjI0C0XKbTosRYdsdhksp4lk+6gZD6ly6l3Q/XuqIhc4QbvOLfGDDpdUAh4+A1gOJCULqcTmlPqAuHC5oLKufoUETeGuPIC4EJSIV6c5OLOEnDxW9fFy7pxKyE6hPKBNcQS71hXnUC5XybL6QTn9rzC9ALgBjaRzt1HfFe7nAGLXMjYiIjSKXg/PEzYs+tbCA1y184rnR00oXfGZBc3F7YE6SYHa9euamA5RbwP3kHOboBuoW2UHn5dO6x5LPCMMiWLaoPZJUSnF7AeSxMmQugL+NglHFwuTFaeFNmNcR5jxDHdtRVK1gLpxhTHSCoB3n4PGczeY9t+AWjzcWCOwRI8pbxHGc6nF3c6uWhSx7iKyFoz7ihocf2GzQXGEFb74yZO3Tgko2vpRE68IcZ8SKhhr3V3Grhh7yrcvzq4c1P1y/CN/X+I5cRPEJJ4OI8hOo0aotOoH60ucF7JPxMTrf8UgP8MgH88xKdfw2A+jRo16uc7+bzBO3v+XQD/ZwD/G3ik7vfRQLSjRo36QqQj4YNTKRF3viRUbApVoSp4vJD6PyND05mhOp6SU3wkSW7ygcDdMR7BwFQ6ECTvLMbaPj0UFuVm0v3krhvtdDGD85emUGU27iN1wD5axzYAWAPYfCNrTGkGFD/D6wLgCjAm6JxiEu+sJGDz9fVaRStgEnEGlAyeDdCVtWMdCWJWCAHBSvLPUtwJPhO9610woSgIN+Y+vQtdspzYhIfy5OsRMLtC+gXMXgCuVXjwrnkzpukrkCdn/4SjyR1Dq0e4Ah7OzgVDnsDJY3XBIApxbj3cPwoRrCjg54Q2CIsiiscUPsgJpZzc/WQhwkVXOvIJU3kCMLnoaBulFaVMKNOJ0/wMYILZgm17DbZSRrwKlK4rTCgB4/Zuc1eP9+nmY1fOKNOTC1L2GqJenJMc1F34BDrvKUSiV5hdQRhYnjFN71DKE8kC06vM3sPsFVN54hTOM8M1HHerRx21QZIDy6uANTmniiePJDLv4TVErhaLI89wBtWpHaskiOmOC7FsBrDRhasroEVHiDcj/ubfNdRnEj0GPJ14h4YA6kUiPRCcdkKW0FxJrIoqmZw3PojeNvfVfdODj/SjG4LTqCE6jfqlVLYC/y0AfwfAPw/gPw7gnwTwH4XDxn8D7n4aAtSoUaO+9KnqEu+8P4aL7v9HAP8SgL8J4I+G2DRq1E+0OpmGB9lpD8c9dA1X3yjqKCjxbUWL7PeTqaJUeN5yQ+AQYrE6Oe3aoAdYeMeN6aJ/StdTfE0BLC9hgtoIGjK61aDD3YxSsW1GXK4donLiWiN46Riq3b26dvFI3s8m6QKE0ANM0bHsTHJisqBYu9op4ONzsJpmJLBZKV4BIJ/UnEmrfPtXVNELEkPkc3HrFB3bDMCF3k3tKmDZDQM5kXQgOElIC6UXmL6BdFMGxJjyQplRpjMkyrarR72Ku3k27wAH4BpyQYqBUCkzSnkGUCjdXLzB0kW0UqAsITjRGeKw6Eh3k7uZrhCtRt7C6Rbw8iViloWlzCzTWRLkItqCiHRx8mgdzFZlrE5aUWokbydcMLvfmV0d/q0rIXMX0vQMljNkC7aIxDWx0vUQllLFMdteHUCuFYwxmaav/XOsMF2is9zmY13eUXTmFLTGpYsIoxnMruEUo0qZwnU1x9gI0krpSr/nVjjcfBL76+FQdvnTcApQfjql8imNCKU27oH1VGMuGd/iKWkvKMY3rYpUe8E6hemUnOyxPMSITgJy8TOFp+NLjp/81mzvsoERHzVEp1E/CfHpPbw70/8XDs79hwH8EyE+/Qfg7qdfB/AODoUs+PZgOu1+Lnq7Neh3Ad69ZRvtYXz8ntvs/1Eq+LAd9lPG/ENwwe9yrMTbv135PtsF3s6S/9TG9kP3wee4v+zBcfEzjO3ut+ifcbs4bLtFKb7f2B6/P32P64Uf4JrlttaY4LyHu5r+bQD/OoB/BcD/Ex6p+1MMSPioUb/CpR9iW2JoG/V9dm/F6t/VpZ+gHt+FaaHAHhyuN/6tSE7U2r3bjv9mzWjw74jOIWNGs4CZDeB9/HxCi9YhYnkXZEv6XMadJU8QJigA5dXlhHOs77Bnj1fdw7fTdeKiw6kKD5B3uHMRy3YiXu6XPIfSlvDw4CYFx8pjdc++nItrcQ5XQOcY9jz3FftoYkTrYgyd4/Qa57l1xzIDwaxywJhFpG2N6JcDwl0E8o58LjZdkfBv1jEIERBbOI82oYpxc1zhG7btFxFlW3c/uzCdMWS9rhGpRDq7WI91gvAaTqtruwsxNQEoQOfuFrqFIDVjmtzpBAhmL9D2Amhr2y8znN3l96e72AjTAm0XSLfgkE153vR9lozMUXoJVpXzo8BZ5InE7KwtJRw85qHhdPIKYL6WuOb2YE6jQ3D10Xwl3U9qqT/lM3r8GZ9V5ny03YapKwdBevuEF5Q+ItUDw+E0aohOo36CP3ndYmL22zEx+6sA/kEA/yiA/3CIUf8A3AH1jJbnn7HvlpI/SCVPYGn/mONP4RGWP4ofVH4T7qr6C3BX1RNaN5TsmnK0o/fbvcIt2X8c2/37seyfgUPS/2wnlvXbLQ+22//GLyerfz+2+ydxbH8ujvU34+9P3RhMhx/+7I3t/gLAH8L5Wt/A44x/Lo731z7j2P5GHOvnGNs/iLHQZxrblzjO34/tPx/G9rn7wfTbju0fxPh+A+Drbgx+ymP7Rw/u26/iOL/P2Pb37V8M8fj5O96338Sx/kGM8693z+7nHtu/GMf89Xcc25e4B/4OnF/3N+Dupt+N81jGD2GjRn0ZihB7q1CbFR5h4fdzQ2o3g/Rv9fil1GfqWgdKeSWQ051G7TjYHC0ZjysJPg9eUTsOpZup/zYRTiPPzrX9qrMlhDWDwYaqYO1OB6ibnei86K29b9M1pdItV+r72afAC91lZHAA+SmEJxFMsLih+cZY38OSyaNnV/oEnnn44abxib4FxDujcxFzojN8vLuYsBzijQnMnlVFh659vZRiFeq5uBss2UeTpAWGV3cNtQuKUoDCZ5TylYsgzhSiu8M2qnKrFpHWy4aOWK/2NRFaI753gZSYeEuhgayAb2ckSSaPdq1URMvIZ4+s1UjbBZIF/SeFHiIdY8n8KpzVw8N9veyyh65DHkEW+nWnHF5uhOr1kIO/T/4ThrbgJq0wbWGXmVCmc4h0yBici5uECiYUnlTKGSwTZVfY9hJd+YrSPeZj1lx+HncDYCFwaY2xItMf5FDt4iKZvNOfIuqHgNmTczxjK/2630BOLJgrvNtvkFsIkVs+hO2Zjp9XJIurbWq2SdT7Ol2W9GesReaoI6y7ezuVeCNZE6Z3UjQBFYe3QeGs7H8x295TzVIp7NlzioPphWgbotOoITqN+imXobW9/R24O+CvdZPMvwjgL8eff74Toc4HAeslJtU5Af5dAL8X4kW2yz3F+n8ewF+K7f4FNLbUu+4+sm7y+8cxqfy92O4fxPcSPvjUTeD/Unz9hfje13G8OSHONr3fxLH+YXesfxiT4oQo9uLIX+nG4Ddju6duu8ko+NNuDH6v2262sp1j3c89tnMn6n2OsU2b9fMXNLZTnOvnHNst1vmNX9Gx/Sb2/UPdt5/7nRCdjQYYfNSoUT9W1W5x5Y2fsYDHztHdJPXwi4C3tlkO/y48clyUwxc7kT7XmTtx39BcPmu3jenBvxXXw356mHkuc0FylPb7SAfUdvhFgm+n1GMiHJJ9C/fNrTsuF9EKTvEVkT5417T272ubfJfyhFLeASA8YtZ1zVPG11JwSzdVHDvD5WVLMI0u3b+1nRumRHe+MtXjhy0wuwEWUHYW5zJxgnRzd5CuEMydPuWEUveXDiFDKeEqmp/gsO4rbA1uVT2W0h27i0pguKnsFq4iwYWidyjlHGPs56TqlivRje5cHWRmF8hea0QuQemlJMz8BWbfQLrG99+5UBlusMLuHtYG0w0WxwOcQ2ibw6Gk6OZ3ia9rSNE+vqWcXEAydziZ1p2W0zrPbTBcIfvYzwMfE2p6/lO//COAeJ8K6F3zeuP57bfzuYSiITiNGqLTqC9GgEoLbkZU+h8qevfB0dWQ/2Ct3Q9A9mAffwiP9pVuW72zo9/u9mC7emO7vw/g/91tY+62fXSMbIdtbh946f/OR8ag3+5bY3Dc7t//gcb2j36Asf3FFza2f/wF3be/GPftD/pOGDVq1Bc6c3lEZhL7+R/v5oTtr+nTUbZAlxtt0nDAzpaQHN82q1THe8qt5eK8iwCz56dodyjqjFc8Dm9l8KRrqjqfSKZzieEU6Q6ymh3E6GzXNtU5Jvzc2XF+NoeSswLG2WJAC6SbiJUuvNR3cCyzAVjVOo/F5Nmh3zE64T5V8qIYnwWfB1u0rV/jmEtY2NzR5c6TScnMkRZ6B7pXtviYxVWd1WJ1hAJcDl3gjp7oNJbuNo+JSVhh9grICovHsKxG3GpUTqgi0FnkOYBiF5qucpdXXsNgAkU3tcqdr/tf6a6eiCOyuJuGBmglvOOaVDvwzWCZBVjAwc0TZWXGND1xmk4yW7Ft32DbXqk4loCeR6dDgigiT37na4FwU+1Ix4nT9M45VtsFtr24sKMu5kWInMUyQ3alf10gbe6Qms4hWgFmV23ba4hxwsQTpunJud52lYt+J9++Nmx2jU6BCR4jCiePHHKCtAU36yZhbUuRzPidu+5uMNziw1nOHGNw0gzB0oKwEJ1vD+5MlPLnCjaMeBiJtCd1O0sLLAIosyo2sW8VgJqxLfHUi2o/l8TGS7inClidbNvda685Opmew9a9sr2degvm/QuU4x+xUUN0GvXGD3g/TexbP9H9ErbbT2pvP9B2r2Nsx9iOsf1ixnbUqFGj+vcM35C2jsvoDRVun+f7wD7UrUXcqWT9AfBONHq8XL+PFPaP3L78ewUko7JtXFhJeHJIdyZn3qQw4k4Z7hxKGb1eun9TpnABneOH2ISLX8MxdAaqKLSgcYVW3It0RIvVwZeN+Jhvby+quePlObqTrbHspbJ/gIyoTY0PxXAr2SX2+YR0Z/mx98xCAKSSoQStdJbTDUeuFEIwqY4obCJUxRM/rtUlvuRUYYlufMnGCsGKpR2nri5OlDNKOXOaTgFLvwTLKfhJj9RXMi5vxzSChfgW5wT5tuwbZFyyItergKZwSl3DdYU29uUEacFmrw1mXuaIF87uCtPVXVNMV9UlIoVLHGfxzok8KfbpUT17QYpcO9eZXx+ixgtXoXLApuAkKUTUK1qHwr1OvR+vR8zRfH57sLeLpFIIuJ5vPTyj2QnvbfcSd47GDfsuk4909w9xnPjwDTVq1BCdRo0aNWrUqFGjRo36NIXoY5/xjdnYo6XTJMCeGqWP71p9X7rGdMFRWIrfHYqpMJEVyQSp78tXJ7iduhUOGFhryYd95ywvd+Q4Y6ZrTuH93wSB6BhLLjisdJ7TJmCKTnKFe6afhaskmUATyOKOEXfAcw87prthMAPa6CLJRQHiZoKq3XmWTL+1TcazQRoLiClEBz8mF6luB0C6c3KISYUe7wIJq6KHx+qcj7SBsQzLc4hZK1xEQCx3ja5mC/ZRKMpdSzNYSvjPsvvZ0t0WcR34hGk6u3gCuZNLxdlRWsJ5hXDynNwBpBvMAh4eYlSJbn3SIgvwdSkTS5kxFRec3OV0wba9uqBTj8WqWBQg82AmJWQ7hLrpKeJ/DcDt5781nlSZO1HqFm6hFQkPdxHsCSwF2/aKbfsGZheHh5czWTJquUpalc4eYKNpiQ6BW7Klgi9VWApdIMpOf0rouUPcS4XLGwRnOSUUvZSiwnCHa5VlpBB2QCl1FkfZUXTqnkW25Xcq8tsd7u51In3gQ+EjkboPvN+OUb1ehB41aohOo0aNGjVq1KhRo76MIn4K8YzDFLDTZzrjETvBp/9W5yDffXhMw/G4DLkTlGK+6XG1hP6KjyaUuwmuWP1NShAwekGJOc+tTh72E9reLSWocpMUHb9UtxVikaASLqbCxrZZ4IJTbFfVkRFxLI8qk4LEiB0VBzxT6jqsJfQ5bo5SO3AJGxwyXrvitbhZdG8DrmqTezVBIUHjIZIpXU64HRxOkItTJ7CcwFIgrTS9h9k3IZywJiHJmaW8QynPCi4RpY0sdL9Ksp0qoDwm7pxDcJqaeFJdYhZjILjjpaCwyPlJJTrVbfQY5+qQchrIWaU8AZxp2c3OlrgfpmA5FQgbzBaoOqPm4FFNMluDv5SOqxVIBhIseFFzcpjoMUIXjAiG4OQCXIOh30C6UAcSLKU6yKTVY252BWBimeBiX3QAhNHsFba9B2Ao0xNKeYp70R1GrDf/BtniUUYsCmC4/LznEDm3FLmk7DZHgCycyhnkyTVVczB7dunzcaoiq0wW2wmhLB94hhzcAeo7wPfu3cB0H7FBovx6m0dfPXEbTzsfiFd6IEflS8U+pis9Sr703yPvLFsDHj5qiE6jRo0aNWrUqFGjRv0k9KvvoKX1WTt1ytKDnN5h0d1n+sBk07o/H62nw7J2OAShxenKYbkFLdI2dV8IB8sSMSyBLJKmGKZcPzmfCQafwtUTP/PLu5OmMOOT/zyGLT5PQSq5VR1XKhxRjq/awoH0Uh067spRCAszmIBsrJC8+xtwjeHIrmEF5JnT9AyUGbZdnOVURyyEsLqP6Bbncloc0ywXT5ZO5In4oRjSWwpv/XVao9texgkREbycI2UccA3jzYSJJ6BMHqurriLvIDfNZ5DAtr1gXX+BbcuOrFt3bytGM8SXiEs6pFwu0nHGNLnTygHdr90YKyxuLlwBpS7jLiZ3dJXJY3UtKvcC6YLCdCLNcQ392Eqcs+wS0PQEzE91TFjmBjzXpeNruaiXopxve3HBDCnYNeEzhcDW6XDrn7HOqHiMsH4E8E+GKyoF2rccTPjANo/P84dcTh+L1eUyb70fRo0aotOoUaNGjRo1atSoUR+XhzwvlHPqt2dm93NANdkmseJMwam1IL9rc14Bwh003HdQw2Dq43Ts/GAxZw/nlCj5LuphVj52zu+7iSNTQNj7pfS29sT+QMJZ4YBkpuBDF0kCNp4cpwngxNptztzlJFqdwIeIImcdGb1jWQfY5kwXUGbCPJ7m4ooFm3wCVNxF5a6TPIbuevh/S2k8HkBIF5C7a5JXJFZXSpnIMks0yV5COFnAGpujwCJ3Ks1kCdFDN5m9ulBUZjiTZ4PHDfNOyYgaWDihgNi0hLCydrqFgpc0y903hGwFylyZ6MIN0CWifi7CiQKl6q6iHCwO0IHdLMxxJAsKTyzTiSwzhBWbfYN1/ZPKn/Kb1No9VW8mC1tdYuydwl2KX9lNK2SvsO0CcAuott/7dFy3RwCxKCKIfqNHR7tSuUuvkF1Ad6wpmFyy7QbJME1nkCfKbsl9IrT4Q+jCIBPALpikFWY3OnA+H63J4evFOxq6y+kKyBQxQAdzS3QRMhuMqHcUqj5rag+Sqmuwb1MQ91vA9r2bXr6ENgCmO6GpvUHYYOx3ArPCIUdpF+U8vPiqE6serPRINg+hU286q0aNGqLTqFGjRo0aNWrUqFFfsCD2mdbtJ6DAvYPh6IZKMPij5YE9PLzvcprLdQ6kOxdU6ZbrnR0b9ryY7DKaHeuuaE6oOYUCVMcPVjTgeb+fvktpxgCvgF4DCK50LoEkSplc9CgzTEt14TS4uY9X4Rksz94xrTqt2nm6G6b/XhuXFhuMxha6Bgg8jyWvVxdlY4llm9MJdoXs6m6e6szy2FzCw1mKx+rKjH0jDTmQe3ryc6Bg2w1mL8Gu2lBq9C+kolJCIIGPewdsD7h3nOMGWDigkgnFgsJ0ryVXKs4hGFalnGLsTy4O2kuwnJYa6/NjQnfvuAbpHQNfqmMKmIDi8UWWEhrLFtFBB5YTAsrk7qnSWFnJoKrA8zI5Pwvw6J51AuhO/JkOz9G3cQepe+YM+2666J5DfcJ2he/vTMr79aNcqFGjhug0atSoUaNGjRo16qerrvyEOuo2hslDx1PyfjrT0d36vRWkMr598Y6xdNiNqPvuUGxdzcMBwQQ2RWysZ64ct01ThcvUQ+68DEfelCS3SJGxbdAaTmYnBBX6BwJgjdfk0PJ0XRGydPmEG0ppC3EgkjtoqCoWdRafdGila4PO/YGWHF9GpzjJtoylsWG3UkibQZ2iQx4ALXTw9lWoriJLNpMvzyeRp7jkK91JdGn4ruh0VkowgCIiBm0khMm7rdEso4BrDFcIN5gCol3kfCGrDq127AaZgWWWCydPAMCeQeTC0gbBQGRXNtGFnpskZ1VxOntcDZMLM9sK2AqykOWEMj8BpUi2wrYQgGh9PFQRieTOLWY3mK40LR7RK0/BtSrYbIVp2cGwBaJwAstZZEm3GaUFlGJMvIMeMNWImwt+8s50cV1YH4wCZx8tIVytqO4h53gFQD7uV21s4PUNCcIv5SRwkmkLTtRKJrYrLjwTwG4bhJsvs38D1OdR1RSmfIT6Z0++LCu7DDBJUoOOs7NLpdvo7mFn50pqTjq9JXZ13QaIt0Sp9k6pJ0OMaN2oITqNGjVq1KhRo0aNGvXLVM7aLJBd67k3pC3tkn0PNa7Wd/0ByEXdd/u9vQUMfjgBPXyvP6YQm/honaOL6ZFDKfeZEaQthAEGpDyP2bpl0gk0qW8J35xJyXtSRPOqjkZhkXegMzQ3U86uvcuadxuz6Ph2C4dTQM27CFLJjmkoLkroRncg3cJpVCLtWFA4s/DkgbngFmUMy0OPLjq1+FXErDzSFq6kW3CBlu7S9cef8GoXDz3suCo707lIkcsUCAbpAtMtRBVnGZVyBqQaE0yRzZ1FE4BNtl6wre8hW9jujr1jpu5HKyw6znlM7+SiE0+QgsNUu8d1Qmo4mRzUHYKSVpJUKU+Y5q/iem2QrglhJ3kGy1MIXpvzoxjuJaww22C6BqcKISbN0WEvXVUbZNdu3DLodwooOsMBlcddggfVj8MWTqgFD2JrnRCkt6DbrYNk3ufJctKGT+Mvfcoy9uD7n7od3KfxRo0aotOoUaNGjRo1atSoUZ9RPOJjRWk/B3MctJqNobqSPlp1W6pbOshIPByAOhZU123tkcS1j8v1k37tl2Fj0KQyYugcTtiv2bOYFGyiFJzEFIpif3SaVe+CKt0XDoKVZUYK4EnuTCqArRDXdN+Es6WLyskah6kXB9REEhdVUpBJl0t2vwOTuuXLerRLMpjdQqTYQrTIZWYQ5wamxibZFaYbS1Gwg3pBrrU4dFC2R/gkuXBjtxjLLgLJIiJdRUbpFtE2x/nIrpDdJBjQ3DwhoKW7TF0oUuGK2tBYToWlFBQS23bTun2DbfsFYTcQlncmG8snuUTubssOei6kVXEM3v3uNWJ/iQ1jLDPRz32BbSk6GUo5YZqeNE3vQE7ucNou8g57QCkzSzmDJM1uACexnEAUyK7YtlfYdonOb6TfJ+52im5/jG3GvZTi3xxd7SZ3nIWQ5kyuU9zrJchsCxrPSSFcuWjEvlvdzmmk7q3BYL71Qt6xy92DVwUbJ0r75fadNB+IhJ+uGvWyeeneH982Ijhq1BCdRo0aNWrUqFGjRo16a9LVomH80JLCA6XnKPccoix7xUd8vCYruLkJUWmZkOrWH8TqeBSJmk+qiU680546yDh3E8zDdvfaGAGju5OsRdkU0bsKwbbKH9JuXzyIVmoTXEZr+ux6Z62jGynn8zgTSNG9jN5efnf2QV4vKCGECAo4dHYcM3ad+NTcQgkEX2D2ygbTplw0Ikt5AvkMljnEl1tEDFeYCGgLxpSBEOshoeYl42g3xfllhMrHlQI5izyDnImI0VHniMiZC1VaBBbnDZGUtnBn9R3mwuFlC4SNDhwnCmbnI5GQbTB7pW3fwLYXxj2oiD+mOumSVhXgsoMg5G4y5vc93meXGAMGxBwedYvYmAtWN0BrnMNJZXrCNJ1htsrsgs0uIZBNCpYTJYNpCUHt5HeNLdE18BZWwyKP1pUYahf3bHutUb0UI70T3uQ4dK0RvduAchYZopPg7i1syHhjXMkO9l0AkMr1Q4i7f4R2mrYyuQiJnTTZCVFdEpdV0NoJWXFp+Ekcp6M8Ldxnfne8tm380zBqiE6jRo0aNWrUqFGjRv2Si/zRdqVeyFITNB5F6/RYDrtfgK0lnvRAPst5bkxtRe5cSqzCTeuItXaTVulx6/UezN230OtdFhmts/YZp1h66bZh2DtHSkSsSozO4pG6iNW1yTSDreQdyvxAVkgXSK8heGE3mXc31LPLdHaVdIuOfgzOkkJw2ZpkGK6b6o6Su7d2y4UbK3W9Uk4hgq1xTC4IuBCWsbYp3VAhqiXgGvBI2jn2F3BxrR6rm58wT88uc9krbHsPqzHChK8rx1vRcZCtU2CKTjNKeY7IXIhbdmljrAIkOyrg4KoOsoCH08eT+bmuMHtxsDoFd3wVtchhwK21Oqw9InHC5mIlZ7Ccw6mEOPdbfK0hsc6x3VOIL7cQ/wzBLPMIXz7dgp+TdvfsnWb9QLQ9wtNIHJxRb0K6+2X04Jm+l5rfFp3ehtW1z4X7hgGjRg3RaQzBqFGjRo0aNWrUly7Y/PTmOD3cPI+v2nWqJaGBeUtye6QWgcv5Zo/jbTvogdlhzdkvUteTm2VYjUb8yEwywb8HO0Uvj9XDrVNh0blLOPKjRZUqGgWkWOAWWTjFYFVcevw9hBT2DrLQyuhiVG0N72KKu304dbN8I7gC2vxA5J85dF0S1gB1566rSNLEGDLcOQtdcLqpuaE8KgbOwVgqsexG4eKwaGxijQP6+Be6S8hsDWEq+D+YId0ouwGyZlnzCFwTnarIkcdekv3eYOMkS3FBTCpwxvQNwXKid6WLbnIkZKvcYbRAMAdjl5OLTlUMWgluIJ8wTc+YpidtumGzF2zbqwteJS4YI1LnjiexzJEcWyncCFsBAqXMmqZnsMy0bYG21wp7TyGDJMs0u4CmDdu2hKi3BW/qGdP07F4pXWF6gekSPKwZpUwhdm5CxCsJlXTBuVgkMCSqwgmcQrCTu8JgizvVwsHjAz4B6RzDFdIa2w93k21QjeiBsN6Zx4B3h2svI3W9cTA8Us3WKJLqYOwI550dHnt1Ii4YvQMeBn5ZOxA0cPnxncCehv5GhK899mzP0dEQOWrUEJ1GjRo1atSoUaNGjRq1L/uEWWM6Lfpl+cak9MAeenN7fWwuOU7s1r9zSoUIkALP2n0ZHrOg0unUO0JiP6UEm0bhEkp30NIdSxxdmVF4BksBdOs6pi39/N7ZUB5lcyEHvqw7js6x7NqtNwFdsLCUKdhBK0zXiPkB9+DwGAdGRDH1P1tgWnw9+vZZxzsEGGxw4WRCKcXlOweiwzvATQ0eTsG2K7btFzB7adfzrrNZ795p8bGC2NZ0jpVeAlS+3d0+fu6EttXHLF1O5YRpfg4X1IZtvWDbvolxVRzr2c/Sbih0x5RsdVi5vXqsDhYC3OTXszhAXNsNZpe6zP5+LPWczK7ZBdDHD42f5Ge+dPfio+fp27KPepfT1t3bj+pTt/t9uUvlwXtj1KghOo0hGDVq1KhRo0aNGvUZKyIwQcOWquuJ3PuKyOYmkg6pl8699Wj92lG9yjIU3zIwPYCbV/cEd6ymFoG7n4TqsOH0TCldVkeIkzrGecdHD6ZM/TidXS3xFzE9n7TvCOsEZEwu0G65DByxxK6dkeSgbMoZT7NvwqNdsZ08t+7cyQ6sbQrgdbo8aiv6pGiBM104EaWLA7C1BT87z6cEY+kMwbDpkp3bCBhMq6+P3vEScUUfPTbQ8+bRMKxMYczdNwwW0SkYTQucwTSJmNz64vGucF9RkNHtdSsIE0oRcKoA8iZGrSBnTuWMMp0kGLbtAtteAq59Q+vMF6PKdNqYZEvcZx6XdF6U74coSLC4CzMJlYcc5t254GC5TDi/TijTCSwFtt2wbS/YNh9/luBalbM7rGyBSgHLDFISlug2tyW/iuSEqcwodMHPgh3l8PC8w9IJJ4hbxBL9ujl+inIQuQiJpluIeolPqn0Dkl5fXBzs3wLae57iW6w3a9wn9fHVQcsSoY/bi9qL5/j89m8Bvblac0qhkrt8U0N0GjVqiE6jRo0aNWrUqFGjftn1MVDKt93OJy24S9FwJ7q8JaLhyH1qU9wPuii6kGHOjg33/Khdq3Y2l1MDn6MXXLKt/XE3dXa+VWZQcpJdnAnnUn62mxgrmvExom4Ze1qj61jvWurYNZxDsHBIthR8IKVrKrQszmB5cgEk2Ei1ixlEBetHWLtr4i4uF2YybbUEd2m9P/4KM+9jgRuA03Hs5C4qhtCjcD8lPPwElpmEBRjbWUUsE8r8hOwet62v2Nb3cb5r8KN4FPLg3fO2egwuyJzk0b3i4piDzSOqJiS3yMUdxjXtryvDxXSKz9dgS714HI5AxtBc1ErBM8XIpYpJLllOEcU7xfXfKqzcl3HeU4p65OyaXY05tmeEbLx8QwDPsRwf1wOr6c3nKFsyqoo6QIvjffDV8amvle/ngjo2Lhjd6kaNGqLTqFGjRo0aNWrUqB9LVeKhL/ljYvd3lpSyv1XPtUrsdt/tDh3zibU/GXg/Tex0ovzuPWycdVn61Bp7j0uoTC3SptgW7xwQbC4obvBjTLB3OkEYE+8UinagZbpIUJSdxpq4sGHX8Y4I/s0eBN5YV9l9bgrY9EYkQLwKWEqPE8lZpcyx2QWmW3Z5a9cmRC+WCWU6o3CGbWvEtcKZBUDWooAt8uailu+jhOiSwovthKm4FmGJ6sQJSLIVwibTQo/yFbK400naKpQ8hZpSJpRSvOudthA40J1Dwbq+YtteqlOou7W5B3YXFxLl1zS637GUWe4Og7btFbIrzZbuHtxAnlnKCShTPU6zmzOneMYU4wkYbFtpdoVpFYDsVheC1+p6YpkFArbdYHaltDIB7inueUyPsO3qMcnttrvdWKYKaDfcZLZAMiZjKY+9WpkQHQFhfmtXDTWB+T0IPF1D1K7BXBVEe+HUeWY8jHnPcnogFvXgf6BntX33N1z8WYbONGrUEJ1GjRo1atSoUaN+lvVTn+q8BToX9pahTpxxo0xisw+xvAbufqxHKbbCDxmpamJpl6XTB4a090f1M2LhEL1DU0Dqt6U3mTXpjxBVJ+AhctQuXagi0f12wtmT/CNtAFZGXCkn+NyLUQbAdhHBFEk8hlciAbUSurF1uGvCm2sAE0qZBRi2rXY3YwdAr8JLKRNLKXGuGxykXZzxpPhedkbrrgFBFHdeyWyBmUPAK2C9diOMAB6BjNpl7MpUI3JisxDFbjYAa3ZdA1lYSoqlVSQCMKNMs1jcQWV2dXh4uHya4Cfcu+Padc0gJMvEUiaZrS5ebddQf9pdzVJQygyRDBFIZmusP6NMZ5AlRSSP1aUjq5xATgQWSoZSJjHg7VsISi5slRg+77IHTjCJtr3CtuBLVU5WOMmKd8PTZrIGRI9baYNkSflHjYKq8fjjnuZBYD2+Gh6I03GNZWrjyTeEoDv31ANn1UP16DuITpEF1ZfwOv5Z1cCzD9Fp1KhRo0aNGjVq1KjPKq9VjBDu2kO9IROhaiQfma3ojc8exaV6UeQ4geUb27XD33k4rb3gdB+9y8/uI25EiTiZuZOJa53Is4eE11jdhnsHSDhJnAnlcTplrC6XL92AJj+pBNPnAmf3GJI95HKXd7bLCFjG9dzVZdF4LF1OWxXS2vk1Po52YHR2ol2p3e0qs4oWgpdFlCzPo+8iuNE7rgXTqJxDXPEIoukGyVCmE0ppsG6zWwC/Ly5akf3N2PnrOlFFFpqJc5hyPwiXlR9ziehdHxMscb5r7dbn8b8AggOw7Yp1fd8JSW0f2Y3PBTXS3VY3SFd33bEEX2oGOcWg5zFdw9RWUJcpczxMBsDInRjJuHYWjKotYO89ryldey526mMiTUrLZOhQ/XNwfCY/Jd72GUUhdjHT3X6H8DRq1BCdRo0aNWrUqFGjRv3gClGbjXGvthz1lp69vJu+qc3tPBJX0dxM4Ym7UJxShlFbseJ9IXYz3+aoOgpTlQTex7Z2E1spjTxUB0PH7izYCyZ1ol2Z0FSz6wSE+RgxwhEgbW2iG4v3NHbIQizawuc1h5OlOCtIu3heN9RFSRHyXTscGloCSN5HlUrsr6hEUFHY6G6irY4rJIhCYeE0nULnucC00YURyAHbN3gcy44BSVUHmJb4rHc4xR8ysFBgCdaSw68LBHCK7brQ5iKYCysKMcSPmWI5o0xPIAuFDWYrZDeX9MpXnOdnoEwwc1i37Aq6GHdnXdPu/5pQ6C6qGaXMco1whZ+bkhuu2lWvTCALW1xtAyGQJVhOs0PUtcrsBtsu8hide8NcJGLY/ozxFYD3FdAmOdBcvr+5sqP8cwvvnTziWQprRzu/j8jqAgOgTSAUjijKNiIjk6Sfl/ZE8H109aj81jxfBZiHk0+Ni8YuJpdioipn7T5fJz4iun2bl5q6FF/nl0NrazBEp1Gjhug0atSoUaNGjRo1atTnEdU+od52OPXy2tuT1d7dkZPtgnvXVc9xMjRXUu+UWrF3iBg8lodu+dzOLZxFOhynR748ThXuKbvh3qnkDqxc1iDnBGlBuG5c2EgnDHE4thnJCbIQQfZjsDe67RxdkDttarxrbWPCst8v0Ik8sT9bYebiHXlCKTOm6QTTBltfsK3fhKuo53M9Mt4dr+2MUs4o5QzA4HHBfjsW4zvFMqV1jzOHx5dywjQ9eewuYn5mlxrzK2WG86pS6Jrqts1uDhnfucVKBZL7uV8hu8b45OVkd83p7qngarGDxe+/7MG9+Oi5+JTKa9u79PgZns0f4p0wBKdRow41RKdRo0aNGjVq1KhfGf3jl3tkBN/8Xvu7Hksz+c3eL4EHGbUdKEo7QtDOarGnN7F6KR6egx5MKvmACVMdT83RwR11JpvFc0encv5S/bsSDO7L++SdO5eGAkrFMHdk/MzcSaW+o5Zv8r7bl8K1IZB0U4xMfrIbpY37qF8bqVJm5wXJXBRBuHXYQF0tsjVL7shxKLetQkS5tBMnckxaFIxl8sEy71analJJK5kkNpcXtIkoYJno57x69A+r08+d++QWKpP7VlicZeSuGR8nF6TkcPaJzkaCg7y3i7uKzA43jO4JYgyqlDxGVggVB5XLthXbdmU6nZhXhArX1gyzJkzJVpQAfU/Tk5uJ7IJte2V1OHESAwTuYlsJ8SrignaF2c3HPUJuhQVlmlGmGWYLbXURK6OIxQFSICY578tousHsBmISasc+CQLdkbe1bn39E53QeEr3BrG7x675B3tXYjMv7p49sntA9+5JPmC18fu+0kLklCpAXIMwNGrUEJ1GjRo1atSoUaNG/SrUwVP0FqzpO4pn+oQt6Y3/f7QdtXk5HjFi7vhLB8lN7khSCjYAdoj1rfvzEQen36NVkeut/TbeECNSl93bMoyoECtmd8+Q4TpaMyIoKLubbYyOfY/240qYtuAD2WEYA+/VQdRdfGkRsNqVLs+5sYj8/Oh5x9pBr3arWyOKd0KZTj6yWrhtr7DtEm4h+n55d415J1AQIaRN8vibH6szo1xM4u5aNGePzDsCQqqA8FImmFaYvcK2l3BkeYdAphtJBsLAUkAC23Zx0Um3uPOSH+VcLgZfKoQpT8S5OFjH1O+PtXYRDJaVum504ZBa6/h2w8Hv9vypScT6uLr+Nujtcyvzx+d01KhRQ3QaNWrUqFGjRo0a9cuVgcSPiz/3vKf2h+oknh14qYoUCDdEYJYSWCy1GX1rhKdQC1qTrLqp/bZ12N2jTnWhaChPsu+e1Vusuo5crOwZHTr3sYspqUaVjv4u1q53XUe7iEyxhBBD1liakgfVqDTh7wooOCiZXEDqXU7JbncnTQnhRA6LdjfRbtngDk0TpjJDlDt1tHpvtlIAsxCTjLtIVgpaSCD42uDonTAnWVyUU3ZpCyfUFldqauwimAOEXOwhtDrjKXhEpRSk6ATbHKBtK0qZOM0zpukkQNrWV9h2CRZUHmvCxtTf3nnfQWEmI2dlPE2Qu5e01Ahgc3dNTAEo4OLMjn4sk8rUonPSSgeaL52zrN4U7bpzi0NxTpdsi+swO4ycswCxRe+2ei8RQikTOJ1BEGYLHLzugHjfsIuaHr3bouNfhYc3zW0HhMfx8cW9mNvRkmTo+E3dCjy6zbr7qdeev7coJOmR4LQH3Q/xadSoITqNGjVq1KhRo0aN+qUrT98vhMJPlaza34gPaF1HBvgnbvPxudUE2l2cp4Wv2ObLD/qddVNx42GivnNJta55Iqt40fOesmNdLwDsO/E10amKAkTCxnkMIE4uQLBAMhhMLjj1jB1FTDHEnFIg22DbayTZCsBC8Rai0KNjcraSZDCzynJqLqrqchIDHk5OMHWCh0IMSbePd7UjtNHVgy3SdgXFDVW+P21CiEpkYZlmlmmGbau27VUeZRPAwu76ibvL3/9fdBAsE6bpDHJ2h5PdqBCLUsgkweLnTucvXd3hhA2lFJTpxDLNAoHNbrDtGpynramQAVZHQMRBc4aWzMHoDcANsmCKmKRsC95TdsdjfdLcXTVD5iKXtHm3uzJF10IHsbfr8gHukmz/QH6rV4fe+CCfYPHHAXl3DicBg+M0atQQnUaNGjVq1KhRo0b9jIqfedVvGZDh4wkxD+vvo2aPwNf3ez00b9uxo7p1+ahFuz04yCOA/P5UmFwoIJxLxrvla3c+ZzS5eSoZSyuy7X3V95iRLQeVh2MnLGhznIm5WCUADrpW208G0Jpjhofz7SJ+yPhgi6UphJYV+0hh1wGwOoNKrOoOL8kEiO0c0s2z0LZX2XbFroPgPSvogVDC2nEuINyszq9wskmq+3M3lHfOM1skbSAn7gDk2+Ixv4R9t3PxWB093ggitwOzGxoLrICYSI/10bTI7ArY2nUHLH5tkmfVRet8XCb4Munq6iH2j2Ocx2fm24lObz3Cd+7AH/gF9Oj5GzVq1BCdRo0aNWrUqFGjfsalLwxg2zVI7+Jmj1SR3VLkffSuAoT7/EvL8/CtOesDCrj2mk9d3F0cekOjqrQZ7c6PNXBXyeF3pCndT6nTsdJH7eKIuJ/0CmSIU2o+m+IxOClYSXaXaJR/p7dKwWCAHKJN5jaJBux24QQsVHB7hKU5ZwL27DGyE8iTw7O1hFAR29QKVVh3PwpqJytAVJybM6CEKg7Fmc8kZxGU72PzTnmcYLYxHULpBJM7gBSiEshCwl1FDvleIWzhu6JYJqDMHr60jR4rWxzYXfrwZKpkeuPKMgQyjyf6ua/0CN/m+UZ6CI+EnMk0UbbAbJVFlC062rGUQttusu0Cs5v8tghxjFNguzcUuCtN4XDa1guDsSSiCPDlIRB0hhVshUU8kaSECcQciTXzaxZ3jrSBgly0IgCL2OEawPr+cabqOHVPlz7MRtMD6PdRoWU669r29IaK+91eqzo+oWT/wjmk+EaNGjVEp1GjRo0aNWrUqFGjfpSyO0nr8Wf8wPq9SPXIGXJsT/9oH7tudYftcLev3gXUthcyGHcRPBgWQMuDc2AXwdsak6nqCDu2VLf/Js4ABteGMhZod+dFF2HcJxRQ69LDrgNkzXp81v3p4lwJkLZgMFlExYAynTDN5wByb+4qsgusClmERxgfXef+2tAB4WVGQTcetqBGGBGiTXVteTxN6dKiQCTHiSEi3QL2vcY6E3aRL/bHsIXLaQFoAXefAJxQOPm1tNWXqS4lAnDHlY+BM7lg4Sgju/Muzg9TXq/1lyDC/EgOp096zkeNGvWghug0atSoUaNGjRo16secIHa2Hd73Pq9L9salzlxw+B6OFiQ86h6GmhDqXGEHDg+rT8W0ZzPtHFZ3u1NRC3bpIDugO/KdKHC0YKnHUTvXe3ecTI5RD0oOgDcb46gfZTsMWSc40Y/ZP4xInbbD+cmtJCEikSKya5ksGDq9hEWREFsXM5otHswrxclHMggmpvuLCvfSLE4ziAlmJmkTYQ3IHYasxHLDm+cRgMz8LAWji1kBQdfxWomJ9nbeET1qFix350EJ5FllcsC2bVds2yvNrqi+pjSKsb+J0s2W7jB3LpUyeSSOoAtFCxO8zXDzkEXeHW4isNLMgq0EljJ7B7lSZNpA22BaKFi7fOEACx6WfHsucpm2umwbx4nTNDsYXIvMbh51TBdTxBd931OA1W8CwMJS7y3BeVnO9zYmzJ53j2G7Lfeg/LdfEG98m/tHtX8p/MAOp/qUsj1i0vA4jRo1RKdRo0aNGjVq1KhRow6z150O9alCGb/Fso/mzvzAvJqfsP6j5T7k7lAH3T5uu3GcKvhZG+4ziA02ni4cKV06227be8aSgOA9SUu4j3pnkN0fE3tlr7Giale5h+wr6/6uZERRWD3IdgdO7461/s0aXwqiq31EKQRhkG6w9TU+x7FT2keuf4kOcZMLQC46dfD0kLACyk2yxhFNW4z9RI8rUtKibfNo3t11lUX0a46OgYBpgW0RPSSjRyJdrfMOeVK4nFS7HrK7ngw9aYNsyXhlt63sihhjfwerx0fG6rs9vvfPwo9V/MznMmrUr0wN0WnUqFGjRo0aNeoLL35hSKdHRgK1dvN1inevzvDtbfFtBSccMGCHVuIezL0XQKodifcHWrnJ1bEUzcsIoUbJXPNQNQzVbbBHTbVd9vCqHaGrma56gLH67nLALl6VYhNtP1PeQ3QImBo3SWiuImLvM0tItRy2bSE4BexcAa0uZXKuUO0iZ06tlotQNVr3QPxyIpR/Lpofe0fScgdSYXaqAyWPuxWWUiCFs8c21O5z3X8TUl5KISJWBwqmzbu6wcBSzyMcXSazGwyrJPX5QteK6n1EtS52zVtXz8+Hkxmvo8Ov6hCkyAWAFt33THIxCt4BkKKLQ7ZUQa5tWs52EllIlkIYNmzbDZvdILO4C3PsEtJulDZBxjQf5j4Lp7gfWozO99PEN2Lym8o7DAp3KP3+afo2Qo0+UVVKoJIeKUOfU2WKa1bikbMhPo0aNUSnUaNGjRo1atSoUT/h+s4i2feeUT6Qrfj2bj5tVskmJnEvBPX5Gx5cTHo80X7LvdRvOPQjPXAu1Unx8Vj2c2hGLE+7TmO5VCc+9ZhmWcdo0j5OyCLn/5BmK1zMkCPNZbTahU6H8fVOagAYYhaBrYuutTEjwTJNKJwk2+RMo6mUcgrc0QbZKmhjxOdqPK+T7sAyxbc2mDZ3bwEq0xPm6QyWQtsWmG6w7RGj6O7v7AUQIh1BU4xbRBJ9rNUjtVhtVxZgasu4WDt/B1cxzs+jdJ1bi5QYocbiDHAi3Ek+HgI4Vb4UAMU1orQx90EQLEWFc2VyVZEwxcTgSPkYMlxQ6Up7W17S53nEm0ipO036B9bdGewtDcFp1KghOo0aNWrUqFGjRo0a9T1Kn7pAb4OSd9K6Z0892OgjmPcj0elD7eabe+fe3PWWE+Oopenwxd2+97G66l5q269unexsR/d/aQW0Corvobmp5O3S6n5a9E5dTOsIPFfdXT0m9sdvIX4ZdrG/XUrwEPtSJ6LBQBaUUlCmGRDCJXRx59S3ikO6c4nTDBdvALObCzM7l1e4ispEkkKObXT1Y3WuKQDnBmn1DnT1GLprVUrAxmN5F5XQOe/qOUKiaQlXWD/eCGdVCEpVLGvnWsVOlRiFPi7J8XIYNWrUoxqi06hRo0aNGjVq1Khf0uStiSYdbPhuDvso5aaDbsMH80IedIsd+vd+o1Xz0S7iw9rj3VdrySi0Nmw7Bw8ziaXeDLSDfPfCwsG01G2wLdf+0vDn0gFqveM4UQ9HQ20cVPKv3TZJCKTDw1EoaJNJhKmLBjqH3F09ziNywaR2qGspPtYoXsKsa+Ywed4KyHjXh549gNqFrYQ3m0sopbj/SlvGxSLVxgZk94FQxg/9MAySR9n23KrkFa3abMG2LX6aZLjG9i6tdoHyOJ2PXkhM04RS5uh8t4To5IKbM+X9+L2DHDx6Z+aJRDRhLd1YVVirET/F/hRd5qbo5mfYLB1piPOJY3QbVMTq1oj6oYOpp4BIT+spu+jBhUF28GwXs8iOj/8Jggx/AEHncypdbwDEGXf9jqPG1iVg1KhRQ3QaNWrUqFGjRo0aNeonXZ/Sev1D8PBsda/u/z+0jY9P8rtmftXx05OnmA4bF04AbJ0TSg+O6S2NQN0yezh4/n8wj1BjaLtTX9Figm+NC5rryrYmjhEoZcJUQd4bzJbqTtpD0D+hSNdnQqgSthCdNpS7UGl1hzlbSo9cVQaZINoHyfelFKAUmG1+7LJwlRU4/3tqY60txmCLMSlgYaeidA6yCjQ/3C/VQWXjGR01atTHaohOo0aNGjVq1KhRo375dcR6P1pEzfRTkUV3K3RYGe3dSftF34rAsXddsU93xXd38Sp2TqujHkJy55jq1ncANzvs9E5lYe64GWu6nvfo3U15QNq1je88XWJdlYdAnur6VeRRnGwSemhKuLlUSU4KUwymdOsouq4pz821C6M6U1rdB+mmLQnBFXK+VGM5qRe30hYlbVVMif5rwaXKWFpYb9QJa9XF5HdQuKKcOcUJc5lQphMAYLMbbFsAWNfl7iD07e4ldTduUaxDacNmqtB1srHiGZerCXhGuYOrc8+oYcl58MPda2t5rcKVFlHIuAFLmUEWEgjeluW4uumMXUc7CmYGwNScUqjrtM6Pj7ojfttHPY9d33HVz/Pa2T+z+780eL/4A+1/1KghOo0aNWrUqFGjRo0a9StX3xIl/sHP+CkT6Dc4Tg/62D0+zE840EjjPU4FVTWhAqFdXFJIfY8FBtY41gppCadT6Y7p0XqBvQ6Xjyqs+o0BZ1MNVd03BQpQd+MSfcpFS46RL+ei2YzCApN3fEt4ON+MjentS53d4WyDRYTtuDwzU9izsvDI5SR+eKctEtgDy/0ronjReZAsMdZ5jRDj313HEtctoO/tDnuUIP3OgtMXXENwGjXqO9YQnUaNGjVq1KhRo0b9FCZz3Ekr7A0yR24TH2xED9SY+9ni3Taktva9zWpn/NHxAPG4XRc/dKC9UHS3apiSmKakfuv8QHd4qskIYnM9uYnFd2f37KiaPEvEN0vEwIrTe2ThQKpuJ1BUik3u5HKG0w4y7gv25qkGdao0K7qIhI6ttFM28qJTh8smQDBtbJ3eGgkssUOsewI9KgZApmptyXMoLrTJLADca9q4OnfLvnug/9FR4xkcrGkKzclgthCKjn3BhCILgx8lwNxVJGFHDXssYnZqjxiQJpXJ2VsegbTgVLUxSnmLAAybQpA6UuyrMKU6PuZa404yfeBYwwdu9A+qNj9VftOjXf0qCmyjRg3RadSoUaNGjRo1atTPrB70VhOPk+NvucmWgfq2U9KjeNR/orcO57i8HkLN27T3Q/NpPdQ72Bwn95zwx5NoRp4rlKX9CR4EBTfhlEjGpatIsTftBArnHVl0Vtuqerdj3/DNIeOxe959SjK753EvV7k4ggSB800hg6q2rWAcYSc4FaC48GVC5xKyOgb8IP/q8FnvyJL10br9dYo4myWoW8KduvP2jVHlV5aiUmaX1Gyl2VIDkKmYsZ278tx2rjDiqIIquFl3Tw753R6ljyg6P/EaYtOoUZ+hhug0atSoUaNGjRo16leu9CNPhfXd96Lv8FkvxehbT6ZdfbAQYO7Xc4B4xLoshadHETnu/pdV2vLonmAdgCnEkBRhClFK6ZhCanGy6ptSJ/W9pdUIdxD2zuFk2gBbYeYsp2/rbGGcEsl2TOq30ys7h+OSvvOtwRC53NqmuAbR9q92wAulUdYJTt0YVJh5RhftQZRyCC+jRo36XjVEp1GjRo0aNWrUqJ+dgPLlFjvetg7TcT2UiliXv9vGUSvpVYhDUq1xoz9wbA//ck/e6bbdWYu0E0cO29pHDHejcICNq8GN93pNtwF2FhuZ7sbqCEwGigsQAkWDJKVwIvWgcwIlQluEd1bT5qk1aM8iZ9eBLmBR4QSir2f7Ecx1w2Lk0bcJkNG2DZLkZHZXeQ73RP1rR0WXjharcH2RyG5yMlvDleTnW0oHO7p3qqk7oziSSc5OcoA4ImYYDO5Gy0oYepzeA5D9Y0QXd7FTcnejeOxR6tnr4fBiMppcTNKdkFTkbjUGuyuid2kQ86OXHt7/eQ8/wk7dfe+7qGrfNrr3ydv9cKzu5/hKHTXql15DdBo1atSoUaNGjRo16qdZn3Pyaw/m8bqb0ztnqOczdU31eMhjyblEeltweKAZZATP3tQU9pG5/ssglcP3+IFxsw+PpQxmG2Rbx176RI1D5sIOgZIQbls7l9PhnLKDHtSN8bcvluLQb6JCw3UHU2/nbHWs9cF7QzIMsWXUqFE/QA3RadSoUaNGjRo1atRPofYixYOp/we9SHybB3xcL3JhoQXgrd21JvUPbCmPXCk1Q/UhGWXPpN5n11TZRX1o7EhvaiTro/Vr13++QznhPtfVbYpioWO8FVGsoI633mVCYSFZAFKQYDKFUEFkX7yw2/i5sJ5vuJ7o4gcbJV7Q0dTisTffc4C21VhJonegM7Zx1O5itcidOnvQfh+eRrP4iyWzSgdU/O7yHNjrSvY3QZFkHTttXYCtHQBLAQFa5V9Z27I+dJ93EK9ClDKhTBMk0WyD2Qb6ttQ2JYaoxX2Er+eIZ7yR2MUKRXzE4YS3/368nm8/Wx95CXzb9b7jLkaNGvUj1BCdRo0aNWrUqFGjRv3K1U8cZqzv+fl3nVwL0ttMnyb+bJX59DYD6YHT6b7b3P2FqUBuuXMovkkyXD2fwl3SB46lMYzuWE/f+gbad7VTjh/35012GcLdOXw7PSZZTXUsMhp4EFV30PSHwhCrREUex2CIMqNGjfqsNUSnUaNGjRo1atSoL770szyTt5xN/Wz903gx90s1/eROSLhnR/X9vu5a1D22hNwdwMH98tjRkc3WcO/cetSlTfdnx/thFB7vsPPuqP+fdC8dV9sLPwkPz/M5cKlY7Vh9F8ImhOhg3RIkMNxUpZBmcicVQcKjaf9/9u51SVFlCQMoOe//yts8P5R7FYKddtt91oodsWcUoQpwIvwiK2kHTrk6d4+XFmdyPv0Rc0HWfSi35SmIuUxoJ+ZJ5hDDv6mZeiyXuW16GMUiaRqfZrcoNTr5fXgMfTyp0/n/b3Mupqiu+/nNbRLDug/X7vswbIrn3vgvUA69273g35SUo8FPEjoBAPArHP90jJN7iMvHi1d/BOfT4fd/a2d/wzg35Xz2+Yzh3kj6XvVyi07vn5wfPfdYbJfjk8764+g8r21or8Banen5OFMatlxkWNAAOnK77GxzZu5/i979FdMT/B5dvv+bk43Ybnjf4e32X+9a9xq8ryb26HQfmbch/5urzGJbVXW8n+h12S8SP/x54PMInQAA4MPN+Uuc/8jR7/hF36jM1bK6dTJ3rw56PK0ux6bhR028lweZj7D43+5TY3Ay1epsCqFutxweTaeG68vSWudksfwsXtvfeFrmyq9tq6zl5dr234rOuHpjHh+vOC47XF6Hr5wHgLcTOgEA8Ely8Wt98WT47S/2OLej+0/+xStjFUtM2cEuT7iQQcSqy/J2ZK12SHNBTMxdqSPneeZuBd8mJthWqzR6je9PQzRmGYuG2znc8lFQs9jVYxnZEDFExnC7Vx/F1Kx7c03uk3lMYlzKNsTUdXs68rpF932Z2r85xBkyM++vZw7DI3QaYh7fUQi3XcAWU/SzX042/T0W90nuu8vfb8opNMuYg7TbkLdcLuKK9WmJRiPudaPuOKhMmja4V4FlZg63e/g2d2rv35eNO3n+NjRWhsaFQKqi6Xd+8fP7a7/6zgnX4AMInQAA4Aflzx54TOJu/d/+j5dv0xPXTooLs5sCuLFXVAxD/JtHOjXo/qqDeZ4Z5pQh3e7pVt4OJ5nFV+zeAP1rcwD4RkInAIBfLv7478/j+Y0FJ5v6kqHV+2hbj3PcHykOWu3Mx1vV7Ky33g9pVaU0lb1M443cD+VR+DRWZq3msKkAi3P3wWMl3bSI7V6O0/zw7T66R4VNZu9UDduZxhDL6qHVBzvtquYSpPvAci7widX81qPYNM7KZWftaYvd0+ym4qdsXe/OrMalhnOp0G3aweL+y7GL+eMpcrG8WLHoaX7mWk391yMfVWPLk3ziegz7eb4YhW2rkqLku138b8Wj133r+wH8DKETAAD8kPM/i+MdBz6TIj0ym5d+weelbceHs20+/znLpFaNsHLdx6l5rXKcz9evXj5ZRQnwmYROAAB8qvFndreN07ZSKV/uNJO7HlCtZjxx8Ers3jl3/LHJ9LKyatn/aDPK3QGPI5n+m2Nfotie0XXK82jsvQ+e9o9+m5/zd6/uuTUHM1+zRx+nxXGyfTFz+cLyZsj2rZCdS/SkZu58s/acQqd+5c/5XO/ZlZqv1ePbcL6bfO53vz1ncXD4LPsSv/atPHEdHreS/k3wqYROAAB8tKePYXvlB3Bc+Uwr7cruCOLinM49yuzgN/XFX/GnVnYtOp9Ht6LnYJS5f7jaLiuJGIb4F/dj3MYQJ3JZTfT0mq2jvlg0BD/TpDqaYWV3dosIJ/PwIg6PlXTx4kWaP7UO3l5MbOLcnXR6HwBnCZ0AAIDZvoSp9fL5fcT+zRzWTxSM6f/x6ecmz04+rIQDEDoBAPDxuo1z9p2GYlfJ08oJolGftF+qtznY4ecXqwCXi8Fivf26ufH45rap9X4OMTS6mp9ax9d/a2qmHtvXMofd0rvYlQ5F8xrlIk2KzYFWj8sbV4zlkLdhblK+aAm/+fi2gmk1y9iXnsXhjbQuHGqt39xdqtwESdG7WXO3z8YSs+xdqXx++bLzHcgrVXetMVQ1C391kWvRvw3ABxE6AQAA32tMum43oQHAHyZ0AgDgNxqbbz8tpGhXJeXT7dcLwIbVa6tB7HewP26jMdGuKmXRX2hbxLQcb+xLebI3p8Nqn1YH6Xg+v8ZRdrVSy8qjsXZpqsj59yjlysy5iXp0T+dR5VJrTLG5xtFq9t6smsr1bGJ/Bx01Gz8qPLvU52t3Nnv36ZBXzsv+/Oxf+2pl01f388IhgQ8ndAIAAKqcCANimXcJDwD+MKETAAC/wtlKnnN1Ftsyn+w+1S2GfTKSjTqReDL6+0bPeyw9m0ru/vD0qM19xsEYmsOM7jjm4qnWU9ym3kzTecp726hFu6bGIbLVCanzXrPgLY9KpJ4/2+5qZVVcupf7x8nBk+LW9+RYgRYCSviFhE4AAPzeH6SN1y5ETkOe/FS8+N7RRv3Yo/VKv4n2xZG8OdA40dN8bCD+/sE8HUtcPDPnrsO1+/Voo/iZK/Wj+wL+ln9OAQAA8HYxbNIJhSsAf51KJwAAfrPn69ZWG64LbJZLv7bL2+KwaOeoOXnsh7d5p7k8r9HYu9WgedsI/OoysKNtms3Fu+dgeD6A1fZ5cD0aFUQZ/blsLk5raWJ7NVZ0r9+Vc9i/wp25R3/jvHYaT41zKNrnO8Z5+nh5ZSEp8KmETgAA8NZfz29KAQDgwwmdAAD4C5ZlEatoZ12d0mk93uy51GpcftR4ut3M+tEze3WsGBaVVdE/3nZysThKrmqFemO5Vut0NL/cVCVNr+fxeZy3W38+clH7FI19x/mL3j5u1NxQw7Oqt9589zurrGb6cp+xi8d5Z16qWTj8XXo6AQAAAFBOpRMAAH9Nbv4Sw1BTqZG7Hk3PKoNi/G83tO4nMw4ntutH1Zj1UQVQXmrY1B9XXr8U3cPMlVz9zkT5hq5FzT3G145wdTVlHsyo1dPrzHvvHG/pF1XfJvjzhE4AANBw3Cz87E6y/2O+E248O0Juxnf8uTg10/2+nx9/tYd44XzGuX2fGfk7gpOX95N/4d4HqGF5HQAAAADlVDoBAPDXvVpA03gjVjs8WvAV53bZ2EEezOCgkfnJQxw2+z6qdYqrSwufb9c7r0fbPNtuO4OjyqyXl6Tl2eveHkOcvDPiYD9fXU73HQ3C2+cuv/LdBH4ZlU4AAAAAlFPpBAAAa0etjfLxRjz7cGuTc1UwrSqj9rb3154Xi6yrhPoVS0dVSXGpJiYO5nfmU8fn6Uyz76NqpMr6mijaZjh1b5zftve576hsysbJj7iXykVE833gb1LpBAAAAEA5lU4AANCWV97LE0UkRyVUlRUz235G73i627LN1HS8fO2kxvDa5M88bS8Kb4Lv6IN09vzk7/3uAP9HhE4AAPCD4tv3EL/q/BwGS/lXZvkJ9xFAPcvrAAAAACin0gkAAF4VzT++JF+s2jlaehWN1640p27uM/qfi3htnqfGlNfOy8vXYbPv76ogOnPNvrsh+PF1XLTMfzQJB9hS6QQAAABAufC4SgAAAACqqXQCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoJzQCQAAAIByQicAAAAAygmdAAAAACgndAIAAACgnNAJAAAAgHJCJwAAAADKCZ0AAAAAKCd0AgAAAKCc0AkAAACAckInAAAAAMoJnQAAAAAoJ3QCAAAAoNz/AAAA//8DAK9rzOEPhLU5AAAAAElFTkSuQmCCAAAA"
+ }
+ ]
+}
diff --git a/scenes/gltf/seele_right.glb b/scenes/gltf/seele_right.glb
new file mode 100644
index 00000000..d9399a80
Binary files /dev/null and b/scenes/gltf/seele_right.glb differ
diff --git a/scenes/gltf/triple_seele.glb b/scenes/gltf/triple_seele.glb
new file mode 100644
index 00000000..b6e19ebf
Binary files /dev/null and b/scenes/gltf/triple_seele.glb differ
diff --git a/scenes/seeles.txt b/scenes/seeles.txt
new file mode 100644
index 00000000..e2ecf8b0
--- /dev/null
+++ b/scenes/seeles.txt
@@ -0,0 +1,85 @@
+// Emissive material (light)
+MATERIAL 0
+RGB 1 1 1
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 10
+
+// Diffuse white
+MATERIAL 1
+RGB .98 .98 .98
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Camera
+CAMERA
+RES 1000 1000
+FOVY 45
+ITERATIONS 10000
+DEPTH 8
+FILE cornell
+EYE 0 5 10.5
+LOOKAT 0 5 0
+UP 0 1 0
+FOCALDIST 5
+LENSRADIUS 0
+
+
+// Ceiling light
+OBJECT 0
+cube
+material 0
+TRANS 0 15 1.5
+ROTAT 0 0 0
+SCALE 10 .3 10
+
+// Stage
+OBJECT 1
+mesh
+scenes/gltf/scene_dome.glb
+material -1
+TRANS 0 0 0
+ROTAT 0 0 0
+SCALE 2 2 2
+
+// Seele Center
+OBJECT 2
+mesh
+scenes/gltf/seele_center.glb
+material -1
+TRANS 0 0 -5
+ROTAT 0 0 0
+SCALE 5 5 5
+
+// Seele Left
+OBJECT 3
+mesh
+scenes/gltf/seele_left.glb
+material -1
+TRANS 0 0 -5
+ROTAT 0 0 0
+SCALE 5 5 5
+
+// Seele Right
+OBJECT 4
+mesh
+scenes/gltf/seele_right.glb
+material -1
+TRANS 0 0 -5
+ROTAT 0 0 0
+SCALE 5 5 5
+
+// Floor
+OBJECT 5
+cube
+material 1
+TRANS 0 -5 0
+ROTAT 0 0 0
+SCALE 100 .1 100
\ No newline at end of file
diff --git a/scenes/seeles_one_obj.txt b/scenes/seeles_one_obj.txt
new file mode 100644
index 00000000..090ddd4c
--- /dev/null
+++ b/scenes/seeles_one_obj.txt
@@ -0,0 +1,68 @@
+// Emissive material (light)
+// 4000k 1 .82 .64
+// 4800k 1 .88 .77
+MATERIAL 0
+RGB 1 .88 .77
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 5
+
+// Diffuse white
+MATERIAL 1
+RGB .78 .78 .78
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Camera
+CAMERA
+RES 1000 1000
+FOVY 45
+ITERATIONS 10000
+DEPTH 8
+FILE seele_scene
+EYE 0 1 10.5
+LOOKAT 0 4 0
+UP 0 1 0
+FOCALDIST 5
+LENSRADIUS 0
+
+
+// Ceiling light
+OBJECT 0
+cube
+material 0
+TRANS -5 17 13.5
+ROTAT 30 45 0
+SCALE 10 .3 10
+
+// Ceiling light
+OBJECT 1
+cube
+material 0
+TRANS 5 17 13.5
+ROTAT 30 -45 0
+SCALE 10 .3 10
+
+// Stage
+OBJECT 2
+mesh
+../scenes/gltf/triple_seele.glb
+material -1
+TRANS 0 0 -1
+ROTAT 0 0 0
+SCALE 5 5 5
+
+// Floor
+OBJECT 3
+cube
+material 1
+TRANS 0 -1 0
+ROTAT 0 0 0
+SCALE 50 .1 50
\ No newline at end of file
diff --git a/scenes/sphere.txt b/scenes/sphere.txt
index a74b5458..6ea04ec9 100644
--- a/scenes/sphere.txt
+++ b/scenes/sphere.txt
@@ -18,6 +18,8 @@ FILE sphere
EYE 0.0 5 10.5
LOOKAT 0 5 0
UP 0 1 0
+FOCALDIST 5
+LENSRADIUS 0
// Sphere
OBJECT 0
diff --git a/scenes/test.txt b/scenes/test.txt
new file mode 100644
index 00000000..090ddd4c
--- /dev/null
+++ b/scenes/test.txt
@@ -0,0 +1,68 @@
+// Emissive material (light)
+// 4000k 1 .82 .64
+// 4800k 1 .88 .77
+MATERIAL 0
+RGB 1 .88 .77
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 5
+
+// Diffuse white
+MATERIAL 1
+RGB .78 .78 .78
+SPECEX 0
+SPECRGB 0 0 0
+REFL 0
+REFR 0
+REFRIOR 0
+EMITTANCE 0
+
+// Camera
+CAMERA
+RES 1000 1000
+FOVY 45
+ITERATIONS 10000
+DEPTH 8
+FILE seele_scene
+EYE 0 1 10.5
+LOOKAT 0 4 0
+UP 0 1 0
+FOCALDIST 5
+LENSRADIUS 0
+
+
+// Ceiling light
+OBJECT 0
+cube
+material 0
+TRANS -5 17 13.5
+ROTAT 30 45 0
+SCALE 10 .3 10
+
+// Ceiling light
+OBJECT 1
+cube
+material 0
+TRANS 5 17 13.5
+ROTAT 30 -45 0
+SCALE 10 .3 10
+
+// Stage
+OBJECT 2
+mesh
+../scenes/gltf/triple_seele.glb
+material -1
+TRANS 0 0 -1
+ROTAT 0 0 0
+SCALE 5 5 5
+
+// Floor
+OBJECT 3
+cube
+material 1
+TRANS 0 -1 0
+ROTAT 0 0 0
+SCALE 50 .1 50
\ No newline at end of file
diff --git a/src/interactions.h b/src/interactions.h
index f969e458..e8ba65a8 100644
--- a/src/interactions.h
+++ b/src/interactions.h
@@ -1,6 +1,26 @@
#pragma once
#include "intersections.h"
+#include
+
+__host__ __device__
+glm::vec2 ConcentricSampleDisk(const glm::vec2& u) {
+ // adapted from PBRT 13.6.2
+ glm::vec2 uOffset = 2.f * u - 1.f;
+ if (uOffset == glm::vec2(0.f)) {
+ return uOffset;
+ }
+ float theta, r;
+ if (abs(uOffset.x) > abs(uOffset.y)) {
+ r = uOffset.x;
+ theta = QUARTER_PI * (uOffset.y / uOffset.x);
+ }
+ else {
+ r = uOffset.y;
+ theta = HALF_PI - QUARTER_PI * (uOffset.x / uOffset.y);
+ }
+ return r * glm::vec2(cos(theta), sin(theta));
+}
// CHECKITOUT
/**
@@ -41,6 +61,84 @@ glm::vec3 calculateRandomDirectionInHemisphere(
+ sin(around) * over * perpendicularDirection2;
}
+__host__ __device__
+void Sample_f_diffuse(glm::vec3 color, thrust::default_random_engine& rng,
+ glm::vec3 intersect, glm::vec3 normal, PathSegment& pathSegment) {
+ glm::vec3 wi = calculateRandomDirectionInHemisphere(normal, rng);
+ float pdf = wi.z * INV_PI;
+ if (pdf == 0.f) {
+ // terminate on invalid sample
+ pathSegment.remainingBounces = 0;
+ pathSegment.color = glm::vec3(0.f);
+ }
+ else {
+ pathSegment.color *= color; // * INV_PI * glm::abs(glm::dot(wi, normal)) / (glm::abs(glm::dot(wi, normal)) * INV_PI) the other terms cancel out
+ pathSegment.ray.origin = intersect + 0.0001f * wi;
+ pathSegment.ray.direction = wi;
+ }
+}
+
+__host__ __device__
+void Sample_f_specular_refl(glm::vec3 color, glm::vec3 intersect, glm::vec3 normal,
+ PathSegment& pathSegment) {
+ glm::vec3 wi = glm::reflect(pathSegment.ray.direction, normal);
+ pathSegment.color *= color; // pdf = 1, abscos(theta_wo) and absdot(wi, n) = cos(theta_j) cancels out
+ pathSegment.ray.origin = intersect + 0.0001f * wi;
+ pathSegment.ray.direction = wi;
+}
+
+__host__ __device__
+void Sample_f_specular_trans(glm::vec3 color, glm::vec3 intersect, glm::vec3 normal,
+ float ior, PathSegment& pathSegment) {
+ glm::vec3 wi;
+ if (glm::dot(pathSegment.ray.direction, normal) < 0) {
+ wi = glm::normalize(glm::refract(glm::normalize(pathSegment.ray.direction), glm::normalize(normal), 1.f / ior));
+ } else {
+ wi = glm::normalize(glm::refract(glm::normalize(pathSegment.ray.direction), glm::normalize(-normal), ior));
+ }
+ pathSegment.color *= color; // pdf = 1, abscos(theta_wo) and absdot(wi, n) = cos(theta_j) cancels out
+ pathSegment.ray.origin = intersect + 0.0001f * wi;
+ pathSegment.ray.direction = wi;
+}
+
+__host__ __device__
+glm::vec3 FresnelDielectricEval(float cosThetaI, float ior) {
+ cosThetaI = glm::clamp(cosThetaI, -1.f, 1.f);
+ float etaI = 1.f;
+ float etaT = ior;
+
+ if (cosThetaI <= 0.f) {
+ etaI = ior;
+ etaT = 1.f;
+ cosThetaI = abs(cosThetaI);
+ }
+
+ float sinThetaI = sqrt(FLOATMAX(0.f, 1 - cosThetaI * cosThetaI));
+ float sinThetaT = etaI / etaT * sinThetaI;
+ if (sinThetaT >= 1.f) {
+ return glm::vec3(1.f);
+ }
+ float cosThetaT = sqrt(FLOATMAX(0.f, 1 - sinThetaT * sinThetaT));
+ float Rparl = ((etaT * cosThetaI) - (etaI * cosThetaT)) / ((etaT * cosThetaI) + (etaI * cosThetaT));
+ float Rperp = ((etaI * cosThetaI) - (etaT * cosThetaT)) / ((etaI * cosThetaI) + (etaT * cosThetaT));
+ return glm::vec3((Rparl * Rparl + Rperp * Rperp) / 2);
+}
+
+__host__ __device__
+void Sample_f_specular_fresnel(glm::vec3 color, thrust::default_random_engine& rng,
+ glm::vec3 intersect, glm::vec3 normal, float ior, PathSegment& pathSegment) {
+ thrust::uniform_real_distribution u01(0, 1);
+ // double contribute since only sample each half the times
+ if (u01(rng) < 0.5) {
+ Sample_f_specular_refl(color, intersect, normal, pathSegment);
+ pathSegment.color *= 2.f * FresnelDielectricEval(glm::dot(pathSegment.ray.direction, normal), ior);
+ } else {
+ Sample_f_specular_trans(color, intersect, normal, ior, pathSegment);
+ pathSegment.color *= 2.f * (glm::vec3(1.f) - FresnelDielectricEval(glm::dot(pathSegment.ray.direction, normal), ior));
+ }
+}
+
+
/**
* Scatter a ray with some probabilities according to the material properties.
* For example, a diffuse surface scatters in a cosine-weighted hemisphere.
@@ -66,14 +164,64 @@ glm::vec3 calculateRandomDirectionInHemisphere(
*
* You may need to change the parameter list for your purposes!
*/
-__host__ __device__
+__device__
void scatterRay(
- PathSegment & pathSegment,
+ PathSegment &pathSegment,
glm::vec3 intersect,
- glm::vec3 normal,
+ ShadeableIntersection &isect,
const Material &m,
+ const cudaTextureObject_t* const texObjs,
thrust::default_random_engine &rng) {
// TODO: implement this.
// A basic implementation of pure-diffuse shading will just call the
// calculateRandomDirectionInHemisphere defined above.
+ // sample f
+ // if pdf invalid, set numBounces = 0, set color black
+ // multiply color by throughput
+ // spawn new ray
+ thrust::uniform_real_distribution u01(0, 1);
+
+ if (m.textureid >= 0) {
+ float4 texCol = tex2D(texObjs[m.textureid], isect.uv.x, isect.uv.y);
+ glm::vec4 col = glm::vec4(texCol.x, texCol.y, texCol.z, texCol.w);
+ if (u01(rng) < col.a) {
+ Sample_f_diffuse(glm::vec3(col), rng, intersect, isect.surfaceNormal, pathSegment);
+ pathSegment.color /= fmax(col.a, EPSILON);
+ } else {
+ pathSegment.ray.origin = intersect + 0.0001f * pathSegment.ray.direction;
+ pathSegment.color /= fmax(1.f - col.a, EPSILON);
+ }
+ /*Sample_f_diffuse(glm::vec3(isect.uv.x, isect.uv.y, 1.f), rng, intersect, isect.surfaceNormal, pathSegment);*/
+ return;
+ }
+ if (m.color == glm::vec3(0.f) && m.specular.color == glm::vec3(0.f)) {
+ // black always gives black color in our sampling methods
+ return;
+ }
+ if (!(m.hasReflective || m.hasRefractive)) {
+ Sample_f_diffuse(m.color, rng, intersect, isect.surfaceNormal, pathSegment);
+ return;
+ }
+
+ float diffuseLumin = LUMINANCE(m.color);
+ float specularLumin = LUMINANCE(m.specular.color);
+ float pSampleDiffuse = diffuseLumin / (diffuseLumin + specularLumin);
+ if (u01(rng) < pSampleDiffuse) {
+ Sample_f_diffuse(m.color, rng, intersect, isect.surfaceNormal, pathSegment);
+ pathSegment.color /= fmax(pSampleDiffuse, EPSILON);
+ } else {
+ if (!m.hasReflective) {
+ Sample_f_specular_trans(m.specular.color, intersect, isect.surfaceNormal, m.indexOfRefraction, pathSegment);
+ } else if (!m.hasRefractive) {
+ Sample_f_specular_refl(m.specular.color, intersect, isect.surfaceNormal, pathSegment);
+ } else {
+ Sample_f_specular_fresnel(m.specular.color, rng, intersect, isect.surfaceNormal, m.indexOfRefraction, pathSegment);
+ }
+ if (glm::dot(pathSegment.ray.direction, pathSegment.ray.direction) == 0) {
+ pathSegment.color = glm::vec3(0.f, 0.f, 0.f);
+ pathSegment.remainingBounces = 0;
+ } else {
+ pathSegment.color /= fmax((1 - pSampleDiffuse), EPSILON);
+ }
+ }
}
diff --git a/src/intersections.h b/src/intersections.h
index b1504071..b91eafaa 100644
--- a/src/intersections.h
+++ b/src/intersections.h
@@ -22,10 +22,10 @@ __host__ __device__ inline unsigned int utilhash(unsigned int a) {
// CHECKITOUT
/**
* Compute a point at parameter value `t` on ray `r`.
- * Falls slightly short so that it doesn't intersect the object it's hitting.
+ * Warning: Point may interact with intersectiong object.
*/
-__host__ __device__ glm::vec3 getPointOnRay(Ray r, float t) {
- return r.origin + (t - .0001f) * glm::normalize(r.direction);
+__host__ __device__ glm::vec3 getPointOnRay(Ray& r, float t) {
+ return r.origin + t * glm::normalize(r.direction);
}
/**
@@ -45,8 +45,8 @@ __host__ __device__ glm::vec3 multiplyMV(glm::mat4 m, glm::vec4 v) {
* @param outside Output param for whether the ray came from outside.
* @return Ray parameter `t` value. -1 if no intersection.
*/
-__host__ __device__ float boxIntersectionTest(Geom box, Ray r,
- glm::vec3 &intersectionPoint, glm::vec3 &normal, bool &outside) {
+__host__ __device__ float boxIntersectionTest(Geom& box, Ray& r,
+ glm::vec3 &normal, bool &outside) {
Ray q;
q.origin = multiplyMV(box.inverseTransform, glm::vec4(r.origin , 1.0f));
q.direction = glm::normalize(multiplyMV(box.inverseTransform, glm::vec4(r.direction, 0.0f)));
@@ -82,7 +82,7 @@ __host__ __device__ float boxIntersectionTest(Geom box, Ray r,
tmin_n = tmax_n;
outside = false;
}
- intersectionPoint = multiplyMV(box.transform, glm::vec4(getPointOnRay(q, tmin), 1.0f));
+ glm::vec3 intersectionPoint = multiplyMV(box.transform, glm::vec4(getPointOnRay(q, tmin), 1.0f));
normal = glm::normalize(multiplyMV(box.invTranspose, glm::vec4(tmin_n, 0.0f)));
return glm::length(r.origin - intersectionPoint);
}
@@ -99,8 +99,8 @@ __host__ __device__ float boxIntersectionTest(Geom box, Ray r,
* @param outside Output param for whether the ray came from outside.
* @return Ray parameter `t` value. -1 if no intersection.
*/
-__host__ __device__ float sphereIntersectionTest(Geom sphere, Ray r,
- glm::vec3 &intersectionPoint, glm::vec3 &normal, bool &outside) {
+__host__ __device__ float sphereIntersectionTest(Geom& sphere, Ray& r,
+ glm::vec3 &normal, bool &outside) {
float radius = .5;
glm::vec3 ro = multiplyMV(sphere.inverseTransform, glm::vec4(r.origin, 1.0f));
@@ -134,11 +134,135 @@ __host__ __device__ float sphereIntersectionTest(Geom sphere, Ray r,
glm::vec3 objspaceIntersection = getPointOnRay(rt, t);
- intersectionPoint = multiplyMV(sphere.transform, glm::vec4(objspaceIntersection, 1.f));
+ glm::vec3 intersectionPoint = multiplyMV(sphere.transform, glm::vec4(objspaceIntersection, 1.f));
normal = glm::normalize(multiplyMV(sphere.invTranspose, glm::vec4(objspaceIntersection, 0.f)));
- if (!outside) {
+ /*if (!outside) {
normal = -normal;
+ }*/
+
+ return glm::length(r.origin - intersectionPoint);
+}
+
+__host__ __device__ float boundingBoxIntersectionTest(glm::vec3 ro, glm::vec3 rdR, AABoundBox& bounds) {
+ float tx1 = (bounds.minCoord.x - ro.x) * rdR.x;
+ float tx2 = (bounds.maxCoord.x - ro.x) * rdR.x;
+ float tmin = min(tx1, tx2);
+ float tmax = max(tx1, tx2);
+ float ty1 = (bounds.minCoord.y - ro.y) * rdR.y;
+ float ty2 = (bounds.maxCoord.y - ro.y) * rdR.y;
+ tmin = max(tmin, min(ty1, ty2));
+ tmax = min(tmax, max(ty1, ty2));
+ float tz1 = (bounds.minCoord.z - ro.z) * rdR.z;
+ float tz2 = (bounds.maxCoord.z - ro.z) * rdR.z;
+ tmin = max(tmin, min(tz1, tz2));
+ tmax = min(tmax, max(tz1, tz2));
+ if (tmax >= tmin && tmax > 0) {
+ return tmin;
+ }
+ return -1;
+}
+
+__host__ __device__ glm::vec3 barycentric(glm::vec3 p, glm::vec3 a, glm::vec3 b, glm::vec3 c)
+{
+ const glm::vec3 v0 = b - a, v1 = c - a, v2 = p - a;
+ const float d00 = glm::dot(v0, v0);
+ const float d01 = glm::dot(v0, v1);
+ const float d11 = glm::dot(v1, v1);
+ const float d20 = glm::dot(v2, v0);
+ const float d21 = glm::dot(v2, v1);
+ const float invDenom = 1.f / (d00 * d11 - d01 * d01);
+ const float v = (d11 * d20 - d01 * d21) * invDenom;
+ const float w = (d00 * d21 - d01 * d20) * invDenom;
+ const float u = 1.0f - v - w;
+ return glm::vec3(u, v, w);
+}
+
+//__host__ __device__ glm::vec3 barycentric(glm::vec3 p, glm::vec3 t1, glm::vec3 t2, glm::vec3 t3) {
+// glm::vec3 edge1 = t2 - t1;
+// glm::vec3 edge2 = t3 - t2;
+// float S = 1 / glm::length(glm::cross(edge1, edge2));
+//
+// edge1 = p - t2;
+// edge2 = p - t3;
+// float S1 = glm::length(glm::cross(edge1, edge2));
+//
+// edge1 = p - t1;
+// edge2 = p - t3;
+// float S2 = glm::length(glm::cross(edge1, edge2));
+//
+// edge1 = p - t1;
+// edge2 = p - t2;
+// float S3 = glm::length(glm::cross(edge1, edge2));
+//
+// return glm::vec3(S1 * S, S2 * S, S3 * S);
+//}
+
+
+__host__ __device__ float meshIntersectionTest(Geom& mesh, BVHNode* BVHNodes, Triangle* Prims,
+ Ray& r, glm::vec3& normal, glm::vec2& uv, int& primIdx, float t_min) {
+ glm::vec3 ro = multiplyMV(mesh.inverseTransform, glm::vec4(r.origin, 1.f));
+ glm::vec3 rd = glm::normalize(multiplyMV(mesh.inverseTransform, glm::vec4(r.direction, 0.f)));
+ glm::vec3 rdR = 1.f / rd;
+
+ primIdx = -1;
+
+#if USE_BVH
+ int stack[32];
+ int stackPtr = 0;
+
+ stack[stackPtr++] = mesh.bvhRootIdx;
+
+ while (stackPtr > 0) {
+ BVHNode& node = BVHNodes[stack[--stackPtr]];
+ float t = boundingBoxIntersectionTest(ro, rdR, node.bounds);
+ if (t > 0 && t < t_min) {
+ if (node.isLeaf()) {
+ for (int testPrimIdx = node.leftInd; testPrimIdx < node.leftInd + node.primCnt; testPrimIdx++) {
+ Triangle& prim = Prims[testPrimIdx];
+ glm::vec3 baryPoint;
+ if (glm::intersectRayTriangle(ro, rd, prim.v1.pos, prim.v2.pos, prim.v3.pos, baryPoint)) {
+ if (baryPoint.z < t_min) {
+ t_min = baryPoint.z;
+ primIdx = testPrimIdx;
+ }
+ }
+
+ }
+ }
+ else {
+ stack[stackPtr++] = node.leftInd;
+ stack[stackPtr++] = node.leftInd + 1;
+ }
+ }
}
+#else
+ for (int testPrimIdx = mesh.primStartIdx; testPrimIdx < mesh.primStartIdx + mesh.primCnt; testPrimIdx++) {
+ Triangle& prim = Prims[testPrimIdx];
+ glm::vec3 baryPoint;
+ if (glm::intersectRayTriangle(ro, rd, prim.v1.pos, prim.v2.pos, prim.v3.pos, baryPoint)) {
+ if (baryPoint.z < t_min) {
+ t_min = baryPoint.z;
+ primIdx = testPrimIdx;
+ }
+ }
+ }
+#endif
+ if (primIdx == -1) {
+ return -1;
+ }
+
+ Triangle& prim = Prims[primIdx];
+ Vertex& v1 = prim.v1;
+ Vertex& v2 = prim.v2;
+ Vertex& v3 = prim.v3;
+
+ glm::vec3 objSpaceIntersection = ro + rd * t_min;
+ glm::vec3 baryWeights = barycentric(objSpaceIntersection, v1.pos, v2.pos, v3.pos);
+ glm::vec3 objSpaceNormal = glm::normalize(baryWeights.x * v1.nor + baryWeights.y * v2.nor + baryWeights.z * v3.nor);
+
+ glm::vec3 intersectionPoint = multiplyMV(mesh.transform, glm::vec4(objSpaceIntersection, 1.f));
+ normal = glm::normalize(multiplyMV(mesh.invTranspose, glm::vec4(objSpaceNormal, 0.f)));
+ uv = baryWeights.x * v1.uv + baryWeights.y * v2.uv + baryWeights.z * v3.uv;
return glm::length(r.origin - intersectionPoint);
}
diff --git a/src/main.cpp b/src/main.cpp
index 96127b6d..1a4ee418 100644
--- a/src/main.cpp
+++ b/src/main.cpp
@@ -32,6 +32,7 @@ int height;
//-------------------------------
int main(int argc, char** argv) {
+
startTimeString = currentTimeString();
if (argc < 2) {
@@ -70,6 +71,9 @@ int main(int argc, char** argv) {
ogLookAt = cam.lookAt;
zoom = glm::length(cam.position - ogLookAt);
+ guiData->focalDistance = cam.focalDistance;
+ guiData->lensRadius = cam.lensRadius;
+
// Initialize CUDA and GL components
init();
@@ -78,7 +82,7 @@ int main(int argc, char** argv) {
InitDataContainer(guiData);
// GLFW main loop
- mainLoop();
+ mainLoop(camchanged);
return 0;
}
@@ -124,7 +128,13 @@ void runCuda() {
cam.position = cameraPosition;
cameraPosition += cam.lookAt;
cam.position = cameraPosition;
+
+ cam.focalDistance = guiData->focalDistance;
+ cam.lensRadius = guiData->lensRadius;
+
camchanged = false;
+
+ guiData->fbCached = false;
}
// Map OpenGL buffer object for writing from CUDA on a single GPU
diff --git a/src/pathtrace.cu b/src/pathtrace.cu
index fd2a4641..6bcb3007 100644
--- a/src/pathtrace.cu
+++ b/src/pathtrace.cu
@@ -4,11 +4,14 @@
#include
#include
#include
+#include
+#include
#include "sceneStructs.h"
#include "scene.h"
#include "glm/glm.hpp"
#include "glm/gtx/norm.hpp"
+#include "glm/gtx/projection.hpp"
#include "utilities.h"
#include "pathtrace.h"
#include "intersections.h"
@@ -38,6 +41,22 @@ void checkCUDAErrorFn(const char* msg, const char* file, int line) {
#endif
}
+struct is_traceable {
+ __host__ __device__
+ bool operator()(const PathSegment p)
+ {
+ return p.remainingBounces > 0;
+ }
+};
+
+struct no_color {
+ __host__ __device__
+ bool operator()(const PathSegment p)
+ {
+ return p.color == glm::vec3(0.f);
+ }
+};
+
__host__ __device__
thrust::default_random_engine makeSeededRandomEngine(int iter, int index, int depth) {
int h = utilhash((1 << 31) | (depth << 22) | iter) ^ utilhash(index);
@@ -76,6 +95,18 @@ static PathSegment* dev_paths = NULL;
static ShadeableIntersection* dev_intersections = NULL;
// TODO: static variables for device memory, any extra info you need, etc
// ...
+static thrust::device_ptr dev_thrust_intersections = NULL;
+static thrust::device_ptr dev_thrust_paths = NULL;
+static ShadeableIntersection* dev_fbc = NULL;
+static thrust::device_ptr dev_thrust_fbc = NULL;
+
+static Triangle* dev_prims = NULL;
+static BVHNode* dev_bvh = NULL;
+
+static int numTextures = 0;
+static cudaTextureObject_t* host_textureObjs = NULL;
+static cudaTextureObject_t* dev_textureObjs = NULL;
+static cudaArray_t* host_textureDataPtrs = NULL;
void InitDataContainer(GuiDataContainer* imGuiData)
{
@@ -103,18 +134,74 @@ void pathtraceInit(Scene* scene) {
cudaMemset(dev_intersections, 0, pixelcount * sizeof(ShadeableIntersection));
// TODO: initialize any extra device memeory you need
+ dev_thrust_intersections = thrust::device_ptr(dev_intersections);
+ dev_thrust_paths = thrust::device_ptr(dev_paths);
+
+ cudaMalloc(&dev_fbc, pixelcount * sizeof(ShadeableIntersection));
+ cudaMemset(dev_fbc, 0, pixelcount * sizeof(ShadeableIntersection));
+ dev_thrust_fbc = thrust::device_ptr(dev_fbc);
+
+ cudaMalloc(&dev_prims, scene->prims.size() * sizeof(Triangle));
+ cudaMemcpy(dev_prims, scene->prims.data(), scene->prims.size() * sizeof(Triangle), cudaMemcpyHostToDevice);
+
+ cudaMalloc(&dev_bvh, scene->BVHNodes.size() * sizeof(BVHNode));
+ cudaMemcpy(dev_bvh, scene->BVHNodes.data(), scene->BVHNodes.size() * sizeof(BVHNode), cudaMemcpyHostToDevice);
+
+ // textures
+ numTextures = scene->textures.size();
+ if (numTextures > 0) {
+ host_textureObjs = new cudaTextureObject_t[numTextures];
+ host_textureDataPtrs = new cudaArray_t[numTextures];
+
+ for (int i = 0; i < numTextures; i++) {
+ const Texture& tex = scene->textures[i];
+ cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc();
+ cudaMallocArray(&host_textureDataPtrs[i], &channelDesc, tex.width, tex.height);
+ cudaMemcpy2DToArray(host_textureDataPtrs[i], 0, 0, tex.host_buffer, tex.width * sizeof(float4), tex.width * sizeof(float4), tex.height, cudaMemcpyHostToDevice);
+
+ cudaResourceDesc resDesc;
+ memset(&resDesc, 0, sizeof(resDesc));
+ resDesc.resType = cudaResourceTypeArray;
+ resDesc.res.array.array = host_textureDataPtrs[i];
+
+ cudaTextureDesc texDesc;
+ memset(&texDesc, 0, sizeof(cudaTextureDesc));
+ texDesc.addressMode[0] = cudaAddressModeWrap;
+ texDesc.addressMode[1] = cudaAddressModeWrap;
+ texDesc.filterMode = cudaFilterModeLinear;
+ texDesc.readMode = cudaReadModeElementType;
+ texDesc.normalizedCoords = 1;
+
+ cudaCreateTextureObject(&host_textureObjs[i], &resDesc, &texDesc, NULL);
+ }
+
+ cudaMalloc(&dev_textureObjs, numTextures * sizeof(cudaTextureObject_t));
+ cudaMemcpy(dev_textureObjs, host_textureObjs, numTextures * sizeof(cudaTextureObject_t), cudaMemcpyHostToDevice);
+ }
checkCUDAError("pathtraceInit");
}
void pathtraceFree() {
+ checkCUDAError("before pathtraceFree");
cudaFree(dev_image); // no-op if dev_image is null
cudaFree(dev_paths);
cudaFree(dev_geoms);
cudaFree(dev_materials);
cudaFree(dev_intersections);
// TODO: clean up any extra device memory you created
-
+ cudaFree(dev_fbc);
+ cudaFree(dev_prims);
+ cudaFree(dev_bvh);
+ if (numTextures > 0) {
+ cudaFree(dev_textureObjs);
+ for (int i = 0; i < numTextures; i++) {
+ cudaDestroyTextureObject(host_textureObjs[i]);
+ cudaFreeArray(host_textureDataPtrs[i]);
+ }
+ delete[] host_textureDataPtrs;
+ delete[] host_textureObjs;
+ }
checkCUDAError("pathtraceFree");
}
@@ -135,15 +222,29 @@ __global__ void generateRayFromCamera(Camera cam, int iter, int traceDepth, Path
int index = x + (y * cam.resolution.x);
PathSegment& segment = pathSegments[index];
- segment.ray.origin = cam.position;
+ thrust::default_random_engine rng = makeSeededRandomEngine(iter, index, 0);
+ thrust::uniform_real_distribution u01(0, 1);
+
segment.color = glm::vec3(1.0f, 1.0f, 1.0f);
// TODO: implement antialiasing by jittering the ray
- segment.ray.direction = glm::normalize(cam.view
- - cam.right * cam.pixelLength.x * ((float)x - (float)cam.resolution.x * 0.5f)
- - cam.up * cam.pixelLength.y * ((float)y - (float)cam.resolution.y * 0.5f)
+ glm::vec3 baseDirection = glm::normalize(cam.view
+ - cam.right * cam.pixelLength.x * ((float)x - (float)cam.resolution.x * 0.5f + u01(rng))
+ - cam.up * cam.pixelLength.y * ((float)y - (float)cam.resolution.y * 0.5f + u01(rng))
);
+ if (cam.lensRadius > 0.f) {
+ float ft = cam.focalDistance / glm::length(glm::proj(baseDirection, cam.view));
+ glm::vec3 pFocus = cam.position + (baseDirection * ft);
+ glm::vec2 pLens = cam.lensRadius * ConcentricSampleDisk(glm::vec2(u01(rng), u01(rng)));
+ segment.ray.origin = cam.position + (pLens.x * cam.right + pLens.y * cam.up);
+ segment.ray.direction = glm::normalize(pFocus - segment.ray.origin);
+ }
+ else {
+ segment.ray.origin = cam.position;
+ segment.ray.direction = baseDirection;
+ }
+
segment.pixelIndex = index;
segment.remainingBounces = traceDepth;
}
@@ -154,12 +255,12 @@ __global__ void generateRayFromCamera(Camera cam, int iter, int traceDepth, Path
// Generating new rays is handled in your shader(s).
// Feel free to modify the code below.
__global__ void computeIntersections(
- int depth
- , int num_paths
- , PathSegment* pathSegments
- , Geom* geoms
- , int geoms_size
- , ShadeableIntersection* intersections
+ int depth,
+ int num_paths, PathSegment* pathSegments,
+ Geom* geoms, int geoms_size,
+ Triangle* prims,
+ BVHNode* bvh,
+ ShadeableIntersection* intersections
)
{
int path_index = blockIdx.x * blockDim.x + threadIdx.x;
@@ -169,14 +270,14 @@ __global__ void computeIntersections(
PathSegment pathSegment = pathSegments[path_index];
float t;
- glm::vec3 intersect_point;
glm::vec3 normal;
float t_min = FLT_MAX;
int hit_geom_index = -1;
bool outside = true;
- glm::vec3 tmp_intersect;
glm::vec3 tmp_normal;
+ glm::vec2 tmp_uv;
+ int tmp_primIdx = -1;
// naive parse through global geoms
@@ -186,21 +287,23 @@ __global__ void computeIntersections(
if (geom.type == CUBE)
{
- t = boxIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside);
+ t = boxIntersectionTest(geom, pathSegment.ray, tmp_normal, outside);
}
else if (geom.type == SPHERE)
{
- t = sphereIntersectionTest(geom, pathSegment.ray, tmp_intersect, tmp_normal, outside);
+ t = sphereIntersectionTest(geom, pathSegment.ray, tmp_normal, outside);
}
// TODO: add more intersection tests here... triangle? metaball? CSG?
-
+ else if (geom.type == MESH)
+ {
+ t = meshIntersectionTest(geom, bvh, prims, pathSegment.ray, tmp_normal, tmp_uv, tmp_primIdx, t_min);
+ }
// Compute the minimum t from the intersection tests to determine what
// scene geometry object was hit first.
if (t > 0.0f && t_min > t)
{
t_min = t;
hit_geom_index = i;
- intersect_point = tmp_intersect;
normal = tmp_normal;
}
}
@@ -213,8 +316,13 @@ __global__ void computeIntersections(
{
//The ray hits something
intersections[path_index].t = t_min;
- intersections[path_index].materialId = geoms[hit_geom_index].materialid;
intersections[path_index].surfaceNormal = normal;
+ if (tmp_primIdx != -1) {
+ intersections[path_index].materialId = prims[tmp_primIdx].materialid;
+ intersections[path_index].uv = tmp_uv;
+ } else {
+ intersections[path_index].materialId = geoms[hit_geom_index].materialid;
+ }
}
}
}
@@ -273,6 +381,55 @@ __global__ void shadeFakeMaterial(
}
}
+__global__ void shadeMaterialNaive(
+ int iter,
+ int depth,
+ int num_paths,
+ ShadeableIntersection* shadeableIntersections,
+ PathSegment* pathSegments,
+ Material* materials,
+ cudaTextureObject_t* texObjs
+)
+{
+ int idx = blockIdx.x * blockDim.x + threadIdx.x;
+ if (idx < num_paths)
+ {
+ ShadeableIntersection intersection = shadeableIntersections[idx];
+ PathSegment segment = pathSegments[idx];
+ if (intersection.t > 0.0f) { // if the intersection exists...
+ // Set up the RNG
+ thrust::default_random_engine rng = makeSeededRandomEngine(iter, idx, depth);
+
+ Material& material = materials[intersection.materialId];
+
+ // If the material indicates that the object was a light, "light" the ray
+ if (material.emittance > 0.0f) {
+ segment.color *= (material.color * material.emittance);
+ segment.remainingBounces = 0;
+ }
+ // Otherwise, do some pseudo-lighting computation. This is actually more
+ // like what you would expect from shading in a rasterizer like OpenGL.
+ // TODO: replace this! you should be able to start with basically a one-liner
+ else {
+ scatterRay(segment, getPointOnRay(segment.ray, intersection.t), intersection, material, texObjs, rng);
+ if (--segment.remainingBounces < 1) {
+ segment.color = glm::vec3(0.f);
+ }
+ }
+ // If there was no intersection, color the ray black.
+ // Lots of renderers use 4 channel color, RGBA, where A = alpha, often
+ // used for opacity, in which case they can indicate "no opacity".
+ // This can be useful for post-processing and image compositing.
+ }
+ else {
+ segment.color = glm::vec3(0.0f);
+ segment.remainingBounces = 0;
+ }
+ pathSegments[idx] = segment;
+ }
+}
+
+
// Add the current iteration's output to the overall image
__global__ void finalGather(int nPaths, glm::vec3* image, PathSegment* iterationPaths)
{
@@ -281,6 +438,14 @@ __global__ void finalGather(int nPaths, glm::vec3* image, PathSegment* iteration
if (index < nPaths)
{
PathSegment iterationPath = iterationPaths[index];
+ /*if (isnan(iterationPath.color.x) || isnan(iterationPath.color.y) || isnan(iterationPath.color.z))
+ {
+ image[iterationPath.pixelIndex] = glm::vec3(1, 0, 1);
+ }
+ else
+ {
+ image[iterationPath.pixelIndex] += iterationPath.color;
+ }*/
image[iterationPath.pixelIndex] += iterationPath.color;
}
}
@@ -338,49 +503,70 @@ void pathtrace(uchar4* pbo, int frame, int iter) {
checkCUDAError("generate camera ray");
int depth = 0;
- PathSegment* dev_path_end = dev_paths + pixelcount;
- int num_paths = dev_path_end - dev_paths;
+ thrust::device_ptr dev_thrust_paths_end;
+ int num_paths = pixelcount;
+ dim3 numblocksPathSegmentTracing = (num_paths + blockSize1d - 1) / blockSize1d;
// --- PathSegment Tracing Stage ---
// Shoot ray into scene, bounce between objects, push shading chunks
-
bool iterationComplete = false;
while (!iterationComplete) {
-
- // clean shading chunks
- cudaMemset(dev_intersections, 0, pixelcount * sizeof(ShadeableIntersection));
-
- // tracing
- dim3 numblocksPathSegmentTracing = (num_paths + blockSize1d - 1) / blockSize1d;
- computeIntersections << > > (
- depth
- , num_paths
- , dev_paths
- , dev_geoms
- , hst_scene->geoms.size()
- , dev_intersections
+ if (guiData->cacheFirstBounce && guiData->fbCached && depth == 0) {
+ thrust::copy(dev_thrust_fbc, dev_thrust_fbc + pixelcount, dev_thrust_intersections);
+ checkCUDAError("load first bounce cache");
+ }
+ else {
+ // clean shading chunks
+ cudaMemset(dev_intersections, 0, pixelcount * sizeof(ShadeableIntersection));
+
+ // tracing
+ computeIntersections << > > (
+ depth, num_paths, dev_paths,
+ dev_geoms, hst_scene->geoms.size(),
+ dev_prims, dev_bvh,
+ dev_intersections
);
- checkCUDAError("trace one bounce");
- cudaDeviceSynchronize();
+ checkCUDAError("trace one bounce");
+ cudaDeviceSynchronize();
+ }
depth++;
- // TODO:
+ if (guiData->sortMaterial) {
+ thrust::sort_by_key(dev_thrust_intersections, dev_thrust_intersections + num_paths, dev_thrust_paths);
+ checkCUDAError("sort by material");
+ }
+
+ if (guiData->cacheFirstBounce && !(guiData->fbCached)) {
+ thrust::copy(dev_thrust_intersections, dev_thrust_intersections + pixelcount, dev_thrust_fbc);
+ checkCUDAError("compute first bounce cache");
+ guiData->fbCached = true;
+ }
+
// --- Shading Stage ---
// Shade path segments based on intersections and generate new rays by
- // evaluating the BSDF.
- // Start off with just a big kernel that handles all the different
- // materials you have in the scenefile.
- // TODO: compare between directly shading the path segments and shading
- // path segments that have been reshuffled to be contiguous in memory.
+ // evaluating the BSDF.
+ // Start off with just a big kernel that handles all the different
+ // materials you have in the scenefile.
+ // TODO: compare between directly shading the path segments and shading
+ // path segments that have been reshuffled to be contiguous in memory.
- shadeFakeMaterial << > > (
+ shadeMaterialNaive << > > (
iter,
+ depth,
num_paths,
dev_intersections,
dev_paths,
- dev_materials
+ dev_materials,
+ dev_textureObjs
);
- iterationComplete = true; // TODO: should be based off stream compaction results.
+ checkCUDAError("Naive Shading");
+ // partition rays so that those terminated are not rerun next round
+ dev_thrust_paths_end = thrust::partition(dev_thrust_paths, dev_thrust_paths + num_paths, is_traceable());
+ checkCUDAError("partition terminated rays to back");
+ num_paths = dev_thrust_paths_end - dev_thrust_paths;
+ numblocksPathSegmentTracing = (num_paths + blockSize1d - 1) / blockSize1d;
+
+ iterationComplete = num_paths == 0; // TODO: should be based off stream compaction results.
if (guiData != NULL)
{
@@ -388,14 +574,23 @@ void pathtrace(uchar4* pbo, int frame, int iter) {
}
}
+ // remove paths that make no contribution
+ dev_thrust_paths_end = thrust::remove_if(dev_thrust_paths, dev_thrust_paths + pixelcount, no_color());
+ checkCUDAError("remove no contribution paths");
+ num_paths = dev_thrust_paths_end - dev_thrust_paths;
+ /*std::cout << num_paths << std::endl;*/
// Assemble this iteration and apply it to the image
- dim3 numBlocksPixels = (pixelcount + blockSize1d - 1) / blockSize1d;
- finalGather << > > (num_paths, dev_image, dev_paths);
+ if (num_paths > 0) {
+ dim3 numBlocksPixels = (num_paths + blockSize1d - 1) / blockSize1d;
+ finalGather << > > (num_paths, dev_image, dev_paths);
+ checkCUDAError("finalgather");
+ }
///////////////////////////////////////////////////////////////////////////
// Send results to OpenGL buffer for rendering
sendImageToPBO << > > (pbo, cam.resolution, iter, dev_image);
+ checkCUDAError("sendPBO");
// Retrieve image from GPU
cudaMemcpy(hst_scene->state.image.data(), dev_image,
diff --git a/src/preview.cpp b/src/preview.cpp
index bd52a686..35f1e650 100644
--- a/src/preview.cpp
+++ b/src/preview.cpp
@@ -109,7 +109,8 @@ void cleanupCuda() {
}
void initCuda() {
- cudaGLSetGLDevice(0);
+ // cudaSetDevice(1);
+ cudaGLSetGLDevice(1);
// Clean up on program exit
atexit(cleanupCuda);
@@ -189,7 +190,7 @@ void InitImguiData(GuiDataContainer* guiData)
// LOOK: Un-Comment to check ImGui Usage
-void RenderImGui()
+void RenderImGui(bool& camchanged)
{
mouseOverImGuiWinow = io->WantCaptureMouse;
@@ -219,6 +220,10 @@ void RenderImGui()
//ImGui::Text("counter = %d", counter);
ImGui::Text("Traced Depth %d", imguiData->TracedDepth);
ImGui::Text("Application average %.3f ms/frame (%.1f FPS)", 1000.0f / ImGui::GetIO().Framerate, ImGui::GetIO().Framerate);
+ camchanged |= ImGui::SliderFloat("Focal Distance", &imguiData->focalDistance, 0.f, 25.f);
+ camchanged |= ImGui::SliderFloat("Lens Radius", &imguiData->lensRadius, 0.f, 2.f);
+ ImGui::Checkbox("Sort buffers by material type", &(imguiData->sortMaterial));
+ ImGui::Checkbox("Cache First Bounce", &(imguiData->cacheFirstBounce));
ImGui::End();
@@ -232,7 +237,7 @@ bool MouseOverImGuiWindow()
return mouseOverImGuiWinow;
}
-void mainLoop() {
+void mainLoop(bool& camchanged) {
while (!glfwWindowShouldClose(window)) {
glfwPollEvents();
@@ -253,7 +258,7 @@ void mainLoop() {
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0);
// Render ImGui Stuff
- RenderImGui();
+ RenderImGui(camchanged);
glfwSwapBuffers(window);
}
diff --git a/src/preview.h b/src/preview.h
index 800b149a..9cf52017 100644
--- a/src/preview.h
+++ b/src/preview.h
@@ -4,7 +4,7 @@ extern GLuint pbo;
std::string currentTimeString();
bool init();
-void mainLoop();
+void mainLoop(bool& camchanged);
bool MouseOverImGuiWindow();
void InitImguiData(GuiDataContainer* guiData);
\ No newline at end of file
diff --git a/src/scene.cpp b/src/scene.cpp
index 3fb6239a..f3dbb0ba 100644
--- a/src/scene.cpp
+++ b/src/scene.cpp
@@ -4,7 +4,11 @@
#include
#include
+#define TINYGLTF_IMPLEMENTATION
+#include "tinygltf/tiny_gltf.h"
+
Scene::Scene(string filename) {
+
cout << "Reading scene from " << filename << " ..." << endl;
cout << " " << endl;
char* fname = (char*)filename.c_str();
@@ -32,6 +36,158 @@ Scene::Scene(string filename) {
}
}
+int Scene::loadMesh(const string& fp, int& primStartIdx, int& primCnt) {
+ tinygltf::Model model;
+ tinygltf::TinyGLTF loader;
+ string err;
+ string warn;
+ bool ret;
+
+ // Read from file
+ if (utilityCore::matchFileExtension(fp, "gltf")) {
+ ret = loader.LoadASCIIFromFile(&model, &err, &warn, fp);
+ }
+ else if (utilityCore::matchFileExtension(fp, "glb")) {
+ ret = loader.LoadBinaryFromFile(&model, &err, &warn, fp);
+ }
+ else {
+ cout << "Reading " << fp << "failed! Unsupported file type." << endl;
+ exit(-1);
+ }
+ if (!warn.empty()) {
+ cout << "TinyGLTF Warnings: " << warn << endl;
+ }
+ if (!err.empty()) {
+ cout << "TinyGLTF Errors: " << err << endl;
+ }
+ if (!ret) {
+ exit(-1);
+ }
+ cout << "Successfully read file. Processing..." << endl;
+
+ // Load materials to memory
+ int matStartIdx = materials.size();
+ for (const tinygltf::Material& material : model.materials) {
+ const int textureIdx = material.pbrMetallicRoughness.baseColorTexture.index;
+ if (textureIdx < 0) {
+ continue;
+ }
+ const tinygltf::Image& img = model.images[model.textures[textureIdx].source];
+ textures.emplace_back();
+ Texture& tex = textures.back();
+ tex.host_buffer = new float[img.width * img.height * 4];
+ for (int i = 0; i < img.image.size(); i++) {
+ tex.host_buffer[i] = img.image[i] / 255.f;
+ }
+ tex.width = img.width;
+ tex.height = img.height;
+ tex.channels = 4;
+ materials.emplace_back();
+ Material& mat = materials.back();
+ mat.textureid = textures.size() - 1;
+ mat.color = glm::vec3(1.f, 0.f, 0.f);
+ mat.emittance = 0;
+ mat.hasReflective = 0;
+ mat.hasRefractive = 0;
+ mat.indexOfRefraction = 0;
+ mat.specular.color = glm::vec3(0.f);
+ mat.specular.exponent = 0;
+ }
+
+ // Load primitives
+ primStartIdx = prims.size();
+ primCnt = 0;
+ for (const tinygltf::Mesh& mesh : model.meshes) {
+ for (const tinygltf::Primitive& primitive : mesh.primitives) {
+ const int primMatId = primitive.material >= 0 ? matStartIdx + primitive.material : -1;
+
+ const tinygltf::Accessor& posAccessor = model.accessors[primitive.attributes.at("POSITION")];
+ const tinygltf::BufferView& posBufferView = model.bufferViews[posAccessor.bufferView];
+ const tinygltf::Buffer& posBuffer = model.buffers[posBufferView.buffer];
+ const float* posArray = reinterpret_cast(&posBuffer.data[posBufferView.byteOffset + posAccessor.byteOffset]);
+
+ const float* norArray = nullptr;
+ if (primitive.attributes.find("NORMAL") != primitive.attributes.end()) {
+ const tinygltf::Accessor& norAccessor = model.accessors[primitive.attributes.at("NORMAL")];
+ const tinygltf::BufferView& norBufferView = model.bufferViews[norAccessor.bufferView];
+ const tinygltf::Buffer& norBuffer = model.buffers[norBufferView.buffer];
+ norArray = reinterpret_cast(&norBuffer.data[norBufferView.byteOffset + norAccessor.byteOffset]);
+ }
+
+ const float* uvArray = nullptr;
+ if (primitive.attributes.find("TEXCOORD_0") != primitive.attributes.end()) {
+ const tinygltf::Accessor& uvAccessor = model.accessors[primitive.attributes.at("TEXCOORD_0")];
+ const tinygltf::BufferView& uvBufferView = model.bufferViews[uvAccessor.bufferView];
+ const tinygltf::Buffer& uvBuffer = model.buffers[uvBufferView.buffer];
+ uvArray = reinterpret_cast(&uvBuffer.data[uvBufferView.byteOffset + uvAccessor.byteOffset]);
+ }
+
+ if (primitive.indices < 0) {
+ // vertices are not shared (not indexed)
+ for (size_t i = 0; i < posAccessor.count; i += 3) {
+ Triangle triangle;
+ triangle.v1.pos = glm::vec3(posArray[i * 3], posArray[i * 3 + 1], posArray[i * 3 + 2]);
+ triangle.v2.pos = glm::vec3(posArray[(i + 1) * 3], posArray[(i + 1) * 3 + 1], posArray[(i + 1) * 3 + 2]);
+ triangle.v3.pos = glm::vec3(posArray[(i + 2) * 3], posArray[(i + 2) * 3 + 1], posArray[(i + 2) * 3 + 2]);
+
+ if (norArray) {
+ triangle.v1.nor = glm::vec3(norArray[i * 3], norArray[i * 3 + 1], norArray[i * 3 + 2]);
+ triangle.v2.nor = glm::vec3(norArray[(i + 1) * 3], norArray[(i + 1) * 3 + 1], norArray[(i + 1) * 3 + 2]);
+ triangle.v3.nor = glm::vec3(norArray[(i + 2) * 3], norArray[(i + 2) * 3 + 1], norArray[(i + 2) * 3 + 2]);
+ }
+
+ if (uvArray) {
+ triangle.v1.uv = glm::vec2(uvArray[i * 2], uvArray[i * 2 + 1]);
+ triangle.v2.uv = glm::vec2(uvArray[(i + 1) * 2], uvArray[(i + 1) * 2 + 1]);
+ triangle.v3.uv = glm::vec2(uvArray[(i + 2) * 2], uvArray[(i + 2) * 2 + 1]);
+ }
+
+ triangle.centroid = (triangle.v1.pos + triangle.v2.pos + triangle.v3.pos) * 0.33333333333f;
+ triangle.materialid = primMatId;
+ prims.push_back(triangle);
+ ++primCnt;
+ }
+ } else {
+ const tinygltf::Accessor& indAccessor = model.accessors[primitive.indices];
+ const tinygltf::BufferView& indBufferView = model.bufferViews[indAccessor.bufferView];
+ const tinygltf::Buffer& indBuffer = model.buffers[indBufferView.buffer];
+
+ const uint16_t* indArray = reinterpret_cast(&indBuffer.data[indBufferView.byteOffset + indAccessor.byteOffset]);
+ for (size_t i = 0; i < indAccessor.count; i += 3) {
+ Triangle triangle;
+
+ const int v1 = indArray[i];
+ const int v2 = indArray[i + 1];
+ const int v3 = indArray[i + 2];
+
+ triangle.v1.pos = glm::vec3(posArray[v1 * 3], posArray[v1 * 3 + 1], posArray[v1 * 3 + 2]);
+ triangle.v2.pos = glm::vec3(posArray[v2 * 3], posArray[v2 * 3 + 1], posArray[v2 * 3 + 2]);
+ triangle.v3.pos = glm::vec3(posArray[v3 * 3], posArray[v3 * 3 + 1], posArray[v3 * 3 + 2]);
+
+ if (norArray) {
+ triangle.v1.nor = glm::vec3(norArray[v1 * 3], norArray[v1 * 3 + 1], norArray[v1 * 3 + 2]);
+ triangle.v2.nor = glm::vec3(norArray[v2 * 3], norArray[v2 * 3 + 1], norArray[v2 * 3 + 2]);
+ triangle.v3.nor = glm::vec3(norArray[v3 * 3], norArray[v3 * 3 + 1], norArray[v3 * 3 + 2]);
+ }
+
+ if (uvArray) {
+ triangle.v1.uv = glm::vec2(uvArray[v1 * 2], uvArray[v1 * 2 + 1]);
+ triangle.v2.uv = glm::vec2(uvArray[v2 * 2], uvArray[v2 * 2 + 1]);
+ triangle.v3.uv = glm::vec2(uvArray[v3 * 2], uvArray[v3 * 2 + 1]);
+ }
+
+ triangle.centroid = (triangle.v1.pos + triangle.v2.pos + triangle.v3.pos) * 0.33333333333f;
+ triangle.materialid = primMatId;
+ prims.push_back(triangle);
+ ++primCnt;
+ }
+ }
+ }
+ }
+
+ return buildBVH(primStartIdx, primCnt);
+}
+
int Scene::loadGeom(string objectid) {
int id = atoi(objectid.c_str());
if (id != geoms.size()) {
@@ -52,6 +208,14 @@ int Scene::loadGeom(string objectid) {
cout << "Creating new cube..." << endl;
newGeom.type = CUBE;
}
+ else if (strcmp(line.c_str(), "mesh") == 0) {
+ cout << "Reading Mesh..." << endl;
+ string meshFp;
+ utilityCore::safeGetline(fp_in, meshFp);
+ newGeom.type = MESH;
+ newGeom.bvhRootIdx = loadMesh(meshFp, newGeom.primStartIdx, newGeom.primCnt);
+ cout << "Loaded " << utilityCore::extractFilename(meshFp) << " with " << newGeom.primCnt << " triangles." << endl;
+ }
}
//link material
@@ -124,6 +288,10 @@ int Scene::loadCamera() {
camera.lookAt = glm::vec3(atof(tokens[1].c_str()), atof(tokens[2].c_str()), atof(tokens[3].c_str()));
} else if (strcmp(tokens[0].c_str(), "UP") == 0) {
camera.up = glm::vec3(atof(tokens[1].c_str()), atof(tokens[2].c_str()), atof(tokens[3].c_str()));
+ } else if (strcmp(tokens[0].c_str(), "FOCALDIST") == 0) {
+ camera.focalDistance = atof(tokens[1].c_str());
+ } else if (strcmp(tokens[0].c_str(), "LENSRADIUS") == 0) {
+ camera.lensRadius = atof(tokens[1].c_str());
}
utilityCore::safeGetline(fp_in, line);
@@ -186,3 +354,113 @@ int Scene::loadMaterial(string materialid) {
return 1;
}
}
+
+int Scene::buildBVH(int startPrim, int numPrim) {
+ // a BVH for a mesh is at most 2N - 1 nodes, where N is number of triangles in mesh
+ BVHNodes.reserve(BVHNodes.size() + 2 * numPrim);
+
+ int rootIdx = BVHNodes.size();
+ BVHNodes.emplace_back(startPrim, numPrim);
+ BVHNode& root = BVHNodes[rootIdx];
+ bvhUpdateBounds(root);
+ bvhSubdivide(root);
+ return rootIdx;
+}
+
+void Scene::bvhUpdateBounds(BVHNode& node) {
+ node.bounds = AABoundBox();
+ for (int i = 0; i < node.primCnt; i++) {
+ const Triangle& t = prims[node.leftInd + i];
+ node.bounds.grow(t);
+ }
+}
+
+float Scene::bvhBestSplitPlane(BVHNode& node, int& axis, float& splitPos, AABoundBox& leftChild, AABoundBox& rightChild) {
+ float bestCost = FLT_MAX;
+ for (int testAxis = 0; testAxis < 3; testAxis++) {
+ float boundsMin = FLT_MAX;
+ float boundsMax = -FLT_MAX;
+ for (int i = 0; i < node.primCnt; i++) {
+ const Triangle& triangle = prims[node.leftInd + i];
+ boundsMin = min(boundsMin, triangle.centroid[testAxis]);
+ boundsMax = max(boundsMax, triangle.centroid[testAxis]);
+ }
+ if (boundsMin == boundsMax) continue;
+ // populate the bins
+ BVHBin bin[NUM_BVHBINS];
+ float scale = NUM_BVHBINS / (boundsMax - boundsMin);
+ for (int i = 0; i < node.primCnt; i++) {
+ const Triangle& triangle = prims[node.leftInd + i];
+ int binIdx = min(NUM_BVHBINS - 1, (int)((triangle.centroid[testAxis] - boundsMin) * scale));
+ bin[binIdx].primCnt++;
+ bin[binIdx].bounds.grow(triangle);
+ }
+ // gather data for the planes between the NUM_BVHBINS bins
+ AABoundBox leftBoxes[NUM_BVHBINS - 1], rightBoxes[NUM_BVHBINS - 1];
+ int leftCount[NUM_BVHBINS - 1], rightCount[NUM_BVHBINS - 1];
+ AABoundBox leftBox, rightBox;
+ int leftSum = 0, rightSum = 0;
+ for (int i = 0; i < NUM_BVHBINS - 1; i++) {
+ leftSum += bin[i].primCnt;
+ leftCount[i] = leftSum;
+ leftBox.grow(bin[i].bounds);
+ leftBoxes[i] = leftBox;
+ rightSum += bin[NUM_BVHBINS - 1 - i].primCnt;
+ rightCount[NUM_BVHBINS - 2 - i] = rightSum;
+ rightBox.grow(bin[NUM_BVHBINS - 1 - i].bounds);
+ rightBoxes[NUM_BVHBINS - 2 - i] = rightBox;
+ }
+ // calculate SAH cost for the NUM_BVHBINS planes
+ scale = (boundsMax - boundsMin) / NUM_BVHBINS;
+ for (int i = 0; i < NUM_BVHBINS - 1; i++) {
+ float planeCost = leftCount[i] * leftBoxes[i].surfaceArea() + rightCount[i] * rightBoxes[i].surfaceArea();
+ if (planeCost < bestCost) {
+ axis = testAxis;
+ splitPos = boundsMin + scale * (i + 1);
+ leftChild = leftBoxes[i];
+ rightChild = rightBoxes[i];
+ bestCost = planeCost;
+ }
+ }
+ }
+ return bestCost;
+}
+
+void Scene::bvhSubdivide(BVHNode& node) {
+ // determine split axis and position
+ int axis = 0;
+ float splitPos;
+ AABoundBox leftChildBox, rightChildBox;
+ float splitCost = bvhBestSplitPlane(node, axis, splitPos, leftChildBox, rightChildBox);
+ if (splitCost >= node.scanCost()) {
+ return;
+ }
+ // partition by split position
+ int i = node.leftInd;
+ int j = i + node.primCnt - 1;
+ while (i <= j) {
+ if (prims[i].centroid[axis] < splitPos) {
+ i++;
+ }
+ else {
+ std::swap(prims[i], prims[j--]);
+ }
+ }
+
+ // abort split if one of the sides is empty
+ int leftCount = i - node.leftInd;
+ if (leftCount == 0 || leftCount == node.primCnt) return;
+
+ // create child nodes
+ int leftChildIdx = BVHNodes.size(); // one greater than last node in vector
+ BVHNodes.emplace_back(leftChildBox, node.leftInd, leftCount); // construct leftChild directly in vector
+ int rightChildIdx = BVHNodes.size(); // one greater than last node (left child) in vector
+ BVHNodes.emplace_back(rightChildBox, i, node.primCnt - leftCount);
+
+ node.leftInd = leftChildIdx;
+ node.primCnt = 0;
+
+ // recursively build child nodes
+ bvhSubdivide(BVHNodes[leftChildIdx]);
+ bvhSubdivide(BVHNodes[rightChildIdx]);
+}
diff --git a/src/scene.h b/src/scene.h
index f29a9171..fb295e1f 100644
--- a/src/scene.h
+++ b/src/scene.h
@@ -16,11 +16,20 @@ class Scene {
int loadMaterial(string materialid);
int loadGeom(string objectid);
int loadCamera();
+ int loadMesh(const string& fp, int& primStartIdx, int& primCnt);
+
+ int buildBVH(int startPrim, int numPrim); // return BVHRoot Idx, take start Idx in Prim Buffer + Prims Cnt in Mesh
+ void bvhUpdateBounds(BVHNode& node);
+ float bvhBestSplitPlane(BVHNode& node, int& axis, float& splitPos, AABoundBox& leftChild, AABoundBox& rightChild);
+ void bvhSubdivide(BVHNode& node);
public:
Scene(string filename);
~Scene();
std::vector geoms;
std::vector materials;
+ std::vector textures;
+ std::vector prims;
+ std::vector BVHNodes;
RenderState state;
};
diff --git a/src/sceneStructs.h b/src/sceneStructs.h
index da4dbf30..70425d17 100644
--- a/src/sceneStructs.h
+++ b/src/sceneStructs.h
@@ -10,6 +10,7 @@
enum GeomType {
SPHERE,
CUBE,
+ MESH,
};
struct Ray {
@@ -20,6 +21,9 @@ struct Ray {
struct Geom {
enum GeomType type;
int materialid;
+ int bvhRootIdx;
+ int primStartIdx;
+ int primCnt;
glm::vec3 translation;
glm::vec3 rotation;
glm::vec3 scale;
@@ -28,6 +32,64 @@ struct Geom {
glm::mat4 invTranspose;
};
+struct Vertex {
+ glm::vec3 pos;
+ glm::vec3 nor;
+ glm::vec2 uv;
+};
+
+struct Triangle {
+ Vertex v1;
+ Vertex v2;
+ Vertex v3;
+ glm::vec3 centroid;
+ int materialid;
+};
+
+struct AABoundBox {
+ glm::vec3 minCoord = glm::vec3(FLT_MAX);
+ glm::vec3 maxCoord = glm::vec3(-FLT_MAX);
+ __host__ __device__ void grow(const glm::vec3& p) {
+ minCoord = min(minCoord, p);
+ maxCoord = max(maxCoord, p);
+ }
+ __host__ __device__ void grow(const Triangle& t) {
+ grow(t.v1.pos);
+ grow(t.v2.pos);
+ grow(t.v3.pos);
+ }
+ __host__ __device__ void grow(const AABoundBox& o) {
+ grow(o.minCoord);
+ grow(o.maxCoord);
+ }
+ __host__ __device__ float surfaceArea() const {
+ glm::vec3 diag = maxCoord - minCoord;
+ return diag.x * diag.y + diag.y * diag.z + diag.z * diag.x;
+ }
+};
+
+struct BVHNode {
+ AABoundBox bounds;
+ int leftInd; // first index of triangle if leaf, else index of left child node
+ int primCnt; // only non-zero if it's a leaf (only leaf has primitives)
+
+ BVHNode() : bounds(AABoundBox()), leftInd(0), primCnt(0) {}
+ BVHNode(int leftInd, int primCnt) : leftInd(leftInd), primCnt(primCnt) {}
+ BVHNode(AABoundBox bounds, int leftInd, int primCnt) : bounds(bounds), leftInd(leftInd), primCnt(primCnt) {}
+
+ __host__ __device__ bool isLeaf() const {
+ return primCnt > 0;
+ }
+ __host__ __device__ float scanCost() const {
+ return primCnt * bounds.surfaceArea();
+ }
+};
+
+struct BVHBin {
+ AABoundBox bounds;
+ int primCnt = 0;
+};
+
struct Material {
glm::vec3 color;
struct {
@@ -38,6 +100,14 @@ struct Material {
float hasRefractive;
float indexOfRefraction;
float emittance;
+ int textureid = -1;
+};
+
+struct Texture {
+ float* host_buffer;
+ int width;
+ int height;
+ int channels;
};
struct Camera {
@@ -49,6 +119,8 @@ struct Camera {
glm::vec3 right;
glm::vec2 fov;
glm::vec2 pixelLength;
+ float focalDistance;
+ float lensRadius;
};
struct RenderState {
@@ -72,5 +144,11 @@ struct PathSegment {
struct ShadeableIntersection {
float t;
glm::vec3 surfaceNormal;
+ glm::vec2 uv;
int materialId;
+
+ __host__ __device__
+ bool operator<(const ShadeableIntersection& o) const {
+ return materialId < o.materialId;
+ }
};
diff --git a/src/tinygltf/json.hpp b/src/tinygltf/json.hpp
new file mode 100644
index 00000000..87475ab3
--- /dev/null
+++ b/src/tinygltf/json.hpp
@@ -0,0 +1,26753 @@
+/*
+ __ _____ _____ _____
+ __| | __| | | | JSON for Modern C++
+| | |__ | | | | | | version 3.10.4
+|_____|_____|_____|_|___| https://github.com/nlohmann/json
+
+Licensed under the MIT License .
+SPDX-License-Identifier: MIT
+Copyright (c) 2013-2019 Niels Lohmann .
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+*/
+
+#ifndef INCLUDE_NLOHMANN_JSON_HPP_
+#define INCLUDE_NLOHMANN_JSON_HPP_
+
+#define NLOHMANN_JSON_VERSION_MAJOR 3
+#define NLOHMANN_JSON_VERSION_MINOR 10
+#define NLOHMANN_JSON_VERSION_PATCH 4
+
+#include // all_of, find, for_each
+#include // nullptr_t, ptrdiff_t, size_t
+#include // hash, less
+#include // initializer_list
+#ifndef JSON_NO_IO
+ #include // istream, ostream
+#endif // JSON_NO_IO
+#include // random_access_iterator_tag
+#include // unique_ptr
+#include // accumulate
+#include // string, stoi, to_string
+#include // declval, forward, move, pair, swap
+#include // vector
+
+// #include
+
+
+#include
+#include
+
+// #include
+
+
+#include // transform
+#include // array
+#include // forward_list
+#include // inserter, front_inserter, end
+#include