-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathtrain.py
262 lines (214 loc) · 8.71 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch.backends.cudnn as cudnn
from tensorboardX import SummaryWriter
from torchvision.utils import make_grid
import shutil
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import os
import cv2
import warnings
warnings.filterwarnings('ignore')
from torchstat import stat
import utils
from dataset import *
import config as cfg
import structure as structure
import netloss as netloss
from load_data import *
import time
iso_list = [1600, 3200, 6400, 12800, 25600]
a_list = [3.513262, 6.955588, 13.486051, 26.585953, 52.032536]
b_list = [11.917691, 38.117816, 130.818508, 484.539790, 1819.818657]
def initialize():
"""
# clear some dir if necessary
make some dir if necessary
make sure training from scratch
:return:
"""
##
if not os.path.exists(cfg.model_name):
os.mkdir(cfg.model_name)
if not os.path.exists(cfg.debug_dir):
os.mkdir(cfg.debug_dir)
if not os.path.exists(cfg.log_dir):
os.mkdir(cfg.log_dir)
if cfg.checkpoint == None:
s = input('Are you sure training the model from scratch? y/n \n')
if not (s=='y'):
return
def duplicate_output_to_log(name):
tee = utils.Tee(name)
return tee
def train(in_data, gt_raw_data, noisy_level, model, loss, device, optimizer):
l1loss_list = []
l1loss_total = 0
coeff_a = (noisy_level[0] / (2 ** 12 - 1 - 240)).float().to(device)
coeff_a = coeff_a[:,None,None,None]
coeff_b = (noisy_level[1] / (2 ** 12 - 1 - 240) ** 2).float().to(device)
coeff_b = coeff_b[:, None, None, None]
for time_ind in range(cfg.frame_num):
ft1 = in_data[:, time_ind * 4: (time_ind + 1) * 4, :, :] # the t-th input frame
fgt = gt_raw_data[:, time_ind * 4: (time_ind + 1) * 4, :, :] # the t-th gt frame
if time_ind == 0:
ft0_fusion = ft1
else:
ft0_fusion = ft0_fusion_data # the t-1 fusion frame
input = torch.cat([ft0_fusion, ft1], dim=1)
model.train()
gamma, fusion_out, denoise_out, omega, refine_out = model(input, coeff_a, coeff_b)
loss_refine = loss(refine_out, fgt)
loss_fusion = loss(fusion_out, fgt)
loss_denoise = loss(denoise_out, fgt)
l1loss = loss_refine
l1loss_list.append(l1loss)
l1loss_total += l1loss
ft0_fusion_data = fusion_out
loss_ct = netloss.loss_color(model, ['ct.net1.weight', 'cti.net1.weight'], device)
loss_ft = netloss.loss_wavelet(model, device)
total_loss = l1loss_total / (cfg.frame_num) + loss_ct + loss_ft
optimizer.zero_grad()
total_loss.backward()
torch.nn.utils.clip_grad_norm_(parameters=model.parameters(), max_norm=5, norm_type=2)
optimizer.step()
print('Loss | ', ('%.8f' % total_loss.item()))
del in_data, gt_raw_data
return ft1, fgt, refine_out, fusion_out, denoise_out, gamma, omega, total_loss, loss_ct, loss_ft, loss_fusion, loss_denoise
def evaluate(model, psnr, writer, iter):
print('Evaluate...')
cnt = 0
total_psnr = 0
total_psnr_raw = 0
model.eval()
with torch.no_grad():
for scene_ind in range(7,9):
for noisy_level in range(0,5):
in_data, gt_raw_data = load_eval_data(noisy_level, scene_ind)
frame_psnr = 0
frame_psnr_raw = 0
for time_ind in range(cfg.frame_num):
ft1 = in_data[:, time_ind * 4: (time_ind + 1) * 4, :, :]
fgt = gt_raw_data[:, time_ind * 4: (time_ind + 1) * 4, :, :]
if time_ind == 0:
ft0_fusion = ft1
else:
ft0_fusion = ft0_fusion_data
coeff_a = a_list[noisy_level] / (2 ** 12 - 1 - 240)
coeff_b = b_list[noisy_level] / (2 ** 12 - 1 - 240) ** 2
input = torch.cat([ft0_fusion, ft1], dim=1)
gamma, fusion_out, denoise_out, omega, refine_out = model(input, coeff_a, coeff_b)
ft0_fusion_data = fusion_out
frame_psnr += psnr(refine_out, fgt)
frame_psnr_raw += psnr(ft1, fgt)
frame_psnr = frame_psnr / (cfg.frame_num)
frame_psnr_raw = frame_psnr_raw / (cfg.frame_num)
print('---------')
print('Scene: ', ('%02d' % scene_ind), 'Noisy_level: ', ('%02d' % noisy_level), 'PSNR: ', '%.8f' % frame_psnr.item())
total_psnr += frame_psnr
total_psnr_raw += frame_psnr_raw
cnt += 1
del in_data, gt_raw_data
total_psnr = total_psnr / cnt
total_psnr_raw = total_psnr_raw / cnt
print('Eval_Total_PSNR | ', ('%.8f' % total_psnr.item()))
writer.add_scalar('PSNR', total_psnr.item(), iter)
writer.add_scalar('PSNR_RAW', total_psnr_raw.item(), iter)
writer.add_scalar('PSNR_IMP', total_psnr.item() - total_psnr_raw.item(), iter)
torch.cuda.empty_cache()
return total_psnr, total_psnr_raw
def main():
"""
Train, Valid, Write Log, Write Predict ,etc
:return:
"""
checkpoint = cfg.checkpoint
start_epoch = cfg.start_epoch
start_iter = cfg.start_iter
best_psnr = 0
## use gpu
device = cfg.device
ngpu = cfg.ngpu
cudnn.benchmark = True
## tensorboard --logdir runs
writer = SummaryWriter(cfg.log_dir)
## initialize model
model = structure.MainDenoise()
## compute GFLOPs
# stat(model, (8,512,512))
model = model.to(device)
loss = netloss.L1Loss().to(device)
psnr = netloss.PSNR().to(device)
learning_rate = cfg.learning_rate
optimizer = torch.optim.Adam(params = filter(lambda p: p.requires_grad, model.parameters()), lr = learning_rate)
## load pretrained model
if checkpoint is not None:
print('--- Loading Pretrained Model ---')
checkpoint = torch.load(checkpoint)
start_epoch = checkpoint['epoch']
start_iter = checkpoint['iter']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
iter = start_iter
if torch.cuda.is_available() and ngpu > 1:
model = nn.DataParallel(model, device_ids=list(range(ngpu)))
shutil.copy('structure.py', os.path.join(cfg.model_name))
shutil.copy('train.py', os.path.join(cfg.model_name))
shutil.copy('netloss.py', os.path.join(cfg.model_name))
train_data_name_queue = generate_file_list(['1', '2', '3', '4', '5', '6'])
train_dataset = loadImgs(train_data_name_queue)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size = cfg.batch_size, num_workers = cfg.num_workers, shuffle = True, pin_memory = True)
eval_data_name_queue = generate_file_list(['7', '8'])
eval_dataset = loadImgs(eval_data_name_queue)
eval_loader = torch.utils.data.DataLoader(eval_dataset, batch_size = cfg.batch_size, num_workers = cfg.num_workers, shuffle = True, pin_memory = True)
for epoch in range(start_epoch, cfg.epoch):
print('------------------------------------------------')
print('Epoch | ', ('%08d' % epoch))
for i, (input, label, noisy_level) in enumerate(train_loader):
print('------------------------------------------------')
print('Iter | ', ('%08d' % iter))
in_data = input.permute(0, 3, 1, 2).to(device)
gt_raw_data = label.permute(0, 3, 1, 2).to(device)
ft1, fgt, refine_out, fusion_out, denoise_out, gamma, omega, \
total_loss, loss_ct, loss_ft, loss_fusion, loss_denoise = train(in_data, gt_raw_data, noisy_level, model, loss, device, optimizer)
iter = iter + 1
if iter % cfg.log_step == 0:
input_gray = torch.mean(ft1, 1, True)
label_gray = torch.mean(fgt, 1, True)
predict_gray = torch.mean(refine_out, 1, True)
fusion_gray = torch.mean(fusion_out, 1, True)
denoise_gray = torch.mean(denoise_out, 1, True)
gamma_gray = torch.mean(gamma[:, 0:1, :, :], 1, True)
omega_gray = torch.mean(omega[:, 0:1, :, :], 1, True)
writer.add_image('input', make_grid(input_gray.cpu(), nrow=4, normalize=True), iter)
writer.add_image('fusion_out', make_grid(fusion_gray.cpu(), nrow=4, normalize=True), iter)
writer.add_image('denoise_out', make_grid(denoise_gray.cpu(), nrow=4, normalize=True), iter)
writer.add_image('refine_out', make_grid(predict_gray.cpu(), nrow=4, normalize=True), iter)
writer.add_image('label', make_grid(label_gray.cpu(), nrow=4, normalize=True), iter)
writer.add_image('gamma', make_grid(gamma_gray.cpu(), nrow=4, normalize=True), iter)
writer.add_image('omega', make_grid(omega_gray.cpu(), nrow=4, normalize=True), iter)
writer.add_scalar('L1Loss', total_loss.item(), iter)
writer.add_scalar('L1Color', loss_ct.item(), iter)
writer.add_scalar('L1Wavelet', loss_ft.item(), iter)
writer.add_scalar('L1Denoise', loss_denoise.item(), iter)
writer.add_scalar('L1Fusion', loss_fusion.item(), iter)
torch.save({
'epoch': epoch,
'iter': iter,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()},
cfg.model_save_root)
if iter % cfg.valid_step == 0 and iter > cfg.valid_start_iter:
eval_psnr, eval_psnr_raw = evaluate(model, psnr, writer, iter)
if eval_psnr>best_psnr:
best_psnr = eval_psnr
torch.save({
'epoch': epoch,
'iter': iter,
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'best_psnr': best_psnr},
os.path.join(cfg.model_name, 'model_best.pth'))
writer.close()
if __name__ == '__main__':
initialize()
main()