diff --git a/BraTS/tutorial.ipynb b/BraTS/tutorial.ipynb index 4f92efa..e81e67a 100644 --- a/BraTS/tutorial.ipynb +++ b/BraTS/tutorial.ipynb @@ -24,7 +24,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": { "scrolled": true }, @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -85,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -153,17 +153,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:17:17.847\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1mInstantiated AdultGliomaPreTreatmentSegmenter with algorithm: BraTS23_1 by André Ferreira, et al.\u001b[0m\n", - "\u001b[32m2025-03-06 13:17:17.848\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_single\u001b[0m:\u001b[36m155\u001b[0m - \u001b[1mPerforming single inference\u001b[0m\n" - ] - }, { "data": { "text/html": [ @@ -195,7 +187,7 @@ { "data": { "text/html": [ - "
                                              BraTS Package | N/A                                         \n",
+       "
                                              BraTS Package | https://arxiv.org/abs/2506.13807            \n",
        "------------------------------------------------------------+---------------------------------------------\n",
        " Challenge (Adult Glioma Segmentation (Pre Treatment) 2023) | https://arxiv.org/abs/2107.02314            \n",
        "------------------------------------------------------------+---------------------------------------------\n",
@@ -203,7 +195,7 @@
        "
\n" ], "text/plain": [ - "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mN/A \u001b[0m\u001b[37m \u001b[0m\n", + "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2506.13807 \u001b[0m\u001b[37m \u001b[0m\n", "------------------------------------------------------------+---------------------------------------------\n", "\u001b[36m \u001b[0m\u001b[36mChallenge (Adult Glioma Segmentation (Pre Treatment) 2023)\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2107.02314 \u001b[0m\u001b[37m \u001b[0m\n", "------------------------------------------------------------+---------------------------------------------\n", @@ -226,18 +218,10 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:17:17.892\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36m_log_algorithm_info\u001b[0m:\u001b[36m329\u001b[0m - \u001b[1mRunning algorithm: \u001b[92m BraTS 2023 Adult Glioma Segmentation (Pre Treatment) [1st place]\u001b[0m\u001b[1m\u001b[0m\n", - "\u001b[32m2025-03-06 13:17:18.343\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m381\u001b[0m - \u001b[1mStarting inference\u001b[0m\n" - ] - }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ff51122564bb49039ecee8b9a827e8e5", + "model_id": "0fdba592e5904015b1d26493536ca70d", "version_major": 2, "version_minor": 0 }, @@ -257,14 +241,6 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:20:15.719\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m404\u001b[0m - \u001b[1mFinished inference in 177.38 seconds\u001b[0m\n", - "\u001b[32m2025-03-06 13:20:15.720\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_single\u001b[0m:\u001b[36m179\u001b[0m - \u001b[1mSaved output to: /home/marcelrosier/tutorials/BraTS/segmentation.nii.gz\u001b[0m\n" - ] } ], "source": [ @@ -292,7 +268,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAGGCAYAAADSPtbRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/VmXLDuWHgZ+G2bmQ0Sc+Zw75M2qzMpiFlndpNgaKFG9xLX01s/8yb3YarVEiavVHLqklmpgZVXevOOZIsLdzQzoB2DDNrbDzD3ucMb9ZZ7rg5nBAJgHsL89UgghwGAwGAwGg8FgMBgW4N52BwwGg8FgMBgMBsO7DyMOBoPBYDAYDAaD4SSMOBgMBoPBYDAYDIaTMOJgMBgMBoPBYDAYTsKIg8FgMBgMBoPBYDgJIw4Gg8FgMBgMBoPhJIw4GAwGg8FgMBgMhpMw4mAwGAwGg8FgMBhOwoiDwWAwGAwGg8FgOIn23BOJ6Ofsh8FgMBjeAEIIP0u7bfOPfpZ2DQaDwfBmMIx/cfIcszgYDAaDwWAwGAyGkzDiYDAYDAaDwWAwGE7CiIPBYDAYDAaDwWA4CSMOBoPBYDAYDAaD4SSMOBgMBoPBYDAYDIaTMOJgMBgMBoPBYDAYTsKIg8FgMBgMBoPBYDgJIw4Gg8FgMBgMBoPhJIw4GAwGg8FgMBgMhpMw4mAwGAwGg8FgMBhOwoiDwWAwGAwGg8FgOAkjDgaDwWAwGAwGg+EkjDgYDAaDwWAwGAyGkzDiYDAYDAaDwWAwGE7CiIPBYDAYDAaDwWA4CSMOBoPBYDAYDAaD4SSMOBgMBoPBYDAYDIaTMOJgMBgMBoPBYDAYTsKIg8FgMBgMBoPBYDgJIw4Gg8FgMBgMBoPhJIw4GAwGg8FgMBgMhpMw4mAwGAwGg8FgMBhOwoiDwWAwGAwGg8FgOAkjDgaDwWAwGAwGg+EkjDgYDAaDwWAwGAyGkzDiYDAYDAaDwWAwGE7CiIPBYDAYDAaDwWA4CSMOBoPBYDAYDAaD4SSMOBgMBoPBYDAYDIaTMOJgMBgMBoPBYDAYTsKIg8FgMBgMBoPBYDgJIw4Gg8FgMBgMBoPhJIw4GAwGg8FgMBgMhpMw4mAwGAwGg8FgMBhOwoiDwWAwGAwGg8FgOAkjDgaDwWAwGAwGg+EkjDgYDAaDwWAwGAyGkzDiYDAYDAaDwWAwGE7CiIPBYDAYDAaDwWA4CSMOBoPBYDAYDAaD4SSMOBgMBoPBYDAYDIaTMOJgMBgMBoPBYDAYTqJ92x0wGN4mrq6usN1uAQDX19e4ubl5yz0yGAwGw7sAIod7965AIPgQ8PrVKwSEt90tg+GtwoiD4aND13VomgYAsF6v0XVdfj+OIwBgHEcMw/DW+mgwGAyGNw8C5T2BHKFt4/smBHSrFULwCAEYhv5tdtNgeGsw4mD46HD//v1sZZC4uLjAdruF9x43Nzd4+fLlW+idwWAwGN4WmqbBvfv3QKDi+0DAvXtXCD7Ah4AXL14gBP+WemkwvD0YcTB8FHj48CHaNv7c27aF93HBDyGAaNogiAhN0+Dy8hLr9RoAsN/v70QiiAiffPIJdrsdXrx48ROOwmAwGAw/NdqmxeXlJQICCIQQEF2SQnJLknuEIzQgPLh/HyEdf/X6Vd5TzsF2e4HNeo3nRj4M7yGMOBjeebRtC+diHD8v1EB0J/LeZ7PyElarVT6P29CvRJSJhHMOq9UqH1+tVuj7vrh/7R7czmazARBJB/ddEhRuN4RQkJjD4XByLAaDwWCIIBCaVogyYo0exgFEDo1bzgPTti3abmojhLKdGoFo2ia/77oOQz9g9OPsPZxzcK4BQkDXtVitVlivVvAhgAjHFg6E3A+OqxiG0YiG4a2DwpIkJE9UQo/B8Kbw9OnTLJQDk8D94sUL7Pd7PH36tPh9SiJQ+yfb0D9/SSb4vXMObdviq6++mhXsm6bB559/nonAarVC0zRo2xZd18WNKW1ufM4wDBiGAYfDASEEDMOA3/3ud4vkxGD4sfi5fl9t849+lnYNhiW0TYv7Dx5MX6Tft/ceL168wGazwTopcuRxJgGOCCA6Et59CCV5yJeL8Oh0vGkb9H2/aJm+urrCZrOFH0c45/L+wO+btgUBCHyP4DH0A4akIEMIePnyJW53t3edIoPhbAzjX5w8xywOhncGl5eXR25Dbdtiu91mwbtpGhARvPfYbDbo+x7OOXjv4b3P17P1QKJGKILYZPiYfGULBBHhyZMnCCEkzVHUYI3jiHEcCyLC5zRNg67rcjC2towMw4BxHNG2LcZxRN/3ePr0Kbz3RTs8du7vOI44HA747rvvfupHYDAYDO8kGtcUCiQAcE2DpnHokgBOjtA2LXzwCD5kZQ2I4FPiCziXDQdHRgVKewQoEwqp+Y9NTfSCL+eA6ocPH8V+JBLiQ0DwHqMf0TZtCqwOiahEt1jXNHGdb5rCohGCh3MNmkQcxmHAxeUFulWH4CcrRNu0eU/ivnrv8erly0ULiMHwQ2HEwfBWwdmNiOLCK9162F2ItfcshDvnMI4jVqsVxnHEfr9H3/f5Or5WugBpEiGJg4xzqGlj+dhms8mCPPe77/tMADgjEy/ikuw0aXOQ7clzuf9XV1fZBWtMmqmu67BarfJ13nvsdrucOjaEgP1+/6Oeg8FgMLxrIBDIxXWPNfTTQYqEoWnQtA0alwTwrkPwHgEBTVLKjMOAPrBySBEHtjLLNKvJAgEA8AAoRj9oC4RUPjnn0LVRSUSO4FyT1/Jh6GPcRIjKLUcE17hMGppEegjSKk6ZwIzJ4rBardE2cUxsEeE9xqU9CSEGb+/3e4wpM2A/DObiZPjJYMTB8NbgnMOTJ08AoLAYSDPuZrPBdrvNwjdbHGS8Agvfh8Mhv+d2mCD0fZ+1+vx90zRFnMG0yMfFVro2ERGGYSj6II8DyFYBjnFg0qPPkxsNEyJuF4hkhP9xn29ubtA0TZ6PzWaDp0+fwjmH3W6H//Af/oO5OBkMhg8Kq/UK2+0FvB+zkE+O4Ciu4d1qhbZtsVp1cK6JArlzAAvRXRSah6aJtCBp+6VVgBwh+ICBlT8p5sC5JroOUdojQoBPe4RnEgICORfjFHyySDgHF6LA74WHd7RgNKCGsgvratWByOW2YhendTzvhcLyPXC83zhgHH3hPrtardB2LVZdh88/+yyOlQh/9/d/j9tbq1Fk+GlgxMHwRtE0DR48eFBYAWouRdqtiIV9eQ6/SgGcwW5O0kIwjiOapsmuQNI9SfqasmVAtpX9UMU/AEWsAreh3a00kZFjlBYPHgP3zTl3NE+HwyGPY5U2TQD4oz/6ozxX+/0er169wuvXr3/k0zIYDIY3i/V6jVUXg4adc0da/pzxqFhnXRS75R6BaQ9xRGgaVzRFxGt6/L4ZRwzjENOtJg1/SG06IjgAPrnJetUnR5QJTbGPjIiuSsMYLQrk0CQXqKkfyTVK7Q9xDMjWE5f2CADw4wjyDkS+KEc3ZLemsdjTHty/j6urSzjXYBh6DP2AFy8t45/hh8GIg+GNIWqGVri6usoWhrkia1qo1lp7CW094Ot1fAAL46zJH4ahsD6woC4Fdmkd4H+SOEhrhXS7qpEHTSp4DjSBYRelWrwFkxR2xeLA68ePH2dLyO3tbXZf4v7dJVWgwWAwvA20bYfVao3NZo1x9FForgUoI4Cycul4zdXVnaPrkCuyFBFFgb9xSRhPbfC+xAqmSArcdB/n4JIwr60g7HYk4+AC4lrv4EBOEB6ibGUgcQ8AOSUsvAd7U5EjuODyeHJ/eMy81iMSiNH7bK3YbLd57+r7HofDHtc3N5mU2P5guAuMOBjeGH7729/i8vISf/u3f1t8zwu+1PTXLBIs4OvAZ2l1YHcjHd/A5GGz2eSYiN1uV7Qhtf5MLPq+L6werOnnIL2u6zIRkVmUpEuTtG5INycekyRHfA4THh5LjUDt9/s8Bj6/bWM+8s8//xxffPEFrq+v8f333+MPf/jDT/EIDQaD4WdB13X4zW/+FK9fv8b19XVxzFEK/NW6oxBS7EAAnJtclVCSBwKADvBjsjYHn4V2n8hBk1KyhgD0hwP6YZgCquOtYjxF6sPQD9n6wK5T5AhN26Bt4j7AFgDtgtsmRRXHNQCJXHD/U4yFB+AAUAgYPZA4DhrXwDuP0ABcyZp4nGl/GJOSab/bxViKpJharVZYr9f4k1//GofDAYfDAV/+4Q8WA2E4G0YcDD8rPvvsM6zX6yy8cxAwa/h1nIGMNZBuQEBdc68FapIbh7AGcOAyC+oceK0zIcl/sk0Wyruuw3a7zS5FPA5tSeB76wJz3Afp6sTB3txned6SpYUtI3wda8kAFAHcFxcXePbsGb777rt8H4PBYHjbaJtoLQVibMAo1rCmceAaDBwcHBCyJWJM/1wKfk4XRUFbaPMDAeQA8h7kHOA9KMjkGB4+EOB9FLpTHESThG2ZlrVhoR5AaAEXPPzoi/1s1a3QtC26rkV7OOSYhIzkAhVS5ic4AGFKC8uuUXFSCJ4IAVPXGJTIRRxgCt4WIJfct0Tw9zAMCACa0WFsxrzvPXjwALe3N5Zkw3AWjDgYflJIYRYAPv30U9y7dw/ee1xfX2O32xWafRbemSSwYMvCPgcHA8hafE0WtGsRa3iktl8K5izod11XuAtJVyTpwsTnMnHYbDb5Wlmcjtuf6wuAo34DODqHURufnmt5T0m2eBybzSYHVL9+/Rq73c6CqA0Gw1sBgQoJuOs6PH36FAAweo/bm5vov49IKjhb0ujHGHsQAkLo4QEgkYxxHDGMY3QhIpoCo4GpPgOl94iWCbnScmrTTBA4poFJgnCXki5FLYAQHLzzOSVq07ZYrVdom6ho2rV7uL4pY9sQU7SGFFTtPHLmqKnbE3EAESiEiQgdTSqBkgdUaWWZYinYKhGChz8c0BPBuT5npbp//z4QAg6H3iwPhpMw4mD4yfDgwQM8e/YMt7e32c3nyy+/xFdffQUA2YXn/v37hZAexCbCWY+AafEchqHQ3LP2X1sFpF8pUBfiWbDWgrhMzSq/Y7eki4sLbDabImai7/ucInYcx6LQm6w5ofvCRMHrDanyTxIxbYGQ/R3HsWhT1pdgwvWLX/wC19fX+PLLL3/iJ28wGAyn8eTpU7RNg0Pf5xSlv//97+OaRoQ2rVUXFxfJlWdyP+JAYUL04SdELX1AwDgMSfse8roZ4w4apCSnaJxDYF8nzrKEqdgajSlzkvcYkqDNkDodEnuRaxq01GKTag2tVh0a1xTjaduJAHGht6ZxOQsUxHrOVg+vhPeseEr0gdtnFy5ug3jvhCAYIcAnTsRB3whxzkLwcKND28R6SevNBl9//ZXFPBgWYcTB8KPA/pJcLVlqz6U/P/t28qvWwgNT6jkuisZkQQra0uefIbX38jte/OT5ckGsuTnpf7IGgyw+571H3/e5jVrwcw18vu4/H9NB2XxcEomjQMBkReGganbtYgLB7XVdh/V6jUePHmXXJsu8ZDAYfk5s1ptizcsJJ8gBJDLPuakgWqPWOQ4C9olMNCEgNK4QuoMP8C4K/4RJQ58ayEXX+GPIgdKAh4vuTOnaMLGKSSjnGgu8HqcsSUxsYp9dCjZOLlBJUHeuyUL9LGb2DumixGXfjvYPsYcSoRw7kGMxiHg/TGP3AR4eA4ZcB+Py8ipbKG5ubswCYTiCEQfDj8LFxQUePHiQtfiyKBnHEXBAVi0tqQZnQpIxAvp9LeNSrU0ZeCzjGGrBxjq+oea2JN2eZJ0F7jePe8kVqDZuTQLkePl4rT/ynrIInbSuaFesruvw6aefAoibwvX1tbkuGQyGnwUEwuXVZVJseHgZj5DIQNd1aNq4ruUgYyEMF+2lNRyIwgtr5n1IQcreZzcgXtYouSgdK5ei6w4CwSVNfyCCQwrExuS2pF+1NSR3NcQYDB9CTHua4vUcUXaXQpiISVAEh5IFRQv+mJqP67uIu4jzHK0NLvWJ4xt4b+GCcX4kjEgxhLwvjpFAoAVaIjx4cD/fa7/fYxiMOBhKGHEw/CA45/D06dOcPlSmr1uv14WFQQcbM7TbDVBWkpZuRTXhmv81wqdV9kPeR/aDazmwe0/tH4MtC+M45vgMJhE66Jr7ViM5epxy/CzUa/OwJA78ysRKkyW2+nAlbQ4qH4Qf8G63y3Ow3W5xcXGB3/72t7i9vcVut8PXX3999x+CwWAwVLBer7HdXgBAJg28Fuq9Ia9lR8qflJqUHW+cQwOk4moUFSVILkwklDDJ/QghWiUamtJnj94XWnQigBpxf1Y2pXYmiwOKlKncnvce+/0eB+pz8DRSn1iRg6JfIb+GgDg6iqQoADkV6zQdDnAe5Ono3npvZCLjGpdjHHi+Y3bXEeMwxQ6yJcJ7j9APGIcRbmiii1XX4tNPPsEwjugPB7x8+RLDWE+fbvi4YMTBcGesVqscr8ACNIC8+POm0HXdkXa8FgRcC/rN5uwkUGttkXbp4eM1zT9bGniR1XUSZL9q5EGSAd7ktMuUvlb3T49RWzxqkHNWy/ikYzz4nwwEZ3IElC5bXAW7bVus12sQEe7du4fdbpeD0Q0Gg+GHYLVao227GIPgQxaeWRseff2b7OqjNeSgUkgGJgV7lKVdLMgWUlyAc4WWPgrnKtV19NOJpANlYbmAWIuhwbT3FFp9dgUi4aok++YDAvlc0yH3l8kAuw+Vkn88njMjHc8jk6aaBaJY96WlIblMcR+Z7ISUsjUkPZtPNRy44jUTJbZGjKNH0zi0aIDVCpvtBn3fW+YlgxEHw91xdXWFy8tL7Pf7rCVfrVZFHQPWjANlDANDC9dawJY1ELRlQrreaMFd1j7QlgdJLthSIbX8tbgLho6RqMUhSKFeBkHXBHx5jzn3JUkQWDsng661FYe/k32sWWxYQ8btrVYrXF5e4uLiAl9++SWeP38+8+QNBoNhGQTCvXtXCCHWEohVj10OEObsQ41Q3kyxA2U77DKUhXBey0KIwnISvEOSzqUbT5PeN4K0hGRZoHSOTylRs3a+ifdxjRNZnJSVGPU1G0g1IQLvVX6qXg3KReKyRSJlcnJhcmOK7R9bXbJrk+Ax5CgVlYuxFo1zRQpbnk8il68BW1IAOO/j/AWAIGL/vMeAFBeRkpCsug7dw4fY7fbY780y/bHDiIPhLFxdXWG1WoGIchYhYBLGdTYhbSEAcCTAngK7GEmNOWddmhOcZQXouX/cF2mJ0MRFfqeJi4xDYHLQti02m00mD3PBz0x4mFzIe8p4C+l+JYnDnLVBQlsmav/mSMeTJ09wcXGB3//+90dWEoPBYKiBYxlYAGdBnwXhGDwc3V9YsF3aC+Z8/IHSesuZkpgscJpWTsma9yEmJojkgJKrkgtNqp6MyX2IAMTQh2jVUPfl4ORCKcVkhqakHMGnOg1pn2m48FvDVvGpa/xFQCIfQLQzCNKQyQ8RXKoEF5IRg6tWswWHz9VkLARMbaR/nl28mGhAvuepi3O3Xq/x9OkzvHzxAof+MPuMDB82jDgYFsFCMbsnSSFeC53nZBaSwcr8WR7j9hjS9YhfNQmo9Vm+amFffsefZZ9OQZKGOatDra05tyW+Vl4vicMpVyXdviQfuh09Lxz/wBYYthaxRcnclgwGwxJ4rWmbdlpb2JLLa45jd6RjF6SMECZhGXJfgJCeuVlpmojBzVnAh4gjEO/L610S9IHQuMKiEbMsjXBMHrzYt86ZEN5b1D6VBXC2AKjW2J1LTw+TB0ofOAg6Tw6xC9jkCiZJA7eY55SES5MjOO8QnDimYzhGjxFjbn+zWWO/3wCAkYePFEYcDIto2xaPHj2azRqkNeFL0KSBMZczWgrTMs5AugJxlWl97yWXI3kNEwA9tloQs2xDFpXj7zgNKs+LPKatDbqP3B9Z4E4GimuXJf6s55AJAF/HAdyyb5IscJAcW5K4YNwf//Ef4+uvv7aAaYPBsIj1ehPjpDD5yWdkBYebqiEvIZGHo+8WlEQEAE1TFGoDEoHwAcEJ8sB9YCFdCNa56yHAE8GTj65Mwl2KRH+YSGjXJSYfMaWp6I8PGDFOc+LK+2a3qjRv3CSBkmUhWRGcQ9s08E7EabAFoZnmWqZ/Db4MBi9diV1JikJ04fLeg+lYP/S5IN+qW+HRo0c47Pf48g9WE+hjhBEHwyzW63VOoypjDiSWXGaAY5cf6a6k4xz4O36tueDwsRph0X2raeP5ex3vIDMhyYBiff6cyxML6QwZGM5xBnJcenwy7oLPk4RKkgVJGGTshay0zeSI2+B25fzztZym9cGDB3jy5Amurq4wDAMePXqER48e4S//8i8L4mEwGAwEQrdaoW0aEICmbbOWX55T+PYTCQ04MtnI6yOQXX6kn06xttMU41D0R6ypLECTo0LjTnKLkEQCyijBwn0gBGJLRCIi7MoUBMURgn4Yp4xJfN8QAGLrdlIgcQG4mNVohAZBjAdAcAQXXMy+1Lg4FkU0XLbqlP5J3Heush28z9W4Y2D4VE07eA8HF2+a+uGcw8XlJbabDR48fAjvPQ77PdquxXfffoeb25uj/hs+XBhxMMxCVmjmFKA14XyJNMhXfZ0WwGX7NZKh71ezBMj25fe1fsv4Bml9qKVGXSJF2qLA7dXciWrzIPujg74ZNStDLd6iSLOnAr/lvMo554D2zWaDi4uLTBwOhwMOhwM2mw12u52RB4PBMIFiZWRO/9kot9J8Ws6YdNyE1HIDQEgWBCmU6/UK8hqp4GENfCInTpCUrCxRpEbcumAORBxjQLmaM4UA73yOf9DnF/dKFo5MIJIWH4Hg0jFCcuEaRdYktoLIuUpzEkmYS6lnXU7jmsdCiaCJ+ZGEh9Ou+nHEeLQ/iPs5l4LHp6xMrFxardfYbjbwPmZcury8ws31Ta4Ebvg4YMTBMAv2eV+tVtnyIDEXp1CLVaidJzXf+lwdQ6EF8XPdo2r3rvn68z3Z4iBrNNSsGrU4B07zKoOmpXB/ikDUgqJrlgp5f2lZ4CJwXNE6hFBNO+ucy4Huut7Gfr/Hy5cvcyB60zT44osv8P333+Orr746a64NBsPHgSbl+2/bDl13LE5IoTxgCmBuWLjWa2Jy8wErjiDIhTxHCOdsnYgvTvj8c2ahpZi7ybBxZClhC4IIZnbBwbsA8iNG0QDHLUDtcSysAzFWwmNECFxgbjp9LuWqRIxHAMAEzausTZJxhCljVK7TIKzSXP+CiUExbo6VIIJrmqkydtPA+xG3t7e5wB0RcO/ePXRdh6+++qqYQ8OHCyMOhiM0TYPNZpOrPi+5A83hnODgucDeuXa0dn7O2jFnhahZHmrF2mT1Za2h51gG7QrE95RCfM16oO8l+5zN0irTk547vqdMOysrR8u22MVMzx0/V/lvGAa8fPkykx8uIOecw2azwcOHDzOpMBgMHy+6rkPbdmh4HZlz+REoYwmmtKryO9mI9Ltf2ncKJVRK/UrsunOkvhd9yXva1Gl+zwIwxyuw9j5nbxLrMIUwCfMIWZvvudBctqakeAUfq0sTBgQnMixRiG5IyX0okCBYiJmTggsghJxa9mjOs5VhIkPBe/jklpRrNyQrUJGBKcGlwOmYCWsiYt6P6A8BL4eXYq9MrrBtg8srS6jxscCIg+EITBy4yNup1KrahUlr12sCcO28U9aDOTcp/V63NUceZGxDjUBowX/u/Jo1gsmHJkSy7Rrx4eBo3W95X9mOtjxoNynt4iSJg46ZYCuDJgbOOazXa1xdXeH169dGHAyGjxxt22HVdWgaV9QmyOC1S39PFfIAsXZC7Q8ntPD6lrl56aYk7ruc5hWF4K3JQo5xyIK5GKMgHiH4bA2In+U409rtPY6iGuQekeIx8rVynwMAUooldkdK4w3c5xCDrgvSAIokRQRRS+JALqZ7zYSQprSwo58s2rk/aQ/ZbLYYR2/E4SOAEQfDEdq2xdXV1VHlZ+0qM+eWNBfzcCp7kmyn9h3jXKuHPF9aEaTQL/ukLQt6nPq+2g1JuhnJewBTbYVstlbxFRI6jkGSBV3cTgZF81xJa4IkCLJ/NRDFzEq179mdqWkai3UwGD5yrFJMVNM22b0lu8u4SZD2oUzLCqhYAAEWtPV3Tu8DNIn/hXsOX5OE5pqloYaY/QhJM+8ngiAKz8m2M2kQxGHWRUeQkML9KV2RE3FQdEPyLgYmBz9VoNbjYCKULTJyv+J9IfhEGKLVI7omTXtRoVhyLqdzLaxCakzsCqYVieRSvSUQ9rvdOVNueM9hxMFQ4NGjR9hsNlUXpbngXP2+5jrE19eEfq15n3OLmiMSGtoiINOPasuC7Ls8n6+RGvqahl/GYiyRKWllqMVAaFKm57g2z3JedMapWlxIzUIkz6tZOrhvTEAeP36M6+trvHz5cvEZGAyGDw+Niy4pq/UKrmnAvv1ZTme3F15rwiTcxpf6HgEgV4ouvsuyMx0RhrwWVrTywLHgK8HkAGJPiHUXJhIRzxProbA6yExIhKQ0Smp5Fti9n4R3EKV2Q85WpOchIACJPJAoatfkycVxzEfeH9T41GfigGckxRRNcSCZiIjCbyFMcR5MCOtWofjqktLp4vISIMLrV68s3uEDhhEHA4BJ+Lx//z5Wq1X+Xi70Wtjk41IormnQ50jDnKVB3nfOpWcJNeF+ztWHIQmFjBcAkP3/Zd80cZAZkeQ4dL/kuLTVQQvs8rX2Xj4PSfJ0XIPEHEmruVvJ9tll7eHDh3DO4dWrV3e2/BgMhvcXBELTtri8vMoCJQDlw5/OdZNrUNTeIwfjxgPHWvS4Ds54OWkrQ4KMgXCVdmvQwj9bF/zoj6wJU6wDjkiBDDAe/TjFTQTRHgcwJzISGlcXp0N0Ior+Sak+ROB4ipQelahOGlD2VYMzTAWIvUKkX63tE3NWnml/mPoAxOfduhbb7RbOOdxcX2OspJg1fBgw4mAAAFxeXuLBgwcIIWC32+UMQZyBB4iLCAfL6mJkwLF2XGYcCiEcZQniV7lwaRcfhj5fV1HW0G49ui+yj7rvUoMvg4/n2pcpWBmyzoQeP58nA6slQaphzkKiLQqy7/J8voc+d+78OcsMx788e/YM33//vfmzGgwfCe7dv4dVt8I4DLEGQIgCZg6Q5qxBSPUGkguMa0UxzKzJn9yAfNKoUzxwZGUABOFAua8wysxA7KefBOSZ/QFB+P6HYxck2Uc+LlmNa1wmIOMwHvVJWjCcc4D3SXgfc3pVLwX41G7qYCJbkUh4JPIgz8nX0RRPUYzN5wxVbGUgmgKhi/0BifiFqf1CySQYnZwLH3y8f5onR4Smcbh3/z52t7fY7c116UOEEQcDgGkR4WxATBxYez0XJC2Fdy34srCqBVA+tuSaJDXw2idT31OOQQq9MmD41D89D9J9h4mDduvRJEamNZX90WOcu6eeG0kyTllc5uZfHpNzJgvN1ea8ZjXi79u2rabnNRgMHzYCAgZeV73PWYHQNDH/P2JqUgqTiw5bAogoC/hZex1CFKhDKAViRRj0HnFkAUckC7HoG1dPllr1+OqF8JuzH8n1OIRjwlCxrErLCNJeo/se+x/dfRqxb+V6FwjZx4umpiIN0PMBFPvBdCveJ5CsQKjbHWasz/k9xzcQiaxUdPxM5FwQJVe08jtH015o+DBhxMEAIC5KXOFYEoel4OFYBCYuDtqvHogCvxTeZTwAcOwmoyHbkRaOmrVBCuQ1NyWGjn3QZEWD25KWFu0WxIsk10Yo/EFDJXOIIidz0ASlNl9zgr6eX0m+OMhZtlEjUrV+8/VMHGouaAaD4cMDpxFlQTnkEN8oBLdoQYHgGmD0SebkugpA9quPJAI5QxGA7M+vIV1l4o2Ev79Y87hStEv3cHLNpEkjzvfyIQUNe5/JAjefrSDZ0iD2CJWVKaS2ckY75wRRSq+I9RCaZqoWrS0LpftVSNmP1PxzRqRpcgDeX8LUN8pzTEf72+QSJqw5ye1MBrhzpqSCSFXA9859TntM17bYp4Bpi3X48GDE4SMHUQx41cG1bVv+NDi4GJgETe3iIoV72T6fLwOU5XVzGnc+pl1rllyTJPnRZEK6F8l2+Xru336/xzAM6Pu+IC9cSXu9XhfX8vebzSbfQ6as00RhiSzIMc8J5NJioAkAH5fQmbH0s1nqh7TcMJlcr9dYr9dwzuH169f48ssvF8djMBjeX7Rth8uLi0KIb9pWBSoDo/fZl9656MY0UlrrieAQQC4pmJKgCkQ3oyaImAMh5EtLAIOA4/0Bp4u+5fgE3oPCRHrY5QiCCOhgYSDGMnjvMab9gYV5Xl/bVDQ1FlGbXIvatkWXXLpy8g2plEtjzMqemcSx7Faktf9aOCdK6776vmLIOCYNTHpSQxQm60ixX0gilvYHAHBNg+3FRdoT1/j2228thfcHBiMOHzHY5YQz5jAZkL75DF7QZH0CqZ2W/vpSQC20Qs4dCdNLLkzyc03gloKyjmeQVgdp9dDtynHyos4ZlGr1DJhUyf4wWZpzQ5IuT/pe/F5vhKdcmSRxq52nzdraXekUaiZ6/SxWqxU2mw0uLy9zXIzBYPhw0HUdujam5ebVgCsJawk0Kp8DQgqKDUByG0JOMeqpzBI0XRetEoGisBuI3XaETz2fX9yTfXQq+wOfK8hH1J77TCBiqtLp83SPUpgGpTWVq0inPbJYIYWmPmdZSuPLcQVa+57JSzrRe8ClytIhpCxMHoArp3vJykvJhYiUhSSEI9JQjFdYaM66D8qYkIn0xOfu2xad77BZb3DoewyDxcN9KDDi8BFju93i6uqq+I7dWHQ+fxa+OQZCur1IIXWOcGjBuJblSL5KAbUWQ6GFZGlN4IxIkjhwcDOPrxYnIQVytiJIC8YcceA+cKCwJhCyr7WA8Vp7sl3ZpnZfkudJ644GWyn0HJ5yM5JB2zpGgq0vjx8/xjfffIPb29vFtgwGw/uF7XaLtmmzUEvEbjcq5o21zqluANchcLx+UVrXHcGH6MCSXWtSNqEAQuNc1vwTYkGzk0IySfcc7k7aZ8Lk8sOWBD/6GNzNgc3CrZVJEQv+2bohSEDjPMbGFdYDfa1La22eHiTlmue+HBOIEAICEcj7iYSFgAYN4Dw49W15WVk1W8Kp/YTJGBMobdOIz5ZjUCaLhm6XrSPSjSuTo/w80l7ZtLi8ukRzu8Or10YcPhQYcfgIQUS4d+9ekS1JCoQ6pWhN+JeuPTWhvxa8rGtAAKjGItTiDmSbtdgGSRKAaE3pui67DTGk4D83NzLYGSitKbXz5Zh4zGy1kH3UFhq+Vsd+6PnSlhEZ/K3nU/eJyULtecj2av2stSkJF88l1/wwGAwfBtqmTe6IkyskC9ONcyJdJwv+kxtT8FOWH07JGeTxMGmluY38SoQGvLYDznt45yDrK0TZN2Shnt16WGB1dKxUAVJMhWclUAO4KAANzsGPI4ZxiAKvc3ALgb1E0Q0pC9k8F06sraEMepb9iNdT9OeS+yeEEmz0cX5CAIUA55PgzwHVcu7BFgMHcsjZm2Q6VMlT5BbAVpUpRau22qhAceCINEQLR+wfk4cca+Ic2sb2hw8NRhw+MrCg13VdkVlnLuhYu7s0TXMU7Cw1/uM45naXhNUjH9X0Twrpc1YHPl7T7IcQskC7Wq2yXz4fk+SDr5Gvte9q7lI196maa89cX/n8WtYpPTeyPf1vjjBokiXnb871aQ66D/I9a9g2mw2892Z1MBjec7RN3CNiVWhkQZD99rV2P4OSuxG7YdIU4hsQtewuCbXeObhszawLlURAaBzIB/hA0Z3IxbSm8bgIQE7tkLQ+pPsCyIIur3NNshi0TYtDf8AwpFTZLmZiktr6InAaEOt12VlCOSfZWiH6UBtkPof30+mCZL2hmL0qTIL63Hw5InieDxGYTOz6xSQN0/MEUXYpyyecsERzG0XgOJWvSL8ZcjEmZrPeYH84IASLd3jfYcThI8N2u8V2uy3IAlsZapmRtPAsXWKkRly6tLAlomax0JaCtm2zG5CutyAFU00gNOQ1bdvi4uIC9+/fxziOuL6+hnPuqBaD7I+8N7s5yfN1XYbaPOmxzVlHtNVBFo6TfZNjkxp/tmbwnNVIh7QeaYvF3H30POrP+lxppXry5Anu3buHv/7rv67ex2AwvB/YXlygYUVDsi6wRrpwR8mkYBJOo4RKaFhZktokILszAQCNI9A0UxHlGhEBgEAgF1LcA8U0r0JCpUQQYipWTIKwbEJqx9N1q26FbrXCZr3GbrfD4XCoKmK4nQDkYm7sduRFwhAOzM6xH0dSNI6tD0xUeC6bJgdq5/NSXAiledYWgdwW38NRLhbHbCGE6JIluwUgZ3iSqVg1pBsZP8PApEyZMY5dn5CtGdvNBtvNBl99/RX63ojD+w4jDh8ZappySSBqlgZgcmeptadjEGra9blrNQGpxUwsCekSrME/HA4YxxH7/R4A0Pc9DodDMdY5TZC2Xsg500SLv6u5JC1V0q5Bko1Tc8ZzpO89ZyXS39fcy/i4difje9Wu00HoVgzOYHj/UWie83dp/RPSp9ReZ3cWlOuJFo6jgE9ZcJ4TVgtNeXJGygRCuDixwHvkngQcidghTLEGu90Oh/6A/X4fC9olZVEmADWFCsUq2DxOJiTEWZUouTDx+8ZNAnmIAd8ApkraIcR4Bhzvt0c4shLPnxpjS6gIyJbGikLAF4StIII0PdP8PHgf5rngvUD1MVt3cnVuLwrtLQ/T8H7AiMNHhpq7i/6eP+vr5nzeT7nCaCy51/DxWh/n2tB++TI4WhIZbbVg4bfWthbk5/ohxyCtBzXB/Jz5qM3L3HfaKjB33dy1p66T1hjZ11r8A1s+2rYtUvcaDIb3CwQqYhhYVc3vj4TPdEoRyMzXowya5RSld1kd8tJE0ZpRaM31fqXIQyGp8roVYhE751NGJSYxIaQidlH4zmRIrWWTwJwEcjqur3DUH6GRD+Sz8K3bXILmWUfPQHxOU5UuVC5Up/VYR5DXsPtZ3vd4T0gEifsq++WDhw8+ETxn7krvOYw4fGSQmnMp9GvNfk07LdvgV339uX2QbdaCpuV95j7X4huk6w5Xe9YWAn4v60ro15wpQ/VNWhNk/7lteZ3uz9xc/BCcQ9BqqFkPzumPDl7nMbLbFM/1/fv3cX19na09BoPh/UJ0UZpiBrgCM/vwR+1/mVGpXLeLxkqLgCAUc9BZfFijXz22tH4qAZ8JgpevQHYvYosKV54Gooac07ZKqwoHWusBh3SuDwTnEa0knNY1kRJPVAR8y75osHvQD4GOQTgHRTyHmL+iXTXlbMnJrlziWuccmrZFQNwj1psNmr7H7c5i4d5nGHH4SNA0De7du3dUvAwoNdeSFGh/d32+Jhi1cyVq7jjnasjlPWqfpb+9HoeOk5B9qREP6X4DlPUn9NzIc/hVkgh5jiZLNRI3N9ba3NRcoeaIV22sct70vErSIzNfyXNkIT0mEOM4YrfbzfbdYDC8m+i6LmZSShV/gUmLPa2b0kVp3nIgfeb5/BCm4mW168KxHF5NGbqIE3sEEwR5n1xxWqYiBRshQtFmLCI37ROgSBCCE/cRvQ4IgEeRcYkL3oWQ6g8hae3lODERuLxX6HV6gRRo68PcFMljmbwIwkA8GmFNyOcmwiNrYuRTBEEjTASiU/uI4f2EEYePBESE7XY7G+QLLAv/NdcW6Vo052O/1B/GnEXjVB/0tdpHX1pEONPTXDyCJg7ajUnfu9aOvq/upzxPW3z0NUsWih/jBrRkZZDHdCE9TTz0+Wx96LouZmRpGisIZzC8R2ibFqvVetK8J0GbhX2JuRW+9IcXQrgK7D21Q2jCcO4eIQXco7WOhW8eF3FgdbKsOJetCCH4ZF0QFgsvC8dNbk9epE2d/ofYj1i7LY4/sS6eT6I4V87HLFMk1ljZJ2KlUrE/LMwdLZMKed4cdDC5nNuAiTT4VA/jKKib5whTZe+mcfBtg3ZsCsWa4f2DEYePBESEruuw2WzQdV0hyJ5yW2FSwH/sc25JrPHXtQN0exrn+NqfEqpr2YM0iWAyoGtH6H9DCpaTWnYW9EMIVQsBAAzDUBAzTl1bq0St3aZ+6jzXSzEL2kohoS0uNVcrSV74ldP88rNfr9f45ptvfhTJMRgMbw5EhDalVs5CYlBCoTQ5IFkdkjAcnXtKl6baPXJ1Zc5AlI/V+1UEXNcoByus+HylHedT2CWpyGSkrSJprLKQndaq+3HE6CeLNLyP7kdcBI4cgguT0D+mtZJQZKgiQq7VwNp5nm/ODlVkPfoJUZvrPG1EoBmTUA569jFmgefneL7595P2G+fQ5ufegJzD61evMIxD5UaGdx1GHD4iSOFYC7JAKaCzkCwFbq1l1+5AtexMfP5drBF8/inLA58jLSXaBUdbFjhoWscy1MgEAKzX66xJX6/XuUaEdkPie+rPsi+aREmrz7k4FZewRM7OFeJr1hJ+1c+cX2X7XEPjwYMH2O125rpkMLwHCIguKD54UKAjLTKArCkHJqGXyUReX0K0L0RtM1KwdRKEmxg/oElDumyWcBz1NQmjsyDRCg8hpRV1VGYSklmHmDR476uuOOOYqmP70oc/1kVyaNuusG6HZLWIgriHR4xzgPexAFwCW0IKqz/VCVgmOTPLecXQsvi5uKbWqCKLxSFB6rRCKhe5I5ElC0BogXYYsL24wGDxDu8ljDh8RNAad+k2UxM+5etc9iHpDiT/6XPk6w/tu8RcDMaSJl0SIF14Tc8NY7VaYb1eZ0sNj6/v+yJzkw6Y1uRG9u0cEjUnvOvP587p0jk116MlaHLJ10ri4L3H1dVVTn1oMBjecbBGPcdkIQuSMlgaEOsTr28za0eWOVl7zpWdHc2ceJ6bjb4mXqcgLBExvqLMLnTcnJ+059IKgJCtD4EtEbx3Ng6rVVIquQZN22bN/TgM01xmohALusG5XPANat+QpEaPpTK8PBVHc5NOOnvLXTpRHjul6BLzLut5RLIHNCGm+V6v13BERhzeQxhx+EgQQkDf99X6AqvVKmvSJWoBu+y3rn31tftOTSjma8/RtJ/SrPPn2nlamNV++rW4CFnAjgOs27bNBfPu3buHzWaTXZFevXqF3W6H6+vrXJ0aQFHMbi7w+RSW3Iz03Ggtzym3rznoedRuXvpe2hol22jbFs45jONolaQNhvcEPniMw4hdSBnRkmDuKFb+jYp0VwQoOCX4usoam2O4nLK6HsUxxODamgvRLE6p12uXyMxBQNW6EPuX3LBCSiFKU6VrckDjHLq2w2q1xsX2Al3XZeXS6EfcXN9gn2oKIUw1GwDE96IS96L15AzoYRcWhLmDd9gfABSWGVAsNBf4USWCJWNamLQwcZv6SuhWHVptzTK8NzDi8BGBhd4laC28Fqa1W4q2OJwTxzBnfdCEouZXXxOS58iDJA7SNUn2W3/WLkW73S5Xkb64uMi+/IfD4SjeQ5IyPUfyHvI7PSd3xalrliwTev5qm73+vchzZepZtrzwb4V/D5eXl/De4/nz5z/Y2mQwGH5+ENj9MH4OCy5DUYMPIeAnl0WVjhPAUTrSmpBcuLwgRNcepS2XS11tPSvWQrXf6HHm+wnrQiYNct0OIdZ28GO2nFCKVQgIGP2IwyESra5t0a1WaFMF6DERhVyILQnxfkwEBAQ4wCEGRstBHrlr3UHY/0ksDNBuSOJNIpMByG5Z+sSQ5pQQiqxRRACcQ0sETx5d1+He1T3c7nYYBisg+r7AiMNHAhbopJArj2mBXAqImhBIDbMWuGvEZMkqUOvnXTBnmagJuHPCPL/KMfD5u90Oh8Mhv7Zti/V6XVhc+D563rhdTYiWyFXt2CmBe84ioMmafj/XXzkfur+ajEnSwG3wZuK9x+XlJdq2xcuXLy3LksHwDoOcgysEwbRHUCnGsgBMgEjZWRKCImCW11Wa99uvQis6OOj6nD2Chf5Tt4BQMKU+a6UYwpSWNBIBh5GSlcJ77Pd7DP2Apm2xOhzQdd0U/5HmJa+z3kdxnGJ1ZwIhuHhvnW71LpgdKk2uT9JasDQ3hUWmtj/w80+/gSO+lubScarZZH3I85jIA4jQEeHq3j30fW/E4T2CEYePCHOuRFLY1EXPNKkAkK0P8tpTbkqnMBezcOoa7rfEnGCsA7z1mHiswzDk9mUKWyLK7jc6MFi3qe+t+/pD5mhpDvj9HEGofafJxVy7EtqSowPu5fWSiP1U4zUYDD8PWAjM7iZU1jWIX4bonpI0yA4idauAAwprREEY9FoQSheXU6TibOssC6sV60TRXuoDC7zyPrkp56K/PgLGMVmpQdnFNwdEA+j7Htk1S9RAKLJDhegGNY1Z9+n0PNwVmi9ULQrpw9w+mT/PzX86zhmXAgL86PMcT0HS/HvA+WTQ8M7AiMNHgM1mg/V6DWBZ086QBEK6LEnchSTM+eBLaPcl7tM57i1zBEKfo8/T99IuV0SEq6urXJuA3ZO4SjK3Mae1l/MoYyjuEodQc/E65zp9fe11iVgstSHHVrPoSKsWf378+DFubm7w+vXrs/ptMBjeHNbrNdquTQKdcJdhrXKR8AKTD7uoWVBTRqUP5c2Sxrp2vJoGVF6aBOo5d9dq29oSOxd8TZRdhjKZkP0jDu4OMfahadB1LbabLZq2QQgxJbf3yrIaOMD6eMgBAQgULRHJlYstK1LIXhpiblf2d2Z/OCIP+to8Ryg+F/dHAE61IVzWAnDkBhZoqpNBIGwvLtC0je0P7wmMOHwEuLy8xHa7zZ918TdNHqRGmeMAtOtKzUefjy1p1ZeE/Ln7zAnPss05lyVpFeBXrR2XLlecTtY5h67r8PDhQ6zXa6xWK7x69Sq7LdWyMs25GUkSNjcveh71Zz3n55Al3cacO5U8Nvd+yfWpluJXXuOcw+eff47vvvvONgaD4R0DkcPlxeXkpkSTqMrWguxGI7Tk8B6Bkhc7p++GWN+O9ggAlDTpWvqdOiNOVghJN89t8Jp4ag1cOIfdj+BcdK0RKWbzFaKvTToeQkDbtdisN1G5tOowjh6721scUhKSkNsRcR96TnwAnEcgVxAwPrUa60Ai9qPGRsq3s9OTYz3kWi8uKtb7mvuSJAeKbHB7fBHHkGTLg2gDRLh/7x7G8QLXr6/Pz6pleGsw4vCRoOabDiwL96fcVeT5P8TVqHbfpf7MXVP7jgX5WnCvroiswRaHEAL2+31xDR8HUBCQuT5qV52ahWcOum93mdcasdPEsEYklsiFbLfmshRCKFL98u9MkjGDwfCOIsRAVud91lrPrTjSMnHczCQwAiWRKMjDXTG3/t1xvymCoxFTqgYfJo1/CAi6uJkU+vN+F/eAw+EAacngWI4xCGF7pp85zS3HiaRzzop3qCrLzp2ESKYcEQJFAsMkTLbqxbPURAHAkYjPt5cERO4HR0XjaCpy54LtD+8LjDh8BGDBjf0wl4jBkmA7ax7GsWB6inzUXHbOFaj1fU99p+tKyPc14V9WvuZ4B1lRWgrWc7ELNWvOnLvXnJWhhjlLzxJqfZwjC3P/5JjkdTrGQZ77Q9PRGgyGN4v8d5qEZw3pc5//lCsuMdH1pBQo2RKRtelJcHdFYwra8kDTvZdISxVLayRRdI9yAALl2A2PlH6VBWlBGhwR0DQ5s9LAKcoRU477MFmg42tlKDweHfBNVM5vrf9z1hNuQjzBs7X3NLl0FdYAbTHBRCaYYHGXtIWEyUE9Y1W0dIEIjYtFAXMwvuGdhxGHjwCy6jEvDFLbXhN6tcCnz9VCP7/q93NC4xxpkOfWCMicu4yGvq5GVGpjkZWviShlexgW+zxngdHxEqdI2amx1M6ruXItnVs7p+Z2VbPM6OdZszI453Kw4FxKV4PB8G5B/s0CqYJ0pegngDK1avpP6dbCb8R3WVBGjiPwzoEwuR0VkGuXIA2O3PE5yjJSu3/RNCbhNb8JSWBPgjL5JPSmQm0SrmnQCMF/GAYMwwB2TeI2c+Vk3l9R7hE5yxTKfaFmjTlFAJbIAklPLa2kEnMRkguZJH5MGtjNSLtfBVYchcnakuNhlIUheB8zdxGhbWKtHyZKkVAa3hcYcfiAsV6v8fTpU2w2myzQMaQvuhTwtLA3RxjmNOz6OxY4j/I9C2hN+JxmvnZNDTUBWX7HwcpMEHTMgyQOc+lWJSHQ954jDrrvp6wF8jyOkZDtzFkfzrFCzN2vRoD4mK6qPXdvGasiScbctQaD4e3gYnuBi4sLuGayDgJJuA8qC07KEpSVB3lt8IX7j9ROx4tZmw0g0KTBT2mc2VWFaEbBkNTZISTLxznWBi0gSyVURcjOwnWyQARKluoQoiuPHFPuM5OnRJwqyqlaX2W8SJOE59wJ0adFS4k+TCEq7Iv9QZ0nLQlnonyuobhpJBsTmEBUvQByN3k+w2SJYuWb7Q/vDYw4fMAgIqzX67ywyQJl8hwt7EpNOlDXYstX7aJU03RrDb0+PocakZgTjOfaqVka9JgleZjLgKRddmqkYM5FSQvhp/pec19aOkcK/ZrUyXHLPgJlvIaen9p4an2rESOew9rYDAbDuwFOJwqwdvlYAAYwacYFaZCabC3sFmsu+BxCTpuULyR451JNg6DU40dd+MGorUVRcJ2EdXlrIh5z7CMoZI08whQLkkmQ6ijPka6sDaBIX3u8f9SH/0PGXrQjSEPFmFN+kX4DFGL8g0OyDongZiYUeW8Q86e7T0BhQwlB7DfOoUnzakHR7w+MOHzgYDcT9tEH6sJtTTuuNdA1zPnAy+MsnM4FCS9p0bmNOSF4CeecJwVo1qhns7Pop6yGrP9pQbw2hh8jPNfmSZKEcy0Meu5rrmDaKsBj18RPEg2gJCA8f03TxGJIM4TRYDC8XTBZGEcPP6qioG7S0EsNO5OG2MDy+pPdWwBRPVhp/KW0ntrOVgGi04HCIcT0qDgWWpcwuyYp6Z3YXYkCvA9H1lNyFF2oeB9NfXakXHVTH6W1Rt7yR0M2MkMUTl0eAvJzDojPzAcPl6wZAYiZtJh0OQ8HF129QPAUQMFPFpq8v8Rnyi5LQ5g8EQhtKpL3E8yB4Y3AiMMHDCn0AaW7DZMFhvZvB3AU8Mpt8vlzWhwNqX2ec9/R12ut+V2Ezpp2XVpD+JUrHnPqVd4QDodD4ZajBe5a3IKeh9rnu+CUFUa+Ln2v+zZnHeF50fEOcxYHGcMgf0vjOBbEoW3brNG0WAeD4d1C9q9PbjlFFp0xJAtD0sizgB4mYVS6vAL1/SEdyG+PLJYAvB8RyBWuO0xcNPI6JwO2cQfSwH0JpftStLZM7lbSL79p22yZHscRXsR1cZvJSDHFLrhy/KTu/2PJQjG9Uqcv5qdAbd8QpOaoT86BQkiWh8kaJCtse7hIHgJlK4yHi4Whi1iYOCfeewTvMfoxyQINmrQ/NLY/vDcw4vCBous6dF1XxBZobbJ2LdIuJnPa7HOFeHmevHctReo5bUic0uofmaSVhl2eR0Ro2zaPn+dABpDXLAynLCVz+KGEouYmxq/nxDfIOZDveUOU8Rwy9WyNQEgrjCQOfGwcx+L4XSwjBoPh50fbdlEgbmI6UI+UXEgrJBCd/pOzjgicXXaprK23Guz6gkAAPHyg6LYk5eAFSjC5SJXfV++79B33NRzfjzAlzXDJIjLw/dmKAtbU8/oo+nHHfeKHbA+R2JWftasS97W4LoTJlYim+hGyM/yxcS5bH3y6JuZCiv/N1igEOHKZkGYileYlB8q7qeq47Q/vF4w4fKD49NNPcXFxUVgcZCrROQsDUNfyL2nWa9BCLf+TAqkWNk+1taTRX7J61CwOHCzO/WDiIPupg4G1y87PhXPImuynfo4M2ddacLWEJERSkyZdzXTb0n1L/jaapinStPLvbhzHo3YMBsObR+MaPHv6NGYIYldSqU1GiMXJMHmc+BATqVJI+4PMEoRybzhrjxCvwftUQyGtdSyEi4xLukkp5Mog7qlTYn+o3LcmoTN5IIpac9BUFLRpXKz1MCa3HOeyVYIF4xzovVSn4kg6vxvm5OuCFkiiEFJ2oyNyhTy/7JZExLU26go2BILHWJCH5EsA1yDWgwhsxSI41xRxHo4IwaUEJem3NvQ9AoBhHC3O4T2BEYcPFHrh1kKj1gzxa03DPNdu7R7yVUMK7zXrxtJmIy0j5xyrjY/PrY2RhVqeA3keY67itmx7jsCcQ4xOfSe/Z0FcCui6HzwGtiicmmtdFFBaXuYCwbm92hxzG9zXruvw5MkTPH/+3EiEwfC2ITTjc8cZU+Ykyu48mizoa3TTxYpWk2LFMR8CnI+GCE7ZqgVaorIZImWB4HWO7p7qk0iuh6lPo45raGItCu4ETfEZfN9SeV+6Bem+z2FWEX9i3+AsR977TCRyP7ivFFPiOjgRu4DCjUt20gGAaxDAbUYLREC0PJALRyTOh5BT8OamXKzUHQgI45RR6f79+9jd7nDoD/MTYnjrMOLwgYHdbrSgp4XrOWKhYxfmiEONdPBrTfMt73PqHPndnJB7yqx5ioTo49LaMmdR0GNf6t8S0ZGQ55w6v2a9keRB919aEKQb0jljq7ktzc0p90f/buQ8hhDQti0uLy/x8uVLIw4Gw1uCSz77s0skUeQGVK5H2R1GKw/0HoHj/aFsqLL+p/sixHSdCJMLUBT869Wm+dayuZD6znELszvBzAQQsaVDd3uyFMRg6Hqb+utiL8hr5AIhWMI5e0o6zyfBPluQmTikeJZYZyKys+BCJgs50Lxm6U/kwSfBPxfKA9fQqw/Mi7bYShHS74z4+RKwWW/QH3qg/wFzY3hjMOLwgeHevXv44osvAKBwwZHVfWuY06LXoGsbaNTckpqmKcgFC7PnWDbmSMYpgnKKPMx9f6rS8SlLwl3cmDTBmHPLkudKK4O2NshnIklDrUbHUj/5XK53IWM/zrEo1do657dlMBh+Xjx8+AiXFxcAkvuli9p87z0wjrPCaeE2hPm/5YJMhLrzCbtCMSEgRzE7DwCk1KwswOp7x3uItkL5Ku8Rv5dVr++w/iwRiwphKm9+WjF2l25MY1zee9jtiy0NQZEGpOMAMBJFtyKgeA4U2CKhLNTy3sCUbco5hBB9l5Ys/7n/mlxRzEqVa3TYHvHOw4jDBwpNFqQgD9RdjmquNjImoKbJZkGRrRxN0+RKmn3fH7UFIAuz2vow50uvx1UTXOeIxznnyu9rAu4pq4AU1LXgXruu1tfagqv7VbM41MiTtgLJ87RFoTZPsn/yPF3vonatvrcRBYPhHQP/jUK4BIXkLlIIh8cuSETT9/lvPB3IlgaKvv4BMVaB4xdc49C4mKxj9COGfpiyOKn+ecSYiwAAHlNq2Mpyskgi2EpAdYvFrAZ/bo8AcqapahMn9oc893xaXkOXb11T5B+tsUX7fiJtunExSSF958eYPYp8imnLBhJFHlB+P7kcuSm1bu1+aq+QQ7Et4v2DEYcPDFKgZOH+HNegOXegmutLTcDnlKZd1+XjXDdCty8JxxwRkPevfT+HH0IY5PE5rfgPEYiXrB5L/dRuYzWtTW3uaiRLtykJm+6PdjdiyMxIS2OoEdS5vhkMhreDEGQQtIfnCsnHqYmOPkrhW/uys0DN1gEK4hyKgbJt10bN9ujgR4/gx6INFnQpvbLrS81NKmThtjrI8n3tpNo+srBOZWKU+juNLTU1ozSablfZD+b6BjknJRsqhO5Ku5xRaRLSwzEJFHMa0jy7FOQdCEgP74iV6f47ikHiFEJ2d5olKkD+3UnSQpXHYHi3YcThA0MIU9CstAowpHAsBUj5ysdlFiHpvqMz+YQQcDgc0Pd9LqTG/+ZqNnAb0pVG9u+HjFvix5mGlUZNzdXc+edAzqMWuJc091wboeaeVLtGWov0mGqWJHlOjTwwuCaDvJ/8zM9cj6Xv+yr5MBgMbxZZuZRcWsiPR4IlEwCZ1jMIIhALnLnJ0sBpN4GseWZhGomo+L7HmJRJOdsaAmIGo2MXFR8CMI5R9kz31JmWzh8zAErr3g9xWxLICn5BHpbPP/8+kngBKOexgmxYYfcj7wtrgxxvvkYUaAtg16EAHyi6H41jdFkil38bpJWFon8EZLeypqa8Er8LDniHn84NgbMsHbtVGd5NGHH4QCGrNUtoq0FNQ6xdk+T7JeuADtZl0jIniNY05lqYrZ2v3XTO8d0/10IgX0/hHMuE7jOTMS1cL7VbS7mqLRLnjqnmSlVzW6q5Wenvam5R2nJhLksGwzsGsR4TAUR6j8BECpJwqQVk6ZLERIO1y1KgLtamEKJgm+IbpoDZ1KbuZ15bkC0jLiS3I60NV9fJImW6r1W3pXP2h9yZ2MZZqFkY8lsxR3JdFrUPakK07mkmD1p5lu6vn8EREjkJlAq4ORcrRbtU2YNSVqRTc7Qw1qVzbWd4/2DE4QODdivioGQtMJ7KsrNUHXnOvUam3qwJqrKPWiNdy/wzRzSkVSWEKb6C+833kPOx5Gajjy3FgtSsAjULgqyoOgxDJlJc+6BWE6JGsJbcfjjmQN9b97dGOORcyfc1K0JtLuasIzXLlcFgeLfAhCGmFU3ui8m6wBpvFl5DONarZ7cdKZBzw3p/SN/lPYIDo/k8XpPYeqHWU2CyYkQteRTc3dH+gEwaZIBwrK3gQI1LHjg0ya0L6xMfyYQBUbOO5NJz6vrcqco5RfXlELMfjeMUC+Kci+Qt3YPnheRcp/alS1LsN6U0tum4tF7IJymeCx/3LloZAkWS5hoAgeCdR0NTgpM8N+K3IUcZivcTATw1L4b3A0YcPjBociB92mWtAjYPSjchrcnn82QRuSUtudSms/Wh7/vc7mazwWq1wna7PbJizLnWaHC7u90O+/0+1wfoug5t22K9XqNt21khV47r3PmcI0qyT7rPh8MhB4gfDoc8FxcXF8UcyPlfGvc5fZbHdR0FeZxd2DT0vTWx0X2puazVLBqS6NXuazAY3gKIcoVfAEByRYq+71Hcc42DgwOlIGcW+jNCyBWnacGKGm9HaNo2CagpcYdPipUQ14XNeoOuSxWtRRAyk4Lsrz+3TiKShmEYMIwD9vs9nIvF27q2i4Xc2jb2Q2m9c8+zIH4GKgqbo88V4dr7EeMQ94RxHHOweNM06FYrrFcrhCZWa5Zkanbcp/YzRRqIJoIBz8X9+LzkugQAKWjahdLtWa7xNQtI/q0E5Rol5lbWdmCSVw2WN7xzMOLwAUL+gUsNsxama1rhOeFRf8dt1LTt0qLB/dEa6mLhqS1GC9YGJg8smMvvWKMvr6uNqzae2j1PtTOnbe/7Hn3fY7/fZ4uDtJJoa07NYnAOWdDPona+dh+S7ctAdR0Po+8hr9HZupYsTNyG/l0YDIa3gBCFf4oJjuLff/qeBUpxaqGdp+TSIlFYHBSItdpsicga6+hDD+djSlBRjVpbF3KGpqnR3EY5rCigshA6jvFfXK8cQgC6NKBOxGplwX7OaqIIxqzlFfNuRJqMjKPHMA449Af4sXTt5Umn5P6VrQxi/or757UXVfDzLYLVTzgI5cBpSu5qIWVOCseB1keWhkRSON2uJA1Bzll+jsh90lYkw7sJIw4fGHzStsjqyBKn3Ee068w5AjdQCvbS2sHWB2n94P7N+fkvxTfwAsvEYRiGHJDbNA3atkXTNNU+zQmuc+OdE+aXxs5C9OFwwH6/x+3t7dHccj+kJUe3IzGnpdduR0tar7n0q/o3ot9rElYbq+63vK8cL4/ZYDC8PfhUFOyuJD4LoErrX1U2JHeiLGYmoZEtC45cCo51hfUBAIIPGCkpWJw7IirxnuX6pwkHj5GDsck5jGMMCCcihNUqvibNOIBYR2JGs1/V+lcsEzW3HT7PJ2ITgscwRMXSYX84ivWIlqBkDVJ9yVmJiuaPY1C4HZ575GdHot8hN+Vmxh1EzEMAtyP6m+o4yPML0uArhEFaHdL9Ynam0zWUDO8GjDh8YGC3EC1QSl94dlNiDbiu4qu14Vqw5s86p39NcOy6Lh/nPnCGHf7XNE0W+udIg3yvhVZJJna7Xb4fWx/0YlSLVThnsTplvWDrwjAMuLm5weFwwOFwKGpc1Ppz6n5LkBaL2nM5p32eQ0k+uM1xHGctMpKEaLIg7yF/c5osGQyGN4vgY5BykwRB5xzCOEahkIVQlvHGEZ4IVNkjslZcFAwrfPBDSIXc4jkUAijQkYjbuhZo01rCsQnDUAReN64BOYemSQoQlKShGJ/UcvP7cYTn1K/OoTkcpvVY9JtyG2rOeDxLa5fSpMd+IltbolJvspQzeWDFCrmpP1iw4ky3O8+th60Yeb3m/e/E9XlevUdwLlshpuOp4rNKqatufnwfvT+kVwLBNUYc3gcYcfhAoV1HtHBXE/IZeSET2uK5P+aae4y+n9R2SwtAra3aOGquTdo6wGZeTgnrnMNms5m1MixBCuJz88SfJfnilLRxUxiK2AdpDallutLtzn0+59jcM9Hva9aHubZ0m3NuUbU+zlk3DAbDm0chaLNwDf5bTd9zHv98TglKufvhOOsOTgq6ZSfEurCkSAnRagHV/OSJf8JNhy0fIRKmKLz36A8NQteibWM8xZFSBCV5yEdp6svS8sduSxwM7r3H0A8YxhF9inkbR5/HQW5SdMVUqHy7Sr/EzY+ejLQ+nEks4qnTNXFtn8YaLUepORKuTrkP03lTR1N9BqraQip9rozF8M7CiMMHCtYicz0FLbzVsvFolx5eyFhbLNtmaHcVmYqVP0tXFe3GJP+dEtaBY9cXWc04hIDdbodhGHA4HAr3mFohPK1J19aV2v21ILzf7zNZ2O12mTTwcVkYjwO32V2n5gqmqzPreVhyC6qNTT6X2jzKccq6G3NkQbehv68RFh0TYTAY3j6Cj0HKGIXLjhAGpQCqhToKMR7CgTPwiXblmiS0/zqTEK9Jzvuc3Ym1/kSUawnkrEiIAi3LzUeWhqzwn6wI5FzUmGNa4xCiC003rrDdOqy6Dq5JBenUHE3eQ1SQBn5DerxBziGyK+0wDOiHASPH5aUOO3JwTYO2adF1LdqmjdYVob3PBhzp9qWYy9GyWtsf9NjIAUjuU5VrpAUphBBrRWRriIh1SA+Fnw33OWCydBTrfuX3Eby/C88xvGUYcfjAwNptFlY3m02R4UdCC5/naIPnMunUag1o1KwG2pqxRBoYTAa6rstWBll0jl1sbm5uiloS0vqg3Xv4nnNkRY5dbga73S7Prwx+7rouu2BtNhu0bYvVapXdlmruUrIPUtivzfcpaDI0VzGaxyWJRs0FST8vTRqkm5OeV53a12AwvD0QOTTOoW1btF0UVPu+x+jHrAHXGu1JKBftVFxTWHAuBEI+JjLt1KREvW7EAGr+J8+bG9ek/aa8R7QxzSm75IZUSyLthewa1DRNJCqopDxVN9b3z9aJJMyPfozuYCmTHlsZOE0sK5Rc2h+aNhKHtuvQpO+JhNuUtPywdl7NpZ7XU3tEsf9QCoCeMaPErzw8XCYuPGZ5n0zwaPpt5NSwmVyUP6R4XtqjRcyF4d2GEYcPDHOuPEBdG6y/04LhktZ9jkDMXSf7+EP6q/vJNSpYYJfXee+z21Lbtui67ij17JK7jbY88D/eDNiywBYHjgVg4ZqJAxM4JhE1t68lsnSKMJzjPqRJwdz9Tlkx5vqoyZcmFdKSZcTBYHi7iHJx+nsEqb9fFC4nhZAvhL3an3EWJlNQLDBpsgMLt/7YerHUUcqvIqZC9k1/YEUHEK0YrsljGMW5HigSbPgQ0LZpfZbEqWJVmLqn1vEUnxGzOY0Yhh5DP8RUq+OYiYAkDWyBbppk4aeyLkYIoULPynEvkQbZ61r8BrtyMekp3aAgSIJ0DBNtyHsR5RoXgQ0TEHsBkwcxf3F86bcYpudseLdhxOEDAxGhbdusGSeirA3XwqcudKaLkh1pgGYsA1J41xp+iZqrErcrBeo5giP/yQw9PE6tZT8cDtld6/LyMmv8a5r02vgkyeANpu973N7e5kBo6QbGtSTYuiCtIj9GaNbzcU58AY9Rzqm2CtTGKedB15g45e41Z9mo/bYMBsPbgaNYl2H0PgUNT1mNCgsBUAiGRASwDz4TjmRhqAl72mWJU6PGPgifFtF+FPiFqxGThfTKgmiNfOSicmndc+TQNk0iLj7fj28ZQshW+LZpQKm2Dh8LKUh81goh1lfvOdbNY7/fYegH9EMf3Z94XU2Ko65tC+JAiSzwOM/BKaXXOfuDuugoAxPYuoHokpYLZos13zmRiUoquNK1JJ4ziXtIy0NAeubA9LwN7zSMOHxA+OSTT7DdbrFarbKgezgcjoT/mmBXc1WpacbltTqWgb+XheBkRWdNHOY01bqvfFwKrjJDj8zcxII8p6Xl81cp/V7XdUcERAq8sj8y8Hm/32eXJH4NIRSZkmQMA28ImojVBPfauPVrzZKjhXBtUZDkb44c6Ocp29Ekr025z+Wz0LUfZPuSdPR9X83gZTAY3gwa1+DBw4dYr9fo2jZbT7PgHxassHOEvyZQgwXvSQvPBIPPLOIXUhsFaZDZhWYg5NXpvphIRV6/mgYtgNCqqtLwCEOM1UAIGJKFGg3KIncOiUCU8GGK2zj0h1ibIVkZmETwWJrGoXGCLKTxHdUtSNaQJs0fP5di3GmcBAJc2dej/aHyXPQkchAzW3ZCGmtx6xBEXQahkHIuxZ+gSLWd94f0zCe3K7H/EMGlA+NICGmfq7nAGd4tGHH4QEBEuLq6ytWZWXDmmglSONbWhDktcE1DrN2SpHuSvEZaBLQAfcrnfc7yoM9hwZRdlvgaSTDYhYjdlqR1oibwMmRgORdyO+RsGJOVQZqb2eKwpF3XxEE+C71p68+ntEg10qAhiRz3TcZmyHvp9vifjr3Q50uLhewLkwazOBgMbx6ucdhut7H4GStZVEFKFuClRhiYBD/9pys/Tm5J/AVr7ZPALteSVOyLeI1I3zvRhyVoywMLtLLfmYgk4d41DeA9PADyY+wnBfjRYySP0Y9pv1D3YMFaLac5liG5xTJxkDUpKNUmaJvJyhDjKeoVoTnGJK+jIWR3qaW5ONf9S6/R1T0iC/XJmpIsNkG5QxFRfr75t8MdTSJBYAtGmOIieFKbZK3ga1iKIGf7w7sOIw4fEFarFTabDTabDQDkqspS88sLhy7EpTXMeYGbEa5rVgduZw5LRGEu5au2jsgx8HXsgsRZgZgw8XVsMWCBl4OVu64rskBNZmefLQucpUlmS2Lte9M0hZVBE6IaMTvlqiMtEzWXoNozWLLU6Gu4/+v1Oj9jWdlat6ufv5yvmvVAk0P5ytcYcTAY3jwI0eK6WnUTqR+iwFv8SRIB4VhYlXUVXNI0a6sAC5JRxowk4qho2ZyyaGaN5JgKHY8B1N042acmgOAAoGli0LGLtYuGccQwIBGa5D41DDjso7bdjy1W61Ueo08EIWCyzPgQ0B8OGMYB4zBmi2ourEeEtmmyW1KbyIJT4+T5OCIr7Ca1sLbn2AbkbpXH5/YHlAK8Jh1sIWGyE7zPJEnfs/iVZIKIKRC8EvBMSISRJvLoXAM0AcM4xOxahncaRhw+IEgXHV7E+Ps5YU0KtDo96pKQqwVErzVXM/ed08Lrc2uWDdlfCUmMZEyBnAeOdyCiwirA95IxIEwUuICb3BCIqLAscNC17JesyirvMZfSdk7Qr5Gm2vVzz1c+W30+u7DJZ1eLeWGXK/kspBsYn1ts9JXPtUxSBoPhDSOE5HePKQVm0grPIR9i0kCucCkqzk1ZdFgL7dJ1gRBVyiwkc6P63hXtes70dDQU4T7j59cVSu0W9XN4vfNTJW22RiPErHhwUxcDQk7XGtIauD8c4McRwzhMFgYiNG0D55rsnkTszjP56yCk6XBsVRAB57VHEdI4NCng+dHLqvzI2v765FARDM7nj6OHHw/x+YbJxUteJ7NRAUgxJnF+ctrbEIqx14Kf2fISgDJmwvDOwojDBwAWhoFJCJbuNLXz576racxr52qSMGctOEVYaufXSMOpsUgCw5AadJ4PtkhwXARDuybJf9wv1tBzpiQZZ3FqPDUCVTtPfvdDsHQ/Oaf696GJjK6tIc/T1gZtvZprk0mZwWB4syCa/p6jH3n6+8yC6JH8Xl4vtP5Hwn9C8fcO5Aw95Ajw0RBwx06LtgFZOyCwMMtpX4WVg9XvRCgoBwfgyr5Ga0jSkI9D7CtRbpvSzYNPtSdE3Bu7JY2jz8Jv0zQ5lqFp28JKM0d+Tlpg05j0jpBJn5yvOUUThIAuiYRgK/n3EAIIHg357D8U06mmRhoP8k0KPp9c3PYh3ojJFbuukSJGelwS4+hLgmJ4J2HE4QPAw4cP8cknn2R3HSlon1s1WQvtsuqx/J7P1ddqAV+mS+V25txvznHfqd1XE5iQNEUs9LJwKzXqTAyYBEiSwu5J+/2+SPHKmneZYlW7cck+neuqpAVy+b5qgq/MgZ5Hfe7Sdfp7dsGSAsZut8vHZMyKnFeZipaL7TGJk65vX331Ff7qr/7qqBidwWD4efH48SNsNtuo6fY+ps0EolB7pk/5JLwn7TL5o/2FXZX0dTLWgQC4BvCYMulkYTaUPv0scPPrWYI2kP3+mTwAKcZZWoeZIAiXmhjvMGLo+xTwOwUEI4Rcl2EcR3iO2QLQtC0a53JNBiKCayp7r9wHoFy0UL4vxqn3B0EjKKVUXdI15XtB7Q/iHHn5Z1cH/Omjm6JN5wh06dH+0Q7h77cI17FGBgDsR4d/8+WD0sUtJFew0U8pV3mvdnHuXZonIof+cMDf/M3f2P7wHsCIw3sMIsLTp09xdXWVA6K1NlnHNwB1cyd/zhopOu1WoomCfL8UAC0Xfy3kLpGDWn/1uawtZ+sCC62yMBy7IknhX1ocZLCwzCgki7fp+8r7n/pubvy1cc/hrM3zhMWI3/OYdKyGJAbyWTdNg9VqletX7Ha7fI60VvB8MZlg1zGDwfBm0LZdSpoRg6K5YrMUPonkHhFf89JTIwHew7P2vqI1BiDSeaZ7pAxALvC6JzIqnQkZOJz7m4TmrG0/styKBpKwHoAYtOyju413Dk5lCBySMsTz3sOZmLzPqVez0sq5HEPBrjaFqyaL0kukYWkajh6KOlZTJtXmT5Guo30MgCPgl/f3eLgZ0HUO9GAP6uI8OedAK6C56ECfOoRDvLUPAathwG/uvYpk4qbF716uMYwxcPxw2E9xhJzK1xEa18S5DwGO/LTvnlvnw/DWYMThPYZzDs+ePcNqFQO5OABYaoCBUgvOkJp2iTlSUTt+ysd9ScBealtfs0QeZHvS+iAFWG194ExT+rgkD7JtWbxNE4cfQxp0n+csDacIhH5mtXlmIqDnVWaFYkFfWosCa9lEal8mDtpCw/Mm3Zy4HUnmjDwYDG8GXdvi4cOHUaANAX4YYuXk4Eu3I5Rabhbean+pAex+ouIPqoqo9IEoWw4AFGlY42Gal56JMj8pNO1SZlYC9FHAL3cxBUyHJLw6Jg2sQAoe5AnjMIAopkV1jZtclUS9CwYL1a6JsQ3VUZwgDTXf/1OY4QzqnGMXWLkvNGUZBjQU8KvHe6waDxDQPPVwG0RrSsOBzCu4p5GChQCMPqDzHr/55BXwzRr9dxu88FfYHYC+9xj6HgNizSOMk7IqNHF+EUK0QCRisRSvYng3YMThPQfXbSCKBc/Y5aYW5Dyn/deQgix/1q5KS9fNWRi0pr0mQOv2gMmawa4vkvQsuT5JbTe/Ash+9iGELCyP45jrM8g22NLAAdHnkgaJObcmaRmqHdfjPGUBmmtHHuPjPG4Zr8G/Hc4QIvuhU7Dy3LVti/V6jcPhgL7vcXNzU1go5L/79+/jT//0T/E3f/M3OBwOJ8diMBh+HIgI66RY0okznHNIIanH9RR4PZtpt8impDT82Vd+7jocr1PZbSbdnwmNjAuoGTfIUXKPCfDOgUJIMdjsJltSH0quS3EtTEHeySrvw7TGDeOIAGB0Hq1vYnC094ULKweIx3iGKSC6uJ90PyI6ms84je5orNyfQojWgw8yTmNZ4TeHP3m0x+dXh+laF7D+k2u4Lrmnrlq4JhbS49gFjvub2JyIL3m0R/vwgP/iH+zwd397H3/1lw9xP+29/TAcuQHL/jZti88/+xzPnz/H9c31ncZheLMw4vCeQwaqykxKSzhFIJasE3P/5LVSK3/K8qH7II8vadB1n2tjlFpu+ZkFYbbM8Gc5f9rScMpasjTWmtXhLoRAE7jaMflamz9tidFWBk3S5L9aVivpxsWkahxHtG2bXZh06lWe06U5NBgMPx0CODXmmLTmvhDqtbAqSUMW4nNjpRA7afGj1YEFWBYiWeufqzYD8IHJSbyGSUJuU7rWVoOJZxTzlKMasjWE25DWh8ICQkiuSrEnzjuxjvocBuKJcuYmWY8iWxqcy2Op9fm4q4JMYHot9gcO+pYZk+5ICrgtoIxfeLLtse3i4O6tenTtCHrQgzmO2xBcOyne8h4WAsAWmtRm3r+4by7AEdC0Ix4+3uOPx9dwzuH1qwbffL2JBFZkotL7WUyBa/vDuw4jDu85mP1LX3SgLuBqAfKUEFwTHueESi1wa7ceaQHR/TtXS7LktlP7XrrLaC2HdEfi8wptkiAOtcxJc3OniUJtvNyHUwRMt1e7Xr/Xlh1+L2MOZLyGzogkLVSsndTty3twLQu+18XFRU5je3t7m+dUW60MBsObwZisqLrmDmNOED+qajyn8MFUQXkiD5ztaEr56pXAzRWZ2doRte4oU5cCR4TlFOoKluMPBHZVcrH0AwmCM/p8anTKSWPg/QHlnna0Tqt+ahelbGHg97PKtPifEAL0yqlJHn8Xr5sIQ7TmTBadz692+OQqWd0R4CmgebqDa5Bdrhrxqu/JhfTyPiqeLY8vhIDHT3Z49kmPVdfh97+/wu3NA6xWq1ww73DYx7SvftqLC6JkeGdhxOE9xYMHD3D//v1c0RhAkVtfuwWdU5uBIbXzAI4EPy3osgApr5XabRZQ5fdzrk7cbs1tif/pQmJ8vuyPFIplcTc+X76XxAdA0eea1aHW75pWX5ImvheTO7mB1wTq2hwwNImT/a71gS0L6/U6f8cCvTYdy+dQezZMOlarFS4vL7Fer3H//v0c6/Ddd98BiO5Zl5eXRSarEGK8xKNHj3Bzc4OXL19Wx2cwGH48Hj54iNVqhf1+DyAKZZwFR0MWJzsiDDPnS4GaMAmPcV3CkcDvhJUiWggo1zjgmhCSNNSCZEl6QR3tEfHaEDxcyiQahWZCkXWIYpyDT65aWXGk7hVJQ5hIQ5hIA7s4uUaQhxlNeWFx5vkV5CFbINI9ikJrM6QBcu6VcM/ncxxGQMCfP7vFg03cMzct4FaA++VttDI4QrOJVuO2aaLgn4LBe1YecXpVCHKCY2s4z8Wq69CtVnGfuLjA5RXh889f4P/5r7Z48TwOd7VaA0Jhxylut9ttslK8skDpdxRGHN5TcIBqzf3lFLTgDBy7A81ptBnyfE1SasJrzcoxRx5qfdH3qmnwl8iGvF5eM0eE5qwzS6/6u9p86rnU81ybj9q5S+dJssCpY2UxN0kSpN/zqd9OjTxKa4a0OMjq3RxjwoSFXZsMBsPPh6aNtQSAistLElRrGnwtrPF1WbnNmY14PQ2huCZq19ltCFHah3DjEVp2Su1m8kDH9y3AtRzEubp/CHx3TLUkOPuSPJ/7JPeTdH7AJCBn4V0ZPuKa73IVZB3gnPeD2jBIzEe+DVsJ6qRhbg/WbTCheHwxoE1WlPvrERedj9aeCw/apqDntikUezmInomM9+hvHHbfrRdFeGo81o9vEFwo+sCDXa8JbQN88csR9+/HWLpvvumw37scf+NcrLHUNgPGmdpAhncDtnu/p6jl3D+FOc02ULqg1K5jaGvE3GImLRw1S4cWmGvuPbLNGsHR3+m+cD9ln2XbS8RBZ12SLkfnkobaOGv31uctjUkHKdf6wXEH6/UaV1dXU/CfiuPg341MQztHoHR2KqIYjO+cw+FwQNu22Gw26LoOt7e32O/3uL6+Loge14S4ubk5esYGg+GnRbacOofRexSBwhXSELXzxwJ7XoOSZjxUajXoz45cFICVgJx9+guljCtjHVS7xTpHlFN65ja1hUJo8IlIWEWoOCe7RfkxtetifQvBSAJNMQeQ66IgL46kFWEiCwUZ4W5V4zamtud0N/kZaPaivpsE9oB/8HiHq26Yxhs7AHp8gHvgsVqvsVqt0GVymfYIduNNc79/vsY3/8vTuG+EaZ7zs3SEdjvgk//6GuTib2wcBgxpTsdhSIqrBv+X/yzWwdjv9/jv/x8P8c3XsRCrSwqtmAp3QD/09YkwvBMw4vCeoWka/OIXv8hCmtQgS2FUCvcS2kWGUROCJWoC7pyGWlsZZBtaIK71eclNR95fE5hztPda2JbnaiFZuyjV4hXm5kv3gft2LsGTxdP4Gc9dr7X/q9UK6/Ua6/Uam80GQHRj45iDmrsUt1MjD3MuULKOwzptQhcXF/k6JhkcBxFCwH6/n50vg8Hw48Hug5v1pli/xjHkYmcs9Mn3jLksPdmlBnUtutQyZ2G7gkwAEgmYGlBkRq7nfDzE1KyyinTRB+EiRYI8gFJNhkQffGV/qHT0+CtEQTmncnVNJiqTBYWO2qhyIm3ZqbgozcGHAPJjjtOI7UX3pCcXPX79cIdtW2bGw2qE+8UezUW0RHVdh9VqhbZto4W47zH0fUrXm34DWjmH42QZ5AF/A3z1P36OpnXo1oRP//PvMDYeOBzw/MWLXDiV9wHCpMhyzsUCekCqtm1KpXcdRhzeI7B7EpMGhhQCtWA55xpUc5nh86UwXLNQ1EjEkgDN59ZIA19b64vuv/ws3ZZqmLOeLPVPXnuOu5I8t9ZXPdY5klPrs3ZxWoIkNuySxFmTmHRw4TvtliQJB4+lFn/Bxzi2hONH2MzMfW+aBsMwFJYJPQ5pwTEYDD8d2iYJhN0qxQvEvz8fUnVkFkypvqawwFgT/EMIoCC06EkwP7oepbtNPh/pvqG+VgJHzdURkiPSDHng2+mjxP0T/T5HhVEL2I2xCWxZmNqX5ArFsdL6IIZyfB9NmI4GFmaMM/GZdS7gwXosrqH1ALrwaC4CXEdoWSnG17K2f/DYf7/KnCF4j+H1KloE4qTme/ErEYFGwv55B9c0GNcOt9+usbrXY3U5TiQEKKzf9+4f0B8CXr/aFM+DrVCGdxdGHN4jXF5eZo2uDJCVQiFwrBnXgi4wL7zyOUskQGfakdfxvZcEQyn0S6GU+8WCqBbKJVGQ1gm+To+5ZvHQWCJTNS37nHtSzbIi5/gUcai5UMnxzEFmfFqlYLSLi4sc18DF2/b7fTUQmtvQ2ZV0LQYJbnO73RZaJM6mxOC4B+89bm9vcTgccoyDJL4Gg+GnwfbiAuvVCkAU+kZEgXQcxql675RjJ2ng68qZ+LcP5QqT1iVHFak2ncPCr4qrIEK0GBDgvEdwDghlXEO8v/bIKXsYLQcBgDsiD8SSvAe4ojT3h92hQghREM6dXUYxHnEJiTnMmaEcFceiJaI8H1DWhiAsIJm0VZRZfHp6v6Q4kxPSOAf6bIC78ui6VazrkYiDDwG+73Ho+7h+70Z8/f/+AuN+2g8IBNdEYXGkqbJzdl0SJDMWyXP4/f/wGA//wSs8/vMXca1PSqebm5s8nj/7R8/x4vkK//q/3+TaQbEInIvuUxViang3YMThPYIsaMbC3+FwKHzXtQAuNcIaS9r6GrSQrTMR8fc1S0TNgqG1FvJ6qZmQbcxdXxuDJk6aqOh+LRGpubmYy7Yk26tZgWrWhdoc1awA8hhbFtjszNmOdCYnnsuaq5N0dZubF37f9z2IKJNU7z26rsvn6N+gHBf/HtfrtREHg+FnAPva5z0hBIzDUKRLdc7FTKhJ4PMhoAmlfaFYa04Jp8V16RUh1z1gLXLNSkAkqkjrNir7Ax9Mzi4AYixF1P5P7jRFWzPCJ5MMSZ20gqoQ9itt1dySuA+12A4Nma5WtilJTr5H7lM6nz+7SI6aEDB6wDnKWa/chUfzyR7NZYOma3NcQ9M0OStWroIdyjoVcizp/5ks5mcqSEMIAeRj5WfvPV7+boX++ik++09fol2PExnivoeAvicM4wCOnSAidG0Lb/vDOw0jDu8BpICoBXSZm7smYN/FXYchNeayjSUrQ62w15zWvEYutLB8jsZ9zrVnCSc1NCcwJ+zL+2trw1Jfatagc/ooLSEcKC9jG7gP4zgWGTNq5E/+lvQzkWMBJpLB2Zg4OLpG7HRfub+cGnaz2WTiazAYfjiIYhC0k+lMBVlAZS1ieXVpuZlT+grZb/oCx249BOSMSTUrdNG27IgiMkcCu+xcbQBEyStKd/Q0pnV46tZZl4cwWXLEtQRNjHg/RfHdrHKv2CP0mxPjaAG6GmMMQXJh5Ux7QFImpXPJOTRNwOpeD9/HNbl/1cVCeLw/qOxZgZhRpHH4kInG/nWLcGiw+75Fd69Hu53qTCHvMyOurvbY3XY49GmPSJW416tVjKPzOlGu4W3DiMN7gLZt8cknn1RrCrRtW41vkOfMuezUXH1qx1kA5XtwP1jDze4xPhV2ub6+LtrSFoXa/c4V6PV52sJSI1RzrlVzbWpILbp0laq5Q+mx/RDoZ1Vzd+LzJHHj+JfLy8vc777vi98Cu7Sxy9LhcMhBzrr/Wvum+7Hf7/PcrlarbPXQlhai46KA3N+//Mu/LH4vBoPh7livVri8ukTbtGCXmWhXSAW7xN8kC6Ps1QPgSBBlVxipDZ/T5E/WjKkGQdukYpNdi9VqjbZtsOpW6IcBY3KdzG2l+8nGaySnukpTxdVJZE/KNSkoVbZO9QiY4HipZf+BSjbuH/Q+xtYMnSUQx3vEXRRaVZenCkEMYbL25D0iuZa2yXNh9B4+uSxFpc6A1X/1TXRzGwO+/O9+geFVg3EYq8HuRFRYC0L6HcAHpHxO+Pv/12Nc/dE1nv4n3+WU4Fwn4upej3/2X3+J//BvP8FXf7iMRCtlAvvs88/x/Pvv8fzF87PnxvBmYMThHcfFxUUOhpZBpdqMW9Ne11xGpOtLTUMs049KYW+/36Pve9ze3hb3kYG3/F6iRlj09xpz7kRakNXXzN1Dn79UW4LP18RLzt85hfROWUy0xeVUe7XrpYuaHneffFZfv3599Gw4eJozLNXGX7OsyDnWlgd2PZKWJyacwzBkqwRbRgDg9vb27PEaDIY6ttsY19C2XXZVAkpBH2l9aSqCbTw5ZDIBAIEi8RiDL9qKgjDBUUq13ThwIOvhsMfQDxgKJQSn+CQMbsjuU8VeJU/OXbujlQDlfkeJFRVN1KyhqCjviQOfKc9RoOP+FXtT/m66TrtgTd3QpAHZUqH7ysI/t1dD3SI0WVqCtt4gEp2+77FPNXdYMYgQ0DgCXIOGM0cRYdAtEIG4XR5zAOCQKnFP/R/FHtW4VPeiafL9+mGI+9V+n5SSDk3j4Pb7sywrhjcPIw7vOFiLzEx9zg1pTgCec4WR/6QwLl1f2KQp/dFlOk1pjeDKwJI4LLnezLkjLVkFlgTrcwTvkLQqS6Sh1qZ2tdE1HbT1pKZNmhvXOS5ZdwH3ka0J19fXR89Eui3VyGWtTf1eElhJXjTh4u8Ph0MmoqvVKsc7/FTjNhg+RhAIq65DmxRLLLhOfufi3KqUjHReWUsHIcQg3CTU5iRMSZDOyqW2RdO4eM9kcdCuh8F7jATQQCnV52SJjDxneQ04ZdEt4geY/OT+nk8+yjmYXL6qJIYJmiBqPDdcZ6Lot9wjdMaphf6cgnzWhDjs0RN2g8OmrdyHCQ2Afhiwux6wuxlEew7dhY/DchMpPGt/IAAeCBSzb2ULhPfwPWG8bRFWsWo30j4UvAdCgAs9GjQI2KChKeGH7Q7vJow4vCf4MekrpYBcE9a0axJrkYEpuw6AXORLXsNa6/1+X5AOaR7V99HvTwmrEnU/2ZL4SG04/5PjkLEiup2a9l6Ohd/XruVX7VZ0jovU3HzIe0nXHz6nFfm45T+2EL169arIkMREkAOaZV2Hc4R4TRp1ATmOe5DB7Wxx4DgdOQ6DwfDjcOSWcxco4Z2IUsYkArwvCrlJsOUAAIJ3WchsK9lwhnEExhGHEAtGknMxqw9RrrocG6rvD9xPPudo/+JAZBY0Kwohlp89APJTQHIAUhD3FCfoKGYikiSL3/rg4YI7tj4kzXys71Cvehw1/yLlaoXclUNWSilh9ZEdc2m+fSpe9/XtCt/+rsM/++IaD1yIsQ0pTXeXrM3kHPw44tu/uMK3//sKzLSo8fj8v/l7dFuA0MD7EZ7Hq4jQHK0hojTO+Fy897j5wwX+8OIBvvhvvsb6wRCD8xFdxUbv8ZuHr/HJcMD/55sOIdXGmLPYGN4+jDi8oyCiKfuB+APSLi5SsKz9kUm/8pr2XGqFuX0AWQiUbdfca+R9pTa7JmCXpuS6NWLOKjI3R/yvJvxKwVYL3TrIvNYHff6cBUfeby4eodZ3Pl5zi5Jtzo2ZMxRtNhvcv38/ZyuSwrzOpCStQizUy4xc2gIhoStHyzkehgFEUxA/u0PxPPD5fC7/th4+fIi2bfH8+fPZuTIYDMdwzsVYApqE1uj9ETX/5JgUyD2ibIM14/lvP2nNQQFwUyVlCsl3HSIdagD2hTWzjH3IpESmJhWB0kca5TlyMPOe0rjj+7QeAUWGJD6fEC0fIMoCbwgh+9ozechxISo99vS+7EccH/L8ax05fypWU0kgKiDhujQRoXIedYeO4k+cg3syoH3isV6tcursNnkPZKXaGBBjj9P9vMOL//0RmjaAyKG/jbIAZ8ea7lfrN2VrQyZF6Xcyjh79IXomuH6YUoAndyVHPG5g9GN0gwoB6/Ua9+7dx+tXr6oxFoa3AyMO7yjYpUMGQ8/FNch/czELWjCVmvmasA0gC5XDMKBt26PsSUuuPDViIfsuMWdxqLWhSQffU7shSeuBzhZUyzAk+6fvrwuWafJwFMg3QxrmSIEeqyZxuj1pAWFXtqurq9xPHQAtfy/atUgWhKsRuhqJkn3j9xwrsd/vs2vbXBYnWSDu3r17ICIjDgbDHeFck9dlSgK/Fq4iMZgIwiTd8wmUMx9J4VSSBwohlUUQAmEKgh5HD+9HhJAsuUqAlvfl+ziiQuDXy7/295/RGyVSdHxQkgdApKh1DoSYMpTP84o8oElz4qb4iDmdN4nxafeko2vUvNdIAw+F517wr+wCVbueSUi2qDtg1QY0D3s0Dwjdaov1ZoMu/VY8K9R43U8kM80Wrv/2Xu7MMAyFImxxf8BkbShz+057xOF2hFt7YBOfi46/CMFjHAmpygZWqxWuiHB9/To+H8M7ASMO7yik9la7F2kBTmvF73IPoCQR0rWIv5cxDlr7LgOptUAv7yGvP8d3cwl8PfvJS8FauypJNx2+P88rtyUFaHa1YhcguTHPWVL4XnNpRWvETQYlE1FR5VmSt5rFQdZu4D6GEHIRHc5sdXt7WxCHpVS+cm5rJFN+J/snMY5jDoJuUvCbvA/fiwnNOI5H7mwGg+E8OF43nFxvAYQKgUjCsyOKloQzwdpvChOJKD1lPBCaIzcaKUhH9yQCUWllkBaBo3vObBFSmI6fZ5JlpGMOOA5sdgSMfL3P5IEbbpxDI9yN2O0mBGRrSdNwfEeTiJA7ImESfvTZXao23uxqxdelAnZxuicXqJBSonKcSJ4Tsb99dm/An3+yx+aiQdtO66sPAX1Kfz0m99FhWCNgFeNW5PMIkxtX8KXFWpMjzhqVqas/rhvFj+Drf/MpLj7Z4dP//PuczUruEX0/ABTvx2lYf4ybtuHngRGHdxQsIEprg9Y8SwFaXqddavjcJVKhLRpaY68FR36v76vbnLuX7P+cFWKJfMzdX5OqmrZkLp5AkiF2t5FZpmRQdK0dPYe1+aq9l3NcK/Q2BxbQOVMRB6hrQiDHI/suXZm09UkHgMvva8+LCS6TGj1WaX2QZO4u4zUYDBPIscIhKQSk+wv/nSM69nvnQSFp3fnv92iPAHSBtjlM/vqigBnR8fV6fT13bII8cNOyuaOWKoKq/J5tII7cFK/BVoYjrXeY4ib4WrnnUCRBOeugXCOpdCuSLcfxi2ckB8b9gbLAZA0+CdJQXHI8dwhoXYBzyPEabG0I3mPkdZfX/BTsvnm8x/qhSJPrA178xwsMuwajcmUlNbfZiypEYupUxxw5uIZw+fk1No/3KIdIOOy2GPcd/vj+Dt/tOrzaN9GKMjdIw1uFEYd3FM65nNWIiLKGuubHrwVw7VojURN65eeahlhmwKllw9GkQffvlBVkzmVHtnXKdYY/y75poVjeT5OfGmmQmazmUrDWyMPc+DR5kYRQp7GVbc49KyYOXcrNXXt2ckxd1xUERwY119zfauOSfZbfSSuIdq3j+0srinSPknNhMBjOg3OxUJYT6x27KxXyaCIPgQDyY9SOo+JOA9TJhIKs18CadADJGhFTl7qQBGC2VChRv9wjqoaHkjz4MFlM0kHtBsXt5rWponAKYoghhFzHQQ+4RqKIkPvAxfYa3heElUGThji+dG9tDUpkgZ8ZhSNPsnSax7jg3hRwbKaJlgqhNHIup8r1kixRXKO3Tw64/6cvpv574OarC/hDcj/meScCOfEbC6kRfknjZZ+xuAcRmo7w4DevsbrXA5QUSSE6ph0OW4z7Ff702XcYviW82Lkc/yBJnOHdgBGHdxRt2+LRo0fV4m411KwFWpAGysq/WiNf862vBRdL7TJ/p4NrT1kb5HV8Lx1YfS7h0Jrt2nWSUMlzNInQx5ZImnzl67kNfeyUcFyz4iyNm5/L4XDAbrfD9fV1LuZ2ULm5ZayKzngkg53lHK1WqzwXXCCuZh2Q5IXdu5iMsOsUP1u+J18nidkXX3yBb7/91mo7GAxnYr1a4fLyKvvon9TMJiHVw0fhLgmWUR7mNS8JvJU9wVfaj+4sXJtBWAJSdiVyBPLR0gFWTvDFc3tEYbE4DiLOazQdi5PFms1EhseEKNc619QFUV7/3RR0rV2++PhR39PcFteI+cu3SPPgAOgdXZKVo2DnspuzmIwpAaMfMY5x/d7v9yDn0HPBTxHbhhBrOnz/f2zx8m832e0KAA6vfQ6Kz6SBCE/+8XfYPt2ByOH5XzzC9ZexAKyOX+Y95fLzGzz+8+cxW5Nrskst0u/q/p99jfBHDvj79TTXwg3v0ePHuL29xfX16/nBG94YjDi8oxiGAS9evMCTJ0+wXq+LDDjskrLkCy8X0FpwtSYO/H3t35wgLl+XILXZc+3we63xXtLw63a0VUCTAk0eapYaea0kQ3Naf/2+prGvjbdGQmRf9Nj1OZI4sEafM2FpIV9aF/T8yDS1fM+maXIWDuccbm9v0ff9EYGQ/dPzKgmCfP4yBkVbTs75LRkMhojD4YDb2xs8fPAwBvP6gGEc4Ec/pUtNGtssODO/oCicOu+TRSCB1/30noXGwO5IEC5RgqzIP90f+ndcE+ZzoDC78PD6lUjDkoU3Xi8bS2uzXEsLN19kiwIL+GDSQZTcnMJEKoKHD4CjJt5naY8ou4EASilJ58neKR5Yc4fixxKtzgFjKq7GhGes7Q8pmHk4AMOBXaXiMe+TDCDu6chhc+Vw8SBaMvwXHt16FwnKixUOr7p0jbA6twHtdoxVzDE9Oz7erJKCVFiS5Pw1gswZ3j6MOLyj2O/3+N3vfodf/OIX+OSTTwAANzc32O/3uL6+zgKidHHRWm3tXiLP037wfE7t+zl3oDm3lnMg+6P96XUswdK1sg19vXZTkm477DrD5ED65fN92S2LX+fGWPs8l7VJ9/+UpaH2vcx6tdvtjlLn6mcoiUbNYiD/sSXp/v372Gw2WK1WeP78OXa7HW5ubnA4HACgcG/S45b91i5TNaIqSazBYDgPN7dxP/jlF7/MaTaZ5B8O+5zxyA8+S/bZjSn9rXk4OO+jRUAgZxoKkx88X6+LvBEpRySahHyuMM3LRBb2T+wTRWwAZHt1S8Px9ek1Cb1EpZsT30NaajhAmFLFZNaGw6eCaCSC0YHsrhWJzTQXfF8J6dXDtTE86mQpNVB/r+eNKNa4E31IYc3w44h+ANx+n2MUuL285vK5KQi6ZlUq9ngCmsZhs97g8rLFer3G+rc77H91g9vbW3z/Fw8xXK8wjsrFKBAQKLvJwSVSSwSkdK9IhM05giNgDJm7ib4a3gUYcXjH8fz5c4QQckEvdgEBjjXdc8LtnBsRC8pz8RBzBc9qWn1t4dD9489L7jpz1oWaVUKfw4Ks9z676sjNjWMWuEBa0zT5HNbASOLA2vileJG5MUgBuSYQz1kwlkiXDErm2BcZ7CzdkDhNK7uUDUnrdEgZNWrEkK/leZIWhNVqVTxj/v0xYWESK12WahYEeR+2nHF/5mI8DAbDPAICXrx8CUeEYRwxDH36e0prH//dskuSc1kOzXIkwqSFF3sDpaDc8uSa646OYEDxXXSHoSx8Z2Ihmgszbjonxz+3R6jj0rrqg3C/ZY04EdA0sVha2+V6OM57TsAEArvkJsVUIh0U/GR1OAECUkVuQqMtOsV5VHXTqjdKsR/OwRHQPQhY/3ZAs12B5XQ/jkkoj5aHxjmsQ8DTf3iDq893+Op/eoahdyCdWCM/L7FPJPKUM0y1LboQrRsP//Qa22e3+Op/fobxQHl9f/n3HW6/f4a2bbB5vMej/9N3xXPiMTvn8JsnAz69N+J//t0aB49Ifr23dKzvEIw4vON4+fJlTokqLQzazWYONaFVvkrBWAq5MkaiJjjXXIqWXHTOJQ1z7jn6mD4uteq6doEUqOU/eb0mDnNjqVl0an2SxGqunVPzoAkefyfHIIkAp93jY5JsyNS1+jnouQ8h5LSq3N56vc7zyD6zbO1gAqHd37g/c7+fuYBzg8FwHoIPeP3qFdquRZN8xzlT0HkNTHEPWdTn9QCUeUN2zyGHMaS1EhBpVudvIS0O+bsZgrBEGjLxyOeW41jcB9M5PqT1UjTKNQxipqQyg17MipqsFkmDnrMooW44WdqT2QKSLRSVYPbU1XLgx28LMNEgEKglNNsA10z7+uh9Joe87jZti/XlCNd6XHy6w+55g/3LJv8GSpcvsSeGSET6vk+uR0Cb9oimHdGtRtx8fsDueYv9iwajHzHsgPGQ9l10WH+1webRAa5LbmDOIbQArgZsdg5AA8cFDHHaQmV4szDi8I7jyy+/xGazwW9/+9ss/LL2RKfclNDEYs4ioYOF+ZgU7OT5GlIw1wL3KdeTUy4/ciws/M61IzXXfB6PVwZzszachVq+VrrMyHNqwu0SAVoaY42gaXLAx+fa0c9Gxi9wv1erVR4rWw9ksLLulwRbAp4/fx7N0Os1Hj58iM1mg7ZtsdvtcDgccHNzgxcvXmC32+V2iaio0cBWD0nUpIsTPxPtCmYwGM5DQMBXX3+Fe/fu48njx3FNcCEX+coWBzoWvrKWn3mGS0KaWJscSqVQViyl09iNaNblhjXWiJmIpLXhHBy1S/U7sTuLFMo1mDT4UVkaKO0FLtZv4NoMcFwUDxjTqyOXte6ucYjVq8sA87sqQnhE+RmFgJE8KIhHRtNzyeRK3oeSy1JqhwO8+Xcg48rapoFLFuvQNGhbjyf/9Ct8/7/ex/7V/dRWOPq9cMyC92NMYnG9wzAM2Gy3WHUdtttttHpdDFj/V6/x7f92ia/+3QrDfojB8yG6Q91822D/r5/h0//yD9g82cXfBQA0wPjFLfyXa+A2pbp1QNMkYmXk4Z2BEYf3AM45bDabIq6h5g6j3WJqmg/9HQtz/F4SER17wO/ld5o0yHYZNY22xBIpWRKm5b2kIO29R9u2hRArNz+puef7yHS32jKhN81TfeY+1chY7by5Mcn3kjTxeGsxAzJrFme9kpuGnk/5bDhdK4CiJsTFxQWIppSrsjiejA2RxKDvewzDgNVqlV2rZKpYbo/vcU4WLYPBUEfjHFbrFYY+CWneo+H1IcUlAKjXARBpR+W6pWORivSiTBhklWj++80Wi0Q+kiC7hHxpJeC3OEF+xWNYbHmCIwewi33ToAkBoRWZ3jC5OTFpCrlGRrqXDzkNq3MuE4ncvxP7b7YeI7ksqWM8VkfR2lO45wjyENuf0u+GMN17HAccUhal2OcpKxJXgm5UPwuEkImYJGqRKMU4hef/22Pc/GGPp//kOzRJOdUk19kmuXw1jcskzKf2xhBJ7ehHfP1v72H7ZIOn//j73Ncp01Oa5wYAWjjXWHD0OwQjDu8BpBsOu4VoIVgSh7miWnNEYs4Pn181cZg7pnHX75fOPeXipH32mdQcbX4L49VuSrWxn2Np0ORBC+s1MnTqWO2zHPPcOGWfeE40CZkbE2fyYrclts7oatx6DDLFqySWOmBbE04mahbvYDDcDSGEKZuS9ykYNgn4iO44IccsiKJtQM5YVFEyF2ShYByZHMjA2UnILCwc/D1VXJak0lyI0UtBw0cCd+7rMYmQ5wUiUCBBehzIl2tNkEJzDTwuopMuNKcUYkwe8rjUeUUXlLWBn5UkDQEB91YjNvDwNw5uG5BMRlNjSSgPIr6D+1RT/lH+YZR9G16vEDzh9rsVWhfQNEO2Kkd3OZ9uJfazMLXr4bF/0YKapDgS4yz3cgfCRHwa1+SK0oa3ByMO7wHGccT333+ftbjDMKDrYgAXu5CwdplTdLJmgYU3hl4YpJYYOM5ONCdA8/s5N6VzNfTcD6n1r91T4lRb+rMkVMMwLXD6uGy/RkjuAn19Lf2tFuDnrpWET9ZYYIuJJhEypoOPr1ar/NuoWZj4HrkaqrDgvHr1Cjc3NzkYm38zHLCvyWot3aoeu0zbymRku92iaRo8f/78TnNtMHzs6Pser1+/Rj/0mUB0XRcDV1P8A/u8j0NSQLGmPQR456LwVlnnglfZh5wQvvU6LcgBC9ZTZWXxfXo9OxA6TLEYugZFDXPfy9S0RdtJEue1aHBT3AYLwBXeVLSxRCKO+ifJA7h9P90jEQH5Wd9cc5uGgH/62S0u14Tmy4do/uQW6EZBOiLy+i7mT7q2suAPTLF/8COGIbnbujRXuzW+/Z++QPgn38B/8Rq73S5bBcZxxKHvMA6b9NvBVA8ixOcwICb16NOeTJSqY+exxzmJ7lYj2qbBxeUlrq9fz7otG94MjDi84/jss89wcXFxJNxKrexqtQK7mgBA13VVzTMLatp1SLu88LmMU5aFmiVDtq/PnTt+Stuvr6+hRnpY0GWCxLUPNOH5oW5Xc1aMWr9qloU50lI7j/vP5EdmvqpZXWr9kG3zP+4buyKt1+sixiOEkC1d/F7fT/dXQpI3CZ3lyWAwnA8C4dmzZ/HvXx0bxzFZGQKwSkqFpoFzieALMhA1+fG7I6ciouOCZUmQlxI6BxlrBMTTarJ1zbIgBft8XBCPnNIzd29yjYpdW1iHkbTY5OAoIGZIiulAgx+BA+C49kFlH3IpdkBaWkrNvHRHFdMrA7Jr/coWjLRWRnMEiFPGykZRzmMmNmBFYEqrOg4gLyy7PDdqTEGSQu4HkAX8wKQtxBoWIRGMbjvi4T/6DqsHewAogs5HkQWJiBA4YxbvD95P1pY0iDAQ/B+2wK7J9SOCV4TK8E7AiMM7jsvLS1xeXuLly5fF9yyEsR+/DHplbbMUymoCau09t82vS8LnXbXwc1giDLVzTwnoMpWoTP8ZQigCeWUANPv3azIh52Bp3HMCc80Ko60YtXnWn2XsgrwPj0M/TxkDcWrONIGouRrJsdQIirYqzN2vRoSMNBgMPxBEuLiIVXv3+30hYAVEa8FIHq0P8C6goei25MDrQ3Ip8T4LqoFKqwCnBb3Lcl+6Hf10KIjE3DmV9S4Ux2NQdHClNSSEKPD64OGSkMw1HZxrJi29jGng9oOOaZtei67U1jqiPJ6Q+g/vwYXvaoREzkVAQNcErBsfNfQ+gBBweO3gfMD6ssbYhLJJKQxrViCOkwlEoOTm5DqP7ac3qfsuu6MxXDeivTxgeJn2QCYiON4jAQCeEF61bIKZ9oeUJaxmfDG8HRhxeMchqwHzYii1zPzHz+dxphrOpLPb7QqhkK8DTgv+tXz/WkOvhW3GXYRB3d4PhRwbf+ZsQ6whl0Ixa9d1utE5a0dNW3/uWJcsJ0uCvSQvfE8u9sakkesnyDnoui5XHOfnWEvnWyONTLB4jjhLE5MsdnkCJmsVuyzJftdIhbzPD5lHg8FQIieBEMqjnLM/yqQpYHrEOCaNeePQEWEcBgzjGIWyVAjORQ5xFIwqXYsCYjYmH3yMG3AONKZ6ESzYuql2BDEZ0aryc5AEe0dukTCc1ZRzQFozY78mxdLox6ThFm67jtA2bQ72dc5N1gbRl/xZD+9MxQiJV332EfmoHP/FvR6/eXSbiUPwhO//zVN0j3o8+8++nvY2iD2ibREAQTqP4yP1bPN+MXLtnSCyECZXVgJw6Hs8/PUO209f4+//1efYX7sYmxCO25omTL0NlXgT2yPeCRhxeMfBbiOHw6FqNZACLguFklBIP/dzhPuaxlwWkONFVmuz5zTmtfYk5nL8L/VRj78meDKBYnLAVhgWsE+1LVHT2ut71gTw2ji0ll2PQVqI5tyK5Lkyvam0oMjfgKxhwXEeOnBczikTj9VqhfV6jcvLy6M4GuccdrtddR653zz3MrvTUmD2kqXJYDDU0bRtKiYWCkE1/y1RytITks96E4VfRxSJAmudteArA6PV56hADpFhUIga8iSURyl/OnH2L5pvptePwv+JJtIBlII693NB6cJSN0G5ZlFKNds2OR0ok4RC2THX9xpCshDIz4UQHu/LQjH3AxAyM6/J0l2L62QEFfdA8vmE+C8fDLi4ukaz7Se35hBiBiQSma68z+Qu7xvkYl0PN7OHg3D/V6+wfdrHfWIdFUtdO4mTAVx0jseSzSSgQCnVbVLesYxScXULYp54/k4RKcPPDyMO7yg4CHa9XhfaY+BYaNW+41rrLoX8JdQEOb1oSNIgBdw5AfrUPU+5PZ3Sxi9dI60HnBZ0u90WWnLW1rHGvCagz/Wh9l2NSNWeV01gPjKvV8iGJi9MHGTqWGm50dYmTTb18+PNg1OurlYrbLfbTMKYeMjq5TXLFDBlSeK0q3NWB32dwWA4jcZFRUgn0hrnNUML/SG6l3gfRTjXCGGcMBVBO6HPz1r0LMhPbjCBSQMwuT1hOn/2z3vh716Shh+MiqQZiQ+leg2Acym2K9WeAVGuWDwOY/TZD76wSCRRPccO0F0k2iNte5h9dqsmwFG8Rz8CQ36m8d4rN6IhX/QLADbbHWg9RAGeCMSpxYWrVXqc8IcWYUz7Rprz2h4Wrydsn+1w9fkBbbfBquvQpXnjNb7pewTfYNi5HK8wjT2Sh24d0K5DLCIXAjzvQ5molq/sUmZ4+zDi8I7iyZMn+Bf/4l/g+vo6V+hlQZcz48iKvbLomRQiZYArMC+g8cYjNdhd11Xdh2pCYA1zgqC2fpwSGu8iuM9df2rM0hVsDkvka6l/2h1nyVqhLTWaNGjBX17Xti1WqxUAYL/f53993+dCbbJwoBbcARSkYb1e4+LiAldXVwCipeH6+hq3t7d49eoVXrx4gf1+n92WABTuX+zixFarWizOOb8jg8FwjF/84hf45S9/iZvbG/R9dF9kt1YWeH3wGEdfBOdygC/77LMvfy0QOX0EK+tDcukBousQtU0kCYWlArHYV03oZ3OFaHsJE7mh2ZOXlEsQ6ygBMSBXncsF3GqXxoxSfkoxutDXU8q5o2u1QkllUWIC8WePb/DkIiam+Iuvt/j96zaf15DHf/GL12jdlCxl0sxPc8Z7hsyMd3t7G+WJG+Dv/tWn6HeAT/KE7pvcq+Me0aBL3hDrzQZd18F7j8PhgMN+j9fX1/j2/7fBV//+Pvr9iBAmbwiWS57+0z9g+/QAojYThpyByaf92PaGdxJGHN5B/Nmf/RmePXuGzWaDm5uboxoOUvjTGmYteOpA1yWwgMeY04DXFkct0J4jYOuFdu79KavG3Fik9lz65zNJkIHlS8JrbUM4V+Cd07BrAjE3doa0GklLinQj01aGEEK2Dsjfja6nIO/L1pfb29tMQjkLlfz9zdVy4P7JwnCa4HI/a/NuVgeDYRmNa/BHf/zHePTwYXS9vI0Cfd4n/BjJQoiCKLskTW4+8TVECS3HNeTK0TUIgTtbMe7gyEMEIcQuWxFYgKbkDjXnZ18QEByvZcftohBEOTDapb2haRoETHFwea1UwbnVdkUfznZzknNaOPhPpCE+vwCHWOzt2eUBXePxu5frGLdCQOuA1hF8QHZLI0fAgwNo6xFEbMPU/mSx9iMwHAL8gKnaOOqWcaRrXvzHDYbbFu2fHbIr8PT74wrdQBgdEHyeJQJhdTng6pcv0d0bQC6d+6KBv3aJrQEh8ByW5OFHW58MPwmMOLyD+LM/+zM8ffo0B/Syewj/03UX5sDn1IRLoFxctTvTXQS4mgvMKcxpZ+a06ae0/TX3It4MeGEjokJ4PiVE39XCUBtLrc1aOzUrTG1eeEz83GVciyYOLODLf3PWDynkszaK73nv3r28MfBvUFoOJGR8BTCRA23VyZursqTMzZPBYIho2hZ/8utfZzIffEhkIZIGny0MIQvszYzApcmDTqk6WSFiliEvhf9z9whlYTjLHQpHxol0/TFp4M93ESnZFSdqv1PWJKJsYQiBX6MWvKr9/gmVHDLwXJp4WgcwrQgh4NlFj3urEX94vULv0xhctCxwHQ5HBNc2oCc7YDXCe5osS5I8ZLLJ9XSSph+KNCR/rBBCTMk7jnj5txscXg24/6tv0XUxbsKHgHEYomvXIfEFgRCib1V72eP+nz4v9jD/ooN/0SDIi8SUF8TTyMNbhxGHdxCbzQar1Qp932O/3+P29jZX7+26LlfX1cHQUnjnP3ydN7/wVaQpa450HWHNgfT752tqqJ1zSvtzF5KxBDlO3Y+5Stt6bvR155Cn2jhrfWPwIll7LlqQr82NJDGywBs/O2lV0efrsesx1+YzhJAtD99//322RrBr0u3tbXaD0u5H7Ooki7tp64L+fcjf471797Db7QoXKIPBEEEErNYr+DES+f3hgMOhz0kPiByaEDCMU/Evl/zaHQmXn3AcUM3ZkjgmgYNm25SFiBGVANEd6iTJrzEATFr2Y4vCdEnhPnXG3Mxah8HuL+I+CKBA6A89QEORRSpbDHg9FH1dcpvia+O5PM7zELNGcaE0hwebHv/42TUaN+0VPgSs3Ij/8ouX+KvnG/zhdZfuF/vJQc+ElH2xoxTT0pTEgecgTnISzFFYQWqdD+nBBITsmnRzQzgkWWEYBvS7gL//7z7F7SuPoR/gRaVnXuNl3Ns4DAjjiOBLZV0RIM6/RyJsNhv0w4DDYX/mzBp+ahhxeIfw8OFD/OpXv8J2u81C2u3tbSYOTBrmtPK66Jm0OMhXLURySk/+o+Y/XlnkS96nJpCesnxoYbxmpZgTmGvv5Xdz7i78PROH2rX6Omlq1u3N9ad27imyJfsuScScRUi2ywICMKXmBcqq3wwOaOZXed/aXNSeI1uspHsckxa2RPB9OQids3npOiLFxjAzx6dc6gyGjxVPnjzB40ePQeTgfXRDPBz26A8HDMMQfdgdZQef/BdGlLW2LCAHQk69ytXdgk9CMk3ZjAKA0ESbRY6NIGAcCSNN/vCFQC3XPaJJ8KuI/9odiWL07FHa01lrg1qHj9Y2cY4kJXxv76NlRtcirvKhyKrKUSyt8bXGBHED5vcIQsCqSeunL8/tnMfj7YCGYuA0DywgZjMKwYH8CPJhyhrF+23ql3MO5D2aDrj65SvcfrvG/vkKY+AsTJWBFI+VEomAWt8DLj69RftgxNAPuPn9Fdx6wPrxDbqux/r+iCbtG34ghO8d/J4Do49dvDQZJGdB0m8bRhzeETjn8Nlnn+G//W//26zRvb29xfX1Na6vr7PFgbXNY8qUABwL4TroVGvl+RqZrpO/Y02ADorW99CuM6eEfm5DatQl2ZHn6OuXtOO6fSmUzv2rjafWR30v3be5ftX6d461Ro9Ff5YuPzKdam0OeF7btoX3Hm3bFoHvS5Bt6OejLR2STGjLhyRhS3N1zjwZDB87iBy++OKX+NWvfoVh6LO1YXc7JT5wTQMXIjkY40XT9UJry5+980AiD0HHHAnNLw0EaluA6x+EAEeV9Qdl+5Jo6IrPSwofPpeICkuHXB4KxXhF4JQnhDCRE0kaoqwa3XSAOAeyL5JAgWJKWyY1xX30fiHuf7S+zRAcOW/sshOAsnI0r6kAnl30eHbB2e1iX4P38AAoeNAwwo1pr+d78JgAwLlIKlYjHv7D70D/x0P0r1bwPvW/YJ4l4nywVagcg+sCHv7D76O1uQ/4+uYRVg8HPPzzV9nyERWUAHpC+GqVChBWbnbKmmV4KzDi8A7AOYd/+S//JZ49e4a2bfH69Wvs93sMw4D1eo2rqysMw5A1uVL4PWLjShiWvubyHwufzjn0fZ8zMXEFZb6m1qa8V+197fM5+DFC45ymXwuuuibF0hgYs+bvBTKjSYomaFKrXtOU1SwC+rjMggVMliPpruScw2azwXq9LtzfOE5BuxHJGBAmCfxb4X5zmtbNZpNJLAsunL2JP+cc4jNzBCD/7jSpMxgMEZcXl/jn//yfY7vdomkcbm569OlveL3ZZAVB13VZ+xx98/2xXEuT2OuoiVr0cczpMGXq0dHFImiDG1LRtFjrAEVzM5YARVo0HNWVH0B9zf0xS0JNIcWWDWCqk+DzGj2RBXlfHsdR/0KIVZUr46h91ilXKQnped/iitWs1RfESCpkSB0T3YH/uy1w5YHPo0uPl3GMgsA0TRNTbv/2gHuff4Pf/w9PMezLTHh5HCEWfwtAjGUY017BFmuKwebb7RZt06BtOzz9v/UIIIT2MfqUEbIfBoy/X8O/IhwFQ/B88nNyDk3b5EOj9xbn8JZhxOEt4+LiAg8fPsSTJ09weXkJAIXAxb7isrAXEBcYFurmstPIhW0uDSefy5CCtTxWe50jFHNY0s7XrAVzfay1pfu3JITXxqevrW9cx5vGrHlca7uo7v60NK7aWJbGo5+N7t+c1WhuziTJlFaoOcsLnysD+U9ZGvj33HVd/o0aaTAYJlxeXuHhgwe4d/9etBKkvzXW0napqBeTfZZ0O4i/46haL9qdW7t9iCYILY6yS5EPoRTbsqZcrmvyHvVxnVrXxAFxj8kKko9xN4q+VqDX3BDdjkBBT00+PxMIoLruFZYJCGVepQ9H81lVsE+kph8d/nDd4f6qxyqlW80eQ4mozGnkQwgIfQMMlZg5Xvedm1yDQkDTDWgvAihl1yIIF7Eg5zz9rnrC7ZeXaJ550NU4KcPkPCHAbVJGvTGSWX8AxlcO/obgD8fz9Grf4NWhmbJEIWYSCw1AvkIyDG8cRhzeMp49e4Y///M/x3a7BYCjzEnsEiLjDZxzWK/XAJADVHUgs8yXLF1O+r4vNOCsQdYB1kBdA1/T1AN1Vx6Nc1yA9LFzsSTQ6ja1VaKm/ddt18Y8d80pl5zaPMn+aouEvEYTCxkoLatjS2uSzqgk+zHn8sQCxzAM2O/3uQI0W7wOyadauk9xjRE+NlcvQv/jgGomDgaDYcInnzzDJ88+iRV9g4cfx+THHgXqbrWC47+drKUlUNchBI9hGNEfDpMPf7ou+orzmh//NseUP99jqgvknEPbtSl4t4w3OFoRhbCdNds/AHm9q93jhzVYxkkAhQZ/+pItAim6gyrj0OulbJvPX1Bc1ZqI9xSWEACvDg7/7qsL/JNnr/B4m4gDxyuyNWJpyIjaerlPuCZWyuag96wcGgZkbik7R+zWhCkIhOKY+tsW3/wvz0D/9Du4zU30Wkj3G4YB4zAAh0MmuaP3GPoe4yuHw9+scl2MQmEF4PevV/i7V1G+YYsL779RsbQ4bMMbgBGHtwTnHH71q1/h6dOnaNs2E4abmxt89913uL6+xqtXr3B7e5uFPxYqt9ttdj/ZbrdYr9dFrnztyy5dV/izFNpqMQpzrklzmm1pCWHUBNW5tvV9dBv6e/48pwnnRaam7a8t5BzMq+8pURPy56wjNTJR67/MZKX7NkfEZLBy1jKiLL7Gz3S32+Uge1mDQQr1PHc1QiVJCfeXaz1wIUI5L7rOw9wc8n3Y/Y6JwzmF+AyGjwGrbhUt0ReX2SXw0B9w2B/w8tUr7Hc77PZ77He7wqrgkvJgs1lHJdMqFuvKronK+hCFXgfHS2CXXFtHnwVM55q6laHixpM12uL7LFRX2ghzygJ9vjyU3IxClGKPYncJmDTyLNhrZQzY4ECF1aG0KMcTi+sXrKjymBSKtbVBGwuEUaU4B2FyWfJ8krD4FBaO9D6k30JwDn70aMSNmDywUnEcR/S3Ab//108w9AF+DOh3yOl8IfcEN92TXxuRfltmdOrTPjAMg5gXYPy7Ffytq3pJ7AaHf//1BW77GP/A8TFN06BpWxz2+6rrq+HNw4jDWwBX+L26usJms8mWAO89bm9vcXNzU6S7lBYIPlfGJLDgRUTVAFhJGFhYrKVwrUFbH2oWiSULhezD3PlzxGCpDX2d1p6fElqXUOtHjYDw93MuSJr0zLUxR9ruQl70+Pi9dB9acmurERttwZDH2RqhiUONlOh+y3bkPWS9DYPhY0bbtFitVzGmIfl3D8OAwyHGKO13O+yTZS/HJSVCEP/GgGFo0bbRzYP3CxDFeIYZYZ2cgwshVn12rGRa7qsmDPG7ZTclPkeuROwK9WMsFXMWCiKRTUrFF+Qg6YXEqTVXn5rZQJKGqU+lK1QxtELbHuer6AcRkOaEwlIPjxFCzJCltfrF8RDJwu55h+GAmFVLxRxkgqX3hzZg82SH7iKgTb8tEm1ny9htrC6OAIw3DuGQgr+5T2kux0B4sXOJRE3WHnKx1gbH2Fh8w9uHEYe3gKurKzx8+DAGEKUsRtfX1+j7Hi9fvsTLly+xT+yaF3zpM35I5r/9fo979+7lug/SpUkKjlqzrK0M5wjuNUuD/E63MaeRX7pHrebEnBuQPiYz+fCYtY++Jhq6XTkfmqCcIkXy+rlzdNv8KlOXShelJX9/SUx4jKxBAiarkhQs+Dq2Gsj5rBEV5xxWqxUuLy9zW9IFiduSZGGpqJ78TWqixK5QNZJiMHxsuLp3D9vtNrohUfx7vbm9xe72Frv9Hje3t1EwCx5N28KFaCEY/YiAgHEYcXt7i7ZpsnU6u6tSTKUq/x4LsJCdSMMUVyCEcq0iF1aGvL4lV6g5BG4HNWFZnxxpRXHejJKI2y32JJrcPzloHEia9ZSCNvKuY8sA3+NoTZoOVvvB44rt+hxsPYs0RjWtcG7S5DvvoyUlne/V9dN10zlc6I3jYPg4K3piAbiJ3Dhy0VVNPhJMH/l9u+3xyT/7FtuLLbpuUyTWCIEtPQ7+9xcIPaW5Li0ZRb/lS9pLmqYBgTL5bZs2zoWb/10Zfn4YcXgLYJ9uzq2/3+/x8uVL9H2Pm5ubLPyRWOzYtCjdWjibjSYXNa2yhBbu+TuttZ9zTZoTuufcgeaur2m+db+WxiD7zO+lADsnFOv3c1WQa99p4V+7gS31V0OTK034pIAv78FtscsQL9jDEDOfXF5eZisUB9fL2Jm5IPlsFk7/WOCQ8QdsAePfmf639Oz0HHABIXZR4oxMTdPg4uICXdfh1atXi/NqMHyIiH+LMV3m6D0OfQ+ktNyHw2FKGwqCc4SQXFoa30Rh1YcsfA3jgHaMCqphLCtL10BA1gJnTfw4ZhJBnJ0nCYeBEOMBAuXMQkUxtRhZO7kP5QPSXYrJhjsKcg4hFjYryMqpPULsM9mNRuwDsUL0pPGmGYuDtEQE74903VoBgtRfFq4duVgrAmcIukf7KtIzDDkQPlsPaHJZmtvbfAgIN4TwN2v4T3uMmwHDOGLVdWjZU6Fp4LcDnv2nX+H1765w/fvLI0WbHB/LIQ/+wffYPt1njwdHhCGkytHsEveyQfhujTBgcp9Cfa/86+drfHvbQdiv0u81KkJ9SMXlhlior+taEC6w2+8sLu4twIjDW4DU+If0B3F7e1tUawZKzbjUqEsN8pLwydBCvBb0+RqZe19fx1ripXNOCd5LGvka7kJETs3BOe1rrZK2DNSu1URoiaDU3Ha0Zl4+m1Nj0ARJavwBZAIgCQT/fuY2BT53tVrlf0xgJg1VST5kP+Z+e3OEkfsiU8MysV5y2TIYPmQ4ohyMHILHOAKHEKu5D+znnYR0qe0P8GAHFZ/XBWSXlSx8Qq5N9T6wrM4nhBRXkAU7oCAQcOD6aKU2XpOFijLmFGoa/1CecNR53WoIbFlIa2YIVbIwtc8h0oL4qPZDCPXYCRbq2Qoj3JVOLWdzx/P6mp7h9ICOQamhMBDGVwRcpb5vBniu1UQxdWrbelx8ssdwu0f/eoXdCzpulklDB2zvj7j6ZMD2qUfbrbILHAv4WYm0bxGuG4QUV7O0P7w6NHixY3FU/DZ9wIgRYUAK4PbJetSg7QDam2X6bcCIw1sAs3Z2Uen7HrsU4MZVjmv++jWrgK4mfWoR5uukMCjbrlkT+LUmpJ+z6N/V7WRJAJd9YciAKS3Eai09v9cCqXYTqvV7zlKi+zYX6Fyz4MjzeMGV1pPa+XoOWKDXx2ShNj6XY2n4PCaM/LvigPurq6vC+sDX1OqB6KDmpeetf0OakADI7nsWCGf4WCHz+PvRI8Dj4Ke8+VyEjVeY7EbCGnsHNGIdcORSgC+Blv6seM0imoKGUwAyWxyOLknXhTHANS4K2yFaILJsy0XT5taGu+wRWgA9QxL3Yl32IcxaXI5cYEIS+B0ieaByDOW+ki4BHVkCJgIyuUUV/SYxxzPuXUzUmJTIm/JnR9HqowPO/ZdrhK0H/fp2kgGaJgdOr0LAw1/f4uKza/zd//1zDPskH4hxOuewfXTAF//Xb7HZrNG0l0WKeJ4vzvjlg9gr0pzrOTsC71Vy//bA6DmeDmgark1l+8PbghGHNwgiwuXlJdbr9ZHwxILTXP57KTzqQmLaCqFTbEohWcYB8PfS5/yUa44WyE+RhzkhWWJO+y3brxGBWls1330phM8J/XOWES2sy+O1eawRBzkW+ey05UG2J0kigCqp0WOpkR/W3HMsgpwL+XvJAobqn3RRqlkadP+1RUv+7jRhqxFjWXTuroTTYHjfEcn7Bo1rslDIQhiTBu+n1Ku1PQI0xSi49N4HDwoUXZiQhNP8dycsEERR4A+xGFrwYxa8nUeyKhxr9xnxkEegJtUaqJMNfb12T6pBCswkrgnyGiFYs7a/UEJNnSy6H0CJGyglFUIpyIv7ahJRNMvnhVDUW2icx28e3uDbmxZfX3dT3AivmSAAXpGHZCXitdd7QGR4IrVmR+Ko02xPFgH5vayjQ0QI44imbRCGSACzGxDx+lzGYEgLtuf9wQPhDxuEGyrmnMcq94d8XD4LyQlRPr+YaYmzLlmcw9uCEYc3CCLCJlX5ZLCwWPMTrwnUWhDjNnTGHC14a9QsGjWyoq+XffspLA56EVlyD9J9nSMCmujIscz1r/avdl/dP91ujVSdsp7UrmPMWULmrDD69yOv5eqyLJzL6/Q/aQUJIRzFNejfge7H3Fxr6N9bLf2rWR4MHwuca7DqukLzHYXFMAWX8nstYody3SRK/6FIGAJh8uvnE0JIQq6Q2JKVQabuD94jNA66MFxeZzEJwGClAZCtDmIwpXR4pnJAC52F1j/985U15+gbud6IYOs8FToAW5xbrP21fvPYIObeT2tc5zw2zYhPLw8YR+DV/nhd98Hh4F2MGcExkcn9D+xyBriZfTivw1JoT4RTkk7nXIx18B7OhWidIsoZjEKYvlOsIc+597FOgx+AsCeEl22MbVAZmuRz5M+iw3GemoCG4u988IReLP/kCC64OA5KQeML8TqGnwdGHN4wpCZZaqprrh5zr0CpWWdzYU2Ik/etgUmH1BAvCdCyz1qgnWv/1HzIc6XQP7cYntNeTbDWFou565esI7VzZXGaub7K56WtRsBxETpNJLQGvqat5/d9H1M2AjiKFdBZtvR9dRyETOfKgZk6W5WG/t3VSFiNdLDVg8fgnMPl5WVMP5nGYzB8DGBLAYAiZiELuslVKYPXTNFGzBaULAbJhUlrcAtwGyH+h09jLbUfPYjCpO2mSC7AyoKs4Qey1WFugCypM9E4Y074nBBiXEU1tkBZL+bue6zQmcbKp9WuPfr6lIIkzZF3Dr95dIvPL28RfMAvHxzwxf2Dairgq+sO/99vLuGTkM79IMRn7riP/C9d54GjvgVxjuzn6D36tJ7rDHaBf2OZ103pT7O1A9N+Jt2Q+r7H+HWL4ZuVCMCv7MVyevI0TX349YNbfHFvDx8C/uq7Nf76+Tofc+SABgg+Pvv1aoWhcbY/vGEYcXgLkLnrZUYcLbRL1ARsoEylp11stPuNbkffqyZcs3ApswedEujnLBLnWCdqwqQ8VhtrTVO/NO654zUrQo1o6Pc1wlYjKXqeT/VdnqeD0mvj4GMs6OfCPEJ7r12G9H3lNWxl0LVEas+Ifx+STNTqhGjSUHum0uJwzm/GYPiQIP9Wm7ZJfycAIIKihXZbXsfIGn8AfhxjViR1DgumkShU1nRHwCi056ndrNkPyRWJoobcUewr4bi9LHLz9/JvPxxbEWYhNNVhHI+vUesZk6XasbJfUyj00Tmk1nASsRuoWaPrXY9zxE8x2Qu4kdTm/c2If/D4Fn/3aoPd4BI/qOvT5fzlV31z7igRMDjgmy3CU8A3sYpzk7I75r2+Ae795jvcfr3BzR8uivX56o9e4OJJP6VDTcqyYRzhew//9Qr+dWllyRZopPgLJhMcp5Pm8/OrHg/WcWYeboY4Vwh4ctHDkcffPN9gDKmPSJWvz/3NGH5yGHF4w+BNgfPWE1EOiJbnyFcJLaBKDbIUEKXQP9ePmra7JuCxkKmtErU25/or25i7To5Np0g9JUDWhOBT913qt9ZILd23dq2Md9Banbm2a+QDWJ6LWt9lkD37rvJvQQc71yxMsr+cMvWUi1LOka6yK2nhf+56ee4ceTYYPnSwkE7pb7Vtknshx6ElV6H8t1H7G5GCfdIgc2yDE8Ja9OmPzKEgDxTTkwJRsGadsxSa+TbBB+TghxAKjX+h8a4gW08gGqyMKbfHx8S4kNyLjtYK0Q/Zdm3NyY1TAMLCPjF75AxorTuPgV1uUl8uOo/LB3t8v+sw5PCC0rUot8FvUhshPdMqCSQCDQR8v4a/d4DfRosxKWWSawlXf/QKQMD++w0g3EQvf/Eam0cDHG3z+aP3GPsR4w4Yv23hxwAu7hZ43DRZz6TTqbQ2PL0c8rwgBKSfKx6sB1yuRvzu5RreT/tS/jsh8fsxvDEYcXiDICKsVius1+v8r+979H2/eM3cd0wW5rTbp7TsMu3ler3GxcUFttttzqm/2+2OintxLQn+zP3gvtT88WU/pBBcs6qw0H0XN6g50nAOlkjLuai5/sh4AABH5EFfe2oMc+lwa21xSt8QQiYObdtiu93m399ut8vuR1LT33Vd7n/f9zgcDjkTUwiTC5MMxuffBKPWR21lqVmVpCVEWx8Mho8BhPi3uuo6dKtVtkqPzgthWQu/ZRshCdIk/94cSu22uLYqeIk9gij6u28325yq+XA4oB8G9IdDWbEamGIbIPaJ1IYT9QzmBL4i+45UkvBx7n9YVihpS8OcskZbYYr5lWsYt1XT7BdtloeDao/98tnNh0J0/+K5IyL8409ucv8dPEZfrpeFkindlIDssqR7F7zP8+bHEcNQJuFoU9puru2w+dMR97/4A/qhj/PsCE0X4Jq4P8j9YPiyw/i8QRgmt6WsQMJUtC7v+Txe8XwlyfTh+DeOo98C7xlWDO5twIjDG4QU0C8vL3F1dZUFuNvb2yK7EZ9/Sus653IyRzg06QCQC27dv38f9+/fR9/3ePHiRXafkqkypfBau1/N9eTcudHWiblxMJbcfJbus9Se3EhOWVB0u5I4aGFXWh/4/HOJj+yTtPzIe8tzZDDxfr/PBEY+bw7Q11mc5PPWxQRr/ZUEUqIWs3Fq/mSsSHbVaJpc9fbm5uYHE0SD4X0AuWglXK/X2GzW2Gw2Meg0xLz7Hg5wvhBOjwTwbC6I+fijkF1Ks4XQljIH5XUvnRMAuCa6yzg02G63sV/bDW5ubuH2+5hbP+XpH/0Ioli0TrZxagf4IXtEJj9L10rhembdqN67mKfp+kyKUI6raCPNc55ucd/vd1Ho/uxyF9123JTZCiHGKThEYtQ6sdZyM6zFnxlPsTdUCBef41+1gPcYHg9HihqiWNvBhYB2A2Dg48i/ER8CfJIN/DgijA3CeLyPMaHxQJE6uNanI3KXCEYkwJTJELlodeN0xY1zQNNgu9lif9hbMbg3BCMObxBEMavSxcUF7t27h3v37qFpGhwOh6y1ZcGJz6+1ARwLkDXBnT9LFybdDn+/3W5x//59PHr0CPv9PlexZuGRNc2afNT6p7U4us811DTQSziXNJyzYdQEdx28XCM1uj1JqKTfqAw05rZr/Z8TzJfuWYN2Q+JYhfV6nTX4UjDXcyErTDMJqVlF+L1crDm4WRPapedVbFoiNWzbthiGAW3bYrPZ4Pb29uTzNhjeZzjXYL1aYbPZYLPZYnuxjWswu5V4D48p605NcC5cfygJkeFYuFVv4/2VwBnIwbnoarLebHCx3eLy8jJndrp1LhMHP3qkmnUx8w2VAqImOHndIdFfHK9rLKTnNRjCbekMnFLKzKHgA1BW0kCTlUDvXYI8yMa+uVnhxb7FZ1c9HKXrnJssNt7Dp2ccOKaQ258jQbyuZisM33thr33Rwu8CcHUAAjA2IwKAtmlibQdO4yuSrsi25H4WXZNU+0c3nEhDlh94ntS4imuJ4H2AZwuac8jxNG5yuSWKZHsYByMObwhGHN4wWIPK5CGEgOvr68LNRwpSUgCrkYJasTF9bi1IVQu6u90O33zzDV69eoVhGHB9fY3b29sif7+8Jwt33JZ+5XY1WakJk/Jafa4+7+fCKQK2RGakfz9/1ulO5zT0eu7kfecI5JJVRN6P4xPY7YgzFTnn8nOV1okamdKxDbWUv/p3pftzF4sKzx9bGbivS+58BsOHAkL8/XeJPGy3F9jt9jj0h2hxcA5NEJZREoG6mtgnYTL60U8C3pEgCqBpXdbgEwkhX/xd3t7c4HDY4/X1Nfa7Xf67lO6sFGI8hScPR41u4ogkZMtBep97NXW2GIucp6Nzf0ZIRbj8UhKY6g5Bk7Y8IBKzuF46uDC58pQB5zS5d0lyVdHm67WTLSNLfQoAcCCEv77C+GwP/yBaD3qhUGKlkZepsPUeuHcY//YipmDl7EqV9b7YG2r7QxpLDb97ucbfvlhhPxJcssKQc2gQsF6t4JJibhgtZfebhBGHNwgW1lmb2oqMBsCy+XEOMsahpg2e64duk+MaeCNgQU1qpbXFQd9LC7T6XHl8SYOutftL18xhduFaOE+ev2Tt0daUmjVCatClsC3vO2dJ0P2S554iDfpaTVLkxlDrE7/KuBb5+6rNy1wMgrzurkSsbdsik5dOIGAwfIhgzWrTTP8c0Wx9AXVxNSAYzgHeR9kTUcstScaR0kaQBlkUrU+WyL4fMKb3BORic0jvyU0CYvzbR753zgYl+qpdfWqj1OeygFxYHs7cH6b8SWzBkOu5OrfSZC02o/hmYZ0aA+EP1yvc6w647HxOIauJwXR/8Z0mD8ryEMQ8yLkhcQ74exBCT8B1JHfj/QGhCZlU5jgDeU9xfbhuEG4a+ANS2l/Zzen5BvG5NjZJgKDbADB4wm5wxW8q/sYaUJcUrY6MOLxhGHF4w2jbFl3Xoeu6gjicEvxrQjh/XxPQaiY7LfjLRbgWzMtuLVzJV/dF33eONPCr1lbX3Jn0Z+3mVBOo5+Zs7rsl159av+c06qeel7ToLJGEU32uWZCAsjicvI8OpJbXS3cgaTXi9mSNhlp8g3z2tX7L88+xNsg2JdnioG4mOZan2/BRgAhN49A2LdqmReOanLYyKKtCFp6jdBblqkIIp0mIdE4E0YboubSQQSi3QzHDUkDcI7jwHCEKck3bwoVYrEsWYNMERleQjl2dhEGWTymNq6Yxr+0XhQEAyk2mQozinFFxSozxUMM/QdSKvle+k/eXGD3hf/1mi18/BC5XYw6ULrs9oyw8pWTiV0rpT1ESKz6Pv/cA6HkLum5BF338JgirBVCkPA1ALkDov23hXzXwXOCN55rnIv3eSgONsKoI0rCMJLOA+WaKb6AGHUUXOuoJe9pbdqU3CCMObxBEMTh6u93i6uoKFxcXuL29zdpVFpJqAmutLamRZ+0wv9dCoyQSIYRCYGQBsqaJlsIcv+q+zWnyl/pee780b3OkQROWOcKk76fbnBNu5/qn+zInoAMoXILmrAG6ndp9uF1NEOWY9LPX4+T32tIVQjjKoLUk+C9ZK+5iXdDn6crR8trHjx/j9vYWr1+/Pqs9g+F9gyNC18bg6PVmg/V6Pe0PRDlrTl73mDBUwESCBXJCqgSdtcjsfhr/44EoxLroR05UZkByKXd/FvqmXoOaWMEYLMwJ4nFXzJGF5YuESxCvRZmNlISlvp4VTQFIxcZItFer8TDXn5ryB7F69H/y6WtsmnESyongk7Cf97XUxpFVQZEE3aP820DKTlQhN7lYXEhWih5w//ECcATvgOaPdqAWogCh2JtuCP7LLfx+yn5U2zmP5ljts0f9nnnOv7x/wJOLEf/2qyuMYMI5xWDIjEoXFxdYjSvbH94AjDi8YbCbkhSOGIUm6QyhW16nNdw1SGFyTribC9zl9nUlYt1fLaCeq2mvCfdzx5e+0/fV/VqaW9nuXawMc6/8fknIrn13SlNfa+9Iq1aZd0ks5bjmyMJdrAZzxGHJIiT7Kcmt/A3KQG3+uzEYPliwEqdp0DQuWRvu2EQlyxLrkHO1aaLJ4kAhuRFhEliTzl11LV8nU71CrJNcF6Coel3K7un7SXhlcrOEuyojZptLBCNbHkiuwct9mG9y3spQCMppnbvtCS0RVs2M0koK43ovUe1q8LxKgkFEpRsT7wGUnmMAwt5FQtEA/pUDtUBg4hhCrgUS9g7+lgrScGTxmEHVynBi7lYN0LgRT7Y9xuDhmhEvDwQfHAImZZcfUya+YKlZ3wSMOLxBEMU6DhzfIAUmKbwtXS/fa4Gx5j4ElFl25D21cKw10LINtoiwBozvlf9wKz7z3NYS9Hhr2vElwfzUHNWum3s91/qhr9V9lPOu5+UUydBtnIImCXPv5TMHokCu29H3lr/HuT5pYiDJae03qu/H7fNcEVEO4iYi3N7eYr/fYxiGo3oRBsOHBkckXFjd5BoSQs6Rz38B/FcluUCGFBSFgEwpvSqFULgvaQFVejKxW9KUOx9ZmESgWIAM0T2la1s0bYPGRYLvWSEh18FMFtLasPA3XQjexZiVUkgK23JSZjC5Ook9T7QQVBalGvmZabicS9GXEAIOI/DvvrrAnzzc4dcPd/GZinHm63jd1e3rts8FzzmQ40wyeUj3i30ljL9bHa3Z8tkFiIQsvOZX+gfgiBjwuZGDirmauV/8LQb8wyevU9C3w//49/exG1oQIQXoDxj9CEfuB5M/w91gxOENI4SQU52GEPD69etcaI3TnAGlqwt/PiXgzgn//Fn2YcldSAp9UhAEkInCHEk5JXxrTficC9Lc8Rpqwre8lgmO7GPNhUce0+3XxlVzlapp27keRq3fdyEJ51hKzunz0jVLJOfUPWvXzBG52nOtzYWMubBCcIYPHSy+9n2P/W6HEHwizlMRRpaOvHMgKUAjZVjiGIQKCFMsBFsDEALGqovngrCciAQhIDAZIUSf95FypWpZHG669NiSWzZdKXAm3uurTu4RM2sUX+tDrIshlVjStz8L/qBYNyCNX7ZXjEUIxJGAxc/E9S1CwB+uN3h16PCPnrxCQyG7Ksn+Mem4i7JkcYeQhEGswUXrR6ahyn5QOT7bRz338lXvEXKvAI76FoCUBjjVRCLKpNR7n2o8GHN4EzDi8IbQdR02m01OkXlzc4NxHHF7e4vD4ZAF2zkhGJh3/zlliahh7vraZ4lxHI+Ihb5OCubyfrW+zQnU57or6e/nCIwU0msCaO2eWnM/5+J1ijzoXNjnCOT6Hks4ZW3Q5879xmr9OtfVrNaebOOc5ynnWPbFrAyGjwExYUYH70f0h0MWjA79AUM/ZIEvi1MsrYdJc8/kQQtQBZHga2RmIWmdTG0Tn1tBlqkRg6fZohEF8BEg4fIqxL9stdANSai1krhPfBiTYHm0rpyzR1SyKfG1eQ0qvZhKyP1L97m2/gGTq1C6fjc49J6iC9nMfnkXLO0QxXou+1K7hyYSNeWOuu9delqMi0RmLX0eW0KO+hhwtYrW8tuhQQjl78vwZmDE4Q3h6dOnePz4Mfb7PZ4/f47D4YC2bXFzc4Pr6+tFVx8pTBHRkZvRD4EWZJesDtKNSqf3rLk71fq2pF3iPuj+1T6f8/2c+5YujLZEUM4hPXLMfF7tGXIgsq6HsURIfgh0WzXr013mUbahx6mPz7XJx3X2plMkkF+XzjUYPiQ8fvwE2+0W/aHHq9evcLvboWkcrl9fY7/fI4S6G6vU3mYywYrxH5lpJiRSoNuRbkuxMnAU4Hh9G5M7Sy4oR6k+BE2C8rw5Q9yH10geJ/cLOBYsZ9bfbFnJbap7gK0vk9uQS8xBj5v7ohvJZGtm36tp0Jm8yXS2IYTspqTn4KeA7H+eQz4m3OCq95OklfuG6fnW+npqf2DyQCLeM0T2WaUDRMD/+dk1vrpZ4d9/dRn75G1/eNMw4vAGEULA4XBACAH7/T4Xt9rv90euNEA9mLWmMZ/745Tnn9LczmnqWWOufd21EFlzXTplGeHra23Jz1KIXOq7/KwJ11zhMt1/TnE6Rypq0O3UiBS3K9PeLj2Pc+89p+GX81D7dy5qxHWuj0uWBRlTsUSS9T1kiliD4UNH8D66sl7fpKwxhMOhxzgMpYBEhJg+k7IQGL9OWm+fzuHYBikAF2syWw3CsiC/IHkToWAQuZ9Ek9tUal+SAMpNV/YIuc4A9etU/0JFsNVdl59j30IRQ8J9IJrmLFsoAlIa22OLycnVmrXrYZobD4e/+PYSzy4O+OxqH+fHe3gkFy/vp8xQtSZP3RPH1oAjzb7YD3LtBpyvxZdzo++3RKI0iqyPM6QhW9yI0jNLRec4cNsZgXhTMOLwhsB/NEwQ+r4vtNBz2tpTloGle9U00HNC/Vwb/F6maq31R2uka+3Paexr32vScFdhl1/nBOUlS4Ge+5pAXCM8sm2GTF8rP9eu/yk165ps/VDSIKHnhL/T58y1dWqc+hno6wyGDxn8lzN6j3A4ZK183DPOJ85SuJ6/Wfr7TRYFJAG10OrndRCQfjssQE9uR2kdixJ+RRtf0dwDswJxvbsT6TjCHYVdFOtMKTADSGldhUVEnc/pp7QgvLg3V/cIwne7FS46D+diwVVOlUqpcvTR3n3eCOe7wf2V6ysmoTyes6RgPJ6WSD4FgVCkT6M6T5X+FNaao3GEfF3suu0RbxJGHN4QOJVprbiWFr51mlbGXd2TtHCnBTMt+POr1LjPEQOtYddWkFrb5/R3ScBcsqzo77SWWtYFkFmh2Mog25UF1E719dR4+N5scZD1E9gSIYX7H4uateWu/a61eRfCOkcCa+RJ91m3JduwzcHwIcOl9KsIAcM4VguqcXrWQrDlY+dqv8uLBBEQf5PpcPD+2DXHARCuPPnvGkAglyoJT+5BBC7apfYIOa4z1xfdv1LgPyYsuuvS2hACCregJll4CFNhzBACPJy4MI0rVVHjuVlSmCwhVkFONZKIsstSHmPSvt+VaC3BCwLmK20uFb+bk/nPFUuYDB81II7nuRT7A88zn8mh+fp6w5uBEYefGU3T4PHjx7i4uCh83SVqmvsaSagJ8aegz53Trsv29TmyDbmgymNzQvaSZl9jjjTI+Zg7R7erqyNz3Qw5Tq4RoMcz1+bSnM/N6dxcMjnTVaBrz2cOc25BtetOfT4HS8L9ub9fJk9M0GQ6XybTnPq3RqKNPBg+NKy6FbbbLdq2m37vIcSUqemcIysC/42ptvLfCs0Xhqshao0JDlGYLP7OhLafLRDZCWmS/GN/QnQZ0QHRS3tWLuIl77ugrKiRBjkfATiKEzg6HYn4NFx3wsEVRVExVcMehqPxsLAsiQzPzxyKlUtcd7TPpH/gLEzeQ9ywaOuu+wNfs7SK8tEfs9TO/jbT9zUCkffG9DpybCW7cad+R7I17Q3k7kSVDT8BjDj8zGj+/+39SZckOZImCH4AM8uiqmYWHh4RmZVVnTU1r97MtXvmMP//PG+2Qy+H6uzKV5Wx+WZmqioLMwOYA0BgAgnAImrubpvT589cRUWYsbEoQB+tXYfXr19jt9tdVOttuSgRWpvtNU3+msDbsj7UPq8JfmuWkFrbLaGvJqjX0CJLNS19bd4kqG42m4uxkOAqtfT8/g9dy5p1h9/Xsua05lLDLRaZNc39LYdO87C/8j3gZJJbGojEASgINP++ceLQIiEKxdeCru9xd38f6zckrXfwHt7ayyDRsAjsLQEMWN5qBkdfCKtRkA4Uj1Bc2t6rZQxDk9CgJAhyrLWtSPbb3K9o3xBnVwihbLc6ZwNro1KpF8UlHRyMC8XtfAkKF6wQlrSr4owoxp1eWxvQJZ/83vgLYd6wtnKGIZRWoWtYVXzxybDXBWlY6yefDzcNpUoa8veEnTW091tjYJzLaYKdc5lQTd7ChS5barjVSzMsfRwocfgICCFgu93i4eEBwzBgnuccFE2vSaALeWMpBSfgNnNuC1wo4+45UogkzTff8Oj1mrBY60u+lgW8aq5a/DO+HtKdiP+Ur3nuf9qMpmlC13UYhiELrtSfzBQlx9Iar7yHj7VlOWhZXfhzWSNeLYIj8ZLvCs2fz/1W9yRpeeKVxeV3o7befd/n7xuROEk6apYHheKrQgjYbbfo0/40zxOci4HSLiVUyHtHSCW4rIUF/Y3EZn5OFiUiDza5S3l5NiSrA/NUWqwRJP3X9iKI/ajYE9hPY5CrzqU14Rfm/Yk+FkXS+L5CtRlqbQUEeOezZWJOwurcWfRdvyguUk9l0HCyVHBXGYGaZVaeBf/+1Qn/8c0pWlhNqqHXOBuMiS46ls2VtO9Na6xYu1Vc+ZyTmvwsG8+6en8ajzUGNilPiTRU9/T0/c5EIl1LFaL/f397hePcLd+ZTEraz0Txy0KJw0cC/RHEXN09NpsNrLU5o1LNfaklSPGfLx1DTePMf9a07C3rw9rPtTG02mzhmuuOnBORhmmacp/OOXRdB+99XvtWfMGa4HxNYJdjapGHGlmh11c1bI2+1ywJrWfO21qbT+ualtWEfufrwNejZpWorfuq1kyh+EoQkiC2VI628C4WuTqHFDPg5L7s4UN0L4IRLhsf+HdCwdLktkTjKhQfABAiWQnpeh4snNvKQ5F7xkr/hUb/BsVFflHb10rNOdemU0VrT3WJrIVzFqEP6LouxyNmFxmpNGoIztIqUOyb3CqBAGtCHFVI8RZsLss6s3aMWSxQ16wOa2eX/JnHHqrNZqKA9v67JrDXCAJ/L7vGCYJCZDHfmf4+/v3rEW/PA747bPI89Fj4uFDi8CtDCk/ka0/ve+8zeSBIQVhqW6U1QPZ3C9YsD1KAq73H+6pZHW5ZFz7fl6ImXNO6ESGgis3GxCBkchUjlxnupiTbqa0B9fsS0sPHVSNkfC70WrZ9C5GTfdXer7XF+6zNV15XG698T/YrYxmoH7IAXSNOH/L9UCi+JJAwaJJwZLsBoYuC1DTPMM6VfvQkbEZVLIy1sB6AxeI6BNQtAGtbV9L6G4TUNrKQnP8egasi/QVpMC+LueDjvPrnX9uraASJBFFWqhCilSGExSoNY2C8g7Upfg/xzI0pWn057xCy1YFclQqLC5Bdi8oh1ichCQLvK58P/HpjltS57NrqejS0+TTH6keNcWbiIghT8evK+QC2rxOBIoIV2LngmWteZ2PcSRE/aYD/8HrE5oBIHPRs+CRQ4vAr4uHhAdvtFuM44vHxEfM843g8ZveMcRxxPp9xOp2KrDvS7YaEQR4wCjT+QK9AkgFZo4GjJSxLLTF/7+cKe2sacT6W1j18XhTXQJYeGi8nFlRXQc5HEjb+mSRuLY26HF/rdw4aLydBfG68jRrBWGv72jO55ft0zSrB1y+EkK1pVL+EPyP6TKaopb8DYIl3uNa3QvEl4v4uxjbM84Tn52eM41i4U07zHBVL8wwfAjr2t0BaWm8tjHdRjA3RtSMLcdwP/+YzAjnWwdhIJGoFuRbBGYXVIZObvF+izAIVQlVwvQm180XuW/yzUFoaFs25RdcB1qSAdGvRdTaPkys6nGdKPbNkQPLw+XrK92ONvRCMl6GXZxoXxm9dDWNMzLyU0rVCKqWKuQuryAppuKHj8ufa+GrvVz73iTQ45zCnlMP8GQVrYbxfvs/07LoOne2yW9kvYWlTvAxKHH5FUK2GzWaTtRvjOOb3p2nCNE1ZM861sVLzTAIkCZUcLSF1zUrRslqsCYxSeJavpaZ+TfMt265ZDmr3tK6TFhMyN5NWm0gErTcJrXQ4SFLG21/TqssxtITzlvVm7XlRjAaPe/i1tO9rFoYW5PPn3wMeZ3It5ax8j1IXG2OKGAiF4mvDNM+AMegoVbd3wATMzgEhYHYz5nlKewCyMG+NXQTzpAUPCLAh+oeT+xIJ9VwH3pC5L9Jw8t+JEMT3GdJ4eIAqb5iThiz7GcMKhjU03wyMb5TXNW4qzgh+FQnZoMw8PdAhnxN938N5B+98TIfrU4ExH7KbDGX8yV2akDgTs6jQ52ytQh5CJE3vThZ/fj/gT/cjLBYLQj4bUjvNfZkC5zlREoSssDz9XNTaWVMi1a7jckpaW2S5R8SkyLbFOWmtRdenbImzXb5/aoH4KFDi8CuCXJDu7+8v6jfQ7zy+QbrU0M+aQCqJRct9pUYKrl0rP5OC4RqBqAnE14TdNTMu/byVSNA4+r7HMAwYhgG73Q77/R4hBDw/P+Pp6ekiDShl+yGLj+yzRRquvZbrwl+34ivkfbzdGtmrXbs2jjW0vhvy89rzJ3CLjqySXbtPzp8HsdOhvlZTQ6H4UjGOZwDAdrOBDwHO+ZgGVJwT9DfijYH1BsEuBCIATOiM1aR9Cpy+0DgX+0v6ycQ86eKTBTGTYilkm/kt0rzzv/GybXrvggBckfVWP+eKG/C9cr0B2lMo414/9NhstjifThinEdM8pTiIWE+DtN62s0WzkjwEiBitYhghxxF8fxjw9tjhm92ETRcF7cDP39Q4vZe17alNWm9JktjjKrM+tZfvRWidP/zzQo6oKJe4YonWmEgx6HtkyjYJxhh06bn1/RBdmbpOU7J+ZChx+JUhhVhy36DPpFAk3V64Jlxqx/n9tTgI+VpaHFp91kBF0fg/bv24Zgl4icZYCpW8LRK2a5mAaI1I8Nzv99hut9jv97i/v4dzLpO5eZ4BLFl9+r7P/6ZpKrIy1davNW6+BnI+NXIhyZF8blJIl23LNah9XhvTGiT5u4U0AiiIGBGH1jjpNX2v5HX8O0YEgrehUHwtoGwzfdctgqlPgnDa46VQHBAAn1KGksbfWhi3+NsHEnaTwGtQCmQFYZB7HF1rlr6DLwX00ooRslAbQBmAzGLtCGXgbRGIy6XdG0EWEBKio/yeyFXwWftOYzQwucgdQow17PoOm2GD7W6HYRiw3W7hk9vMPM2pH4thWM7Yoe/zOTTzhCZc2BUErRxzdHEKAZiDwf/7L/f4d68m/KffnRYXHXljspJcnD8mxjuQdQKw5RjKzvP70rLE+7kVoeiXz295nUkD3eP9UpuBFEp8HIxw8n4uyG9q1JolfWtnu4t7Fb8elDj8yjDGZNIwDEO2MNSEMqCtXeeCO39du2dNuLomeNUERo5bNNItMtGyaKwRFnl96zVvh8cv8CBo2eZms8ma7ZYrTUtoXhsjf49nT5Ltr7ntSKLBn/Watqd2760krnZd67mtERpOHlrX8rnI/nLQIutLLQ6KrxWkAOqHIfrOhwAHIZRicfUxBoWQt2i9I1kIIb721sIgwAemXMHi4kT+QhTgS9dcjI8+TwWUW8HXfK+oCZb5uhppKNZDXB/q19F4M2kxpnkdH2MAYn0AZzDbGYP31YJxXdJmD8MgLBuMPBlGsq4hXWRhQU5FJ9fj3Tng74cNfr+b0JnLcdTmYCpzLfbhl0jQlbOi9j3g8zdoP+PinJDjSvfHwPPQJlmClFK7RKCyEjF9Zjsbm6o8R8UvDyUOvzJIQN3tdthut7l2AxfsuAUBEH8Y7HcZRAogB5eStr0m6LY017K/msC/JizXPl8jMDUhdM3SUdPU030yGJtrucmiQClZjTHYbrf5egqWfvXqFe7v7zEMA969e4fz+YxxHC/GyvtrkZ/anOXzk3NZA7/3VkvCWtstEifveamlSD4j/t3lcTmyLb4e8rtAlgr6TpNFiF4rFF8T4n7UYzMMMNZinidMKGXz7MNNLhkhFLUKQkAM1g1mEbCIuCPVYDCADV0RPG2NyaUTqB/6pfjLNyZmb6LuheWiuk8kwpPvp4ESmtpkUwqOqO9vfC/m5MHCwlu/DDIkFyHmHhO8h7MWbp5zQHM/9Ll2hbUW2+0Wm80Gd3d3OI8jpnHE6XzKRCYPPRO7xtrV1oU9o59OA3469vh//IdH3PUhWxgub7vcZ+k6sr5UkQX266Tq2vuB/STyQKl5a+CWB5oXZbUKKeDe0BlgLp851QqhcRgTK0q7ecY4jfmM6WxU/vmXECbFB0OJw68MIg77/R673Q7e+yycSkjBmgQnEsTocymIyc/pM/mPYiZqbawRhLV26XP+cw3yGp41qkVuyGJQq7RN11Fl7r7vM2Egq8PhcMjX8gxW9/f3+Oabb7Db7Yqg6dpc5Vq06jDIsXNCR6QlhFD00yJNLyUbrTV+yTUtYiTJj/weSALHySCtN2+D+pBWDOpLtlFLCqBQfA0w1qDvh0W5QRlzamDCdoxvWDS3zjNffBJezeLGE8mFA+1cBgaOzoN0XzAhCbbIAdhZPmak/WJ0aVz82mIKTHjNf8at88aH6FZESnXSTqPUYNM46ZpFmL500zEw2O02OQvPPM05GJ0KsPrgMY1TDFgHYnzcfo83b97g+fkZzwAOx0N+BIZnihJrcWH9kGcEraExQJS98T///R5/uJvwn745IXif3apgTAqAl9O6HtdWXd8bttHW2bNwJb5vs/tSB4Z/F3g76VmGsFy71LagNsxFu7zPkNrwzi/fCyIeShw+CpQ4fAS0tOwtYb0mTNF9wGW8AceFubhCIGr33Uoa6Ofa9S0XHK7FlmtRG4vUKMl14K+NMYufqvc5VoFA6UApfoFrrmskqLauLUiLSI0A1uYor+X98vcl+Vgbk1zn2jhvsZbw369ZHWTftWcq+5ZzvuXAI2udQvG1YZGFhQbelNp3eUMUQBdhPCAG6ubMSiQA0n2ed5aCekNyawqLexOSOw3du7YDBD4BOYfiOmFtkJ9zDXqae/VsuGE/Km5LbVEcSdf3sDa6sHYuxoh4v5AGL4qxIp+ZjY5MihnIBhNzOT9BIvKakoAdgKepw3AG3p5m3A8TOlwK71wg97ROqdI35JpV11i8kGcE9YO2hYfPo2ybnWUr8sHF2Ni489rR914ophCA96cOz2NXEilj4OaYgUzx60OJw0fAPM+Ypgld12XBFViEyhZRqGn0SRvL75e57mtEBVjcmrhAKmsV8Os/BDXBUY67Ns7aYSM3TGtt4fsuLRDGRJckPieyOByPx8KNyVqL0+mE5+fn/HxkoG7LErJG+vizkvPj61AT0qUbDt0jSUNLMG+RtmtYIwYtQV+OR1oI+PjpGklc5Xy5RY2771HfP/zww0WFdYXiS0cIgHNLsC2lYgWSElXuC8Uvi2uOTdtrdMsJmSMYY2P9hySU1YTgkFJ7WrJ2WA8PC0t7ldjvPvSMKKwDsn+RFSjOtXQBqrYHFARHarfptTFIWZQGbDeb3Mb5fMY0TTiP45JtLwRM84xuPON4PGCcRjgn4tWYO01IVoO4xCwou7a30p7I5kWE4N3Z4v/z1w7/t398j1cD6y99ztuzYYlpobmSZcKvPZ/GZ607rimOuOVFjhEg16SQLQUX/QtySsH+9e+cwf/6wz1OLtbfsMbAm3jv8+GQs5Qpfl0ocfiVQa5Jx+MxajWYgEoZY2QVYy4skbZaxkFQACn58EsCQQWEauPhgh9lIbqGNQtH63VNmKT4AnKbqmUw4m4t5NYj03rSmOjnOI55fcllqU8ZMGg9+JoD0Qrx/v37TCK4NrtWN6Om8b+mlZcCd8ttR64h75O7rNFnkiisHeRrz6yl7V87LOjZSqtN6z6ZAYt/3+T65iwZ7HnJ775C8TWB9q3z+QxjAEcV762BtV36/icXniQYXgiRpktVo5f3nXPJpSMW1zJIf09AJByVeKEo14dUhdojGIuUuiiTjhZy33K/aYikmSz48nMKSo57g4dzHt67NA5btE9teO+L9eFjQhrXeB4xT7GgXtf3OSsPnYmxABwQ6BwNAeM44f3793Czw+yW84EIUGRmLHNU6jFaa1BI480zgq9JIoL/+493eLOd8J9+d6hq9pGaJqtFADJpyEaFHBvCB10bQBy75YoeNrZbz4fCWp7mwtc/AKlwXgmKxQlI8XApZoLIlGH3hLDU0yC3M+vpfKhPT/HLQ4nDrwgSgLiWu2YtoNoBJBy3tNr8+nmeYYwpCIf8t6Yh4tesubC0NM68zZZbigyQpbFvt9tcyZln4KlZS2pz4OPlmmtaC1pzrtmvWVYoPasxJgesS7egmnAv59qyGNXWi4+Bfx/kHH8JXBs776913S1tyO8of/6tdlrPeo0g/JJro1B8DjAmCatMeeLpbyUsKSeNMXDBFS4pRTvpp+0sjFmqR5u0DwLI8RCUtpSnK41vBCZ0AgisgFylT9n3YplgTUrhlbWfLSPeZy0zFfbq+yHGq80zQpiipTEEeLsEgGeNdDYqlGlLgSSIpjHFoGiXNd9ciUTPwnZprExBN57HVG+AKkWHi/m0kK0SMki8tnZpoYIxeDf2MKay5kKwv+iPWVjYjzZpuDr+cpwfBEZMvI1WrGANjFviG7jFId8GdjaUbza/i4qPAyUOvyLu7u6w2+0ALFpaAEm7EdO8UYEr7k5Uc5mh+6y1OY1oCAHb7TYHAXM3qBbx4EJsi2Rc06K3IK0ENC5jTC7Cttvt8Lvf/Q7b7RbGGPztb3/D4+MjTqdTYW3Y7XbZasAzJPFgcV7DQo4dWCp388JutA7UBnd9ofXhfcj14NaaliZmVSsniAyvz8GfnXxds97IdmufvcR9qTV2SS7kNbTGNAZ6XkBJHum6WiVoTqS5tYq+Q+qipPgasd/tsMkZ33JkQrQImOSX33dZ8HR838YiUC0CXiqQ1Udf/hA8Bhez0NB+57yP2mVcWi5IgM/aYtKii22hZlm4CbQfhZAsCXFMQ9+j6zvs9nvsttuY0Wi7xel4xPPhgPP5HAOGg81kakjnAxDduzxZWKigGIBOWiuLc9VjnlNdJKR6Gd7kDFQhJELHht/1fVH1uCBfhgWVI9WTqECueQ3WMKUi2/sLcsRe52uA+n5PE2o9jxvQeuYUVxNQP0OMMSlY3qBD8nqYDRzS8wJ3U7Kpqvel2y6MWSw76Rk4xwvr3jQNxS8AJQ4fAdJfmwTdzWaTi8PVqusSSCDj15AwTJmaiDhIFxbeHh/Dra4ftwjBQGkN4G5UlEGKxnc8HjPhsdbi6ekJh8MBp9MpkyiyGNBakcAJ4EKAblko5E/pbiQ3S/5ceKE93l8rvahch1tdmG4lAjXtvHwGvM9au7ccDrU1qfVf++7Qc6NnlbWnvqx8e+t3kJ7BNE35n1ocFF8rTBKKTCIMSO5JwzCgT39XPgQ4JgDzvxyDKLhRUS0fArouCp9918OlWjWzm6OAJf+WktBrkIQ88X4VyQrR+pxGSG472ZUoxAxGLgn7FJA8zTOcd3DzjGmesJ2j+9bpeMSUklt0XQd0HWAWazUJm+g62BADvHldBi7w5uVjq8fjKFoB3IbWmwRYEtYpLiMEUNVuZ3zRj9zjAmt77Xx9njr8L3/f4z+8PuFhWE8KkRVSqf0YOL3MN2D5pWWFuLa7ElmpkTA5l6pyyVqY9Gy40syl9KwAyngJQVR+Ovb46/MWZ2fzd93NM+b03QkNoqb45aHE4SNCCn+8ojS5H9UsBXQPbbqULYg0EtwPPGuVRAEt+ikFtlsJRGsuBC5c0xg4meFWA8p4ZK3F8XjMwWmcWEktPM2Xk6jamOTmdU1wp9e1IHWp9a8J7x+ydny91sbUIg5rPqe1++XvNYIq26zVXrhGIo0xRYVnsjzRWsrvdu158bXh32W1OCi+RhQCafE+YEyKget7GAPYad2P2yD97bjoAmTNgGAA20dBmwKfSVtbJqtYhDbSiH/g1lYZ11KpmEiDPCe8MTAuEghyXwo+YJxGjNOE2c1ZCDfWwgSfi4jZbNEEAkwUnlNBMLmmNB75ZggBtenmfZMRq2AAG1gxMoQsqPPr6P4aaq45EuNs8Jdpgz/ejXgY+HrGfiiuIb9GSUqKeUgSR+5YoZHym37PhGrpu1SMXX5v+BeHr6sh74D0+cza94G5Z+dBm2W+AI5zh789bWC7ONOQv0dqcfjYUOLwK4K70XBBiP/h8UBQwjW/cwCFIE4FsshyURMiuVBe08o3N7iK5UJ+TnMjtxJKm0kF1WhM5/M5a6M3m03OMhVCQN/3hWWGhE45BonWHLiwL4NrZfC1nCNZN6T1gOIygBhY3RJor1kbauBj4nOWpIWPS35P1tyn6Kfso0YAbyWaJHjwgG/6jNaQx/jIdW4RPf63UqvdoVB8LTBWaLuZW6JN7vfZdUMIuTz4tIZpnmHT316XYh+GvofzPlbY5X9X9PcIXNRgyIJh84womrn8nGIZQsxU5L3HPE2Y5gludrlugjHAZCNJGMcR5/M5ux7lmhKWzTnEwO+remZGgrgAnS0vSdi1y+UAbAwOZ4Hbi4Cc2mPPLVpqDDq7nB3TNNWzCAFX3ZWIkNB4ij0cWLInAc3UtTK+ohVvQu1m4lkOpCQCWIhLQRryAi/Ph0gMyTyWnyHWogcQrIVLiiWeCapGQvLfQFqbxYLVXEbFrwQlDr8iTqcTAOD169dZGJLCqHRB4qgRCC5sBfZHSb9Lbbx0k6r9423zvq+RBg7pnkQkgrv3UMyCjO0gjTS3KHDwGIaa0NsiPpJA1bBmoeBr1HUd9vs9+r6HMQaH5Hd7Op2a1oPaGKTAL4X51hjpc04walaX1tzWrA+tObfWlbdFYyFiEEKZAUw+O/79l23ztQYWYnI+n3E4HJRAKL46xOQMFlsgFz6TqTSJUNQkJK4JJnCBy4cA46Nyw6a8oVQ5OV28EAZjKgKhaJ//zXKheFUIXvzwF/ekSBpcmlckUNGtqu/6mPWo62CS+0nomHZbgo2T+uPjkqShNhWEUJa4YFp52WO+L72wSPEIfY/NZoAxKcHG8Rjn6dizE4J4uU6hdGNKgdh/edrip2OPgIA/3Y94vXFL0TR+XhqTSYQBUJT3buFi4dj7jf12VRYIYUkzS+damtfsHDq599MZYUx0M2PfKYpz8AH417dbvD2xTFghIJhYedo7h+PxEDNvKT4KlDj8iuAVomsEoab1rlkL1iwQkpAAl+kva8JgzRXlVsGspf3msRakjedCIk+TKtPQrllcrmnFr41Rzm2tXXqfWyeI9FDANs/aRBaV1tpdaIEqpKF2T4vUyblLC8WtaBGtFlmozYe/5tm9ailV6XpZmZu3RfdtNpsiNe40Tbn6t0LxNWGaJgz9kOQ05tZBF5BG1VSUOExgrBEI1kQU2klJgfS3WyENlI0JSJYOuRdU9rMLBQAbRdZyA9k9anZzJg3ct52CwW3XxQBva+F8JDyhkjp2WY9Kn3mPuRxT7XeaW0BJNKit2paY4xfobOs6bIZNdrWd5wnOu1xT4yWq8bxHwuC7w4AQBiAE7HuPuyGgN37RvifCECAsEvJ7cuMQDBIhrZ0R6X1OLi/QONO45cGmeIdo3LHoSH7xfhk3jSUY/Nv7DSbfwSSCZoPHPMfPvfc4n7V+w8eEEodfGdL9gtduMMZcuONQkTMp6Mrc/zUhT7rNtIRDWfiNsEZe1sCJAxEGGUjMtdJcqOSCNwnlfd9fpPKsjePauG5BrQ1ZM4GuO5/Ped2uZfupHajApUsStS0tD3xNr5GCDyUPNdS+W9fIBPVNz51njJIWMgl+7X6/x36/xx//+EfM84zT6YTz+Yzn5+efPS+F4nMHCfUkQHekcaUzglxijMlB0ABgkmbZWJtJgaH9hwu9pNHlqJ4RuAySRvt8yISntUdwwTXFLvjAtPBmsY6QwiAkguGdz8I3zJIxCgC8jcHIxtUDdn+B4+FS8U5EDoAHxcAhuwyfzudcD4Es7sWarwzKMCKQGwYRlGhA+Je39/jLk8P//Z8eQdUNonB9eQYUiiUE/NzjIRNMlKSByOcayPLgQ4A3Md6GLAqcCF8MMZ0Nfd/Dmg022w3evH4DYwymecZf//KXXDhR8fGgxOFXRk0AJGGK13aQZKHm0tSyOEjNtdTkcl//mjWitdnIPuR7cn6ttKHS2sDjGWrZkj7Er70miMt5StSsOTWNOo2LArhpvHy+fJ2uCd5rVhJpfZKC963r0rJktH5vkUU59mtt0POTbfG51Sxh1lpst1vc3d3hm2++yRm4ttvtTQUKFYovHTlNqo2Fz3wwSSufLMnOMw0+89G3yGkqW4IpF8kK7TxpqhG11DHPPmKbrL3ir/7WPYgFRAe2X0ZXKeHDn4rd9Ump1nVdFiwDABdctsqEAHBvpGViK5ZSIZKWgm9lXcjSkKw9UjQu4gXo+SS3KxJji/OQCe45FS4RO5RnQuZ5iUhwYd2HgLPv8N/e7fDNbsTDZl6sCyR4CxJREcdve4YrhCekFKwX79fOHTavTCBobmwdIM4+WhsgKZi6Hpthg/uHe1hjMU0TNtsNuoOeDx8bShw+AriLBv9HNQ7I8sAFrhZxkEIcCWQtUiF/chelauXQSlvXXFdk9hu+YZJ1YxiGnH6WajgASyXrWiE73vcaAeBz5GPmQmlN+K7Nc41ESeuQJE2Elo+/JA/y+dL7nNzVtP0vIRBybV5KPNa+V633+brI5ya/x3ydhmHAbrfDmzdvogvHMChxUHz1CECKb/CFFtfDwc2At7GKMc8cQwJrQIiqaCbcFn+xIdopYpu1ztnfbNIEE3nw1seK1D9nbiGdEbRPsp+E6LoSScMwDOj6Pgdze2dg4AqhEmL/y4Jna47LNC+uye5YSUjNQm4I8PDRxhPEjSEUmaKy0OtjzYfSQJFiSgJ7dtmiY6K1qKVUEkSQyIbzAf/H2z3M7wJebeaKWaQx8QaK84F/sNYuvwzSutHoh72ms4FmJ8+HQHO3FkRtu85i2Gxwt7+D7SzGccJm2KDX8+GjQ4nDrwwyWQLr2ltJFniWmpbQWxP8ebs1wZMEulqMQw23aMelpYCPk8yM+/0ed3d32Gw22O/3eSxPT08YxxHTNGULzK0a+mtjJs0VWTiAxbJB8Ritwmo1osJfc4JEkESOp8ttkaE1EiDJD++DXv8c1EjZS9daQn4n1ogfzZ/WklzU/vKXv2RXpcPhkNMPKxRfIyhoGIgkoUf6W6TKzeSKUfxdIQl2zN+crmFtl3t/uoVn25HEHoh+5p2tE5EKmmcEF67z2C8DhY01GIaoTd6lBBQkDM7zjHGKsYKZcEjt/IfsWcbkbFXRDYZZRSkLVCY6pDC6nF/umsgHydpEkExaBW4iYePNvv7svuKZCOWfmEIcc7qW4lNeGk9xbZ0K4f4XOB+I8LL4/OX7y+ZsTEodjIBxPAMuXvPT259gjMU8zzgej3o+fAIocfgIkO5BhDWBsfZT3ssJgLQU1ITBmmtKq/0aZB9cw1wjDbx/IhCcOFBwcc3KIElPa7wt1xpjlurcu90up1Il64ZzDufz+cJCQm3WyNDaOkrrBG+nVXOCj5f64VaNte9HyzJyzRrQGkNrDWt9tL4DwGV8SMsaRuDrezwe4b3Hd999l9P5Ho/HIlBaofgaQRr4TgqXtb9nY2BBiqUVK2y63xTvsd/MEjNBfvnZheaiyytnBN8TUGrkfaq5QFp3Eh7zrTCwJgrQXWdzbSPq14cAN7vYh4suS5YE/2KPWtor1yEU8i4J/NTfZjOgs11h2fTe59Sx0Rrus2B/YVkV81ldI3lGxM6AZFVKDWcSkkkETE5pG9eUxSxIpVfqiywosaozu6Z1RsjhFkMvrToXa1w8z3p7nDRwIhXSd8VEw1k5HmMQgscf9ic8zwHHI/D+/XsYmKxc0vPh40OJw0cADxSuuc4QSFirCd90rbRScBeoNTcQ3leNVKyRGiko8t95IR+pgef9c0H+/v4+C/CUeYoL2HRPLQ1ry8oi50LZeXa7HR4eHnB3d5eDrymo+enpKWeAosBtHrtAGaKkVaJmnQghXFhL5PORa8+zDtH6kcuWdFuTfdF9v1Sdg2tWh2t9yDHLz1rElu4jMnc8HnE4HPLak0VKofhaEQUp+tsxuVaBPCPy3yZppfnfU24LhQAasAhwhl3HtdqkqY5WjlKgz+OoEYfKniAMAknQjlYV73yutsyHQe0bAJ3tsEnKHgCZ0Lh5XiwvtBbiLLjom4FrtEnwtcag7wfstjsMmw22m00+X5x3GM8jpnnGPE3wwS+F6dK6Oko37lwmD5yYBbGWVMqZW3q8d3GdiSyk662N13FZwRmPMM+sr3WXVSIQxXfiA1AjZ5e/1PvP3Mb7C8KQUSMQKWYnEh+P//ObJ/z3xwk//BiLAoYAzPOEw+GYLVKKjwclDh8JXHjiQh+Buw7Ja6Xgvqahl33KlKgyVeatY6+Ngcc18PSrfDOjvsjasN1usd/vEcLiwlUjHC3UhFNOyOgz0kYAsUL33d0dttstvv32W/R9nzXcvMgYFR16+/ZtrtFgbQzCIoIhrRDSWiGfhbQ41J7DbrcrrA0U+yJJRw01Atq6ribQ89ctUnZru5zU1KwT1A+/jq7hz48yVsmicQrF14zANMNRMDa5AFkWrs2ifc6aZaEBJgEtyD2VtNi8z+SXTxmUsqLHmuRC82GuKdndRyhjQghFUTWAzoiYZpNi4YbNBsH7WCAUKPP7t4iMWEOyDhhjAItcnA3AkpVqBMahh7EWu90WDw8PGFhxUucc3Dxn4ft8Puez4Xw+Y3YOZp4wTymDEicRJNwzS4ExSMTQ5HWSFgtjsGTXshb9MMCaaJWejIlZhOZ5ca8CcjrWmlUDWIjL2nbKBX2w1yGETDp5ulp+XetbkttM44pzE2O8OCMQrWHG5s8jwaUsY2Sdv1r6T/ErQYnDR8Strkny9a1uJlLwk4IZ13C3SMk11AhEK5sSsMQ47Ha7HOdwf38fN8FpwmazKQRzPl56LQVcOVZJpLgVZJqmXMk6hIDtdovtdpuz+NC4jTHZp55cZsgyUZtjba4tAifHSZ/zvgFkgkW4Jb1u67OWlUJ+Rr/L+z9UYJB91dCyPrTGr1AoBOTfeyUkNf9dcXLR+Lsjq4NNhMUaloqVC6Mv3RdCDBr2NQ25WbTqfReLp223W2x3O+x2W3jnMTuHfhyjG1GIQjbz4MlzK7aL6hlRrlFAADzg4DBPMzobLctd12GzGbAZNhiGGHNFqWARAg6HQ1bqzEn739kO3vrcJi6HkpdOuvgUy8s07947wHYFkcwxcybgYedxt0k3e3/59BsEIn/GBsfPhcJy1UAtNubFeMF9LUt1evFh/St+FpQ4/MqQGueatUCCC8syTSuB12JY+8ctGZw01Pp+iWDK5yaFat4+xRi8fv0av//97/H69Wv86U9/yj7sT09PV7XzvO9ajQtuAeFrTG5G3nvc399jv9/DWptjHshlisjN8/Mz3r9/j59++imPbxiGi8BqqVFfy5zEx8etJXRIGbOk5QWAzWaT7+PB261nIS0dnFjVrDg1AiGJWuu17FO+XsPa913impVFofiaEK0DIb/m7wOtM2IRNr2/pA0GyEG3pLk1pnQ9os8yv4ApLA+FcFf7e7w4P+S8whLfQGcEz0SEqH3v+x67/Q73d/d49foVHh4esNvtMaf019lt1FqE8ZxuX4gND1LO1pbKvlScwykdbEDA6XxGALA7x3i7znaRwGCbx2htDBbv+1jBmWr69F0XnwUCzBzHatzyPEzSsNu8j/L1WiwPHn4hN2GxDDhncx0PYwDbddgOAf/TP44IzmGquPcXyhtmicjrRCROaP5rVmn+GX1niveAwq0OEOdDtbUGJDkNdd+z4nzQc+KTQInDJwb9AdT8+fnn9FqSgtrvNULR6vdW1LTUa/EN8jrS0JDvOndFIWsIZdVZc5tpjbvl60+WjWmacvYm51wOwKPxHQ4HPD4+4t27d3h+fs5uTCTcUzs0Tyl8y59rhJD+jeNYFE2jf9L1i9/PXdxalijpOlR7JnyMrbFeI5g1t6NWf3zu8nWtXyUOCkUCnRFcOBMi2aKAl6RgEVphFosCkQS69+Lv7QP+/uSfPinRs2LJhwvNf77OBzjv4ZyPVaWTtZfceGhv7LsePvgl41NjmBfzCQ1CEUx2R5qdy/9CCKmWRHQLm6f4+fPhgOPhiNP5jNlFqb2zHUIX27fOJlJSW5CFEART+RyRBJFbU3TFmRB8LJZmrY1xGUPM9BTXlJ17ZgmItkA7u5IxS8B0ZqCVy6rvUhN10gD5e2AkimfZWkMIVZcoY9gLPR8+KZQ4fAbgAlrNBYdfR8Kj9OtvEQfefqvfGm7RJHNN+polhYTu0+mEvu/x+PgY0+yNI47HYxagaewkUL5EeKy5DlHfADCOI06nE56enjJBubu7y9qsw+GA9+/f4/HxEc/Pz5ncbDab6lqtafBvXT++bvTMaGzSksMF9Fufa2tsNTLaam+NAEnS0Jq3bOMaYVDSoPgtgwTc8u/08hoJw0gBTKyynEkECdrJDYlIRLOD+ltXx1B8kIT+rOG+sJwu15NiaTyfcewsfIgE4nQ6YRzHqHVPGmgLmleTNVQHF0IptprUd+HWejrlehKbYUDXdfmzcZpwPB5SfMMJbnYw1uTYCd6tyW8A1diClfPBmMUCRbU7jHewtsPDFrjrHbzjxeXoPpPXiIiLaaxFMV6m4c97Om8zXVwI7jTHVsOyf0OxGI31qICycxV9NQih4uNCicNHhhSwa8Kd/BwoSUPHqmvyz+Rr3ifhlxLKOGmQAi4fK7kMPT4+Ypom/PTTT/j++++zxeHdu3d5fLvdrsimdMtY1zTq3N3r/fv3mQz87ne/w8PDA7799tt8KLx9+zYTh7///e9ZmH94eIAxi08rtwKQpYQ/0xaBIUghu+VSRIcZf18K6vJZ30JWWgTkljavkQj6J1Oy3opr312F4reCKF9d+e7TfpN+NUC2JFimoQYWSwRQWi54W+nCnz94rjQixZJnSqWcDjWSGOc9zudz3PPmGf37lP3OOUzjiPM4ZqtD3/cwyT2I2rqGSytD2pvYZ2MIeH5+AkLA+6Q8ur+/x2azwexmnE5nnE8nvHv3DofDAc+HQ9L+99hstqWyh1sAjEkZk2Ja2jyUa882CdzRehHPAQeHf/e7I/7dw4h5vrSyZ2tT+k4YAIHtqdLNtt116QZUrHXl+3HLGZFJSWYrZDVfXwbRUAoIX7eGKH59KHH4lWFM9PMn95aW5lr+rPm1c3eWNavCLVrfl86Bt03t1+IbuBBJxMGng8E5B2stnp6eivakFUXOo6Uh59fITVEK8KfTKVs9vvvuu5yula7haVf5+MmdilfFBi5dyzgBWNuYawRDkoG15yc/v2ZdkL+3NPo1K8Aa5DMhkNsVrQcfryQntWdJz4CI5S+Vblah+FxhjUHXdwg+VIV6rumlvxfrfXJ3MZlgUCYkqnEgqyITWn9PH3pGVJTAUZMffAqMpjoOi/XB0H/p5lwAL7B0nED2+c/ng7VFfzl4GHw/EoMKTOtO2m+h2PDe43Q6x0Dppyf89NNPuXgnWSV8SOed87l4XAgxLavzDm52hRKI7g0g9yG7ZFFqgGeEovFxYljMo3gGi5uSBL3ffL68rerZUFqHbiaXtTPCU3X0VLfC0DyX6/Pzl2dVSMHxLsB5FzNYJXctxceFEodfGaSVJrSERfrJ/5HWmz6r1YGoYe1g4ELcrRpqfj39rLkpyXnR76TVpzSjIYS8KVNVZ4ol4HPnbdQI0rV58HFR/zyuQGZx6lk6QJ4alOYgycita7iGlzwD+Vr+XiObaySkRrpeKjzI/tfGSpAWJT4eakOSUoXia0Xc0zu44Jp/T1zIzppk8hrPCmK7uMisnQ+1MVB/xXUvUCRwQV/0RUSC/rsYT/BwfjkrCLazsLZb4jIo2HvFV75qgTBEFhZNNbnyUDshBPg5plPllvRC6WFMdl/KZ3qIQqxzHs6zqthiH7x1D+Nzq95TY2myL6AgEaTxB+rPHuzzlbcK16FVsDFdXE0N03nDajfkSwRpKL6TiXjEFLc+WXH0fPjYUOLwEcA1sLQxUjBwTfvaqrHAr2m5gtziJtPS+F4TGqVGvxUczckEkQXZ/2azyQXaqDBbKztRax5yXJJs8HHSmpLP6jzPeHp6yu5Hzjns93vs93t8++23+X5OGPihRjEZtf74uORYW1YJXteBB5PX5kvfJ94etVkjD7K/WwX81mctgiHfIzcufh9d12qXfvI1qAXdKxRfDZJ1IKR9jL7vHVcQMSHKGIOOkwMuqF1o6+M9XMu9FqC6BB03Yp9uVCyEkNxsvEfIFgcmjBrS4gcYz1wycyyGxXazgRksuqFH3/VF/YOrAizf31L2IGOS8SHVwKCheO+Ti9dyJs7O4TyOmKlGQxr4/d0ddrsddvsdEAAXIvHhrlhpAS72rUBEhZGLGg+4kNgRn6Htkpty30eC41w1mxYJ5zbtv3F+FcUSDHK8QY0pXC5l4/PKBS3LhDHZcmKsLWpAFOdDpZ8QkGNlivogQc+Hjw0lDr8ySJPNhU+uVedaVrpeFoMjyGtbaGmZ+T9uBWnd9xIttHTXAS6Fa7IukGZ/SNqbNQtKjSzJ8a0FZ3PiYK3NmZSMWeIW6B+RmWEY8vil4NrSkvPxtYgZv49cegAU86fK1rzdmptbrX0iFC1hvTaHW57t2vq3no/87sjveI10yXS1qklS/BZArkr0nY9/74APgAkmC76FMGwXAZosDiSYR81wO2h0TZFN2l6b3rzYHeTNxiTB84o2Og+ujMuITSzkqEtWhq6zsEmzb23Xll4ZYaoMLXZNqVd9uU/Hm5DH35kOtotpV4cQSQ8pdChIuR8G9H0kMjHrU6wDcTEXsV6ZNIgxc0tSfBMIwSDYtG/T5+lZfH/sMIYZ/8PDE4CYdcoCOeVqMXna+0EWKizafja2iwVjv14jaDQ2Ple62cjPgVhzgvb/EArScEFU6awMwL/8uMXbU5eJVUjPQ4+ITwMlDh8BXHjj6Txv8TXlgmZNo7zWn2yDSAnXWPPPW4LfrQIcJw5SYKWfRBzoH7c0tMZ9bZ5S0KzNh+Y9DEMmcwCyxWGaplwcbrPZXFhTOKFrjUPOt0Ue+DrQT04KuXWjJazTtdfI3S0WKPm6Nn75XbhmsVqzavA1kqSrRgSVQCi+ZpB2noQ97120QCAsruBZliIhstSoZ/cW2n+v9Sl+JyEvILrHBoMU1NtOt0zCHw3uWqpN0hbLv+liz0znQWcpAQjFvi1tlOPm+wrT2BOhob5DaXUx7H0+js52S+VsY9A5h77r4LxDCMAw9OiHnhE9ZvVNhIsL+gGCNKAkaTwlLh9HQKoc3XUxO1Zq53E2GE8O/8Or5+WZAEvlaL6e1FlamCywk7sPUM1yVJBICXmesb6WwGfUSQOW74wkOhfnT3pv9sBpNvjL4wZnh3RvWIhP0KxKnwJKHH5lnM9n/Jf/8l/whz/8AQ8PD0VWHqltpw2aa7g/tFpxbXPmGnouDLdcoz4UUvNPFg7S5t/f32fiUAsyptfAoo2vjY9bcXg9BCnkG2Ow3W5zITqytnBiQM+FSAUFS9c041LLfk2bL60CNL77+3tst1s8PDxkAkMpag+HQ840ItuQkORO9s0J3bXnvGbZuMVqINeh9V7LiiG/68/Pz+qqpPiqcTgecDyd8O3vf7+4oSThl4KdwfcblAWKg/eLgFpx2+AF4PI99HdH+20S6IwxCM7BeANvPYxJwdYNpclLQeOMrxetOlfsDEmrT8U3+VaSNc55L47rdBFUzvoInrkJm+geZE05H2stNtst9vs9hnQu8cJ1PFsSZavyPsU1rIEIRGCpRdnzzAI2v97EZ9Z3HXa7HbYp2yCdEYMZsdlsMSHk/m/Z10lgN2lMRApjNe5QPI/WXPJL1mdee0YiL0iDPB9aYxT9/ff3G/wfP20w+4WABb+YGsidTPFxocThI4AE2r7vc5XgLuWKpj8W0jBz9x7prkLvAZd/ZNc0y1yYlgLtmtDHNdut/tdcY3gQNHdRIgFaapplG9ylR86Xu0fxGAteJI1bWejf3d1dJhL8/tPphNPphOPxeEF+WmssrTdybWoCPM2LiAF9xsdSm28NawdGTat37Z5b+62RvNbYrvUtLRn0UxIiheJrRQjcLcZFf3ZrMfTLEe0SQTDxhnRfWLSwAaWAlv/Wog//tb8lQwI4Ca8sVoKITL62dj+9m4T5hezU9whyw7FkZUj++/TP5DMiL9JiNRDWA49ieEu/5P6V4iySLn8Rkk3S7BuWjarrcLffox8GdNam7FBxbz6m7HzzPBXWDQK5DpFgTpp4a0rXYLoj74dM+A4BCMZjBjBOYyZGJDQHe+mjs/psGSkkywNfpKwUghjLjaj1Td/L/HttWMUQ6337YOCCBUJ030NYXPNoXoqPDyUOHwkUDJ0rYCYhGkDWmksrwTXhrCZwSYQQCq19TXt/zRWnpYHmY+SuNvxaykBBhIG0SVww5EKzFHZ5gK0kK7VCaS1LC/+33+/x8PCAP/zhD/laqvXw9u3brOWWgcd8Pflcb9HGSYJEbVMla05srlmY1p4RX9O161v3t8a9Np9aG9xCIcknb6P2eet7qlB8zSDXHDcnZUfXxTStIRILeCThme9LyMLTxV4BJK0ycC0GoUoapAIptddshQtyhgX+cmKDy32i60rXpL7r0PMYPH5GCIuKNV0UfgFQtWEDk60FdA9pqXMeH67kt5exYrvdDnf399huNoXV4seffsThAIznc7L0CH8oIKXJrWjk18CenQ8BoDMihJj+tbMg6483YSFztf2ZCeHZhUmSh9Y9DTT3YklExHya55dZsj+1xjC7GN+Q7wtYKm7T90vPiE8CJQ4fCcMwYLvd4vk5+ib2fZ8rF0/TlLXPUmiUAvmagF+D1Orz91vX1wQ46rNVj6LVJrko7Xa77KrEi6bxOfPA8VZ7NRIj35cEBkB2AzocDnj9+jVCCLkqNN3z/PyMEEKuZj1N01XB+aXCLY+d4L9zUkXt18iY7J9jzXXoQ3Bt7rX318gBH+Pa+LmVSKH4rYAssWecYZOryna7hZsdZjcjhEXLHUj4Y8I0D7S9cBW5AmqPBPBbiAZyX4Ax0aUowGS/+VtgTIwrGIYBXVKmdV0Xff/JwkDCfyJQRGrk9DLhSa9JOGXO/2y+5fIEpDNiGmFstAh3lEwjkR5S9szpvJ7nGd61XZUuBOMbwN2jaIA+BFgXx2K7mJ52sTSt9CEJAj2v2mcfAO7udqsHhDwj8neOEVMAGGfg//XnB5ydzWM3AAwCI7h6PnwqKHH4SCDN+zzP6Ps++9ZL4VASBu5yU/sn0Xpvze2jltWoJQC2BPXWvTRvCoSW85RWhprwuWbhuGWD4lp4HsvAU59SBqVpmjJpkJWba8/pJVWu6Tpa7+12m+tGcFcu5xzO53PVetKySMm5X0Ot3ZpQX/ve3No+b6/m0lX7/dpzVSi+VthUEZlqAiwpTMsAUE4a6LO8/ZCAxYR6ACUJuOHciP3524UzPgjSbuNyP7kYgzG50nU8H2whMHPSUNWuU7+01+Qg8bpGviALdCsokDm5AiU1d6wdYeBdFObjOeExO4eZnd9F46SkQyiCkG+yOiAJ9dbCArlIadd30SLT9zFY3AT85WmPPRwGjCUhoImh7h7U7Ffu83JvhjjzxZgv9vKV+dFzyedDHEC2HP106vHu1OE4m2xx4N91KiaoxoZPByUOHwmkQZ2mKRMIytMv03220ovK6spS+04/rxGKWywPUvCTWmMpQNfapTGTqxKPa5DWhlsIQI1UXZsLt5Zw4gDEZ0Kk4Xw+53/jOOaUqLU1lOO9xcWLX0vv39/fR5P43V3xbOd5xvF4rLbJ16X23jWBu/asWmOV17Ve8/v5d0S+ltfI7xU9U03FqvgtgoTLeZ7g3QZunnN1XBLEs56Y9kEsLjjWlu5GwCVhyOeE6Lv4+8+CJ/UY276GUoZmSS/EZ7x/Y7DEN3QsEJqTBkqjulZ/wrDbUiwIFzb5NflCYworDQmlFEeRPkXwkSxM05QLic7TlO6RE1tiMkLwMNakitG1MTeUfADQ9+i7Dvv9PpIHlkjFeY9/+fEe/7Q74U+7urJtmeYlGcjEs35D/LGSveriliv9pYldXGvYTz7+vz8N+G/vNxdtRMuPzy5oik8HJQ4fCf/1v/5X/Nu//Rv2+30WVB8fHwtBmlyYKGiXC7BcsKxlDgJK8lB7b80aQbhV8JOEpqj4mQ+CLrvf8MrQNYtKbVwEcmGSJEWSDi6I1iwmnDDQPxLS3759i3fv3uHp6QnjOF5kIapp+2treIvgzq035MrFP5MxG63nViN3t1oIWi5fa+MGUH1etTWXv3MrGX9ucu2895jnGe/evcuuYwrFbwH/7b//N/Rdj2EzYJpnwBgcDodFix6QYx9MSgDhnINLRTaNMUuRNBNJxMXfNSMV+S0Wz1D9rIIQSteSygX5ZfTLF2NgVoY+12uwhZWChP5rTjUBKAqwFaQBfM+m/lfcsMQZYazFOE0458QZB4znM2Y3Fy5TF9vUFcVKcy6ZtKT7rEmWho4RIb+QsRCaz0A+nzx9E2MfPO3RjCwt965bqJpjF2ue26qMs3ZGcAaYP8/vJXKXEos8PT1pxr1PBCUOHwmkqeAa+PP5nH/nlYMpBoB+UmYhThhaPuA10rD2uvaZJBvXSIe8Rs5FVoVeszTUBH762bJu1MiDbI//pOB0npZ1HMeCqNUE4drr2pq0rAHyXv5doM+cc8W6rQn0tc9aAjwneq121tZejv0aWt+htflw0sQrZysUvwVk90hj0PdDjn+jlKy5sjHb+0MI8NZGrW0SvIvrpYBc7I3iI7TPCHnxNUWDvNeAW0FS0Ttro5Uh1U3IKVKTRjxbUy6V+uV4Q4jpaeV+xTJNrZIPvi8lImBT/QhryOIwp+cjst6FaJEp8DPOhzjupQ1OrrIrVXr/4Ab8cNri2/2cskVV+mNtFuQlkYeiMFyaf23MvK1inHjZuVBrk6wsszf46bzBYbbZdanoL1mTqGq0YxXHFR8XShw+IkIIeHp6QpfyMx+Pxxw0zV15yB+ciIMkC5xo1HBtU299XrNO1AQ+qW3nWZvyRtf32XefBGAu4Le06vKnrGnxEnAiw8fKMzxR6lYiDTKuQc655RrVEuLl79JSQxYm+tw5h9PplKtY05jkvTVLSM06Idfg2lrJOcs1XyMefGxr5LNmuaK585ocCsVvDd57HI8HbDcb+M7ifPYYNhuYrkNv+0wKcm0HayNxMNE9yDJiUbU4EK6dEa33hYAdX1ZqLbB+rDFxjN7ncXcpY1TfsSKgSVgkS0HwIQcL8345FnctpoEXyASisgQktFK7VLOi72JKWEvKJedTMLQrtfNi4qsuPnz/qyjN4lixuFEZA2sXqz1ZBuw8Y+h7fH/Y428j8M3+HaxhBVBlX0Cs2JyHkSzE1ub3r8Vg1Nbf5Gclrq19e/h5INoj0jtNHf7nv+8Rt/6ai1UkCxfPQPHRocThE+Dp6Qmn0wmvXr3CdrstCo2RME1uLNylhRMHEjw5Wlp84FIwrAWr1lBz/+Fj6vu+yBIEIG90RBxkkTdOGvjcuf+/rOmwZpm4ps2uuTXR+xQQfTwecT6fc+E3Oba1sUgBW/ZRa8M5l1O/vn//vqiifTgccDqdCl9//r2ozbvVP30uLQ7X3JcIPANW6/sirTm8X/m6BVpDVws6VCh+Y3h8fETX99jvdggI8H2s+UMBwyT45ZgGUA2CJW2nSZYIjiyYtiRpLFrgmta3iqR1l3/ixtpkVeiScB9/GhPdrfp+iKlYu9JFKQdFk2IJizDM+/BsHjWLQs6wRGNrnQ+IQjAJ5iEs14YQCcM0TxinEbOb47h8AGycex47cyljS3OROrUYqdT0s732PI54/+4djscDOtuhH/qcavY8jnCO9sl0D2ViMiZX/QatXcpSRdacvEaCEHALxeV6yjcSCeQEoqZY4n0J4vA8dfjfvr+DMQYuGFBiXQmKdWkFvSs+LpQ4fAKQcDTPcxa+eaA0r4DMyYMU+qRW9pq7jsSt5mbp7kKQhdVow+NuStwycovLy5qWvoWXEgf6xzMpkStZa03XxvYhLj1Rs3jE6XTC4XDIBKvrOozjmIO0aTy1ys+112vC/YdaouizW8lby3rUAl9Hsv6oxUHxW4bzDpipur2HNckSxwRcGwLQdeisyRpqLsTmHP4MtyoM2Id047qVIgiXnaxJTtbyYOGNz9aJ5dzoygDlHOx9ZQ8VhEFOy5jlMx6LUFzDxhtknyHGEngX3ZTmaYabXUy/KtaiGkfBh0pXrCnB5NmCAO8cjqeo0DImxjpQIbjz+Yx5moHg8OOzxd3gse8XsXvV0lQ5zwvhPv2+tt/TPAwQ3Z2IrNT6AzA6i8NoUVinjMHzaPE4DsU4yvWksS6kUnoGKD4+lDh8QnBf7nEcLwq1ASgEb2Bx6VizLNTa4feThvolwqTUWEu3JIoXAFCkFpV++nLc3PLBKz/zPmuoadXlmFv90hqez2ccj0ccDgccDocssFKaVk6Yai47NU1/zY2r5mIEAM/Pzzifz9m6UGuf1peK5tXaofdeYlWoXV9bW97ftf5rpEG2yy1JfL3438JPP/10ca9C8VtDQCXmJwnAxkT3kqi9XSwPJHh7Dzj4qiQrA6irfQdGA6jDqwMOeXzxpYljsxY2dDDWo0t7amdZJiWRsYm7FhVCdbIGhBuMIcVnIhj6wpUmRF9/KhIHRA33PEVl3ngecR7jv3xGcaJD/fFOuQUBBt676jVGKNiXcyXAzTNO5xOmcYLzl8+SnuP/89jjP30T8H/5oyusReQWFOcc+8vCfp56eV7x51w8fwl2NhYWKn4GsMu/O27xvybLgmyfxJvAx8OIXCAS52NGpefDsyqWPjGUOHwihBBwOBwAANvtNr8vYxi4EMiLhtF7JLDz68hiQe/fqj9fNccAAFesSURBVPklrFkouFAv4y4I3NrQEuq50Mivp/FLMlETdCUxkOPm93ILDl1Pmv1TyphBbkoybSzd13LZ4e5HfCx5Y608A2NM4eZFMRZkeeJ9AiWBpPakaxcnM5K0tNZNfiafDf+89SzlNfSaE7Wauxj/naw9eiAoFBHBB5xOp+jWk/f5SBQ6iofr0n4MLHUDwuLuQ+Sg/PuOAi9pr7NG/gVjax0lxiC7BoWUHtZYC5vOC4SwWCEsuVXZokGTksAWCqZU+MwYs9R1wEp9h7wPVYgCg08F5QwApCBtGorzDpiQEmecMY1j9q231iaSRgo+zm+YMgkBJgABBoHXo0jMxxqTq1hTYTdjlgDtvusR+gA4F/tnCi2T1pb2/OA9wOSBTAqJZaV+s2uWMYvUnpfN1AkDf83bEff+5WmL7565WBmvODsRcyOYn89ngazrFNeTgtLVhfXzgBKHTwjuJsM1ylLglu4y3EzHScaa0HWLdUFefw0t4sBJT02YvDCTmjJegpsiW4LqGiGSLlstYd+l3Ny84BsJ3ZKkcFcsvoG1SIREzX2MZ3eiPmnelh8INwjysu0akWp9B+T7tbnViENrbi20noMMlFcoFFHodD6mW527VAAMZHGIQmO+loS5EHLmGQAx247pslb/2p/Xi86IK1TDsAxPwUQrAycOhhTckjQYgFWsAICSKM2AJ9KA8n6It2pjvHAtalgkgg9wiFW7l+rdzGU03Uv3WJtIG+yluxXTpOefNMgsiC/jMOm/fMaSyyrVtaD1XBGmnycLH+I673uHzuCCPBiz5GMiqwQATM7gPC9Vm/ma5u4qFpD35wE/HofifUkwJFb3fLIyeX9BJhWfDkocPjHIz/0f/uEfAEQ3H2DZwLkgS8IVJw6UkWkYhqy1pboHLzkEbgUXEimVKB+f975wUaoJy9QOtzhQBWVKh3qhWWnMpWV9kORBBt5SqkNucbgmuNbGXvudj1mOT7pp0dynaSosCnLNamvA15OTjDVLwzVrA0etDflZ62erHWqLX8+Jw6/xnVUovmQcjgecz2d03/wOBgOinzjf73wKmvWLkMUtlYPFkIKreZwEcF34/1lI+1PXL8SFsidlhZeoTG2SkOxhASyKMJvcmjrbxaG7RAC40N88I8p5yriIECIRgTcsk1OI7kEeGMcYGD0l1yWQdhxif6Q937sY70F7XC0OQ1gEqkM3izuwT4TLOEmpkKwOrtw7A/C/fPeA5ymew//jPz7hd9tpmXBmbTHGm88BAP76vMH/9v2uiD+RaJ0P+ZHyc1jeU1O4MWVdSDcFLEQ4DlvPh88BShw+AxAZIG07CX5SkKwJtuRewysiE6Q7Sw08c9C1P8qWJppnepKCbk2TDSwadRIceQ2FlkmyVQuiZcmQY+duMfM85yxKrZgR/l4rlqFmPeFjXSMQtGYUJC9d0/g/vrb8H7+eruFks+ayxnGrpaD2HeQkTF5H/UmCJedGpKEW/K1QKCJisKyHtx4mCVLZ3cSUFaU5fAiYpxkhILsmEbLriKFYibo1EZzQXz0jcDEWayyCYfu3MUVcA2+RGxFsZ/N03DzDe4sZKavREnKcNfWcIOQ4CdJYmwvvmOrgyV0mx5SEGKTM4x/kfBGiZWKZw0IULrT0XHtvyjFzwd0gCfSJNMTYkFjzAmwfNWlS3x8G+O96/F//NOM49vjL0w4nZxFtNwb/+naHP3cbIAT8+1cnvN66fP8cLP73H/fw7EkcpnS+rBDL4mwHq2ye152yVNH5ULEEiYcSv25xratZlPR8+CygxOEzQc1lQwpswKUAyIVeKbjT9fwnb4v/3nJvWRsvtVvzv5da89ocqE8iTjJTAv+81pacd404yTHTGlNAeq12Q82aUCMkLaLC17xmRSDQZ9zdjLtE1dqtkQbZfqv/n0Mc+E96zdeT3rtm3ZBtqLVBobgNAZEIWPJnJ9efC+kUhYDlvQfmGZ6nb2V/avKv7kXuIFIa59IhiNcstRws0t6wRBak64R7aEAUlJMQ7kMA5PnAHJoKNx9qK1B15DSuIGZa258QXZTiGTEhBMAx1y+aL++Dk5TL9mp7LgqiwwkDv8gAuR5Hrsshlpx6fJ4spucO/zwHvB97/O15WzzrH499XqfXW4cNeRYbYPIWfz9s4Ly5eHaNZSrnGBIRkOdD+nAhcMt3g4jcOpNLZ0TwOehfT4jPA0ocPhPQ5s/TsVI2HWtttQgYUGqaeQG5WwS3W8fU+oz3K8de658HP1NMhhQ0+X1EKKSmWs7lmlAv2z2fzzmL0uEQ3QAkOamtc62vGklqWRla9/PMScMwrBZAo+tbhIRbGWrjk9fW2mhdy61B3Mol/92yDgROHOg7r1AoLmGAKAwnQbYH0PU9+j6670Q/8Mu/63xGxDfLqtKV/WMVghikjhoDjn10HQvipRiBFP9gisuj8EnVjMnrn7rIxKCwPC/ZikIAUiRyXA+h+b9w8RFWALrYh5CVSj6EFJTMSAuX3CVxwuX6lyRtkcab2nx5RiT3ra7vIxFyJrsjc/hg8P/96yumWOJrtlhi/uXdPf7lbanBDzAyTjqv11V3NrNkwaLvIVka+PcSALyMXTQiiFv0n88cFtfxq7rXKW6CntKfCZ6enrDb7fDq1au88fA0nNwlhCCFM66Nps8JXKirCa8tje9L3pOWjrXriDzUhFdOhnhmIT6PtQwL3FJhjCmyTJGrErkpnU4njOOYN2Ku8edrRu9Te9fWpGYlqc2Pt0+EgLvt1J5tzarT6qsF+bxvIZlyzLdYFOhnKy0tf05E5hQKRYngA47HI3a7HTabTdZ6dzb6/fsQ4IGyyjKQXZBIq50116ZOGsLyy/IBnQ+szQADmJgxSLYj5PD8njEGFkI6FSjIQzAXAj99Tp3EjExsr8GSUYpbAQIbJ42PLAU2z4fW2mOaZxizVIx2zsN5HwOSaa1Y+8bQOqX1oX0ttc2FeIIP4TIdbnXPRRawrTHw4vnCGFDcS0AKRG8oaxbiItddPgkAxVfgdiUkPSOyCOVnWrs4fW8NG1Kcx9IHPbt5njCNk2be+wygxOEzwfF4hDEGr1+/BrAI2OQH38o6wwXJmgvLLRr6GmngAiJ/r3Y/jUOSmzX3k5YwLX/KOg81q4MUZtdca4g4TNOEwDVL/rJKtBT+a2uy1j+/pjV3SQ4kGZSkQVpzbiUKvwSukcIa5POU93Nrw+l0wvF4/HUGr1B8wQgIOJ1PGIaUscaYJTtR0kgHQ0J9uoR+Mu1zjTQUu1PtjKDXyULA/5ZDSjeakYTnAiRI5ntwISCXlydyQP78xVAWQTRfy/rIAbUo58EJR9F1CGndlrPNh1hDISDApQJw3jmE4OHlvUQ+8jhCc2rcnSqvc3pg13ZTk553Dh5Pz9AYeqbpOVsqslbX4t+MlbO7Pj6wKIfLs1Ke7bIvOc7olpWeifewnYWbY0E8xaeHEofPCH3f4/7+HsMwFO5JXODiaU8BXGj5W5DuPjVhthZILYVv7gZD73F3E37PmpaiZgGRREPm9efjkxmOuCWiNi9eRIlckyizknSHor6lxaE2fiJ1NWJB6yWL7dVIGtWyGIYhj42TR5629UPJAid+aySQXy+tI63ieNe0QHy9+O+09pSdS6FQtNH3PXa7XbRE0xnBNfIX7j/ILklX/7z43oZLAdimOhEXZwTvv2KByC4rpHWmhsPillRez/3jF0sCcKm1d+SqJLql+IhAdS7InYm5zSzziv/zIRWinGeM04gQomtNdA0jt5tFyOXZqTzrn1tuQkhB7DkwXPTuI3koMhuJycRaFwHWdug6D4QOs3OL61myOi3WJHwQ+G2BNyL27mVcZIlaSBOQ4lKMgUtkbbEAtc+a+HjKGAbPzpau7y8KBSo+HZQ4fEYYxxE//PAD/vmf/xmbzQbn87moprzmmiLdPyRqAvuHoLWB1ITS2r0tAkNCNgnLtbHW3H94v0QO5LWSWExTTEtHQdK1jEk168m1MdXIGCcNfG5y7aTFgT7jLkyysN5LnqO0cqxZSNaeJScSrTYlahYiSTaUOCgU13E6n2GsxT/+wz/ABw83OzgX8+GQZeECTJjMf2NrZ0SFNLwIXIMs9xYkobSiZV76RxY0i8BjYwATihSuJpgLLX82SDCtdXwvple92MMBIERLBBUii5moYkpW73w5DRoX27/IJWl1TS6XI/lJBfgQLQoIKGI4aOzIlgULGFbY1CxWp87GAnaWWRw+9DFyyxX1dTkoYSkJiM8iE1Vy0bphHPzZZ+vRYjnqWVyf4tNDicNnBKon8J//83/G3d1dLg5HtRFqAjv9XNPu89ctIfFWl6JaG7XralrtFnGQY5PafRnPIAXWtWsliDhwCwR3U+KkgccarGnUW2RMPh8efyKvq7ki8eJ6nDzwdmsEqdb+h5BFvs7SisTjVGRWpNY4JFnh91ESAIVC0cbxeMA8T/g//cf/iGmO+5ifZhhj0VWEccreQ6855N8oDyYu2liRh28J8DUpHoKTCdJom3x5GV/BSUMuuhaQ3WCoLZvvXYRMGvNFTAEsgvEwvC85bB9jGaZ5Wmo65H2LrZEPRSC6ZXOWbfPrJIyjImwhxn9YLGl2+XWGZVgiK41Z3NWWf12Oa6G15OOQ7+XGK+O+CZmlXb5twJ4Bsyw1zweyKoXFokOX2e6y5ofi00GJw2eIH3/8EcfjEeM4FoIVF85qWt+Lg+AGYZG7nNR80T8EzU3yikWEsgk557KgTPMOIeQ6D7w9STqkKxdQVrgGFnJBxIFXjKY2a1ryW+cpP+fPimedkmsjYxmIMPB0rddwi7tay+T8EpB7FSdVt1qzJCkbxxH/8i//EvOmKxSKVQQf8O79+yjkOoeA6AnD/cKBxUXp4v5CmLzljFgnDy9BQRAE1jTTISCn5JymKWvWbdfBJtnVpzS1sgf+uzUGoStDtGOGp6SppzPC+WxxcN4jsIrNfC5LHwsJ4vO4ekakyZkkgFsPoCvbMVgyYBnDYh0MrUG0NpBwfvXcbn1OY61ZF9bmUfncIFb5JlIUfAyCvsWUlV3AmAXs73//7iJdu+LTQYnDZ4jD4VCkNuWZdmquLhxrVoY1F6I1//tW+622WtYB+r1mjWj5y7eEZal155rw2rVrwcUtzXqLPPA+XxIMzp+HtJpIVyX5r4aa9ehDLAu3EM5rVoRbxiHf5+SD3McUCsU6fPA4pSQCAcnFE4C3FoYLt5WsR6SdX35nLz6EHdTuae1BXMBM/XGBG1hcmQzYXgzmjhRSbQYYwAI22HUXocoYZCYjA77XJm254e6cN8m7TfJQav1DQe5yB7wdUuJVxm0SOTQGkUAIssiJyMX5IMZ5MSWaqPwu1Cb/AefM0k3jfICoip3P7S7Fwmk2pc8FShw+Qzw+PmIcxxws2/c95nnO2ndg0aIHsUnUBLw1YbImlK6RiJpATZ+1+pXtcfeWWvpT7jpEFoQ1QZS3z4XvmsafXyPdgqif1lzos1agNL9frmXNLUuOmxPFWqE33saHWINqrmN8fq3rW6i5hdWIZssqZq3NdSsUCsVtCAF4fn6O2nZrMfQ90APG26y5NkA0Q5gAiLSmJIDn9khYCxWhFogCfoVX1K6N/dSFzvgZLj7LdRuogxByOtbs4hQMAI+AVMOA3FlMSrWd5s2DqJf2EsFaUcSQ+1MMRI6xApQONmv8bTmlmsWbtP5xDMlNSbiABYRiLTO5CzHDE1WKRnGOYMmaZPk4ZfGFsMSQrKD5KX8GVyxTTTe1ZSiFuxFvn7stxbcvvRGsMUDFg0Dx6aHE4TPEu3fvsN1u8fvf/z4L0uTGwYNjbwUPppUbHQnvHPSZzAZEqGmOeT/X4gzoWk4aqL+cRYEFQ/G6FFIAp/HWtPYtSIG/5f5UG/O1tq/1x+tXSIJxi6vSrRaN2tyujY//XiM/tT5b7dFc6Tr6XlCFcHJDoyxif/3rX6+OU6FQACF4PD4+YrffY7/bRQ2897m4VizwlvbMG7Tx5KrDrQ+FoBgCjPQvD9H1JL8rhFy57eQgZWth0r3N8RD5sVbEPZhC6M5pR5OlwHZdtEAEkb2pbBzk7kPjqgnFISShP9SF5ta4TZojgBw83eqj6M/7WFnbA8bGaskWNo83JSqK8zRLLQ6ePMOunE2FYE7nbfDVJaoP8NJqkuf0UiUWnU0phsUkhhWQPA5czHzV9z02ySL9048/wn24kUPxC0OJw2cIEq6kwEmCPGnhayydUHNPkuSBo2VloLa4dr+msa6119KMtzY3ThC4gM6JQW2Ot2jLr7nftNyHWuCa/7V1kW5Z8l+NlNWCom8lLfRdkcK7XJOWFaD2Xu27JLHWnvwek4Wh6zqt3aBQfACcd0VWnxAAR0qJLFij+Fz+wrXzdP2aILkI6SY3XnW9WQFZJEweAx9WxWVWWCWiAG1zW/mahU0Ubk4XAiq7Mc9bCPZ5/8ptoGijmENtT7xJWcNeExlKhCcL5vJM4rEOdoltiDEP626tS19sTTzLWlUuzWUg/UrcCDVw7XuQHxdZV/gyJ1c071JqdwRYM2B2LtfUUHw+UOLwmYMEQNLSSgGyJvRJjX8tYLgmJPM6AS0hk8jLLaShNr4196eWK1SLgEit+q2WACnk8uBefo10SZJ98n5rbksc0upTWx96BuSSRm5qlFFrTcMPlBYb/o+vbe35tiDnyA/12v3cciWzUHHSMI4jhmFA13X413/9Vzw/P18di0KhaCCEGBRs4t9dZ7tUz6EUvvPlJCxmoRywQezLQgi0SWKmn8bUBUXe7sVnKPe60hUGZVyDIBDk9gNjohsPuw8hILi1NODIbkCtXY+Th6KdpKEXXCJel6wnNUWJXIHcfkvZZQyMDTnbFAnT1H4em7WwIaAna3Tfoe/65dlU58/Wyy+Cec4aRZYRVgOEk8MmhNItJLNI67uRrWAhwJu0Inxd01xn54AQYPcWj+/e4e27t+vjUHx0KHH4TDGOI7777jt8++232O/3hYsSjw/g4IJpLWhXCn6SMEhXmJa14JqG/5q2uqZZ4kJ6rZic1OoDi6A8z/NFTEBLm8/brAnXckzXrBp8TFLTz9urWQxqVg5KSzoMQyYOPM5D3sOJCF+PlquSHJtEixDK59QaA60DXx8+72maMM8zTqdTzh6mUChejtP5hHme8eZ3b9Dbvti/fSrWJoW/bFUIMWMQuQVlCY4LfsYUcQG8AnXR4C0wSVseQtYu550mE5iGzpqNiQuYdP9FO+zWvMeHkNyY4vvWGIRKZ3E5mIU0lAXM8r6XxhRvMPlzCSJaAYBN7cTgbrb/0/yY4N4CBcKb7SYWfevsEuMBLCSAnXWZXLEzIrB5LcsXBf+Q3n/RGUEyRmqjKNZGa1N5PsZE1ysYk8ceUjrcv/3tb5pp7zOFEofPFCEEjONYLVDGtf41TfI1VxguyLbcYG51S7nl/db8WvfwLFJrlg36nAuq1ywhvM2WS01rXLW2eL/8PU7qLszvK+3x50KuSjUhXf5eHAgiPeqakC/Rei78ehmb0rquZeEIIaZUVEuDQvHh8N5j8rHeQLB8T0D2mTdSODUWFGRsGoJ6QRpIUH0JaXjBOVC/3TT3IUNuQmmi1xxYonUladUza8JV4Rik5Wekge7LZGttP6/9TgQCqdJ0eo+va/NshckVpkNKc0o1HKgNvh2H8pdstaD14KSh6m62dkY03NNCCDEgX5ISs7iPEYmhOcn1ie0DwQeczqdq/4pPDyUOnznmecY4juj7viAFXNgnrfRmswGA7BIi/dul5ptrqGqC4kuIAAcX0Fvtcu107aBouQnVyEFNGOZCc6F9CaEQsHm/NSuHHIPsl89Z9nON9NRcf8iiRGtQI361edJrbvWQ63ZtnrW5tSwWXdflz7quq/b7EsKiUCg+DNM0RUG/s+QFn4VkIgtLXZwhC3YuuYRkMAsDvc6addTdT14MY1Iht1C4H8X2LxGydn65P7djFgJxcT27NmAhEPm65YbUnMm/ewBI56cnDToq1m+/fj4U/aT5ZRcgLlhfAY2tS3u3DwHGhlx7org2Ce55rHkcIXcZMx1dhqdfnNUiG1Tts4sLQlgK1AFZVuFVuy/6S4Qqnw96Rnz2UOLwmePp6QnTNGG73QLAhUsO/wlcus/w93jlYWmhILSsFS3tMYcU/rkQLNHSoq9pulvjXLNe1NaAYgjO53MmZpJUrVkjWmRGEofafLmVp7YO8lnK/uQYWoJ97TNOxiThqI2l1XfrOknWrLU50H+apnyIHI9HnM/ni3YVCsXLEBBwOB6wS2QeQMywRAXNjIExIbnmXGqV4w1JWZMsDFfjGMg3nbT4qYkcuNtW4mcYa6LaXQq5mfCI84E1IpsvdqiLM2L5mYV2gcL9iBWW82MsKDdNU55fTn9a25OLYYTyOtZ3Szg2+WfpLlZ2ErKbFX82uTnah1H+ni8KZEERa2UAm55noGxLDeUTn5+chQkhZYdKZxAjH3zeXI6Y3Qzn4lobazElV1bF5wslDp85qDDW+XzGZrPJml5udeC++i3S0CIZHFwjz1OxrrnarAmWL7VirAnItdctAf0acer7+LUnlxvu879WnXlNWF8T8vkYrhEwud58PmuWj5qVQf6ska011K5bs8rU1jyEkAOi6fNxHLV2g0LxC2GaJnS2wzxPMBiiW5EPsUBaSphKWnc0/vajXGuSW5JZhFKmiUdqg4JqAeTsSDDRj+ay4Fx9zOR6c3FBCDnrTvWsoM/Fe/EHtyhcCsdL33QNfzMK60Qahr6Hm+eYEpYEaiZct9jRmsb82vlH7kfRwlE5H9j9maQ1W2O3FUHI9f3cIJIHI4bfslzHdpdx5ZfGAN4jdLb8iJMZNtfgU9IM5pLt5hnO6/nwOUOJwxeAaZrw5z//GX/4wx/w6tWrQkNMf8jOOZxOpwtiwPM803sEaof7x1MaWE4cqA2gnqFpDTWLhhwHRy19KBd2uXsRDxK/pc5B13XY7Xa4v7/PpIFcuugnzVsWXuM/eZs1IlC7jqdYXbNotObRartGCHgMAu+rlulItn+tPxlYfY0IUiD08/MzTqcTDodD83qFQvFhOJ1POJ/P+Pbbb9H1fSQAMAg27QfeYw4BIYyFJSFr2FmAbQHaO9LeixBrDFAqz1hLIbbXoSuDYm+AMabwe29eh0VQlQHA8XYWxMxIQ95Xk6C6sl3BwOQsdvv9Pu7Fp7iu3ruFMJE1hrsJpX5le2DnAmU9IstKAHNfQqpDYRpWDUbQaC4SIZE27lbVGp8xyHEuC/FaLAQ1gnmx7wc5Y2Ri551vWnj4eH2I8W7jecQ0TTgej5p69QuAEocvCM45zPNcBM3K4OaadUEKotJNhZOFlutLy62Jo+b+dM3Fh997TZvNx+icK+a6lk2J7iPNN91H2Zgo3WnN1Ua6/UjiIy0HfP7ymlZMSc2qc80iIPvg4+btyPHXSAu/n9aSMnl1XZfd5WjtauvB50GZnYjMns9nHA4HzZChUPyKCEj7Ivm+JyHUWlum2oTJVoX8vimFail8ByIM9F4hYJK2Ogru1uPCUgGw90i771OQMLcikPC/ok1f3F/4ebKMiwqI8T3RkBa/1WoICAYxFSgioZqmCd579F0Hbwy8DUXqUktnBvUFky0xfLpxzZc3SeiW626MUMRk6wJ7nfffxuKw/kJ+vVh3SJiPlqFQtsPIycXysHFYY3I67a7vMI4xU954Pl8qJvl6pPsDUCjspim6C0/TpKThC4EShy8I5CvOKw9LYiDfa2nhpRAuXXZqRINXPSa0NNW137mwWRNgay45LfJAYyFLQs1CIMfik78q9c+rcdPn1C7dXxPk5YEkr225G9XWlv9e62ttneS9rX7W7q+tl7UWu90Ou90OwzBkt6Lo63v5PGtrRbEj9O98Pl8lQwqF4udhdi6SgW4ROnNmJC64g50NgjQAiyBOef4poDYp3FPblZuSAF4KjHK/E69NXXt9sW+BWR2EwFv40gN5zF3S4oP+sTZ4P3FPBLx30TKDADdH4dZYE12+QsjZkPK60TjNornni2TSNVz7nufM18YspKZGbfizo3UuFrO1t7JxEYEgK0/sMVA22SYuPkrEYdhssN1uYe0B53Nyq5aKR/basvOBlEuzmzHPU0zT7VSx9KVAicMXhPfv3+NwOOCPf/xjjnWQ6ToJa4SBu+hwNyUpENdiImSO/mt+mzKOQJIHes1/8rHyMVO/kjDwOgdkiZDCP/3Oq3JTTQE+J+6KxclVbZ04eeN91NBao7W1k6ithyRaAHIAOJndiXCO45jnUYOsZ0HWmLu7u0xGKT6BSFeNDJFl53A44HA4aNpVheIj4enxEcNmg4eHB/TBA+gu9iXSbK+RhsCVSpSRh/aNlJoVQGHdiPeGZEZYhOTQSN/JB2RSxxTfADAtd3pdlW4FaSBNvrExusN2FsZY5iYUELwrxsxTzQYf4ODyORG14st+KdeSK7O4dQbGwHbdMpbGWt+Cl54RYfmFnZvRNYnWh/b2aI0yGMcpWwBC8PlajiKFa2qn6yw2A8/mGNtw4nzgEw+JNJyTleHw/KyWhi8MShy+MHB/fBJ0a242BP47F3z5P34tgbcn36vVKKhBasZbLjJrqGnLqX8eN8DnI8fUqrZd09DX+qM2+Jh47EitDsa1Ocm+W8+vRaakixIfLz/M6LtSa6dl2ZmmCe/evcPxeCzcuDabTUE4+XMgMkakgcz8LZKiUCh+eUQh3wtliF1ShzYEtKR7XkgD6ntvbCRSAZhLQkD32XjD1RSuJrWTu1rRWEOOiZEGNkhY5v9vrc3ZpQKZI/LY6AxAdt/iQ1j2aDZWoCAqZFHIBeWCYUXQbCYlMO3KzsvQF4uItFIU68Lbqezh/DpTez/BBx/H60JhxSACVtzF2vDO4Xg6YZqjMor6GvoBwBSJASeLiQzOKU7EOYfZzZGI1p6h4rOHEocvECSkASi07deEtEI7wtCyTPB7+HtS6K3dJ9uuacbXSEPLClFLQ8utGhI1wZ8sJzUrgSRhMtCYj6MWXyLHL4V6/vqaFaK1BrXxyteyCBwXJCRq7mDv37/P83/z5g2GYcBms8FZ+LFyUkqkYZ7nXL1aoVB8XIRAZ0T83RoLb5Ob0bU/SRIYhUCXNdaVvgLVZOB73op2PZAnjyENeCPDkgSzRsj2+CUyhiO7KlF2JHn+5QxFwkpiDUwwMLJWQlheBJhY0C3VT1gU7OlsSn3bxvmQ14tP4ApqXKK51wryQOu+WNPjZb6hdJMdhfS9OJ2Oqb3o1rpJrkvee7j0XSNiaRDJkPce8zRny0Suyq344qDE4QuD9x4//vgjuq7D3d1d8ccurQs1wVhaHaRgzT8n33bpvvRSrGn0W+DBU1yzLbX0ZFJu9Ung/co1kJAko2alkXEkvM+aFeAWvMQkXbuH12mgeA5umSLrFBVsI5cjnp1KzmONLFI/XddFn9f0bxxHnE4n/PDDD5p2VaH4yJjnCU9PDvvdDkhFQbNmnwUIk7sJWQ+i0jkkiwMTbFkGJgDMLQcIxkehH1GIJMH9GirK8SjQ1j6s3RQWd1tqwJCAziwOwXtUd6CwBGAHhJxGtggK9/Xzgdo3MPnarK0vsgKiJA1M4i/cfCv7fuv9D4U1NgaOB6oBgRTvF8dDGZ2I7IQk1JMCyCdStMRhmIv0vnHIlXM3zX8zbNB3fXQnnqIr60QWC8UXBSUOXyBIYJ7nOebwFi4z/DrpjkLCHhee1wRGAicOaxYHeQ+1V3OnkeDxBDJNarHR4nKD4u2SRYGyIknicosLlZxD7X3p5tRq/xbUtFHVQ6tBiGSfNaLHPycSUaui3XL5ovsoboIsX/M8o+/7/N14enrC8/OzuikpFJ8I5K40uxlTyh5nDNDx/SBeuGTtob9/cllKaVdJ+C3bT3sJkNJ6Iv1uSIJcXq+hpj5vWhbCUkdCxOeRS1BIsQuWihLUuoTJpMkDsKG0jhTdXz3jkK0OAaG43qR1yRYYmkfq4Co5CKy94nyQL+T8WBPVAdM5YAH4/F4wzM3KGHQhFnMLAEKqq5C/G+knJwsmpXftOos+uQ/H1L0xpoQyfM1uxvF4hJtndVP6QqHE4QsFuYWcz+fsRkKFzaQQKAmBJA81X/uaEMqF0VoWo1vQcpXhYyLCQP8kaeFjXmuPWwbkGOh9LtzWzMf8pwwMl//os6bJV4zx1s/W5tgCCfl0LbfekJAvM2RxEtEazzAM+drT6ZSzY1BfVBn67du3zbEpFIpfH7NzmKcZUz+l9Jlpz0sa8uB9DHTGIoOGsJAGn9xJjDGAtZfkAaWQagyya5AMBs6a+dq+eOX8yO6XIWQy49g5ERBgAxGcSyt6QQpIU07tBiyuTPxzGn/StOfxoyRK1H6AiTzFLtOUgePLGHBZxK4yZ9MgUHJd4hjaFnYJarazFiGYHJcSvIczBn3fRdJnLfoQ4Ay5GrnFGtNo3nYWPQb4IaXknlO8TQfYVOfDOY+np6fV+Ss+byhx+EJBGZYA5IJm2+0WALIwByAHDtP7NYGz5qrSIgtr2ZroXvk+fcZdafhPei2zFsnAb/5ZTWjn7XIff255kORJts3HKQ+gWlB4y/Ih16WGFsG4ZgVZIw3c8iGvJVI2z3OxduRixC08PAPT4XDIWZmoHVoPWsPz+Yx5nvHXv/41VztXKBSfDu/fv8N5E88EYwBrNrCDBVKqUuddrqHAY7mkYEhCJS/PYEiDbkirnoKQgQtBmQvdF+RBWBpohyVhNl+GZVy5arWNRedkth8+BGMWTbhUkuTXZnF3onYoDS0RKZC1IwBR1LbFNDj5oPUpBiKwahWg9xrnwy2KqVa7bIBpTlieebLmjKPPlxhjYW0HazsE38U0tc4D8xy/Q85hTAXy8plLPScC6cOS2vanH3/S8+ErgBKHLxTkw85Tikq3GUJNiKyhZWW4pTJzq61rLjuyT3pNhIdn7Km1U5uP1MSskZk1QZv3J12taq9ruOb+tXbfNUuOJF6t17xvTqqk9Yi7NtHvPFaCx5tIq9XhcMixDQqF4tODXJViMUYP35euLzwWIWudIYOiKyQAKPz8cyCyMe3UoySUV0gD9Uea+9juMi6TxkZtWJO05KZDgIdBLPpG45W7aiQdy+uLbVUI/S33mYVAkF1CWh4uycItpyWf67LAy7lRcxmln63zr2gL18/J4v2UVcsAIINJDiAPSWFkDYyP/TjvECbmukQZulKsDBEMqu3jvMa9felQ4vCFgwps8UBmnqK0JhSvuSHxNni9hNp1BCl8E2oCPB8T1/wDS80HLpzS9bLGQEvAr73m7kq1Mck2eaVsaWVYszTIectxXHMtkpYTvk6y7dZ7NYIgxyDTs9JzptSrFEhN7REZIDcnWhceh/L27dtsAVMoFJ8Hgo/plXkgsbEG1gOBKQlIyKO0rQTawQxz+8lCpEFOdZprIZhSE0/38BeFNUMEYUfyQEJ5dBXyACwsPFIKaL73pVSzDu4yQw+znAQ5JpYq1LJ/F22I90k7T1mUZDC2XLcWpJvXVeRzRxhpqL3COoMqaSgIkbA2FGOjcxAB8C5np+o6C4O0VrZLt3m42WEOM6ZxWuQGSwX1PIL3OJ/PeHx8/5IZKz5jKHH4ghFCwNu3b+G9zwW/Nqma4zAMCCFkUlHL5U/gAjSRhFrWILq2hZZwLAVoORbef43kUPA3F+jl/TXNzC01Fvica65cNUvOGolqoUVyar/X7rkF3N2AZ8nic+HWBrnW5N5Gn1MsBP/+0HqQJYKKy2n2JIXi84NzDk9PT+hS/FvXWfT9gL7r0Pc9nHepaFf8289bTmW/KlKLilSjXLD9EFQzMfG92BhY0+X3shAcDGA9bLALyTEp2xELjqasSWWnbOy0l5NkTsobALAWnTEwwefYhBwnkcgWDwSXlao/cEmKcVbxwvPBpOxZcc0Q6zeQcgrtLFIAcnYqPhJrDND3oLgTIlc+BMAtcXUx1kGrQn9NUOLwhYMyK3E3EQqWJgGy5bYkBWLuksTvu1U4pmtv9cHk98jXPEZBjkNaTXi/fD63CPh8vLIeREu730pJe229rrk4tdyN5Nyk5UW+ls+VtyfXojVWmiORB2qDSASl6XPO5SBphULxeSEgxjLM84R56jGeRxhjc6A0F3x5rACBhGljsFgZWGEzbn24FVxrXiUM8no+H9rPGYEgNynSoscLmUuSiQKzKX5fMh5ZMb+WPC7rYXANPsVgGJgYC4KQakCYTDYKzy3Rdm5JXNtyFbtKGug+eRYn3mBCsiJ5n7IpIadpzdaQsHKWId7fGVMUzuMVx316c54nzKpY+qqgxOErwDRN2U3EOYfNZoP9fl+4mwDIwp4UIjlZIO3+h5AGwuVmVwrEUtCVAi9BFjGTr3l/texJ9Bl3vSmCAHEpoANLQLm0QNA4eaYnaS1pEbXa+qytU+se6X4mryELDV9TToxq7kutZ0zWq9///vc5a9L79+9xPB7x9PSEeZ5xPp/x7t275rgVCsWnxzzNOJtz3AusQceSaaBPe6338G5x+eEeRlSBGWRtKKzQLx8PCeqrgrAxongZoxkmFfFkMQvUgnQ3ohSjsA2iYqLrTYydMDDGIhhfEpHEKKgeAlWJRhBFzEwiXyFFQaQicrmNNIe1M6JFGprrJK/l465cZ9PQLdV0IEsD/aMYB26FqcBai81mwN3+Dpv0XRrPZ5zPZxyOB+A8ws0zDoeDKpa+Mihx+AowjmOu9EuC7jiO2G632O/32O/3CCHgeDymQDkHKczTP+4LWxOq17T5Ne12S9DlloUaGaBreOYe3j8HjVvGedSIhMz/XeuzNdaaJr82lprFpdbGS3DNGlFba25F4YSp7/vq3GvvUYYlWstxHHNQ/k8//aRxDQrFF4Dz+Ry1vsbAHI6Ypxmzm2NRrr7HdrfLbiXzvBQGAxZ5MqTQ5eA9XM6gs4ALxDx4mlskyoBslupUQL6f/fHldTAX8Qu1mhMhBHi3ECLaG9GVcnEMnl5cOm9xB+L3c5elbJERkDEINKalvbaw3sJFjAMfHBEnbqXPzzNaDAIWi4ytPNtaP+QSNjsHM46AMZiSdcHNLiuYZNyM4suHEoevACTcnc/n4n0qzEWCbi01K6GmhedaguznKgrA8Sw8twjiklzw/iVa7dVccCT5kJaVfHhUiENL637tvVvdfmr3rc1TWmXkNTWi1bJWtNbqWpv02jmH8/mc1/B8PuN0OuF4POJ4POYUrQqF4vOF8w5hjoHSBjEnPwl+ADBsNotlwcaA40JHHEjLzt8SGZiwaKiNo/oP5NazBD5LSJKwBC6LDEi1M6Lof2mw2GLJMsAEYov6WEJA9PVnqUVpPIXSh1yVjKnWmeOkoeqWyscrr3mBpaFKGCr7e+3+OI2F4BmK2+hs/RZmyVgMRT7GL6SLSal0Pp9xHkeMk54PXyOUOHxFeP/+PTabTRb2hmHA8XjE3d0dNpsNdrtdztlPQdNcYFwr/AWUJEC6OV0TolvCsiQWLbckTn5kX5wQtARoskpEjdp8QYpqcR2ccEh3JUlgWvOUuMU9qWXF4ORHjovfS/N56dh4u2TBmaYpxzBQ0cGnpyf87W9/W21LoVB8XvDe4/n5CW67wzAPmKcZp9MJw2aD/W6HfujR9wM2wyanci0KZHoiD+QbJJQXJEgz64IJIoiaIPci+Tu1LVhF3odJyPULeTGsH5npKISlrdYZ4UOAp8KjVOwMCwngaWeBxbKRV6i2l8vio9We+QXXSUPNoh2AJTNWshbVYlbo+VRjU8xCImoo2k21QOZpxjhOAJ0ZPhYd/O777xGCuid9rVDi8JVhnmc8PT3h4eEB1lqcz+esKT6fz7nCNMUyhBBynv5r/vi1WARZPE7eUxOweTve+4ugZN5urZ0aSeFuObwPek0BvVTYjFx2ahr51ljlhl27voY1tybZD/+95kIm3+fXyvGuuZTJ51rrU469ZVVSKBRfDmi/t9bGInDThCOAburQdyOGYYjxbraLPv0hBlhXXU6KfRjZxZ/cX+A9vLUxraogDpxgSCE2V2KOhQNiMHT6zAefhdhMGpJQL18Xw6QzKt1nzHJmBRKEXap54X0mIPy6eLuM01s6CUHI/px9NJD3/RZ5alwf0prQ2Cm7UfFZIg+ZaLHxGUqlK8bArSWcuHFSwkdmDcVKmHyd4uuGEoevDOS2NM9zDnYGkDXI3ntsNhvc39/nzYI08LXAWfrZ8qMH6paJNW033/g4aZBCrLx+LWi7JgBL4sDXYG2stTmvXVvTAN3qwrR2DbcwyJS6LWF/jWzxCtgt4sB/yrGFELLFRqFQfJlwPgZAb7yDcRYGMTbMOweX9ohhGND1PYtpcFkY5cgitVmERoNFgCbyAGOKe3PAcmIbraBlIg90RQD9T7opmULore2nHe11JmaQMlFiTtaIJbYhWuI9jO1ybYlyWIZp58v9shZfYUj4Xjkj1ohFDflZJAtACB7e+SVQuyLsA2XguDWhWDPQOWHMYj1iwedonA8c3vlYWVrxVUOJw1eK9+/fY7vd5swZ3FVHZlAiQVBuCK1K0TXywAOTZRuyGnENXLDlVgh+X8sFR7rsSM09udzQPxo/uWrJuI0PFfTlZzVLy63g7lf03FpzvDZmTkAAFM+jNX4elE51GsZxxF//+leNa1AovnCE4PH09IS7/R26uz0AZBeU2bnkEgp0toPPewGWjDtYBOjqNhJCEdcQNd/xo8WbPiKmd13qH9Tai+0YmLBkNvI8WxGQ0qo2lDtpTLnPYl/28D4Sp3l28Olc4GSmVthuDTdZoStzfYlBlywNlAmLXJUAiLEjr1FXC9YOyOlkAcAzItEaOz1/qgpNdX0en55weH5Wq8NXDiUOXzHmeca7d+/w+vVrbLfbLCCHEKsBk8sSEYhhGIq4h5p2Xwq/LWFYugA551YFVm5VuKX9Fmq+/zyLlHSzIpBlRo5fWkJalgS5VrcQkNbnvNiatATVrAItF6pWn7yoHUftmZOLF5EuTaunUHw9GKcJ4QC8enhAR3FeAJz3GMcJQx81z13XRX/9EHJGJdKi861Ebj3y92yFwGIZiAr/kOsfXKRJ4ven2gMAch2Ka5BXhFS7AsbAeJdFaS988iM5idmGDBYiFMeerjEGFrZ6PuQJs+vzNbewkNY15IaUMkDlM69ITRuK61cfkuiTLDAIdUtQSHMIiGTT+ZhFiTwXlDR8/VDi8BWDqobu93sMw5AFYO99Jg7DMGC73WZBdy3egaPmqlSLA+DXSIG15goFLOSh5iq0Ng4Sirl2ne5vxS/UwMdFlo817bxs9xaLxRq4haAVCN0icPJny7XrlvgM6p9nytAYB4Xi68E8R2vi/d1d3HfpjHAOU4jCY5eqTOdMRC663tT2Ak4Mio+z64zJ13EBmnzxYZK/PGm9wbTnlL4oS+/RApHvp66AirhbDmXRsNvShcqkwGpf3hC4CxTfU7nLVQPZOiPf/znHRAgp+9PisiQ/X14mEiC8BOhVbXwVz6qF8IVImEKycjgXA+kjcdBCb78FKHH4DeD777/HMAz49ttvM0Eg0kDxDpStSGZaAkpXoZagSYIuCdnkCnVN4G69X6vBUDuopJsR19LTezQO2SbP0MTnxsfGSUzLJeqlRGFtDVufc+tN6z5+Xc1yI+co+6GDhdySyNJwPB5xOBzw+PioxEGh+MoQgscPP/6I3W6H/X6fhXZrLYbNBkPfY7PdgIKEvfeloEp7DhPoq/0gICT/d2NNStVqcuahZW9CVdOdu7MGCGaJkyjmUjkjkmBPvvvRI8tn6ThbwgFgAILvcj8xm5Iti7IV5wPty6n/WpzgBzCE2i2rW28iMcRlalhVJrG1LNafK8RAc/VwScE4TROmOSqWHh+foJmUfhtQ4vAbAAW1Pj09YbvdYhiGwn+e+77XXFG4FltuOvSZLORGbfd9XwRp071S8y/bq2nIa4Iu/7yVYpVbDXjft6SRXROU1ywRNdx67S3WnloAc21eLcIj50z/yNxM6XqnacLz8zPGcVTSoFB8pQghCoEAsltrtCokq6cPgG0URUtC51JxuvSzv0gRCgBucRfqEOMWAJTpS2mPCpftXVyTrius12K/Lc6HdK8xS5pYb0wuKGcMYM3l+XC5bqybtsR+lTzcYLgoSEHV2gNTpGCtxsQZFkBeZCH0RTu5Q3avTc/Yu4A5yQ3OO4znWK9BScNvB0ocfiPw3uPx8TFr4Lk7UossSMGcrueBy/wzSR7oNWn2WxaImjtSTTCW4MHUMo6BiEPLosA/l/Nu9dkSnF9KICSkCbnWF1+XuotAGUDO41lknESNgNHzkcTBOYfn52eNbVAovnLM84R5njAMfRasaavxIUTewPYhqbHO+1KSgKWfPbm20PuO5OnQAz1gTS10dwVyzxWCLgnIFNOQ9zCzBPcaG/+FwO9f3JJkHQaaC+9zTZ9y69nAOdLPOEqKfmudxEdjU6pZm5+Lh61akQiUmtZ6YA4Bbp5jdi7vMU6XxWcVXzeUOPzG8Pj4iKenJxhj8I//+I/45ptvknk6Cpk8ALblU08ZlLhgzq0K8zxnoRNA0R53YVrbUGvCtERtnPQ7d5mi93j8A/9Mat9rlhVgCaBuxRHI17egZcHh8+Dv83XmffG5OeeuWlJkXzw4Pge5NUiKQqH4evH4+JSF53/6p3+KVurNBkB0xZmdq8Y40G/Zpx6Lqw65/djOIoSUsMI7eB8wI2X1swGgs8FaVER2AEkjLqtKVxBYLEMgiTyNLaTx2mCyNSS+H3KhOxN9mi7JA7VjRFYkslgENgC6XtzeQu0zbmkxZokToWxVOT4Ei1sWJ1EGyJaImH3JxRAONv6maxgzhfRdD289zBzjQijTlh4Rvz0ocfiNgQuDJNxTxiMSHsnPnQuPLS11LTZABhRzgVYK9D+XPHCBWs5PzpmTBoqHkHPg9/B53WoRuBVrQr1cW/4MapYS+qxmtWnNT7o2UZtd1+WA+efnZxyPRyUPCsVvCIEKrCElSAgB3jtYGzMrDcbEzEohFMobuQNm0iB85g0CgjHJNSj1k4R0GIMuZU4KHcUe1PdWkt9vAQnQRBhiu3LeyTIRAgwCfAAs4lhWz6maC1VjvLeimDOdQ3ngi+uWYYtARe24+9XSHjuzLj679JHirk2W2jMGJpgcLB+8x/PhoNbo3yCUOPyGQUGwxhhsNptc94FiIniVZYIkCTWhlAvxvC96jwusvC0OqfmvodYWJwlS+CbyQkIyf70mWNcsL61YjFsJRGvOLUJD/VH6XE4o5Hh5+612aN5y/kQc7u/v8fT0hHfv3t00H4VC8fVhTnFOIQRsN0loHIbopuJiqmYv9ulCi533oaXNkCwPlqmrg/dwTFPeWbukTF3Rwi/S9CXyti3IC48DKMeFXA8BJro4eeuLAO6l/ySMJ+vHRZ8thdtLnLHkxBmBIDcjFMqlGKxtjYHtusKCktdB1nmg84GtQZ6ftcu6Ud/Wou+6WB8qBDw/P90+H8VXAyUOv2H8+OOPeHp6wp/+9KecUePVq1dZA73ZbArrg0RLuCbNNVkealaLliWD7r8G6YYk2yW3KGst+r7Phx8vgMfJSc2CIgXzW8co53ltfi2XMEmGaGzcJYy7FV0bV2ttzuczpmnC6XTKdRv+9re/aaE3heI3jh9++AHbzQYPr17BzTOGYcAuZV6yncVghixse7HXFQQCpUbewKDvk+unb1uJV/ezFQ2/oZoLwiyxpIpN+ymihSNE/6lCubS0Y2FSmlFrrGAbyWXqReaE8v6XXMNrNRiDlCkKCIkU2HQudtZidnOs5Oxd0U1rqJnzeA+kTFKd7eBDdGE+pFg37z3ePz5iHDWu4bcKJQ6/YTjncDqd8PT0hBAC+r7HOI7ZFFnT5hNqMQB0jXTxqcUc1CwXNfefW9xkZD81i0ON4NTQEvRvITm1vlpWCz63Wp+cdEl3sJoLWMvaQNfJZ0eEEECu03A6nTCOI8ZxVBclhUKBeY6ZlvrjEV1nYazFPE+wtmPuKwGwFlYU/yLCkPemUPrp58/tUrzMknVAWoFzG2X7NxUbE+QhauJRZFZaPrrhfEiafmojuwuJ8VL7fPgXQ6rMS3RYnaNBJDHRImJhvIcsnBdCsqK4paaRHCPNqeiB3vcezsT7XUrNTSm6z+dz/m4ofntQ4vAbRwgBP/zwA5xz2O/3eH5+zvUdNptN3sBlJqWaBr6l9ZbuNNJX/xYSUtvQW5t8y4Wn9lq6M/H7SCtfG4+sk1A7fOSa8PGu+YXK9LEk5NesIRSjUiNl/LoQQrYCWWsxTVMOhKZ/4zji3bt3OBwOzbEpFIrfFuZ5wrv37zBsNrDW4nQMGIYBtuswkIIpkQfD92Taa4FFUK+52ZuFABheN8GYnM1HtpnBheXaeXBhyViEf5LbjSQBrC+qXcGtJiEFU1tjsmY+N86JgjwjmcvPxVAFgVhLbWoMYLroymWCyS5d2dWLtRVYTaMAwIQA07GzKwjSRunLUxC8H0c4n4jDPGE8j3h8emyOTfHbgBIHBQDg6ekJ4zjin/7pny5cWqTwzv3t+efXXIxafvfyc/4717pf0wZxQgIAfd+j73tsNhvMc8zcMc9zbnOe54LAkAaf3Jno/lYcRA1r5vVbLShrbfNYER7AXiMuMqCa/xvHmELv6ekp1+/46aef8jopFAoFx7t3b3E8bvHNN78DANgixXP8mbe3JESTMFrT7tdAWnEjfOuBRnyAob0Ol5aFavvIBMdYA2s7dH0HGwDvHQbvsuAcvIejrEppHBQsHrxH1/cxTuMFZ+AFuYAY8g1zuLgHjAx5HzMmhQCXSENI9h0aXyDLT7b7pPW2NgdCT95jYpZnYy2en58wT3o+KJQ4KBJI60w5+zk5GIahqMHQEn5vIQKtz2rXXbMySDcefn8tboAEaJktiv+suUvVxldzR6rd15rL2hrWXIv4fXL8ay5ZPAia7iVyNI4jDocDuq5DCEFjGhQKRRMxTgw4n88IQ0AnFEi5yOeN58OF9YC9xUmC9AKitkIIpbsSKUwQLu6tkY5sRQjLvdZYBBPgaR8GWUxuV/jIOXDBvXX9DcaSou3L96kvAN7D26UuAxEwIxrIa5MIQ3xvsWLPzuE8jpEkdR3mKdZuUCiUOCgK/OUvf8Hd3R3++Mc/4nw+Y7vdYrPZ4P7+HpuUyxuImpfT6ZSDc2sxC/xnC9KVp+XmRIIyJzVcOJYuRQAKdxwqaEaoCds8YJhe1ypec6sG749f15orJwWt2IMa+GfcysADvWsxDX3f50xMx+MxWxpOpxOOxyMeH9XsrFAobsM8T/juu+/w+vVr7LY7dH2P/X6Poe9xd7fPrj0A4MgNMu27UnBtCfQFMhkwgLkUwHmwMHcj4n77BsgZgnibPgRgnnNROjc7+JDiNJKgbXIb6TyzJtaX6PvFtSczBbNca1g2qHA5x+oREZZ4Bk5mijOhdqNwUYpxDW4Zb7DF/HnbpuvQdRZ912OaZzg3YzyPMZZhnnE6HpUsKC6gxEFxgfP5jO+++w7ffPMNrLU4n8/YJP/WV69eYb/fo+u6nJXpcDhcCLBr7jrX3qsJ0zUrQk3w5n0TAei6LteQoHHWYiBq4LEF14Lo1ghD630ZVyHHxMlBzdpQIzC8wB5ZGMZxxPPzM8ZxxOl0wuPjo1oYFArFB+FwOGKaZrx6eMA8TZisxTzN2Gw32Gy22O92GKcJx+MBT0/P0YWG9ivuilTDhQX58pJy31+JLU6pVZEyBQHIMRPGxOxD1tpYq8J6WG9BleeozdWxhpDT0ZrUdkCACciF2tbmwfsBYj88OxVPHQvkEJFMVgytpWEZlkIoYiRsR8lNlntNt1Tp9s7j7MacJON8PmNKCiat0aCoQYmD4gLOORwOh0wQttstTqcTjDG4v78vtPLctabm/sOxZoW45rp0U7YLlEK39OuXlgnZbyuouDY+Pr9aG9Iq0nK7IjIgx87b4i5WRAbkGPgGzwkcVfGe5xmHw6GwOGg8g0Kh+BDM8wTvHXbbbfT1T3FTXdchDNG1pUtF44DFXadIeFFz4cl73mWfLXejnKlp5YigwGBuFYgCt0la+ZR21XjkmtXZ3MDjLMo2ybqRXYEq4HOppaZFaodfn3/N1pO0VnS+gp0PlDLWJqIk1qfoL8SYDAo6d87DewfnPMbzGeM0YRzPGMcJ46SKJUUdShwUTfzwww94fn5GCAHPz8/o+x6Pj4/ZbYmEUu7OwwN4CTwAueaHL3FNs0/X1KwQJFzzDEPGLLUPam5OLUIji99x0nFLkN+aVYKPQ9ZhoPFzy0Hf90Xl7Zr1hcgDpdI1xuQUq8fjEd999x2mSVPoKRSKnw/vPX56+xMe5gnTbo/T6YTNdovtZpNSfKfsQCHE+gdYfPDLeODFtcegrHrcii24doYASciXFtkkOJPbU7QUxL47a4GuK7X80jrC9/3ACqytXVcd2/VUstk1VVgQYuapGNhNblhdiOQJIcCjEjztF/ctSwo+xCKoZF14PhxwPGpGPcV1KHFQrGKaJvz444948+ZNFkRDiOn4yOrQ930WfmuVprmQzQX1Gmqf1bT/LUsAv6d2L091Ku/nmnw+9pqr0jWrSaFZC2XwtXQ5kv3KtKpy7i1iRX2QC1IIAefzGYfDAe/fv1cLg0Kh+MVxOp3hnMerhwe4ecYIAGYpRCYLWZI7DcFQGldrozi94hrU3u8vr4vCceNik7ILkfCfAyJiDAMPSygDtX3hwhTHz9K2Nu6rjj+gqGtRTCKtkw9+6ZPONAPYYJYK14Wvk4kZo/iYWcwGD34OU7QczVNMiqJKJcWtUOKgWIVzDs/Pz9jv97lAnPce0zTh7u4uxz5Id6UWrn3+EtwScyAtHS2LhxToa4HH14gDvb8W0yB/r7k0SUIh7625VHFQUDgFsB+PR63NoFAofhXMc9xv7u72MM6CQnz7rgM2G3RUIdotbjcc2YUoRNIQmcMLz4gQCuEaWI+di58jWxxgFqtBLk4n9+tkXcia+xRwnN2eUD8fCrdd+tk6IxKJWT1D0jp5RKLFlqCcXKMf5x2CDzlz0jzPUSH4gsxRit82lDgobsIPP/yAd+/e4fe//z02m02RorVWHK7mCsTREoTlNTUrRu0e0mrxzEhv3rzJxeyenp6y9l0K7DVLAM3Be1/ER1xzUZJjXzWlM7ek2v3S5avWJq09uY0553A+n6MJeprw/fffX7SjUCgUvyRC8Pjxhx+x2+2w2+0wDDOGzQYwBj1L5W2iZF4UfAMpZQphu2y/te2SW5EUeqsxdkzQ77oO/TDgLinEfAg4paxzzrkcoMyzHAVysaKzIhEem92dbOFmtYy9fv7JwGd5z2JlTgThggj5i9uDcAOLFoh4rSdrwxzTqs7TjOPxGNPrKmlQvABKHBQ3gQTZp6cn7Pf7HNtAqU55sHQtNoBqBQC4SKnKhXJ+H2UEWosVqP3kQr9s47oWyly0xV9fIw4tslDrp+XSVbM48HHwmBKa2zRNGMcx1+M4n8+aFUOhUHw0BITC3SUgCca0x3c2u/SQz75Bcg1KReKic5GvxADEuAT+FrVfuBolcCKSlf2V+AMfloJugd1rAXhQl+zsCAGBzgLWT07Xek2xVOz5i4vSLYI7r6AdLR+sPX5Osd9DGq+bJjgflUneezjncT6dYm0OJQ2KF0KJg+JmeO/x/PwMYBGEp2nCMAy4u7vLlZYpiBe4FIjlz1bwMb+Oo0UU+Hv02rlYBZRqTdTIQy1eokYWbg3srvVxzXVL9lWLteDuU/J+ims4n8/5YDgejzgej81+FQqF4pfG7KLl03Zdobjp+g6bYYOu72FMTAEKpH3PmlxoLQrRZiEdCcaGXMuBEAIuSUOxt5dkoZDpEwlwzsMal12AIC+puCxd1G2IDCK+f80V6YY+jOySzgEs54+Dy5aP+Fmao+WTBJBiIYg0jOcxpp51DseTng+KD4MSB8WLcTgccDqd8Pr1a0zThK7rMoHgbkz0jwu7NQ041663go5rwj1/TVYLirkgCwZp4s/nc9bG1ywJ0mWJ3ufuWLVg5w8BtUPrQi5GfD1qa8HdwsglieZ1Pp8xjjEX9+Pjo1oaFArFJ0FAwOH5GcMwYOu3cM6j6yymacZmGKIFOhWmtMbAGlumOa3sXT6E5M8v0mknMiEU71XCYC1VuLbo7FLl+jyO8N5hmmb45P+/1HpAFL5xGdhtyU0pZTiK/aZmL6T/l8FYA+sjqQgmWmh4IbZlvvKMWCw64zjBJ5fVaZpiPAO5smqiDMXPgBIHxYtBgv7pdMpEYRzHLHQTWZAxAbdYGm5186kRh2EY8ObNmzymaZpiBcwULEyxANTmLcJ/1VeWWQBq47yFUNQsGKSdI9D6SeJFBIhSrdLv4zjm4HWFQqH4VAiIyo1xGrEBgNAhhChYd32fipJ1Fb99ii1AqYUPuRLERT8Xbkoo3ZSIRHSdxWazxW63xTAMAADnYqIPl6zSPgnntS28dl7I+griBrEoobgvv9U6L4yJcRneASFa0Dlxye5SLHYjBB8Dn/0yL6reTXFv3jt1T1L8LChxUHwQQgg4Ho+FAE6ZfLbbbdbUE2SGIEkeuN8+v076+bdch/q+x3a7xR//+Efc3d1ht9vhcDjE/NTPz5jnObv08PZ52y3Sco0I3HpvjQARwSLhn4gNxYXI2BEiB9M04ciD+bzPFgiFQqH41HDewZ0dOttFATvt5QOAIbkskdsPF4jjGwGe1y4I9fgyErxDCDBFnZ2FMCxnxID9fo83b95gv9vBh4Ap1bg5j2MSrj1ccKKDBkIMWA7Jzyq7W92IWtOXJAg53iPGJrjcD8WMDIk4AMA8uRwAPSWl0jTPQAiYncM46vmg+PlQ4qD4WSAXGQDYbre4u7uDMQbb7RbOOex2u+yyxGsXAHWtey1AmN4nclEjD9vtFq9fv8Y///M/4/Xr13h4eMDf//53vH//HgDw9PRUzVPdcj+qxU3U7pPvcbcnarcV4M1rX5C7ErlScf9gIgbTNGUyJKtBU18KhULxOeF4OgGIwvx+t4d30T/fe4++7zFsNrH4mjEXGn8iABfWXdLYs0xH8D7WgrBmuYe08sZgt93izZs3+Ic//QkPDw+Y5hlPj4/ZMnDs7KXgb8iaEN2GTGC6+sbZANQJBAVVp+CM7GKVrSZ80mFxjfIh5IxI3sdgbput3j7f55MyzzELg5tnnM6nn+M1pVBcQImD4meBC8nTNOF0OsFam12DyIWolXK09V7NdYd/xuMO+r7HbrfD/f09vvnmm0wcqKhNrX9JGFoB1vSzllGp5ZpUIyC8r9Y9sh8iDQCymZnqMtD6UjC0QqFQfI6gDEohxDMiJE09ALiU7hp9H8nDxb1IAnZS7Ii6BQFEHgKs6WJNCCwuRBSD0NkO290W+/0eDw8PeHh4iG6e04ThcMC56y4ISg5TMDGlKUy4sCpQDQdOUMrxV5yC0rW5ABy5GNGZAWkNTz9ToTwDdkam2IfgI7mI7rkTpmnOQdF6Pih+aShxUPxiIFcb732OMbDWZquDDDCWgcjSrad2Dff5J9Kw3+/x+vVrfPPNN/jjH/+IN2/e4O7uDu/fv8c4jhiGoSr4UxtAdA3y3lfJwq0ZlTgoiLnmosXbp2vJmsItLRSfwbMlUUpcrc2gUCi+NIzTiCnVEXDzHBNpWIsNADP0LKg5FlsDEkGwLM6BBPoQ06hSzQUECl72OUjYWIO+H7AZBtzfP+D1q1d487s3uL9/wPl0wvl8Rt/36Dqb3I4usx4BZG2IwjvyHo5EAkRGJRrL2jmRyIMFlvFjcdmilshVyTKLO3zKCJUUa5R2m1um1SVJ8WtCiYPiFwfPYOScwzBE39LtdpszL8ngaRLa1zIeccGe7h+GAa9fv8bvfvc7fPvtt3jz5g0eHh6w3W5xf3+P4/GI/X5fCOa8fekSRahZIPjnRAhk6lSJi2A6Zi2h+AUAea0Oh0MuynM8HvM6Pj8/5zEqaVAoFF8qcsafpBxxzmHYbNB3HTbbLXpKrtHZJdA5BHiknEqGVXg2KQIgxJoMFjbWOEBAsAF9F2Pf9rsdXr96hYeHB9zf3WO73QIhYLffY7fd4nQa+ACzuxMgiszxMwLl2UApUbmb0fK6dT7g8rMUr2GsQd/1uf2ZZUg6Hg6RgKXzgd6vBYsrFL80lDgofnFIIZy05XPSMBGZoLoPaxmOpKaf/yPhe7fb4e7uLgdFb7dbbDab4nUnqpe2YhdqfUuiQZDjkffSNfxnrX26n+IW6CA4nU459iGb+BUKheILRwgeKdRhsbCms8D1Pbq+x4DoYrr489OeyhoyBiYsLkxBCOrGxMrVw2aDbToPhmHA0PdwfY/NJp1DXV+t+twExU+YdhwcJw3ZekJZmKiNlT2dkyYKjvbJquCcw5zIgvc+xjR4VSgpPg6UOCh+FZD/Pbkrnc/nHCRN8Qj7/R739/dVckCvgcXth96j2AdyVXp4eMDr16/x5s0b3N/f4+7uDsMw4OHhAafTCff397m2xFqws7Q4kEWkRh74PxmLwd2pWsHRzrnc5jiOuTbG6XTKqVXfvXun/qkKheKrBO2b8xzTZltrcToe0Q89+n7A/d0dBqoL1C+adxK2aUc1xqBj+3cIUVAPNsB2FsNmg/1+j7u7fbR873bYpHSs+/0eu/0Om0NSLqUgbUJAaMr3xiDWoKDzoXK2kLXCF+NOFo3Fw6pwV4Ix8XfvAQp0nmccj8dUj2HGPM04no6aRU/xSaDEQfGrg/wuKdUoZQWi+grkxrTdbgvXJdLC89gG+kepSimT0/39Pe7vowmaXICoTXqPiIMU+mXcAe+HxsOrYfPxyexHdH3NwkFtU1pYyvR0PB5zTQb+T0mDQqH4LcA5B+c9jIkWatudYQBs5hnzZgB2e3R9V7juAIg1CYIQ4pOVwhob4xs2A3a7Hfa7PTbbTTwfOgvbddH6MAzohz4WXSM3qBCtItxaAIBZGSysWUhGJgZcwcVIg/c+p5g1MDDBFsHUFCNhUhap2TlM5IKUUsWekwWa0qqqy6riU0GJg+KjgAvBzrlcA4Jr5rnALi0LXPvPr++6LpOD3W6H3W6Xg6HJFWqz2RT/HDP3yixKrb44wZCuSfI1Jx0yRoLIEBEGimWgtLbcX1WhUCh+C6D4AdpKqWYNZQ7qbIc+RCuBZVWfKZ4BsOAeQARrYpwApX3dDNGCEYONU7tdtHCQ+2wONAZgAhBEeyTg5+xINBbmIpWDt1E/J6hwG3ePyvcixDoM84zz6YRxGuFmtwRBJ0WcQvGpoMRB8UlAWvZpmvD09ITNZpPdlyiYWQZEE/ngVgNrLfb7PV69epUDpPu+h3MOb9++xSaZqb/99tvcDtU+oAxQNfeomksTF/z5NUR0eNDzfr/P5IHctg6HA56ennA+n3E4HHA4HJZgt2SGVigUit86AgKeD89RoB8HjOcR/dBjs9nm88Fau2j6rYcPgIWFdz67DsWsSmSZ3me3Vu89zPGIQ1IsxcJwv4Mx0V3qlKzi3nsESoCRBxeEOxMbd0C2LvBrrDEISUnW9T2GvkfXd7DGZsJxOp0xjSPO5zNO51POqOfmGOd2Op9+5VVXKG6DEgfFJ0MIIbvoUAah4/GI3W6XA5q7rsNms8lCOR0YVCvicDjg3/7t3zCOI96+fYvD4ZA/+/Of/4zHx0e8ffsW7969wziO+RChuAtylyJICwF3Q6LPeWpZKmzHXa/meS5S5JGbFhGGcRxzNWvNlKRQKBR1OOcQUhxEP/a5TkHfRcG7sx1sZ9EjuRqRtdcaWNthHCc8Pj0CADpr8e7de/z4049wzuN8OuHdu3d4fHxM51CMF+j6HhvvMRsT93OZ/EKQBqqXQFwhuzJZm6tZ+1RPwTuPeZowTxOQ2qdzYhzPmKcZ4zRltySq0aCJMRSfE5Q4KD4pKO6BQP795HJEQn7NAkBxAn/5y1/w/PyMH374AY+Pj6DKy99//z1OKVc3pf0jFyYASyXORmVnoKyrwMkCj1uoZUXi/yjgmddkOB6Pv/xiKhQKxVeEEDxcQKz7kOIgvPfRvYjiE3wHYyw6CAE7BIzjGY+PwDhG5c3bd2/x448/IPiA8zji+fkppoZ1DrOLihxrDLq+hyfCsJb9SGRNArm6Yom1CMkFy7tIMOZpzucOT6lKZ9Q8zzidz6DCeQrF5wYlDorPBpRVCADu7u5yfMLd3R22223OvEHEgDZaugdAjmsgf1UiH/f399hsNjk9K1keyJJB2n9Zl4E0WBRwTcSBYhIOh0MmJuR6RVmRSJPEazAoFAqF4uWIcQ9njOMZ1tocr9ClvXyelxoQVEhtToJ5thgnYX4YhmzB3mw26Iceu+0uZnSimIhUzTpgsRiQ9p/v5NZY2MEuRd06ixCAaRxxGEe4OVoR5nmCczE+wac020QepnFs1npQKD43KHFQfJbggcKUyvXt27eF5WFJ5zfnwnJEFihbE1WEjqbg8SKOgMc0dCnLBo93IELhnCuyQdH4qNYCjeV4POJ4POYsTK10rAqFQqH4MAQf48acd7CTxXg+49D3KSsSS2rBMhoNmw26zuaEHF3fw6TzwSd3I3/2GDEu/TBh3sDA9nb5jDIv+WhtJjIwp9eUFYlqL/iQzojDAS5nWQoxM5SSBsUXBCUOis8S0oXpGvb7fZFmFUCOk+BxBtwaQClds9ap7y+yKQHIpON4PBbxCfQ+wVqL0+mE5+fnX2gVFAqFQiEREKL70o1FzwwM7oxB8DFubjbxfOm7LgrvzsPNyV3JRWVUTM9qcxpYay162y/nAwJ8MHDB51oL53Es0qa6eV6URsnl6XQ6KVFQfNFQ4qD4KkBZmoAlreq3336b83QPqeAPZTHidRmMMbnWA6VypcOBrqdgZ7JwcDckDrUsKBQKxeeFgIAD36uNwWYz4P7uPmY3sh36pGSiukN8J+86m+MquFXDh0g4xmmEd0uiC8r2dE6uSnIsCsWXDCUOiq8GMqXq09NTzszEA6x5QDSlUR3HMfu88sJtFKxGOcW565Gs56BQKBSKzxOFwB5CrL58PEbXpRTrRiD3JopnsNbCmjG6N6VrTKrwHBLR8D4VjGM1HJxTNyTF1wclDoqvFofDofjdGJNTuwIohH9ZrI2DNFAKhUKh+DrgvMPxVGa367uY1pVKu+WMSVmZVG9rnmYlCIrfDJQ4KH4zCCHgfD5fxDAoFAqFQjG7GXAoiINCoSihxEHxm4MSBoVCoVC0oIRBoWjDXr9EoVAoFAqFQqFQ/NahxEGhUCgUCoVCoVBchRIHhUKhUCgUCoVCcRVKHBQKhUKhUCgUCsVVKHFQKBQKhUKhUCgUV6HEQaFQKBQKhUKhUFyFEgeFQqFQKBQKhUJxFUocFAqFQqFQKBQKxVUocVAoFAqFQqFQKBRXocRBoVAoFAqFQqFQXIUSB4VCoVAoFAqFQnEVShwUCoVCoVAoFArFVShxUCgUCoVCoVAoFFehxEGhUCgUCoVCoVBchRIHhUKhUCgUCoVCcRVKHBQKhUKhUCgUCsVVKHFQKBQKhUKhUCgUV6HEQaFQKBQKhUKhUFyFEgeFQqFQKBQKhUJxFUocFAqFQqFQKBQKxVUocVAoFAqFQqFQKBRXocRBoVAoFAqFQqFQXIUSB4VCoVAoFAqFQnEVShwUCoVCoVAoFArFVShxUCgUCoVCoVAoFFehxEGhUCgUCoVCoVBchRIHhUKhUCgUCoVCcRVKHBQKhUKhUCgUCsVVKHFQKBQKhUKhUCgUV6HEQaFQKBQKhUKhUFyFEgeFQqFQKBQKhUJxFUocFAqFQqFQKBQKxVWYEEL41INQKBQKhUKhUCgUnzfU4qBQKBQKhUKhUCiuQomDQqFQKBQKhUKhuAolDgqFQqFQKBQKheIqlDgoFAqFQqFQKBSKq1DioFAoFAqFQqFQKK5CiYNCoVAoFAqFQqG4CiUOCoVCoVAoFAqF4iqUOCgUCoVCoVAoFIqrUOKgUCgUCoVCoVAoruL/D+qJ4AhPZ36hAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAGGCAYAAADSPtbRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/WmTJEt2HQgeNfM1PCJyz1fvPRQKjUIBLBAEBdPCocxIU4Tf5iv5k0daumU45DTZJJsLCBRQ2OrVW3KJxXc3nQ/uV/3Y9atqFpkvI7d7RCLc3RbdzP0u56peDTHGCIfD4XA4HA6Hw+EooHrfDXA4HA6Hw+FwOBwfPtxxcDgcDofD4XA4HJ1wx8HhcDgcDofD4XB0wh0Hh8PhcDgcDofD0Ql3HBwOh8PhcDgcDkcn3HFwOBwOh8PhcDgcnXDHweFwOBwOh8PhcHTCHQeHw+FwOBwOh8PRCXccHA6Hw+FwOBwORycGfS8MIbzLdjgcDofjHhBjfCfluo5wOByOjxt99INHHBwOh8PhcDgcDkcn3HFwOBwOh8PhcDgcnXDHweFwOBwOh8PhcHTCHQeHw+FwOBwOh8PRCXccHA6Hw+FwOBwORyfccXA4HA6Hw+FwOBydcMfB4XA4HA6Hw+FwdMIdB4fD4XA4HA6Hw9EJdxwcDofD4XA4HA5HJ9xxcDgcDofD4XA4HJ1wx8HhcDgcDofD4XB0wh0Hh8PhcDgcDofD0Ql3HBwOh8PhcDgcDkcn3HFwOBwOh8PhcDgcnXDHweFwOBwOh8PhcHTCHQeHw+FwOBwOh8PRCXccHA6Hw+FwOBwORyfccXA4HA6Hw+FwOBydcMfB4XA4HA6Hw+FwdMIdB4fD4XA4HA6Hw9EJdxwcDofD4XA4HA5HJ9xxcDgcDofD4XA4HJ1wx8HhcDgcDofD4XB0wh0Hh8PhcDgcDofD0Ql3HBwOh8PhcDgcDkcn3HFwOBwOh8PhcDgcnXDHweFwOBwOh8PhcHTCHQeHw+FwOBwOh8PRCXccHA6Hw+FwOBwORyfccXA4HA6Hw+FwOBydcMfB4XA4HA6Hw+FwdMIdB4fD4XA4HA6Hw9EJdxwcDofD4XA4HA5HJ9xxcDgcDofD4XA4HJ1wx8HhcDgcDofD4XB0wh0Hh8PhcDgcDofD0Ql3HBwOh8PhcDgcDkcn3HFwOBwOh8PhcDgcnXDHweFwOBwOh8PhcHTCHQeHw+FwOBwOh8PRCXccHA6Hw+FwOBwORyfccXA4HA6Hw+FwOBydGLzvBjgc7xPn5+eYTqcAgNvbW8zn8/fcIofD4XB8CKiqCo8fP0YIAU3T4MWLF4gxvu9mORzvFe44OD47DIdD1HUNABiPxxgOh+n9brcDAOx2O2y32/fWRofD4XDcP0IIGI/HAPaOw2g0AgDEGDGZTNA0DWKMWK/X77OZDsd7Q4g93ecQwrtui8NxL3jy5EmKMjBijIgxomkazOdzXF1dvYfWORzvFu+KMXUd4fgUMBwO8fz585Pvs/xumqZB0zT47rvv0DTN+2iiw/HO0Ec/uOPg+Czw8OFDDAb7ANtgMEBV7Zf3xBhb32153zRNijisVqs7OREhBDx//hzL5RKvX7/+sbrgcPwocMfB4WhjOBzi4cOHSR9IFFp+K5aO2Gw26fyLFy9StLoPLi4uMJvN8O2337rz4fig0Ec/+FQlxwcPbegLdrsdmqZJQr6E0Wh0ogz0awghKQ4doh6NRi1FkatDyplMJgD2Toe03WKwJMIhnz387XA4HP3Bhj7Q1hGbzQZVVaWpqTmMRqMkv6UMLsdyILjO8XiM9XpdnN5a1zXqukaMEePxGJPJBNPpFE3TIISQ1Q/cls1m446G473DIw6ODx5Pnz41hfrr16+xWq3w9OnT1veThbz1x2Xorz87E/K+qioMBgN8++23WcO+rmt8+eWXyREYjUao6xqDwQDD4RCDwSBFPOSa7XaL7XaL9XqNGCO22y3+7u/+zhffOd4pPOLg+JQwHA7x7Nmz9Fm+37vdDt999x1msxlms9nJefm+VlV1oh8ApLUMGqwb5HU4HGK1WuH777/PtvPRo0c4Pz/HdrtNukHrCSGvREes12tsNhvsdjvEGPH999/j5ubmTYfK4eiET1VyfFSYzWYnIeHBYIDz8/NkeNd1nTJcrFarxCjJvFO5XwSwhlYOPG/VgkQgBoMBttstYoyoqipFEXa7XRLqo9EoCfzpdJoUgyzG1pGR7XaL3W6XFMNms8Hr16+TwpK6pO/Sp91uh/V6jRcvXrzdgDs+S7jj4PgYMRgMUiSXj4mOqOsaVVVhOBwmfSBZ8kIIKRqgCSQG6w9BjmTi+weDQSJ/REeJnhKSaDgcoqoq7HY7DIdDDIdDTCaTpNdGo9GJ4yLkkuiH29tbrFarllMj+kWiGaIjfvjhB0/w4bgzfKqS44OHhJAl3MzTemS6kLAyImxF+I5GI+x2u+RAyH1yL08BshQEszs5RSLXAsBkMkmGvLR7s9kkwS5zXMWxYGdHlBqXx9dK+8/Pz9MUrN1ulxQhK5WmabBcLpNSjDFitVq91XNwOByODw0iywEkIobPjUajVlRXDHAxrIfDIbbbbWuKj0QYADt6IGWzvBVYekSO1XWN8XicptbWdZ10g0SVhdyS81o/cL3yWfRdjBHT6TT1SfooY6Aj2vP5POmV9XrtU5wcPxrccXC8N1RVhSdPngBAK2LAQlXmgYpwFTaH1yuI8b1er9N7KUcEMbP6cpwZGjHUeVE0C3FhrLgNOnohUQFZ4yBOTy7KIf1kxgjYOyPyJ22ez+eo6zqNx2QywdOnT1FVFZbLJf7Lf/kvPsXJ4XB8UphOp7i4uEiGM8v7qqqSnJ1MJsn41usZ1ut1MtyFJGIZLiSTkED6GjHQRTeIngDQup/lOusfAeum0WiU1jloQonluOhBXnsnzoC0d7FYtMZLxuPnP/95uufP//zPcX19/Q6ekONzhDsOjntFXdd48OBBlumRz3qdghbCfC8b4AKZXsQRgt1uh7quW4pAX8uRAS5LzvEf0A4nSxl6upWlSPTCN1FUw+Ewta2qqpNxWq/XqR/CNAHAT3/60zRWq9UK19fXPhfW4XB8dDg7O0v7JQi5w7CmDmm2Xq4DjjJYDHC+R5j6GCMGg0GKTLCjwvJf2H/N3rMzw5EEKU8IKzmvdQQ7Ktx20QU8bRU4TnMVHSFgsonXTzx79gyPHj1CXdfJkfruu+/e6jk5Pl+44+C4N0io+fz8vDX304I2qq2sEwIdPZD79foAMcZFuG6321b0QYQwG+zMIrHgF8eBoxU87cpyHrRTIWOgHRhRCHq+rcyhlXZLRqnBYIDHjx8nxbNYLNL0JWmfh6kdDseHjtFohOl0itlslqbjWLLLIpcsp0EgclvrFTbGRUbL1CJxHlh26wiDjoJY5JKsOeC2Wu8tcoyn23I0xVrQLfXwujnWueJErFYrLBaL1nq6u6SSdTjccXDcG37xi19gNpvhb//2b1vHeU6nwIpIMCvDioGFqrBBen2DOA+TySStiVgul60ymPUXx2Kz2bQUhjD9Mtd2OBwmIc3ZMXhKEysADpFLn9g5kmvE4ZG+WA7UarVKfZDrB4MBZrMZvvzyS3z99de4vb3Fy5cv8dvf/vbHeIQOh8PxTjAej/Fnf/ZnePnyJV69etU6p6OvAssRYINdIDKT9QOvYeC1ZDFGLJfLk/SqrEcAJOdCiB75k7V44/E46QaORHDCDHYW+DpNkunPQjBxREKuk2s3mw3W6zVub29TNFymMZ2dneFP//RPsVwusVgs8Fd/9VdOLjl6wx0HxzvFT37yE4zH41YoGEBrPiqvM+C1BjwNCLCZe21Q82I6jgYw4yOOhigJa+6sZnTEKB8Oh2mBWozxRPgDxzR+bPAzxEGRa4XlkjbzdaVIC4epJRohwp8XcJ+dneHZs2d33qTI4XA43iWGwyG++uorAGhFg4Hj/j1CCImcFjkncl0IHrlHkzPasZBjTOoI685EjtTPhjmXLfJfmH1elyeOgzggDK3vpE06qqHbbumRLv0gZcirrPXYbDYtHfbs2TNcX1+nhBsORwnuODh+VOg5l1988QUuLi7QNA1ub2+xXC5bzD6nMJV5m8AxzamEXYH2BjraUWAHgDfUYecBOEYnQgittH0iwHkuK0c4ZEqQpNCTe3lzOik/1xYAJ+0GkN0AyOqfHmuuk50t6cdkMkkLqm9ubrBcLk/KcTgcjvsAy2VgH2X4nd/5HQB7mX91dYXtdptkrshdnrYk92rHQeS3VZ+lLwRCtjDRo9c06CmrHK3gBBdMLHFkQTsxep2dXtBt6Qu9/sG61iKeuG+iC0W3yTq5p0+fpkiLRx4cXXDHwfGj4cGDB3j27BkWi0US5t988w2+/fZbAMd805eXly0jXYSdTPvRWSY40wVwnJajowJacVhGvBjW2hAXoauPybQkWbDHayaEtZGpTbzRGzNfui3iKFgh5pKSsxQIK1Euk/eXEIfrq6++wu3tLb755psf+ck7HA5HN37nd34Hw+EwMfExRvzlX/5lkmsiQy8vL5PhznpCZKdMIRX5KJ95yilP++FjABLbDuDEkJeItzXVCUArSiB66Pz8PE0D4ux67EBw1Fr0g3ZCAKQoByPnSGgniHUn908+c+RGFm6Lw3NxcYHZbIa/+Zu/8ci0owh3HBxvBUkrJ7slM3uuhTaHczULDxwXsEnoVwQeG9qadZL7LaZJM0nyXmBNc9J/nGOb0/NJpgxmqPSUJQssxLmtco7/+DwrCh2dkCiKzJGVqV1aUUj4/NGjRynk75mXHA7Hu4Rs7KllMBu5ImOZdNEJIrSe0OsUdPSYoUkXJoq0A6Fla8lo14uixZDnabc8pbWEnO7QTkBOPwCna+gE4gyFEFo6gfWhjPvDhw+Tzry6uvIIhOME7jg43gpnZ2d48OBBYvF5UzJZRyALwqy0pBqcNo8zV+gsFnrup1UmM1ByPc9ZzSkBrRCkbGakeJ8Fabf0uzQVyOq3VlTcXzlvtYfr5E3oWHFpZTocDvHFF18AAObzOW5vb33qksPheCcIIeDhw4dpMzRejyCydzwetxYLW+QIl8fTepgc0sSSjtTq6UByHxvlPH2USSH9qqMhTP7ItKr1et1aHC3t0M4K91OTShqWfpD7dLt4DKVNMg2MnQdOLzscDvHs2bNU13w+P1mj4XC44+B4I1RVhadPn6bsDryT5Xg8bkUYcspAT7sB2jtJ87Qiy7iWP1YI3A6uRwt6nutp/QkksrDb7dL6DA778qJraZvl5Oh+cv/FqNfMDis+eRXHSjtLEvWRnbRFSfNCwuVymcZgOp3i7OwMv/jFL7BYLLBcLj2vt8Ph+NFwdnaGi4sLAEiySGShEEp6Y0+L/GFjWuSfyDEpU68TYzkcQkgpV3kqEtehFz3zujItf7Uu2u12mM/nJ06Epb8s8suKNGtSjMeC69a6kaMfrM9kLaGQXtvtFqvVKo2FpKDdbDZpOtVoNMLv/d7vpQyE33//fXL6HJ833HFw3Bm86EuEEXDMCiEKYTgcnrDjlnLQDAvP2xSDWod5taDlzBR8Xt5LmcK2aAVQch5YCYnC0lOm9L2WItDtt+rS4yBl60iInrbEf7wQXJwjoM2uyS7Yg8EA4/EYIQRcXFxguVy6cnA4HG8F2cFYR3hFfolxqmWanhbE0BFY4BhpsAx6HZXW5A3LZI428JQqTd5omStgskjroJystxwGDY6aW+dK0XIdjefoO4BW1IH7zVNe5TkBwPn5OVarlWdecrjj4Lg7zs/PMZvNsFqtEnPDu1SKQhCWh4WuQBvXWnjxHggWkyTKQhvuvPeBjjywcyGRCs08seJisDKRz1aoWE9ryhn4XEdOKVihcV50bSlbjlxI2FwrnqZpsFqtUnmj0Qiz2QxnZ2f45ptvTnKoOxwOR1+EEPD48WPEGNM6MJkmyaQSz/u3DGtLR7As43UObBRz9IHXLLC85MXQfL3WDVb0ukT26HUX2tlhB4fbWiqbjX3LeeJIOqew1RELuZYdBHbquA8SZZfnNJlM8MUXX+D29tYdB4c7Do5+kKwRIYSURQg4GuM6m5C1ECzHnOTAIWTgKNAsxp2v5zBzKRSsQ9JynM9LuVaomZWO5O8WIa6VjdzL7JilDNhREFhzV3PMl1yvWSf9l3M6njx5grOzM/zmN7/JsmAOh8PBCGG/lkFHXOUzb37G8qxUXg4sl6QcdgTEWZHzUh7LPiZXrKmlTPrwtfKqiSMd0QbQcjzEWRJDnMvTuoUj7Kwn2PnQO0h36Qgeu1xkos/f2dkZfvrTn+K7775rbaDq+LzgjoOjCDGKZXoSG/Ha6NSMigUdLtXhYilPoMPHfcO7/KoVAh+Tz9ymLrDTkIs6WGXlpi3JvZZi0OVaikGXz4pEl6PHRWf+kGiRRJR82pLD4ShBR5oBtOQqgBMj1QLLL60XtMzkcnPR4JKuYEPfimzoNmm9VQLrFouA0jqt1E8eD4tYkuOlqUos76U8fa12sAT8HOXa2WyWog7uPHyecMfBUcRgMMCjR4/MtQMATliOEnLCN5fuTYePOazKRq9OoSf38iu3ge8RB0D3zQpPcxlSNx+TNKgyLnxORxt0G6U9vMGdFubMKukQNPeB7+NNkvhacRZksZxEkmTDuN/93d/Fd9995wumHQ5HEWdnZzg7O2sZ4AKOApciDIIc4VIiiUQW8kZtcp+OJrARbTkxHIlmPWFFq7VBr8tg3QIcF0vzmOi2sk7Q71nm8xpDuUZHHSz9INfK5m/A0anj/omOEB23Wq1SxGQymeAnP/kJFosFfvWrX5nPxfFpwx0HRxbj8bgVWraM/tKUGeB0yg8Lb830yDF51eVx+NZyWHKslD7HAlg7JWJM872aJcopEXYkeGG4rDPgfun+8dxauY6FPTsLWuEAaAl6mZ/KikszVHyvzD9+8OABnjx5gvPzc2y3Wzx69AiPHj3Cr371q5bj4XA4HCEETCaTFImWTdVyUViLAddGuTbGdTRBrgFw4ojw5z76gWWhPs86xkoLrtcGcL+sRceiV6SdvO+DJqG4DTpiw3sJsbEv11rZqbjtkg5X3nPSD4Em8qTcBw8e4Pz8HM+fP8dut8NiscBoNMI//MM/4Orq6qT9jk8X7jg4suAdmiUFqGWcl5wGftX3aeHK5VtOhq7PEpBcPh+32s3rGzj6wPNarfJ0uTqioMPKpUgM90vqtaY6WVEGXbcoIFEMlrLlMZZ2yjSDyWSCs7Oz5Dis12us12tMJhMsl0t3HhwOR4I4C5xSFbCz5N1FR2g9o+UVH7fIF0v2Ws6DPmad42vYidFt1BECvodlNOs91kGWfrPaItfrtXk6IqHrZ/3Ae/7oOmQcdZSjrmuMx2NMp1Ocn5+nTVofPnyI169fp53AHZ8H3HFwZCFz3kejUYo8MCyBa0UP9PXyXjNPjFy2Cc28l4zyXN05ZSLsiwhVnWZW91mvc5A0drxo2gqTW2ABLbAYJW4HT9USBkkcBw65W9ETWeiu99tYrVZpt9DNZoO6rvH111/j5cuX+Pbbb3uNtcPh+Dwg699GoxHG4/HJec26i9ziKZn6eiaRLLLK0iMl/VCSu1bUAyg7AmyAswNgtc2KJujpU9yOErT+zaUD57rZYRAdoffU4HL12HGWJtmz6fr6Gk2z3+AuhIAnT55gPB7j17/+tUkSOj49uOPgOIGkX5NNekrh3hys67SjYUULSs6GZl5y0Y5cFMKKPFgZNXj3Zc3Qx3jcpZlZfamTjXgreqDr4jZzWFqf1w4L18VOA29qB+AkdC1jx5soyd92u8XV1VVyfkTBVFWFyWSChw8fJqfC4XB8vpBprDqtKpDXEVa0wJJx1vmS3tEkFOuGHLmkjWwt47ls7fRoh0AIGLmeiSc27pmgkrUOVsYmTg/L6xi0U5TTD1abeaM3GSNdpkCeJ28kJ2s+ZJ8fKVei0MPhEA8fPsR8Psdqtco+K8enAXccHCcQx8FSCgIdXs1FE+Rz7r0Vks1BKw9tEOfKyjkPWhFYAtdaNKavt6IRep6rxVpZjg8rCm4318vlaMXADBwzR7w+hKee8ZoJiTJox6CqKozHY5yfn+Pm5sYdB4fjM8doNMJkMjkhlgQ5Iig31ciSeX1YeF2npQ+s6EHu/pzhbb0vETulRdna6NZjY0UidPstx0FPT+W62GngMqyF1HoNhtQvpNlqtWo9X7lepri64/Dpwx0HxwkGgwHOz89Pdn62WBpLQeTCw13Zk7ickrAvsU8WdBRBKwJdrsVAaUWhzzHrJH3le0Q4S316fQXDyrbB77kPOvsFh5e1g8DtsxBCSLuE6uMynamua1/r4HB85phMJpjNZmlhtI4AM7sOnOoHfQywI8LMjnc5BaVyStCytMtBsHRfrj59v9afEnmwHCxOlKHP5fQw6wcdkZZrJIrAzoE19dci6iw9wnrm9va2NNSOTwTuODhaePTokckkiYFrLb7S7y1BJ/dbAlYz77lpUX1YI7lPOwclhWAxTHIPM/QWw89rMUrOFEcZrDUQWhnoMbbGmcdFZ5ziMdVOHz8HS9lbrJ8ohsePH+P29tazaDgcnyFkQex0Ok06Amgz45q91vILsGW4pR+0g6BlmCU/c/qDwbrAIpV0ZJffs36Q+jh5iF5XILK+K+kG1yvX5vrN9+QcLgZHKHj6kXb4WBdYx3TZTIyNx2M8ePAAIQS8ePHizgSf4+OBOw4OAEfj8/LyMuV3BtqCXhubcp6NYotBzzkNuUgD15ub0lOCZdyXFILUwyyQXhwtzJDcm1MKmh3T7eJ+6aiDJZCtY7osdg6A03UNjJyTpsddly/M1MOHD1FVFa6vr10xOByfESQiyTtEA7as0uk9c8w7Q8tBHaWwiCOuu2+yDMu4ZwfCcnQsp4EXGHPkQK7Vaxz0mjndJn6viSzpWxepZEH0g7SVpyDp8RRYUR49HvwqCTcuLi5Q1zVev37tkelPGO44OAAAs9kMDx48QIwRy+UyZQgSgQAgCUg5rgWQFmR6YZjOEiSvLLgsJWNdnwuvCljIs+PA7ZT6dNuZNeNQb658nVIPaOcR1/2X6ziMzw6SBYv54rbqCINcJ69Sh8UwWdfnIjOy/uXZs2d4+fKl7yztcHwmePLkCSaTCTabTTKaq6pKa+EETdO05B9Pf8yt0dJOgrxaxq3e6A1oOyoi07R+YnDd2mGw5Kw+Jwa46ABZMMxgvcOLp60IsO57znnQ18tnq5285o3JJEve8yu3S69xsJ4dH5Po/JMnT3Bzc+NTlz5RuOPgAHAUGpINSBwHng9pLZK2wp0CMVa10JVzpdAyCyqdTULXyX1ggcmMT9efHgcWlpwFwwrl8noCHietaPiYVaceG3YyuiIuufHnczxm1vzZHNunx0VSMFrfB4fD8ekixtjaYJINYknswOy4lqelqa6iL+R665XLs8q2dATfL+Xz2jCLVLKMY4bWO0wsWZES3uuCx6ykH7Re0OQUj4Ml/3PttY7pTFSWftURD+1QyDEhGwcDNy8/VfiTdQA4Cj9mYfScTC1cWXHoefUAUgo3niaUM2wtcDnMIFmKQQt6PU1JYGXI0PUxOCxt1cv7IMjeCJqdyYV5+zgDllLQSivXdos54owZXEaOVdPtlvvFcdCKw+FwfJrgRbbymmOtgbb8spJs6Gk8Il8YluNgyUFLN2i2nOvSmYYs3ZYjvBisb6T9VlRXNlO1ovS6XMtp0H3X46vHKmfUa53CxzVBJ45grj36uXB0QxwH1w+fJtxx+MwRwn7Bq15cq9kCDg9zWFI+A2gZ91y+XM+L0Pi+HOMu57QQtoxkjgxYgp+dFw7hcj3SvtVqhe12i81m03JeRPiPx+PWvXJ8MpmkOjh0rR2FkrPAfS4Ja3bY+D45z9BKWz+bUjtkXNiZHI/HGI/HqKoKNzc3+Oabb4r9cTgcHy9Go1Fa9Aoc1zrwZ5afEn3gqakcvdZRT7kuZ8jzq9Rn6YccUy6wHAYpw8pUZxngvMmmpCXl/gyHwyQbWafKJnl1XZ9sMMr908a8hhVx0eMj561ZArmoheXscHssB4IdMSHXgL0+lLWSs9kMf//3f3+yCZ7j44Y7Dp8xZMoJMwPM1jBEgOTmg3KIObfwihWJdkK4Hm3c5gxuFqJWCjo2eK3ogrSV29c0TcqgpEPUovxkvDjqwAudtXCVseXyOJqjGag+SsFi56x6rf52OS5yf86hkz/J5T6bzdK6GIfD8elASAK9EZk4AQx2IIBjAgjWBTrqLMelXEu3lFj/Lv3AspRJJP6T6bksn7UxzeVJ33hM+B7WEXxcytBtZPCaOR4rLbdLhE9uTCynQd9zl3rkvOX0yNqW8Xic9MN6vS6W5fh44I7DZ4zpdIrz8/PWMZnGovP585b1nElIhCcLOIbFXIgCKUUfWPBZayi0kcwKQe/cyWyIzl2t2RUxyCWKwBGMnOMgbZCFwpbiE1gLxq3yuFwuU9qYUwq5sLIwUHoMuxQDL9rWayQk+vL48WN8//33WCwWxbIcDsfHhYuLixRdEFnA024E4jDwFFEmoPi1RC7JgmMdKc5BG8mWnmFjX9rIzgJn0bNkvNYR3H/WNXwvOw56fKQtDEu+S98l+m/tw8O6V4+TRSzxn9Y30n7pp6W/rHLker1OYjAYpCxcNzc3ePHiRfY5Oj4uuOPwGSKEgIuLi1a2JDYIdfaGXNgyF1a22BrgdGMzAC1Fo50IXbeldKzpNACS0JJpQwLNBlljw4udAXsTI90+aYv0WaIW3EYdoWGFZpXNz4HHjhd/6/HUbeKc3TnnxMp0kmP52OFiJekLpR2OTwfD4RBnZ2ctY1XkptYROgLAhr8QNny9yElLz2h2XmfF47Itp0GvQQPaC6JFRwiBFEJIWaI2m03L+M+BSTNuv9ZvFrnD92uih+WuOCIynlJ+LjovZTIZxwu2c/qBZbkVjbZ0guU06H7xOgmddcvx8cMdh88MYujxj5l/6FrwaqXAjJAYvMwOiVAGUDRWNTMkf2yk56IOcj4X0hbBPxqNkgCWcyzY5B5+tY7lmKecYtB9tNoq11uL8PTYcHn6r0shWIsSrXZ2sXq596IcJpMJmqbxqIPD8ZFjOBxiNBqlSENOP2i5znJGT1tkJ0DL+RzpoGUdOwDWeWuevmWUA0gRg+FwiOVymdakaf0g9+pXi1ixnKiSftDXsD61xkzrB6ss0XW6/+yw8bWWfsi11aovR/LpOobDIWazGRaLhZmlyvFxwR2HzwzT6RTT6fSEFbAWrwGnxjOHU5kx4iktEomwBAmXK2FYCWszsyTX63bl5ujzPYPBAGdnZ7i8vMRut8Pt7S2qqjrZi0ELbWbyeXoTcLovgzVOum+6vbmog/Rft437Jp8lEiLjz46HHmtmkUrKOTeO+rNlKEg9T548wcXFBf76r//arMfhcHwcuLy8PMlSZE3v7KMjtOGqd1vORS4ELEd1ZNpyGiynxjLyJ5NJWp91c3OD5XJpGsLcR5a1vAEc0M78pwkmC5rIYqNfZwHkdQ8l3Sft0M+Cy+T7c1N2Gbn263q79MP5+TnOz8/x61//GqvVKlum4+OAOw6fGSxmRAs9uY6RYwkspsdiZHL3agfEWjNRMtIZIiDX6zV2u10SUJvNJi3MskLZuWiDVohaibKw53t0NKYkfLnePtfyGOm6rWdnKTEdpeFrNdPGCwD1fXoRum8G53B8/MgZgaUdh3MsPHC6R4B2Kqz6LSJEy1vLceD2WKSIGP23t7dYLpeYz+dpqpJOua3vFZKH+8rsvo7KsBOhCSPr/hJy0WwLVlQ9RwDl9AO3mfUYP5vSq6UfrI37HB8n3HH4zMDCVguNElNisTHA6ZQYfZ0FqxwpS85bbcyVoQU5L1jTAlArL8sh0kKdx8cCX8PskG5nn/GwxiV3jAV96b7cvV33yTEeo5yBwAv5XEE4HB8v2Oi09EXOsdDRYoF2HIB+cpHLlld9X249ntSR0xOyiR3vR6F1RI4Ay5FL3F7dni7iq6+e0PVY4yTvczqoD5GlUdIPFhGl9YPoWnGqfLrSxw13HD4zaGaEP1uKwRKcFguUm0KUa4MVXpX6dD25z1pgiXCS97Lbs44Q8DxcvodfOUSs69OLmblsHVrWU4mssXgT9HHQLFhKr0979OJ16aNMm5Kxvry8xO3trYejHY6PFFpOWrrBkot8P7/XZehrNCx9Y5EkfcvRxJJePCyRAT09S+sDXYY1/UfrB+67pSd0mzTeVM6/6b2Wfugac0v3yj2yjiTGiPV6jdlshsFggJubmzfqk+PDgDsOnwnqusbFxcXJ5mXAaYhSjllsCn+2BHqXIO9iTUrHc8wPt0VPdRJBnUtF2hVeBexsFvKZr5FXVg58jXaWLCcu11drbKQdufty7JtmyroUAWe+4mvkfAjHLFK73Q7L5TLbdofD8WFiPB7j7OzsZA8Cfs3pCA3LSWCZY92XY+91uSX01RFcFk8t0u3VTpFO+W05QlrPNE3TyirEsl9kqx4Tdrj0+rpcX3PjVIpu8DkrNTo7i3ocNMmmU42zfhAHQm985/g44Y7DZ4IQAqbTaXaRL1A2/i3BpudQ9mGT+H5BXxbJUji5NnHfWClYLJRmflgo5uq2ytH16nbydaWMFtaYlMbgLihFGSwFyXNTNQOlHSHJ1sU5zh0Ox8eB4XDY0hFWBFrQJaP1fX0Jo9z5N9ER1j28yFhHQyRjIHC6DkEbyVqeh3C6/kHK4WlP1rhwH1k/cBSkr37QY1BC36iPdhR5PHhz1dyUVmm76Iftduv64SOHOw6fCUIIGA6HmEwmKXSo/6x7gNPMFrlpSSLo9N4BujyNHAPCx7qEppU9SDsRWtjl/mRDIGbZxdCPMZoRAgBJIDKD1TT2TtQcbdDt/jGQG0cgv7gcaDNqWklyOVo586ZIIQSMx2N8//33b+XkOByO+0NVHdNmWkYiUDbgRT/knA25RmSj3n36bfSDPme1s5QZSkcISjpCFlKL4StrJST1t4yD1KdJJiu5hnY6rKm1PyZK5GDpOeTGJ/e94P6MRqOUKr2qKrx48cITanykcMfhM4L+oet5lSxImZlhwQbYEQYrm4TgrtEIZiksaFbLCoHzOS3weG2DZSizwzAejxNTMh6Pk+DT05CkTv2Z26KVpF7Y1wclB69UVs45tJBj+6xnzsqPnYjRaIQHDx5guVz61CWH4yMAy0SW+wxLR8hxMaS1vNCsvqUj9PV92loiW0pl6OyBOkKQ0xGaVJKyRDeI3JPN47QjwCSUXj+nF433ifbk5HlXdMYam1yURo71cer0dTx9V+vo4XCIy8tLrFYrX+/wEcIdh88IVngRwAmjoY18bRBzeawY+E9fw69v2naGdhJ02zWsBdBWKJqVAgCMRiOMx+MUqZH+SVYOmeeqF0xr54bb1seJyhnv+nPfMS1dU1IapbZZbBqA5Fidn5+jaRp3HByOjwAsA+Uz6wjWE5oUKRmxXTqCr5P3fdvbFWWw2pGDtWCZ31sMu2x+KWtDZNO8GI+Zm6RsnTyDozPcZks/lCItVt/vqh+sMnLnuhw7Pi9rDvlPyLezszNUVeWOw0cIdxw+E4ggYzZJfuAcQmRYC3Y1q6SVQckolnv7MO1dzLp8zjEk8srKkIUXl6GFuAi7wWCQNsy7uLjAZDJJjNn19TWWyyVub29TiBpoK4jcwucu3EVJlJTn20Qy9DQvXZeORnEZEore7Xa+k7TD8ZGgafZ7sdze3gJoT1GVtUva4Ld0hJ660nfqqsiRnPFsoYtdL90jr1Z0gcviqCq/r6oK4/EY0+kUl5eXGI/HKSq93W7x+vVrLBaLlHGuFKV/26mqfaLE+txd9IPcx/daxJGlH7hOYP+dmUwmJhnp+DjgjsNnBDF6S9DsgDam9bQUzSbdJaSZM1Yt5kkLXj6fcx40c6SVAkdScqHh5XKZ5rAKqzQYDLBer0/We7BTpseI6+Bjekzuir6K1RpvPX5auMtzzd3D7JlEXng6QlVVmM1maJoGr169euNok8PhePeQ3+5djG99L+sIgU4CYekgrR+kzBwRYsmzErmir7PIJR1N0JFV1g9ybLvdJnJkNBq11hCKTNTTkHh/Id32kn6wjlv4MSIM+rx2RHhMrHu03mX9LY7obrfDeDzG48ePcXNzkzZpdXz4cMfhM4FWCnouvha6LAC0Q8AMsza4u5RC6Zi05S7IRSYsAzdnzMsr90GuXy6XWK/X6XUwGGA8HrciLlKPHjcpVztEJefKOtcl4HMRgZzy1EpTt5fHQ7dXO2PsNEgZksGqaZqUt/vq6sqzaDgcHzAkM5rAigAAbXZZk0t8r0UuWeRMDjnZ3ufeXDTaqkPLNN1ufs9GszgH8/kc6/U6JR8Zj8ct54nf85jy2Ok1D3dFSZ9qIq5rbLr0A7dbjvG9MpbS39w4yt/jx4+xWq3ccfiI4I7DZ4TcVCIWLFqAWYJamCW+t2uaUhdYmPW934pM8Gct+PQCb90n6atsDBRCOElPKNNv9MJgXaau2xLePwZKLFyuXdy+uzpwWtHmMmtoRftj9dfhcLwbaKO+ZBiy82D9vi0dknMatHzskhV9o7Ns5HYZytrglePcHymHZbi1IHq1Wp04Spaszemiu/TxLsjpB+u9dnSssizwfaITrGnCXd8Jx4cNdxw+AwgLApSZdgE7EKwgGHdxEnTZFrSAZ4Hbt/zStRbzYgkxna7v/Pw8ze+V6UkyZ1XKyLH2PI7MvGgDuwQt0O/qnOm2ldgk/T5XBveNHQj9XZFjwirN53NfCOdwfIA4OzvDaDQqsuwC7TxYZEjuvdxfOl+CjnRYxrhFpljyWkPrCN0v1g/yNx6Pk46Icb87so6sWiSNrieXXMMaH93HnD7L9bEPuVTSCX0cIP390OSSdj4vLy8xHA7x8uVLs92ODwvuOHwGmM1mmE6n6TNPnbG8fi3McuFGBgutEqteMvJz9eSMZy7TKo+VXozHubeaHZcy5VqJMAyHQzx8+BDj8Rij0QjX19dp2pKVlcnqr3bCcuOix1F/1mPex1nSZWgFllMW1vuSMrFS/PI9VVXhyy+/xIsXL9xxcDg+MFRVhQcPHiTW3JLB1vozTt2q1wHwtQKtI+6qH7Th3ZdcKl2Tc4z0q7SLswSNRiPMZjM8evQIk8kE2+0WNzc3aV2c5WDpPuupS3p8ck6DJcNzzlip711y3xqTnG4oORSaXNJj++TJE2y3W18L95HAHYfPBOwMiDEHlI37UjjSEuJ9DOMSckxJqbzc9SKQrMW9vHeDJaQ4LL1arVr3yHngdB5vrn16GleJEdJt7eprDiWWKifwc8escnNsEqf6le8ZO2MOh+PDBDv+XXKqdE7LDpZ9b6MjSm25azks12SjTnaAmDTTRj/ru91uh+Vy2ZKZUobOQGi1U0e45Zo+sjJHlt1lDHR/dbkWEdRXP8hrbk8M1tGiIxwfB9xx+AwgP0r5YZYcg5LC0GyHdU6/7xsyvYtBrevtOmaxSfLeMv45faCsd+DNf1hwakFpOQi5vuXYtRLjkmPxSrDaWGKNckqC+6CdBmth4Zumo3U4HPcL0Q+536ol0/sw4voYy4+SXOgjV/uijzzlabmaDdd9l0Xkco/sfhzjPssSG8W6z9wHqz9WxKavfrB0bl/2ntvaFVFgZ8JKlCLQU1m1rpXnL987T57x8cAdh88AvOsxMyUlZkgbfPpabfTLq35fUkR8v6UQLGWlFVIOlpLTdVp9ESdL2rLZbJLzkGszC1Xdd80mlZyyrr5Y11lKunStdY017YoFvnxX9PO0ogyiVNkI8UiDw/FhQxb4cka0nCHHcoBloKCvjuDPJUJE6yV9jaU3dBlW2ZZu4OhC7v7BYNC6d71eY71eZ4mT3HjwGHYlF+lyAPrqiJwTokk/PR4lHcGbpvKeFFaUQc4Ph8OWni2Nt+PDgzsOnzDG4zGePn2KyWSSTbXHzA8bujr3dO61xJQwi1EKQ2omPMfMW/dYsAxkzXQ1TZMEV27DIj0OrBhY6Ou6c46DbnuXoOTrrLzZOWX7pgI45wDJOb2rdq5uXqvCToZv+ONwfFi4vLzE5eVlijhwVNoyhEWW69+2ZWwKcjqCpwexwanBxqylH3L3WGVwe/g6rXt0P3NOgTZ6LedAg6cJc4r0HEnXt4/WAmurvLvohz7PVSD7HVnl56IYXIfrh48H7jh8wgghYDwet36YFvOujd2SMLSEUI6tyNWRY8ItWIoiJ/hy5ViRBt1ndh5yGZA0w2U5Bbqv+i/X/q4+do0DC2Lt1HG/uY1Ae72GHh+rP1bbLMeIlVgfRe9wOO4fkk4UQFZHALbMs3TEXY1ei2S6q3zvg5zTkNNdltyT67SR20Ue6fN8TJ/P9f9N+p7T2yXjP6cfdRnWddrB0uPBbZFoFkdlPOLw8cAdh08cvDCJ9yewHAZtCPf5MWvmwDJuRfDkFglbLIkuo49w1ehzHQtwYdSZNZH28W7I+k8b4lYf3lbpWcJXXvsKXD32FgunWR/pu1YO7GgAbQdExq+uawyHw6zD6HA43i/kt8zGHNBmyy390FdHaP3Ar4LchqK6HaU65No3ZdNLx4VYkrbudrvWWPHY8FoRnvYq5VqyXM69LX4M/cD6WtqZWyCtdbJcW1pQLue3222aBSHP2PXDxwN3HD5hsNEH4ORHX8rNDaAlALhMuT7H4mgw+5ybvqPv18rmTRWCNpL5VXY8ljmXItQkF7c2jnOsW04h/hgMmYUcq2cd122zhD2Pi57LavVTnAI9Rxdoh6vrusZgMEhT5Hytg8PxYYGdAs2k73a7VoY5yxjNZQ6yDEuBJcuF4GJ9VZq6ZNVxVwJF6zB9P8/Llzn5It84UYbcr/UDt9/SE2/rLHSN79vqB+4HR6JKdgF/tnQlk3PiZA2HQwDwrEofEdxx+EQxHA6TsBNoNlmHZ/UUkxxb0VdA83Vct5UitU8ZjC5WXwtSzbDzdSHsdwCV/ssYsGKwIgy5+rrwpgqjNC0gpyx0vewMsAPJO4azAcFrK/SftQCaFQSf91C0w/FhYTQatRap6v1mBJpQKrHZLGMteath6R4tW9+FftDHdLv1NUKC6IiyJuIsMumueuJN9EPumenPpedl6UjtxHHkRR/XzlNOZ+qF1K4fPj644/CJ4osvvsDZ2VmLwcltSsMRBsBm+UvMugWtXOTPyr6Qiz7oskqMfknRWBEHTqkn73U79WJgPWXnXaGPs8btzCkFLchLipyFu97h02L+2HHQU9AkL7rOyuTp9hyODwODwQA//elPW5mUtDzhKSqAvQha8CZsOpcj0V+pWzZaK+kdy9jP6QRLP5QcCZlmJK8SOeU2sZzTBnOXPnsb/ZEzsHOOAj9X3VfrL0ewsS0BtO0FPa1NXnWKX9FDMnYxxpSRarPZuPPwkcAdh08UJSGrP2sjUTPMuXKtOvhVg413K7pREqassPqcyzFI2ohmhpzHgK8TaEfHYpNyDkwfx6jrGB8XZcsGum4HK7I+Y839A9CKvOQWgkt51hhLGdLW4XCIJ0+e4NWrV+5EOBzvGV0EiDYSc7qgj7EO2It1rWvZaSkZtFru6886unoXiKHM5ep1DZbTYv3pPub0Ug59HAXrmOgHa+8h1g8srzXBpsektP6Bx4r7ZH13uD4m6J4+fZp233Z8uHDH4RNDCKEVUmVhVRJUlsAoOQ6W0yGvXUqh6xo+ljNyuxRBl0LU5/vsmKr7XmpfX2VVUqbWtbmoiNV+Fu5aMXT1zZq2lBtTaY/+3vA4xhgxGAwwm81wdXXljoPD8Z7ASQsslH7n+nxOR1jGMZdjHWdSSRu6XXLLkqNdMrjUf+ucXqvX917LmH4TZwboN02Y9YPlOHCyEm6zluG5552balzKjpTTT1xXCAGz2cydho8A7jh8Yri4uMDXX38NAK0pOHrnRo0cS2KBjcqSYuBpSRJ6lvNizObq1M6Gda7LQenLpunjfULNpXK6xk9fm1N6uWv1pjocbdAKlzfdsdYj5CDXyn4XHJLvE1Gyyurz3XI4HO8WX3zxBR48eAAArR2QeSNHC9rY62N4l3SE1MUyiY3PEoll6Qcr6iyvmhjpg9y1peQeuu6usvq2w+pjjlBjh8FayMxRApbprPv4mVhyPYRwsn7S+u5oPVxyRnjKl+PDhjsOnyi0s8CGPGCHlPWPloW3lUmIhY4ooLquU9aJzWZzUhaA1iI8iwlhaCFSYqusz32u5eOWgdsVFdAMlyUcSwLfMrb19RYbl5u3qpUMX6cZM2ucuH167qpVljU+JQfI4XC8P2gCh9/n5IClIywZxUZnjDGluRZDUzKsbbdbrNdrc9MvbdAKeaHbZLVTy58up6HkJOWOWwukS+VZEZCSDC2RRrly9X25tW85J0Smo8YYW7uH5yLVlh5hPZVrd18HyPFhwx2HTwyaybEYByBvaOuytEJgJoIhKeuGw2E6L/tG6PJZKeQcAa7fOp7DmzgMfD7HeLyJQVyKepTayQwPv/L5nFKw2sxl5sLJuh7tPFiKS/fBclBzbXM4HO8HWkfIsT46osQe5/Z5kGvqusZoNEpySKcz5et1m0pkTJeOuIseKckp7hfLQ0uXlfRp1zHdFssZ4mtK+sGqQxNcWu7rNO1WmwTasehyHHTiDdcLHyfccfjEEOMx5MxRAYFmBnIMjQh6dhakHM1mxLjPjLDZbJJCkL9cWFfK4Kk03L436TfjbQSSpfRKDs5d6rIW1VlOgH4usjeCNT3Jukf+tCOgz+mMSNYrQxhDro8/M3PFxzebjel8OByO+4VeG6VlbklHyHudZpNluNYNrJMkCs37veQyEenpkTqpxV2QM5LfBJbz0Of6vmVrx6uLXAOO04/09CTLONdkIj/rqqrS5mw83pos5PZx+XovhpxO4yhSjO0sS64jPny44/CJQi+AEuiogcUQs0Gp35cEmFZIWilZbItmJ7Qxa13PjJn0kftk3ds3QsCvXegTmdBtFmfMypeeK9cKO+uIRN8+WayYNW2pi9nTdVvtyt3rcDjeH1ge54xCnV/fIma0brBkkjYcNQFitYuvl1dLh+RkCusHdjQskqSrrFx7+iLXJ36vDWa9v0HfMnPkmVWnvj/H/ncl1ejTrj7XOj4uuOPwiYGFuEQNLKOzSyBYaxrk3pzw4dSblqHKbdTCzJpPmXM0mMGK8bi+QtotdfB4lISqPldaC2IJYSuCwHOHt9ttUpScG9waW11nadqPrDnQdev2Wg4HjxW/12Ohy7OOW8/6TZlBh8Px7sFRAmtBstYROcfBMshz8p51gyZ+dN1Sr8ByYKzsPuyUCJFlRTT6RB1yOoKj+F3yLadf9drDptnvpiw6W/SE1GHpYt02lvFWXy2izrrf0hkATLLLuo7L0uV2jYvj44A7Dp8YtHPAQpn3KogxthSHHNdzEGOMrY1fciyCCDypV4S2bOrSNA0mkwlGoxGm0+lJFEOzHjmhIuUul0usVqu0P8BwOMRgMMB4PMZgMMgKMe5X3/HMOUrcJt3m9XqdFoiv1+s0FmdnZ60x4PEv9btPmy2lqp+n1NFnHYKlqLgt1pQ1S5Gwo2fV63A47h+sI5iA4D8t05kUket5umkXyzwcDtM9IhN4kfRsNsN4PG7taK3bVSIkpGyZOjufz9OibNENumxpm2VAdyF3reX0SD0Akj5YrVYpmch6vcZgMMBkMsF0Ok2b81nkUq4dpXZqp0H6bGXM4+csuloWuTOs2QFaN1gRc+048PfB8eHDHYdPEJoRyTEClhDOGY/6mJRhse3MVkl7SoJUl9EVbRAhI4Y5H2OmRpeZQ04oW6xJKUzM7zebTUsx6PR4mkHKsTJdCkE/C+t6OZ4T8KxArHHS3xsrW5c1DroM/b1wOBz3Dzb2gbYRaTHapYgoYBuPghw7notoWASEdkhy7WDHRvTDdrtN6+1ijGlx9mg0OmlXLmqi9WOJWS/pB34V3bVcLltrAvVz0DqiRIKVSD3dnj6REi5fp23N9Vnr6RKxpNvn+uHjgTsOnxgk5MkLmxgltkaf73OtQDNCzKZrRkovviqVq8vnEDQrBpn+IyyN1aacYMr1N2fMl/ouwnK9XmO1WmGxWJyMrbRDs145wZpjYVjB5cLIglz6Vf0d0e+1E9alGHS93F/ps8PheH9gkuUu0HKyxILnZDiz2DIlp67rFtss7YsxtqIhunxNuFjkkizGlkW/nApcIq8sQ3N9svp7F/0g/ZK2sX7QEWuWl1onWSm4S2SNdcwieXLrA/W0XU1EsgOq+2jpCD1eUh/rB3cePny44/CJIcb2GgMRkjoULdmPRMAyLLZDHwdO9wewBMNwOEznpQ2SYUf+RHnoKUbcJ36vBRI7E7LrpJSbm9/axRTlxlbut8Bh5/l8jvV6ncLPLBRLDF2u3zlothCwlUupfGYg9fPk8LSlTOX+HEPHSsNylhwOx/2CDXORk/Kef8u5rEuArSO0ftDGvBjEWjYNh8MUAZA61+t1y3AWGSpZ3XL6xqqXHQngmDpcSKZSGlkuU+rNwbqGyxNHRpwGeWUdqNtTQh8Zz22wnkuf8vU0Jn1NaWys+0qEo+uHjwPuOHyiyDEx1nkNEfDMFud+zJZg0PUxm8FCwirL6ocWTlrIA0fhJilhq6rCZDLJRhlKYEO8pJwAtJwvmVe72WwSuyXlcTQkl9quVI+F3LncM9HvS8yZLkuXmVMkVhu5fFcKDsf7hUXElIxJ65jOZAd0T3/RZWqZ3tVWLSdL8lnfw87Der3GcrnEaDTCaDTKymSrbn7tks0hhOSgsX5YLpeJYGKHSjsyus+6P1a/c8x+F7SM1rLaIodK5b/Jd+Eu7XW8X7jj8ImCBaXOcsTsv3Yw2FkQISZsMZct0KFIzmghn3Xolacx6cweXcqA28dToaR+EcrCWEk/rBzRljLoUgxaMK9Wq+QsLJfL5DTIeWG3hsNhWpzHu6BqAcv9scZbC9ncdZpdslIf6tAz77uRcxZ0Gfq4pcj0mgiHw/H+wdl8rN+n1g0MkRPCkudkgNYN/F4iADrzkSXjLbmUI0f0fSxPOR3sZDJJBJNMl8qx41o38KvVX4EkyZDos6x7k+vEYRD9IJEQK2qhkZP9/Ll0jdaduWcs462jT9x/7WxY53Lt5u+G4+OAOw6fGESYi7E6mUxaGX4YWrj0YQlyC55KAkjXp5WDpXRKQkScgeFwmKIMvMBMGJ75fN4SdsyQ9WFVeEy577KuYrvdYrlcpvHlxc+SuaOua0wmEwwGA4xGoxRyzwlTPab6WF/jWys8zq6lwYuieUz4ev28tILgKQh6XK2pAA6H4/1A5Kcw7oPBIE2zzJE3lo7oihBrg7BLR2i5kYsu5+SfljmSSYnlteiG1WoFAIkcY7mck1M53aQdGnHEttttIpaWy2WLVOPpuUws8ZRdK7qQ07clQik3Vlq25+5jXaSJNb7eWpehx1N/j4TEdN3wccEdh08MOWELlMOaAv3DzwmS3J+OZOTa+Cbt1e2Uubk6jZu0Q6YtiXDm1KcWE2K1kQWk1MXTkUQxyFoAMa7FcRCloOevWv3sM9bWeW5zyfHJGQWlduSuscrnOqx6XTk4HO8fmgDoihhaxp71O2ZZmSM97sIsa91Qaqvl4LCO0NeKYS+RgKZpWmla7yJXBRzB4bKFtJPrxTlgMkn+9Bq4rrHqchp0P3LH+pB3pfGW95qos8rnukU38IwD1xEfPtxx+MQQwn4hmTAfIYTEuGgBqjMm6E3JLAZIoFkQztOfMxKtqUpSbklYWg4KZ+iRfmrFJgpht9thNpslIW0x6Vb/2MkQZbDZbLBYLBJDx+FtCTOLQuCoyNsIxBzD1XUPPz/pjxb4up88DvyMgNMdTvladpqsa6wN7xwOx/1DftdCgkikVuS3IMco6yksOVmkjUqRl1IWYJNI1rSlHHPNYPnEBI5mzKWMpmlS5GE4HOL8/PwkIx/fkzN+AaQx5MQYss+Q1C3kETsLkh6274JorrdEevXRD1Y/+H49lpYDmdtro+Rs5ghLfZ3jw4U7Dp8Qnj9/jul0itFo1GI9ckKBj2l2WI4ztFDQaxnkOG8aJALBWuOQY6p1W+U8KwbO0MOZm3hnUglNx3jM3y2KhMvRglHq44XPkgVDxlTK5kxJvIaBw82WkuVXq9/61YrkWAwcj5lmdPh+S4hzHVqJc0YTfhZ67wfN+Ak2m42ZwcvhcNwPBoMBnj9/njahlIgpy40Su54znK3jHGHQBj1gOyFa3nRln7OcCJZnoiNEbvFUIfmTSECM+xTacj07ULnkGtw3XlsnG35K2nGOKIizoMkzbn9uzwTuN8t1lqkl/aDP8xha42npX3kv13IUXcYZQEsP5/SDJu1EP7jj8OHDHYdPBCEEnJ+fp92ZOWSqjWMtlLqUgv7hs1JggcL3cERAG9Bdc0lLrBJfI0JXwtFyDysqEUQybYmjE5ZAE/DCclnQJgqBowycLYlT/OX6px0HfhZaaevPXSyS5TRosCPHbJm1IFuXJ396GoK+no0DbosoOFcMDsf9o65rXFxcJBJF5uJLKmZNIAE2icHI6Qb9Wafu1sSSpRtK0O3MMd08XWkwGCQZxNfK4mzRl7qvObnLG3tKBFp0hMhIXo+npyRpw1nqspy4LgeqSzfoa0t9Y3sBwInzp9vJ+ot1CpdvOaV6V2wdjXJ8uHDH4RPCaDTCZDLBZDIBgLSrMv8Q5cerN//RwrxPtgygLVSknBxKjkKOXbLCmppxkdCvVgCsGFarVRLmslh5OBy22Cepn+e/CpPE2ZKERarruhVlsMLrut9dSpGFsXYics/AUuYlh0OiI/KMWQHqcvXz5/GyogfaAOBXZ5QcjveHEALG43HKIgQcs/5o5rlkUIaQ3yOHZZflNEj5VttyMtKSqVxfrhxps8hnkXWyl4K0TeTYYrFAjPvo9HQ6TX1kR0DGpmmalEVPiCUhlURv8uJzXmNnOWM5Z6Uk27WjpI3zu5ahx0ycnVzmrZx+0JEmDfn+aHsjxpgIPseHDXccPiHID5aZJDmeM9ZYYFlh4tJ9bBiKkNCslSW0LOGvry2xVRosaHhNAY+DrHcIIbSiAlIXrwFh5SL3MSvHkQVRCNwuuZbbqx24PpEFS6hb9+eeLz9bfb1MYeNnZ615kSlX/Cx4Gphcayl6/ixj1JcZczgcPz5Y1llTiCxoA1frCX2t1iksO7QDoOvu4xzwcUt2We0XeabHAThGl0UmxhgxHo9b1+px2+12WCwWSVdwhEEWWXcteBY9kYvu6L5aTgG3LzdmXfrf0g+yHkXap9e/yLOV/kl/2AaRdmlnKWcTCKHpxNKHD3ccPgGIMQwcBaKVk5qvzx0rsTt8rXYSSsKubxt0+FMrt1I57MAImEGX8ZCIhKyLEOipSfwn7RLWSjIl8TqLrv5YwtK6jo+9CUr18Zjq74d2ZETZWQ6djjbo6FWuTFFIDofjfsGsrnYcANuAZ2i90GXga8JEz3XvAy13dLm5lKQ5GagTPehXYbuZTOG6xCCW9Qu8lkHGg6cjManUpSNKsPSDHC8RUFYZffTD/jvSgH0xKypRVRFVFYAYEKr2tZZT2sch5I1THR8u3HH4BPDw4UM8f/48TddhgdI37KeNdp2Fgsu0BJg28FlRSTmWoOM6ctBMDR/XApFDwswoscG72WySE8DCUpSBlQ1DFIE4DjlmxFKspfc8hvze6qs1Bnoc9bWl+/RxZpBkvJbLZTrHa1Z4XDkVrWy2J8qXQ9Hffvst/uqv/soVg8Nxz/jyyy9xfn7eIpaA9lqxLrCskN++Jg1y7LeOOgh0JNIyNvmvj6Et9+lrrXUFev4+OwXiCHD7Jf22TIeVcnT6bZaXul1Wv/iYfq/HPqdHS2STpXcsUkgwDmP88dMK4HqqgOosov6dFeJvJojzGs2uARBxsw341XyHEE6dO4406amrMk5VVWG5XOI//+f/7Ak0PgK44/ARI4SAp0+f4vz8PC2I1myyXt8AnC7QFWjh3sV6a0eB35eYFouFyLEqrACs9uprRSgJ0yWCiTeGk/AyG/8cceDFwpxRiBe16Xq5/q5juf5b/c6hr/LMHWeHjrNi8FoNdgz4WUtKQUnluFwu0zUcrZDxEmfC2SSH434xGo3w6NGjlo4okUt9dARPy8kZ8mxsS7ksO/tkTbLK1HKxDwljXWtNt+IsepJtiUkQrSNY3gkRZUWgczohRyJpdJFGJTLJGr/cNfuygLNqgoejgMkICA9WCMOASp7fCKgvBgioENcBMQY0MWK4bvDgtyM0qwrNJqA+G6BpdmlKl4wZOw6iH8SB0OnNHR8u3HH4iFFVFZ49e5bSu8kCYGaAAZwIKeBUsPNxftXQzBCXL8g5DF1CMicAS84Dl8fRB60cOPogmab0eVYMXDZv3qaV3ds4DbrNuUhDlwOhn5k1zqL89LhyViiej8vRGGHYhIUTx0FHaDgrhhgVUg47c+48OBz3g9FohC+++KI1TUlkXYnxFlli/VZZd5SimiUdYbH/XUSH5TToiDbXrcvgupntZmPVStMqxIfoBz3fX8rRa+es+nNOQ6n/OfQh96xxadcTDn/iUAF/8LjCbBCBANRPG1QToK4q1HVAqCpU1QjV0wAgIkZg10QMmwZ/8pMV8P0Yyx8m+PPbc+yaDXa7bdIPHKGR7yPrB3EsPOLw4cMdh48csm9DCCFlitCGsSWsBF3GunxmJWAZuHyfVQcLf75WX6PLA47MFi8msxwfXTaz3fIKIAmwGGMylmVxHAs3YeE5w0Rfp4GRUyassLpYu9yYa3QxV3Je+s2hdfnu8GI/aYdOwSpjNxgMMB6PsV6vsdlsMJ/PW4wm/11eXuLnP/85fv3rX2O9Xnf2xeFwvB2qqkoZgkTG6ew/pQhxbhqTtdhX3pdklU4awfcJcvrK0hGsD+Qakfcst7hseWWSBDhd7yDyUPb+EeNXEyQ8jZX3MuC+6Pd8PpeIxFqQbI2ZXo9xF1zUE/zsIkiBiCFi9vu3qEcHh2g0QFVXGNQ1IoBIY4MYgRD290ndj1YYP1jjl3GMv/7VGVarAZ4+fZq+e/P5vDWG3N7hcIif//zn+O1vf4vXr1/fqR+O+4U7Dh85eKGqFjQ5dDkQpehE7o/vzWVR6GJWmH3nNuWM8i4mnllu/iwKRSIz8pnHT0caSo6BNW45Zik3niXkWDU+x6/W+PGfKDuOMmgnjf+srFYyruJ8yPqawWDQ2o1WO1qeNcPhuD/w79dKkWkZsn3krZbTIRynNmq5pkmInFwU2ZRrG9+vocvrikSwLGQ9wW1mB8EaP56idJeoQa7vb6ofSrAcihCHGB1WMz8YRpwNI8KDDRD2fkA1DagGR+IttS1GoKpQNQ32KxuIRJTyq4iqBqaDLR4+2uLlizEmkxHW6waj0aiVEtdK1yr61vFhwx2Hjxzi/QsjUmKwtQHZZQRbxmPOqNQGt57Wo+eTasekDyzDuVQGT5fhxc4yVvo6na+7z7xVq42WIrSUcJcDpsuz7tfvZYy0Uuc5pbxeQy/gY/arlLtbypW9LKSus7OzlMZW5rbympm3UYIOh+Pu2Gw2AJDNtpfTFXdZNM16IKc3eG0EG4g62qGng5YcHQslgoXfi/zijHvSRmbEWXbxovK76AdL9/bRxSUHoo+Tdxz7Y5+fjSv8/sODfkCDJkTUT5eo6oOermvU9NqqE0BV1wCtf0OMaNjuOIzX1z9d4nd/b4PRcIi/+tUFXr/a7zEl+ypJOlu987XriA8f7jh8pHjw4AEuLy/TjsYAWrn12XhkZqUPK8LsPIATw08LMhGifK9mdPQGaZZw4DpKgpejBdxXbo8OQecUkVZqAFpttqIOVrstVp+dJqkrlwrRUnS5+rRy5nZbbZDIwng8TsfEoNcZpPg5WM9GnI7RaITZbIbxeIzLy8u01uHFixcA9szRbDZrLTaMcb9e4tGjR5jP57i6ujL753A43h7Pnz/HdDrFfD4HsJcpuXTIrB/6OAxyLcshvSuzNvg52qj1g55aK+VYyJFj0m6ecqRJFLmPZTJn/9P1aCeI72f9UGLKrT5bOkNHNbqiDhz5sNrNRNnT0RmeTPb1XIwCqlFE9TuLfZShCqgnh52t63pv+DcNmhixEfKoaSAtkFGPaI+pOF9VVWE0HGJ42ABvdnaG6Z9UuHod8R//Q0SM+/S10+k0fSc5m9XFxQXqusaLFy/cifhA4Y7DRwpZoGqFN7uQY1/4NcdoC/h67aRYxqvFrOScB6stui6LYSk5G3w/35NzhHKMUOnVYn+s52O1oTQe1rWl69hZkLm3vJkbOwmc7ajru2M5j/KMJW2hRBx4926ZcywOi0xtcjgc7w6yfgk4lTM58kbOW58tOZpzEizSI6cjNLGVa4cu39IPVj1aN+TkPPctpyd0G0rrQyx9UBoja0xL+sEql++p4hDhcMvjScCjCVAFoDrbIUwPi54HdYvYq6p9CtYm7KcmNU2DzbzC8sUYJe0Q6gbjx3PE6lD/vjHSUEynwHDY4MGDCea3NdaDNTabLWLcpahPXddYr9et763jw4Rr748UPPVEM+Y55JhtoC1krfsEIiy7hJlmsCynQSsyLl+XWVJeOYZK2slt5rJLjoPFhPE46bbklERO8FtKQY+z1Se9SNlqh6w7GI/HOD8/bzFxvI5Dvjc6xaClWGUMOFS/Xq9RVRXW6zUGgwEmkwmGwyEWiwVWqxVub29bjp7sCTGfz30eq8PxjsFsuI4qluT82+oI4HTRskDL+Zx+4HJ1/drBsBwI7TBoZ4n1FJfL0em+xJIVze/SE7k+djlzXTpCymqaiD+4GOLpRIx3mUYEhMdrVA8ajMZjjEYjDGXzWBx0hEwdOpS1ejXG9//n0/33JwIHtwBBsjFVAYPpFs//H7cI1WGq13aLbQgIVYXddrvf42JQ45/98w22ux1Wqy3+zf8+xW63Ts+BN2BdrVbmODg+DLjj8JGhrmt89dVXyUhjBrnFNpBxz8hlYOgj3LgOfT8jx8BoQZ5rs2aIdDvkXu3A9GHvteLga7Ui0FOUrPUKufHSbTgK9H4OHm+eJs84dz+PWVVVGI1GGI/HGI/HmEwmAPbT2DiftpSl22g5D7kpULyPw/ighM7OztJ94mTIOogY9xso5cbL4XC8Pc7OzvD06VPMZrPW9CD+zeeICaCsI0oseokIYWhZwveXyCV9rI+jwa885bZvEhHrmJ7Kqh2JvlEHixSyHBUL/BxlSq70KzRD/E/nQzwYqZkFox2qr1aoz2rUh2j0aDTCYDDYR4g3G2w3G+zk+csftT/iNFlGaIBmDnz7//0S9aDCcBzwxf/8Aru6AdZrvHr9Om2OJ3og4LjmhjfOkwx/jg8b7jh8RJDpSeI0CFgh5NLPyXX8Xn+W61n4WexTToiXDMKc0yD3Wm3R7efPmlHSyDFjpfbxvbk/3aY+ylRec06O1WbNepXAjo1MSeKc4hJVkOlD2jDQzoG1/kLOydoSUVbM0sUYU9YMjkzofnAEx+Fw/HgQ42wymbRIj9y6KI2S4cryNhd9yMm4nBy36u9CST+Ujls6ow+JkZPVll7ochx0fZZOLhFgJb0n9w1CwBdnkW9CGG8RzhrUZxHVMGAgpJjce4hEb7cNVi9HyWeITYPtzQhVCIfpS+12J92wC1i9GqKqa+zGFRY/jDG62GA02x2dELTXoYxGEYtF3SqPHTPHhwt3HD4izGazxOiyImCjEDhlxi1BVlIiXU6AzrTD93GmjBxY+LFRKu3KbU7EAlOHwi2WyYp4aJScKYtl1+Vb48V9yykDXZc1hYr7kwMzXqPDYrSzs7PEhsnmbavVylwILWXo7Ep6LwaGlDmdTlsskmRTEsi6h6ZpsFgsUg55n8PqcLwbXF5eYjqdAjhOTYwxFlMkaxkjZEBJR5Tke875yMl0DX1ct1H0QykCzAuZmfyQ9nEfu5CT49wPvbA8pye4TH5vzRrIjYE22osIAXVVIfxki+q8wXA4wng0QnVwHJoY0Ww2WG82e/m93OG7//A1dqujPggIqOq9sbgLTZqqlKYuxXg8FiOapsJv/s1jPPyDazz+5eu9rD+QTrJQP4SAP/mna/z2N2P8/d8NWpuIStT8ruSf4/7gjsNHBGGUeZ76er1uzV3XBriet8m4C1sjZfJ7nYlIjluRCCuCYQlAuZeZCS4jd7/VB4vtYUdFt6vkSOXGIpdticuzokBWdMEaIysKwOcksiBhZ8l2pDM5yVhaIXpWWrlxkfeyo6o4qU3TpA2S5LPuB7OeVVVhPB674+BwvANw1jQhCThnviQqYOKFI4aCPqy+BZYVrJNyLD8b3VYZ8mrJRpEnFvnEZeWMz1zUgOvT7bJksPVeG/W5MbRION2XLseDxwAAKlQIh2hCddagfr5CPatRDwdpXUNd1whA2tTtUCgao49xv7DhsOD50EYaK3EaYowITUBs9s/+6u9G2Nw+xU/+7AqD8e6YhSlGIAQgRmw2FTab9nMejUbZ7F+ODwPuOHwEYANRG+jMKlkG9pt47MyYcxmlKIO1sVeONbecCy04+zDu1nVd/b2LErSQM/a1oC85ItwWS7n0aSNHQmShPK9tkDbIHFK5znL++Luknwn3BWinOpQdytfrtenY6bZKeyU17GQySY6vw+F4c+g59wBOftcnBmGHfALyUYG+OoJllI5q8n1y7Zu0rUSK6Xb2QY5w6oLVF+2Y8HVaFuf68TY6AgMgnO9QDwaoD1NYJdMecCCTpJ6qQl1HjC42aDZ7mby5HqJpsHcqmmO0QcqPIYLTLcUmJkdjdTNAXNdYvhxgeLHBYEp7iAjxVu+w2w0QQgQQk34YDoeYTqdYrVbuRHyAcMfhI8BgMMDz58/NPQUGg4G5voGvKQmunBDj82KAMmMl6y14eoywW7e3t62yLMaoj9C0oK/TERbLocopzlyZGsyiJ1YnswBc9+1NYClQyxFhY5zXv8xms9TuzWbT+i7IlDZhI9frdZrGoNuvFbNux2q1SmM7Go1S1IOfgZSjNwWU9v7qV79qfV8cDsfdMZ1O8fDhw7S4VOsIluM5pl1Dy5wck89yVt6LcToajdKURiEKNptNmrIiZXU5DX0Nazkm9/OUKmuPBI7WvynJxq/ayBf5nLuPr+2LnC5PfeMIANrk3ugwtXRwmLmwaxo0hylLe6N9i9E//x6xabDbRXzzv32F7XWN3XbXchpabYn7qISMexMboIkQc/8f/j+Pcf7TWzz90xcpJbjsE/Hk6RpPnmzwH//DQwBNq60///nP8c033+Dbb7/tPTaO+4E7Dh84zs7O0mJoXjTEAsMyYK3QLV9nhaeB9g7PbOytVitsNhssFotWPbzwVt4zcuHVkqDUfdLMT07J5erQ15f2lpDrtePF41dKH6jbk7tGR1y6yrPuzym9EPYZj9brNW5ubk6ejSyetuY8y/1WZEUrKeAYeZCpR5rx5I19QggpMgIAi8Wid38dDoeNi4sLTKdTjEajltyySIaSjtDnOf0yywNLRwBI65hkp2q5T+atC0Ghp87m2nsX5PrSJ2phyT/rL3dN7p7SNFZdVu4aPe4WchEhhP10oL0zoc5jv1ZtddhzJ+0oHiPqKgBVjbo6POsQsNUlhIAg5Yb9OghEABVQNdU+EnFox450VF3tp1FBNt2L+03m1usVdrtt0k2DwQDz+fzO3wPH/cAdhw8cwiKLp64NOEFJuPFnPs7lMZPO4UKZPy/gdJrMYsnOwOw4lNgsyzjVfSr15a7npewup8EqUysDvadDjomz+mq1Sa75MSBtlGjC7e3tyTPhaUuWc2mVqd+zA8vOi3a45Ph6vU5Gxmg0SvOTXTE4HG+OEAImkwnG43ErUUJfHSFgWWD93nUZEnWWzRzlt26RR0IuhHDcsZ7L6pIB+nzJ8H4beaL1YJf+yjkPFrFk6Ygup6ZPBMTSo02MuFoB5yOg2i8s4BtQhYAAYLPdYnm7xXJ+nAoUUGF41iAE7NdJhDZRWdQPAUADxBAR4vF72DQNmk3AbjFAHAVU0o6q2q+viBFxt8VquUU9a0emXT98mHDH4SPB26Qn4x+gZazpqUki6IFjdh0AaZMvvkdY69Vq1XI6RIDyvFYtPLl9Vpst5MK+3D9mw1mZSZ3MkulyLPae+5JjfvQY5kL8uT7mxkOH2rlNAJKDx9PGRqNRihBdX1+3MiRxzmxx9OR8HyGtnUYZW/mTdQ+8uF0iDrJOh/vhcDjeDta0nL6wjF8hFXjxsZZh7ADwnjNWNpzNZpOi1SJ7ZfPSXIQk5xxYcioXodbXaHlsTVeS9uk1e8kozyxm1lEYC1o39NEP1pjodtUH9l6ix03Y4L9ebfCLyxm+qKr92oZDmu7hgc0PVYVmt8MP/+0cP/zFCLJQIdQNvvxf/gHDKRBQo2l2aOJ+N2nwuBpRjFa7cZiijL1DOf/tGX77+gG+/l++w/jBFtWhxuYQkfjl8w1++HaAf9hs09Q6J5Y+XLjj8IEihHDMfkDCUE9xYWVh/ci0967Zc2aFpXwAyQjksq3pNVwvC1DLwLaEv8Vocfkl1oHPW8YvG7ba6NaLzK026Ot1WywFZimGXNtZ4efGw2obt0kWGV9eXqZsRWzM60xKHBUSo97KfmK1nacu8HXMKIpzIOFmGQdWvJw6+OHDhxgMBnj16lV2rBwOxymEBGCjlQ1hSw7nIgjWmi0rEQfQXvPVR0doIoQNc0ueajmee6+jv/peXb5eC6idBnEcZGwFJeOdx88ydHNOUUk/5J6RpSNyzkddV6ge7jB4EjGmdSaDw+yB1OddRLMDILtANxVe/8Uj1IOIECpsFgcnMe7XS0j0wmp5CCFFG9I6i8NC6d2uwWa9n5lQbbbHFOBRpkcBVQXEXUzkU4wRZ2dnePLkCV68eNErAuO4H7jj8IFC2BteDM1CwnIENEMh5ViGKTPzlrENIBmV2+02MUTMxOScEW1k6/JzwlUfs8qwFIMIGa6Xowc6W5CVYYjbp+tnBaXba415TinknALd1xwzxuXoBdHn5+epnXoBNH9fWFnGGFsbwlkOneVEcdvkvbBdq9UqTW3LZXHiDeIuLi4QQnDHweG4I+T3b01REnTpiBwxwnpCfrd8L8sPIW2sKEJOP+jpniV0EUcaWsdIezS5ZDkOUm5OP+TGtqTz5HMposL3aBnLdVj3nzoiAUCFweUO9QNgOJpiPJlgeHg+jRBqIvebiFBJeyvc/u1Fii5st9tW+UX9IP1MuVulgUcdsV7sUI0bYAJU4mjSpUxCAftF/6If9BQ4x/uDOw4fKEJop2AtGXBaeN2lDqDtRDDTIsd5jYMWkppB0u3rEqBvAlZeOpSupyrxNB2pX8ZVymIDWsLoMgVIlCH325oSoJl9huW48aLkEEJrl2fNijG4/TLlSJh9ydcuma0Wi0XLcbAYRD01y1IOuv3cPsZut0uLoCV8rpWzKBB5NqXQvsPhyENP+QHyxvTb6oicMa3lr5YZIgtyhFKurTkdoeuxiCg5LmSSJl709E/tNEjEVJcl5cl51g9aJ+o26UXmur+aPGL5z0SRlUFRj/+omuKfPB3i/NESg8FRvjYxYnNIf707TB/dbseIGO03eQvhOB3pYNDHJh73eVDjLT0M8t1DQMD++hO9vy8S3/0fX+Ds+RJf/M8v054RrCP2m4Tuy5NoluuHDw/uOHygEAORow1aALIBzfdZAjknYPk+zXCzkNKGo7zX9eoyc3Vx+3NRiJLzkatfO1UWW6IZN10GKwdmyKywuL5XRwv0eFnveYzvkhaQldxoNEoL1LVDwP3htvNUJh190oYIH7eeF89dFidIR3nkMztzb5oG0eH43MGOA3BqQMox/dsu6Qi+rgT9+7UIB+t9X6dFy8cS0136rPvMcki3X/ctR4RJOUzsWdOBpSzd/5zey+lVa6z1PS3EiEkdUVV7Vr+uqhRtiE2DnZQl3wvs+zN5vML44epYTBPx+m/OsF3W2KmprGHfuHS/eBEhBqCqUGkHM1So6oDZl7eYPF6Bn1YIAevlFGE9wDQAy+0OqNqRDseHBXccPlBUVZWyGoUQEkNtCRstiPTUGoYl0PizxRDzfFkrG45WCLp9XcpCh2StskrOAn/mtmmjmOvTQtpyGjiTlbXGQY9jTjFaikLeS1tyYViLfeO2S+RhPB6bz477NBwOW8qLFzVz5MoaV+04asXKURA9tY7ZMmk/K0EeC4fD0Q/8ewNQ1BE81aiPfuB7NXT00JLfLGdKcl3qsOQmywRpv0VoWPLJksWWUW+tAeNXSw6KPON9layospb7Jf3RRWzlItqW45HOIRw2davTguitrG+LNEUo7GX09Mkalz9/vXcEAMQGmH97hmZ96N++wn0/qohUdTwUIi/x0K64/7wfs4B6GPDg928wutgA4eDAxf3aifV6CqxH+NNnK/z77yNWhn5wfDhwx+EDxWAwwKNHj8zQpAUrWqANaaC9869m5LXQlHL04mJml+WYXlyb+6FrQczGpF5Y3dfh0Mx2Tglx5ICFdO7+LieNX+V+Vm6aGSoZx3dl++S5rNdrLJdL3N7ephzqa5Wbm9eqsNEgZei2y/oaGQvOv36inMh5kfC9OCMydUqerdQp97Fj9vXXX+OHH37wvR0cjp6QTd+sKYcW2AjX+kHLQ9YjctzSQWx8a8NYfvc6McVddAS3W8BrOqxrc+SMlK0zJnG97Ajk6rZ0jBUFsNhyGQ8eF32f1hOWzM2B+75rdtjt9vJ7tVohVBU2suEnrW1D3Ge+evmXU1z97QRVqFI0YX3T7Dd02xeexvzJn7zA9OkSIVR49d8e4fab/Qawp9s97L9jsy/nePzLV/tsTVWdptQiRjQx4vIPv0P8aQX8wzjdyxH/L7/8EtfX174W7gOBOw4fKLbbLV6/fo0nT55gPB4nw09+cJZgZ7AAtRZXa8dBjlt/OSHLryXkGCB9f45B0mVZKClBLpudBytSo9koZs5y7bCchy6laDkh3Bbdd30NOw7CgEkmLG3kc3RBjw8zhlJnXdcpC0dVVVgsFimlol5wLdDjysYCP39WmH2UucPhsLFcLnF9fY3nz5+n35X8Rvl3qg1YTWJYRIqlX3J6AshPT7oL7qofcnK2pCO0LLem+Zb0gyZeuB130RHAafKIvv3Q5Vj17J25iN12u89kVO03XttZ+uGwmHm7BrbrcPAZpBxJq3qoEwFVqDA5r3D2YB/JaL5uMBwv9w7K6xHW18PDPfQdG0QMpjtUdX0ope0g1aMDQSrjifZ45lKoO94P3HH4QLFarfB3f/d3+Oqrr/D8+XMAwHw+x2q1wu3tbTIQeYqLVghsgFqGp842lDuuhXduPifX2QVujw4/67UEpXu5DH2/Du/KOQkxM1PG8/KlXmaGWGjpdlmfS0rBEvR92TdpF7B3LpfL5UnqXP0M2dGw2Cv+k0jS5eUlJpMJRqMRXr16heVyifl8jvV6DQCt6U2639xuPWXKMkCsubsOh6OMq6srzOdz/NEf/RHG4z1Te319jdVqhcVikXTEZrMxWfgScmufWJYILB3A8kQTQSViRZAjY3JTRnP3a9JCX6N1nTgGktxBR2d43SEf13I8FyWQKAwTU139t5yO3Gfg4AggotntsNkC1WqV1igcCjzKXLn2sAi6Mb4XrfEO+1Svk/EEs9kA4/EY418ssfrZHIvFAi//20Nsb0fY7fZly7QnxADEvdMBYL8zXYyIIQCHdK8I+6lVVRURmva6TtcPHxbccfjA8erVK8QY04ZeogiAU4GSM25z04hEgeQ8+dyGZxarryMcun3yuaS0ctEFSynpa8SQlcwMEp0RyJoF2SCtrut0jTAw7DgIG1+aD5zrAxvIlsDLsVMlZciLkmXtCy925mlInKaxqvbpWWUKU84xlHtlnJhdG41GrWcs3z9xWMRA4SlLVgSB6xF2VNrjqfYcjrsjxojvv/8eVVWl3zgTCfK75SmglpFrkU2WztByKzd1pzQdVOsPfu3j1Oj+c/u4Dl0+71nDUzmlvbKucDQaYTweJ70gYxlCSDoBOOpVa5pWDnp8czMGcuOdK5Of8XBYY/yLDerpCGKnN7vdwSjfRx7qqsI4Rjz9oznOv1zi23/3DNtNhaATa4TQmqJUVRWqukao9lmYqmq/wdww7qMbD39+i+mzBb79/z3Dbn3cTfzqH4ZYvHyGwaDG5PEKj/74xSGyQP04LNL+o0cVXq0G+KurKwBoRdAcHwbccfjAcXV1haZpWnPHAXtRlYWcQGIjnw19DnWyoadhKZaS8OzrNFhOgb7GOs9MGLPcmkXiPx2yZsch1xfug8n2GEo5V07XOGgHT45xH9gR4M2LRKHLfRI1sZ6DZRxIWlUpbzwep3GUObMS7RBDRU+NkPbkvj992UOHw2GjaRq8ePECo9EIg8EguxYpBy3vAVsGcSSRWXO9ZsyC9RvP6YJSu3OkEZ8v9dOKvDIxJsRJ2pzsAE0E6Yi7VVdfPciyPTcO2imywM+sqivU04iqPur1XdMgkJMUQkA9GGA826EaNDj7Yonlqxqrqzotgm61AdTfuHdENpvNYeoRMDjoiHqww3C0w/zLNZavBli9rrFrdtgugd36oHcxxPjbCSaP1qiG+0hDVVWIAwDnW1wMKgAVqmq/c7XriA8P7jh84Pjmm28wmUzwi1/8ohVC1QrCCsPKKxvQAu04WIwNHy8JLC7DYntysJSJBTZ+c+Uwcy3XSX95MbdWDHIvh635Gsu4vQsrxvdZDpp2DuR8rhz9bOS7sNvtUrvFiODoAS9W1u1iSCTg1atX+zD0eIyHDx9iMplgMBhguVxivV5jPp/j9evXWC6XqVxh5OQ5SNSDHTWe4iTPRE8Fczgc/RBjxK9//Ws8efIEX331VZIJbCCzDtD38nu9Fo7ljD5nZWKzwOet3aK7YOmInLHeRU7JmFiRBnnPMlO3X8ZBor2l/SnuAi3b++qHnEMRwmHKTwhpszeObAzqGtWhD7GuMRg0ePJPv8XL/36J1fXlPsIQ9wZ9q52Q79Zun8TidontdovJdIrRcIjpdIrtboft2Rbjf36DH/58hm//8wjb1Xa/83TcT4ea/1Bj9W+f4Yv/+28xebJELbK/BnZfL9B8MwZuRwedUbeSaDg+DLjj8BGgqipMJpPWugZrOoyeFpNjMjRrw1EMS6BaQlGz+SU2yGK0GSWlUzKmuS5WbE3TtNg3XhSsFZnUw6kMdWSCBXqfNkubLGfMui7XJ36vUwbyAj4eI86aJVmvcgscuR0hhJSuFUBrT4izszOEcEy5ypsf8doQdgw2mw222y1Go1GaWsXzpqU8qaOLtXQ4HHlIQgOZjihTB5lpB9oyQD4DttxiWcHGtiajLN0gr6wjSngTHdGXoBJwG0T2sP6znARdh+gNJpZ4WmaX/hVZafVHR3W03Nc6iKPk/Fw3mw3WhyxKAI4buIWQdoKuje8AHdivfDg4D9LSqj44kaHCqz9/jPlvV3j6T16gPjha9cHAr+sa9WCAut6PTRUCmkN5u7jPorRrdvjuP11g+mSCp3/yMrX1SIZKxHqvw3xx9IcFdxw+AjCDJNNCtJBj4ZELVeccCa1MgPJc19w5jbseL12bUw6WYGfBz8ou52DJfZpBs/reR0lpJayNdcsZ6jpnfeY+5/rJbZIx0U5IiaHbHnYYlfs1k8lgNlLqZMdSL9jWDqcoY1/v4HDcDWIA858mSbR+0PIhpx/kNUcG9X1v6YoSa57rZ+7akh7jz5ZjwOWXZGJON+SuzR23CLycPOX32nk7kffNAKMqoJlXqKYRqLCPHEhZ8bAouWmOx2Dr8tTGGAHVle3NCLEJWLwYYVBF1PW2taA8Ns2hKmp3PJbboMHq9QChPhBHx0pbz1g7poPBoJUIxPF+4I7DR4DdboeXL18mFne73WI4HGI4HKYpJMIuS4pOYRbkxyewhJUO3WrBWnIectOUtJFdErDSzlxkQKOrLP2ZFeZ2exRw+jyXbzkkd4G+30qNqA343L2sZGSxsjBd3Ae5l9d0yPnRaJS+G1aESerQ4fcYI66vrzGfz1PIWL4zsmBfO6tWulXdd84sIs7IdDpFXdeeq9vhuCNWqxVevnyJ1WqVHIfxeJw2h5ToIICkRyTJAcsWCzqhgpb32rjT73NTefoSMQBOZEvO8BeUHI+cjhAdJGOjHZKSPrOcrhLYebAIP11nST9QqfjjR2M8mlaov5mg/p8WwHCXHAS5Osn3qkr+AE9tFcMfoLUvzQ7b7eE7Uu0jEc1yjB/+3deI/+R7NF/fYLlc7hdT42CHbIbYbSf7jEkRx/0gIhARscU+qcfmoJNDCAeHo62zRT8Mh0M8ePAAr169cnLpPcMdhw8cP/nJT3B2dnYiuPiHMxqNEMJ+qgkADIdDk3mWH6IW4HrKi1wr6GJXckLTOlYSvl1sv77fgqWsmI2LMaa9DywF+CbTrrpYKm6XxRzlnBbrOmm/OD+c+YoN9T5OF5cpbZOpSOPxuLXGI8aYIl3yXten28tgRcDQRonD4eiPEAJ+93d/9yTZA4D0G40xYjKZJMZWHAjLULXWG4l8yREdgpzjwfLFkvnW9fq8JqusMvroCJbzPIWK1wGs12usVquT9R1AO4sU12f1j+V9l4zT5WnjOddXvn6/50KD3W4/HQi7LUJDkV0ZG6Uf9tEAkuUpherewI9xn1i1iRFVCIgHB2M43eHhP3qB0YPVsY+HNu2aBrEh4ii093WITbNPxXrsBOI2oPntFFjWaJqj0+D64cODOw4fOGazGWazGa4OqckEIlBkHr9mYnTGnRJjYrEn8loyPu/KwudQchisa++qGETpxRhbC3l5nqrM79fOBI9Bqd85g1k7Pzo6IPd0KVReu8D1SD/08+Q1EF1jph0Ia6oR98VyULhvJSfKcoRcKTgcb4YQAi4vL7Hb7TCfz0/IH60j5DcNIOkIZrtZDkj5UtZdGXXr/dvCciSsayzigs9b+gFAa6ysbHy5LFKW02C1xZJ1lr7RBEuubCkzxoAQa+DgQARErG8qVE3EeLZ3FlSBR7JJtS/q7Z9xcCCaiBgCwmGaUzVsMP1ijhCAEKqUjUlQDXcYzNbYXh2elTgiONWRAIAmIF4PDqGR06nXOR3ruH+44/CBg3cDlh8Ms8zy45frJDOEZNJZLpctZcCKo0ugW/n+NUOvjW3BXX7curw3BfdNPku2IWHf2Cjm7BicblQ7LyWWp29fS6xYybBnZSJ1yhxPUXKyfwKPgUxRYOfRSudrKUBxsGSMJEuTKE6Z8gQco1UyZYnbbTkVXM+bjKPD4WhDbwbK5JH8/sSBYB0RQkg7wlvMtsXs69+qyBaRAyzDLf3wJjpC64e30RHiJPBeNbKuilNKA2iRSjoZhKUjrP71JUZyjkbumD5/Vo3wj58ASJu5Bbz8P55i+GiDZ/+37466DaQjBgNE7J/harVqGempbLW4Qdq5O3yfECkLoWQ/ArDebPDw95aYfnGDf/hfv8TqtsKu2YF9hpPnSOdyxJLriA8D7jh84JBpI+v12owasLASxcEOBc9z7yO4LaHFG9yI4NVsdo4xt8pjWOHtvspFM+B8rShHcQ5EQYiB3VU2w2LtdZ1dDJTFtFt9YHYlp4T4Wk6LqFkxVua874MYD9a4seMhGyHNZrOTdTRVVWG5XJrjKO2WsefsTqWF2W9rFDgcnyPEqNXMLBujTDCxLBfZUNIP1qsmA0QncFSjS7720RF9SZxc+ZrF57EROcf7zQyHw9b0zLsYqlaUw5Jv1jPKjbW0i8sz68Ge7JfpQUDE2fkt6unmOK05xn0GpLDfvC1UFdA0e2eCIzChQoMGoco8HwRc/uwa06ebvZ4Y74ml4eBoTkbIpnM4RBiC3IwQA3AY47quMRAbpcpH8i1nzfH+4I7DBwpZBMsL3PQ0FX5lg0yz7mzkl2AJOi002GlgAzdnQHfVaSkCfb6kGEr3MEMlaUGn02mLJRfWXlg3y0DPtcE6ZjlS1vPKKRSr/BL7Io4Dp45l1o+fkSV89fMT5SEpV0ejEabTaXLCxPHg3cutyBRwzJLEqQ9z7JErBIfjbhBSSXZ21ylT+ZWjjpYR3jcKbf2G5R7tNHSRK4JSnT+GXMix+ABapArLuhBCiuKwnrDWhbDM7+toWERT3nmo9pZ4BGLctu4BgKYJqEKEXC53TaZLhPF2b8CHgCDRkqpKU4oi9jOVmvUAcXfQGwFpwzdd1/7+gOmzJc6/XGMwnGA0HGI4GiUHNMaIerNBbGpsl9Vh7QWHGvbOw3AcMRjH/SZyMaKR8Yv7i6zvj+uIDwPuOHygePLkCf7Fv/gXuL29TTv0igCTzDgcXuVNz9iI5MVcQP7HJwYgM9jMvuhr+7AxuR+5Zre6BMJdDPfc/V19ZqWbQ8n5KrVPK4WSQrUYKO2kWf0JYb/wcTQaAdhnWZG/zWaTNmrjjQO14Q6g5TSMx2OcnZ3h/PwcwD7ScHt7i8Vigevra7x+/Rqr1SpNWwLQmv4lU5yE7bPW4tyV1XM4HHv84he/wD/6R/8IV1dXWK32C1Qlox5v+JibgqOjkzl5zCy5lAccGXqLKGF5xdDH7kIsvQm5xHI0F+HITZGV/vI6kZKs6iLnSsSQvFrvnw3H+Pp838//9KLGFityGoBfXo4wrQ+eBZDWGuydgPb4cWa8xWKxtyfmwN//r19gswSaw3cF0dZRIrcHgxrDg+M6nkwwHA7RNA3W6zXWqxVubm/xw/+Y4Nv/6xKb1Q4xHmdDiF3y9J/+FtOna4QwSA5DysDU+Pq3DxnuOHyA+MM//EM8e/YMk8kE8/n8ZA8HFmKaYdbCUc97LUEMPEFO0FnCMRdS1sixVfoerYhKUY1cX5g95/n54iRYLFKuzSWGqIQcw66VRJcy5agRR1J4GpmOMsQYU3SAvzeaNeN6JfqyWCyScSFZqPj7l9vLQdrHG8NpB5cZyhwT6HA4bAwGA/zxH/8xvvjiC4zHYwDHaYuSrpszKuWyEIlhLCitMStFUPvgLkSRxeRbbbFkstVeXa5A+stTWkVmAkhyziJarHp15KEPsWaNpdYNVYgYhn25T0YVXm8mWGIFICIEYFQHDGugOcxXqg5RATxYI0wbRFrbcCg0bfC22+3Q7IDtOqLZIjkNEafjFUIADve8/psJtosBBn+4TlOBk50iJNEOiLsKiA2OTk3AaLbF+e9cYXixRagO176u0dxWe4clHl4MgtL1w4cBdxw+QPzhH/4hnj59moS/sDzyp/ddyOHISpwal0D7R6inM93lB8pl970vx87k2PQutl8LGTZgRbBJ+JnZ75IRfdcIg9UXq0yrHCsKY40LM4VAe12Ldhz0hlDa2NfjJfcIGyV1XlxcJMUg30GOHDCYwQTaUyT4e8vK1eq7M00Oh43hcIg//dM/RV3X6beo9QMTSyXSSDsPMt9fYOkIOd5X1mud03VfjlDhsnLH+4LHhYklzjJlZZx6mzq72qNlY7P3BBDIkP/ZBXC1Dvhv1zIOQFXtpxdVhwNVCKgGNcKTJTDaoWn205MqHvsYEVM0RfoLNM3u1GnYN2PfJgDY7XD1txOsr7e4/NkPGA736yaaGLHbbrHb7rBbH/wFQowRCMBgtsHlz1+1dFjzeojmdY0Y7TVwfUhJx/3BHYcPEJPJBKPRCJvNBqvVCovFIu3eK4u5OIuGlQ1IfnQ6rZv+IcqUEhGico+EuvWP14J1TRdLcBfFUwL3U7cjt9O2Hps3EVBWP622CfQCNyuyYxnRfI0c40WN8uxY+enrdd91n63xjDGmyMPLly9TNEKmJi0WizQNSk8/kqlOpTC//n7w9/Hi4gLL5bI1BcrhcOwRQsB0Ok3TVheLRfq9iAwYDAatTGe59U+lVJdMVMi0VYE4LDqbmoUcAZPTK0za9I1SlOpiIsUicpbL5YlzpckorR+6Iibcr74kCJMtVVUhxBq/fFBjXB3vb2LEbBDxjx+M8D9eR6ywRjwsVNhHJ0La2K2ua4ThPstRVddtx4HGADKjaR+WSNOU9o03+hYCImKamjSfB6wP34PtdovNMuIf/rcvsLhusN1s0TS7Vn163dtuu0Xc7RCbNlmX0xGz2Sx97x3vB+44fEB4+PAhfvazn2E6nSYjbbFYJMdBnIYcK8/OAws7vQeANiIlpaf8qOXHy5t8cT2WQdoV+dDGuBWlyBnM1ns+lmOC5Lg4Dta9+j5pa87xsdpjXdvlbHHbrQ1+cu9FOMt48x4OVrpCWdAsr1yvNRbWc5SIFbOY4rRwJpUQjovQ9SZTOrqQG7dcGxwOB/D111/jyy+/RFVVaaMydhzkNwmcsthaVrP8yukIrSt4GiJPieJ75L3AkvUMbezndESO0NFy2JJtms3XzpMQTVa5XejjRLyRjjg4CTHG1mZqAcBZDTwcVbhaj1CTwR+xz2YUY4XQ7BCaiJq+D3J/xEFfNA3qIXD+O9dY/DDG6tUIuyhZmLgt0njV7xBaEYr92EacfbHA4MEO280W89+coxpvMX48x3C4wfhyh/qgN5ptQHxZoVnJwujIKzXSOGn98GOQjo43hzsOHwiqqsJPfvIT/Mt/+S+TN71YLHB7e4vb29sUcRC2WWfH0IpBs0jMLsk9nK5TjgkToH+clhBnRqrL6JcymEnSDJhco+8vseO6fBbKuT+rP1YbdV26bbl2We3LCbpcGZZjKKyZpEPN3cfjKmkaB4NBa+F7CVyGfj460qGnRHDkg52w0lj1GSeH43NHVVX4oz/6I/zJn/zJfhHqQU/c3NxgtVphu92mxa9WlqScAc7EgEVi8O+bpyLmUmlz+awf9PUlwkeu1fWUSJwcGcJ90PVovainYOYcKN0OS1/knIacg8N1JpIHhwXDx4L3ZQD4vYvDHCIcggQh7KcfAQixQdjuUO0Oz0Hq2Fewf62qvVMx2uHhH71A+MuH2FyP0DSQxEYnEYfUVhwjFdzzEAKqYcTDP3q5jzZvIr6bP8Lo4RYPf3mdIh97ghLAJiB+O0KkBdl6HB0fHtxx+ABQVRX+9b/+13j27BkGg0FLEYzHY5yfn2O73SYmN8eeyDEW3hz+5D8xPquqwmazSZmYZAdluccqk+uy3luf++BtjMYci6MNV70nRakPgi7FoI/r89IGVuY6LM6v+r1Vn/SFw+8SWWBGsaoqTCaTlLZRpr/JVAM9jUjvnCrT4mSsJJPKaDTCZDJJTqxkbJLsTfJZs3hWf+V7ZzGXDocDePDgAf7Vv/pXuLi4wGAwwNXVVcquN5vNMBqNsNvtMB6Pk7zhefqWjpD3VVW1IgcsA3jq02q1Sr9/Ri4S0CVbc+QHUF7f8CawHA6tI7WBnyOWrPblogc5Z0a/6jGsqgqI+3UJEB1GZbDu53PHeoDm76fAeQN8uc+41fA6xnCcklTX9T4N7S/WuPjye/zm3zzFdtXOhJf6Efebv0Vgv5Zhd9AVh/NVCKikvLrGYDDE0//XBhEBcfAYm8N3drPdYvebMZrrcLoY4tB+jnLxd45JU8f7gTsO7xlnZ2d4+PAhnjx5gtlsBgAtg0vminPqPOA4VzCXJk4LvFJ2CL6ODWs+Z73mHIocSuyBFS3ItdEqy2KTStdayk7Xn1NcOtRt1WGxXRazXuqX1ZdSf/Sz0e3Tz0zfZzkm7JxYU6G0U5bL7GKBnanhcJi+o64UHI4jHj58iOfPn+PJkyeJjWZ5LtOTdrtda+oigBSlzOmI0tREDSYoLLmZ0xslQqb0mY/n5HsuWlmK4vbREdx2S1ZrHaGjElre9+0vOxJNAH51FfB0DMwOllqaMRQjIhn/VjlxUwNbY82ctLWqjlODYkQ93GJwFhGqfUQhHPaNDiEAEUjuycGobzYBi29mqJ81COe743eJxwkR1eSQUW8X0cSIZg3sris084BmfRrU+G4OvFxHxHjcF0RmQlhElOP+4Y7De8azZ8/wy1/+EtPpFABOMifJlBBmhKqqSmn4ZIGqXsjM+ZJ5yslms2kx4OLN6wXWgM3wWEw9kGdgStfkjpXKyKFk0Ooyc4xTrs5cn3P3lBQg18vHuL2WQreUnVzHmZZ4IaNEk3RGJW5HjvUTR2C73WK1WqUdoCXiJfniRZjLn0yh4NzxJSaPFYMYOA6H44if/exn+NnPfmZmNgshYDKZmNn2ZNNQ2ceF1zix7ODfIf+mgeMmjuKclIxp+fwmpJJGjtl/U1jtERmXcyA02WJdo8tm54GzNGl0OQ37N1t8v1mjiiOcnR+ukbUohyxJxT4D+4XS9KyrukZdVWmn6EQObbcHlh9tZyTItCYAzbHgGCM2iwG+/z+fIfzTF6gm8/135VDfdrvFbrsF1uv9GDQNdk2D7WaD3XWF9a/305OiHnMAf3/bYB1WCAEIob2Wz6MNHwbccXhPqKoKP/vZz/D06VMMBoOkDObzOV68eIHb21tcX19jsVgk408E2XQ6TdNPptMpxuNxK1e+nsuuQ7FaWVhrFCyhX2K2rTm1lqGaK1vXo8vQx+VzjgkXZs5ifyyhzWkIcyy5ZeTnoiOWM2G1nzNZ6bbllJWek8wLpcW4l2e6XC7TAkreg4GNelZ2XK92SqS9YozIVAkeF73PQ24MpR6ZfieOQ5+N+ByOzwGTyQRff/01Hjx4kFKvLpdLLBYL/PDDD7i9vcV8Psft7W3rNy07Ss9ms/TbkqlMejM4wI488Foqlid8D7/qY5aeyBngObKgpCe6dIR2PKw+6jp0dJaP8f1dUVStJ7gcrtdyUqy27VOpNvu1DmEfZQiqnAAgHt7HZn9trCo0uwY11SPOg5CKu90Om0XEb/7tE2w3Ec0uYrPEwaiPyYkIIQDVsU55rXnNy6GtAdhPRTp83w4dRIzA7u9HaBa2Q3W1Bv7LyzVi2KGqjuvpJEuf6DDH+4c7Du8BIsjPz88xmUxSJKBpGiwWC8zn81a6S2aT5FpekyA/LvHIc+w/L5rWbFOXgLaM/tyrBSvcbAnnEnL9YsWQE9S5YxasdpTCz5axL9dyG3Nl5Jy2uzgvun+slK2NA3X9luLSEQw+L8yndhwsp0S3m8vhOni/DYfjc8ZwOMR0OsXFxUWa371er7FcLpOzINn29G9bfmOyi7xEC0VHyPUWRC9IOdphsJDTDX0Ioj4M/12Qi1Bow1+/lpwBuZ/f95HPfKwPISTnTiK0OIxJPF3LUEKMERHxhNXX7Wp2EctXQ2zXQGz2U4RabcI+EnCiHwYRkydLDM8iBnV9jE4cym52u32Gp0UNxP10p928QlyHfR3SpoMztG2AXVyjCgExHr9HEpF2/fDhwB2H94Dz83M8fPhwv4DoMHfv9vYWm80GV1dXuLq6wmq1SnNWhW2SMPL6EP5brVa4uLhI+z6IUmBBZTHLOsrQx3DvYpB0GTlGvlSHteeEZahb5ziTj97ER298Zikmzbxr4d7lFPH9uWt02fLKqUuZFSvN92fHRPooDBJwjCqxUSH3SdSAx9NShFVVYTQaYTabpbKYsZSy2GjRi+lyzoxWxKIYLCfF4fjc8Pjx4yTb5Td2fX2Nm5ubFI2W3yLv7SPyf7PZ4Pr6GsPhELPZDGdnZ0lGrlar1u9dOxFsZGsZb73n6/j6XOYlQY70yBE3+rocSaT1jrSJ5Synn9Upo/VYWP3V56x2cFv02sHceOj+75/Fkcmvmma/tmF/A5p2ASdtQ4xpo7cqhJYeEKJnvwFcTLdXoUIDSa10KA9oZWSNAAbTDZ7/sx8wPZtiOJy0FtXHGA+ORIXmN2eIm33GJx3J4HbH9PH4vRRnV+uH0vfK8e7hjsN7gHjQklt/tVrh6uoKm80G8/k8CXItwGV+ufz4JZuNdi5y8yoF2riXY5q114ogxwZZTHqOhbecjVK7Sn3gNst7NmBzRrF+r1PwWW3iz6xErIwcufZqaOdKO3xs4HMdUpZMGRKBvd1uUdd1a4qCLK63dpW1HAX5LtV1nabD8foDiYDJ90z/lZ6dHoOmadJ0J87IVNc1zs7OMBwOcX19XRxXh+NTBE87lN8GgLRngyYCeFoHyz/REexQ5CKPAi2jteHLqZZzf13rxvRxlqeatIkxturk4zlwH3iqJctXLfe7DP+S86DLkbpKmaOsNtt1x5SuNEUPwnHKUk63NTEizgPir8dovthgN9liu9thNBxiIDMV6hrNdItnf/Ytbv7uHLe/mZ0QbXpM67rGgz94ienTVXJaqxCwjYedo2Xx/lWN+GKMuMVx+lRmnP/TDw1ut1tUVfvZy9pN0RXr9Tqt3wkhpGl6jvuFOw7vAcz4x7ifF75YLFq7NQO28BNlwIxxzvgUaAGtDf2ScBaI4ihd02V4dzEuGndxRLrGoE/5FouW65f1jHS9+r3FUGm2ip9NVx+0gySf5bshDgA7EPL9ySkFuXY0GqU/XuRnrZHgduS+ezmHUdrCmWLEseZn63B8TuCppOL48/RVID9FSGRIXx1RciBKcohlpnYW+BrtCJSM7xys+0p9yBFcWlaVZIvWk1wPy6Y+/db6tquvueMxxuRAiPNgIexvQNwG7K4DcH5g9CdbNLJXU9inTh0MGpw9X2G7WGFzM8LydTgtVpyGITC93OH8+RbTpw0Gw9E+knPoX0M6KK4GiLc14m63dxoK+mG5a4Bqi4D2eMt3X5wIsUNkwf58Pi+OpePdwB2H9wD54kvolLNeyC7H1nx9Kyqgd5PuEsJyn874UIomyKtlpPcR+ndxFqSuklLQ9TLjkFMMlgOjBVQuk5H+3KVscgudrQgOXycCl6Mn1vV6DMSg1+d4oza5VoSvXCeKT75XsuD+/Py8FX3QoX2eBqYXNZeet/4OaYcEgKfec3z24KQEvEZJXnkdAtCW6wBSdFqccP6Nl36flqMvx3P6Re7hdLCsH3JlMu5KKPVxfPg8yxc9nZKhdQDLSKsPufe6XV3kFsv43DQcYetjPC6Ohtwn7Q9hv0haTfttvhkjThuE31scvyt1nRZOj2LEw99b4Ownt/j7//eX2K4O9gG1r6oqTB+t8fX/8wdMJmPUg9nptKEYDztXRzSRdEWMqU130Q9MhokDMRjszVbXD+8P7jjcI0IImM1mrU16mG3lHPh9BAs7ERyF0OFRFt68DkCO85xzy1jWRqpWWF2CgF8tYV1ii1j5aEfAKsuau89GeIlds+rXypPPW+NoOQ7cF352PIb8XWAHQ663nBrdF8v54Z1kJZUdZ2WSssXR0O3jKUpWpEG3n78vfA1PJ9PGDo+TGEyeds/xOUKm6cnvFkDLcNKOeklHyCuTRJaO0MY9l8sRQX2frhfAiUzsQy5ZTooFi4iR41oW8XXayci13+oby2xdb6ndOSeiaYDLaoSr7Q4xrE9k5v6athxPC5xF9jYNIOdj3O/HQH0N+86ovhwjAnxc6pGNX+Nuh3pQI24rBBx1xH6X6MN6C+qa6Ih4cBiapkFsgPjbCeL88HwO7YxAmlrV0gPqWZSel+gH/Vwc9wt3HO4RIexzbovHDLSnl/RZqKUNMSlDz1vVhreGFdHICV0tHLWh2KffOVisVOke7bDkHBHtqHQ5DdafVa9uX0nQWW20FJN1nyAXCbHKEWeAnw/fOxgMUnkS7ZL79N9R0e3L0+sa9PdAtyM31hr6+2alf3VmyfG5QNYW6TUCufVEGhYBYpEFcp5//7o8/u1pZ0DXlyMNcnJKy9Mu6PItgov7xvflPlsOU052lRwG3Ua+hp9T0wBoKvzeg4i/fF3h9TZgb9Af6kBAqICqsnXB4UB6jdgb3VVGD6e+sNF+WCuB2CZ1BoeoclVFVOFA8lQhTR2SY8pr2KeIxSF7X9Og2QJxFRCvBvu1DSpDEzsP8pnbuy92n1Xp+DyPZYh+4KnTd9E3jh8H7jjcM5hJZqbamuqRewXazLpOoScoMSB8jbC77AzkDGhucx+Pv+sHbTklJeehD3tl1asVWa4czWR11cXPUiuu3POSe/gabShoR0Iz8FqxsPDcbDZYrVYAcLJWgI1+boeUpddByHdzu92mxWk8TSnnuFnjafVPX8vT96qqwmw2w2q1Sv1xOD4H8BQQ+Z2wEWpFlfkVaE/JYX1TIlAYTB7wVEX5jYr80DJb2lqS1Vrf9DH8NCHTNbW0VG+O0OlKlJEbo1J90s6HwzF+//EOodnhjx4CTRy3ywLw66uIF7vViYMUgP1+DtgvehbjX9rQ4DhdqdU2cjQEu6bB5iDPzcXo+22ij30GRXboeyCvMg1ps9lg990A2+9HaHaNucGb9DOND42T4MFggj94sL/v//p+i9tmkc7J1DupXzJT+lqH+4U7Du8BnLueM+Joo51hGdgAThikHCtiKRZdl2Vci+BjJdZl0HM5VhtKyDFacs7qa5adyfQ7d14rPy4z1w9LGeecFD3OXW3n67SCtvoh58TQl+empy2wI2GxjPInUQa9l4j1jOT7oXevLX3HrHLEeeB7HY7PCfIbEB2R+53cVUdYOqEkH3MpWVnnCIEkbc4RM10ysO9vne+xnBMtzyxZbrUr91mOaT1R0hFZGQ1gEIAd9sR9xWlJD/c8ngSsF2Pc7LZA1STj33JPUn/4VdcdwvH4tgK+nyI+BZp6v4tzfcjclXR9DVz8/gssvptg/tuz1pid//Q1zp5s9qlhqwo4kGXb3Q7NpkHz3QjNTQAaY2YADusvxJlomrSrNULA82mF283eIX06AQZh78A8m1YIiymutgtU1fE7ybrMcf9wx+GeIUaW3pCny8gXaAOVGWS9AM5iZbgOi+22DDzN0vRxHnR7uYzcfdw3zfx0CYgck1aqt9Tuu7Jg+l6eU6wFXK5sy/kAymNhtZ0X2cvcVfku6MXO2lnl74+UxVGGnNEv3yGdXUkbBLn7+dqcYeRwfOrg36BkOJM1DWyw9tER/DvjTGs53dBFLlkkQG7NBNefg3W91Sc+zzooJ2OsYznnoY/j0OdcF05Yd+lD0wBhz+mHEPBosnce/u33nIp7HwHIMveHMmII+82dc87PNgAvx2gu1mim+4hxUGRSNQg4/+k1gIjVywlA00RnX91g8miLKkzT9bumwW6zw24J7H4YoNlFyOZucd9RIARUhzbxpFOONvzscn9EHKXm0LkvZ8DjSYV/991+bYW2b1xPvB+443CPCGG/m+d4PE5/m80mpdfL3ZM7Js5Cjt3OMh/kMIjzMh6PcXZ2hul0mvKGL5fLk829hFVipcGOi6WMuB059ouP3XUaVJeCKqHktPQFO1PSbl4PAJzmJ9f3dvWB53TmHCEpQ1L6xhiT4zAYDDCdTtP3b7lcpulHMu7CcEr7N5sN1ut1ysQU43EKEy/GZ6ZR+qrbqBlGzaDKKxtG0iZfBOf4XCA6YjKZpH1UdMKMLuNXjlkkkD6X0xNyTByNqqpwfn6esq7JrtWSDdD6fcufyAytH3L6qRQhybXTgnYWcmRNidTJOR9d9Vr3HQrcM+2UbSjECFRVa4fmf/p4gBj35tmgitg17Ta1SKZ9JQhAmrJ0Mm2p2W8cFwA0ux2223YSjgHtGzKoa0x+vsPl17/FZrsBIhCqgHoYUdV7/cD6YPvNELtXNeL2OG0pfSdw3LQuPU/p794TOI6REGX0nvvMQ842jOuH+4c7DvcINtBnsxnOz8+TAbdYLE5Cr328aWZg9HHrWu10AMdMHpeXl7i8vMRms8Hr16+TsuJUdmy8WvVpoduXDWBhqN/nUFIIpXpK5fVl83JOTy4LEkcf5Pq+jg+3iVk3rpuv4cXEq9UqOTD8vGWBvs7ixM9bbyZotZcdSIa1ZqNr/HitiCiEuq4xHo9RVRXm8/kbO4gOx8eAqqpOdIQ46YvFca53l5yS4zkj2NIFurwYY8txv7i4wNnZGc7Pz3F1dYX5fN7aoEumR0o/pIwuvKmO6Lq3ZVxn2tHljGi9lnO+uB6Wx1zv7a7B/3hd4fcv9nsoxKpqTTNqAFQAYggY18fy9usE0JqyVHKCYmxPWQrqmuZ6ADQNto+3J0RNCPu9HaoYMZgA2Mp5IBwWSDcxojnYBs1uh7irEXenekwcmgZAoLZbbYIaXxwcDHEY5FVsD46eD4dDnJ+fp72wHO8e7jjcI0LYZ1U6OzvDxcUFLi4uUNc11ut1Ym3FcJLrrTKAUwPSMtzlM09h0uXI8el0isvLSzx69ChtMjSfz5PxKKyRVjhW+ywWh9tsIafgcujrNPRRGJbhrhcvW06NLo8dKp4SUEppaCk3bWiX6rSgpyEJYzkej5MhwIa5HgveYVoEscV2ynt2HHjhpOUw5PrBjpdEGgaDAbbbLQaDASaTCRaLRefzdjg+ZtR1jel0mpyGi4sLrNfrllEO5B1wPpaTWRYRIdA6Qs5LooKLiws8fPgwkRHX19dJtrGO6ENmWY6KdZ2l67pYf33/m5wr6QiWVTkS5+R4vcXVDohhiDoc6q6qxLDHpkFTVXuGXhwvaWPOCRK5GkLa9A0d4xNfD9AsI3C+BiKwq3eIAAZ1vd/boar2m8NR0hUui/XZfmqSKv90kFv7QaRIg9Gv1r0hoGkidlF0w1HHin6QPU1k9oY7DvcDdxzuGcKgivMQY8Tt7W0r5MaGFAthyynQewbIe/5sLVLVhu5yucT333+P6+trbLdb3N7eYrFYtPL3c51i3ElZ+lXKtRSRZURaSqWvc/BjoMsBKykpnt8vn3W60xxDn1OeXF5OkZbOST1idMiUOPmeyXNlQWspSr22wUr5m2PfuJwu5a2NF4kySFtL0/kcjk8FIlcnk0ky1G9vb7FcLk+ilV06Qjv2FjEhyM0b59/l1dUVFosFXr16hdvb25TtjIkGIb44C1yJwdd1lYgGXc771A9yrCSL+VhqbwSA/XSlKh6n8khaU8SIKOQhjU0ytKVuuVbJzhgP+zhIvVZfAGAdEP/6HLtnKzQPDjszE6Ekz7BhQ1z3b1Vh97dn+xSskl3J+B62xsfSD4e+WPivLxq82iyxT1G716kyxXo6naYkHq4f7hfuONwjxFgXb3lAGQ2AcvgxB17jYCmNXDt0mbKuQQxK+SEyK60jDrouLUT1tZrpstrF5zSzdBcFkRVchev4+i4lwMcsZo8ZdCvneimSoNulWbySka7v1U4KKwarTfLK61r4+2WNS26OKd93V0dMdruVcnQCAYfjU4T8RkU/8K7PXfIv9/uQ37uUkVsXp8vR5JKQEBKRlt8k//51thuWG/y+i2zI9Y3LfVP9oGWv5dj0aUvuWFFOBeDXNwEPhxFPxvsoQWQG3mgrFVyMPESp9+A8xMM9ga6BHEdA3ATgdm+M7y63iPXhOxHjcZ0B10n3x9sacV6jWQOxUdOQDv2RNlgOg7SfHSDoMgBsY0QIDWSaFHB0cnlanDsO9wt3HO4ZkiljOBy2HIcuw98ywuW4ZaDlNsOxBLYYZnoxr0xrkZ18dVt0vTmnQV41W10StiVFofuTG7PcsZwSzrU7p+S6npfONHIXxaY/8zGOcOi5xML4cf3aSGB2USIjUh7v0WCtb+Bnb7Vbs5pd0QYuk50tWdQtRo/v4+D4HBBCONER7Djo35i85ogaPqd/k13kEr/GGFN2NS5zOBymLG1WJJXbocvXcjVHQFll5uSxJZNz5JUeI92+vuSbpSe4/vZ9EVfNCuvlEE8mx4XSjCxZ2EUyyWs4pD/F0Xng6+R4AyC8GiDcDhDONvsjkaIW2KdQTfdjH1mITUTzwwDNdY1GNniTsZZ+VlXa7M1qJzsNJQTY+kH/zedzJ5buEe443CNCCCkrxfn5Oc7OzrBYLJJyYGZIrs/9GFgZyGuOVZJzghhjy2AUA9JiovnHyl5+iTGSOkptt96Xxi3nNGgl07V7qB5bi6XPtTVXpqWMeax4SlAuGqDLseqRcrWDqJUvP3vdT3mvI10xxpMMWiUDw3JuuKw+Y6ghY5bbx+Hx48dYLBa4ubnpVZ7D8bFBL44+OzvDaDRqyWcg7ywwrN8+6widFU8TO3qaqbTBIjJ4Lry10PouuKt+4Ou6yCU5pmHpCE3K5MgmCznyp9kBP52OcT6MqPZWMRACmoOxn/Ta/qZ2OfxZ2qTbI2XgkJ1IxoXamzaLi4coxQao/uYMqAKaCqh/ukQYIKVQlXbFGBHnAc03UzSrY/YjS3OejJV2dnuO488f1LjenOOvbxfpOl6fx9/Ry8tLTKdTvHz50izL8ePBHYd7hkxTYuNIYDEuGiUj3cp2pK9jg9sqN7dwV8rXOxHr9moDtS/Tbgnu3PnSMV2vbldpbLncnGNkGfW5V3lfMrKtY12MoFWexarp69ho4H7lnIU+bcm1X1Bi4LidbMjwd5DnT8vvxuH4VCERBz1N6a5l9DnXV67x9Zq4sBwINuhY5zC0jO4rX/r00bpe39fXoeiDLhknr/FgZM83EeMKyfqyjOxI77msiMw9chxH50HuDyG0pzHJeIewTwUbgbiq9g5FDTTXFcIAiKGi9sT9lKRVhWYRWk6DdmZySO3n6/gZGGM3GwaM6oi/vx0i7gIQBtiGHerDtCrRD7vdrrU/kePdwh2He0QI+xzdohTYYGLjrXQ/v9fCj4U6C3fNLEk92jjWDDSXIUphPB4n5yHGI0ttzZmXskrQ/bXY8ZJh3jVG1n25177RD32vbiOPux6XLidDl9EFrXhz7/mZA3uDXJej6+bvY65NWmmyoWB9R3V9Ur6MVQghLeIOIWCxWKQFmHq/CIfjU0NVVUlHSIRB/2l5ZcmvnIHM+/BofSGw5KKObGhdwm2XKVYAWtMedbSkj9OQk9Hcr1IfctCkkHW//txXP+TK2b9GfL9d4nY7wuVoz9q3jG+5T8ZKV8Bld7ZG3XeIZAR5L87Dob69UR+w+7tR3qmKEfsEq4dj5BDp9gE4cQzkWpmClK7P1BdjRB2AP3taHfapiPh3369R1fvnwQv0u4hTx48HdxzuGTHGlOo0xoibm5u00ZqkOQPsUHGXgZsz/uUzt6EUDtbMEl/P2TMsB6NLuGrB2hVavisbZZUtDo6lCHW7tYK02qTLz4XJ2UjPOVV3cRLuwrKV2ly6p2RAdNVp3VMyZqx79TFec+Eb/Tg+dchvYLVa4fb2Fk3TYD6fY71eJxmmZUwXocTI6QgrjWWfcrQTIPs5MCFgtZlfrbJzMt1qU1/nw/osbdZjoBd4C3QmQatNll6JMbaiMMumwb9/UeGXlwGjcJyqxPUJO38XY7ioIdhhYMexVUA4vcdqlzqfbaMee37VOoLHEDhp297BOjjP2K/v47ThfWwFx48DdxzuCcPhEJPJJKXInM/n2O12aQdOSynoH0GOpbmL4rDKtgRxDvID1dEAvi/HUFltyxnUJZa6dDznwLCStAxQq04uK2fs9nEedC7sPga5rqME3U6rHXxtSSnrY3cVxta1ljNmXctjzG1xZeD4HDAejzEajVKGOzGMlssl1ut1kQzq+u3ndIR1T0k3dB1nkqZUXsl50LIyRy6VZLZVpn6f0xFdMi+nv3L3mfq1OswwiDVQ2fryLihpiFYbgda0JeNi0zHgsvhIwN0iH61+hWPGJ91+2ZfCGocaNXYNEMPdiDfHjwd3HO4JT58+xePHj7FarfDq1Sus12sMBgPM5/PELJWMaBZqeprRm8ASzgx2Dngalc6cwe3gz32dEYvVKX3uc9xSktJ+7m/JQenj9HCf5TpT0B0WIuv9MEoOyZvAMga4XTllzp9zBofupz6fK1PO6+xNXQpeXkvXOhyfEr766itcXFxguVzixYsXuLm5wWAwwKtXrzCfz7PTWC2jWm9g+abIGdksF1im6chFbm+ivvorJyNzx/qQJbmIBf/lHJuS05ErW9fRuieE/SJkXhNSmL77tojxuM9DRNvwT9OVcCrLDwehl0In079AnHHdui3iPAQd4aG2MKoA/LPnA/zqaoBvV/OWXnfcH9xxuEfEGBNztFqtUv7h1Wp1MpUGsBezxnjKmHcxIFYmDKttuiz5rLN5aKeD69LCt2TQy/1WWfyZjchS2/mzdrhyG5fp9kuK05xTYUGXYzlSUi6nve3LapVQYrj089DOQ9/yteOaa2MpssBrKkpOsq6D53Y7HJ86JPXw69ev0yJj2V9HkzZMIOV0B18vsGRyl7zpMrzZgeCNK3MEyYkB3dEei7yxnIacXLE+S1laxmjHJtfWUns1bIci4r9fRVwOavz8MuyN+aZBg0PGoqbZRwcy8rqPhtB3njD7NGZp7wbgxEHIl3/43sXT+rJOlFFOK+tjxmmIh/btN8g7XRvqBNP9wR2He4L8aMRB2Gw2LRY6x9ZqQdmXpdFlyPGcUZ8rQ95zqlarPVrQWuVb7c8x+VrB3NXYldecMilFCvTYWwZxToFJ2QLN/PE815yD9GNAO1tv6jQw9JjIMX1NrqyufloK+q5tdjg+VrCOWC6X6XfGawb6oI+eyP1uc3KwVIcmYkqyko/dBbmyuay+Zeo+5lKQdzkOVv/71CnX1nVAE3ZYNtVxbx7sDevQ7HeOPtHdvXqYh0QZwPJV2tfDaYgxBReSPxOCciDYdjDKMMfJaA87GictEkflDfSa4+3hjsM9QVKZWptraeM7l4Ivx+jmoAWaxdBYwo8Z95xjoBl2HQWxyu7T3pKB2cWa8THNUvO+AJwVShQHl8sbqHW1tas/UrdEHHj/BGa7rP6+CbRjmDP+71rmXRzWnJFgOU+6zbosLsOVg+NTBu+TIJutCfi3kyMz7ipvrXu07OU1bQK9saVum14QLbL0bXWEFbGw9ACXr49rmcNjzCnSJSuUVV+M7ah/SS93yayqqhBQIYTYmrIEHGzjA/se94UVy+qLJsZk0DcWqYaQdR5yNn/fr1wI4fRiw2nj41HaG44LyBFsve+4H7jj8I5R1zUeP36Ms7Oz1lx3hsXcdymGuxjjWnBarBKXr6/hMmSuepfjYN3bZfzlnAYej9w1uly9OzLnFpf2SA5o3Z9cmX0ZJR1NsPoiylfvAm09nxzuwr51fe6DknHf9/srzpMobU7VKAaHGBmWE+1KwvGpYTKZ4OLiIm30Jsa3NpT17+3H0hF8n7UJKNevZbCuz4pSdOkIveeD1V/dFn7lOqTuvhuBsm4QZ0HOc0Y3fS/3k6eM9dURfOxEzxz+UO1TkKJpjtZ5igrky9R9NOvM3nWMHryNqA0hnEQbxGkI9P7knrBf8xFCwE6mIcn4H9pdhYCqOm5I6Nn27h/uOLxj1HWNy8tLTCaTk916cwJakBNEXSxNyeC1vPQce28ppVx7tINg1W3V2aXccorQYumtfouhOhqNTtrCSiGn8N50LK3oDt/H/bHGtY+B3CciY5Wbcy6ssnLPp+t7wIYCGyWiqAG0HGj+vrHj0EchOxwfM4bDIR48eGDuEJ3bBwbIOw9yjl813oQUyREVbEiX2qMjjXwuZ1RzvTl5xXJDt6lLPzCxNBwOW+d1Gm2tEzVBpNtj9U3eN00EorT71JgPBychhHDMMARkMw1ZKD5jDhPQ+5bTUKonfb96NcV0GpJzQd9Vkf1VCAi7HXaH38Fut0sO1XwbsIt29M2JpfuBOw73gBgjxuMxzs/PMRwOsd1u06JoeS9CTr741o/ibYwnFq7MyGgjUphvFnisGKxyc6yXfq838LJYKz7H46GnE/Grfs9MkQijzWaTlIPOxW1NCcgpSeucFlpW7nJusyXc+LmUHK+cg6Nxl+8KLwqU1xLjx+AxCSG0dhbX3w1rvHl3XHHitNMhn915cHyqiDHi7OwsbbC5Xq+x3W6xWq2w2WxaBAf/9llPAD+OjuCIoLQNOC641lOVtPNglZvTCZo86XKSGLp9TESUHK4YjyljeQrpYDBI+oFJPovgK5EZVnRI1z+OI/zhg/37OuzQNNgz6oZuCGE/RafCMdIg7HuOmGsZ/V3fiY7z7NQkw58djw7EQ3uqEFAdxlWcBnMM436LueRIHK7d6/QG/+nlGqFqUNen5JLriPuBOw73BPkRyK6ao9EIVVWljErW9KWcIcWvd22DxTjzq8X+5KIPpddSG3Jl5lBijeQY90Gchs1mk+rkLell7HPrC0pKsMtg123KOQ+WsyLv+7AnpbaV2Dvrmj7PLneNVvy6HzwOPB7sEOjrs8qwo40Ox8cKlvOyc7Rseii/G60j9Do5Pe/+bcEOgiY++hAYXTLDwl3b3SXXcvpOdITsOMwZ70Q/81rEvtEPPS45UiwgYlghOQuxUU6BGOtcTgjHNKVdzHpJd+lXOY9oFpscBeSfz+nEJD5nfAfoWCPjqxwUkIMhfapCwKPxGLfbBg02qV+uF+4X7ji8Y2jjiRdgiQAT50GghZ1mWy3BxOf6oBR50AZcjlHKGY19x4X7e1dYAlzGTRwCCTWHsJ+vKiySMEw5Fi83BlLvXQWVVYcuk/uly+7jyOm6rONWWVyn1V99ndVefUzXq9cySD0SAepynN7k++FwfExgY1wIJvmtSPRBzrNOkd+KOA1WtFijy3BnedUV6S2Vo1/fVEd01VeSVQLWcxyR3m63qW28fk9IJnbOuvREyYkqORrsCKS66D2XFENAiAe2n65VhUojrAoP91g6gu5VSI6L1E33pI8F/QB+/jG2NniLOq3q4d66qlDR2kSp4pePAn51VeP7w0wNx/3DHYd3iPPzc4zHY6zXa1xfX2O73WKxWKTpGev1GqvVCsvlshUy5R8DMx68YBTITwkqQTsDeo8GRs5Y1iwxH3tbY6/EiHNbcvdo5o4VsbSXHQtOdaiNVnbY+JxWzDlGXbcv95kh7dWKO6e0dLmlsrueSZ/vU5fRweMXY0zRNL3zbQghndNzk+V3ABzXO3TV7XB8jJC1Dev1Gq9fv8ZyuUzTlQBgvV5jPp+nfRw08aRZdF4fBJzKrT7QMjAZdBkCQ8tq/tPH5L73qR+AY5ZDkTXyWdopiTPEudB9tja2k3K1bhCcbp6KZIz3HY0Qwn5RxCFdKzQpxX1XRn7JaehRcfu11D7ruHG+OTgNu90O290OMTYt5yVWFULT7LNNkaMU6hp1HTDEsJX0pFS/48eFOw7vELJXw2g0SgzHer1OxzebDTabTWKTmI3VDI0IHRZMgpyRWopS5FipksFoKQNdXo6BsdpntU2u0Z9z77UiYTZ7MBgkVlucCBlvUQriRGinjMsvKV7dhpxC1A5bF0slhrU4Ou+afe/D2uXOa2NBs3pdKWf1MVbivAbC4fjUsF6vEULAcDhsGamy7m2z2WC9Xreio9o50LIvt05N0NfotnSGVZZeZ8HXWLKhRKpYx3Q/revuoi+kzUJOyNSw0WiUdIOsKxHZJbrBGnerz3LeekYxRsx3O/yPVzV+dg4MyIFIY7QvKC+XD85Da4O4GFtOQQCde1tY5ZRIJOs6fu5Nkzac2+u3pl2FLlt9L+uqxrAatvSD64j7gzsO7xAyBWk2m53s3yCfeX2DCH2ZUiOvlkGqfygWAy3X6fdd1+pzWviXHAjLIO4ydnPncwZ513sxOIfDIYbDISaTCabTKWKMuL29xc3NzUkaUFkQJxEfXWfOaeh6r8eF3+fWV+j7uFzLELCuLbWjhNx3Q5+3nr+AIzo63G/dp/vPi9jF+fOUe45PEYvFAgAwnU5bvxlxFMSZ4Kgos+QcnRSZwux3SUdY8l7/lvl3W4r8dekGvq5LTmmUzlvkUem9QOTKYDDAdDrFaDTCdDrF7e0tlsslVqtVS2ezTrbq5mM5x6ilV6oNXmw2eL4dYzaM+4XP/DwORrUcE8M5AMdF0Vo/0BqFEPafS2sPqNjeyOkfPt/6XhkOJBNLTYxomt2+HfEQIQmh5Tec6IeqQj2oMToQTOI8OO4P7ji8Y2gjVpSBnNNGEQsXZnN4Ma/eo0AzIVK2fm+xR1adFnSuamlTTmjr43dhA7RRyWVxmkIul8dIDM/pdIrxeIzpdIrZbIbdbpecOWH2ROiIABoMBmlagN78qKsvJVYv50xp50g/N4vp68N0WegbrdDOXx+nEUDLERMjKNdOec+GjtVvznjCZTgcnwpE/nDGN06MMRgMTPlqRUutqANvPHlXHcEyXhMdlryT+vX0EYv8+TF0hEUu8fTenKyS8Z5MJpjNZhiPxzg7O0tZDtfrdXo24/E4kUqj0SjpcEm+ocsvEXPybPbXRPzX1yvM6hH+5DFoKpFCjO01D1J22K93kOgEUB0Nbi3ryQEJuQ3e7uBFxFa91D96n5wGuadpjnszCKHE7UjPql2POnAo87iXA+sHa/8Ox48PdxzeMUIIyWmQcDRvKKONsRy7zoY7v7fuKQngLuFsGYyMPox0zpmwGC6r/aU2d7FjIpRk/QIvgtZljkajpKxzU2lyRnOpjXxMC7IuJozH3nqmpfHP3dtXQVvX5Z5byaFh5yF3LfdF1ydOG9fljJLjU4U4B5ztzTJKtaEssEgI/r1Z0T5df0k2yHl2THLOQx+SJacjuL7c9bm2dZEmuiwhhXhKkoYQSePx+KTNOf1dglzTjhJFLHcN/vq6xldnwLDqNt5TfzME0omx3V1gq2wuS9cLoLWfhHYe9L1Bt+twfxNjmqpktZUjJS39cPjcxAa73fE5yEwBJ5buB+44vGOIgTqZTDAej9PeDSzg9Bw9NoD5s15ECiAtLhWFYxm6FlPMrzraYLHlpf5ZzBOXz+e66rbKtsrUi7GZ5ZaIgrBCIQSMx+N0vSyWvri4wGw2w3A4xOvXr7FarRLTpIVQ33S4fFw/P92XEvjeLqVYUsL6mq4y78oC5pg/dhysKQ48Hvq7IJEK+U4LIyvvHY5PCXVdYzweYzKZpKQZwCn7r3WEXvvE8l8bt3KOIxFAezqT1hH698rRwT46okQuyHtLd+R0ikXqyCuXZSXqYEKCp6duNptkyMtaRHkmZ2dnmE6nuLy8xGKxwHK5xO3tbUue6+dTGg/d7vQMww7frjd4MJ7iUd2kCIN1n+6TXBdgRCqOA7h/6VgU3aVfQHWw84DYnlqk25xOHtobZU3DIYNSkLHkZ36oKUSk4zLmu4OeXzabRDBJ+mJ3HO4H7ji8Y4jjMJ1OMZlM0DRNUgwaWhiJ4cRKgtlXS4lYwkz+OFxtGcK5H12pXDnPryXoa3RY2XJueLOenPKQnblFgMgi6O12i/l8nq7lDFaz2QyPHj3CZDJpLZrOKQQei9w+DLrt7NAxa8f15JymuzobuTG+yzU5x0g7P/p7oB04NlxkvHMKV9fNz1rKsJICOByfAiQD3NnZGQB7+p5AG8j8WxESSct3Tc7wVFnWB/yq30t9OWj5ba2vkNcuUsJygHLRS32NRULJdaIjxDkTgmm1WqX7l8tl0s+yaeuzZ8/w+vVrAMDV1dWJ/LPGgl+tvur767rCX1xvcFYN8I8fB8Sm2XPuB0Y+GM6EpRv6yf7OS7K6R3rRltt036GCENrTllI5MR72bTheKwu8QyojnJTLdcYYEZvYihSVnofjx4c7DvcAi3XRgta6Xr9nQyz3Q9EMruVAWPf1dRrktXS9Jby0wtBjYbWFXzVTpd+HsJ8SNh6P0TRNWqsgkHSgsn5Bz8HVRrw1rjloBWE5gDllplk3/ewAnDgfpTaVFHOXwi45QH3ABkpOoVll9nWOJFrncHxqsH4Xd9ER2lhlZ1079l1ygWWWJaM0cjLMus56z8e0jsjJzS5YkQ1ea1jXdSKWqqrCbrdLToO1NqvkJOh2dhn0mnwRVHWDZdPgH25rPBkHDEMm3e3hfYM9W4+q2nsDByeDjfTT9qo3+rsg9eD0GZ30v2B7nFj9dM1J26jd4eBEIIT9dCX9PYjAN7fAzba9PiKE0Fqb4ni3cMfhHiALriQ0qjNk5ISuNmYt9kWmKVl7K+j7mZECjjnyc9e/CSzDUbfbameJueG+8tx3HYEIYT8lifskEYfFYtGaxlRVVQo9y/PRSjUXCSkpdH5WJWbMMtI1oyf3aKchZ5jnnLYulBRxztDX7bHYPn2Ndlx1f+Ua/l7yOP/www8nu+c6HB87YoxJBgHHVKxAXi5Y77k8Tu7QJ7rMMsmSTfqeN9UROXJByw+rrSV5a5E/ls4ZDAYpy55gPp9jtVq1dITMDFgsFri+vsZyuTxxKCznxCKOcm3mdqW2Vw1+s96iwgjPJ62LTnZgrg5sfTw4DU2MKTLRlJ5P5lzuji5HTQz8/XuDsKJnm9Y1tCtIU58AIFRtp+HY7IgmBvx6vsZggNaeJiEEvH79OmUpc7xbuOPwjsECSBa9cV5oyQrAebpZkAjzo8PGohhkDr92IDhtnG4PCziZ69mFHOtSigRYxqSsL5BpU1YGI57WEmNszUvVhqm8rtfrNL4yZYmzkehdo4F9FOLq6io5EawYeH4+KydLWXBbrHHj97lpO3oMteGg5zNr5VtS5KVnZrFjpf7I/VbUJnefzoDF3zc9vvId5uflebodnzIk29t8Pk8yUWS+6AeRHTkdEUI4yZwkaVzlVa4B0HrPsJx/Oc6fLfTREQyehssQ2S1JK8SYl7K4fJ6mlSMv5HWxWKQN9YbDYRpf0T2ydwyn5V4ul/j+++/Tnkt6nDShxOctByw3boyqqvB3ix2+WwT840cwmX0AR2NbDO+D05CCChDdkG4060fYs/wVEz1yCvbzs/rC35UApN2h5VwEUIUAvQw9ynq+Q99lzUQgZ0nuCQCqUKGqjo6D64f7hzsO7xAsmITltqIFIqTEOM6x2nz9drtFCKHlcOi/EkPE15SUQo5x5jKtsoHjfHfd9vF4nHZy5gw8Frtk9UGzTGLAyljImOdymsurKOwQQlqwrqcFWQpA97WLAWwJVGoDfx90H38MdLWd68td16cM/R3l558rJ/esSwrgxxwbh+NDgMglMZDlPcstvZ9PySjVxpQ2upm0KukIi5joMnyt329JR3BkhJ0f2bBzNBolJ4oTinA9ui6LqJLr2FERwkzSeMq1fA+w1xFC+nWtS7NgRVByY9c6Xu+w2lZAUOtKlGGfqy9d1+U0dIAdiDcGOSZNVaFqGsQqIOyO6xs44pBuA41PKkqcirdpkONt4Y7DO8TZ2Rkmk328kZkVFpDCrMgPXhu8cq/cJwvpZE+I8Xic5mryNKic48GCL6eIulj0HHSUQNoVQkjh4clkgocPH2I8HiOEgN/+9rcpFMwKbTKZJOaJMySx8GclqdsOHHfuZgZJxoGVlh4fzYRZilErKK6/i5XjusR5YCeL62ZFl6tTyrXOle7p2/Y+yo+NGzZWdFpWDi/rMuRZcrRKvkM+RcnxKeL8/DxNm+EonvweZF6+/F6E9dZEC/9GRbcMh8PkkEjaUfktWZEL4CiXuiKZb8rwso7gqaPiKJyfn2M2m6WMRjc3N3j9+jXm83kaH3Gm5B4ZF715HoATecNtltkAIrskcxsTRyy/AKQx1dEfHhN5hpoUusvYVVWFWNeo66o11SdKVCHGZHDHGI/XIPPMDga68UDupB8siz0iIkSkjeks2R7EMcThu7sN2GG3T8sKnqZUoTpcb9VdISDGHZomnugHJ5buD+443AP0fG0RLLLVvQijHPvLQowFYl3XKVOTKAeLdbEM376Cv48RDJzOKxVDXxYrSfsWi0VyeKqqws3NDebzOZbLZXKiOHzMTBRQngtbeuXrLWNaC3xRUlwfR0+sOqQerUxyY9fXEbDYef0MuE6r3D5C1RoTq37ru8NTKvj5aUXe9zsoz0CmCPC8b4fjU4OlH0IIJ9FZmU6pfzsiLzgDnchT3kOIdUSpfuu3r2E5HrpMvk4z/mL0yYJked1sNlitVmn61s3NDZbLJWKMiUwKIaQ9kcSZkKmpvC+P7oMlRy0HTL/X46OdB47mWM6EHjc9Rub4Yod//z3wO9OAJ5Oy7EuEFPYG/H7h9NHOjzh+yEUhuqSrOCupzRldpN/L57qqEKq9I8TjuN8U7kAu8XoJ5aj8/Q3w28UWGOyzMrF+kKnKjvuBOw73CC20rCwPOWHMhqawTsK8cGhaDDW9gZa8aoPtTZkjSxiyUhAmiUPNorgk41FVVVgsFlitVik6oAUzCwNmwywhYSnTLsNd3luL1DXrn1M6b4Kc8tYOju4HH9f3SrnWdfzZclB1mdo50u+t+kMIrR2exZBho6H03dOOD3+XPeLg+BSRc6BFJnHEQaZVlsqS3xyz8zx3X36LOtpqOfRvKtty7QLQqlt0xHq9RlVVJ1GDptmnR10ul730QzKeVdREn8/JnFLbeUz4sxWdthwVDR3lN+uuIrbNGvPtGE/4+L7gtK4hvQdSitOTsg6cfkREkODD4Y2pU+SzjA/V3XaMjsZ+mlqk9EormlBV6fyWym8ijWtqdHua0s0W2IY1BmGQHAfWD04s3R/ccXiH4Gk0bAjxD4/nsApykQcGG+KsYNjAtVheK2zbxSoJrGvYyBMGSdJmyoZq0qbVapXY6NFolLJMCZPEkRlRgLoNGrk+sLGvF0/pxde6jxLd0NEDnjIgecAtg7ZLaVjgNnGftdPC7dLfk1wEQzsdXLblAPZ1NEVZ8oJvOSdjyGt8cgyePsa/Fb0g3uH4lKCnj+oInVyjrxOUZAwz+SJfR6ORaWjldIQ+Z6GPjhAjX+Tmer1OhJFEpUX2bjYbLJfLND1J70/B49AnPbNlyFtyUE8TA3DimGg9ou8X4qRpGqxWq6z86nLMtHxvyXDgmD0J5DycRBAO95PTsC87M0ZSb7shbUcAR8el5TTINWT4ixMj37WKdUhVYQAgVhV24szy9winTkgV2jqsa/qu493BHYd3iOVyCQC4vLw8+aJrZWF9+S0HgoUIh6bls2bj9TSpEqtkGafWOQt6epI4ETy9R8LMem2HMDc5pojXMFhGb04Id7FJul85Q1YU2nQ6TeydpPCTEHoXu6WfEZffJfx4TNjB6ArNWs6oLk87D6Xvh1WWtEUcgxjbGcD0s+Pvvy6bxxo4Km2ZsuAKwvGpYT6fo6r2m1EKQWAlTHhTHcH38fohiyEv6QeLDLHICws5cknWXYjMkIx78idrDqSMkpwvtStH5Oh7rKhySa/wq0wJk92/d7sdbm5uEolWImt0u/WYfrfa4eU6IEbgJ9OA59PjouKWvgwhOREBAGIP4orbwt+vENqfjf5nOrFvm7yPx7UY290OtX6OoiNCQBXb6VplncOuAf7Liwbz3RZVXaWpaKx7rq+vPSp9j3DH4R2CNyOxhL/FemtDkwVDic3hMkqLerVBlzMuS7CENCsGUQgcXRHhyqn2OA2t1Y6c8NZOQ1cbdd9K5cpxZpXE6ZEF25y1SSIqubE7YYEMp8G6J+fU6b7rCEVflBRwlxFgvecFl1ZKVble78zNZcl9o9GoxSRuNpu0+7fD8SlhtVqlRBGWjCqREm+qI7TzrvUCy76SHJXPXQY5t0HIJdERrKuYXBL9IO0opQy3HIcuB6BEiGj52uWwhHDcXE52p5aoipBnd42cchsabLGOERERr9ZjPBgHjKuYjPt4cBiitBmHiAQZ8Mc+9qgbh2iB1efD8UDRhhNkdBpHHqrDeocAAFWFWr7nTXNs96G+XQRudivU9TGdO39vdrud64d7hjsO7xhsIAqrzgtJ9XQcYSu0EmGmOccIa487J+x06FtQcl5KYMdBHAa9kJhZaTYq2fAWhcFMU6kdXe3qA6sMFvJc92q1aqU5LGX7yTFLekqSlC3fER2Z6KNw3tR5sJBjG/t8B3huNRsh+vvE4Gun0ymm0ymePXuG7XaL5XKJ1WqF29vbt+6Xw/Ghg6dWiiwEkJxokSlaR7ChX9IR8htllAxirSNy+qFLT/Dvntcm6PuEiJH3nAlKxkaYfeC4N0+OSPqx9INF9un+yzTc29vb9BxkWpa1DiNXF8Mima7jBv/pVYU/ezxAHWRBsa0DWsQSYi+noYQ0fQg4WcTcNdISeWhiRBMCqqZJEYXU7xhPF2iHgKoKGI1GGI8HST+I7fCXf/mXrf01HPcDdxzeMSwDUAQB7+2gnQVWAPI5x5Lk2Co5zwrJikbkhI2uQx/T/dOZJrhMjjbwegYrW9KbzGu3DHHdTw2LqbMYdWmXLNCT9moFmFPY2vDOKQ/tPFiKv++45CIZuc85Z9Fi80plyPPTZXHfdNny3RyPxzg7O8OjR49SBq7xeNxrg0KH42MHz+UXmc16wZqWKkSMNqA1SvrBYtX1mqU3ISWsaIO1maf8/jlFuegI3UYdNWGUjHLr2pKO0GPZpf8AnOhwjrrzdRzttwjAXDtS/wPwP14Dj0cVnk2bY3RBDG/t2Fj5kvo8T75G9/+QgvXkuKV3pAg5f3AeEGN7LYPSfUgOSUiRBknnXlUVVqtVmj7suF/4iN8DhOnRgkL2OBAFwQZXznGwhErJqdCv1gIwfc9dmH2tFLRi4Lmrkn5WQvMAThSkFrJ9HADuI7fZYs6ssvmekhOlo0PaaRLk5vhr5WApZjEadB90X++iyC1nqO89pe9V7jiPi35u+nvM4ySK4cGDB9hsNhgOh+44OD55MFmif3eS/EJ0iOU45GSlXCfo0hE5cuXH6BsnO9AsPDsNkn5WHAfRkdxPi5i6i37QDhLLWe3sWGOhyTomTKzpyPq4lbTDmjqsP3O9i7jBi/UQz6dIRnem4/bxzNi0ri6Vy5dBRzcy9dB7GQPpnTm2IQDiwCKk6cKXl5eo6xrL5RKTySRFoBz3B3cc3jFiPGZ+KLG32llgxidn9FqGP5drGZ4iyHKCSqMPO86GosWuDAb7EOPZ2RlGo1Ha8CjGiJubG6zX65SKT09v6dPGXJtlShizV5w+T0LgJfYq1w52kATakeN0uTkFX3ICtPPDdcj7t4HllP0YhoLl+ObGUwyipmnSFLXf/OY3aarSfD73ULTjk4bIIqDNRmvZoB1yljWWjrCmGmmD13LsdRa3t9URuu3aWZFo42Qywfn5edrgFNivE5QkI9bmqG8qs6ReWVPFURsmw+RV2qvLsNoiZej1exYZwxvUWTJTk3+t+nGoT/oT9ix9s7/hzmOSGai2cf8j6AfE/XoNUZ0hIGV+YmclhIDYNNjGCovlGqHa3/DNN9+gqiqs12tcX19jtVq9VZscd4c7DvcAPT1IUDIYrVd9LzsAmjGyjMEc69JX8Oo6NDujnQauXxwIdhxkTqvFnGmnJ9deyxiXP850IalUQzhuHLRarczQec4ZKo0jC3lum8VcWe2VelhJlb4fug0lBZM7nvueWQ6nNjh0ucym6XEsfb94fBeLBZqmwXfffZcyrywWi14pFx2OjxnWFFIg/7u1iCWNPsQCy+fS7/UuzoN2UKxprFp+cRKK8XiM8Xiczsl6hxCOUXprnV5OX1q6kXWSJL3gKS+yuJnXWOi2MwnVd6wtHSF6XDtU+tkyUdU0DWKIUki7nn1laZHzfldnuianI3R7VduRxpcMfeqHvk+Xx05DjMd2RIS0v0TgZkplscGwqbFcbAHc4Pvvv0cI+zUOt7e3rSQ0jvuBOw73AF4oLAIrZ4RaTJPFJslnngKlFYnFVnN5OcPcahcft4SZxcBz/WzIz2azZMDLj54NbFYMuj25KIvuizBJwmKdnZ2lBYeyqPnm5qa1AE/aIH+SIUpHJSzmKcZ4Ei3Rz0ePPWcdYnaLx8L6LjBT9ybrQXLjp8eR0VWHbrM+l3Nsmd3b7XZYLBaYz+dp7CUi5XB8quDfDhvEFlOdIyosHZGL+vF7ls9WmZYBy+22jml9oRn8Uh1iyM9mszQeMcaUiYnv07qgRFJYpIjoiNlshslkgul02lqQvlgs0n4TrOekT6w7rA3IcgQTjydvkMnHWWfytS19hPKUVXEg4r4x2eu60P7etE6U78PReYhNc+IwJFgOBMLByQBqRPzpY+C/voy4urpKKdDX63X67LhfuONwT2AhzkafwApRW0KbWQ+Lodd16pSoOlVm37ZbbeB1DXohGPdLpgvtMyOMMZ1OEeNxCpflcORgGafskMk5meoC7HfoPjs7w3g8xpMnTzAYDBLDzcpMlMSrV6/SHg1VVbXSB+oohLXQTyv9nDMlYzOZTFrRBmHVtNNhocRM6utKik0cn7uCy2WnxopOSD18nVzDz08yVulN4xyOTxlaputkFiwL2NDM6QhL7ujfo8gvdh5k+oyVee8ufWFjW69/Y4h+kDUOk8kEk8kETbPfRE2z+iWZmHOcJLogYEN/PB5D9tJ49OhRikDIHgyySWmMEfP5HPP5HLe3t2ka5Xq9LkYnuM8WcWitpRB5XNd1ap8snhcHqooVQmhaG8IhBNNJ2GdBKmdWYkMf9D7GwyJm7I17PfQRyGZVSmUe2hXCvoxWQ050BIAQEUKVzocQUB3CEfI98kj0+4M7DveInBFUYoRy91kMtjb8tGHGDHdO4XQhp6ByawU4HCzrHGSzo81mg9Fo1DLMub3yXhu4uq1WCFkU1mazaW3CI2FwmVcr7Q4hpDn1MmWGmSQr1G5FHvooNVb+/FkUqKBP6sTcuVyUQp+Tz/r+NzUYdF0WctGHXPsdDkcbpd+7vibnYPB7Jl+001AiArpQ0g+sl2RKqeiH2WyW5PdisUhkj2bm5X1fHaHbxTtr73a7pKsmkwnG43FrXUWMe8ZbFm1LKnG5l8kf67nkdAOThQK9rkLGab8OLCJuK8yGh7k9TWOmMc16CdIG9UzFQQBOpxm1blepWN8Id7jP+s5az9hxf3DH4R1DMwpWtECDBaEVAgVOQ9q5P536TSsEXW8OOePOmr/K5YtCuLy8xOPHj3F5eYnnz5+nOew3Nzed7DzXbe1xwREQHmMJ6zZNg9lshul0iqqq0poHmTIlzs3t7S2urq7w8uXL1L7hcHiysFor0lLmJG4fR0uapkmOnCwKB4DRaJTuY/Yq9yw0C8cC1YriWA6EpYit97pO/b6EuxgeJefL4fjUoGUDHwfKOkKz8XxeR2Jz+kGTT11ORu6Y5cywfsjtPTEajXB+fo4HDx7gyZMnePToEc7Pz7FarRDCcUqrRB/kPktO5UgdoE3E8Hjf3t4ixojZbIYYY4pQCzhCPxqNUuRBHB4mS3TUnUkhPUbc7tz6D4m8yvV7B6rCP32wA3ZbbAzSvUXeUCQiSLQgHqY5KeZfO2C6TIR2tCGNPwr6wSwtA7mPHZvM9y5nwzjuB+44vGewABVow5jfW0Jff7Ycily9fWGx1KX1Dfo6CeNK6JenorTZlGMa19J4aeTm+ktkQ0LKEtkYDocYDoepffP5HNfX13j9+jVub2/TNCZRGFKO9DPHfPRV9jG2Nwhipk9P/eL7efpCjmXkNljX6Dbm2trlYLITpcdD18d91++tel0hOBx7dOkIvianD+QcE07aobDKuwssHSGEDk8JzekS0REir5k4kQx5smtwl+FoOTG5urlO+RMHQuSt6I7Xr1/j+voat7e3acoQ6626rlsRCqsNXe0W+c5TedsZ+mrsds0+0sB6LxwXRFdAPrtSCMcF0yEfmSh9A3JOw0nfxHHBPlIR+7gSMZpTouSz64f3D3ccPgCwECyFV1kh5JSCdhy4/Fy9FvowyZrxyglGMbqXyyUGgwGur69TqFcWoMl8/j7ZQkpt0RAhLGn9bm5ukqA/OztL4er5fI6rq6uWUthutxiNRuZYlRj8vuPH4ybPTNqmIzlsoPd9rrm25Vivvg4mt0Ub/zlnhtHlMLhScHzOsJxq6zekoWW/kB78m7J0h1V+7lhXG/g46wRLPrNsYn0gMnCz2eD29hbL5bJFMlkpu3W5OQLDilaLwyK71PNai8FgkM4tl0tcX1/j5uYmrW/gtROatCnJxZJ+YOeB1yjWdY0qDFEH7B2GtEiaxvPA0sd9JcdjZj2ynuDI8CeZzmUeLg6BbkTBsVDlcZvC4V8P9XiIibTryjmEjvuFOw73DC1ELeNOnwfaToOwLxz+1IyTrlPwYxll7DRoA5fbGuN+ytD19TU2mw1evnyJ77//PkUcXr9+ndo3mUxa2ZT6tLXEqMvrbrfD1dVVcgYePnyI8/NzPHnyJM2jffXqVXIcvv3222TMn5+fI4RgZs8QYd6lIBlamcgY6vPCwPFxbah3Kadc/ZYD0qfMLidC/jj6cxeh3vXddTg+F/QxiCyyRusIK6pgRXO7mPC7QJNGOiKtCbDdbof5fJ5ksWwUKmTTYrFIbP5oNGol9ngTHWHJpsVigVevXiHGiB9++AGvXr3Cw4cPMZlMkgNze3uL7777DldXV3j9+nWaZjWdTk8WgHM/pZ67yEW5j8dts9ngybDCHzzYYrc9jbKHcJhOdHAmAoBIz53Jnq66D2/4pbW2ITe+WQdU6k7eikTNi005KafLaXTcD9xxeMcIIbTCqznmWr9a7AxPZylFFfqwvnftA5fNgtBaNKwdB8mOIVkhbm5uWuVx36x+5BhyvkYLRa14l8tlUkTfffddEvpyDae54/YL06WVgp42wA5ASTBbDoZ2BkrPT5/vii7ozzmha0UBSsixoRJWl/HQLBy3wXqW8gzEscxNQXM4PhVUVZV0hGXUl5x6liNaP9w1Ccab6ogcC2xFTi0dAbSn5XB75Xp2hN5ER2gZqGX1brdLewK8fPkS33zzTUrfLfKfM0TJ+AoxJtOdmOzRpBLLxRy0Y6Edw9QPwz6QaUoacjz7fLksUzfQ4daHDlg6omkOx6tDWdLP4/UhHJ2ULv2gdyF33A/ccXjHEFZakDMW5ZX/RNjIOT0VKYeSYjCFUEf7+Xp5ZeWQM4LlszBJkmZUFIGEeXnxmWZpcmNl9ckaB3YMJByudwSVOiUloOwkCqDlOFgK6G2N2rs8A/1ef7aczZITYjlddzUedP2ltgp0REkbCaLY2eBwOD5ViI6wZKflNGg5yY6D5Sho5GTC2/zOSqSFRZYwZLqoTrHJzoJ2hO7q/FiEi9Zb6/X6hChifRlCONksThuxOUem79hq8svuHx1XhnwI4Rht4HukTLtSwxE5jQbw1KEiqE0nV0vBom9o74Z0iXIauAxxLLVT6rhfuONwD2CmQYxVWQxssa+5PRY0E8OvgpKA6mJ8u4xGLdRyi6PZmRBnQdc/Go3SBm3C7HTNuc2d00qAx0HaKWNa13WadnRzc5ME/m63w3Q6xXQ6xZMnT1pMlJTNbJKsybDq43bptuaiEryvAy8UtPor3ycuT8q0nAddX18DP3cu52DoY2IM8X1yXa5ceeUxcMXg+JQhZJD8rllH6Gw88tthHZFzMPi3p+VEqS3cJj6m35dQijgIrHz8Un5VVSkLniSyKGUEzPVD3jM5oiOhvL5O+ixpYGWPBhm/Bw8eYDab4fz8HACSfNIEh9YXckxHEHQ/cs6VPPO6rlEPgGa3Q9zt7N2eD8Z5dZC/TdPsHQmtG3hvB8tTSHWbh1ttO0EuMhEOrkeMCFXV2gOiNS5GPTG2o1l6FoDj/uCOwzuGMNlsfGq2SAt+FthaGPVhhXOCh/84CpK77y4sNP+gBdq4luiCMPvD4dAMP1vtLrWvtDibHQdRQtInzvQkC6FHoxGGw2FqvzZccyw5ty/nmPF9PC2B+y87W3O51jQ3q3wxPHLGutWHPs+2NP6556O/Oznjhu/T6Wo90uD4HCByifcCkN+IyAgthy0dYekTC6UoJNdrlVOKanbVmYs6cN1CIgmrL59L+kG3Q58TWaJJGy23dNpV0RtCNsUYWzpCSCfe2T43XpZuyukIJoa0LrmNFf77VYWfzyKAHZoYUQHHTdaODUmOQMBhrcO+IXu2X963B+zkY1eEIYRwvI/LO9TXOg/sM0FJn2NsOQ0nTuHhddsA//n7LebbTdotO5ehy3E/cMfhHsBCgNN59gm3auHX54dSEszMbOnzOcOv74+zJJyZSdJKgZWj1e6ufmpD0+qP9FvybkuoWYT/ZrNJm8OJ0uBoCivxXDt0f3OKgcdBXlnhM1uVM9bl2i7nrg+7qN9b7dffBatv2hnInbOUvfUsc4aGw/EpQbPgMoe+5HTr35N2vvvUyeAyeW6+RQDoenPEglWnRQqwbhBSK+c4lHSEtMfSW5rUyukI1klVtd+lWZyEGGPSD9rRkzL1dDFLhml9rPsh7eL2yLEQAra79lSeCBx3juby9x+SE5EM9sM6g/19gM5ylOx2y2nQ+ozqOi58hu00yDFpa0n/HI6tdhE3a+B2twLCDrE5nfrm+uH+4Y7DO8ZqtcJf/MVf4OnTpzg/P2/Ng9RsuwgGFnBdRlTOOLWElQgydl6YZfmxoNkVUQYicGezWVIK1iJjeQ+05+3m6uGQZS7VoKTXu7y8TIKYHQNOeycZPThfOLeJ25MzkPkaPs/tm81mGI/HOD8/b7FXi8UC8/kcq9WqlaEjB60kdd2sNLues2WUWA6Kvq6P02eNk75Pf9dvb289FO34pHF1dYWbmxt89dVXLSOViR79e8npCOu3YhmnWs5qecF1i474MWDJeNEPdV23yJvxeHyim7QezJE6moiQ6LHILX19XdeYTqe4uLhImZuYPOIpMaK35XgJJedPv+fPQnLJLtp1Xac1GKvlFuP6Ftt1xO4Ocl0M9hBCcipijGhiPKw0EKM/Uxa3k+qs5HiktQ3aadD6oTBWXN+fv2rwej1HCA2a5tTxlOlkjvuFOw73ADFoJSe0CGJhv4HjrpY8vUcLSDkG5EOiFrSw1AZtyehjZjtXv2Z2+DwvguYpSqIMtYDXZeQyjbAC0YukqqpqGco608jZ2VlyJPj+5XLZSv9XimAIdPRGj41lwEu/xDFgZiq32Cv3fEsKw2K5uu7pW69lAOTa1lU3fw+0QnU2yfE5QE+LkfeyjwzQzukvKLGvcl1XhJuvtxZYs9zSZev7+b2lx/T1QtRIlEH0Q18dIbpBt4+v5z/pI8sbrR8GgwEuLi6S48IOxM3NDVarFdbrdSu6IWB9xWOgHS8tG/VYSfuWy2WrzWk9hVKJxWd7cBqS86AM+uQsijl/RxLRqjvG2HIWrNZxLWkMT54hUFUSJGl/L10/vD+443BPEMHIwknm0gtrrgVsl3FmGVwaEvLkH52+tmsqTo6B5jZaQpSZJFYIvChcOwBa8fECW60wS+n+rPbK33Q6xfn5OZ4+fZqulb0eXr16lVhua0GhjCf3NTdu+jnodgNIKfxYceUMAT0G1nEe09L1uftz7S71xyqDmUvtfHIZ1vnc99Th+JQh5Mpms2kZ0sya66jCj6Ej5FxJT3AZJRlkXadlGd+vp66y86D7aJEqui1Sr9YNrFu0XOVF0cBeV5+fn+PBgweYTqet8f/Nb36Dq6srLBYLc0E0v3L5XeB7pFyeCsXTp5pIfbDkMxnhaQqTdh5y92SQ/e5oR4SO6361ygmhtTDaasNqa0y/ch3xQcAdh3uC7EZ5e3ubWBbZuXiz2ST22WKQ2EgtGfgWNGPDx3PXWz9Ozex0MU4CYc0mk0maqsRzaLnPvCgwV16O1dJKTt8r04Dm8zkuLy8RY2yxeTHup8XEGFP4c7PZdBrOdxVczF7xZ3aqpHzLGdP1MyxF/zbo6rt1vOQccBtL7WcW0OH4XCAM93w+T1NVzs7OsNlsko6wdANHV5nMuItsugtJoetip+OuEF04Ho+TjhSCjfUDv+aMxi7yoaQjYtxnAFwul2kakkydYv0EIOkRSe2dQ052l8D6Qe6VaNR4PN7LxVAlp+HE+G43oO0gyNhY594A6fuSkfu5e1rjfmjPPuJxbOPtOuI/vlgioj0Vi6Mvrh/eH9xxuCcI877dbjEYDNKcSW0cdimFUuRArrOOlcJ6ltDPGYA5Qz13r/TbWuRmRRksYVuKcPQRUMzCc7ifU5/KHNjNZpOcBr1zs/WccovbcmAlK8pSdkoVtm2327WMBN0G7qPV/z5Og1WuZdRb35u+5XN51pQu63PXc3U4PlVIJJY3trJ+D13EkiWncwZ07pjI5r7GmSVv70IScESeDeb/f3tv1hw5kpzteu4byZrq6mrNJ9kZk8ykS30X5///hHOvi3M+STOy7urp6uKWCxLIBeeC/QZfON0DSNbGxR8zViYTQCAQrHQPX8JDO5e8++p7eddYxgPrR53y2u/3G3tMQEdAP+gF1+ykYyOn6zjyuYPBQKbTaXIo4fVwqOW/r0qZHXdy0a+bBsHdze9eOt3xYd+5jfSrqLHja8WQ5d59cC7//7jrwN1nIvLzSuSyPMqx3qcghJ4TPcYoC74cYTh8I7hKAwwI3i0TIMyqFQZ7YXPKoItB0SXyoAW/9hrrCbTVLisFnbOqFUIXA8AyqtqehQUxGw4i0ljgVpZl+uGNgKwx1P3tkuLF5+LzxWIh0+lU5vN542+73++lKAqzTR4X67O2Cbf1t/L6qs/z3vP1/H9Ev9fn6P9XrLjDcAheG5AjkD/YtJKdHfxd0bKTZYinI6zP9e/W9/zUdBuv6IW+Hxw4cJxYjiW9rsGCr/MKiuSMBr5WO+s4KwD6oSxLs0/8N4LhZTlNdH/4M4zJaDSS8/Nzmc1mDcfb4XCQD8sb2dyKXMzzkQ3LGKjrTLQhGR3quTJlWflM1/hgIyG1ef/K/f97cZDtsfjDlmj+X9TrGYPvQxgO34j//u//lp9//llms1maqC6Xy8ZEute7C9ti0S5PYFkpWJWDRPLepZxBYSmNtomfNmjYOw9jAcKPhR4/LwSBBfcJYVttpGjFwMrV8qBpBQtvUlEUcn19LTc3N7JarRob/mgvmh4nPYZdJu6stHgBpFaW2puox8cy7rpGCLwJRa7fIna5R2vM9e/as6fHAdfAs3dzc5NSx4LgNfAf//EfMhqNZDqdSlVV0uv15Pb2tiHf2AnDUVLtWGI9wVjf9a4GBWNNxq3jIg8j2jrKoHUErm9zKvG9rDUM+tquDjOR5q7V2+1W1uu1rNdrWS6XUhRFGvOuMvcU/cAgZY1LdifdIH+scXCehVN/RKSxXqBX/1FN6Q9P/1H3lw2Fjp79ukb6lNGW0U9LR4j6+1vzk8PhIJvNRq6urlqrWgVfhzAcvhHwHrEHvizL9DuXvcMaALyy54IVhOUFsoyG3HvrmDY22owOfY5+Fr0rdC7SYE348aqNBD5HGw+6PX7V9bGPx2PaIZQ3X2vzwllYSkQ/B+D/CzjGFVXayuRax7wJfE7Re5MG3edTJvHe/6Hc87DRxDtnB8FroCzLVDJ0PB4nBxPLe550i9zLDO1Q0tFpcIoe8I5Zv+fQ331tOGh9pif+uWgFzteGg9VOW//4PestjjggAgRyst67V9s1/N5aJI+5QVH35G+rvvxf5yJePAh/JU41qv+YxPfqurkx3F0HzT5zW6mfHZ7Xg9vs/dGH8iDyYSOyc6qAhX54OoTh8A2p61pWq1XKXSyKIi0I41QehDZhOGhlwIaGRZtQ945r4cnvvUk0KyytEJC7jwkwC3DPq65fdb3yU2BDhvuqS/7BcNBKwXpmz2vlTeL17zpSgwgTjh8OB9lut2mHUk5V4Gt5nDyjyRqDtrHSz9xWxcQahzbjU3sV+dl1zfQgeE0cDgdZLpcpPWWz2TTy3HX1NXYwWDqiTdZ7nKIj9H0s/aCj5Vw9ydIRPEnkUquWc0MbChrvc8/pxVUAUawCxTWw3sEapy4GCl7b+soGDPa1wJggSj2YFvL7ci//qx7LoE/64e4mzf4dj42IQ13X0uv30+f9rv8fWNbjb6XPdTaOQzuN1CT83u/LZteTX7drkX4tQuKf5wxI8Q798H0Jw+E7sFqtZLvdplrRLBh54Q+n9+ioBIQwk/OuaMHr5V1q2GNteWWGw2GjSpCIJIELw0Hnu7LRwM+uF8bhfH7Vz8P98ZRdLnSNUH9RFFKWZdr4Tfct1xc9wdb3sNo4HA6p9Ovt7W1jx9LNZiPb7bbhRbMWhPFze/fHcR1xyP0fYbgClvf/RXsS+b76vQfGkBeFBsFr5fLyUkajkZydnTWiCuxssVKTWE9YhkNXHaHlRg4vmslOJL4vHCZcFMKKHrDDxJLxVpSh7Xm8/rOxwnIWTqWyLGW73TYWRUOHapmq5b8ecyu6oJ0ph8NBiqKQjx8/ynK5TOOF/wNFUTSi43VdS3232UGKJqTJ+t0f4y6qoCb62iDgCMWD8Xw4wCK9ngzYgLAcS3wvZTh82vbk/yyru+tqkX6/J8fjw7tbZdeD70cYDt8BCJ79fp8EKy+UhlDSxoMWUNrq9jzPj/U6cbuWEmEFBSEKxcChXg5B86t3L/17m5A41XBg4cxVMixPhiXkrXa7Ph+A8N9ut7LZbJKBhR1CsQgP/dFrLrz3ucn9Y72MONbVeNNGahejgRU3P3cQvEagDyCjuLoPe5554q11hCU7uzoM9DGtUzSWbGBjBk4B1mscLWnrt3e/nGOJJ+WW/MtFC9iRoSvtec4gqx/WM+X6ytfs93tZrVaN8rzQsygHu9vt5ZfVUN6Ma/nT+K4qEaclPaDXEzH0eWNy/8fvOXmPPvZE7tKdYKxY9xORza4nV2WzhGqv15PVrpbegGW9cY9es6AKIj/B9yMMh+8I5+pVVdXwHrEXXnvsrc3iAIS1JyzxRcztx6Dbw3X8OysFXi8gcr+REfZsyAlojnxwGTy+p4XlVdd99u6LMSzLUoqikM1mkwQxFDJ7niCw9LhYnn7dL34+3c/1ep08WV77VsURTwmeElWwzrfGlu/Xdn/LaNDtciSJx4u/C1dXVw+uDYLXBuQU6wj+nuk1DTzByjkxdJTCuzfooidwDUcqtOHAERGWa17kHPfWn3eJhrQ5OaxzdYS3qioRESmKIv0gsm45w/SY8XFLZ+fkKNZVrNdr2W63jWqAAH/HoljL+ehM/u8/j++9+fh/gnbvGr+f7BvjhOuEr/njugeQbuR7Cj0TX/X3lcjVfmv+HXi9jjWebMQdj0e5ubmJRdHfmTAcvhPwGojcbfwDdLiZBRBvGobP8KXj87j+dttkziIXoWCBqXNqAUcbvEk9CwY+H/3XxoQ10dVKRfebr2VPF87nEDTC0BztYUWVS9lh5cB9YQVqeeE5zQteFHhS+J4iTQNSTxzwrKx0tNHijZs+pv82fNz7W+pz8F4rAWtSgx94UyPSEAR3HI9HWa/XyQkj0nTY6EXS+N6zDNVyAudCd7B86qof0A/vc5ZPVtEPKyKt5YqWQbzHQ5f9HXJODj3G2hmG3yGLYTSwg4f1AfcZbQLum7Wmj+/HqU+Q/6PRKBkRbEBog/EwON6lKtF8IK1b6PVSmpL0/tix+Y/30n9YmdE0GPg9t6Ou/f+uRa53+8ZnIiLH+ij9QbOUvDU2Ok0Vn/HeJsH3JwyH7winybBHWU+49ReJre3GVvSZL9WXUgyMZzjo3FstLLTQgJDERJoXKXsT1ZxBxBNTSwnhmBWGZuXLbXMqVi631vOCacMGgl8vDGSPFivJLlEAPmYZUt7/Af259Wy5yYV1L28MrPGK3NUgeAgMaugHXUBDR6LxqvcisNJFPb6kjrCMBzYcPGeEJWfYUIKDJ9ePnJNE61N9HjtjWEfzfS3Zyo4aLcu0TGWZyXpKGzwwsNhp6K2901xue3Ko79q6GIuM+/LAeOj98V5EGouqi73IqrLH0tN9/X5fVoejyICqTuH5+v7/lbbIUZuRGHx7wnD4zsCT8Q//8A8iIqmKg/Yk85eHDQdUZBqNRslri4V0pyiBrrBwg0eE+3c8HhspStZkGe1wxAE7KGPBF3vMcs9iKQjt1cYEnBfecok9RBzaBJPVd+t37rMndNEenn232zUiCnrMrDHg8WQjIxdpyClZjdWGPua9eu2gLWui09UACYLXxO3tbVoHpb3iIvc6gmUbe8ZRmafX6zXWSYicZiicCnvNIaegF7gYBMO/s55DWhMWWvN6tJyRgM9zjhGMGfQDfpAmBv3Am77lZH4X2ahltyeX2aHmVcmy9ENd1/J/VjvpDe7+b/xTPZX/NT/iYEorErkv5dqjz36+reV6X2R1r6kfBiJ9eagnc/pBn6udpqEfnh5hODwBYAzAw4GJn55IWhNbeEGsHEhLyWhype6sfvIr34MNBW+NhZ40s8HBeyh4VXVYqeiwrxXJ0H3HD1KCUEXJWzPCn3lrGfQ9OUKB3z0DAmOGRfI6NY1/eGytqil8DhubXZRTG9o7xmOCv5c+TytRHNfPxoq6a3+C4LUBHYEFxpyaaE1WAWSr5VDQctrzzuvvdVs/dV9wX06r1Ytk+Xp8xqmakNNVVT2Q15aDyZOfXb3bWFPCRornFGEZyM+g5SY/q+dc4rFARJoLpnBmAd9ns6/k//mtL//7/VRut335dXsUGdw/9y/FQX4t7s79x1lP/oF2nC4PPfmP6/qPkMNdm/v62LqPkB4HjK8l3/V48KvlhNO64VsYukF3wnB4ImjLWgtsyxoXaS660hN3nM+v3Bb/zpPvrv1Fu1b+vfaaW8/AggZKkeHjVlttSsHykmOMoRisvRs8QabxFBGPuRVFAOyFs6pTWe1aRoNu37v/5xgO/Ir3bYrBm4jw+/AmBUE39GTKciwBrSNEHqaQWufqdtqw5KVu23KEWX3Qk0NdOMMqIOE5s1g+ebrNk0+87gy6Sa+1sybJXcdNGw2WrMTvnKLFf7sHz93bS1WXcrObyU1Vy3Gwb5x/7O/k8Mf5N7uJzCoRkbsIQ3noyb6/lV6Pxp7+7WIs5vSmNZ/pYsihHWttSPB9CcPhiYAvBCsFrjphbQIm0vS2cP5rl4lb1z55x/i+uu/W/XnxM3vNdHv8bBxJ0cLZ87KhPctQEbnboRVVlDabjZRlaSoeHgPvXpYCtDxJus98PlcYGY1G2UVgON8zSFhBW/3T51pteOeyEOcol6U828YBsOGA//NBEDwEcgnygTcq0xMsnC/y0CPvGRA4N0fXCTg+17rJKljhtWPJVZGH6UzWxJ1/tya23n0wjkVRpCp7WJTM5/MYW444btdz6rTJZYC/FxZK93q9tMN48zlE/rYp7nSJShXmRfSrei//76bZx+FwIJpT9QNedaSAIwZ67aJ2buk2OYUMui+Mh+9PaOknwmq1kul0Kufn5+lLxmU48SVi9OSMvdE4DrQg1e141vwpn+lIR+48GA+WcGJFx+Fqfg4vdMzPg3bYO1fXdSNNabvdpvA3+mZNhLnihTWpzylg65j2uLBXiZWr9bf1vFTWvTwsz6B1jm7bMqq8a/j/m/5b86QGfYExFwRBk+PxKMvlUhaLhcxms/Sd4Rx4EUlyDGgd4VW7E/F1RE4/4Lj3O3/n9XqGtra0vLH6ohd9awNKGw98DxzX/UJ6V6/Xa1S8OxwOD0qHapnmObms8Wa9pMdLX6cNPn38fgF6X/p9fzL+2El3F/2gz9V/K+t8/L08I5H1Q1VVD4y44PsQhsMToSjuFiJdXFyIyL2ghYXtVRVgJWAJli4ees+LZAkx63r0Qxs3pygb9grxqw5XW54lzwNkGRwwHHa7ndR1nZSCVanCEvze2HXxQFnPrhWDVvTaaNBK/1t6X9qMQgv999TXc7Rhu91KURRfp/NB8Iyp61rW63Uq3c36gSO+lmGvdYT+/rbpCHZutE0GPb2h5XkussH9bpO3VsEKywDSuoXb08+DwhmsK3I6Qhsf3rNZ45YbBz0mnvOIMw30HOCx+iGnu73+6VfP4Osy/+BnQHRtt9vJarV61PMEX5YwHJ4Qw+FQFotFqkKhd6mEx4jpKiS0ULWEu7WQWgtZy0OiFzB18Uhbwl0LEJ3Xyv3TCgM/VlQGXnxspITUJCgInQ6Fe3MfLc8W+ssLFa3x4uPWuODvitQD9sJgcsBlWz/Xa9TmBeLzcS7ee5vjealVPBb6vnV9n4qG6lxBEPiMx2NZLBYyHo+l3++nghJAy2fthMjRpiPQXhcvOaMjAG164pRz+fn5GEeIuc22SDVKdKPKHu8fwHKZnwvv9b3w3hozHhs+bumI+2jCIFWV2u126W/K+sHS4V3xrtOym8/Xn+uIPZ6xzVi07sGVrbgyV/D9CcPhCVFVlXz69En+8pe/yHg8lrIs04TMEwiWF9f6gloT9sfgCRBrUmpd6yknTLJZiOq+ag8Gv0Ko8yZs+r5sLIjc1+m2KiZpI8QbP+89+qarn+QUuxVNYK+i3ljvlL+jjnJoT5x1rvW3ZEPCa1OjxwjjwuMbhkMQtLNer6Xf78u//Mu/JFmGfPecjrDkpeZr6IhTZQvfX//gfHaeacMC92A5BXTxEW6DZT5SlXjiap3f5izxno3hiTZ0g6cjrGiC1g86Xfmxf0crYqCPt13PP2390IaWnh+gxHvwNAjD4QmBetH/+q//KvP5vLHpjDWxsowGxprUeoLcEwRt7XrnWcrDMxx037TQ014iPWHNnauBsuUIhOUt0iVCc0oi553DKwt+6zwrDM2eJlYO3K6l0Kz2H6NAeJy1V4/XqeiqSF4/tLHC16EIQBAEPsvlUqqqkn//93+XsiyTh9xbt5CLdOrvaJuOsMg5ifQ5OcdXTjd4a/uAZQzkdGJOHkIvwGmn9YDnRee0Kmtcc06VXKSEn0fvtM2GA/+0zQdyxtypeGOpnUtal7TpB5GmLrf2/Ai+H2E4PEEuLy9TVQeeWLFAsby+niLIwYJUhx4f6wH27tvm7UJIGIvQUGUHgkaH5VlosYDRaC8MBBIMB67awN4O7ltXA8o6zn8rrjqlx0avZWBl4BkdmtzfTAtmvuZUpQFFxkZVV0+lVsZVVcl//ud/yn6/P6kPQfAaOR6P8vHjxxQxrevanFid4lDK4cm/x5CTEW1RSxwryzLJQ6TosP7I6UHIXtYTWvaKSEMX8cZwnr7VetObpFvPhWvYKcPtaO+9pyesOYFFm7F3qn6wjrN+YEdcV/2gDcm//vWvoR+eEGE4PEE2m02jtClX2rGUA5OLMuQEhmcstHmprLbaQpxWNEILGOBNlrWQ1kJXn5tbXOx51tsUg45E5BSsViY6aoI+aiWRUwSWsH6M16iLwdnmJerSD/05KxekjwVBkOd4PKZFojAaIIu8qAOwnCJ4fYxxcIpDxZKBlizU7eiohLUm7ZT+5lKBLJnbdVy6GA9eNMFqR8tKLyLdRX/xfbyoCzvNcg5J77OunKofBoPBg5Ti4PsShsMTBOFoLJYdDoey3++T913k3ouuhYA1wWvzFnifWQLOmlDjmHdf3R6nt+jFVDAecC6Xv7P6qYU1C1bL48/naCGM+3jPgmPeQmm+Xo8lP58+D22yoWhVyOA2PkfJewrNO9/D8iB5StC6T7/fT/tWBEHQjbqu5fr6Onnbx+OxiDwslOHJtFONB2uCj8+tc3Vfux7z2menkog0JpGcvsnPZTmE9Bo6fS/tYGJdZMl9zzjQ/dbneGOp9Z/WI5ZuaFuo7pEz7nD8c/UDnqXL/wGtm0Tud84Onh7xV3mC3NzcyGQykR9++CF9+RCme0zlBF5MawkxT/jkPFiWMMB9uoQkWTjz/fDDoXcdurWEmuU18tAKVD+L1/cubbfdj/evaFMMVqqSd29rYmAZkbn+8e9dPG7e56wAcR7+XyD0D6WAKmK//vpraz+DILiTk5eXl3J2diZnZ2eN9Voi95NpkW7ecsienGFh6Qjeh0DLC8+hwBPyXH9EpLGHDzuZuC2WyZzW6sk+bQR48v5UGWq1ba2N8ODxgKz0ouNaR3BFpbYIvda3jzE0uuqHXFuWE6yu68Zi9PF4nNZ2fvjwISIOT4gwHJ4gupIDBC0m8lopeIKPz8H7nEDV53Nb7HWyvCxWezkPlgULcxaYbBhYz9jFG5JTDnwPvr7N+OgyLlowekKT72stiu5qtLCXRytoT9jn/v/w+9y9c+3p/8eIMAwGg9i7IQgegVUNDmvDrO+r9X3W57VNcFkua9ncFa1nPFmZa1MbK9Z1lhNFn+M9t+Vc4zba+niqs4b1RxedBB3xWP3AusFynFnP5sl0ft92b/3/0Rpnnvv0+/1UIKargRN8G8JweOLgCwYvrRYQ1hdKexKsBcOWQPIWWPF7vcmQRc64sCbKPPm2hLinnLSg7arAtADjxb18jg5N63vyfbWS0eiojzU++BvAc4Y0NXhd2hQVR2z4h8fW+vt66GfUni/rGYH2DrHRUFVVKq/317/+VdbrdWtfgiCwwXer1+s90BM4rs/3vttA/26ld+ZkstdPbt+bPPP99eRe6wKcr3fMzj2vhXVv61puQ0fMc2OgnXbWcUtv6vvDYGDdAP3gRRv4XpDB+D/Dawp1qlsXIwSv+rqcfuC/o35OVD2s67u1O58+fZLffvst24/g2xOGwxOlqir5+PGjvHv3TmazWSNFidcHMCycrEW71pebDQadCmN9+T2joc27pY9rxcBChQ0fLZy0EEQal14TYBkbWpFak2vdJ0/Q8zhyezz+3J7lEbI8SihLCoWAMDTOtxQn35MrrXhKTVcH0cct9N8pp1x1ihI/N+rOb7fbVD0sCILTWa/XUlWV/PTTTw3vs4g82DwUsI7gybY2ItizjVdLhp3irPEcLNqg8K7l63KTcP6dqyJxNCaX9snt6r0fLB2aM0ysdSbsqLLGOgc796AbuEQ3y15rvNijrx2MejwfoyN4TsHn5/7ePK/BM5RlKf/1X/8lVVVlxyP4PoTh8ESp61qqqjJD0uz1tzzJ/EW1FMfnKgTvWFclgufwruEqUjkvEY53zSXVSjKncNqeRY+VHms26rRBkmuP/y5aKaCPWthrBafLo+Ym+Rrv79LF06bPswwHnLPb7SLSEASfAZcJ1TLBM95ZtnqeYT7XijTweRan6AHvek8O5eSSBctHax1HbnLsGSmeYyrXT60brL+PdR1fr/8OvDBc6z5LR2gnk34m6/m9sbH6Wdf3zkxu3zJi9LNq4/B4PIZ+eMKE4fDE2e/3UlWVDIfDhlGgF4VxdQ2EI3V+uyV4PIHVJhhzsADw2mXvtKUovDQhyziwJsOsGLTg4gk231cbFJ6BwffgZ/YEZNs4acVhhY75Gus58d7KW9Wesi7PlzOutPduMBhk82VPGZMgCE6jLMvk5WUdAdmKQgTQEThm7Ytj6Ycujo+u5Bwu3mSUXy2Z6emInDzWckhPWvX+ProvLKdzMs3TEW1OLqtvkLn8d9VZB9qpow0ldjJ599F9b3MQ8XvLQIN+8CosaWdn6IinTxgOT5zVaiW73U4mk4mINDcz05EDkYchYf5Meyg8T4XljfG8x4wl3L1KCJ4XPedRynlRrGv1/ViJ1nUtZVkmw0wrSmvC7L33FJX1vFrg63HQf0t9P90Hb2JvHdM5pp5SzrWfO08ba/1+P4XGkbfa7/elKAopy/JBu0EQnEZd13J7eyuHwyGVrmQZA+82e7n5Wpwv8lC3eLLe0hGn6Afci1NTcNwyInIOCd1uTkd4fbNk83A4TIYDDDOWzW3P1yZbc3I1N5aQoVo/W3JY30uPhzeJb3M+Wc+n22nrFzvFkL6K/6dVVUW04YkThsMTBxtjlWUp4/E4eR0gQPBF56pLltHgGRmM9kho4ZXzCDHe+Vr4dGmri1LQ924znKBguTQgK8+2/lmT9dwkn/vQpmD1ePPzeG1bY5HzOHX16ljnWe1a53K/sSAax6uqir0bguALUZalDIfDhgNET9LbvvuWnsDnIs3vOXus9aSbP+PrvPvlHDRd9Y0ll9ue1boXO5bG47Hsdrtk4LTpQX1f71ibcytntHmGWhuWk4iP6fc5ndvFePCiNHq8MbZwLEEnwJAIni5hODwDdrud/PLLL/Ljjz/K+fl5w4uBL+jhcJDtdvtAgGOynBPqHEbkhVN6wi1iV2jKYUU0dD8Yq3woKwEOd/IicV1JxOrHYDCQ6XQqi8UiKVN4lThfWCvPnHfFMgSs87jEak5hes/htW0ZBDxR4Ht5Hkduv+1+emF1mxLFQuj1ei3b7VY2m417fhAEj2O9Xstms5F/+qd/alRhww9Xq2FZpeWShmWHrsbDzqter9co5NAVz4CwztNyTOsy9pRbHu62xce9Xk/G47FMJhM5Pz9Pa8w2m01DT1jRh5wTSzulWJ/wcRTG8NJ00aaVosTt6Wut/rEBYk3uvefR7z09xuPkgb9ZWZYpCr1cLjs5tYLvSxgOzwhs8sOLZq3Qso4uaIGpBYRXZQHH2YjwvBEiDz3k+pyc98K6xvKWs4HDz5qrpoTr4PnGdajGBEXLk232iFh90p4fPQaWd8hbU2J5s7oqUj7fakf331PSuB5jiUpeg8Egpcth7Kzx4OfgHOHtditlWcpmswkvUhB8RWCo61RWvWmo1g+W91pPvnV1IS2b8b3PyTFLZmpHBLftTTo93YIf6DMty3MTWZyPCH+/35eyLOVwOMhoNEq6gNef6UgOxkA/r/Xs3LecLtGfn6ofvHvqseT3ngHJYzmZTFI52O12K1VVSVEU7t9S9wP6Yb/fNwyHMBqeB2E4PCMQ0uMcR20Y6M88L4uehLOBgHb4XBzXYXDddu537WmxDA8tbDzjAX3p9XoPFKMnALXXjXfjxnG0i+stQd0m9K33lvDXY+QpW2+c9LXefXLXW+PV7/dlOp3KdDqV0WjUCCF7SkePFdaO4CeUQhB8faAfRqORiDxMf8FnkJuW0SDyMG01V7ZaX+N5t63fPRlr/c5yyzIarH7Di992H7TNRgfSZ3S0Xo+Z1meW0yinH7zPrDHTOrLNkLAMCKutnGy2/g6TyUSm06nM53NZLpfS6/VMGc+/cyQFTjw4pMqyTEZb8PQJw+EZcXt7K5vNRt6/f5/WOngh5pzBgC+uVgh6QmytidBl5CwPv+4HGyWWcLWUgf6chZ82GHifA0Qi9OQfv3Mda16UhXN1/WmuwKTHiY03voeFN0a5sdNY42EJfeTpwiMEg7OqKreihog8mBhgAjKfz5MxivUJMLosZQelsNlsZLPZxEK3IPhGXF5eynQ6lbdv36Yqezp9SE9mLQPA2hPGqvamHVeWA6pNR1j3xyu3a01uLVkIOa53VsY5MAb4GTAO/NzsFQd6LK0oh0531VkBp3KqjvD0JreHqAHGZ7vdpmf1imvosvC93l162nQ6FZH7jIj9fp+MAEs/HI/HFKEoy1Jubm7CqfTMCMPhmcH5+Ow10hN/wL/nckBxLuD29Gc8QW5TCCy4PMGfw/J24P6cn8vPo/vkeZw8D4y+H9rgPnEKwKlKwYpYeH8/z5jS3i7uLysw/F+x2rGiDjCobm5upCiKRhrXeDxuGJz8d4DiZE9SzkgJguDLw997EUmTu7bSoVpuWBP1Nu82jkE+dpGJXZ1H1u9eH1lWs4y2ypNrRxnfw9IPuq98rZbhWjfkHEu6fUs/6POs8fDas2BnnmVweG3v93tZrVYpxQj3QuVHKzIFvQKjDO/boh3B0yQMh2cIJmki0vC2t03StOcIeJEJvoY/8zxVfI5u2xIQbQrIOkenYHGuaa42tTZ22Cukz2cFoBUC98NaX6L7ryf1/L4tCuGNgdVf/Z4nCjw2Xf7WdX1X4hHP/+bNGxmNRjIej1NpQt1XXkMCr1MohCD49tR13fj+WYttc9e2OZWs87l9y8usr4H80+9zdHE+8SRdT95xrqX/LAcSZH/bhN8aXzj1vJRhb2y7OJ8sgyBnEPJxHmueR+jJPmMZa6vVKj37YrFIqa2IOnj344h1OJaeL2E4PDOOx6NcXl7KYDCQ+Xz+wLLniZw1MdZRBz2x5uPsterqNbHIefQ9uIoFe7a1FwapR949Ad/XWuTHaCNDK1MoEyuVC/c6VRmccp53DSswrOfgyBSiU9iQhwU4K0jL2POMo+PxbjO40WiUfqqqku12K58+fYqyq0HwjamqSq6uruTs7Exms5mI2JNTLwqpI5RaR3BaDk/ET4m8Wg6mNgNCT2CRSsTXc+qqiLiTU8vZwmOA57Kutaopsd7Vz2TpLW00abqOY1csBxjWJNR1ndaCwNjB86OMtlWSVutQq8+sL7FmDpX2bm9vZbvdfrFnDL4dYTg8QzBhRshPp8zweZZQ1Pn6uQkjsIRgm2DLTaQt5cDrCXSZVBa03La+H85BKo2Xb+spDu8ZrM+1IPXa74LljbL65RlE+p6WocfHYUTwmOvIg74XrsO6CUwg9vt9YxHiarWS9Xod3qQg+E5AdmJtEzsNgDYO9Pdfl6dmLP2AV/2TwzJicpEF1g8sgyB7cpNxq309IdbHu/afC5bwMW8suvTT03c5/eCdax1j/aidifjR5cO1A03rQKyvG41G6f8PnH8o17vb7WS5XKZCJcHzIwyHZwrCfmVZpjQSbGymJ4HaINDGg/aGeJ5mnoxaVYy6YAlK3SetGLTRooWb1x5HBnQfrLxXy8vGr3phuKUUtIHjkRuznLDXz+jBkwRWthDgnOIF2Ijw+oNqLcfjUbbbbcpZxb36/budoa+vr92+BUHw9eGKNSifiWgjvucsU0Vs5w3kj7UwWE+UrRROnOvJxTb9wX3T+gFpMVZKEPrrGQV4tSLMWrZreavbBGxAWM48fX7umducWl5/9DEN2uXoAjuPeB8QOIbgrNTzA81gMEhr4ZCWxLua9/t92e/3cnV11ToGwdMlDIdnCiosiUja0IwXJ3GpUa0U9JfeSlXxjIVctSZcqz/XAtrymLDggtDUC78tj4hWTtwW3nueFWuxOPeTvUn8ysessch5fPTYeNe3XZfzNlkeIpF7xbvf7xtjhxQjnixwBabNZpMmIWgH44ExLMtS9vu9/Prrr1FWLwieAL///nuqaAYZjsk0Jt1cYMJL4WR56kUWckUiuD0t8/TkV6db6jb4czhBtKPM6yffi1MoWd5bRoqlf7QetJxT/Kpp0xG5iEcXx5TXLt9fPxcbjDgH/zf4/wcvbt7v91IURSNlmPsOQwGlbT98+CBlWbb2PXjahOHwTEEOO5cU1cISWJNICy/K0GY05NrKCUDrnngPg4cr9ljt5ISubpeP6/t6Y2QpAO+9hfa4Wce867p64trea8XNkwCv8gd+57USvN4E7UCZbDabtLYhCILvD6cqddERltHgyVuWE3ohsmVAWJHYNh3BEVG+lr36uK9e62D1mZ+T8fSlRstR3ec2XeFh6Qj+zItYeDrCM/6s8yw4E0E76kTunJGsk7lkL+tTjl5hX5/tdhsbgb4AwnB45mCDLctLwF9+kW5pSNwGFIDeKMgSZJYQsybw3CfLgwRjgfuLCSwL0ZyC0+85Xcnqk26T8151lKHNk8T3sBSnh+4HX2MpAO8zy0DQfdCLH/F3RogaHia0B2MAHj5W1jAorq+vUwQsCIKnwfF4TNFA6AjINE7l8dIUebKO33NOpVxqjpZv+r3WIyyvEN3kCDquh7y2Uiw9o8TSdWyA8Hn8uZbHViqsdT9N16iB1d82I6CrzrAMDJGHmQkYA5b9+Duwcbrdbht7Z+A4otafPn3q/LzB0yYMh2dMXddyfX0tx+Mxbfg1Ho9lMpnIaDSSuq6TUaEniwwrAhgJVtUgnOvhCTU9gbaqdnie/7q+z8XkCb2+3hLEufA5X6sXCnPblpcuZ0R55Lx4XhttEQcN56tylSx+Fo426LFmT1Cv10trIfj/DytphJ/xGgTB0wL55FibBB2BdXF6wy5rksnGQ5uxcMpkmLGu05NXvV8P9xM6Aue26SH8rot9aGcNn8Pyk+/P6/B4nD53THJjw304tR08k5b/uTkCp7iCfr/fWASNseF1KIg0RPrqyyIMh2cOhD6niUApYALJX3Yr9Gt5jx6rDLxJfNs1+j0LaMtjpT1J2lPVdYLP/YUwtZQD4Em59xy5e1nvuW3rveWF47HQ7/XfldvTY+H1Fc8I4wFtwIjgBXNYJB0EwdMCDgEski6KolHhRjsD9MTRkqO8P8GpDhS06UUCvPOt6zkireVcW7SBf/SzeLSt0ePouNVeTu5a+ix3XpvRYOkHfYydcd492xxuWj/wOjqkM4Xh8PIIw+EFsNvtUprI4XCQ8Xgss9ms4aERaeYiitgGAysFnHMqnrDDey3UtPAHPIG3FALfLxcy5tQb9srrvuH+rFD1ub1er+Fh0p4qz1Czxic3Tt41PGbWOYjQ8JiyYWSlInh/Y0Svfvjhh5TWcHt7K0VRyGq1kv1+L2VZys3NjdvvIAi+P1VVyWazSTIK+wABrlJkLYTWm5lxhaXH6giWYzk56Tk9IId1G56M89bo8fMhLUpHNli+6zQfK0WKJ+fakaOfw9Jn/KrbtuiqS9hBpnWXNZY5/TAYDGQ6ncrFxUXaL6QoCtlsNnJ7eysid3OT29vbiEi/MMJweAFUVZV2+oUwq6pKJpOJzGYzmc1mUte1FEXR8AQAFoLwKONz4Ak/7eHm6yyBpNvzKj3hHK7cw/dn0G+9zsMyJHS1DOuebYLcembuS87L81iDrC0aYY01KwlWeMPh0Hx26zNUWMJYwnu02+3k6uoq1jUEwTMAldF6vZ7c3t6m7/F0OpXxeCyLxSJFJrDpl3bW8MTc0xE8YebPLLnXxQnC53rnaVmq5T6uRSomrtFOMpzLlYXaPPv6mfSzdp38e210pat+4Hvhc3aqidyvfWnTEWgT/696vZ6UZZn0w3K5lKurq4hGv0DCcHgBYHKny5xhYy4WlCz8PcFseW60B4W9ODjeRQFo44Lvr8kpCt2OViyWt4hDqW3GCPfV+0xflxP2ufOssbCez3o2rw2rj7qtXJt4fzgcpCzLNIZlWcp2u5WiKKQoilSiNQiCpwuizfgua2/9dDpNOgKlN61yqCJ2JFikKZs5ysnHT9ERuIf13vrMm7DryAA7Uqz2tGHkOX0sB5EeC/08fB9PJ5wSabDGx5PvVh/5vWVY6HtZcwTeyK0sSynLUjabjRRFEVX2Xii9uotJLY8LRwbfnvF4LGdnZ2n3xsViIfP5XMbjsUyn04bnWJc5bZvQWt6UXPm9HBxp0HW49Xs+zhWeuJ+WMYD9CabTqYhIysfncDzO5eewJtRaQXmLrnOKxDre9vXj++vxsAwI/ruc+p3ldvF/gxdFY1Of1Wolf//7309qO3g6dBT5JxM64nmwWCxkMpmkVMTpdCpnZ2cyHo9lPB6ngghc9MCLGGi0jnhMkQ20nZN32gFmlZjW7fEGZiJ3ugT6AV526AcYWvxMLPP52XX0xXKstT13m5Ghf7ecQXqcuq5Z6YrnfOP9HRC1+p//+Z+INDxTuuiHiDi8MPb7vaxWKzk7O5N+vy9lWSZPU1mWaYdpLpmGOv05rwR7kVjY4DpLKXgCitvhnFJdAcgSxFZ7LKRZkLJw5VrSaJujMTiP+6/7qr1E1vkWXYwGq23+4cpGlhLVz50bM/1et8Pt6Wu+1qQzCIJvQ1mWcjgcZDAYpHVKIpKcTZPJpLHwFZNCayJoOYvYo29VccPvlp6w4DRLa1M2nIPrcyVh0T+ts9Au9kXCnjWeEWJFHR6rI051KvG99UReR4MsXaHHKfe3aNMPaMcyZoKXSxgOLwykLWFXUN4pFJNP5LTiiw6l4NXwZoHIryAXmdBt8XutYLSQ0ufnFm1bAk4bDjwGub5az5w7VysL73lzeO1y33Vkhs+xJvz6BwpQj6PVptU39ioFQfA8gbyHjmA9gOo3KOmNNWa6sAbgVFURMfUEVxkC1gRV0/aZZYjkjBCdqqudIVxC1Ko2pO9l9cMzMr6EjtDtasPBWp+o9QLrPqsyFusJPT6efmAwfsHLJgyHF8rt7a1MJhOZTCYich+qhbLgCkr4oltKITdR5vN1SJvb0ILIggUWRyH4OpxjeWYsQ4OfGwu2kI/Z6/VS6PoxpQW7epA8BdOGVggcOtf3b+szKxiRh8re6j8vSkfKQlVV8uuvv8a6hiB45hyPR7m6upKLiwsZDofpM5G7SjiIxg6HwySDIEOsqKaGZXdOPotIY3FuzpGDV10ZTzuWrKIYlpecxwJOEUQc9ET/1NTPtnO9sTtFR3DpUytVV99L5KFhg3t6Rlhb36GbsBbu8vJSbm5uIurwwgnD4QWz3+/l5uZGLi4uZDKZNHL4t9ttSlmCATEajRp5oJbHRQuEXDiVvVAI/er2+HwR22NzClYoVa/lAOx94fKC3H8dCfG8RHqsuhgg3nHOHbUWKfIr3nc1UPiZNNbfHIoJRlfkrQbBy2G73Upd16nkMtaQYT3YeDxOBgQm7FxxqM05YkUvtUOIHRttcpOdS3oXaQ+rTyzXWdZZ52knFr+iT5Z+8M7/XOeUjjZYEefP0Q/cRs54wP15LyldsTF4mYTh8II5HA6yWq1kNpvJaDRqfNlhOCCnFcIst96B0YJJxM7x5HP0hJWFKl/HG8p4k3arH5gUs3dde7y6CFDLu5UToLrdU8POGh2CtowhT0HrV6t/1nELzvvd7XZpvUwQBC8DpLW+efMmGQ06NQm7TfP+MFoeASu1Rb/Hedq55EUyrMl4bj+enLzmeyHKoXWI3u/G6hv3i5/Zoi2K8hgs/aCPW/339LalH3LRENZR2nAIXj5RVekV0OvdVRh69+5dEhIwGrDegT1NudClN3nnHwhfazO5LiFaTyl5iop/2EuPz7i8IO9gyRWaPEWlFZseF32+7pvV/5wnSeQ+1xZGXK6qiH6fMxT0M+YMPISgsbngZrOR5XIZhsML4Gv9DUNHPF/6/b4sFgs5Pz9vyE3s8zCbzZJDR3uVtcMnpyM4XRLyV6co5VJkdXu5c7h/2tjAM+A5Re6jq9xH7h+3pZ+dZbd1b4vcM+aOof9IEdLOsjYnk6Uj2FDIGW14RqwXRNEVpClFRPr500U/RMThFVDXdaq2hEVv1oIqa2dhXI9XLVBYYLLAQtsIceudRj2h5QlOywOi2/BKrFo7ZeJ5PUWgn92izbOl6Xpul2iP58ETaT6XZ/DoZ8YPFCe8R7vdTtbrddoUKgiCl8fxeEzVlebzeSP6oAtKWN5tnCvycGLKMgjnsHMHOkJXMPJ0gmW0cD+0kwSwN5xlno5w8+dtaxss3ZU7p62d3HkcMfAMJKuABo7hVRtSIvaeTfoV8wM44GC8YL+GMBpeD2E4vBKOx6Msl8uGB97zkojYeZE4X4d3WSlor3hd10kJ4VXDAtETwtZ1nO9q7UnhLXrWx/Vze/f8HMWQg5/fu5dWwlYblsLjkLZuS1+L8oxsOBwOB1mv16EUguCFg12jkbpqTSxZDnn6gZ0W+jjrnf1+n85DKu0peI4kLec5isqfs6y0PO5WKVY8C9/zSziXvHF9LG2RF37unKEBeCzqum6Urd1ut7LZbD67z8HzIQyHV8ZyuZTVaiW9Xk/+/Oc/y9u3b2U2myUByAtgvXAnBDBPzDmqAIGC87g9DlF39a54WP3E75wyhc84pMvHtPfdiqyI3C+g1oI2F7Fow4vg8HPw5zzOfC9+NuwK29Yvvhcvjofx4BkpQRC8XC4vL5P8+Ld/+zeZz+dpE014my3ZYMlF7dXHOgmUdWaHBGSOt38CaPPwc3/4R0dgrags6wf2tOv7WxEC3S8vet6m93LPaxlr2qnH16CPrB9QRVE707wxxHnIVED02UprDl4HYTi8MviLjsk9b3YzGo2SUODJo+eltoSPtSEMRwW8Sbumi/GgBaan0CylwO+t6AI/V9eIQFdyk3o9tlrR6UgJK0VuT4ferXuISCNCgd1UJ5OJrNdrKYoiFEMQvCJ4Mg89gA3j+v2+jMfjJMt1hSXG0xEwDrTjA8f5ev2Zbr+rbNKy1GqXo7NdHC/6WFtfTtERXe6t+8jj6hk7VnuefsAr64der5cWyx+PR7m5uYkF0a+QMBxeMajN3+v1ZDwep30f4BHiXZaBFuaW0OFJPN8Ln2lPjudlaQvbWm1ZHiW0BQUIIcjvc8LUirw8xpvUdl7OoMH9uGSilR6g2/fa0Qv/cByGw2KxkNVqJTc3N52eJwiClwdXU5vNZmnSiKgydERO9vBnwEqX1fLec3pY7VlYkQ++lwiheQMAABjzSURBVG7HMxwwIe9yf9YPnjHVldy1WG9gOZf6/b4Mh8OGs4zHgdvy9IPWDaxnR6ORzOdzqetarq+vOz9P8HIIw+EVc3l5KavVSn766SeZTqcym83k/Pw8eRjG43Ej+qDxJtfwXHMOpRdmfaxSYK+Kld7DIe/hcJjC67wBHhsnlncs553q4oHSffOutQwTkYfGEPrGKWGcVtTWL29syrKU3W6XFrjt93v5+9//Hhu9BcEr5+eff5bZbCY//PCD7Ha7RunuwWAgk8nE3G9GJJ+G2evdpb6IyAPnFM7t4jjy0E4jfY2Wp3VdNxb8cloqr/Wwor1t/bT61vYM3jlaJ2kDAqmsg8Gg8TyW80/DRhx0DzYALMsyRRcOh4N8+vRJiqLo/MzByyIMh1cMFjatViup67t63VVVyWAwSDuHitgRBM+TZKX4aG+Idb0W8N5nFvo+VsTBUl4W3kS/i5Fj3cuLWvCzWfdko0t7irhNXtOg+2QZQPw8iAJhn4btdpsWSEaKUhAEcB6sVqtU/Qg6Qq9xE2nXEVo/4JUdGlakwTM+TtEP3Aed+umtl9N4usWKlnhjwH1q00tadvP1GHNvryFcqxeF6z5a+kHkvjwtquuVZSlVVUlZlrLZbMKx9IoJw+GVU9e1fPr0SQ6Hg8xmM1mv12l/B+waCiGV81qwcPY86lrY6jSZnBFiCc8uwtabdFtRBsubwyFq7k8udM1tWO9F7EpWQJePhfC3oiHwAFlGGZ9X13VS9v1+v+GNwk9VVXJzcxMVMoIgSFRVJR8/fpTpdJq885PJJKUtsUz0DAfLKcR4KTJeiVZ9nX7vfdbmXNITay1TWUfocq3aKLJ0pKfP9Oc5/YAoCRs9lpNJO5bww6XRrSg00sh2u50URdEwHIqikMvLS7dvwesgDIdARO48SlVVyT/+4z8+ECZaqOHV2uAthzVpt47z7ywQ27xB2vs1HA4bObki0tgRFeUAdelSpDPhem8dhEUubN3VQ5Zrm9eK8AJ2y3DRXjX+gedotVol5XN1dZXGKQiCgPntt99kNpvJn//8ZxF5uC+CyEPZ07WKHreTm8h7nKIjeH0X1nRBniJNidOv2CCCzD0ejzIajVJaUJdiH9xPPvcxURTPIOLICZxKXhaA5chjx9J2u02bfvb7fbm+vo4oQyAiYTgEfwCvM2r2s3EAAdkWVu1iCHjHrPPaPEjaw8LXW54oz0PDr22eMXxmeZms67xnyY2hFzrGdZaHSSta9orhuXEtjKOqqmSz2SQvYiiFIAg8sEh6s9nIdDpNk9ThcJjSW0Uerx/4My3zPBnPsl6/8rW5e1lRBHae5Z4p95xtOkI/i8ZLUcrdUxsPOGYZYmzccaoZ5gKIOByPx5TGHI6lQCQMh0Dx4cMHmc/n8v79eynLUiaTiYzHY1ksFjIej9N5x+NRttttWpyrhWXXKIRO5fFC0exR0cLcSikSkUY6DjY0A5Yw5QXDHLa1rrHux+d5z6qVUVdvEx/jKIMulafbhVIfDAZSFEWKNGy3WymKQpbLpXm/IAgCTVVV8re//U1+/PFHWSwWMhqN5Pz8XMbjsVxcXDTk4m63k6qqZLfbiYidY99VP/A1+riWp1rOcpSB20Q6DuQpv/f0GFe10/tNeBH1rgaApxs8JxJ/pu+HCT50mH5+1p3D4VBGo1H6W0FPVFUlq9UqjIXgAWE4BA8oy1I+fvwob9++lX6/L2VZyng8ln6/L+fn5zKbzWQwGKSqTJvN5sEEts0zkvvMmkxbUQRr4s33hgEwGAxSyJY9SnyNh84PtfqYezbvXOsZtOLBe+6zjjZYBgynBiDCUFWVrNdrqaoqhaAjwhAEwWO4vb2Vsizlhx9+kLIsZTAYSFVVMpvNZDabydnZWZIzV1dXSW6xbOqqI7xJNh/3ZCw7tXgxMV5hCHCpbn2PXF+REqQXKnd5Lu9ZrE3xdBtsrLAzS6csiTzcuFSvzYBzrSzLtPAZu0HHHg2BRRgOwQMOh4NsNptkIEwmE9lut9Lr9WSxWDS88pxaY6X/MLkoxGNCuYwl5HVev45M6Ptqw8Ca1PNx63m0lykX6tZC3vLI4ZXL7nEoGuewomADDlUx9vt9qoSBiEN4koIgeAyI4CLqgIjmcDhMC6cR7RQRUy98CR3h6RoN6yZcpyO2ln7Q9/V0RK4POf3Abeln0vfQTjStH2DEWPfm9vhZWT8URZEi0dvtVrbbbW5Ig1dMGA6By6dPn2S9Xktd17Jer2U4HMpyuUxpSxA6ukqDJbysaEQXz0zuHCsKgcm19shorwt7Xzxlpb09ueoeVv9yUQnuh96HAf1n79xwOGwsdLOiL5xzjOtQYrUoCvn48WNKGwiCIPgcDoeD/Prrr/L27Vs5OzuT9Xot19fXMpvN5OrqqiHbOIfe2u9Be85Bm47IOZSstrgv+t5Y62XJY0tHsNzNnef1raszTO+RofUD61ZrfNGGlca13+9TdOHm5iZSV4NOhOEQZNntdnJ5eSlv3rxJE9G6rmU0GqWoAzaJ0UJX5KEXXW+go/HC0tr770UC+BrrWl3zmq9vW1TmeZ6szyzPGveFBbm+b64EoO6H5alCClJd1yn0fHt7GxGGIAi+OOv1Wvb7fdokjifi+BF5WNgB6AIOXb33jJ6E5yIRljxm+ZorPW5ttmmtc/D6motce84gPWYYXxgslr7N6SIsfoauqKpKrq+vpSzLB/0NAoswHIIsh8NB1uu1zGazVFkBi8rm83la+2AJYYu246fQFpmwIh1exENP6HUYu4vhgM+957PC01ZKkzYo9LWW14vBonAsYC+KIvZmCILgq4BqO1gcDZk0Go1kOp2mHaIRMbXkoJ7In4p1rTVJZ6woAb+3+smTeL1eI5fSpB1VOR2RGwNtWOWcSN59UNAElZOw/u1L6eXg5ROGQ9CJT58+yc3Njfzwww8yHo8bJVotD42VCsTkBDyfY0UxrGt4cRqiIG/evEmb2a1Wq+R91xN2KxLAYV9eH9EWgtZ9bwul63A6X69Tvqw2MfZIGzscDlKWZdq05/fff48FbkEQfFWOx6P88ssvslgs5OzsTCaTiUynU+n1ejIajdyJszfxbpP3fN+cMcKwEwhrMVAR6ng8ymq1kqIo0sSa+6GNBp7AQwZ3WSPB/bP0Gl+jo+TWs3vjoe/NZbh3u12qNLhcLpNODIKuhOEQdAIT2dVqJbPZLK1tgADixdLW2gDkj4o0hRsLXO3l4TCtRisi7TXiMK8VXubn0u16Hiit3LxxsvrrhdKt+1oRB+4HrynhUoLw/HGFjNwOpEEQBF+Kuq4b6S48wdYbpXFBCH7FMS0fPeeK56DRsjt3L0tHoBgF7qOv86LYXfQDt8HP0QaPgZW+pJ+b2y7LMukFLIZer9dpb44gOIUwHILOHI9HWa/XItLcK2E0Gsl8Pk+VNBCSFnk4IdavOeXQ1WCwhHav10tl8uBB8hSAJXy57bY0J6vPbWlU1vmcu6qPsXdLX1/XdaqWhFrkRVFIURTufYMgCL408GZDD+CH05Ygm0WaawpYFrelHfE53nmeEwi/I1LL6VWMJ+u9fRusvSKsPrfdQxtNli61Ii2efuByq9jQbb/fy2q1MvsYBG306o7mZtcUjeDlAwF1cXGRSu5BKXAaE3YT1TtTWu1pwYtztbHhGQy4B9Zc6FKx8Ljs9/sHBoC3AA0pT55SaIss5DxiEOioH24pCkthcdk9RBVQGQMb+CyXy4g0BC5fy8MYOiIAvV5PJpOJzOfzVEhjPB7LdDqVwWDwoLhG26SbF1AzWr7mHEusk7DLNRw1nOKJ9FRgRSXQnt4otC2K4Ml5L+0ITi993DN00A/eoBV6YrfbpXTd3W4XkYbApMv/i4g4BCcDQbfdbpOhUFVVIyxtrQnoEmnomuZjGQ6j0UjevHmT+gTvFxYLw8OENrVnx3tWPSHiCIDVzy5fPCuCoRWEpSyhTNhYwO+okBFGQxAE3xPIWuwFAJnf6/WSY0nETx31IgmWA6ZruulwOJTZbCaLxUImk4mISJpYQ0cgEuI5uKz74zW3R5Bu03tOfT1HY1AJSUcgeO0GdAgMId69m1OVwmgIPocwHIJHUde1FEXRmIDDWzOZTNLCaaArBGmByXn7fJ7O8/dSh7DY7f379zKfz2U6ncpms5GyLFO5QKT0cPvctme0tAnZrtdaCo434sGPyP26EL12BMbBbreToijSRkzH4zF5loIgCL43kGfD4TDpB5E7OTgejxtOEUtWWk4UDesSa38GvBcRGY/Hcn5+Lu/fv5ezs7Pk/Foul1IURZpc52S2vrdOrzol6naKk0zkfodn3AcOOl58jgj0brdLjiU49aAzguBzCcMh+CzKskyTcYSmEaY+HA4pND0YDNx61OxN0qFernLEXir9M5lM5OLiQv7yl7/IxcWFnJ2dyW+//Sa3t7ciIrJarczNz/S9vZC3d53+jNOj0K63wJv3voC3C6lUHB6HYbDb7ZIxpHeDxr2CIAieEsil7/V6cnZ2lia/h8Ohkb7Eax88HQFwXOsUq4Q2fhaLhbx//17++Z//Wd6+fStVVcnl5WVqe7lctkaXLR1hkdMbbemsrEM4Eo3KeUilwiuPxXK5lN1u14i2R6nV4EsThkPwWbDAg5ej3++ncCg8Il5VDO8zK3VHe3agIIbDoUynU1ksFvL27dtkOKzX67R42wsjoy3LUNDh7q6pSZ5y0YaRvkbfB0aDiKTyqtiXAeOLxdBBEARPEZZPqOLDXnQ4hLyoM169Sbcuoc3nc3nu+Xwu5+fn8vbtW3n79q1st1spy1Imk0lay6blv5eqyu8t2a376F2P9rVzyUrTgrHAOgRRHehKOPJQUQ/GRhB8ScJwCL4YLMSwxqDf7yePkl4Ax3mvbZ4YFsxc1QJ5qxcXF/L27Vt5//69vHnzRubzudze3kpVVSmU60UJRB4K5VxaVBfvDTxBVooWt49zeXdVXAePEVdLQkncUAZBEDw3eF3WbrdLaa0iDysfcXU5zyPPziX+DG2iYMZ0OpU//elP8u7dO/npp5/kT3/6k6zXa9lsNjIej5PhkJvkoz0rGpIr7GHBsp9lOes7vgeMH5H7jfQQpd5sNikCjbUNkZIUfE3CcAi+OFzBCKX4ZrOZTCaTVHlJL57GpF17/7WSYIGLaMbFxUVSCm/evEkbEC0WCymKQmazWWNirsPOVjqRFYHg41BWunSqRn/OnjCsXxCRNFabzUaKokjCH+O4Xq9TH8NoCILguYK1BYfDIRkRqMo3m80aVflYByA1x9MRvDcEflAq/OzsTN69eydv375NjqW6ruXs7Ezm83mjNCki5aybtPGC+/A1+Ew7vXJGhHUM94d+w2dwIpVlmZxiWPyMz9sMliD4EoThEHxx9CQc3vL9fi+j0SgZEyiLZ4Whgfb08w8m39PpVObzeVoUPZlMkpcJ73mxthd98O5t5bda/dHX4hx+tdrH9fAa8eI2eJWifF4QBC8F6AOWfaPRSI7HY6qKh2gENg+1Ir46Wq3lMSbfSGWdz+dJJ+x2O5lOp+l+VjqtRy49Ceh1CvjM0yfePbR+4H0ZsN4NaxqC4FsQhkPwVYCHBOlKZVkmJQAhjtJ4lnGA9yLN8DCHp5GqdHZ2JhcXF/LmzZukHEajkZydncl2u5XFYpG8WF0XrXH42TIetFLQ1Z+4Woi1OPpwOKQ2q6qSzWYj2+021d6uqkpubm5i/UIQBC8SOEVQ+WcwGMhqtZLxeCzj8VjevHmTnD86lRPvRe73L8DvvPM09M35+blcXFzI+fm5LBYLmU6nIiJyfn4uZ2dncnt7+2A/Cdwj59TSi7E1XACD29AlyLX+4N+hR5fLZaPE6mq1ks1mc/rAB8FnEoZD8NVBRSB4RNhLcjgcUhrTZDJ5EB7GBJuFNJcqRSWnxWKR6nNDAaBNfAbDQU/6dc4q34cX8elUJTYasP4A51sRDrRd13US/CiRx6XzYj+GIAheE/Ck93q95GTq9XpSVZVMp1M5OzuT0WjUSN0RuZfLWm7zhqBwVJ2dnclsNksRaOgPRCD0xqEs44HWEayvuF/6evQTRo02NrSTilOQttttqo6EaDTSWIPgexCGQ/BNYOF7OBzSHhDsmWeBryMLWtDi/MFgkIT/dDpNubKIRmDHUv7hHZvZS6QXuvG92MDQqUn6veeF4pAzhD/WMqAaBhSDVTo2CILgJaJlKnQEdMBwOEw6hKMPkMt6DweAVCUYEIhgIM11OBym4zAgkArEaya4Pa9gho6G5PQEGx/6OKL1VVXJer1OhgMWQWMBdBB8L8JwCL4L8LLvdrsUnkb6EhYz6wXRLMh5ncNsNpPz8/O0QHo4HMrhcJDr62sZj8cym83k3bt3qR3sfQDl4IW/NTzx53N4d08opNls1vBeQfCvVispy1I2m41sNptkJGADoiAIgtdOXddyc3OTJvRFUSRZfn5+niLIOmIM2Ak0Ho9lPp+nyns//vijHA4H6ff7cnt7m9r86aefpN/vy2q1St59OJnQJ7x6RTOgH/Q5HJ2AoYJ1FdArMBI2m42s1+ukJxCtX6/XX2/Ag+AEwnAIvht1XacUHYRei6JIC9awJoJ3GUVZV5Sx22w28vPPP0tVVXJ9fS2bzSYd++WXX2S5XMr19bXc3NxIVVUpPI11F0iXAlohcBoSjnNpWSgvTr3CwjX+HJ/BaIFiikpJQRAENpCRKKuNyCzSlmBA8HvI58FgINvtVi4vL0XkLlLx8eNH+fDhQ5qIf/z4UT59+iTr9TqVMMViajiXsPMysHQE7+isdZXI/XoORAvKspRer9dY7FwUhVRVJdvtNukH1hFB8FQIwyH4rug8TeT3I+UIk3wrAoB1Ah8+fJD1ei2fPn1Ku38ej0f5/fff0yY/nEPL9bBhGHiCmddCsLHAoWqrKhL/YMEz78kQdbaDIAjy8K7JkOGowIQUVe25B3VdS1EUcnl5mRxUv/32m/zyyy9yPB6lKAq5vr5uyGdEIlDhKbc4GvfgdRCsHzjtlvVDVVWNheFIS2JDZbPZxBq34MnSqzuasl3KVwbBl2I+n6f1CSiht1gs0uSdd8XcbrfpOs5bxSuu5TzWfr+fBDYiAnozIX4VkYbhAANgs9kkwwSpVxD+iDjwHgxB8L35Wv8PQ0cE3wpUS4LhgHLcqJ6HyTrLd5H7/X9QqQlppUiVRQoR1jpgrQXee6mtIvfpUbj/drtNKai88Z3e5whRhtAPwVOgy//DMByCJwkqI0G4IxzN/w/ZGwVhD2OBNxPCPg9WOVarohIrBRgUnIoEgwPGAkcuiqJIigYKJvZgCJ4SYTgEzx1M0PEDuc/RaV3RaDqdJl3CEW2kxs7nc1c/4J5WGVV2YiFyAecRR7vRl5ubm0aVJRglQfAU6KIfIlUpeJKcWmpuNps9qGSBdRK8zoCjAWyUwOjQlTJEJHmFkIPKC+eqqkp96Pf7KT81CIIg+DrAqdNVT0Cuo0ITDACkJEFHwDlUVVVj92a9mzX6gMk/F7ngsqnY/BR9wCLocCQFz5mIOAQvBr1vwrt375LQR/1vVg4cbcBeD4hqoC2cj8XO8C5xGhITCiF46kTEIXiN6KpL0+lU3rx5k4yC0WiUHEJlWTa+J5z2qvdvQCoSogq8oNmqlhc6InjKRKpS8KpBehJXQRK5T3GCxwgLppEaxQYIL2hjDxPn0AbBcyIMhyC4Mwam02mS+dgfQkQaqaZ1XScdwumyiGAcj8e0qSlfgzTVWOQcPCfCcAgCotfrpdKuIs1NevRmbQy8SkHwEgjDIQhsvHUSbCxY6JKtQfBcCcMhCAz0GoYgeE2E4RAEeUJHBK+VWBwdBAahDIIgCAKP0BFB4NNvPyUIgiAIgiAIgtdOGA5BEARBEARBELQShkMQBEEQBEEQBK2E4RAEQRAEQRAEQSthOARBEARBEARB0EoYDkEQBEEQBEEQtBKGQxAEQRAEQRAErYThEARBEARBEARBK2E4BEEQBEEQBEHQShgOQRAEQRAEQRC0EoZDEARBEARBEASthOEQBEEQBEEQBEErYTgEQRAEQRAEQdBKGA5BEARBEARBELQShkMQBEEQBEEQBK2E4RAEQRAEQRAEQSthOARBEARBEARB0EoYDkEQBEEQBEEQtBKGQxAEQRAEQRAErYThEARBEARBEARBK2E4BEEQBEEQBEHQShgOQRAEQRAEQRC0EoZDEARBEARBEASthOEQBEEQBEEQBEErYTgEQRAEQRAEQdBKGA5BEARBEARBELQShkMQBEEQBEEQBK2E4RAEQRAEQRAEQSthOARBEARBEARB0EoYDkEQBEEQBEEQtBKGQxAEQRAEQRAErYThEARBEARBEARBK726ruvv3YkgCIIgCIIgCJ42EXEIgiAIgiAIgqCVMByCIAiCIAiCIGglDIcgCIIgCIIgCFoJwyEIgiAIgiAIglbCcAiCIAiCIAiCoJUwHIIgCIIgCIIgaCUMhyAIgiAIgiAIWgnDIQiCIAiCIAiCVsJwCIIgCIIgCIKglf8ftxBbEj5oWuoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -345,21 +321,6 @@ "scrolled": true }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:23:06.497\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1mInstantiated AdultGliomaPreTreatmentSegmenter with algorithm: BraTS23_1 by André Ferreira, et al.\u001b[0m\n", - "\u001b[32m2025-03-06 13:23:06.499\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_batch\u001b[0m:\u001b[36m198\u001b[0m - \u001b[1mFound 2 subjects: BraTS-GLI-00001-000, BraTS-GLI-00001-001 \u001b[0m\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:23:06.551\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_batch\u001b[0m:\u001b[36m207\u001b[0m - \u001b[1mStandardized input names to match algorithm requirements.\u001b[0m\n" - ] - }, { "data": { "text/html": [ @@ -391,7 +352,7 @@ { "data": { "text/html": [ - "
                                              BraTS Package | N/A                                         \n",
+       "
                                              BraTS Package | https://arxiv.org/abs/2506.13807            \n",
        "------------------------------------------------------------+---------------------------------------------\n",
        " Challenge (Adult Glioma Segmentation (Pre Treatment) 2023) | https://arxiv.org/abs/2107.02314            \n",
        "------------------------------------------------------------+---------------------------------------------\n",
@@ -399,7 +360,7 @@
        "
\n" ], "text/plain": [ - "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mN/A \u001b[0m\u001b[37m \u001b[0m\n", + "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2506.13807 \u001b[0m\u001b[37m \u001b[0m\n", "------------------------------------------------------------+---------------------------------------------\n", "\u001b[36m \u001b[0m\u001b[36mChallenge (Adult Glioma Segmentation (Pre Treatment) 2023)\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2107.02314 \u001b[0m\u001b[37m \u001b[0m\n", "------------------------------------------------------------+---------------------------------------------\n", @@ -422,18 +383,10 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:23:06.556\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36m_log_algorithm_info\u001b[0m:\u001b[36m329\u001b[0m - \u001b[1mRunning algorithm: \u001b[92m BraTS 2023 Adult Glioma Segmentation (Pre Treatment) [1st place]\u001b[0m\u001b[1m\u001b[0m\n", - "\u001b[32m2025-03-06 13:23:07.049\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m381\u001b[0m - \u001b[1mStarting inference\u001b[0m\n" - ] - }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "cb086cb39a0d4a538c7aa722350e299a", + "model_id": "70919aaaea0647068e13d6eeba3c2902", "version_major": 2, "version_minor": 0 }, @@ -454,14 +407,6 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:26:34.594\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m404\u001b[0m - \u001b[1mFinished inference in 207.54 seconds\u001b[0m\n", - "\u001b[32m2025-03-06 13:26:34.595\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_batch\u001b[0m:\u001b[36m225\u001b[0m - \u001b[1mSaved outputs to: /home/marcelrosier/tutorials/BraTS/batch_out\u001b[0m\n" - ] - }, { "name": "stdout", "output_type": "stream", @@ -497,21 +442,22 @@ "- Select a different algorithm from the available constants (Enum classes for each challenge) with the `algorithm` parameter\n", "- Select a specific GPU if multiple are available with the `cuda_decives` parameter\n", "- Force CPU execution with the `force_cpu`flag (will cause an exception for many algorithms since many do not support CPU execution, check our [overview tables](https://github.com/BrainLesion/BraTS?tab=readme-ov-file#available-algorithms-and-usage) to find CPU capable algorithms)\n", + "- Add console logging with a desired log level\n", "- Save the generated logs in a log file with the `log_file` parameter" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32m2025-03-06 13:31:01.989\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1mInstantiated AdultGliomaPreTreatmentSegmenter with algorithm: BraTS23_3 by Fadillah Adamsyah Maani, et al.\u001b[0m\n", - "\u001b[32m2025-03-06 13:31:01.999\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.data_handling\u001b[0m:\u001b[36madd_log_file_handler\u001b[0m:\u001b[36m41\u001b[0m - \u001b[1mLogging console logs and further debug information to: /home/marcelrosier/tutorials/BraTS/segmentation.log\u001b[0m\n", - "\u001b[32m2025-03-06 13:31:02.001\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_single\u001b[0m:\u001b[36m155\u001b[0m - \u001b[1mPerforming single inference\u001b[0m\n" + "\u001b[32m2025-07-25 16:11:44.728\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m40\u001b[0m - \u001b[1mInstantiated AdultGliomaPreTreatmentSegmenter with algorithm: BraTS23_3 by Fadillah Adamsyah Maani, et al.\u001b[0m\n", + "\u001b[32m2025-07-25 16:11:44.738\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.data_handling\u001b[0m:\u001b[36madd_log_file_handler\u001b[0m:\u001b[36m41\u001b[0m - \u001b[1mLogging console logs and further debug information to: /home/marcelrosier/tutorials/BraTS/segmentation.log\u001b[0m\n", + "\u001b[32m2025-07-25 16:11:44.742\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_single\u001b[0m:\u001b[36m147\u001b[0m - \u001b[1mPerforming single inference\u001b[0m\n" ] }, { @@ -545,7 +491,7 @@ { "data": { "text/html": [ - "
                                              BraTS Package | N/A                                          \n",
+       "
                                              BraTS Package | https://arxiv.org/abs/2506.13807             \n",
        "------------------------------------------------------------+----------------------------------------------\n",
        " Challenge (Adult Glioma Segmentation (Pre Treatment) 2023) | https://arxiv.org/abs/2107.02314             \n",
        "------------------------------------------------------------+----------------------------------------------\n",
@@ -553,7 +499,7 @@
        "
\n" ], "text/plain": [ - "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mN/A \u001b[0m\u001b[37m \u001b[0m\n", + "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2506.13807 \u001b[0m\u001b[37m \u001b[0m\n", "------------------------------------------------------------+----------------------------------------------\n", "\u001b[36m \u001b[0m\u001b[36mChallenge (Adult Glioma Segmentation (Pre Treatment) 2023)\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2107.02314 \u001b[0m\u001b[37m \u001b[0m\n", "------------------------------------------------------------+----------------------------------------------\n", @@ -580,16 +526,16 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32m2025-03-06 13:31:02.036\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36m_log_algorithm_info\u001b[0m:\u001b[36m329\u001b[0m - \u001b[1mRunning algorithm: \u001b[92m BraTS 2023 Adult Glioma Segmentation (Pre Treatment) [3rd place]\u001b[0m\u001b[1m\u001b[0m\n", - "\u001b[32m2025-03-06 13:31:02.273\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.zenodo\u001b[0m:\u001b[36mcheck_additional_files_path\u001b[0m:\u001b[36m60\u001b[0m - \u001b[1mFound downloaded local additional_files: 11573315_v1.0.1\u001b[0m\n", - "\u001b[32m2025-03-06 13:31:02.275\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.zenodo\u001b[0m:\u001b[36mcheck_additional_files_path\u001b[0m:\u001b[36m72\u001b[0m - \u001b[1mLatest additional files (11573315_v1.0.1) are already present.\u001b[0m\n", - "\u001b[32m2025-03-06 13:31:02.665\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m381\u001b[0m - \u001b[1mStarting inference\u001b[0m\n" + "\u001b[32m2025-07-25 16:11:44.791\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36m_log_algorithm_info\u001b[0m:\u001b[36m342\u001b[0m - \u001b[1mRunning algorithm: \u001b[92m BraTS 2023 Adult Glioma Segmentation (Pre Treatment) [3rd place]\u001b[0m\u001b[1m\u001b[0m\n", + "\u001b[32m2025-07-25 16:11:45.058\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.zenodo\u001b[0m:\u001b[36mcheck_additional_files_path\u001b[0m:\u001b[36m62\u001b[0m - \u001b[1mFound downloaded local additional_files: 11573315_v1.0.1\u001b[0m\n", + "\u001b[32m2025-07-25 16:11:45.060\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.zenodo\u001b[0m:\u001b[36mcheck_additional_files_path\u001b[0m:\u001b[36m75\u001b[0m - \u001b[1mLatest additional files (11573315_v1.0.1) are already present.\u001b[0m\n", + "\u001b[32m2025-07-25 16:11:45.616\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m394\u001b[0m - \u001b[1mStarting inference\u001b[0m\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "bf41339873d442c182d35887faf46466", + "model_id": "2e692bf5dc5049dfba7aed7fd33f623a", "version_major": 2, "version_minor": 0 }, @@ -614,15 +560,18 @@ "name": "stderr", "output_type": "stream", "text": [ - "\u001b[32m2025-03-06 13:33:55.200\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m404\u001b[0m - \u001b[1mFinished inference in 172.53 seconds\u001b[0m\n", - "\u001b[32m2025-03-06 13:33:55.201\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_single\u001b[0m:\u001b[36m179\u001b[0m - \u001b[1mSaved output to: /home/marcelrosier/tutorials/BraTS/segmentation.nii.gz\u001b[0m\n" + "\u001b[32m2025-07-25 16:14:51.743\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m417\u001b[0m - \u001b[1mFinished inference in 186.12 seconds\u001b[0m\n", + "\u001b[32m2025-07-25 16:14:51.745\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_single\u001b[0m:\u001b[36m171\u001b[0m - \u001b[1mSaved output to: /home/marcelrosier/tutorials/BraTS/segmentation.nii.gz\u001b[0m\n" ] } ], "source": [ + "from brats.utils.logging import add_console_handler, remove_console_handler\n", + "\n", + "add_console_handler(level=\"INFO\") # Set the desired log level\n", "segmenter = AdultGliomaPreTreatmentSegmenter(\n", " algorithm=AdultGliomaPreTreatmentAlgorithms.BraTS23_3, # Use the 3rd placed algorithm of the Adult Glioma BraTS 2023 challenge\n", - " cuda_devices=\"1\", # Select GPU device with ID 4\n", + " cuda_devices=\"1\", # Select GPU device with ID 1\n", " force_cpu=False, # default, could be set to True to force CPU\n", ")\n", "\n", @@ -633,7 +582,8 @@ " t2w=segmentation_subject_path / f\"{subject}-t2w.nii.gz\",\n", " output_file=\"segmentation.nii.gz\",\n", " log_file=\"segmentation.log\", # Save the logs in a new filed called `segmentation.log`\n", - ")" + ")\n", + "remove_console_handler() # Remove the console handler for subsequent runs" ] }, { @@ -663,19 +613,9 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 5, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:47:14.189\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1mInstantiated MeningiomaSegmenter with algorithm: BraTS23_2 by Ziyan Huang, et al.\u001b[0m\n", - "\u001b[32m2025-03-06 13:47:14.199\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.data_handling\u001b[0m:\u001b[36madd_log_file_handler\u001b[0m:\u001b[36m41\u001b[0m - \u001b[1mLogging console logs and further debug information to: /home/marcelrosier/tutorials/BraTS/test.log\u001b[0m\n", - "\u001b[32m2025-03-06 13:47:14.201\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_batch\u001b[0m:\u001b[36m198\u001b[0m - \u001b[1mFound 2 subjects: BraTS-GLI-00001-000, BraTS-GLI-00001-001 \u001b[0m\n", - "\u001b[32m2025-03-06 13:47:14.257\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_batch\u001b[0m:\u001b[36m207\u001b[0m - \u001b[1mStandardized input names to match algorithm requirements.\u001b[0m\n" - ] - }, { "data": { "text/html": [ @@ -707,19 +647,23 @@ { "data": { "text/html": [ - "
                            BraTS Package | N/A                                          \n",
-       "------------------------------------------+----------------------------------------------\n",
-       " Challenge (Meningioma Segmentation 2023) | https://arxiv.org/abs/2305.07642             \n",
-       "------------------------------------------+----------------------------------------------\n",
-       "          Algorithm (Ziyan Huang, et al.) | https://doi.org/10.1007/978-3-031-76163-8_13 \n",
+       "
                            BraTS Package | https://arxiv.org/abs/2506.13807                   \n",
+       "------------------------------------------+----------------------------------------------------\n",
+       " Challenge (Meningioma Segmentation 2023) | https://arxiv.org/abs/2305.07642                   \n",
+       "------------------------------------------+----------------------------------------------------\n",
+       "          Algorithm (Ziyan Huang, et al.) | https://doi.org/10.1007/978-3-031-76163-8_13       \n",
+       "------------------------------------------+----------------------------------------------------\n",
+       "                                  Dataset | https://www.nature.com/articles/s41597-024-03350-9 \n",
        "
\n" ], "text/plain": [ - "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mN/A \u001b[0m\u001b[37m \u001b[0m\n", - "------------------------------------------+----------------------------------------------\n", - "\u001b[36m \u001b[0m\u001b[36mChallenge (Meningioma Segmentation 2023)\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2305.07642 \u001b[0m\u001b[37m \u001b[0m\n", - "------------------------------------------+----------------------------------------------\n", - "\u001b[36m \u001b[0m\u001b[36m Algorithm (Ziyan Huang, et al.)\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://doi.org/10.1007/978-3-031-76163-8_13\u001b[0m\u001b[37m \u001b[0m\n" + "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2506.13807 \u001b[0m\u001b[37m \u001b[0m\n", + "------------------------------------------+----------------------------------------------------\n", + "\u001b[36m \u001b[0m\u001b[36mChallenge (Meningioma Segmentation 2023)\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2305.07642 \u001b[0m\u001b[37m \u001b[0m\n", + "------------------------------------------+----------------------------------------------------\n", + "\u001b[36m \u001b[0m\u001b[36m Algorithm (Ziyan Huang, et al.)\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://doi.org/10.1007/978-3-031-76163-8_13 \u001b[0m\u001b[37m \u001b[0m\n", + "------------------------------------------+----------------------------------------------------\n", + "\u001b[36m \u001b[0m\u001b[36m Dataset\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://www.nature.com/articles/s41597-024-03350-9\u001b[0m\u001b[37m \u001b[0m\n" ] }, "metadata": {}, @@ -738,18 +682,10 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:47:14.262\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36m_log_algorithm_info\u001b[0m:\u001b[36m329\u001b[0m - \u001b[1mRunning algorithm: \u001b[92m BraTS 2023 Meningioma Segmentation [2nd place]\u001b[0m\u001b[1m\u001b[0m\n", - "\u001b[32m2025-03-06 13:47:14.751\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m381\u001b[0m - \u001b[1mStarting inference\u001b[0m\n" - ] - }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "780c4979ec124f4d9d4b570b1a643cd0", + "model_id": "e356eda1f2094a148acef32877560e7e", "version_major": 2, "version_minor": 0 }, @@ -769,14 +705,6 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:47:57.705\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m404\u001b[0m - \u001b[1mFinished inference in 42.95 seconds\u001b[0m\n", - "\u001b[32m2025-03-06 13:47:57.748\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_batch\u001b[0m:\u001b[36m225\u001b[0m - \u001b[1mSaved outputs to: /home/marcelrosier/tutorials/BraTS/men_output\u001b[0m\n" - ] } ], "source": [ @@ -804,17 +732,9 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 6, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 14:15:15.783\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1mInstantiated Inpainter with algorithm: BraTS23_1 by Juexin Zhang, et al.\u001b[0m\n", - "\u001b[32m2025-03-06 14:15:15.785\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_single\u001b[0m:\u001b[36m155\u001b[0m - \u001b[1mPerforming single inference\u001b[0m\n" - ] - }, { "data": { "text/html": [ @@ -846,7 +766,7 @@ { "data": { "text/html": [ - "
                    BraTS Package | N/A                                          \n",
+       "
                    BraTS Package | https://arxiv.org/abs/2506.13807             \n",
        "----------------------------------+----------------------------------------------\n",
        "      Challenge (Inpainting 2023) | https://arxiv.org/abs/2305.08992             \n",
        "----------------------------------+----------------------------------------------\n",
@@ -854,7 +774,7 @@
        "
\n" ], "text/plain": [ - "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mN/A \u001b[0m\u001b[37m \u001b[0m\n", + "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2506.13807 \u001b[0m\u001b[37m \u001b[0m\n", "----------------------------------+----------------------------------------------\n", "\u001b[36m \u001b[0m\u001b[36m Challenge (Inpainting 2023)\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2305.08992 \u001b[0m\u001b[37m \u001b[0m\n", "----------------------------------+----------------------------------------------\n", @@ -877,20 +797,10 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 14:15:15.805\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36m_log_algorithm_info\u001b[0m:\u001b[36m329\u001b[0m - \u001b[1mRunning algorithm: \u001b[92m BraTS 2023 Inpainting [1st place]\u001b[0m\u001b[1m\u001b[0m\n", - "\u001b[32m2025-03-06 14:15:16.054\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.zenodo\u001b[0m:\u001b[36mcheck_additional_files_path\u001b[0m:\u001b[36m60\u001b[0m - \u001b[1mFound downloaded local additional_files: 13382922_v1.0.1\u001b[0m\n", - "\u001b[32m2025-03-06 14:15:16.054\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.zenodo\u001b[0m:\u001b[36mcheck_additional_files_path\u001b[0m:\u001b[36m72\u001b[0m - \u001b[1mLatest additional files (13382922_v1.0.1) are already present.\u001b[0m\n", - "\u001b[32m2025-03-06 14:15:16.511\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m381\u001b[0m - \u001b[1mStarting inference\u001b[0m\n" - ] - }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5f0263422713483a8612c30375409821", + "model_id": "0a3aa43c0d6f43ebbda0c82f93e23c55", "version_major": 2, "version_minor": 0 }, @@ -910,14 +820,6 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 14:15:29.139\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m404\u001b[0m - \u001b[1mFinished inference in 12.63 seconds\u001b[0m\n", - "\u001b[32m2025-03-06 14:15:29.140\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_single\u001b[0m:\u001b[36m179\u001b[0m - \u001b[1mSaved output to: /home/marcelrosier/tutorials/BraTS/inpainting.nii.gz\u001b[0m\n" - ] } ], "source": [ @@ -940,7 +842,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -981,18 +883,9 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 8, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 14:15:34.599\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1mInstantiated Inpainter with algorithm: BraTS23_1 by Juexin Zhang, et al.\u001b[0m\n", - "\u001b[32m2025-03-06 14:15:34.600\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_batch\u001b[0m:\u001b[36m198\u001b[0m - \u001b[1mFound 1 subjects: BraTS-GLI-00001-000 \u001b[0m\n", - "\u001b[32m2025-03-06 14:15:34.610\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_batch\u001b[0m:\u001b[36m207\u001b[0m - \u001b[1mStandardized input names to match algorithm requirements.\u001b[0m\n" - ] - }, { "data": { "text/html": [ @@ -1024,7 +917,7 @@ { "data": { "text/html": [ - "
                    BraTS Package | N/A                                          \n",
+       "
                    BraTS Package | https://arxiv.org/abs/2506.13807             \n",
        "----------------------------------+----------------------------------------------\n",
        "      Challenge (Inpainting 2023) | https://arxiv.org/abs/2305.08992             \n",
        "----------------------------------+----------------------------------------------\n",
@@ -1032,7 +925,7 @@
        "
\n" ], "text/plain": [ - "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mN/A \u001b[0m\u001b[37m \u001b[0m\n", + "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2506.13807 \u001b[0m\u001b[37m \u001b[0m\n", "----------------------------------+----------------------------------------------\n", "\u001b[36m \u001b[0m\u001b[36m Challenge (Inpainting 2023)\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2305.08992 \u001b[0m\u001b[37m \u001b[0m\n", "----------------------------------+----------------------------------------------\n", @@ -1055,20 +948,10 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 14:15:34.617\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36m_log_algorithm_info\u001b[0m:\u001b[36m329\u001b[0m - \u001b[1mRunning algorithm: \u001b[92m BraTS 2023 Inpainting [1st place]\u001b[0m\u001b[1m\u001b[0m\n", - "\u001b[32m2025-03-06 14:15:34.925\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.zenodo\u001b[0m:\u001b[36mcheck_additional_files_path\u001b[0m:\u001b[36m60\u001b[0m - \u001b[1mFound downloaded local additional_files: 13382922_v1.0.1\u001b[0m\n", - "\u001b[32m2025-03-06 14:15:34.926\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.zenodo\u001b[0m:\u001b[36mcheck_additional_files_path\u001b[0m:\u001b[36m72\u001b[0m - \u001b[1mLatest additional files (13382922_v1.0.1) are already present.\u001b[0m\n", - "\u001b[32m2025-03-06 14:15:35.557\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m381\u001b[0m - \u001b[1mStarting inference\u001b[0m\n" - ] - }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "a26f635627474438bc69eaca35968079", + "model_id": "7e88595c8a8b4b21b40996ff1d4b63cc", "version_major": 2, "version_minor": 0 }, @@ -1089,14 +972,6 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 14:15:48.308\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m404\u001b[0m - \u001b[1mFinished inference in 12.75 seconds\u001b[0m\n", - "\u001b[32m2025-03-06 14:15:48.309\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_batch\u001b[0m:\u001b[36m225\u001b[0m - \u001b[1mSaved outputs to: /home/marcelrosier/tutorials/BraTS/inpainting_batch_out\u001b[0m\n" - ] - }, { "name": "stdout", "output_type": "stream", @@ -1129,17 +1004,9 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:39:02.261\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m48\u001b[0m - \u001b[1mInstantiated MissingMRI with algorithm: BraTS24_1 by Jihoon Cho, Seunghyuck Park, Jinah Park\u001b[0m\n", - "\u001b[32m2025-03-06 13:39:02.263\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_single\u001b[0m:\u001b[36m155\u001b[0m - \u001b[1mPerforming single inference\u001b[0m\n" - ] - }, { "data": { "text/html": [ @@ -1171,7 +1038,7 @@ { "data": { "text/html": [ - "
                                           BraTS Package | N/A                              \n",
+       "
                                           BraTS Package | https://arxiv.org/abs/2506.13807 \n",
        "---------------------------------------------------------+----------------------------------\n",
        " Challenge (BraTS MRI Synthesis Challenge (BraSyn) 2024) | https://arxiv.org/abs/2305.09011 \n",
        "---------------------------------------------------------+----------------------------------\n",
@@ -1179,7 +1046,7 @@
        "
\n" ], "text/plain": [ - "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mN/A \u001b[0m\u001b[37m \u001b[0m\n", + "\u001b[36m \u001b[0m\u001b[36m BraTS Package\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2506.13807\u001b[0m\u001b[37m \u001b[0m\n", "---------------------------------------------------------+----------------------------------\n", "\u001b[36m \u001b[0m\u001b[36mChallenge (BraTS MRI Synthesis Challenge (BraSyn) 2024)\u001b[0m\u001b[36m \u001b[0m|\u001b[37m \u001b[0m\u001b[37mhttps://arxiv.org/abs/2305.09011\u001b[0m\u001b[37m \u001b[0m\n", "---------------------------------------------------------+----------------------------------\n", @@ -1202,20 +1069,10 @@ "metadata": {}, "output_type": "display_data" }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:39:02.287\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36m_log_algorithm_info\u001b[0m:\u001b[36m329\u001b[0m - \u001b[1mRunning algorithm: \u001b[92m BraTS 2024 BraTS MRI Synthesis Challenge (BraSyn) [1st place]\u001b[0m\u001b[1m\u001b[0m\n", - "\u001b[32m2025-03-06 13:39:02.964\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.zenodo\u001b[0m:\u001b[36mcheck_additional_files_path\u001b[0m:\u001b[36m60\u001b[0m - \u001b[1mFound downloaded local additional_files: 14287969_v1.0.0\u001b[0m\n", - "\u001b[32m2025-03-06 13:39:02.965\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.utils.zenodo\u001b[0m:\u001b[36mcheck_additional_files_path\u001b[0m:\u001b[36m72\u001b[0m - \u001b[1mLatest additional files (14287969_v1.0.0) are already present.\u001b[0m\n", - "\u001b[32m2025-03-06 13:39:03.861\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m381\u001b[0m - \u001b[1mStarting inference\u001b[0m\n" - ] - }, { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "0e130a2c88ca4215bafadf292ede1d35", + "model_id": "392177d24f7e4dd3aaa4bb38d0028230", "version_major": 2, "version_minor": 0 }, @@ -1235,14 +1092,6 @@ }, "metadata": {}, "output_type": "display_data" - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\u001b[32m2025-03-06 13:39:41.185\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.docker\u001b[0m:\u001b[36mrun_container\u001b[0m:\u001b[36m404\u001b[0m - \u001b[1mFinished inference in 37.32 seconds\u001b[0m\n", - "\u001b[32m2025-03-06 13:39:41.187\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mbrats.core.brats_algorithm\u001b[0m:\u001b[36m_infer_single\u001b[0m:\u001b[36m179\u001b[0m - \u001b[1mSaved output to: /home/marcelrosier/tutorials/BraTS/synthesized_t2w.nii.gz\u001b[0m\n" - ] } ], "source": [ @@ -1261,7 +1110,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 10, "metadata": {}, "outputs": [ { diff --git a/BraTS/utils.py b/BraTS/utils.py index 70df1e5..f60914b 100644 --- a/BraTS/utils.py +++ b/BraTS/utils.py @@ -1,19 +1,22 @@ from pathlib import Path +from typing import Union + import matplotlib.pyplot as plt import nibabel as nib +import numpy as np -DATA_FOLDER = "data" +DATA_FOLDER = Path("data") def visualize_segmentation_data( - data_folder: str = DATA_FOLDER, + data_folder: Union[str, Path] = DATA_FOLDER, subject_id: str = "BraTS-GLI-00001-000", slice_index: int = 75, ): """Visualize the MRI modalities for a given slice index Args: - data_folder (str, optional): Path to the folder containing the t1, t1c, t2 & flair file. Defaults to DATA_FOLDER. + data_folder (Union[str, Path], optional): Path to the folder containing the t1, t1c, t2 & flair file. Defaults to DATA_FOLDER. slice_index (int, optional): Slice to be visualized (first index in data of shape (155, 240, 240)). Defaults to 75. """ _, axes = plt.subplots(1, 4, figsize=(12, 10)) @@ -29,14 +32,14 @@ def visualize_segmentation_data( def visualize_inpainting_data( - data_folder: str = DATA_FOLDER, + data_folder: Union[str, Path] = DATA_FOLDER, subject_id: str = "BraTS-GLI-00001-000", slice_index: int = 75, ): """Visualize the MRI modalities for a given slice index Args: - data_folder (str, optional): Path to the folder containing the t1n and mask files. Defaults to DATA_FOLDER. + data_folder (Union[str, Path], optional): Path to the folder containing the t1n and mask files. Defaults to DATA_FOLDER. slice_index (int, optional): Slice to be visualized (first index in data of shape (155, 240, 240)). Defaults to 75. """ _, axes = plt.subplots(1, 2, figsize=(6, 10)) @@ -51,32 +54,39 @@ def visualize_inpainting_data( axes[i].axis("off") -def visualize_segmentation(modality_file: str, segmentation_file: str): +def visualize_segmentation( + modality_file: Union[str, Path], segmentation_file: Union[str, Path] +): """Visualize the MRI modality and the segmentation Args: - modality_file (str): Path to the desired modality file - segmentation_file (str): Path to the segmentation file + modality_file (Union[str, Path]): Path to the desired modality file + segmentation_file (Union[str, Path]): Path to the segmentation file """ modality_np = nib.load(modality_file).get_fdata().transpose(2, 1, 0) seg_np = nib.load(segmentation_file).get_fdata().transpose(2, 1, 0) + _, ax = plt.subplots(1, 2, figsize=(8, 4)) slice_index = modality_np.shape[0] // 2 # You can choose any slice here + + # Mask out background (0) in the segmentation + seg_slice = seg_np[slice_index, :, :] ax[0].imshow(modality_np[slice_index, :, :], cmap="gray") ax[1].imshow(modality_np[slice_index, :, :], cmap="gray") - ax[1].imshow(seg_np[slice_index, :, :], cmap="plasma", alpha=0.3) + ax[1].imshow(seg_slice, cmap="plasma", alpha=np.where(seg_slice > 0, 0.3, 0)) + for ax in ax: ax.axis("off") plt.tight_layout() -def visualize_inpainting(t1n_voided: str, prediction: str): +def visualize_inpainting(t1n_voided: Union[str, Path], prediction: Union[str, Path]): """Visualize the inpainting results Args: - t1n_voided (str): Voided T1 modality file - prediction (str): Inpainting prediction file + t1n_voided (Union[str, Path]): Voided T1 modality file + prediction (Union[str, Path]): Inpainting prediction file """ voided_np = nib.load(t1n_voided).get_fdata().transpose(2, 1, 0) inpainting_np = nib.load(prediction).get_fdata().transpose(2, 1, 0) @@ -91,15 +101,17 @@ def visualize_inpainting(t1n_voided: str, prediction: str): def visualize_missing_mri_t2w( - synthesized_t2w: str, - data_folder: str = DATA_FOLDER, + synthesized_t2w: Union[str, Path], + data_folder: Union[str, Path] = DATA_FOLDER, subject_id: str = "BraTS-GLI-00001-000", slice_index: int = 75, ): """Visualize the MRI modalities for a given slice index Args: - data_folder (str, optional): Path to the folder containing the t1, t1c, t2 & flair file. Defaults to DATA_FOLDER. + synthesized_t2w (Union[str, Path]): Path to the synthesized T2w file + data_folder (Union[str, Path], optional): Path to the folder containing the t1, t1c, t2 & flair file. Defaults to DATA_FOLDER. + subject_id (str, optional): Subject ID to visualize. Defaults to "BraTS-GLI-00001-000". slice_index (int, optional): Slice to be visualized (first index in data of shape (155, 240, 240)). Defaults to 75. """ _, axes = plt.subplots(1, 5, figsize=(12, 10))