@@ -21,40 +21,31 @@ subtitle: "AI Development"
21
21
22
22
## Planned Portfolio Projects
23
23
24
- ### Project 1: Predictive Maintenance System
25
- - ** Objective** : ML model to predict equipment failures
26
- - ** Data** : Historical sensor data from industrial equipment
27
- - ** Techniques** : Time-series analysis, classification algorithms
28
- - ** Tools** : Python, scikit-learn, pandas
29
-
30
- ### Project 2: Anomaly Detection
31
- - ** Objective** : Unsupervised learning system for sensor readings
32
- - ** Data** : Real-time sensor data streams
33
- - ** Techniques** : Isolation Forest, One-Class SVM, Autoencoders
34
- - ** Tools** : Python, TensorFlow
35
-
36
- ### Project 3: NLP for Technical Documentation
37
- - ** Objective** : NLP system to analyze technical documents
38
- - ** Data** : Technical manuals, bug reports, documentation
39
- - ** Techniques** : Text classification, sentiment analysis
40
- - ** Tools** : Python, NLTK, spaCy
41
-
42
- ### Project 4: Computer Vision for Quality Control
43
- - ** Objective** : Computer vision system for quality inspection
44
- - ** Data** : Images of manufactured products
45
- - ** Techniques** : Convolutional Neural Networks, object detection
46
- - ** Tools** : Python, OpenCV, TensorFlow
47
-
48
- ### Project 5: Reinforcement Learning for Process Optimization
49
- - ** Objective** : RL agent to optimize industrial processes
50
- - ** Data** : Process control data and performance metrics
51
- - ** Techniques** : Q-learning, policy gradients
52
- - ** Tools** : Python, Gym, TensorFlow
24
+ ### Project 1: Predictive Modeling with Historical Time-Series Data
25
+ - ** Objective** : ML model (LSTM/XGBoost) that analyzes historical data to forecast future trends
26
+ - ** Application** : Industrial output, resource demand, or financial metrics forecasting
27
+ - ** Features** : Dynamic visualizations and real-time predictions for operational decision-making
28
+ - ** Techniques** : LSTM, XGBoost, time-series analysis
29
+ - ** Tools** : Python, LSTM, XGBoost
30
+
31
+ ### Project 2: AI-Powered Script-to-Video Generation Pipeline
32
+ - ** Objective** : Comprehensive pipeline that transforms written scripts into short video content
33
+ - ** Technology** : LLMs, image/video APIs, and voice synthesis
34
+ - ** Features** : Advanced AI coordination across language processing, media generation, and rendering
35
+ - ** Techniques** : LLM integration, video generation, voice synthesis
36
+ - ** Tools** : Python, LLM, Video Generation APIs
37
+
38
+ ### Project 3: Natural Language Agent for Structured Data Analysis
39
+ - ** Objective** : Intelligent AI agent that interprets natural language queries and analyzes data sources
40
+ - ** Application** : Uploaded or connected data sources (e.g., CSVs)
41
+ - ** Features** : Leverages LLM technology to provide accurate, human-readable answers and visual insights
42
+ - ** Techniques** : LLM integration, natural language processing, data analysis
43
+ - ** Tools** : Python, LLM, Data Analysis libraries
53
44
54
45
## Skills:
55
46
- ** Supervised Learning** : Classification, regression, time-series forecasting
56
47
- ** Unsupervised Learning** : Clustering, anomaly detection
57
- - ** Deep Learning** : Neural networks, CNNs, RNNs
48
+ - ** Deep Learning** : Neural networks, CNNs, RNNs, LSTM
58
49
- ** Model Deployment** : Docker containers, API development
59
50
- ** Data Engineering** : Feature engineering, data preprocessing
60
51
0 commit comments