diff --git a/build/darknet/YoloWrapper.cs b/build/darknet/YoloWrapper.cs
deleted file mode 100644
index 52c12adb80f..00000000000
--- a/build/darknet/YoloWrapper.cs
+++ /dev/null
@@ -1,89 +0,0 @@
-using System;
-using System.Runtime.InteropServices;
-
-namespace Darknet
-{
- public class YoloWrapper : IDisposable
- {
- private const string YoloLibraryName = "yolo_cpp_dll.dll";
- private const int MaxObjects = 1000;
-
- [DllImport(YoloLibraryName, EntryPoint = "init")]
- private static extern int InitializeYolo(string configurationFilename, string weightsFilename, int gpu);
-
- [DllImport(YoloLibraryName, EntryPoint = "detect_image")]
- private static extern int DetectImage(string filename, ref BboxContainer container);
-
- [DllImport(YoloLibraryName, EntryPoint = "detect_mat")]
- private static extern int DetectImage(IntPtr pArray, int nSize, ref BboxContainer container);
-
- [DllImport(YoloLibraryName, EntryPoint = "dispose")]
- private static extern int DisposeYolo();
-
- [StructLayout(LayoutKind.Sequential)]
- public struct bbox_t
- {
- public UInt32 x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box
- public float prob; // confidence - probability that the object was found correctly
- public UInt32 obj_id; // class of object - from range [0, classes-1]
- public UInt32 track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object)
- public UInt32 frames_counter;
- public float x_3d, y_3d, z_3d; // 3-D coordinates, if there is used 3D-stereo camera
- };
-
- [StructLayout(LayoutKind.Sequential)]
- public struct BboxContainer
- {
- [MarshalAs(UnmanagedType.ByValArray, SizeConst = MaxObjects)]
- public bbox_t[] candidates;
- }
-
- public YoloWrapper(string configurationFilename, string weightsFilename, int gpu)
- {
- InitializeYolo(configurationFilename, weightsFilename, gpu);
- }
-
- public void Dispose()
- {
- DisposeYolo();
- }
-
- public bbox_t[] Detect(string filename)
- {
- var container = new BboxContainer();
- var count = DetectImage(filename, ref container);
-
- return container.candidates;
- }
-
- public bbox_t[] Detect(byte[] imageData)
- {
- var container = new BboxContainer();
-
- var size = Marshal.SizeOf(imageData[0]) * imageData.Length;
- var pnt = Marshal.AllocHGlobal(size);
-
- try
- {
- // Copy the array to unmanaged memory.
- Marshal.Copy(imageData, 0, pnt, imageData.Length);
- var count = DetectImage(pnt, imageData.Length, ref container);
- if (count == -1)
- {
- throw new NotSupportedException($"{YoloLibraryName} has no OpenCV support");
- }
- }
- catch (Exception exception)
- {
- return null;
- }
- finally
- {
- // Free the unmanaged memory.
- Marshal.FreeHGlobal(pnt);
- }
-
- return container.candidates;
- }
- }
-}
diff --git a/build/darknet/darknet.sln b/build/darknet/darknet.sln
deleted file mode 100644
index c49e10efa09..00000000000
--- a/build/darknet/darknet.sln
+++ /dev/null
@@ -1,28 +0,0 @@
-
-Microsoft Visual Studio Solution File, Format Version 12.00
-# Visual Studio 14
-VisualStudioVersion = 14.0.25420.1
-MinimumVisualStudioVersion = 10.0.40219.1
-Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "darknet", "darknet.vcxproj", "{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}"
-EndProject
-Global
- GlobalSection(SolutionConfigurationPlatforms) = preSolution
- Debug|Win32 = Debug|Win32
- Debug|x64 = Debug|x64
- Release|Win32 = Release|Win32
- Release|x64 = Release|x64
- EndGlobalSection
- GlobalSection(ProjectConfigurationPlatforms) = postSolution
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|Win32.ActiveCfg = Debug|Win32
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|Win32.Build.0 = Debug|Win32
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.ActiveCfg = Debug|x64
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.Build.0 = Debug|x64
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|Win32.ActiveCfg = Release|Win32
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|Win32.Build.0 = Release|Win32
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.ActiveCfg = Release|x64
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.Build.0 = Release|x64
- EndGlobalSection
- GlobalSection(SolutionProperties) = preSolution
- HideSolutionNode = FALSE
- EndGlobalSection
-EndGlobal
diff --git a/build/darknet/darknet.vcxproj b/build/darknet/darknet.vcxproj
deleted file mode 100644
index 5c8a7c3e1b9..00000000000
--- a/build/darknet/darknet.vcxproj
+++ /dev/null
@@ -1,309 +0,0 @@
-
-
-
-
- Debug
- Win32
-
-
- Debug
- x64
-
-
- Release
- Win32
-
-
- Release
- x64
-
-
-
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}
- darknet
- 8.1
-
-
-
- Application
- true
- v140
- MultiByte
-
-
- Application
- true
- v140
- MultiByte
-
-
- Application
- false
- v140
- true
- MultiByte
-
-
- Application
- false
- v140
- true
- MultiByte
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- $(SolutionDir)$(Platform)\
-
-
- $(SolutionDir)$(Platform)\
-
-
-
- Level3
- Disabled
- true
-
-
- true
-
-
-
-
- Level3
- Disabled
- true
- $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include;$(cudnn)\include
- CUDNN_HALF;CUDNN;_CRTDBG_MAP_ALLOC;_MBCS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;GPU;WIN32;DEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- OPENCV;
- true
- stdlib.h;crtdbg.h;%(ForcedIncludeFiles)
-
-
- true
- $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;$(cudnn)\lib\x64;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)
- $(OutDir)\$(TargetName)$(TargetExt)
- pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;%(AdditionalDependencies)
- true
-
-
- compute_30,sm_30;compute_75,sm_75
- 64
-
-
-
-
- Level3
- MaxSpeed
- true
- true
- true
- C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include
- OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- true
-
-
- true
- true
- true
- C:\opencv_2.4.9\opencv\build\x86\vc14\lib;C:\opencv_2.4.9\opencv\build\x86\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)
- ..\..\3rdparty\lib\x86\pthreadVC2.lib;cudart.lib;cublas.lib;curand.lib;%(AdditionalDependencies)
-
-
-
-
- Level3
- MaxSpeed
- true
- true
- true
- $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include;$(cudnn)\include
- OPENCV;CUDNN_HALF;CUDNN;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;GPU;WIN32;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- c11
- c++1y
- CompileAsCpp
- Default
- NDEBUG
- true
-
-
-
-
- true
- true
- true
- $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;$(cudnn)\lib\x64;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)
- pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;%(AdditionalDependencies)
- $(OutDir)\$(TargetName)$(TargetExt)
-
-
- 64
- compute_35,sm_35;compute_86,sm_86
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/build/darknet/darknet_no_gpu.sln b/build/darknet/darknet_no_gpu.sln
deleted file mode 100644
index 79d7c0a5daa..00000000000
--- a/build/darknet/darknet_no_gpu.sln
+++ /dev/null
@@ -1,28 +0,0 @@
-
-Microsoft Visual Studio Solution File, Format Version 12.00
-# Visual Studio 14
-VisualStudioVersion = 14.0.25420.1
-MinimumVisualStudioVersion = 10.0.40219.1
-Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "darknet_no_gpu", "darknet_no_gpu.vcxproj", "{621B3914-936D-4BD9-843A-AD50F22B178D}"
-EndProject
-Global
- GlobalSection(SolutionConfigurationPlatforms) = preSolution
- Debug|x64 = Debug|x64
- Debug|x86 = Debug|x86
- Release|x64 = Release|x64
- Release|x86 = Release|x86
- EndGlobalSection
- GlobalSection(ProjectConfigurationPlatforms) = postSolution
- {621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x64.ActiveCfg = Debug|x64
- {621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x64.Build.0 = Debug|x64
- {621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x86.ActiveCfg = Debug|Win32
- {621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x86.Build.0 = Debug|Win32
- {621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x64.ActiveCfg = Release|x64
- {621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x64.Build.0 = Release|x64
- {621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x86.ActiveCfg = Release|Win32
- {621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x86.Build.0 = Release|Win32
- EndGlobalSection
- GlobalSection(SolutionProperties) = preSolution
- HideSolutionNode = FALSE
- EndGlobalSection
-EndGlobal
diff --git a/build/darknet/darknet_no_gpu.vcxproj b/build/darknet/darknet_no_gpu.vcxproj
deleted file mode 100644
index fadf7289694..00000000000
--- a/build/darknet/darknet_no_gpu.vcxproj
+++ /dev/null
@@ -1,311 +0,0 @@
-
-
-
-
- Debug
- Win32
-
-
- Debug
- x64
-
-
- Release
- Win32
-
-
- Release
- x64
-
-
-
- {621B3914-936D-4BD9-843A-AD50F22B178D}
- darknet
- 8.1
-
-
-
- Application
- true
- v140
- MultiByte
-
-
- Application
- true
- v140
- MultiByte
-
-
- Application
- false
- v140
- true
- MultiByte
-
-
- Application
- false
- v140
- true
- MultiByte
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- $(SolutionDir)$(Platform)\
- $(Platform)\nogpu_$(Configuration)\
-
-
- $(SolutionDir)$(Platform)\
- $(Platform)\nogpu_$(Configuration)\
-
-
-
- Level3
- Disabled
- true
- C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);
- _CRTDBG_MAP_ALLOC;_MBCS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- OPENCV;
- stdlib.h;crtdbg.h;%(ForcedIncludeFiles)
-
-
- true
- C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib;%(AdditionalLibraryDirectories)
- ..\..\3rdparty\lib\x86\pthreadVC2.lib;%(AdditionalDependencies)
-
-
-
-
- Level3
- Disabled
- true
- $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories)
- _MBCS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- OPENCV;CUDNN
- true
- stdlib.h;crtdbg.h;%(ForcedIncludeFiles)
-
-
- true
- $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)
- $(OutDir)\$(TargetName)$(TargetExt)
- pthreadVC2.lib;%(AdditionalDependencies)
-
-
- compute_30,sm_30;compute_52,sm_52
- 64
-
-
-
-
- Level3
- MaxSpeed
- true
- true
- true
- C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);
- _TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
-
-
-
-
- true
- true
- true
- C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib;%(AdditionalLibraryDirectories)
- ..\..\3rdparty\lib\x86\pthreadVC2.lib;%(AdditionalDependencies)
-
-
-
-
- Level3
- MaxSpeed
- true
- true
- true
- $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories)
- OPENCV;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- c11
- c++1y
- CompileAsCpp
- Default
- CUDNN
- true
-
-
- true
- true
- true
- $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)
- pthreadVC2.lib;%(AdditionalDependencies)
- $(OutDir)\$(TargetName)$(TargetExt)
-
-
- 64
- compute_30,sm_30;compute_52,sm_52
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/build/darknet/x64/backup/tmp.txt b/build/darknet/x64/backup/tmp.txt
deleted file mode 100644
index e69de29bb2d..00000000000
diff --git a/build/darknet/x64/cfg/Gaussian_yolov3_BDD.cfg b/build/darknet/x64/cfg/Gaussian_yolov3_BDD.cfg
deleted file mode 100644
index 2ca7ec600e3..00000000000
--- a/build/darknet/x64/cfg/Gaussian_yolov3_BDD.cfg
+++ /dev/null
@@ -1,807 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=16
-width=512
-height=512
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.0001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-max_epochs = 300
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-######################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=57
-activation=linear
-
-
-[Gaussian_yolo]
-mask = 6,7,8
-anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
-classes=10
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-iou_thresh=0.213
-uc_normalizer=1.0
-cls_normalizer=1.0
-iou_normalizer=0.5
-iou_loss=giou
-scale_x_y=1.0
-random=1
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 61
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=57
-activation=linear
-
-
-[Gaussian_yolo]
-mask = 3,4,5
-anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
-classes=10
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-iou_thresh=0.213
-uc_normalizer=1.0
-cls_normalizer=1.0
-iou_normalizer=0.5
-iou_loss=giou
-scale_x_y=1.0
-random=1
-
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 36
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=57
-activation=linear
-
-
-[Gaussian_yolo]
-mask = 0,1,2
-anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
-classes=10
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-iou_thresh=0.213
-uc_normalizer=1.0
-cls_normalizer=1.0
-iou_normalizer=0.5
-iou_loss=giou
-scale_x_y=1.0
-random=1
diff --git a/build/darknet/x64/cfg/alexnet.cfg b/build/darknet/x64/cfg/alexnet.cfg
deleted file mode 100644
index 7e5a9b26a57..00000000000
--- a/build/darknet/x64/cfg/alexnet.cfg
+++ /dev/null
@@ -1,95 +0,0 @@
-[net]
-batch=128
-subdivisions=1
-height=227
-width=227
-channels=3
-momentum=0.9
-decay=0.0005
-max_crop=256
-
-learning_rate=0.01
-policy=poly
-power=4
-max_batches=800000
-
-angle=7
-hue = .1
-saturation=.75
-exposure=.75
-aspect=.75
-
-[convolutional]
-filters=96
-size=11
-stride=4
-pad=0
-activation=relu
-
-[maxpool]
-size=3
-stride=2
-padding=0
-
-[convolutional]
-filters=256
-size=5
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=3
-stride=2
-padding=0
-
-[convolutional]
-filters=384
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=384
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=3
-stride=2
-padding=0
-
-[connected]
-output=4096
-activation=relu
-
-[dropout]
-probability=.5
-
-[connected]
-output=4096
-activation=relu
-
-[dropout]
-probability=.5
-
-[connected]
-output=1000
-activation=linear
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/cd53paspp-gamma.cfg b/build/darknet/x64/cfg/cd53paspp-gamma.cfg
deleted file mode 100644
index be3dbff6e5a..00000000000
--- a/build/darknet/x64/cfg/cd53paspp-gamma.cfg
+++ /dev/null
@@ -1,1153 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=512
-height=512
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.00261
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-#cutmix=1
-mosaic=1
-
-#:104x104 54:52x52 85:26x26 104:13x13 for 416
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-7
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-10
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-16
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-##########################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = 85
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = 54
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-##########################
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-scale_x_y = 1.2
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=256
-activation=leaky
-
-[route]
-layers = -1, -16
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-scale_x_y = 1.1
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=leaky
-
-[route]
-layers = -1, -37
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-scale_x_y = 1.05
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
diff --git a/build/darknet/x64/cfg/cifar.cfg b/build/darknet/x64/cfg/cifar.cfg
deleted file mode 100644
index f2c801a5a9e..00000000000
--- a/build/darknet/x64/cfg/cifar.cfg
+++ /dev/null
@@ -1,126 +0,0 @@
-[net]
-batch=128
-subdivisions=1
-height=32
-width=32
-channels=3
-momentum=0.9
-decay=0.0005
-
-learning_rate=0.4
-policy=poly
-power=4
-max_batches = 50000
-
-[crop]
-crop_width=28
-crop_height=28
-flip=1
-angle=0
-saturation = 1
-exposure = 1
-noadjust=1
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[dropout]
-probability=.5
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[dropout]
-probability=.5
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[dropout]
-probability=.5
-
-[convolutional]
-filters=10
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[avgpool]
-
-[softmax]
-groups=1
-
-[cost]
-
diff --git a/build/darknet/x64/cfg/cifar.test.cfg b/build/darknet/x64/cfg/cifar.test.cfg
deleted file mode 100644
index d3afcdd79b7..00000000000
--- a/build/darknet/x64/cfg/cifar.test.cfg
+++ /dev/null
@@ -1,119 +0,0 @@
-[net]
-batch=128
-subdivisions=1
-height=32
-width=32
-channels=3
-momentum=0.9
-decay=0.0005
-
-learning_rate=0.4
-policy=poly
-power=4
-max_batches = 50000
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[dropout]
-probability=.5
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[dropout]
-probability=.5
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[dropout]
-probability=.5
-
-[convolutional]
-filters=10
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[avgpool]
-
-[softmax]
-groups=1
-temperature=3
-
-[cost]
-
diff --git a/build/darknet/x64/cfg/coco.data b/build/darknet/x64/cfg/coco.data
deleted file mode 100644
index f51d8428839..00000000000
--- a/build/darknet/x64/cfg/coco.data
+++ /dev/null
@@ -1,8 +0,0 @@
-classes= 80
-train = E:/MSCOCO/trainvalno5k.txt
-#train = E:/MSCOCO/5k.txt
-valid = E:/MSCOCO/5k.txt
-names = data/coco.names
-backup = backup
-eval=coco
-
diff --git a/build/darknet/x64/cfg/combine9k.data b/build/darknet/x64/cfg/combine9k.data
deleted file mode 100644
index 06a3e76aefa..00000000000
--- a/build/darknet/x64/cfg/combine9k.data
+++ /dev/null
@@ -1,10 +0,0 @@
-classes= 9418
-#train = /home/pjreddie/data/coco/trainvalno5k.txt
-train = data/combine9k.train.list
-valid = /home/pjreddie/data/imagenet/det.val.files
-labels = data/9k.labels
-names = data/9k.names
-backup = backup/
-map = data/inet9k.map
-eval = imagenet
-results = results
diff --git a/build/darknet/x64/cfg/crnn.train.cfg b/build/darknet/x64/cfg/crnn.train.cfg
deleted file mode 100644
index e0e0b54c4c9..00000000000
--- a/build/darknet/x64/cfg/crnn.train.cfg
+++ /dev/null
@@ -1,52 +0,0 @@
-[net]
-subdivisions=8
-inputs=256
-batch = 128
-momentum=0.9
-decay=0.001
-max_batches = 2000
-time_steps=576
-learning_rate=0.1
-policy=steps
-steps=1000,1500
-scales=.1,.1
-
-try_fix_nan=1
-
-[connected]
-output=256
-activation=leaky
-
-[crnn]
-batch_normalize=1
-size=1
-pad=0
-output = 1024
-hidden=1024
-activation=leaky
-
-[crnn]
-batch_normalize=1
-size=1
-pad=0
-output = 1024
-hidden=1024
-activation=leaky
-
-[crnn]
-batch_normalize=1
-size=1
-pad=0
-output = 1024
-hidden=1024
-activation=leaky
-
-[connected]
-output=256
-activation=leaky
-
-[softmax]
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/csdarknet53-omega.cfg b/build/darknet/x64/cfg/csdarknet53-omega.cfg
deleted file mode 100644
index 3a3c0730f66..00000000000
--- a/build/darknet/x64/cfg/csdarknet53-omega.cfg
+++ /dev/null
@@ -1,762 +0,0 @@
-[net]
-# Training
-batch=128
-subdivisions=4
-
-label_smooth_eps=0.1
-
-# Testing
-# batch=1
-# subdivisions=1
-
-height=256
-width=256
-channels=3
-min_crop=128
-max_crop=448
-
-mosaic=1
-cutmix=1
-
-burn_in=1000
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=1200000
-momentum=0.9
-decay=0.0005
-
-angle=7
-hue=.1
-saturation=.75
-exposure=.75
-aspect=.75
-
-
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-7
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-10
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-16
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=mish
-
-[avgpool]
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[softmax]
-groups=1
diff --git a/build/darknet/x64/cfg/cspx-p7-mish-omega.cfg b/build/darknet/x64/cfg/cspx-p7-mish-omega.cfg
deleted file mode 100644
index 93c4aefa94c..00000000000
--- a/build/darknet/x64/cfg/cspx-p7-mish-omega.cfg
+++ /dev/null
@@ -1,1459 +0,0 @@
-[net]
-# Training
-batch=100
-subdivisions=2
-
-label_smooth_eps=0.1
-
-# Testing
-# batch=1
-# subdivisions=1
-
-height=320
-width=320
-channels=3
-min_crop=320
-max_crop=640
-
-mosaic=1
-cutmix=1
-
-burn_in=2000
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=1200000
-#max_batches=400000
-momentum=0.9
-decay=0.0005
-
-angle=7
-hue=.1
-saturation=.75
-exposure=.75
-aspect=.75
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=40
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-13
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-49
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-49
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-25
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-25
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-25
-
-[convolutional]
-batch_normalize=1
-filters=1600
-size=1
-stride=1
-pad=1
-activation=mish
-
-[avgpool]
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[softmax]
-groups=1
\ No newline at end of file
diff --git a/build/darknet/x64/cfg/cspx-p7-mish.cfg b/build/darknet/x64/cfg/cspx-p7-mish.cfg
deleted file mode 100644
index 01be7283680..00000000000
--- a/build/darknet/x64/cfg/cspx-p7-mish.cfg
+++ /dev/null
@@ -1,2604 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=1536
-height=1536
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-steps=400000,450000
-#max_batches = 770500
-#steps=700000,750000
-policy=steps
-scales=.1,.1
-
-mosaic=1
-letter_box=1
-
-### Start of Backbone ###
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=40
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-13
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-49
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-49
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-25
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-25
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-25
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=1
-stride=1
-pad=1
-activation=mish
-
-### End of backbone ###
-
-### Start of CSPSPP ###
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -13
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-### End of CSPSPP ###
-
-### Start of CSPPAN ###
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 180 ###P6
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 152 ###P5
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 124 ###P4
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 72 ###P3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=320
-activation=mish
-
-[route]
-layers = -1, 271 ###S4
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, 255 ###S5
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, 239 ###S6
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, 223 ###S7
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-### End of CSPPAN ###
-
-### Start of YOLO ###
-
-[route]
-layers = 287 ###
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=320
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-
-
-[yolo]
-mask = 0,1,2,3
-anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408
-classes=80
-num=16
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-scale_x_y = 2.0
-jitter=.1
-objectness_smooth=1
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=4.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-max_delta=40
-new_coords=1
-
-[route]
-layers = 300 ###
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=640
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-
-[yolo]
-mask = 4,5,6,7
-anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408
-classes=80
-num=16
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-scale_x_y = 2.0
-jitter=.1
-objectness_smooth=1
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-max_delta=40
-new_coords=1
-
-[route]
-layers = 313 ###
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-
-[yolo]
-mask = 8,9,10,11
-anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408
-classes=80
-num=16
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-scale_x_y = 2.0
-jitter=.1
-objectness_smooth=1
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.5
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-max_delta=40
-new_coords=1
-
-[route]
-layers = 326 ###
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-
-[yolo]
-mask = 12,13,14,15
-anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408
-classes=80
-num=16
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-scale_x_y = 2.0
-jitter=.1
-objectness_smooth=1
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-max_delta=40
-new_coords=1
-
-[route]
-layers = 339 ###
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-
-[yolo]
-mask = 16,17,18,19
-anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408
-classes=80
-num=16
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-scale_x_y = 2.0
-jitter=.1
-objectness_smooth=1
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.1
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-max_delta=40
-new_coords=1
-
-### End of YOLO ###
\ No newline at end of file
diff --git a/build/darknet/x64/cfg/cspx-p7-mish_hp.cfg b/build/darknet/x64/cfg/cspx-p7-mish_hp.cfg
deleted file mode 100644
index 209fa8f81cb..00000000000
--- a/build/darknet/x64/cfg/cspx-p7-mish_hp.cfg
+++ /dev/null
@@ -1,2638 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=16
-#width=1536
-#height=1536
-width=896
-height=896
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-mosaic=1
-letter_box=1
-
-### Start of Backbone ###
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=40
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-13
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-49
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-49
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-25
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-25
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-25
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=1
-stride=1
-pad=1
-activation=mish
-
-### End of backbone ###
-
-### Start of CSPSPP ###
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -13
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-### End of CSPSPP ###
-
-### Start of CSPPAN ###
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 180 ###P6
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 152 ###P5
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 124 ###P4
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 72 ###P3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=320
-activation=mish
-
-[route]
-layers = -1, 271 ###S4
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, 255 ###S5
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, 239 ###S6
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, 223 ###S7
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-### End of CSPPAN ###
-
-### Start of YOLO ###
-
-[route]
-layers = 287 ###
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=320
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-#filters=340
-filters=170
-activation=linear
-
-#[route]
-#layers=-1
-
-[yolo]
-mask = 0,1
-anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800
-classes=80
-num=16
-#jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-resize=1.5
-scale_x_y = 1.05
-##iou_thresh=0.213
-#cls_normalizer=1.0
-#iou_normalizer=0.07
-
-jitter=.1
-#objectness_smooth=1
-##iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=4.0
-
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-
-#counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937
-#max_delta=3
-
-[route]
-layers = 300 ###
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=640
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-#filters=340
-filters=255
-activation=linear
-
-[yolo]
-mask = 1,2,3
-anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800
-classes=80
-num=16
-#jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-resize=1.5
-scale_x_y = 1.05
-##iou_thresh=0.213
-#cls_normalizer=1.0
-#iou_normalizer=0.07
-
-jitter=.1
-#objectness_smooth=1
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-
-#counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937
-#max_delta=3
-
-[route]
-layers = 313 ###
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=linear
-
-[yolo]
-mask = 4,5,6,7
-anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800
-classes=80
-num=16
-#jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-resize=1.5
-scale_x_y = 1.05
-##iou_thresh=0.213
-#cls_normalizer=1.0
-#iou_normalizer=0.07
-
-jitter=.1
-objectness_smooth=1
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.5
-
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-
-counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937
-max_delta=3
-
-[route]
-layers = 326 ###
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=linear
-
-[yolo]
-mask = 8,9,10,11
-anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800
-classes=80
-num=16
-#jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-resize=1.5
-scale_x_y = 1.05
-##iou_thresh=0.213
-#cls_normalizer=1.0
-#iou_normalizer=0.07
-
-jitter=.1
-objectness_smooth=1
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-
-counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937
-max_delta=3
-
-[route]
-layers = 339 ###
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=linear
-
-[yolo]
-mask = 12,13,14,15
-anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800
-classes=80
-num=16
-#jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-resize=1.5
-scale_x_y = 1.05
-##iou_thresh=0.213
-#cls_normalizer=1.0
-#iou_normalizer=0.07
-
-jitter=.1
-objectness_smooth=1
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.1
-
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-
-#counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937
-max_delta=3
-
-### End of YOLO ###
\ No newline at end of file
diff --git a/build/darknet/x64/cfg/csresnext50-panet-spp-original-optimal.cfg b/build/darknet/x64/cfg/csresnext50-panet-spp-original-optimal.cfg
deleted file mode 100644
index f0b78f973ef..00000000000
--- a/build/darknet/x64/cfg/csresnext50-panet-spp-original-optimal.cfg
+++ /dev/null
@@ -1,1042 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=608
-height=608
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.00261
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-#cutmix=1
-mosaic=1
-
-#19:104x104 38:52x52 65:26x26 80:13x13 for 416
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-# 1-1
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 1-2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 1-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 1-T
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-16
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-groups=32
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-# 2-1
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 2-2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 2-3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 2-T
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-16
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-# 3-1
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 3-2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 3-3
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 3-4
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 3-5
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 3-T
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-24
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-groups=32
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-# 4-1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 4-2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 4-T
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-12
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=leaky
-
-##########################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = 65
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = 38
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-##########################
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-scale_x_y = 1.2
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=256
-activation=leaky
-
-[route]
-layers = -1, -16
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-scale_x_y = 1.1
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=leaky
-
-[route]
-layers = -1, -37
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-scale_x_y = 1.05
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-
diff --git a/build/darknet/x64/cfg/csresnext50-panet-spp.cfg b/build/darknet/x64/cfg/csresnext50-panet-spp.cfg
deleted file mode 100644
index 261d35b96d7..00000000000
--- a/build/darknet/x64/cfg/csresnext50-panet-spp.cfg
+++ /dev/null
@@ -1,1018 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=16
-width=512
-height=512
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-#19:104x104 38:52x52 65:26x26 80:13x13 for 416
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-# 1-1
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 1-2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 1-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 1-T
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-16
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-groups=32
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-# 2-1
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 2-2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 2-3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 2-T
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-16
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-# 3-1
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 3-2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 3-3
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 3-4
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 3-5
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 3-T
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-24
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-groups=32
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-# 4-1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 4-2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-groups=32
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-# 4-T
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-12
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=leaky
-
-##########################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = 65
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = 38
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-##########################
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=256
-activation=leaky
-
-[route]
-layers = -1, -16
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=leaky
-
-[route]
-layers = -1, -37
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
diff --git a/build/darknet/x64/cfg/darknet.cfg b/build/darknet/x64/cfg/darknet.cfg
deleted file mode 100644
index 60b939a38ff..00000000000
--- a/build/darknet/x64/cfg/darknet.cfg
+++ /dev/null
@@ -1,111 +0,0 @@
-[net]
-batch=128
-subdivisions=1
-height=224
-width=224
-channels=3
-momentum=0.9
-decay=0.0005
-max_crop=320
-
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=1600000
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-padding=1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[avgpool]
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/darknet19.cfg b/build/darknet/x64/cfg/darknet19.cfg
deleted file mode 100644
index bf73fb7b48a..00000000000
--- a/build/darknet/x64/cfg/darknet19.cfg
+++ /dev/null
@@ -1,194 +0,0 @@
-[net]
-batch=128
-subdivisions=1
-height=224
-width=224
-channels=3
-momentum=0.9
-decay=0.0005
-max_crop=448
-
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=1600000
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[avgpool]
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/darknet19_448.cfg b/build/darknet/x64/cfg/darknet19_448.cfg
deleted file mode 100644
index 1918a8b2d62..00000000000
--- a/build/darknet/x64/cfg/darknet19_448.cfg
+++ /dev/null
@@ -1,202 +0,0 @@
-[net]
-#batch=128
-#subdivisions=4
-batch=1
-subdivisions=1
-height=448
-width=448
-max_crop=512
-channels=3
-momentum=0.9
-decay=0.0005
-
-learning_rate=0.001
-policy=poly
-power=4
-max_batches=100000
-
-angle=7
-hue = .1
-saturation=.75
-exposure=.75
-aspect=.75
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[avgpool]
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/darknet53.cfg b/build/darknet/x64/cfg/darknet53.cfg
deleted file mode 100644
index a1f084a943f..00000000000
--- a/build/darknet/x64/cfg/darknet53.cfg
+++ /dev/null
@@ -1,566 +0,0 @@
-[net]
-# Training
-batch=128
-subdivisions=8
-
-# Testing
-#batch=1
-#subdivisions=1
-
-height=256
-width=256
-channels=3
-min_crop=128
-max_crop=448
-
-burn_in=1000
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=800000
-momentum=0.9
-decay=0.0005
-
-angle=7
-hue=.1
-saturation=.75
-exposure=.75
-aspect=.75
-
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[avgpool]
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[softmax]
-groups=1
-
diff --git a/build/darknet/x64/cfg/darknet53_448_xnor.cfg b/build/darknet/x64/cfg/darknet53_448_xnor.cfg
deleted file mode 100644
index a48ef698a47..00000000000
--- a/build/darknet/x64/cfg/darknet53_448_xnor.cfg
+++ /dev/null
@@ -1,619 +0,0 @@
-[net]
-# Training - start training with darknet53.weights
-batch=120
-subdivisions=20
-
-# Testing
-#batch=1
-#subdivisions=1
-
-height=448
-width=448
-channels=3
-min_crop=448
-max_crop=512
-
-burn_in=1000
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=100000
-momentum=0.9
-decay=0.0005
-
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[avgpool]
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[softmax]
-groups=1
-
diff --git a/build/darknet/x64/cfg/densenet201.cfg b/build/darknet/x64/cfg/densenet201.cfg
deleted file mode 100644
index 5e1e7dd1fda..00000000000
--- a/build/darknet/x64/cfg/densenet201.cfg
+++ /dev/null
@@ -1,1954 +0,0 @@
-[net]
-# Training
-# batch=128
-# subdivisions=4
-
-# Testing
-batch=1
-subdivisions=1
-
-height=256
-width=256
-max_crop=448
-channels=3
-momentum=0.9
-decay=0.0005
-
-burn_in=1000
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=1600000
-
-angle=7
-hue=.1
-saturation=.75
-exposure=.75
-aspect=.75
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[avgpool]
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/efficientnet-lite3.cfg b/build/darknet/x64/cfg/efficientnet-lite3.cfg
deleted file mode 100644
index e76bbe3085d..00000000000
--- a/build/darknet/x64/cfg/efficientnet-lite3.cfg
+++ /dev/null
@@ -1,1009 +0,0 @@
-# https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/lite/efficientnet_lite_builder.py
-# (width_coefficient, depth_coefficient, resolution, dropout_rate)
-# 'efficientnet-lite3': (1.2, 1.4, 280, 0.3),
-#
-#_DEFAULT_BLOCKS_ARGS = [
-# 'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25',
-# 'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25',
-# 'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25',
-# 'r1_k3_s11_e6_i192_o320_se0.25',
-#]
-
-[net]
-# Training
-batch=120
-subdivisions=6
-height=288
-width=288
-channels=3
-momentum=0.9
-decay=0.0005
-max_crop=320
-
-cutmix=1
-mosaic=1
-label_smooth_eps=0.1
-
-burn_in=1000
-learning_rate=0.256
-policy=step
-step=10000
-scale=0.96
-max_batches=1600000
-momentum=0.9
-decay=0.00005
-
-angle=7
-hue=.1
-saturation=.75
-exposure=.75
-aspect=.75
-
-
-### CONV1 - 1 (1)
-# conv1
-[convolutional]
-filters=40 #32
-size=3
-pad=1
-stride=2
-batch_normalize=1
-activation=relu6
-
-
-### CONV2 - MBConv1 - 1 (2)
-# conv2_1_expand
-[convolutional]
-filters=40 #32
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv2_1_dwise
-[convolutional]
-groups=40 #32
-filters=40 #32
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv2_1_linear
-[convolutional]
-filters=16 #16
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV2 - MBConv1 - 2 (2)
-# conv2_1_expand
-[convolutional]
-filters=40 #32
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv2_1_dwise
-[convolutional]
-groups=40 #32
-filters=40 #32
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv2_1_linear
-[convolutional]
-filters=16 #16
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV3 - MBConv6 - 1 (3)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_3_1
-[shortcut]
-from=-5
-activation=linear
-
-# conv2_2_expand
-[convolutional]
-filters=112 #96
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv2_2_dwise
-[convolutional]
-groups=112 #96
-filters=112 #96
-size=3
-pad=1
-stride=2
-batch_normalize=1
-activation=relu6
-
-# conv2_2_linear
-[convolutional]
-filters=32 #24
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV3 - MBConv6 - 2 (3)
-# conv3_1_expand
-[convolutional]
-filters=176 #144
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv3_1_dwise
-[convolutional]
-groups=176 #144
-filters=176 #144
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv3_1_linear
-[convolutional]
-filters=32 #24
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV3 - MBConv6 - 3 (3)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_3_1
-[shortcut]
-from=-5
-activation=linear
-
-# conv3_1_expand
-[convolutional]
-filters=176 #144
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv3_1_dwise
-[convolutional]
-groups=176 #144
-filters=176 #144
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv3_1_linear
-[convolutional]
-filters=32 #24
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV4 - MBConv6 - 1 (3)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_3_1
-[shortcut]
-from=-5
-activation=linear
-
-# conv_3_2_expand
-[convolutional]
-filters=176 #144
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_3_2_dwise
-[convolutional]
-groups=176 #144
-filters=176 #144
-size=5
-pad=1
-stride=2
-batch_normalize=1
-activation=relu6
-
-# conv_3_2_linear
-[convolutional]
-filters=48 #40
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV4 - MBConv6 - 2 (3)
-# conv_4_1_expand
-[convolutional]
-filters=232 #192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_4_1_dwise
-[convolutional]
-groups=232 #192
-filters=232 #192
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_4_1_linear
-[convolutional]
-filters=48 #40
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV4 - MBConv6 - 3 (3)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_4_2
-[shortcut]
-from=-5
-activation=linear
-
-# conv_4_1_expand
-[convolutional]
-filters=232 #192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_4_1_dwise
-[convolutional]
-groups=232 #192
-filters=232 #192
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_4_1_linear
-[convolutional]
-filters=48 #40
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-
-### CONV5 - MBConv6 - 1 (5)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_4_2
-[shortcut]
-from=-5
-activation=linear
-
-# conv_4_3_expand
-[convolutional]
-filters=232 #192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_4_3_dwise
-[convolutional]
-groups=232 #192
-filters=232 #192
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_4_3_linear
-[convolutional]
-filters=96 #80
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV5 - MBConv6 - 2 (5)
-# conv_4_4_expand
-[convolutional]
-filters=464 #384
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_4_4_dwise
-[convolutional]
-groups=464 #384
-filters=464 #384
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_4_4_linear
-[convolutional]
-filters=96 #80
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV5 - MBConv6 - 3 (5)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_4_4
-[shortcut]
-from=-5
-activation=linear
-
-# conv_4_5_expand
-[convolutional]
-filters=464 #384
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_4_5_dwise
-[convolutional]
-groups=464 #384
-filters=464 #384
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_4_5_linear
-[convolutional]
-filters=96 #80
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV5 - MBConv6 - 4 (5)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_4_4
-[shortcut]
-from=-5
-activation=linear
-
-# conv_4_5_expand
-[convolutional]
-filters=464 #384
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_4_5_dwise
-[convolutional]
-groups=464 #384
-filters=464 #384
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_4_5_linear
-[convolutional]
-filters=96 #80
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV5 - MBConv6 - 5 (5)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_4_4
-[shortcut]
-from=-5
-activation=linear
-
-# conv_4_5_expand
-[convolutional]
-filters=464 #384
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_4_5_dwise
-[convolutional]
-groups=464 #384
-filters=464 #384
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_4_5_linear
-[convolutional]
-filters=96 #80
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV6 - MBConv6 - 1 (5)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_4_6
-[shortcut]
-from=-5
-activation=linear
-
-# conv_4_7_expand
-[convolutional]
-filters=464 #384
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_4_7_dwise
-[convolutional]
-groups=464 #384
-filters=464 #384
-size=5
-pad=1
-stride=2
-batch_normalize=1
-activation=relu6
-
-# conv_4_7_linear
-[convolutional]
-filters=136 #112
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV6 - MBConv6 - 2 (5)
-# conv_5_1_expand
-[convolutional]
-filters=688 #576
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_5_1_dwise
-[convolutional]
-groups=688 #576
-filters=688 #576
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_5_1_linear
-[convolutional]
-filters=136 #112
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV6 - MBConv6 - 3 (5)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_5_1
-[shortcut]
-from=-5
-activation=linear
-
-# conv_5_2_expand
-[convolutional]
-filters=688 #576
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_5_2_dwise
-[convolutional]
-groups=688 #576
-filters=688 #576
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_5_2_linear
-[convolutional]
-filters=136 #112
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV6 - MBConv6 - 4 (5)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_5_1
-[shortcut]
-from=-5
-activation=linear
-
-# conv_5_2_expand
-[convolutional]
-filters=688 #576
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_5_2_dwise
-[convolutional]
-groups=688 #576
-filters=688 #576
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_5_2_linear
-[convolutional]
-filters=136 #112
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV6 - MBConv6 - 5 (5)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_5_1
-[shortcut]
-from=-5
-activation=linear
-
-# conv_5_2_expand
-[convolutional]
-filters=688 #576
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_5_2_dwise
-[convolutional]
-groups=688 #576
-filters=688 #576
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_5_2_linear
-[convolutional]
-filters=136 #112
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV7 - MBConv6 - 1 (6)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_5_2
-[shortcut]
-from=-5
-activation=linear
-
-# conv_5_3_expand
-[convolutional]
-filters=688 #576
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_5_3_dwise
-[convolutional]
-groups=688 #576
-filters=688 #576
-size=5
-pad=1
-stride=2
-batch_normalize=1
-activation=relu6
-
-
-# conv_5_3_linear
-[convolutional]
-filters=232 #192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 2 (6)
-# conv_6_1_expand
-[convolutional]
-filters=1152 #960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_6_1_dwise
-[convolutional]
-groups=1152 #960
-filters=1152 #960
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_6_1_linear
-[convolutional]
-filters=232 #192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 3 (6)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_6_1
-[shortcut]
-from=-5
-activation=linear
-
-# conv_6_2_expand
-[convolutional]
-filters=1152 #960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_6_2_dwise
-[convolutional]
-groups=1152 #960
-filters=1152 #960
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_6_2_linear
-[convolutional]
-filters=232 #192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 4 (6)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_6_1
-[shortcut]
-from=-5
-activation=linear
-
-# conv_6_2_expand
-[convolutional]
-filters=1152 #960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_6_2_dwise
-[convolutional]
-groups=1152 #960
-filters=1152 #960
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_6_2_linear
-[convolutional]
-filters=232 #192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 5 (6)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_6_1
-[shortcut]
-from=-5
-activation=linear
-
-# conv_6_2_expand
-[convolutional]
-filters=1152 #960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_6_2_dwise
-[convolutional]
-groups=1152 #960
-filters=1152 #960
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-# conv_6_2_linear
-[convolutional]
-filters=232 #192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 6 (6)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_6_1
-[shortcut]
-from=-5
-activation=linear
-
-# conv_6_2_expand
-[convolutional]
-filters=1152 #960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_6_2_dwise
-[convolutional]
-groups=1152 #960
-filters=1152 #960
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-
-
-# conv_6_2_linear
-[convolutional]
-filters=232 #192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV8 - MBConv6 - 1 (1)
-# dropout only before residual connection
-[dropout]
-probability=.3
-
-# block_6_2
-[shortcut]
-from=-5
-activation=linear
-
-# conv_6_3_expand
-[convolutional]
-filters=1152 #960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-# conv_6_3_dwise
-[convolutional]
-groups=1152 #960
-filters=1152 #960
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=relu6
-
-
-
-# conv_6_3_linear
-[convolutional]
-filters=384 #320
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-
-### CONV9 - Conv2d 1x1
-# conv_6_4
-[convolutional]
-filters=1536 #1280
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=relu6
-
-
-[avgpool]
-
-[dropout]
-probability=.3
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=0
-activation=linear
-
-[softmax]
-groups=1
-
-#[cost]
-#type=sse
-
diff --git a/build/darknet/x64/cfg/efficientnet_b0.cfg b/build/darknet/x64/cfg/efficientnet_b0.cfg
deleted file mode 100644
index 70f780692a6..00000000000
--- a/build/darknet/x64/cfg/efficientnet_b0.cfg
+++ /dev/null
@@ -1,1009 +0,0 @@
-[net]
-# Training
-batch=120
-subdivisions=4
-# Testing
-#batch=1
-#subdivisions=1
-height=224
-width=224
-channels=3
-momentum=0.9
-decay=0.0005
-max_crop=256
-#mixup=4
-blur=1
-cutmix=1
-mosaic=1
-
-burn_in=1000
-#burn_in=100
-learning_rate=0.256
-policy=poly
-power=4
-max_batches=800000
-momentum=0.9
-decay=0.00005
-
-angle=7
-hue=.1
-saturation=.75
-exposure=.75
-aspect=.75
-
-
-### CONV1 - 1 (1)
-# conv1
-[convolutional]
-filters=32
-size=3
-pad=1
-stride=2
-batch_normalize=1
-activation=swish
-
-
-### CONV2 - MBConv1 - 1 (1)
-# conv2_1_expand
-[convolutional]
-filters=32
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv2_1_dwise
-[convolutional]
-groups=32
-filters=32
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=4 (recommended r=16)
-[convolutional]
-filters=8
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=32
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv2_1_linear
-[convolutional]
-filters=16
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV3 - MBConv6 - 1 (2)
-# conv2_2_expand
-[convolutional]
-filters=96
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv2_2_dwise
-[convolutional]
-groups=96
-filters=96
-size=3
-pad=1
-stride=2
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=8 (recommended r=16)
-[convolutional]
-filters=16
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=96
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv2_2_linear
-[convolutional]
-filters=24
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV3 - MBConv6 - 2 (2)
-# conv3_1_expand
-[convolutional]
-filters=144
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv3_1_dwise
-[convolutional]
-groups=144
-filters=144
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=8
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=144
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv3_1_linear
-[convolutional]
-filters=24
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV4 - MBConv6 - 1 (2)
-# dropout only before residual connection
-[dropout]
-probability=.2
-
-# block_3_1
-[shortcut]
-from=-9
-activation=linear
-
-# conv_3_2_expand
-[convolutional]
-filters=144
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_3_2_dwise
-[convolutional]
-groups=144
-filters=144
-size=5
-pad=1
-stride=2
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=8
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=144
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_3_2_linear
-[convolutional]
-filters=40
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV4 - MBConv6 - 2 (2)
-# conv_4_1_expand
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_4_1_dwise
-[convolutional]
-groups=192
-filters=192
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=16
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=192
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_4_1_linear
-[convolutional]
-filters=40
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-
-### CONV5 - MBConv6 - 1 (3)
-# dropout only before residual connection
-[dropout]
-probability=.2
-
-# block_4_2
-[shortcut]
-from=-9
-activation=linear
-
-# conv_4_3_expand
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_4_3_dwise
-[convolutional]
-groups=192
-filters=192
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=16
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=192
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_4_3_linear
-[convolutional]
-filters=80
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV5 - MBConv6 - 2 (3)
-# conv_4_4_expand
-[convolutional]
-filters=384
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_4_4_dwise
-[convolutional]
-groups=384
-filters=384
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=24
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=384
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_4_4_linear
-[convolutional]
-filters=80
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV5 - MBConv6 - 3 (3)
-# dropout only before residual connection
-[dropout]
-probability=.2
-
-# block_4_4
-[shortcut]
-from=-9
-activation=linear
-
-# conv_4_5_expand
-[convolutional]
-filters=384
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_4_5_dwise
-[convolutional]
-groups=384
-filters=384
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=24
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=384
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_4_5_linear
-[convolutional]
-filters=80
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV6 - MBConv6 - 1 (3)
-# dropout only before residual connection
-[dropout]
-probability=.2
-
-# block_4_6
-[shortcut]
-from=-9
-activation=linear
-
-# conv_4_7_expand
-[convolutional]
-filters=384
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_4_7_dwise
-[convolutional]
-groups=384
-filters=384
-size=5
-pad=1
-stride=2
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=24
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=384
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_4_7_linear
-[convolutional]
-filters=112
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV6 - MBConv6 - 2 (3)
-# conv_5_1_expand
-[convolutional]
-filters=576
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_5_1_dwise
-[convolutional]
-groups=576
-filters=576
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=32
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=576
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_5_1_linear
-[convolutional]
-filters=112
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV6 - MBConv6 - 3 (3)
-# dropout only before residual connection
-[dropout]
-probability=.2
-
-# block_5_1
-[shortcut]
-from=-9
-activation=linear
-
-# conv_5_2_expand
-[convolutional]
-filters=576
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_5_2_dwise
-[convolutional]
-groups=576
-filters=576
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=32
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=576
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_5_2_linear
-[convolutional]
-filters=112
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 1 (4)
-# dropout only before residual connection
-[dropout]
-probability=.2
-
-# block_5_2
-[shortcut]
-from=-9
-activation=linear
-
-# conv_5_3_expand
-[convolutional]
-filters=576
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_5_3_dwise
-[convolutional]
-groups=576
-filters=576
-size=5
-pad=1
-stride=2
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=32
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=576
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_5_3_linear
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 2 (4)
-# conv_6_1_expand
-[convolutional]
-filters=960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_6_1_dwise
-[convolutional]
-groups=960
-filters=960
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=64
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=960
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_6_1_linear
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 3 (4)
-# dropout only before residual connection
-[dropout]
-probability=.2
-
-# block_6_1
-[shortcut]
-from=-9
-activation=linear
-
-# conv_6_2_expand
-[convolutional]
-filters=960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_6_2_dwise
-[convolutional]
-groups=960
-filters=960
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=64
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=960
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_6_2_linear
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 4 (4)
-# dropout only before residual connection
-[dropout]
-probability=.2
-
-# block_6_1
-[shortcut]
-from=-9
-activation=linear
-
-# conv_6_2_expand
-[convolutional]
-filters=960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_6_2_dwise
-[convolutional]
-groups=960
-filters=960
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=64
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=960
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_6_2_linear
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV8 - MBConv6 - 1 (1)
-# dropout only before residual connection
-[dropout]
-probability=.2
-
-# block_6_2
-[shortcut]
-from=-9
-activation=linear
-
-# conv_6_3_expand
-[convolutional]
-filters=960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_6_3_dwise
-[convolutional]
-groups=960
-filters=960
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=64
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=960
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_6_3_linear
-[convolutional]
-filters=320
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV9 - Conv2d 1x1
-# conv_6_4
-[convolutional]
-filters=1280
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-
-[avgpool]
-
-[dropout]
-probability=.2
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=0
-activation=linear
-
-[softmax]
-groups=1
-
-#[cost]
-#type=sse
-
diff --git a/build/darknet/x64/cfg/enet-coco.cfg b/build/darknet/x64/cfg/enet-coco.cfg
deleted file mode 100644
index b530ed360b3..00000000000
--- a/build/darknet/x64/cfg/enet-coco.cfg
+++ /dev/null
@@ -1,1072 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-### CONV1 - 1 (1)
-# conv1
-[convolutional]
-filters=32
-size=3
-pad=1
-stride=2
-batch_normalize=1
-activation=swish
-
-
-### CONV2 - MBConv1 - 1 (1)
-# conv2_1_expand
-[convolutional]
-filters=32
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv2_1_dwise
-[convolutional]
-groups=32
-filters=32
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=4 (recommended r=16)
-[convolutional]
-filters=8
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=32
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv2_1_linear
-[convolutional]
-filters=16
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV3 - MBConv6 - 1 (2)
-# conv2_2_expand
-[convolutional]
-filters=96
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv2_2_dwise
-[convolutional]
-groups=96
-filters=96
-size=3
-pad=1
-stride=2
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=8 (recommended r=16)
-[convolutional]
-filters=16
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=96
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv2_2_linear
-[convolutional]
-filters=24
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV3 - MBConv6 - 2 (2)
-# conv3_1_expand
-[convolutional]
-filters=144
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv3_1_dwise
-[convolutional]
-groups=144
-filters=144
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=8
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=144
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv3_1_linear
-[convolutional]
-filters=24
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV4 - MBConv6 - 1 (2)
-# dropout only before residual connection
-[dropout]
-probability=.0
-
-# block_3_1
-[shortcut]
-from=-9
-activation=linear
-
-# conv_3_2_expand
-[convolutional]
-filters=144
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_3_2_dwise
-[convolutional]
-groups=144
-filters=144
-size=5
-pad=1
-stride=2
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=8
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=144
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_3_2_linear
-[convolutional]
-filters=40
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV4 - MBConv6 - 2 (2)
-# conv_4_1_expand
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_4_1_dwise
-[convolutional]
-groups=192
-filters=192
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=16
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=192
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_4_1_linear
-[convolutional]
-filters=40
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-
-### CONV5 - MBConv6 - 1 (3)
-# dropout only before residual connection
-[dropout]
-probability=.0
-
-# block_4_2
-[shortcut]
-from=-9
-activation=linear
-
-# conv_4_3_expand
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_4_3_dwise
-[convolutional]
-groups=192
-filters=192
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=16
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=192
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_4_3_linear
-[convolutional]
-filters=80
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV5 - MBConv6 - 2 (3)
-# conv_4_4_expand
-[convolutional]
-filters=384
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_4_4_dwise
-[convolutional]
-groups=384
-filters=384
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=24
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=384
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_4_4_linear
-[convolutional]
-filters=80
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV5 - MBConv6 - 3 (3)
-# dropout only before residual connection
-[dropout]
-probability=.0
-
-# block_4_4
-[shortcut]
-from=-9
-activation=linear
-
-# conv_4_5_expand
-[convolutional]
-filters=384
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_4_5_dwise
-[convolutional]
-groups=384
-filters=384
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=24
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=384
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_4_5_linear
-[convolutional]
-filters=80
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV6 - MBConv6 - 1 (3)
-# dropout only before residual connection
-[dropout]
-probability=.0
-
-# block_4_6
-[shortcut]
-from=-9
-activation=linear
-
-# conv_4_7_expand
-[convolutional]
-filters=384
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_4_7_dwise
-[convolutional]
-groups=384
-filters=384
-size=5
-pad=1
-stride=2
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=24
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=384
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_4_7_linear
-[convolutional]
-filters=112
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV6 - MBConv6 - 2 (3)
-# conv_5_1_expand
-[convolutional]
-filters=576
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_5_1_dwise
-[convolutional]
-groups=576
-filters=576
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=32
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=576
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_5_1_linear
-[convolutional]
-filters=112
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV6 - MBConv6 - 3 (3)
-# dropout only before residual connection
-[dropout]
-probability=.0
-
-# block_5_1
-[shortcut]
-from=-9
-activation=linear
-
-# conv_5_2_expand
-[convolutional]
-filters=576
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_5_2_dwise
-[convolutional]
-groups=576
-filters=576
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=32
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=576
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_5_2_linear
-[convolutional]
-filters=112
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 1 (4)
-# dropout only before residual connection
-[dropout]
-probability=.0
-
-# block_5_2
-[shortcut]
-from=-9
-activation=linear
-
-# conv_5_3_expand
-[convolutional]
-filters=576
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_5_3_dwise
-[convolutional]
-groups=576
-filters=576
-size=5
-pad=1
-stride=2
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=32
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=576
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_5_3_linear
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 2 (4)
-# conv_6_1_expand
-[convolutional]
-filters=960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_6_1_dwise
-[convolutional]
-groups=960
-filters=960
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=64
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=960
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_6_1_linear
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 3 (4)
-# dropout only before residual connection
-[dropout]
-probability=.0
-
-# block_6_1
-[shortcut]
-from=-9
-activation=linear
-
-# conv_6_2_expand
-[convolutional]
-filters=960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_6_2_dwise
-[convolutional]
-groups=960
-filters=960
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=64
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=960
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_6_2_linear
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV7 - MBConv6 - 4 (4)
-# dropout only before residual connection
-[dropout]
-probability=.0
-
-# block_6_1
-[shortcut]
-from=-9
-activation=linear
-
-# conv_6_2_expand
-[convolutional]
-filters=960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_6_2_dwise
-[convolutional]
-groups=960
-filters=960
-size=5
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=64
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=960
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_6_2_linear
-[convolutional]
-filters=192
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-
-### CONV8 - MBConv6 - 1 (1)
-# dropout only before residual connection
-[dropout]
-probability=.0
-
-# block_6_2
-[shortcut]
-from=-9
-activation=linear
-
-# conv_6_3_expand
-[convolutional]
-filters=960
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-# conv_6_3_dwise
-[convolutional]
-groups=960
-filters=960
-size=3
-stride=1
-pad=1
-batch_normalize=1
-activation=swish
-
-
-#squeeze-n-excitation
-[avgpool]
-
-# squeeze ratio r=16 (recommended r=16)
-[convolutional]
-filters=64
-size=1
-stride=1
-activation=swish
-
-# excitation
-[convolutional]
-filters=960
-size=1
-stride=1
-activation=logistic
-
-# multiply channels
-[scale_channels]
-from=-4
-
-
-# conv_6_3_linear
-[convolutional]
-filters=320
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=linear
-
-
-### CONV9 - Conv2d 1x1
-# conv_6_4
-[convolutional]
-filters=1280
-size=1
-stride=1
-pad=0
-batch_normalize=1
-activation=swish
-
-##########################
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-activation=leaky
-from=-2
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[shortcut]
-activation=leaky
-from=90
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-activation=leaky
-from=-3
-
-[shortcut]
-activation=leaky
-from=90
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-[yolo]
-mask = 1,2,3
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-
diff --git a/build/darknet/x64/cfg/extraction.cfg b/build/darknet/x64/cfg/extraction.cfg
deleted file mode 100644
index 94e106754ef..00000000000
--- a/build/darknet/x64/cfg/extraction.cfg
+++ /dev/null
@@ -1,206 +0,0 @@
-[net]
-batch=128
-subdivisions=1
-height=224
-width=224
-max_crop=320
-channels=3
-momentum=0.9
-decay=0.0005
-
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=1600000
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=192
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[avgpool]
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/extraction.conv.cfg b/build/darknet/x64/cfg/extraction.conv.cfg
deleted file mode 100644
index 2a7d09ec80f..00000000000
--- a/build/darknet/x64/cfg/extraction.conv.cfg
+++ /dev/null
@@ -1,179 +0,0 @@
-[net]
-batch=1
-subdivisions=1
-height=256
-width=256
-channels=3
-momentum=0.9
-decay=0.0005
-
-learning_rate=0.5
-policy=poly
-power=6
-max_batches=500000
-
-[convolutional]
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[avgpool]
-
-[connected]
-output=1000
-activation=leaky
-
-[softmax]
-groups=1
-
diff --git a/build/darknet/x64/cfg/extraction22k.cfg b/build/darknet/x64/cfg/extraction22k.cfg
deleted file mode 100644
index 4cec6da9605..00000000000
--- a/build/darknet/x64/cfg/extraction22k.cfg
+++ /dev/null
@@ -1,209 +0,0 @@
-[net]
-batch=128
-subdivisions=1
-height=224
-width=224
-max_crop=320
-channels=3
-momentum=0.9
-decay=0.0005
-
-learning_rate=0.01
-max_batches = 0
-policy=steps
-steps=444000,590000,970000
-scales=.5,.2,.1
-
-#policy=sigmoid
-#gamma=.00008
-#step=100000
-#max_batches=200000
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=192
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[avgpool]
-
-[connected]
-output=21842
-activation=leaky
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/go.test.cfg b/build/darknet/x64/cfg/go.test.cfg
deleted file mode 100644
index 6b92d335cd1..00000000000
--- a/build/darknet/x64/cfg/go.test.cfg
+++ /dev/null
@@ -1,131 +0,0 @@
-[net]
-batch=1
-subdivisions=1
-height=19
-width=19
-channels=1
-momentum=0.9
-decay=0.0005
-
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=400000
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-[convolutional]
-filters=192
-size=3
-stride=1
-pad=1
-activation=relu
-batch_normalize=1
-
-
-[convolutional]
-filters=1
-size=1
-stride=1
-pad=1
-activation=linear
-
-[softmax]
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/gru.cfg b/build/darknet/x64/cfg/gru.cfg
deleted file mode 100644
index f9a06999e62..00000000000
--- a/build/darknet/x64/cfg/gru.cfg
+++ /dev/null
@@ -1,34 +0,0 @@
-[net]
-subdivisions=1
-inputs=256
-batch = 1
-momentum=0.9
-decay=0.001
-time_steps=1
-learning_rate=0.5
-
-policy=poly
-power=4
-max_batches=2000
-
-[gru]
-batch_normalize=1
-output = 1024
-
-[gru]
-batch_normalize=1
-output = 1024
-
-[gru]
-batch_normalize=1
-output = 1024
-
-[connected]
-output=256
-activation=linear
-
-[softmax]
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/imagenet1k.data b/build/darknet/x64/cfg/imagenet1k.data
deleted file mode 100644
index b01f2facec9..00000000000
--- a/build/darknet/x64/cfg/imagenet1k.data
+++ /dev/null
@@ -1,9 +0,0 @@
-classes=1000
-train = data/imagenet1k.train.list
-#train = data/inet.val.list
-valid = data/inet.val.list
-backup = backup
-labels = data/imagenet.labels.list
-names = data/imagenet.shortnames.list
-top=5
-
diff --git a/build/darknet/x64/cfg/imagenet22k.dataset b/build/darknet/x64/cfg/imagenet22k.dataset
deleted file mode 100644
index 920785d603b..00000000000
--- a/build/darknet/x64/cfg/imagenet22k.dataset
+++ /dev/null
@@ -1,8 +0,0 @@
-classes=21842
-train = /data/imagenet/imagenet22k.train.list
-valid = /data/imagenet/imagenet22k.valid.list
-backup = /home/pjreddie/backup/
-labels = data/imagenet.labels.list
-names = data/imagenet.shortnames.list
-top = 5
-
diff --git a/build/darknet/x64/cfg/imagenet9k.hierarchy.dataset b/build/darknet/x64/cfg/imagenet9k.hierarchy.dataset
deleted file mode 100644
index 41fb71b0655..00000000000
--- a/build/darknet/x64/cfg/imagenet9k.hierarchy.dataset
+++ /dev/null
@@ -1,9 +0,0 @@
-classes=9418
-train = data/9k.train.list
-valid = /data/imagenet/imagenet1k.valid.list
-leaves = data/imagenet1k.labels
-backup = /home/pjreddie/backup/
-labels = data/9k.labels
-names = data/9k.names
-top=5
-
diff --git a/build/darknet/x64/cfg/jnet-conv.cfg b/build/darknet/x64/cfg/jnet-conv.cfg
deleted file mode 100644
index 056f82aa6e2..00000000000
--- a/build/darknet/x64/cfg/jnet-conv.cfg
+++ /dev/null
@@ -1,118 +0,0 @@
-[net]
-batch=1
-subdivisions=1
-height=10
-width=10
-channels=3
-learning_rate=0.01
-momentum=0.9
-decay=0.0005
-
-[convolutional]
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-stride=2
-size=2
-
-[convolutional]
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-stride=2
-size=2
-
-[convolutional]
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-stride=2
-size=2
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-stride=2
-size=2
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-stride=2
-size=2
-
-[convolutional]
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
diff --git a/build/darknet/x64/cfg/lstm.train.cfg b/build/darknet/x64/cfg/lstm.train.cfg
deleted file mode 100644
index f0d4721d414..00000000000
--- a/build/darknet/x64/cfg/lstm.train.cfg
+++ /dev/null
@@ -1,35 +0,0 @@
-[net]
-subdivisions=8
-inputs=256
-batch = 128
-momentum=0.9
-decay=0.001
-max_batches = 2000
-time_steps=576
-learning_rate=0.5
-policy=steps
-burn_in=10
-steps=1000,1500
-scales=.1,.1
-
-[lstm]
-batch_normalize=1
-output = 1024
-
-[lstm]
-batch_normalize=1
-output = 1024
-
-[lstm]
-batch_normalize=1
-output = 1024
-
-[connected]
-output=256
-activation=leaky
-
-[softmax]
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/openimages.data b/build/darknet/x64/cfg/openimages.data
deleted file mode 100644
index fa80e5ab7d8..00000000000
--- a/build/darknet/x64/cfg/openimages.data
+++ /dev/null
@@ -1,8 +0,0 @@
-classes= 601
-train = /home/pjreddie/data/openimsv4/openimages.train.list
-#valid = coco_testdev
-valid = data/coco_val_5k.list
-names = data/openimages.names
-backup = /home/pjreddie/backup/
-eval=coco
-
diff --git a/build/darknet/x64/cfg/resnet101.cfg b/build/darknet/x64/cfg/resnet101.cfg
deleted file mode 100644
index 48dffbf2ec5..00000000000
--- a/build/darknet/x64/cfg/resnet101.cfg
+++ /dev/null
@@ -1,990 +0,0 @@
-[net]
-# Training
-batch=128
-subdivisions=2
-
-# Testing
-#batch=1
-#subdivisions=1
-
-height=256
-width=256
-channels=3
-min_crop=128
-max_crop=448
-
-burn_in=1000
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=800000
-momentum=0.9
-decay=0.0005
-
-angle=7
-hue=.1
-saturation=.75
-exposure=.75
-aspect=.75
-
-
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-# Conv 4
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-#Conv 5
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-
-
-
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[avgpool]
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/resnet152.cfg b/build/darknet/x64/cfg/resnet152.cfg
deleted file mode 100644
index d5fe90948a2..00000000000
--- a/build/darknet/x64/cfg/resnet152.cfg
+++ /dev/null
@@ -1,1463 +0,0 @@
-[net]
-# Training
-# batch=128
-# subdivisions=8
-
-# Testing
-batch=1
-subdivisions=1
-
-height=256
-width=256
-max_crop=448
-channels=3
-momentum=0.9
-decay=0.0005
-
-burn_in=1000
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=1600000
-
-angle=7
-hue=.1
-saturation=.75
-exposure=.75
-aspect=.75
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-# Conv 4
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-#Conv 5
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-
-
-
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[avgpool]
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/resnet152_trident.cfg b/build/darknet/x64/cfg/resnet152_trident.cfg
deleted file mode 100644
index 1ac8cc73a78..00000000000
--- a/build/darknet/x64/cfg/resnet152_trident.cfg
+++ /dev/null
@@ -1,2177 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=64
-width=608
-height=608
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 10000
-
-policy=sgdr
-sgdr_cycle=1000
-sgdr_mult=2
-steps=4000,6000,8000,9000
-#scales=1, 1, 0.1, 0.1
-
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-2
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-# Conv 4
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-2
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-
-
-### TridentNet - large objects - Start
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-dilation=3
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-dilation=3
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-dilation=3
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-dilation=3
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-dilation=3
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-dilation=3
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-dilation=3
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-## Conv 5
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-dilation=3
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-2
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-dilation=3
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-dilation=3
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=2048
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=24
-activation=linear
-
-[yolo]
-mask = 8,9,10,11
-anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 59,119, 80,80, 116,90, 156,198, 373,326
-classes=1
-num=12
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-
-### TridentNet - large objects - End
-
-
-
-
-
-
-
-### TridentNet - medium objects - Start
-
-[route]
-layers = 165
-
-[convolutional]
-share_index=166
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=167
-dilation=2
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=168
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=170
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=171
-dilation=2
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=172
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=174
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=175
-dilation=2
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=176
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=178
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=179
-dilation=2
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=180
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=182
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=183
-dilation=2
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=184
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=186
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=187
-dilation=2
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=188
-dilation=2
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-## Conv 5
-[convolutional]
-share_index=190
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=191
-dilation=2
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=192
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-2
-activation=leaky
-
-[convolutional]
-share_index=194
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=195
-dilation=2
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=196
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=198
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=199
-dilation=2
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=200
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 49
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=24
-activation=linear
-
-[yolo]
-mask = 4,5,6,7
-anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326
-classes=1
-num=12
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-
-### TridentNet - medium objects - End
-
-
-
-
-
-
-
-
-
-
-
-### TridentNet - small objects - Start
-
-[route]
-layers = 165
-
-[convolutional]
-share_index=166
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=167
-dilation=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=168
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=170
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=171
-dilation=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=172
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=174
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=175
-dilation=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=176
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=178
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=179
-dilation=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=180
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=182
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=183
-dilation=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=184
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=186
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=187
-dilation=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=188
-dilation=1
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-## Conv 5
-[convolutional]
-share_index=190
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=191
-dilation=1
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=192
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-2
-activation=leaky
-
-[convolutional]
-share_index=194
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=195
-dilation=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=196
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-share_index=198
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=199
-dilation=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-share_index=200
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[upsample]
-stride=4
-
-[route]
-layers = -1, 17
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=24
-activation=linear
-
-[yolo]
-mask = 0,1,2,3
-anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326
-classes=1
-num=12
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-
-### TridentNet - small objects - End
-
diff --git a/build/darknet/x64/cfg/resnet50.cfg b/build/darknet/x64/cfg/resnet50.cfg
deleted file mode 100644
index bfe69b18e3b..00000000000
--- a/build/darknet/x64/cfg/resnet50.cfg
+++ /dev/null
@@ -1,511 +0,0 @@
-[net]
-# Training
-# batch=128
-# subdivisions=4
-
-# Testing
-batch=1
-subdivisions=1
-
-height=256
-width=256
-max_crop=448
-channels=3
-momentum=0.9
-decay=0.0005
-
-burn_in=1000
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=1600000
-
-angle=7
-hue=.1
-saturation=.75
-exposure=.75
-aspect=.75
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-# Conv 4
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-#Conv 5
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-
-
-
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[avgpool]
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/resnext152-32x4d.cfg b/build/darknet/x64/cfg/resnext152-32x4d.cfg
deleted file mode 100644
index 48279fd28eb..00000000000
--- a/build/darknet/x64/cfg/resnext152-32x4d.cfg
+++ /dev/null
@@ -1,1562 +0,0 @@
-[net]
-# Training
-# batch=128
-# subdivisions=16
-
-# Testing
-batch=1
-subdivisions=1
-
-height=256
-width=256
-channels=3
-min_crop=128
-max_crop=448
-
-burn_in=1000
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=800000
-momentum=0.9
-decay=0.0005
-
-angle=7
-hue=.1
-saturation=.75
-exposure=.75
-aspect=.75
-
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=4096
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=4096
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-groups = 32
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=4096
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-
-
-[avgpool]
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[softmax]
-groups=1
-
diff --git a/build/darknet/x64/cfg/rnn.cfg b/build/darknet/x64/cfg/rnn.cfg
deleted file mode 100644
index 68c032d27f9..00000000000
--- a/build/darknet/x64/cfg/rnn.cfg
+++ /dev/null
@@ -1,40 +0,0 @@
-[net]
-subdivisions=1
-inputs=256
-batch = 1
-momentum=0.9
-decay=0.001
-max_batches = 2000
-time_steps=1
-learning_rate=0.1
-policy=steps
-steps=1000,1500
-scales=.1,.1
-
-[rnn]
-batch_normalize=1
-output = 1024
-hidden=1024
-activation=leaky
-
-[rnn]
-batch_normalize=1
-output = 1024
-hidden=1024
-activation=leaky
-
-[rnn]
-batch_normalize=1
-output = 1024
-hidden=1024
-activation=leaky
-
-[connected]
-output=256
-activation=leaky
-
-[softmax]
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/rnn.train.cfg b/build/darknet/x64/cfg/rnn.train.cfg
deleted file mode 100644
index 3c63956a249..00000000000
--- a/build/darknet/x64/cfg/rnn.train.cfg
+++ /dev/null
@@ -1,40 +0,0 @@
-[net]
-subdivisions=8
-inputs=256
-batch = 128
-momentum=0.9
-decay=0.001
-max_batches = 2000
-time_steps=576
-learning_rate=0.1
-policy=steps
-steps=1000,1500
-scales=.1,.1
-
-[rnn]
-batch_normalize=1
-output = 1024
-hidden=1024
-activation=leaky
-
-[rnn]
-batch_normalize=1
-output = 1024
-hidden=1024
-activation=leaky
-
-[rnn]
-batch_normalize=1
-output = 1024
-hidden=1024
-activation=leaky
-
-[connected]
-output=256
-activation=leaky
-
-[softmax]
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/strided.cfg b/build/darknet/x64/cfg/strided.cfg
deleted file mode 100644
index a52700b4303..00000000000
--- a/build/darknet/x64/cfg/strided.cfg
+++ /dev/null
@@ -1,185 +0,0 @@
-[net]
-batch=128
-subdivisions=4
-height=256
-width=256
-channels=3
-momentum=0.9
-decay=0.0005
-
-learning_rate=0.01
-policy=steps
-scales=.1,.1,.1
-steps=200000,300000,400000
-max_batches=800000
-
-
-[crop]
-crop_height=224
-crop_width=224
-flip=1
-angle=0
-saturation=1
-exposure=1
-shift=.2
-
-[convolutional]
-filters=64
-size=7
-stride=2
-pad=1
-activation=ramp
-
-[convolutional]
-filters=192
-size=3
-stride=2
-pad=1
-activation=ramp
-
-[convolutional]
-filters=128
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=256
-size=3
-stride=2
-pad=1
-activation=ramp
-
-[convolutional]
-filters=128
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=128
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=512
-size=3
-stride=2
-pad=1
-activation=ramp
-
-[convolutional]
-filters=256
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=256
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=256
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=256
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=256
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=1024
-size=3
-stride=2
-pad=1
-activation=ramp
-
-[convolutional]
-filters=512
-size=1
-stride=1
-pad=1
-activation=ramp
-
-[convolutional]
-filters=1024
-size=3
-stride=1
-pad=1
-activation=ramp
-
-[maxpool]
-size=3
-stride=2
-
-[connected]
-output=4096
-activation=ramp
-
-[dropout]
-probability=0.5
-
-[connected]
-output=1000
-activation=ramp
-
-[softmax]
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/t1.test.cfg b/build/darknet/x64/cfg/t1.test.cfg
deleted file mode 100644
index b3628114e04..00000000000
--- a/build/darknet/x64/cfg/t1.test.cfg
+++ /dev/null
@@ -1,117 +0,0 @@
-[net]
-batch=1
-subdivisions=1
-height=224
-width=224
-channels=3
-momentum=0.9
-decay=0.0005
-
-learning_rate=0.0005
-policy=steps
-steps=200,400,600,20000,30000
-scales=2.5,2,2,.1,.1
-max_batches = 40000
-
-[convolutional]
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[connected]
-output= 1470
-activation=linear
-
-[detection]
-classes=20
-coords=4
-rescore=1
-side=7
-num=2
-softmax=0
-sqrt=1
-jitter=.2
-
-object_scale=1
-noobject_scale=.5
-class_scale=1
-coord_scale=5
-
diff --git a/build/darknet/x64/cfg/tiny-yolo-voc.cfg b/build/darknet/x64/cfg/tiny-yolo-voc.cfg
deleted file mode 100644
index ab2c066a216..00000000000
--- a/build/darknet/x64/cfg/tiny-yolo-voc.cfg
+++ /dev/null
@@ -1,134 +0,0 @@
-[net]
-batch=64
-subdivisions=8
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-max_batches = 40200
-policy=steps
-steps=-1,100,20000,30000
-scales=.1,10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=125
-activation=linear
-
-[region]
-anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
-bias_match=1
-classes=20
-coords=4
-num=5
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/cfg/tiny-yolo.cfg b/build/darknet/x64/cfg/tiny-yolo.cfg
deleted file mode 100644
index 5580098b45f..00000000000
--- a/build/darknet/x64/cfg/tiny-yolo.cfg
+++ /dev/null
@@ -1,134 +0,0 @@
-[net]
-batch=64
-subdivisions=8
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-max_batches = 120000
-policy=steps
-steps=-1,100,80000,100000
-scales=.1,10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=425
-activation=linear
-
-[region]
-anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
-bias_match=1
-classes=80
-coords=4
-num=5
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/cfg/tiny-yolo_xnor.cfg b/build/darknet/x64/cfg/tiny-yolo_xnor.cfg
deleted file mode 100644
index 42a96309db0..00000000000
--- a/build/darknet/x64/cfg/tiny-yolo_xnor.cfg
+++ /dev/null
@@ -1,148 +0,0 @@
-[net]
-batch=64
-subdivisions=8
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-max_batches = 40200
-policy=steps
-steps=-1,100,20000,30000
-scales=.1,10,.1,.1
-
-[convolutional]
-#xnor=1
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-xnor=1
-bin_output=1
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-xnor=1
-bin_output=1
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-xnor=1
-bin_output=1
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-xnor=1
-bin_output=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-xnor=1
-bin_output=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-xnor=1
-bin_output=1
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-[convolutional]
-xnor=1
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=425
-activation=linear
-
-[region]
-anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
-bias_match=1
-classes=80
-coords=4
-num=5
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/cfg/tiny.cfg b/build/darknet/x64/cfg/tiny.cfg
deleted file mode 100644
index 99c260366d7..00000000000
--- a/build/darknet/x64/cfg/tiny.cfg
+++ /dev/null
@@ -1,172 +0,0 @@
-[net]
-batch=128
-subdivisions=1
-height=224
-width=224
-channels=3
-momentum=0.9
-decay=0.0005
-max_crop=320
-
-learning_rate=0.1
-policy=poly
-power=4
-max_batches=1600000
-
-angle=7
-hue=.1
-saturation=.75
-exposure=.75
-aspect=.75
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1000
-size=1
-stride=1
-pad=1
-activation=linear
-
-[avgpool]
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/vgg-16.cfg b/build/darknet/x64/cfg/vgg-16.cfg
deleted file mode 100644
index 2b6f7029b70..00000000000
--- a/build/darknet/x64/cfg/vgg-16.cfg
+++ /dev/null
@@ -1,153 +0,0 @@
-[net]
-batch=128
-subdivisions=4
-height=256
-width=256
-channels=3
-learning_rate=0.00001
-momentum=0.9
-decay=0.0005
-
-[crop]
-crop_height=224
-crop_width=224
-flip=1
-exposure=1
-saturation=1
-angle=0
-
-[convolutional]
-filters=64
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=64
-size=3
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=128
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=128
-size=3
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=2
-stride=2
-
-[connected]
-output=4096
-activation=relu
-
-[dropout]
-probability=.5
-
-[connected]
-output=4096
-activation=relu
-
-[dropout]
-probability=.5
-
-[connected]
-output=1000
-activation=linear
-
-[softmax]
-groups=1
-
-[cost]
-type=sse
-
diff --git a/build/darknet/x64/cfg/vgg-conv.cfg b/build/darknet/x64/cfg/vgg-conv.cfg
deleted file mode 100644
index e173e28bff6..00000000000
--- a/build/darknet/x64/cfg/vgg-conv.cfg
+++ /dev/null
@@ -1,123 +0,0 @@
-[net]
-batch=1
-subdivisions=1
-width=112
-height=112
-#width=224
-#height=224
-channels=3
-learning_rate=0.00001
-momentum=0.9
-decay=0.0005
-
-[convolutional]
-filters=64
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=64
-size=3
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=128
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=128
-size=3
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=256
-size=3
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[convolutional]
-filters=512
-size=3
-stride=1
-pad=1
-activation=relu
-
-[maxpool]
-size=2
-stride=2
-
diff --git a/build/darknet/x64/cfg/voc.data b/build/darknet/x64/cfg/voc.data
deleted file mode 100644
index d6775870f65..00000000000
--- a/build/darknet/x64/cfg/voc.data
+++ /dev/null
@@ -1,7 +0,0 @@
-classes= 20
-train = data/train_voc.txt
-valid = data/2007_test.txt
-#difficult = data/difficult_2007_test.txt
-names = data/voc.names
-backup = backup/
-
diff --git a/build/darknet/x64/cfg/writing.cfg b/build/darknet/x64/cfg/writing.cfg
deleted file mode 100644
index 1ed899bcd63..00000000000
--- a/build/darknet/x64/cfg/writing.cfg
+++ /dev/null
@@ -1,41 +0,0 @@
-[net]
-batch=128
-subdivisions=2
-height=256
-width=256
-channels=3
-learning_rate=0.00000001
-momentum=0.9
-decay=0.0005
-seen=0
-
-[convolutional]
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=1
-size=3
-stride=1
-pad=1
-activation=logistic
-
-[cost]
-
diff --git a/build/darknet/x64/cfg/yolo-voc.2.0.cfg b/build/darknet/x64/cfg/yolo-voc.2.0.cfg
deleted file mode 100644
index ceb3f2acf0b..00000000000
--- a/build/darknet/x64/cfg/yolo-voc.2.0.cfg
+++ /dev/null
@@ -1,244 +0,0 @@
-[net]
-batch=64
-subdivisions=8
-height=416
-width=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.0001
-max_batches = 45000
-policy=steps
-steps=100,25000,35000
-scales=10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-#######
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[route]
-layers=-9
-
-[reorg]
-stride=2
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=125
-activation=linear
-
-[region]
-anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
-bias_match=1
-classes=20
-coords=4
-num=5
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=0
diff --git a/build/darknet/x64/cfg/yolo-voc.cfg b/build/darknet/x64/cfg/yolo-voc.cfg
deleted file mode 100644
index dbf2de281c1..00000000000
--- a/build/darknet/x64/cfg/yolo-voc.cfg
+++ /dev/null
@@ -1,258 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=8
-height=416
-width=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 80200
-policy=steps
-steps=40000,60000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-#######
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[route]
-layers=-9
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=64
-activation=leaky
-
-[reorg]
-stride=2
-
-[route]
-layers=-1,-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=125
-activation=linear
-
-
-[region]
-anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
-bias_match=1
-classes=20
-coords=4
-num=5
-softmax=1
-jitter=.3
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/cfg/yolo.2.0.cfg b/build/darknet/x64/cfg/yolo.2.0.cfg
deleted file mode 100644
index fda339a2b00..00000000000
--- a/build/darknet/x64/cfg/yolo.2.0.cfg
+++ /dev/null
@@ -1,244 +0,0 @@
-[net]
-batch=1
-subdivisions=1
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-max_batches = 120000
-policy=steps
-steps=-1,100,80000,100000
-scales=.1,10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-#######
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[route]
-layers=-9
-
-[reorg]
-stride=2
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=425
-activation=linear
-
-[region]
-anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
-bias_match=1
-classes=80
-coords=4
-num=5
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=0
diff --git a/build/darknet/x64/cfg/yolo.cfg b/build/darknet/x64/cfg/yolo.cfg
deleted file mode 100644
index 7001dfa58a9..00000000000
--- a/build/darknet/x64/cfg/yolo.cfg
+++ /dev/null
@@ -1,258 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=8
-height=416
-width=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-#######
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[route]
-layers=-9
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=64
-activation=leaky
-
-[reorg]
-stride=2
-
-[route]
-layers=-1,-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=425
-activation=linear
-
-
-[region]
-anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
-bias_match=1
-classes=80
-coords=4
-num=5
-softmax=1
-jitter=.3
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/cfg/yolo9000.cfg b/build/darknet/x64/cfg/yolo9000.cfg
deleted file mode 100644
index e745f78a6e3..00000000000
--- a/build/darknet/x64/cfg/yolo9000.cfg
+++ /dev/null
@@ -1,218 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=8
-batch=1
-subdivisions=1
-height=544
-width=544
-channels=3
-momentum=0.9
-decay=0.0005
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-hue=.1
-saturation=.75
-exposure=.75
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=28269
-size=1
-stride=1
-pad=1
-activation=linear
-
-[region]
-anchors = 0.77871, 1.14074, 3.00525, 4.31277, 9.22725, 9.61974
-bias_match=1
-classes=9418
-coords=4
-num=3
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-thresh = .6
-absolute=1
-random=1
-
-tree=data/9k.tree
-map = data/coco9k.map
diff --git a/build/darknet/x64/cfg/yolov2-tiny-voc.cfg b/build/darknet/x64/cfg/yolov2-tiny-voc.cfg
deleted file mode 100644
index c4c127cdd35..00000000000
--- a/build/darknet/x64/cfg/yolov2-tiny-voc.cfg
+++ /dev/null
@@ -1,138 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=2
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-max_batches = 40200
-policy=steps
-steps=-1,100,20000,30000
-scales=.1,10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=125
-activation=linear
-
-[region]
-anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
-bias_match=1
-classes=20
-coords=4
-num=5
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/cfg/yolov2-tiny.cfg b/build/darknet/x64/cfg/yolov2-tiny.cfg
deleted file mode 100644
index 81d0ac45d6d..00000000000
--- a/build/darknet/x64/cfg/yolov2-tiny.cfg
+++ /dev/null
@@ -1,139 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=2
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=425
-activation=linear
-
-[region]
-anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
-bias_match=1
-classes=80
-coords=4
-num=5
-softmax=1
-jitter=.2
-rescore=0
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/cfg/yolov2-voc.cfg b/build/darknet/x64/cfg/yolov2-voc.cfg
deleted file mode 100644
index dbf2de281c1..00000000000
--- a/build/darknet/x64/cfg/yolov2-voc.cfg
+++ /dev/null
@@ -1,258 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=8
-height=416
-width=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 80200
-policy=steps
-steps=40000,60000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-#######
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[route]
-layers=-9
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=64
-activation=leaky
-
-[reorg]
-stride=2
-
-[route]
-layers=-1,-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=125
-activation=linear
-
-
-[region]
-anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
-bias_match=1
-classes=20
-coords=4
-num=5
-softmax=1
-jitter=.3
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/cfg/yolov2.cfg b/build/darknet/x64/cfg/yolov2.cfg
deleted file mode 100644
index 2a0cd98fbd0..00000000000
--- a/build/darknet/x64/cfg/yolov2.cfg
+++ /dev/null
@@ -1,258 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=8
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-#######
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[route]
-layers=-9
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=64
-activation=leaky
-
-[reorg]
-stride=2
-
-[route]
-layers=-1,-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=425
-activation=linear
-
-
-[region]
-anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
-bias_match=1
-classes=80
-coords=4
-num=5
-softmax=1
-jitter=.3
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/cfg/yolov3-openimages.cfg b/build/darknet/x64/cfg/yolov3-openimages.cfg
deleted file mode 100644
index 65d241a74c4..00000000000
--- a/build/darknet/x64/cfg/yolov3-openimages.cfg
+++ /dev/null
@@ -1,789 +0,0 @@
-[net]
-# Testing
- batch=1
- subdivisions=1
-# Training
-batch=64
-subdivisions=16
-width=608
-height=608
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=5000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-######################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=1818
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=601
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 61
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=1818
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=601
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 36
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=1818
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=601
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
diff --git a/build/darknet/x64/cfg/yolov3-spp.cfg b/build/darknet/x64/cfg/yolov3-spp.cfg
deleted file mode 100644
index 4ad2a052d88..00000000000
--- a/build/darknet/x64/cfg/yolov3-spp.cfg
+++ /dev/null
@@ -1,822 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=16
-width=608
-height=608
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-######################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 61
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 36
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
diff --git a/build/darknet/x64/cfg/yolov3-tiny-prn.cfg b/build/darknet/x64/cfg/yolov3-tiny-prn.cfg
deleted file mode 100644
index 215162e973b..00000000000
--- a/build/darknet/x64/cfg/yolov3-tiny-prn.cfg
+++ /dev/null
@@ -1,199 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-activation=leaky
-from=-3
-
-###########
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-activation=leaky
-from=-2
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[shortcut]
-activation=leaky
-from=8
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-activation=leaky
-from=-3
-
-[shortcut]
-activation=leaky
-from=8
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-[yolo]
-mask = 1,2,3
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
diff --git a/build/darknet/x64/cfg/yolov3-tiny.cfg b/build/darknet/x64/cfg/yolov3-tiny.cfg
deleted file mode 100644
index cfca3cfa641..00000000000
--- a/build/darknet/x64/cfg/yolov3-tiny.cfg
+++ /dev/null
@@ -1,182 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=2
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 8
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-[yolo]
-mask = 0,1,2
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
diff --git a/build/darknet/x64/cfg/yolov3-tiny_3l.cfg b/build/darknet/x64/cfg/yolov3-tiny_3l.cfg
deleted file mode 100644
index 76aaa0d9587..00000000000
--- a/build/darknet/x64/cfg/yolov3-tiny_3l.cfg
+++ /dev/null
@@ -1,227 +0,0 @@
-[net]
-# Testing
-# batch=1
-# subdivisions=1
-# Training
-batch=64
-subdivisions=16
-width=608
-height=608
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 200000
-policy=steps
-steps=180000,190000
-scales=.1,.1
-
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=21
-activation=linear
-
-
-
-[yolo]
-mask = 6,7,8
-anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332
-classes=2
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 8
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=21
-activation=linear
-
-[yolo]
-mask = 3,4,5
-anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332
-classes=2
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-
-[route]
-layers = -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 6
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=21
-activation=linear
-
-[yolo]
-mask = 0,1,2
-anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332
-classes=2
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
\ No newline at end of file
diff --git a/build/darknet/x64/cfg/yolov3-tiny_obj.cfg b/build/darknet/x64/cfg/yolov3-tiny_obj.cfg
deleted file mode 100644
index 8308e442517..00000000000
--- a/build/darknet/x64/cfg/yolov3-tiny_obj.cfg
+++ /dev/null
@@ -1,182 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=2
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 8
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-[yolo]
-mask = 0,1,2
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
diff --git a/build/darknet/x64/cfg/yolov3-tiny_occlusion_track.cfg b/build/darknet/x64/cfg/yolov3-tiny_occlusion_track.cfg
deleted file mode 100644
index 2ef25370eea..00000000000
--- a/build/darknet/x64/cfg/yolov3-tiny_occlusion_track.cfg
+++ /dev/null
@@ -1,218 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=8
-subdivisions=4
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-track=1
-time_steps=20
-augment_speed=3
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 10000
-policy=steps
-steps=9000,9500
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-
-[crnn]
-batch_normalize=1
-size=3
-pad=1
-output=512
-hidden=256
-activation=leaky
-
-#[shortcut]
-#from=-2
-#activation=linear
-
-###########
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=18
-activation=linear
-
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=1
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 8
-
-[crnn]
-batch_normalize=1
-size=3
-pad=1
-output=256
-hidden=128
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=18
-activation=linear
-
-[yolo]
-mask = 0,1,2
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=1
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=0
diff --git a/build/darknet/x64/cfg/yolov3-tiny_xnor.cfg b/build/darknet/x64/cfg/yolov3-tiny_xnor.cfg
deleted file mode 100644
index 725ce079c37..00000000000
--- a/build/darknet/x64/cfg/yolov3-tiny_xnor.cfg
+++ /dev/null
@@ -1,197 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=2
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-xnor=1
-bin_output=1
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-xnor=1
-bin_output=1
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-xnor=1
-bin_output=1
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-xnor=1
-bin_output=1
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-xnor=1
-bin_output=1
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-[route]
-layers = -4
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 8
-
-[convolutional]
-xnor=1
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-[yolo]
-mask = 0,1,2
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
diff --git a/build/darknet/x64/cfg/yolov3-voc.cfg b/build/darknet/x64/cfg/yolov3-voc.cfg
deleted file mode 100644
index 3f3e8dfb31b..00000000000
--- a/build/darknet/x64/cfg/yolov3-voc.cfg
+++ /dev/null
@@ -1,785 +0,0 @@
-[net]
-# Testing
- batch=1
- subdivisions=1
-# Training
-# batch=64
-# subdivisions=16
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 50200
-policy=steps
-steps=40000,45000
-scales=.1,.1
-
-
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-######################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=75
-activation=linear
-
-[yolo]
-mask = 6,7,8
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=20
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-random=1
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 61
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=75
-activation=linear
-
-[yolo]
-mask = 3,4,5
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=20
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-random=1
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 36
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=75
-activation=linear
-
-[yolo]
-mask = 0,1,2
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=20
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-random=1
-
diff --git a/build/darknet/x64/cfg/yolov3-voc.yolov3-giou-40.cfg b/build/darknet/x64/cfg/yolov3-voc.yolov3-giou-40.cfg
deleted file mode 100644
index b56f8a5d698..00000000000
--- a/build/darknet/x64/cfg/yolov3-voc.yolov3-giou-40.cfg
+++ /dev/null
@@ -1,808 +0,0 @@
-[net]
-# Testing
-# batch=1
-# subdivisions=1
-# Training
-batch=64
-subdivisions=16
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-## single gpu
-learning_rate=0.001
-burn_in=1000
-max_batches = 100400
-
-## 2x
-#learning_rate=0.0005
-#burn_in=2000
-#max_batches = 100400
-#max_batches = 200800
-
-## 4x
-#learning_rate=0.00025
-#burn_in=4000
-#max_batches = 50200
-##max_batches = 200800
-
-policy=steps
-steps=40000,45000
-scales=.1,.1
-
-
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-######################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=75
-activation=linear
-
-[yolo]
-mask = 6,7,8
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=20
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-random=1
-iou_normalizer=0.25
-cls_normalizer=1.0
-iou_loss=giou
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 61
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=75
-activation=linear
-
-[yolo]
-mask = 3,4,5
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=20
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-random=1
-iou_normalizer=0.25
-cls_normalizer=1.0
-iou_loss=giou
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 36
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=75
-activation=linear
-
-[yolo]
-mask = 0,1,2
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=20
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-random=1
-iou_normalizer=0.25
-cls_normalizer=1.0
-iou_loss=giou
-
diff --git a/build/darknet/x64/cfg/yolov3.cfg b/build/darknet/x64/cfg/yolov3.cfg
deleted file mode 100644
index 4a0ecc3320e..00000000000
--- a/build/darknet/x64/cfg/yolov3.cfg
+++ /dev/null
@@ -1,789 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=16
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-######################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 61
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 36
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
diff --git a/build/darknet/x64/cfg/yolov3.coco-giou-12.cfg b/build/darknet/x64/cfg/yolov3.coco-giou-12.cfg
deleted file mode 100644
index f3fd72db0b1..00000000000
--- a/build/darknet/x64/cfg/yolov3.coco-giou-12.cfg
+++ /dev/null
@@ -1,806 +0,0 @@
-[net]
-# Testing
-# batch=1
-# subdivisions=1
-# Training
-batch=64
-subdivisions=16
-width=608
-height=608
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-## single gpu
-learning_rate=0.001
-burn_in=1000
-max_batches = 550400
-
-## 2 gpu
-#learning_rate=0.0005
-#burn_in=2000
-#max_batches = 500200
-
-## 4 gpu
-#learning_rate=0.00025
-#burn_in=4000
-#max_batches = 500200
-###max_batches = 2000800
-
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-######################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-iou_normalizer=0.5
-iou_loss=giou
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 61
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-iou_normalizer=0.5
-iou_loss=giou
-
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 36
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-iou_normalizer=0.5
-iou_loss=giou
diff --git a/build/darknet/x64/cfg/yolov3_5l.cfg b/build/darknet/x64/cfg/yolov3_5l.cfg
deleted file mode 100644
index fec157e0a52..00000000000
--- a/build/darknet/x64/cfg/yolov3_5l.cfg
+++ /dev/null
@@ -1,968 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=16
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-######################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 12,13,14
-anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=15
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 61
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 9,10,11
-anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=15
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 36
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=15
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-
-###############
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 11
-
-
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=15
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 4
-
-
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=64
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=64
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=64
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=15
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
diff --git a/build/darknet/x64/cfg/yolov4-csp-swish.cfg b/build/darknet/x64/cfg/yolov4-csp-swish.cfg
deleted file mode 100644
index 2aab444ecd5..00000000000
--- a/build/darknet/x64/cfg/yolov4-csp-swish.cfg
+++ /dev/null
@@ -1,1355 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=640
-height=640
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-mosaic=1
-
-letter_box=1
-
-ema_alpha=0.9998
-
-#optimized_memory=1
-
-
-# ============ Backbone ============ #
-
-# Stem
-
-# 0
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=swish
-
-# P1
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=swish
-
-# 4 (previous+1+3k)
-[shortcut]
-from=-3
-activation=linear
-
-# P2
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-10
-
-# Transition last
-
-# 17 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-# P3
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1 -(4+3k)]
-
-[route]
-layers = -1,-28
-
-# Transition last
-
-# 48 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-# P4
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1 -(3k+4)]
-
-[route]
-layers = -1,-28
-
-# Transition last
-
-# 79 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-# P5
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1 -(3k+4)]
-
-[route]
-layers = -1,-16
-
-# Transition last
-
-# 98 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=swish
-
-# ============ End of Backbone ============ #
-
-# ============ Neck ============ #
-
-# CSPSPP
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=swish
-
-[route]
-layers = -1, -13
-
-# 113 (previous+6+5+2k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-# End of CSPSPP
-
-
-# FPN-4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[upsample]
-stride=2
-
-[route]
-layers = 79
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=swish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -6
-
-# Transition last
-
-# 127 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-
-# FPN-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[upsample]
-stride=2
-
-[route]
-layers = 48
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=swish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -6
-
-# Transition last
-
-# 141 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=swish
-
-
-# PAN-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=256
-activation=swish
-
-[route]
-layers = -1, 127
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=swish
-
-[route]
-layers = -1,-6
-
-# Transition last
-
-# 152 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=swish
-
-
-# PAN-5
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=swish
-
-[route]
-layers = -1, 113
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=swish
-
-[route]
-layers = -1,-6
-
-# Transition last
-
-# 163 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=swish
-stopbackward=900
-
-# ============ End of Neck ============ #
-
-# ============ Head ============ #
-
-# YOLO-3
-
-[route]
-layers = 141
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=swish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-[yolo]
-mask = 0,1,2
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-4
-
-[route]
-layers = 152
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=swish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-[yolo]
-mask = 3,4,5
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-5
-
-[route]
-layers = 163
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=swish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-[yolo]
-mask = 6,7,8
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
diff --git a/build/darknet/x64/cfg/yolov4-csp-x-swish-frozen.cfg b/build/darknet/x64/cfg/yolov4-csp-x-swish-frozen.cfg
deleted file mode 100644
index 838e0e1ac72..00000000000
--- a/build/darknet/x64/cfg/yolov4-csp-x-swish-frozen.cfg
+++ /dev/null
@@ -1,1556 +0,0 @@
-
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=640
-height=640
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-mosaic=1
-
-letter_box=1
-
-ema_alpha=0.9998
-
-#optimized_memory=1
-
-
-# ============ Backbone ============ #
-
-# Stem
-
-# 0
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=swish
-
-# P1
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=40
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=swish
-
-# 4 (previous+1+3k)
-[shortcut]
-from=-3
-activation=linear
-
-# P2
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-13
-
-# Transition last
-
-# 20 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-# P3
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1 -(4+3k)]
-
-[route]
-layers = -1,-34
-
-# Transition last
-
-# 57 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-# P4
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1 -(3k+4)]
-
-[route]
-layers = -1,-34
-
-# Transition last
-
-# 94 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-# P5
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1 -(3k+4)]
-
-[route]
-layers = -1,-19
-
-# Transition last
-
-# 116 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=1280
-size=1
-stride=1
-pad=1
-activation=swish
-
-# ============ End of Backbone ============ #
-
-# ============ Neck ============ #
-
-# CSPSPP
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[route]
-layers = -1, -15
-
-# 133 (previous+6+5+2k)
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-# End of CSPSPP
-
-
-# FPN-4
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[upsample]
-stride=2
-
-[route]
-layers = 94
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -8
-
-# Transition last
-
-# 149 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-
-# FPN-3
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[upsample]
-stride=2
-
-[route]
-layers = 57
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=160
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=160
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=160
-activation=swish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -8
-
-# Transition last
-
-# 165 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-
-# PAN-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=320
-activation=swish
-
-[route]
-layers = -1, 149
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[route]
-layers = -1,-8
-
-# Transition last
-
-# 178 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-
-# PAN-5
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=640
-activation=swish
-
-[route]
-layers = -1, 133
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[route]
-layers = -1,-8
-
-# Transition last
-
-# 191 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-stopbackward=1
-
-# ============ End of Neck ============ #
-
-# ============ Head ============ #
-
-# YOLO-3
-
-[route]
-layers = 165
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-[yolo]
-mask = 0,1,2
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-4
-
-[route]
-layers = 178
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-[yolo]
-mask = 3,4,5
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-5
-
-[route]
-layers = 191
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1280
-activation=swish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-[yolo]
-mask = 6,7,8
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
diff --git a/build/darknet/x64/cfg/yolov4-csp-x-swish.cfg b/build/darknet/x64/cfg/yolov4-csp-x-swish.cfg
deleted file mode 100644
index 015db22c8b5..00000000000
--- a/build/darknet/x64/cfg/yolov4-csp-x-swish.cfg
+++ /dev/null
@@ -1,1556 +0,0 @@
-
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=640
-height=640
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-mosaic=1
-
-letter_box=1
-
-ema_alpha=0.9998
-
-#optimized_memory=1
-
-
-# ============ Backbone ============ #
-
-# Stem
-
-# 0
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=swish
-
-# P1
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=40
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=swish
-
-# 4 (previous+1+3k)
-[shortcut]
-from=-3
-activation=linear
-
-# P2
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-13
-
-# Transition last
-
-# 20 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-# P3
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1 -(4+3k)]
-
-[route]
-layers = -1,-34
-
-# Transition last
-
-# 57 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-# P4
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1 -(3k+4)]
-
-[route]
-layers = -1,-34
-
-# Transition last
-
-# 94 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-# P5
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=swish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Merge [-1 -(3k+4)]
-
-[route]
-layers = -1,-19
-
-# Transition last
-
-# 116 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=1280
-size=1
-stride=1
-pad=1
-activation=swish
-
-# ============ End of Backbone ============ #
-
-# ============ Neck ============ #
-
-# CSPSPP
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[route]
-layers = -1, -15
-
-# 133 (previous+6+5+2k)
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-# End of CSPSPP
-
-
-# FPN-4
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[upsample]
-stride=2
-
-[route]
-layers = 94
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -8
-
-# Transition last
-
-# 149 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-
-# FPN-3
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[upsample]
-stride=2
-
-[route]
-layers = 57
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=160
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=160
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=160
-activation=swish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -8
-
-# Transition last
-
-# 165 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=swish
-
-
-# PAN-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=320
-activation=swish
-
-[route]
-layers = -1, 149
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[route]
-layers = -1,-8
-
-# Transition last
-
-# 178 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=swish
-
-
-# PAN-5
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=640
-activation=swish
-
-[route]
-layers = -1, 133
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[route]
-layers = -1,-8
-
-# Transition last
-
-# 191 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=swish
-stopbackward=900
-
-# ============ End of Neck ============ #
-
-# ============ Head ============ #
-
-# YOLO-3
-
-[route]
-layers = 165
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=swish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-[yolo]
-mask = 0,1,2
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-4
-
-[route]
-layers = 178
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=swish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-[yolo]
-mask = 3,4,5
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-5
-
-[route]
-layers = 191
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1280
-activation=swish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-[yolo]
-mask = 6,7,8
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-#iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
diff --git a/build/darknet/x64/cfg/yolov4-csp.cfg b/build/darknet/x64/cfg/yolov4-csp.cfg
deleted file mode 100644
index 691ec03b04a..00000000000
--- a/build/darknet/x64/cfg/yolov4-csp.cfg
+++ /dev/null
@@ -1,1279 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=512
-height=512
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-mosaic=1
-
-letter_box=1
-
-ema_alpha=0.9998
-
-#optimized_memory=1
-
-#23:104x104 54:52x52 85:26x26 104:13x13 for 416
-
-
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=mish
-
-#[convolutional]
-#batch_normalize=1
-#filters=64
-#size=1
-#stride=1
-#pad=1
-#activation=mish
-
-#[route]
-#layers = -2
-
-#[convolutional]
-#batch_normalize=1
-#filters=64
-#size=1
-#stride=1
-#pad=1
-#activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-#[convolutional]
-#batch_normalize=1
-#filters=64
-#size=1
-#stride=1
-#pad=1
-#activation=mish
-
-#[route]
-#layers = -1,-7
-
-#[convolutional]
-#batch_normalize=1
-#filters=64
-#size=1
-#stride=1
-#pad=1
-#activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-10
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-16
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=mish
-
-##########################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1, -13
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 79
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1, -6
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 48
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[route]
-layers = -1, -6
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-##########################
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-
-[yolo]
-mask = 0,1,2
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=0
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=4.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=5
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1, -20
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1,-6
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-
-[yolo]
-mask = 3,4,5
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=5
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1, -49
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1,-6
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-
-[yolo]
-mask = 6,7,8
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
diff --git a/build/darknet/x64/cfg/yolov4-custom.cfg b/build/darknet/x64/cfg/yolov4-custom.cfg
deleted file mode 100644
index 32516bdc120..00000000000
--- a/build/darknet/x64/cfg/yolov4-custom.cfg
+++ /dev/null
@@ -1,1160 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=16
-width=608
-height=608
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-#cutmix=1
-mosaic=1
-
-#:104x104 54:52x52 85:26x26 104:13x13 for 416
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-7
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-10
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-16
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=mish
-stopbackward=800
-
-##########################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = 85
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = 54
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-##########################
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-scale_x_y = 1.2
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-max_delta=5
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=256
-activation=leaky
-
-[route]
-layers = -1, -16
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-scale_x_y = 1.1
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-max_delta=5
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=leaky
-
-[route]
-layers = -1, -37
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-scale_x_y = 1.05
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-max_delta=5
-
diff --git a/build/darknet/x64/cfg/yolov4-p5-frozen.cfg b/build/darknet/x64/cfg/yolov4-p5-frozen.cfg
deleted file mode 100644
index 38bebe32a21..00000000000
--- a/build/darknet/x64/cfg/yolov4-p5-frozen.cfg
+++ /dev/null
@@ -1,1838 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=896
-height=896
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-mosaic=1
-
-letter_box=1
-
-ema_alpha=0.9998
-
-#use_cuda_graph = 1
-
-
-# ============ Backbone ============ #
-
-# Stem
-
-# 0
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-
-# P1
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-7
-
-# Transition last
-
-# 10 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P2
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-13
-
-# Transition last
-
-# 26 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P3
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-49
-
-# Transition last
-
-# 78 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P4
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-49
-
-# Transition last
-
-# 130 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P5
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-25
-
-# Transition last
-
-# 158 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=mish
-
-# ============ End of Backbone ============ #
-
-# ============ Neck ============ #
-
-# CSPSPP
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1, -13
-
-# 173 (previous+6+5+2k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# End of CSPSPP
-
-
-# FPN-4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 130
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -8
-
-# Transition last
-
-# 189 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# FPN-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 78
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -8
-
-# Transition last
-
-# 205 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# PAN-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1, 189
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1,-8
-
-# Transition last
-
-# 218 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# PAN-5
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1, 173
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1,-8
-
-# Transition last
-
-# 231 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-stopbackward=1
-
-# ============ End of Neck ============ #
-
-# ============ Head ============ #
-
-# YOLO-3
-
-[route]
-layers = 205
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-#activation=linear
-# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
-
-[yolo]
-mask = 0,1,2,3
-anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800
-classes=80
-num=12
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-4
-
-[route]
-layers = 218
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-#activation=linear
-# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
-
-[yolo]
-mask = 4,5,6,7
-anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800
-classes=80
-num=12
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-5
-
-[route]
-layers = 231
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-#activation=linear
-# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
-
-[yolo]
-mask = 8,9,10,11
-anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800
-classes=80
-num=12
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-# ============ End of Head ============ #
\ No newline at end of file
diff --git a/build/darknet/x64/cfg/yolov4-p5.cfg b/build/darknet/x64/cfg/yolov4-p5.cfg
deleted file mode 100644
index 14bce30ebd2..00000000000
--- a/build/darknet/x64/cfg/yolov4-p5.cfg
+++ /dev/null
@@ -1,1837 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=896
-height=896
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-mosaic=1
-
-letter_box=1
-
-ema_alpha=0.9998
-
-#use_cuda_graph = 1
-
-
-# ============ Backbone ============ #
-
-# Stem
-
-# 0
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-
-# P1
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-7
-
-# Transition last
-
-# 10 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P2
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-13
-
-# Transition last
-
-# 26 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P3
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-49
-
-# Transition last
-
-# 78 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P4
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-49
-
-# Transition last
-
-# 130 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P5
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-25
-
-# Transition last
-
-# 158 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=mish
-
-# ============ End of Backbone ============ #
-
-# ============ Neck ============ #
-
-# CSPSPP
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1, -13
-
-# 173 (previous+6+5+2k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# End of CSPSPP
-
-
-# FPN-4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 130
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -8
-
-# Transition last
-
-# 189 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# FPN-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 78
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -8
-
-# Transition last
-
-# 205 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# PAN-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1, 189
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1,-8
-
-# Transition last
-
-# 218 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# PAN-5
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1, 173
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1,-8
-
-# Transition last
-
-# 231 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# ============ End of Neck ============ #
-
-# ============ Head ============ #
-
-# YOLO-3
-
-[route]
-layers = 205
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-#activation=linear
-# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
-
-[yolo]
-mask = 0,1,2,3
-anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800
-classes=80
-num=12
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-4
-
-[route]
-layers = 218
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-#activation=linear
-# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
-
-[yolo]
-mask = 4,5,6,7
-anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800
-classes=80
-num=12
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-5
-
-[route]
-layers = 231
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-#activation=linear
-# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
-
-[yolo]
-mask = 8,9,10,11
-anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800
-classes=80
-num=12
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-# ============ End of Head ============ #
\ No newline at end of file
diff --git a/build/darknet/x64/cfg/yolov4-p6.cfg b/build/darknet/x64/cfg/yolov4-p6.cfg
deleted file mode 100644
index 8defa150b6f..00000000000
--- a/build/darknet/x64/cfg/yolov4-p6.cfg
+++ /dev/null
@@ -1,2298 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=1280
-height=1280
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-mosaic=1
-
-letter_box=1
-
-ema_alpha=0.9998
-
-#use_cuda_graph = 1
-
-
-# ============ Backbone ============ #
-
-# Stem
-
-# 0
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-
-# P1
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-7
-
-# Transition last
-
-# 10 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P2
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-13
-
-# Transition last
-
-# 26 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P3
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-49
-
-# Transition last
-
-# 78 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P4
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-49
-
-# Transition last
-
-# 130 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P5
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-25
-
-# Transition last
-
-# 158 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# P6
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Residual Block
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Transition first
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Merge [-1, -(3k+4)]
-
-[route]
-layers = -1,-25
-
-# Transition last
-
-# 186 (previous+7+3k)
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=mish
-
-# ============ End of Backbone ============ #
-
-# ============ Neck ============ #
-
-# CSPSPP
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1, -13
-
-# 201 (previous+6+5+2k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# End of CSPSPP
-
-
-# FPN-5
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 158
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -8
-
-# Transition last
-
-# 217 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# FPN-4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 130
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -8
-
-# Transition last
-
-# 233 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# FPN-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 78
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-# Merge [-1, -(2k+2)]
-
-[route]
-layers = -1, -8
-
-# Transition last
-
-# 249 (previous+6+4+2k)
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# PAN-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1, 233
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1,-8
-
-# Transition last
-
-# 262 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# PAN-5
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1, 217
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1,-8
-
-# Transition last
-
-# 275 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-# PAN-6
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1, 201
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Split
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-# Plain Block
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1,-8
-
-# Transition last
-
-# 288 (previous+3+4+2k)
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# ============ End of Neck ============ #
-
-# ============ Head ============ #
-
-# YOLO-3
-
-[route]
-layers = 249
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-#activation=linear
-# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
-
-[yolo]
-mask = 0,1,2,3
-anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
-classes=80
-num=16
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-4
-
-[route]
-layers = 262
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-#activation=linear
-# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
-
-[yolo]
-mask = 4,5,6,7
-anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
-classes=80
-num=16
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-5
-
-[route]
-layers = 275
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-#activation=linear
-# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
-
-[yolo]
-mask = 8,9,10,11
-anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
-classes=80
-num=16
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-
-# YOLO-6
-
-[route]
-layers = 288
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=340
-activation=logistic
-#activation=linear
-# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet
-
-[yolo]
-mask = 12,13,14,15
-anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024
-classes=80
-num=16
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
-
-# ============ End of Head ============ #
\ No newline at end of file
diff --git a/build/darknet/x64/cfg/yolov4-sam-mish-csp-reorg-bfm.cfg b/build/darknet/x64/cfg/yolov4-sam-mish-csp-reorg-bfm.cfg
deleted file mode 100644
index 1461d88838e..00000000000
--- a/build/darknet/x64/cfg/yolov4-sam-mish-csp-reorg-bfm.cfg
+++ /dev/null
@@ -1,1429 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=512
-height=512
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-mosaic=1
-
-letter_box=1
-
-#:104x104 54:52x52 85:26x26 104:13x13 for 416
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-7
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-10
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-16
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=mish
-stopbackward=800
-
-
-##########################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1, -13
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 79
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[reorg3d]
-stride=2
-
-[route]
-layers = -1, -4, -7
-
-[upsample]
-stride=2
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 79
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = 48
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[reorg3d]
-stride=2
-
-[route]
-layers = -1, -4, -6
-
-[shortcut]
-from= -10
-activation=linear
-
-[upsample]
-stride=2
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1, -6
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 48
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = 17
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[reorg3d]
-stride=2
-
-[route]
-layers = -1, -4, -6
-
-[shortcut]
-from= -19
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-#### BFM-1
-
-[route]
-layers = 17
-
-[reorg3d]
-stride=2
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=128
-activation=mish
-
-[route]
-layers = -1, -6
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=256
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-
-##########################
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.2
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-resize=1.5
-scale_x_y = 1.2
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-uc_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-beta1=0.6
-max_delta=5
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1, 137
-#layers = -1, -20
-
-[route]
-layers = -17
-
-[reorg3d]
-stride=2
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=mish
-
-[route]
-layers = -1,-6
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=512
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.2
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-resize=1.5
-scale_x_y = 1.1
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-uc_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-beta1=0.6
-max_delta=5
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1, 126
-# layers = -1, -49
-
-[route]
-layers = -17
-
-[reorg3d]
-stride=2
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=mish
-
-[route]
-layers = -1,-6
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1024
-activation=logistic
-
-[sam]
-from=-2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-resize=1.5
-scale_x_y = 1.05
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-uc_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-beta1=0.6
-max_delta=5
diff --git a/build/darknet/x64/cfg/yolov4-tiny-3l.cfg b/build/darknet/x64/cfg/yolov4-tiny-3l.cfg
deleted file mode 100644
index 116407066a3..00000000000
--- a/build/darknet/x64/cfg/yolov4-tiny-3l.cfg
+++ /dev/null
@@ -1,332 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=1
-width=608
-height=608
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.00261
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-##################################
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-
-[yolo]
-mask = 6,7,8
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-scale_x_y = 1.05
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-resize=1.5
-nms_kind=greedynms
-beta_nms=0.6
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 23
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-[yolo]
-mask = 3,4,5
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-scale_x_y = 1.05
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-resize=1.5
-nms_kind=greedynms
-beta_nms=0.6
-
-
-[route]
-layers = -3
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 15
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-[yolo]
-mask = 0,1,2
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-scale_x_y = 1.05
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-resize=1.5
-nms_kind=greedynms
-beta_nms=0.6
-
diff --git a/build/darknet/x64/cfg/yolov4-tiny-custom.cfg b/build/darknet/x64/cfg/yolov4-tiny-custom.cfg
deleted file mode 100644
index 5c83be0e19c..00000000000
--- a/build/darknet/x64/cfg/yolov4-tiny-custom.cfg
+++ /dev/null
@@ -1,281 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=1
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.00261
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-##################################
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-scale_x_y = 1.05
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-resize=1.5
-nms_kind=greedynms
-beta_nms=0.6
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 23
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-[yolo]
-mask = 0,1,2
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-scale_x_y = 1.05
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-resize=1.5
-nms_kind=greedynms
-beta_nms=0.6
diff --git a/build/darknet/x64/cfg/yolov4-tiny.cfg b/build/darknet/x64/cfg/yolov4-tiny.cfg
deleted file mode 100644
index d990b5134d8..00000000000
--- a/build/darknet/x64/cfg/yolov4-tiny.cfg
+++ /dev/null
@@ -1,294 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=1
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.00261
-burn_in=1000
-
-max_batches = 2000200
-policy=steps
-steps=1600000,1800000
-scales=.1,.1
-
-
-#weights_reject_freq=1001
-#ema_alpha=0.9998
-#equidistant_point=1000
-#num_sigmas_reject_badlabels=3
-#badlabels_rejection_percentage=0.2
-
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-##################################
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-scale_x_y = 1.05
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-resize=1.5
-nms_kind=greedynms
-beta_nms=0.6
-#new_coords=1
-#scale_x_y = 2.0
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 23
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-[yolo]
-mask = 1,2,3
-anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
-classes=80
-num=6
-jitter=.3
-scale_x_y = 1.05
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-resize=1.5
-nms_kind=greedynms
-beta_nms=0.6
-#new_coords=1
-#scale_x_y = 2.0
diff --git a/build/darknet/x64/cfg/yolov4-tiny_contrastive.cfg b/build/darknet/x64/cfg/yolov4-tiny_contrastive.cfg
deleted file mode 100644
index 1fed0433cf0..00000000000
--- a/build/darknet/x64/cfg/yolov4-tiny_contrastive.cfg
+++ /dev/null
@@ -1,452 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=2
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-contrastive=1
-contrastive_jit_flip=1
-contrastive_color=0
-
-learning_rate=0.00261
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1
-groups=2
-group_id=1
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1,-2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -6,-1
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-##################################
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-#[conv_lstm]
-#batch_normalize=1
-#size=3
-#pad=1
-#output=128
-#groups=1
-#peephole=0
-#bottleneck=1
-##time_normalizer=0.5
-#lstm_activation=tanh
-#activation=leaky
-
-
-###########
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-########### to [yolo-3]
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 23
-
-###########
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-#[conv_lstm]
-#batch_normalize=1
-#size=3
-#pad=1
-#output=128
-#groups=1
-#peephole=0
-#bottleneck=1
-##time_normalizer=0.5
-#lstm_activation=tanh
-#activation=leaky
-
-###########
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-########### to [yolo-2]
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 15
-
-###########
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-#[conv_lstm]
-#batch_normalize=1
-#size=3
-#pad=1
-#output=64
-#groups=1
-#peephole=0
-#bottleneck=1
-##time_normalizer=0.5
-#lstm_activation=tanh
-#activation=leaky
-
-###########
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers= 0
-onlyforward=1
-
-[local_avgpool]
-size=4
-stride=4
-
-[route]
-layers= -1,-3
-onlyforward=1
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Contrastive embeddings
-[convolutional]
-batch_normalize=1
-filters=1152
-size=1
-stride=1
-pad=1
-#activation=tanh
-#activation=leaky
-activation=linear
-
-[route]
-layers= -9
-#onlyforward=1
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=765
-activation=linear
-
-
-
-[yolo]
-mask = 0,1,2,3,4,5,6,7,8
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-scale_x_y = 1.05
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-ignore_thresh = .7
-truth_thresh = 1
-random=0
-resize=1.5
-nms_kind=greedynms
-beta_nms=0.6
-max_delta=5
-embedding_layer = -4
-
-track_history_size = 20
-sim_thresh = 0.7
-dets_for_show = 2
-dets_for_track = 8
-track_ciou_norm = 0.2
-
-[route]
-layers= -5
-
-
-[contrastive]
-classes=1
-temperature=1.0
-yolo_layer= -2
-cls_normalizer=1.0
-max_delta=10
diff --git a/build/darknet/x64/cfg/yolov4.cfg b/build/darknet/x64/cfg/yolov4.cfg
deleted file mode 100644
index a7be12b3088..00000000000
--- a/build/darknet/x64/cfg/yolov4.cfg
+++ /dev/null
@@ -1,1158 +0,0 @@
-[net]
-batch=64
-subdivisions=8
-# Training
-#width=512
-#height=512
-width=608
-height=608
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.0013
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-#cutmix=1
-mosaic=1
-
-#:104x104 54:52x52 85:26x26 104:13x13 for 416
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-7
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-10
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-28
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-16
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=mish
-
-##########################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = 85
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = 54
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-##########################
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-scale_x_y = 1.2
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-max_delta=5
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=256
-activation=leaky
-
-[route]
-layers = -1, -16
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-scale_x_y = 1.1
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-max_delta=5
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=512
-activation=leaky
-
-[route]
-layers = -1, -37
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-scale_x_y = 1.05
-iou_thresh=0.213
-cls_normalizer=1.0
-iou_normalizer=0.07
-iou_loss=ciou
-nms_kind=greedynms
-beta_nms=0.6
-max_delta=5
-
diff --git a/build/darknet/x64/cfg/yolov4x-mish.cfg b/build/darknet/x64/cfg/yolov4x-mish.cfg
deleted file mode 100644
index 2ff854f6dcc..00000000000
--- a/build/darknet/x64/cfg/yolov4x-mish.cfg
+++ /dev/null
@@ -1,1436 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=8
-width=640
-height=640
-channels=3
-momentum=0.949
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500500
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-mosaic=1
-
-letter_box=1
-
-#optimized_memory=1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=40
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=80
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-13
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-34
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-34
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=3
-stride=2
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=3
-stride=1
-pad=1
-activation=mish
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1,-19
-
-[convolutional]
-batch_normalize=1
-filters=1280
-size=1
-stride=1
-pad=1
-activation=mish
-
-########################## 6 0 6 6 3
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-### SPP ###
-[maxpool]
-stride=1
-size=5
-
-[route]
-layers=-2
-
-[maxpool]
-stride=1
-size=9
-
-[route]
-layers=-4
-
-[maxpool]
-stride=1
-size=13
-
-[route]
-layers=-1,-3,-5,-6
-### End SPP ###
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -15
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 94
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[upsample]
-stride=2
-
-[route]
-layers = 57
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -1, -3
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=160
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=160
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=160
-activation=mish
-
-[route]
-layers = -1, -8
-
-[convolutional]
-batch_normalize=1
-filters=160
-size=1
-stride=1
-pad=1
-activation=mish
-stopbackward=800
-
-##########################
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-
-[yolo]
-mask = 0,1,2
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=0
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=4.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=5
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=320
-activation=mish
-
-[route]
-layers = -1, -22
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=320
-activation=mish
-
-[route]
-layers = -1,-8
-
-[convolutional]
-batch_normalize=1
-filters=320
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-
-[yolo]
-mask = 3,4,5
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=1.0
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=5
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=2
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1, -55
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[route]
-layers = -2
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=640
-activation=mish
-
-[route]
-layers = -1,-8
-
-[convolutional]
-batch_normalize=1
-filters=640
-size=1
-stride=1
-pad=1
-activation=mish
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1280
-activation=mish
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=logistic
-
-
-[yolo]
-mask = 6,7,8
-anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
-classes=80
-num=9
-jitter=.1
-scale_x_y = 2.0
-objectness_smooth=1
-ignore_thresh = .7
-truth_thresh = 1
-#random=1
-resize=1.5
-iou_thresh=0.2
-iou_normalizer=0.05
-cls_normalizer=0.5
-obj_normalizer=0.4
-iou_loss=ciou
-nms_kind=diounms
-beta_nms=0.6
-new_coords=1
-max_delta=2
diff --git a/build/darknet/x64/darknet.py b/build/darknet/x64/darknet.py
deleted file mode 100644
index 23539e0b64d..00000000000
--- a/build/darknet/x64/darknet.py
+++ /dev/null
@@ -1,313 +0,0 @@
-#!python3
-"""
-Python 3 wrapper for identifying objects in images
-
-Requires DLL compilation
-
-Both the GPU and no-GPU version should be compiled; the no-GPU version should be renamed "yolo_cpp_dll_nogpu.dll".
-
-On a GPU system, you can force CPU evaluation by any of:
-
-- Set global variable DARKNET_FORCE_CPU to True
-- Set environment variable CUDA_VISIBLE_DEVICES to -1
-- Set environment variable "FORCE_CPU" to "true"
-
-Directly viewing or returning bounding-boxed images requires scikit-image to be installed (`pip install scikit-image`)
-
-Original *nix 2.7: https://github.com/pjreddie/darknet/blob/0f110834f4e18b30d5f101bf8f1724c34b7b83db/python/darknet.py
-Windows Python 2.7 version: https://github.com/AlexeyAB/darknet/blob/fc496d52bf22a0bb257300d3c79be9cd80e722cb/build/darknet/x64/darknet.py
-
-@author: Philip Kahn
-@date: 20180503
-"""
-from ctypes import *
-import math
-import random
-import os
-
-print("Run: darknet_images.py or:\n")
-print("python.exe darknet_video.py --data_file cfg/coco.data --config_file cfg/yolov4.cfg --weights yolov4.weights --input test.mp4 \n")
-
-class BOX(Structure):
- _fields_ = [("x", c_float),
- ("y", c_float),
- ("w", c_float),
- ("h", c_float)]
-
-
-class DETECTION(Structure):
- _fields_ = [("bbox", BOX),
- ("classes", c_int),
- ("prob", POINTER(c_float)),
- ("mask", POINTER(c_float)),
- ("objectness", c_float),
- ("sort_class", c_int),
- ("uc", POINTER(c_float)),
- ("points", c_int),
- ("embeddings", POINTER(c_float)),
- ("embedding_size", c_int),
- ("sim", c_float),
- ("track_id", c_int)]
-
-class DETNUMPAIR(Structure):
- _fields_ = [("num", c_int),
- ("dets", POINTER(DETECTION))]
-
-
-class IMAGE(Structure):
- _fields_ = [("w", c_int),
- ("h", c_int),
- ("c", c_int),
- ("data", POINTER(c_float))]
-
-
-class METADATA(Structure):
- _fields_ = [("classes", c_int),
- ("names", POINTER(c_char_p))]
-
-
-def network_width(net):
- return lib.network_width(net)
-
-
-def network_height(net):
- return lib.network_height(net)
-
-
-def bbox2points(bbox):
- """
- From bounding box yolo format
- to corner points cv2 rectangle
- """
- x, y, w, h = bbox
- xmin = int(round(x - (w / 2)))
- xmax = int(round(x + (w / 2)))
- ymin = int(round(y - (h / 2)))
- ymax = int(round(y + (h / 2)))
- return xmin, ymin, xmax, ymax
-
-
-def class_colors(names):
- """
- Create a dict with one random BGR color for each
- class name
- """
- return {name: (
- random.randint(0, 255),
- random.randint(0, 255),
- random.randint(0, 255)) for name in names}
-
-
-def load_network(config_file, data_file, weights, batch_size=1):
- """
- load model description and weights from config files
- args:
- config_file (str): path to .cfg model file
- data_file (str): path to .data model file
- weights (str): path to weights
- returns:
- network: trained model
- class_names
- class_colors
- """
- network = load_net_custom(
- config_file.encode("ascii"),
- weights.encode("ascii"), 0, batch_size)
- metadata = load_meta(data_file.encode("ascii"))
- class_names = [metadata.names[i].decode("ascii") for i in range(metadata.classes)]
- colors = class_colors(class_names)
- return network, class_names, colors
-
-
-def print_detections(detections, coordinates=False):
- print("\nObjects:")
- for label, confidence, bbox in detections:
- x, y, w, h = bbox
- if coordinates:
- print("{}: {}% (left_x: {:.0f} top_y: {:.0f} width: {:.0f} height: {:.0f})".format(label, confidence, x, y, w, h))
- else:
- print("{}: {}%".format(label, confidence))
-
-
-def draw_boxes(detections, image, colors):
- import cv2
- for label, confidence, bbox in detections:
- left, top, right, bottom = bbox2points(bbox)
- cv2.rectangle(image, (left, top), (right, bottom), colors[label], 1)
- cv2.putText(image, "{} [{:.2f}]".format(label, float(confidence)),
- (left, top - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
- colors[label], 2)
- return image
-
-
-def decode_detection(detections):
- decoded = []
- for label, confidence, bbox in detections:
- confidence = str(round(confidence * 100, 2))
- decoded.append((str(label), confidence, bbox))
- return decoded
-
-
-def remove_negatives(detections, class_names, num):
- """
- Remove all classes with 0% confidence within the detection
- """
- predictions = []
- for j in range(num):
- for idx, name in enumerate(class_names):
- if detections[j].prob[idx] > 0:
- bbox = detections[j].bbox
- bbox = (bbox.x, bbox.y, bbox.w, bbox.h)
- predictions.append((name, detections[j].prob[idx], (bbox)))
- return predictions
-
-
-def detect_image(network, class_names, image, thresh=.5, hier_thresh=.5, nms=.45):
- """
- Returns a list with highest confidence class and their bbox
- """
- pnum = pointer(c_int(0))
- predict_image(network, image)
- detections = get_network_boxes(network, image.w, image.h,
- thresh, hier_thresh, None, 0, pnum, 0)
- num = pnum[0]
- if nms:
- do_nms_sort(detections, num, len(class_names), nms)
- predictions = remove_negatives(detections, class_names, num)
- predictions = decode_detection(predictions)
- free_detections(detections, num)
- return sorted(predictions, key=lambda x: x[1])
-
-
-# lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL)
-# lib = CDLL("libdarknet.so", RTLD_GLOBAL)
-hasGPU = True
-if os.name == "nt":
- cwd = os.path.dirname(__file__)
- os.environ['PATH'] = cwd + ';' + os.environ['PATH']
- winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll")
- winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_nogpu.dll")
- envKeys = list()
- for k, v in os.environ.items():
- envKeys.append(k)
- try:
- try:
- tmp = os.environ["FORCE_CPU"].lower()
- if tmp in ["1", "true", "yes", "on"]:
- raise ValueError("ForceCPU")
- else:
- print("Flag value {} not forcing CPU mode".format(tmp))
- except KeyError:
- # We never set the flag
- if 'CUDA_VISIBLE_DEVICES' in envKeys:
- if int(os.environ['CUDA_VISIBLE_DEVICES']) < 0:
- raise ValueError("ForceCPU")
- try:
- global DARKNET_FORCE_CPU
- if DARKNET_FORCE_CPU:
- raise ValueError("ForceCPU")
- except NameError as cpu_error:
- print(cpu_error)
- if not os.path.exists(winGPUdll):
- raise ValueError("NoDLL")
- lib = CDLL(winGPUdll, RTLD_GLOBAL)
- except (KeyError, ValueError):
- hasGPU = False
- if os.path.exists(winNoGPUdll):
- lib = CDLL(winNoGPUdll, RTLD_GLOBAL)
- print("Notice: CPU-only mode")
- else:
- # Try the other way, in case no_gpu was compile but not renamed
- lib = CDLL(winGPUdll, RTLD_GLOBAL)
- print("Environment variables indicated a CPU run, but we didn't find {}. Trying a GPU run anyway.".format(winNoGPUdll))
-else:
- lib = CDLL("./libdarknet.so", RTLD_GLOBAL)
-lib.network_width.argtypes = [c_void_p]
-lib.network_width.restype = c_int
-lib.network_height.argtypes = [c_void_p]
-lib.network_height.restype = c_int
-
-copy_image_from_bytes = lib.copy_image_from_bytes
-copy_image_from_bytes.argtypes = [IMAGE,c_char_p]
-
-predict = lib.network_predict_ptr
-predict.argtypes = [c_void_p, POINTER(c_float)]
-predict.restype = POINTER(c_float)
-
-if hasGPU:
- set_gpu = lib.cuda_set_device
- set_gpu.argtypes = [c_int]
-
-init_cpu = lib.init_cpu
-
-make_image = lib.make_image
-make_image.argtypes = [c_int, c_int, c_int]
-make_image.restype = IMAGE
-
-get_network_boxes = lib.get_network_boxes
-get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int]
-get_network_boxes.restype = POINTER(DETECTION)
-
-make_network_boxes = lib.make_network_boxes
-make_network_boxes.argtypes = [c_void_p]
-make_network_boxes.restype = POINTER(DETECTION)
-
-free_detections = lib.free_detections
-free_detections.argtypes = [POINTER(DETECTION), c_int]
-
-free_batch_detections = lib.free_batch_detections
-free_batch_detections.argtypes = [POINTER(DETNUMPAIR), c_int]
-
-free_ptrs = lib.free_ptrs
-free_ptrs.argtypes = [POINTER(c_void_p), c_int]
-
-network_predict = lib.network_predict_ptr
-network_predict.argtypes = [c_void_p, POINTER(c_float)]
-
-reset_rnn = lib.reset_rnn
-reset_rnn.argtypes = [c_void_p]
-
-load_net = lib.load_network
-load_net.argtypes = [c_char_p, c_char_p, c_int]
-load_net.restype = c_void_p
-
-load_net_custom = lib.load_network_custom
-load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int]
-load_net_custom.restype = c_void_p
-
-do_nms_obj = lib.do_nms_obj
-do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
-
-do_nms_sort = lib.do_nms_sort
-do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
-
-free_image = lib.free_image
-free_image.argtypes = [IMAGE]
-
-letterbox_image = lib.letterbox_image
-letterbox_image.argtypes = [IMAGE, c_int, c_int]
-letterbox_image.restype = IMAGE
-
-load_meta = lib.get_metadata
-lib.get_metadata.argtypes = [c_char_p]
-lib.get_metadata.restype = METADATA
-
-load_image = lib.load_image_color
-load_image.argtypes = [c_char_p, c_int, c_int]
-load_image.restype = IMAGE
-
-rgbgr_image = lib.rgbgr_image
-rgbgr_image.argtypes = [IMAGE]
-
-predict_image = lib.network_predict_image
-predict_image.argtypes = [c_void_p, IMAGE]
-predict_image.restype = POINTER(c_float)
-
-predict_image_letterbox = lib.network_predict_image_letterbox
-predict_image_letterbox.argtypes = [c_void_p, IMAGE]
-predict_image_letterbox.restype = POINTER(c_float)
-
-network_predict_batch = lib.network_predict_batch
-network_predict_batch.argtypes = [c_void_p, IMAGE, c_int, c_int, c_int,
- c_float, c_float, POINTER(c_int), c_int, c_int]
-network_predict_batch.restype = POINTER(DETNUMPAIR)
diff --git a/build/darknet/x64/darknet_video.py b/build/darknet/x64/darknet_video.py
deleted file mode 100644
index 5e7036203a7..00000000000
--- a/build/darknet/x64/darknet_video.py
+++ /dev/null
@@ -1,183 +0,0 @@
-from ctypes import *
-import random
-import os
-import cv2
-import time
-import darknet
-import argparse
-from threading import Thread, enumerate
-from queue import Queue
-
-
-def parser():
- parser = argparse.ArgumentParser(description="YOLO Object Detection")
- parser.add_argument("--input", type=str, default=0,
- help="video source. If empty, uses webcam 0 stream")
- parser.add_argument("--out_filename", type=str, default="",
- help="inference video name. Not saved if empty")
- parser.add_argument("--weights", default="yolov4.weights",
- help="yolo weights path")
- parser.add_argument("--dont_show", action='store_true',
- help="windown inference display. For headless systems")
- parser.add_argument("--ext_output", action='store_true',
- help="display bbox coordinates of detected objects")
- parser.add_argument("--config_file", default="./cfg/yolov4.cfg",
- help="path to config file")
- parser.add_argument("--data_file", default="./cfg/coco.data",
- help="path to data file")
- parser.add_argument("--thresh", type=float, default=.25,
- help="remove detections with confidence below this value")
- return parser.parse_args()
-
-
-def str2int(video_path):
- """
- argparse returns and string althout webcam uses int (0, 1 ...)
- Cast to int if needed
- """
- try:
- return int(video_path)
- except ValueError:
- return video_path
-
-
-def check_arguments_errors(args):
- assert 0 < args.thresh < 1, "Threshold should be a float between zero and one (non-inclusive)"
- if not os.path.exists(args.config_file):
- raise(ValueError("Invalid config path {}".format(os.path.abspath(args.config_file))))
- if not os.path.exists(args.weights):
- raise(ValueError("Invalid weight path {}".format(os.path.abspath(args.weights))))
- if not os.path.exists(args.data_file):
- raise(ValueError("Invalid data file path {}".format(os.path.abspath(args.data_file))))
- if str2int(args.input) == str and not os.path.exists(args.input):
- raise(ValueError("Invalid video path {}".format(os.path.abspath(args.input))))
-
-
-def set_saved_video(input_video, output_video, size):
- fourcc = cv2.VideoWriter_fourcc(*"MJPG")
- fps = int(input_video.get(cv2.CAP_PROP_FPS))
- video = cv2.VideoWriter(output_video, fourcc, fps, size)
- return video
-
-
-def convert2relative(bbox):
- """
- YOLO format use relative coordinates for annotation
- """
- x, y, w, h = bbox
- _height = darknet_height
- _width = darknet_width
- return x/_width, y/_height, w/_width, h/_height
-
-
-def convert2original(image, bbox):
- x, y, w, h = convert2relative(bbox)
-
- image_h, image_w, __ = image.shape
-
- orig_x = int(x * image_w)
- orig_y = int(y * image_h)
- orig_width = int(w * image_w)
- orig_height = int(h * image_h)
-
- bbox_converted = (orig_x, orig_y, orig_width, orig_height)
-
- return bbox_converted
-
-
-def convert4cropping(image, bbox):
- x, y, w, h = convert2relative(bbox)
-
- image_h, image_w, __ = image.shape
-
- orig_left = int((x - w / 2.) * image_w)
- orig_right = int((x + w / 2.) * image_w)
- orig_top = int((y - h / 2.) * image_h)
- orig_bottom = int((y + h / 2.) * image_h)
-
- if (orig_left < 0): orig_left = 0
- if (orig_right > image_w - 1): orig_right = image_w - 1
- if (orig_top < 0): orig_top = 0
- if (orig_bottom > image_h - 1): orig_bottom = image_h - 1
-
- bbox_cropping = (orig_left, orig_top, orig_right, orig_bottom)
-
- return bbox_cropping
-
-
-def video_capture(frame_queue, darknet_image_queue):
- while cap.isOpened():
- ret, frame = cap.read()
- if not ret:
- break
- frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- frame_resized = cv2.resize(frame_rgb, (darknet_width, darknet_height),
- interpolation=cv2.INTER_LINEAR)
- frame_queue.put(frame)
- img_for_detect = darknet.make_image(darknet_width, darknet_height, 3)
- darknet.copy_image_from_bytes(img_for_detect, frame_resized.tobytes())
- darknet_image_queue.put(img_for_detect)
- cap.release()
-
-
-def inference(darknet_image_queue, detections_queue, fps_queue):
- while cap.isOpened():
- darknet_image = darknet_image_queue.get()
- prev_time = time.time()
- detections = darknet.detect_image(network, class_names, darknet_image, thresh=args.thresh)
- detections_queue.put(detections)
- fps = int(1/(time.time() - prev_time))
- fps_queue.put(fps)
- print("FPS: {}".format(fps))
- darknet.print_detections(detections, args.ext_output)
- darknet.free_image(darknet_image)
- cap.release()
-
-
-def drawing(frame_queue, detections_queue, fps_queue):
- random.seed(3) # deterministic bbox colors
- video = set_saved_video(cap, args.out_filename, (video_width, video_height))
- while cap.isOpened():
- frame = frame_queue.get()
- detections = detections_queue.get()
- fps = fps_queue.get()
- detections_adjusted = []
- if frame is not None:
- for label, confidence, bbox in detections:
- bbox_adjusted = convert2original(frame, bbox)
- detections_adjusted.append((str(label), confidence, bbox_adjusted))
- image = darknet.draw_boxes(detections_adjusted, frame, class_colors)
- if not args.dont_show:
- cv2.imshow('Inference', image)
- if args.out_filename is not None:
- video.write(image)
- if cv2.waitKey(fps) == 27:
- break
- cap.release()
- video.release()
- cv2.destroyAllWindows()
-
-
-if __name__ == '__main__':
- frame_queue = Queue()
- darknet_image_queue = Queue(maxsize=1)
- detections_queue = Queue(maxsize=1)
- fps_queue = Queue(maxsize=1)
-
- args = parser()
- check_arguments_errors(args)
- network, class_names, class_colors = darknet.load_network(
- args.config_file,
- args.data_file,
- args.weights,
- batch_size=1
- )
- darknet_width = darknet.network_width(network)
- darknet_height = darknet.network_height(network)
- input_path = str2int(args.input)
- cap = cv2.VideoCapture(input_path)
- video_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- video_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- Thread(target=video_capture, args=(frame_queue, darknet_image_queue)).start()
- Thread(target=inference, args=(darknet_image_queue, detections_queue, fps_queue)).start()
- Thread(target=drawing, args=(frame_queue, detections_queue, fps_queue)).start()
diff --git a/build/darknet/x64/data/9k.labels b/build/darknet/x64/data/9k.labels
deleted file mode 100644
index e2bd3082485..00000000000
--- a/build/darknet/x64/data/9k.labels
+++ /dev/null
@@ -1,9418 +0,0 @@
-n00002452
-n00020827
-n00002684
-n11425580
-n05220461
-n09225146
-n05538625
-n01900150
-n05225602
-n05418717
-n05302499
-n05578095
-n09475179
-n09376198
-n14877585
-n15046900
-n00019613
-n00021265
-n15067877
-n09436708
-n14915184
-n07555863
-n07850329
-n07849336
-n07705711
-n07622061
-n07594066
-n07854982
-n07852833
-n07852614
-n07854184
-n07852229
-n07851443
-n07705931
-n07707451
-n07752966
-n07760859
-n07747055
-n07754684
-n07768694
-n07764847
-n07768858
-n07739125
-n07746551
-n07753113
-n07763987
-n07748574
-n07751451
-n07762244
-n07750872
-n07742704
-n07765208
-n07763792
-n07767847
-n07766173
-n07751004
-n07760153
-n07758680
-n07753592
-n07751280
-n07769731
-n07763629
-n07755411
-n07754451
-n07753275
-n07764155
-n07765073
-n07762114
-n07762913
-n07753743
-n07765999
-n07765361
-n07752377
-n07757132
-n07769584
-n07751148
-n07761141
-n07761309
-n07749731
-n07747951
-n07749446
-n07747607
-n07749582
-n07750449
-n07749969
-n07750146
-n07748157
-n07748416
-n07748276
-n07748912
-n07748753
-n07749192
-n07749312
-n07739344
-n07739506
-n07742313
-n07740220
-n07740954
-n07740461
-n07740342
-n07745940
-n07767171
-n07744246
-n07744057
-n07744811
-n07744682
-n07745466
-n07743902
-n07746334
-n07746186
-n07743544
-n07743224
-n07755707
-n07756951
-n07755929
-n07757990
-n07757312
-n07757511
-n07734744
-n07719213
-n07768423
-n07735510
-n07718472
-n07710283
-n07713395
-n07708398
-n07710007
-n07718747
-n07708798
-n07723039
-n07715561
-n07709333
-n07730406
-n07730033
-n07733394
-n07713267
-n07722217
-n07817871
-n07736813
-n07719839
-n07712267
-n07730207
-n07710616
-n07710952
-n07711569
-n07711080
-n07713763
-n07713895
-n07733567
-n07715103
-n07715221
-n07715407
-n07714990
-n07735687
-n07735803
-n07714188
-n07714448
-n07714895
-n07714571
-n07714078
-n07720442
-n07734017
-n07713074
-n07734555
-n07720615
-n07721325
-n07720875
-n07721195
-n07721018
-n07721456
-n07722052
-n07721942
-n07721678
-n07734292
-n07734183
-n07724943
-n07725376
-n07726095
-n07725255
-n07729485
-n07726796
-n07727458
-n07727048
-n07727578
-n07727868
-n07728804
-n07728053
-n07728585
-n07728181
-n07729384
-n07729828
-n07725531
-n07725789
-n07725888
-n07715721
-n07717070
-n07716906
-n07716358
-n07716034
-n07717556
-n07717410
-n07720277
-n07736256
-n07723330
-n07719616
-n07736692
-n07733712
-n07732747
-n07730855
-n07731587
-n07731006
-n07723559
-n07724654
-n07724269
-n07724492
-n07722485
-n07723177
-n07722888
-n07639069
-n07679356
-n07682197
-n07680517
-n07695878
-n07685730
-n07682316
-n07684517
-n07680761
-n07681691
-n07684600
-n07684164
-n07686720
-n07680932
-n07687211
-n07681450
-n07683786
-n07695742
-n07682477
-n07686873
-n07684289
-n07683490
-n07682808
-n07690585
-n07684938
-n07690892
-n07685399
-n07693972
-n07690273
-n07691091
-n07687789
-n07685218
-n07694516
-n07694839
-n07694659
-n07690511
-n07690739
-n07690431
-n07688624
-n07688898
-n07689003
-n07690152
-n07693725
-n07690019
-n07692614
-n07691758
-n07691539
-n07691650
-n07693223
-n07693048
-n07691237
-n07687626
-n07687381
-n07687469
-n07871810
-n07684084
-n14580897
-n15062057
-n14698884
-n14696793
-n14765422
-n14844693
-n15019030
-n12167075
-n14974264
-n14858292
-n15075141
-n04033425
-n07556637
-n07566340
-n07560652
-n07881800
-n07938313
-n07800091
-n07570720
-n01464844
-n07556406
-n07840804
-n07802417
-n07925608
-n07844867
-n07569644
-n07568502
-n07809096
-n07843775
-n07755089
-n07882497
-n07573347
-n07923748
-n07572957
-n07731952
-n07804323
-n07804771
-n07803093
-n07803545
-n07732168
-n07732636
-n07804657
-n07804900
-n07809368
-n07841345
-n07827284
-n07827130
-n07822518
-n07827410
-n07816052
-n07812184
-n07810907
-n07858595
-n07811416
-n07824702
-n07818277
-n07819769
-n07920989
-n07822323
-n07815424
-n07814390
-n07826930
-n07814487
-n07814203
-n07583066
-n07822845
-n07767344
-n07823105
-n07828987
-n07582609
-n07825972
-n07823460
-n07823698
-n07822197
-n07856270
-n07767709
-n07829412
-n07829331
-n07829248
-n07857731
-n07857170
-n07838233
-n07836838
-n07826091
-n07830593
-n07840027
-n07832416
-n07832902
-n07835921
-n07835457
-n07831146
-n07831267
-n07834618
-n07834507
-n07595914
-n07858978
-n07859583
-n07860103
-n07860331
-n07860447
-n07816164
-n07818689
-n07821260
-n07820683
-n07816575
-n07817160
-n07817315
-n07819166
-n07817024
-n07818995
-n07816398
-n07820497
-n07932841
-n07820145
-n07819896
-n07816296
-n07821758
-n07933154
-n07935379
-n07935043
-n07847198
-n07844042
-n07848196
-n07847453
-n07847917
-n07847827
-n07678729
-n07860805
-n07860988
-n07883031
-n07623136
-n07861158
-n07627931
-n07628068
-n07565161
-n07565083
-n07561590
-n07561112
-n07560903
-n07562495
-n07564971
-n07938149
-n07938007
-n07884567
-n07924033
-n07919310
-n07891189
-n07922764
-n07929519
-n07921455
-n07933274
-n07927197
-n07925966
-n07891309
-n07936263
-n07883251
-n07914271
-n07911371
-n07901587
-n07891433
-n07891726
-n07886176
-n07886057
-n07907943
-n07921615
-n07886572
-n07902121
-n07886463
-n07912211
-n07911677
-n07914777
-n07930554
-n07930433
-n07930315
-n07915491
-n07915094
-n07913393
-n07916041
-n07914995
-n07916183
-n07914413
-n07917392
-n07917133
-n07915918
-n07930864
-n07931870
-n07932039
-n07930062
-n07906111
-n07907037
-n07902799
-n07904865
-n07905474
-n07902937
-n07904395
-n07905038
-n07902336
-n07905979
-n07903101
-n07904760
-n07903208
-n07904934
-n07906284
-n07902443
-n07903841
-n07903962
-n07903731
-n07903643
-n07907161
-n07906718
-n07907831
-n07907548
-n07907429
-n07906877
-n07906572
-n07893253
-n07892418
-n07893642
-n07899003
-n07896287
-n07896661
-n07893528
-n07896165
-n07900225
-n07893891
-n07900406
-n07895237
-n07898745
-n07896060
-n07899108
-n07892512
-n07897750
-n07892813
-n07894703
-n07894102
-n07894551
-n07900616
-n07900958
-n07900734
-n07900825
-n07901457
-n07898117
-n07895435
-n07899434
-n07899292
-n07894298
-n07895595
-n07894965
-n07897865
-n07895839
-n07895710
-n07898333
-n07897438
-n07895962
-n07896893
-n07899899
-n07895100
-n07898443
-n07899533
-n07894799
-n07897975
-n07899660
-n07894451
-n07910656
-n07909593
-n07911249
-n07910048
-n07908411
-n07910379
-n07908647
-n07886849
-n07887634
-n07887099
-n07889510
-n07887192
-n07887304
-n07888229
-n07887967
-n07889274
-n07887461
-n07888465
-n07890226
-n07890352
-n07889814
-n07890068
-n07890540
-n07888816
-n07924834
-n07924443
-n07924276
-n07920540
-n07920222
-n07920052
-n07920349
-n07919441
-n07731284
-n07919572
-n07920872
-n07921239
-n07934282
-n07933799
-n07929172
-n07927931
-n07928488
-n07928367
-n07927512
-n07928887
-n07928696
-n07928790
-n07936745
-n07935737
-n07936548
-n07801508
-n07805594
-n07800740
-n07801091
-n07802026
-n07801779
-n07801892
-n07557165
-n07560193
-n07651025
-n07560331
-n07557434
-n07556970
-n05399243
-n15089258
-n07560542
-n07573696
-n07613815
-n07643981
-n07596684
-n07600696
-n07597145
-n07597365
-n07599998
-n07596967
-n07620689
-n07642471
-n07643200
-n07642742
-n07643026
-n07642933
-n07643306
-n07606538
-n07599911
-n07607138
-n07608429
-n07598256
-n07606669
-n07607605
-n07601572
-n07609632
-n07605597
-n07607967
-n07609215
-n07841907
-n07606764
-n07605944
-n07601686
-n07605380
-n07605040
-n07601809
-n07605474
-n07842130
-n07842044
-n07600285
-n07600177
-n07842202
-n07579688
-n07580053
-n07588947
-n07842753
-n07583197
-n07879350
-n07880751
-n07868200
-n07863802
-n07875152
-n07824191
-n07878785
-n07865484
-n07866015
-n07868955
-n07861557
-n07580253
-n07877187
-n07866868
-n07880458
-n07648913
-n07580470
-n07866277
-n07591961
-n07868508
-n07871436
-n07864934
-n07874780
-n07879659
-n07878926
-n07937461
-n07842433
-n07862611
-n07863374
-n07866723
-n07867021
-n07867164
-n07726525
-n07624466
-n07842308
-n07877299
-n07880080
-n07862348
-n07873464
-n07869775
-n07879953
-n07625061
-n07843636
-n07696403
-n07580592
-n07655263
-n07868340
-n07619004
-n07879174
-n07867324
-n07843464
-n07877961
-n07873807
-n07867421
-n07654298
-n07878647
-n07611839
-n07842605
-n07871720
-n07869611
-n07876651
-n07880968
-n07875436
-n07806221
-n07841495
-n07823951
-n07712382
-n07591586
-n07590320
-n07587111
-n07592481
-n07590611
-n07591473
-n07590502
-n07591049
-n07592768
-n07585758
-n07588193
-n07586894
-n07588299
-n07584110
-n07587441
-n07587023
-n07586099
-n07588574
-n07584332
-n07586604
-n07586718
-n07585107
-n07585557
-n07585208
-n07584593
-n07585906
-n07584423
-n07587618
-n07587700
-n07588111
-n07704054
-n07704205
-n07871234
-n07870167
-n07863547
-n07700003
-n07619208
-n07619409
-n07874159
-n07874343
-n07874259
-n07874441
-n07874063
-n07867751
-n07867616
-n07808587
-n07807834
-n07806633
-n07807171
-n07807710
-n07807922
-n07808904
-n07806774
-n07807472
-n07841639
-n07841800
-n07695965
-n07712748
-n07712559
-n07697825
-n07697313
-n07696728
-n07696625
-n07698543
-n07698401
-n07865105
-n07696977
-n07698250
-n07698782
-n07697100
-n07696839
-n07697537
-n07712856
-n07712959
-n07579575
-n07579787
-n07609840
-n07581346
-n07611991
-n07613266
-n07611358
-n07612632
-n07612996
-n07613480
-n07611267
-n07612367
-n07611148
-n07611046
-n07617611
-n07612137
-n07616386
-n07631926
-n07615774
-n07616487
-n07614730
-n07614500
-n07614198
-n07616748
-n07616046
-n07617051
-n07615671
-n07615190
-n07614825
-n07615460
-n07617708
-n07618432
-n07582152
-n07734879
-n07581775
-n07582277
-n07730320
-n07581249
-n15089645
-n15089472
-n15093137
-n15093298
-n15090742
-n15091473
-n14919819
-n15091669
-n14810561
-n14973585
-n15091304
-n15091846
-n15092227
-n15090065
-n07576438
-n07577374
-n07575984
-n07574602
-n07574426
-n07593199
-n07576182
-n07574923
-n07574780
-n07575726
-n07575076
-n07578093
-n07576577
-n07577144
-n07576781
-n07574504
-n07577538
-n09335240
-n00027167
-n09334396
-n09283193
-n03892891
-n09287968
-n03059685
-n00003553
-n09300905
-n09452395
-n09260907
-n08630039
-n08630985
-n09386842
-n08593262
-n08620061
-n09379111
-n08649711
-n08658309
-n08568978
-n08512259
-n03823111
-n04170933
-n09433839
-n08578517
-n08640739
-n08574314
-n08552138
-n08645104
-n08505018
-n08659861
-n08659446
-n08673395
-n08583455
-n08598301
-n08651247
-n03120491
-n02802544
-n08614632
-n08674739
-n08569998
-n08494231
-n08677424
-n08616050
-n08518171
-n08573842
-n08521623
-n03368352
-n03417345
-n04454908
-n03902482
-n04610879
-n08579352
-n03963645
-n03417749
-n08524735
-n08537837
-n08551296
-n08628141
-n08633683
-n08539072
-n09249034
-n09263912
-n08583292
-n09443281
-n08547544
-n08664443
-n04602044
-n08580944
-n03581125
-n08517676
-n08598568
-n08584914
-n03899933
-n02776631
-n03322099
-n03935234
-n04052442
-n03159535
-n15102894
-n09242389
-n09382099
-n09282208
-n09392402
-n09393605
-n09445289
-n03030880
-n03946162
-n03485997
-n03882960
-n04322026
-n03474896
-n02764398
-n02907082
-n03948830
-n09205509
-n09472413
-n09443453
-n09309292
-n09366017
-n09366317
-n09376786
-n09348460
-n09246464
-n09433442
-n09454153
-n09409752
-n09403734
-n09331251
-n09437454
-n09238926
-n09283866
-n09217230
-n09305898
-n09288635
-n09308743
-n09308572
-n09194227
-n09289331
-n09468604
-n09344324
-n09335809
-n09435739
-n09215437
-n09259219
-n09217638
-n09304750
-n09206896
-n09405787
-n09233446
-n09290444
-n09457979
-n09245515
-n09376526
-n09415671
-n09448690
-n09230041
-n09398076
-n09453008
-n09303008
-n09359803
-n09302616
-n09409512
-n09399592
-n09199101
-n09230202
-n09283405
-n09326662
-n09193705
-n09218641
-n09472597
-n09421951
-n09270735
-n09406793
-n09213434
-n09256479
-n09210862
-n09421799
-n09224725
-n09396465
-n09362945
-n09259025
-n09398677
-n09428293
-n09447666
-n09332890
-n08596076
-n09428628
-n09361517
-n09265620
-n09303528
-n09436444
-n09274152
-n09213565
-n09269472
-n09206985
-n09228055
-n09466678
-n09415584
-n09475925
-n09257843
-n09239302
-n09294877
-n00021939
-n00004258
-n00019128
-n02749953
-n02852523
-n03767112
-n14977504
-n03129123
-n03848729
-n03964744
-n04362025
-n04469003
-n04341686
-n03575240
-n03873064
-n03122748
-n03309808
-n02871147
-n03364340
-n14786479
-n03169390
-n04564698
-n04339291
-n00022903
-n03315023
-n03302121
-n03076708
-n04188643
-n03354613
-n14976871
-n03670849
-n02917521
-n04414909
-n04435180
-n02725872
-n04076846
-n02743547
-n03816849
-n04007894
-n03934656
-n03720163
-n04227144
-n04260364
-n03925226
-n04564581
-n02744844
-n04042358
-n03927091
-n03927539
-n03876519
-n04485423
-n03835197
-n03342127
-n04246271
-n04321238
-n04180314
-n03625783
-n03684611
-n03514693
-n03421485
-n04026180
-n02870526
-n04599396
-n06415688
-n03822171
-n04582205
-n03727605
-n03849679
-n04598792
-n03631922
-n02933649
-n03600722
-n03169176
-n03418618
-n02727016
-n03526198
-n03794798
-n03859608
-n03968581
-n03717447
-n03614782
-n03915900
-n04431025
-n03974070
-n02779435
-n03941231
-n04399382
-n03603442
-n09229709
-n03548402
-n03944138
-n04238128
-n04284869
-n03061211
-n03219135
-n09282724
-n09191635
-n09443641
-n04186268
-n03447358
-n03607029
-n03536348
-n02857023
-n04381860
-n04213626
-n03961939
-n04394630
-n03365592
-n04501550
-n04296562
-n03159640
-n04354182
-n03549732
-n03360300
-n03892178
-n02768973
-n03906224
-n03313333
-n02990373
-n02861886
-n03365991
-n02898711
-n03109693
-n13898207
-n04358874
-n02687821
-n03135532
-n03545756
-n03548626
-n03469175
-n03688943
-n02914991
-n04191595
-n09218315
-n03074380
-n02699494
-n02733524
-n04460130
-n04471148
-n03792048
-n03388043
-n03837869
-n03321954
-n02733213
-n03687137
-n03065424
-n02839110
-n03894379
-n03725717
-n04226464
-n03071160
-n03839993
-n02913152
-n04128413
-n04008947
-n03917198
-n03222318
-n04295881
-n03241335
-n02735688
-n02777734
-n03984381
-n03216828
-n03517899
-n03546340
-n04361095
-n13897996
-n03171356
-n03290195
-n03743902
-n03297735
-n04217882
-n02863426
-n03408054
-n03463381
-n03758089
-n03686130
-n02800497
-n03379828
-n03233744
-n02953197
-n04108822
-n03865557
-n04492749
-n04532670
-n04311004
-n03122073
-n03415486
-n04366367
-n04479939
-n03956922
-n03069752
-n04592465
-n03316406
-n03212811
-n03844673
-n04068441
-n04103094
-n03387653
-n04311595
-n03697007
-n04300358
-n04032603
-n02810782
-n03492250
-n03826186
-n03547054
-n04411264
-n03550153
-n03560430
-n03254189
-n03792972
-n04025508
-n03900979
-n02769963
-n03374473
-n02954163
-n03334291
-n04549028
-n03035252
-n03448956
-n04113765
-n03975035
-n04486054
-n02905152
-n03784896
-n04104384
-n02946127
-n04501947
-n03047052
-n04206790
-n03029197
-n03767745
-n04028581
-n04220250
-n04556948
-n04479823
-n04028764
-n04312432
-n03347617
-n03519387
-n04361260
-n03098959
-n02826886
-n02814860
-n02922292
-n04251701
-n04051825
-n03390786
-n02811936
-n02699770
-n04546855
-n03409393
-n04544325
-n02755823
-n03904657
-n02825961
-n02898369
-n04326799
-n02796623
-n03839795
-n03967942
-n03659686
-n03454707
-n04127395
-n03795580
-n02788148
-n02894605
-n03459775
-n04571566
-n04047401
-n03549589
-n04304680
-n03327234
-n03160309
-n03427296
-n03221720
-n03698815
-n03985881
-n04501370
-n03395514
-n02963821
-n04153025
-n03394649
-n03226880
-n03579538
-n04239074
-n04086446
-n02793842
-n03498662
-n04329834
-n04547592
-n04082710
-n04046974
-n03000134
-n03252637
-n03511175
-n04604644
-n03930313
-n04326547
-n04560882
-n02920369
-n03262072
-n03108853
-n04390977
-n03999160
-n03542333
-n04409384
-n02666943
-n02726681
-n02763604
-n03478756
-n03545150
-n04104500
-n04081699
-n03859280
-n03402941
-n03739518
-n03542605
-n03661043
-n02977936
-n03322570
-n03953416
-n04081281
-n03770316
-n04112654
-n03839671
-n03842012
-n04407686
-n04217546
-n03449564
-n03457902
-n04093625
-n03956157
-n04018399
-n02882190
-n03544360
-n04118635
-n02734725
-n04233124
-n03430418
-n04146050
-n03007444
-n04417809
-n03479397
-n03092166
-n02993546
-n04080705
-n08640531
-n03788498
-n08560295
-n04095109
-n04229737
-n03541696
-n03790755
-n03036022
-n03466839
-n03698723
-n03333610
-n03837698
-n03121298
-n04187547
-n03416489
-n02968074
-n03860404
-n03055857
-n02859443
-n04598318
-n02727426
-n03730334
-n03210552
-n04294879
-n03016389
-n03123809
-n02793495
-n03884778
-n03028079
-n04407435
-n04210390
-n04346328
-n03724756
-n04374735
-n03788195
-n03007130
-n03618982
-n02667576
-n02984061
-n02984203
-n03772077
-n02935658
-n04111414
-n02760099
-n02892499
-n02935891
-n03199647
-n02956699
-n03282295
-n04461437
-n03005033
-n03152303
-n04305210
-n03121431
-n03558176
-n03557360
-n02696165
-n03393017
-n04258438
-n02919792
-n04115256
-n02932400
-n03257210
-n03719053
-n03685820
-n03428090
-n03686924
-n04131368
-n03118969
-n03219483
-n04052658
-n02857477
-n03180865
-n04535524
-n03002816
-n04079244
-n03322836
-n04413969
-n02907873
-n03878066
-n04305323
-n03718458
-n04354026
-n03158186
-n04535370
-n03010915
-n03718935
-n04073948
-n03439348
-n03892557
-n03877845
-n03781244
-n02667379
-n02667478
-n03165616
-n03092314
-n03801671
-n03849814
-n03801533
-n03032252
-n03678729
-n03529860
-n03097362
-n04177931
-n02940385
-n03111041
-n03064935
-n03626115
-n02838728
-n03356858
-n02902079
-n04439585
-n03263076
-n04453037
-n03942920
-n03379204
-n03522003
-n03220692
-n02782778
-n02918112
-n02704949
-n03899768
-n03109881
-n02775178
-n03517647
-n03024064
-n02894158
-n04030518
-n03004824
-n02758134
-n03120198
-n03200231
-n04105893
-n02750070
-n03285912
-n03813078
-n02694045
-n04328946
-n03443005
-n03378005
-n02754656
-n03047941
-n03382292
-n04446276
-n04356925
-n03288500
-n04363991
-n04112579
-n03038685
-n03412058
-n03718581
-n02991302
-n03691817
-n04139395
-n03238131
-n02839592
-n02824319
-n03619890
-n03660909
-n04329477
-n04602762
-n04180229
-n02710324
-n03200701
-n04065464
-n03541091
-n04058096
-n02873839
-n03089879
-n02821627
-n03040376
-n03679712
-n03222176
-n03478907
-n04061793
-n02857644
-n04345028
-n03683708
-n03062122
-n04406239
-n03079741
-n03120778
-n03982331
-n02807731
-n03098688
-n02715513
-n04558478
-n03746486
-n04555291
-n04018667
-n03529175
-n03653740
-n04345201
-n03885535
-n04324387
-n04523831
-n04067818
-n03200539
-n02952585
-n03319745
-n04119478
-n03283221
-n04064862
-n03850245
-n04401680
-n04541987
-n03090172
-n04209613
-n03727465
-n03788601
-n03465718
-n03542860
-n03225108
-n03836062
-n03165466
-n03457008
-n03086580
-n03878211
-n03303831
-n03891538
-n03235042
-n04000592
-n03075946
-n02932019
-n03939677
-n02931148
-n03696065
-n02933462
-n03061505
-n04305572
-n02960352
-n02934451
-n04299370
-n03235180
-n04414199
-n02936714
-n03964495
-n03907227
-n04539203
-n03993703
-n03683079
-n03016737
-n03003730
-n04061969
-n02843276
-n04037220
-n03550289
-n03124590
-n04100519
-n03376159
-n04262161
-n02921884
-n03348868
-n04080454
-n03404449
-n02868638
-n03555006
-n04076713
-n03732114
-n03617095
-n02849885
-n03837606
-n03425325
-n03566193
-n03762434
-n03073694
-n03343560
-n03346455
-n02731398
-n02991847
-n03148324
-n04295571
-n03411544
-n02705201
-n03854722
-n04327204
-n04355267
-n03399677
-n04527648
-n03168107
-n02770211
-n03986704
-n03721590
-n03251533
-n02853016
-n03259505
-n04409625
-n03679384
-n03776460
-n03088389
-n02726305
-n04549919
-n02992032
-n03088580
-n04613696
-n03685307
-n04517408
-n03507241
-n03354207
-n03042490
-n03529629
-n04172107
-n04584373
-n04412416
-n02672371
-n03349892
-n02932693
-n02822064
-n03361297
-n03010473
-n04360501
-n03391770
-n03903868
-n02929289
-n03373943
-n02669295
-n04087826
-n02926591
-n04589593
-n03390983
-n03416094
-n03530642
-n04492375
-n03646916
-n03111296
-n03931765
-n04587648
-n03042697
-n04478512
-n02689144
-n03454536
-n03453443
-n04545305
-n02977619
-n04387261
-n02732827
-n04038727
-n03793186
-n04136510
-n02976350
-n03855333
-n02813399
-n04297750
-n04232800
-n03211789
-n04110178
-n03986562
-n04473108
-n03041810
-n03224603
-n03224753
-n03637898
-n03320959
-n03961711
-n02790669
-n02835829
-n03696301
-n03207630
-n04459773
-n03896526
-n03900393
-n03792526
-n04340935
-n03386011
-n03385557
-n02806088
-n03610098
-n03628511
-n02676938
-n02695627
-n03723781
-n03334382
-n02805983
-n03296328
-n03878963
-n02980441
-n02993194
-n03743016
-n04178329
-n02892201
-n03810952
-n03884926
-n03220237
-n03745571
-n03953020
-n03574555
-n04511002
-n03748162
-n03841666
-n02931417
-n03506370
-n03965456
-n03119203
-n03176763
-n04202417
-n03722288
-n02879309
-n04131208
-n04200800
-n02871525
-n03871371
-n04428634
-n03606251
-n04462240
-n03039827
-n02813544
-n03436417
-n03367410
-n03249342
-n03416640
-n03173387
-n04245508
-n02791270
-n04299215
-n04443257
-n03822656
-n02927161
-n03952576
-n03089624
-n03099274
-n02813645
-n08492461
-n03461385
-n03847823
-n04358707
-n03555426
-n03457686
-n04261281
-n03322704
-n08571898
-n03822504
-n02885882
-n03504723
-n03111690
-n03856012
-n03592245
-n03911513
-n04005630
-n04447443
-n04566257
-n03294048
-n03091374
-n03563967
-n03405265
-n03183080
-n02997391
-n04377057
-n03094503
-n03100490
-n06254669
-n03176594
-n02807523
-n03128519
-n03690938
-n04186051
-n03476991
-n03794136
-n03916031
-n03475823
-n02723165
-n03994008
-n03113152
-n02808185
-n03484487
-n03067339
-n04357314
-n03640850
-n02862916
-n04450640
-n03487444
-n02683791
-n03992325
-n03898271
-n03916470
-n03071021
-n04448070
-n03980026
-n02901793
-n04447276
-n04386792
-n03177165
-n03519081
-n03714235
-n03314780
-n03676087
-n03309687
-n03724066
-n03676483
-n04112752
-n03309110
-n03308481
-n02738031
-n03171228
-n02866578
-n02703275
-n03812924
-n02813752
-n02746365
-n03647520
-n02950256
-n03332393
-n03786715
-n02801450
-n03553248
-n02753044
-n04113641
-n04206570
-n04063373
-n04285146
-n03926148
-n03811847
-n03889726
-n03430959
-n04137444
-n03414162
-n03888257
-n03278248
-n02727825
-n02761206
-n03729951
-n02774921
-n04393095
-n02979290
-n03192543
-n04533802
-n02799897
-n03135030
-n03039259
-n04225729
-n04607035
-n03132261
-n02802721
-n03594148
-n04212282
-n03446832
-n04275661
-n04318131
-n02885338
-n02885462
-n03472232
-n04571292
-n02800213
-n02811059
-n02811204
-n02797881
-n02811350
-n02799175
-n03528901
-n03349771
-n04425804
-n04164406
-n04102037
-n04102162
-n04102618
-n03558404
-n03523987
-n04273972
-n03336282
-n03132076
-n04582869
-n03445924
-n03447075
-n04399537
-n03446070
-n04597066
-n03585073
-n03244047
-n04284341
-n04569822
-n03762332
-n04028074
-n03823216
-n03950537
-n04135024
-n03524150
-n03978686
-n03535780
-n03538037
-n04509260
-n03888605
-n04469514
-n02777292
-n04524142
-n03980478
-n03255030
-n02790996
-n03289660
-n02942699
-n03037404
-n03338821
-n03667664
-n02884994
-n03358726
-n03976467
-n03974915
-n04569063
-n03789171
-n03196062
-n03987266
-n04069434
-n04609531
-n04067658
-n03817191
-n04071263
-n03619396
-n04091097
-n03351434
-n04295081
-n04091693
-n03138669
-n03139464
-n04179824
-n03349469
-n02966687
-n03650551
-n03241093
-n03240683
-n03494706
-n04247876
-n03503718
-n04124202
-n03480719
-n02900160
-n04290615
-n04266162
-n02768226
-n02778669
-n04028315
-n03982430
-n02882647
-n03716327
-n03020416
-n04113406
-n03442756
-n04540255
-n03941417
-n04254680
-n03982232
-n02882301
-n04256891
-n03333252
-n04023962
-n02839351
-n03134739
-n03131967
-n04409515
-n03445777
-n04118538
-n03145719
-n03742019
-n02802426
-n03267113
-n03942813
-n03482877
-n02799071
-n04039742
-n02861147
-n04540053
-n03598930
-n06785654
-n03014440
-n04579986
-n03901750
-n02802215
-n03820318
-n03278914
-n03782006
-n03781787
-n04405762
-n04401088
-n03857828
-n03916720
-n02872529
-n02979186
-n02988304
-n04060647
-n02757462
-n03656957
-n03963294
-n04405540
-n03034405
-n02979074
-n02995345
-n03775388
-n04142731
-n04392985
-n03181293
-n03777754
-n03293741
-n04392526
-n02705944
-n02992529
-n04270371
-n03179910
-n03902125
-n03488438
-n03187595
-n04044498
-n04405907
-n04043733
-n04137773
-n03516996
-n03046921
-n04077430
-n03517760
-n04315948
-n03584254
-n04546340
-n03584400
-n03436182
-n02942349
-n04404997
-n03909160
-n04026053
-n04173511
-n04070003
-n03257586
-n03509608
-n04171208
-n04450243
-n04506506
-n03434188
-n03567066
-n02923129
-n03386544
-n03046802
-n03757604
-n03927299
-n03924679
-n04608923
-n03316105
-n03767459
-n03987990
-n03084834
-n03422072
-n02855390
-n02921029
-n03425769
-n03871524
-n02852360
-n04105704
-n04408871
-n04241573
-n04402057
-n03664943
-n03605915
-n03543012
-n03196990
-n03639497
-n02840134
-n04594218
-n02999410
-n03086868
-n02790823
-n03886641
-n02709637
-n03374838
-n02835412
-n04440963
-n03011018
-n03600977
-n03093792
-n03228967
-n04573281
-n03521076
-n04144241
-n04571958
-n04160372
-n03787523
-n02928299
-n04333869
-n03213826
-n04476972
-n04593866
-n02788689
-n04451818
-n04516672
-n04116512
-n03816136
-n03294833
-n04317420
-n02908217
-n03532342
-n04185071
-n04285622
-n03653220
-n04369282
-n03346135
-n03837422
-n04317833
-n03039947
-n04100174
-n04608567
-n04208427
-n04282872
-n03396074
-n02865931
-n04112147
-n04459909
-n03659292
-n04463679
-n03487090
-n03138344
-n04317976
-n03613592
-n04393808
-n03903424
-n04099003
-n03470629
-n04264628
-n02771004
-n04193377
-n04400737
-n02670683
-n04367011
-n03489162
-n03588951
-n03919430
-n03418242
-n03967562
-n03075097
-n03239726
-n03154446
-n04387706
-n03417970
-n04050066
-n04299963
-n03684224
-n03919289
-n03970156
-n03941684
-n03966976
-n04258859
-n04266486
-n03481172
-n03946076
-n04606574
-n04154565
-n04489817
-n04140064
-n03848348
-n04150980
-n04208210
-n02898269
-n04269944
-n02966545
-n03430313
-n03715386
-n03731695
-n04457910
-n03947466
-n02680754
-n03848168
-n02697675
-n02886434
-n03474779
-n03376938
-n03488188
-n04016240
-n04016576
-n03109150
-n02877962
-n02951585
-n03511333
-n03649909
-n03995856
-n04089976
-n03995372
-n03240140
-n03154073
-n04503593
-n02844307
-n02848216
-n03624400
-n02866386
-n03030557
-n03265032
-n04148054
-n03623556
-n02764044
-n04057047
-n04594828
-n03020692
-n03954731
-n04186848
-n04250473
-n04016684
-n04163530
-n02973904
-n02880842
-n03973628
-n03041632
-n03549473
-n02976123
-n03890093
-n03658185
-n04373089
-n03911658
-n02811468
-n03498962
-n04185804
-n04332074
-n04127521
-n03067212
-n04597400
-n03601638
-n04247630
-n04283585
-n03621049
-n02997607
-n03403643
-n04103206
-n04059516
-n03724417
-n03621377
-n04293119
-n03775199
-n03101517
-n03101986
-n03454885
-n03767966
-n03266371
-n04578934
-n02850732
-n03880531
-n03133878
-n02999138
-n04270147
-n03459328
-n03284981
-n04309548
-n03101796
-n03101156
-n04500060
-n03846677
-n04317325
-n03400231
-n04097760
-n04596742
-n04138977
-n03453231
-n03047799
-n03984234
-n03262519
-n04326676
-n03992703
-n04282992
-n03018209
-n02869155
-n03713436
-n03317788
-n03625646
-n03133050
-n04546194
-n03729826
-n03053474
-n03332271
-n04277352
-n04321453
-n04296261
-n03250847
-n03715669
-n02949202
-n04374315
-n02806379
-n04381724
-n04491388
-n02698634
-n03355925
-n03141823
-n03274265
-n04453156
-n04122349
-n04156140
-n03475581
-n02902687
-n04185946
-n03908714
-n04310904
-n03145522
-n04039381
-n04292414
-n04409806
-n02772700
-n04426316
-n04333129
-n03012013
-n04072551
-n03831382
-n03651843
-n04156946
-n03873416
-n02831894
-n04150153
-n03258905
-n04292921
-n02906734
-n04367480
-n04111190
-n04549629
-n04182322
-n03949317
-n03616428
-n02764779
-n03976657
-n03351979
-n03091044
-n04434531
-n03244231
-n03127408
-n04472563
-n04277493
-n02946824
-n02871824
-n04319937
-n04230603
-n03051396
-n02931836
-n04267577
-n03726993
-n03726760
-n02883004
-n04610676
-n03775847
-n04115996
-n03711999
-n03382856
-n03374372
-n04279353
-n03908204
-n03906997
-n03518943
-n03003091
-n03128248
-n03652100
-n02783161
-n04185529
-n04033901
-n03388183
-n03326948
-n03405725
-n03842156
-n03200906
-n04550184
-n02821943
-n04379243
-n04379964
-n04549122
-n03636649
-n03201035
-n04555400
-n02912065
-n02933112
-n02766320
-n02822579
-n03649797
-n03129753
-n02870880
-n03290653
-n03298716
-n04161981
-n04165409
-n03015254
-n03337140
-n04104147
-n02963302
-n04529681
-n03050546
-n02739550
-n02818832
-n02831724
-n03962852
-n03540914
-n02920083
-n04491638
-n03388549
-n03115762
-n02920259
-n04503413
-n04236809
-n04222210
-n03482252
-n03799876
-n03225988
-n03414676
-n03465426
-n04381587
-n03116530
-n02699629
-n02894337
-n04301000
-n03090000
-n03904060
-n03620967
-n03850492
-n04398951
-n03653583
-n04603729
-n03428226
-n03238586
-n03179701
-n03246933
-n03063968
-n04480033
-n03092883
-n03011741
-n02789487
-n03735963
-n04061681
-n04130143
-n04247736
-n03231368
-n03630262
-n04608329
-n04164868
-n03164722
-n03201208
-n03202354
-n04067921
-n03367059
-n04380533
-n04057981
-n03237340
-n03018349
-n03742115
-n02804414
-n03131574
-n02970534
-n03125729
-n03001627
-n04447861
-n04326896
-n04256520
-n03858418
-n02828884
-n03649674
-n03002711
-n04099969
-n04373704
-n04429376
-n04331277
-n03632729
-n03518445
-n02738535
-n04590933
-n03376595
-n04576002
-n03790953
-n02791124
-n03262932
-n04062428
-n03786621
-n04593077
-n03168217
-n02946270
-n03801880
-n04382438
-n03380724
-n04177755
-n03165096
-n03100346
-n03693474
-n03015149
-n04344873
-n03891251
-n03360622
-n03920867
-n04177820
-n04590021
-n03016953
-n03518305
-n02843553
-n03508101
-n03666591
-n06791372
-n03099945
-n03141702
-n03243218
-n03626760
-n03904909
-n03800933
-n04200537
-n04198797
-n03699975
-n03088707
-n02776205
-n04294212
-n03339643
-n03738472
-n02676261
-n04474466
-n03008976
-n02688443
-n04114844
-n03929660
-n03287351
-n03320046
-n03553019
-n03175604
-n02678897
-n04461879
-n04359589
-n03851341
-n04331639
-n04450749
-n03923918
-n03574816
-n03074855
-n04074963
-n03302790
-n03075768
-n04554406
-n04210120
-n04562262
-n02855089
-n04526964
-n02895606
-n02730265
-n04226826
-n03467796
-n04081844
-n03614007
-n03269401
-n02729965
-n03345837
-n03111899
-n04069276
-n02694426
-n03277771
-n04252331
-n03525827
-n03744840
-n03613294
-n03827536
-n04263760
-n03568117
-n03180969
-n02895438
-n03565288
-n02683558
-n03537241
-n03267972
-n04228054
-n03664675
-n04258333
-n03272239
-n04041069
-n03423479
-n03099147
-n04265275
-n04330267
-n03031422
-n03728437
-n07273802
-n06793231
-n06794110
-n06874185
-n03269203
-n02981321
-n03582959
-n04375405
-n03307792
-n02988963
-n03580518
-n04338517
-n03279153
-n03614532
-n04586932
-n02803349
-n03915437
-n03254862
-n03025886
-n02787622
-n04615226
-n04132603
-n03467517
-n02880546
-n04224842
-n03698360
-n03716887
-n03716966
-n03495258
-n02676566
-n03499907
-n04506289
-n03272010
-n04536153
-n04536866
-n02992211
-n04536335
-n04536595
-n04330998
-n04419642
-n03273551
-n04376400
-n03928116
-n03039015
-n03854065
-n02672831
-n03452741
-n04515003
-n04278353
-n03738066
-n02766792
-n03086457
-n03496296
-n04278247
-n03840681
-n04598582
-n02891788
-n03854815
-n03393324
-n04579667
-n03945615
-n03609397
-n03372029
-n02817799
-n03228016
-n04222847
-n02804610
-n03838899
-n03037709
-n04141076
-n02793089
-n02912894
-n03369276
-n03394916
-n04487394
-n03110669
-n03494537
-n03494278
-n03086670
-n03006626
-n03884397
-n02775483
-n03343354
-n03912218
-n03245724
-n02803934
-n02804252
-n02804123
-n03301568
-n03483230
-n02869249
-n03447721
-n04532831
-n04311174
-n03721384
-n03440682
-n03017168
-n03612965
-n03720891
-n03249569
-n03157348
-n02869737
-n02803666
-n04387400
-n04249415
-n04410086
-n04243941
-n03996416
-n03999992
-n02769290
-n04004475
-n03702248
-n03789946
-n04252653
-n02977058
-n03322940
-n03082979
-n04613939
-n03765561
-n04303357
-n03997484
-n03087069
-n04303497
-n04237423
-n04417180
-n04064401
-n02938886
-n04525305
-n04243546
-n02760199
-n03418915
-n02829596
-n03551395
-n04024274
-n03007591
-n03563200
-n04004767
-n03250405
-n03672827
-n03643737
-n03675235
-n04419868
-n03985069
-n04505036
-n02794664
-n04595285
-n03225777
-n02909285
-n03571942
-n04184435
-n03240892
-n03460040
-n03646296
-n03766044
-n03287733
-n03273061
-n03507963
-n03596285
-n02761557
-n02687423
-n03433877
-n04309049
-n03579982
-n04591517
-n03424630
-n03193107
-n03859000
-n04040373
-n04099175
-n03321103
-n02872333
-n04265904
-n02700064
-n04587404
-n04304375
-n03616763
-n03146846
-n03500699
-n03075634
-n04428191
-n03496892
-n03210245
-n03496612
-n04238763
-n06359193
-n03528523
-n04175147
-n03196324
-n04358117
-n04603399
-n03918480
-n03985232
-n03180011
-n03832673
-n03956785
-n03642806
-n03485407
-n03914337
-n04561422
-n03736064
-n03063485
-n04477219
-n04587559
-n03272125
-n03996145
-n02911332
-n03034663
-n03000684
-n04380916
-n04121728
-n02786837
-n04279462
-n03689157
-n03604156
-n03452267
-n02666196
-n02679257
-n03483823
-n04171831
-n04594489
-n03106898
-n03510244
-n02934168
-n03760310
-n04471632
-n03666362
-n03020034
-n03336575
-n03604843
-n04402984
-n03898129
-n04401828
-n03995265
-n03307037
-n03300443
-n03268918
-n04004990
-n03995535
-n03350602
-n03373237
-n03251932
-n04573937
-n04334365
-n03861271
-n04520784
-n04332243
-n02688273
-n03843555
-n04216634
-n04398834
-n03066849
-n03407865
-n02710201
-n04040759
-n03736970
-n04110955
-n04112430
-n02969010
-n03096960
-n03996849
-n02761392
-n02677718
-n03102859
-n03431243
-n04392764
-n03339529
-n04289027
-n04011827
-n02709367
-n03446268
-n04568069
-n03700963
-n04167346
-n04021798
-n03432129
-n04088797
-n02918595
-n03532672
-n04228215
-n03119510
-n04063154
-n04371774
-n04590746
-n04586581
-n04586421
-n03189083
-n04211528
-n03296081
-n02903204
-n03150232
-n04282494
-n03082807
-n02686227
-n02962200
-n03198500
-n02973017
-n04475411
-n03431745
-n04306592
-n02692086
-n04154152
-n04020298
-n04574999
-n03559999
-n03659809
-n03566329
-n03767203
-n04563204
-n04101701
-n02836035
-n02980036
-n03460147
-n04115144
-n03334912
-n04543772
-n04563413
-n02974003
-n04289690
-n03944341
-n03992509
-n03430551
-n03244919
-n03874293
-n04113194
-n04290507
-n02833793
-n03943115
-n04051549
-n02764505
-n04154340
-n03456299
-n03425413
-n02835724
-n04354487
-n03487886
-n02995871
-n03329302
-n04102406
-n02966193
-n04510706
-n03054901
-n03393761
-n03209359
-n02860415
-n04067472
-n04211857
-n02848523
-n03473227
-n03032811
-n04111668
-n03873699
-n03563460
-n03320421
-n03208556
-n04019541
-n02890188
-n04448361
-n03397947
-n03954393
-n04385799
-n03712111
-n04519153
-n04313503
-n03450018
-n03602883
-n04072193
-n04372370
-n02783459
-n02927887
-n04438507
-n03374649
-n03325088
-n04422875
-n02727141
-n03775636
-n04327682
-n04445952
-n04027023
-n03186818
-n03537412
-n03793850
-n03222516
-n02826589
-n03363549
-n03795758
-n03469493
-n03103396
-n03301833
-n02686379
-n03432061
-n03389611
-n04579432
-n04218564
-n03743279
-n03506560
-n02824448
-n03123917
-n03028596
-n03201529
-n04275548
-n03794056
-n03680858
-n04568557
-n03819994
-n03639077
-n03352628
-n04529962
-n04283255
-n04283096
-n04112252
-n03357716
-n04117464
-n03536122
-n04592741
-n03303217
-n03271574
-n02887079
-n03176386
-n02768114
-n04320973
-n03933933
-n03934042
-n02767433
-n04190052
-n03638883
-n02783994
-n04283378
-n02797692
-n04314914
-n02887209
-n03938401
-n02817031
-n04098513
-n03057920
-n03495570
-n04081044
-n02888569
-n04386051
-n02871005
-n04341414
-n03506184
-n04161358
-n04430475
-n03490884
-n04038440
-n03495039
-n02953455
-n03632577
-n02871439
-n03719343
-n03814639
-n03622839
-n02713003
-n02768655
-n02737660
-n03505133
-n03019685
-n02741475
-n04148579
-n03105467
-n04190376
-n04220036
-n04094720
-n04515129
-n02886599
-n04476831
-n02815950
-n04590263
-n03223686
-n04318787
-n03592773
-n03073977
-n03988170
-n04360798
-n02974348
-n03443149
-n03821518
-n02864593
-n03637181
-n04402449
-n03733131
-n04436329
-n04119751
-n04433585
-n04045644
-n03437941
-n04436185
-n03366974
-n03601840
-n02970685
-n03937931
-n03955489
-n04123740
-n03002096
-n02835915
-n02910145
-n02770830
-n04325041
-n03288886
-n04485082
-n04275175
-n03704549
-n03801760
-n02943871
-n03262809
-n02759257
-n04009801
-n03340723
-n03643253
-n03656484
-n03838298
-n03087366
-n02943241
-n02709101
-n03094159
-n04355933
-n03309465
-n03333711
-n03395859
-n03987376
-n03049782
-n04403413
-n04583212
-n03967396
-n04147495
-n03733925
-n04565375
-n03467068
-n03231160
-n02708711
-n03813176
-n03852280
-n03739693
-n03575958
-n02981911
-n03308152
-n04419073
-n04089836
-n04383015
-n03070193
-n03760944
-n02670382
-n04340521
-n03709206
-n03092656
-n04403638
-n03760671
-n02751295
-n03293863
-n03852688
-n04044716
-n04070207
-n03333129
-n04068601
-n02978478
-n03822767
-n04145863
-n03715114
-n03279508
-n03332989
-n03667829
-n02841506
-n03484931
-n03850053
-n03082280
-n03692522
-n03868643
-n03247083
-n04070415
-n04053508
-n02794156
-n03904782
-n04421872
-n02751215
-n03735637
-n03429288
-n04437953
-n02710600
-n02939866
-n03991837
-n04382880
-n04141975
-n04392113
-n03753077
-n03554460
-n04180888
-n04118776
-n02699915
-n04029734
-n03736470
-n04559730
-n04518343
-n02710429
-n03424862
-n04001499
-n03718335
-n04274985
-n02753394
-n03046257
-n04555897
-n04355338
-n04438304
-n03544143
-n03452594
-n03196217
-n02694662
-n04548280
-n02708093
-n03909406
-n03145147
-n03197337
-n02708433
-n03973839
-n04607869
-n04328186
-n03891332
-n03026907
-n04528968
-n03759661
-n02777100
-n02708555
-n03277459
-n03272810
-n03841143
-n02702989
-n04273796
-n03842986
-n04561287
-n04541320
-n03708843
-n04449966
-n03467984
-n02879718
-n02880393
-n02892948
-n03624134
-n04373894
-n04346157
-n04008634
-n02715712
-n03343853
-n04177041
-n02689274
-n03423306
-n03875955
-n02950826
-n02759963
-n03948459
-n04502851
-n03732020
-n03803116
-n04090263
-n04076284
-n04171459
-n02760429
-n03416775
-n03695857
-n04171629
-n02760855
-n02749479
-n02760658
-n03701391
-n04347519
-n02923682
-n04517211
-n03607659
-n04450133
-n03073296
-n03178674
-n04086273
-n03427202
-n03363749
-n03802007
-n04250224
-n04585980
-n02961451
-n03136369
-n03687928
-n03615790
-n02812949
-n03699591
-n03158885
-n04054361
-n03327691
-n02904640
-n02987492
-n04121511
-n03292475
-n03375575
-n02916350
-n02950943
-n03080633
-n04015908
-n02745611
-n03178000
-n03706229
-n03080497
-n02841315
-n04272054
-n04009552
-n04403925
-n03443912
-n04356056
-n04238617
-n03399761
-n03795976
-n03864692
-n03555662
-n02963503
-n04376876
-n04317175
-n03643149
-n03858183
-n04364545
-n04083800
-n03514451
-n03938037
-n04056180
-n03302671
-n04477387
-n04080833
-n04251144
-n03868863
-n02731629
-n03876231
-n04287747
-n02889646
-n03484576
-n03323703
-n04162706
-n03652932
-n04125853
-n02891188
-n03803284
-n02999936
-n02865665
-n02910353
-n03627232
-n03041114
-n03051249
-n02982599
-n03940256
-n03229244
-n04153751
-n04238321
-n02928608
-n04159354
-n03887185
-n03682487
-n04431745
-n03683606
-n03038281
-n03043958
-n02960690
-n03804744
-n04445327
-n03836451
-n02881906
-n02880189
-n03644858
-n03497352
-n04095342
-n03476313
-n04227900
-n03499354
-n02903126
-n02860640
-n02796318
-n04127249
-n04197781
-n03057541
-n04554871
-n03423719
-n03503477
-n03855604
-n03874599
-n04136800
-n03645011
-n03075370
-n03223162
-n03886762
-n02915904
-n03476684
-n03551084
-n03208938
-n03250089
-n04505470
-n04036303
-n03085013
-n03928814
-n03033362
-n04168199
-n03589513
-n03098140
-n04401949
-n03034244
-n03968293
-n03275681
-n03163222
-n04470953
-n04257986
-n02715229
-n02955247
-n04269270
-n04072960
-n04364160
-n04257790
-n02810471
-n04414675
-n03048883
-n04595855
-n03084420
-n03577090
-n03778817
-n04004210
-n03578656
-n03125057
-n03033986
-n03788047
-n03274561
-n03261776
-n03759954
-n03691459
-n04402580
-n03505667
-n03087816
-n02963692
-n04502670
-n02917377
-n04390873
-n04599124
-n04349401
-n03846772
-n03204955
-n04041747
-n04404817
-n03207305
-n04142999
-n04610274
-n04540547
-n03359285
-n03651388
-n03870980
-n04013729
-n04258138
-n03773035
-n03485198
-n02965783
-n04059947
-n03861842
-n02921756
-n02761834
-n04201064
-n03343737
-n04058594
-n04143140
-n04494204
-n03211117
-n03918737
-n03221351
-n04464615
-n03793489
-n02714751
-n03506727
-n02823124
-n04484432
-n03913343
-n03085219
-n03782190
-n04152593
-n03196598
-n03676759
-n03361380
-n04588739
-n03187268
-n02940570
-n03085602
-n02769075
-n02988066
-n03027250
-n03070059
-n03525454
-n04538552
-n02948557
-n03031152
-n02947818
-n03746005
-n03746155
-n02935017
-n03851787
-n03706653
-n03744276
-n03708036
-n04063868
-n02763306
-n03079230
-n04533946
-n02988679
-n02988486
-n02757061
-n03492542
-n03209910
-n03359436
-n04052757
-n04534359
-n02979399
-n04391838
-n03924069
-n03694639
-n04178190
-n03636248
-n03665366
-n03358172
-n03640988
-n02948072
-n03818343
-n04534895
-n04384910
-n03423877
-n03844045
-n03549897
-n03370387
-n04335886
-n04286575
-n03272383
-n03590841
-n03018712
-n03359137
-n03665924
-n03911767
-n03503997
-n04107743
-n04339879
-n03318294
-n04148703
-n04160847
-n03824713
-n02852173
-n04456115
-n03365374
-n03401129
-n03442597
-n03187037
-n04529108
-n03975232
-n03668279
-n03482523
-n04371050
-n03772584
-n04164757
-n03544238
-n04288272
-n04116098
-n03066359
-n02886321
-n03525074
-n04585745
-n03281145
-n03126707
-n04575824
-n03178430
-n03733281
-n03078287
-n03820728
-n03440216
-n04080138
-n03302938
-n03738241
-n03085915
-n04141712
-n04082886
-n04545858
-n04041544
-n04400289
-n04402746
-n03578055
-n03580845
-n04404412
-n04137897
-n04365328
-n03072201
-n03681477
-n04358491
-n03300216
-n04595028
-n04008385
-n03674440
-n04366116
-n03401279
-n03957315
-n04488202
-n04555700
-n03206908
-n02893692
-n03210683
-n03991062
-n02920658
-n04074185
-n03147509
-n02774152
-n02978881
-n03256032
-n02773037
-n03733805
-n03438257
-n03875806
-n03733644
-n03291819
-n04183329
-n03935335
-n02801938
-n04179712
-n04139859
-n03994614
-n02946921
-n04576211
-n04600312
-n02839910
-n02949542
-n03779370
-n02964843
-n04533700
-n02975212
-n02974697
-n04531098
-n03233905
-n04060904
-n03871083
-n04560292
-n02883344
-n03062336
-n03920288
-n03456024
-n04176190
-n04499062
-n04350581
-n02880940
-n02978753
-n04050933
-n02927764
-n04130257
-n03775546
-n03984759
-n02997910
-n04263257
-n04023695
-n04103769
-n02682922
-n04254120
-n02754103
-n03571280
-n03174731
-n02815749
-n03629520
-n03063073
-n03002948
-n04397452
-n03216710
-n03301940
-n04207343
-n03055418
-n04083309
-n02769748
-n04122685
-n02816656
-n04134008
-n02970408
-n03883524
-n03253886
-n02870676
-n04452528
-n03709823
-n04026417
-n03235796
-n03291963
-n04124098
-n04122825
-n03993180
-n04204081
-n04446844
-n03414029
-n03619793
-n03958227
-n03445617
-n04235860
-n03469903
-n03461288
-n04284572
-n03972524
-n04544450
-n03321563
-n03521899
-n03898395
-n03372549
-n04496872
-n04559910
-n02918831
-n03676623
-n04249882
-n04206225
-n02823750
-n04119360
-n03443371
-n04592099
-n03062245
-n04131690
-n03914438
-n03883385
-n03050864
-n03482405
-n02893608
-n04204238
-n04582349
-n03764736
-n02823510
-n04255586
-n03904433
-n02946509
-n04103364
-n03791053
-n04170037
-n04509417
-n04543158
-n02804515
-n03484083
-n02766534
-n02834778
-n03538634
-n04467099
-n02959942
-n04482393
-n02740533
-n04065272
-n04464852
-n04252077
-n02916179
-n03684823
-n04335435
-n03791235
-n04465501
-n03384352
-n02740300
-n02739889
-n03256788
-n02946348
-n04520382
-n04211219
-n03193597
-n03272562
-n04389854
-n04465358
-n04310018
-n03193260
-n03193423
-n03506880
-n04490091
-n02704792
-n03389761
-n03790512
-n03444034
-n02958343
-n04252225
-n03345487
-n04520170
-n04467665
-n04474035
-n03417042
-n03632852
-n04461696
-n03256166
-n04465666
-n03930630
-n03173929
-n03796401
-n03896419
-n03977966
-n02871314
-n04466871
-n03785016
-n02814533
-n03680512
-n03777568
-n03268790
-n03770679
-n03100240
-n03079136
-n02930766
-n04201733
-n04037443
-n03498781
-n04097373
-n02831335
-n04285965
-n04166281
-n03594945
-n03670208
-n03141065
-n02701002
-n04516354
-n04322801
-n04347119
-n03870105
-n03543394
-n04285008
-n03119396
-n03122295
-n02970849
-n03538406
-n03255899
-n03599486
-n03981924
-n03868242
-n04397027
-n03648431
-n04176068
-n02797295
-n04204347
-n03490119
-n02835271
-n04126066
-n04026813
-n03792782
-n02968473
-n03435991
-n02912557
-n04297098
-n03389889
-n02775039
-n03393912
-n03895866
-n02932523
-n02885108
-n04389521
-n03828020
-n04020912
-n03200357
-n04246855
-n04065789
-n02747177
-n03678558
-n04134523
-n03935116
-n02900705
-n03078995
-n03210372
-n03619650
-n04548362
-n02962843
-n03986355
-n03214582
-n03031012
-n04200000
-n03468821
-n02755140
-n03683995
-n04608435
-n04556533
-n02774630
-n03438863
-n03487533
-n04137217
-n02773838
-n04491769
-n03498441
-n03420345
-n04570815
-n02967294
-n03986949
-n03865371
-n04518764
-n02863750
-n03355768
-n02881193
-n03633091
-n02876657
-n02877266
-n03990474
-n03950228
-n02808440
-n03786901
-n02909870
-n03241496
-n03129001
-n04591887
-n04001265
-n04493381
-n03572321
-n04438897
-n02801525
-n03784270
-n02758960
-n03029445
-n02795169
-n04388743
-n03593526
-n02993368
-n04447028
-n03350204
-n04149083
-n04263336
-n04246060
-n03983396
-n04557648
-n03603722
-n02985963
-n03449451
-n03937543
-n02962061
-n03359566
-n02823428
-n03571625
-n03174450
-n04579056
-n03140431
-n04591713
-n02960903
-n03923379
-n04579145
-n04560804
-n03521675
-n03295246
-n04422727
-n02952374
-n04518132
-n03709363
-n03595409
-n04139140
-n04398044
-n03259401
-n04516214
-n04324297
-n03612814
-n02939185
-n03915118
-n04397768
-n03063689
-n03064250
-n04132985
-n04399158
-n04225031
-n03543603
-n03379343
-n03797390
-n03693707
-n04389430
-n03063599
-n04443766
-n02824058
-n02836174
-n02843158
-n04553703
-n02788572
-n02823335
-n04592005
-n03610418
-n03426134
-n04560113
-n04173046
-n02732072
-n04078574
-n04562935
-n04049303
-n02951703
-n02705429
-n03101664
-n02815834
-n04516116
-n03725600
-n04522168
-n03133415
-n03593122
-n03960374
-n04476259
-n02982515
-n03259009
-n03004275
-n04131929
-n03416900
-n03565830
-n03543735
-n03858085
-n04255163
-n02747802
-n03871628
-n02919414
-n03167978
-n02778456
-n03500389
-n03870672
-n02782681
-n02971356
-n03064758
-n04200258
-n04253057
-n03908618
-n03127925
-n02786331
-n04589325
-n03014705
-n04340750
-n02998003
-n03710193
-n02978055
-n02836392
-n03871724
-n04452615
-n04462011
-n03064350
-n03535024
-n04477548
-n02989099
-n02977438
-n04125257
-n02976939
-n04125021
-n04469813
-n03002341
-n04214282
-n04019101
-n04172342
-n03538179
-n04524313
-n04231693
-n04103918
-n04467307
-n04196502
-n03678362
-n03306385
-n04212165
-n04468005
-n02924116
-n03680942
-n03394272
-n03896233
-n04349306
-n03711044
-n03394480
-n03078802
-n02917067
-n04487081
-n03769881
-n04146614
-n04310157
-n02918964
-n04099429
-n03764276
-n03773504
-n03125870
-n04235291
-n03478589
-n04389033
-n03886053
-n03919096
-n03549199
-n02686568
-n04530566
-n04264914
-n03547229
-n03510583
-n04308084
-n03666917
-n03491032
-n03439814
-n03512147
-n04552348
-n02691156
-n02759387
-n02867715
-n02704645
-n04012084
-n02690373
-n02842573
-n03365231
-n03595860
-n03335030
-n04308273
-n04160586
-n02686121
-n04583620
-n03604311
-n03596543
-n04308397
-n03577672
-n02692877
-n02850950
-n02782093
-n03541923
-n02858304
-n04476116
-n04610013
-n04194289
-n04128837
-n02792409
-n03662601
-n03977592
-n03447447
-n04158807
-n02792552
-n04095210
-n04495843
-n04024983
-n03939178
-n04244997
-n03329663
-n04409128
-n02947660
-n03344393
-n03790230
-n03236423
-n03981566
-n03545470
-n04229480
-n02951358
-n03199901
-n04037964
-n03105306
-n04612504
-n03436891
-n03602081
-n04115456
-n03609235
-n03861430
-n03254374
-n04038231
-n04038338
-n04273569
-n03859170
-n02932891
-n03552749
-n04197110
-n04606251
-n03896103
-n03947888
-n03668488
-n03541269
-n04309348
-n02965300
-n04224543
-n04552696
-n03673027
-n03698604
-n02965216
-n03141327
-n03874138
-n04317063
-n02878222
-n03095699
-n02784124
-n03845190
-n04347754
-n03466493
-n03397266
-n02812201
-n03466600
-n02687172
-n03718212
-n03180504
-n02755529
-n03811295
-n04612373
-n03045228
-n03327133
-n04242408
-n03612010
-n03186285
-n04128499
-n02793199
-n04147183
-n04587327
-n04483307
-n02981792
-n02982416
-n04266014
-n04264765
-n03218198
-n02860847
-n02861022
-n04336792
-n03122202
-n06271778
-n06255081
-n06263609
-n06276697
-n06272290
-n06276501
-n06277280
-n06281040
-n06277135
-n06278338
-n06278475
-n06274760
-n06272803
-n06272612
-n06263369
-n06266417
-n06595351
-n06267145
-n06596607
-n06596727
-n06596364
-n06596474
-n06267893
-n06267564
-n06267655
-n06266633
-n06267991
-n03938244
-n03872495
-n04135315
-n02823964
-n03408444
-n02967626
-n04053677
-n04151940
-n04453910
-n03380867
-n04014297
-n03045698
-n04605726
-n04513827
-n03050026
-n03724870
-n03341153
-n03366823
-n03058107
-n02952237
-n03357376
-n03221059
-n03376279
-n03956623
-n03261603
-n02944459
-n04201297
-n02954938
-n03717622
-n03661340
-n04041243
-n02877765
-n03825788
-n03047690
-n04199027
-n02735538
-n02872752
-n03361550
-n04241394
-n03865949
-n04122578
-n04239786
-n03027625
-n04124370
-n04272389
-n02904927
-n04593524
-n04545748
-n02855701
-n02713364
-n03041449
-n03411079
-n03680355
-n04120489
-n03868406
-n02882894
-n03967270
-n04022332
-n04133789
-n03025250
-n04027706
-n04386664
-n03364008
-n03297103
-n03600475
-n02925666
-n04228581
-n03521544
-n04089666
-n04116294
-n03516844
-n04542715
-n03124043
-n03798061
-n02873733
-n03067518
-n03046133
-n04554211
-n04444749
-n03797896
-n04192858
-n02888270
-n04151581
-n04187233
-n02826068
-n04181718
-n04191943
-n04281375
-n04416005
-n04105068
-n03314608
-n03530910
-n04187061
-n02955065
-n03725035
-n03315644
-n03142679
-n02937958
-n02739668
-n02840245
-n02840619
-n03546766
-n02851099
-n03673767
-n03959701
-n03539433
-n02740764
-n02895154
-n03513376
-n02950632
-n03623338
-n03929855
-n04130907
-n04589890
-n03347037
-n04590553
-n03788365
-n03637318
-n03889871
-n03652729
-n02825657
-n04172776
-n02843684
-n02951843
-n03610524
-n02763901
-n04507155
-n03415252
-n03409591
-n04357121
-n03718789
-n03220513
-n03522100
-n04435653
-n03546235
-n04523525
-n04234887
-n03413684
-n04417672
-n03148727
-n03435593
-n03847471
-n02796207
-n04087709
-n03527444
-n04141327
-n04207763
-n03548086
-n04423845
-n03213538
-n03657121
-n03424325
-n03314378
-n04229816
-n02983189
-n02862048
-n04192698
-n03000247
-n02916936
-n03112719
-n03146219
-n02933340
-n04045255
-n02873520
-n04589190
-n03592669
-n03151077
-n04211356
-n04525584
-n04590129
-n04102285
-n04418357
-n04209239
-n02925107
-n02890513
-n03436549
-n03291741
-n02992368
-n07248320
-n03590306
-n03958752
-n04207151
-n03885293
-n03654576
-n02767665
-n03114379
-n02785648
-n02876084
-n04240752
-n02820210
-n04236377
-n02851939
-n03309356
-n04231272
-n04162433
-n02786058
-n04369025
-n02979836
-n03267821
-n04033995
-n02683323
-n02849154
-n02822220
-n03731483
-n03898633
-n03266749
-n03128427
-n03123553
-n04034262
-n04046400
-n03688405
-n04118021
-n03223299
-n03727837
-n04144539
-n04183217
-n03998194
-n02904233
-n04297847
-n04066270
-n02908773
-n03353951
-n03445326
-n04528079
-n03875218
-n03805725
-n03437430
-n03115897
-n03284743
-n04525417
-n03342015
-n03284886
-n03285578
-n03844233
-n04557308
-n03646020
-n04581102
-n03261019
-n03973402
-n03642444
-n04450994
-n04084889
-n04412097
-n03337383
-n03729308
-n03970546
-n03802393
-n04395024
-n04525038
-n02809105
-n03615406
-n02828427
-n04123567
-n03188725
-n04539794
-n03253796
-n03013850
-n03115400
-n04459610
-n03132666
-n03885194
-n03019938
-n03326795
-n03115180
-n04525191
-n04138261
-n03625355
-n04137355
-n04003856
-n03356982
-n04568841
-n03409297
-n02944579
-n04605163
-n02977330
-n04395106
-n03779128
-n02904803
-n04524941
-n04198453
-n02878425
-n03703862
-n03819595
-n03877351
-n04613015
-n03914831
-n03932670
-n03785237
-n04414476
-n04056932
-n02675219
-n03106722
-n03917814
-n03016868
-n02922798
-n04432662
-n02802990
-n03631177
-n04189282
-n03435743
-n03983612
-n03175189
-n03357267
-n04184316
-n02942460
-n03836906
-n03233123
-n03430091
-n03855214
-n03386726
-n03437741
-n04599235
-n04350458
-n04383839
-n03653110
-n04502502
-n03854421
-n02952109
-n03298858
-n03160740
-n03843438
-n04393549
-n02903852
-n03947798
-n03529444
-n04482297
-n03227317
-n03595523
-n03429914
-n04496614
-n03016609
-n03485794
-n03463666
-n03258330
-n03207743
-n04459362
-n02786198
-n03471190
-n02834397
-n04127904
-n03897943
-n03490006
-n03887697
-n03207835
-n03381776
-n03383099
-n04278447
-n03505383
-n04455652
-n03712337
-n02782602
-n03598151
-n03775747
-n03410571
-n03696568
-n04307767
-n03645577
-n03358380
-n04208065
-n03809603
-n02820556
-n03703730
-n03938522
-n04045397
-n03663531
-n03662719
-n03703945
-n03662887
-n04326084
-n02897820
-n14943580
-n14785065
-n15074568
-n14820180
-n04035912
-n03766935
-n04313628
-n03530511
-n03460297
-n03149686
-n03455488
-n03344642
-n03796522
-n03043693
-n02681392
-n04339638
-n15102455
-n04234455
-n03341297
-n04453390
-n14908027
-n14976759
-n03111177
-n03282401
-n03451798
-n03292603
-n03815149
-n03723267
-n02892304
-n07621618
-n02732572
-n03178782
-n02681518
-n03397087
-n03635108
-n04395651
-n03762602
-n03282591
-n06883725
-n03516367
-n04682462
-n03354903
-n02788021
-n04458633
-n03140292
-n03362890
-n05244934
-n11487732
-n03597469
-n03397532
-n03649161
-n03914106
-n02787435
-n03030262
-n02685082
-n02887970
-n02852043
-n03909020
-n03814906
-n03436075
-n03899328
-n04096066
-n03895293
-n04215402
-n04461570
-n03904183
-n03519981
-n02969323
-n04426618
-n04466613
-n03215508
-n03306610
-n02744323
-n02762508
-n02758863
-n04335209
-n04334599
-n03948242
-n03539678
-n02680512
-n03089014
-n03895585
-n04493505
-n04244379
-n04250850
-n04562496
-n02984469
-n02795528
-n03944672
-n03533014
-n04385536
-n03231912
-n03147280
-n04257684
-n04497962
-n04298661
-n03415749
-n02981024
-n04048441
-n04391569
-n02784218
-n03572107
-n02680337
-n03957420
-n02992795
-n03506028
-n03438071
-n04440749
-n02739427
-n04040247
-n02971167
-n04381994
-n04087432
-n03153375
-n03438661
-n03527149
-n03963198
-n04284002
-n04380346
-n03383948
-n04284438
-n04263502
-n04398688
-n04350769
-n04597913
-n03557270
-n04381073
-n03180384
-n02976249
-n02928049
-n04307986
-n04380255
-n02973805
-n02687992
-n04406817
-n02693246
-n02692232
-n03745146
-n04329190
-n04306080
-n04551055
-n03452449
-n03131669
-n03768916
-n03214253
-n03587205
-n03406966
-n03093574
-n03672352
-n03051540
-n02729837
-n03655720
-n03456186
-n02855925
-n03825080
-n04015204
-n03859495
-n03815482
-n03625943
-n03692379
-n02728440
-n03068998
-n03763968
-n03502509
-n03877472
-n03419014
-n02742322
-n04596852
-n03863108
-n03441112
-n02671780
-n02846141
-n03381126
-n02756098
-n04059157
-n02814774
-n03746330
-n04335693
-n04241249
-n04194127
-n03863262
-n04001845
-n02738859
-n03386870
-n03216402
-n02730930
-n04207903
-n03121897
-n03015478
-n03268645
-n04266375
-n03623198
-n03450516
-n04532106
-n03010795
-n02669723
-n02811719
-n03324928
-n03239259
-n03615563
-n03513137
-n03531281
-n04498389
-n03497657
-n02954340
-n03124474
-n04432203
-n03379051
-n03492922
-n03127747
-n04356595
-n03404360
-n03124170
-n02817516
-n02859184
-n04248507
-n03325941
-n02987379
-n04259630
-n04482177
-n02818135
-n03984643
-n02869837
-n03950899
-n02881757
-n03766322
-n03046029
-n03937835
-n02799323
-n03103563
-n04209133
-n03610682
-n02776825
-n03331077
-n04387095
-n02831237
-n04232153
-n03049924
-n04228693
-n04556408
-n02807133
-n03787032
-n04612026
-n02816768
-n03502331
-n04143897
-n04104770
-n03188531
-n04605572
-n04097866
-n04574067
-n03655072
-n04230808
-n04508163
-n04172904
-n04531873
-n04197391
-n03863923
-n03540090
-n02922578
-n04488530
-n04489008
-n04332580
-n03404149
-n03816005
-n04370774
-n03657511
-n04371563
-n03487642
-n04046277
-n04350905
-n04370048
-n03450734
-n03314884
-n03826039
-n02998841
-n03719743
-n03797182
-n03505504
-n04495698
-n03325584
-n04325704
-n03520493
-n03615655
-n03237992
-n03617480
-n02667093
-n02807616
-n03410938
-n04269822
-n03866082
-n03454442
-n03770439
-n03617312
-n03732458
-n02780815
-n03205669
-n04136333
-n03534580
-n03920737
-n02892767
-n03387323
-n04223299
-n03421324
-n03132776
-n04508949
-n02863014
-n02944146
-n04514241
-n03013580
-n04508489
-n03112869
-n03885788
-n04103665
-n03673450
-n03688192
-n02930214
-n04509171
-n03824381
-n02854739
-n04426427
-n02837887
-n02901114
-n03885028
-n03234164
-n04602956
-n03629231
-n03595614
-n03163381
-n03978966
-n03057021
-n03045337
-n04252560
-n04363777
-n03254046
-n04187970
-n03398228
-n03630383
-n03456665
-n03589791
-n04049405
-n02957008
-n04123448
-n03404251
-n03751269
-n04222307
-n02867966
-n03902756
-n04368496
-n03228254
-n02864504
-n03891051
-n03844815
-n04479046
-n03770954
-n04122492
-n03980874
-n04445154
-n04445040
-n03607923
-n04173907
-n04497570
-n04186455
-n02936402
-n04205318
-n03877674
-n04370288
-n04132158
-n02896442
-n03019434
-n04233715
-n03600285
-n03903733
-n03688605
-n03594734
-n03107488
-n03660124
-n04337287
-n02825442
-n02910864
-n03543112
-n02831595
-n03653833
-n03815615
-n03128085
-n02865351
-n04591157
-n02883205
-n02847631
-n03710721
-n04371430
-n02837789
-n03226538
-n03943920
-n04222470
-n03885669
-n02925519
-n04427715
-n04504141
-n04502197
-n02963159
-n04370456
-n04021028
-n04453666
-n03464053
-n02944075
-n03236735
-n02861387
-n02854926
-n03480579
-n03062015
-n04136161
-n02936570
-n04355511
-n03013438
-n04334105
-n03450230
-n03604400
-n03205574
-n02898585
-n04397645
-n02781121
-n03429682
-n03775071
-n03616979
-n02827606
-n03405595
-n03781683
-n03527565
-n02972397
-n03540267
-n04434932
-n04254777
-n04323819
-n03885904
-n03710637
-n02752496
-n04378956
-n03622931
-n02736798
-n03836976
-n03026506
-n03384891
-n03289985
-n03859958
-n02726017
-n03113657
-n03320519
-n03113835
-n03398153
-n04285803
-n02669534
-n03206718
-n03476083
-n03201776
-n02780704
-n03201638
-n03239054
-n02683454
-n04459018
-n04584207
-n03237416
-n02887489
-n02752615
-n03528263
-n03251766
-n04517823
-n03584829
-n04488857
-n03150511
-n04580493
-n04179913
-n04174101
-n03620052
-n03534776
-n04475631
-n04309833
-n03207941
-n04070727
-n04554684
-n03102654
-n03273913
-n03557590
-n03170635
-n04442312
-n03761084
-n04442441
-n03063338
-n03543254
-n04542943
-n03212114
-n03297495
-n04330340
-n03862676
-n03378174
-n03557692
-n03102371
-n03273740
-n03425595
-n04003241
-n02905036
-n04111531
-n03259280
-n03425241
-n03483316
-n03050655
-n04277826
-n04496726
-n04607242
-n02808304
-n03219010
-n04499446
-n02821030
-n03938725
-n04188179
-n04439712
-n03971218
-n03223553
-n02856463
-n03250279
-n03882058
-n03635668
-n02846511
-n04251791
-n04189816
-n02731900
-n04225987
-n04214046
-n04149813
-n04543996
-n03502200
-n03005285
-n03969259
-n04254009
-n04446521
-n04208936
-n04559451
-n03371875
-n03993053
-n04108268
-n03106110
-n03644378
-n02919890
-n04290079
-n03107046
-n04426788
-n02874537
-n04581829
-n03641569
-n03367545
-n04598965
-n04605321
-n00004475
-n00006484
-n12739332
-n00017222
-n00015388
-n01326291
-n11537327
-n00007846
-n12992868
-n00005787
-n12172906
-n13083586
-n13123431
-n11536673
-n11552806
-n13083023
-n13100156
-n12476510
-n11545524
-n11552386
-n13121544
-n12205694
-n13100677
-n13103136
-n13085113
-n13084834
-n13134302
-n13084184
-n12477163
-n12477583
-n12477747
-n12480895
-n12479537
-n12481458
-n11547562
-n11545714
-n13221529
-n13220122
-n13223265
-n13223588
-n13223710
-n12953206
-n13194572
-n13205058
-n12961879
-n12953484
-n13186654
-n13197274
-n13173882
-n13229543
-n13192625
-n13185269
-n13193642
-n13207335
-n13183056
-n13200651
-n13195341
-n13206817
-n13199970
-n12957924
-n13198914
-n13199717
-n13215586
-n13190747
-n13193856
-n13194036
-n11665372
-n11596108
-n12694486
-n11666854
-n11669921
-n11672400
-n12606438
-n12799776
-n11736694
-n12008487
-n11955896
-n12879527
-n12884260
-n12034141
-n12290748
-n12026476
-n12833149
-n11892817
-n12914923
-n11969607
-n11794024
-n12026018
-n11672269
-n12830222
-n11811473
-n12022054
-n11971406
-n11826198
-n12950314
-n11857875
-n11988596
-n11939699
-n11915214
-n11821184
-n12293723
-n11814584
-n11725015
-n12890265
-n11733312
-n11859472
-n11971248
-n11888800
-n11971927
-n12898774
-n11810358
-n11904109
-n11943407
-n11978233
-n12683407
-n12950126
-n11726707
-n11813077
-n11889619
-n11905749
-n11812910
-n11900569
-n12020184
-n11960245
-n11859737
-n12909421
-n12041446
-n12909917
-n11992806
-n11807979
-n11925303
-n11971783
-n11939491
-n11918473
-n11989869
-n11727091
-n11793779
-n11891175
-n11792341
-n11839568
-n11943660
-n11947802
-n12475242
-n11815491
-n12480456
-n11839823
-n11732567
-n12475035
-n12360108
-n12833985
-n11941924
-n11883328
-n11719286
-n11736851
-n11887119
-n12001707
-n11950345
-n11892637
-n11805956
-n11892029
-n11806219
-n12008252
-n11918286
-n11962272
-n12093600
-n12836862
-n12093329
-n11733054
-n12020507
-n11931918
-n11958080
-n12877838
-n11812094
-n11811706
-n11923174
-n12023726
-n12023407
-n11923637
-n11990313
-n11915899
-n12030908
-n12015221
-n11990167
-n11981192
-n11980318
-n11972759
-n11921395
-n12294124
-n12295796
-n12294723
-n12294331
-n12294871
-n12296432
-n12295033
-n11726269
-n11725821
-n11725973
-n12891305
-n12891643
-n11978713
-n11979527
-n11978961
-n11979715
-n12683571
-n12683791
-n11901759
-n11908549
-n11901294
-n11903671
-n11901977
-n11902389
-n11908846
-n11901597
-n11905392
-n11902200
-n11906917
-n12044467
-n12052787
-n12056217
-n12075830
-n12055516
-n12083113
-n12047884
-n12048056
-n12080820
-n12070381
-n12061380
-n12080395
-n12061614
-n12074408
-n12070583
-n12071744
-n12049282
-n12047345
-n12064389
-n12075010
-n12052447
-n12053405
-n12050533
-n12077944
-n12086539
-n12064591
-n12058822
-n12046028
-n12083591
-n12073991
-n12043444
-n12086012
-n12073554
-n12046815
-n12063639
-n12058630
-n12084890
-n12070016
-n12076223
-n12069679
-n12048399
-n12049562
-n12076577
-n12086192
-n12074867
-n12075299
-n12072722
-n12066018
-n12084555
-n12070712
-n12079963
-n12065316
-n12059314
-n12085664
-n12050959
-n12062468
-n12085267
-n12078172
-n12057211
-n12057447
-n12056758
-n12056601
-n12043836
-n12043673
-n12067193
-n12066630
-n12062781
-n12062626
-n11808299
-n11808721
-n11808932
-n11808468
-n11809594
-n11809094
-n11727358
-n11727738
-n11727540
-n11816649
-n11816336
-n11816829
-n11816121
-n11815918
-n11815721
-n12362274
-n12362668
-n12361946
-n11950877
-n11950686
-n11961100
-n12020736
-n12020941
-n11934616
-n11933546
-n11934807
-n12879963
-n12015959
-n11836722
-n11860555
-n12258885
-n11980682
-n12016567
-n11737534
-n11965627
-n11991263
-n11989393
-n12006766
-n12887293
-n12937130
-n12291959
-n11972291
-n11927215
-n12012111
-n11970586
-n11963932
-n11966215
-n11966083
-n12006930
-n12007196
-n11600372
-n11599324
-n11603246
-n11602873
-n11603835
-n11601333
-n12484784
-n12610328
-n11791569
-n11714853
-n13122364
-n11715430
-n11715678
-n12801781
-n11728099
-n11786131
-n12150028
-n12801520
-n11789066
-n11792742
-n12152532
-n12151615
-n12152722
-n11733548
-n11720353
-n12810595
-n12342299
-n13238375
-n12867826
-n12665048
-n11973341
-n12312728
-n11818069
-n12848499
-n11779300
-n12822955
-n12816508
-n12719684
-n12350758
-n12095020
-n11861641
-n11962667
-n12870891
-n12939282
-n12812478
-n12031927
-n12023108
-n12858150
-n12861892
-n12841007
-n12212361
-n12869061
-n12906214
-n12910285
-n12486574
-n12090890
-n12702948
-n12437513
-n11968931
-n11817914
-n11772408
-n12932173
-n12817694
-n11910460
-n12603449
-n12939874
-n12002428
-n12015525
-n11807108
-n12835331
-n12168565
-n12840362
-n12352287
-n11969166
-n11968704
-n12821895
-n12344283
-n11866248
-n11995092
-n12622875
-n11735053
-n12548280
-n13150894
-n12685431
-n12387633
-n12171966
-n12796022
-n12934036
-n12443323
-n12870535
-n12682668
-n12778605
-n12623077
-n12836212
-n11982115
-n12003696
-n12005656
-n12098403
-n12606545
-n11902709
-n12882945
-n12785889
-n11986511
-n12682411
-n12469517
-n12029635
-n12860365
-n12552309
-n11977303
-n11825351
-n12836337
-n12844939
-n12925179
-n11926833
-n12604228
-n11752578
-n12855042
-n11956850
-n12092262
-n12506991
-n12882779
-n11747468
-n12385429
-n12822115
-n12821505
-n12607456
-n12819728
-n12817464
-n12811027
-n12024445
-n12573474
-n12864545
-n11949402
-n11868814
-n11953038
-n12599435
-n12840749
-n13233727
-n12342498
-n12795555
-n11984542
-n12847008
-n12719944
-n11855274
-n12095647
-n12441183
-n12942572
-n12602980
-n12684379
-n12441390
-n12785724
-n11916696
-n12574320
-n12092417
-n12036939
-n11700058
-n12845413
-n11824146
-n11910271
-n11916467
-n11807525
-n12101870
-n11939180
-n12353754
-n12104501
-n12794985
-n12355760
-n12793015
-n12932966
-n12931542
-n12889713
-n12849061
-n11722466
-n11720643
-n12665857
-n12665271
-n11785668
-n11780148
-n11784497
-n11782036
-n11786539
-n11782761
-n12858871
-n12858397
-n11959632
-n11959862
-n12911673
-n12911440
-n12091213
-n12091550
-n12091377
-n12091953
-n12703557
-n12703190
-n12703383
-n12437930
-n12437769
-n12352639
-n12352844
-n12352990
-n12344700
-n12344483
-n12687957
-n12685831
-n12687698
-n12687462
-n12686274
-n12686077
-n12687044
-n12686676
-n12388989
-n12388143
-n12387839
-n12388858
-n12390099
-n12389501
-n12390314
-n12782915
-n12779603
-n12781940
-n12782530
-n11753700
-n11753355
-n11753143
-n12856680
-n12855494
-n12540250
-n12515711
-n12575322
-n12575812
-n12556307
-n12539306
-n12557681
-n12558425
-n12866162
-n12865824
-n12865037
-n12866635
-n12865562
-n12866002
-n11879054
-n11878283
-n11875691
-n11876634
-n11877193
-n11876803
-n11876432
-n11870418
-n11875938
-n11894327
-n11881742
-n11870747
-n11896722
-n11879722
-n11895092
-n11894770
-n11882074
-n11882426
-n13235503
-n13234678
-n12039317
-n12037691
-n12038406
-n12038585
-n12148757
-n12102133
-n12121610
-n12139575
-n12113195
-n12112918
-n12116429
-n12141495
-n12133462
-n12108871
-n12104238
-n12141167
-n12115180
-n12112008
-n12128071
-n12146311
-n12124627
-n12110778
-n12129134
-n12134025
-n12145477
-n12142085
-n12135898
-n12137120
-n12127030
-n12127768
-n12127460
-n12356023
-n12357485
-n12793494
-n12794135
-n12849279
-n12849416
-n12847374
-n12517642
-n11731659
-n12813189
-n11838916
-n12517445
-n12513172
-n12823859
-n12566954
-n13148208
-n12158798
-n12485981
-n13237188
-n12826516
-n13120211
-n12580654
-n11769621
-n12824053
-n11769803
-n12383402
-n12823717
-n12157769
-n13144794
-n12371439
-n12159055
-n12160490
-n12158443
-n12160303
-n12159388
-n12160857
-n12161969
-n12827270
-n12828791
-n12827537
-n11788727
-n11789589
-n12571781
-n11792029
-n12384839
-n12384227
-n12384037
-n12164363
-n12166128
-n12165170
-n12164881
-n12164656
-n13146583
-n13145040
-n12509476
-n13112664
-n13104059
-n12655869
-n12546183
-n12671651
-n12215579
-n12901724
-n12938193
-n12680864
-n12329260
-n12924623
-n12659356
-n12788201
-n12343480
-n13142504
-n11830906
-n12504783
-n12659539
-n12214789
-n11699442
-n12217453
-n12574866
-n12374418
-n12249542
-n13118707
-n12215022
-n12342852
-n12762896
-n12306717
-n11769176
-n12805146
-n12519089
-n11754893
-n12772908
-n12624381
-n12482031
-n12243109
-n12223764
-n12170585
-n12230794
-n12791329
-n12674120
-n12917901
-n12237486
-n12185859
-n12681893
-n12905412
-n12899537
-n12899752
-n12806015
-n12011620
-n12922763
-n12651229
-n12303083
-n11928352
-n11926365
-n12223569
-n12791064
-n12311579
-n11834654
-n11760785
-n12749679
-n12489815
-n12666965
-n12929403
-n12902662
-n12620196
-n12237641
-n12625383
-n12244153
-n11774513
-n12520864
-n12516828
-n12849717
-n12485653
-n12790430
-n12788854
-n11924445
-n12632335
-n11947251
-n12099342
-n11931540
-n12545635
-n11778257
-n11924849
-n12367611
-n12602262
-n12328567
-n12328398
-n12629305
-n11907689
-n11940006
-n12546962
-n11925898
-n11947629
-n11948864
-n11948264
-n12368451
-n12369309
-n12368028
-n12307240
-n12307076
-n12483427
-n12483625
-n12482893
-n12483841
-n12173664
-n12173912
-n12171316
-n12174521
-n12171098
-n12177844
-n12174311
-n12178896
-n12179122
-n12676534
-n12676703
-n12675876
-n12920204
-n12921868
-n12621410
-n12622297
-n12245319
-n12244650
-n12244819
-n12521394
-n12530818
-n12849952
-n12850336
-n12850168
-n12495146
-n12570972
-n12196129
-n13107694
-n12202936
-n13111881
-n13103877
-n12409231
-n12765115
-n12265600
-n12409470
-n12713866
-n12281241
-n11709205
-n12189429
-n12562785
-n12284821
-n12401335
-n12570394
-n11759224
-n12286988
-n12491826
-n12527738
-n12696492
-n12325234
-n12198286
-n12330891
-n11650558
-n12405714
-n12284262
-n12714755
-n13109733
-n12262553
-n12506341
-n12303462
-n12260799
-n12302071
-n12492106
-n11762433
-n12582231
-n12774299
-n13108481
-n12267411
-n11756092
-n12662772
-n13108662
-n12528549
-n12690653
-n12180885
-n13108545
-n13108323
-n12334293
-n12670758
-n12286826
-n12724942
-n12155009
-n12570703
-n12523475
-n12154773
-n12915811
-n12268246
-n13108131
-n12806732
-n12524188
-n11758799
-n12496427
-n12568186
-n12495895
-n12196527
-n12196336
-n12196694
-n12203529
-n12204175
-n12282933
-n12282527
-n12283542
-n12282737
-n12282235
-n12402051
-n12402840
-n12401684
-n12402348
-n12402596
-n11759853
-n11759404
-n12406715
-n12406488
-n12407890
-n12406902
-n12330469
-n12345899
-n11709674
-n12329473
-n12200143
-n11712282
-n12752205
-n13110915
-n12513933
-n12189987
-n12731401
-n12717224
-n12717072
-n12946849
-n12756457
-n12201580
-n11703669
-n12491017
-n12190410
-n12242409
-n07754894
-n12818346
-n12658308
-n12658118
-n12494794
-n12317296
-n12651821
-n11711764
-n11710136
-n11711537
-n11710393
-n12755225
-n12753573
-n12754648
-n12754781
-n12755727
-n12754981
-n12755387
-n12753007
-n12753245
-n12754003
-n12759273
-n12318378
-n12288823
-n12319204
-n12319414
-n12732491
-n12733647
-n12732756
-n12732009
-n12733870
-n12732966
-n12733218
-n12948495
-n12948251
-n12948053
-n12947313
-n12757303
-n12757458
-n11704093
-n11705171
-n12707781
-n12399132
-n12400720
-n12345280
-n11695599
-n12771192
-n12704343
-n12638218
-n12644902
-n12190869
-n12373100
-n12300840
-n12743352
-n12651611
-n12629666
-n12636224
-n12648045
-n12399384
-n12301180
-n12744387
-n12640839
-n12745386
-n12633638
-n12771390
-n12761284
-n12400489
-n12333530
-n12333771
-n12333053
-n12641413
-n12332030
-n12711984
-n12709901
-n12708293
-n12713063
-n12711596
-n12709103
-n12709688
-n12710415
-n12710295
-n12710693
-n12708654
-n12708941
-n12643313
-n12638753
-n12646740
-n12645174
-n12650379
-n12634429
-n12633994
-n12634211
-n12635532
-n12635955
-n12635744
-n12643473
-n12649065
-n12641931
-n12642200
-n12650556
-n12649539
-n12649317
-n12646605
-n12647560
-n12648888
-n12263987
-n12263038
-n12306089
-n12305986
-n12305293
-n12304703
-n12305475
-n12262018
-n12261808
-n12261571
-n12595699
-n12587132
-n12583126
-n12596709
-n12591351
-n12596849
-n12582665
-n12596148
-n12595964
-n12582846
-n12587803
-n12591017
-n12588320
-n12588780
-n12585629
-n12597134
-n12598027
-n12597466
-n12583401
-n12593994
-n12590232
-n11757653
-n11756669
-n11757851
-n11664418
-n13108841
-n11647703
-n11628793
-n11658331
-n11623105
-n11630017
-n11628456
-n11658544
-n11643835
-n11624531
-n11661372
-n11645914
-n11630489
-n11640132
-n11608250
-n11620673
-n11618861
-n11627168
-n11623815
-n11624192
-n11623967
-n11635152
-n11634736
-n11635433
-n11636204
-n11644462
-n11644226
-n11644046
-n11626585
-n11625632
-n11625003
-n11626826
-n11625804
-n11626152
-n11626409
-n11646694
-n11646167
-n11632167
-n11631854
-n11632619
-n11616662
-n11611561
-n11611356
-n11617631
-n11612575
-n11611758
-n11614713
-n11615387
-n11612018
-n11611087
-n11612923
-n11616486
-n11618290
-n11612349
-n11611233
-n11617090
-n11614250
-n11618525
-n11615026
-n11617272
-n11614039
-n11613459
-n11615967
-n11614420
-n11621029
-n11622184
-n11622591
-n11621281
-n11622368
-n11621950
-n11621547
-n11621727
-n11619455
-n11619227
-n11627512
-n11628087
-n11627908
-n12691661
-n12691428
-n12316572
-n12334891
-n12340755
-n12316444
-n12336727
-n12338796
-n12338454
-n12336973
-n12336092
-n12336224
-n12337617
-n12725521
-n12727101
-n12729521
-n12726670
-n12729315
-n12729729
-n12731029
-n12270741
-n12271643
-n12278650
-n12279458
-n12269241
-n12275489
-n12273114
-n12276872
-n12278371
-n12272883
-n12269652
-n12273768
-n12277800
-n12271933
-n12279772
-n12270946
-n12269406
-n12275675
-n12276628
-n12275131
-n12274358
-n12272239
-n12277578
-n12501202
-n12814643
-n12493208
-n12807773
-n12807409
-n12807251
-n11758122
-n12915568
-n12656369
-n12656685
-n12547215
-n12547503
-n11944196
-n11984144
-n11805544
-n11874081
-n11965218
-n12392549
-n11956348
-n11945514
-n11944954
-n11998888
-n11953884
-n11954345
-n11955153
-n11954161
-n12421137
-n12421467
-n12411461
-n12451915
-n12425281
-n12459629
-n12421683
-n12422129
-n12421917
-n12411922
-n12418221
-n12416073
-n12413165
-n12414932
-n12412606
-n12412355
-n12414035
-n12413880
-n12453186
-n12452836
-n12450344
-n12426248
-n12429352
-n12460697
-n12449526
-n12473840
-n12458550
-n12449296
-n12472024
-n12457091
-n12465557
-n12461466
-n12454159
-n12431434
-n12451240
-n12451399
-n12450840
-n12428076
-n12428747
-n12427566
-n12427184
-n12426623
-n12427757
-n12461109
-n12460957
-n12454705
-n12454949
-n12435777
-n12435649
-n11819509
-n11819912
-n11842204
-n11852028
-n11851258
-n11847169
-n11853813
-n11848479
-n11844892
-n11851839
-n11845557
-n11849871
-n11849983
-n11851578
-n11854479
-n11844371
-n11853356
-n11845793
-n11845913
-n11784126
-n11783920
-n12832315
-n11723770
-n11724109
-n12766869
-n12455950
-n11723227
-n12757816
-n11773987
-n12766595
-n01324610
-n02153109
-n01323599
-n01314781
-n01321579
-n01317541
-n01318894
-n01314663
-n02311060
-n01317916
-n01321230
-n01314388
-n02075612
-n02152740
-n01466257
-n01316949
-n01905661
-n01320872
-n01319467
-n01316422
-n02157206
-n10300303
-n02152881
-n01324431
-n01321854
-n01321770
-n01956344
-n01613615
-n01318279
-n02376542
-n02122948
-n01888045
-n01322343
-n01887896
-n02412440
-n01322221
-n01322604
-n01323261
-n01322685
-n02395694
-n01504344
-n01504179
-n01318381
-n02122580
-n01317813
-n02469472
-n02309337
-n02311617
-n02264232
-n02299157
-n02310585
-n02299505
-n02302620
-n02295390
-n02310717
-n02288268
-n02297442
-n02300797
-n02285801
-n02307325
-n02376791
-n02377063
-n01323355
-n01469103
-n01468712
-n01471682
-n01473806
-n01627424
-n01861778
-n09828216
-n01459791
-n02156871
-n01661091
-n01503061
-n02512053
-n01477525
-n02528163
-n02512938
-n01482071
-n02638596
-n01457852
-n01455778
-n01456756
-n02552171
-n01428580
-n02549989
-n02640857
-n02641379
-n02639087
-n02639605
-n02640242
-n02554730
-n02618827
-n02549248
-n02603317
-n01451426
-n02548247
-n02642107
-n02657368
-n02603540
-n02652668
-n02560110
-n02556846
-n02555863
-n02581957
-n02564270
-n02623445
-n02565573
-n02610664
-n02590702
-n02588286
-n02620167
-n02573704
-n02576223
-n02606384
-n02605316
-n02619550
-n02561108
-n02619165
-n02610066
-n02562315
-n02586543
-n02593019
-n02594250
-n02616851
-n02585872
-n02607862
-n02557182
-n02557318
-n02557749
-n02624167
-n02628062
-n02631475
-n02630281
-n02631041
-n02629230
-n02626762
-n02625258
-n02625612
-n02624807
-n02626265
-n02625851
-n02627292
-n02627532
-n02576575
-n02579928
-n02580336
-n02576906
-n02579303
-n02578771
-n02578928
-n02580679
-n02580830
-n02607201
-n02607470
-n02607072
-n02605703
-n02606052
-n02605936
-n02561381
-n02561661
-n02561514
-n02564720
-n02563648
-n02563182
-n02563792
-n02562796
-n02565072
-n02565324
-n02599052
-n02596381
-n02597608
-n02596067
-n02595702
-n02598573
-n02598878
-n02642644
-n02649546
-n02643112
-n02643566
-n02643836
-n02644113
-n02658531
-n02657694
-n02660208
-n02654745
-n02654425
-n02656670
-n02655020
-n02655523
-n02653145
-n02656032
-n02655848
-n02541687
-n02542432
-n02524202
-n02533834
-n02543565
-n02517442
-n01438208
-n02526121
-n02529772
-n02518324
-n02520147
-n02519686
-n02519862
-n02583567
-n01444339
-n01446589
-n01438581
-n01439121
-n01448951
-n02584449
-n02584145
-n02583890
-n01446760
-n01447331
-n01448594
-n01448291
-n01439514
-n01442972
-n01440764
-n01443831
-n01443537
-n01443243
-n01449712
-n01449374
-n02527622
-n02527057
-n02527271
-n02532602
-n02533209
-n02566834
-n02537085
-n02534734
-n02514041
-n02568959
-n02568087
-n02570164
-n02569484
-n02537716
-n02538216
-n02537525
-n02537319
-n02538010
-n02536456
-n02535537
-n02535258
-n02536864
-n02535759
-n01482330
-n01495701
-n01487506
-n01495493
-n01486838
-n01488918
-n01492357
-n01494475
-n01483522
-n01488038
-n01489501
-n01491006
-n01489709
-n01489920
-n01490112
-n01491361
-n01490670
-n01493146
-n01492569
-n01484850
-n01484097
-n01483830
-n01498041
-n01496331
-n01499396
-n01500476
-n01500091
-n01501160
-n01498989
-n01629276
-n01639765
-n01629962
-n01630284
-n01629819
-n01637615
-n01632047
-n01631663
-n01630670
-n01630901
-n01632458
-n01632777
-n01632601
-n01645776
-n01640846
-n01644900
-n01643896
-n01650167
-n01644373
-n01646648
-n01646902
-n01646292
-n01646802
-n01646388
-n01647640
-n01646555
-n01642539
-n01641206
-n01641577
-n01641391
-n01642257
-n01641739
-n01650690
-n01652026
-n01886756
-n01871265
-n01871875
-n01874434
-n01862399
-n02082791
-n01887474
-n01889074
-n02372584
-n01888411
-n02453611
-n02430559
-n01887623
-n02469914
-n02075296
-n02139199
-n02062017
-n02323449
-n02372952
-n01888181
-n02329401
-n01887787
-n02453108
-n01888264
-n02461830
-n02370806
-n01891633
-n01893825
-n02454794
-n02456962
-n02454379
-n02460009
-n02458135
-n02457945
-n02457408
-n02460451
-n02461128
-n02470238
-n02501583
-n02472293
-n02470325
-n02496913
-n02484322
-n02475669
-n02474777
-n02475078
-n02470899
-n02483092
-n02480153
-n02483708
-n02483362
-n02481823
-n02480495
-n02480855
-n02482650
-n02482474
-n02481103
-n02481366
-n02481500
-n02500267
-n02497673
-n02499316
-n02499808
-n02499022
-n02484473
-n02489589
-n02486410
-n02485536
-n02489166
-n02488702
-n02486261
-n02487347
-n02484975
-n02488291
-n02486657
-n02486908
-n02487847
-n02487547
-n02493793
-n02490219
-n02494079
-n02493509
-n02492035
-n02492660
-n02491107
-n02490811
-n02507649
-n02120997
-n02134971
-n02083346
-n02441326
-n02131653
-n02509515
-n02508213
-n02509815
-n02508021
-n02509197
-n02510455
-n02127808
-n02121620
-n02128925
-n02129604
-n02128385
-n02130308
-n02129165
-n02128757
-n02129923
-n02129837
-n01323068
-n02129463
-n01322898
-n02121808
-n02124623
-n02122878
-n02123159
-n02123045
-n02123242
-n02124484
-n02124075
-n02124313
-n02122298
-n02123478
-n02123394
-n02123917
-n02123597
-n02122510
-n02122725
-n02122430
-n02126640
-n02125494
-n02127052
-n02125311
-n02125081
-n02126139
-n02126787
-n02125010
-n02127292
-n02127482
-n02127678
-n02127381
-n02138441
-n02137015
-n02137549
-n02138647
-n02138777
-n02084071
-n02115335
-n02114100
-n02083672
-n02115096
-n02118333
-n02117135
-n02110958
-n02112826
-n02111500
-n02112706
-n02113335
-n02084861
-n02111129
-n02112497
-n02110341
-n02084732
-n02111626
-n02085374
-n02087122
-n02103406
-n02110806
-n02113978
-n02111277
-n02085272
-n02113186
-n02113023
-n02113799
-n02113624
-n02113712
-n02112018
-n02112350
-n02112137
-n02111889
-n02086346
-n02086240
-n02087046
-n02085936
-n02085782
-n02085620
-n02086079
-n02086753
-n02086646
-n02086910
-n02092468
-n02087394
-n02089468
-n02098550
-n02087551
-n02089232
-n02096437
-n02096756
-n02095412
-n02096051
-n02098286
-n02093859
-n02094114
-n02093754
-n02094433
-n02095314
-n02093647
-n02097474
-n02097658
-n02098413
-n02097298
-n02096177
-n02096585
-n02095050
-n02096294
-n02093056
-n02094258
-n02093991
-n02094562
-n02098105
-n02097209
-n02097130
-n02097047
-n02095570
-n02095727
-n02095889
-n02093256
-n02093428
-n02094721
-n02094931
-n02098906
-n02099997
-n02098806
-n02100399
-n02101108
-n02099029
-n02100583
-n02100236
-n02101006
-n02100735
-n02100877
-n02102318
-n02102605
-n02101861
-n02101388
-n02101556
-n02102480
-n02102973
-n02102040
-n02102177
-n02099267
-n02099601
-n02099429
-n02099849
-n02099712
-n02091635
-n02088466
-n02090475
-n02088238
-n02091244
-n02091467
-n02088839
-n02091831
-n02088094
-n02089078
-n02088632
-n02092002
-n02090379
-n02089555
-n02088364
-n02092339
-n02090827
-n02090622
-n02090721
-n02089973
-n02089867
-n02091134
-n02091032
-n02109047
-n02103841
-n02109961
-n02108551
-n02109811
-n02109525
-n02108915
-n02106854
-n02108672
-n02107420
-n02108422
-n02104523
-n02108089
-n02108254
-n02104029
-n02104280
-n02106966
-n02104365
-n02107142
-n02107312
-n02110627
-n02110185
-n02110063
-n02107574
-n02108000
-n02107683
-n02107908
-n02104882
-n02105412
-n02105855
-n02105505
-n02106166
-n02106030
-n02106550
-n02105641
-n02106662
-n02105251
-n02106382
-n02105056
-n02105162
-n02116738
-n02115641
-n02115913
-n02114855
-n01322508
-n02114712
-n02114548
-n02114367
-n02119022
-n02119477
-n02119789
-n02120079
-n02120505
-n02119634
-n02117900
-n02117512
-n02442845
-n02443484
-n02446206
-n02450295
-n02445394
-n02444819
-n02441942
-n02443114
-n02449350
-n02445715
-n02447366
-n02443346
-n02445004
-n02445171
-n02134084
-n02133161
-n01322983
-n02133704
-n02132136
-n02134418
-n02132580
-n02132788
-n02141306
-n02140049
-n02139671
-n02146371
-n02145424
-n02147591
-n02147947
-n02062430
-n02073250
-n02075927
-n02062744
-n02066707
-n02063224
-n02068974
-n02068541
-n02070430
-n02069412
-n02069701
-n02071636
-n02071294
-n02072798
-n02070174
-n02069974
-n02066245
-n02064338
-n02064816
-n02065407
-n02065026
-n02073831
-n02074367
-n02081571
-n02076196
-n02079389
-n02076779
-n02080415
-n02079851
-n02080146
-n02077658
-n02077152
-n02077923
-n02078574
-n02078738
-n02079005
-n02328429
-n02323902
-n02324045
-n02326432
-n02325722
-n02325366
-n02324587
-n02324850
-n02324514
-n02328150
-n02324431
-n02327842
-n02326862
-n02327028
-n02367492
-n02331046
-n02365480
-n02343320
-n02341974
-n02346627
-n02366959
-n02339376
-n02363005
-n02342885
-n02359324
-n02355227
-n02361337
-n02359556
-n02364520
-n02343772
-n02330245
-n02338145
-n02353861
-n02333546
-n02333909
-n02360282
-n02358091
-n02359915
-n02355477
-n02358890
-n02358390
-n02356381
-n02357111
-n02356977
-n02357401
-n02356798
-n02361706
-n02361587
-n02364840
-n02364673
-n02332755
-n02332156
-n02503517
-n02504458
-n02504013
-n02394477
-n02373336
-n02399000
-n02437136
-n02395003
-n02437616
-n02438580
-n02397744
-n02398521
-n02397529
-n02429456
-n02430045
-n02401031
-n02439033
-n02439398
-n02434190
-n02433925
-n02433318
-n02432983
-n02431337
-n02432511
-n02430830
-n02431122
-n02434954
-n02432291
-n02431785
-n02431976
-n02433546
-n02432704
-n02414578
-n02410509
-n02411206
-n02407959
-n02402010
-n02419796
-n02411705
-n02418064
-n02416519
-n02416104
-n02415435
-n02415253
-n02415577
-n02415829
-n02410702
-n02410900
-n02408817
-n02408429
-n02409508
-n02404573
-n02402175
-n02404906
-n02402425
-n02405302
-n02410011
-n02404186
-n02403003
-n02403325
-n02403231
-n02403740
-n02403454
-n02406174
-n02404432
-n02406647
-n02407625
-n02407071
-n02405929
-n02407276
-n02407390
-n02406533
-n02424305
-n02421136
-n02420509
-n02427724
-n02426813
-n02426481
-n02421792
-n02421449
-n02424695
-n02420828
-n02422391
-n02422699
-n02424486
-n02425887
-n02422106
-n02424085
-n02428508
-n02428349
-n02423022
-n02424909
-n02425228
-n02423218
-n02423589
-n02413131
-n02413050
-n02411999
-n02412210
-n02412080
-n02418465
-n02419336
-n02419634
-n02416964
-n02416820
-n02417914
-n02417387
-n02417070
-n02416880
-n02417534
-n02437482
-n02437312
-n02396427
-n02397096
-n02396014
-n02395406
-n02438173
-n02438272
-n02391994
-n02393580
-n02374149
-n02393940
-n02392434
-n02393161
-n02392824
-n02374451
-n02391049
-n02389346
-n02388917
-n02377603
-n02382948
-n02389128
-n02381460
-n02389261
-n02382204
-n02375302
-n02376918
-n02387722
-n02388832
-n02381609
-n02377703
-n02388735
-n02386014
-n02380464
-n02386310
-n02377480
-n02380335
-n02382437
-n02389026
-n02385214
-n02383231
-n02388276
-n02377291
-n02377181
-n02377388
-n02379430
-n02378969
-n02378541
-n02381364
-n02379329
-n02381004
-n02381261
-n02379908
-n02379183
-n02386141
-n02386224
-n02382338
-n02387254
-n02386496
-n02386853
-n02387093
-n02386968
-n02387346
-n02382039
-n02380745
-n02380583
-n02382750
-n02382635
-n02382850
-n02391234
-n02391373
-n02391508
-n02390015
-n02389779
-n02389559
-n01872401
-n01873310
-n01872772
-n01877134
-n01882714
-n01883070
-n01875313
-n01874928
-n01883513
-n01881171
-n01877606
-n01877812
-n01878929
-n01879509
-n01884834
-n01885498
-n01662622
-n01661818
-n01662784
-n01669372
-n01669191
-n01666228
-n01667778
-n01672032
-n01669654
-n01663401
-n01665932
-n01668665
-n01670092
-n01667114
-n01668892
-n01664990
-n01664065
-n01663782
-n01665541
-n01664369
-n01664674
-n01664492
-n01670802
-n01671125
-n01670535
-n01671479
-n01696633
-n01726692
-n01673282
-n01674464
-n01699831
-n01698434
-n01697178
-n01698640
-n01699040
-n01697611
-n01697457
-n01740551
-n01752165
-n01751748
-n01745125
-n01741562
-n01727646
-n01753488
-n01752736
-n01752585
-n01753032
-n01753959
-n01754533
-n01754370
-n01754876
-n01757901
-n01757677
-n01755581
-n01757115
-n01755740
-n01756089
-n01756508
-n01756291
-n01756733
-n01757343
-n01747885
-n01749939
-n01751472
-n01747589
-n01749582
-n01746359
-n01745484
-n01748264
-n01748906
-n01741943
-n01743605
-n01742821
-n01742172
-n01743086
-n01744100
-n01743936
-n01744401
-n01730960
-n01735189
-n01733757
-n01729322
-n01732244
-n01731545
-n01737021
-n01729977
-n01730812
-n01730563
-n01728572
-n01728920
-n01739381
-n01734418
-n01740131
-n01735577
-n01735439
-n01734104
-n01733957
-n01732614
-n01732789
-n01737875
-n01737472
-n01737728
-n01730185
-n01730307
-n01734808
-n01734637
-n01675722
-n01693783
-n01694709
-n01684133
-n01692333
-n01695060
-n01685808
-n01676755
-n01687665
-n01674990
-n01694178
-n01692864
-n01689411
-n01681940
-n01681653
-n01678343
-n01682714
-n01682435
-n01681328
-n01680264
-n01679626
-n01677366
-n01677747
-n01679962
-n01680655
-n01680478
-n01687978
-n01689081
-n01688243
-n01693334
-n01693175
-n01690149
-n01689811
-n01700470
-n01713764
-n01701859
-n01704323
-n01515303
-n01844917
-n01524359
-n01514668
-n01833805
-n01838038
-n01825930
-n01844551
-n01604330
-n01834918
-n01822602
-n01514752
-n01517565
-n01789386
-n01844231
-n01816887
-n01517966
-n01503976
-n01514859
-n02000954
-n01858441
-n02016358
-n02021795
-n01845132
-n02008041
-n02014237
-n02021050
-n02018795
-n02005790
-n02002075
-n02013177
-n02012849
-n02013706
-n02014524
-n02007558
-n02014941
-n02006656
-n02005399
-n02022684
-n02008497
-n02010453
-n02009229
-n02011281
-n02008643
-n02008796
-n02011460
-n02010728
-n02011016
-n02009750
-n02009508
-n02009380
-n02009912
-n02010272
-n02012185
-n02011805
-n02006063
-n02006364
-n02003204
-n02002724
-n02002556
-n02004131
-n02003839
-n02004492
-n02004855
-n02017725
-n02015357
-n02016066
-n02015554
-n02018027
-n02018368
-n02018207
-n02006985
-n02007284
-n02023341
-n02034129
-n02034295
-n02036053
-n02040266
-n02037110
-n02034661
-n02031585
-n02031934
-n02030996
-n02036711
-n02026059
-n02033779
-n02038993
-n02033561
-n02037464
-n02024479
-n02025239
-n02023992
-n02024763
-n02025043
-n02023855
-n02034971
-n02035210
-n02032222
-n02032355
-n02032480
-n02033041
-n02030287
-n02027897
-n02030837
-n02029087
-n02029378
-n02028035
-n02027075
-n02028900
-n02027492
-n02029706
-n02027357
-n02028727
-n02030035
-n02026948
-n02028175
-n02028342
-n02028451
-n02037869
-n02038466
-n01858845
-n01858906
-n01860002
-n01858281
-n01859190
-n01858780
-n01859325
-n01860187
-n01859496
-n01859689
-n01859852
-n02016956
-n02017213
-n02016816
-n02040505
-n02057731
-n02050004
-n02045369
-n02049088
-n02051474
-n02055658
-n02047614
-n02041085
-n02044178
-n02043808
-n02043333
-n02041246
-n02043063
-n02042472
-n02041678
-n02042180
-n02041875
-n02042759
-n02042046
-n02044778
-n02044517
-n02059162
-n02058221
-n02058594
-n02060411
-n02060889
-n02060133
-n02050442
-n02050313
-n02051059
-n02050586
-n02050809
-n02045864
-n02046759
-n02045596
-n02047260
-n02046939
-n02047411
-n02047045
-n02052775
-n02054036
-n02054502
-n02051845
-n02053083
-n02054711
-n02055107
-n02052204
-n02052365
-n02053425
-n02053584
-n02055803
-n02056728
-n02057035
-n02056570
-n02057330
-n02056228
-n02048115
-n02048353
-n02047975
-n01845477
-n01855672
-n01846331
-n01856890
-n01857851
-n01857079
-n01856380
-n01857512
-n01857325
-n01856072
-n01856553
-n01856155
-n01857632
-n01847253
-n01851375
-n01849676
-n01852329
-n01850192
-n01847978
-n01852400
-n01848840
-n01849157
-n01847806
-n01849466
-n01848123
-n01850553
-n01847089
-n01851895
-n01849863
-n01852142
-n01847000
-n01852671
-n01848976
-n01847407
-n01848648
-n01852861
-n01851207
-n01851038
-n01850373
-n01850873
-n01847170
-n01851573
-n01851731
-n01848555
-n01848323
-n01848453
-n01853195
-n01853870
-n01854415
-n01853498
-n01853666
-n01854838
-n01855032
-n01855476
-n01855188
-n01854700
-n01584225
-n01546506
-n01546921
-n01525720
-n01546039
-n01539573
-n01585121
-n01585715
-n01584695
-n01586374
-n01584853
-n01586020
-n01552813
-n01551711
-n01555004
-n01554448
-n01547832
-n01548301
-n01549886
-n01549430
-n01550172
-n01549641
-n01555305
-n01549053
-n01548865
-n01548492
-n01563128
-n01589718
-n01578575
-n01576695
-n01528654
-n01591697
-n01594004
-n01557185
-n01527347
-n01597022
-n01598588
-n01527617
-n01576076
-n01555809
-n01587834
-n01602630
-n01597336
-n01538955
-n01529672
-n01600657
-n01601694
-n01527194
-n01586941
-n01588002
-n01527917
-n01587526
-n01601068
-n01603600
-n01602832
-n01571904
-n01575745
-n01566645
-n01594372
-n01589286
-n01526521
-n01582856
-n01528396
-n01528845
-n01556182
-n01542786
-n01590583
-n01564914
-n01567133
-n01563746
-n01564394
-n01563449
-n01565078
-n01570676
-n01570839
-n01570267
-n01567678
-n01569060
-n01568892
-n01568294
-n01569971
-n01569262
-n01567879
-n01568720
-n01569423
-n01563945
-n01564217
-n01566207
-n01565599
-n01565930
-n01564773
-n01579410
-n01581984
-n01579578
-n01582398
-n01580077
-n01579260
-n01579028
-n01582220
-n01579149
-n01580870
-n01581166
-n01577035
-n01578180
-n01577659
-n01593028
-n01592084
-n01592694
-n01592387
-n01592540
-n01592257
-n01562265
-n01558993
-n01559477
-n01558461
-n01558307
-n01558149
-n01560105
-n01558594
-n01557962
-n01558765
-n01561732
-n01562014
-n01560280
-n01562451
-n01561452
-n01560419
-n01560636
-n01559804
-n01560793
-n01560935
-n01598988
-n01599556
-n01600085
-n01599269
-n01599159
-n01597906
-n01598074
-n01597737
-n01533651
-n01534155
-n01540233
-n01531178
-n01534762
-n01533893
-n01537134
-n01531344
-n01541386
-n01531512
-n01533481
-n01541922
-n01533000
-n01544704
-n01530575
-n01532325
-n01532511
-n01531811
-n01534582
-n01532829
-n01530439
-n01533339
-n01531971
-n01534433
-n01541102
-n01540566
-n01540832
-n01536644
-n01535469
-n01536334
-n01536186
-n01535690
-n01536780
-n01536035
-n01537544
-n01538059
-n01538630
-n01537895
-n01538200
-n01603812
-n01603953
-n01573898
-n01573074
-n01572328
-n01572782
-n01574045
-n01573240
-n01573360
-n01572654
-n01572489
-n01574560
-n01575117
-n01574390
-n01575401
-n01595450
-n01595168
-n01595624
-n01594787
-n01594968
-n01595974
-n01596273
-n01583209
-n01583495
-n01543632
-n01544389
-n01591123
-n01591005
-n01591301
-n01539925
-n01540090
-n01834540
-n01834177
-n01843065
-n01838598
-n01842235
-n01843719
-n01843383
-n01839598
-n01839330
-n01839086
-n01841102
-n01841679
-n01840775
-n01839750
-n01841441
-n01841288
-n01827403
-n01826364
-n01830915
-n01830042
-n01829413
-n01826680
-n01829869
-n01828970
-n01828556
-n01827793
-n01828096
-n01616318
-n01605630
-n01618503
-n01613294
-n01621127
-n01616764
-n01618922
-n01617766
-n01617443
-n01618082
-n01617095
-n01620414
-n01619310
-n01620735
-n01619536
-n01619835
-n01620135
-n01609751
-n01606522
-n01607812
-n01608265
-n01610955
-n01610552
-n01606809
-n01616086
-n01608432
-n01607600
-n01607962
-n01606672
-n01609956
-n01610226
-n01613177
-n01611800
-n01611472
-n01612628
-n01612476
-n01612275
-n01611969
-n01612122
-n01609391
-n01609062
-n01608814
-n01613807
-n01614343
-n01615121
-n01614925
-n01614038
-n01614556
-n01615703
-n01615458
-n01622959
-n01621635
-n01623880
-n01623425
-n01622352
-n01623615
-n01622120
-n01625562
-n01623706
-n01624115
-n01624537
-n01622483
-n01623110
-n01624833
-n01622779
-n01837072
-n01835276
-n01825278
-n01823013
-n01824575
-n01824035
-n01521399
-n01521756
-n01518878
-n01519873
-n01519563
-n01789740
-n01810700
-n01801876
-n01791463
-n01791107
-n02153203
-n01794344
-n01791954
-n01794158
-n01809106
-n01791625
-n01792429
-n01792158
-n01793435
-n01792042
-n01793715
-n01792640
-n01793249
-n01792955
-n01815601
-n01811909
-n01814370
-n01812337
-n01813088
-n01812662
-n01814921
-n01814755
-n01813532
-n01813385
-n01813948
-n01814217
-n01802721
-n01810268
-n01795088
-n01803078
-n01806567
-n01807496
-n01807105
-n01803362
-n01804163
-n01805801
-n01806297
-n01806364
-n01806143
-n01806467
-n01804478
-n01806847
-n01804653
-n01808140
-n01807828
-n01797307
-n01798484
-n01797020
-n01797886
-n01797601
-n01796729
-n01795545
-n01796340
-n01819734
-n01821203
-n01819115
-n01817346
-n01818832
-n01817953
-n01818515
-n01818299
-n01820052
-n01820348
-n01817263
-n01821869
-n01822300
-n01819313
-n01819465
-n01821076
-n01820546
-n01317089
-n01317294
-n01918744
-n01922303
-n01940736
-n02316707
-n01909422
-n01767661
-n01906749
-n01930112
-n01934440
-n01924916
-n01938454
-n01935395
-n01955084
-n01955933
-n01968315
-n01942177
-n01960459
-n01963317
-n01956481
-n01963571
-n01959985
-n01965889
-n01961985
-n01957335
-n01958038
-n01959492
-n01964441
-n01964271
-n01965529
-n01969726
-n01968897
-n01972541
-n01970164
-n01970667
-n01951274
-n01953361
-n01943899
-n01945845
-n01943087
-n01953762
-n01950731
-n01945685
-n01944390
-n01949085
-n01947396
-n01946630
-n01944812
-n01945143
-n01944955
-n02317335
-n02321170
-n02319555
-n02319095
-n02321529
-n02317781
-n01909906
-n01914163
-n01913166
-n01910747
-n01915700
-n01914609
-n01915811
-n01916925
-n01916187
-n01916481
-n01917882
-n01917289
-n01784675
-n01974773
-n01768244
-n01786646
-n01769347
-n01787835
-n02309242
-n02159955
-n01785667
-n01994910
-n01976868
-n01990007
-n01975687
-n01976146
-n01990800
-n01992773
-n01991520
-n01991028
-n01982650
-n01986806
-n01986214
-n01987545
-n01976957
-n01985128
-n01984245
-n01984695
-n01983481
-n01981276
-n01979874
-n01978455
-n01978287
-n01980166
-n01982068
-n01770393
-n01770081
-n01776192
-n01772222
-n01776313
-n01779629
-n01779148
-n01772664
-n01775370
-n01774750
-n01775062
-n01773797
-n01774384
-n01773157
-n01773549
-n02226183
-n02236896
-n02263378
-n02232951
-n02163297
-n02262449
-n02246011
-n02188699
-n02272871
-n02273392
-n02231052
-n02161457
-n02236355
-n02312427
-n02231487
-n02162561
-n02164464
-n02241569
-n02262803
-n02206270
-n02274024
-n02312640
-n02268148
-n02270623
-n02207805
-n02226429
-n02229544
-n02228341
-n02226970
-n02241426
-n02240517
-n02266050
-n02264885
-n02264363
-n02236044
-n02236241
-n02233338
-n02234355
-n02234848
-n02233943
-n02251775
-n02256656
-n02258198
-n02257284
-n02250822
-n02259212
-n02252226
-n02200198
-n02205219
-n02203152
-n02196344
-n02190166
-n02198859
-n02196119
-n02201000
-n02202006
-n02195819
-n02195526
-n02192513
-n02191773
-n02190790
-n02192252
-n02191979
-n02169974
-n02168245
-n02167151
-n02169023
-n02165456
-n02171453
-n02180875
-n02183096
-n02169497
-n02176261
-n02176439
-n02165105
-n02177972
-n02168699
-n02166567
-n02166826
-n02171869
-n02175916
-n02175569
-n02172870
-n02173373
-n02174001
-n02172182
-n02172518
-n02174659
-n02243562
-n02244797
-n02212062
-n02218371
-n02219486
-n02206856
-n02216211
-n02215770
-n02212602
-n02213107
-n02212958
-n02213543
-n02213239
-n02213788
-n02220804
-n02221083
-n02221414
-n02209354
-n02208280
-n02211627
-n02210427
-n02211444
-n02209624
-n02208498
-n02208848
-n02274259
-n02283201
-n02281787
-n02274822
-n02281406
-n02277742
-n02279972
-n02280649
-n02282257
-n02282903
-n02282385
-n02275773
-n02278210
-n02276258
-n02276902
-n02279257
-n02277094
-n02276078
-n02275560
-n02277268
-n02276355
-n02276749
-n02278024
-n02281015
-n02281136
-n02305929
-n02301452
-n02295064
-n02298541
-n02284611
-n02287004
-n02291572
-n02305085
-n02301935
-n02304432
-n02303284
-n02302969
-n02292692
-n02291748
-n02268443
-n02268853
-n01321123
-n02376679
-n01323493
-n01338685
-n01387065
-n01339083
-n01339336
-n01339801
-n01339471
-n01397114
-n01389507
-n01397871
-n01410457
-n01407798
-n01424420
-n01392380
-n01395254
-n01396048
-n11542137
-n11544015
-n11542640
-n09626238
-n09856671
-n09605289
-n09622049
-n09971273
-n09882716
-n09621232
-n09902954
-n09620794
-n09727440
-n09624168
-n09752519
-n10378026
-n10500217
-n10514429
-n09610405
-n09617867
-n10355449
-n09618957
-n10002760
-n10384496
-n09637339
-n09613191
-n09836160
-n10274815
-n09890749
-n10112591
-n10260706
-n09606527
-n09767197
-n10709529
-n09976429
-n09918554
-n10588074
-n10565667
-n09990415
-n10120330
-n09616922
-n09622302
-n09630641
-n09796809
-n09614684
-n10635788
-n09645091
-n10405694
-n09676884
-n09638875
-n09874428
-n09627906
-n09628382
-n10522759
-n10247880
-n09624980
-n10529231
-n10024362
-n09614315
-n09612848
-n09632518
-n10147935
-n09871867
-n09620078
-n09634494
-n10077593
-n10040945
-n09623038
-n10560106
-n10289039
-n10422405
-n09774783
-n10042845
-n09831962
-n10726031
-n09923673
-n09610660
-n09626031
-n10401331
-n09621545
-n10362319
-n10665698
-n09906449
-n09939313
-n10439373
-n09607630
-n09631463
-n10451450
-n10541229
-n09793141
-n10633450
-n10530959
-n09629752
-n10560637
-n10431625
-n09619168
-n09763784
-n09636339
-n10235549
-n09845401
-n10513823
-n10610465
-n09951274
-n09816771
-n10401829
-n10307234
-n10505613
-n10148035
-n09874725
-n09944022
-n10015485
-n10728624
-n10308168
-n10200781
-n10480253
-n10376523
-n09903153
-n10748620
-n10581890
-n10045713
-n10165109
-n10694258
-n10509063
-n10559996
-n10366966
-n10305802
-n10421470
-n10164492
-n10477713
-n10020890
-n10679174
-n10632576
-n10189278
-n09894445
-n10504206
-n10559288
-n09917593
-n09833441
-n10384392
-n10060352
-n09840217
-n09777012
-n10309896
-n09905185
-n10686885
-n10209731
-n10093818
-n10754189
-n10411551
-n10577284
-n10285313
-n10333439
-n10624074
-n10287213
-n09871229
-n10078719
-n09843443
-n10173771
-n10192839
-n10419785
-n10406266
-n10288964
-n10804287
-n10665587
-n10153414
-n10406765
-n10611613
-n09805324
-n09824361
-n10316360
-n10707233
-n10696508
-n09858165
-n10175248
-n09979321
-n10692482
-n10396106
-n10427764
-n10385566
-n10439851
-n09820263
-n10533013
-n09854421
-n10304914
-n10575463
-n09915651
-n10453184
-n10101634
-n10701180
-n09835230
-n10746931
-n10542888
-n10604491
-n09764381
-n09929298
-n10019406
-n09785659
-n10618342
-n10782471
-n10701644
-n10105733
-n10638922
-n09842047
-n10315561
-n09835506
-n10153594
-n09830194
-n10263411
-n10157128
-n10498816
-n10689306
-n10604380
-n10634849
-n09923561
-n09764598
-n10086568
-n10007684
-n09841696
-n10321340
-n10092488
-n10386984
-n10387196
-n10205457
-n10578021
-n10098710
-n09836519
-n09836786
-n09836343
-n09877951
-n10300154
-n10095769
-n10435988
-n09930257
-n10387324
-n10098862
-n10642596
-n10331167
-n09946814
-n10299250
-n09896170
-n10415638
-n10091450
-n10069296
-n09989502
-n10226413
-n10493685
-n09765278
-n09930876
-n10340312
-n09990777
-n09834699
-n10737103
-n10649197
-n10701962
-n10415037
-n10151760
-n10229883
-n10732010
-n10603851
-n10599806
-n10369317
-n09903501
-n10755080
-n10098245
-n10382825
-n10536416
-n10036929
-n10624310
-n09842528
-n10085869
-n09991867
-n10078131
-n10627252
-n10682953
-n10237196
-n09789566
-n10182190
-n09899671
-n10150071
-n10091651
-n10806113
-n10249459
-n10317500
-n09822830
-n10448983
-n09862621
-n10540114
-n10009276
-n10333838
-n10730728
-n10721321
-n09659188
-n09650729
-n09652149
-n09659039
-n09729530
-n09641002
-n09725653
-n09846469
-n09750770
-n10486166
-n10169147
-n09684901
-n09683757
-n09682291
-n10364198
-n10518602
-n10341573
-n10672371
-n10332861
-n10112129
-n10602470
-n10727256
-n10508141
-n10652605
-n09881265
-n09933098
-n09812338
-n09920283
-n10078806
-n10339966
-n10667477
-n10566072
-n10469874
-n10624540
-n09809925
-n09846755
-n09873899
-n09779790
-n10034614
-n10449664
-n10034201
-n09951616
-n10037385
-n09846894
-n10282672
-n10053808
-n09815790
-n10137825
-n10605985
-n10604979
-n09861946
-n10763383
-n09841188
-n10644598
-n10548681
-n10791221
-n10583790
-n09873473
-n10763620
-n10548537
-n10120671
-n10241300
-n10318293
-n10176679
-n09932508
-n10186216
-n10134178
-n10079399
-n09821831
-n09934337
-n10324560
-n10063461
-n09886403
-n09760609
-n10260800
-n10655594
-n09938449
-n10183931
-n09972458
-n09813219
-n10049363
-n10372373
-n10076604
-n09835348
-n09974648
-n10433164
-n09859152
-n10727171
-n10308732
-n09833536
-n10582746
-n10393909
-n10013927
-n10225219
-n10202624
-n09800964
-n10465831
-n09787534
-n10174445
-n10441962
-n10132035
-n09896685
-n09934774
-n10279018
-n10793570
-n10155849
-n10087434
-n09964202
-n09811852
-n10348526
-n10317007
-n10058777
-n10360747
-n09941964
-n10347446
-n09770359
-n09941787
-n09942970
-n09809749
-n09770179
-n10208950
-n10580772
-n10093475
-n10645017
-n09943239
-n09943541
-n10263790
-n10283170
-n10259348
-n10092978
-n10296176
-n09893191
-n10123844
-n10259780
-n10259997
-n10510245
-n10622053
-n10058585
-n10690648
-n10523341
-n10739391
-n10476467
-n10512372
-n10802507
-n10753442
-n09733793
-n09738708
-n09641757
-n09738400
-n09727826
-n09686536
-n09724533
-n09744834
-n09743792
-n09744161
-n09742101
-n09689435
-n09734450
-n09644152
-n09750282
-n09673495
-n09718811
-n09718217
-n09712696
-n09718936
-n10711766
-n09694771
-n09719794
-n09714694
-n09675922
-n09676247
-n10774440
-n09720256
-n09725229
-n09731571
-n09691729
-n09693982
-n09712448
-n09697401
-n09696585
-n09722658
-n09724656
-n09723067
-n09694664
-n09712324
-n09689958
-n09695979
-n10327987
-n09688804
-n09730204
-n09711435
-n09713108
-n09731343
-n09717233
-n09695620
-n09728285
-n09707289
-n09701833
-n09700964
-n09750891
-n09715427
-n09708750
-n09705784
-n09734185
-n09752023
-n09635534
-n09696456
-n09732170
-n09730824
-n09719309
-n09734535
-n09736945
-n09720842
-n09692915
-n09751895
-n09724785
-n09747495
-n09734639
-n09749386
-n09705124
-n09731436
-n10303814
-n10450303
-n10722575
-n10054657
-n10631309
-n10249270
-n09913455
-n10162991
-n09807754
-n09505153
-n10209082
-n10323634
-n10104064
-n10001481
-n10242328
-n10159045
-n09932098
-n10253995
-n10005934
-n10578471
-n09770949
-n10004718
-n10570019
-n10289462
-n10069645
-n10187990
-n09916348
-n10727458
-n10320863
-n10572706
-n10572889
-n10038409
-n10756148
-n09927451
-n10243664
-n10502329
-n09988493
-n10373390
-n10470779
-n09928136
-n10750031
-n10081204
-n09857200
-n10013811
-n09894143
-n10313239
-n10082997
-n10677713
-n09787765
-n10485883
-n10275395
-n09913593
-n09772930
-n09633969
-n10195593
-n09756049
-n10607478
-n09855433
-n10017272
-n10630188
-n10522035
-n10521662
-n10380672
-n10210911
-n10382710
-n10164747
-n09782397
-n10524076
-n10467395
-n10467179
-n10698368
-n09792969
-n10525617
-n10675010
-n09889941
-n10557854
-n09618760
-n09899929
-n10116702
-n10258786
-n10508710
-n09873348
-n09870208
-n10793168
-n10098517
-n10314517
-n10629939
-n10477077
-n10261624
-n10082687
-n10262445
-n10167152
-n10098624
-n10674713
-n09838621
-n10047459
-n10091564
-n10740868
-n09872066
-n10070711
-n10628644
-n10421016
-n09915434
-n10588357
-n10529965
-n10334009
-n10339717
-n09818022
-n10412055
-n10335931
-n09945745
-n10432441
-n10607291
-n10583387
-n10718131
-n10542761
-n10147121
-n10738111
-n10159533
-n10223177
-n10185793
-n10553235
-n10293332
-n10178216
-n10563403
-n10488656
-n10619642
-n10276477
-n10620758
-n10450161
-n10043643
-n10043491
-n10313724
-n10084295
-n10787470
-n10333601
-n10131151
-n09871681
-n09981939
-n10055410
-n10243137
-n10377021
-n10368528
-n10025635
-n09874862
-n10613996
-n10472129
-n10598181
-n10129825
-n09847543
-n10173410
-n10780284
-n09889065
-n09832456
-n10780632
-n10117851
-n09827363
-n10247358
-n10282482
-n10092794
-n10375314
-n09981278
-n10082043
-n09972010
-n10237069
-n09792555
-n10236946
-n10568358
-n10207169
-n10236304
-n10734394
-n10373998
-n10595164
-n10357613
-n09823502
-n10146104
-n10602985
-n10145239
-n10267865
-n09854218
-n10399491
-n10102800
-n10102369
-n10406391
-n10300500
-n10080869
-n10332385
-n09988063
-n10375402
-n10145774
-n10143172
-n10145590
-n10345015
-n10142747
-n10142391
-n10146002
-n10267311
-n10141590
-n10092643
-n09918248
-n10671613
-n10141732
-n10145340
-n10145902
-n10145480
-n09827683
-n10135129
-n10465451
-n10353016
-n13001930
-n13040629
-n12969131
-n12985420
-n13052670
-n13037406
-n13077295
-n12987056
-n12979829
-n12975804
-n12974987
-n12985773
-n13044778
-n12985857
-n13035241
-n13043926
-n12982468
-n13035707
-n13044375
-n12969425
-n13060190
-n13054073
-n13040303
-n13028611
-n12997654
-n12983048
-n13062421
-n13054560
-n12963628
-n12980840
-n12991184
-n12989938
-n12992177
-n12988158
-n13029326
-n13029760
-n13011595
-n13049953
-n12998815
-n12997919
-n13052931
-n13050397
-n13012253
-n13001041
-n13005984
-n13000891
-n13007417
-n13019835
-n13013764
-n13006894
-n13002750
-n13017102
-n13232779
-n13009429
-n13013534
-n13003522
-n13001366
-n13009085
-n13022210
-n13002925
-n13006171
-n13003712
-n13001206
-n13004423
-n13001529
-n13003254
-n13003061
-n13032115
-n13032381
-n13033577
-n13055577
-n13055949
-n13055423
-n05430628
-n05450617
-n05449959
-n05451384
-n05453657
-n09369169
-n09454412
-n09403211
-n13086908
-n09416076
-n09251407
-n05218119
-n09444100
-n09438940
-n09257949
-n09189157
-n09475044
-n11691857
-n13102775
-n13087625
-n13022709
-n11675842
-n13152742
-n13125117
-n13129165
-n11690254
-n11669335
-n13134947
-n11676500
-n11675025
-n11674332
-n11669786
-n13131028
-n13132338
-n13132656
-n12301445
-n13133613
-n13141415
-n13137409
-n12642090
-n12267677
-n12658481
-n12144313
-n12158031
-n13135832
-n12620546
-n11636835
-n13139055
-n12144580
-n07929351
-n13136556
-n12768682
-n11689483
-n13136316
-n07770571
-n07737081
-n07774842
-n07774596
-n07775050
-n07772788
-n07771212
-n07772147
-n07772274
-n07774719
-n07737745
-n07772935
-n15086247
-n11879895
-n12576323
-n12532564
-n07814634
-n07775197
-n07770763
-n11748002
-n12172364
-n12515925
-n12560282
-n12578916
-n12560621
-n12544539
-n12024690
-n13154494
-n11690455
-n12927013
-n11953610
-n13128365
-n13133932
-n13163991
-n13134059
-n13131618
-n13130726
-n11678010
-n12136392
-n11979964
-n12088223
-n12462805
-n12433081
-n09218494
-n09381242
-n09460046
-n09451237
-n09450163
-n01904182
-n13155095
-n09432283
-n11705387
-n09438844
-n11692265
-n05237755
-n09416890
-n01956764
-n01904806
-n01904886
-n05586759
-n05581932
-n01904029
-n05238282
-n05254795
-n02469248
-n05256862
-n05258051
-n01899894
-n05261404
-n05259914
-n05261310
-n05260240
-n05262185
-n05261566
-n05262534
-n05262422
-n05263183
-n05263448
-n11524662
-n11448153
-n09247410
-n11508382
-n11524451
diff --git a/build/darknet/x64/data/9k.names b/build/darknet/x64/data/9k.names
deleted file mode 100644
index e81c80e79e8..00000000000
--- a/build/darknet/x64/data/9k.names
+++ /dev/null
@@ -1,9418 +0,0 @@
-thing
-matter
-object
-atmospheric phenomenon
-body part
-body of water
-head
-hair
-structure
-vein
-mouth
-heel
-watercourse
-ocean
-gas
-solid
-substance
-food
-tear gas
-sky
-ice
-food
-cheese
-yogurt
-produce
-baked goods
-cake mix
-Emmenthal
-Camembert
-Brie
-mozzarella
-Stilton
-double cream
-edible fruit
-vegetable
-currant
-custard apple
-citrus
-jackfruit
-pomegranate
-avocado
-prickly pear
-apple
-carambola
-fig
-mangosteen
-tangelo
-plum
-papaya
-apricot
-berry
-elderberry
-loquat
-pear
-litchi
-peach
-muscat
-grape
-banana
-pitahaya
-rambutan
-kiwi
-melon
-breadfruit
-pineapple
-mango
-date
-papaw
-durian
-passion fruit
-jujube
-guava
-dried fruit
-cherry
-quince
-nectarine
-cherimoya
-soursop
-lime
-mandarin
-kumquat
-orange
-lemon
-citron
-grapefruit
-pomelo
-clementine
-tangerine
-satsuma
-sweet orange
-bitter orange
-navel orange
-Valencia orange
-crab apple
-eating apple
-Granny Smith
-Delicious
-McIntosh
-Red Delicious
-Golden Delicious
-strawberry
-mulberry
-currant
-lingonberry
-blackberry
-red currant
-raspberry
-cranberry
-acerola
-persimmon
-blueberry
-bilberry
-muskmelon
-watermelon
-cantaloup
-sour cherry
-sweet cherry
-bing cherry
-mushroom
-asparagus
-plantain
-pumpkin
-cucumber
-root vegetable
-cruciferous vegetable
-raw vegetable
-solanaceous vegetable
-artichoke
-legume
-leek
-squash
-greens
-celery
-cardoon
-gumbo
-pieplant
-onion
-fennel
-taro
-beet
-yam
-carrot
-potato
-baked potato
-mashed potato
-french fries
-mustard
-cabbage
-kohlrabi
-cauliflower
-brussels sprouts
-broccoli rabe
-broccoli
-radish
-turnip
-collards
-bok choy
-savoy cabbage
-head cabbage
-kale
-pepper
-tomato
-eggplant
-tomatillo
-sweet pepper
-hot pepper
-bell pepper
-pimento
-green pepper
-chili
-tabasco
-cayenne
-jalapeno
-cherry tomato
-beefsteak tomato
-bean
-pea
-chickpea
-lentil
-soy
-common bean
-black bean
-kidney bean
-fresh bean
-green bean
-shell bean
-snap bean
-haricot vert
-string bean
-fava bean
-green soybean
-green pea
-snow pea
-sugar snap pea
-summer squash
-winter squash
-spaghetti squash
-zucchini
-yellow squash
-butternut squash
-acorn squash
-chard
-turnip greens
-salad green
-bean sprout
-spinach
-lamb's-quarter
-cress
-chicory
-chicory escarole
-radicchio
-lettuce
-leaf lettuce
-crisphead lettuce
-cos
-green onion
-shallot
-purple onion
-doughnut
-bread
-crouton
-breadstick
-soft pretzel
-rye bread
-dark bread
-raisin bread
-brown bread
-cinnamon bread
-quick bread
-matzo
-sour bread
-bun
-white bread
-challah
-loaf of bread
-pretzel
-English muffin
-toast
-nan
-chapatti
-garlic bread
-Yorkshire pudding
-banana bread
-scone
-Irish soda bread
-biscuit
-muffin
-drop scone
-cornbread
-nut bread
-buttermilk biscuit
-hardtack
-shortcake
-corn muffin
-popover
-bran muffin
-cornpone
-hush puppy
-johnnycake
-hamburger bun
-bagel
-frankfurter bun
-sweet roll
-hard roll
-brioche
-crescent roll
-honey bun
-cinnamon roll
-cross bun
-Italian bread
-baguet
-French bread
-meat loaf
-French loaf
-material
-stucco
-gravel
-rock
-leopard
-soil
-sand
-loofa
-paper
-litter
-toilet tissue
-queen
-comestible
-foodstuff
-fare
-beverage
-soul food
-feed
-nutriment
-yolk
-comfort food
-egg
-grain
-carrot juice
-soya milk
-whole wheat flour
-oatmeal
-ingredient
-dairy product
-cocoa
-concoction
-Spam
-juice
-canned food
-corn
-rice
-wild rice
-barley
-wheat
-sweet corn
-popcorn
-white rice
-paddy
-flavorer
-egg yolk
-saffron
-juniper berries
-cayenne
-sesame seed
-sassafras
-spice
-condiment
-sweetening
-herb
-paprika
-garlic
-nasturtium
-mocha
-cardamom
-nutmeg
-stick cinnamon
-Chinese anise
-clove
-cinnamon
-guacamole
-chili sauce
-olive
-chutney
-vinegar
-dip
-soy sauce
-salsa
-cranberry sauce
-catsup
-spread
-green olive
-sauce
-wine vinegar
-cider vinegar
-hummus
-miso
-spaghetti sauce
-chocolate sauce
-Tabasco
-hot sauce
-veloute
-pesto
-dressing
-bourguignon
-hollandaise
-carbonara
-tomato sauce
-green mayonnaise
-mayonnaise
-powdered sugar
-honey
-syrup
-sorghum
-grenadine
-maple syrup
-basil
-lemon balm
-sweet woodruff
-clary sage
-hyssop
-comfrey
-coriander
-mint
-chives
-marjoram
-borage
-sage
-tea
-rosemary
-parsley
-bay leaf
-thyme
-tea bag
-oolong
-souchong
-cream
-milk
-whipping cream
-clotted cream
-light cream
-heavy cream
-stuffing
-batter
-dough
-filling
-pastry
-bread dough
-puff paste
-phyllo
-chow
-menu
-dietary
-diet
-diet
-dietary supplement
-vegetarianism
-vitamin pill
-multivitamin
-alcohol
-fruit juice
-fizz
-near beer
-cocoa
-coffee
-cider
-tea
-soft drink
-fruit drink
-ginger beer
-drinking water
-potion
-smoothie
-mixed drink
-liquor
-sake
-wine
-hooch
-home brew
-liqueur
-hard cider
-brew
-neutral spirits
-aperitif
-highball
-cocktail
-spritzer
-punch
-pina colada
-mimosa
-julep
-gin and tonic
-Bloody Mary
-martini
-gimlet
-gin and it
-daiquiri
-sidecar
-Sazerac
-margarita
-cup
-May wine
-eggnog
-fruit punch
-vodka
-firewater
-aquavit
-grog
-schnapps
-arrack
-gin
-rum
-aqua vitae
-tequila
-bitters
-geneva
-brandy
-ouzo
-whiskey
-eau de vie
-Cognac
-grappa
-Armagnac
-Calvados
-Irish
-bourbon
-sour mash
-Scotch
-rye
-corn whiskey
-blended whiskey
-blush wine
-vintage
-champagne
-vin ordinaire
-dessert wine
-macon
-sparkling wine
-Cotes de Provence
-varietal
-Burgundy
-fortified wine
-Bordeaux
-table wine
-California wine
-vermouth
-red wine
-Rhone wine
-white wine
-Montrachet
-Beaujolais
-Chablis
-Madeira
-sherry
-malmsey
-port
-muscat
-Saint Emilion
-claret
-dry vermouth
-sweet vermouth
-Medoc
-Chianti
-Pinot noir
-Rioja
-Merlot
-Cabernet
-zinfandel
-Riesling
-Sauvignon blanc
-Muscadet
-Yquem
-Pinot blanc
-Sauterne
-Chenin blanc
-Chardonnay
-sack
-Verdicchio
-Canary wine
-Pernod
-Drambuie
-sambuca
-triple sec
-absinth
-maraschino
-anisette
-beer
-lager
-draft beer
-ale
-suds
-Munich beer
-Pilsner
-light beer
-malt
-bock
-Weissbier
-porter
-stout
-bitter
-pale ale
-Guinness
-Weizenbock
-orange juice
-cranberry juice
-nectar
-iced coffee
-caffe latte
-espresso
-cappuccino
-Irish coffee
-chicory
-cafe au lait
-mocha
-Turkish coffee
-ice tea
-cuppa
-tonic
-cola
-orange soda
-ginger ale
-pop
-root beer
-Coca Cola
-Pepsi
-mineral water
-bottled water
-soda water
-oil cake
-bird feed
-fodder
-eatage
-hay
-alfalfa
-broad bean
-dainty
-fast food
-puree
-finger food
-dish
-course
-mother's milk
-vitamin
-kosher
-meal
-jello
-gelatin
-sweet
-candied apple
-confiture
-candy
-chewing gum
-confectionery
-maraschino
-conserve
-strawberry jam
-apple butter
-lemon curd
-jam
-jelly
-peppermint
-peanut brittle
-chocolate kiss
-nougat bar
-candy bar
-jelly bean
-lollipop
-candy cane
-truffle
-chocolate fudge
-cough drop
-sugar candy
-Easter egg
-kiss
-gumdrop
-candy corn
-fondant
-cotton candy
-caramel
-fudge
-candy egg
-chocolate egg
-bubble gum
-gum ball
-poached egg
-piece de resistance
-side dish
-stew
-omelet
-soup
-sashimi
-taco
-French toast
-cheese souffle
-potpie
-lamb curry
-stuffed tomato
-chow mein
-croquette
-gefilte fish
-coq au vin
-special
-spaghetti and meatballs
-eggs Benedict
-schnitzel
-buffalo wing
-chicken casserole
-rissole
-paella
-frittata
-meatball
-chili
-porridge
-tamale
-stuffed tomato
-couscous
-deviled egg
-beef Wellington
-pasta
-egg roll
-enchilada
-falafel
-mushy peas
-turnover
-scrambled eggs
-Spanish rice
-teriyaki
-barbecued spareribs
-pilaf
-kabob
-tempura
-samosa
-fried egg
-sandwich plate
-chicken cacciatore
-saute
-fried rice
-custard
-sukiyaki
-fish and chips
-souffle
-steak au poivre
-pizza
-fondue
-biryani
-stuffed peppers
-mousse
-shirred egg
-Swedish meatball
-jambalaya
-Scotch egg
-burrito
-risotto
-salad
-boiled egg
-curry
-snack food
-bouillabaisse
-goulash
-pottage
-beef stew
-hot pot
-fish stew
-hotchpotch
-Irish stew
-ratatouille
-gazpacho
-won ton
-petite marmite
-split-pea soup
-consomme
-chowder
-potage
-marmite
-lentil soup
-bisque
-pea soup
-pepper pot
-chicken broth
-chicken soup
-broth
-broth
-gumbo
-borsch
-corn chowder
-clam chowder
-fish chowder
-gruel
-congee
-macaroni and cheese
-lasagna
-cannelloni
-spaghetti
-creme caramel
-creme brulee
-pepperoni pizza
-anchovy pizza
-cheese pizza
-Sicilian pizza
-sausage pizza
-chocolate fondue
-cheese fondue
-coleslaw
-macaroni salad
-tossed salad
-salad nicoise
-pasta salad
-fruit salad
-tabbouleh
-green salad
-chef's salad
-hard-boiled egg
-Easter egg
-sandwich
-corn chip
-chip
-bomber
-cheeseburger
-chicken sandwich
-ham sandwich
-Reuben
-bacon-lettuce-tomato sandwich
-chili dog
-open-face sandwich
-gyro
-wrap
-hamburger
-club sandwich
-hotdog
-tortilla chip
-nacho
-entree
-plate
-dessert
-appetizer
-mousse
-tiramisu
-frozen dessert
-pudding
-pudding
-trifle
-flan
-whip
-dumpling
-compote
-chocolate mousse
-pavlova
-parfait
-ice-cream cake
-ice lolly
-ice-cream sundae
-ice-cream cone
-ice cream
-ice
-banana split
-frozen yogurt
-frozen custard
-vanilla ice cream
-peach ice cream
-chocolate ice cream
-strawberry ice cream
-plum pudding
-chocolate pudding
-shrimp cocktail
-stuffed mushroom
-cocktail
-hors d'oeuvre
-carrot stick
-antipasto
-water-soluble vitamin
-fat-soluble vitamin
-vitamin P
-vitamin C
-B-complex vitamin
-vitamin B2
-inositol
-vitamin B6
-choline
-pantothenic acid
-vitamin B12
-vitamin Bc
-vitamin D
-vitamin A1
-picnic
-bite
-supper
-breakfast
-refection
-smorgasbord
-buffet
-brunch
-continental breakfast
-dinner
-lunch
-banquet
-cookout
-fish fry
-barbecue
-refreshment
-nosh
-land
-location
-land
-fomite
-part
-geological formation
-cobweb
-whole
-hail
-swamp
-cultivated land
-region
-region
-pass
-line
-point
-opening
-bedside
-soil horizon
-extremity
-boundary
-nib
-selvage
-shoreline
-benthos
-resort area
-geographical area
-district
-scrubland
-bush
-oilfield
-field
-tract
-heronry
-grassland
-site
-court
-basketball court
-fairground
-plot
-field
-amusement park
-veld
-pasture
-campsite
-garbage heap
-cemetery
-flowerbed
-garden
-topiary
-peach orchard
-yard
-grainfield
-playground
-garden
-city
-city district
-eparchy
-kasbah
-waterfront
-business district
-col
-defile
-hemline
-spoor
-crest
-topographic point
-workplace
-half-mast
-intersection
-bus stop
-mecca
-hole-in-the-wall
-patisserie
-bakery
-farm
-piggery
-ranch
-dairy
-knothole
-chasm
-oxbow
-floor
-pinetum
-plain
-steppe
-cigarette butt
-pipefitting
-handle
-panhandle
-stock
-haft
-ax handle
-broomstick
-pistol grip
-arete
-volcanic crater
-spring
-ice mass
-natural depression
-natural elevation
-oceanfront
-massif
-cliff
-shore
-talus
-ridge
-range
-lakefront
-slope
-cave
-foreshore
-beach
-hot spring
-geyser
-icecap
-iceberg
-Alpine glacier
-glacier
-valley
-lunar crater
-landfill
-sinkhole
-basin
-crater
-bed
-hole
-arroyo
-ravine
-canyon
-gorge
-tidal basin
-cirque
-ocean floor
-riverbed
-streambed
-burrow
-pothole
-tableland
-hill
-mountain
-highland
-ridge
-promontory
-anthill
-butte
-foothill
-knoll
-alp
-ben
-volcano
-sandbar
-dune
-reef
-bank
-coral reef
-atoll
-sandbank
-bluff
-point
-mull
-crag
-precipice
-seashore
-strand
-lakeside
-littoral
-seaside
-mountainside
-descent
-hillside
-ski slope
-escarpment
-bank
-downhill
-ascent
-brae
-uphill
-riverbank
-waterside
-cove
-cavern
-grotto
-artifact
-living thing
-natural object
-assembly
-block
-millstone
-paving
-creation
-opening
-plaything
-surface
-tramline
-structure
-instrumentality
-padding
-covering
-fabric
-bookmark
-float
-building material
-decoration
-way
-strip
-article
-facility
-excavation
-commodity
-sheet
-fixture
-blacktop
-line
-bullion
-tessera
-tile
-anvil
-representation
-art
-needlework
-product
-pieta
-map
-sketch
-sonogram
-photograph
-waxwork
-arthrogram
-radiogram
-photomicrograph
-photostat
-painting
-triptych
-nude
-finger-painting
-smocking
-stitch
-sewing stitch
-knitting stitch
-lockstitch
-hemstitch
-garter stitch
-purl
-book
-work
-jotter
-newspaper
-wicker
-masterpiece
-openwork
-woodwork
-lacquerware
-cabinetwork
-joinery
-decolletage
-gargoyle
-aperture
-hole
-mouthpiece
-outfall
-plughole
-manhole
-keyhole
-perforation
-thumbhole
-pogo stick
-ball
-pinata
-teddy
-jungle gym
-bubble
-hula-hoop
-pinwheel
-slide
-sport kite
-cockhorse
-doll
-foam
-air bubble
-spume
-shaving foam
-golliwog
-kachina
-horizontal surface
-board
-tabletop
-side
-platform
-tarmacadam
-floor
-turntable
-stage
-dais
-sumo ring
-hurricane deck
-flatbed
-parquet
-backgammon board
-pegboard
-facade
-ceiling
-body
-floor
-bridge
-corner
-conformation
-superstructure
-airdock
-cross
-house of cards
-hull
-gun enclosure
-lookout
-building complex
-shelter
-honeycomb
-column
-altar
-arch
-tower
-transept
-mound
-fountain
-obelisk
-fan vaulting
-arcade
-loggia
-coil
-billboard
-partition
-masonry
-skein
-colonnade
-obstruction
-building
-sail
-projection
-peristyle
-door
-stadium
-drinking fountain
-area
-balcony
-porch
-dock
-high altar
-housing
-supporting structure
-balance
-defensive structure
-entablature
-memorial
-establishment
-signboard
-bodywork
-fuselage
-ground floor
-mezzanine
-loft
-basement
-footbridge
-drawbridge
-cantilever bridge
-rope bridge
-overpass
-truss bridge
-viaduct
-steel arch bridge
-covered bridge
-gangplank
-suspension bridge
-trestle bridge
-plant
-college
-winery
-factory
-distillery
-oil refinery
-refinery
-rolling mill
-foundry
-steel mill
-lumbermill
-stamp mill
-quartz battery
-battery
-harbor
-Nissen hut
-hovel
-tent
-hut
-igloo
-dugout
-mountain tent
-pup tent
-pavilion
-backpacking tent
-fly tent
-canvas tent
-field tent
-wall tent
-circus tent
-Gothic arch
-round arch
-pointed arch
-triumphal arch
-broken arch
-Moorish arch
-Roman arch
-campanile
-turret
-clock tower
-shot tower
-church tower
-minaret
-pylon
-silo
-watchtower
-trestle
-pylon
-steeple
-fire tower
-high-rise
-supporting tower
-control tower
-bell tower
-beacon
-burial mound
-snowbank
-rampart
-fraise
-battlement
-altarpiece
-wall
-gable
-wainscoting
-attic
-pediment
-bell gable
-brickwork
-stonework
-barrier
-obstacle
-plug
-lever
-grate
-safety rail
-movable barrier
-bannister
-breakwater
-grille
-weir
-railing
-hurdle
-starting gate
-fence
-dam
-gate
-door
-lychgate
-portcullis
-turnstile
-French window
-car door
-screen door
-French door
-double door
-interior door
-sliding door
-revolving door
-barn door
-hatchback
-storm door
-wall
-retaining wall
-rail fence
-chainlink fence
-dry wall
-hedge
-worm fence
-picket fence
-stone wall
-water jump
-bunker
-earplug
-cork
-tap
-presbytery
-hotel
-tenement
-abattoir
-apartment building
-aviary
-hall
-house
-Roman building
-rest house
-outbuilding
-funeral home
-medical building
-hotel-casino
-library
-casino
-farm building
-place of worship
-restaurant
-ministry
-rotunda
-observatory
-office building
-temple
-signal box
-government building
-greenhouse
-rink
-planetarium
-public house
-bowling alley
-house
-ruin
-architecture
-skyscraper
-gazebo
-school
-chapterhouse
-theater
-hall of residence
-conservatory
-center
-resort hotel
-resort
-motel
-dude ranch
-Ritz
-ski lodge
-hostel
-motor hotel
-city hall
-guildhall
-lyceum
-field house
-oast house
-courthouse
-shed
-garage
-carport
-outhouse
-coach house
-boathouse
-woodshed
-apiary
-maternity hospital
-dispensary
-stable
-chicken coop
-cowbarn
-barn
-pantheon
-church
-temple
-shrine
-stupa
-masjid
-synagogue
-mosque
-chapel
-kirk
-abbey
-cathedral
-cathedral
-minster
-cafe
-rotisserie
-automat
-brasserie
-cafeteria
-diner
-capitol
-embassy
-town hall
-chancellery
-customhouse
-Statehouse
-courthouse
-ice rink
-ice hockey rink
-alehouse
-free house
-solar house
-bungalow
-row house
-cabin
-duplex house
-mansion
-lodging house
-gatehouse
-log cabin
-saltbox
-country house
-dollhouse
-ranch house
-boarding house
-detached house
-villa
-chalet
-residence
-farmhouse
-terraced house
-brownstone
-palace
-stately home
-manor
-summer house
-dacha
-villa
-chateau
-manse
-religious residence
-glebe house
-parsonage
-palace
-monastery
-abbey
-abbey
-day school
-conservatory
-music school
-opera
-music hall
-cinema
-little theater
-home theater
-control center
-settlement house
-call center
-cornice
-cog
-knob
-bill
-flange
-brim
-tine
-eaves
-tooth
-pinhead
-football stadium
-hippodrome
-dome
-ballpark
-bullring
-amphitheater
-patio
-corner
-baggage claim
-hideaway
-choir
-breakfast area
-quad
-chancel
-auditorium
-court
-dining area
-room
-assembly hall
-enclosure
-nave
-aisle
-storage space
-goalmouth
-food court
-atrium
-cloister
-forecourt
-toilet
-sun parlor
-engineering
-surgery
-rotunda
-classroom
-gallery
-manor hall
-cell
-lounge
-sauna
-dressing room
-billiard room
-belfry
-kitchen
-library
-storeroom
-workroom
-sewing room
-anechoic chamber
-dining room
-recreation room
-hospital room
-reading room
-booth
-conference room
-bedroom
-clean room
-living room
-door
-hall
-reception room
-boardroom
-study
-locker room
-cocktail lounge
-television room
-compartment
-court
-poolroom
-bathroom
-control room
-anteroom
-water closet
-men's room
-washroom
-public toilet
-home room
-lecture room
-study hall
-pantry
-stockroom
-vault
-refectory
-dining-hall
-canteen
-family room
-rumpus room
-emergency room
-recovery room
-operating room
-telephone booth
-voting booth
-confessional
-shower stall
-master bedroom
-motel room
-guestroom
-hotel room
-dormitory
-nursery
-day nursery
-great hall
-concert hall
-palace
-exhibition hall
-parlor
-drawing room
-press box
-command module
-cabin
-pilothouse
-cab
-luggage compartment
-cabinet
-cockpit
-stateroom
-car
-cable car
-stall
-drawing room
-terrarium
-cage
-playpen
-pen
-vivarium
-pound
-lock
-chicken yard
-chamber
-recess
-birdcage
-rabbit hutch
-hutch
-cow pen
-rodeo
-fold
-sounding board
-burial chamber
-firing chamber
-resonator
-furnace
-bomb shelter
-hyperbaric chamber
-repository
-mausoleum
-kiln
-blast furnace
-oast
-gas oven
-incinerator
-mihrab
-columbarium
-fire
-fireplace
-apse
-cellar
-cupboard
-stacks
-gallery
-amphitheater
-organ loft
-stoop
-sun deck
-front porch
-veranda
-deck
-back porch
-portico
-marina
-dry dock
-block
-dwelling
-tennis camp
-living quarters
-mobile home
-condominium
-apartment
-ward
-cellblock
-condominium
-yurt
-lodge
-vacation home
-hearth
-fixer-upper
-cliff dwelling
-homestead
-semi-detached house
-wigwam
-tepee
-accommodation
-first class
-cabin class
-bedsitting room
-flatlet
-chassis
-support
-framework
-pedestal
-buttress
-flying buttress
-abutment
-ribbing
-bustle
-window frame
-frame
-gantry
-honeycomb
-truss
-lattice
-cornice
-picture frame
-window
-climbing frame
-trellis
-airframe
-grate
-grape arbor
-walker
-casing
-tambour
-arbor
-rack
-mounting
-sash
-casement
-oriel
-bay window
-stained-glass window
-skylight
-display window
-rose window
-porthole
-transom
-clerestory
-dormer
-dormer window
-lancet window
-fanlight
-plate rack
-barbecue
-bicycle rack
-luggage rack
-dish rack
-towel rack
-passe-partout
-pave
-mount
-stronghold
-fortress
-fortification
-bastion
-keep
-kremlin
-acropolis
-alcazar
-martello tower
-fieldwork
-bastion
-escarpment
-palisade
-castle
-cenotaph
-megalith
-Seven Wonders of the Ancient World
-brass
-national monument
-pantheon
-dolmen
-menhir
-place of business
-institution
-university
-mercantile establishment
-office
-cabaret
-health spa
-plaza
-country store
-department store
-shop
-marketplace
-boutique
-salon
-shoe shop
-bookshop
-package store
-thriftshop
-junk shop
-toyshop
-cleaners
-bazaar
-gift shop
-florist
-drugstore
-garage
-delicatessen
-small stores
-barbershop
-stall
-tobacco shop
-newsstand
-butcher shop
-pizzeria
-confectionery
-convenience store
-bazaar
-agora
-grocery store
-open-air market
-supermarket
-hypermarket
-greengrocery
-souk
-farmer's market
-flea market
-newsroom
-box office
-headquarters
-correctional institution
-orphanage
-jail
-penitentiary
-prison
-toiletry
-weaponry
-equipment
-connection
-implement
-furnishing
-device
-ceramic
-system
-container
-conveyance
-medium
-deodorant
-bath oil
-cream
-lotion
-shaving cream
-hair spray
-mousse
-perfume
-hairdressing
-antiperspirant
-powder
-cosmetic
-bath salts
-hand cream
-cold cream
-sunscreen
-lanolin
-body lotion
-toner
-hand lotion
-after-shave
-potpourri
-patchouli
-perfumery
-cologne
-toilet water
-pomade
-brilliantine
-toilet powder
-talcum
-depilatory
-highlighter
-makeup
-face powder
-lip-gloss
-eyeshadow
-mascara
-lipstick
-rouge
-eyeliner
-eyebrow pencil
-armament
-defense system
-bomb
-ammunition
-naval weaponry
-bazooka
-artillery
-launcher
-cannon
-field artillery
-mortar
-basilisk
-hydrogen bomb
-atom bomb
-round
-shotgun shell
-recorder
-sports equipment
-photographic equipment
-naval equipment
-parasail
-gear
-satellite
-game equipment
-parachute
-electronic equipment
-apparatus
-automation
-material
-baggage
-tape recorder
-cassette recorder
-Dictaphone
-videocassette recorder
-baseball equipment
-croquet mallet
-clay pigeon
-skate
-wrestling mat
-cricket equipment
-basketball equipment
-javelin
-shuttlecock
-golf equipment
-spike
-stick
-boxing equipment
-boxing glove
-gymnastic apparatus
-weight
-baseball glove
-batting cage
-batting glove
-base
-batting helmet
-baseball bat
-home plate
-first base
-third base
-second base
-in-line skate
-Rollerblade
-roller skate
-ice skate
-hockey skate
-speed skate
-figure skate
-cricket bat
-wicket
-golfcart
-golf glove
-tee
-golf club
-wood
-iron
-driver
-spoon
-wedge
-midiron
-putter
-niblick
-pitching wedge
-sand wedge
-hockey stick
-polo mallet
-horizontal bar
-horse
-uneven parallel bars
-parallel bars
-trampoline
-balance beam
-vaulting horse
-pommel horse
-dumbbell
-barbell
-enlarger
-camera
-clapperboard
-film
-light meter
-box camera
-flash camera
-Polaroid camera
-point-and-shoot camera
-webcam
-motion-picture camera
-digital camera
-portrait camera
-reflex camera
-X-ray film
-reel
-negative
-regalia
-kit
-rig
-fishing gear
-stable gear
-rigging
-crown
-crown jewels
-sewing kit
-first-aid kit
-carpenter's kit
-layette
-drill rig
-drilling platform
-harness
-snaffle
-headgear
-saddle blanket
-halter
-bridle
-sputnik
-space station
-backboard
-ball
-puzzle
-pool table
-bowling pin
-man
-chip
-roulette wheel
-goal
-volleyball net
-pinball machine
-soccer ball
-pool ball
-bowling ball
-softball
-field hockey ball
-punching bag
-billiard ball
-croquet ball
-cricket ball
-tennis ball
-golf ball
-rugby ball
-cue ball
-medicine ball
-basketball
-eight ball
-ping-pong ball
-handball
-baseball
-racquetball
-bocce ball
-volleyball
-jigsaw puzzle
-crossword puzzle
-chessman
-white
-pawn
-basket
-net
-electronic fetal monitor
-monitor
-monitor
-television monitor
-telephone
-oscilloscope
-peripheral
-booster
-cassette player
-CD player
-receiver
-audio system
-lens
-playback
-television equipment
-circuitry
-cassette deck
-central processing unit
-mixer
-scanner
-tape player
-detector
-modem
-equalizer
-tape deck
-amplifier
-cellular telephone
-speakerphone
-desk phone
-pay-phone
-handset
-dial telephone
-radiotelephone
-television receiver
-radio receiver
-satellite receiver
-heterodyne receiver
-clock radio
-reproducer
-hi-fi
-stereo
-iPod
-Walkman
-video iPod
-ghetto blaster
-camcorder
-television camera
-pendulum
-purifier
-sequencer
-reformer
-duplicator
-heat pump
-semaphore
-tomograph
-ultracentrifuge
-generator
-incubator
-burner
-Foucault pendulum
-clock pendulum
-metronome
-Photostat
-photocopier
-Xerox
-facsimile
-mimeograph
-positron emission tomography scanner
-computerized axial tomography scanner
-gas burner
-blowtorch
-bunsen burner
-gas ring
-packaging
-blister pack
-roofing
-temporary hookup
-slip ring
-telephone line
-ligament
-junction
-hot line
-digital subscriber line
-land line
-binder
-wire
-chain
-concertina
-barbed wire
-paper chain
-anchor chain
-fob
-bicycle chain
-tire chain
-chatelaine
-joint
-contact
-dovetail
-welt
-hinge
-scarf joint
-weld
-seam
-mortise joint
-butt hinge
-strap hinge
-distributor point
-tread
-wiper
-bar
-tool
-utensil
-rubber eraser
-needle
-eraser
-stick
-brush
-hook
-sharpener
-sports implement
-leather strip
-swatter
-fire iron
-oar
-stick
-cleaning implement
-rod
-writing implement
-shovel
-split rail
-fret
-bolt
-rotor
-towel rail
-lever
-track
-handlebar
-crowbar
-stick
-key
-tappet
-pedal
-rocker arm
-gun trigger
-space bar
-backspace key
-shift key
-telegraph key
-accelerator
-sustaining pedal
-hand tool
-jack
-pestle
-garden tool
-plow
-comb
-drill
-cutting implement
-tamp
-garden rake
-rake
-stamp
-locking pliers
-pestle
-plunger
-pincer
-pliers
-soldering iron
-spade
-hammer
-pipe cutter
-wrench
-screwdriver
-trowel
-saw
-opener
-scraper
-shovel
-brick trowel
-spatula
-carpenter's hammer
-gavel
-mallet
-maul
-torque wrench
-pipe wrench
-adjustable wrench
-open-end wrench
-Allen wrench
-box wrench
-hacksaw
-folding saw
-handsaw
-pruner
-pruning saw
-corkscrew
-bottle opener
-can opener
-hedge trimmer
-lawn mower
-power mower
-riding mower
-power drill
-electric drill
-cutter
-twist bit
-bit
-blade
-knife blade
-bolt cutter
-cigar cutter
-edge tool
-scissors
-knife
-ax
-razor
-wire cutter
-chisel
-plane
-shears
-snips
-pruning shears
-secateurs
-carving knife
-Bowie knife
-pocketknife
-cleaver
-hunting knife
-case knife
-parer
-letter opener
-switchblade
-penknife
-battle-ax
-hatchet
-shaver
-straight razor
-safety razor
-cold chisel
-wood chisel
-jointer
-smooth plane
-spokeshave
-kitchen utensil
-ceramic ware
-funnel
-rolling pin
-reamer
-masher
-kitchenware
-squeezer
-mixer
-cookie cutter
-cooking utensil
-grater
-mincer
-eggbeater
-whisk
-blender
-pan
-Crock Pot
-chafing dish
-spatula
-griddle
-enamelware
-steamer
-cookie sheet
-cooker
-turner
-omelet pan
-stewing pan
-frying pan
-roaster
-wok
-saucepan
-graniteware
-cloisonne
-porcelain
-earthenware
-stoneware
-pottery
-Spode
-china
-bone china
-majolica
-faience
-knitting needle
-crochet needle
-walking stick
-matchstick
-club
-fiddlestick
-spindle
-stob
-staff
-drumstick
-mallet
-cane
-sword cane
-bat
-table-tennis racquet
-truncheon
-alpenstock
-flagpole
-crutch
-electric toothbrush
-toothbrush
-sable
-scrub brush
-hairbrush
-bristle brush
-shaving brush
-pencil sharpener
-steel
-cue
-racket
-squash racket
-tennis racket
-badminton racket
-thong
-strap
-cheekpiece
-rein
-noseband
-leading rein
-scull
-paddle
-besom
-scouring pad
-dustmop
-squeegee
-broom
-swab
-rotating shaft
-wand
-shaft
-piston rod
-kickstand
-axle
-pole
-fishing rod
-connecting rod
-tie rod
-driveshaft
-crankshaft
-transmission shaft
-spindle
-camshaft
-boom
-stilt
-ski pole
-clothes tree
-caber
-spar
-mast
-mast
-bowsprit
-yard
-mizzenmast
-royal mast
-mainmast
-foremast
-fly rod
-spinning rod
-pencil
-pen
-highlighter
-chalk
-crayon
-lead pencil
-ballpoint
-Sharpie
-quill
-fountain pen
-felt-tip pen
-furniture
-office furniture
-dining-room furniture
-wardrobe
-bedroom furniture
-table
-table
-wall unit
-lamp
-dining-room table
-washstand
-buffet
-cabinet
-baby bed
-bedstead
-lawn furniture
-credenza
-bookcase
-entertainment center
-etagere
-seat
-sectional
-chest of drawers
-file
-Rolodex
-card index
-vertical file
-clothes closet
-armoire
-bed
-berth
-platform bed
-hospital bed
-bunk
-trundle bed
-four-poster
-couch
-bunk bed
-twin bed
-sleigh bed
-single bed
-hammock
-Murphy bed
-double bed
-gaming table
-gueridon
-table-tennis table
-counter
-altar
-breakfast table
-stand
-conference table
-pedestal table
-kitchen table
-operating table
-tea table
-lectern
-worktable
-gateleg table
-dressing table
-desk
-drop-leaf table
-coffee table
-trestle table
-console table
-checkout
-bar
-meat counter
-reception desk
-salad bar
-snack bar
-drafting table
-lab bench
-writing desk
-secretary
-davenport
-dining table
-dinner table
-refectory table
-floor lamp
-table lamp
-reading lamp
-dresser
-china cabinet
-medicine chest
-bassinet
-crib
-carrycot
-cradle
-chair
-toilet seat
-stool
-sofa
-ottoman
-bench
-lawn chair
-chaise longue
-rocking chair
-swivel chair
-throne
-straight chair
-ladder-back
-highchair
-armchair
-Windsor chair
-folding chair
-wheelchair
-motorized wheelchair
-barber chair
-easy chair
-recliner
-Morris chair
-wing chair
-deck chair
-camp chair
-music stool
-taboret
-footstool
-settee
-daybed
-convertible
-love seat
-chesterfield
-studio couch
-park bench
-flat bench
-pew
-settle
-window seat
-chiffonier
-highboy
-bird feeder
-heater
-lighter
-signal
-converter
-crusher
-drive
-knocker
-peeler
-musical instrument
-shoehorn
-shock absorber
-machine
-conductor
-bait
-stabilizer
-filter
-mechanism
-acoustic device
-trap
-charger
-airfoil
-router
-pick
-energizer
-fan
-hydrofoil
-dental appliance
-adapter
-toy
-support
-optical device
-straightener
-tongs
-phonograph needle
-instrument
-comb
-remote control
-exercise device
-comforter
-washboard
-shredder
-water ski
-blower
-ventilator
-breathing device
-applicator
-skeleton key
-guitar pick
-restraint
-keyboard
-electrical device
-appliance
-fire extinguisher
-corrective
-reflector
-alarm
-electronic device
-snowshoe
-holding device
-memory device
-key
-noisemaker
-source of illumination
-indicator
-detector
-breathalyzer
-imprint
-afterburner
-horn
-elastic device
-ski
-lifting device
-solar heater
-electric heater
-radiator
-gas heater
-convector
-space heater
-stove
-cigar lighter
-match
-cairn
-sign
-street sign
-traffic light
-electrical converter
-catalytic converter
-inverter
-synchronous converter
-external drive
-CD-ROM drive
-internal drive
-stringed instrument
-electronic instrument
-keyboard instrument
-wind instrument
-bass
-percussion instrument
-dulcimer
-chordophone
-banjo
-zither
-samisen
-guitar
-bowed stringed instrument
-sitar
-lute
-mandola
-mandolin
-harp
-acoustic guitar
-Hawaiian guitar
-uke
-electric guitar
-viol
-violin
-cello
-viola
-viola da gamba
-Stradavarius
-theremin
-electric organ
-synthesizer
-piano
-clavier
-organ
-accordion
-grand piano
-upright
-spinet
-mechanical piano
-baby grand
-concert grand
-harpsichord
-spinet
-ocarina
-woodwind
-brass
-organ pipe
-free-reed instrument
-whistle
-pipe
-kazoo
-flute
-beating-reed instrument
-double-reed instrument
-single-reed instrument
-bassoon
-oboe
-clarinet
-sax
-baritone
-bugle
-flugelhorn
-French horn
-trombone
-cornet
-harmonium
-harmonica
-concertina
-chanter
-panpipe
-bagpipe
-fipple flute
-pennywhistle
-drone
-bass fiddle
-bass horn
-bass guitar
-euphonium
-handbell
-bones
-gong
-vibraphone
-steel drum
-marimba
-glockenspiel
-chime
-kettle
-maraca
-drum
-cymbal
-bongo
-bass drum
-tambourine
-snare drum
-tenor drum
-slot machine
-power shovel
-press
-backhoe
-printer
-machine tool
-motor
-snow thrower
-cash machine
-farm machine
-computer
-Zamboni
-mill
-staple gun
-power tool
-concrete mixer
-stapler
-slicer
-textile machine
-record player
-calculator
-vending machine
-slot
-automat
-garlic press
-bench press
-hydraulic press
-punch press
-character printer
-impact printer
-printer
-drum printer
-line printer
-laser printer
-Linotype
-thermal printer
-portable
-typewriter
-bar printer
-wire matrix printer
-dot matrix printer
-bubble jet printer
-ink-jet printer
-shaper
-drill press
-grinder
-lathe
-miller
-engine
-electric motor
-heat engine
-jet engine
-automobile engine
-aircraft engine
-generator
-steam engine
-internal-combustion engine
-wind turbine
-gasoline engine
-diesel
-outboard motor
-radial engine
-rocket
-fanjet
-booster
-space rocket
-alternator
-windmill
-starter
-kick starter
-cultivator
-haymaker
-combine
-thresher
-harvester
-disk harrow
-harrow
-slide rule
-web site
-home computer
-server
-digital computer
-supercomputer
-workstation
-personal computer
-portable computer
-desktop computer
-notebook
-planner
-laptop
-hand-held computer
-pepper mill
-water mill
-meat grinder
-coffee mill
-treadmill
-windmill
-electric hammer
-power saw
-buffer
-circular saw
-chain saw
-table saw
-saber saw
-bandsaw
-spinning wheel
-loom
-jukebox
-gramophone
-abacus
-adding machine
-hand calculator
-semiconductor device
-wire
-cord
-heat sink
-cable
-microprocessor
-transistor
-light-emitting diode
-chip
-filament
-jumper cable
-telephone wire
-patchcord
-telephone cord
-power cord
-extension cord
-ethernet cable
-electrical cable
-printer cable
-power line
-fisherman's lure
-fly
-dry fly
-wet fly
-streamer fly
-outrigger
-vane
-strainer
-air filter
-oil filter
-sieve
-tea-strainer
-colander
-fusee drive
-android
-radiator
-mechanical device
-rotating mechanism
-rotor head
-carriage
-control
-power steering
-automaton
-action
-cooling system
-gear
-tape drive
-film advance
-sprinkler
-propeller
-anchor
-golf-club head
-weathervane
-machine
-seeder
-pump
-gearshift
-ride
-bumper
-hook
-ski binding
-coupling
-record changer
-swing
-windshield wiper
-winder
-winder
-diaphragm
-shutter
-escapement
-broadcaster
-curler
-splint
-compressor
-air compressor
-carburetor
-dildo
-cartridge holder
-trapeze
-gearing
-stator
-airplane propeller
-screw
-pulley
-wheel
-idle pulley
-lever
-inclined plane
-millwheel
-waterwheel
-roller
-bicycle wheel
-caster
-grinding wheel
-rowel
-fifth wheel
-wagon wheel
-waterwheel
-car wheel
-sprocket
-pinwheel
-potter's wheel
-gear
-driving wheel
-paddlewheel
-roulette
-spur gear
-bevel gear
-pinion
-ramp
-ax head
-screw
-grease-gun
-gas pump
-bicycle pump
-sump pump
-hand pump
-centrifugal pump
-Ferris wheel
-roller coaster
-carousel
-universal joint
-clutch
-freewheel
-disk clutch
-bobbin
-reel
-shuttle
-blade
-gyroscope
-circle
-rotor
-paddle
-impeller
-fan blade
-disk
-puck
-brake disk
-token
-Frisbee
-planchet
-tail rotor
-main rotor
-valve
-steering wheel
-governor
-joystick
-regulator
-switch
-ball valve
-butterfly valve
-timer
-flywheel
-faucet
-thermostat
-aperture
-mixing faucet
-stopcock
-toggle switch
-push button
-dial
-horn button
-mouse button
-doorbell
-bell push
-flintlock
-movement
-gunlock
-cooling tower
-evaporative cooler
-air conditioner
-gearset
-four-wheel drive
-whistle
-silencer
-megaphone
-hearing aid
-bell
-cowbell
-church bell
-dinner bell
-spider web
-mousetrap
-lobster pot
-web
-net
-landing net
-fishnet
-vertical stabilizer
-spoiler
-spoiler
-rotor blade
-flap
-rudder
-horizontal stabilizer
-wing
-exhaust fan
-electric fan
-brace
-denture
-backboard
-stirrup
-pier
-pier
-back
-shelf
-landing gear
-baluster
-spoke
-base
-step
-brace
-pillow block
-bearing
-rocker
-coat hanger
-harp
-rest
-bracket
-tailstock
-bookend
-structural member
-headstock
-seat
-thrust bearing
-hanger
-rack
-harness
-cantle
-ladder-back
-bookshelf
-mantel
-neck brace
-knee brace
-ankle brace
-back brace
-arm
-headrest
-chin rest
-armrest
-sconce
-corbel
-shelf bracket
-sill
-riser
-upright
-brace
-tread
-beam
-windowsill
-doorsill
-stile
-jamb
-column
-post
-support column
-caryatid
-goalpost
-newel post
-bollard
-lamppost
-telephone pole
-maypole
-timber
-rundle
-tie
-rafter
-girder
-timber
-floor joist
-joist
-car seat
-pillion
-plane seat
-saddle
-chair
-bicycle seat
-bucket seat
-backseat
-stock saddle
-English saddle
-tripod
-spice rack
-magazine rack
-music stand
-camera tripod
-easel
-autofocus
-projector
-finder
-laser
-lens
-objective
-condenser
-camera lens
-anastigmat
-contact
-sunglass
-eyepiece
-field lens
-Fresnel lens
-portrait lens
-closeup lens
-telephoto lens
-wide-angle lens
-plotter
-scientific instrument
-measuring instrument
-weapon
-guillotine
-drafting instrument
-analyzer
-navigational instrument
-optical instrument
-medical instrument
-instrument of punishment
-catapult
-extractor
-theodolite
-riding crop
-tachymeter
-collider
-microtome
-accelerator
-stroboscope
-magnifier
-console
-telescope
-microscope
-astronomical telescope
-equatorial
-optical telescope
-radio telescope
-refracting telescope
-field glass
-reflecting telescope
-Cassegrainian telescope
-Newtonian telescope
-Schmidt telescope
-Maksutov telescope
-electron microscope
-field-emission microscope
-light microscope
-binocular microscope
-hand glass
-operating microscope
-compound microscope
-loupe
-oximeter
-dropper
-refractometer
-rangefinder
-barometer
-pedometer
-thermometer
-astrolabe
-measuring stick
-gauge
-timepiece
-aneroid barometer
-caliper
-potentiometer
-tachometer
-scale
-tape
-meter
-hygrometer
-sextant
-rule
-altazimuth
-pyrometer
-meat thermometer
-water gauge
-vacuum gauge
-anemometer
-gasoline gauge
-pressure gauge
-manometer
-sphygmomanometer
-atomic clock
-clock
-watch
-sundial
-timer
-hourglass
-grandfather clock
-digital clock
-alarm clock
-wall clock
-analog clock
-pendulum clock
-cuckoo clock
-digital watch
-analog watch
-pocket watch
-wristwatch
-stopwatch
-parking meter
-chronograph
-vernier caliper
-micrometer
-balance
-analytical balance
-electronic balance
-electric meter
-odometer
-ammeter
-speedometer
-ohmmeter
-water meter
-voltmeter
-magnetometer
-tomahawk
-gun
-bow
-bow and arrow
-brass knucks
-knife
-sword
-stun gun
-projectile
-antiaircraft
-firearm
-set gun
-air gun
-gas gun
-paintball gun
-cannon
-autoloader
-pistol
-twenty-two
-Mauser
-muzzle loader
-rifle
-repeating firearm
-semiautomatic firearm
-automatic firearm
-Garand rifle
-Luger
-semiautomatic pistol
-automatic rifle
-assault rifle
-automatic pistol
-machine gun
-submachine gun
-burp gun
-Uzi
-Kalashnikov
-Tommy gun
-Colt
-derringer
-revolver
-gat
-flintlock
-musket
-sniper rifle
-Winchester
-carbine
-crossbow
-longbow
-khukuri
-bayonet
-machete
-dagger
-rapier
-fencing sword
-broadsword
-cavalry sword
-saber
-epee
-foil
-bullet
-cannonball
-compass
-protractor
-artificial horizon
-depth finder
-magnetic compass
-compass
-binoculars
-spectacles
-projector
-telescopic sight
-goggles
-sunglasses
-slide projector
-front projector
-movie projector
-overhead projector
-hypodermic syringe
-cardiograph
-syringe
-stethoscope
-laryngoscope
-otoscope
-surgical instrument
-retractor
-hemostat
-pillory
-rattan
-exercise bike
-treadmill
-respirator
-snorkel
-oxygen mask
-aqualung
-paintbrush
-spray gun
-brake
-handcuff
-fastener
-seat belt
-leash
-safety belt
-brake system
-muzzle
-chain
-bolt
-buckle
-knot
-cleat
-clothespin
-catch
-pin
-dowel
-screw
-slide fastener
-button
-seal
-paper fastener
-lock
-thumbtack
-locker
-clasp
-clip
-carabiner
-nail
-toggle
-nut and bolt
-bowline
-bow
-latch
-hasp
-rivet
-hairpin
-skewer
-hatpin
-brochette
-bobby pin
-barrette
-safety pin
-shirt button
-coat button
-washer
-gasket
-head gasket
-O ring
-padlock
-sash fastener
-latch
-combination lock
-doorlock
-paper clip
-bulldog clip
-hair slide
-hydraulic brake
-disk brake
-drum brake
-typewriter keyboard
-QWERTY keyboard
-computer keyboard
-piano keyboard
-circuit
-Segway
-jack
-control panel
-telephone jack
-circuit breaker
-plug
-electrolytic
-dashboard
-transducer
-solar cell
-antenna
-capacitor
-spark plug
-relay
-surge suppressor
-solar array
-battery
-Tesla coil
-closed circuit
-wiring
-computer circuit
-integrated circuit
-module
-printed circuit
-interface
-CPU board
-circuit board
-mosaic
-electro-acoustic transducer
-earphone
-microphone
-loudspeaker
-telephone receiver
-headset
-condenser microphone
-cardioid microphone
-tweeter
-bullhorn
-tannoy
-woofer
-subwoofer
-omnidirectional antenna
-directional antenna
-radio antenna
-television antenna
-dish
-scanner
-yagi
-voltaic battery
-flashlight battery
-lead-acid battery
-pack
-prosthesis
-solar dish
-mirror
-hand glass
-car mirror
-rearview mirror
-outside mirror
-burglar alarm
-automobile horn
-shofar
-fire alarm
-readout
-scanner
-tube
-display
-personal digital assistant
-dongle
-trackball
-mouse
-answering machine
-hearing aid
-beeper
-triode
-pentode
-computer monitor
-monitor
-screen
-digital display
-liquid crystal display
-flat panel display
-window
-dialog box
-caller ID
-computer screen
-background
-C-clamp
-chuck
-collet
-holder
-vise
-candlestick
-cigarette holder
-candelabrum
-menorah
-Menorah
-cache
-optical disk
-magnetic disk
-memory
-magnetic tape
-recording
-auxiliary storage
-compact disk
-videodisk
-CD-ROM
-CD-R
-audio CD
-hard disc
-diskette
-flash memory
-random-access memory
-videotape
-cassette tape
-tape
-phonograph record
-LP
-seventy-eight
-lamp
-light
-flash
-lantern
-candle
-neon lamp
-vigil light
-taillight
-gas lamp
-oil lamp
-hurricane lamp
-fluorescent lamp
-streetlight
-spotlight
-electric lamp
-jack-o'-lantern
-Chinese lantern
-flashlight
-light bulb
-penlight
-headlight
-room light
-strip lighting
-fairy light
-sconce
-searchlight
-night-light
-blinker
-torch
-flood
-fuel gauge
-gnomon
-dial
-vernier scale
-pointer
-light pen
-hand
-sweep hand
-minute hand
-second hand
-hour hand
-spring
-rubber band
-coil spring
-box spring
-hoist
-winch
-elevator
-crane
-wheel and axle
-derrick
-maze
-communication system
-network
-Global Positioning System
-resonator
-exhaust
-mechanical system
-computer system
-scaffolding
-reticle
-walkie-talkie
-radio
-telecommunication system
-telephone system
-intercommunication system
-interphone
-television
-satellite television
-surveillance system
-color television
-local area network
-superhighway
-ethernet
-wireless local area network
-production line
-linkage
-suspension
-fuel injection
-planter
-trophy case
-wastepaper basket
-dish
-bread-bin
-dispenser
-pot
-bunker
-reliquary
-cup
-bag
-cassette
-Dumpster
-bag
-measuring cup
-glass
-paintball
-measure
-envelope
-shaker
-piggy bank
-basket
-sewing basket
-savings bank
-powder horn
-can
-wheeled vehicle
-workbasket
-bin
-canister
-mold
-cargo container
-videocassette
-case
-case
-vessel
-drawer
-receptacle
-package
-watering can
-box
-cocotte
-Petri dish
-gravy boat
-serving dish
-tureen
-sugar bowl
-bowl
-casserole
-ramekin
-butter dish
-salad bowl
-mixing bowl
-porringer
-cereal bowl
-soup bowl
-punch bowl
-roll-on
-aerosol
-soap dispenser
-atomizer
-inhaler
-demitasse
-beaker
-kylix
-coffee cup
-chalice
-teacup
-Dixie cup
-evening bag
-shoulder bag
-clutch bag
-reticule
-backpack
-sachet
-beanbag
-sandbag
-carryall
-pannier
-duffel bag
-book bag
-tool bag
-mailbag
-purse
-drawstring bag
-envelope
-saddlebag
-sack
-pouch
-shopping bag
-toilet bag
-gamebag
-kitbag
-plastic bag
-golf bag
-sleeping bag
-gunnysack
-grocery bag
-sporran
-pocket
-waist pack
-fanny pack
-hip pocket
-patch pocket
-flute
-tumbler
-water glass
-bumper
-liqueur glass
-snifter
-shot glass
-beer glass
-rummer
-goblet
-wineglass
-cocktail shaker
-saltshaker
-pepper shaker
-pannier
-clothes hamper
-hamper
-breadbasket
-shopping basket
-wicker basket
-milk can
-beer can
-soda can
-pedicab
-camper trailer
-rolling stock
-motor scooter
-self-propelled vehicle
-unicycle
-wagon
-bassinet
-handcart
-baby buggy
-bicycle
-horse-drawn vehicle
-trailer
-car
-tricycle
-armored vehicle
-recreational vehicle
-tracked vehicle
-snowmobile
-bulldozer
-locomotive
-streetcar
-motor vehicle
-tractor
-forklift
-armored personnel carrier
-armored car
-dune buggy
-camper
-van
-shunter
-diesel locomotive
-electric locomotive
-tank engine
-traction engine
-steam locomotive
-diesel-electric locomotive
-diesel-hydraulic locomotive
-hearse
-truck
-amphibian
-four-wheel drive
-motorcycle
-go-kart
-car
-snowplow
-fire engine
-van
-trailer truck
-transporter
-garbage truck
-ladder truck
-tow truck
-dump truck
-tractor
-pickup
-delivery truck
-moving van
-passenger van
-police van
-bookmobile
-trail bike
-moped
-beach wagon
-loaner
-Model T
-electric
-minivan
-convertible
-compact
-cab
-shooting brake
-racer
-hatchback
-roadster
-berlin
-sport utility
-sedan
-jeep
-limousine
-cruiser
-ambulance
-used-car
-stock car
-subcompact
-pace car
-hot rod
-sports car
-coupe
-covered wagon
-cart
-horse cart
-dumpcart
-jinrikisha
-pony cart
-oxcart
-tea cart
-laundry cart
-serving cart
-barrow
-shopping cart
-hand truck
-bicycle-built-for-two
-safety bicycle
-push-bike
-mountain bike
-carriage
-gharry
-buggy
-stagecoach
-four-wheeler
-baggage car
-freight car
-passenger car
-cabin car
-boxcar
-tank car
-nonsmoker
-Pullman
-dining car
-smoker
-recycling bin
-ashcan
-litterbin
-sandbox
-pig bed
-briefcase
-compact
-dispatch case
-kit
-wallet
-cardcase
-portfolio
-ditty bag
-cigarette case
-shoe
-gun case
-attache case
-locket
-writing desk
-watch case
-baggage
-glasses case
-hand luggage
-satchel
-bag
-trunk
-hatbox
-garment bag
-weekender
-carpetbag
-portmanteau
-overnighter
-valise
-boiler
-flagon
-bowl
-ladle
-bottle
-bottle
-pot
-pitcher
-bathtub
-mortar
-bucket
-drinking vessel
-cream pitcher
-wine bucket
-pressure cooker
-tub
-inkwell
-tin
-basin
-monstrance
-autoclave
-churn
-barrel
-tank
-jar
-censer
-toilet bowl
-fishbowl
-scoop
-soup ladle
-smelling bottle
-pop bottle
-water bottle
-jug
-catsup bottle
-gourd
-pill bottle
-carboy
-flask
-beer bottle
-ink bottle
-demijohn
-whiskey bottle
-cruet
-wine bottle
-carafe
-phial
-whiskey jug
-water jug
-hipflask
-Erlenmeyer flask
-thermos
-canteen
-vacuum flask
-magnum
-jeroboam
-saucepot
-teapot
-Dutch oven
-urn
-stockpot
-kettle
-caldron
-percolator
-teakettle
-coffeepot
-coffee urn
-samovar
-tea urn
-sitz bath
-hot tub
-footbath
-mug
-loving cup
-tankard
-coffee mug
-toby
-beer mug
-bidet
-birdbath
-washbasin
-baptismal font
-beer barrel
-wine cask
-keg
-gas tank
-water heater
-septic tank
-aquarium
-reservoir
-water tower
-rain barrel
-canopic jar
-amphora
-cookie jar
-beaker
-urn
-Mason jar
-vase
-crock
-jampot
-plate
-tray
-cat box
-dustpan
-chamberpot
-salver
-garbage
-in-basket
-hot-water bottle
-ossuary
-socket
-ashtray
-packet
-bundle
-deck
-bale
-hay bale
-pack
-ballot box
-carton
-coffin
-shoebox
-snuffbox
-pencil box
-crate
-bandbox
-window box
-chest
-strongbox
-cereal box
-mailbox
-casket
-bier
-packing box
-toolbox
-toy box
-coffer
-hope chest
-treasure chest
-cedar chest
-cash register
-safe-deposit
-cashbox
-safe
-tramway
-chairlift
-sidecar
-public transport
-semitrailer
-horsebox
-vehicle
-ski tow
-roll-on roll-off
-trailer
-shipping
-litter
-express
-shuttle bus
-train
-bus
-local
-freight liner
-passenger train
-subway train
-mail train
-freight train
-commuter
-bullet train
-trolleybus
-minibus
-school bus
-steamroller
-bumper car
-rocket
-military vehicle
-missile
-craft
-sled
-half track
-tank
-panzer
-personnel carrier
-Humvee
-aircraft
-vessel
-spacecraft
-hovercraft
-heavier-than-air craft
-stealth aircraft
-lighter-than-air craft
-hang glider
-glider
-helicopter
-warplane
-airplane
-autogiro
-bomber
-amphibian
-propeller plane
-airliner
-biplane
-floatplane
-jet
-fighter
-stealth bomber
-seaplane
-airbus
-widebody aircraft
-jumbojet
-jetliner
-stealth fighter
-interceptor
-airship
-blimp
-balloon
-hot-air balloon
-boat
-trawler
-yacht
-ship
-sailing vessel
-bareboat
-lifeboat
-police boat
-gondola
-sea boat
-barge
-river boat
-tugboat
-punt
-pilot boat
-small boat
-ferry
-tender
-canal boat
-fireboat
-motorboat
-dredger
-pontoon
-houseboat
-skiff
-canoe
-dinghy
-racing boat
-coracle
-yawl
-gig
-jolly boat
-rowing boat
-kayak
-outrigger canoe
-dugout canoe
-racing gig
-racing skiff
-speedboat
-outboard motorboat
-cabin cruiser
-hydrofoil
-shipwreck
-wreck
-passenger ship
-pirate
-lightship
-hospital ship
-steamer
-cargo ship
-sister ship
-warship
-liner
-luxury liner
-cargo liner
-cruise ship
-paddle steamer
-sternwheeler
-bottom
-container ship
-banana boat
-oil tanker
-submarine
-guided missile cruiser
-frigate
-battleship
-guided missile frigate
-aircraft carrier
-man-of-war
-destroyer
-attack submarine
-nautilus
-yawl
-clipper
-felucca
-sloop
-ketch
-dhow
-sailboat
-bark
-schooner
-windjammer
-trimaran
-catamaran
-catboat
-space shuttle
-space capsule
-dogsled
-bobsled
-bobsled
-stretcher
-covered couch
-telecommunication
-vehicle
-print media
-broadcasting
-telephone
-radiotelephone
-television
-reception
-radio
-cable television
-high-definition television
-three-way calling
-call
-voice mail
-press
-journalism
-magazine
-newspaper
-pulp
-slick
-comic book
-news magazine
-tabloid
-daily
-gazette
-Fleet Street
-yellow journalism
-pillow
-pad
-sanitary napkin
-beer mat
-futon
-carpet pad
-range hood
-screen
-top
-footwear
-protective covering
-cloak
-wrapping
-upholstery
-cloth covering
-mask
-finger
-floor cover
-coating
-canopy
-flap
-domino
-folder
-planking
-earmuff
-camouflage
-shoji
-cap
-manhole cover
-lid
-radiator cap
-bottlecap
-nipple
-clog
-shoe
-arctic
-boot
-flats
-slipper
-overshoe
-sabot
-slingback
-chukka
-saddle oxford
-spectator pump
-brogan
-wing tip
-walker
-blucher
-anklet
-cleats
-gaiter
-Loafer
-running shoe
-oxford
-bowling shoe
-plimsoll
-pump
-sandal
-chopine
-pusher
-talaria
-flip-flop
-espadrille
-jodhpur
-buskin
-ski boot
-hip boot
-riding boot
-rubber boot
-Hessian boot
-waders
-cowboy boot
-mule
-bootee
-cold frame
-cloche
-washboard
-toecap
-mulch
-shield
-bracer
-screen
-sheathing
-bell jar
-shade
-shelter
-splashboard
-testudo
-roof
-faceplate
-hood
-sheath
-cap
-mask
-facing
-crystal
-calash
-armor
-binder
-binding
-housing
-blind
-lining
-plate
-horseshoe
-armor plate
-breastplate
-helmet
-cannon
-knee piece
-pickelhaube
-sallet
-window screen
-fire screen
-windshield
-mosquito net
-lampshade
-parasol
-lean-to
-bell cote
-sentry box
-birdhouse
-canopy
-kennel
-awning
-umbrella
-gamp
-gable roof
-sunroof
-mansard
-dome
-hip roof
-tile roof
-housetop
-vault
-slate roof
-gambrel
-thatch
-cupola
-geodesic dome
-onion dome
-barrel vault
-ribbed vault
-holster
-scabbard
-shoulder holster
-hubcap
-thimble
-distributor cap
-lens cap
-gasmask
-face mask
-ski mask
-catcher's mask
-body armor
-shield
-chain mail
-bulletproof vest
-corselet
-cuirass
-cabinet
-radome
-boot
-window blind
-jalousie
-curtain
-shutter
-Venetian blind
-window shade
-roller blind
-theater curtain
-shower curtain
-bushing
-brake lining
-gift wrapping
-envelope
-cellophane
-book jacket
-jacket
-plastic wrap
-shoulder
-pant leg
-leg
-back
-cosy
-bandage
-bosom
-slipcover
-bedclothes
-sleeve
-blindfold
-eyepatch
-skirt
-seat
-Band Aid
-swathe
-cast
-elastic bandage
-quilt
-afghan
-blanket
-bedspread
-mattress cover
-patchwork
-eiderdown
-crazy quilt
-coverlet
-quilted bedspread
-raglan sleeve
-long sleeve
-rug
-doormat
-mat
-scatter rug
-shag rug
-prayer rug
-broadloom
-stair-carpet
-red carpet
-Brussels carpet
-fixative
-gold plate
-verdigris
-paint
-nail polish
-gilt
-couch
-enamel
-veneer
-finger paint
-enamel
-encaustic
-oil paint
-water-base paint
-latex paint
-whitewash
-earflap
-pocket flap
-lapel
-tongue
-revers
-tent-fly
-file folder
-matchbook
-plush
-muslin
-tarpaulin
-velvet
-batik
-khaki
-belting
-sacking
-diaper
-voile
-duffel
-chenille
-cotton flannel
-toweling
-crinoline
-panting
-chintz
-felt
-cotton
-velveteen
-satin
-knit
-sateen
-print
-flannel
-webbing
-gabardine
-camouflage
-worsted
-cashmere
-tartan
-mohair
-brocade
-velour
-shirttail
-boucle
-madras
-net
-paisley
-yoke
-percale
-piece of cloth
-moquette
-terry
-rayon
-acetate rayon
-cord
-permanent press
-chiffon
-burlap
-ticking
-basket weave
-lace
-sheeting
-georgette
-poplin
-denim
-flannelette
-shantung
-camel's hair
-nylon
-drapery
-gauze
-organza
-foulard
-gingham
-wool
-suede cloth
-taffeta
-leatherette
-tweed
-organdy
-canopy
-etamine
-damask
-oilcloth
-tapestry
-broadcloth
-pique
-homespun
-tricot
-double knit
-jersey
-gauze
-tulle
-chicken wire
-handkerchief
-groundsheet
-dustcloth
-dishrag
-towel
-bandanna
-gusset
-bib
-sail
-patch
-hand towel
-paper towel
-dishtowel
-fore-and-aft sail
-foresail
-spinnaker
-headsail
-topsail
-mainsail
-balloon sail
-jib
-mizzen
-gaff topsail
-lugsail
-staysail
-lateen
-flash
-shoulder patch
-narrow wale
-Bedford cord
-macrame
-pillow lace
-raft
-life preserver
-life buoy
-Mae West
-life jacket
-stone
-brick
-lumber
-bricks and mortar
-tile
-concrete
-quoin
-millstone
-stele
-hone
-grindstone
-curbstone
-gravestone
-firebrick
-mud brick
-clinker
-adobe
-strip
-chipboard
-slat
-fingerboard
-toothpick
-hip tile
-pantile
-cornice
-embellishment
-graffito
-epergne
-necklet
-marquetry
-brass
-garnish
-arabesque
-design
-adornment
-frieze
-lambrequin
-tattoo
-mihrab
-emblem
-swastika
-herringbone
-spot
-flag
-banner
-totem pole
-crucifix
-fleur-de-lis
-macule
-parhelion
-jewelry
-frill
-lavaliere
-peplum
-bangle
-cigar band
-aigrette
-bracelet
-bling
-pendant earring
-necklace
-ghat
-path
-road
-passage
-sidewalk
-towpath
-pedestrian crossing
-highway
-carriageway
-thoroughfare
-trail
-divided highway
-expressway
-arterial road
-autostrada
-autobahn
-street
-street
-piste
-horse-trail
-adit
-conduit
-passageway
-tube
-sluice
-snorkel
-waterspout
-catheter
-barrel
-pipe
-hookah
-tailpipe
-drain
-culvert
-soil pipe
-tunnel
-stairwell
-gangway
-catacomb
-railroad tunnel
-tape
-band
-inkle
-adhesive tape
-plaster
-cellulose tape
-headstall
-girdle
-tire
-armlet
-radial
-car tire
-tableware
-riband
-cutlery
-glass
-hollowware
-platter
-spoon
-table knife
-fork
-Spork
-soupspoon
-teaspoon
-sugar spoon
-wooden spoon
-iced-tea spoon
-tablespoon
-dessert spoon
-case knife
-butter knife
-steak knife
-tablefork
-carving fork
-airfield
-telpherage
-air terminal
-airport
-menagerie
-storehouse
-station
-warehouse
-granary
-crib
-mineshaft
-ditch
-irrigation ditch
-furrow
-consumer goods
-linen
-clothing
-appliance
-leisure wear
-grey
-blue
-nightwear
-protective garment
-outerwear
-neckpiece
-knitwear
-loungewear
-apparel
-collar
-military uniform
-headdress
-pajama
-garment
-array
-woman's clothing
-overall
-glove
-accessory
-black
-footwear
-attire
-ready-to-wear
-beachwear
-man's clothing
-street clothes
-slip-on
-shin guard
-overall
-pressure suit
-arm guard
-foul-weather gear
-diving suit
-apron
-shoulder pad
-coverall
-chest protector
-elbow pad
-spacesuit
-knee pad
-gown
-vestment
-chasuble
-academic gown
-battle dress
-fatigues
-dress uniform
-khakis
-helmet
-hood
-turban
-hat
-cap
-cowl
-tiara
-football helmet
-hard hat
-crash helmet
-sunhat
-fur hat
-cowboy hat
-bearskin
-boater
-snap-brim hat
-fedora
-cavalier hat
-sombrero
-tricorn
-beaver
-porkpie
-bonnet
-pith hat
-bowler hat
-millinery
-cloche
-pillbox
-baseball cap
-coonskin cap
-shower cap
-kepi
-balaclava
-fez
-tam
-beret
-skullcap
-cloth cap
-ski cap
-watch cap
-bathing cap
-mortarboard
-yarmulke
-beanie
-head covering
-scarf
-romper
-diaper
-wraparound
-robe
-wet suit
-legging
-skirt
-undergarment
-separate
-vest
-shirt
-overgarment
-hose
-burqa
-trouser
-trouser
-straitjacket
-fur
-neckwear
-sweat suit
-leotard
-swimsuit
-hand-me-down
-raglan
-suit
-sweater
-gown
-face veil
-niqab
-chador
-mantilla
-muffler
-headscarf
-tudung
-feather boa
-stole
-hijab
-khimar
-dressing gown
-kimono
-abaya
-bathrobe
-gaiter
-spat
-overskirt
-grass skirt
-miniskirt
-kilt
-maxi
-ballet skirt
-dirndl
-sarong
-hoopskirt
-petticoat
-brassiere
-foundation garment
-singlet
-garter belt
-crinoline
-underwear
-body stocking
-camisole
-uplift
-chemise
-underpants
-corset
-panty girdle
-roll-on
-lingerie
-long johns
-BVD
-undies
-nightgown
-bloomers
-thong
-bikini pants
-briefs
-pantie
-drawers
-work-shirt
-kurta
-jersey
-dashiki
-polo shirt
-coat
-cloak
-snowsuit
-surcoat
-duffel coat
-sheepskin coat
-frock coat
-lab coat
-greatcoat
-jacket
-raincoat
-capote
-sack coat
-fur coat
-mess jacket
-single-breasted jacket
-bomber jacket
-pea jacket
-swallow-tailed coat
-doublet
-bolero
-parka
-oilskin
-trench coat
-mink
-sable coat
-poncho
-toga virilis
-toga
-kameez
-serape
-tunic
-shawl
-caftan
-short pants
-pajama
-sweat pants
-salwar
-breeches
-chino
-slacks
-jodhpurs
-pedal pusher
-long trousers
-jean
-cords
-Levi's
-stretch pants
-bellbottom trousers
-buckskins
-hot pants
-Bermuda shorts
-lederhosen
-necktie
-cravat
-bolo tie
-Windsor tie
-bow tie
-black tie
-maillot
-swimming trunks
-bikini
-double-breasted suit
-pinstripe
-single-breasted suit
-pants suit
-business suit
-three-piece suit
-two-piece
-turtleneck
-cardigan
-sweatshirt
-pullover
-top
-G-string
-camisole
-dress
-bodice
-blouse
-halter
-cocktail dress
-sari
-caftan
-sundress
-chemise
-strapless
-gown
-jumper
-dirndl
-bridal gown
-tea gown
-ball gown
-gauntlet
-mitten
-kid glove
-belt
-furnishing
-money belt
-holster
-cartridge belt
-hosiery
-tights
-sock
-stocking
-pantyhose
-maillot
-athletic sock
-tabi
-knee-high
-argyle
-nylons
-Christmas stocking
-formalwear
-ensemble
-outfit
-ao dai
-costume
-fancy dress
-costume
-frock
-sportswear
-academic costume
-disguise
-hairpiece
-dinner jacket
-balldress
-dinner dress
-dress suit
-Afro-wig
-toupee
-wig
-dress hat
-brace
-athletic supporter
-home appliance
-dryer
-vacuum
-iron
-trouser press
-curling iron
-white goods
-sewing machine
-serger
-kitchen appliance
-Hoover
-travel iron
-steam iron
-dishwasher
-refrigerator
-washer
-cooler
-electric refrigerator
-ice machine
-deep-freeze
-toaster
-microwave
-toaster oven
-coffee maker
-hot plate
-waffle iron
-disposal
-espresso maker
-stove
-oven
-food processor
-ice maker
-cookstove
-electric range
-gas range
-Primus stove
-broiler
-rotisserie
-Dutch oven
-gas oven
-hand blower
-clothes dryer
-spin dryer
-tumble-dryer
-wringer
-bath towel
-doily
-Turkish towel
-bed linen
-pillow sham
-sheet
-tinfoil
-plywood
-doorplate
-board
-drumhead
-panel
-laminate
-blackboard
-snowboard
-Sheetrock
-surfboard
-skateboard
-sideboard
-scoreboard
-wainscot
-headboard
-chandelier
-plumbing fixture
-soap dish
-toilet
-shower
-water faucet
-flush toilet
-potty seat
-rope
-cord
-lasso
-bungee
-spun yarn
-cordage
-thread
-bootlace
-wick
-lanyard
-floss
-woof
-worsted
-organism
-cell
-mistletoe
-plant
-animal
-microorganism
-bryophyte
-person
-fungus
-benthos
-flowering maple
-vascular plant
-strangler
-aquatic
-annual
-houseplant
-poisonous plant
-agave
-pteridophyte
-spermatophyte
-aquatic plant
-herb
-vine
-woody plant
-weed
-cultivar
-bulbous plant
-succulent
-American agave
-maguey
-maguey
-sansevieria
-dracaena
-mother-in-law's tongue
-fern ally
-fern
-club moss
-scouring rush
-ground pine
-ground cedar
-ground fir
-flowering fern
-lady fern
-Boston fern
-flowering fern
-royal fern
-tree fern
-oak fern
-common polypody
-mountain fern
-shield fern
-deer fern
-wood fern
-American maidenhair fern
-hart's-tongue
-soft shield fern
-holly fern
-maidenhair
-holly fern
-water clover
-sensitive fern
-Christmas fern
-angiopteris
-soft tree fern
-male fern
-marginal wood fern
-angiosperm
-gymnosperm
-barbados cherry
-dicot
-flower
-wildflower
-commelina
-woodland star
-nigella
-black-eyed Susan
-mistflower
-calceolaria
-toadflax
-zinnia
-centaury
-Easter daisy
-African violet
-brompton stock
-verbena
-blue daisy
-pink calla
-Mexican sunflower
-bloomer
-achimenes
-lychnis
-painted daisy
-treasure flower
-globe amaranth
-common valerian
-rose moss
-tidytips
-common daisy
-composite
-ice plant
-gentian
-soapwort
-anemone
-veronica
-larkspur
-spring beauty
-gazania
-damask violet
-Barberton daisy
-bush violet
-baby's breath
-corydalis
-calendula
-sunflower
-scabious
-valerian
-rue anemone
-sandwort
-candytuft
-horn poppy
-sandwort
-poppy
-stokes' aster
-dahlia
-Virginia spring beauty
-petunia
-orchid
-hybrid petunia
-African daisy
-pink
-African daisy
-African daisy
-daisy
-common ageratum
-oxeye daisy
-columbine
-calla lily
-sweet alyssum
-spathiphyllum
-four o'clock
-common marigold
-cornflower
-strawflower
-silene
-tuberose
-common four-o'clock
-rocket larkspur
-bellwort
-begonia
-streptocarpus
-Swan River daisy
-wallflower
-peony
-love-in-a-mist
-wallflower
-cineraria
-chrysanthemum
-stock
-sandwort
-Malcolm stock
-mountain sandwort
-coneflower
-ageratum
-coneflower
-sowbread
-scorpionweed
-cyclamen
-delphinium
-marigold
-aster
-cosmos
-Mediterranean snapdragon
-mullein pink
-ragged robin
-mayweed
-tansy
-dusty miller
-corn chamomile
-shasta daisy
-everlasting
-wingstem
-rosinweed
-oxeye daisy
-strawflower
-strawflower
-cudweed
-pearly everlasting
-gentianella
-agueweed
-closed gentian
-closed gentian
-great yellow gentian
-fringed gentian
-marsh gentian
-snowdrop anemone
-wood anemone
-wood anemone
-germander speedwell
-common speedwell
-common sunflower
-prairie sunflower
-giant sunflower
-Jerusalem artichoke
-sweet scabious
-field scabious
-Iceland poppy
-wind poppy
-Iceland poppy
-celandine
-oriental poppy
-opium poppy
-celandine poppy
-prickly poppy
-California poppy
-corn poppy
-blue poppy
-aerides
-coelogyne
-lady's slipper
-Venus' slipper
-cymbid
-sobralia
-spider orchid
-spider orchid
-Psychopsis papilio
-liparis
-butterfly orchid
-butterfly orchid
-butterfly orchid
-oncidium
-twayblade
-twayblade
-grass pink
-brassavola
-fragrant orchid
-fly orchid
-frog orchid
-coral root
-cattleya
-lesser butterfly orchid
-vanilla
-short-spurred fragrant orchid
-common spotted orchid
-bog rose
-ladies' tresses
-odontoglossum
-orchis
-vanda
-pansy orchid
-Bletilla striata
-rattlesnake plantain
-marsh orchid
-stanhopea
-laelia
-phaius
-lizard orchid
-caladenia
-calypso
-moth orchid
-blue orchid
-bee orchid
-early spider orchid
-masdevallia
-bog rein orchid
-European ladies' tresses
-fen orchid
-pogonia
-fringed orchis
-dendrobium
-fly orchid
-helleborine
-helleborine
-stelis
-greater butterfly orchid
-yellow lady's slipper
-large yellow lady's slipper
-common lady's-slipper
-moccasin flower
-butterfly orchid
-male orchis
-ragged orchid
-purple-fringed orchid
-stream orchid
-Epipactis helleborine
-sweet William
-china pink
-Japanese pink
-carnation
-cottage pink
-maiden pink
-meeting house
-granny's bonnets
-blue columbine
-fire pink
-white campion
-bladder campion
-red campion
-wild pink
-moss campion
-wax begonia
-hybrid tuberous begonia
-rex begonia
-crown daisy
-corn marigold
-florist's chrysanthemum
-African marigold
-French marigold
-New England aster
-bushy aster
-Michaelmas daisy
-Indian paintbrush
-goldenrod
-sand verbena
-bitterroot
-Indian pipe
-heliopsis
-meadow goldenrod
-pasqueflower
-fleabane
-blazing star
-edelweiss
-coneflower
-balloon flower
-wild carrot
-prairie gentian
-desert sunflower
-Arnica montana
-butterweed
-gaillardia
-brittlebush
-orange daisy
-daisy fleabane
-Mexican hat
-long-head coneflower
-cycad
-welwitschia
-encephalartos
-dioon
-macrozamia
-false sago
-water shamrock
-water hyacinth
-pistia
-water lily
-marsh plant
-water nymph
-European white lily
-bog star
-marsh marigold
-wild calla
-sedge
-parnassia
-skunk cabbage
-skunk cabbage
-cotton grass
-nutgrass
-common cotton grass
-winter aconite
-buttercup
-phlox
-willowherb
-stapelia
-skullcap
-bedstraw
-gumweed
-kangaroo paw
-common chickweed
-hyssop
-arum
-common comfrey
-borage
-nasturtium
-canna
-loosestrife
-toad lily
-globe thistle
-wild thyme
-common fennel
-bear's breech
-ironweed
-feverfew
-monarda
-physostegia
-creeping bugle
-vegetable
-hedge nettle
-plum tomato
-ground cherry
-flax
-primrose
-oxalis
-kniphofia
-boneset
-chickweed
-periwinkle
-garden angelica
-bugloss
-Dutchman's breeches
-pie plant
-cow parsnip
-butterbur
-milk thistle
-mouse-ear chickweed
-yellow bells
-lobelia
-anise hyssop
-banana
-Joe-Pye weed
-Joe-Pye weed
-garden forget-me-not
-evening primrose
-spiderflower
-sweet false chamomile
-agrimonia
-hepatica
-medic
-peperomia
-geranium
-viola
-okra
-bergenia
-astrantia
-aspidistra
-thyme
-common teasel
-carnivorous plant
-harvest-lice
-nemophila
-hawkweed
-hawkweed
-fleabane
-plumbago
-spiderwort
-prickly poppy
-common foxglove
-stonecrop
-garden lettuce
-teasel
-herb Paris
-coltsfoot
-basil
-sainfoin
-sneezeweed
-cockscomb
-baby blue-eyes
-coleus
-spurge nettle
-arnica
-sour dock
-clover
-mint
-coreopsis
-pimpernel
-kidney vetch
-foxglove
-legume
-reseda
-forget-me-not
-Virginia bluebell
-pineapple
-blueweed
-anchusa
-moss pink
-common dandelion
-false lupine
-sage
-chamomile
-crucifer
-chicory
-broad-leaved plantain
-bugle
-milkweed
-fireweed
-spirea
-inula
-hemp nettle
-garden nasturtium
-pokeweed
-moneywort
-asparagus
-Italian parsley
-rhubarb
-jewelweed
-asparagus fern
-sedum
-yarrow
-bird's foot trefoil
-scarlet pimpernel
-campanula
-mayapple
-painted nettle
-pigweed
-bleeding heart
-achillea
-snow-in-summer
-gramineous plant
-balsamroot
-Abyssinian banana
-herbage
-astilbe
-ginger
-saxifrage
-cow parsley
-dill
-common mullein
-dead nettle
-creeping buttercup
-meadow buttercup
-yellow bedstraw
-sweet woodruff
-caladium
-cuckoopint
-jack-in-the-pulpit
-alocasia
-taro
-amorphophallus
-bee balm
-bee balm
-artichoke
-cardoon
-tomatillo
-tomatillo
-English primrose
-oxlip
-cowslip
-polyanthus
-creeping oxalis
-common wood sorrel
-Bermuda buttercup
-red-hot poker
-poker plant
-dwarf banana
-Japanese banana
-plantain
-sundrops
-common evening primrose
-ivy geranium
-cranesbill
-fish geranium
-rose geranium
-meadow cranesbill
-wild geranium
-dove's foot geranium
-herb robert
-horned violet
-field pansy
-violet
-dog violet
-pale violet
-bird's-foot violet
-hedge violet
-Venus's flytrap
-pitcher plant
-tropical pitcher plant
-sundew
-white clover
-red clover
-crimson clover
-pennyroyal
-water-mint
-beach pea
-chickpea
-vetch
-tufted vetch
-bean
-wild pea
-scarlet runner
-sieva bean
-clary
-common sage
-clary sage
-wild sage
-purple sage
-meadow clary
-bok choy
-mustard
-cabbage
-cauliflower
-collard
-broccoli
-brussels sprout
-garlic mustard
-head cabbage
-radish plant
-bittercress
-alyssum
-field mustard
-rape
-radish
-radish
-lady's smock
-crinkleroot
-butterfly weed
-swamp milkweed
-tussock bellflower
-Canterbury bell
-clustered bellflower
-peach bells
-giant bamboo
-grass
-fescue
-cordgrass
-feather reed grass
-reed grass
-orchard grass
-cereal
-broom beard grass
-tall oat grass
-tallgrass
-St. Augustine grass
-pampas grass
-grama
-dallisgrass
-zoysia
-rye grass
-brome
-fountain grass
-rye
-popcorn
-wheat
-millet
-sorghum
-panic grass
-goose grass
-switch grass
-common ginger
-shellflower
-meadow saxifrage
-purple saxifrage
-white dead nettle
-henbit
-ground ivy
-blue pea
-purple clematis
-black-eyed Susan
-bougainvillea
-butterfly pea
-butterfly pea
-bindweed
-kudzu
-Boston ivy
-squash
-yellow jasmine
-wax plant
-morning glory
-liana
-Japanese wistaria
-allamanda
-field bindweed
-common allamanda
-passionflower
-convolvulus
-gourd
-grape
-Chinese gooseberry
-summer squash
-winter squash
-pumpkin
-spaghetti squash
-yellow squash
-acorn squash
-winter crookneck
-cypress vine
-Japanese morning glory
-moonflower
-golden pothos
-ceriman
-jade vine
-pothos
-love-in-a-mist
-maypop
-granadilla
-sweet melon
-bottle gourd
-net melon
-winter melon
-cantaloupe
-Sauvignon grape
-fox grape
-wild indigo
-shrub
-tree
-raspberry
-lupine
-abelia
-banksia
-bird pepper
-sea holly
-guelder rose
-crape myrtle
-castor-oil plant
-spirea
-hydrangea
-fuchsia
-redberry
-saltbush
-false indigo
-bridal wreath
-protea
-Oregon grape
-grevillea
-gorse
-rockrose
-cowberry
-subshrub
-honeypot
-California fuchsia
-sumac
-jasmine
-impala lily
-currant
-axseed
-mimosa
-southern buckthorn
-flowering quince
-yucca
-purple heather
-waratah
-mallow
-strawberry tree
-mock orange
-honeysuckle
-spurge
-kalmia
-bush hibiscus
-weigela
-Christmasberry
-angel's trumpet
-angel's trumpet
-gooseberry
-dusty miller
-croton
-Pyracantha
-forsythia
-artemisia
-silversword
-waratah
-philadelphus
-common lilac
-saltwort
-calliandra
-wahoo
-bird of paradise
-cape jasmine
-camellia
-night jasmine
-rose
-mountain laurel
-cotoneaster
-rhododendron
-frangipani
-broom
-desert pea
-lavender
-butterfly bush
-deutzia
-hortensia
-burdock
-prairie smoke
-centaury
-sea lavender
-common mugwort
-bird's foot trefoil
-large periwinkle
-great burdock
-St John's wort
-eriogonum
-purple loosestrife
-loosestrife
-mountain avens
-matilija poppy
-bur marigold
-wild lupine
-marguerite
-dusty miller
-great knapweed
-knapweed
-creeping St John's wort
-klammath weed
-common St John's wort
-common jasmine
-winter jasmine
-Adam's needle
-bear grass
-Joshua tree
-Spanish dagger
-hollyhock
-rose mallow
-common mallow
-marsh mallow
-musk mallow
-hibiscus
-althea
-rose mallow
-cotton rose
-woodbine
-trumpet honeysuckle
-Japanese honeysuckle
-poinsettia
-crown of thorns
-damask rose
-musk rose
-azalea
-rosebay
-swamp azalea
-common broom
-woodwaxen
-English lavender
-spike lavender
-French lavender
-locust tree
-kowhai
-bottle-tree
-timber tree
-linden
-bonsai
-snag
-hackberry
-pepper tree
-Japanese oak
-European hackberry
-cork tree
-birch
-star anise
-red silk-cotton tree
-roble
-common alder
-fig tree
-Japanese pagoda tree
-albizzia
-European hornbeam
-cassia
-coral tree
-neem
-white mangrove
-Chinese parasol tree
-bayberry
-yellowwood
-elm
-alder
-prickly ash
-angiospermous tree
-chestnut
-cabbage bark
-ash
-beech
-fringe tree
-golden shower tree
-lead tree
-palm
-balata
-sapling
-black beech
-acacia
-coffee
-gymnospermous tree
-ceibo
-incense tree
-lacebark
-shade tree
-pollard
-gum tree
-wild medlar
-hornbeam
-willow
-textile screw pine
-mescal bean
-Brazilian rosewood
-pandanus
-white mangrove
-oak
-bean tree
-plane tree
-blackwood
-coralwood
-Kentucky coffee tree
-black locust
-honey locust
-flame tree
-flame tree
-kurrajong
-American basswood
-silver lime
-black birch
-silver birch
-swamp birch
-downy birch
-grey birch
-golden fig
-India-rubber tree
-fig
-banyan
-pipal
-rain tree
-silk tree
-smooth-leaved elm
-American elm
-English elm
-cedar elm
-myrtle
-mangrove
-magnolia
-Queen's crape myrtle
-looking-glass plant
-tulip tree
-maple
-nut tree
-redbud
-baobab
-poplar
-tree of heaven
-ailanthus
-dogwood
-holly
-cacao
-laurel
-mountain ebony
-kapok
-sorrel tree
-cacao bean
-Spanish elm
-rowan
-mountain ash
-royal poinciana
-iron tree
-fruit tree
-sweet bay
-southern magnolia
-star magnolia
-umbrella tree
-box elder
-red maple
-hedge maple
-Norway maple
-Japanese maple
-sycamore
-California box elder
-silver maple
-sugar maple
-Oregon maple
-cashew
-walnut
-hazelnut
-black walnut
-English walnut
-black poplar
-aspen
-cottonwood
-white poplar
-quaking aspen
-Eastern cottonwood
-black cottonwood
-cornelian cherry
-bunchberry
-common European dogwood
-common white dogwood
-bearberry
-inkberry
-true laurel
-cassia
-citrus
-mulberry
-jackfruit
-pomegranate
-pawpaw
-persimmon
-carambola
-plum
-almond tree
-durian
-papaya
-olive tree
-longan
-pear
-loquat
-medlar
-peach
-white mulberry
-olive
-litchi
-Japanese apricot
-rambutan
-apple tree
-Japanese persimmon
-mango
-breadfruit
-guava
-guava
-jaboticaba
-cherry
-Surinam cherry
-lime
-mandarin
-orange
-kumquat
-lemon
-pomelo
-grapefruit
-clementine
-tangerine
-sweet orange
-sour orange
-bergamot
-cherry plum
-Allegheny plum
-flowering almond
-almond
-flowering almond
-crab apple
-apple
-wild apple
-Southern crab apple
-Bechtel crab
-Iowa crab
-sour cherry
-flowering cherry
-wild cherry
-sweet cherry
-chokecherry
-Japanese flowering cherry
-oriental cherry
-fuji
-hagberry tree
-black cherry
-Ozark chinkapin
-American chestnut
-pumpkin ash
-mountain ash
-manna ash
-European ash
-red ash
-weeping beech
-American beech
-copper beech
-bamboo palm
-wine palm
-fan palm
-royal palm
-cabbage palm
-cabbage palm
-sago palm
-miniature fan palm
-lady palm
-feather palm
-coconut
-cabbage palm
-carnauba
-caranday
-palmyra
-cabbage palmetto
-key palm
-saw palmetto
-palmetto
-date palm
-oil palm
-silver wattle
-wattle
-huisache
-ginkgo
-conifer
-kauri
-green douglas fir
-miro
-cedar
-cedar
-douglas fir
-matai
-arborvitae
-spruce
-yew
-araucaria
-cypress
-metasequoia
-pine
-fir
-larch
-hemlock
-cedar of Lebanon
-Atlas cedar
-deodar
-southern white cedar
-incense cedar
-Oregon cedar
-Japanese cedar
-Oriental arborvitae
-American arborvitae
-western red cedar
-Colorado spruce
-white spruce
-Norway spruce
-red spruce
-black spruce
-Sitka spruce
-oriental spruce
-bunya bunya
-monkey puzzle
-Monterey cypress
-Arizona cypress
-Italian cypress
-Scotch pine
-pond pine
-pitch pine
-table-mountain pine
-ancient pine
-stone pine
-Jeffrey pine
-loblolly pine
-Swiss pine
-spruce pine
-white pine
-red pine
-Japanese black pine
-Swiss mountain pine
-black pine
-Monterey pine
-yellow pine
-Torrey pine
-shore pine
-bristlecone pine
-whitebark pine
-western white pine
-longleaf pine
-ponderosa
-silver fir
-Fraser fir
-Alpine fir
-amabilis fir
-lowland fir
-balsam fir
-European silver fir
-white fir
-western larch
-American larch
-eastern hemlock
-western hemlock
-mountain hemlock
-gumbo-limbo
-elephant tree
-sweet gum
-eucalyptus
-sour gum
-liquidambar
-snow gum
-mountain ash
-black mallee
-alpine ash
-red gum
-red gum
-blue gum
-osier
-pussy willow
-bay willow
-weeping willow
-swamp willow
-purple willow
-common osier
-European turkey oak
-red oak
-cork oak
-black oak
-live oak
-chestnut oak
-bluejack oak
-pin oak
-post oak
-shingle oak
-white oak
-laurel oak
-northern red oak
-southern red oak
-southern live oak
-canyon oak
-coast live oak
-chinquapin oak
-basket oak
-swamp chestnut oak
-bur oak
-Oregon white oak
-common oak
-tamarind
-catalpa
-carob
-California sycamore
-American sycamore
-London plane
-lightwood
-black mangrove
-wild raspberry
-black raspberry
-bluebonnet
-Texas bluebonnet
-thistle
-cat's-ear
-corn cockle
-yellow rocket
-fireweed
-stinging nettle
-horseweed
-stemless carline thistle
-musk thistle
-cotton thistle
-plume thistle
-field thistle
-bull thistle
-Canada thistle
-hippeastrum
-narcissus
-iridaceous plant
-fritillary
-liliaceous plant
-star-of-Bethlehem
-daffodil
-jonquil
-jonquil
-iris
-blue-eyed grass
-blackberry-lily
-dwarf iris
-dwarf iris
-beardless iris
-bearded iris
-Japanese iris
-German iris
-snake's head fritillary
-crown imperial
-dogtooth violet
-lily
-African lily
-grape hyacinth
-common camas
-false lily of the valley
-common hyacinth
-camas
-clintonia
-lemon lily
-squaw grass
-scilla
-tulip
-alliaceous plant
-fawn lily
-glacier lily
-yellow adder's tongue
-Turk's-cap
-Turk's-cap
-tiger lily
-tiger lily
-mountain lily
-Easter lily
-tassel hyacinth
-common grape hyacinth
-Tulipa gesneriana
-Darwin tulip
-garlic chive
-wild garlic
-Hottentot fig
-livingstone daisy
-cactus
-nopal
-nopal
-barrel cactus
-night-blooming cereus
-night-blooming cereus
-night-blooming cereus
-cholla
-echinocactus
-mammillaria
-feather ball
-prickly pear
-crab cactus
-saguaro
-Christmas cactus
-hedgehog cactus
-golden barrel cactus
-flamingo flower
-anthurium
-gloxinia
-baneberry
-red baneberry
-poison ivy
-gloriosa
-monkshood
-American holly
-oleander
-poison ash
-herbivore
-big game
-thoroughbred
-creepy-crawly
-young
-domestic animal
-pet
-critter
-larva
-feeder
-male
-pest
-omnivore
-predator
-chordate
-work animal
-invertebrate
-female
-marine animal
-scavenger
-hexapod
-mate
-prey
-carnivore
-young mammal
-orphan
-spat
-young bird
-hatchling
-foal
-kitten
-calf
-pup
-calf
-lamb
-baby
-puppy
-suckling
-cub
-piglet
-nestling
-fledgling
-head
-stray
-feeder
-tadpole
-caterpillar
-nymph
-doodlebug
-tobacco hornworm
-cabbageworm
-tomato hornworm
-silkworm
-cutworm
-woolly bear
-measuring worm
-armyworm
-silkworm
-tussock caterpillar
-tent caterpillar
-colt
-ridgeling
-sire
-sea squirt
-ascidian
-vertebrate
-aquatic vertebrate
-amphibian
-mammal
-baby
-fetus
-quadruped
-reptile
-bird
-fish
-lamprey
-teleost fish
-food fish
-elasmobranch
-ganoid
-trumpetfish
-pipefish
-seahorse
-spiny-finned fish
-soft-finned fish
-needlefish
-beluga
-gar
-bowfin
-paddlefish
-sturgeon
-percoid fish
-dragonet
-frogfish
-barracuda
-soldierfish
-goosefish
-scorpaenoid
-flatfish
-great barracuda
-plectognath
-snook
-perch
-perch
-dolphinfish
-freshwater bass
-scombroid
-bass
-parrotfish
-sea bream
-grunt
-flathead
-bluefish
-carangid fish
-damselfish
-butterfly fish
-mudskipper
-pike
-goby
-tautog
-sunfish
-snapper
-snapper
-sciaenid fish
-wolffish
-cichlid
-wrasse
-yellow perch
-European perch
-walleye
-mackerel
-skipjack
-black marlin
-sailfish
-marlin
-bonito
-tuna
-wahoo
-Spanish mackerel
-Spanish mackerel
-cero
-king mackerel
-bluefin
-yellowfin
-jack
-permit
-scad
-crevalle jack
-kingfish
-amberjack
-yellowtail
-horse mackerel
-horse mackerel
-clown anemone fish
-sergeant major
-anemone fish
-chaetodon
-rock beauty
-angelfish
-northern pike
-pickerel
-muskellunge
-black bass
-pumpkinseed
-freshwater bream
-bluegill
-crappie
-smallmouth
-largemouth
-sea trout
-croaker
-kingfish
-mulloway
-red drum
-white croaker
-white croaker
-scorpaenid
-flathead
-scorpionfish
-lionfish
-stonefish
-rockfish
-plaice
-flounder
-halibut
-cowfish
-boxfish
-ocean sunfish
-puffer
-spiny puffer
-triggerfish
-balloonfish
-porcupinefish
-tarpon
-bonefish
-pollack
-anchovy
-lizardfish
-catfish
-cypriniform fish
-eel
-clupeid fish
-European catfish
-flathead catfish
-channel catfish
-blue catfish
-characin
-electric eel
-cyprinodont
-loach
-cyprinid
-topminnow
-piranha
-cardinal tetra
-tetra
-killifish
-striped killifish
-guppy
-swordtail
-carp
-minnow
-tench
-crucian carp
-goldfish
-gudgeon
-platy
-mosquitofish
-conger
-tuna
-moray
-sardine
-pilchard
-sea bass
-trout
-salmon
-barracouta
-grouper
-striped bass
-jewfish
-hind
-sea trout
-brook trout
-rainbow trout
-brown trout
-lake trout
-chinook
-Atlantic salmon
-redfish
-coho
-landlocked salmon
-shark
-ray
-sand tiger
-angel shark
-nurse shark
-requiem shark
-smooth dogfish
-hammerhead
-mackerel shark
-whale shark
-bull shark
-blue shark
-sandbar shark
-blacktip shark
-whitetip shark
-tiger shark
-lemon shark
-whitetip shark
-smoothhound
-great white shark
-mako
-porbeagle
-stingray
-electric ray
-spotted eagle ray
-Atlantic manta
-manta
-skate
-eagle ray
-salamander
-frog
-spotted salamander
-newt
-European fire salamander
-slender salamander
-ambystomid
-eft
-common newt
-red eft
-spotted salamander
-axolotl
-tiger salamander
-true toad
-true frog
-tailed frog
-crapaud
-tree toad
-tree frog
-natterjack
-Eurasian green toad
-bufo
-American toad
-agua
-western toad
-European toad
-grass frog
-wood-frog
-bullfrog
-leopard frog
-pickerel frog
-green frog
-spring peeper
-chorus frog
-placental
-tusker
-monotreme
-marsupial
-female mammal
-aardvark
-livestock
-insectivore
-hyrax
-doe
-edentate
-stag
-bull
-primate
-carnivore
-bat
-aquatic mammal
-lagomorph
-rock hyrax
-yearling
-rodent
-cow
-pachyderm
-buck
-pangolin
-ungulate
-shrew
-hedgehog
-peba
-sloth
-armadillo
-anteater
-two-toed sloth
-two-toed sloth
-three-toed sloth
-ant bear
-tamandua
-simian
-tarsier
-homo
-ape
-lemur
-monkey
-Homo sapiens sapiens
-Homo sapiens
-Neandertal man
-anthropoid ape
-lesser ape
-great ape
-siamang
-gibbon
-chimpanzee
-orangutan
-gorilla
-pygmy chimpanzee
-central chimpanzee
-western lowland gorilla
-mountain gorilla
-silverback
-indri
-Madagascar cat
-potto
-galago
-slow loris
-Old World monkey
-New World monkey
-baboon
-vervet
-proboscis monkey
-colobus
-patas
-macaque
-guenon
-langur
-chacma
-mandrill
-Barbary ape
-rhesus
-spider monkey
-marmoset
-squirrel monkey
-titi
-capuchin
-howler monkey
-tamarin
-pygmy marmoset
-procyonid
-feline
-viverrine
-canine
-musteline mammal
-bear
-coati
-common raccoon
-lesser panda
-raccoon
-kinkajou
-giant panda
-big cat
-cat
-jaguar
-tiger
-leopard
-cheetah
-lion
-snow leopard
-tigress
-Bengal tiger
-tiger cub
-lioness
-lion cub
-domestic cat
-wildcat
-tabby
-tiger cat
-tabby
-tortoiseshell
-Manx
-Egyptian cat
-Abyssinian
-kitty
-Angora
-Persian cat
-Burmese cat
-Siamese cat
-alley cat
-tom
-mouser
-margay
-ocelot
-lynx
-cougar
-European wildcat
-serval
-manul
-sand cat
-common lynx
-bobcat
-caracal
-Canada lynx
-meerkat
-genet
-mongoose
-slender-tailed meerkat
-suricate
-dog
-wild dog
-wolf
-bitch
-jackal
-fox
-hyena
-pug
-corgi
-Great Pyrenees
-Brabancon griffon
-poodle
-cur
-Leonberg
-griffon
-dalmatian
-pooch
-spitz
-toy dog
-hunting dog
-working dog
-basenji
-Mexican hairless
-Newfoundland
-lapdog
-Cardigan
-Pembroke
-standard poodle
-toy poodle
-miniature poodle
-Pomeranian
-keeshond
-chow
-Samoyed
-toy spaniel
-Shih-Tzu
-toy terrier
-Maltese dog
-Japanese spaniel
-Chihuahua
-Pekinese
-King Charles spaniel
-Blenheim spaniel
-papillon
-terrier
-Rhodesian ridgeback
-sausage dog
-sporting dog
-hound
-dachshund
-Dandie Dinmont
-schnauzer
-wirehair
-Airedale
-West Highland white terrier
-Kerry blue terrier
-Norfolk terrier
-Border terrier
-Yorkshire terrier
-wire-haired fox terrier
-Bedlington terrier
-Tibetan terrier
-silky terrier
-Lhasa
-Scotch terrier
-cairn
-Boston bull
-fox terrier
-Australian terrier
-bullterrier
-Norwich terrier
-Irish terrier
-rat terrier
-soft-coated wheaten terrier
-standard schnauzer
-giant schnauzer
-miniature schnauzer
-Lakeland terrier
-Welsh terrier
-Sealyham terrier
-Staffordshire bullterrier
-American Staffordshire terrier
-Manchester terrier
-toy Manchester
-water dog
-pointer
-bird dog
-setter
-spaniel
-retriever
-vizsla
-German short-haired pointer
-Gordon setter
-English setter
-Irish setter
-cocker spaniel
-water spaniel
-springer spaniel
-Brittany spaniel
-clumber
-Sussex spaniel
-Irish water spaniel
-English springer
-Welsh springer spaniel
-flat-coated retriever
-golden retriever
-curly-coated retriever
-Chesapeake Bay retriever
-Labrador retriever
-otterhound
-bloodhound
-wolfhound
-basset
-Ibizan hound
-Norwegian elkhound
-coonhound
-Saluki
-Afghan hound
-black-and-tan coonhound
-bluetick
-Scottish deerhound
-redbone
-foxhound
-beagle
-Weimaraner
-greyhound
-borzoi
-Irish wolfhound
-English foxhound
-Walker hound
-whippet
-Italian greyhound
-Great Dane
-watchdog
-Eskimo dog
-Tibetan mastiff
-sled dog
-Saint Bernard
-French bulldog
-police dog
-bulldog
-Sennenhunde
-bull mastiff
-shepherd dog
-boxer
-mastiff
-kuvasz
-housedog
-pinscher
-schipperke
-Doberman
-miniature pinscher
-affenpinscher
-Siberian husky
-malamute
-Greater Swiss Mountain dog
-EntleBucher
-Bernese mountain dog
-Appenzeller
-Belgian sheepdog
-kelpie
-Shetland sheepdog
-komondor
-Border collie
-collie
-Rottweiler
-Old English sheepdog
-German shepherd
-briard
-Bouvier des Flandres
-groenendael
-malinois
-African hunting dog
-dingo
-dhole
-coyote
-wolf pup
-red wolf
-white wolf
-timber wolf
-red fox
-red fox
-kit fox
-Arctic fox
-grey fox
-kit fox
-spotted hyena
-striped hyena
-mink
-black-footed ferret
-striped skunk
-pine marten
-sea otter
-otter
-weasel
-polecat
-glutton
-skunk
-badger
-ferret
-river otter
-Eurasian otter
-ice bear
-American black bear
-bear cub
-Asiatic black bear
-brown bear
-sloth bear
-grizzly
-Alaskan brown bear
-carnivorous bat
-flying fox
-fruit bat
-brown bat
-vespertilian bat
-pallid bat
-pipistrelle
-cetacean
-sea cow
-pinniped mammal
-whale
-toothed whale
-baleen whale
-dolphin
-bottle-nosed whale
-porpoise
-common dolphin
-bottlenose dolphin
-pilot whale
-killer whale
-white whale
-Pacific bottlenose dolphin
-Atlantic bottlenose dolphin
-grey whale
-rorqual
-blue whale
-lesser rorqual
-finback
-manatee
-dugong
-walrus
-seal
-earless seal
-eared seal
-elephant seal
-harbor seal
-harp seal
-fur seal
-fur seal
-sea lion
-California sea lion
-Australian sea lion
-Steller sea lion
-pika
-leporid
-rabbit
-hare
-eastern cottontail
-wood rabbit
-bunny
-European rabbit
-lapin
-Angora
-rabbit ears
-snowshoe hare
-European hare
-jackrabbit
-chinchilla
-rat
-capybara
-golden hamster
-water vole
-porcupine
-coypu
-vole
-beaver
-hamster
-prairie dog
-squirrel
-marmot
-blacktail prairie dog
-cavy
-gerbil
-mouse
-muskrat
-gopher
-brown rat
-black rat
-chipmunk
-ground squirrel
-eastern chipmunk
-tree squirrel
-rock squirrel
-mantled ground squirrel
-eastern grey squirrel
-red squirrel
-black squirrel
-American red squirrel
-fox squirrel
-hoary marmot
-groundhog
-aperea
-guinea pig
-field mouse
-house mouse
-elephant
-African elephant
-Indian elephant
-even-toed ungulate
-odd-toed ungulate
-ruminant
-camel
-swine
-llama
-vicuna
-collared peccary
-hippopotamus
-peccary
-pronghorn
-deer
-bovid
-giraffe
-okapi
-woodland caribou
-caribou
-fallow deer
-elk
-hart
-mule deer
-fawn
-red deer
-muntjac
-Virginia deer
-wapiti
-Japanese deer
-roe deer
-black-tailed deer
-wild sheep
-bison
-musk ox
-Old World buffalo
-bovine
-antelope
-sheep
-goat antelope
-goat
-aoudad
-mountain sheep
-Dall sheep
-bighorn
-mouflon
-American bison
-wisent
-carabao
-water buffalo
-Cape buffalo
-Brahman
-ox
-zebu
-cattle
-yak
-gaur
-beef
-ox
-bull
-bullock
-heifer
-cow
-dairy cattle
-longhorn
-Charolais
-Hereford
-Durham
-Aberdeen Angus
-Galloway
-Friesian
-Brown Swiss
-kudu
-addax
-blackbuck
-waterbuck
-eland
-steenbok
-dik-dik
-gnu
-harnessed antelope
-gerenuk
-sassaby
-impala
-greater kudu
-sable antelope
-hartebeest
-bongo
-gemsbok
-oryx
-gazelle
-nyala
-bushbuck
-Thomson's gazelle
-springbok antelope
-domestic sheep
-black sheep
-ewe
-wether
-ram
-mountain goat
-chamois
-takin
-nanny
-kid
-ibex
-Angora
-domestic goat
-billy
-wild goat
-Bactrian camel
-Arabian camel
-wild boar
-warthog
-boar
-hog
-guanaco
-alpaca
-rhinoceros
-tapir
-equine
-Malayan tapir
-Indian rhinoceros
-black rhinoceros
-white rhinoceros
-horse
-zebra
-ass
-bay
-broodmare
-racehorse
-palomino
-wild horse
-pinto
-hack
-roan
-male horse
-post horse
-liver chestnut
-tarpan
-saddle horse
-chestnut
-harness horse
-polo pony
-workhorse
-mare
-pony
-pony
-sorrel
-yearling
-thoroughbred
-trotting horse
-stud
-stallion
-gelding
-Tennessee walker
-hack
-cavalry horse
-grey
-Morgan
-buckskin
-dun
-Arabian
-quarter horse
-cob
-hackney
-plow horse
-farm horse
-draft horse
-carthorse
-Percheron
-Clydesdale
-shire
-cayuse
-bronco
-mustang
-Welsh pony
-Shetland pony
-Exmoor
-common zebra
-mountain zebra
-grevy's zebra
-jennet
-burro
-domestic ass
-echidna
-platypus
-echidna
-kangaroo
-koala
-wombat
-common opossum
-opossum
-dasyurid marsupial
-phalanger
-giant kangaroo
-wallaby
-rock wallaby
-tree wallaby
-Tasmanian devil
-numbat
-chelonian
-diapsid
-turtle
-Western box turtle
-box turtle
-common snapping turtle
-terrapin
-soft-shelled turtle
-painted turtle
-sea turtle
-snapping turtle
-slider
-tortoise
-mud turtle
-cooter
-hawksbill turtle
-loggerhead
-green turtle
-leatherback turtle
-ridley
-Pacific ridley
-Atlantic ridley
-giant tortoise
-gopher tortoise
-European tortoise
-desert tortoise
-crocodilian reptile
-snake
-tuatara
-lizard
-dinosaur
-alligator
-crocodile
-American alligator
-caiman
-Asian crocodile
-African crocodile
-blind snake
-viper
-sea snake
-elapid
-constrictor
-colubrid snake
-horned viper
-asp
-adder
-puff adder
-pit viper
-water moccasin
-copperhead
-rattlesnake
-ground rattler
-massasauga
-diamondback
-Mojave rattlesnake
-timber rattlesnake
-prairie rattlesnake
-Western diamondback
-sidewinder
-rock rattlesnake
-speckled rattlesnake
-cobra
-green mamba
-taipan
-copperhead
-mamba
-coral snake
-coral snake
-Indian cobra
-hamadryad
-boa
-python
-rosy boa
-boa constrictor
-anaconda
-reticulated python
-carpet snake
-rock python
-blacksnake
-garter snake
-bull snake
-hognose snake
-rat snake
-whip-snake
-water snake
-green snake
-racer
-green snake
-thunder snake
-ringneck snake
-vine snake
-king snake
-night snake
-ribbon snake
-common garter snake
-pine snake
-gopher snake
-corn snake
-black rat snake
-grass snake
-common water snake
-water moccasin
-smooth green snake
-rough green snake
-milk snake
-common kingsnake
-banded gecko
-chameleon
-monitor
-skink
-Gila monster
-Komodo dragon
-whiptail
-iguanid
-agamid
-gecko
-African chameleon
-lacertid lizard
-anguid lizard
-horned lizard
-tree lizard
-chuckwalla
-American chameleon
-basilisk
-side-blotched lizard
-spiny lizard
-collared lizard
-common iguana
-marine iguana
-leopard lizard
-western fence lizard
-fence lizard
-agama
-mountain devil
-frilled lizard
-green lizard
-sand lizard
-blindworm
-alligator lizard
-ornithischian
-tyrannosaur
-stegosaur
-triceratops
-bird of passage
-aquatic bird
-passerine
-cock
-hummingbird
-piciform bird
-coraciiform bird
-quetzal
-bird of prey
-caprimulgiform bird
-cuculiform bird
-gamecock
-ratite
-gallinaceous bird
-trogon
-parrot
-carinate
-dickeybird
-hen
-wading bird
-swan
-gallinule
-seabird
-waterfowl
-heron
-crested cariama
-trumpeter
-bustard
-ibis
-stork
-whooping crane
-crane
-limpkin
-chunga
-flamingo
-rail
-spoonbill
-shoebill
-shorebird
-great blue heron
-night heron
-little blue heron
-boatbill
-great white heron
-egret
-bittern
-black-crowned night heron
-yellow-crowned night heron
-great white heron
-little egret
-snowy egret
-American egret
-cattle egret
-least bittern
-American bittern
-wood ibis
-sacred ibis
-marabou
-black stork
-white stork
-saddlebill
-jabiru
-policeman bird
-wood ibis
-notornis
-weka
-spotted crake
-crake
-coot
-Old World coot
-American coot
-common spoonbill
-roseate spoonbill
-plover
-godwit
-Hudsonian godwit
-stilt
-stone curlew
-oystercatcher
-stilt
-American woodcock
-snipe
-woodcock
-avocet
-sandpiper
-European curlew
-pratincole
-curlew
-phalarope
-golden plover
-ruddy turnstone
-killdeer
-lapwing
-turnstone
-piping plover
-black-necked stilt
-black-winged stilt
-whole snipe
-Wilson's snipe
-great snipe
-dowitcher
-tattler
-greenshank
-willet
-curlew sandpiper
-sanderling
-redshank
-spotted sandpiper
-knot
-red-backed sandpiper
-upland sandpiper
-least sandpiper
-pectoral sandpiper
-ruff
-European sandpiper
-yellowlegs
-greater yellowlegs
-lesser yellowlegs
-red phalarope
-Wilson's phalarope
-pen
-cygnet
-trumpeter
-coscoroba
-mute swan
-cob
-whooper
-black swan
-tundra swan
-whistling swan
-Bewick's swan
-purple gallinule
-European gallinule
-moorhen
-coastal diving bird
-pelagic bird
-grebe
-auk
-loon
-pelecaniform seabird
-sphenisciform seabird
-puffin
-larid
-jaeger
-skimmer
-sea swallow
-gull
-tern
-ivory gull
-mew
-laughing gull
-black-backed gull
-kittiwake
-herring gull
-skua
-parasitic jaeger
-petrel
-albatross
-wandering albatross
-shearwater
-storm petrel
-fulmar
-red-necked grebe
-great crested grebe
-pied-billed grebe
-black-necked grebe
-dabchick
-razorbill
-guillemot
-auklet
-murre
-black guillemot
-common murre
-pigeon guillemot
-frigate bird
-cormorant
-snakebird
-pelican
-gannet
-water turkey
-tropic bird
-white pelican
-Old world white pelican
-solan
-booby
-penguin
-emperor penguin
-jackass penguin
-king penguin
-rock hopper
-Adelie
-horned puffin
-tufted puffin
-Atlantic puffin
-anseriform bird
-goose
-duck
-blue goose
-barnacle goose
-snow goose
-Chinese goose
-common brant goose
-brant
-gosling
-greylag
-gander
-honker
-diving duck
-scaup
-shelduck
-wood drake
-bufflehead
-black duck
-mandarin duck
-American widgeon
-pintail
-mallard
-sheldrake
-teal
-Barrow's goldeneye
-quack-quack
-wild duck
-ruddy duck
-wood duck
-drake
-muscovy duck
-shoveler
-dabbling duck
-widgeon
-sea duck
-redhead
-pochard
-goldeneye
-canvasback
-duckling
-greater scaup
-lesser scaup
-garganey
-greenwing
-bluewing
-eider
-old squaw
-merganser
-scoter
-common scoter
-American merganser
-red-breasted merganser
-hooded merganser
-smew
-goosander
-wren
-broadbill
-tyrannid
-oscine
-scrubbird
-sparrow
-marsh wren
-rock wren
-winter wren
-cactus wren
-house wren
-Carolina wren
-ovenbird
-manakin
-pitta
-woodhewer
-New World flycatcher
-kingbird
-phoebe
-pewee
-vermillion flycatcher
-western wood pewee
-scissortail
-grey kingbird
-eastern kingbird
-Arkansas kingbird
-warbler
-brown creeper
-corvine bird
-starling
-pipit
-titmouse
-fairy bluebird
-thrush
-hedge sparrow
-wood swallow
-shrike
-lark
-golden oriole
-Old World flycatcher
-thrasher
-vireo
-tanager
-honeycreeper
-finch
-bowerbird
-water ouzel
-accentor
-mockingbird
-brown thrasher
-skylark
-catbird
-satin bowerbird
-waxwing
-red-eyed vireo
-New World oriole
-Old World oriole
-babbler
-swallow
-creeper
-songbird
-Australian magpie
-wagtail
-meadow pipit
-spotted flycatcher
-weaver
-nuthatch
-greater whitethroat
-New World warbler
-kinglet
-Old World warbler
-gnatcatcher
-lesser whitethroat
-yellowthroat
-common yellowthroat
-ovenbird
-parula warbler
-Blackburn
-yellow warbler
-American redstart
-yellow-breasted chat
-Audubon's warbler
-Wilson's warbler
-Cape May warbler
-myrtle warbler
-goldcrest
-ruby-crowned kinglet
-tailorbird
-sedge warbler
-wren warbler
-blackcap
-rook
-Clark's nutcracker
-jackdaw
-European magpie
-jay
-raven
-crow
-magpie
-American crow
-blue jay
-Canada jay
-common starling
-hill myna
-myna
-bushtit
-chickadee
-blue tit
-tufted titmouse
-Carolina chickadee
-black-capped chickadee
-robin
-robin
-hermit thrush
-redwing
-fieldfare
-song thrush
-nightingale
-blackbird
-missel thrush
-ring ouzel
-wheatear
-bluebird
-thrush nightingale
-bluethroat
-redstart
-bulbul
-Old World chat
-wood thrush
-stonechat
-whinchat
-butcherbird
-loggerhead shrike
-bush shrike
-northern shrike
-European shrike
-western tanager
-summer tanager
-scarlet tanager
-serin
-bullfinch
-grosbeak
-goldfinch
-New World sparrow
-crossbill
-bunting
-linnet
-cardinal
-siskin
-common canary
-towhee
-purple finch
-honeycreeper
-brambling
-New World goldfinch
-pine siskin
-redpoll
-dark-eyed junco
-house finch
-chaffinch
-canary
-redpoll
-junco
-pine grosbeak
-evening grosbeak
-hawfinch
-song sparrow
-white-throated sparrow
-tree sparrow
-field sparrow
-white-crowned sparrow
-swamp sparrow
-chipping sparrow
-indigo bunting
-reed bunting
-snow bunting
-ortolan
-yellowhammer
-cedar waxwing
-Bohemian waxwing
-bobolink
-meadowlark
-northern oriole
-orchard oriole
-New World blackbird
-eastern meadowlark
-western meadowlark
-Bullock's oriole
-Baltimore oriole
-purple grackle
-cowbird
-grackle
-red-winged blackbird
-white-bellied swallow
-tree swallow
-martin
-barn swallow
-cliff swallow
-house martin
-bank martin
-butcherbird
-currawong
-Java sparrow
-zebra finch
-red-breasted nuthatch
-European nuthatch
-white-breasted nuthatch
-English sparrow
-tree sparrow
-thornbill
-Archilochus colubris
-jacamar
-woodpecker
-barbet
-toucanet
-toucan
-flicker
-downy woodpecker
-green woodpecker
-sapsucker
-wryneck
-redheaded woodpecker
-yellow-shafted flicker
-red-breasted sapsucker
-yellow-bellied sapsucker
-kingfisher
-roller
-motmot
-Euopean hoopoe
-hornbill
-European roller
-hoopoe
-bee eater
-kookaburra
-Eurasian kingfisher
-belted kingfisher
-vulture
-hawk
-secretary bird
-eagle
-owl
-Old World vulture
-New World vulture
-Egyptian vulture
-bearded vulture
-black vulture
-griffon vulture
-black vulture
-buzzard
-king vulture
-condor
-Andean condor
-California condor
-harrier
-goshawk
-red-shouldered hawk
-honey buzzard
-falcon
-harrier eagle
-Cooper's hawk
-osprey
-kite
-rough-legged hawk
-buzzard
-sparrow hawk
-marsh harrier
-marsh hawk
-carancha
-gyrfalcon
-peregrine
-caracara
-hobby
-pigeon hawk
-kestrel
-sparrow hawk
-white-tailed kite
-swallow-tailed kite
-black kite
-eaglet
-golden eagle
-sea eagle
-bald eagle
-harpy
-tawny eagle
-fishing eagle
-ern
-tawny owl
-owlet
-spotted owl
-screech owl
-horned owl
-screech owl
-little owl
-barn owl
-scops owl
-Old World scops owl
-hawk owl
-great horned owl
-barred owl
-long-eared owl
-great grey owl
-frogmouth
-goatsucker
-touraco
-cuckoo
-coucal
-roadrunner
-rhea
-rhea
-ostrich
-emu
-cassowary
-domestic fowl
-columbiform bird
-brush turkey
-red jungle fowl
-jungle fowl
-game bird
-turkey cock
-bantam
-turkey
-guinea fowl
-chicken
-cockerel
-cock
-Rhode Island red
-chick
-Orpington
-hen
-pullet
-brood hen
-sandgrouse
-pigeon
-domestic pigeon
-dove
-wood pigeon
-rock dove
-homing pigeon
-roller
-Streptopelia turtur
-turtledove
-Australian turtledove
-mourning dove
-phasianid
-tinamou
-grouse
-pheasant
-quail
-partridge
-tragopan
-ring-necked pheasant
-golden pheasant
-peafowl
-peahen
-blue peafowl
-peacock
-green peafowl
-bobwhite
-California quail
-northern bobwhite
-red-legged partridge
-Hungarian partridge
-spruce grouse
-prairie chicken
-capercaillie
-ruffed grouse
-sage grouse
-moorhen
-black grouse
-ptarmigan
-cockateel
-parakeet
-cockatoo
-poll
-kea
-African grey
-macaw
-amazon
-lovebird
-lory
-popinjay
-budgerigar
-ring-necked parakeet
-sulphur-crested cockatoo
-pink cockatoo
-rainbow lorikeet
-lorikeet
-beast of burden
-draft animal
-ctenophore
-worm
-mollusk
-echinoderm
-coelenterate
-arthropod
-sponge
-nematode
-annelid
-flatworm
-medicinal leech
-earthworm
-chiton
-bivalve
-cephalopod
-gastropod
-oyster
-ark shell
-clam
-mussel
-cockle
-scallop
-pearl oyster
-soft-shell clam
-quahog
-giant clam
-freshwater mussel
-edible mussel
-zebra mussel
-octopod
-chambered nautilus
-cuttlefish
-octopus
-paper nautilus
-sea hare
-cowrie
-conch
-seasnail
-ormer
-tiger cowrie
-sea slug
-slug
-snail
-common limpet
-whelk
-nerita
-edible snail
-brown snail
-garden snail
-starfish
-feather star
-sand dollar
-sea urchin
-sea cucumber
-brittle star
-polyp
-anthozoan
-Portuguese man-of-war
-jellyfish
-sea pen
-sea anemone
-coral
-stony coral
-gorgonian
-sea fan
-mushroom coral
-brain coral
-centipede
-crustacean
-trilobite
-millipede
-arachnid
-horseshoe crab
-instar
-insect
-house centipede
-daphnia
-brachyuran
-mantis shrimp
-malacostracan crustacean
-decapod crustacean
-isopod
-amphipod
-pill bug
-woodlouse
-lobster
-shrimp
-hermit crab
-prawn
-crab
-crayfish
-Norway lobster
-spiny lobster
-American lobster
-king crab
-blue crab
-rock crab
-Dungeness crab
-fiddler crab
-European spider crab
-scorpion
-harvestman
-acarine
-spider
-tick
-mite
-wood tick
-orb-weaving spider
-European wolf spider
-tarantula
-wolf spider
-garden spider
-black widow
-black and gold garden spider
-barn spider
-orthopterous insect
-hemipterous insect
-neuropteron
-dictyopterous insect
-collembolan
-mayfly
-homopterous insect
-dipterous insect
-earwig
-common European earwig
-phasmid
-pollinator
-bug
-pupa
-walking stick
-scorpion fly
-beetle
-heteropterous insect
-stonefly
-hymenopterous insect
-lepidopterous insect
-chrysalis
-odonate
-silverfish
-worker bee
-grasshopper
-cricket
-katydid
-locust
-true bug
-bedbug
-dobson
-green lacewing
-lacewing
-mantis
-praying mantis
-cockroach
-American cockroach
-German cockroach
-oriental cockroach
-plant louse
-cicada
-meadow spittlebug
-seventeen-year locust
-mealybug
-leafhopper
-aphid
-mosquito
-crane fly
-midge
-fruit fly
-fly
-horse tick
-robber fly
-Asian tiger mosquito
-common mosquito
-bee fly
-horsefly
-flesh fly
-blowfly
-housefly
-greenbottle
-bluebottle
-Colorado potato beetle
-firefly
-ground beetle
-sawyer
-ladybug
-lamellicorn beetle
-rove beetle
-Asian longhorned beetle
-leaf beetle
-elaterid beetle
-click beetle
-tiger beetle
-weevil
-long-horned beetle
-Hippodamia convergens
-vedalia
-scarabaeid beetle
-stag beetle
-rose chafer
-June beetle
-Japanese beetle
-rhinoceros beetle
-dung beetle
-scarab
-cockchafer
-water strider
-wheel bug
-wasp
-ichneumon fly
-ant
-bee
-cicada killer
-digger wasp
-vespid
-hornet
-paper wasp
-common wasp
-giant hornet
-yellow jacket
-carpenter ant
-fire ant
-wood ant
-carpenter bee
-honeybee
-mason bee
-andrena
-leaf-cutting bee
-bumblebee
-Africanized bee
-black bee
-butterfly
-moth
-lycaenid
-nymphalid
-sulphur butterfly
-ringlet
-monarch
-cabbage butterfly
-blue
-hairstreak
-copper
-tortoiseshell
-fritillary
-admiral
-banded purple
-peacock
-red-spotted purple
-painted beauty
-mourning cloak
-viceroy
-red admiral
-white admiral
-comma
-small white
-large white
-cinnabar
-saturniid
-noctuid moth
-hawkmoth
-tea tortrix
-geometrid
-tineid
-atlas moth
-emperor
-polyphemus moth
-cecropia
-luna moth
-carpet moth
-clothes moth
-dragonfly
-damselfly
-hen
-filly
-dam
-herpes
-protoctist
-herpes simplex
-herpes zoster
-cytomegalovirus
-herpes varicella zoster
-alga
-protozoan
-seagrass
-pond scum
-green algae
-plasmodium
-ameba
-ciliate
-paramecium
-sphagnum
-hepatica
-liverwort
-peer
-birth
-adult
-juvenile
-countrywoman
-businessperson
-native
-celebrant
-native
-Filipino
-male
-Gemini
-onlooker
-queen
-referee
-commoner
-expert
-newcomer
-face
-demonstrator
-orphan
-Black woman
-contestant
-bullfighter
-lowerclassman
-candidate
-friend
-life
-anomaly
-actor
-thrower
-creature
-child
-sheep
-scuba diver
-dancer
-garbage man
-entertainer
-lover
-unfortunate
-anti
-defender
-sphinx
-Indian
-patient
-Slav
-White
-brick
-recipient
-religious person
-rescuer
-Latin
-money handler
-rich person
-domestic partner
-creator
-consumer
-worker
-groom
-boy scout
-inhabitant
-African
-fan
-eager beaver
-leader
-schoolmate
-man
-philatelist
-advocate
-eccentric
-bad person
-transvestite
-citizen
-communicator
-nonworker
-parrot
-intellectual
-nonsmoker
-student
-chameleon
-combatant
-platinum blond
-appointee
-unpleasant person
-politician
-ruler
-ancient
-spectator
-right-hander
-traveler
-scientist
-picker
-female
-acquaintance
-Black
-relative
-beard
-redhead
-sleeper
-computer user
-associate
-participant
-member
-raiser
-groom
-bride
-commissioner
-director
-tribesman
-board member
-important person
-professional
-oldster
-celebrity
-very important person
-serjeant-at-law
-educator
-health professional
-teacher
-reading teacher
-schoolmaster
-nurse
-medical practitioner
-pharmacist
-head nurse
-probationer
-doctor
-surgeon
-specialist
-house physician
-cardiologist
-radiologist
-schoolchild
-child
-bairn
-orphan
-entrepreneur
-baron
-agent
-merchant
-certified public accountant
-syndic
-insurance broker
-fishmonger
-vintner
-peddler
-seller
-male child
-mother's boy
-son
-man
-cub
-farm boy
-bat boy
-Herr
-hunk
-Peter Pan
-patriarch
-adonis
-young buck
-stud
-guy
-patriarch
-sleuth
-archer
-authority
-military attache
-therapist
-technician
-black belt
-high priest
-critic
-taster
-panelist
-physical therapist
-osteopath
-player
-athlete
-rival
-billiard player
-medalist
-seeded player
-chess master
-pool player
-football player
-tennis player
-ball hawk
-vaulter
-runner
-skater
-acrobat
-climber
-diver
-alpinist
-soccer player
-winger
-tennis pro
-forward
-sport
-basketball player
-miler
-ballplayer
-gymnast
-back
-lineman
-halfback
-quarterback
-tailback
-skateboarder
-speedskater
-circus acrobat
-aerialist
-fielder
-designated hitter
-base runner
-minor leaguer
-first baseman
-outfielder
-right fielder
-infielder
-semifinalist
-foe
-matador
-picador
-banderillero
-buddy
-mate
-flatmate
-pitcher
-closer
-right-handed pitcher
-folk dancer
-square dancer
-morris dancer
-compere
-master of ceremonies
-caricaturist
-performer
-fire-eater
-executant
-dancer
-juggler
-puppeteer
-actor
-clown
-musician
-dancing-master
-ballet dancer
-understudy
-starlet
-tenor saxophonist
-percussionist
-guitarist
-keyboardist
-trumpeter
-sitar player
-singer
-oboist
-cellist
-violist
-flutist
-organist
-rock star
-drummer
-songster
-bass
-fiance
-darling
-fancier
-soul mate
-sweetheart
-kisser
-amputee
-homeless
-casualty
-guard
-fireman
-zoo keeper
-lawman
-military policeman
-attorney general
-policeman
-bobby
-Mountie
-detective
-motorcycle cop
-trooper
-traffic cop
-Kiliwa
-Biloxi
-Chickasaw
-Kickapoo
-Arab
-white man
-Omani
-Bedouin
-Yemeni
-protegee
-heiress
-swami
-Buddhist
-Muslim
-novitiate
-religious
-Muslimah
-Sufi
-mother
-monk
-Sister
-treasurer
-ratepayer
-state treasurer
-bursar
-cobbler
-artist
-choreographer
-farmer
-musician
-stylist
-sculptor
-press photographer
-songwriter
-arranger
-beekeeper
-breeder
-agriculturist
-drinker
-policyholder
-drinker
-concert-goer
-drunkard
-beer drinker
-maid
-employee
-assistant
-gondolier
-skilled worker
-skidder
-boatman
-waiter
-bartender
-staff member
-salesperson
-workman
-settler
-breadwinner
-waitress
-salesman
-gardener
-laborer
-mill-hand
-hired hand
-coal miner
-horse wrangler
-goat herder
-farmhand
-attendant
-cog
-model
-escort
-caddie
-companion
-lifeguard
-steward
-color guard
-honor guard
-cover girl
-artist's model
-electrician
-official
-falconer
-balloonist
-craftsman
-pilot
-blacksmith
-trawler
-mender
-baker
-serviceman
-painter
-diplomat
-judge
-incumbent
-appointee
-presbyter
-ambassador
-high commissioner
-plenipotentiary
-glassblower
-carpenter
-coiffeur
-machinist
-wright
-hairdresser
-fighter pilot
-copilot
-artilleryman
-Navy SEAL
-military officer
-enlisted person
-noncommissioned officer
-commanding officer
-naval commander
-adjutant general
-commander in chief
-commissioned officer
-army officer
-adjutant
-inspector general
-sergeant
-first sergeant
-staff sergeant
-commissioned military officer
-commissioned naval officer
-line officer
-major
-lieutenant
-first lieutenant
-marshal
-captain
-general
-lieutenant colonel
-lieutenant commander
-rear admiral
-soldier
-enlisted man
-tanker
-reservist
-Unknown Soldier
-private
-recruit
-yard bird
-villager
-Tahitian
-American
-Asian
-American
-Polynesian
-European
-New Zealander
-North Carolinian
-Minnesotan
-Nebraskan
-Floridian
-Afghan
-Tibetan
-Mongol
-Papuan
-Indian
-Jordanian
-Japanese
-Malay
-Korean
-Timorese
-Bornean
-Lao
-Iraqi
-Gujarati
-Punjabi
-West Indian
-Latin American
-North American
-South American
-Bahamian
-Barbadian
-Haitian
-Central American
-Canadian
-Mexican
-Nicaraguan
-Mexican-American
-Bolivian
-Guyanese
-Albanian
-Byelorussian
-Monegasque
-Frank
-Scandinavian
-Laconian
-Netherlander
-Slovene
-Sabine
-Bulgarian
-Romanian
-Lithuanian
-Englishwoman
-Britisher
-Yugoslav
-Dubliner
-Parisian
-Eritrean
-Tanzanian
-Zulu
-Black African
-Cameroonian
-Sudanese
-Senegalese
-Kenyan
-Togolese
-Ugandan
-Liberian
-Herero
-Zimbabwean
-Nigerian
-Gambian
-Tuareg
-Guinean
-Ethiopian
-South African
-mayor
-politician
-trainer
-employer
-Speaker
-lawgiver
-cheerleader
-head
-aristocrat
-spiritual leader
-instigator
-mistress
-boss
-demagogue
-Labourite
-animal trainer
-pitching coach
-legislator
-deputy
-senator
-administrator
-department head
-secretary
-manageress
-executive
-hotelier
-chief executive officer
-Treasury
-minister
-Secretary of State
-Secretary of the Interior
-duchess
-viscount
-clergyman
-lama
-rabbi
-Dalai Lama
-officiant
-priest
-cleric
-vicar
-Father
-bishop
-diocesan
-cardinal
-metropolitan
-federalist
-supporter
-ambassador
-protectionist
-loyalist
-cheerleader
-adulteress
-wrongdoer
-hypocrite
-abettor
-skinhead
-biographer
-disk jockey
-speaker
-representative
-reporter
-orator
-interlocutor
-organ-grinder
-head of state
-alderman
-resident commissioner
-President of the United States
-president
-television reporter
-anchor
-retiree
-sunbather
-camper
-scholar
-exponent
-casuist
-futurist
-licentiate
-reader
-brawler
-boxer
-wrestler
-flyweight
-middleweight
-sparring partner
-prizefighter
-light heavyweight
-featherweight
-lightweight
-heavyweight
-flyweight
-sumo wrestler
-bantamweight
-egotist
-fire-eater
-upstart
-bragger
-exhibitionist
-sovereign
-Pharaoh
-Cheops
-sheik
-rider
-motorcyclist
-musher
-astronaut
-pedestrian
-mover
-commuter
-pilgrim
-skin-diver
-settler
-tourist
-runner
-gringo
-unicyclist
-hang glider
-jockey
-horseman
-saunterer
-marcher
-hitter
-scrambler
-psycholinguist
-social scientist
-lumper
-sociologist
-political scientist
-economist
-econometrician
-microeconomist
-female child
-woman
-mother's daughter
-girl wonder
-Boy Scout
-Cub Scout
-enchantress
-lady
-old woman
-nymph
-donna
-bridesmaid
-smasher
-primigravida
-signorina
-girl
-beldam
-heroine
-widow
-call girl
-baggage
-wife
-gal
-baby
-lass
-maid
-first lady
-old lady
-crown princess
-father-in-law
-cousin
-kinswoman
-ancestor
-kinsman
-second cousin
-in-law
-kin
-twin
-offspring
-sibling
-niece
-aunt
-great-niece
-sister
-great-aunt
-little sister
-big sister
-parent
-forefather
-forebear
-patriarch
-mater
-father
-mother
-dad
-old man
-great grandparent
-grandparent
-great grandmother
-nan
-grandma
-grandfather
-great-nephew
-little brother
-grandchild
-firstborn
-child
-successor
-granddaughter
-great grandchild
-great grandson
-great granddaughter
-baby
-godson
-premature baby
-neonate
-shiitake
-common stinkhorn
-earthball
-truffle
-hen-of-the-woods
-gyromitra
-mildew
-lichen
-white fungus
-true slime mold
-slime mold
-club fungus
-earthstar
-coral fungus
-false morel
-puffball
-pythium
-helvella
-giant puffball
-Scleroderma citrinum
-jelly fungus
-agaric
-stinkhorn
-discomycete
-basidiomycete
-Phytophthora infestans
-Jew's-ear
-bolete
-powdery mildew
-downy mildew
-reindeer moss
-beard lichen
-Iceland moss
-lecanora
-Sarcoscypha coccinea
-Aleuria aurantia
-gill fungus
-polypore
-agaric
-mushroom
-Polyporus squamosus
-bracket fungus
-Entoloma lividum
-mushroom
-inky cap
-mushroom
-oyster mushroom
-deer mushroom
-parasol mushroom
-fairy-ring mushroom
-royal agaric
-blewits
-honey mushroom
-Pholiota squarrosa
-lepiota
-blushing mushroom
-horse mushroom
-nameko
-winter mushroom
-false deathcap
-shaggymane
-destroying angel
-toadstool
-chanterelle
-meadow mushroom
-death cap
-fly agaric
-morel
-common morel
-black morel
-Boletus edulis
-Boletus luridus
-Boletus chrysenteron
-somatic cell
-histiocyte
-leukocyte
-lymphocyte
-neutrophil
-nest
-tangle
-radiator
-plant part
-rock
-comet
-cadaver
-star
-snowdrift
-covering
-aerie
-wasp's nest
-lip
-tendril
-plant organ
-mycelium
-reproductive structure
-leaf
-root
-stalk
-hypanthium
-flower
-fruit
-pistil
-rosebud
-inflorescence
-floret
-umbel
-flower cluster
-panicle
-olive
-ear
-buckthorn berry
-berry
-wild cherry
-acorn
-rowanberry
-mealie
-gourd
-seed
-hip
-juniper berry
-pod
-corn
-coffee bean
-nut
-buckeye
-oilseed
-bean
-edible seed
-edible nut
-pine nut
-macadamia nut
-pistachio
-hazelnut
-walnut
-cashew
-chestnut
-pecan
-peanut
-coconut
-linseed
-rapeseed
-broad bean
-soy
-cumin
-sunflower seed
-pumpkin seed
-legume
-okra
-chickpea
-pea
-cowpea
-garden pea
-lentil
-dandelion green
-frond
-petal
-cassava
-chicory
-tuber
-spadix
-branchlet
-bulb
-petiole
-scape
-cornstalk
-rattan
-Jerusalem artichoke
-yam
-squill
-onion
-belay
-outcrop
-tor
-supernova
-sun
-shell
-bracteole
-shell
-cassia bark
-snowcap
-perianth
-body covering
-roof
-seashell
-scallop shell
-oyster shell
-exoskeleton
-cuticle
-plastron
-skin
-hair
-scapular
-hairdo
-forelock
-encolure
-facial hair
-pigtail
-thatch
-pompadour
-mustache
-beard
-mustachio
-soup-strainer
-stubble
-soul patch
-weather
-dust storm
-cloud
-snow
-wave
diff --git a/build/darknet/x64/data/9k.tree b/build/darknet/x64/data/9k.tree
deleted file mode 100644
index deb61e2a021..00000000000
--- a/build/darknet/x64/data/9k.tree
+++ /dev/null
@@ -1,9418 +0,0 @@
-n00002452 -1
-n00020827 -1
-n00002684 -1
-n11425580 -1
-n05220461 0
-n09225146 0
-n05538625 4
-n01900150 4
-n05225602 4
-n05418717 8
-n05302499 8
-n05578095 8
-n09475179 5
-n09376198 5
-n14877585 1
-n15046900 1
-n00019613 1
-n00021265 1
-n15067877 14
-n09436708 14
-n14915184 15
-n07555863 15
-n07850329 21
-n07849336 21
-n07705711 21
-n07622061 21
-n07594066 21
-n07854982 22
-n07852833 22
-n07852614 22
-n07854184 22
-n07852229 22
-n07851443 22
-n07705931 24
-n07707451 24
-n07752966 33
-n07760859 33
-n07747055 33
-n07754684 33
-n07768694 33
-n07764847 33
-n07768858 33
-n07739125 33
-n07746551 33
-n07753113 33
-n07763987 33
-n07748574 33
-n07751451 33
-n07762244 33
-n07750872 33
-n07742704 33
-n07765208 33
-n07763792 33
-n07767847 33
-n07766173 33
-n07751004 33
-n07760153 33
-n07758680 33
-n07753592 33
-n07751280 33
-n07769731 33
-n07763629 33
-n07755411 33
-n07754451 33
-n07753275 33
-n07764155 33
-n07765073 33
-n07762114 33
-n07762913 33
-n07753743 33
-n07765999 33
-n07765361 33
-n07752377 33
-n07757132 33
-n07769584 33
-n07751148 33
-n07761141 36
-n07761309 36
-n07749731 37
-n07747951 37
-n07749446 37
-n07747607 37
-n07749582 37
-n07750449 37
-n07749969 37
-n07750146 37
-n07748157 79
-n07748416 79
-n07748276 79
-n07748912 81
-n07748753 81
-n07749192 89
-n07749312 89
-n07739344 42
-n07739506 42
-n07742313 94
-n07740220 94
-n07740954 94
-n07740461 96
-n07740342 96
-n07745940 50
-n07767171 50
-n07744246 50
-n07744057 50
-n07744811 50
-n07744682 50
-n07745466 50
-n07743902 50
-n07746334 50
-n07746186 50
-n07743544 50
-n07743224 50
-n07755707 62
-n07756951 62
-n07755929 62
-n07757990 73
-n07757312 73
-n07757511 73
-n07734744 34
-n07719213 34
-n07768423 34
-n07735510 34
-n07718472 34
-n07710283 34
-n07713395 34
-n07708398 34
-n07710007 34
-n07718747 34
-n07708798 34
-n07723039 34
-n07715561 34
-n07709333 34
-n07730406 34
-n07730033 34
-n07733394 34
-n07713267 34
-n07722217 34
-n07817871 34
-n07736813 123
-n07719839 123
-n07712267 123
-n07730207 123
-n07710616 123
-n07710952 142
-n07711569 142
-n07711080 142
-n07713763 124
-n07713895 124
-n07733567 124
-n07715103 124
-n07715221 124
-n07715407 124
-n07714990 124
-n07735687 124
-n07735803 124
-n07714188 147
-n07714448 147
-n07714895 147
-n07714571 147
-n07714078 147
-n07720442 126
-n07734017 126
-n07713074 126
-n07734555 126
-n07720615 160
-n07721325 160
-n07720875 164
-n07721195 164
-n07721018 164
-n07721456 165
-n07722052 165
-n07721942 169
-n07721678 169
-n07734292 161
-n07734183 161
-n07724943 128
-n07725376 128
-n07726095 128
-n07725255 128
-n07729485 175
-n07726796 175
-n07727458 180
-n07727048 180
-n07727578 180
-n07727868 183
-n07728804 183
-n07728053 184
-n07728585 184
-n07728181 184
-n07729384 185
-n07729828 185
-n07725531 176
-n07725789 191
-n07725888 191
-n07715721 130
-n07717070 130
-n07716906 194
-n07716358 194
-n07716034 194
-n07717556 195
-n07717410 195
-n07720277 131
-n07736256 131
-n07723330 131
-n07719616 131
-n07736692 131
-n07733712 131
-n07732747 203
-n07730855 203
-n07731587 203
-n07731006 203
-n07723559 203
-n07724654 211
-n07724269 211
-n07724492 211
-n07722485 136
-n07723177 136
-n07722888 136
-n07639069 25
-n07679356 25
-n07682197 219
-n07680517 219
-n07695878 219
-n07685730 219
-n07682316 219
-n07684517 219
-n07680761 219
-n07681691 219
-n07684600 219
-n07684164 219
-n07686720 219
-n07680932 219
-n07687211 219
-n07681450 219
-n07683786 219
-n07695742 219
-n07682477 219
-n07686873 219
-n07684289 219
-n07683490 219
-n07682808 219
-n07690585 228
-n07684938 228
-n07690892 228
-n07685399 228
-n07693972 228
-n07690273 228
-n07691091 228
-n07687789 228
-n07685218 228
-n07694516 245
-n07694839 245
-n07694659 245
-n07690511 246
-n07690739 246
-n07690431 246
-n07688624 248
-n07688898 248
-n07689003 248
-n07690152 231
-n07693725 231
-n07690019 231
-n07692614 231
-n07691758 231
-n07691539 231
-n07691650 231
-n07693223 262
-n07693048 262
-n07691237 262
-n07687626 232
-n07687381 232
-n07687469 232
-n07871810 234
-n07684084 234
-n14580897 16
-n15062057 16
-n14698884 274
-n14696793 274
-n14765422 274
-n14844693 274
-n15019030 274
-n12167075 274
-n14974264 274
-n14858292 274
-n15075141 282
-n04033425 282
-n07556637 17
-n07566340 17
-n07560652 17
-n07881800 17
-n07938313 17
-n07800091 17
-n07570720 17
-n01464844 17
-n07556406 17
-n07840804 287
-n07802417 287
-n07925608 287
-n07844867 287
-n07569644 287
-n07568502 287
-n07809096 287
-n07843775 287
-n07755089 287
-n07882497 287
-n07573347 287
-n07923748 287
-n07572957 287
-n07731952 296
-n07804323 296
-n07804771 296
-n07803093 296
-n07803545 296
-n07732168 308
-n07732636 308
-n07804657 309
-n07804900 309
-n07809368 301
-n07841345 301
-n07827284 317
-n07827130 317
-n07822518 317
-n07827410 317
-n07816052 317
-n07812184 317
-n07810907 317
-n07858595 317
-n07811416 317
-n07824702 317
-n07818277 317
-n07819769 317
-n07920989 317
-n07822323 317
-n07815424 324
-n07814390 324
-n07826930 324
-n07814487 324
-n07814203 324
-n07583066 325
-n07822845 325
-n07767344 325
-n07823105 325
-n07828987 325
-n07582609 325
-n07825972 325
-n07823460 325
-n07823698 325
-n07822197 325
-n07856270 325
-n07767709 325
-n07829412 325
-n07829331 342
-n07829248 342
-n07857731 348
-n07857170 348
-n07838233 350
-n07836838 350
-n07826091 350
-n07830593 350
-n07840027 350
-n07832416 350
-n07832902 350
-n07835921 350
-n07835457 350
-n07831146 355
-n07831267 355
-n07834618 361
-n07834507 361
-n07595914 326
-n07858978 326
-n07859583 326
-n07860103 370
-n07860331 370
-n07860447 370
-n07816164 327
-n07818689 327
-n07821260 327
-n07820683 327
-n07816575 327
-n07817160 327
-n07817315 327
-n07819166 327
-n07817024 327
-n07818995 327
-n07816398 327
-n07820497 327
-n07932841 327
-n07820145 327
-n07819896 327
-n07816296 327
-n07821758 327
-n07933154 386
-n07935379 386
-n07935043 386
-n07847198 302
-n07844042 302
-n07848196 394
-n07847453 394
-n07847917 394
-n07847827 394
-n07678729 304
-n07860805 304
-n07860988 304
-n07883031 304
-n07623136 402
-n07861158 402
-n07627931 404
-n07628068 404
-n07565161 288
-n07565083 288
-n07561590 288
-n07561112 288
-n07560903 288
-n07562495 411
-n07564971 411
-n07938149 413
-n07938007 413
-n07884567 289
-n07924033 289
-n07919310 289
-n07891189 289
-n07922764 289
-n07929519 289
-n07921455 289
-n07933274 289
-n07927197 289
-n07925966 289
-n07891309 289
-n07936263 289
-n07883251 289
-n07914271 289
-n07911371 417
-n07901587 417
-n07891433 417
-n07891726 417
-n07886176 417
-n07886057 417
-n07907943 417
-n07921615 417
-n07886572 417
-n07902121 417
-n07886463 417
-n07912211 431
-n07911677 431
-n07914777 431
-n07930554 431
-n07930433 431
-n07930315 431
-n07915491 442
-n07915094 442
-n07913393 443
-n07916041 443
-n07914995 443
-n07916183 443
-n07914413 443
-n07917392 443
-n07917133 443
-n07915918 443
-n07930864 445
-n07931870 445
-n07932039 445
-n07930062 445
-n07906111 432
-n07907037 432
-n07902799 432
-n07904865 432
-n07905474 432
-n07902937 432
-n07904395 432
-n07905038 432
-n07902336 432
-n07905979 432
-n07903101 432
-n07904760 432
-n07903208 432
-n07904934 432
-n07906284 432
-n07902443 474
-n07903841 474
-n07903962 474
-n07903731 474
-n07903643 474
-n07907161 476
-n07906718 476
-n07907831 476
-n07907548 476
-n07907429 476
-n07906877 476
-n07906572 476
-n07893253 434
-n07892418 434
-n07893642 434
-n07899003 434
-n07896287 434
-n07896661 434
-n07893528 434
-n07896165 434
-n07900225 434
-n07893891 434
-n07900406 434
-n07895237 434
-n07898745 434
-n07896060 434
-n07899108 434
-n07892512 434
-n07897750 434
-n07892813 434
-n07894703 498
-n07894102 498
-n07894551 498
-n07900616 499
-n07900958 499
-n07900734 499
-n07900825 499
-n07901457 499
-n07898117 500
-n07895435 500
-n07899434 503
-n07899292 503
-n07894298 504
-n07895595 504
-n07894965 504
-n07897865 504
-n07895839 504
-n07895710 504
-n07898333 504
-n07897438 506
-n07895962 506
-n07896893 506
-n07899899 506
-n07895100 506
-n07898443 506
-n07899533 506
-n07894799 506
-n07897975 506
-n07899660 506
-n07894451 506
-n07910656 437
-n07909593 437
-n07911249 437
-n07910048 437
-n07908411 437
-n07910379 437
-n07908647 437
-n07886849 439
-n07887634 544
-n07887099 544
-n07889510 544
-n07887192 544
-n07887304 545
-n07888229 545
-n07887967 545
-n07889274 545
-n07887461 545
-n07888465 547
-n07890226 547
-n07890352 547
-n07889814 547
-n07890068 547
-n07890540 547
-n07888816 547
-n07924834 418
-n07924443 418
-n07924276 418
-n07920540 422
-n07920222 422
-n07920052 422
-n07920349 422
-n07919441 422
-n07731284 422
-n07919572 422
-n07920872 422
-n07921239 422
-n07934282 424
-n07933799 424
-n07929172 425
-n07927931 425
-n07928488 425
-n07928367 425
-n07927512 425
-n07928887 425
-n07928696 576
-n07928790 576
-n07936745 428
-n07935737 428
-n07936548 428
-n07801508 291
-n07805594 291
-n07800740 291
-n07801091 588
-n07802026 588
-n07801779 588
-n07801892 588
-n07557165 292
-n07560193 292
-n07651025 292
-n07560331 292
-n07557434 292
-n07556970 292
-n05399243 292
-n15089258 292
-n07560542 292
-n07573696 292
-n07613815 593
-n07643981 593
-n07596684 593
-n07600696 605
-n07597145 605
-n07597365 605
-n07599998 605
-n07596967 605
-n07620689 605
-n07642471 607
-n07643200 612
-n07642742 612
-n07643026 612
-n07642933 612
-n07643306 612
-n07606538 608
-n07599911 608
-n07607138 608
-n07608429 608
-n07598256 608
-n07606669 608
-n07607605 608
-n07601572 608
-n07609632 608
-n07605597 608
-n07607967 608
-n07609215 608
-n07841907 608
-n07606764 608
-n07605944 608
-n07601686 608
-n07605380 608
-n07605040 608
-n07601809 608
-n07605474 608
-n07842130 630
-n07842044 630
-n07600285 609
-n07600177 609
-n07842202 597
-n07579688 597
-n07580053 597
-n07588947 597
-n07842753 597
-n07583197 597
-n07879350 597
-n07880751 597
-n07868200 597
-n07863802 597
-n07875152 597
-n07824191 597
-n07878785 597
-n07865484 597
-n07866015 597
-n07868955 597
-n07861557 597
-n07580253 597
-n07877187 597
-n07866868 597
-n07880458 597
-n07648913 597
-n07580470 597
-n07866277 597
-n07591961 597
-n07868508 597
-n07871436 597
-n07864934 597
-n07874780 597
-n07879659 597
-n07878926 597
-n07937461 597
-n07842433 597
-n07862611 597
-n07863374 597
-n07866723 597
-n07867021 597
-n07867164 597
-n07726525 597
-n07624466 597
-n07842308 597
-n07877299 597
-n07880080 597
-n07862348 597
-n07873464 597
-n07869775 597
-n07879953 597
-n07625061 597
-n07843636 597
-n07696403 597
-n07580592 597
-n07655263 597
-n07868340 597
-n07619004 597
-n07879174 597
-n07867324 597
-n07843464 597
-n07877961 597
-n07873807 597
-n07867421 597
-n07654298 597
-n07878647 597
-n07611839 597
-n07842605 597
-n07871720 597
-n07869611 597
-n07876651 597
-n07880968 597
-n07875436 597
-n07806221 597
-n07841495 597
-n07823951 597
-n07712382 597
-n07591586 645
-n07590320 645
-n07587111 645
-n07592481 645
-n07590611 645
-n07591473 645
-n07590502 645
-n07591049 645
-n07592768 645
-n07585758 647
-n07588193 647
-n07586894 647
-n07588299 647
-n07584110 647
-n07587441 647
-n07587023 647
-n07586099 647
-n07588574 647
-n07584332 647
-n07586604 647
-n07586718 647
-n07585107 647
-n07585557 647
-n07585208 647
-n07584593 647
-n07585906 647
-n07584423 647
-n07587618 729
-n07587700 729
-n07588111 729
-n07704054 670
-n07704205 670
-n07871234 676
-n07870167 676
-n07863547 676
-n07700003 676
-n07619208 695
-n07619409 695
-n07874159 700
-n07874343 700
-n07874259 700
-n07874441 700
-n07874063 700
-n07867751 701
-n07867616 701
-n07808587 711
-n07807834 711
-n07806633 711
-n07807171 711
-n07807710 711
-n07807922 711
-n07808904 711
-n07806774 762
-n07807472 762
-n07841639 712
-n07841800 712
-n07695965 714
-n07712748 714
-n07712559 714
-n07697825 771
-n07697313 771
-n07696728 771
-n07696625 771
-n07698543 771
-n07698401 771
-n07865105 771
-n07696977 771
-n07698250 771
-n07698782 771
-n07697100 771
-n07696839 771
-n07697537 771
-n07712856 772
-n07712959 772
-n07579575 598
-n07579787 598
-n07609840 598
-n07581346 598
-n07611991 791
-n07613266 791
-n07611358 791
-n07612632 791
-n07612996 791
-n07613480 791
-n07611267 791
-n07612367 791
-n07611148 791
-n07611046 791
-n07617611 791
-n07612137 791
-n07616386 795
-n07631926 795
-n07615774 795
-n07616487 795
-n07614730 795
-n07614500 795
-n07614198 795
-n07616748 795
-n07616046 795
-n07617051 795
-n07615671 810
-n07615190 810
-n07614825 810
-n07615460 810
-n07617708 796
-n07618432 796
-n07582152 792
-n07734879 792
-n07581775 792
-n07582277 792
-n07730320 792
-n07581249 792
-n15089645 600
-n15089472 600
-n15093137 827
-n15093298 827
-n15090742 827
-n15091473 831
-n14919819 831
-n15091669 831
-n14810561 831
-n14973585 831
-n15091304 831
-n15091846 831
-n15092227 828
-n15090065 828
-n07576438 602
-n07577374 602
-n07575984 602
-n07574602 602
-n07574426 602
-n07593199 602
-n07576182 602
-n07574923 602
-n07574780 602
-n07575726 602
-n07575076 602
-n07578093 602
-n07576577 841
-n07577144 853
-n07576781 853
-n07574504 842
-n07577538 842
-n09335240 2
-n00027167 2
-n09334396 2
-n09283193 2
-n03892891 2
-n09287968 2
-n03059685 2
-n00003553 2
-n09300905 2
-n09452395 858
-n09260907 858
-n08630039 859
-n08630985 859
-n09386842 859
-n08593262 859
-n08620061 859
-n09379111 859
-n08649711 869
-n08658309 869
-n08568978 869
-n08512259 877
-n03823111 877
-n04170933 878
-n09433839 878
-n08578517 870
-n08640739 870
-n08574314 870
-n08552138 870
-n08645104 884
-n08505018 884
-n08659861 884
-n08659446 884
-n08673395 884
-n08583455 890
-n08598301 890
-n08651247 890
-n03120491 890
-n02802544 890
-n08614632 890
-n08674739 890
-n08569998 890
-n08494231 890
-n08677424 892
-n08616050 892
-n08518171 893
-n08573842 893
-n08521623 893
-n03368352 897
-n03417345 897
-n04454908 906
-n03902482 906
-n04610879 898
-n08579352 898
-n03963645 909
-n03417749 909
-n08524735 885
-n08537837 885
-n08551296 885
-n08628141 914
-n08633683 914
-n08539072 914
-n09249034 871
-n09263912 871
-n08583292 872
-n09443281 872
-n08547544 872
-n08664443 873
-n04602044 873
-n08580944 873
-n03581125 924
-n08517676 924
-n08598568 924
-n08584914 924
-n03899933 925
-n02776631 925
-n03322099 925
-n03935234 933
-n04052442 933
-n03159535 933
-n15102894 874
-n09242389 874
-n09382099 860
-n09282208 860
-n09392402 860
-n09393605 860
-n09445289 860
-n03030880 862
-n03946162 862
-n03485997 862
-n03882960 946
-n04322026 946
-n03474896 946
-n02764398 946
-n02907082 946
-n03948830 946
-n09205509 863
-n09472413 863
-n09443453 863
-n09309292 863
-n09366017 863
-n09366317 863
-n09376786 863
-n09348460 863
-n09246464 863
-n09433442 863
-n09454153 863
-n09409752 863
-n09403734 863
-n09331251 863
-n09437454 863
-n09238926 863
-n09283866 863
-n09217230 863
-n09305898 955
-n09288635 955
-n09308743 956
-n09308572 956
-n09194227 956
-n09289331 956
-n09468604 957
-n09344324 957
-n09335809 957
-n09435739 957
-n09215437 957
-n09259219 957
-n09217638 957
-n09304750 957
-n09206896 977
-n09405787 977
-n09233446 986
-n09290444 986
-n09457979 981
-n09245515 981
-n09376526 983
-n09415671 983
-n09448690 983
-n09230041 984
-n09398076 984
-n09453008 958
-n09303008 958
-n09359803 958
-n09302616 958
-n09409512 958
-n09399592 958
-n09199101 997
-n09230202 997
-n09283405 997
-n09326662 997
-n09193705 998
-n09218641 998
-n09472597 998
-n09421951 1000
-n09270735 1000
-n09406793 1000
-n09213434 1000
-n09256479 1011
-n09210862 1011
-n09421799 1012
-n09224725 1012
-n09396465 1001
-n09362945 1001
-n09259025 961
-n09398677 961
-n09428293 962
-n09447666 962
-n09332890 962
-n08596076 1021
-n09428628 1021
-n09361517 967
-n09265620 967
-n09303528 967
-n09436444 967
-n09274152 967
-n09213565 967
-n09269472 967
-n09206985 967
-n09228055 967
-n09466678 967
-n09415584 1031
-n09475925 1031
-n09257843 968
-n09239302 968
-n09294877 968
-n00021939 865
-n00004258 865
-n00019128 865
-n02749953 865
-n02852523 1041
-n03767112 1041
-n14977504 1041
-n03129123 1041
-n03848729 1041
-n03964744 1041
-n04362025 1041
-n04469003 1041
-n04341686 1041
-n03575240 1041
-n03873064 1041
-n03122748 1041
-n03309808 1041
-n02871147 1041
-n03364340 1041
-n14786479 1041
-n03169390 1041
-n04564698 1041
-n04339291 1041
-n00022903 1041
-n03315023 1041
-n03302121 1041
-n03076708 1041
-n04188643 1041
-n03354613 1041
-n14976871 1041
-n03670849 1041
-n02917521 1045
-n04414909 1045
-n04435180 1045
-n02725872 1045
-n04076846 1048
-n02743547 1048
-n03816849 1048
-n04007894 1048
-n03934656 1076
-n03720163 1076
-n04227144 1076
-n04260364 1076
-n03925226 1076
-n04564581 1076
-n02744844 1084
-n04042358 1084
-n03927091 1084
-n03927539 1084
-n03876519 1077
-n04485423 1077
-n03835197 1090
-n03342127 1090
-n04246271 1078
-n04321238 1078
-n04180314 1095
-n03625783 1095
-n03684611 1096
-n03514693 1096
-n03421485 1097
-n04026180 1097
-n02870526 1079
-n04599396 1079
-n06415688 1079
-n03822171 1079
-n04582205 1103
-n03727605 1103
-n03849679 1103
-n04598792 1103
-n03631922 1103
-n02933649 1109
-n03600722 1109
-n03169176 1049
-n03418618 1049
-n02727016 1049
-n03526198 1049
-n03794798 1049
-n03859608 1049
-n03968581 1116
-n03717447 1116
-n03614782 1116
-n03915900 1116
-n04431025 1116
-n03974070 1050
-n02779435 1050
-n03941231 1050
-n04399382 1050
-n03603442 1050
-n09229709 1050
-n03548402 1050
-n03944138 1050
-n04238128 1050
-n04284869 1050
-n03061211 1050
-n03219135 1050
-n09282724 1129
-n09191635 1129
-n09443641 1136
-n04186268 1136
-n03447358 1135
-n03607029 1135
-n03536348 1051
-n02857023 1051
-n04381860 1051
-n04213626 1051
-n03961939 1142
-n04394630 1142
-n03365592 1142
-n04501550 1146
-n04296562 1146
-n03159640 1146
-n04354182 1146
-n03549732 1146
-n03360300 1148
-n03892178 1148
-n02768973 1143
-n03906224 1143
-n03313333 1145
-n02990373 1145
-n02861886 1053
-n03365991 1053
-n02898711 1053
-n03109693 1053
-n13898207 1053
-n04358874 1053
-n02687821 1053
-n03135532 1053
-n03545756 1053
-n03548626 1053
-n03469175 1053
-n03688943 1053
-n02914991 1053
-n04191595 1053
-n09218315 1053
-n03074380 1053
-n02699494 1053
-n02733524 1053
-n04460130 1053
-n04471148 1053
-n03792048 1053
-n03388043 1053
-n03837869 1053
-n03321954 1053
-n02733213 1053
-n03687137 1053
-n03065424 1053
-n02839110 1053
-n03894379 1053
-n03725717 1053
-n04226464 1053
-n03071160 1053
-n03839993 1053
-n02913152 1053
-n04128413 1053
-n04008947 1053
-n03917198 1053
-n03222318 1053
-n04295881 1053
-n03241335 1053
-n02735688 1053
-n02777734 1053
-n03984381 1053
-n03216828 1053
-n03517899 1053
-n03546340 1053
-n04361095 1053
-n13897996 1053
-n03171356 1053
-n03290195 1053
-n03743902 1053
-n03297735 1053
-n04217882 1053
-n02863426 1160
-n03408054 1160
-n03463381 1161
-n03758089 1161
-n03686130 1161
-n02800497 1161
-n03379828 1162
-n03233744 1162
-n02953197 1162
-n04108822 1162
-n03865557 1162
-n04492749 1162
-n04532670 1162
-n04311004 1162
-n03122073 1162
-n03415486 1162
-n04366367 1162
-n04479939 1162
-n03956922 1172
-n03069752 1172
-n04592465 1231
-n03316406 1231
-n03212811 1231
-n03844673 1231
-n04068441 1231
-n04103094 1234
-n03387653 1234
-n04311595 1234
-n03697007 1234
-n04300358 1234
-n04032603 1242
-n02810782 1242
-n03492250 1173
-n03826186 1173
-n03547054 1173
-n04411264 1173
-n03550153 1173
-n03560430 1173
-n03254189 1173
-n03792972 1248
-n04025508 1248
-n03900979 1248
-n02769963 1248
-n03374473 1248
-n02954163 1248
-n03334291 1257
-n04549028 1257
-n03035252 1257
-n03448956 1177
-n04113765 1177
-n03975035 1177
-n04486054 1177
-n02905152 1177
-n03784896 1262
-n04104384 1262
-n02946127 1178
-n04501947 1178
-n03047052 1178
-n04206790 1178
-n03029197 1178
-n03767745 1178
-n04028581 1178
-n04220250 1178
-n04556948 1178
-n04479823 1178
-n04028764 1178
-n04312432 1178
-n03347617 1178
-n03519387 1178
-n04361260 1178
-n03098959 1178
-n02826886 1178
-n02814860 1178
-n02922292 1180
-n04251701 1180
-n04051825 1180
-n03390786 1288
-n02811936 1288
-n02699770 1188
-n04546855 1188
-n03409393 1292
-n04544325 1292
-n02755823 1292
-n03904657 1293
-n02825961 1293
-n02898369 1189
-n04326799 1189
-n02796623 1192
-n03839795 1192
-n03967942 1192
-n03659686 1192
-n03454707 1300
-n04127395 1300
-n03795580 1300
-n02788148 1300
-n02894605 1300
-n03459775 1300
-n04571566 1300
-n04047401 1300
-n03549589 1300
-n04304680 1300
-n03327234 1300
-n03160309 1300
-n03427296 1306
-n03221720 1306
-n03698815 1316
-n03985881 1316
-n04501370 1316
-n03395514 1317
-n02963821 1317
-n04153025 1317
-n03394649 1317
-n03226880 1317
-n03579538 1317
-n04239074 1317
-n04086446 1317
-n02793842 1317
-n03498662 1317
-n04329834 1317
-n04547592 1314
-n04082710 1314
-n04046974 1314
-n03000134 1314
-n03252637 1314
-n03511175 1314
-n04604644 1314
-n03930313 1314
-n04326547 1314
-n04560882 1301
-n02920369 1301
-n03262072 1302
-n03108853 1302
-n04390977 1302
-n03999160 1193
-n03542333 1193
-n04409384 1193
-n02666943 1193
-n02726681 1193
-n02763604 1193
-n03478756 1193
-n03545150 1193
-n04104500 1193
-n04081699 1193
-n03859280 1193
-n03402941 1193
-n03739518 1193
-n03542605 1193
-n03661043 1193
-n02977936 1193
-n03322570 1193
-n03953416 1193
-n04081281 1193
-n03770316 1193
-n04112654 1193
-n03839671 1193
-n03842012 1193
-n04407686 1193
-n04217546 1193
-n03449564 1193
-n03457902 1193
-n04093625 1193
-n03956157 1193
-n04018399 1193
-n02882190 1193
-n03544360 1193
-n04118635 1193
-n02734725 1193
-n04233124 1193
-n03430418 1193
-n04146050 1193
-n03007444 1193
-n04417809 1193
-n03479397 1193
-n03092166 1193
-n02993546 1193
-n04080705 1347
-n08640531 1347
-n03788498 1347
-n08560295 1347
-n04095109 1347
-n04229737 1347
-n03541696 1347
-n03790755 1347
-n03036022 1352
-n03466839 1352
-n03698723 1352
-n03333610 1353
-n03837698 1353
-n03121298 1353
-n04187547 1356
-n03416489 1356
-n02968074 1356
-n03860404 1356
-n03055857 1356
-n02859443 1402
-n04598318 1402
-n02727426 1402
-n03730334 1358
-n03210552 1358
-n04294879 1362
-n03016389 1362
-n03123809 1362
-n02793495 1362
-n03884778 1363
-n03028079 1363
-n04407435 1363
-n04210390 1363
-n04346328 1363
-n03724756 1363
-n04374735 1363
-n03788195 1363
-n03007130 1363
-n03618982 1417
-n02667576 1417
-n02984061 1417
-n02984203 1417
-n03772077 1417
-n02935658 1364
-n04111414 1364
-n02760099 1364
-n02892499 1364
-n02935891 1364
-n03199647 1364
-n02956699 1371
-n03282295 1371
-n04461437 1371
-n03005033 1371
-n03152303 1371
-n04305210 1371
-n03121431 1371
-n03558176 1373
-n03557360 1373
-n02696165 1375
-n03393017 1375
-n04258438 1377
-n02919792 1377
-n04115256 1377
-n02932400 1377
-n03257210 1377
-n03719053 1377
-n03685820 1377
-n03428090 1377
-n03686924 1377
-n04131368 1377
-n03118969 1377
-n03219483 1377
-n04052658 1377
-n02857477 1377
-n03180865 1377
-n04535524 1377
-n03002816 1377
-n04079244 1377
-n03322836 1377
-n04413969 1449
-n02907873 1449
-n03878066 1452
-n04305323 1452
-n03718458 1452
-n04354026 1457
-n03158186 1457
-n04535370 1457
-n03010915 1457
-n03718935 1464
-n04073948 1464
-n03439348 1464
-n03892557 1464
-n03877845 1464
-n03781244 1476
-n02667379 1476
-n02667478 1476
-n03165616 1382
-n03092314 1382
-n03801671 1382
-n03849814 1384
-n03801533 1384
-n03032252 1384
-n03678729 1384
-n03529860 1384
-n03097362 1387
-n04177931 1387
-n02940385 1387
-n03111041 1195
-n03064935 1195
-n03626115 1195
-n02838728 1195
-n03356858 1195
-n02902079 1195
-n04439585 1195
-n03263076 1195
-n04453037 1195
-n03942920 1195
-n03379204 1198
-n03522003 1198
-n03220692 1198
-n02782778 1198
-n02918112 1198
-n02704949 1198
-n03899768 1200
-n03109881 1200
-n02775178 1200
-n03517647 1200
-n03024064 1200
-n02894158 1200
-n04030518 1200
-n03004824 1200
-n02758134 1200
-n03120198 1200
-n03200231 1200
-n04105893 1200
-n02750070 1200
-n03285912 1200
-n03813078 1200
-n02694045 1200
-n04328946 1200
-n03443005 1200
-n03378005 1519
-n02754656 1519
-n03047941 1519
-n03382292 1519
-n04446276 1521
-n04356925 1521
-n03288500 1521
-n04363991 1521
-n04112579 1521
-n03038685 1521
-n03412058 1521
-n03718581 1521
-n02991302 1521
-n03691817 1521
-n04139395 1521
-n03238131 1521
-n02839592 1521
-n02824319 1521
-n03619890 1521
-n03660909 1521
-n04329477 1521
-n04602762 1521
-n04180229 1521
-n02710324 1521
-n03200701 1521
-n04065464 1521
-n03541091 1521
-n04058096 1521
-n02873839 1521
-n03089879 1521
-n02821627 1521
-n03040376 1521
-n03679712 1521
-n03222176 1521
-n03478907 1521
-n04061793 1521
-n02857644 1521
-n04345028 1521
-n03683708 1521
-n03062122 1521
-n04406239 1521
-n03079741 1521
-n03120778 1521
-n03982331 1521
-n02807731 1521
-n03098688 1521
-n02715513 1521
-n04558478 1532
-n03746486 1532
-n04555291 1532
-n04018667 1532
-n03529175 1537
-n03653740 1537
-n04345201 1537
-n03885535 1548
-n04324387 1548
-n04523831 1548
-n04067818 1552
-n03200539 1552
-n02952585 1553
-n03319745 1553
-n04119478 1553
-n03283221 1554
-n04064862 1554
-n03850245 1554
-n04401680 1556
-n04541987 1556
-n03090172 1556
-n04209613 1556
-n03727465 1558
-n03788601 1558
-n03465718 1558
-n03542860 1558
-n03225108 1558
-n03836062 1558
-n03165466 1558
-n03457008 1562
-n03086580 1562
-n03878211 1562
-n03303831 1562
-n03891538 1563
-n03235042 1563
-n04000592 1569
-n03075946 1569
-n02932019 1569
-n03939677 1569
-n02931148 1569
-n03696065 1569
-n02933462 1569
-n03061505 1569
-n04305572 1569
-n02960352 1569
-n02934451 1569
-n04299370 1569
-n03235180 1569
-n04414199 1523
-n02936714 1523
-n03964495 1523
-n03907227 1523
-n04539203 1523
-n03993703 1523
-n03683079 1523
-n03016737 1523
-n03003730 1523
-n04061969 1523
-n02843276 1624
-n04037220 1624
-n03550289 1624
-n03124590 1626
-n04100519 1626
-n03376159 1626
-n04262161 1631
-n02921884 1631
-n03348868 1631
-n04080454 1631
-n03404449 1631
-n02868638 1631
-n03555006 1631
-n04076713 1640
-n03732114 1640
-n03617095 1643
-n02849885 1643
-n03837606 1643
-n03425325 1643
-n03566193 1643
-n03762434 1632
-n03073694 1632
-n03343560 1632
-n03346455 1632
-n02731398 1632
-n02991847 1526
-n03148324 1526
-n04295571 1526
-n03411544 1201
-n02705201 1661
-n03854722 1661
-n04327204 1202
-n04355267 1202
-n03399677 1202
-n04527648 1202
-n03168107 1202
-n02770211 1202
-n03986704 1202
-n03721590 1203
-n03251533 1203
-n02853016 1205
-n03259505 1205
-n04409625 1205
-n03679384 1205
-n03776460 1205
-n03088389 1205
-n02726305 1205
-n04549919 1673
-n02992032 1673
-n03088580 1674
-n04613696 1674
-n03685307 1674
-n04517408 1674
-n03507241 1674
-n03354207 1674
-n03042490 1674
-n03529629 1674
-n04172107 1674
-n04584373 1684
-n04412416 1684
-n02672371 1676
-n03349892 1693
-n02932693 1693
-n02822064 1679
-n03361297 1679
-n03010473 1206
-n04360501 1206
-n03391770 1206
-n03903868 1699
-n02929289 1699
-n03373943 1699
-n02669295 1699
-n04087826 1700
-n02926591 1700
-n04589593 1700
-n03390983 1700
-n03416094 1700
-n03530642 1700
-n04492375 1700
-n03646916 1700
-n03111296 1700
-n03931765 1700
-n04587648 1700
-n03042697 1700
-n04478512 1700
-n02689144 1700
-n03454536 1700
-n03453443 1700
-n04545305 1700
-n02977619 1700
-n04387261 1700
-n02732827 1700
-n04038727 1700
-n03793186 1700
-n04136510 1700
-n02976350 1700
-n03855333 1715
-n02813399 1715
-n04297750 1715
-n04232800 1715
-n03211789 1715
-n04110178 1715
-n03986562 1715
-n04473108 1715
-n03041810 1715
-n03224603 1715
-n03224753 1715
-n03637898 1715
-n03320959 1715
-n03961711 1725
-n02790669 1725
-n02835829 1725
-n03696301 1725
-n03207630 1725
-n04459773 1725
-n03896526 1726
-n03900393 1726
-n03792526 1726
-n04340935 1208
-n03386011 1208
-n03385557 1208
-n02806088 1751
-n03610098 1751
-n03628511 1754
-n02676938 1754
-n02695627 1752
-n03723781 1752
-n03334382 1753
-n02805983 1753
-n03296328 1753
-n03878963 1753
-n02980441 1753
-n02993194 1210
-n03743016 1210
-n04178329 1210
-n02892201 1210
-n03810952 1210
-n03884926 1210
-n03220237 1766
-n03745571 1766
-n03953020 1211
-n03574555 1211
-n04511002 1211
-n03748162 1773
-n03841666 1773
-n02931417 1773
-n03506370 1773
-n03965456 1776
-n03119203 1776
-n03176763 1776
-n04202417 1776
-n03722288 1776
-n02879309 1783
-n04131208 1783
-n04200800 1783
-n02871525 1783
-n03871371 1783
-n04428634 1783
-n03606251 1783
-n04462240 1783
-n03039827 1783
-n02813544 1783
-n03436417 1783
-n03367410 1783
-n03249342 1783
-n03416640 1783
-n03173387 1783
-n04245508 1783
-n02791270 1783
-n04299215 1783
-n04443257 1783
-n03822656 1783
-n02927161 1783
-n03952576 1783
-n03089624 1783
-n03099274 1783
-n02813645 1784
-n08492461 1784
-n03461385 1784
-n03847823 1784
-n04358707 1811
-n03555426 1811
-n03457686 1811
-n04261281 1812
-n03322704 1812
-n08571898 1812
-n03822504 1777
-n02885882 1777
-n03504723 1777
-n03111690 1774
-n03856012 1774
-n03592245 1822
-n03911513 1822
-n04005630 1822
-n04447443 1054
-n04566257 1054
-n03294048 1054
-n03091374 1054
-n03563967 1054
-n03405265 1054
-n03183080 1054
-n02997391 1054
-n04377057 1054
-n03094503 1054
-n03100490 1054
-n06254669 1054
-n03176594 1827
-n02807523 1827
-n03128519 1827
-n03690938 1827
-n04186051 1827
-n03476991 1827
-n03794136 1827
-n03916031 1827
-n03475823 1827
-n02723165 1827
-n03994008 1827
-n03113152 1827
-n02808185 1827
-n03484487 1841
-n03067339 1841
-n04357314 1841
-n03640850 1841
-n02862916 1842
-n04450640 1842
-n03487444 1842
-n02683791 1842
-n03992325 1846
-n03898271 1846
-n03916470 1846
-n03071021 1846
-n04448070 1846
-n03980026 1847
-n02901793 1847
-n04447276 1849
-n04386792 1849
-n03177165 1850
-n03519081 1850
-n03714235 1850
-n03314780 1871
-n03676087 1871
-n03309687 1871
-n03724066 1871
-n03676483 1871
-n04112752 1871
-n03309110 1871
-n03308481 1871
-n02738031 1828
-n03171228 1828
-n02866578 1828
-n02703275 1828
-n03812924 1828
-n02813752 1880
-n02746365 1880
-n03647520 1880
-n02950256 1886
-n03332393 1886
-n03786715 1888
-n02801450 1888
-n03553248 1882
-n02753044 1882
-n04113641 1883
-n04206570 1883
-n04063373 1829
-n04285146 1829
-n03926148 1829
-n03811847 1829
-n03889726 1829
-n03430959 1829
-n04137444 1829
-n03414162 1829
-n03888257 1829
-n03278248 1829
-n02727825 1829
-n02761206 1829
-n03729951 1829
-n02774921 1829
-n04393095 1896
-n02979290 1896
-n03192543 1910
-n04533802 1910
-n02799897 1897
-n03135030 1897
-n03039259 1897
-n04225729 1897
-n04607035 1897
-n03132261 1897
-n02802721 1897
-n03594148 1897
-n04212282 1897
-n03446832 1897
-n04275661 1897
-n04318131 1897
-n02885338 1897
-n02885462 1897
-n03472232 1897
-n04571292 1897
-n02800213 1914
-n02811059 1914
-n02811204 1914
-n02797881 1914
-n02811350 1914
-n02799175 1914
-n03528901 1933
-n03349771 1933
-n04425804 1933
-n04164406 1933
-n04102037 1917
-n04102162 1917
-n04102618 1917
-n03558404 1917
-n03523987 1943
-n04273972 1943
-n03336282 1943
-n03132076 1919
-n04582869 1919
-n03445924 1923
-n03447075 1923
-n04399537 1923
-n03446070 1923
-n04597066 1952
-n03585073 1952
-n03244047 1953
-n04284341 1953
-n04569822 1954
-n03762332 1954
-n04028074 1954
-n03823216 1954
-n03950537 1957
-n04135024 1957
-n03524150 1925
-n03978686 1925
-n03535780 1928
-n03538037 1928
-n04509260 1928
-n03888605 1928
-n04469514 1928
-n02777292 1928
-n04524142 1966
-n03980478 1966
-n03255030 1929
-n02790996 1929
-n03289660 1898
-n02942699 1898
-n03037404 1898
-n03338821 1898
-n03667664 1898
-n02884994 1976
-n03358726 1976
-n03976467 1976
-n03974915 1976
-n04569063 1976
-n03789171 1976
-n03196062 1976
-n03987266 1976
-n04069434 1976
-n04609531 1978
-n04067658 1978
-n03817191 1978
-n04071263 1901
-n03619396 1901
-n04091097 1901
-n03351434 1901
-n04295081 1901
-n04091693 1901
-n03138669 1992
-n03139464 1992
-n04179824 1993
-n03349469 1993
-n02966687 1993
-n03650551 1993
-n03241093 1994
-n03240683 1994
-n03494706 1996
-n04247876 1996
-n03503718 1996
-n04124202 1996
-n03480719 2008
-n02900160 2008
-n04290615 1902
-n04266162 1902
-n02768226 1903
-n02778669 1903
-n04028315 1903
-n03982430 1903
-n02882647 1903
-n03716327 1903
-n03020416 1903
-n04113406 1903
-n03442756 1903
-n04540255 1903
-n03941417 1903
-n04254680 2015
-n03982232 2015
-n02882301 2015
-n04256891 2015
-n03333252 2015
-n04023962 2015
-n02839351 2015
-n03134739 2015
-n03131967 2015
-n04409515 2015
-n03445777 2015
-n04118538 2015
-n03145719 2015
-n03742019 2015
-n02802426 2015
-n03267113 2015
-n03942813 2015
-n03482877 2015
-n02799071 2015
-n04039742 2015
-n02861147 2015
-n04540053 2015
-n03598930 2016
-n06785654 2016
-n03014440 2019
-n04579986 2019
-n03901750 2019
-n02802215 2022
-n03820318 2022
-n03278914 1905
-n03782006 1905
-n03781787 1905
-n04405762 1905
-n04401088 1905
-n03857828 1905
-n03916720 1905
-n02872529 1905
-n02979186 1905
-n02988304 1905
-n04060647 1905
-n02757462 1905
-n03656957 1905
-n03963294 1905
-n04405540 1905
-n03034405 1905
-n02979074 1905
-n02995345 1905
-n03775388 1905
-n04142731 1905
-n04392985 1905
-n03181293 1905
-n03777754 1905
-n03293741 1905
-n04392526 1905
-n02705944 1905
-n02992529 2058
-n04270371 2058
-n03179910 2058
-n03902125 2058
-n03488438 2058
-n03187595 2058
-n04044498 2058
-n04405907 2064
-n04043733 2064
-n04137773 2064
-n03516996 2088
-n03046921 2088
-n04077430 2065
-n03517760 2092
-n04315948 2092
-n03584254 2094
-n04546340 2094
-n03584400 2094
-n03436182 2094
-n02942349 2068
-n04404997 2068
-n03909160 1906
-n04026053 1906
-n04173511 1906
-n04070003 1906
-n03257586 1906
-n03509608 1906
-n04171208 1906
-n04450243 1906
-n04506506 1906
-n03434188 1906
-n03567066 1906
-n02923129 1906
-n03386544 2101
-n03046802 2101
-n03757604 2101
-n03927299 2105
-n03924679 2105
-n04608923 2105
-n03316105 2105
-n03767459 2105
-n03987990 2108
-n03084834 2108
-n03422072 2112
-n02855390 2112
-n02921029 2123
-n03425769 2123
-n03871524 1908
-n02852360 1908
-n04105704 1908
-n04408871 1830
-n04241573 1830
-n04402057 1830
-n03664943 1830
-n03605915 1830
-n03543012 2132
-n03196990 2132
-n03639497 2132
-n02840134 2133
-n04594218 2133
-n02999410 2133
-n03086868 2139
-n02790823 2139
-n03886641 2140
-n02709637 2140
-n03374838 2140
-n02835412 2140
-n04440963 2140
-n03011018 2140
-n03600977 2134
-n03093792 2134
-n03228967 2149
-n04573281 2149
-n03521076 2149
-n04144241 2149
-n04571958 2149
-n04160372 2149
-n03787523 2149
-n02928299 2153
-n04333869 2153
-n03213826 2150
-n04476972 2150
-n04593866 2150
-n02788689 1831
-n04451818 1831
-n04516672 1831
-n04116512 1831
-n03816136 1831
-n03294833 1831
-n04317420 1831
-n02908217 1831
-n03532342 1831
-n04185071 1831
-n04285622 1831
-n03653220 1831
-n04369282 1831
-n03346135 1831
-n03837422 1831
-n04317833 1831
-n03039947 1831
-n04100174 1831
-n04608567 1831
-n04208427 1831
-n04282872 2163
-n03396074 2163
-n02865931 2163
-n04112147 2163
-n04459909 2163
-n03659292 2163
-n04463679 2163
-n03487090 2163
-n03138344 2188
-n04317976 2188
-n03613592 2188
-n04393808 2188
-n03903424 2188
-n04099003 2188
-n03470629 2188
-n04264628 2193
-n02771004 2193
-n04193377 2193
-n04400737 2193
-n02670683 2195
-n04367011 2195
-n03489162 2164
-n03588951 2164
-n03919430 2164
-n03418242 2164
-n03967562 2164
-n03075097 2164
-n03239726 2164
-n03154446 2164
-n04387706 2164
-n03417970 2164
-n04050066 2164
-n04299963 2164
-n03684224 2204
-n03919289 2204
-n03970156 2204
-n03941684 2204
-n03966976 2204
-n04258859 2204
-n04266486 2204
-n03481172 2204
-n03946076 2204
-n04606574 2204
-n04154565 2204
-n04489817 2204
-n04140064 2204
-n03848348 2204
-n04150980 2204
-n04208210 2204
-n02898269 2204
-n04269944 2204
-n02966545 2223
-n03430313 2223
-n03715386 2223
-n03731695 2223
-n04457910 2225
-n03947466 2225
-n02680754 2225
-n03848168 2225
-n02697675 2225
-n02886434 2225
-n03474779 2228
-n03376938 2228
-n03488188 2228
-n04016240 2246
-n04016576 2246
-n03109150 2229
-n02877962 2229
-n02951585 2229
-n03511333 2207
-n03649909 2207
-n03995856 2253
-n04089976 2253
-n03995372 2210
-n03240140 2210
-n03154073 2211
-n04503593 2211
-n02844307 2211
-n02848216 2211
-n03624400 2211
-n02866386 2258
-n03030557 2258
-n03265032 2258
-n04148054 2265
-n03623556 2265
-n02764044 2265
-n04057047 2265
-n04594828 2265
-n03020692 2265
-n03954731 2265
-n04186848 2266
-n04250473 2273
-n04016684 2273
-n04163530 2273
-n02973904 2267
-n02880842 2267
-n03973628 2267
-n03041632 2267
-n03549473 2267
-n02976123 2267
-n03890093 2267
-n03658185 2267
-n04373089 2279
-n03911658 2279
-n02811468 2268
-n03498962 2268
-n04185804 2269
-n04332074 2269
-n04127521 2269
-n03067212 2271
-n04597400 2271
-n03601638 2272
-n04247630 2272
-n04283585 2272
-n03621049 2165
-n02997607 2165
-n03403643 2165
-n04103206 2297
-n04059516 2297
-n03724417 2297
-n03621377 2297
-n04293119 2297
-n03775199 2297
-n03101517 2297
-n03101986 2297
-n03454885 2297
-n03767966 2297
-n03266371 2305
-n04578934 2305
-n02850732 2305
-n03880531 2307
-n03133878 2307
-n02999138 2307
-n04270147 2307
-n03459328 2307
-n03284981 2307
-n04309548 2307
-n03101796 2307
-n03101156 2307
-n04500060 2307
-n03846677 2313
-n04317325 2313
-n03400231 2313
-n04097760 2313
-n04596742 2313
-n04138977 2313
-n03453231 2318
-n03047799 2318
-n03984234 2298
-n03262519 2298
-n04326676 2298
-n03992703 2298
-n04282992 2331
-n03018209 2331
-n02869155 2331
-n03713436 2332
-n03317788 2332
-n03625646 2167
-n03133050 2167
-n04546194 2169
-n03729826 2169
-n03053474 2169
-n03332271 2169
-n04277352 2169
-n04321453 2169
-n04296261 2169
-n03250847 2169
-n03715669 2169
-n02949202 2342
-n04374315 2342
-n02806379 2344
-n04381724 2344
-n04491388 2344
-n02698634 2348
-n03355925 2348
-n03141823 2348
-n03274265 2170
-n04453156 2170
-n04122349 2170
-n04156140 2170
-n03475581 2170
-n02902687 2170
-n04185946 2170
-n03908714 2172
-n04310904 2172
-n03145522 2173
-n04039381 2173
-n04292414 2369
-n04409806 2369
-n02772700 2369
-n04426316 2174
-n04333129 2174
-n03012013 2374
-n04072551 2374
-n03831382 2374
-n03651843 2374
-n04156946 2177
-n03873416 2177
-n02831894 2179
-n04150153 2179
-n03258905 2179
-n04292921 2179
-n02906734 2179
-n04367480 2179
-n04111190 2180
-n04549629 2180
-n04182322 2180
-n03949317 2180
-n03616428 2180
-n02764779 2180
-n03976657 2180
-n03351979 2180
-n03091044 2180
-n04434531 2180
-n03244231 2387
-n03127408 2387
-n04472563 2387
-n04277493 2387
-n02946824 2387
-n02871824 2393
-n04319937 2393
-n04230603 2393
-n03051396 2393
-n02931836 2393
-n04267577 2393
-n03726993 2393
-n03726760 2407
-n02883004 2407
-n04610676 2407
-n03775847 2409
-n04115996 2409
-n03711999 2409
-n03382856 2409
-n03374372 2394
-n04279353 2394
-n03908204 2181
-n03906997 2181
-n03518943 2181
-n03003091 2181
-n03128248 2181
-n03652100 2181
-n02783161 2419
-n04185529 2419
-n04033901 2419
-n03388183 2419
-n03326948 2419
-n03405725 1832
-n03842156 2429
-n03200906 2429
-n04550184 2429
-n02821943 2429
-n04379243 2429
-n04379964 2429
-n04549122 2429
-n03636649 2429
-n03201035 2429
-n04555400 2429
-n02912065 2429
-n02933112 2429
-n02766320 2429
-n02822579 2429
-n03649797 2429
-n03129753 2429
-n02870880 2429
-n03290653 2429
-n03298716 2429
-n04161981 2429
-n04165409 2429
-n03015254 2429
-n03337140 2430
-n04104147 2452
-n02963302 2452
-n04529681 2452
-n03050546 2432
-n02739550 2432
-n02818832 2433
-n02831724 2458
-n03962852 2458
-n03540914 2458
-n02920083 2458
-n04491638 2458
-n03388549 2458
-n03115762 2458
-n02920259 2458
-n04503413 2458
-n04236809 2458
-n04222210 2458
-n03482252 2458
-n03799876 2458
-n03225988 2458
-n03414676 2434
-n03465426 2434
-n04381587 2434
-n03116530 2434
-n02699629 2434
-n02894337 2434
-n04301000 2434
-n03090000 2434
-n03904060 2434
-n03620967 2434
-n03850492 2434
-n04398951 2434
-n03653583 2434
-n04603729 2434
-n03428226 2434
-n03238586 2434
-n03179701 2434
-n03246933 2434
-n03063968 2434
-n04480033 2434
-n03092883 2434
-n03011741 2476
-n02789487 2476
-n03735963 2476
-n04061681 2476
-n04130143 2495
-n04247736 2495
-n03231368 2486
-n03630262 2486
-n04608329 2489
-n04164868 2489
-n03164722 2489
-n03201208 2435
-n03202354 2505
-n04067921 2505
-n03367059 2437
-n04380533 2437
-n04057981 2437
-n03237340 2441
-n03018349 2441
-n03742115 2441
-n02804414 2442
-n03131574 2442
-n02970534 2442
-n03125729 2442
-n03001627 2449
-n04447861 2449
-n04326896 2449
-n04256520 2449
-n03858418 2449
-n02828884 2449
-n03649674 2518
-n03002711 2518
-n04099969 2518
-n04373704 2518
-n04429376 2518
-n04331277 2518
-n03632729 2518
-n03518445 2518
-n02738535 2518
-n04590933 2518
-n03376595 2518
-n04576002 2518
-n03790953 2518
-n02791124 2518
-n03262932 2532
-n04062428 2532
-n03786621 2532
-n04593077 2532
-n03168217 2534
-n02946270 2534
-n03801880 2520
-n04382438 2520
-n03380724 2520
-n04177755 2521
-n03165096 2521
-n03100346 2521
-n03693474 2521
-n03015149 2549
-n04344873 2549
-n03891251 2523
-n03360622 2523
-n03920867 2523
-n04177820 2523
-n04590021 2523
-n03016953 2451
-n03518305 2451
-n02843553 1833
-n03508101 1833
-n03666591 1833
-n06791372 1833
-n03099945 1833
-n03141702 1833
-n03243218 1833
-n03626760 1833
-n03904909 1833
-n03800933 1833
-n04200537 1833
-n04198797 1833
-n03699975 1833
-n03088707 1833
-n02776205 1833
-n04294212 1833
-n03339643 1833
-n03738472 1833
-n02676261 1833
-n04474466 1833
-n03008976 1833
-n02688443 1833
-n04114844 1833
-n03929660 1833
-n03287351 1833
-n03320046 1833
-n03553019 1833
-n03175604 1833
-n02678897 1833
-n04461879 1833
-n04359589 1833
-n03851341 1833
-n04331639 1833
-n04450749 1833
-n03923918 1833
-n03574816 1833
-n03074855 1833
-n04074963 1833
-n03302790 1833
-n03075768 1833
-n04554406 1833
-n04210120 1833
-n04562262 1833
-n02855089 1833
-n04526964 1833
-n02895606 1833
-n02730265 1833
-n04226826 1833
-n03467796 1833
-n04081844 1833
-n03614007 1833
-n03269401 1833
-n02729965 1833
-n03345837 1833
-n03111899 1833
-n04069276 1833
-n02694426 1833
-n03277771 1833
-n04252331 1833
-n03525827 1833
-n03744840 1833
-n03613294 1833
-n03827536 1833
-n04263760 1833
-n03568117 1833
-n03180969 1833
-n02895438 1833
-n03565288 1833
-n02683558 1833
-n03537241 1833
-n03267972 1833
-n04228054 1833
-n03664675 1833
-n04258333 2561
-n03272239 2561
-n04041069 2561
-n03423479 2561
-n03099147 2561
-n04265275 2561
-n04330267 2561
-n03031422 2562
-n03728437 2562
-n07273802 2563
-n06793231 2563
-n06794110 2563
-n06874185 2563
-n03269203 2564
-n02981321 2564
-n03582959 2646
-n04375405 2646
-n03307792 2566
-n02988963 2566
-n03580518 2566
-n04338517 2569
-n03279153 2569
-n03614532 2569
-n04586932 2569
-n02803349 2569
-n03915437 2569
-n03254862 2653
-n03025886 2653
-n02787622 2653
-n04615226 2653
-n04132603 2653
-n03467517 2653
-n02880546 2653
-n04224842 2653
-n03698360 2660
-n03716887 2660
-n03716966 2660
-n03495258 2660
-n02676566 2664
-n03499907 2664
-n04506289 2664
-n03272010 2664
-n04536153 2665
-n04536866 2665
-n02992211 2665
-n04536335 2665
-n04536595 2665
-n04330998 2665
-n04419642 2654
-n03273551 2654
-n04376400 2654
-n03928116 2655
-n03039015 2655
-n03854065 2655
-n02672831 2655
-n03452741 2684
-n04515003 2684
-n04278353 2684
-n03738066 2684
-n02766792 2688
-n03086457 2688
-n03496296 2685
-n04278247 2685
-n03840681 2656
-n04598582 2656
-n02891788 2656
-n03854815 2656
-n03393324 2656
-n04579667 2656
-n03945615 2656
-n03609397 2656
-n03372029 2697
-n02817799 2697
-n03228016 2705
-n04222847 2705
-n02804610 2706
-n03838899 2706
-n03037709 2707
-n04141076 2707
-n02793089 2698
-n02912894 2698
-n03369276 2698
-n03394916 2698
-n04487394 2698
-n03110669 2698
-n03494537 2700
-n03494278 2700
-n03086670 2700
-n03006626 2702
-n03884397 2702
-n02775483 2702
-n03343354 2702
-n03912218 2702
-n03245724 2702
-n02803934 2657
-n02804252 2657
-n02804123 2657
-n03301568 2657
-n03483230 2658
-n02869249 2658
-n03447721 2658
-n04532831 2658
-n04311174 2658
-n03721384 2658
-n03440682 2658
-n03017168 2658
-n03612965 2658
-n03720891 2658
-n03249569 2658
-n03157348 2658
-n02869737 2741
-n02803666 2741
-n04387400 2741
-n04249415 2741
-n04410086 2741
-n04243941 2572
-n03996416 2572
-n03999992 2572
-n02769290 2572
-n04004475 2572
-n03702248 2572
-n03789946 2572
-n04252653 2572
-n02977058 2572
-n03322940 2572
-n03082979 2572
-n04613939 2572
-n03765561 2572
-n04303357 2572
-n03997484 2572
-n03087069 2572
-n04303497 2572
-n04237423 2572
-n04417180 2572
-n04064401 2572
-n02938886 2572
-n04525305 2748
-n04243546 2748
-n02760199 2748
-n03418915 2750
-n02829596 2750
-n03551395 2750
-n04024274 2750
-n03007591 2752
-n03563200 2752
-n04004767 2752
-n03250405 2752
-n03672827 2752
-n03643737 2752
-n03675235 2752
-n04419868 2752
-n03985069 2776
-n04505036 2776
-n02794664 2777
-n04595285 2777
-n03225777 2778
-n02909285 2788
-n03571942 2788
-n04184435 2753
-n03240892 2753
-n03460040 2753
-n03646296 2791
-n03766044 2791
-n03287733 2754
-n03273061 2754
-n03507963 2796
-n03596285 2796
-n02761557 2796
-n02687423 2796
-n03433877 2796
-n04309049 2798
-n03579982 2798
-n04591517 2804
-n03424630 2804
-n03193107 2804
-n03859000 2804
-n04040373 2804
-n04099175 2799
-n03321103 2799
-n02872333 2810
-n04265904 2810
-n02700064 2802
-n04587404 2802
-n04304375 2797
-n03616763 2797
-n03146846 2757
-n03500699 2757
-n03075634 2757
-n04428191 2757
-n03496892 2757
-n03210245 2818
-n03496612 2818
-n04238763 2758
-n06359193 2758
-n03528523 2758
-n04175147 2758
-n03196324 2758
-n04358117 2829
-n04603399 2829
-n03918480 2829
-n03985232 2832
-n03180011 2832
-n03832673 2833
-n03956785 2833
-n03642806 2833
-n03485407 2833
-n03914337 2760
-n04561422 2760
-n03736064 2760
-n03063485 2760
-n04477219 2760
-n04587559 2760
-n03272125 2762
-n03996145 2762
-n02911332 2762
-n03034663 2846
-n03000684 2846
-n04380916 2846
-n04121728 2846
-n02786837 2846
-n04279462 2766
-n03689157 2766
-n03604156 2767
-n03452267 2767
-n02666196 2768
-n02679257 2768
-n03483823 2768
-n04171831 2573
-n04594489 2573
-n03106898 2573
-n03510244 2573
-n02934168 2573
-n03760310 2860
-n04471632 2860
-n03666362 2860
-n03020034 2860
-n03336575 2861
-n03604843 2861
-n04402984 2861
-n03898129 2861
-n04401828 2861
-n03995265 2862
-n03307037 2862
-n03300443 2864
-n03268918 2864
-n04004990 2864
-n03995535 2864
-n03350602 2574
-n03373237 2880
-n03251932 2881
-n04573937 2881
-n04334365 2881
-n03861271 2575
-n04520784 2575
-n04332243 2576
-n02688273 2576
-n03843555 2576
-n04216634 2887
-n04398834 2887
-n03066849 2887
-n03407865 2577
-n02710201 2577
-n04040759 2577
-n03736970 2577
-n04110955 2577
-n04112430 2577
-n02969010 2577
-n03096960 2577
-n03996849 2577
-n02761392 2577
-n02677718 2577
-n03102859 2577
-n03431243 2577
-n04392764 2577
-n03339529 2577
-n04289027 2896
-n04011827 2896
-n02709367 2896
-n03446268 2896
-n04568069 2896
-n03700963 2896
-n04167346 2896
-n04021798 2896
-n03432129 2896
-n04088797 2896
-n02918595 2896
-n03532672 2896
-n04228215 2896
-n03119510 2896
-n04063154 2896
-n04371774 2896
-n04590746 2896
-n04586581 2896
-n04586421 2896
-n03189083 2896
-n04211528 2896
-n03296081 2896
-n02903204 2896
-n03150232 2896
-n04282494 2896
-n03082807 2896
-n02686227 2896
-n02962200 2896
-n03198500 2896
-n02973017 2896
-n04475411 2896
-n03431745 2896
-n04306592 2896
-n02692086 2909
-n04154152 2909
-n04020298 2913
-n04574999 2913
-n03559999 2913
-n03659809 2913
-n03566329 2913
-n03767203 2944
-n04563204 2944
-n04101701 2944
-n02836035 2944
-n02980036 2944
-n03460147 2944
-n04115144 2944
-n03334912 2944
-n04543772 2944
-n04563413 2944
-n02974003 2944
-n04289690 2944
-n03944341 2944
-n03992509 2944
-n03430551 2944
-n03244919 2944
-n03874293 2944
-n04113194 2944
-n04290507 2962
-n02833793 2962
-n03943115 2962
-n04051549 2947
-n02764505 2947
-n04154340 2947
-n03456299 2915
-n03425413 2915
-n02835724 2915
-n04354487 2915
-n03487886 2915
-n02995871 2915
-n03329302 2917
-n04102406 2917
-n02966193 2917
-n04510706 2921
-n03054901 2921
-n03393761 2982
-n03209359 2982
-n02860415 2926
-n04067472 2926
-n04211857 2926
-n02848523 2897
-n03473227 2897
-n03032811 2897
-n04111668 2897
-n03873699 2988
-n03563460 2988
-n03320421 2988
-n03208556 2990
-n04019541 2995
-n02890188 2995
-n04448361 2995
-n03397947 2995
-n03954393 2995
-n04385799 2991
-n03712111 2991
-n04519153 2900
-n04313503 2900
-n03450018 2900
-n03602883 2900
-n04072193 2900
-n04372370 2900
-n02783459 3003
-n02927887 3003
-n04438507 3005
-n03374649 3005
-n03325088 3007
-n04422875 3007
-n02727141 3007
-n03775636 3013
-n04327682 3013
-n04445952 3008
-n04027023 3008
-n03186818 3008
-n03537412 3019
-n03793850 3019
-n03222516 3019
-n02826589 3019
-n03363549 2903
-n03795758 2903
-n03469493 2903
-n03103396 2904
-n03301833 2904
-n02686379 2904
-n03432061 2905
-n03389611 2905
-n04579432 2578
-n04218564 2578
-n03743279 2578
-n03506560 2578
-n02824448 2578
-n03123917 3037
-n03028596 3037
-n03201529 3037
-n04275548 2579
-n03794056 2579
-n03680858 2579
-n04568557 2579
-n03819994 2579
-n03639077 3045
-n03352628 3045
-n04529962 2581
-n04283255 2581
-n04283096 2581
-n04112252 2581
-n03357716 2581
-n04117464 2581
-n03536122 2581
-n04592741 2581
-n03303217 2585
-n03271574 2585
-n02887079 2587
-n03176386 2587
-n02768114 2590
-n04320973 2590
-n03933933 2590
-n03934042 2590
-n02767433 2590
-n04190052 2590
-n03638883 2590
-n02783994 2590
-n04283378 2590
-n02797692 2590
-n04314914 2590
-n02887209 2590
-n03938401 2590
-n02817031 2590
-n04098513 2590
-n03057920 2590
-n03495570 2590
-n04081044 2590
-n02888569 2590
-n04386051 2590
-n02871005 2590
-n04341414 2590
-n03506184 2590
-n04161358 2590
-n04430475 2590
-n03490884 2590
-n04038440 2590
-n03495039 2590
-n02953455 3064
-n03632577 3064
-n02871439 3065
-n03719343 3065
-n03814639 3071
-n03622839 3071
-n02713003 3071
-n02768655 3071
-n02737660 3077
-n03505133 3077
-n03019685 3077
-n02741475 3077
-n04148579 3078
-n03105467 3078
-n04190376 3078
-n04220036 3081
-n04094720 3081
-n04515129 3081
-n02886599 3081
-n04476831 3081
-n02815950 3081
-n04590263 3103
-n03223686 3103
-n04318787 3105
-n03592773 3105
-n03073977 3105
-n03988170 3105
-n04360798 3113
-n02974348 3113
-n03443149 3114
-n03821518 3114
-n02864593 3114
-n03637181 3114
-n04402449 3114
-n03733131 3114
-n04436329 3114
-n04119751 3106
-n04433585 3106
-n04045644 3108
-n03437941 3108
-n04436185 3108
-n03366974 3108
-n03601840 3108
-n02970685 3083
-n03937931 3083
-n03955489 3083
-n04123740 3083
-n03002096 3083
-n02835915 3083
-n02910145 3083
-n02770830 3083
-n04325041 3134
-n03288886 3134
-n04485082 3086
-n04275175 3086
-n03704549 3086
-n03801760 3086
-n02943871 3141
-n03262809 3141
-n02759257 2591
-n04009801 2591
-n03340723 2591
-n03643253 2591
-n03656484 2591
-n03838298 3151
-n03087366 3151
-n02943241 3151
-n02709101 3151
-n03094159 3151
-n04355933 3151
-n03309465 3151
-n03333711 3151
-n03395859 3151
-n03987376 3154
-n03049782 3154
-n04403413 3154
-n04583212 3154
-n03967396 2595
-n04147495 2595
-n03733925 2595
-n04565375 2595
-n03467068 2595
-n03231160 2595
-n02708711 2595
-n03813176 2595
-n03852280 2595
-n03739693 2595
-n03575958 2595
-n02981911 2595
-n03308152 2595
-n04419073 2595
-n04089836 2595
-n04383015 2595
-n03070193 3166
-n03760944 3166
-n02670382 3166
-n04340521 3166
-n03709206 3166
-n03092656 3166
-n04403638 3185
-n03760671 3185
-n02751295 3187
-n03293863 3187
-n03852688 3189
-n04044716 3189
-n04070207 3191
-n03333129 3191
-n04068601 3191
-n02978478 3195
-n03822767 3195
-n04145863 3195
-n03715114 3195
-n03279508 3188
-n03332989 3188
-n03667829 3188
-n02841506 3202
-n03484931 3202
-n03850053 3202
-n03082280 3202
-n03692522 3202
-n03868643 3167
-n03247083 3167
-n04070415 3167
-n04053508 3167
-n02794156 3167
-n03904782 3167
-n04421872 3167
-n02751215 3167
-n03735637 3167
-n03429288 3167
-n04437953 3167
-n02710600 3167
-n02939866 3167
-n03991837 3167
-n04382880 3167
-n04141975 3167
-n04392113 3167
-n03753077 3167
-n03554460 3167
-n04180888 3167
-n04118776 3167
-n02699915 3167
-n04029734 3214
-n03736470 3214
-n04559730 3217
-n04518343 3217
-n02710429 3217
-n03424862 3217
-n04001499 3217
-n03718335 3236
-n04274985 3236
-n02753394 3218
-n03046257 3218
-n04555897 3218
-n04355338 3218
-n04438304 3218
-n03544143 3218
-n03452594 3240
-n03196217 3240
-n02694662 3240
-n04548280 3240
-n02708093 3240
-n03909406 3240
-n03145147 3240
-n03197337 3241
-n02708433 3241
-n03973839 3241
-n04607869 3241
-n04328186 3243
-n03891332 3243
-n03026907 3243
-n04528968 3220
-n03759661 3220
-n02777100 3223
-n02708555 3261
-n03277459 3261
-n03272810 3225
-n03841143 3225
-n02702989 3225
-n04273796 3225
-n03842986 3225
-n04561287 3225
-n04541320 3225
-n03708843 3225
-n04449966 3168
-n03467984 3168
-n02879718 3168
-n02880393 3168
-n02892948 3168
-n03624134 3168
-n04373894 3168
-n04346157 3168
-n04008634 3168
-n02715712 3273
-n03343853 3273
-n04177041 3273
-n02689274 3273
-n03423306 3273
-n03875955 3273
-n02950826 3273
-n02759963 3282
-n03948459 3282
-n04502851 3282
-n03732020 3282
-n03803116 3282
-n04090263 3282
-n04076284 3282
-n04171459 3288
-n02760429 3288
-n03416775 3295
-n03695857 3295
-n04171629 3295
-n02760855 3296
-n02749479 3296
-n02760658 3296
-n03701391 3296
-n04347519 3303
-n02923682 3304
-n04517211 3304
-n03607659 3304
-n04450133 3304
-n03073296 3289
-n03178674 3289
-n04086273 3289
-n03427202 3289
-n03363749 3292
-n03802007 3292
-n04250224 3293
-n04585980 3293
-n02961451 3293
-n03136369 3274
-n03687928 3274
-n03615790 3277
-n02812949 3277
-n03699591 3277
-n03158885 3277
-n04054361 3278
-n03327691 3278
-n02904640 3278
-n02987492 3278
-n04121511 3325
-n03292475 3325
-n03375575 3325
-n02916350 3280
-n02950943 3280
-n03080633 3170
-n04015908 3170
-n02745611 3172
-n03178000 3172
-n03706229 3172
-n03080497 3172
-n02841315 3173
-n04272054 3173
-n04009552 3173
-n04403925 3173
-n03443912 3340
-n04356056 3340
-n04238617 3341
-n03399761 3341
-n03795976 3341
-n03864692 3341
-n03555662 3174
-n02963503 3174
-n04376876 3174
-n04317175 3174
-n03643149 3174
-n03858183 3174
-n04364545 3174
-n04083800 3355
-n03514451 3355
-n03938037 3175
-n04056180 3175
-n03302671 2598
-n04477387 2598
-n04080833 2605
-n04251144 2605
-n03868863 2605
-n02731629 2605
-n03876231 2606
-n04287747 2606
-n02889646 2609
-n03484576 2609
-n03323703 2609
-n04162706 2609
-n03652932 2609
-n04125853 2609
-n02891188 2609
-n03803284 2609
-n02999936 2609
-n02865665 3370
-n02910353 3370
-n03627232 3370
-n03041114 3370
-n03051249 3370
-n02982599 3370
-n03940256 3370
-n03229244 3370
-n04153751 3370
-n04238321 3370
-n02928608 3370
-n04159354 3370
-n03887185 3370
-n03682487 3370
-n04431745 3370
-n03683606 3370
-n03038281 3370
-n03043958 3370
-n02960690 3370
-n03804744 3370
-n04445327 3370
-n03836451 3370
-n02881906 3379
-n02880189 3379
-n03644858 3382
-n03497352 3382
-n04095342 3383
-n03476313 3383
-n04227900 3383
-n03499354 3383
-n02903126 3383
-n02860640 3383
-n02796318 3383
-n04127249 3383
-n04197781 3387
-n03057541 3387
-n04554871 3388
-n03423719 3388
-n03503477 3414
-n03855604 3414
-n03874599 3390
-n04136800 3390
-n03645011 3390
-n03075370 3390
-n03223162 3390
-n03886762 3394
-n02915904 3394
-n03476684 3394
-n03551084 3374
-n03208938 3425
-n03250089 3425
-n04505470 2610
-n04036303 2610
-n03085013 2610
-n03928814 2610
-n03033362 2611
-n04168199 2611
-n03589513 2611
-n03098140 2611
-n04401949 2611
-n03034244 2611
-n03968293 2611
-n03275681 2611
-n03163222 2611
-n04470953 2611
-n04257986 2611
-n02715229 2611
-n02955247 2611
-n04269270 2611
-n04072960 2611
-n04364160 2611
-n04257790 2611
-n02810471 2611
-n04414675 2611
-n03048883 3432
-n04595855 3432
-n03084420 3432
-n03577090 3453
-n03778817 3453
-n04004210 3453
-n03578656 3453
-n03125057 3456
-n03033986 3456
-n03788047 3441
-n03274561 3441
-n03261776 3461
-n03759954 3461
-n03691459 3461
-n04402580 3462
-n03505667 3462
-n03087816 3463
-n02963692 3463
-n04502670 3464
-n02917377 3464
-n04390873 3464
-n04599124 3464
-n04349401 3464
-n03846772 3443
-n03204955 3443
-n04041747 3474
-n04404817 3474
-n03207305 3475
-n04142999 3475
-n04610274 3475
-n04540547 3449
-n03359285 3481
-n03651388 3481
-n03870980 2614
-n04013729 2614
-n04258138 2615
-n03773035 2615
-n03485198 3487
-n02965783 3487
-n04059947 3489
-n03861842 3489
-n02921756 2616
-n02761834 2616
-n04201064 2616
-n03343737 2616
-n04058594 2617
-n04143140 2617
-n04494204 2617
-n03211117 2617
-n03918737 2617
-n03221351 2617
-n04464615 2617
-n03793489 2617
-n02714751 2617
-n03506727 2617
-n02823124 2617
-n04484432 3498
-n03913343 3498
-n03085219 3499
-n03782190 3499
-n04152593 3499
-n03196598 3499
-n03676759 3499
-n03361380 3499
-n04588739 3499
-n03187268 3499
-n02940570 3499
-n03085602 3511
-n02769075 3511
-n02988066 2619
-n03027250 2619
-n03070059 2619
-n03525454 2619
-n04538552 2619
-n02948557 3523
-n03031152 3523
-n02947818 3525
-n03746005 3527
-n03746155 3527
-n02935017 2620
-n03851787 2620
-n03706653 2620
-n03744276 2620
-n03708036 2620
-n04063868 2620
-n02763306 2620
-n03079230 3531
-n04533946 3531
-n02988679 3537
-n02988486 3537
-n02757061 3537
-n03492542 3532
-n03209910 3532
-n03359436 3533
-n04052757 3533
-n04534359 3534
-n02979399 3534
-n04391838 3535
-n03924069 3535
-n03694639 3549
-n04178190 3549
-n03636248 2623
-n03665366 2623
-n03358172 3552
-n03640988 3552
-n02948072 3552
-n03818343 3552
-n04534895 3552
-n04384910 3552
-n03423877 3552
-n03844045 3552
-n03549897 3552
-n03370387 3552
-n04335886 3552
-n04286575 3552
-n03272383 3552
-n03590841 3555
-n03018712 3555
-n03359137 3566
-n03665924 3566
-n03911767 3566
-n03503997 3553
-n04107743 3553
-n04339879 3553
-n03318294 3553
-n04148703 3553
-n04160847 3553
-n03824713 3553
-n02852173 3553
-n04456115 3553
-n03365374 3553
-n03401129 2624
-n03442597 2624
-n03187037 2624
-n04529108 2624
-n03975232 2624
-n03668279 3586
-n03482523 3586
-n04371050 3588
-n03772584 3588
-n04164757 3588
-n03544238 3588
-n04288272 2630
-n04116098 2630
-n03066359 3593
-n02886321 3593
-n03525074 2632
-n04585745 2632
-n03281145 2632
-n03126707 2632
-n04575824 2632
-n03178430 2632
-n03733281 1835
-n03078287 1835
-n03820728 1835
-n03440216 1835
-n04080138 1835
-n03302938 1835
-n03738241 1835
-n03085915 1835
-n04141712 1835
-n04082886 1835
-n04545858 3604
-n04041544 3604
-n04400289 3604
-n04402746 3604
-n03578055 3604
-n03580845 3604
-n04404412 3615
-n04137897 3619
-n04365328 3619
-n03072201 3619
-n03681477 3605
-n04358491 3605
-n03300216 3623
-n04595028 3623
-n04008385 3609
-n03674440 3609
-n04366116 3609
-n03401279 3609
-n03957315 1836
-n04488202 1836
-n04555700 1836
-n03206908 1836
-n02893692 1836
-n03210683 1836
-n03991062 1836
-n02920658 1836
-n04074185 1836
-n03147509 1836
-n02774152 1836
-n02978881 1836
-n03256032 1836
-n02773037 1836
-n03733805 1836
-n03438257 1836
-n03875806 1836
-n03733644 1836
-n03291819 1836
-n04183329 1836
-n03935335 1836
-n02801938 1836
-n04179712 1836
-n04139859 1836
-n03994614 1836
-n02946921 1836
-n04576211 1836
-n04600312 1836
-n02839910 1836
-n02949542 1836
-n03779370 1836
-n02964843 1836
-n04533700 1836
-n02975212 1836
-n02974697 1836
-n04531098 1836
-n03233905 1836
-n04060904 1836
-n03871083 1836
-n04560292 1836
-n02883344 1836
-n03062336 3634
-n03920288 3634
-n03456024 3634
-n04176190 3634
-n04499062 3634
-n04350581 3634
-n02880940 3634
-n02978753 3634
-n04050933 3634
-n02927764 3634
-n04130257 3678
-n03775546 3678
-n03984759 3678
-n02997910 3678
-n04263257 3678
-n04023695 3678
-n04103769 3636
-n02682922 3636
-n04254120 3636
-n02754103 3636
-n03571280 3636
-n03174731 3640
-n02815749 3640
-n03629520 3640
-n03063073 3640
-n03002948 3640
-n04397452 3640
-n03216710 3640
-n03301940 3641
-n04207343 3641
-n03055418 3641
-n04083309 3641
-n02769748 3644
-n04122685 3644
-n02816656 3644
-n04134008 3644
-n02970408 3644
-n03883524 3644
-n03253886 3644
-n02870676 3644
-n04452528 3644
-n03709823 3644
-n04026417 3644
-n03235796 3644
-n03291963 3644
-n04124098 3644
-n04122825 3644
-n03993180 3644
-n04204081 3644
-n04446844 3644
-n03414029 3644
-n03619793 3644
-n03958227 3644
-n03445617 3644
-n04235860 3644
-n03469903 3644
-n03461288 3644
-n04284572 3719
-n03972524 3719
-n04544450 3719
-n03321563 3719
-n03521899 3730
-n03898395 3730
-n03372549 3646
-n04496872 3646
-n04559910 3646
-n02918831 3646
-n03676623 3646
-n04249882 3646
-n04206225 3646
-n02823750 3646
-n04119360 3646
-n03443371 3646
-n04592099 3646
-n03062245 3650
-n04131690 3650
-n03914438 3650
-n03883385 3652
-n03050864 3652
-n03482405 3652
-n02893608 3652
-n04204238 3652
-n04582349 3652
-n03764736 3656
-n02823510 3656
-n04255586 3656
-n03904433 3657
-n02946509 3657
-n04103364 3657
-n03791053 3657
-n04170037 3657
-n04509417 3657
-n04543158 3657
-n02804515 3657
-n03484083 3657
-n02766534 3657
-n02834778 3657
-n03538634 3657
-n04467099 3657
-n02959942 3657
-n04482393 3657
-n02740533 3762
-n04065272 3762
-n04464852 3762
-n04252077 3762
-n02916179 3762
-n03684823 3762
-n04335435 3762
-n03791235 3762
-n04465501 3762
-n03384352 3762
-n02740300 3773
-n02739889 3773
-n03256788 3774
-n02946348 3774
-n04520382 3774
-n04211219 3778
-n03193597 3778
-n03272562 3778
-n04389854 3778
-n04465358 3778
-n04310018 3778
-n03193260 3789
-n03193423 3789
-n03506880 3780
-n04490091 3780
-n02704792 3780
-n03389761 3780
-n03790512 3780
-n03444034 3780
-n02958343 3780
-n04252225 3780
-n03345487 3797
-n04520170 3797
-n04467665 3797
-n04474035 3797
-n03417042 3797
-n03632852 3797
-n04461696 3797
-n03256166 3797
-n04465666 3797
-n03930630 3797
-n03173929 3805
-n03796401 3805
-n03896419 3805
-n03977966 3805
-n02871314 3805
-n04466871 3800
-n03785016 3800
-n02814533 3802
-n03680512 3802
-n03777568 3802
-n03268790 3802
-n03770679 3802
-n03100240 3802
-n03079136 3802
-n02930766 3802
-n04201733 3802
-n04037443 3802
-n03498781 3802
-n04097373 3802
-n02831335 3802
-n04285965 3802
-n04166281 3802
-n03594945 3802
-n03670208 3802
-n03141065 3802
-n02701002 3802
-n04516354 3802
-n04322801 3802
-n04347119 3802
-n03870105 3802
-n03543394 3802
-n04285008 3802
-n03119396 3802
-n03122295 3764
-n02970849 3764
-n03538406 3848
-n03255899 3848
-n03599486 3848
-n03981924 3848
-n03868242 3848
-n04397027 3766
-n03648431 3766
-n04176068 3766
-n02797295 3766
-n04204347 3766
-n03490119 3766
-n02835271 3768
-n04126066 3768
-n04026813 3768
-n03792782 3768
-n02968473 3769
-n03435991 3864
-n02912557 3864
-n04297098 3864
-n03389889 3864
-n02775039 3771
-n03393912 3771
-n03895866 3771
-n02932523 3771
-n02885108 3870
-n04389521 3870
-n03828020 3871
-n04020912 3871
-n03200357 3871
-n04246855 3871
-n04065789 3659
-n02747177 3659
-n03678558 3659
-n04134523 3661
-n03935116 3661
-n02900705 3665
-n03078995 3665
-n03210372 3665
-n03619650 3665
-n04548362 3665
-n02962843 3665
-n03986355 3665
-n03214582 3665
-n03031012 3665
-n04200000 3665
-n03468821 3665
-n02755140 3665
-n03683995 3665
-n04608435 3665
-n04556533 3665
-n02774630 3665
-n03438863 3665
-n03487533 3899
-n04137217 3899
-n02773838 3899
-n04491769 3899
-n03498441 3899
-n03420345 3903
-n04570815 3903
-n02967294 3903
-n03986949 3903
-n03865371 3903
-n04518764 3903
-n02863750 3666
-n03355768 3666
-n02881193 3666
-n03633091 3666
-n02876657 3666
-n02877266 3666
-n03990474 3666
-n03950228 3666
-n02808440 3666
-n03786901 3666
-n02909870 3666
-n03241496 3666
-n03129001 3666
-n04591887 3666
-n04001265 3666
-n04493381 3666
-n03572321 3666
-n04438897 3666
-n02801525 3666
-n03784270 3666
-n02758960 3666
-n03029445 3666
-n02795169 3666
-n04388743 3666
-n03593526 3666
-n02993368 3666
-n04447028 3914
-n03350204 3914
-n04149083 3915
-n04263336 3915
-n04246060 3916
-n03983396 3916
-n04557648 3916
-n03603722 3916
-n02985963 3916
-n03449451 3916
-n03937543 3916
-n02962061 3916
-n03359566 3916
-n02823428 3916
-n03571625 3916
-n03174450 3916
-n04579056 3916
-n03140431 3916
-n04591713 3916
-n02960903 3916
-n03923379 3916
-n04579145 3945
-n04560804 3945
-n03521675 3950
-n03295246 3950
-n04422727 3950
-n02952374 3950
-n04518132 3950
-n03709363 3956
-n03595409 3956
-n04139140 3918
-n04398044 3918
-n03259401 3918
-n04516214 3918
-n04324297 3918
-n03612814 3918
-n02939185 3918
-n03915118 3918
-n04397768 3918
-n03063689 3918
-n03064250 3971
-n04132985 3971
-n04399158 3971
-n04225031 3920
-n03543603 3920
-n03379343 3920
-n03797390 3923
-n03693707 3923
-n04389430 3923
-n03063599 3984
-n04443766 3984
-n02824058 3984
-n02836174 3930
-n02843158 3930
-n04553703 3930
-n02788572 3930
-n02823335 3934
-n04592005 3934
-n03610418 3934
-n03426134 3935
-n04560113 3935
-n04173046 3935
-n02732072 3935
-n04078574 3935
-n04562935 4001
-n04049303 4001
-n02951703 3936
-n02705429 3936
-n03101664 3936
-n02815834 3936
-n04516116 3936
-n03725600 3936
-n04522168 3936
-n03133415 3936
-n03593122 3936
-n03960374 3668
-n04476259 3668
-n02982515 3668
-n03259009 3668
-n03004275 3668
-n04131929 3668
-n03416900 3668
-n03565830 3668
-n03543735 3668
-n03858085 3668
-n04255163 3668
-n02747802 3668
-n03871628 3669
-n02919414 3669
-n03167978 3669
-n02778456 4026
-n03500389 4026
-n03870672 4026
-n02782681 3671
-n02971356 3671
-n03064758 3671
-n04200258 3671
-n04253057 3671
-n03908618 3671
-n03127925 3671
-n02786331 3671
-n04589325 3671
-n03014705 3671
-n04340750 3671
-n02998003 3671
-n03710193 3671
-n02978055 3671
-n02836392 3671
-n03871724 3671
-n04452615 4040
-n04462011 4040
-n03064350 4040
-n03535024 4040
-n04477548 4040
-n02989099 4040
-n02977438 4041
-n04125257 4041
-n02976939 4041
-n04125021 4041
-n04469813 1837
-n03002341 1837
-n04214282 1837
-n04019101 1837
-n04172342 1837
-n03538179 1837
-n04524313 1837
-n04231693 1837
-n04103918 1837
-n04467307 1837
-n04196502 1837
-n03678362 1837
-n03306385 4060
-n04212165 4060
-n04468005 4060
-n02924116 4060
-n03680942 4060
-n03394272 4071
-n03896233 4071
-n04349306 4071
-n03711044 4071
-n03394480 4071
-n03078802 4075
-n02917067 4075
-n04487081 4072
-n03769881 4072
-n04146614 4072
-n04310157 4063
-n02918964 4063
-n04099429 4063
-n03764276 4063
-n03773504 4063
-n03125870 4063
-n04235291 4063
-n03478589 4087
-n04389033 4087
-n03886053 4087
-n03919096 4087
-n03549199 4087
-n02686568 4089
-n04530566 4089
-n04264914 4089
-n03547229 4089
-n03510583 4096
-n04308084 4096
-n03666917 4096
-n03491032 4100
-n03439814 4100
-n03512147 4100
-n04552348 4100
-n02691156 4100
-n02759387 4100
-n02867715 4107
-n02704645 4107
-n04012084 4107
-n02690373 4107
-n02842573 4107
-n03365231 4107
-n03595860 4107
-n03335030 4107
-n04308273 4107
-n04160586 4107
-n02686121 4112
-n04583620 4112
-n03604311 4115
-n03596543 4115
-n04308397 4116
-n03577672 4116
-n02692877 4102
-n02850950 4102
-n02782093 4102
-n03541923 4102
-n02858304 4097
-n04476116 4097
-n04610013 4097
-n04194289 4097
-n04128837 4097
-n02792409 4097
-n03662601 4129
-n03977592 4129
-n03447447 4129
-n04158807 4129
-n02792552 4129
-n04095210 4129
-n04495843 4129
-n04024983 4129
-n03939178 4129
-n04244997 4129
-n03329663 4129
-n04409128 4129
-n02947660 4129
-n03344393 4129
-n03790230 4129
-n03236423 4139
-n03981566 4139
-n03545470 4139
-n04229480 4144
-n02951358 4144
-n03199901 4144
-n04037964 4144
-n03105306 4144
-n04612504 4144
-n03436891 4144
-n03602081 4144
-n04115456 4144
-n03609235 4154
-n03861430 4154
-n03254374 4154
-n04038231 4156
-n04038338 4156
-n04273569 4149
-n03859170 4149
-n02932891 4149
-n03552749 4149
-n04197110 4132
-n04606251 4132
-n03896103 4132
-n03947888 4132
-n03668488 4132
-n03541269 4132
-n04309348 4132
-n02965300 4132
-n04224543 4132
-n04552696 4132
-n03673027 4173
-n03698604 4181
-n02965216 4181
-n03141327 4181
-n03874138 4177
-n04317063 4177
-n02878222 4178
-n03095699 4178
-n02784124 4178
-n03845190 4178
-n04347754 4180
-n03466493 4180
-n03397266 4180
-n02812201 4180
-n03466600 4180
-n02687172 4180
-n03718212 4180
-n03180504 4180
-n02755529 4191
-n03811295 4191
-n04612373 4133
-n03045228 4133
-n03327133 4133
-n04242408 4133
-n03612010 4133
-n03186285 4133
-n04128499 4133
-n02793199 4133
-n04147183 4133
-n04587327 4133
-n04483307 4207
-n02981792 4207
-n02982416 4207
-n04266014 4098
-n04264765 4098
-n03218198 4090
-n02860847 4090
-n02861022 4090
-n04336792 4068
-n03122202 4068
-n06271778 1838
-n06255081 1838
-n06263609 1838
-n06276697 4221
-n06272290 4221
-n06276501 4221
-n06277280 4224
-n06281040 4224
-n06277135 4224
-n06278338 4227
-n06278475 4227
-n06274760 4225
-n06272803 4225
-n06272612 4225
-n06263369 4223
-n06266417 4223
-n06595351 4235
-n06267145 4235
-n06596607 4237
-n06596727 4237
-n06596364 4237
-n06596474 4237
-n06267893 4238
-n06267564 4238
-n06267655 4238
-n06266633 4236
-n06267991 4236
-n03938244 1055
-n03872495 1055
-n04135315 4249
-n02823964 4249
-n03408444 4249
-n02967626 4249
-n04053677 1056
-n04151940 1056
-n04453910 1056
-n03380867 1056
-n04014297 1056
-n03045698 1056
-n04605726 1056
-n04513827 1056
-n03050026 1056
-n03724870 1056
-n03341153 1056
-n03366823 1056
-n03058107 1056
-n02952237 1056
-n03357376 1056
-n03221059 1056
-n03376279 1056
-n03956623 1056
-n03261603 1056
-n02944459 4255
-n04201297 4255
-n02954938 4256
-n03717622 4256
-n03661340 4256
-n04041243 4275
-n02877765 4275
-n03825788 4275
-n03047690 4257
-n04199027 4257
-n02735538 4257
-n02872752 4257
-n03361550 4257
-n04241394 4257
-n03865949 4257
-n04122578 4282
-n04239786 4282
-n03027625 4282
-n04124370 4282
-n04272389 4282
-n02904927 4282
-n04593524 4282
-n04545748 4282
-n02855701 4282
-n02713364 4282
-n03041449 4282
-n03411079 4282
-n03680355 4282
-n04120489 4282
-n03868406 4282
-n02882894 4282
-n03967270 4282
-n04022332 4282
-n04133789 4282
-n03025250 4282
-n04027706 4306
-n04386664 4306
-n03364008 4306
-n03297103 4306
-n03600475 4284
-n02925666 4284
-n04228581 4284
-n03521544 4284
-n04089666 4284
-n04116294 4284
-n03516844 4284
-n04542715 4284
-n03124043 4284
-n03798061 4286
-n02873733 4286
-n03067518 4258
-n03046133 4258
-n04554211 4258
-n04444749 4258
-n03797896 4258
-n04192858 4258
-n02888270 4258
-n04151581 4258
-n04187233 4258
-n02826068 4258
-n04181718 4258
-n04191943 4258
-n04281375 4258
-n04416005 4258
-n04105068 4258
-n03314608 4258
-n03530910 4258
-n04187061 4258
-n02955065 4258
-n03725035 4258
-n03315644 4258
-n03142679 4258
-n02937958 4258
-n02739668 4258
-n02840245 4258
-n02840619 4258
-n03546766 4258
-n02851099 4258
-n03673767 4258
-n03959701 4328
-n03539433 4352
-n02740764 4352
-n02895154 4354
-n03513376 4354
-n02950632 4354
-n03623338 4354
-n03929855 4356
-n04130907 4356
-n04589890 4330
-n03347037 4330
-n04590553 4330
-n03788365 4330
-n03637318 4333
-n03889871 4333
-n03652729 4334
-n02825657 4334
-n04172776 4334
-n02843684 4334
-n02951843 4334
-n03610524 4334
-n02763901 4371
-n04507155 4371
-n03415252 4371
-n03409591 4337
-n04357121 4337
-n03718789 4337
-n03220513 4337
-n03522100 4337
-n04435653 4337
-n03546235 4337
-n04523525 4337
-n04234887 4337
-n03413684 4337
-n04417672 4337
-n03148727 4379
-n03435593 4379
-n03847471 4379
-n02796207 4383
-n04087709 4383
-n03527444 4340
-n04141327 4340
-n04207763 4340
-n03548086 4341
-n04423845 4341
-n03213538 4341
-n03657121 4341
-n03424325 4342
-n03314378 4342
-n04229816 4400
-n02983189 4400
-n02862048 4346
-n04192698 4346
-n03000247 4403
-n02916936 4403
-n03112719 4403
-n03146219 4403
-n02933340 4349
-n04045255 4349
-n02873520 4349
-n04589190 4350
-n03592669 4350
-n03151077 4350
-n04211356 4350
-n04525584 4412
-n04590129 4412
-n04102285 4412
-n04418357 4414
-n04209239 4414
-n02925107 4351
-n02890513 4351
-n03436549 4260
-n03291741 4260
-n02992368 4260
-n07248320 4260
-n03590306 4260
-n03958752 4260
-n04207151 4262
-n03885293 4262
-n03654576 4262
-n02767665 4262
-n03114379 4262
-n02785648 4262
-n02876084 4262
-n04240752 4262
-n02820210 4262
-n04236377 4262
-n02851939 4262
-n03309356 4262
-n04231272 4262
-n04162433 4262
-n02786058 4434
-n04369025 4434
-n02979836 4434
-n03267821 4434
-n04033995 4437
-n02683323 4437
-n02849154 4437
-n02822220 4437
-n03731483 4437
-n03898633 4447
-n03266749 4447
-n03128427 4447
-n03123553 4450
-n04034262 4450
-n04046400 4438
-n03688405 4438
-n04118021 4265
-n03223299 4265
-n03727837 4265
-n04144539 4459
-n04183217 4459
-n03998194 4459
-n02904233 4459
-n04297847 4459
-n04066270 4459
-n02908773 4459
-n03353951 4266
-n03445326 4266
-n04528079 4266
-n03875218 4266
-n03805725 4266
-n03437430 4266
-n03115897 4266
-n03284743 4266
-n04525417 4266
-n03342015 4472
-n03284886 4472
-n03285578 4472
-n03844233 4472
-n04557308 4472
-n03646020 4482
-n04581102 4482
-n03261019 4268
-n03973402 4268
-n03642444 4268
-n04450994 4268
-n04084889 4268
-n04412097 4268
-n03337383 4270
-n03729308 4270
-n03970546 1057
-n03802393 1057
-n04395024 1057
-n04525038 1057
-n02809105 1057
-n03615406 1057
-n02828427 1057
-n04123567 1057
-n03188725 1057
-n04539794 1057
-n03253796 1057
-n03013850 1057
-n03115400 1057
-n04459610 1057
-n03132666 1057
-n03885194 1057
-n03019938 1057
-n03326795 1057
-n03115180 1057
-n04525191 1057
-n04138261 1057
-n03625355 1057
-n04137355 1057
-n04003856 1057
-n03356982 1057
-n04568841 1057
-n03409297 1057
-n02944579 1057
-n04605163 1057
-n02977330 1057
-n04395106 1057
-n03779128 1057
-n02904803 1057
-n04524941 1057
-n04198453 1057
-n02878425 1057
-n03703862 1057
-n03819595 1057
-n03877351 1057
-n04613015 1057
-n03914831 1057
-n03932670 1057
-n03785237 1057
-n04414476 1057
-n04056932 1057
-n02675219 1057
-n03106722 1057
-n03917814 1057
-n03016868 1057
-n02922798 1057
-n04432662 1057
-n02802990 1057
-n03631177 1057
-n04189282 1057
-n03435743 1057
-n03983612 1057
-n03175189 1057
-n03357267 1057
-n04184316 1057
-n02942460 1057
-n03836906 1057
-n03233123 1057
-n03430091 1057
-n03855214 1057
-n03386726 1057
-n03437741 1057
-n04599235 1057
-n04350458 1057
-n04383839 1057
-n03653110 1057
-n04502502 1057
-n03854421 1057
-n02952109 1057
-n03298858 1057
-n03160740 1057
-n03843438 1057
-n04393549 1057
-n02903852 1057
-n03947798 1057
-n03529444 1057
-n04482297 4514
-n03227317 4514
-n03595523 4514
-n03429914 4530
-n04496614 4530
-n03016609 4530
-n03485794 4534
-n03463666 4534
-n03258330 4534
-n03207743 4534
-n04459362 4534
-n02786198 4534
-n03471190 4534
-n02834397 4534
-n04127904 4534
-n03897943 4534
-n03490006 4583
-n03887697 4583
-n03207835 4583
-n03381776 4587
-n03383099 4587
-n04278447 4587
-n03505383 4587
-n04455652 4587
-n03712337 4587
-n02782602 4587
-n03598151 4592
-n03775747 4592
-n03410571 4592
-n03696568 4592
-n04307767 4592
-n03645577 4592
-n03358380 4588
-n04208065 4588
-n03809603 4539
-n02820556 4539
-n03703730 4545
-n03938522 4545
-n04045397 1059
-n03663531 1059
-n03662719 4612
-n03703945 4612
-n03662887 4612
-n04326084 1060
-n02897820 1060
-n14943580 1060
-n14785065 1060
-n15074568 1060
-n14820180 1060
-n04035912 1060
-n03766935 4616
-n04313628 4616
-n03530511 4616
-n03460297 4616
-n03149686 4616
-n03455488 4616
-n03344642 4617
-n03796522 4617
-n03043693 4617
-n02681392 4617
-n04339638 4618
-n15102455 4618
-n04234455 4633
-n03341297 4633
-n04453390 4633
-n14908027 4620
-n14976759 4620
-n03111177 1061
-n03282401 1061
-n03451798 1061
-n03292603 1061
-n03815149 1061
-n03723267 1061
-n02892304 1061
-n07621618 1061
-n02732572 1061
-n03178782 1061
-n02681518 1061
-n03397087 1061
-n03635108 1061
-n04395651 4649
-n03762602 4649
-n03282591 4649
-n06883725 4649
-n03516367 4649
-n04682462 4649
-n03354903 4655
-n02788021 4655
-n04458633 4655
-n03140292 4655
-n03362890 4655
-n05244934 4658
-n11487732 4658
-n03597469 4650
-n03397532 4650
-n03649161 4650
-n03914106 4650
-n02787435 4650
-n03030262 4650
-n02685082 4650
-n02887970 4666
-n02852043 4666
-n03909020 4666
-n03814906 4666
-n03436075 1062
-n03899328 1062
-n04096066 1062
-n03895293 1062
-n04215402 4678
-n04461570 4678
-n03904183 4678
-n03519981 4679
-n02969323 4679
-n04426618 4679
-n04466613 4679
-n03215508 4684
-n03306610 4684
-n02744323 4684
-n02762508 4689
-n02758863 4689
-n04335209 4686
-n04334599 4686
-n03948242 4687
-n03539678 4687
-n02680512 4680
-n03089014 4680
-n03895585 4680
-n04493505 4698
-n04244379 4698
-n04250850 4698
-n04562496 4698
-n02984469 4700
-n02795528 4700
-n03944672 4700
-n03533014 4700
-n04385536 4706
-n03231912 4706
-n03147280 4709
-n04257684 4709
-n04497962 4699
-n04298661 4699
-n03415749 4699
-n02981024 4712
-n04048441 4712
-n04391569 1063
-n02784218 1063
-n03572107 4717
-n02680337 4717
-n03957420 4720
-n02992795 4720
-n03506028 4718
-n03438071 4718
-n04440749 4718
-n02739427 4718
-n04040247 4725
-n02971167 4725
-n04381994 1064
-n04087432 1064
-n03153375 4729
-n03438661 4729
-n03527149 4729
-n03963198 4729
-n04284002 4731
-n04380346 4731
-n03383948 4731
-n04284438 4731
-n04263502 4735
-n04398688 4735
-n04350769 4735
-n04597913 4735
-n03557270 4735
-n04381073 4735
-n03180384 4735
-n02976249 4736
-n02928049 4736
-n04307986 4736
-n04380255 4737
-n02973805 4737
-n02687992 1065
-n04406817 1065
-n02693246 1065
-n02692232 1065
-n03745146 1065
-n04329190 1065
-n04306080 1065
-n04551055 4756
-n03452449 4756
-n03131669 4756
-n03768916 1066
-n03214253 1066
-n03587205 4762
-n03406966 4762
-n03093574 1067
-n03672352 1067
-n03051540 4765
-n02729837 4765
-n03655720 4767
-n03456186 4767
-n02855925 4767
-n03825080 4767
-n04015204 4767
-n03859495 4767
-n03815482 4767
-n03625943 4767
-n03692379 4767
-n02728440 4767
-n03068998 4767
-n03763968 4767
-n03502509 4767
-n03877472 4767
-n03419014 4767
-n02742322 4767
-n04596852 4767
-n03863108 4767
-n03441112 4767
-n02671780 4767
-n02846141 4767
-n03381126 4767
-n02756098 4767
-n04059157 4767
-n02814774 4767
-n03746330 4767
-n04335693 4767
-n04241249 4767
-n04194127 4773
-n03863262 4773
-n04001845 4773
-n02738859 4773
-n03386870 4773
-n03216402 4773
-n02730930 4773
-n04207903 4773
-n03121897 4773
-n03015478 4773
-n03268645 4773
-n04266375 4773
-n03623198 4773
-n03450516 4774
-n04532106 4810
-n03010795 4810
-n02669723 4810
-n02811719 4780
-n03324928 4780
-n03239259 4780
-n03615563 4780
-n03513137 4781
-n03531281 4781
-n04498389 4781
-n03497657 4781
-n02954340 4781
-n03124474 4781
-n04432203 4781
-n03379051 4818
-n03492922 4818
-n03127747 4818
-n04356595 4821
-n03404360 4821
-n03124170 4821
-n02817516 4821
-n02859184 4821
-n04248507 4821
-n03325941 4821
-n02987379 4821
-n04259630 4821
-n04482177 4821
-n02818135 4821
-n03984643 4821
-n02869837 4821
-n03950899 4821
-n02881757 4821
-n03766322 4821
-n03046029 4843
-n03937835 4843
-n02799323 4822
-n03103563 4822
-n04209133 4822
-n03610682 4822
-n02776825 4822
-n03331077 4822
-n04387095 4822
-n02831237 4822
-n04232153 4822
-n03049924 4822
-n04228693 4822
-n04556408 4822
-n02807133 4822
-n03787032 4822
-n04612026 4854
-n02816768 4854
-n03502331 4783
-n04143897 4783
-n04104770 4783
-n03188531 4783
-n04605572 4783
-n04097866 4783
-n04574067 4783
-n03655072 4783
-n04230808 4783
-n04508163 4783
-n04172904 4783
-n04531873 4783
-n04197391 4783
-n03863923 4783
-n03540090 4783
-n02922578 4783
-n04488530 4783
-n04489008 4783
-n04332580 4783
-n03404149 4783
-n03816005 4783
-n04370774 4783
-n03657511 4783
-n04371563 4783
-n03487642 4783
-n04046277 4783
-n04350905 4783
-n04370048 4783
-n03450734 4783
-n03314884 4862
-n03826039 4862
-n02998841 4862
-n03719743 4863
-n03797182 4863
-n03505504 4863
-n04495698 4863
-n03325584 4863
-n04325704 4863
-n03520493 4896
-n03615655 4896
-n03237992 4867
-n03617480 4867
-n02667093 4867
-n02807616 4867
-n03410938 4869
-n04269822 4869
-n03866082 4870
-n03454442 4870
-n03770439 4870
-n03617312 4870
-n03732458 4870
-n02780815 4870
-n03205669 4870
-n04136333 4870
-n03534580 4870
-n03920737 4871
-n02892767 4871
-n03387323 4871
-n04223299 4871
-n03421324 4871
-n03132776 4871
-n04508949 4871
-n02863014 4871
-n02944146 4871
-n04514241 4871
-n03013580 4871
-n04508489 4871
-n03112869 4919
-n03885788 4919
-n04103665 4919
-n03673450 4923
-n03688192 4923
-n02930214 4923
-n04509171 4932
-n03824381 4932
-n02854739 4928
-n04426427 4928
-n02837887 4928
-n02901114 4928
-n03885028 4928
-n03234164 4928
-n04602956 4874
-n03629231 4874
-n03595614 4874
-n03163381 4874
-n03978966 4874
-n03057021 4875
-n03045337 4875
-n04252560 4875
-n04363777 4948
-n03254046 4948
-n04187970 4948
-n03398228 4948
-n03630383 4948
-n03456665 4948
-n03589791 4948
-n04049405 4948
-n02957008 4948
-n04123448 4948
-n03404251 4948
-n03751269 4957
-n04222307 4957
-n02867966 4957
-n03902756 4957
-n04368496 4957
-n03228254 4957
-n02864504 4957
-n03891051 4957
-n03844815 4958
-n04479046 4958
-n03770954 4961
-n04122492 4961
-n03980874 4949
-n04445154 4949
-n04445040 4949
-n03607923 4949
-n04173907 4949
-n04497570 4949
-n04186455 4949
-n02936402 4949
-n04205318 4879
-n03877674 4879
-n04370288 4879
-n04132158 4879
-n02896442 4879
-n03019434 4879
-n04233715 4879
-n03600285 4879
-n03903733 4879
-n03688605 4879
-n03594734 4879
-n03107488 4879
-n03660124 4879
-n04337287 4879
-n02825442 4879
-n02910864 4879
-n03543112 4982
-n02831595 4982
-n03653833 4982
-n03815615 4882
-n03128085 4882
-n02865351 5001
-n04591157 5001
-n02883205 5001
-n02847631 5001
-n03710721 4885
-n04371430 4885
-n02837789 4885
-n03226538 4888
-n03943920 4888
-n04222470 4888
-n03885669 4888
-n02925519 4888
-n04427715 5014
-n04504141 5014
-n04502197 4889
-n02963159 4889
-n04370456 4889
-n04021028 4889
-n04453666 4785
-n03464053 4785
-n02944075 4785
-n03236735 4785
-n02861387 5021
-n02854926 5021
-n03480579 5021
-n03062015 5024
-n04136161 5024
-n02936570 5024
-n04355511 5024
-n03013438 5024
-n04334105 5024
-n03450230 5024
-n03604400 5024
-n03205574 5024
-n02898585 5034
-n04397645 5034
-n02781121 5034
-n03429682 4787
-n03775071 4787
-n03616979 4787
-n02827606 4788
-n03405595 4788
-n03781683 5043
-n03527565 5043
-n02972397 5043
-n03540267 4790
-n04434932 5048
-n04254777 5048
-n04323819 5048
-n03885904 5049
-n03710637 5049
-n02752496 5050
-n04378956 5050
-n03622931 5050
-n02736798 5050
-n03836976 5051
-n03026506 5051
-n03384891 4791
-n03289985 4791
-n03859958 4791
-n02726017 4791
-n03113657 4791
-n03320519 4791
-n03113835 4791
-n03398153 4791
-n04285803 4791
-n02669534 4791
-n03206718 4791
-n03476083 4791
-n03201776 5060
-n02780704 5060
-n03201638 5060
-n03239054 5060
-n02683454 5071
-n04459018 5071
-n04584207 5071
-n03237416 4794
-n02887489 4794
-n02752615 4794
-n03528263 4768
-n03251766 4768
-n04517823 5082
-n03584829 5082
-n04488857 5082
-n03150511 5082
-n04580493 5082
-n04179913 5082
-n04174101 5082
-n03620052 5082
-n03534776 5082
-n04475631 5085
-n04309833 5085
-n03207941 5088
-n04070727 5088
-n04554684 5088
-n03102654 5096
-n03273913 5096
-n03557590 5099
-n03170635 5099
-n04442312 5091
-n03761084 5091
-n04442441 5091
-n03063338 5091
-n03543254 5091
-n04542943 5091
-n03212114 5091
-n03297495 5091
-n04330340 5091
-n03862676 5091
-n03378174 5091
-n03557692 5091
-n03102371 5110
-n03273740 5110
-n03425595 5110
-n04003241 5110
-n02905036 5111
-n04111531 5111
-n03259280 5111
-n03425241 5111
-n03483316 5083
-n03050655 5083
-n04277826 5123
-n04496726 5123
-n04607242 5123
-n02808304 4766
-n03219010 4766
-n04499446 4766
-n02821030 4766
-n03938725 5130
-n04188179 5130
-n04439712 1068
-n03971218 1068
-n03223553 1068
-n02856463 1068
-n03250279 1068
-n03882058 1068
-n03635668 1068
-n02846511 1068
-n04251791 5136
-n04189816 5136
-n02731900 5136
-n04225987 5136
-n04214046 5136
-n04149813 5136
-n04543996 5138
-n03502200 5138
-n03005285 1069
-n03969259 1069
-n04254009 1069
-n04446521 5150
-n04208936 5150
-n04559451 5150
-n03371875 5152
-n03993053 5152
-n04108268 1071
-n03106110 1071
-n03644378 5157
-n02919890 5157
-n04290079 5157
-n03107046 5157
-n04426788 5158
-n02874537 5158
-n04581829 5158
-n03641569 5158
-n03367545 5163
-n04598965 5163
-n04605321 5163
-n00004475 1042
-n00006484 1042
-n12739332 5170
-n00017222 5170
-n00015388 5170
-n01326291 5170
-n11537327 5170
-n00007846 5170
-n12992868 5170
-n00005787 5170
-n12172906 5173
-n13083586 5173
-n13123431 5173
-n11536673 5173
-n11552806 5173
-n13083023 5173
-n13100156 5173
-n12476510 5181
-n11545524 5181
-n11552386 5181
-n13121544 5181
-n12205694 5181
-n13100677 5181
-n13103136 5181
-n13085113 5181
-n13084834 5181
-n13134302 5181
-n13084184 5181
-n12477163 5187
-n12477583 5187
-n12477747 5187
-n12480895 5187
-n12479537 5187
-n12481458 5187
-n11547562 5188
-n11545714 5188
-n13221529 5204
-n13220122 5204
-n13223265 5206
-n13223588 5208
-n13223710 5208
-n12953206 5205
-n13194572 5205
-n13205058 5205
-n12961879 5205
-n12953484 5205
-n13186654 5205
-n13197274 5205
-n13173882 5205
-n13229543 5205
-n13192625 5205
-n13185269 5205
-n13193642 5205
-n13207335 5205
-n13183056 5205
-n13200651 5205
-n13195341 5205
-n13206817 5205
-n13199970 5205
-n12957924 5205
-n13198914 5205
-n13199717 5205
-n13215586 5216
-n13190747 5216
-n13193856 5222
-n13194036 5222
-n11665372 5189
-n11596108 5189
-n12694486 5236
-n11666854 5236
-n11669921 5236
-n11672400 5236
-n12606438 5240
-n12799776 5240
-n11736694 5240
-n12008487 5240
-n11955896 5240
-n12879527 5240
-n12884260 5240
-n12034141 5240
-n12290748 5240
-n12026476 5240
-n12833149 5240
-n11892817 5240
-n12914923 5240
-n11969607 5240
-n11794024 5240
-n12026018 5240
-n11672269 5240
-n12830222 5240
-n11811473 5240
-n12022054 5240
-n11971406 5240
-n11826198 5240
-n12950314 5240
-n11857875 5240
-n11988596 5240
-n11939699 5240
-n11915214 5240
-n11821184 5240
-n12293723 5240
-n11814584 5240
-n11725015 5240
-n12890265 5240
-n11733312 5240
-n11859472 5240
-n11971248 5240
-n11888800 5240
-n11971927 5240
-n12898774 5240
-n11810358 5240
-n11904109 5240
-n11943407 5240
-n11978233 5240
-n12683407 5240
-n12950126 5240
-n11726707 5240
-n11813077 5240
-n11889619 5240
-n11905749 5240
-n11812910 5240
-n11900569 5240
-n12020184 5240
-n11960245 5240
-n11859737 5240
-n12909421 5240
-n12041446 5240
-n12909917 5240
-n11992806 5240
-n11807979 5240
-n11925303 5240
-n11971783 5240
-n11939491 5240
-n11918473 5240
-n11989869 5240
-n11727091 5240
-n11793779 5240
-n11891175 5240
-n11792341 5240
-n11839568 5240
-n11943660 5240
-n11947802 5240
-n12475242 5240
-n11815491 5240
-n12480456 5240
-n11839823 5240
-n11732567 5240
-n12475035 5240
-n12360108 5240
-n12833985 5240
-n11941924 5240
-n11883328 5240
-n11719286 5240
-n11736851 5240
-n11887119 5240
-n12001707 5240
-n11950345 5240
-n11892637 5240
-n11805956 5240
-n11892029 5240
-n11806219 5240
-n12008252 5240
-n11918286 5240
-n11962272 5240
-n12093600 5240
-n12836862 5240
-n12093329 5240
-n11733054 5240
-n12020507 5240
-n11931918 5240
-n11958080 5240
-n12877838 5240
-n11812094 5260
-n11811706 5260
-n11923174 5268
-n12023726 5268
-n12023407 5268
-n11923637 5268
-n11990313 5268
-n11915899 5268
-n12030908 5268
-n12015221 5268
-n11990167 5268
-n11981192 5349
-n11980318 5349
-n11972759 5349
-n11921395 5349
-n12294124 5270
-n12295796 5270
-n12294723 5270
-n12294331 5270
-n12294871 5270
-n12296432 5270
-n12295033 5270
-n11726269 5272
-n11725821 5272
-n11725973 5272
-n12891305 5273
-n12891643 5273
-n11978713 5283
-n11979527 5283
-n11978961 5283
-n11979715 5283
-n12683571 5284
-n12683791 5284
-n11901759 5291
-n11908549 5291
-n11901294 5291
-n11903671 5291
-n11901977 5291
-n11902389 5291
-n11908846 5291
-n11901597 5291
-n11905392 5291
-n11902200 5291
-n11906917 5291
-n12044467 5296
-n12052787 5296
-n12056217 5296
-n12075830 5296
-n12055516 5296
-n12083113 5296
-n12047884 5296
-n12048056 5296
-n12080820 5296
-n12070381 5296
-n12061380 5296
-n12080395 5296
-n12061614 5296
-n12074408 5296
-n12070583 5296
-n12071744 5296
-n12049282 5296
-n12047345 5296
-n12064389 5296
-n12075010 5296
-n12052447 5296
-n12053405 5296
-n12050533 5296
-n12077944 5296
-n12086539 5296
-n12064591 5296
-n12058822 5296
-n12046028 5296
-n12083591 5296
-n12073991 5296
-n12043444 5296
-n12086012 5296
-n12073554 5296
-n12046815 5296
-n12063639 5296
-n12058630 5296
-n12084890 5296
-n12070016 5296
-n12076223 5296
-n12069679 5296
-n12048399 5296
-n12049562 5296
-n12076577 5296
-n12086192 5296
-n12074867 5296
-n12075299 5296
-n12072722 5296
-n12066018 5296
-n12084555 5296
-n12070712 5296
-n12079963 5296
-n12065316 5296
-n12059314 5296
-n12085664 5296
-n12050959 5296
-n12062468 5296
-n12085267 5296
-n12078172 5296
-n12057211 5388
-n12057447 5388
-n12056758 5388
-n12056601 5388
-n12043836 5416
-n12043673 5416
-n12067193 5437
-n12066630 5437
-n12062781 5441
-n12062626 5441
-n11808299 5299
-n11808721 5299
-n11808932 5299
-n11808468 5299
-n11809594 5299
-n11809094 5299
-n11727358 5305
-n11727738 5305
-n11727540 5305
-n11816649 5313
-n11816336 5313
-n11816829 5313
-n11816121 5313
-n11815918 5313
-n11815721 5313
-n12362274 5318
-n12362668 5318
-n12361946 5318
-n11950877 5326
-n11950686 5326
-n11961100 5326
-n12020736 5338
-n12020941 5338
-n11934616 5339
-n11933546 5339
-n11934807 5339
-n12879963 5241
-n12015959 5241
-n11836722 5241
-n11860555 5241
-n12258885 5241
-n11980682 5241
-n12016567 5241
-n11737534 5241
-n11965627 5241
-n11991263 5241
-n11989393 5241
-n12006766 5241
-n12887293 5241
-n12937130 5241
-n12291959 5241
-n11972291 5241
-n11927215 5241
-n12012111 5241
-n11970586 5241
-n11963932 5241
-n11966215 5488
-n11966083 5488
-n12006930 5491
-n12007196 5491
-n11600372 5237
-n11599324 5237
-n11603246 5504
-n11602873 5504
-n11603835 5504
-n11601333 5504
-n12484784 5190
-n12610328 5190
-n11791569 5190
-n11714853 5190
-n13122364 5190
-n11715430 5513
-n11715678 5513
-n12801781 5514
-n11728099 5514
-n11786131 5514
-n12150028 5514
-n12801520 5514
-n11789066 5514
-n11792742 5514
-n12152532 5520
-n12151615 5520
-n12152722 5520
-n11733548 5191
-n11720353 5191
-n12810595 5191
-n12342299 5191
-n13238375 5191
-n12867826 5191
-n12665048 5191
-n11973341 5191
-n12312728 5191
-n11818069 5191
-n12848499 5191
-n11779300 5191
-n12822955 5191
-n12816508 5191
-n12719684 5191
-n12350758 5191
-n12095020 5191
-n11861641 5191
-n11962667 5191
-n12870891 5191
-n12939282 5191
-n12812478 5191
-n12031927 5191
-n12023108 5191
-n12858150 5191
-n12861892 5191
-n12841007 5191
-n12212361 5191
-n12869061 5191
-n12906214 5191
-n12910285 5191
-n12486574 5191
-n12090890 5191
-n12702948 5191
-n12437513 5191
-n11968931 5191
-n11817914 5191
-n11772408 5191
-n12932173 5191
-n12817694 5191
-n11910460 5191
-n12603449 5191
-n12939874 5191
-n12002428 5191
-n12015525 5191
-n11807108 5191
-n12835331 5191
-n12168565 5191
-n12840362 5191
-n12352287 5191
-n11969166 5191
-n11968704 5191
-n12821895 5191
-n12344283 5191
-n11866248 5191
-n11995092 5191
-n12622875 5191
-n11735053 5191
-n12548280 5191
-n13150894 5191
-n12685431 5191
-n12387633 5191
-n12171966 5191
-n12796022 5191
-n12934036 5191
-n12443323 5191
-n12870535 5191
-n12682668 5191
-n12778605 5191
-n12623077 5191
-n12836212 5191
-n11982115 5191
-n12003696 5191
-n12005656 5191
-n12098403 5191
-n12606545 5191
-n11902709 5191
-n12882945 5191
-n12785889 5191
-n11986511 5191
-n12682411 5191
-n12469517 5191
-n12029635 5191
-n12860365 5191
-n12552309 5191
-n11977303 5191
-n11825351 5191
-n12836337 5191
-n12844939 5191
-n12925179 5191
-n11926833 5191
-n12604228 5191
-n11752578 5191
-n12855042 5191
-n11956850 5191
-n12092262 5191
-n12506991 5191
-n12882779 5191
-n11747468 5191
-n12385429 5191
-n12822115 5191
-n12821505 5191
-n12607456 5191
-n12819728 5191
-n12817464 5191
-n12811027 5191
-n12024445 5191
-n12573474 5191
-n12864545 5191
-n11949402 5191
-n11868814 5191
-n11953038 5191
-n12599435 5191
-n12840749 5191
-n13233727 5191
-n12342498 5191
-n12795555 5191
-n11984542 5191
-n12847008 5191
-n12719944 5191
-n11855274 5191
-n12095647 5191
-n12441183 5191
-n12942572 5191
-n12602980 5191
-n12684379 5191
-n12441390 5191
-n12785724 5191
-n11916696 5191
-n12574320 5191
-n12092417 5191
-n12036939 5191
-n11700058 5191
-n12845413 5191
-n11824146 5191
-n11910271 5191
-n11916467 5191
-n11807525 5191
-n12101870 5191
-n11939180 5191
-n12353754 5191
-n12104501 5191
-n12794985 5191
-n12355760 5191
-n12793015 5191
-n12932966 5191
-n12931542 5191
-n12889713 5191
-n12849061 5191
-n11722466 5528
-n11720643 5528
-n12665857 5533
-n12665271 5533
-n11785668 5538
-n11780148 5538
-n11784497 5538
-n11782036 5538
-n11786539 5538
-n11782761 5538
-n12858871 5551
-n12858397 5551
-n11959632 5554
-n11959862 5554
-n12911673 5557
-n12911440 5557
-n12091213 5559
-n12091550 5559
-n12091377 5559
-n12091953 5559
-n12703557 5560
-n12703190 5560
-n12703383 5560
-n12437930 5561
-n12437769 5561
-n12352639 5576
-n12352844 5576
-n12352990 5576
-n12344700 5580
-n12344483 5580
-n12687957 5587
-n12685831 5587
-n12687698 5587
-n12687462 5587
-n12686274 5707
-n12686077 5707
-n12687044 5707
-n12686676 5707
-n12388989 5588
-n12388143 5588
-n12387839 5588
-n12388858 5716
-n12390099 5716
-n12389501 5716
-n12390314 5716
-n12782915 5595
-n12779603 5595
-n12781940 5595
-n12782530 5595
-n11753700 5619
-n11753355 5619
-n11753143 5619
-n12856680 5620
-n12855494 5620
-n12540250 5625
-n12515711 5625
-n12575322 5625
-n12575812 5625
-n12556307 5625
-n12539306 5625
-n12557681 5734
-n12558425 5734
-n12866162 5635
-n12865824 5635
-n12865037 5635
-n12866635 5635
-n12865562 5635
-n12866002 5635
-n11879054 5637
-n11878283 5637
-n11875691 5637
-n11876634 5637
-n11877193 5637
-n11876803 5637
-n11876432 5637
-n11870418 5637
-n11875938 5637
-n11894327 5637
-n11881742 5637
-n11870747 5637
-n11896722 5745
-n11879722 5745
-n11895092 5753
-n11894770 5753
-n11882074 5754
-n11882426 5754
-n13235503 5641
-n13234678 5641
-n12039317 5658
-n12037691 5658
-n12038406 5658
-n12038585 5658
-n12148757 5665
-n12102133 5665
-n12121610 5769
-n12139575 5769
-n12113195 5769
-n12112918 5769
-n12116429 5769
-n12141495 5769
-n12133462 5769
-n12108871 5769
-n12104238 5769
-n12141167 5769
-n12115180 5769
-n12112008 5769
-n12128071 5769
-n12146311 5769
-n12124627 5769
-n12110778 5769
-n12129134 5769
-n12134025 5775
-n12145477 5775
-n12142085 5775
-n12135898 5775
-n12137120 5790
-n12127030 5790
-n12127768 5792
-n12127460 5792
-n12356023 5670
-n12357485 5670
-n12793494 5671
-n12794135 5671
-n12849279 5675
-n12849416 5675
-n12847374 5192
-n12517642 5192
-n11731659 5192
-n12813189 5192
-n11838916 5192
-n12517445 5192
-n12513172 5192
-n12823859 5192
-n12566954 5192
-n13148208 5192
-n12158798 5192
-n12485981 5192
-n13237188 5192
-n12826516 5192
-n13120211 5192
-n12580654 5192
-n11769621 5192
-n12824053 5192
-n11769803 5192
-n12383402 5192
-n12823717 5192
-n12157769 5192
-n13144794 5192
-n12371439 5192
-n12159055 5811
-n12160490 5811
-n12158443 5811
-n12160303 5825
-n12159388 5825
-n12160857 5826
-n12161969 5826
-n12827270 5814
-n12828791 5814
-n12827537 5814
-n11788727 5815
-n11789589 5815
-n12571781 5815
-n11792029 5815
-n12384839 5820
-n12384227 5820
-n12384037 5820
-n12164363 5822
-n12166128 5822
-n12165170 5842
-n12164881 5842
-n12164656 5842
-n13146583 5823
-n13145040 5823
-n12509476 5193
-n13112664 5193
-n13104059 5193
-n12655869 5193
-n12546183 5193
-n12671651 5850
-n12215579 5850
-n12901724 5850
-n12938193 5850
-n12680864 5850
-n12329260 5850
-n12924623 5850
-n12659356 5850
-n12788201 5850
-n12343480 5850
-n13142504 5850
-n11830906 5850
-n12504783 5850
-n12659539 5850
-n12214789 5850
-n11699442 5850
-n12217453 5850
-n12574866 5850
-n12374418 5850
-n12249542 5850
-n13118707 5850
-n12215022 5850
-n12342852 5850
-n12762896 5850
-n12306717 5850
-n11769176 5850
-n12805146 5850
-n12519089 5850
-n11754893 5850
-n12772908 5850
-n12624381 5850
-n12482031 5850
-n12243109 5850
-n12223764 5850
-n12170585 5850
-n12230794 5850
-n12791329 5850
-n12674120 5850
-n12917901 5850
-n12237486 5850
-n12185859 5850
-n12681893 5850
-n12905412 5850
-n12899537 5850
-n12899752 5850
-n12806015 5850
-n12011620 5850
-n12922763 5850
-n12651229 5850
-n12303083 5850
-n11928352 5850
-n11926365 5850
-n12223569 5850
-n12791064 5850
-n12311579 5850
-n11834654 5850
-n11760785 5850
-n12749679 5850
-n12489815 5850
-n12666965 5850
-n12929403 5850
-n12902662 5850
-n12620196 5850
-n12237641 5850
-n12625383 5850
-n12244153 5850
-n11774513 5850
-n12520864 5850
-n12516828 5850
-n12849717 5850
-n12485653 5850
-n12790430 5862
-n12788854 5862
-n11924445 5874
-n12632335 5874
-n11947251 5874
-n12099342 5874
-n11931540 5874
-n12545635 5874
-n11778257 5874
-n11924849 5874
-n12367611 5874
-n12602262 5874
-n12328567 5874
-n12328398 5874
-n12629305 5874
-n11907689 5874
-n11940006 5874
-n12546962 5874
-n11925898 5874
-n11947629 5929
-n11948864 5929
-n11948264 5929
-n12368451 5935
-n12369309 5935
-n12368028 5935
-n12307240 5878
-n12307076 5878
-n12483427 5885
-n12483625 5885
-n12482893 5885
-n12483841 5885
-n12173664 5888
-n12173912 5888
-n12171316 5888
-n12174521 5888
-n12171098 5888
-n12177844 5888
-n12174311 5888
-n12178896 5961
-n12179122 5961
-n12676534 5891
-n12676703 5891
-n12675876 5891
-n12920204 5892
-n12921868 5892
-n12621410 5916
-n12622297 5916
-n12245319 5919
-n12244650 5919
-n12244819 5919
-n12521394 5921
-n12530818 5921
-n12849952 5923
-n12850336 5923
-n12850168 5923
-n12495146 5851
-n12570972 5851
-n12196129 5851
-n13107694 5851
-n12202936 5851
-n13111881 5851
-n13103877 5851
-n12409231 5851
-n12765115 5851
-n12265600 5851
-n12409470 5851
-n12713866 5851
-n12281241 5851
-n11709205 5851
-n12189429 5851
-n12562785 5851
-n12284821 5851
-n12401335 5851
-n12570394 5851
-n11759224 5851
-n12286988 5851
-n12491826 5851
-n12527738 5851
-n12696492 5851
-n12325234 5851
-n12198286 5851
-n12330891 5851
-n11650558 5851
-n12405714 5851
-n12284262 5851
-n12714755 5851
-n13109733 5851
-n12262553 5851
-n12506341 5851
-n12303462 5851
-n12260799 5851
-n12302071 5851
-n12492106 5851
-n11762433 5851
-n12582231 5851
-n12774299 5851
-n13108481 5851
-n12267411 5851
-n11756092 5851
-n12662772 5851
-n13108662 5851
-n12528549 5851
-n12690653 5851
-n12180885 5851
-n13108545 5851
-n13108323 5851
-n12334293 5851
-n12670758 5851
-n12286826 5851
-n12724942 5851
-n12155009 5851
-n12570703 5851
-n12523475 5851
-n12154773 5851
-n12915811 5851
-n12268246 5851
-n13108131 5851
-n12806732 5851
-n12524188 5851
-n11758799 5851
-n12496427 5851
-n12568186 5980
-n12495895 5980
-n12196527 5982
-n12196336 5982
-n12196694 5982
-n12203529 5984
-n12204175 5984
-n12282933 5992
-n12282527 5992
-n12283542 5992
-n12282737 5992
-n12282235 5992
-n12402051 5997
-n12402840 5997
-n12401684 5997
-n12402348 5997
-n12402596 5997
-n11759853 5999
-n11759404 5999
-n12406715 6008
-n12406488 6008
-n12407890 6008
-n12406902 6008
-n12330469 6011
-n12345899 6011
-n11709674 6011
-n12329473 6011
-n12200143 6011
-n11712282 6011
-n12752205 6011
-n13110915 6011
-n12513933 6011
-n12189987 6011
-n12731401 6011
-n12717224 6011
-n12717072 6011
-n12946849 6011
-n12756457 6011
-n12201580 6011
-n11703669 6011
-n12491017 6011
-n12190410 6011
-n12242409 6011
-n07754894 6011
-n12818346 6011
-n12658308 6011
-n12658118 6011
-n12494794 6011
-n12317296 6011
-n12651821 6011
-n11711764 6071
-n11710136 6071
-n11711537 6071
-n11710393 6071
-n12755225 6075
-n12753573 6075
-n12754648 6075
-n12754781 6075
-n12755727 6075
-n12754981 6075
-n12755387 6075
-n12753007 6075
-n12753245 6075
-n12754003 6075
-n12759273 6076
-n12318378 6076
-n12288823 6076
-n12319204 6111
-n12319414 6111
-n12732491 6079
-n12733647 6079
-n12732756 6079
-n12732009 6079
-n12733870 6079
-n12732966 6117
-n12733218 6117
-n12948495 6082
-n12948251 6082
-n12948053 6082
-n12947313 6082
-n12757303 6083
-n12757458 6083
-n11704093 6085
-n11705171 6085
-n12707781 6095
-n12399132 6095
-n12400720 6095
-n12345280 6095
-n11695599 6095
-n12771192 6095
-n12704343 6095
-n12638218 6095
-n12644902 6095
-n12190869 6095
-n12373100 6095
-n12300840 6095
-n12743352 6095
-n12651611 6095
-n12629666 6095
-n12636224 6095
-n12648045 6095
-n12399384 6095
-n12301180 6095
-n12744387 6095
-n12640839 6095
-n12745386 6095
-n12633638 6095
-n12771390 6095
-n12761284 6095
-n12400489 6095
-n12333530 6095
-n12333771 6095
-n12333053 6095
-n12641413 6095
-n12332030 6095
-n12711984 6130
-n12709901 6130
-n12708293 6130
-n12713063 6130
-n12711596 6130
-n12709103 6130
-n12709688 6130
-n12710415 6162
-n12710295 6162
-n12710693 6163
-n12708654 6163
-n12708941 6163
-n12643313 6137
-n12638753 6137
-n12646740 6138
-n12645174 6138
-n12650379 6138
-n12634429 6152
-n12633994 6152
-n12634211 6152
-n12635532 6152
-n12635955 6180
-n12635744 6180
-n12643473 6159
-n12649065 6159
-n12641931 6159
-n12642200 6159
-n12650556 6159
-n12649539 6185
-n12649317 6185
-n12646605 6185
-n12647560 6186
-n12648888 6186
-n12263987 6012
-n12263038 6012
-n12306089 6014
-n12305986 6014
-n12305293 6014
-n12304703 6014
-n12305475 6014
-n12262018 6015
-n12261808 6015
-n12261571 6015
-n12595699 6019
-n12587132 6019
-n12583126 6019
-n12596709 6019
-n12591351 6019
-n12596849 6019
-n12582665 6019
-n12596148 6019
-n12595964 6019
-n12582846 6019
-n12587803 6019
-n12591017 6019
-n12588320 6206
-n12588780 6206
-n12585629 6206
-n12597134 6206
-n12598027 6206
-n12597466 6206
-n12583401 6206
-n12593994 6213
-n12590232 6213
-n11757653 6023
-n11756669 6023
-n11757851 6023
-n11664418 6025
-n13108841 6025
-n11647703 6229
-n11628793 6229
-n11658331 6229
-n11623105 6229
-n11630017 6229
-n11628456 6229
-n11658544 6229
-n11643835 6229
-n11624531 6229
-n11661372 6229
-n11645914 6229
-n11630489 6229
-n11640132 6229
-n11608250 6229
-n11620673 6229
-n11618861 6229
-n11627168 6229
-n11623815 6233
-n11624192 6233
-n11623967 6233
-n11635152 6234
-n11634736 6234
-n11635433 6234
-n11636204 6234
-n11644462 6237
-n11644226 6237
-n11644046 6237
-n11626585 6238
-n11625632 6238
-n11625003 6238
-n11626826 6238
-n11625804 6238
-n11626152 6238
-n11626409 6238
-n11646694 6240
-n11646167 6240
-n11632167 6241
-n11631854 6241
-n11632619 6241
-n11616662 6243
-n11611561 6243
-n11611356 6243
-n11617631 6243
-n11612575 6243
-n11611758 6243
-n11614713 6243
-n11615387 6243
-n11612018 6243
-n11611087 6243
-n11612923 6243
-n11616486 6243
-n11618290 6243
-n11612349 6243
-n11611233 6243
-n11617090 6243
-n11614250 6243
-n11618525 6243
-n11615026 6243
-n11617272 6243
-n11614039 6279
-n11613459 6279
-n11615967 6285
-n11614420 6285
-n11621029 6244
-n11622184 6293
-n11622591 6293
-n11621281 6293
-n11622368 6293
-n11621950 6293
-n11621547 6293
-n11621727 6293
-n11619455 6245
-n11619227 6245
-n11627512 6246
-n11628087 6246
-n11627908 6246
-n12691661 6027
-n12691428 6027
-n12316572 6031
-n12334891 6031
-n12340755 6031
-n12316444 6031
-n12336727 6309
-n12338796 6309
-n12338454 6309
-n12336973 6309
-n12336092 6309
-n12336224 6309
-n12337617 6309
-n12725521 6034
-n12727101 6034
-n12729521 6034
-n12726670 6034
-n12729315 6034
-n12729729 6319
-n12731029 6319
-n12270741 6040
-n12271643 6040
-n12278650 6040
-n12279458 6040
-n12269241 6040
-n12275489 6040
-n12273114 6040
-n12276872 6040
-n12278371 6040
-n12272883 6040
-n12269652 6040
-n12273768 6040
-n12277800 6327
-n12271933 6327
-n12279772 6330
-n12270946 6330
-n12269406 6330
-n12275675 6331
-n12276628 6331
-n12275131 6331
-n12274358 6336
-n12272239 6336
-n12277578 6336
-n12501202 6041
-n12814643 6041
-n12493208 6041
-n12807773 6042
-n12807409 6042
-n12807251 6042
-n11758122 6043
-n12915568 6043
-n12656369 5852
-n12656685 5852
-n12547215 5853
-n12547503 5853
-n11944196 5194
-n11984144 5194
-n11805544 5194
-n11874081 5194
-n11965218 5194
-n12392549 5194
-n11956348 5194
-n11945514 6361
-n11944954 6361
-n11998888 6361
-n11953884 6361
-n11954345 6361
-n11955153 6371
-n11954161 6371
-n12421137 5196
-n12421467 5196
-n12411461 5196
-n12451915 5196
-n12425281 5196
-n12459629 5196
-n12421683 6376
-n12422129 6376
-n12421917 6376
-n12411922 6377
-n12418221 6377
-n12416073 6377
-n12413165 6384
-n12414932 6384
-n12412606 6384
-n12412355 6384
-n12414035 6384
-n12413880 6384
-n12453186 6378
-n12452836 6378
-n12450344 6379
-n12426248 6379
-n12429352 6379
-n12460697 6379
-n12449526 6379
-n12473840 6379
-n12458550 6379
-n12449296 6379
-n12472024 6379
-n12457091 6379
-n12465557 6379
-n12461466 6379
-n12454159 6379
-n12431434 6379
-n12451240 6395
-n12451399 6395
-n12450840 6395
-n12428076 6396
-n12428747 6396
-n12427566 6396
-n12427184 6396
-n12426623 6396
-n12427757 6396
-n12461109 6398
-n12460957 6398
-n12454705 6407
-n12454949 6407
-n12435777 6408
-n12435649 6408
-n11819509 5197
-n11819912 5197
-n11842204 5197
-n11852028 6426
-n11851258 6426
-n11847169 6426
-n11853813 6426
-n11848479 6426
-n11844892 6426
-n11851839 6426
-n11845557 6426
-n11849871 6426
-n11849983 6426
-n11851578 6426
-n11854479 6426
-n11844371 6426
-n11853356 6426
-n11845793 6434
-n11845913 6434
-n11784126 5185
-n11783920 5185
-n12832315 5185
-n11723770 5186
-n11724109 5186
-n12766869 5186
-n12455950 5186
-n11723227 5186
-n12757816 5186
-n11773987 5186
-n12766595 5186
-n01324610 5174
-n02153109 5174
-n01323599 5174
-n01314781 5174
-n01321579 5174
-n01317541 5174
-n01318894 5174
-n01314663 5174
-n02311060 5174
-n01317916 5174
-n01321230 5174
-n01314388 5174
-n02075612 5174
-n02152740 5174
-n01466257 5174
-n01316949 5174
-n01905661 5174
-n01320872 5174
-n01319467 5174
-n01316422 5174
-n02157206 5174
-n10300303 5174
-n02152881 5174
-n01324431 5174
-n01321854 6458
-n01321770 6458
-n01956344 6458
-n01613615 6458
-n01318279 6458
-n02376542 6478
-n02122948 6478
-n01888045 6478
-n01322343 6478
-n01887896 6478
-n02412440 6478
-n01322221 6478
-n01322604 6478
-n01323261 6478
-n01322685 6478
-n02395694 6478
-n01504344 6481
-n01504179 6481
-n01318381 6459
-n02122580 6459
-n01317813 6459
-n02469472 6462
-n02309337 6462
-n02311617 6462
-n02264232 6462
-n02299157 6500
-n02310585 6500
-n02299505 6500
-n02302620 6500
-n02295390 6500
-n02310717 6500
-n02288268 6500
-n02297442 6500
-n02300797 6500
-n02285801 6500
-n02307325 6500
-n02376791 6464
-n02377063 6464
-n01323355 6464
-n01469103 6468
-n01468712 6468
-n01471682 6468
-n01473806 6519
-n01627424 6519
-n01861778 6519
-n09828216 6519
-n01459791 6519
-n02156871 6519
-n01661091 6519
-n01503061 6519
-n02512053 6520
-n01477525 6520
-n02528163 6528
-n02512938 6528
-n01482071 6528
-n02638596 6530
-n01457852 6530
-n01455778 6530
-n01456756 6530
-n02552171 6530
-n01428580 6530
-n02549989 6530
-n02640857 6533
-n02641379 6533
-n02639087 6533
-n02639605 6533
-n02640242 6533
-n02554730 6537
-n02618827 6537
-n02549248 6537
-n02603317 6537
-n01451426 6537
-n02548247 6537
-n02642107 6537
-n02657368 6537
-n02603540 6537
-n02652668 6537
-n02560110 6545
-n02556846 6545
-n02555863 6545
-n02581957 6545
-n02564270 6545
-n02623445 6545
-n02565573 6545
-n02610664 6545
-n02590702 6545
-n02588286 6545
-n02620167 6545
-n02573704 6545
-n02576223 6545
-n02606384 6545
-n02605316 6545
-n02619550 6545
-n02561108 6545
-n02619165 6545
-n02610066 6545
-n02562315 6545
-n02586543 6545
-n02593019 6545
-n02594250 6545
-n02616851 6545
-n02585872 6545
-n02607862 6545
-n02557182 6556
-n02557318 6556
-n02557749 6556
-n02624167 6560
-n02628062 6560
-n02631475 6560
-n02630281 6560
-n02631041 6560
-n02629230 6560
-n02626762 6560
-n02625258 6584
-n02625612 6584
-n02624807 6584
-n02626265 6592
-n02625851 6592
-n02627292 6590
-n02627532 6590
-n02576575 6567
-n02579928 6567
-n02580336 6567
-n02576906 6598
-n02579303 6598
-n02578771 6598
-n02578928 6598
-n02580679 6600
-n02580830 6600
-n02607201 6568
-n02607470 6568
-n02607072 6568
-n02605703 6569
-n02606052 6569
-n02605936 6569
-n02561381 6571
-n02561661 6571
-n02561514 6571
-n02564720 6574
-n02563648 6574
-n02563182 6574
-n02563792 6574
-n02562796 6574
-n02565072 6616
-n02565324 6616
-n02599052 6577
-n02596381 6577
-n02597608 6577
-n02596067 6577
-n02595702 6577
-n02598573 6624
-n02598878 6624
-n02642644 6551
-n02649546 6551
-n02643112 6630
-n02643566 6630
-n02643836 6630
-n02644113 6630
-n02658531 6552
-n02657694 6552
-n02660208 6552
-n02654745 6554
-n02654425 6554
-n02656670 6554
-n02655020 6554
-n02655523 6554
-n02653145 6554
-n02656032 6643
-n02655848 6643
-n02541687 6538
-n02542432 6538
-n02524202 6538
-n02533834 6538
-n02543565 6538
-n02517442 6538
-n01438208 6538
-n02526121 6538
-n02529772 6538
-n02518324 6652
-n02520147 6652
-n02519686 6652
-n02519862 6652
-n02583567 6653
-n01444339 6653
-n01446589 6653
-n01438581 6653
-n01439121 6653
-n01448951 6653
-n02584449 6660
-n02584145 6660
-n02583890 6660
-n01446760 6662
-n01447331 6662
-n01448594 6662
-n01448291 6662
-n01439514 6664
-n01442972 6664
-n01440764 6664
-n01443831 6664
-n01443537 6664
-n01443243 6664
-n01449712 6665
-n01449374 6665
-n02527622 6654
-n02527057 6654
-n02527271 6654
-n02532602 6655
-n02533209 6655
-n02566834 6531
-n02537085 6531
-n02534734 6531
-n02514041 6531
-n02568959 6686
-n02568087 6686
-n02570164 6690
-n02569484 6690
-n02537716 6687
-n02538216 6687
-n02537525 6687
-n02537319 6687
-n02538010 6687
-n02536456 6688
-n02535537 6688
-n02535258 6688
-n02536864 6688
-n02535759 6688
-n01482330 6532
-n01495701 6532
-n01487506 6704
-n01495493 6704
-n01486838 6704
-n01488918 6704
-n01492357 6704
-n01494475 6704
-n01483522 6704
-n01488038 6704
-n01489501 6709
-n01491006 6709
-n01489709 6709
-n01489920 6709
-n01490112 6709
-n01491361 6709
-n01490670 6709
-n01493146 6710
-n01492569 6710
-n01484850 6712
-n01484097 6712
-n01483830 6712
-n01498041 6705
-n01496331 6705
-n01499396 6705
-n01500476 6705
-n01500091 6705
-n01501160 6705
-n01498989 6705
-n01629276 6521
-n01639765 6521
-n01629962 6733
-n01630284 6733
-n01629819 6733
-n01637615 6733
-n01632047 6733
-n01631663 6736
-n01630670 6736
-n01630901 6736
-n01632458 6739
-n01632777 6739
-n01632601 6739
-n01645776 6734
-n01640846 6734
-n01644900 6734
-n01643896 6734
-n01650167 6734
-n01644373 6734
-n01646648 6746
-n01646902 6746
-n01646292 6746
-n01646802 6746
-n01646388 6746
-n01647640 6746
-n01646555 6746
-n01642539 6747
-n01641206 6747
-n01641577 6747
-n01641391 6747
-n01642257 6747
-n01641739 6747
-n01650690 6750
-n01652026 6750
-n01886756 6522
-n01871265 6522
-n01871875 6522
-n01874434 6522
-n01862399 6522
-n02082791 6767
-n01887474 6767
-n01889074 6767
-n02372584 6767
-n01888411 6767
-n02453611 6767
-n02430559 6767
-n01887623 6767
-n02469914 6767
-n02075296 6767
-n02139199 6767
-n02062017 6767
-n02323449 6767
-n02372952 6767
-n01888181 6767
-n02329401 6767
-n01887787 6767
-n02453108 6767
-n01888264 6767
-n02461830 6767
-n02370806 6767
-n01891633 6774
-n01893825 6774
-n02454794 6777
-n02456962 6777
-n02454379 6777
-n02460009 6777
-n02458135 6796
-n02457945 6796
-n02457408 6796
-n02460451 6798
-n02461128 6798
-n02470238 6780
-n02501583 6780
-n02472293 6780
-n02470325 6780
-n02496913 6780
-n02484322 6780
-n02475669 6806
-n02474777 6806
-n02475078 6806
-n02470899 6807
-n02483092 6813
-n02480153 6813
-n02483708 6814
-n02483362 6814
-n02481823 6815
-n02480495 6815
-n02480855 6815
-n02482650 6818
-n02482474 6818
-n02481103 6820
-n02481366 6820
-n02481500 6820
-n02500267 6808
-n02497673 6808
-n02499316 6808
-n02499808 6808
-n02499022 6808
-n02484473 6809
-n02489589 6809
-n02486410 6831
-n02485536 6831
-n02489166 6831
-n02488702 6831
-n02486261 6831
-n02487347 6831
-n02484975 6831
-n02488291 6831
-n02486657 6833
-n02486908 6833
-n02487847 6838
-n02487547 6838
-n02493793 6832
-n02490219 6832
-n02494079 6832
-n02493509 6832
-n02492035 6832
-n02492660 6832
-n02491107 6846
-n02490811 6846
-n02507649 6781
-n02120997 6781
-n02134971 6781
-n02083346 6781
-n02441326 6781
-n02131653 6781
-n02509515 6853
-n02508213 6853
-n02509815 6853
-n02508021 6853
-n02509197 6853
-n02510455 6853
-n02127808 6854
-n02121620 6854
-n02128925 6865
-n02129604 6865
-n02128385 6865
-n02130308 6865
-n02129165 6865
-n02128757 6865
-n02129923 6868
-n02129837 6868
-n01323068 6868
-n02129463 6871
-n01322898 6871
-n02121808 6866
-n02124623 6866
-n02122878 6878
-n02123159 6878
-n02123045 6878
-n02123242 6878
-n02124484 6878
-n02124075 6878
-n02124313 6878
-n02122298 6878
-n02123478 6878
-n02123394 6878
-n02123917 6878
-n02123597 6878
-n02122510 6878
-n02122725 6878
-n02122430 6878
-n02126640 6879
-n02125494 6879
-n02127052 6879
-n02125311 6879
-n02125081 6879
-n02126139 6879
-n02126787 6879
-n02125010 6879
-n02127292 6897
-n02127482 6897
-n02127678 6897
-n02127381 6897
-n02138441 6855
-n02137015 6855
-n02137549 6855
-n02138647 6907
-n02138777 6907
-n02084071 6856
-n02115335 6856
-n02114100 6856
-n02083672 6856
-n02115096 6856
-n02118333 6856
-n02117135 6856
-n02110958 6912
-n02112826 6912
-n02111500 6912
-n02112706 6912
-n02113335 6912
-n02084861 6912
-n02111129 6912
-n02112497 6912
-n02110341 6912
-n02084732 6912
-n02111626 6912
-n02085374 6912
-n02087122 6912
-n02103406 6912
-n02110806 6912
-n02113978 6912
-n02111277 6912
-n02085272 6912
-n02113186 6920
-n02113023 6920
-n02113799 6923
-n02113624 6923
-n02113712 6923
-n02112018 6929
-n02112350 6929
-n02112137 6929
-n02111889 6929
-n02086346 6930
-n02086240 6930
-n02087046 6930
-n02085936 6930
-n02085782 6930
-n02085620 6930
-n02086079 6930
-n02086753 6946
-n02086646 6946
-n02086910 6946
-n02092468 6931
-n02087394 6931
-n02089468 6931
-n02098550 6931
-n02087551 6931
-n02089232 6931
-n02096437 6956
-n02096756 6956
-n02095412 6956
-n02096051 6956
-n02098286 6956
-n02093859 6956
-n02094114 6956
-n02093754 6956
-n02094433 6956
-n02095314 6956
-n02093647 6956
-n02097474 6956
-n02097658 6956
-n02098413 6956
-n02097298 6956
-n02096177 6956
-n02096585 6956
-n02095050 6956
-n02096294 6956
-n02093056 6956
-n02094258 6956
-n02093991 6956
-n02094562 6956
-n02098105 6956
-n02097209 6963
-n02097130 6963
-n02097047 6963
-n02095570 6964
-n02095727 6964
-n02095889 6964
-n02093256 6981
-n02093428 6981
-n02094721 6984
-n02094931 6984
-n02098906 6959
-n02099997 6959
-n02098806 6959
-n02100399 6959
-n02101108 6959
-n02099029 6959
-n02100583 6997
-n02100236 6997
-n02101006 6999
-n02100735 6999
-n02100877 6999
-n02102318 7000
-n02102605 7000
-n02101861 7000
-n02101388 7000
-n02101556 7000
-n02102480 7000
-n02102973 7000
-n02102040 7009
-n02102177 7009
-n02099267 7001
-n02099601 7001
-n02099429 7001
-n02099849 7001
-n02099712 7001
-n02091635 6960
-n02088466 6960
-n02090475 6960
-n02088238 6960
-n02091244 6960
-n02091467 6960
-n02088839 6960
-n02091831 6960
-n02088094 6960
-n02089078 6960
-n02088632 6960
-n02092002 6960
-n02090379 6960
-n02089555 6960
-n02088364 6960
-n02092339 6960
-n02090827 6960
-n02090622 7023
-n02090721 7023
-n02089973 7034
-n02089867 7034
-n02091134 7037
-n02091032 7037
-n02109047 6932
-n02103841 6932
-n02109961 6932
-n02108551 6932
-n02109811 6932
-n02109525 6932
-n02108915 6932
-n02106854 6932
-n02108672 6932
-n02107420 6932
-n02108422 6932
-n02104523 6932
-n02108089 6932
-n02108254 6932
-n02104029 7045
-n02104280 7045
-n02106966 7045
-n02104365 7045
-n02107142 7060
-n02107312 7060
-n02110627 7060
-n02110185 7048
-n02110063 7048
-n02107574 7053
-n02108000 7053
-n02107683 7053
-n02107908 7053
-n02104882 7055
-n02105412 7055
-n02105855 7055
-n02105505 7055
-n02106166 7055
-n02106030 7055
-n02106550 7055
-n02105641 7055
-n02106662 7055
-n02105251 7055
-n02106382 7055
-n02105056 7071
-n02105162 7071
-n02116738 6913
-n02115641 6913
-n02115913 6913
-n02114855 6914
-n01322508 6914
-n02114712 6914
-n02114548 6914
-n02114367 6914
-n02119022 6917
-n02119477 6917
-n02119789 6917
-n02120079 6917
-n02120505 6917
-n02119634 6917
-n02117900 6918
-n02117512 6918
-n02442845 6857
-n02443484 6857
-n02446206 6857
-n02450295 6857
-n02445394 6857
-n02444819 6857
-n02441942 6857
-n02443114 6857
-n02449350 6857
-n02445715 6857
-n02447366 6857
-n02443346 6857
-n02445004 7105
-n02445171 7105
-n02134084 6858
-n02133161 6858
-n01322983 6858
-n02133704 6858
-n02132136 6858
-n02134418 6858
-n02132580 7118
-n02132788 7118
-n02141306 6782
-n02140049 6782
-n02139671 6782
-n02146371 7122
-n02145424 7122
-n02147591 7126
-n02147947 7126
-n02062430 6783
-n02073250 6783
-n02075927 6783
-n02062744 7129
-n02066707 7132
-n02063224 7132
-n02068974 7133
-n02068541 7133
-n02070430 7135
-n02069412 7135
-n02069701 7135
-n02071636 7135
-n02071294 7135
-n02072798 7135
-n02070174 7139
-n02069974 7139
-n02066245 7134
-n02064338 7134
-n02064816 7134
-n02065407 7146
-n02065026 7146
-n02073831 7130
-n02074367 7130
-n02081571 7131
-n02076196 7131
-n02079389 7153
-n02076779 7153
-n02080415 7154
-n02079851 7154
-n02080146 7154
-n02077658 7155
-n02077152 7155
-n02077923 7155
-n02078574 7161
-n02078738 7161
-n02079005 7161
-n02328429 6784
-n02323902 6784
-n02324045 7166
-n02326432 7166
-n02325722 7167
-n02325366 7167
-n02324587 7167
-n02324850 7167
-n02324514 7167
-n02328150 7167
-n02324431 7167
-n02327842 7168
-n02326862 7168
-n02327028 7168
-n02367492 6787
-n02331046 6787
-n02365480 6787
-n02343320 6787
-n02341974 6787
-n02346627 6787
-n02366959 6787
-n02339376 6787
-n02363005 6787
-n02342885 6787
-n02359324 6787
-n02355227 6787
-n02361337 6787
-n02359556 6787
-n02364520 6787
-n02343772 6787
-n02330245 6787
-n02338145 6787
-n02353861 7180
-n02333546 7180
-n02333909 7180
-n02360282 7190
-n02358091 7190
-n02359915 7190
-n02355477 7190
-n02358890 7201
-n02358390 7201
-n02356381 7203
-n02357111 7203
-n02356977 7203
-n02357401 7203
-n02356798 7203
-n02361706 7191
-n02361587 7191
-n02364840 7193
-n02364673 7193
-n02332755 7195
-n02332156 7195
-n02503517 6789
-n02504458 7217
-n02504013 7217
-n02394477 6792
-n02373336 6792
-n02399000 7220
-n02437136 7220
-n02395003 7220
-n02437616 7220
-n02438580 7220
-n02397744 7220
-n02398521 7220
-n02397529 7220
-n02429456 7222
-n02430045 7222
-n02401031 7222
-n02439033 7222
-n02439398 7222
-n02434190 7231
-n02433925 7231
-n02433318 7231
-n02432983 7231
-n02431337 7231
-n02432511 7231
-n02430830 7231
-n02431122 7231
-n02434954 7231
-n02432291 7231
-n02431785 7231
-n02431976 7231
-n02433546 7231
-n02432704 7231
-n02414578 7232
-n02410509 7232
-n02411206 7232
-n02407959 7232
-n02402010 7232
-n02419796 7232
-n02411705 7232
-n02418064 7232
-n02416519 7232
-n02416104 7249
-n02415435 7249
-n02415253 7249
-n02415577 7259
-n02415829 7259
-n02410702 7250
-n02410900 7250
-n02408817 7252
-n02408429 7252
-n02409508 7252
-n02404573 7253
-n02402175 7253
-n02404906 7253
-n02402425 7253
-n02405302 7269
-n02410011 7269
-n02404186 7271
-n02403003 7271
-n02403325 7271
-n02403231 7271
-n02403740 7271
-n02403454 7271
-n02406174 7271
-n02404432 7274
-n02406647 7274
-n02407625 7274
-n02407071 7274
-n02405929 7274
-n02407276 7274
-n02407390 7280
-n02406533 7280
-n02424305 7254
-n02421136 7254
-n02420509 7254
-n02427724 7254
-n02426813 7254
-n02426481 7254
-n02421792 7254
-n02421449 7254
-n02424695 7254
-n02420828 7254
-n02422391 7254
-n02422699 7254
-n02424486 7254
-n02425887 7254
-n02422106 7254
-n02424085 7254
-n02428508 7254
-n02428349 7254
-n02423022 7254
-n02424909 7297
-n02425228 7297
-n02423218 7307
-n02423589 7307
-n02413131 7255
-n02413050 7255
-n02411999 7255
-n02412210 7255
-n02412080 7255
-n02418465 7256
-n02419336 7256
-n02419634 7256
-n02416964 7257
-n02416820 7257
-n02417914 7257
-n02417387 7257
-n02417070 7257
-n02416880 7257
-n02417534 7257
-n02437482 7223
-n02437312 7223
-n02396427 7224
-n02397096 7224
-n02396014 7224
-n02395406 7224
-n02438173 7225
-n02438272 7225
-n02391994 7221
-n02393580 7221
-n02374149 7221
-n02393940 7221
-n02392434 7335
-n02393161 7335
-n02392824 7335
-n02374451 7337
-n02391049 7337
-n02389346 7337
-n02388917 7342
-n02377603 7342
-n02382948 7342
-n02389128 7342
-n02381460 7342
-n02389261 7342
-n02382204 7342
-n02375302 7342
-n02376918 7342
-n02387722 7342
-n02388832 7342
-n02381609 7342
-n02377703 7342
-n02388735 7342
-n02386014 7342
-n02380464 7342
-n02386310 7342
-n02377480 7342
-n02380335 7342
-n02382437 7342
-n02389026 7342
-n02385214 7347
-n02383231 7347
-n02388276 7347
-n02377291 7353
-n02377181 7353
-n02377388 7353
-n02379430 7357
-n02378969 7357
-n02378541 7357
-n02381364 7357
-n02379329 7357
-n02381004 7357
-n02381261 7357
-n02379908 7357
-n02379183 7357
-n02386141 7359
-n02386224 7359
-n02382338 7361
-n02387254 7361
-n02386496 7361
-n02386853 7385
-n02387093 7385
-n02386968 7385
-n02387346 7385
-n02382039 7363
-n02380745 7363
-n02380583 7363
-n02382750 7364
-n02382635 7364
-n02382850 7364
-n02391234 7343
-n02391373 7343
-n02391508 7343
-n02390015 7344
-n02389779 7344
-n02389559 7344
-n01872401 6769
-n01873310 6769
-n01872772 6769
-n01877134 6770
-n01882714 6770
-n01883070 6770
-n01875313 6770
-n01874928 6770
-n01883513 6770
-n01881171 6770
-n01877606 7405
-n01877812 7405
-n01878929 7413
-n01879509 7413
-n01884834 7410
-n01885498 7410
-n01662622 6526
-n01661818 6526
-n01662784 7418
-n01669372 7420
-n01669191 7420
-n01666228 7420
-n01667778 7420
-n01672032 7420
-n01669654 7420
-n01663401 7420
-n01665932 7420
-n01668665 7420
-n01670092 7420
-n01667114 7420
-n01668892 7420
-n01664990 7427
-n01664065 7427
-n01663782 7427
-n01665541 7427
-n01664369 7427
-n01664674 7437
-n01664492 7437
-n01670802 7430
-n01671125 7430
-n01670535 7430
-n01671479 7430
-n01696633 7419
-n01726692 7419
-n01673282 7419
-n01674464 7419
-n01699831 7419
-n01698434 7444
-n01697178 7444
-n01698640 7444
-n01699040 7444
-n01697611 7450
-n01697457 7450
-n01740551 7445
-n01752165 7445
-n01751748 7445
-n01745125 7445
-n01741562 7445
-n01727646 7445
-n01753488 7456
-n01752736 7456
-n01752585 7456
-n01753032 7456
-n01753959 7456
-n01754533 7465
-n01754370 7465
-n01754876 7465
-n01757901 7468
-n01757677 7468
-n01755581 7468
-n01757115 7468
-n01755740 7468
-n01756089 7468
-n01756508 7468
-n01756291 7468
-n01756733 7468
-n01757343 7468
-n01747885 7458
-n01749939 7458
-n01751472 7458
-n01747589 7458
-n01749582 7458
-n01746359 7458
-n01745484 7458
-n01748264 7479
-n01748906 7479
-n01741943 7459
-n01743605 7488
-n01742821 7488
-n01742172 7488
-n01743086 7488
-n01744100 7489
-n01743936 7489
-n01744401 7489
-n01730960 7460
-n01735189 7460
-n01733757 7460
-n01729322 7460
-n01732244 7460
-n01731545 7460
-n01737021 7460
-n01729977 7460
-n01730812 7460
-n01730563 7460
-n01728572 7460
-n01728920 7460
-n01739381 7460
-n01734418 7460
-n01740131 7460
-n01735577 7497
-n01735439 7497
-n01734104 7498
-n01733957 7498
-n01732614 7500
-n01732789 7500
-n01737875 7502
-n01737472 7502
-n01737728 7502
-n01730185 7503
-n01730307 7503
-n01734808 7509
-n01734637 7509
-n01675722 7447
-n01693783 7447
-n01694709 7447
-n01684133 7447
-n01692333 7447
-n01695060 7447
-n01685808 7447
-n01676755 7447
-n01687665 7447
-n01674990 7447
-n01694178 7447
-n01692864 7447
-n01689411 7447
-n01681940 7531
-n01681653 7531
-n01678343 7531
-n01682714 7531
-n01682435 7531
-n01681328 7531
-n01680264 7531
-n01679626 7531
-n01677366 7531
-n01677747 7531
-n01679962 7531
-n01680655 7543
-n01680478 7543
-n01687978 7532
-n01689081 7532
-n01688243 7532
-n01693334 7535
-n01693175 7535
-n01690149 7536
-n01689811 7536
-n01700470 7448
-n01713764 7448
-n01701859 7557
-n01704323 7557
-n01515303 6527
-n01844917 6527
-n01524359 6527
-n01514668 6527
-n01833805 6527
-n01838038 6527
-n01825930 6527
-n01844551 6527
-n01604330 6527
-n01834918 6527
-n01822602 6527
-n01514752 6527
-n01517565 6527
-n01789386 6527
-n01844231 6527
-n01816887 6527
-n01517966 6527
-n01503976 6527
-n01514859 6527
-n02000954 7562
-n01858441 7562
-n02016358 7562
-n02021795 7562
-n01845132 7562
-n02008041 7580
-n02014237 7580
-n02021050 7580
-n02018795 7580
-n02005790 7580
-n02002075 7580
-n02013177 7580
-n02012849 7580
-n02013706 7580
-n02014524 7580
-n02007558 7580
-n02014941 7580
-n02006656 7580
-n02005399 7580
-n02022684 7580
-n02008497 7585
-n02010453 7585
-n02009229 7585
-n02011281 7585
-n02008643 7585
-n02008796 7585
-n02011460 7585
-n02010728 7601
-n02011016 7601
-n02009750 7605
-n02009508 7605
-n02009380 7605
-n02009912 7605
-n02010272 7605
-n02012185 7606
-n02011805 7606
-n02006063 7589
-n02006364 7589
-n02003204 7590
-n02002724 7590
-n02002556 7590
-n02004131 7590
-n02003839 7590
-n02004492 7590
-n02004855 7590
-n02017725 7596
-n02015357 7596
-n02016066 7596
-n02015554 7596
-n02018027 7596
-n02018368 7629
-n02018207 7629
-n02006985 7597
-n02007284 7597
-n02023341 7599
-n02034129 7599
-n02034295 7599
-n02036053 7599
-n02040266 7599
-n02037110 7599
-n02034661 7599
-n02031585 7599
-n02031934 7599
-n02030996 7599
-n02036711 7599
-n02026059 7599
-n02033779 7599
-n02038993 7599
-n02033561 7599
-n02037464 7599
-n02024479 7634
-n02025239 7634
-n02023992 7634
-n02024763 7634
-n02025043 7634
-n02023855 7634
-n02034971 7640
-n02035210 7640
-n02032222 7642
-n02032355 7642
-n02032480 7642
-n02033041 7642
-n02030287 7645
-n02027897 7645
-n02030837 7645
-n02029087 7645
-n02029378 7645
-n02028035 7645
-n02027075 7645
-n02028900 7645
-n02027492 7645
-n02029706 7645
-n02027357 7645
-n02028727 7645
-n02030035 7645
-n02026948 7645
-n02028175 7645
-n02028342 7676
-n02028451 7676
-n02037869 7649
-n02038466 7649
-n01858845 7581
-n01858906 7581
-n01860002 7581
-n01858281 7581
-n01859190 7581
-n01858780 7581
-n01859325 7581
-n01860187 7581
-n01859496 7581
-n01859689 7689
-n01859852 7689
-n02016956 7582
-n02017213 7582
-n02016816 7582
-n02040505 7583
-n02057731 7583
-n02050004 7583
-n02045369 7583
-n02049088 7583
-n02051474 7583
-n02055658 7583
-n02047614 7583
-n02041085 7695
-n02044178 7695
-n02043808 7695
-n02043333 7703
-n02041246 7703
-n02043063 7703
-n02042472 7707
-n02041678 7707
-n02042180 7707
-n02041875 7707
-n02042759 7707
-n02042046 7707
-n02044778 7704
-n02044517 7704
-n02059162 7696
-n02058221 7696
-n02058594 7696
-n02060411 7717
-n02060889 7717
-n02060133 7717
-n02050442 7697
-n02050313 7697
-n02051059 7697
-n02050586 7697
-n02050809 7697
-n02045864 7698
-n02046759 7698
-n02045596 7698
-n02047260 7729
-n02046939 7729
-n02047411 7729
-n02047045 7729
-n02052775 7700
-n02054036 7700
-n02054502 7700
-n02051845 7700
-n02053083 7700
-n02054711 7700
-n02055107 7700
-n02052204 7738
-n02052365 7738
-n02053425 7739
-n02053584 7739
-n02055803 7701
-n02056728 7746
-n02057035 7746
-n02056570 7746
-n02057330 7746
-n02056228 7746
-n02048115 7702
-n02048353 7702
-n02047975 7702
-n01845477 7584
-n01855672 7755
-n01846331 7755
-n01856890 7756
-n01857851 7756
-n01857079 7756
-n01856380 7756
-n01857512 7756
-n01857325 7756
-n01856072 7756
-n01856553 7756
-n01856155 7756
-n01857632 7756
-n01847253 7757
-n01851375 7757
-n01849676 7757
-n01852329 7757
-n01850192 7757
-n01847978 7757
-n01852400 7757
-n01848840 7757
-n01849157 7757
-n01847806 7757
-n01849466 7757
-n01848123 7757
-n01850553 7757
-n01847089 7757
-n01851895 7757
-n01849863 7757
-n01852142 7757
-n01847000 7757
-n01852671 7757
-n01848976 7757
-n01847407 7757
-n01848648 7757
-n01852861 7757
-n01851207 7757
-n01851038 7757
-n01850373 7757
-n01850873 7757
-n01847170 7757
-n01851573 7769
-n01851731 7769
-n01848555 7779
-n01848323 7779
-n01848453 7779
-n01853195 7790
-n01853870 7790
-n01854415 7790
-n01853498 7790
-n01853666 7790
-n01854838 7803
-n01855032 7803
-n01855476 7803
-n01855188 7803
-n01854700 7803
-n01584225 7563
-n01546506 7563
-n01546921 7563
-n01525720 7563
-n01546039 7563
-n01539573 7563
-n01585121 7811
-n01585715 7811
-n01584695 7811
-n01586374 7811
-n01584853 7811
-n01586020 7811
-n01552813 7813
-n01551711 7813
-n01555004 7813
-n01554448 7813
-n01547832 7813
-n01548301 7827
-n01549886 7827
-n01549430 7827
-n01550172 7827
-n01549641 7827
-n01555305 7827
-n01549053 7828
-n01548865 7828
-n01548492 7828
-n01563128 7814
-n01589718 7814
-n01578575 7814
-n01576695 7814
-n01528654 7814
-n01591697 7814
-n01594004 7814
-n01557185 7814
-n01527347 7814
-n01597022 7814
-n01598588 7814
-n01527617 7814
-n01576076 7814
-n01555809 7814
-n01587834 7814
-n01602630 7814
-n01597336 7814
-n01538955 7814
-n01529672 7814
-n01600657 7814
-n01601694 7814
-n01527194 7814
-n01586941 7814
-n01588002 7814
-n01527917 7814
-n01587526 7814
-n01601068 7814
-n01603600 7814
-n01602832 7814
-n01571904 7814
-n01575745 7814
-n01566645 7814
-n01594372 7814
-n01589286 7814
-n01526521 7814
-n01582856 7814
-n01528396 7814
-n01528845 7814
-n01556182 7814
-n01542786 7814
-n01590583 7814
-n01564914 7837
-n01567133 7837
-n01563746 7837
-n01564394 7837
-n01563449 7837
-n01565078 7837
-n01570676 7879
-n01570839 7879
-n01570267 7879
-n01567678 7879
-n01569060 7879
-n01568892 7879
-n01568294 7879
-n01569971 7879
-n01569262 7879
-n01567879 7879
-n01568720 7879
-n01569423 7879
-n01563945 7880
-n01564217 7880
-n01566207 7881
-n01565599 7881
-n01565930 7881
-n01564773 7881
-n01579410 7839
-n01581984 7839
-n01579578 7839
-n01582398 7839
-n01580077 7839
-n01579260 7839
-n01579028 7839
-n01582220 7839
-n01579149 7839
-n01580870 7906
-n01581166 7906
-n01577035 7840
-n01578180 7840
-n01577659 7840
-n01593028 7842
-n01592084 7842
-n01592694 7842
-n01592387 7842
-n01592540 7917
-n01592257 7917
-n01562265 7844
-n01558993 7844
-n01559477 7844
-n01558461 7844
-n01558307 7844
-n01558149 7844
-n01560105 7844
-n01558594 7844
-n01557962 7844
-n01558765 7844
-n01561732 7844
-n01562014 7844
-n01560280 7844
-n01562451 7844
-n01561452 7844
-n01560419 7844
-n01560636 7844
-n01559804 7844
-n01560793 7938
-n01560935 7938
-n01598988 7847
-n01599556 7847
-n01600085 7847
-n01599269 7942
-n01599159 7942
-n01597906 7853
-n01598074 7853
-n01597737 7853
-n01533651 7855
-n01534155 7855
-n01540233 7855
-n01531178 7855
-n01534762 7855
-n01533893 7855
-n01537134 7855
-n01531344 7855
-n01541386 7855
-n01531512 7855
-n01533481 7855
-n01541922 7855
-n01533000 7855
-n01544704 7855
-n01530575 7855
-n01532325 7855
-n01532511 7855
-n01531811 7855
-n01534582 7855
-n01532829 7855
-n01530439 7855
-n01533339 7855
-n01531971 7855
-n01534433 7855
-n01541102 7952
-n01540566 7952
-n01540832 7952
-n01536644 7954
-n01535469 7954
-n01536334 7954
-n01536186 7954
-n01535690 7954
-n01536780 7954
-n01536035 7954
-n01537544 7956
-n01538059 7956
-n01538630 7956
-n01537895 7956
-n01538200 7956
-n01603812 7864
-n01603953 7864
-n01573898 7866
-n01573074 7866
-n01572328 7866
-n01572782 7866
-n01574045 7866
-n01573240 7992
-n01573360 7992
-n01572654 7993
-n01572489 7993
-n01574560 7995
-n01575117 7995
-n01574390 7995
-n01575401 7995
-n01595450 7869
-n01595168 7869
-n01595624 7869
-n01594787 7869
-n01594968 7869
-n01595974 8006
-n01596273 8006
-n01583209 7872
-n01583495 7872
-n01543632 7876
-n01544389 7876
-n01591123 7877
-n01591005 7877
-n01591301 7877
-n01539925 7816
-n01540090 7816
-n01834540 7565
-n01834177 7565
-n01843065 7566
-n01838598 7566
-n01842235 7566
-n01843719 7566
-n01843383 7566
-n01839598 8023
-n01839330 8023
-n01839086 8023
-n01841102 8023
-n01841679 8023
-n01840775 8023
-n01839750 8023
-n01841441 8030
-n01841288 8030
-n01827403 7567
-n01826364 7567
-n01830915 7567
-n01830042 7567
-n01829413 7567
-n01826680 7567
-n01829869 7567
-n01828970 7567
-n01828556 8036
-n01827793 8036
-n01828096 8036
-n01616318 7569
-n01605630 7569
-n01618503 7569
-n01613294 7569
-n01621127 7569
-n01616764 8047
-n01618922 8047
-n01617766 8052
-n01617443 8052
-n01618082 8052
-n01617095 8052
-n01620414 8053
-n01619310 8053
-n01620735 8053
-n01619536 8053
-n01619835 8061
-n01620135 8061
-n01609751 8048
-n01606522 8048
-n01607812 8048
-n01608265 8048
-n01610955 8048
-n01610552 8048
-n01606809 8048
-n01616086 8048
-n01608432 8048
-n01607600 8048
-n01607962 8048
-n01606672 8048
-n01609956 8064
-n01610226 8064
-n01613177 8068
-n01611800 8068
-n01611472 8068
-n01612628 8068
-n01612476 8068
-n01612275 8068
-n01611969 8068
-n01612122 8068
-n01609391 8072
-n01609062 8072
-n01608814 8072
-n01613807 8050
-n01614343 8050
-n01615121 8050
-n01614925 8050
-n01614038 8050
-n01614556 8050
-n01615703 8091
-n01615458 8091
-n01622959 8051
-n01621635 8051
-n01623880 8051
-n01623425 8051
-n01622352 8051
-n01623615 8051
-n01622120 8051
-n01625562 8051
-n01623706 8051
-n01624115 8051
-n01624537 8051
-n01622483 8051
-n01623110 8051
-n01624833 8051
-n01622779 8051
-n01837072 7570
-n01835276 7570
-n01825278 7571
-n01823013 7571
-n01824575 8115
-n01824035 8115
-n01521399 7573
-n01521756 7573
-n01518878 7573
-n01519873 7573
-n01519563 7573
-n01789740 7574
-n01810700 7574
-n01801876 7574
-n01791463 7574
-n01791107 7574
-n02153203 7574
-n01794344 8123
-n01791954 8123
-n01794158 8123
-n01809106 8123
-n01791625 8123
-n01792429 8133
-n01792158 8133
-n01793435 8133
-n01792042 8133
-n01793715 8133
-n01792640 8133
-n01793249 8139
-n01792955 8139
-n01815601 8124
-n01811909 8124
-n01814370 8143
-n01812337 8143
-n01813088 8143
-n01812662 8143
-n01814921 8144
-n01814755 8144
-n01813532 8145
-n01813385 8145
-n01813948 8145
-n01814217 8145
-n01802721 8128
-n01810268 8128
-n01795088 8128
-n01803078 8154
-n01806567 8154
-n01807496 8154
-n01807105 8157
-n01803362 8157
-n01804163 8157
-n01805801 8157
-n01806297 8163
-n01806364 8163
-n01806143 8163
-n01806467 8163
-n01804478 8158
-n01806847 8158
-n01804653 8158
-n01808140 8159
-n01807828 8159
-n01797307 8156
-n01798484 8156
-n01797020 8156
-n01797886 8156
-n01797601 8156
-n01796729 8156
-n01795545 8156
-n01796340 8156
-n01819734 7576
-n01821203 7576
-n01819115 7576
-n01817346 7576
-n01818832 7576
-n01817953 7576
-n01818515 7576
-n01818299 7576
-n01820052 7576
-n01820348 7576
-n01817263 7576
-n01821869 8182
-n01822300 8182
-n01819313 8183
-n01819465 8183
-n01821076 8190
-n01820546 8190
-n01317089 6469
-n01317294 6469
-n01918744 6470
-n01922303 6470
-n01940736 6470
-n02316707 6470
-n01909422 6470
-n01767661 6470
-n01906749 6470
-n01930112 8201
-n01934440 8201
-n01924916 8201
-n01938454 8208
-n01935395 8208
-n01955084 8202
-n01955933 8202
-n01968315 8202
-n01942177 8202
-n01960459 8213
-n01963317 8213
-n01956481 8213
-n01963571 8213
-n01959985 8213
-n01965889 8213
-n01961985 8213
-n01957335 8218
-n01958038 8218
-n01959492 8218
-n01964441 8219
-n01964271 8219
-n01965529 8219
-n01969726 8214
-n01968897 8214
-n01972541 8214
-n01970164 8229
-n01970667 8229
-n01951274 8215
-n01953361 8215
-n01943899 8215
-n01945845 8215
-n01943087 8215
-n01953762 8215
-n01950731 8215
-n01945685 8215
-n01944390 8215
-n01949085 8237
-n01947396 8237
-n01946630 8237
-n01944812 8242
-n01945143 8242
-n01944955 8242
-n02317335 8203
-n02321170 8203
-n02319555 8203
-n02319095 8203
-n02321529 8203
-n02317781 8203
-n01909906 8204
-n01914163 8204
-n01913166 8204
-n01910747 8204
-n01915700 8256
-n01914609 8256
-n01915811 8256
-n01916925 8261
-n01916187 8261
-n01916481 8261
-n01917882 8262
-n01917289 8262
-n01784675 8205
-n01974773 8205
-n01768244 8205
-n01786646 8205
-n01769347 8205
-n01787835 8205
-n02309242 8205
-n02159955 8205
-n01785667 8205
-n01994910 8268
-n01976868 8268
-n01990007 8268
-n01975687 8268
-n01976146 8268
-n01990800 8279
-n01992773 8279
-n01991520 8281
-n01991028 8281
-n01982650 8280
-n01986806 8280
-n01986214 8280
-n01987545 8280
-n01976957 8280
-n01985128 8280
-n01984245 8285
-n01984695 8285
-n01983481 8285
-n01981276 8289
-n01979874 8289
-n01978455 8289
-n01978287 8289
-n01980166 8289
-n01982068 8289
-n01770393 8271
-n01770081 8271
-n01776192 8271
-n01772222 8271
-n01776313 8302
-n01779629 8302
-n01779148 8302
-n01772664 8303
-n01775370 8303
-n01774750 8303
-n01775062 8303
-n01773797 8303
-n01774384 8303
-n01773157 8303
-n01773549 8303
-n02226183 8274
-n02236896 8274
-n02263378 8274
-n02232951 8274
-n02163297 8274
-n02262449 8274
-n02246011 8274
-n02188699 8274
-n02272871 8274
-n02273392 8274
-n02231052 8274
-n02161457 8274
-n02236355 8274
-n02312427 8274
-n02231487 8274
-n02162561 8274
-n02164464 8274
-n02241569 8274
-n02262803 8274
-n02206270 8274
-n02274024 8274
-n02312640 8274
-n02268148 8274
-n02270623 8274
-n02207805 8274
-n02226429 8315
-n02229544 8315
-n02228341 8340
-n02226970 8340
-n02241426 8316
-n02240517 8316
-n02266050 8317
-n02264885 8317
-n02264363 8317
-n02236044 8318
-n02236241 8318
-n02233338 8318
-n02234355 8351
-n02234848 8351
-n02233943 8351
-n02251775 8321
-n02256656 8321
-n02258198 8321
-n02257284 8321
-n02250822 8321
-n02259212 8321
-n02252226 8321
-n02200198 8322
-n02205219 8322
-n02203152 8322
-n02196344 8322
-n02190166 8322
-n02198859 8322
-n02196119 8322
-n02201000 8362
-n02202006 8362
-n02195819 8366
-n02195526 8366
-n02192513 8366
-n02191773 8366
-n02190790 8366
-n02192252 8374
-n02191979 8374
-n02169974 8331
-n02168245 8331
-n02167151 8331
-n02169023 8331
-n02165456 8331
-n02171453 8331
-n02180875 8331
-n02183096 8331
-n02169497 8331
-n02176261 8331
-n02176439 8331
-n02165105 8331
-n02177972 8331
-n02168699 8331
-n02166567 8382
-n02166826 8382
-n02171869 8383
-n02175916 8383
-n02175569 8394
-n02172870 8394
-n02173373 8394
-n02174001 8394
-n02172182 8394
-n02172518 8394
-n02174659 8394
-n02243562 8332
-n02244797 8332
-n02212062 8334
-n02218371 8334
-n02219486 8334
-n02206856 8334
-n02216211 8405
-n02215770 8405
-n02212602 8405
-n02213107 8411
-n02212958 8411
-n02213543 8411
-n02213239 8412
-n02213788 8412
-n02220804 8407
-n02221083 8407
-n02221414 8407
-n02209354 8408
-n02208280 8408
-n02211627 8408
-n02210427 8408
-n02211444 8408
-n02209624 8408
-n02208498 8421
-n02208848 8421
-n02274259 8335
-n02283201 8335
-n02281787 8428
-n02274822 8428
-n02281406 8428
-n02277742 8428
-n02279972 8428
-n02280649 8428
-n02282257 8430
-n02282903 8430
-n02282385 8430
-n02275773 8431
-n02278210 8431
-n02276258 8431
-n02276902 8431
-n02279257 8431
-n02277094 8431
-n02276078 8431
-n02275560 8431
-n02277268 8431
-n02276355 8431
-n02276749 8431
-n02278024 8431
-n02281015 8435
-n02281136 8435
-n02305929 8429
-n02301452 8429
-n02295064 8429
-n02298541 8429
-n02284611 8429
-n02287004 8429
-n02291572 8429
-n02305085 8454
-n02301935 8454
-n02304432 8454
-n02303284 8454
-n02302969 8454
-n02292692 8459
-n02291748 8459
-n02268443 8337
-n02268853 8337
-n01321123 6471
-n02376679 6471
-n01323493 6471
-n01338685 5175
-n01387065 5175
-n01339083 8472
-n01339336 8472
-n01339801 8472
-n01339471 8472
-n01397114 8473
-n01389507 8473
-n01397871 8478
-n01410457 8478
-n01407798 8478
-n01424420 8479
-n01392380 8479
-n01395254 8479
-n01396048 8479
-n11542137 5176
-n11544015 5176
-n11542640 5176
-n09626238 5177
-n09856671 5177
-n09605289 5177
-n09622049 5177
-n09971273 5177
-n09882716 5177
-n09621232 5177
-n09902954 5177
-n09620794 5177
-n09727440 5177
-n09624168 5177
-n09752519 5177
-n10378026 5177
-n10500217 5177
-n10514429 5177
-n09610405 5177
-n09617867 5177
-n10355449 5177
-n09618957 5177
-n10002760 5177
-n10384496 5177
-n09637339 5177
-n09613191 5177
-n09836160 5177
-n10274815 5177
-n09890749 5177
-n10112591 5177
-n10260706 5177
-n09606527 5177
-n09767197 5177
-n10709529 5177
-n09976429 5177
-n09918554 5177
-n10588074 5177
-n10565667 5177
-n09990415 5177
-n10120330 5177
-n09616922 5177
-n09622302 5177
-n09630641 5177
-n09796809 5177
-n09614684 5177
-n10635788 5177
-n09645091 5177
-n10405694 5177
-n09676884 5177
-n09638875 5177
-n09874428 5177
-n09627906 5177
-n09628382 5177
-n10522759 5177
-n10247880 5177
-n09624980 5177
-n10529231 5177
-n10024362 5177
-n09614315 5177
-n09612848 5177
-n09632518 5177
-n10147935 5177
-n09871867 5177
-n09620078 5177
-n09634494 5177
-n10077593 5177
-n10040945 5177
-n09623038 5177
-n10560106 5177
-n10289039 5177
-n10422405 5177
-n09774783 5177
-n10042845 5177
-n09831962 5177
-n10726031 5177
-n09923673 5177
-n09610660 5177
-n09626031 5177
-n10401331 5177
-n09621545 5177
-n10362319 5177
-n10665698 5177
-n09906449 5177
-n09939313 5177
-n10439373 5177
-n09607630 5177
-n09631463 5177
-n10451450 5177
-n10541229 5177
-n09793141 5177
-n10633450 5177
-n10530959 5177
-n09629752 5177
-n10560637 5177
-n10431625 5177
-n09619168 5177
-n09763784 5177
-n09636339 5177
-n10235549 5177
-n09845401 5177
-n10513823 5177
-n10610465 5177
-n09951274 5177
-n09816771 8490
-n10401829 8590
-n10307234 8590
-n10505613 8590
-n10148035 8591
-n09874725 8591
-n09944022 8592
-n10015485 8592
-n10728624 8592
-n10308168 8592
-n10200781 8492
-n10480253 8492
-n10376523 8492
-n09903153 8600
-n10748620 8600
-n10581890 8601
-n10045713 8601
-n10165109 8601
-n10694258 8606
-n10509063 8606
-n10559996 8606
-n10366966 8607
-n10305802 8607
-n10421470 8607
-n10164492 8611
-n10477713 8611
-n10020890 8612
-n10679174 8616
-n10632576 8616
-n10189278 8616
-n09894445 8618
-n10504206 8618
-n10559288 8493
-n09917593 8493
-n09833441 8623
-n10384392 8623
-n10060352 8495
-n09840217 8495
-n09777012 8495
-n10309896 8495
-n09905185 8495
-n10686885 8628
-n10209731 8628
-n10093818 8629
-n10754189 8629
-n10411551 8629
-n10577284 8629
-n10285313 8500
-n10333439 8500
-n10624074 8500
-n10287213 8500
-n09871229 8637
-n10078719 8637
-n09843443 8637
-n10173771 8640
-n10192839 8640
-n10419785 8640
-n10406266 8640
-n10288964 8640
-n10804287 8640
-n10665587 8640
-n10153414 8640
-n10406765 8640
-n10611613 8506
-n09805324 8506
-n09824361 8506
-n10316360 8506
-n10707233 8506
-n10696508 8506
-n09858165 8506
-n10175248 8655
-n09979321 8655
-n10692482 8661
-n10396106 8661
-n10427764 8657
-n10385566 8657
-n10439851 8512
-n09820263 8512
-n10533013 8512
-n09854421 8666
-n10304914 8666
-n10575463 8666
-n09915651 8666
-n10453184 8666
-n10101634 8667
-n10701180 8667
-n09835230 8667
-n10746931 8667
-n10542888 8667
-n10604491 8667
-n09764381 8667
-n09929298 8667
-n10019406 8667
-n09785659 8667
-n10618342 8667
-n10782471 8667
-n10701644 8667
-n10105733 8667
-n10638922 8667
-n09842047 8667
-n10315561 8667
-n09835506 8667
-n10153594 8667
-n09830194 8674
-n10263411 8674
-n10157128 8693
-n10498816 8693
-n10689306 8693
-n10604380 8679
-n10634849 8679
-n09923561 8680
-n09764598 8680
-n10086568 8691
-n10007684 8691
-n09841696 8691
-n10321340 8691
-n10092488 8702
-n10386984 8702
-n10387196 8702
-n10205457 8702
-n10578021 8668
-n10098710 8668
-n09836519 8513
-n09836786 8513
-n09836343 8513
-n09877951 8516
-n10300154 8516
-n10095769 8516
-n10435988 8520
-n09930257 8718
-n10387324 8718
-n10098862 8525
-n10642596 8721
-n10331167 8721
-n09946814 8527
-n10299250 8527
-n09896170 8527
-n10415638 8527
-n10091450 8727
-n10069296 8727
-n09989502 8727
-n10226413 8727
-n10493685 8727
-n09765278 8727
-n09930876 8727
-n10340312 8727
-n09990777 8730
-n09834699 8730
-n10737103 8733
-n10649197 8733
-n10701962 8735
-n10415037 8735
-n10151760 8735
-n10229883 8735
-n10732010 8735
-n10603851 8735
-n10599806 8735
-n10369317 8735
-n09903501 8735
-n10755080 8735
-n10098245 8735
-n10382825 8735
-n10536416 8735
-n10036929 8735
-n10624310 8746
-n09842528 8746
-n10085869 8528
-n09991867 8528
-n10078131 8528
-n10627252 8528
-n10682953 8528
-n10237196 8528
-n09789566 8529
-n10182190 8529
-n09899671 8529
-n10150071 8531
-n10091651 8531
-n10806113 8531
-n10249459 8531
-n10317500 8768
-n09822830 8768
-n10448983 8768
-n09862621 8771
-n10540114 8771
-n10009276 8771
-n10333838 8771
-n10730728 8771
-n10721321 8771
-n09659188 8533
-n09650729 8533
-n09652149 8533
-n09659039 8533
-n09729530 8536
-n09641002 8536
-n09725653 8782
-n09846469 8782
-n09750770 8782
-n10486166 8538
-n10169147 8538
-n09684901 8539
-n09683757 8539
-n09682291 8539
-n10364198 8539
-n10518602 8539
-n10341573 8791
-n10672371 8791
-n10332861 8793
-n10112129 8793
-n10602470 8793
-n10727256 8542
-n10508141 8542
-n10652605 8799
-n09881265 8799
-n09933098 8545
-n09812338 8545
-n09920283 8545
-n10078806 8545
-n10339966 8804
-n10667477 8804
-n10566072 8804
-n10469874 8804
-n10624540 8807
-n09809925 8807
-n09846755 8806
-n09873899 8806
-n09779790 8806
-n10034614 8546
-n10449664 8546
-n10034201 8546
-n09951616 8546
-n10037385 8818
-n09846894 8818
-n10282672 8547
-n10053808 8547
-n09815790 8547
-n10137825 8547
-n10605985 8547
-n10604979 8547
-n09861946 8547
-n10763383 8823
-n09841188 8823
-n10644598 8823
-n10548681 8823
-n10791221 8823
-n10583790 8823
-n09873473 8823
-n10763620 8823
-n10548537 8823
-n10120671 8823
-n10241300 8833
-n10318293 8833
-n10176679 8839
-n09932508 8839
-n10186216 8841
-n10134178 8841
-n10079399 8841
-n09821831 8824
-n09934337 8824
-n10324560 8824
-n10063461 8846
-n09886403 8846
-n09760609 8846
-n10260800 8846
-n10655594 8846
-n09938449 8849
-n10183931 8849
-n09972458 8848
-n09813219 8848
-n10049363 8826
-n10372373 8826
-n10076604 8826
-n09835348 8826
-n09974648 8826
-n10433164 8826
-n09859152 8826
-n10727171 8826
-n10308732 8826
-n09833536 8826
-n10582746 8826
-n10393909 8826
-n10013927 8859
-n10225219 8859
-n10202624 8859
-n09800964 8859
-n10465831 8859
-n09787534 8870
-n10174445 8870
-n10441962 8870
-n10132035 8862
-n09896685 8862
-n09934774 8862
-n10279018 8862
-n10793570 8862
-n10155849 8862
-n10087434 8863
-n09964202 8863
-n09811852 8868
-n10348526 8868
-n10317007 8868
-n10058777 8868
-n10360747 8888
-n09941964 8888
-n10347446 8888
-n09770359 8888
-n09941787 8888
-n09942970 8888
-n09809749 8888
-n09770179 8888
-n10208950 8888
-n10580772 8890
-n10093475 8899
-n10645017 8899
-n09943239 8895
-n09943541 8895
-n10263790 8895
-n10283170 8902
-n10259348 8902
-n10092978 8902
-n10296176 8902
-n09893191 8902
-n10123844 8902
-n10259780 8902
-n10259997 8903
-n10510245 8903
-n10622053 8889
-n10058585 8889
-n10690648 8914
-n10523341 8914
-n10739391 8914
-n10476467 8915
-n10512372 8915
-n10802507 8915
-n10753442 8550
-n09733793 8550
-n09738708 8550
-n09641757 8550
-n09738400 8550
-n09727826 8550
-n09686536 8550
-n09724533 8550
-n09744834 8924
-n09743792 8924
-n09744161 8924
-n09742101 8924
-n09689435 8925
-n09734450 8925
-n09644152 8925
-n09750282 8925
-n09673495 8925
-n09718811 8925
-n09718217 8925
-n09712696 8925
-n09718936 8925
-n10711766 8925
-n09694771 8925
-n09719794 8925
-n09714694 8925
-n09675922 8938
-n09676247 8938
-n10774440 8926
-n09720256 8926
-n09725229 8926
-n09731571 8926
-n09691729 8949
-n09693982 8949
-n09712448 8949
-n09697401 8951
-n09696585 8951
-n09722658 8956
-n09724656 8956
-n09723067 8956
-n09694664 8952
-n09712324 8952
-n09689958 8928
-n09695979 8928
-n10327987 8928
-n09688804 8928
-n09730204 8928
-n09711435 8928
-n09713108 8928
-n09731343 8928
-n09717233 8928
-n09695620 8928
-n09728285 8928
-n09707289 8928
-n09701833 8928
-n09700964 8928
-n09750891 8928
-n09715427 8928
-n09708750 8928
-n09705784 8551
-n09734185 8551
-n09752023 8551
-n09635534 8551
-n09696456 8551
-n09732170 8551
-n09730824 8551
-n09719309 8551
-n09734535 8551
-n09736945 8551
-n09720842 8551
-n09692915 8551
-n09751895 8551
-n09724785 8551
-n09747495 8551
-n09734639 8551
-n09749386 8551
-n09705124 8551
-n09731436 8551
-n10303814 8554
-n10450303 8554
-n10722575 8554
-n10054657 8554
-n10631309 8554
-n10249270 8554
-n09913455 8554
-n10162991 8554
-n09807754 8554
-n09505153 8554
-n10209082 8554
-n10323634 8554
-n10104064 8554
-n10001481 9000
-n10242328 9000
-n10159045 9001
-n09932098 9001
-n10253995 9004
-n10005934 9016
-n10578471 9016
-n09770949 9006
-n10004718 9006
-n10570019 9006
-n10289462 9019
-n10069645 9019
-n10187990 9019
-n09916348 9023
-n10727458 9023
-n10320863 9023
-n10572706 9021
-n10572889 9021
-n10038409 9007
-n10756148 9007
-n09927451 9008
-n10243664 9008
-n10502329 9008
-n09988493 9008
-n10373390 9032
-n10470779 9032
-n09928136 9032
-n10750031 9037
-n10081204 9037
-n09857200 9037
-n10013811 9041
-n09894143 9041
-n10313239 9041
-n10082997 8558
-n10677713 8558
-n09787765 8558
-n10485883 8558
-n10275395 9046
-n09913593 9046
-n09772930 8560
-n09633969 8560
-n10195593 9052
-n09756049 9052
-n10607478 9052
-n09855433 8563
-n10017272 8563
-n10630188 8563
-n10522035 8563
-n10521662 8563
-n10380672 9058
-n10210911 9058
-n10382710 9059
-n10164747 9059
-n09782397 9059
-n10524076 9059
-n10467395 9064
-n10467179 9064
-n10698368 9060
-n09792969 9060
-n10525617 8564
-n10675010 8564
-n09889941 8564
-n10557854 8566
-n09618760 8566
-n09899929 8566
-n10116702 9074
-n10258786 9074
-n10508710 9074
-n09873348 8570
-n09870208 8570
-n10793168 8570
-n10098517 9081
-n10314517 9081
-n10629939 9081
-n10477077 9081
-n10261624 9086
-n10082687 9086
-n10262445 9086
-n10167152 9082
-n10098624 9082
-n10674713 9082
-n09838621 9082
-n10047459 8573
-n10091564 8573
-n10740868 8573
-n09872066 9094
-n10070711 9094
-n10628644 8575
-n10421016 8575
-n09915434 8575
-n10588357 8575
-n10529965 8579
-n10334009 8579
-n10339717 8579
-n09818022 8579
-n10412055 8579
-n10335931 8579
-n09945745 8579
-n10432441 8579
-n10607291 8579
-n10583387 8579
-n10718131 8579
-n10542761 8579
-n10147121 8579
-n10738111 9103
-n10159533 9103
-n10223177 9103
-n10185793 9103
-n10553235 9107
-n10293332 9107
-n10178216 9108
-n10563403 9108
-n10488656 8580
-n10619642 8580
-n10276477 8580
-n10620758 9125
-n10450161 9125
-n10043643 9125
-n10043491 9129
-n10313724 9129
-n10084295 8582
-n10787470 8582
-n10333601 8582
-n10131151 8582
-n09871681 9132
-n09981939 9132
-n10055410 9133
-n10243137 9133
-n10377021 9133
-n10368528 9133
-n10025635 9133
-n09874862 9133
-n10613996 9133
-n10472129 9133
-n10598181 9133
-n10129825 9133
-n09847543 9133
-n10173410 9133
-n10780284 9133
-n09889065 9133
-n09832456 9133
-n10780632 9133
-n10117851 9147
-n09827363 9147
-n10247358 9147
-n10282482 9147
-n10092794 9153
-n10375314 9153
-n09981278 9153
-n10082043 8585
-n09972010 8585
-n10237069 8585
-n09792555 8585
-n10236946 8585
-n10568358 8585
-n10207169 8585
-n10236304 8585
-n10734394 8585
-n10373998 8585
-n10595164 8585
-n10357613 9163
-n09823502 9163
-n10146104 9163
-n10602985 9163
-n10145239 9163
-n10267865 9175
-n09854218 9175
-n10399491 9164
-n10102800 9164
-n10102369 9164
-n10406391 9164
-n10300500 9179
-n10080869 9179
-n10332385 9179
-n09988063 9184
-n10375402 9184
-n10145774 9181
-n10143172 9181
-n10145590 9181
-n10345015 9189
-n10142747 9189
-n10142391 9189
-n10146002 9165
-n10267311 9165
-n10141590 9170
-n10092643 9170
-n09918248 9170
-n10671613 9170
-n10141732 9196
-n10145340 9196
-n10145902 9201
-n10145480 9201
-n09827683 9198
-n10135129 9204
-n10465451 9204
-n10353016 9204
-n13001930 5178
-n13040629 5178
-n12969131 5178
-n12985420 5178
-n13052670 5178
-n13037406 5178
-n13077295 5178
-n12987056 5178
-n12979829 5178
-n12975804 5178
-n12974987 5178
-n12985773 5178
-n13044778 5178
-n12985857 5178
-n13035241 5178
-n13043926 5178
-n12982468 5178
-n13035707 5178
-n13044375 5178
-n12969425 5178
-n13060190 5178
-n13054073 5178
-n13040303 5178
-n13028611 5178
-n12997654 5178
-n12983048 5178
-n13062421 5178
-n13054560 5178
-n12963628 9214
-n12980840 9214
-n12991184 9215
-n12989938 9215
-n12992177 9215
-n12988158 9215
-n13029326 9231
-n13029760 9231
-n13011595 9232
-n13049953 9232
-n12998815 9232
-n12997919 9232
-n13052931 9245
-n13050397 9245
-n13012253 9246
-n13001041 9246
-n13005984 9246
-n13000891 9246
-n13007417 9246
-n13019835 9246
-n13013764 9246
-n13006894 9246
-n13002750 9246
-n13017102 9246
-n13232779 9246
-n13009429 9246
-n13013534 9246
-n13003522 9246
-n13001366 9246
-n13009085 9246
-n13022210 9246
-n13002925 9246
-n13006171 9246
-n13003712 9246
-n13001206 9246
-n13004423 9246
-n13001529 9246
-n13003254 9246
-n13003061 9246
-n13032115 9247
-n13032381 9275
-n13033577 9275
-n13055577 9235
-n13055949 9235
-n13055423 9235
-n05430628 5171
-n05450617 9281
-n05449959 9281
-n05451384 9283
-n05453657 9283
-n09369169 1043
-n09454412 1043
-n09403211 1043
-n13086908 1043
-n09416076 1043
-n09251407 1043
-n05218119 1043
-n09444100 1043
-n09438940 1043
-n09257949 1043
-n09189157 9286
-n09475044 9286
-n11691857 9289
-n13102775 9289
-n13087625 9289
-n13022709 9289
-n11675842 9300
-n13152742 9300
-n13125117 9300
-n13129165 9300
-n11690254 9300
-n11669335 9302
-n13134947 9302
-n11676500 9302
-n11675025 9307
-n11674332 9307
-n11669786 9307
-n13131028 9311
-n13132338 9311
-n13132656 9311
-n12301445 9308
-n13133613 9308
-n13141415 9308
-n13137409 9308
-n12642090 9308
-n12267677 9308
-n12658481 9308
-n12144313 9308
-n12158031 9308
-n13135832 9308
-n12620546 9308
-n11636835 9308
-n13139055 9308
-n12144580 9325
-n07929351 9325
-n13136556 9325
-n12768682 9325
-n11689483 9325
-n13136316 9325
-n07770571 9325
-n07737081 9331
-n07774842 9336
-n07774596 9336
-n07775050 9336
-n07772788 9336
-n07771212 9336
-n07772147 9336
-n07772274 9336
-n07774719 9336
-n07737745 9336
-n07772935 9336
-n15086247 9333
-n11879895 9333
-n12576323 9334
-n12532564 9334
-n07814634 9335
-n07775197 9335
-n07770763 9335
-n11748002 9328
-n12172364 9328
-n12515925 9354
-n12560282 9354
-n12578916 9354
-n12560621 9354
-n12544539 9354
-n12024690 9303
-n13154494 9303
-n11690455 9303
-n12927013 9304
-n11953610 9304
-n13128365 9305
-n13133932 9305
-n13163991 9305
-n13134059 9305
-n13131618 9305
-n13130726 9305
-n11678010 9305
-n12136392 9305
-n11979964 9366
-n12088223 9366
-n12462805 9369
-n12433081 9369
-n09218494 9290
-n09381242 9290
-n09460046 9290
-n09451237 9293
-n09450163 9293
-n01904182 9295
-n13155095 9295
-n09432283 9295
-n11705387 9295
-n09438844 9295
-n11692265 9295
-n05237755 9295
-n09416890 9295
-n01956764 9383
-n01904806 9383
-n01904886 9383
-n05586759 9389
-n05581932 9389
-n01904029 9389
-n05238282 9389
-n05254795 9389
-n02469248 9389
-n05256862 9398
-n05258051 9398
-n01899894 9398
-n05261404 9398
-n05259914 9400
-n05261310 9400
-n05260240 9400
-n05262185 9403
-n05261566 9403
-n05262534 9407
-n05262422 9407
-n05263183 9408
-n05263448 9408
-n11524662 3
-n11448153 3
-n09247410 3
-n11508382 9413
-n11524451 9413
diff --git a/build/darknet/x64/data/coco.data b/build/darknet/x64/data/coco.data
deleted file mode 100644
index 6da50e646d6..00000000000
--- a/build/darknet/x64/data/coco.data
+++ /dev/null
@@ -1,8 +0,0 @@
-classes= 80
-train = data/coco/trainvalno5k.txt
-valid = data/coco_testdev
-#valid = data/coco_val_5k.list
-names = data/coco.names
-backup = backup/
-eval=coco
-
diff --git a/build/darknet/x64/data/coco.names b/build/darknet/x64/data/coco.names
deleted file mode 100644
index ca76c80b5b2..00000000000
--- a/build/darknet/x64/data/coco.names
+++ /dev/null
@@ -1,80 +0,0 @@
-person
-bicycle
-car
-motorbike
-aeroplane
-bus
-train
-truck
-boat
-traffic light
-fire hydrant
-stop sign
-parking meter
-bench
-bird
-cat
-dog
-horse
-sheep
-cow
-elephant
-bear
-zebra
-giraffe
-backpack
-umbrella
-handbag
-tie
-suitcase
-frisbee
-skis
-snowboard
-sports ball
-kite
-baseball bat
-baseball glove
-skateboard
-surfboard
-tennis racket
-bottle
-wine glass
-cup
-fork
-knife
-spoon
-bowl
-banana
-apple
-sandwich
-orange
-broccoli
-carrot
-hot dog
-pizza
-donut
-cake
-chair
-sofa
-pottedplant
-bed
-diningtable
-toilet
-tvmonitor
-laptop
-mouse
-remote
-keyboard
-cell phone
-microwave
-oven
-toaster
-sink
-refrigerator
-book
-clock
-vase
-scissors
-teddy bear
-hair drier
-toothbrush
diff --git a/build/darknet/x64/data/coco9k.map b/build/darknet/x64/data/coco9k.map
deleted file mode 100644
index 5155b652358..00000000000
--- a/build/darknet/x64/data/coco9k.map
+++ /dev/null
@@ -1,80 +0,0 @@
-5177
-3768
-3802
-3800
-4107
-4072
-4071
-3797
-4097
-2645
-5150
-2644
-3257
-2523
-6527
-6866
-6912
-7342
-7255
-7271
-7217
-6858
-7343
-7233
-3704
-4374
-3641
-5001
-3899
-2999
-2631
-5141
-2015
-1133
-1935
-1930
-5144
-5143
-2371
-3916
-3745
-3640
-4749
-4736
-4735
-3678
-58
-42
-771
-81
-152
-141
-786
-700
-218
-791
-2518
-2521
-3637
-2458
-2505
-2519
-3499
-2837
-3503
-2597
-3430
-2080
-5103
-5111
-5102
-3013
-5096
-1102
-3218
-4010
-2266
-1127
-5122
-2360
diff --git a/build/darknet/x64/data/combine9k.data b/build/darknet/x64/data/combine9k.data
deleted file mode 100644
index 06a3e76aefa..00000000000
--- a/build/darknet/x64/data/combine9k.data
+++ /dev/null
@@ -1,10 +0,0 @@
-classes= 9418
-#train = /home/pjreddie/data/coco/trainvalno5k.txt
-train = data/combine9k.train.list
-valid = /home/pjreddie/data/imagenet/det.val.files
-labels = data/9k.labels
-names = data/9k.names
-backup = backup/
-map = data/inet9k.map
-eval = imagenet
-results = results
diff --git a/build/darknet/x64/data/dog.jpg b/build/darknet/x64/data/dog.jpg
deleted file mode 100644
index 77b0381222e..00000000000
Binary files a/build/darknet/x64/data/dog.jpg and /dev/null differ
diff --git a/build/darknet/x64/data/eagle.jpg b/build/darknet/x64/data/eagle.jpg
deleted file mode 100644
index 8b7509505b0..00000000000
Binary files a/build/darknet/x64/data/eagle.jpg and /dev/null differ
diff --git a/build/darknet/x64/data/giraffe.jpg b/build/darknet/x64/data/giraffe.jpg
deleted file mode 100644
index a93e8b88398..00000000000
Binary files a/build/darknet/x64/data/giraffe.jpg and /dev/null differ
diff --git a/build/darknet/x64/data/goal.txt b/build/darknet/x64/data/goal.txt
deleted file mode 100644
index c63d157341d..00000000000
--- a/build/darknet/x64/data/goal.txt
+++ /dev/null
@@ -1,3 +0,0 @@
-+++++
-val_eq (Val.add (Val.add (r3 PC) Vone) Vone) (Val.add (x2 PC) Vone)
-*****
diff --git a/build/darknet/x64/data/horses.jpg b/build/darknet/x64/data/horses.jpg
deleted file mode 100644
index 3a761f46ba0..00000000000
Binary files a/build/darknet/x64/data/horses.jpg and /dev/null differ
diff --git a/build/darknet/x64/data/imagenet.labels.list b/build/darknet/x64/data/imagenet.labels.list
deleted file mode 100644
index 23268724401..00000000000
--- a/build/darknet/x64/data/imagenet.labels.list
+++ /dev/null
@@ -1,21842 +0,0 @@
-n02119789
-n02100735
-n02110185
-n02096294
-n02102040
-n02066245
-n02509815
-n02124075
-n02417914
-n02123394
-n02125311
-n02423022
-n02346627
-n02077923
-n02110063
-n02447366
-n02109047
-n02089867
-n02102177
-n02091134
-n02092002
-n02071294
-n02442845
-n02504458
-n02092339
-n02098105
-n02096437
-n02114712
-n02105641
-n02128925
-n02091635
-n02088466
-n02096051
-n02117135
-n02138441
-n02097130
-n02493509
-n02457408
-n02389026
-n02443484
-n02110341
-n02089078
-n02086910
-n02445715
-n02093256
-n02113978
-n02106382
-n02441942
-n02113712
-n02113186
-n02105162
-n02415577
-n02356798
-n02488702
-n02123159
-n02098413
-n02422699
-n02114855
-n02094433
-n02111277
-n02132136
-n02119022
-n02091467
-n02106550
-n02422106
-n02091831
-n02120505
-n02104365
-n02086079
-n02112706
-n02098286
-n02095889
-n02484975
-n02137549
-n02500267
-n02129604
-n02090721
-n02396427
-n02108000
-n02391049
-n02412080
-n02108915
-n02480495
-n02110806
-n02128385
-n02107683
-n02085936
-n02094114
-n02087046
-n02100583
-n02096177
-n02494079
-n02105056
-n02101556
-n02123597
-n02481823
-n02105505
-n02088094
-n02085782
-n02489166
-n02364673
-n02114548
-n02134084
-n02480855
-n02090622
-n02113624
-n02093859
-n02403003
-n02097298
-n02108551
-n02493793
-n02107142
-n02096585
-n02107574
-n02107908
-n02086240
-n02102973
-n02112018
-n02093647
-n02397096
-n02437312
-n02483708
-n02097047
-n02106030
-n02099601
-n02093991
-n02110627
-n02106166
-n02326432
-n02108089
-n02097658
-n02088364
-n02111129
-n02100236
-n02486261
-n02115913
-n02486410
-n02487347
-n02099849
-n02108422
-n02104029
-n02492035
-n02110958
-n02099429
-n02094258
-n02099267
-n02395406
-n02112350
-n02109961
-n02101388
-n02113799
-n02095570
-n02128757
-n02101006
-n02115641
-n02097209
-n02342885
-n02097474
-n02120079
-n02095314
-n02088238
-n02408429
-n02133161
-n02328150
-n02410509
-n02492660
-n02398521
-n02112137
-n02510455
-n02093428
-n02105855
-n02111500
-n02085620
-n02123045
-n02490219
-n02099712
-n02109525
-n02454379
-n02111889
-n02088632
-n02090379
-n02443114
-n02361337
-n02105412
-n02483362
-n02437616
-n02107312
-n02325366
-n02091032
-n02129165
-n02102318
-n02100877
-n02074367
-n02504013
-n02363005
-n02102480
-n02113023
-n02086646
-n02497673
-n02087394
-n02127052
-n02116738
-n02488291
-n02091244
-n02114367
-n02130308
-n02089973
-n02105251
-n02134418
-n02093754
-n02106662
-n02444819
-n01882714
-n01871265
-n01872401
-n01877812
-n01873310
-n01883070
-n04086273
-n04507155
-n04147183
-n04254680
-n02672831
-n02219486
-n02317335
-n01968897
-n03452741
-n03642806
-n07745940
-n02690373
-n04552348
-n02692877
-n02782093
-n04266014
-n03344393
-n03447447
-n04273569
-n03662601
-n02951358
-n04612504
-n02981792
-n04483307
-n03095699
-n03673027
-n03947888
-n02687172
-n04347754
-n04606251
-n03478589
-n04389033
-n03773504
-n02860847
-n03218198
-n02835271
-n03792782
-n03393912
-n03895866
-n02797295
-n04204347
-n03791053
-n03384352
-n03272562
-n04310018
-n02704792
-n02701002
-n02814533
-n02930766
-n03100240
-n03594945
-n03670208
-n03770679
-n03777568
-n04037443
-n04285008
-n03444034
-n03445924
-n03785016
-n04252225
-n03345487
-n03417042
-n03930630
-n04461696
-n04467665
-n03796401
-n03977966
-n04065272
-n04335435
-n04252077
-n04465501
-n03776460
-n04482393
-n04509417
-n03538406
-n03599486
-n03868242
-n02804414
-n03125729
-n03131574
-n03388549
-n02870880
-n03018349
-n03742115
-n03016953
-n04380533
-n03337140
-n03891251
-n02791124
-n04429376
-n03376595
-n04099969
-n04344873
-n04447861
-n03179701
-n03982430
-n03201208
-n03290653
-n04550184
-n07742313
-n07747607
-n07749582
-n07753113
-n07753275
-n07753592
-n07754684
-n07760859
-n07768694
-n12267677
-n12620546
-n13133613
-n11879895
-n12144580
-n12768682
-n03854065
-n04515003
-n03017168
-n03249569
-n03447721
-n03720891
-n03721384
-n04311174
-n02787622
-n02992211
-n04536866
-n03495258
-n02676566
-n03272010
-n03110669
-n03394916
-n04487394
-n03494278
-n03840681
-n03884397
-n02804610
-n03838899
-n04141076
-n03372029
-n11939491
-n12057211
-n09246464
-n09468604
-n09193705
-n09472597
-n09399592
-n09421951
-n09256479
-n09332890
-n09428293
-n09288635
-n03498962
-n03041632
-n03658185
-n03954731
-n03995372
-n03649909
-n03481172
-n03109150
-n02951585
-n03970156
-n04154565
-n04208210
-n03967562
-n03000684
-n01514668
-n01514859
-n01518878
-n01530575
-n01531178
-n01532829
-n01534433
-n01537544
-n01558993
-n01560419
-n01580077
-n01582220
-n01592084
-n01601694
-n01608432
-n01614925
-n01616318
-n01622779
-n01795545
-n01796340
-n01797886
-n01798484
-n01806143
-n01806567
-n01807496
-n01817953
-n01818515
-n01819313
-n01820546
-n01824575
-n01828970
-n01829413
-n01833805
-n01843065
-n01843383
-n01847000
-n01855032
-n01855672
-n01860187
-n02002556
-n02002724
-n02006656
-n02007558
-n02009912
-n02009229
-n02011460
-n02012849
-n02013706
-n02018207
-n02018795
-n02025239
-n02027492
-n02028035
-n02033041
-n02037110
-n02017213
-n02051845
-n02056570
-n02058221
-n01484850
-n01491361
-n01494475
-n01496331
-n01498041
-n02514041
-n02536864
-n01440764
-n01443537
-n02526121
-n02606052
-n02607072
-n02643566
-n02655020
-n02640242
-n02641379
-n01664065
-n01665541
-n01667114
-n01667778
-n01669191
-n01675722
-n01677366
-n01682714
-n01685808
-n01687978
-n01688243
-n01689811
-n01692333
-n01693334
-n01694178
-n01695060
-n01704323
-n01697457
-n01698640
-n01728572
-n01728920
-n01729322
-n01729977
-n01734418
-n01735189
-n01737021
-n01739381
-n01740131
-n01742172
-n01744401
-n01748264
-n01749939
-n01751748
-n01753488
-n01755581
-n01756291
-n01629819
-n01630670
-n01631663
-n01632458
-n01632777
-n01641577
-n01644373
-n01644900
-n04579432
-n04592741
-n03876231
-n03483316
-n03868863
-n04251144
-n03691459
-n03759954
-n04152593
-n03793489
-n03271574
-n03843555
-n04332243
-n04265275
-n04330267
-n03467068
-n02794156
-n04118776
-n03841143
-n04141975
-n02708093
-n03196217
-n04548280
-n03544143
-n04355338
-n03891332
-n04328186
-n03197337
-n04317175
-n04376876
-n03706229
-n02841315
-n04009552
-n04356056
-n03692522
-n04044716
-n02879718
-n02950826
-n02749479
-n04090263
-n04008634
-n03085013
-n04505470
-n03126707
-n03666591
-n02666196
-n02977058
-n04238763
-n03180011
-n03485407
-n03832673
-n06359193
-n03496892
-n04428191
-n04004767
-n04243546
-n04525305
-n04179913
-n03602883
-n04372370
-n03532672
-n02974003
-n03874293
-n03944341
-n03992509
-n03425413
-n02966193
-n04371774
-n04067472
-n04040759
-n04019541
-n03492542
-n04355933
-n03929660
-n02965783
-n04258138
-n04074963
-n03208938
-n02910353
-n03476684
-n03627232
-n03075370
-n03874599
-n03804744
-n04127249
-n04153751
-n03803284
-n04162706
-n04228054
-n02948072
-n03590841
-n04286575
-n04456115
-n03814639
-n03933933
-n04485082
-n03733131
-n03794056
-n04275548
-n01768244
-n01770081
-n01770393
-n01773157
-n01773549
-n01773797
-n01774384
-n01774750
-n01775062
-n01776313
-n01784675
-n01990800
-n01978287
-n01978455
-n01980166
-n01981276
-n01983481
-n01984695
-n01985128
-n01986214
-n02165105
-n02165456
-n02167151
-n02168699
-n02169497
-n02172182
-n02174001
-n02177972
-n02190166
-n02206856
-n02226429
-n02229544
-n02231487
-n02233338
-n02236044
-n02256656
-n02259212
-n02264363
-n02268443
-n02268853
-n02276258
-n02277742
-n02279972
-n02280649
-n02281406
-n02281787
-n01910747
-n01914609
-n01917289
-n01924916
-n01930112
-n01943899
-n01944390
-n01945685
-n01950731
-n01955084
-n02319095
-n02321529
-n03584829
-n03297495
-n03761084
-n03259280
-n04111531
-n04442312
-n04542943
-n04517823
-n03207941
-n04070727
-n04554684
-n03133878
-n03400231
-n04596742
-n02939185
-n03063689
-n04398044
-n04270147
-n02699494
-n04486054
-n03899768
-n04311004
-n04366367
-n04532670
-n02793495
-n03457902
-n03877845
-n03781244
-n03661043
-n02727426
-n02859443
-n03028079
-n03788195
-n04346328
-n03956157
-n04081281
-n03032252
-n03529860
-n03697007
-n03065424
-n03837869
-n04458633
-n02980441
-n04005630
-n03461385
-n02776631
-n02791270
-n02871525
-n02927161
-n03089624
-n04200800
-n04443257
-n04462240
-n03388043
-n03042490
-n04613696
-n03216828
-n02892201
-n03743016
-n02788148
-n02894605
-n03160309
-n03000134
-n03930313
-n04604644
-n04326547
-n03459775
-n04239074
-n04501370
-n03792972
-n04149813
-n03530642
-n03961711
-n03903868
-n02814860
-n07711569
-n07720875
-n07714571
-n07714990
-n07715103
-n07716358
-n07716906
-n07717410
-n07717556
-n07718472
-n07718747
-n07730033
-n07734744
-n04209239
-n03594734
-n02971356
-n03485794
-n04133789
-n02747177
-n04125021
-n07579787
-n03814906
-n03134739
-n03404251
-n04423845
-n03877472
-n04120489
-n03062245
-n03014705
-n03717622
-n03777754
-n04493381
-n04476259
-n02777292
-n07693725
-n03998194
-n03617480
-n07590611
-n04579145
-n03623198
-n07248320
-n04277352
-n04229816
-n02823428
-n03127747
-n02877765
-n04435653
-n03724870
-n03710637
-n03920288
-n03379051
-n02807133
-n04399382
-n03527444
-n03983396
-n03924679
-n04532106
-n06785654
-n03445777
-n07613480
-n04350905
-n04562935
-n03325584
-n03045698
-n07892512
-n03250847
-n04192698
-n03026506
-n03534580
-n07565083
-n04296562
-n02869837
-n07871810
-n02799071
-n03314780
-n04141327
-n04357314
-n02823750
-n13052670
-n07583066
-n03637318
-n04599235
-n07802026
-n02883205
-n03709823
-n04560804
-n02909870
-n03207743
-n04263257
-n07932039
-n03786901
-n04479046
-n03873416
-n02999410
-n04367480
-n03775546
-n07875152
-n04591713
-n04201297
-n02916936
-n03240683
-n02840245
-n02963159
-n04370456
-n03991062
-n02843684
-n03482405
-n03942813
-n03908618
-n03902125
-n07584110
-n02730930
-n04023962
-n02769748
-n10148035
-n02817516
-n03908714
-n02906734
-n03788365
-n02667093
-n03787032
-n03980874
-n03141823
-n03976467
-n04264628
-n07930864
-n04039381
-n06874185
-n04033901
-n04041544
-n07860988
-n03146219
-n03763968
-n03676483
-n04209133
-n03782006
-n03857828
-n03775071
-n02892767
-n07684084
-n04522168
-n03764736
-n04118538
-n03887697
-n13044778
-n03291819
-n03770439
-n03124170
-n04487081
-n03916031
-n02808440
-n07697537
-n12985857
-n02917067
-n03938244
-n15075141
-n02978881
-n02966687
-n03633091
-n13040303
-n03690938
-n03476991
-n02669723
-n03220513
-n03127925
-n04584207
-n07880968
-n03937543
-n03000247
-n04418357
-n04590129
-n02795169
-n04553703
-n02783161
-n02802426
-n02808304
-n03124043
-n03450230
-n04589890
-n12998815
-n02992529
-n03825788
-n02790996
-n03710193
-n03630383
-n03347037
-n03769881
-n03871628
-n03733281
-n03976657
-n03535780
-n04259630
-n03929855
-n04049303
-n04548362
-n02979186
-n06596364
-n03935335
-n06794110
-n02825657
-n03388183
-n04591157
-n04540053
-n03866082
-n04136333
-n04026417
-n02865351
-n02834397
-n03888257
-n04235860
-n04404412
-n04371430
-n03733805
-n07920052
-n07873807
-n02895154
-n04204238
-n04597913
-n04131690
-n07836838
-n09835506
-n03443371
-n13037406
-n04336792
-n04557648
-n03187595
-n04254120
-n03595614
-n04146614
-n03598930
-n03958227
-n04069434
-n03188531
-n02786058
-n07615774
-n04525038
-n04409515
-n03424325
-n03223299
-n03680355
-n07614500
-n07695742
-n04033995
-n03710721
-n04392985
-n03047690
-n03584254
-n13054560
-n10565667
-n03950228
-n03729826
-n02837789
-n04254777
-n02988304
-n03657121
-n04417672
-n04523525
-n02815834
-n09229709
-n07697313
-n03888605
-n03355925
-n03063599
-n04116512
-n04325704
-n07831146
-n03255030
-n00483313
-n02432291
-n02356381
-n02377388
-n04028764
-n04381587
-n02279257
-n04168199
-n00445055
-n02461128
-n03626760
-n04313503
-n00451635
-n02509515
-n04224842
-n09403734
-n02769290
-n13054073
-n03163222
-n00464478
-n03087069
-n04477219
-n03445617
-n00449054
-n00483705
-n04395106
-n03389611
-n04285965
-n04166281
-n04003856
-n03696301
-n00475787
-n04587404
-n09218641
-n02276355
-n03592669
-n04459909
-n04492375
-n09447666
-n00463543
-n04148703
-n04591517
-n03970546
-n04297750
-n02782778
-n02383231
-n03693474
-n02277094
-n03766044
-n02056228
-n03394272
-n03047052
-n00434075
-n04185946
-n02411999
-n03858418
-n12833149
-n02836035
-n03108853
-n04587559
-n04138261
-n02278024
-n03063485
-n02774921
-n09475044
-n02811204
-n03329302
-n04026813
-n03986562
-n03379204
-n03426134
-n02790669
-n03487090
-n03548402
-n08614632
-n04054361
-n03421485
-n03302671
-n03098959
-n02970408
-n03772584
-n03064935
-n09415584
-n11715430
-n12024445
-n02710201
-n03475581
-n13142504
-n03396074
-n03211789
-n03914337
-n03678558
-n03233123
-n00453396
-n00454395
-n00440382
-n04289027
-n00445226
-n11953610
-n04128413
-n00480211
-n00470966
-n12547503
-n03085219
-n02275773
-n02692086
-n04257790
-n00448748
-n02686379
-n12328567
-n03432129
-n03859000
-n12091377
-n02124313
-n00442847
-n04603399
-n03114379
-n02920369
-n03818343
-n02946127
-n02978055
-n12914923
-n02705429
-n00448232
-n12882945
-n04289690
-n07606669
-n02056728
-n11848479
-n03046921
-n12282933
-n02867966
-n12821505
-n02812949
-n04545305
-n02699770
-n04395651
-n02900160
-n04099003
-n02054711
-n12606545
-n03356858
-n01859190
-n03643737
-n02962200
-n03123553
-n09361517
-n02793089
-n00449517
-n02783994
-n10117851
-n12038585
-n04383839
-n10142391
-n07719213
-n03536122
-n02472987
-n03454536
-n11728099
-n02392824
-n03795758
-n04282872
-n00448872
-n02404432
-n03797182
-n03029197
-n03665924
-n12477163
-n02769963
-n03863262
-n01532325
-n04165409
-n04593077
-n04473108
-n03577090
-n09988063
-n00446804
-n03931765
-n00475014
-n02700064
-n03240892
-n12475242
-n11735053
-n04053508
-n02852173
-n02382750
-n03823111
-n04543772
-n04112147
-n04433585
-n03175189
-n03596543
-n00445685
-n03307792
-n04589593
-n01814217
-n02993368
-n04303497
-n02811350
-n03355768
-n03699591
-n04590553
-n01893825
-n12726670
-n09916348
-n11544015
-n01318894
-n02133704
-n02367492
-n04506289
-n02069974
-n01900150
-n03207835
-n03363549
-n02831595
-n04970470
-n04160847
-n03767203
-n03928814
-n02302969
-n02918595
-n10401331
-n04231272
-n03717447
-n03063968
-n03380724
-n00825773
-n09988493
-n02740300
-n04539794
-n04121511
-n01323599
-n12937130
-n02428508
-n02980036
-n12061380
-n01887787
-n04214046
-n01787835
-n00466630
-n02979290
-n03927091
-n03231368
-n03904657
-n04469003
-n04196502
-n02122948
-n04544325
-n07868340
-n13876561
-n11925898
-n12158443
-n01595450
-n12454705
-n02069412
-n09618957
-n02357111
-n00451563
-n04197110
-n02276902
-n03111296
-n03909020
-n12303083
-n02082791
-n01956764
-n04269822
-n04207343
-n02433318
-n01888181
-n12682668
-n01592387
-n09793141
-n00466273
-n04026180
-n06255081
-n12172364
-n10145590
-n12311579
-n12173912
-n03822171
-n03140292
-n03027625
-n02739427
-n02060133
-n02431785
-n03219010
-n00447957
-n11910271
-n03620967
-n12547215
-n02409508
-n04290079
-n12329260
-n13901858
-n02008497
-n10304914
-n04524142
-n04279462
-n04233124
-n09733793
-n12822115
-n09475179
-n10151760
-n03418618
-n12858397
-n07735510
-n03549473
-n10098245
-n03653583
-n10604380
-n03375575
-n03885293
-n01527347
-n03237340
-n02760658
-n11953038
-n03187268
-n03004275
-n02393161
-n11965218
-n08580944
-n03938725
-n03900979
-n04144241
-n03760310
-n02376679
-n03237992
-n09432283
-n02379908
-n09918554
-n04041747
-n12012111
-n10331167
-n01612122
-n10147935
-n07691539
-n11669786
-n09403427
-n01935395
-n09903501
-n04439585
-n04459018
-n02780704
-n03720163
-n12899752
-n04118635
-n03404149
-n02429456
-n00449168
-n04516354
-n04317833
-n12075299
-n07878647
-n09438940
-n03361550
-n02027357
-n04317976
-n03092883
-n04526964
-n03985069
-n03610682
-n04028581
-n02277268
-n09433839
-n03846431
-n03919289
-n10146104
-n10260706
-n02686227
-n03321103
-n00444846
-n01558307
-n01595168
-n03919096
-n11844892
-n04260364
-n02750070
-n03034244
-n03002096
-n04273972
-n11814584
-n04605321
-n07745466
-n02922798
-n03361380
-n12651229
-n08521623
-n04498389
-n00453313
-n04967882
-n12024690
-n03934656
-n02685082
-n04501550
-n09972458
-n03055418
-n07763629
-n03902756
-n09938449
-n09712696
-n02387346
-n03133415
-n07711080
-n03129753
-n03524150
-n02275560
-n03993053
-n03438661
-n11939180
-n00466524
-n11753355
-n03456024
-n03421324
-n07890540
-n11720643
-n02057035
-n00453126
-n04453037
-n01540832
-n03546235
-n03370387
-n02041875
-n02871439
-n03262072
-n01786646
-n02430830
-n02799175
-n05262422
-n03854722
-n12817694
-n04449966
-n01564773
-n02034971
-n03490119
-n02822579
-n07879953
-n04110178
-n04963588
-n04252653
-n01565078
-n02389128
-n02779435
-n10645017
-n04582205
-n08573842
-n10146002
-n03892178
-n03119396
-n03813078
-n07866868
-n03160740
-n03371875
-n02417387
-n03904782
-n03098688
-n02902687
-n01828556
-n04401680
-n04590933
-n01575401
-n07693048
-n02901114
-n03047941
-n04355511
-n11849871
-n10738111
-n03122073
-n12052787
-n01594004
-n01549886
-n02824058
-n03506184
-n11487732
-n12574866
-n12948053
-n10091450
-n00470554
-n00326094
-n12093329
-n04438897
-n07818995
-n12828791
-n13901321
-n10613996
-n10159533
-n02669295
-n02843158
-n06415688
-n14858292
-n09813219
-n12485653
-n03200231
-n02089468
-n03935234
-n01539925
-n12428076
-n10439373
-n01536644
-n02694662
-n02123242
-n03002711
-n03363749
-n02669534
-n03451798
-n11927215
-n02679257
-n09475925
-n10015485
-n12422129
-n03946162
-n02377291
-n07871720
-n12622297
-n12782915
-n01579260
-n11838916
-n10267311
-n12824053
-n03340723
-n02276749
-n04439712
-n02126139
-n04188179
-n02386853
-n07942152
-n02499316
-n04324387
-n10635788
-n04234887
-n12237641
-n03713436
-n04960582
-n04076713
-n01646292
-n03947798
-n02840134
-n04476972
-n09822830
-n03551395
-n04533802
-n02918964
-n00474657
-n12932966
-n01615458
-n01806364
-n12458550
-n11784497
-n03557360
-n10638922
-n09889941
-n10689306
-n03358172
-n04295571
-n06596607
-n11853356
-n00482122
-n11760785
-n03150232
-n11778257
-n03059685
-n10105733
-n04104384
-n07691237
-n04326676
-n07684938
-n12666965
-n04177820
-n13918387
-n03398153
-n03914438
-n09932098
-n02988486
-n02977619
-n03317788
-n03484487
-n02988679
-n04062428
-n02568087
-n12866162
-n04227144
-n07875436
-n04082886
-n11753700
-n00470682
-n02122298
-n10145239
-n12755727
-n04214282
-n01852671
-n02378969
-n04108822
-n10382825
-n12392549
-n03973839
-n12258885
-n11782761
-n12389501
-n02940570
-n03405595
-n02969323
-n03207630
-n10169147
-n03805725
-n09847543
-n02415253
-n07880080
-n04305572
-n02042180
-n07565161
-n02871147
-n04438507
-n04445154
-n07842433
-n12029635
-n09750282
-n09621232
-n01858906
-n02761206
-n03986355
-n12591351
-n13916721
-n02905036
-n11894770
-n02377603
-n12924623
-n03950899
-n09454153
-n10247358
-n05261310
-n11943660
-n10804287
-n03560430
-n01756089
-n10618342
-n04283378
-n13926786
-n04238321
-n04393549
-n04461879
-n03502200
-n00440941
-n03494706
-n04148579
-n13902336
-n02780815
-n10726031
-n04124098
-n12344483
-n04384910
-n07681450
-n02030837
-n04059157
-n09247410
-n02714751
-n08633683
-n04520784
-n10141732
-n12371439
-n04499062
-n02931148
-n07609632
-n04536335
-n02874537
-n03013438
-n11786539
-n11690455
-n07600696
-n00478262
-n00466712
-n03399677
-n12441183
-n07895962
-n11966083
-n02990373
-n04241249
-n02068541
-n12513933
-n02356977
-n04252560
-n04087826
-n03455488
-n07619409
-n09787534
-n03680942
-n00446980
-n12384839
-n03416900
-n07821758
-n11853813
-n01606522
-n11780148
-n04969242
-n12413880
-n04130257
-n01322604
-n03061211
-n01959492
-n02842573
-n04313628
-n03815149
-n02445394
-n08547544
-n03222176
-n04070003
-n03075768
-n09695979
-n02877266
-n08583292
-n02870676
-n03657511
-n01621635
-n04284341
-n04136161
-n02836174
-n10247880
-n01744100
-n02882894
-n03408444
-n03411079
-n02366959
-n04399158
-n04542715
-n02787435
-n04251701
-n13863020
-n07890226
-n12245319
-n12849952
-n11626826
-n00887544
-n03140431
-n03519387
-n03855604
-n07906111
-n02054036
-n11954161
-n03038281
-n00450998
-n12136392
-n02119477
-n04356925
-n02406647
-n04450133
-n12545635
-n01565599
-n02028900
-n07817024
-n02971167
-n04309049
-n02678897
-n12795555
-n11769803
-n01904886
-n02079851
-n12189987
-n04581829
-n12098403
-n01839330
-n12587803
-n03652932
-n08628141
-n03544238
-n04513827
-n01847806
-n03132076
-n10243137
-n03621377
-n10530959
-n14765422
-n04968139
-n12950314
-n02064816
-n02846511
-n10513823
-n11772408
-n03341297
-n03492922
-n03683606
-n02894337
-n02365480
-n09846755
-n03495039
-n01317813
-n12610328
-n02157206
-n01588002
-n03914831
-n03659686
-n10406765
-n09205509
-n02870526
-n07954211
-n10578471
-n11646694
-n03115762
-n07762913
-n12056758
-n12305986
-n11845913
-n02835915
-n02831237
-n07927512
-n12171098
-n02073831
-n07605040
-n02885462
-n02768114
-n04450994
-n11844371
-n03963645
-n02956699
-n02029378
-n01528396
-n10005934
-n04465666
-n04390977
-n11882074
-n03831382
-n04605163
-n06276501
-n02944075
-n05258051
-n07901457
-n12683571
-n02205219
-n13235503
-n02388735
-n03941231
-n14919819
-n12816508
-n11536673
-n13895262
-n02903204
-n10137825
-n07841345
-n07893253
-n01850192
-n07769731
-n11773987
-n03539678
-n12938193
-n10802507
-n03089879
-n00477392
-n01828096
-n09263912
-n13653902
-n04579667
-n01322983
-n08579352
-n07587023
-n07756951
-n07870167
-n10588357
-n01606809
-n13864035
-n02802544
-n07591961
-n02979399
-n04144539
-n02416820
-n11769176
-n09743792
-n09732170
-n04972451
-n13918274
-n01847089
-n01859689
-n04208065
-n07617051
-n10674713
-n07914271
-n07887461
-n03736064
-n03644858
-n03878963
-n04040247
-n07891433
-n01611969
-n07587618
-n02689144
-n10049363
-n04059516
-n10313239
-n03115400
-n01519563
-n01533893
-n03850245
-n11733548
-n03372549
-n01884834
-n02839110
-n07887192
-n03617312
-n07886463
-n03103396
-n07764847
-n01855476
-n07808587
-n12858871
-n03632729
-n10209731
-n04141712
-n03978686
-n03225988
-n00475273
-n09224725
-n04966543
-n01322221
-n03649674
-n13154494
-n03948830
-n03320519
-n03723267
-n07869611
-n12342498
-n01827793
-n03145719
-n11821184
-n11956348
-n11857875
-n10339717
-n09450163
-n10756148
-n01591301
-n07915094
-n04422727
-n09719309
-n03349469
-n03389889
-n10718131
-n04298661
-n09747495
-n03676623
-n03547229
-n03062015
-n10734394
-n07817315
-n02852360
-n01850553
-n02952585
-n03587205
-n02009750
-n01540090
-n02947660
-n03656957
-n03378174
-n02508213
-n01572489
-n12008487
-n12185859
-n11691046
-n01323355
-n05262534
-n00448126
-n02432983
-n12038406
-n03883385
-n02411206
-n01643896
-n10159045
-n11675025
-n01803362
-n02009508
-n07920349
-n04098513
-n11617272
-n09913455
-n12390314
-n04171208
-n02995345
-n10634849
-n03173929
-n02749953
-n11845793
-n12796022
-n11955153
-n11816829
-n03032453
-n11984542
-n02992795
-n03712111
-n02873733
-n02759387
-n14915184
-n02381364
-n12686274
-n07857731
-n04518764
-n03010473
-n02418465
-n02359556
-n07894799
-n04104770
-n04335209
-n01848976
-n02006063
-n04454908
-n03002948
-n04220250
-n09923561
-n04102162
-n11958080
-n04598965
-n10173410
-n03067339
-n02003204
-n12686676
-n11986511
-n02311617
-n03367059
-n02761557
-n05578095
-n04041069
-n10575463
-n03325941
-n10082043
-n01806297
-n09691729
-n04593866
-n01813088
-n01625562
-n03906224
-n01652026
-n10236304
-n04102618
-n04321453
-n07820145
-n01575117
-n12788854
-n07823698
-n04206225
-n03216710
-n02421449
-n03343737
-n07560903
-n02872529
-n11989869
-n12071744
-n06278475
-n04492749
-n02920259
-n03798061
-n02420509
-n03316105
-n12052447
-n03974915
-n02904803
-n03430418
-n12291959
-n06892775
-n03875806
-n07903841
-n10282482
-n02683323
-n07862348
-n01849157
-n04469813
-n09944022
-n03342127
-n07592481
-n02936402
-n02405929
-n10002760
-n02537716
-n05259914
-n01560280
-n12694486
-n07879350
-n02377063
-n03637181
-n03409297
-n01607812
-n02808185
-n09239302
-n12055516
-n09712448
-n02859184
-n12772908
-n02735538
-n10333838
-n12336092
-n02386968
-n04613939
-n00452864
-n04535524
-n03174731
-n04189816
-n07607605
-n12909917
-n02387722
-n02960690
-n07715221
-n02407071
-n10667477
-n09398076
-n04236809
-n01904806
-n01610552
-n12373100
-n12771390
-n04122685
-n07804771
-n15102455
-n03469175
-n03746005
-n02536456
-n03505667
-n11816336
-n09376198
-n10572706
-n03464053
-n02869155
-n07816164
-n04969798
-n02942349
-n14820180
-n01623615
-n12676703
-n03369276
-n03650551
-n02010272
-n02976123
-n01852400
-n02196119
-n04132158
-n03238586
-n07639069
-n03313333
-n10542761
-n12215022
-n00455173
-n10019406
-n12899537
-n04277826
-n09906449
-n04549629
-n11508382
-n15090065
-n10289462
-n04540255
-n02723165
-n04335693
-n01536334
-n03107488
-n12782530
-n14785065
-n02974348
-n09874862
-n04479939
-n03309465
-n09902954
-n12092417
-n03425595
-n12433081
-n07806774
-n12462805
-n01314781
-n10192839
-n01622120
-n07807171
-n03261019
-n02843553
-n04287747
-n02324587
-n09915434
-n01818299
-n01592694
-n03826186
-n03607659
-n01527917
-n03628511
-n02005399
-n04204081
-n02052775
-n04403413
-n03914106
-n12811027
-n01872772
-n04555700
-n02004855
-n04602762
-n02713003
-n04406817
-n11934807
-n03336282
-n09684901
-n03836976
-n11959862
-n03062336
-n03506028
-n04503413
-n07819896
-n03205669
-n11902200
-n07685218
-n03046133
-n10261624
-n10303814
-n03676087
-n04023695
-n07587111
-n07764155
-n01504179
-n03794136
-n03389761
-n13901211
-n02784124
-n04488530
-n02807731
-n07898443
-n04981658
-n04177755
-n03649161
-n04125257
-n10135129
-n03653110
-n10560106
-n07735687
-n03511333
-n11960245
-n03301568
-n03878066
-n10746931
-n04223299
-n04237423
-n07888229
-n01819734
-n12312728
-n09981939
-n03727465
-n13882276
-n02993194
-n11971927
-n09713108
-n03581125
-n09718936
-n14698884
-n03005285
-n03540914
-n03359436
-n03934042
-n07569644
-n04964878
-n07890068
-n07580253
-n01538630
-n03132666
-n03259009
-n02796318
-n12703190
-n01464844
-n11792029
-n04270371
-n13102775
-n02933649
-n02387254
-n02890188
-n04335886
-n04358491
-n02786837
-n03885194
-n04001265
-n03438071
-n10375402
-n02997910
-n03326795
-n00470830
-n02734725
-n03494537
-n08376250
-n07743544
-n02991847
-n04246271
-n04156140
-n04381073
-n07732168
-n04951071
-n07977870
-n04334599
-n02838728
-n03326948
-n11723227
-n08182379
-n03686924
-n03821518
-n02382204
-n02080415
-n11788727
-n07732636
-n03860404
-n03898395
-n07867324
-n04392113
-n13237188
-n03263076
-n07843636
-n04968056
-n04397027
-n03320421
-n06267564
-n02880842
-n04115456
-n13862407
-n10289039
-n03128248
-n01457852
-n01536035
-n04579056
-n03937931
-n03036022
-n01804163
-n09913593
-n12841007
-n03115897
-n03256032
-n02475669
-n07924443
-n03061505
-n10001481
-n03600722
-n07842308
-n10696508
-n04215402
-n10588074
-n03614782
-n03995535
-n12091953
-n04113194
-n10092978
-n03011741
-n04381860
-n07819769
-n07905474
-n03288500
-n04225987
-n13223710
-n02879087
-n02920083
-n08640739
-n03362890
-n03996849
-n03849814
-n09694664
-n02407390
-n02910864
-n02388917
-n01668665
-n07616046
-n02932891
-n10553235
-n03652729
-n01615703
-n12801781
-n12164656
-n05302499
-n03801760
-n03332271
-n02901793
-n03941417
-n09833441
-n01623110
-n02807523
-n10598181
-n03725600
-n10368528
-n04116098
-n12719944
-n02045864
-n02173373
-n02811059
-n04479823
-n07816398
-n10572889
-n04142731
-n07687381
-n02799323
-n07865484
-n01858845
-n12684379
-n01842235
-n09242389
-n02028727
-n03527565
-n03438863
-n15019030
-n13907272
-n09659039
-n04251791
-n03683995
-n04137217
-n04389430
-n09785659
-n02016816
-n03124590
-n01859325
-n03138669
-n02999936
-n11926365
-n12686077
-n03517760
-n09734450
-n04563413
-n12074867
-n01564217
-n12521394
-n06267893
-n03594148
-n04139395
-n12369309
-n01544389
-n12048056
-n04524941
-n03016868
-n03653740
-n02795528
-n03687137
-n03766935
-n03361297
-n04263502
-n10043491
-n03446268
-n01994910
-n03891538
-n10091564
-n10226413
-n02755140
-n03500389
-n10237196
-n03625646
-n06596474
-n03360300
-n09730824
-n10732010
-n04469514
-n02904927
-n04961331
-n02936570
-n03680858
-n07585758
-n09199101
-n04050933
-n03712337
-n03911513
-n01556182
-n03102371
-n07928887
-n12133462
-n03974070
-n03971218
-n03292475
-n03425241
-n03440216
-n11995092
-n02894158
-n02918112
-n10568358
-n11524451
-n03169176
-n04100519
-n07588193
-n06883725
-n02860640
-n07762114
-n04082710
-n07896893
-n10167152
-n03287351
-n02788021
-n08494231
-n01560935
-n03249342
-n04564581
-n09349648
-n07704205
-n03510244
-n12127460
-n09945745
-n11719286
-n11613459
-n12656369
-n03824381
-n07655263
-n09894143
-n04964001
-n02161457
-n07654298
-n07930433
-n02979074
-n02026948
-n13914608
-n07611267
-n02843276
-n09827363
-n10259780
-n04432662
-n11715678
-n12388858
-n03057920
-n10465451
-n03855214
-n07728181
-n09835348
-n03549732
-n04589325
-n03491032
-n00452034
-n03948242
-n01456756
-n07921615
-n02809105
-n12889713
-n07586894
-n07734879
-n07905979
-n12847374
-n12129134
-n02122580
-n04028074
-n02911332
-n09251407
-n07697825
-n04597309
-n02800213
-n03480579
-n07621618
-n04170933
-n03743279
-n01916481
-n04037220
-n10748620
-n02708433
-n12007196
-n02561381
-n04103769
-n03030880
-n04413969
-n03911658
-n04590746
-n00476389
-n04331639
-n07725789
-n01792429
-n02949542
-n07686720
-n04064862
-n04447028
-n01713764
-n09854218
-n04032603
-n04405907
-n15093298
-n04385536
-n11954345
-n01560793
-n09249034
-n03784270
-n03436549
-n01324610
-n02379183
-n07616487
-n04119478
-n03309356
-n12865037
-n12850168
-n04250850
-n03024064
-n04412097
-n02982515
-n00450070
-n10175248
-n11847169
-n12276872
-n12870891
-n10229883
-n10505613
-n03482252
-n09300905
-n02919890
-n07617611
-n10283170
-n01607962
-n01671125
-n07894551
-n04561287
-n00005787
-n10025635
-n02850732
-n03732020
-n02036711
-n07907429
-n03797896
-n03004824
-n12011620
-n10300303
-n03105467
-n03767745
-n07868508
-n07868200
-n03788047
-n07886057
-n04559451
-n09845401
-n04373704
-n02676938
-n02565324
-n02667478
-n02122878
-n03244047
-n01747589
-n04320973
-n13205058
-n02379430
-n11959632
-n10183931
-n07683490
-n10055410
-n04370288
-n03273551
-n13900422
-n07899434
-n04053677
-n07740461
-n11879722
-n04282494
-n02981911
-n03449451
-n07581249
-n03965456
-n11808468
-n13881644
-n11725973
-n12091213
-n13193856
-n02873520
-n02754656
-n02431976
-n01324431
-n02385214
-n01888411
-n12680864
-n07731284
-n04337287
-n07631926
-n02549248
-n04395024
-n07585557
-n02776825
-n09460046
-n12023108
-n00475403
-n10098517
-n07902336
-n03683708
-n02412210
-n04397452
-n04583212
-n13869547
-n03632577
-n01616086
-n02763901
-n08256735
-n03015478
-n02084732
-n12178896
-n11966215
-n07605380
-n13869788
-n01847170
-n07744811
-n01854700
-n00444937
-n10422405
-n07801892
-n09688804
-n11879054
-n02802215
-n07908411
-n07822518
-n01558594
-n07935737
-n10730728
-n04436329
-n04294879
-n04972350
-n12911440
-n13886260
-n07578093
-n02537525
-n03703730
-n09607630
-n13865904
-n02360282
-n11731659
-n04126066
-n04212165
-n11618290
-n07588574
-n09269472
-n11896722
-n02892304
-n03487642
-n02028342
-n03321563
-n03135030
-n03522100
-n03253886
-n04095109
-n06470073
-n12603449
-n10644598
-n10260800
-n01535469
-n09696456
-n03553019
-n03963198
-n11918473
-n10314517
-n03002341
-n07574923
-n10421470
-n05716342
-n03244231
-n01730563
-n11691857
-n12807251
-n12345899
-n03142679
-n01531512
-n12307240
-n07835457
-n04535370
-n00451186
-n12481458
-n03434188
-n09734185
-n04578934
-n04167346
-n02747802
-n03459328
-n03301940
-n01562014
-n07690431
-n10642596
-n03696065
-n12781940
-n02759257
-n04392764
-n04218564
-n03499907
-n01536780
-n09751895
-n03235042
-n04570815
-n12070381
-n09448690
-n07625061
-n10178216
-n04560113
-n09457979
-n03858085
-n02421792
-n02944579
-n10085869
-n09718811
-n04103206
-n04239786
-n04501947
-n01321123
-n02390015
-n03964495
-n01554448
-n02925107
-n03028596
-n12483625
-n03227317
-n10701644
-n11968704
-n03900393
-n01851038
-n02276078
-n03132776
-n07585906
-n04480033
-n07880458
-n12887293
-n07921239
-n03307037
-n04595028
-n04244379
-n13131028
-n10313724
-n09436708
-n02694045
-n09941787
-n00449796
-n01817346
-n07928696
-n03401279
-n12901724
-n11646167
-n07682477
-n09415671
-n07900225
-n03607029
-n02692232
-n11834654
-n07935379
-n12437930
-n03762434
-n07922764
-n03595523
-n04546340
-n10686885
-n03516844
-n03767112
-n09896685
-n03859608
-n03149686
-n07920872
-n12388143
-n10406391
-n04233715
-n04373089
-n02023992
-n01947396
-n12115180
-n00479616
-n03962852
-n02392434
-n12414035
-n14976871
-n03201776
-n10665587
-n03600285
-n04402449
-n08539072
-n03629231
-n12860365
-n03488438
-n03337383
-n12455950
-n10384392
-n02953455
-n03101796
-n07919572
-n03233744
-n01578180
-n01756508
-n04556533
-n02962843
-n02882190
-n03731483
-n01850873
-n05260240
-n03111177
-n09836519
-n03030557
-n11789066
-n02788572
-n07903101
-n04067818
-n07840804
-n01567678
-n12427184
-n03333610
-n02416964
-n10607291
-n07936548
-n05451384
-n02968074
-n07605597
-n02704949
-n07609215
-n01951274
-n07696977
-n03180384
-n04303357
-n03291741
-n02207805
-n10123844
-n03420345
-n12384227
-n02758863
-n02047975
-n03978966
-n03549199
-n04275175
-n09294877
-n09836343
-n11970586
-n02010728
-n10369317
-n12681893
-n03192543
-n12413165
-n12174521
-n11916696
-n10042845
-n07822197
-n04968749
-n10323634
-n12849416
-n02814774
-n05538625
-n03078802
-n12230794
-n07726095
-n03051249
-n12005656
-n11876432
-n12164881
-n09711435
-n01622483
-n09896170
-n07684289
-n03368352
-n07910048
-n03159535
-n00466377
-n01541386
-n11647703
-n09752023
-n07903731
-n12249542
-n03794798
-n11786131
-n02852043
-n10493685
-n09846894
-n01752585
-n01536186
-n07618432
-n09859152
-n02065026
-n02382635
-n07867616
-n03885788
-n04255586
-n03275681
-n11961100
-n12485981
-n04495698
-n03293741
-n13902048
-n03254862
-n07903962
-n01594787
-n11962272
-n03284886
-n07842202
-n10157128
-n02405302
-n04443766
-n06266633
-n02519862
-n01487506
-n03373943
-n04247876
-n04327204
-n03349771
-n09260907
-n10092794
-n12223764
-n03504723
-n11926833
-n01820052
-n13032381
-n03889871
-n03209359
-n04608923
-n15093137
-n15091304
-n03688405
-n09905185
-n03543112
-n11611356
-n03885028
-n03234164
-n07594066
-n02396014
-n03456186
-n09874725
-n11601333
-n02917521
-n03055857
-n02804123
-n12352844
-n12866002
-n09858165
-n12037691
-n02565072
-n04477387
-n02008643
-n07867021
-n04119360
-n09893191
-n02944146
-n12435649
-n13197274
-n04974859
-n07751004
-n12003696
-n02762508
-n02680512
-n01743086
-n06998748
-n10607478
-n07613815
-n01559477
-n01859852
-n03239054
-n04466871
-n05263183
-n13173882
-n07897438
-n12427757
-n04400737
-n03291963
-n07682808
-n11692265
-n04130143
-n09445289
-n07696839
-n03835197
-n12821895
-n09734639
-n03365374
-n04305210
-n04962240
-n09871867
-n07897750
-n07616386
-n09443281
-n03641569
-n13882563
-n07680761
-n10498816
-n04034262
-n03533014
-n07928790
-n07690152
-n10060352
-n04124370
-n12453186
-n04509171
-n03013580
-n10604979
-n12515711
-n04971211
-n07693223
-n03786715
-n07894703
-n02761834
-n04232800
-n03437741
-n04045644
-n14976759
-n03042697
-n12557681
-n06275095
-n11678010
-n01586941
-n07684517
-n07822845
-n03483823
-n09951616
-n03180865
-n07861557
-n03644378
-n12848499
-n11962667
-n03886762
-n04238128
-n11979964
-n13915113
-n12791329
-n12457091
-n03341153
-n10267865
-n03484576
-n10186216
-n07612137
-n03843438
-n11807525
-n11931540
-n02027897
-n07614730
-n04116294
-n03469903
-n10017272
-n03688605
-n07860103
-n03981566
-n01888045
-n03345837
-n11998888
-n02071636
-n02726017
-n04310157
-n04607869
-n01622959
-n08524735
-n03119203
-n12031927
-n03610524
-n02807616
-n04056180
-n03233905
-n03374473
-n14810561
-n11944954
-n03121431
-n09750891
-n08505018
-n10727171
-n12357485
-n12571781
-n12067193
-n07586604
-n02086753
-n03548086
-n02560110
-n07804900
-n02880393
-n04208427
-n12931542
-n01594968
-n05218119
-n03520493
-n03727605
-n12687698
-n03612965
-n04135315
-n07730320
-n10540114
-n07599911
-n01323493
-n02115096
-n04590263
-n12043836
-n02861387
-n09836786
-n04966941
-n02816768
-n13131618
-n10701962
-n02919792
-n03442597
-n04325041
-n03333129
-n04091693
-n04950952
-n10631309
-n04177931
-n13234678
-n01970667
-n07748416
-n07893642
-n07691650
-n03660909
-n04145863
-n11945514
-n10334009
-n12336973
-n03954393
-n04558478
-n09899929
-n03487533
-n07816575
-n07877187
-n07863547
-n01603812
-n02098906
-n04973585
-n03674440
-n04371050
-n12243109
-n07871234
-n02928049
-n07574504
-n07889274
-n12141167
-n04543996
-n03080633
-n03423479
-n07879659
-n04380916
-n10514429
-n07584423
-n04009801
-n12479537
-n07606538
-n07698543
-n12353754
-n10132035
-n03367545
-n04245508
-n09811852
-n02024763
-n04052442
-n10120330
-n12352639
-n12606438
-n07752966
-n09772930
-n02535759
-n11737534
-n10345015
-n12427566
-n09705784
-n04112654
-n02985963
-n03758089
-n12953484
-n07906572
-n02881757
-n12739332
-n03718458
-n03407865
-n07775050
-n03210552
-n09452395
-n09789566
-n10566072
-n10559996
-n07826930
-n12414932
-n01887474
-n03026907
-n07751148
-n10223177
-n03957420
-n03788601
-n12244819
-n12421137
-n04266162
-n10038409
-n02981024
-n03228967
-n11825351
-n12058822
-n11963932
-n03041449
-n03046029
-n07590502
-n02932523
-n02152881
-n04970398
-n07887967
-n12812478
-n12421917
-n02708711
-n11870747
-n04290507
-n07934282
-n01608265
-n12070583
-n03205574
-n02305085
-n07866015
-n02960903
-n10098624
-n00481803
-n07938007
-n02693246
-n03923379
-n04103665
-n11792742
-n12489815
-n04971313
-n01668892
-n01055165
-n03215508
-n12104501
-n07899292
-n12822955
-n07713074
-n03842012
-n02449350
-n07868955
-n02835829
-n12283542
-n04525584
-n07910656
-n11625003
-n03987266
-n02805983
-n15091846
-n09736945
-n04973816
-n02439398
-n01519873
-n07899003
-n03019938
-n07582152
-n01885498
-n12108871
-n02934451
-n04327682
-n07696625
-n09750770
-n12084890
-n03960374
-n07585107
-n01570839
-n11905392
-n06277135
-n07842044
-n03751269
-n04398951
-n12861892
-n12649539
-n07596967
-n07580592
-n12845413
-n07690739
-n07804657
-n04334105
-n03779128
-n03268918
-n03066359
-n02744323
-n12596148
-n04272389
-n07832416
-n10210911
-n01548865
-n03221351
-n15091669
-n07878926
-n07607967
-n12171966
-n02846141
-n07576781
-n02922292
-n10092643
-n01732614
-n02578771
-n02864593
-n03537241
-n09635534
-n03268645
-n07852833
-n13873917
-n12640839
-n03506727
-n10536416
-n09976429
-n10692482
-n07600285
-n04156946
-n07818689
-n02605703
-n02710429
-n02890351
-n03408054
-n03121298
-n02731629
-n12450840
-n04061681
-n10153414
-n07648913
-n07891309
-n01562265
-n14973585
-n01610226
-n06267991
-n03302938
-n07822323
-n07826091
-n02764398
-n10406266
-n09282208
-n01734104
-n04283096
-n03530910
-n11542137
-n02610664
-n03856012
-n01531811
-n07862611
-n11625632
-n12643313
-n02469248
-n03333711
-n02907082
-n02122430
-n01559804
-n09744161
-n10187990
-n12015525
-n07844867
-n07887304
-n02878425
-n02009380
-n11448153
-n10655594
-n12566954
-n11901977
-n03999160
-n02389779
-n07928488
-n12785889
-n04281375
-n03745146
-n03224603
-n04594828
-n12835331
-n09715427
-n11615026
-n09972010
-n04038231
-n02379329
-n03445326
-n10753442
-n04249882
-n11727738
-n07866723
-n04282992
-n11621281
-n01566645
-n03919430
-n11980682
-n03480719
-n11625804
-n10467395
-n09436444
-n07867751
-n03684611
-n03788498
-n12062626
-n07808904
-n07690585
-n03865557
-n10711766
-n10465831
-n04380255
-n12166128
-n04432203
-n07892418
-n10432441
-n12991184
-n04209613
-n04459773
-n09666883
-n07807472
-n09873899
-n12939874
-n04545748
-n09637339
-n07919441
-n03987376
-n03645577
-n03437430
-n10671613
-n02964843
-n09707289
-n11700058
-n03877351
-n03518445
-n07643200
-n02140049
-n12683791
-n12418221
-n04154152
-n03397947
-n03238131
-n11851839
-n04545858
-n07744682
-n02995871
-n07593199
-n03543394
-n10293332
-n12658481
-n11599324
-n02705201
-n03920867
-n08249459
-n02876084
-n03937835
-n01397871
-n03849679
-n12016567
-n04208936
-n07696728
-n13148208
-n01904029
-n08659861
-n07878785
-n07827130
-n03390983
-n02624807
-n03319745
-n03994614
-n00446493
-n12477583
-n02920658
-n04602956
-n02688273
-n07577538
-n04350581
-n09283405
-n04074185
-n04495843
-n03538179
-n03454885
-n03878211
-n10308168
-n08518171
-n02660208
-n07904760
-n07928367
-n10174445
-n02137015
-n02863426
-n07700003
-n04015908
-n03946076
-n11725821
-n01794344
-n04364160
-n01663782
-n04283255
-n02822064
-n04406239
-n02782681
-n11990313
-n03563460
-n02957008
-n07889814
-n07896060
-n03683079
-n04278447
-n13011595
-n11810358
-n03836451
-n12827537
-n03545470
-n03213538
-n07929351
-n03471190
-n02882301
-n03625943
-n03397087
-n11955896
-n04097373
-n03145522
-n03034405
-n02889646
-n02928299
-n09652149
-n01641391
-n04593524
-n07651025
-n03719343
-n03884778
-n03452594
-n02174659
-n12345280
-n03039827
-n03309687
-n11635433
-n02057330
-n01664990
-n09779790
-n02011016
-n09689958
-n07770763
-n03010915
-n03443912
-n02946509
-n13050397
-n03031012
-n04217546
-n04124202
-n12766869
-n04177041
-n12050533
-n03251932
-n03086580
-n03918737
-n04386792
-n03176594
-n01577035
-n01669654
-n01818832
-n10441962
-n03885904
-n03724756
-n02925666
-n03549589
-n03062122
-n02828427
-n12604228
-n03624400
-n07725888
-n03873699
-n01503976
-n02887079
-n03610098
-n02940385
-n04610013
-n03652100
-n04496872
-n04008385
-n02583890
-n10476467
-n03395514
-n03306385
-n04228581
-n02389261
-n12576323
-n01579149
-n01623425
-n02593019
-n03995265
-n02124484
-n12745386
-n04355267
-n02643836
-n01614343
-n03810952
-n04058594
-n12278650
-n03474779
-n02823510
-n00442437
-n12039317
-n04574067
-n03762602
-n02153109
-n03518943
-n04289827
-n02288268
-n07749969
-n04132985
-n03213826
-n04307986
-n03567066
-n02049088
-n04408871
-n03522003
-n09305898
-n04266375
-n08571898
-n03039259
-n01587526
-n03261603
-n00464277
-n02627532
-n02992368
-n03640850
-n03037404
-n04525191
-n02106854
-n07772147
-n04173511
-n12761284
-n03257210
-n02813544
-n07740342
-n04066270
-n03070059
-n03616428
-n02904233
-n03209910
-n04389854
-n03078995
-n03193260
-n01488038
-n01754533
-n12629305
-n02055107
-n11664418
-n04228693
-n03353951
-n03440682
-n03025250
-n03300216
-n02042046
-n04226826
-n03342015
-n03090000
-n02050313
-n03492250
-n01535690
-n01572654
-n03465718
-n02879309
-n06278338
-n04113406
-n03695857
-n09720256
-n01860002
-n02851939
-n09828216
-n02564270
-n03528901
-n02542432
-n11978961
-n01670802
-n03956623
-n01612275
-n09376786
-n03222318
-n02813645
-n02213543
-n13898207
-n03616763
-n03616979
-n11904109
-n04212282
-n04608435
-n02042472
-n04198453
-n03216402
-n02015357
-n12282737
-n02699629
-n12866635
-n02048353
-n02933340
-n01793715
-n12001707
-n02878222
-n03187037
-n03105306
-n04080705
-n04254009
-n01623880
-n02839592
-n03436182
-n01591123
-n01318279
-n03002816
-n13155095
-n03141702
-n03775388
-n12165170
-n03322836
-n03259401
-n04471148
-n03911767
-n12585629
-n04317325
-n04257986
-n03133050
-n02035210
-n12891305
-n11882426
-n04491388
-n12948251
-n03498781
-n04262161
-n03775636
-n09915651
-n07584332
-n07852614
-n11626152
-n03901750
-n09723067
-n04265904
-n09920283
-n02397744
-n03253796
-n07712959
-n03898129
-n01743936
-n02075612
-n04560292
-n03479397
-n04334365
-n04357121
-n10145902
-n03844673
-n09854421
-n12687957
-n12598027
-n03944138
-n01839750
-n07722888
-n04258859
-n03088389
-n03351434
-n03509608
-n01677747
-n03145147
-n12046815
-n03505133
-n01629962
-n03333252
-n03993703
-n02962061
-n04529962
-n03463666
-n07681691
-n12160857
-n04187233
-n09331251
-n11614713
-n04376400
-n12301445
-n12633994
-n03883524
-n11614420
-n13062421
-n03645011
-n03293863
-n11640132
-n02579928
-n02854739
-n04461437
-n07729384
-n02977936
-n02836392
-n03593122
-n01666228
-n07820683
-n07568502
-n11910460
-n09348460
-n09712324
-n02403740
-n03482877
-n04370774
-n07750146
-n12992177
-n03152303
-n04134008
-n09805324
-n01611800
-n04374315
-n07586099
-n02032222
-n01979874
-n04350769
-n02907873
-n03016609
-n02543565
-n03256166
-n03016737
-n02419336
-n03268790
-n03559999
-n07765999
-n04607035
-n02416104
-n02123917
-n12484784
-n03225108
-n10739391
-n03506880
-n02918831
-n03045228
-n12516828
-n01314663
-n04172342
-n02768226
-n12368028
-n01500476
-n01558149
-n03604156
-n04035912
-n02359915
-n12261571
-n03875955
-n01887623
-n03871371
-n03390786
-n12494794
-n03826039
-n04465358
-n03838298
-n03165466
-n04229737
-n01321770
-n04354026
-n02998003
-n04114844
-n10611613
-n03600475
-n01909906
-n00466880
-n04284869
-n07722485
-n04496614
-n03298716
-n02285801
-n04081699
-n07765208
-n12659539
-n11618525
-n11757653
-n07727048
-n03913343
-n12070016
-n02697675
-n04284572
-n02595702
-n04482297
-n03516996
-n03704549
-n02040266
-n04476116
-n01323261
-n03823216
-n07696403
-n03226880
-n09734535
-n03950537
-n01671479
-n03049924
-n12593994
-n04568841
-n03604400
-n01837072
-n01754370
-n03122202
-n12338454
-n04094720
-n04150980
-n03429682
-n03884926
-n03378005
-n02434954
-n03461288
-n02893692
-n04472563
-n10472129
-n04590021
-n07739344
-n04162433
-n03395859
-n12059314
-n03498662
-n03678729
-n02927764
-n02770211
-n11710393
-n07730207
-n04178190
-n07772935
-n03801880
-n04414675
-n12729521
-n12203529
-n04122578
-n04575824
-n06267655
-n03698360
-n02804515
-n02431337
-n08598568
-n02893608
-n02270623
-n00479440
-n11616662
-n02884994
-n04305323
-n02407625
-n04476831
-n04222307
-n03179910
-n11623967
-n00446311
-n00454983
-n02886434
-n12279458
-n03723781
-n11816121
-n02403231
-n11808299
-n07816296
-n03219483
-n02657694
-n00453478
-n02816656
-n02625851
-n04112752
-n03339529
-n12171316
-n02044517
-n04137773
-n01486838
-n03015149
-n12911673
-n03967270
-n03498441
-n11672269
-n03386870
-n11615967
-n02580679
-n01681653
-n02793199
-n02824319
-n10727458
-n02555863
-n01533000
-n02175916
-n12064389
-n04383015
-n02469472
-n03101664
-n03623338
-n12295796
-n02869249
-n01792042
-n03447075
-n04453390
-n04382438
-n04112252
-n03332393
-n12729729
-n01851207
-n04269270
-n12333771
-n06272612
-n03135532
-n02927887
-n11711537
-n12301180
-n04107743
-n01813948
-n03282295
-n09714694
-n00483409
-n01504344
-n04279353
-n04040373
-n12658308
-n04134523
-n10104064
-n12056601
-n04525417
-n07819166
-n12263038
-n02072798
-n03125057
-n03367410
-n04000592
-n03549897
-n01877606
-n01564914
-n12307076
-n02855925
-n03176763
-n12271933
-n04121728
-n07690511
-n02825442
-n04442441
-n01630901
-n03088580
-n02499808
-n10675010
-n01531971
-n02273392
-n01526521
-n01531344
-n03667664
-n02888270
-n04412416
-n07733394
-n04559910
-n04105704
-n11792341
-n04201064
-n01693175
-n04555291
-n02908773
-n01976868
-n03529175
-n03365231
-n03622839
-n04258333
-n03327133
-n03425769
-n12477747
-n03718935
-n11727540
-n07933799
-n03030262
-n12043673
-n02619550
-n07937461
-n12198286
-n08560295
-n12402348
-n01733957
-n12344700
-n02763604
-n11925303
-n01557962
-n03927299
-n11611758
-n03035252
-n09454412
-n04004990
-n03456299
-n02175569
-n03668279
-n12352990
-n03507241
-n01534155
-n12278371
-n02499022
-n03822767
-n01318381
-n04024983
-n04277493
-n11934616
-n02027075
-n11611561
-n03454442
-n02236355
-n01732789
-n07722052
-n01489501
-n04409625
-n10563403
-n01817263
-n07757511
-n03770316
-n02977438
-n01840775
-n03607923
-n03322704
-n02375302
-n01614038
-n01646555
-n03952576
-n02946824
-n12847008
-n03016389
-n11809594
-n03165096
-n03839671
-n02687821
-n01689081
-n03822656
-n02597608
-n12336727
-n01579578
-n03631922
-n03904909
-n11658331
-n04224543
-n12621410
-n03870672
-n04252331
-n09720842
-n01396048
-n11988596
-n00483205
-n02871005
-n01597022
-n02382039
-n07743902
-n02358890
-n07877961
-n05263448
-n01862399
-n04136800
-n10624540
-n11990167
-n02731398
-n03366974
-n03490006
-n01561732
-n02626265
-n10627252
-n12402051
-n08517676
-n10488656
-n03099274
-n03718581
-n11806219
-n01830042
-n07728585
-n03732114
-n10755080
-n03359285
-n07720277
-n03354207
-n01596273
-n04416005
-n01847253
-n07733567
-n09725653
-n04274985
-n00449977
-n07772274
-n12063639
-n01530439
-n01322508
-n04397768
-n07273802
-n04261281
-n10524076
-n01678343
-n03410938
-n01797020
-n02388832
-n07719616
-n03639497
-n09787765
-n07721018
-n11818069
-n04185529
-n11644462
-n12074408
-n00483848
-n01583495
-n11891175
-n03347617
-n03308481
-n02535258
-n07750872
-n07748157
-n02855701
-n04584373
-n02461830
-n02912557
-n12277578
-n03604311
-n03643253
-n03031152
-n04039742
-n03435743
-n13908201
-n04150153
-n03250405
-n01410457
-n02357401
-n12588780
-n12729315
-n01690149
-n02538216
-n03171228
-n02424909
-n06274760
-n03775747
-n04211857
-n12429352
-n12272239
-n11759853
-n03401129
-n12649317
-n02625258
-n12651611
-n03603442
-n02803934
-n03861271
-n02605936
-n02018368
-n12711984
-n02811936
-n04612026
-n01339471
-n02923682
-n09194227
-n04346157
-n03939178
-n12635532
-n01593028
-n01793249
-n02380464
-n12400720
-n07708398
-n12020941
-n12492106
-n12850336
-n12749679
-n02892948
-n12591017
-n03193423
-n01791463
-n11979527
-n12134025
-n12167075
-n09308743
-n13108545
-n01618503
-n07827284
-n07724492
-n02338145
-n04533946
-n01586020
-n07598256
-n01603953
-n12646740
-n03067518
-n04046277
-n01532511
-n07769584
-n11644046
-n12753573
-n02681392
-n08492461
-n07749446
-n04409384
-n01791954
-n12330891
-n04560882
-n10145480
-n04250473
-n02655848
-n02903126
-n11736851
-n11901294
-n12865824
-n03870105
-n00449892
-n04240752
-n11851258
-n04200537
-n12049562
-n01521399
-n03565830
-n07860447
-n03067212
-n01664674
-n07561590
-n02727141
-n02324514
-n02372952
-n01584853
-n07766173
-n11811706
-n03097362
-n04200258
-n02732572
-n01853195
-n12282527
-n09838621
-n02764505
-n04256891
-n12337617
-n12635955
-n07831267
-n11628793
-n12316572
-n07807834
-n02037869
-n01821869
-n02820556
-n04517211
-n01839086
-n03842986
-n07698401
-n02386224
-n07841800
-n01830915
-n11616486
-n11902389
-n03427202
-n12727101
-n01851573
-n02125494
-n07746186
-n11628087
-n07746551
-n03943115
-n11892029
-n02861022
-n11733312
-n01852329
-n09392402
-n12336224
-n07887099
-n03403643
-n04414199
-n07895100
-n02264232
-n02317781
-n07823460
-n07755929
-n02524202
-n04324297
-n11627512
-n01585715
-n02922578
-n00479887
-n02687423
-n02416880
-n11784126
-n12073991
-n01853870
-n01561452
-n04187970
-n10300154
-n02520147
-n12294124
-n07743224
-n12066018
-n11634736
-n02041678
-n11626585
-n02386141
-n03986949
-n07860331
-n12356023
-n12072722
-n03082280
-n12083113
-n12979829
-n01448594
-n03007444
-n07858978
-n01641739
-n02043333
-n12020736
-n02751215
-n04528079
-n01538200
-n07925608
-n12091550
-n03742019
-n03518305
-n01642539
-n03414029
-n04363991
-n03767966
-n02596067
-n01586374
-n02885882
-n04080138
-n11617631
-n02033779
-n09451237
-n02310585
-n12648045
-n03955489
-n01752736
-n07899899
-n02299505
-n01579410
-n02156871
-n02998841
-n03759661
-n02050809
-n02683454
-n11621950
-n02910145
-n04967801
-n07896661
-n11906917
-n12275675
-n11611233
-n07736692
-n02312640
-n12588320
-n04399537
-n12757303
-n04197781
-n12717224
-n11635152
-n03122295
-n01792955
-n13133932
-n02518324
-n01584695
-n02915904
-n02967294
-n04345201
-n03019434
-n02470238
-n03049782
-n03101517
-n12709688
-n03716887
-n02422391
-n12638753
-n00288384
-n02162561
-n02053584
-n01317294
-n03334291
-n07814634
-n12273768
-n12406715
-n11644226
-n01646802
-n03460147
-n12338796
-n01972541
-n02147947
-n03890093
-n04127395
-n01581984
-n01681328
-n02213239
-n04582869
-n03254189
-n03274265
-n03186285
-n11839823
-n01624833
-n09792969
-n07891189
-n12023726
-n07619208
-n03466600
-n01849676
-n12190869
-n03079136
-n12317296
-n13001930
-n00477639
-n02944459
-n03903733
-n04131208
-n12710295
-n12180885
-n11612349
-n03443149
-n03982331
-n04264765
-n12642090
-n03237416
-n13868944
-n04046400
-n11705171
-n11979715
-n12597134
-n01609956
-n01568294
-n01469103
-n00443692
-n01606672
-n04556408
-n07690019
-n03977592
-n03358726
-n12696492
-n01573240
-n11632619
-n01772664
-n03453231
-n04179712
-n03646020
-n01812662
-n04306592
-n07724654
-n13908580
-n02903852
-n04284438
-n13132656
-n04317063
-n07829248
-n01589718
-n02654745
-n12294331
-n12515925
-n07900825
-n07721195
-n04189282
-n11907689
-n01624537
-n12333530
-n07762244
-n11757851
-n01599159
-n04038338
-n01568892
-n12691661
-n09744834
-n04307767
-n03120778
-n07920540
-n03781683
-n04185804
-n12080820
-n04354182
-n07574426
-n02579303
-n03046802
-n12078172
-n03210245
-n01614556
-n02304432
-n07713267
-n09724656
-n02861147
-n12755387
-n01483830
-n12921868
-n12026018
-n07817871
-n12062781
-n04241573
-n11621727
-n03376159
-n11815721
-n13007034
-n03540090
-n00450866
-n11619455
-n01528845
-n01568720
-n12743352
-n02871314
-n03606251
-n01490670
-n04246060
-n02053425
-n10780284
-n01915700
-n04510706
-n00456465
-n01563945
-n11809094
-n09855433
-n04112579
-n03855333
-n09809925
-n03413684
-n02123478
-n12070712
-n03651843
-n02032355
-n01591005
-n01646648
-n02752615
-n02415829
-n03283221
-n04368496
-n01573360
-n02321170
-n10348526
-n04446844
-n07763792
-n12077944
-n04431025
-n02895438
-n10082687
-n07714188
-n02262449
-n03090172
-n12491017
-n01558461
-n12754781
-n04070415
-n04297098
-n03424862
-n01970164
-n09833536
-n01793435
-n01670535
-n09894445
-n09676247
-n01548492
-n12501202
-n03250089
-n03358380
-n02578928
-n12020184
-n02301935
-n03393017
-n12340755
-n01849863
-n01748906
-n03075946
-n01810268
-n01984245
-n04555400
-n12286988
-n04097760
-n02050586
-n12104238
-n01679962
-n02709101
-n01569060
-n12790430
-n01757901
-n13199717
-n11815918
-n07827410
-n02970534
-n12942572
-n07924276
-n04103918
-n11704093
-n07908647
-n07601686
-n12172906
-n04084889
-n02381261
-n02299157
-n11978713
-n12460957
-n02963503
-n03272810
-n12469517
-n03443005
-n01797307
-n02952237
-n11908549
-n13912540
-n03428226
-n10276477
-n01757343
-n01443243
-n01607600
-n03580518
-n12709103
-n07579688
-n04329834
-n12710415
-n11808932
-n10583790
-n02213788
-n11622184
-n12596709
-n02216211
-n07721942
-n07765361
-n01848453
-n11724109
-n02028451
-n02935017
-n12046028
-n10629939
-n00441073
-n07900958
-n12451399
-n02823964
-n04210120
-n01848840
-n10485883
-n07767709
-n02432704
-n11622591
-n03210372
-n07848196
-n11992806
-n02953197
-n07620689
-n01521756
-n03571625
-n03158186
-n12647560
-n02065407
-n01572782
-n09890749
-n05581932
-n07754451
-n03350204
-n13044375
-n12294723
-n12482893
-n04434531
-n12989938
-n12196336
-n01701859
-n07746334
-n11941924
-n02047411
-n12650379
-n10486166
-n01599556
-n01567879
-n12675876
-n01682435
-n02043808
-n12362668
-n12306089
-n02999138
-n01679626
-n03557270
-n01546039
-n11901759
-n01549053
-n11883328
-n06596727
-n03193107
-n11612018
-n03300443
-n03612010
-n03668488
-n12648888
-n01448291
-n11632167
-n10262445
-n09742101
-n09717233
-n04299370
-n03094159
-n04536595
-n03514693
-n02029706
-n02886321
-n07816052
-n04045255
-n01851731
-n02627292
-n01841288
-n02739889
-n02932693
-n03784896
-n04569063
-n07902799
-n03863108
-n02607470
-n13200651
-n07916183
-n01573898
-n04347119
-n10076604
-n13033577
-n01824035
-n03630262
-n04426316
-n03064250
-n12262018
-n12048399
-n12279772
-n04143140
-n07829331
-n12891643
-n01826680
-n12646605
-n13103877
-n02023855
-n03086868
-n04163530
-n03736470
-n04358117
-n13872822
-n03159640
-n01680655
-n11611087
-n03980478
-n02978478
-n01555004
-n12402840
-n07763987
-n04387706
-n04979002
-n03258330
-n09856671
-n11624192
-n01538059
-n02003839
-n12552309
-n10469874
-n01576076
-n03643149
-n04419868
-n04586581
-n00483508
-n03131967
-n01847407
-n07929172
-n09683757
-n03786621
-n04369282
-n12733870
-n11612575
-n11619227
-n03301833
-n02176439
-n01569971
-n07935043
-n02563792
-n02051059
-n04482177
-n11859472
-n11710136
-n04115144
-n07864934
-n07691758
-n02620167
-n07748276
-n03415486
-n07835921
-n00452152
-n01848323
-n12906214
-n12075010
-n01563449
-n01499396
-n01570267
-n12047345
-n07920989
-n07601572
-n02683558
-n04428634
-n04345028
-n12161969
-n03460040
-n02561514
-n02006364
-n03582959
-n11812910
-n13185269
-n04297847
-n07896165
-n01552813
-n12361946
-n02031585
-n12766595
-n11622368
-n11695599
-n11615387
-n02509197
-n12409470
-n01314388
-n11758799
-n09846469
-n02675219
-n04253057
-n04041243
-n12276628
-n04381724
-n01855188
-n02203152
-n04403925
-n11895092
-n11924849
-n04172904
-n11888800
-n01546506
-n07906718
-n01489920
-n03436417
-n03615655
-n07765073
-n02434190
-n02004492
-n12282235
-n12406488
-n11981192
-n10373390
-n13183056
-n04332074
-n12818346
-n07731006
-n02598573
-n02438580
-n01957335
-n03356982
-n10288964
-n02629230
-n02042759
-n12319414
-n01451426
-n03521675
-n02016066
-n01813532
-n13207335
-n11805544
-n04401828
-n02952109
-n03963294
-n10013811
-n12058630
-n01551711
-n01574560
-n01858780
-n10093818
-n03858183
-n01550172
-n03571280
-n02309242
-n10258786
-n01569423
-n10134178
-n08578517
-n04445327
-n03250279
-n02584449
-n03223553
-n04523831
-n04485423
-n02050442
-n04474035
-n04528968
-n02649546
-n01913166
-n09971273
-n04517408
-n02437482
-n03824713
-n03778817
-n07643026
-n01613177
-n12022054
-n07714448
-n07592768
-n00454493
-n03296328
-n02305929
-n03084834
-n03698815
-n12093600
-n08649711
-n03466493
-n04067658
-n03041114
-n03514451
-n01491006
-n04178329
-n03790953
-n03938401
-n02048115
-n07768858
-n03273740
-n10333601
-n05418717
-n12754003
-n02098806
-n03314608
-n01565930
-n12113195
-n12284821
-n12483427
-n04332580
-n10382710
-n03416094
-n02837887
-n03917198
-n14131950
-n04414476
-n11861641
-n11903671
-n01841441
-n09872066
-n01806467
-n04964799
-n00467320
-n01595974
-n03220692
-n01339083
-n01825278
-n11727358
-n04518343
-n11984144
-n07724269
-n02292692
-n02324850
-n01753032
-n01624115
-n11816649
-n07930062
-n02460451
-n12319204
-n04340521
-n12325234
-n01541102
-n02979836
-n00141669
-n01822300
-n11658544
-n12272883
-n03334382
-n11726707
-n03639077
-n07904934
-n03516367
-n03698723
-n03553248
-n11812094
-n03724417
-n01540566
-n02341974
-n11819912
-n07734555
-n02987379
-n03580845
-n12546962
-n02548247
-n12753245
-n07768423
-n12849279
-n11617090
-n02912894
-n07840027
-n12295033
-n12703383
-n02696165
-n10419785
-n04426427
-n03694639
-n11712282
-n04142999
-n01597737
-n03801533
-n01495493
-n07774719
-n03267113
-n01742821
-n03859170
-n03416640
-n03320959
-n12733218
-n02017725
-n13229543
-n09344324
-n04965451
-n01490112
-n10069296
-n12084555
-n04554406
-n04086446
-n02976249
-n02656032
-n02424486
-n02381609
-n09934337
-n04573937
-n07685399
-n02800497
-n02905152
-n02951703
-n07760153
-n03609397
-n00447463
-n03680512
-n02046939
-n03288886
-n11870418
-n03386544
-n07767171
-n07847453
-n12687044
-n01664492
-n03099147
-n03463381
-n02125081
-n12920204
-n03517647
-n02603540
-n12267411
-n11933546
-n11947802
-n04387095
-n12975804
-n02973904
-n13195341
-n04048441
-n11753143
-n03212114
-n03298858
-n04366116
-n01424420
-n10450161
-n01442972
-n07877299
-n04503593
-n04349306
-n12969425
-n12597466
-n03092656
-n07914995
-n03487886
-n12223569
-n01756733
-n13919919
-n04175147
-n02029087
-n03530511
-n02425887
-n03572107
-n03927539
-n03383099
-n04130907
-n01632601
-n07823105
-n10378026
-n02382850
-n07613266
-n03235180
-n02810782
-n12708654
-n11636835
-n02823124
-n03402941
-n12121610
-n03715114
-n04052658
-n00480366
-n12493208
-n04255163
-n12145477
-n01489709
-n12402596
-n01598074
-n03837606
-n02628062
-n04103364
-n03247083
-n02032480
-n07736256
-n12578916
-n09218315
-n02218371
-n03730334
-n02080146
-n03836906
-n02868638
-n02198859
-n12744387
-n02942460
-n11754893
-n12274358
-n02725872
-n09218494
-n03942920
-n07574780
-n02921756
-n01757115
-n02763306
-n11758122
-n10508141
-n02303284
-n04083800
-n13879049
-n12765115
-n12075830
-n02666943
-n11980318
-n07907037
-n12794135
-n02333909
-n03870980
-n07586718
-n11923174
-n10782471
-n01493146
-n12294871
-n11726269
-n12932173
-n07825972
-n12732009
-n03572321
-n07682197
-n03423306
-n12495895
-n03545756
-n03557692
-n03785237
-n07902937
-n09899671
-n12061614
-n07902443
-n01449374
-n12632335
-n03474896
-n03539433
-n04310904
-n03902482
-n12006930
-n03285578
-n04200000
-n03912218
-n07821260
-n03548626
-n03223686
-n11826198
-n03165616
-n02104280
-n09981278
-n09382099
-n03732458
-n03987990
-n09946814
-n12270741
-n07737745
-n04172776
-n10189278
-n03543012
-n12629666
-n02180875
-n04087432
-n12961879
-n03321954
-n12528549
-n02424085
-n09843443
-n03846677
-n12304703
-n09873473
-n03410571
-n03041810
-n02425228
-n01562451
-n03615790
-n10081204
-n03985881
-n07842130
-n02890513
-n03649797
-n02381004
-n12560621
-n12523475
-n07687626
-n11905749
-n11759404
-n12905412
-n03542605
-n03983612
-n12573474
-n11972291
-n03767459
-n02698634
-n12713866
-n13084834
-n02202006
-n13108323
-n02631475
-n10737103
-n03637898
-n03069752
-n12400489
-n09692915
-n10242328
-n02794664
-n12465557
-n12085267
-n03348868
-n12754981
-n02745611
-n10504206
-n12073554
-n02835724
-n04605572
-n02825961
-n03528523
-n12116429
-n02973805
-n12708941
-n01544704
-n04180229
-n09403211
-n08242223
-n02146371
-n12127768
-n09770359
-n03295246
-n01757677
-n04385799
-n02584145
-n07909593
-n12587132
-n13029326
-n04184316
-n07903643
-n01848555
-n10750031
-n02332156
-n12703557
-n03196990
-n12406902
-n02768973
-n12416073
-n02147591
-n09724533
-n09693982
-n12687462
-n01982068
-n03435991
-n03272125
-n07713763
-n03018712
-n03648431
-n03336575
-n07854184
-n12806015
-n07879174
-n03984643
-n03147280
-n02699915
-n07617708
-n01533651
-n12483841
-n01697611
-n02576906
-n03724066
-n03935116
-n09782397
-n01599269
-n10672371
-n12066630
-n03178674
-n15086247
-n03523987
-n02826068
-n12580654
-n02358390
-n01647640
-n10259997
-n03738066
-n13915023
-n02639605
-n03174450
-n12269406
-n09874428
-n03432061
-n04386051
-n03923918
-n04592465
-n12480456
-n10333439
-n04206790
-n01443831
-n02967626
-n07733712
-n03746155
-n12947313
-n11690254
-n12244650
-n12670758
-n08658309
-n12710693
-n11860555
-n03485198
-n03047799
-n04461570
-n07600177
-n02126640
-n12704343
-n02866386
-n03008976
-n04532831
-n03465426
-n12691428
-n01641206
-n04962062
-n03254046
-n04425804
-n02014524
-n03439348
-n02538010
-n11603246
-n12265600
-n12277800
-n04016240
-n12086192
-n09650729
-n01549641
-n03112719
-n04961062
-n02710324
-n12049282
-n12362274
-n11969607
-n12856680
-n02201000
-n07863802
-n03360622
-n07601809
-n04354487
-n12898774
-n12939282
-n03109693
-n12867826
-n12441390
-n12915811
-n12879527
-n04137355
-n04131368
-n03527149
-n10164492
-n09932508
-n12426623
-n12575812
-n02557318
-n10263790
-n04309548
-n00476235
-n04194127
-n11876634
-n10327987
-n03499354
-n02616851
-n04464615
-n03615406
-n02744844
-n11732567
-n10347446
-n09752519
-n04228215
-n10004718
-n07899533
-n12030908
-n15102894
-n12044467
-n11711764
-n02610066
-n03415749
-n04562496
-n02034295
-n02297442
-n03566193
-n12506991
-n07774842
-n12827270
-n14908027
-n12242409
-n04072960
-n02829596
-n12496427
-n02266050
-n13108481
-n12473840
-n08677424
-n12076223
-n15091473
-n02815749
-n04549028
-n12558425
-n12023407
-n04179824
-n02378541
-n03188725
-n12517445
-n07573347
-n02004131
-n11921395
-n12570972
-n10602470
-n12095647
-n03854421
-n02450295
-n02792409
-n03543735
-n12836337
-n12204175
-n12152722
-n07900734
-n12517642
-n02775039
-n12607456
-n03376938
-n12179122
-n09873348
-n01847978
-n07888816
-n10453184
-n09675922
-n01851895
-n12865562
-n01797601
-n03711044
-n02738859
-n12064591
-n04033425
-n08551296
-n01650690
-n01537895
-n04207151
-n10087434
-n12261808
-n09438844
-n10364198
-n01814755
-n01583209
-n12270946
-n11892817
-n03344642
-n04117464
-n07847917
-n04003241
-n10362319
-n10477713
-n03495570
-n07560542
-n04363777
-n04534359
-n02404906
-n03349892
-n07712267
-n02960352
-n07866277
-n07857170
-n00324978
-n02755823
-n03150511
-n04211528
-n01899894
-n07588299
-n11874081
-n03425325
-n04506506
-n11949402
-n02952374
-n03309110
-n12159388
-n07591049
-n03068998
-n03228254
-n10279018
-n04173046
-n07728053
-n13052931
-n01597906
-n12368451
-n02767665
-n09435739
-n03915900
-n09728285
-n03292603
-n03331077
-n07817160
-n07917392
-n12540250
-n04153025
-n10209082
-n03968581
-n12676534
-n11824146
-n03521899
-n01853666
-n04292921
-n12332030
-n03984759
-n02863014
-n07801091
-n07723177
-n03289660
-n01533481
-n04488202
-n03468821
-n02382338
-n03543254
-n01961985
-n07915918
-n03703862
-n02771004
-n02047045
-n03877674
-n13141415
-n03529629
-n02240517
-n03675235
-n04491638
-n12384037
-n04419642
-n03019685
-n07591586
-n04496726
-n12985420
-n12927013
-n12196694
-n03473227
-n11621547
-n02988066
-n10451450
-n07729828
-n09618760
-n12196527
-n01555305
-n12830222
-n11950877
-n13190747
-n12160303
-n12390099
-n02818135
-n03163381
-n04554211
-n03244919
-n07897975
-n03386726
-n04290615
-n02011281
-n12407890
-n04123448
-n07904865
-n03447358
-n02393940
-n07931870
-n02937958
-n04318787
-n04587327
-n12807409
-n04112430
-n07560193
-n12774299
-n02618827
-n07854982
-n03757604
-n03817191
-n12793494
-n02324431
-n03013850
-n04113641
-n01612476
-n03127408
-n02038466
-n03799876
-n04257684
-n03382292
-n10449664
-n04394630
-n10275395
-n07698250
-n12329473
-n07694659
-n07642742
-n02563648
-n08583455
-n02557182
-n02775178
-n09274152
-n03189083
-n12570703
-n04211219
-n12486574
-n03073694
-n11969166
-n02475078
-n02976350
-n08584914
-n07899660
-n10116702
-n01613807
-n12461109
-n04025508
-n12451240
-n12596849
-n12079963
-n03541269
-n04561422
-n11699442
-n07725255
-n03460297
-n07616748
-n12757458
-n03103563
-n02813752
-n07698782
-n12840362
-n01543632
-n01602832
-n01875313
-n12472024
-n02926591
-n02872333
-n10728624
-n12532564
-n03882960
-n12333053
-n03684224
-n13146583
-n03436075
-n04154340
-n03868643
-n02598878
-n04139140
-n03266371
-n04083309
-n12506341
-n12200143
-n03503477
-n12807773
-n03123917
-n13029760
-n10173771
-n03659809
-n12047884
-n12759273
-n04193377
-n04258438
-n04597400
-n04579986
-n03719743
-n04299963
-n02864504
-n10510245
-n03417970
-n09719794
-n03138344
-n02085272
-n07694516
-n12665857
-n01642257
-n03229244
-n10581890
-n10318293
-n03635108
-n10652605
-n12189429
-n09934774
-n11709205
-n04207903
-n10296176
-n10603851
-n03450734
-n13223588
-n12754648
-n09886403
-n07751280
-n11950686
-n07814390
-n12799776
-n01646902
-n09796809
-n12819728
-n01938454
-n02410011
-n07607138
-n02119634
-n10332861
-n09230202
-n02757061
-n02849885
-n15092227
-n12151615
-n03111041
-n02413050
-n03506560
-n07744057
-n04030518
-n12544539
-n04089836
-n02038993
-n13882201
-n12099342
-n01946630
-n10095769
-n02982416
-n12957924
-n13215586
-n07726525
-n12452836
-n03801671
-n04598318
-n01449712
-n12428747
-n04119751
-n10509063
-n07694839
-n02782602
-n11626409
-n02573704
-n12399384
-n12388989
-n01601068
-n11971406
-n04367011
-n07930315
-n12925179
-n04967674
-n03497352
-n03653833
-n01819465
-n03688192
-n02802990
-n03393761
-n04430475
-n13107694
-n10384496
-n07867164
-n12449526
-n01515303
-n12574320
-n01444339
-n07919310
-n03453443
-n04173907
-n02887489
-n07772788
-n03629520
-n02580830
-n11705387
-n12069679
-n01956344
-n02406533
-n03973402
-n03938037
-n04969952
-n04103094
-n04393808
-n07715407
-n04172107
-n01917882
-n12085664
-n07608429
-n09835230
-n04135024
-n07842605
-n12568186
-n04339879
-n07691091
-n01801876
-n00474568
-n01807105
-n12128071
-n01673282
-n11948864
-n03991837
-n09659188
-n02070174
-n02670683
-n12454949
-n10385566
-n11631854
-n12305293
-n12002428
-n12948495
-n12757816
-n11852028
-n10690648
-n09283866
-n03214582
-n03423877
-n04127521
-n03006626
-n09283193
-n07712559
-n01447331
-n02981321
-n02658531
-n11947629
-n02419634
-n02420828
-n11923637
-n12570394
-n11968931
-n12731029
-n09749386
-n07736813
-n03967396
-n11908846
-n03029445
-n02426481
-n01964271
-n13198914
-n04484432
-n12656685
-n10806113
-n11849983
-n03236423
-n10649197
-n07688624
-n03057541
-n12015221
-n02094931
-n02014237
-n07560331
-n02801450
-n04206570
-n07556406
-n11627908
-n11889619
-n07852229
-n04063154
-n02713364
-n02783459
-n12877838
-n02930214
-n02125010
-n02407276
-n07815424
-n12855494
-n12530818
-n07750449
-n01963317
-n10082997
-n03245724
-n03012013
-n03555006
-n02421136
-n03332989
-n04375405
-n03746486
-n12636224
-n03278914
-n07917133
-n12504783
-n09416890
-n03896526
-n02258198
-n12983048
-n03837698
-n12869061
-n04541987
-n01637615
-n04401949
-n02241426
-n13220122
-n07876651
-n03729308
-n02364840
-n01339801
-n03418915
-n09257843
-n11614039
-n09731343
-n03809603
-n05399243
-n01569262
-n11901597
-n03124474
-n01566207
-n03796522
-n12595699
-n04573281
-n09689435
-n11859737
-n03201529
-n12902662
-n03374372
-n03760944
-n09189157
-n01517966
-n10431625
-n02898269
-n03693707
-n04369025
-n07834618
-n04095342
-n02786331
-n03822504
-n02284611
-n09862621
-n03436891
-n07688898
-n12435777
-n03949317
-n12443323
-n12273114
-n12623077
-n04333869
-n07907831
-n07774596
-n05450617
-n03320262
-n04190376
-n12671651
-n11819509
-n07588111
-n09756049
-n07611046
-n04973291
-n11602873
-n00120010
-n03500699
-n03844815
-n03708843
-n04452528
-n04387261
-n09889065
-n10147121
-n03318294
-n12599435
-n04164406
-n01965529
-n11636204
-n11791569
-n12275131
-n02977330
-n07851443
-n04132603
-n07824191
-n09760609
-n12190410
-n07915491
-n12665271
-n10120671
-n02570164
-n10208950
-n02163297
-n02244797
-n09842528
-n08645104
-n01841679
-n11603835
-n04488857
-n07814487
-n01953762
-n04612373
-n11877193
-n03198500
-n03981924
-n01943087
-n11552806
-n04414909
-n03005033
-n02457945
-n10500217
-n10375314
-n04607242
-n07914777
-n09832456
-n12915568
-n12813189
-n10578021
-n03519081
-n07801779
-n12026476
-n03296081
-n03850492
-n07902121
-n09881265
-n12562785
-n03290195
-n10131151
-n10078719
-n01558765
-n03917814
-n02045596
-n07734183
-n03414676
-n07933154
-n02126787
-n12148757
-n12263987
-n07684164
-n03406966
-n01492569
-n02988963
-n12963628
-n09964202
-n03417749
-n01854838
-n02921029
-n02183096
-n11762433
-n11722466
-n02387093
-n02768655
-n12519089
-n09871229
-n07938313
-n10502329
-n11989393
-n03768916
-n13145040
-n11813077
-n04457910
-n03655720
-n03703945
-n11876803
-n01438581
-n07910379
-n07847827
-n02300797
-n09245515
-n10754189
-n04581102
-n12513172
-n02458135
-n03762332
-n11789589
-n09695620
-n03850053
-n07911249
-n12342852
-n12753007
-n07748574
-n07727458
-n03696568
-n04304680
-n07723039
-n07775197
-n07577144
-n03043693
-n04374735
-n01858281
-n09228055
-n09466678
-n01949085
-n02024479
-n11623815
-n02704645
-n07894451
-n01751472
-n01646388
-n01317916
-n13880994
-n10300500
-n11794024
-n03735963
-n04610274
-n11854479
-n07754894
-n02639087
-n02122510
-n02262803
-n12732966
-n04529108
-n13194036
-n09990777
-n10009276
-n12088223
-n12155009
-n07886176
-n04278247
-n04222723
-n11707229
-n01999186
-n07851641
-n12741792
-n01315213
-n10033412
-n04249582
-n03586631
-n03237839
-n12037499
-n12014085
-n07756325
-n01636352
-n03905947
-n08611339
-n07693590
-n03724538
-n09791816
-n01666585
-n10588965
-n11613219
-n10542608
-n12913791
-n10528023
-n03171635
-n11923397
-n12854600
-n10410246
-n12698598
-n04135118
-n09844457
-n04441790
-n03882611
-n02337001
-n07907342
-n12561169
-n12027658
-n10719132
-n09851165
-n02801823
-n12330587
-n01683558
-n12162181
-n04387932
-n11704620
-n09679170
-n07601290
-n04028221
-n10277027
-n09877750
-n11758483
-n10027246
-n03819336
-n10205231
-n12478768
-n03451711
-n12973443
-n01923025
-n03262717
-n07807594
-n00475535
-n07744430
-n02341475
-n04614655
-n07924747
-n03388323
-n12680402
-n03202940
-n04534520
-n09661873
-n15092059
-n11832480
-n04198355
-n12529220
-n12389130
-n12304115
-n03234952
-n07610620
-n02868975
-n04442741
-n05282652
-n02820675
-n12795352
-n12675299
-n08547468
-n04189651
-n04141198
-n04513998
-n12273939
-n12482668
-n12858618
-n01958346
-n03172038
-n10280674
-n04301760
-n02631330
-n12433178
-n07763107
-n03068181
-n07565259
-n03605598
-n13177884
-n04005197
-n09751496
-n12737383
-n07648997
-n09839702
-n09442595
-n07925229
-n12150722
-n11898775
-n09904208
-n02207345
-n07642361
-n07685918
-n03205458
-n10574538
-n09742315
-n02599557
-n03585682
-n04273659
-n02200850
-n03410740
-n03391301
-n07726672
-n09782167
-n13155305
-n02067240
-n07561848
-n07728708
-n12463134
-n12228229
-n09743487
-n12225563
-n03421669
-n03226375
-n03973945
-n12498055
-n04483925
-n04564278
-n11890150
-n12519563
-n12754468
-n04353573
-n11615607
-n04430896
-n04585128
-n10395828
-n10773665
-n02772435
-n09881895
-n12663023
-n01615303
-n12803754
-n09445008
-n03955296
-n05245192
-n05486510
-n07899769
-n07575510
-n02307681
-n03814817
-n02670186
-n03598515
-n12797860
-n03518135
-n07587962
-n12630763
-n06273743
-n09843824
-n03226254
-n12407222
-n02961544
-n12951835
-n06417096
-n02016659
-n01441117
-n07735404
-n09411189
-n13896217
-n03262248
-n03451120
-n02525382
-n03375329
-n04155068
-n12916179
-n10297234
-n11907100
-n03423568
-n04360914
-n12027222
-n12199790
-n01744270
-n09896401
-n07925116
-n03693860
-n04414319
-n07767549
-n03555564
-n04043411
-n07872593
-n03774461
-n03129471
-n04497801
-n11756870
-n09776346
-n04530283
-n01520576
-n12828220
-n01583828
-n04120842
-n09676021
-n04344734
-n01916388
-n12513613
-n09861863
-n02310334
-n03318983
-n04533499
-n02427576
-n12727518
-n04502059
-n11725480
-n11987126
-n11876204
-n03504205
-n09720595
-n12315999
-n12935609
-n04452757
-n12201331
-n01603152
-n10772092
-n03156279
-n12723610
-n02003037
-n03244775
-n07802963
-n11954642
-n07770034
-n09931165
-n10559508
-n01745902
-n07654148
-n10070108
-n01585287
-n13196003
-n04389718
-n10253122
-n03730893
-n02983357
-n02783900
-n01680813
-n03072440
-n03109253
-n03274435
-n11655974
-n10048612
-n07849733
-n07896994
-n03792334
-n03035832
-n03819448
-n03105088
-n11943992
-n01485479
-n01699675
-n11795049
-n12086778
-n01840120
-n07753980
-n10685398
-n04346428
-n04532398
-n07709172
-n02146700
-n09461069
-n03853924
-n01321456
-n12068432
-n09757449
-n03206282
-n03751757
-n13053608
-n11695974
-n12123741
-n03500209
-n04367371
-n02890940
-n01917611
-n07835331
-n02907656
-n04136045
-n12059625
-n03862862
-n12864160
-n00440039
-n03448590
-n12628986
-n04115802
-n03949145
-n12916511
-n12647893
-n09706255
-n13181811
-n07752109
-n04375615
-n01648620
-n04403524
-n09967967
-n12911079
-n03857687
-n02803539
-n01551080
-n10734891
-n13235159
-n04127633
-n07935878
-n12853482
-n10191001
-n03126385
-n10076224
-n01812866
-n12919403
-n03769610
-n09283767
-n03462110
-n11770256
-n12038898
-n09889170
-n11894558
-n10298647
-n02592055
-n02795670
-n11701066
-n12762049
-n02890662
-n07918193
-n02976455
-n03100897
-n13127843
-n12184912
-n00468299
-n12407079
-n12496949
-n03541537
-n05260127
-n01535140
-n01541760
-n11945783
-n07687053
-n07745046
-n12083847
-n02382132
-n12270027
-n10140597
-n03788914
-n01790711
-n02197689
-n03173270
-n10368624
-n04449290
-n01579729
-n07834872
-n07734417
-n02379630
-n01636829
-n12549192
-n12951146
-n13579829
-n03268142
-n11761202
-n02769669
-n09452760
-n04095577
-n12031139
-n02003577
-n12891469
-n03931885
-n01577941
-n04176295
-n12046428
-n03418402
-n13145250
-n11865874
-n12473608
-n11797321
-n01798168
-n09923186
-n02786736
-n01698782
-n09976283
-n03975788
-n14685296
-n01682172
-n07838441
-n02771286
-n03429137
-n03948950
-n02512830
-n02298218
-n10141364
-n02823848
-n02077384
-n12584715
-n11748811
-n02214773
-n03667552
-n04121426
-n04135710
-n07579917
-n12275888
-n07826453
-n12167436
-n04586072
-n09877288
-n04248396
-n02761696
-n03038870
-n01490360
-n12353203
-n09785891
-n12057660
-n04146343
-n12557556
-n02081798
-n02917964
-n07898617
-n12597798
-n07574176
-n07764630
-n03008177
-n04255899
-n04434207
-n07897600
-n09929577
-n11811921
-n12415595
-n02893941
-n12276110
-n02821202
-n09690621
-n02508742
-n02077787
-n02390640
-n03764822
-n02257985
-n13033134
-n04559166
-n07865196
-n10506915
-n12051103
-n10473917
-n12775919
-n02971579
-n12880462
-n11837970
-n02063662
-n09840520
-n12019827
-n09208496
-n12836508
-n02982232
-n04219185
-n03332005
-n07914128
-n07862461
-n04250692
-n09267854
-n04561734
-n02076402
-n12344837
-n02919148
-n06592281
-n03668803
-n03062985
-n04246731
-n12112609
-n04012482
-n03558633
-n03982642
-n01998741
-n07665438
-n04209509
-n07913882
-n01749244
-n07801342
-n02611561
-n04488742
-n01897536
-n10624437
-n13128976
-n07931612
-n04300643
-n03727067
-n03360431
-n07593471
-n10253296
-n03297226
-n03854506
-n07879450
-n10562283
-n12557438
-n13154388
-n12862512
-n02126028
-n07752514
-n02387887
-n12066261
-n07666176
-n02806530
-n09988703
-n03721252
-n03221540
-n12195533
-n02682569
-n03622058
-n03943266
-n04207596
-n11721337
-n02427032
-n07910152
-n01551300
-n12861345
-n11660300
-n03786313
-n12966945
-n02046171
-n02797535
-n03546112
-n07711232
-n02044908
-n02998563
-n02652132
-n12634986
-n12187247
-n11645590
-n07582892
-n03065243
-n09911226
-n04396902
-n10763075
-n02359047
-n10400108
-n04294614
-n03991646
-n11728945
-n07766891
-n12277150
-n13141564
-n10563314
-n12426749
-n07827750
-n12403994
-n12627119
-n03420801
-n10203949
-n12830568
-n12280060
-n13180875
-n12659064
-n04239436
-n03823312
-n04367746
-n12448700
-n01896844
-n07581931
-n09384106
-n11625223
-n04198722
-n01477875
-n09932336
-n03477512
-n12281974
-n10117739
-n07759194
-n12281788
-n01405007
-n03077616
-n02304036
-n12947544
-n03140126
-n12356960
-n07807002
-n07877849
-n02956795
-n04373795
-n07925500
-n10359546
-n09730077
-n01694955
-n10611267
-n04316498
-n07849912
-n12841354
-n07903543
-n10026976
-n04050313
-n03939844
-n03260849
-n07917507
-n12228387
-n03199775
-n01569566
-n02403920
-n04261638
-n02986160
-n03724623
-n01960177
-n03783430
-n07877675
-n10401639
-n04215153
-n03077741
-n02589623
-n12934985
-n03233624
-n04506688
-n12194147
-n09975425
-n07818825
-n12641007
-n10036692
-n02771750
-n12285900
-n01472303
-n10033663
-n10707134
-n03219966
-n11772879
-n10146416
-n10435169
-n10304086
-n12385566
-n03126580
-n12904314
-n03619196
-n02299846
-n03574243
-n12368257
-n03690473
-n01748686
-n09834378
-n07750736
-n02930645
-n01679307
-n03721047
-n02710044
-n07563207
-n02930080
-n09309168
-n03127203
-n02863536
-n02536165
-n01559639
-n09654518
-n02961035
-n12007406
-n12773651
-n04351699
-n03114504
-n06273414
-n02017475
-n01733466
-n02175014
-n07920663
-n03953901
-n09670521
-n09400987
-n11791341
-n02284884
-n12919646
-n07880325
-n03801353
-n01982347
-n07828642
-n01570421
-n03998333
-n03449309
-n10482220
-n12850906
-n12805561
-n12926689
-n03232543
-n04248851
-n03195959
-n04082562
-n03846100
-n07682952
-n07695652
-n11809271
-n09895561
-n04287898
-n09740724
-n02859955
-n09830400
-n03674731
-n02825153
-n04571686
-n13107891
-n10318607
-n07848093
-n13226871
-n08555710
-n03137473
-n02776978
-n03141455
-n12514138
-n01809371
-n09405078
-n01753180
-n02184473
-n11610215
-n03539546
-n12731835
-n04485884
-n03590588
-n10221312
-n04049753
-n03441345
-n02302244
-n12262185
-n15092650
-n11877646
-n10377185
-n01684578
-n03796605
-n07897116
-n03164344
-n12135049
-n10757050
-n01692523
-n04566756
-n07697699
-n07575392
-n10262655
-n04064747
-n07914006
-n12433769
-n07873348
-n04457767
-n10019072
-n02921195
-n03856465
-n04041408
-n12639584
-n12920955
-n11781176
-n07864756
-n03941013
-n03646148
-n04401578
-n11692792
-n02757714
-n02286089
-n04253168
-n03890514
-n07855510
-n03507458
-n04123026
-n11661909
-n12435152
-n04330746
-n09481120
-n03731019
-n03717285
-n03271030
-n02772101
-n07740597
-n02847852
-n12825497
-n12263738
-n03342262
-n03603594
-n07804543
-n12932365
-n12695975
-n10297531
-n04054670
-n03175081
-n12703856
-n03832144
-n03966206
-n02414290
-n03619275
-n09738121
-n03290096
-n10585077
-n07731767
-n12409840
-n12026981
-n02278980
-n02752810
-n01654637
-n02654112
-n10314836
-n13023134
-n01823414
-n07461050
-n11902982
-n04543636
-n02204907
-n04049585
-n12304899
-n03073545
-n04272928
-n10315456
-n03975657
-n09899782
-n12288005
-n07005523
-n03795269
-n09823832
-n02242137
-n02907391
-n03643491
-n03245889
-n12285369
-n03061345
-n03797264
-n07838073
-n09219233
-n02859343
-n07608098
-n03920641
-n12578626
-n10688356
-n04542858
-n07834065
-n00443803
-n04181561
-n04570214
-n02047517
-n03295012
-n01633781
-n10610850
-n04035836
-n03001115
-n04593376
-n02393807
-n13061348
-n10123122
-n11800236
-n13207094
-n10140929
-n12167602
-n01809752
-n10421956
-n02764935
-n03424489
-n12889219
-n04046091
-n07714287
-n07708685
-n07736087
-n04142434
-n11961446
-n04521863
-n02414763
-n02901377
-n00467536
-n13085747
-n03855756
-n11846765
-n02530999
-n03063199
-n04258618
-n12204032
-n04424692
-n11758276
-n02653497
-n03766508
-n02026629
-n02572484
-n12339831
-n01635027
-n01668436
-n07821919
-n01543175
-n02689748
-n12528974
-n04024862
-n04184880
-n11720891
-n13869896
-n01678043
-n01647303
-n11532682
-n03236217
-n04963307
-n03012897
-n11682659
-n03191286
-n07643891
-n12737898
-n10680609
-n07924955
-n03879705
-n10461060
-n02523427
-n02013567
-n09893344
-n04124488
-n09863031
-n12454436
-n12305089
-n07709046
-n03805180
-n11940599
-n01691217
-n04198562
-n03978421
-n02357585
-n07818572
-n12870682
-n03798442
-n04154938
-n10550369
-n11957678
-n01958531
-n09936825
-n02334201
-n07910538
-n11978551
-n10562135
-n12700088
-n12784889
-n04480853
-n03281673
-n07588419
-n02968333
-n11935469
-n13046669
-n11730602
-n09643799
-n11849467
-n01758757
-n09638454
-n03267468
-n07914586
-n12104734
-n02961225
-n09827246
-n09917214
-n13079073
-n12634734
-n04089376
-n13034062
-n11714382
-n12753762
-n07683039
-n11840067
-n07689842
-n12173069
-n12172481
-n04182152
-n07869522
-n10356877
-n02771166
-n03154895
-n07615289
-n12986227
-n12361135
-n03456447
-n12706410
-n12895811
-n02988156
-n03130761
-n10639359
-n03628215
-n02738741
-n01643507
-n07730708
-n03232309
-n02846733
-n04969540
-n03051041
-n12890928
-n03235327
-n04289576
-n07588817
-n10325774
-n03973285
-n09703485
-n02358584
-n03061674
-n03195332
-n02901259
-n07849619
-n04486934
-n07908812
-n01588725
-n03682877
-n11949015
-n04146504
-n04146862
-n07898247
-n03318865
-n04367950
-n07880213
-n04247011
-n01447658
-n12711817
-n03146687
-n02926426
-n12856091
-n11966896
-n02413593
-n09764900
-n03009794
-n03314227
-n10499232
-n10075693
-n04451318
-n12320806
-n11933728
-n07764315
-n12133682
-n09904837
-n12832538
-n03816530
-n07802863
-n04391445
-n09728137
-n03887330
-n04436012
-n03957991
-n07771731
-n06266973
-n10407310
-n10290919
-n07862244
-n01842504
-n10262561
-n12726159
-n07691954
-n07618119
-n03437829
-n11966617
-n03629100
-n04231905
-n04208760
-n03344305
-n03684143
-n12934174
-n08645212
-n03556679
-n12109365
-n03751458
-n02380875
-n02025389
-n02770721
-n09830629
-n02800675
-n04951186
-n04483073
-n12710577
-n12789054
-n12058192
-n11777080
-n07716203
-n09618880
-n04525821
-n04016846
-n02918330
-n10375052
-n13158512
-n13090871
-n02929582
-n02308735
-n10487182
-n02213663
-n07608339
-n04384593
-n12890490
-n03992436
-n02994573
-n13231078
-n12880244
-n01651059
-n02925009
-n09686401
-n13219976
-n09981540
-n04582771
-n06267758
-n09893502
-n13214340
-n03272940
-n12554911
-n02214341
-n04137089
-n03874487
-n04573513
-n12003167
-n12004547
-n13065089
-n01903346
-n04373428
-n02216365
-n02024185
-n12577895
-n11698042
-n07586318
-n11705776
-n03030353
-n04486213
-n07885705
-n07928163
-n02356612
-n02767038
-n02897097
-n11662371
-n04128710
-n09842395
-n07683360
-n11533212
-n08495908
-n12841193
-n03669886
-n07768068
-n02381831
-n12081215
-n02757337
-n02811618
-n10144338
-n01379389
-n09698644
-n12779851
-n10400618
-n11801891
-n12322099
-n12408077
-n02767956
-n08640962
-n07816839
-n03021228
-n10346015
-n07868830
-n07917272
-n10076957
-n12865708
-n04290259
-n03595264
-n03986224
-n07825194
-n01610100
-n04417086
-n12995601
-n12734070
-n15091129
-n12428412
-n07587331
-n02405101
-n03108455
-n03594523
-n04489695
-n03892425
-n13032618
-n04409011
-n07590752
-n15092942
-n03914583
-n13066448
-n03532919
-n10639637
-n04566561
-n13223843
-n07904637
-n12347158
-n02720048
-n03901229
-n03936466
-n10574840
-n03782794
-n12397431
-n07908567
-n12580896
-n02697221
-n09791419
-n02577403
-n07870069
-n02136103
-n04318892
-n01462544
-n09747191
-n12287836
-n03067093
-n03934565
-n03543945
-n13126856
-n02240068
-n01585422
-n12413301
-n03246454
-n01876034
-n03635330
-n11680596
-n03228365
-n03082656
-n11609862
-n12859986
-n03934229
-n10233248
-n03166514
-n12166793
-n10115430
-n03327553
-n03373611
-n02967782
-n12338258
-n01604968
-n01323155
-n02590094
-n03044934
-n07866409
-n12291143
-n14900342
-n12094612
-n07845702
-n07926250
-n10750640
-n04359500
-n09797873
-n09953350
-n03561047
-n12122725
-n12725738
-n01453087
-n04977412
-n04575723
-n13219833
-n12161056
-n04273285
-n12482437
-n12863624
-n04953296
-n03390075
-n10188957
-n02874442
-n04236935
-n09990690
-n12866459
-n04075715
-n09725000
-n12794367
-n12461673
-n03050453
-n03677115
-n12427391
-n07736371
-n02973236
-n02406749
-n12322699
-n12815198
-n10680796
-n03268311
-n02405799
-n12302248
-n09791014
-n01545574
-n07740033
-n07862095
-n09901337
-n04390577
-n03597916
-n12110085
-n11802586
-n04205505
-n07696527
-n12076852
-n04344003
-n03326660
-n02823586
-n03042139
-n01565345
-n07905296
-n01454545
-n07650903
-n07905386
-n12530629
-n02841187
-n02943964
-n03329536
-n09681234
-n03479121
-n03770085
-n04147793
-n11552133
-n03774327
-n13197507
-n07901355
-n10400437
-n07837912
-n02310941
-n07845087
-n02239774
-n04976319
-n03960490
-n05239437
-n06275471
-n01633406
-n04257223
-n12009420
-n10483138
-n02775897
-n07866151
-n07922512
-n02666624
-n03944024
-n03842377
-n01832493
-n07855907
-n03968728
-n04492060
-n07879072
-n11635830
-n11802800
-n02357911
-n02431628
-n03730494
-n13099999
-n07768230
-n13147270
-n12331655
-n10237676
-n11855553
-n09759501
-n10620586
-n13181055
-n12309277
-n13183489
-n04382695
-n07679034
-n10495756
-n02173113
-n12764202
-n03683457
-n10298912
-n07680313
-n10160280
-n02205673
-n12053690
-n11653904
-n02931294
-n04093775
-n12856479
-n02427470
-n07608866
-n09954639
-n11639445
-n03364599
-n09924106
-n09683924
-n10419472
-n03089753
-n12620969
-n07604956
-n12940609
-n12564083
-n03514894
-n10343355
-n13068255
-n03805280
-n12793284
-n03140652
-n02666501
-n11717577
-n04267435
-n04593185
-n12820853
-n03934311
-n02630615
-n07767002
-n07723968
-n01631354
-n07931452
-n12414818
-n03097673
-n09944430
-n04457474
-n11850521
-n12227658
-n10131815
-n12408717
-n03566730
-n12777680
-n06273555
-n04357531
-n03759243
-n09861599
-n03015851
-n04175039
-n03392741
-n07859796
-n07741138
-n04474187
-n02266864
-n04553561
-n02667244
-n12720200
-n12432356
-n07806120
-n10362557
-n11929743
-n07765862
-n02963987
-n02762371
-n02747672
-n04289195
-n04056413
-n03039493
-n03894677
-n12338655
-n04422409
-n12079120
-n10252222
-n10168837
-n12919847
-n10297841
-n01340014
-n11710827
-n10167838
-n12278107
-n01384164
-n10498986
-n02742468
-n02899439
-n11752937
-n12107710
-n12315598
-n03985441
-n07605804
-n07686202
-n12884100
-n13121349
-n11725311
-n10420507
-n11706761
-n01381044
-n03331599
-n12336333
-n10185483
-n07880880
-n01782516
-n12615232
-n03175457
-n12657082
-n01750437
-n07918879
-n13213066
-n12927494
-n02910542
-n06273986
-n02161338
-n10235024
-n12180168
-n03659950
-n02160947
-n11861853
-n09866817
-n09279986
-n12393269
-n01552034
-n05526957
-n02956883
-n12818966
-n09753792
-n03114236
-n12273344
-n12546617
-n13177048
-n02129991
-n01731941
-n01628770
-n12774641
-n07685546
-n03253279
-n10678937
-n12579038
-n08673039
-n01392275
-n02379081
-n10530150
-n12851469
-n12414449
-n11694664
-n11877283
-n09708889
-n03585438
-n00483605
-n12332555
-n03323096
-n07851767
-n02417663
-n10667863
-n02856237
-n09269341
-n01596608
-n09720033
-n13160604
-n04443164
-n02814428
-n11622771
-n10328123
-n04338963
-n01794651
-n12069217
-n07762740
-n02935387
-n11897116
-n10569179
-n12749852
-n10745006
-n07823280
-n12162425
-n09801533
-n03772269
-n04518643
-n07916319
-n12771597
-n02147173
-n10342992
-n03795123
-n11646344
-n12847927
-n07686021
-n12383894
-n04465050
-n14564779
-n04212467
-n12274863
-n02380052
-n04329958
-n12034384
-n04213353
-n04366033
-n04955160
-n02778294
-n12890685
-n03028785
-n03097535
-n04533594
-n01750167
-n01415626
-n12276477
-n07729926
-n07711371
-n12843970
-n10500419
-n12891093
-n03840823
-n12509665
-n11878101
-n04315342
-n07685031
-n12305819
-n10039271
-n12264512
-n03911866
-n13919547
-n12413419
-n03785721
-n02599347
-n03786194
-n04018155
-n12856287
-n09607903
-n02396088
-n10212501
-n10313000
-n07683617
-n03586219
-n03890233
-n03156767
-n12033709
-n01648139
-n04399846
-n10671736
-n07698672
-n10791115
-n07708124
-n02709908
-n04266968
-n01758141
-n10058962
-n09444783
-n03668067
-n02838345
-n02388143
-n12893993
-n12590499
-n01462042
-n02689434
-n13209808
-n04075291
-n02412629
-n01953594
-n03906463
-n03043423
-n02200509
-n10152763
-n12504570
-n04396808
-n03382413
-n03618101
-n02767147
-n02390101
-n03450974
-n12778398
-n03625539
-n02574271
-n04113316
-n07572616
-n11809437
-n04119230
-n03829954
-n10500603
-n04258732
-n02731900
-n10174330
-n01574801
-n08663703
-n12558230
-n03981760
-n07732904
-n11875523
-n11823436
-n03238286
-n03079494
-n04281260
-n07873057
-n11686912
-n10568608
-n07593004
-n04271531
-n10037922
-n07838551
-n03615300
-n12624568
-n12940226
-n05242928
-n03680734
-n01589893
-n11652376
-n11893640
-n04119091
-n09696763
-n07851554
-n02660640
-n12124818
-n10370955
-n02663211
-n02414209
-n13187367
-n03258577
-n04375241
-n07617932
-n12240477
-n03417202
-n07595649
-n03839424
-n03087245
-n02431441
-n04396335
-n03484809
-n03426285
-n03592931
-n02912319
-n03488887
-n12187891
-n07592400
-n12918609
-n07858114
-n07567980
-n01548694
-n02726210
-n02406859
-n10147262
-n05458576
-n02848921
-n03503233
-n02587618
-n03465151
-n03582508
-n11654293
-n03695452
-n02197185
-n04223170
-n10243273
-n03149135
-n02842809
-n03669534
-n03857291
-n02147328
-n12278865
-n12733428
-n03264906
-n09924195
-n10432189
-n12203896
-n03892728
-n12360958
-n10418735
-n01650901
-n12420722
-n03341606
-n02557909
-n07751858
-n03483971
-n12019035
-n03991202
-n02072040
-n03129848
-n04505345
-n02405440
-n03901974
-n11656123
-n11552976
-n10291822
-n10108018
-n09902731
-n03325691
-n12646072
-n04134170
-n12097396
-n07564008
-n01624305
-n03421117
-n02776007
-n10792856
-n07818133
-n03227184
-n10198437
-n04157099
-n12743009
-n07820960
-n12749456
-n13035925
-n05262698
-n03422771
-n02878628
-n12140903
-n07820297
-n03524745
-n09901921
-n03170872
-n10039946
-n12638964
-n11989087
-n03461988
-n04287451
-n04298053
-n07882420
-n04002262
-n02734835
-n11707827
-n07756641
-n12808007
-n10069981
-n12637123
-n12947895
-n04363082
-n04292080
-n11858077
-n04535252
-n12646397
-n12283147
-n12321077
-n02746595
-n02895328
-n07624924
-n12537253
-n11952541
-n02181477
-n01440160
-n03878828
-n12861541
-n02869563
-n04242084
-n03197201
-n09396608
-n04291992
-n07845863
-n04314522
-n12843557
-n04029647
-n12146654
-n13147386
-n12954799
-n11920133
-n03038480
-n03213715
-n02971473
-n04149374
-n04230387
-n00444340
-n11859275
-n07564796
-n02948403
-n10186068
-n04315713
-n02366002
-n02670935
-n13208302
-n10225931
-n07826340
-n04102872
-n02259708
-n11855842
-n09941089
-n08896327
-n10237464
-n12084158
-n03764995
-n03627954
-n12384375
-n10341343
-n07876189
-n04573379
-n07904293
-n07840520
-n12038038
-n03005147
-n10483799
-n02978367
-n01484285
-n13094273
-n04539053
-n01748389
-n10146816
-n07815839
-n12991837
-n03294604
-n03588841
-n04055180
-n03209477
-n09917345
-n04393913
-n12337391
-n12126084
-n01882125
-n07688130
-n02814116
-n09640715
-n12679593
-n12596345
-n03029925
-n11761650
-n04457157
-n12683096
-n07709881
-n03841290
-n13157684
-n07927836
-n03523134
-n03690279
-n10187491
-n12451070
-n02682311
-n03978815
-n11806679
-n07808022
-n01386354
-n03622526
-n02369293
-n11885856
-n02289610
-n12663359
-n02624987
-n13173488
-n03027001
-n07896765
-n11935330
-n07814790
-n04242704
-n09959142
-n07589543
-n03551582
-n07843117
-n03556992
-n02060569
-n04000998
-n03825271
-n11946918
-n02874750
-n03479502
-n09919451
-n02176747
-n02080713
-n03400972
-n10222170
-n07926785
-n07852302
-n03012373
-n10438842
-n12868019
-n03634034
-n04210591
-n07853560
-n12374862
-n09248399
-n04355115
-n12908093
-n12906498
-n12875269
-n02791665
-n03146777
-n02854378
-n12414159
-n07821610
-n07595180
-n12238913
-n12141385
-n10761190
-n12165758
-n01653223
-n12956367
-n03695753
-n12416703
-n12346813
-n03405111
-n04304215
-n01624212
-n12674895
-n09850760
-n12407715
-n04156040
-n11610437
-n03395256
-n09970822
-n04229959
-n02530831
-n07870894
-n12098524
-n12828379
-n04057215
-n10751152
-n10053439
-n03674270
-n07869291
-n12256920
-n02535163
-n04282231
-n02136452
-n02365108
-n10328328
-n02315487
-n03325403
-n09231117
-n03342657
-n09980985
-n10702167
-n11961871
-n02065263
-n12857779
-n03219612
-n07805966
-n10699981
-n07691863
-n12831932
-n04179126
-n10208189
-n09765118
-n07922147
-n01631512
-n01947997
-n01405616
-n01892030
-n07827896
-n12964920
-n07749870
-n03276696
-n10020670
-n11828577
-n07624666
-n10590146
-n02407521
-n10253703
-n03270854
-n11610047
-n12981443
-n12413642
-n12302565
-n03177059
-n04594114
-n10227985
-n07728391
-n10395073
-n02810270
-n03569293
-n07812046
-n03843316
-n12477401
-n03802643
-n07618029
-n10755648
-n12837803
-n12454556
-n01636127
-n02809241
-n03270165
-n12035631
-n02962414
-n09750641
-n01793085
-n04346003
-n07922041
-n04164002
-n12499979
-n03301291
-n07921834
-n09656077
-n07599161
-n13155611
-n10194231
-n10063635
-n03601442
-n10366276
-n00475661
-n03943714
-n10377291
-n02624551
-n02568447
-n07589458
-n09691858
-n02685995
-n11919975
-n01690466
-n13211020
-n04114069
-n10530383
-n04200908
-n12631932
-n07916437
-n03219859
-n07918309
-n10368291
-n10253479
-n03317889
-n13206178
-n02821415
-n10592811
-n12557064
-n12872458
-n10212231
-n07926346
-n09695514
-n09741816
-n03964611
-n07812913
-n09703708
-n02587479
-n10593521
-n03485309
-n03776877
-n12289433
-n07716504
-n10580030
-n03061893
-n03206158
-n09710041
-n04266849
-n07864065
-n12767648
-n02333190
-n12295429
-n02406432
-n01799679
-n07861983
-n02201626
-n03441582
-n03653975
-n02834506
-n12263204
-n10672662
-n03072682
-n03410423
-n11620389
-n04542095
-n07910970
-n03697913
-n02706806
-n09736798
-n12318965
-n07938594
-n12032429
-n03191776
-n04210288
-n01422335
-n03236093
-n11881189
-n02247216
-n12338146
-n03104512
-n00474881
-n04172230
-n01461315
-n04400109
-n10646140
-n02215621
-n10096126
-n03019806
-n11809754
-n02492948
-n10741367
-n10308504
-n07875560
-n02523110
-n07738224
-n02015797
-n10499631
-n03025165
-n03284308
-n03508881
-n10441037
-n10757492
-n07608721
-n09755241
-n04264361
-n04394421
-n03776997
-n03175843
-n04476526
-n02523877
-n13196369
-n10190122
-n03172738
-n02709763
-n02070624
-n04563560
-n04017807
-n03824589
-n07817758
-n03222722
-n01542433
-n13173259
-n04458201
-n12869668
-n12580786
-n02407763
-n09760913
-n10530571
-n11752798
-n09612700
-n07601175
-n11632376
-n10641223
-n03158668
-n03411208
-n01413457
-n03684740
-n10248008
-n12656528
-n11849271
-n07771891
-n12067433
-n12389727
-n11734698
-n04042204
-n07825399
-n12621945
-n07624757
-n03180732
-n09741331
-n10246317
-n04030414
-n07821107
-n04524716
-n03789603
-n12867449
-n10249869
-n02434415
-n07614103
-n03333349
-n04602840
-n09923996
-n02658811
-n13033879
-n03663433
-n02873623
-n07837545
-n12436907
-n02675077
-n01500854
-n04435552
-n01790304
-n11687789
-n03443543
-n09733459
-n01606177
-n12245885
-n11721642
-n02201497
-n12010815
-n04594742
-n02755984
-n07927716
-n04245218
-n03134118
-n13214485
-n12294542
-n12713521
-n03556173
-n12650038
-n07719058
-n04319774
-n10443830
-n10019187
-n09720702
-n07926442
-n10402709
-n03989777
-n11699751
-n09613118
-n02965122
-n04221076
-n01861330
-n12837052
-n02975589
-n09668437
-n03012499
-n01418498
-n12451566
-n03585778
-n07692517
-n09672590
-n09741999
-n09748648
-n07621264
-n03482001
-n10185148
-n01542168
-n12536291
-n07846557
-n11840476
-n03130866
-n02631775
-n11730015
-n03715275
-n07680168
-n12175370
-n05427346
-n03665232
-n08611421
-n11730458
-n02413484
-n09783884
-n07888378
-n04611351
-n02247655
-n02136794
-n11649359
-n01382033
-n07889193
-n10405540
-n03510384
-n04420720
-n03585875
-n03812789
-n01835769
-n12139921
-n09762011
-n10103228
-n03477410
-n11930788
-n10064831
-n12311045
-n07681805
-n03136504
-n12887713
-n03886940
-n03130233
-n10197392
-n12333961
-n07672914
-n12723062
-n12599661
-n04268799
-n03696909
-n12809868
-n12452256
-n10710778
-n02571652
-n12117326
-n02450677
-n03041265
-n12544240
-n01966377
-n10252354
-n02378625
-n09814488
-n10569011
-n13067330
-n07928998
-n07890970
-n02187279
-n02592371
-n07846802
-n03475961
-n05448704
-n10410996
-n02851795
-n10093167
-n12468719
-n09876701
-n03057724
-n03469031
-n02344270
-n04248209
-n02687682
-n04467899
-n12897788
-n03436656
-n12539832
-n09906704
-n03190458
-n11843441
-n12130549
-n11823756
-n03153246
-n03684489
-n04160036
-n02908951
-n12855365
-n03518230
-n12225222
-n12933274
-n10432957
-n02921406
-n10156831
-n12239647
-n02826812
-n03411927
-n11602091
-n13200986
-n04244847
-n01330126
-n14938389
-n03001540
-n04387531
-n03423099
-n07608533
-n11723986
-n07600394
-n12529500
-n02403820
-n02587300
-n10333317
-n07935288
-n12680652
-n01449980
-n12153914
-n07803310
-n11741797
-n01881857
-n13081999
-n08644045
-n02061217
-n02173784
-n02660519
-n03104019
-n13137951
-n04538403
-n02621258
-n04515729
-n04165945
-n11919761
-n13078021
-n07861247
-n11959259
-n11801665
-n04070545
-n13210597
-n10218043
-n10717337
-n01365885
-n10718952
-n11979187
-n03880032
-n03798610
-n03477303
-n01876667
-n11860208
-n03401721
-n03360133
-n13230843
-n13194758
-n13190060
-n02564935
-n13894154
-n12754311
-n07697408
-n13171210
-n02035402
-n03736147
-n10396337
-n04554998
-n02793930
-n04126852
-n03654826
-n09411295
-n06255613
-n01680983
-n10261862
-n01581874
-n10378780
-n10646641
-n03539103
-n03351151
-n04349913
-n03906106
-n02370525
-n03319576
-n04113968
-n09693244
-n02945964
-n03344509
-n04117216
-n03889626
-n03557840
-n09800469
-n04280487
-n07890890
-n12147835
-n12295237
-n03883664
-n04436992
-n02922877
-n10099002
-n01988203
-n10056719
-n11646517
-n03672521
-n04568713
-n10111358
-n03606347
-n04047733
-n12320627
-n10251612
-n10460033
-n01742447
-n11917835
-n10443032
-n13079567
-n04363671
-n10788852
-n10482587
-n03308614
-n12741586
-n12938667
-n04539407
-n01630148
-n02303777
-n13050940
-n04552551
-n02341288
-n04098169
-n04110439
-n11625391
-n12259316
-n02822762
-n10631131
-n04089152
-n03571439
-n04558199
-n12656909
-n03170292
-n02877642
-n12771890
-n03033267
-n12658603
-n13354021
-n12855886
-n11840246
-n03619050
-n07727252
-n12932706
-n13874073
-n01315805
-n02948942
-n12048928
-n03146449
-n10656969
-n09872557
-n03906590
-n04454792
-n12500309
-n04239333
-n01815036
-n09644657
-n10497645
-n02918455
-n07812662
-n04240434
-n10804636
-n11967878
-n04184095
-n11834272
-n05244755
-n02299039
-n12665659
-n12144987
-n07607492
-n11887750
-n13083461
-n04577139
-n09670909
-n07876893
-n02875948
-n04069582
-n10458111
-n10361194
-n09389867
-n01651778
-n11933387
-n13193143
-n12834190
-n03516266
-n02184589
-n10041373
-n02809605
-n04064213
-n04957589
-n12643113
-n02582721
-n07911061
-n07921360
-n10369417
-n10527147
-n04104925
-n03707372
-n01386182
-n10374849
-n09902851
-n08559155
-n02332447
-n11649150
-n11722036
-n01823740
-n04592356
-n10002257
-n10661732
-n07562379
-n07597263
-n04036776
-n13112201
-n09842288
-n07738105
-n04545984
-n09635973
-n02885233
-n02756854
-n07808479
-n03029296
-n01543383
-n02884450
-n09843716
-n04224395
-n10576676
-n10140051
-n07919894
-n07806879
-n10212780
-n09478210
-n12017127
-n03770224
-n07606191
-n03555217
-n09715165
-n12270460
-n12129738
-n11739365
-n02303585
-n07818029
-n05314075
-n03019304
-n09859975
-n09454744
-n13151082
-n12586989
-n00455076
-n07741357
-n04957356
-n08659242
-n04577293
-n04126244
-n03131193
-n12428242
-n03569494
-n03781594
-n07743384
-n02892392
-n12576695
-n12199982
-n07693439
-n07719756
-n11884384
-n03043798
-n12351091
-n03690168
-n02214499
-n01839949
-n01831360
-n12642964
-n02957862
-n03125588
-n12883628
-n04002371
-n10747965
-n09744462
-n02853745
-n13030337
-n12156679
-n02761034
-n12587487
-n03374570
-n12728322
-n01731764
-n07918706
-n03696445
-n03185868
-n02805283
-n03868763
-n02202124
-n12369665
-n12449934
-n12650229
-n02656301
-n07743723
-n11702713
-n02927053
-n03916385
-n01486010
-n03986071
-n04188064
-n13897528
-n12414329
-n07718068
-n07837755
-n11735570
-n10464542
-n04091466
-n01315581
-n10374943
-n03989898
-n13220525
-n04076052
-n04062179
-n02414442
-n04414101
-n04446162
-n00480885
-n03536568
-n03773835
-n10728998
-n12643877
-n02255391
-n03799610
-n07847585
-n00446411
-n11910666
-n03139998
-n02296276
-n02889996
-n02786611
-n10363445
-n07854348
-n08583682
-n09912681
-n07896422
-n02368821
-n11935953
-n12185254
-n11738547
-n03809211
-n02448318
-n13066979
-n01987076
-n12009047
-n12839574
-n13174823
-n07902520
-n03369866
-n13209129
-n02593191
-n03853291
-n02620578
-n10071332
-n01813658
-n09895480
-n10134760
-n01316734
-n07845166
-n03175983
-n13132156
-n12814960
-n12883265
-n03637787
-n04310507
-n04133114
-n03900194
-n04129688
-n04449550
-n01805321
-n01717467
-n01573627
-n12271451
-n11722621
-n09976917
-n12232280
-n12905135
-n03451253
-n01655344
-n12346986
-n11987511
-n10517283
-n02941845
-n12730370
-n03121190
-n07917874
-n10023656
-n10151133
-n07695187
-n03258456
-n10639238
-n10682713
-n02085019
-n12343753
-n10749928
-n04595611
-n04410565
-n08500819
-n07719980
-n04016479
-n03232417
-n03469832
-n09834885
-n07925327
-n10094782
-n03632100
-n12734215
-n09845849
-n04047139
-n10743124
-n02604954
-n12270278
-n03036244
-n11991777
-n10168012
-n02561803
-n10531109
-n10344319
-n03804211
-n10513938
-n10732967
-n09917481
-n02950482
-n03148808
-n07910245
-n07925423
-n07889990
-n04302988
-n07745357
-n04346511
-n07573563
-n02564403
-n12084400
-n10030277
-n09815455
-n04388473
-n12404729
-n10576316
-n12072210
-n11811059
-n01824344
-n03556811
-n03175301
-n07586485
-n13137010
-n11986729
-n04967561
-n03881404
-n07692114
-n07874995
-n02770585
-n07853345
-n02775689
-n04328580
-n01323781
-n07773428
-n02414043
-n02794474
-n02352932
-n07569873
-n12374705
-n03606106
-n04267246
-n04369485
-n11934239
-n12705698
-n11841247
-n07868045
-n03525693
-n12358293
-n02937010
-n09658398
-n12711182
-n03516647
-n04591631
-n10228712
-n11930353
-n03471779
-n12594324
-n02251593
-n04455579
-n02542017
-n03381450
-n03320845
-n12364940
-n09657748
-n12412987
-n01840412
-n10570704
-n10117267
-n03251280
-n10195261
-n12178129
-n12285049
-n02177775
-n10117415
-n03707766
-n04475309
-n05604434
-n03999064
-n12127575
-n01972131
-n09793946
-n01635176
-n02791532
-n07564101
-n07876460
-n02813981
-n10764719
-n03638743
-n12761702
-n02125689
-n11657585
-n09923003
-n13069773
-n02683183
-n04324515
-n11936946
-n12862828
-n02659808
-n02619861
-n13175682
-n11648039
-n07768139
-n12512674
-n12108613
-n02947977
-n12899971
-n03845107
-n07689490
-n02081927
-n07619508
-n10248377
-n10300041
-n10761326
-n09655213
-n02675522
-n04963111
-n01995686
-n03256631
-n10684630
-n04471912
-n12728864
-n03870546
-n02829246
-n09725546
-n03409920
-n13194918
-n10055297
-n02513248
-n01462803
-n11782266
-n13094145
-n07839478
-n13916363
-n07932454
-n09722817
-n07774479
-n10386874
-n12832822
-n01599388
-n02964295
-n04349189
-n07689313
-n11653126
-n02309841
-n02064000
-n04410663
-n04562122
-n02358712
-n09901786
-n10441124
-n12882158
-n12815668
-n10159289
-n01641930
-n03315990
-n12271187
-n10277638
-n07815163
-n12903014
-n07915366
-n04412300
-n01324799
-n03408264
-n09452291
-n03019198
-n11890884
-n10355806
-n03186199
-n04013600
-n12541157
-n06259898
-n06273294
-n11946051
-n01671705
-n04415257
-n01905321
-n04050600
-n12604460
-n04051439
-n02929184
-n11765568
-n10025060
-n02396796
-n04033287
-n13027557
-n03127531
-n10308066
-n09729062
-n01593553
-n02476567
-n07609728
-n12970293
-n01419888
-n03215749
-n01684741
-n13067672
-n03870290
-n07846359
-n12961536
-n03356559
-n07727140
-n09843602
-n02378755
-n12044041
-n01977485
-n07718920
-n12060546
-n04265428
-n12237855
-n04006067
-n10227266
-n04361937
-n12134486
-n10097842
-n02264591
-n03912821
-n07594155
-n03116163
-n11771924
-n04155457
-n12394118
-n10507380
-n01844746
-n11901452
-n03024233
-n03383562
-n11806814
-n10062716
-n04204755
-n08613733
-n12907671
-n03533654
-n09826605
-n03109033
-n07606419
-n03537085
-n11615812
-n07695504
-n11694300
-n04520962
-n09971839
-n02664285
-n03402511
-n02061560
-n13133140
-n03548195
-n12877493
-n02425086
-n12845187
-n12488454
-n02975994
-n02071028
-n01457407
-n03685486
-n07605282
-n07771405
-n07827554
-n10538733
-n03438780
-n04379096
-n12686496
-n10001764
-n11848867
-n12125001
-n09886540
-n03275566
-n01442710
-n12789554
-n07858197
-n12722071
-n12868880
-n10441694
-n12409651
-n07727741
-n12289585
-n04069166
-n12686877
-n03723439
-n07815956
-n12543455
-n10778044
-n02200630
-n10074841
-n12640284
-n12589841
-n07592317
-n07866571
-n12712626
-n04228422
-n11711289
-n03590475
-n13081229
-n03045800
-n03639230
-n02874214
-n07615954
-n03204134
-n12053962
-n12769219
-n15006012
-n09873769
-n11818636
-n01959029
-n03349599
-n12227909
-n07576969
-n03638180
-n07742224
-n03390673
-n02344175
-n03770520
-n00447361
-n13235319
-n01983674
-n10061882
-n04267165
-n12493868
-n12713358
-n02930339
-n10493419
-n12918810
-n02582220
-n12248359
-n02644501
-n04596492
-n04538249
-n07905618
-n13230190
-n07808268
-n15005577
-n09351905
-n12730544
-n11937023
-n04024137
-n02238358
-n11646955
-n11618079
-n09849990
-n04060448
-n04220805
-n12725940
-n12004120
-n01484562
-n02669442
-n12132956
-n01756916
-n03980986
-n02256172
-n07716750
-n12119390
-n04047834
-n11934041
-n12828977
-n03648219
-n11873612
-n12909614
-n04397860
-n03908111
-n03261395
-n03695616
-n11668117
-n12014355
-n02896074
-n03988758
-n04426184
-n10328696
-n02477028
-n04507326
-n04320871
-n03256472
-n01919385
-n03988926
-n13182164
-n07826250
-n03207548
-n01396617
-n04369618
-n07913774
-n13229951
-n03410022
-n12728508
-n01997119
-n03598783
-n01341090
-n03879456
-n01736796
-n02864122
-n13879816
-n02684962
-n12246037
-n02433729
-n04364397
-n09881358
-n02950120
-n03326371
-n02243878
-n01790812
-n12990597
-n03330947
-n07764486
-n03332173
-n10006177
-n03347472
-n07619301
-n10106509
-n12365285
-n01732989
-n07678586
-n04098795
-n07733847
-n03994297
-n12872914
-n02762909
-n07766530
-n13198482
-n02395855
-n12273515
-n04487894
-n07847047
-n12488709
-n02859557
-n04255768
-n02360933
-n03267696
-n03152951
-n10188715
-n10520544
-n13065514
-n02900594
-n03699754
-n01319187
-n01949499
-n10417424
-n01603000
-n12062105
-n09683180
-n09863339
-n01880716
-n10702615
-n03893935
-n10495555
-n04131499
-n02957252
-n02113892
-n07724078
-n12246941
-n04303095
-n01751215
-n04213530
-n12117695
-n12418507
-n01922948
-n12131405
-n13188767
-n01481498
-n03174079
-n02407172
-n11613867
-n10152616
-n10119609
-n04158250
-n11695085
-n07855105
-n02854630
-n03768683
-n12739966
-n12266984
-n12819141
-n12732605
-n13205249
-n11917407
-n01607429
-n02694279
-n07815294
-n06614901
-n07846471
-n12119717
-n02595339
-n12366186
-n10693235
-n12263410
-n12484244
-n10337488
-n04146976
-n01469723
-n07872748
-n03238879
-n12000191
-n07846938
-n03116008
-n12139196
-n04013176
-n10317963
-n12140511
-n02065726
-n01649556
-n10316862
-n01755952
-n04385079
-n12770529
-n02814338
-n01675352
-n11874423
-n01369484
-n10537708
-n07618281
-n07821404
-n02297819
-n03238762
-n03357081
-n02628600
-n07830986
-n12507823
-n04431925
-n11955532
-n03429771
-n10281896
-n12383737
-n12760875
-n09673091
-n12892013
-n06625062
-n04503269
-n03674842
-n12338979
-n04268275
-n12033139
-n11767877
-n07812790
-n12676134
-n04037873
-n10097477
-n12310638
-n12258101
-n09391386
-n13196738
-n13866626
-n12720354
-n10106995
-n07843220
-n03878294
-n04101375
-n07733217
-n10220080
-n04601938
-n10778148
-n12973937
-n10556825
-n12256708
-n12583855
-n04259202
-n07628181
-n04226962
-n02777402
-n09674412
-n12188635
-n03776167
-n04504038
-n04156591
-n02270945
-n02264021
-n07826653
-n02980203
-n02059852
-n02102806
-n12921660
-n04477725
-n10107173
-n12837466
-n02697022
-n04350688
-n12110236
-n02177196
-n07899976
-n12639910
-n02368399
-n10009162
-n03950647
-n09248153
-n02425532
-n04044955
-n11933257
-n03460899
-n10147710
-n02379743
-n02413917
-n02890804
-n12915140
-n02146879
-n07915800
-n01787006
-n03646809
-n11677902
-n04065909
-n02088992
-n02887832
-n10115946
-n02306825
-n03719560
-n10456696
-n03758220
-n12625003
-n04021503
-n07563366
-n02531625
-n10304650
-n12855710
-n09735654
-n07853762
-n03512030
-n12898342
-n02297938
-n12618727
-n04082344
-n12953712
-n12617559
-n03035715
-n02532451
-n05399356
-n03602686
-n10082423
-n04607759
-n07581607
-n07594737
-n04030965
-n03464628
-n12103894
-n03039353
-n03522990
-n02964934
-n03169063
-n10153865
-n09653144
-n09941571
-n12907057
-n07768318
-n02600798
-n02187150
-n01811243
-n12252383
-n04495555
-n07678953
-n13181244
-n13069224
-n13184394
-n12765402
-n03471347
-n10208847
-n03697366
-n09840435
-n02506947
-n09709673
-n07928578
-n11935715
-n07848936
-n02757927
-n01999767
-n02245443
-n10260473
-n13898645
-n02701260
-n07840219
-n11785875
-n12385830
-n12017664
-n12145148
-n04530456
-n01929186
-n02384741
-n04113038
-n03296217
-n09723819
-n03766697
-n12143215
-n09929202
-n02684248
-n12119539
-n03566555
-n12941220
-n04124573
-n10750188
-n07733005
-n04230707
-n03829857
-n07756838
-n12244458
-n12543826
-n03514129
-n02762169
-n04435870
-n03342863
-n09745324
-n12369476
-n11652039
-n03915320
-n07746749
-n07608641
-n12642600
-n02389943
-n12137791
-n04111962
-n12493426
-n12454793
-n01455317
-n10728117
-n03281524
-n12195734
-n12353431
-n02477329
-n02678010
-n04557522
-n10162354
-n14942411
-n07806043
-n12274151
-n09835153
-n03983499
-n04086663
-n07851926
-n07868684
-n11926976
-n03972146
-n04310604
-n09675799
-n13880704
-n13173132
-n07577918
-n10720964
-n11937102
-n03349020
-n12340581
-n03725506
-n03477143
-n10578162
-n01731137
-n03382104
-n11616852
-n01493829
-n09327077
-n03856335
-n03321843
-n02375757
-n02118643
-n08500989
-n03496486
-n04140777
-n12858987
-n02845293
-n04093157
-n07819682
-n10394786
-n12289310
-n02901620
-n01559160
-n07919165
-n12648196
-n11774972
-n11995396
-n10543937
-n10154013
-n03977158
-n01884476
-n12266528
-n11906127
-n12661538
-n04396650
-n12761905
-n04175574
-n10181878
-n12017326
-n12876899
-n09744346
-n07741706
-n04451636
-n07735981
-n03751590
-n03140546
-n03070396
-n03091223
-n12071477
-n07562017
-n09981092
-n09847344
-n12552893
-n12371202
-n02245111
-n01598271
-n04400499
-n02298095
-n15048888
-n02967170
-n04030161
-n10676434
-n01556514
-n13235766
-n02538562
-n12603672
-n03941586
-n02449183
-n07567611
-n12923257
-n02296021
-n11730933
-n12497669
-n02917742
-n07875926
-n02714535
-n13142182
-n02878107
-n07861334
-n02682811
-n03730655
-n03681813
-n12970733
-n02132320
-n12436090
-n07931280
-n04295353
-n12982590
-n01783017
-n13164501
-n02424589
-n01499732
-n12650805
-n04543509
-n10369699
-n03439631
-n13160116
-n07831663
-n05449196
-n13025854
-n10169241
-n02847461
-n10734963
-n13213397
-n03343234
-n12275317
-n02793414
-n04300509
-n01803893
-n11617878
-n02179192
-n03637480
-n04514648
-n03087521
-n10478827
-n11757190
-n12919195
-n04532504
-n01736375
-n04015786
-n04545471
-n12668131
-n04472961
-n14786943
-n07584938
-n02498743
-n07744559
-n10010062
-n10101308
-n07832099
-n02601767
-n10473453
-n02451575
-n02496052
-n03696746
-n12669803
-n07904072
-n04290762
-n11737125
-n07760755
-n12553742
-n12068138
-n12630999
-n02390938
-n02202678
-n02216740
-n02679961
-n13173697
-n11828973
-n02287987
-n04585318
-n10360366
-n07745661
-n03474352
-n07934800
-n12677612
-n03692272
-n13092240
-n04230487
-n11846312
-n12433952
-n11793403
-n03056873
-n05454833
-n12517077
-n12682882
-n02649218
-n09425344
-n07878283
-n02795978
-n10064977
-n12754174
-n02945813
-n01750743
-n03150661
-n13880415
-n12337800
-n04017571
-n09754907
-n04456734
-n02967540
-n10621400
-n11744471
-n01971620
-n04148285
-n10781817
-n11991549
-n12305654
-n03943833
-n10330931
-n12918991
-n01783706
-n11933099
-n12931231
-n07589967
-n09666349
-n07853445
-n12714949
-n03548533
-n04158672
-n03809802
-n03080309
-n12800049
-n02578454
-n02834027
-n10067600
-n03044671
-n04198233
-n07930205
-n04357930
-n12221522
-n11957317
-n03085781
-n03723885
-n03614383
-n02661618
-n04292221
-n03426574
-n03838024
-n10442093
-n12399534
-n01450950
-n07876550
-n11937446
-n09870096
-n02631628
-n05460759
-n01710177
-n03660562
-n04283784
-n01497738
-n02232223
-n04209811
-n12837259
-n02864987
-n04499810
-n12654857
-n03493792
-n09688233
-n02312912
-n10057271
-n07606058
-n03258192
-n10507565
-n11930038
-n08679269
-n03812263
-n11662128
-n04085574
-n07643577
-n03981094
-n02796412
-n02513939
-n07686634
-n07936979
-n03168774
-n03816394
-n07625324
-n04138131
-n10383094
-n10222716
-n10381981
-n12254168
-n13223090
-n03056583
-n09910556
-n03277004
-n12649866
-n02089725
-n03688707
-n09665367
-n07849506
-n02843909
-n13141797
-n02477516
-n09710886
-n03835941
-n11734493
-n10778711
-n10007809
-n02038141
-n12766043
-n02353172
-n02030224
-n10762212
-n06274921
-n13033396
-n03560860
-n01961234
-n13868515
-n03216199
-n01553527
-n04429038
-n10211036
-n02150885
-n02435517
-n02755675
-n09699020
-n12566331
-n03909516
-n02903727
-n02594942
-n04173172
-n04125692
-n12251001
-n02412787
-n01649412
-n01411450
-n01774097
-n09912907
-n03162556
-n07566231
-n12267534
-n03928589
-n04142327
-n11771147
-n07832592
-n04155177
-n07937621
-n07839864
-n03201895
-n13095013
-n10298271
-n03059103
-n03784793
-n11925450
-n03288742
-n02809364
-n04108999
-n04449449
-n03726233
-n07854455
-n03692136
-n12018447
-n03374282
-n06008896
-n07598928
-n03577312
-n04604806
-n09892513
-n04370600
-n08238463
-n01793159
-n07822687
-n03242390
-n07685303
-n03822361
-n01996280
-n10505942
-n06596845
-n04219580
-n12056990
-n10579062
-n10240082
-n10298202
-n07711907
-n03905730
-n12222900
-n07598622
-n04415815
-n12389932
-n12154114
-n04210012
-n12500751
-n03729402
-n12122918
-n04572121
-n12804352
-n02415130
-n12780325
-n11639084
-n12768933
-n02253494
-n13217005
-n03567788
-n12304286
-n10703480
-n07766723
-n05455113
-n07741804
-n12186839
-n01687128
-n01350701
-n03260206
-n07876026
-n12528382
-n04125541
-n10457444
-n01606097
-n11717399
-n04598416
-n12899166
-n09748101
-n12160125
-n07608980
-n07843348
-n02409038
-n02571167
-n09980805
-n09706029
-n02495242
-n12765846
-n10373525
-n12321873
-n03047171
-n12365462
-n03752398
-n02662993
-n10316527
-n10728233
-n06273207
-n01733214
-n12297846
-n12755876
-n02428842
-n02289307
-n04536465
-n03253187
-n02297294
-n05584746
-n03117642
-n12189779
-n10338231
-n07599649
-n04559994
-n12710917
-n09966470
-n12470907
-n04499300
-n12403075
-n11837743
-n02269657
-n12599185
-n07618587
-n03996004
-n12851094
-n03392648
-n01319001
-n12826143
-n12369845
-n01814549
-n10056103
-n12854193
-n02267483
-n04019881
-n03490649
-n04268142
-n10801802
-n12315060
-n10149436
-n04563790
-n09865068
-n03000530
-n10657556
-n07840672
-n12118414
-n02856013
-n02900459
-n04094859
-n12079523
-n11827541
-n12236160
-n02904505
-n02846619
-n09842823
-n12926039
-n02146201
-n03195799
-n12815838
-n09899289
-n01483021
-n02519340
-n05453815
-n10329035
-n02494383
-n09742927
-n13220355
-n03212406
-n11759609
-n10061431
-n12095281
-n04262530
-n03799240
-n02426176
-n04608809
-n12230540
-n13880551
-n11741175
-n11858814
-n11723452
-n07590841
-n12604845
-n10342543
-n12760539
-n09270657
-n02563079
-n10643937
-n12843316
-n01651641
-n07838811
-n04359034
-n07758260
-n02762725
-n11726433
-n03114743
-n01952029
-n12321395
-n11930571
-n12337922
-n12427946
-n12001294
-n12551457
-n13235011
-n02290340
-n06419354
-n12408873
-n01741442
-n12308447
-n10243872
-n03658635
-n03694761
-n02570484
-n12912801
-n04158002
-n02417785
-n01332181
-n03703075
-n10283366
-n03142431
-n02779609
-n02300554
-n09868782
-n10323752
-n03166809
-n03394149
-n02827148
-n02186717
-n01350226
-n03344784
-n03555996
-n04498873
-n13157481
-n04519887
-n12028424
-n12349711
-n10471640
-n07741235
-n04032936
-n12357968
-n10228592
-n13178284
-n04168840
-n13239177
-n03561573
-n02566489
-n11807696
-n07681264
-n02566665
-n10456070
-n10063919
-n10492727
-n01788579
-n11977660
-n02036228
-n02738978
-n03989349
-n10332953
-n12949361
-n09901502
-n07839730
-n13146928
-n10152306
-n04170515
-n11602478
-n02522722
-n01333610
-n13030852
-n02143891
-n12807624
-n04542329
-n12243693
-n12036226
-n13917690
-n02553028
-n02752199
-n10594857
-n11627714
-n04348070
-n13171797
-n04612257
-n07934373
-n04536765
-n02244515
-n04526800
-n04546595
-n02551668
-n12143405
-n07871588
-n07858484
-n03628728
-n13179804
-n03242264
-n12089846
-n07588688
-n07620047
-n01647466
-n09685233
-n03467254
-n12666369
-n05449661
-n10694939
-n12886600
-n12256522
-n04006330
-n03317673
-n04316815
-n12222090
-n04022866
-n04088441
-n07617526
-n10782362
-n04355821
-n13901490
-n12508618
-n03849943
-n04503499
-n13193466
-n09754633
-n07583978
-n13911045
-n07643679
-n12054195
-n10692090
-n04032509
-n10146927
-n02031298
-n04002629
-n04035748
-n10712229
-n02866106
-n07909504
-n04540397
-n06266878
-n10219879
-n12567950
-n07853648
-n03191561
-n07856045
-n12646197
-n03317510
-n10515863
-n13198054
-n02808829
-n12889579
-n02698473
-n09924437
-n03595055
-n12306270
-n07857356
-n09715303
-n03024518
-n04323519
-n09629065
-n04178668
-n12748248
-n02308618
-n07873198
-n10564098
-n03007297
-n04036155
-n02143439
-n10507482
-n12267931
-n03956331
-n12888234
-n04066476
-n07813107
-n02736396
-n10306496
-n12324388
-n01744555
-n01649726
-n06596179
-n03616091
-n07754279
-n02072493
-n12408280
-n04314632
-n02412700
-n04030846
-n09833997
-n03599964
-n05258627
-n12572759
-n12136581
-n02419056
-n12453714
-n11652217
-n03878511
-n03907908
-n12223160
-n10514121
-n04153330
-n12163279
-n12623818
-n03495671
-n13222985
-n10354754
-n04365112
-n12384680
-n12538209
-n03105214
-n12534862
-n13869045
-n03945928
-n11613692
-n11892181
-n13002209
-n02685253
-n07598529
-n02629716
-n13202355
-n07927070
-n02176916
-n04370955
-n11988132
-n03246197
-n01440467
-n07620145
-n03940894
-n01897667
-n03408340
-n12602612
-n02539424
-n03863657
-n04559620
-n02604480
-n11822300
-n03518829
-n11619845
-n10504090
-n03341035
-n02908123
-n04281998
-n03277602
-n03865288
-n10074578
-n13902793
-n03054605
-n04404200
-n12786836
-n12235051
-n04035231
-n12009792
-n12705458
-n04378489
-n02476870
-n11954798
-n03573848
-n02087314
-n03162460
-n04363412
-n02261063
-n09953615
-n01947139
-n03044801
-n04287351
-n04479287
-n03861596
-n12510343
-n07854066
-n03027505
-n12161577
-n04197878
-n01812187
-n10015792
-n08685188
-n11737009
-n10333044
-n02730568
-n10290813
-n13096779
-n05257476
-n07917951
-n12121187
-n03517509
-n07932762
-n02336275
-n12159942
-n12105981
-n02562971
-n13882961
-n12016777
-n02793684
-n12717644
-n01380754
-n07724173
-n04055861
-n11831297
-n03059934
-n03370646
-n10065758
-n09459979
-n07913644
-n04322531
-n03457451
-n02567633
-n04240867
-n10693334
-n10556704
-n04614844
-n07909362
-n12082131
-n09268007
-n04359217
-n09883807
-n02292085
-n04052346
-n03431570
-n02843465
-n04584056
-n04432043
-n09846142
-n07864317
-n04475749
-n04227050
-n04280845
-n03535284
-n07890617
-n03217889
-n02806762
-n11967315
-n11762927
-n02501923
-n03442487
-n09690083
-n02964634
-n02920164
-n07855317
-n10196725
-n03042829
-n11662937
-n12183816
-n12311224
-n13884261
-n02243209
-n03140771
-n02385002
-n03071288
-n12936826
-n04583022
-n07859142
-n04578112
-n04467506
-n12938081
-n09982152
-n12555255
-n03335333
-n10104888
-n12151170
-n12709349
-n10456138
-n02237868
-n07620327
-n12561309
-n12341931
-n12350032
-n01775730
-n12950796
-n01440242
-n04261767
-n10568915
-n12285195
-n07589872
-n13112035
-n07840395
-n11750508
-n12286197
-n03336168
-n03325288
-n02551134
-n04293258
-n13130014
-n07733124
-n04451139
-n11985903
-n03602365
-n11722342
-n11944751
-n12897999
-n02277422
-n03101302
-n07608245
-n03531982
-n01997825
-n11713370
-n04442582
-n02833403
-n04427857
-n01648356
-n10645223
-n10414865
-n10696101
-n12885045
-n10037080
-n12218274
-n07570530
-n04493259
-n10659042
-n10577710
-n03141612
-n10582604
-n00446632
-n02834642
-n07568389
-n04583888
-n04096848
-n12879068
-n04495051
-n09837459
-n12216215
-n03702440
-n10174695
-n10559009
-n10577182
-n07686299
-n04269668
-n02404028
-n03720665
-n09885866
-n03082450
-n12492682
-n12780563
-n03703463
-n02644360
-n02307910
-n01374703
-n04402342
-n04264134
-n03158414
-n04443433
-n12522894
-n10803978
-n11706942
-n10751026
-n13143758
-n02972934
-n04174234
-n12718995
-n11994150
-n11545350
-n12526754
-n07753448
-n02870772
-n11942659
-n11744108
-n12735160
-n12229887
-n04970312
-n02874336
-n10721819
-n13193269
-n03330665
-n09865162
-n10306595
-n12161744
-n03303669
-n07846688
-n02168427
-n01961600
-n03559531
-n09826821
-n03413124
-n09695019
-n03783873
-n11863877
-n13874558
-n02283617
-n11895472
-n13182799
-n07854614
-n03283827
-n01397690
-n02650413
-n09809279
-n10290541
-n10383505
-n11724660
-n07689757
-n10181547
-n07620597
-n11979354
-n02771547
-n13061471
-n12631637
-n11966385
-n03969510
-n11735977
-n07621497
-n12956588
-n03217653
-n04546081
-n11696450
-n10300654
-n02032769
-n01654863
-n09779280
-n02390258
-n03887512
-n10489426
-n10745770
-n10713843
-n03602194
-n10710913
-n07864475
-n04486322
-n07915213
-n08663051
-n10236842
-n02390738
-n02388453
-n03598385
-n12228689
-n11771746
-n12803226
-n11242849
-n02378149
-n10427223
-n05448827
-n11870044
-n12477983
-n12311413
-n03500090
-n10280034
-n02685365
-n03652389
-n12728656
-n07695284
-n09961198
-n03780799
-n03935883
-n01612955
-n12475774
-n02701730
-n07833535
-n12584365
-n03902220
-n12727960
-n10619492
-n04450465
-n10646780
-n10110731
-n04142175
-n12296735
-n09337048
-n12681579
-n12819354
-n12541403
-n04305016
-n12798910
-n10321126
-n08618831
-n09721244
-n02225798
-n01637338
-n12218868
-n05545879
-n12022382
-n03972372
-n02505063
-n01694311
-n10695450
-n10081842
-n12297507
-n07592922
-n12118661
-n01952712
-n10517137
-n01340522
-n07719330
-n03729482
-n04168541
-n03090710
-n07873679
-n07828378
-n07728284
-n10343088
-n07869937
-n14585392
-n01453475
-n12095412
-n04973020
-n12810007
-n07564515
-n01599741
-n11629047
-n09937802
-n12450607
-n12460146
-n02292401
-n03632963
-n09617696
-n12545232
-n02874642
-n09934488
-n10091349
-n01447946
-n05469861
-n11830400
-n03382533
-n02608547
-n12697152
-n03542727
-n10716576
-n03664159
-n07568625
-n02976815
-n13147532
-n02336826
-n12432574
-n07686461
-n04107598
-n02505998
-n09849167
-n03688066
-n02836513
-n01576358
-n01893021
-n12017511
-n12065649
-n01714231
-n11662585
-n12827907
-n12954353
-n11936199
-n01368672
-n03843883
-n12184095
-n10058411
-n11684654
-n08506347
-n10579549
-n01423302
-n11604046
-n07613158
-n03605504
-n02090129
-n02284224
-n01958435
-n12664469
-n04459122
-n09617161
-n09780828
-n11830252
-n12870048
-n04247544
-n09871095
-n02962938
-n09933020
-n13064457
-n10341243
-n07694169
-n13200193
-n07765728
-n01524761
-n07730562
-n07751737
-n07740855
-n04192521
-n12593122
-n07841037
-n02809736
-n10604275
-n12512095
-n01907287
-n04592596
-n09823153
-n03181667
-n12449784
-n07908923
-n12365900
-n03053976
-n15060688
-n04165675
-n02530637
-n09816654
-n12540966
-n07934152
-n09290350
-n03455802
-n10111779
-n01351315
-n10281770
-n13862552
-n12435486
-n12370174
-n12296045
-n03493219
-n12363301
-n11973749
-n03939565
-n02938321
-n13209270
-n12604639
-n12657755
-n03604536
-n10328941
-n04278932
-n10376890
-n01884203
-n02061853
-n04256318
-n07831821
-n10585217
-n07591813
-n10210648
-n07739035
-n01632308
-n10319313
-n02861777
-n03821145
-n13029610
-n04239900
-n10313441
-n04951716
-n10628097
-n02368116
-n08571275
-n04433377
-n10458596
-n12435965
-n12448136
-n12129986
-n04295777
-n07898895
-n07854266
-n12327846
-n12318782
-n07825850
-n10414239
-n11731157
-n04409911
-n10655442
-n11829205
-n01738306
-n02840515
-n04150371
-n03369512
-n02645538
-n12773917
-n07818422
-n03227010
-n10303037
-n12942025
-n12406304
-n06616216
-n02435216
-n12981954
-n03683341
-n09703809
-n07722666
-n11817160
-n10110893
-n10228468
-n03572631
-n01378545
-n02130086
-n04388574
-n11960673
-n12956922
-n11924014
-n09895902
-n03426462
-n07759576
-n02563949
-n03466947
-n02522637
-n09480959
-n02033882
-n02451415
-n12677120
-n10580437
-n04425977
-n03057841
-n12285512
-n07614348
-n03144873
-n03391613
-n12366870
-n02304657
-n07863935
-n07909714
-n02413717
-n12591702
-n07838659
-n02967407
-n12016914
-n02735268
-n09470027
-n10222259
-n03899100
-n10513509
-n11620016
-n12600267
-n04368840
-n03016209
-n04085017
-n03215076
-n10238272
-n09782855
-n07586179
-n12434483
-n12452480
-n01990516
-n12030092
-n11739978
-n12714254
-n13036804
-n07727377
-n07879560
-n03710421
-n12128490
-n11968519
-n03250588
-n10173579
-n03114041
-n02942015
-n12729164
-n07871065
-n02591330
-n09353815
-n10138472
-n02712545
-n12866333
-n07835823
-n03508485
-n01758895
-n02925385
-n03321419
-n09931418
-n02846874
-n12500518
-n07587819
-n03160186
-n04974340
-n13067532
-n11940349
-n13027879
-n02878534
-n10055566
-n07925708
-n12628356
-n11958499
-n03472672
-n04233295
-n04563020
-n03426871
-n04330109
-n03677682
-n04129766
-n02884859
-n12692521
-n10188856
-n03500971
-n10355306
-n12407545
-n11955040
-n10028541
-n10345659
-n14720833
-n09641578
-n12613706
-n11718296
-n03380301
-n01334217
-n03890358
-n03583419
-n12447121
-n09660010
-n11826569
-n11837351
-n12096089
-n03871860
-n01821554
-n12834938
-n02738449
-n02644665
-n03316873
-n12548564
-n03605417
-n12094401
-n13152339
-n03004531
-n03080904
-n03535647
-n12349315
-n04213264
-n07860208
-n01526766
-n03710937
-n11806521
-n10618234
-n12306938
-n10473562
-n10050880
-n04596116
-n02577164
-n04479694
-n07936093
-n07834286
-n12175181
-n03986857
-n02919648
-n12055073
-n04567593
-n07585015
-n12771085
-n10551576
-n09778783
-n01593282
-n02406952
-n12331263
-n10629329
-n12287195
-n07729225
-n07828041
-n01880473
-n12257725
-n02696246
-n07853232
-n11936864
-n09745229
-n03364156
-n04503155
-n03194297
-n04003359
-n07607361
-n10106387
-n10306890
-n10455619
-n01647180
-n07740115
-n12106323
-n03626272
-n11685621
-n11866706
-n04321121
-n01606978
-n12621619
-n11615259
-n07840304
-n02841847
-n05459769
-n03432360
-n04604276
-n12356395
-n12468545
-n03645168
-n00477827
-n03459591
-n04202142
-n12959074
-n07881625
-n12382233
-n02405692
-n12299640
-n12247202
-n12628705
-n12534625
-n09264803
-n12176953
-n09835017
-n10390807
-n04975739
-n12474418
-n11931135
-n07917791
-n10636488
-n09690496
-n11993675
-n03703203
-n11794139
-n13015688
-n04168084
-n01948446
-n10169419
-n04455048
-n04973669
-n12840502
-n12120578
-n10448455
-n01386007
-n02288122
-n01441910
-n02278463
-n03108759
-n02753710
-n03143400
-n13080866
-n13917785
-n13124358
-n13220663
-n02475358
-n01925916
-n02684649
-n10451590
-n03869976
-n03881305
-n07928264
-n01422185
-n04035634
-n11996677
-n04261369
-n12925583
-n12764008
-n09972587
-n03708962
-n01791388
-n02892626
-n04098399
-n07823369
-n07752874
-n13225244
-n03376771
-n01771766
-n13146403
-n12157179
-n13897198
-n07770869
-n13240362
-n07610502
-n03688504
-n02896856
-n12543186
-n09967063
-n05453412
-n12590600
-n02378870
-n07568241
-n01687290
-n00474769
-n11694866
-n02338722
-n02637977
-n04567746
-n10586444
-n11907405
-n03421960
-n07605693
-n10384214
-n12877637
-n12018363
-n10056611
-n13882487
-n12140759
-n04114301
-n11762018
-n12678794
-n11817501
-n02116450
-n12018530
-n03324629
-n12726528
-n03155502
-n10493199
-n04181083
-n10609198
-n04328703
-n03045074
-n07769886
-n01892385
-n12828520
-n03165211
-n11800565
-n07567139
-n13877547
-n12829582
-n02949084
-n07589724
-n01746191
-n12395463
-n05459457
-n10565502
-n11981475
-n09310616
-n12327022
-n02313709
-n12957803
-n11865276
-n12955414
-n12939479
-n13225365
-n07936459
-n03139089
-n07577772
-n12057895
-n03620353
-n12152031
-n01885158
-n04096733
-n12626674
-n10464711
-n10675609
-n07752782
-n03709960
-n02540983
-n02285179
-n01903234
-n07835701
-n04421083
-n02352290
-n09421031
-n03349367
-n02539894
-n04052235
-n07922955
-n03941887
-n04234260
-n04423552
-n11975254
-n08501887
-n12489676
-n04574348
-n10602119
-n02163008
-n02748491
-n10024937
-n10033888
-n12605683
-n01790398
-n10128519
-n14977188
-n10293590
-n12077244
-n09741074
-n11694469
-n12692714
-n12159804
-n12533437
-n03831203
-n03692004
-n09462600
-n04537436
-n06618653
-n07913537
-n12783316
-n10038119
-n10236521
-n01486540
-n07875267
-n04345787
-n07681355
-n13028937
-n03607186
-n07863107
-n12387103
-n09830926
-n03574416
-n04478383
-n11685091
-n03197446
-n03225458
-n09741722
-n07736527
-n02857907
-n10177150
-n12711398
-n10308275
-n02418770
-n02577662
-n09935107
-n03362639
-n12446908
-n04329681
-n04114428
-n09624899
-n12913144
-n12338034
-n02341616
-n12360817
-n12907857
-n02414904
-n05482922
-n11974888
-n04127117
-n12581110
-n04368365
-n01699254
-n12525753
-n04254450
-n11951052
-n12458874
-n12721477
-n07562651
-n02239192
-n10533874
-n12006306
-n09537660
-n10008123
-n02788386
-n03248835
-n04491312
-n11795580
-n04025633
-n10166189
-n07703889
-n11824747
-n07605198
-n12134836
-n03591116
-n02946753
-n13212025
-n11742310
-n02328820
-n02985606
-n09955944
-n12679432
-n10020366
-n12013035
-n02942147
-n04172512
-n11802410
-n10789709
-n03385295
-n02039497
-n01416213
-n11940750
-n12178780
-n01967963
-n12662379
-n12217851
-n02812631
-n12432069
-n09991740
-n03089477
-n12458713
-n03876111
-n10311661
-n12286068
-n02838958
-n11936369
-n03716228
-n13228017
-n06276902
-n12677331
-n04330189
-n10488016
-n12011370
-n04343740
-n07893792
-n02171164
-n03963483
-n12080588
-n07577657
-n12936155
-n03809686
-n04223066
-n04086066
-n12776558
-n07813579
-n01841943
-n12285705
-n02581482
-n11653570
-n10010632
-n04305947
-n12228886
-n12797368
-n01404495
-n09697986
-n11882237
-n10077879
-n07607832
-n09779461
-n13212379
-n10769188
-n10715789
-n01480106
-n02145910
-n04275093
-n01983829
-n01978010
-n09937903
-n11976314
-n11785276
-n12386945
-n04445782
-n10712374
-n10706812
-n10194775
-n12655062
-n10739135
-n02597972
-n02307176
-n04121342
-n02350670
-n12698027
-n02805845
-n02895008
-n13149970
-n03451365
-n04542595
-n07803895
-n07864198
-n09690864
-n03844550
-n12378249
-n10345422
-n13163553
-n10457903
-n10783539
-n10539015
-n11757017
-n10274173
-n08652376
-n10283546
-n04541777
-n02824152
-n12945177
-n02082056
-n03695957
-n07936015
-n07591162
-n03628071
-n02990758
-n07685118
-n04023422
-n04951875
-n03541393
-n10289176
-n04039209
-n07913180
-n07910799
-n12017853
-n03732543
-n10656120
-n10512859
-n04556664
-n12464649
-n12927758
-n12078451
-n07878145
-n10561320
-n12467592
-n07689217
-n07619881
-n11935187
-n09837720
-n03642144
-n12220019
-n02983507
-n03271260
-n02778588
-n10193650
-n01654083
-n02746978
-n10202763
-n02953552
-n07924366
-n08583554
-n02905886
-n07855603
-n09745834
-n12366053
-n04140539
-n03383211
-n11648268
-n03352961
-n12116734
-n07771539
-n07836077
-n03842754
-n11683838
-n03004409
-n11730750
-n13098962
-n12292463
-n02867592
-n01653026
-n07583865
-n12548804
-n12702124
-n03917048
-n12677841
-n12511488
-n04217387
-n12495670
-n03554375
-n12403513
-n08558770
-n02781764
-n12339526
-n12742290
-n01404365
-n03591798
-n12446737
-n10494195
-n12110352
-n01672611
-n10493922
-n03638623
-n09910840
-n02238594
-n02575325
-n13186546
-n11873182
-n10344774
-n04094060
-n10417682
-n02749169
-n02428089
-n04549721
-n03824284
-n12107002
-n12784371
-n09986904
-n01634227
-n07826544
-n12253487
-n01679005
-n12516165
-n09339810
-n03126090
-n07803408
-n11883945
-n03842276
-n03397412
-n03280216
-n12264786
-n02545841
-n11877860
-n01830479
-n13207923
-n12490490
-n02542958
-n04114719
-n12590715
-n13226320
-n11644872
-n04119630
-n10176913
-n04213105
-n11652966
-n12546420
-n12625823
-n11897466
-n02092173
-n10567613
-n04953678
-n10059067
-n12408466
-n03056288
-n13036116
-n04169597
-n12467197
-n02569905
-n02758490
-n12623211
-n04077889
-n04959061
-n04183957
-n11689815
-n03777126
-n03306869
-n07720084
-n02659478
-n12947756
-n04341288
-n04448185
-n04037076
-n09828988
-n03346289
-n04174705
-n13126050
-n04255346
-n09764732
-n11773628
-n14891255
-n04314107
-n02184720
-n02646892
-n04320598
-n01979526
-n03191451
-n03662452
-n10290422
-n01739094
-n02305636
-n04202282
-n05459101
-n02766168
-n09994808
-n03528100
-n10475940
-n03005619
-n12639168
-n02144936
-n13202125
-n10703221
-n03770834
-n12324056
-n03474167
-n02609302
-n12166929
-n12852570
-n12920719
-n12508762
-n11983375
-n01422450
-n12616630
-n09681107
-n10486561
-n13038577
-n12266644
-n02478875
-n02547014
-n02249809
-n03336742
-n12038760
-n01672432
-n09861287
-n03678879
-n01949973
-n09928845
-n02310149
-n12648693
-n10533983
-n12812801
-n04550676
-n01800633
-n12128306
-n12744142
-n13140367
-n07803213
-n07688265
-n13068434
-n02030568
-n12955840
-n01625121
-n13215258
-n04270576
-n02680638
-n02817251
-n01539272
-n04066023
-n12969927
-n10280598
-n04001661
-n09774167
-n10358575
-n01836673
-n02290664
-n09940725
-n12447581
-n07803779
-n04561965
-n10151261
-n01538362
-n10170060
-n13160365
-n09823287
-n12554729
-n10620212
-n11935027
-n03465605
-n03227856
-n08519299
-n07785487
-n03522863
-n02861286
-n12200905
-n04269502
-n02104184
-n07612273
-n01390763
-n11872658
-n12981086
-n10244359
-n01738731
-n12117235
-n12846690
-n02861658
-n08782627
-n09832633
-n02531114
-n01394492
-n03269073
-n03077442
-n09794668
-n13884384
-n08659331
-n02556373
-n02587877
-n03523506
-n03723153
-n12024805
-n13061172
-n03978575
-n07914686
-n13134844
-n12183026
-n03573574
-n03765128
-n03319167
-n01920438
-n07852452
-n07680655
-n03017698
-n12959538
-n04261506
-n01793340
-n03292362
-n12817855
-n03593222
-n01962506
-n12453018
-n04027367
-n12518481
-n09223487
-n07871335
-n03779246
-n09668562
-n01889849
-n02492356
-n07830841
-n03277149
-n09968652
-n03092476
-n10400205
-n06263202
-n07595368
-n12767208
-n02196896
-n12580012
-n10265801
-n02103181
-n02922461
-n01731277
-n12422559
-n04278605
-n02250280
-n03283413
-n11829922
-n10191613
-n02493224
-n04427559
-n12181352
-n12742878
-n10683675
-n04503705
-n03785142
-n12816942
-n10723230
-n11936707
-n12360534
-n12909759
-n03766218
-n02696843
-n11935877
-n07828156
-n10617397
-n12921499
-n13158714
-n10166394
-n12370549
-n03505015
-n12769065
-n02636550
-n10781236
-n09869317
-n10275249
-n04234763
-n10735173
-n13137225
-n02070776
-n04232312
-n07575226
-n03471030
-n07909954
-n02633677
-n01662060
-n07563642
-n04263950
-n11824344
-n13178707
-n02972714
-n10417288
-n12092930
-n11993203
-n10170681
-n03726116
-n03215337
-n12564613
-n14975598
-n07758125
-n03123666
-n07717714
-n01421333
-n02359667
-n09403086
-n03857026
-n12759668
-n02628259
-n02307515
-n12146488
-n09777870
-n07819303
-n12105353
-n10784113
-n11802995
-n12561594
-n02845130
-n12100187
-n03507658
-n02141611
-n01800195
-n03470005
-n12444898
-n02203592
-n09707061
-n00475142
-n12216628
-n01732093
-n02581642
-n03803780
-n12114590
-n04541662
-n12267133
-n11652753
-n07859951
-n04524594
-n12843144
-n04040540
-n10604880
-n12559044
-n03063834
-n12394328
-n12704513
-n10230216
-n10756641
-n02101670
-n12309630
-n03070587
-n11626010
-n04239639
-n01638329
-n01928517
-n13144084
-n10420649
-n03102516
-n12395289
-n09833111
-n01651285
-n11688069
-n12881913
-n12783730
-n07716649
-n03618678
-n10344203
-n03626502
-n10718665
-n03577474
-n01683201
-n03246653
-n12153224
-n02519472
-n02470709
-n15090238
-n03129636
-n07774295
-n04577567
-n09995829
-n09662038
-n10297367
-n03555862
-n12531727
-n09947127
-n12533190
-n04062807
-n00479734
-n12860978
-n01884104
-n09866559
-n12069009
-n04595501
-n12088495
-n02909053
-n12283790
-n02180427
-n10697282
-n07562881
-n13092078
-n11706325
-n01746952
-n01978136
-n07731436
-n02386746
-n12648424
-n12726357
-n10314182
-n07839172
-n11753562
-n12903503
-n12589687
-n02375438
-n03604763
-n11549895
-n13202602
-n12304420
-n10738215
-n12220829
-n10095420
-n12177455
-n11887476
-n04006411
-n09838370
-n02853218
-n12688372
-n03335461
-n02800940
-n03036701
-n09885059
-n10206629
-n11922926
-n01678657
-n12192132
-n12248141
-n03108624
-n01936671
-n02417242
-n03222857
-n03768823
-n04343511
-n03538817
-n12655726
-n12521186
-n01330497
-n12767423
-n12965951
-n09695132
-n04410886
-n12599874
-n07865700
-n07596160
-n10227698
-n03224490
-n11598886
-n02948293
-n09906293
-n12247963
-n03301175
-n03895170
-n04259468
-n07808806
-n13147689
-n09856827
-n13882639
-n02241008
-n03842585
-n02883101
-n12182276
-n13918717
-n12728164
-n10634464
-n02477187
-n03107716
-n02342250
-n01479213
-n12793695
-n09808080
-n10707707
-n04161010
-n02836607
-n10076483
-n07726386
-n03872273
-n10250712
-n07688412
-n13884930
-n12301766
-n10196404
-n07591330
-n03814727
-n09610255
-n12757115
-n09814381
-n02397987
-n07886317
-n03959123
-n02185167
-n03533845
-n11838413
-n10227393
-n07704305
-n03580615
-n02663485
-n10101981
-n04346855
-n10067011
-n04464125
-n02829510
-n10007995
-n07845775
-n03004713
-n02450561
-n09905530
-n10361060
-n12394638
-n12095934
-n10479135
-n03145277
-n12246773
-n13194212
-n04475900
-n03252787
-n14867545
-n10485298
-n09961739
-n02149653
-n01553762
-n03931980
-n02344408
-n11676850
-n04034367
-n04235646
-n12867184
-n12625670
-n12763529
-n07593107
-n04351550
-n02571810
-n13899735
-n03652826
-n09495962
-n03421768
-n04205062
-n11918808
-n07745197
-n07752264
-n01892744
-n04609811
-n10278456
-n11790936
-n09754152
-n13234519
-n09820044
-n00440643
-n02350357
-n03779884
-n07803992
-n03305953
-n01836087
-n10068234
-n10690421
-n03134394
-n12380761
-n12801966
-n03134232
-n02596720
-n07591236
-n11882821
-n02312175
-n02387983
-n01912152
-n10805501
-n12718074
-n03188290
-n02776505
-n10528148
-n09971385
-n10524223
-n09958292
-n02721813
-n10300829
-n12007766
-n12107191
-n04449700
-n02987950
-n11878633
-n12328801
-n04551833
-n10567722
-n11654984
-n02808968
-n12066451
-n02964075
-n11633284
-n02434712
-n03070854
-n07926540
-n01543936
-n10091861
-n09938080
-n11976511
-n03342432
-n12886831
-n12509993
-n12958261
-n12730776
-n10066206
-n07846014
-n13176714
-n03332591
-n04607640
-n02513727
-n12138248
-n11964848
-n01318053
-n10553140
-n07839055
-n02632039
-n11865429
-n02286654
-n02367812
-n12093885
-n10774329
-n02296912
-n01729672
-n10353928
-n12033504
-n11936113
-n03263338
-n07822053
-n09737050
-n13875884
-n13212559
-n11690088
-n05468739
-n09344724
-n02507148
-n01377694
-n04172607
-n10464870
-n07804152
-n02825872
-n03139640
-n11858703
-n10227490
-n12334153
-n03616225
-n12018188
-n12399656
-n10235269
-n11840764
-n01995514
-n03326475
-n12704041
-n10684827
-n03006788
-n13906484
-n02868240
-n03614887
-n03491724
-n12124172
-n03675907
-n13170840
-n03983712
-n03254737
-n07836269
-n01784293
-n02095212
-n12470512
-n12219668
-n12920521
-n04492157
-n02950018
-n01922717
-n11797981
-n12601805
-n02744961
-n07814925
-n09798096
-n03939062
-n13891547
-n07564292
-n01590220
-n09295210
-n03997875
-n03479266
-n01491661
-n03781055
-n12528768
-n10657306
-n12014923
-n10094320
-n02532272
-n02224023
-n04541136
-n12067672
-n02661473
-n04233027
-n12399899
-n12889412
-n01736032
-n12551173
-n01337734
-n10104487
-n02921592
-n02148512
-n10216403
-n03276839
-n01781570
-n03999621
-n02505238
-n12537569
-n10433452
-n02351343
-n12365158
-n08539276
-n01897257
-n12221801
-n10557246
-n10437698
-n01803641
-n11836327
-n07813833
-n03468570
-n06277025
-n10040240
-n03692842
-n03017835
-n01881564
-n10487363
-n07937069
-n10597505
-n01638722
-n10160412
-n09825096
-n12611640
-n03098515
-n10654211
-n13196234
-n03436990
-n04058486
-n09814567
-n10758337
-n03515934
-n07688757
-n10269199
-n12627347
-n04521571
-n01636510
-n03220095
-n09982525
-n12768809
-n02340930
-n02473857
-n12336586
-n12125584
-n02833040
-n02498153
-n01467804
-n12120347
-n11650430
-n11953339
-n12592058
-n05102764
-n10575594
-n09722064
-n01966586
-n10619888
-n07852376
-n12650915
-n10321882
-n11974557
-n09847267
-n13201423
-n12337131
-n13185658
-n02150134
-n10538853
-n10471732
-n07836600
-n03526062
-n02512752
-n04232437
-n03367321
-n04308915
-n07600895
-n11539289
-n03539293
-n12699922
-n07817599
-n02781213
-n03594010
-n12035907
-n04075813
-n05233741
-n07863229
-n10735984
-n12095543
-n12272735
-n04229620
-n12240965
-n07768590
-n04420024
-n12111627
-n02861509
-n02595056
-n12183452
-n04607982
-n13213577
-n07741888
-n03750614
-n10043024
-n03372933
-n10051861
-n10199251
-n03249956
-n03984125
-n02956393
-n11619687
-n03356279
-n07833951
-n10715030
-n02340358
-n10768272
-n01494041
-n02592734
-n03323319
-n02136285
-n03995661
-n09945223
-n03547397
-n10044682
-n12878784
-n02803809
-n13160254
-n12726902
-n12196954
-n03161016
-n03105645
-n04218921
-n09493983
-n10719036
-n12263588
-n12565102
-n10684146
-n03148518
-n04287986
-n02340640
-n04331443
-n10727016
-n03369407
-n07824863
-n07844786
-n12467433
-n07582811
-n02964196
-n02197877
-n10758445
-n03271376
-n13212175
-n03260504
-n12777778
-n11973634
-n05467054
-n11946313
-n02462213
-n13906669
-n10520286
-n02074726
-n01771100
-n13880199
-n09811568
-n13883763
-n02334728
-n11831100
-n12025220
-n12751172
-n03858837
-n10127186
-n12831535
-n07823591
-n02513805
-n03662301
-n09913329
-n02749670
-n10655986
-n01787191
-n03199488
-n12732252
-n12253664
-n07735294
-n03440876
-n09650839
-n03844965
-n10341446
-n12688187
-n12961242
-n03423224
-n13157346
-n09802951
-n11948044
-n03489048
-n12279060
-n03664840
-n03731882
-n07742605
-n07870734
-n03949761
-n10759331
-n07739923
-n02737351
-n01788291
-n11780424
-n03722646
-n12297110
-n12363768
-n04495310
-n10008254
-n03934890
-n01318478
-n03609959
-n10070377
-n04123228
-n13068735
-n02909706
-n10671042
-n10491998
-n07650792
-n12664710
-n10213034
-n03455642
-n10411867
-n09903936
-n10121800
-n02622955
-n03647423
-n07596566
-n09654898
-n12248780
-n02684515
-n04255670
-n06273890
-n03495941
-n12960552
-n09724234
-n03861048
-n03293095
-n11835251
-n12852428
-n04084517
-n01814620
-n13159890
-n03147156
-n02311748
-n10237799
-n07584859
-n01946827
-n09651968
-n12241192
-n03669245
-n07858336
-n11932927
-n04444218
-n10526534
-n03642573
-n09470222
-n10731732
-n12001924
-n03786096
-n01359762
-n03824999
-n13877667
-n10591811
-n10574311
-n03275125
-n11631985
-n10539160
-n10502950
-n12499757
-n12432707
-n12068615
-n07689624
-n02610373
-n03204436
-n13051346
-n13134531
-n07610890
-n04021164
-n03502897
-n02299378
-n10417843
-n10050043
-n07929940
-n02593453
-n10577820
-n12870225
-n03333851
-n09463226
-n11741575
-n09193551
-n12012510
-n11987349
-n09215023
-n07924655
-n10060075
-n11999278
-n03933391
-n02602059
-n11993444
-n02337902
-n10149867
-n04441093
-n02868429
-n10629647
-n04192361
-n12029039
-n02768433
-n12078747
-n12730143
-n03255167
-n12492900
-n01709876
-n09672725
-n07870620
-n02315821
-n12277334
-n12204730
-n07852712
-n01319685
-n07802246
-n13031193
-n00812526
-n09658815
-n11982939
-n04264485
-n07893425
-n04094438
-n03285730
-n13182338
-n10724570
-n07832741
-n13210350
-n10654015
-n04058721
-n07875086
-n03462747
-n03994417
-n02889856
-n11957514
-n10109443
-n10478462
-n03064562
-n02477782
-n11920998
-n02138169
-n04227787
-n11797508
-n10753339
-n12928307
-n11921792
-n12643688
-n01833112
-n03919808
-n09817386
-n01903498
-n03848033
-n12031547
-n01035504
-n12324906
-n01911063
-n02588794
-n03749634
-n03539754
-n02242455
-n03079616
-n03246312
-n09705671
-n07860629
-n10458356
-n10051761
-n09709531
-n02867401
-n12522678
-n13150378
-n04462576
-n03462315
-n03712981
-n07607027
-n10581648
-n02957427
-n04271793
-n02253913
-n12824735
-n11697802
-n02161588
-n12463975
-n02361090
-n09784564
-n09680908
-n03512452
-n13214217
-n10712690
-n04023119
-n07814007
-n09833751
-n12885265
-n02259987
-n11933903
-n03628831
-n11967142
-n02533545
-n03900301
-n07919787
-n12793886
-n10768148
-n03071552
-n02780315
-n12193665
-n03378442
-n04486616
-n07832307
-n03164192
-n12786273
-n04261868
-n12655351
-n12320414
-n04371979
-n10630093
-n13052014
-n01357328
-n07879821
-n09753348
-n03796974
-n11701302
-n11678299
-n04022434
-n11610823
-n07726009
-n04117639
-n10474343
-n11888061
-n01842788
-n10435251
-n03343047
-n03383378
-n12750767
-n09662661
-n05241485
-n10000459
-n12220496
-n02246941
-n12676370
-n02253264
-n07766409
-n02940289
-n12089320
-n10363573
-n12922119
-n09783537
-n11695285
-n12331066
-n12573647
-n10218164
-n12509821
-n07862946
-n12818601
-n02589316
-n13191620
-n03758992
-n12112337
-n10733820
-n02898093
-n02645953
-n10150794
-n04595762
-n02344918
-n13132756
-n12859153
-n12138444
-n04211001
-n12935166
-n07830493
-n10142166
-n11951820
-n03018848
-n01453742
-n11985321
-n10000294
-n01362336
-n02328009
-n12639376
-n03090437
-n02204249
-n04312916
-n13127666
-n09684082
-n03432509
-n10274318
-n09704057
-n07593972
-n10074249
-n13157971
-n01638194
-n04036963
-n11708857
-n03418749
-n12589458
-n11899762
-n07683138
-n01601410
-n07854707
-n04279063
-n03239607
-n10302700
-n12520406
-n12576451
-n03881534
-n07565608
-n02349390
-n12569851
-n12249294
-n04059399
-n03530189
-n09357346
-n04325208
-n13159691
-n04045941
-n13898315
-n11992479
-n02353411
-n07825496
-n12922458
-n03115014
-n11761836
-n03323211
-n02793296
-n03492087
-n05241662
-n05491154
-n10419630
-n04506895
-n10546428
-n02907296
-n10769459
-n11647868
-n13188462
-n03825442
-n13209460
-n10742005
-n07599242
-n12361754
-n04570532
-n04131811
-n07756499
-n02598134
-n01910252
-n02910701
-n10129338
-n13871717
-n12673588
-n12565912
-n07562172
-n02711237
-n10775003
-n07695410
-n02637179
-n12930951
-n10261211
-n02906963
-n01366700
-n10642705
-n09846586
-n02779719
-n04978561
-n01369358
-n12114010
-n03521771
-n10667709
-n02296612
-n10722029
-n03500557
-n01365474
-n10472447
-n07585644
-n07609316
-n04013060
-n04505888
-n09726811
-n12692160
-n12378963
-n03585551
-n13139837
-n10167565
-n03799375
-n11990920
-n09640327
-n04502989
-n10108832
-n10561736
-n01897426
-n11766189
-n12462582
-n12913524
-n02684356
-n13200542
-n10466198
-n04331892
-n01478969
-n07837234
-n07692248
-n04552097
-n12382875
-n01484447
-n04120695
-n12681376
-n10293861
-n11965962
-n11788039
-n03959227
-n01832813
-n09918867
-n09942697
-n07587206
-n10459882
-n01347583
-n02267208
-n03951453
-n03006903
-n12126736
-n10286749
-n03395401
-n04605057
-n03467887
-n12755559
-n04020744
-n11629354
-n01647033
-n02780445
-n10205714
-n09439032
-n03138128
-n02763083
-n07835547
-n12251278
-n11949857
-n01635480
-n10675142
-n07845335
-n07751977
-n10332110
-n11871496
-n11764814
-n12229651
-n07760297
-n09865672
-n02919308
-n12218490
-n03782929
-n12231709
-n11909864
-n03144982
-n11799331
-n10433610
-n10483395
-n03206023
-n05442594
-n03626418
-n07870478
-n10171456
-n11964446
-n12796849
-n02126317
-n03797062
-n01412694
-n07610746
-n03581897
-n04479526
-n12447891
-n11906514
-n09699642
-n12873984
-n10586903
-n13234114
-n02436353
-n11889205
-n01460303
-n04400899
-n11884967
-n02140491
-n12215824
-n03586911
-n01394040
-n10691937
-n12371704
-n09668988
-n04362624
-n01740885
-n01337191
-n09714120
-n02185481
-n08555333
-n10704238
-n12430471
-n12034594
-n10012484
-n12088909
-n03205903
-n04129490
-n13090018
-n10712474
-n12234669
-n13016076
-n00454855
-n13882713
-n02644817
-n03192907
-n03519226
-n01561181
-n04583967
-n11732052
-n10732854
-n04480303
-n07934908
-n03825673
-n10621294
-n04354387
-n03374102
-n02922159
-n13158815
-n04000716
-n09685806
-n04427216
-n12051514
-n09712967
-n12081649
-n09748889
-n03252231
-n10704886
-n12897118
-n12525168
-n11728769
-n02731251
-n02548884
-n12403276
-n09627807
-n08679167
-n09663999
-n04247440
-n07711683
-n09909929
-n03415868
-n05244421
-n07680416
-n12757668
-n11935794
-n03483086
-n01860864
-n10755164
-n03675076
-n12004987
-n07566092
-n04078955
-n03379719
-n01916588
-n10138369
-n09755893
-n03649003
-n03977430
-n02309120
-n10616578
-n12242850
-n12388293
-n03292085
-n09919061
-n10302576
-n01497413
-n01936858
-n01377278
-n04358256
-n02667693
-n12125183
-n07758582
-n07813324
-n09737453
-n12745564
-n03855464
-n03166685
-n01446152
-n09801102
-n10561222
-n10576818
-n13915209
-n10474446
-n03845990
-n04237174
-n12531328
-n07855812
-n10763245
-n04614505
-n07905770
-n12051792
-n12653633
-n03593862
-n10359659
-n10436334
-n07853125
-n12911264
-n12265083
-n03638014
-n04444121
-n02706221
-n10563711
-n07808166
-n11799732
-n04093915
-n10451858
-n04410760
-n10075299
-n12740967
-n12635359
-n09611722
-n12902466
-n13915305
-n05542893
-n04440597
-n03675445
-n12315245
-n10646032
-n10047199
-n12775717
-n10365514
-n10590452
-n11616260
-n02812342
-n07856756
-n04570416
-n03565991
-n12215210
-n04330896
-n02388588
-n02266269
-n10760199
-n14714645
-n02742070
-n03565710
-n12609379
-n03420935
-n03441465
-n00453631
-n01963479
-n04362972
-n09863936
-n03961394
-n03009269
-n12297280
-n04561010
-n12192877
-n02981565
-n12134695
-n07855413
-n03232815
-n10180791
-n09932788
-n10571907
-n02109256
-n02660091
-n07865788
-n13228536
-n10306279
-n02635580
-n03634899
-n10262343
-n12296929
-n04393301
-n06281175
-n04485586
-n13103660
-n10510974
-n04166436
-n01634522
-n07596362
-n12700357
-n08597579
-n11744011
-n12238756
-n01790171
-n04571800
-n11867311
-n03464467
-n12241880
-n09961605
-n12592544
-n03170459
-n09938991
-n02692680
-n10295371
-n04331765
-n02612167
-n02520810
-n11977887
-n04094608
-n07722390
-n07832202
-n12448361
-n04612159
-n12186352
-n13161151
-n12654227
-n09868899
-n10104756
-n09920106
-n12981301
-n02610980
-n12545865
-n10673296
-n04110841
-n01704626
-n04055700
-n12117912
-n10519126
-n12443736
-n01697978
-n02148088
-n03012644
-n12091697
-n10395390
-n10509810
-n10462751
-n02896949
-n03836602
-n03928994
-n07718195
-n02473983
-n08571642
-n02648916
-n11970298
-n06274292
-n04613158
-n09856401
-n12811713
-n13111340
-n12122442
-n10095265
-n04445610
-n11631619
-n07863644
-n12022821
-n10315217
-n12549799
-n03386343
-n03121040
-n03558007
-n12272432
-n11798496
-n02522866
-n02952935
-n10741493
-n12143065
-n07883156
-n09616573
-n02289988
-n13161904
-n02588945
-n00451768
-n12375769
-n10777299
-n04495183
-n11930994
-n09970088
-n02254246
-n12276314
-n07857598
-n04428382
-n03789794
-n03383821
-n12980080
-n01447139
-n12880799
-n03501520
-n10764465
-n13143285
-n12727729
-n12444095
-n02354621
-n13174354
-n01691652
-n07732525
-n10437014
-n04368235
-n10371052
-n02611898
-n03597147
-n09912431
-n03135788
-n07888058
-n02409202
-n14582716
-n11934463
-n04395332
-n12558680
-n05257967
-n11798978
-n10617024
-n04102760
-n12132092
-n12988572
-n10390698
-n11887310
-n12063211
-n12952717
-n13141972
-n12176453
-n10245863
-n10509161
-n10389976
-n10333165
-n01474864
-n09274305
-n11888424
-n10368711
-n13222877
-n10469611
-n07582970
-n09700125
-n12805762
-n07865575
-n07853852
-n03628421
-n04482975
-n03099622
-n01349735
-n11943133
-n12736603
-n12197601
-n10597745
-n04418644
-n12689305
-n07755262
-n10598459
-n04312020
-n03195485
-n09776642
-n10596517
-n10223606
-n01923890
-n12703716
-n03465040
-n12372233
-n12528109
-n03571853
-n10802621
-n10204177
-n02320465
-n03976105
-n02214096
-n02148991
-n10377542
-n10697135
-n03538542
-n07582027
-n04517999
-n12180456
-n02838014
-n03977266
-n03818001
-n12191240
-n11648776
-n10773800
-n04475496
-n03945817
-n04682018
-n02994743
-n02787269
-n11650160
-n03834472
-n03389983
-n09797742
-n06209940
-n12525513
-n12672289
-n01893164
-n10710259
-n01892145
-n11773408
-n10554024
-n09864968
-n10699752
-n11631405
-n10414768
-n04430605
-n10742546
-n10738871
-n12857204
-n09309046
-n01724840
-n04123317
-n07881525
-n03868044
-n02140268
-n10708292
-n09838295
-n09797998
-n10710171
-n11814996
-n11938556
-n03543511
-n02151230
-n01515217
-n03533392
-n02039780
-n12810151
-n02335231
-n12152251
-n13225617
-n09801275
-n01978587
-n14821852
-n11742878
-n12679023
-n03521431
-n09679028
-n02021281
-n10784544
-n04421258
-n12492460
-n03720005
-n02541257
-n03889397
-n02888898
-n10659762
-n12045157
-n12712320
-n10369095
-n09721444
-n12769318
-n01703161
-n12697514
-n07836456
-n03905361
-n10660883
-n07769306
-n11893916
-n07846274
-n04110281
-n03655470
-n07740744
-n01363719
-n12540647
-n09896311
-n12842642
-n07755619
-n07754155
-n11548870
-n02868546
-n04215588
-n04288165
-n13201566
-n07721118
-n12018271
-n11903333
-n02909165
-n02662559
-n11658709
-n13063514
-n07725663
-n10179069
-n10776887
-n12637485
-n03814528
-n12542043
-n07833333
-n07820036
-n02746683
-n07925808
-n10349750
-n03154316
-n04155625
-n03232923
-n02116185
-n09998788
-n02821543
-n03410303
-n10656223
-n07916582
-n12880638
-n10408809
-n04612840
-n11805255
-n12044784
-n10497534
-n03458422
-n12873341
-n07808675
-n09476123
-n07611733
-n10598013
-n02214660
-n05469664
-n03952150
-n11855435
-n04375926
-n08523340
-n01642391
-n04007415
-n09756961
-n12891824
-n02894847
-n11698245
-n12906771
-n02894024
-n04131015
-n11882636
-n04386456
-n03291551
-n07837110
-n12462221
-n08540532
-n10299875
-n12705978
-n10448322
-n10487592
-n12175598
-n02272552
-n03833907
-n10383237
-n12758176
-n12729950
-n10061195
-n07816726
-n03241903
-n12239880
-n10380499
-n07855188
-n10207077
-n02770078
-n12961393
-n03778459
-n10734741
-n03485575
-n09958447
-n12337246
-n11830045
-n09866354
-n03209666
-n01470145
-n10395209
-n03872016
-n04267091
-n12888457
-n12104104
-n04088229
-n01964957
-n12002651
-n02503756
-n00481938
-n01908042
-n03378765
-n04193883
-n09862183
-n11861487
-n02520525
-n02081060
-n10386754
-n12693865
-n04514095
-n01325060
-n02460817
-n07568095
-n03651605
-n02561937
-n12844409
-n12888016
-n02974565
-n12439154
-n13018906
-n12071259
-n03897634
-n02863176
-n10603528
-n03493911
-n12887532
-n12944095
-n12794568
-n09980458
-n03503567
-n11783162
-n13123309
-n11729860
-n03702582
-n04280373
-n10086744
-n01790557
-n12627526
-n10552393
-n12092629
-n03888998
-n12751675
-n01442450
-n02479332
-n07726230
-n03642341
-n03142325
-n06263895
-n12088327
-n09703344
-n10528493
-n02820085
-n07737594
-n04090781
-n09901642
-n02328942
-n02724722
-n09866115
-n12658715
-n10481167
-n13135692
-n11850918
-n10205344
-n12361560
-n03698123
-n03284482
-n12106134
-n04441528
-n02591613
-n02581108
-n07856186
-n12197359
-n12900783
-n01725713
-n12012253
-n03907475
-n02170738
-n03694949
-n13238654
-n04611795
-n02782432
-n13191148
-n02741367
-n04170694
-n12770892
-n01973148
-n10080508
-n10161622
-n09808591
-n07912093
-n02059541
-n02779971
-n03857156
-n12945366
-n03055159
-n12758325
-n10067305
-n02597818
-n07808352
-n13147153
-n10679723
-n02271222
-n04012665
-n12942729
-n10349243
-n01377510
-n07800636
-n10654321
-n10219453
-n09961469
-n10732521
-n04479405
-n11632929
-n03856728
-n08658918
-n10327143
-n10754281
-n02085118
-n09691604
-n09952163
-n10082299
-n03872167
-n03733465
-n04138869
-n01425223
-n12066821
-n02177506
-n09892262
-n02896694
-n12983654
-n13224922
-n09658921
-n12744850
-n03639880
-n02943686
-n10660621
-n11936539
-n03698226
-n04519536
-n12392765
-n09319604
-n07567039
-n04160261
-n01802159
-n02838178
-n07746910
-n02266421
-n10240417
-n12542240
-n12550408
-n01445857
-n04132465
-n03569014
-n12666050
-n12362514
-n10676569
-n09702673
-n12885510
-n04447156
-n04396226
-n12240150
-n11639306
-n02249134
-n01340785
-n02833140
-n10027590
-n02142407
-n11996251
-n07874531
-n04340019
-n03166120
-n10420277
-n04465203
-n12738259
-n12831141
-n03998673
-n01385017
-n12842519
-n02587051
-n10753061
-n12505253
-n13906936
-n01989516
-n12640435
-n07852532
-n04243142
-n10261511
-n12853287
-n12239240
-n03973003
-n09983889
-n10345302
-n14804958
-n02354162
-n03049326
-n10443659
-n01318660
-n12787364
-n04253304
-n11941094
-n09283514
-n09393524
-n11865574
-n01531639
-n04409279
-n02859729
-n10712835
-n03694196
-n04343630
-n10331098
-n12929600
-n02826259
-n10171219
-n07735179
-n07594840
-n03709644
-n09950728
-n09859285
-n07718329
-n01418620
-n09858299
-n12395068
-n10011360
-n07763290
-n02643316
-n03596099
-n04422566
-n11958888
-n09650989
-n10318686
-n01333082
-n12886402
-n03781467
-n12667582
-n02923535
-n09988311
-n08663860
-n02508346
-n13885011
-n03939281
-n10772937
-n04485750
-n09871952
-n10291942
-n07759324
-n10174971
-n03666238
-n01937579
-n02308033
-n07847706
-n10371330
-n04124887
-n11853079
-n11941478
-n12647231
-n04601041
-n12718483
-n02902816
-n01941340
-n04066767
-n07617839
-n02254901
-n03488784
-n07834774
-n02524659
-n03367969
-n10783734
-n03422484
-n09776807
-n03970363
-n10131590
-n03433247
-n02622712
-n10206506
-n12061104
-n11936287
-n07874674
-n10061043
-n07828275
-n03764606
-n12236768
-n01826844
-n09741904
-n05454978
-n03591592
-n01441272
-n03736372
-n07585474
-n12762405
-n12943912
-n01894522
-n03218446
-n11846425
-n11689678
-n04147916
-n02375862
-n10409459
-n09287415
-n10113583
-n03261263
-n02817386
-n09869578
-n10550252
-n02532786
-n12031388
-n07937344
-n11612235
-n01571410
-n09402944
-n04234670
-n02603862
-n04196925
-n09999135
-n10468750
-n15093049
-n03003633
-n11650307
-n12312110
-n02525703
-n10501635
-n09751622
-n10114550
-n10103155
-n12829975
-n04004099
-n12419878
-n02082190
-n03328201
-n03093427
-n07845571
-n12655498
-n02558206
-n12563045
-n07573453
-n12324558
-n13016289
-n10601234
-n10310783
-n03531691
-n02135610
-n03168543
-n09985978
-n10615334
-n07839312
-n09985809
-n10142537
-n10417969
-n07869111
-n12514992
-n04327544
-n10326776
-n12583681
-n01476418
-n12840168
-n03852544
-n11713763
-n07824502
-n07858841
-n12256325
-n03036149
-n07883661
-n04500390
-n10170866
-n01835918
-n10760951
-n10720197
-n12330239
-n02135844
-n10210512
-n03217739
-n10802953
-n03136254
-n02161225
-n03961630
-n12927194
-n02251233
-n13891937
-n09945603
-n02695762
-n12181612
-n13234857
-n10175725
-n11346873
-n07934678
-n02318687
-n10251329
-n04112921
-n04001132
-n03042984
-n11704791
-n04246459
-n12193334
-n10718509
-n10371221
-n05278922
-n03265754
-n12186554
-n12481289
-n10521853
-n10748506
-n11729142
-n10143595
-n09422631
-n07562984
-n07850219
-n04193742
-n11997160
-n12002826
-n12820113
-n04132829
-n10272913
-n03358841
-n12610740
-n12384569
-n10725280
-n02746008
-n13148384
-n12635151
-n02337171
-n10350774
-n12308907
-n04542474
-n04339062
-n03549350
-n10240235
-n10556033
-n10214390
-n01791314
-n02801047
-n07817465
-n11610602
-n10315730
-n14592309
-n10249191
-n12453857
-n12579822
-n09833275
-n04051269
-n11552594
-n04088343
-n04565039
-n03930431
-n10679503
-n11899921
-n10295479
-n01357507
-n13036312
-n03404900
-n12523141
-n01816017
-n02020578
-n12661045
-n06262943
-n02775813
-n12921315
-n09751076
-n09834258
-n10585628
-n12885754
-n04411019
-n10342367
-n10368798
-n09672840
-n12729023
-n04578329
-n10325549
-n03680248
-n11920663
-n10416567
-n10011486
-n01643255
-n03193754
-n07823814
-n04055447
-n10660128
-n07765612
-n07612530
-n04205613
-n09677427
-n03989199
-n11100798
-n12721122
-n10000787
-n10382157
-n07724819
-n12928819
-n11631159
-n02608996
-n10516527
-n09703101
-n12290975
-n03470222
-n03810412
-n03729131
-n03356038
-n12692024
-n12614625
-n10789415
-n02333819
-n01722670
-n03885410
-n12038208
-n02294097
-n02608860
-n02500596
-n07909231
-n03254625
-n09681973
-n12221368
-n01893399
-n10025295
-n03194812
-n13181406
-n12249122
-n03447894
-n09795010
-n02187900
-n10139651
-n10631654
-n01792530
-n02569631
-n07853946
-n09907804
-n03263758
-n04214649
-n02450829
-n02431542
-n11998492
-n02651060
-n04101860
-n01806061
-n13901423
-n12903964
-n03968479
-n04268565
-n12601494
-n02083780
-n04570118
-n12247407
-n03337822
-n09878921
-n02369935
-n10022908
-n09667358
-n13160938
-n11937360
-n07741623
-n03705808
-n12241426
-n10478118
-n03805933
-n10343869
-n09391774
-n03482128
-n10357737
-n10334461
-n09675045
-n09662951
-n10174253
-n01815270
-n13873361
-n04432785
-n09778927
-n10671898
-n05571341
-n10033572
-n09864632
-n10618465
-n03437184
-n12786464
-n01723579
-n11798270
-n07742415
-n02143142
-n10548419
-n03695122
-n02518622
-n04605446
-n10218292
-n11832671
-n12646950
-n03382708
-n09844898
-n09674786
-n01472502
-n07616906
-n09763272
-n03982767
-n10005006
-n03059236
-n01816474
-n03725869
-n01979269
-n04226322
-n13236100
-n03920384
-n11852148
-n04373563
-n04324120
-n11686652
-n03036341
-n02142898
-n09783776
-n13147918
-n03465320
-n07855721
-n10336411
-n10438619
-n07750299
-n12237152
-n03559373
-n10077106
-n10169796
-n09828403
-n09959658
-n12464128
-n12934685
-n04221673
-n02617537
-n11689367
-n10180580
-n07813717
-n12529905
-n02340186
-n01400247
-n11749112
-n04404072
-n03135656
-n12098827
-n12481150
-n10023506
-n03500838
-n01564101
-n04009923
-n10023264
-n03908456
-n03206405
-n07590068
-n09958133
-n10755394
-n01423617
-n11511327
-n10536274
-n01965252
-n11549245
-n11935627
-n09635635
-n03752071
-n07585997
-n03147084
-n12666159
-n09748408
-n03796848
-n01501948
-n02345078
-n12430675
-n03103128
-n11710987
-n03393199
-n09233603
-n10465002
-n04298765
-n01351170
-n02720576
-n03966582
-n10643837
-n12420124
-n10793799
-n01652297
-n09281252
-n11983606
-n10222497
-n11832899
-n02391617
-n12434106
-n03987674
-n02140179
-n07896560
-n04325804
-n10647745
-n01924800
-n10156629
-n03545961
-n03906789
-n01890564
-n10699558
-n12332218
-n03247495
-n11839460
-n03527675
-n12586725
-n13208965
-n02714315
-n02750320
-n04615149
-n12679876
-n12863234
-n03304323
-n12139793
-n11922755
-n12321669
-n04979307
-n01921059
-n09657206
-n13042134
-n04045787
-n11700279
-n02337598
-n01415920
-n01400391
-n13207572
-n10785480
-n02515713
-n12018100
-n02634545
-n03292736
-n02881546
-n12655605
-n03105810
-n10545792
-n03894933
-n09796974
-n10320484
-n12308112
-n11549009
-n13047862
-n14941787
-n12379531
-n10540252
-n11696935
-n12184468
-n12851860
-n12908854
-n10586265
-n12369066
-n10426630
-n12523850
-n03916289
-n04538878
-n09908769
-n02828115
-n07560422
-n10266016
-n03569174
-n06423496
-n10495167
-n03617834
-n09327538
-n10195056
-n10508379
-n13031323
-n11659248
-n04242315
-n10742111
-n10700963
-n12032686
-n09877587
-n07825597
-n07568991
-n11736362
-n12169099
-n13103750
-n03263640
-n12248941
-n10665302
-n01920051
-n09704283
-n11533999
-n04503073
-n11645163
-n10639817
-n09920901
-n06340977
-n03251100
-n10378113
-n03226090
-n10131268
-n02877513
-n13191884
-n02787120
-n11709045
-n02740061
-n12323665
-n02831998
-n10342180
-n12716594
-n04498275
-n09905050
-n03745487
-n07642833
-n10294020
-n10211666
-n12205460
-n02981198
-n01642943
-n07679140
-n04390483
-n10432875
-n09214269
-n10792506
-n10243483
-n13099833
-n10221520
-n13177768
-n04091584
-n10672540
-n10200246
-n13889331
-n02345340
-n10237556
-n01833415
-n01335218
-n09804230
-n09957523
-n05235879
-n10070449
-n10308653
-n10721708
-n04312654
-n10394434
-n12201938
-n12434775
-n07601025
-n02672152
-n10157271
-n02635154
-n12572858
-n13182937
-n10160188
-n03396997
-n10344656
-n02968210
-n10190516
-n07684422
-n03706939
-n07618871
-n02290870
-n03817331
-n03275311
-n12698774
-n04375080
-n07837630
-n04314216
-n11833373
-n07618684
-n03742238
-n12532886
-n03712444
-n11750989
-n10038620
-n09617577
-n03807334
-n10108089
-n01816140
-n10715347
-n02648035
-n13127303
-n02809491
-n02430748
-n12235479
-n01451863
-n01514926
-n10010864
-n01913440
-n09660240
-n11806369
-n01470479
-n12655245
-n07655067
-n03436772
-n11778092
-n03951800
-n10277815
-n07931733
-n01479820
-n03576955
-n07609549
-n12568649
-n05263316
-n02636405
-n01384084
-n03298352
-n07617344
-n09987045
-n10573957
-n07801709
-n02589062
-n02534165
-n02748359
-n09607782
-n07590974
-n02199170
-n02696569
-n09678747
-n12795209
-n13176363
-n10663315
-n10588724
-n09772330
-n10174589
-n12366313
-n11883628
-n07617447
-n01334690
-n03168663
-n11764478
-n08599174
-n03942028
-n12153033
-n03448696
-n12096674
-n10037588
-n03548320
-n09760290
-n10374541
-n09653438
-n10294139
-n10276942
-n12279293
-n12764507
-n12803958
-n10764622
-n02140858
-n07599068
-n10245507
-n12351790
-n12818004
-n10118301
-n03945459
-n09912995
-n12176709
-n03873996
-n10339179
-n10614507
-n10114662
-n10784922
-n03821424
-n04959230
-n13015509
-n12573911
-n11948469
-n09775907
-n12758014
-n01780142
-n09956578
-n12165384
-n10088200
-n10382480
-n04131113
-n09930628
-n09784160
-n11750173
-n13064111
-n03817522
-n12662074
-n03176238
-n12310021
-n11679378
-n09961331
-n02385580
-n11904274
-n03113505
-n10244913
-n02836900
-n09986700
-n11963572
-n13158605
-n10321632
-n02179891
-n02189670
-n10097995
-n10774756
-n10783240
-n10605737
-n02530052
-n10386196
-n10184505
-n09788237
-n03589672
-n12509109
-n10658304
-n12966804
-n12559518
-n03189311
-n01451295
-n12179632
-n12301613
-n10496489
-n03402785
-n10244108
-n02385676
-n03552001
-n03092053
-n02313360
-n02547733
-n02109391
-n01327909
-n04574606
-n03060728
-n07840124
-n10567848
-n10062176
-n02703124
-n10804732
-n12699301
-n04515890
-n07919665
-n10457214
-n09663248
-n03165955
-n12988341
-n03987865
-n03031756
-n10277912
-n10172080
-n09325824
-n03198223
-n09605110
-n10113869
-n11603462
-n03352366
-n11930203
-n09769929
-n12979316
-n02579762
-n09953052
-n03105974
-n00476140
-n11598287
-n02830157
-n10512201
-n09746936
-n10668666
-n02919976
-n09993651
-n02149861
-n09705003
-n10389865
-n11655152
-n10010767
-n10070563
-n03688832
-n10590239
-n11936027
-n02939763
-n03163488
-n03171910
-n09955406
-n03266195
-n10217208
-n09338013
-n07594250
-n03215930
-n09725935
-n10592049
-n03732658
-n12498457
-n09966554
-n10668450
-n10361525
-n04060198
-n11936624
-n02602760
-n03942600
-n03708425
-n10020533
-n12067817
-n07590177
-n01891274
-n11837204
-n01419332
-n03860234
-n12616248
-n07834160
-n09867154
-n09788073
-n12222493
-n03388990
-n04245412
-n10182402
-n11675404
-n10450038
-n13045594
-n13158167
-n13082568
-n12052267
-n12707199
-n07810531
-n07914887
-n13127001
-n02573249
-n08619112
-n10471859
-n09919899
-n03635516
-n12067029
-n03352232
-n07765517
-n10519984
-n02742194
-n03062798
-n13124654
-n09958569
-n02370137
-n10121714
-n04019335
-n07732433
-n02559383
-n12585137
-n09729156
-n10744078
-n09954355
-n03078506
-n10062042
-n10688811
-n02668613
-n03142205
-n10347204
-n10518349
-n09898020
-n12563702
-n05468098
-n10116370
-n07838905
-n03127024
-n03545585
-n12801072
-n09940818
-n04480995
-n10466564
-n02606751
-n10032987
-n10771066
-n01587278
-n11852531
-n01455461
-n10397392
-n02349205
-n10180923
-n09778266
-n04366832
-n10051975
-n10538629
-n09865744
-n12554029
-n13118330
-n12952590
-n04187751
-n09924313
-n10062594
-n01980655
-n10028402
-n02567334
-n10590903
-n10265891
-n10739297
-n01457082
-n03437581
-n03713151
-n03475674
-n05464534
-n11863467
-n06592421
-n12491435
-n14914945
-n10279778
-n03388711
-n10483890
-n10612373
-n03332784
-n02332954
-n02952798
-n13041943
-n01607309
-n04356772
-n07711799
-n12670962
-n12229111
-n07878479
-n12401893
-n07772413
-n12138110
-n09781504
-n07902698
-n02750652
-n13042316
-n12400924
-n02304797
-n03066464
-n12852234
-n10155222
-n05541509
-n10711483
-n04210858
-n02835551
-n12859679
-n02935490
-n03540476
-n05279953
-n09807075
-n09617435
-n03566860
-n10549510
-n10025391
-n10754449
-n11927740
-n03554645
-n01837526
-n02656969
-n08648917
-n07860548
-n01452345
-n04021704
-n07783827
-n10080117
-n02187554
-n03214966
-n10036444
-n04291069
-n12407396
-n02170599
-n09896826
-n12417836
-n07845495
-n02749292
-n03061819
-n03682380
-n10756261
-n10369955
-n09692125
-n09978442
-n04277669
-n10539278
-n09703932
-n01879837
-n02746225
-n13159357
-n11763874
-n10540656
-n07933530
-n12987535
-n02371344
-n10654827
-n09723944
-n12775393
-n11856573
-n12626878
-n12716400
-n09903639
-n09784043
-n03906894
-n10775128
-n03124313
-n10396727
-n02841641
-n10211830
-n12283395
-n03490784
-n14175579
-n04027935
-n12396091
-n02609823
-n01414216
-n09880741
-n11976933
-n03073384
-n09270160
-n11768816
-n12073217
-n11597657
-n09994878
-n11756329
-n12579404
-n03161893
-n01451115
-n07736971
-n02949356
-n03878418
-n12653436
-n10626630
-n12777892
-n13061704
-n10498699
-n03609786
-n03199358
-n10776339
-n10762480
-n13179056
-n10113249
-n04029913
-n12640081
-n10493835
-n11683216
-n03524287
-n04585626
-n02969527
-n12976554
-n08569482
-n10204833
-n12442548
-n02577952
-n09357447
-n10202225
-n02198129
-n11882972
-n10404426
-n01600341
-n12016434
-n09867069
-n10576223
-n09893600
-n01702479
-n04274686
-n04406552
-n02848118
-n02258629
-n03260733
-n03685640
-n11751974
-n09967555
-n06274546
-n09649067
-n10681557
-n07606933
-n03110202
-n11982545
-n10803031
-n02679142
-n04086937
-n10514255
-n04506402
-n03884554
-n09970192
-n10117017
-n12642435
-n10186686
-n02097967
-n03956531
-n11834890
-n02677436
-n10040698
-n11796188
-n03348142
-n04168472
-n02294407
-n12483282
-n09429630
-n04423687
-n09819477
-n09755555
-n10157016
-n03344935
-n07762373
-n12871859
-n09853541
-n09875979
-n13050705
-n02251067
-n10637483
-n03823673
-n10357012
-n03424204
-n04431648
-n01475940
-n02339282
-n10248198
-n07683265
-n13150592
-n10359117
-n10096508
-n03473078
-n13052248
-n10743356
-n03710079
-n10634990
-n04507689
-n07921090
-n02352002
-n03924407
-n03609147
-n02837567
-n03406759
-n03909658
-n10286282
-n12135576
-n01912809
-n10801561
-n10717055
-n03473465
-n03761588
-n03144156
-n09474412
-n10253611
-n12549420
-n02499568
-n09910222
-n10431122
-n12699031
-n01697749
-n11786843
-n03888808
-n12089496
-n10066314
-n10302905
-n12696830
-n09965787
-n11969806
-n04066388
-n13080306
-n03913930
-n09968259
-n10490421
-n10714195
-n07570021
-n10343449
-n10401204
-n03472796
-n10779897
-n11787190
-n03503097
-n10439523
-n12123648
-n04279858
-n10511771
-n09755788
-n08253141
-n02616397
-n12248574
-n01645466
-n04334504
-n07729142
-n05451099
-n10503818
-n10354265
-n09707735
-n02633422
-n11999656
-n01324916
-n02088745
-n09354511
-n10705448
-n09756195
-n10136615
-n10427359
-n09702134
-n12600095
-n04122262
-n10791820
-n03330002
-n02713496
-n11710658
-n09664908
-n02550203
-n02349847
-n12835766
-n04098260
-n11536567
-n11686780
-n12875861
-n12758471
-n09806944
-n11810030
-n10400003
-n10098388
-n11663263
-n10559683
-n07833672
-n10753989
-n10643095
-n01988869
-n03112240
-n12911914
-n09979913
-n09785236
-n09790047
-n02676097
-n01653509
-n04601159
-n01938735
-n10748142
-n12978076
-n11990627
-n10437262
-n12972136
-n04077594
-n10148825
-n02269340
-n12886185
-n03608504
-n11677485
-n10612518
-n12267265
-n10649308
-n05458173
-n10650162
-n03213361
-n02747063
-n01611674
-n02322992
-n01554017
-n03512624
-n12773142
-n12747120
-n09902128
-n03162714
-n03924532
-n10299125
-n12378753
-n02778131
-n09976024
-n13093629
-n10778999
-n07721833
-n12232851
-n07876775
-n10097590
-n03194170
-n13029122
-n04573832
-n12859272
-n09639382
-n07688021
-n02878796
-n10751710
-n03633632
-n07762534
-n10779995
-n13914265
-n13093275
-n10729330
-n10433077
-n03663910
-n10499110
-n02272286
-n10371450
-n01967308
-n12633061
-n11659627
-n12982915
-n10344121
-n10268629
-n02697876
-n09879552
-n10167361
-n10719807
-n04042076
-n01632952
-n03243625
-n02125872
-n10105906
-n12194613
-n03149810
-n10721124
-n03947343
-n02020219
-n10122531
-n01315330
-n08647264
-n00452734
-n03607527
-n10010243
-n09863749
-n04473275
-n11782878
-n03585337
-n09655466
-n12989007
-n11711971
-n10716864
-n10475835
-n10704712
-n01894956
-n10568443
-n12881105
-n10387836
-n10403633
-n08645318
-n03500457
-n10377633
-n10108464
-n09933972
-n02618094
-n11798688
-n04155735
-n09780395
-n12822466
-n04302200
-n11899223
-n10633298
-n02760298
-n12142450
-n10803282
-n10769321
-n10514051
-n10597889
-n11837562
-n02261757
-n01458746
-n09830759
-n10003476
-n09817174
-n10738670
-n10118743
-n12096563
-n03054491
-n12155773
-n10439727
-n04170384
-n03223923
-n12632733
-n07845421
-n10062905
-n11831521
-n04267985
-n12796385
-n04154854
-n00444142
-n09778537
-n03115663
-n04385157
-n10109826
-n02337332
-n09996304
-n09880189
-n12871696
-n11823305
-n02516776
-n12377494
-n08511017
-n04421417
-n10765305
-n09675673
-n03488111
-n03076623
-n11829672
-n10292316
-n10758949
-n13031474
-n02829353
-n10090745
-n09186592
-n12736999
-n12715195
-n11684499
-n03168933
-n09890192
-n10596899
-n12527081
-n10496393
-n10497135
-n02137302
-n03266620
-n12958615
-n12664187
-n02633977
-n04262869
-n04215800
-n13133233
-n02392555
-n09858733
-n10186350
-n01715888
-n03142099
-n08573674
-n11687071
-n02690715
-n03146342
-n12331788
-n08079613
-n10609092
-n12943049
-n12234318
-n02312325
-n12618146
-n10135197
-n11705573
-n02794368
-n02850358
-n09464486
-n01993525
-n03187153
-n10097262
-n02976641
-n12198793
-n12941717
-n10219240
-n12434634
-n03827420
-n10437137
-n10342893
-n04174026
-n10265281
-n07757874
-n10765885
-n01470895
-n02349557
-n11716698
-n03765467
-n10227793
-n07824268
-n12994892
-n10486236
-n02974454
-n10718349
-n11726145
-n09909660
-n03378593
-n07805006
-n09875025
-n02645691
-n10223069
-n03722944
-n04389999
-n02544274
-n10239928
-n04456011
-n10382302
-n01552333
-n10082562
-n12952469
-n09883047
-n10442573
-n01891013
-n10690268
-n13111504
-n02287352
-n03567635
-n10331347
-n09762385
-n09933842
-n02369555
-n12291459
-n09919200
-n01492860
-n02067768
-n10713254
-n10550468
-n12846335
-n03835729
-n12467018
-n11676743
-n03629643
-n12987423
-n10655730
-n08678783
-n10349836
-n10087736
-n10246703
-n10338391
-n04585456
-n04158138
-n10500942
-n09850974
-n10791890
-n10020807
-n03315805
-n02752917
-n04033801
-n10492086
-n04427473
-n02940706
-n12110475
-n09832978
-n12515393
-n07800487
-n09848110
-n02659176
-n09967406
-n10536134
-n10760622
-n09736485
-n07830690
-n07835173
-n09814252
-n10311506
-n10341955
-n03869838
-n07760673
-n09970402
-n12526178
-n11687964
-n09968741
-n10719267
-n07851054
-n10116478
-n10599215
-n09951524
-n03855908
-n03997274
-n02986348
-n08599292
-n02474282
-n04155889
-n09983314
-n01987727
-n10280130
-n10404998
-n02294577
-n02998696
-n08586978
-n11652578
-n13867005
-n12663254
-n10524869
-n02287622
-n10220924
-n03279918
-n02626089
-n10291110
-n12820669
-n07861681
-n08643267
-n07720185
-n12555859
-n03225616
-n09769525
-n03295140
-n12489046
-n10615179
-n12150969
-n02888429
-n10753182
-n10267166
-n03675558
-n12693352
-n02378299
-n02788462
-n03622401
-n12236977
-n10730542
-n12758099
-n10502046
-n11937195
-n10366145
-n10307114
-n12984595
-n10128748
-n09362316
-n09789898
-n09654079
-n04260192
-n10114476
-n08623676
-n10331841
-n05265736
-n10269289
-n03090856
-n12764978
-n02825240
-n10358032
-n09825750
-n03062651
-n11196627
-n11825749
-n04148464
-n04439505
-n07572858
-n04561857
-n12904562
-n03643907
-n10723597
-n01492708
-n10071557
-n10140683
-n01739871
-n12984267
-n03072056
-n10772580
-n10462588
-n11936448
-n10494373
-n12845908
-n09793352
-n10717196
-n12577362
-n09779124
-n10663549
-n02286425
-n10380126
-n01890144
-n02751490
-n03361109
-n01781875
-n13128278
-n09994400
-n09883452
-n13881512
-n02833275
-n10362003
-n01376543
-n12366675
-n09984960
-n10173665
-n10673776
-n02057898
-n01934844
-n04057673
-n10018747
-n02916065
-n13024653
-n05539947
-n09648911
-n04150273
-n01393486
-n10411356
-n12232114
-n02436224
-n12757930
-n03095965
-n10555059
-n01577458
-n09666476
-n10598904
-n11656549
-n02591911
-n13092385
-n10506336
-n13103023
-n09658254
-n04095938
-n11936782
-n07824383
-n09781650
-n10240821
-n01780426
-n02850060
-n02863340
-n13914141
-n12138578
-n13034555
-n12291671
-n12133151
-n04515444
-n04591359
-n02589196
-n02689819
-n11740414
-n07610295
-n10246395
-n09921034
-n12447346
-n12641180
-n01419573
-n04242587
-n07760395
-n03399579
-n09866661
-n02549376
-n11861238
-n01588996
-n04319545
-n09789150
-n03288643
-n10312491
-n03353281
-n02345997
-n09711132
-n03043173
-n02558860
-n03703590
-n03188871
-n12589142
-n12113323
-n09987161
-n05242239
-n09686262
-n09780984
-n09668199
-n09716933
-n11675738
-n04459243
-n11833749
-n10646942
-n07760070
-n10286539
-n04469684
-n13030616
-n03939440
-n01725086
-n09967816
-n10500824
-n13026015
-n03983928
-n02936921
-n04115542
-n10245029
-n12105828
-n12452673
-n10498046
-n10737264
-n11766046
-n04079603
-n10072054
-n12569037
-n10153155
-n09867311
-n02806992
-n10258602
-n10164025
-n10520964
-n02258508
-n12199399
-n05266096
-n08496334
-n10351064
-n12441552
-n12878325
-n13102648
-n02980625
-n03462972
-n12395906
-n13022903
-n11895714
-n03324814
-n11318824
-n01728266
-n07883510
-n10731013
-n10181799
-n12142357
-n09671089
-n11531334
-n01718414
-n04573625
-n10390600
-n11553522
-n01314910
-n04227519
-n10514784
-n02944256
-n12103680
-n03081859
-n11655592
-n12569616
-n10700105
-n09755086
-n03865820
-n01456137
-n10442232
-n02900987
-n04491934
-n07849026
-n04519728
-n09986450
-n03305300
-n10186143
-n02879422
-n03018614
-n10747548
-n10562509
-n10068425
-n12593341
-n11937692
-n08679562
-n09613690
-n10646433
-n12251740
-n10994097
-n13048447
-n03848537
-n12153741
-n12614096
-n11654438
-n09985470
-n10562968
-n02923915
-n10740594
-n07802767
-n12514592
-n10335801
-n03878674
-n12586499
-n10255459
-n02413824
-n10312600
-n02616128
-n12644283
-n04238953
-n04526520
-n01898593
-n09737161
-n03372822
-n09781398
-n10339251
-n02502807
-n10198832
-n10679610
-n13136781
-n11974373
-n11680457
-n10083677
-n04037298
-n09945021
-n09987239
-n02708885
-n13107807
-n10130877
-n12507379
-n08651104
-n12116058
-n10135297
-n04269086
-n03858533
-n10477955
-n04394031
-n10442417
-n10074735
-n03618797
-n03460455
-n04374521
-n10756061
-n08517010
-n12923108
-n02362194
-n01704103
-n10062492
-n01394771
-n10473789
-n10330593
-n02748183
-n12562141
-n09745933
-n02505485
-n11922661
-n12018014
-n09866922
-n04067143
-n13161254
-n07813495
-n01374846
-n10213429
-n03253071
-n02546028
-n01642097
-n01475232
-n03212247
-n10155600
-n11689957
-n11738997
-n10525878
-n03301389
-n10589666
-n01908958
-n10289766
-n03900028
-n03437295
-n02987823
-n02739123
-n10505347
-n02546627
-n10381804
-n10132502
-n10336904
-n10189597
-n09786115
-n12875697
-n10761519
-n01470733
-n02875626
-n12111238
-n07862770
-n07856895
-n09996039
-n03368048
-n07913300
-n10062996
-n10555430
-n04302863
-n12758555
-n10740732
-n02385898
-n02385098
-n12162758
-n03887899
-n03976268
-n04234160
-n03641947
-n07857076
-n10578656
-n12135729
-n12675515
-n09032191
-n12969670
-n02600503
-n12518013
-n10227166
-n10121026
-n01801672
-n10661216
-n03244388
-n04147291
-n09664556
-n02539573
-n04480141
-n10601362
-n02613572
-n10537906
-n02613820
-n11656771
-n03841011
-n02845985
-n12534208
-n10241024
-n03645290
-n12743976
-n11922839
-n07709701
-n03066232
-n03467380
-n09266604
-n09663786
-n12775070
-n02427183
-n04083113
-n12896615
-n10501453
-n02345774
-n09965515
-n09704157
-n10666752
-n03846970
-n04167661
-n03991321
-n09556121
-n10686517
-n02586238
-n03594277
-n03591313
-n10391416
-n10756837
-n13163649
-n03971960
-n10245341
-n02577041
-n04481642
-n12373739
-n10214062
-n10091997
-n10275848
-n02090253
-n03514340
-n04593629
-n11795216
-n03126927
-n11871748
-n10272782
-n12056099
-n04484024
-n03101375
-n12255225
-n10724372
-n10531838
-n02354781
-n02389865
-n02853336
-n01477080
-n01779939
-n10776052
-n10724132
-n10284871
-n10554141
-n03898787
-n02366301
-n10721612
-n04421740
-n04256758
-n01445593
-n10103921
-n02729222
-n02530188
-n02387452
-n02601921
-n01711160
-n02474110
-n09869447
-n12789977
-n10158506
-n10396908
-n07839593
-n02662825
-n02473720
-n13034788
-n07752602
-n03762238
-n10262880
-n07770180
-n04030054
-n10151367
-n03525252
-n10252075
-n10747424
-n10191388
-n04130566
-n03951068
-n13239921
-n03733547
-n10358124
-n11549779
-n09203827
-n04043168
-n10359422
-n04286960
-n04237287
-n10130686
-n02338449
-n12912274
-n10586998
-n02812785
-n10364502
-n03955941
-n12324222
-n09743601
-n03766600
-n01427399
-n12968309
-n11776234
-n01501777
-n10051026
-n10397001
-n01516212
-n02596252
-n02225081
-n10479328
-n02109687
-n10181445
-n02248062
-n03802973
-n01639187
-n02142734
-n02342534
-n02410141
-n02743426
-n03950359
-n12253835
-n07805478
-n03706415
-n03578981
-n04560619
-n09761753
-n03524425
-n01962788
-n04350235
-n10686694
-n13139321
-n10195155
-n12335937
-n12758399
-n03805374
-n12895298
-n03800371
-n11972959
-n11530008
-n03178538
-n02217839
-n10591072
-n04033557
-n01880813
-n12292877
-n02430643
-n07599383
-n01954516
-n09894909
-n02474605
-n03576443
-n07595051
-n03367875
-n12945549
-n02360480
-n14583400
-n04208582
-n02405577
-n02550655
-n02513355
-n04381450
-n00444490
-n03567912
-n09937688
-n07932323
-n04029416
-n01913346
-n13237508
-n04437276
-n12938445
-n03042384
-n12543639
-n03194992
-n04094250
-n12045514
-n03825913
-n03504293
-n12758250
-n03547861
-n03649288
-n04572235
-n07569423
-n03534695
-n03253714
-n01501641
-n13906767
-n12578255
-n11749603
-n07742513
-n07609083
-n04214413
-n07595751
-n12013701
-n12592839
-n12949160
-n04093223
-n02983072
-n03510072
-n02966068
-n03867854
-n01747285
-n10691318
-n13091982
-n12574470
-n02255023
-n03449217
-n03153585
-n04006227
-n13140049
-n02965024
-n03805503
-n03911406
-n13120958
-n12203699
-n01456454
-n10397142
-n12920043
-n02412977
-n08674344
-n07801007
-n03037590
-n10361296
-n13133316
-n03483637
-n04435759
-n12983873
-n02627037
-n03783304
-n07725158
-n02921292
-n01788864
-n01705010
-n12616996
-n03903290
-n08662427
-n03667060
-n07856992
-n03252422
-n02449699
-n12137954
-n10024025
-n07891095
-n04337157
-n04368109
-n03015631
-n02363996
-n12824289
-n03206602
-n12799269
-n02333733
-n01793565
-n01721898
-n03178173
-n02844056
-n11688378
-n13889066
-n02637475
-n03750437
-n01403457
-n01717229
-n02677136
-n12512294
-n03736269
-n02838577
-n08661878
-n01993830
-n02777638
-n02900857
-n04023021
-n03843092
-n07770439
-n12928491
-n03697812
-n02639922
-n13139482
-n07771082
-n12487058
-n07774182
-n02122810
-n02856362
-n11686195
-n11687432
-n02853870
-n04239218
-n02665250
-n02938218
-n11746600
-n10183347
-n10681194
-n04164199
-n04407257
-n12549005
-n02331842
-n03862379
-n02863638
-n11962994
-n03091907
-n04177654
-n02252972
-n02403153
-n01376437
-n02848806
-n08579266
-n07616265
-n10331258
-n10765587
-n09433312
-n03412387
-n10178077
-n13123841
-n02532918
-n04144651
-n03296963
-n03450881
-n04348988
-n10425946
-n03257065
-n02354320
-n11689197
-n04084682
-n10140783
-n03637027
-n02346170
-n02559144
-n01705591
-n09400584
-n03840327
-n03918074
-n04053767
-n02406046
-n00288190
-n03160001
-n03366464
-n09249155
-n01324305
-n07556872
-n03381565
-n12705220
-n11874878
-n02632494
-n02502006
-n03146560
-n02179340
-n04312756
-n10162016
-n03800563
-n04140853
-n07933652
-n03075248
-n04421582
-n10652703
-n02218134
-n12233249
-n04578559
-n01781071
-n02615298
-n04436832
-n04054566
-n02608284
-n11674019
-n03505764
-n02662397
-n09422190
-n04382537
-n04355684
-n04383923
-n09888635
-n03783575
-n03228796
-n07772026
-n02381119
-n15060326
-n10586166
-n12647787
-n02458517
-n10281546
-n03498866
-n02485988
-n10121246
-n09391644
-n03103904
-n08676253
-n02203978
-n04092168
-n03213014
-n03138217
-n04135933
-n12612811
-n04478066
-n02157285
-n02543255
-n03863783
-n01502101
-n03930229
-n12439830
-n09425019
-n02618513
-n02910241
-n12261359
-n03648667
-n04365229
-n03461651
-n04388040
-n03295928
-n03581531
-n04203356
-n02622249
-n13142907
-n04497249
-n11678377
-n02366579
-n02931013
-n02837134
-n03132438
-n13092987
-n04196803
-n03056215
-n03255322
-n02130925
-n10291469
-n02971940
-n01718096
-n12510774
-n11766432
-n04271891
-n03366721
-n03154616
-n03694356
-n10478293
-n11763142
-n07763483
-n03037228
-n09201998
-n01517389
-n00443517
-n12693244
-n03580990
-n03519848
-n10238375
-n10783646
-n03564849
-n03975926
-n02473554
-n02450426
-n03464952
-n04411835
-n04573045
-n10505732
-n04337650
-n10621514
-n10334782
-n12434985
-n07769102
-n10594523
-n05475397
-n01875610
-n03299406
-n10507692
-n02593679
-n03317233
-n13239736
-n03550420
-n03247351
-n03819047
-n03633341
-n03154745
-n04073425
-n04532022
-n02910964
-n04301242
-n04378651
-n13098515
-n11775626
-n14603798
-n10263146
-n01886045
-n03761731
-n02224713
-n04591249
-n02144251
-n03849412
-n11548728
-n04051705
-n12298165
-n03150795
-n03989447
-n02826459
-n07602650
-n03155915
-n09891730
-n02067603
-n01523105
-n03618339
-n03897130
-n02711780
-n05285623
-n03533486
-n04085873
-n01923404
-n10139077
-n01709484
-n02183507
-n03216562
-n01971850
-n03136051
-n02948834
-n03589313
-n03665851
-n02937336
-n02035656
-n07769465
-n07849186
-n12585373
-n12280364
-n02846260
-n02511730
-n02614653
-n04193179
-n11718681
-n09467696
-n01522450
-n03040836
-n03162297
-n11896141
-n04000480
-n10350220
-n07746038
-n02124157
-n10655169
-n03476542
-n03895038
-n00443917
-n07757753
-n01726203
-n02987706
-n12750076
-n03012734
-n02941228
-n04194009
-n04501127
-n09794550
-n03510487
-n08589670
-n03166951
-n03673270
-n09792125
-n08492354
-n02396157
-n01628331
-n03993878
-n07833816
-n04958865
-n13650447
-n04339191
-n02826683
-n02893269
-n02810139
-n02626471
-n02589796
-n08677801
-n04325968
-n03275864
-n02622547
-n04406687
-n04097085
-n02998107
-n07831450
-n03658102
-n02575590
-n03523398
-n02412909
-n02953850
-n04337503
-n03510987
-n12664005
-n03710294
-n13138155
-n10110093
-n07831955
-n03932080
-n12971804
-n03943623
-n03726371
-n10531445
-n12984489
-n07835051
-n12097556
-n02685701
-n03038041
-n02451125
-n04594919
-n02372140
-n02665985
-n03496183
-n03961828
-n03802800
-n01713170
-n03602790
-n04974145
-n02780588
-n04031884
-n03588216
-n02614140
-n04578708
-n04501281
-n03166600
-n03992975
-n04206070
-n03227721
-n02582349
-n02664642
-n07805389
-n09226869
-n02459190
-n12216968
-n03628984
-n02524928
-n09209025
-n04078002
-n03167153
-n03562565
-n07599554
-n10252547
-n03279804
-n07692887
-n14909584
-n02529293
-n04444953
-n04156814
-n07616174
-n03415626
-n03331244
-n03868324
-n03644073
-n02818687
-n10085101
-n02953056
-n03202481
-n02118707
-n03591901
-n12602434
-n02943465
-n02818254
-n07922607
-n02597004
-n04212810
-n04056073
-n12327528
-n02207647
-n01792808
-n03002555
-n03951213
-n12242123
-n10062275
-n12325787
-n10048117
-n11937278
-n03624767
-n04039041
-n04059298
-n03707171
-n07758407
-n01333483
-n02219015
-n02436645
-n02478239
-n04457638
-n01781698
-n09474765
-n03686363
-n10769084
-n09456207
-n02385776
-n13555775
-n03962685
-n13129078
-n03463185
-n01429172
-n04243251
-n12177129
-n03143754
-n03958338
-n02791795
-n04560502
-n12776774
-n02745816
-n03009111
-n02976552
-n03008817
-n03211413
-n03537550
-n12200504
-n01909788
-n11790089
-n03480973
-n10507070
-n01707294
-n04374907
-n04281571
-n00006024
-n03823906
-n12603273
-n03503358
-n04027820
-n12645530
-n02535080
-n04143365
-n08385989
-n12661227
-n12814857
-n11871059
-n04268418
-n13128582
-n01928865
-n04359124
-n12670334
-n03610836
-n04543924
-n02252799
-n15102359
-n04437380
-n04316924
-n11872324
-n09330378
-n10122300
-n03784139
-n00443375
-n14993378
-n01721174
-n00004475
-n00006484
-n00007846
-n00015388
-n00017222
-n00021265
-n00021939
-n00288000
-n00433458
-n00433661
-n00433802
-n00439826
-n00440218
-n00440509
-n00440747
-n00441824
-n00442115
-n00442981
-n00443231
-n00444651
-n00445351
-n00445802
-n00447073
-n00447221
-n00447540
-n00448466
-n00448640
-n00448958
-n00449295
-n00449695
-n00450335
-n00450700
-n00451370
-n00451866
-n00452293
-n00453935
-n00454237
-n00454624
-n00463246
-n00464651
-n00464894
-n00467719
-n00467995
-n00468480
-n00469651
-n00471437
-n00471613
-n00479076
-n00480508
-n00480993
-n00482298
-n00523513
-n01035667
-n01316422
-n01316579
-n01316949
-n01317089
-n01317391
-n01317541
-n01319467
-n01320872
-n01321230
-n01321579
-n01321854
-n01322343
-n01322685
-n01322898
-n01323068
-n01326291
-n01329186
-n01338685
-n01339336
-n01340935
-n01342269
-n01358572
-n01367772
-n01375204
-n01376237
-n01380610
-n01384687
-n01385330
-n01387065
-n01389507
-n01390123
-n01392380
-n01395254
-n01397114
-n01402600
-n01407798
-n01421807
-n01438208
-n01439121
-n01439514
-n01439808
-n01441425
-n01444783
-n01445429
-n01446589
-n01446760
-n01448951
-n01450661
-n01454856
-n01455778
-n01458842
-n01459791
-n01461646
-n01466257
-n01467336
-n01468238
-n01468712
-n01471682
-n01473806
-n01474283
-n01477525
-n01478511
-n01480516
-n01480880
-n01481331
-n01482071
-n01482330
-n01483522
-n01484097
-n01488918
-n01491874
-n01492357
-n01493541
-n01494757
-n01494882
-n01495006
-n01495701
-n01497118
-n01498406
-n01498699
-n01498989
-n01500091
-n01501160
-n01503061
-n01514752
-n01515078
-n01517565
-n01524359
-n01525720
-n01527194
-n01527617
-n01528654
-n01529672
-n01533339
-n01534582
-n01534762
-n01537134
-n01538955
-n01539573
-n01540233
-n01541922
-n01542786
-n01544208
-n01546921
-n01547832
-n01548301
-n01549430
-n01550761
-n01553142
-n01555809
-n01557185
-n01560105
-n01560636
-n01563128
-n01563746
-n01564394
-n01567133
-n01568132
-n01569836
-n01570676
-n01571904
-n01572328
-n01573074
-n01574045
-n01574390
-n01575745
-n01576695
-n01577659
-n01578575
-n01579028
-n01580379
-n01580490
-n01580772
-n01580870
-n01581166
-n01581434
-n01581730
-n01582398
-n01582498
-n01582856
-n01584225
-n01585121
-n01587834
-n01588431
-n01589286
-n01591697
-n01592257
-n01592540
-n01594372
-n01595624
-n01597336
-n01598588
-n01598988
-n01600085
-n01600657
-n01602080
-n01602209
-n01602630
-n01603600
-n01604330
-n01605630
-n01608814
-n01609062
-n01609391
-n01609751
-n01610955
-n01611472
-n01612628
-n01613294
-n01613615
-n01615121
-n01616551
-n01616764
-n01617095
-n01617443
-n01617766
-n01618082
-n01618922
-n01619310
-n01619536
-n01619835
-n01620135
-n01620414
-n01620735
-n01621127
-n01622352
-n01623706
-n01627424
-n01629276
-n01630284
-n01631175
-n01632047
-n01637112
-n01637932
-n01639765
-n01640846
-n01645776
-n01649170
-n01650167
-n01651487
-n01653773
-n01661091
-n01661592
-n01661818
-n01662622
-n01662784
-n01663401
-n01664369
-n01665932
-n01667432
-n01668091
-n01669372
-n01670092
-n01672032
-n01674216
-n01674464
-n01674990
-n01676755
-n01680264
-n01680478
-n01681940
-n01684133
-n01685439
-n01686044
-n01686220
-n01686403
-n01686609
-n01686808
-n01687665
-n01688961
-n01689411
-n01691951
-n01692864
-n01693783
-n01694709
-n01696633
-n01697178
-n01698434
-n01699040
-n01701551
-n01702256
-n01703011
-n01703569
-n01705934
-n01708106
-n01708998
-n01712008
-n01712752
-n01717016
-n01719403
-n01722998
-n01724231
-n01726692
-n01727646
-n01730185
-n01730307
-n01730812
-n01730960
-n01731545
-n01732244
-n01733757
-n01734637
-n01734808
-n01735439
-n01735577
-n01735728
-n01737472
-n01737728
-n01737875
-n01738065
-n01738601
-n01739647
-n01740551
-n01741232
-n01741562
-n01741943
-n01743605
-n01745125
-n01745484
-n01746359
-n01747885
-n01749582
-n01749742
-n01751036
-n01752165
-n01753959
-n01754876
-n01755740
-n01767661
-n01769347
-n01770795
-n01771417
-n01772222
-n01775370
-n01776192
-n01776705
-n01777304
-n01777467
-n01777649
-n01777909
-n01778217
-n01778487
-n01778621
-n01778801
-n01779148
-n01779463
-n01779629
-n01780696
-n01782209
-n01785667
-n01789386
-n01789740
-n01791107
-n01791625
-n01792158
-n01792640
-n01794158
-n01795088
-n01795735
-n01795900
-n01796019
-n01796105
-n01796519
-n01796729
-n01798706
-n01798839
-n01798979
-n01799302
-n01800424
-n01801088
-n01801479
-n01802721
-n01803078
-n01804478
-n01804653
-n01804921
-n01805070
-n01805801
-n01806847
-n01807828
-n01808140
-n01808291
-n01808596
-n01809106
-n01810700
-n01811909
-n01812337
-n01813385
-n01814370
-n01814921
-n01815601
-n01816887
-n01819115
-n01820348
-n01820801
-n01821076
-n01821203
-n01822602
-n01823013
-n01824749
-n01825930
-n01826364
-n01827403
-n01829869
-n01831712
-n01832167
-n01834177
-n01834540
-n01835276
-n01838038
-n01838598
-n01839598
-n01841102
-n01843719
-n01844231
-n01844551
-n01844917
-n01845132
-n01845477
-n01846331
-n01848123
-n01848648
-n01849466
-n01850373
-n01851375
-n01852142
-n01852861
-n01853498
-n01854415
-n01856072
-n01856155
-n01856380
-n01856553
-n01856890
-n01857079
-n01857325
-n01857512
-n01857632
-n01857851
-n01858441
-n01859496
-n01860497
-n01861148
-n01861778
-n01871543
-n01871875
-n01874434
-n01874928
-n01876326
-n01877134
-n01878061
-n01878335
-n01878639
-n01878929
-n01879217
-n01879509
-n01880152
-n01881171
-n01883513
-n01883920
-n01886756
-n01887896
-n01888264
-n01889074
-n01889520
-n01890860
-n01891633
-n01892551
-n01894207
-n01905661
-n01906749
-n01907738
-n01909422
-n01911403
-n01911839
-n01912454
-n01914163
-n01914830
-n01915811
-n01916187
-n01916925
-n01918744
-n01922303
-n01925270
-n01925695
-n01926379
-n01926689
-n01927159
-n01927456
-n01927928
-n01928215
-n01930852
-n01931140
-n01931520
-n01931714
-n01932151
-n01932936
-n01933151
-n01933478
-n01933988
-n01934440
-n01935176
-n01936391
-n01937909
-n01940736
-n01941223
-n01942177
-n01942869
-n01943541
-n01944118
-n01944812
-n01944955
-n01945143
-n01945340
-n01945845
-n01946277
-n01948573
-n01951613
-n01953361
-n01955933
-n01956481
-n01958038
-n01959985
-n01960459
-n01963571
-n01964049
-n01964441
-n01965889
-n01967094
-n01968315
-n01969726
-n01971094
-n01971280
-n01974773
-n01975687
-n01976146
-n01976957
-n01978930
-n01981702
-n01982650
-n01983048
-n01985493
-n01985797
-n01986806
-n01987545
-n01988701
-n01989869
-n01990007
-n01991028
-n01991520
-n01992262
-n01992423
-n01992773
-n01996585
-n01998183
-n02000954
-n02002075
-n02005790
-n02006985
-n02007284
-n02008041
-n02008796
-n02010453
-n02011805
-n02011943
-n02012185
-n02013177
-n02014941
-n02015554
-n02016358
-n02016956
-n02018027
-n02019190
-n02019438
-n02019929
-n02021050
-n02021795
-n02022684
-n02023341
-n02025043
-n02026059
-n02028175
-n02030035
-n02030287
-n02030996
-n02031934
-n02033208
-n02033324
-n02033561
-n02034129
-n02034661
-n02036053
-n02037464
-n02039171
-n02040505
-n02041085
-n02041246
-n02043063
-n02044178
-n02044778
-n02045369
-n02046759
-n02047260
-n02047614
-n02048698
-n02049532
-n02050004
-n02051474
-n02052204
-n02052365
-n02053083
-n02054502
-n02055658
-n02055803
-n02057731
-n02058594
-n02058747
-n02059162
-n02060411
-n02060889
-n02062017
-n02062430
-n02062744
-n02063224
-n02064338
-n02066707
-n02068206
-n02068974
-n02069701
-n02070430
-n02073250
-n02075296
-n02075927
-n02076196
-n02076779
-n02077152
-n02077658
-n02078292
-n02078574
-n02078738
-n02079005
-n02079389
-n02081571
-n02083346
-n02083672
-n02084071
-n02084861
-n02085374
-n02086346
-n02086478
-n02087122
-n02087551
-n02088839
-n02089232
-n02089555
-n02090475
-n02090827
-n02092468
-n02093056
-n02094562
-n02094721
-n02095050
-n02095412
-n02095727
-n02096756
-n02097786
-n02098550
-n02099029
-n02099997
-n02100399
-n02101108
-n02101861
-n02102605
-n02103406
-n02103841
-n02104523
-n02104882
-n02106966
-n02107420
-n02108254
-n02108672
-n02109150
-n02109811
-n02110532
-n02111626
-n02112497
-n02112826
-n02113335
-n02114100
-n02115012
-n02115335
-n02117512
-n02117646
-n02117900
-n02118176
-n02118333
-n02119247
-n02119359
-n02120278
-n02120997
-n02121620
-n02121808
-n02122725
-n02123785
-n02124623
-n02127292
-n02127381
-n02127482
-n02127586
-n02127678
-n02127808
-n02128598
-n02128669
-n02129463
-n02129530
-n02129837
-n02129923
-n02130545
-n02131653
-n02132466
-n02132580
-n02132788
-n02133400
-n02134971
-n02135220
-n02137722
-n02137888
-n02138647
-n02138777
-n02139199
-n02139671
-n02141306
-n02141713
-n02144593
-n02145424
-n02148835
-n02149420
-n02150482
-n02152740
-n02152991
-n02153203
-n02153809
-n02156732
-n02159955
-n02164464
-n02165877
-n02166229
-n02166567
-n02166826
-n02167505
-n02167820
-n02167944
-n02168245
-n02169023
-n02169218
-n02169705
-n02169974
-n02170400
-n02170993
-n02171453
-n02171869
-n02172518
-n02172678
-n02172761
-n02172870
-n02174355
-n02176261
-n02178411
-n02178717
-n02179012
-n02180233
-n02181235
-n02181724
-n02182045
-n02182355
-n02182642
-n02182930
-n02183857
-n02186153
-n02188699
-n02189363
-n02190790
-n02191273
-n02191773
-n02191979
-n02192252
-n02192513
-n02192814
-n02193009
-n02193163
-n02194249
-n02194750
-n02195091
-n02195526
-n02195819
-n02196344
-n02198532
-n02199502
-n02200198
-n02202287
-n02204722
-n02206270
-n02207179
-n02207449
-n02208280
-n02208498
-n02208848
-n02208979
-n02209111
-n02209354
-n02209624
-n02209964
-n02210427
-n02210921
-n02211444
-n02211627
-n02211896
-n02212062
-n02212602
-n02212958
-n02213107
-n02215161
-n02215770
-n02217563
-n02218713
-n02220055
-n02220225
-n02220518
-n02220804
-n02221083
-n02221414
-n02221571
-n02221715
-n02221820
-n02222035
-n02222321
-n02222582
-n02223266
-n02223520
-n02226183
-n02226821
-n02226970
-n02227247
-n02227604
-n02227966
-n02228341
-n02228697
-n02229156
-n02229765
-n02230023
-n02230187
-n02230480
-n02230634
-n02231052
-n02231803
-n02233943
-n02234355
-n02234570
-n02234848
-n02235205
-n02236241
-n02236896
-n02237424
-n02237581
-n02238235
-n02238887
-n02239528
-n02241569
-n02241799
-n02243562
-n02244173
-n02246011
-n02246628
-n02247511
-n02248368
-n02248510
-n02248887
-n02249515
-n02250822
-n02251775
-n02252226
-n02253127
-n02253715
-n02254697
-n02257003
-n02257284
-n02257715
-n02259377
-n02260421
-n02260863
-n02261419
-n02262178
-n02263378
-n02264885
-n02265330
-n02268148
-n02269196
-n02269522
-n02270011
-n02270200
-n02271570
-n02271897
-n02272871
-n02274024
-n02274259
-n02274822
-n02278210
-n02278839
-n02279637
-n02280458
-n02281015
-n02281136
-n02281267
-n02282257
-n02282385
-n02282553
-n02282903
-n02283077
-n02283201
-n02283951
-n02285548
-n02287004
-n02287799
-n02288789
-n02291220
-n02291572
-n02291748
-n02293352
-n02293868
-n02295064
-n02295390
-n02295870
-n02298541
-n02300173
-n02301452
-n02302459
-n02302620
-n02305407
-n02306433
-n02307325
-n02308139
-n02308471
-n02309337
-n02310000
-n02310717
-n02311060
-n02312006
-n02312427
-n02313008
-n02316707
-n02318167
-n02319308
-n02319555
-n02319829
-n02320127
-n02322047
-n02323449
-n02323902
-n02324045
-n02325722
-n02325884
-n02326074
-n02326763
-n02326862
-n02327028
-n02327175
-n02327435
-n02327656
-n02327842
-n02328429
-n02329401
-n02330245
-n02331046
-n02331309
-n02332755
-n02333546
-n02334460
-n02335127
-n02336011
-n02336641
-n02338901
-n02339376
-n02339922
-n02343058
-n02343320
-n02343772
-n02344528
-n02345600
-n02346998
-n02347274
-n02347573
-n02347744
-n02348173
-n02348788
-n02350105
-n02350989
-n02351870
-n02352591
-n02353861
-n02355227
-n02355477
-n02358091
-n02359324
-n02360781
-n02361587
-n02361706
-n02361850
-n02363245
-n02363351
-n02364520
-n02369680
-n02370806
-n02372584
-n02373336
-n02374149
-n02374451
-n02376542
-n02376791
-n02376918
-n02377181
-n02377480
-n02377703
-n02378415
-n02380335
-n02380583
-n02380745
-n02381460
-n02382437
-n02382948
-n02384858
-n02386014
-n02386310
-n02386496
-n02388276
-n02389346
-n02389559
-n02390454
-n02390834
-n02391234
-n02391373
-n02391508
-n02391994
-n02393580
-n02394477
-n02395003
-n02395694
-n02395931
-n02397529
-n02399000
-n02401031
-n02402010
-n02402175
-n02402425
-n02403325
-n02403454
-n02404186
-n02404573
-n02406174
-n02407959
-n02408660
-n02408817
-n02409870
-n02410702
-n02410900
-n02411705
-n02412440
-n02413131
-n02414578
-n02415435
-n02416519
-n02417070
-n02417534
-n02418064
-n02419796
-n02423218
-n02423362
-n02423589
-n02424305
-n02424695
-n02426813
-n02427724
-n02428349
-n02430045
-n02430559
-n02431122
-n02432511
-n02433546
-n02433925
-n02435853
-n02437136
-n02437971
-n02438173
-n02438272
-n02439033
-n02441326
-n02442172
-n02442336
-n02442446
-n02442572
-n02442668
-n02443015
-n02443346
-n02443808
-n02443959
-n02444251
-n02445004
-n02445171
-n02446206
-n02446352
-n02446645
-n02447021
-n02447762
-n02448060
-n02448633
-n02448885
-n02450034
-n02453108
-n02453611
-n02454794
-n02455135
-n02455428
-n02455720
-n02456008
-n02456275
-n02456962
-n02460009
-n02469914
-n02470325
-n02470899
-n02471300
-n02471762
-n02472293
-n02473307
-n02474777
-n02476219
-n02480153
-n02481103
-n02481235
-n02481366
-n02481500
-n02482060
-n02482286
-n02482474
-n02482650
-n02483092
-n02484322
-n02484473
-n02485225
-n02485371
-n02485536
-n02485688
-n02486657
-n02486908
-n02487079
-n02487547
-n02487675
-n02487847
-n02488003
-n02488415
-n02488894
-n02489589
-n02490597
-n02490811
-n02491107
-n02491329
-n02491474
-n02496913
-n02501583
-n02502514
-n02503127
-n02503517
-n02504770
-n02507649
-n02508021
-n02512053
-n02512938
-n02513560
-n02515214
-n02516188
-n02517442
-n02517938
-n02519148
-n02519686
-n02521646
-n02522399
-n02524524
-n02526425
-n02526818
-n02527057
-n02527271
-n02527622
-n02528163
-n02529772
-n02530421
-n02532028
-n02532602
-n02533209
-n02533834
-n02534559
-n02534734
-n02535537
-n02537085
-n02537319
-n02538406
-n02538985
-n02540412
-n02541687
-n02546331
-n02548689
-n02549989
-n02550460
-n02552171
-n02554730
-n02556846
-n02557591
-n02557749
-n02559862
-n02561108
-n02561661
-n02562315
-n02562796
-n02563182
-n02564720
-n02565573
-n02566109
-n02568959
-n02569484
-n02570838
-n02572196
-n02574910
-n02576223
-n02576575
-n02578233
-n02579557
-n02580336
-n02581957
-n02583567
-n02585872
-n02586543
-n02588286
-n02590495
-n02590702
-n02590987
-n02594250
-n02596381
-n02597367
-n02599052
-n02599958
-n02600298
-n02601344
-n02602405
-n02603317
-n02604157
-n02605316
-n02606384
-n02607201
-n02607862
-n02613181
-n02614482
-n02614978
-n02619165
-n02621908
-n02623445
-n02624167
-n02625612
-n02626762
-n02627835
-n02630281
-n02630739
-n02631041
-n02636170
-n02636854
-n02638596
-n02640626
-n02640857
-n02642107
-n02642644
-n02643112
-n02644113
-n02646667
-n02648625
-n02650050
-n02650541
-n02652668
-n02653145
-n02653786
-n02654425
-n02655523
-n02656670
-n02657368
-n02658079
-n02661017
-n02662239
-n02663849
-n02667379
-n02667576
-n02668393
-n02670382
-n02671780
-n02672371
-n02676261
-n02676670
-n02677028
-n02677718
-n02678384
-n02680110
-n02680754
-n02682407
-n02682922
-n02683791
-n02686121
-n02686568
-n02687992
-n02688443
-n02689274
-n02691156
-n02692513
-n02693413
-n02693540
-n02694426
-n02694966
-n02695627
-n02697576
-n02698244
-n02700258
-n02700895
-n02702989
-n02703275
-n02705944
-n02708224
-n02708555
-n02709367
-n02709637
-n02710600
-n02712643
-n02713218
-n02715229
-n02715513
-n02715712
-n02716626
-n02726305
-n02726681
-n02727016
-n02727825
-n02728440
-n02729837
-n02729965
-n02730265
-n02732072
-n02732827
-n02733213
-n02733524
-n02735361
-n02735688
-n02736798
-n02737660
-n02738031
-n02738271
-n02738535
-n02739550
-n02739668
-n02740533
-n02740764
-n02741475
-n02742322
-n02742753
-n02745492
-n02746365
-n02749790
-n02750169
-n02751067
-n02751295
-n02752496
-n02753044
-n02753394
-n02754103
-n02755352
-n02755529
-n02756098
-n02756977
-n02757462
-n02757810
-n02758134
-n02758960
-n02759700
-n02759963
-n02760099
-n02760199
-n02760429
-n02760855
-n02761392
-n02763198
-n02763714
-n02764044
-n02764614
-n02764779
-n02765028
-n02766320
-n02766534
-n02766792
-n02767433
-n02769075
-n02770830
-n02772554
-n02772700
-n02773037
-n02773838
-n02774152
-n02774630
-n02775483
-n02776205
-n02777100
-n02777734
-n02777927
-n02778456
-n02778669
-n02781121
-n02781338
-n02781517
-n02783035
-n02783324
-n02784998
-n02785648
-n02786198
-n02786463
-n02788689
-n02789487
-n02790823
-n02792552
-n02792948
-n02793842
-n02794008
-n02794779
-n02794972
-n02795783
-n02796207
-n02796623
-n02796995
-n02797692
-n02797881
-n02799897
-n02801184
-n02801525
-n02801938
-n02802721
-n02803349
-n02803666
-n02804252
-n02806088
-n02806379
-n02806875
-n02810471
-n02811468
-n02811719
-n02812201
-n02813252
-n02813399
-n02815478
-n02815950
-n02816494
-n02817031
-n02817650
-n02817799
-n02818832
-n02819697
-n02820210
-n02821627
-n02821943
-n02822220
-n02822399
-n02822865
-n02823335
-n02824448
-n02826589
-n02826886
-n02827606
-n02828299
-n02828884
-n02831335
-n02831724
-n02831894
-n02833793
-n02834778
-n02835412
-n02836268
-n02839351
-n02839910
-n02840619
-n02841063
-n02841506
-n02842133
-n02843029
-n02843777
-n02844214
-n02844307
-n02844714
-n02847631
-n02848216
-n02848523
-n02849154
-n02850950
-n02851099
-n02853016
-n02854532
-n02854926
-n02855089
-n02855390
-n02855793
-n02857365
-n02857477
-n02857644
-n02858304
-n02860415
-n02861886
-n02862048
-n02862916
-n02863750
-n02865665
-n02865931
-n02866578
-n02867715
-n02869737
-n02871631
-n02871824
-n02871963
-n02872752
-n02873839
-n02874086
-n02875436
-n02876326
-n02876457
-n02876657
-n02877962
-n02879517
-n02880189
-n02880546
-n02880940
-n02881193
-n02881906
-n02882483
-n02882647
-n02883004
-n02883344
-n02884225
-n02885108
-n02885338
-n02886599
-n02887209
-n02887970
-n02888569
-n02889425
-n02891188
-n02891788
-n02892499
-n02893418
-n02896294
-n02896442
-n02897389
-n02897820
-n02898173
-n02898369
-n02898585
-n02898711
-n02900705
-n02901481
-n02901901
-n02902079
-n02902916
-n02903006
-n02904109
-n02904640
-n02908217
-n02909285
-n02911485
-n02912065
-n02913152
-n02914991
-n02916179
-n02916350
-n02917377
-n02917607
-n02919414
-n02920503
-n02921884
-n02923129
-n02924116
-n02925519
-n02928413
-n02928608
-n02929289
-n02929462
-n02929923
-n02931417
-n02931836
-n02932019
-n02932400
-n02933112
-n02933462
-n02933750
-n02933990
-n02934168
-n02935658
-n02935891
-n02936176
-n02936281
-n02936714
-n02938886
-n02939866
-n02941095
-n02942699
-n02943241
-n02943871
-n02944826
-n02945161
-n02946270
-n02946348
-n02946921
-n02947212
-n02947818
-n02948557
-n02949202
-n02950186
-n02950256
-n02950632
-n02950943
-n02951843
-n02952485
-n02952674
-n02953673
-n02954163
-n02954340
-n02954938
-n02955065
-n02955247
-n02955540
-n02955767
-n02957135
-n02957755
-n02958343
-n02959942
-n02961451
-n02961947
-n02963302
-n02963692
-n02963821
-n02965216
-n02965300
-n02965529
-n02966545
-n02966786
-n02966942
-n02967081
-n02967991
-n02968473
-n02969010
-n02969163
-n02969634
-n02969886
-n02970685
-n02970849
-n02971691
-n02972397
-n02973017
-n02974697
-n02975212
-n02976939
-n02978205
-n02978753
-n02979516
-n02982599
-n02983189
-n02983904
-n02984061
-n02984203
-n02984469
-n02984699
-n02985137
-n02985828
-n02986066
-n02987047
-n02987492
-n02989099
-n02991048
-n02991302
-n02992032
-n02993546
-n02995998
-n02997391
-n02997607
-n03001282
-n03001627
-n03002210
-n03003091
-n03004620
-n03005515
-n03007130
-n03007591
-n03010656
-n03010795
-n03011018
-n03011355
-n03012159
-n03013006
-n03014440
-n03015254
-n03017070
-n03018209
-n03020034
-n03020416
-n03020692
-n03024333
-n03025070
-n03025886
-n03027108
-n03027250
-n03029066
-n03031422
-n03032811
-n03033362
-n03033986
-n03034516
-n03034663
-n03035510
-n03036469
-n03036866
-n03037108
-n03037709
-n03038685
-n03039015
-n03039947
-n03040229
-n03040376
-n03043274
-n03043958
-n03045337
-n03046257
-n03048883
-n03049066
-n03049457
-n03050026
-n03050546
-n03050655
-n03050864
-n03051396
-n03051540
-n03052464
-n03052917
-n03053047
-n03054901
-n03055670
-n03056097
-n03056493
-n03057021
-n03057636
-n03058107
-n03058603
-n03058949
-n03059366
-n03061050
-n03063073
-n03063338
-n03064350
-n03064758
-n03065708
-n03066849
-n03070193
-n03071021
-n03071160
-n03072201
-n03073296
-n03073977
-n03074380
-n03074855
-n03075097
-n03075500
-n03075634
-n03076411
-n03076708
-n03078287
-n03078670
-n03079230
-n03079741
-n03080497
-n03080731
-n03081986
-n03082127
-n03082807
-n03082979
-n03084420
-n03085333
-n03085602
-n03085915
-n03086183
-n03086457
-n03086670
-n03087366
-n03087643
-n03087816
-n03088707
-n03091044
-n03091374
-n03092166
-n03092314
-n03093792
-n03094503
-n03096439
-n03096960
-n03098140
-n03098806
-n03099454
-n03099771
-n03099945
-n03100346
-n03100490
-n03101156
-n03101986
-n03102654
-n03102859
-n03106722
-n03106898
-n03107046
-n03109881
-n03111690
-n03112869
-n03113152
-n03113657
-n03113835
-n03114839
-n03115180
-n03116530
-n03116767
-n03117199
-n03118346
-n03118969
-n03119510
-n03120198
-n03120491
-n03121897
-n03122748
-n03123809
-n03125870
-n03128085
-n03128427
-n03128519
-n03129001
-n03130066
-n03130563
-n03131669
-n03132261
-n03134853
-n03135917
-n03136369
-n03137579
-n03139464
-n03140900
-n03141065
-n03141327
-n03143572
-n03145384
-n03145843
-n03146846
-n03147509
-n03148324
-n03148727
-n03149401
-n03151077
-n03153948
-n03154073
-n03154446
-n03155178
-n03156071
-n03156405
-n03157348
-n03158796
-n03158885
-n03161450
-n03162818
-n03163798
-n03163973
-n03164605
-n03164722
-n03164929
-n03165823
-n03167978
-n03168107
-n03168217
-n03170635
-n03171356
-n03172965
-n03173387
-n03175604
-n03176386
-n03177165
-n03177708
-n03178000
-n03178430
-n03180504
-n03180969
-n03181293
-n03182140
-n03182232
-n03182912
-n03183080
-n03186818
-n03187751
-n03189818
-n03193597
-n03196062
-n03196324
-n03196598
-n03199647
-n03199901
-n03200357
-n03200539
-n03200701
-n03200906
-n03201035
-n03201638
-n03201996
-n03202354
-n03202760
-n03203089
-n03203806
-n03204306
-n03204558
-n03204955
-n03205143
-n03205304
-n03206718
-n03206908
-n03207305
-n03208556
-n03210683
-n03211117
-n03211616
-n03212811
-n03214253
-n03214450
-n03215191
-n03219135
-n03220237
-n03221059
-n03221720
-n03222516
-n03223162
-n03223441
-n03224753
-n03224893
-n03225777
-n03226538
-n03228016
-n03228533
-n03228692
-n03229115
-n03229526
-n03231160
-n03231819
-n03235796
-n03235979
-n03236580
-n03236735
-n03237212
-n03237639
-n03239259
-n03239726
-n03240140
-n03241093
-n03241335
-n03241496
-n03242120
-n03242506
-n03242995
-n03243218
-n03245271
-n03245421
-n03246933
-n03250952
-n03251533
-n03251766
-n03252324
-n03252637
-n03254374
-n03255488
-n03255899
-n03256788
-n03256928
-n03257586
-n03258905
-n03259505
-n03261776
-n03262519
-n03262809
-n03262932
-n03265032
-n03266749
-n03267821
-n03269203
-n03269401
-n03270695
-n03271765
-n03271865
-n03272239
-n03272383
-n03273061
-n03273913
-n03274561
-n03274796
-n03276179
-n03277459
-n03277771
-n03278248
-n03279153
-n03279364
-n03279508
-n03280394
-n03280644
-n03281145
-n03282060
-n03282401
-n03284743
-n03284981
-n03285912
-n03286572
-n03287733
-n03288003
-n03289985
-n03291413
-n03292960
-n03294048
-n03294833
-n03296478
-n03297103
-n03297644
-n03297735
-n03298089
-n03302790
-n03303217
-n03303831
-n03304197
-n03304465
-n03305522
-n03307573
-n03308152
-n03309808
-n03314378
-n03314884
-n03315644
-n03316406
-n03318136
-n03319457
-n03320046
-n03322570
-n03322940
-n03323703
-n03324928
-n03325088
-n03326073
-n03327234
-n03327691
-n03327841
-n03329663
-n03330792
-n03334017
-n03334492
-n03334912
-n03335030
-n03335846
-n03336839
-n03337494
-n03338287
-n03338821
-n03339296
-n03339643
-n03340009
-n03340923
-n03342961
-n03343354
-n03343560
-n03343853
-n03346135
-n03346455
-n03349296
-n03350352
-n03350456
-n03350602
-n03351262
-n03351979
-n03352628
-n03354903
-n03355468
-n03356446
-n03357267
-n03357716
-n03359137
-n03359566
-n03360731
-n03361683
-n03362771
-n03363363
-n03364008
-n03364937
-n03365592
-n03365991
-n03366823
-n03373237
-n03374649
-n03374838
-n03375171
-n03376279
-n03378342
-n03379343
-n03379828
-n03379989
-n03380647
-n03380867
-n03381126
-n03381231
-n03381776
-n03382856
-n03382969
-n03383468
-n03384167
-n03384891
-n03385557
-n03386011
-n03387323
-n03387653
-n03390327
-n03391770
-n03393324
-n03394480
-n03394649
-n03396580
-n03396654
-n03397266
-n03397532
-n03398228
-n03399761
-n03399971
-n03402188
-n03402369
-n03404012
-n03404360
-n03404449
-n03405265
-n03405725
-n03407369
-n03409393
-n03409591
-n03410147
-n03411339
-n03412058
-n03412220
-n03412511
-n03412906
-n03413264
-n03413428
-n03413828
-n03414162
-n03415252
-n03416489
-n03416775
-n03417345
-n03418158
-n03418242
-n03419014
-n03422072
-n03422589
-n03423719
-n03424630
-n03427296
-n03428090
-n03428349
-n03429003
-n03429288
-n03429914
-n03430091
-n03430313
-n03430551
-n03430959
-n03431243
-n03431745
-n03433637
-n03433877
-n03434285
-n03434830
-n03435593
-n03437941
-n03438257
-n03439814
-n03441112
-n03442288
-n03442756
-n03446070
-n03446832
-n03448031
-n03448956
-n03449564
-n03449858
-n03450516
-n03452267
-n03452449
-n03453320
-n03454110
-n03454211
-n03454707
-n03455355
-n03456548
-n03456665
-n03457008
-n03457686
-n03458271
-n03459914
-n03461882
-n03465500
-n03465818
-n03466162
-n03466839
-n03467517
-n03467796
-n03467984
-n03468696
-n03469493
-n03470387
-n03470629
-n03470948
-n03472232
-n03472535
-n03472937
-n03473817
-n03473966
-n03475823
-n03476083
-n03476313
-n03477773
-n03477902
-n03478756
-n03478907
-n03481521
-n03482523
-n03483230
-n03483531
-n03484083
-n03484931
-n03487331
-n03487444
-n03487774
-n03488188
-n03488603
-n03489162
-n03490324
-n03490449
-n03490884
-n03491988
-n03496296
-n03496612
-n03497100
-n03497657
-n03498536
-n03499468
-n03500295
-n03501152
-n03501288
-n03501614
-n03502331
-n03502509
-n03502777
-n03503718
-n03503997
-n03505383
-n03505504
-n03506370
-n03507963
-n03508101
-n03509394
-n03509843
-n03510583
-n03510866
-n03511175
-n03512147
-n03512911
-n03513137
-n03513376
-n03515338
-n03517899
-n03517982
-n03518631
-n03519674
-n03521076
-n03521544
-n03522634
-n03524574
-n03524976
-n03525074
-n03525454
-n03525827
-n03528263
-n03529444
-n03531281
-n03531447
-n03531546
-n03532342
-n03534776
-n03535024
-n03536761
-n03537412
-n03538037
-n03538300
-n03538634
-n03538957
-n03540267
-n03540595
-n03541091
-n03541696
-n03541923
-n03542333
-n03542860
-n03543603
-n03544360
-n03545150
-n03546340
-n03547054
-n03547530
-n03548930
-n03550153
-n03550289
-n03551084
-n03551790
-n03552449
-n03552749
-n03553486
-n03554460
-n03555426
-n03555662
-n03557590
-n03558176
-n03558404
-n03558739
-n03561169
-n03563200
-n03563710
-n03563967
-n03565288
-n03565565
-n03566329
-n03568117
-n03568818
-n03571942
-n03572205
-n03574555
-n03574816
-n03575958
-n03576215
-n03577672
-n03577818
-n03578055
-n03578251
-n03578656
-n03579538
-n03579982
-n03583621
-n03584400
-n03585073
-n03588951
-n03589513
-n03589791
-n03590306
-n03590932
-n03592245
-n03592773
-n03593526
-n03595409
-n03595860
-n03596285
-n03597317
-n03598151
-n03598299
-n03598646
-n03600977
-n03601638
-n03601840
-n03602081
-n03603722
-n03604629
-n03604843
-n03605722
-n03605915
-n03606465
-n03609235
-n03609542
-n03610418
-n03610992
-n03612814
-n03613294
-n03613592
-n03614007
-n03614532
-n03615563
-n03617095
-n03617594
-n03618546
-n03618982
-n03619396
-n03619650
-n03619793
-n03619890
-n03620052
-n03621049
-n03621694
-n03622931
-n03623556
-n03624134
-n03625355
-n03626115
-n03631177
-n03631811
-n03632852
-n03633886
-n03635032
-n03635668
-n03635932
-n03636248
-n03636649
-n03638883
-n03639675
-n03640988
-n03642444
-n03646296
-n03646916
-n03647520
-n03651388
-n03653220
-n03653454
-n03654576
-n03655072
-n03656484
-n03657239
-n03658858
-n03659292
-n03660124
-n03661340
-n03662719
-n03662887
-n03663531
-n03664675
-n03664943
-n03665366
-n03666362
-n03666917
-n03667235
-n03667829
-n03671914
-n03672827
-n03673450
-n03673767
-n03676759
-n03677766
-n03679384
-n03679712
-n03681477
-n03682487
-n03684823
-n03685307
-n03685820
-n03686130
-n03686470
-n03687928
-n03688943
-n03689157
-n03689570
-n03690851
-n03691817
-n03692379
-n03693293
-n03697552
-n03698604
-n03699280
-n03699975
-n03700963
-n03701191
-n03701391
-n03701640
-n03701790
-n03702248
-n03704834
-n03705379
-n03706653
-n03707597
-n03708036
-n03709206
-n03709363
-n03709545
-n03710528
-n03711711
-n03711999
-n03712887
-n03713069
-n03714235
-n03715386
-n03715669
-n03715892
-n03716966
-n03717131
-n03718212
-n03718335
-n03718699
-n03718789
-n03719053
-n03721590
-n03722007
-n03722288
-n03724176
-n03725035
-n03725717
-n03726516
-n03726760
-n03726993
-n03727837
-n03727946
-n03728437
-n03728982
-n03729647
-n03729951
-n03730153
-n03730788
-n03731695
-n03733644
-n03733925
-n03735637
-n03736970
-n03738241
-n03738472
-n03739518
-n03739693
-n03743902
-n03744276
-n03744684
-n03744840
-n03745571
-n03746330
-n03748162
-n03749504
-n03749807
-n03750206
-n03751065
-n03752185
-n03752922
-n03753077
-n03753514
-n03758894
-n03759432
-n03760671
-n03762982
-n03763727
-n03764276
-n03765561
-n03765934
-n03766322
-n03768132
-n03769722
-n03770954
-n03772077
-n03772674
-n03773035
-n03775199
-n03775847
-n03779000
-n03779370
-n03780047
-n03781787
-n03782190
-n03785499
-n03787523
-n03789171
-n03789400
-n03789946
-n03790230
-n03790512
-n03790755
-n03791235
-n03792048
-n03792526
-n03793850
-n03795976
-n03796181
-n03797390
-n03798982
-n03799113
-n03800485
-n03800772
-n03800933
-n03802007
-n03802228
-n03802393
-n03803116
-n03809312
-n03811295
-n03811444
-n03811847
-n03811965
-n03812382
-n03812924
-n03813176
-n03813946
-n03815278
-n03815482
-n03815615
-n03816005
-n03816136
-n03816849
-n03817647
-n03819595
-n03819994
-n03820154
-n03820318
-n03820728
-n03820950
-n03824197
-n03825080
-n03827536
-n03828020
-n03829340
-n03831757
-n03834040
-n03834604
-n03836062
-n03837422
-n03838748
-n03839172
-n03839276
-n03839795
-n03841666
-n03842156
-n03844045
-n03844233
-n03845190
-n03846234
-n03846772
-n03847471
-n03847823
-n03848168
-n03848348
-n03849275
-n03850613
-n03851341
-n03851787
-n03852280
-n03852688
-n03854815
-n03859280
-n03859495
-n03859958
-n03861430
-n03861842
-n03862676
-n03863923
-n03864139
-n03864356
-n03864692
-n03865371
-n03865949
-n03868406
-n03871083
-n03871524
-n03871724
-n03873848
-n03874138
-n03874823
-n03875218
-n03880129
-n03880323
-n03880531
-n03883054
-n03883773
-n03883944
-n03884639
-n03885535
-n03885669
-n03886053
-n03886641
-n03887185
-n03888022
-n03889503
-n03889726
-n03891051
-n03892557
-n03894051
-n03894379
-n03896103
-n03896233
-n03896419
-n03896628
-n03896984
-n03897943
-n03898271
-n03898633
-n03899612
-n03899933
-n03901338
-n03903133
-n03903424
-n03904060
-n03904183
-n03904433
-n03905540
-n03906997
-n03907654
-n03908204
-n03909160
-n03909406
-n03915118
-n03915437
-n03916470
-n03916720
-n03917327
-n03918480
-n03920737
-n03923564
-n03923692
-n03924069
-n03926148
-n03926412
-n03926876
-n03927792
-n03928116
-n03929091
-n03929202
-n03929443
-n03930515
-n03932670
-n03936269
-n03938522
-n03939677
-n03940256
-n03941684
-n03943920
-n03945615
-n03947111
-n03947466
-n03948459
-n03951971
-n03953020
-n03953416
-n03955809
-n03956785
-n03956922
-n03957315
-n03957762
-n03958630
-n03958752
-n03959014
-n03959701
-n03961939
-n03962525
-n03962932
-n03963028
-n03965907
-n03966325
-n03966751
-n03966976
-n03967942
-n03968293
-n03971321
-n03972524
-n03973520
-n03973628
-n03975035
-n03979377
-n03979492
-n03980026
-n03981340
-n03982232
-n03982895
-n03984234
-n03984381
-n03985232
-n03986704
-n03988170
-n03989665
-n03990474
-n03991443
-n03992325
-n03992703
-n03993180
-n03993403
-n03994008
-n03994757
-n03995018
-n03995856
-n03996145
-n03996416
-n03997484
-n03999992
-n04000311
-n04001397
-n04001499
-n04001845
-n04004210
-n04004475
-n04005912
-n04007664
-n04010057
-n04010779
-n04010927
-n04011827
-n04012084
-n04013729
-n04014297
-n04015204
-n04016576
-n04016684
-n04018399
-n04018667
-n04019101
-n04019696
-n04020087
-n04020298
-n04020912
-n04021028
-n04021362
-n04021798
-n04022332
-n04022708
-n04023249
-n04024274
-n04026053
-n04026918
-n04027023
-n04027706
-n04028315
-n04029734
-n04030274
-n04036303
-n04037964
-n04038440
-n04038727
-n04039848
-n04042358
-n04042632
-n04042795
-n04042985
-n04043733
-n04044307
-n04044498
-n04045085
-n04045397
-n04046590
-n04046974
-n04047401
-n04049405
-n04050066
-n04051549
-n04051825
-n04052757
-n04056932
-n04057047
-n04057435
-n04057846
-n04057981
-n04058096
-n04058239
-n04059947
-n04060647
-n04060904
-n04061793
-n04061969
-n04062644
-n04063373
-n04063868
-n04064401
-n04065464
-n04065789
-n04067231
-n04067353
-n04067921
-n04068441
-n04068601
-n04069276
-n04069777
-n04070207
-n04070964
-n04071102
-n04071263
-n04071393
-n04072193
-n04072551
-n04073948
-n04075468
-n04075916
-n04076284
-n04077430
-n04077734
-n04078574
-n04079106
-n04079244
-n04079933
-n04080454
-n04080833
-n04081844
-n04083649
-n04086794
-n04087126
-n04087709
-n04088696
-n04088797
-n04089666
-n04089976
-n04090548
-n04091097
-n04093625
-n04095210
-n04096066
-n04097622
-n04097866
-n04099175
-n04099429
-n04100174
-n04101497
-n04101701
-n04102037
-n04102285
-n04102406
-n04102962
-n04104147
-n04104500
-n04105068
-n04105438
-n04105893
-n04107984
-n04108268
-n04110068
-n04110654
-n04110955
-n04111190
-n04111414
-n04111668
-n04113765
-n04114996
-n04115256
-n04115996
-n04116389
-n04118021
-n04121228
-n04122349
-n04122492
-n04122825
-n04123123
-n04123567
-n04123740
-n04125116
-n04125853
-n04126541
-n04126659
-n04126980
-n04127904
-n04128499
-n04128837
-n04131929
-n04134632
-n04136510
-n04137444
-n04137897
-n04138977
-n04139859
-n04140064
-n04140631
-n04141838
-n04143897
-n04146050
-n04147495
-n04148054
-n04149083
-n04151108
-n04151581
-n04151940
-n04152387
-n04154753
-n04156297
-n04156411
-n04157320
-n04158807
-n04158956
-n04160372
-n04160586
-n04161358
-n04161981
-n04164757
-n04164868
-n04166111
-n04167489
-n04169437
-n04170037
-n04171459
-n04171629
-n04171831
-n04174101
-n04174500
-n04176068
-n04176190
-n04176528
-n04177329
-n04177545
-n04180063
-n04180888
-n04181228
-n04181718
-n04182322
-n04183217
-n04183329
-n04184435
-n04184600
-n04185071
-n04186051
-n04186268
-n04186455
-n04186624
-n04186848
-n04187061
-n04187547
-n04187885
-n04189092
-n04190052
-n04190464
-n04190747
-n04190997
-n04191150
-n04191595
-n04191943
-n04192238
-n04192858
-n04194289
-n04196080
-n04197391
-n04198015
-n04198797
-n04199027
-n04201733
-n04202417
-n04205318
-n04206356
-n04207763
-n04210390
-n04211356
-n04211970
-n04215910
-n04216634
-n04216860
-n04216963
-n04217718
-n04217882
-n04219424
-n04221823
-n04222210
-n04222470
-n04222847
-n04225031
-n04225222
-n04225729
-n04226464
-n04226537
-n04227900
-n04229007
-n04229107
-n04229480
-n04230603
-n04230808
-n04231693
-n04232153
-n04233832
-n04234455
-n04235291
-n04235771
-n04236001
-n04236377
-n04236702
-n04238617
-n04241042
-n04241394
-n04242408
-n04243003
-n04243941
-n04244997
-n04245847
-n04246855
-n04247630
-n04247736
-n04248507
-n04249415
-n04250224
-n04250599
-n04253931
-n04255499
-n04256520
-n04260589
-n04261116
-n04262678
-n04263336
-n04263760
-n04264233
-n04264914
-n04266486
-n04267577
-n04269944
-n04270891
-n04271148
-n04272054
-n04272782
-n04273064
-n04273796
-n04275283
-n04275661
-n04275904
-n04278353
-n04279172
-n04279987
-n04280259
-n04280970
-n04283585
-n04283905
-n04284002
-n04285146
-n04285622
-n04285803
-n04286128
-n04288272
-n04288533
-n04288673
-n04289449
-n04291242
-n04291759
-n04292414
-n04292572
-n04293119
-n04293744
-n04294212
-n04294426
-n04295081
-n04295881
-n04299215
-n04300358
-n04301000
-n04301474
-n04303258
-n04304375
-n04305471
-n04306080
-n04306847
-n04307419
-n04307878
-n04308084
-n04308273
-n04308397
-n04308583
-n04308807
-n04309348
-n04309833
-n04310721
-n04311595
-n04312154
-n04312432
-n04313220
-n04314914
-n04315828
-n04315948
-n04317420
-n04318131
-n04318982
-n04319937
-n04320405
-n04322026
-n04322692
-n04322801
-n04323819
-n04326799
-n04326896
-n04328054
-n04328329
-n04328946
-n04329477
-n04330340
-n04330669
-n04330998
-n04331277
-n04332987
-n04333129
-n04338517
-n04339638
-n04340750
-n04340935
-n04341133
-n04341414
-n04341686
-n04346679
-n04347519
-n04348184
-n04348359
-n04349401
-n04350104
-n04350458
-n04354589
-n04356595
-n04358707
-n04358874
-n04359335
-n04359589
-n04360501
-n04360798
-n04361095
-n04361260
-n04362821
-n04363210
-n04363874
-n04364545
-n04364827
-n04364994
-n04365328
-n04365484
-n04365751
-n04368695
-n04370048
-n04371563
-n04373894
-n04375775
-n04377057
-n04378956
-n04379243
-n04379964
-n04380346
-n04381994
-n04382334
-n04382880
-n04383130
-n04383301
-n04386664
-n04387201
-n04387400
-n04388162
-n04388743
-n04389521
-n04390873
-n04391838
-n04392526
-n04393095
-n04394261
-n04395875
-n04397168
-n04397261
-n04397645
-n04398497
-n04398688
-n04398834
-n04399046
-n04400289
-n04401088
-n04402057
-n04402580
-n04402746
-n04402984
-n04403638
-n04404817
-n04404997
-n04405540
-n04405762
-n04407435
-n04407686
-n04409128
-n04409806
-n04410086
-n04410365
-n04410485
-n04411264
-n04411966
-n04413151
-n04413419
-n04415663
-n04416901
-n04417180
-n04417361
-n04417809
-n04419073
-n04421872
-n04422875
-n04427715
-n04428008
-n04431436
-n04431745
-n04434932
-n04435180
-n04436185
-n04436401
-n04436542
-n04437670
-n04437953
-n04438304
-n04438643
-n04440963
-n04441662
-n04444749
-n04445040
-n04445952
-n04446276
-n04447276
-n04447443
-n04448070
-n04448361
-n04450243
-n04450640
-n04450749
-n04451818
-n04452615
-n04452848
-n04453156
-n04453666
-n04453910
-n04454654
-n04455250
-n04455652
-n04456472
-n04457326
-n04458843
-n04459362
-n04459610
-n04460130
-n04462011
-n04463679
-n04464852
-n04467099
-n04467307
-n04468005
-n04469251
-n04470741
-n04471315
-n04471632
-n04472243
-n04472726
-n04473884
-n04474466
-n04475411
-n04475631
-n04477548
-n04478512
-n04478657
-n04480527
-n04481524
-n04487724
-n04488427
-n04489008
-n04489817
-n04490091
-n04491769
-n04493109
-n04494204
-n04495450
-n04497442
-n04497570
-n04498523
-n04499446
-n04499554
-n04500060
-n04501837
-n04502197
-n04502502
-n04502670
-n04502851
-n04504141
-n04504770
-n04505036
-n04506994
-n04507453
-n04508163
-n04508489
-n04508949
-n04509260
-n04509592
-n04511002
-n04514241
-n04516116
-n04516214
-n04516672
-n04518132
-n04519153
-n04520170
-n04520382
-n04521987
-n04524313
-n04527648
-n04529681
-n04530566
-n04531098
-n04531873
-n04533042
-n04533199
-n04533700
-n04534127
-n04534895
-n04536153
-n04538552
-n04539203
-n04540761
-n04541320
-n04543158
-n04544450
-n04546194
-n04546855
-n04547592
-n04549122
-n04549919
-n04551055
-n04552696
-n04553389
-n04554871
-n04555600
-n04555897
-n04556948
-n04557308
-n04557751
-n04558059
-n04558804
-n04559023
-n04559730
-n04562262
-n04563204
-n04565375
-n04566257
-n04567098
-n04568069
-n04568557
-n04569520
-n04569822
-n04570958
-n04571292
-n04571566
-n04571958
-n04572935
-n04574471
-n04574999
-n04576002
-n04576211
-n04576971
-n04577426
-n04577769
-n04578801
-n04579230
-n04580493
-n04581595
-n04582349
-n04583620
-n04585745
-n04585980
-n04586932
-n04587648
-n04588739
-n04589190
-n04589434
-n04591056
-n04591887
-n04592005
-n04592099
-n04594218
-n04594489
-n04595285
-n04595855
-n04596852
-n04597066
-n04597804
-n04598136
-n04598582
-n04599124
-n04600312
-n04600486
-n04600912
-n04603729
-n04603872
-n04605726
-n04606574
-n04608329
-n04608567
-n04609531
-n04609651
-n04610176
-n04610503
-n04610676
-n04611916
-n04613015
-n04615226
-n04615644
-n04950713
-n04951373
-n04958634
-n04959672
-n04960277
-n04961691
-n04963740
-n04965179
-n04965661
-n04967191
-n04968895
-n04970059
-n04970631
-n04970916
-n04972801
-n04973386
-n04976952
-n05238282
-n05241218
-n05242070
-n05244934
-n05266879
-n05399034
-n05447757
-n05449959
-n05453657
-n05467758
-n05586759
-n06254669
-n06262567
-n06263369
-n06263609
-n06263762
-n06266417
-n06266710
-n06267145
-n06271778
-n06272290
-n06272803
-n06274092
-n06275353
-n06276697
-n06277280
-n06281040
-n06359467
-n06359657
-n06418693
-n06591815
-n06592078
-n06595351
-n06613686
-n06793231
-n07556637
-n07556970
-n07557165
-n07557434
-n07560652
-n07561112
-n07562495
-n07563800
-n07564629
-n07564971
-n07565725
-n07565945
-n07566340
-n07566863
-n07567390
-n07567707
-n07568818
-n07569106
-n07569543
-n07570720
-n07572353
-n07572957
-n07573103
-n07573696
-n07574602
-n07575076
-n07575726
-n07575984
-n07576182
-n07576438
-n07576577
-n07577374
-n07579575
-n07580053
-n07580359
-n07580470
-n07581346
-n07581775
-n07582277
-n07582441
-n07582609
-n07583197
-n07584228
-n07584593
-n07585208
-n07587441
-n07587700
-n07588947
-n07590320
-n07591473
-n07592094
-n07592656
-n07593774
-n07595914
-n07596046
-n07596452
-n07596684
-n07597145
-n07597365
-n07598734
-n07599468
-n07599783
-n07599998
-n07600506
-n07601407
-n07605474
-n07605944
-n07606278
-n07606764
-n07607707
-n07609407
-n07609840
-n07611148
-n07611358
-n07611839
-n07611991
-n07612367
-n07612632
-n07612996
-n07613671
-n07614198
-n07614825
-n07615052
-n07615190
-n07615460
-n07615569
-n07615671
-n07616590
-n07617188
-n07619004
-n07623136
-n07624466
-n07627931
-n07628068
-n07641928
-n07642471
-n07642933
-n07643306
-n07643474
-n07643764
-n07643981
-n07644244
-n07663899
-n07678729
-n07679356
-n07680517
-n07680932
-n07681926
-n07682316
-n07682624
-n07683786
-n07684600
-n07685730
-n07686873
-n07687211
-n07687469
-n07687789
-n07689003
-n07690273
-n07690892
-n07692405
-n07692614
-n07693889
-n07693972
-n07694403
-n07695878
-n07695965
-n07697100
-n07704054
-n07705931
-n07707451
-n07708512
-n07708798
-n07709333
-n07710007
-n07710283
-n07710616
-n07710952
-n07712063
-n07712382
-n07712748
-n07712856
-n07713395
-n07713895
-n07714078
-n07714802
-n07714895
-n07715561
-n07715721
-n07716034
-n07717070
-n07717858
-n07718671
-n07719437
-n07719839
-n07720442
-n07720615
-n07721325
-n07721456
-n07721678
-n07722217
-n07722763
-n07723330
-n07723559
-n07723753
-n07724943
-n07725376
-n07725531
-n07726796
-n07727578
-n07727868
-n07728804
-n07729000
-n07729485
-n07730406
-n07730855
-n07731122
-n07731587
-n07731952
-n07732302
-n07732747
-n07734017
-n07734292
-n07735052
-n07735803
-n07737081
-n07739125
-n07739506
-n07740220
-n07740954
-n07741461
-n07742012
-n07742704
-n07744246
-n07747055
-n07747811
-n07747951
-n07748753
-n07748912
-n07749095
-n07749192
-n07749312
-n07749731
-n07750586
-n07751451
-n07752377
-n07752664
-n07753743
-n07755089
-n07755411
-n07755707
-n07756096
-n07757132
-n07757312
-n07757602
-n07757990
-n07758680
-n07758950
-n07759424
-n07759691
-n07759816
-n07760501
-n07761141
-n07761309
-n07761611
-n07761777
-n07761954
-n07767344
-n07767847
-n07770571
-n07771212
-n07800091
-n07800740
-n07801508
-n07802152
-n07802417
-n07803093
-n07803545
-n07804323
-n07805254
-n07805594
-n07805731
-n07806221
-n07806633
-n07807317
-n07807710
-n07807922
-n07809096
-n07809368
-n07810907
-n07811416
-n07812184
-n07814203
-n07815588
-n07818277
-n07819480
-n07820497
-n07820814
-n07823951
-n07824702
-n07824988
-n07825717
-n07828987
-n07829412
-n07830593
-n07832902
-n07834507
-n07836731
-n07837002
-n07837362
-n07838233
-n07841495
-n07841639
-n07841907
-n07842753
-n07842972
-n07843464
-n07843775
-n07844042
-n07844604
-n07846143
-n07847198
-n07848338
-n07848771
-n07849336
-n07850083
-n07850329
-n07851298
-n07852045
-n07852919
-n07854813
-n07856270
-n07857959
-n07858595
-n07859284
-n07859583
-n07860805
-n07861158
-n07861813
-n07863374
-n07864638
-n07865105
-n07867421
-n07867883
-n07869391
-n07869775
-n07870313
-n07871436
-n07873464
-n07874063
-n07874159
-n07874259
-n07874343
-n07874441
-n07874780
-n07875693
-n07875835
-n07876281
-n07880751
-n07881117
-n07881205
-n07881404
-n07881800
-n07882497
-n07882886
-n07883031
-n07883251
-n07883384
-n07884567
-n07886572
-n07886849
-n07887634
-n07888465
-n07888909
-n07889510
-n07890352
-n07890750
-n07891726
-n07892813
-n07893528
-n07893891
-n07894102
-n07894298
-n07894965
-n07895237
-n07895435
-n07895595
-n07895710
-n07895839
-n07896287
-n07897200
-n07897865
-n07898117
-n07898333
-n07898745
-n07899108
-n07900406
-n07900616
-n07901587
-n07903208
-n07904395
-n07905038
-n07906284
-n07906877
-n07907161
-n07907548
-n07907943
-n07909129
-n07909811
-n07911371
-n07911677
-n07912211
-n07913393
-n07914413
-n07915618
-n07916041
-n07917618
-n07918028
-n07920222
-n07921455
-n07921948
-n07923748
-n07924033
-n07924560
-n07924834
-n07925966
-n07926920
-n07927197
-n07927931
-n07929519
-n07930554
-n07931001
-n07931096
-n07932614
-n07932841
-n07933274
-n07933891
-n07934032
-n07934530
-n07935152
-n07935504
-n07936263
-n07936745
-n07938149
-n07951464
-n08554440
-n08558963
-n08596076
-n08598301
-n08616050
-n08640531
-n08659446
-n09191635
-n09206896
-n09206985
-n09210862
-n09213434
-n09213565
-n09214060
-n09214916
-n09215437
-n09217230
-n09230041
-n09233446
-n09238926
-n09255070
-n09259025
-n09259219
-n09262690
-n09265620
-n09269882
-n09270735
-n09287968
-n09289331
-n09289596
-n09290444
-n09295946
-n09300306
-n09302616
-n09303008
-n09303528
-n09304750
-n09305031
-n09308572
-n09309292
-n09315159
-n09326662
-n09335693
-n09335809
-n09336555
-n09337253
-n09344198
-n09352849
-n09359803
-n09362945
-n09366017
-n09366317
-n09375606
-n09376526
-n09381242
-n09393605
-n09396465
-n09398677
-n09405787
-n09406793
-n09409512
-n09409752
-n09410224
-n09416076
-n09421799
-n09428628
-n09432990
-n09433442
-n09437454
-n09439213
-n09443641
-n09453008
-n09458269
-n09472413
-n09474010
-n09505153
-n09606009
-n09606527
-n09608709
-n09610405
-n09613191
-n09615336
-n09616922
-n09619168
-n09619452
-n09620078
-n09620794
-n09622049
-n09622302
-n09624168
-n09624559
-n09625401
-n09626238
-n09627906
-n09629246
-n09629752
-n09631129
-n09632274
-n09632518
-n09633969
-n09636339
-n09638875
-n09639919
-n09641002
-n09644152
-n09648743
-n09651123
-n09665545
-n09669631
-n09670280
-n09676884
-n09679925
-n09690208
-n09694771
-n09696585
-n09697401
-n09700964
-n09701148
-n09701833
-n09705124
-n09708750
-n09710164
-n09716047
-n09718217
-n09722658
-n09724785
-n09725229
-n09725772
-n09726621
-n09727440
-n09727826
-n09730204
-n09731436
-n09731571
-n09735258
-n09738400
-n09744679
-n09754217
-n09758173
-n09758885
-n09761068
-n09763784
-n09764201
-n09764598
-n09765278
-n09767197
-n09769076
-n09770179
-n09771435
-n09772746
-n09773962
-n09774783
-n09790482
-n09792555
-n09795124
-n09795334
-n09800964
-n09802445
-n09802641
-n09805151
-n09805475
-n09809538
-n09809749
-n09810166
-n09811712
-n09814660
-n09815790
-n09816771
-n09818022
-n09820263
-n09821831
-n09823502
-n09824135
-n09824609
-n09826204
-n09830194
-n09831962
-n09834699
-n09836160
-n09840217
-n09841188
-n09841515
-n09841696
-n09842047
-n09848489
-n09851575
-n09853645
-n09853881
-n09854915
-n09857007
-n09861946
-n09865398
-n09868270
-n09871681
-n09877951
-n09889691
-n09892693
-n09894654
-n09895222
-n09895701
-n09902353
-n09903153
-n09910374
-n09917593
-n09918248
-n09923418
-n09923673
-n09924996
-n09927089
-n09927451
-n09928136
-n09928451
-n09929298
-n09930257
-n09930876
-n09931640
-n09933098
-n09935434
-n09936892
-n09937056
-n09941964
-n09942970
-n09943239
-n09943811
-n09944160
-n09945319
-n09950457
-n09951070
-n09951274
-n09960688
-n09962966
-n09964411
-n09968845
-n09974648
-n09976728
-n09979321
-n09983572
-n09989502
-n09990415
-n09991867
-n09992538
-n09992837
-n09993252
-n09994673
-n09996481
-n09997622
-n10001217
-n10006748
-n10007684
-n10009484
-n10009671
-n10015215
-n10015897
-n10017422
-n10018861
-n10020890
-n10024362
-n10029068
-n10034201
-n10034614
-n10035952
-n10036266
-n10036929
-n10037385
-n10040945
-n10041887
-n10042690
-n10043643
-n10044879
-n10047459
-n10048367
-n10048836
-n10052694
-n10053808
-n10054657
-n10055730
-n10055847
-n10060175
-n10067968
-n10070711
-n10077593
-n10078131
-n10078806
-n10079399
-n10079893
-n10080869
-n10083823
-n10084043
-n10084295
-n10086383
-n10091651
-n10092488
-n10093475
-n10094584
-n10095869
-n10098710
-n10098862
-n10099375
-n10101634
-n10102800
-n10105085
-n10107303
-n10109662
-n10111903
-n10112129
-n10118844
-n10126177
-n10126424
-n10126708
-n10127689
-n10129825
-n10134396
-n10134982
-n10136959
-n10142747
-n10142946
-n10143172
-n10143725
-n10145340
-n10145774
-n10148305
-n10150071
-n10150940
-n10151570
-n10153594
-n10154186
-n10154601
-n10155849
-n10162194
-n10164233
-n10165448
-n10168183
-n10168584
-n10171567
-n10182190
-n10185793
-n10186774
-n10187130
-n10195593
-n10200781
-n10202624
-n10205457
-n10206173
-n10207169
-n10210137
-n10215623
-n10216106
-n10224578
-n10225219
-n10228278
-n10235385
-n10237069
-n10241300
-n10243664
-n10245639
-n10249270
-n10249459
-n10249950
-n10257221
-n10259348
-n10263411
-n10266328
-n10266848
-n10271677
-n10273064
-n10274815
-n10276045
-n10282672
-n10284064
-n10284965
-n10296444
-n10299250
-n10299700
-n10305635
-n10305802
-n10306004
-n10308732
-n10312287
-n10314054
-n10315561
-n10316360
-n10317007
-n10317500
-n10320863
-n10321340
-n10322238
-n10323999
-n10324560
-n10328437
-n10332385
-n10335246
-n10335931
-n10340312
-n10341573
-n10343554
-n10345100
-n10353016
-n10353355
-n10355142
-n10355449
-n10355688
-n10356450
-n10357613
-n10360747
-n10366966
-n10369528
-n10370381
-n10376523
-n10377021
-n10379376
-n10380672
-n10383816
-n10386984
-n10387196
-n10387324
-n10393909
-n10396106
-n10399130
-n10400998
-n10402824
-n10403876
-n10405694
-n10407954
-n10409752
-n10411551
-n10415037
-n10417551
-n10418101
-n10419047
-n10420031
-n10421016
-n10426454
-n10427764
-n10428004
-n10433737
-n10435716
-n10435988
-n10438172
-n10439851
-n10444194
-n10450303
-n10462860
-n10464052
-n10466918
-n10467179
-n10470779
-n10474064
-n10474645
-n10478960
-n10481268
-n10482054
-n10482921
-n10484858
-n10488309
-n10495421
-n10499355
-n10499857
-n10506544
-n10508710
-n10512372
-n10512708
-n10519494
-n10521100
-n10521662
-n10522035
-n10522324
-n10522759
-n10523341
-n10525134
-n10525436
-n10525617
-n10527334
-n10529231
-n10541833
-n10542888
-n10543161
-n10544232
-n10544748
-n10546633
-n10548537
-n10548681
-n10554846
-n10556518
-n10557854
-n10559288
-n10560637
-n10568200
-n10570019
-n10575787
-n10576962
-n10577284
-n10580535
-n10582746
-n10583387
-n10594147
-n10595164
-n10595647
-n10599806
-n10602985
-n10604634
-n10605253
-n10610465
-n10612210
-n10614629
-n10617193
-n10618685
-n10618848
-n10619642
-n10620758
-n10622053
-n10624074
-n10624310
-n10625860
-n10628644
-n10630188
-n10632576
-n10633450
-n10648237
-n10648696
-n10654932
-n10657835
-n10661002
-n10661563
-n10665698
-n10669991
-n10674130
-n10676018
-n10679174
-n10682953
-n10686073
-n10692883
-n10693824
-n10694258
-n10698368
-n10700201
-n10700640
-n10701180
-n10703336
-n10703692
-n10705615
-n10707233
-n10708454
-n10709529
-n10713686
-n10720453
-n10721321
-n10722575
-n10722965
-n10726786
-n10735298
-n10740868
-n10741152
-n10742997
-n10744164
-n10747119
-n10751265
-n10752480
-n10759151
-n10759982
-n10763383
-n10763620
-n10765679
-n10766260
-n10768903
-n10779610
-n10780632
-n10782791
-n10782940
-n10787470
-n10791221
-n10792335
-n10793570
-n10794014
-n11531193
-n11537327
-n11542640
-n11545524
-n11545714
-n11547562
-n11547855
-n11552386
-n11553240
-n11596108
-n11598686
-n11600372
-n11601177
-n11601918
-n11608250
-n11609475
-n11609684
-n11612923
-n11614250
-n11618861
-n11620673
-n11621029
-n11623105
-n11624531
-n11627168
-n11628456
-n11630017
-n11630489
-n11643835
-n11645914
-n11647306
-n11649878
-n11650558
-n11650759
-n11661372
-n11665372
-n11666854
-n11669921
-n11672400
-n11674332
-n11676500
-n11684264
-n11689483
-n11693981
-n11697560
-n11700864
-n11703669
-n11708658
-n11709674
-n11713164
-n11720353
-n11722982
-n11723770
-n11725015
-n11725623
-n11727091
-n11729478
-n11733054
-n11736694
-n11741350
-n11745817
-n11747468
-n11748002
-n11751765
-n11752578
-n11756092
-n11756669
-n11759224
-n11763625
-n11767354
-n11769621
-n11771539
-n11774513
-n11775340
-n11779300
-n11782036
-n11783920
-n11785668
-n11789438
-n11789962
-n11790788
-n11793779
-n11794519
-n11796005
-n11801392
-n11805956
-n11807108
-n11807979
-n11808721
-n11811473
-n11815491
-n11817914
-n11820965
-n11823043
-n11830714
-n11830906
-n11832214
-n11836722
-n11839568
-n11845557
-n11851578
-n11855274
-n11857696
-n11862835
-n11865071
-n11866248
-n11868814
-n11869351
-n11869689
-n11872146
-n11875691
-n11875938
-n11877473
-n11878283
-n11887119
-n11890022
-n11892637
-n11894327
-n11898639
-n11900569
-n11902709
-n11915214
-n11915658
-n11915899
-n11916467
-n11918286
-n11919447
-n11920498
-n11924445
-n11928352
-n11928858
-n11931918
-n11932745
-n11939699
-n11940006
-n11943407
-n11944196
-n11945367
-n11946727
-n11947251
-n11948264
-n11950345
-n11951511
-n11952346
-n11953884
-n11954484
-n11956850
-n11965627
-n11967744
-n11970101
-n11971248
-n11971783
-n11972759
-n11973341
-n11976170
-n11977303
-n11978233
-n11982115
-n11985053
-n11985739
-n11988893
-n11991263
-n11997032
-n11997969
-n12006766
-n12008252
-n12008749
-n12010628
-n12013511
-n12015959
-n12018760
-n12020507
-n12024176
-n12030654
-n12034141
-n12036067
-n12036939
-n12041446
-n12043444
-n12045860
-n12050959
-n12053405
-n12056217
-n12057447
-n12062468
-n12065316
-n12065777
-n12075151
-n12076577
-n12080395
-n12083591
-n12086012
-n12086539
-n12087961
-n12090890
-n12092262
-n12094244
-n12095020
-n12096395
-n12101870
-n12102133
-n12105125
-n12107970
-n12108432
-n12109827
-n12110778
-n12112008
-n12112918
-n12113657
-n12117017
-n12119099
-n12119238
-n12121033
-n12124627
-n12126360
-n12131550
-n12135898
-n12136720
-n12137120
-n12137569
-n12139575
-n12141495
-n12142085
-n12143676
-n12144313
-n12146311
-n12147226
-n12152532
-n12153580
-n12154773
-n12155583
-n12156819
-n12157056
-n12157769
-n12158031
-n12158798
-n12159055
-n12159555
-n12160490
-n12161285
-n12163035
-n12164363
-n12166424
-n12168565
-n12170585
-n12173664
-n12174311
-n12174926
-n12182049
-n12187663
-n12188289
-n12195391
-n12196129
-n12199266
-n12201580
-n12202936
-n12205694
-n12214789
-n12215579
-n12217453
-n12221191
-n12224978
-n12225349
-n12226932
-n12231192
-n12236546
-n12237486
-n12244153
-n12245695
-n12246232
-n12252168
-n12252866
-n12253229
-n12256112
-n12257570
-n12260799
-n12262553
-n12265394
-n12266217
-n12266796
-n12268246
-n12269241
-n12269652
-n12271643
-n12274630
-n12275489
-n12281241
-n12284262
-n12286826
-n12287642
-n12288823
-n12290748
-n12293723
-n12296432
-n12300840
-n12302071
-n12303462
-n12305475
-n12306717
-n12307756
-n12310349
-n12316444
-n12318378
-n12320010
-n12322501
-n12328398
-n12330469
-n12334293
-n12334891
-n12335483
-n12335664
-n12335800
-n12340383
-n12341542
-n12342299
-n12343480
-n12344283
-n12346578
-n12350758
-n12352287
-n12355760
-n12360108
-n12360684
-n12364604
-n12367611
-n12374418
-n12377198
-n12381511
-n12385429
-n12387633
-n12387839
-n12392070
-n12396924
-n12399132
-n12401335
-n12401684
-n12405714
-n12409231
-n12411461
-n12412355
-n12412606
-n12416423
-n12419037
-n12420535
-n12421467
-n12421683
-n12425281
-n12430198
-n12431434
-n12437513
-n12437769
-n12441958
-n12446200
-n12446519
-n12449296
-n12450344
-n12451915
-n12454159
-n12459629
-n12460697
-n12461466
-n12462032
-n12463743
-n12464476
-n12466727
-n12470092
-n12474167
-n12475035
-n12476510
-n12480895
-n12491826
-n12495146
-n12499163
-n12506181
-n12508309
-n12509476
-n12511856
-n12516584
-n12522188
-n12524188
-n12526516
-n12527738
-n12539074
-n12539306
-n12546183
-n12548280
-n12550210
-n12554526
-n12556656
-n12560282
-n12560775
-n12562577
-n12572546
-n12573256
-n12575322
-n12582231
-n12582665
-n12582846
-n12583126
-n12583401
-n12584191
-n12586298
-n12590232
-n12594989
-n12595964
-n12602262
-n12602980
-n12612170
-n12614477
-n12615710
-n12620196
-n12622875
-n12624381
-n12625383
-n12631331
-n12633638
-n12634211
-n12634429
-n12635744
-n12636885
-n12638218
-n12638556
-n12639736
-n12640607
-n12641413
-n12641931
-n12642200
-n12643473
-n12644902
-n12645174
-n12647376
-n12649065
-n12650556
-n12651821
-n12653218
-n12655869
-n12658118
-n12658846
-n12659356
-n12660601
-n12662772
-n12663804
-n12665048
-n12667406
-n12667964
-n12674120
-n12674685
-n12682411
-n12683407
-n12685431
-n12685831
-n12688716
-n12690653
-n12695144
-n12698435
-n12705013
-n12707781
-n12708293
-n12709901
-n12711596
-n12713063
-n12714755
-n12715914
-n12717072
-n12719684
-n12724942
-n12725521
-n12727301
-n12731401
-n12732491
-n12732756
-n12733647
-n12741222
-n12742741
-n12743823
-n12746884
-n12749049
-n12752205
-n12755225
-n12756457
-n12762896
-n12768369
-n12771192
-n12772753
-n12777436
-n12778605
-n12779603
-n12785724
-n12791064
-n12793015
-n12794985
-n12798284
-n12800586
-n12801520
-n12805146
-n12806732
-n12810595
-n12812235
-n12814643
-n12817464
-n12822769
-n12823717
-n12823859
-n12832315
-n12833985
-n12834798
-n12836212
-n12836862
-n12839979
-n12840749
-n12842302
-n12842887
-n12844939
-n12849061
-n12853080
-n12854048
-n12858150
-n12866968
-n12869478
-n12870535
-n12871272
-n12877244
-n12878169
-n12879963
-n12882779
-n12884260
-n12890265
-n12893463
-n12903367
-n12904938
-n12908645
-n12909421
-n12912670
-n12917901
-n12922763
-n12926480
-n12928071
-n12929403
-n12930778
-n12931906
-n12934036
-n12934479
-n12939104
-n12941536
-n12942395
-n12943443
-n12946849
-n12950126
-n12952165
-n12953206
-n12956170
-n12957608
-n12960378
-n12960863
-n12965626
-n12968136
-n12969131
-n12970193
-n12971400
-n12973791
-n12974987
-n12976198
-n12980840
-n12982468
-n12983961
-n12985773
-n12987056
-n12988158
-n12992868
-n12997654
-n12997919
-n13000891
-n13001041
-n13001206
-n13001366
-n13001529
-n13002750
-n13002925
-n13003061
-n13003254
-n13003522
-n13003712
-n13004423
-n13004640
-n13004826
-n13004992
-n13005329
-n13005984
-n13006171
-n13006631
-n13006894
-n13007417
-n13007629
-n13008157
-n13008315
-n13008485
-n13008689
-n13008839
-n13009085
-n13009244
-n13009429
-n13009656
-n13010694
-n13010951
-n13011221
-n13012253
-n13012469
-n13012973
-n13013534
-n13013764
-n13013965
-n13014097
-n13014265
-n13014409
-n13014581
-n13014741
-n13014879
-n13017102
-n13017240
-n13017439
-n13017610
-n13017789
-n13017979
-n13018088
-n13018232
-n13018407
-n13019496
-n13019643
-n13019835
-n13020191
-n13020481
-n13020964
-n13021166
-n13021332
-n13021543
-n13021689
-n13021867
-n13022210
-n13022709
-n13024012
-n13024500
-n13025647
-n13028611
-n13032115
-n13032923
-n13035241
-n13035389
-n13035707
-n13037585
-n13037805
-n13038068
-n13038376
-n13038744
-n13039349
-n13040629
-n13040796
-n13041312
-n13042982
-n13043926
-n13045210
-n13045975
-n13046130
-n13049953
-n13055423
-n13055577
-n13055792
-n13055949
-n13056135
-n13056349
-n13056607
-n13056799
-n13057054
-n13057242
-n13057422
-n13057639
-n13058037
-n13058272
-n13058608
-n13059298
-n13059657
-n13060017
-n13060190
-n13063269
-n13066129
-n13067191
-n13068917
-n13070308
-n13070875
-n13071371
-n13071553
-n13071815
-n13072031
-n13072209
-n13072350
-n13072528
-n13072706
-n13072863
-n13073055
-n13073703
-n13074619
-n13074814
-n13075020
-n13075272
-n13075441
-n13075684
-n13075847
-n13076041
-n13076405
-n13076643
-n13076831
-n13077033
-n13077295
-n13079419
-n13083023
-n13084184
-n13085113
-n13091620
-n13091774
-n13100156
-n13100677
-n13104059
-n13108131
-n13108662
-n13108841
-n13109733
-n13110915
-n13111174
-n13111881
-n13118707
-n13119870
-n13120211
-n13121104
-n13122364
-n13123431
-n13125117
-n13130161
-n13130726
-n13132034
-n13132338
-n13132486
-n13132940
-n13134302
-n13134947
-n13135832
-n13136316
-n13136556
-n13137409
-n13137672
-n13138308
-n13138658
-n13138842
-n13139055
-n13139647
-n13141141
-n13145444
-n13149296
-n13150894
-n13154841
-n13156986
-n13157137
-n13160831
-n13163991
-n13172923
-n13174670
-n13177529
-n13180534
-n13186388
-n13188096
-n13188268
-n13192625
-n13193642
-n13194572
-n13195761
-n13199970
-n13201969
-n13206817
-n13207736
-n13208705
-n13211790
-n13219422
-n13221529
-n13224673
-n13230662
-n13231678
-n13231919
-n13232106
-n13232363
-n13232779
-n13233727
-n13238375
-n13238988
-n13252672
-n13862780
-n13863186
-n13863473
-n13863771
-n13864153
-n13864965
-n13865298
-n13865483
-n13866144
-n13866827
-n13867492
-n13868248
-n13868371
-n13872592
-n13873502
-n13875392
-n13875571
-n13878306
-n13879320
-n13883603
-n13888491
-n13893786
-n13894434
-n13896100
-n13897996
-n13900287
-n13903079
-n13905121
-n13905275
-n13905792
-n13912260
-n13915999
-n14633206
-n14696793
-n14844693
-n14853210
-n14899328
-n14900184
-n14974264
-n14977504
-n14992287
-n15062057
-n15067877
-n15089258
-n15089472
-n15089645
-n15089803
-n15090742
-n15092409
-n15092751
diff --git a/build/darknet/x64/data/imagenet.shortnames.list b/build/darknet/x64/data/imagenet.shortnames.list
deleted file mode 100644
index e9600eb5b93..00000000000
--- a/build/darknet/x64/data/imagenet.shortnames.list
+++ /dev/null
@@ -1,21842 +0,0 @@
-kit fox
-English setter
-Siberian husky
-Australian terrier
-English springer
-grey whale
-lesser panda
-Egyptian cat
-ibex
-Persian cat
-cougar
-gazelle
-porcupine
-sea lion
-malamute
-badger
-Great Dane
-Walker hound
-Welsh springer spaniel
-whippet
-Scottish deerhound
-killer whale
-mink
-African elephant
-Weimaraner
-soft-coated wheaten terrier
-Dandie Dinmont
-red wolf
-Old English sheepdog
-jaguar
-otterhound
-bloodhound
-Airedale
-hyena
-meerkat
-giant schnauzer
-titi
-three-toed sloth
-sorrel
-black-footed ferret
-dalmatian
-black-and-tan coonhound
-papillon
-skunk
-Staffordshire bullterrier
-Mexican hairless
-Bouvier des Flandres
-weasel
-miniature poodle
-Cardigan
-malinois
-bighorn
-fox squirrel
-colobus
-tiger cat
-Lhasa
-impala
-coyote
-Yorkshire terrier
-Newfoundland
-brown bear
-red fox
-Norwegian elkhound
-Rottweiler
-hartebeest
-Saluki
-grey fox
-schipperke
-Pekinese
-Brabancon griffon
-West Highland white terrier
-Sealyham terrier
-guenon
-mongoose
-indri
-tiger
-Irish wolfhound
-wild boar
-EntleBucher
-zebra
-ram
-French bulldog
-orangutan
-basenji
-leopard
-Bernese mountain dog
-Maltese dog
-Norfolk terrier
-toy terrier
-vizsla
-cairn
-squirrel monkey
-groenendael
-clumber
-Siamese cat
-chimpanzee
-komondor
-Afghan hound
-Japanese spaniel
-proboscis monkey
-guinea pig
-white wolf
-ice bear
-gorilla
-borzoi
-toy poodle
-Kerry blue terrier
-ox
-Scotch terrier
-Tibetan mastiff
-spider monkey
-Doberman
-Boston bull
-Greater Swiss Mountain dog
-Appenzeller
-Shih-Tzu
-Irish water spaniel
-Pomeranian
-Bedlington terrier
-warthog
-Arabian camel
-siamang
-miniature schnauzer
-collie
-golden retriever
-Irish terrier
-affenpinscher
-Border collie
-hare
-boxer
-silky terrier
-beagle
-Leonberg
-German short-haired pointer
-patas
-dhole
-baboon
-macaque
-Chesapeake Bay retriever
-bull mastiff
-kuvasz
-capuchin
-pug
-curly-coated retriever
-Norwich terrier
-flat-coated retriever
-hog
-keeshond
-Eskimo dog
-Brittany spaniel
-standard poodle
-Lakeland terrier
-snow leopard
-Gordon setter
-dingo
-standard schnauzer
-hamster
-Tibetan terrier
-Arctic fox
-wire-haired fox terrier
-basset
-water buffalo
-American black bear
-Angora
-bison
-howler monkey
-hippopotamus
-chow
-giant panda
-American Staffordshire terrier
-Shetland sheepdog
-Great Pyrenees
-Chihuahua
-tabby
-marmoset
-Labrador retriever
-Saint Bernard
-armadillo
-Samoyed
-bluetick
-redbone
-polecat
-marmot
-kelpie
-gibbon
-llama
-miniature pinscher
-wood rabbit
-Italian greyhound
-lion
-cocker spaniel
-Irish setter
-dugong
-Indian elephant
-beaver
-Sussex spaniel
-Pembroke
-Blenheim spaniel
-Madagascar cat
-Rhodesian ridgeback
-lynx
-African hunting dog
-langur
-Ibizan hound
-timber wolf
-cheetah
-English foxhound
-briard
-sloth bear
-Border terrier
-German shepherd
-otter
-koala
-tusker
-echidna
-wallaby
-platypus
-wombat
-revolver
-umbrella
-schooner
-soccer ball
-accordion
-ant
-starfish
-chambered nautilus
-grand piano
-laptop
-strawberry
-airliner
-warplane
-airship
-balloon
-space shuttle
-fireboat
-gondola
-speedboat
-lifeboat
-canoe
-yawl
-catamaran
-trimaran
-container ship
-liner
-pirate
-aircraft carrier
-submarine
-wreck
-half track
-tank
-missile
-bobsled
-dogsled
-bicycle-built-for-two
-mountain bike
-freight car
-passenger car
-barrow
-shopping cart
-motor scooter
-forklift
-electric locomotive
-steam locomotive
-amphibian
-ambulance
-beach wagon
-cab
-convertible
-jeep
-limousine
-minivan
-Model T
-racer
-sports car
-go-kart
-golfcart
-moped
-snowplow
-fire engine
-garbage truck
-pickup
-tow truck
-trailer truck
-moving van
-police van
-recreational vehicle
-streetcar
-snowmobile
-tractor
-mobile home
-tricycle
-unicycle
-horse cart
-jinrikisha
-oxcart
-bassinet
-cradle
-crib
-four-poster
-bookcase
-china cabinet
-medicine chest
-chiffonier
-table lamp
-file
-park bench
-barber chair
-throne
-folding chair
-rocking chair
-studio couch
-toilet seat
-desk
-pool table
-dining table
-entertainment center
-wardrobe
-Granny Smith
-orange
-lemon
-fig
-pineapple
-banana
-jackfruit
-custard apple
-pomegranate
-acorn
-hip
-ear
-rapeseed
-corn
-buckeye
-organ
-upright
-chime
-drum
-gong
-maraca
-marimba
-steel drum
-banjo
-cello
-violin
-harp
-acoustic guitar
-electric guitar
-cornet
-French horn
-trombone
-harmonica
-ocarina
-panpipe
-bassoon
-oboe
-sax
-flute
-daisy
-yellow lady's slipper
-cliff
-valley
-alp
-volcano
-promontory
-sandbar
-coral reef
-lakeside
-seashore
-geyser
-hatchet
-cleaver
-letter opener
-plane
-power drill
-lawn mower
-hammer
-corkscrew
-can opener
-plunger
-screwdriver
-shovel
-plow
-chain saw
-cock
-hen
-ostrich
-brambling
-goldfinch
-house finch
-junco
-indigo bunting
-robin
-bulbul
-jay
-magpie
-chickadee
-water ouzel
-kite
-bald eagle
-vulture
-great grey owl
-black grouse
-ptarmigan
-ruffed grouse
-prairie chicken
-peacock
-quail
-partridge
-African grey
-macaw
-sulphur-crested cockatoo
-lorikeet
-coucal
-bee eater
-hornbill
-hummingbird
-jacamar
-toucan
-drake
-red-breasted merganser
-goose
-black swan
-white stork
-black stork
-spoonbill
-flamingo
-American egret
-little blue heron
-bittern
-crane
-limpkin
-American coot
-bustard
-ruddy turnstone
-red-backed sandpiper
-redshank
-dowitcher
-oystercatcher
-European gallinule
-pelican
-king penguin
-albatross
-great white shark
-tiger shark
-hammerhead
-electric ray
-stingray
-barracouta
-coho
-tench
-goldfish
-eel
-rock beauty
-anemone fish
-lionfish
-puffer
-sturgeon
-gar
-loggerhead
-leatherback turtle
-mud turtle
-terrapin
-box turtle
-banded gecko
-common iguana
-American chameleon
-whiptail
-agama
-frilled lizard
-alligator lizard
-Gila monster
-green lizard
-African chameleon
-Komodo dragon
-triceratops
-African crocodile
-American alligator
-thunder snake
-ringneck snake
-hognose snake
-green snake
-king snake
-garter snake
-water snake
-vine snake
-night snake
-boa constrictor
-rock python
-Indian cobra
-green mamba
-sea snake
-horned viper
-diamondback
-sidewinder
-European fire salamander
-common newt
-eft
-spotted salamander
-axolotl
-bullfrog
-tree frog
-tailed frog
-whistle
-wing
-paintbrush
-hand blower
-oxygen mask
-snorkel
-loudspeaker
-microphone
-screen
-mouse
-electric fan
-oil filter
-strainer
-space heater
-stove
-guillotine
-barometer
-rule
-odometer
-scale
-analog clock
-digital clock
-wall clock
-hourglass
-sundial
-parking meter
-stopwatch
-digital watch
-stethoscope
-syringe
-magnetic compass
-binoculars
-projector
-sunglasses
-loupe
-radio telescope
-bow
-cannon
-assault rifle
-rifle
-projectile
-computer keyboard
-typewriter keyboard
-crane
-lighter
-abacus
-cash machine
-slide rule
-desktop computer
-hand-held computer
-notebook
-web site
-harvester
-thresher
-printer
-slot
-vending machine
-sewing machine
-joystick
-switch
-hook
-car wheel
-paddlewheel
-pinwheel
-potter's wheel
-gas pump
-carousel
-swing
-reel
-radiator
-puck
-hard disc
-sunglass
-pick
-car mirror
-solar dish
-remote control
-disk brake
-buckle
-hair slide
-knot
-combination lock
-padlock
-nail
-safety pin
-screw
-muzzle
-seat belt
-ski
-candle
-jack-o'-lantern
-spotlight
-torch
-neck brace
-pier
-tripod
-maypole
-mousetrap
-spider web
-trilobite
-harvestman
-scorpion
-black and gold garden spider
-barn spider
-garden spider
-black widow
-tarantula
-wolf spider
-tick
-centipede
-isopod
-Dungeness crab
-rock crab
-fiddler crab
-king crab
-American lobster
-spiny lobster
-crayfish
-hermit crab
-tiger beetle
-ladybug
-ground beetle
-long-horned beetle
-leaf beetle
-dung beetle
-rhinoceros beetle
-weevil
-fly
-bee
-grasshopper
-cricket
-walking stick
-cockroach
-mantis
-cicada
-leafhopper
-lacewing
-dragonfly
-damselfly
-admiral
-ringlet
-monarch
-cabbage butterfly
-sulphur butterfly
-lycaenid
-jellyfish
-sea anemone
-brain coral
-flatworm
-nematode
-conch
-snail
-slug
-sea slug
-chiton
-sea urchin
-sea cucumber
-iron
-espresso maker
-microwave
-Dutch oven
-rotisserie
-toaster
-waffle iron
-vacuum
-dishwasher
-refrigerator
-washer
-Crock Pot
-frying pan
-wok
-caldron
-coffeepot
-teapot
-spatula
-altar
-triumphal arch
-patio
-steel arch bridge
-suspension bridge
-viaduct
-barn
-greenhouse
-palace
-monastery
-library
-apiary
-boathouse
-church
-mosque
-stupa
-planetarium
-restaurant
-cinema
-home theater
-lumbermill
-coil
-obelisk
-totem pole
-castle
-prison
-grocery store
-bakery
-barbershop
-bookshop
-butcher shop
-confectionery
-shoe shop
-tobacco shop
-toyshop
-fountain
-cliff dwelling
-yurt
-dock
-brass
-megalith
-bannister
-breakwater
-dam
-chainlink fence
-picket fence
-worm fence
-stone wall
-grille
-sliding door
-turnstile
-mountain tent
-scoreboard
-honeycomb
-plate rack
-pedestal
-beacon
-mashed potato
-bell pepper
-head cabbage
-broccoli
-cauliflower
-zucchini
-spaghetti squash
-acorn squash
-butternut squash
-cucumber
-artichoke
-cardoon
-mushroom
-shower curtain
-jean
-carton
-handkerchief
-sandal
-ashcan
-safe
-plate
-necklace
-croquet ball
-fur coat
-thimble
-pajama
-running shoe
-cocktail shaker
-chest
-manhole cover
-modem
-tub
-tray
-balance beam
-bagel
-prayer rug
-kimono
-hot pot
-whiskey jug
-knee pad
-book jacket
-spindle
-ski mask
-beer bottle
-crash helmet
-bottlecap
-tile roof
-mask
-maillot
-Petri dish
-football helmet
-bathing cap
-teddy
-holster
-pop bottle
-photocopier
-vestment
-crossword puzzle
-golf ball
-trifle
-suit
-water tower
-feather boa
-cloak
-red wine
-drumstick
-shield
-Christmas stocking
-hoopskirt
-menu
-stage
-bonnet
-meat loaf
-baseball
-face powder
-scabbard
-sunscreen
-beer glass
-hen-of-the-woods
-guacamole
-lampshade
-wool
-hay
-bow tie
-mailbag
-water jug
-bucket
-dishrag
-soup bowl
-eggnog
-mortar
-trench coat
-paddle
-chain
-swab
-mixing bowl
-potpie
-wine bottle
-shoji
-bulletproof vest
-drilling platform
-binder
-cardigan
-sweatshirt
-pot
-birdhouse
-hamper
-ping-pong ball
-pencil box
-pay-phone
-consomme
-apron
-punching bag
-backpack
-groom
-bearskin
-pencil sharpener
-broom
-mosquito net
-abaya
-mortarboard
-poncho
-crutch
-Polaroid camera
-space bar
-cup
-racket
-traffic light
-quill
-radio
-dough
-cuirass
-military uniform
-lipstick
-shower cap
-monitor
-oscilloscope
-mitten
-brassiere
-French loaf
-vase
-milk can
-rugby ball
-paper towel
-earthstar
-envelope
-miniskirt
-cowboy hat
-trolleybus
-perfume
-bathtub
-hotdog
-coral fungus
-bullet train
-pillow
-toilet tissue
-cassette
-carpenter's kit
-ladle
-stinkhorn
-lotion
-hair spray
-academic gown
-dome
-crate
-wig
-burrito
-pill bottle
-chain mail
-theater curtain
-window shade
-barrel
-washbasin
-ballpoint
-basketball
-bath towel
-cowboy boot
-gown
-window screen
-agaric
-cellular telephone
-nipple
-barbell
-mailbox
-lab coat
-fire screen
-minibus
-packet
-maze
-pole
-horizontal bar
-sombrero
-pickelhaube
-rain barrel
-wallet
-cassette player
-comic book
-piggy bank
-street sign
-bell cote
-fountain pen
-Windsor tie
-volleyball
-overskirt
-sarong
-purse
-bolo tie
-bib
-parachute
-sleeping bag
-television
-swimming trunks
-measuring cup
-espresso
-pizza
-breastplate
-shopping basket
-wooden spoon
-saltshaker
-chocolate sauce
-ballplayer
-goblet
-gyromitra
-stretcher
-water bottle
-dial telephone
-soap dispenser
-jersey
-school bus
-jigsaw puzzle
-plastic bag
-reflex camera
-diaper
-Band Aid
-ice lolly
-velvet
-tennis ball
-gasmask
-doormat
-Loafer
-ice cream
-pretzel
-quilt
-maillot
-tape player
-clog
-iPod
-bolete
-scuba diver
-pitcher
-matchstick
-bikini
-sock
-CD player
-lens cap
-thatch
-vault
-beaker
-bubble
-cheeseburger
-parallel bars
-flagpole
-coffee mug
-rubber eraser
-stole
-carbonara
-dumbbell
-singles
-Virginia deer
-eastern grey squirrel
-gelding
-pylon
-table-tennis table
-peacock
-Segway
-surfing
-tamandua
-knocker
-steering wheel
-motorcycling
-coati
-sitar
-range
-backhoe
-agaric
-dashboard
-water polo
-concrete mixer
-treadmill
-golf bag
-skateboarding
-royal tennis
-tartan
-four-wheel drive
-sport utility
-sedan
-print
-luggage rack
-softball
-windmill
-ben
-red admiral
-jalousie
-towel rail
-truss
-strand
-ice hockey
-sconce
-wind turbine
-plush
-stained-glass window
-ballpark
-thoroughbred
-love seat
-red-spotted purple
-miller
-Adelie
-freight liner
-clock tower
-acrobatics
-shaving brush
-ewe
-ottoman
-African violet
-bicycle wheel
-cork
-windmill
-satin
-comma
-coffee mill
-baggage
-wasp's nest
-batting glove
-Ferris wheel
-push-bike
-porthole
-football stadium
-gas tank
-barbecue
-handlebar
-hula-hoop
-fairground
-rapier
-garter stitch
-exercise bike
-control tower
-carryall
-minute hand
-cog
-riverbank
-water nymph
-common dandelion
-android
-hairbrush
-redberry
-fret
-display window
-pepper mill
-litterbin
-drapery
-ducking
-fly-fishing
-broad jump
-sprinkler
-water-skiing
-chicory
-sail
-volleyball
-rugby
-Texas bluebonnet
-computer monitor
-tortoiseshell
-airplane propeller
-solar array
-figure skating
-air conditioner
-purple loosestrife
-gearshift
-outboard motor
-cowslip
-Abyssinian
-dip
-workstation
-cosy
-bunker
-neon lamp
-campanile
-casket
-verbena
-amphora
-sumo
-common foxglove
-sprocket
-jelly bean
-emperor penguin
-night-blooming cereus
-clock radio
-black birch
-bomber jacket
-Virginia bluebell
-bayonet
-walker
-altarpiece
-tattoo
-bridle
-rocker arm
-water turkey
-spiderwort
-flange
-mute swan
-laser printer
-carburetor
-coverlet
-mountainside
-baritone
-auto racing
-baluster
-gal
-peach bells
-taffeta
-grandfather
-asparagus
-horizontal stabilizer
-world
-grate
-marsh marigold
-white rhinoceros
-movement
-split rail
-rollerblading
-longhorn
-muffler
-church tower
-light bulb
-American agave
-backpacking tent
-overall
-New World goldfinch
-sectional
-wing chair
-transom
-integrated circuit
-dad
-spar
-picture frame
-no-hit game
-alternator
-drill press
-strawflower
-hepatica
-rangefinder
-blinker
-Welsh pony
-nib
-wagon wheel
-rotor
-tie
-denim
-jetliner
-sculling
-external drive
-window frame
-mourning dove
-censer
-stapler
-batting helmet
-flagon
-machete
-windshield
-hedgehog
-weeping willow
-chief executive officer
-hepatica
-pet
-Asiatic black bear
-chinchilla
-uke
-Atlantic bottlenose dolphin
-hair
-dishtowel
-flintlock
-Bermuda shorts
-lavender
-searchlight
-millwheel
-piano keyboard
-luna moth
-bumper
-parrot
-skirt
-manhole
-coffee table
-footstool
-judo
-Dalai Lama
-armored personnel carrier
-voile
-saber
-thoroughbred
-wild carrot
-gemsbok
-caster
-butterfly orchid
-cow
-sideboard
-horseshoe crab
-match play
-cassette recorder
-photomicrograph
-drafting table
-pediment
-tramline
-shipping
-kitten
-wainscoting
-fried rice
-helix
-marguerite
-pumpkin
-white-bellied swallow
-Tulipa gesneriana
-common dolphin
-face
-red squirrel
-bicycling
-shipwreck
-banded purple
-cornice
-pendant earring
-forsythia
-aardvark
-seashell
-spat
-shoulder bag
-fallow deer
-yearling
-common teasel
-tufted titmouse
-ancient
-professional golf
-purl
-vehicle
-okra
-great grandmother
-common lilac
-rose mallow
-newspaper
-crucifix
-chukka
-armlet
-fulmar
-wapiti
-doily
-Greco-Roman wrestling
-bleeding heart
-kitchen table
-bluebonnet
-Cape buffalo
-spun yarn
-crape myrtle
-dewdrop
-great blue heron
-medalist
-vaulting horse
-spinning wheel
-skyscraper
-Tahitian
-forget-me-not
-watercourse
-guitarist
-gargoyle
-bee balm
-pumpkin
-hunting knife
-flutist
-lectern
-skateboarder
-foil
-pant leg
-hedge sparrow
-dresser
-automatic pistol
-chicory
-dialog box
-chamberpot
-black rhinoceros
-fireweed
-half-mast
-pillow sham
-pavilion
-scarf joint
-microprocessor
-filly
-dressing gown
-shell
-Arabian
-child
-radio antenna
-butterweed
-morris dancer
-sparrow hawk
-groom
-brioche
-floret
-rainbow
-earthworm
-cellist
-tine
-toupee
-balldress
-map
-angel's trumpet
-ruin
-fur
-pronghorn
-speed skating
-used-car
-stick
-early spider orchid
-stuffed peppers
-snowdrift
-flats
-least sandpiper
-stick
-console table
-ventilator
-portable
-kepi
-pylon
-viceroy
-shoreline
-Olympian Zeus
-pestle
-great-niece
-life
-air compressor
-fanjet
-scuba diving
-fieldfare
-tree swallow
-personnel carrier
-night-blooming cereus
-sonogram
-assembly hall
-circuit breaker
-chair
-speed skate
-soapwort
-worsted
-raspberry
-burlap
-flat panel display
-Pyracantha
-cemetery
-turban
-deer hunting
-bottle green
-dandelion green
-pieta
-aigrette
-turntable
-cover girl
-clutch bag
-kiwi
-pea jacket
-color guard
-Malay
-shire
-crock
-french fries
-credenza
-hockey stick
-mourning cloak
-potty seat
-glass
-balsamroot
-medal play
-red clover
-gravy boat
-garter belt
-Guinness
-meadow buttercup
-jackass penguin
-coursing
-tooth
-hawfinch
-housetop
-fluorescent lamp
-black-backed gull
-bookshelf
-earplug
-millipede
-fawn
-baseball bat
-soup-strainer
-organ loft
-bugloss
-tomahawk
-blackcap
-black-necked stilt
-hand truck
-bedstead
-tempura
-rose window
-crimson
-snow thrower
-lesser whitethroat
-palomino
-ball
-staff sergeant
-wicker
-garbage heap
-great-nephew
-parquet
-coupe
-nave
-eggs Benedict
-damask
-flush toilet
-Angora
-pedometer
-control room
-bristle brush
-kookaburra
-telephone booth
-Windsor chair
-red-winged blackbird
-cinnamon roll
-briefs
-cloister
-sundress
-mammillaria
-unicyclist
-covered bridge
-coelogyne
-fairy bluebird
-phoebe
-beer mug
-headstock
-parhelion
-gorse
-common European dogwood
-fire-eater
-professional football
-rock climbing
-cyclamen
-tin
-marjoram
-Japanese morning glory
-pipe
-smasher
-hang glider
-abutment
-birdbath
-jotter
-litter
-artist's model
-butterfly bush
-dining area
-sausage dog
-piggery
-English sparrow
-Turk's-cap
-platinum blond
-song sparrow
-alarm clock
-tortoiseshell
-chaise longue
-flintlock
-academic costume
-graffito
-Arnica montana
-adding machine
-waterside
-director
-jonquil
-pipefitting
-stud
-Swedish meatball
-musk rose
-Venus's flytrap
-raven
-bougainvillea
-little brother
-field bindweed
-finder
-white admiral
-tinfoil
-serval
-sheet
-carthorse
-people
-potto
-stockroom
-sphinx
-slate roof
-mountain laurel
-majolica
-coal black
-repository
-bufo
-pique
-binder
-tread
-attorney general
-hydraulic press
-videocassette recorder
-bumper car
-professional baseball
-cow parsley
-ern
-blue peafowl
-common hyacinth
-jack-in-the-pulpit
-ice hockey rink
-sport
-camper
-tailback
-flash
-stacks
-pulp
-Christmas cactus
-netball
-calliandra
-curler
-large periwinkle
-cobweb
-forward
-Roman arch
-cross bun
-stoneware
-banana bread
-cape jasmine
-settle
-tongue
-frock
-pepper shaker
-pitching coach
-CD-R
-casing
-faience
-hand cream
-CD-ROM
-recliner
-striped bass
-clary
-sketch
-risotto
-reticle
-white clover
-touch football
-kitty
-great-aunt
-Japanese maple
-sidecar
-muscovy duck
-hack
-rope bridge
-organist
-stinging nettle
-pocket watch
-Indian pipe
-amorphophallus
-bird's-foot violet
-caller ID
-furnishing
-carriageway
-dish rack
-heiress
-nail polish
-beldam
-Dall sheep
-teriyaki
-stateroom
-laughing gull
-chow
-bookmark
-timer
-toga virilis
-deviled egg
-coltsfoot
-Papuan
-native
-cygnet
-automation
-portfolio
-cabbage palm
-cube
-broiler
-radish
-broodmare
-castor-oil plant
-pith hat
-talus
-lass
-thatch
-common marigold
-young buck
-igloo
-prairie rattlesnake
-soccer player
-spoke
-place
-slide fastener
-tapestry
-toy
-headboard
-cross-country skiing
-harness
-sconce
-rim
-ballet skirt
-transvestite
-saddlebag
-common evening primrose
-taillight
-challah
-willet
-ready-to-wear
-cloud
-answering machine
-waterfront
-vane
-granddaughter
-Chinese gooseberry
-tureen
-cab
-truffle
-viola
-bootlace
-chemise
-taro
-petal
-candied apple
-soccer
-miniature golf
-front porch
-asparagus
-Sauvignon blanc
-daisy fleabane
-ceiling
-slip-on
-bottle-nosed whale
-redbud
-black squirrel
-snowsuit
-ribbing
-gravestone
-creme brulee
-ambassador
-local
-archery
-love-in-a-mist
-garbage
-thyme
-night-blooming cereus
-goshawk
-cuckoopint
-azure
-German iris
-salad bowl
-puppy
-cockhorse
-giant clam
-biplane
-stele
-necklet
-sea otter
-crest
-door
-reformer
-comforter
-Byelorussian
-bottle
-hemline
-book bag
-leotard
-owlet
-spoon
-sari
-bidet
-Latin
-reticulated python
-bowling shoe
-futon
-gaiter
-coypu
-tea urn
-waders
-bangle
-snowbank
-pencil
-porter
-azalea
-English lavender
-red spruce
-team sport
-cruet
-high-rise
-O ring
-vodka
-cormorant
-Canada thistle
-clasp
-showjumping
-rattan
-red fox
-sun parlor
-Charolais
-Tommy gun
-bird's foot trefoil
-sedge warbler
-knot
-chives
-car tire
-steam engine
-adapter
-spirea
-common allamanda
-oyster shell
-harbor seal
-baobab
-wick
-plumbago
-downy woodpecker
-coconut
-leash
-kasbah
-hour hand
-upholstery
-mallard
-cricket bat
-lady
-kitchenware
-right-hander
-leopard
-olive green
-common valerian
-blue whale
-blackboard
-redhead
-periwinkle
-fingerboard
-hard hat
-locker
-breakfast table
-capybara
-beekeeper
-harness
-feeder
-water hyacinth
-hexapod
-brown thrasher
-percale
-lever
-patriarch
-arete
-book
-book
-senator
-bunya bunya
-couch
-durian
-common lady's-slipper
-mountain ash
-golden barrel cactus
-bicycle seat
-beret
-pop
-musk mallow
-manatee
-cotton candy
-boxing glove
-backboard
-tongue
-saguaro
-playground
-capitol
-sanderling
-wagtail
-deputy
-tractor
-tap
-lady's smock
-noseband
-worsted
-radiotelephone
-camisole
-forelock
-muscat
-sweet scabious
-crane fly
-butterfly weed
-chestnut
-pinata
-inositol
-borage
-aquatic
-belly
-broadcaster
-gondolier
-egg yolk
-blush wine
-bufflehead
-rambutan
-oleander
-horse-trail
-sea holly
-yard bird
-conference room
-lacrosse
-belted kingfisher
-defile
-extremum
-whistle
-bear cub
-grainfield
-potage
-watermelon
-lasagna
-sheik
-Cooper's hawk
-bulb
-basketball court
-paella
-cassette tape
-scatter rug
-kid
-impala lily
-Minnesotan
-Sudanese
-chocolate
-tail
-quack-quack
-whistling swan
-shoulder patch
-frozen custard
-sumo wrestler
-smoothie
-bock
-meat grinder
-latch
-palisade
-radial
-sake
-kestrel
-corn chowder
-airframe
-electrician
-reamer
-metropolitan
-cotton flannel
-cassowary
-crossbill
-operating room
-winter aconite
-flute
-Tasmanian devil
-billboard
-suds
-kilt
-aperitif
-cooling tower
-avocado
-hooded merganser
-coleslaw
-bee balm
-ladder-back
-insurance broker
-scaffolding
-polo mallet
-double bed
-two-hitter
-bluff
-gamboge
-baby
-lawn chair
-frond
-pistol grip
-fancy dress
-marquetry
-jambalaya
-fireweed
-Eurasian kingfisher
-cue ball
-ice plant
-horseweed
-rose moss
-musher
-sun
-viscount
-white-breasted nuthatch
-gin and tonic
-thermos
-Kenyan
-first-aid kit
-four-wheeler
-tourist
-stairwell
-Gambian
-liqueur glass
-hovercraft
-cocktail dress
-twin
-coriander
-blister pack
-Barrow's goldeneye
-canteen
-irrigation ditch
-great white heron
-tree sparrow
-canal boat
-lens
-food processor
-common raccoon
-Baltimore oriole
-black-eyed Susan
-bush hibiscus
-corolla
-sire
-mustachio
-professional wrestling
-elk
-clustered bellflower
-pannier
-musk ox
-crapaud
-animal trainer
-rosebud
-ring-necked pheasant
-little egret
-cappuccino
-rocker
-bristlecone pine
-cheerleader
-hedge violet
-semaphore
-central processing unit
-speedskater
-delivery truck
-assembly
-hedgehog cactus
-bergenia
-bull thistle
-bladder campion
-cinquefoil
-inula
-cellulose tape
-main rotor
-bootee
-autogiro
-ice
-grey
-meadow cranesbill
-hummus
-valise
-chassis
-mountain goat
-blacktail prairie dog
-Chardonnay
-romper
-street
-shoveler
-wood ibis
-topiary
-chalice
-silo
-circus acrobat
-Rollerblade
-cosmos
-woof
-heroine
-cold cream
-marabou
-herb robert
-garden lettuce
-nymph
-floor lamp
-automobile engine
-heel
-radiator
-seeded player
-fedora
-father-in-law
-peahen
-Bahamian
-wiper
-wood pigeon
-barn owl
-pegboard
-chorus frog
-kin
-roller skate
-stob
-rosemary
-cowbird
-hortensia
-cranberry sauce
-shot glass
-Dixie cup
-gnu
-fire alarm
-diet
-booster
-oxeye daisy
-twayblade
-high-definition television
-truss bridge
-bunk bed
-mule
-blackbuck
-facsimile
-frog orchid
-point-and-shoot camera
-brocade
-gazebo
-prairie gentian
-concert
-paintball
-Cognac
-maid
-afghan
-barbecued spareribs
-pintail
-tramway
-commissioner
-finger-painting
-beef stew
-caftan
-Aberdeen Angus
-demonstrator
-sea trout
-pigtail
-thrush nightingale
-barbados cherry
-sashimi
-ridgeling
-lamppost
-gabardine
-red-shouldered hawk
-bath salts
-cavern
-cymbid
-Haitian
-boater
-southern buckthorn
-arctic
-motorcycle cop
-red gum
-Clydesdale
-Zamboni
-beagling
-villa
-demitasse
-Sheetrock
-lollipop
-hybrid petunia
-post horse
-carabiner
-brussels sprouts
-Durham
-stylist
-pothole
-sleigh bed
-scallop shell
-harrier eagle
-papaya
-Japanese persimmon
-sachet
-wild rice
-chipboard
-gun enclosure
-menorah
-chinook
-headset
-white campion
-ocean
-Secretary of State
-G-string
-bone china
-basil
-greenish blue
-camcorder
-concrete
-screech owl
-trumpet honeysuckle
-flugelhorn
-layette
-cattle egret
-case knife
-mandarin duck
-robber fly
-salwar
-dressing table
-doughnut
-facade
-runner
-honeypot
-surf casting
-diver
-angel's trumpet
-spin dryer
-chameleon
-wand
-snow
-vitamin A1
-manageress
-volleyball net
-antiperspirant
-street clothes
-tree sparrow
-cords
-sundew
-bricks and mortar
-caryatid
-bridesmaid
-trestle bridge
-eyepiece
-celebrant
-scarlet pimpernel
-gas range
-onion
-green salad
-squill
-creepy-crawly
-hunk
-little owl
-salad nicoise
-earflap
-bird feeder
-spray gun
-bunny
-Cheops
-amazon
-blue tit
-Nissen hut
-Kalashnikov
-skylark
-kremlin
-shoebill
-shopping bag
-frigate bird
-telephoto lens
-peplum
-moss pink
-echidna
-wastepaper basket
-wood ibis
-workroom
-ankle brace
-telpherage
-Michaelmas daisy
-figure skate
-swami
-nylons
-cardoon
-cocotte
-headstall
-twin bed
-parsley
-dirndl
-corn poppy
-nut bread
-cloche
-light heavyweight
-mayor
-lip-gloss
-punch bowl
-pottage
-mango
-fledgling
-mousse
-four-wheel drive
-barrel
-banana boat
-trouser
-bathroom
-Sauterne
-ring
-settee
-lavaliere
-safe-deposit
-godson
-leatherette
-schoolmate
-radish
-hedge trimmer
-dahlia
-euphonium
-palace
-vaulter
-singlet
-slicer
-Pilsner
-cockateel
-kangaroo paw
-Cub Scout
-master bedroom
-hexagon
-cenotaph
-Barberton daisy
-Netherlander
-intersection
-Korean
-gravel
-chandelier
-hospital bed
-flash memory
-pier
-whole wheat flour
-maroon
-pale ale
-special
-snow bunting
-crinoline
-dustpan
-barrette
-common wood sorrel
-yolk
-pothos
-speakerphone
-tendril
-cabinetwork
-farm horse
-brake disk
-streetlight
-superhighway
-bandsaw
-panting
-pressure cooker
-girdle
-old man
-cereal bowl
-felt
-hurling
-architecture
-harmonium
-chain
-blueberry
-cellar
-smocking
-scrub brush
-tablespoon
-sweet corn
-graining
-library
-street
-bill
-felt-tip pen
-monkshood
-crowd
-log cabin
-newel post
-hack
-elephant seal
-golden pothos
-popcorn
-outhouse
-patch pocket
-fish and chips
-tape
-wax plant
-eaves
-fried egg
-emerald
-tea cart
-fan blade
-daily
-Bowie knife
-rowing boat
-leaf shape
-man
-crayon
-trumpetfish
-chipping sparrow
-whiskey bottle
-pillion
-city hall
-golden pheasant
-cheerleader
-creeping bugle
-couch
-Dumpster
-Homo sapiens sapiens
-cranberry juice
-cockpit
-demagogue
-joinery
-scrambled eggs
-technician
-sidewalk
-sheep
-keyhole
-power line
-polyanthus
-roulette
-first lieutenant
-checkout
-tabletop
-nasturtium
-schnapps
-engineering
-skateboard
-ground fir
-bouquet
-bunk
-resort area
-fleur-de-lis
-power steering
-opera
-Bolivian
-Friesian
-buckskins
-bay
-slider
-frozen yogurt
-cabin cruiser
-saunterer
-lean-to
-fishing eagle
-bog star
-cantaloupe
-mouth
-music stand
-fiddlestick
-brilliantine
-pinball machine
-bairn
-barred owl
-bath oil
-signorina
-Mason jar
-nymph
-rubber band
-garden nasturtium
-razorbill
-Japanese beetle
-batting cage
-trestle
-borage
-Secretary of the Interior
-scanner
-baguet
-baseball cap
-chow mein
-pen
-jewelweed
-barbet
-chasm
-pectoral sandpiper
-holster
-glasses case
-sand
-crevice
-Kickapoo
-snowboard
-locket
-satchel
-tankard
-alpinist
-moorhen
-cow pen
-whooper
-crown
-chain
-silversword
-wild geranium
-hi-fi
-Tibetan
-waterwheel
-bee orchid
-ruby-crowned kinglet
-common broom
-tabloid
-javelin
-sauna
-klammath weed
-zebra finch
-spider orchid
-velour
-chiffon
-lecture room
-barrel
-loggia
-millstone
-flatlet
-soupspoon
-econometrician
-golf-club head
-daphnia
-parlor
-fire-eater
-juggler
-attache case
-hay bale
-kisser
-knitting needle
-news magazine
-flatbed
-Senegalese
-trumpeter
-trampoline
-brogan
-bone
-caftan
-lobster pot
-gazpacho
-anthill
-ramekin
-mainsail
-penitentiary
-spotted flycatcher
-cookstove
-root beer
-broom beard grass
-pogo stick
-plywood
-epee
-gas oven
-Global Positioning System
-sweet false chamomile
-breakfast area
-bullring
-second cousin
-wave
-decolletage
-rodeo
-won ton
-swastika
-bobby pin
-papaw
-retaining wall
-Muscadet
-heavyweight
-energizer
-banner
-amusement park
-whinchat
-drugstore
-waxwork
-meander
-congee
-heat sink
-switch grass
-commuter
-peony
-western white pine
-wild raspberry
-nightgown
-saute
-cardinal
-claret
-pollinator
-biryani
-pina colada
-cassette deck
-European sandpiper
-block
-flan
-birdcage
-baby
-lieutenant colonel
-ticking
-European white lily
-dog violet
-coat hanger
-premature baby
-organza
-string bean
-balloonist
-hurricane deck
-window box
-hang glider
-bullfighting
-piste
-seahorse
-hard cider
-batik
-common mullein
-petite marmite
-stuffed mushroom
-tequila
-ground ivy
-fountain grass
-stray
-putter
-buffer
-comet
-bomber
-woodcarving
-baseball glove
-halter
-garnish
-selvage
-megaphone
-sea fan
-rabbit hutch
-very important person
-analog watch
-long-head coneflower
-northern pike
-roll-on
-cigarette butt
-terraced house
-penknife
-windshield wiper
-cricket
-straightener
-snow pea
-cockerel
-canister
-sour bread
-recovery room
-toilet bowl
-tyrannosaur
-big sister
-quartz battery
-television receiver
-vitamin C
-tailpipe
-field thistle
-stonechat
-col
-monstrance
-gift wrapping
-herbivore
-quarter horse
-ice-cream sundae
-rumpus room
-eyepatch
-clary sage
-French lavender
-snorkel
-choir
-tent-fly
-cat box
-horse racing
-high priest
-barrel cactus
-pin oak
-wild thyme
-keyboardist
-raiser
-hammock
-hail
-bungee
-chocolate mousse
-major
-buzzard
-gopher tortoise
-Chablis
-water meter
-benthos
-donna
-blender
-Mauser
-avocet
-rye
-mulch
-chancel
-dusty miller
-mate
-corbel
-minaret
-frittata
-French toast
-mosaic
-home brew
-water faucet
-beard
-swivel chair
-acropolis
-largemouth
-abbey
-tabby
-driver
-copperhead
-stirrup
-Boston fern
-Tennessee walker
-artichoke
-honor guard
-chapatti
-enchantress
-sweat pants
-electric organ
-column
-dry vermouth
-range hood
-Red Delicious
-rape
-splint
-catapult
-gourd
-antipasto
-plaza
-carnation
-star
-wood anemone
-English primrose
-male fern
-boot
-atrium
-Japanese deer
-carnivore
-yearling
-doe
-guelder rose
-chicory
-stretch pants
-ice-cream cake
-frogfish
-tarpaulin
-chicken soup
-balaclava
-tor
-feverfew
-three-hitter
-flyweight
-aqua vitae
-locker room
-wether
-teacup
-wide-angle lens
-hook
-ladder-back
-osprey
-awning
-wedding
-chest protector
-pooch
-rose mallow
-orange daisy
-fondant
-envelope
-duckling
-blackberry
-goosander
-snorkeling
-philatelist
-broad bean
-Frank
-bok choy
-basket
-absinth
-cayenne
-blackbird
-bottled water
-trooper
-timber
-stable
-chestnut
-tomatillo
-bell
-banquet
-rainbow trout
-macrame
-appointee
-heart
-chipmunk
-purple clematis
-safety bicycle
-shuttle bus
-Japanese black pine
-lentil soup
-downhill
-field mustard
-brass
-hand-me-down
-greater yellowlegs
-fanny pack
-croquet mallet
-hip roof
-duffel bag
-Ritz
-document
-pie plant
-staff member
-lifeguard
-white-throated sparrow
-Cameroonian
-hydrofoil
-platter
-common ageratum
-middleweight
-chairlift
-brunch
-pharmacist
-lemon
-driveshaft
-green snake
-lip
-London plane
-mangrove
-crystal
-siskin
-common jasmine
-hollandaise
-villa
-cross-country riding
-mother-in-law's tongue
-generator
-Tanzanian
-whisk
-seeder
-ashtray
-griddle
-evening bag
-bluebird
-bran muffin
-square dancer
-luggage compartment
-tropical pitcher plant
-autofocus
-tape drive
-silencer
-Hawaiian guitar
-swamp sparrow
-Zimbabwean
-drawing room
-weekender
-liparis
-streambed
-samosa
-hitter
-water heater
-tidal basin
-ossuary
-dik-dik
-camouflage
-fiance
-Jordanian
-rolling pin
-slingback
-turret
-hen
-jennet
-playpen
-woodhewer
-bushing
-church bell
-bear grass
-double knit
-tennis pro
-Joe-Pye weed
-pave
-pochard
-painted beauty
-crinoline
-gumbo
-trestle table
-schnitzel
-balloon flower
-Turkish coffee
-extension cord
-wireless local area network
-sluice
-umbel
-microeconomist
-sky
-aisle
-commander in chief
-hydroplane racing
-poll
-Coca Cola
-fuel injection
-bird pepper
-monkey puzzle
-English muffin
-riverbed
-varietal
-kachina
-airport
-saltwort
-oolong
-red-hot poker
-mihrab
-cocoa
-jersey
-Walkman
-syndic
-Hessian boot
-millstone
-carpenter
-outfall
-curbstone
-mocha
-field pansy
-patriarch
-slacks
-switchblade
-killdeer
-whelk
-pampas grass
-racquetball
-platform bed
-Indian rhinoceros
-Japanese iris
-blacktop
-dinner jacket
-stud
-jodhpurs
-telephone pole
-business district
-kurta
-basil
-handset
-file folder
-gloriosa
-orphan
-cantle
-cookie sheet
-cafe au lait
-drawbridge
-hill myna
-Western diamondback
-watch case
-cardcase
-bowling alley
-mattress cover
-canvasback
-pompadour
-cornice
-matador
-cigar cutter
-skunk cabbage
-baptismal font
-bitters
-refectory
-egg
-parula warbler
-tiger lily
-field house
-nanny
-skin-diver
-soda water
-lymphocyte
-carport
-chocolate fudge
-amphitheater
-sugar candy
-sea hare
-open-face sandwich
-dessert spoon
-staple gun
-envelope
-worker bee
-general
-garment bag
-maypop
-autobahn
-Atlantic puffin
-polo shirt
-Humvee
-spice rack
-grotto
-banderillero
-gaillardia
-black-crowned night heron
-oboist
-weigela
-Dictaphone
-dwarf iris
-marsh mallow
-yarrow
-eccentric
-catsup
-jade green
-mistress
-henbit
-beachwear
-head
-commuter
-strawberry tree
-chickpea
-clothespin
-fleabane
-brussels sprout
-winter melon
-Laconian
-great horned owl
-caricaturist
-nan
-flowerbed
-triple sec
-dairy
-round of golf
-cardinal
-kauri
-Zulu
-Armagnac
-cowberry
-mouthpiece
-wild calla
-bling
-puppeteer
-beer drinker
-adder
-field sparrow
-chocolate pudding
-blacksmith
-finback
-Shetland pony
-cheese fondue
-panty girdle
-soda can
-electrolytic
-florist's chrysanthemum
-yellow jasmine
-tudung
-equalizer
-ridge
-dulcimer
-grappa
-barn swallow
-coneflower
-enamel
-poached egg
-halfback
-yak
-toby
-Fleet Street
-blue catfish
-sand tiger
-flying buttress
-snaffle
-stoop
-first base
-cultivated land
-first lady
-waratah
-headquarters
-arnica
-lovebird
-common morel
-parasol
-disk clutch
-Xerox
-vitamin P
-vitamin B12
-long sleeve
-certified public accountant
-hot pants
-pitch pine
-pantie
-drawers
-cake mix
-boar
-grey
-bride
-false sago
-bullion
-coach house
-bass guitar
-Japanese banana
-meadow clary
-black belt
-Canterbury bell
-smallmouth
-treadmill
-great white heron
-enchilada
-rummer
-captain
-camisole
-wild garlic
-oak fern
-ultramarine
-peach
-hawkweed
-autostrada
-adit
-anaconda
-artwork
-skinhead
-jello
-hermit thrush
-Bewick's swan
-dress suit
-trail bike
-stubble
-common polypody
-Riesling
-Easter lily
-telegraph key
-envelope
-garlic bread
-perianth
-salad bar
-steppe
-club sandwich
-nude
-garden forget-me-not
-Tuareg
-flood
-Statehouse
-charcoal
-boy scout
-Rhone wine
-parfait
-spoor
-lanyard
-octagon
-brown bread
-quarterback
-quilted bedspread
-hookah
-Pepsi
-hamburger bun
-entrepreneur
-saddle oxford
-snake's head fritillary
-undies
-chemise
-skidder
-chickpea
-carnation
-honey bun
-mortar
-Montrachet
-automobile horn
-skylight
-gingham
-rafter
-pantile
-climbing frame
-scarlet runner
-cable
-cornstalk
-mockingbird
-raisin bread
-chili sauce
-hand calculator
-concert-goer
-detached house
-coq au vin
-lasso
-hyssop
-globe thistle
-paper clip
-slide
-Jerusalem artichoke
-tetrahedron
-mock orange
-lemon lily
-finger
-little sister
-handcuff
-horse wrangler
-pavlova
-oilcloth
-snow-in-summer
-common mugwort
-greenshank
-ice-cream cone
-rubber boot
-gunnysack
-disk jockey
-long trousers
-sorghum
-pontoon
-calf
-fire extinguisher
-cotton thistle
-pilot whale
-ao dai
-steamroller
-wristwatch
-tawny owl
-city
-country store
-ironweed
-kennel
-bathrobe
-rattan
-drawer
-fly tent
-choline
-musk thistle
-courthouse
-Yugoslav
-bush
-trawler
-shellflower
-jade vine
-ragged orchid
-pea soup
-King Charles spaniel
-hubcap
-snook
-paddy
-bow and arrow
-shovel
-dill
-cliff swallow
-cadaver
-hijab
-masterpiece
-fish geranium
-kettle
-sanitary napkin
-carrot stick
-Mountie
-peanut brittle
-dam
-jackal
-windowsill
-butterfly orchid
-bodice
-picador
-pale yellow
-beanie
-petiole
-tenor saxophonist
-bungalow
-gnomon
-stock saddle
-field glass
-rigging
-wood grain
-Speaker
-settlement house
-swamp milkweed
-paper nautilus
-tangerine
-champagne
-crescent roll
-library
-Schmidt telescope
-stemless carline thistle
-motorcyclist
-alpine ash
-planchet
-water closet
-casuist
-hand luggage
-hyssop
-spaghetti and meatballs
-cannelloni
-cedar waxwing
-water dog
-brick red
-linkage
-sweep hand
-purple heather
-macaroni and cheese
-butter knife
-refreshment
-malt
-St. Augustine grass
-wainscot
-compass
-gas heater
-tamale
-table saw
-referee
-borsch
-projector
-dracaena
-peppermint
-Reuben
-Abyssinian banana
-glassblower
-floss
-small stores
-artilleryman
-lapwing
-ranch
-garbage man
-dwarf banana
-commelina
-currant
-adulteress
-landlocked salmon
-pasqueflower
-nan
-tiger lily
-Eritrean
-rotunda
-catsup bottle
-mezzanine
-royal fern
-blended whiskey
-bowler hat
-mistletoe
-manor
-fusee drive
-pistachio
-dispensary
-swamp
-amputee
-sculptor
-schoolmaster
-Chinese anise
-dwarf iris
-livestock
-chronograph
-nectarine
-jockey
-plaster
-motel room
-swamp azalea
-hippeastrum
-space station
-duchess
-catacomb
-dovetail
-cockscomb
-common spotted orchid
-brittlebush
-cleats
-cloche
-hotchpotch
-cabin car
-prey
-indigo
-light beer
-bear's breech
-jonquil
-analyzer
-alyssum
-spur gear
-ice tea
-honey buzzard
-twayblade
-dirndl
-atlas moth
-croquette
-carafe
-flyweight
-professional basketball
-multivitamin
-air terminal
-phial
-roll-on
-skunk cabbage
-bird of paradise
-rose
-cooter
-camping
-divided highway
-herbage
-sweet vermouth
-common comfrey
-eggplant
-office building
-glutton
-gefilte fish
-bicycle rack
-swamp birch
-Venetian blind
-Pernod
-Norway spruce
-portrait camera
-bastion
-vitamin Bc
-Ugandan
-Indian red
-okapi
-emu
-vin ordinaire
-chintz
-shrimp cocktail
-numbat
-tall oat grass
-cable car
-stopcock
-ham sandwich
-Yemeni
-stanhopea
-plate
-chicken broth
-common yellowthroat
-California poppy
-radio
-chocolate egg
-mess jacket
-tea table
-physostegia
-Japanese flowering cherry
-confectionery
-chicken cacciatore
-painted nettle
-popover
-white rice
-strapless
-mohair
-electrical cable
-coil spring
-arterial road
-miniature fan palm
-spectator pump
-pesto
-interlocutor
-eastern kingbird
-dongle
-vitamin B6
-stuffed tomato
-cough drop
-okra
-black
-barbecue
-burial mound
-firstborn
-corn snake
-amberjack
-bollard
-horn
-Black African
-elbow pad
-Camembert
-circle
-Japanese apricot
-hearing aid
-rock star
-creature
-taster
-bubble gum
-scull
-lemon balm
-chaetodon
-anemometer
-brake drum
-fuselage
-courthouse
-aqualung
-yellow adder's tongue
-reception desk
-guy
-buffalo wing
-ginger beer
-robin
-pantothenic acid
-marsh hawk
-yellow journalism
-exhaust
-cardamom
-Tabasco
-ax handle
-patriarch
-floor
-pine snake
-spoiler
-hood
-sphagnum
-parrotfish
-orphanage
-redpoll
-beef Wellington
-white spruce
-cherry plum
-scapular
-field lens
-broomstick
-mouser
-wood thrush
-Nebraskan
-hotelier
-milk thistle
-soya milk
-Munich beer
-boucle
-snowy egret
-dust storm
-steward
-kudzu
-oriental poppy
-presbytery
-burro
-orange soda
-stonecrop
-splashboard
-menagerie
-dormer
-wire cutter
-yellow bells
-Dubliner
-shore pine
-cousin
-racing gig
-Morgan
-gold plate
-villager
-snifter
-granny's bonnets
-egg roll
-Spode
-amabilis fir
-babbler
-pestle
-heliopsis
-halter
-black spruce
-President of the United States
-ski slope
-chocolate fondue
-lockstitch
-motel
-Epipactis helleborine
-tabbouleh
-Yorkshire pudding
-overpass
-Timorese
-presbyter
-tablefork
-bottle gourd
-tiara
-vintage
-pilgrim
-reindeer moss
-shower stall
-towel rack
-kachina
-chef's salad
-breeder
-cow parsnip
-walker
-Black woman
-Irish coffee
-portrait lens
-lateen
-gilt
-successor
-cargo container
-Lithuanian
-mayapple
-paisley
-highchair
-strawberry jam
-flying fox
-field scabious
-blue-eyed grass
-screw
-Frisbee
-dressing room
-cholla
-walkie-talkie
-red currant
-centrifugal pump
-smorgasbord
-hot rod
-marcher
-rowanberry
-welwitschia
-amphitheater
-pew
-concert band
-bosom
-pillbox
-seagrass
-openwork
-meadow goldenrod
-shower
-chicken sandwich
-Boston ivy
-plastron
-oilfield
-stuffed tomato
-juniper berries
-frame
-Spanish mackerel
-family room
-powder horn
-fight
-maguey
-bunker
-work-shirt
-air filter
-nosh
-sugar bowl
-foothill
-reliquary
-tugboat
-horsebox
-grater
-palace
-board member
-campsite
-halibut
-geneva
-ginger ale
-high commissioner
-genet
-bodywork
-spaghetti
-protractor
-pipe cutter
-wood anemone
-turkey cock
-surge suppressor
-green turtle
-spoiler
-bedsitting room
-television room
-ballot box
-shasta daisy
-impeller
-capote
-bitter
-California wine
-lock
-spinnaker
-gill fungus
-baby's breath
-nut and bolt
-moonflower
-houseboat
-distributor cap
-coffee bean
-gusset
-bowling ball
-knitwear
-frieze
-mistflower
-roadster
-cue
-circuitry
-brake
-butt hinge
-Chickasaw
-leopard frog
-wing tip
-puree
-mantel
-pantheon
-grandfather clock
-cockchafer
-pomegranate
-cleaners
-eyeshadow
-Oregon cedar
-rock hopper
-hawksbill turtle
-agriculturist
-yellow-crowned night heron
-Albanian
-pumpkin seed
-chateau
-goggles
-camper trailer
-bracket fungus
-cigarette case
-signal box
-saddle blanket
-poison ivy
-set gun
-cattleya
-dry fly
-concert hall
-personal digital assistant
-talcum
-deodorant
-common starling
-painted turtle
-kea
-plenipotentiary
-pantyhose
-masjid
-buskin
-hurdle
-cocktail lounge
-belting
-sour dock
-knife blade
-sugar snap pea
-paddle
-dickeybird
-brace
-keep
-call center
-yacht
-lead pencil
-tumbler
-production line
-tetra
-private
-French window
-express
-ski boot
-pinto
-broad bean
-American crow
-screech owl
-snapper
-power cord
-Manx
-rambutan
-sun deck
-stonefish
-golden eagle
-national monument
-readout
-cork oak
-hacksaw
-beer can
-bathe
-tussock bellflower
-wet suit
-mihrab
-big game
-highlighter
-sprocket
-measuring worm
-grapefruit
-samovar
-distributor point
-steak knife
-incubator
-loon
-temporary hookup
-hippodrome
-hot spring
-spacesuit
-flea market
-clay pigeon
-catbird
-earmuff
-tetherball
-yellowfin
-cellophane
-lanolin
-clapperboard
-velveteen
-police dog
-cashew
-sequencer
-mango
-duplex house
-bazaar
-Golden Delicious
-red carpet
-collet
-kickstand
-broadloom
-diskette
-tank engine
-compact
-diesel-electric locomotive
-whale shark
-water moccasin
-mountain avens
-tropic bird
-ginkgo
-ski cap
-fixative
-glockenspiel
-chopine
-ethernet
-herring gull
-skeleton key
-finger paint
-conference table
-great crested grebe
-harbor
-white-crowned sparrow
-Bullock's oriole
-guestroom
-boutique
-cable television
-roulette wheel
-Luger
-Latin American
-trumpeter
-blindfold
-baby
-freshwater bass
-home plate
-bonefish
-giant sunflower
-giant tortoise
-planking
-pigeon hawk
-oceanfront
-door
-bazaar
-common wasp
-conformation
-kick starter
-kid glove
-corydalis
-shuttlecock
-writing desk
-ivory gull
-shirttail
-diving suit
-weka
-downy birch
-altar
-wild sage
-tufted puffin
-cabinet
-Orpington
-cineraria
-bottom
-dial
-coracle
-resort hotel
-soap dish
-spotted owl
-billiard room
-ghetto blaster
-red-breasted nuthatch
-hatchling
-chalet
-bracteole
-crusher
-mixer
-net melon
-farmhouse
-Dutch oven
-transept
-penlight
-palmyra
-stewing pan
-solar cell
-crochet needle
-black-winged stilt
-germander speedwell
-crinkleroot
-truncheon
-bunchberry
-hatchback
-sounding board
-mixing faucet
-chess master
-bisque
-Brie
-Sitka spruce
-pawn
-Mexican-American
-space rocket
-choreographer
-collared peccary
-duffel
-nacho
-patchcord
-carpet snake
-omnivore
-watering can
-hall of residence
-streamer fly
-sunroof
-great grandson
-oil refinery
-billiard player
-ivy geranium
-key palm
-pinwheel
-yellow-shafted flicker
-purple onion
-soldering iron
-condominium
-fishing gear
-heat pump
-marine iguana
-cuckoo clock
-Bletilla striata
-headrest
-spotted salamander
-field hockey ball
-pound
-carboy
-vertical stabilizer
-groundsheet
-cinnamon bread
-acorn squash
-sheathing
-lakefront
-Jeffrey pine
-synthesizer
-olive
-apple
-pannier
-ponderosa
-Jew's-ear
-latch
-equatorial
-metasequoia
-permit
-bloomers
-town hall
-fava bean
-casino
-bier
-jampot
-common snapping turtle
-clary sage
-oatmeal
-Dutchman's breeches
-massif
-Guyanese
-heifer
-handball
-sweat suit
-pomelo
-Iceland moss
-customhouse
-sandbag
-archer
-gyrfalcon
-sword cane
-marmite
-whole snipe
-blue crab
-sugar spoon
-brownstone
-chicken wire
-lizardfish
-dump truck
-chicken yard
-chamois
-electric
-idle pulley
-jujube
-wrestling mat
-aoudad
-Burmese cat
-water shamrock
-dormitory
-Unknown Soldier
-hearse
-bumper
-clipper
-desert pea
-critter
-semitrailer
-backboard
-common St John's wort
-Atlantic manta
-song thrush
-jukebox
-quoin
-eastern chipmunk
-copper beech
-paintball gun
-bull
-package store
-fraise
-royal poinciana
-niqab
-traction engine
-objective
-day nursery
-ski lodge
-orphan
-summer house
-cereal box
-router
-sleuth
-jodhpur
-polyp
-croquet
-sport kite
-green onion
-tulle
-etagere
-tussock caterpillar
-rest house
-elderberry
-bridal wreath
-Torrey pine
-silver wattle
-kidney bean
-pentode
-laelia
-Allen wrench
-sporran
-red drum
-tricot
-heterodyne receiver
-magazine rack
-stone curlew
-trawler
-suckling
-niblick
-sandwich plate
-double door
-Togolese
-pitching wedge
-desert tortoise
-cloth cap
-date palm
-webbing
-jumper
-frogmouth
-copperhead
-covered couch
-black mallee
-riser
-scraper
-gauntlet
-pantheon
-food court
-muntjac
-grocery bag
-bread-bin
-transmission shaft
-primigravida
-window seat
-crab apple
-seat
-Fresnel lens
-dendrobium
-hatchback
-little theater
-butter dish
-back porch
-umbrella tree
-carrot
-seventy-eight
-coconut
-music stool
-Tesla coil
-bay willow
-American basswood
-sabot
-wheel and axle
-gazette
-lute
-bassinet
-hart
-mecca
-breadbasket
-silverfish
-handball
-Scotch pine
-box camera
-stately home
-Hereford
-tread
-single-breasted jacket
-desk phone
-deodar
-professional boxing
-fly casting
-box wrench
-black oak
-martello tower
-red campion
-bullock
-sweet William
-bay leaf
-dollhouse
-flounder
-fox hunting
-beanbag
-king mackerel
-rouge
-film advance
-common mallow
-parasitic jaeger
-satellite receiver
-nurse shark
-chesterfield
-tomatillo
-plimsoll
-hatbox
-bloomer
-foul-weather gear
-longleaf pine
-horse mackerel
-tree lizard
-bark
-belfry
-Treasury
-perch
-purple finch
-stag beetle
-fragrant orchid
-tachymeter
-tadpole
-cookie jar
-knee piece
-agueweed
-bones
-chick
-golf glove
-toothpick
-taboret
-rotor blade
-field artillery
-purple willow
-redhead
-spark plug
-guava
-voice mail
-cross
-butterfly valve
-star magnolia
-olive
-room light
-Australian turtledove
-embassy
-Iraqi
-singles
-nestling
-spinning rod
-radial engine
-rowan
-sandbox
-boss
-moccasin flower
-veneer
-mint
-American chestnut
-white whale
-CPU board
-florist
-press box
-hurricane lamp
-giant kangaroo
-greater whitethroat
-winter jasmine
-blue
-department store
-southern red oak
-saber saw
-corn muffin
-bellbottom trousers
-toaster oven
-red eft
-condominium
-galago
-sunbather
-redpoll
-common European earwig
-songbird
-linnet
-light meter
-bracer
-tepee
-gumbo
-water glass
-roofing
-spathiphyllum
-shofar
-sand lizard
-washroom
-Brussels carpet
-brachyuran
-home room
-floatplane
-knee brace
-solar heater
-felucca
-gas ring
-maguey
-manse
-blue columbine
-cuppa
-cigar band
-male orchis
-mudskipper
-couscous
-Chinese parasol tree
-dude ranch
-banyan
-gopher snake
-sundrops
-aviary
-African daisy
-missel thrush
-Photostat
-stone pine
-circus tent
-tangle
-printer cable
-grease-gun
-rose chafer
-light pen
-plantain
-hearth
-bullfinch
-post oak
-slow loris
-Newtonian telescope
-head
-punt
-spindle
-New England aster
-spotted sandpiper
-pond pine
-grass skirt
-bug
-black rat snake
-tabasco
-bull shark
-tennis camp
-scrambler
-popinjay
-bing cherry
-ministry
-cash register
-redheaded woodpecker
-kameez
-farmer's market
-roan
-harpy
-European toad
-pizzeria
-camshaft
-hemp nettle
-chicken coop
-cottage pink
-daybed
-observatory
-airdock
-mountain devil
-newsstand
-kingfish
-snow gum
-jackdaw
-lacquerware
-peeler
-miro
-sister ship
-damask rose
-pack
-snowshoe
-Liberian
-paramecium
-tidytips
-professional tennis
-bookend
-wood swallow
-cayuse
-cranberry
-rock squirrel
-steak au poivre
-soul patch
-female mammal
-sash fastener
-songwriter
-oxeye daisy
-apse
-floor joist
-hand towel
-wheatear
-cero
-soul mate
-golden fig
-bus stop
-psycholinguist
-convenience store
-manor hall
-mountain sandwort
-Euopean hoopoe
-haricot vert
-mausoleum
-violist
-flashlight battery
-chard
-fixer-upper
-bank martin
-testudo
-diving duck
-kohlrabi
-Omani
-sphygmomanometer
-greyhound racing
-chestnut
-rattlesnake plantain
-chaffinch
-wolf pup
-teakettle
-cairn
-souk
-resident commissioner
-chuckwalla
-gaiter
-capercaillie
-liver chestnut
-bean sprout
-land line
-ambassador
-green pepper
-common chickweed
-Sharpie
-Oriental arborvitae
-oncidium
-pallone
-currawong
-sweet alyssum
-fire tower
-eyebrow pencil
-redfish
-apricot
-clementine
-blucher
-wigwam
-pangolin
-buggy
-common oak
-jumbojet
-laser
-cigarette holder
-racquetball
-georgette
-cleft
-scouring pad
-drum printer
-pond scum
-American red squirrel
-caranday
-swamp willow
-blindworm
-brook trout
-defense system
-nyala
-three-way calling
-mizzen
-shuttle
-African lily
-Oregon white oak
-rain tree
-fuel gauge
-oriental cherry
-wahoo
-pear
-jungle gym
-bass fiddle
-outrigger
-angelfish
-Old World coot
-lime
-battlement
-yarmulke
-herpes varicella zoster
-burp gun
-Alpine glacier
-stun gun
-pilot boat
-Southern crab apple
-bushtit
-pullet
-polo pony
-jackfruit
-raw vegetable
-French marigold
-golden shower tree
-spike lavender
-wahoo
-brass knucks
-cabbage palm
-diesel-hydraulic locomotive
-red jungle fowl
-prairie sunflower
-rye
-loofa
-icecap
-shade tree
-secretary bird
-saffron
-cos
-muskrat
-videodisk
-Carolina wren
-candy bar
-Bohemian waxwing
-flowering almond
-cold frame
-raglan
-pine siskin
-quince
-western red cedar
-red maple
-adobe
-agora
-kumquat
-tenement
-bantam
-bayberry
-water jump
-great granddaughter
-snips
-porcupinefish
-brochette
-love-in-a-mist
-Iceland poppy
-common sage
-pace car
-camel racing
-slipcover
-nopal
-shoehorn
-calypso
-rhea
-in-basket
-maple syrup
-cold chisel
-Pacific ridley
-dietary
-aperture
-lapin
-rock hyrax
-house wren
-litchi
-ragged robin
-control center
-shoebox
-arabesque
-eider
-silver birch
-bantamweight
-ax head
-softball
-blue gum
-Bechtel crab
-tomato sauce
-green douglas fir
-sweet gum
-macaroni salad
-red phalarope
-budgerigar
-Bedford cord
-Uzi
-green woodpecker
-ohmmeter
-bacon-lettuce-tomato sandwich
-hackney
-Easter egg
-motmot
-red pine
-opium poppy
-gat
-pussy willow
-greater scaup
-ocelot
-persimmon
-western hemlock
-carambola
-pinion
-Malcolm stock
-bobsled
-larkspur
-wood drake
-pinetum
-red gum
-draft beer
-funnel
-terrarium
-Pinot blanc
-doodlebug
-brittle star
-salsa
-cantaloup
-pollack
-stockpot
-eastern hemlock
-rock wren
-burqa
-squash
-aircraft engine
-billy
-flamingo flower
-odontoglossum
-old squaw
-redstart
-sheepskin coat
-mate
-flathead catfish
-gentianella
-bilberry
-bog rein orchid
-incense cedar
-mew
-Colorado spruce
-cob
-portmanteau
-grenadine
-common ginger
-masdevallia
-compound microscope
-sobralia
-white fungus
-guppy
-chapterhouse
-honey
-green frog
-sea swallow
-African marigold
-astrolabe
-verdigris
-yellowhammer
-carrot juice
-oxlip
-medicine ball
-highboy
-grass frog
-gamebag
-surgery
-mincer
-mulloway
-cactus wren
-box office
-resonator
-table-mountain pine
-European curlew
-supernova
-cabbageworm
-peach
-plane seat
-asp
-Yquem
-tomato hornworm
-rook
-quadruped
-chador
-micrometer
-dabchick
-Afro-wig
-balsam fir
-bucket seat
-sage green
-macon
-blue poppy
-chinquapin oak
-black pine
-spinach
-chrysalis
-carnauba
-tee
-bearberry
-shirt button
-tree of heaven
-southern white cedar
-covered wagon
-brood hen
-spadix
-European catfish
-winter wren
-bulldog clip
-carpetbag
-study hall
-chino
-simian
-closeup lens
-cookie cutter
-grapefruit
-mandola
-sassaby
-Allegheny plum
-piaffe
-scorpion fly
-booby
-draft animal
-field tent
-cumin
-laurel oak
-smooth-leaved elm
-American arborvitae
-American toad
-grinding wheel
-mountain ash
-cuttlefish
-pipistrelle
-parer
-safety rail
-Clark's nutcracker
-side-blotched lizard
-giant hornet
-wicket
-dugout
-electric toothbrush
-dhow
-common four-o'clock
-long-eared owl
-anchor
-near beer
-tansy
-creme caramel
-guided missile frigate
-shelduck
-durian
-compact
-iron tree
-shiitake
-polo
-camouflage
-pedal pusher
-salon
-tangerine
-lacebark
-Swiss mountain pine
-goalpost
-poolroom
-space capsule
-wild cherry
-dress hat
-wave
-raglan sleeve
-cassia
-Jerusalem artichoke
-cabbage palmetto
-marsh harrier
-American redstart
-sea squirt
-cliff diving
-sparrow hawk
-watch cap
-frankfurter bun
-police boat
-flash camera
-neem
-eastern meadowlark
-Italian cypress
-orb-weaving spider
-graniteware
-sewing basket
-latex paint
-rock dove
-stator
-leaf lettuce
-roulette
-broadcloth
-Spork
-panicle
-sternwheeler
-cider vinegar
-brown creeper
-cowfish
-closed gentian
-chickpea
-port
-pimento
-sheeting
-matilija poppy
-hawk owl
-guava
-papaya
-huisache
-European shrike
-racing skiff
-yellow warbler
-gumbo-limbo
-North Carolinian
-staysail
-court
-iced coffee
-money belt
-shaver
-Psychopsis papilio
-sumo ring
-refection
-kingfish
-clock pendulum
-greater butterfly orchid
-disk harrow
-tawny eagle
-polyphemus moth
-pieplant
-Nicaraguan
-bocce ball
-California box elder
-porbeagle
-crown of thorns
-Mexican sunflower
-fennel
-stream orchid
-slip ring
-white fir
-fold
-moss campion
-fairy ring
-hose
-pony-trekking
-western larch
-meadow pipit
-Cape May warbler
-longan
-bookmobile
-junk shop
-lemon shark
-smelling bottle
-solan
-widow
-sea pen
-universal joint
-day game
-goldcrest
-maiden pink
-biographer
-rotunda
-oriel
-arranger
-gambrel
-Angora
-fen orchid
-leading rein
-Wilson's snipe
-European nuthatch
-natterjack
-athletic supporter
-mouflon
-emergency room
-swallow-tailed coat
-western meadowlark
-feather star
-Navy SEAL
-toilet bag
-loquat
-lesser butterfly orchid
-thumbhole
-breathalyzer
-featherweight
-collards
-mayfly
-confessional
-mountain ebony
-redwing
-Norway maple
-refractometer
-stagecoach
-gasoline gauge
-octopus
-baker
-Rhode Island red
-European tortoise
-cardiologist
-Punjabi
-Arkansas kingbird
-tamarind
-drum brake
-flash
-yellowtail
-stokes' aster
-emperor
-free house
-sour gum
-ruddy duck
-hamadryad
-command module
-tinamou
-Norway lobster
-washstand
-European hornbeam
-roaster
-black-necked grebe
-tallgrass
-leopard lizard
-anastigmat
-Blackburn
-deutzia
-ground rattler
-Christmas fern
-wild pink
-sesame seed
-carrycot
-Italian parsley
-nectar
-roll-on roll-off
-true laurel
-anisette
-candy corn
-flowering maple
-revers
-dun
-tobacco hornworm
-common sunflower
-common grape hyacinth
-cardiograph
-electric meter
-herb Paris
-goalmouth
-spruce grouse
-canopy
-wind poppy
-stemma
-gateleg table
-lumper
-speckled rattlesnake
-gudgeon
-rough-legged hawk
-internal drive
-pomelo
-piece de resistance
-storm door
-clementine
-Japanese pink
-settler
-yellow jacket
-Fraser fir
-royal palm
-cicada killer
-cayenne
-guava
-bluewing
-red baneberry
-lesser yellowlegs
-cache
-bog rose
-sparring partner
-ski jumping
-sherry
-glacier lily
-beer mat
-shredder
-American widgeon
-protectionist
-green olive
-black-tailed deer
-Alpine fir
-dispatch case
-whipping cream
-African daisy
-cantilever bridge
-maraschino
-rhea
-ink bottle
-dacha
-hagberry tree
-lesser rorqual
-orchard oriole
-candidate
-cuticle
-breadfruit
-fishbowl
-giant puffball
-closed gentian
-Joshua tree
-tie rod
-beard lichen
-flame tree
-stegosaur
-acerola
-Swan River daisy
-common murre
-flowering almond
-protegee
-loggerhead shrike
-Wilson's warbler
-Japanese honeysuckle
-basilisk
-skimmer
-hybrid tuberous begonia
-pumpkin ash
-chafing dish
-collared lizard
-iced-tea spoon
-scrubbird
-Iceland poppy
-grey kingbird
-wallflower
-slick
-diesel
-Swiss pine
-ethernet cable
-ketch
-lightship
-black cherry
-swordtail
-Monterey cypress
-lightweight
-Floridian
-Sabine
-stall
-contact
-viola da gamba
-hemstitch
-upland sandpiper
-box spring
-sassafras
-radome
-lesser scaup
-bluefin
-yellow-bellied sapsucker
-armored car
-cabin class
-Moorish arch
-webcam
-aquavit
-overall
-sergeant major
-soft shield fern
-gin and it
-bobolink
-subcompact
-falconer
-black morel
-roadrunner
-lab bench
-thong
-coffee urn
-weeping beech
-caladenia
-southern live oak
-scanner
-wine vinegar
-common speedwell
-European roller
-fuji
-snag
-piping plover
-concertina
-secateurs
-meat thermometer
-supercomputer
-funnel
-dais
-western fence lizard
-spruce pine
-pommel horse
-Cassegrainian telescope
-pitta
-India-rubber tree
-mangosteen
-tamp
-aposematic coloration
-dustcloth
-birth
-Atlas cedar
-reed bunting
-jabiru
-sainfoin
-press photographer
-golden oriole
-laryngoscope
-thermal printer
-winder
-doubles
-cricket ball
-dabbling duck
-tonic
-Buddhist
-Morris chair
-swatter
-quaking aspen
-ancient pine
-American larch
-evaporative cooler
-click beetle
-yellow-breasted chat
-souchong
-bluegill
-pied-billed grebe
-tricorn
-spring beauty
-southern magnolia
-rowel
-chili
-hard roll
-flathead
-satsuma
-gangplank
-bourguignon
-cockfighting
-greenwing
-plum tomato
-fly orchid
-gnatcatcher
-spotted eagle ray
-ovenbird
-brassavola
-mocha
-candy cane
-afterburner
-thriftshop
-study
-winter crookneck
-grinder
-muskellunge
-sacred ibis
-inverter
-sandwort
-deer fern
-stair-carpet
-Cotes de Provence
-ovenbird
-rex begonia
-American woodcock
-poison ash
-lowland fir
-pawpaw
-loblolly pine
-kinkajou
-European hackberry
-pest
-coralwood
-Bedouin
-acetate rayon
-snuffbox
-radiator cap
-basket oak
-table-tennis racquet
-smew
-midge
-telescopic sight
-radish
-great burdock
-separate
-damask violet
-broadbill
-bourbon
-blacktip shark
-gift shop
-khimar
-date
-woodland caribou
-policeman bird
-grey birch
-American elm
-strawflower
-officiant
-hart's-tongue
-straight razor
-Spanish elm
-radicchio
-white croaker
-vicuna
-soft-shell clam
-flannel
-adonis
-bonito
-kittiwake
-English walnut
-soldierfish
-hipflask
-spotted crake
-Streptopelia turtur
-American maidenhair fern
-corn cockle
-telephone cord
-canopy
-playback
-diocesan
-marsh orchid
-manakin
-purple grackle
-cob
-fishmonger
-otoscope
-vermillion flycatcher
-inhaler
-instar
-licentiate
-myrtle warbler
-goat herder
-benthos
-toggle
-drumhead
-piranha
-doorplate
-vault
-triptych
-red-necked grebe
-transporter
-vernier caliper
-flathead
-Portuguese man-of-war
-countrywoman
-vacation home
-Bactrian camel
-night-light
-module
-lemon curd
-carancha
-painted daisy
-bok choy
-ratatouille
-troll
-escarpment
-cinnabar
-computerized axial tomography scanner
-lychgate
-sowbread
-bedside
-guided missile cruiser
-reel
-cleat
-hemostat
-blue shark
-Seven Wonders of the Ancient World
-motorized wheelchair
-pillow block
-horned puffin
-prickly pear
-electric range
-mother's daughter
-vein
-Oregon maple
-bird dog
-faceplate
-wren warbler
-feather reed grass
-common alder
-Adam's needle
-straitjacket
-organ-grinder
-gantry
-bikini pants
-peristyle
-herpes
-terry
-toad lily
-celandine
-red-breasted sapsucker
-bragger
-green peafowl
-fuschia
-quoits
-house martin
-dome
-herpes simplex 1
-touraco
-meeting house
-vacuum gauge
-cat's-ear
-crisphead lettuce
-carpet moth
-European rabbit
-puff adder
-Old World scops owl
-fire pink
-fruit punch
-ant bear
-black walnut
-stroboscope
-white mangrove
-pine grosbeak
-cast
-check-in
-ring-necked parakeet
-matai
-shingle oak
-fieldwork
-rue anemone
-landing net
-ouzo
-herringbone
-lyceum
-hydrogen bomb
-mullein pink
-masher
-evening grosbeak
-water vole
-livingstone daisy
-tomatillo
-cavalier hat
-interphone
-wild lupine
-goosefish
-sugar maple
-plantain
-white dead nettle
-Monterey pine
-bugle
-veloute
-marsh gentian
-Bermuda buttercup
-alehouse
-Peter Pan
-thong
-LP
-tulip tree
-scanner
-scarlet tanager
-music hall
-angel shark
-pecan
-eight ball
-rosy boa
-outboard motorboat
-garage
-fanlight
-black cottonwood
-notornis
-mountain fern
-lunar crater
-reddish orange
-whitetip shark
-executant
-European ladies' tresses
-washboard
-revolving door
-case knife
-balloonfish
-greater kudu
-tarpan
-cog
-wet fly
-Irish soda bread
-basement
-broken arch
-canopic jar
-muscat
-kazoo
-bobsledding
-loaner
-black guillemot
-English saddle
-garlic mustard
-Foucault pendulum
-mulberry
-clotted cream
-dove's foot geranium
-Atlantic ridley
-convector
-ground floor
-European wildcat
-poinsettia
-hideaway
-great barracuda
-black beech
-bushy aster
-cornflower
-tam
-true slime mold
-carving knife
-holly fern
-railroad tunnel
-crimson clover
-disposal
-etamine
-suspension
-plasmodium
-political scientist
-minnow
-Spanish rice
-twist bit
-subway train
-Scleroderma citrinum
-saw palmetto
-console
-gimlet
-hand pump
-waratah
-rock rattlesnake
-keel
-server
-curlew sandpiper
-hone
-sable antelope
-inkle
-photostat
-foresail
-sallet
-tiger salamander
-chutney
-onlooker
-Exmoor
-tiramisu
-drawing room
-battery
-sour orange
-juniper berry
-beeper
-funeral home
-fescue
-Maksutov telescope
-ranch house
-jai alai
-carob
-socket
-popcorn
-sandbar shark
-pipal
-summer tanager
-oast
-skipjack
-rolling stock
-dropper
-great snipe
-turnip greens
-cowpea
-honeycomb
-ichneumon fly
-maternity hospital
-harp seal
-nylon
-bomb shelter
-horse tick
-litchi
-camel's hair
-mimosa
-bur oak
-anvil
-belay
-pinhead
-continental breakfast
-burglar alarm
-Mojave rattlesnake
-auxiliary storage
-lightwood
-ratepayer
-cecropia
-retractor
-quadrate
-pepper tree
-Venus' slipper
-abattoir
-strawflower
-firewater
-purple saxifrage
-black rat
-pack
-pepper pot
-mayweed
-winger
-whitetip shark
-great yellow gentian
-snowdrop anemone
-garden angelica
-soy sauce
-white poplar
-inkwell
-crouton
-gas gun
-honey locust
-house of cards
-ice maker
-moquette
-arrack
-casualty
-butterfly orchid
-eau de vie
-mosquitofish
-prairie smoke
-haft
-horseshoe
-steel
-peach orchard
-Mexican hat
-encaustic
-shoe
-pennywhistle
-sweet woodruff
-hull
-doorsill
-globe amaranth
-day school
-housedog
-crown princess
-oxbow
-maxi
-positron emission tomography scanner
-compere
-European turkey oak
-peanut
-sentry box
-house physician
-hot line
-loquat
-rove beetle
-riband
-flowering fern
-fan vaulting
-ceibo
-bongo
-bat boy
-omelet pan
-European ash
-breadwinner
-gaff topsail
-clerestory
-bushbuck
-bluethroat
-khukuri
-Father
-portcullis
-candy egg
-brake lining
-lawn furniture
-buckskin
-garden pea
-Brazilian rosewood
-Italian bread
-horn poppy
-silk tree
-Christmasberry
-hotel-casino
-poplin
-false lupine
-desert sunflower
-mimeograph
-alpenstock
-cork tree
-cultivar
-common mosquito
-pollard
-black marlin
-understudy
-lancet window
-college
-breadfruit
-Herero
-Labourite
-bar printer
-squaw grass
-stelis
-firing chamber
-sycamore
-artificial horizon
-radiologist
-pansy orchid
-bicycle pump
-wraparound
-bell gable
-home computer
-orchard grass
-carving fork
-bergamot
-honeycreeper
-sewing room
-radiator
-core
-brown bat
-goose grass
-adjutant general
-Erlenmeyer flask
-massasauga
-tail rotor
-cardinal tetra
-Drambuie
-wine palm
-Sarcoscypha coccinea
-shantung
-Calvados
-garganey
-vicar
-house mouse
-creeping oxalis
-digital subscriber line
-cedar elm
-backgammon board
-blackberry-lily
-pallid bat
-New Zealander
-Barbadian
-rose geranium
-European spider crab
-gharry
-electric hammer
-mustard
-Chinese lantern
-laundry cart
-filament
-mozzarella
-gooseberry
-sukiyaki
-porkpie
-culvert
-altazimuth
-plum pudding
-serin
-Spanish dagger
-Asian crocodile
-crevalle jack
-mascara
-pig bed
-alderman
-northern shrike
-Sufi
-purple-fringed orchid
-derringer
-linseed
-hockey skate
-bell jar
-Japanese wistaria
-mantled ground squirrel
-western toad
-lieutenant commander
-mechanical piano
-ovoid
-paddlefish
-demijohn
-coast live oak
-brick
-gearset
-tailstock
-phonograph needle
-winery
-tuberose
-mother's boy
-shot tower
-crucian carp
-carpet pad
-lamb's-quarter
-Menorah
-common white dogwood
-hypanthium
-rosebay
-wild medlar
-soil horizon
-sweet orange
-bitterroot
-hand glass
-cloisonne
-towpath
-gum ball
-margay
-carambola
-bolt cutter
-charger
-vibraphone
-gueridon
-elephant tree
-wood-frog
-ash grey
-duffel coat
-third base
-chunga
-glebe house
-lake trout
-encephalartos
-Japanese oak
-northern red oak
-pruner
-blue orchid
-Biloxi
-western wood pewee
-corselet
-alabaster
-anechoic chamber
-grass pink
-wax begonia
-blue daisy
-pennyroyal
-Asian tiger mosquito
-cheese souffle
-flat bench
-caramel
-sump pump
-bush violet
-common fennel
-corner
-skullcap
-asparagus fern
-white mangrove
-calceolaria
-sateen
-saltbox
-hollowware
-head nurse
-coal miner
-mountain lily
-tufted vetch
-European perch
-line officer
-steamer
-stickball
-shin guard
-cauliflower
-Monegasque
-hatpin
-wolffish
-trackball
-khaki
-arthrogram
-rocket larkspur
-naval commander
-Gemini
-ski binding
-department head
-Chenin blanc
-wingstem
-knothole
-aerides
-sweet bay
-tautog
-gangway
-waterspout
-Hudsonian godwit
-armyworm
-incinerator
-kidney vetch
-pine nut
-cypress vine
-hip tile
-sorrel tree
-relay
-bench press
-Kentucky coffee tree
-dobson
-sapling
-false lily of the valley
-veld
-phaius
-vitamin B2
-beaker
-wall tent
-sieva bean
-dusty miller
-sewing kit
-cavalry horse
-diaper
-butterfly pea
-Spam
-saddlebill
-pearly everlasting
-kowhai
-Sister
-moneywort
-organdy
-pine marten
-bareboat
-hot-water bottle
-baby blue-eyes
-silver lime
-common cotton grass
-malmsey
-blue pea
-baggage car
-pineapple
-folding saw
-cotton rose
-brawler
-black duck
-Weizenbock
-pool player
-Gujarati
-wild duck
-purple sage
-sage grouse
-mail train
-arm guard
-short-spurred fragrant orchid
-queen
-eparchy
-spring peeper
-ortolan
-shoulder
-fighter pilot
-American beech
-snowcap
-novitiate
-roller
-butcherbird
-canyon oak
-brompton stock
-firebrick
-rudder
-light cream
-Primus stove
-nonsmoker
-probationer
-harp
-kosher
-surcoat
-videotape
-zebu
-first class
-yam
-car
-rissole
-miso
-funambulism
-attic
-curling iron
-shutter
-encolure
-split-pea soup
-yellow rocket
-gas oven
-ultracentrifuge
-chamomile
-canteen
-eyeliner
-yellow squash
-Irish stew
-collar
-doublet
-machinist
-septic tank
-snap bean
-Polyporus squamosus
-western tanager
-creeping St John's wort
-back
-sinkhole
-perforation
-Romanian
-epergne
-fez
-comfrey
-sidecar
-beach pea
-screen door
-instigator
-plughole
-woodbine
-pigweed
-hip pocket
-common scoter
-squeegee
-Surinam cherry
-porringer
-body stocking
-eatage
-shallot
-enlarger
-common canary
-trophy case
-gun case
-plow horse
-hot plate
-pearl oyster
-margarita
-madras
-backspace key
-pigeon guillemot
-pajama
-buckthorn berry
-homestead
-bedbug
-Linotype
-trundle bed
-granadilla
-theremin
-chin rest
-bouillabaisse
-tumble-dryer
-truffle
-cassava
-kurrajong
-gyroscope
-European silver fir
-C-clamp
-politician
-green soybean
-exponent
-flame tree
-scissortail
-achimenes
-crown daisy
-soft tree fern
-spaghetti squash
-pale violet
-beaver
-dashiki
-washboard
-driving wheel
-sack
-foulard
-sputnik
-boatbill
-English elm
-sack coat
-grog
-golliwog
-Malayan tapir
-May wine
-calash
-stile
-windjammer
-American sycamore
-rotor head
-fast food
-balata
-dragonet
-Emmenthal
-metronome
-negative
-meadow saxifrage
-rabbit ears
-chenille
-round
-hobby
-crankshaft
-Wilson's phalarope
-Murphy bed
-soil pipe
-forecourt
-policyholder
-tarmacadam
-loyalist
-gyro
-Queen's crape myrtle
-shortcake
-apple butter
-pumpkinseed
-heronry
-yellow perch
-baggage claim
-escarpment
-diaphragm
-mescal bean
-shunter
-flax
-columbarium
-Joe-Pye weed
-Neandertal man
-casement
-hole-in-the-wall
-Verdicchio
-futurist
-eaglet
-tassel hyacinth
-pup tent
-fawn lily
-cabbage palm
-pogonia
-hospital ship
-water mill
-Oregon grape
-lentil
-grindstone
-banana split
-inkberry
-coonskin cap
-bazooka
-wrap
-anise hyssop
-Java sparrow
-red-eyed vireo
-common opossum
-clintonia
-bustle
-booster
-tribesman
-soy
-panhandle
-jaboticaba
-locking pliers
-Sauvignon grape
-ghat
-screw
-oximeter
-white croaker
-saucepot
-eggbeater
-reticule
-cabbage bark
-looking-glass plant
-head gasket
-California sycamore
-cowbell
-Aleuria aurantia
-Herr
-lever
-spider orchid
-cashew
-shift key
-solar house
-wood chisel
-white
-mantilla
-stamp
-bolero
-rear admiral
-garden rake
-Lao
-crowbar
-lapdog
-buttermilk biscuit
-yellow bedstraw
-pickerel frog
-dowel
-serjeant-at-law
-mill-hand
-lambrequin
-state treasurer
-red silk-cotton tree
-coiffeur
-star anise
-shoulder pad
-marshal
-sitar player
-gown
-ground cedar
-hedge maple
-caddie
-pitahaya
-corn marigold
-stick cinnamon
-woodland star
-Eurasian green toad
-anti
-blueweed
-medicinal leech
-gaur
-chocolate kiss
-kit fox
-mother
-butte
-audio CD
-blast furnace
-vitamin D
-nutgrass
-cornice
-black sheep
-hearing aid
-lingonberry
-quad
-lentil
-riding crop
-pratincole
-pentagon
-sea lavender
-nerita
-flatmate
-catboat
-water clover
-angiopteris
-mushy peas
-crown imperial
-music school
-woodshed
-platy
-Turk's-cap
-rundle
-reading teacher
-hardtack
-balloon sail
-oriental spruce
-bluefish
-white mulberry
-horned violet
-satin bowerbird
-treasure flower
-sustaining pedal
-mimosa
-spurge nettle
-sea green
-hasp
-lederhosen
-pink cockatoo
-long johns
-basket weave
-freewheel
-thrust bearing
-timber tree
-orphan
-falafel
-common camas
-bird of passage
-bird's foot trefoil
-electric eel
-fizz
-grape arbor
-serape
-brace
-hazelnut
-kylix
-horse mackerel
-cassia bark
-lizard orchid
-spat
-Brown Swiss
-pocket flap
-pillory
-purplish blue
-rolling mill
-tappet
-broccoli rabe
-semi-detached house
-mushroom coral
-fly orchid
-nougat bar
-ball hawk
-sand wedge
-shirred egg
-black locust
-strip lighting
-drop scone
-brush turkey
-ball
-tragopan
-dallisgrass
-tuatara
-great knapweed
-potentiometer
-Kiliwa
-Pacific bottlenose dolphin
-accelerator
-Darwin tulip
-osteopath
-Arizona cypress
-manna ash
-butterbur
-cornelian cherry
-American holly
-nopal
-tanker
-foreshore
-ditty bag
-gas lamp
-safety razor
-chanter
-fomite
-chip
-striped killifish
-catalytic converter
-plaice
-dusty miller
-takin
-gerenuk
-corn chamomile
-Japanese pagoda tree
-boneset
-common osier
-Guinean
-taro
-plotter
-celandine poppy
-churn
-steenbok
-edible mussel
-sensitive fern
-triode
-black raspberry
-zoo keeper
-feather ball
-dredger
-starlet
-cornpone
-coat button
-rosinweed
-toy Manchester
-crested cariama
-finger food
-basilisk
-shotgun shell
-comfort food
-mountain hemlock
-candytuft
-Stilton
-record changer
-anklet
-ball valve
-Mediterranean snapdragon
-BVD
-sand cat
-Galloway
-nutmeg
-water-mint
-woodwaxen
-citron
-ark shell
-federalist
-drone
-cheekpiece
-hyperbaric chamber
-addax
-field-emission microscope
-synchronous converter
-men's room
-medlar
-electronic fetal monitor
-Sazerac
-false indigo
-roof
-passe-partout
-meadow spittlebug
-Phytophthora infestans
-oast house
-hedge nettle
-voting booth
-slender salamander
-telephone jack
-true bug
-scouring rush
-Scotch egg
-matchbook
-aperea
-cytomegalovirus
-garlic press
-cove
-whitebark pine
-Slovene
-narrow wale
-mother's milk
-Audubon's warbler
-prickly poppy
-cowl
-tailorbird
-mud brick
-bamboo palm
-welt
-Afghan
-Virginia spring beauty
-dinner bell
-night jasmine
-fly rod
-microtome
-aerie
-carinate
-picker
-brick trowel
-loving cup
-swathe
-green mayonnaise
-rivet
-bandbox
-newsroom
-tea tortrix
-bobby
-gig
-hush puppy
-garlic chive
-piston rod
-aspidistra
-bluejack oak
-harvest-lice
-strap hinge
-sour mash
-macadamia nut
-histiocyte
-fan belt
-shelf bracket
-abelia
-Hottentot fig
-fish chowder
-abettor
-compote
-beige
-dioon
-hop
-haymaker
-oilskin
-magnetometer
-tool bag
-tambour
-call girl
-gringo
-fairy light
-broad-leaved plantain
-second base
-zebra mussel
-Japanese cedar
-pistia
-swamp chestnut oak
-cashmere
-double cream
-samisen
-lamb curry
-companion
-kapok
-julep
-sweet woodruff
-gardener
-jewfish
-inspector general
-collembolan
-wheel bug
-bass
-scrubland
-wryneck
-macrozamia
-trouser press
-clove
-tiger cowrie
-yawl
-collard
-dildo
-pony cart
-ormer
-annual
-tessera
-chancellery
-two-toed sloth
-queen
-old lady
-wringer
-spritzer
-baggage
-black mangrove
-black-eyed Susan
-semifinalist
-highlighter
-alfalfa
-Easter daisy
-escapement
-operating table
-neutral spirits
-bursar
-roble
-entablature
-girl wonder
-farm boy
-ring ouzel
-permanent press
-auklet
-beefsteak tomato
-gaming table
-tea bag
-manul
-giant bamboo
-Ozark chinkapin
-matzo
-furrow
-smoothhound
-CD-ROM drive
-powdery mildew
-copilot
-garden
-American merganser
-bunsen burner
-Asian longhorned beetle
-lead tree
-creeping buttercup
-Percheron
-back brace
-axseed
-cub
-soul food
-rabbi
-edelweiss
-mineshaft
-fox grape
-sandwort
-torque wrench
-leisure wear
-Mae West
-broccoli
-loach
-maraschino
-heavy cream
-silkworm
-cirque
-vintner
-whitewash
-butterfly pea
-two-toed sloth
-midiron
-ceriman
-Bulgarian
-operating microscope
-sambuca
-California fuchsia
-silver maple
-tangelo
-black bean
-lugsail
-starting gate
-leek
-sunflower seed
-fish fry
-clinker
-synagogue
-coscoroba
-brae
-uphill
-common limpet
-golden plover
-cedar of Lebanon
-amphibian
-Canary wine
-taipan
-agua
-feeder
-parallel
-mater
-pink calla
-meat counter
-yagi
-crab cactus
-cacao bean
-bowfin
-alley cat
-stonefly
-Eastern cottonwood
-vernier scale
-marginal wood fern
-dancing-master
-detective
-yam
-textile screw pine
-hooch
-spinet
-single prop
-sassafras
-goose barnacle
-triple cream
-China tree
-peeper
-dressmaker
-snatch block
-ironmongery
-dressing case
-creeping bellflower
-silver sage
-honeydew
-eastern red-backed salamander
-peg
-nombril
-danish
-mashie
-anarchist
-alligator snapping turtle
-shepherd
-American white pine
-runner
-chalice vine
-rheumatologist
-defibrillator
-yellow chamomile
-lemon balm
-peacekeeper
-native beech
-sandwich board
-Bavarian
-titrator
-paneling
-deer mouse
-poteen
-sugar snap pea
-meadow salsify
-town crier
-best
-basinet
-common myrtle
-night lizard
-cushaw
-Tampax
-camphor tree
-gentile
-orange peel
-putty knife
-pyromaniac
-Brummie
-fever tree
-double
-nest
-inferior
-cabbage tree
-graduated cylinder
-mucor
-woodborer
-earthwork
-potato salad
-four-hitter
-gooseberry
-water vole
-ziggurat
-grapefruit juice
-four-in-hand
-cranberry bush
-diode
-videotape
-Mohican
-niacin
-beetroot
-shirtsleeve
-cork tree
-two-eyed violet
-white ash
-drawing chalk
-baked Alaska
-bone-ash cup
-toastrack
-diastema
-bed jacket
-dwarf astilbe
-yellow honeysuckle
-cow pasture
-sheet pile
-saxhorn
-upholstery material
-California white oak
-Spanish bayonet
-horsemint
-littleneck
-deflector
-magician
-standard transmission
-blue marlin
-shallot
-feijoa
-collar
-board
-jump suit
-common staghorn fern
-priory
-Xhosa
-Loranthaceae
-barbecued wing
-barmaid
-spit
-lemon juice
-umbrella plant
-field pennycress
-centenarian
-queen bee
-fish stick
-black bread
-dirk
-secularist
-German American
-spotted weakfish
-iron foundry
-speed bump
-yellow-fever mosquito
-gag
-frame
-black-eyed pea
-alcoholic
-involucre
-sperm whale
-balanced diet
-wax bean
-butcher's broom
-winter heath
-Mainer
-Australian pine
-gas guzzler
-double-breasted jacket
-pod
-palo verde
-trimmer
-wattmeter
-dyer's woad
-crotalaria
-vine maple
-sulky
-jack pine
-thumb
-Wilton
-Panchen Lama
-welder
-badminton court
-business editor
-Arabian coffee
-Kamchatkan sea eagle
-foamflower
-steep
-plane
-freckle
-cerebral cortex
-Vouvray
-tea
-forest tent caterpillar
-neckerchief
-accelerator
-jig
-bridal wreath
-highball glass
-New England clam chowder
-beach strawberry
-call waiting
-baton twirler
-double boiler
-Dutch elm
-car bomb
-filmy fern
-breviary
-Florida gallinule
-dace
-parsnip
-riparian forest
-crescent
-earplug
-grab bar
-cusk
-foglamp
-screwtop
-black mangrove
-mascot
-Welsh poppy
-gas holder
-support hose
-salsify
-red beech
-Indian python
-caroler
-pineapple juice
-lowboy
-terra sigillata
-black olive
-hypodermic needle
-radio-phonograph
-moussaka
-miter joint
-creche
-tuning fork
-black wattle
-affiliate
-vertical tail
-kiwi
-red morning-glory
-piping crow
-runway
-Kashmiri
-studio apartment
-sea feather
-Judas tree
-boatbuilder
-corn earworm
-fallboard
-Victrola
-lechwe
-goat willow
-turret clock
-Canada anemone
-leaf lettuce
-savoy cabbage
-headpiece
-Lebanese
-fothergilla
-hemlock
-toolshed
-silver tree
-blue-headed vireo
-weatherman
-cylinder
-caltrop
-adjutant bird
-driving iron
-millet
-European woolly thistle
-rose apple
-clown
-schoolfriend
-eastern coral snake
-barbecue
-executive vice president
-long-billed marsh wren
-brittle bladder fern
-tank destroyer
-left-hander
-matting
-catchment
-balsa raft
-eastern fence lizard
-color tube
-corncrib
-electric typewriter
-westland pine
-elder statesman
-whey
-plonk
-mound
-cittern
-nest egg
-copyholder
-China aster
-basking shark
-gavial
-common duckweed
-vanilla orchid
-red-shafted flicker
-granadilla
-sylph
-sty
-vest pocket
-potherb
-little brown bat
-Trapezium
-ordinary
-adult
-purple-fringed orchid
-abseiler
-disco
-metal detector
-beefsteak fungus
-ilang-ilang
-barley grass
-hawser
-suture
-brake shoe
-staghorn coral
-barbecue sauce
-Browning machine gun
-sarcophagus
-disa
-oven thermometer
-rosemary
-track
-gorget
-quince
-royal
-piston ring
-teak
-pin cherry
-Komi
-walking fern
-sloe
-synchronous motor
-fire-bellied toad
-Teleprompter
-co-star
-cape gooseberry
-oscillograph
-bass clarinet
-cock of the rock
-Tyke
-showy milkweed
-safety valve
-branch water
-sweet marjoram
-hugger
-crampon
-fairy godmother
-band-tailed pigeon
-snow-on-the-mountain
-minibar
-foreland
-grosgrain
-dita
-rampion
-calligrapher
-jointed charlock
-master
-sheepshead
-barrelhouse
-Carolina allspice
-mastic
-brake pad
-whiskey sour
-casement window
-conveyer belt
-stolon
-pavonia
-shinny
-witch elm
-logwood
-hostel
-pageboy
-vesper sparrow
-pyrrhuloxia
-common carline thistle
-wafer
-boysenberry
-screw augur
-hack
-American white oak
-governor general
-Mother Hubbard
-game fowl
-drosophila
-delft
-nymphet
-tollbooth
-chough
-Russian dressing
-plum tomato
-American saddle horse
-dusky salamander
-black medick
-red valerian
-cordage
-Elastoplast
-conacaste
-backlighting
-swell
-riveting machine
-cowpen daisy
-openbill
-water speedwell
-picture hat
-crested myna
-servo
-bletia
-garden trowel
-muscadine
-common caper
-false lily of the valley
-aralia
-sharp-tailed grouse
-cigar smoker
-bandoneon
-Chinese alligator
-crazy
-point lace
-charcoal
-Texas horned lizard
-marinara
-backstay
-Gatling gun
-piston
-game fish
-fall armyworm
-grammarian
-beer hall
-guadalupe fur seal
-sugar palm
-peanut
-velvet ant
-light machine gun
-rya
-cling film
-adobo
-myrtle oak
-angelica
-balsam apple
-windbreak
-brother-in-law
-snap brim
-automobile factory
-clavichord
-dusky shark
-edible banana
-altar boy
-California lady's slipper
-schoolbag
-wax bean
-Atlantic walrus
-bullpen
-straw wine
-thatch palm
-potluck
-tamarind
-charcuterie
-sod house
-tie rack
-liebfraumilch
-clinician
-scarlet lychnis
-Spanish iris
-bread knife
-water oak
-bedpan
-Angolan
-bassarisk
-Alaska fur seal
-African wild ass
-milk float
-froghopper
-Verpa bohemica
-water cooler
-chop suey
-ranker
-red helleborine
-Prince of Wales
-marmalade tree
-car train
-giant red paintbrush
-desert sand verbena
-right whale
-baron
-stevia
-asterism
-five-spot
-catapult
-Silex
-fiberscope
-refresher
-beef Bourguignonne
-snood
-divot
-waterproof
-crabeater seal
-Missouri primrose
-bumper guard
-rock opera
-Lilo
-coffee can
-smokehouse
-buffalo grass
-propjet
-ice tongs
-poop deck
-acorn barnacle
-veal parmesan
-shower room
-collins
-ringhals
-silage
-jawfish
-trouser cuff
-contour feather
-songstress
-rachis
-White Russian
-stanchion
-mastaba
-flatbed press
-viand
-legal representative
-espalier
-organic light-emitting diode
-sushi
-scorer
-haricot
-pinna
-plectranthus
-jungle cat
-dried apricot
-coach horse
-white fringed orchis
-veal cordon bleu
-bath
-dallier
-marching order
-donkey jacket
-Panama tree
-aerator
-klaxon
-pinnacle
-shouldered arch
-lesser celandine
-common eland
-Grand Marnier
-cock of the rock
-phlomis
-Japanese umbrella pine
-morning room
-dead-man's-fingers
-little auk
-bascule
-house paint
-home fries
-great skua
-cesspool
-flying gurnard
-wild crab
-checkerbloom
-Wollemi pine
-cheese dip
-coif
-charwoman
-tea ball
-waif
-Arctic ground squirrel
-parishioner
-stabilizer bar
-potentiometer
-black cohosh
-medlar
-willow oak
-cascara buckthorn
-scoutmaster
-Canada lily
-poppy seed
-paper mulberry
-blackthorn
-garrison cap
-inductee
-aeschynanthus
-interior live oak
-black spleenwort
-wild service tree
-sling
-nicad
-swab
-sego lily
-eiderdown
-fruit cocktail
-pallasite
-weeping spruce
-shiv
-sea lamprey
-coachman
-half binding
-American white birch
-gainer
-Concord grape
-yellow birch
-fucus
-common room
-io moth
-red osier
-crucible
-galangal
-salmagundi
-pepper steak
-cap opener
-swizzle stick
-tomato juice
-Nobelist
-Sarawakian
-African monitor
-sleeping beauty
-stereoscope
-curd
-pyramid bugle
-applejack
-dosser
-rake handle
-pilot light
-Eames chair
-Scotch and soda
-bell heather
-dinette
-blackpoll
-dogie
-sound camera
-cattle guard
-mashie niblick
-edible cockle
-monocle
-steak tartare
-partaker
-sidesaddle
-communications satellite
-porkfish
-water hemlock
-drawbar
-ultramicroscope
-Jamaican cherry
-craftsman
-lovage
-common apricot
-drum majorette
-backsword
-smooth alder
-Amniota
-dribbler
-theosophist
-dolman
-ivory tree
-Green Beret
-pipe smoker
-mayoress
-mignonette
-crampon
-henbane
-kirtle
-death's-head moth
-instep
-great St John's wort
-lorry
-black-necked cobra
-ball carrier
-Jordan almond
-byway
-earless lizard
-marble
-andiron
-high-protein diet
-buzzer
-ice floe
-crankcase
-Bofors gun
-sockeye
-veery
-Delaware
-caravansary
-prairie coneflower
-star apple
-suiting
-cot
-call forwarding
-American gallinule
-glossy snake
-rose chafer
-instant coffee
-placket
-Tarahumara
-pulsar
-philodendron
-orange tortrix
-cypress spurge
-Welsh rarebit
-music box
-giant crab
-vanilla bean
-water thrush
-prayer shawl
-gouge
-promoter
-dagga
-black currant
-bitter cassava
-drain basket
-snare
-digital audiotape
-retainer
-olive drab
-gluten bread
-graham cracker
-cheddar pink
-caregiver
-spray paint
-Anglo-American
-boatyard
-backbencher
-Link trainer
-bell arch
-weir
-arbor
-millionairess
-sour cream
-earthtongue
-crawlspace
-crossjack
-balalaika
-crupper
-western redbud
-guinea hen
-rangeland
-gaboon viper
-common louse
-single-leaf
-horseshoe
-balsam poplar
-triskelion
-jack-in-the-box
-jester
-rain stick
-glove compartment
-imperial moth
-Japanese beech
-biotin
-turnip
-oligarch
-western skink
-mudguard
-retsina
-data system
-green bristlegrass
-visiting professor
-beaded lizard
-weathercock
-Sloppy Joe
-high tea
-lightweight
-record sleeve
-cooler
-nodding onion
-pigs in blankets
-torque converter
-district attorney
-bunting
-orrery
-radiator hose
-common plum
-wood spurge
-calamus
-chicken Kiev
-pin
-lath
-telephone bell
-thistledown
-audiotape
-gypsy moth
-snuffer
-pari-mutuel machine
-peanut butter
-hearthrug
-sack
-Old World yew
-chives
-stovepipe
-xenolith
-mattock
-mangle
-electric chair
-backup system
-Empire
-blackwash
-dodder
-Allegheny chinkapin
-finger plate
-junk
-brown rice
-wild angelica
-chinaberry
-mason
-rasp
-den
-violet wood sorrel
-nosewheel
-plenum
-merino
-kirtle
-Igbo
-ensign
-sex symbol
-Belgian endive
-sugarberry
-yellow salsify
-purple emperor
-atlas
-African clawed frog
-leatherjacket
-midwife
-sac fungus
-European cuckoo
-three-day event
-Mexican poppy
-wagon tire
-armyworm
-rain gauge
-Oregon ash
-columbarium
-spectrophotometer
-Milanese
-pointing trowel
-casualty
-Eastern hop hornbeam
-lobe
-mouthpiece
-au pair girl
-giant water bug
-Browning automatic rifle
-laser-guided bomb
-drone
-white alder
-cockleshell
-mufti
-gravy
-berm
-boat hook
-marshmallow
-pet shop
-cowpea
-tactician
-wading pool
-anchovy dressing
-flip
-shackle
-Wedgwood
-thick-billed murre
-erecting prism
-giant salamander
-sleeper
-quiver
-chain store
-wing tip
-New World tapir
-witches' butter
-gendarme
-ginseng
-common maidenhair
-graduate nurse
-balsam pear
-hoatzin
-philanthropist
-axle bar
-gas meter
-moth mullein
-ragbag
-Chinese cabbage
-celery stick
-rutabaga
-scalpel
-cape marigold
-variometer
-argali
-brig
-shuffleboard
-wort
-Orlon
-epiphyllum
-allice shad
-coffee filter
-solar telescope
-Japanese linden
-thinning shears
-golden wattle
-queen triggerfish
-millinery
-surfbird
-flame fish
-clove
-dicamptodon
-red-bellied terrapin
-turmeric
-baya
-air horn
-Indian coral tree
-punnet
-sharkskin
-water crowfoot
-bight
-desert iguana
-Texas toad
-volva
-dredge
-Turkey red
-chemical plant
-gemma
-dice cup
-orange marmalade
-mistletoe
-surveyor
-frozen orange juice
-pallette
-poultryman
-burbot
-courlan
-captain
-saddlery
-bodyguard
-dwarf tulip
-black ash
-pulse
-nailbrush
-tickseed sunflower
-legless lizard
-shirtwaist
-polling booth
-chickeree
-garlic chive
-common thyme
-multichannel recorder
-screw thread
-sangoma
-calliopsis
-geoduck
-colleen
-bandicoot rat
-pastis
-swamp sunflower
-scorekeeper
-Honduras mahogany
-Australian pitcher plant
-triangle
-elevator shaft
-green pea soup
-carrel
-prairie aster
-bird's-nest fungus
-scarlet clematis
-gook
-mescal button
-carcase
-mulatto
-ejection seat
-strawberry daiquiri
-goat grass
-car battery
-babu
-chief of staff
-monilia
-Siberian crab
-ridge rope
-Morchella semilibera
-nutmeg
-moosewood
-graham bread
-California four o'clock
-zwieback
-velvetleaf
-abelmosk
-shadow box
-corned beef hash
-newsreader
-backstairs
-cutwork
-sherbert
-tooth fungus
-angel-wing begonia
-greasepaint
-common milkwort
-potato vine
-CD drive
-crepe de Chine
-sporting man
-koto
-armet
-barking frog
-celeriac
-drainage ditch
-black box
-steel blue
-clotheshorse
-corn speedwell
-drawknife
-spritsail
-vichyssoise
-modeler
-pocketcomb
-limey
-suslik
-cockpit
-digester
-brig
-raita
-troll
-benedictine
-rock wren
-lock
-Barnaby's thistle
-school bell
-school ship
-Soave
-falchion
-swaddling clothes
-terrine
-smoke screen
-rivulus
-sweet lemon
-cullis
-bustier
-peppermint
-Philadelphia fleabane
-Hampshire
-active
-charnel house
-face guard
-Quebecois
-facilitator
-tongue depressor
-bitternut
-heath aster
-sapodilla
-bluestem
-centrist
-Canterbury bell
-needlenose pliers
-groats
-tapa
-Qatari
-paper feed
-tilt-top table
-plastering trowel
-brazil nut
-rotogravure
-patriot
-manicurist
-bacon and eggs
-puffbird
-lightweight
-golden willow
-kaiser roll
-duff
-girandole
-seaside daisy
-Kurdistan
-Skivvies
-showboat
-fire bell
-lock-gate
-greater masterwort
-weald
-ice ax
-toetoe
-mess kit
-bucking bronco
-black turnstone
-backscratcher
-backpacker
-basement
-marbleization
-trigger
-satsuma
-fall-blooming hydrangea
-mountain lady's slipper
-yellow oleander
-crookneck
-ex-president
-Venn diagram
-psaltery
-bulwark
-old boy
-linear leaf
-aril
-butt weld
-fall webworm
-pruner
-bald-faced hornet
-nougat
-tailgate
-field speedwell
-potsherd
-center punch
-long beech fern
-desert paintbrush
-canyon treefrog
-bushel basket
-Eurasian
-swamp horsetail
-cryptanalyst
-wicket
-school newspaper
-captive
-spider brake
-electric mixer
-tumbleweed
-mason wasp
-sash window
-paddock
-wet bar
-oxtongue
-stevia
-wheat rust
-scute
-switch engine
-mud dauber
-dotterel
-snailflower
-common barberry
-mulligatawny
-cinnamon bark
-cigar box
-trivet
-proof spirit
-cream soda
-western grey squirrel
-baby powder
-Bren
-Japanese yew
-sailcloth
-Basket Maker
-bannock
-basidiocarp
-aphelion
-erect bugle
-limiter
-bosc
-Przewalski's horse
-helmet orchid
-audiometer
-battle cruiser
-grass widower
-staphylococcus
-Congolese
-common pitcher plant
-parliamentary agent
-Virginia snakeroot
-mockernut
-Siberian elm
-backbench
-rough
-chervil
-chlamys
-nationalist
-galantine
-screwdriver
-falsifier
-cancerweed
-spur
-jerkin
-porte-cochere
-dill pickle
-Montagu's harrier
-tetrode
-true fungus
-American quaking aspen
-vitamin B1
-leopard lily
-eggdrop soup
-aurochs
-core bit
-Jaws of Life
-trousseau
-parquetry
-Disciotis venosa
-tender
-beef goulash
-vitamin K1
-pepper spray
-covered smut
-hook
-sports announcer
-weapons carrier
-foxtail grass
-sloe gin
-mezereon
-antifouling paint
-pavior
-pile driver
-security consultant
-monkey-wrench
-Indian hemp
-amaretto
-American wistaria
-A-line
-market strategist
-rainbow runner
-souvlaki
-binturong
-stiletto
-gastrula
-Vietnamese
-Old World hop hornbeam
-cold cathode
-pier table
-houndstooth check
-prop root
-leaf-footed bug
-sedge wren
-Dutch iris
-drop curtain
-opossum rat
-lame
-pollen tube
-doubletree
-compression bandage
-pinon pine
-catmint
-pier arch
-kingmaker
-deanery
-loofah
-fullback
-fencing mask
-flying boat
-carpet sweeper
-lemon-scented gum
-Accipitriformes
-kit
-pigfish
-clipper
-dolmas
-lesser centaury
-blood agar
-water violet
-raw milk
-lemonade
-vicar-general
-supply closet
-Anzac
-confectioner
-ignition key
-velvet grass
-white willow
-John Dory
-ruddiness
-wheel
-common horsetail
-hubbard squash
-speculum
-Spanish bayonet
-mountain mint
-glint
-foxhole
-housemate
-bootjack
-sleigh bell
-clog dancer
-Mexican mint
-rendering
-Hausa
-star saxifrage
-spring squill
-clothesbrush
-liquid metal reactor
-Columbia tiger lily
-sorrel
-cartwheel
-Jersey
-Caucasian walnut
-desert willow
-surveyor
-elbow
-Santa Gertrudis
-fringe bush
-industry analyst
-lyrebird
-Cortland
-arroz con pollo
-catechist
-tank top
-jew's harp
-cereal oat
-heartleaf
-short sleeve
-butty
-butterfly plant
-stud finder
-felloe
-beer garden
-clevis
-wood warbler
-demerara
-cornetfish
-mince
-Jamaica rum
-Spanish broom
-binnacle
-camise
-ferrule
-Copt
-hall
-minicar
-scimitar
-cryptogam
-miter box
-limestone fern
-Marsala
-Parliamentarian
-gravy
-woolly bear moth
-formula
-squash bug
-pigmentation
-plate
-skin graft
-radiotelegraph
-hellbender
-soft pedal
-lavender cotton
-propagator
-Bailey bridge
-cottage pie
-rotgut
-A battery
-pintle
-off-line equipment
-European swift
-shrimp butter
-plumb bob
-trunk lid
-succotash
-yellow cypress
-heartleaf
-antelope squirrel
-sambar
-maternity ward
-deciduous plant
-bartlett
-Riesling
-sour cherry
-Klansman
-poke
-academician
-sociolinguist
-bird's nest fern
-common privet
-scale fern
-tachograph
-oyster stuffing
-pusher
-green June beetle
-staghorn sumac
-lockage
-master
-bap
-harlequin
-blackfly
-spotted coral root
-kahikatea
-cabana
-riot gun
-apple mint
-kob
-praline
-confidant
-pahautea
-float
-city father
-Zen Buddhist
-pessimist
-conference center
-banksia rose
-comfit
-sweet cicely
-winged bean
-henroost
-myope
-bunt
-nailfile
-yellow mountain saxifrage
-cruise control
-abandoned ship
-water chinquapin
-spanker
-wing nut
-puccoon
-pier glass
-Atlantic sailfish
-medlar
-buttercrunch
-rough-skinned newt
-planter's punch
-Dutch iris
-control key
-committeewoman
-torpedo-boat destroyer
-garambulla
-tree heath
-gladiator
-September elm
-inclinometer
-snowbell
-call-in
-sunsuit
-microfiche
-bluestocking
-cheval glass
-server
-franking machine
-sugar syrup
-Macoun
-transport ship
-alderfly
-wash-and-wear
-Abbe condenser
-bush nasturtium
-wild leek
-canary seed
-Northern Baptist
-sweet wormwood
-jaboticaba
-cardroom
-autoradiograph
-ash-pan
-sprinkler system
-rattrap
-claymore
-parts bin
-forest red gum
-thermonuclear reactor
-Indian crocus
-lector
-heir apparent
-leafy spurge
-masquerader
-varicella zoster virus
-cucumber tree
-hedger
-Shumard oak
-zooplankton
-quartermaster
-arrester
-bridge
-hop clover
-meadow foxtail
-winter hazel
-portable circular saw
-penuche
-limpa
-blue toadflax
-mesophyte
-Alpine anemone
-pet sitter
-avocado
-streptococcus
-fiber optic cable
-river red gum
-hornist
-chicken taco
-red spider
-tape grass
-densitometer
-salmonberry
-tiger snake
-hot toddy
-silver fern
-candlenut
-buckram
-local call
-defoliator
-king
-mahoe
-lever lock
-social insect
-winter purslane
-bootblack
-fireball
-ramie
-bellbird
-prepuce
-capote
-Chinese forget-me-not
-Pisces
-costume
-California black oak
-tree lupine
-golden polypody
-liger
-California whipsnake
-urodele
-sapodilla
-skillet bread
-duckpin
-supremo
-asparagus bean
-kampong
-endameba
-cow pony
-rider
-motherwort
-Persian iris
-soursop
-kohlrabi
-Parisienne
-irons
-doubles
-feijoa
-farmplace
-cottage cheese
-bezoar goat
-subcontractor
-blunderbuss
-down
-purple martin
-Lapp
-crenate leaf
-tobacco pouch
-beach towel
-Santa Lucia fir
-monetarist
-stringer
-ocellated turkey
-Texas purple spike
-ackee
-caddy
-hedge mustard
-second-rater
-strawberry bush
-valedictorian
-steak sauce
-prairie gourd
-aspirant
-mint
-Valenciennes
-vodka martini
-American persimmon
-big brown bat
-Mycenaen
-mouthpiece
-norfolk island pine
-pennyroyal
-Jewish rye bread
-granadilla
-tract house
-wall
-shuttle helicopter
-blackjack oak
-Lippizan
-storm window
-white zinnia
-sickle
-sushi bar
-polish
-baldric
-brooklime
-church hat
-control circuit
-vicuna
-death adder
-eukaryote
-durmast
-field soybean
-jacket potato
-wild basil
-queen consort
-brooklime
-octant
-blue false indigo
-broccoli raab
-step-down transformer
-date bread
-blue ash
-duffer
-oak chestnut
-pennant
-wedge
-Florentine iris
-morion
-weakfish
-morning dress
-public address system
-spearmint
-Ashkenazi
-sow
-interpreter
-Metis
-pita
-iron lung
-parfait glass
-cylinder lock
-immortelle
-obstetrical toad
-tee hinge
-successor
-western
-working girl
-julienne
-AND circuit
-spaghetti junction
-fer-de-lance
-enlisted woman
-star
-lightning rod
-bilge pump
-pacer
-horse nettle
-African oil palm
-blastocyst
-air hammer
-bamboo fern
-remote terminal
-lambkin
-money cowrie
-Pelham
-clinical thermometer
-wiggler
-guru
-false indigo
-tea bag
-foredeck
-king
-baby shoe
-mule
-grab bag
-silver-bell tree
-knitting machine
-cobia
-roulette ball
-larder
-button pink
-rumble seat
-noria
-queen mother
-solar thermal system
-aquaplane
-highbrow
-rusty blackbird
-desktop
-lima bean
-pontoon bridge
-watercress
-wild cabbage
-tumbleweed
-dressing sack
-compact-disk burner
-spittoon
-marrow
-sporophyte
-second fiddle
-pot-au-feu
-specialty store
-dry
-mole
-khadi
-japonica
-lovage
-squamous cell
-lobe
-European creeper
-brown pine
-bladderpod
-rumble
-French Canadian
-mascarpone
-Pacific halibut
-perennial ryegrass
-wine lover
-turbot
-longwool
-silver tree fern
-dust cover
-synchromesh
-corn pudding
-alpine azalea
-garboard
-cane sugar
-observation dome
-condensation pump
-hind
-taximeter
-hand drill
-gas thermometer
-jammer
-buffing wheel
-handstamp
-prairie mallow
-turkey stew
-sun spurge
-duck pate
-kibble
-Cassin's kingbird
-apadana
-Devon
-grinner
-oocyte
-blank
-header
-schoolmaster
-guard ship
-intravenous pyelogram
-rimu
-luff
-Mediterranean fruit fly
-singlestick
-lady-in-waiting
-curb
-birch
-limekiln
-orthoscope
-serotine
-Spanish oak
-swamp cottonwood
-edger
-city man
-picnicker
-white basswood
-Parsons table
-Christmas begonia
-perspirer
-Pacific tree toad
-Cape tulip
-finger bowl
-blue pike
-greengage
-handcar
-milkweed
-potbelly
-river dolphin
-creel
-typewriter carriage
-banteng
-pawnbroker's shop
-huon pine
-biennial
-man of action
-foundress
-caveman
-featheredge
-jordan almond
-sandblaster
-coralberry
-low-calorie diet
-hoot owl
-garter
-bain-marie
-wrecker
-fenugreek
-double-hung window
-idol
-scullery
-balloon vine
-summer savory
-winged spindle tree
-Helvella crispa
-walrus mustache
-gas engine
-boulle
-rush grass
-rue
-hoe handle
-cat fancier
-deerstalker
-dunker
-American red plum
-fall dandelion
-groover
-sprag
-stair-rod
-wish-wash
-pricket
-architrave
-California laurel
-net melon
-Arizona sycamore
-executive secretary
-silverweed
-silky cornel
-surface ship
-square sail
-common purslane
-villa
-holly-leaved cherry
-sweet birch
-pecan
-artillery shell
-breast pocket
-pirogi
-scarlet runner
-rabbit brush
-mealworm
-leather carp
-palette knife
-Jerusalem sage
-boneshaker
-slit lamp
-digital voltmeter
-polar glacier
-square-rigger
-homogenized milk
-Sten gun
-lesser calamint
-pyrograph
-Korean lawn grass
-Zinfandel
-crepe fern
-western ragweed
-clasp knife
-distributor housing
-cartouche
-scooter
-ski parka
-jackknife
-Carolina spring beauty
-soft diet
-candlesnuffer
-horse trader
-step stool
-agouti
-accelerometer
-annual fern
-judge advocate
-angelica
-roll film
-treehopper
-ombu
-comer
-sultanate
-kitchen help
-hooded ladies' tresses
-milking machine
-knuckle joint
-Jamaica honeysuckle
-music teacher
-sauerkraut
-Weston cell
-slivovitz
-Worcester sauce
-tall bellflower
-chancery
-prophetess
-casquet
-shortfin mako
-sorus
-visual display unit
-asp
-grenadier
-black pepper
-crottle
-erasable programmable read-only memory
-jabot
-ratchet
-disk controller
-chief petty officer
-tap wrench
-white mountain ash
-cultivated rice
-flying phalanger
-skillet corn bread
-BB gun
-Elamite
-European red elder
-reed rhapis
-ciderpress
-inga
-torpedo
-wild teasel
-bean curd
-oeil de boeuf
-acuminate leaf
-bitter lemon
-hitchrack
-Lorraine cross
-hostess
-European dogtooth
-adz
-polonaise
-rock sandwort
-Waldorf salad
-myrmecophile
-klystron
-mole rat
-draba
-corn borer
-robusta coffee
-chub mackerel
-leatherleaf
-chronometer
-Moselle
-sea aster
-fennel
-slop basin
-constable
-Brunswick stew
-hydraulic pump
-French omelet
-icebreaker
-Manx shearwater
-press of sail
-ninepin
-blue succory
-bootstrap
-hallstand
-chit
-firefly
-bearded seal
-fuel filter
-jezebel
-mate
-Roquefort
-cheesecloth
-plasterer
-blue pimpernel
-lake dwelling
-shrink-wrap
-goat cheese
-common gum cistus
-coastland
-Sunday best
-wild tobacco
-mandrake
-common unicorn plant
-barbican
-culotte
-blockhouse
-German iris
-tarragon
-caramel
-wild rosemary
-grain
-voyager
-squirting cucumber
-eastern narrow-mouthed toad
-creeping fern
-luge
-saffron
-garland flower
-furnace room
-starship
-Oriental scops owl
-Italian honeysuckle
-berserker
-Chinese elm
-scrubber
-bishop pine
-French polish
-compromiser
-skimmer
-river shad
-lobster thermidor
-leadwort
-man-of-the-earth
-razorblade
-vicegerent
-empress
-link
-ham and eggs
-wild lily of the valley
-blackfish
-splicer
-fossa
-mara
-moneygrubber
-brachiopod
-fauteuil
-caldera
-finish coat
-croupier
-termer
-leopard's-bane
-sei whale
-molucca balm
-dolly
-dog food
-term infant
-soft roll
-episcia
-sewer
-inquiry agent
-active citizen
-perry
-California newt
-moon shell
-bladderwrack
-common shrew
-dill
-Dutch elm fungus
-key lime
-electrometer
-divorce lawyer
-lamb's-quarters
-apple turnover
-shipmate
-Guernsey
-legionnaire
-electric blanket
-Rocky mountain pinon
-tobacco mildew
-stinking iris
-forestiera
-departure lounge
-wiper motor
-jurist
-scarlet runner
-pallbearer
-batter's box
-inertial guidance system
-fines herbes
-oilcan
-sisal
-mustache cup
-steamed pudding
-Visayan
-fiesta flower
-lady tulip
-lungless salamander
-batiste
-electrical system
-blazing star
-car carrier
-Walloon
-mother hen
-stump
-mulled cider
-secondary coil
-Alexandria senna
-etui
-scrumpy
-Havasupai
-jawbreaker
-glume
-ex-husband
-Eskimo
-Joint Direct Attack Munition
-number theorist
-five-hitter
-pinstripe
-Olympian
-common mackerel
-stone bass
-bigos
-Bahraini
-airbrush
-great ragweed
-glass lizard
-hand fern
-roundel
-riding master
-shoetree
-yellow avens
-old fashioned
-dolman
-stinger
-nursling
-legate
-faille
-golden fern
-bedpost
-shop steward
-kidney bean
-bladderwort
-internist
-limeade
-Bruneian
-Coloradan
-playsuit
-wintergreen oil
-Cantabrigian
-mutton snapper
-shot putter
-hand grenade
-moccasin
-cobnut
-marrow
-separatist
-cockscomb
-discharge pipe
-Gabonese
-spade bit
-chicken cordon bleu
-varnish tree
-European wood mouse
-striped gentian
-Ayrshire
-curassow
-moo goo gai pan
-malarial mosquito
-glow tube
-ledger board
-bib-and-tucker
-European chestnut
-suffragette
-color wash
-gaffsail
-golden larch
-voting machine
-Kahlua
-lungi
-amusement arcade
-Uzbek
-butternut
-mold
-mule's ears
-dickey
-shrimper
-trophozoite
-dreadnought
-shepherd's purse
-greenhouse whitefly
-spotted gum
-copperware
-perfect game
-semigloss
-spawn
-telecom hotel
-stakeholder
-mason wasp
-flibbertigibbet
-chin strap
-fringed pink
-saki
-urchin
-memorizer
-roulade
-whiting
-cling
-corncrake
-Queen of England
-choo-choo
-empty
-heating pad
-playmate
-visualizer
-popcorn ball
-absconder
-sou'wester
-target acquisition system
-mock-up
-dental floss
-tray cloth
-haddock
-bulblet fern
-housing commissioner
-delayed action
-anchor light
-harbor porpoise
-water wings
-PT boat
-night latch
-fennel
-doorframe
-green-tailed towhee
-grey polypody
-torture chamber
-American germander
-Chinese wistaria
-cattalo
-accompanist
-rifleman
-alpine clover
-contrarian
-lemon peel
-Mexican cypress
-sprog
-dado
-Galilean telescope
-desmid
-lockup
-Latin
-American raspberry
-mescal
-butternut
-prairie orchid
-downy yellow violet
-green hellebore
-radio compass
-bread and butter pickle
-Cherokee rose
-knish
-destroyer escort
-Arkansan
-langlaufer
-pyxis
-winter savory
-velocipede
-motley
-winter savory
-law student
-barren ground caribou
-apple dumpling
-field hospital
-works
-city editor
-European flatfish
-Morchella crassipes
-life office
-boot camp
-cream sauce
-cape aloe
-acetate disk
-devil ray
-tile cutter
-Plymouth Rock
-microspore
-godown
-Syrian
-tiercel
-American cranberry
-lesser spearwort
-anopheline
-Spanish oyster plant
-wire cloth
-attic fan
-birch beer
-small computer system interface
-crook
-ribbon fern
-explorer's gentian
-nagami
-I-beam
-rosebud cherry
-Jerusalem artichoke
-Stillson wrench
-pluralist
-district manager
-Levantine
-orangeade
-part-timer
-post horn
-Oregon grape
-contadino
-cargo helicopter
-silverpoint
-chaja
-California bluebell
-case
-Shasta
-cheese cutter
-Leishmania
-avalanche lily
-iron horse
-bialy
-Yana
-Delawarean
-Prussian
-nonpareil
-hammer
-hoper
-chewink
-anil
-skim milk
-desert four o'clock
-crescent wrench
-white marlin
-blue jasmine
-malacca
-anadama bread
-purple poppy mallow
-ganglion cell
-ligature
-no-parking zone
-golden clematis
-Cotswold
-aliterate
-shebeen
-yardarm
-superbug
-fanaloka
-stinking cedar
-spirochete
-wort
-pater
-heaume
-thermocouple
-ironing
-naval tactical data system
-European goatsucker
-prairie cordgrass
-accused
-foreign agent
-halberd
-western mugwort
-esthetician
-Persian lilac
-cracked-wheat bread
-crosscut saw
-rock penstemon
-paper cutter
-crematory
-ideologist
-cattley guava
-margarine
-creosote bush
-hoary plantain
-spark gap
-lumberjack
-Greek valerian
-mission bells
-tight end
-bigeye
-large crabgrass
-stone marten
-cleat
-lentil
-bay scallop
-lector
-charger
-assemblywoman
-second lieutenant
-boil smut
-sarsaparilla
-hydromel
-cat flea
-pinfish
-whole milk
-hairnet
-myeloblast
-peasant
-blind curve
-first offender
-dwarf-white trillium
-Brother
-coatdress
-gun emplacement
-tamarisk gerbil
-snap
-air cushion
-trailing edge
-potato vine
-gig
-everlasting pea
-champion
-dibble
-rattail cactus
-timothy
-prince's-feather
-cutlas
-lockring
-sealing wax
-Brussels lace
-corn mint
-highboard
-she-oak
-wild celery
-pillar
-Burberry
-Hakka
-leucothoe
-bell tent
-gallery
-coontie
-leather fern
-smack
-adenovirus
-linoleum
-chain wrench
-tammy
-gas fixture
-nut bar
-baneberry
-butterscotch
-goat's rue
-bullock
-grey snapper
-mother-in-law
-hyson
-wayfaring tree
-mollie
-needle spike rush
-buckwheat
-bayberry
-brush-tailed phalanger
-dry rot
-harborage
-stormy petrel
-Oriental beetle
-Atlantic halibut
-coping saw
-simple fruit
-viscose rayon
-surgeonfish
-upstairs
-security system
-common ragweed
-verticillium
-pancake batter
-hawk's-beard
-Dutchman's-pipe
-refrigeration system
-European parsley fern
-Ivy Leaguer
-totalitarian
-gonococcus
-towhead
-showy sunflower
-pallium
-multiengine airplane
-hair trigger
-rabbit-eared bandicoot
-siskiyou lewisia
-fuel system
-flat arch
-broad beech fern
-Alpine lady fern
-bracken
-Kentucky black bass
-rut
-mountain maple
-tunaburger
-umbrella fern
-white-headed stilt
-meat hook
-panhandler
-washhouse
-barnyard
-safety lamp
-leg
-ripple mark
-paper
-sagebrush lizard
-light heavyweight
-common nutcracker
-operator
-stalking-horse
-horseless carriage
-fishhook
-suction cup
-peg
-Ungulata
-false teeth
-round-bottom flask
-Luba
-campaign hat
-firebox
-rudder
-parapet
-ice pack
-appellant
-spirit stove
-metheglin
-common bamboo
-soapwort gentian
-pannikin
-time capsule
-burn bag
-folk poet
-tropical prawn
-end man
-new caledonian pine
-linen
-web
-free trader
-jury box
-railing
-pignut
-leaker
-potboy
-rubber boa
-white snakeroot
-plumber
-Candida albicans
-surfboat
-woman
-promulgator
-eyecup
-wild China tree
-rattlesnake master
-Viyella
-alpine salamander
-ailanthus silkworm
-Albatrellus ovinus
-war room
-meadow vole
-robotics equipment
-rotary actuator
-Engelmann spruce
-pinesap
-beefcake
-native speaker
-ridge
-injector
-water chute
-salmonberry
-decoupage
-bottlebrush
-date plum
-circlet
-American mountain ash
-pocketbook
-horsemint
-sweet four o'clock
-kirpan
-pinto bean
-chervil
-equator
-range animal
-candy thermometer
-calanthe
-cul
-stipendiary
-brahman
-pelican crossing
-topgallant
-wild senna
-sliding window
-carrier pigeon
-Tatar
-quadruplet
-bumboat
-spearmint oil
-slip clutch
-young Turk
-golden yarrow
-shank
-glasswort
-dental plaque
-Manduca sexta
-Northern bedstraw
-dent corn
-Life Saver
-western wall flower
-bedder
-wherry
-Tuscarora
-scrapple
-borstal
-reflux condenser
-problem solver
-nondriver
-perforation
-eastern cricket frog
-white wood aster
-broad buckler-fern
-Cape primrose
-herringbone
-head louse
-earl
-baton
-recording system
-primary color for light
-cherry laurel
-pomfret
-ratafia
-chocolate milk
-obscurantist
-revisionist
-rood screen
-magnetic needle
-commensal
-oil tycoon
-celebrant
-domicile
-harvest mouse
-California nutmeg
-greater spearwort
-black-billed cuckoo
-winepress
-demographer
-straw boss
-diabetic diet
-sweetmeat
-rabbet
-ming tree
-basketweaver
-freestone
-walk-in
-Aryan
-box coat
-audio amplifier
-chicken salad
-churidars
-whydah
-box
-batman
-siren
-selectman
-gouger
-drip coffee
-Caesar salad
-interpreter
-whinstone
-grey goldenrod
-minicomputer
-honey crisp
-hypercoaster
-Irishman
-swamp white oak
-reed canary grass
-globeflower
-cynthia moth
-fennel seed
-canthus
-chino
-blind date
-tar pit
-watermelon begonia
-fishtail palm
-overcast
-Pearmain
-primary color for pigments
-coal seam
-wherry
-safety bolt
-cretonne
-Michigan lily
-inflater
-moneybag
-huckleberry
-brassard
-bush vetch
-looking glass tree
-pinwheel roll
-alfalfa sprout
-sea kale
-clinometer
-achira
-lorgnette
-potter wasp
-gilded flicker
-tody
-capulin
-captain's chair
-crackle
-gerardia
-prie-dieu
-venture capitalist
-New Jerseyan
-block and tackle
-elf cup
-bur reed
-automatic transmission
-wax palm
-flytrap
-crack willow
-coachwhip
-swizzle
-lugger
-Dewar flask
-baster
-oxyacetylene torch
-Culex quinquefasciatus
-St Peter's wort
-wild hyacinth
-Russian almond
-burrfish
-wintergreen
-katsura tree
-butcher knife
-perfumery
-thresher
-porte-cochere
-sheepwalk
-hypotenuse
-Dalmatian iris
-buttercup squash
-demiglace
-goldenseal
-preceptor
-rigger
-poikilotherm
-old-age pensioner
-posthouse
-wood horsetail
-repeater
-reciprocating engine
-Rambouillet
-terra cotta
-togs
-battledore
-horizontal tail
-missile defense system
-trier
-morello
-woolly adelgid
-munition
-double creme
-in-fighting
-squirrel corn
-crow's nest
-antler moth
-brake cylinder
-bandoleer
-noticer
-Parmesan
-hipline
-cheapskate
-Dubonnet
-mole rat
-bog aster
-ribbon tree
-meadow rue
-nard
-ratel
-loose smut
-snapping shrimp
-golden glow
-basil thyme
-Florida strap fern
-moonshine
-flume
-lace fern
-black bream
-orchestra pit
-archerfish
-exile
-ringdove
-career man
-godfather
-bottom-feeder
-pasteurized milk
-dental implant
-pedicel
-Catalpa speciosa
-yellow foxglove
-lancet arch
-steam shovel
-sampan
-patrol boat
-sailor cap
-tollgate
-monal
-velociraptor
-cacique
-jack oak
-cursed crowfoot
-creep
-Parry manzanita
-common matrimony vine
-grace cup
-caecilian
-spurge laurel
-prickly lettuce
-Regius professor
-camail
-Sitka willow
-Courtelle
-gin sling
-dogmatist
-guest
-saltine
-dust cover
-sport
-sweeper
-feist
-lady's-eardrop
-vibist
-wire stripper
-tenpin
-interplanetary space
-beet green
-pruning knife
-drainage system
-gunnery
-ballet master
-lime juice
-flak catcher
-lacrosse ball
-Canadian aspen
-beatnik
-railhead
-utilizer
-spadefish
-Arizona white oak
-city university
-dense blazing star
-hedger
-chain pickerel
-right-hand man
-namby-pamby
-nacelle
-redneck
-tumbler
-Chief Secretary
-cannon
-cupola
-kummel
-papaya juice
-Burton
-Stanley Steamer
-loganberry
-stylus
-square meal
-rock bass
-western ladies' tresses
-dramatist
-assignee
-tandoor
-trumpetwood
-segregator
-green adder's mouth
-coral necklace
-ani
-iceboat
-densimeter
-oxtail soup
-kernel
-cos lettuce
-greenishness
-panchromatic film
-Parker House roll
-oatmeal
-backsaw
-double Gloucester
-bailey
-storage cell
-giant
-coconut milk
-broadtail
-barouche
-loir
-soybean meal
-white-leaved rockrose
-junction barrier
-spandrel
-sweat bag
-goldilocks
-flowering wintergreen
-cockspur
-beef fondue
-holding cell
-cardamom
-cagoule
-Kamia
-tangelo
-Herschelian telescope
-wine bar
-kachina
-sand sage
-guy
-ivory palm
-citrus mealybug
-topper
-ladyfish
-force pump
-fanion
-calaba
-Iowa
-orrisroot
-ivorybill
-Secretary of Agriculture
-gagman
-dry cell
-hypnotist
-kenaf
-grey alder
-deathwatch beetle
-gagman
-magnetic stripe
-trap door
-abdominal wall
-prefab
-broomcorn millet
-architeuthis
-angler
-Pacific giant salamander
-barbette carriage
-low-fat diet
-veal scallopini
-B battery
-wallah
-landing flap
-pistachio
-jaguarundi
-nagi
-cicerone
-felt fungus
-Aertex
-stocks
-smooth aster
-patchouli
-lemon sole
-sleeper
-basket fern
-dundathu pine
-anjou
-Moreton Bay chestnut
-broom sedge
-candid camera
-red angel's trumpet
-oilstone
-cinnamon toast
-Pacific walrus
-fruit custard
-Jehovah's Witness
-mate
-voyeur
-Esselen
-achromatic lens
-sanguine
-brine shrimp
-dunce cap
-swot
-transit instrument
-grey willow
-pack
-bench clamp
-Nova Scotian
-gadgetry
-silvery spleenwort
-enchantress
-rough fish
-morula
-giant taro
-sorus
-roux
-polyhedral angle
-spruce beer
-Chicano
-cola extract
-outfielder
-kohleria
-white-rumped shrike
-car-ferry
-subway token
-spoon bread
-totara
-corn borer
-bowhead
-tensimeter
-water scooter
-flickertail
-Catholicos
-pleaser
-blue-eyed Mary
-calabash
-handyman
-cascades frog
-facing
-scarlet oak
-lutist
-ginger
-tree tomato
-Harvey Wallbanger
-tent peg
-insectivore
-fusil
-swale
-chinning bar
-bladderpod
-New Dealer
-dhoti
-proscenium arch
-common vetchling
-channel
-collect call
-safflower
-Texas tortoise
-test equipment
-theca
-RAM disk
-sheep sorrel
-rammer
-buttonhook
-honey mesquite
-dominus
-babirusa
-queen
-Aspergillus fumigatus
-crash barrier
-nonmember
-Muscovite
-verdin
-Australopithecus afarensis
-Turkish Delight
-stalked puffball
-giardia
-divider
-mountain skink
-head smut
-pacemaker
-evaporated milk
-rattlesnake fern
-flamethrower
-navy bean
-bather
-steed
-showy orchis
-stone crab
-artichoke heart
-phantom orchid
-space helmet
-swamp laurel
-privateer
-junior
-surcoat
-bristlegrass
-flower girl
-aphid lion
-penthouse
-lemonade mix
-coude telescope
-natal plum
-scriber
-wood nettle
-rape suspect
-resplendent quetzel
-western poppy
-choir loft
-fore-topsail
-thyme-leaved sandwort
-erotic
-short circuit
-outdoors
-flowering tobacco
-hookup
-aviatrix
-corker
-horehound
-horn
-swamp pine
-water biscuit
-cherimoya
-vaporizer
-courtier
-European sole
-full skirt
-Mother Carey's chicken
-cymule
-huck
-white snapdragon
-mountain nyala
-country borage
-bonduc
-casein paint
-grampus
-shrimpfish
-lodge
-dragee
-black walnut
-caraway seed
-roper
-glass cutter
-tab key
-Richardson's geranium
-demigod
-chichipe
-Italian ryegrass
-cadet
-electrograph
-rudd
-carpenteria
-foie gras
-lignum vitae
-hedge nettle
-pledger
-American hackberry
-flageolet
-beaked hazelnut
-reflectometer
-sticky geranium
-marriage bed
-white pepper
-japanese clover
-whiteface
-gnat
-extrovert
-Canada plum
-talipot
-chicken stew
-egg foo yong
-fraxinella
-skibob
-saucer magnolia
-jacket
-green smut fungus
-cloakroom
-landing skid
-booth
-ice milk
-dipole
-striped coral root
-red buckeye
-roughcast
-breaststroker
-cowherb
-razor clam
-first-aid station
-briarroot
-clambake
-lander
-Bramley's Seedling
-frail
-jird
-minisub
-luging
-poison milkweed
-European lobster
-epidemiologist
-spandex
-paloverde
-marumi
-bypass condenser
-punter
-petty spurge
-Coryphaena hippurus
-bilberry
-vermillion rockfish
-witness box
-viscometer
-pulque
-Massachusetts fern
-herring salad
-ridge tile
-mesa
-dwarf grey willow
-southern aster
-punch pliers
-tarnished plant bug
-hoop pine
-Japanese red pine
-benedick
-rebozo
-silver plate
-silver willow
-mouse-ear hawkweed
-bonito shark
-abutment arch
-noble cane
-tiger rattlesnake
-pongee
-jumping plant louse
-pattypan squash
-giant ryegrass
-railroad bed
-stiff aster
-imperial Japanese morning glory
-laundry
-winter cress
-large white petunia
-tea maker
-pen-and-ink
-early warning system
-lug
-monocot
-sea wormwood
-breechblock
-postage meter
-third rail
-Mongoloid
-Australopithecus boisei
-umbrella tent
-stirrer
-Dumpy level
-beroe
-post and lintel
-green spleenwort
-tomato paste
-dishpan
-stentor
-sweatband
-cobbler
-New York fern
-gaff
-prairie willow
-cyclops
-jigsaw
-rotavirus
-pallet
-eastern ground snake
-boiling water reactor
-acute triangle
-agora
-European cranberry
-roebuck
-surgical dressing
-busboy
-cannikin
-feedlot
-common pond-skater
-cochin
-horsehair lichen
-fetter
-sapote
-fichu
-dermatologist
-fire tongs
-creme anglais
-foster-mother
-laurelwood
-chicken snake
-mincemeat
-rocker
-wild spinach
-powder and shot
-butterwort
-auxiliary engine
-mamey
-hart's-tongue
-sucking pig
-American turkey oak
-troopship
-buttermilk
-divi-divi
-boatswain's chair
-soda fountain
-southern flying squirrel
-elastic
-cutaway
-housekeeper
-renegade
-apple rust
-bridoon
-machicolation
-stunt
-keyhole limpet
-personality
-solitary vireo
-epidendron
-Jihadist
-boffin
-bettong
-terror
-partial denture
-pusher
-saltcellar
-capstan
-large poodle
-Bibb lettuce
-low-bush blueberry
-staple
-banded krait
-sickroom
-barnyard grass
-wandflower
-woodworm
-bluegrass
-squirrel's-foot fern
-rabbitfish
-delta wing
-milking shorthorn
-limber pine
-guru
-gamine
-scythe
-sweetsop
-Gruyere
-bloodmobile
-mine detector
-American mistletoe
-silver beech
-hound's-tongue
-Lombardy poplar
-basket fern
-pink-and-white everlasting
-redtail
-Aladdin's lamp
-mace
-outtake
-condensed milk
-Canada wild rye
-silver perch
-waxflower
-taxer
-Chinese chestnut
-Our Lord's candle
-mugwump
-school system
-salp
-osso buco
-dress shirt
-butterweed
-low-fat milk
-couchette
-broomcorn
-proscenium
-mill agent
-smut grass
-humpback
-southern spadefoot
-military leader
-canebrake rattlesnake
-tailor-made
-ebony
-beach house
-flying gecko
-hoary alison
-typhoid bacillus
-Romanov
-vanilla pudding
-sweet cicely
-Spodoptera exigua
-dress rack
-flannel
-skipjack
-bolognese pasta sauce
-rooibos
-thunderer
-blessed thistle
-gauntlet
-mahatma
-granadilla
-laurel sumac
-Yuma
-thyme-leaved speedwell
-encyclical
-twill
-linocut
-manna gum
-spark arrester
-cocklebur
-Indian hemp
-lemon oil
-Hall's honeysuckle
-raceway
-flop
-Himalayan lilac
-one-flowered wintergreen
-photosphere
-silvery spleenwort
-convex polygon
-canarybird flower
-foster-sister
-fluffy omelet
-palanquin
-roll
-dandelion green
-Javanese
-workpiece
-Carmelite
-bread mold
-schlemiel
-wild lily of the valley
-grugru
-solenoid
-puff batter
-skep
-balance wheel
-Gadaba
-portia tree
-mobcap
-two-man tent
-scuffle
-firebrat
-ant lion
-anise
-caster
-giant petrel
-American water spaniel
-naboom
-treasure ship
-foster-son
-fiddleneck
-alidade
-sugar refinery
-wild oat
-water beetle
-generic
-damson plum
-abrocome
-detainee
-pitch pipe
-coast
-nilgai
-radiotherapy equipment
-heart-leaved aster
-gristmill
-grocer
-Appaloosa
-Cheviot
-brake pedal
-lantana
-cave myotis
-Rob Roy
-sea spider
-latrine
-carpophore
-recycling plant
-coondog
-brace and bit
-funambulist
-eggar
-mantelet
-postdoc
-mezzanine
-coco plum
-pulse generator
-high-vitamin diet
-menhaden
-mechanical engineer
-bergamot mint
-Chuvash
-grated cheese
-helicon
-belladonna
-beet armyworm
-eelgrass
-resuscitator
-interrupted fern
-arrow grass
-cistern
-Pacific herring
-colostrum
-journal bearing
-Fauve
-wrist pin
-canape
-choice morsel
-quadraphony
-guard boat
-shortgrass
-claymore mine
-hitching post
-cargo door
-decoder
-gym rat
-Cocopa
-commander
-apple of Peru
-seckel
-yellow goatfish
-dog flea
-dodo
-oconee bells
-Tudor arch
-turkey stuffing
-ebony spleenwort
-wheat flag smut
-scolopendrium
-Brazilian pepper tree
-gusset
-inspector
-lunar excursion module
-baron
-plantigrade mammal
-Creole
-phosphate
-aromatic aster
-ghee
-audiovisual
-onychophoran
-cotton stainer
-lieutenant junior grade
-spheroid
-amen corner
-caper sauce
-Caladium bicolor
-dyer's rocket
-seaside goldenrod
-flint corn
-Very pistol
-rotifer
-steeplechaser
-rouleau
-escape wheel
-Namibian
-millivoltmeter
-emmer
-climatologist
-agateware
-sea lyme grass
-inclinometer
-water fennel
-saddle seat
-vicar
-garden cress
-ski rack
-Norfolk jacket
-casaba
-coast rhododendron
-sericea lespedeza
-hematocrit
-autopilot
-tilter
-finish coat
-Pennsylvanian
-shrubby St John's wort
-podocarp
-percussion cap
-ceriman
-peanut bar
-gean
-jack
-durra
-rotor
-carob
-cottage tulip
-three-spined stickleback
-trencher
-elevator
-kalumpang
-abaca
-Australopithecus robustus
-active matrix screen
-water bed
-hatmaker
-lodestone
-cat food
-overcup oak
-balletomane
-popgun
-rheometer
-process cheese
-frog legs
-heartleaf arnica
-p-n-p transistor
-steam turbine
-Tulu
-scalene triangle
-licorice fern
-coffee break
-trade unionist
-starved aster
-firing pin
-water gum
-Masonite
-hairspring
-seminarian
-blue racer
-forecastle
-scrub pine
-Atlantic spiny dogfish
-kopje
-orphrey
-fan tracery
-gee-gee
-vixen
-interstellar space
-Harris Tweed
-sawmill
-lemon mint
-bitewing
-ringlet
-Chinese mustard
-paleontologist
-American hazel
-brigantine
-clay-colored robin
-zombie
-nectarine
-West Indian jasmine
-pineapple weed
-rusher
-gynecologist
-pole
-thylacine
-myrtle beech
-golden cup
-woodruff
-T-bar lift
-terebinth
-service club
-homegirl
-Blue Mountain tea
-figwort
-New Hampshirite
-Stayman
-tonometer
-white turnip
-messuage
-cruet-stand
-colliery
-connecting room
-lesser twayblade
-bland diet
-crown prince
-beggarwoman
-restharrow
-bower actinidia
-firebug
-hepatic tanager
-telegraph
-Spodoptera frugiperda
-spackle
-carpenter's square
-pyx
-supermom
-thickhead
-whorled milkweed
-Arctic char
-Chinese rhubarb
-pince-nez
-wolverine
-tomato concentrate
-cascarilla bark
-red underwing
-leather flower
-Jerusalem thorn
-bullpen
-Salisbury steak
-anode
-coffeeberry
-bottling plant
-fritter batter
-aerial torpedo
-matrix
-local oscillator
-stalked puffball
-bruin
-three-cornered leek
-wassail
-stabling
-damping off fungus
-myriapod
-osier
-lesser kudu
-cownose ray
-chokecherry
-wagon
-obstetrician
-Glengarry
-even-pinnate leaf
-wine sauce
-osteocyte
-baker's yeast
-heir presumptive
-blackjack
-tympanist
-golden fern
-fipple
-Japanese oak
-bar mask
-stamping machine
-argus
-knobcone pine
-oil beetle
-lanai
-upper berth
-condenser
-proctologist
-catechu
-wild spurge
-vestry
-ground snake
-proton accelerator
-walker
-scarlet bush
-transom
-lagging
-bouillon
-slender loris
-black currant
-developer
-football hero
-plum sauce
-striped mullet
-prince charming
-fictional animal
-prosimian
-lug wrench
-lemonwood
-kirsch
-spy satellite
-black caraway
-Thompson Seedless
-bead tree
-purple fringeless orchid
-Virginia strawberry
-chigetai
-punkie
-gall wasp
-addressing machine
-rock polypody
-good-king-henry
-spring cankerworm
-wimple
-noncandidate
-saskatoon
-hacienda
-Darjeeling
-snowberry
-lounging pajama
-ascospore
-ski-plane
-hedgehog cereus
-Welsh onion
-yautia
-coaster brake
-sickle cell
-parrot's beak
-fuller's teasel
-painted greenling
-scablands
-stuffed cabbage
-barrel organ
-etcher
-dwarf maple
-camp
-Australian blacksnake
-currycomb
-obtuse triangle
-rose gum
-psychrometer
-abridger
-torpedo
-carpet loom
-sodalist
-slender rush
-loligo
-sclerometer
-wimp
-dotted gayfeather
-green ash
-pinstripe
-moralist
-medusa's head
-garden centipede
-heath aster
-fool's parsley
-olla podrida
-Potawatomi
-Edam
-toothache tree
-hulk
-seabag
-narthex
-compartment
-prairie star
-lookdown
-B-flat clarinet
-event planner
-clip lead
-shirting
-milk punch
-supercharger
-macadamia nut
-giant coreopsis
-computer store
-martingale
-keyboard buffer
-summer flounder
-squash ball
-gas turbine
-object ball
-plier
-black mulberry
-reef squirrelfish
-scampi
-willow aster
-bowler
-striped marlin
-smooth muscle cell
-diplodocus
-Liberty ship
-sponge cloth
-guitarfish
-walking leaf
-showroom
-California bluebell
-bolo
-turnbuckle
-boysenberry
-hardware
-Gael
-imago
-endorser
-jujube
-dust bag
-rapporteur
-field wormwood
-low-water mark
-naval missile
-Pacific yew
-reversible
-crabapple jelly
-poniard
-barricade
-spawner
-simnel
-seltzer
-deckle edge
-needle
-timbale
-satellite transmitter
-organization man
-job candidate
-orderly
-native cranberry
-fir clubmoss
-coaming
-chartered accountant
-electron accelerator
-Sierra plum
-American foxhound
-long underwear
-Penobscot
-blueberry yogurt
-biretta
-cascara
-Paranthropus
-Dorian
-nun's habit
-lenten rose
-Augustinian
-designer
-northern phalarope
-mombin
-hazel mouse
-reeve
-waffler
-telegraphy
-Verpa conica
-ignition coil
-Japanese oyster
-S-shape
-divining rod
-ant thrush
-throat protector
-interlocutor
-Desmodus rotundus
-pere david's deer
-attenuator
-Cypriot
-red sandalwood
-pendulum watch
-broadcloth
-striped drum
-sequence
-safety arch
-diapensia
-hog
-western spadefoot
-chlorella
-comb-footed spider
-Chechen
-darning needle
-C-ration
-hard beech
-piano action
-scaling ladder
-Nepal trumpet flower
-ravigote
-screw wrench
-ramekin
-Lyonnaise sauce
-dinner napkin
-partial veil
-masseuse
-coatrack
-mooring tower
-blue-eyed African daisy
-English horn
-baton
-rope tow
-toll bridge
-massage parlor
-quark cheese
-lounging jacket
-tall goldenrod
-flying jib
-coordinate axis
-barley-sugar
-integrator
-worm gear
-captain
-sweatshop
-class
-layer
-chili powder
-dripping pan
-oatcake
-newsroom
-tadpole shrimp
-rake
-trade magazine
-silks
-ram's-head
-senior
-knower
-masseur
-yam
-peg
-wheel tree
-hardbake
-test room
-long-spurred violet
-creeping spike rush
-shrapnel
-coffee senna
-matchbox
-creeping soft grass
-welder's mask
-pickaback plant
-urial
-hooded pitcher plant
-incense cedar
-Ohio buckeye
-ant cow
-skeleton fork fern
-Indiaman
-swamp ash
-testatrix
-marang
-spherocyte
-Winesap
-Indian mallow
-teju
-Yersinia pestis
-dye-works
-sauerbraten
-coral bean tree
-safe house
-postulator
-eyas
-lotus
-wood vise
-lady-of-the-night
-East German
-cymling
-rock candy
-western omelet
-anoa
-rainbow seaperch
-crossover voter
-Finn
-tree shrew
-hog plum
-Federal
-shagbark
-clockwork
-Alexandrian laurel
-metal wood
-brill
-military chaplain
-trend-setter
-call-back
-Indian rat snake
-spurred gentian
-Japanese maple
-forest goat
-bee moth
-viola da braccio
-duckboard
-armyworm
-hangnail
-counterbore
-cream-of-tartar tree
-Mullah
-bonbon
-water hazard
-temple orange
-corporatist
-rough bindweed
-Turkish bath
-mistletoe fig
-beach sand verbena
-caddisworm
-English plantain
-brown Betty
-power pack
-lion's-ear
-Francis turbine
-stayer
-dichondra
-marsh St-John's wort
-squab
-energizer
-common horehound
-mantispid
-pullback
-handwheel
-spark arrester
-yakuza
-Virginian witch hazel
-grunter
-waterworks
-bondwoman
-chain printer
-stockjobber
-coconut milk
-yardgrass
-blue chip
-bridle path
-riser
-pleurothallis
-saltwort
-salal
-broadside
-blackboard eraser
-bastard
-Para rubber tree
-red bat
-digital-analog converter
-calabash
-cashier
-cow shark
-horned pout
-microphage
-monologist
-woolly monkey
-Illinoisan
-marsh horsetail
-distaff
-siris
-eparch
-gooseneck loosestrife
-sounding rocket
-multiprocessor
-saiga
-xerographic printer
-madrona
-right triangle
-sweet gale
-red maids
-wolfsbane
-pork-and-veal goulash
-French sorrel
-mutterer
-Venetian sumac
-drumlin
-white crappie
-squire
-large-flowered calamint
-northern cricket frog
-mushroom sauce
-supertanker
-morello
-auxiliary boiler
-Virginia thimbleweed
-cottage tent
-bubble shell
-big shellbark
-wormwood sage
-cider gum
-coast lily
-American feverfew
-Peruvian balsam
-purple silkweed
-tobacco moth
-desk dictionary
-rock elm
-eastern indigo snake
-Japanese privet
-lamb
-levee
-L-plate
-soapfish
-painted tongue
-scuttle
-markhor
-Marburg virus
-mackinaw
-major
-crypt
-ball and chain
-domestic silkworm moth
-bottom feeder
-mistress
-death house
-freight elevator
-bellyband
-Pulex irritans
-Bacillus anthracis
-fire control radar
-hysterosalpingogram
-turbogenerator
-decompound leaf
-vambrace
-scentless camomile
-Medinilla magnifica
-prima ballerina
-Northern Spy
-quartz lamp
-grains of paradise
-justiciar
-felt fern
-seismograph
-Madagascar jasmine
-imaret
-white perch
-Alpine mouse-ear
-tea bread
-yellow bass
-poseuse
-espionage agent
-punching bag
-eurypterid
-orange sneezeweed
-banded stilt
-armhole
-postern
-mother
-kapuka
-catechumen
-Soubise
-Sauvignon blanc
-gunnery sergeant
-self-starter
-ceratozamia
-Atlantic cod
-Reoviridae
-blood cup
-horseshoe bat
-oriental plane
-voussoir
-fetterbush
-samara
-truncated pyramid
-lingcod
-athenaeum
-shyster
-Carolina hemlock
-submarine torpedo
-floating fern
-yataghan
-sun tea
-viola d'amore
-conenose
-ventilation shaft
-walk-up apartment
-saury
-wild wheat
-porcupine ball
-tahini
-kris
-grass fern
-drip pan
-black bryony
-Scotch broth
-tapioca pudding
-southwestern toad
-Hare Krishna
-guimpe
-wild madder
-megalocyte
-teaching fellow
-shrubby penstemon
-lesser wintergreen
-privet hedge
-Fahrenheit thermometer
-stern chaser
-prickly ash
-pump room
-ricer
-chicken mousse
-wing commander
-sun gear
-bolus
-alpine milk vetch
-opera cloak
-twinjet
-Goldie's fern
-abnegator
-alphabet soup
-node
-grape jelly
-early coral root
-Tarzan
-quarterstaff
-greeter
-Eurasian woodcock
-primary coil
-quirt
-tinkerer
-bolt
-creme de fraise
-voltage regulator
-news photography
-Jat
-bristly locust
-Gouda
-dickey
-lobster butter
-dwarf flowering almond
-fagot stitch
-Reform Jew
-ostrich fern
-bathyscaphe
-purple mullein
-alpaca
-civic leader
-jellaba
-Arizona ash
-wasabi
-Irishwoman
-choke
-stockinet
-religionist
-sewage disposal plant
-bittersweet
-Hyphantria cunea
-pheasant under glass
-screen actor
-chapterhouse
-quoit
-horseshoe bat
-rapper
-cupule
-planetary gear
-cascade penstemon
-redoubt
-salt
-areaway
-megalomaniac
-bush willow
-amethystine python
-plains spadefoot
-colour supplement
-kick pleat
-bell apple
-narwhal
-slippery elm
-stenograph
-baa-lamb
-quadrant
-balker
-jobcentre
-spit curl
-bastard indigo
-malacca
-serow
-adobe lily
-yacca
-palestra
-penalty box
-scrub beefwood
-reenactor
-screening
-white bryony
-alderleaf Juneberry
-harpoon
-alpine clubmoss
-neurosurgeon
-surrey
-sweet calabash
-Scotch laburnum
-coquille
-French honeysuckle
-extrados
-pipe cleaner
-southwestern white pine
-Virginian stock
-scaly lentinus
-aileron
-carob bar
-swordfish
-Alpine woodsia
-negus
-wireworm
-sweep
-goldfields
-drop arch
-European bream
-roly-poly
-pin
-bastard wing
-fustian
-wild buckwheat
-lake whitefish
-overcoat
-water filter
-Bermuda chub
-New Zealand spinach
-high-hat cymbal
-European larch
-radiologic technologist
-fine-tooth comb
-brunch coat
-splice
-electronic converter
-overmantel
-extern
-taper
-cluster bomb
-teletypewriter
-pinwheel
-trailing arbutus
-quipu
-creeping zinnia
-orange milkwort
-tabard
-Australopithecus africanus
-melancholy thistle
-insole
-courser
-darkroom
-surface-to-air missile system
-bark-louse
-Confederate
-neritina
-clip-on
-spouter
-trench knife
-outside caliper
-dhak
-Limburger
-chuck wagon
-buttercup squash
-shirtdress
-pouter pigeon
-dirty old man
-zodiac
-fennel flower
-mother figure
-appointment
-Manichaean
-lignum
-bouffant
-rum sling
-Ravenna grass
-hibachi
-gin rickey
-American harvest mouse
-cocozelle
-western wheatgrass
-black crappie
-rhombus
-Missouri goldenrod
-barndoor
-wild mango
-pneumococcus
-Boston lettuce
-ratline
-desert holly
-cobweb
-fluoroscope
-ethnologist
-tor
-bullshot
-stockade
-greave
-rock sea bass
-slip-joint pliers
-taxi dancer
-schizophrenic
-zill
-creme de menthe
-orange-blossom orchid
-divot
-supplejack
-busybody
-casemaking clothes moth
-ramrod
-gearbox
-birdcall
-Wiffle
-thwart
-beauty consultant
-chicken paprika
-trawl
-skep
-spirometer
-hopper
-kvass
-doggie bag
-bath chair
-showy daisy
-wild tamarind
-Tarsius syrichta
-glyptics
-Algerian
-cargo area
-bunk
-Velveeta
-iconoclast
-clinch
-New Caledonian yew
-false mallow
-Japanese tree lilac
-convex polyhedron
-water boatman
-cruise missile
-finisher
-colonoscope
-cumin
-wickiup
-saccharin
-whipcord
-trailer camp
-eryngo
-cuckold
-yam bean
-fighting chair
-forewoman
-galingale
-citron
-positivist
-four-lined plant bug
-suet pudding
-field pea
-Circaea lutetiana
-deer grass
-trap-door spider
-common corn salad
-mirror carp
-sounder
-second-in-command
-seaside alder
-burgoo
-ming tree
-curry sauce
-courbaril
-green alder
-figure loom
-fauld
-halfbeak
-squelch circuit
-cladode
-winter cress
-tongue and groove joint
-dwarf dandelion
-joss house
-western buttercup
-welted thistle
-potato tree
-anglewing
-cookfire
-marzipan
-hood latch
-seed shrimp
-common moonseed
-toasting fork
-bevel
-three-quarter binding
-midwife toad
-stage director
-Pentecostal
-technical sergeant
-golden-beard penstemon
-drunk
-silky oak
-corn gluten feed
-T-square
-stoker
-selling agent
-cruse
-server
-rope-a-dope
-bicorn
-matzo meal
-wide wale
-roadblock
-false foxglove
-tuck box
-bandsman
-smoke bush
-machinist's vise
-Highlander
-scholiast
-self-starter
-Swedish rye bread
-spark transmitter
-maverick
-maquiladora
-cabinetmaker
-compress
-rainbow shower
-huntsman's horn
-mackinaw
-copper rockfish
-lappet
-nitrate bacterium
-telephone plug
-soutache
-Dacron
-toboggan
-sissoo
-yogi
-laurel-tree
-vice chancellor
-Christ's-thorn
-cartridge fuse
-serial port
-quassia
-tarweed
-pecopteris
-beggarweed
-anchovy pear
-bookbindery
-woodland oxeye
-toad rush
-sandalwood tree
-marsh andromeda
-Tyrian purple
-boothose
-tragedienne
-fragrant cliff fern
-festoon
-bondwoman
-melancholic
-butternut squash
-exhaust valve
-semi-skimmed milk
-glowworm
-Virginia oyster
-Identikit
-ayah
-gallows tree
-Carioca
-monoplane
-jewels-of-opar
-scallop
-moth miller
-marsh cress
-lobed spleenwort
-ricotta
-emitter
-arame
-tub gurnard
-army attache
-maniac
-organizer
-pheasant's-eye
-Melba toast
-homeboy
-Bavarian cream
-Maximilian's sunflower
-backstop
-Tremella foliacea
-yellow avens
-spreading fleabane
-plumb level
-false rue anemone
-zabaglione
-climbing maidenhair
-doeskin
-walking shoe
-lancewood
-material
-jacksnipe
-South American poison toad
-agonist
-hinny
-paper mill
-psychophysicist
-valley girl
-toast mistress
-jorum
-tiler
-chicken Tetrazzini
-trivet
-grasshopper
-three-mile limit
-kink
-kiang
-pole horse
-jig
-Cornish heath
-hedge thorn
-false alumroot
-Popper
-remount
-photojournalist
-sideroblast
-stonecress
-Agave tequilana
-Japanese lilac
-hawse
-maenad
-air bag
-leaf spring
-dwarf willow
-soda cracker
-contralto
-moleskin
-pilaster
-Audubon's caracara
-pia
-American organ
-bleu cheese dressing
-betel palm
-PC board
-almond willow
-socializer
-tone arm
-stammerer
-free-liver
-scaler
-Gentianopsis crinita
-leak
-black haw
-hound's-tongue
-grass pea
-Stassano furnace
-coralbells
-ministrant
-perihelion
-Luxemburger
-powder-post termite
-arboreal salamander
-cushion flower
-foramen magnum
-pyrethrum
-poacher
-woolly mammoth
-horned chameleon
-tearaway
-father-figure
-tufted gentian
-salmi
-finger millet
-physa
-registrar
-polyoma
-bamboo shoot
-matchlock
-seine
-congress boot
-bulgur pilaf
-monosodium glutamate
-Kentucky wonder
-mycologist
-kedgeree
-ragweed pollen
-boarfish
-yellow pimpernel
-tan
-northern Jacob's ladder
-macrobiotic diet
-migrant shrike
-big-cone spruce
-colonialist
-white dogtooth violet
-bath asparagus
-webbing clothes moth
-ladies' room
-experimenter
-prairie bird's-foot trefoil
-bootleg
-cognitive neuroscientist
-fire chief
-flagfish
-dendrite
-stinking goosefoot
-fore edge
-hogfish
-Spanish cedar
-hotel-casino
-Tory
-life-support system
-pea flour
-cash bar
-Chenin blanc
-white-footed mouse
-Canada garlic
-salt-rising bread
-roomette
-mastodon
-bell founder
-long iron
-bi-fold door
-fig-bird
-European water shrew
-dyer's weed
-frog orchid
-allosaur
-Florida yew
-wild potato vine
-crape fern
-flat-topped white aster
-klebsiella
-oil heater
-waxmallow
-enjoyer
-mesocarp
-semidesert
-senior vice president
-coccidium
-burrawong
-syllabub
-jump suit
-harrier
-leaf roller
-cherrystone
-cinchona tree
-touring car
-eulogist
-air force officer
-red goosefoot
-cat thyme
-smoothbore
-slugger
-cardiac monitor
-cobber
-blister rust
-musicologist
-rolled biscuit
-Braun's holly fern
-hog plum
-nonpasserine bird
-pascal celery
-damson
-Jonathan
-Sheraton
-cohune palm
-egg white
-baton
-sixth-former
-Siberian pea tree
-choanocyte
-wineskin
-auditor
-detention home
-Leichtlin's camas
-Chartreuse
-clusia
-club car
-wattle and daub
-security blanket
-common American shad
-assistant professor
-marsh pea
-camomile tea
-gopher hole
-gravure
-Freudian
-spirillum
-maharani
-equilateral
-crow garlic
-mammee apple
-felwort
-hardtop
-dillenia
-curlycup gumweed
-pilot engine
-calcimine
-wooly lip fern
-bitter dock
-wineberry
-jumper
-monolingual
-spinning frame
-old-timer
-native cat
-diving petrel
-sodium-vapor lamp
-marchand de vin
-sexton
-matelote
-interior designer
-windfall
-mole salamander
-minder
-bodkin
-neutron bomb
-Caloscypha fulgens
-slinger ring
-mezzo-soprano
-aura
-Southern Baptist
-viscacha
-midfield
-tie
-prosthetist
-round-headed leek
-yellow mariposa tulip
-canary grass
-staddle
-Tokay
-Muenster
-brazil nut
-California black walnut
-applesauce
-penologist
-virgin's bower
-tenon
-steward
-Jerusalem oak
-red-bellied snake
-bindery
-scow
-fluid flywheel
-bullhead
-satinleaf
-clove
-double glazing
-matron
-wild parsnip
-winged elm
-shoot-'em-up
-musk deer
-white rust
-lock
-Cornishman
-Vidalia onion
-corn spurry
-freeloader
-justice of the peace
-inlay
-myxobacteria
-tiglon
-tangram
-German ivy
-scented fern
-woolly daisy
-caretaker
-gastroscope
-scuppernong
-spotted sunfish
-guilloche
-codling
-wormcast
-Eskimo curlew
-tayra
-European fly honeysuckle
-septuagenarian
-third gear
-coatee
-red alder
-water ice
-cubitiere
-frame buffer
-gamboge tree
-pernyi moth
-chicken Marengo
-Galliano
-Lincoln
-true sago palm
-hunter's sauce
-carpet beater
-alpine goldenrod
-arch support
-vehicle-borne transmission
-jilt
-paternoster
-redcap
-Siberian larch
-hoary plantain
-swan's down
-chicane
-reverse
-divan
-kneeler
-alexic
-mock turtle soup
-daffodil garlic
-mission bells
-squilla
-ursinia
-winter's bark
-trifoliate orange
-discina
-frijole
-Swiss steak
-maildrop
-knotgrass
-dog fennel
-drum sander
-heroin addict
-costume
-camber arch
-shining willow
-lutefisk
-red porgy
-microfossil
-good old boy
-angle bracket
-pitcher sage
-bordelaise
-heat exchanger
-carrion
-bush jacket
-fanjet
-coach
-blackface
-sicklepod
-Manhattan clam chowder
-daisywheel printer
-olive
-Sphacelotheca
-Spanish needles
-brown root rot fungus
-boudoir
-encyclopedist
-V-8 juice
-red haw
-brass buttons
-gym suit
-skywalk
-water wagon
-gas-turbine ship
-stoup
-lisle
-sailor suit
-box beam
-balm of gilead
-housemaster
-hayrack
-neutralist
-water elm
-brook thistle
-doyenne
-nark
-alpha-tocopheral
-WASP
-hydrilla
-water-shield
-footlocker
-variola major
-pargeting
-ion engine
-yellow globe lily
-Malecite
-bloodleaf
-yellow sand verbena
-whorled loosestrife
-packinghouse
-Carolina parakeet
-Virginia waterleaf
-armband
-red rockfish
-factory ship
-moon trefoil
-jump seat
-water gillyflower
-yerba mansa
-chamfer bit
-compass saw
-hopsacking
-Indian rhododendron
-sickbed
-treacle
-honey eater
-mailsorter
-seabeach sandwort
-sob sister
-primrose jasmine
-prince consort
-elocutionist
-wishing cap
-runner
-trestle
-sugar water
-half-and-half dressing
-fringed poppy mallow
-portiere
-bung
-swan orchid
-weather satellite
-beef broth
-marblewood
-sapper
-agitator
-wren-tit
-grade
-allspice tree
-spacewalker
-American hornbeam
-sieva bean
-dill seed
-potoroo
-love-in-winter
-alembic
-Cheshire cheese
-small white aster
-Oregonian
-flipper
-twill
-differential gear
-Prince Albert
-licorice
-foster-father
-Melkite
-portraitist
-Yosemite toad
-Cox's Orange Pippin
-slender wheatgrass
-knob
-silique
-Rocky Mountain bee plant
-stirrup pump
-chicken hawk
-sweetbrier
-Sierra lodgepole pine
-poulette
-biohazard suit
-striated muscle cell
-Geiger counter
-World Wide Web
-turmeric
-prairie wake-robin
-latchet
-pushball
-grill
-shooting lodge
-floating-moss
-refried beans
-boojum tree
-red poll
-toothbrush tree
-rabbiteye blueberry
-red haw
-sweet vetch
-delta
-upland cotton
-ballet mistress
-padrone
-complementary color
-great Solomon's-seal
-bud brush
-brandy sling
-spinster
-Andorran
-Mojave aster
-mackinaw
-golden calla
-bottom rot fungus
-segmental arch
-periwinkle
-hellion
-topknot
-copper
-Mexican hyssop
-weeping love grass
-point woman
-pathogen
-fall cankerworm
-common shiner
-silverspot
-corer
-atomic pile
-crystal detector
-yellow spot fungus
-truncated cone
-saprobe
-variegated horsetail
-Cro-magnon
-cercaria
-aglet
-pollster
-oyster bed
-pancake turner
-egg cream
-sporozoite
-quirk molding
-mutisia
-sound bow
-physic nut
-sugar-bush
-cow
-magnetron
-jungle hen
-brassie
-rock bit
-taco sauce
-seeded raisin
-desert selaginella
-folding door
-vinegarroon
-Pinot blanc
-rye
-ellipsoid
-betel nut
-tree of knowledge
-ambrosia
-long tom
-breechloader
-bicolor lespediza
-cosmetician
-monoblast
-American oil palm
-prancer
-farina
-caiman lizard
-hardball
-bullock's heart
-cotton rat
-whiting
-weather ship
-sharecropper
-creamcups
-gas bracket
-divinity
-ornithologist
-yellow twining snapdragon
-showy goldenrod
-end man
-heptagon
-sand dropseed
-round file
-guama
-blue elder
-sand spurry
-raccoon dog
-zigzag goldenrod
-fast reactor
-arctic willow
-cyclopean masonry
-punter
-sgraffito
-slattern
-storage ring
-clipper
-pulasan
-short-tailed shrew
-scammony
-daybook
-umbrella tree
-coloring
-element of a cone
-gesneriad
-cane
-burgoo
-western coral snake
-friendship plant
-Leydig cell
-scrutineer
-hairy golden aster
-inclined fault
-water milfoil
-bryozoan
-nardoo
-native pomegranate
-curly grass
-Florence fennel
-resurrection plant
-ice water
-crown
-ploughman's lunch
-clustered lady's slipper
-kitchenette
-sand sedge
-pouched mouse
-roadbed
-parsley haw
-predecessor
-super heavyweight
-seedless raisin
-mailbag
-sparling
-codling moth
-squama
-Bercy
-thermoelectric thermometer
-Jaculus jaculus
-saltpan
-firmer chisel
-round whitefish
-ramrod
-criollo
-pinch bar
-slash pocket
-thigh pad
-velvet plant
-intergalactic space
-brazilian ironwood
-whaleboat
-sirrah
-hanging fly
-aspirator
-Dominican
-dribbler
-yellow-eyed grass
-Cornish
-geophysicist
-tarmacadam
-marchioness
-rattlesnake orchid
-Alaska Native
-ilama
-myrrh tree
-zucchini
-licorice root
-nosebag
-lounger
-troposphere
-virginal
-spaghetti Western
-Virgin Mary
-waterwheel plant
-dry nurse
-enate
-carpet shark
-rijsttaffel
-stuffing nut
-caraway seed bread
-Leotia lubrica
-kaffiyeh
-Boston baked beans
-halophyte
-backscratcher
-instillator
-trefoil arch
-pip
-digitizer
-dosemeter
-Carolinian
-French sorrel
-boards
-historian
-rangpur
-clansman
-goral
-leatherjacket
-coiner
-fleece
-white globe lily
-storm cellar
-roundhouse
-mediatrix
-butterfly flower
-swamp gum
-prairie vole
-rhizomatous begonia
-common tobacco
-Marco Polo sheep
-subarachnoid space
-broomweed
-safety net
-silky wisteria
-swagger stick
-spectacled caiman
-derris root
-soap pad
-chop-suey greens
-summer hyacinth
-palo santo
-carbohydrate loading
-chinch bug
-roadman
-sheep plant
-messiah
-desk officer
-banquette
-drugget
-trumpet arch
-great duckweed
-purdah
-heartbreaker
-hasty pudding
-alligator weed
-dragee
-yellow bristlegrass
-Jacob's ladder
-campstool
-coffee fern
-sweet fern
-little chief hare
-cat-o'-nine-tails
-rep
-American red elder
-divorcee
-black salsify
-cambric
-sennit
-Canada ginger
-wonderer
-Formica
-cream-colored courser
-zooid
-European beggar-ticks
-sorrel tree
-piddock
-blolly
-red-flowered silky oak
-bay
-Hooker's onion
-dark horse
-cone clutch
-Roman hyacinth
-paintbox
-mestiza
-green alder
-bill
-panicled aster
-mammogram
-snuffbox fern
-Rediffusion
-swamp fly honeysuckle
-stoup
-psychiatrist
-nodding groundsel
-student union
-cold duck
-bee beetle
-playbox
-Psychopsis krameriana
-nosh-up
-earthnut
-narthex
-single-rotor helicopter
-revetment
-sweetleaf
-seasoned salt
-piculet
-speckled alder
-mackerel scad
-common yellowwood
-devisee
-static tube
-Spanish heath
-umbrella plant
-fucoid
-Chilean
-coral-root bittercress
-fanatic
-cachou
-agony aunt
-bird's-foot fern
-washwoman
-torchbearer
-placoderm
-frosted bat
-spicemill
-Cape lobster
-hard-shell crab
-colonizer
-camphor daisy
-friar's-cowl
-false tamarisk
-toggle joint
-tinsmith
-theorist
-hydrologist
-loganberry
-universal donor
-northern whiting
-tent-caterpillar moth
-russet
-kangaroo mouse
-African scented mahogany
-bastinado
-breast implant
-betel
-grade separation
-vox humana
-stodge
-Maryland chicken
-Anguillan
-oil pump
-governor's plum
-narcissist
-deadwood
-private citizen
-winker
-ropewalker
-gidgee
-Lothario
-ski resort
-major-domo
-von Neumann machine
-belaying pin
-water parsnip
-Fissipedia
-luggage carrier
-spring water
-oyster stew
-kohl
-celesta
-date-nut bread
-punchboard
-sunniness
-hospital train
-man
-rack and pinion
-mixer
-pousse-cafe
-narrow goldenrod
-Maxim gun
-stiff
-recruiting-sergeant
-watch glass
-white hellebore
-tung tree
-prairie white-fringed orchid
-beef Stroganoff
-scoffer
-grassy death camas
-Shawnee cake
-tapioca
-Short's aster
-banker
-laparoscope
-honeyflower
-Caterpillar
-electric clock
-baling wire
-huntress
-Surinam toad
-art school
-incurable
-Canton crepe
-apple juice
-hipline
-bronchoscope
-marshmallow fluff
-Texan
-wild fig
-sawed-off shotgun
-forestay
-red kauri
-fish slice
-Egyptian grass
-English walnut
-brown sauce
-ogee arch
-nectary
-chambray
-leather flower
-phloem
-Persian violet
-bomb calorimeter
-western narrow-mouthed toad
-soup du jour
-sickle alfalfa
-caracolito
-periscope
-coralberry
-sword bean
-sigmoidoscope
-water locust
-hygrodeik
-sycamore
-sheikdom
-ballistocardiograph
-clove
-akee
-fucoid
-jacquard
-cat's-ear
-puritan
-slender wild oat
-smooth softshell
-purchasing agent
-landing craft
-chartist
-lace bug
-sharksucker
-Virginia chain fern
-horseradish
-namer
-ripcord
-personage
-aspirin powder
-puku
-Wankel engine
-nightcap
-velvet bent
-roridula
-cytogeneticist
-olm
-almond extract
-common heath
-fringe-toed lizard
-Kentucky yellowwood
-lithosphere
-cramp
-bulgur
-scurvy grass
-officer's mess
-frigate
-electroscope
-giant chinkapin
-opah
-rutabaga
-wood hoopoe
-Farley maidenhair
-shingle tree
-argentine
-router
-palm nut
-quillwort
-hiba arborvitae
-runcible spoon
-hireling
-sickbay
-alpine totara
-white lupine
-Cotoneaster horizontalis
-desert plume
-staghound
-Sea Scout
-opalescence
-enophile
-Jersey elm
-coal house
-Helvella acetabulum
-selenium cell
-white camas
-creole-fish
-auger
-fragrant agrimony
-research center
-achromia
-shank
-cottonseed
-mod con
-extension
-sugar beet
-winter flounder
-silky dogwood
-strop
-tokamak
-rabbit ears
-baby farmer
-fireman's ax
-serration
-taproot
-socket wrench
-action officer
-Chilean jasmine
-Greek fire
-stem-winder
-body louse
-lumpsucker
-stink bomb
-American lady crab
-dicer
-lie detector
-maneuverer
-black-headed snake
-tiger moth
-shooting stick
-spermatid
-babushka
-deaconess
-home
-prior
-chanfron
-chickasaw plum
-big-eared bat
-rusty woodsia
-tertigravida
-miniver
-combretum
-habit
-bluehead
-angled loofah
-gipsywort
-fire-on-the-mountain
-purple milk vetch
-alpine gold
-merozoite
-loddon pondweed
-Uniat
-provost marshal
-Gyromitra fastigiata
-Coigue
-proconsul
-oarfish
-San Jose scale
-filature
-chimney plant
-spiny softshell
-bluecoat
-live axle
-river limpet
-clever Dick
-pink bollworm
-Japanese plum
-roarer
-caricature plant
-wardroom
-Texas chachalaca
-Bahia grass
-Moreton Bay tulipwood
-accessory fruit
-pearl barley
-ashcake
-bunt
-Polynesian tattler
-pine fern
-laughing owl
-potato fern
-speaking trumpet
-adjoining room
-bearing rein
-banana quit
-redbrick university
-Scleroderma bovista
-magdalen
-pressurized water reactor
-advisee
-NIMBY
-poorwill
-almond moth
-comedian
-star tulip
-cracked wheat
-water pump
-guest of honor
-yellow-breasted bunting
-hire
-pedate leaf
-augur
-purple locoweed
-Socinian
-upland white aster
-guesthouse
-double reed
-detention basin
-rollmops
-hitch
-bodega
-mayeng
-sparkplug wrench
-attack dog
-peach melba
-heliozoan
-tower mustard
-blue mold fungus
-lamplighter
-banded sand snake
-smooth crabgrass
-elsholtzia
-bodkin
-Aegean island
-bag lady
-alewife
-arcella
-electrical contact
-common ax
-animist
-concave polyhedron
-coalface
-climbing perch
-yellowtail
-hobble skirt
-marquee
-Russian dandelion
-snow mushroom
-polo ball
-NADA daiquiri
-cormous plant
-chaparral mallow
-inside caliper
-milking stool
-fallout shelter
-sea gooseberry
-Danish blue
-grissino
-chimney breast
-mosquito fern
-soundbox
-spring chicken
-epauliere
-cape forget-me-not
-japan
-saddle oyster
-white fritillary
-push-button radio
-bladder senna
-bladder stone
-macedoine
-moire
-Shawnee
-starnose mole
-douroucouli
-horseradish sauce
-electron gun
-cotter
-console
-park commissioner
-free press
-lump sugar
-western poison oak
-apple maggot
-keurboom
-lisper
-griffon
-burin
-horseshoe whipsnake
-Jacobean lily
-spinner
-cochineal insect
-emesis basin
-sowbane
-humanitarian
-uakari
-three-dimensional radar
-wild hollyhock
-heartseed
-swinger
-two-by-four
-mop handle
-common amsinckia
-traitress
-rush aster
-fibrous-rooted begonia
-violet-flowered petunia
-milliammeter
-alidade
-azure aster
-celery seed
-snorer
-scarlet plume
-obtuse leaf
-heathen
-rose chestnut
-headrace
-dwarf buckeye
-Pacific tripletail
-wiggler
-bounty hunter
-Lowlander
-slate pencil
-typist
-syconium
-vaquita
-skybox
-business lunch
-gusher
-curacao
-palometa
-Diapsida
-light diet
-sourdine
-thorny amaranth
-potato fern
-cartridge extractor
-peshmerga
-chaffweed
-tahoka daisy
-hematologist
-massage parlor
-diverging lens
-breadroot
-papyrus
-amarelle
-cover plate
-hubbard squash
-cryptomonad
-whitetail prairie dog
-rabbit burrow
-orthochromatic film
-goncalo alves
-Chile bonito
-tent-caterpillar moth
-Manila grass
-buck sergeant
-mustard seed
-crested wheatgrass
-wise guy
-asarabacca
-field pea
-bite plate
-barbasco
-heart-lung machine
-mouse-eared bat
-piping guan
-gun pendulum
-climbing onion
-fungus gnat
-Livonian
-one-hitter
-Chilean firebush
-Sonoran whipsnake
-round scad
-myelogram
-Rhodes grass
-vomitory
-roble beech
-South-African yellowwood
-molasses
-Velcro
-common calamint
-radiation pyrometer
-sketcher
-chaparral pea
-coffee stall
-Australian nettle
-bilimbi
-Khedive
-visionary
-field spaniel
-devilwood
-collimator
-Siberian spruce
-sling
-limestone salamander
-ribbon worm
-hazel
-petter
-coolant system
-artillery plant
-bailiff
-chameleon tree frog
-microsporophyll
-maiden blue-eyed Mary
-Drosophyllum lusitanicum
-cocozelle
-king post
-nailer
-knobkerrie
-tovarich
-Intelnet
-worm lizard
-drop forge
-wool grass
-brown bullhead
-anthropoid
-vitamin A2
-creche
-hickory nut
-whiffletree
-deipnosophist
-Muskhogean
-masochist
-hypsometer
-gliricidia
-complexifier
-wild licorice
-reconnaissance vehicle
-fives
-beefsteak plant
-eastern dasyure
-bookworm
-crested coral root
-wire recorder
-cinnamon vine
-bubble
-Newfoundland dwarf birch
-spruce bark beetle
-teetotaler
-fad diet
-ascus
-spicebush
-African coral snake
-soft-shell crab
-Postum
-packhorse
-sand cherry
-cricket-bat willow
-middlebrow
-Hungarian sauce
-buffalo clover
-jimsonweed
-latanier
-stablemate
-jumper
-zoospore
-smooth woodsia
-flowering ash
-unilateralist
-lomatia
-flapper
-wild cotton
-Siberian wall flower
-probe
-bankrupt
-blockade
-lemon geranium
-fig leaf
-basic point defense missile system
-clack valve
-buttinsky
-ingenue
-mountain everlasting
-zebra-tailed lizard
-shaving-brush tree
-evergreen huckleberry
-core drill
-lugworm
-Cashmere goat
-doorjamb
-minelayer
-student center
-horsehair
-European dewberry
-white broom
-arenavirus
-eastern poison oak
-rye ergot
-Tupi
-tensiometer
-fleawort
-coquille
-icing sugar
-junior lightweight
-Doppler radar
-mahuang
-candlepin
-chambermaid
-evergreen blueberry
-Eton jacket
-parvis
-solleret
-molded salad
-malvasia
-birth-control campaigner
-nonagon
-backswimmer
-ogee
-bowstring
-salt marsh mallow
-trapezohedron
-hoary willow
-speech therapist
-Zinjanthropus
-core
-red-backed mouse
-eptatretus
-mossy saxifrage
-Aristotelian
-Thessalonian
-searing iron
-bifocals
-falangist
-field pea
-packsaddle
-lay reader
-hoecake
-cuboid
-white maire
-iceman
-lobscouse
-neckcloth
-color-blind person
-Chinese holly
-assemblyman
-white-lipped peccary
-kava
-plastron
-crab louse
-hook wrench
-trailing four o'clock
-junior
-skilly
-internet
-tonguefish
-footman
-sub-assembly
-evangelist
-track
-bench lathe
-desk clerk
-scalded milk
-chamois cloth
-American marten
-chachka
-nondescript
-pellitory-of-the-wall
-swamp candles
-procurator
-cuddy
-farkleberry
-mountain male fern
-trawl
-dual scan display
-fish meal
-prospector
-convener
-guano bat
-ant shrike
-picture rail
-sand rat
-gynophore
-quilting
-sleeper
-summer savory
-Cotoneaster dammeri
-smooth sumac
-slumgullion
-suite
-catalufa
-spherule
-lean-to tent
-gryphon
-gas shell
-short iron
-sweet sultan
-dewberry
-Victoria plum
-American water shrew
-X-ray tube
-macebearer
-green arrow arum
-abbe
-poke milkweed
-atheist
-Fosbury flop
-Ord kangaroo rat
-moldboard
-wheat germ
-explosive trace detection
-whippoorwill
-examiner
-tallyman
-Crookes tube
-wild peach
-fringed grass of Parnassus
-Crookes radiometer
-Atlantic croaker
-lobster stew
-spring cress
-maggot
-pacer
-hydra
-Zionist
-pepper tree
-diamante
-baize
-Rhodesian man
-county agent
-respecter
-Anglican
-antimacassar
-materialist
-Swan River everlasting
-cloud grass
-toll line
-C battery
-chinese mustard
-grass poly
-warming pan
-seasonal worker
-common sickle pine
-bathysphere
-elegant Habenaria
-card table
-Chilean cedar
-brocket
-collimator
-malted milk
-avadavat
-fire marshall
-coloratura
-yellow spiny daisy
-fingerstall
-narrow-leaf penstemon
-indigo broom
-pillwort
-bearberry willow
-Etonian
-certified milk
-climbing bird's nest fern
-field coil
-wrist pad
-parr
-kaoliang
-engelmannia
-stocker
-satrap
-Nantua
-spearfish
-caper tree
-gold-tail moth
-mountain chinchilla
-sea milkwort
-westerner
-army cutworm
-leaf-nosed snake
-neurobiologist
-xeranthemum
-Eastern silvery aster
-ecclesiastical attire
-caper
-Ukranian
-bight
-button fern
-peach pit
-oligodendrocyte
-maar
-digitigrade mammal
-streptobacillus
-sensitometer
-preemptor
-oat
-bell foundry
-crown lens
-rock purslane
-Junior
-Brazilian guava
-kicksorter
-Ohio goldenrod
-red mulberry
-King's Counsel
-mountain four o'clock
-fairy shrimp
-fell
-oca
-sycophant
-chantry
-dermatoglyphic
-bomblet
-keyhole saw
-hangman's rope
-little barley
-lion-jaw forceps
-giant scrambling fern
-popper
-dulcimer
-Espagnole
-tardigrade
-smooth-haired fox terrier
-bullbrier
-rewa-rewa
-Japanese poinsettia
-trunk line
-cannery
-helminth
-American spikenard
-prince's-feather
-arthroscope
-ginger
-aphakic
-pilot bit
-angle of refraction
-low-sodium diet
-wall creeper
-growler
-praetorium
-Hall of Fame
-soupfin shark
-Molotov cocktail
-kaffir boom
-stitcher
-sawwort
-flagellant
-Atlantic herring
-Reticulitermes lucifugus
-voltaic pile
-snowy orchid
-southern flounder
-skysail
-osage orange
-white mullein
-lined snake
-tolu tree
-poliovirus
-foreman
-burette
-jackass bat
-invigilator
-electromyograph
-acarus
-presence chamber
-columbian mammoth
-hyacinth bean
-pilot
-meadow jumping mouse
-Maria
-outskirts
-aftershaft
-Queensland nut
-schlockmeister
-plainsman
-afropavo
-scarlet musk flower
-five spice powder
-gunboat
-multiplex
-Dutch uncle
-louvered window
-chimney corner
-cuscus
-psalmist
-Vichy water
-signer
-amphiuma
-harmonizer
-authorizer
-naiad
-control rod
-stentor
-mountain bladder fern
-gig
-read-only memory chip
-assenter
-vixen
-hermitage
-corn dab
-locksmith
-cockspur thorn
-variable-pitch propeller
-western red-backed salamander
-dolman sleeve
-cultist
-sweet buckeye
-pine vole
-Peking man
-mountain swamp gum
-nimblewill
-bethel
-aye-aye
-lancelet
-teff
-Alpine celery pine
-endive
-nipa palm
-center of curvature
-seeder
-Sabahan
-sea scallop
-social secretary
-gorgonzola
-western chokecherry
-misanthrope
-rabbitweed
-beggarman
-button fern
-white mallee
-doodia
-mastiff bat
-roper
-prima donna
-blanc
-holding pen
-fingerling
-skyhook
-flophouse
-steam chest
-crystallized ginger
-acrocarp
-horse pistol
-true mahogany
-costmary
-ballistic galvanometer
-jaunting car
-bartonia
-rep
-mandibular notch
-bubble and squeak
-umpire
-fringed loosestrife
-bear oak
-ski jump
-staggerbush
-plumcot
-thermal reactor
-field brome
-bodkin
-jackknife-fish
-malope
-writing arm
-gold fern
-Stayman Winesap
-merlon
-eclectic
-fluxmeter
-emeritus
-imam
-drum
-pop tent
-capital ship
-subalpine larch
-flail
-Lorenzo dressing
-tomboy
-eastern woodrat
-warrantee
-Pacific spiny dogfish
-sheepshead porgy
-farthingale
-Cryptoprocta
-power loom
-communicant
-howdah
-ectomorph
-false foxglove
-basset horn
-odd-pinnate leaf
-Wisconsin weeping willow
-Queensland bottletree
-dampener
-corbel arch
-silent butler
-Circe
-town clerk
-Japanese chestnut
-bloodwood tree
-switcher
-cup hook
-spreader
-rice rat
-straightedge
-traverser
-fluid drive
-Spanish paprika
-sour milk
-poison camas
-bean dip
-card table
-vinegar fly
-vizier
-electric-discharge lamp
-purple rock brake
-dynamo
-Japanese snowbell
-Grindelia robusta
-neuroglia
-safflower seed
-coronet
-frown line
-Renaissance man
-Steller's sea cow
-book scorpion
-isosceles triangle
-arthritic
-spherical triangle
-kangaroo mouse
-garden orache
-stemless hymenoxys
-titi
-out-basket
-gent
-columnea
-mint sauce
-mouthbreeder
-Liebig condenser
-cheerer
-assegai
-stickler
-Merostomata
-dimmer
-grey poplar
-common heath
-scorzonera
-glory hole
-Blackfoot
-oil slick
-musketeer
-apple geranium
-daisyleaf grape fern
-gas furnace
-bijugate leaf
-Arabist
-star-thistle
-hand throttle
-huckleberry oak
-lift pump
-maulstick
-Rome Beauty
-Newburg sauce
-pit
-volunteer
-Baldwin
-ark
-Asian horseshoe crab
-black calla
-marlinespike
-Gentianopsid procera
-guinea gold vine
-tucker-bag
-desk sergeant
-piezometer
-migrator
-keelson
-executrix
-sackcloth
-onion smut
-buckboard
-substitute
-pudge
-mess
-cinchona
-intervenor
-gravimeter
-pederast
-censor
-gastroenterologist
-cutlassfish
-launch
-demerara
-Diegueno
-bog bilberry
-aglet
-soda fountain
-crank call
-harpoon gun
-ribbon fern
-Gurkha
-output device
-epilating wax
-greasewood
-water horehound
-return key
-fairy swallow
-spatulate leaf
-culverin
-leptocephalus
-kleptomaniac
-barley water
-bleeding tooth
-Cheyenne
-maleberry
-limber
-tapenade
-whorled aster
-toe
-revenant
-lap joint
-vein
-truant
-florest's cineraria
-morning dress
-trichodesmium
-nightshirt
-element of a cylinder
-shopaholic
-section hand
-electrodynamometer
-Guadalupe cypress
-rosebud
-racist
-avaram
-keeled garlic
-Alaska rein orchid
-orange toast
-cunner
-dipstick
-Neolentinus ponderosus
-bulbil
-charlotte
-pull-through
-header
-Manduca quinquemaculata
-persona grata
-elegist
-cafe royale
-scup
-semanticist
-wood sage
-field magnet
-tundra
-bay myrtle
-alluvial flat
-arrowleaf groundsel
-celtuce
-baryon
-must
-entrant
-othonna
-pied-a-terre
-liza
-sticky aster
-grasshopper mouse
-prison guard
-tire iron
-bomb rack
-Spanish American
-sheltered workshop
-turfing daisy
-backbone
-tangle orchid
-creeping willow
-dumb bomb
-horse cassia
-barosaur
-Yavapai
-shrimp Newburg
-peanut worm
-dwarf chinkapin oak
-corchorus
-brick cheese
-by-catch
-stover
-Urnula craterium
-clasp
-Kekchi
-alpine coltsfoot
-soybean future
-altar wine
-ripping chisel
-encephalogram
-mountain spleenwort
-transferee
-remoulade sauce
-American rock brake
-stenographer
-read/write head
-loblolly
-ground
-powdered mustard
-brake band
-sea dahlia
-freak
-proconsul
-Coffey still
-Sivapithecus
-pellitory
-palm cat
-skew arch
-American angelica tree
-vigilante
-candelilla
-andryala
-amarelle
-swiftlet
-petcock
-associate professor
-sclerite
-open circuit
-Virginia crownbeard
-Last Supper
-button tree
-scyphozoan
-margate
-mercury cell
-horsewhip
-water scorpion
-companionway
-drop cloth
-Amhara
-miraculous food
-pro-lifer
-embryologist
-Creole
-bombazine
-Indian blackwood
-cubeb
-trace detector
-gros point
-main-topsail
-meringue kiss
-spree killer
-capstone
-specimen bottle
-woolly apple aphid
-silverweed
-American barberry
-gallfly
-European bog asphodel
-northern flying squirrel
-alliterator
-Old Catholic
-heliograph
-Pteris cretica
-tippler
-pump well
-allspice
-balancer
-scarlet bugler
-lantern fly
-white prairie aster
-krummhorn
-robin's plantain
-Pacific sardine
-patty-pan
-decaffeinated coffee
-western saxifrage
-warrantee
-colorimeter
-ball bearing
-makomako
-foot
-troika
-apricot sauce
-data multiplexer
-rose-root
-sound film
-Northern dewberry
-water hickory
-swing door
-spastic
-Oligoporus leucospongia
-botulinus
-tamale pie
-Sagittarius
-muff
-spicebush
-petiolule
-pump action
-Parry's pinyon
-split-pea
-rudder blade
-princess royal
-wormseed mustard
-honey guide
-pip-squeak
-fin keel
-foretop
-cyrilla
-Navaho
-melanocyte
-deist
-silver tree
-citrus whitefly
-Morrow's honeysuckle
-green peach aphid
-longanberry
-call-board
-wild yam
-novelist
-toothed spurge
-alienee
-pond apple
-allspice
-Carolina lupine
-Jack of all trades
-white false indigo
-boiled dinner
-princewood
-sailor's-choice
-false bracken
-microbrewery
-black grama
-tutee
-brickkiln
-sea raven
-guesser
-wirework
-European lemming
-thyrse
-plains lemon monarda
-milo
-shunt
-spotted cowbane
-anchovy sauce
-grande dame
-Maryland golden aster
-Chinese puzzle
-boarfish
-burweed marsh elder
-defense contractor
-nitric bacteria
-Belgian hare
-beach plum
-conformal projection
-sand fly
-steering linkage
-quickset
-Mahayanist
-Geiger tube
-loudmouth
-Lancastrian
-brownie mix
-ex-spouse
-deltoid leaf
-Shasta salamander
-rabbet joint
-purple anise
-garibaldi
-gebang palm
-bladderpod
-Host
-great bowerbird
-string cheese
-spinning jenny
-drift net
-matriarch
-guar
-bitter betch
-panda car
-mess
-plains pocket mouse
-scarlet wisteria tree
-deerberry
-reamer
-homing torpedo
-molehill
-stockyard
-reniform leaf
-rag
-symmetry
-Texas star
-lerot
-pickle relish
-three-seeded mercury
-cotter pin
-ice-cream bean
-farmyard
-bar magnet
-hansom
-prickle cell
-renal cortex
-pest
-Ultrasuede
-sailing master
-brougham
-wastrel
-amboina pine
-Canary Island hare's foot fern
-ninepin ball
-southwestern lip fern
-usherette
-lemon drop
-star begonia
-weeds
-saltworks
-Persian melon
-corbina
-medusa
-bucksaw
-Gibson girl
-diameter
-American twinflower
-kino
-clear liquid diet
-angiocardiogram
-wetter
-oyster cracker
-yellowfin mojarra
-wild parsley
-life tenant
-broom closet
-Corynebacterium diphtheriae
-square shooter
-bedwetter
-ball-and-socket joint
-nonsolid color
-Salmonella typhimurium
-buffel grass
-hip pad
-subaltern
-heliothis moth
-trail boss
-hayloft
-Francisella
-primordial dwarf
-cock-a-leekie
-sugarplum
-propulsion system
-tyrolean
-Carib
-salai
-ketembilla
-ironclad
-cornhusk
-heckler
-multistage rocket
-north island edelweiss
-Chaldean
-twenty-two pistol
-Francophobe
-scofflaw
-sickle feather
-screw bean
-sea squill
-Scopolia carniolica
-agglomerator
-western holly fern
-presenter
-straight pin
-Myxine glutinosa
-Colbert
-clover-leaf roll
-war paint
-bird's-eye bush
-longfin mako
-running suit
-arrow wood
-margrave
-blue fleabane
-dracontium
-plastron
-chimney swift
-child prodigy
-commissar
-turtle soup
-postulant
-archaebacteria
-snakefly
-Pitot tube
-chap
-smilo
-Malthusian
-French roof
-worm wheel
-gulag
-pointed-leaf maple
-pull-off
-Cathaya
-American green toad
-ball cartridge
-infiltrator
-snowfield
-crotchet
-auxiliary pump
-bearnaise
-galax
-chaenactis
-olympic salamander
-sundowner
-cows' milk
-beach plum
-moss-trooper
-Arabidopsis thaliana
-cat's-claw
-bog rosemary
-ribier
-book agent
-bumper jack
-beefwood
-monk's cloth
-alpine bearberry
-climbing fumitory
-cucking stool
-puka
-Piltdown man
-property man
-discharge lamp
-X chromosome
-knobble
-lobster Newburg
-herbalist
-sunray
-golden saxifrage
-leopard cat
-muffle
-stonewort
-blancmange
-intraocular lens
-trepan
-desert mariposa tulip
-plume poppy
-Dane
-martynia
-shaver
-white milkweed
-napu
-tansy-leaved rocket
-abortus
-telemeter
-tansy mustard
-harpy
-honeysuckle
-ironworks
-testacean
-Tartuffe
-silvervine
-Sihasapa
-surface gauge
-western blind snake
-paramyxovirus
-Icelander
-bird louse
-stockbroker belt
-test-tube baby
-ague root
-little golden zinnia
-dietician
-elephant's-foot
-dirty bomb
-sailing warship
-brier
-tinter
-Connemara heath
-potato fungus
-bait casting
-decagon
-rosefish
-die
-high-pass filter
-solitaire
-widow's walk
-goldthread
-Tudor
-trews
-orange pekoe
-ninon
-soda jerk
-sump
-flying carpet
-burial garment
-oblanceolate leaf
-press gallery
-Shintoist
-three-centered arch
-spreading pogonia
-Moro
-foxtail orchid
-Ghanian
-dry kiln
-thane
-naranjilla
-bitter pea
-American bugbane
-apron string
-oyster fish
-Port Jackson fig
-prize winner
-high-water mark
-Oneida
-smoking room
-potato skin
-charge d'affaires
-gantlet
-amyloid plaque
-barmbrack
-mate
-arrow leaved aster
-handbarrow
-horned screamer
-virago
-linoleum knife
-rattlesnake root
-K ration
-reset
-foot brake
-red coral
-good guy
-aberrant
-lavalava
-poleax
-garden webworm
-sneezer
-mountain heath
-American dog violet
-eolith
-chimneysweeper
-matriarch
-smalltooth sawfish
-sea mouse
-tubercle bacillus
-superconducting supercollider
-Abney level
-darnel
-gherkin
-celery salt
-Tungus
-pulasan
-oriflamme
-death camp
-redhorse
-apprehender
-scion
-selectwoman
-pentahedron
-principal
-old school tie
-slice bar
-chanar
-pimento butter
-wailer
-zero
-mescal
-rosebud orchid
-stone bramble
-Jarvik heart
-NOC
-pitchman
-rat cheese
-strawberry tomato
-dwarf golden chinkapin
-landau
-tocsin
-ampulla
-scratcher
-crab Louis
-ginseng
-ripcord
-polluter
-tensiometer
-eyewitness
-aalii
-Oregon crab apple
-conservator
-day jessamine
-hexahedron
-suture
-tippet
-linsey-woolsey
-vernal witch hazel
-stainer
-egocentric
-canistel
-nudger
-shipping agent
-shortleaf pine
-battle sight
-cheese spread
-weeder
-incendiary bomb
-honeyflower
-stovepipe iron
-stepper
-hellgrammiate
-votary
-aflatoxin
-arquebus
-impulse turbine
-pipewort
-garrote
-glow lamp
-pigsticking
-blood clam
-surface search radar
-Bolshevik
-platen
-chariot
-Gentianopsis thermalis
-water level
-quandong
-catalytic cracker
-giant foxtail
-nut butter
-drainplug
-holdover
-coastguardsman
-Secretary of Health and Human Services
-Seeing Eye dog
-American plaice
-coquilles Saint-Jacques
-christella
-medium
-clingfish
-lally
-light-o'-love
-Gentianopsis detonsa
-taper file
-signal detection
-trip wire
-lignosae
-receiver
-sedan
-mud puppy
-corn sugar
-Philippine mahogany
-magnetic pole
-jointed rush
-trapper's tea
-Dorking
-welcome wagon
-clammyweed
-guard
-false azalea
-convalescent
-babassu
-dedicated file server
-colossus
-air search radar
-marquess
-straight flute
-sand stargazer
-sea catfish
-rosilla
-ripsaw
-Bermuda onion
-peach sauce
-sagebrush mariposa tulip
-yashmak
-Virginia mallow
-erose leaf
-sand blackberry
-boulevardier
-forester
-choragus
-onion mildew
-threadfin
-winged pea
-sugar daddy
-rotary press
-styracosaur
-rathskeller
-Japanese millet
-anchorite
-coral drops
-false gavial
-eastern pipistrel
-cheese press
-Chinese primrose
-pamperer
-real estate broker
-power worker
-breeder reactor
-nutcracker
-piano wire
-cushaw
-Sinanthropus
-firebreak
-kelp greenling
-herba impia
-toll call
-yoke
-bird fancier
-evening-snow
-fever tree
-reed meadow grass
-flanker back
-toggle bolt
-Santa Cruz cypress
-carbonnade flamande
-northern dune tansy
-mikado
-millettia
-forty-five
-court
-icepick
-holm oak
-Japanese angelica tree
-Pacific cod
-cant hook
-urologist
-spelt
-lekvar
-enologist
-Mediterranean flour moth
-prickly-edged leaf
-Spanish grunt
-dune cycling
-frostweed
-whisperer
-tucker
-Roman wormwood
-counterterrorist
-woolly alder aphid
-Nuttall oak
-snail butter
-threshing floor
-motley
-forge
-water mold
-mummichog
-sulfur paintbrush
-head
-walking delegate
-jujube
-peachleaf willow
-Christmas bells
-valley pocket gopher
-bear's-paw fern
-Lanthanotus borneensis
-pearl hominy
-placeman
-swage block
-offerer
-stargazer
-jeweler's glass
-male chauvinist
-crossbar
-Oktoberfest
-tamarau
-micronutrient
-large-leaved aster
-tasset
-tepary bean
-sausage curl
-ivy
-snob
-roller towel
-wood meadowgrass
-archil
-padrone
-prairie rocket
-tongueflower
-kidney fern
-Carolina buckthorn
-sea island cotton
-landscape architect
-realist
-oyabun
-mother hen
-ostracoderm
-esker
-heliophila
-nympholept
-shining clubmoss
-press agent
-clam dip
-Djiboutian
-white currant
-codfish ball
-hand cheese
-kraal
-trident
-conventicle
-bacteroid
-Indian plantain
-quandong
-kola nut
-signor
-theater light
-musk clover
-canistel
-silent partner
-steel-wool pad
-diggings
-affluent
-sightreader
-John Doe
-arrowworm
-goatsfoot
-guardroom
-wild cinnamon
-kaffir boom
-ink eraser
-yardie
-industrialist
-sea lily
-polarimeter
-Polistes annularis
-western big-eared bat
-omnivore
-Ted
-horsecloth
-crab cocktail
-vacuum chamber
-flower-of-an-hour
-bilge
-poleax
-neolith
-Montezuma
-plum-yew
-welfare case
-trave
-pipe bomb
-shading
-Centigrade thermometer
-bangalore torpedo
-celery top pine
-nuclear rocket
-fowling piece
-anti-Semite
-landscape
-derris
-bush honeysuckle
-Mediterranean water shrew
-ticket collector
-masked shrew
-white dipladenia
-Savoyard
-bondman
-tempter
-pygmy cypress
-pentathlete
-thruster
-usurper
-Arminian
-yerba buena
-ice field
-ichthyosaurus
-sackcloth
-bean tostada
-Oxbridge
-Pteropus hypomelanus
-thinker
-bank robber
-ape-man
-thurifer
-knawel
-mule fat
-hot spot
-hairy-legged vampire bat
-night raven
-hook and eye
-crocodile bird
-skunkweed
-beaver rat
-cypress sedge
-florida selaginella
-April fool
-Jonah crab
-glass wool
-corkwood
-dwarf elder
-hinging post
-gentile
-Brazilian trumpeter
-witch doctor
-thermograph
-pink shower
-Mao jacket
-capelin
-parang
-bradawl
-stooper
-jewel orchid
-citrange
-oarswoman
-Macedonian
-particolored buckeye
-pachycephalosaur
-satinwood
-Chinese brown sauce
-peep sight
-straight man
-quandong
-chamois cress
-nonfat dry milk
-rosin bag
-Leiden jar
-Grimes' golden
-spirillum
-grass vetch
-carillonneur
-downy wood mint
-melon ball
-sweet calabash
-chlamydospore
-bombshell
-sidewall
-sprig
-Indian button fern
-globe pepper
-rough-stemmed goldenrod
-bocconia
-bubble chamber
-sand dab
-plum-fruited yew
-aecium
-marrowfat pea
-hobbyist
-whipper-in
-salad burnet
-neckband
-Tangier pea
-sauce Louis
-salad burnet
-artist's loft
-koumiss
-Nazarene
-cutter
-scrim
-drape
-crab-eating dog
-deckhand
-bedroll
-gaff
-stifler
-pink lady
-great plains paintbrush
-patternmaker
-yoke
-caryophyllaceous plant
-angrecum
-quadriplegic
-grid
-genlisea
-aspic
-water table
-junket
-signore
-Mutillidae
-proprioceptor
-pivoting window
-Indian poke
-synchroscope
-trichion
-tarahumara frog
-proctoscope
-abomination
-purslane speedwell
-breast drill
-Japanese barberry
-mandrake root
-breakable
-salon
-American watercress
-take-up
-entrenchment
-cocktail sauce
-Scotch asphodel
-borough
-matchmaker
-Seneca snakeroot
-pointsman
-psephologist
-clustered poppy mallow
-onion thrips
-nuclear-powered ship
-organizer
-deciduous holly
-balsam willow
-enzymologist
-caraway
-drip loop
-dog laurel
-Orangeman
-sapsago
-polymath
-backplate
-leathery grape fern
-modillion
-two-timer
-handhold
-consignee
-white stringybark
-nettle-leaved goosefoot
-bookmaker
-disk drive
-doliolum
-palmist
-packinghouse
-Spandau
-Whipple's penstemon
-sword grass
-ribbon development
-pearly-shelled mussel
-winter heliotrope
-rogue elephant
-deck tennis
-Venus's flower basket
-football
-shim
-boatswain
-blinks
-armored catfish
-hooded seal
-outdoorswoman
-water starwort
-upholstery needle
-pleurodont
-silky anteater
-cornmeal
-lead-in
-redfin pickerel
-horse balm
-Rydberg's penstemon
-cascade transformer
-fly poison
-Volvaria bombycina
-broad-leaved twayblade
-pastry cart
-body plethysmograph
-waverer
-hardware store
-Parry's penstemon
-European sanicle
-strawberry geranium
-cross-examiner
-head gate
-devil's tongue
-hemiepiphyte
-pine hyacinth
-machmeter
-spirit lamp
-field judge
-Rock Cornish
-mayhaw
-Sassenach
-bog pimpernel
-parallel interface
-crowberry
-roach
-Aegyptopithecus
-cajan pea
-lapboard
-cryostat
-magnetic storage medium
-white yam
-Lombard
-rhymer
-bed and breakfast
-bunya bunya
-rifle grenade
-caterer
-collared pika
-anti-submarine rocket
-bookkeeper
-Western mountain ash
-profit taker
-fruitlet
-Knowlton's cactus
-infernal
-beefsteak begonia
-lunula
-emulsion
-intermediate wheatgrass
-titfer
-European sea bream
-bigeye scad
-yak butter
-kola
-cone pepper
-plesiosaur
-ragwort
-penal colony
-black carpet beetle
-lubber's hole
-Stapelias asterias
-yard marker
-balloon bomb
-Scythian lamb
-armory
-selsyn
-marblewood
-spirula
-fatalist
-hash head
-armiger
-Dom Pedro
-white-chinned petrel
-ballast
-orthopter
-greater water parsnip
-clutch
-largeleaf holly
-Evangelist
-king whiting
-tuna fish salad
-Muscadet
-surpriser
-jumping bristletail
-proportional counter tube
-Hamburg parsley
-obstructionist
-pus-forming bacteria
-creep feed
-stepbrother
-janissary
-control freak
-trusty
-trepan
-King William pine
-orthicon
-geological horizon
-molecular biologist
-violator
-pariah dog
-Austrian
-conciliator
-Fauntleroy
-packing needle
-mazer
-Saturday night special
-leucocytozoan
-coastal rein orchid
-whirligig beetle
-capitalist
-breeches buoy
-clubroot fungus
-meadow spikemoss
-Kichai
-Spanish lime
-land office
-camera obscura
-strafer
-purple-stemmed aster
-lusterware
-valve
-Roman nettle
-isthmus
-breadstuff
-sealskin
-maleo
-bilge keel
-carissa plum
-fish fly
-kolkhoznik
-heath pea
-cowage
-hog sucker
-Sam Browne belt
-inductor
-wild licorice
-Socotra begonia
-supernumerary
-Angle
-red shrubby penstemon
-toilet kit
-tawse
-sweet bells
-kawaka
-brown soft scale
-lyssavirus
-betting shop
-double-crosser
-macrotus
-climbing hempweed
-poi
-strip mall
-deadhead
-petit juror
-tract housing
-American mistletoe
-lace-flower vine
-precipitator
-endoparasite
-hairy wood mint
-red snapper
-Victorian
-hog peanut
-line of heart
-opossum shrimp
-plumcot
-Bavarian blue
-slops
-light flyweight
-oregano
-sand myrtle
-pocket battleship
-curator
-narc
-hydraulic cement
-plains pocket gopher
-closed loop
-pluralist
-molter
-Christmas bush
-snuffers
-slender knapweed
-footwall
-plage
-caper tree
-red siskin
-tender
-boat train
-tipster
-low-pass filter
-student lamp
-morosoph
-japonica
-bellows
-herald
-oyster plant
-savory
-mail
-computational linguist
-blade
-winter crookneck squash
-zoomastigote
-blackmailer
-richweed
-dialectician
-genip
-plumed scorpionfish
-jet bridge
-thermopile
-billy buttons
-Brule
-millwright
-Arenaviridae
-Jones' penstemon
-monastic habit
-genipap fruit
-burnous
-dairyman
-top
-crab-eating raccoon
-quadrangular prism
-pilot burner
-weeder
-trireme
-boy wonder
-man of letters
-Catawba
-high-muck-a-muck
-light circuit
-bloodworm
-lappet caterpillar
-half-and-half
-office boy
-saddle stitch
-mistletoe cactus
-false chamomile
-Catalina cherry
-workhouse
-Jamaica quassia
-britches
-tooth shell
-reduction gear
-carrot pudding
-balsam woolly aphid
-handspike
-aioli
-silver hake
-flour bin
-wireman
-gas-cooled reactor
-aficionado
-plus fours
-gitano
-gene chip
-oilfish
-ingenue
-tulip orchid
-late purple aster
-pork and beans
-envoy
-lemon extract
-milk bar
-black huckleberry
-ground roller
-Connecticuter
-siderocyte
-Jacquard loom
-chub
-meat safe
-stock cube
-Australian sumac
-purple sanicle
-tailless tenrec
-dog wrench
-rainbow cactus
-castor bean
-scintillation counter
-eohippus
-pawnbroker
-gauge boson
-front man
-early warning radar
-bearing wall
-Bourbon
-sandwichman
-sild
-gravelweed
-perishable
-cembra nut
-riflebird
-quicksand
-slate
-sweeper
-ship-towed long-range acoustic detection system
-defamer
-president
-vitamin K3
-challis
-tanekaha
-bloodwort
-grenadier
-quietist
-Zairese
-fucker
-foremother
-gesneria
-print buffer
-salsilla
-fissiped mammal
-fender
-consulate
-acidophilus milk
-Southern dewberry
-snail darter
-Panama redwood tree
-dehydrated food
-bush willow
-coffee fungus
-Sinologist
-Mesoamerican
-hood
-large civet
-deck-house
-cyborg
-smuggler
-pepper sauce
-cyberpunk
-Grand Inquisitor
-persona non grata
-haggis
-weeping tree broom
-stop bath
-modifier
-coyol
-conodont
-yellow giant hyssop
-optical pyrometer
-Carolina moonseed
-marinade
-aspartame
-false wintergreen
-cityscape
-philter
-turnery
-hemiplegic
-chuck-will's-widow
-vower
-track star
-myrtaceous tree
-small civet
-intelligence analyst
-dogcart
-yardman
-cross bit
-holometabola
-platen
-sweet cassava
-Comstock mealybug
-acute angle
-Communist
-alcohol thermometer
-mountain hollyhock
-Mead's milkweed
-highjacker
-Townes
-congou
-Astrophyton muricatum
-lazybones
-roughcast
-pressure cabin
-clinch
-cinnamon
-smoke bomb
-quandong
-tout
-office-bearer
-punctum
-efficiency apartment
-Queensland hemp
-Ceylon bowstring hemp
-newswoman
-vermin
-fetid bugbane
-grantee
-sanitary landfill
-gluten-free diet
-clabber
-shillelagh
-white lettuce
-sweet coltsfoot
-beggar's lice
-samite
-loser
-flasher
-water star grass
-banana passion fruit
-translator
-artificial kidney
-Virginia creeper
-American crab apple
-cactus mouse
-nebbish
-Ligustrum obtusifolium
-vox angelica
-stringer
-hunter
-know-it-all
-scene painter
-invalidator
-jungle cock
-basilica
-coriander
-California single-leaf pinyon
-miles gloriosus
-pina cloth
-law agent
-scarlet fritillary
-keurboom
-bailor
-ramjet
-seedling
-rib joint pliers
-ways
-picket ship
-Surgeon General
-wasabi
-marquis
-clostridium perfringens
-Helvella sulcata
-furnace lining
-kingwood
-painted sandgrouse
-plain wanderer
-Indian madder
-silver screen
-bailey
-dwarf spurge
-Serbian
-ball-buster
-shaheed
-Platte River penstemon
-tensiometer
-mute
-nymphomaniac
-Yokuts
-arroyo willow
-whipping post
-class act
-load
-winged everlasting
-periodontist
-diarist
-robber frog
-diestock
-curry powder
-ratchet wheel
-store detective
-hog plum
-prune whip
-shortwave diathermy machine
-Anabaptist
-post chaise
-Kennan
-bean caper
-delegate
-orderly sergeant
-celtuce
-jumping bean
-gowen cypress
-puddingwife
-registered nurse
-West Saxon
-rosita
-gun room
-nasotracheal tube
-matchboard
-flagship
-Boswellia carteri
-Canadian pondweed
-wonder boy
-sewer rat
-dimetrodon
-pantograph
-marsh bellflower
-angoumois moth
-slippery dick
-woolly indris
-creme de cacao
-dulciana
-Jewess
-Macadamia integrifolia
-least shrew
-don
-diffuser
-black-stem spleenwort
-grouseberry
-goniometer
-annotator
-sticktight
-gossip columnist
-speechwriter
-capon
-rock hind
-Liederkranz
-chandler
-echocardiograph
-sidelight
-fisher
-brocket
-New Zealand daisybush
-northern sea robin
-roller bandage
-peachick
-pellet
-pichi
-plug fuse
-spark coil
-buckwheat
-brood bitch
-wedgie
-dwarf bilberry
-filigree
-bull
-queen
-dodo
-Salish
-denticulate leaf
-Western silvery aster
-Prima
-magnetic bottle
-fetterbush
-process-server
-nainsook
-mythologist
-Piedmont glacier
-hammerhead
-niggard
-Mound Builder
-Kui
-Nootka
-highbinder
-passenger pigeon
-oblong
-tickler coil
-agnostic
-succorer
-esophagogastric junction
-dressmaker's model
-bombshell
-social anthropologist
-gildhall
-orpine
-pterodactyl
-bristly sarsaparilla
-Lane's Prince Albert
-hognose bat
-salesgirl
-lubricating system
-electric catfish
-wrap
-Jacksonian
-chard
-cherry laurel
-foreground
-beadsman
-Kolam
-amniote
-frozen pudding
-acid head
-poor box
-depositor
-coattail
-pallas's sandgrouse
-mason's level
-English lady crab
-skeg
-cruel plant
-petrolatum gauze
-tuna
-swivel
-stock-in-trade
-perisperm
-civies
-Phyllostomus hastatus
-alienor
-Verdicchio
-guard's van
-onion butter
-moviegoer
-planter
-citrange
-box huckleberry
-iconoscope
-familiar
-helmsman
-baby boomer
-constructivist
-American bog asphodel
-whorled caraway
-simple pendulum
-viviparous eelpout
-Job's tears
-holdout
-sour salt
-poison bush
-dusky-footed woodrat
-golden algae
-granadilla tree
-telethermometer
-crossbar
-thrift
-African bowstring hemp
-dog in the manger
-hayrack
-gold-crowned kinglet
-prolonge
-doge
-pencil
-discount house
-mulligan stew
-Nonconformist
-virologist
-gregarine
-facula
-rocket scientist
-thin-shelled mussel
-oospore
-annual salt-marsh aster
-Afrikaner
-metallic
-julienne
-culverin
-cleavers
-Berliner
-mudhif
-thorny skate
-brown lemming
-yellow colicroot
-cooling system
-large-leaved magnolia
-free-reed
-canyonside
-preemptor
-stake
-Brucella
-anti-G suit
-pleximeter
-squire
-salsilla
-write-in candidate
-lowland burrowing treefrog
-flare star
-dwarf hulsea
-jobber
-mangel-wurzel
-quagga
-red-skinned onion
-positive pole
-Pteropus capestratus
-jug wine
-stomacher
-standee
-bladder worm
-hakim
-house of correction
-pelisse
-golden mole
-temporizer
-rose apple
-drove
-umbrellawort
-holy of holies
-lawyer cane
-smooth lip fern
-anode
-astatic coils
-zip gun
-feverroot
-self-heal
-expansion bit
-salt reed grass
-field pussytoes
-nutmeg hickory
-cryptic coloration
-Venus's girdle
-Hunkpapa
-Calostoma cinnabarina
-raft foundation
-May apple
-pygmy mouse
-prokaryote
-yellow-green algae
-Bermuda maidenhair
-withdrawer
-coelacanth
-Elliott's goldenrod
-driftfish
-epicyclic train
-bowl
-swamp dewberry
-corbel step
-sadist
-party line
-anti-American
-mining engineer
-Amur privet
-conidium
-Gastrocybe lateritia
-lithia water
-chaulmoogra
-Rough Rider
-Guinea pepper
-glade mallow
-pitcher sage
-whitecup
-shanghaier
-low St Andrew's cross
-phonologist
-cocobolo
-perfumery
-visor
-prison chaplain
-belt
-ingesta
-literary critic
-industrial watercourse
-reckoner
-pursuer
-Kinetoscope
-Kuiper belt
-hyperope
-raw recruit
-Galiella rufa
-Prince Albert yew
-slit trench
-usher
-tenderfoot
-white-rayed mule's ears
-browser
-piccalilli
-bran
-giant buttercup
-water lobelia
-arborescent plant
-echinus
-dryland blueberry
-struggler
-platyctenean
-Geordie
-domatium
-twenty-two rifle
-keteleeria
-sports editor
-chorus girl
-Hakham
-dry-bulb thermometer
-onomancer
-double-bitted ax
-Girondist
-bottle bank
-thyrsopteris
-bandwagon
-star anise
-armored car
-dhawa
-Bessemer converter
-mutineer
-paradise tree
-tupik
-centurion
-mending
-chowchow
-margrave
-International Grandmaster
-African hemp
-catafalque
-leptodactylid frog
-forcemeat
-tank shell
-pill
-barbecue pit
-worthy
-lady's maid
-evergreen
-Jesuit
-South American staghorn
-rigger
-suffragan
-imperialist
-spherical angle
-grey lemming
-kitchen police
-tree swift
-coliphage
-archaist
-Conservative
-rib
-exegete
-Mendelian
-tragedian
-steerage
-Paleo-American
-obeche
-garlic
-grapefruit peel
-accommodating lens implant
-half blood
-barrelfish
-catgut
-lanceolate spleenwort
-hardliner
-frieze
-name dropper
-carrack
-huckster
-onion bread
-magnetic head
-pease pudding
-raisin moth
-negative magnetic pole
-electroencephalograph
-bunji-bunji
-synchroflash
-Mornay sauce
-stencil
-winged pigweed
-Nesselrode
-MEDLINE
-licorice
-mainspring
-melilotus
-duke
-experimenter
-Napier's bones
-four-minute man
-pin-tailed sandgrouse
-toolmaker
-pogge
-rootstock
-baton
-pricket
-creeping snowberry
-anomalops
-nester
-devourer
-apolemia
-Maricopa
-pine-barren sandwort
-larvacean
-American dewberry
-escalope de veau Orloff
-gig
-myrtle
-pitsaw
-Lutheran
-fish house punch
-gnathostome
-intake valve
-molasses taffy
-clammy locust
-vandyke beard
-Atlantic tripletail
-planktonic algae
-estradiol patch
-flummery
-cytologist
-sectarian
-oil meal
-tomtate
-mediterranean anchovy
-aspersorium
-argonaut
-porkholt
-sheep ked
-algometer
-Adventist
-false goatsbeard
-snake polypody
-streetwalker
-shelver
-adoptee
-highflier
-pitch apple
-prairie rocket
-fish mousse
-viroid
-deckle
-manila tamarind
-observer's meridian
-pincurl clip
-hardstem bulrush
-gossamer
-brookweed
-Druze
-hug-me-tight
-accessory before the fact
-oilman
-Comanche
-Marine
-bedlamite
-Chinese cork oak
-squawbush
-false miterwort
-walk-on
-Cynopterus sphinx
-brandyball
-landlubber
-arrowroot
-cape forget-me-not
-galoot
-tabor pipe
-checker
-Levant cotton
-paddle box
-murderess
-smirker
-fuddy-duddy
-withdrawer
-newel
-shade
-pink disease fungus
-tipu
-sweet sultan
-aeronautical engineer
-tall gallberry holly
-acarid
-conqueror
-cucumber
-film director
-ordinary
-salon
-closet queen
-allegorizer
-tonka bean
-flax rust
-negative pole
-dagame
-dentist's drill
-mock privet
-micropyle
-contributor
-dark horse
-climbing corydalis
-cosmotron
-land agent
-Big Blue
-Cynic
-tassel flower
-lyrate leaf
-Minuteman
-Dutch-elm beetle
-Hessian fly
-flower girl
-West-sider
-window dresser
-skinny-dipper
-whitebait
-out-and-outer
-hooker
-amicus curiae
-jack
-camwood
-stockist
-black root rot fungus
-Jamaica dogwood
-diaphragm
-Holocentrus ascensionis
-roselle
-black maire
-Pygmy
-fumigator
-lame duck
-mudder
-hydraulic transmission
-conning tower
-phoronid
-batfish
-hearing dog
-monohybrid
-whaling gun
-Cockcroft and Walton accelerator
-allemande
-seasoner
-epileptic
-ammonia clock
-Young Turk
-lanseh tree
-urceole
-cafe noir
-poster girl
-Oglala
-deadeye
-manna lichen
-positive pole
-cinch
-lyricist
-hermaphrodite
-kidney stone
-dilator
-number one
-frotteur
-kaffir bread
-fish knife
-tarragon
-adjuster
-potato wart fungus
-Florida pompano
-conductor
-corbie gable
-rounders
-Catha edulis
-bender
-recruit
-Uruguayan
-subject
-bunghole
-day boarder
-pocketed bat
-Oxonian
-owner-occupier
-yellow-leaf sickle pine
-devisor
-exhibitor
-looking glass
-shipowner
-crooked-stemmed aster
-calico
-dash-pot
-defilade
-Confucian
-egg-and-dart
-irreligionist
-lepton
-self-rising flour
-diving bell
-Brahui
-shop girl
-maximum and minimum thermometer
-Dalmatian laburnum
-correspondent
-subduer
-nonperson
-Reaumur thermometer
-rough-leaved aster
-jacksmelt
-pinfold
-magneto
-ex-wife
-round-leaved rein orchid
-purloo
-American shrew mole
-sweet sand verbena
-polymastigote
-outfitter
-curled leaf pondweed
-Italian dressing
-borderer
-ambusher
-geebung
-four-stroke engine
-small ship
-homeopath
-gynostegium
-political prisoner
-Radiigera fuscogleba
-ensiform leaf
-rhizoctinia
-satyr orchid
-rue
-bouillon cube
-flip
-prophyll
-tilefish
-periselene
-prima donna
-choker
-laminar flow clean room
-Hooker's orchid
-fish joint
-mombin
-remover
-array
-coelostat
-autophyte
-consigner
-Damaraland mole rat
-gasman
-public works
-lye hominy
-pearlfish
-piassava palm
-Georgian
-uxoricide
-confessor
-community center
-epigone
-tagger
-abrading stone
-cryoscope
-nautch girl
-reliever
-Cartesian
-Indian beech
-protoplasmic astrocyte
-fundamentalist
-mustard sauce
-crank
-houselights
-five-point bishop's cap
-comedienne
-triangle
-presentist
-beaugregory
-dreamer
-Wave
-blue mockingbird
-Barbados gooseberry
-ten-spined stickleback
-papoose
-silky pocket mouse
-holdup man
-agent-in-place
-suspensory
-emigrant
-ropemaker
-bookbinder
-jumby bead
-undershrub
-Killarney fern
-sheep bell
-city slicker
-equerry
-pea crab
-down-and-out
-blackmouth bass
-shirtmaker
-lister
-UNIX guru
-snipefish
-gimbal
-maisonette
-haircloth
-Ranvier's nodes
-pigmy talinum
-tribute album
-msasa
-hydroxide ion
-madame
-four-pounder
-prophet
-sloganeer
-field-effect transistor
-nude mouse
-canteen
-Calostoma lutescens
-buteonine
-sunlamp
-Uruguay potato
-Spanish tamarind
-Prince-of-Wales'-heath
-kishke
-caprifig
-chincapin
-hegari
-alarmist
-bathtub gin
-astatic galvanometer
-Calostoma ravenelii
-marang
-tussah
-coin box
-bugleweed
-hacker
-frontal eminence
-timekeeper
-shunt
-bicycle clip
-mustang mint
-caesium clock
-hospice
-glenoid fossa
-archpriest
-ex-gambler
-incrustation
-salvager
-Donatist
-violator
-lamb succory
-hygroscope
-oilbird
-sharptail mola
-showplace
-corn syrup
-flashlight fish
-pulse timing circuit
-anchovy paste
-fascista
-chigoe
-divan
-Druid
-squad room
-Huntingdon elm
-buffalo carpet beetle
-carper
-corn lily
-goats' milk
-assault gun
-cockpit
-Lochaber ax
-Visigoth
-occupier
-Basotho
-criminologist
-spindle
-Rosicrucian
-Cornishwoman
-musk kangaroo
-artificial skin
-pandurate leaf
-Parkia javanica
-roundhead
-tea-like drink
-basidiolichen
-unguiculate
-stepmother
-Nauruan
-gutta-percha tree
-bloodberry
-scarlet haw
-marupa
-censor
-algebraist
-pelvimeter
-whaler
-cowhide
-paparazzo
-biochip
-internationalist
-Yukon white birch
-hangar queen
-chlamydia
-puttee
-Pipturus albidus
-pearly razorfish
-sea moss
-burglar
-hoary golden bush
-colter
-drey
-bushman's poison
-maxillaria
-gnetum
-deadeye
-shittah
-swamp oak
-damper block
-deepwater squirrelfish
-truffle
-cangue
-paleolith
-lawyerbush
-sorehead
-Texas snowbell
-Tremella reticulata
-quarter
-keelboat
-dimity
-whiner
-Wagnerian
-myrmecophyte
-frontierswoman
-pyrometric cone
-big-tree plum
-puppy
-galbulus
-hod
-winceyette
-carriage wrench
-dictostylium
-farmland
-infanticide
-Jacob's rod
-threadfish
-monocline
-inamorato
-leaf miner
-purple cress
-passer
-black-fronted bush shrike
-silverrod
-bootmaker
-segregate
-captive
-Edmontonia
-spherometer
-television transmitter
-bladder
-Saratoga spittlebug
-dynamometer
-lodge
-smooth darling pea
-Cossack
-wake-up call
-Olmec
-sutler
-molasses kiss
-corner post
-rattlesnake weed
-yardmaster
-adder
-rhinoscope
-referral
-ulster
-pantaloon
-counterspy
-gadgeteer
-heart cherry
-hospital chaplain
-Clydesdale terrier
-plank-bed
-Russian thistle
-actinometer
-dyspeptic
-common wolffia
-firewall
-seidel
-potato moth
-soapweed
-seif dune
-thill
-cosmographer
-absolver
-halberdier
-fire control system
-kai apple
-bastard pennyroyal
-Big Brother
-broadcast journalist
-Albatrellus dispansus
-citrophilous mealybug
-split end
-nickel-iron battery
-Newtonian
-gas maser
-thumbstall
-anaspid
-dusky-footed wood rat
-latitudinarian
-flatbrod
-schizocarp
-niqaabi
-flight surgeon
-gyrocompass
-Polyporus tenuiculus
-Utopian
-mailboat
-spellbinder
-undercoat
-cassareep
-typical jerboa
-photocathode
-katharometer
-bight
-fur-piece
-penetration bomb
-malik
-Siberian millet
-nanomia
-Wykehamist
-tosser
-gyrostabilizer
-microwave diathermy machine
-crystal set
-wall
-legatee
-alfalfa
-angwantibo
-charioteer
-piano maker
-African mahogany
-Morlett's crocodile
-taro
-parallel circuit
-cush-cush
-etymologist
-matriculate
-neem seed
-cornerback
-kingfisher daisy
-redoubt
-blastomycete
-peplos
-costumier
-publican
-tobogganist
-semolina
-myrmidon
-parricide
-gymslip
-whoremaster
-cryptocoryne
-header
-platitudinarian
-barleycorn
-spiral bandage
-reciter
-abecedarian
-dance
-wrymouth
-bilberry
-Liopelma hamiltoni
-streamliner
-Fordhooks
-fixed phagocyte
-radiobiologist
-neurologist
-Selkup
-dollarfish
-cascade everlasting
-acrodont
-boarhound
-midstream
-theatrical producer
-abhorrer
-goldsmith
-photometrist
-Anglo-Saxon
-rugel's plantain
-sable
-workmate
-ferule
-ankus
-earleaved umbrella tree
-Passamaquody
-timucu
-Mexican pocket mouse
-yerba santa
-Rochon prism
-apomict
-monocarp
-sweet unicorn plant
-common winterberry holly
-archivist
-drypis
-paretic
-fly-by-night
-white-berry yew
-Schoolman
-blue cheese dressing
-vintager
-squatter
-Euphausia pacifica
-corrugated fastener
-yellow henbane
-Croesus
-almoner
-analphabet
-acoustic delay line
-sheep frog
-workhouse
-horseleech
-venturer
-pond-scum parasite
-Pyrenees daisy
-plagiarist
-Truncocolumella citrina
-rerebrace
-group captain
-caddis fly
-hot-rock penstemon
-kanzu
-stylopodium
-slopseller
-rauli beech
-starter
-ootid
-statesman
-distributor cam
-ascot
-falcon-gentle
-Duplicidentata
-spotted antbird
-heliometer
-false buckthorn
-Allegheny spurge
-Cavalier
-dart
-photocoagulator
-master-at-arms
-kei apple
-baldachin
-crapshooter
-gametangium
-white hope
-chipotle
-spike heath
-Scotch woodcock
-Florentine
-differential analyzer
-Mitrula elegans
-wet cell
-basil balm
-Circassian
-corn cake
-bouncing betty
-vice-regent
-lagerphone
-ketembilla
-whoremaster
-fork
-tetrasporangium
-trifler
-pill head
-life-support system
-quartermaster general
-tobacco thrips
-officeholder
-teredo
-toyon
-Sundacarpus amara
-Phytophthora citrophthora
-naif
-lobbyist
-alligator wrench
-bully
-heavy
-toxicologist
-radio chassis
-waterdog
-drive line
-kaffir cat
-foster-brother
-breakax
-curette
-traditionalist
-pipe vise
-striped button quail
-gawker
-homeotherm
-schoolyard
-battue
-kalansuwa
-deviationist
-Bolshevik
-transponder
-pungapung
-iron
-Eyeish
-roccella
-manglietia
-Tory
-print seller
-Texas Ranger
-otter shrew
-seconder
-shellflower
-outlier
-party man
-wold
-hayfork
-oncologist
-framer
-co-beneficiary
-ocean pout
-Chinese angelica
-scrimshaw
-air attache
-false gromwell
-standing press
-fringepod
-specifier
-automatic choke
-durum
-yenta
-wassailer
-reeler
-signora
-beach pancake
-common booklouse
-pellicle
-backroom boy
-den mother
-associate
-Unitarian
-gambist
-brookweed
-clubroom
-cat's-tail
-playboy
-self-registering thermometer
-doorstop
-bennet
-yak's milk
-escapee
-quail bush
-sparge pipe
-coast boykinia
-screw key
-half gainer
-aggravator
-cotton mill
-tailor's chalk
-free agent
-cotton mouse
-deadhead
-bunny
-turpentine camphor weed
-amaranth
-ceratodus
-red lauan
-beam-ends
-thermograph
-wally
-Toda
-handrest
-commissary
-oak-leaved goosefoot
-manufacturer
-voicer
-Jafnea semitosta
-bench hook
-finder
-abyssal zone
-rabbitwood
-Hercules'-club
-epicarp
-declinometer
-camp follower
-signaler
-Australian pea
-putz
-qadi
-banded palm civet
-egg timer
-regnellidium
-calisaya
-harvestfish
-sound spectrograph
-side-wheeler
-glomerule
-woolly rhinoceros
-Black Muslim
-horticulturist
-ornithomimid
-cryometer
-battlefront
-gametophyte
-airmailer
-cuisse
-nakedwood
-baseball club
-slasher
-anise
-leatherleaf
-leatherjacket
-horned pondweed
-gofer
-Saigon cinnamon
-barong
-blazer
-twinkler
-skeleton shrimp
-dial
-floorwalker
-case shot
-flannelbush
-cultivated parsnip
-Jane Doe
-few-flowered leek
-nogging
-placer miner
-muzzler
-serge
-lion-hunter
-capulin
-Wandering Jew
-ascidian tadpole
-hispid pocket mouse
-southern spatterdock
-milk wagon
-junior middleweight
-duck sauce
-promycelium
-protozoologist
-cascade liquefier
-tout
-longheaded thimbleweed
-charcoal burner
-footage
-slop
-bridge agent
-miller's-thumb
-Job's comforter
-marocain
-tanker plane
-lancetfish
-knocker
-toque
-ordinand
-umbrella bird
-favorite son
-hare's-foot bristle fern
-business traveler
-plotter
-Asiatic shrew mole
-tallyman
-stump
-Paleacrita vernata
-index register
-mortgagee
-accuser
-codger
-sand rat
-seaside centaury
-chiropractor
-Florida smoothhound
-dwarf sperm whale
-T-man
-sannup
-dragonhead
-numdah
-alkali grass
-gynobase
-kymograph
-ascolichen
-steward
-waterline
-Nazarene
-filer
-lapidary
-muncher
-wincey
-scyphus
-question master
-besieger
-worldling
-docent
-facing
-atmometer
-quern
-puerpera
-three-decker
-calliope
-wild red oat
-bailee
-flame pea
-cattle cake
-theist
-yellowtail flounder
-cosmopolitan
-rocket engineer
-vouchee
-Turkoman
-hard sauce
-Thousand Island dressing
-assayer
-messmate
-mutilator
-oyster bar
-flame tokay
-countess
-prairie mimosa
-microsporangium
-cotter
-townsman
-paring
-fundraiser
-simperer
-Comrade
-orlop deck
-power takeoff
-cattleship
-prime meridian
-Javanthropus
-scriptorium
-curandera
-long-clawed prawn
-maestro
-paster
-potato tuberworm
-chachka
-junkyard
-cape yellowwood
-reentrant polygon
-Liberian coffee
-restaurateur
-Alsophila pometaria
-Jekyll and Hyde
-electrophorus
-Scomberomorus maculatus
-manipulator
-gromwell
-chicken provencale
-ashram
-mangel-wurzel
-shamrock pea
-dossal
-adducer
-erection
-Mysore thorn
-smoothie
-chufa
-brace wrench
-victualer
-litterer
-linstock
-Protium guianense
-palfrey
-banyan
-klieg light
-dangleberry
-trooper
-yaupon holly
-quitter
-tradescant's aster
-nullipara
-melter
-devil's urn
-ghostwriter
-mouth
-analogist
-Creek
-sonic depth finder
-fucker
-locus of infection
-mortician
-esophageal smear
-locum tenens
-conic projection
-aroeira blanca
-bellarmine
-night porter
-automobile mechanic
-codpiece
-Munro
-cottonweed
-scoinson arch
-tinderbox
-frozen food
-waterproofing
-Egyptian henbane
-lash
-transactor
-American smooth dogfish
-existentialist
-grabber
-Sonoran lyre snake
-Rufous rubber cup
-colors
-weekend warrior
-power user
-perennial salt marsh aster
-Puritan
-Apalachicola rosemary
-anecdotist
-tosser
-moth bean
-agnostic
-stretcher-bearer
-browntail
-optimist
-brewer's mole
-astronomy satellite
-flat file
-rust mite
-tuberous plant
-day laborer
-buster
-trapezoid
-bevatron
-nonresident
-Streptomyces griseus
-mangosteen
-customer agent
-hero worshiper
-suicide bomber
-procellariiform seabird
-archiannelid
-reaction turbine
-distortionist
-bulldog wrench
-grainy club
-scalp
-Aztec
-scow
-globigerina
-pedant
-heartleaf manzanita
-kanchil
-low gallberry holly
-containment
-scandalmonger
-rose-colored starling
-Powhatan
-addle-head
-Chilean rimu
-Atlantic sea bream
-arthrospore
-ramrod
-root climber
-Kalapooia
-roach clip
-Schreiber's aster
-horseradish
-albino
-Kshatriya
-trombidiid
-blasting cap
-body pad
-brachium
-shallu
-Wynnea americana
-slender centaury
-munj
-upset
-wind tunnel
-cottonwick
-airing cupboard
-pepper shrub
-ambrosia
-languisher
-chosen
-rose globe lily
-purple apricot
-costia
-sloop of war
-sultana
-frontlet
-booster
-sargassum fish
-broad-leaved montia
-rifleman bird
-stillroom
-amoralist
-enginery
-meter maid
-fitment
-southern bog lemming
-Athenian
-clincher
-cusk-eel
-mackintosh
-diaphone
-corozo
-Australian reed grass
-czar
-spongioblast
-Eurafrican
-airhead
-Shahaptian
-Roman
-pollinium
-tourist class
-halogeton
-stamper
-emperor
-malingerer
-tramp steamer
-Peziza domicilina
-pilot cloth
-stenopterygius
-cost accountant
-Queen's Counsel
-wine-maker's yeast
-poppet
-cage
-rowlock arch
-landgrave
-bearded wheatgrass
-stink bell
-quaker
-undesirable
-algarroba
-resistance pyrometer
-exorcist
-carib wood
-guvnor
-border patrolman
-bathhouse
-licenser
-headman
-rentier
-pine spittlebug
-nut-leaved screw tree
-paraduodenal smear
-apron
-necker
-smilax
-Alpine besseya
-creeper
-castle
-ground bait
-Queensland grass-cloth plant
-sclerotium
-great yellowcress
-fat farm
-Stoker
-hoop snake
-elixir of life
-Trotskyite
-home buyer
-wheat berry
-Tutelo
-semi-climber
-utahraptor
-wet-bulb thermometer
-packrat
-hygrophyte
-darter
-sketcher
-refiner
-camlet
-midgrass
-compound
-tarwood
-Colorado River hemp
-toiler
-abstractor
-override
-dwarf pipefish
-plodder
-briefcase computer
-trunk hose
-brown butter
-valve-in-head engine
-cymbalist
-explosive detection system
-horsewoman
-boutonniere
-chinchilla
-venerator
-scourer
-exarch
-cohune nut
-ayapana
-continental divide
-cosigner
-stalker
-pyxie
-Genet
-Macowanites americanus
-open-hearth furnace
-water chestnut
-American frogbit
-tarwood
-cutter
-scout
-burr
-upsetter
-grist
-tagasaste
-mouthpiece
-palette
-rattan
-letterman
-Exmoor
-Methodist
-eelblenny
-marasca
-slide valve
-ventilation
-saddle hackle
-Yakut
-flux applicator
-air traveler
-murder suspect
-Cynocephalus variegatus
-idolizer
-Surgeon General
-nutlet
-little-head snakeweed
-germ tube
-fellow traveler
-raceabout
-commodore
-czar
-anamorphosis
-treelet
-girlfriend
-groundnut
-sideline
-giant star grass
-goffer
-spark lever
-oubliette
-processor
-tare
-plodder
-extremist
-Kipp's apparatus
-gripsack
-S wrench
-viscountess
-bridgehead
-cascarilla
-Asiatic flying squirrel
-protoceratops
-equerry
-difflugia
-princeling
-moonlighter
-aspergill
-common flat pea
-Utahan
-imperial mammoth
-plantain-leaved pussytoes
-Boott's goldenrod
-bootlegger
-reed pipe
-runcinate leaf
-onion salt
-nitrite bacterium
-introvert
-duck
-New World opah
-goliath frog
-heterostracan
-disrupting explosive
-haggler
-candlenut
-false bugbane
-returning officer
-eudiometer
-ship-breaker
-metazoan
-mandarin
-patka
-gill net
-cavity wall
-armilla
-rainmaker
-dealfish
-orderly
-gleaner
-muffin man
-house sitter
-alto
-sand devil's claw
-vulcanizer
-appendicularia
-boron chamber
-chess
-bitok
-anchovy butter
-dropout
-flour mill
-bishop
-escapist
-scapegrace
-stanhope
-smooth winterberry holly
-upstager
-stalking-horse
-pony
-prairie gourd
-parabolic mirror
-Polaroid
-slasher
-lap
-garlic butter
-sendee
-German millet
-hairy honeysuckle
-Swiss canton
-Scleroderma flavidium
-red goatfish
-telegraph plant
-Jungian
-garment cutter
-mallee hen
-stranger
-driveway
-schooner
-Paiute
-cisco
-trestlework
-sipper
-shanny
-romanticist
-Molly Miller
-mountain rimu
-odd-leg caliper
-bitumastic
-Western Australia coral pea
-labor coach
-latchkey
-harpulla
-solitary pussytoes
-chop-suey greens
-coil
-guimpe
-diapir
-Osage
-gutta-percha tree
-giant eland
-reticulation
-garden huckleberry
-quick study
-Hudson bay collared lemming
-coreligionist
-Lancastrian
-stumblebum
-omnirange
-seersucker
-Potemkin village
-Rhea Silvia
-symphonist
-bolti
-jaw
-jaconet
-page
-visiting fireman
-haulm
-p-n junction
-landlubber
-yellow jack
-triclinium
-souari
-invader
-fire walker
-Luddite
-Plott hound
-hemming-stitch
-winker
-star-duckweed
-craniometer
-Arabidopsis lyrata
-loser
-cypripedia
-trimmer arch
-cookhouse
-pink fivecorner
-transfer
-ringleader
-northern pocket gopher
-moke
-blockade-runner
-cyclostome
-web-spinning mite
-Whig
-transcriber
-malahini
-sawyer
-patent log
-paca
-tragedian
-thermojunction
-soffit
-black buffalo
-foreigner
-applecart
-brit
-pole horse
-white mullet
-argentinosaur
-Homo soloensis
-bounty hunter
-decumary
-hand
-paperboy
-Smitane
-windowpane
-Java man
-Wynnea sparassoides
-prune
-middy
-lilliputian
-sorb
-pyrostat
-guest worker
-hold
-leaseholder
-vegan
-humanist
-salinometer
-piton
-zygospore
-means
-night rider
-tetraspore
-archipelago
-radiomicrometer
-nitpicker
-spot weld
-slicer
-girlfriend
-round-tailed muskrat
-cock's eggs
-Shavian
-bay
-nuclear chemist
-planetarium
-hiccup nut
-Marylander
-milling
-microsporidian
-brown cup
-Strophanthus kombe
-little skate
-emancipator
-paperhanger
-archaeopteryx
-maigre
-Mastotermes electrodominicus
-procurer
-seizure-alert dog
-homeboy
-cotton strain
-mute
-siren
-spearnose bat
-phenacomys
-gayal
-arsenal
-pitchfork
-Port Jackson heath
-cud
-magnetic core memory
-interferometer
-water jacket
-account executive
-hodoscope
-window oyster
-sudatorium
-syncopator
-loment
-hypertensive
-smoothbark
-Geogia holly
-nailhead
-African holly
-musette
-chafeweed
-microflora
-derrick
-strawworm
-shogun
-queen post
-jerboa kangaroo
-columbo
-royal
-sourball
-solenogaster
-cardsharp
-Homo habilis
-intaglio
-calf's-foot jelly
-flotsam
-skirret
-baronduki
-chyme
-shovel hat
-Welsh
-monoplane flying fish
-groundfish
-tablet-armed chair
-swan dive
-Indian club
-colonial
-cassiri
-pyramidal tent
-praya
-silk vine
-time clock
-button snakeroot
-clews
-Korean lespedeza
-diffuser
-ripping bar
-puttyroot
-nipple shield
-headpin
-juneberry holly
-hub-and-spoke
-laver
-weldment
-plain flour
-hoosegow
-dudeen
-grey skate
-line of life
-mung
-arariba
-Newtown Wonder
-rock candy
-side chapel
-castor sugar
-narrow-leaved white-topped aster
-babassu nut
-puka
-rings
-catchall
-heat shield
-caroche
-oxbow
-Australian coral snake
-tapper
-sporangiophore
-fenugreek
-spruce gall aphid
-gouache
-cutoff
-private line
-pod
-cargo hatch
-nailhead
-penile implant
-geophyte
-small-leaved linden
-deepwater pipefish
-paperhanger
-hairy spurge
-Persian lamb
-subtropics
-feed grain
-clarence
-nonparticipant
-scorpioid cyme
-hand brake
-tiller
-Geglossaceae
-albacore
-monochrome
-goa bean
-bur
-tongue worm
-psittacosaur
-frog's lettuce
-pectoral
-terreplein
-light filter
-fishpaste
-dry point
-grison
-feterita
-dolichocephalic
-oenomel
-stretcher
-swag
-cheval-de-frise
-mountain beaver
-scammony
-discus
-leatherleaf saxifrage
-wharf rat
-Dominique
-pelycosaur
-depth gauge
-bishop
-archespore
-true anomaly
-silver jenny
-mercy seat
-kelp
-oviraptorid
-acrylic
-Chinese pea tree
-meat house
-bilge well
-Temperate Zone
-whale louse
-balbriggan
-briefcase bomb
-pump-type pliers
-oil
-sour gourd
-Jewbush
-lunette
-Chinese paddlefish
-pyxidium
-beechnut
-calabar bean
-grugru nut
-gib
-blunt file
-cataphyll
-megasporangium
-blockbuster
-sliding seat
-hogchoker
-calceus
-Connarus guianensis
-honest woman
-survivor
-second balcony
-tempera
-Calvary clover
-murine
-outwork
-bogy
-elephant's-foot
-conning tower
-set square
-blackfly
-stirk
-Streptomyces erythreus
-blade
-goldfield
-snowball
-mortal enemy
-waltzer
-shoal
-galley
-hitchhiker
-lithophyte
-brisling
-scauper
-esophagoscope
-grab
-subtracter
-philosopher
-duplex apartment
-southeastern pocket gopher
-bonduc nut
-reverberatory furnace
-grader
-lamp house
-northern bog lemming
-brotula
-ornithopod
-ptyalith
-obturator
-perpetual motion machine
-range pole
-Africander
-curvet
-daisy print wheel
-floor
-collector
-mutant
-tuck
-fore-and-after
-senega
-buckler mustard
-louvar
-Tarsius glis
-culdoscope
-Spanish fly
-steering gear
-hatchet man
-museum
-saw set
-cambric tea
-comber
-thermohydrometer
-stationer
-chalcis fly
-bryanthus
-whipstitch
-harvest mite
-rock gunnel
-time bomb
-rariora
-pigfish
-apetalous flower
-head shop
-horned whiff
-sandpit
-tachistoscope
-sundries
-taffrail
-caller
-monofocal lens implant
-Dover's powder
-souari nut
-crowbait
-render
-Shakespearian
-hagberry
-megatherian
-magus
-hatchel
-mangabey
-garroter
-piedmont
-cope
-barrio
-psychodid
-rigout
-distributor
-croupier's rake
-sarcenet
-narrow-leaved water plantain
-treenail
-biped
-lanternfish
-overdrive
-barndoor skate
-picket boat
-amber lily
-sawpit
-sand lance
-bucket shop
-common beech
-laundry truck
-surtout
-grogram
-tampion
-escape hatch
-interstice
-shop bell
-snake mackerel
-nakedwood
-tumbrel
-mericarp
-mountain paca
-cab
-big board
-cringle
-eusporangium
-shipping room
-coal chute
-dumbwaiter
-Smiledon californicus
-man-at-arms
-cartridge
-deinonychus
-pigeon pea
-screw bean
-spectacle
-floorboard
-cutting room
-low-warp-loom
-proconsul
-sabicu
-genipap
-clapper
-aquifer
-archaeornis
-belly flop
-Protium heptaphyllum
-interrupter
-high-warp loom
-knight
-wiper
-impression
-poker
-Pithecanthropus
-sable
-guardroom
-tenter
-wellhead
-raja
-strickle
-sodomite
-mountebank
-sand leek
-Barbados gooseberry
-shuffler
-sensory fiber
-crab-eating opossum
-etching
-rare bird
-scup
-fagot
-negro vine
-hutment
-droshky
-nephoscope
-lady chapel
-cutty stool
-release
-vestiture
-buff
-standard
-Tabernacle
-vascular ray
-snakewood
-chlorobenzylidenemalononitrile
-limnologist
-pouched mole
-microwave linear accelerator
-Mastotermes darwiniensis
-wind tee
-orange bat
-open sight
-carpospore
-rampant arch
-sabbatia
-cursor
-post exchange
-bellpull
-center
-cyclostyle
-canonist
-pygmy sperm whale
-moa
-king
-pass-through
-angioscope
-marrow
-hookup
-revetment
-acanthocephalan
-good Samaritan
-apatosaur
-web spinner
-dixie
-ommastrephes
-crossbench
-candlewick
-jack
-light arm
-caisson
-kaki
-quandong nut
-Meuniere butter
-coquilla nut
-mast
-black
-twitterer
-bluethroat pikeblenny
-shielding
-water-shield
-urolith
-elephant bird
-clearway
-dark lantern
-schizopetalon
-press
-Nazi
-sugarberry
-Maltese
-stevedore
-hair shirt
-party wall
-gainer
-blackheart
-nothosaur
-cavetto
-evergreen bittersweet
-chemical bomb
-calpac
-shingle
-turnpike
-animator
-heaver
-isoclinic line
-death knell
-liner
-anathema
-aerie
-razorback
-Ichyostega
-pound net
-French dressing
-mottle
-yard
-string tie
-bell seat
-brattice
-battering ram
-sierra
-pompon
-vertex
-stomach pump
-electrolytic cell
-escolar
-telpher
-roadhouse
-cerecloth
-tartare sauce
-letter case
-whale sucker
-hob
-teg
-canvas
-strickle
-hectograph
-Cartagena bark
-mail car
-acinus
-freedom rider
-bread sauce
-picture window
-Rhizopogon idahoensis
-pinprick
-mass spectrograph
-ringer
-devil's cigar
-salad cream
-marlberry
-airbrake
-Clark cell
-yellow-throated marten
-wire gauge
-dinoceras
-aba
-harpoon log
-plate rail
-mustard plaster
-coelophysis
-journal box
-puce
-ballcock
-quartering
-izar
-clinid
-whirler
-turnspit
-deathbed
-pottle
-shot
-doubler
-Coryphaena equisetis
-English sole
-chicken feed
-borrow pit
-mylodontid
-Chilean nut
-Kundt's tube
-ling
-asthenosphere
-reseau
-death seat
-immovable bandage
-peppermint patty
-lecturer
-electron multiplier
-bear claw
-hyacinth
-beaked salmon
-toehold
-scull
-snowball
-gangsaw
-fiber
-oxeye
-lashing
-Beckman thermometer
-fence
-cantilever
-dinner theater
-Reynard
-jag
-umbrella plant
-camera lucida
-beaver
-slug
-yellowfin croaker
-Sibley tent
-rat-tail file
-anchovy pear
-soldier
-cackler
-chaise
-Pitot-static tube
-minniebush
-Episcopalian
-oleaster
-ejaculator
-wavy-leaved aster
-knight
-rack
-real storage
-magnetic mine
-cocoa plum
-vesiculovirus
-birch leaf miner
-water chevrotain
-rudapithecus
-torpedo tube
-itch mite
-warren
-loft
-washerman
-terrace
-nonstarter
-shit
-platform
-caudex
-ground control
-Ostariophysi
-slopshop
-Peruvian cotton
-crystal oscillator
-plastic bomb
-bar bit
-watering cart
-Asiatic sweetleaf
-artificial joint
-chariot
-casern
-charge-exchange accelerator
-display adapter
-hornpipe
-honey bell
-planula
-Nephthytis afzelii
-hame
-ranter
-trachodon
-synchrocyclotron
-splasher
-heterotroph
-Nicol prism
-Himalayan rhubarb
-headfast
-put-put
-bitter almond
-parr
-scantling
-power breakfast
-madder
-Catalpa bignioides
-rose of Jericho
-spark chamber
-rhizome
-beard worm
-supper club
-negro peach
-keratoscope
-wain
-apple aphid
-planking
-time-delay measuring instrument
-sternpost
-sicklepod
-lake bed
-gatherer
-monotype
-dead-man's float
-poison gas
-dicynodont
-organism
-cell
-person
-animal
-plant
-food
-artifact
-dressage
-contact sport
-outdoor sport
-gymnastics
-track and field
-jumping
-high jump
-skiing
-water sport
-swimming
-dive
-floating
-skin diving
-rowing
-boxing
-sledding
-tobogganing
-wrestling
-skating
-ice skating
-roller skating
-racing
-boat racing
-riding
-equestrian sport
-cycling
-blood sport
-hunt
-fishing
-angling
-casting
-athletic game
-outdoor game
-golf
-field game
-field hockey
-football
-American football
-ball game
-baseball
-court game
-badminton
-basketball
-tennis
-sport
-Seder
-scavenger
-bottom-feeder
-work animal
-beast of burden
-pack animal
-domestic animal
-marine animal
-female
-male
-young
-young mammal
-pup
-cub
-lion cub
-tiger cub
-microorganism
-arbovirus
-herpes
-herpes zoster
-reovirus
-moneran
-cyanobacteria
-enteric bacteria
-actinomycete
-streptomyces
-diplococcus
-parasite
-ectoparasite
-protoctist
-protozoan
-sarcodinian
-ameba
-ciliate
-alga
-brown algae
-green algae
-sporozoan
-cypriniform fish
-cyprinid
-carp
-domestic carp
-shiner
-catostomid
-buffalo fish
-cyprinodont
-killifish
-topminnow
-squirrelfish
-stickleback
-pipefish
-embryo
-fetus
-blastula
-chordate
-cephalochordate
-tunicate
-ascidian
-vertebrate
-aquatic vertebrate
-jawless vertebrate
-lamprey
-hagfish
-cartilaginous fish
-holocephalan
-chimaera
-elasmobranch
-shark
-mackerel shark
-mako
-requiem shark
-dogfish
-smooth dogfish
-spiny dogfish
-smooth hammerhead
-smalleye hammerhead
-shovelhead
-ray
-sawfish
-roughtail stingray
-butterfly ray
-eagle ray
-manta
-skate
-bird
-gamecock
-night bird
-ratite
-passerine
-oscine
-accentor
-lark
-pipit
-finch
-canary
-dark-eyed junco
-New World sparrow
-bunting
-honeycreeper
-sparrow
-grosbeak
-towhee
-weaver
-grassfinch
-tyrannid
-New World flycatcher
-kingbird
-pewee
-cotinga
-antbird
-Old World flycatcher
-thrush
-nightingale
-Old World chat
-warbler
-kinglet
-Old World warbler
-New World warbler
-flycatching warbler
-New World chat
-yellowthroat
-New World oriole
-northern oriole
-meadowlark
-New World blackbird
-grackle
-Old World oriole
-starling
-myna
-corvine bird
-crow
-Old World jay
-common European jay
-New World jay
-blue jay
-Canada jay
-Rocky Mountain jay
-nutcracker
-European magpie
-American magpie
-Australian magpie
-wren
-marsh wren
-thrasher
-New Zealand wren
-creeper
-titmouse
-black-capped chickadee
-Carolina chickadee
-swallow
-martin
-tanager
-shrike
-butcherbird
-bush shrike
-bowerbird
-European water ouzel
-American water ouzel
-vireo
-waxwing
-bird of prey
-hawk
-black kite
-swallow-tailed kite
-white-tailed kite
-harrier
-falcon
-peregrine
-caracara
-eagle
-young bird
-sea eagle
-Aegypiidae
-Old World vulture
-griffon vulture
-bearded vulture
-Egyptian vulture
-black vulture
-New World vulture
-buzzard
-condor
-Andean condor
-California condor
-black vulture
-king vulture
-owl
-horned owl
-scops owl
-amphibian
-salamander
-newt
-Pacific newt
-ambystomid
-climbing salamander
-web-toed salamander
-frog
-true frog
-true toad
-spadefoot
-tree toad
-cricket frog
-tongueless frog
-reptile
-anapsid
-diapsid
-chelonian
-turtle
-sea turtle
-ridley
-snapping turtle
-musk turtle
-diamondback terrapin
-Western box turtle
-tortoise
-soft-shelled turtle
-saurian
-lizard
-gecko
-iguanid
-spiny lizard
-fence lizard
-horned lizard
-skink
-teiid lizard
-racerunner
-plateau striped whiptail
-Chihuahuan spotted whiptail
-western whiptail
-checkered whiptail
-agamid
-moloch
-anguid lizard
-venomous lizard
-lacertid lizard
-chameleon
-monitor
-crocodilian reptile
-crocodile
-alligator
-caiman
-armored dinosaur
-ankylosaur
-bone-headed dinosaur
-ceratopsian
-hadrosaur
-saurischian
-sauropod
-theropod
-ceratosaur
-maniraptor
-synapsid
-pterosaur
-ichthyosaur
-snake
-colubrid snake
-smooth green snake
-rough green snake
-racer
-blacksnake
-whip-snake
-rat snake
-bull snake
-common kingsnake
-milk snake
-common garter snake
-ribbon snake
-Western ribbon snake
-common water snake
-water moccasin
-grass snake
-viperine grass snake
-sand snake
-lyre snake
-blind snake
-indigo snake
-constrictor
-boa
-python
-elapid
-coral snake
-coral snake
-cobra
-mamba
-black mamba
-krait
-viper
-pit viper
-rattlesnake
-timber rattlesnake
-arthropod
-arachnid
-false scorpion
-whip-scorpion
-spider
-European wolf spider
-acarine
-hard tick
-Ixodes dammini
-Ixodes neotomae
-Ixodes pacificus
-Ixodes scapularis
-sheep-tick
-Ixodes persulcatus
-Ixodes dentatus
-Ixodes spinipalpis
-wood tick
-soft tick
-mite
-trombiculid
-spider mite
-house centipede
-gallinaceous bird
-domestic fowl
-jungle fowl
-chicken
-cock
-hen
-turkey
-grouse
-European black grouse
-Asian black grouse
-blackcock
-greyhen
-red grouse
-moorhen
-greater prairie chicken
-lesser prairie chicken
-heath hen
-guan
-chachalaca
-megapode
-mallee fowl
-phasianid
-pheasant
-bobwhite
-northern bobwhite
-Old World quail
-migratory quail
-peafowl
-California quail
-Hungarian partridge
-red-legged partridge
-Greek partridge
-mountain quail
-guinea fowl
-columbiform bird
-pigeon
-dove
-turtledove
-domestic pigeon
-homing pigeon
-sandgrouse
-parrot
-cockatoo
-lory
-varied Lorikeet
-rainbow lorikeet
-parakeet
-cuculiform bird
-cuckoo
-crow pheasant
-coraciiform bird
-roller
-kingfisher
-hoopoe
-apodiform bird
-swift
-Archilochus colubris
-thornbill
-goatsucker
-piciform bird
-woodpecker
-flicker
-sapsucker
-toucanet
-trogon
-quetzal
-aquatic bird
-waterfowl
-anseriform bird
-duck
-teal
-widgeon
-sheldrake
-goldeneye
-scaup
-wood duck
-sea duck
-scoter
-merganser
-gosling
-gander
-Chinese goose
-greylag
-blue goose
-snow goose
-brant
-common brant goose
-honker
-barnacle goose
-swan
-tundra swan
-screamer
-crested screamer
-mammal
-prototherian
-monotreme
-marsupial
-opossum
-bandicoot
-kangaroo
-common wallaby
-hare wallaby
-nail-tailed wallaby
-rock wallaby
-pademelon
-tree wallaby
-rat kangaroo
-phalanger
-dasyurid marsupial
-dasyure
-placental
-calf
-buck
-insectivore
-mole
-shrew mole
-shrew
-water shrew
-tenrec
-invertebrate
-sponge
-glass sponge
-coelenterate
-Chrysaora quinquecirrha
-hydrozoan
-siphonophore
-anthozoan
-actinia
-coral
-gorgonian
-stony coral
-ctenophore
-worm
-planarian
-fluke
-liver fluke
-Fasciolopsis buski
-schistosome
-tapeworm
-echinococcus
-taenia
-common roundworm
-chicken roundworm
-pinworm
-eelworm
-vinegar eel
-trichina
-hookworm
-filaria
-Guinea worm
-annelid
-oligochaete
-polychaete
-leech
-mollusk
-scaphopod
-gastropod
-abalone
-scorpion shell
-giant conch
-edible snail
-garden snail
-brown snail
-Helix hortensis
-seasnail
-neritid
-limpet
-Hermissenda crassicornis
-cowrie
-bivalve
-clam
-quahog
-cockle
-oyster
-mussel
-marine mussel
-freshwater mussel
-scallop
-shipworm
-cephalopod
-octopod
-decapod
-squid
-crustacean
-malacostracan crustacean
-decapod crustacean
-crab
-swimming crab
-spider crab
-lobster
-true lobster
-Old World crayfish
-American crayfish
-shrimp
-prawn
-krill
-stomatopod
-mantis shrimp
-woodlouse
-pill bug
-sow bug
-sea louse
-amphipod
-copepod
-barnacle
-wading bird
-stork
-ibis
-common spoonbill
-roseate spoonbill
-heron
-egret
-night heron
-American bittern
-European bittern
-least bittern
-whooping crane
-rail
-crake
-gallinule
-purple gallinule
-coot
-great bustard
-plain turkey
-button quail
-trumpeter
-seabird
-shorebird
-plover
-turnstone
-sandpiper
-yellowlegs
-ruff
-tattler
-woodcock
-snipe
-greyback
-red-breasted snipe
-curlew
-godwit
-stilt
-stilt
-phalarope
-courser
-coastal diving bird
-larid
-gull
-tern
-jaeger
-skua
-auk
-guillemot
-murre
-puffin
-gaviiform seabird
-podicipitiform seabird
-grebe
-pelecaniform seabird
-white pelican
-Old world white pelican
-gannet
-snakebird
-sphenisciform seabird
-penguin
-pelagic bird
-wandering albatross
-black-footed albatross
-petrel
-shearwater
-storm petrel
-aquatic mammal
-cetacean
-whale
-baleen whale
-rorqual
-toothed whale
-beaked whale
-dolphin
-bottlenose dolphin
-porpoise
-sea cow
-carnivore
-pinniped mammal
-seal
-eared seal
-fur seal
-fur seal
-South American sea lion
-California sea lion
-Australian sea lion
-Steller sea lion
-earless seal
-walrus
-canine
-bitch
-dog
-cur
-toy dog
-toy spaniel
-English toy spaniel
-hunting dog
-hound
-coonhound
-dachshund
-foxhound
-wolfhound
-greyhound
-terrier
-bullterrier
-rat terrier
-Manchester terrier
-fox terrier
-wirehair
-Welsh terrier
-schnauzer
-Skye terrier
-sporting dog
-retriever
-pointer
-setter
-spaniel
-springer spaniel
-water spaniel
-working dog
-watchdog
-shepherd dog
-Belgian sheepdog
-pinscher
-Sennenhunde
-mastiff
-bulldog
-guide dog
-sled dog
-liver-spotted dalmatian
-spitz
-griffon
-corgi
-poodle
-wolf
-coydog
-wild dog
-striped hyena
-brown hyena
-spotted hyena
-aardwolf
-fox
-black fox
-silver fox
-blue fox
-feline
-cat
-domestic cat
-tom
-blue point Siamese
-wildcat
-common lynx
-Canada lynx
-bobcat
-spotted lynx
-caracal
-big cat
-leopardess
-panther
-lioness
-lionet
-Bengal tiger
-tigress
-saber-toothed tiger
-bear
-Syrian bear
-grizzly
-Alaskan brown bear
-cinnamon bear
-viverrine
-civet
-Indian mongoose
-ichneumon
-slender-tailed meerkat
-suricate
-bat
-fruit bat
-carnivorous bat
-leafnose bat
-false vampire
-vespertilian bat
-long-eared bat
-freetail
-vampire bat
-predator
-game
-game bird
-fossorial mammal
-tetrapod
-insect
-beetle
-two-spotted ladybug
-Mexican bean beetle
-Hippodamia convergens
-vedalia
-bombardier beetle
-calosoma
-searcher
-firefly
-sawyer
-pine sawyer
-flea beetle
-Colorado potato beetle
-carpet beetle
-clerid beetle
-lamellicorn beetle
-scarabaeid beetle
-scarab
-tumblebug
-dorbeetle
-June beetle
-melolonthid beetle
-elaterid beetle
-snout beetle
-boll weevil
-blister beetle
-bark beetle
-darkling beetle
-flour beetle
-seed beetle
-pea weevil
-bean weevil
-rice weevil
-louse
-flea
-dipterous insect
-gall midge
-housefly
-tsetse fly
-blowfly
-bluebottle
-greenbottle
-flesh fly
-tachina fly
-gadfly
-botfly
-human botfly
-sheep botfly
-warble fly
-horsefly
-bee fly
-fruit fly
-louse fly
-horn fly
-mosquito
-gnat
-fungus gnat
-hymenopterous insect
-drone
-worker
-honeybee
-Africanized bee
-black bee
-Carniolan bee
-Italian bee
-carpenter bee
-bumblebee
-cuckoo-bumblebee
-andrena
-Nomia melanderi
-leaf-cutting bee
-mason bee
-potter bee
-wasp
-vespid
-paper wasp
-hornet
-sphecoid wasp
-digger wasp
-chalcid fly
-sawfly
-pharaoh ant
-little black ant
-army ant
-carpenter ant
-fire ant
-wood ant
-slave ant
-Formica fusca
-slave-making ant
-sanguinary ant
-bulldog ant
-Amazon ant
-termite
-dry-wood termite
-orthopterous insect
-short-horned grasshopper
-locust
-migratory locust
-migratory grasshopper
-long-horned grasshopper
-katydid
-mormon cricket
-sand cricket
-mole cricket
-European house cricket
-field cricket
-tree cricket
-snowy tree cricket
-phasmid
-diapheromera
-oriental cockroach
-American cockroach
-Australian cockroach
-German cockroach
-giant cockroach
-praying mantis
-hemipterous insect
-leaf bug
-mirid bug
-lygus bug
-lygaeid
-coreid bug
-heteropterous insect
-water bug
-water strider
-assassin bug
-homopterous insect
-whitefly
-sweet-potato whitefly
-coccid insect
-scale insect
-soft scale
-armored scale
-mealybug
-plant louse
-aphid
-greenfly
-woolly aphid
-adelgid
-dog-day cicada
-seventeen-year locust
-spittle insect
-plant hopper
-psocopterous insect
-psocid
-booklouse
-ephemerid
-neuropteron
-green lacewing
-brown lacewing
-odonate
-trichopterous insect
-caseworm
-thysanuran insect
-bristletail
-thysanopter
-thrips
-earwig
-lepidopterous insect
-butterfly
-nymphalid
-fritillary
-emperor butterfly
-danaid
-pierid
-small white
-large white
-southern cabbage butterfly
-blue
-copper
-American copper
-hairstreak
-Strymon melinus
-moth
-tortricid
-lymantriid
-geometrid
-cankerworm
-pyralid
-tineoid
-tineid
-clothes moth
-gelechiid
-grain moth
-noctuid moth
-cutworm
-underwing
-hawkmoth
-bombycid
-saturniid
-giant silkworm moth
-silkworm
-arctiid
-lasiocampid
-tent caterpillar
-webworm
-webworm moth
-caterpillar
-bollworm
-woolly bear
-larva
-grub
-pupa
-queen
-echinoderm
-basket star
-edible sea urchin
-sand dollar
-heart urchin
-crinoid
-trepang
-lagomorph
-leporid
-rabbit
-eastern cottontail
-swamp rabbit
-marsh hare
-leveret
-European hare
-jackrabbit
-white-tailed jackrabbit
-blacktail jackrabbit
-polar hare
-snowshoe hare
-pika
-rodent
-mouse
-rat
-pocket rat
-field mouse
-brown rat
-jerboa rat
-water rat
-New World mouse
-wood mouse
-wood rat
-vole
-packrat
-Eurasian hamster
-golden hamster
-gerbil
-lemming
-pied lemming
-Old World porcupine
-brush-tailed porcupine
-long-tailed porcupine
-New World porcupine
-Canada porcupine
-pocket mouse
-kangaroo rat
-jumping mouse
-jerboa
-dormouse
-gopher
-squirrel
-tree squirrel
-ground squirrel
-prairie dog
-American flying squirrel
-groundhog
-hoary marmot
-yellowbelly marmot
-Old World beaver
-New World beaver
-cavy
-naked mole rat
-ungulate
-hyrax
-odd-toed ungulate
-equine
-horse
-foal
-colt
-male horse
-stallion
-mare
-saddle horse
-warhorse
-pony
-mustang
-bronco
-wild horse
-pony
-racehorse
-racer
-harness horse
-workhorse
-draft horse
-trotting horse
-ass
-domestic ass
-wild ass
-onager
-common zebra
-mountain zebra
-grevy's zebra
-rhinoceros
-tapir
-even-toed ungulate
-swine
-piglet
-porker
-peccary
-ruminant
-bovid
-bovine
-ox
-cattle
-bull
-cow
-beef
-Brahman
-dairy cattle
-Old World buffalo
-Indian buffalo
-carabao
-Asian wild ox
-American bison
-wisent
-sheep
-lamb
-domestic sheep
-wild sheep
-mountain sheep
-goat
-domestic goat
-wild goat
-goat antelope
-antelope
-Thomson's gazelle
-Gazella subgutturosa
-springbok
-kudu
-harnessed antelope
-eland
-waterbuck
-oryx
-deer
-stag
-red deer
-mule deer
-roe deer
-caribou
-chevrotain
-camel
-domestic llama
-guanaco
-alpaca
-giraffe
-musteline mammal
-ermine
-stoat
-New World least weasel
-Old World least weasel
-longtail weasel
-American mink
-ferret
-muishond
-snake muishond
-striped muishond
-river otter
-Eurasian otter
-striped skunk
-hooded skunk
-hog-nosed skunk
-spotted skunk
-American badger
-Eurasian badger
-ferret badger
-hog badger
-marten
-pachyderm
-edentate
-peba
-apar
-tatouay
-peludo
-giant armadillo
-pichiciago
-sloth
-anteater
-primate
-ape
-anthropoid ape
-hominoid
-hominid
-homo
-Homo erectus
-Homo sapiens
-australopithecine
-great ape
-western lowland gorilla
-eastern lowland gorilla
-mountain gorilla
-silverback
-western chimpanzee
-eastern chimpanzee
-central chimpanzee
-pygmy chimpanzee
-lesser ape
-monkey
-Old World monkey
-talapoin
-grivet
-vervet
-green monkey
-chacma
-mandrill
-drill
-rhesus
-bonnet macaque
-Barbary ape
-crab-eating macaque
-entellus
-guereza
-New World monkey
-true marmoset
-pygmy marmoset
-tamarin
-silky tamarin
-pinche
-lemur
-tarsier
-flying lemur
-proboscidean
-elephant
-mammoth
-procyonid
-raccoon
-fish
-food fish
-young fish
-crossopterygian
-lungfish
-catfish
-silurid
-bullhead
-channel catfish
-gadoid
-cod
-hake
-elver
-common eel
-tuna
-moray
-conger
-teleost fish
-clupeid fish
-shad
-herring
-sardine
-pilchard
-anchovy
-salmonid
-salmon
-Atlantic salmon
-trout
-brown trout
-char
-whitefish
-smelt
-tarpon
-ribbonfish
-toadfish
-needlefish
-flying fish
-spiny-finned fish
-percoid fish
-perch
-pike-perch
-walleye
-robalo
-pike
-pickerel
-sunfish
-crappie
-freshwater bream
-black bass
-bass
-serranid fish
-grouper
-hind
-surfperch
-cardinalfish
-remora
-carangid fish
-jack
-moonfish
-pompano
-scad
-dolphinfish
-characin
-cichlid
-snapper
-grunt
-sparid
-sea bream
-porgy
-sciaenid fish
-croaker
-whiting
-sea trout
-mullet
-goatfish
-mullet
-silversides
-barracuda
-sea chub
-butterfly fish
-damselfish
-clown anemone fish
-wrasse
-blenny
-pikeblenny
-gunnel
-goby
-gempylid
-scombroid
-mackerel
-Spanish mackerel
-tuna
-bonito
-sailfish
-billfish
-marlin
-tripletail
-mojarra
-ganoid
-Pacific sturgeon
-beluga
-scorpaenoid
-scorpaenid
-scorpionfish
-rockfish
-lumpfish
-greenling
-gurnard
-sea robin
-plectognath
-triggerfish
-filefish
-boxfish
-spiny puffer
-ocean sunfish
-flatfish
-righteye flounder
-lefteye flounder
-whiff
-sole
-abbey
-abbey
-abrader
-accelerator
-accessory
-accommodation
-acoustic device
-acoustic modem
-acrylic
-action
-actuator
-adhesive bandage
-adjustable wrench
-aeolian harp
-aerosol
-after-shave
-airbus
-aircraft
-airfield
-airfoil
-air gun
-airplane
-air pump
-air-to-air missile
-air-to-ground missile
-alarm
-alb
-alcazar
-Allen screw
-alms dish
-altimeter
-Amati
-ammeter
-ammunition
-amplifier
-analog computer
-analytical balance
-anchor
-anchor chain
-aneroid barometer
-angledozer
-anklet
-antenna
-anteroom
-antiaircraft
-antiballistic missile
-apartment
-apartment building
-aperture
-apparatus
-apparel
-appliance
-appliance
-applicator
-aquarium
-arbor
-arcade
-arch
-arc lamp
-area
-argyle
-arm
-armament
-armature
-armchair
-armoire
-armor
-armored vehicle
-armor plate
-armrest
-array
-arrow
-artificial heart
-artillery
-assembly
-assembly plant
-astrodome
-astronomical telescope
-athletic sock
-atom bomb
-atomic clock
-atomizer
-attachment
-attack submarine
-attire
-audiocassette
-audio system
-audiotape
-auditorium
-autoclave
-autoinjector
-autoloader
-automat
-automat
-automatic firearm
-automatic rifle
-automaton
-auxiliary research submarine
-awl
-ax
-axis
-axle
-axletree
-baby bed
-baby buggy
-baby grand
-back
-background
-backseat
-badminton equipment
-badminton racket
-bag
-bag
-bag
-baggage
-bagpipe
-bait
-balance
-balcony
-balcony
-bale
-ball
-ball gown
-ballistic missile
-ballistic pendulum
-ball-peen hammer
-ballroom
-band
-bandage
-bandanna
-banderilla
-bar
-bar
-barbed wire
-barge
-barge pole
-barn door
-barograph
-barrack
-barrage balloon
-barrel knot
-barrel vault
-barrier
-barroom
-base
-base
-baseball equipment
-basilica
-basin
-basket
-basketball equipment
-bass
-bass drum
-bass horn
-bastion
-bat
-bathhouse
-battery
-battle-ax
-battle dress
-battleship
-bay rum
-bay window
-beading plane
-beam
-beam balance
-bearing
-beater
-beating-reed instrument
-bed
-bed
-bedclothes
-bedroom
-bedroom furniture
-bedspread
-bedspring
-beehive
-beer barrel
-bell
-bell push
-bell tower
-belt
-belt buckle
-bench
-berlin
-berth
-besom
-bevel gear
-bicycle
-bicycle chain
-bier
-billiard ball
-bin
-binding
-bin liner
-binocular microscope
-bioscope
-birchbark canoe
-bird shot
-bistro
-bit
-bit
-black tie
-blade
-blade
-blanket
-blimp
-blind
-block
-block plane
-blouse
-blower
-blowtorch
-bludgeon
-boarding
-boarding house
-boardroom
-boat
-bobbin
-body
-body armor
-body lotion
-boiler
-bolt
-bolt
-bomb
-bomber
-bongo
-boom
-boom
-boomerang
-boot
-booth
-booth
-bore bit
-Boston rocker
-bota
-bottle
-bottle opener
-bow
-bow
-bowed stringed instrument
-bowl
-bowl
-bowline
-bowling equipment
-bowling pin
-bowsprit
-box
-box
-boxcar
-boxing equipment
-brace
-brace
-bracelet
-bracket
-brake
-brake system
-brass
-brasserie
-brazier
-breechcloth
-breeches
-brewpub
-brick
-bricklayer's hammer
-brickwork
-bridal gown
-bridge
-briefcase
-brigandine
-brilliant pebble
-brim
-broad arrow
-broadax
-broad hatchet
-broadsword
-brush
-bubble jet printer
-buffer
-buffet
-building
-building complex
-bulldozer
-bullet
-bullhorn
-bullnose
-bundle
-bunker
-burial chamber
-burner
-bus
-business suit
-butt joint
-button
-buttress
-butt shaft
-buzz bomb
-cabaret
-caber
-cabin
-cabin
-cabinet
-cabinet
-cabin liner
-cable
-cable
-cafe
-cafeteria
-cafeteria tray
-caff
-cage
-calculator
-caliper
-calorimeter
-camera
-camera lens
-camera tripod
-camp
-camp
-camp chair
-camper
-can
-canal
-candelabrum
-candlestick
-cane
-cannikin
-cannon
-cannon
-cannonball
-canopy
-canteen
-canteen
-canvas
-canvas tent
-cap
-cap
-cap
-capacitor
-caparison
-cape
-cap screw
-capsule
-car
-car
-carbine
-carbon arc lamp
-card index
-cardioid microphone
-car door
-cargo liner
-cargo ship
-carillon
-carpenter's hammer
-carpenter's level
-carpenter's mallet
-carpenter's rule
-carpet tack
-carriage
-carriage
-carriage bolt
-carrick bend
-carrier
-car seat
-cart
-cartridge
-cartridge belt
-cartridge holder
-case
-case
-cashbox
-casque
-casserole
-cassock
-catch
-catcher's mask
-cathedra
-cathedral
-cathedral
-catheter
-cathode
-cathode-ray tube
-cat's-paw
-cattle car
-cautery
-cavalry sword
-cedar chest
-cell
-cell
-cellblock
-center
-centrifuge
-ceramic
-ceramic ware
-chain tongs
-chair
-chair of state
-chalk
-chamfer plane
-chandlery
-chapel
-character printer
-chassis
-chasuble
-chatelaine
-checker
-cheeseboard
-chemical reactor
-chessman
-chest of drawers
-child's room
-china
-chip
-chip
-chisel
-choke
-chokey
-chordophone
-chronoscope
-chuck
-church key
-cigar lighter
-circle
-circuit
-circuit board
-circular plane
-circular saw
-cistern
-civilian clothing
-clamp
-clamshell
-clarinet
-classroom
-clavier
-cleaning implement
-cleaning pad
-clean room
-clinic
-clip
-cloak
-clock
-closed circuit
-closed-circuit television
-closet
-cloth covering
-clothes closet
-clothes dryer
-clothes hamper
-clothes tree
-clothing
-clothing store
-clout nail
-clove hitch
-clutch
-coach
-coal car
-coal shovel
-coat
-coat closet
-coating
-coating
-coat of paint
-coaxial cable
-cocked hat
-coffee cup
-coffee maker
-coffer
-coffin
-coil
-colander
-collider
-cologne
-colonnade
-color television
-Colt
-column
-column
-comb
-comb
-combination plane
-combine
-commissary
-commodity
-communication system
-commutator
-compact disk
-compartment
-compass
-compass card
-compound lens
-compound lever
-compressor
-computer
-computer circuit
-computer network
-computer screen
-computer system
-concentration camp
-concert grand
-concertina
-condenser
-condenser
-condenser microphone
-conductor
-connecting rod
-connection
-conservatory
-conservatory
-contact
-container
-contrabassoon
-control
-control panel
-control system
-convent
-converging lens
-converter
-convertible
-conveyance
-cooker
-cooking utensil
-cooler
-cooling system
-cord
-cord
-cordage
-corner
-correctional institution
-corset
-cosmetic
-costume
-costume
-cotter
-cotton
-counter
-counter
-counter
-counter tube
-country house
-coupling
-court
-court
-coverall
-covering
-cowbarn
-craft
-cravat
-crazy quilt
-cream
-cream pitcher
-crematory
-crepe
-crib
-cricket equipment
-croquet equipment
-crossbar
-crossbow
-crosspiece
-crown jewels
-cruiser
-cruiser
-cruise ship
-crystal microphone
-cudgel
-cuff
-cultivator
-cup
-cupboard
-cupola
-curb roof
-curtain
-cutout
-cutter
-cutting implement
-cybercafe
-cyclotron
-cylinder
-cymbal
-dado plane
-dagger
-damper
-dart
-data converter
-data input device
-davenport
-davenport
-davit
-dead axle
-deck
-deck
-deck chair
-deep-freeze
-defensive structure
-delay line
-delicatessen
-dental appliance
-denture
-depilatory
-depressor
-depth finder
-derrick
-destroyer
-detector
-detector
-detonating fuse
-detonator
-developer
-device
-dial
-dialyzer
-diathermy machine
-diesel locomotive
-digital camera
-digital computer
-digital display
-diner
-dinghy
-dining car
-dining-hall
-dining room
-dining-room furniture
-dining-room table
-dinner dress
-dinner pail
-dinner table
-diode
-dip
-diplomatic building
-dipper
-DIP switch
-directional antenna
-directional microphone
-direction finder
-disguise
-dish
-dish
-disk
-dispenser
-display
-display panel
-distillery
-ditch
-ditch spade
-dive bomber
-doll
-dolmen
-domino
-door
-doorbell
-doorlock
-doornail
-dormer window
-dormitory
-dot matrix printer
-double-breasted suit
-double-reed instrument
-douche
-dovecote
-dovetail plane
-downstage
-drafting instrument
-Dragunov
-drawstring bag
-dray
-dredging bucket
-dress
-dress blues
-dressing
-dress uniform
-drill
-electric drill
-drill rig
-drinking fountain
-drinking vessel
-drip mat
-drip pot
-drive
-drive
-drogue
-drogue parachute
-drop-leaf table
-dry battery
-dry dock
-dryer
-dry masonry
-dry wall
-dugout canoe
-dumdum
-dumpcart
-dune buggy
-dungeon
-duplicator
-dustmop
-dwelling
-earphone
-earthenware
-easel
-easy chair
-edge tool
-eiderdown
-elastic bandage
-electrical converter
-electrical device
-electric bell
-electric frying pan
-electric furnace
-electric heater
-electric lamp
-electric motor
-electric refrigerator
-electro-acoustic transducer
-electrode
-electromagnet
-electronic balance
-electronic device
-electronic equipment
-electronic instrument
-electronic voltmeter
-electron microscope
-electrostatic generator
-electrostatic printer
-elevator
-embankment
-embellishment
-enamel
-enamelware
-enclosure
-endoscope
-engine
-engine
-ensemble
-entrenching tool
-epidiascope
-equipment
-eraser
-escutcheon
-espadrille
-espresso shop
-establishment
-estaminet
-exercise device
-exhaust fan
-exhibition hall
-Exocet
-expansion bolt
-explosive device
-external-combustion engine
-extractor
-fabric
-face mask
-face veil
-facing
-factory
-fairlead
-false face
-fan
-farm building
-farm machine
-fastener
-fatigues
-faucet
-feedback circuit
-fence
-fencing sword
-fender
-ferry
-fetoscope
-field-sequential color television
-fife
-fifth wheel
-fighter
-figure eight
-file
-file server
-filling
-film
-film
-filter
-filter
-finery
-finisher
-fipple flute
-fire
-firearm
-fire iron
-fireplace
-firkin
-fisherman's bend
-fisherman's knot
-fisherman's lure
-fishing boat
-fishing rod
-fishnet
-flag
-flageolet
-flambeau
-flannelette
-flap
-flashlight
-flask
-flatcar
-flat tip screwdriver
-fleet ballistic missile submarine
-flight simulator
-flip-flop
-floating dock
-floor
-floor
-floor cover
-fly
-flywheel
-fob
-foghorn
-folder
-food hamper
-footbath
-footbridge
-foothold
-foot rule
-footwear
-footwear
-forceps
-fore-and-aft sail
-foremast
-fore plane
-fore-topmast
-fork
-formalwear
-fortification
-fortress
-foundation garment
-foundry
-fragmentation bomb
-framework
-free-reed instrument
-freight train
-French door
-friary
-friction clutch
-frigate
-frill
-frock coat
-front projector
-fruit machine
-full-dress uniform
-full metal jacket
-funny wagon
-fur hat
-furnace
-furnishing
-furniture
-fuse
-gable
-gable roof
-gaff
-galleon
-gallery
-galley
-galley
-gallows
-galvanometer
-gambling house
-game
-game equipment
-gamp
-garage
-Garand rifle
-garden
-garden spade
-garden tool
-garment
-gas burner
-gas-discharge tube
-gasket
-gasoline engine
-gate
-gatehouse
-gatepost
-gathered skirt
-gauge
-gauze
-gauze
-gavel
-gear
-gear
-gear
-gearing
-general-purpose bomb
-generator
-generator
-Geneva gown
-geodesic dome
-girder
-glass
-glider
-glove
-glyptic art
-goal
-golf club
-golf equipment
-Gordian knot
-Gothic arch
-government building
-government office
-gown
-gramophone
-granary
-granny knot
-grapnel
-grapnel
-grate
-graver
-greasy spoon
-greatcoat
-great hall
-greengrocery
-grenade
-grillroom
-groined vault
-Guarnerius
-guidance system
-guided missile
-guildhall
-guitar
-guitar pick
-gun
-gun carriage
-gunlock
-gunsight
-gun trigger
-gurney
-gymnastic apparatus
-gym shoe
-gypsy cab
-habergeon
-habit
-hairdressing
-hairpiece
-hairpin
-half hatchet
-half hitch
-hall
-hall
-hammer
-hand
-handbell
-handbow
-handcart
-hand glass
-handloom
-hand lotion
-hand mower
-handsaw
-hand shovel
-hand tool
-handwear
-handwheel
-hanger
-hank
-harpsichord
-harrow
-hash house
-hat
-hatch
-hauberk
-hawser bend
-hazard
-head
-head
-head covering
-headdress
-header
-headgear
-headlight
-headsail
-headscarf
-health spa
-heat engine
-heater
-heat lamp
-heat-seeking missile
-heavier-than-air craft
-heckelphone
-hedge
-helicopter
-helm
-helmet
-helmet
-heraldry
-high altar
-high-angle gun
-high gear
-high table
-hinge
-hip boot
-hitch
-hoe
-hogshead
-hoist
-holder
-holding device
-home appliance
-homespun
-hood
-hood
-hood
-hook
-Hoover
-hope chest
-horn
-horn button
-horse
-horsecar
-horse-drawn vehicle
-horsehair wig
-hosiery
-hospital
-hospital room
-hostel
-hot-air balloon
-hotel
-hotel room
-hot tub
-house
-house
-housing
-hovel
-huarache
-humeral veil
-hut
-hutch
-hydraulic brake
-hydraulic system
-hydroelectric turbine
-hydrofoil
-hydrometer
-hygrometer
-hypermarket
-hypodermic syringe
-ice machine
-ice rink
-ice skate
-icetray
-ignition switch
-impact printer
-implant
-implement
-imprint
-improvised explosive device
-inclined plane
-indicator
-induction coil
-ink-jet printer
-inkstand
-institution
-instrument
-instrument of punishment
-instrument of torture
-interceptor
-interchange
-intercommunication system
-intercontinental ballistic missile
-interface
-interior door
-internal-combustion engine
-ionization chamber
-video iPod
-iron
-jack
-jack
-jacket
-jacket
-jack plane
-jail
-jamb
-jar
-jeroboam
-jet
-jet engine
-jewelled headdress
-jib
-jibboom
-jiggermast
-joint
-jointer
-joist
-jolly boat
-jug
-jumper
-jumper cable
-junction
-junction
-jury mast
-kayak
-keel
-keg
-kerchief
-kettle
-key
-key
-keyboard
-keyboard instrument
-khakis
-kiln
-kinescope
-kingbolt
-kirk
-kit
-kit
-kitbag
-kitchen
-kitchen appliance
-kitchen utensil
-kite balloon
-knee-high
-knife
-knife
-knit
-knob
-lace
-lacquer
-ladder truck
-lag screw
-lamasery
-laminate
-lamination
-lamp
-lamp
-landing gear
-land mine
-lantern
-lapel
-lathe
-lattice
-launcher
-lead-acid battery
-leather strip
-Leclanche cell
-leg
-legging
-lens
-lens implant
-level
-lever
-Levi's
-lid
-life buoy
-life jacket
-life preserver
-lifting device
-ligament
-light
-light-emitting diode
-lighter-than-air craft
-lighting
-light microscope
-linear accelerator
-line printer
-lingerie
-lining
-liquid crystal display
-lister
-living quarters
-living room
-local area network
-lock
-locomotive
-lodge
-lodging house
-loft
-loft
-longbow
-lookout
-loom
-loop knot
-lota
-lounge
-loungewear
-love knot
-lunchroom
-luxury liner
-lyre
-machine
-machine
-machine bolt
-machine gun
-machinery
-machine screw
-machine tool
-magic lantern
-magnet
-magnetic disk
-magnetic recorder
-magnetic tape
-magnifier
-magnum
-magnus hitch
-mailer
-mainframe
-mainmast
-main-topmast
-main yard
-makeup
-mallet
-mallet
-mallet
-mandolin
-manger
-man-of-war
-manometer
-MANPAD
-mansard
-mansion
-marina
-marker
-marketplace
-maser
-mask
-masonry
-mass spectrometer
-mast
-mast
-mat
-mat
-match
-match
-match plane
-material
-materiel
-Matthew Walker
-maul
-measure
-measuring instrument
-measuring stick
-mechanical device
-mechanical system
-mechanism
-medical building
-medical instrument
-memorial
-memory
-memory chip
-memory device
-menhir
-man's clothing
-mercantile establishment
-mercury barometer
-mercury thermometer
-mercury-vapor lamp
-mess
-metal screw
-meteorological balloon
-meter
-meterstick
-microbalance
-microfilm
-microscope
-military hospital
-military quarters
-military vehicle
-mill
-milldam
-millinery
-mine
-minibike
-mink
-minster
-Minuteman
-mirror
-mixer
-mizzenmast
-module
-mold
-moldboard plow
-monitor
-monitor
-morgue
-mortise joint
-motion-picture camera
-motion-picture film
-motor
-motorboat
-motorcycle
-motor hotel
-motor vehicle
-mound
-mount
-mouse button
-movie projector
-moving-coil galvanometer
-mug
-multiplex
-multiplexer
-musette pipe
-mushroom anchor
-musical instrument
-musket
-musket ball
-muslin
-muzzle loader
-narrowbody aircraft
-nautilus
-navigational system
-naval equipment
-naval gun
-naval radar
-naval weaponry
-navigational instrument
-nebuchadnezzar
-neckline
-neckpiece
-necktie
-neckwear
-needle
-needlework
-negligee
-net
-net
-net
-net
-network
-network
-night bell
-nightwear
-noisemaker
-nonsmoker
-non-volatile storage
-nose flute
-nuclear reactor
-nuclear weapon
-nursery
-oar
-oblique bandage
-oboe da caccia
-oboe d'amore
-obstacle
-office
-office furniture
-oil lamp
-oil paint
-oil tanker
-olive drab
-omnidirectional antenna
-onion dome
-open-air market
-open-end wrench
-opener
-openside plane
-ophthalmoscope
-optical device
-optical disk
-optical instrument
-optical telescope
-organ pipe
-outbuilding
-outerwear
-outfit
-outrigger canoe
-outside mirror
-oven
-overgarment
-overhand knot
-overhang
-overhead projector
-overnighter
-overshoe
-oxford
-package
-packaging
-packing box
-paddle
-paddle steamer
-page printer
-paint
-pallium
-pan
-pan
-panic button
-panopticon
-panopticon
-pantechnicon
-pantry
-pants suit
-panzer
-paper chain
-paper fastener
-parabolic reflector
-parapet
-parasail
-parka
-parsonage
-particle detector
-partition
-passenger ship
-passenger train
-passenger van
-passive matrix display
-passkey
-patch
-patchouli
-patchwork
-patina
-patisserie
-pavis
-peavey
-pedal
-pedestal table
-pedestrian crossing
-pedicab
-peg
-pen
-penal institution
-pencil
-pendulum
-pendulum clock
-percolator
-percussion instrument
-perfumery
-peripheral
-periwig
-personal computer
-petticoat
-Phillips screw
-Phillips screwdriver
-phonograph record
-photographic equipment
-photographic paper
-photometer
-physical pendulum
-piano
-piccolo
-pick
-pick
-pickle barrel
-piece of cloth
-pile
-pillow lace
-pilothouse
-pin
-pincer
-pinstripe
-pipe
-pipet
-pipe wrench
-pistol
-pivot
-place of business
-place of worship
-planetarium
-planner
-plant
-planter
-plasterboard
-plastic laminate
-plastic wrap
-plastron
-plate
-platform
-platform
-platform rocker
-plating
-pleat
-plethysmograph
-plexor
-pliers
-plug
-plug
-pneumatic drill
-pocket
-pocket-handkerchief
-pocketknife
-pointed arch
-polyester
-polygraph
-pomade
-pontifical
-pool ball
-poorhouse
-porcelain
-porch
-portable computer
-portico
-post
-posthole digger
-pot
-potential divider
-potpourri
-pottery
-pouch
-poultice
-powder
-powder keg
-power brake
-power mower
-power saw
-power shovel
-power tool
-press
-press
-pressure dome
-pressure gauge
-pressure suit
-printed circuit
-printer
-prison camp
-prod
-prolonge knot
-prompter
-prong
-propeller
-propeller plane
-prosthesis
-protective covering
-protective garment
-pruning saw
-pruning shears
-public house
-public toilet
-public transport
-pull
-pull chain
-pulley
-Pullman
-pullover
-pulse counter
-pump
-pump
-pump house
-punch
-punch press
-purifier
-push broom
-push button
-pusher
-puzzle
-pyrometer
-pyx
-QWERTY keyboard
-racing boat
-rack
-rack
-radar
-radiogram
-radio interferometer
-radio link
-radiometer
-radio receiver
-radiotelegraph
-radiotelephone
-radio transmitter
-raft
-rail
-rail fence
-railing
-raincoat
-rake
-ramp
-rampart
-random-access memory
-rayon
-razor
-reaction-propulsion engine
-reactor
-reading lamp
-reading room
-read-only memory
-rearview mirror
-receiver
-receptacle
-reception room
-recess
-reconnaissance plane
-recorder
-recording
-record player
-recreation room
-recycling bin
-reed stop
-reef knot
-refectory table
-refinery
-reflecting telescope
-reflector
-reformatory
-refracting telescope
-refrigerator car
-refuge
-regalia
-regimentals
-regulator
-rein
-religious residence
-removable disk
-repair shop
-repeating firearm
-reproducer
-rescue equipment
-reservoir
-reset button
-residence
-resistor
-resonator
-respirator
-restraint
-retort
-rheostat
-rib
-ribbed vault
-riddle
-ride
-riding boot
-riding mower
-rifle ball
-rig
-rink
-river boat
-road
-roadway
-robe
-rocket
-rocket
-rod
-roller
-roller
-in-line skate
-roller blind
-roller coaster
-rolling hitch
-Rolodex
-Roman building
-roof
-roof
-room
-roost
-rope
-rose water
-rotary engine
-rotating mechanism
-rotating shaft
-rotisserie
-rotor
-round arch
-router plane
-row house
-royal mast
-rubber bullet
-rug
-rushlight
-sable
-sable coat
-sack
-sackbut
-sacking
-saddle
-safe
-safety belt
-safety curtain
-safety fuse
-safety match
-sail
-sailboat
-sailing vessel
-salver
-sandglass
-sash
-satellite
-satellite television
-saucepan
-savings bank
-saw
-sawhorse
-scale
-scarf
-school
-scientific instrument
-scissors
-scoop
-scratcher
-screen
-screen
-screen
-screw eye
-scrub plane
-scuffer
-sculpture
-sea boat
-sea chest
-seam
-seaplane
-seat
-seat
-second hand
-secretary
-security system
-seeker
-selector
-self-propelled vehicle
-semiautomatic firearm
-semiautomatic pistol
-semiconductor device
-serger
-serpent
-serving cart
-serving dish
-set
-setscrew
-setscrew
-sewing needle
-sextant
-shackle
-shade
-shaft
-shag rug
-shaker
-shaper
-shaping tool
-sharpener
-shaving cream
-shaving foam
-shawl
-shawm
-shears
-sheath
-shed
-sheepshank
-sheet bend
-shelf
-shell
-shell
-shell
-shellac
-shelter
-shelter
-shelter
-shield
-ship
-shipboard system
-shirt
-shirtfront
-shock absorber
-shoe
-shooting brake
-shop
-short pants
-shotgun
-shoulder holster
-shrine
-shutter
-shuttle
-sidewinder
-sieve
-sifter
-sights
-signaling device
-signboard
-silk
-simulator
-single bed
-single-breasted suit
-single-reed instrument
-sitz bath
-six-pack
-skate
-skein
-skeleton
-skewer
-skidder
-skid lid
-skiff
-ski pole
-skirt
-ski tow
-skullcap
-slack suit
-slat
-sled
-sleeper
-sleeping car
-sleeve
-sleeve
-slide projector
-slipknot
-slipper
-sloop
-slop pail
-slot machine
-small boat
-smart bomb
-smoker
-smooth plane
-snack bar
-snap-brim hat
-snare drum
-sniper rifle
-Sno-cat
-soapbox
-socle
-sofa
-sonograph
-sorter
-sound recording
-soup ladle
-source of illumination
-soutane
-spacecraft
-spade
-spar
-spatula
-spear
-spear
-spectacles
-spectrograph
-spectroscope
-speedometer
-spider
-spike
-spike
-spinet
-spinning machine
-spiral ratchet screwdriver
-spiral spring
-spit
-spokeshave
-sponge mop
-spoon
-sports equipment
-sports implement
-sportswear
-spot
-spring
-spring balance
-springboard
-sprit
-square
-square knot
-squash racket
-squawk box
-squeezer
-squinch
-stabilizer
-stabilizer
-stable gear
-stadium
-stall
-stamp mill
-stand
-standard cell
-staple
-starter
-state prison
-station
-statue
-stay
-steakhouse
-stealth aircraft
-stealth bomber
-stealth fighter
-steam bath
-steamboat
-steamer
-steam iron
-steam whistle
-steel mill
-steelyard
-steeple
-steering system
-step
-step-up transformer
-stereo
-stick
-stick
-still
-stilt
-Stinger
-stock
-stockcar
-stock car
-stocking
-stonework
-stool
-stopper knot
-storage battery
-storage space
-storeroom
-stove
-stove bolt
-Stradavarius
-straight chair
-strap
-strap
-stringed instrument
-strip
-strongbox
-stronghold
-strongroom
-structural member
-structure
-stylus
-submachine gun
-submersible
-submersible
-subwoofer
-suction pump
-suede cloth
-sunbonnet
-sunhat
-supermarket
-superstructure
-supply chamber
-support
-support
-support column
-supporting structure
-supporting tower
-surface lift
-surface-to-air missile
-surgeon's knot
-surgical instrument
-surgical knife
-surplice
-surveillance system
-surveying instrument
-surveyor's level
-swamp buggy
-sweater
-swimsuit
-sword
-synchrotron
-system
-tabi
-table
-table
-table knife
-tableware
-tabor
-tachometer
-tack
-tack hammer
-talaria
-tambour
-tambourine
-tampon
-tank
-tank car
-tannoy
-tape
-tape deck
-tape recorder
-target
-tavern
-tea chest
-teaching aid
-tea gown
-teashop
-teaspoon
-tea-strainer
-tea tray
-telecommunication system
-telephone
-telephone line
-telephone receiver
-telephone system
-telephone wire
-telescope
-television antenna
-television camera
-television equipment
-television monitor
-temple
-temple
-tender
-tennis racket
-tenor drum
-tenoroon
-tenpenny nail
-tent
-tenterhook
-terminal
-terminal
-test rocket
-tetraskelion
-textile machine
-textile mill
-theater
-theodolite
-thermometer
-thermostat
-three-piece suit
-three-way switch
-thumbscrew
-thumbtack
-tights
-tile
-timber
-timber hitch
-timbrel
-time-fuse
-timepiece
-timer
-time-switch
-tire chain
-tithe barn
-toecap
-toga
-toggle switch
-toilet
-toilet powder
-toiletry
-toilet water
-token
-tomograph
-toner
-tongs
-tool
-toolbox
-tooth
-toothbrush
-top
-top
-topgallant
-topmast
-topsail
-torpedo
-torpedo boat
-touch screen
-towel
-toweling
-tower
-toy box
-track
-tracked vehicle
-trailer
-trailer
-train
-trammel
-transdermal patch
-transformer
-transistor
-transmission
-transmitter
-transporter
-trap
-trapeze
-travel iron
-treasure chest
-trellis
-trench
-trial balloon
-triclinium
-troop carrier
-trough
-trouser
-trowel
-truck
-trunk
-try square
-tube
-tuck shop
-tun
-tunic
-turbine
-Turkish towel
-Turk's head
-turner
-turntable
-turtleneck
-tweed
-tweeter
-twenty-two
-two-piece
-typesetting machine
-typewriter
-ultraviolet lamp
-undercarriage
-undergarment
-underpants
-underwear
-uneven parallel bars
-uniform
-university
-uplift
-urn
-urn
-utensil
-vacuum flask
-valve
-van
-van
-varnish
-vehicle
-veranda
-vertical file
-vessel
-vessel
-vest
-vibrator
-vibrator
-videocassette
-video recording
-vigil light
-viol
-vise
-vivarium
-voltaic cell
-voltmeter
-wagon
-waist pack
-walking stick
-wall
-wall
-wall unit
-ward
-warehouse
-warship
-wash
-washer
-washtub
-watch
-watchtower
-water-base paint
-water butt
-water cart
-watercolor
-water-cooled reactor
-water gauge
-water ski
-waterwheel
-weapon
-weaponry
-weatherglass
-weathervane
-web
-wedge
-wedge
-weighbridge
-weight
-weir
-weld
-well
-whaler
-wheel
-wheelchair
-wheeled vehicle
-wheelwork
-whetstone
-whip
-whisk
-whispering gallery
-white goods
-whorehouse
-wicker basket
-widebody aircraft
-winch
-Winchester
-wind instrument
-window
-window
-window blind
-window envelope
-Windsor knot
-wine bucket
-wine cask
-wineglass
-wire
-wire
-wire matrix printer
-wiring
-woman's clothing
-wood
-woodenware
-woodscrew
-woodwind
-woofer
-workbasket
-workbench
-work-clothing
-worktable
-workwear
-wrapping
-wrench
-writing desk
-writing implement
-X-ray film
-X-ray machine
-yacht chair
-yard
-yard
-yardstick
-yoke
-zither
-zoot suit
-grain
-light
-colorlessness
-chromatic color
-black
-gray
-dark red
-orange
-yellow
-green
-blue
-purple
-reddish purple
-pink
-light brown
-reddish brown
-complexion
-skin
-epidermal cell
-columnar cell
-macule
-specimen
-milk
-embryonic cell
-leukocyte
-neutrophil
-astrocyte
-exoskeleton
-medium
-film
-press
-print media
-storage medium
-journalism
-photojournalism
-newspaper
-telecommunication
-telephone
-call
-long distance
-wireless
-broadcasting
-television
-reception
-chat room
-portal site
-wordbook
-album
-concept album
-magazine
-movie
-sign
-comestible
-course
-dainty
-dish
-fare
-diet
-dietary supplement
-liquid diet
-reducing diet
-vegetarianism
-ration
-field ration
-foodstuff
-starches
-concentrate
-meal
-roughage
-flour
-wheat flour
-nutriment
-commissariat
-canned food
-canned meat
-meal
-breakfast
-lunch
-dinner
-supper
-buffet
-picnic
-cookout
-bite
-entree
-side dish
-casserole
-chicken casserole
-appetizer
-cocktail
-hors d'oeuvre
-relish
-dip
-soup
-madrilene
-broth
-broth
-chowder
-clam chowder
-stew
-goulash
-fish stew
-fricassee
-ragout
-ready-mix
-powdered sugar
-granulated sugar
-brown sugar
-sweet
-confiture
-candy
-hard candy
-patty
-brittle
-chewing gum
-candied fruit
-candied citrus peel
-fudge
-gumdrop
-mint
-kiss
-lozenge
-taffy
-dessert
-dumpling
-frozen dessert
-mousse
-mousse
-whip
-pudding
-pudding
-tipsy cake
-ice
-chocolate ice cream
-Neapolitan ice cream
-peach ice cream
-strawberry ice cream
-tutti-frutti
-vanilla ice cream
-split
-pudding
-custard
-pastry
-turnover
-puff paste
-phyllo
-fish cake
-conserve
-jam
-jelly
-apple jelly
-marmalade
-gelatin
-gelatin dessert
-patty
-stuffing
-bread
-breadstick
-bun
-cracker
-dark bread
-flatbread
-loaf of bread
-quick bread
-rye bread
-toast
-white bread
-French bread
-cornbread
-johnnycake
-muffin
-scone
-onion roll
-sweet roll
-onion bagel
-biscuit
-baking-powder biscuit
-soft pretzel
-sandwich
-hamburger
-gruel
-edible fruit
-vegetable
-crudites
-legume
-greens
-solanaceous vegetable
-root vegetable
-potato
-baked potato
-sweet potato
-snack food
-corn chip
-tortilla chip
-cruciferous vegetable
-cabbage
-kale
-red cabbage
-savoy cabbage
-squash
-summer squash
-yellow squash
-winter squash
-turban squash
-gherkin
-sprout
-beet
-pepper
-sweet pepper
-hot pepper
-chili
-jalapeno
-onion
-Spanish onion
-salad green
-lettuce
-butterhead lettuce
-bean
-pea
-green pea
-common bean
-fresh bean
-green bean
-shell bean
-lima bean
-soy
-celery
-chicory
-coffee substitute
-chicory escarole
-corn
-hominy
-cress
-tomato
-cherry tomato
-salsify
-turnip
-edible nut
-apple
-eating apple
-Delicious
-McIntosh
-Pippin
-cooking apple
-berry
-currant
-citrus
-temple orange
-mandarin
-bitter orange
-sweet orange
-Jaffa orange
-navel orange
-Valencia orange
-lime
-almond
-plum
-dried fruit
-raisin
-passion fruit
-cocoa
-melon
-muskmelon
-winter melon
-cherry
-sweet cherry
-heart cherry
-sour cherry
-grape
-fox grape
-muscadine
-slipskin grape
-vinifera grape
-Tokay
-cherimoya
-soursop
-sweetsop
-ilama
-pond apple
-olive
-pear
-edible seed
-walnut
-feed
-fodder
-oil cake
-timothy
-grain
-barley
-wheat
-rice
-mash
-bird feed
-petfood
-salad
-tossed salad
-combination salad
-pasta salad
-fruit salad
-ingredient
-flavorer
-condiment
-herb
-spice
-cinnamon
-pepper
-garlic
-mustard
-sage
-savory
-curry
-paprika
-pickle
-sweet pickle
-vinegar
-sauce
-hot sauce
-dressing
-mayonnaise
-cheese sauce
-hot-fudge sauce
-white sauce
-spaghetti sauce
-boiled egg
-hard-boiled egg
-Easter egg
-omelet
-firm omelet
-souffle
-dairy product
-milk
-milk
-powdered milk
-cream
-butter
-clarified butter
-yogurt
-curd
-cheese
-cream cheese
-bleu
-cheddar
-Swiss cheese
-spread
-pate
-sweetening
-sugar
-syrup
-batter
-bread dough
-chicken and rice
-pasta
-Tetrazzini
-chili dog
-fondue
-fondue
-hash
-kabob
-seafood Newburg
-meatball
-pilaf
-sausage pizza
-pepperoni pizza
-cheese pizza
-anchovy pizza
-Sicilian pizza
-porridge
-fish loaf
-salmon loaf
-scallopine
-taco
-beef burrito
-quesadilla
-tostada
-beverage
-concoction
-mix
-filling
-potion
-elixir
-alcohol
-brew
-beer
-lager
-Weissbier
-malt
-ale
-stout
-mead
-wine
-white wine
-sparkling wine
-Burgundy
-Beaujolais
-Medoc
-Pinot noir
-Bordeaux
-claret
-Chianti
-Cabernet
-Merlot
-dessert wine
-Rhine wine
-Rioja
-Saint Emilion
-zinfandel
-table wine
-vermouth
-fortified wine
-Madeira
-liquor
-brandy
-gin
-rum
-whiskey
-corn whiskey
-Irish
-Scotch
-liqueur
-coffee liqueur
-orange liqueur
-mixed drink
-cocktail
-highball
-Bloody Mary
-daiquiri
-manhattan
-martini
-sling
-sour
-caffe latte
-cider
-sweet cider
-juice
-fruit juice
-grape juice
-orange juice
-fruit drink
-mulled wine
-soft drink
-cola
-coffee
-punch
-champagne cup
-claret cup
-rickey
-tea
-tea
-herb tea
-tisane
-black tea
-green tea
-water
-drinking water
-mineral water
-vitamin pill
-collection
-suburb
-residence
-littoral
-grassland
-pasture
-resort
-field
-air bubble
-arroyo
-ascent
-atoll
-bank
-bank
-bar
-barrier reef
-basin
-beach
-burrow
-canyon
-cave
-continental glacier
-crag
-crater
-dale
-descent
-draw
-dune
-geological formation
-glacier
-glen
-gorge
-gulch
-gully
-highland
-hill
-hillside
-hole
-hollow
-iceberg
-ice mass
-ion
-knoll
-landfall
-landfill
-lather
-ledge
-lowland
-meteorite
-mountain
-mull
-natural depression
-natural elevation
-nullah
-ocean floor
-outcrop
-plain
-point
-precipice
-ravine
-reef
-ridge
-ridge
-rift valley
-rock
-sandbank
-seaside
-shiner
-shore
-slope
-soapsuds
-spume
-tableland
-tideland
-volcanic crater
-wadi
-spiritual leader
-adventurer
-anomaly
-benefactor
-commoner
-contestant
-discussant
-entertainer
-female
-finisher
-inhabitant
-native
-juvenile
-lover
-male
-mediator
-national
-peer
-recipient
-sensualist
-traveler
-unwelcome person
-unskilled person
-worker
-wrongdoer
-Black
-White
-Semite
-white man
-Mongol
-Nahuatl
-Caddo
-Penutian
-Teton
-Taracahitian
-Slav
-Catholic
-Altaic
-Bornean
-Canadian
-Central American
-Britisher
-English person
-Englishwoman
-Ethiopian
-Parisian
-Greek
-Italian
-Japanese
-Mexican
-Nigerian
-North American
-Pakistani
-South American Indian
-Filipino
-Polynesian
-Scandinavian
-South African
-South American
-Turki
-American
-New Yorker
-abbess
-abstainer
-academic administrator
-accomplice
-acquaintance
-acquirer
-aerialist
-actor
-actor
-addict
-adjutant
-admirer
-adulterer
-advertiser
-advocate
-analyst
-ancestor
-announcer
-announcer
-appointee
-appreciator
-appropriator
-archbishop
-architect
-army engineer
-army officer
-arrival
-articulator
-asserter
-assistant
-associate
-astronaut
-athlete
-attendant
-aunt
-authoritarian
-authority
-aviator
-back
-bad person
-ballet dancer
-bullfighter
-baron
-bartender
-baseball coach
-base runner
-basketball player
-believer
-betrothed
-bigot
-big shot
-biochemist
-bisexual
-boatman
-bond servant
-botanist
-Boy Scout
-buddy
-campaigner
-captain
-card player
-careerist
-caretaker
-cavalryman
-celebrity
-charmer
-child
-child
-cipher
-citizen
-civil rights leader
-cleaner
-clergyman
-cleric
-clerk
-climber
-closer
-clown
-coach
-cobbler
-collaborator
-college student
-collegian
-commanding officer
-commissioned officer
-commissioned military officer
-commissioner
-committee member
-communist
-compulsive
-computer scientist
-computer user
-contractor
-convict
-copycat
-counselor
-craftsman
-creditor
-critic
-curate
-dancer
-dancer
-darling
-date
-daughter
-dawdler
-deacon
-deaf person
-debtor
-deliveryman
-descender
-designated hitter
-detective
-detractor
-director
-disbeliever
-dispatcher
-distributor
-doctor
-domestic partner
-draftsman
-drinker
-drinker
-drug addict
-drug user
-drummer
-drunkard
-eager beaver
-earner
-eavesdropper
-economist
-editor
-egotist
-elder
-elected official
-emissary
-employee
-employer
-endomorph
-enemy
-entrant
-examiner
-exhibitionist
-fan
-fancier
-farmer
-farmhand
-fascist
-father
-female aristocrat
-female offspring
-female child
-fielder
-fireman
-first baseman
-first sergeant
-flag officer
-flatterer
-foe
-folk dancer
-follower
-football player
-forefather
-forger
-founder
-free agent
-friar
-monk
-gambler
-generator
-geneticist
-genitor
-geologist
-girl
-godchild
-godparent
-golfer
-grandma
-grandmaster
-grandparent
-granter
-great grandchild
-great grandparent
-grouch
-guard
-guest
-guide
-gymnast
-Gypsy
-hack
-hairdresser
-hater
-headmaster
-hearer
-hedonist
-heir
-herder
-homeless
-horseman
-host
-host
-hypocrite
-important person
-incumbent
-infielder
-informer
-in-law
-insurgent
-investigator
-investor
-journalist
-judge
-juror
-Counsel to the Crown
-kinswoman
-laborer
-lama
-landowner
-lawgiver
-lawman
-lawyer
-liberator
-lieutenant
-lineman
-literate
-litigant
-Lord
-failure
-lowerclassman
-lumberman
-maid
-maker
-malcontent
-martinet
-master of ceremonies
-masturbator
-medical officer
-medical practitioner
-medical scientist
-mender
-meteorologist
-middle-aged man
-miler
-military attache
-military officer
-military policeman
-minister
-minor leaguer
-misfit
-mixed-blood
-model
-moneymaker
-mother
-mourner
-mover
-musician
-Muslimah
-mystic
-nanny
-neonate
-nephew
-neutral
-newcomer
-newcomer
-newspaper editor
-niece
-noncommissioned officer
-nurse
-observer
-occultist
-oldster
-old woman
-opportunist
-orator
-originator
-outfielder
-right fielder
-right-handed pitcher
-painter
-panelist
-pardoner
-parodist
-party
-passenger
-patient
-patron
-payer
-peddler
-percussionist
-personal representative
-personification
-pervert
-petitioner
-Pharaoh
-phonetician
-physical therapist
-physicist
-pimp
-pisser
-pitcher
-planner
-player
-poet
-politician
-practitioner
-prayer
-preserver
-president
-priest
-princess
-principal
-proctor
-programmer
-promiser
-propagandist
-prosecutor
-psychic
-pusher
-queen
-queen
-ranch hand
-reader
-recruit
-recruiter
-religious leader
-repairman
-reporter
-representative
-reprobate
-rescuer
-reservist
-restrainer
-retailer
-retiree
-revolutionist
-rich person
-civil authority
-runner
-running back
-rustic
-saboteur
-sailor
-salesman
-salesperson
-scalper
-schemer
-scholar
-schoolchild
-scientist
-second baseman
-secretary
-seeker
-selfish person
-seller
-serf
-serviceman
-settler
-shrew
-sibling
-sick person
-singer
-sister
-skeptic
-skier
-sleeper
-slob
-smith
-snoop
-social climber
-socialist
-social scientist
-sociologist
-soldier
-son
-songster
-sorcerer
-sovereign
-speaker
-specialist
-spectator
-stand-in
-star
-stepparent
-stock trader
-stranger
-strategist
-student
-subordinate
-suitor
-superior
-surgeon
-sweetheart
-sympathizer
-tax assessor
-taxonomist
-teacher
-television reporter
-tenant
-tenant
-tennis player
-testator
-testee
-theologian
-therapist
-thinker
-thrower
-toastmaster
-trader
-traffic cop
-trainer
-traitor
-traveling salesman
-tyrant
-upstart
-upstart
-utility man
-vacationer
-vegetarian
-vice president
-victim
-volunteer
-votary
-waiter
-waitress
-wanderer
-wanton
-washer
-white supremacist
-wife
-winner
-winner
-woman
-workman
-worshiper
-wright
-writer
-wilding
-bryophyte
-liverwort
-pteridophyte
-fern
-fern ally
-spore
-spermatophyte
-perennial
-gymnosperm
-ephedra
-cycad
-sago palm
-zamia
-pine
-pinon
-nut pine
-white pine
-yellow pine
-larch
-fir
-silver fir
-cedar
-spruce
-hemlock
-douglas fir
-cedar
-cypress
-arborvitae
-araucaria
-kauri pine
-celery pine
-yellowwood
-gymnospermous yellowwood
-yew
-angiosperm
-dicot
-flower
-wildflower
-inflorescence
-pistil
-pericarp
-oilseed
-custard apple
-barberry
-allspice
-laurel
-anise tree
-magnolia
-moonseed
-buttercup
-aconite
-baneberry
-anemone
-thimbleweed
-columbine
-clematis
-delphinium
-nigella
-wax myrtle
-zebrawood
-legume
-legume
-darling pea
-clover
-acacia
-wattle
-albizzia
-nitta tree
-dogbane
-allamanda
-carissa
-frangipani
-rauwolfia
-arum
-alocasia
-anthurium
-caladium
-monstera
-nephthytis
-arrow arum
-calla lily
-duckweed
-watermeal
-birthwort
-sandwort
-mouse-ear chickweed
-pink
-china pink
-lychnis
-silene
-chickweed
-fig marigold
-amaranth
-orach
-saltbush
-beet
-sand verbena
-four o'clock
-echinocactus
-prickly pear
-pokeweed
-portulaca
-flame flower
-caper
-spiderflower
-crucifer
-cress
-watercress
-rock cress
-cabbage
-head cabbage
-turnip plant
-mustard
-wallflower
-woad
-stock
-radish plant
-pennycress
-poppy
-prickly poppy
-composite
-compass plant
-everlasting
-achillea
-ageratum
-ragweed
-ammobium
-burdock
-artemisia
-mugwort
-aster
-wood aster
-common daisy
-bur marigold
-calendula
-thistle
-carline thistle
-catananche
-centaury
-knapweed
-chrysanthemum
-golden aster
-goldenbush
-plume thistle
-woolly thistle
-coreopsis
-fleabane
-woolly sunflower
-cotton rose
-gazania
-African daisy
-cudweed
-gumweed
-goldenbush
-sneezeweed
-sunflower
-hawkweed
-marsh elder
-krigia
-hawkbit
-blazing star
-rattlesnake root
-daisybush
-coneflower
-coneflower
-cutleaved coneflower
-golden thistle
-white-topped aster
-goldenrod
-sow thistle
-marigold
-dandelion
-crownbeard
-zinnia
-achene
-campanula
-orchid
-orchis
-arethusa
-helleborine
-coral root
-lady's slipper
-large yellow lady's slipper
-helleborine
-fringed orchis
-rein orchid
-spider orchid
-moth orchid
-butterfly orchid
-ladies' tresses
-vanda
-vanilla
-yam
-primrose
-pimpernel
-featherfoil
-loosestrife
-water pimpernel
-gramineous plant
-grass
-wheatgrass
-foxtail
-broom grass
-oat
-brome
-grama
-reed grass
-burgrass
-crabgrass
-lyme grass
-wild rye
-plume grass
-rye grass
-ricegrass
-meadowgrass
-millet
-reed
-sorghum
-grain sorghum
-cordgrass
-cereal
-wheat
-corn
-mealie
-zoysia
-bamboo
-cotton grass
-spike rush
-pandanus
-cattail
-grain
-kernel
-gourd
-gourd
-squash
-summer squash
-marrow
-winter squash
-turban squash
-bryony
-sweet melon
-luffa
-lobelia
-mallow
-hollyhock
-althea
-poppy mallow
-seashore mallow
-globe mallow
-tulipwood tree
-sterculia
-bottle-tree
-screw tree
-cacao
-linden
-herb
-protea
-banksia
-grevillea
-macadamia
-casuarina
-beefwood
-heath
-bearberry
-huckleberry
-kalmia
-rhododendron
-cranberry
-blueberry
-shortia
-Australian heath
-epacris
-wintergreen
-pipsissewa
-beech
-chestnut
-tanbark oak
-southern beech
-New Zealand beech
-oak
-live oak
-white oak
-red oak
-scrub oak
-chestnut oak
-birch
-alder
-hornbeam
-hop hornbeam
-hazelnut
-centaury
-gentian
-fringed gentian
-olive tree
-fringe tree
-ash
-red ash
-jasmine
-privet
-lilac
-liquidambar
-walnut
-hickory
-wing nut
-loosestrife
-myrtle
-gum tree
-eucalyptus
-flooded gum
-mallee
-stringybark
-tupelo
-enchanter's nightshade
-willowherb
-fuchsia
-evening primrose
-daphne
-canna
-banana
-ginger
-begonia
-tuberous begonia
-poon
-St John's wort
-rockrose
-dipterocarp
-candlewood
-reseda
-viola
-violet
-nettle
-cannabis
-mulberry
-fig tree
-fig
-elm
-hackberry
-iridaceous plant
-bearded iris
-beardless iris
-crocus
-amaryllis
-blood lily
-narcissus
-daffodil
-liliaceous plant
-colicroot
-alliaceous plant
-kniphofia
-poker plant
-asphodel
-mariposa
-globe lily
-camas
-dogtooth violet
-fritillary
-tulip
-star-of-Bethlehem
-grape hyacinth
-scilla
-false asphodel
-bog asphodel
-hellebore
-death camas
-sarsaparilla
-Solomon's-seal
-bellwort
-agave
-sansevieria
-cassia
-locust tree
-senna
-angelim
-milk vetch
-wild indigo
-pea tree
-glory pea
-rosewood
-blackwood
-tick trefoil
-coral tree
-vetchling
-wild pea
-lupine
-medic
-mucuna
-locoweed
-pole bean
-pea
-edible-pod pea
-quira
-hoary pea
-bush pea
-vetch
-palm
-sago palm
-feather palm
-fan palm
-palmetto
-areca
-calamus
-oil palm
-raffia palm
-lady palm
-eriogonum
-rhubarb
-water plantain
-waterweed
-pondweed
-rose
-agrimonia
-flowering quince
-cotoneaster
-avens
-apple tree
-wild apple
-crab apple
-Iowa crab
-cinquefoil
-plum
-wild plum
-bullace
-apricot
-cherry
-wild cherry
-sweet cherry
-sour cherry
-almond tree
-almond
-bird cherry
-flowering cherry
-chokecherry
-fruit tree
-bramble bush
-raspberry
-mountain ash
-service tree
-spirea
-madderwort
-coffee
-cinchona
-bedstraw
-genipa
-hamelia
-honeysuckle
-American fly honeysuckle
-teasel
-scabious
-geranium
-cranesbill
-storksbill
-incense tree
-mahogany
-silver ash
-milkwort
-citrus
-orange
-mandarin
-lemon
-kumquat
-prickly ash
-bitterwood tree
-ailanthus
-nasturtium
-willow
-osier
-sallow
-poplar
-black poplar
-cottonwood
-aspen
-soapberry
-soapberry vine
-harpullia
-pachysandra
-spindle tree
-maple
-box elder
-holly
-sumac
-horse chestnut
-persimmon
-buckthorn
-styrax
-carnivorous plant
-pitcher plant
-sedum
-philadelphus
-saxifrage
-astilbe
-alumroot
-miterwort
-parnassia
-currant
-plane tree
-phlox
-acanthus
-catalpa
-anchusa
-comfrey
-convolvulus
-bindweed
-gloxinia
-streptocarpus
-waterleaf
-nemophila
-scorpionweed
-giant hyssop
-bugle
-wood mint
-calamint
-coleus
-dead nettle
-origanum
-horehound
-monarda
-savory
-germander
-thyme
-blue curls
-snapdragon
-kitten-tails
-Indian paintbrush
-foxglove
-toadflax
-veronica
-nightshade
-thorn apple
-matrimony vine
-cupflower
-petunia
-salpiglossis
-spurge
-croton
-cassava
-slipper spurge
-camellia
-umbellifer
-angelica
-astrantia
-caraway
-fennel
-parsnip
-parsley
-sanicle
-dogwood
-valerian
-bristle fern
-flowering fern
-climbing fern
-clover fern
-adder's tongue
-grape fern
-ergot
-sclerotinia
-earthball
-Podaxaceae
-false truffle
-rhizopus
-slime mold
-cellular slime mold
-downy mildew
-pythium
-Sarcosomataceae
-club fungus
-lichen
-lecanora
-fungus
-basidiomycete
-mushroom
-mushroom
-mushroom
-toadstool
-horse mushroom
-meadow mushroom
-royal agaric
-false deathcap
-fly agaric
-death cap
-blushing mushroom
-destroying angel
-chanterelle
-floccose chanterelle
-pig's ears
-cinnabar chanterelle
-jack-o-lantern fungus
-inky cap
-shaggymane
-milkcap
-fairy-ring mushroom
-oyster mushroom
-olive-tree agaric
-Pholiota astragalina
-Pholiota aurea
-Pholiota destruens
-Pholiota flammans
-Pholiota flavida
-nameko
-Pholiota squarrosa-adiposa
-Pholiota squarrosa
-Pholiota squarrosoides
-Stropharia ambigua
-Stropharia hornemannii
-Stropharia rugoso-annulata
-Entoloma lividum
-Entoloma aprile
-Chlorophyllum molybdites
-lepiota
-parasol mushroom
-poisonous parasol
-Lepiota naucina
-Lepiota rhacodes
-American parasol
-Lepiota rubrotincta
-Lepiota clypeolaria
-onion stem
-blewits
-sandy mushroom
-Tricholoma pessundatum
-Tricholoma sejunctum
-man-on-a-horse
-Tricholoma venenata
-Tricholoma pardinum
-Tricholoma vaccinum
-Tricholoma aurantium
-Pluteus aurantiorugosus
-Pluteus magnus
-deer mushroom
-straw mushroom
-Volvariella bombycina
-Clitocybe clavipes
-Clitocybe dealbata
-Clitocybe inornata
-Clitocybe robusta
-Clitocybe irina
-Clitocybe subconnexa
-winter mushroom
-mycelium
-ascomycete
-Clavicipitaceae
-yeast
-discomycete
-morel
-Verpa
-false morel
-lorchel
-helvella
-Gyromitra californica
-Gyromitra sphaerospora
-Gyromitra esculenta
-Gyromitra infula
-Gyromitra gigas
-gasteromycete
-common stinkhorn
-Phallus ravenelii
-dog stinkhorn
-stinky squid
-puffball
-Geastrum coronatum
-Astreus pteridis
-Astreus hygrometricus
-polypore
-Boletus chrysenteron
-Boletus edulis
-Frost's bolete
-Boletus luridus
-Boletus mirabilis
-Boletus pallidus
-Boletus pulcherrimus
-Boletus pulverulentus
-Boletus roxanae
-Boletus subvelutipes
-Boletus variipes
-Boletus zelleri
-Fuscoboletinus paluster
-Fuscoboletinus serotinus
-Leccinum fibrillosum
-Suillus albivelatus
-old-man-of-the-woods
-Boletellus russellii
-jelly fungus
-rust
-smut
-cornsmut
-flag smut fungus
-waxycap
-Hygrocybe acutoconica
-Hygrophorus borealis
-Hygrophorus caeruleus
-Hygrophorus inocybiformis
-Hygrophorus kauffmanii
-Hygrophorus marzuolus
-Hygrophorus purpurascens
-Hygrophorus russula
-Hygrophorus sordidus
-Hygrophorus tennesseensis
-Hygrophorus turundus
-Neohygrophorus angelesianus
-Cortinarius armillatus
-Cortinarius atkinsonianus
-Cortinarius corrugatus
-Cortinarius gentilis
-Cortinarius mutabilis
-Cortinarius semisanguineus
-Cortinarius subfoetidus
-Cortinarius violaceus
-Gymnopilus spectabilis
-Gymnopilus validipes
-Gymnopilus ventricosus
-mold
-mildew
-candida
-houseplant
-succulent
-weed
-sporophyll
-sporangium
-poisonous plant
-vine
-tree
-bean tree
-gymnospermous tree
-conifer
-angiospermous tree
-nut tree
-spice tree
-bonsai
-subshrub
-bramble
-liana
-desert plant
-marsh plant
-strangler
-root
-receptacle
-scape
-peduncle
-flower cluster
-raceme
-cyme
-bulbous plant
-fruit
-seed
-bean
-nut
-berry
-aggregate fruit
-drupe
-drupelet
-pome
-pod
-husk
-buckthorn
-vinifera
-true pepper
-peperomia
-bract
-palmate leaf
-pinnate leaf
-dentate leaf
-branchlet
-polypody
-strap fern
-staghorn fern
-spleenwort
-chain fern
-davallia
-hare's-foot fern
-shield fern
-wood fern
-lady fern
-bladder fern
-holly fern
-woodsia
-maidenhair
-brittle maidenhair
-lip fern
-cliff brake
-horsetail
-club moss
-spikemoss
-beech fern
-shoestring fungus
-Armillaria caligata
-Armillaria ponderosa
-Armillaria zelleri
-honey mushroom
-milkweed
-stapelia
-stephanotis
-orangery
-figure
-plane figure
-solid figure
-line
-convex shape
-concave shape
-cylinder
-round shape
-polygon
-concave polygon
-amorphous shape
-closed curve
-simple closed curve
-cone
-circle
-ring
-loop
-ellipse
-triangle
-spherical polygon
-angular distance
-groove
-bulge
-bow
-balance
-toroid
-boundary
-incisure
-notch
-wrinkle
-tree
-regular polyhedron
-carbon
-rock
-soil
-high explosive
-culture medium
-agar
-paper
-paving
-plaster
-stucco
-tear gas
-vitamin
-fat-soluble vitamin
-water-soluble vitamin
-vitamin A
-B-complex vitamin
-vitamin E
-vitamin K
diff --git a/build/darknet/x64/data/inet9k.map b/build/darknet/x64/data/inet9k.map
deleted file mode 100644
index c91b3c15acc..00000000000
--- a/build/darknet/x64/data/inet9k.map
+++ /dev/null
@@ -1,200 +0,0 @@
-2687
-4107
-8407
-7254
-42
-6797
-127
-2268
-2442
-3704
-260
-1970
-58
-4443
-2661
-2043
-2039
-4858
-4007
-6858
-8408
-166
-2523
-3768
-4347
-6527
-2446
-5005
-3274
-3678
-4918
-709
-4072
-8428
-7223
-2251
-3802
-3848
-7271
-2677
-8267
-2849
-2518
-2738
-3746
-5105
-3430
-3503
-2249
-1841
-2032
-2358
-122
-3984
-4865
-3246
-5095
-6912
-6878
-8467
-2741
-1973
-3057
-7217
-1872
-44
-2452
-3637
-2704
-6917
-2715
-6734
-2325
-6864
-6677
-2035
-1949
-338
-2664
-5122
-1844
-784
-2223
-7188
-2719
-2670
-4830
-158
-4818
-7228
-1965
-7342
-786
-2095
-8281
-8258
-7406
-3915
-8382
-2437
-2837
-82
-6871
-1876
-7447
-8285
-5007
-2740
-3463
-5103
-3755
-4910
-6809
-3800
-118
-3396
-3092
-2709
-81
-7105
-4036
-2366
-1846
-5177
-2684
-64
-2041
-3919
-700
-3724
-1742
-39
-807
-7184
-2256
-235
-2778
-2996
-2030
-3714
-7167
-2369
-6705
-6861
-5096
-2597
-2166
-2036
-3228
-3747
-2711
-8300
-2226
-7153
-7255
-2631
-7109
-8242
-7445
-3776
-3803
-3690
-2025
-2521
-2316
-7190
-8249
-3352
-2639
-2887
-100
-4219
-3344
-5008
-7224
-3351
-2434
-2074
-2034
-8304
-5004
-6868
-5102
-2645
-4071
-2716
-2717
-7420
-3499
-3763
-5084
-2676
-2046
-5107
-5097
-3944
-4097
-7132
-3956
-7343
diff --git a/build/darknet/x64/data/labels/100_0.png b/build/darknet/x64/data/labels/100_0.png
deleted file mode 100644
index 77878ecc6f6..00000000000
Binary files a/build/darknet/x64/data/labels/100_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/100_1.png b/build/darknet/x64/data/labels/100_1.png
deleted file mode 100644
index 86181c0b479..00000000000
Binary files a/build/darknet/x64/data/labels/100_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/100_2.png b/build/darknet/x64/data/labels/100_2.png
deleted file mode 100644
index 5d430467d64..00000000000
Binary files a/build/darknet/x64/data/labels/100_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/100_3.png b/build/darknet/x64/data/labels/100_3.png
deleted file mode 100644
index 353401fdbbf..00000000000
Binary files a/build/darknet/x64/data/labels/100_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/100_4.png b/build/darknet/x64/data/labels/100_4.png
deleted file mode 100644
index d22f891c21e..00000000000
Binary files a/build/darknet/x64/data/labels/100_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/100_5.png b/build/darknet/x64/data/labels/100_5.png
deleted file mode 100644
index 7f65183fda6..00000000000
Binary files a/build/darknet/x64/data/labels/100_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/100_6.png b/build/darknet/x64/data/labels/100_6.png
deleted file mode 100644
index 18eb1730652..00000000000
Binary files a/build/darknet/x64/data/labels/100_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/100_7.png b/build/darknet/x64/data/labels/100_7.png
deleted file mode 100644
index b45964b1aa2..00000000000
Binary files a/build/darknet/x64/data/labels/100_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/101_0.png b/build/darknet/x64/data/labels/101_0.png
deleted file mode 100644
index 8739bc7ce95..00000000000
Binary files a/build/darknet/x64/data/labels/101_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/101_1.png b/build/darknet/x64/data/labels/101_1.png
deleted file mode 100644
index 5a39331d337..00000000000
Binary files a/build/darknet/x64/data/labels/101_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/101_2.png b/build/darknet/x64/data/labels/101_2.png
deleted file mode 100644
index c2234777aeb..00000000000
Binary files a/build/darknet/x64/data/labels/101_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/101_3.png b/build/darknet/x64/data/labels/101_3.png
deleted file mode 100644
index 09f50e3838e..00000000000
Binary files a/build/darknet/x64/data/labels/101_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/101_4.png b/build/darknet/x64/data/labels/101_4.png
deleted file mode 100644
index 7d7960bf326..00000000000
Binary files a/build/darknet/x64/data/labels/101_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/101_5.png b/build/darknet/x64/data/labels/101_5.png
deleted file mode 100644
index 08d80033269..00000000000
Binary files a/build/darknet/x64/data/labels/101_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/101_6.png b/build/darknet/x64/data/labels/101_6.png
deleted file mode 100644
index 9d554db3384..00000000000
Binary files a/build/darknet/x64/data/labels/101_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/101_7.png b/build/darknet/x64/data/labels/101_7.png
deleted file mode 100644
index 37855f0d8f8..00000000000
Binary files a/build/darknet/x64/data/labels/101_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/102_0.png b/build/darknet/x64/data/labels/102_0.png
deleted file mode 100644
index 7b8b0fb1eb1..00000000000
Binary files a/build/darknet/x64/data/labels/102_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/102_1.png b/build/darknet/x64/data/labels/102_1.png
deleted file mode 100644
index ade5aa52766..00000000000
Binary files a/build/darknet/x64/data/labels/102_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/102_2.png b/build/darknet/x64/data/labels/102_2.png
deleted file mode 100644
index 2068f0be835..00000000000
Binary files a/build/darknet/x64/data/labels/102_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/102_3.png b/build/darknet/x64/data/labels/102_3.png
deleted file mode 100644
index 00e494e5bf4..00000000000
Binary files a/build/darknet/x64/data/labels/102_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/102_4.png b/build/darknet/x64/data/labels/102_4.png
deleted file mode 100644
index 37637d36a4f..00000000000
Binary files a/build/darknet/x64/data/labels/102_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/102_5.png b/build/darknet/x64/data/labels/102_5.png
deleted file mode 100644
index a86b69bf24f..00000000000
Binary files a/build/darknet/x64/data/labels/102_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/102_6.png b/build/darknet/x64/data/labels/102_6.png
deleted file mode 100644
index 7d6889efe47..00000000000
Binary files a/build/darknet/x64/data/labels/102_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/102_7.png b/build/darknet/x64/data/labels/102_7.png
deleted file mode 100644
index a9a73815d31..00000000000
Binary files a/build/darknet/x64/data/labels/102_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/103_0.png b/build/darknet/x64/data/labels/103_0.png
deleted file mode 100644
index 17cc959e05c..00000000000
Binary files a/build/darknet/x64/data/labels/103_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/103_1.png b/build/darknet/x64/data/labels/103_1.png
deleted file mode 100644
index 175794c43d1..00000000000
Binary files a/build/darknet/x64/data/labels/103_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/103_2.png b/build/darknet/x64/data/labels/103_2.png
deleted file mode 100644
index 415038d4d42..00000000000
Binary files a/build/darknet/x64/data/labels/103_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/103_3.png b/build/darknet/x64/data/labels/103_3.png
deleted file mode 100644
index 1101880ff08..00000000000
Binary files a/build/darknet/x64/data/labels/103_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/103_4.png b/build/darknet/x64/data/labels/103_4.png
deleted file mode 100644
index b8bf32e00fe..00000000000
Binary files a/build/darknet/x64/data/labels/103_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/103_5.png b/build/darknet/x64/data/labels/103_5.png
deleted file mode 100644
index 6c81a57ed60..00000000000
Binary files a/build/darknet/x64/data/labels/103_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/103_6.png b/build/darknet/x64/data/labels/103_6.png
deleted file mode 100644
index ce580c0bf9f..00000000000
Binary files a/build/darknet/x64/data/labels/103_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/103_7.png b/build/darknet/x64/data/labels/103_7.png
deleted file mode 100644
index 1919f01f877..00000000000
Binary files a/build/darknet/x64/data/labels/103_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/104_0.png b/build/darknet/x64/data/labels/104_0.png
deleted file mode 100644
index 4ce801bc1b8..00000000000
Binary files a/build/darknet/x64/data/labels/104_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/104_1.png b/build/darknet/x64/data/labels/104_1.png
deleted file mode 100644
index cdc2ba69bb4..00000000000
Binary files a/build/darknet/x64/data/labels/104_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/104_2.png b/build/darknet/x64/data/labels/104_2.png
deleted file mode 100644
index aa88c847292..00000000000
Binary files a/build/darknet/x64/data/labels/104_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/104_3.png b/build/darknet/x64/data/labels/104_3.png
deleted file mode 100644
index d574267590c..00000000000
Binary files a/build/darknet/x64/data/labels/104_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/104_4.png b/build/darknet/x64/data/labels/104_4.png
deleted file mode 100644
index 71f96623eb4..00000000000
Binary files a/build/darknet/x64/data/labels/104_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/104_5.png b/build/darknet/x64/data/labels/104_5.png
deleted file mode 100644
index 3159b0e9d83..00000000000
Binary files a/build/darknet/x64/data/labels/104_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/104_6.png b/build/darknet/x64/data/labels/104_6.png
deleted file mode 100644
index 018e0e1bf16..00000000000
Binary files a/build/darknet/x64/data/labels/104_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/104_7.png b/build/darknet/x64/data/labels/104_7.png
deleted file mode 100644
index 39fbe16675c..00000000000
Binary files a/build/darknet/x64/data/labels/104_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/105_0.png b/build/darknet/x64/data/labels/105_0.png
deleted file mode 100644
index 388be1ae33f..00000000000
Binary files a/build/darknet/x64/data/labels/105_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/105_1.png b/build/darknet/x64/data/labels/105_1.png
deleted file mode 100644
index 284a1305b4c..00000000000
Binary files a/build/darknet/x64/data/labels/105_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/105_2.png b/build/darknet/x64/data/labels/105_2.png
deleted file mode 100644
index d378969f08e..00000000000
Binary files a/build/darknet/x64/data/labels/105_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/105_3.png b/build/darknet/x64/data/labels/105_3.png
deleted file mode 100644
index f9ebb66f7a5..00000000000
Binary files a/build/darknet/x64/data/labels/105_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/105_4.png b/build/darknet/x64/data/labels/105_4.png
deleted file mode 100644
index afb260bdeee..00000000000
Binary files a/build/darknet/x64/data/labels/105_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/105_5.png b/build/darknet/x64/data/labels/105_5.png
deleted file mode 100644
index 53274dd7cee..00000000000
Binary files a/build/darknet/x64/data/labels/105_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/105_6.png b/build/darknet/x64/data/labels/105_6.png
deleted file mode 100644
index 6b952eafcbd..00000000000
Binary files a/build/darknet/x64/data/labels/105_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/105_7.png b/build/darknet/x64/data/labels/105_7.png
deleted file mode 100644
index 02b1b7d7a18..00000000000
Binary files a/build/darknet/x64/data/labels/105_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/106_0.png b/build/darknet/x64/data/labels/106_0.png
deleted file mode 100644
index 70752591839..00000000000
Binary files a/build/darknet/x64/data/labels/106_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/106_1.png b/build/darknet/x64/data/labels/106_1.png
deleted file mode 100644
index 66e73abce8d..00000000000
Binary files a/build/darknet/x64/data/labels/106_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/106_2.png b/build/darknet/x64/data/labels/106_2.png
deleted file mode 100644
index aaf88c68af6..00000000000
Binary files a/build/darknet/x64/data/labels/106_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/106_3.png b/build/darknet/x64/data/labels/106_3.png
deleted file mode 100644
index bc6b981c742..00000000000
Binary files a/build/darknet/x64/data/labels/106_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/106_4.png b/build/darknet/x64/data/labels/106_4.png
deleted file mode 100644
index b662b7e2918..00000000000
Binary files a/build/darknet/x64/data/labels/106_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/106_5.png b/build/darknet/x64/data/labels/106_5.png
deleted file mode 100644
index 43b45616089..00000000000
Binary files a/build/darknet/x64/data/labels/106_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/106_6.png b/build/darknet/x64/data/labels/106_6.png
deleted file mode 100644
index e66766432c7..00000000000
Binary files a/build/darknet/x64/data/labels/106_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/106_7.png b/build/darknet/x64/data/labels/106_7.png
deleted file mode 100644
index 727f3f6b677..00000000000
Binary files a/build/darknet/x64/data/labels/106_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/107_0.png b/build/darknet/x64/data/labels/107_0.png
deleted file mode 100644
index 9c8d8361f67..00000000000
Binary files a/build/darknet/x64/data/labels/107_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/107_1.png b/build/darknet/x64/data/labels/107_1.png
deleted file mode 100644
index 7dc3d2bc0c6..00000000000
Binary files a/build/darknet/x64/data/labels/107_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/107_2.png b/build/darknet/x64/data/labels/107_2.png
deleted file mode 100644
index d27cf783ba2..00000000000
Binary files a/build/darknet/x64/data/labels/107_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/107_3.png b/build/darknet/x64/data/labels/107_3.png
deleted file mode 100644
index 04b6c22b68d..00000000000
Binary files a/build/darknet/x64/data/labels/107_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/107_4.png b/build/darknet/x64/data/labels/107_4.png
deleted file mode 100644
index cbc45156a48..00000000000
Binary files a/build/darknet/x64/data/labels/107_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/107_5.png b/build/darknet/x64/data/labels/107_5.png
deleted file mode 100644
index bc9730c7cff..00000000000
Binary files a/build/darknet/x64/data/labels/107_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/107_6.png b/build/darknet/x64/data/labels/107_6.png
deleted file mode 100644
index ffbe415fcbd..00000000000
Binary files a/build/darknet/x64/data/labels/107_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/107_7.png b/build/darknet/x64/data/labels/107_7.png
deleted file mode 100644
index 95f81a590bb..00000000000
Binary files a/build/darknet/x64/data/labels/107_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/108_0.png b/build/darknet/x64/data/labels/108_0.png
deleted file mode 100644
index ce05b224f3f..00000000000
Binary files a/build/darknet/x64/data/labels/108_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/108_1.png b/build/darknet/x64/data/labels/108_1.png
deleted file mode 100644
index 70d389534a1..00000000000
Binary files a/build/darknet/x64/data/labels/108_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/108_2.png b/build/darknet/x64/data/labels/108_2.png
deleted file mode 100644
index 7a95038efe8..00000000000
Binary files a/build/darknet/x64/data/labels/108_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/108_3.png b/build/darknet/x64/data/labels/108_3.png
deleted file mode 100644
index 81637b38cc6..00000000000
Binary files a/build/darknet/x64/data/labels/108_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/108_4.png b/build/darknet/x64/data/labels/108_4.png
deleted file mode 100644
index 0ea83f24b0d..00000000000
Binary files a/build/darknet/x64/data/labels/108_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/108_5.png b/build/darknet/x64/data/labels/108_5.png
deleted file mode 100644
index 98d79d89675..00000000000
Binary files a/build/darknet/x64/data/labels/108_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/108_6.png b/build/darknet/x64/data/labels/108_6.png
deleted file mode 100644
index 25303aa893c..00000000000
Binary files a/build/darknet/x64/data/labels/108_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/108_7.png b/build/darknet/x64/data/labels/108_7.png
deleted file mode 100644
index 6fb03a5da69..00000000000
Binary files a/build/darknet/x64/data/labels/108_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/109_0.png b/build/darknet/x64/data/labels/109_0.png
deleted file mode 100644
index 8169faf8872..00000000000
Binary files a/build/darknet/x64/data/labels/109_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/109_1.png b/build/darknet/x64/data/labels/109_1.png
deleted file mode 100644
index 16bc989df9e..00000000000
Binary files a/build/darknet/x64/data/labels/109_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/109_2.png b/build/darknet/x64/data/labels/109_2.png
deleted file mode 100644
index cf8cf63d65b..00000000000
Binary files a/build/darknet/x64/data/labels/109_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/109_3.png b/build/darknet/x64/data/labels/109_3.png
deleted file mode 100644
index 5f6757b902e..00000000000
Binary files a/build/darknet/x64/data/labels/109_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/109_4.png b/build/darknet/x64/data/labels/109_4.png
deleted file mode 100644
index 5d9fdab72ee..00000000000
Binary files a/build/darknet/x64/data/labels/109_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/109_5.png b/build/darknet/x64/data/labels/109_5.png
deleted file mode 100644
index be6b733ebdb..00000000000
Binary files a/build/darknet/x64/data/labels/109_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/109_6.png b/build/darknet/x64/data/labels/109_6.png
deleted file mode 100644
index a02a117596a..00000000000
Binary files a/build/darknet/x64/data/labels/109_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/109_7.png b/build/darknet/x64/data/labels/109_7.png
deleted file mode 100644
index 1349d93aeff..00000000000
Binary files a/build/darknet/x64/data/labels/109_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/110_0.png b/build/darknet/x64/data/labels/110_0.png
deleted file mode 100644
index 49a258238ad..00000000000
Binary files a/build/darknet/x64/data/labels/110_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/110_1.png b/build/darknet/x64/data/labels/110_1.png
deleted file mode 100644
index 10630ccea62..00000000000
Binary files a/build/darknet/x64/data/labels/110_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/110_2.png b/build/darknet/x64/data/labels/110_2.png
deleted file mode 100644
index f9004da45b8..00000000000
Binary files a/build/darknet/x64/data/labels/110_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/110_3.png b/build/darknet/x64/data/labels/110_3.png
deleted file mode 100644
index b0d6ae1bde6..00000000000
Binary files a/build/darknet/x64/data/labels/110_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/110_4.png b/build/darknet/x64/data/labels/110_4.png
deleted file mode 100644
index 8f57528a363..00000000000
Binary files a/build/darknet/x64/data/labels/110_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/110_5.png b/build/darknet/x64/data/labels/110_5.png
deleted file mode 100644
index b335e497b96..00000000000
Binary files a/build/darknet/x64/data/labels/110_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/110_6.png b/build/darknet/x64/data/labels/110_6.png
deleted file mode 100644
index 450fbb63534..00000000000
Binary files a/build/darknet/x64/data/labels/110_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/110_7.png b/build/darknet/x64/data/labels/110_7.png
deleted file mode 100644
index c7b4754ac10..00000000000
Binary files a/build/darknet/x64/data/labels/110_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/111_0.png b/build/darknet/x64/data/labels/111_0.png
deleted file mode 100644
index a0e58834cb5..00000000000
Binary files a/build/darknet/x64/data/labels/111_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/111_1.png b/build/darknet/x64/data/labels/111_1.png
deleted file mode 100644
index 9c17d574b8c..00000000000
Binary files a/build/darknet/x64/data/labels/111_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/111_2.png b/build/darknet/x64/data/labels/111_2.png
deleted file mode 100644
index 477108699c0..00000000000
Binary files a/build/darknet/x64/data/labels/111_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/111_3.png b/build/darknet/x64/data/labels/111_3.png
deleted file mode 100644
index bfba021ed0a..00000000000
Binary files a/build/darknet/x64/data/labels/111_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/111_4.png b/build/darknet/x64/data/labels/111_4.png
deleted file mode 100644
index 7a4aeda25fe..00000000000
Binary files a/build/darknet/x64/data/labels/111_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/111_5.png b/build/darknet/x64/data/labels/111_5.png
deleted file mode 100644
index 180a9c58957..00000000000
Binary files a/build/darknet/x64/data/labels/111_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/111_6.png b/build/darknet/x64/data/labels/111_6.png
deleted file mode 100644
index e1482cd3de6..00000000000
Binary files a/build/darknet/x64/data/labels/111_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/111_7.png b/build/darknet/x64/data/labels/111_7.png
deleted file mode 100644
index c9355d06e73..00000000000
Binary files a/build/darknet/x64/data/labels/111_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/112_0.png b/build/darknet/x64/data/labels/112_0.png
deleted file mode 100644
index d732efebfef..00000000000
Binary files a/build/darknet/x64/data/labels/112_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/112_1.png b/build/darknet/x64/data/labels/112_1.png
deleted file mode 100644
index 11243af759f..00000000000
Binary files a/build/darknet/x64/data/labels/112_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/112_2.png b/build/darknet/x64/data/labels/112_2.png
deleted file mode 100644
index c3c42209da8..00000000000
Binary files a/build/darknet/x64/data/labels/112_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/112_3.png b/build/darknet/x64/data/labels/112_3.png
deleted file mode 100644
index f830185e693..00000000000
Binary files a/build/darknet/x64/data/labels/112_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/112_4.png b/build/darknet/x64/data/labels/112_4.png
deleted file mode 100644
index a4b184a479a..00000000000
Binary files a/build/darknet/x64/data/labels/112_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/112_5.png b/build/darknet/x64/data/labels/112_5.png
deleted file mode 100644
index 02f97a20162..00000000000
Binary files a/build/darknet/x64/data/labels/112_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/112_6.png b/build/darknet/x64/data/labels/112_6.png
deleted file mode 100644
index 2001b39e50b..00000000000
Binary files a/build/darknet/x64/data/labels/112_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/112_7.png b/build/darknet/x64/data/labels/112_7.png
deleted file mode 100644
index 9a14a71e563..00000000000
Binary files a/build/darknet/x64/data/labels/112_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/113_0.png b/build/darknet/x64/data/labels/113_0.png
deleted file mode 100644
index e36c84ead25..00000000000
Binary files a/build/darknet/x64/data/labels/113_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/113_1.png b/build/darknet/x64/data/labels/113_1.png
deleted file mode 100644
index 4c81c210b49..00000000000
Binary files a/build/darknet/x64/data/labels/113_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/113_2.png b/build/darknet/x64/data/labels/113_2.png
deleted file mode 100644
index b29b8d01295..00000000000
Binary files a/build/darknet/x64/data/labels/113_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/113_3.png b/build/darknet/x64/data/labels/113_3.png
deleted file mode 100644
index 623358492cb..00000000000
Binary files a/build/darknet/x64/data/labels/113_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/113_4.png b/build/darknet/x64/data/labels/113_4.png
deleted file mode 100644
index d1373f93c0d..00000000000
Binary files a/build/darknet/x64/data/labels/113_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/113_5.png b/build/darknet/x64/data/labels/113_5.png
deleted file mode 100644
index ecfa110bf1e..00000000000
Binary files a/build/darknet/x64/data/labels/113_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/113_6.png b/build/darknet/x64/data/labels/113_6.png
deleted file mode 100644
index c4e0d989ddb..00000000000
Binary files a/build/darknet/x64/data/labels/113_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/113_7.png b/build/darknet/x64/data/labels/113_7.png
deleted file mode 100644
index 55ac8cfe141..00000000000
Binary files a/build/darknet/x64/data/labels/113_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/114_0.png b/build/darknet/x64/data/labels/114_0.png
deleted file mode 100644
index 9d42671db0a..00000000000
Binary files a/build/darknet/x64/data/labels/114_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/114_1.png b/build/darknet/x64/data/labels/114_1.png
deleted file mode 100644
index 277eed4faaa..00000000000
Binary files a/build/darknet/x64/data/labels/114_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/114_2.png b/build/darknet/x64/data/labels/114_2.png
deleted file mode 100644
index 9c18af38768..00000000000
Binary files a/build/darknet/x64/data/labels/114_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/114_3.png b/build/darknet/x64/data/labels/114_3.png
deleted file mode 100644
index 412f32047cd..00000000000
Binary files a/build/darknet/x64/data/labels/114_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/114_4.png b/build/darknet/x64/data/labels/114_4.png
deleted file mode 100644
index 65912f08141..00000000000
Binary files a/build/darknet/x64/data/labels/114_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/114_5.png b/build/darknet/x64/data/labels/114_5.png
deleted file mode 100644
index fdf7bd2f6c3..00000000000
Binary files a/build/darknet/x64/data/labels/114_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/114_6.png b/build/darknet/x64/data/labels/114_6.png
deleted file mode 100644
index 8f6b639ea67..00000000000
Binary files a/build/darknet/x64/data/labels/114_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/114_7.png b/build/darknet/x64/data/labels/114_7.png
deleted file mode 100644
index acf9180cf3b..00000000000
Binary files a/build/darknet/x64/data/labels/114_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/115_0.png b/build/darknet/x64/data/labels/115_0.png
deleted file mode 100644
index 4767c453c05..00000000000
Binary files a/build/darknet/x64/data/labels/115_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/115_1.png b/build/darknet/x64/data/labels/115_1.png
deleted file mode 100644
index 79f5d39cd69..00000000000
Binary files a/build/darknet/x64/data/labels/115_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/115_2.png b/build/darknet/x64/data/labels/115_2.png
deleted file mode 100644
index 963c0684b40..00000000000
Binary files a/build/darknet/x64/data/labels/115_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/115_3.png b/build/darknet/x64/data/labels/115_3.png
deleted file mode 100644
index bc0d24f56d2..00000000000
Binary files a/build/darknet/x64/data/labels/115_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/115_4.png b/build/darknet/x64/data/labels/115_4.png
deleted file mode 100644
index a39b0f0c809..00000000000
Binary files a/build/darknet/x64/data/labels/115_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/115_5.png b/build/darknet/x64/data/labels/115_5.png
deleted file mode 100644
index 63e00783a5d..00000000000
Binary files a/build/darknet/x64/data/labels/115_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/115_6.png b/build/darknet/x64/data/labels/115_6.png
deleted file mode 100644
index 344ef849307..00000000000
Binary files a/build/darknet/x64/data/labels/115_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/115_7.png b/build/darknet/x64/data/labels/115_7.png
deleted file mode 100644
index c6e743c0af5..00000000000
Binary files a/build/darknet/x64/data/labels/115_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/116_0.png b/build/darknet/x64/data/labels/116_0.png
deleted file mode 100644
index bf9b263de68..00000000000
Binary files a/build/darknet/x64/data/labels/116_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/116_1.png b/build/darknet/x64/data/labels/116_1.png
deleted file mode 100644
index 2fb12a9d916..00000000000
Binary files a/build/darknet/x64/data/labels/116_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/116_2.png b/build/darknet/x64/data/labels/116_2.png
deleted file mode 100644
index dd044917463..00000000000
Binary files a/build/darknet/x64/data/labels/116_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/116_3.png b/build/darknet/x64/data/labels/116_3.png
deleted file mode 100644
index 0314e85e75e..00000000000
Binary files a/build/darknet/x64/data/labels/116_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/116_4.png b/build/darknet/x64/data/labels/116_4.png
deleted file mode 100644
index cf919a6ba13..00000000000
Binary files a/build/darknet/x64/data/labels/116_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/116_5.png b/build/darknet/x64/data/labels/116_5.png
deleted file mode 100644
index c9e04ed2ab4..00000000000
Binary files a/build/darknet/x64/data/labels/116_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/116_6.png b/build/darknet/x64/data/labels/116_6.png
deleted file mode 100644
index 1d0ab79a6bd..00000000000
Binary files a/build/darknet/x64/data/labels/116_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/116_7.png b/build/darknet/x64/data/labels/116_7.png
deleted file mode 100644
index 1fcdaa6e38c..00000000000
Binary files a/build/darknet/x64/data/labels/116_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/117_0.png b/build/darknet/x64/data/labels/117_0.png
deleted file mode 100644
index 917b4a21311..00000000000
Binary files a/build/darknet/x64/data/labels/117_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/117_1.png b/build/darknet/x64/data/labels/117_1.png
deleted file mode 100644
index 59cae8a9830..00000000000
Binary files a/build/darknet/x64/data/labels/117_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/117_2.png b/build/darknet/x64/data/labels/117_2.png
deleted file mode 100644
index d7c7f33c096..00000000000
Binary files a/build/darknet/x64/data/labels/117_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/117_3.png b/build/darknet/x64/data/labels/117_3.png
deleted file mode 100644
index 18679c3975b..00000000000
Binary files a/build/darknet/x64/data/labels/117_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/117_4.png b/build/darknet/x64/data/labels/117_4.png
deleted file mode 100644
index bceedf94d92..00000000000
Binary files a/build/darknet/x64/data/labels/117_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/117_5.png b/build/darknet/x64/data/labels/117_5.png
deleted file mode 100644
index c0bddab6e85..00000000000
Binary files a/build/darknet/x64/data/labels/117_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/117_6.png b/build/darknet/x64/data/labels/117_6.png
deleted file mode 100644
index 731fd1448d5..00000000000
Binary files a/build/darknet/x64/data/labels/117_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/117_7.png b/build/darknet/x64/data/labels/117_7.png
deleted file mode 100644
index c04ed0b1256..00000000000
Binary files a/build/darknet/x64/data/labels/117_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/118_0.png b/build/darknet/x64/data/labels/118_0.png
deleted file mode 100644
index 4b8dfc6458f..00000000000
Binary files a/build/darknet/x64/data/labels/118_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/118_1.png b/build/darknet/x64/data/labels/118_1.png
deleted file mode 100644
index fa886ac2f4f..00000000000
Binary files a/build/darknet/x64/data/labels/118_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/118_2.png b/build/darknet/x64/data/labels/118_2.png
deleted file mode 100644
index 958ff5e7f52..00000000000
Binary files a/build/darknet/x64/data/labels/118_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/118_3.png b/build/darknet/x64/data/labels/118_3.png
deleted file mode 100644
index 241b7880073..00000000000
Binary files a/build/darknet/x64/data/labels/118_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/118_4.png b/build/darknet/x64/data/labels/118_4.png
deleted file mode 100644
index 93991521924..00000000000
Binary files a/build/darknet/x64/data/labels/118_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/118_5.png b/build/darknet/x64/data/labels/118_5.png
deleted file mode 100644
index 279c954365d..00000000000
Binary files a/build/darknet/x64/data/labels/118_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/118_6.png b/build/darknet/x64/data/labels/118_6.png
deleted file mode 100644
index 9379cb994f2..00000000000
Binary files a/build/darknet/x64/data/labels/118_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/118_7.png b/build/darknet/x64/data/labels/118_7.png
deleted file mode 100644
index b34ca8a408a..00000000000
Binary files a/build/darknet/x64/data/labels/118_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/119_0.png b/build/darknet/x64/data/labels/119_0.png
deleted file mode 100644
index ae03b912f34..00000000000
Binary files a/build/darknet/x64/data/labels/119_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/119_1.png b/build/darknet/x64/data/labels/119_1.png
deleted file mode 100644
index 7794fb67d7a..00000000000
Binary files a/build/darknet/x64/data/labels/119_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/119_2.png b/build/darknet/x64/data/labels/119_2.png
deleted file mode 100644
index 976c49b9264..00000000000
Binary files a/build/darknet/x64/data/labels/119_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/119_3.png b/build/darknet/x64/data/labels/119_3.png
deleted file mode 100644
index 2e0160edf4f..00000000000
Binary files a/build/darknet/x64/data/labels/119_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/119_4.png b/build/darknet/x64/data/labels/119_4.png
deleted file mode 100644
index 054092760e4..00000000000
Binary files a/build/darknet/x64/data/labels/119_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/119_5.png b/build/darknet/x64/data/labels/119_5.png
deleted file mode 100644
index 4649a59051f..00000000000
Binary files a/build/darknet/x64/data/labels/119_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/119_6.png b/build/darknet/x64/data/labels/119_6.png
deleted file mode 100644
index eb5e0fbf225..00000000000
Binary files a/build/darknet/x64/data/labels/119_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/119_7.png b/build/darknet/x64/data/labels/119_7.png
deleted file mode 100644
index 5615e770e7b..00000000000
Binary files a/build/darknet/x64/data/labels/119_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/120_0.png b/build/darknet/x64/data/labels/120_0.png
deleted file mode 100644
index 64fd621afde..00000000000
Binary files a/build/darknet/x64/data/labels/120_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/120_1.png b/build/darknet/x64/data/labels/120_1.png
deleted file mode 100644
index e13ecef89b5..00000000000
Binary files a/build/darknet/x64/data/labels/120_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/120_2.png b/build/darknet/x64/data/labels/120_2.png
deleted file mode 100644
index b6ae6049aeb..00000000000
Binary files a/build/darknet/x64/data/labels/120_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/120_3.png b/build/darknet/x64/data/labels/120_3.png
deleted file mode 100644
index 13a4c3c845b..00000000000
Binary files a/build/darknet/x64/data/labels/120_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/120_4.png b/build/darknet/x64/data/labels/120_4.png
deleted file mode 100644
index af550a877a4..00000000000
Binary files a/build/darknet/x64/data/labels/120_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/120_5.png b/build/darknet/x64/data/labels/120_5.png
deleted file mode 100644
index 38474e433fa..00000000000
Binary files a/build/darknet/x64/data/labels/120_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/120_6.png b/build/darknet/x64/data/labels/120_6.png
deleted file mode 100644
index e356cded706..00000000000
Binary files a/build/darknet/x64/data/labels/120_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/120_7.png b/build/darknet/x64/data/labels/120_7.png
deleted file mode 100644
index 5a585b4e690..00000000000
Binary files a/build/darknet/x64/data/labels/120_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/121_0.png b/build/darknet/x64/data/labels/121_0.png
deleted file mode 100644
index 2c203810118..00000000000
Binary files a/build/darknet/x64/data/labels/121_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/121_1.png b/build/darknet/x64/data/labels/121_1.png
deleted file mode 100644
index 820c17d3bbd..00000000000
Binary files a/build/darknet/x64/data/labels/121_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/121_2.png b/build/darknet/x64/data/labels/121_2.png
deleted file mode 100644
index fabda00773f..00000000000
Binary files a/build/darknet/x64/data/labels/121_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/121_3.png b/build/darknet/x64/data/labels/121_3.png
deleted file mode 100644
index 79ac0b1d8f6..00000000000
Binary files a/build/darknet/x64/data/labels/121_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/121_4.png b/build/darknet/x64/data/labels/121_4.png
deleted file mode 100644
index 7ded72973af..00000000000
Binary files a/build/darknet/x64/data/labels/121_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/121_5.png b/build/darknet/x64/data/labels/121_5.png
deleted file mode 100644
index 5d59b5aa894..00000000000
Binary files a/build/darknet/x64/data/labels/121_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/121_6.png b/build/darknet/x64/data/labels/121_6.png
deleted file mode 100644
index 49a63f3cedf..00000000000
Binary files a/build/darknet/x64/data/labels/121_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/121_7.png b/build/darknet/x64/data/labels/121_7.png
deleted file mode 100644
index fea7b9e2291..00000000000
Binary files a/build/darknet/x64/data/labels/121_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/122_0.png b/build/darknet/x64/data/labels/122_0.png
deleted file mode 100644
index 76ed2702386..00000000000
Binary files a/build/darknet/x64/data/labels/122_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/122_1.png b/build/darknet/x64/data/labels/122_1.png
deleted file mode 100644
index 57f2857c494..00000000000
Binary files a/build/darknet/x64/data/labels/122_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/122_2.png b/build/darknet/x64/data/labels/122_2.png
deleted file mode 100644
index d9f27cdd620..00000000000
Binary files a/build/darknet/x64/data/labels/122_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/122_3.png b/build/darknet/x64/data/labels/122_3.png
deleted file mode 100644
index c06579023e2..00000000000
Binary files a/build/darknet/x64/data/labels/122_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/122_4.png b/build/darknet/x64/data/labels/122_4.png
deleted file mode 100644
index 62b891e2cac..00000000000
Binary files a/build/darknet/x64/data/labels/122_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/122_5.png b/build/darknet/x64/data/labels/122_5.png
deleted file mode 100644
index 276222eb015..00000000000
Binary files a/build/darknet/x64/data/labels/122_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/122_6.png b/build/darknet/x64/data/labels/122_6.png
deleted file mode 100644
index 0b2924e30b3..00000000000
Binary files a/build/darknet/x64/data/labels/122_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/122_7.png b/build/darknet/x64/data/labels/122_7.png
deleted file mode 100644
index 8708778478d..00000000000
Binary files a/build/darknet/x64/data/labels/122_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/123_0.png b/build/darknet/x64/data/labels/123_0.png
deleted file mode 100644
index 95f92aaa3cb..00000000000
Binary files a/build/darknet/x64/data/labels/123_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/123_1.png b/build/darknet/x64/data/labels/123_1.png
deleted file mode 100644
index e0e4fdd7338..00000000000
Binary files a/build/darknet/x64/data/labels/123_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/123_2.png b/build/darknet/x64/data/labels/123_2.png
deleted file mode 100644
index 6a9c0b0ea56..00000000000
Binary files a/build/darknet/x64/data/labels/123_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/123_3.png b/build/darknet/x64/data/labels/123_3.png
deleted file mode 100644
index 8783377b8d0..00000000000
Binary files a/build/darknet/x64/data/labels/123_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/123_4.png b/build/darknet/x64/data/labels/123_4.png
deleted file mode 100644
index c9de4f7311e..00000000000
Binary files a/build/darknet/x64/data/labels/123_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/123_5.png b/build/darknet/x64/data/labels/123_5.png
deleted file mode 100644
index 8deaa3c686c..00000000000
Binary files a/build/darknet/x64/data/labels/123_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/123_6.png b/build/darknet/x64/data/labels/123_6.png
deleted file mode 100644
index 47ca880b967..00000000000
Binary files a/build/darknet/x64/data/labels/123_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/123_7.png b/build/darknet/x64/data/labels/123_7.png
deleted file mode 100644
index bf3a5d726c7..00000000000
Binary files a/build/darknet/x64/data/labels/123_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/124_0.png b/build/darknet/x64/data/labels/124_0.png
deleted file mode 100644
index a54db7c0d58..00000000000
Binary files a/build/darknet/x64/data/labels/124_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/124_1.png b/build/darknet/x64/data/labels/124_1.png
deleted file mode 100644
index c54536103c3..00000000000
Binary files a/build/darknet/x64/data/labels/124_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/124_2.png b/build/darknet/x64/data/labels/124_2.png
deleted file mode 100644
index c5a6a76b786..00000000000
Binary files a/build/darknet/x64/data/labels/124_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/124_3.png b/build/darknet/x64/data/labels/124_3.png
deleted file mode 100644
index 37b9e82208c..00000000000
Binary files a/build/darknet/x64/data/labels/124_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/124_4.png b/build/darknet/x64/data/labels/124_4.png
deleted file mode 100644
index 0521fe205de..00000000000
Binary files a/build/darknet/x64/data/labels/124_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/124_5.png b/build/darknet/x64/data/labels/124_5.png
deleted file mode 100644
index a5ad765f7b1..00000000000
Binary files a/build/darknet/x64/data/labels/124_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/124_6.png b/build/darknet/x64/data/labels/124_6.png
deleted file mode 100644
index 2dbf0f13a0b..00000000000
Binary files a/build/darknet/x64/data/labels/124_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/124_7.png b/build/darknet/x64/data/labels/124_7.png
deleted file mode 100644
index 0730ca0ca0b..00000000000
Binary files a/build/darknet/x64/data/labels/124_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/125_0.png b/build/darknet/x64/data/labels/125_0.png
deleted file mode 100644
index 67e37b29be9..00000000000
Binary files a/build/darknet/x64/data/labels/125_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/125_1.png b/build/darknet/x64/data/labels/125_1.png
deleted file mode 100644
index 4dc1ea520b4..00000000000
Binary files a/build/darknet/x64/data/labels/125_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/125_2.png b/build/darknet/x64/data/labels/125_2.png
deleted file mode 100644
index 6f3babed29e..00000000000
Binary files a/build/darknet/x64/data/labels/125_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/125_3.png b/build/darknet/x64/data/labels/125_3.png
deleted file mode 100644
index 4c7a26c75f7..00000000000
Binary files a/build/darknet/x64/data/labels/125_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/125_4.png b/build/darknet/x64/data/labels/125_4.png
deleted file mode 100644
index 149eaa9bfef..00000000000
Binary files a/build/darknet/x64/data/labels/125_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/125_5.png b/build/darknet/x64/data/labels/125_5.png
deleted file mode 100644
index 8ae40f7aaa0..00000000000
Binary files a/build/darknet/x64/data/labels/125_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/125_6.png b/build/darknet/x64/data/labels/125_6.png
deleted file mode 100644
index 589304318ea..00000000000
Binary files a/build/darknet/x64/data/labels/125_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/125_7.png b/build/darknet/x64/data/labels/125_7.png
deleted file mode 100644
index 47bd85b9ca6..00000000000
Binary files a/build/darknet/x64/data/labels/125_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/126_0.png b/build/darknet/x64/data/labels/126_0.png
deleted file mode 100644
index f602708c6bd..00000000000
Binary files a/build/darknet/x64/data/labels/126_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/126_1.png b/build/darknet/x64/data/labels/126_1.png
deleted file mode 100644
index cb8b76ea018..00000000000
Binary files a/build/darknet/x64/data/labels/126_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/126_2.png b/build/darknet/x64/data/labels/126_2.png
deleted file mode 100644
index ccef7a2c400..00000000000
Binary files a/build/darknet/x64/data/labels/126_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/126_3.png b/build/darknet/x64/data/labels/126_3.png
deleted file mode 100644
index 9fcf7ab92ed..00000000000
Binary files a/build/darknet/x64/data/labels/126_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/126_4.png b/build/darknet/x64/data/labels/126_4.png
deleted file mode 100644
index d3f01bfe0f4..00000000000
Binary files a/build/darknet/x64/data/labels/126_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/126_5.png b/build/darknet/x64/data/labels/126_5.png
deleted file mode 100644
index 00c57f143ef..00000000000
Binary files a/build/darknet/x64/data/labels/126_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/126_6.png b/build/darknet/x64/data/labels/126_6.png
deleted file mode 100644
index 2c2dbb194d7..00000000000
Binary files a/build/darknet/x64/data/labels/126_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/126_7.png b/build/darknet/x64/data/labels/126_7.png
deleted file mode 100644
index 55ee5a799ec..00000000000
Binary files a/build/darknet/x64/data/labels/126_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/32_0.png b/build/darknet/x64/data/labels/32_0.png
deleted file mode 100644
index 22be2ded8aa..00000000000
Binary files a/build/darknet/x64/data/labels/32_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/32_1.png b/build/darknet/x64/data/labels/32_1.png
deleted file mode 100644
index 21abfa47e90..00000000000
Binary files a/build/darknet/x64/data/labels/32_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/32_2.png b/build/darknet/x64/data/labels/32_2.png
deleted file mode 100644
index eae41b9c3ad..00000000000
Binary files a/build/darknet/x64/data/labels/32_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/32_3.png b/build/darknet/x64/data/labels/32_3.png
deleted file mode 100644
index fcc007e1e63..00000000000
Binary files a/build/darknet/x64/data/labels/32_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/32_4.png b/build/darknet/x64/data/labels/32_4.png
deleted file mode 100644
index f4c498cc37f..00000000000
Binary files a/build/darknet/x64/data/labels/32_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/32_5.png b/build/darknet/x64/data/labels/32_5.png
deleted file mode 100644
index 16248c945ce..00000000000
Binary files a/build/darknet/x64/data/labels/32_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/32_6.png b/build/darknet/x64/data/labels/32_6.png
deleted file mode 100644
index 1e50183faa2..00000000000
Binary files a/build/darknet/x64/data/labels/32_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/32_7.png b/build/darknet/x64/data/labels/32_7.png
deleted file mode 100644
index 81bd1d5edfe..00000000000
Binary files a/build/darknet/x64/data/labels/32_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/33_0.png b/build/darknet/x64/data/labels/33_0.png
deleted file mode 100644
index d1a1141842b..00000000000
Binary files a/build/darknet/x64/data/labels/33_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/33_1.png b/build/darknet/x64/data/labels/33_1.png
deleted file mode 100644
index a13dd33a6cf..00000000000
Binary files a/build/darknet/x64/data/labels/33_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/33_2.png b/build/darknet/x64/data/labels/33_2.png
deleted file mode 100644
index 57201b2e0ad..00000000000
Binary files a/build/darknet/x64/data/labels/33_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/33_3.png b/build/darknet/x64/data/labels/33_3.png
deleted file mode 100644
index 02101603652..00000000000
Binary files a/build/darknet/x64/data/labels/33_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/33_4.png b/build/darknet/x64/data/labels/33_4.png
deleted file mode 100644
index fd181d177c7..00000000000
Binary files a/build/darknet/x64/data/labels/33_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/33_5.png b/build/darknet/x64/data/labels/33_5.png
deleted file mode 100644
index ed4387a6361..00000000000
Binary files a/build/darknet/x64/data/labels/33_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/33_6.png b/build/darknet/x64/data/labels/33_6.png
deleted file mode 100644
index 11262923be2..00000000000
Binary files a/build/darknet/x64/data/labels/33_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/33_7.png b/build/darknet/x64/data/labels/33_7.png
deleted file mode 100644
index 1d67d55a7b8..00000000000
Binary files a/build/darknet/x64/data/labels/33_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/34_0.png b/build/darknet/x64/data/labels/34_0.png
deleted file mode 100644
index 7b24cfa0e3f..00000000000
Binary files a/build/darknet/x64/data/labels/34_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/34_1.png b/build/darknet/x64/data/labels/34_1.png
deleted file mode 100644
index 39f7edc7765..00000000000
Binary files a/build/darknet/x64/data/labels/34_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/34_2.png b/build/darknet/x64/data/labels/34_2.png
deleted file mode 100644
index 00c4e87e064..00000000000
Binary files a/build/darknet/x64/data/labels/34_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/34_3.png b/build/darknet/x64/data/labels/34_3.png
deleted file mode 100644
index 79d51762e8c..00000000000
Binary files a/build/darknet/x64/data/labels/34_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/34_4.png b/build/darknet/x64/data/labels/34_4.png
deleted file mode 100644
index d52483080d6..00000000000
Binary files a/build/darknet/x64/data/labels/34_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/34_5.png b/build/darknet/x64/data/labels/34_5.png
deleted file mode 100644
index 25a7e43f1c6..00000000000
Binary files a/build/darknet/x64/data/labels/34_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/34_6.png b/build/darknet/x64/data/labels/34_6.png
deleted file mode 100644
index bf3b61354b8..00000000000
Binary files a/build/darknet/x64/data/labels/34_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/34_7.png b/build/darknet/x64/data/labels/34_7.png
deleted file mode 100644
index 1148f2d7a27..00000000000
Binary files a/build/darknet/x64/data/labels/34_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/35_0.png b/build/darknet/x64/data/labels/35_0.png
deleted file mode 100644
index ff572a8d0b3..00000000000
Binary files a/build/darknet/x64/data/labels/35_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/35_1.png b/build/darknet/x64/data/labels/35_1.png
deleted file mode 100644
index 1bba49452fb..00000000000
Binary files a/build/darknet/x64/data/labels/35_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/35_2.png b/build/darknet/x64/data/labels/35_2.png
deleted file mode 100644
index b7d708ec442..00000000000
Binary files a/build/darknet/x64/data/labels/35_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/35_3.png b/build/darknet/x64/data/labels/35_3.png
deleted file mode 100644
index 302cc73f02a..00000000000
Binary files a/build/darknet/x64/data/labels/35_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/35_4.png b/build/darknet/x64/data/labels/35_4.png
deleted file mode 100644
index 9e11a20b877..00000000000
Binary files a/build/darknet/x64/data/labels/35_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/35_5.png b/build/darknet/x64/data/labels/35_5.png
deleted file mode 100644
index 9ab56b3ac5d..00000000000
Binary files a/build/darknet/x64/data/labels/35_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/35_6.png b/build/darknet/x64/data/labels/35_6.png
deleted file mode 100644
index d75876c6bb1..00000000000
Binary files a/build/darknet/x64/data/labels/35_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/35_7.png b/build/darknet/x64/data/labels/35_7.png
deleted file mode 100644
index 1bbdc9fe886..00000000000
Binary files a/build/darknet/x64/data/labels/35_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/36_0.png b/build/darknet/x64/data/labels/36_0.png
deleted file mode 100644
index 929660af70b..00000000000
Binary files a/build/darknet/x64/data/labels/36_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/36_1.png b/build/darknet/x64/data/labels/36_1.png
deleted file mode 100644
index 646e7705427..00000000000
Binary files a/build/darknet/x64/data/labels/36_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/36_2.png b/build/darknet/x64/data/labels/36_2.png
deleted file mode 100644
index ba6603cb8a0..00000000000
Binary files a/build/darknet/x64/data/labels/36_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/36_3.png b/build/darknet/x64/data/labels/36_3.png
deleted file mode 100644
index 56e5ba3f986..00000000000
Binary files a/build/darknet/x64/data/labels/36_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/36_4.png b/build/darknet/x64/data/labels/36_4.png
deleted file mode 100644
index e87046c95ae..00000000000
Binary files a/build/darknet/x64/data/labels/36_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/36_5.png b/build/darknet/x64/data/labels/36_5.png
deleted file mode 100644
index 5a7672d237a..00000000000
Binary files a/build/darknet/x64/data/labels/36_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/36_6.png b/build/darknet/x64/data/labels/36_6.png
deleted file mode 100644
index b16b2a26d0d..00000000000
Binary files a/build/darknet/x64/data/labels/36_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/36_7.png b/build/darknet/x64/data/labels/36_7.png
deleted file mode 100644
index 1f943127b69..00000000000
Binary files a/build/darknet/x64/data/labels/36_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/37_0.png b/build/darknet/x64/data/labels/37_0.png
deleted file mode 100644
index 44b7f4e59a2..00000000000
Binary files a/build/darknet/x64/data/labels/37_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/37_1.png b/build/darknet/x64/data/labels/37_1.png
deleted file mode 100644
index 36712dcab29..00000000000
Binary files a/build/darknet/x64/data/labels/37_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/37_2.png b/build/darknet/x64/data/labels/37_2.png
deleted file mode 100644
index 759aed9c0c9..00000000000
Binary files a/build/darknet/x64/data/labels/37_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/37_3.png b/build/darknet/x64/data/labels/37_3.png
deleted file mode 100644
index 03253dd3843..00000000000
Binary files a/build/darknet/x64/data/labels/37_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/37_4.png b/build/darknet/x64/data/labels/37_4.png
deleted file mode 100644
index ed5e4bd3589..00000000000
Binary files a/build/darknet/x64/data/labels/37_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/37_5.png b/build/darknet/x64/data/labels/37_5.png
deleted file mode 100644
index fe2059083de..00000000000
Binary files a/build/darknet/x64/data/labels/37_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/37_6.png b/build/darknet/x64/data/labels/37_6.png
deleted file mode 100644
index 11f34eb12f2..00000000000
Binary files a/build/darknet/x64/data/labels/37_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/37_7.png b/build/darknet/x64/data/labels/37_7.png
deleted file mode 100644
index dee9ba35f78..00000000000
Binary files a/build/darknet/x64/data/labels/37_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/38_0.png b/build/darknet/x64/data/labels/38_0.png
deleted file mode 100644
index 47c51e18518..00000000000
Binary files a/build/darknet/x64/data/labels/38_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/38_1.png b/build/darknet/x64/data/labels/38_1.png
deleted file mode 100644
index 3abcc8bb7f2..00000000000
Binary files a/build/darknet/x64/data/labels/38_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/38_2.png b/build/darknet/x64/data/labels/38_2.png
deleted file mode 100644
index 47a85e91666..00000000000
Binary files a/build/darknet/x64/data/labels/38_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/38_3.png b/build/darknet/x64/data/labels/38_3.png
deleted file mode 100644
index 1af926efae7..00000000000
Binary files a/build/darknet/x64/data/labels/38_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/38_4.png b/build/darknet/x64/data/labels/38_4.png
deleted file mode 100644
index 783342a5a9c..00000000000
Binary files a/build/darknet/x64/data/labels/38_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/38_5.png b/build/darknet/x64/data/labels/38_5.png
deleted file mode 100644
index 20b92228287..00000000000
Binary files a/build/darknet/x64/data/labels/38_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/38_6.png b/build/darknet/x64/data/labels/38_6.png
deleted file mode 100644
index f68e4d96f38..00000000000
Binary files a/build/darknet/x64/data/labels/38_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/38_7.png b/build/darknet/x64/data/labels/38_7.png
deleted file mode 100644
index c6ffc54bc04..00000000000
Binary files a/build/darknet/x64/data/labels/38_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/39_0.png b/build/darknet/x64/data/labels/39_0.png
deleted file mode 100644
index 860f831b719..00000000000
Binary files a/build/darknet/x64/data/labels/39_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/39_1.png b/build/darknet/x64/data/labels/39_1.png
deleted file mode 100644
index 021b23271a3..00000000000
Binary files a/build/darknet/x64/data/labels/39_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/39_2.png b/build/darknet/x64/data/labels/39_2.png
deleted file mode 100644
index 7ac7b15574d..00000000000
Binary files a/build/darknet/x64/data/labels/39_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/39_3.png b/build/darknet/x64/data/labels/39_3.png
deleted file mode 100644
index 82baf947e02..00000000000
Binary files a/build/darknet/x64/data/labels/39_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/39_4.png b/build/darknet/x64/data/labels/39_4.png
deleted file mode 100644
index 4fb41865be3..00000000000
Binary files a/build/darknet/x64/data/labels/39_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/39_5.png b/build/darknet/x64/data/labels/39_5.png
deleted file mode 100644
index 1c613c5dc55..00000000000
Binary files a/build/darknet/x64/data/labels/39_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/39_6.png b/build/darknet/x64/data/labels/39_6.png
deleted file mode 100644
index e570bcd37f1..00000000000
Binary files a/build/darknet/x64/data/labels/39_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/39_7.png b/build/darknet/x64/data/labels/39_7.png
deleted file mode 100644
index 5cb309f829d..00000000000
Binary files a/build/darknet/x64/data/labels/39_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/40_0.png b/build/darknet/x64/data/labels/40_0.png
deleted file mode 100644
index 346c633919b..00000000000
Binary files a/build/darknet/x64/data/labels/40_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/40_1.png b/build/darknet/x64/data/labels/40_1.png
deleted file mode 100644
index 7dfa7b5e066..00000000000
Binary files a/build/darknet/x64/data/labels/40_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/40_2.png b/build/darknet/x64/data/labels/40_2.png
deleted file mode 100644
index a2b0e0f0fef..00000000000
Binary files a/build/darknet/x64/data/labels/40_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/40_3.png b/build/darknet/x64/data/labels/40_3.png
deleted file mode 100644
index f72742572c2..00000000000
Binary files a/build/darknet/x64/data/labels/40_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/40_4.png b/build/darknet/x64/data/labels/40_4.png
deleted file mode 100644
index 4c89b55e1ac..00000000000
Binary files a/build/darknet/x64/data/labels/40_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/40_5.png b/build/darknet/x64/data/labels/40_5.png
deleted file mode 100644
index 35b4fcd2798..00000000000
Binary files a/build/darknet/x64/data/labels/40_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/40_6.png b/build/darknet/x64/data/labels/40_6.png
deleted file mode 100644
index 215972b7e21..00000000000
Binary files a/build/darknet/x64/data/labels/40_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/40_7.png b/build/darknet/x64/data/labels/40_7.png
deleted file mode 100644
index 0d8eb552eab..00000000000
Binary files a/build/darknet/x64/data/labels/40_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/41_0.png b/build/darknet/x64/data/labels/41_0.png
deleted file mode 100644
index 42dd3870ba7..00000000000
Binary files a/build/darknet/x64/data/labels/41_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/41_1.png b/build/darknet/x64/data/labels/41_1.png
deleted file mode 100644
index 0e1da960134..00000000000
Binary files a/build/darknet/x64/data/labels/41_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/41_2.png b/build/darknet/x64/data/labels/41_2.png
deleted file mode 100644
index 31cf47dacdd..00000000000
Binary files a/build/darknet/x64/data/labels/41_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/41_3.png b/build/darknet/x64/data/labels/41_3.png
deleted file mode 100644
index e5121869909..00000000000
Binary files a/build/darknet/x64/data/labels/41_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/41_4.png b/build/darknet/x64/data/labels/41_4.png
deleted file mode 100644
index 150cb579338..00000000000
Binary files a/build/darknet/x64/data/labels/41_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/41_5.png b/build/darknet/x64/data/labels/41_5.png
deleted file mode 100644
index 7ac1a183532..00000000000
Binary files a/build/darknet/x64/data/labels/41_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/41_6.png b/build/darknet/x64/data/labels/41_6.png
deleted file mode 100644
index 4bdd2f0522f..00000000000
Binary files a/build/darknet/x64/data/labels/41_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/41_7.png b/build/darknet/x64/data/labels/41_7.png
deleted file mode 100644
index 50568ba208d..00000000000
Binary files a/build/darknet/x64/data/labels/41_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/42_0.png b/build/darknet/x64/data/labels/42_0.png
deleted file mode 100644
index f41cd8450a2..00000000000
Binary files a/build/darknet/x64/data/labels/42_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/42_1.png b/build/darknet/x64/data/labels/42_1.png
deleted file mode 100644
index 4aee8e67eae..00000000000
Binary files a/build/darknet/x64/data/labels/42_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/42_2.png b/build/darknet/x64/data/labels/42_2.png
deleted file mode 100644
index e045f1dbccf..00000000000
Binary files a/build/darknet/x64/data/labels/42_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/42_3.png b/build/darknet/x64/data/labels/42_3.png
deleted file mode 100644
index edc194bad0b..00000000000
Binary files a/build/darknet/x64/data/labels/42_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/42_4.png b/build/darknet/x64/data/labels/42_4.png
deleted file mode 100644
index e417c3e5b1e..00000000000
Binary files a/build/darknet/x64/data/labels/42_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/42_5.png b/build/darknet/x64/data/labels/42_5.png
deleted file mode 100644
index d6593c6ac6a..00000000000
Binary files a/build/darknet/x64/data/labels/42_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/42_6.png b/build/darknet/x64/data/labels/42_6.png
deleted file mode 100644
index ffcaaed31c9..00000000000
Binary files a/build/darknet/x64/data/labels/42_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/42_7.png b/build/darknet/x64/data/labels/42_7.png
deleted file mode 100644
index 4895af70fdf..00000000000
Binary files a/build/darknet/x64/data/labels/42_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/43_0.png b/build/darknet/x64/data/labels/43_0.png
deleted file mode 100644
index af5295e5ebb..00000000000
Binary files a/build/darknet/x64/data/labels/43_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/43_1.png b/build/darknet/x64/data/labels/43_1.png
deleted file mode 100644
index 0e20f345074..00000000000
Binary files a/build/darknet/x64/data/labels/43_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/43_2.png b/build/darknet/x64/data/labels/43_2.png
deleted file mode 100644
index be2fbb30f99..00000000000
Binary files a/build/darknet/x64/data/labels/43_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/43_3.png b/build/darknet/x64/data/labels/43_3.png
deleted file mode 100644
index 5183eb1f3ff..00000000000
Binary files a/build/darknet/x64/data/labels/43_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/43_4.png b/build/darknet/x64/data/labels/43_4.png
deleted file mode 100644
index 526b5002141..00000000000
Binary files a/build/darknet/x64/data/labels/43_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/43_5.png b/build/darknet/x64/data/labels/43_5.png
deleted file mode 100644
index 03d62ff7854..00000000000
Binary files a/build/darknet/x64/data/labels/43_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/43_6.png b/build/darknet/x64/data/labels/43_6.png
deleted file mode 100644
index b245a4cbe19..00000000000
Binary files a/build/darknet/x64/data/labels/43_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/43_7.png b/build/darknet/x64/data/labels/43_7.png
deleted file mode 100644
index e21688a9523..00000000000
Binary files a/build/darknet/x64/data/labels/43_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/44_0.png b/build/darknet/x64/data/labels/44_0.png
deleted file mode 100644
index 63e66ffa164..00000000000
Binary files a/build/darknet/x64/data/labels/44_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/44_1.png b/build/darknet/x64/data/labels/44_1.png
deleted file mode 100644
index 49f2fe2cdc2..00000000000
Binary files a/build/darknet/x64/data/labels/44_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/44_2.png b/build/darknet/x64/data/labels/44_2.png
deleted file mode 100644
index 32fd2ded6b9..00000000000
Binary files a/build/darknet/x64/data/labels/44_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/44_3.png b/build/darknet/x64/data/labels/44_3.png
deleted file mode 100644
index bb1118fac88..00000000000
Binary files a/build/darknet/x64/data/labels/44_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/44_4.png b/build/darknet/x64/data/labels/44_4.png
deleted file mode 100644
index cd80bbdc660..00000000000
Binary files a/build/darknet/x64/data/labels/44_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/44_5.png b/build/darknet/x64/data/labels/44_5.png
deleted file mode 100644
index f83e11514d1..00000000000
Binary files a/build/darknet/x64/data/labels/44_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/44_6.png b/build/darknet/x64/data/labels/44_6.png
deleted file mode 100644
index 1f8ad892b36..00000000000
Binary files a/build/darknet/x64/data/labels/44_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/44_7.png b/build/darknet/x64/data/labels/44_7.png
deleted file mode 100644
index 8c5d6328de4..00000000000
Binary files a/build/darknet/x64/data/labels/44_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/45_0.png b/build/darknet/x64/data/labels/45_0.png
deleted file mode 100644
index 701bdc8df1e..00000000000
Binary files a/build/darknet/x64/data/labels/45_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/45_1.png b/build/darknet/x64/data/labels/45_1.png
deleted file mode 100644
index 976103fcf25..00000000000
Binary files a/build/darknet/x64/data/labels/45_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/45_2.png b/build/darknet/x64/data/labels/45_2.png
deleted file mode 100644
index 4bc50cf480f..00000000000
Binary files a/build/darknet/x64/data/labels/45_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/45_3.png b/build/darknet/x64/data/labels/45_3.png
deleted file mode 100644
index 335c2c7500d..00000000000
Binary files a/build/darknet/x64/data/labels/45_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/45_4.png b/build/darknet/x64/data/labels/45_4.png
deleted file mode 100644
index 8fc2738d7b6..00000000000
Binary files a/build/darknet/x64/data/labels/45_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/45_5.png b/build/darknet/x64/data/labels/45_5.png
deleted file mode 100644
index acc4c09c11c..00000000000
Binary files a/build/darknet/x64/data/labels/45_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/45_6.png b/build/darknet/x64/data/labels/45_6.png
deleted file mode 100644
index 00771044ced..00000000000
Binary files a/build/darknet/x64/data/labels/45_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/45_7.png b/build/darknet/x64/data/labels/45_7.png
deleted file mode 100644
index d486ccd9c19..00000000000
Binary files a/build/darknet/x64/data/labels/45_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/46_0.png b/build/darknet/x64/data/labels/46_0.png
deleted file mode 100644
index 44fa798b9c3..00000000000
Binary files a/build/darknet/x64/data/labels/46_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/46_1.png b/build/darknet/x64/data/labels/46_1.png
deleted file mode 100644
index 0f35bbb931f..00000000000
Binary files a/build/darknet/x64/data/labels/46_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/46_2.png b/build/darknet/x64/data/labels/46_2.png
deleted file mode 100644
index e3355f5f8cc..00000000000
Binary files a/build/darknet/x64/data/labels/46_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/46_3.png b/build/darknet/x64/data/labels/46_3.png
deleted file mode 100644
index 9226458b243..00000000000
Binary files a/build/darknet/x64/data/labels/46_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/46_4.png b/build/darknet/x64/data/labels/46_4.png
deleted file mode 100644
index 77a841c3f7a..00000000000
Binary files a/build/darknet/x64/data/labels/46_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/46_5.png b/build/darknet/x64/data/labels/46_5.png
deleted file mode 100644
index e86cbaf91cb..00000000000
Binary files a/build/darknet/x64/data/labels/46_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/46_6.png b/build/darknet/x64/data/labels/46_6.png
deleted file mode 100644
index 5011dedcf22..00000000000
Binary files a/build/darknet/x64/data/labels/46_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/46_7.png b/build/darknet/x64/data/labels/46_7.png
deleted file mode 100644
index 53c8871d155..00000000000
Binary files a/build/darknet/x64/data/labels/46_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/47_0.png b/build/darknet/x64/data/labels/47_0.png
deleted file mode 100644
index 9b7c05009e9..00000000000
Binary files a/build/darknet/x64/data/labels/47_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/47_1.png b/build/darknet/x64/data/labels/47_1.png
deleted file mode 100644
index 75ba11204a0..00000000000
Binary files a/build/darknet/x64/data/labels/47_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/47_2.png b/build/darknet/x64/data/labels/47_2.png
deleted file mode 100644
index 2f07656ceb6..00000000000
Binary files a/build/darknet/x64/data/labels/47_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/47_3.png b/build/darknet/x64/data/labels/47_3.png
deleted file mode 100644
index 3fd07280b42..00000000000
Binary files a/build/darknet/x64/data/labels/47_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/47_4.png b/build/darknet/x64/data/labels/47_4.png
deleted file mode 100644
index 9e503ebc7cb..00000000000
Binary files a/build/darknet/x64/data/labels/47_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/47_5.png b/build/darknet/x64/data/labels/47_5.png
deleted file mode 100644
index fddef157acf..00000000000
Binary files a/build/darknet/x64/data/labels/47_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/47_6.png b/build/darknet/x64/data/labels/47_6.png
deleted file mode 100644
index 0117b55a012..00000000000
Binary files a/build/darknet/x64/data/labels/47_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/47_7.png b/build/darknet/x64/data/labels/47_7.png
deleted file mode 100644
index fff13237cf2..00000000000
Binary files a/build/darknet/x64/data/labels/47_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/48_0.png b/build/darknet/x64/data/labels/48_0.png
deleted file mode 100644
index 4775310f5d6..00000000000
Binary files a/build/darknet/x64/data/labels/48_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/48_1.png b/build/darknet/x64/data/labels/48_1.png
deleted file mode 100644
index 231cd3f6987..00000000000
Binary files a/build/darknet/x64/data/labels/48_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/48_2.png b/build/darknet/x64/data/labels/48_2.png
deleted file mode 100644
index b653e9cc8e7..00000000000
Binary files a/build/darknet/x64/data/labels/48_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/48_3.png b/build/darknet/x64/data/labels/48_3.png
deleted file mode 100644
index d148a75f6f8..00000000000
Binary files a/build/darknet/x64/data/labels/48_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/48_4.png b/build/darknet/x64/data/labels/48_4.png
deleted file mode 100644
index 9e1b0d5d9f9..00000000000
Binary files a/build/darknet/x64/data/labels/48_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/48_5.png b/build/darknet/x64/data/labels/48_5.png
deleted file mode 100644
index f554133a4fa..00000000000
Binary files a/build/darknet/x64/data/labels/48_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/48_6.png b/build/darknet/x64/data/labels/48_6.png
deleted file mode 100644
index d84192850a5..00000000000
Binary files a/build/darknet/x64/data/labels/48_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/48_7.png b/build/darknet/x64/data/labels/48_7.png
deleted file mode 100644
index 145ed36c21c..00000000000
Binary files a/build/darknet/x64/data/labels/48_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/49_0.png b/build/darknet/x64/data/labels/49_0.png
deleted file mode 100644
index f979710b233..00000000000
Binary files a/build/darknet/x64/data/labels/49_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/49_1.png b/build/darknet/x64/data/labels/49_1.png
deleted file mode 100644
index 0cb26d4bc5b..00000000000
Binary files a/build/darknet/x64/data/labels/49_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/49_2.png b/build/darknet/x64/data/labels/49_2.png
deleted file mode 100644
index 0684a715a41..00000000000
Binary files a/build/darknet/x64/data/labels/49_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/49_3.png b/build/darknet/x64/data/labels/49_3.png
deleted file mode 100644
index ce89eb78b84..00000000000
Binary files a/build/darknet/x64/data/labels/49_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/49_4.png b/build/darknet/x64/data/labels/49_4.png
deleted file mode 100644
index a8f6b14b82b..00000000000
Binary files a/build/darknet/x64/data/labels/49_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/49_5.png b/build/darknet/x64/data/labels/49_5.png
deleted file mode 100644
index c7e80337079..00000000000
Binary files a/build/darknet/x64/data/labels/49_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/49_6.png b/build/darknet/x64/data/labels/49_6.png
deleted file mode 100644
index a091704d7c0..00000000000
Binary files a/build/darknet/x64/data/labels/49_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/49_7.png b/build/darknet/x64/data/labels/49_7.png
deleted file mode 100644
index f385b75a3f1..00000000000
Binary files a/build/darknet/x64/data/labels/49_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/50_0.png b/build/darknet/x64/data/labels/50_0.png
deleted file mode 100644
index 6af169d1607..00000000000
Binary files a/build/darknet/x64/data/labels/50_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/50_1.png b/build/darknet/x64/data/labels/50_1.png
deleted file mode 100644
index a3c03009eee..00000000000
Binary files a/build/darknet/x64/data/labels/50_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/50_2.png b/build/darknet/x64/data/labels/50_2.png
deleted file mode 100644
index 1ea6ff655f1..00000000000
Binary files a/build/darknet/x64/data/labels/50_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/50_3.png b/build/darknet/x64/data/labels/50_3.png
deleted file mode 100644
index 3c0bf1d8209..00000000000
Binary files a/build/darknet/x64/data/labels/50_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/50_4.png b/build/darknet/x64/data/labels/50_4.png
deleted file mode 100644
index eb6a9d9147b..00000000000
Binary files a/build/darknet/x64/data/labels/50_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/50_5.png b/build/darknet/x64/data/labels/50_5.png
deleted file mode 100644
index acdb5ed7de5..00000000000
Binary files a/build/darknet/x64/data/labels/50_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/50_6.png b/build/darknet/x64/data/labels/50_6.png
deleted file mode 100644
index c74ac5a2ad0..00000000000
Binary files a/build/darknet/x64/data/labels/50_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/50_7.png b/build/darknet/x64/data/labels/50_7.png
deleted file mode 100644
index 6d3f530afb8..00000000000
Binary files a/build/darknet/x64/data/labels/50_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/51_0.png b/build/darknet/x64/data/labels/51_0.png
deleted file mode 100644
index 48bad97f35e..00000000000
Binary files a/build/darknet/x64/data/labels/51_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/51_1.png b/build/darknet/x64/data/labels/51_1.png
deleted file mode 100644
index 7703a747915..00000000000
Binary files a/build/darknet/x64/data/labels/51_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/51_2.png b/build/darknet/x64/data/labels/51_2.png
deleted file mode 100644
index 804e21b3893..00000000000
Binary files a/build/darknet/x64/data/labels/51_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/51_3.png b/build/darknet/x64/data/labels/51_3.png
deleted file mode 100644
index 5b0875788f6..00000000000
Binary files a/build/darknet/x64/data/labels/51_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/51_4.png b/build/darknet/x64/data/labels/51_4.png
deleted file mode 100644
index 30727fb107e..00000000000
Binary files a/build/darknet/x64/data/labels/51_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/51_5.png b/build/darknet/x64/data/labels/51_5.png
deleted file mode 100644
index de240eae0f7..00000000000
Binary files a/build/darknet/x64/data/labels/51_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/51_6.png b/build/darknet/x64/data/labels/51_6.png
deleted file mode 100644
index c252b01e51e..00000000000
Binary files a/build/darknet/x64/data/labels/51_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/51_7.png b/build/darknet/x64/data/labels/51_7.png
deleted file mode 100644
index 806f99b2cc6..00000000000
Binary files a/build/darknet/x64/data/labels/51_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/52_0.png b/build/darknet/x64/data/labels/52_0.png
deleted file mode 100644
index a554b313701..00000000000
Binary files a/build/darknet/x64/data/labels/52_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/52_1.png b/build/darknet/x64/data/labels/52_1.png
deleted file mode 100644
index 936c84fd5f4..00000000000
Binary files a/build/darknet/x64/data/labels/52_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/52_2.png b/build/darknet/x64/data/labels/52_2.png
deleted file mode 100644
index 57e3f05c2f8..00000000000
Binary files a/build/darknet/x64/data/labels/52_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/52_3.png b/build/darknet/x64/data/labels/52_3.png
deleted file mode 100644
index 6a8f99ef1f2..00000000000
Binary files a/build/darknet/x64/data/labels/52_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/52_4.png b/build/darknet/x64/data/labels/52_4.png
deleted file mode 100644
index 91f97f0b6ea..00000000000
Binary files a/build/darknet/x64/data/labels/52_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/52_5.png b/build/darknet/x64/data/labels/52_5.png
deleted file mode 100644
index a78504fe184..00000000000
Binary files a/build/darknet/x64/data/labels/52_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/52_6.png b/build/darknet/x64/data/labels/52_6.png
deleted file mode 100644
index f52bd2c50f4..00000000000
Binary files a/build/darknet/x64/data/labels/52_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/52_7.png b/build/darknet/x64/data/labels/52_7.png
deleted file mode 100644
index 621b8e0459a..00000000000
Binary files a/build/darknet/x64/data/labels/52_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/53_0.png b/build/darknet/x64/data/labels/53_0.png
deleted file mode 100644
index a750615cca9..00000000000
Binary files a/build/darknet/x64/data/labels/53_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/53_1.png b/build/darknet/x64/data/labels/53_1.png
deleted file mode 100644
index 1c4e097dd16..00000000000
Binary files a/build/darknet/x64/data/labels/53_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/53_2.png b/build/darknet/x64/data/labels/53_2.png
deleted file mode 100644
index f5238560ef8..00000000000
Binary files a/build/darknet/x64/data/labels/53_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/53_3.png b/build/darknet/x64/data/labels/53_3.png
deleted file mode 100644
index 85505f80bb2..00000000000
Binary files a/build/darknet/x64/data/labels/53_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/53_4.png b/build/darknet/x64/data/labels/53_4.png
deleted file mode 100644
index 14e8da11a9d..00000000000
Binary files a/build/darknet/x64/data/labels/53_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/53_5.png b/build/darknet/x64/data/labels/53_5.png
deleted file mode 100644
index 79781fc6b75..00000000000
Binary files a/build/darknet/x64/data/labels/53_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/53_6.png b/build/darknet/x64/data/labels/53_6.png
deleted file mode 100644
index a6e18638d31..00000000000
Binary files a/build/darknet/x64/data/labels/53_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/53_7.png b/build/darknet/x64/data/labels/53_7.png
deleted file mode 100644
index bff5eb68b59..00000000000
Binary files a/build/darknet/x64/data/labels/53_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/54_0.png b/build/darknet/x64/data/labels/54_0.png
deleted file mode 100644
index 98ce42391ce..00000000000
Binary files a/build/darknet/x64/data/labels/54_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/54_1.png b/build/darknet/x64/data/labels/54_1.png
deleted file mode 100644
index 643ef36b085..00000000000
Binary files a/build/darknet/x64/data/labels/54_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/54_2.png b/build/darknet/x64/data/labels/54_2.png
deleted file mode 100644
index 2c3894eacf4..00000000000
Binary files a/build/darknet/x64/data/labels/54_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/54_3.png b/build/darknet/x64/data/labels/54_3.png
deleted file mode 100644
index 6190fdc29d5..00000000000
Binary files a/build/darknet/x64/data/labels/54_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/54_4.png b/build/darknet/x64/data/labels/54_4.png
deleted file mode 100644
index 92afc20c0fd..00000000000
Binary files a/build/darknet/x64/data/labels/54_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/54_5.png b/build/darknet/x64/data/labels/54_5.png
deleted file mode 100644
index feab352eb46..00000000000
Binary files a/build/darknet/x64/data/labels/54_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/54_6.png b/build/darknet/x64/data/labels/54_6.png
deleted file mode 100644
index c46698f3198..00000000000
Binary files a/build/darknet/x64/data/labels/54_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/54_7.png b/build/darknet/x64/data/labels/54_7.png
deleted file mode 100644
index 175dbeb445f..00000000000
Binary files a/build/darknet/x64/data/labels/54_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/55_0.png b/build/darknet/x64/data/labels/55_0.png
deleted file mode 100644
index 644838b017f..00000000000
Binary files a/build/darknet/x64/data/labels/55_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/55_1.png b/build/darknet/x64/data/labels/55_1.png
deleted file mode 100644
index b84e0eb5a7f..00000000000
Binary files a/build/darknet/x64/data/labels/55_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/55_2.png b/build/darknet/x64/data/labels/55_2.png
deleted file mode 100644
index 3896d08affc..00000000000
Binary files a/build/darknet/x64/data/labels/55_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/55_3.png b/build/darknet/x64/data/labels/55_3.png
deleted file mode 100644
index 21e92663cf7..00000000000
Binary files a/build/darknet/x64/data/labels/55_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/55_4.png b/build/darknet/x64/data/labels/55_4.png
deleted file mode 100644
index d6aed1b8dba..00000000000
Binary files a/build/darknet/x64/data/labels/55_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/55_5.png b/build/darknet/x64/data/labels/55_5.png
deleted file mode 100644
index 1f60c36efbc..00000000000
Binary files a/build/darknet/x64/data/labels/55_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/55_6.png b/build/darknet/x64/data/labels/55_6.png
deleted file mode 100644
index 2a7f1fbca4d..00000000000
Binary files a/build/darknet/x64/data/labels/55_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/55_7.png b/build/darknet/x64/data/labels/55_7.png
deleted file mode 100644
index 80c527b29cd..00000000000
Binary files a/build/darknet/x64/data/labels/55_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/56_0.png b/build/darknet/x64/data/labels/56_0.png
deleted file mode 100644
index 8a1e0c76eae..00000000000
Binary files a/build/darknet/x64/data/labels/56_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/56_1.png b/build/darknet/x64/data/labels/56_1.png
deleted file mode 100644
index a0a81a07ada..00000000000
Binary files a/build/darknet/x64/data/labels/56_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/56_2.png b/build/darknet/x64/data/labels/56_2.png
deleted file mode 100644
index 367f20ed92d..00000000000
Binary files a/build/darknet/x64/data/labels/56_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/56_3.png b/build/darknet/x64/data/labels/56_3.png
deleted file mode 100644
index cf56f8f95e2..00000000000
Binary files a/build/darknet/x64/data/labels/56_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/56_4.png b/build/darknet/x64/data/labels/56_4.png
deleted file mode 100644
index e57cce75ae9..00000000000
Binary files a/build/darknet/x64/data/labels/56_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/56_5.png b/build/darknet/x64/data/labels/56_5.png
deleted file mode 100644
index c206547d264..00000000000
Binary files a/build/darknet/x64/data/labels/56_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/56_6.png b/build/darknet/x64/data/labels/56_6.png
deleted file mode 100644
index 040692aff9d..00000000000
Binary files a/build/darknet/x64/data/labels/56_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/56_7.png b/build/darknet/x64/data/labels/56_7.png
deleted file mode 100644
index 4c27c106807..00000000000
Binary files a/build/darknet/x64/data/labels/56_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/57_0.png b/build/darknet/x64/data/labels/57_0.png
deleted file mode 100644
index e20a46f8fb9..00000000000
Binary files a/build/darknet/x64/data/labels/57_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/57_1.png b/build/darknet/x64/data/labels/57_1.png
deleted file mode 100644
index 17cd2621314..00000000000
Binary files a/build/darknet/x64/data/labels/57_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/57_2.png b/build/darknet/x64/data/labels/57_2.png
deleted file mode 100644
index 98fad29bb6d..00000000000
Binary files a/build/darknet/x64/data/labels/57_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/57_3.png b/build/darknet/x64/data/labels/57_3.png
deleted file mode 100644
index ba80aa01938..00000000000
Binary files a/build/darknet/x64/data/labels/57_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/57_4.png b/build/darknet/x64/data/labels/57_4.png
deleted file mode 100644
index e9822435bf0..00000000000
Binary files a/build/darknet/x64/data/labels/57_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/57_5.png b/build/darknet/x64/data/labels/57_5.png
deleted file mode 100644
index e947ff8937d..00000000000
Binary files a/build/darknet/x64/data/labels/57_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/57_6.png b/build/darknet/x64/data/labels/57_6.png
deleted file mode 100644
index c4ae076f85c..00000000000
Binary files a/build/darknet/x64/data/labels/57_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/57_7.png b/build/darknet/x64/data/labels/57_7.png
deleted file mode 100644
index bd4ca16163b..00000000000
Binary files a/build/darknet/x64/data/labels/57_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/58_0.png b/build/darknet/x64/data/labels/58_0.png
deleted file mode 100644
index d9e35f7cc10..00000000000
Binary files a/build/darknet/x64/data/labels/58_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/58_1.png b/build/darknet/x64/data/labels/58_1.png
deleted file mode 100644
index 0dd6dd09ce2..00000000000
Binary files a/build/darknet/x64/data/labels/58_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/58_2.png b/build/darknet/x64/data/labels/58_2.png
deleted file mode 100644
index b9f1319496c..00000000000
Binary files a/build/darknet/x64/data/labels/58_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/58_3.png b/build/darknet/x64/data/labels/58_3.png
deleted file mode 100644
index 0604337732c..00000000000
Binary files a/build/darknet/x64/data/labels/58_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/58_4.png b/build/darknet/x64/data/labels/58_4.png
deleted file mode 100644
index 7283e030bb5..00000000000
Binary files a/build/darknet/x64/data/labels/58_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/58_5.png b/build/darknet/x64/data/labels/58_5.png
deleted file mode 100644
index 2df3db930b0..00000000000
Binary files a/build/darknet/x64/data/labels/58_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/58_6.png b/build/darknet/x64/data/labels/58_6.png
deleted file mode 100644
index e12090929a3..00000000000
Binary files a/build/darknet/x64/data/labels/58_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/58_7.png b/build/darknet/x64/data/labels/58_7.png
deleted file mode 100644
index e85fc0a575f..00000000000
Binary files a/build/darknet/x64/data/labels/58_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/59_0.png b/build/darknet/x64/data/labels/59_0.png
deleted file mode 100644
index 09b212055bd..00000000000
Binary files a/build/darknet/x64/data/labels/59_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/59_1.png b/build/darknet/x64/data/labels/59_1.png
deleted file mode 100644
index 4b918148499..00000000000
Binary files a/build/darknet/x64/data/labels/59_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/59_2.png b/build/darknet/x64/data/labels/59_2.png
deleted file mode 100644
index cc302c2042f..00000000000
Binary files a/build/darknet/x64/data/labels/59_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/59_3.png b/build/darknet/x64/data/labels/59_3.png
deleted file mode 100644
index 6921796cb8c..00000000000
Binary files a/build/darknet/x64/data/labels/59_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/59_4.png b/build/darknet/x64/data/labels/59_4.png
deleted file mode 100644
index 4b77147b942..00000000000
Binary files a/build/darknet/x64/data/labels/59_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/59_5.png b/build/darknet/x64/data/labels/59_5.png
deleted file mode 100644
index 4325e62c387..00000000000
Binary files a/build/darknet/x64/data/labels/59_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/59_6.png b/build/darknet/x64/data/labels/59_6.png
deleted file mode 100644
index 135da331863..00000000000
Binary files a/build/darknet/x64/data/labels/59_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/59_7.png b/build/darknet/x64/data/labels/59_7.png
deleted file mode 100644
index 353ae33402a..00000000000
Binary files a/build/darknet/x64/data/labels/59_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/60_0.png b/build/darknet/x64/data/labels/60_0.png
deleted file mode 100644
index 210e77df4bc..00000000000
Binary files a/build/darknet/x64/data/labels/60_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/60_1.png b/build/darknet/x64/data/labels/60_1.png
deleted file mode 100644
index 507c736d26b..00000000000
Binary files a/build/darknet/x64/data/labels/60_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/60_2.png b/build/darknet/x64/data/labels/60_2.png
deleted file mode 100644
index 42273228772..00000000000
Binary files a/build/darknet/x64/data/labels/60_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/60_3.png b/build/darknet/x64/data/labels/60_3.png
deleted file mode 100644
index ac4d0263c4f..00000000000
Binary files a/build/darknet/x64/data/labels/60_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/60_4.png b/build/darknet/x64/data/labels/60_4.png
deleted file mode 100644
index 5cf89ed3845..00000000000
Binary files a/build/darknet/x64/data/labels/60_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/60_5.png b/build/darknet/x64/data/labels/60_5.png
deleted file mode 100644
index 5ceb7fe16ba..00000000000
Binary files a/build/darknet/x64/data/labels/60_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/60_6.png b/build/darknet/x64/data/labels/60_6.png
deleted file mode 100644
index 45121a7e183..00000000000
Binary files a/build/darknet/x64/data/labels/60_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/60_7.png b/build/darknet/x64/data/labels/60_7.png
deleted file mode 100644
index 33eb9e30f50..00000000000
Binary files a/build/darknet/x64/data/labels/60_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/61_0.png b/build/darknet/x64/data/labels/61_0.png
deleted file mode 100644
index 72bc6bfab2e..00000000000
Binary files a/build/darknet/x64/data/labels/61_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/61_1.png b/build/darknet/x64/data/labels/61_1.png
deleted file mode 100644
index 50def57079c..00000000000
Binary files a/build/darknet/x64/data/labels/61_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/61_2.png b/build/darknet/x64/data/labels/61_2.png
deleted file mode 100644
index a0e9a670e8b..00000000000
Binary files a/build/darknet/x64/data/labels/61_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/61_3.png b/build/darknet/x64/data/labels/61_3.png
deleted file mode 100644
index 0b7d1492318..00000000000
Binary files a/build/darknet/x64/data/labels/61_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/61_4.png b/build/darknet/x64/data/labels/61_4.png
deleted file mode 100644
index c0b71d85a36..00000000000
Binary files a/build/darknet/x64/data/labels/61_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/61_5.png b/build/darknet/x64/data/labels/61_5.png
deleted file mode 100644
index cf39e63db48..00000000000
Binary files a/build/darknet/x64/data/labels/61_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/61_6.png b/build/darknet/x64/data/labels/61_6.png
deleted file mode 100644
index 95282d4a2b4..00000000000
Binary files a/build/darknet/x64/data/labels/61_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/61_7.png b/build/darknet/x64/data/labels/61_7.png
deleted file mode 100644
index 6da5c024f75..00000000000
Binary files a/build/darknet/x64/data/labels/61_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/62_0.png b/build/darknet/x64/data/labels/62_0.png
deleted file mode 100644
index bb121097753..00000000000
Binary files a/build/darknet/x64/data/labels/62_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/62_1.png b/build/darknet/x64/data/labels/62_1.png
deleted file mode 100644
index 5b82445c091..00000000000
Binary files a/build/darknet/x64/data/labels/62_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/62_2.png b/build/darknet/x64/data/labels/62_2.png
deleted file mode 100644
index d4ca5a6df50..00000000000
Binary files a/build/darknet/x64/data/labels/62_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/62_3.png b/build/darknet/x64/data/labels/62_3.png
deleted file mode 100644
index 24ddea86a9c..00000000000
Binary files a/build/darknet/x64/data/labels/62_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/62_4.png b/build/darknet/x64/data/labels/62_4.png
deleted file mode 100644
index 34130a26b3b..00000000000
Binary files a/build/darknet/x64/data/labels/62_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/62_5.png b/build/darknet/x64/data/labels/62_5.png
deleted file mode 100644
index 823d9969c94..00000000000
Binary files a/build/darknet/x64/data/labels/62_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/62_6.png b/build/darknet/x64/data/labels/62_6.png
deleted file mode 100644
index 63dd85d3004..00000000000
Binary files a/build/darknet/x64/data/labels/62_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/62_7.png b/build/darknet/x64/data/labels/62_7.png
deleted file mode 100644
index 7c6158f2314..00000000000
Binary files a/build/darknet/x64/data/labels/62_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/63_0.png b/build/darknet/x64/data/labels/63_0.png
deleted file mode 100644
index 2d9571ea333..00000000000
Binary files a/build/darknet/x64/data/labels/63_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/63_1.png b/build/darknet/x64/data/labels/63_1.png
deleted file mode 100644
index 5376e0706f3..00000000000
Binary files a/build/darknet/x64/data/labels/63_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/63_2.png b/build/darknet/x64/data/labels/63_2.png
deleted file mode 100644
index 746ffa03270..00000000000
Binary files a/build/darknet/x64/data/labels/63_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/63_3.png b/build/darknet/x64/data/labels/63_3.png
deleted file mode 100644
index 58bb35ac19a..00000000000
Binary files a/build/darknet/x64/data/labels/63_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/63_4.png b/build/darknet/x64/data/labels/63_4.png
deleted file mode 100644
index ff1dc1a3070..00000000000
Binary files a/build/darknet/x64/data/labels/63_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/63_5.png b/build/darknet/x64/data/labels/63_5.png
deleted file mode 100644
index 13e34ce4386..00000000000
Binary files a/build/darknet/x64/data/labels/63_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/63_6.png b/build/darknet/x64/data/labels/63_6.png
deleted file mode 100644
index 9407c83341e..00000000000
Binary files a/build/darknet/x64/data/labels/63_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/63_7.png b/build/darknet/x64/data/labels/63_7.png
deleted file mode 100644
index e9c3edf3a57..00000000000
Binary files a/build/darknet/x64/data/labels/63_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/64_0.png b/build/darknet/x64/data/labels/64_0.png
deleted file mode 100644
index 0a3a101366e..00000000000
Binary files a/build/darknet/x64/data/labels/64_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/64_1.png b/build/darknet/x64/data/labels/64_1.png
deleted file mode 100644
index 63139606b05..00000000000
Binary files a/build/darknet/x64/data/labels/64_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/64_2.png b/build/darknet/x64/data/labels/64_2.png
deleted file mode 100644
index c49565c7b63..00000000000
Binary files a/build/darknet/x64/data/labels/64_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/64_3.png b/build/darknet/x64/data/labels/64_3.png
deleted file mode 100644
index c697f9bd886..00000000000
Binary files a/build/darknet/x64/data/labels/64_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/64_4.png b/build/darknet/x64/data/labels/64_4.png
deleted file mode 100644
index de194c73fe8..00000000000
Binary files a/build/darknet/x64/data/labels/64_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/64_5.png b/build/darknet/x64/data/labels/64_5.png
deleted file mode 100644
index 99050043375..00000000000
Binary files a/build/darknet/x64/data/labels/64_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/64_6.png b/build/darknet/x64/data/labels/64_6.png
deleted file mode 100644
index 7b915693594..00000000000
Binary files a/build/darknet/x64/data/labels/64_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/64_7.png b/build/darknet/x64/data/labels/64_7.png
deleted file mode 100644
index b9ebcee20d3..00000000000
Binary files a/build/darknet/x64/data/labels/64_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/65_0.png b/build/darknet/x64/data/labels/65_0.png
deleted file mode 100644
index c3880661090..00000000000
Binary files a/build/darknet/x64/data/labels/65_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/65_1.png b/build/darknet/x64/data/labels/65_1.png
deleted file mode 100644
index 9f7d7f7e31d..00000000000
Binary files a/build/darknet/x64/data/labels/65_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/65_2.png b/build/darknet/x64/data/labels/65_2.png
deleted file mode 100644
index 6f766948172..00000000000
Binary files a/build/darknet/x64/data/labels/65_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/65_3.png b/build/darknet/x64/data/labels/65_3.png
deleted file mode 100644
index 35931288ece..00000000000
Binary files a/build/darknet/x64/data/labels/65_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/65_4.png b/build/darknet/x64/data/labels/65_4.png
deleted file mode 100644
index 23f4814bc61..00000000000
Binary files a/build/darknet/x64/data/labels/65_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/65_5.png b/build/darknet/x64/data/labels/65_5.png
deleted file mode 100644
index 8eae6d7e162..00000000000
Binary files a/build/darknet/x64/data/labels/65_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/65_6.png b/build/darknet/x64/data/labels/65_6.png
deleted file mode 100644
index 02fec761b22..00000000000
Binary files a/build/darknet/x64/data/labels/65_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/65_7.png b/build/darknet/x64/data/labels/65_7.png
deleted file mode 100644
index c80822e12cd..00000000000
Binary files a/build/darknet/x64/data/labels/65_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/66_0.png b/build/darknet/x64/data/labels/66_0.png
deleted file mode 100644
index 278a401d69d..00000000000
Binary files a/build/darknet/x64/data/labels/66_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/66_1.png b/build/darknet/x64/data/labels/66_1.png
deleted file mode 100644
index 47c3735ffac..00000000000
Binary files a/build/darknet/x64/data/labels/66_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/66_2.png b/build/darknet/x64/data/labels/66_2.png
deleted file mode 100644
index dfcf8c4c7c0..00000000000
Binary files a/build/darknet/x64/data/labels/66_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/66_3.png b/build/darknet/x64/data/labels/66_3.png
deleted file mode 100644
index d8d69a74d6a..00000000000
Binary files a/build/darknet/x64/data/labels/66_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/66_4.png b/build/darknet/x64/data/labels/66_4.png
deleted file mode 100644
index 842976aec92..00000000000
Binary files a/build/darknet/x64/data/labels/66_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/66_5.png b/build/darknet/x64/data/labels/66_5.png
deleted file mode 100644
index 991caf87d60..00000000000
Binary files a/build/darknet/x64/data/labels/66_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/66_6.png b/build/darknet/x64/data/labels/66_6.png
deleted file mode 100644
index 32c52841ba4..00000000000
Binary files a/build/darknet/x64/data/labels/66_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/66_7.png b/build/darknet/x64/data/labels/66_7.png
deleted file mode 100644
index 14e8609e987..00000000000
Binary files a/build/darknet/x64/data/labels/66_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/67_0.png b/build/darknet/x64/data/labels/67_0.png
deleted file mode 100644
index 7f2786a9eef..00000000000
Binary files a/build/darknet/x64/data/labels/67_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/67_1.png b/build/darknet/x64/data/labels/67_1.png
deleted file mode 100644
index 798b421c1d8..00000000000
Binary files a/build/darknet/x64/data/labels/67_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/67_2.png b/build/darknet/x64/data/labels/67_2.png
deleted file mode 100644
index 802aaab4f37..00000000000
Binary files a/build/darknet/x64/data/labels/67_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/67_3.png b/build/darknet/x64/data/labels/67_3.png
deleted file mode 100644
index 9d975ca11d6..00000000000
Binary files a/build/darknet/x64/data/labels/67_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/67_4.png b/build/darknet/x64/data/labels/67_4.png
deleted file mode 100644
index 94ee5775922..00000000000
Binary files a/build/darknet/x64/data/labels/67_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/67_5.png b/build/darknet/x64/data/labels/67_5.png
deleted file mode 100644
index 021a877f360..00000000000
Binary files a/build/darknet/x64/data/labels/67_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/67_6.png b/build/darknet/x64/data/labels/67_6.png
deleted file mode 100644
index c35873234f8..00000000000
Binary files a/build/darknet/x64/data/labels/67_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/67_7.png b/build/darknet/x64/data/labels/67_7.png
deleted file mode 100644
index 46acdf29555..00000000000
Binary files a/build/darknet/x64/data/labels/67_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/68_0.png b/build/darknet/x64/data/labels/68_0.png
deleted file mode 100644
index 9e86a2fcf31..00000000000
Binary files a/build/darknet/x64/data/labels/68_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/68_1.png b/build/darknet/x64/data/labels/68_1.png
deleted file mode 100644
index d7d3ac3ffdd..00000000000
Binary files a/build/darknet/x64/data/labels/68_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/68_2.png b/build/darknet/x64/data/labels/68_2.png
deleted file mode 100644
index 3a48f050508..00000000000
Binary files a/build/darknet/x64/data/labels/68_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/68_3.png b/build/darknet/x64/data/labels/68_3.png
deleted file mode 100644
index 808603a7564..00000000000
Binary files a/build/darknet/x64/data/labels/68_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/68_4.png b/build/darknet/x64/data/labels/68_4.png
deleted file mode 100644
index d4f9bd4c6d6..00000000000
Binary files a/build/darknet/x64/data/labels/68_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/68_5.png b/build/darknet/x64/data/labels/68_5.png
deleted file mode 100644
index 25d8a96221c..00000000000
Binary files a/build/darknet/x64/data/labels/68_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/68_6.png b/build/darknet/x64/data/labels/68_6.png
deleted file mode 100644
index 0059c7f0c03..00000000000
Binary files a/build/darknet/x64/data/labels/68_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/68_7.png b/build/darknet/x64/data/labels/68_7.png
deleted file mode 100644
index c2aa9228c01..00000000000
Binary files a/build/darknet/x64/data/labels/68_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/69_0.png b/build/darknet/x64/data/labels/69_0.png
deleted file mode 100644
index 51140e0a5b3..00000000000
Binary files a/build/darknet/x64/data/labels/69_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/69_1.png b/build/darknet/x64/data/labels/69_1.png
deleted file mode 100644
index bcf7311edf5..00000000000
Binary files a/build/darknet/x64/data/labels/69_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/69_2.png b/build/darknet/x64/data/labels/69_2.png
deleted file mode 100644
index 582b289c070..00000000000
Binary files a/build/darknet/x64/data/labels/69_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/69_3.png b/build/darknet/x64/data/labels/69_3.png
deleted file mode 100644
index e3311233468..00000000000
Binary files a/build/darknet/x64/data/labels/69_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/69_4.png b/build/darknet/x64/data/labels/69_4.png
deleted file mode 100644
index a310f84cdd8..00000000000
Binary files a/build/darknet/x64/data/labels/69_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/69_5.png b/build/darknet/x64/data/labels/69_5.png
deleted file mode 100644
index ad69668791f..00000000000
Binary files a/build/darknet/x64/data/labels/69_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/69_6.png b/build/darknet/x64/data/labels/69_6.png
deleted file mode 100644
index a7b8f454fa8..00000000000
Binary files a/build/darknet/x64/data/labels/69_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/69_7.png b/build/darknet/x64/data/labels/69_7.png
deleted file mode 100644
index 7f3200cbe6a..00000000000
Binary files a/build/darknet/x64/data/labels/69_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/70_0.png b/build/darknet/x64/data/labels/70_0.png
deleted file mode 100644
index e0fb76c8f02..00000000000
Binary files a/build/darknet/x64/data/labels/70_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/70_1.png b/build/darknet/x64/data/labels/70_1.png
deleted file mode 100644
index 40c8217cf2c..00000000000
Binary files a/build/darknet/x64/data/labels/70_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/70_2.png b/build/darknet/x64/data/labels/70_2.png
deleted file mode 100644
index 63c811b1308..00000000000
Binary files a/build/darknet/x64/data/labels/70_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/70_3.png b/build/darknet/x64/data/labels/70_3.png
deleted file mode 100644
index 7c93cf7ea42..00000000000
Binary files a/build/darknet/x64/data/labels/70_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/70_4.png b/build/darknet/x64/data/labels/70_4.png
deleted file mode 100644
index 6033fb191ae..00000000000
Binary files a/build/darknet/x64/data/labels/70_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/70_5.png b/build/darknet/x64/data/labels/70_5.png
deleted file mode 100644
index bfcf02895d4..00000000000
Binary files a/build/darknet/x64/data/labels/70_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/70_6.png b/build/darknet/x64/data/labels/70_6.png
deleted file mode 100644
index 5fe9cdb2171..00000000000
Binary files a/build/darknet/x64/data/labels/70_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/70_7.png b/build/darknet/x64/data/labels/70_7.png
deleted file mode 100644
index 027af86de31..00000000000
Binary files a/build/darknet/x64/data/labels/70_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/71_0.png b/build/darknet/x64/data/labels/71_0.png
deleted file mode 100644
index 679b5e92632..00000000000
Binary files a/build/darknet/x64/data/labels/71_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/71_1.png b/build/darknet/x64/data/labels/71_1.png
deleted file mode 100644
index 6f5271b06eb..00000000000
Binary files a/build/darknet/x64/data/labels/71_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/71_2.png b/build/darknet/x64/data/labels/71_2.png
deleted file mode 100644
index 93dc749dc7d..00000000000
Binary files a/build/darknet/x64/data/labels/71_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/71_3.png b/build/darknet/x64/data/labels/71_3.png
deleted file mode 100644
index 03a4bc6b982..00000000000
Binary files a/build/darknet/x64/data/labels/71_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/71_4.png b/build/darknet/x64/data/labels/71_4.png
deleted file mode 100644
index 3976418cb66..00000000000
Binary files a/build/darknet/x64/data/labels/71_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/71_5.png b/build/darknet/x64/data/labels/71_5.png
deleted file mode 100644
index b0c4295838a..00000000000
Binary files a/build/darknet/x64/data/labels/71_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/71_6.png b/build/darknet/x64/data/labels/71_6.png
deleted file mode 100644
index bb8710d245b..00000000000
Binary files a/build/darknet/x64/data/labels/71_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/71_7.png b/build/darknet/x64/data/labels/71_7.png
deleted file mode 100644
index 68148a94a2e..00000000000
Binary files a/build/darknet/x64/data/labels/71_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/72_0.png b/build/darknet/x64/data/labels/72_0.png
deleted file mode 100644
index a2edd04ab07..00000000000
Binary files a/build/darknet/x64/data/labels/72_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/72_1.png b/build/darknet/x64/data/labels/72_1.png
deleted file mode 100644
index f1e8bcd4a1f..00000000000
Binary files a/build/darknet/x64/data/labels/72_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/72_2.png b/build/darknet/x64/data/labels/72_2.png
deleted file mode 100644
index a9516f1a041..00000000000
Binary files a/build/darknet/x64/data/labels/72_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/72_3.png b/build/darknet/x64/data/labels/72_3.png
deleted file mode 100644
index 5b944907538..00000000000
Binary files a/build/darknet/x64/data/labels/72_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/72_4.png b/build/darknet/x64/data/labels/72_4.png
deleted file mode 100644
index 83f7dbf0d24..00000000000
Binary files a/build/darknet/x64/data/labels/72_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/72_5.png b/build/darknet/x64/data/labels/72_5.png
deleted file mode 100644
index 5a40ad331bb..00000000000
Binary files a/build/darknet/x64/data/labels/72_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/72_6.png b/build/darknet/x64/data/labels/72_6.png
deleted file mode 100644
index b8898373a1d..00000000000
Binary files a/build/darknet/x64/data/labels/72_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/72_7.png b/build/darknet/x64/data/labels/72_7.png
deleted file mode 100644
index 4ec34df5789..00000000000
Binary files a/build/darknet/x64/data/labels/72_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/73_0.png b/build/darknet/x64/data/labels/73_0.png
deleted file mode 100644
index e5544322ac7..00000000000
Binary files a/build/darknet/x64/data/labels/73_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/73_1.png b/build/darknet/x64/data/labels/73_1.png
deleted file mode 100644
index 08d1924e147..00000000000
Binary files a/build/darknet/x64/data/labels/73_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/73_2.png b/build/darknet/x64/data/labels/73_2.png
deleted file mode 100644
index 3c8708569e7..00000000000
Binary files a/build/darknet/x64/data/labels/73_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/73_3.png b/build/darknet/x64/data/labels/73_3.png
deleted file mode 100644
index 11d0f760d2b..00000000000
Binary files a/build/darknet/x64/data/labels/73_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/73_4.png b/build/darknet/x64/data/labels/73_4.png
deleted file mode 100644
index ebacf1f3096..00000000000
Binary files a/build/darknet/x64/data/labels/73_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/73_5.png b/build/darknet/x64/data/labels/73_5.png
deleted file mode 100644
index d58377d50ce..00000000000
Binary files a/build/darknet/x64/data/labels/73_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/73_6.png b/build/darknet/x64/data/labels/73_6.png
deleted file mode 100644
index 293b96b2189..00000000000
Binary files a/build/darknet/x64/data/labels/73_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/73_7.png b/build/darknet/x64/data/labels/73_7.png
deleted file mode 100644
index 80f409d9659..00000000000
Binary files a/build/darknet/x64/data/labels/73_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/74_0.png b/build/darknet/x64/data/labels/74_0.png
deleted file mode 100644
index cc1d9f36e68..00000000000
Binary files a/build/darknet/x64/data/labels/74_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/74_1.png b/build/darknet/x64/data/labels/74_1.png
deleted file mode 100644
index 91713328ab1..00000000000
Binary files a/build/darknet/x64/data/labels/74_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/74_2.png b/build/darknet/x64/data/labels/74_2.png
deleted file mode 100644
index c08cea88996..00000000000
Binary files a/build/darknet/x64/data/labels/74_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/74_3.png b/build/darknet/x64/data/labels/74_3.png
deleted file mode 100644
index ce8e8c84a8f..00000000000
Binary files a/build/darknet/x64/data/labels/74_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/74_4.png b/build/darknet/x64/data/labels/74_4.png
deleted file mode 100644
index b112fa68397..00000000000
Binary files a/build/darknet/x64/data/labels/74_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/74_5.png b/build/darknet/x64/data/labels/74_5.png
deleted file mode 100644
index c9a7bbb9ea1..00000000000
Binary files a/build/darknet/x64/data/labels/74_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/74_6.png b/build/darknet/x64/data/labels/74_6.png
deleted file mode 100644
index 8f72aace501..00000000000
Binary files a/build/darknet/x64/data/labels/74_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/74_7.png b/build/darknet/x64/data/labels/74_7.png
deleted file mode 100644
index f85a9f96434..00000000000
Binary files a/build/darknet/x64/data/labels/74_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/75_0.png b/build/darknet/x64/data/labels/75_0.png
deleted file mode 100644
index b1f3ac4c36c..00000000000
Binary files a/build/darknet/x64/data/labels/75_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/75_1.png b/build/darknet/x64/data/labels/75_1.png
deleted file mode 100644
index 9f061096153..00000000000
Binary files a/build/darknet/x64/data/labels/75_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/75_2.png b/build/darknet/x64/data/labels/75_2.png
deleted file mode 100644
index 9224666c637..00000000000
Binary files a/build/darknet/x64/data/labels/75_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/75_3.png b/build/darknet/x64/data/labels/75_3.png
deleted file mode 100644
index eb7648977e0..00000000000
Binary files a/build/darknet/x64/data/labels/75_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/75_4.png b/build/darknet/x64/data/labels/75_4.png
deleted file mode 100644
index 7dfee155540..00000000000
Binary files a/build/darknet/x64/data/labels/75_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/75_5.png b/build/darknet/x64/data/labels/75_5.png
deleted file mode 100644
index 8b081f65e9e..00000000000
Binary files a/build/darknet/x64/data/labels/75_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/75_6.png b/build/darknet/x64/data/labels/75_6.png
deleted file mode 100644
index 95631cf9ae3..00000000000
Binary files a/build/darknet/x64/data/labels/75_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/75_7.png b/build/darknet/x64/data/labels/75_7.png
deleted file mode 100644
index db915eab9c7..00000000000
Binary files a/build/darknet/x64/data/labels/75_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/76_0.png b/build/darknet/x64/data/labels/76_0.png
deleted file mode 100644
index 5ceef1d55c7..00000000000
Binary files a/build/darknet/x64/data/labels/76_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/76_1.png b/build/darknet/x64/data/labels/76_1.png
deleted file mode 100644
index 53868311810..00000000000
Binary files a/build/darknet/x64/data/labels/76_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/76_2.png b/build/darknet/x64/data/labels/76_2.png
deleted file mode 100644
index 6c8393ab566..00000000000
Binary files a/build/darknet/x64/data/labels/76_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/76_3.png b/build/darknet/x64/data/labels/76_3.png
deleted file mode 100644
index fbe5712272c..00000000000
Binary files a/build/darknet/x64/data/labels/76_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/76_4.png b/build/darknet/x64/data/labels/76_4.png
deleted file mode 100644
index e47a6ebf6ac..00000000000
Binary files a/build/darknet/x64/data/labels/76_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/76_5.png b/build/darknet/x64/data/labels/76_5.png
deleted file mode 100644
index f349490d10e..00000000000
Binary files a/build/darknet/x64/data/labels/76_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/76_6.png b/build/darknet/x64/data/labels/76_6.png
deleted file mode 100644
index e661143134f..00000000000
Binary files a/build/darknet/x64/data/labels/76_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/76_7.png b/build/darknet/x64/data/labels/76_7.png
deleted file mode 100644
index 64d0834041f..00000000000
Binary files a/build/darknet/x64/data/labels/76_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/77_0.png b/build/darknet/x64/data/labels/77_0.png
deleted file mode 100644
index 05aab7db67c..00000000000
Binary files a/build/darknet/x64/data/labels/77_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/77_1.png b/build/darknet/x64/data/labels/77_1.png
deleted file mode 100644
index 64cb6085a63..00000000000
Binary files a/build/darknet/x64/data/labels/77_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/77_2.png b/build/darknet/x64/data/labels/77_2.png
deleted file mode 100644
index 2da938c7ced..00000000000
Binary files a/build/darknet/x64/data/labels/77_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/77_3.png b/build/darknet/x64/data/labels/77_3.png
deleted file mode 100644
index 14179d90cc7..00000000000
Binary files a/build/darknet/x64/data/labels/77_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/77_4.png b/build/darknet/x64/data/labels/77_4.png
deleted file mode 100644
index 894b4707162..00000000000
Binary files a/build/darknet/x64/data/labels/77_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/77_5.png b/build/darknet/x64/data/labels/77_5.png
deleted file mode 100644
index a55e5b63bef..00000000000
Binary files a/build/darknet/x64/data/labels/77_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/77_6.png b/build/darknet/x64/data/labels/77_6.png
deleted file mode 100644
index 4f0e7147a48..00000000000
Binary files a/build/darknet/x64/data/labels/77_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/77_7.png b/build/darknet/x64/data/labels/77_7.png
deleted file mode 100644
index 804e8c26cf6..00000000000
Binary files a/build/darknet/x64/data/labels/77_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/78_0.png b/build/darknet/x64/data/labels/78_0.png
deleted file mode 100644
index e1fede7b48a..00000000000
Binary files a/build/darknet/x64/data/labels/78_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/78_1.png b/build/darknet/x64/data/labels/78_1.png
deleted file mode 100644
index 23b2a744232..00000000000
Binary files a/build/darknet/x64/data/labels/78_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/78_2.png b/build/darknet/x64/data/labels/78_2.png
deleted file mode 100644
index 5471820fecd..00000000000
Binary files a/build/darknet/x64/data/labels/78_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/78_3.png b/build/darknet/x64/data/labels/78_3.png
deleted file mode 100644
index bc9659a68c2..00000000000
Binary files a/build/darknet/x64/data/labels/78_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/78_4.png b/build/darknet/x64/data/labels/78_4.png
deleted file mode 100644
index 54b95f95c89..00000000000
Binary files a/build/darknet/x64/data/labels/78_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/78_5.png b/build/darknet/x64/data/labels/78_5.png
deleted file mode 100644
index 2c67a5134de..00000000000
Binary files a/build/darknet/x64/data/labels/78_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/78_6.png b/build/darknet/x64/data/labels/78_6.png
deleted file mode 100644
index 44326f55ecd..00000000000
Binary files a/build/darknet/x64/data/labels/78_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/78_7.png b/build/darknet/x64/data/labels/78_7.png
deleted file mode 100644
index 4d5d8dc480b..00000000000
Binary files a/build/darknet/x64/data/labels/78_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/79_0.png b/build/darknet/x64/data/labels/79_0.png
deleted file mode 100644
index f3f4c1e5dab..00000000000
Binary files a/build/darknet/x64/data/labels/79_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/79_1.png b/build/darknet/x64/data/labels/79_1.png
deleted file mode 100644
index 23d960e7f7d..00000000000
Binary files a/build/darknet/x64/data/labels/79_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/79_2.png b/build/darknet/x64/data/labels/79_2.png
deleted file mode 100644
index ce5c52bef64..00000000000
Binary files a/build/darknet/x64/data/labels/79_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/79_3.png b/build/darknet/x64/data/labels/79_3.png
deleted file mode 100644
index b80a4f2769e..00000000000
Binary files a/build/darknet/x64/data/labels/79_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/79_4.png b/build/darknet/x64/data/labels/79_4.png
deleted file mode 100644
index 7fa16f88301..00000000000
Binary files a/build/darknet/x64/data/labels/79_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/79_5.png b/build/darknet/x64/data/labels/79_5.png
deleted file mode 100644
index c67c5bbee63..00000000000
Binary files a/build/darknet/x64/data/labels/79_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/79_6.png b/build/darknet/x64/data/labels/79_6.png
deleted file mode 100644
index e89ecd29a17..00000000000
Binary files a/build/darknet/x64/data/labels/79_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/79_7.png b/build/darknet/x64/data/labels/79_7.png
deleted file mode 100644
index d964ae44658..00000000000
Binary files a/build/darknet/x64/data/labels/79_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/80_0.png b/build/darknet/x64/data/labels/80_0.png
deleted file mode 100644
index 61403c9ccb5..00000000000
Binary files a/build/darknet/x64/data/labels/80_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/80_1.png b/build/darknet/x64/data/labels/80_1.png
deleted file mode 100644
index 992338d2afa..00000000000
Binary files a/build/darknet/x64/data/labels/80_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/80_2.png b/build/darknet/x64/data/labels/80_2.png
deleted file mode 100644
index cfbd431189f..00000000000
Binary files a/build/darknet/x64/data/labels/80_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/80_3.png b/build/darknet/x64/data/labels/80_3.png
deleted file mode 100644
index 5de947232ce..00000000000
Binary files a/build/darknet/x64/data/labels/80_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/80_4.png b/build/darknet/x64/data/labels/80_4.png
deleted file mode 100644
index 0fecaf1c068..00000000000
Binary files a/build/darknet/x64/data/labels/80_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/80_5.png b/build/darknet/x64/data/labels/80_5.png
deleted file mode 100644
index cbf65bda036..00000000000
Binary files a/build/darknet/x64/data/labels/80_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/80_6.png b/build/darknet/x64/data/labels/80_6.png
deleted file mode 100644
index ff54a387efc..00000000000
Binary files a/build/darknet/x64/data/labels/80_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/80_7.png b/build/darknet/x64/data/labels/80_7.png
deleted file mode 100644
index 3d6f415b4b1..00000000000
Binary files a/build/darknet/x64/data/labels/80_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/81_0.png b/build/darknet/x64/data/labels/81_0.png
deleted file mode 100644
index 5a2025f8ae6..00000000000
Binary files a/build/darknet/x64/data/labels/81_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/81_1.png b/build/darknet/x64/data/labels/81_1.png
deleted file mode 100644
index 511aec02c41..00000000000
Binary files a/build/darknet/x64/data/labels/81_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/81_2.png b/build/darknet/x64/data/labels/81_2.png
deleted file mode 100644
index 8e2f7e96d12..00000000000
Binary files a/build/darknet/x64/data/labels/81_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/81_3.png b/build/darknet/x64/data/labels/81_3.png
deleted file mode 100644
index 52edfd4ff5e..00000000000
Binary files a/build/darknet/x64/data/labels/81_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/81_4.png b/build/darknet/x64/data/labels/81_4.png
deleted file mode 100644
index e60c7a9158e..00000000000
Binary files a/build/darknet/x64/data/labels/81_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/81_5.png b/build/darknet/x64/data/labels/81_5.png
deleted file mode 100644
index d58df4f353c..00000000000
Binary files a/build/darknet/x64/data/labels/81_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/81_6.png b/build/darknet/x64/data/labels/81_6.png
deleted file mode 100644
index d31ba09d3be..00000000000
Binary files a/build/darknet/x64/data/labels/81_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/81_7.png b/build/darknet/x64/data/labels/81_7.png
deleted file mode 100644
index 077057652a9..00000000000
Binary files a/build/darknet/x64/data/labels/81_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/82_0.png b/build/darknet/x64/data/labels/82_0.png
deleted file mode 100644
index 1bc3a983835..00000000000
Binary files a/build/darknet/x64/data/labels/82_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/82_1.png b/build/darknet/x64/data/labels/82_1.png
deleted file mode 100644
index e5931dc947e..00000000000
Binary files a/build/darknet/x64/data/labels/82_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/82_2.png b/build/darknet/x64/data/labels/82_2.png
deleted file mode 100644
index a5f8bb7bdb4..00000000000
Binary files a/build/darknet/x64/data/labels/82_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/82_3.png b/build/darknet/x64/data/labels/82_3.png
deleted file mode 100644
index 8b138a968c0..00000000000
Binary files a/build/darknet/x64/data/labels/82_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/82_4.png b/build/darknet/x64/data/labels/82_4.png
deleted file mode 100644
index 8a570606330..00000000000
Binary files a/build/darknet/x64/data/labels/82_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/82_5.png b/build/darknet/x64/data/labels/82_5.png
deleted file mode 100644
index f4dc04e1883..00000000000
Binary files a/build/darknet/x64/data/labels/82_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/82_6.png b/build/darknet/x64/data/labels/82_6.png
deleted file mode 100644
index 2c7073a2d65..00000000000
Binary files a/build/darknet/x64/data/labels/82_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/82_7.png b/build/darknet/x64/data/labels/82_7.png
deleted file mode 100644
index f4d966dda8c..00000000000
Binary files a/build/darknet/x64/data/labels/82_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/83_0.png b/build/darknet/x64/data/labels/83_0.png
deleted file mode 100644
index c0487824ac8..00000000000
Binary files a/build/darknet/x64/data/labels/83_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/83_1.png b/build/darknet/x64/data/labels/83_1.png
deleted file mode 100644
index 3515f98d5b4..00000000000
Binary files a/build/darknet/x64/data/labels/83_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/83_2.png b/build/darknet/x64/data/labels/83_2.png
deleted file mode 100644
index 4a13b8d78b1..00000000000
Binary files a/build/darknet/x64/data/labels/83_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/83_3.png b/build/darknet/x64/data/labels/83_3.png
deleted file mode 100644
index 0944ac8b01c..00000000000
Binary files a/build/darknet/x64/data/labels/83_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/83_4.png b/build/darknet/x64/data/labels/83_4.png
deleted file mode 100644
index 8b9f82f089d..00000000000
Binary files a/build/darknet/x64/data/labels/83_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/83_5.png b/build/darknet/x64/data/labels/83_5.png
deleted file mode 100644
index 67f70adc9e7..00000000000
Binary files a/build/darknet/x64/data/labels/83_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/83_6.png b/build/darknet/x64/data/labels/83_6.png
deleted file mode 100644
index 0d3c0e1309d..00000000000
Binary files a/build/darknet/x64/data/labels/83_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/83_7.png b/build/darknet/x64/data/labels/83_7.png
deleted file mode 100644
index 0daab32deca..00000000000
Binary files a/build/darknet/x64/data/labels/83_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/84_0.png b/build/darknet/x64/data/labels/84_0.png
deleted file mode 100644
index ffc3eb4a226..00000000000
Binary files a/build/darknet/x64/data/labels/84_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/84_1.png b/build/darknet/x64/data/labels/84_1.png
deleted file mode 100644
index 956e5eb88d7..00000000000
Binary files a/build/darknet/x64/data/labels/84_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/84_2.png b/build/darknet/x64/data/labels/84_2.png
deleted file mode 100644
index a1e94fafd7d..00000000000
Binary files a/build/darknet/x64/data/labels/84_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/84_3.png b/build/darknet/x64/data/labels/84_3.png
deleted file mode 100644
index 2369b0c20e5..00000000000
Binary files a/build/darknet/x64/data/labels/84_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/84_4.png b/build/darknet/x64/data/labels/84_4.png
deleted file mode 100644
index 6d82ee80e96..00000000000
Binary files a/build/darknet/x64/data/labels/84_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/84_5.png b/build/darknet/x64/data/labels/84_5.png
deleted file mode 100644
index 6e95b706f41..00000000000
Binary files a/build/darknet/x64/data/labels/84_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/84_6.png b/build/darknet/x64/data/labels/84_6.png
deleted file mode 100644
index 9d62561dba3..00000000000
Binary files a/build/darknet/x64/data/labels/84_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/84_7.png b/build/darknet/x64/data/labels/84_7.png
deleted file mode 100644
index accde304ea4..00000000000
Binary files a/build/darknet/x64/data/labels/84_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/85_0.png b/build/darknet/x64/data/labels/85_0.png
deleted file mode 100644
index 48e9906f27b..00000000000
Binary files a/build/darknet/x64/data/labels/85_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/85_1.png b/build/darknet/x64/data/labels/85_1.png
deleted file mode 100644
index 30807206795..00000000000
Binary files a/build/darknet/x64/data/labels/85_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/85_2.png b/build/darknet/x64/data/labels/85_2.png
deleted file mode 100644
index e5a9369e898..00000000000
Binary files a/build/darknet/x64/data/labels/85_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/85_3.png b/build/darknet/x64/data/labels/85_3.png
deleted file mode 100644
index 5816c66be68..00000000000
Binary files a/build/darknet/x64/data/labels/85_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/85_4.png b/build/darknet/x64/data/labels/85_4.png
deleted file mode 100644
index 7d18ec0b057..00000000000
Binary files a/build/darknet/x64/data/labels/85_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/85_5.png b/build/darknet/x64/data/labels/85_5.png
deleted file mode 100644
index f7b5550d013..00000000000
Binary files a/build/darknet/x64/data/labels/85_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/85_6.png b/build/darknet/x64/data/labels/85_6.png
deleted file mode 100644
index 7106103ac94..00000000000
Binary files a/build/darknet/x64/data/labels/85_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/85_7.png b/build/darknet/x64/data/labels/85_7.png
deleted file mode 100644
index 7179daf8985..00000000000
Binary files a/build/darknet/x64/data/labels/85_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/86_0.png b/build/darknet/x64/data/labels/86_0.png
deleted file mode 100644
index 2412ea17e84..00000000000
Binary files a/build/darknet/x64/data/labels/86_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/86_1.png b/build/darknet/x64/data/labels/86_1.png
deleted file mode 100644
index 7de1777b718..00000000000
Binary files a/build/darknet/x64/data/labels/86_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/86_2.png b/build/darknet/x64/data/labels/86_2.png
deleted file mode 100644
index aae67daae1e..00000000000
Binary files a/build/darknet/x64/data/labels/86_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/86_3.png b/build/darknet/x64/data/labels/86_3.png
deleted file mode 100644
index e932d2e75fe..00000000000
Binary files a/build/darknet/x64/data/labels/86_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/86_4.png b/build/darknet/x64/data/labels/86_4.png
deleted file mode 100644
index 9a580c852d6..00000000000
Binary files a/build/darknet/x64/data/labels/86_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/86_5.png b/build/darknet/x64/data/labels/86_5.png
deleted file mode 100644
index 6766a5df48d..00000000000
Binary files a/build/darknet/x64/data/labels/86_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/86_6.png b/build/darknet/x64/data/labels/86_6.png
deleted file mode 100644
index 462e7290f1d..00000000000
Binary files a/build/darknet/x64/data/labels/86_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/86_7.png b/build/darknet/x64/data/labels/86_7.png
deleted file mode 100644
index 7843c1258eb..00000000000
Binary files a/build/darknet/x64/data/labels/86_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/87_0.png b/build/darknet/x64/data/labels/87_0.png
deleted file mode 100644
index e7c12856128..00000000000
Binary files a/build/darknet/x64/data/labels/87_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/87_1.png b/build/darknet/x64/data/labels/87_1.png
deleted file mode 100644
index e0af6e0f140..00000000000
Binary files a/build/darknet/x64/data/labels/87_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/87_2.png b/build/darknet/x64/data/labels/87_2.png
deleted file mode 100644
index 4bdce941615..00000000000
Binary files a/build/darknet/x64/data/labels/87_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/87_3.png b/build/darknet/x64/data/labels/87_3.png
deleted file mode 100644
index 2d446b92df6..00000000000
Binary files a/build/darknet/x64/data/labels/87_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/87_4.png b/build/darknet/x64/data/labels/87_4.png
deleted file mode 100644
index 2719131da55..00000000000
Binary files a/build/darknet/x64/data/labels/87_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/87_5.png b/build/darknet/x64/data/labels/87_5.png
deleted file mode 100644
index f635def8421..00000000000
Binary files a/build/darknet/x64/data/labels/87_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/87_6.png b/build/darknet/x64/data/labels/87_6.png
deleted file mode 100644
index 25ddeb78979..00000000000
Binary files a/build/darknet/x64/data/labels/87_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/87_7.png b/build/darknet/x64/data/labels/87_7.png
deleted file mode 100644
index b26e7021816..00000000000
Binary files a/build/darknet/x64/data/labels/87_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/88_0.png b/build/darknet/x64/data/labels/88_0.png
deleted file mode 100644
index 43b14276062..00000000000
Binary files a/build/darknet/x64/data/labels/88_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/88_1.png b/build/darknet/x64/data/labels/88_1.png
deleted file mode 100644
index 5703b63087b..00000000000
Binary files a/build/darknet/x64/data/labels/88_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/88_2.png b/build/darknet/x64/data/labels/88_2.png
deleted file mode 100644
index b3b565a8d83..00000000000
Binary files a/build/darknet/x64/data/labels/88_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/88_3.png b/build/darknet/x64/data/labels/88_3.png
deleted file mode 100644
index 4afd6dd1c3c..00000000000
Binary files a/build/darknet/x64/data/labels/88_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/88_4.png b/build/darknet/x64/data/labels/88_4.png
deleted file mode 100644
index 198f7b015e8..00000000000
Binary files a/build/darknet/x64/data/labels/88_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/88_5.png b/build/darknet/x64/data/labels/88_5.png
deleted file mode 100644
index e46b6410712..00000000000
Binary files a/build/darknet/x64/data/labels/88_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/88_6.png b/build/darknet/x64/data/labels/88_6.png
deleted file mode 100644
index 81830a098cd..00000000000
Binary files a/build/darknet/x64/data/labels/88_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/88_7.png b/build/darknet/x64/data/labels/88_7.png
deleted file mode 100644
index a916e4ebad7..00000000000
Binary files a/build/darknet/x64/data/labels/88_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/89_0.png b/build/darknet/x64/data/labels/89_0.png
deleted file mode 100644
index b6f9c4be410..00000000000
Binary files a/build/darknet/x64/data/labels/89_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/89_1.png b/build/darknet/x64/data/labels/89_1.png
deleted file mode 100644
index e5e7a1e2d55..00000000000
Binary files a/build/darknet/x64/data/labels/89_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/89_2.png b/build/darknet/x64/data/labels/89_2.png
deleted file mode 100644
index 9f9d361e0e4..00000000000
Binary files a/build/darknet/x64/data/labels/89_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/89_3.png b/build/darknet/x64/data/labels/89_3.png
deleted file mode 100644
index 44048913c7f..00000000000
Binary files a/build/darknet/x64/data/labels/89_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/89_4.png b/build/darknet/x64/data/labels/89_4.png
deleted file mode 100644
index 802bfe4b73b..00000000000
Binary files a/build/darknet/x64/data/labels/89_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/89_5.png b/build/darknet/x64/data/labels/89_5.png
deleted file mode 100644
index d77e019dd7a..00000000000
Binary files a/build/darknet/x64/data/labels/89_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/89_6.png b/build/darknet/x64/data/labels/89_6.png
deleted file mode 100644
index 4a4fa6b6eff..00000000000
Binary files a/build/darknet/x64/data/labels/89_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/89_7.png b/build/darknet/x64/data/labels/89_7.png
deleted file mode 100644
index b3dd7980a60..00000000000
Binary files a/build/darknet/x64/data/labels/89_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/90_0.png b/build/darknet/x64/data/labels/90_0.png
deleted file mode 100644
index 3e10db1ac53..00000000000
Binary files a/build/darknet/x64/data/labels/90_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/90_1.png b/build/darknet/x64/data/labels/90_1.png
deleted file mode 100644
index 9c4e67e6a51..00000000000
Binary files a/build/darknet/x64/data/labels/90_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/90_2.png b/build/darknet/x64/data/labels/90_2.png
deleted file mode 100644
index 92d0167af38..00000000000
Binary files a/build/darknet/x64/data/labels/90_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/90_3.png b/build/darknet/x64/data/labels/90_3.png
deleted file mode 100644
index 9d346a20287..00000000000
Binary files a/build/darknet/x64/data/labels/90_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/90_4.png b/build/darknet/x64/data/labels/90_4.png
deleted file mode 100644
index ba6012bbb9a..00000000000
Binary files a/build/darknet/x64/data/labels/90_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/90_5.png b/build/darknet/x64/data/labels/90_5.png
deleted file mode 100644
index b664cd2062c..00000000000
Binary files a/build/darknet/x64/data/labels/90_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/90_6.png b/build/darknet/x64/data/labels/90_6.png
deleted file mode 100644
index 500c099919a..00000000000
Binary files a/build/darknet/x64/data/labels/90_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/90_7.png b/build/darknet/x64/data/labels/90_7.png
deleted file mode 100644
index 3e899a8a1f4..00000000000
Binary files a/build/darknet/x64/data/labels/90_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/91_0.png b/build/darknet/x64/data/labels/91_0.png
deleted file mode 100644
index 0ad0d550bcf..00000000000
Binary files a/build/darknet/x64/data/labels/91_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/91_1.png b/build/darknet/x64/data/labels/91_1.png
deleted file mode 100644
index afbe0f0db3f..00000000000
Binary files a/build/darknet/x64/data/labels/91_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/91_2.png b/build/darknet/x64/data/labels/91_2.png
deleted file mode 100644
index d2c88991c80..00000000000
Binary files a/build/darknet/x64/data/labels/91_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/91_3.png b/build/darknet/x64/data/labels/91_3.png
deleted file mode 100644
index 002032da7c0..00000000000
Binary files a/build/darknet/x64/data/labels/91_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/91_4.png b/build/darknet/x64/data/labels/91_4.png
deleted file mode 100644
index 795ce7d7cfe..00000000000
Binary files a/build/darknet/x64/data/labels/91_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/91_5.png b/build/darknet/x64/data/labels/91_5.png
deleted file mode 100644
index 1d1eb22b95b..00000000000
Binary files a/build/darknet/x64/data/labels/91_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/91_6.png b/build/darknet/x64/data/labels/91_6.png
deleted file mode 100644
index bb31267680d..00000000000
Binary files a/build/darknet/x64/data/labels/91_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/91_7.png b/build/darknet/x64/data/labels/91_7.png
deleted file mode 100644
index 70c2cf31f5f..00000000000
Binary files a/build/darknet/x64/data/labels/91_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/92_0.png b/build/darknet/x64/data/labels/92_0.png
deleted file mode 100644
index e730aed47a0..00000000000
Binary files a/build/darknet/x64/data/labels/92_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/92_1.png b/build/darknet/x64/data/labels/92_1.png
deleted file mode 100644
index 7f9b51d8d91..00000000000
Binary files a/build/darknet/x64/data/labels/92_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/92_2.png b/build/darknet/x64/data/labels/92_2.png
deleted file mode 100644
index f01916f5aa3..00000000000
Binary files a/build/darknet/x64/data/labels/92_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/92_3.png b/build/darknet/x64/data/labels/92_3.png
deleted file mode 100644
index b850533fedd..00000000000
Binary files a/build/darknet/x64/data/labels/92_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/92_4.png b/build/darknet/x64/data/labels/92_4.png
deleted file mode 100644
index ece16826307..00000000000
Binary files a/build/darknet/x64/data/labels/92_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/92_5.png b/build/darknet/x64/data/labels/92_5.png
deleted file mode 100644
index 82166907ce0..00000000000
Binary files a/build/darknet/x64/data/labels/92_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/92_6.png b/build/darknet/x64/data/labels/92_6.png
deleted file mode 100644
index 9b581facc7f..00000000000
Binary files a/build/darknet/x64/data/labels/92_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/92_7.png b/build/darknet/x64/data/labels/92_7.png
deleted file mode 100644
index e57b2e8ea81..00000000000
Binary files a/build/darknet/x64/data/labels/92_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/93_0.png b/build/darknet/x64/data/labels/93_0.png
deleted file mode 100644
index c21f522003a..00000000000
Binary files a/build/darknet/x64/data/labels/93_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/93_1.png b/build/darknet/x64/data/labels/93_1.png
deleted file mode 100644
index 64cbba6ea77..00000000000
Binary files a/build/darknet/x64/data/labels/93_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/93_2.png b/build/darknet/x64/data/labels/93_2.png
deleted file mode 100644
index a81e1cdae71..00000000000
Binary files a/build/darknet/x64/data/labels/93_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/93_3.png b/build/darknet/x64/data/labels/93_3.png
deleted file mode 100644
index 273f35cc841..00000000000
Binary files a/build/darknet/x64/data/labels/93_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/93_4.png b/build/darknet/x64/data/labels/93_4.png
deleted file mode 100644
index b44e4c69218..00000000000
Binary files a/build/darknet/x64/data/labels/93_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/93_5.png b/build/darknet/x64/data/labels/93_5.png
deleted file mode 100644
index 1e96e9b19ee..00000000000
Binary files a/build/darknet/x64/data/labels/93_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/93_6.png b/build/darknet/x64/data/labels/93_6.png
deleted file mode 100644
index 3407e55241c..00000000000
Binary files a/build/darknet/x64/data/labels/93_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/93_7.png b/build/darknet/x64/data/labels/93_7.png
deleted file mode 100644
index 428e0728a2c..00000000000
Binary files a/build/darknet/x64/data/labels/93_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/94_0.png b/build/darknet/x64/data/labels/94_0.png
deleted file mode 100644
index baa512b6c6e..00000000000
Binary files a/build/darknet/x64/data/labels/94_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/94_1.png b/build/darknet/x64/data/labels/94_1.png
deleted file mode 100644
index 5f1b1161adf..00000000000
Binary files a/build/darknet/x64/data/labels/94_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/94_2.png b/build/darknet/x64/data/labels/94_2.png
deleted file mode 100644
index 1cd051ea3d6..00000000000
Binary files a/build/darknet/x64/data/labels/94_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/94_3.png b/build/darknet/x64/data/labels/94_3.png
deleted file mode 100644
index a0a7264b057..00000000000
Binary files a/build/darknet/x64/data/labels/94_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/94_4.png b/build/darknet/x64/data/labels/94_4.png
deleted file mode 100644
index 26e82bc6631..00000000000
Binary files a/build/darknet/x64/data/labels/94_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/94_5.png b/build/darknet/x64/data/labels/94_5.png
deleted file mode 100644
index 19c32ecb887..00000000000
Binary files a/build/darknet/x64/data/labels/94_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/94_6.png b/build/darknet/x64/data/labels/94_6.png
deleted file mode 100644
index e753cadebb8..00000000000
Binary files a/build/darknet/x64/data/labels/94_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/94_7.png b/build/darknet/x64/data/labels/94_7.png
deleted file mode 100644
index 7d4dfb7ff5d..00000000000
Binary files a/build/darknet/x64/data/labels/94_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/95_0.png b/build/darknet/x64/data/labels/95_0.png
deleted file mode 100644
index 2b255198c33..00000000000
Binary files a/build/darknet/x64/data/labels/95_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/95_1.png b/build/darknet/x64/data/labels/95_1.png
deleted file mode 100644
index 6fea8c2b510..00000000000
Binary files a/build/darknet/x64/data/labels/95_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/95_2.png b/build/darknet/x64/data/labels/95_2.png
deleted file mode 100644
index d170be10023..00000000000
Binary files a/build/darknet/x64/data/labels/95_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/95_3.png b/build/darknet/x64/data/labels/95_3.png
deleted file mode 100644
index fe5501eb7f8..00000000000
Binary files a/build/darknet/x64/data/labels/95_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/95_4.png b/build/darknet/x64/data/labels/95_4.png
deleted file mode 100644
index ec87fee7ed1..00000000000
Binary files a/build/darknet/x64/data/labels/95_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/95_5.png b/build/darknet/x64/data/labels/95_5.png
deleted file mode 100644
index efa9f0bc7f1..00000000000
Binary files a/build/darknet/x64/data/labels/95_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/95_6.png b/build/darknet/x64/data/labels/95_6.png
deleted file mode 100644
index 6840b824f34..00000000000
Binary files a/build/darknet/x64/data/labels/95_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/95_7.png b/build/darknet/x64/data/labels/95_7.png
deleted file mode 100644
index 85f887d8425..00000000000
Binary files a/build/darknet/x64/data/labels/95_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/96_0.png b/build/darknet/x64/data/labels/96_0.png
deleted file mode 100644
index 2033d9b9885..00000000000
Binary files a/build/darknet/x64/data/labels/96_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/96_1.png b/build/darknet/x64/data/labels/96_1.png
deleted file mode 100644
index c60d36aae28..00000000000
Binary files a/build/darknet/x64/data/labels/96_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/96_2.png b/build/darknet/x64/data/labels/96_2.png
deleted file mode 100644
index 878dd1bc5d2..00000000000
Binary files a/build/darknet/x64/data/labels/96_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/96_3.png b/build/darknet/x64/data/labels/96_3.png
deleted file mode 100644
index f7429a2aad0..00000000000
Binary files a/build/darknet/x64/data/labels/96_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/96_4.png b/build/darknet/x64/data/labels/96_4.png
deleted file mode 100644
index 6dff9dace48..00000000000
Binary files a/build/darknet/x64/data/labels/96_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/96_5.png b/build/darknet/x64/data/labels/96_5.png
deleted file mode 100644
index 4869f9d21a7..00000000000
Binary files a/build/darknet/x64/data/labels/96_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/96_6.png b/build/darknet/x64/data/labels/96_6.png
deleted file mode 100644
index f6a8a696b70..00000000000
Binary files a/build/darknet/x64/data/labels/96_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/96_7.png b/build/darknet/x64/data/labels/96_7.png
deleted file mode 100644
index 89b19d456df..00000000000
Binary files a/build/darknet/x64/data/labels/96_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/97_0.png b/build/darknet/x64/data/labels/97_0.png
deleted file mode 100644
index 64262248159..00000000000
Binary files a/build/darknet/x64/data/labels/97_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/97_1.png b/build/darknet/x64/data/labels/97_1.png
deleted file mode 100644
index f9a61f4ab1f..00000000000
Binary files a/build/darknet/x64/data/labels/97_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/97_2.png b/build/darknet/x64/data/labels/97_2.png
deleted file mode 100644
index d1d02acedfd..00000000000
Binary files a/build/darknet/x64/data/labels/97_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/97_3.png b/build/darknet/x64/data/labels/97_3.png
deleted file mode 100644
index 7e9e936becd..00000000000
Binary files a/build/darknet/x64/data/labels/97_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/97_4.png b/build/darknet/x64/data/labels/97_4.png
deleted file mode 100644
index 21dd17eacab..00000000000
Binary files a/build/darknet/x64/data/labels/97_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/97_5.png b/build/darknet/x64/data/labels/97_5.png
deleted file mode 100644
index 5e59fa260a1..00000000000
Binary files a/build/darknet/x64/data/labels/97_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/97_6.png b/build/darknet/x64/data/labels/97_6.png
deleted file mode 100644
index 6f279a455b2..00000000000
Binary files a/build/darknet/x64/data/labels/97_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/97_7.png b/build/darknet/x64/data/labels/97_7.png
deleted file mode 100644
index 6447e6ddcaf..00000000000
Binary files a/build/darknet/x64/data/labels/97_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/98_0.png b/build/darknet/x64/data/labels/98_0.png
deleted file mode 100644
index 3d259317783..00000000000
Binary files a/build/darknet/x64/data/labels/98_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/98_1.png b/build/darknet/x64/data/labels/98_1.png
deleted file mode 100644
index c76706a7e36..00000000000
Binary files a/build/darknet/x64/data/labels/98_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/98_2.png b/build/darknet/x64/data/labels/98_2.png
deleted file mode 100644
index 6dceadbfd47..00000000000
Binary files a/build/darknet/x64/data/labels/98_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/98_3.png b/build/darknet/x64/data/labels/98_3.png
deleted file mode 100644
index d3cf1bc6225..00000000000
Binary files a/build/darknet/x64/data/labels/98_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/98_4.png b/build/darknet/x64/data/labels/98_4.png
deleted file mode 100644
index 5d5addc7ea7..00000000000
Binary files a/build/darknet/x64/data/labels/98_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/98_5.png b/build/darknet/x64/data/labels/98_5.png
deleted file mode 100644
index 55479d9415d..00000000000
Binary files a/build/darknet/x64/data/labels/98_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/98_6.png b/build/darknet/x64/data/labels/98_6.png
deleted file mode 100644
index 4d8f3d92e9b..00000000000
Binary files a/build/darknet/x64/data/labels/98_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/98_7.png b/build/darknet/x64/data/labels/98_7.png
deleted file mode 100644
index cec60174e2d..00000000000
Binary files a/build/darknet/x64/data/labels/98_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/99_0.png b/build/darknet/x64/data/labels/99_0.png
deleted file mode 100644
index f5975c91fdb..00000000000
Binary files a/build/darknet/x64/data/labels/99_0.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/99_1.png b/build/darknet/x64/data/labels/99_1.png
deleted file mode 100644
index 3cdfdec303b..00000000000
Binary files a/build/darknet/x64/data/labels/99_1.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/99_2.png b/build/darknet/x64/data/labels/99_2.png
deleted file mode 100644
index a0dc573169e..00000000000
Binary files a/build/darknet/x64/data/labels/99_2.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/99_3.png b/build/darknet/x64/data/labels/99_3.png
deleted file mode 100644
index e183f6a330b..00000000000
Binary files a/build/darknet/x64/data/labels/99_3.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/99_4.png b/build/darknet/x64/data/labels/99_4.png
deleted file mode 100644
index bc1a490d5f9..00000000000
Binary files a/build/darknet/x64/data/labels/99_4.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/99_5.png b/build/darknet/x64/data/labels/99_5.png
deleted file mode 100644
index c568d5e8f22..00000000000
Binary files a/build/darknet/x64/data/labels/99_5.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/99_6.png b/build/darknet/x64/data/labels/99_6.png
deleted file mode 100644
index e274446ecb1..00000000000
Binary files a/build/darknet/x64/data/labels/99_6.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/99_7.png b/build/darknet/x64/data/labels/99_7.png
deleted file mode 100644
index f7b9e098e9c..00000000000
Binary files a/build/darknet/x64/data/labels/99_7.png and /dev/null differ
diff --git a/build/darknet/x64/data/labels/make_labels.py b/build/darknet/x64/data/labels/make_labels.py
deleted file mode 100644
index c8146f6db02..00000000000
--- a/build/darknet/x64/data/labels/make_labels.py
+++ /dev/null
@@ -1,23 +0,0 @@
-import os
-import string
-import pipes
-
-font = 'futura-normal'
-
-def make_labels(s):
- l = string.printable
- for word in l:
- if word == ' ':
- os.system('convert -fill black -background white -bordercolor white -font %s -pointsize %d label:"\ " 32_%d.png'%(font,s,s/12-1))
- if word == '@':
- os.system('convert -fill black -background white -bordercolor white -font %s -pointsize %d label:"\@" 64_%d.png'%(font,s,s/12-1))
- elif word == '\\':
- os.system('convert -fill black -background white -bordercolor white -font %s -pointsize %d label:"\\\\\\\\" 92_%d.png'%(font,s,s/12-1))
- elif ord(word) in [9,10,11,12,13,14]:
- pass
- else:
- os.system("convert -fill black -background white -bordercolor white -font %s -pointsize %d label:%s \"%d_%d.png\""%(font,s,pipes.quote(word), ord(word),s/12-1))
-
-for i in [12,24,36,48,60,72,84,96]:
- make_labels(i)
-
diff --git a/build/darknet/x64/data/openimages.data b/build/darknet/x64/data/openimages.data
deleted file mode 100644
index fa80e5ab7d8..00000000000
--- a/build/darknet/x64/data/openimages.data
+++ /dev/null
@@ -1,8 +0,0 @@
-classes= 601
-train = /home/pjreddie/data/openimsv4/openimages.train.list
-#valid = coco_testdev
-valid = data/coco_val_5k.list
-names = data/openimages.names
-backup = /home/pjreddie/backup/
-eval=coco
-
diff --git a/build/darknet/x64/data/openimages.names b/build/darknet/x64/data/openimages.names
deleted file mode 100644
index ddfd8f22649..00000000000
--- a/build/darknet/x64/data/openimages.names
+++ /dev/null
@@ -1,601 +0,0 @@
-Tortoise
-Container
-Magpie
-Sea turtle
-Football
-Ambulance
-Ladder
-Toothbrush
-Syringe
-Sink
-Toy
-Organ
-Cassette deck
-Apple
-Human eye
-Cosmetics
-Paddle
-Snowman
-Beer
-Chopsticks
-Human beard
-Bird
-Parking meter
-Traffic light
-Croissant
-Cucumber
-Radish
-Towel
-Doll
-Skull
-Washing machine
-Glove
-Tick
-Belt
-Sunglasses
-Banjo
-Cart
-Ball
-Backpack
-Bicycle
-Home appliance
-Centipede
-Boat
-Surfboard
-Boot
-Headphones
-Hot dog
-Shorts
-Fast food
-Bus
-Boy
-Screwdriver
-Bicycle wheel
-Barge
-Laptop
-Miniskirt
-Drill
-Dress
-Bear
-Waffle
-Pancake
-Brown bear
-Woodpecker
-Blue jay
-Pretzel
-Bagel
-Tower
-Teapot
-Person
-Bow and arrow
-Swimwear
-Beehive
-Brassiere
-Bee
-Bat
-Starfish
-Popcorn
-Burrito
-Chainsaw
-Balloon
-Wrench
-Tent
-Vehicle registration plate
-Lantern
-Toaster
-Flashlight
-Billboard
-Tiara
-Limousine
-Necklace
-Carnivore
-Scissors
-Stairs
-Computer keyboard
-Printer
-Traffic sign
-Chair
-Shirt
-Poster
-Cheese
-Sock
-Fire hydrant
-Land vehicle
-Earrings
-Tie
-Watercraft
-Cabinetry
-Suitcase
-Muffin
-Bidet
-Snack
-Snowmobile
-Clock
-Medical equipment
-Cattle
-Cello
-Jet ski
-Camel
-Coat
-Suit
-Desk
-Cat
-Bronze sculpture
-Juice
-Gondola
-Beetle
-Cannon
-Computer mouse
-Cookie
-Office building
-Fountain
-Coin
-Calculator
-Cocktail
-Computer monitor
-Box
-Stapler
-Christmas tree
-Cowboy hat
-Hiking equipment
-Studio couch
-Drum
-Dessert
-Wine rack
-Drink
-Zucchini
-Ladle
-Human mouth
-Dairy
-Dice
-Oven
-Dinosaur
-Ratchet
-Couch
-Cricket ball
-Winter melon
-Spatula
-Whiteboard
-Pencil sharpener
-Door
-Hat
-Shower
-Eraser
-Fedora
-Guacamole
-Dagger
-Scarf
-Dolphin
-Sombrero
-Tin can
-Mug
-Tap
-Harbor seal
-Stretcher
-Can opener
-Goggles
-Human body
-Roller skates
-Coffee cup
-Cutting board
-Blender
-Plumbing fixture
-Stop sign
-Office supplies
-Volleyball
-Vase
-Slow cooker
-Wardrobe
-Coffee
-Whisk
-Paper towel
-Personal care
-Food
-Sun hat
-Tree house
-Flying disc
-Skirt
-Gas stove
-Salt and pepper shakers
-Mechanical fan
-Face powder
-Fax
-Fruit
-French fries
-Nightstand
-Barrel
-Kite
-Tart
-Treadmill
-Fox
-Flag
-Horn
-Window blind
-Human foot
-Golf cart
-Jacket
-Egg
-Street light
-Guitar
-Pillow
-Human leg
-Isopod
-Grape
-Human ear
-Power plugs and sockets
-Panda
-Giraffe
-Woman
-Door handle
-Rhinoceros
-Bathtub
-Goldfish
-Houseplant
-Goat
-Baseball bat
-Baseball glove
-Mixing bowl
-Marine invertebrates
-Kitchen utensil
-Light switch
-House
-Horse
-Stationary bicycle
-Hammer
-Ceiling fan
-Sofa bed
-Adhesive tape
-Harp
-Sandal
-Bicycle helmet
-Saucer
-Harpsichord
-Human hair
-Heater
-Harmonica
-Hamster
-Curtain
-Bed
-Kettle
-Fireplace
-Scale
-Drinking straw
-Insect
-Hair dryer
-Kitchenware
-Indoor rower
-Invertebrate
-Food processor
-Bookcase
-Refrigerator
-Wood-burning stove
-Punching bag
-Common fig
-Cocktail shaker
-Jaguar
-Golf ball
-Fashion accessory
-Alarm clock
-Filing cabinet
-Artichoke
-Table
-Tableware
-Kangaroo
-Koala
-Knife
-Bottle
-Bottle opener
-Lynx
-Lavender
-Lighthouse
-Dumbbell
-Human head
-Bowl
-Humidifier
-Porch
-Lizard
-Billiard table
-Mammal
-Mouse
-Motorcycle
-Musical instrument
-Swim cap
-Frying pan
-Snowplow
-Bathroom cabinet
-Missile
-Bust
-Man
-Waffle iron
-Milk
-Ring binder
-Plate
-Mobile phone
-Baked goods
-Mushroom
-Crutch
-Pitcher
-Mirror
-Lifejacket
-Table tennis racket
-Pencil case
-Musical keyboard
-Scoreboard
-Briefcase
-Kitchen knife
-Nail
-Tennis ball
-Plastic bag
-Oboe
-Chest of drawers
-Ostrich
-Piano
-Girl
-Plant
-Potato
-Hair spray
-Sports equipment
-Pasta
-Penguin
-Pumpkin
-Pear
-Infant bed
-Polar bear
-Mixer
-Cupboard
-Jacuzzi
-Pizza
-Digital clock
-Pig
-Reptile
-Rifle
-Lipstick
-Skateboard
-Raven
-High heels
-Red panda
-Rose
-Rabbit
-Sculpture
-Saxophone
-Shotgun
-Seafood
-Submarine sandwich
-Snowboard
-Sword
-Picture frame
-Sushi
-Loveseat
-Ski
-Squirrel
-Tripod
-Stethoscope
-Submarine
-Scorpion
-Segway
-Training bench
-Snake
-Coffee table
-Skyscraper
-Sheep
-Television
-Trombone
-Tea
-Tank
-Taco
-Telephone
-Torch
-Tiger
-Strawberry
-Trumpet
-Tree
-Tomato
-Train
-Tool
-Picnic basket
-Cooking spray
-Trousers
-Bowling equipment
-Football helmet
-Truck
-Measuring cup
-Coffeemaker
-Violin
-Vehicle
-Handbag
-Paper cutter
-Wine
-Weapon
-Wheel
-Worm
-Wok
-Whale
-Zebra
-Auto part
-Jug
-Pizza cutter
-Cream
-Monkey
-Lion
-Bread
-Platter
-Chicken
-Eagle
-Helicopter
-Owl
-Duck
-Turtle
-Hippopotamus
-Crocodile
-Toilet
-Toilet paper
-Squid
-Clothing
-Footwear
-Lemon
-Spider
-Deer
-Frog
-Banana
-Rocket
-Wine glass
-Countertop
-Tablet computer
-Waste container
-Swimming pool
-Dog
-Book
-Elephant
-Shark
-Candle
-Leopard
-Axe
-Hand dryer
-Soap dispenser
-Porcupine
-Flower
-Canary
-Cheetah
-Palm tree
-Hamburger
-Maple
-Building
-Fish
-Lobster
-Asparagus
-Furniture
-Hedgehog
-Airplane
-Spoon
-Otter
-Bull
-Oyster
-Horizontal bar
-Convenience store
-Bomb
-Bench
-Ice cream
-Caterpillar
-Butterfly
-Parachute
-Orange
-Antelope
-Beaker
-Moths and butterflies
-Window
-Closet
-Castle
-Jellyfish
-Goose
-Mule
-Swan
-Peach
-Coconut
-Seat belt
-Raccoon
-Chisel
-Fork
-Lamp
-Camera
-Squash
-Racket
-Human face
-Human arm
-Vegetable
-Diaper
-Unicycle
-Falcon
-Chime
-Snail
-Shellfish
-Cabbage
-Carrot
-Mango
-Jeans
-Flowerpot
-Pineapple
-Drawer
-Stool
-Envelope
-Cake
-Dragonfly
-Sunflower
-Microwave oven
-Honeycomb
-Marine mammal
-Sea lion
-Ladybug
-Shelf
-Watch
-Candy
-Salad
-Parrot
-Handgun
-Sparrow
-Van
-Grinder
-Spice rack
-Light bulb
-Corded phone
-Sports uniform
-Tennis racket
-Wall clock
-Serving tray
-Kitchen & dining room table
-Dog bed
-Cake stand
-Cat furniture
-Bathroom accessory
-Facial tissue holder
-Pressure cooker
-Kitchen appliance
-Tire
-Ruler
-Luggage and bags
-Microphone
-Broccoli
-Umbrella
-Pastry
-Grapefruit
-Band-aid
-Animal
-Bell pepper
-Turkey
-Lily
-Pomegranate
-Doughnut
-Glasses
-Human nose
-Pen
-Ant
-Car
-Aircraft
-Human hand
-Skunk
-Teddy bear
-Watermelon
-Cantaloupe
-Dishwasher
-Flute
-Balance beam
-Sandwich
-Shrimp
-Sewing machine
-Binoculars
-Rays and skates
-Ipod
-Accordion
-Willow
-Crab
-Crown
-Seahorse
-Perfume
-Alpaca
-Taxi
-Canoe
-Remote control
-Wheelchair
-Rugby ball
-Armadillo
-Maracas
-Helmet
diff --git a/build/darknet/x64/data/person.jpg b/build/darknet/x64/data/person.jpg
deleted file mode 100644
index 61d377fff94..00000000000
Binary files a/build/darknet/x64/data/person.jpg and /dev/null differ
diff --git a/build/darknet/x64/data/scream.jpg b/build/darknet/x64/data/scream.jpg
deleted file mode 100644
index 43f2c36a8d4..00000000000
Binary files a/build/darknet/x64/data/scream.jpg and /dev/null differ
diff --git a/build/darknet/x64/data/voc.data b/build/darknet/x64/data/voc.data
deleted file mode 100644
index d6775870f65..00000000000
--- a/build/darknet/x64/data/voc.data
+++ /dev/null
@@ -1,7 +0,0 @@
-classes= 20
-train = data/train_voc.txt
-valid = data/2007_test.txt
-#difficult = data/difficult_2007_test.txt
-names = data/voc.names
-backup = backup/
-
diff --git a/build/darknet/x64/data/voc.names b/build/darknet/x64/data/voc.names
deleted file mode 100644
index 8420ab35ede..00000000000
--- a/build/darknet/x64/data/voc.names
+++ /dev/null
@@ -1,20 +0,0 @@
-aeroplane
-bicycle
-bird
-boat
-bottle
-bus
-car
-cat
-chair
-cow
-diningtable
-dog
-horse
-motorbike
-person
-pottedplant
-sheep
-sofa
-train
-tvmonitor
diff --git a/build/darknet/x64/data/voc/voc_label.py b/build/darknet/x64/data/voc/voc_label.py
deleted file mode 100644
index d1e88236f2c..00000000000
--- a/build/darknet/x64/data/voc/voc_label.py
+++ /dev/null
@@ -1,56 +0,0 @@
-import xml.etree.ElementTree as ET
-import pickle
-import os
-from os import listdir, getcwd
-from os.path import join
-
-sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
-
-classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
-
-
-def convert(size, box):
- dw = 1./size[0]
- dh = 1./size[1]
- x = (box[0] + box[1])/2.0
- y = (box[2] + box[3])/2.0
- w = box[1] - box[0]
- h = box[3] - box[2]
- x = x*dw
- w = w*dw
- y = y*dh
- h = h*dh
- return (x,y,w,h)
-
-def convert_annotation(year, image_id):
- in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
- out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
- tree=ET.parse(in_file)
- root = tree.getroot()
- size = root.find('size')
- w = int(size.find('width').text)
- h = int(size.find('height').text)
-
- for obj in root.iter('object'):
- difficult = obj.find('difficult').text
- cls = obj.find('name').text
- if cls not in classes or int(difficult) == 1:
- continue
- cls_id = classes.index(cls)
- xmlbox = obj.find('bndbox')
- b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
- bb = convert((w,h), b)
- out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
-
-wd = getcwd()
-
-for year, image_set in sets:
- if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
- os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
- image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
- list_file = open('%s_%s.txt'%(year, image_set), 'w')
- for image_id in image_ids:
- list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
- convert_annotation(year, image_id)
- list_file.close()
-
diff --git a/build/darknet/x64/densenet201_yolo.cfg b/build/darknet/x64/densenet201_yolo.cfg
deleted file mode 100644
index 2c78ec5d2a4..00000000000
--- a/build/darknet/x64/densenet201_yolo.cfg
+++ /dev/null
@@ -1,1978 +0,0 @@
-[net]
-batch=64
-subdivisions=8
-height=416
-width=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.0001
-max_batches = 45000
-policy=steps
-steps=100,25000,35000
-scales=10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[route]
-layers=-1,-3
-#stopbackward=1
-
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-
-
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=125
-activation=linear
-
-
-[region]
-anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
-bias_match=1
-classes=20
-coords=4
-num=5
-softmax=1
-jitter=.3
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=0
-
diff --git a/build/darknet/x64/dog.jpg b/build/darknet/x64/dog.jpg
deleted file mode 100644
index 77b0381222e..00000000000
Binary files a/build/darknet/x64/dog.jpg and /dev/null differ
diff --git a/build/darknet/x64/dogr.jpg b/build/darknet/x64/dogr.jpg
deleted file mode 100644
index e9201231bdb..00000000000
Binary files a/build/darknet/x64/dogr.jpg and /dev/null differ
diff --git a/build/darknet/x64/gen_anchors.py b/build/darknet/x64/gen_anchors.py
deleted file mode 100644
index 709cb88adab..00000000000
--- a/build/darknet/x64/gen_anchors.py
+++ /dev/null
@@ -1,165 +0,0 @@
-'''
-Created on Feb 20, 2017
-
-@author: jumabek
-'''
-from os import listdir
-from os.path import isfile, join
-import argparse
-#import cv2
-import numpy as np
-import sys
-import os
-import shutil
-import random
-import math
-
-width_in_cfg_file = 416.
-height_in_cfg_file = 416.
-
-def IOU(x,centroids):
- similarities = []
- k = len(centroids)
- for centroid in centroids:
- c_w,c_h = centroid
- w,h = x
- if c_w>=w and c_h>=h:
- similarity = w*h/(c_w*c_h)
- elif c_w>=w and c_h<=h:
- similarity = w*c_h/(w*h + (c_w-w)*c_h)
- elif c_w<=w and c_h>=h:
- similarity = c_w*h/(w*h + c_w*(c_h-h))
- else: #means both w,h are bigger than c_w and c_h respectively
- similarity = (c_w*c_h)/(w*h)
- similarities.append(similarity) # will become (k,) shape
- return np.array(similarities)
-
-def avg_IOU(X,centroids):
- n,d = X.shape
- sum = 0.
- for i in range(X.shape[0]):
- #note IOU() will return array which contains IoU for each centroid and X[i] // slightly ineffective, but I am too lazy
- sum+= max(IOU(X[i],centroids))
- return sum/n
-
-def write_anchors_to_file(centroids,X,anchor_file):
- f = open(anchor_file,'w')
-
- anchors = centroids.copy()
- print(anchors.shape)
-
- for i in range(anchors.shape[0]):
- anchors[i][0]*=width_in_cfg_file/32.
- anchors[i][1]*=height_in_cfg_file/32.
-
-
- widths = anchors[:,0]
- sorted_indices = np.argsort(widths)
-
- print('Anchors = ', anchors[sorted_indices])
-
- for i in sorted_indices[:-1]:
- f.write('%0.2f,%0.2f, '%(anchors[i,0],anchors[i,1]))
-
- #there should not be comma after last anchor, that's why
- f.write('%0.2f,%0.2f\n'%(anchors[sorted_indices[-1:],0],anchors[sorted_indices[-1:],1]))
-
- f.write('%f\n'%(avg_IOU(X,centroids)))
- print()
-
-def kmeans(X,centroids,eps,anchor_file):
-
- N = X.shape[0]
- iterations = 0
- k,dim = centroids.shape
- prev_assignments = np.ones(N)*(-1)
- iter = 0
- old_D = np.zeros((N,k))
-
- while True:
- D = []
- iter+=1
- for i in range(N):
- d = 1 - IOU(X[i],centroids)
- D.append(d)
- D = np.array(D) # D.shape = (N,k)
-
- print("iter {}: dists = {}".format(iter,np.sum(np.abs(old_D-D))))
-
- #assign samples to centroids
- assignments = np.argmin(D,axis=1)
-
- if (assignments == prev_assignments).all() :
- print("Centroids = ",centroids)
- write_anchors_to_file(centroids,X,anchor_file)
- return
-
- #calculate new centroids
- centroid_sums=np.zeros((k,dim),np.float)
- for i in range(N):
- centroid_sums[assignments[i]]+=X[i]
- for j in range(k):
- centroids[j] = centroid_sums[j]/(np.sum(assignments==j))
-
- prev_assignments = assignments.copy()
- old_D = D.copy()
-
-def main(argv):
- parser = argparse.ArgumentParser()
- parser.add_argument('-filelist', default = '\\path\\to\\voc\\filelist\\train.txt',
- help='path to filelist\n' )
- parser.add_argument('-output_dir', default = 'generated_anchors/anchors', type = str,
- help='Output anchor directory\n' )
- parser.add_argument('-num_clusters', default = 0, type = int,
- help='number of clusters\n' )
-
-
- args = parser.parse_args()
-
- if not os.path.exists(args.output_dir):
- os.mkdir(args.output_dir)
-
- f = open(args.filelist)
-
- lines = [line.rstrip('\n') for line in f.readlines()]
-
- annotation_dims = []
-
- size = np.zeros((1,1,3))
- for line in lines:
-
- #line = line.replace('images','labels')
- #line = line.replace('img1','labels')
- line = line.replace('JPEGImages','labels')
-
-
- line = line.replace('.jpg','.txt')
- line = line.replace('.png','.txt')
- print(line)
- f2 = open(line)
- for line in f2.readlines():
- line = line.rstrip('\n')
- w,h = line.split(' ')[3:]
- #print(w,h)
- annotation_dims.append(tuple(map(float,(w,h))))
- annotation_dims = np.array(annotation_dims)
-
- eps = 0.005
-
- if args.num_clusters == 0:
- for num_clusters in range(1,11): #we make 1 through 10 clusters
- anchor_file = join( args.output_dir,'anchors%d.txt'%(num_clusters))
-
- indices = [ random.randrange(annotation_dims.shape[0]) for i in range(num_clusters)]
- centroids = annotation_dims[indices]
- kmeans(annotation_dims,centroids,eps,anchor_file)
- print('centroids.shape', centroids.shape)
- else:
- anchor_file = join( args.output_dir,'anchors%d.txt'%(args.num_clusters))
- indices = [ random.randrange(annotation_dims.shape[0]) for i in range(args.num_clusters)]
- centroids = annotation_dims[indices]
- kmeans(annotation_dims,centroids,eps,anchor_file)
- print('centroids.shape', centroids.shape)
-
-if __name__=="__main__":
- main(sys.argv)
diff --git a/build/darknet/x64/pthreadGC2.dll b/build/darknet/x64/pthreadGC2.dll
deleted file mode 100644
index 841d4a21699..00000000000
Binary files a/build/darknet/x64/pthreadGC2.dll and /dev/null differ
diff --git a/build/darknet/x64/pthreadVC2.dll b/build/darknet/x64/pthreadVC2.dll
deleted file mode 100644
index 165b4d26ec4..00000000000
Binary files a/build/darknet/x64/pthreadVC2.dll and /dev/null differ
diff --git a/build/darknet/x64/resnet152_yolo.cfg b/build/darknet/x64/resnet152_yolo.cfg
deleted file mode 100644
index d766084d1ec..00000000000
--- a/build/darknet/x64/resnet152_yolo.cfg
+++ /dev/null
@@ -1,1473 +0,0 @@
-[net]
-batch=64
-subdivisions=32
-height=416
-width=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.0001
-max_batches = 45000
-policy=steps
-steps=100,25000,35000
-scales=10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-# Conv 4
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-#Conv 5
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-#stopbackward=1
-
-
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=125
-activation=linear
-
-
-[region]
-anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
-bias_match=1
-classes=20
-coords=4
-num=5
-softmax=1
-jitter=.3
-rescore=1
-#focal_loss=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/resnet50_yolo.cfg b/build/darknet/x64/resnet50_yolo.cfg
deleted file mode 100644
index 44dc68e90d7..00000000000
--- a/build/darknet/x64/resnet50_yolo.cfg
+++ /dev/null
@@ -1,520 +0,0 @@
-[net]
-batch=64
-subdivisions=32
-height=416
-width=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.0001
-max_batches = 45000
-policy=steps
-steps=100,25000,35000
-scales=10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=7
-stride=2
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-
-# Conv 4
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-#Conv 5
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=2048
-size=1
-stride=1
-pad=1
-activation=linear
-
-[shortcut]
-from=-4
-activation=leaky
-#stopbackward=1
-
-
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=125
-activation=linear
-
-
-[region]
-anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
-bias_match=1
-classes=20
-coords=4
-num=5
-softmax=1
-jitter=.3
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
\ No newline at end of file
diff --git a/build/darknet/x64/results/tmp.txt b/build/darknet/x64/results/tmp.txt
deleted file mode 100644
index e69de29bb2d..00000000000
diff --git a/build/darknet/x64/reval_voc_py3.py b/build/darknet/x64/reval_voc_py3.py
deleted file mode 100644
index 23f9ce3fd06..00000000000
--- a/build/darknet/x64/reval_voc_py3.py
+++ /dev/null
@@ -1,104 +0,0 @@
-#!/usr/bin/env python
-
-# Adapt from ->
-# --------------------------------------------------------
-# Fast R-CNN
-# Copyright (c) 2015 Microsoft
-# Licensed under The MIT License [see LICENSE for details]
-# Written by Ross Girshick
-# --------------------------------------------------------
-# <- Written by Yaping Sun
-
-"""Reval = re-eval. Re-evaluate saved detections."""
-
-import os, sys, argparse
-import numpy as np
-import _pickle as cPickle
-#import cPickle
-
-from voc_eval_py3 import voc_eval
-
-def parse_args():
- """
- Parse input arguments
- """
- parser = argparse.ArgumentParser(description='Re-evaluate results')
- parser.add_argument('output_dir', nargs=1, help='results directory',
- type=str)
- parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str)
- parser.add_argument('--year', dest='year', default='2017', type=str)
- parser.add_argument('--image_set', dest='image_set', default='test', type=str)
-
- parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str)
-
- if len(sys.argv) == 1:
- parser.print_help()
- sys.exit(1)
-
- args = parser.parse_args()
- return args
-
-def get_voc_results_file_template(image_set, out_dir = 'results'):
- filename = 'comp4_det_' + image_set + '_{:s}.txt'
- path = os.path.join(out_dir, filename)
- return path
-
-def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'):
- annopath = os.path.join(
- devkit_path,
- 'VOC' + year,
- 'Annotations',
- '{}.xml')
- imagesetfile = os.path.join(
- devkit_path,
- 'VOC' + year,
- 'ImageSets',
- 'Main',
- image_set + '.txt')
- cachedir = os.path.join(devkit_path, 'annotations_cache')
- aps = []
- # The PASCAL VOC metric changed in 2010
- use_07_metric = True if int(year) < 2010 else False
- print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No'))
- print('devkit_path=',devkit_path,', year = ',year)
-
- if not os.path.isdir(output_dir):
- os.mkdir(output_dir)
- for i, cls in enumerate(classes):
- if cls == '__background__':
- continue
- filename = get_voc_results_file_template(image_set).format(cls)
- rec, prec, ap = voc_eval(
- filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5,
- use_07_metric=use_07_metric)
- aps += [ap]
- print('AP for {} = {:.4f}'.format(cls, ap))
- with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f:
- cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f)
- print('Mean AP = {:.4f}'.format(np.mean(aps)))
- print('~~~~~~~~')
- print('Results:')
- for ap in aps:
- print('{:.3f}'.format(ap))
- print('{:.3f}'.format(np.mean(aps)))
- print('~~~~~~~~')
- print('')
- print('--------------------------------------------------------------')
- print('Results computed with the **unofficial** Python eval code.')
- print('Results should be very close to the official MATLAB eval code.')
- print('-- Thanks, The Management')
- print('--------------------------------------------------------------')
-
-
-
-if __name__ == '__main__':
- args = parse_args()
-
- output_dir = os.path.abspath(args.output_dir[0])
- with open(args.class_file, 'r') as f:
- lines = f.readlines()
-
- classes = [t.strip('\n') for t in lines]
-
- print('Evaluating detections')
- do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir)
diff --git a/build/darknet/x64/tiny-yolo-voc.cfg b/build/darknet/x64/tiny-yolo-voc.cfg
deleted file mode 100644
index ab2c066a216..00000000000
--- a/build/darknet/x64/tiny-yolo-voc.cfg
+++ /dev/null
@@ -1,134 +0,0 @@
-[net]
-batch=64
-subdivisions=8
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-max_batches = 40200
-policy=steps
-steps=-1,100,20000,30000
-scales=.1,10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=125
-activation=linear
-
-[region]
-anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
-bias_match=1
-classes=20
-coords=4
-num=5
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/tiny-yolo.cfg b/build/darknet/x64/tiny-yolo.cfg
deleted file mode 100644
index 5580098b45f..00000000000
--- a/build/darknet/x64/tiny-yolo.cfg
+++ /dev/null
@@ -1,134 +0,0 @@
-[net]
-batch=64
-subdivisions=8
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-max_batches = 120000
-policy=steps
-steps=-1,100,80000,100000
-scales=.1,10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=16
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=1
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-###########
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=425
-activation=linear
-
-[region]
-anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
-bias_match=1
-classes=80
-coords=4
-num=5
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
diff --git a/build/darknet/x64/voc_eval_py3.py b/build/darknet/x64/voc_eval_py3.py
deleted file mode 100644
index 13d07a9a7e7..00000000000
--- a/build/darknet/x64/voc_eval_py3.py
+++ /dev/null
@@ -1,201 +0,0 @@
-# --------------------------------------------------------
-# Fast/er R-CNN
-# Licensed under The MIT License [see LICENSE for details]
-# Written by Bharath Hariharan
-# --------------------------------------------------------
-
-import xml.etree.ElementTree as ET
-import os
-#import cPickle
-import _pickle as cPickle
-import numpy as np
-
-def parse_rec(filename):
- """ Parse a PASCAL VOC xml file """
- tree = ET.parse(filename)
- objects = []
- for obj in tree.findall('object'):
- obj_struct = {}
- obj_struct['name'] = obj.find('name').text
- #obj_struct['pose'] = obj.find('pose').text
- #obj_struct['truncated'] = int(obj.find('truncated').text)
- obj_struct['difficult'] = int(obj.find('difficult').text)
- bbox = obj.find('bndbox')
- obj_struct['bbox'] = [int(bbox.find('xmin').text),
- int(bbox.find('ymin').text),
- int(bbox.find('xmax').text),
- int(bbox.find('ymax').text)]
- objects.append(obj_struct)
-
- return objects
-
-def voc_ap(rec, prec, use_07_metric=False):
- """ ap = voc_ap(rec, prec, [use_07_metric])
- Compute VOC AP given precision and recall.
- If use_07_metric is true, uses the
- VOC 07 11 point method (default:False).
- """
- if use_07_metric:
- # 11 point metric
- ap = 0.
- for t in np.arange(0., 1.1, 0.1):
- if np.sum(rec >= t) == 0:
- p = 0
- else:
- p = np.max(prec[rec >= t])
- ap = ap + p / 11.
- else:
- # correct AP calculation
- # first append sentinel values at the end
- mrec = np.concatenate(([0.], rec, [1.]))
- mpre = np.concatenate(([0.], prec, [0.]))
-
- # compute the precision envelope
- for i in range(mpre.size - 1, 0, -1):
- mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
-
- # to calculate area under PR curve, look for points
- # where X axis (recall) changes value
- i = np.where(mrec[1:] != mrec[:-1])[0]
-
- # and sum (\Delta recall) * prec
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
- return ap
-
-def voc_eval(detpath,
- annopath,
- imagesetfile,
- classname,
- cachedir,
- ovthresh=0.5,
- use_07_metric=False):
- """rec, prec, ap = voc_eval(detpath,
- annopath,
- imagesetfile,
- classname,
- [ovthresh],
- [use_07_metric])
-
- Top level function that does the PASCAL VOC evaluation.
-
- detpath: Path to detections
- detpath.format(classname) should produce the detection results file.
- annopath: Path to annotations
- annopath.format(imagename) should be the xml annotations file.
- imagesetfile: Text file containing the list of images, one image per line.
- classname: Category name (duh)
- cachedir: Directory for caching the annotations
- [ovthresh]: Overlap threshold (default = 0.5)
- [use_07_metric]: Whether to use VOC07's 11 point AP computation
- (default False)
- """
- # assumes detections are in detpath.format(classname)
- # assumes annotations are in annopath.format(imagename)
- # assumes imagesetfile is a text file with each line an image name
- # cachedir caches the annotations in a pickle file
-
- # first load gt
- if not os.path.isdir(cachedir):
- os.mkdir(cachedir)
- cachefile = os.path.join(cachedir, 'annots.pkl')
- # read list of images
- with open(imagesetfile, 'r') as f:
- lines = f.readlines()
- imagenames = [x.strip() for x in lines]
-
- if not os.path.isfile(cachefile):
- # load annots
- recs = {}
- for i, imagename in enumerate(imagenames):
- recs[imagename] = parse_rec(annopath.format(imagename))
- #if i % 100 == 0:
- #print('Reading annotation for {:d}/{:d}').format(i + 1, len(imagenames))
- # save
- #print('Saving cached annotations to {:s}').format(cachefile)
- with open(cachefile, 'wb') as f:
- cPickle.dump(recs, f)
- else:
- # load
- print('!!! cachefile = ',cachefile)
- with open(cachefile, 'rb') as f:
- recs = cPickle.load(f)
-
- # extract gt objects for this class
- class_recs = {}
- npos = 0
- for imagename in imagenames:
- R = [obj for obj in recs[imagename] if obj['name'] == classname]
- bbox = np.array([x['bbox'] for x in R])
- difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
- det = [False] * len(R)
- npos = npos + sum(~difficult)
- class_recs[imagename] = {'bbox': bbox,
- 'difficult': difficult,
- 'det': det}
-
- # read dets
- detfile = detpath.format(classname)
- with open(detfile, 'r') as f:
- lines = f.readlines()
-
- splitlines = [x.strip().split(' ') for x in lines]
- image_ids = [x[0] for x in splitlines]
- confidence = np.array([float(x[1]) for x in splitlines])
- BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
-
- # sort by confidence
- sorted_ind = np.argsort(-confidence)
- sorted_scores = np.sort(-confidence)
- BB = BB[sorted_ind, :]
- image_ids = [image_ids[x] for x in sorted_ind]
-
- # go down dets and mark TPs and FPs
- nd = len(image_ids)
- tp = np.zeros(nd)
- fp = np.zeros(nd)
- for d in range(nd):
- R = class_recs[image_ids[d]]
- bb = BB[d, :].astype(float)
- ovmax = -np.inf
- BBGT = R['bbox'].astype(float)
-
- if BBGT.size > 0:
- # compute overlaps
- # intersection
- ixmin = np.maximum(BBGT[:, 0], bb[0])
- iymin = np.maximum(BBGT[:, 1], bb[1])
- ixmax = np.minimum(BBGT[:, 2], bb[2])
- iymax = np.minimum(BBGT[:, 3], bb[3])
- iw = np.maximum(ixmax - ixmin + 1., 0.)
- ih = np.maximum(iymax - iymin + 1., 0.)
- inters = iw * ih
-
- # union
- uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
- (BBGT[:, 2] - BBGT[:, 0] + 1.) *
- (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
-
- overlaps = inters / uni
- ovmax = np.max(overlaps)
- jmax = np.argmax(overlaps)
-
- if ovmax > ovthresh:
- if not R['difficult'][jmax]:
- if not R['det'][jmax]:
- tp[d] = 1.
- R['det'][jmax] = 1
- else:
- fp[d] = 1.
- else:
- fp[d] = 1.
-
- # compute precision recall
- fp = np.cumsum(fp)
- tp = np.cumsum(tp)
- rec = tp / float(npos)
- # avoid divide by zero in case the first detection matches a difficult
- # ground truth
- prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
- ap = voc_ap(rec, prec, use_07_metric)
-
- return rec, prec, ap
diff --git a/build/darknet/x64/yolo-voc.2.0.cfg b/build/darknet/x64/yolo-voc.2.0.cfg
deleted file mode 100644
index ceb3f2acf0b..00000000000
--- a/build/darknet/x64/yolo-voc.2.0.cfg
+++ /dev/null
@@ -1,244 +0,0 @@
-[net]
-batch=64
-subdivisions=8
-height=416
-width=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.0001
-max_batches = 45000
-policy=steps
-steps=100,25000,35000
-scales=10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-#######
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[route]
-layers=-9
-
-[reorg]
-stride=2
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=125
-activation=linear
-
-[region]
-anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
-bias_match=1
-classes=20
-coords=4
-num=5
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=0
diff --git a/build/darknet/x64/yolo-voc.cfg b/build/darknet/x64/yolo-voc.cfg
deleted file mode 100644
index 5650b4c461e..00000000000
--- a/build/darknet/x64/yolo-voc.cfg
+++ /dev/null
@@ -1,259 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=8
-height=416
-width=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 80200
-policy=steps
-steps=40000,60000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-#######
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[route]
-layers=-9
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=64
-activation=leaky
-
-[reorg]
-stride=2
-
-[route]
-layers=-1,-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=125
-activation=linear
-
-
-[region]
-anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
-bias_match=1
-classes=20
-coords=4
-num=5
-softmax=1
-jitter=.3
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
-
diff --git a/build/darknet/x64/yolo.2.0.cfg b/build/darknet/x64/yolo.2.0.cfg
deleted file mode 100644
index fda339a2b00..00000000000
--- a/build/darknet/x64/yolo.2.0.cfg
+++ /dev/null
@@ -1,244 +0,0 @@
-[net]
-batch=1
-subdivisions=1
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-max_batches = 120000
-policy=steps
-steps=-1,100,80000,100000
-scales=.1,10,.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-#######
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[route]
-layers=-9
-
-[reorg]
-stride=2
-
-[route]
-layers=-1,-3
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=425
-activation=linear
-
-[region]
-anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
-bias_match=1
-classes=80
-coords=4
-num=5
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=0
diff --git a/build/darknet/x64/yolo.cfg b/build/darknet/x64/yolo.cfg
deleted file mode 100644
index e4d93e522d7..00000000000
--- a/build/darknet/x64/yolo.cfg
+++ /dev/null
@@ -1,259 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=8
-height=416
-width=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-
-#######
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[route]
-layers=-9
-
-[convolutional]
-batch_normalize=1
-size=1
-stride=1
-pad=1
-filters=64
-activation=leaky
-
-[reorg]
-stride=2
-
-[route]
-layers=-1,-4
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=425
-activation=linear
-
-
-[region]
-anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
-bias_match=1
-classes=80
-coords=4
-num=5
-softmax=1
-jitter=.3
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-absolute=1
-thresh = .6
-random=1
-
diff --git a/build/darknet/x64/yolo9000.cfg b/build/darknet/x64/yolo9000.cfg
deleted file mode 100644
index e745f78a6e3..00000000000
--- a/build/darknet/x64/yolo9000.cfg
+++ /dev/null
@@ -1,218 +0,0 @@
-[net]
-# Testing
-batch=1
-subdivisions=1
-# Training
-# batch=64
-# subdivisions=8
-batch=1
-subdivisions=1
-height=544
-width=544
-channels=3
-momentum=0.9
-decay=0.0005
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-hue=.1
-saturation=.75
-exposure=.75
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[maxpool]
-size=2
-stride=2
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-filters=28269
-size=1
-stride=1
-pad=1
-activation=linear
-
-[region]
-anchors = 0.77871, 1.14074, 3.00525, 4.31277, 9.22725, 9.61974
-bias_match=1
-classes=9418
-coords=4
-num=3
-softmax=1
-jitter=.2
-rescore=1
-
-object_scale=5
-noobject_scale=1
-class_scale=1
-coord_scale=1
-
-thresh = .6
-absolute=1
-random=1
-
-tree=data/9k.tree
-map = data/coco9k.map
diff --git a/build/darknet/x64/yolov3-voc.cfg b/build/darknet/x64/yolov3-voc.cfg
deleted file mode 100644
index 8f7ba54d0e3..00000000000
--- a/build/darknet/x64/yolov3-voc.cfg
+++ /dev/null
@@ -1,785 +0,0 @@
-[net]
-# Testing
-# batch=1
-# subdivisions=1
-# Training
-batch=64
-subdivisions=32
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 50200
-policy=steps
-steps=40000,45000
-scales=.1,.1
-
-
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-######################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=75
-activation=linear
-
-[yolo]
-mask = 6,7,8
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=20
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-random=1
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 61
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=75
-activation=linear
-
-[yolo]
-mask = 3,4,5
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=20
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-random=1
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 36
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=75
-activation=linear
-
-[yolo]
-mask = 0,1,2
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=20
-num=9
-jitter=.3
-ignore_thresh = .5
-truth_thresh = 1
-random=1
-
diff --git a/build/darknet/x64/yolov3.cfg b/build/darknet/x64/yolov3.cfg
deleted file mode 100644
index 1d94e666918..00000000000
--- a/build/darknet/x64/yolov3.cfg
+++ /dev/null
@@ -1,791 +0,0 @@
-[net]
-# Testing
-#batch=1
-#subdivisions=1
-# Training
-batch=64
-subdivisions=16
-width=416
-height=416
-channels=3
-momentum=0.9
-decay=0.0005
-angle=0
-saturation = 1.5
-exposure = 1.5
-hue=.1
-
-learning_rate=0.001
-burn_in=1000
-max_batches = 500200
-policy=steps
-steps=400000,450000
-scales=.1,.1
-
-show_receptive_field=1
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=3
-stride=1
-pad=1
-activation=leaky
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=32
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=64
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-# Downsample
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=2
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=1024
-size=3
-stride=1
-pad=1
-activation=leaky
-
-[shortcut]
-from=-3
-activation=linear
-
-######################
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=512
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=1024
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 6,7,8
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 61
-
-
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=256
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=512
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 3,4,5
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
-
-
-[route]
-layers = -4
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[upsample]
-stride=2
-
-[route]
-layers = -1, 36
-
-
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-filters=128
-size=1
-stride=1
-pad=1
-activation=leaky
-
-[convolutional]
-batch_normalize=1
-size=3
-stride=1
-pad=1
-filters=256
-activation=leaky
-
-[convolutional]
-size=1
-stride=1
-pad=1
-filters=255
-activation=linear
-
-
-[yolo]
-mask = 0,1,2
-anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
-classes=80
-num=9
-jitter=.3
-ignore_thresh = .7
-truth_thresh = 1
-random=1
-
diff --git a/build/darknet/yolo_console_dll.sln b/build/darknet/yolo_console_dll.sln
deleted file mode 100644
index e06e5a26b7e..00000000000
--- a/build/darknet/yolo_console_dll.sln
+++ /dev/null
@@ -1,28 +0,0 @@
-
-Microsoft Visual Studio Solution File, Format Version 12.00
-# Visual Studio 14
-VisualStudioVersion = 14.0.25420.1
-MinimumVisualStudioVersion = 10.0.40219.1
-Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "yolo_console_dll", "yolo_console_dll.vcxproj", "{4CFC8DC0-92A2-4311-B54B-2264E56A3B58}"
-EndProject
-Global
- GlobalSection(SolutionConfigurationPlatforms) = preSolution
- Debug|x64 = Debug|x64
- Debug|x86 = Debug|x86
- Release|x64 = Release|x64
- Release|x86 = Release|x86
- EndGlobalSection
- GlobalSection(ProjectConfigurationPlatforms) = postSolution
- {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Debug|x64.ActiveCfg = Debug|x64
- {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Debug|x64.Build.0 = Debug|x64
- {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Debug|x86.ActiveCfg = Debug|Win32
- {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Debug|x86.Build.0 = Debug|Win32
- {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Release|x64.ActiveCfg = Release|x64
- {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Release|x64.Build.0 = Release|x64
- {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Release|x86.ActiveCfg = Release|Win32
- {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Release|x86.Build.0 = Release|Win32
- EndGlobalSection
- GlobalSection(SolutionProperties) = preSolution
- HideSolutionNode = FALSE
- EndGlobalSection
-EndGlobal
diff --git a/build/darknet/yolo_console_dll.vcxproj b/build/darknet/yolo_console_dll.vcxproj
deleted file mode 100644
index 20eb14acd20..00000000000
--- a/build/darknet/yolo_console_dll.vcxproj
+++ /dev/null
@@ -1,142 +0,0 @@
-
-
-
-
- Debug
- Win32
-
-
- Release
- Win32
-
-
- Debug
- x64
-
-
- Release
- x64
-
-
-
- {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}
- yolo_console_dll
- 8.1
-
-
-
- Application
- true
- v140
- MultiByte
-
-
- Application
- false
- v140
- true
- MultiByte
-
-
- Application
- true
- v140
- MultiByte
-
-
- Application
- false
- v140
- true
- MultiByte
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- $(SolutionDir)$(Platform)\
- $(Platform)\$(Configuration)\
-
-
- $(SolutionDir)$(Platform)\
-
-
-
- Level3
- Disabled
- true
- ..\..\include;
-
-
-
-
- Level3
- Disabled
- true
- ..\..\include;$(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include
- MultiThreadedDLL
- _CRT_SECURE_NO_WARNINGS;_MBCS;%(PreprocessorDefinitions)
-
-
- $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib;$(CUDA_PATH)\lib\x64\;$(ZED_SDK_ROOT_DIR)\lib
-
-
-
-
- Level3
- MaxSpeed
- true
- true
- true
- ..\..\include;
-
-
- true
- true
-
-
-
-
- Level3
- MaxSpeed
- true
- true
- true
- ..\..\include;$(OPENCV_DIR)\include;C:\opencv_source\opencv\bin\install\include;$(CUDA_PATH)\include;$(ZED_SDK_ROOT_DIR)\include
- OPENCV;_CRT_SECURE_NO_WARNINGS;_MBCS;%(PreprocessorDefinitions)
- Async
- true
-
-
- true
- true
- $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_source\opencv\bin\install\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib;$(CUDA_PATH)\lib\x64\;$(ZED_SDK_ROOT_DIR)\lib
- kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/build/darknet/yolo_cpp_dll.sln b/build/darknet/yolo_cpp_dll.sln
deleted file mode 100644
index 4d457760a21..00000000000
--- a/build/darknet/yolo_cpp_dll.sln
+++ /dev/null
@@ -1,28 +0,0 @@
-
-Microsoft Visual Studio Solution File, Format Version 12.00
-# Visual Studio 14
-VisualStudioVersion = 14.0.25420.1
-MinimumVisualStudioVersion = 10.0.40219.1
-Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "yolo_cpp_dll", "yolo_cpp_dll.vcxproj", "{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}"
-EndProject
-Global
- GlobalSection(SolutionConfigurationPlatforms) = preSolution
- Debug|x64 = Debug|x64
- Debug|x86 = Debug|x86
- Release|x64 = Release|x64
- Release|x86 = Release|x86
- EndGlobalSection
- GlobalSection(ProjectConfigurationPlatforms) = postSolution
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.ActiveCfg = Debug|x64
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.Build.0 = Debug|x64
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x86.ActiveCfg = Debug|Win32
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x86.Build.0 = Debug|Win32
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.ActiveCfg = Release|x64
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.Build.0 = Release|x64
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x86.ActiveCfg = Release|Win32
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x86.Build.0 = Release|Win32
- EndGlobalSection
- GlobalSection(SolutionProperties) = preSolution
- HideSolutionNode = FALSE
- EndGlobalSection
-EndGlobal
diff --git a/build/darknet/yolo_cpp_dll.vcxproj b/build/darknet/yolo_cpp_dll.vcxproj
deleted file mode 100644
index 35742aa2be4..00000000000
--- a/build/darknet/yolo_cpp_dll.vcxproj
+++ /dev/null
@@ -1,313 +0,0 @@
-
-
-
-
- Debug
- Win32
-
-
- Debug
- x64
-
-
- Release
- Win32
-
-
- Release
- x64
-
-
-
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}
- darknet
- 8.1
-
-
-
- Application
- true
- v140
- MultiByte
-
-
- DynamicLibrary
- true
- v140
- MultiByte
-
-
- Application
- false
- v140
- true
- MultiByte
-
-
- DynamicLibrary
- false
- v140
- true
- MultiByte
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- $(SolutionDir)$(Platform)\
- $(Platform)\DLL_$(Configuration)\
-
-
- $(SolutionDir)$(Platform)\
- $(Platform)\DLL_$(Configuration)\
-
-
-
- Level3
- Disabled
- true
- ..\..\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir)
- LIB_EXPORTS;_MBCS;%(PreprocessorDefinitions)
-
-
- true
-
-
-
-
- Level3
- Disabled
- true
- $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include;$(cudnn)\include
- _MBCS;LIB_EXPORTS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;DEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- CUDNN_HALF;CUDNN
- true
- stdlib.h;crtdbg.h;%(ForcedIncludeFiles)
-
-
- true
- $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;$(cudnn)\lib\x64;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)
- $(OutDir)\$(TargetName)$(TargetExt)
- pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cuda.lib;%(AdditionalDependencies)
- true
-
-
- compute_30,sm_30;compute_75,sm_75
- 64
-
-
-
-
- Level3
- MaxSpeed
- true
- true
- true
- C:\opencv_2.4.9\opencv\build\include;..\..\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include
- LIB_EXPORTS;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- true
-
-
- true
- true
- true
- C:\opencv_2.4.9\opencv\build\x86\vc14\lib;C:\opencv_2.4.9\opencv\build\x86\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)
- ..\..\3rdparty\lib\x86\pthreadVC2.lib;cudart.lib;cublas.lib;curand.lib;%(AdditionalDependencies)
-
-
-
-
- Level3
- MaxSpeed
- true
- true
- true
- $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include;$(cudnn)\include
- CUDNN_HALF;CUDNN;GPU;LIB_EXPORTS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- c11
- c++1y
- CompileAsCpp
- Default
- OPENCV;
- true
-
-
- true
- true
- true
- $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;$(cudnn)\lib\x64;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)
- pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cuda.lib;%(AdditionalDependencies)
- $(OutDir)\$(TargetName)$(TargetExt)
-
-
- 64
- compute_35,sm_35;compute_75,sm_75
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/build/darknet/yolo_cpp_dll_no_gpu.sln b/build/darknet/yolo_cpp_dll_no_gpu.sln
deleted file mode 100644
index ab54154a213..00000000000
--- a/build/darknet/yolo_cpp_dll_no_gpu.sln
+++ /dev/null
@@ -1,28 +0,0 @@
-
-Microsoft Visual Studio Solution File, Format Version 12.00
-# Visual Studio 14
-VisualStudioVersion = 14.0.25420.1
-MinimumVisualStudioVersion = 10.0.40219.1
-Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "yolo_cpp_dll_no_gpu", "yolo_cpp_dll_no_gpu.vcxproj", "{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}"
-EndProject
-Global
- GlobalSection(SolutionConfigurationPlatforms) = preSolution
- Debug|x64 = Debug|x64
- Debug|x86 = Debug|x86
- Release|x64 = Release|x64
- Release|x86 = Release|x86
- EndGlobalSection
- GlobalSection(ProjectConfigurationPlatforms) = postSolution
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.ActiveCfg = Debug|x64
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.Build.0 = Debug|x64
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x86.ActiveCfg = Debug|Win32
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x86.Build.0 = Debug|Win32
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.ActiveCfg = Release|x64
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.Build.0 = Release|x64
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x86.ActiveCfg = Release|Win32
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x86.Build.0 = Release|Win32
- EndGlobalSection
- GlobalSection(SolutionProperties) = preSolution
- HideSolutionNode = FALSE
- EndGlobalSection
-EndGlobal
diff --git a/build/darknet/yolo_cpp_dll_no_gpu.vcxproj b/build/darknet/yolo_cpp_dll_no_gpu.vcxproj
deleted file mode 100644
index ea04b5497e6..00000000000
--- a/build/darknet/yolo_cpp_dll_no_gpu.vcxproj
+++ /dev/null
@@ -1,297 +0,0 @@
-
-
-
-
- Debug
- Win32
-
-
- Debug
- x64
-
-
- Release
- Win32
-
-
- Release
- x64
-
-
-
- {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}
- darknet
- 8.1
-
-
-
- Application
- true
- v140
- MultiByte
-
-
- DynamicLibrary
- true
- v140
- MultiByte
-
-
- Application
- false
- v140
- true
- MultiByte
-
-
- DynamicLibrary
- false
- v140
- true
- MultiByte
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- $(SolutionDir)$(Platform)\
-
-
- $(SolutionDir)$(Platform)\
- yolo_cpp_dll
-
-
-
- Level3
- Disabled
- true
- ..\..\include;
- LIB_EXPORTS;_MBCS;%(PreprocessorDefinitions)
-
-
- true
-
-
-
-
- Level3
- Disabled
- true
- $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories)
- _MBCS;LIB_EXPORTS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- CUDNN
- true
- stdlib.h;crtdbg.h;%(ForcedIncludeFiles)
-
-
- true
- $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)
- $(OutDir)\$(TargetName)$(TargetExt)
- pthreadVC2.lib;%(AdditionalDependencies)
- true
-
-
- compute_30,sm_30;compute_52,sm_52
- 64
-
-
-
-
- Level3
- MaxSpeed
- true
- true
- true
- C:\opencv_2.4.9\opencv\build\include;..\..\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include
- LIB_EXPORTS;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- true
-
-
- true
- true
- true
- C:\opencv_2.4.9\opencv\build\x86\vc14\lib;C:\opencv_2.4.9\opencv\build\x86\vc12\lib;%(AdditionalLibraryDirectories)
- ..\..\3rdparty\lib\x86\pthreadVC2.lib;%(AdditionalDependencies)
-
-
-
-
- Level3
- MaxSpeed
- true
- true
- true
- $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories)
- LIB_EXPORTS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)
- c11
- c++1y
- CompileAsCpp
- Default
-
-
- true
- true
-
-
- true
- true
- true
- $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)
- pthreadVC2.lib;%(AdditionalDependencies)
- $(OutDir)\$(TargetName)$(TargetExt)
-
-
- 64
- compute_30,sm_30;compute_52,sm_52
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
\ No newline at end of file
diff --git a/build/darknet/x64/calc_anchors.cmd b/scripts/windows/calc_anchors.cmd
similarity index 100%
rename from build/darknet/x64/calc_anchors.cmd
rename to scripts/windows/calc_anchors.cmd
diff --git a/build/darknet/x64/calc_mAP.cmd b/scripts/windows/calc_mAP.cmd
similarity index 100%
rename from build/darknet/x64/calc_mAP.cmd
rename to scripts/windows/calc_mAP.cmd
diff --git a/build/darknet/x64/calc_mAP_coco.cmd b/scripts/windows/calc_mAP_coco.cmd
similarity index 100%
rename from build/darknet/x64/calc_mAP_coco.cmd
rename to scripts/windows/calc_mAP_coco.cmd
diff --git a/build/darknet/x64/calc_mAP_voc_py.cmd b/scripts/windows/calc_mAP_voc_py.cmd
similarity index 100%
rename from build/darknet/x64/calc_mAP_voc_py.cmd
rename to scripts/windows/calc_mAP_voc_py.cmd
diff --git a/build/darknet/x64/classifier_densenet201.cmd b/scripts/windows/classifier_densenet201.cmd
similarity index 100%
rename from build/darknet/x64/classifier_densenet201.cmd
rename to scripts/windows/classifier_densenet201.cmd
diff --git a/build/darknet/x64/classifier_resnet50.cmd b/scripts/windows/classifier_resnet50.cmd
similarity index 100%
rename from build/darknet/x64/classifier_resnet50.cmd
rename to scripts/windows/classifier_resnet50.cmd
diff --git a/build/darknet/x64/darknet_coco.cmd b/scripts/windows/darknet_coco.cmd
similarity index 100%
rename from build/darknet/x64/darknet_coco.cmd
rename to scripts/windows/darknet_coco.cmd
diff --git a/build/darknet/x64/darknet_coco_9000.cmd b/scripts/windows/darknet_coco_9000.cmd
similarity index 100%
rename from build/darknet/x64/darknet_coco_9000.cmd
rename to scripts/windows/darknet_coco_9000.cmd
diff --git a/build/darknet/x64/darknet_coco_9000_demo.cmd b/scripts/windows/darknet_coco_9000_demo.cmd
similarity index 100%
rename from build/darknet/x64/darknet_coco_9000_demo.cmd
rename to scripts/windows/darknet_coco_9000_demo.cmd
diff --git a/build/darknet/x64/darknet_demo_coco.cmd b/scripts/windows/darknet_demo_coco.cmd
similarity index 100%
rename from build/darknet/x64/darknet_demo_coco.cmd
rename to scripts/windows/darknet_demo_coco.cmd
diff --git a/build/darknet/x64/darknet_demo_json_stream.cmd b/scripts/windows/darknet_demo_json_stream.cmd
similarity index 100%
rename from build/darknet/x64/darknet_demo_json_stream.cmd
rename to scripts/windows/darknet_demo_json_stream.cmd
diff --git a/build/darknet/x64/darknet_demo_mjpeg_stream.cmd b/scripts/windows/darknet_demo_mjpeg_stream.cmd
similarity index 100%
rename from build/darknet/x64/darknet_demo_mjpeg_stream.cmd
rename to scripts/windows/darknet_demo_mjpeg_stream.cmd
diff --git a/build/darknet/x64/darknet_demo_store.cmd b/scripts/windows/darknet_demo_store.cmd
similarity index 100%
rename from build/darknet/x64/darknet_demo_store.cmd
rename to scripts/windows/darknet_demo_store.cmd
diff --git a/build/darknet/x64/darknet_demo_voc.cmd b/scripts/windows/darknet_demo_voc.cmd
similarity index 100%
rename from build/darknet/x64/darknet_demo_voc.cmd
rename to scripts/windows/darknet_demo_voc.cmd
diff --git a/build/darknet/x64/darknet_demo_voc_param.cmd b/scripts/windows/darknet_demo_voc_param.cmd
similarity index 100%
rename from build/darknet/x64/darknet_demo_voc_param.cmd
rename to scripts/windows/darknet_demo_voc_param.cmd
diff --git a/build/darknet/x64/darknet_demo_voc_tiny.cmd b/scripts/windows/darknet_demo_voc_tiny.cmd
similarity index 100%
rename from build/darknet/x64/darknet_demo_voc_tiny.cmd
rename to scripts/windows/darknet_demo_voc_tiny.cmd
diff --git a/build/darknet/x64/darknet_json_reslut.cmd b/scripts/windows/darknet_json_reslut.cmd
similarity index 100%
rename from build/darknet/x64/darknet_json_reslut.cmd
rename to scripts/windows/darknet_json_reslut.cmd
diff --git a/build/darknet/x64/darknet_many_images.cmd b/scripts/windows/darknet_many_images.cmd
similarity index 100%
rename from build/darknet/x64/darknet_many_images.cmd
rename to scripts/windows/darknet_many_images.cmd
diff --git a/build/darknet/x64/darknet_net_cam_coco.cmd b/scripts/windows/darknet_net_cam_coco.cmd
similarity index 100%
rename from build/darknet/x64/darknet_net_cam_coco.cmd
rename to scripts/windows/darknet_net_cam_coco.cmd
diff --git a/build/darknet/x64/darknet_net_cam_voc.cmd b/scripts/windows/darknet_net_cam_voc.cmd
similarity index 100%
rename from build/darknet/x64/darknet_net_cam_voc.cmd
rename to scripts/windows/darknet_net_cam_voc.cmd
diff --git a/build/darknet/x64/darknet_python.cmd b/scripts/windows/darknet_python.cmd
similarity index 100%
rename from build/darknet/x64/darknet_python.cmd
rename to scripts/windows/darknet_python.cmd
diff --git a/build/darknet/x64/darknet_tiny_v2.cmd b/scripts/windows/darknet_tiny_v2.cmd
similarity index 100%
rename from build/darknet/x64/darknet_tiny_v2.cmd
rename to scripts/windows/darknet_tiny_v2.cmd
diff --git a/build/darknet/x64/darknet_video.cmd b/scripts/windows/darknet_video.cmd
similarity index 100%
rename from build/darknet/x64/darknet_video.cmd
rename to scripts/windows/darknet_video.cmd
diff --git a/build/darknet/x64/darknet_voc.cmd b/scripts/windows/darknet_voc.cmd
similarity index 100%
rename from build/darknet/x64/darknet_voc.cmd
rename to scripts/windows/darknet_voc.cmd
diff --git a/build/darknet/x64/darknet_voc_tiny_v2.cmd b/scripts/windows/darknet_voc_tiny_v2.cmd
similarity index 100%
rename from build/darknet/x64/darknet_voc_tiny_v2.cmd
rename to scripts/windows/darknet_voc_tiny_v2.cmd
diff --git a/build/darknet/x64/darknet_web_cam_voc.cmd b/scripts/windows/darknet_web_cam_voc.cmd
similarity index 100%
rename from build/darknet/x64/darknet_web_cam_voc.cmd
rename to scripts/windows/darknet_web_cam_voc.cmd
diff --git a/build/darknet/x64/darknet_yolo_v3.cmd b/scripts/windows/darknet_yolo_v3.cmd
similarity index 100%
rename from build/darknet/x64/darknet_yolo_v3.cmd
rename to scripts/windows/darknet_yolo_v3.cmd
diff --git a/build/darknet/x64/darknet_yolo_v3_openimages.cmd b/scripts/windows/darknet_yolo_v3_openimages.cmd
similarity index 100%
rename from build/darknet/x64/darknet_yolo_v3_openimages.cmd
rename to scripts/windows/darknet_yolo_v3_openimages.cmd
diff --git a/build/darknet/x64/darknet_yolo_v3_video.cmd b/scripts/windows/darknet_yolo_v3_video.cmd
similarity index 100%
rename from build/darknet/x64/darknet_yolo_v3_video.cmd
rename to scripts/windows/darknet_yolo_v3_video.cmd
diff --git a/build/darknet/x64/darknet_yolov3_pseudo_labeling.cmd b/scripts/windows/darknet_yolov3_pseudo_labeling.cmd
similarity index 100%
rename from build/darknet/x64/darknet_yolov3_pseudo_labeling.cmd
rename to scripts/windows/darknet_yolov3_pseudo_labeling.cmd
diff --git a/build/darknet/x64/partial.cmd b/scripts/windows/partial.cmd
similarity index 100%
rename from build/darknet/x64/partial.cmd
rename to scripts/windows/partial.cmd
diff --git a/build/darknet/x64/rnn_lstm.cmd b/scripts/windows/rnn_lstm.cmd
similarity index 100%
rename from build/darknet/x64/rnn_lstm.cmd
rename to scripts/windows/rnn_lstm.cmd
diff --git a/build/darknet/x64/rnn_tolstoy.cmd b/scripts/windows/rnn_tolstoy.cmd
similarity index 100%
rename from build/darknet/x64/rnn_tolstoy.cmd
rename to scripts/windows/rnn_tolstoy.cmd
diff --git a/build/darknet/x64/train_voc.cmd b/scripts/windows/train_voc.cmd
similarity index 100%
rename from build/darknet/x64/train_voc.cmd
rename to scripts/windows/train_voc.cmd