diff --git a/build/darknet/YoloWrapper.cs b/build/darknet/YoloWrapper.cs deleted file mode 100644 index 52c12adb80f..00000000000 --- a/build/darknet/YoloWrapper.cs +++ /dev/null @@ -1,89 +0,0 @@ -using System; -using System.Runtime.InteropServices; - -namespace Darknet -{ - public class YoloWrapper : IDisposable - { - private const string YoloLibraryName = "yolo_cpp_dll.dll"; - private const int MaxObjects = 1000; - - [DllImport(YoloLibraryName, EntryPoint = "init")] - private static extern int InitializeYolo(string configurationFilename, string weightsFilename, int gpu); - - [DllImport(YoloLibraryName, EntryPoint = "detect_image")] - private static extern int DetectImage(string filename, ref BboxContainer container); - - [DllImport(YoloLibraryName, EntryPoint = "detect_mat")] - private static extern int DetectImage(IntPtr pArray, int nSize, ref BboxContainer container); - - [DllImport(YoloLibraryName, EntryPoint = "dispose")] - private static extern int DisposeYolo(); - - [StructLayout(LayoutKind.Sequential)] - public struct bbox_t - { - public UInt32 x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box - public float prob; // confidence - probability that the object was found correctly - public UInt32 obj_id; // class of object - from range [0, classes-1] - public UInt32 track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object) - public UInt32 frames_counter; - public float x_3d, y_3d, z_3d; // 3-D coordinates, if there is used 3D-stereo camera - }; - - [StructLayout(LayoutKind.Sequential)] - public struct BboxContainer - { - [MarshalAs(UnmanagedType.ByValArray, SizeConst = MaxObjects)] - public bbox_t[] candidates; - } - - public YoloWrapper(string configurationFilename, string weightsFilename, int gpu) - { - InitializeYolo(configurationFilename, weightsFilename, gpu); - } - - public void Dispose() - { - DisposeYolo(); - } - - public bbox_t[] Detect(string filename) - { - var container = new BboxContainer(); - var count = DetectImage(filename, ref container); - - return container.candidates; - } - - public bbox_t[] Detect(byte[] imageData) - { - var container = new BboxContainer(); - - var size = Marshal.SizeOf(imageData[0]) * imageData.Length; - var pnt = Marshal.AllocHGlobal(size); - - try - { - // Copy the array to unmanaged memory. - Marshal.Copy(imageData, 0, pnt, imageData.Length); - var count = DetectImage(pnt, imageData.Length, ref container); - if (count == -1) - { - throw new NotSupportedException($"{YoloLibraryName} has no OpenCV support"); - } - } - catch (Exception exception) - { - return null; - } - finally - { - // Free the unmanaged memory. - Marshal.FreeHGlobal(pnt); - } - - return container.candidates; - } - } -} diff --git a/build/darknet/darknet.sln b/build/darknet/darknet.sln deleted file mode 100644 index c49e10efa09..00000000000 --- a/build/darknet/darknet.sln +++ /dev/null @@ -1,28 +0,0 @@ - -Microsoft Visual Studio Solution File, Format Version 12.00 -# Visual Studio 14 -VisualStudioVersion = 14.0.25420.1 -MinimumVisualStudioVersion = 10.0.40219.1 -Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "darknet", "darknet.vcxproj", "{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}" -EndProject -Global - GlobalSection(SolutionConfigurationPlatforms) = preSolution - Debug|Win32 = Debug|Win32 - Debug|x64 = Debug|x64 - Release|Win32 = Release|Win32 - Release|x64 = Release|x64 - EndGlobalSection - GlobalSection(ProjectConfigurationPlatforms) = postSolution - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|Win32.ActiveCfg = Debug|Win32 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|Win32.Build.0 = Debug|Win32 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.ActiveCfg = Debug|x64 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.Build.0 = Debug|x64 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|Win32.ActiveCfg = Release|Win32 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|Win32.Build.0 = Release|Win32 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.ActiveCfg = Release|x64 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.Build.0 = Release|x64 - EndGlobalSection - GlobalSection(SolutionProperties) = preSolution - HideSolutionNode = FALSE - EndGlobalSection -EndGlobal diff --git a/build/darknet/darknet.vcxproj b/build/darknet/darknet.vcxproj deleted file mode 100644 index 5c8a7c3e1b9..00000000000 --- a/build/darknet/darknet.vcxproj +++ /dev/null @@ -1,309 +0,0 @@ - - - - - Debug - Win32 - - - Debug - x64 - - - Release - Win32 - - - Release - x64 - - - - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5} - darknet - 8.1 - - - - Application - true - v140 - MultiByte - - - Application - true - v140 - MultiByte - - - Application - false - v140 - true - MultiByte - - - Application - false - v140 - true - MultiByte - - - - - - - - - - - - - - - - - - - - $(SolutionDir)$(Platform)\ - - - $(SolutionDir)$(Platform)\ - - - - Level3 - Disabled - true - - - true - - - - - Level3 - Disabled - true - $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include;$(cudnn)\include - CUDNN_HALF;CUDNN;_CRTDBG_MAP_ALLOC;_MBCS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;GPU;WIN32;DEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - OPENCV; - true - stdlib.h;crtdbg.h;%(ForcedIncludeFiles) - - - true - $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;$(cudnn)\lib\x64;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories) - $(OutDir)\$(TargetName)$(TargetExt) - pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;%(AdditionalDependencies) - true - - - compute_30,sm_30;compute_75,sm_75 - 64 - - - - - Level3 - MaxSpeed - true - true - true - C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include - OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - true - - - true - true - true - C:\opencv_2.4.9\opencv\build\x86\vc14\lib;C:\opencv_2.4.9\opencv\build\x86\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories) - ..\..\3rdparty\lib\x86\pthreadVC2.lib;cudart.lib;cublas.lib;curand.lib;%(AdditionalDependencies) - - - - - Level3 - MaxSpeed - true - true - true - $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include;$(cudnn)\include - OPENCV;CUDNN_HALF;CUDNN;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;GPU;WIN32;_CONSOLE;_LIB;%(PreprocessorDefinitions) - c11 - c++1y - CompileAsCpp - Default - NDEBUG - true - - - - - true - true - true - $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;$(cudnn)\lib\x64;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories) - pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;%(AdditionalDependencies) - $(OutDir)\$(TargetName)$(TargetExt) - - - 64 - compute_35,sm_35;compute_86,sm_86 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/build/darknet/darknet_no_gpu.sln b/build/darknet/darknet_no_gpu.sln deleted file mode 100644 index 79d7c0a5daa..00000000000 --- a/build/darknet/darknet_no_gpu.sln +++ /dev/null @@ -1,28 +0,0 @@ - -Microsoft Visual Studio Solution File, Format Version 12.00 -# Visual Studio 14 -VisualStudioVersion = 14.0.25420.1 -MinimumVisualStudioVersion = 10.0.40219.1 -Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "darknet_no_gpu", "darknet_no_gpu.vcxproj", "{621B3914-936D-4BD9-843A-AD50F22B178D}" -EndProject -Global - GlobalSection(SolutionConfigurationPlatforms) = preSolution - Debug|x64 = Debug|x64 - Debug|x86 = Debug|x86 - Release|x64 = Release|x64 - Release|x86 = Release|x86 - EndGlobalSection - GlobalSection(ProjectConfigurationPlatforms) = postSolution - {621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x64.ActiveCfg = Debug|x64 - {621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x64.Build.0 = Debug|x64 - {621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x86.ActiveCfg = Debug|Win32 - {621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x86.Build.0 = Debug|Win32 - {621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x64.ActiveCfg = Release|x64 - {621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x64.Build.0 = Release|x64 - {621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x86.ActiveCfg = Release|Win32 - {621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x86.Build.0 = Release|Win32 - EndGlobalSection - GlobalSection(SolutionProperties) = preSolution - HideSolutionNode = FALSE - EndGlobalSection -EndGlobal diff --git a/build/darknet/darknet_no_gpu.vcxproj b/build/darknet/darknet_no_gpu.vcxproj deleted file mode 100644 index fadf7289694..00000000000 --- a/build/darknet/darknet_no_gpu.vcxproj +++ /dev/null @@ -1,311 +0,0 @@ - - - - - Debug - Win32 - - - Debug - x64 - - - Release - Win32 - - - Release - x64 - - - - {621B3914-936D-4BD9-843A-AD50F22B178D} - darknet - 8.1 - - - - Application - true - v140 - MultiByte - - - Application - true - v140 - MultiByte - - - Application - false - v140 - true - MultiByte - - - Application - false - v140 - true - MultiByte - - - - - - - - - - - - - - - - - - $(SolutionDir)$(Platform)\ - $(Platform)\nogpu_$(Configuration)\ - - - $(SolutionDir)$(Platform)\ - $(Platform)\nogpu_$(Configuration)\ - - - - Level3 - Disabled - true - C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories); - _CRTDBG_MAP_ALLOC;_MBCS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - OPENCV; - stdlib.h;crtdbg.h;%(ForcedIncludeFiles) - - - true - C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib;%(AdditionalLibraryDirectories) - ..\..\3rdparty\lib\x86\pthreadVC2.lib;%(AdditionalDependencies) - - - - - Level3 - Disabled - true - $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories) - _MBCS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - OPENCV;CUDNN - true - stdlib.h;crtdbg.h;%(ForcedIncludeFiles) - - - true - $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories) - $(OutDir)\$(TargetName)$(TargetExt) - pthreadVC2.lib;%(AdditionalDependencies) - - - compute_30,sm_30;compute_52,sm_52 - 64 - - - - - Level3 - MaxSpeed - true - true - true - C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories); - _TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - - - - - true - true - true - C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib;%(AdditionalLibraryDirectories) - ..\..\3rdparty\lib\x86\pthreadVC2.lib;%(AdditionalDependencies) - - - - - Level3 - MaxSpeed - true - true - true - $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories) - OPENCV;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - c11 - c++1y - CompileAsCpp - Default - CUDNN - true - - - true - true - true - $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories) - pthreadVC2.lib;%(AdditionalDependencies) - $(OutDir)\$(TargetName)$(TargetExt) - - - 64 - compute_30,sm_30;compute_52,sm_52 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/build/darknet/x64/backup/tmp.txt b/build/darknet/x64/backup/tmp.txt deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/build/darknet/x64/cfg/Gaussian_yolov3_BDD.cfg b/build/darknet/x64/cfg/Gaussian_yolov3_BDD.cfg deleted file mode 100644 index 2ca7ec600e3..00000000000 --- a/build/darknet/x64/cfg/Gaussian_yolov3_BDD.cfg +++ /dev/null @@ -1,807 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=16 -width=512 -height=512 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.0001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 -max_epochs = 300 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -###################### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=57 -activation=linear - - -[Gaussian_yolo] -mask = 6,7,8 -anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291 -classes=10 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -iou_thresh=0.213 -uc_normalizer=1.0 -cls_normalizer=1.0 -iou_normalizer=0.5 -iou_loss=giou -scale_x_y=1.0 -random=1 - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 61 - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=57 -activation=linear - - -[Gaussian_yolo] -mask = 3,4,5 -anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291 -classes=10 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -iou_thresh=0.213 -uc_normalizer=1.0 -cls_normalizer=1.0 -iou_normalizer=0.5 -iou_loss=giou -scale_x_y=1.0 -random=1 - - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 36 - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=57 -activation=linear - - -[Gaussian_yolo] -mask = 0,1,2 -anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291 -classes=10 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -iou_thresh=0.213 -uc_normalizer=1.0 -cls_normalizer=1.0 -iou_normalizer=0.5 -iou_loss=giou -scale_x_y=1.0 -random=1 diff --git a/build/darknet/x64/cfg/alexnet.cfg b/build/darknet/x64/cfg/alexnet.cfg deleted file mode 100644 index 7e5a9b26a57..00000000000 --- a/build/darknet/x64/cfg/alexnet.cfg +++ /dev/null @@ -1,95 +0,0 @@ -[net] -batch=128 -subdivisions=1 -height=227 -width=227 -channels=3 -momentum=0.9 -decay=0.0005 -max_crop=256 - -learning_rate=0.01 -policy=poly -power=4 -max_batches=800000 - -angle=7 -hue = .1 -saturation=.75 -exposure=.75 -aspect=.75 - -[convolutional] -filters=96 -size=11 -stride=4 -pad=0 -activation=relu - -[maxpool] -size=3 -stride=2 -padding=0 - -[convolutional] -filters=256 -size=5 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=3 -stride=2 -padding=0 - -[convolutional] -filters=384 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=384 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=3 -stride=2 -padding=0 - -[connected] -output=4096 -activation=relu - -[dropout] -probability=.5 - -[connected] -output=4096 -activation=relu - -[dropout] -probability=.5 - -[connected] -output=1000 -activation=linear - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/cd53paspp-gamma.cfg b/build/darknet/x64/cfg/cd53paspp-gamma.cfg deleted file mode 100644 index be3dbff6e5a..00000000000 --- a/build/darknet/x64/cfg/cd53paspp-gamma.cfg +++ /dev/null @@ -1,1153 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=512 -height=512 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.00261 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -#cutmix=1 -mosaic=1 - -#:104x104 54:52x52 85:26x26 104:13x13 for 416 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-7 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-10 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-16 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -########################## - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = 85 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = 54 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -########################## - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -scale_x_y = 1.2 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=256 -activation=leaky - -[route] -layers = -1, -16 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -scale_x_y = 1.1 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=leaky - -[route] -layers = -1, -37 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 -scale_x_y = 1.05 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 diff --git a/build/darknet/x64/cfg/cifar.cfg b/build/darknet/x64/cfg/cifar.cfg deleted file mode 100644 index f2c801a5a9e..00000000000 --- a/build/darknet/x64/cfg/cifar.cfg +++ /dev/null @@ -1,126 +0,0 @@ -[net] -batch=128 -subdivisions=1 -height=32 -width=32 -channels=3 -momentum=0.9 -decay=0.0005 - -learning_rate=0.4 -policy=poly -power=4 -max_batches = 50000 - -[crop] -crop_width=28 -crop_height=28 -flip=1 -angle=0 -saturation = 1 -exposure = 1 -noadjust=1 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[dropout] -probability=.5 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[dropout] -probability=.5 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[dropout] -probability=.5 - -[convolutional] -filters=10 -size=1 -stride=1 -pad=1 -activation=leaky - -[avgpool] - -[softmax] -groups=1 - -[cost] - diff --git a/build/darknet/x64/cfg/cifar.test.cfg b/build/darknet/x64/cfg/cifar.test.cfg deleted file mode 100644 index d3afcdd79b7..00000000000 --- a/build/darknet/x64/cfg/cifar.test.cfg +++ /dev/null @@ -1,119 +0,0 @@ -[net] -batch=128 -subdivisions=1 -height=32 -width=32 -channels=3 -momentum=0.9 -decay=0.0005 - -learning_rate=0.4 -policy=poly -power=4 -max_batches = 50000 - - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[dropout] -probability=.5 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[dropout] -probability=.5 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[dropout] -probability=.5 - -[convolutional] -filters=10 -size=1 -stride=1 -pad=1 -activation=leaky - -[avgpool] - -[softmax] -groups=1 -temperature=3 - -[cost] - diff --git a/build/darknet/x64/cfg/coco.data b/build/darknet/x64/cfg/coco.data deleted file mode 100644 index f51d8428839..00000000000 --- a/build/darknet/x64/cfg/coco.data +++ /dev/null @@ -1,8 +0,0 @@ -classes= 80 -train = E:/MSCOCO/trainvalno5k.txt -#train = E:/MSCOCO/5k.txt -valid = E:/MSCOCO/5k.txt -names = data/coco.names -backup = backup -eval=coco - diff --git a/build/darknet/x64/cfg/combine9k.data b/build/darknet/x64/cfg/combine9k.data deleted file mode 100644 index 06a3e76aefa..00000000000 --- a/build/darknet/x64/cfg/combine9k.data +++ /dev/null @@ -1,10 +0,0 @@ -classes= 9418 -#train = /home/pjreddie/data/coco/trainvalno5k.txt -train = data/combine9k.train.list -valid = /home/pjreddie/data/imagenet/det.val.files -labels = data/9k.labels -names = data/9k.names -backup = backup/ -map = data/inet9k.map -eval = imagenet -results = results diff --git a/build/darknet/x64/cfg/crnn.train.cfg b/build/darknet/x64/cfg/crnn.train.cfg deleted file mode 100644 index e0e0b54c4c9..00000000000 --- a/build/darknet/x64/cfg/crnn.train.cfg +++ /dev/null @@ -1,52 +0,0 @@ -[net] -subdivisions=8 -inputs=256 -batch = 128 -momentum=0.9 -decay=0.001 -max_batches = 2000 -time_steps=576 -learning_rate=0.1 -policy=steps -steps=1000,1500 -scales=.1,.1 - -try_fix_nan=1 - -[connected] -output=256 -activation=leaky - -[crnn] -batch_normalize=1 -size=1 -pad=0 -output = 1024 -hidden=1024 -activation=leaky - -[crnn] -batch_normalize=1 -size=1 -pad=0 -output = 1024 -hidden=1024 -activation=leaky - -[crnn] -batch_normalize=1 -size=1 -pad=0 -output = 1024 -hidden=1024 -activation=leaky - -[connected] -output=256 -activation=leaky - -[softmax] - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/csdarknet53-omega.cfg b/build/darknet/x64/cfg/csdarknet53-omega.cfg deleted file mode 100644 index 3a3c0730f66..00000000000 --- a/build/darknet/x64/cfg/csdarknet53-omega.cfg +++ /dev/null @@ -1,762 +0,0 @@ -[net] -# Training -batch=128 -subdivisions=4 - -label_smooth_eps=0.1 - -# Testing -# batch=1 -# subdivisions=1 - -height=256 -width=256 -channels=3 -min_crop=128 -max_crop=448 - -mosaic=1 -cutmix=1 - -burn_in=1000 -learning_rate=0.1 -policy=poly -power=4 -max_batches=1200000 -momentum=0.9 -decay=0.0005 - -angle=7 -hue=.1 -saturation=.75 -exposure=.75 -aspect=.75 - - - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-7 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-10 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-16 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=mish - -[avgpool] - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[softmax] -groups=1 diff --git a/build/darknet/x64/cfg/cspx-p7-mish-omega.cfg b/build/darknet/x64/cfg/cspx-p7-mish-omega.cfg deleted file mode 100644 index 93c4aefa94c..00000000000 --- a/build/darknet/x64/cfg/cspx-p7-mish-omega.cfg +++ /dev/null @@ -1,1459 +0,0 @@ -[net] -# Training -batch=100 -subdivisions=2 - -label_smooth_eps=0.1 - -# Testing -# batch=1 -# subdivisions=1 - -height=320 -width=320 -channels=3 -min_crop=320 -max_crop=640 - -mosaic=1 -cutmix=1 - -burn_in=2000 -learning_rate=0.1 -policy=poly -power=4 -max_batches=1200000 -#max_batches=400000 -momentum=0.9 -decay=0.0005 - -angle=7 -hue=.1 -saturation=.75 -exposure=.75 -aspect=.75 - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=40 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-13 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-49 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-49 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-25 - -[convolutional] -batch_normalize=1 -filters=1280 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-25 - -[convolutional] -batch_normalize=1 -filters=1280 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-25 - -[convolutional] -batch_normalize=1 -filters=1600 -size=1 -stride=1 -pad=1 -activation=mish - -[avgpool] - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[softmax] -groups=1 \ No newline at end of file diff --git a/build/darknet/x64/cfg/cspx-p7-mish.cfg b/build/darknet/x64/cfg/cspx-p7-mish.cfg deleted file mode 100644 index 01be7283680..00000000000 --- a/build/darknet/x64/cfg/cspx-p7-mish.cfg +++ /dev/null @@ -1,2604 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=1536 -height=1536 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -steps=400000,450000 -#max_batches = 770500 -#steps=700000,750000 -policy=steps -scales=.1,.1 - -mosaic=1 -letter_box=1 - -### Start of Backbone ### - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=40 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-13 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-49 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-49 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-25 - -[convolutional] -batch_normalize=1 -filters=1280 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-25 - -[convolutional] -batch_normalize=1 -filters=1280 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-25 - -[convolutional] -batch_normalize=1 -filters=1280 -size=1 -stride=1 -pad=1 -activation=mish - -### End of backbone ### - -### Start of CSPSPP ### - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -13 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -### End of CSPSPP ### - -### Start of CSPPAN ### - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 180 ###P6 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 152 ###P5 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 124 ###P4 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 72 ###P3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=320 -activation=mish - -[route] -layers = -1, 271 ###S4 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, 255 ###S5 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, 239 ###S6 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, 223 ###S7 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -### End of CSPPAN ### - -### Start of YOLO ### - -[route] -layers = 287 ### - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=320 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic - - -[yolo] -mask = 0,1,2,3 -anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408 -classes=80 -num=16 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -scale_x_y = 2.0 -jitter=.1 -objectness_smooth=1 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=4.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -max_delta=40 -new_coords=1 - -[route] -layers = 300 ### - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=640 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic - -[yolo] -mask = 4,5,6,7 -anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408 -classes=80 -num=16 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -scale_x_y = 2.0 -jitter=.1 -objectness_smooth=1 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -max_delta=40 -new_coords=1 - -[route] -layers = 313 ### - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic - -[yolo] -mask = 8,9,10,11 -anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408 -classes=80 -num=16 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -scale_x_y = 2.0 -jitter=.1 -objectness_smooth=1 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.5 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -max_delta=40 -new_coords=1 - -[route] -layers = 326 ### - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic - -[yolo] -mask = 12,13,14,15 -anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408 -classes=80 -num=16 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -scale_x_y = 2.0 -jitter=.1 -objectness_smooth=1 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -max_delta=40 -new_coords=1 - -[route] -layers = 339 ### - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic - -[yolo] -mask = 16,17,18,19 -anchors = 13,17, 22,25, 27,66, 55,41, 57,88, 112,69, 69,177, 136,138, 136,138, 287,114, 134,275, 268,248, 268,248, 232,504, 445,416, 640,640, 812,393, 477,808, 1070,908, 1408,1408 -classes=80 -num=16 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -scale_x_y = 2.0 -jitter=.1 -objectness_smooth=1 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.1 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -max_delta=40 -new_coords=1 - -### End of YOLO ### \ No newline at end of file diff --git a/build/darknet/x64/cfg/cspx-p7-mish_hp.cfg b/build/darknet/x64/cfg/cspx-p7-mish_hp.cfg deleted file mode 100644 index 209fa8f81cb..00000000000 --- a/build/darknet/x64/cfg/cspx-p7-mish_hp.cfg +++ /dev/null @@ -1,2638 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=16 -#width=1536 -#height=1536 -width=896 -height=896 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -mosaic=1 -letter_box=1 - -### Start of Backbone ### - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=40 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-13 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-49 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-49 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-25 - -[convolutional] -batch_normalize=1 -filters=1280 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-25 - -[convolutional] -batch_normalize=1 -filters=1280 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-25 - -[convolutional] -batch_normalize=1 -filters=1280 -size=1 -stride=1 -pad=1 -activation=mish - -### End of backbone ### - -### Start of CSPSPP ### - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -13 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -### End of CSPSPP ### - -### Start of CSPPAN ### - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 180 ###P6 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 152 ###P5 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 124 ###P4 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 72 ###P3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=320 -activation=mish - -[route] -layers = -1, 271 ###S4 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, 255 ###S5 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, 239 ###S6 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, 223 ###S7 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -### End of CSPPAN ### - -### Start of YOLO ### - -[route] -layers = 287 ### - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=320 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -#filters=340 -filters=170 -activation=linear - -#[route] -#layers=-1 - -[yolo] -mask = 0,1 -anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800 -classes=80 -num=16 -#jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -resize=1.5 -scale_x_y = 1.05 -##iou_thresh=0.213 -#cls_normalizer=1.0 -#iou_normalizer=0.07 - -jitter=.1 -#objectness_smooth=1 -##iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=4.0 - -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 - -#counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937 -#max_delta=3 - -[route] -layers = 300 ### - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=640 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -#filters=340 -filters=255 -activation=linear - -[yolo] -mask = 1,2,3 -anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800 -classes=80 -num=16 -#jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -resize=1.5 -scale_x_y = 1.05 -##iou_thresh=0.213 -#cls_normalizer=1.0 -#iou_normalizer=0.07 - -jitter=.1 -#objectness_smooth=1 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 - -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 - -#counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937 -#max_delta=3 - -[route] -layers = 313 ### - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=linear - -[yolo] -mask = 4,5,6,7 -anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800 -classes=80 -num=16 -#jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -resize=1.5 -scale_x_y = 1.05 -##iou_thresh=0.213 -#cls_normalizer=1.0 -#iou_normalizer=0.07 - -jitter=.1 -objectness_smooth=1 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.5 - -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 - -counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937 -max_delta=3 - -[route] -layers = 326 ### - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=linear - -[yolo] -mask = 8,9,10,11 -anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800 -classes=80 -num=16 -#jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -resize=1.5 -scale_x_y = 1.05 -##iou_thresh=0.213 -#cls_normalizer=1.0 -#iou_normalizer=0.07 - -jitter=.1 -objectness_smooth=1 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 - -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 - -counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937 -max_delta=3 - -[route] -layers = 339 ### - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=linear - -[yolo] -mask = 12,13,14,15 -anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800 -classes=80 -num=16 -#jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -resize=1.5 -scale_x_y = 1.05 -##iou_thresh=0.213 -#cls_normalizer=1.0 -#iou_normalizer=0.07 - -jitter=.1 -objectness_smooth=1 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.1 - -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 - -#counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937 -max_delta=3 - -### End of YOLO ### \ No newline at end of file diff --git a/build/darknet/x64/cfg/csresnext50-panet-spp-original-optimal.cfg b/build/darknet/x64/cfg/csresnext50-panet-spp-original-optimal.cfg deleted file mode 100644 index f0b78f973ef..00000000000 --- a/build/darknet/x64/cfg/csresnext50-panet-spp-original-optimal.cfg +++ /dev/null @@ -1,1042 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=608 -height=608 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.00261 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -#cutmix=1 -mosaic=1 - -#19:104x104 38:52x52 65:26x26 80:13x13 for 416 - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -# 1-1 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 1-2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 1-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 1-T - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-16 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -groups=32 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -# 2-1 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 2-2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 2-3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 2-T - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-16 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -# 3-1 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 3-2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 3-3 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 3-4 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 3-5 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 3-T - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-24 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -groups=32 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -# 4-1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 4-2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 4-T - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-12 - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=leaky - -########################## - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = 65 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = 38 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -########################## - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -scale_x_y = 1.2 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=256 -activation=leaky - -[route] -layers = -1, -16 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -scale_x_y = 1.1 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=leaky - -[route] -layers = -1, -37 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 -scale_x_y = 1.05 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 - diff --git a/build/darknet/x64/cfg/csresnext50-panet-spp.cfg b/build/darknet/x64/cfg/csresnext50-panet-spp.cfg deleted file mode 100644 index 261d35b96d7..00000000000 --- a/build/darknet/x64/cfg/csresnext50-panet-spp.cfg +++ /dev/null @@ -1,1018 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=16 -width=512 -height=512 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -#19:104x104 38:52x52 65:26x26 80:13x13 for 416 - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -# 1-1 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 1-2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 1-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 1-T - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-16 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -groups=32 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -# 2-1 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 2-2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 2-3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 2-T - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-16 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -# 3-1 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 3-2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 3-3 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 3-4 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 3-5 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 3-T - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-24 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -groups=32 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -# 4-1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 4-2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -groups=32 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -# 4-T - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-12 - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=leaky - -########################## - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = 65 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = 38 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -########################## - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=256 -activation=leaky - -[route] -layers = -1, -16 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=leaky - -[route] -layers = -1, -37 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 diff --git a/build/darknet/x64/cfg/darknet.cfg b/build/darknet/x64/cfg/darknet.cfg deleted file mode 100644 index 60b939a38ff..00000000000 --- a/build/darknet/x64/cfg/darknet.cfg +++ /dev/null @@ -1,111 +0,0 @@ -[net] -batch=128 -subdivisions=1 -height=224 -width=224 -channels=3 -momentum=0.9 -decay=0.0005 -max_crop=320 - -learning_rate=0.1 -policy=poly -power=4 -max_batches=1600000 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 -padding=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=leaky - -[avgpool] - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/darknet19.cfg b/build/darknet/x64/cfg/darknet19.cfg deleted file mode 100644 index bf73fb7b48a..00000000000 --- a/build/darknet/x64/cfg/darknet19.cfg +++ /dev/null @@ -1,194 +0,0 @@ -[net] -batch=128 -subdivisions=1 -height=224 -width=224 -channels=3 -momentum=0.9 -decay=0.0005 -max_crop=448 - -learning_rate=0.1 -policy=poly -power=4 -max_batches=1600000 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[avgpool] - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/darknet19_448.cfg b/build/darknet/x64/cfg/darknet19_448.cfg deleted file mode 100644 index 1918a8b2d62..00000000000 --- a/build/darknet/x64/cfg/darknet19_448.cfg +++ /dev/null @@ -1,202 +0,0 @@ -[net] -#batch=128 -#subdivisions=4 -batch=1 -subdivisions=1 -height=448 -width=448 -max_crop=512 -channels=3 -momentum=0.9 -decay=0.0005 - -learning_rate=0.001 -policy=poly -power=4 -max_batches=100000 - -angle=7 -hue = .1 -saturation=.75 -exposure=.75 -aspect=.75 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[avgpool] - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/darknet53.cfg b/build/darknet/x64/cfg/darknet53.cfg deleted file mode 100644 index a1f084a943f..00000000000 --- a/build/darknet/x64/cfg/darknet53.cfg +++ /dev/null @@ -1,566 +0,0 @@ -[net] -# Training -batch=128 -subdivisions=8 - -# Testing -#batch=1 -#subdivisions=1 - -height=256 -width=256 -channels=3 -min_crop=128 -max_crop=448 - -burn_in=1000 -learning_rate=0.1 -policy=poly -power=4 -max_batches=800000 -momentum=0.9 -decay=0.0005 - -angle=7 -hue=.1 -saturation=.75 -exposure=.75 -aspect=.75 - - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[avgpool] - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[softmax] -groups=1 - diff --git a/build/darknet/x64/cfg/darknet53_448_xnor.cfg b/build/darknet/x64/cfg/darknet53_448_xnor.cfg deleted file mode 100644 index a48ef698a47..00000000000 --- a/build/darknet/x64/cfg/darknet53_448_xnor.cfg +++ /dev/null @@ -1,619 +0,0 @@ -[net] -# Training - start training with darknet53.weights -batch=120 -subdivisions=20 - -# Testing -#batch=1 -#subdivisions=1 - -height=448 -width=448 -channels=3 -min_crop=448 -max_crop=512 - -burn_in=1000 -learning_rate=0.1 -policy=poly -power=4 -max_batches=100000 -momentum=0.9 -decay=0.0005 - - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -xnor=1 -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -xnor=1 -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -xnor=1 -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -xnor=1 -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[avgpool] - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[softmax] -groups=1 - diff --git a/build/darknet/x64/cfg/densenet201.cfg b/build/darknet/x64/cfg/densenet201.cfg deleted file mode 100644 index 5e1e7dd1fda..00000000000 --- a/build/darknet/x64/cfg/densenet201.cfg +++ /dev/null @@ -1,1954 +0,0 @@ -[net] -# Training -# batch=128 -# subdivisions=4 - -# Testing -batch=1 -subdivisions=1 - -height=256 -width=256 -max_crop=448 -channels=3 -momentum=0.9 -decay=0.0005 - -burn_in=1000 -learning_rate=0.1 -policy=poly -power=4 -max_batches=1600000 - -angle=7 -hue=.1 -saturation=.75 -exposure=.75 -aspect=.75 - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[avgpool] - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/efficientnet-lite3.cfg b/build/darknet/x64/cfg/efficientnet-lite3.cfg deleted file mode 100644 index e76bbe3085d..00000000000 --- a/build/darknet/x64/cfg/efficientnet-lite3.cfg +++ /dev/null @@ -1,1009 +0,0 @@ -# https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/lite/efficientnet_lite_builder.py -# (width_coefficient, depth_coefficient, resolution, dropout_rate) -# 'efficientnet-lite3': (1.2, 1.4, 280, 0.3), -# -#_DEFAULT_BLOCKS_ARGS = [ -# 'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25', -# 'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25', -# 'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25', -# 'r1_k3_s11_e6_i192_o320_se0.25', -#] - -[net] -# Training -batch=120 -subdivisions=6 -height=288 -width=288 -channels=3 -momentum=0.9 -decay=0.0005 -max_crop=320 - -cutmix=1 -mosaic=1 -label_smooth_eps=0.1 - -burn_in=1000 -learning_rate=0.256 -policy=step -step=10000 -scale=0.96 -max_batches=1600000 -momentum=0.9 -decay=0.00005 - -angle=7 -hue=.1 -saturation=.75 -exposure=.75 -aspect=.75 - - -### CONV1 - 1 (1) -# conv1 -[convolutional] -filters=40 #32 -size=3 -pad=1 -stride=2 -batch_normalize=1 -activation=relu6 - - -### CONV2 - MBConv1 - 1 (2) -# conv2_1_expand -[convolutional] -filters=40 #32 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv2_1_dwise -[convolutional] -groups=40 #32 -filters=40 #32 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv2_1_linear -[convolutional] -filters=16 #16 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV2 - MBConv1 - 2 (2) -# conv2_1_expand -[convolutional] -filters=40 #32 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv2_1_dwise -[convolutional] -groups=40 #32 -filters=40 #32 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv2_1_linear -[convolutional] -filters=16 #16 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV3 - MBConv6 - 1 (3) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_3_1 -[shortcut] -from=-5 -activation=linear - -# conv2_2_expand -[convolutional] -filters=112 #96 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv2_2_dwise -[convolutional] -groups=112 #96 -filters=112 #96 -size=3 -pad=1 -stride=2 -batch_normalize=1 -activation=relu6 - -# conv2_2_linear -[convolutional] -filters=32 #24 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV3 - MBConv6 - 2 (3) -# conv3_1_expand -[convolutional] -filters=176 #144 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv3_1_dwise -[convolutional] -groups=176 #144 -filters=176 #144 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv3_1_linear -[convolutional] -filters=32 #24 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV3 - MBConv6 - 3 (3) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_3_1 -[shortcut] -from=-5 -activation=linear - -# conv3_1_expand -[convolutional] -filters=176 #144 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv3_1_dwise -[convolutional] -groups=176 #144 -filters=176 #144 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv3_1_linear -[convolutional] -filters=32 #24 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV4 - MBConv6 - 1 (3) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_3_1 -[shortcut] -from=-5 -activation=linear - -# conv_3_2_expand -[convolutional] -filters=176 #144 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_3_2_dwise -[convolutional] -groups=176 #144 -filters=176 #144 -size=5 -pad=1 -stride=2 -batch_normalize=1 -activation=relu6 - -# conv_3_2_linear -[convolutional] -filters=48 #40 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV4 - MBConv6 - 2 (3) -# conv_4_1_expand -[convolutional] -filters=232 #192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_4_1_dwise -[convolutional] -groups=232 #192 -filters=232 #192 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_4_1_linear -[convolutional] -filters=48 #40 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV4 - MBConv6 - 3 (3) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_4_2 -[shortcut] -from=-5 -activation=linear - -# conv_4_1_expand -[convolutional] -filters=232 #192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_4_1_dwise -[convolutional] -groups=232 #192 -filters=232 #192 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_4_1_linear -[convolutional] -filters=48 #40 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - - -### CONV5 - MBConv6 - 1 (5) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_4_2 -[shortcut] -from=-5 -activation=linear - -# conv_4_3_expand -[convolutional] -filters=232 #192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_4_3_dwise -[convolutional] -groups=232 #192 -filters=232 #192 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_4_3_linear -[convolutional] -filters=96 #80 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV5 - MBConv6 - 2 (5) -# conv_4_4_expand -[convolutional] -filters=464 #384 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_4_4_dwise -[convolutional] -groups=464 #384 -filters=464 #384 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_4_4_linear -[convolutional] -filters=96 #80 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV5 - MBConv6 - 3 (5) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_4_4 -[shortcut] -from=-5 -activation=linear - -# conv_4_5_expand -[convolutional] -filters=464 #384 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_4_5_dwise -[convolutional] -groups=464 #384 -filters=464 #384 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_4_5_linear -[convolutional] -filters=96 #80 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV5 - MBConv6 - 4 (5) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_4_4 -[shortcut] -from=-5 -activation=linear - -# conv_4_5_expand -[convolutional] -filters=464 #384 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_4_5_dwise -[convolutional] -groups=464 #384 -filters=464 #384 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_4_5_linear -[convolutional] -filters=96 #80 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV5 - MBConv6 - 5 (5) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_4_4 -[shortcut] -from=-5 -activation=linear - -# conv_4_5_expand -[convolutional] -filters=464 #384 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_4_5_dwise -[convolutional] -groups=464 #384 -filters=464 #384 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_4_5_linear -[convolutional] -filters=96 #80 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV6 - MBConv6 - 1 (5) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_4_6 -[shortcut] -from=-5 -activation=linear - -# conv_4_7_expand -[convolutional] -filters=464 #384 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_4_7_dwise -[convolutional] -groups=464 #384 -filters=464 #384 -size=5 -pad=1 -stride=2 -batch_normalize=1 -activation=relu6 - -# conv_4_7_linear -[convolutional] -filters=136 #112 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV6 - MBConv6 - 2 (5) -# conv_5_1_expand -[convolutional] -filters=688 #576 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_5_1_dwise -[convolutional] -groups=688 #576 -filters=688 #576 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_5_1_linear -[convolutional] -filters=136 #112 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV6 - MBConv6 - 3 (5) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_5_1 -[shortcut] -from=-5 -activation=linear - -# conv_5_2_expand -[convolutional] -filters=688 #576 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_5_2_dwise -[convolutional] -groups=688 #576 -filters=688 #576 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_5_2_linear -[convolutional] -filters=136 #112 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV6 - MBConv6 - 4 (5) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_5_1 -[shortcut] -from=-5 -activation=linear - -# conv_5_2_expand -[convolutional] -filters=688 #576 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_5_2_dwise -[convolutional] -groups=688 #576 -filters=688 #576 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_5_2_linear -[convolutional] -filters=136 #112 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV6 - MBConv6 - 5 (5) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_5_1 -[shortcut] -from=-5 -activation=linear - -# conv_5_2_expand -[convolutional] -filters=688 #576 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_5_2_dwise -[convolutional] -groups=688 #576 -filters=688 #576 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_5_2_linear -[convolutional] -filters=136 #112 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV7 - MBConv6 - 1 (6) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_5_2 -[shortcut] -from=-5 -activation=linear - -# conv_5_3_expand -[convolutional] -filters=688 #576 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_5_3_dwise -[convolutional] -groups=688 #576 -filters=688 #576 -size=5 -pad=1 -stride=2 -batch_normalize=1 -activation=relu6 - - -# conv_5_3_linear -[convolutional] -filters=232 #192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 2 (6) -# conv_6_1_expand -[convolutional] -filters=1152 #960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_6_1_dwise -[convolutional] -groups=1152 #960 -filters=1152 #960 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_6_1_linear -[convolutional] -filters=232 #192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 3 (6) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_6_1 -[shortcut] -from=-5 -activation=linear - -# conv_6_2_expand -[convolutional] -filters=1152 #960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_6_2_dwise -[convolutional] -groups=1152 #960 -filters=1152 #960 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_6_2_linear -[convolutional] -filters=232 #192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 4 (6) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_6_1 -[shortcut] -from=-5 -activation=linear - -# conv_6_2_expand -[convolutional] -filters=1152 #960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_6_2_dwise -[convolutional] -groups=1152 #960 -filters=1152 #960 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_6_2_linear -[convolutional] -filters=232 #192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 5 (6) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_6_1 -[shortcut] -from=-5 -activation=linear - -# conv_6_2_expand -[convolutional] -filters=1152 #960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_6_2_dwise -[convolutional] -groups=1152 #960 -filters=1152 #960 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - -# conv_6_2_linear -[convolutional] -filters=232 #192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 6 (6) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_6_1 -[shortcut] -from=-5 -activation=linear - -# conv_6_2_expand -[convolutional] -filters=1152 #960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_6_2_dwise -[convolutional] -groups=1152 #960 -filters=1152 #960 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - - - -# conv_6_2_linear -[convolutional] -filters=232 #192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV8 - MBConv6 - 1 (1) -# dropout only before residual connection -[dropout] -probability=.3 - -# block_6_2 -[shortcut] -from=-5 -activation=linear - -# conv_6_3_expand -[convolutional] -filters=1152 #960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - -# conv_6_3_dwise -[convolutional] -groups=1152 #960 -filters=1152 #960 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=relu6 - - - -# conv_6_3_linear -[convolutional] -filters=384 #320 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - - -### CONV9 - Conv2d 1x1 -# conv_6_4 -[convolutional] -filters=1536 #1280 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=relu6 - - -[avgpool] - -[dropout] -probability=.3 - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=0 -activation=linear - -[softmax] -groups=1 - -#[cost] -#type=sse - diff --git a/build/darknet/x64/cfg/efficientnet_b0.cfg b/build/darknet/x64/cfg/efficientnet_b0.cfg deleted file mode 100644 index 70f780692a6..00000000000 --- a/build/darknet/x64/cfg/efficientnet_b0.cfg +++ /dev/null @@ -1,1009 +0,0 @@ -[net] -# Training -batch=120 -subdivisions=4 -# Testing -#batch=1 -#subdivisions=1 -height=224 -width=224 -channels=3 -momentum=0.9 -decay=0.0005 -max_crop=256 -#mixup=4 -blur=1 -cutmix=1 -mosaic=1 - -burn_in=1000 -#burn_in=100 -learning_rate=0.256 -policy=poly -power=4 -max_batches=800000 -momentum=0.9 -decay=0.00005 - -angle=7 -hue=.1 -saturation=.75 -exposure=.75 -aspect=.75 - - -### CONV1 - 1 (1) -# conv1 -[convolutional] -filters=32 -size=3 -pad=1 -stride=2 -batch_normalize=1 -activation=swish - - -### CONV2 - MBConv1 - 1 (1) -# conv2_1_expand -[convolutional] -filters=32 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv2_1_dwise -[convolutional] -groups=32 -filters=32 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=4 (recommended r=16) -[convolutional] -filters=8 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=32 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv2_1_linear -[convolutional] -filters=16 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV3 - MBConv6 - 1 (2) -# conv2_2_expand -[convolutional] -filters=96 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv2_2_dwise -[convolutional] -groups=96 -filters=96 -size=3 -pad=1 -stride=2 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=8 (recommended r=16) -[convolutional] -filters=16 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=96 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv2_2_linear -[convolutional] -filters=24 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV3 - MBConv6 - 2 (2) -# conv3_1_expand -[convolutional] -filters=144 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv3_1_dwise -[convolutional] -groups=144 -filters=144 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=8 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=144 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv3_1_linear -[convolutional] -filters=24 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV4 - MBConv6 - 1 (2) -# dropout only before residual connection -[dropout] -probability=.2 - -# block_3_1 -[shortcut] -from=-9 -activation=linear - -# conv_3_2_expand -[convolutional] -filters=144 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_3_2_dwise -[convolutional] -groups=144 -filters=144 -size=5 -pad=1 -stride=2 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=8 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=144 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_3_2_linear -[convolutional] -filters=40 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV4 - MBConv6 - 2 (2) -# conv_4_1_expand -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_4_1_dwise -[convolutional] -groups=192 -filters=192 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=16 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=192 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_4_1_linear -[convolutional] -filters=40 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - - -### CONV5 - MBConv6 - 1 (3) -# dropout only before residual connection -[dropout] -probability=.2 - -# block_4_2 -[shortcut] -from=-9 -activation=linear - -# conv_4_3_expand -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_4_3_dwise -[convolutional] -groups=192 -filters=192 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=16 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=192 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_4_3_linear -[convolutional] -filters=80 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV5 - MBConv6 - 2 (3) -# conv_4_4_expand -[convolutional] -filters=384 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_4_4_dwise -[convolutional] -groups=384 -filters=384 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=24 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=384 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_4_4_linear -[convolutional] -filters=80 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV5 - MBConv6 - 3 (3) -# dropout only before residual connection -[dropout] -probability=.2 - -# block_4_4 -[shortcut] -from=-9 -activation=linear - -# conv_4_5_expand -[convolutional] -filters=384 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_4_5_dwise -[convolutional] -groups=384 -filters=384 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=24 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=384 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_4_5_linear -[convolutional] -filters=80 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV6 - MBConv6 - 1 (3) -# dropout only before residual connection -[dropout] -probability=.2 - -# block_4_6 -[shortcut] -from=-9 -activation=linear - -# conv_4_7_expand -[convolutional] -filters=384 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_4_7_dwise -[convolutional] -groups=384 -filters=384 -size=5 -pad=1 -stride=2 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=24 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=384 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_4_7_linear -[convolutional] -filters=112 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV6 - MBConv6 - 2 (3) -# conv_5_1_expand -[convolutional] -filters=576 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_5_1_dwise -[convolutional] -groups=576 -filters=576 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=32 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=576 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_5_1_linear -[convolutional] -filters=112 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV6 - MBConv6 - 3 (3) -# dropout only before residual connection -[dropout] -probability=.2 - -# block_5_1 -[shortcut] -from=-9 -activation=linear - -# conv_5_2_expand -[convolutional] -filters=576 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_5_2_dwise -[convolutional] -groups=576 -filters=576 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=32 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=576 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_5_2_linear -[convolutional] -filters=112 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 1 (4) -# dropout only before residual connection -[dropout] -probability=.2 - -# block_5_2 -[shortcut] -from=-9 -activation=linear - -# conv_5_3_expand -[convolutional] -filters=576 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_5_3_dwise -[convolutional] -groups=576 -filters=576 -size=5 -pad=1 -stride=2 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=32 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=576 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_5_3_linear -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 2 (4) -# conv_6_1_expand -[convolutional] -filters=960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_6_1_dwise -[convolutional] -groups=960 -filters=960 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=64 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=960 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_6_1_linear -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 3 (4) -# dropout only before residual connection -[dropout] -probability=.2 - -# block_6_1 -[shortcut] -from=-9 -activation=linear - -# conv_6_2_expand -[convolutional] -filters=960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_6_2_dwise -[convolutional] -groups=960 -filters=960 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=64 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=960 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_6_2_linear -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 4 (4) -# dropout only before residual connection -[dropout] -probability=.2 - -# block_6_1 -[shortcut] -from=-9 -activation=linear - -# conv_6_2_expand -[convolutional] -filters=960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_6_2_dwise -[convolutional] -groups=960 -filters=960 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=64 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=960 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_6_2_linear -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV8 - MBConv6 - 1 (1) -# dropout only before residual connection -[dropout] -probability=.2 - -# block_6_2 -[shortcut] -from=-9 -activation=linear - -# conv_6_3_expand -[convolutional] -filters=960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_6_3_dwise -[convolutional] -groups=960 -filters=960 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=64 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=960 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_6_3_linear -[convolutional] -filters=320 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV9 - Conv2d 1x1 -# conv_6_4 -[convolutional] -filters=1280 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - - -[avgpool] - -[dropout] -probability=.2 - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=0 -activation=linear - -[softmax] -groups=1 - -#[cost] -#type=sse - diff --git a/build/darknet/x64/cfg/enet-coco.cfg b/build/darknet/x64/cfg/enet-coco.cfg deleted file mode 100644 index b530ed360b3..00000000000 --- a/build/darknet/x64/cfg/enet-coco.cfg +++ /dev/null @@ -1,1072 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -### CONV1 - 1 (1) -# conv1 -[convolutional] -filters=32 -size=3 -pad=1 -stride=2 -batch_normalize=1 -activation=swish - - -### CONV2 - MBConv1 - 1 (1) -# conv2_1_expand -[convolutional] -filters=32 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv2_1_dwise -[convolutional] -groups=32 -filters=32 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=4 (recommended r=16) -[convolutional] -filters=8 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=32 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv2_1_linear -[convolutional] -filters=16 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV3 - MBConv6 - 1 (2) -# conv2_2_expand -[convolutional] -filters=96 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv2_2_dwise -[convolutional] -groups=96 -filters=96 -size=3 -pad=1 -stride=2 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=8 (recommended r=16) -[convolutional] -filters=16 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=96 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv2_2_linear -[convolutional] -filters=24 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV3 - MBConv6 - 2 (2) -# conv3_1_expand -[convolutional] -filters=144 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv3_1_dwise -[convolutional] -groups=144 -filters=144 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=8 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=144 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv3_1_linear -[convolutional] -filters=24 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV4 - MBConv6 - 1 (2) -# dropout only before residual connection -[dropout] -probability=.0 - -# block_3_1 -[shortcut] -from=-9 -activation=linear - -# conv_3_2_expand -[convolutional] -filters=144 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_3_2_dwise -[convolutional] -groups=144 -filters=144 -size=5 -pad=1 -stride=2 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=8 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=144 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_3_2_linear -[convolutional] -filters=40 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV4 - MBConv6 - 2 (2) -# conv_4_1_expand -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_4_1_dwise -[convolutional] -groups=192 -filters=192 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=16 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=192 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_4_1_linear -[convolutional] -filters=40 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - - -### CONV5 - MBConv6 - 1 (3) -# dropout only before residual connection -[dropout] -probability=.0 - -# block_4_2 -[shortcut] -from=-9 -activation=linear - -# conv_4_3_expand -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_4_3_dwise -[convolutional] -groups=192 -filters=192 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=16 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=192 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_4_3_linear -[convolutional] -filters=80 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV5 - MBConv6 - 2 (3) -# conv_4_4_expand -[convolutional] -filters=384 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_4_4_dwise -[convolutional] -groups=384 -filters=384 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=24 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=384 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_4_4_linear -[convolutional] -filters=80 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV5 - MBConv6 - 3 (3) -# dropout only before residual connection -[dropout] -probability=.0 - -# block_4_4 -[shortcut] -from=-9 -activation=linear - -# conv_4_5_expand -[convolutional] -filters=384 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_4_5_dwise -[convolutional] -groups=384 -filters=384 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=24 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=384 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_4_5_linear -[convolutional] -filters=80 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV6 - MBConv6 - 1 (3) -# dropout only before residual connection -[dropout] -probability=.0 - -# block_4_6 -[shortcut] -from=-9 -activation=linear - -# conv_4_7_expand -[convolutional] -filters=384 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_4_7_dwise -[convolutional] -groups=384 -filters=384 -size=5 -pad=1 -stride=2 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=24 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=384 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_4_7_linear -[convolutional] -filters=112 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV6 - MBConv6 - 2 (3) -# conv_5_1_expand -[convolutional] -filters=576 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_5_1_dwise -[convolutional] -groups=576 -filters=576 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=32 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=576 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_5_1_linear -[convolutional] -filters=112 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV6 - MBConv6 - 3 (3) -# dropout only before residual connection -[dropout] -probability=.0 - -# block_5_1 -[shortcut] -from=-9 -activation=linear - -# conv_5_2_expand -[convolutional] -filters=576 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_5_2_dwise -[convolutional] -groups=576 -filters=576 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=32 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=576 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_5_2_linear -[convolutional] -filters=112 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 1 (4) -# dropout only before residual connection -[dropout] -probability=.0 - -# block_5_2 -[shortcut] -from=-9 -activation=linear - -# conv_5_3_expand -[convolutional] -filters=576 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_5_3_dwise -[convolutional] -groups=576 -filters=576 -size=5 -pad=1 -stride=2 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=32 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=576 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_5_3_linear -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 2 (4) -# conv_6_1_expand -[convolutional] -filters=960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_6_1_dwise -[convolutional] -groups=960 -filters=960 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=64 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=960 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_6_1_linear -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 3 (4) -# dropout only before residual connection -[dropout] -probability=.0 - -# block_6_1 -[shortcut] -from=-9 -activation=linear - -# conv_6_2_expand -[convolutional] -filters=960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_6_2_dwise -[convolutional] -groups=960 -filters=960 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=64 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=960 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_6_2_linear -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV7 - MBConv6 - 4 (4) -# dropout only before residual connection -[dropout] -probability=.0 - -# block_6_1 -[shortcut] -from=-9 -activation=linear - -# conv_6_2_expand -[convolutional] -filters=960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_6_2_dwise -[convolutional] -groups=960 -filters=960 -size=5 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=64 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=960 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_6_2_linear -[convolutional] -filters=192 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - - -### CONV8 - MBConv6 - 1 (1) -# dropout only before residual connection -[dropout] -probability=.0 - -# block_6_2 -[shortcut] -from=-9 -activation=linear - -# conv_6_3_expand -[convolutional] -filters=960 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -# conv_6_3_dwise -[convolutional] -groups=960 -filters=960 -size=3 -stride=1 -pad=1 -batch_normalize=1 -activation=swish - - -#squeeze-n-excitation -[avgpool] - -# squeeze ratio r=16 (recommended r=16) -[convolutional] -filters=64 -size=1 -stride=1 -activation=swish - -# excitation -[convolutional] -filters=960 -size=1 -stride=1 -activation=logistic - -# multiply channels -[scale_channels] -from=-4 - - -# conv_6_3_linear -[convolutional] -filters=320 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=linear - - -### CONV9 - Conv2d 1x1 -# conv_6_4 -[convolutional] -filters=1280 -size=1 -stride=1 -pad=0 -batch_normalize=1 -activation=swish - -########################## - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -activation=leaky -from=-2 - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - - -[yolo] -mask = 3,4,5 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=0 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[shortcut] -activation=leaky -from=90 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -activation=leaky -from=-3 - -[shortcut] -activation=leaky -from=90 - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - -[yolo] -mask = 1,2,3 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=0 - diff --git a/build/darknet/x64/cfg/extraction.cfg b/build/darknet/x64/cfg/extraction.cfg deleted file mode 100644 index 94e106754ef..00000000000 --- a/build/darknet/x64/cfg/extraction.cfg +++ /dev/null @@ -1,206 +0,0 @@ -[net] -batch=128 -subdivisions=1 -height=224 -width=224 -max_crop=320 -channels=3 -momentum=0.9 -decay=0.0005 - -learning_rate=0.1 -policy=poly -power=4 -max_batches=1600000 - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=192 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=leaky - -[avgpool] - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/extraction.conv.cfg b/build/darknet/x64/cfg/extraction.conv.cfg deleted file mode 100644 index 2a7d09ec80f..00000000000 --- a/build/darknet/x64/cfg/extraction.conv.cfg +++ /dev/null @@ -1,179 +0,0 @@ -[net] -batch=1 -subdivisions=1 -height=256 -width=256 -channels=3 -momentum=0.9 -decay=0.0005 - -learning_rate=0.5 -policy=poly -power=6 -max_batches=500000 - -[convolutional] -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[avgpool] - -[connected] -output=1000 -activation=leaky - -[softmax] -groups=1 - diff --git a/build/darknet/x64/cfg/extraction22k.cfg b/build/darknet/x64/cfg/extraction22k.cfg deleted file mode 100644 index 4cec6da9605..00000000000 --- a/build/darknet/x64/cfg/extraction22k.cfg +++ /dev/null @@ -1,209 +0,0 @@ -[net] -batch=128 -subdivisions=1 -height=224 -width=224 -max_crop=320 -channels=3 -momentum=0.9 -decay=0.0005 - -learning_rate=0.01 -max_batches = 0 -policy=steps -steps=444000,590000,970000 -scales=.5,.2,.1 - -#policy=sigmoid -#gamma=.00008 -#step=100000 -#max_batches=200000 - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=192 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=3 -stride=1 -pad=1 -activation=leaky - -[avgpool] - -[connected] -output=21842 -activation=leaky - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/go.test.cfg b/build/darknet/x64/cfg/go.test.cfg deleted file mode 100644 index 6b92d335cd1..00000000000 --- a/build/darknet/x64/cfg/go.test.cfg +++ /dev/null @@ -1,131 +0,0 @@ -[net] -batch=1 -subdivisions=1 -height=19 -width=19 -channels=1 -momentum=0.9 -decay=0.0005 - -learning_rate=0.1 -policy=poly -power=4 -max_batches=400000 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - -[convolutional] -filters=192 -size=3 -stride=1 -pad=1 -activation=relu -batch_normalize=1 - - -[convolutional] -filters=1 -size=1 -stride=1 -pad=1 -activation=linear - -[softmax] - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/gru.cfg b/build/darknet/x64/cfg/gru.cfg deleted file mode 100644 index f9a06999e62..00000000000 --- a/build/darknet/x64/cfg/gru.cfg +++ /dev/null @@ -1,34 +0,0 @@ -[net] -subdivisions=1 -inputs=256 -batch = 1 -momentum=0.9 -decay=0.001 -time_steps=1 -learning_rate=0.5 - -policy=poly -power=4 -max_batches=2000 - -[gru] -batch_normalize=1 -output = 1024 - -[gru] -batch_normalize=1 -output = 1024 - -[gru] -batch_normalize=1 -output = 1024 - -[connected] -output=256 -activation=linear - -[softmax] - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/imagenet1k.data b/build/darknet/x64/cfg/imagenet1k.data deleted file mode 100644 index b01f2facec9..00000000000 --- a/build/darknet/x64/cfg/imagenet1k.data +++ /dev/null @@ -1,9 +0,0 @@ -classes=1000 -train = data/imagenet1k.train.list -#train = data/inet.val.list -valid = data/inet.val.list -backup = backup -labels = data/imagenet.labels.list -names = data/imagenet.shortnames.list -top=5 - diff --git a/build/darknet/x64/cfg/imagenet22k.dataset b/build/darknet/x64/cfg/imagenet22k.dataset deleted file mode 100644 index 920785d603b..00000000000 --- a/build/darknet/x64/cfg/imagenet22k.dataset +++ /dev/null @@ -1,8 +0,0 @@ -classes=21842 -train = /data/imagenet/imagenet22k.train.list -valid = /data/imagenet/imagenet22k.valid.list -backup = /home/pjreddie/backup/ -labels = data/imagenet.labels.list -names = data/imagenet.shortnames.list -top = 5 - diff --git a/build/darknet/x64/cfg/imagenet9k.hierarchy.dataset b/build/darknet/x64/cfg/imagenet9k.hierarchy.dataset deleted file mode 100644 index 41fb71b0655..00000000000 --- a/build/darknet/x64/cfg/imagenet9k.hierarchy.dataset +++ /dev/null @@ -1,9 +0,0 @@ -classes=9418 -train = data/9k.train.list -valid = /data/imagenet/imagenet1k.valid.list -leaves = data/imagenet1k.labels -backup = /home/pjreddie/backup/ -labels = data/9k.labels -names = data/9k.names -top=5 - diff --git a/build/darknet/x64/cfg/jnet-conv.cfg b/build/darknet/x64/cfg/jnet-conv.cfg deleted file mode 100644 index 056f82aa6e2..00000000000 --- a/build/darknet/x64/cfg/jnet-conv.cfg +++ /dev/null @@ -1,118 +0,0 @@ -[net] -batch=1 -subdivisions=1 -height=10 -width=10 -channels=3 -learning_rate=0.01 -momentum=0.9 -decay=0.0005 - -[convolutional] -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -stride=2 -size=2 - -[convolutional] -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -stride=2 -size=2 - -[convolutional] -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -stride=2 -size=2 - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -stride=2 -size=2 - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -stride=2 -size=2 - -[convolutional] -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - diff --git a/build/darknet/x64/cfg/lstm.train.cfg b/build/darknet/x64/cfg/lstm.train.cfg deleted file mode 100644 index f0d4721d414..00000000000 --- a/build/darknet/x64/cfg/lstm.train.cfg +++ /dev/null @@ -1,35 +0,0 @@ -[net] -subdivisions=8 -inputs=256 -batch = 128 -momentum=0.9 -decay=0.001 -max_batches = 2000 -time_steps=576 -learning_rate=0.5 -policy=steps -burn_in=10 -steps=1000,1500 -scales=.1,.1 - -[lstm] -batch_normalize=1 -output = 1024 - -[lstm] -batch_normalize=1 -output = 1024 - -[lstm] -batch_normalize=1 -output = 1024 - -[connected] -output=256 -activation=leaky - -[softmax] - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/openimages.data b/build/darknet/x64/cfg/openimages.data deleted file mode 100644 index fa80e5ab7d8..00000000000 --- a/build/darknet/x64/cfg/openimages.data +++ /dev/null @@ -1,8 +0,0 @@ -classes= 601 -train = /home/pjreddie/data/openimsv4/openimages.train.list -#valid = coco_testdev -valid = data/coco_val_5k.list -names = data/openimages.names -backup = /home/pjreddie/backup/ -eval=coco - diff --git a/build/darknet/x64/cfg/resnet101.cfg b/build/darknet/x64/cfg/resnet101.cfg deleted file mode 100644 index 48dffbf2ec5..00000000000 --- a/build/darknet/x64/cfg/resnet101.cfg +++ /dev/null @@ -1,990 +0,0 @@ -[net] -# Training -batch=128 -subdivisions=2 - -# Testing -#batch=1 -#subdivisions=1 - -height=256 -width=256 -channels=3 -min_crop=128 -max_crop=448 - -burn_in=1000 -learning_rate=0.1 -policy=poly -power=4 -max_batches=800000 -momentum=0.9 -decay=0.0005 - -angle=7 -hue=.1 -saturation=.75 -exposure=.75 -aspect=.75 - - - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -# Conv 4 -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -#Conv 5 -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - - - - - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[avgpool] - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/resnet152.cfg b/build/darknet/x64/cfg/resnet152.cfg deleted file mode 100644 index d5fe90948a2..00000000000 --- a/build/darknet/x64/cfg/resnet152.cfg +++ /dev/null @@ -1,1463 +0,0 @@ -[net] -# Training -# batch=128 -# subdivisions=8 - -# Testing -batch=1 -subdivisions=1 - -height=256 -width=256 -max_crop=448 -channels=3 -momentum=0.9 -decay=0.0005 - -burn_in=1000 -learning_rate=0.1 -policy=poly -power=4 -max_batches=1600000 - -angle=7 -hue=.1 -saturation=.75 -exposure=.75 -aspect=.75 - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -# Conv 4 -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -#Conv 5 -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - - - - - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[avgpool] - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/resnet152_trident.cfg b/build/darknet/x64/cfg/resnet152_trident.cfg deleted file mode 100644 index 1ac8cc73a78..00000000000 --- a/build/darknet/x64/cfg/resnet152_trident.cfg +++ /dev/null @@ -1,2177 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=64 -width=608 -height=608 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - - -learning_rate=0.001 -burn_in=1000 -max_batches = 10000 - -policy=sgdr -sgdr_cycle=1000 -sgdr_mult=2 -steps=4000,6000,8000,9000 -#scales=1, 1, 0.1, 0.1 - - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-2 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -# Conv 4 -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-2 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - - - -### TridentNet - large objects - Start - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -dilation=3 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -dilation=3 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -dilation=3 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -dilation=3 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -dilation=3 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -dilation=3 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -dilation=3 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -## Conv 5 -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -dilation=3 -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-2 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -dilation=3 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -dilation=3 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=2048 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=24 -activation=linear - -[yolo] -mask = 8,9,10,11 -anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 59,119, 80,80, 116,90, 156,198, 373,326 -classes=1 -num=12 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=0 - -### TridentNet - large objects - End - - - - - - - -### TridentNet - medium objects - Start - -[route] -layers = 165 - -[convolutional] -share_index=166 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=167 -dilation=2 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=168 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=170 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=171 -dilation=2 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=172 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=174 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=175 -dilation=2 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=176 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=178 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=179 -dilation=2 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=180 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=182 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=183 -dilation=2 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=184 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=186 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=187 -dilation=2 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=188 -dilation=2 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -## Conv 5 -[convolutional] -share_index=190 -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=191 -dilation=2 -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -share_index=192 -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-2 -activation=leaky - -[convolutional] -share_index=194 -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=195 -dilation=2 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=196 -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=198 -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=199 -dilation=2 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=200 -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 49 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=24 -activation=linear - -[yolo] -mask = 4,5,6,7 -anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326 -classes=1 -num=12 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=0 - -### TridentNet - medium objects - End - - - - - - - - - - - -### TridentNet - small objects - Start - -[route] -layers = 165 - -[convolutional] -share_index=166 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=167 -dilation=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=168 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=170 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=171 -dilation=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=172 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=174 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=175 -dilation=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=176 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=178 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=179 -dilation=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=180 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=182 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=183 -dilation=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=184 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=186 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=187 -dilation=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=188 -dilation=1 -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -## Conv 5 -[convolutional] -share_index=190 -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=191 -dilation=1 -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -share_index=192 -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-2 -activation=leaky - -[convolutional] -share_index=194 -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=195 -dilation=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=196 -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -share_index=198 -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=199 -dilation=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -share_index=200 -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=512 -activation=leaky - -[upsample] -stride=4 - -[route] -layers = -1, 17 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=24 -activation=linear - -[yolo] -mask = 0,1,2,3 -anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326 -classes=1 -num=12 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=0 - -### TridentNet - small objects - End - diff --git a/build/darknet/x64/cfg/resnet50.cfg b/build/darknet/x64/cfg/resnet50.cfg deleted file mode 100644 index bfe69b18e3b..00000000000 --- a/build/darknet/x64/cfg/resnet50.cfg +++ /dev/null @@ -1,511 +0,0 @@ -[net] -# Training -# batch=128 -# subdivisions=4 - -# Testing -batch=1 -subdivisions=1 - -height=256 -width=256 -max_crop=448 -channels=3 -momentum=0.9 -decay=0.0005 - -burn_in=1000 -learning_rate=0.1 -policy=poly -power=4 -max_batches=1600000 - -angle=7 -hue=.1 -saturation=.75 -exposure=.75 -aspect=.75 - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -# Conv 4 -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -#Conv 5 -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - - - - - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[avgpool] - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/resnext152-32x4d.cfg b/build/darknet/x64/cfg/resnext152-32x4d.cfg deleted file mode 100644 index 48279fd28eb..00000000000 --- a/build/darknet/x64/cfg/resnext152-32x4d.cfg +++ /dev/null @@ -1,1562 +0,0 @@ -[net] -# Training -# batch=128 -# subdivisions=16 - -# Testing -batch=1 -subdivisions=1 - -height=256 -width=256 -channels=3 -min_crop=128 -max_crop=448 - -burn_in=1000 -learning_rate=0.1 -policy=poly -power=4 -max_batches=800000 -momentum=0.9 -decay=0.0005 - -angle=7 -hue=.1 -saturation=.75 -exposure=.75 -aspect=.75 - - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=4096 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=4096 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -groups = 32 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=4096 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - - - -[avgpool] - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[softmax] -groups=1 - diff --git a/build/darknet/x64/cfg/rnn.cfg b/build/darknet/x64/cfg/rnn.cfg deleted file mode 100644 index 68c032d27f9..00000000000 --- a/build/darknet/x64/cfg/rnn.cfg +++ /dev/null @@ -1,40 +0,0 @@ -[net] -subdivisions=1 -inputs=256 -batch = 1 -momentum=0.9 -decay=0.001 -max_batches = 2000 -time_steps=1 -learning_rate=0.1 -policy=steps -steps=1000,1500 -scales=.1,.1 - -[rnn] -batch_normalize=1 -output = 1024 -hidden=1024 -activation=leaky - -[rnn] -batch_normalize=1 -output = 1024 -hidden=1024 -activation=leaky - -[rnn] -batch_normalize=1 -output = 1024 -hidden=1024 -activation=leaky - -[connected] -output=256 -activation=leaky - -[softmax] - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/rnn.train.cfg b/build/darknet/x64/cfg/rnn.train.cfg deleted file mode 100644 index 3c63956a249..00000000000 --- a/build/darknet/x64/cfg/rnn.train.cfg +++ /dev/null @@ -1,40 +0,0 @@ -[net] -subdivisions=8 -inputs=256 -batch = 128 -momentum=0.9 -decay=0.001 -max_batches = 2000 -time_steps=576 -learning_rate=0.1 -policy=steps -steps=1000,1500 -scales=.1,.1 - -[rnn] -batch_normalize=1 -output = 1024 -hidden=1024 -activation=leaky - -[rnn] -batch_normalize=1 -output = 1024 -hidden=1024 -activation=leaky - -[rnn] -batch_normalize=1 -output = 1024 -hidden=1024 -activation=leaky - -[connected] -output=256 -activation=leaky - -[softmax] - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/strided.cfg b/build/darknet/x64/cfg/strided.cfg deleted file mode 100644 index a52700b4303..00000000000 --- a/build/darknet/x64/cfg/strided.cfg +++ /dev/null @@ -1,185 +0,0 @@ -[net] -batch=128 -subdivisions=4 -height=256 -width=256 -channels=3 -momentum=0.9 -decay=0.0005 - -learning_rate=0.01 -policy=steps -scales=.1,.1,.1 -steps=200000,300000,400000 -max_batches=800000 - - -[crop] -crop_height=224 -crop_width=224 -flip=1 -angle=0 -saturation=1 -exposure=1 -shift=.2 - -[convolutional] -filters=64 -size=7 -stride=2 -pad=1 -activation=ramp - -[convolutional] -filters=192 -size=3 -stride=2 -pad=1 -activation=ramp - -[convolutional] -filters=128 -size=1 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=256 -size=3 -stride=2 -pad=1 -activation=ramp - -[convolutional] -filters=128 -size=1 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=128 -size=1 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=512 -size=3 -stride=2 -pad=1 -activation=ramp - -[convolutional] -filters=256 -size=1 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=256 -size=1 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=256 -size=1 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=256 -size=1 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=256 -size=1 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=1024 -size=3 -stride=2 -pad=1 -activation=ramp - -[convolutional] -filters=512 -size=1 -stride=1 -pad=1 -activation=ramp - -[convolutional] -filters=1024 -size=3 -stride=1 -pad=1 -activation=ramp - -[maxpool] -size=3 -stride=2 - -[connected] -output=4096 -activation=ramp - -[dropout] -probability=0.5 - -[connected] -output=1000 -activation=ramp - -[softmax] - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/t1.test.cfg b/build/darknet/x64/cfg/t1.test.cfg deleted file mode 100644 index b3628114e04..00000000000 --- a/build/darknet/x64/cfg/t1.test.cfg +++ /dev/null @@ -1,117 +0,0 @@ -[net] -batch=1 -subdivisions=1 -height=224 -width=224 -channels=3 -momentum=0.9 -decay=0.0005 - -learning_rate=0.0005 -policy=steps -steps=200,400,600,20000,30000 -scales=2.5,2,2,.1,.1 -max_batches = 40000 - -[convolutional] -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[connected] -output= 1470 -activation=linear - -[detection] -classes=20 -coords=4 -rescore=1 -side=7 -num=2 -softmax=0 -sqrt=1 -jitter=.2 - -object_scale=1 -noobject_scale=.5 -class_scale=1 -coord_scale=5 - diff --git a/build/darknet/x64/cfg/tiny-yolo-voc.cfg b/build/darknet/x64/cfg/tiny-yolo-voc.cfg deleted file mode 100644 index ab2c066a216..00000000000 --- a/build/darknet/x64/cfg/tiny-yolo-voc.cfg +++ /dev/null @@ -1,134 +0,0 @@ -[net] -batch=64 -subdivisions=8 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -max_batches = 40200 -policy=steps -steps=-1,100,20000,30000 -scales=.1,10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=125 -activation=linear - -[region] -anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 -bias_match=1 -classes=20 -coords=4 -num=5 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/cfg/tiny-yolo.cfg b/build/darknet/x64/cfg/tiny-yolo.cfg deleted file mode 100644 index 5580098b45f..00000000000 --- a/build/darknet/x64/cfg/tiny-yolo.cfg +++ /dev/null @@ -1,134 +0,0 @@ -[net] -batch=64 -subdivisions=8 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -max_batches = 120000 -policy=steps -steps=-1,100,80000,100000 -scales=.1,10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=425 -activation=linear - -[region] -anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741 -bias_match=1 -classes=80 -coords=4 -num=5 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/cfg/tiny-yolo_xnor.cfg b/build/darknet/x64/cfg/tiny-yolo_xnor.cfg deleted file mode 100644 index 42a96309db0..00000000000 --- a/build/darknet/x64/cfg/tiny-yolo_xnor.cfg +++ /dev/null @@ -1,148 +0,0 @@ -[net] -batch=64 -subdivisions=8 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -max_batches = 40200 -policy=steps -steps=-1,100,20000,30000 -scales=.1,10,.1,.1 - -[convolutional] -#xnor=1 -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -xnor=1 -bin_output=1 -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -xnor=1 -bin_output=1 -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -xnor=1 -bin_output=1 -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -xnor=1 -bin_output=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -xnor=1 -bin_output=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -xnor=1 -bin_output=1 -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -xnor=1 -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=425 -activation=linear - -[region] -anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741 -bias_match=1 -classes=80 -coords=4 -num=5 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/cfg/tiny.cfg b/build/darknet/x64/cfg/tiny.cfg deleted file mode 100644 index 99c260366d7..00000000000 --- a/build/darknet/x64/cfg/tiny.cfg +++ /dev/null @@ -1,172 +0,0 @@ -[net] -batch=128 -subdivisions=1 -height=224 -width=224 -channels=3 -momentum=0.9 -decay=0.0005 -max_crop=320 - -learning_rate=0.1 -policy=poly -power=4 -max_batches=1600000 - -angle=7 -hue=.1 -saturation=.75 -exposure=.75 -aspect=.75 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=16 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=16 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1000 -size=1 -stride=1 -pad=1 -activation=linear - -[avgpool] - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/vgg-16.cfg b/build/darknet/x64/cfg/vgg-16.cfg deleted file mode 100644 index 2b6f7029b70..00000000000 --- a/build/darknet/x64/cfg/vgg-16.cfg +++ /dev/null @@ -1,153 +0,0 @@ -[net] -batch=128 -subdivisions=4 -height=256 -width=256 -channels=3 -learning_rate=0.00001 -momentum=0.9 -decay=0.0005 - -[crop] -crop_height=224 -crop_width=224 -flip=1 -exposure=1 -saturation=1 -angle=0 - -[convolutional] -filters=64 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=64 -size=3 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=128 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=128 -size=3 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=2 -stride=2 - -[connected] -output=4096 -activation=relu - -[dropout] -probability=.5 - -[connected] -output=4096 -activation=relu - -[dropout] -probability=.5 - -[connected] -output=1000 -activation=linear - -[softmax] -groups=1 - -[cost] -type=sse - diff --git a/build/darknet/x64/cfg/vgg-conv.cfg b/build/darknet/x64/cfg/vgg-conv.cfg deleted file mode 100644 index e173e28bff6..00000000000 --- a/build/darknet/x64/cfg/vgg-conv.cfg +++ /dev/null @@ -1,123 +0,0 @@ -[net] -batch=1 -subdivisions=1 -width=112 -height=112 -#width=224 -#height=224 -channels=3 -learning_rate=0.00001 -momentum=0.9 -decay=0.0005 - -[convolutional] -filters=64 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=64 -size=3 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=128 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=128 -size=3 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=256 -size=3 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=2 -stride=2 - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[convolutional] -filters=512 -size=3 -stride=1 -pad=1 -activation=relu - -[maxpool] -size=2 -stride=2 - diff --git a/build/darknet/x64/cfg/voc.data b/build/darknet/x64/cfg/voc.data deleted file mode 100644 index d6775870f65..00000000000 --- a/build/darknet/x64/cfg/voc.data +++ /dev/null @@ -1,7 +0,0 @@ -classes= 20 -train = data/train_voc.txt -valid = data/2007_test.txt -#difficult = data/difficult_2007_test.txt -names = data/voc.names -backup = backup/ - diff --git a/build/darknet/x64/cfg/writing.cfg b/build/darknet/x64/cfg/writing.cfg deleted file mode 100644 index 1ed899bcd63..00000000000 --- a/build/darknet/x64/cfg/writing.cfg +++ /dev/null @@ -1,41 +0,0 @@ -[net] -batch=128 -subdivisions=2 -height=256 -width=256 -channels=3 -learning_rate=0.00000001 -momentum=0.9 -decay=0.0005 -seen=0 - -[convolutional] -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=1 -size=3 -stride=1 -pad=1 -activation=logistic - -[cost] - diff --git a/build/darknet/x64/cfg/yolo-voc.2.0.cfg b/build/darknet/x64/cfg/yolo-voc.2.0.cfg deleted file mode 100644 index ceb3f2acf0b..00000000000 --- a/build/darknet/x64/cfg/yolo-voc.2.0.cfg +++ /dev/null @@ -1,244 +0,0 @@ -[net] -batch=64 -subdivisions=8 -height=416 -width=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.0001 -max_batches = 45000 -policy=steps -steps=100,25000,35000 -scales=10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - - -####### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[route] -layers=-9 - -[reorg] -stride=2 - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=125 -activation=linear - -[region] -anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 -bias_match=1 -classes=20 -coords=4 -num=5 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=0 diff --git a/build/darknet/x64/cfg/yolo-voc.cfg b/build/darknet/x64/cfg/yolo-voc.cfg deleted file mode 100644 index dbf2de281c1..00000000000 --- a/build/darknet/x64/cfg/yolo-voc.cfg +++ /dev/null @@ -1,258 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=8 -height=416 -width=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 80200 -policy=steps -steps=40000,60000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - - -####### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[route] -layers=-9 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=64 -activation=leaky - -[reorg] -stride=2 - -[route] -layers=-1,-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=125 -activation=linear - - -[region] -anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071 -bias_match=1 -classes=20 -coords=4 -num=5 -softmax=1 -jitter=.3 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/cfg/yolo.2.0.cfg b/build/darknet/x64/cfg/yolo.2.0.cfg deleted file mode 100644 index fda339a2b00..00000000000 --- a/build/darknet/x64/cfg/yolo.2.0.cfg +++ /dev/null @@ -1,244 +0,0 @@ -[net] -batch=1 -subdivisions=1 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -max_batches = 120000 -policy=steps -steps=-1,100,80000,100000 -scales=.1,10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - - -####### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[route] -layers=-9 - -[reorg] -stride=2 - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=425 -activation=linear - -[region] -anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741 -bias_match=1 -classes=80 -coords=4 -num=5 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=0 diff --git a/build/darknet/x64/cfg/yolo.cfg b/build/darknet/x64/cfg/yolo.cfg deleted file mode 100644 index 7001dfa58a9..00000000000 --- a/build/darknet/x64/cfg/yolo.cfg +++ /dev/null @@ -1,258 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=8 -height=416 -width=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - - -####### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[route] -layers=-9 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=64 -activation=leaky - -[reorg] -stride=2 - -[route] -layers=-1,-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=425 -activation=linear - - -[region] -anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828 -bias_match=1 -classes=80 -coords=4 -num=5 -softmax=1 -jitter=.3 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/cfg/yolo9000.cfg b/build/darknet/x64/cfg/yolo9000.cfg deleted file mode 100644 index e745f78a6e3..00000000000 --- a/build/darknet/x64/cfg/yolo9000.cfg +++ /dev/null @@ -1,218 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=8 -batch=1 -subdivisions=1 -height=544 -width=544 -channels=3 -momentum=0.9 -decay=0.0005 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -hue=.1 -saturation=.75 -exposure=.75 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=28269 -size=1 -stride=1 -pad=1 -activation=linear - -[region] -anchors = 0.77871, 1.14074, 3.00525, 4.31277, 9.22725, 9.61974 -bias_match=1 -classes=9418 -coords=4 -num=3 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -thresh = .6 -absolute=1 -random=1 - -tree=data/9k.tree -map = data/coco9k.map diff --git a/build/darknet/x64/cfg/yolov2-tiny-voc.cfg b/build/darknet/x64/cfg/yolov2-tiny-voc.cfg deleted file mode 100644 index c4c127cdd35..00000000000 --- a/build/darknet/x64/cfg/yolov2-tiny-voc.cfg +++ /dev/null @@ -1,138 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=2 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -max_batches = 40200 -policy=steps -steps=-1,100,20000,30000 -scales=.1,10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=125 -activation=linear - -[region] -anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 -bias_match=1 -classes=20 -coords=4 -num=5 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/cfg/yolov2-tiny.cfg b/build/darknet/x64/cfg/yolov2-tiny.cfg deleted file mode 100644 index 81d0ac45d6d..00000000000 --- a/build/darknet/x64/cfg/yolov2-tiny.cfg +++ /dev/null @@ -1,139 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=2 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=425 -activation=linear - -[region] -anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828 -bias_match=1 -classes=80 -coords=4 -num=5 -softmax=1 -jitter=.2 -rescore=0 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/cfg/yolov2-voc.cfg b/build/darknet/x64/cfg/yolov2-voc.cfg deleted file mode 100644 index dbf2de281c1..00000000000 --- a/build/darknet/x64/cfg/yolov2-voc.cfg +++ /dev/null @@ -1,258 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=8 -height=416 -width=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 80200 -policy=steps -steps=40000,60000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - - -####### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[route] -layers=-9 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=64 -activation=leaky - -[reorg] -stride=2 - -[route] -layers=-1,-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=125 -activation=linear - - -[region] -anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071 -bias_match=1 -classes=20 -coords=4 -num=5 -softmax=1 -jitter=.3 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/cfg/yolov2.cfg b/build/darknet/x64/cfg/yolov2.cfg deleted file mode 100644 index 2a0cd98fbd0..00000000000 --- a/build/darknet/x64/cfg/yolov2.cfg +++ /dev/null @@ -1,258 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=8 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - - -####### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[route] -layers=-9 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=64 -activation=leaky - -[reorg] -stride=2 - -[route] -layers=-1,-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=425 -activation=linear - - -[region] -anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828 -bias_match=1 -classes=80 -coords=4 -num=5 -softmax=1 -jitter=.3 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/cfg/yolov3-openimages.cfg b/build/darknet/x64/cfg/yolov3-openimages.cfg deleted file mode 100644 index 65d241a74c4..00000000000 --- a/build/darknet/x64/cfg/yolov3-openimages.cfg +++ /dev/null @@ -1,789 +0,0 @@ -[net] -# Testing - batch=1 - subdivisions=1 -# Training -batch=64 -subdivisions=16 -width=608 -height=608 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=5000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -###################### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=1818 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=601 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 61 - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=1818 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=601 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 36 - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=1818 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=601 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - diff --git a/build/darknet/x64/cfg/yolov3-spp.cfg b/build/darknet/x64/cfg/yolov3-spp.cfg deleted file mode 100644 index 4ad2a052d88..00000000000 --- a/build/darknet/x64/cfg/yolov3-spp.cfg +++ /dev/null @@ -1,822 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=16 -width=608 -height=608 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -###################### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 - -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 61 - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 36 - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - diff --git a/build/darknet/x64/cfg/yolov3-tiny-prn.cfg b/build/darknet/x64/cfg/yolov3-tiny-prn.cfg deleted file mode 100644 index 215162e973b..00000000000 --- a/build/darknet/x64/cfg/yolov3-tiny-prn.cfg +++ /dev/null @@ -1,199 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -activation=leaky -from=-3 - -########### - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -activation=leaky -from=-2 - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - - -[yolo] -mask = 3,4,5 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[shortcut] -activation=leaky -from=8 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -activation=leaky -from=-3 - -[shortcut] -activation=leaky -from=8 - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - -[yolo] -mask = 1,2,3 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 diff --git a/build/darknet/x64/cfg/yolov3-tiny.cfg b/build/darknet/x64/cfg/yolov3-tiny.cfg deleted file mode 100644 index cfca3cfa641..00000000000 --- a/build/darknet/x64/cfg/yolov3-tiny.cfg +++ /dev/null @@ -1,182 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=2 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - - -[yolo] -mask = 3,4,5 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 8 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - -[yolo] -mask = 0,1,2 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 diff --git a/build/darknet/x64/cfg/yolov3-tiny_3l.cfg b/build/darknet/x64/cfg/yolov3-tiny_3l.cfg deleted file mode 100644 index 76aaa0d9587..00000000000 --- a/build/darknet/x64/cfg/yolov3-tiny_3l.cfg +++ /dev/null @@ -1,227 +0,0 @@ -[net] -# Testing -# batch=1 -# subdivisions=1 -# Training -batch=64 -subdivisions=16 -width=608 -height=608 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 200000 -policy=steps -steps=180000,190000 -scales=.1,.1 - - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=21 -activation=linear - - - -[yolo] -mask = 6,7,8 -anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332 -classes=2 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 8 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=21 -activation=linear - -[yolo] -mask = 3,4,5 -anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332 -classes=2 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - - -[route] -layers = -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 6 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=21 -activation=linear - -[yolo] -mask = 0,1,2 -anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332 -classes=2 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 \ No newline at end of file diff --git a/build/darknet/x64/cfg/yolov3-tiny_obj.cfg b/build/darknet/x64/cfg/yolov3-tiny_obj.cfg deleted file mode 100644 index 8308e442517..00000000000 --- a/build/darknet/x64/cfg/yolov3-tiny_obj.cfg +++ /dev/null @@ -1,182 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=2 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - - -[yolo] -mask = 3,4,5 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 8 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - -[yolo] -mask = 0,1,2 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 diff --git a/build/darknet/x64/cfg/yolov3-tiny_occlusion_track.cfg b/build/darknet/x64/cfg/yolov3-tiny_occlusion_track.cfg deleted file mode 100644 index 2ef25370eea..00000000000 --- a/build/darknet/x64/cfg/yolov3-tiny_occlusion_track.cfg +++ /dev/null @@ -1,218 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=8 -subdivisions=4 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -track=1 -time_steps=20 -augment_speed=3 - -learning_rate=0.001 -burn_in=1000 -max_batches = 10000 -policy=steps -steps=9000,9500 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - - -[crnn] -batch_normalize=1 -size=3 -pad=1 -output=512 -hidden=256 -activation=leaky - -#[shortcut] -#from=-2 -#activation=linear - -########### - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=18 -activation=linear - - - -[yolo] -mask = 3,4,5 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=1 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=0 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 8 - -[crnn] -batch_normalize=1 -size=3 -pad=1 -output=256 -hidden=128 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - - -[convolutional] -size=1 -stride=1 -pad=1 -filters=18 -activation=linear - -[yolo] -mask = 0,1,2 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=1 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=0 diff --git a/build/darknet/x64/cfg/yolov3-tiny_xnor.cfg b/build/darknet/x64/cfg/yolov3-tiny_xnor.cfg deleted file mode 100644 index 725ce079c37..00000000000 --- a/build/darknet/x64/cfg/yolov3-tiny_xnor.cfg +++ /dev/null @@ -1,197 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=2 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -xnor=1 -bin_output=1 -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -xnor=1 -bin_output=1 -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -xnor=1 -bin_output=1 -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -xnor=1 -bin_output=1 -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -xnor=1 -bin_output=1 -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - - -[yolo] -mask = 3,4,5 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -xnor=1 -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 8 - -[convolutional] -xnor=1 -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - -[yolo] -mask = 0,1,2 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 diff --git a/build/darknet/x64/cfg/yolov3-voc.cfg b/build/darknet/x64/cfg/yolov3-voc.cfg deleted file mode 100644 index 3f3e8dfb31b..00000000000 --- a/build/darknet/x64/cfg/yolov3-voc.cfg +++ /dev/null @@ -1,785 +0,0 @@ -[net] -# Testing - batch=1 - subdivisions=1 -# Training -# batch=64 -# subdivisions=16 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 50200 -policy=steps -steps=40000,45000 -scales=.1,.1 - - - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -###################### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=75 -activation=linear - -[yolo] -mask = 6,7,8 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=20 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 61 - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=75 -activation=linear - -[yolo] -mask = 3,4,5 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=20 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 36 - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=75 -activation=linear - -[yolo] -mask = 0,1,2 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=20 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -random=1 - diff --git a/build/darknet/x64/cfg/yolov3-voc.yolov3-giou-40.cfg b/build/darknet/x64/cfg/yolov3-voc.yolov3-giou-40.cfg deleted file mode 100644 index b56f8a5d698..00000000000 --- a/build/darknet/x64/cfg/yolov3-voc.yolov3-giou-40.cfg +++ /dev/null @@ -1,808 +0,0 @@ -[net] -# Testing -# batch=1 -# subdivisions=1 -# Training -batch=64 -subdivisions=16 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -## single gpu -learning_rate=0.001 -burn_in=1000 -max_batches = 100400 - -## 2x -#learning_rate=0.0005 -#burn_in=2000 -#max_batches = 100400 -#max_batches = 200800 - -## 4x -#learning_rate=0.00025 -#burn_in=4000 -#max_batches = 50200 -##max_batches = 200800 - -policy=steps -steps=40000,45000 -scales=.1,.1 - - - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -###################### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=75 -activation=linear - -[yolo] -mask = 6,7,8 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=20 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -random=1 -iou_normalizer=0.25 -cls_normalizer=1.0 -iou_loss=giou - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 61 - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=75 -activation=linear - -[yolo] -mask = 3,4,5 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=20 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -random=1 -iou_normalizer=0.25 -cls_normalizer=1.0 -iou_loss=giou - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 36 - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=75 -activation=linear - -[yolo] -mask = 0,1,2 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=20 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -random=1 -iou_normalizer=0.25 -cls_normalizer=1.0 -iou_loss=giou - diff --git a/build/darknet/x64/cfg/yolov3.cfg b/build/darknet/x64/cfg/yolov3.cfg deleted file mode 100644 index 4a0ecc3320e..00000000000 --- a/build/darknet/x64/cfg/yolov3.cfg +++ /dev/null @@ -1,789 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=16 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -###################### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 61 - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 36 - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - diff --git a/build/darknet/x64/cfg/yolov3.coco-giou-12.cfg b/build/darknet/x64/cfg/yolov3.coco-giou-12.cfg deleted file mode 100644 index f3fd72db0b1..00000000000 --- a/build/darknet/x64/cfg/yolov3.coco-giou-12.cfg +++ /dev/null @@ -1,806 +0,0 @@ -[net] -# Testing -# batch=1 -# subdivisions=1 -# Training -batch=64 -subdivisions=16 -width=608 -height=608 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -## single gpu -learning_rate=0.001 -burn_in=1000 -max_batches = 550400 - -## 2 gpu -#learning_rate=0.0005 -#burn_in=2000 -#max_batches = 500200 - -## 4 gpu -#learning_rate=0.00025 -#burn_in=4000 -#max_batches = 500200 -###max_batches = 2000800 - -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -###################### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 -iou_normalizer=0.5 -iou_loss=giou - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 61 - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 -iou_normalizer=0.5 -iou_loss=giou - - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 36 - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 -iou_normalizer=0.5 -iou_loss=giou diff --git a/build/darknet/x64/cfg/yolov3_5l.cfg b/build/darknet/x64/cfg/yolov3_5l.cfg deleted file mode 100644 index fec157e0a52..00000000000 --- a/build/darknet/x64/cfg/yolov3_5l.cfg +++ /dev/null @@ -1,968 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=16 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -###################### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 12,13,14 -anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=15 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 61 - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 9,10,11 -anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=15 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 36 - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=15 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - - -############### - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 11 - - - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=15 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - - - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 4 - - - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=64 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=64 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=64 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=15 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - diff --git a/build/darknet/x64/cfg/yolov4-csp-swish.cfg b/build/darknet/x64/cfg/yolov4-csp-swish.cfg deleted file mode 100644 index 2aab444ecd5..00000000000 --- a/build/darknet/x64/cfg/yolov4-csp-swish.cfg +++ /dev/null @@ -1,1355 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=640 -height=640 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -mosaic=1 - -letter_box=1 - -ema_alpha=0.9998 - -#optimized_memory=1 - - -# ============ Backbone ============ # - -# Stem - -# 0 -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=swish - -# P1 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=swish - -# 4 (previous+1+3k) -[shortcut] -from=-3 -activation=linear - -# P2 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-10 - -# Transition last - -# 17 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -# P3 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1 -(4+3k)] - -[route] -layers = -1,-28 - -# Transition last - -# 48 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -# P4 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1 -(3k+4)] - -[route] -layers = -1,-28 - -# Transition last - -# 79 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -# P5 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1 -(3k+4)] - -[route] -layers = -1,-16 - -# Transition last - -# 98 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=swish - -# ============ End of Backbone ============ # - -# ============ Neck ============ # - -# CSPSPP - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=swish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=swish - -[route] -layers = -1, -13 - -# 113 (previous+6+5+2k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -# End of CSPSPP - - -# FPN-4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[upsample] -stride=2 - -[route] -layers = 79 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=swish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=swish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -6 - -# Transition last - -# 127 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - - -# FPN-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[upsample] -stride=2 - -[route] -layers = 48 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=swish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=swish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -6 - -# Transition last - -# 141 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=swish - - -# PAN-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=256 -activation=swish - -[route] -layers = -1, 127 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=swish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=swish - -[route] -layers = -1,-6 - -# Transition last - -# 152 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=swish - - -# PAN-5 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=swish - -[route] -layers = -1, 113 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=swish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=swish - -[route] -layers = -1,-6 - -# Transition last - -# 163 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=swish -stopbackward=900 - -# ============ End of Neck ============ # - -# ============ Head ============ # - -# YOLO-3 - -[route] -layers = 141 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=swish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - -[yolo] -mask = 0,1,2 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-4 - -[route] -layers = 152 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=swish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - -[yolo] -mask = 3,4,5 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-5 - -[route] -layers = 163 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=swish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - -[yolo] -mask = 6,7,8 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 diff --git a/build/darknet/x64/cfg/yolov4-csp-x-swish-frozen.cfg b/build/darknet/x64/cfg/yolov4-csp-x-swish-frozen.cfg deleted file mode 100644 index 838e0e1ac72..00000000000 --- a/build/darknet/x64/cfg/yolov4-csp-x-swish-frozen.cfg +++ /dev/null @@ -1,1556 +0,0 @@ - -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=640 -height=640 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -mosaic=1 - -letter_box=1 - -ema_alpha=0.9998 - -#optimized_memory=1 - - -# ============ Backbone ============ # - -# Stem - -# 0 -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=swish - -# P1 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=2 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=40 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=swish - -# 4 (previous+1+3k) -[shortcut] -from=-3 -activation=linear - -# P2 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-13 - -# Transition last - -# 20 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -# P3 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1 -(4+3k)] - -[route] -layers = -1,-34 - -# Transition last - -# 57 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -# P4 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1 -(3k+4)] - -[route] -layers = -1,-34 - -# Transition last - -# 94 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -# P5 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1 -(3k+4)] - -[route] -layers = -1,-19 - -# Transition last - -# 116 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=1280 -size=1 -stride=1 -pad=1 -activation=swish - -# ============ End of Backbone ============ # - -# ============ Neck ============ # - -# CSPSPP - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[route] -layers = -1, -15 - -# 133 (previous+6+5+2k) -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -# End of CSPSPP - - -# FPN-4 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[upsample] -stride=2 - -[route] -layers = 94 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -8 - -# Transition last - -# 149 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - - -# FPN-3 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[upsample] -stride=2 - -[route] -layers = 57 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=160 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=160 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=160 -activation=swish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -8 - -# Transition last - -# 165 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - - -# PAN-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=320 -activation=swish - -[route] -layers = -1, 149 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[route] -layers = -1,-8 - -# Transition last - -# 178 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - - -# PAN-5 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=640 -activation=swish - -[route] -layers = -1, 133 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[route] -layers = -1,-8 - -# Transition last - -# 191 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish -stopbackward=1 - -# ============ End of Neck ============ # - -# ============ Head ============ # - -# YOLO-3 - -[route] -layers = 165 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - -[yolo] -mask = 0,1,2 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-4 - -[route] -layers = 178 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - -[yolo] -mask = 3,4,5 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-5 - -[route] -layers = 191 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1280 -activation=swish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - -[yolo] -mask = 6,7,8 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 diff --git a/build/darknet/x64/cfg/yolov4-csp-x-swish.cfg b/build/darknet/x64/cfg/yolov4-csp-x-swish.cfg deleted file mode 100644 index 015db22c8b5..00000000000 --- a/build/darknet/x64/cfg/yolov4-csp-x-swish.cfg +++ /dev/null @@ -1,1556 +0,0 @@ - -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=640 -height=640 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -mosaic=1 - -letter_box=1 - -ema_alpha=0.9998 - -#optimized_memory=1 - - -# ============ Backbone ============ # - -# Stem - -# 0 -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=swish - -# P1 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=2 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=40 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=swish - -# 4 (previous+1+3k) -[shortcut] -from=-3 -activation=linear - -# P2 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-13 - -# Transition last - -# 20 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -# P3 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1 -(4+3k)] - -[route] -layers = -1,-34 - -# Transition last - -# 57 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -# P4 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1 -(3k+4)] - -[route] -layers = -1,-34 - -# Transition last - -# 94 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -# P5 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=swish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -# Merge [-1 -(3k+4)] - -[route] -layers = -1,-19 - -# Transition last - -# 116 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=1280 -size=1 -stride=1 -pad=1 -activation=swish - -# ============ End of Backbone ============ # - -# ============ Neck ============ # - -# CSPSPP - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[route] -layers = -1, -15 - -# 133 (previous+6+5+2k) -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -# End of CSPSPP - - -# FPN-4 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[upsample] -stride=2 - -[route] -layers = 94 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -8 - -# Transition last - -# 149 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - - -# FPN-3 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[upsample] -stride=2 - -[route] -layers = 57 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=160 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=160 -activation=swish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=160 -activation=swish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -8 - -# Transition last - -# 165 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=swish - - -# PAN-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=320 -activation=swish - -[route] -layers = -1, 149 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[route] -layers = -1,-8 - -# Transition last - -# 178 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=swish - - -# PAN-5 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=640 -activation=swish - -[route] -layers = -1, 133 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -# Split - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[route] -layers = -1,-8 - -# Transition last - -# 191 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=swish -stopbackward=900 - -# ============ End of Neck ============ # - -# ============ Head ============ # - -# YOLO-3 - -[route] -layers = 165 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=swish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - -[yolo] -mask = 0,1,2 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-4 - -[route] -layers = 178 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=swish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - -[yolo] -mask = 3,4,5 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-5 - -[route] -layers = 191 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1280 -activation=swish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - -[yolo] -mask = 6,7,8 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -#iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 diff --git a/build/darknet/x64/cfg/yolov4-csp.cfg b/build/darknet/x64/cfg/yolov4-csp.cfg deleted file mode 100644 index 691ec03b04a..00000000000 --- a/build/darknet/x64/cfg/yolov4-csp.cfg +++ /dev/null @@ -1,1279 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=512 -height=512 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -mosaic=1 - -letter_box=1 - -ema_alpha=0.9998 - -#optimized_memory=1 - -#23:104x104 54:52x52 85:26x26 104:13x13 for 416 - - - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=mish - -#[convolutional] -#batch_normalize=1 -#filters=64 -#size=1 -#stride=1 -#pad=1 -#activation=mish - -#[route] -#layers = -2 - -#[convolutional] -#batch_normalize=1 -#filters=64 -#size=1 -#stride=1 -#pad=1 -#activation=mish - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -#[convolutional] -#batch_normalize=1 -#filters=64 -#size=1 -#stride=1 -#pad=1 -#activation=mish - -#[route] -#layers = -1,-7 - -#[convolutional] -#batch_normalize=1 -#filters=64 -#size=1 -#stride=1 -#pad=1 -#activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-10 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-16 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=mish - -########################## - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1, -13 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 79 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1, -6 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 48 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[route] -layers = -1, -6 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -########################## - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - - -[yolo] -mask = 0,1,2 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=0 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=4.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=5 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1, -20 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1,-6 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - - -[yolo] -mask = 3,4,5 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=5 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1, -49 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1,-6 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - - -[yolo] -mask = 6,7,8 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 diff --git a/build/darknet/x64/cfg/yolov4-custom.cfg b/build/darknet/x64/cfg/yolov4-custom.cfg deleted file mode 100644 index 32516bdc120..00000000000 --- a/build/darknet/x64/cfg/yolov4-custom.cfg +++ /dev/null @@ -1,1160 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=16 -width=608 -height=608 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -#cutmix=1 -mosaic=1 - -#:104x104 54:52x52 85:26x26 104:13x13 for 416 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-7 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-10 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-16 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=mish -stopbackward=800 - -########################## - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = 85 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = 54 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -########################## - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -scale_x_y = 1.2 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 -max_delta=5 - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=256 -activation=leaky - -[route] -layers = -1, -16 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -scale_x_y = 1.1 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 -max_delta=5 - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=leaky - -[route] -layers = -1, -37 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 -scale_x_y = 1.05 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 -max_delta=5 - diff --git a/build/darknet/x64/cfg/yolov4-p5-frozen.cfg b/build/darknet/x64/cfg/yolov4-p5-frozen.cfg deleted file mode 100644 index 38bebe32a21..00000000000 --- a/build/darknet/x64/cfg/yolov4-p5-frozen.cfg +++ /dev/null @@ -1,1838 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=896 -height=896 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -mosaic=1 - -letter_box=1 - -ema_alpha=0.9998 - -#use_cuda_graph = 1 - - -# ============ Backbone ============ # - -# Stem - -# 0 -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - - -# P1 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-7 - -# Transition last - -# 10 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - - -# P2 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-13 - -# Transition last - -# 26 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - - -# P3 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-49 - -# Transition last - -# 78 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - - -# P4 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-49 - -# Transition last - -# 130 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - - -# P5 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-25 - -# Transition last - -# 158 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=mish - -# ============ End of Backbone ============ # - -# ============ Neck ============ # - -# CSPSPP - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1, -13 - -# 173 (previous+6+5+2k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# End of CSPSPP - - -# FPN-4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 130 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -8 - -# Transition last - -# 189 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - - -# FPN-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 78 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -8 - -# Transition last - -# 205 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - - -# PAN-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1, 189 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1,-8 - -# Transition last - -# 218 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - - -# PAN-5 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1, 173 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1,-8 - -# Transition last - -# 231 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish -stopbackward=1 - -# ============ End of Neck ============ # - -# ============ Head ============ # - -# YOLO-3 - -[route] -layers = 205 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic -#activation=linear -# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet - -[yolo] -mask = 0,1,2,3 -anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800 -classes=80 -num=12 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-4 - -[route] -layers = 218 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic -#activation=linear -# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet - -[yolo] -mask = 4,5,6,7 -anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800 -classes=80 -num=12 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-5 - -[route] -layers = 231 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic -#activation=linear -# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet - -[yolo] -mask = 8,9,10,11 -anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800 -classes=80 -num=12 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - -# ============ End of Head ============ # \ No newline at end of file diff --git a/build/darknet/x64/cfg/yolov4-p5.cfg b/build/darknet/x64/cfg/yolov4-p5.cfg deleted file mode 100644 index 14bce30ebd2..00000000000 --- a/build/darknet/x64/cfg/yolov4-p5.cfg +++ /dev/null @@ -1,1837 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=896 -height=896 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -mosaic=1 - -letter_box=1 - -ema_alpha=0.9998 - -#use_cuda_graph = 1 - - -# ============ Backbone ============ # - -# Stem - -# 0 -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - - -# P1 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-7 - -# Transition last - -# 10 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - - -# P2 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-13 - -# Transition last - -# 26 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - - -# P3 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-49 - -# Transition last - -# 78 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - - -# P4 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-49 - -# Transition last - -# 130 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - - -# P5 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-25 - -# Transition last - -# 158 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=mish - -# ============ End of Backbone ============ # - -# ============ Neck ============ # - -# CSPSPP - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1, -13 - -# 173 (previous+6+5+2k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# End of CSPSPP - - -# FPN-4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 130 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -8 - -# Transition last - -# 189 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - - -# FPN-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 78 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -8 - -# Transition last - -# 205 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - - -# PAN-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1, 189 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1,-8 - -# Transition last - -# 218 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - - -# PAN-5 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1, 173 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1,-8 - -# Transition last - -# 231 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# ============ End of Neck ============ # - -# ============ Head ============ # - -# YOLO-3 - -[route] -layers = 205 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic -#activation=linear -# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet - -[yolo] -mask = 0,1,2,3 -anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800 -classes=80 -num=12 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-4 - -[route] -layers = 218 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic -#activation=linear -# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet - -[yolo] -mask = 4,5,6,7 -anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800 -classes=80 -num=12 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-5 - -[route] -layers = 231 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic -#activation=linear -# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet - -[yolo] -mask = 8,9,10,11 -anchors = 13,17, 31,25, 24,51, 61,45, 48,102, 119,96, 97,189, 217,184, 171,384, 324,451, 616,618, 800,800 -classes=80 -num=12 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - -# ============ End of Head ============ # \ No newline at end of file diff --git a/build/darknet/x64/cfg/yolov4-p6.cfg b/build/darknet/x64/cfg/yolov4-p6.cfg deleted file mode 100644 index 8defa150b6f..00000000000 --- a/build/darknet/x64/cfg/yolov4-p6.cfg +++ /dev/null @@ -1,2298 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=1280 -height=1280 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -mosaic=1 - -letter_box=1 - -ema_alpha=0.9998 - -#use_cuda_graph = 1 - - -# ============ Backbone ============ # - -# Stem - -# 0 -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - - -# P1 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-7 - -# Transition last - -# 10 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - - -# P2 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-13 - -# Transition last - -# 26 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - - -# P3 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-49 - -# Transition last - -# 78 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - - -# P4 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-49 - -# Transition last - -# 130 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - - -# P5 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-25 - -# Transition last - -# 158 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=mish - - -# P6 - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Residual Block - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Transition first - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Merge [-1, -(3k+4)] - -[route] -layers = -1,-25 - -# Transition last - -# 186 (previous+7+3k) -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=mish - -# ============ End of Backbone ============ # - -# ============ Neck ============ # - -# CSPSPP - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1, -13 - -# 201 (previous+6+5+2k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# End of CSPSPP - - -# FPN-5 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 158 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -8 - -# Transition last - -# 217 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - - -# FPN-4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 130 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -8 - -# Transition last - -# 233 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - - -# FPN-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 78 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -# Merge [-1, -(2k+2)] - -[route] -layers = -1, -8 - -# Transition last - -# 249 (previous+6+4+2k) -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - - -# PAN-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1, 233 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1,-8 - -# Transition last - -# 262 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - - -# PAN-5 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1, 217 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1,-8 - -# Transition last - -# 275 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - - -# PAN-6 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1, 201 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Split - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -# Plain Block - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1,-8 - -# Transition last - -# 288 (previous+3+4+2k) -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# ============ End of Neck ============ # - -# ============ Head ============ # - -# YOLO-3 - -[route] -layers = 249 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic -#activation=linear -# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet - -[yolo] -mask = 0,1,2,3 -anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024 -classes=80 -num=16 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-4 - -[route] -layers = 262 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic -#activation=linear -# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet - -[yolo] -mask = 4,5,6,7 -anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024 -classes=80 -num=16 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-5 - -[route] -layers = 275 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic -#activation=linear -# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet - -[yolo] -mask = 8,9,10,11 -anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024 -classes=80 -num=16 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - - -# YOLO-6 - -[route] -layers = 288 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=340 -activation=logistic -#activation=linear -# use linear for Pytorch-Scaled-YOLOv4, and logistic for Darknet - -[yolo] -mask = 12,13,14,15 -anchors = 13,17, 31,25, 24,51, 61,45, 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 1024,1024 -classes=80 -num=16 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 - -# ============ End of Head ============ # \ No newline at end of file diff --git a/build/darknet/x64/cfg/yolov4-sam-mish-csp-reorg-bfm.cfg b/build/darknet/x64/cfg/yolov4-sam-mish-csp-reorg-bfm.cfg deleted file mode 100644 index 1461d88838e..00000000000 --- a/build/darknet/x64/cfg/yolov4-sam-mish-csp-reorg-bfm.cfg +++ /dev/null @@ -1,1429 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=512 -height=512 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -mosaic=1 - -letter_box=1 - -#:104x104 54:52x52 85:26x26 104:13x13 for 416 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-7 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-10 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-16 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=mish -stopbackward=800 - - -########################## - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1, -13 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 79 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[reorg3d] -stride=2 - -[route] -layers = -1, -4, -7 - -[upsample] -stride=2 - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 79 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = 48 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[reorg3d] -stride=2 - -[route] -layers = -1, -4, -6 - -[shortcut] -from= -10 -activation=linear - -[upsample] -stride=2 - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1, -6 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 48 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = 17 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[reorg3d] -stride=2 - -[route] -layers = -1, -4, -6 - -[shortcut] -from= -19 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -#### BFM-1 - -[route] -layers = 17 - -[reorg3d] -stride=2 - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=128 -activation=mish - -[route] -layers = -1, -6 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=256 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - - -########################## - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.2 -ignore_thresh = .7 -truth_thresh = 1 -random=0 -resize=1.5 -scale_x_y = 1.2 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -uc_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 -beta1=0.6 -max_delta=5 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1, 137 -#layers = -1, -20 - -[route] -layers = -17 - -[reorg3d] -stride=2 - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=mish - -[route] -layers = -1,-6 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=512 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.2 -ignore_thresh = .7 -truth_thresh = 1 -random=0 -resize=1.5 -scale_x_y = 1.1 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -uc_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 -beta1=0.6 -max_delta=5 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1, 126 -# layers = -1, -49 - -[route] -layers = -17 - -[reorg3d] -stride=2 - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=mish - -[route] -layers = -1,-6 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1024 -activation=logistic - -[sam] -from=-2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -ignore_thresh = .7 -truth_thresh = 1 -random=0 -resize=1.5 -scale_x_y = 1.05 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -uc_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 -beta1=0.6 -max_delta=5 diff --git a/build/darknet/x64/cfg/yolov4-tiny-3l.cfg b/build/darknet/x64/cfg/yolov4-tiny-3l.cfg deleted file mode 100644 index 116407066a3..00000000000 --- a/build/darknet/x64/cfg/yolov4-tiny-3l.cfg +++ /dev/null @@ -1,332 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=1 -width=608 -height=608 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.00261 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -################################## - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - - -[yolo] -mask = 6,7,8 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -scale_x_y = 1.05 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -ignore_thresh = .7 -truth_thresh = 1 -random=0 -resize=1.5 -nms_kind=greedynms -beta_nms=0.6 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 23 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - -[yolo] -mask = 3,4,5 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -scale_x_y = 1.05 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -ignore_thresh = .7 -truth_thresh = 1 -random=0 -resize=1.5 -nms_kind=greedynms -beta_nms=0.6 - - -[route] -layers = -3 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 15 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - -[yolo] -mask = 0,1,2 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -scale_x_y = 1.05 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -ignore_thresh = .7 -truth_thresh = 1 -random=0 -resize=1.5 -nms_kind=greedynms -beta_nms=0.6 - diff --git a/build/darknet/x64/cfg/yolov4-tiny-custom.cfg b/build/darknet/x64/cfg/yolov4-tiny-custom.cfg deleted file mode 100644 index 5c83be0e19c..00000000000 --- a/build/darknet/x64/cfg/yolov4-tiny-custom.cfg +++ /dev/null @@ -1,281 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=1 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.00261 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -################################## - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - - -[yolo] -mask = 3,4,5 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -scale_x_y = 1.05 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -ignore_thresh = .7 -truth_thresh = 1 -random=0 -resize=1.5 -nms_kind=greedynms -beta_nms=0.6 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 23 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - -[yolo] -mask = 0,1,2 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -scale_x_y = 1.05 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -ignore_thresh = .7 -truth_thresh = 1 -random=0 -resize=1.5 -nms_kind=greedynms -beta_nms=0.6 diff --git a/build/darknet/x64/cfg/yolov4-tiny.cfg b/build/darknet/x64/cfg/yolov4-tiny.cfg deleted file mode 100644 index d990b5134d8..00000000000 --- a/build/darknet/x64/cfg/yolov4-tiny.cfg +++ /dev/null @@ -1,294 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=1 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.00261 -burn_in=1000 - -max_batches = 2000200 -policy=steps -steps=1600000,1800000 -scales=.1,.1 - - -#weights_reject_freq=1001 -#ema_alpha=0.9998 -#equidistant_point=1000 -#num_sigmas_reject_badlabels=3 -#badlabels_rejection_percentage=0.2 - - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -################################## - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - - -[yolo] -mask = 3,4,5 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -scale_x_y = 1.05 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -ignore_thresh = .7 -truth_thresh = 1 -random=0 -resize=1.5 -nms_kind=greedynms -beta_nms=0.6 -#new_coords=1 -#scale_x_y = 2.0 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 23 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - -[yolo] -mask = 1,2,3 -anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 -classes=80 -num=6 -jitter=.3 -scale_x_y = 1.05 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -ignore_thresh = .7 -truth_thresh = 1 -random=0 -resize=1.5 -nms_kind=greedynms -beta_nms=0.6 -#new_coords=1 -#scale_x_y = 2.0 diff --git a/build/darknet/x64/cfg/yolov4-tiny_contrastive.cfg b/build/darknet/x64/cfg/yolov4-tiny_contrastive.cfg deleted file mode 100644 index 1fed0433cf0..00000000000 --- a/build/darknet/x64/cfg/yolov4-tiny_contrastive.cfg +++ /dev/null @@ -1,452 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=2 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -contrastive=1 -contrastive_jit_flip=1 -contrastive_color=0 - -learning_rate=0.00261 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1 -groups=2 -group_id=1 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1,-2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -6,-1 - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -################################## - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -#[conv_lstm] -#batch_normalize=1 -#size=3 -#pad=1 -#output=128 -#groups=1 -#peephole=0 -#bottleneck=1 -##time_normalizer=0.5 -#lstm_activation=tanh -#activation=leaky - - -########### - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - - -########### to [yolo-3] - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 23 - -########### - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -#[conv_lstm] -#batch_normalize=1 -#size=3 -#pad=1 -#output=128 -#groups=1 -#peephole=0 -#bottleneck=1 -##time_normalizer=0.5 -#lstm_activation=tanh -#activation=leaky - -########### - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -########### to [yolo-2] - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 15 - -########### - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -#[conv_lstm] -#batch_normalize=1 -#size=3 -#pad=1 -#output=64 -#groups=1 -#peephole=0 -#bottleneck=1 -##time_normalizer=0.5 -#lstm_activation=tanh -#activation=leaky - -########### - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers= 0 -onlyforward=1 - -[local_avgpool] -size=4 -stride=4 - -[route] -layers= -1,-3 -onlyforward=1 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -# Contrastive embeddings -[convolutional] -batch_normalize=1 -filters=1152 -size=1 -stride=1 -pad=1 -#activation=tanh -#activation=leaky -activation=linear - -[route] -layers= -9 -#onlyforward=1 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=765 -activation=linear - - - -[yolo] -mask = 0,1,2,3,4,5,6,7,8 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -scale_x_y = 1.05 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -ignore_thresh = .7 -truth_thresh = 1 -random=0 -resize=1.5 -nms_kind=greedynms -beta_nms=0.6 -max_delta=5 -embedding_layer = -4 - -track_history_size = 20 -sim_thresh = 0.7 -dets_for_show = 2 -dets_for_track = 8 -track_ciou_norm = 0.2 - -[route] -layers= -5 - - -[contrastive] -classes=1 -temperature=1.0 -yolo_layer= -2 -cls_normalizer=1.0 -max_delta=10 diff --git a/build/darknet/x64/cfg/yolov4.cfg b/build/darknet/x64/cfg/yolov4.cfg deleted file mode 100644 index a7be12b3088..00000000000 --- a/build/darknet/x64/cfg/yolov4.cfg +++ /dev/null @@ -1,1158 +0,0 @@ -[net] -batch=64 -subdivisions=8 -# Training -#width=512 -#height=512 -width=608 -height=608 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.0013 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -#cutmix=1 -mosaic=1 - -#:104x104 54:52x52 85:26x26 104:13x13 for 416 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-7 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-10 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-28 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-16 - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=mish - -########################## - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = 85 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = 54 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -########################## - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -scale_x_y = 1.2 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 -max_delta=5 - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=256 -activation=leaky - -[route] -layers = -1, -16 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -scale_x_y = 1.1 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 -max_delta=5 - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=512 -activation=leaky - -[route] -layers = -1, -37 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 -scale_x_y = 1.05 -iou_thresh=0.213 -cls_normalizer=1.0 -iou_normalizer=0.07 -iou_loss=ciou -nms_kind=greedynms -beta_nms=0.6 -max_delta=5 - diff --git a/build/darknet/x64/cfg/yolov4x-mish.cfg b/build/darknet/x64/cfg/yolov4x-mish.cfg deleted file mode 100644 index 2ff854f6dcc..00000000000 --- a/build/darknet/x64/cfg/yolov4x-mish.cfg +++ /dev/null @@ -1,1436 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=8 -width=640 -height=640 -channels=3 -momentum=0.949 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500500 -policy=steps -steps=400000,450000 -scales=.1,.1 - -mosaic=1 - -letter_box=1 - -#optimized_memory=1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=40 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=80 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=80 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-13 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-34 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-34 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1280 -size=3 -stride=2 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=3 -stride=1 -pad=1 -activation=mish - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1,-19 - -[convolutional] -batch_normalize=1 -filters=1280 -size=1 -stride=1 -pad=1 -activation=mish - -########################## 6 0 6 6 3 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -### SPP ### -[maxpool] -stride=1 -size=5 - -[route] -layers=-2 - -[maxpool] -stride=1 -size=9 - -[route] -layers=-4 - -[maxpool] -stride=1 -size=13 - -[route] -layers=-1,-3,-5,-6 -### End SPP ### - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -15 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 94 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[upsample] -stride=2 - -[route] -layers = 57 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -1, -3 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=160 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=160 -activation=mish - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=160 -activation=mish - -[route] -layers = -1, -8 - -[convolutional] -batch_normalize=1 -filters=160 -size=1 -stride=1 -pad=1 -activation=mish -stopbackward=800 - -########################## - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - - -[yolo] -mask = 0,1,2 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=0 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=4.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=5 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=320 -activation=mish - -[route] -layers = -1, -22 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=320 -activation=mish - -[route] -layers = -1,-8 - -[convolutional] -batch_normalize=1 -filters=320 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - - -[yolo] -mask = 3,4,5 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=1.0 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=5 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -size=3 -stride=2 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1, -55 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[route] -layers = -2 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=640 -activation=mish - -[route] -layers = -1,-8 - -[convolutional] -batch_normalize=1 -filters=640 -size=1 -stride=1 -pad=1 -activation=mish - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1280 -activation=mish - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=logistic - - -[yolo] -mask = 6,7,8 -anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 -classes=80 -num=9 -jitter=.1 -scale_x_y = 2.0 -objectness_smooth=1 -ignore_thresh = .7 -truth_thresh = 1 -#random=1 -resize=1.5 -iou_thresh=0.2 -iou_normalizer=0.05 -cls_normalizer=0.5 -obj_normalizer=0.4 -iou_loss=ciou -nms_kind=diounms -beta_nms=0.6 -new_coords=1 -max_delta=2 diff --git a/build/darknet/x64/darknet.py b/build/darknet/x64/darknet.py deleted file mode 100644 index 23539e0b64d..00000000000 --- a/build/darknet/x64/darknet.py +++ /dev/null @@ -1,313 +0,0 @@ -#!python3 -""" -Python 3 wrapper for identifying objects in images - -Requires DLL compilation - -Both the GPU and no-GPU version should be compiled; the no-GPU version should be renamed "yolo_cpp_dll_nogpu.dll". - -On a GPU system, you can force CPU evaluation by any of: - -- Set global variable DARKNET_FORCE_CPU to True -- Set environment variable CUDA_VISIBLE_DEVICES to -1 -- Set environment variable "FORCE_CPU" to "true" - -Directly viewing or returning bounding-boxed images requires scikit-image to be installed (`pip install scikit-image`) - -Original *nix 2.7: https://github.com/pjreddie/darknet/blob/0f110834f4e18b30d5f101bf8f1724c34b7b83db/python/darknet.py -Windows Python 2.7 version: https://github.com/AlexeyAB/darknet/blob/fc496d52bf22a0bb257300d3c79be9cd80e722cb/build/darknet/x64/darknet.py - -@author: Philip Kahn -@date: 20180503 -""" -from ctypes import * -import math -import random -import os - -print("Run: darknet_images.py or:\n") -print("python.exe darknet_video.py --data_file cfg/coco.data --config_file cfg/yolov4.cfg --weights yolov4.weights --input test.mp4 \n") - -class BOX(Structure): - _fields_ = [("x", c_float), - ("y", c_float), - ("w", c_float), - ("h", c_float)] - - -class DETECTION(Structure): - _fields_ = [("bbox", BOX), - ("classes", c_int), - ("prob", POINTER(c_float)), - ("mask", POINTER(c_float)), - ("objectness", c_float), - ("sort_class", c_int), - ("uc", POINTER(c_float)), - ("points", c_int), - ("embeddings", POINTER(c_float)), - ("embedding_size", c_int), - ("sim", c_float), - ("track_id", c_int)] - -class DETNUMPAIR(Structure): - _fields_ = [("num", c_int), - ("dets", POINTER(DETECTION))] - - -class IMAGE(Structure): - _fields_ = [("w", c_int), - ("h", c_int), - ("c", c_int), - ("data", POINTER(c_float))] - - -class METADATA(Structure): - _fields_ = [("classes", c_int), - ("names", POINTER(c_char_p))] - - -def network_width(net): - return lib.network_width(net) - - -def network_height(net): - return lib.network_height(net) - - -def bbox2points(bbox): - """ - From bounding box yolo format - to corner points cv2 rectangle - """ - x, y, w, h = bbox - xmin = int(round(x - (w / 2))) - xmax = int(round(x + (w / 2))) - ymin = int(round(y - (h / 2))) - ymax = int(round(y + (h / 2))) - return xmin, ymin, xmax, ymax - - -def class_colors(names): - """ - Create a dict with one random BGR color for each - class name - """ - return {name: ( - random.randint(0, 255), - random.randint(0, 255), - random.randint(0, 255)) for name in names} - - -def load_network(config_file, data_file, weights, batch_size=1): - """ - load model description and weights from config files - args: - config_file (str): path to .cfg model file - data_file (str): path to .data model file - weights (str): path to weights - returns: - network: trained model - class_names - class_colors - """ - network = load_net_custom( - config_file.encode("ascii"), - weights.encode("ascii"), 0, batch_size) - metadata = load_meta(data_file.encode("ascii")) - class_names = [metadata.names[i].decode("ascii") for i in range(metadata.classes)] - colors = class_colors(class_names) - return network, class_names, colors - - -def print_detections(detections, coordinates=False): - print("\nObjects:") - for label, confidence, bbox in detections: - x, y, w, h = bbox - if coordinates: - print("{}: {}% (left_x: {:.0f} top_y: {:.0f} width: {:.0f} height: {:.0f})".format(label, confidence, x, y, w, h)) - else: - print("{}: {}%".format(label, confidence)) - - -def draw_boxes(detections, image, colors): - import cv2 - for label, confidence, bbox in detections: - left, top, right, bottom = bbox2points(bbox) - cv2.rectangle(image, (left, top), (right, bottom), colors[label], 1) - cv2.putText(image, "{} [{:.2f}]".format(label, float(confidence)), - (left, top - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, - colors[label], 2) - return image - - -def decode_detection(detections): - decoded = [] - for label, confidence, bbox in detections: - confidence = str(round(confidence * 100, 2)) - decoded.append((str(label), confidence, bbox)) - return decoded - - -def remove_negatives(detections, class_names, num): - """ - Remove all classes with 0% confidence within the detection - """ - predictions = [] - for j in range(num): - for idx, name in enumerate(class_names): - if detections[j].prob[idx] > 0: - bbox = detections[j].bbox - bbox = (bbox.x, bbox.y, bbox.w, bbox.h) - predictions.append((name, detections[j].prob[idx], (bbox))) - return predictions - - -def detect_image(network, class_names, image, thresh=.5, hier_thresh=.5, nms=.45): - """ - Returns a list with highest confidence class and their bbox - """ - pnum = pointer(c_int(0)) - predict_image(network, image) - detections = get_network_boxes(network, image.w, image.h, - thresh, hier_thresh, None, 0, pnum, 0) - num = pnum[0] - if nms: - do_nms_sort(detections, num, len(class_names), nms) - predictions = remove_negatives(detections, class_names, num) - predictions = decode_detection(predictions) - free_detections(detections, num) - return sorted(predictions, key=lambda x: x[1]) - - -# lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL) -# lib = CDLL("libdarknet.so", RTLD_GLOBAL) -hasGPU = True -if os.name == "nt": - cwd = os.path.dirname(__file__) - os.environ['PATH'] = cwd + ';' + os.environ['PATH'] - winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll") - winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_nogpu.dll") - envKeys = list() - for k, v in os.environ.items(): - envKeys.append(k) - try: - try: - tmp = os.environ["FORCE_CPU"].lower() - if tmp in ["1", "true", "yes", "on"]: - raise ValueError("ForceCPU") - else: - print("Flag value {} not forcing CPU mode".format(tmp)) - except KeyError: - # We never set the flag - if 'CUDA_VISIBLE_DEVICES' in envKeys: - if int(os.environ['CUDA_VISIBLE_DEVICES']) < 0: - raise ValueError("ForceCPU") - try: - global DARKNET_FORCE_CPU - if DARKNET_FORCE_CPU: - raise ValueError("ForceCPU") - except NameError as cpu_error: - print(cpu_error) - if not os.path.exists(winGPUdll): - raise ValueError("NoDLL") - lib = CDLL(winGPUdll, RTLD_GLOBAL) - except (KeyError, ValueError): - hasGPU = False - if os.path.exists(winNoGPUdll): - lib = CDLL(winNoGPUdll, RTLD_GLOBAL) - print("Notice: CPU-only mode") - else: - # Try the other way, in case no_gpu was compile but not renamed - lib = CDLL(winGPUdll, RTLD_GLOBAL) - print("Environment variables indicated a CPU run, but we didn't find {}. Trying a GPU run anyway.".format(winNoGPUdll)) -else: - lib = CDLL("./libdarknet.so", RTLD_GLOBAL) -lib.network_width.argtypes = [c_void_p] -lib.network_width.restype = c_int -lib.network_height.argtypes = [c_void_p] -lib.network_height.restype = c_int - -copy_image_from_bytes = lib.copy_image_from_bytes -copy_image_from_bytes.argtypes = [IMAGE,c_char_p] - -predict = lib.network_predict_ptr -predict.argtypes = [c_void_p, POINTER(c_float)] -predict.restype = POINTER(c_float) - -if hasGPU: - set_gpu = lib.cuda_set_device - set_gpu.argtypes = [c_int] - -init_cpu = lib.init_cpu - -make_image = lib.make_image -make_image.argtypes = [c_int, c_int, c_int] -make_image.restype = IMAGE - -get_network_boxes = lib.get_network_boxes -get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int] -get_network_boxes.restype = POINTER(DETECTION) - -make_network_boxes = lib.make_network_boxes -make_network_boxes.argtypes = [c_void_p] -make_network_boxes.restype = POINTER(DETECTION) - -free_detections = lib.free_detections -free_detections.argtypes = [POINTER(DETECTION), c_int] - -free_batch_detections = lib.free_batch_detections -free_batch_detections.argtypes = [POINTER(DETNUMPAIR), c_int] - -free_ptrs = lib.free_ptrs -free_ptrs.argtypes = [POINTER(c_void_p), c_int] - -network_predict = lib.network_predict_ptr -network_predict.argtypes = [c_void_p, POINTER(c_float)] - -reset_rnn = lib.reset_rnn -reset_rnn.argtypes = [c_void_p] - -load_net = lib.load_network -load_net.argtypes = [c_char_p, c_char_p, c_int] -load_net.restype = c_void_p - -load_net_custom = lib.load_network_custom -load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int] -load_net_custom.restype = c_void_p - -do_nms_obj = lib.do_nms_obj -do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] - -do_nms_sort = lib.do_nms_sort -do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] - -free_image = lib.free_image -free_image.argtypes = [IMAGE] - -letterbox_image = lib.letterbox_image -letterbox_image.argtypes = [IMAGE, c_int, c_int] -letterbox_image.restype = IMAGE - -load_meta = lib.get_metadata -lib.get_metadata.argtypes = [c_char_p] -lib.get_metadata.restype = METADATA - -load_image = lib.load_image_color -load_image.argtypes = [c_char_p, c_int, c_int] -load_image.restype = IMAGE - -rgbgr_image = lib.rgbgr_image -rgbgr_image.argtypes = [IMAGE] - -predict_image = lib.network_predict_image -predict_image.argtypes = [c_void_p, IMAGE] -predict_image.restype = POINTER(c_float) - -predict_image_letterbox = lib.network_predict_image_letterbox -predict_image_letterbox.argtypes = [c_void_p, IMAGE] -predict_image_letterbox.restype = POINTER(c_float) - -network_predict_batch = lib.network_predict_batch -network_predict_batch.argtypes = [c_void_p, IMAGE, c_int, c_int, c_int, - c_float, c_float, POINTER(c_int), c_int, c_int] -network_predict_batch.restype = POINTER(DETNUMPAIR) diff --git a/build/darknet/x64/darknet_video.py b/build/darknet/x64/darknet_video.py deleted file mode 100644 index 5e7036203a7..00000000000 --- a/build/darknet/x64/darknet_video.py +++ /dev/null @@ -1,183 +0,0 @@ -from ctypes import * -import random -import os -import cv2 -import time -import darknet -import argparse -from threading import Thread, enumerate -from queue import Queue - - -def parser(): - parser = argparse.ArgumentParser(description="YOLO Object Detection") - parser.add_argument("--input", type=str, default=0, - help="video source. If empty, uses webcam 0 stream") - parser.add_argument("--out_filename", type=str, default="", - help="inference video name. Not saved if empty") - parser.add_argument("--weights", default="yolov4.weights", - help="yolo weights path") - parser.add_argument("--dont_show", action='store_true', - help="windown inference display. For headless systems") - parser.add_argument("--ext_output", action='store_true', - help="display bbox coordinates of detected objects") - parser.add_argument("--config_file", default="./cfg/yolov4.cfg", - help="path to config file") - parser.add_argument("--data_file", default="./cfg/coco.data", - help="path to data file") - parser.add_argument("--thresh", type=float, default=.25, - help="remove detections with confidence below this value") - return parser.parse_args() - - -def str2int(video_path): - """ - argparse returns and string althout webcam uses int (0, 1 ...) - Cast to int if needed - """ - try: - return int(video_path) - except ValueError: - return video_path - - -def check_arguments_errors(args): - assert 0 < args.thresh < 1, "Threshold should be a float between zero and one (non-inclusive)" - if not os.path.exists(args.config_file): - raise(ValueError("Invalid config path {}".format(os.path.abspath(args.config_file)))) - if not os.path.exists(args.weights): - raise(ValueError("Invalid weight path {}".format(os.path.abspath(args.weights)))) - if not os.path.exists(args.data_file): - raise(ValueError("Invalid data file path {}".format(os.path.abspath(args.data_file)))) - if str2int(args.input) == str and not os.path.exists(args.input): - raise(ValueError("Invalid video path {}".format(os.path.abspath(args.input)))) - - -def set_saved_video(input_video, output_video, size): - fourcc = cv2.VideoWriter_fourcc(*"MJPG") - fps = int(input_video.get(cv2.CAP_PROP_FPS)) - video = cv2.VideoWriter(output_video, fourcc, fps, size) - return video - - -def convert2relative(bbox): - """ - YOLO format use relative coordinates for annotation - """ - x, y, w, h = bbox - _height = darknet_height - _width = darknet_width - return x/_width, y/_height, w/_width, h/_height - - -def convert2original(image, bbox): - x, y, w, h = convert2relative(bbox) - - image_h, image_w, __ = image.shape - - orig_x = int(x * image_w) - orig_y = int(y * image_h) - orig_width = int(w * image_w) - orig_height = int(h * image_h) - - bbox_converted = (orig_x, orig_y, orig_width, orig_height) - - return bbox_converted - - -def convert4cropping(image, bbox): - x, y, w, h = convert2relative(bbox) - - image_h, image_w, __ = image.shape - - orig_left = int((x - w / 2.) * image_w) - orig_right = int((x + w / 2.) * image_w) - orig_top = int((y - h / 2.) * image_h) - orig_bottom = int((y + h / 2.) * image_h) - - if (orig_left < 0): orig_left = 0 - if (orig_right > image_w - 1): orig_right = image_w - 1 - if (orig_top < 0): orig_top = 0 - if (orig_bottom > image_h - 1): orig_bottom = image_h - 1 - - bbox_cropping = (orig_left, orig_top, orig_right, orig_bottom) - - return bbox_cropping - - -def video_capture(frame_queue, darknet_image_queue): - while cap.isOpened(): - ret, frame = cap.read() - if not ret: - break - frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) - frame_resized = cv2.resize(frame_rgb, (darknet_width, darknet_height), - interpolation=cv2.INTER_LINEAR) - frame_queue.put(frame) - img_for_detect = darknet.make_image(darknet_width, darknet_height, 3) - darknet.copy_image_from_bytes(img_for_detect, frame_resized.tobytes()) - darknet_image_queue.put(img_for_detect) - cap.release() - - -def inference(darknet_image_queue, detections_queue, fps_queue): - while cap.isOpened(): - darknet_image = darknet_image_queue.get() - prev_time = time.time() - detections = darknet.detect_image(network, class_names, darknet_image, thresh=args.thresh) - detections_queue.put(detections) - fps = int(1/(time.time() - prev_time)) - fps_queue.put(fps) - print("FPS: {}".format(fps)) - darknet.print_detections(detections, args.ext_output) - darknet.free_image(darknet_image) - cap.release() - - -def drawing(frame_queue, detections_queue, fps_queue): - random.seed(3) # deterministic bbox colors - video = set_saved_video(cap, args.out_filename, (video_width, video_height)) - while cap.isOpened(): - frame = frame_queue.get() - detections = detections_queue.get() - fps = fps_queue.get() - detections_adjusted = [] - if frame is not None: - for label, confidence, bbox in detections: - bbox_adjusted = convert2original(frame, bbox) - detections_adjusted.append((str(label), confidence, bbox_adjusted)) - image = darknet.draw_boxes(detections_adjusted, frame, class_colors) - if not args.dont_show: - cv2.imshow('Inference', image) - if args.out_filename is not None: - video.write(image) - if cv2.waitKey(fps) == 27: - break - cap.release() - video.release() - cv2.destroyAllWindows() - - -if __name__ == '__main__': - frame_queue = Queue() - darknet_image_queue = Queue(maxsize=1) - detections_queue = Queue(maxsize=1) - fps_queue = Queue(maxsize=1) - - args = parser() - check_arguments_errors(args) - network, class_names, class_colors = darknet.load_network( - args.config_file, - args.data_file, - args.weights, - batch_size=1 - ) - darknet_width = darknet.network_width(network) - darknet_height = darknet.network_height(network) - input_path = str2int(args.input) - cap = cv2.VideoCapture(input_path) - video_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) - video_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) - Thread(target=video_capture, args=(frame_queue, darknet_image_queue)).start() - Thread(target=inference, args=(darknet_image_queue, detections_queue, fps_queue)).start() - Thread(target=drawing, args=(frame_queue, detections_queue, fps_queue)).start() diff --git a/build/darknet/x64/data/9k.labels b/build/darknet/x64/data/9k.labels deleted file mode 100644 index e2bd3082485..00000000000 --- a/build/darknet/x64/data/9k.labels +++ /dev/null @@ -1,9418 +0,0 @@ -n00002452 -n00020827 -n00002684 -n11425580 -n05220461 -n09225146 -n05538625 -n01900150 -n05225602 -n05418717 -n05302499 -n05578095 -n09475179 -n09376198 -n14877585 -n15046900 -n00019613 -n00021265 -n15067877 -n09436708 -n14915184 -n07555863 -n07850329 -n07849336 -n07705711 -n07622061 -n07594066 -n07854982 -n07852833 -n07852614 -n07854184 -n07852229 -n07851443 -n07705931 -n07707451 -n07752966 -n07760859 -n07747055 -n07754684 -n07768694 -n07764847 -n07768858 -n07739125 -n07746551 -n07753113 -n07763987 -n07748574 -n07751451 -n07762244 -n07750872 -n07742704 -n07765208 -n07763792 -n07767847 -n07766173 -n07751004 -n07760153 -n07758680 -n07753592 -n07751280 -n07769731 -n07763629 -n07755411 -n07754451 -n07753275 -n07764155 -n07765073 -n07762114 -n07762913 -n07753743 -n07765999 -n07765361 -n07752377 -n07757132 -n07769584 -n07751148 -n07761141 -n07761309 -n07749731 -n07747951 -n07749446 -n07747607 -n07749582 -n07750449 -n07749969 -n07750146 -n07748157 -n07748416 -n07748276 -n07748912 -n07748753 -n07749192 -n07749312 -n07739344 -n07739506 -n07742313 -n07740220 -n07740954 -n07740461 -n07740342 -n07745940 -n07767171 -n07744246 -n07744057 -n07744811 -n07744682 -n07745466 -n07743902 -n07746334 -n07746186 -n07743544 -n07743224 -n07755707 -n07756951 -n07755929 -n07757990 -n07757312 -n07757511 -n07734744 -n07719213 -n07768423 -n07735510 -n07718472 -n07710283 -n07713395 -n07708398 -n07710007 -n07718747 -n07708798 -n07723039 -n07715561 -n07709333 -n07730406 -n07730033 -n07733394 -n07713267 -n07722217 -n07817871 -n07736813 -n07719839 -n07712267 -n07730207 -n07710616 -n07710952 -n07711569 -n07711080 -n07713763 -n07713895 -n07733567 -n07715103 -n07715221 -n07715407 -n07714990 -n07735687 -n07735803 -n07714188 -n07714448 -n07714895 -n07714571 -n07714078 -n07720442 -n07734017 -n07713074 -n07734555 -n07720615 -n07721325 -n07720875 -n07721195 -n07721018 -n07721456 -n07722052 -n07721942 -n07721678 -n07734292 -n07734183 -n07724943 -n07725376 -n07726095 -n07725255 -n07729485 -n07726796 -n07727458 -n07727048 -n07727578 -n07727868 -n07728804 -n07728053 -n07728585 -n07728181 -n07729384 -n07729828 -n07725531 -n07725789 -n07725888 -n07715721 -n07717070 -n07716906 -n07716358 -n07716034 -n07717556 -n07717410 -n07720277 -n07736256 -n07723330 -n07719616 -n07736692 -n07733712 -n07732747 -n07730855 -n07731587 -n07731006 -n07723559 -n07724654 -n07724269 -n07724492 -n07722485 -n07723177 -n07722888 -n07639069 -n07679356 -n07682197 -n07680517 -n07695878 -n07685730 -n07682316 -n07684517 -n07680761 -n07681691 -n07684600 -n07684164 -n07686720 -n07680932 -n07687211 -n07681450 -n07683786 -n07695742 -n07682477 -n07686873 -n07684289 -n07683490 -n07682808 -n07690585 -n07684938 -n07690892 -n07685399 -n07693972 -n07690273 -n07691091 -n07687789 -n07685218 -n07694516 -n07694839 -n07694659 -n07690511 -n07690739 -n07690431 -n07688624 -n07688898 -n07689003 -n07690152 -n07693725 -n07690019 -n07692614 -n07691758 -n07691539 -n07691650 -n07693223 -n07693048 -n07691237 -n07687626 -n07687381 -n07687469 -n07871810 -n07684084 -n14580897 -n15062057 -n14698884 -n14696793 -n14765422 -n14844693 -n15019030 -n12167075 -n14974264 -n14858292 -n15075141 -n04033425 -n07556637 -n07566340 -n07560652 -n07881800 -n07938313 -n07800091 -n07570720 -n01464844 -n07556406 -n07840804 -n07802417 -n07925608 -n07844867 -n07569644 -n07568502 -n07809096 -n07843775 -n07755089 -n07882497 -n07573347 -n07923748 -n07572957 -n07731952 -n07804323 -n07804771 -n07803093 -n07803545 -n07732168 -n07732636 -n07804657 -n07804900 -n07809368 -n07841345 -n07827284 -n07827130 -n07822518 -n07827410 -n07816052 -n07812184 -n07810907 -n07858595 -n07811416 -n07824702 -n07818277 -n07819769 -n07920989 -n07822323 -n07815424 -n07814390 -n07826930 -n07814487 -n07814203 -n07583066 -n07822845 -n07767344 -n07823105 -n07828987 -n07582609 -n07825972 -n07823460 -n07823698 -n07822197 -n07856270 -n07767709 -n07829412 -n07829331 -n07829248 -n07857731 -n07857170 -n07838233 -n07836838 -n07826091 -n07830593 -n07840027 -n07832416 -n07832902 -n07835921 -n07835457 -n07831146 -n07831267 -n07834618 -n07834507 -n07595914 -n07858978 -n07859583 -n07860103 -n07860331 -n07860447 -n07816164 -n07818689 -n07821260 -n07820683 -n07816575 -n07817160 -n07817315 -n07819166 -n07817024 -n07818995 -n07816398 -n07820497 -n07932841 -n07820145 -n07819896 -n07816296 -n07821758 -n07933154 -n07935379 -n07935043 -n07847198 -n07844042 -n07848196 -n07847453 -n07847917 -n07847827 -n07678729 -n07860805 -n07860988 -n07883031 -n07623136 -n07861158 -n07627931 -n07628068 -n07565161 -n07565083 -n07561590 -n07561112 -n07560903 -n07562495 -n07564971 -n07938149 -n07938007 -n07884567 -n07924033 -n07919310 -n07891189 -n07922764 -n07929519 -n07921455 -n07933274 -n07927197 -n07925966 -n07891309 -n07936263 -n07883251 -n07914271 -n07911371 -n07901587 -n07891433 -n07891726 -n07886176 -n07886057 -n07907943 -n07921615 -n07886572 -n07902121 -n07886463 -n07912211 -n07911677 -n07914777 -n07930554 -n07930433 -n07930315 -n07915491 -n07915094 -n07913393 -n07916041 -n07914995 -n07916183 -n07914413 -n07917392 -n07917133 -n07915918 -n07930864 -n07931870 -n07932039 -n07930062 -n07906111 -n07907037 -n07902799 -n07904865 -n07905474 -n07902937 -n07904395 -n07905038 -n07902336 -n07905979 -n07903101 -n07904760 -n07903208 -n07904934 -n07906284 -n07902443 -n07903841 -n07903962 -n07903731 -n07903643 -n07907161 -n07906718 -n07907831 -n07907548 -n07907429 -n07906877 -n07906572 -n07893253 -n07892418 -n07893642 -n07899003 -n07896287 -n07896661 -n07893528 -n07896165 -n07900225 -n07893891 -n07900406 -n07895237 -n07898745 -n07896060 -n07899108 -n07892512 -n07897750 -n07892813 -n07894703 -n07894102 -n07894551 -n07900616 -n07900958 -n07900734 -n07900825 -n07901457 -n07898117 -n07895435 -n07899434 -n07899292 -n07894298 -n07895595 -n07894965 -n07897865 -n07895839 -n07895710 -n07898333 -n07897438 -n07895962 -n07896893 -n07899899 -n07895100 -n07898443 -n07899533 -n07894799 -n07897975 -n07899660 -n07894451 -n07910656 -n07909593 -n07911249 -n07910048 -n07908411 -n07910379 -n07908647 -n07886849 -n07887634 -n07887099 -n07889510 -n07887192 -n07887304 -n07888229 -n07887967 -n07889274 -n07887461 -n07888465 -n07890226 -n07890352 -n07889814 -n07890068 -n07890540 -n07888816 -n07924834 -n07924443 -n07924276 -n07920540 -n07920222 -n07920052 -n07920349 -n07919441 -n07731284 -n07919572 -n07920872 -n07921239 -n07934282 -n07933799 -n07929172 -n07927931 -n07928488 -n07928367 -n07927512 -n07928887 -n07928696 -n07928790 -n07936745 -n07935737 -n07936548 -n07801508 -n07805594 -n07800740 -n07801091 -n07802026 -n07801779 -n07801892 -n07557165 -n07560193 -n07651025 -n07560331 -n07557434 -n07556970 -n05399243 -n15089258 -n07560542 -n07573696 -n07613815 -n07643981 -n07596684 -n07600696 -n07597145 -n07597365 -n07599998 -n07596967 -n07620689 -n07642471 -n07643200 -n07642742 -n07643026 -n07642933 -n07643306 -n07606538 -n07599911 -n07607138 -n07608429 -n07598256 -n07606669 -n07607605 -n07601572 -n07609632 -n07605597 -n07607967 -n07609215 -n07841907 -n07606764 -n07605944 -n07601686 -n07605380 -n07605040 -n07601809 -n07605474 -n07842130 -n07842044 -n07600285 -n07600177 -n07842202 -n07579688 -n07580053 -n07588947 -n07842753 -n07583197 -n07879350 -n07880751 -n07868200 -n07863802 -n07875152 -n07824191 -n07878785 -n07865484 -n07866015 -n07868955 -n07861557 -n07580253 -n07877187 -n07866868 -n07880458 -n07648913 -n07580470 -n07866277 -n07591961 -n07868508 -n07871436 -n07864934 -n07874780 -n07879659 -n07878926 -n07937461 -n07842433 -n07862611 -n07863374 -n07866723 -n07867021 -n07867164 -n07726525 -n07624466 -n07842308 -n07877299 -n07880080 -n07862348 -n07873464 -n07869775 -n07879953 -n07625061 -n07843636 -n07696403 -n07580592 -n07655263 -n07868340 -n07619004 -n07879174 -n07867324 -n07843464 -n07877961 -n07873807 -n07867421 -n07654298 -n07878647 -n07611839 -n07842605 -n07871720 -n07869611 -n07876651 -n07880968 -n07875436 -n07806221 -n07841495 -n07823951 -n07712382 -n07591586 -n07590320 -n07587111 -n07592481 -n07590611 -n07591473 -n07590502 -n07591049 -n07592768 -n07585758 -n07588193 -n07586894 -n07588299 -n07584110 -n07587441 -n07587023 -n07586099 -n07588574 -n07584332 -n07586604 -n07586718 -n07585107 -n07585557 -n07585208 -n07584593 -n07585906 -n07584423 -n07587618 -n07587700 -n07588111 -n07704054 -n07704205 -n07871234 -n07870167 -n07863547 -n07700003 -n07619208 -n07619409 -n07874159 -n07874343 -n07874259 -n07874441 -n07874063 -n07867751 -n07867616 -n07808587 -n07807834 -n07806633 -n07807171 -n07807710 -n07807922 -n07808904 -n07806774 -n07807472 -n07841639 -n07841800 -n07695965 -n07712748 -n07712559 -n07697825 -n07697313 -n07696728 -n07696625 -n07698543 -n07698401 -n07865105 -n07696977 -n07698250 -n07698782 -n07697100 -n07696839 -n07697537 -n07712856 -n07712959 -n07579575 -n07579787 -n07609840 -n07581346 -n07611991 -n07613266 -n07611358 -n07612632 -n07612996 -n07613480 -n07611267 -n07612367 -n07611148 -n07611046 -n07617611 -n07612137 -n07616386 -n07631926 -n07615774 -n07616487 -n07614730 -n07614500 -n07614198 -n07616748 -n07616046 -n07617051 -n07615671 -n07615190 -n07614825 -n07615460 -n07617708 -n07618432 -n07582152 -n07734879 -n07581775 -n07582277 -n07730320 -n07581249 -n15089645 -n15089472 -n15093137 -n15093298 -n15090742 -n15091473 -n14919819 -n15091669 -n14810561 -n14973585 -n15091304 -n15091846 -n15092227 -n15090065 -n07576438 -n07577374 -n07575984 -n07574602 -n07574426 -n07593199 -n07576182 -n07574923 -n07574780 -n07575726 -n07575076 -n07578093 -n07576577 -n07577144 -n07576781 -n07574504 -n07577538 -n09335240 -n00027167 -n09334396 -n09283193 -n03892891 -n09287968 -n03059685 -n00003553 -n09300905 -n09452395 -n09260907 -n08630039 -n08630985 -n09386842 -n08593262 -n08620061 -n09379111 -n08649711 -n08658309 -n08568978 -n08512259 -n03823111 -n04170933 -n09433839 -n08578517 -n08640739 -n08574314 -n08552138 -n08645104 -n08505018 -n08659861 -n08659446 -n08673395 -n08583455 -n08598301 -n08651247 -n03120491 -n02802544 -n08614632 -n08674739 -n08569998 -n08494231 -n08677424 -n08616050 -n08518171 -n08573842 -n08521623 -n03368352 -n03417345 -n04454908 -n03902482 -n04610879 -n08579352 -n03963645 -n03417749 -n08524735 -n08537837 -n08551296 -n08628141 -n08633683 -n08539072 -n09249034 -n09263912 -n08583292 -n09443281 -n08547544 -n08664443 -n04602044 -n08580944 -n03581125 -n08517676 -n08598568 -n08584914 -n03899933 -n02776631 -n03322099 -n03935234 -n04052442 -n03159535 -n15102894 -n09242389 -n09382099 -n09282208 -n09392402 -n09393605 -n09445289 -n03030880 -n03946162 -n03485997 -n03882960 -n04322026 -n03474896 -n02764398 -n02907082 -n03948830 -n09205509 -n09472413 -n09443453 -n09309292 -n09366017 -n09366317 -n09376786 -n09348460 -n09246464 -n09433442 -n09454153 -n09409752 -n09403734 -n09331251 -n09437454 -n09238926 -n09283866 -n09217230 -n09305898 -n09288635 -n09308743 -n09308572 -n09194227 -n09289331 -n09468604 -n09344324 -n09335809 -n09435739 -n09215437 -n09259219 -n09217638 -n09304750 -n09206896 -n09405787 -n09233446 -n09290444 -n09457979 -n09245515 -n09376526 -n09415671 -n09448690 -n09230041 -n09398076 -n09453008 -n09303008 -n09359803 -n09302616 -n09409512 -n09399592 -n09199101 -n09230202 -n09283405 -n09326662 -n09193705 -n09218641 -n09472597 -n09421951 -n09270735 -n09406793 -n09213434 -n09256479 -n09210862 -n09421799 -n09224725 -n09396465 -n09362945 -n09259025 -n09398677 -n09428293 -n09447666 -n09332890 -n08596076 -n09428628 -n09361517 -n09265620 -n09303528 -n09436444 -n09274152 -n09213565 -n09269472 -n09206985 -n09228055 -n09466678 -n09415584 -n09475925 -n09257843 -n09239302 -n09294877 -n00021939 -n00004258 -n00019128 -n02749953 -n02852523 -n03767112 -n14977504 -n03129123 -n03848729 -n03964744 -n04362025 -n04469003 -n04341686 -n03575240 -n03873064 -n03122748 -n03309808 -n02871147 -n03364340 -n14786479 -n03169390 -n04564698 -n04339291 -n00022903 -n03315023 -n03302121 -n03076708 -n04188643 -n03354613 -n14976871 -n03670849 -n02917521 -n04414909 -n04435180 -n02725872 -n04076846 -n02743547 -n03816849 -n04007894 -n03934656 -n03720163 -n04227144 -n04260364 -n03925226 -n04564581 -n02744844 -n04042358 -n03927091 -n03927539 -n03876519 -n04485423 -n03835197 -n03342127 -n04246271 -n04321238 -n04180314 -n03625783 -n03684611 -n03514693 -n03421485 -n04026180 -n02870526 -n04599396 -n06415688 -n03822171 -n04582205 -n03727605 -n03849679 -n04598792 -n03631922 -n02933649 -n03600722 -n03169176 -n03418618 -n02727016 -n03526198 -n03794798 -n03859608 -n03968581 -n03717447 -n03614782 -n03915900 -n04431025 -n03974070 -n02779435 -n03941231 -n04399382 -n03603442 -n09229709 -n03548402 -n03944138 -n04238128 -n04284869 -n03061211 -n03219135 -n09282724 -n09191635 -n09443641 -n04186268 -n03447358 -n03607029 -n03536348 -n02857023 -n04381860 -n04213626 -n03961939 -n04394630 -n03365592 -n04501550 -n04296562 -n03159640 -n04354182 -n03549732 -n03360300 -n03892178 -n02768973 -n03906224 -n03313333 -n02990373 -n02861886 -n03365991 -n02898711 -n03109693 -n13898207 -n04358874 -n02687821 -n03135532 -n03545756 -n03548626 -n03469175 -n03688943 -n02914991 -n04191595 -n09218315 -n03074380 -n02699494 -n02733524 -n04460130 -n04471148 -n03792048 -n03388043 -n03837869 -n03321954 -n02733213 -n03687137 -n03065424 -n02839110 -n03894379 -n03725717 -n04226464 -n03071160 -n03839993 -n02913152 -n04128413 -n04008947 -n03917198 -n03222318 -n04295881 -n03241335 -n02735688 -n02777734 -n03984381 -n03216828 -n03517899 -n03546340 -n04361095 -n13897996 -n03171356 -n03290195 -n03743902 -n03297735 -n04217882 -n02863426 -n03408054 -n03463381 -n03758089 -n03686130 -n02800497 -n03379828 -n03233744 -n02953197 -n04108822 -n03865557 -n04492749 -n04532670 -n04311004 -n03122073 -n03415486 -n04366367 -n04479939 -n03956922 -n03069752 -n04592465 -n03316406 -n03212811 -n03844673 -n04068441 -n04103094 -n03387653 -n04311595 -n03697007 -n04300358 -n04032603 -n02810782 -n03492250 -n03826186 -n03547054 -n04411264 -n03550153 -n03560430 -n03254189 -n03792972 -n04025508 -n03900979 -n02769963 -n03374473 -n02954163 -n03334291 -n04549028 -n03035252 -n03448956 -n04113765 -n03975035 -n04486054 -n02905152 -n03784896 -n04104384 -n02946127 -n04501947 -n03047052 -n04206790 -n03029197 -n03767745 -n04028581 -n04220250 -n04556948 -n04479823 -n04028764 -n04312432 -n03347617 -n03519387 -n04361260 -n03098959 -n02826886 -n02814860 -n02922292 -n04251701 -n04051825 -n03390786 -n02811936 -n02699770 -n04546855 -n03409393 -n04544325 -n02755823 -n03904657 -n02825961 -n02898369 -n04326799 -n02796623 -n03839795 -n03967942 -n03659686 -n03454707 -n04127395 -n03795580 -n02788148 -n02894605 -n03459775 -n04571566 -n04047401 -n03549589 -n04304680 -n03327234 -n03160309 -n03427296 -n03221720 -n03698815 -n03985881 -n04501370 -n03395514 -n02963821 -n04153025 -n03394649 -n03226880 -n03579538 -n04239074 -n04086446 -n02793842 -n03498662 -n04329834 -n04547592 -n04082710 -n04046974 -n03000134 -n03252637 -n03511175 -n04604644 -n03930313 -n04326547 -n04560882 -n02920369 -n03262072 -n03108853 -n04390977 -n03999160 -n03542333 -n04409384 -n02666943 -n02726681 -n02763604 -n03478756 -n03545150 -n04104500 -n04081699 -n03859280 -n03402941 -n03739518 -n03542605 -n03661043 -n02977936 -n03322570 -n03953416 -n04081281 -n03770316 -n04112654 -n03839671 -n03842012 -n04407686 -n04217546 -n03449564 -n03457902 -n04093625 -n03956157 -n04018399 -n02882190 -n03544360 -n04118635 -n02734725 -n04233124 -n03430418 -n04146050 -n03007444 -n04417809 -n03479397 -n03092166 -n02993546 -n04080705 -n08640531 -n03788498 -n08560295 -n04095109 -n04229737 -n03541696 -n03790755 -n03036022 -n03466839 -n03698723 -n03333610 -n03837698 -n03121298 -n04187547 -n03416489 -n02968074 -n03860404 -n03055857 -n02859443 -n04598318 -n02727426 -n03730334 -n03210552 -n04294879 -n03016389 -n03123809 -n02793495 -n03884778 -n03028079 -n04407435 -n04210390 -n04346328 -n03724756 -n04374735 -n03788195 -n03007130 -n03618982 -n02667576 -n02984061 -n02984203 -n03772077 -n02935658 -n04111414 -n02760099 -n02892499 -n02935891 -n03199647 -n02956699 -n03282295 -n04461437 -n03005033 -n03152303 -n04305210 -n03121431 -n03558176 -n03557360 -n02696165 -n03393017 -n04258438 -n02919792 -n04115256 -n02932400 -n03257210 -n03719053 -n03685820 -n03428090 -n03686924 -n04131368 -n03118969 -n03219483 -n04052658 -n02857477 -n03180865 -n04535524 -n03002816 -n04079244 -n03322836 -n04413969 -n02907873 -n03878066 -n04305323 -n03718458 -n04354026 -n03158186 -n04535370 -n03010915 -n03718935 -n04073948 -n03439348 -n03892557 -n03877845 -n03781244 -n02667379 -n02667478 -n03165616 -n03092314 -n03801671 -n03849814 -n03801533 -n03032252 -n03678729 -n03529860 -n03097362 -n04177931 -n02940385 -n03111041 -n03064935 -n03626115 -n02838728 -n03356858 -n02902079 -n04439585 -n03263076 -n04453037 -n03942920 -n03379204 -n03522003 -n03220692 -n02782778 -n02918112 -n02704949 -n03899768 -n03109881 -n02775178 -n03517647 -n03024064 -n02894158 -n04030518 -n03004824 -n02758134 -n03120198 -n03200231 -n04105893 -n02750070 -n03285912 -n03813078 -n02694045 -n04328946 -n03443005 -n03378005 -n02754656 -n03047941 -n03382292 -n04446276 -n04356925 -n03288500 -n04363991 -n04112579 -n03038685 -n03412058 -n03718581 -n02991302 -n03691817 -n04139395 -n03238131 -n02839592 -n02824319 -n03619890 -n03660909 -n04329477 -n04602762 -n04180229 -n02710324 -n03200701 -n04065464 -n03541091 -n04058096 -n02873839 -n03089879 -n02821627 -n03040376 -n03679712 -n03222176 -n03478907 -n04061793 -n02857644 -n04345028 -n03683708 -n03062122 -n04406239 -n03079741 -n03120778 -n03982331 -n02807731 -n03098688 -n02715513 -n04558478 -n03746486 -n04555291 -n04018667 -n03529175 -n03653740 -n04345201 -n03885535 -n04324387 -n04523831 -n04067818 -n03200539 -n02952585 -n03319745 -n04119478 -n03283221 -n04064862 -n03850245 -n04401680 -n04541987 -n03090172 -n04209613 -n03727465 -n03788601 -n03465718 -n03542860 -n03225108 -n03836062 -n03165466 -n03457008 -n03086580 -n03878211 -n03303831 -n03891538 -n03235042 -n04000592 -n03075946 -n02932019 -n03939677 -n02931148 -n03696065 -n02933462 -n03061505 -n04305572 -n02960352 -n02934451 -n04299370 -n03235180 -n04414199 -n02936714 -n03964495 -n03907227 -n04539203 -n03993703 -n03683079 -n03016737 -n03003730 -n04061969 -n02843276 -n04037220 -n03550289 -n03124590 -n04100519 -n03376159 -n04262161 -n02921884 -n03348868 -n04080454 -n03404449 -n02868638 -n03555006 -n04076713 -n03732114 -n03617095 -n02849885 -n03837606 -n03425325 -n03566193 -n03762434 -n03073694 -n03343560 -n03346455 -n02731398 -n02991847 -n03148324 -n04295571 -n03411544 -n02705201 -n03854722 -n04327204 -n04355267 -n03399677 -n04527648 -n03168107 -n02770211 -n03986704 -n03721590 -n03251533 -n02853016 -n03259505 -n04409625 -n03679384 -n03776460 -n03088389 -n02726305 -n04549919 -n02992032 -n03088580 -n04613696 -n03685307 -n04517408 -n03507241 -n03354207 -n03042490 -n03529629 -n04172107 -n04584373 -n04412416 -n02672371 -n03349892 -n02932693 -n02822064 -n03361297 -n03010473 -n04360501 -n03391770 -n03903868 -n02929289 -n03373943 -n02669295 -n04087826 -n02926591 -n04589593 -n03390983 -n03416094 -n03530642 -n04492375 -n03646916 -n03111296 -n03931765 -n04587648 -n03042697 -n04478512 -n02689144 -n03454536 -n03453443 -n04545305 -n02977619 -n04387261 -n02732827 -n04038727 -n03793186 -n04136510 -n02976350 -n03855333 -n02813399 -n04297750 -n04232800 -n03211789 -n04110178 -n03986562 -n04473108 -n03041810 -n03224603 -n03224753 -n03637898 -n03320959 -n03961711 -n02790669 -n02835829 -n03696301 -n03207630 -n04459773 -n03896526 -n03900393 -n03792526 -n04340935 -n03386011 -n03385557 -n02806088 -n03610098 -n03628511 -n02676938 -n02695627 -n03723781 -n03334382 -n02805983 -n03296328 -n03878963 -n02980441 -n02993194 -n03743016 -n04178329 -n02892201 -n03810952 -n03884926 -n03220237 -n03745571 -n03953020 -n03574555 -n04511002 -n03748162 -n03841666 -n02931417 -n03506370 -n03965456 -n03119203 -n03176763 -n04202417 -n03722288 -n02879309 -n04131208 -n04200800 -n02871525 -n03871371 -n04428634 -n03606251 -n04462240 -n03039827 -n02813544 -n03436417 -n03367410 -n03249342 -n03416640 -n03173387 -n04245508 -n02791270 -n04299215 -n04443257 -n03822656 -n02927161 -n03952576 -n03089624 -n03099274 -n02813645 -n08492461 -n03461385 -n03847823 -n04358707 -n03555426 -n03457686 -n04261281 -n03322704 -n08571898 -n03822504 -n02885882 -n03504723 -n03111690 -n03856012 -n03592245 -n03911513 -n04005630 -n04447443 -n04566257 -n03294048 -n03091374 -n03563967 -n03405265 -n03183080 -n02997391 -n04377057 -n03094503 -n03100490 -n06254669 -n03176594 -n02807523 -n03128519 -n03690938 -n04186051 -n03476991 -n03794136 -n03916031 -n03475823 -n02723165 -n03994008 -n03113152 -n02808185 -n03484487 -n03067339 -n04357314 -n03640850 -n02862916 -n04450640 -n03487444 -n02683791 -n03992325 -n03898271 -n03916470 -n03071021 -n04448070 -n03980026 -n02901793 -n04447276 -n04386792 -n03177165 -n03519081 -n03714235 -n03314780 -n03676087 -n03309687 -n03724066 -n03676483 -n04112752 -n03309110 -n03308481 -n02738031 -n03171228 -n02866578 -n02703275 -n03812924 -n02813752 -n02746365 -n03647520 -n02950256 -n03332393 -n03786715 -n02801450 -n03553248 -n02753044 -n04113641 -n04206570 -n04063373 -n04285146 -n03926148 -n03811847 -n03889726 -n03430959 -n04137444 -n03414162 -n03888257 -n03278248 -n02727825 -n02761206 -n03729951 -n02774921 -n04393095 -n02979290 -n03192543 -n04533802 -n02799897 -n03135030 -n03039259 -n04225729 -n04607035 -n03132261 -n02802721 -n03594148 -n04212282 -n03446832 -n04275661 -n04318131 -n02885338 -n02885462 -n03472232 -n04571292 -n02800213 -n02811059 -n02811204 -n02797881 -n02811350 -n02799175 -n03528901 -n03349771 -n04425804 -n04164406 -n04102037 -n04102162 -n04102618 -n03558404 -n03523987 -n04273972 -n03336282 -n03132076 -n04582869 -n03445924 -n03447075 -n04399537 -n03446070 -n04597066 -n03585073 -n03244047 -n04284341 -n04569822 -n03762332 -n04028074 -n03823216 -n03950537 -n04135024 -n03524150 -n03978686 -n03535780 -n03538037 -n04509260 -n03888605 -n04469514 -n02777292 -n04524142 -n03980478 -n03255030 -n02790996 -n03289660 -n02942699 -n03037404 -n03338821 -n03667664 -n02884994 -n03358726 -n03976467 -n03974915 -n04569063 -n03789171 -n03196062 -n03987266 -n04069434 -n04609531 -n04067658 -n03817191 -n04071263 -n03619396 -n04091097 -n03351434 -n04295081 -n04091693 -n03138669 -n03139464 -n04179824 -n03349469 -n02966687 -n03650551 -n03241093 -n03240683 -n03494706 -n04247876 -n03503718 -n04124202 -n03480719 -n02900160 -n04290615 -n04266162 -n02768226 -n02778669 -n04028315 -n03982430 -n02882647 -n03716327 -n03020416 -n04113406 -n03442756 -n04540255 -n03941417 -n04254680 -n03982232 -n02882301 -n04256891 -n03333252 -n04023962 -n02839351 -n03134739 -n03131967 -n04409515 -n03445777 -n04118538 -n03145719 -n03742019 -n02802426 -n03267113 -n03942813 -n03482877 -n02799071 -n04039742 -n02861147 -n04540053 -n03598930 -n06785654 -n03014440 -n04579986 -n03901750 -n02802215 -n03820318 -n03278914 -n03782006 -n03781787 -n04405762 -n04401088 -n03857828 -n03916720 -n02872529 -n02979186 -n02988304 -n04060647 -n02757462 -n03656957 -n03963294 -n04405540 -n03034405 -n02979074 -n02995345 -n03775388 -n04142731 -n04392985 -n03181293 -n03777754 -n03293741 -n04392526 -n02705944 -n02992529 -n04270371 -n03179910 -n03902125 -n03488438 -n03187595 -n04044498 -n04405907 -n04043733 -n04137773 -n03516996 -n03046921 -n04077430 -n03517760 -n04315948 -n03584254 -n04546340 -n03584400 -n03436182 -n02942349 -n04404997 -n03909160 -n04026053 -n04173511 -n04070003 -n03257586 -n03509608 -n04171208 -n04450243 -n04506506 -n03434188 -n03567066 -n02923129 -n03386544 -n03046802 -n03757604 -n03927299 -n03924679 -n04608923 -n03316105 -n03767459 -n03987990 -n03084834 -n03422072 -n02855390 -n02921029 -n03425769 -n03871524 -n02852360 -n04105704 -n04408871 -n04241573 -n04402057 -n03664943 -n03605915 -n03543012 -n03196990 -n03639497 -n02840134 -n04594218 -n02999410 -n03086868 -n02790823 -n03886641 -n02709637 -n03374838 -n02835412 -n04440963 -n03011018 -n03600977 -n03093792 -n03228967 -n04573281 -n03521076 -n04144241 -n04571958 -n04160372 -n03787523 -n02928299 -n04333869 -n03213826 -n04476972 -n04593866 -n02788689 -n04451818 -n04516672 -n04116512 -n03816136 -n03294833 -n04317420 -n02908217 -n03532342 -n04185071 -n04285622 -n03653220 -n04369282 -n03346135 -n03837422 -n04317833 -n03039947 -n04100174 -n04608567 -n04208427 -n04282872 -n03396074 -n02865931 -n04112147 -n04459909 -n03659292 -n04463679 -n03487090 -n03138344 -n04317976 -n03613592 -n04393808 -n03903424 -n04099003 -n03470629 -n04264628 -n02771004 -n04193377 -n04400737 -n02670683 -n04367011 -n03489162 -n03588951 -n03919430 -n03418242 -n03967562 -n03075097 -n03239726 -n03154446 -n04387706 -n03417970 -n04050066 -n04299963 -n03684224 -n03919289 -n03970156 -n03941684 -n03966976 -n04258859 -n04266486 -n03481172 -n03946076 -n04606574 -n04154565 -n04489817 -n04140064 -n03848348 -n04150980 -n04208210 -n02898269 -n04269944 -n02966545 -n03430313 -n03715386 -n03731695 -n04457910 -n03947466 -n02680754 -n03848168 -n02697675 -n02886434 -n03474779 -n03376938 -n03488188 -n04016240 -n04016576 -n03109150 -n02877962 -n02951585 -n03511333 -n03649909 -n03995856 -n04089976 -n03995372 -n03240140 -n03154073 -n04503593 -n02844307 -n02848216 -n03624400 -n02866386 -n03030557 -n03265032 -n04148054 -n03623556 -n02764044 -n04057047 -n04594828 -n03020692 -n03954731 -n04186848 -n04250473 -n04016684 -n04163530 -n02973904 -n02880842 -n03973628 -n03041632 -n03549473 -n02976123 -n03890093 -n03658185 -n04373089 -n03911658 -n02811468 -n03498962 -n04185804 -n04332074 -n04127521 -n03067212 -n04597400 -n03601638 -n04247630 -n04283585 -n03621049 -n02997607 -n03403643 -n04103206 -n04059516 -n03724417 -n03621377 -n04293119 -n03775199 -n03101517 -n03101986 -n03454885 -n03767966 -n03266371 -n04578934 -n02850732 -n03880531 -n03133878 -n02999138 -n04270147 -n03459328 -n03284981 -n04309548 -n03101796 -n03101156 -n04500060 -n03846677 -n04317325 -n03400231 -n04097760 -n04596742 -n04138977 -n03453231 -n03047799 -n03984234 -n03262519 -n04326676 -n03992703 -n04282992 -n03018209 -n02869155 -n03713436 -n03317788 -n03625646 -n03133050 -n04546194 -n03729826 -n03053474 -n03332271 -n04277352 -n04321453 -n04296261 -n03250847 -n03715669 -n02949202 -n04374315 -n02806379 -n04381724 -n04491388 -n02698634 -n03355925 -n03141823 -n03274265 -n04453156 -n04122349 -n04156140 -n03475581 -n02902687 -n04185946 -n03908714 -n04310904 -n03145522 -n04039381 -n04292414 -n04409806 -n02772700 -n04426316 -n04333129 -n03012013 -n04072551 -n03831382 -n03651843 -n04156946 -n03873416 -n02831894 -n04150153 -n03258905 -n04292921 -n02906734 -n04367480 -n04111190 -n04549629 -n04182322 -n03949317 -n03616428 -n02764779 -n03976657 -n03351979 -n03091044 -n04434531 -n03244231 -n03127408 -n04472563 -n04277493 -n02946824 -n02871824 -n04319937 -n04230603 -n03051396 -n02931836 -n04267577 -n03726993 -n03726760 -n02883004 -n04610676 -n03775847 -n04115996 -n03711999 -n03382856 -n03374372 -n04279353 -n03908204 -n03906997 -n03518943 -n03003091 -n03128248 -n03652100 -n02783161 -n04185529 -n04033901 -n03388183 -n03326948 -n03405725 -n03842156 -n03200906 -n04550184 -n02821943 -n04379243 -n04379964 -n04549122 -n03636649 -n03201035 -n04555400 -n02912065 -n02933112 -n02766320 -n02822579 -n03649797 -n03129753 -n02870880 -n03290653 -n03298716 -n04161981 -n04165409 -n03015254 -n03337140 -n04104147 -n02963302 -n04529681 -n03050546 -n02739550 -n02818832 -n02831724 -n03962852 -n03540914 -n02920083 -n04491638 -n03388549 -n03115762 -n02920259 -n04503413 -n04236809 -n04222210 -n03482252 -n03799876 -n03225988 -n03414676 -n03465426 -n04381587 -n03116530 -n02699629 -n02894337 -n04301000 -n03090000 -n03904060 -n03620967 -n03850492 -n04398951 -n03653583 -n04603729 -n03428226 -n03238586 -n03179701 -n03246933 -n03063968 -n04480033 -n03092883 -n03011741 -n02789487 -n03735963 -n04061681 -n04130143 -n04247736 -n03231368 -n03630262 -n04608329 -n04164868 -n03164722 -n03201208 -n03202354 -n04067921 -n03367059 -n04380533 -n04057981 -n03237340 -n03018349 -n03742115 -n02804414 -n03131574 -n02970534 -n03125729 -n03001627 -n04447861 -n04326896 -n04256520 -n03858418 -n02828884 -n03649674 -n03002711 -n04099969 -n04373704 -n04429376 -n04331277 -n03632729 -n03518445 -n02738535 -n04590933 -n03376595 -n04576002 -n03790953 -n02791124 -n03262932 -n04062428 -n03786621 -n04593077 -n03168217 -n02946270 -n03801880 -n04382438 -n03380724 -n04177755 -n03165096 -n03100346 -n03693474 -n03015149 -n04344873 -n03891251 -n03360622 -n03920867 -n04177820 -n04590021 -n03016953 -n03518305 -n02843553 -n03508101 -n03666591 -n06791372 -n03099945 -n03141702 -n03243218 -n03626760 -n03904909 -n03800933 -n04200537 -n04198797 -n03699975 -n03088707 -n02776205 -n04294212 -n03339643 -n03738472 -n02676261 -n04474466 -n03008976 -n02688443 -n04114844 -n03929660 -n03287351 -n03320046 -n03553019 -n03175604 -n02678897 -n04461879 -n04359589 -n03851341 -n04331639 -n04450749 -n03923918 -n03574816 -n03074855 -n04074963 -n03302790 -n03075768 -n04554406 -n04210120 -n04562262 -n02855089 -n04526964 -n02895606 -n02730265 -n04226826 -n03467796 -n04081844 -n03614007 -n03269401 -n02729965 -n03345837 -n03111899 -n04069276 -n02694426 -n03277771 -n04252331 -n03525827 -n03744840 -n03613294 -n03827536 -n04263760 -n03568117 -n03180969 -n02895438 -n03565288 -n02683558 -n03537241 -n03267972 -n04228054 -n03664675 -n04258333 -n03272239 -n04041069 -n03423479 -n03099147 -n04265275 -n04330267 -n03031422 -n03728437 -n07273802 -n06793231 -n06794110 -n06874185 -n03269203 -n02981321 -n03582959 -n04375405 -n03307792 -n02988963 -n03580518 -n04338517 -n03279153 -n03614532 -n04586932 -n02803349 -n03915437 -n03254862 -n03025886 -n02787622 -n04615226 -n04132603 -n03467517 -n02880546 -n04224842 -n03698360 -n03716887 -n03716966 -n03495258 -n02676566 -n03499907 -n04506289 -n03272010 -n04536153 -n04536866 -n02992211 -n04536335 -n04536595 -n04330998 -n04419642 -n03273551 -n04376400 -n03928116 -n03039015 -n03854065 -n02672831 -n03452741 -n04515003 -n04278353 -n03738066 -n02766792 -n03086457 -n03496296 -n04278247 -n03840681 -n04598582 -n02891788 -n03854815 -n03393324 -n04579667 -n03945615 -n03609397 -n03372029 -n02817799 -n03228016 -n04222847 -n02804610 -n03838899 -n03037709 -n04141076 -n02793089 -n02912894 -n03369276 -n03394916 -n04487394 -n03110669 -n03494537 -n03494278 -n03086670 -n03006626 -n03884397 -n02775483 -n03343354 -n03912218 -n03245724 -n02803934 -n02804252 -n02804123 -n03301568 -n03483230 -n02869249 -n03447721 -n04532831 -n04311174 -n03721384 -n03440682 -n03017168 -n03612965 -n03720891 -n03249569 -n03157348 -n02869737 -n02803666 -n04387400 -n04249415 -n04410086 -n04243941 -n03996416 -n03999992 -n02769290 -n04004475 -n03702248 -n03789946 -n04252653 -n02977058 -n03322940 -n03082979 -n04613939 -n03765561 -n04303357 -n03997484 -n03087069 -n04303497 -n04237423 -n04417180 -n04064401 -n02938886 -n04525305 -n04243546 -n02760199 -n03418915 -n02829596 -n03551395 -n04024274 -n03007591 -n03563200 -n04004767 -n03250405 -n03672827 -n03643737 -n03675235 -n04419868 -n03985069 -n04505036 -n02794664 -n04595285 -n03225777 -n02909285 -n03571942 -n04184435 -n03240892 -n03460040 -n03646296 -n03766044 -n03287733 -n03273061 -n03507963 -n03596285 -n02761557 -n02687423 -n03433877 -n04309049 -n03579982 -n04591517 -n03424630 -n03193107 -n03859000 -n04040373 -n04099175 -n03321103 -n02872333 -n04265904 -n02700064 -n04587404 -n04304375 -n03616763 -n03146846 -n03500699 -n03075634 -n04428191 -n03496892 -n03210245 -n03496612 -n04238763 -n06359193 -n03528523 -n04175147 -n03196324 -n04358117 -n04603399 -n03918480 -n03985232 -n03180011 -n03832673 -n03956785 -n03642806 -n03485407 -n03914337 -n04561422 -n03736064 -n03063485 -n04477219 -n04587559 -n03272125 -n03996145 -n02911332 -n03034663 -n03000684 -n04380916 -n04121728 -n02786837 -n04279462 -n03689157 -n03604156 -n03452267 -n02666196 -n02679257 -n03483823 -n04171831 -n04594489 -n03106898 -n03510244 -n02934168 -n03760310 -n04471632 -n03666362 -n03020034 -n03336575 -n03604843 -n04402984 -n03898129 -n04401828 -n03995265 -n03307037 -n03300443 -n03268918 -n04004990 -n03995535 -n03350602 -n03373237 -n03251932 -n04573937 -n04334365 -n03861271 -n04520784 -n04332243 -n02688273 -n03843555 -n04216634 -n04398834 -n03066849 -n03407865 -n02710201 -n04040759 -n03736970 -n04110955 -n04112430 -n02969010 -n03096960 -n03996849 -n02761392 -n02677718 -n03102859 -n03431243 -n04392764 -n03339529 -n04289027 -n04011827 -n02709367 -n03446268 -n04568069 -n03700963 -n04167346 -n04021798 -n03432129 -n04088797 -n02918595 -n03532672 -n04228215 -n03119510 -n04063154 -n04371774 -n04590746 -n04586581 -n04586421 -n03189083 -n04211528 -n03296081 -n02903204 -n03150232 -n04282494 -n03082807 -n02686227 -n02962200 -n03198500 -n02973017 -n04475411 -n03431745 -n04306592 -n02692086 -n04154152 -n04020298 -n04574999 -n03559999 -n03659809 -n03566329 -n03767203 -n04563204 -n04101701 -n02836035 -n02980036 -n03460147 -n04115144 -n03334912 -n04543772 -n04563413 -n02974003 -n04289690 -n03944341 -n03992509 -n03430551 -n03244919 -n03874293 -n04113194 -n04290507 -n02833793 -n03943115 -n04051549 -n02764505 -n04154340 -n03456299 -n03425413 -n02835724 -n04354487 -n03487886 -n02995871 -n03329302 -n04102406 -n02966193 -n04510706 -n03054901 -n03393761 -n03209359 -n02860415 -n04067472 -n04211857 -n02848523 -n03473227 -n03032811 -n04111668 -n03873699 -n03563460 -n03320421 -n03208556 -n04019541 -n02890188 -n04448361 -n03397947 -n03954393 -n04385799 -n03712111 -n04519153 -n04313503 -n03450018 -n03602883 -n04072193 -n04372370 -n02783459 -n02927887 -n04438507 -n03374649 -n03325088 -n04422875 -n02727141 -n03775636 -n04327682 -n04445952 -n04027023 -n03186818 -n03537412 -n03793850 -n03222516 -n02826589 -n03363549 -n03795758 -n03469493 -n03103396 -n03301833 -n02686379 -n03432061 -n03389611 -n04579432 -n04218564 -n03743279 -n03506560 -n02824448 -n03123917 -n03028596 -n03201529 -n04275548 -n03794056 -n03680858 -n04568557 -n03819994 -n03639077 -n03352628 -n04529962 -n04283255 -n04283096 -n04112252 -n03357716 -n04117464 -n03536122 -n04592741 -n03303217 -n03271574 -n02887079 -n03176386 -n02768114 -n04320973 -n03933933 -n03934042 -n02767433 -n04190052 -n03638883 -n02783994 -n04283378 -n02797692 -n04314914 -n02887209 -n03938401 -n02817031 -n04098513 -n03057920 -n03495570 -n04081044 -n02888569 -n04386051 -n02871005 -n04341414 -n03506184 -n04161358 -n04430475 -n03490884 -n04038440 -n03495039 -n02953455 -n03632577 -n02871439 -n03719343 -n03814639 -n03622839 -n02713003 -n02768655 -n02737660 -n03505133 -n03019685 -n02741475 -n04148579 -n03105467 -n04190376 -n04220036 -n04094720 -n04515129 -n02886599 -n04476831 -n02815950 -n04590263 -n03223686 -n04318787 -n03592773 -n03073977 -n03988170 -n04360798 -n02974348 -n03443149 -n03821518 -n02864593 -n03637181 -n04402449 -n03733131 -n04436329 -n04119751 -n04433585 -n04045644 -n03437941 -n04436185 -n03366974 -n03601840 -n02970685 -n03937931 -n03955489 -n04123740 -n03002096 -n02835915 -n02910145 -n02770830 -n04325041 -n03288886 -n04485082 -n04275175 -n03704549 -n03801760 -n02943871 -n03262809 -n02759257 -n04009801 -n03340723 -n03643253 -n03656484 -n03838298 -n03087366 -n02943241 -n02709101 -n03094159 -n04355933 -n03309465 -n03333711 -n03395859 -n03987376 -n03049782 -n04403413 -n04583212 -n03967396 -n04147495 -n03733925 -n04565375 -n03467068 -n03231160 -n02708711 -n03813176 -n03852280 -n03739693 -n03575958 -n02981911 -n03308152 -n04419073 -n04089836 -n04383015 -n03070193 -n03760944 -n02670382 -n04340521 -n03709206 -n03092656 -n04403638 -n03760671 -n02751295 -n03293863 -n03852688 -n04044716 -n04070207 -n03333129 -n04068601 -n02978478 -n03822767 -n04145863 -n03715114 -n03279508 -n03332989 -n03667829 -n02841506 -n03484931 -n03850053 -n03082280 -n03692522 -n03868643 -n03247083 -n04070415 -n04053508 -n02794156 -n03904782 -n04421872 -n02751215 -n03735637 -n03429288 -n04437953 -n02710600 -n02939866 -n03991837 -n04382880 -n04141975 -n04392113 -n03753077 -n03554460 -n04180888 -n04118776 -n02699915 -n04029734 -n03736470 -n04559730 -n04518343 -n02710429 -n03424862 -n04001499 -n03718335 -n04274985 -n02753394 -n03046257 -n04555897 -n04355338 -n04438304 -n03544143 -n03452594 -n03196217 -n02694662 -n04548280 -n02708093 -n03909406 -n03145147 -n03197337 -n02708433 -n03973839 -n04607869 -n04328186 -n03891332 -n03026907 -n04528968 -n03759661 -n02777100 -n02708555 -n03277459 -n03272810 -n03841143 -n02702989 -n04273796 -n03842986 -n04561287 -n04541320 -n03708843 -n04449966 -n03467984 -n02879718 -n02880393 -n02892948 -n03624134 -n04373894 -n04346157 -n04008634 -n02715712 -n03343853 -n04177041 -n02689274 -n03423306 -n03875955 -n02950826 -n02759963 -n03948459 -n04502851 -n03732020 -n03803116 -n04090263 -n04076284 -n04171459 -n02760429 -n03416775 -n03695857 -n04171629 -n02760855 -n02749479 -n02760658 -n03701391 -n04347519 -n02923682 -n04517211 -n03607659 -n04450133 -n03073296 -n03178674 -n04086273 -n03427202 -n03363749 -n03802007 -n04250224 -n04585980 -n02961451 -n03136369 -n03687928 -n03615790 -n02812949 -n03699591 -n03158885 -n04054361 -n03327691 -n02904640 -n02987492 -n04121511 -n03292475 -n03375575 -n02916350 -n02950943 -n03080633 -n04015908 -n02745611 -n03178000 -n03706229 -n03080497 -n02841315 -n04272054 -n04009552 -n04403925 -n03443912 -n04356056 -n04238617 -n03399761 -n03795976 -n03864692 -n03555662 -n02963503 -n04376876 -n04317175 -n03643149 -n03858183 -n04364545 -n04083800 -n03514451 -n03938037 -n04056180 -n03302671 -n04477387 -n04080833 -n04251144 -n03868863 -n02731629 -n03876231 -n04287747 -n02889646 -n03484576 -n03323703 -n04162706 -n03652932 -n04125853 -n02891188 -n03803284 -n02999936 -n02865665 -n02910353 -n03627232 -n03041114 -n03051249 -n02982599 -n03940256 -n03229244 -n04153751 -n04238321 -n02928608 -n04159354 -n03887185 -n03682487 -n04431745 -n03683606 -n03038281 -n03043958 -n02960690 -n03804744 -n04445327 -n03836451 -n02881906 -n02880189 -n03644858 -n03497352 -n04095342 -n03476313 -n04227900 -n03499354 -n02903126 -n02860640 -n02796318 -n04127249 -n04197781 -n03057541 -n04554871 -n03423719 -n03503477 -n03855604 -n03874599 -n04136800 -n03645011 -n03075370 -n03223162 -n03886762 -n02915904 -n03476684 -n03551084 -n03208938 -n03250089 -n04505470 -n04036303 -n03085013 -n03928814 -n03033362 -n04168199 -n03589513 -n03098140 -n04401949 -n03034244 -n03968293 -n03275681 -n03163222 -n04470953 -n04257986 -n02715229 -n02955247 -n04269270 -n04072960 -n04364160 -n04257790 -n02810471 -n04414675 -n03048883 -n04595855 -n03084420 -n03577090 -n03778817 -n04004210 -n03578656 -n03125057 -n03033986 -n03788047 -n03274561 -n03261776 -n03759954 -n03691459 -n04402580 -n03505667 -n03087816 -n02963692 -n04502670 -n02917377 -n04390873 -n04599124 -n04349401 -n03846772 -n03204955 -n04041747 -n04404817 -n03207305 -n04142999 -n04610274 -n04540547 -n03359285 -n03651388 -n03870980 -n04013729 -n04258138 -n03773035 -n03485198 -n02965783 -n04059947 -n03861842 -n02921756 -n02761834 -n04201064 -n03343737 -n04058594 -n04143140 -n04494204 -n03211117 -n03918737 -n03221351 -n04464615 -n03793489 -n02714751 -n03506727 -n02823124 -n04484432 -n03913343 -n03085219 -n03782190 -n04152593 -n03196598 -n03676759 -n03361380 -n04588739 -n03187268 -n02940570 -n03085602 -n02769075 -n02988066 -n03027250 -n03070059 -n03525454 -n04538552 -n02948557 -n03031152 -n02947818 -n03746005 -n03746155 -n02935017 -n03851787 -n03706653 -n03744276 -n03708036 -n04063868 -n02763306 -n03079230 -n04533946 -n02988679 -n02988486 -n02757061 -n03492542 -n03209910 -n03359436 -n04052757 -n04534359 -n02979399 -n04391838 -n03924069 -n03694639 -n04178190 -n03636248 -n03665366 -n03358172 -n03640988 -n02948072 -n03818343 -n04534895 -n04384910 -n03423877 -n03844045 -n03549897 -n03370387 -n04335886 -n04286575 -n03272383 -n03590841 -n03018712 -n03359137 -n03665924 -n03911767 -n03503997 -n04107743 -n04339879 -n03318294 -n04148703 -n04160847 -n03824713 -n02852173 -n04456115 -n03365374 -n03401129 -n03442597 -n03187037 -n04529108 -n03975232 -n03668279 -n03482523 -n04371050 -n03772584 -n04164757 -n03544238 -n04288272 -n04116098 -n03066359 -n02886321 -n03525074 -n04585745 -n03281145 -n03126707 -n04575824 -n03178430 -n03733281 -n03078287 -n03820728 -n03440216 -n04080138 -n03302938 -n03738241 -n03085915 -n04141712 -n04082886 -n04545858 -n04041544 -n04400289 -n04402746 -n03578055 -n03580845 -n04404412 -n04137897 -n04365328 -n03072201 -n03681477 -n04358491 -n03300216 -n04595028 -n04008385 -n03674440 -n04366116 -n03401279 -n03957315 -n04488202 -n04555700 -n03206908 -n02893692 -n03210683 -n03991062 -n02920658 -n04074185 -n03147509 -n02774152 -n02978881 -n03256032 -n02773037 -n03733805 -n03438257 -n03875806 -n03733644 -n03291819 -n04183329 -n03935335 -n02801938 -n04179712 -n04139859 -n03994614 -n02946921 -n04576211 -n04600312 -n02839910 -n02949542 -n03779370 -n02964843 -n04533700 -n02975212 -n02974697 -n04531098 -n03233905 -n04060904 -n03871083 -n04560292 -n02883344 -n03062336 -n03920288 -n03456024 -n04176190 -n04499062 -n04350581 -n02880940 -n02978753 -n04050933 -n02927764 -n04130257 -n03775546 -n03984759 -n02997910 -n04263257 -n04023695 -n04103769 -n02682922 -n04254120 -n02754103 -n03571280 -n03174731 -n02815749 -n03629520 -n03063073 -n03002948 -n04397452 -n03216710 -n03301940 -n04207343 -n03055418 -n04083309 -n02769748 -n04122685 -n02816656 -n04134008 -n02970408 -n03883524 -n03253886 -n02870676 -n04452528 -n03709823 -n04026417 -n03235796 -n03291963 -n04124098 -n04122825 -n03993180 -n04204081 -n04446844 -n03414029 -n03619793 -n03958227 -n03445617 -n04235860 -n03469903 -n03461288 -n04284572 -n03972524 -n04544450 -n03321563 -n03521899 -n03898395 -n03372549 -n04496872 -n04559910 -n02918831 -n03676623 -n04249882 -n04206225 -n02823750 -n04119360 -n03443371 -n04592099 -n03062245 -n04131690 -n03914438 -n03883385 -n03050864 -n03482405 -n02893608 -n04204238 -n04582349 -n03764736 -n02823510 -n04255586 -n03904433 -n02946509 -n04103364 -n03791053 -n04170037 -n04509417 -n04543158 -n02804515 -n03484083 -n02766534 -n02834778 -n03538634 -n04467099 -n02959942 -n04482393 -n02740533 -n04065272 -n04464852 -n04252077 -n02916179 -n03684823 -n04335435 -n03791235 -n04465501 -n03384352 -n02740300 -n02739889 -n03256788 -n02946348 -n04520382 -n04211219 -n03193597 -n03272562 -n04389854 -n04465358 -n04310018 -n03193260 -n03193423 -n03506880 -n04490091 -n02704792 -n03389761 -n03790512 -n03444034 -n02958343 -n04252225 -n03345487 -n04520170 -n04467665 -n04474035 -n03417042 -n03632852 -n04461696 -n03256166 -n04465666 -n03930630 -n03173929 -n03796401 -n03896419 -n03977966 -n02871314 -n04466871 -n03785016 -n02814533 -n03680512 -n03777568 -n03268790 -n03770679 -n03100240 -n03079136 -n02930766 -n04201733 -n04037443 -n03498781 -n04097373 -n02831335 -n04285965 -n04166281 -n03594945 -n03670208 -n03141065 -n02701002 -n04516354 -n04322801 -n04347119 -n03870105 -n03543394 -n04285008 -n03119396 -n03122295 -n02970849 -n03538406 -n03255899 -n03599486 -n03981924 -n03868242 -n04397027 -n03648431 -n04176068 -n02797295 -n04204347 -n03490119 -n02835271 -n04126066 -n04026813 -n03792782 -n02968473 -n03435991 -n02912557 -n04297098 -n03389889 -n02775039 -n03393912 -n03895866 -n02932523 -n02885108 -n04389521 -n03828020 -n04020912 -n03200357 -n04246855 -n04065789 -n02747177 -n03678558 -n04134523 -n03935116 -n02900705 -n03078995 -n03210372 -n03619650 -n04548362 -n02962843 -n03986355 -n03214582 -n03031012 -n04200000 -n03468821 -n02755140 -n03683995 -n04608435 -n04556533 -n02774630 -n03438863 -n03487533 -n04137217 -n02773838 -n04491769 -n03498441 -n03420345 -n04570815 -n02967294 -n03986949 -n03865371 -n04518764 -n02863750 -n03355768 -n02881193 -n03633091 -n02876657 -n02877266 -n03990474 -n03950228 -n02808440 -n03786901 -n02909870 -n03241496 -n03129001 -n04591887 -n04001265 -n04493381 -n03572321 -n04438897 -n02801525 -n03784270 -n02758960 -n03029445 -n02795169 -n04388743 -n03593526 -n02993368 -n04447028 -n03350204 -n04149083 -n04263336 -n04246060 -n03983396 -n04557648 -n03603722 -n02985963 -n03449451 -n03937543 -n02962061 -n03359566 -n02823428 -n03571625 -n03174450 -n04579056 -n03140431 -n04591713 -n02960903 -n03923379 -n04579145 -n04560804 -n03521675 -n03295246 -n04422727 -n02952374 -n04518132 -n03709363 -n03595409 -n04139140 -n04398044 -n03259401 -n04516214 -n04324297 -n03612814 -n02939185 -n03915118 -n04397768 -n03063689 -n03064250 -n04132985 -n04399158 -n04225031 -n03543603 -n03379343 -n03797390 -n03693707 -n04389430 -n03063599 -n04443766 -n02824058 -n02836174 -n02843158 -n04553703 -n02788572 -n02823335 -n04592005 -n03610418 -n03426134 -n04560113 -n04173046 -n02732072 -n04078574 -n04562935 -n04049303 -n02951703 -n02705429 -n03101664 -n02815834 -n04516116 -n03725600 -n04522168 -n03133415 -n03593122 -n03960374 -n04476259 -n02982515 -n03259009 -n03004275 -n04131929 -n03416900 -n03565830 -n03543735 -n03858085 -n04255163 -n02747802 -n03871628 -n02919414 -n03167978 -n02778456 -n03500389 -n03870672 -n02782681 -n02971356 -n03064758 -n04200258 -n04253057 -n03908618 -n03127925 -n02786331 -n04589325 -n03014705 -n04340750 -n02998003 -n03710193 -n02978055 -n02836392 -n03871724 -n04452615 -n04462011 -n03064350 -n03535024 -n04477548 -n02989099 -n02977438 -n04125257 -n02976939 -n04125021 -n04469813 -n03002341 -n04214282 -n04019101 -n04172342 -n03538179 -n04524313 -n04231693 -n04103918 -n04467307 -n04196502 -n03678362 -n03306385 -n04212165 -n04468005 -n02924116 -n03680942 -n03394272 -n03896233 -n04349306 -n03711044 -n03394480 -n03078802 -n02917067 -n04487081 -n03769881 -n04146614 -n04310157 -n02918964 -n04099429 -n03764276 -n03773504 -n03125870 -n04235291 -n03478589 -n04389033 -n03886053 -n03919096 -n03549199 -n02686568 -n04530566 -n04264914 -n03547229 -n03510583 -n04308084 -n03666917 -n03491032 -n03439814 -n03512147 -n04552348 -n02691156 -n02759387 -n02867715 -n02704645 -n04012084 -n02690373 -n02842573 -n03365231 -n03595860 -n03335030 -n04308273 -n04160586 -n02686121 -n04583620 -n03604311 -n03596543 -n04308397 -n03577672 -n02692877 -n02850950 -n02782093 -n03541923 -n02858304 -n04476116 -n04610013 -n04194289 -n04128837 -n02792409 -n03662601 -n03977592 -n03447447 -n04158807 -n02792552 -n04095210 -n04495843 -n04024983 -n03939178 -n04244997 -n03329663 -n04409128 -n02947660 -n03344393 -n03790230 -n03236423 -n03981566 -n03545470 -n04229480 -n02951358 -n03199901 -n04037964 -n03105306 -n04612504 -n03436891 -n03602081 -n04115456 -n03609235 -n03861430 -n03254374 -n04038231 -n04038338 -n04273569 -n03859170 -n02932891 -n03552749 -n04197110 -n04606251 -n03896103 -n03947888 -n03668488 -n03541269 -n04309348 -n02965300 -n04224543 -n04552696 -n03673027 -n03698604 -n02965216 -n03141327 -n03874138 -n04317063 -n02878222 -n03095699 -n02784124 -n03845190 -n04347754 -n03466493 -n03397266 -n02812201 -n03466600 -n02687172 -n03718212 -n03180504 -n02755529 -n03811295 -n04612373 -n03045228 -n03327133 -n04242408 -n03612010 -n03186285 -n04128499 -n02793199 -n04147183 -n04587327 -n04483307 -n02981792 -n02982416 -n04266014 -n04264765 -n03218198 -n02860847 -n02861022 -n04336792 -n03122202 -n06271778 -n06255081 -n06263609 -n06276697 -n06272290 -n06276501 -n06277280 -n06281040 -n06277135 -n06278338 -n06278475 -n06274760 -n06272803 -n06272612 -n06263369 -n06266417 -n06595351 -n06267145 -n06596607 -n06596727 -n06596364 -n06596474 -n06267893 -n06267564 -n06267655 -n06266633 -n06267991 -n03938244 -n03872495 -n04135315 -n02823964 -n03408444 -n02967626 -n04053677 -n04151940 -n04453910 -n03380867 -n04014297 -n03045698 -n04605726 -n04513827 -n03050026 -n03724870 -n03341153 -n03366823 -n03058107 -n02952237 -n03357376 -n03221059 -n03376279 -n03956623 -n03261603 -n02944459 -n04201297 -n02954938 -n03717622 -n03661340 -n04041243 -n02877765 -n03825788 -n03047690 -n04199027 -n02735538 -n02872752 -n03361550 -n04241394 -n03865949 -n04122578 -n04239786 -n03027625 -n04124370 -n04272389 -n02904927 -n04593524 -n04545748 -n02855701 -n02713364 -n03041449 -n03411079 -n03680355 -n04120489 -n03868406 -n02882894 -n03967270 -n04022332 -n04133789 -n03025250 -n04027706 -n04386664 -n03364008 -n03297103 -n03600475 -n02925666 -n04228581 -n03521544 -n04089666 -n04116294 -n03516844 -n04542715 -n03124043 -n03798061 -n02873733 -n03067518 -n03046133 -n04554211 -n04444749 -n03797896 -n04192858 -n02888270 -n04151581 -n04187233 -n02826068 -n04181718 -n04191943 -n04281375 -n04416005 -n04105068 -n03314608 -n03530910 -n04187061 -n02955065 -n03725035 -n03315644 -n03142679 -n02937958 -n02739668 -n02840245 -n02840619 -n03546766 -n02851099 -n03673767 -n03959701 -n03539433 -n02740764 -n02895154 -n03513376 -n02950632 -n03623338 -n03929855 -n04130907 -n04589890 -n03347037 -n04590553 -n03788365 -n03637318 -n03889871 -n03652729 -n02825657 -n04172776 -n02843684 -n02951843 -n03610524 -n02763901 -n04507155 -n03415252 -n03409591 -n04357121 -n03718789 -n03220513 -n03522100 -n04435653 -n03546235 -n04523525 -n04234887 -n03413684 -n04417672 -n03148727 -n03435593 -n03847471 -n02796207 -n04087709 -n03527444 -n04141327 -n04207763 -n03548086 -n04423845 -n03213538 -n03657121 -n03424325 -n03314378 -n04229816 -n02983189 -n02862048 -n04192698 -n03000247 -n02916936 -n03112719 -n03146219 -n02933340 -n04045255 -n02873520 -n04589190 -n03592669 -n03151077 -n04211356 -n04525584 -n04590129 -n04102285 -n04418357 -n04209239 -n02925107 -n02890513 -n03436549 -n03291741 -n02992368 -n07248320 -n03590306 -n03958752 -n04207151 -n03885293 -n03654576 -n02767665 -n03114379 -n02785648 -n02876084 -n04240752 -n02820210 -n04236377 -n02851939 -n03309356 -n04231272 -n04162433 -n02786058 -n04369025 -n02979836 -n03267821 -n04033995 -n02683323 -n02849154 -n02822220 -n03731483 -n03898633 -n03266749 -n03128427 -n03123553 -n04034262 -n04046400 -n03688405 -n04118021 -n03223299 -n03727837 -n04144539 -n04183217 -n03998194 -n02904233 -n04297847 -n04066270 -n02908773 -n03353951 -n03445326 -n04528079 -n03875218 -n03805725 -n03437430 -n03115897 -n03284743 -n04525417 -n03342015 -n03284886 -n03285578 -n03844233 -n04557308 -n03646020 -n04581102 -n03261019 -n03973402 -n03642444 -n04450994 -n04084889 -n04412097 -n03337383 -n03729308 -n03970546 -n03802393 -n04395024 -n04525038 -n02809105 -n03615406 -n02828427 -n04123567 -n03188725 -n04539794 -n03253796 -n03013850 -n03115400 -n04459610 -n03132666 -n03885194 -n03019938 -n03326795 -n03115180 -n04525191 -n04138261 -n03625355 -n04137355 -n04003856 -n03356982 -n04568841 -n03409297 -n02944579 -n04605163 -n02977330 -n04395106 -n03779128 -n02904803 -n04524941 -n04198453 -n02878425 -n03703862 -n03819595 -n03877351 -n04613015 -n03914831 -n03932670 -n03785237 -n04414476 -n04056932 -n02675219 -n03106722 -n03917814 -n03016868 -n02922798 -n04432662 -n02802990 -n03631177 -n04189282 -n03435743 -n03983612 -n03175189 -n03357267 -n04184316 -n02942460 -n03836906 -n03233123 -n03430091 -n03855214 -n03386726 -n03437741 -n04599235 -n04350458 -n04383839 -n03653110 -n04502502 -n03854421 -n02952109 -n03298858 -n03160740 -n03843438 -n04393549 -n02903852 -n03947798 -n03529444 -n04482297 -n03227317 -n03595523 -n03429914 -n04496614 -n03016609 -n03485794 -n03463666 -n03258330 -n03207743 -n04459362 -n02786198 -n03471190 -n02834397 -n04127904 -n03897943 -n03490006 -n03887697 -n03207835 -n03381776 -n03383099 -n04278447 -n03505383 -n04455652 -n03712337 -n02782602 -n03598151 -n03775747 -n03410571 -n03696568 -n04307767 -n03645577 -n03358380 -n04208065 -n03809603 -n02820556 -n03703730 -n03938522 -n04045397 -n03663531 -n03662719 -n03703945 -n03662887 -n04326084 -n02897820 -n14943580 -n14785065 -n15074568 -n14820180 -n04035912 -n03766935 -n04313628 -n03530511 -n03460297 -n03149686 -n03455488 -n03344642 -n03796522 -n03043693 -n02681392 -n04339638 -n15102455 -n04234455 -n03341297 -n04453390 -n14908027 -n14976759 -n03111177 -n03282401 -n03451798 -n03292603 -n03815149 -n03723267 -n02892304 -n07621618 -n02732572 -n03178782 -n02681518 -n03397087 -n03635108 -n04395651 -n03762602 -n03282591 -n06883725 -n03516367 -n04682462 -n03354903 -n02788021 -n04458633 -n03140292 -n03362890 -n05244934 -n11487732 -n03597469 -n03397532 -n03649161 -n03914106 -n02787435 -n03030262 -n02685082 -n02887970 -n02852043 -n03909020 -n03814906 -n03436075 -n03899328 -n04096066 -n03895293 -n04215402 -n04461570 -n03904183 -n03519981 -n02969323 -n04426618 -n04466613 -n03215508 -n03306610 -n02744323 -n02762508 -n02758863 -n04335209 -n04334599 -n03948242 -n03539678 -n02680512 -n03089014 -n03895585 -n04493505 -n04244379 -n04250850 -n04562496 -n02984469 -n02795528 -n03944672 -n03533014 -n04385536 -n03231912 -n03147280 -n04257684 -n04497962 -n04298661 -n03415749 -n02981024 -n04048441 -n04391569 -n02784218 -n03572107 -n02680337 -n03957420 -n02992795 -n03506028 -n03438071 -n04440749 -n02739427 -n04040247 -n02971167 -n04381994 -n04087432 -n03153375 -n03438661 -n03527149 -n03963198 -n04284002 -n04380346 -n03383948 -n04284438 -n04263502 -n04398688 -n04350769 -n04597913 -n03557270 -n04381073 -n03180384 -n02976249 -n02928049 -n04307986 -n04380255 -n02973805 -n02687992 -n04406817 -n02693246 -n02692232 -n03745146 -n04329190 -n04306080 -n04551055 -n03452449 -n03131669 -n03768916 -n03214253 -n03587205 -n03406966 -n03093574 -n03672352 -n03051540 -n02729837 -n03655720 -n03456186 -n02855925 -n03825080 -n04015204 -n03859495 -n03815482 -n03625943 -n03692379 -n02728440 -n03068998 -n03763968 -n03502509 -n03877472 -n03419014 -n02742322 -n04596852 -n03863108 -n03441112 -n02671780 -n02846141 -n03381126 -n02756098 -n04059157 -n02814774 -n03746330 -n04335693 -n04241249 -n04194127 -n03863262 -n04001845 -n02738859 -n03386870 -n03216402 -n02730930 -n04207903 -n03121897 -n03015478 -n03268645 -n04266375 -n03623198 -n03450516 -n04532106 -n03010795 -n02669723 -n02811719 -n03324928 -n03239259 -n03615563 -n03513137 -n03531281 -n04498389 -n03497657 -n02954340 -n03124474 -n04432203 -n03379051 -n03492922 -n03127747 -n04356595 -n03404360 -n03124170 -n02817516 -n02859184 -n04248507 -n03325941 -n02987379 -n04259630 -n04482177 -n02818135 -n03984643 -n02869837 -n03950899 -n02881757 -n03766322 -n03046029 -n03937835 -n02799323 -n03103563 -n04209133 -n03610682 -n02776825 -n03331077 -n04387095 -n02831237 -n04232153 -n03049924 -n04228693 -n04556408 -n02807133 -n03787032 -n04612026 -n02816768 -n03502331 -n04143897 -n04104770 -n03188531 -n04605572 -n04097866 -n04574067 -n03655072 -n04230808 -n04508163 -n04172904 -n04531873 -n04197391 -n03863923 -n03540090 -n02922578 -n04488530 -n04489008 -n04332580 -n03404149 -n03816005 -n04370774 -n03657511 -n04371563 -n03487642 -n04046277 -n04350905 -n04370048 -n03450734 -n03314884 -n03826039 -n02998841 -n03719743 -n03797182 -n03505504 -n04495698 -n03325584 -n04325704 -n03520493 -n03615655 -n03237992 -n03617480 -n02667093 -n02807616 -n03410938 -n04269822 -n03866082 -n03454442 -n03770439 -n03617312 -n03732458 -n02780815 -n03205669 -n04136333 -n03534580 -n03920737 -n02892767 -n03387323 -n04223299 -n03421324 -n03132776 -n04508949 -n02863014 -n02944146 -n04514241 -n03013580 -n04508489 -n03112869 -n03885788 -n04103665 -n03673450 -n03688192 -n02930214 -n04509171 -n03824381 -n02854739 -n04426427 -n02837887 -n02901114 -n03885028 -n03234164 -n04602956 -n03629231 -n03595614 -n03163381 -n03978966 -n03057021 -n03045337 -n04252560 -n04363777 -n03254046 -n04187970 -n03398228 -n03630383 -n03456665 -n03589791 -n04049405 -n02957008 -n04123448 -n03404251 -n03751269 -n04222307 -n02867966 -n03902756 -n04368496 -n03228254 -n02864504 -n03891051 -n03844815 -n04479046 -n03770954 -n04122492 -n03980874 -n04445154 -n04445040 -n03607923 -n04173907 -n04497570 -n04186455 -n02936402 -n04205318 -n03877674 -n04370288 -n04132158 -n02896442 -n03019434 -n04233715 -n03600285 -n03903733 -n03688605 -n03594734 -n03107488 -n03660124 -n04337287 -n02825442 -n02910864 -n03543112 -n02831595 -n03653833 -n03815615 -n03128085 -n02865351 -n04591157 -n02883205 -n02847631 -n03710721 -n04371430 -n02837789 -n03226538 -n03943920 -n04222470 -n03885669 -n02925519 -n04427715 -n04504141 -n04502197 -n02963159 -n04370456 -n04021028 -n04453666 -n03464053 -n02944075 -n03236735 -n02861387 -n02854926 -n03480579 -n03062015 -n04136161 -n02936570 -n04355511 -n03013438 -n04334105 -n03450230 -n03604400 -n03205574 -n02898585 -n04397645 -n02781121 -n03429682 -n03775071 -n03616979 -n02827606 -n03405595 -n03781683 -n03527565 -n02972397 -n03540267 -n04434932 -n04254777 -n04323819 -n03885904 -n03710637 -n02752496 -n04378956 -n03622931 -n02736798 -n03836976 -n03026506 -n03384891 -n03289985 -n03859958 -n02726017 -n03113657 -n03320519 -n03113835 -n03398153 -n04285803 -n02669534 -n03206718 -n03476083 -n03201776 -n02780704 -n03201638 -n03239054 -n02683454 -n04459018 -n04584207 -n03237416 -n02887489 -n02752615 -n03528263 -n03251766 -n04517823 -n03584829 -n04488857 -n03150511 -n04580493 -n04179913 -n04174101 -n03620052 -n03534776 -n04475631 -n04309833 -n03207941 -n04070727 -n04554684 -n03102654 -n03273913 -n03557590 -n03170635 -n04442312 -n03761084 -n04442441 -n03063338 -n03543254 -n04542943 -n03212114 -n03297495 -n04330340 -n03862676 -n03378174 -n03557692 -n03102371 -n03273740 -n03425595 -n04003241 -n02905036 -n04111531 -n03259280 -n03425241 -n03483316 -n03050655 -n04277826 -n04496726 -n04607242 -n02808304 -n03219010 -n04499446 -n02821030 -n03938725 -n04188179 -n04439712 -n03971218 -n03223553 -n02856463 -n03250279 -n03882058 -n03635668 -n02846511 -n04251791 -n04189816 -n02731900 -n04225987 -n04214046 -n04149813 -n04543996 -n03502200 -n03005285 -n03969259 -n04254009 -n04446521 -n04208936 -n04559451 -n03371875 -n03993053 -n04108268 -n03106110 -n03644378 -n02919890 -n04290079 -n03107046 -n04426788 -n02874537 -n04581829 -n03641569 -n03367545 -n04598965 -n04605321 -n00004475 -n00006484 -n12739332 -n00017222 -n00015388 -n01326291 -n11537327 -n00007846 -n12992868 -n00005787 -n12172906 -n13083586 -n13123431 -n11536673 -n11552806 -n13083023 -n13100156 -n12476510 -n11545524 -n11552386 -n13121544 -n12205694 -n13100677 -n13103136 -n13085113 -n13084834 -n13134302 -n13084184 -n12477163 -n12477583 -n12477747 -n12480895 -n12479537 -n12481458 -n11547562 -n11545714 -n13221529 -n13220122 -n13223265 -n13223588 -n13223710 -n12953206 -n13194572 -n13205058 -n12961879 -n12953484 -n13186654 -n13197274 -n13173882 -n13229543 -n13192625 -n13185269 -n13193642 -n13207335 -n13183056 -n13200651 -n13195341 -n13206817 -n13199970 -n12957924 -n13198914 -n13199717 -n13215586 -n13190747 -n13193856 -n13194036 -n11665372 -n11596108 -n12694486 -n11666854 -n11669921 -n11672400 -n12606438 -n12799776 -n11736694 -n12008487 -n11955896 -n12879527 -n12884260 -n12034141 -n12290748 -n12026476 -n12833149 -n11892817 -n12914923 -n11969607 -n11794024 -n12026018 -n11672269 -n12830222 -n11811473 -n12022054 -n11971406 -n11826198 -n12950314 -n11857875 -n11988596 -n11939699 -n11915214 -n11821184 -n12293723 -n11814584 -n11725015 -n12890265 -n11733312 -n11859472 -n11971248 -n11888800 -n11971927 -n12898774 -n11810358 -n11904109 -n11943407 -n11978233 -n12683407 -n12950126 -n11726707 -n11813077 -n11889619 -n11905749 -n11812910 -n11900569 -n12020184 -n11960245 -n11859737 -n12909421 -n12041446 -n12909917 -n11992806 -n11807979 -n11925303 -n11971783 -n11939491 -n11918473 -n11989869 -n11727091 -n11793779 -n11891175 -n11792341 -n11839568 -n11943660 -n11947802 -n12475242 -n11815491 -n12480456 -n11839823 -n11732567 -n12475035 -n12360108 -n12833985 -n11941924 -n11883328 -n11719286 -n11736851 -n11887119 -n12001707 -n11950345 -n11892637 -n11805956 -n11892029 -n11806219 -n12008252 -n11918286 -n11962272 -n12093600 -n12836862 -n12093329 -n11733054 -n12020507 -n11931918 -n11958080 -n12877838 -n11812094 -n11811706 -n11923174 -n12023726 -n12023407 -n11923637 -n11990313 -n11915899 -n12030908 -n12015221 -n11990167 -n11981192 -n11980318 -n11972759 -n11921395 -n12294124 -n12295796 -n12294723 -n12294331 -n12294871 -n12296432 -n12295033 -n11726269 -n11725821 -n11725973 -n12891305 -n12891643 -n11978713 -n11979527 -n11978961 -n11979715 -n12683571 -n12683791 -n11901759 -n11908549 -n11901294 -n11903671 -n11901977 -n11902389 -n11908846 -n11901597 -n11905392 -n11902200 -n11906917 -n12044467 -n12052787 -n12056217 -n12075830 -n12055516 -n12083113 -n12047884 -n12048056 -n12080820 -n12070381 -n12061380 -n12080395 -n12061614 -n12074408 -n12070583 -n12071744 -n12049282 -n12047345 -n12064389 -n12075010 -n12052447 -n12053405 -n12050533 -n12077944 -n12086539 -n12064591 -n12058822 -n12046028 -n12083591 -n12073991 -n12043444 -n12086012 -n12073554 -n12046815 -n12063639 -n12058630 -n12084890 -n12070016 -n12076223 -n12069679 -n12048399 -n12049562 -n12076577 -n12086192 -n12074867 -n12075299 -n12072722 -n12066018 -n12084555 -n12070712 -n12079963 -n12065316 -n12059314 -n12085664 -n12050959 -n12062468 -n12085267 -n12078172 -n12057211 -n12057447 -n12056758 -n12056601 -n12043836 -n12043673 -n12067193 -n12066630 -n12062781 -n12062626 -n11808299 -n11808721 -n11808932 -n11808468 -n11809594 -n11809094 -n11727358 -n11727738 -n11727540 -n11816649 -n11816336 -n11816829 -n11816121 -n11815918 -n11815721 -n12362274 -n12362668 -n12361946 -n11950877 -n11950686 -n11961100 -n12020736 -n12020941 -n11934616 -n11933546 -n11934807 -n12879963 -n12015959 -n11836722 -n11860555 -n12258885 -n11980682 -n12016567 -n11737534 -n11965627 -n11991263 -n11989393 -n12006766 -n12887293 -n12937130 -n12291959 -n11972291 -n11927215 -n12012111 -n11970586 -n11963932 -n11966215 -n11966083 -n12006930 -n12007196 -n11600372 -n11599324 -n11603246 -n11602873 -n11603835 -n11601333 -n12484784 -n12610328 -n11791569 -n11714853 -n13122364 -n11715430 -n11715678 -n12801781 -n11728099 -n11786131 -n12150028 -n12801520 -n11789066 -n11792742 -n12152532 -n12151615 -n12152722 -n11733548 -n11720353 -n12810595 -n12342299 -n13238375 -n12867826 -n12665048 -n11973341 -n12312728 -n11818069 -n12848499 -n11779300 -n12822955 -n12816508 -n12719684 -n12350758 -n12095020 -n11861641 -n11962667 -n12870891 -n12939282 -n12812478 -n12031927 -n12023108 -n12858150 -n12861892 -n12841007 -n12212361 -n12869061 -n12906214 -n12910285 -n12486574 -n12090890 -n12702948 -n12437513 -n11968931 -n11817914 -n11772408 -n12932173 -n12817694 -n11910460 -n12603449 -n12939874 -n12002428 -n12015525 -n11807108 -n12835331 -n12168565 -n12840362 -n12352287 -n11969166 -n11968704 -n12821895 -n12344283 -n11866248 -n11995092 -n12622875 -n11735053 -n12548280 -n13150894 -n12685431 -n12387633 -n12171966 -n12796022 -n12934036 -n12443323 -n12870535 -n12682668 -n12778605 -n12623077 -n12836212 -n11982115 -n12003696 -n12005656 -n12098403 -n12606545 -n11902709 -n12882945 -n12785889 -n11986511 -n12682411 -n12469517 -n12029635 -n12860365 -n12552309 -n11977303 -n11825351 -n12836337 -n12844939 -n12925179 -n11926833 -n12604228 -n11752578 -n12855042 -n11956850 -n12092262 -n12506991 -n12882779 -n11747468 -n12385429 -n12822115 -n12821505 -n12607456 -n12819728 -n12817464 -n12811027 -n12024445 -n12573474 -n12864545 -n11949402 -n11868814 -n11953038 -n12599435 -n12840749 -n13233727 -n12342498 -n12795555 -n11984542 -n12847008 -n12719944 -n11855274 -n12095647 -n12441183 -n12942572 -n12602980 -n12684379 -n12441390 -n12785724 -n11916696 -n12574320 -n12092417 -n12036939 -n11700058 -n12845413 -n11824146 -n11910271 -n11916467 -n11807525 -n12101870 -n11939180 -n12353754 -n12104501 -n12794985 -n12355760 -n12793015 -n12932966 -n12931542 -n12889713 -n12849061 -n11722466 -n11720643 -n12665857 -n12665271 -n11785668 -n11780148 -n11784497 -n11782036 -n11786539 -n11782761 -n12858871 -n12858397 -n11959632 -n11959862 -n12911673 -n12911440 -n12091213 -n12091550 -n12091377 -n12091953 -n12703557 -n12703190 -n12703383 -n12437930 -n12437769 -n12352639 -n12352844 -n12352990 -n12344700 -n12344483 -n12687957 -n12685831 -n12687698 -n12687462 -n12686274 -n12686077 -n12687044 -n12686676 -n12388989 -n12388143 -n12387839 -n12388858 -n12390099 -n12389501 -n12390314 -n12782915 -n12779603 -n12781940 -n12782530 -n11753700 -n11753355 -n11753143 -n12856680 -n12855494 -n12540250 -n12515711 -n12575322 -n12575812 -n12556307 -n12539306 -n12557681 -n12558425 -n12866162 -n12865824 -n12865037 -n12866635 -n12865562 -n12866002 -n11879054 -n11878283 -n11875691 -n11876634 -n11877193 -n11876803 -n11876432 -n11870418 -n11875938 -n11894327 -n11881742 -n11870747 -n11896722 -n11879722 -n11895092 -n11894770 -n11882074 -n11882426 -n13235503 -n13234678 -n12039317 -n12037691 -n12038406 -n12038585 -n12148757 -n12102133 -n12121610 -n12139575 -n12113195 -n12112918 -n12116429 -n12141495 -n12133462 -n12108871 -n12104238 -n12141167 -n12115180 -n12112008 -n12128071 -n12146311 -n12124627 -n12110778 -n12129134 -n12134025 -n12145477 -n12142085 -n12135898 -n12137120 -n12127030 -n12127768 -n12127460 -n12356023 -n12357485 -n12793494 -n12794135 -n12849279 -n12849416 -n12847374 -n12517642 -n11731659 -n12813189 -n11838916 -n12517445 -n12513172 -n12823859 -n12566954 -n13148208 -n12158798 -n12485981 -n13237188 -n12826516 -n13120211 -n12580654 -n11769621 -n12824053 -n11769803 -n12383402 -n12823717 -n12157769 -n13144794 -n12371439 -n12159055 -n12160490 -n12158443 -n12160303 -n12159388 -n12160857 -n12161969 -n12827270 -n12828791 -n12827537 -n11788727 -n11789589 -n12571781 -n11792029 -n12384839 -n12384227 -n12384037 -n12164363 -n12166128 -n12165170 -n12164881 -n12164656 -n13146583 -n13145040 -n12509476 -n13112664 -n13104059 -n12655869 -n12546183 -n12671651 -n12215579 -n12901724 -n12938193 -n12680864 -n12329260 -n12924623 -n12659356 -n12788201 -n12343480 -n13142504 -n11830906 -n12504783 -n12659539 -n12214789 -n11699442 -n12217453 -n12574866 -n12374418 -n12249542 -n13118707 -n12215022 -n12342852 -n12762896 -n12306717 -n11769176 -n12805146 -n12519089 -n11754893 -n12772908 -n12624381 -n12482031 -n12243109 -n12223764 -n12170585 -n12230794 -n12791329 -n12674120 -n12917901 -n12237486 -n12185859 -n12681893 -n12905412 -n12899537 -n12899752 -n12806015 -n12011620 -n12922763 -n12651229 -n12303083 -n11928352 -n11926365 -n12223569 -n12791064 -n12311579 -n11834654 -n11760785 -n12749679 -n12489815 -n12666965 -n12929403 -n12902662 -n12620196 -n12237641 -n12625383 -n12244153 -n11774513 -n12520864 -n12516828 -n12849717 -n12485653 -n12790430 -n12788854 -n11924445 -n12632335 -n11947251 -n12099342 -n11931540 -n12545635 -n11778257 -n11924849 -n12367611 -n12602262 -n12328567 -n12328398 -n12629305 -n11907689 -n11940006 -n12546962 -n11925898 -n11947629 -n11948864 -n11948264 -n12368451 -n12369309 -n12368028 -n12307240 -n12307076 -n12483427 -n12483625 -n12482893 -n12483841 -n12173664 -n12173912 -n12171316 -n12174521 -n12171098 -n12177844 -n12174311 -n12178896 -n12179122 -n12676534 -n12676703 -n12675876 -n12920204 -n12921868 -n12621410 -n12622297 -n12245319 -n12244650 -n12244819 -n12521394 -n12530818 -n12849952 -n12850336 -n12850168 -n12495146 -n12570972 -n12196129 -n13107694 -n12202936 -n13111881 -n13103877 -n12409231 -n12765115 -n12265600 -n12409470 -n12713866 -n12281241 -n11709205 -n12189429 -n12562785 -n12284821 -n12401335 -n12570394 -n11759224 -n12286988 -n12491826 -n12527738 -n12696492 -n12325234 -n12198286 -n12330891 -n11650558 -n12405714 -n12284262 -n12714755 -n13109733 -n12262553 -n12506341 -n12303462 -n12260799 -n12302071 -n12492106 -n11762433 -n12582231 -n12774299 -n13108481 -n12267411 -n11756092 -n12662772 -n13108662 -n12528549 -n12690653 -n12180885 -n13108545 -n13108323 -n12334293 -n12670758 -n12286826 -n12724942 -n12155009 -n12570703 -n12523475 -n12154773 -n12915811 -n12268246 -n13108131 -n12806732 -n12524188 -n11758799 -n12496427 -n12568186 -n12495895 -n12196527 -n12196336 -n12196694 -n12203529 -n12204175 -n12282933 -n12282527 -n12283542 -n12282737 -n12282235 -n12402051 -n12402840 -n12401684 -n12402348 -n12402596 -n11759853 -n11759404 -n12406715 -n12406488 -n12407890 -n12406902 -n12330469 -n12345899 -n11709674 -n12329473 -n12200143 -n11712282 -n12752205 -n13110915 -n12513933 -n12189987 -n12731401 -n12717224 -n12717072 -n12946849 -n12756457 -n12201580 -n11703669 -n12491017 -n12190410 -n12242409 -n07754894 -n12818346 -n12658308 -n12658118 -n12494794 -n12317296 -n12651821 -n11711764 -n11710136 -n11711537 -n11710393 -n12755225 -n12753573 -n12754648 -n12754781 -n12755727 -n12754981 -n12755387 -n12753007 -n12753245 -n12754003 -n12759273 -n12318378 -n12288823 -n12319204 -n12319414 -n12732491 -n12733647 -n12732756 -n12732009 -n12733870 -n12732966 -n12733218 -n12948495 -n12948251 -n12948053 -n12947313 -n12757303 -n12757458 -n11704093 -n11705171 -n12707781 -n12399132 -n12400720 -n12345280 -n11695599 -n12771192 -n12704343 -n12638218 -n12644902 -n12190869 -n12373100 -n12300840 -n12743352 -n12651611 -n12629666 -n12636224 -n12648045 -n12399384 -n12301180 -n12744387 -n12640839 -n12745386 -n12633638 -n12771390 -n12761284 -n12400489 -n12333530 -n12333771 -n12333053 -n12641413 -n12332030 -n12711984 -n12709901 -n12708293 -n12713063 -n12711596 -n12709103 -n12709688 -n12710415 -n12710295 -n12710693 -n12708654 -n12708941 -n12643313 -n12638753 -n12646740 -n12645174 -n12650379 -n12634429 -n12633994 -n12634211 -n12635532 -n12635955 -n12635744 -n12643473 -n12649065 -n12641931 -n12642200 -n12650556 -n12649539 -n12649317 -n12646605 -n12647560 -n12648888 -n12263987 -n12263038 -n12306089 -n12305986 -n12305293 -n12304703 -n12305475 -n12262018 -n12261808 -n12261571 -n12595699 -n12587132 -n12583126 -n12596709 -n12591351 -n12596849 -n12582665 -n12596148 -n12595964 -n12582846 -n12587803 -n12591017 -n12588320 -n12588780 -n12585629 -n12597134 -n12598027 -n12597466 -n12583401 -n12593994 -n12590232 -n11757653 -n11756669 -n11757851 -n11664418 -n13108841 -n11647703 -n11628793 -n11658331 -n11623105 -n11630017 -n11628456 -n11658544 -n11643835 -n11624531 -n11661372 -n11645914 -n11630489 -n11640132 -n11608250 -n11620673 -n11618861 -n11627168 -n11623815 -n11624192 -n11623967 -n11635152 -n11634736 -n11635433 -n11636204 -n11644462 -n11644226 -n11644046 -n11626585 -n11625632 -n11625003 -n11626826 -n11625804 -n11626152 -n11626409 -n11646694 -n11646167 -n11632167 -n11631854 -n11632619 -n11616662 -n11611561 -n11611356 -n11617631 -n11612575 -n11611758 -n11614713 -n11615387 -n11612018 -n11611087 -n11612923 -n11616486 -n11618290 -n11612349 -n11611233 -n11617090 -n11614250 -n11618525 -n11615026 -n11617272 -n11614039 -n11613459 -n11615967 -n11614420 -n11621029 -n11622184 -n11622591 -n11621281 -n11622368 -n11621950 -n11621547 -n11621727 -n11619455 -n11619227 -n11627512 -n11628087 -n11627908 -n12691661 -n12691428 -n12316572 -n12334891 -n12340755 -n12316444 -n12336727 -n12338796 -n12338454 -n12336973 -n12336092 -n12336224 -n12337617 -n12725521 -n12727101 -n12729521 -n12726670 -n12729315 -n12729729 -n12731029 -n12270741 -n12271643 -n12278650 -n12279458 -n12269241 -n12275489 -n12273114 -n12276872 -n12278371 -n12272883 -n12269652 -n12273768 -n12277800 -n12271933 -n12279772 -n12270946 -n12269406 -n12275675 -n12276628 -n12275131 -n12274358 -n12272239 -n12277578 -n12501202 -n12814643 -n12493208 -n12807773 -n12807409 -n12807251 -n11758122 -n12915568 -n12656369 -n12656685 -n12547215 -n12547503 -n11944196 -n11984144 -n11805544 -n11874081 -n11965218 -n12392549 -n11956348 -n11945514 -n11944954 -n11998888 -n11953884 -n11954345 -n11955153 -n11954161 -n12421137 -n12421467 -n12411461 -n12451915 -n12425281 -n12459629 -n12421683 -n12422129 -n12421917 -n12411922 -n12418221 -n12416073 -n12413165 -n12414932 -n12412606 -n12412355 -n12414035 -n12413880 -n12453186 -n12452836 -n12450344 -n12426248 -n12429352 -n12460697 -n12449526 -n12473840 -n12458550 -n12449296 -n12472024 -n12457091 -n12465557 -n12461466 -n12454159 -n12431434 -n12451240 -n12451399 -n12450840 -n12428076 -n12428747 -n12427566 -n12427184 -n12426623 -n12427757 -n12461109 -n12460957 -n12454705 -n12454949 -n12435777 -n12435649 -n11819509 -n11819912 -n11842204 -n11852028 -n11851258 -n11847169 -n11853813 -n11848479 -n11844892 -n11851839 -n11845557 -n11849871 -n11849983 -n11851578 -n11854479 -n11844371 -n11853356 -n11845793 -n11845913 -n11784126 -n11783920 -n12832315 -n11723770 -n11724109 -n12766869 -n12455950 -n11723227 -n12757816 -n11773987 -n12766595 -n01324610 -n02153109 -n01323599 -n01314781 -n01321579 -n01317541 -n01318894 -n01314663 -n02311060 -n01317916 -n01321230 -n01314388 -n02075612 -n02152740 -n01466257 -n01316949 -n01905661 -n01320872 -n01319467 -n01316422 -n02157206 -n10300303 -n02152881 -n01324431 -n01321854 -n01321770 -n01956344 -n01613615 -n01318279 -n02376542 -n02122948 -n01888045 -n01322343 -n01887896 -n02412440 -n01322221 -n01322604 -n01323261 -n01322685 -n02395694 -n01504344 -n01504179 -n01318381 -n02122580 -n01317813 -n02469472 -n02309337 -n02311617 -n02264232 -n02299157 -n02310585 -n02299505 -n02302620 -n02295390 -n02310717 -n02288268 -n02297442 -n02300797 -n02285801 -n02307325 -n02376791 -n02377063 -n01323355 -n01469103 -n01468712 -n01471682 -n01473806 -n01627424 -n01861778 -n09828216 -n01459791 -n02156871 -n01661091 -n01503061 -n02512053 -n01477525 -n02528163 -n02512938 -n01482071 -n02638596 -n01457852 -n01455778 -n01456756 -n02552171 -n01428580 -n02549989 -n02640857 -n02641379 -n02639087 -n02639605 -n02640242 -n02554730 -n02618827 -n02549248 -n02603317 -n01451426 -n02548247 -n02642107 -n02657368 -n02603540 -n02652668 -n02560110 -n02556846 -n02555863 -n02581957 -n02564270 -n02623445 -n02565573 -n02610664 -n02590702 -n02588286 -n02620167 -n02573704 -n02576223 -n02606384 -n02605316 -n02619550 -n02561108 -n02619165 -n02610066 -n02562315 -n02586543 -n02593019 -n02594250 -n02616851 -n02585872 -n02607862 -n02557182 -n02557318 -n02557749 -n02624167 -n02628062 -n02631475 -n02630281 -n02631041 -n02629230 -n02626762 -n02625258 -n02625612 -n02624807 -n02626265 -n02625851 -n02627292 -n02627532 -n02576575 -n02579928 -n02580336 -n02576906 -n02579303 -n02578771 -n02578928 -n02580679 -n02580830 -n02607201 -n02607470 -n02607072 -n02605703 -n02606052 -n02605936 -n02561381 -n02561661 -n02561514 -n02564720 -n02563648 -n02563182 -n02563792 -n02562796 -n02565072 -n02565324 -n02599052 -n02596381 -n02597608 -n02596067 -n02595702 -n02598573 -n02598878 -n02642644 -n02649546 -n02643112 -n02643566 -n02643836 -n02644113 -n02658531 -n02657694 -n02660208 -n02654745 -n02654425 -n02656670 -n02655020 -n02655523 -n02653145 -n02656032 -n02655848 -n02541687 -n02542432 -n02524202 -n02533834 -n02543565 -n02517442 -n01438208 -n02526121 -n02529772 -n02518324 -n02520147 -n02519686 -n02519862 -n02583567 -n01444339 -n01446589 -n01438581 -n01439121 -n01448951 -n02584449 -n02584145 -n02583890 -n01446760 -n01447331 -n01448594 -n01448291 -n01439514 -n01442972 -n01440764 -n01443831 -n01443537 -n01443243 -n01449712 -n01449374 -n02527622 -n02527057 -n02527271 -n02532602 -n02533209 -n02566834 -n02537085 -n02534734 -n02514041 -n02568959 -n02568087 -n02570164 -n02569484 -n02537716 -n02538216 -n02537525 -n02537319 -n02538010 -n02536456 -n02535537 -n02535258 -n02536864 -n02535759 -n01482330 -n01495701 -n01487506 -n01495493 -n01486838 -n01488918 -n01492357 -n01494475 -n01483522 -n01488038 -n01489501 -n01491006 -n01489709 -n01489920 -n01490112 -n01491361 -n01490670 -n01493146 -n01492569 -n01484850 -n01484097 -n01483830 -n01498041 -n01496331 -n01499396 -n01500476 -n01500091 -n01501160 -n01498989 -n01629276 -n01639765 -n01629962 -n01630284 -n01629819 -n01637615 -n01632047 -n01631663 -n01630670 -n01630901 -n01632458 -n01632777 -n01632601 -n01645776 -n01640846 -n01644900 -n01643896 -n01650167 -n01644373 -n01646648 -n01646902 -n01646292 -n01646802 -n01646388 -n01647640 -n01646555 -n01642539 -n01641206 -n01641577 -n01641391 -n01642257 -n01641739 -n01650690 -n01652026 -n01886756 -n01871265 -n01871875 -n01874434 -n01862399 -n02082791 -n01887474 -n01889074 -n02372584 -n01888411 -n02453611 -n02430559 -n01887623 -n02469914 -n02075296 -n02139199 -n02062017 -n02323449 -n02372952 -n01888181 -n02329401 -n01887787 -n02453108 -n01888264 -n02461830 -n02370806 -n01891633 -n01893825 -n02454794 -n02456962 -n02454379 -n02460009 -n02458135 -n02457945 -n02457408 -n02460451 -n02461128 -n02470238 -n02501583 -n02472293 -n02470325 -n02496913 -n02484322 -n02475669 -n02474777 -n02475078 -n02470899 -n02483092 -n02480153 -n02483708 -n02483362 -n02481823 -n02480495 -n02480855 -n02482650 -n02482474 -n02481103 -n02481366 -n02481500 -n02500267 -n02497673 -n02499316 -n02499808 -n02499022 -n02484473 -n02489589 -n02486410 -n02485536 -n02489166 -n02488702 -n02486261 -n02487347 -n02484975 -n02488291 -n02486657 -n02486908 -n02487847 -n02487547 -n02493793 -n02490219 -n02494079 -n02493509 -n02492035 -n02492660 -n02491107 -n02490811 -n02507649 -n02120997 -n02134971 -n02083346 -n02441326 -n02131653 -n02509515 -n02508213 -n02509815 -n02508021 -n02509197 -n02510455 -n02127808 -n02121620 -n02128925 -n02129604 -n02128385 -n02130308 -n02129165 -n02128757 -n02129923 -n02129837 -n01323068 -n02129463 -n01322898 -n02121808 -n02124623 -n02122878 -n02123159 -n02123045 -n02123242 -n02124484 -n02124075 -n02124313 -n02122298 -n02123478 -n02123394 -n02123917 -n02123597 -n02122510 -n02122725 -n02122430 -n02126640 -n02125494 -n02127052 -n02125311 -n02125081 -n02126139 -n02126787 -n02125010 -n02127292 -n02127482 -n02127678 -n02127381 -n02138441 -n02137015 -n02137549 -n02138647 -n02138777 -n02084071 -n02115335 -n02114100 -n02083672 -n02115096 -n02118333 -n02117135 -n02110958 -n02112826 -n02111500 -n02112706 -n02113335 -n02084861 -n02111129 -n02112497 -n02110341 -n02084732 -n02111626 -n02085374 -n02087122 -n02103406 -n02110806 -n02113978 -n02111277 -n02085272 -n02113186 -n02113023 -n02113799 -n02113624 -n02113712 -n02112018 -n02112350 -n02112137 -n02111889 -n02086346 -n02086240 -n02087046 -n02085936 -n02085782 -n02085620 -n02086079 -n02086753 -n02086646 -n02086910 -n02092468 -n02087394 -n02089468 -n02098550 -n02087551 -n02089232 -n02096437 -n02096756 -n02095412 -n02096051 -n02098286 -n02093859 -n02094114 -n02093754 -n02094433 -n02095314 -n02093647 -n02097474 -n02097658 -n02098413 -n02097298 -n02096177 -n02096585 -n02095050 -n02096294 -n02093056 -n02094258 -n02093991 -n02094562 -n02098105 -n02097209 -n02097130 -n02097047 -n02095570 -n02095727 -n02095889 -n02093256 -n02093428 -n02094721 -n02094931 -n02098906 -n02099997 -n02098806 -n02100399 -n02101108 -n02099029 -n02100583 -n02100236 -n02101006 -n02100735 -n02100877 -n02102318 -n02102605 -n02101861 -n02101388 -n02101556 -n02102480 -n02102973 -n02102040 -n02102177 -n02099267 -n02099601 -n02099429 -n02099849 -n02099712 -n02091635 -n02088466 -n02090475 -n02088238 -n02091244 -n02091467 -n02088839 -n02091831 -n02088094 -n02089078 -n02088632 -n02092002 -n02090379 -n02089555 -n02088364 -n02092339 -n02090827 -n02090622 -n02090721 -n02089973 -n02089867 -n02091134 -n02091032 -n02109047 -n02103841 -n02109961 -n02108551 -n02109811 -n02109525 -n02108915 -n02106854 -n02108672 -n02107420 -n02108422 -n02104523 -n02108089 -n02108254 -n02104029 -n02104280 -n02106966 -n02104365 -n02107142 -n02107312 -n02110627 -n02110185 -n02110063 -n02107574 -n02108000 -n02107683 -n02107908 -n02104882 -n02105412 -n02105855 -n02105505 -n02106166 -n02106030 -n02106550 -n02105641 -n02106662 -n02105251 -n02106382 -n02105056 -n02105162 -n02116738 -n02115641 -n02115913 -n02114855 -n01322508 -n02114712 -n02114548 -n02114367 -n02119022 -n02119477 -n02119789 -n02120079 -n02120505 -n02119634 -n02117900 -n02117512 -n02442845 -n02443484 -n02446206 -n02450295 -n02445394 -n02444819 -n02441942 -n02443114 -n02449350 -n02445715 -n02447366 -n02443346 -n02445004 -n02445171 -n02134084 -n02133161 -n01322983 -n02133704 -n02132136 -n02134418 -n02132580 -n02132788 -n02141306 -n02140049 -n02139671 -n02146371 -n02145424 -n02147591 -n02147947 -n02062430 -n02073250 -n02075927 -n02062744 -n02066707 -n02063224 -n02068974 -n02068541 -n02070430 -n02069412 -n02069701 -n02071636 -n02071294 -n02072798 -n02070174 -n02069974 -n02066245 -n02064338 -n02064816 -n02065407 -n02065026 -n02073831 -n02074367 -n02081571 -n02076196 -n02079389 -n02076779 -n02080415 -n02079851 -n02080146 -n02077658 -n02077152 -n02077923 -n02078574 -n02078738 -n02079005 -n02328429 -n02323902 -n02324045 -n02326432 -n02325722 -n02325366 -n02324587 -n02324850 -n02324514 -n02328150 -n02324431 -n02327842 -n02326862 -n02327028 -n02367492 -n02331046 -n02365480 -n02343320 -n02341974 -n02346627 -n02366959 -n02339376 -n02363005 -n02342885 -n02359324 -n02355227 -n02361337 -n02359556 -n02364520 -n02343772 -n02330245 -n02338145 -n02353861 -n02333546 -n02333909 -n02360282 -n02358091 -n02359915 -n02355477 -n02358890 -n02358390 -n02356381 -n02357111 -n02356977 -n02357401 -n02356798 -n02361706 -n02361587 -n02364840 -n02364673 -n02332755 -n02332156 -n02503517 -n02504458 -n02504013 -n02394477 -n02373336 -n02399000 -n02437136 -n02395003 -n02437616 -n02438580 -n02397744 -n02398521 -n02397529 -n02429456 -n02430045 -n02401031 -n02439033 -n02439398 -n02434190 -n02433925 -n02433318 -n02432983 -n02431337 -n02432511 -n02430830 -n02431122 -n02434954 -n02432291 -n02431785 -n02431976 -n02433546 -n02432704 -n02414578 -n02410509 -n02411206 -n02407959 -n02402010 -n02419796 -n02411705 -n02418064 -n02416519 -n02416104 -n02415435 -n02415253 -n02415577 -n02415829 -n02410702 -n02410900 -n02408817 -n02408429 -n02409508 -n02404573 -n02402175 -n02404906 -n02402425 -n02405302 -n02410011 -n02404186 -n02403003 -n02403325 -n02403231 -n02403740 -n02403454 -n02406174 -n02404432 -n02406647 -n02407625 -n02407071 -n02405929 -n02407276 -n02407390 -n02406533 -n02424305 -n02421136 -n02420509 -n02427724 -n02426813 -n02426481 -n02421792 -n02421449 -n02424695 -n02420828 -n02422391 -n02422699 -n02424486 -n02425887 -n02422106 -n02424085 -n02428508 -n02428349 -n02423022 -n02424909 -n02425228 -n02423218 -n02423589 -n02413131 -n02413050 -n02411999 -n02412210 -n02412080 -n02418465 -n02419336 -n02419634 -n02416964 -n02416820 -n02417914 -n02417387 -n02417070 -n02416880 -n02417534 -n02437482 -n02437312 -n02396427 -n02397096 -n02396014 -n02395406 -n02438173 -n02438272 -n02391994 -n02393580 -n02374149 -n02393940 -n02392434 -n02393161 -n02392824 -n02374451 -n02391049 -n02389346 -n02388917 -n02377603 -n02382948 -n02389128 -n02381460 -n02389261 -n02382204 -n02375302 -n02376918 -n02387722 -n02388832 -n02381609 -n02377703 -n02388735 -n02386014 -n02380464 -n02386310 -n02377480 -n02380335 -n02382437 -n02389026 -n02385214 -n02383231 -n02388276 -n02377291 -n02377181 -n02377388 -n02379430 -n02378969 -n02378541 -n02381364 -n02379329 -n02381004 -n02381261 -n02379908 -n02379183 -n02386141 -n02386224 -n02382338 -n02387254 -n02386496 -n02386853 -n02387093 -n02386968 -n02387346 -n02382039 -n02380745 -n02380583 -n02382750 -n02382635 -n02382850 -n02391234 -n02391373 -n02391508 -n02390015 -n02389779 -n02389559 -n01872401 -n01873310 -n01872772 -n01877134 -n01882714 -n01883070 -n01875313 -n01874928 -n01883513 -n01881171 -n01877606 -n01877812 -n01878929 -n01879509 -n01884834 -n01885498 -n01662622 -n01661818 -n01662784 -n01669372 -n01669191 -n01666228 -n01667778 -n01672032 -n01669654 -n01663401 -n01665932 -n01668665 -n01670092 -n01667114 -n01668892 -n01664990 -n01664065 -n01663782 -n01665541 -n01664369 -n01664674 -n01664492 -n01670802 -n01671125 -n01670535 -n01671479 -n01696633 -n01726692 -n01673282 -n01674464 -n01699831 -n01698434 -n01697178 -n01698640 -n01699040 -n01697611 -n01697457 -n01740551 -n01752165 -n01751748 -n01745125 -n01741562 -n01727646 -n01753488 -n01752736 -n01752585 -n01753032 -n01753959 -n01754533 -n01754370 -n01754876 -n01757901 -n01757677 -n01755581 -n01757115 -n01755740 -n01756089 -n01756508 -n01756291 -n01756733 -n01757343 -n01747885 -n01749939 -n01751472 -n01747589 -n01749582 -n01746359 -n01745484 -n01748264 -n01748906 -n01741943 -n01743605 -n01742821 -n01742172 -n01743086 -n01744100 -n01743936 -n01744401 -n01730960 -n01735189 -n01733757 -n01729322 -n01732244 -n01731545 -n01737021 -n01729977 -n01730812 -n01730563 -n01728572 -n01728920 -n01739381 -n01734418 -n01740131 -n01735577 -n01735439 -n01734104 -n01733957 -n01732614 -n01732789 -n01737875 -n01737472 -n01737728 -n01730185 -n01730307 -n01734808 -n01734637 -n01675722 -n01693783 -n01694709 -n01684133 -n01692333 -n01695060 -n01685808 -n01676755 -n01687665 -n01674990 -n01694178 -n01692864 -n01689411 -n01681940 -n01681653 -n01678343 -n01682714 -n01682435 -n01681328 -n01680264 -n01679626 -n01677366 -n01677747 -n01679962 -n01680655 -n01680478 -n01687978 -n01689081 -n01688243 -n01693334 -n01693175 -n01690149 -n01689811 -n01700470 -n01713764 -n01701859 -n01704323 -n01515303 -n01844917 -n01524359 -n01514668 -n01833805 -n01838038 -n01825930 -n01844551 -n01604330 -n01834918 -n01822602 -n01514752 -n01517565 -n01789386 -n01844231 -n01816887 -n01517966 -n01503976 -n01514859 -n02000954 -n01858441 -n02016358 -n02021795 -n01845132 -n02008041 -n02014237 -n02021050 -n02018795 -n02005790 -n02002075 -n02013177 -n02012849 -n02013706 -n02014524 -n02007558 -n02014941 -n02006656 -n02005399 -n02022684 -n02008497 -n02010453 -n02009229 -n02011281 -n02008643 -n02008796 -n02011460 -n02010728 -n02011016 -n02009750 -n02009508 -n02009380 -n02009912 -n02010272 -n02012185 -n02011805 -n02006063 -n02006364 -n02003204 -n02002724 -n02002556 -n02004131 -n02003839 -n02004492 -n02004855 -n02017725 -n02015357 -n02016066 -n02015554 -n02018027 -n02018368 -n02018207 -n02006985 -n02007284 -n02023341 -n02034129 -n02034295 -n02036053 -n02040266 -n02037110 -n02034661 -n02031585 -n02031934 -n02030996 -n02036711 -n02026059 -n02033779 -n02038993 -n02033561 -n02037464 -n02024479 -n02025239 -n02023992 -n02024763 -n02025043 -n02023855 -n02034971 -n02035210 -n02032222 -n02032355 -n02032480 -n02033041 -n02030287 -n02027897 -n02030837 -n02029087 -n02029378 -n02028035 -n02027075 -n02028900 -n02027492 -n02029706 -n02027357 -n02028727 -n02030035 -n02026948 -n02028175 -n02028342 -n02028451 -n02037869 -n02038466 -n01858845 -n01858906 -n01860002 -n01858281 -n01859190 -n01858780 -n01859325 -n01860187 -n01859496 -n01859689 -n01859852 -n02016956 -n02017213 -n02016816 -n02040505 -n02057731 -n02050004 -n02045369 -n02049088 -n02051474 -n02055658 -n02047614 -n02041085 -n02044178 -n02043808 -n02043333 -n02041246 -n02043063 -n02042472 -n02041678 -n02042180 -n02041875 -n02042759 -n02042046 -n02044778 -n02044517 -n02059162 -n02058221 -n02058594 -n02060411 -n02060889 -n02060133 -n02050442 -n02050313 -n02051059 -n02050586 -n02050809 -n02045864 -n02046759 -n02045596 -n02047260 -n02046939 -n02047411 -n02047045 -n02052775 -n02054036 -n02054502 -n02051845 -n02053083 -n02054711 -n02055107 -n02052204 -n02052365 -n02053425 -n02053584 -n02055803 -n02056728 -n02057035 -n02056570 -n02057330 -n02056228 -n02048115 -n02048353 -n02047975 -n01845477 -n01855672 -n01846331 -n01856890 -n01857851 -n01857079 -n01856380 -n01857512 -n01857325 -n01856072 -n01856553 -n01856155 -n01857632 -n01847253 -n01851375 -n01849676 -n01852329 -n01850192 -n01847978 -n01852400 -n01848840 -n01849157 -n01847806 -n01849466 -n01848123 -n01850553 -n01847089 -n01851895 -n01849863 -n01852142 -n01847000 -n01852671 -n01848976 -n01847407 -n01848648 -n01852861 -n01851207 -n01851038 -n01850373 -n01850873 -n01847170 -n01851573 -n01851731 -n01848555 -n01848323 -n01848453 -n01853195 -n01853870 -n01854415 -n01853498 -n01853666 -n01854838 -n01855032 -n01855476 -n01855188 -n01854700 -n01584225 -n01546506 -n01546921 -n01525720 -n01546039 -n01539573 -n01585121 -n01585715 -n01584695 -n01586374 -n01584853 -n01586020 -n01552813 -n01551711 -n01555004 -n01554448 -n01547832 -n01548301 -n01549886 -n01549430 -n01550172 -n01549641 -n01555305 -n01549053 -n01548865 -n01548492 -n01563128 -n01589718 -n01578575 -n01576695 -n01528654 -n01591697 -n01594004 -n01557185 -n01527347 -n01597022 -n01598588 -n01527617 -n01576076 -n01555809 -n01587834 -n01602630 -n01597336 -n01538955 -n01529672 -n01600657 -n01601694 -n01527194 -n01586941 -n01588002 -n01527917 -n01587526 -n01601068 -n01603600 -n01602832 -n01571904 -n01575745 -n01566645 -n01594372 -n01589286 -n01526521 -n01582856 -n01528396 -n01528845 -n01556182 -n01542786 -n01590583 -n01564914 -n01567133 -n01563746 -n01564394 -n01563449 -n01565078 -n01570676 -n01570839 -n01570267 -n01567678 -n01569060 -n01568892 -n01568294 -n01569971 -n01569262 -n01567879 -n01568720 -n01569423 -n01563945 -n01564217 -n01566207 -n01565599 -n01565930 -n01564773 -n01579410 -n01581984 -n01579578 -n01582398 -n01580077 -n01579260 -n01579028 -n01582220 -n01579149 -n01580870 -n01581166 -n01577035 -n01578180 -n01577659 -n01593028 -n01592084 -n01592694 -n01592387 -n01592540 -n01592257 -n01562265 -n01558993 -n01559477 -n01558461 -n01558307 -n01558149 -n01560105 -n01558594 -n01557962 -n01558765 -n01561732 -n01562014 -n01560280 -n01562451 -n01561452 -n01560419 -n01560636 -n01559804 -n01560793 -n01560935 -n01598988 -n01599556 -n01600085 -n01599269 -n01599159 -n01597906 -n01598074 -n01597737 -n01533651 -n01534155 -n01540233 -n01531178 -n01534762 -n01533893 -n01537134 -n01531344 -n01541386 -n01531512 -n01533481 -n01541922 -n01533000 -n01544704 -n01530575 -n01532325 -n01532511 -n01531811 -n01534582 -n01532829 -n01530439 -n01533339 -n01531971 -n01534433 -n01541102 -n01540566 -n01540832 -n01536644 -n01535469 -n01536334 -n01536186 -n01535690 -n01536780 -n01536035 -n01537544 -n01538059 -n01538630 -n01537895 -n01538200 -n01603812 -n01603953 -n01573898 -n01573074 -n01572328 -n01572782 -n01574045 -n01573240 -n01573360 -n01572654 -n01572489 -n01574560 -n01575117 -n01574390 -n01575401 -n01595450 -n01595168 -n01595624 -n01594787 -n01594968 -n01595974 -n01596273 -n01583209 -n01583495 -n01543632 -n01544389 -n01591123 -n01591005 -n01591301 -n01539925 -n01540090 -n01834540 -n01834177 -n01843065 -n01838598 -n01842235 -n01843719 -n01843383 -n01839598 -n01839330 -n01839086 -n01841102 -n01841679 -n01840775 -n01839750 -n01841441 -n01841288 -n01827403 -n01826364 -n01830915 -n01830042 -n01829413 -n01826680 -n01829869 -n01828970 -n01828556 -n01827793 -n01828096 -n01616318 -n01605630 -n01618503 -n01613294 -n01621127 -n01616764 -n01618922 -n01617766 -n01617443 -n01618082 -n01617095 -n01620414 -n01619310 -n01620735 -n01619536 -n01619835 -n01620135 -n01609751 -n01606522 -n01607812 -n01608265 -n01610955 -n01610552 -n01606809 -n01616086 -n01608432 -n01607600 -n01607962 -n01606672 -n01609956 -n01610226 -n01613177 -n01611800 -n01611472 -n01612628 -n01612476 -n01612275 -n01611969 -n01612122 -n01609391 -n01609062 -n01608814 -n01613807 -n01614343 -n01615121 -n01614925 -n01614038 -n01614556 -n01615703 -n01615458 -n01622959 -n01621635 -n01623880 -n01623425 -n01622352 -n01623615 -n01622120 -n01625562 -n01623706 -n01624115 -n01624537 -n01622483 -n01623110 -n01624833 -n01622779 -n01837072 -n01835276 -n01825278 -n01823013 -n01824575 -n01824035 -n01521399 -n01521756 -n01518878 -n01519873 -n01519563 -n01789740 -n01810700 -n01801876 -n01791463 -n01791107 -n02153203 -n01794344 -n01791954 -n01794158 -n01809106 -n01791625 -n01792429 -n01792158 -n01793435 -n01792042 -n01793715 -n01792640 -n01793249 -n01792955 -n01815601 -n01811909 -n01814370 -n01812337 -n01813088 -n01812662 -n01814921 -n01814755 -n01813532 -n01813385 -n01813948 -n01814217 -n01802721 -n01810268 -n01795088 -n01803078 -n01806567 -n01807496 -n01807105 -n01803362 -n01804163 -n01805801 -n01806297 -n01806364 -n01806143 -n01806467 -n01804478 -n01806847 -n01804653 -n01808140 -n01807828 -n01797307 -n01798484 -n01797020 -n01797886 -n01797601 -n01796729 -n01795545 -n01796340 -n01819734 -n01821203 -n01819115 -n01817346 -n01818832 -n01817953 -n01818515 -n01818299 -n01820052 -n01820348 -n01817263 -n01821869 -n01822300 -n01819313 -n01819465 -n01821076 -n01820546 -n01317089 -n01317294 -n01918744 -n01922303 -n01940736 -n02316707 -n01909422 -n01767661 -n01906749 -n01930112 -n01934440 -n01924916 -n01938454 -n01935395 -n01955084 -n01955933 -n01968315 -n01942177 -n01960459 -n01963317 -n01956481 -n01963571 -n01959985 -n01965889 -n01961985 -n01957335 -n01958038 -n01959492 -n01964441 -n01964271 -n01965529 -n01969726 -n01968897 -n01972541 -n01970164 -n01970667 -n01951274 -n01953361 -n01943899 -n01945845 -n01943087 -n01953762 -n01950731 -n01945685 -n01944390 -n01949085 -n01947396 -n01946630 -n01944812 -n01945143 -n01944955 -n02317335 -n02321170 -n02319555 -n02319095 -n02321529 -n02317781 -n01909906 -n01914163 -n01913166 -n01910747 -n01915700 -n01914609 -n01915811 -n01916925 -n01916187 -n01916481 -n01917882 -n01917289 -n01784675 -n01974773 -n01768244 -n01786646 -n01769347 -n01787835 -n02309242 -n02159955 -n01785667 -n01994910 -n01976868 -n01990007 -n01975687 -n01976146 -n01990800 -n01992773 -n01991520 -n01991028 -n01982650 -n01986806 -n01986214 -n01987545 -n01976957 -n01985128 -n01984245 -n01984695 -n01983481 -n01981276 -n01979874 -n01978455 -n01978287 -n01980166 -n01982068 -n01770393 -n01770081 -n01776192 -n01772222 -n01776313 -n01779629 -n01779148 -n01772664 -n01775370 -n01774750 -n01775062 -n01773797 -n01774384 -n01773157 -n01773549 -n02226183 -n02236896 -n02263378 -n02232951 -n02163297 -n02262449 -n02246011 -n02188699 -n02272871 -n02273392 -n02231052 -n02161457 -n02236355 -n02312427 -n02231487 -n02162561 -n02164464 -n02241569 -n02262803 -n02206270 -n02274024 -n02312640 -n02268148 -n02270623 -n02207805 -n02226429 -n02229544 -n02228341 -n02226970 -n02241426 -n02240517 -n02266050 -n02264885 -n02264363 -n02236044 -n02236241 -n02233338 -n02234355 -n02234848 -n02233943 -n02251775 -n02256656 -n02258198 -n02257284 -n02250822 -n02259212 -n02252226 -n02200198 -n02205219 -n02203152 -n02196344 -n02190166 -n02198859 -n02196119 -n02201000 -n02202006 -n02195819 -n02195526 -n02192513 -n02191773 -n02190790 -n02192252 -n02191979 -n02169974 -n02168245 -n02167151 -n02169023 -n02165456 -n02171453 -n02180875 -n02183096 -n02169497 -n02176261 -n02176439 -n02165105 -n02177972 -n02168699 -n02166567 -n02166826 -n02171869 -n02175916 -n02175569 -n02172870 -n02173373 -n02174001 -n02172182 -n02172518 -n02174659 -n02243562 -n02244797 -n02212062 -n02218371 -n02219486 -n02206856 -n02216211 -n02215770 -n02212602 -n02213107 -n02212958 -n02213543 -n02213239 -n02213788 -n02220804 -n02221083 -n02221414 -n02209354 -n02208280 -n02211627 -n02210427 -n02211444 -n02209624 -n02208498 -n02208848 -n02274259 -n02283201 -n02281787 -n02274822 -n02281406 -n02277742 -n02279972 -n02280649 -n02282257 -n02282903 -n02282385 -n02275773 -n02278210 -n02276258 -n02276902 -n02279257 -n02277094 -n02276078 -n02275560 -n02277268 -n02276355 -n02276749 -n02278024 -n02281015 -n02281136 -n02305929 -n02301452 -n02295064 -n02298541 -n02284611 -n02287004 -n02291572 -n02305085 -n02301935 -n02304432 -n02303284 -n02302969 -n02292692 -n02291748 -n02268443 -n02268853 -n01321123 -n02376679 -n01323493 -n01338685 -n01387065 -n01339083 -n01339336 -n01339801 -n01339471 -n01397114 -n01389507 -n01397871 -n01410457 -n01407798 -n01424420 -n01392380 -n01395254 -n01396048 -n11542137 -n11544015 -n11542640 -n09626238 -n09856671 -n09605289 -n09622049 -n09971273 -n09882716 -n09621232 -n09902954 -n09620794 -n09727440 -n09624168 -n09752519 -n10378026 -n10500217 -n10514429 -n09610405 -n09617867 -n10355449 -n09618957 -n10002760 -n10384496 -n09637339 -n09613191 -n09836160 -n10274815 -n09890749 -n10112591 -n10260706 -n09606527 -n09767197 -n10709529 -n09976429 -n09918554 -n10588074 -n10565667 -n09990415 -n10120330 -n09616922 -n09622302 -n09630641 -n09796809 -n09614684 -n10635788 -n09645091 -n10405694 -n09676884 -n09638875 -n09874428 -n09627906 -n09628382 -n10522759 -n10247880 -n09624980 -n10529231 -n10024362 -n09614315 -n09612848 -n09632518 -n10147935 -n09871867 -n09620078 -n09634494 -n10077593 -n10040945 -n09623038 -n10560106 -n10289039 -n10422405 -n09774783 -n10042845 -n09831962 -n10726031 -n09923673 -n09610660 -n09626031 -n10401331 -n09621545 -n10362319 -n10665698 -n09906449 -n09939313 -n10439373 -n09607630 -n09631463 -n10451450 -n10541229 -n09793141 -n10633450 -n10530959 -n09629752 -n10560637 -n10431625 -n09619168 -n09763784 -n09636339 -n10235549 -n09845401 -n10513823 -n10610465 -n09951274 -n09816771 -n10401829 -n10307234 -n10505613 -n10148035 -n09874725 -n09944022 -n10015485 -n10728624 -n10308168 -n10200781 -n10480253 -n10376523 -n09903153 -n10748620 -n10581890 -n10045713 -n10165109 -n10694258 -n10509063 -n10559996 -n10366966 -n10305802 -n10421470 -n10164492 -n10477713 -n10020890 -n10679174 -n10632576 -n10189278 -n09894445 -n10504206 -n10559288 -n09917593 -n09833441 -n10384392 -n10060352 -n09840217 -n09777012 -n10309896 -n09905185 -n10686885 -n10209731 -n10093818 -n10754189 -n10411551 -n10577284 -n10285313 -n10333439 -n10624074 -n10287213 -n09871229 -n10078719 -n09843443 -n10173771 -n10192839 -n10419785 -n10406266 -n10288964 -n10804287 -n10665587 -n10153414 -n10406765 -n10611613 -n09805324 -n09824361 -n10316360 -n10707233 -n10696508 -n09858165 -n10175248 -n09979321 -n10692482 -n10396106 -n10427764 -n10385566 -n10439851 -n09820263 -n10533013 -n09854421 -n10304914 -n10575463 -n09915651 -n10453184 -n10101634 -n10701180 -n09835230 -n10746931 -n10542888 -n10604491 -n09764381 -n09929298 -n10019406 -n09785659 -n10618342 -n10782471 -n10701644 -n10105733 -n10638922 -n09842047 -n10315561 -n09835506 -n10153594 -n09830194 -n10263411 -n10157128 -n10498816 -n10689306 -n10604380 -n10634849 -n09923561 -n09764598 -n10086568 -n10007684 -n09841696 -n10321340 -n10092488 -n10386984 -n10387196 -n10205457 -n10578021 -n10098710 -n09836519 -n09836786 -n09836343 -n09877951 -n10300154 -n10095769 -n10435988 -n09930257 -n10387324 -n10098862 -n10642596 -n10331167 -n09946814 -n10299250 -n09896170 -n10415638 -n10091450 -n10069296 -n09989502 -n10226413 -n10493685 -n09765278 -n09930876 -n10340312 -n09990777 -n09834699 -n10737103 -n10649197 -n10701962 -n10415037 -n10151760 -n10229883 -n10732010 -n10603851 -n10599806 -n10369317 -n09903501 -n10755080 -n10098245 -n10382825 -n10536416 -n10036929 -n10624310 -n09842528 -n10085869 -n09991867 -n10078131 -n10627252 -n10682953 -n10237196 -n09789566 -n10182190 -n09899671 -n10150071 -n10091651 -n10806113 -n10249459 -n10317500 -n09822830 -n10448983 -n09862621 -n10540114 -n10009276 -n10333838 -n10730728 -n10721321 -n09659188 -n09650729 -n09652149 -n09659039 -n09729530 -n09641002 -n09725653 -n09846469 -n09750770 -n10486166 -n10169147 -n09684901 -n09683757 -n09682291 -n10364198 -n10518602 -n10341573 -n10672371 -n10332861 -n10112129 -n10602470 -n10727256 -n10508141 -n10652605 -n09881265 -n09933098 -n09812338 -n09920283 -n10078806 -n10339966 -n10667477 -n10566072 -n10469874 -n10624540 -n09809925 -n09846755 -n09873899 -n09779790 -n10034614 -n10449664 -n10034201 -n09951616 -n10037385 -n09846894 -n10282672 -n10053808 -n09815790 -n10137825 -n10605985 -n10604979 -n09861946 -n10763383 -n09841188 -n10644598 -n10548681 -n10791221 -n10583790 -n09873473 -n10763620 -n10548537 -n10120671 -n10241300 -n10318293 -n10176679 -n09932508 -n10186216 -n10134178 -n10079399 -n09821831 -n09934337 -n10324560 -n10063461 -n09886403 -n09760609 -n10260800 -n10655594 -n09938449 -n10183931 -n09972458 -n09813219 -n10049363 -n10372373 -n10076604 -n09835348 -n09974648 -n10433164 -n09859152 -n10727171 -n10308732 -n09833536 -n10582746 -n10393909 -n10013927 -n10225219 -n10202624 -n09800964 -n10465831 -n09787534 -n10174445 -n10441962 -n10132035 -n09896685 -n09934774 -n10279018 -n10793570 -n10155849 -n10087434 -n09964202 -n09811852 -n10348526 -n10317007 -n10058777 -n10360747 -n09941964 -n10347446 -n09770359 -n09941787 -n09942970 -n09809749 -n09770179 -n10208950 -n10580772 -n10093475 -n10645017 -n09943239 -n09943541 -n10263790 -n10283170 -n10259348 -n10092978 -n10296176 -n09893191 -n10123844 -n10259780 -n10259997 -n10510245 -n10622053 -n10058585 -n10690648 -n10523341 -n10739391 -n10476467 -n10512372 -n10802507 -n10753442 -n09733793 -n09738708 -n09641757 -n09738400 -n09727826 -n09686536 -n09724533 -n09744834 -n09743792 -n09744161 -n09742101 -n09689435 -n09734450 -n09644152 -n09750282 -n09673495 -n09718811 -n09718217 -n09712696 -n09718936 -n10711766 -n09694771 -n09719794 -n09714694 -n09675922 -n09676247 -n10774440 -n09720256 -n09725229 -n09731571 -n09691729 -n09693982 -n09712448 -n09697401 -n09696585 -n09722658 -n09724656 -n09723067 -n09694664 -n09712324 -n09689958 -n09695979 -n10327987 -n09688804 -n09730204 -n09711435 -n09713108 -n09731343 -n09717233 -n09695620 -n09728285 -n09707289 -n09701833 -n09700964 -n09750891 -n09715427 -n09708750 -n09705784 -n09734185 -n09752023 -n09635534 -n09696456 -n09732170 -n09730824 -n09719309 -n09734535 -n09736945 -n09720842 -n09692915 -n09751895 -n09724785 -n09747495 -n09734639 -n09749386 -n09705124 -n09731436 -n10303814 -n10450303 -n10722575 -n10054657 -n10631309 -n10249270 -n09913455 -n10162991 -n09807754 -n09505153 -n10209082 -n10323634 -n10104064 -n10001481 -n10242328 -n10159045 -n09932098 -n10253995 -n10005934 -n10578471 -n09770949 -n10004718 -n10570019 -n10289462 -n10069645 -n10187990 -n09916348 -n10727458 -n10320863 -n10572706 -n10572889 -n10038409 -n10756148 -n09927451 -n10243664 -n10502329 -n09988493 -n10373390 -n10470779 -n09928136 -n10750031 -n10081204 -n09857200 -n10013811 -n09894143 -n10313239 -n10082997 -n10677713 -n09787765 -n10485883 -n10275395 -n09913593 -n09772930 -n09633969 -n10195593 -n09756049 -n10607478 -n09855433 -n10017272 -n10630188 -n10522035 -n10521662 -n10380672 -n10210911 -n10382710 -n10164747 -n09782397 -n10524076 -n10467395 -n10467179 -n10698368 -n09792969 -n10525617 -n10675010 -n09889941 -n10557854 -n09618760 -n09899929 -n10116702 -n10258786 -n10508710 -n09873348 -n09870208 -n10793168 -n10098517 -n10314517 -n10629939 -n10477077 -n10261624 -n10082687 -n10262445 -n10167152 -n10098624 -n10674713 -n09838621 -n10047459 -n10091564 -n10740868 -n09872066 -n10070711 -n10628644 -n10421016 -n09915434 -n10588357 -n10529965 -n10334009 -n10339717 -n09818022 -n10412055 -n10335931 -n09945745 -n10432441 -n10607291 -n10583387 -n10718131 -n10542761 -n10147121 -n10738111 -n10159533 -n10223177 -n10185793 -n10553235 -n10293332 -n10178216 -n10563403 -n10488656 -n10619642 -n10276477 -n10620758 -n10450161 -n10043643 -n10043491 -n10313724 -n10084295 -n10787470 -n10333601 -n10131151 -n09871681 -n09981939 -n10055410 -n10243137 -n10377021 -n10368528 -n10025635 -n09874862 -n10613996 -n10472129 -n10598181 -n10129825 -n09847543 -n10173410 -n10780284 -n09889065 -n09832456 -n10780632 -n10117851 -n09827363 -n10247358 -n10282482 -n10092794 -n10375314 -n09981278 -n10082043 -n09972010 -n10237069 -n09792555 -n10236946 -n10568358 -n10207169 -n10236304 -n10734394 -n10373998 -n10595164 -n10357613 -n09823502 -n10146104 -n10602985 -n10145239 -n10267865 -n09854218 -n10399491 -n10102800 -n10102369 -n10406391 -n10300500 -n10080869 -n10332385 -n09988063 -n10375402 -n10145774 -n10143172 -n10145590 -n10345015 -n10142747 -n10142391 -n10146002 -n10267311 -n10141590 -n10092643 -n09918248 -n10671613 -n10141732 -n10145340 -n10145902 -n10145480 -n09827683 -n10135129 -n10465451 -n10353016 -n13001930 -n13040629 -n12969131 -n12985420 -n13052670 -n13037406 -n13077295 -n12987056 -n12979829 -n12975804 -n12974987 -n12985773 -n13044778 -n12985857 -n13035241 -n13043926 -n12982468 -n13035707 -n13044375 -n12969425 -n13060190 -n13054073 -n13040303 -n13028611 -n12997654 -n12983048 -n13062421 -n13054560 -n12963628 -n12980840 -n12991184 -n12989938 -n12992177 -n12988158 -n13029326 -n13029760 -n13011595 -n13049953 -n12998815 -n12997919 -n13052931 -n13050397 -n13012253 -n13001041 -n13005984 -n13000891 -n13007417 -n13019835 -n13013764 -n13006894 -n13002750 -n13017102 -n13232779 -n13009429 -n13013534 -n13003522 -n13001366 -n13009085 -n13022210 -n13002925 -n13006171 -n13003712 -n13001206 -n13004423 -n13001529 -n13003254 -n13003061 -n13032115 -n13032381 -n13033577 -n13055577 -n13055949 -n13055423 -n05430628 -n05450617 -n05449959 -n05451384 -n05453657 -n09369169 -n09454412 -n09403211 -n13086908 -n09416076 -n09251407 -n05218119 -n09444100 -n09438940 -n09257949 -n09189157 -n09475044 -n11691857 -n13102775 -n13087625 -n13022709 -n11675842 -n13152742 -n13125117 -n13129165 -n11690254 -n11669335 -n13134947 -n11676500 -n11675025 -n11674332 -n11669786 -n13131028 -n13132338 -n13132656 -n12301445 -n13133613 -n13141415 -n13137409 -n12642090 -n12267677 -n12658481 -n12144313 -n12158031 -n13135832 -n12620546 -n11636835 -n13139055 -n12144580 -n07929351 -n13136556 -n12768682 -n11689483 -n13136316 -n07770571 -n07737081 -n07774842 -n07774596 -n07775050 -n07772788 -n07771212 -n07772147 -n07772274 -n07774719 -n07737745 -n07772935 -n15086247 -n11879895 -n12576323 -n12532564 -n07814634 -n07775197 -n07770763 -n11748002 -n12172364 -n12515925 -n12560282 -n12578916 -n12560621 -n12544539 -n12024690 -n13154494 -n11690455 -n12927013 -n11953610 -n13128365 -n13133932 -n13163991 -n13134059 -n13131618 -n13130726 -n11678010 -n12136392 -n11979964 -n12088223 -n12462805 -n12433081 -n09218494 -n09381242 -n09460046 -n09451237 -n09450163 -n01904182 -n13155095 -n09432283 -n11705387 -n09438844 -n11692265 -n05237755 -n09416890 -n01956764 -n01904806 -n01904886 -n05586759 -n05581932 -n01904029 -n05238282 -n05254795 -n02469248 -n05256862 -n05258051 -n01899894 -n05261404 -n05259914 -n05261310 -n05260240 -n05262185 -n05261566 -n05262534 -n05262422 -n05263183 -n05263448 -n11524662 -n11448153 -n09247410 -n11508382 -n11524451 diff --git a/build/darknet/x64/data/9k.names b/build/darknet/x64/data/9k.names deleted file mode 100644 index e81c80e79e8..00000000000 --- a/build/darknet/x64/data/9k.names +++ /dev/null @@ -1,9418 +0,0 @@ -thing -matter -object -atmospheric phenomenon -body part -body of water -head -hair -structure -vein -mouth -heel -watercourse -ocean -gas -solid -substance -food -tear gas -sky -ice -food -cheese -yogurt -produce -baked goods -cake mix -Emmenthal -Camembert -Brie -mozzarella -Stilton -double cream -edible fruit -vegetable -currant -custard apple -citrus -jackfruit -pomegranate -avocado -prickly pear -apple -carambola -fig -mangosteen -tangelo -plum -papaya -apricot -berry -elderberry -loquat -pear -litchi -peach -muscat -grape -banana -pitahaya -rambutan -kiwi -melon -breadfruit -pineapple -mango -date -papaw -durian -passion fruit -jujube -guava -dried fruit -cherry -quince -nectarine -cherimoya -soursop -lime -mandarin -kumquat -orange -lemon -citron -grapefruit -pomelo -clementine -tangerine -satsuma -sweet orange -bitter orange -navel orange -Valencia orange -crab apple -eating apple -Granny Smith -Delicious -McIntosh -Red Delicious -Golden Delicious -strawberry -mulberry -currant -lingonberry -blackberry -red currant -raspberry -cranberry -acerola -persimmon -blueberry -bilberry -muskmelon -watermelon -cantaloup -sour cherry -sweet cherry -bing cherry -mushroom -asparagus -plantain -pumpkin -cucumber -root vegetable -cruciferous vegetable -raw vegetable -solanaceous vegetable -artichoke -legume -leek -squash -greens -celery -cardoon -gumbo -pieplant -onion -fennel -taro -beet -yam -carrot -potato -baked potato -mashed potato -french fries -mustard -cabbage -kohlrabi -cauliflower -brussels sprouts -broccoli rabe -broccoli -radish -turnip -collards -bok choy -savoy cabbage -head cabbage -kale -pepper -tomato -eggplant -tomatillo -sweet pepper -hot pepper -bell pepper -pimento -green pepper -chili -tabasco -cayenne -jalapeno -cherry tomato -beefsteak tomato -bean -pea -chickpea -lentil -soy -common bean -black bean -kidney bean -fresh bean -green bean -shell bean -snap bean -haricot vert -string bean -fava bean -green soybean -green pea -snow pea -sugar snap pea -summer squash -winter squash -spaghetti squash -zucchini -yellow squash -butternut squash -acorn squash -chard -turnip greens -salad green -bean sprout -spinach -lamb's-quarter -cress -chicory -chicory escarole -radicchio -lettuce -leaf lettuce -crisphead lettuce -cos -green onion -shallot -purple onion -doughnut -bread -crouton -breadstick -soft pretzel -rye bread -dark bread -raisin bread -brown bread -cinnamon bread -quick bread -matzo -sour bread -bun -white bread -challah -loaf of bread -pretzel -English muffin -toast -nan -chapatti -garlic bread -Yorkshire pudding -banana bread -scone -Irish soda bread -biscuit -muffin -drop scone -cornbread -nut bread -buttermilk biscuit -hardtack -shortcake -corn muffin -popover -bran muffin -cornpone -hush puppy -johnnycake -hamburger bun -bagel -frankfurter bun -sweet roll -hard roll -brioche -crescent roll -honey bun -cinnamon roll -cross bun -Italian bread -baguet -French bread -meat loaf -French loaf -material -stucco -gravel -rock -leopard -soil -sand -loofa -paper -litter -toilet tissue -queen -comestible -foodstuff -fare -beverage -soul food -feed -nutriment -yolk -comfort food -egg -grain -carrot juice -soya milk -whole wheat flour -oatmeal -ingredient -dairy product -cocoa -concoction -Spam -juice -canned food -corn -rice -wild rice -barley -wheat -sweet corn -popcorn -white rice -paddy -flavorer -egg yolk -saffron -juniper berries -cayenne -sesame seed -sassafras -spice -condiment -sweetening -herb -paprika -garlic -nasturtium -mocha -cardamom -nutmeg -stick cinnamon -Chinese anise -clove -cinnamon -guacamole -chili sauce -olive -chutney -vinegar -dip -soy sauce -salsa -cranberry sauce -catsup -spread -green olive -sauce -wine vinegar -cider vinegar -hummus -miso -spaghetti sauce -chocolate sauce -Tabasco -hot sauce -veloute -pesto -dressing -bourguignon -hollandaise -carbonara -tomato sauce -green mayonnaise -mayonnaise -powdered sugar -honey -syrup -sorghum -grenadine -maple syrup -basil -lemon balm -sweet woodruff -clary sage -hyssop -comfrey -coriander -mint -chives -marjoram -borage -sage -tea -rosemary -parsley -bay leaf -thyme -tea bag -oolong -souchong -cream -milk -whipping cream -clotted cream -light cream -heavy cream -stuffing -batter -dough -filling -pastry -bread dough -puff paste -phyllo -chow -menu -dietary -diet -diet -dietary supplement -vegetarianism -vitamin pill -multivitamin -alcohol -fruit juice -fizz -near beer -cocoa -coffee -cider -tea -soft drink -fruit drink -ginger beer -drinking water -potion -smoothie -mixed drink -liquor -sake -wine -hooch -home brew -liqueur -hard cider -brew -neutral spirits -aperitif -highball -cocktail -spritzer -punch -pina colada -mimosa -julep -gin and tonic -Bloody Mary -martini -gimlet -gin and it -daiquiri -sidecar -Sazerac -margarita -cup -May wine -eggnog -fruit punch -vodka -firewater -aquavit -grog -schnapps -arrack -gin -rum -aqua vitae -tequila -bitters -geneva -brandy -ouzo -whiskey -eau de vie -Cognac -grappa -Armagnac -Calvados -Irish -bourbon -sour mash -Scotch -rye -corn whiskey -blended whiskey -blush wine -vintage -champagne -vin ordinaire -dessert wine -macon -sparkling wine -Cotes de Provence -varietal -Burgundy -fortified wine -Bordeaux -table wine -California wine -vermouth -red wine -Rhone wine -white wine -Montrachet -Beaujolais -Chablis -Madeira -sherry -malmsey -port -muscat -Saint Emilion -claret -dry vermouth -sweet vermouth -Medoc -Chianti -Pinot noir -Rioja -Merlot -Cabernet -zinfandel -Riesling -Sauvignon blanc -Muscadet -Yquem -Pinot blanc -Sauterne -Chenin blanc -Chardonnay -sack -Verdicchio -Canary wine -Pernod -Drambuie -sambuca -triple sec -absinth -maraschino -anisette -beer -lager -draft beer -ale -suds -Munich beer -Pilsner -light beer -malt -bock -Weissbier -porter -stout -bitter -pale ale -Guinness -Weizenbock -orange juice -cranberry juice -nectar -iced coffee -caffe latte -espresso -cappuccino -Irish coffee -chicory -cafe au lait -mocha -Turkish coffee -ice tea -cuppa -tonic -cola -orange soda -ginger ale -pop -root beer -Coca Cola -Pepsi -mineral water -bottled water -soda water -oil cake -bird feed -fodder -eatage -hay -alfalfa -broad bean -dainty -fast food -puree -finger food -dish -course -mother's milk -vitamin -kosher -meal -jello -gelatin -sweet -candied apple -confiture -candy -chewing gum -confectionery -maraschino -conserve -strawberry jam -apple butter -lemon curd -jam -jelly -peppermint -peanut brittle -chocolate kiss -nougat bar -candy bar -jelly bean -lollipop -candy cane -truffle -chocolate fudge -cough drop -sugar candy -Easter egg -kiss -gumdrop -candy corn -fondant -cotton candy -caramel -fudge -candy egg -chocolate egg -bubble gum -gum ball -poached egg -piece de resistance -side dish -stew -omelet -soup -sashimi -taco -French toast -cheese souffle -potpie -lamb curry -stuffed tomato -chow mein -croquette -gefilte fish -coq au vin -special -spaghetti and meatballs -eggs Benedict -schnitzel -buffalo wing -chicken casserole -rissole -paella -frittata -meatball -chili -porridge -tamale -stuffed tomato -couscous -deviled egg -beef Wellington -pasta -egg roll -enchilada -falafel -mushy peas -turnover -scrambled eggs -Spanish rice -teriyaki -barbecued spareribs -pilaf -kabob -tempura -samosa -fried egg -sandwich plate -chicken cacciatore -saute -fried rice -custard -sukiyaki -fish and chips -souffle -steak au poivre -pizza -fondue -biryani -stuffed peppers -mousse -shirred egg -Swedish meatball -jambalaya -Scotch egg -burrito -risotto -salad -boiled egg -curry -snack food -bouillabaisse -goulash -pottage -beef stew -hot pot -fish stew -hotchpotch -Irish stew -ratatouille -gazpacho -won ton -petite marmite -split-pea soup -consomme -chowder -potage -marmite -lentil soup -bisque -pea soup -pepper pot -chicken broth -chicken soup -broth -broth -gumbo -borsch -corn chowder -clam chowder -fish chowder -gruel -congee -macaroni and cheese -lasagna -cannelloni -spaghetti -creme caramel -creme brulee -pepperoni pizza -anchovy pizza -cheese pizza -Sicilian pizza -sausage pizza -chocolate fondue -cheese fondue -coleslaw -macaroni salad -tossed salad -salad nicoise -pasta salad -fruit salad -tabbouleh -green salad -chef's salad -hard-boiled egg -Easter egg -sandwich -corn chip -chip -bomber -cheeseburger -chicken sandwich -ham sandwich -Reuben -bacon-lettuce-tomato sandwich -chili dog -open-face sandwich -gyro -wrap -hamburger -club sandwich -hotdog -tortilla chip -nacho -entree -plate -dessert -appetizer -mousse -tiramisu -frozen dessert -pudding -pudding -trifle -flan -whip -dumpling -compote -chocolate mousse -pavlova -parfait -ice-cream cake -ice lolly -ice-cream sundae -ice-cream cone -ice cream -ice -banana split -frozen yogurt -frozen custard -vanilla ice cream -peach ice cream -chocolate ice cream -strawberry ice cream -plum pudding -chocolate pudding -shrimp cocktail -stuffed mushroom -cocktail -hors d'oeuvre -carrot stick -antipasto -water-soluble vitamin -fat-soluble vitamin -vitamin P -vitamin C -B-complex vitamin -vitamin B2 -inositol -vitamin B6 -choline -pantothenic acid -vitamin B12 -vitamin Bc -vitamin D -vitamin A1 -picnic -bite -supper -breakfast -refection -smorgasbord -buffet -brunch -continental breakfast -dinner -lunch -banquet -cookout -fish fry -barbecue -refreshment -nosh -land -location -land -fomite -part -geological formation -cobweb -whole -hail -swamp -cultivated land -region -region -pass -line -point -opening -bedside -soil horizon -extremity -boundary -nib -selvage -shoreline -benthos -resort area -geographical area -district -scrubland -bush -oilfield -field -tract -heronry -grassland -site -court -basketball court -fairground -plot -field -amusement park -veld -pasture -campsite -garbage heap -cemetery -flowerbed -garden -topiary -peach orchard -yard -grainfield -playground -garden -city -city district -eparchy -kasbah -waterfront -business district -col -defile -hemline -spoor -crest -topographic point -workplace -half-mast -intersection -bus stop -mecca -hole-in-the-wall -patisserie -bakery -farm -piggery -ranch -dairy -knothole -chasm -oxbow -floor -pinetum -plain -steppe -cigarette butt -pipefitting -handle -panhandle -stock -haft -ax handle -broomstick -pistol grip -arete -volcanic crater -spring -ice mass -natural depression -natural elevation -oceanfront -massif -cliff -shore -talus -ridge -range -lakefront -slope -cave -foreshore -beach -hot spring -geyser -icecap -iceberg -Alpine glacier -glacier -valley -lunar crater -landfill -sinkhole -basin -crater -bed -hole -arroyo -ravine -canyon -gorge -tidal basin -cirque -ocean floor -riverbed -streambed -burrow -pothole -tableland -hill -mountain -highland -ridge -promontory -anthill -butte -foothill -knoll -alp -ben -volcano -sandbar -dune -reef -bank -coral reef -atoll -sandbank -bluff -point -mull -crag -precipice -seashore -strand -lakeside -littoral -seaside -mountainside -descent -hillside -ski slope -escarpment -bank -downhill -ascent -brae -uphill -riverbank -waterside -cove -cavern -grotto -artifact -living thing -natural object -assembly -block -millstone -paving -creation -opening -plaything -surface -tramline -structure -instrumentality -padding -covering -fabric -bookmark -float -building material -decoration -way -strip -article -facility -excavation -commodity -sheet -fixture -blacktop -line -bullion -tessera -tile -anvil -representation -art -needlework -product -pieta -map -sketch -sonogram -photograph -waxwork -arthrogram -radiogram -photomicrograph -photostat -painting -triptych -nude -finger-painting -smocking -stitch -sewing stitch -knitting stitch -lockstitch -hemstitch -garter stitch -purl -book -work -jotter -newspaper -wicker -masterpiece -openwork -woodwork -lacquerware -cabinetwork -joinery -decolletage -gargoyle -aperture -hole -mouthpiece -outfall -plughole -manhole -keyhole -perforation -thumbhole -pogo stick -ball -pinata -teddy -jungle gym -bubble -hula-hoop -pinwheel -slide -sport kite -cockhorse -doll -foam -air bubble -spume -shaving foam -golliwog -kachina -horizontal surface -board -tabletop -side -platform -tarmacadam -floor -turntable -stage -dais -sumo ring -hurricane deck -flatbed -parquet -backgammon board -pegboard -facade -ceiling -body -floor -bridge -corner -conformation -superstructure -airdock -cross -house of cards -hull -gun enclosure -lookout -building complex -shelter -honeycomb -column -altar -arch -tower -transept -mound -fountain -obelisk -fan vaulting -arcade -loggia -coil -billboard -partition -masonry -skein -colonnade -obstruction -building -sail -projection -peristyle -door -stadium -drinking fountain -area -balcony -porch -dock -high altar -housing -supporting structure -balance -defensive structure -entablature -memorial -establishment -signboard -bodywork -fuselage -ground floor -mezzanine -loft -basement -footbridge -drawbridge -cantilever bridge -rope bridge -overpass -truss bridge -viaduct -steel arch bridge -covered bridge -gangplank -suspension bridge -trestle bridge -plant -college -winery -factory -distillery -oil refinery -refinery -rolling mill -foundry -steel mill -lumbermill -stamp mill -quartz battery -battery -harbor -Nissen hut -hovel -tent -hut -igloo -dugout -mountain tent -pup tent -pavilion -backpacking tent -fly tent -canvas tent -field tent -wall tent -circus tent -Gothic arch -round arch -pointed arch -triumphal arch -broken arch -Moorish arch -Roman arch -campanile -turret -clock tower -shot tower -church tower -minaret -pylon -silo -watchtower -trestle -pylon -steeple -fire tower -high-rise -supporting tower -control tower -bell tower -beacon -burial mound -snowbank -rampart -fraise -battlement -altarpiece -wall -gable -wainscoting -attic -pediment -bell gable -brickwork -stonework -barrier -obstacle -plug -lever -grate -safety rail -movable barrier -bannister -breakwater -grille -weir -railing -hurdle -starting gate -fence -dam -gate -door -lychgate -portcullis -turnstile -French window -car door -screen door -French door -double door -interior door -sliding door -revolving door -barn door -hatchback -storm door -wall -retaining wall -rail fence -chainlink fence -dry wall -hedge -worm fence -picket fence -stone wall -water jump -bunker -earplug -cork -tap -presbytery -hotel -tenement -abattoir -apartment building -aviary -hall -house -Roman building -rest house -outbuilding -funeral home -medical building -hotel-casino -library -casino -farm building -place of worship -restaurant -ministry -rotunda -observatory -office building -temple -signal box -government building -greenhouse -rink -planetarium -public house -bowling alley -house -ruin -architecture -skyscraper -gazebo -school -chapterhouse -theater -hall of residence -conservatory -center -resort hotel -resort -motel -dude ranch -Ritz -ski lodge -hostel -motor hotel -city hall -guildhall -lyceum -field house -oast house -courthouse -shed -garage -carport -outhouse -coach house -boathouse -woodshed -apiary -maternity hospital -dispensary -stable -chicken coop -cowbarn -barn -pantheon -church -temple -shrine -stupa -masjid -synagogue -mosque -chapel -kirk -abbey -cathedral -cathedral -minster -cafe -rotisserie -automat -brasserie -cafeteria -diner -capitol -embassy -town hall -chancellery -customhouse -Statehouse -courthouse -ice rink -ice hockey rink -alehouse -free house -solar house -bungalow -row house -cabin -duplex house -mansion -lodging house -gatehouse -log cabin -saltbox -country house -dollhouse -ranch house -boarding house -detached house -villa -chalet -residence -farmhouse -terraced house -brownstone -palace -stately home -manor -summer house -dacha -villa -chateau -manse -religious residence -glebe house -parsonage -palace -monastery -abbey -abbey -day school -conservatory -music school -opera -music hall -cinema -little theater -home theater -control center -settlement house -call center -cornice -cog -knob -bill -flange -brim -tine -eaves -tooth -pinhead -football stadium -hippodrome -dome -ballpark -bullring -amphitheater -patio -corner -baggage claim -hideaway -choir -breakfast area -quad -chancel -auditorium -court -dining area -room -assembly hall -enclosure -nave -aisle -storage space -goalmouth -food court -atrium -cloister -forecourt -toilet -sun parlor -engineering -surgery -rotunda -classroom -gallery -manor hall -cell -lounge -sauna -dressing room -billiard room -belfry -kitchen -library -storeroom -workroom -sewing room -anechoic chamber -dining room -recreation room -hospital room -reading room -booth -conference room -bedroom -clean room -living room -door -hall -reception room -boardroom -study -locker room -cocktail lounge -television room -compartment -court -poolroom -bathroom -control room -anteroom -water closet -men's room -washroom -public toilet -home room -lecture room -study hall -pantry -stockroom -vault -refectory -dining-hall -canteen -family room -rumpus room -emergency room -recovery room -operating room -telephone booth -voting booth -confessional -shower stall -master bedroom -motel room -guestroom -hotel room -dormitory -nursery -day nursery -great hall -concert hall -palace -exhibition hall -parlor -drawing room -press box -command module -cabin -pilothouse -cab -luggage compartment -cabinet -cockpit -stateroom -car -cable car -stall -drawing room -terrarium -cage -playpen -pen -vivarium -pound -lock -chicken yard -chamber -recess -birdcage -rabbit hutch -hutch -cow pen -rodeo -fold -sounding board -burial chamber -firing chamber -resonator -furnace -bomb shelter -hyperbaric chamber -repository -mausoleum -kiln -blast furnace -oast -gas oven -incinerator -mihrab -columbarium -fire -fireplace -apse -cellar -cupboard -stacks -gallery -amphitheater -organ loft -stoop -sun deck -front porch -veranda -deck -back porch -portico -marina -dry dock -block -dwelling -tennis camp -living quarters -mobile home -condominium -apartment -ward -cellblock -condominium -yurt -lodge -vacation home -hearth -fixer-upper -cliff dwelling -homestead -semi-detached house -wigwam -tepee -accommodation -first class -cabin class -bedsitting room -flatlet -chassis -support -framework -pedestal -buttress -flying buttress -abutment -ribbing -bustle -window frame -frame -gantry -honeycomb -truss -lattice -cornice -picture frame -window -climbing frame -trellis -airframe -grate -grape arbor -walker -casing -tambour -arbor -rack -mounting -sash -casement -oriel -bay window -stained-glass window -skylight -display window -rose window -porthole -transom -clerestory -dormer -dormer window -lancet window -fanlight -plate rack -barbecue -bicycle rack -luggage rack -dish rack -towel rack -passe-partout -pave -mount -stronghold -fortress -fortification -bastion -keep -kremlin -acropolis -alcazar -martello tower -fieldwork -bastion -escarpment -palisade -castle -cenotaph -megalith -Seven Wonders of the Ancient World -brass -national monument -pantheon -dolmen -menhir -place of business -institution -university -mercantile establishment -office -cabaret -health spa -plaza -country store -department store -shop -marketplace -boutique -salon -shoe shop -bookshop -package store -thriftshop -junk shop -toyshop -cleaners -bazaar -gift shop -florist -drugstore -garage -delicatessen -small stores -barbershop -stall -tobacco shop -newsstand -butcher shop -pizzeria -confectionery -convenience store -bazaar -agora -grocery store -open-air market -supermarket -hypermarket -greengrocery -souk -farmer's market -flea market -newsroom -box office -headquarters -correctional institution -orphanage -jail -penitentiary -prison -toiletry -weaponry -equipment -connection -implement -furnishing -device -ceramic -system -container -conveyance -medium -deodorant -bath oil -cream -lotion -shaving cream -hair spray -mousse -perfume -hairdressing -antiperspirant -powder -cosmetic -bath salts -hand cream -cold cream -sunscreen -lanolin -body lotion -toner -hand lotion -after-shave -potpourri -patchouli -perfumery -cologne -toilet water -pomade -brilliantine -toilet powder -talcum -depilatory -highlighter -makeup -face powder -lip-gloss -eyeshadow -mascara -lipstick -rouge -eyeliner -eyebrow pencil -armament -defense system -bomb -ammunition -naval weaponry -bazooka -artillery -launcher -cannon -field artillery -mortar -basilisk -hydrogen bomb -atom bomb -round -shotgun shell -recorder -sports equipment -photographic equipment -naval equipment -parasail -gear -satellite -game equipment -parachute -electronic equipment -apparatus -automation -material -baggage -tape recorder -cassette recorder -Dictaphone -videocassette recorder -baseball equipment -croquet mallet -clay pigeon -skate -wrestling mat -cricket equipment -basketball equipment -javelin -shuttlecock -golf equipment -spike -stick -boxing equipment -boxing glove -gymnastic apparatus -weight -baseball glove -batting cage -batting glove -base -batting helmet -baseball bat -home plate -first base -third base -second base -in-line skate -Rollerblade -roller skate -ice skate -hockey skate -speed skate -figure skate -cricket bat -wicket -golfcart -golf glove -tee -golf club -wood -iron -driver -spoon -wedge -midiron -putter -niblick -pitching wedge -sand wedge -hockey stick -polo mallet -horizontal bar -horse -uneven parallel bars -parallel bars -trampoline -balance beam -vaulting horse -pommel horse -dumbbell -barbell -enlarger -camera -clapperboard -film -light meter -box camera -flash camera -Polaroid camera -point-and-shoot camera -webcam -motion-picture camera -digital camera -portrait camera -reflex camera -X-ray film -reel -negative -regalia -kit -rig -fishing gear -stable gear -rigging -crown -crown jewels -sewing kit -first-aid kit -carpenter's kit -layette -drill rig -drilling platform -harness -snaffle -headgear -saddle blanket -halter -bridle -sputnik -space station -backboard -ball -puzzle -pool table -bowling pin -man -chip -roulette wheel -goal -volleyball net -pinball machine -soccer ball -pool ball -bowling ball -softball -field hockey ball -punching bag -billiard ball -croquet ball -cricket ball -tennis ball -golf ball -rugby ball -cue ball -medicine ball -basketball -eight ball -ping-pong ball -handball -baseball -racquetball -bocce ball -volleyball -jigsaw puzzle -crossword puzzle -chessman -white -pawn -basket -net -electronic fetal monitor -monitor -monitor -television monitor -telephone -oscilloscope -peripheral -booster -cassette player -CD player -receiver -audio system -lens -playback -television equipment -circuitry -cassette deck -central processing unit -mixer -scanner -tape player -detector -modem -equalizer -tape deck -amplifier -cellular telephone -speakerphone -desk phone -pay-phone -handset -dial telephone -radiotelephone -television receiver -radio receiver -satellite receiver -heterodyne receiver -clock radio -reproducer -hi-fi -stereo -iPod -Walkman -video iPod -ghetto blaster -camcorder -television camera -pendulum -purifier -sequencer -reformer -duplicator -heat pump -semaphore -tomograph -ultracentrifuge -generator -incubator -burner -Foucault pendulum -clock pendulum -metronome -Photostat -photocopier -Xerox -facsimile -mimeograph -positron emission tomography scanner -computerized axial tomography scanner -gas burner -blowtorch -bunsen burner -gas ring -packaging -blister pack -roofing -temporary hookup -slip ring -telephone line -ligament -junction -hot line -digital subscriber line -land line -binder -wire -chain -concertina -barbed wire -paper chain -anchor chain -fob -bicycle chain -tire chain -chatelaine -joint -contact -dovetail -welt -hinge -scarf joint -weld -seam -mortise joint -butt hinge -strap hinge -distributor point -tread -wiper -bar -tool -utensil -rubber eraser -needle -eraser -stick -brush -hook -sharpener -sports implement -leather strip -swatter -fire iron -oar -stick -cleaning implement -rod -writing implement -shovel -split rail -fret -bolt -rotor -towel rail -lever -track -handlebar -crowbar -stick -key -tappet -pedal -rocker arm -gun trigger -space bar -backspace key -shift key -telegraph key -accelerator -sustaining pedal -hand tool -jack -pestle -garden tool -plow -comb -drill -cutting implement -tamp -garden rake -rake -stamp -locking pliers -pestle -plunger -pincer -pliers -soldering iron -spade -hammer -pipe cutter -wrench -screwdriver -trowel -saw -opener -scraper -shovel -brick trowel -spatula -carpenter's hammer -gavel -mallet -maul -torque wrench -pipe wrench -adjustable wrench -open-end wrench -Allen wrench -box wrench -hacksaw -folding saw -handsaw -pruner -pruning saw -corkscrew -bottle opener -can opener -hedge trimmer -lawn mower -power mower -riding mower -power drill -electric drill -cutter -twist bit -bit -blade -knife blade -bolt cutter -cigar cutter -edge tool -scissors -knife -ax -razor -wire cutter -chisel -plane -shears -snips -pruning shears -secateurs -carving knife -Bowie knife -pocketknife -cleaver -hunting knife -case knife -parer -letter opener -switchblade -penknife -battle-ax -hatchet -shaver -straight razor -safety razor -cold chisel -wood chisel -jointer -smooth plane -spokeshave -kitchen utensil -ceramic ware -funnel -rolling pin -reamer -masher -kitchenware -squeezer -mixer -cookie cutter -cooking utensil -grater -mincer -eggbeater -whisk -blender -pan -Crock Pot -chafing dish -spatula -griddle -enamelware -steamer -cookie sheet -cooker -turner -omelet pan -stewing pan -frying pan -roaster -wok -saucepan -graniteware -cloisonne -porcelain -earthenware -stoneware -pottery -Spode -china -bone china -majolica -faience -knitting needle -crochet needle -walking stick -matchstick -club -fiddlestick -spindle -stob -staff -drumstick -mallet -cane -sword cane -bat -table-tennis racquet -truncheon -alpenstock -flagpole -crutch -electric toothbrush -toothbrush -sable -scrub brush -hairbrush -bristle brush -shaving brush -pencil sharpener -steel -cue -racket -squash racket -tennis racket -badminton racket -thong -strap -cheekpiece -rein -noseband -leading rein -scull -paddle -besom -scouring pad -dustmop -squeegee -broom -swab -rotating shaft -wand -shaft -piston rod -kickstand -axle -pole -fishing rod -connecting rod -tie rod -driveshaft -crankshaft -transmission shaft -spindle -camshaft -boom -stilt -ski pole -clothes tree -caber -spar -mast -mast -bowsprit -yard -mizzenmast -royal mast -mainmast -foremast -fly rod -spinning rod -pencil -pen -highlighter -chalk -crayon -lead pencil -ballpoint -Sharpie -quill -fountain pen -felt-tip pen -furniture -office furniture -dining-room furniture -wardrobe -bedroom furniture -table -table -wall unit -lamp -dining-room table -washstand -buffet -cabinet -baby bed -bedstead -lawn furniture -credenza -bookcase -entertainment center -etagere -seat -sectional -chest of drawers -file -Rolodex -card index -vertical file -clothes closet -armoire -bed -berth -platform bed -hospital bed -bunk -trundle bed -four-poster -couch -bunk bed -twin bed -sleigh bed -single bed -hammock -Murphy bed -double bed -gaming table -gueridon -table-tennis table -counter -altar -breakfast table -stand -conference table -pedestal table -kitchen table -operating table -tea table -lectern -worktable -gateleg table -dressing table -desk -drop-leaf table -coffee table -trestle table -console table -checkout -bar -meat counter -reception desk -salad bar -snack bar -drafting table -lab bench -writing desk -secretary -davenport -dining table -dinner table -refectory table -floor lamp -table lamp -reading lamp -dresser -china cabinet -medicine chest -bassinet -crib -carrycot -cradle -chair -toilet seat -stool -sofa -ottoman -bench -lawn chair -chaise longue -rocking chair -swivel chair -throne -straight chair -ladder-back -highchair -armchair -Windsor chair -folding chair -wheelchair -motorized wheelchair -barber chair -easy chair -recliner -Morris chair -wing chair -deck chair -camp chair -music stool -taboret -footstool -settee -daybed -convertible -love seat -chesterfield -studio couch -park bench -flat bench -pew -settle -window seat -chiffonier -highboy -bird feeder -heater -lighter -signal -converter -crusher -drive -knocker -peeler -musical instrument -shoehorn -shock absorber -machine -conductor -bait -stabilizer -filter -mechanism -acoustic device -trap -charger -airfoil -router -pick -energizer -fan -hydrofoil -dental appliance -adapter -toy -support -optical device -straightener -tongs -phonograph needle -instrument -comb -remote control -exercise device -comforter -washboard -shredder -water ski -blower -ventilator -breathing device -applicator -skeleton key -guitar pick -restraint -keyboard -electrical device -appliance -fire extinguisher -corrective -reflector -alarm -electronic device -snowshoe -holding device -memory device -key -noisemaker -source of illumination -indicator -detector -breathalyzer -imprint -afterburner -horn -elastic device -ski -lifting device -solar heater -electric heater -radiator -gas heater -convector -space heater -stove -cigar lighter -match -cairn -sign -street sign -traffic light -electrical converter -catalytic converter -inverter -synchronous converter -external drive -CD-ROM drive -internal drive -stringed instrument -electronic instrument -keyboard instrument -wind instrument -bass -percussion instrument -dulcimer -chordophone -banjo -zither -samisen -guitar -bowed stringed instrument -sitar -lute -mandola -mandolin -harp -acoustic guitar -Hawaiian guitar -uke -electric guitar -viol -violin -cello -viola -viola da gamba -Stradavarius -theremin -electric organ -synthesizer -piano -clavier -organ -accordion -grand piano -upright -spinet -mechanical piano -baby grand -concert grand -harpsichord -spinet -ocarina -woodwind -brass -organ pipe -free-reed instrument -whistle -pipe -kazoo -flute -beating-reed instrument -double-reed instrument -single-reed instrument -bassoon -oboe -clarinet -sax -baritone -bugle -flugelhorn -French horn -trombone -cornet -harmonium -harmonica -concertina -chanter -panpipe -bagpipe -fipple flute -pennywhistle -drone -bass fiddle -bass horn -bass guitar -euphonium -handbell -bones -gong -vibraphone -steel drum -marimba -glockenspiel -chime -kettle -maraca -drum -cymbal -bongo -bass drum -tambourine -snare drum -tenor drum -slot machine -power shovel -press -backhoe -printer -machine tool -motor -snow thrower -cash machine -farm machine -computer -Zamboni -mill -staple gun -power tool -concrete mixer -stapler -slicer -textile machine -record player -calculator -vending machine -slot -automat -garlic press -bench press -hydraulic press -punch press -character printer -impact printer -printer -drum printer -line printer -laser printer -Linotype -thermal printer -portable -typewriter -bar printer -wire matrix printer -dot matrix printer -bubble jet printer -ink-jet printer -shaper -drill press -grinder -lathe -miller -engine -electric motor -heat engine -jet engine -automobile engine -aircraft engine -generator -steam engine -internal-combustion engine -wind turbine -gasoline engine -diesel -outboard motor -radial engine -rocket -fanjet -booster -space rocket -alternator -windmill -starter -kick starter -cultivator -haymaker -combine -thresher -harvester -disk harrow -harrow -slide rule -web site -home computer -server -digital computer -supercomputer -workstation -personal computer -portable computer -desktop computer -notebook -planner -laptop -hand-held computer -pepper mill -water mill -meat grinder -coffee mill -treadmill -windmill -electric hammer -power saw -buffer -circular saw -chain saw -table saw -saber saw -bandsaw -spinning wheel -loom -jukebox -gramophone -abacus -adding machine -hand calculator -semiconductor device -wire -cord -heat sink -cable -microprocessor -transistor -light-emitting diode -chip -filament -jumper cable -telephone wire -patchcord -telephone cord -power cord -extension cord -ethernet cable -electrical cable -printer cable -power line -fisherman's lure -fly -dry fly -wet fly -streamer fly -outrigger -vane -strainer -air filter -oil filter -sieve -tea-strainer -colander -fusee drive -android -radiator -mechanical device -rotating mechanism -rotor head -carriage -control -power steering -automaton -action -cooling system -gear -tape drive -film advance -sprinkler -propeller -anchor -golf-club head -weathervane -machine -seeder -pump -gearshift -ride -bumper -hook -ski binding -coupling -record changer -swing -windshield wiper -winder -winder -diaphragm -shutter -escapement -broadcaster -curler -splint -compressor -air compressor -carburetor -dildo -cartridge holder -trapeze -gearing -stator -airplane propeller -screw -pulley -wheel -idle pulley -lever -inclined plane -millwheel -waterwheel -roller -bicycle wheel -caster -grinding wheel -rowel -fifth wheel -wagon wheel -waterwheel -car wheel -sprocket -pinwheel -potter's wheel -gear -driving wheel -paddlewheel -roulette -spur gear -bevel gear -pinion -ramp -ax head -screw -grease-gun -gas pump -bicycle pump -sump pump -hand pump -centrifugal pump -Ferris wheel -roller coaster -carousel -universal joint -clutch -freewheel -disk clutch -bobbin -reel -shuttle -blade -gyroscope -circle -rotor -paddle -impeller -fan blade -disk -puck -brake disk -token -Frisbee -planchet -tail rotor -main rotor -valve -steering wheel -governor -joystick -regulator -switch -ball valve -butterfly valve -timer -flywheel -faucet -thermostat -aperture -mixing faucet -stopcock -toggle switch -push button -dial -horn button -mouse button -doorbell -bell push -flintlock -movement -gunlock -cooling tower -evaporative cooler -air conditioner -gearset -four-wheel drive -whistle -silencer -megaphone -hearing aid -bell -cowbell -church bell -dinner bell -spider web -mousetrap -lobster pot -web -net -landing net -fishnet -vertical stabilizer -spoiler -spoiler -rotor blade -flap -rudder -horizontal stabilizer -wing -exhaust fan -electric fan -brace -denture -backboard -stirrup -pier -pier -back -shelf -landing gear -baluster -spoke -base -step -brace -pillow block -bearing -rocker -coat hanger -harp -rest -bracket -tailstock -bookend -structural member -headstock -seat -thrust bearing -hanger -rack -harness -cantle -ladder-back -bookshelf -mantel -neck brace -knee brace -ankle brace -back brace -arm -headrest -chin rest -armrest -sconce -corbel -shelf bracket -sill -riser -upright -brace -tread -beam -windowsill -doorsill -stile -jamb -column -post -support column -caryatid -goalpost -newel post -bollard -lamppost -telephone pole -maypole -timber -rundle -tie -rafter -girder -timber -floor joist -joist -car seat -pillion -plane seat -saddle -chair -bicycle seat -bucket seat -backseat -stock saddle -English saddle -tripod -spice rack -magazine rack -music stand -camera tripod -easel -autofocus -projector -finder -laser -lens -objective -condenser -camera lens -anastigmat -contact -sunglass -eyepiece -field lens -Fresnel lens -portrait lens -closeup lens -telephoto lens -wide-angle lens -plotter -scientific instrument -measuring instrument -weapon -guillotine -drafting instrument -analyzer -navigational instrument -optical instrument -medical instrument -instrument of punishment -catapult -extractor -theodolite -riding crop -tachymeter -collider -microtome -accelerator -stroboscope -magnifier -console -telescope -microscope -astronomical telescope -equatorial -optical telescope -radio telescope -refracting telescope -field glass -reflecting telescope -Cassegrainian telescope -Newtonian telescope -Schmidt telescope -Maksutov telescope -electron microscope -field-emission microscope -light microscope -binocular microscope -hand glass -operating microscope -compound microscope -loupe -oximeter -dropper -refractometer -rangefinder -barometer -pedometer -thermometer -astrolabe -measuring stick -gauge -timepiece -aneroid barometer -caliper -potentiometer -tachometer -scale -tape -meter -hygrometer -sextant -rule -altazimuth -pyrometer -meat thermometer -water gauge -vacuum gauge -anemometer -gasoline gauge -pressure gauge -manometer -sphygmomanometer -atomic clock -clock -watch -sundial -timer -hourglass -grandfather clock -digital clock -alarm clock -wall clock -analog clock -pendulum clock -cuckoo clock -digital watch -analog watch -pocket watch -wristwatch -stopwatch -parking meter -chronograph -vernier caliper -micrometer -balance -analytical balance -electronic balance -electric meter -odometer -ammeter -speedometer -ohmmeter -water meter -voltmeter -magnetometer -tomahawk -gun -bow -bow and arrow -brass knucks -knife -sword -stun gun -projectile -antiaircraft -firearm -set gun -air gun -gas gun -paintball gun -cannon -autoloader -pistol -twenty-two -Mauser -muzzle loader -rifle -repeating firearm -semiautomatic firearm -automatic firearm -Garand rifle -Luger -semiautomatic pistol -automatic rifle -assault rifle -automatic pistol -machine gun -submachine gun -burp gun -Uzi -Kalashnikov -Tommy gun -Colt -derringer -revolver -gat -flintlock -musket -sniper rifle -Winchester -carbine -crossbow -longbow -khukuri -bayonet -machete -dagger -rapier -fencing sword -broadsword -cavalry sword -saber -epee -foil -bullet -cannonball -compass -protractor -artificial horizon -depth finder -magnetic compass -compass -binoculars -spectacles -projector -telescopic sight -goggles -sunglasses -slide projector -front projector -movie projector -overhead projector -hypodermic syringe -cardiograph -syringe -stethoscope -laryngoscope -otoscope -surgical instrument -retractor -hemostat -pillory -rattan -exercise bike -treadmill -respirator -snorkel -oxygen mask -aqualung -paintbrush -spray gun -brake -handcuff -fastener -seat belt -leash -safety belt -brake system -muzzle -chain -bolt -buckle -knot -cleat -clothespin -catch -pin -dowel -screw -slide fastener -button -seal -paper fastener -lock -thumbtack -locker -clasp -clip -carabiner -nail -toggle -nut and bolt -bowline -bow -latch -hasp -rivet -hairpin -skewer -hatpin -brochette -bobby pin -barrette -safety pin -shirt button -coat button -washer -gasket -head gasket -O ring -padlock -sash fastener -latch -combination lock -doorlock -paper clip -bulldog clip -hair slide -hydraulic brake -disk brake -drum brake -typewriter keyboard -QWERTY keyboard -computer keyboard -piano keyboard -circuit -Segway -jack -control panel -telephone jack -circuit breaker -plug -electrolytic -dashboard -transducer -solar cell -antenna -capacitor -spark plug -relay -surge suppressor -solar array -battery -Tesla coil -closed circuit -wiring -computer circuit -integrated circuit -module -printed circuit -interface -CPU board -circuit board -mosaic -electro-acoustic transducer -earphone -microphone -loudspeaker -telephone receiver -headset -condenser microphone -cardioid microphone -tweeter -bullhorn -tannoy -woofer -subwoofer -omnidirectional antenna -directional antenna -radio antenna -television antenna -dish -scanner -yagi -voltaic battery -flashlight battery -lead-acid battery -pack -prosthesis -solar dish -mirror -hand glass -car mirror -rearview mirror -outside mirror -burglar alarm -automobile horn -shofar -fire alarm -readout -scanner -tube -display -personal digital assistant -dongle -trackball -mouse -answering machine -hearing aid -beeper -triode -pentode -computer monitor -monitor -screen -digital display -liquid crystal display -flat panel display -window -dialog box -caller ID -computer screen -background -C-clamp -chuck -collet -holder -vise -candlestick -cigarette holder -candelabrum -menorah -Menorah -cache -optical disk -magnetic disk -memory -magnetic tape -recording -auxiliary storage -compact disk -videodisk -CD-ROM -CD-R -audio CD -hard disc -diskette -flash memory -random-access memory -videotape -cassette tape -tape -phonograph record -LP -seventy-eight -lamp -light -flash -lantern -candle -neon lamp -vigil light -taillight -gas lamp -oil lamp -hurricane lamp -fluorescent lamp -streetlight -spotlight -electric lamp -jack-o'-lantern -Chinese lantern -flashlight -light bulb -penlight -headlight -room light -strip lighting -fairy light -sconce -searchlight -night-light -blinker -torch -flood -fuel gauge -gnomon -dial -vernier scale -pointer -light pen -hand -sweep hand -minute hand -second hand -hour hand -spring -rubber band -coil spring -box spring -hoist -winch -elevator -crane -wheel and axle -derrick -maze -communication system -network -Global Positioning System -resonator -exhaust -mechanical system -computer system -scaffolding -reticle -walkie-talkie -radio -telecommunication system -telephone system -intercommunication system -interphone -television -satellite television -surveillance system -color television -local area network -superhighway -ethernet -wireless local area network -production line -linkage -suspension -fuel injection -planter -trophy case -wastepaper basket -dish -bread-bin -dispenser -pot -bunker -reliquary -cup -bag -cassette -Dumpster -bag -measuring cup -glass -paintball -measure -envelope -shaker -piggy bank -basket -sewing basket -savings bank -powder horn -can -wheeled vehicle -workbasket -bin -canister -mold -cargo container -videocassette -case -case -vessel -drawer -receptacle -package -watering can -box -cocotte -Petri dish -gravy boat -serving dish -tureen -sugar bowl -bowl -casserole -ramekin -butter dish -salad bowl -mixing bowl -porringer -cereal bowl -soup bowl -punch bowl -roll-on -aerosol -soap dispenser -atomizer -inhaler -demitasse -beaker -kylix -coffee cup -chalice -teacup -Dixie cup -evening bag -shoulder bag -clutch bag -reticule -backpack -sachet -beanbag -sandbag -carryall -pannier -duffel bag -book bag -tool bag -mailbag -purse -drawstring bag -envelope -saddlebag -sack -pouch -shopping bag -toilet bag -gamebag -kitbag -plastic bag -golf bag -sleeping bag -gunnysack -grocery bag -sporran -pocket -waist pack -fanny pack -hip pocket -patch pocket -flute -tumbler -water glass -bumper -liqueur glass -snifter -shot glass -beer glass -rummer -goblet -wineglass -cocktail shaker -saltshaker -pepper shaker -pannier -clothes hamper -hamper -breadbasket -shopping basket -wicker basket -milk can -beer can -soda can -pedicab -camper trailer -rolling stock -motor scooter -self-propelled vehicle -unicycle -wagon -bassinet -handcart -baby buggy -bicycle -horse-drawn vehicle -trailer -car -tricycle -armored vehicle -recreational vehicle -tracked vehicle -snowmobile -bulldozer -locomotive -streetcar -motor vehicle -tractor -forklift -armored personnel carrier -armored car -dune buggy -camper -van -shunter -diesel locomotive -electric locomotive -tank engine -traction engine -steam locomotive -diesel-electric locomotive -diesel-hydraulic locomotive -hearse -truck -amphibian -four-wheel drive -motorcycle -go-kart -car -snowplow -fire engine -van -trailer truck -transporter -garbage truck -ladder truck -tow truck -dump truck -tractor -pickup -delivery truck -moving van -passenger van -police van -bookmobile -trail bike -moped -beach wagon -loaner -Model T -electric -minivan -convertible -compact -cab -shooting brake -racer -hatchback -roadster -berlin -sport utility -sedan -jeep -limousine -cruiser -ambulance -used-car -stock car -subcompact -pace car -hot rod -sports car -coupe -covered wagon -cart -horse cart -dumpcart -jinrikisha -pony cart -oxcart -tea cart -laundry cart -serving cart -barrow -shopping cart -hand truck -bicycle-built-for-two -safety bicycle -push-bike -mountain bike -carriage -gharry -buggy -stagecoach -four-wheeler -baggage car -freight car -passenger car -cabin car -boxcar -tank car -nonsmoker -Pullman -dining car -smoker -recycling bin -ashcan -litterbin -sandbox -pig bed -briefcase -compact -dispatch case -kit -wallet -cardcase -portfolio -ditty bag -cigarette case -shoe -gun case -attache case -locket -writing desk -watch case -baggage -glasses case -hand luggage -satchel -bag -trunk -hatbox -garment bag -weekender -carpetbag -portmanteau -overnighter -valise -boiler -flagon -bowl -ladle -bottle -bottle -pot -pitcher -bathtub -mortar -bucket -drinking vessel -cream pitcher -wine bucket -pressure cooker -tub -inkwell -tin -basin -monstrance -autoclave -churn -barrel -tank -jar -censer -toilet bowl -fishbowl -scoop -soup ladle -smelling bottle -pop bottle -water bottle -jug -catsup bottle -gourd -pill bottle -carboy -flask -beer bottle -ink bottle -demijohn -whiskey bottle -cruet -wine bottle -carafe -phial -whiskey jug -water jug -hipflask -Erlenmeyer flask -thermos -canteen -vacuum flask -magnum -jeroboam -saucepot -teapot -Dutch oven -urn -stockpot -kettle -caldron -percolator -teakettle -coffeepot -coffee urn -samovar -tea urn -sitz bath -hot tub -footbath -mug -loving cup -tankard -coffee mug -toby -beer mug -bidet -birdbath -washbasin -baptismal font -beer barrel -wine cask -keg -gas tank -water heater -septic tank -aquarium -reservoir -water tower -rain barrel -canopic jar -amphora -cookie jar -beaker -urn -Mason jar -vase -crock -jampot -plate -tray -cat box -dustpan -chamberpot -salver -garbage -in-basket -hot-water bottle -ossuary -socket -ashtray -packet -bundle -deck -bale -hay bale -pack -ballot box -carton -coffin -shoebox -snuffbox -pencil box -crate -bandbox -window box -chest -strongbox -cereal box -mailbox -casket -bier -packing box -toolbox -toy box -coffer -hope chest -treasure chest -cedar chest -cash register -safe-deposit -cashbox -safe -tramway -chairlift -sidecar -public transport -semitrailer -horsebox -vehicle -ski tow -roll-on roll-off -trailer -shipping -litter -express -shuttle bus -train -bus -local -freight liner -passenger train -subway train -mail train -freight train -commuter -bullet train -trolleybus -minibus -school bus -steamroller -bumper car -rocket -military vehicle -missile -craft -sled -half track -tank -panzer -personnel carrier -Humvee -aircraft -vessel -spacecraft -hovercraft -heavier-than-air craft -stealth aircraft -lighter-than-air craft -hang glider -glider -helicopter -warplane -airplane -autogiro -bomber -amphibian -propeller plane -airliner -biplane -floatplane -jet -fighter -stealth bomber -seaplane -airbus -widebody aircraft -jumbojet -jetliner -stealth fighter -interceptor -airship -blimp -balloon -hot-air balloon -boat -trawler -yacht -ship -sailing vessel -bareboat -lifeboat -police boat -gondola -sea boat -barge -river boat -tugboat -punt -pilot boat -small boat -ferry -tender -canal boat -fireboat -motorboat -dredger -pontoon -houseboat -skiff -canoe -dinghy -racing boat -coracle -yawl -gig -jolly boat -rowing boat -kayak -outrigger canoe -dugout canoe -racing gig -racing skiff -speedboat -outboard motorboat -cabin cruiser -hydrofoil -shipwreck -wreck -passenger ship -pirate -lightship -hospital ship -steamer -cargo ship -sister ship -warship -liner -luxury liner -cargo liner -cruise ship -paddle steamer -sternwheeler -bottom -container ship -banana boat -oil tanker -submarine -guided missile cruiser -frigate -battleship -guided missile frigate -aircraft carrier -man-of-war -destroyer -attack submarine -nautilus -yawl -clipper -felucca -sloop -ketch -dhow -sailboat -bark -schooner -windjammer -trimaran -catamaran -catboat -space shuttle -space capsule -dogsled -bobsled -bobsled -stretcher -covered couch -telecommunication -vehicle -print media -broadcasting -telephone -radiotelephone -television -reception -radio -cable television -high-definition television -three-way calling -call -voice mail -press -journalism -magazine -newspaper -pulp -slick -comic book -news magazine -tabloid -daily -gazette -Fleet Street -yellow journalism -pillow -pad -sanitary napkin -beer mat -futon -carpet pad -range hood -screen -top -footwear -protective covering -cloak -wrapping -upholstery -cloth covering -mask -finger -floor cover -coating -canopy -flap -domino -folder -planking -earmuff -camouflage -shoji -cap -manhole cover -lid -radiator cap -bottlecap -nipple -clog -shoe -arctic -boot -flats -slipper -overshoe -sabot -slingback -chukka -saddle oxford -spectator pump -brogan -wing tip -walker -blucher -anklet -cleats -gaiter -Loafer -running shoe -oxford -bowling shoe -plimsoll -pump -sandal -chopine -pusher -talaria -flip-flop -espadrille -jodhpur -buskin -ski boot -hip boot -riding boot -rubber boot -Hessian boot -waders -cowboy boot -mule -bootee -cold frame -cloche -washboard -toecap -mulch -shield -bracer -screen -sheathing -bell jar -shade -shelter -splashboard -testudo -roof -faceplate -hood -sheath -cap -mask -facing -crystal -calash -armor -binder -binding -housing -blind -lining -plate -horseshoe -armor plate -breastplate -helmet -cannon -knee piece -pickelhaube -sallet -window screen -fire screen -windshield -mosquito net -lampshade -parasol -lean-to -bell cote -sentry box -birdhouse -canopy -kennel -awning -umbrella -gamp -gable roof -sunroof -mansard -dome -hip roof -tile roof -housetop -vault -slate roof -gambrel -thatch -cupola -geodesic dome -onion dome -barrel vault -ribbed vault -holster -scabbard -shoulder holster -hubcap -thimble -distributor cap -lens cap -gasmask -face mask -ski mask -catcher's mask -body armor -shield -chain mail -bulletproof vest -corselet -cuirass -cabinet -radome -boot -window blind -jalousie -curtain -shutter -Venetian blind -window shade -roller blind -theater curtain -shower curtain -bushing -brake lining -gift wrapping -envelope -cellophane -book jacket -jacket -plastic wrap -shoulder -pant leg -leg -back -cosy -bandage -bosom -slipcover -bedclothes -sleeve -blindfold -eyepatch -skirt -seat -Band Aid -swathe -cast -elastic bandage -quilt -afghan -blanket -bedspread -mattress cover -patchwork -eiderdown -crazy quilt -coverlet -quilted bedspread -raglan sleeve -long sleeve -rug -doormat -mat -scatter rug -shag rug -prayer rug -broadloom -stair-carpet -red carpet -Brussels carpet -fixative -gold plate -verdigris -paint -nail polish -gilt -couch -enamel -veneer -finger paint -enamel -encaustic -oil paint -water-base paint -latex paint -whitewash -earflap -pocket flap -lapel -tongue -revers -tent-fly -file folder -matchbook -plush -muslin -tarpaulin -velvet -batik -khaki -belting -sacking -diaper -voile -duffel -chenille -cotton flannel -toweling -crinoline -panting -chintz -felt -cotton -velveteen -satin -knit -sateen -print -flannel -webbing -gabardine -camouflage -worsted -cashmere -tartan -mohair -brocade -velour -shirttail -boucle -madras -net -paisley -yoke -percale -piece of cloth -moquette -terry -rayon -acetate rayon -cord -permanent press -chiffon -burlap -ticking -basket weave -lace -sheeting -georgette -poplin -denim -flannelette -shantung -camel's hair -nylon -drapery -gauze -organza -foulard -gingham -wool -suede cloth -taffeta -leatherette -tweed -organdy -canopy -etamine -damask -oilcloth -tapestry -broadcloth -pique -homespun -tricot -double knit -jersey -gauze -tulle -chicken wire -handkerchief -groundsheet -dustcloth -dishrag -towel -bandanna -gusset -bib -sail -patch -hand towel -paper towel -dishtowel -fore-and-aft sail -foresail -spinnaker -headsail -topsail -mainsail -balloon sail -jib -mizzen -gaff topsail -lugsail -staysail -lateen -flash -shoulder patch -narrow wale -Bedford cord -macrame -pillow lace -raft -life preserver -life buoy -Mae West -life jacket -stone -brick -lumber -bricks and mortar -tile -concrete -quoin -millstone -stele -hone -grindstone -curbstone -gravestone -firebrick -mud brick -clinker -adobe -strip -chipboard -slat -fingerboard -toothpick -hip tile -pantile -cornice -embellishment -graffito -epergne -necklet -marquetry -brass -garnish -arabesque -design -adornment -frieze -lambrequin -tattoo -mihrab -emblem -swastika -herringbone -spot -flag -banner -totem pole -crucifix -fleur-de-lis -macule -parhelion -jewelry -frill -lavaliere -peplum -bangle -cigar band -aigrette -bracelet -bling -pendant earring -necklace -ghat -path -road -passage -sidewalk -towpath -pedestrian crossing -highway -carriageway -thoroughfare -trail -divided highway -expressway -arterial road -autostrada -autobahn -street -street -piste -horse-trail -adit -conduit -passageway -tube -sluice -snorkel -waterspout -catheter -barrel -pipe -hookah -tailpipe -drain -culvert -soil pipe -tunnel -stairwell -gangway -catacomb -railroad tunnel -tape -band -inkle -adhesive tape -plaster -cellulose tape -headstall -girdle -tire -armlet -radial -car tire -tableware -riband -cutlery -glass -hollowware -platter -spoon -table knife -fork -Spork -soupspoon -teaspoon -sugar spoon -wooden spoon -iced-tea spoon -tablespoon -dessert spoon -case knife -butter knife -steak knife -tablefork -carving fork -airfield -telpherage -air terminal -airport -menagerie -storehouse -station -warehouse -granary -crib -mineshaft -ditch -irrigation ditch -furrow -consumer goods -linen -clothing -appliance -leisure wear -grey -blue -nightwear -protective garment -outerwear -neckpiece -knitwear -loungewear -apparel -collar -military uniform -headdress -pajama -garment -array -woman's clothing -overall -glove -accessory -black -footwear -attire -ready-to-wear -beachwear -man's clothing -street clothes -slip-on -shin guard -overall -pressure suit -arm guard -foul-weather gear -diving suit -apron -shoulder pad -coverall -chest protector -elbow pad -spacesuit -knee pad -gown -vestment -chasuble -academic gown -battle dress -fatigues -dress uniform -khakis -helmet -hood -turban -hat -cap -cowl -tiara -football helmet -hard hat -crash helmet -sunhat -fur hat -cowboy hat -bearskin -boater -snap-brim hat -fedora -cavalier hat -sombrero -tricorn -beaver -porkpie -bonnet -pith hat -bowler hat -millinery -cloche -pillbox -baseball cap -coonskin cap -shower cap -kepi -balaclava -fez -tam -beret -skullcap -cloth cap -ski cap -watch cap -bathing cap -mortarboard -yarmulke -beanie -head covering -scarf -romper -diaper -wraparound -robe -wet suit -legging -skirt -undergarment -separate -vest -shirt -overgarment -hose -burqa -trouser -trouser -straitjacket -fur -neckwear -sweat suit -leotard -swimsuit -hand-me-down -raglan -suit -sweater -gown -face veil -niqab -chador -mantilla -muffler -headscarf -tudung -feather boa -stole -hijab -khimar -dressing gown -kimono -abaya -bathrobe -gaiter -spat -overskirt -grass skirt -miniskirt -kilt -maxi -ballet skirt -dirndl -sarong -hoopskirt -petticoat -brassiere -foundation garment -singlet -garter belt -crinoline -underwear -body stocking -camisole -uplift -chemise -underpants -corset -panty girdle -roll-on -lingerie -long johns -BVD -undies -nightgown -bloomers -thong -bikini pants -briefs -pantie -drawers -work-shirt -kurta -jersey -dashiki -polo shirt -coat -cloak -snowsuit -surcoat -duffel coat -sheepskin coat -frock coat -lab coat -greatcoat -jacket -raincoat -capote -sack coat -fur coat -mess jacket -single-breasted jacket -bomber jacket -pea jacket -swallow-tailed coat -doublet -bolero -parka -oilskin -trench coat -mink -sable coat -poncho -toga virilis -toga -kameez -serape -tunic -shawl -caftan -short pants -pajama -sweat pants -salwar -breeches -chino -slacks -jodhpurs -pedal pusher -long trousers -jean -cords -Levi's -stretch pants -bellbottom trousers -buckskins -hot pants -Bermuda shorts -lederhosen -necktie -cravat -bolo tie -Windsor tie -bow tie -black tie -maillot -swimming trunks -bikini -double-breasted suit -pinstripe -single-breasted suit -pants suit -business suit -three-piece suit -two-piece -turtleneck -cardigan -sweatshirt -pullover -top -G-string -camisole -dress -bodice -blouse -halter -cocktail dress -sari -caftan -sundress -chemise -strapless -gown -jumper -dirndl -bridal gown -tea gown -ball gown -gauntlet -mitten -kid glove -belt -furnishing -money belt -holster -cartridge belt -hosiery -tights -sock -stocking -pantyhose -maillot -athletic sock -tabi -knee-high -argyle -nylons -Christmas stocking -formalwear -ensemble -outfit -ao dai -costume -fancy dress -costume -frock -sportswear -academic costume -disguise -hairpiece -dinner jacket -balldress -dinner dress -dress suit -Afro-wig -toupee -wig -dress hat -brace -athletic supporter -home appliance -dryer -vacuum -iron -trouser press -curling iron -white goods -sewing machine -serger -kitchen appliance -Hoover -travel iron -steam iron -dishwasher -refrigerator -washer -cooler -electric refrigerator -ice machine -deep-freeze -toaster -microwave -toaster oven -coffee maker -hot plate -waffle iron -disposal -espresso maker -stove -oven -food processor -ice maker -cookstove -electric range -gas range -Primus stove -broiler -rotisserie -Dutch oven -gas oven -hand blower -clothes dryer -spin dryer -tumble-dryer -wringer -bath towel -doily -Turkish towel -bed linen -pillow sham -sheet -tinfoil -plywood -doorplate -board -drumhead -panel -laminate -blackboard -snowboard -Sheetrock -surfboard -skateboard -sideboard -scoreboard -wainscot -headboard -chandelier -plumbing fixture -soap dish -toilet -shower -water faucet -flush toilet -potty seat -rope -cord -lasso -bungee -spun yarn -cordage -thread -bootlace -wick -lanyard -floss -woof -worsted -organism -cell -mistletoe -plant -animal -microorganism -bryophyte -person -fungus -benthos -flowering maple -vascular plant -strangler -aquatic -annual -houseplant -poisonous plant -agave -pteridophyte -spermatophyte -aquatic plant -herb -vine -woody plant -weed -cultivar -bulbous plant -succulent -American agave -maguey -maguey -sansevieria -dracaena -mother-in-law's tongue -fern ally -fern -club moss -scouring rush -ground pine -ground cedar -ground fir -flowering fern -lady fern -Boston fern -flowering fern -royal fern -tree fern -oak fern -common polypody -mountain fern -shield fern -deer fern -wood fern -American maidenhair fern -hart's-tongue -soft shield fern -holly fern -maidenhair -holly fern -water clover -sensitive fern -Christmas fern -angiopteris -soft tree fern -male fern -marginal wood fern -angiosperm -gymnosperm -barbados cherry -dicot -flower -wildflower -commelina -woodland star -nigella -black-eyed Susan -mistflower -calceolaria -toadflax -zinnia -centaury -Easter daisy -African violet -brompton stock -verbena -blue daisy -pink calla -Mexican sunflower -bloomer -achimenes -lychnis -painted daisy -treasure flower -globe amaranth -common valerian -rose moss -tidytips -common daisy -composite -ice plant -gentian -soapwort -anemone -veronica -larkspur -spring beauty -gazania -damask violet -Barberton daisy -bush violet -baby's breath -corydalis -calendula -sunflower -scabious -valerian -rue anemone -sandwort -candytuft -horn poppy -sandwort -poppy -stokes' aster -dahlia -Virginia spring beauty -petunia -orchid -hybrid petunia -African daisy -pink -African daisy -African daisy -daisy -common ageratum -oxeye daisy -columbine -calla lily -sweet alyssum -spathiphyllum -four o'clock -common marigold -cornflower -strawflower -silene -tuberose -common four-o'clock -rocket larkspur -bellwort -begonia -streptocarpus -Swan River daisy -wallflower -peony -love-in-a-mist -wallflower -cineraria -chrysanthemum -stock -sandwort -Malcolm stock -mountain sandwort -coneflower -ageratum -coneflower -sowbread -scorpionweed -cyclamen -delphinium -marigold -aster -cosmos -Mediterranean snapdragon -mullein pink -ragged robin -mayweed -tansy -dusty miller -corn chamomile -shasta daisy -everlasting -wingstem -rosinweed -oxeye daisy -strawflower -strawflower -cudweed -pearly everlasting -gentianella -agueweed -closed gentian -closed gentian -great yellow gentian -fringed gentian -marsh gentian -snowdrop anemone -wood anemone -wood anemone -germander speedwell -common speedwell -common sunflower -prairie sunflower -giant sunflower -Jerusalem artichoke -sweet scabious -field scabious -Iceland poppy -wind poppy -Iceland poppy -celandine -oriental poppy -opium poppy -celandine poppy -prickly poppy -California poppy -corn poppy -blue poppy -aerides -coelogyne -lady's slipper -Venus' slipper -cymbid -sobralia -spider orchid -spider orchid -Psychopsis papilio -liparis -butterfly orchid -butterfly orchid -butterfly orchid -oncidium -twayblade -twayblade -grass pink -brassavola -fragrant orchid -fly orchid -frog orchid -coral root -cattleya -lesser butterfly orchid -vanilla -short-spurred fragrant orchid -common spotted orchid -bog rose -ladies' tresses -odontoglossum -orchis -vanda -pansy orchid -Bletilla striata -rattlesnake plantain -marsh orchid -stanhopea -laelia -phaius -lizard orchid -caladenia -calypso -moth orchid -blue orchid -bee orchid -early spider orchid -masdevallia -bog rein orchid -European ladies' tresses -fen orchid -pogonia -fringed orchis -dendrobium -fly orchid -helleborine -helleborine -stelis -greater butterfly orchid -yellow lady's slipper -large yellow lady's slipper -common lady's-slipper -moccasin flower -butterfly orchid -male orchis -ragged orchid -purple-fringed orchid -stream orchid -Epipactis helleborine -sweet William -china pink -Japanese pink -carnation -cottage pink -maiden pink -meeting house -granny's bonnets -blue columbine -fire pink -white campion -bladder campion -red campion -wild pink -moss campion -wax begonia -hybrid tuberous begonia -rex begonia -crown daisy -corn marigold -florist's chrysanthemum -African marigold -French marigold -New England aster -bushy aster -Michaelmas daisy -Indian paintbrush -goldenrod -sand verbena -bitterroot -Indian pipe -heliopsis -meadow goldenrod -pasqueflower -fleabane -blazing star -edelweiss -coneflower -balloon flower -wild carrot -prairie gentian -desert sunflower -Arnica montana -butterweed -gaillardia -brittlebush -orange daisy -daisy fleabane -Mexican hat -long-head coneflower -cycad -welwitschia -encephalartos -dioon -macrozamia -false sago -water shamrock -water hyacinth -pistia -water lily -marsh plant -water nymph -European white lily -bog star -marsh marigold -wild calla -sedge -parnassia -skunk cabbage -skunk cabbage -cotton grass -nutgrass -common cotton grass -winter aconite -buttercup -phlox -willowherb -stapelia -skullcap -bedstraw -gumweed -kangaroo paw -common chickweed -hyssop -arum -common comfrey -borage -nasturtium -canna -loosestrife -toad lily -globe thistle -wild thyme -common fennel -bear's breech -ironweed -feverfew -monarda -physostegia -creeping bugle -vegetable -hedge nettle -plum tomato -ground cherry -flax -primrose -oxalis -kniphofia -boneset -chickweed -periwinkle -garden angelica -bugloss -Dutchman's breeches -pie plant -cow parsnip -butterbur -milk thistle -mouse-ear chickweed -yellow bells -lobelia -anise hyssop -banana -Joe-Pye weed -Joe-Pye weed -garden forget-me-not -evening primrose -spiderflower -sweet false chamomile -agrimonia -hepatica -medic -peperomia -geranium -viola -okra -bergenia -astrantia -aspidistra -thyme -common teasel -carnivorous plant -harvest-lice -nemophila -hawkweed -hawkweed -fleabane -plumbago -spiderwort -prickly poppy -common foxglove -stonecrop -garden lettuce -teasel -herb Paris -coltsfoot -basil -sainfoin -sneezeweed -cockscomb -baby blue-eyes -coleus -spurge nettle -arnica -sour dock -clover -mint -coreopsis -pimpernel -kidney vetch -foxglove -legume -reseda -forget-me-not -Virginia bluebell -pineapple -blueweed -anchusa -moss pink -common dandelion -false lupine -sage -chamomile -crucifer -chicory -broad-leaved plantain -bugle -milkweed -fireweed -spirea -inula -hemp nettle -garden nasturtium -pokeweed -moneywort -asparagus -Italian parsley -rhubarb -jewelweed -asparagus fern -sedum -yarrow -bird's foot trefoil -scarlet pimpernel -campanula -mayapple -painted nettle -pigweed -bleeding heart -achillea -snow-in-summer -gramineous plant -balsamroot -Abyssinian banana -herbage -astilbe -ginger -saxifrage -cow parsley -dill -common mullein -dead nettle -creeping buttercup -meadow buttercup -yellow bedstraw -sweet woodruff -caladium -cuckoopint -jack-in-the-pulpit -alocasia -taro -amorphophallus -bee balm -bee balm -artichoke -cardoon -tomatillo -tomatillo -English primrose -oxlip -cowslip -polyanthus -creeping oxalis -common wood sorrel -Bermuda buttercup -red-hot poker -poker plant -dwarf banana -Japanese banana -plantain -sundrops -common evening primrose -ivy geranium -cranesbill -fish geranium -rose geranium -meadow cranesbill -wild geranium -dove's foot geranium -herb robert -horned violet -field pansy -violet -dog violet -pale violet -bird's-foot violet -hedge violet -Venus's flytrap -pitcher plant -tropical pitcher plant -sundew -white clover -red clover -crimson clover -pennyroyal -water-mint -beach pea -chickpea -vetch -tufted vetch -bean -wild pea -scarlet runner -sieva bean -clary -common sage -clary sage -wild sage -purple sage -meadow clary -bok choy -mustard -cabbage -cauliflower -collard -broccoli -brussels sprout -garlic mustard -head cabbage -radish plant -bittercress -alyssum -field mustard -rape -radish -radish -lady's smock -crinkleroot -butterfly weed -swamp milkweed -tussock bellflower -Canterbury bell -clustered bellflower -peach bells -giant bamboo -grass -fescue -cordgrass -feather reed grass -reed grass -orchard grass -cereal -broom beard grass -tall oat grass -tallgrass -St. Augustine grass -pampas grass -grama -dallisgrass -zoysia -rye grass -brome -fountain grass -rye -popcorn -wheat -millet -sorghum -panic grass -goose grass -switch grass -common ginger -shellflower -meadow saxifrage -purple saxifrage -white dead nettle -henbit -ground ivy -blue pea -purple clematis -black-eyed Susan -bougainvillea -butterfly pea -butterfly pea -bindweed -kudzu -Boston ivy -squash -yellow jasmine -wax plant -morning glory -liana -Japanese wistaria -allamanda -field bindweed -common allamanda -passionflower -convolvulus -gourd -grape -Chinese gooseberry -summer squash -winter squash -pumpkin -spaghetti squash -yellow squash -acorn squash -winter crookneck -cypress vine -Japanese morning glory -moonflower -golden pothos -ceriman -jade vine -pothos -love-in-a-mist -maypop -granadilla -sweet melon -bottle gourd -net melon -winter melon -cantaloupe -Sauvignon grape -fox grape -wild indigo -shrub -tree -raspberry -lupine -abelia -banksia -bird pepper -sea holly -guelder rose -crape myrtle -castor-oil plant -spirea -hydrangea -fuchsia -redberry -saltbush -false indigo -bridal wreath -protea -Oregon grape -grevillea -gorse -rockrose -cowberry -subshrub -honeypot -California fuchsia -sumac -jasmine -impala lily -currant -axseed -mimosa -southern buckthorn -flowering quince -yucca -purple heather -waratah -mallow -strawberry tree -mock orange -honeysuckle -spurge -kalmia -bush hibiscus -weigela -Christmasberry -angel's trumpet -angel's trumpet -gooseberry -dusty miller -croton -Pyracantha -forsythia -artemisia -silversword -waratah -philadelphus -common lilac -saltwort -calliandra -wahoo -bird of paradise -cape jasmine -camellia -night jasmine -rose -mountain laurel -cotoneaster -rhododendron -frangipani -broom -desert pea -lavender -butterfly bush -deutzia -hortensia -burdock -prairie smoke -centaury -sea lavender -common mugwort -bird's foot trefoil -large periwinkle -great burdock -St John's wort -eriogonum -purple loosestrife -loosestrife -mountain avens -matilija poppy -bur marigold -wild lupine -marguerite -dusty miller -great knapweed -knapweed -creeping St John's wort -klammath weed -common St John's wort -common jasmine -winter jasmine -Adam's needle -bear grass -Joshua tree -Spanish dagger -hollyhock -rose mallow -common mallow -marsh mallow -musk mallow -hibiscus -althea -rose mallow -cotton rose -woodbine -trumpet honeysuckle -Japanese honeysuckle -poinsettia -crown of thorns -damask rose -musk rose -azalea -rosebay -swamp azalea -common broom -woodwaxen -English lavender -spike lavender -French lavender -locust tree -kowhai -bottle-tree -timber tree -linden -bonsai -snag -hackberry -pepper tree -Japanese oak -European hackberry -cork tree -birch -star anise -red silk-cotton tree -roble -common alder -fig tree -Japanese pagoda tree -albizzia -European hornbeam -cassia -coral tree -neem -white mangrove -Chinese parasol tree -bayberry -yellowwood -elm -alder -prickly ash -angiospermous tree -chestnut -cabbage bark -ash -beech -fringe tree -golden shower tree -lead tree -palm -balata -sapling -black beech -acacia -coffee -gymnospermous tree -ceibo -incense tree -lacebark -shade tree -pollard -gum tree -wild medlar -hornbeam -willow -textile screw pine -mescal bean -Brazilian rosewood -pandanus -white mangrove -oak -bean tree -plane tree -blackwood -coralwood -Kentucky coffee tree -black locust -honey locust -flame tree -flame tree -kurrajong -American basswood -silver lime -black birch -silver birch -swamp birch -downy birch -grey birch -golden fig -India-rubber tree -fig -banyan -pipal -rain tree -silk tree -smooth-leaved elm -American elm -English elm -cedar elm -myrtle -mangrove -magnolia -Queen's crape myrtle -looking-glass plant -tulip tree -maple -nut tree -redbud -baobab -poplar -tree of heaven -ailanthus -dogwood -holly -cacao -laurel -mountain ebony -kapok -sorrel tree -cacao bean -Spanish elm -rowan -mountain ash -royal poinciana -iron tree -fruit tree -sweet bay -southern magnolia -star magnolia -umbrella tree -box elder -red maple -hedge maple -Norway maple -Japanese maple -sycamore -California box elder -silver maple -sugar maple -Oregon maple -cashew -walnut -hazelnut -black walnut -English walnut -black poplar -aspen -cottonwood -white poplar -quaking aspen -Eastern cottonwood -black cottonwood -cornelian cherry -bunchberry -common European dogwood -common white dogwood -bearberry -inkberry -true laurel -cassia -citrus -mulberry -jackfruit -pomegranate -pawpaw -persimmon -carambola -plum -almond tree -durian -papaya -olive tree -longan -pear -loquat -medlar -peach -white mulberry -olive -litchi -Japanese apricot -rambutan -apple tree -Japanese persimmon -mango -breadfruit -guava -guava -jaboticaba -cherry -Surinam cherry -lime -mandarin -orange -kumquat -lemon -pomelo -grapefruit -clementine -tangerine -sweet orange -sour orange -bergamot -cherry plum -Allegheny plum -flowering almond -almond -flowering almond -crab apple -apple -wild apple -Southern crab apple -Bechtel crab -Iowa crab -sour cherry -flowering cherry -wild cherry -sweet cherry -chokecherry -Japanese flowering cherry -oriental cherry -fuji -hagberry tree -black cherry -Ozark chinkapin -American chestnut -pumpkin ash -mountain ash -manna ash -European ash -red ash -weeping beech -American beech -copper beech -bamboo palm -wine palm -fan palm -royal palm -cabbage palm -cabbage palm -sago palm -miniature fan palm -lady palm -feather palm -coconut -cabbage palm -carnauba -caranday -palmyra -cabbage palmetto -key palm -saw palmetto -palmetto -date palm -oil palm -silver wattle -wattle -huisache -ginkgo -conifer -kauri -green douglas fir -miro -cedar -cedar -douglas fir -matai -arborvitae -spruce -yew -araucaria -cypress -metasequoia -pine -fir -larch -hemlock -cedar of Lebanon -Atlas cedar -deodar -southern white cedar -incense cedar -Oregon cedar -Japanese cedar -Oriental arborvitae -American arborvitae -western red cedar -Colorado spruce -white spruce -Norway spruce -red spruce -black spruce -Sitka spruce -oriental spruce -bunya bunya -monkey puzzle -Monterey cypress -Arizona cypress -Italian cypress -Scotch pine -pond pine -pitch pine -table-mountain pine -ancient pine -stone pine -Jeffrey pine -loblolly pine -Swiss pine -spruce pine -white pine -red pine -Japanese black pine -Swiss mountain pine -black pine -Monterey pine -yellow pine -Torrey pine -shore pine -bristlecone pine -whitebark pine -western white pine -longleaf pine -ponderosa -silver fir -Fraser fir -Alpine fir -amabilis fir -lowland fir -balsam fir -European silver fir -white fir -western larch -American larch -eastern hemlock -western hemlock -mountain hemlock -gumbo-limbo -elephant tree -sweet gum -eucalyptus -sour gum -liquidambar -snow gum -mountain ash -black mallee -alpine ash -red gum -red gum -blue gum -osier -pussy willow -bay willow -weeping willow -swamp willow -purple willow -common osier -European turkey oak -red oak -cork oak -black oak -live oak -chestnut oak -bluejack oak -pin oak -post oak -shingle oak -white oak -laurel oak -northern red oak -southern red oak -southern live oak -canyon oak -coast live oak -chinquapin oak -basket oak -swamp chestnut oak -bur oak -Oregon white oak -common oak -tamarind -catalpa -carob -California sycamore -American sycamore -London plane -lightwood -black mangrove -wild raspberry -black raspberry -bluebonnet -Texas bluebonnet -thistle -cat's-ear -corn cockle -yellow rocket -fireweed -stinging nettle -horseweed -stemless carline thistle -musk thistle -cotton thistle -plume thistle -field thistle -bull thistle -Canada thistle -hippeastrum -narcissus -iridaceous plant -fritillary -liliaceous plant -star-of-Bethlehem -daffodil -jonquil -jonquil -iris -blue-eyed grass -blackberry-lily -dwarf iris -dwarf iris -beardless iris -bearded iris -Japanese iris -German iris -snake's head fritillary -crown imperial -dogtooth violet -lily -African lily -grape hyacinth -common camas -false lily of the valley -common hyacinth -camas -clintonia -lemon lily -squaw grass -scilla -tulip -alliaceous plant -fawn lily -glacier lily -yellow adder's tongue -Turk's-cap -Turk's-cap -tiger lily -tiger lily -mountain lily -Easter lily -tassel hyacinth -common grape hyacinth -Tulipa gesneriana -Darwin tulip -garlic chive -wild garlic -Hottentot fig -livingstone daisy -cactus -nopal -nopal -barrel cactus -night-blooming cereus -night-blooming cereus -night-blooming cereus -cholla -echinocactus -mammillaria -feather ball -prickly pear -crab cactus -saguaro -Christmas cactus -hedgehog cactus -golden barrel cactus -flamingo flower -anthurium -gloxinia -baneberry -red baneberry -poison ivy -gloriosa -monkshood -American holly -oleander -poison ash -herbivore -big game -thoroughbred -creepy-crawly -young -domestic animal -pet -critter -larva -feeder -male -pest -omnivore -predator -chordate -work animal -invertebrate -female -marine animal -scavenger -hexapod -mate -prey -carnivore -young mammal -orphan -spat -young bird -hatchling -foal -kitten -calf -pup -calf -lamb -baby -puppy -suckling -cub -piglet -nestling -fledgling -head -stray -feeder -tadpole -caterpillar -nymph -doodlebug -tobacco hornworm -cabbageworm -tomato hornworm -silkworm -cutworm -woolly bear -measuring worm -armyworm -silkworm -tussock caterpillar -tent caterpillar -colt -ridgeling -sire -sea squirt -ascidian -vertebrate -aquatic vertebrate -amphibian -mammal -baby -fetus -quadruped -reptile -bird -fish -lamprey -teleost fish -food fish -elasmobranch -ganoid -trumpetfish -pipefish -seahorse -spiny-finned fish -soft-finned fish -needlefish -beluga -gar -bowfin -paddlefish -sturgeon -percoid fish -dragonet -frogfish -barracuda -soldierfish -goosefish -scorpaenoid -flatfish -great barracuda -plectognath -snook -perch -perch -dolphinfish -freshwater bass -scombroid -bass -parrotfish -sea bream -grunt -flathead -bluefish -carangid fish -damselfish -butterfly fish -mudskipper -pike -goby -tautog -sunfish -snapper -snapper -sciaenid fish -wolffish -cichlid -wrasse -yellow perch -European perch -walleye -mackerel -skipjack -black marlin -sailfish -marlin -bonito -tuna -wahoo -Spanish mackerel -Spanish mackerel -cero -king mackerel -bluefin -yellowfin -jack -permit -scad -crevalle jack -kingfish -amberjack -yellowtail -horse mackerel -horse mackerel -clown anemone fish -sergeant major -anemone fish -chaetodon -rock beauty -angelfish -northern pike -pickerel -muskellunge -black bass -pumpkinseed -freshwater bream -bluegill -crappie -smallmouth -largemouth -sea trout -croaker -kingfish -mulloway -red drum -white croaker -white croaker -scorpaenid -flathead -scorpionfish -lionfish -stonefish -rockfish -plaice -flounder -halibut -cowfish -boxfish -ocean sunfish -puffer -spiny puffer -triggerfish -balloonfish -porcupinefish -tarpon -bonefish -pollack -anchovy -lizardfish -catfish -cypriniform fish -eel -clupeid fish -European catfish -flathead catfish -channel catfish -blue catfish -characin -electric eel -cyprinodont -loach -cyprinid -topminnow -piranha -cardinal tetra -tetra -killifish -striped killifish -guppy -swordtail -carp -minnow -tench -crucian carp -goldfish -gudgeon -platy -mosquitofish -conger -tuna -moray -sardine -pilchard -sea bass -trout -salmon -barracouta -grouper -striped bass -jewfish -hind -sea trout -brook trout -rainbow trout -brown trout -lake trout -chinook -Atlantic salmon -redfish -coho -landlocked salmon -shark -ray -sand tiger -angel shark -nurse shark -requiem shark -smooth dogfish -hammerhead -mackerel shark -whale shark -bull shark -blue shark -sandbar shark -blacktip shark -whitetip shark -tiger shark -lemon shark -whitetip shark -smoothhound -great white shark -mako -porbeagle -stingray -electric ray -spotted eagle ray -Atlantic manta -manta -skate -eagle ray -salamander -frog -spotted salamander -newt -European fire salamander -slender salamander -ambystomid -eft -common newt -red eft -spotted salamander -axolotl -tiger salamander -true toad -true frog -tailed frog -crapaud -tree toad -tree frog -natterjack -Eurasian green toad -bufo -American toad -agua -western toad -European toad -grass frog -wood-frog -bullfrog -leopard frog -pickerel frog -green frog -spring peeper -chorus frog -placental -tusker -monotreme -marsupial -female mammal -aardvark -livestock -insectivore -hyrax -doe -edentate -stag -bull -primate -carnivore -bat -aquatic mammal -lagomorph -rock hyrax -yearling -rodent -cow -pachyderm -buck -pangolin -ungulate -shrew -hedgehog -peba -sloth -armadillo -anteater -two-toed sloth -two-toed sloth -three-toed sloth -ant bear -tamandua -simian -tarsier -homo -ape -lemur -monkey -Homo sapiens sapiens -Homo sapiens -Neandertal man -anthropoid ape -lesser ape -great ape -siamang -gibbon -chimpanzee -orangutan -gorilla -pygmy chimpanzee -central chimpanzee -western lowland gorilla -mountain gorilla -silverback -indri -Madagascar cat -potto -galago -slow loris -Old World monkey -New World monkey -baboon -vervet -proboscis monkey -colobus -patas -macaque -guenon -langur -chacma -mandrill -Barbary ape -rhesus -spider monkey -marmoset -squirrel monkey -titi -capuchin -howler monkey -tamarin -pygmy marmoset -procyonid -feline -viverrine -canine -musteline mammal -bear -coati -common raccoon -lesser panda -raccoon -kinkajou -giant panda -big cat -cat -jaguar -tiger -leopard -cheetah -lion -snow leopard -tigress -Bengal tiger -tiger cub -lioness -lion cub -domestic cat -wildcat -tabby -tiger cat -tabby -tortoiseshell -Manx -Egyptian cat -Abyssinian -kitty -Angora -Persian cat -Burmese cat -Siamese cat -alley cat -tom -mouser -margay -ocelot -lynx -cougar -European wildcat -serval -manul -sand cat -common lynx -bobcat -caracal -Canada lynx -meerkat -genet -mongoose -slender-tailed meerkat -suricate -dog -wild dog -wolf -bitch -jackal -fox -hyena -pug -corgi -Great Pyrenees -Brabancon griffon -poodle -cur -Leonberg -griffon -dalmatian -pooch -spitz -toy dog -hunting dog -working dog -basenji -Mexican hairless -Newfoundland -lapdog -Cardigan -Pembroke -standard poodle -toy poodle -miniature poodle -Pomeranian -keeshond -chow -Samoyed -toy spaniel -Shih-Tzu -toy terrier -Maltese dog -Japanese spaniel -Chihuahua -Pekinese -King Charles spaniel -Blenheim spaniel -papillon -terrier -Rhodesian ridgeback -sausage dog -sporting dog -hound -dachshund -Dandie Dinmont -schnauzer -wirehair -Airedale -West Highland white terrier -Kerry blue terrier -Norfolk terrier -Border terrier -Yorkshire terrier -wire-haired fox terrier -Bedlington terrier -Tibetan terrier -silky terrier -Lhasa -Scotch terrier -cairn -Boston bull -fox terrier -Australian terrier -bullterrier -Norwich terrier -Irish terrier -rat terrier -soft-coated wheaten terrier -standard schnauzer -giant schnauzer -miniature schnauzer -Lakeland terrier -Welsh terrier -Sealyham terrier -Staffordshire bullterrier -American Staffordshire terrier -Manchester terrier -toy Manchester -water dog -pointer -bird dog -setter -spaniel -retriever -vizsla -German short-haired pointer -Gordon setter -English setter -Irish setter -cocker spaniel -water spaniel -springer spaniel -Brittany spaniel -clumber -Sussex spaniel -Irish water spaniel -English springer -Welsh springer spaniel -flat-coated retriever -golden retriever -curly-coated retriever -Chesapeake Bay retriever -Labrador retriever -otterhound -bloodhound -wolfhound -basset -Ibizan hound -Norwegian elkhound -coonhound -Saluki -Afghan hound -black-and-tan coonhound -bluetick -Scottish deerhound -redbone -foxhound -beagle -Weimaraner -greyhound -borzoi -Irish wolfhound -English foxhound -Walker hound -whippet -Italian greyhound -Great Dane -watchdog -Eskimo dog -Tibetan mastiff -sled dog -Saint Bernard -French bulldog -police dog -bulldog -Sennenhunde -bull mastiff -shepherd dog -boxer -mastiff -kuvasz -housedog -pinscher -schipperke -Doberman -miniature pinscher -affenpinscher -Siberian husky -malamute -Greater Swiss Mountain dog -EntleBucher -Bernese mountain dog -Appenzeller -Belgian sheepdog -kelpie -Shetland sheepdog -komondor -Border collie -collie -Rottweiler -Old English sheepdog -German shepherd -briard -Bouvier des Flandres -groenendael -malinois -African hunting dog -dingo -dhole -coyote -wolf pup -red wolf -white wolf -timber wolf -red fox -red fox -kit fox -Arctic fox -grey fox -kit fox -spotted hyena -striped hyena -mink -black-footed ferret -striped skunk -pine marten -sea otter -otter -weasel -polecat -glutton -skunk -badger -ferret -river otter -Eurasian otter -ice bear -American black bear -bear cub -Asiatic black bear -brown bear -sloth bear -grizzly -Alaskan brown bear -carnivorous bat -flying fox -fruit bat -brown bat -vespertilian bat -pallid bat -pipistrelle -cetacean -sea cow -pinniped mammal -whale -toothed whale -baleen whale -dolphin -bottle-nosed whale -porpoise -common dolphin -bottlenose dolphin -pilot whale -killer whale -white whale -Pacific bottlenose dolphin -Atlantic bottlenose dolphin -grey whale -rorqual -blue whale -lesser rorqual -finback -manatee -dugong -walrus -seal -earless seal -eared seal -elephant seal -harbor seal -harp seal -fur seal -fur seal -sea lion -California sea lion -Australian sea lion -Steller sea lion -pika -leporid -rabbit -hare -eastern cottontail -wood rabbit -bunny -European rabbit -lapin -Angora -rabbit ears -snowshoe hare -European hare -jackrabbit -chinchilla -rat -capybara -golden hamster -water vole -porcupine -coypu -vole -beaver -hamster -prairie dog -squirrel -marmot -blacktail prairie dog -cavy -gerbil -mouse -muskrat -gopher -brown rat -black rat -chipmunk -ground squirrel -eastern chipmunk -tree squirrel -rock squirrel -mantled ground squirrel -eastern grey squirrel -red squirrel -black squirrel -American red squirrel -fox squirrel -hoary marmot -groundhog -aperea -guinea pig -field mouse -house mouse -elephant -African elephant -Indian elephant -even-toed ungulate -odd-toed ungulate -ruminant -camel -swine -llama -vicuna -collared peccary -hippopotamus -peccary -pronghorn -deer -bovid -giraffe -okapi -woodland caribou -caribou -fallow deer -elk -hart -mule deer -fawn -red deer -muntjac -Virginia deer -wapiti -Japanese deer -roe deer -black-tailed deer -wild sheep -bison -musk ox -Old World buffalo -bovine -antelope -sheep -goat antelope -goat -aoudad -mountain sheep -Dall sheep -bighorn -mouflon -American bison -wisent -carabao -water buffalo -Cape buffalo -Brahman -ox -zebu -cattle -yak -gaur -beef -ox -bull -bullock -heifer -cow -dairy cattle -longhorn -Charolais -Hereford -Durham -Aberdeen Angus -Galloway -Friesian -Brown Swiss -kudu -addax -blackbuck -waterbuck -eland -steenbok -dik-dik -gnu -harnessed antelope -gerenuk -sassaby -impala -greater kudu -sable antelope -hartebeest -bongo -gemsbok -oryx -gazelle -nyala -bushbuck -Thomson's gazelle -springbok antelope -domestic sheep -black sheep -ewe -wether -ram -mountain goat -chamois -takin -nanny -kid -ibex -Angora -domestic goat -billy -wild goat -Bactrian camel -Arabian camel -wild boar -warthog -boar -hog -guanaco -alpaca -rhinoceros -tapir -equine -Malayan tapir -Indian rhinoceros -black rhinoceros -white rhinoceros -horse -zebra -ass -bay -broodmare -racehorse -palomino -wild horse -pinto -hack -roan -male horse -post horse -liver chestnut -tarpan -saddle horse -chestnut -harness horse -polo pony -workhorse -mare -pony -pony -sorrel -yearling -thoroughbred -trotting horse -stud -stallion -gelding -Tennessee walker -hack -cavalry horse -grey -Morgan -buckskin -dun -Arabian -quarter horse -cob -hackney -plow horse -farm horse -draft horse -carthorse -Percheron -Clydesdale -shire -cayuse -bronco -mustang -Welsh pony -Shetland pony -Exmoor -common zebra -mountain zebra -grevy's zebra -jennet -burro -domestic ass -echidna -platypus -echidna -kangaroo -koala -wombat -common opossum -opossum -dasyurid marsupial -phalanger -giant kangaroo -wallaby -rock wallaby -tree wallaby -Tasmanian devil -numbat -chelonian -diapsid -turtle -Western box turtle -box turtle -common snapping turtle -terrapin -soft-shelled turtle -painted turtle -sea turtle -snapping turtle -slider -tortoise -mud turtle -cooter -hawksbill turtle -loggerhead -green turtle -leatherback turtle -ridley -Pacific ridley -Atlantic ridley -giant tortoise -gopher tortoise -European tortoise -desert tortoise -crocodilian reptile -snake -tuatara -lizard -dinosaur -alligator -crocodile -American alligator -caiman -Asian crocodile -African crocodile -blind snake -viper -sea snake -elapid -constrictor -colubrid snake -horned viper -asp -adder -puff adder -pit viper -water moccasin -copperhead -rattlesnake -ground rattler -massasauga -diamondback -Mojave rattlesnake -timber rattlesnake -prairie rattlesnake -Western diamondback -sidewinder -rock rattlesnake -speckled rattlesnake -cobra -green mamba -taipan -copperhead -mamba -coral snake -coral snake -Indian cobra -hamadryad -boa -python -rosy boa -boa constrictor -anaconda -reticulated python -carpet snake -rock python -blacksnake -garter snake -bull snake -hognose snake -rat snake -whip-snake -water snake -green snake -racer -green snake -thunder snake -ringneck snake -vine snake -king snake -night snake -ribbon snake -common garter snake -pine snake -gopher snake -corn snake -black rat snake -grass snake -common water snake -water moccasin -smooth green snake -rough green snake -milk snake -common kingsnake -banded gecko -chameleon -monitor -skink -Gila monster -Komodo dragon -whiptail -iguanid -agamid -gecko -African chameleon -lacertid lizard -anguid lizard -horned lizard -tree lizard -chuckwalla -American chameleon -basilisk -side-blotched lizard -spiny lizard -collared lizard -common iguana -marine iguana -leopard lizard -western fence lizard -fence lizard -agama -mountain devil -frilled lizard -green lizard -sand lizard -blindworm -alligator lizard -ornithischian -tyrannosaur -stegosaur -triceratops -bird of passage -aquatic bird -passerine -cock -hummingbird -piciform bird -coraciiform bird -quetzal -bird of prey -caprimulgiform bird -cuculiform bird -gamecock -ratite -gallinaceous bird -trogon -parrot -carinate -dickeybird -hen -wading bird -swan -gallinule -seabird -waterfowl -heron -crested cariama -trumpeter -bustard -ibis -stork -whooping crane -crane -limpkin -chunga -flamingo -rail -spoonbill -shoebill -shorebird -great blue heron -night heron -little blue heron -boatbill -great white heron -egret -bittern -black-crowned night heron -yellow-crowned night heron -great white heron -little egret -snowy egret -American egret -cattle egret -least bittern -American bittern -wood ibis -sacred ibis -marabou -black stork -white stork -saddlebill -jabiru -policeman bird -wood ibis -notornis -weka -spotted crake -crake -coot -Old World coot -American coot -common spoonbill -roseate spoonbill -plover -godwit -Hudsonian godwit -stilt -stone curlew -oystercatcher -stilt -American woodcock -snipe -woodcock -avocet -sandpiper -European curlew -pratincole -curlew -phalarope -golden plover -ruddy turnstone -killdeer -lapwing -turnstone -piping plover -black-necked stilt -black-winged stilt -whole snipe -Wilson's snipe -great snipe -dowitcher -tattler -greenshank -willet -curlew sandpiper -sanderling -redshank -spotted sandpiper -knot -red-backed sandpiper -upland sandpiper -least sandpiper -pectoral sandpiper -ruff -European sandpiper -yellowlegs -greater yellowlegs -lesser yellowlegs -red phalarope -Wilson's phalarope -pen -cygnet -trumpeter -coscoroba -mute swan -cob -whooper -black swan -tundra swan -whistling swan -Bewick's swan -purple gallinule -European gallinule -moorhen -coastal diving bird -pelagic bird -grebe -auk -loon -pelecaniform seabird -sphenisciform seabird -puffin -larid -jaeger -skimmer -sea swallow -gull -tern -ivory gull -mew -laughing gull -black-backed gull -kittiwake -herring gull -skua -parasitic jaeger -petrel -albatross -wandering albatross -shearwater -storm petrel -fulmar -red-necked grebe -great crested grebe -pied-billed grebe -black-necked grebe -dabchick -razorbill -guillemot -auklet -murre -black guillemot -common murre -pigeon guillemot -frigate bird -cormorant -snakebird -pelican -gannet -water turkey -tropic bird -white pelican -Old world white pelican -solan -booby -penguin -emperor penguin -jackass penguin -king penguin -rock hopper -Adelie -horned puffin -tufted puffin -Atlantic puffin -anseriform bird -goose -duck -blue goose -barnacle goose -snow goose -Chinese goose -common brant goose -brant -gosling -greylag -gander -honker -diving duck -scaup -shelduck -wood drake -bufflehead -black duck -mandarin duck -American widgeon -pintail -mallard -sheldrake -teal -Barrow's goldeneye -quack-quack -wild duck -ruddy duck -wood duck -drake -muscovy duck -shoveler -dabbling duck -widgeon -sea duck -redhead -pochard -goldeneye -canvasback -duckling -greater scaup -lesser scaup -garganey -greenwing -bluewing -eider -old squaw -merganser -scoter -common scoter -American merganser -red-breasted merganser -hooded merganser -smew -goosander -wren -broadbill -tyrannid -oscine -scrubbird -sparrow -marsh wren -rock wren -winter wren -cactus wren -house wren -Carolina wren -ovenbird -manakin -pitta -woodhewer -New World flycatcher -kingbird -phoebe -pewee -vermillion flycatcher -western wood pewee -scissortail -grey kingbird -eastern kingbird -Arkansas kingbird -warbler -brown creeper -corvine bird -starling -pipit -titmouse -fairy bluebird -thrush -hedge sparrow -wood swallow -shrike -lark -golden oriole -Old World flycatcher -thrasher -vireo -tanager -honeycreeper -finch -bowerbird -water ouzel -accentor -mockingbird -brown thrasher -skylark -catbird -satin bowerbird -waxwing -red-eyed vireo -New World oriole -Old World oriole -babbler -swallow -creeper -songbird -Australian magpie -wagtail -meadow pipit -spotted flycatcher -weaver -nuthatch -greater whitethroat -New World warbler -kinglet -Old World warbler -gnatcatcher -lesser whitethroat -yellowthroat -common yellowthroat -ovenbird -parula warbler -Blackburn -yellow warbler -American redstart -yellow-breasted chat -Audubon's warbler -Wilson's warbler -Cape May warbler -myrtle warbler -goldcrest -ruby-crowned kinglet -tailorbird -sedge warbler -wren warbler -blackcap -rook -Clark's nutcracker -jackdaw -European magpie -jay -raven -crow -magpie -American crow -blue jay -Canada jay -common starling -hill myna -myna -bushtit -chickadee -blue tit -tufted titmouse -Carolina chickadee -black-capped chickadee -robin -robin -hermit thrush -redwing -fieldfare -song thrush -nightingale -blackbird -missel thrush -ring ouzel -wheatear -bluebird -thrush nightingale -bluethroat -redstart -bulbul -Old World chat -wood thrush -stonechat -whinchat -butcherbird -loggerhead shrike -bush shrike -northern shrike -European shrike -western tanager -summer tanager -scarlet tanager -serin -bullfinch -grosbeak -goldfinch -New World sparrow -crossbill -bunting -linnet -cardinal -siskin -common canary -towhee -purple finch -honeycreeper -brambling -New World goldfinch -pine siskin -redpoll -dark-eyed junco -house finch -chaffinch -canary -redpoll -junco -pine grosbeak -evening grosbeak -hawfinch -song sparrow -white-throated sparrow -tree sparrow -field sparrow -white-crowned sparrow -swamp sparrow -chipping sparrow -indigo bunting -reed bunting -snow bunting -ortolan -yellowhammer -cedar waxwing -Bohemian waxwing -bobolink -meadowlark -northern oriole -orchard oriole -New World blackbird -eastern meadowlark -western meadowlark -Bullock's oriole -Baltimore oriole -purple grackle -cowbird -grackle -red-winged blackbird -white-bellied swallow -tree swallow -martin -barn swallow -cliff swallow -house martin -bank martin -butcherbird -currawong -Java sparrow -zebra finch -red-breasted nuthatch -European nuthatch -white-breasted nuthatch -English sparrow -tree sparrow -thornbill -Archilochus colubris -jacamar -woodpecker -barbet -toucanet -toucan -flicker -downy woodpecker -green woodpecker -sapsucker -wryneck -redheaded woodpecker -yellow-shafted flicker -red-breasted sapsucker -yellow-bellied sapsucker -kingfisher -roller -motmot -Euopean hoopoe -hornbill -European roller -hoopoe -bee eater -kookaburra -Eurasian kingfisher -belted kingfisher -vulture -hawk -secretary bird -eagle -owl -Old World vulture -New World vulture -Egyptian vulture -bearded vulture -black vulture -griffon vulture -black vulture -buzzard -king vulture -condor -Andean condor -California condor -harrier -goshawk -red-shouldered hawk -honey buzzard -falcon -harrier eagle -Cooper's hawk -osprey -kite -rough-legged hawk -buzzard -sparrow hawk -marsh harrier -marsh hawk -carancha -gyrfalcon -peregrine -caracara -hobby -pigeon hawk -kestrel -sparrow hawk -white-tailed kite -swallow-tailed kite -black kite -eaglet -golden eagle -sea eagle -bald eagle -harpy -tawny eagle -fishing eagle -ern -tawny owl -owlet -spotted owl -screech owl -horned owl -screech owl -little owl -barn owl -scops owl -Old World scops owl -hawk owl -great horned owl -barred owl -long-eared owl -great grey owl -frogmouth -goatsucker -touraco -cuckoo -coucal -roadrunner -rhea -rhea -ostrich -emu -cassowary -domestic fowl -columbiform bird -brush turkey -red jungle fowl -jungle fowl -game bird -turkey cock -bantam -turkey -guinea fowl -chicken -cockerel -cock -Rhode Island red -chick -Orpington -hen -pullet -brood hen -sandgrouse -pigeon -domestic pigeon -dove -wood pigeon -rock dove -homing pigeon -roller -Streptopelia turtur -turtledove -Australian turtledove -mourning dove -phasianid -tinamou -grouse -pheasant -quail -partridge -tragopan -ring-necked pheasant -golden pheasant -peafowl -peahen -blue peafowl -peacock -green peafowl -bobwhite -California quail -northern bobwhite -red-legged partridge -Hungarian partridge -spruce grouse -prairie chicken -capercaillie -ruffed grouse -sage grouse -moorhen -black grouse -ptarmigan -cockateel -parakeet -cockatoo -poll -kea -African grey -macaw -amazon -lovebird -lory -popinjay -budgerigar -ring-necked parakeet -sulphur-crested cockatoo -pink cockatoo -rainbow lorikeet -lorikeet -beast of burden -draft animal -ctenophore -worm -mollusk -echinoderm -coelenterate -arthropod -sponge -nematode -annelid -flatworm -medicinal leech -earthworm -chiton -bivalve -cephalopod -gastropod -oyster -ark shell -clam -mussel -cockle -scallop -pearl oyster -soft-shell clam -quahog -giant clam -freshwater mussel -edible mussel -zebra mussel -octopod -chambered nautilus -cuttlefish -octopus -paper nautilus -sea hare -cowrie -conch -seasnail -ormer -tiger cowrie -sea slug -slug -snail -common limpet -whelk -nerita -edible snail -brown snail -garden snail -starfish -feather star -sand dollar -sea urchin -sea cucumber -brittle star -polyp -anthozoan -Portuguese man-of-war -jellyfish -sea pen -sea anemone -coral -stony coral -gorgonian -sea fan -mushroom coral -brain coral -centipede -crustacean -trilobite -millipede -arachnid -horseshoe crab -instar -insect -house centipede -daphnia -brachyuran -mantis shrimp -malacostracan crustacean -decapod crustacean -isopod -amphipod -pill bug -woodlouse -lobster -shrimp -hermit crab -prawn -crab -crayfish -Norway lobster -spiny lobster -American lobster -king crab -blue crab -rock crab -Dungeness crab -fiddler crab -European spider crab -scorpion -harvestman -acarine -spider -tick -mite -wood tick -orb-weaving spider -European wolf spider -tarantula -wolf spider -garden spider -black widow -black and gold garden spider -barn spider -orthopterous insect -hemipterous insect -neuropteron -dictyopterous insect -collembolan -mayfly -homopterous insect -dipterous insect -earwig -common European earwig -phasmid -pollinator -bug -pupa -walking stick -scorpion fly -beetle -heteropterous insect -stonefly -hymenopterous insect -lepidopterous insect -chrysalis -odonate -silverfish -worker bee -grasshopper -cricket -katydid -locust -true bug -bedbug -dobson -green lacewing -lacewing -mantis -praying mantis -cockroach -American cockroach -German cockroach -oriental cockroach -plant louse -cicada -meadow spittlebug -seventeen-year locust -mealybug -leafhopper -aphid -mosquito -crane fly -midge -fruit fly -fly -horse tick -robber fly -Asian tiger mosquito -common mosquito -bee fly -horsefly -flesh fly -blowfly -housefly -greenbottle -bluebottle -Colorado potato beetle -firefly -ground beetle -sawyer -ladybug -lamellicorn beetle -rove beetle -Asian longhorned beetle -leaf beetle -elaterid beetle -click beetle -tiger beetle -weevil -long-horned beetle -Hippodamia convergens -vedalia -scarabaeid beetle -stag beetle -rose chafer -June beetle -Japanese beetle -rhinoceros beetle -dung beetle -scarab -cockchafer -water strider -wheel bug -wasp -ichneumon fly -ant -bee -cicada killer -digger wasp -vespid -hornet -paper wasp -common wasp -giant hornet -yellow jacket -carpenter ant -fire ant -wood ant -carpenter bee -honeybee -mason bee -andrena -leaf-cutting bee -bumblebee -Africanized bee -black bee -butterfly -moth -lycaenid -nymphalid -sulphur butterfly -ringlet -monarch -cabbage butterfly -blue -hairstreak -copper -tortoiseshell -fritillary -admiral -banded purple -peacock -red-spotted purple -painted beauty -mourning cloak -viceroy -red admiral -white admiral -comma -small white -large white -cinnabar -saturniid -noctuid moth -hawkmoth -tea tortrix -geometrid -tineid -atlas moth -emperor -polyphemus moth -cecropia -luna moth -carpet moth -clothes moth -dragonfly -damselfly -hen -filly -dam -herpes -protoctist -herpes simplex -herpes zoster -cytomegalovirus -herpes varicella zoster -alga -protozoan -seagrass -pond scum -green algae -plasmodium -ameba -ciliate -paramecium -sphagnum -hepatica -liverwort -peer -birth -adult -juvenile -countrywoman -businessperson -native -celebrant -native -Filipino -male -Gemini -onlooker -queen -referee -commoner -expert -newcomer -face -demonstrator -orphan -Black woman -contestant -bullfighter -lowerclassman -candidate -friend -life -anomaly -actor -thrower -creature -child -sheep -scuba diver -dancer -garbage man -entertainer -lover -unfortunate -anti -defender -sphinx -Indian -patient -Slav -White -brick -recipient -religious person -rescuer -Latin -money handler -rich person -domestic partner -creator -consumer -worker -groom -boy scout -inhabitant -African -fan -eager beaver -leader -schoolmate -man -philatelist -advocate -eccentric -bad person -transvestite -citizen -communicator -nonworker -parrot -intellectual -nonsmoker -student -chameleon -combatant -platinum blond -appointee -unpleasant person -politician -ruler -ancient -spectator -right-hander -traveler -scientist -picker -female -acquaintance -Black -relative -beard -redhead -sleeper -computer user -associate -participant -member -raiser -groom -bride -commissioner -director -tribesman -board member -important person -professional -oldster -celebrity -very important person -serjeant-at-law -educator -health professional -teacher -reading teacher -schoolmaster -nurse -medical practitioner -pharmacist -head nurse -probationer -doctor -surgeon -specialist -house physician -cardiologist -radiologist -schoolchild -child -bairn -orphan -entrepreneur -baron -agent -merchant -certified public accountant -syndic -insurance broker -fishmonger -vintner -peddler -seller -male child -mother's boy -son -man -cub -farm boy -bat boy -Herr -hunk -Peter Pan -patriarch -adonis -young buck -stud -guy -patriarch -sleuth -archer -authority -military attache -therapist -technician -black belt -high priest -critic -taster -panelist -physical therapist -osteopath -player -athlete -rival -billiard player -medalist -seeded player -chess master -pool player -football player -tennis player -ball hawk -vaulter -runner -skater -acrobat -climber -diver -alpinist -soccer player -winger -tennis pro -forward -sport -basketball player -miler -ballplayer -gymnast -back -lineman -halfback -quarterback -tailback -skateboarder -speedskater -circus acrobat -aerialist -fielder -designated hitter -base runner -minor leaguer -first baseman -outfielder -right fielder -infielder -semifinalist -foe -matador -picador -banderillero -buddy -mate -flatmate -pitcher -closer -right-handed pitcher -folk dancer -square dancer -morris dancer -compere -master of ceremonies -caricaturist -performer -fire-eater -executant -dancer -juggler -puppeteer -actor -clown -musician -dancing-master -ballet dancer -understudy -starlet -tenor saxophonist -percussionist -guitarist -keyboardist -trumpeter -sitar player -singer -oboist -cellist -violist -flutist -organist -rock star -drummer -songster -bass -fiance -darling -fancier -soul mate -sweetheart -kisser -amputee -homeless -casualty -guard -fireman -zoo keeper -lawman -military policeman -attorney general -policeman -bobby -Mountie -detective -motorcycle cop -trooper -traffic cop -Kiliwa -Biloxi -Chickasaw -Kickapoo -Arab -white man -Omani -Bedouin -Yemeni -protegee -heiress -swami -Buddhist -Muslim -novitiate -religious -Muslimah -Sufi -mother -monk -Sister -treasurer -ratepayer -state treasurer -bursar -cobbler -artist -choreographer -farmer -musician -stylist -sculptor -press photographer -songwriter -arranger -beekeeper -breeder -agriculturist -drinker -policyholder -drinker -concert-goer -drunkard -beer drinker -maid -employee -assistant -gondolier -skilled worker -skidder -boatman -waiter -bartender -staff member -salesperson -workman -settler -breadwinner -waitress -salesman -gardener -laborer -mill-hand -hired hand -coal miner -horse wrangler -goat herder -farmhand -attendant -cog -model -escort -caddie -companion -lifeguard -steward -color guard -honor guard -cover girl -artist's model -electrician -official -falconer -balloonist -craftsman -pilot -blacksmith -trawler -mender -baker -serviceman -painter -diplomat -judge -incumbent -appointee -presbyter -ambassador -high commissioner -plenipotentiary -glassblower -carpenter -coiffeur -machinist -wright -hairdresser -fighter pilot -copilot -artilleryman -Navy SEAL -military officer -enlisted person -noncommissioned officer -commanding officer -naval commander -adjutant general -commander in chief -commissioned officer -army officer -adjutant -inspector general -sergeant -first sergeant -staff sergeant -commissioned military officer -commissioned naval officer -line officer -major -lieutenant -first lieutenant -marshal -captain -general -lieutenant colonel -lieutenant commander -rear admiral -soldier -enlisted man -tanker -reservist -Unknown Soldier -private -recruit -yard bird -villager -Tahitian -American -Asian -American -Polynesian -European -New Zealander -North Carolinian -Minnesotan -Nebraskan -Floridian -Afghan -Tibetan -Mongol -Papuan -Indian -Jordanian -Japanese -Malay -Korean -Timorese -Bornean -Lao -Iraqi -Gujarati -Punjabi -West Indian -Latin American -North American -South American -Bahamian -Barbadian -Haitian -Central American -Canadian -Mexican -Nicaraguan -Mexican-American -Bolivian -Guyanese -Albanian -Byelorussian -Monegasque -Frank -Scandinavian -Laconian -Netherlander -Slovene -Sabine -Bulgarian -Romanian -Lithuanian -Englishwoman -Britisher -Yugoslav -Dubliner -Parisian -Eritrean -Tanzanian -Zulu -Black African -Cameroonian -Sudanese -Senegalese -Kenyan -Togolese -Ugandan -Liberian -Herero -Zimbabwean -Nigerian -Gambian -Tuareg -Guinean -Ethiopian -South African -mayor -politician -trainer -employer -Speaker -lawgiver -cheerleader -head -aristocrat -spiritual leader -instigator -mistress -boss -demagogue -Labourite -animal trainer -pitching coach -legislator -deputy -senator -administrator -department head -secretary -manageress -executive -hotelier -chief executive officer -Treasury -minister -Secretary of State -Secretary of the Interior -duchess -viscount -clergyman -lama -rabbi -Dalai Lama -officiant -priest -cleric -vicar -Father -bishop -diocesan -cardinal -metropolitan -federalist -supporter -ambassador -protectionist -loyalist -cheerleader -adulteress -wrongdoer -hypocrite -abettor -skinhead -biographer -disk jockey -speaker -representative -reporter -orator -interlocutor -organ-grinder -head of state -alderman -resident commissioner -President of the United States -president -television reporter -anchor -retiree -sunbather -camper -scholar -exponent -casuist -futurist -licentiate -reader -brawler -boxer -wrestler -flyweight -middleweight -sparring partner -prizefighter -light heavyweight -featherweight -lightweight -heavyweight -flyweight -sumo wrestler -bantamweight -egotist -fire-eater -upstart -bragger -exhibitionist -sovereign -Pharaoh -Cheops -sheik -rider -motorcyclist -musher -astronaut -pedestrian -mover -commuter -pilgrim -skin-diver -settler -tourist -runner -gringo -unicyclist -hang glider -jockey -horseman -saunterer -marcher -hitter -scrambler -psycholinguist -social scientist -lumper -sociologist -political scientist -economist -econometrician -microeconomist -female child -woman -mother's daughter -girl wonder -Boy Scout -Cub Scout -enchantress -lady -old woman -nymph -donna -bridesmaid -smasher -primigravida -signorina -girl -beldam -heroine -widow -call girl -baggage -wife -gal -baby -lass -maid -first lady -old lady -crown princess -father-in-law -cousin -kinswoman -ancestor -kinsman -second cousin -in-law -kin -twin -offspring -sibling -niece -aunt -great-niece -sister -great-aunt -little sister -big sister -parent -forefather -forebear -patriarch -mater -father -mother -dad -old man -great grandparent -grandparent -great grandmother -nan -grandma -grandfather -great-nephew -little brother -grandchild -firstborn -child -successor -granddaughter -great grandchild -great grandson -great granddaughter -baby -godson -premature baby -neonate -shiitake -common stinkhorn -earthball -truffle -hen-of-the-woods -gyromitra -mildew -lichen -white fungus -true slime mold -slime mold -club fungus -earthstar -coral fungus -false morel -puffball -pythium -helvella -giant puffball -Scleroderma citrinum -jelly fungus -agaric -stinkhorn -discomycete -basidiomycete -Phytophthora infestans -Jew's-ear -bolete -powdery mildew -downy mildew -reindeer moss -beard lichen -Iceland moss -lecanora -Sarcoscypha coccinea -Aleuria aurantia -gill fungus -polypore -agaric -mushroom -Polyporus squamosus -bracket fungus -Entoloma lividum -mushroom -inky cap -mushroom -oyster mushroom -deer mushroom -parasol mushroom -fairy-ring mushroom -royal agaric -blewits -honey mushroom -Pholiota squarrosa -lepiota -blushing mushroom -horse mushroom -nameko -winter mushroom -false deathcap -shaggymane -destroying angel -toadstool -chanterelle -meadow mushroom -death cap -fly agaric -morel -common morel -black morel -Boletus edulis -Boletus luridus -Boletus chrysenteron -somatic cell -histiocyte -leukocyte -lymphocyte -neutrophil -nest -tangle -radiator -plant part -rock -comet -cadaver -star -snowdrift -covering -aerie -wasp's nest -lip -tendril -plant organ -mycelium -reproductive structure -leaf -root -stalk -hypanthium -flower -fruit -pistil -rosebud -inflorescence -floret -umbel -flower cluster -panicle -olive -ear -buckthorn berry -berry -wild cherry -acorn -rowanberry -mealie -gourd -seed -hip -juniper berry -pod -corn -coffee bean -nut -buckeye -oilseed -bean -edible seed -edible nut -pine nut -macadamia nut -pistachio -hazelnut -walnut -cashew -chestnut -pecan -peanut -coconut -linseed -rapeseed -broad bean -soy -cumin -sunflower seed -pumpkin seed -legume -okra -chickpea -pea -cowpea -garden pea -lentil -dandelion green -frond -petal -cassava -chicory -tuber -spadix -branchlet -bulb -petiole -scape -cornstalk -rattan -Jerusalem artichoke -yam -squill -onion -belay -outcrop -tor -supernova -sun -shell -bracteole -shell -cassia bark -snowcap -perianth -body covering -roof -seashell -scallop shell -oyster shell -exoskeleton -cuticle -plastron -skin -hair -scapular -hairdo -forelock -encolure -facial hair -pigtail -thatch -pompadour -mustache -beard -mustachio -soup-strainer -stubble -soul patch -weather -dust storm -cloud -snow -wave diff --git a/build/darknet/x64/data/9k.tree b/build/darknet/x64/data/9k.tree deleted file mode 100644 index deb61e2a021..00000000000 --- a/build/darknet/x64/data/9k.tree +++ /dev/null @@ -1,9418 +0,0 @@ -n00002452 -1 -n00020827 -1 -n00002684 -1 -n11425580 -1 -n05220461 0 -n09225146 0 -n05538625 4 -n01900150 4 -n05225602 4 -n05418717 8 -n05302499 8 -n05578095 8 -n09475179 5 -n09376198 5 -n14877585 1 -n15046900 1 -n00019613 1 -n00021265 1 -n15067877 14 -n09436708 14 -n14915184 15 -n07555863 15 -n07850329 21 -n07849336 21 -n07705711 21 -n07622061 21 -n07594066 21 -n07854982 22 -n07852833 22 -n07852614 22 -n07854184 22 -n07852229 22 -n07851443 22 -n07705931 24 -n07707451 24 -n07752966 33 -n07760859 33 -n07747055 33 -n07754684 33 -n07768694 33 -n07764847 33 -n07768858 33 -n07739125 33 -n07746551 33 -n07753113 33 -n07763987 33 -n07748574 33 -n07751451 33 -n07762244 33 -n07750872 33 -n07742704 33 -n07765208 33 -n07763792 33 -n07767847 33 -n07766173 33 -n07751004 33 -n07760153 33 -n07758680 33 -n07753592 33 -n07751280 33 -n07769731 33 -n07763629 33 -n07755411 33 -n07754451 33 -n07753275 33 -n07764155 33 -n07765073 33 -n07762114 33 -n07762913 33 -n07753743 33 -n07765999 33 -n07765361 33 -n07752377 33 -n07757132 33 -n07769584 33 -n07751148 33 -n07761141 36 -n07761309 36 -n07749731 37 -n07747951 37 -n07749446 37 -n07747607 37 -n07749582 37 -n07750449 37 -n07749969 37 -n07750146 37 -n07748157 79 -n07748416 79 -n07748276 79 -n07748912 81 -n07748753 81 -n07749192 89 -n07749312 89 -n07739344 42 -n07739506 42 -n07742313 94 -n07740220 94 -n07740954 94 -n07740461 96 -n07740342 96 -n07745940 50 -n07767171 50 -n07744246 50 -n07744057 50 -n07744811 50 -n07744682 50 -n07745466 50 -n07743902 50 -n07746334 50 -n07746186 50 -n07743544 50 -n07743224 50 -n07755707 62 -n07756951 62 -n07755929 62 -n07757990 73 -n07757312 73 -n07757511 73 -n07734744 34 -n07719213 34 -n07768423 34 -n07735510 34 -n07718472 34 -n07710283 34 -n07713395 34 -n07708398 34 -n07710007 34 -n07718747 34 -n07708798 34 -n07723039 34 -n07715561 34 -n07709333 34 -n07730406 34 -n07730033 34 -n07733394 34 -n07713267 34 -n07722217 34 -n07817871 34 -n07736813 123 -n07719839 123 -n07712267 123 -n07730207 123 -n07710616 123 -n07710952 142 -n07711569 142 -n07711080 142 -n07713763 124 -n07713895 124 -n07733567 124 -n07715103 124 -n07715221 124 -n07715407 124 -n07714990 124 -n07735687 124 -n07735803 124 -n07714188 147 -n07714448 147 -n07714895 147 -n07714571 147 -n07714078 147 -n07720442 126 -n07734017 126 -n07713074 126 -n07734555 126 -n07720615 160 -n07721325 160 -n07720875 164 -n07721195 164 -n07721018 164 -n07721456 165 -n07722052 165 -n07721942 169 -n07721678 169 -n07734292 161 -n07734183 161 -n07724943 128 -n07725376 128 -n07726095 128 -n07725255 128 -n07729485 175 -n07726796 175 -n07727458 180 -n07727048 180 -n07727578 180 -n07727868 183 -n07728804 183 -n07728053 184 -n07728585 184 -n07728181 184 -n07729384 185 -n07729828 185 -n07725531 176 -n07725789 191 -n07725888 191 -n07715721 130 -n07717070 130 -n07716906 194 -n07716358 194 -n07716034 194 -n07717556 195 -n07717410 195 -n07720277 131 -n07736256 131 -n07723330 131 -n07719616 131 -n07736692 131 -n07733712 131 -n07732747 203 -n07730855 203 -n07731587 203 -n07731006 203 -n07723559 203 -n07724654 211 -n07724269 211 -n07724492 211 -n07722485 136 -n07723177 136 -n07722888 136 -n07639069 25 -n07679356 25 -n07682197 219 -n07680517 219 -n07695878 219 -n07685730 219 -n07682316 219 -n07684517 219 -n07680761 219 -n07681691 219 -n07684600 219 -n07684164 219 -n07686720 219 -n07680932 219 -n07687211 219 -n07681450 219 -n07683786 219 -n07695742 219 -n07682477 219 -n07686873 219 -n07684289 219 -n07683490 219 -n07682808 219 -n07690585 228 -n07684938 228 -n07690892 228 -n07685399 228 -n07693972 228 -n07690273 228 -n07691091 228 -n07687789 228 -n07685218 228 -n07694516 245 -n07694839 245 -n07694659 245 -n07690511 246 -n07690739 246 -n07690431 246 -n07688624 248 -n07688898 248 -n07689003 248 -n07690152 231 -n07693725 231 -n07690019 231 -n07692614 231 -n07691758 231 -n07691539 231 -n07691650 231 -n07693223 262 -n07693048 262 -n07691237 262 -n07687626 232 -n07687381 232 -n07687469 232 -n07871810 234 -n07684084 234 -n14580897 16 -n15062057 16 -n14698884 274 -n14696793 274 -n14765422 274 -n14844693 274 -n15019030 274 -n12167075 274 -n14974264 274 -n14858292 274 -n15075141 282 -n04033425 282 -n07556637 17 -n07566340 17 -n07560652 17 -n07881800 17 -n07938313 17 -n07800091 17 -n07570720 17 -n01464844 17 -n07556406 17 -n07840804 287 -n07802417 287 -n07925608 287 -n07844867 287 -n07569644 287 -n07568502 287 -n07809096 287 -n07843775 287 -n07755089 287 -n07882497 287 -n07573347 287 -n07923748 287 -n07572957 287 -n07731952 296 -n07804323 296 -n07804771 296 -n07803093 296 -n07803545 296 -n07732168 308 -n07732636 308 -n07804657 309 -n07804900 309 -n07809368 301 -n07841345 301 -n07827284 317 -n07827130 317 -n07822518 317 -n07827410 317 -n07816052 317 -n07812184 317 -n07810907 317 -n07858595 317 -n07811416 317 -n07824702 317 -n07818277 317 -n07819769 317 -n07920989 317 -n07822323 317 -n07815424 324 -n07814390 324 -n07826930 324 -n07814487 324 -n07814203 324 -n07583066 325 -n07822845 325 -n07767344 325 -n07823105 325 -n07828987 325 -n07582609 325 -n07825972 325 -n07823460 325 -n07823698 325 -n07822197 325 -n07856270 325 -n07767709 325 -n07829412 325 -n07829331 342 -n07829248 342 -n07857731 348 -n07857170 348 -n07838233 350 -n07836838 350 -n07826091 350 -n07830593 350 -n07840027 350 -n07832416 350 -n07832902 350 -n07835921 350 -n07835457 350 -n07831146 355 -n07831267 355 -n07834618 361 -n07834507 361 -n07595914 326 -n07858978 326 -n07859583 326 -n07860103 370 -n07860331 370 -n07860447 370 -n07816164 327 -n07818689 327 -n07821260 327 -n07820683 327 -n07816575 327 -n07817160 327 -n07817315 327 -n07819166 327 -n07817024 327 -n07818995 327 -n07816398 327 -n07820497 327 -n07932841 327 -n07820145 327 -n07819896 327 -n07816296 327 -n07821758 327 -n07933154 386 -n07935379 386 -n07935043 386 -n07847198 302 -n07844042 302 -n07848196 394 -n07847453 394 -n07847917 394 -n07847827 394 -n07678729 304 -n07860805 304 -n07860988 304 -n07883031 304 -n07623136 402 -n07861158 402 -n07627931 404 -n07628068 404 -n07565161 288 -n07565083 288 -n07561590 288 -n07561112 288 -n07560903 288 -n07562495 411 -n07564971 411 -n07938149 413 -n07938007 413 -n07884567 289 -n07924033 289 -n07919310 289 -n07891189 289 -n07922764 289 -n07929519 289 -n07921455 289 -n07933274 289 -n07927197 289 -n07925966 289 -n07891309 289 -n07936263 289 -n07883251 289 -n07914271 289 -n07911371 417 -n07901587 417 -n07891433 417 -n07891726 417 -n07886176 417 -n07886057 417 -n07907943 417 -n07921615 417 -n07886572 417 -n07902121 417 -n07886463 417 -n07912211 431 -n07911677 431 -n07914777 431 -n07930554 431 -n07930433 431 -n07930315 431 -n07915491 442 -n07915094 442 -n07913393 443 -n07916041 443 -n07914995 443 -n07916183 443 -n07914413 443 -n07917392 443 -n07917133 443 -n07915918 443 -n07930864 445 -n07931870 445 -n07932039 445 -n07930062 445 -n07906111 432 -n07907037 432 -n07902799 432 -n07904865 432 -n07905474 432 -n07902937 432 -n07904395 432 -n07905038 432 -n07902336 432 -n07905979 432 -n07903101 432 -n07904760 432 -n07903208 432 -n07904934 432 -n07906284 432 -n07902443 474 -n07903841 474 -n07903962 474 -n07903731 474 -n07903643 474 -n07907161 476 -n07906718 476 -n07907831 476 -n07907548 476 -n07907429 476 -n07906877 476 -n07906572 476 -n07893253 434 -n07892418 434 -n07893642 434 -n07899003 434 -n07896287 434 -n07896661 434 -n07893528 434 -n07896165 434 -n07900225 434 -n07893891 434 -n07900406 434 -n07895237 434 -n07898745 434 -n07896060 434 -n07899108 434 -n07892512 434 -n07897750 434 -n07892813 434 -n07894703 498 -n07894102 498 -n07894551 498 -n07900616 499 -n07900958 499 -n07900734 499 -n07900825 499 -n07901457 499 -n07898117 500 -n07895435 500 -n07899434 503 -n07899292 503 -n07894298 504 -n07895595 504 -n07894965 504 -n07897865 504 -n07895839 504 -n07895710 504 -n07898333 504 -n07897438 506 -n07895962 506 -n07896893 506 -n07899899 506 -n07895100 506 -n07898443 506 -n07899533 506 -n07894799 506 -n07897975 506 -n07899660 506 -n07894451 506 -n07910656 437 -n07909593 437 -n07911249 437 -n07910048 437 -n07908411 437 -n07910379 437 -n07908647 437 -n07886849 439 -n07887634 544 -n07887099 544 -n07889510 544 -n07887192 544 -n07887304 545 -n07888229 545 -n07887967 545 -n07889274 545 -n07887461 545 -n07888465 547 -n07890226 547 -n07890352 547 -n07889814 547 -n07890068 547 -n07890540 547 -n07888816 547 -n07924834 418 -n07924443 418 -n07924276 418 -n07920540 422 -n07920222 422 -n07920052 422 -n07920349 422 -n07919441 422 -n07731284 422 -n07919572 422 -n07920872 422 -n07921239 422 -n07934282 424 -n07933799 424 -n07929172 425 -n07927931 425 -n07928488 425 -n07928367 425 -n07927512 425 -n07928887 425 -n07928696 576 -n07928790 576 -n07936745 428 -n07935737 428 -n07936548 428 -n07801508 291 -n07805594 291 -n07800740 291 -n07801091 588 -n07802026 588 -n07801779 588 -n07801892 588 -n07557165 292 -n07560193 292 -n07651025 292 -n07560331 292 -n07557434 292 -n07556970 292 -n05399243 292 -n15089258 292 -n07560542 292 -n07573696 292 -n07613815 593 -n07643981 593 -n07596684 593 -n07600696 605 -n07597145 605 -n07597365 605 -n07599998 605 -n07596967 605 -n07620689 605 -n07642471 607 -n07643200 612 -n07642742 612 -n07643026 612 -n07642933 612 -n07643306 612 -n07606538 608 -n07599911 608 -n07607138 608 -n07608429 608 -n07598256 608 -n07606669 608 -n07607605 608 -n07601572 608 -n07609632 608 -n07605597 608 -n07607967 608 -n07609215 608 -n07841907 608 -n07606764 608 -n07605944 608 -n07601686 608 -n07605380 608 -n07605040 608 -n07601809 608 -n07605474 608 -n07842130 630 -n07842044 630 -n07600285 609 -n07600177 609 -n07842202 597 -n07579688 597 -n07580053 597 -n07588947 597 -n07842753 597 -n07583197 597 -n07879350 597 -n07880751 597 -n07868200 597 -n07863802 597 -n07875152 597 -n07824191 597 -n07878785 597 -n07865484 597 -n07866015 597 -n07868955 597 -n07861557 597 -n07580253 597 -n07877187 597 -n07866868 597 -n07880458 597 -n07648913 597 -n07580470 597 -n07866277 597 -n07591961 597 -n07868508 597 -n07871436 597 -n07864934 597 -n07874780 597 -n07879659 597 -n07878926 597 -n07937461 597 -n07842433 597 -n07862611 597 -n07863374 597 -n07866723 597 -n07867021 597 -n07867164 597 -n07726525 597 -n07624466 597 -n07842308 597 -n07877299 597 -n07880080 597 -n07862348 597 -n07873464 597 -n07869775 597 -n07879953 597 -n07625061 597 -n07843636 597 -n07696403 597 -n07580592 597 -n07655263 597 -n07868340 597 -n07619004 597 -n07879174 597 -n07867324 597 -n07843464 597 -n07877961 597 -n07873807 597 -n07867421 597 -n07654298 597 -n07878647 597 -n07611839 597 -n07842605 597 -n07871720 597 -n07869611 597 -n07876651 597 -n07880968 597 -n07875436 597 -n07806221 597 -n07841495 597 -n07823951 597 -n07712382 597 -n07591586 645 -n07590320 645 -n07587111 645 -n07592481 645 -n07590611 645 -n07591473 645 -n07590502 645 -n07591049 645 -n07592768 645 -n07585758 647 -n07588193 647 -n07586894 647 -n07588299 647 -n07584110 647 -n07587441 647 -n07587023 647 -n07586099 647 -n07588574 647 -n07584332 647 -n07586604 647 -n07586718 647 -n07585107 647 -n07585557 647 -n07585208 647 -n07584593 647 -n07585906 647 -n07584423 647 -n07587618 729 -n07587700 729 -n07588111 729 -n07704054 670 -n07704205 670 -n07871234 676 -n07870167 676 -n07863547 676 -n07700003 676 -n07619208 695 -n07619409 695 -n07874159 700 -n07874343 700 -n07874259 700 -n07874441 700 -n07874063 700 -n07867751 701 -n07867616 701 -n07808587 711 -n07807834 711 -n07806633 711 -n07807171 711 -n07807710 711 -n07807922 711 -n07808904 711 -n07806774 762 -n07807472 762 -n07841639 712 -n07841800 712 -n07695965 714 -n07712748 714 -n07712559 714 -n07697825 771 -n07697313 771 -n07696728 771 -n07696625 771 -n07698543 771 -n07698401 771 -n07865105 771 -n07696977 771 -n07698250 771 -n07698782 771 -n07697100 771 -n07696839 771 -n07697537 771 -n07712856 772 -n07712959 772 -n07579575 598 -n07579787 598 -n07609840 598 -n07581346 598 -n07611991 791 -n07613266 791 -n07611358 791 -n07612632 791 -n07612996 791 -n07613480 791 -n07611267 791 -n07612367 791 -n07611148 791 -n07611046 791 -n07617611 791 -n07612137 791 -n07616386 795 -n07631926 795 -n07615774 795 -n07616487 795 -n07614730 795 -n07614500 795 -n07614198 795 -n07616748 795 -n07616046 795 -n07617051 795 -n07615671 810 -n07615190 810 -n07614825 810 -n07615460 810 -n07617708 796 -n07618432 796 -n07582152 792 -n07734879 792 -n07581775 792 -n07582277 792 -n07730320 792 -n07581249 792 -n15089645 600 -n15089472 600 -n15093137 827 -n15093298 827 -n15090742 827 -n15091473 831 -n14919819 831 -n15091669 831 -n14810561 831 -n14973585 831 -n15091304 831 -n15091846 831 -n15092227 828 -n15090065 828 -n07576438 602 -n07577374 602 -n07575984 602 -n07574602 602 -n07574426 602 -n07593199 602 -n07576182 602 -n07574923 602 -n07574780 602 -n07575726 602 -n07575076 602 -n07578093 602 -n07576577 841 -n07577144 853 -n07576781 853 -n07574504 842 -n07577538 842 -n09335240 2 -n00027167 2 -n09334396 2 -n09283193 2 -n03892891 2 -n09287968 2 -n03059685 2 -n00003553 2 -n09300905 2 -n09452395 858 -n09260907 858 -n08630039 859 -n08630985 859 -n09386842 859 -n08593262 859 -n08620061 859 -n09379111 859 -n08649711 869 -n08658309 869 -n08568978 869 -n08512259 877 -n03823111 877 -n04170933 878 -n09433839 878 -n08578517 870 -n08640739 870 -n08574314 870 -n08552138 870 -n08645104 884 -n08505018 884 -n08659861 884 -n08659446 884 -n08673395 884 -n08583455 890 -n08598301 890 -n08651247 890 -n03120491 890 -n02802544 890 -n08614632 890 -n08674739 890 -n08569998 890 -n08494231 890 -n08677424 892 -n08616050 892 -n08518171 893 -n08573842 893 -n08521623 893 -n03368352 897 -n03417345 897 -n04454908 906 -n03902482 906 -n04610879 898 -n08579352 898 -n03963645 909 -n03417749 909 -n08524735 885 -n08537837 885 -n08551296 885 -n08628141 914 -n08633683 914 -n08539072 914 -n09249034 871 -n09263912 871 -n08583292 872 -n09443281 872 -n08547544 872 -n08664443 873 -n04602044 873 -n08580944 873 -n03581125 924 -n08517676 924 -n08598568 924 -n08584914 924 -n03899933 925 -n02776631 925 -n03322099 925 -n03935234 933 -n04052442 933 -n03159535 933 -n15102894 874 -n09242389 874 -n09382099 860 -n09282208 860 -n09392402 860 -n09393605 860 -n09445289 860 -n03030880 862 -n03946162 862 -n03485997 862 -n03882960 946 -n04322026 946 -n03474896 946 -n02764398 946 -n02907082 946 -n03948830 946 -n09205509 863 -n09472413 863 -n09443453 863 -n09309292 863 -n09366017 863 -n09366317 863 -n09376786 863 -n09348460 863 -n09246464 863 -n09433442 863 -n09454153 863 -n09409752 863 -n09403734 863 -n09331251 863 -n09437454 863 -n09238926 863 -n09283866 863 -n09217230 863 -n09305898 955 -n09288635 955 -n09308743 956 -n09308572 956 -n09194227 956 -n09289331 956 -n09468604 957 -n09344324 957 -n09335809 957 -n09435739 957 -n09215437 957 -n09259219 957 -n09217638 957 -n09304750 957 -n09206896 977 -n09405787 977 -n09233446 986 -n09290444 986 -n09457979 981 -n09245515 981 -n09376526 983 -n09415671 983 -n09448690 983 -n09230041 984 -n09398076 984 -n09453008 958 -n09303008 958 -n09359803 958 -n09302616 958 -n09409512 958 -n09399592 958 -n09199101 997 -n09230202 997 -n09283405 997 -n09326662 997 -n09193705 998 -n09218641 998 -n09472597 998 -n09421951 1000 -n09270735 1000 -n09406793 1000 -n09213434 1000 -n09256479 1011 -n09210862 1011 -n09421799 1012 -n09224725 1012 -n09396465 1001 -n09362945 1001 -n09259025 961 -n09398677 961 -n09428293 962 -n09447666 962 -n09332890 962 -n08596076 1021 -n09428628 1021 -n09361517 967 -n09265620 967 -n09303528 967 -n09436444 967 -n09274152 967 -n09213565 967 -n09269472 967 -n09206985 967 -n09228055 967 -n09466678 967 -n09415584 1031 -n09475925 1031 -n09257843 968 -n09239302 968 -n09294877 968 -n00021939 865 -n00004258 865 -n00019128 865 -n02749953 865 -n02852523 1041 -n03767112 1041 -n14977504 1041 -n03129123 1041 -n03848729 1041 -n03964744 1041 -n04362025 1041 -n04469003 1041 -n04341686 1041 -n03575240 1041 -n03873064 1041 -n03122748 1041 -n03309808 1041 -n02871147 1041 -n03364340 1041 -n14786479 1041 -n03169390 1041 -n04564698 1041 -n04339291 1041 -n00022903 1041 -n03315023 1041 -n03302121 1041 -n03076708 1041 -n04188643 1041 -n03354613 1041 -n14976871 1041 -n03670849 1041 -n02917521 1045 -n04414909 1045 -n04435180 1045 -n02725872 1045 -n04076846 1048 -n02743547 1048 -n03816849 1048 -n04007894 1048 -n03934656 1076 -n03720163 1076 -n04227144 1076 -n04260364 1076 -n03925226 1076 -n04564581 1076 -n02744844 1084 -n04042358 1084 -n03927091 1084 -n03927539 1084 -n03876519 1077 -n04485423 1077 -n03835197 1090 -n03342127 1090 -n04246271 1078 -n04321238 1078 -n04180314 1095 -n03625783 1095 -n03684611 1096 -n03514693 1096 -n03421485 1097 -n04026180 1097 -n02870526 1079 -n04599396 1079 -n06415688 1079 -n03822171 1079 -n04582205 1103 -n03727605 1103 -n03849679 1103 -n04598792 1103 -n03631922 1103 -n02933649 1109 -n03600722 1109 -n03169176 1049 -n03418618 1049 -n02727016 1049 -n03526198 1049 -n03794798 1049 -n03859608 1049 -n03968581 1116 -n03717447 1116 -n03614782 1116 -n03915900 1116 -n04431025 1116 -n03974070 1050 -n02779435 1050 -n03941231 1050 -n04399382 1050 -n03603442 1050 -n09229709 1050 -n03548402 1050 -n03944138 1050 -n04238128 1050 -n04284869 1050 -n03061211 1050 -n03219135 1050 -n09282724 1129 -n09191635 1129 -n09443641 1136 -n04186268 1136 -n03447358 1135 -n03607029 1135 -n03536348 1051 -n02857023 1051 -n04381860 1051 -n04213626 1051 -n03961939 1142 -n04394630 1142 -n03365592 1142 -n04501550 1146 -n04296562 1146 -n03159640 1146 -n04354182 1146 -n03549732 1146 -n03360300 1148 -n03892178 1148 -n02768973 1143 -n03906224 1143 -n03313333 1145 -n02990373 1145 -n02861886 1053 -n03365991 1053 -n02898711 1053 -n03109693 1053 -n13898207 1053 -n04358874 1053 -n02687821 1053 -n03135532 1053 -n03545756 1053 -n03548626 1053 -n03469175 1053 -n03688943 1053 -n02914991 1053 -n04191595 1053 -n09218315 1053 -n03074380 1053 -n02699494 1053 -n02733524 1053 -n04460130 1053 -n04471148 1053 -n03792048 1053 -n03388043 1053 -n03837869 1053 -n03321954 1053 -n02733213 1053 -n03687137 1053 -n03065424 1053 -n02839110 1053 -n03894379 1053 -n03725717 1053 -n04226464 1053 -n03071160 1053 -n03839993 1053 -n02913152 1053 -n04128413 1053 -n04008947 1053 -n03917198 1053 -n03222318 1053 -n04295881 1053 -n03241335 1053 -n02735688 1053 -n02777734 1053 -n03984381 1053 -n03216828 1053 -n03517899 1053 -n03546340 1053 -n04361095 1053 -n13897996 1053 -n03171356 1053 -n03290195 1053 -n03743902 1053 -n03297735 1053 -n04217882 1053 -n02863426 1160 -n03408054 1160 -n03463381 1161 -n03758089 1161 -n03686130 1161 -n02800497 1161 -n03379828 1162 -n03233744 1162 -n02953197 1162 -n04108822 1162 -n03865557 1162 -n04492749 1162 -n04532670 1162 -n04311004 1162 -n03122073 1162 -n03415486 1162 -n04366367 1162 -n04479939 1162 -n03956922 1172 -n03069752 1172 -n04592465 1231 -n03316406 1231 -n03212811 1231 -n03844673 1231 -n04068441 1231 -n04103094 1234 -n03387653 1234 -n04311595 1234 -n03697007 1234 -n04300358 1234 -n04032603 1242 -n02810782 1242 -n03492250 1173 -n03826186 1173 -n03547054 1173 -n04411264 1173 -n03550153 1173 -n03560430 1173 -n03254189 1173 -n03792972 1248 -n04025508 1248 -n03900979 1248 -n02769963 1248 -n03374473 1248 -n02954163 1248 -n03334291 1257 -n04549028 1257 -n03035252 1257 -n03448956 1177 -n04113765 1177 -n03975035 1177 -n04486054 1177 -n02905152 1177 -n03784896 1262 -n04104384 1262 -n02946127 1178 -n04501947 1178 -n03047052 1178 -n04206790 1178 -n03029197 1178 -n03767745 1178 -n04028581 1178 -n04220250 1178 -n04556948 1178 -n04479823 1178 -n04028764 1178 -n04312432 1178 -n03347617 1178 -n03519387 1178 -n04361260 1178 -n03098959 1178 -n02826886 1178 -n02814860 1178 -n02922292 1180 -n04251701 1180 -n04051825 1180 -n03390786 1288 -n02811936 1288 -n02699770 1188 -n04546855 1188 -n03409393 1292 -n04544325 1292 -n02755823 1292 -n03904657 1293 -n02825961 1293 -n02898369 1189 -n04326799 1189 -n02796623 1192 -n03839795 1192 -n03967942 1192 -n03659686 1192 -n03454707 1300 -n04127395 1300 -n03795580 1300 -n02788148 1300 -n02894605 1300 -n03459775 1300 -n04571566 1300 -n04047401 1300 -n03549589 1300 -n04304680 1300 -n03327234 1300 -n03160309 1300 -n03427296 1306 -n03221720 1306 -n03698815 1316 -n03985881 1316 -n04501370 1316 -n03395514 1317 -n02963821 1317 -n04153025 1317 -n03394649 1317 -n03226880 1317 -n03579538 1317 -n04239074 1317 -n04086446 1317 -n02793842 1317 -n03498662 1317 -n04329834 1317 -n04547592 1314 -n04082710 1314 -n04046974 1314 -n03000134 1314 -n03252637 1314 -n03511175 1314 -n04604644 1314 -n03930313 1314 -n04326547 1314 -n04560882 1301 -n02920369 1301 -n03262072 1302 -n03108853 1302 -n04390977 1302 -n03999160 1193 -n03542333 1193 -n04409384 1193 -n02666943 1193 -n02726681 1193 -n02763604 1193 -n03478756 1193 -n03545150 1193 -n04104500 1193 -n04081699 1193 -n03859280 1193 -n03402941 1193 -n03739518 1193 -n03542605 1193 -n03661043 1193 -n02977936 1193 -n03322570 1193 -n03953416 1193 -n04081281 1193 -n03770316 1193 -n04112654 1193 -n03839671 1193 -n03842012 1193 -n04407686 1193 -n04217546 1193 -n03449564 1193 -n03457902 1193 -n04093625 1193 -n03956157 1193 -n04018399 1193 -n02882190 1193 -n03544360 1193 -n04118635 1193 -n02734725 1193 -n04233124 1193 -n03430418 1193 -n04146050 1193 -n03007444 1193 -n04417809 1193 -n03479397 1193 -n03092166 1193 -n02993546 1193 -n04080705 1347 -n08640531 1347 -n03788498 1347 -n08560295 1347 -n04095109 1347 -n04229737 1347 -n03541696 1347 -n03790755 1347 -n03036022 1352 -n03466839 1352 -n03698723 1352 -n03333610 1353 -n03837698 1353 -n03121298 1353 -n04187547 1356 -n03416489 1356 -n02968074 1356 -n03860404 1356 -n03055857 1356 -n02859443 1402 -n04598318 1402 -n02727426 1402 -n03730334 1358 -n03210552 1358 -n04294879 1362 -n03016389 1362 -n03123809 1362 -n02793495 1362 -n03884778 1363 -n03028079 1363 -n04407435 1363 -n04210390 1363 -n04346328 1363 -n03724756 1363 -n04374735 1363 -n03788195 1363 -n03007130 1363 -n03618982 1417 -n02667576 1417 -n02984061 1417 -n02984203 1417 -n03772077 1417 -n02935658 1364 -n04111414 1364 -n02760099 1364 -n02892499 1364 -n02935891 1364 -n03199647 1364 -n02956699 1371 -n03282295 1371 -n04461437 1371 -n03005033 1371 -n03152303 1371 -n04305210 1371 -n03121431 1371 -n03558176 1373 -n03557360 1373 -n02696165 1375 -n03393017 1375 -n04258438 1377 -n02919792 1377 -n04115256 1377 -n02932400 1377 -n03257210 1377 -n03719053 1377 -n03685820 1377 -n03428090 1377 -n03686924 1377 -n04131368 1377 -n03118969 1377 -n03219483 1377 -n04052658 1377 -n02857477 1377 -n03180865 1377 -n04535524 1377 -n03002816 1377 -n04079244 1377 -n03322836 1377 -n04413969 1449 -n02907873 1449 -n03878066 1452 -n04305323 1452 -n03718458 1452 -n04354026 1457 -n03158186 1457 -n04535370 1457 -n03010915 1457 -n03718935 1464 -n04073948 1464 -n03439348 1464 -n03892557 1464 -n03877845 1464 -n03781244 1476 -n02667379 1476 -n02667478 1476 -n03165616 1382 -n03092314 1382 -n03801671 1382 -n03849814 1384 -n03801533 1384 -n03032252 1384 -n03678729 1384 -n03529860 1384 -n03097362 1387 -n04177931 1387 -n02940385 1387 -n03111041 1195 -n03064935 1195 -n03626115 1195 -n02838728 1195 -n03356858 1195 -n02902079 1195 -n04439585 1195 -n03263076 1195 -n04453037 1195 -n03942920 1195 -n03379204 1198 -n03522003 1198 -n03220692 1198 -n02782778 1198 -n02918112 1198 -n02704949 1198 -n03899768 1200 -n03109881 1200 -n02775178 1200 -n03517647 1200 -n03024064 1200 -n02894158 1200 -n04030518 1200 -n03004824 1200 -n02758134 1200 -n03120198 1200 -n03200231 1200 -n04105893 1200 -n02750070 1200 -n03285912 1200 -n03813078 1200 -n02694045 1200 -n04328946 1200 -n03443005 1200 -n03378005 1519 -n02754656 1519 -n03047941 1519 -n03382292 1519 -n04446276 1521 -n04356925 1521 -n03288500 1521 -n04363991 1521 -n04112579 1521 -n03038685 1521 -n03412058 1521 -n03718581 1521 -n02991302 1521 -n03691817 1521 -n04139395 1521 -n03238131 1521 -n02839592 1521 -n02824319 1521 -n03619890 1521 -n03660909 1521 -n04329477 1521 -n04602762 1521 -n04180229 1521 -n02710324 1521 -n03200701 1521 -n04065464 1521 -n03541091 1521 -n04058096 1521 -n02873839 1521 -n03089879 1521 -n02821627 1521 -n03040376 1521 -n03679712 1521 -n03222176 1521 -n03478907 1521 -n04061793 1521 -n02857644 1521 -n04345028 1521 -n03683708 1521 -n03062122 1521 -n04406239 1521 -n03079741 1521 -n03120778 1521 -n03982331 1521 -n02807731 1521 -n03098688 1521 -n02715513 1521 -n04558478 1532 -n03746486 1532 -n04555291 1532 -n04018667 1532 -n03529175 1537 -n03653740 1537 -n04345201 1537 -n03885535 1548 -n04324387 1548 -n04523831 1548 -n04067818 1552 -n03200539 1552 -n02952585 1553 -n03319745 1553 -n04119478 1553 -n03283221 1554 -n04064862 1554 -n03850245 1554 -n04401680 1556 -n04541987 1556 -n03090172 1556 -n04209613 1556 -n03727465 1558 -n03788601 1558 -n03465718 1558 -n03542860 1558 -n03225108 1558 -n03836062 1558 -n03165466 1558 -n03457008 1562 -n03086580 1562 -n03878211 1562 -n03303831 1562 -n03891538 1563 -n03235042 1563 -n04000592 1569 -n03075946 1569 -n02932019 1569 -n03939677 1569 -n02931148 1569 -n03696065 1569 -n02933462 1569 -n03061505 1569 -n04305572 1569 -n02960352 1569 -n02934451 1569 -n04299370 1569 -n03235180 1569 -n04414199 1523 -n02936714 1523 -n03964495 1523 -n03907227 1523 -n04539203 1523 -n03993703 1523 -n03683079 1523 -n03016737 1523 -n03003730 1523 -n04061969 1523 -n02843276 1624 -n04037220 1624 -n03550289 1624 -n03124590 1626 -n04100519 1626 -n03376159 1626 -n04262161 1631 -n02921884 1631 -n03348868 1631 -n04080454 1631 -n03404449 1631 -n02868638 1631 -n03555006 1631 -n04076713 1640 -n03732114 1640 -n03617095 1643 -n02849885 1643 -n03837606 1643 -n03425325 1643 -n03566193 1643 -n03762434 1632 -n03073694 1632 -n03343560 1632 -n03346455 1632 -n02731398 1632 -n02991847 1526 -n03148324 1526 -n04295571 1526 -n03411544 1201 -n02705201 1661 -n03854722 1661 -n04327204 1202 -n04355267 1202 -n03399677 1202 -n04527648 1202 -n03168107 1202 -n02770211 1202 -n03986704 1202 -n03721590 1203 -n03251533 1203 -n02853016 1205 -n03259505 1205 -n04409625 1205 -n03679384 1205 -n03776460 1205 -n03088389 1205 -n02726305 1205 -n04549919 1673 -n02992032 1673 -n03088580 1674 -n04613696 1674 -n03685307 1674 -n04517408 1674 -n03507241 1674 -n03354207 1674 -n03042490 1674 -n03529629 1674 -n04172107 1674 -n04584373 1684 -n04412416 1684 -n02672371 1676 -n03349892 1693 -n02932693 1693 -n02822064 1679 -n03361297 1679 -n03010473 1206 -n04360501 1206 -n03391770 1206 -n03903868 1699 -n02929289 1699 -n03373943 1699 -n02669295 1699 -n04087826 1700 -n02926591 1700 -n04589593 1700 -n03390983 1700 -n03416094 1700 -n03530642 1700 -n04492375 1700 -n03646916 1700 -n03111296 1700 -n03931765 1700 -n04587648 1700 -n03042697 1700 -n04478512 1700 -n02689144 1700 -n03454536 1700 -n03453443 1700 -n04545305 1700 -n02977619 1700 -n04387261 1700 -n02732827 1700 -n04038727 1700 -n03793186 1700 -n04136510 1700 -n02976350 1700 -n03855333 1715 -n02813399 1715 -n04297750 1715 -n04232800 1715 -n03211789 1715 -n04110178 1715 -n03986562 1715 -n04473108 1715 -n03041810 1715 -n03224603 1715 -n03224753 1715 -n03637898 1715 -n03320959 1715 -n03961711 1725 -n02790669 1725 -n02835829 1725 -n03696301 1725 -n03207630 1725 -n04459773 1725 -n03896526 1726 -n03900393 1726 -n03792526 1726 -n04340935 1208 -n03386011 1208 -n03385557 1208 -n02806088 1751 -n03610098 1751 -n03628511 1754 -n02676938 1754 -n02695627 1752 -n03723781 1752 -n03334382 1753 -n02805983 1753 -n03296328 1753 -n03878963 1753 -n02980441 1753 -n02993194 1210 -n03743016 1210 -n04178329 1210 -n02892201 1210 -n03810952 1210 -n03884926 1210 -n03220237 1766 -n03745571 1766 -n03953020 1211 -n03574555 1211 -n04511002 1211 -n03748162 1773 -n03841666 1773 -n02931417 1773 -n03506370 1773 -n03965456 1776 -n03119203 1776 -n03176763 1776 -n04202417 1776 -n03722288 1776 -n02879309 1783 -n04131208 1783 -n04200800 1783 -n02871525 1783 -n03871371 1783 -n04428634 1783 -n03606251 1783 -n04462240 1783 -n03039827 1783 -n02813544 1783 -n03436417 1783 -n03367410 1783 -n03249342 1783 -n03416640 1783 -n03173387 1783 -n04245508 1783 -n02791270 1783 -n04299215 1783 -n04443257 1783 -n03822656 1783 -n02927161 1783 -n03952576 1783 -n03089624 1783 -n03099274 1783 -n02813645 1784 -n08492461 1784 -n03461385 1784 -n03847823 1784 -n04358707 1811 -n03555426 1811 -n03457686 1811 -n04261281 1812 -n03322704 1812 -n08571898 1812 -n03822504 1777 -n02885882 1777 -n03504723 1777 -n03111690 1774 -n03856012 1774 -n03592245 1822 -n03911513 1822 -n04005630 1822 -n04447443 1054 -n04566257 1054 -n03294048 1054 -n03091374 1054 -n03563967 1054 -n03405265 1054 -n03183080 1054 -n02997391 1054 -n04377057 1054 -n03094503 1054 -n03100490 1054 -n06254669 1054 -n03176594 1827 -n02807523 1827 -n03128519 1827 -n03690938 1827 -n04186051 1827 -n03476991 1827 -n03794136 1827 -n03916031 1827 -n03475823 1827 -n02723165 1827 -n03994008 1827 -n03113152 1827 -n02808185 1827 -n03484487 1841 -n03067339 1841 -n04357314 1841 -n03640850 1841 -n02862916 1842 -n04450640 1842 -n03487444 1842 -n02683791 1842 -n03992325 1846 -n03898271 1846 -n03916470 1846 -n03071021 1846 -n04448070 1846 -n03980026 1847 -n02901793 1847 -n04447276 1849 -n04386792 1849 -n03177165 1850 -n03519081 1850 -n03714235 1850 -n03314780 1871 -n03676087 1871 -n03309687 1871 -n03724066 1871 -n03676483 1871 -n04112752 1871 -n03309110 1871 -n03308481 1871 -n02738031 1828 -n03171228 1828 -n02866578 1828 -n02703275 1828 -n03812924 1828 -n02813752 1880 -n02746365 1880 -n03647520 1880 -n02950256 1886 -n03332393 1886 -n03786715 1888 -n02801450 1888 -n03553248 1882 -n02753044 1882 -n04113641 1883 -n04206570 1883 -n04063373 1829 -n04285146 1829 -n03926148 1829 -n03811847 1829 -n03889726 1829 -n03430959 1829 -n04137444 1829 -n03414162 1829 -n03888257 1829 -n03278248 1829 -n02727825 1829 -n02761206 1829 -n03729951 1829 -n02774921 1829 -n04393095 1896 -n02979290 1896 -n03192543 1910 -n04533802 1910 -n02799897 1897 -n03135030 1897 -n03039259 1897 -n04225729 1897 -n04607035 1897 -n03132261 1897 -n02802721 1897 -n03594148 1897 -n04212282 1897 -n03446832 1897 -n04275661 1897 -n04318131 1897 -n02885338 1897 -n02885462 1897 -n03472232 1897 -n04571292 1897 -n02800213 1914 -n02811059 1914 -n02811204 1914 -n02797881 1914 -n02811350 1914 -n02799175 1914 -n03528901 1933 -n03349771 1933 -n04425804 1933 -n04164406 1933 -n04102037 1917 -n04102162 1917 -n04102618 1917 -n03558404 1917 -n03523987 1943 -n04273972 1943 -n03336282 1943 -n03132076 1919 -n04582869 1919 -n03445924 1923 -n03447075 1923 -n04399537 1923 -n03446070 1923 -n04597066 1952 -n03585073 1952 -n03244047 1953 -n04284341 1953 -n04569822 1954 -n03762332 1954 -n04028074 1954 -n03823216 1954 -n03950537 1957 -n04135024 1957 -n03524150 1925 -n03978686 1925 -n03535780 1928 -n03538037 1928 -n04509260 1928 -n03888605 1928 -n04469514 1928 -n02777292 1928 -n04524142 1966 -n03980478 1966 -n03255030 1929 -n02790996 1929 -n03289660 1898 -n02942699 1898 -n03037404 1898 -n03338821 1898 -n03667664 1898 -n02884994 1976 -n03358726 1976 -n03976467 1976 -n03974915 1976 -n04569063 1976 -n03789171 1976 -n03196062 1976 -n03987266 1976 -n04069434 1976 -n04609531 1978 -n04067658 1978 -n03817191 1978 -n04071263 1901 -n03619396 1901 -n04091097 1901 -n03351434 1901 -n04295081 1901 -n04091693 1901 -n03138669 1992 -n03139464 1992 -n04179824 1993 -n03349469 1993 -n02966687 1993 -n03650551 1993 -n03241093 1994 -n03240683 1994 -n03494706 1996 -n04247876 1996 -n03503718 1996 -n04124202 1996 -n03480719 2008 -n02900160 2008 -n04290615 1902 -n04266162 1902 -n02768226 1903 -n02778669 1903 -n04028315 1903 -n03982430 1903 -n02882647 1903 -n03716327 1903 -n03020416 1903 -n04113406 1903 -n03442756 1903 -n04540255 1903 -n03941417 1903 -n04254680 2015 -n03982232 2015 -n02882301 2015 -n04256891 2015 -n03333252 2015 -n04023962 2015 -n02839351 2015 -n03134739 2015 -n03131967 2015 -n04409515 2015 -n03445777 2015 -n04118538 2015 -n03145719 2015 -n03742019 2015 -n02802426 2015 -n03267113 2015 -n03942813 2015 -n03482877 2015 -n02799071 2015 -n04039742 2015 -n02861147 2015 -n04540053 2015 -n03598930 2016 -n06785654 2016 -n03014440 2019 -n04579986 2019 -n03901750 2019 -n02802215 2022 -n03820318 2022 -n03278914 1905 -n03782006 1905 -n03781787 1905 -n04405762 1905 -n04401088 1905 -n03857828 1905 -n03916720 1905 -n02872529 1905 -n02979186 1905 -n02988304 1905 -n04060647 1905 -n02757462 1905 -n03656957 1905 -n03963294 1905 -n04405540 1905 -n03034405 1905 -n02979074 1905 -n02995345 1905 -n03775388 1905 -n04142731 1905 -n04392985 1905 -n03181293 1905 -n03777754 1905 -n03293741 1905 -n04392526 1905 -n02705944 1905 -n02992529 2058 -n04270371 2058 -n03179910 2058 -n03902125 2058 -n03488438 2058 -n03187595 2058 -n04044498 2058 -n04405907 2064 -n04043733 2064 -n04137773 2064 -n03516996 2088 -n03046921 2088 -n04077430 2065 -n03517760 2092 -n04315948 2092 -n03584254 2094 -n04546340 2094 -n03584400 2094 -n03436182 2094 -n02942349 2068 -n04404997 2068 -n03909160 1906 -n04026053 1906 -n04173511 1906 -n04070003 1906 -n03257586 1906 -n03509608 1906 -n04171208 1906 -n04450243 1906 -n04506506 1906 -n03434188 1906 -n03567066 1906 -n02923129 1906 -n03386544 2101 -n03046802 2101 -n03757604 2101 -n03927299 2105 -n03924679 2105 -n04608923 2105 -n03316105 2105 -n03767459 2105 -n03987990 2108 -n03084834 2108 -n03422072 2112 -n02855390 2112 -n02921029 2123 -n03425769 2123 -n03871524 1908 -n02852360 1908 -n04105704 1908 -n04408871 1830 -n04241573 1830 -n04402057 1830 -n03664943 1830 -n03605915 1830 -n03543012 2132 -n03196990 2132 -n03639497 2132 -n02840134 2133 -n04594218 2133 -n02999410 2133 -n03086868 2139 -n02790823 2139 -n03886641 2140 -n02709637 2140 -n03374838 2140 -n02835412 2140 -n04440963 2140 -n03011018 2140 -n03600977 2134 -n03093792 2134 -n03228967 2149 -n04573281 2149 -n03521076 2149 -n04144241 2149 -n04571958 2149 -n04160372 2149 -n03787523 2149 -n02928299 2153 -n04333869 2153 -n03213826 2150 -n04476972 2150 -n04593866 2150 -n02788689 1831 -n04451818 1831 -n04516672 1831 -n04116512 1831 -n03816136 1831 -n03294833 1831 -n04317420 1831 -n02908217 1831 -n03532342 1831 -n04185071 1831 -n04285622 1831 -n03653220 1831 -n04369282 1831 -n03346135 1831 -n03837422 1831 -n04317833 1831 -n03039947 1831 -n04100174 1831 -n04608567 1831 -n04208427 1831 -n04282872 2163 -n03396074 2163 -n02865931 2163 -n04112147 2163 -n04459909 2163 -n03659292 2163 -n04463679 2163 -n03487090 2163 -n03138344 2188 -n04317976 2188 -n03613592 2188 -n04393808 2188 -n03903424 2188 -n04099003 2188 -n03470629 2188 -n04264628 2193 -n02771004 2193 -n04193377 2193 -n04400737 2193 -n02670683 2195 -n04367011 2195 -n03489162 2164 -n03588951 2164 -n03919430 2164 -n03418242 2164 -n03967562 2164 -n03075097 2164 -n03239726 2164 -n03154446 2164 -n04387706 2164 -n03417970 2164 -n04050066 2164 -n04299963 2164 -n03684224 2204 -n03919289 2204 -n03970156 2204 -n03941684 2204 -n03966976 2204 -n04258859 2204 -n04266486 2204 -n03481172 2204 -n03946076 2204 -n04606574 2204 -n04154565 2204 -n04489817 2204 -n04140064 2204 -n03848348 2204 -n04150980 2204 -n04208210 2204 -n02898269 2204 -n04269944 2204 -n02966545 2223 -n03430313 2223 -n03715386 2223 -n03731695 2223 -n04457910 2225 -n03947466 2225 -n02680754 2225 -n03848168 2225 -n02697675 2225 -n02886434 2225 -n03474779 2228 -n03376938 2228 -n03488188 2228 -n04016240 2246 -n04016576 2246 -n03109150 2229 -n02877962 2229 -n02951585 2229 -n03511333 2207 -n03649909 2207 -n03995856 2253 -n04089976 2253 -n03995372 2210 -n03240140 2210 -n03154073 2211 -n04503593 2211 -n02844307 2211 -n02848216 2211 -n03624400 2211 -n02866386 2258 -n03030557 2258 -n03265032 2258 -n04148054 2265 -n03623556 2265 -n02764044 2265 -n04057047 2265 -n04594828 2265 -n03020692 2265 -n03954731 2265 -n04186848 2266 -n04250473 2273 -n04016684 2273 -n04163530 2273 -n02973904 2267 -n02880842 2267 -n03973628 2267 -n03041632 2267 -n03549473 2267 -n02976123 2267 -n03890093 2267 -n03658185 2267 -n04373089 2279 -n03911658 2279 -n02811468 2268 -n03498962 2268 -n04185804 2269 -n04332074 2269 -n04127521 2269 -n03067212 2271 -n04597400 2271 -n03601638 2272 -n04247630 2272 -n04283585 2272 -n03621049 2165 -n02997607 2165 -n03403643 2165 -n04103206 2297 -n04059516 2297 -n03724417 2297 -n03621377 2297 -n04293119 2297 -n03775199 2297 -n03101517 2297 -n03101986 2297 -n03454885 2297 -n03767966 2297 -n03266371 2305 -n04578934 2305 -n02850732 2305 -n03880531 2307 -n03133878 2307 -n02999138 2307 -n04270147 2307 -n03459328 2307 -n03284981 2307 -n04309548 2307 -n03101796 2307 -n03101156 2307 -n04500060 2307 -n03846677 2313 -n04317325 2313 -n03400231 2313 -n04097760 2313 -n04596742 2313 -n04138977 2313 -n03453231 2318 -n03047799 2318 -n03984234 2298 -n03262519 2298 -n04326676 2298 -n03992703 2298 -n04282992 2331 -n03018209 2331 -n02869155 2331 -n03713436 2332 -n03317788 2332 -n03625646 2167 -n03133050 2167 -n04546194 2169 -n03729826 2169 -n03053474 2169 -n03332271 2169 -n04277352 2169 -n04321453 2169 -n04296261 2169 -n03250847 2169 -n03715669 2169 -n02949202 2342 -n04374315 2342 -n02806379 2344 -n04381724 2344 -n04491388 2344 -n02698634 2348 -n03355925 2348 -n03141823 2348 -n03274265 2170 -n04453156 2170 -n04122349 2170 -n04156140 2170 -n03475581 2170 -n02902687 2170 -n04185946 2170 -n03908714 2172 -n04310904 2172 -n03145522 2173 -n04039381 2173 -n04292414 2369 -n04409806 2369 -n02772700 2369 -n04426316 2174 -n04333129 2174 -n03012013 2374 -n04072551 2374 -n03831382 2374 -n03651843 2374 -n04156946 2177 -n03873416 2177 -n02831894 2179 -n04150153 2179 -n03258905 2179 -n04292921 2179 -n02906734 2179 -n04367480 2179 -n04111190 2180 -n04549629 2180 -n04182322 2180 -n03949317 2180 -n03616428 2180 -n02764779 2180 -n03976657 2180 -n03351979 2180 -n03091044 2180 -n04434531 2180 -n03244231 2387 -n03127408 2387 -n04472563 2387 -n04277493 2387 -n02946824 2387 -n02871824 2393 -n04319937 2393 -n04230603 2393 -n03051396 2393 -n02931836 2393 -n04267577 2393 -n03726993 2393 -n03726760 2407 -n02883004 2407 -n04610676 2407 -n03775847 2409 -n04115996 2409 -n03711999 2409 -n03382856 2409 -n03374372 2394 -n04279353 2394 -n03908204 2181 -n03906997 2181 -n03518943 2181 -n03003091 2181 -n03128248 2181 -n03652100 2181 -n02783161 2419 -n04185529 2419 -n04033901 2419 -n03388183 2419 -n03326948 2419 -n03405725 1832 -n03842156 2429 -n03200906 2429 -n04550184 2429 -n02821943 2429 -n04379243 2429 -n04379964 2429 -n04549122 2429 -n03636649 2429 -n03201035 2429 -n04555400 2429 -n02912065 2429 -n02933112 2429 -n02766320 2429 -n02822579 2429 -n03649797 2429 -n03129753 2429 -n02870880 2429 -n03290653 2429 -n03298716 2429 -n04161981 2429 -n04165409 2429 -n03015254 2429 -n03337140 2430 -n04104147 2452 -n02963302 2452 -n04529681 2452 -n03050546 2432 -n02739550 2432 -n02818832 2433 -n02831724 2458 -n03962852 2458 -n03540914 2458 -n02920083 2458 -n04491638 2458 -n03388549 2458 -n03115762 2458 -n02920259 2458 -n04503413 2458 -n04236809 2458 -n04222210 2458 -n03482252 2458 -n03799876 2458 -n03225988 2458 -n03414676 2434 -n03465426 2434 -n04381587 2434 -n03116530 2434 -n02699629 2434 -n02894337 2434 -n04301000 2434 -n03090000 2434 -n03904060 2434 -n03620967 2434 -n03850492 2434 -n04398951 2434 -n03653583 2434 -n04603729 2434 -n03428226 2434 -n03238586 2434 -n03179701 2434 -n03246933 2434 -n03063968 2434 -n04480033 2434 -n03092883 2434 -n03011741 2476 -n02789487 2476 -n03735963 2476 -n04061681 2476 -n04130143 2495 -n04247736 2495 -n03231368 2486 -n03630262 2486 -n04608329 2489 -n04164868 2489 -n03164722 2489 -n03201208 2435 -n03202354 2505 -n04067921 2505 -n03367059 2437 -n04380533 2437 -n04057981 2437 -n03237340 2441 -n03018349 2441 -n03742115 2441 -n02804414 2442 -n03131574 2442 -n02970534 2442 -n03125729 2442 -n03001627 2449 -n04447861 2449 -n04326896 2449 -n04256520 2449 -n03858418 2449 -n02828884 2449 -n03649674 2518 -n03002711 2518 -n04099969 2518 -n04373704 2518 -n04429376 2518 -n04331277 2518 -n03632729 2518 -n03518445 2518 -n02738535 2518 -n04590933 2518 -n03376595 2518 -n04576002 2518 -n03790953 2518 -n02791124 2518 -n03262932 2532 -n04062428 2532 -n03786621 2532 -n04593077 2532 -n03168217 2534 -n02946270 2534 -n03801880 2520 -n04382438 2520 -n03380724 2520 -n04177755 2521 -n03165096 2521 -n03100346 2521 -n03693474 2521 -n03015149 2549 -n04344873 2549 -n03891251 2523 -n03360622 2523 -n03920867 2523 -n04177820 2523 -n04590021 2523 -n03016953 2451 -n03518305 2451 -n02843553 1833 -n03508101 1833 -n03666591 1833 -n06791372 1833 -n03099945 1833 -n03141702 1833 -n03243218 1833 -n03626760 1833 -n03904909 1833 -n03800933 1833 -n04200537 1833 -n04198797 1833 -n03699975 1833 -n03088707 1833 -n02776205 1833 -n04294212 1833 -n03339643 1833 -n03738472 1833 -n02676261 1833 -n04474466 1833 -n03008976 1833 -n02688443 1833 -n04114844 1833 -n03929660 1833 -n03287351 1833 -n03320046 1833 -n03553019 1833 -n03175604 1833 -n02678897 1833 -n04461879 1833 -n04359589 1833 -n03851341 1833 -n04331639 1833 -n04450749 1833 -n03923918 1833 -n03574816 1833 -n03074855 1833 -n04074963 1833 -n03302790 1833 -n03075768 1833 -n04554406 1833 -n04210120 1833 -n04562262 1833 -n02855089 1833 -n04526964 1833 -n02895606 1833 -n02730265 1833 -n04226826 1833 -n03467796 1833 -n04081844 1833 -n03614007 1833 -n03269401 1833 -n02729965 1833 -n03345837 1833 -n03111899 1833 -n04069276 1833 -n02694426 1833 -n03277771 1833 -n04252331 1833 -n03525827 1833 -n03744840 1833 -n03613294 1833 -n03827536 1833 -n04263760 1833 -n03568117 1833 -n03180969 1833 -n02895438 1833 -n03565288 1833 -n02683558 1833 -n03537241 1833 -n03267972 1833 -n04228054 1833 -n03664675 1833 -n04258333 2561 -n03272239 2561 -n04041069 2561 -n03423479 2561 -n03099147 2561 -n04265275 2561 -n04330267 2561 -n03031422 2562 -n03728437 2562 -n07273802 2563 -n06793231 2563 -n06794110 2563 -n06874185 2563 -n03269203 2564 -n02981321 2564 -n03582959 2646 -n04375405 2646 -n03307792 2566 -n02988963 2566 -n03580518 2566 -n04338517 2569 -n03279153 2569 -n03614532 2569 -n04586932 2569 -n02803349 2569 -n03915437 2569 -n03254862 2653 -n03025886 2653 -n02787622 2653 -n04615226 2653 -n04132603 2653 -n03467517 2653 -n02880546 2653 -n04224842 2653 -n03698360 2660 -n03716887 2660 -n03716966 2660 -n03495258 2660 -n02676566 2664 -n03499907 2664 -n04506289 2664 -n03272010 2664 -n04536153 2665 -n04536866 2665 -n02992211 2665 -n04536335 2665 -n04536595 2665 -n04330998 2665 -n04419642 2654 -n03273551 2654 -n04376400 2654 -n03928116 2655 -n03039015 2655 -n03854065 2655 -n02672831 2655 -n03452741 2684 -n04515003 2684 -n04278353 2684 -n03738066 2684 -n02766792 2688 -n03086457 2688 -n03496296 2685 -n04278247 2685 -n03840681 2656 -n04598582 2656 -n02891788 2656 -n03854815 2656 -n03393324 2656 -n04579667 2656 -n03945615 2656 -n03609397 2656 -n03372029 2697 -n02817799 2697 -n03228016 2705 -n04222847 2705 -n02804610 2706 -n03838899 2706 -n03037709 2707 -n04141076 2707 -n02793089 2698 -n02912894 2698 -n03369276 2698 -n03394916 2698 -n04487394 2698 -n03110669 2698 -n03494537 2700 -n03494278 2700 -n03086670 2700 -n03006626 2702 -n03884397 2702 -n02775483 2702 -n03343354 2702 -n03912218 2702 -n03245724 2702 -n02803934 2657 -n02804252 2657 -n02804123 2657 -n03301568 2657 -n03483230 2658 -n02869249 2658 -n03447721 2658 -n04532831 2658 -n04311174 2658 -n03721384 2658 -n03440682 2658 -n03017168 2658 -n03612965 2658 -n03720891 2658 -n03249569 2658 -n03157348 2658 -n02869737 2741 -n02803666 2741 -n04387400 2741 -n04249415 2741 -n04410086 2741 -n04243941 2572 -n03996416 2572 -n03999992 2572 -n02769290 2572 -n04004475 2572 -n03702248 2572 -n03789946 2572 -n04252653 2572 -n02977058 2572 -n03322940 2572 -n03082979 2572 -n04613939 2572 -n03765561 2572 -n04303357 2572 -n03997484 2572 -n03087069 2572 -n04303497 2572 -n04237423 2572 -n04417180 2572 -n04064401 2572 -n02938886 2572 -n04525305 2748 -n04243546 2748 -n02760199 2748 -n03418915 2750 -n02829596 2750 -n03551395 2750 -n04024274 2750 -n03007591 2752 -n03563200 2752 -n04004767 2752 -n03250405 2752 -n03672827 2752 -n03643737 2752 -n03675235 2752 -n04419868 2752 -n03985069 2776 -n04505036 2776 -n02794664 2777 -n04595285 2777 -n03225777 2778 -n02909285 2788 -n03571942 2788 -n04184435 2753 -n03240892 2753 -n03460040 2753 -n03646296 2791 -n03766044 2791 -n03287733 2754 -n03273061 2754 -n03507963 2796 -n03596285 2796 -n02761557 2796 -n02687423 2796 -n03433877 2796 -n04309049 2798 -n03579982 2798 -n04591517 2804 -n03424630 2804 -n03193107 2804 -n03859000 2804 -n04040373 2804 -n04099175 2799 -n03321103 2799 -n02872333 2810 -n04265904 2810 -n02700064 2802 -n04587404 2802 -n04304375 2797 -n03616763 2797 -n03146846 2757 -n03500699 2757 -n03075634 2757 -n04428191 2757 -n03496892 2757 -n03210245 2818 -n03496612 2818 -n04238763 2758 -n06359193 2758 -n03528523 2758 -n04175147 2758 -n03196324 2758 -n04358117 2829 -n04603399 2829 -n03918480 2829 -n03985232 2832 -n03180011 2832 -n03832673 2833 -n03956785 2833 -n03642806 2833 -n03485407 2833 -n03914337 2760 -n04561422 2760 -n03736064 2760 -n03063485 2760 -n04477219 2760 -n04587559 2760 -n03272125 2762 -n03996145 2762 -n02911332 2762 -n03034663 2846 -n03000684 2846 -n04380916 2846 -n04121728 2846 -n02786837 2846 -n04279462 2766 -n03689157 2766 -n03604156 2767 -n03452267 2767 -n02666196 2768 -n02679257 2768 -n03483823 2768 -n04171831 2573 -n04594489 2573 -n03106898 2573 -n03510244 2573 -n02934168 2573 -n03760310 2860 -n04471632 2860 -n03666362 2860 -n03020034 2860 -n03336575 2861 -n03604843 2861 -n04402984 2861 -n03898129 2861 -n04401828 2861 -n03995265 2862 -n03307037 2862 -n03300443 2864 -n03268918 2864 -n04004990 2864 -n03995535 2864 -n03350602 2574 -n03373237 2880 -n03251932 2881 -n04573937 2881 -n04334365 2881 -n03861271 2575 -n04520784 2575 -n04332243 2576 -n02688273 2576 -n03843555 2576 -n04216634 2887 -n04398834 2887 -n03066849 2887 -n03407865 2577 -n02710201 2577 -n04040759 2577 -n03736970 2577 -n04110955 2577 -n04112430 2577 -n02969010 2577 -n03096960 2577 -n03996849 2577 -n02761392 2577 -n02677718 2577 -n03102859 2577 -n03431243 2577 -n04392764 2577 -n03339529 2577 -n04289027 2896 -n04011827 2896 -n02709367 2896 -n03446268 2896 -n04568069 2896 -n03700963 2896 -n04167346 2896 -n04021798 2896 -n03432129 2896 -n04088797 2896 -n02918595 2896 -n03532672 2896 -n04228215 2896 -n03119510 2896 -n04063154 2896 -n04371774 2896 -n04590746 2896 -n04586581 2896 -n04586421 2896 -n03189083 2896 -n04211528 2896 -n03296081 2896 -n02903204 2896 -n03150232 2896 -n04282494 2896 -n03082807 2896 -n02686227 2896 -n02962200 2896 -n03198500 2896 -n02973017 2896 -n04475411 2896 -n03431745 2896 -n04306592 2896 -n02692086 2909 -n04154152 2909 -n04020298 2913 -n04574999 2913 -n03559999 2913 -n03659809 2913 -n03566329 2913 -n03767203 2944 -n04563204 2944 -n04101701 2944 -n02836035 2944 -n02980036 2944 -n03460147 2944 -n04115144 2944 -n03334912 2944 -n04543772 2944 -n04563413 2944 -n02974003 2944 -n04289690 2944 -n03944341 2944 -n03992509 2944 -n03430551 2944 -n03244919 2944 -n03874293 2944 -n04113194 2944 -n04290507 2962 -n02833793 2962 -n03943115 2962 -n04051549 2947 -n02764505 2947 -n04154340 2947 -n03456299 2915 -n03425413 2915 -n02835724 2915 -n04354487 2915 -n03487886 2915 -n02995871 2915 -n03329302 2917 -n04102406 2917 -n02966193 2917 -n04510706 2921 -n03054901 2921 -n03393761 2982 -n03209359 2982 -n02860415 2926 -n04067472 2926 -n04211857 2926 -n02848523 2897 -n03473227 2897 -n03032811 2897 -n04111668 2897 -n03873699 2988 -n03563460 2988 -n03320421 2988 -n03208556 2990 -n04019541 2995 -n02890188 2995 -n04448361 2995 -n03397947 2995 -n03954393 2995 -n04385799 2991 -n03712111 2991 -n04519153 2900 -n04313503 2900 -n03450018 2900 -n03602883 2900 -n04072193 2900 -n04372370 2900 -n02783459 3003 -n02927887 3003 -n04438507 3005 -n03374649 3005 -n03325088 3007 -n04422875 3007 -n02727141 3007 -n03775636 3013 -n04327682 3013 -n04445952 3008 -n04027023 3008 -n03186818 3008 -n03537412 3019 -n03793850 3019 -n03222516 3019 -n02826589 3019 -n03363549 2903 -n03795758 2903 -n03469493 2903 -n03103396 2904 -n03301833 2904 -n02686379 2904 -n03432061 2905 -n03389611 2905 -n04579432 2578 -n04218564 2578 -n03743279 2578 -n03506560 2578 -n02824448 2578 -n03123917 3037 -n03028596 3037 -n03201529 3037 -n04275548 2579 -n03794056 2579 -n03680858 2579 -n04568557 2579 -n03819994 2579 -n03639077 3045 -n03352628 3045 -n04529962 2581 -n04283255 2581 -n04283096 2581 -n04112252 2581 -n03357716 2581 -n04117464 2581 -n03536122 2581 -n04592741 2581 -n03303217 2585 -n03271574 2585 -n02887079 2587 -n03176386 2587 -n02768114 2590 -n04320973 2590 -n03933933 2590 -n03934042 2590 -n02767433 2590 -n04190052 2590 -n03638883 2590 -n02783994 2590 -n04283378 2590 -n02797692 2590 -n04314914 2590 -n02887209 2590 -n03938401 2590 -n02817031 2590 -n04098513 2590 -n03057920 2590 -n03495570 2590 -n04081044 2590 -n02888569 2590 -n04386051 2590 -n02871005 2590 -n04341414 2590 -n03506184 2590 -n04161358 2590 -n04430475 2590 -n03490884 2590 -n04038440 2590 -n03495039 2590 -n02953455 3064 -n03632577 3064 -n02871439 3065 -n03719343 3065 -n03814639 3071 -n03622839 3071 -n02713003 3071 -n02768655 3071 -n02737660 3077 -n03505133 3077 -n03019685 3077 -n02741475 3077 -n04148579 3078 -n03105467 3078 -n04190376 3078 -n04220036 3081 -n04094720 3081 -n04515129 3081 -n02886599 3081 -n04476831 3081 -n02815950 3081 -n04590263 3103 -n03223686 3103 -n04318787 3105 -n03592773 3105 -n03073977 3105 -n03988170 3105 -n04360798 3113 -n02974348 3113 -n03443149 3114 -n03821518 3114 -n02864593 3114 -n03637181 3114 -n04402449 3114 -n03733131 3114 -n04436329 3114 -n04119751 3106 -n04433585 3106 -n04045644 3108 -n03437941 3108 -n04436185 3108 -n03366974 3108 -n03601840 3108 -n02970685 3083 -n03937931 3083 -n03955489 3083 -n04123740 3083 -n03002096 3083 -n02835915 3083 -n02910145 3083 -n02770830 3083 -n04325041 3134 -n03288886 3134 -n04485082 3086 -n04275175 3086 -n03704549 3086 -n03801760 3086 -n02943871 3141 -n03262809 3141 -n02759257 2591 -n04009801 2591 -n03340723 2591 -n03643253 2591 -n03656484 2591 -n03838298 3151 -n03087366 3151 -n02943241 3151 -n02709101 3151 -n03094159 3151 -n04355933 3151 -n03309465 3151 -n03333711 3151 -n03395859 3151 -n03987376 3154 -n03049782 3154 -n04403413 3154 -n04583212 3154 -n03967396 2595 -n04147495 2595 -n03733925 2595 -n04565375 2595 -n03467068 2595 -n03231160 2595 -n02708711 2595 -n03813176 2595 -n03852280 2595 -n03739693 2595 -n03575958 2595 -n02981911 2595 -n03308152 2595 -n04419073 2595 -n04089836 2595 -n04383015 2595 -n03070193 3166 -n03760944 3166 -n02670382 3166 -n04340521 3166 -n03709206 3166 -n03092656 3166 -n04403638 3185 -n03760671 3185 -n02751295 3187 -n03293863 3187 -n03852688 3189 -n04044716 3189 -n04070207 3191 -n03333129 3191 -n04068601 3191 -n02978478 3195 -n03822767 3195 -n04145863 3195 -n03715114 3195 -n03279508 3188 -n03332989 3188 -n03667829 3188 -n02841506 3202 -n03484931 3202 -n03850053 3202 -n03082280 3202 -n03692522 3202 -n03868643 3167 -n03247083 3167 -n04070415 3167 -n04053508 3167 -n02794156 3167 -n03904782 3167 -n04421872 3167 -n02751215 3167 -n03735637 3167 -n03429288 3167 -n04437953 3167 -n02710600 3167 -n02939866 3167 -n03991837 3167 -n04382880 3167 -n04141975 3167 -n04392113 3167 -n03753077 3167 -n03554460 3167 -n04180888 3167 -n04118776 3167 -n02699915 3167 -n04029734 3214 -n03736470 3214 -n04559730 3217 -n04518343 3217 -n02710429 3217 -n03424862 3217 -n04001499 3217 -n03718335 3236 -n04274985 3236 -n02753394 3218 -n03046257 3218 -n04555897 3218 -n04355338 3218 -n04438304 3218 -n03544143 3218 -n03452594 3240 -n03196217 3240 -n02694662 3240 -n04548280 3240 -n02708093 3240 -n03909406 3240 -n03145147 3240 -n03197337 3241 -n02708433 3241 -n03973839 3241 -n04607869 3241 -n04328186 3243 -n03891332 3243 -n03026907 3243 -n04528968 3220 -n03759661 3220 -n02777100 3223 -n02708555 3261 -n03277459 3261 -n03272810 3225 -n03841143 3225 -n02702989 3225 -n04273796 3225 -n03842986 3225 -n04561287 3225 -n04541320 3225 -n03708843 3225 -n04449966 3168 -n03467984 3168 -n02879718 3168 -n02880393 3168 -n02892948 3168 -n03624134 3168 -n04373894 3168 -n04346157 3168 -n04008634 3168 -n02715712 3273 -n03343853 3273 -n04177041 3273 -n02689274 3273 -n03423306 3273 -n03875955 3273 -n02950826 3273 -n02759963 3282 -n03948459 3282 -n04502851 3282 -n03732020 3282 -n03803116 3282 -n04090263 3282 -n04076284 3282 -n04171459 3288 -n02760429 3288 -n03416775 3295 -n03695857 3295 -n04171629 3295 -n02760855 3296 -n02749479 3296 -n02760658 3296 -n03701391 3296 -n04347519 3303 -n02923682 3304 -n04517211 3304 -n03607659 3304 -n04450133 3304 -n03073296 3289 -n03178674 3289 -n04086273 3289 -n03427202 3289 -n03363749 3292 -n03802007 3292 -n04250224 3293 -n04585980 3293 -n02961451 3293 -n03136369 3274 -n03687928 3274 -n03615790 3277 -n02812949 3277 -n03699591 3277 -n03158885 3277 -n04054361 3278 -n03327691 3278 -n02904640 3278 -n02987492 3278 -n04121511 3325 -n03292475 3325 -n03375575 3325 -n02916350 3280 -n02950943 3280 -n03080633 3170 -n04015908 3170 -n02745611 3172 -n03178000 3172 -n03706229 3172 -n03080497 3172 -n02841315 3173 -n04272054 3173 -n04009552 3173 -n04403925 3173 -n03443912 3340 -n04356056 3340 -n04238617 3341 -n03399761 3341 -n03795976 3341 -n03864692 3341 -n03555662 3174 -n02963503 3174 -n04376876 3174 -n04317175 3174 -n03643149 3174 -n03858183 3174 -n04364545 3174 -n04083800 3355 -n03514451 3355 -n03938037 3175 -n04056180 3175 -n03302671 2598 -n04477387 2598 -n04080833 2605 -n04251144 2605 -n03868863 2605 -n02731629 2605 -n03876231 2606 -n04287747 2606 -n02889646 2609 -n03484576 2609 -n03323703 2609 -n04162706 2609 -n03652932 2609 -n04125853 2609 -n02891188 2609 -n03803284 2609 -n02999936 2609 -n02865665 3370 -n02910353 3370 -n03627232 3370 -n03041114 3370 -n03051249 3370 -n02982599 3370 -n03940256 3370 -n03229244 3370 -n04153751 3370 -n04238321 3370 -n02928608 3370 -n04159354 3370 -n03887185 3370 -n03682487 3370 -n04431745 3370 -n03683606 3370 -n03038281 3370 -n03043958 3370 -n02960690 3370 -n03804744 3370 -n04445327 3370 -n03836451 3370 -n02881906 3379 -n02880189 3379 -n03644858 3382 -n03497352 3382 -n04095342 3383 -n03476313 3383 -n04227900 3383 -n03499354 3383 -n02903126 3383 -n02860640 3383 -n02796318 3383 -n04127249 3383 -n04197781 3387 -n03057541 3387 -n04554871 3388 -n03423719 3388 -n03503477 3414 -n03855604 3414 -n03874599 3390 -n04136800 3390 -n03645011 3390 -n03075370 3390 -n03223162 3390 -n03886762 3394 -n02915904 3394 -n03476684 3394 -n03551084 3374 -n03208938 3425 -n03250089 3425 -n04505470 2610 -n04036303 2610 -n03085013 2610 -n03928814 2610 -n03033362 2611 -n04168199 2611 -n03589513 2611 -n03098140 2611 -n04401949 2611 -n03034244 2611 -n03968293 2611 -n03275681 2611 -n03163222 2611 -n04470953 2611 -n04257986 2611 -n02715229 2611 -n02955247 2611 -n04269270 2611 -n04072960 2611 -n04364160 2611 -n04257790 2611 -n02810471 2611 -n04414675 2611 -n03048883 3432 -n04595855 3432 -n03084420 3432 -n03577090 3453 -n03778817 3453 -n04004210 3453 -n03578656 3453 -n03125057 3456 -n03033986 3456 -n03788047 3441 -n03274561 3441 -n03261776 3461 -n03759954 3461 -n03691459 3461 -n04402580 3462 -n03505667 3462 -n03087816 3463 -n02963692 3463 -n04502670 3464 -n02917377 3464 -n04390873 3464 -n04599124 3464 -n04349401 3464 -n03846772 3443 -n03204955 3443 -n04041747 3474 -n04404817 3474 -n03207305 3475 -n04142999 3475 -n04610274 3475 -n04540547 3449 -n03359285 3481 -n03651388 3481 -n03870980 2614 -n04013729 2614 -n04258138 2615 -n03773035 2615 -n03485198 3487 -n02965783 3487 -n04059947 3489 -n03861842 3489 -n02921756 2616 -n02761834 2616 -n04201064 2616 -n03343737 2616 -n04058594 2617 -n04143140 2617 -n04494204 2617 -n03211117 2617 -n03918737 2617 -n03221351 2617 -n04464615 2617 -n03793489 2617 -n02714751 2617 -n03506727 2617 -n02823124 2617 -n04484432 3498 -n03913343 3498 -n03085219 3499 -n03782190 3499 -n04152593 3499 -n03196598 3499 -n03676759 3499 -n03361380 3499 -n04588739 3499 -n03187268 3499 -n02940570 3499 -n03085602 3511 -n02769075 3511 -n02988066 2619 -n03027250 2619 -n03070059 2619 -n03525454 2619 -n04538552 2619 -n02948557 3523 -n03031152 3523 -n02947818 3525 -n03746005 3527 -n03746155 3527 -n02935017 2620 -n03851787 2620 -n03706653 2620 -n03744276 2620 -n03708036 2620 -n04063868 2620 -n02763306 2620 -n03079230 3531 -n04533946 3531 -n02988679 3537 -n02988486 3537 -n02757061 3537 -n03492542 3532 -n03209910 3532 -n03359436 3533 -n04052757 3533 -n04534359 3534 -n02979399 3534 -n04391838 3535 -n03924069 3535 -n03694639 3549 -n04178190 3549 -n03636248 2623 -n03665366 2623 -n03358172 3552 -n03640988 3552 -n02948072 3552 -n03818343 3552 -n04534895 3552 -n04384910 3552 -n03423877 3552 -n03844045 3552 -n03549897 3552 -n03370387 3552 -n04335886 3552 -n04286575 3552 -n03272383 3552 -n03590841 3555 -n03018712 3555 -n03359137 3566 -n03665924 3566 -n03911767 3566 -n03503997 3553 -n04107743 3553 -n04339879 3553 -n03318294 3553 -n04148703 3553 -n04160847 3553 -n03824713 3553 -n02852173 3553 -n04456115 3553 -n03365374 3553 -n03401129 2624 -n03442597 2624 -n03187037 2624 -n04529108 2624 -n03975232 2624 -n03668279 3586 -n03482523 3586 -n04371050 3588 -n03772584 3588 -n04164757 3588 -n03544238 3588 -n04288272 2630 -n04116098 2630 -n03066359 3593 -n02886321 3593 -n03525074 2632 -n04585745 2632 -n03281145 2632 -n03126707 2632 -n04575824 2632 -n03178430 2632 -n03733281 1835 -n03078287 1835 -n03820728 1835 -n03440216 1835 -n04080138 1835 -n03302938 1835 -n03738241 1835 -n03085915 1835 -n04141712 1835 -n04082886 1835 -n04545858 3604 -n04041544 3604 -n04400289 3604 -n04402746 3604 -n03578055 3604 -n03580845 3604 -n04404412 3615 -n04137897 3619 -n04365328 3619 -n03072201 3619 -n03681477 3605 -n04358491 3605 -n03300216 3623 -n04595028 3623 -n04008385 3609 -n03674440 3609 -n04366116 3609 -n03401279 3609 -n03957315 1836 -n04488202 1836 -n04555700 1836 -n03206908 1836 -n02893692 1836 -n03210683 1836 -n03991062 1836 -n02920658 1836 -n04074185 1836 -n03147509 1836 -n02774152 1836 -n02978881 1836 -n03256032 1836 -n02773037 1836 -n03733805 1836 -n03438257 1836 -n03875806 1836 -n03733644 1836 -n03291819 1836 -n04183329 1836 -n03935335 1836 -n02801938 1836 -n04179712 1836 -n04139859 1836 -n03994614 1836 -n02946921 1836 -n04576211 1836 -n04600312 1836 -n02839910 1836 -n02949542 1836 -n03779370 1836 -n02964843 1836 -n04533700 1836 -n02975212 1836 -n02974697 1836 -n04531098 1836 -n03233905 1836 -n04060904 1836 -n03871083 1836 -n04560292 1836 -n02883344 1836 -n03062336 3634 -n03920288 3634 -n03456024 3634 -n04176190 3634 -n04499062 3634 -n04350581 3634 -n02880940 3634 -n02978753 3634 -n04050933 3634 -n02927764 3634 -n04130257 3678 -n03775546 3678 -n03984759 3678 -n02997910 3678 -n04263257 3678 -n04023695 3678 -n04103769 3636 -n02682922 3636 -n04254120 3636 -n02754103 3636 -n03571280 3636 -n03174731 3640 -n02815749 3640 -n03629520 3640 -n03063073 3640 -n03002948 3640 -n04397452 3640 -n03216710 3640 -n03301940 3641 -n04207343 3641 -n03055418 3641 -n04083309 3641 -n02769748 3644 -n04122685 3644 -n02816656 3644 -n04134008 3644 -n02970408 3644 -n03883524 3644 -n03253886 3644 -n02870676 3644 -n04452528 3644 -n03709823 3644 -n04026417 3644 -n03235796 3644 -n03291963 3644 -n04124098 3644 -n04122825 3644 -n03993180 3644 -n04204081 3644 -n04446844 3644 -n03414029 3644 -n03619793 3644 -n03958227 3644 -n03445617 3644 -n04235860 3644 -n03469903 3644 -n03461288 3644 -n04284572 3719 -n03972524 3719 -n04544450 3719 -n03321563 3719 -n03521899 3730 -n03898395 3730 -n03372549 3646 -n04496872 3646 -n04559910 3646 -n02918831 3646 -n03676623 3646 -n04249882 3646 -n04206225 3646 -n02823750 3646 -n04119360 3646 -n03443371 3646 -n04592099 3646 -n03062245 3650 -n04131690 3650 -n03914438 3650 -n03883385 3652 -n03050864 3652 -n03482405 3652 -n02893608 3652 -n04204238 3652 -n04582349 3652 -n03764736 3656 -n02823510 3656 -n04255586 3656 -n03904433 3657 -n02946509 3657 -n04103364 3657 -n03791053 3657 -n04170037 3657 -n04509417 3657 -n04543158 3657 -n02804515 3657 -n03484083 3657 -n02766534 3657 -n02834778 3657 -n03538634 3657 -n04467099 3657 -n02959942 3657 -n04482393 3657 -n02740533 3762 -n04065272 3762 -n04464852 3762 -n04252077 3762 -n02916179 3762 -n03684823 3762 -n04335435 3762 -n03791235 3762 -n04465501 3762 -n03384352 3762 -n02740300 3773 -n02739889 3773 -n03256788 3774 -n02946348 3774 -n04520382 3774 -n04211219 3778 -n03193597 3778 -n03272562 3778 -n04389854 3778 -n04465358 3778 -n04310018 3778 -n03193260 3789 -n03193423 3789 -n03506880 3780 -n04490091 3780 -n02704792 3780 -n03389761 3780 -n03790512 3780 -n03444034 3780 -n02958343 3780 -n04252225 3780 -n03345487 3797 -n04520170 3797 -n04467665 3797 -n04474035 3797 -n03417042 3797 -n03632852 3797 -n04461696 3797 -n03256166 3797 -n04465666 3797 -n03930630 3797 -n03173929 3805 -n03796401 3805 -n03896419 3805 -n03977966 3805 -n02871314 3805 -n04466871 3800 -n03785016 3800 -n02814533 3802 -n03680512 3802 -n03777568 3802 -n03268790 3802 -n03770679 3802 -n03100240 3802 -n03079136 3802 -n02930766 3802 -n04201733 3802 -n04037443 3802 -n03498781 3802 -n04097373 3802 -n02831335 3802 -n04285965 3802 -n04166281 3802 -n03594945 3802 -n03670208 3802 -n03141065 3802 -n02701002 3802 -n04516354 3802 -n04322801 3802 -n04347119 3802 -n03870105 3802 -n03543394 3802 -n04285008 3802 -n03119396 3802 -n03122295 3764 -n02970849 3764 -n03538406 3848 -n03255899 3848 -n03599486 3848 -n03981924 3848 -n03868242 3848 -n04397027 3766 -n03648431 3766 -n04176068 3766 -n02797295 3766 -n04204347 3766 -n03490119 3766 -n02835271 3768 -n04126066 3768 -n04026813 3768 -n03792782 3768 -n02968473 3769 -n03435991 3864 -n02912557 3864 -n04297098 3864 -n03389889 3864 -n02775039 3771 -n03393912 3771 -n03895866 3771 -n02932523 3771 -n02885108 3870 -n04389521 3870 -n03828020 3871 -n04020912 3871 -n03200357 3871 -n04246855 3871 -n04065789 3659 -n02747177 3659 -n03678558 3659 -n04134523 3661 -n03935116 3661 -n02900705 3665 -n03078995 3665 -n03210372 3665 -n03619650 3665 -n04548362 3665 -n02962843 3665 -n03986355 3665 -n03214582 3665 -n03031012 3665 -n04200000 3665 -n03468821 3665 -n02755140 3665 -n03683995 3665 -n04608435 3665 -n04556533 3665 -n02774630 3665 -n03438863 3665 -n03487533 3899 -n04137217 3899 -n02773838 3899 -n04491769 3899 -n03498441 3899 -n03420345 3903 -n04570815 3903 -n02967294 3903 -n03986949 3903 -n03865371 3903 -n04518764 3903 -n02863750 3666 -n03355768 3666 -n02881193 3666 -n03633091 3666 -n02876657 3666 -n02877266 3666 -n03990474 3666 -n03950228 3666 -n02808440 3666 -n03786901 3666 -n02909870 3666 -n03241496 3666 -n03129001 3666 -n04591887 3666 -n04001265 3666 -n04493381 3666 -n03572321 3666 -n04438897 3666 -n02801525 3666 -n03784270 3666 -n02758960 3666 -n03029445 3666 -n02795169 3666 -n04388743 3666 -n03593526 3666 -n02993368 3666 -n04447028 3914 -n03350204 3914 -n04149083 3915 -n04263336 3915 -n04246060 3916 -n03983396 3916 -n04557648 3916 -n03603722 3916 -n02985963 3916 -n03449451 3916 -n03937543 3916 -n02962061 3916 -n03359566 3916 -n02823428 3916 -n03571625 3916 -n03174450 3916 -n04579056 3916 -n03140431 3916 -n04591713 3916 -n02960903 3916 -n03923379 3916 -n04579145 3945 -n04560804 3945 -n03521675 3950 -n03295246 3950 -n04422727 3950 -n02952374 3950 -n04518132 3950 -n03709363 3956 -n03595409 3956 -n04139140 3918 -n04398044 3918 -n03259401 3918 -n04516214 3918 -n04324297 3918 -n03612814 3918 -n02939185 3918 -n03915118 3918 -n04397768 3918 -n03063689 3918 -n03064250 3971 -n04132985 3971 -n04399158 3971 -n04225031 3920 -n03543603 3920 -n03379343 3920 -n03797390 3923 -n03693707 3923 -n04389430 3923 -n03063599 3984 -n04443766 3984 -n02824058 3984 -n02836174 3930 -n02843158 3930 -n04553703 3930 -n02788572 3930 -n02823335 3934 -n04592005 3934 -n03610418 3934 -n03426134 3935 -n04560113 3935 -n04173046 3935 -n02732072 3935 -n04078574 3935 -n04562935 4001 -n04049303 4001 -n02951703 3936 -n02705429 3936 -n03101664 3936 -n02815834 3936 -n04516116 3936 -n03725600 3936 -n04522168 3936 -n03133415 3936 -n03593122 3936 -n03960374 3668 -n04476259 3668 -n02982515 3668 -n03259009 3668 -n03004275 3668 -n04131929 3668 -n03416900 3668 -n03565830 3668 -n03543735 3668 -n03858085 3668 -n04255163 3668 -n02747802 3668 -n03871628 3669 -n02919414 3669 -n03167978 3669 -n02778456 4026 -n03500389 4026 -n03870672 4026 -n02782681 3671 -n02971356 3671 -n03064758 3671 -n04200258 3671 -n04253057 3671 -n03908618 3671 -n03127925 3671 -n02786331 3671 -n04589325 3671 -n03014705 3671 -n04340750 3671 -n02998003 3671 -n03710193 3671 -n02978055 3671 -n02836392 3671 -n03871724 3671 -n04452615 4040 -n04462011 4040 -n03064350 4040 -n03535024 4040 -n04477548 4040 -n02989099 4040 -n02977438 4041 -n04125257 4041 -n02976939 4041 -n04125021 4041 -n04469813 1837 -n03002341 1837 -n04214282 1837 -n04019101 1837 -n04172342 1837 -n03538179 1837 -n04524313 1837 -n04231693 1837 -n04103918 1837 -n04467307 1837 -n04196502 1837 -n03678362 1837 -n03306385 4060 -n04212165 4060 -n04468005 4060 -n02924116 4060 -n03680942 4060 -n03394272 4071 -n03896233 4071 -n04349306 4071 -n03711044 4071 -n03394480 4071 -n03078802 4075 -n02917067 4075 -n04487081 4072 -n03769881 4072 -n04146614 4072 -n04310157 4063 -n02918964 4063 -n04099429 4063 -n03764276 4063 -n03773504 4063 -n03125870 4063 -n04235291 4063 -n03478589 4087 -n04389033 4087 -n03886053 4087 -n03919096 4087 -n03549199 4087 -n02686568 4089 -n04530566 4089 -n04264914 4089 -n03547229 4089 -n03510583 4096 -n04308084 4096 -n03666917 4096 -n03491032 4100 -n03439814 4100 -n03512147 4100 -n04552348 4100 -n02691156 4100 -n02759387 4100 -n02867715 4107 -n02704645 4107 -n04012084 4107 -n02690373 4107 -n02842573 4107 -n03365231 4107 -n03595860 4107 -n03335030 4107 -n04308273 4107 -n04160586 4107 -n02686121 4112 -n04583620 4112 -n03604311 4115 -n03596543 4115 -n04308397 4116 -n03577672 4116 -n02692877 4102 -n02850950 4102 -n02782093 4102 -n03541923 4102 -n02858304 4097 -n04476116 4097 -n04610013 4097 -n04194289 4097 -n04128837 4097 -n02792409 4097 -n03662601 4129 -n03977592 4129 -n03447447 4129 -n04158807 4129 -n02792552 4129 -n04095210 4129 -n04495843 4129 -n04024983 4129 -n03939178 4129 -n04244997 4129 -n03329663 4129 -n04409128 4129 -n02947660 4129 -n03344393 4129 -n03790230 4129 -n03236423 4139 -n03981566 4139 -n03545470 4139 -n04229480 4144 -n02951358 4144 -n03199901 4144 -n04037964 4144 -n03105306 4144 -n04612504 4144 -n03436891 4144 -n03602081 4144 -n04115456 4144 -n03609235 4154 -n03861430 4154 -n03254374 4154 -n04038231 4156 -n04038338 4156 -n04273569 4149 -n03859170 4149 -n02932891 4149 -n03552749 4149 -n04197110 4132 -n04606251 4132 -n03896103 4132 -n03947888 4132 -n03668488 4132 -n03541269 4132 -n04309348 4132 -n02965300 4132 -n04224543 4132 -n04552696 4132 -n03673027 4173 -n03698604 4181 -n02965216 4181 -n03141327 4181 -n03874138 4177 -n04317063 4177 -n02878222 4178 -n03095699 4178 -n02784124 4178 -n03845190 4178 -n04347754 4180 -n03466493 4180 -n03397266 4180 -n02812201 4180 -n03466600 4180 -n02687172 4180 -n03718212 4180 -n03180504 4180 -n02755529 4191 -n03811295 4191 -n04612373 4133 -n03045228 4133 -n03327133 4133 -n04242408 4133 -n03612010 4133 -n03186285 4133 -n04128499 4133 -n02793199 4133 -n04147183 4133 -n04587327 4133 -n04483307 4207 -n02981792 4207 -n02982416 4207 -n04266014 4098 -n04264765 4098 -n03218198 4090 -n02860847 4090 -n02861022 4090 -n04336792 4068 -n03122202 4068 -n06271778 1838 -n06255081 1838 -n06263609 1838 -n06276697 4221 -n06272290 4221 -n06276501 4221 -n06277280 4224 -n06281040 4224 -n06277135 4224 -n06278338 4227 -n06278475 4227 -n06274760 4225 -n06272803 4225 -n06272612 4225 -n06263369 4223 -n06266417 4223 -n06595351 4235 -n06267145 4235 -n06596607 4237 -n06596727 4237 -n06596364 4237 -n06596474 4237 -n06267893 4238 -n06267564 4238 -n06267655 4238 -n06266633 4236 -n06267991 4236 -n03938244 1055 -n03872495 1055 -n04135315 4249 -n02823964 4249 -n03408444 4249 -n02967626 4249 -n04053677 1056 -n04151940 1056 -n04453910 1056 -n03380867 1056 -n04014297 1056 -n03045698 1056 -n04605726 1056 -n04513827 1056 -n03050026 1056 -n03724870 1056 -n03341153 1056 -n03366823 1056 -n03058107 1056 -n02952237 1056 -n03357376 1056 -n03221059 1056 -n03376279 1056 -n03956623 1056 -n03261603 1056 -n02944459 4255 -n04201297 4255 -n02954938 4256 -n03717622 4256 -n03661340 4256 -n04041243 4275 -n02877765 4275 -n03825788 4275 -n03047690 4257 -n04199027 4257 -n02735538 4257 -n02872752 4257 -n03361550 4257 -n04241394 4257 -n03865949 4257 -n04122578 4282 -n04239786 4282 -n03027625 4282 -n04124370 4282 -n04272389 4282 -n02904927 4282 -n04593524 4282 -n04545748 4282 -n02855701 4282 -n02713364 4282 -n03041449 4282 -n03411079 4282 -n03680355 4282 -n04120489 4282 -n03868406 4282 -n02882894 4282 -n03967270 4282 -n04022332 4282 -n04133789 4282 -n03025250 4282 -n04027706 4306 -n04386664 4306 -n03364008 4306 -n03297103 4306 -n03600475 4284 -n02925666 4284 -n04228581 4284 -n03521544 4284 -n04089666 4284 -n04116294 4284 -n03516844 4284 -n04542715 4284 -n03124043 4284 -n03798061 4286 -n02873733 4286 -n03067518 4258 -n03046133 4258 -n04554211 4258 -n04444749 4258 -n03797896 4258 -n04192858 4258 -n02888270 4258 -n04151581 4258 -n04187233 4258 -n02826068 4258 -n04181718 4258 -n04191943 4258 -n04281375 4258 -n04416005 4258 -n04105068 4258 -n03314608 4258 -n03530910 4258 -n04187061 4258 -n02955065 4258 -n03725035 4258 -n03315644 4258 -n03142679 4258 -n02937958 4258 -n02739668 4258 -n02840245 4258 -n02840619 4258 -n03546766 4258 -n02851099 4258 -n03673767 4258 -n03959701 4328 -n03539433 4352 -n02740764 4352 -n02895154 4354 -n03513376 4354 -n02950632 4354 -n03623338 4354 -n03929855 4356 -n04130907 4356 -n04589890 4330 -n03347037 4330 -n04590553 4330 -n03788365 4330 -n03637318 4333 -n03889871 4333 -n03652729 4334 -n02825657 4334 -n04172776 4334 -n02843684 4334 -n02951843 4334 -n03610524 4334 -n02763901 4371 -n04507155 4371 -n03415252 4371 -n03409591 4337 -n04357121 4337 -n03718789 4337 -n03220513 4337 -n03522100 4337 -n04435653 4337 -n03546235 4337 -n04523525 4337 -n04234887 4337 -n03413684 4337 -n04417672 4337 -n03148727 4379 -n03435593 4379 -n03847471 4379 -n02796207 4383 -n04087709 4383 -n03527444 4340 -n04141327 4340 -n04207763 4340 -n03548086 4341 -n04423845 4341 -n03213538 4341 -n03657121 4341 -n03424325 4342 -n03314378 4342 -n04229816 4400 -n02983189 4400 -n02862048 4346 -n04192698 4346 -n03000247 4403 -n02916936 4403 -n03112719 4403 -n03146219 4403 -n02933340 4349 -n04045255 4349 -n02873520 4349 -n04589190 4350 -n03592669 4350 -n03151077 4350 -n04211356 4350 -n04525584 4412 -n04590129 4412 -n04102285 4412 -n04418357 4414 -n04209239 4414 -n02925107 4351 -n02890513 4351 -n03436549 4260 -n03291741 4260 -n02992368 4260 -n07248320 4260 -n03590306 4260 -n03958752 4260 -n04207151 4262 -n03885293 4262 -n03654576 4262 -n02767665 4262 -n03114379 4262 -n02785648 4262 -n02876084 4262 -n04240752 4262 -n02820210 4262 -n04236377 4262 -n02851939 4262 -n03309356 4262 -n04231272 4262 -n04162433 4262 -n02786058 4434 -n04369025 4434 -n02979836 4434 -n03267821 4434 -n04033995 4437 -n02683323 4437 -n02849154 4437 -n02822220 4437 -n03731483 4437 -n03898633 4447 -n03266749 4447 -n03128427 4447 -n03123553 4450 -n04034262 4450 -n04046400 4438 -n03688405 4438 -n04118021 4265 -n03223299 4265 -n03727837 4265 -n04144539 4459 -n04183217 4459 -n03998194 4459 -n02904233 4459 -n04297847 4459 -n04066270 4459 -n02908773 4459 -n03353951 4266 -n03445326 4266 -n04528079 4266 -n03875218 4266 -n03805725 4266 -n03437430 4266 -n03115897 4266 -n03284743 4266 -n04525417 4266 -n03342015 4472 -n03284886 4472 -n03285578 4472 -n03844233 4472 -n04557308 4472 -n03646020 4482 -n04581102 4482 -n03261019 4268 -n03973402 4268 -n03642444 4268 -n04450994 4268 -n04084889 4268 -n04412097 4268 -n03337383 4270 -n03729308 4270 -n03970546 1057 -n03802393 1057 -n04395024 1057 -n04525038 1057 -n02809105 1057 -n03615406 1057 -n02828427 1057 -n04123567 1057 -n03188725 1057 -n04539794 1057 -n03253796 1057 -n03013850 1057 -n03115400 1057 -n04459610 1057 -n03132666 1057 -n03885194 1057 -n03019938 1057 -n03326795 1057 -n03115180 1057 -n04525191 1057 -n04138261 1057 -n03625355 1057 -n04137355 1057 -n04003856 1057 -n03356982 1057 -n04568841 1057 -n03409297 1057 -n02944579 1057 -n04605163 1057 -n02977330 1057 -n04395106 1057 -n03779128 1057 -n02904803 1057 -n04524941 1057 -n04198453 1057 -n02878425 1057 -n03703862 1057 -n03819595 1057 -n03877351 1057 -n04613015 1057 -n03914831 1057 -n03932670 1057 -n03785237 1057 -n04414476 1057 -n04056932 1057 -n02675219 1057 -n03106722 1057 -n03917814 1057 -n03016868 1057 -n02922798 1057 -n04432662 1057 -n02802990 1057 -n03631177 1057 -n04189282 1057 -n03435743 1057 -n03983612 1057 -n03175189 1057 -n03357267 1057 -n04184316 1057 -n02942460 1057 -n03836906 1057 -n03233123 1057 -n03430091 1057 -n03855214 1057 -n03386726 1057 -n03437741 1057 -n04599235 1057 -n04350458 1057 -n04383839 1057 -n03653110 1057 -n04502502 1057 -n03854421 1057 -n02952109 1057 -n03298858 1057 -n03160740 1057 -n03843438 1057 -n04393549 1057 -n02903852 1057 -n03947798 1057 -n03529444 1057 -n04482297 4514 -n03227317 4514 -n03595523 4514 -n03429914 4530 -n04496614 4530 -n03016609 4530 -n03485794 4534 -n03463666 4534 -n03258330 4534 -n03207743 4534 -n04459362 4534 -n02786198 4534 -n03471190 4534 -n02834397 4534 -n04127904 4534 -n03897943 4534 -n03490006 4583 -n03887697 4583 -n03207835 4583 -n03381776 4587 -n03383099 4587 -n04278447 4587 -n03505383 4587 -n04455652 4587 -n03712337 4587 -n02782602 4587 -n03598151 4592 -n03775747 4592 -n03410571 4592 -n03696568 4592 -n04307767 4592 -n03645577 4592 -n03358380 4588 -n04208065 4588 -n03809603 4539 -n02820556 4539 -n03703730 4545 -n03938522 4545 -n04045397 1059 -n03663531 1059 -n03662719 4612 -n03703945 4612 -n03662887 4612 -n04326084 1060 -n02897820 1060 -n14943580 1060 -n14785065 1060 -n15074568 1060 -n14820180 1060 -n04035912 1060 -n03766935 4616 -n04313628 4616 -n03530511 4616 -n03460297 4616 -n03149686 4616 -n03455488 4616 -n03344642 4617 -n03796522 4617 -n03043693 4617 -n02681392 4617 -n04339638 4618 -n15102455 4618 -n04234455 4633 -n03341297 4633 -n04453390 4633 -n14908027 4620 -n14976759 4620 -n03111177 1061 -n03282401 1061 -n03451798 1061 -n03292603 1061 -n03815149 1061 -n03723267 1061 -n02892304 1061 -n07621618 1061 -n02732572 1061 -n03178782 1061 -n02681518 1061 -n03397087 1061 -n03635108 1061 -n04395651 4649 -n03762602 4649 -n03282591 4649 -n06883725 4649 -n03516367 4649 -n04682462 4649 -n03354903 4655 -n02788021 4655 -n04458633 4655 -n03140292 4655 -n03362890 4655 -n05244934 4658 -n11487732 4658 -n03597469 4650 -n03397532 4650 -n03649161 4650 -n03914106 4650 -n02787435 4650 -n03030262 4650 -n02685082 4650 -n02887970 4666 -n02852043 4666 -n03909020 4666 -n03814906 4666 -n03436075 1062 -n03899328 1062 -n04096066 1062 -n03895293 1062 -n04215402 4678 -n04461570 4678 -n03904183 4678 -n03519981 4679 -n02969323 4679 -n04426618 4679 -n04466613 4679 -n03215508 4684 -n03306610 4684 -n02744323 4684 -n02762508 4689 -n02758863 4689 -n04335209 4686 -n04334599 4686 -n03948242 4687 -n03539678 4687 -n02680512 4680 -n03089014 4680 -n03895585 4680 -n04493505 4698 -n04244379 4698 -n04250850 4698 -n04562496 4698 -n02984469 4700 -n02795528 4700 -n03944672 4700 -n03533014 4700 -n04385536 4706 -n03231912 4706 -n03147280 4709 -n04257684 4709 -n04497962 4699 -n04298661 4699 -n03415749 4699 -n02981024 4712 -n04048441 4712 -n04391569 1063 -n02784218 1063 -n03572107 4717 -n02680337 4717 -n03957420 4720 -n02992795 4720 -n03506028 4718 -n03438071 4718 -n04440749 4718 -n02739427 4718 -n04040247 4725 -n02971167 4725 -n04381994 1064 -n04087432 1064 -n03153375 4729 -n03438661 4729 -n03527149 4729 -n03963198 4729 -n04284002 4731 -n04380346 4731 -n03383948 4731 -n04284438 4731 -n04263502 4735 -n04398688 4735 -n04350769 4735 -n04597913 4735 -n03557270 4735 -n04381073 4735 -n03180384 4735 -n02976249 4736 -n02928049 4736 -n04307986 4736 -n04380255 4737 -n02973805 4737 -n02687992 1065 -n04406817 1065 -n02693246 1065 -n02692232 1065 -n03745146 1065 -n04329190 1065 -n04306080 1065 -n04551055 4756 -n03452449 4756 -n03131669 4756 -n03768916 1066 -n03214253 1066 -n03587205 4762 -n03406966 4762 -n03093574 1067 -n03672352 1067 -n03051540 4765 -n02729837 4765 -n03655720 4767 -n03456186 4767 -n02855925 4767 -n03825080 4767 -n04015204 4767 -n03859495 4767 -n03815482 4767 -n03625943 4767 -n03692379 4767 -n02728440 4767 -n03068998 4767 -n03763968 4767 -n03502509 4767 -n03877472 4767 -n03419014 4767 -n02742322 4767 -n04596852 4767 -n03863108 4767 -n03441112 4767 -n02671780 4767 -n02846141 4767 -n03381126 4767 -n02756098 4767 -n04059157 4767 -n02814774 4767 -n03746330 4767 -n04335693 4767 -n04241249 4767 -n04194127 4773 -n03863262 4773 -n04001845 4773 -n02738859 4773 -n03386870 4773 -n03216402 4773 -n02730930 4773 -n04207903 4773 -n03121897 4773 -n03015478 4773 -n03268645 4773 -n04266375 4773 -n03623198 4773 -n03450516 4774 -n04532106 4810 -n03010795 4810 -n02669723 4810 -n02811719 4780 -n03324928 4780 -n03239259 4780 -n03615563 4780 -n03513137 4781 -n03531281 4781 -n04498389 4781 -n03497657 4781 -n02954340 4781 -n03124474 4781 -n04432203 4781 -n03379051 4818 -n03492922 4818 -n03127747 4818 -n04356595 4821 -n03404360 4821 -n03124170 4821 -n02817516 4821 -n02859184 4821 -n04248507 4821 -n03325941 4821 -n02987379 4821 -n04259630 4821 -n04482177 4821 -n02818135 4821 -n03984643 4821 -n02869837 4821 -n03950899 4821 -n02881757 4821 -n03766322 4821 -n03046029 4843 -n03937835 4843 -n02799323 4822 -n03103563 4822 -n04209133 4822 -n03610682 4822 -n02776825 4822 -n03331077 4822 -n04387095 4822 -n02831237 4822 -n04232153 4822 -n03049924 4822 -n04228693 4822 -n04556408 4822 -n02807133 4822 -n03787032 4822 -n04612026 4854 -n02816768 4854 -n03502331 4783 -n04143897 4783 -n04104770 4783 -n03188531 4783 -n04605572 4783 -n04097866 4783 -n04574067 4783 -n03655072 4783 -n04230808 4783 -n04508163 4783 -n04172904 4783 -n04531873 4783 -n04197391 4783 -n03863923 4783 -n03540090 4783 -n02922578 4783 -n04488530 4783 -n04489008 4783 -n04332580 4783 -n03404149 4783 -n03816005 4783 -n04370774 4783 -n03657511 4783 -n04371563 4783 -n03487642 4783 -n04046277 4783 -n04350905 4783 -n04370048 4783 -n03450734 4783 -n03314884 4862 -n03826039 4862 -n02998841 4862 -n03719743 4863 -n03797182 4863 -n03505504 4863 -n04495698 4863 -n03325584 4863 -n04325704 4863 -n03520493 4896 -n03615655 4896 -n03237992 4867 -n03617480 4867 -n02667093 4867 -n02807616 4867 -n03410938 4869 -n04269822 4869 -n03866082 4870 -n03454442 4870 -n03770439 4870 -n03617312 4870 -n03732458 4870 -n02780815 4870 -n03205669 4870 -n04136333 4870 -n03534580 4870 -n03920737 4871 -n02892767 4871 -n03387323 4871 -n04223299 4871 -n03421324 4871 -n03132776 4871 -n04508949 4871 -n02863014 4871 -n02944146 4871 -n04514241 4871 -n03013580 4871 -n04508489 4871 -n03112869 4919 -n03885788 4919 -n04103665 4919 -n03673450 4923 -n03688192 4923 -n02930214 4923 -n04509171 4932 -n03824381 4932 -n02854739 4928 -n04426427 4928 -n02837887 4928 -n02901114 4928 -n03885028 4928 -n03234164 4928 -n04602956 4874 -n03629231 4874 -n03595614 4874 -n03163381 4874 -n03978966 4874 -n03057021 4875 -n03045337 4875 -n04252560 4875 -n04363777 4948 -n03254046 4948 -n04187970 4948 -n03398228 4948 -n03630383 4948 -n03456665 4948 -n03589791 4948 -n04049405 4948 -n02957008 4948 -n04123448 4948 -n03404251 4948 -n03751269 4957 -n04222307 4957 -n02867966 4957 -n03902756 4957 -n04368496 4957 -n03228254 4957 -n02864504 4957 -n03891051 4957 -n03844815 4958 -n04479046 4958 -n03770954 4961 -n04122492 4961 -n03980874 4949 -n04445154 4949 -n04445040 4949 -n03607923 4949 -n04173907 4949 -n04497570 4949 -n04186455 4949 -n02936402 4949 -n04205318 4879 -n03877674 4879 -n04370288 4879 -n04132158 4879 -n02896442 4879 -n03019434 4879 -n04233715 4879 -n03600285 4879 -n03903733 4879 -n03688605 4879 -n03594734 4879 -n03107488 4879 -n03660124 4879 -n04337287 4879 -n02825442 4879 -n02910864 4879 -n03543112 4982 -n02831595 4982 -n03653833 4982 -n03815615 4882 -n03128085 4882 -n02865351 5001 -n04591157 5001 -n02883205 5001 -n02847631 5001 -n03710721 4885 -n04371430 4885 -n02837789 4885 -n03226538 4888 -n03943920 4888 -n04222470 4888 -n03885669 4888 -n02925519 4888 -n04427715 5014 -n04504141 5014 -n04502197 4889 -n02963159 4889 -n04370456 4889 -n04021028 4889 -n04453666 4785 -n03464053 4785 -n02944075 4785 -n03236735 4785 -n02861387 5021 -n02854926 5021 -n03480579 5021 -n03062015 5024 -n04136161 5024 -n02936570 5024 -n04355511 5024 -n03013438 5024 -n04334105 5024 -n03450230 5024 -n03604400 5024 -n03205574 5024 -n02898585 5034 -n04397645 5034 -n02781121 5034 -n03429682 4787 -n03775071 4787 -n03616979 4787 -n02827606 4788 -n03405595 4788 -n03781683 5043 -n03527565 5043 -n02972397 5043 -n03540267 4790 -n04434932 5048 -n04254777 5048 -n04323819 5048 -n03885904 5049 -n03710637 5049 -n02752496 5050 -n04378956 5050 -n03622931 5050 -n02736798 5050 -n03836976 5051 -n03026506 5051 -n03384891 4791 -n03289985 4791 -n03859958 4791 -n02726017 4791 -n03113657 4791 -n03320519 4791 -n03113835 4791 -n03398153 4791 -n04285803 4791 -n02669534 4791 -n03206718 4791 -n03476083 4791 -n03201776 5060 -n02780704 5060 -n03201638 5060 -n03239054 5060 -n02683454 5071 -n04459018 5071 -n04584207 5071 -n03237416 4794 -n02887489 4794 -n02752615 4794 -n03528263 4768 -n03251766 4768 -n04517823 5082 -n03584829 5082 -n04488857 5082 -n03150511 5082 -n04580493 5082 -n04179913 5082 -n04174101 5082 -n03620052 5082 -n03534776 5082 -n04475631 5085 -n04309833 5085 -n03207941 5088 -n04070727 5088 -n04554684 5088 -n03102654 5096 -n03273913 5096 -n03557590 5099 -n03170635 5099 -n04442312 5091 -n03761084 5091 -n04442441 5091 -n03063338 5091 -n03543254 5091 -n04542943 5091 -n03212114 5091 -n03297495 5091 -n04330340 5091 -n03862676 5091 -n03378174 5091 -n03557692 5091 -n03102371 5110 -n03273740 5110 -n03425595 5110 -n04003241 5110 -n02905036 5111 -n04111531 5111 -n03259280 5111 -n03425241 5111 -n03483316 5083 -n03050655 5083 -n04277826 5123 -n04496726 5123 -n04607242 5123 -n02808304 4766 -n03219010 4766 -n04499446 4766 -n02821030 4766 -n03938725 5130 -n04188179 5130 -n04439712 1068 -n03971218 1068 -n03223553 1068 -n02856463 1068 -n03250279 1068 -n03882058 1068 -n03635668 1068 -n02846511 1068 -n04251791 5136 -n04189816 5136 -n02731900 5136 -n04225987 5136 -n04214046 5136 -n04149813 5136 -n04543996 5138 -n03502200 5138 -n03005285 1069 -n03969259 1069 -n04254009 1069 -n04446521 5150 -n04208936 5150 -n04559451 5150 -n03371875 5152 -n03993053 5152 -n04108268 1071 -n03106110 1071 -n03644378 5157 -n02919890 5157 -n04290079 5157 -n03107046 5157 -n04426788 5158 -n02874537 5158 -n04581829 5158 -n03641569 5158 -n03367545 5163 -n04598965 5163 -n04605321 5163 -n00004475 1042 -n00006484 1042 -n12739332 5170 -n00017222 5170 -n00015388 5170 -n01326291 5170 -n11537327 5170 -n00007846 5170 -n12992868 5170 -n00005787 5170 -n12172906 5173 -n13083586 5173 -n13123431 5173 -n11536673 5173 -n11552806 5173 -n13083023 5173 -n13100156 5173 -n12476510 5181 -n11545524 5181 -n11552386 5181 -n13121544 5181 -n12205694 5181 -n13100677 5181 -n13103136 5181 -n13085113 5181 -n13084834 5181 -n13134302 5181 -n13084184 5181 -n12477163 5187 -n12477583 5187 -n12477747 5187 -n12480895 5187 -n12479537 5187 -n12481458 5187 -n11547562 5188 -n11545714 5188 -n13221529 5204 -n13220122 5204 -n13223265 5206 -n13223588 5208 -n13223710 5208 -n12953206 5205 -n13194572 5205 -n13205058 5205 -n12961879 5205 -n12953484 5205 -n13186654 5205 -n13197274 5205 -n13173882 5205 -n13229543 5205 -n13192625 5205 -n13185269 5205 -n13193642 5205 -n13207335 5205 -n13183056 5205 -n13200651 5205 -n13195341 5205 -n13206817 5205 -n13199970 5205 -n12957924 5205 -n13198914 5205 -n13199717 5205 -n13215586 5216 -n13190747 5216 -n13193856 5222 -n13194036 5222 -n11665372 5189 -n11596108 5189 -n12694486 5236 -n11666854 5236 -n11669921 5236 -n11672400 5236 -n12606438 5240 -n12799776 5240 -n11736694 5240 -n12008487 5240 -n11955896 5240 -n12879527 5240 -n12884260 5240 -n12034141 5240 -n12290748 5240 -n12026476 5240 -n12833149 5240 -n11892817 5240 -n12914923 5240 -n11969607 5240 -n11794024 5240 -n12026018 5240 -n11672269 5240 -n12830222 5240 -n11811473 5240 -n12022054 5240 -n11971406 5240 -n11826198 5240 -n12950314 5240 -n11857875 5240 -n11988596 5240 -n11939699 5240 -n11915214 5240 -n11821184 5240 -n12293723 5240 -n11814584 5240 -n11725015 5240 -n12890265 5240 -n11733312 5240 -n11859472 5240 -n11971248 5240 -n11888800 5240 -n11971927 5240 -n12898774 5240 -n11810358 5240 -n11904109 5240 -n11943407 5240 -n11978233 5240 -n12683407 5240 -n12950126 5240 -n11726707 5240 -n11813077 5240 -n11889619 5240 -n11905749 5240 -n11812910 5240 -n11900569 5240 -n12020184 5240 -n11960245 5240 -n11859737 5240 -n12909421 5240 -n12041446 5240 -n12909917 5240 -n11992806 5240 -n11807979 5240 -n11925303 5240 -n11971783 5240 -n11939491 5240 -n11918473 5240 -n11989869 5240 -n11727091 5240 -n11793779 5240 -n11891175 5240 -n11792341 5240 -n11839568 5240 -n11943660 5240 -n11947802 5240 -n12475242 5240 -n11815491 5240 -n12480456 5240 -n11839823 5240 -n11732567 5240 -n12475035 5240 -n12360108 5240 -n12833985 5240 -n11941924 5240 -n11883328 5240 -n11719286 5240 -n11736851 5240 -n11887119 5240 -n12001707 5240 -n11950345 5240 -n11892637 5240 -n11805956 5240 -n11892029 5240 -n11806219 5240 -n12008252 5240 -n11918286 5240 -n11962272 5240 -n12093600 5240 -n12836862 5240 -n12093329 5240 -n11733054 5240 -n12020507 5240 -n11931918 5240 -n11958080 5240 -n12877838 5240 -n11812094 5260 -n11811706 5260 -n11923174 5268 -n12023726 5268 -n12023407 5268 -n11923637 5268 -n11990313 5268 -n11915899 5268 -n12030908 5268 -n12015221 5268 -n11990167 5268 -n11981192 5349 -n11980318 5349 -n11972759 5349 -n11921395 5349 -n12294124 5270 -n12295796 5270 -n12294723 5270 -n12294331 5270 -n12294871 5270 -n12296432 5270 -n12295033 5270 -n11726269 5272 -n11725821 5272 -n11725973 5272 -n12891305 5273 -n12891643 5273 -n11978713 5283 -n11979527 5283 -n11978961 5283 -n11979715 5283 -n12683571 5284 -n12683791 5284 -n11901759 5291 -n11908549 5291 -n11901294 5291 -n11903671 5291 -n11901977 5291 -n11902389 5291 -n11908846 5291 -n11901597 5291 -n11905392 5291 -n11902200 5291 -n11906917 5291 -n12044467 5296 -n12052787 5296 -n12056217 5296 -n12075830 5296 -n12055516 5296 -n12083113 5296 -n12047884 5296 -n12048056 5296 -n12080820 5296 -n12070381 5296 -n12061380 5296 -n12080395 5296 -n12061614 5296 -n12074408 5296 -n12070583 5296 -n12071744 5296 -n12049282 5296 -n12047345 5296 -n12064389 5296 -n12075010 5296 -n12052447 5296 -n12053405 5296 -n12050533 5296 -n12077944 5296 -n12086539 5296 -n12064591 5296 -n12058822 5296 -n12046028 5296 -n12083591 5296 -n12073991 5296 -n12043444 5296 -n12086012 5296 -n12073554 5296 -n12046815 5296 -n12063639 5296 -n12058630 5296 -n12084890 5296 -n12070016 5296 -n12076223 5296 -n12069679 5296 -n12048399 5296 -n12049562 5296 -n12076577 5296 -n12086192 5296 -n12074867 5296 -n12075299 5296 -n12072722 5296 -n12066018 5296 -n12084555 5296 -n12070712 5296 -n12079963 5296 -n12065316 5296 -n12059314 5296 -n12085664 5296 -n12050959 5296 -n12062468 5296 -n12085267 5296 -n12078172 5296 -n12057211 5388 -n12057447 5388 -n12056758 5388 -n12056601 5388 -n12043836 5416 -n12043673 5416 -n12067193 5437 -n12066630 5437 -n12062781 5441 -n12062626 5441 -n11808299 5299 -n11808721 5299 -n11808932 5299 -n11808468 5299 -n11809594 5299 -n11809094 5299 -n11727358 5305 -n11727738 5305 -n11727540 5305 -n11816649 5313 -n11816336 5313 -n11816829 5313 -n11816121 5313 -n11815918 5313 -n11815721 5313 -n12362274 5318 -n12362668 5318 -n12361946 5318 -n11950877 5326 -n11950686 5326 -n11961100 5326 -n12020736 5338 -n12020941 5338 -n11934616 5339 -n11933546 5339 -n11934807 5339 -n12879963 5241 -n12015959 5241 -n11836722 5241 -n11860555 5241 -n12258885 5241 -n11980682 5241 -n12016567 5241 -n11737534 5241 -n11965627 5241 -n11991263 5241 -n11989393 5241 -n12006766 5241 -n12887293 5241 -n12937130 5241 -n12291959 5241 -n11972291 5241 -n11927215 5241 -n12012111 5241 -n11970586 5241 -n11963932 5241 -n11966215 5488 -n11966083 5488 -n12006930 5491 -n12007196 5491 -n11600372 5237 -n11599324 5237 -n11603246 5504 -n11602873 5504 -n11603835 5504 -n11601333 5504 -n12484784 5190 -n12610328 5190 -n11791569 5190 -n11714853 5190 -n13122364 5190 -n11715430 5513 -n11715678 5513 -n12801781 5514 -n11728099 5514 -n11786131 5514 -n12150028 5514 -n12801520 5514 -n11789066 5514 -n11792742 5514 -n12152532 5520 -n12151615 5520 -n12152722 5520 -n11733548 5191 -n11720353 5191 -n12810595 5191 -n12342299 5191 -n13238375 5191 -n12867826 5191 -n12665048 5191 -n11973341 5191 -n12312728 5191 -n11818069 5191 -n12848499 5191 -n11779300 5191 -n12822955 5191 -n12816508 5191 -n12719684 5191 -n12350758 5191 -n12095020 5191 -n11861641 5191 -n11962667 5191 -n12870891 5191 -n12939282 5191 -n12812478 5191 -n12031927 5191 -n12023108 5191 -n12858150 5191 -n12861892 5191 -n12841007 5191 -n12212361 5191 -n12869061 5191 -n12906214 5191 -n12910285 5191 -n12486574 5191 -n12090890 5191 -n12702948 5191 -n12437513 5191 -n11968931 5191 -n11817914 5191 -n11772408 5191 -n12932173 5191 -n12817694 5191 -n11910460 5191 -n12603449 5191 -n12939874 5191 -n12002428 5191 -n12015525 5191 -n11807108 5191 -n12835331 5191 -n12168565 5191 -n12840362 5191 -n12352287 5191 -n11969166 5191 -n11968704 5191 -n12821895 5191 -n12344283 5191 -n11866248 5191 -n11995092 5191 -n12622875 5191 -n11735053 5191 -n12548280 5191 -n13150894 5191 -n12685431 5191 -n12387633 5191 -n12171966 5191 -n12796022 5191 -n12934036 5191 -n12443323 5191 -n12870535 5191 -n12682668 5191 -n12778605 5191 -n12623077 5191 -n12836212 5191 -n11982115 5191 -n12003696 5191 -n12005656 5191 -n12098403 5191 -n12606545 5191 -n11902709 5191 -n12882945 5191 -n12785889 5191 -n11986511 5191 -n12682411 5191 -n12469517 5191 -n12029635 5191 -n12860365 5191 -n12552309 5191 -n11977303 5191 -n11825351 5191 -n12836337 5191 -n12844939 5191 -n12925179 5191 -n11926833 5191 -n12604228 5191 -n11752578 5191 -n12855042 5191 -n11956850 5191 -n12092262 5191 -n12506991 5191 -n12882779 5191 -n11747468 5191 -n12385429 5191 -n12822115 5191 -n12821505 5191 -n12607456 5191 -n12819728 5191 -n12817464 5191 -n12811027 5191 -n12024445 5191 -n12573474 5191 -n12864545 5191 -n11949402 5191 -n11868814 5191 -n11953038 5191 -n12599435 5191 -n12840749 5191 -n13233727 5191 -n12342498 5191 -n12795555 5191 -n11984542 5191 -n12847008 5191 -n12719944 5191 -n11855274 5191 -n12095647 5191 -n12441183 5191 -n12942572 5191 -n12602980 5191 -n12684379 5191 -n12441390 5191 -n12785724 5191 -n11916696 5191 -n12574320 5191 -n12092417 5191 -n12036939 5191 -n11700058 5191 -n12845413 5191 -n11824146 5191 -n11910271 5191 -n11916467 5191 -n11807525 5191 -n12101870 5191 -n11939180 5191 -n12353754 5191 -n12104501 5191 -n12794985 5191 -n12355760 5191 -n12793015 5191 -n12932966 5191 -n12931542 5191 -n12889713 5191 -n12849061 5191 -n11722466 5528 -n11720643 5528 -n12665857 5533 -n12665271 5533 -n11785668 5538 -n11780148 5538 -n11784497 5538 -n11782036 5538 -n11786539 5538 -n11782761 5538 -n12858871 5551 -n12858397 5551 -n11959632 5554 -n11959862 5554 -n12911673 5557 -n12911440 5557 -n12091213 5559 -n12091550 5559 -n12091377 5559 -n12091953 5559 -n12703557 5560 -n12703190 5560 -n12703383 5560 -n12437930 5561 -n12437769 5561 -n12352639 5576 -n12352844 5576 -n12352990 5576 -n12344700 5580 -n12344483 5580 -n12687957 5587 -n12685831 5587 -n12687698 5587 -n12687462 5587 -n12686274 5707 -n12686077 5707 -n12687044 5707 -n12686676 5707 -n12388989 5588 -n12388143 5588 -n12387839 5588 -n12388858 5716 -n12390099 5716 -n12389501 5716 -n12390314 5716 -n12782915 5595 -n12779603 5595 -n12781940 5595 -n12782530 5595 -n11753700 5619 -n11753355 5619 -n11753143 5619 -n12856680 5620 -n12855494 5620 -n12540250 5625 -n12515711 5625 -n12575322 5625 -n12575812 5625 -n12556307 5625 -n12539306 5625 -n12557681 5734 -n12558425 5734 -n12866162 5635 -n12865824 5635 -n12865037 5635 -n12866635 5635 -n12865562 5635 -n12866002 5635 -n11879054 5637 -n11878283 5637 -n11875691 5637 -n11876634 5637 -n11877193 5637 -n11876803 5637 -n11876432 5637 -n11870418 5637 -n11875938 5637 -n11894327 5637 -n11881742 5637 -n11870747 5637 -n11896722 5745 -n11879722 5745 -n11895092 5753 -n11894770 5753 -n11882074 5754 -n11882426 5754 -n13235503 5641 -n13234678 5641 -n12039317 5658 -n12037691 5658 -n12038406 5658 -n12038585 5658 -n12148757 5665 -n12102133 5665 -n12121610 5769 -n12139575 5769 -n12113195 5769 -n12112918 5769 -n12116429 5769 -n12141495 5769 -n12133462 5769 -n12108871 5769 -n12104238 5769 -n12141167 5769 -n12115180 5769 -n12112008 5769 -n12128071 5769 -n12146311 5769 -n12124627 5769 -n12110778 5769 -n12129134 5769 -n12134025 5775 -n12145477 5775 -n12142085 5775 -n12135898 5775 -n12137120 5790 -n12127030 5790 -n12127768 5792 -n12127460 5792 -n12356023 5670 -n12357485 5670 -n12793494 5671 -n12794135 5671 -n12849279 5675 -n12849416 5675 -n12847374 5192 -n12517642 5192 -n11731659 5192 -n12813189 5192 -n11838916 5192 -n12517445 5192 -n12513172 5192 -n12823859 5192 -n12566954 5192 -n13148208 5192 -n12158798 5192 -n12485981 5192 -n13237188 5192 -n12826516 5192 -n13120211 5192 -n12580654 5192 -n11769621 5192 -n12824053 5192 -n11769803 5192 -n12383402 5192 -n12823717 5192 -n12157769 5192 -n13144794 5192 -n12371439 5192 -n12159055 5811 -n12160490 5811 -n12158443 5811 -n12160303 5825 -n12159388 5825 -n12160857 5826 -n12161969 5826 -n12827270 5814 -n12828791 5814 -n12827537 5814 -n11788727 5815 -n11789589 5815 -n12571781 5815 -n11792029 5815 -n12384839 5820 -n12384227 5820 -n12384037 5820 -n12164363 5822 -n12166128 5822 -n12165170 5842 -n12164881 5842 -n12164656 5842 -n13146583 5823 -n13145040 5823 -n12509476 5193 -n13112664 5193 -n13104059 5193 -n12655869 5193 -n12546183 5193 -n12671651 5850 -n12215579 5850 -n12901724 5850 -n12938193 5850 -n12680864 5850 -n12329260 5850 -n12924623 5850 -n12659356 5850 -n12788201 5850 -n12343480 5850 -n13142504 5850 -n11830906 5850 -n12504783 5850 -n12659539 5850 -n12214789 5850 -n11699442 5850 -n12217453 5850 -n12574866 5850 -n12374418 5850 -n12249542 5850 -n13118707 5850 -n12215022 5850 -n12342852 5850 -n12762896 5850 -n12306717 5850 -n11769176 5850 -n12805146 5850 -n12519089 5850 -n11754893 5850 -n12772908 5850 -n12624381 5850 -n12482031 5850 -n12243109 5850 -n12223764 5850 -n12170585 5850 -n12230794 5850 -n12791329 5850 -n12674120 5850 -n12917901 5850 -n12237486 5850 -n12185859 5850 -n12681893 5850 -n12905412 5850 -n12899537 5850 -n12899752 5850 -n12806015 5850 -n12011620 5850 -n12922763 5850 -n12651229 5850 -n12303083 5850 -n11928352 5850 -n11926365 5850 -n12223569 5850 -n12791064 5850 -n12311579 5850 -n11834654 5850 -n11760785 5850 -n12749679 5850 -n12489815 5850 -n12666965 5850 -n12929403 5850 -n12902662 5850 -n12620196 5850 -n12237641 5850 -n12625383 5850 -n12244153 5850 -n11774513 5850 -n12520864 5850 -n12516828 5850 -n12849717 5850 -n12485653 5850 -n12790430 5862 -n12788854 5862 -n11924445 5874 -n12632335 5874 -n11947251 5874 -n12099342 5874 -n11931540 5874 -n12545635 5874 -n11778257 5874 -n11924849 5874 -n12367611 5874 -n12602262 5874 -n12328567 5874 -n12328398 5874 -n12629305 5874 -n11907689 5874 -n11940006 5874 -n12546962 5874 -n11925898 5874 -n11947629 5929 -n11948864 5929 -n11948264 5929 -n12368451 5935 -n12369309 5935 -n12368028 5935 -n12307240 5878 -n12307076 5878 -n12483427 5885 -n12483625 5885 -n12482893 5885 -n12483841 5885 -n12173664 5888 -n12173912 5888 -n12171316 5888 -n12174521 5888 -n12171098 5888 -n12177844 5888 -n12174311 5888 -n12178896 5961 -n12179122 5961 -n12676534 5891 -n12676703 5891 -n12675876 5891 -n12920204 5892 -n12921868 5892 -n12621410 5916 -n12622297 5916 -n12245319 5919 -n12244650 5919 -n12244819 5919 -n12521394 5921 -n12530818 5921 -n12849952 5923 -n12850336 5923 -n12850168 5923 -n12495146 5851 -n12570972 5851 -n12196129 5851 -n13107694 5851 -n12202936 5851 -n13111881 5851 -n13103877 5851 -n12409231 5851 -n12765115 5851 -n12265600 5851 -n12409470 5851 -n12713866 5851 -n12281241 5851 -n11709205 5851 -n12189429 5851 -n12562785 5851 -n12284821 5851 -n12401335 5851 -n12570394 5851 -n11759224 5851 -n12286988 5851 -n12491826 5851 -n12527738 5851 -n12696492 5851 -n12325234 5851 -n12198286 5851 -n12330891 5851 -n11650558 5851 -n12405714 5851 -n12284262 5851 -n12714755 5851 -n13109733 5851 -n12262553 5851 -n12506341 5851 -n12303462 5851 -n12260799 5851 -n12302071 5851 -n12492106 5851 -n11762433 5851 -n12582231 5851 -n12774299 5851 -n13108481 5851 -n12267411 5851 -n11756092 5851 -n12662772 5851 -n13108662 5851 -n12528549 5851 -n12690653 5851 -n12180885 5851 -n13108545 5851 -n13108323 5851 -n12334293 5851 -n12670758 5851 -n12286826 5851 -n12724942 5851 -n12155009 5851 -n12570703 5851 -n12523475 5851 -n12154773 5851 -n12915811 5851 -n12268246 5851 -n13108131 5851 -n12806732 5851 -n12524188 5851 -n11758799 5851 -n12496427 5851 -n12568186 5980 -n12495895 5980 -n12196527 5982 -n12196336 5982 -n12196694 5982 -n12203529 5984 -n12204175 5984 -n12282933 5992 -n12282527 5992 -n12283542 5992 -n12282737 5992 -n12282235 5992 -n12402051 5997 -n12402840 5997 -n12401684 5997 -n12402348 5997 -n12402596 5997 -n11759853 5999 -n11759404 5999 -n12406715 6008 -n12406488 6008 -n12407890 6008 -n12406902 6008 -n12330469 6011 -n12345899 6011 -n11709674 6011 -n12329473 6011 -n12200143 6011 -n11712282 6011 -n12752205 6011 -n13110915 6011 -n12513933 6011 -n12189987 6011 -n12731401 6011 -n12717224 6011 -n12717072 6011 -n12946849 6011 -n12756457 6011 -n12201580 6011 -n11703669 6011 -n12491017 6011 -n12190410 6011 -n12242409 6011 -n07754894 6011 -n12818346 6011 -n12658308 6011 -n12658118 6011 -n12494794 6011 -n12317296 6011 -n12651821 6011 -n11711764 6071 -n11710136 6071 -n11711537 6071 -n11710393 6071 -n12755225 6075 -n12753573 6075 -n12754648 6075 -n12754781 6075 -n12755727 6075 -n12754981 6075 -n12755387 6075 -n12753007 6075 -n12753245 6075 -n12754003 6075 -n12759273 6076 -n12318378 6076 -n12288823 6076 -n12319204 6111 -n12319414 6111 -n12732491 6079 -n12733647 6079 -n12732756 6079 -n12732009 6079 -n12733870 6079 -n12732966 6117 -n12733218 6117 -n12948495 6082 -n12948251 6082 -n12948053 6082 -n12947313 6082 -n12757303 6083 -n12757458 6083 -n11704093 6085 -n11705171 6085 -n12707781 6095 -n12399132 6095 -n12400720 6095 -n12345280 6095 -n11695599 6095 -n12771192 6095 -n12704343 6095 -n12638218 6095 -n12644902 6095 -n12190869 6095 -n12373100 6095 -n12300840 6095 -n12743352 6095 -n12651611 6095 -n12629666 6095 -n12636224 6095 -n12648045 6095 -n12399384 6095 -n12301180 6095 -n12744387 6095 -n12640839 6095 -n12745386 6095 -n12633638 6095 -n12771390 6095 -n12761284 6095 -n12400489 6095 -n12333530 6095 -n12333771 6095 -n12333053 6095 -n12641413 6095 -n12332030 6095 -n12711984 6130 -n12709901 6130 -n12708293 6130 -n12713063 6130 -n12711596 6130 -n12709103 6130 -n12709688 6130 -n12710415 6162 -n12710295 6162 -n12710693 6163 -n12708654 6163 -n12708941 6163 -n12643313 6137 -n12638753 6137 -n12646740 6138 -n12645174 6138 -n12650379 6138 -n12634429 6152 -n12633994 6152 -n12634211 6152 -n12635532 6152 -n12635955 6180 -n12635744 6180 -n12643473 6159 -n12649065 6159 -n12641931 6159 -n12642200 6159 -n12650556 6159 -n12649539 6185 -n12649317 6185 -n12646605 6185 -n12647560 6186 -n12648888 6186 -n12263987 6012 -n12263038 6012 -n12306089 6014 -n12305986 6014 -n12305293 6014 -n12304703 6014 -n12305475 6014 -n12262018 6015 -n12261808 6015 -n12261571 6015 -n12595699 6019 -n12587132 6019 -n12583126 6019 -n12596709 6019 -n12591351 6019 -n12596849 6019 -n12582665 6019 -n12596148 6019 -n12595964 6019 -n12582846 6019 -n12587803 6019 -n12591017 6019 -n12588320 6206 -n12588780 6206 -n12585629 6206 -n12597134 6206 -n12598027 6206 -n12597466 6206 -n12583401 6206 -n12593994 6213 -n12590232 6213 -n11757653 6023 -n11756669 6023 -n11757851 6023 -n11664418 6025 -n13108841 6025 -n11647703 6229 -n11628793 6229 -n11658331 6229 -n11623105 6229 -n11630017 6229 -n11628456 6229 -n11658544 6229 -n11643835 6229 -n11624531 6229 -n11661372 6229 -n11645914 6229 -n11630489 6229 -n11640132 6229 -n11608250 6229 -n11620673 6229 -n11618861 6229 -n11627168 6229 -n11623815 6233 -n11624192 6233 -n11623967 6233 -n11635152 6234 -n11634736 6234 -n11635433 6234 -n11636204 6234 -n11644462 6237 -n11644226 6237 -n11644046 6237 -n11626585 6238 -n11625632 6238 -n11625003 6238 -n11626826 6238 -n11625804 6238 -n11626152 6238 -n11626409 6238 -n11646694 6240 -n11646167 6240 -n11632167 6241 -n11631854 6241 -n11632619 6241 -n11616662 6243 -n11611561 6243 -n11611356 6243 -n11617631 6243 -n11612575 6243 -n11611758 6243 -n11614713 6243 -n11615387 6243 -n11612018 6243 -n11611087 6243 -n11612923 6243 -n11616486 6243 -n11618290 6243 -n11612349 6243 -n11611233 6243 -n11617090 6243 -n11614250 6243 -n11618525 6243 -n11615026 6243 -n11617272 6243 -n11614039 6279 -n11613459 6279 -n11615967 6285 -n11614420 6285 -n11621029 6244 -n11622184 6293 -n11622591 6293 -n11621281 6293 -n11622368 6293 -n11621950 6293 -n11621547 6293 -n11621727 6293 -n11619455 6245 -n11619227 6245 -n11627512 6246 -n11628087 6246 -n11627908 6246 -n12691661 6027 -n12691428 6027 -n12316572 6031 -n12334891 6031 -n12340755 6031 -n12316444 6031 -n12336727 6309 -n12338796 6309 -n12338454 6309 -n12336973 6309 -n12336092 6309 -n12336224 6309 -n12337617 6309 -n12725521 6034 -n12727101 6034 -n12729521 6034 -n12726670 6034 -n12729315 6034 -n12729729 6319 -n12731029 6319 -n12270741 6040 -n12271643 6040 -n12278650 6040 -n12279458 6040 -n12269241 6040 -n12275489 6040 -n12273114 6040 -n12276872 6040 -n12278371 6040 -n12272883 6040 -n12269652 6040 -n12273768 6040 -n12277800 6327 -n12271933 6327 -n12279772 6330 -n12270946 6330 -n12269406 6330 -n12275675 6331 -n12276628 6331 -n12275131 6331 -n12274358 6336 -n12272239 6336 -n12277578 6336 -n12501202 6041 -n12814643 6041 -n12493208 6041 -n12807773 6042 -n12807409 6042 -n12807251 6042 -n11758122 6043 -n12915568 6043 -n12656369 5852 -n12656685 5852 -n12547215 5853 -n12547503 5853 -n11944196 5194 -n11984144 5194 -n11805544 5194 -n11874081 5194 -n11965218 5194 -n12392549 5194 -n11956348 5194 -n11945514 6361 -n11944954 6361 -n11998888 6361 -n11953884 6361 -n11954345 6361 -n11955153 6371 -n11954161 6371 -n12421137 5196 -n12421467 5196 -n12411461 5196 -n12451915 5196 -n12425281 5196 -n12459629 5196 -n12421683 6376 -n12422129 6376 -n12421917 6376 -n12411922 6377 -n12418221 6377 -n12416073 6377 -n12413165 6384 -n12414932 6384 -n12412606 6384 -n12412355 6384 -n12414035 6384 -n12413880 6384 -n12453186 6378 -n12452836 6378 -n12450344 6379 -n12426248 6379 -n12429352 6379 -n12460697 6379 -n12449526 6379 -n12473840 6379 -n12458550 6379 -n12449296 6379 -n12472024 6379 -n12457091 6379 -n12465557 6379 -n12461466 6379 -n12454159 6379 -n12431434 6379 -n12451240 6395 -n12451399 6395 -n12450840 6395 -n12428076 6396 -n12428747 6396 -n12427566 6396 -n12427184 6396 -n12426623 6396 -n12427757 6396 -n12461109 6398 -n12460957 6398 -n12454705 6407 -n12454949 6407 -n12435777 6408 -n12435649 6408 -n11819509 5197 -n11819912 5197 -n11842204 5197 -n11852028 6426 -n11851258 6426 -n11847169 6426 -n11853813 6426 -n11848479 6426 -n11844892 6426 -n11851839 6426 -n11845557 6426 -n11849871 6426 -n11849983 6426 -n11851578 6426 -n11854479 6426 -n11844371 6426 -n11853356 6426 -n11845793 6434 -n11845913 6434 -n11784126 5185 -n11783920 5185 -n12832315 5185 -n11723770 5186 -n11724109 5186 -n12766869 5186 -n12455950 5186 -n11723227 5186 -n12757816 5186 -n11773987 5186 -n12766595 5186 -n01324610 5174 -n02153109 5174 -n01323599 5174 -n01314781 5174 -n01321579 5174 -n01317541 5174 -n01318894 5174 -n01314663 5174 -n02311060 5174 -n01317916 5174 -n01321230 5174 -n01314388 5174 -n02075612 5174 -n02152740 5174 -n01466257 5174 -n01316949 5174 -n01905661 5174 -n01320872 5174 -n01319467 5174 -n01316422 5174 -n02157206 5174 -n10300303 5174 -n02152881 5174 -n01324431 5174 -n01321854 6458 -n01321770 6458 -n01956344 6458 -n01613615 6458 -n01318279 6458 -n02376542 6478 -n02122948 6478 -n01888045 6478 -n01322343 6478 -n01887896 6478 -n02412440 6478 -n01322221 6478 -n01322604 6478 -n01323261 6478 -n01322685 6478 -n02395694 6478 -n01504344 6481 -n01504179 6481 -n01318381 6459 -n02122580 6459 -n01317813 6459 -n02469472 6462 -n02309337 6462 -n02311617 6462 -n02264232 6462 -n02299157 6500 -n02310585 6500 -n02299505 6500 -n02302620 6500 -n02295390 6500 -n02310717 6500 -n02288268 6500 -n02297442 6500 -n02300797 6500 -n02285801 6500 -n02307325 6500 -n02376791 6464 -n02377063 6464 -n01323355 6464 -n01469103 6468 -n01468712 6468 -n01471682 6468 -n01473806 6519 -n01627424 6519 -n01861778 6519 -n09828216 6519 -n01459791 6519 -n02156871 6519 -n01661091 6519 -n01503061 6519 -n02512053 6520 -n01477525 6520 -n02528163 6528 -n02512938 6528 -n01482071 6528 -n02638596 6530 -n01457852 6530 -n01455778 6530 -n01456756 6530 -n02552171 6530 -n01428580 6530 -n02549989 6530 -n02640857 6533 -n02641379 6533 -n02639087 6533 -n02639605 6533 -n02640242 6533 -n02554730 6537 -n02618827 6537 -n02549248 6537 -n02603317 6537 -n01451426 6537 -n02548247 6537 -n02642107 6537 -n02657368 6537 -n02603540 6537 -n02652668 6537 -n02560110 6545 -n02556846 6545 -n02555863 6545 -n02581957 6545 -n02564270 6545 -n02623445 6545 -n02565573 6545 -n02610664 6545 -n02590702 6545 -n02588286 6545 -n02620167 6545 -n02573704 6545 -n02576223 6545 -n02606384 6545 -n02605316 6545 -n02619550 6545 -n02561108 6545 -n02619165 6545 -n02610066 6545 -n02562315 6545 -n02586543 6545 -n02593019 6545 -n02594250 6545 -n02616851 6545 -n02585872 6545 -n02607862 6545 -n02557182 6556 -n02557318 6556 -n02557749 6556 -n02624167 6560 -n02628062 6560 -n02631475 6560 -n02630281 6560 -n02631041 6560 -n02629230 6560 -n02626762 6560 -n02625258 6584 -n02625612 6584 -n02624807 6584 -n02626265 6592 -n02625851 6592 -n02627292 6590 -n02627532 6590 -n02576575 6567 -n02579928 6567 -n02580336 6567 -n02576906 6598 -n02579303 6598 -n02578771 6598 -n02578928 6598 -n02580679 6600 -n02580830 6600 -n02607201 6568 -n02607470 6568 -n02607072 6568 -n02605703 6569 -n02606052 6569 -n02605936 6569 -n02561381 6571 -n02561661 6571 -n02561514 6571 -n02564720 6574 -n02563648 6574 -n02563182 6574 -n02563792 6574 -n02562796 6574 -n02565072 6616 -n02565324 6616 -n02599052 6577 -n02596381 6577 -n02597608 6577 -n02596067 6577 -n02595702 6577 -n02598573 6624 -n02598878 6624 -n02642644 6551 -n02649546 6551 -n02643112 6630 -n02643566 6630 -n02643836 6630 -n02644113 6630 -n02658531 6552 -n02657694 6552 -n02660208 6552 -n02654745 6554 -n02654425 6554 -n02656670 6554 -n02655020 6554 -n02655523 6554 -n02653145 6554 -n02656032 6643 -n02655848 6643 -n02541687 6538 -n02542432 6538 -n02524202 6538 -n02533834 6538 -n02543565 6538 -n02517442 6538 -n01438208 6538 -n02526121 6538 -n02529772 6538 -n02518324 6652 -n02520147 6652 -n02519686 6652 -n02519862 6652 -n02583567 6653 -n01444339 6653 -n01446589 6653 -n01438581 6653 -n01439121 6653 -n01448951 6653 -n02584449 6660 -n02584145 6660 -n02583890 6660 -n01446760 6662 -n01447331 6662 -n01448594 6662 -n01448291 6662 -n01439514 6664 -n01442972 6664 -n01440764 6664 -n01443831 6664 -n01443537 6664 -n01443243 6664 -n01449712 6665 -n01449374 6665 -n02527622 6654 -n02527057 6654 -n02527271 6654 -n02532602 6655 -n02533209 6655 -n02566834 6531 -n02537085 6531 -n02534734 6531 -n02514041 6531 -n02568959 6686 -n02568087 6686 -n02570164 6690 -n02569484 6690 -n02537716 6687 -n02538216 6687 -n02537525 6687 -n02537319 6687 -n02538010 6687 -n02536456 6688 -n02535537 6688 -n02535258 6688 -n02536864 6688 -n02535759 6688 -n01482330 6532 -n01495701 6532 -n01487506 6704 -n01495493 6704 -n01486838 6704 -n01488918 6704 -n01492357 6704 -n01494475 6704 -n01483522 6704 -n01488038 6704 -n01489501 6709 -n01491006 6709 -n01489709 6709 -n01489920 6709 -n01490112 6709 -n01491361 6709 -n01490670 6709 -n01493146 6710 -n01492569 6710 -n01484850 6712 -n01484097 6712 -n01483830 6712 -n01498041 6705 -n01496331 6705 -n01499396 6705 -n01500476 6705 -n01500091 6705 -n01501160 6705 -n01498989 6705 -n01629276 6521 -n01639765 6521 -n01629962 6733 -n01630284 6733 -n01629819 6733 -n01637615 6733 -n01632047 6733 -n01631663 6736 -n01630670 6736 -n01630901 6736 -n01632458 6739 -n01632777 6739 -n01632601 6739 -n01645776 6734 -n01640846 6734 -n01644900 6734 -n01643896 6734 -n01650167 6734 -n01644373 6734 -n01646648 6746 -n01646902 6746 -n01646292 6746 -n01646802 6746 -n01646388 6746 -n01647640 6746 -n01646555 6746 -n01642539 6747 -n01641206 6747 -n01641577 6747 -n01641391 6747 -n01642257 6747 -n01641739 6747 -n01650690 6750 -n01652026 6750 -n01886756 6522 -n01871265 6522 -n01871875 6522 -n01874434 6522 -n01862399 6522 -n02082791 6767 -n01887474 6767 -n01889074 6767 -n02372584 6767 -n01888411 6767 -n02453611 6767 -n02430559 6767 -n01887623 6767 -n02469914 6767 -n02075296 6767 -n02139199 6767 -n02062017 6767 -n02323449 6767 -n02372952 6767 -n01888181 6767 -n02329401 6767 -n01887787 6767 -n02453108 6767 -n01888264 6767 -n02461830 6767 -n02370806 6767 -n01891633 6774 -n01893825 6774 -n02454794 6777 -n02456962 6777 -n02454379 6777 -n02460009 6777 -n02458135 6796 -n02457945 6796 -n02457408 6796 -n02460451 6798 -n02461128 6798 -n02470238 6780 -n02501583 6780 -n02472293 6780 -n02470325 6780 -n02496913 6780 -n02484322 6780 -n02475669 6806 -n02474777 6806 -n02475078 6806 -n02470899 6807 -n02483092 6813 -n02480153 6813 -n02483708 6814 -n02483362 6814 -n02481823 6815 -n02480495 6815 -n02480855 6815 -n02482650 6818 -n02482474 6818 -n02481103 6820 -n02481366 6820 -n02481500 6820 -n02500267 6808 -n02497673 6808 -n02499316 6808 -n02499808 6808 -n02499022 6808 -n02484473 6809 -n02489589 6809 -n02486410 6831 -n02485536 6831 -n02489166 6831 -n02488702 6831 -n02486261 6831 -n02487347 6831 -n02484975 6831 -n02488291 6831 -n02486657 6833 -n02486908 6833 -n02487847 6838 -n02487547 6838 -n02493793 6832 -n02490219 6832 -n02494079 6832 -n02493509 6832 -n02492035 6832 -n02492660 6832 -n02491107 6846 -n02490811 6846 -n02507649 6781 -n02120997 6781 -n02134971 6781 -n02083346 6781 -n02441326 6781 -n02131653 6781 -n02509515 6853 -n02508213 6853 -n02509815 6853 -n02508021 6853 -n02509197 6853 -n02510455 6853 -n02127808 6854 -n02121620 6854 -n02128925 6865 -n02129604 6865 -n02128385 6865 -n02130308 6865 -n02129165 6865 -n02128757 6865 -n02129923 6868 -n02129837 6868 -n01323068 6868 -n02129463 6871 -n01322898 6871 -n02121808 6866 -n02124623 6866 -n02122878 6878 -n02123159 6878 -n02123045 6878 -n02123242 6878 -n02124484 6878 -n02124075 6878 -n02124313 6878 -n02122298 6878 -n02123478 6878 -n02123394 6878 -n02123917 6878 -n02123597 6878 -n02122510 6878 -n02122725 6878 -n02122430 6878 -n02126640 6879 -n02125494 6879 -n02127052 6879 -n02125311 6879 -n02125081 6879 -n02126139 6879 -n02126787 6879 -n02125010 6879 -n02127292 6897 -n02127482 6897 -n02127678 6897 -n02127381 6897 -n02138441 6855 -n02137015 6855 -n02137549 6855 -n02138647 6907 -n02138777 6907 -n02084071 6856 -n02115335 6856 -n02114100 6856 -n02083672 6856 -n02115096 6856 -n02118333 6856 -n02117135 6856 -n02110958 6912 -n02112826 6912 -n02111500 6912 -n02112706 6912 -n02113335 6912 -n02084861 6912 -n02111129 6912 -n02112497 6912 -n02110341 6912 -n02084732 6912 -n02111626 6912 -n02085374 6912 -n02087122 6912 -n02103406 6912 -n02110806 6912 -n02113978 6912 -n02111277 6912 -n02085272 6912 -n02113186 6920 -n02113023 6920 -n02113799 6923 -n02113624 6923 -n02113712 6923 -n02112018 6929 -n02112350 6929 -n02112137 6929 -n02111889 6929 -n02086346 6930 -n02086240 6930 -n02087046 6930 -n02085936 6930 -n02085782 6930 -n02085620 6930 -n02086079 6930 -n02086753 6946 -n02086646 6946 -n02086910 6946 -n02092468 6931 -n02087394 6931 -n02089468 6931 -n02098550 6931 -n02087551 6931 -n02089232 6931 -n02096437 6956 -n02096756 6956 -n02095412 6956 -n02096051 6956 -n02098286 6956 -n02093859 6956 -n02094114 6956 -n02093754 6956 -n02094433 6956 -n02095314 6956 -n02093647 6956 -n02097474 6956 -n02097658 6956 -n02098413 6956 -n02097298 6956 -n02096177 6956 -n02096585 6956 -n02095050 6956 -n02096294 6956 -n02093056 6956 -n02094258 6956 -n02093991 6956 -n02094562 6956 -n02098105 6956 -n02097209 6963 -n02097130 6963 -n02097047 6963 -n02095570 6964 -n02095727 6964 -n02095889 6964 -n02093256 6981 -n02093428 6981 -n02094721 6984 -n02094931 6984 -n02098906 6959 -n02099997 6959 -n02098806 6959 -n02100399 6959 -n02101108 6959 -n02099029 6959 -n02100583 6997 -n02100236 6997 -n02101006 6999 -n02100735 6999 -n02100877 6999 -n02102318 7000 -n02102605 7000 -n02101861 7000 -n02101388 7000 -n02101556 7000 -n02102480 7000 -n02102973 7000 -n02102040 7009 -n02102177 7009 -n02099267 7001 -n02099601 7001 -n02099429 7001 -n02099849 7001 -n02099712 7001 -n02091635 6960 -n02088466 6960 -n02090475 6960 -n02088238 6960 -n02091244 6960 -n02091467 6960 -n02088839 6960 -n02091831 6960 -n02088094 6960 -n02089078 6960 -n02088632 6960 -n02092002 6960 -n02090379 6960 -n02089555 6960 -n02088364 6960 -n02092339 6960 -n02090827 6960 -n02090622 7023 -n02090721 7023 -n02089973 7034 -n02089867 7034 -n02091134 7037 -n02091032 7037 -n02109047 6932 -n02103841 6932 -n02109961 6932 -n02108551 6932 -n02109811 6932 -n02109525 6932 -n02108915 6932 -n02106854 6932 -n02108672 6932 -n02107420 6932 -n02108422 6932 -n02104523 6932 -n02108089 6932 -n02108254 6932 -n02104029 7045 -n02104280 7045 -n02106966 7045 -n02104365 7045 -n02107142 7060 -n02107312 7060 -n02110627 7060 -n02110185 7048 -n02110063 7048 -n02107574 7053 -n02108000 7053 -n02107683 7053 -n02107908 7053 -n02104882 7055 -n02105412 7055 -n02105855 7055 -n02105505 7055 -n02106166 7055 -n02106030 7055 -n02106550 7055 -n02105641 7055 -n02106662 7055 -n02105251 7055 -n02106382 7055 -n02105056 7071 -n02105162 7071 -n02116738 6913 -n02115641 6913 -n02115913 6913 -n02114855 6914 -n01322508 6914 -n02114712 6914 -n02114548 6914 -n02114367 6914 -n02119022 6917 -n02119477 6917 -n02119789 6917 -n02120079 6917 -n02120505 6917 -n02119634 6917 -n02117900 6918 -n02117512 6918 -n02442845 6857 -n02443484 6857 -n02446206 6857 -n02450295 6857 -n02445394 6857 -n02444819 6857 -n02441942 6857 -n02443114 6857 -n02449350 6857 -n02445715 6857 -n02447366 6857 -n02443346 6857 -n02445004 7105 -n02445171 7105 -n02134084 6858 -n02133161 6858 -n01322983 6858 -n02133704 6858 -n02132136 6858 -n02134418 6858 -n02132580 7118 -n02132788 7118 -n02141306 6782 -n02140049 6782 -n02139671 6782 -n02146371 7122 -n02145424 7122 -n02147591 7126 -n02147947 7126 -n02062430 6783 -n02073250 6783 -n02075927 6783 -n02062744 7129 -n02066707 7132 -n02063224 7132 -n02068974 7133 -n02068541 7133 -n02070430 7135 -n02069412 7135 -n02069701 7135 -n02071636 7135 -n02071294 7135 -n02072798 7135 -n02070174 7139 -n02069974 7139 -n02066245 7134 -n02064338 7134 -n02064816 7134 -n02065407 7146 -n02065026 7146 -n02073831 7130 -n02074367 7130 -n02081571 7131 -n02076196 7131 -n02079389 7153 -n02076779 7153 -n02080415 7154 -n02079851 7154 -n02080146 7154 -n02077658 7155 -n02077152 7155 -n02077923 7155 -n02078574 7161 -n02078738 7161 -n02079005 7161 -n02328429 6784 -n02323902 6784 -n02324045 7166 -n02326432 7166 -n02325722 7167 -n02325366 7167 -n02324587 7167 -n02324850 7167 -n02324514 7167 -n02328150 7167 -n02324431 7167 -n02327842 7168 -n02326862 7168 -n02327028 7168 -n02367492 6787 -n02331046 6787 -n02365480 6787 -n02343320 6787 -n02341974 6787 -n02346627 6787 -n02366959 6787 -n02339376 6787 -n02363005 6787 -n02342885 6787 -n02359324 6787 -n02355227 6787 -n02361337 6787 -n02359556 6787 -n02364520 6787 -n02343772 6787 -n02330245 6787 -n02338145 6787 -n02353861 7180 -n02333546 7180 -n02333909 7180 -n02360282 7190 -n02358091 7190 -n02359915 7190 -n02355477 7190 -n02358890 7201 -n02358390 7201 -n02356381 7203 -n02357111 7203 -n02356977 7203 -n02357401 7203 -n02356798 7203 -n02361706 7191 -n02361587 7191 -n02364840 7193 -n02364673 7193 -n02332755 7195 -n02332156 7195 -n02503517 6789 -n02504458 7217 -n02504013 7217 -n02394477 6792 -n02373336 6792 -n02399000 7220 -n02437136 7220 -n02395003 7220 -n02437616 7220 -n02438580 7220 -n02397744 7220 -n02398521 7220 -n02397529 7220 -n02429456 7222 -n02430045 7222 -n02401031 7222 -n02439033 7222 -n02439398 7222 -n02434190 7231 -n02433925 7231 -n02433318 7231 -n02432983 7231 -n02431337 7231 -n02432511 7231 -n02430830 7231 -n02431122 7231 -n02434954 7231 -n02432291 7231 -n02431785 7231 -n02431976 7231 -n02433546 7231 -n02432704 7231 -n02414578 7232 -n02410509 7232 -n02411206 7232 -n02407959 7232 -n02402010 7232 -n02419796 7232 -n02411705 7232 -n02418064 7232 -n02416519 7232 -n02416104 7249 -n02415435 7249 -n02415253 7249 -n02415577 7259 -n02415829 7259 -n02410702 7250 -n02410900 7250 -n02408817 7252 -n02408429 7252 -n02409508 7252 -n02404573 7253 -n02402175 7253 -n02404906 7253 -n02402425 7253 -n02405302 7269 -n02410011 7269 -n02404186 7271 -n02403003 7271 -n02403325 7271 -n02403231 7271 -n02403740 7271 -n02403454 7271 -n02406174 7271 -n02404432 7274 -n02406647 7274 -n02407625 7274 -n02407071 7274 -n02405929 7274 -n02407276 7274 -n02407390 7280 -n02406533 7280 -n02424305 7254 -n02421136 7254 -n02420509 7254 -n02427724 7254 -n02426813 7254 -n02426481 7254 -n02421792 7254 -n02421449 7254 -n02424695 7254 -n02420828 7254 -n02422391 7254 -n02422699 7254 -n02424486 7254 -n02425887 7254 -n02422106 7254 -n02424085 7254 -n02428508 7254 -n02428349 7254 -n02423022 7254 -n02424909 7297 -n02425228 7297 -n02423218 7307 -n02423589 7307 -n02413131 7255 -n02413050 7255 -n02411999 7255 -n02412210 7255 -n02412080 7255 -n02418465 7256 -n02419336 7256 -n02419634 7256 -n02416964 7257 -n02416820 7257 -n02417914 7257 -n02417387 7257 -n02417070 7257 -n02416880 7257 -n02417534 7257 -n02437482 7223 -n02437312 7223 -n02396427 7224 -n02397096 7224 -n02396014 7224 -n02395406 7224 -n02438173 7225 -n02438272 7225 -n02391994 7221 -n02393580 7221 -n02374149 7221 -n02393940 7221 -n02392434 7335 -n02393161 7335 -n02392824 7335 -n02374451 7337 -n02391049 7337 -n02389346 7337 -n02388917 7342 -n02377603 7342 -n02382948 7342 -n02389128 7342 -n02381460 7342 -n02389261 7342 -n02382204 7342 -n02375302 7342 -n02376918 7342 -n02387722 7342 -n02388832 7342 -n02381609 7342 -n02377703 7342 -n02388735 7342 -n02386014 7342 -n02380464 7342 -n02386310 7342 -n02377480 7342 -n02380335 7342 -n02382437 7342 -n02389026 7342 -n02385214 7347 -n02383231 7347 -n02388276 7347 -n02377291 7353 -n02377181 7353 -n02377388 7353 -n02379430 7357 -n02378969 7357 -n02378541 7357 -n02381364 7357 -n02379329 7357 -n02381004 7357 -n02381261 7357 -n02379908 7357 -n02379183 7357 -n02386141 7359 -n02386224 7359 -n02382338 7361 -n02387254 7361 -n02386496 7361 -n02386853 7385 -n02387093 7385 -n02386968 7385 -n02387346 7385 -n02382039 7363 -n02380745 7363 -n02380583 7363 -n02382750 7364 -n02382635 7364 -n02382850 7364 -n02391234 7343 -n02391373 7343 -n02391508 7343 -n02390015 7344 -n02389779 7344 -n02389559 7344 -n01872401 6769 -n01873310 6769 -n01872772 6769 -n01877134 6770 -n01882714 6770 -n01883070 6770 -n01875313 6770 -n01874928 6770 -n01883513 6770 -n01881171 6770 -n01877606 7405 -n01877812 7405 -n01878929 7413 -n01879509 7413 -n01884834 7410 -n01885498 7410 -n01662622 6526 -n01661818 6526 -n01662784 7418 -n01669372 7420 -n01669191 7420 -n01666228 7420 -n01667778 7420 -n01672032 7420 -n01669654 7420 -n01663401 7420 -n01665932 7420 -n01668665 7420 -n01670092 7420 -n01667114 7420 -n01668892 7420 -n01664990 7427 -n01664065 7427 -n01663782 7427 -n01665541 7427 -n01664369 7427 -n01664674 7437 -n01664492 7437 -n01670802 7430 -n01671125 7430 -n01670535 7430 -n01671479 7430 -n01696633 7419 -n01726692 7419 -n01673282 7419 -n01674464 7419 -n01699831 7419 -n01698434 7444 -n01697178 7444 -n01698640 7444 -n01699040 7444 -n01697611 7450 -n01697457 7450 -n01740551 7445 -n01752165 7445 -n01751748 7445 -n01745125 7445 -n01741562 7445 -n01727646 7445 -n01753488 7456 -n01752736 7456 -n01752585 7456 -n01753032 7456 -n01753959 7456 -n01754533 7465 -n01754370 7465 -n01754876 7465 -n01757901 7468 -n01757677 7468 -n01755581 7468 -n01757115 7468 -n01755740 7468 -n01756089 7468 -n01756508 7468 -n01756291 7468 -n01756733 7468 -n01757343 7468 -n01747885 7458 -n01749939 7458 -n01751472 7458 -n01747589 7458 -n01749582 7458 -n01746359 7458 -n01745484 7458 -n01748264 7479 -n01748906 7479 -n01741943 7459 -n01743605 7488 -n01742821 7488 -n01742172 7488 -n01743086 7488 -n01744100 7489 -n01743936 7489 -n01744401 7489 -n01730960 7460 -n01735189 7460 -n01733757 7460 -n01729322 7460 -n01732244 7460 -n01731545 7460 -n01737021 7460 -n01729977 7460 -n01730812 7460 -n01730563 7460 -n01728572 7460 -n01728920 7460 -n01739381 7460 -n01734418 7460 -n01740131 7460 -n01735577 7497 -n01735439 7497 -n01734104 7498 -n01733957 7498 -n01732614 7500 -n01732789 7500 -n01737875 7502 -n01737472 7502 -n01737728 7502 -n01730185 7503 -n01730307 7503 -n01734808 7509 -n01734637 7509 -n01675722 7447 -n01693783 7447 -n01694709 7447 -n01684133 7447 -n01692333 7447 -n01695060 7447 -n01685808 7447 -n01676755 7447 -n01687665 7447 -n01674990 7447 -n01694178 7447 -n01692864 7447 -n01689411 7447 -n01681940 7531 -n01681653 7531 -n01678343 7531 -n01682714 7531 -n01682435 7531 -n01681328 7531 -n01680264 7531 -n01679626 7531 -n01677366 7531 -n01677747 7531 -n01679962 7531 -n01680655 7543 -n01680478 7543 -n01687978 7532 -n01689081 7532 -n01688243 7532 -n01693334 7535 -n01693175 7535 -n01690149 7536 -n01689811 7536 -n01700470 7448 -n01713764 7448 -n01701859 7557 -n01704323 7557 -n01515303 6527 -n01844917 6527 -n01524359 6527 -n01514668 6527 -n01833805 6527 -n01838038 6527 -n01825930 6527 -n01844551 6527 -n01604330 6527 -n01834918 6527 -n01822602 6527 -n01514752 6527 -n01517565 6527 -n01789386 6527 -n01844231 6527 -n01816887 6527 -n01517966 6527 -n01503976 6527 -n01514859 6527 -n02000954 7562 -n01858441 7562 -n02016358 7562 -n02021795 7562 -n01845132 7562 -n02008041 7580 -n02014237 7580 -n02021050 7580 -n02018795 7580 -n02005790 7580 -n02002075 7580 -n02013177 7580 -n02012849 7580 -n02013706 7580 -n02014524 7580 -n02007558 7580 -n02014941 7580 -n02006656 7580 -n02005399 7580 -n02022684 7580 -n02008497 7585 -n02010453 7585 -n02009229 7585 -n02011281 7585 -n02008643 7585 -n02008796 7585 -n02011460 7585 -n02010728 7601 -n02011016 7601 -n02009750 7605 -n02009508 7605 -n02009380 7605 -n02009912 7605 -n02010272 7605 -n02012185 7606 -n02011805 7606 -n02006063 7589 -n02006364 7589 -n02003204 7590 -n02002724 7590 -n02002556 7590 -n02004131 7590 -n02003839 7590 -n02004492 7590 -n02004855 7590 -n02017725 7596 -n02015357 7596 -n02016066 7596 -n02015554 7596 -n02018027 7596 -n02018368 7629 -n02018207 7629 -n02006985 7597 -n02007284 7597 -n02023341 7599 -n02034129 7599 -n02034295 7599 -n02036053 7599 -n02040266 7599 -n02037110 7599 -n02034661 7599 -n02031585 7599 -n02031934 7599 -n02030996 7599 -n02036711 7599 -n02026059 7599 -n02033779 7599 -n02038993 7599 -n02033561 7599 -n02037464 7599 -n02024479 7634 -n02025239 7634 -n02023992 7634 -n02024763 7634 -n02025043 7634 -n02023855 7634 -n02034971 7640 -n02035210 7640 -n02032222 7642 -n02032355 7642 -n02032480 7642 -n02033041 7642 -n02030287 7645 -n02027897 7645 -n02030837 7645 -n02029087 7645 -n02029378 7645 -n02028035 7645 -n02027075 7645 -n02028900 7645 -n02027492 7645 -n02029706 7645 -n02027357 7645 -n02028727 7645 -n02030035 7645 -n02026948 7645 -n02028175 7645 -n02028342 7676 -n02028451 7676 -n02037869 7649 -n02038466 7649 -n01858845 7581 -n01858906 7581 -n01860002 7581 -n01858281 7581 -n01859190 7581 -n01858780 7581 -n01859325 7581 -n01860187 7581 -n01859496 7581 -n01859689 7689 -n01859852 7689 -n02016956 7582 -n02017213 7582 -n02016816 7582 -n02040505 7583 -n02057731 7583 -n02050004 7583 -n02045369 7583 -n02049088 7583 -n02051474 7583 -n02055658 7583 -n02047614 7583 -n02041085 7695 -n02044178 7695 -n02043808 7695 -n02043333 7703 -n02041246 7703 -n02043063 7703 -n02042472 7707 -n02041678 7707 -n02042180 7707 -n02041875 7707 -n02042759 7707 -n02042046 7707 -n02044778 7704 -n02044517 7704 -n02059162 7696 -n02058221 7696 -n02058594 7696 -n02060411 7717 -n02060889 7717 -n02060133 7717 -n02050442 7697 -n02050313 7697 -n02051059 7697 -n02050586 7697 -n02050809 7697 -n02045864 7698 -n02046759 7698 -n02045596 7698 -n02047260 7729 -n02046939 7729 -n02047411 7729 -n02047045 7729 -n02052775 7700 -n02054036 7700 -n02054502 7700 -n02051845 7700 -n02053083 7700 -n02054711 7700 -n02055107 7700 -n02052204 7738 -n02052365 7738 -n02053425 7739 -n02053584 7739 -n02055803 7701 -n02056728 7746 -n02057035 7746 -n02056570 7746 -n02057330 7746 -n02056228 7746 -n02048115 7702 -n02048353 7702 -n02047975 7702 -n01845477 7584 -n01855672 7755 -n01846331 7755 -n01856890 7756 -n01857851 7756 -n01857079 7756 -n01856380 7756 -n01857512 7756 -n01857325 7756 -n01856072 7756 -n01856553 7756 -n01856155 7756 -n01857632 7756 -n01847253 7757 -n01851375 7757 -n01849676 7757 -n01852329 7757 -n01850192 7757 -n01847978 7757 -n01852400 7757 -n01848840 7757 -n01849157 7757 -n01847806 7757 -n01849466 7757 -n01848123 7757 -n01850553 7757 -n01847089 7757 -n01851895 7757 -n01849863 7757 -n01852142 7757 -n01847000 7757 -n01852671 7757 -n01848976 7757 -n01847407 7757 -n01848648 7757 -n01852861 7757 -n01851207 7757 -n01851038 7757 -n01850373 7757 -n01850873 7757 -n01847170 7757 -n01851573 7769 -n01851731 7769 -n01848555 7779 -n01848323 7779 -n01848453 7779 -n01853195 7790 -n01853870 7790 -n01854415 7790 -n01853498 7790 -n01853666 7790 -n01854838 7803 -n01855032 7803 -n01855476 7803 -n01855188 7803 -n01854700 7803 -n01584225 7563 -n01546506 7563 -n01546921 7563 -n01525720 7563 -n01546039 7563 -n01539573 7563 -n01585121 7811 -n01585715 7811 -n01584695 7811 -n01586374 7811 -n01584853 7811 -n01586020 7811 -n01552813 7813 -n01551711 7813 -n01555004 7813 -n01554448 7813 -n01547832 7813 -n01548301 7827 -n01549886 7827 -n01549430 7827 -n01550172 7827 -n01549641 7827 -n01555305 7827 -n01549053 7828 -n01548865 7828 -n01548492 7828 -n01563128 7814 -n01589718 7814 -n01578575 7814 -n01576695 7814 -n01528654 7814 -n01591697 7814 -n01594004 7814 -n01557185 7814 -n01527347 7814 -n01597022 7814 -n01598588 7814 -n01527617 7814 -n01576076 7814 -n01555809 7814 -n01587834 7814 -n01602630 7814 -n01597336 7814 -n01538955 7814 -n01529672 7814 -n01600657 7814 -n01601694 7814 -n01527194 7814 -n01586941 7814 -n01588002 7814 -n01527917 7814 -n01587526 7814 -n01601068 7814 -n01603600 7814 -n01602832 7814 -n01571904 7814 -n01575745 7814 -n01566645 7814 -n01594372 7814 -n01589286 7814 -n01526521 7814 -n01582856 7814 -n01528396 7814 -n01528845 7814 -n01556182 7814 -n01542786 7814 -n01590583 7814 -n01564914 7837 -n01567133 7837 -n01563746 7837 -n01564394 7837 -n01563449 7837 -n01565078 7837 -n01570676 7879 -n01570839 7879 -n01570267 7879 -n01567678 7879 -n01569060 7879 -n01568892 7879 -n01568294 7879 -n01569971 7879 -n01569262 7879 -n01567879 7879 -n01568720 7879 -n01569423 7879 -n01563945 7880 -n01564217 7880 -n01566207 7881 -n01565599 7881 -n01565930 7881 -n01564773 7881 -n01579410 7839 -n01581984 7839 -n01579578 7839 -n01582398 7839 -n01580077 7839 -n01579260 7839 -n01579028 7839 -n01582220 7839 -n01579149 7839 -n01580870 7906 -n01581166 7906 -n01577035 7840 -n01578180 7840 -n01577659 7840 -n01593028 7842 -n01592084 7842 -n01592694 7842 -n01592387 7842 -n01592540 7917 -n01592257 7917 -n01562265 7844 -n01558993 7844 -n01559477 7844 -n01558461 7844 -n01558307 7844 -n01558149 7844 -n01560105 7844 -n01558594 7844 -n01557962 7844 -n01558765 7844 -n01561732 7844 -n01562014 7844 -n01560280 7844 -n01562451 7844 -n01561452 7844 -n01560419 7844 -n01560636 7844 -n01559804 7844 -n01560793 7938 -n01560935 7938 -n01598988 7847 -n01599556 7847 -n01600085 7847 -n01599269 7942 -n01599159 7942 -n01597906 7853 -n01598074 7853 -n01597737 7853 -n01533651 7855 -n01534155 7855 -n01540233 7855 -n01531178 7855 -n01534762 7855 -n01533893 7855 -n01537134 7855 -n01531344 7855 -n01541386 7855 -n01531512 7855 -n01533481 7855 -n01541922 7855 -n01533000 7855 -n01544704 7855 -n01530575 7855 -n01532325 7855 -n01532511 7855 -n01531811 7855 -n01534582 7855 -n01532829 7855 -n01530439 7855 -n01533339 7855 -n01531971 7855 -n01534433 7855 -n01541102 7952 -n01540566 7952 -n01540832 7952 -n01536644 7954 -n01535469 7954 -n01536334 7954 -n01536186 7954 -n01535690 7954 -n01536780 7954 -n01536035 7954 -n01537544 7956 -n01538059 7956 -n01538630 7956 -n01537895 7956 -n01538200 7956 -n01603812 7864 -n01603953 7864 -n01573898 7866 -n01573074 7866 -n01572328 7866 -n01572782 7866 -n01574045 7866 -n01573240 7992 -n01573360 7992 -n01572654 7993 -n01572489 7993 -n01574560 7995 -n01575117 7995 -n01574390 7995 -n01575401 7995 -n01595450 7869 -n01595168 7869 -n01595624 7869 -n01594787 7869 -n01594968 7869 -n01595974 8006 -n01596273 8006 -n01583209 7872 -n01583495 7872 -n01543632 7876 -n01544389 7876 -n01591123 7877 -n01591005 7877 -n01591301 7877 -n01539925 7816 -n01540090 7816 -n01834540 7565 -n01834177 7565 -n01843065 7566 -n01838598 7566 -n01842235 7566 -n01843719 7566 -n01843383 7566 -n01839598 8023 -n01839330 8023 -n01839086 8023 -n01841102 8023 -n01841679 8023 -n01840775 8023 -n01839750 8023 -n01841441 8030 -n01841288 8030 -n01827403 7567 -n01826364 7567 -n01830915 7567 -n01830042 7567 -n01829413 7567 -n01826680 7567 -n01829869 7567 -n01828970 7567 -n01828556 8036 -n01827793 8036 -n01828096 8036 -n01616318 7569 -n01605630 7569 -n01618503 7569 -n01613294 7569 -n01621127 7569 -n01616764 8047 -n01618922 8047 -n01617766 8052 -n01617443 8052 -n01618082 8052 -n01617095 8052 -n01620414 8053 -n01619310 8053 -n01620735 8053 -n01619536 8053 -n01619835 8061 -n01620135 8061 -n01609751 8048 -n01606522 8048 -n01607812 8048 -n01608265 8048 -n01610955 8048 -n01610552 8048 -n01606809 8048 -n01616086 8048 -n01608432 8048 -n01607600 8048 -n01607962 8048 -n01606672 8048 -n01609956 8064 -n01610226 8064 -n01613177 8068 -n01611800 8068 -n01611472 8068 -n01612628 8068 -n01612476 8068 -n01612275 8068 -n01611969 8068 -n01612122 8068 -n01609391 8072 -n01609062 8072 -n01608814 8072 -n01613807 8050 -n01614343 8050 -n01615121 8050 -n01614925 8050 -n01614038 8050 -n01614556 8050 -n01615703 8091 -n01615458 8091 -n01622959 8051 -n01621635 8051 -n01623880 8051 -n01623425 8051 -n01622352 8051 -n01623615 8051 -n01622120 8051 -n01625562 8051 -n01623706 8051 -n01624115 8051 -n01624537 8051 -n01622483 8051 -n01623110 8051 -n01624833 8051 -n01622779 8051 -n01837072 7570 -n01835276 7570 -n01825278 7571 -n01823013 7571 -n01824575 8115 -n01824035 8115 -n01521399 7573 -n01521756 7573 -n01518878 7573 -n01519873 7573 -n01519563 7573 -n01789740 7574 -n01810700 7574 -n01801876 7574 -n01791463 7574 -n01791107 7574 -n02153203 7574 -n01794344 8123 -n01791954 8123 -n01794158 8123 -n01809106 8123 -n01791625 8123 -n01792429 8133 -n01792158 8133 -n01793435 8133 -n01792042 8133 -n01793715 8133 -n01792640 8133 -n01793249 8139 -n01792955 8139 -n01815601 8124 -n01811909 8124 -n01814370 8143 -n01812337 8143 -n01813088 8143 -n01812662 8143 -n01814921 8144 -n01814755 8144 -n01813532 8145 -n01813385 8145 -n01813948 8145 -n01814217 8145 -n01802721 8128 -n01810268 8128 -n01795088 8128 -n01803078 8154 -n01806567 8154 -n01807496 8154 -n01807105 8157 -n01803362 8157 -n01804163 8157 -n01805801 8157 -n01806297 8163 -n01806364 8163 -n01806143 8163 -n01806467 8163 -n01804478 8158 -n01806847 8158 -n01804653 8158 -n01808140 8159 -n01807828 8159 -n01797307 8156 -n01798484 8156 -n01797020 8156 -n01797886 8156 -n01797601 8156 -n01796729 8156 -n01795545 8156 -n01796340 8156 -n01819734 7576 -n01821203 7576 -n01819115 7576 -n01817346 7576 -n01818832 7576 -n01817953 7576 -n01818515 7576 -n01818299 7576 -n01820052 7576 -n01820348 7576 -n01817263 7576 -n01821869 8182 -n01822300 8182 -n01819313 8183 -n01819465 8183 -n01821076 8190 -n01820546 8190 -n01317089 6469 -n01317294 6469 -n01918744 6470 -n01922303 6470 -n01940736 6470 -n02316707 6470 -n01909422 6470 -n01767661 6470 -n01906749 6470 -n01930112 8201 -n01934440 8201 -n01924916 8201 -n01938454 8208 -n01935395 8208 -n01955084 8202 -n01955933 8202 -n01968315 8202 -n01942177 8202 -n01960459 8213 -n01963317 8213 -n01956481 8213 -n01963571 8213 -n01959985 8213 -n01965889 8213 -n01961985 8213 -n01957335 8218 -n01958038 8218 -n01959492 8218 -n01964441 8219 -n01964271 8219 -n01965529 8219 -n01969726 8214 -n01968897 8214 -n01972541 8214 -n01970164 8229 -n01970667 8229 -n01951274 8215 -n01953361 8215 -n01943899 8215 -n01945845 8215 -n01943087 8215 -n01953762 8215 -n01950731 8215 -n01945685 8215 -n01944390 8215 -n01949085 8237 -n01947396 8237 -n01946630 8237 -n01944812 8242 -n01945143 8242 -n01944955 8242 -n02317335 8203 -n02321170 8203 -n02319555 8203 -n02319095 8203 -n02321529 8203 -n02317781 8203 -n01909906 8204 -n01914163 8204 -n01913166 8204 -n01910747 8204 -n01915700 8256 -n01914609 8256 -n01915811 8256 -n01916925 8261 -n01916187 8261 -n01916481 8261 -n01917882 8262 -n01917289 8262 -n01784675 8205 -n01974773 8205 -n01768244 8205 -n01786646 8205 -n01769347 8205 -n01787835 8205 -n02309242 8205 -n02159955 8205 -n01785667 8205 -n01994910 8268 -n01976868 8268 -n01990007 8268 -n01975687 8268 -n01976146 8268 -n01990800 8279 -n01992773 8279 -n01991520 8281 -n01991028 8281 -n01982650 8280 -n01986806 8280 -n01986214 8280 -n01987545 8280 -n01976957 8280 -n01985128 8280 -n01984245 8285 -n01984695 8285 -n01983481 8285 -n01981276 8289 -n01979874 8289 -n01978455 8289 -n01978287 8289 -n01980166 8289 -n01982068 8289 -n01770393 8271 -n01770081 8271 -n01776192 8271 -n01772222 8271 -n01776313 8302 -n01779629 8302 -n01779148 8302 -n01772664 8303 -n01775370 8303 -n01774750 8303 -n01775062 8303 -n01773797 8303 -n01774384 8303 -n01773157 8303 -n01773549 8303 -n02226183 8274 -n02236896 8274 -n02263378 8274 -n02232951 8274 -n02163297 8274 -n02262449 8274 -n02246011 8274 -n02188699 8274 -n02272871 8274 -n02273392 8274 -n02231052 8274 -n02161457 8274 -n02236355 8274 -n02312427 8274 -n02231487 8274 -n02162561 8274 -n02164464 8274 -n02241569 8274 -n02262803 8274 -n02206270 8274 -n02274024 8274 -n02312640 8274 -n02268148 8274 -n02270623 8274 -n02207805 8274 -n02226429 8315 -n02229544 8315 -n02228341 8340 -n02226970 8340 -n02241426 8316 -n02240517 8316 -n02266050 8317 -n02264885 8317 -n02264363 8317 -n02236044 8318 -n02236241 8318 -n02233338 8318 -n02234355 8351 -n02234848 8351 -n02233943 8351 -n02251775 8321 -n02256656 8321 -n02258198 8321 -n02257284 8321 -n02250822 8321 -n02259212 8321 -n02252226 8321 -n02200198 8322 -n02205219 8322 -n02203152 8322 -n02196344 8322 -n02190166 8322 -n02198859 8322 -n02196119 8322 -n02201000 8362 -n02202006 8362 -n02195819 8366 -n02195526 8366 -n02192513 8366 -n02191773 8366 -n02190790 8366 -n02192252 8374 -n02191979 8374 -n02169974 8331 -n02168245 8331 -n02167151 8331 -n02169023 8331 -n02165456 8331 -n02171453 8331 -n02180875 8331 -n02183096 8331 -n02169497 8331 -n02176261 8331 -n02176439 8331 -n02165105 8331 -n02177972 8331 -n02168699 8331 -n02166567 8382 -n02166826 8382 -n02171869 8383 -n02175916 8383 -n02175569 8394 -n02172870 8394 -n02173373 8394 -n02174001 8394 -n02172182 8394 -n02172518 8394 -n02174659 8394 -n02243562 8332 -n02244797 8332 -n02212062 8334 -n02218371 8334 -n02219486 8334 -n02206856 8334 -n02216211 8405 -n02215770 8405 -n02212602 8405 -n02213107 8411 -n02212958 8411 -n02213543 8411 -n02213239 8412 -n02213788 8412 -n02220804 8407 -n02221083 8407 -n02221414 8407 -n02209354 8408 -n02208280 8408 -n02211627 8408 -n02210427 8408 -n02211444 8408 -n02209624 8408 -n02208498 8421 -n02208848 8421 -n02274259 8335 -n02283201 8335 -n02281787 8428 -n02274822 8428 -n02281406 8428 -n02277742 8428 -n02279972 8428 -n02280649 8428 -n02282257 8430 -n02282903 8430 -n02282385 8430 -n02275773 8431 -n02278210 8431 -n02276258 8431 -n02276902 8431 -n02279257 8431 -n02277094 8431 -n02276078 8431 -n02275560 8431 -n02277268 8431 -n02276355 8431 -n02276749 8431 -n02278024 8431 -n02281015 8435 -n02281136 8435 -n02305929 8429 -n02301452 8429 -n02295064 8429 -n02298541 8429 -n02284611 8429 -n02287004 8429 -n02291572 8429 -n02305085 8454 -n02301935 8454 -n02304432 8454 -n02303284 8454 -n02302969 8454 -n02292692 8459 -n02291748 8459 -n02268443 8337 -n02268853 8337 -n01321123 6471 -n02376679 6471 -n01323493 6471 -n01338685 5175 -n01387065 5175 -n01339083 8472 -n01339336 8472 -n01339801 8472 -n01339471 8472 -n01397114 8473 -n01389507 8473 -n01397871 8478 -n01410457 8478 -n01407798 8478 -n01424420 8479 -n01392380 8479 -n01395254 8479 -n01396048 8479 -n11542137 5176 -n11544015 5176 -n11542640 5176 -n09626238 5177 -n09856671 5177 -n09605289 5177 -n09622049 5177 -n09971273 5177 -n09882716 5177 -n09621232 5177 -n09902954 5177 -n09620794 5177 -n09727440 5177 -n09624168 5177 -n09752519 5177 -n10378026 5177 -n10500217 5177 -n10514429 5177 -n09610405 5177 -n09617867 5177 -n10355449 5177 -n09618957 5177 -n10002760 5177 -n10384496 5177 -n09637339 5177 -n09613191 5177 -n09836160 5177 -n10274815 5177 -n09890749 5177 -n10112591 5177 -n10260706 5177 -n09606527 5177 -n09767197 5177 -n10709529 5177 -n09976429 5177 -n09918554 5177 -n10588074 5177 -n10565667 5177 -n09990415 5177 -n10120330 5177 -n09616922 5177 -n09622302 5177 -n09630641 5177 -n09796809 5177 -n09614684 5177 -n10635788 5177 -n09645091 5177 -n10405694 5177 -n09676884 5177 -n09638875 5177 -n09874428 5177 -n09627906 5177 -n09628382 5177 -n10522759 5177 -n10247880 5177 -n09624980 5177 -n10529231 5177 -n10024362 5177 -n09614315 5177 -n09612848 5177 -n09632518 5177 -n10147935 5177 -n09871867 5177 -n09620078 5177 -n09634494 5177 -n10077593 5177 -n10040945 5177 -n09623038 5177 -n10560106 5177 -n10289039 5177 -n10422405 5177 -n09774783 5177 -n10042845 5177 -n09831962 5177 -n10726031 5177 -n09923673 5177 -n09610660 5177 -n09626031 5177 -n10401331 5177 -n09621545 5177 -n10362319 5177 -n10665698 5177 -n09906449 5177 -n09939313 5177 -n10439373 5177 -n09607630 5177 -n09631463 5177 -n10451450 5177 -n10541229 5177 -n09793141 5177 -n10633450 5177 -n10530959 5177 -n09629752 5177 -n10560637 5177 -n10431625 5177 -n09619168 5177 -n09763784 5177 -n09636339 5177 -n10235549 5177 -n09845401 5177 -n10513823 5177 -n10610465 5177 -n09951274 5177 -n09816771 8490 -n10401829 8590 -n10307234 8590 -n10505613 8590 -n10148035 8591 -n09874725 8591 -n09944022 8592 -n10015485 8592 -n10728624 8592 -n10308168 8592 -n10200781 8492 -n10480253 8492 -n10376523 8492 -n09903153 8600 -n10748620 8600 -n10581890 8601 -n10045713 8601 -n10165109 8601 -n10694258 8606 -n10509063 8606 -n10559996 8606 -n10366966 8607 -n10305802 8607 -n10421470 8607 -n10164492 8611 -n10477713 8611 -n10020890 8612 -n10679174 8616 -n10632576 8616 -n10189278 8616 -n09894445 8618 -n10504206 8618 -n10559288 8493 -n09917593 8493 -n09833441 8623 -n10384392 8623 -n10060352 8495 -n09840217 8495 -n09777012 8495 -n10309896 8495 -n09905185 8495 -n10686885 8628 -n10209731 8628 -n10093818 8629 -n10754189 8629 -n10411551 8629 -n10577284 8629 -n10285313 8500 -n10333439 8500 -n10624074 8500 -n10287213 8500 -n09871229 8637 -n10078719 8637 -n09843443 8637 -n10173771 8640 -n10192839 8640 -n10419785 8640 -n10406266 8640 -n10288964 8640 -n10804287 8640 -n10665587 8640 -n10153414 8640 -n10406765 8640 -n10611613 8506 -n09805324 8506 -n09824361 8506 -n10316360 8506 -n10707233 8506 -n10696508 8506 -n09858165 8506 -n10175248 8655 -n09979321 8655 -n10692482 8661 -n10396106 8661 -n10427764 8657 -n10385566 8657 -n10439851 8512 -n09820263 8512 -n10533013 8512 -n09854421 8666 -n10304914 8666 -n10575463 8666 -n09915651 8666 -n10453184 8666 -n10101634 8667 -n10701180 8667 -n09835230 8667 -n10746931 8667 -n10542888 8667 -n10604491 8667 -n09764381 8667 -n09929298 8667 -n10019406 8667 -n09785659 8667 -n10618342 8667 -n10782471 8667 -n10701644 8667 -n10105733 8667 -n10638922 8667 -n09842047 8667 -n10315561 8667 -n09835506 8667 -n10153594 8667 -n09830194 8674 -n10263411 8674 -n10157128 8693 -n10498816 8693 -n10689306 8693 -n10604380 8679 -n10634849 8679 -n09923561 8680 -n09764598 8680 -n10086568 8691 -n10007684 8691 -n09841696 8691 -n10321340 8691 -n10092488 8702 -n10386984 8702 -n10387196 8702 -n10205457 8702 -n10578021 8668 -n10098710 8668 -n09836519 8513 -n09836786 8513 -n09836343 8513 -n09877951 8516 -n10300154 8516 -n10095769 8516 -n10435988 8520 -n09930257 8718 -n10387324 8718 -n10098862 8525 -n10642596 8721 -n10331167 8721 -n09946814 8527 -n10299250 8527 -n09896170 8527 -n10415638 8527 -n10091450 8727 -n10069296 8727 -n09989502 8727 -n10226413 8727 -n10493685 8727 -n09765278 8727 -n09930876 8727 -n10340312 8727 -n09990777 8730 -n09834699 8730 -n10737103 8733 -n10649197 8733 -n10701962 8735 -n10415037 8735 -n10151760 8735 -n10229883 8735 -n10732010 8735 -n10603851 8735 -n10599806 8735 -n10369317 8735 -n09903501 8735 -n10755080 8735 -n10098245 8735 -n10382825 8735 -n10536416 8735 -n10036929 8735 -n10624310 8746 -n09842528 8746 -n10085869 8528 -n09991867 8528 -n10078131 8528 -n10627252 8528 -n10682953 8528 -n10237196 8528 -n09789566 8529 -n10182190 8529 -n09899671 8529 -n10150071 8531 -n10091651 8531 -n10806113 8531 -n10249459 8531 -n10317500 8768 -n09822830 8768 -n10448983 8768 -n09862621 8771 -n10540114 8771 -n10009276 8771 -n10333838 8771 -n10730728 8771 -n10721321 8771 -n09659188 8533 -n09650729 8533 -n09652149 8533 -n09659039 8533 -n09729530 8536 -n09641002 8536 -n09725653 8782 -n09846469 8782 -n09750770 8782 -n10486166 8538 -n10169147 8538 -n09684901 8539 -n09683757 8539 -n09682291 8539 -n10364198 8539 -n10518602 8539 -n10341573 8791 -n10672371 8791 -n10332861 8793 -n10112129 8793 -n10602470 8793 -n10727256 8542 -n10508141 8542 -n10652605 8799 -n09881265 8799 -n09933098 8545 -n09812338 8545 -n09920283 8545 -n10078806 8545 -n10339966 8804 -n10667477 8804 -n10566072 8804 -n10469874 8804 -n10624540 8807 -n09809925 8807 -n09846755 8806 -n09873899 8806 -n09779790 8806 -n10034614 8546 -n10449664 8546 -n10034201 8546 -n09951616 8546 -n10037385 8818 -n09846894 8818 -n10282672 8547 -n10053808 8547 -n09815790 8547 -n10137825 8547 -n10605985 8547 -n10604979 8547 -n09861946 8547 -n10763383 8823 -n09841188 8823 -n10644598 8823 -n10548681 8823 -n10791221 8823 -n10583790 8823 -n09873473 8823 -n10763620 8823 -n10548537 8823 -n10120671 8823 -n10241300 8833 -n10318293 8833 -n10176679 8839 -n09932508 8839 -n10186216 8841 -n10134178 8841 -n10079399 8841 -n09821831 8824 -n09934337 8824 -n10324560 8824 -n10063461 8846 -n09886403 8846 -n09760609 8846 -n10260800 8846 -n10655594 8846 -n09938449 8849 -n10183931 8849 -n09972458 8848 -n09813219 8848 -n10049363 8826 -n10372373 8826 -n10076604 8826 -n09835348 8826 -n09974648 8826 -n10433164 8826 -n09859152 8826 -n10727171 8826 -n10308732 8826 -n09833536 8826 -n10582746 8826 -n10393909 8826 -n10013927 8859 -n10225219 8859 -n10202624 8859 -n09800964 8859 -n10465831 8859 -n09787534 8870 -n10174445 8870 -n10441962 8870 -n10132035 8862 -n09896685 8862 -n09934774 8862 -n10279018 8862 -n10793570 8862 -n10155849 8862 -n10087434 8863 -n09964202 8863 -n09811852 8868 -n10348526 8868 -n10317007 8868 -n10058777 8868 -n10360747 8888 -n09941964 8888 -n10347446 8888 -n09770359 8888 -n09941787 8888 -n09942970 8888 -n09809749 8888 -n09770179 8888 -n10208950 8888 -n10580772 8890 -n10093475 8899 -n10645017 8899 -n09943239 8895 -n09943541 8895 -n10263790 8895 -n10283170 8902 -n10259348 8902 -n10092978 8902 -n10296176 8902 -n09893191 8902 -n10123844 8902 -n10259780 8902 -n10259997 8903 -n10510245 8903 -n10622053 8889 -n10058585 8889 -n10690648 8914 -n10523341 8914 -n10739391 8914 -n10476467 8915 -n10512372 8915 -n10802507 8915 -n10753442 8550 -n09733793 8550 -n09738708 8550 -n09641757 8550 -n09738400 8550 -n09727826 8550 -n09686536 8550 -n09724533 8550 -n09744834 8924 -n09743792 8924 -n09744161 8924 -n09742101 8924 -n09689435 8925 -n09734450 8925 -n09644152 8925 -n09750282 8925 -n09673495 8925 -n09718811 8925 -n09718217 8925 -n09712696 8925 -n09718936 8925 -n10711766 8925 -n09694771 8925 -n09719794 8925 -n09714694 8925 -n09675922 8938 -n09676247 8938 -n10774440 8926 -n09720256 8926 -n09725229 8926 -n09731571 8926 -n09691729 8949 -n09693982 8949 -n09712448 8949 -n09697401 8951 -n09696585 8951 -n09722658 8956 -n09724656 8956 -n09723067 8956 -n09694664 8952 -n09712324 8952 -n09689958 8928 -n09695979 8928 -n10327987 8928 -n09688804 8928 -n09730204 8928 -n09711435 8928 -n09713108 8928 -n09731343 8928 -n09717233 8928 -n09695620 8928 -n09728285 8928 -n09707289 8928 -n09701833 8928 -n09700964 8928 -n09750891 8928 -n09715427 8928 -n09708750 8928 -n09705784 8551 -n09734185 8551 -n09752023 8551 -n09635534 8551 -n09696456 8551 -n09732170 8551 -n09730824 8551 -n09719309 8551 -n09734535 8551 -n09736945 8551 -n09720842 8551 -n09692915 8551 -n09751895 8551 -n09724785 8551 -n09747495 8551 -n09734639 8551 -n09749386 8551 -n09705124 8551 -n09731436 8551 -n10303814 8554 -n10450303 8554 -n10722575 8554 -n10054657 8554 -n10631309 8554 -n10249270 8554 -n09913455 8554 -n10162991 8554 -n09807754 8554 -n09505153 8554 -n10209082 8554 -n10323634 8554 -n10104064 8554 -n10001481 9000 -n10242328 9000 -n10159045 9001 -n09932098 9001 -n10253995 9004 -n10005934 9016 -n10578471 9016 -n09770949 9006 -n10004718 9006 -n10570019 9006 -n10289462 9019 -n10069645 9019 -n10187990 9019 -n09916348 9023 -n10727458 9023 -n10320863 9023 -n10572706 9021 -n10572889 9021 -n10038409 9007 -n10756148 9007 -n09927451 9008 -n10243664 9008 -n10502329 9008 -n09988493 9008 -n10373390 9032 -n10470779 9032 -n09928136 9032 -n10750031 9037 -n10081204 9037 -n09857200 9037 -n10013811 9041 -n09894143 9041 -n10313239 9041 -n10082997 8558 -n10677713 8558 -n09787765 8558 -n10485883 8558 -n10275395 9046 -n09913593 9046 -n09772930 8560 -n09633969 8560 -n10195593 9052 -n09756049 9052 -n10607478 9052 -n09855433 8563 -n10017272 8563 -n10630188 8563 -n10522035 8563 -n10521662 8563 -n10380672 9058 -n10210911 9058 -n10382710 9059 -n10164747 9059 -n09782397 9059 -n10524076 9059 -n10467395 9064 -n10467179 9064 -n10698368 9060 -n09792969 9060 -n10525617 8564 -n10675010 8564 -n09889941 8564 -n10557854 8566 -n09618760 8566 -n09899929 8566 -n10116702 9074 -n10258786 9074 -n10508710 9074 -n09873348 8570 -n09870208 8570 -n10793168 8570 -n10098517 9081 -n10314517 9081 -n10629939 9081 -n10477077 9081 -n10261624 9086 -n10082687 9086 -n10262445 9086 -n10167152 9082 -n10098624 9082 -n10674713 9082 -n09838621 9082 -n10047459 8573 -n10091564 8573 -n10740868 8573 -n09872066 9094 -n10070711 9094 -n10628644 8575 -n10421016 8575 -n09915434 8575 -n10588357 8575 -n10529965 8579 -n10334009 8579 -n10339717 8579 -n09818022 8579 -n10412055 8579 -n10335931 8579 -n09945745 8579 -n10432441 8579 -n10607291 8579 -n10583387 8579 -n10718131 8579 -n10542761 8579 -n10147121 8579 -n10738111 9103 -n10159533 9103 -n10223177 9103 -n10185793 9103 -n10553235 9107 -n10293332 9107 -n10178216 9108 -n10563403 9108 -n10488656 8580 -n10619642 8580 -n10276477 8580 -n10620758 9125 -n10450161 9125 -n10043643 9125 -n10043491 9129 -n10313724 9129 -n10084295 8582 -n10787470 8582 -n10333601 8582 -n10131151 8582 -n09871681 9132 -n09981939 9132 -n10055410 9133 -n10243137 9133 -n10377021 9133 -n10368528 9133 -n10025635 9133 -n09874862 9133 -n10613996 9133 -n10472129 9133 -n10598181 9133 -n10129825 9133 -n09847543 9133 -n10173410 9133 -n10780284 9133 -n09889065 9133 -n09832456 9133 -n10780632 9133 -n10117851 9147 -n09827363 9147 -n10247358 9147 -n10282482 9147 -n10092794 9153 -n10375314 9153 -n09981278 9153 -n10082043 8585 -n09972010 8585 -n10237069 8585 -n09792555 8585 -n10236946 8585 -n10568358 8585 -n10207169 8585 -n10236304 8585 -n10734394 8585 -n10373998 8585 -n10595164 8585 -n10357613 9163 -n09823502 9163 -n10146104 9163 -n10602985 9163 -n10145239 9163 -n10267865 9175 -n09854218 9175 -n10399491 9164 -n10102800 9164 -n10102369 9164 -n10406391 9164 -n10300500 9179 -n10080869 9179 -n10332385 9179 -n09988063 9184 -n10375402 9184 -n10145774 9181 -n10143172 9181 -n10145590 9181 -n10345015 9189 -n10142747 9189 -n10142391 9189 -n10146002 9165 -n10267311 9165 -n10141590 9170 -n10092643 9170 -n09918248 9170 -n10671613 9170 -n10141732 9196 -n10145340 9196 -n10145902 9201 -n10145480 9201 -n09827683 9198 -n10135129 9204 -n10465451 9204 -n10353016 9204 -n13001930 5178 -n13040629 5178 -n12969131 5178 -n12985420 5178 -n13052670 5178 -n13037406 5178 -n13077295 5178 -n12987056 5178 -n12979829 5178 -n12975804 5178 -n12974987 5178 -n12985773 5178 -n13044778 5178 -n12985857 5178 -n13035241 5178 -n13043926 5178 -n12982468 5178 -n13035707 5178 -n13044375 5178 -n12969425 5178 -n13060190 5178 -n13054073 5178 -n13040303 5178 -n13028611 5178 -n12997654 5178 -n12983048 5178 -n13062421 5178 -n13054560 5178 -n12963628 9214 -n12980840 9214 -n12991184 9215 -n12989938 9215 -n12992177 9215 -n12988158 9215 -n13029326 9231 -n13029760 9231 -n13011595 9232 -n13049953 9232 -n12998815 9232 -n12997919 9232 -n13052931 9245 -n13050397 9245 -n13012253 9246 -n13001041 9246 -n13005984 9246 -n13000891 9246 -n13007417 9246 -n13019835 9246 -n13013764 9246 -n13006894 9246 -n13002750 9246 -n13017102 9246 -n13232779 9246 -n13009429 9246 -n13013534 9246 -n13003522 9246 -n13001366 9246 -n13009085 9246 -n13022210 9246 -n13002925 9246 -n13006171 9246 -n13003712 9246 -n13001206 9246 -n13004423 9246 -n13001529 9246 -n13003254 9246 -n13003061 9246 -n13032115 9247 -n13032381 9275 -n13033577 9275 -n13055577 9235 -n13055949 9235 -n13055423 9235 -n05430628 5171 -n05450617 9281 -n05449959 9281 -n05451384 9283 -n05453657 9283 -n09369169 1043 -n09454412 1043 -n09403211 1043 -n13086908 1043 -n09416076 1043 -n09251407 1043 -n05218119 1043 -n09444100 1043 -n09438940 1043 -n09257949 1043 -n09189157 9286 -n09475044 9286 -n11691857 9289 -n13102775 9289 -n13087625 9289 -n13022709 9289 -n11675842 9300 -n13152742 9300 -n13125117 9300 -n13129165 9300 -n11690254 9300 -n11669335 9302 -n13134947 9302 -n11676500 9302 -n11675025 9307 -n11674332 9307 -n11669786 9307 -n13131028 9311 -n13132338 9311 -n13132656 9311 -n12301445 9308 -n13133613 9308 -n13141415 9308 -n13137409 9308 -n12642090 9308 -n12267677 9308 -n12658481 9308 -n12144313 9308 -n12158031 9308 -n13135832 9308 -n12620546 9308 -n11636835 9308 -n13139055 9308 -n12144580 9325 -n07929351 9325 -n13136556 9325 -n12768682 9325 -n11689483 9325 -n13136316 9325 -n07770571 9325 -n07737081 9331 -n07774842 9336 -n07774596 9336 -n07775050 9336 -n07772788 9336 -n07771212 9336 -n07772147 9336 -n07772274 9336 -n07774719 9336 -n07737745 9336 -n07772935 9336 -n15086247 9333 -n11879895 9333 -n12576323 9334 -n12532564 9334 -n07814634 9335 -n07775197 9335 -n07770763 9335 -n11748002 9328 -n12172364 9328 -n12515925 9354 -n12560282 9354 -n12578916 9354 -n12560621 9354 -n12544539 9354 -n12024690 9303 -n13154494 9303 -n11690455 9303 -n12927013 9304 -n11953610 9304 -n13128365 9305 -n13133932 9305 -n13163991 9305 -n13134059 9305 -n13131618 9305 -n13130726 9305 -n11678010 9305 -n12136392 9305 -n11979964 9366 -n12088223 9366 -n12462805 9369 -n12433081 9369 -n09218494 9290 -n09381242 9290 -n09460046 9290 -n09451237 9293 -n09450163 9293 -n01904182 9295 -n13155095 9295 -n09432283 9295 -n11705387 9295 -n09438844 9295 -n11692265 9295 -n05237755 9295 -n09416890 9295 -n01956764 9383 -n01904806 9383 -n01904886 9383 -n05586759 9389 -n05581932 9389 -n01904029 9389 -n05238282 9389 -n05254795 9389 -n02469248 9389 -n05256862 9398 -n05258051 9398 -n01899894 9398 -n05261404 9398 -n05259914 9400 -n05261310 9400 -n05260240 9400 -n05262185 9403 -n05261566 9403 -n05262534 9407 -n05262422 9407 -n05263183 9408 -n05263448 9408 -n11524662 3 -n11448153 3 -n09247410 3 -n11508382 9413 -n11524451 9413 diff --git a/build/darknet/x64/data/coco.data b/build/darknet/x64/data/coco.data deleted file mode 100644 index 6da50e646d6..00000000000 --- a/build/darknet/x64/data/coco.data +++ /dev/null @@ -1,8 +0,0 @@ -classes= 80 -train = data/coco/trainvalno5k.txt -valid = data/coco_testdev -#valid = data/coco_val_5k.list -names = data/coco.names -backup = backup/ -eval=coco - diff --git a/build/darknet/x64/data/coco.names b/build/darknet/x64/data/coco.names deleted file mode 100644 index ca76c80b5b2..00000000000 --- a/build/darknet/x64/data/coco.names +++ /dev/null @@ -1,80 +0,0 @@ -person -bicycle -car -motorbike -aeroplane -bus -train -truck -boat -traffic light -fire hydrant -stop sign -parking meter -bench -bird -cat -dog -horse -sheep -cow -elephant -bear -zebra -giraffe -backpack -umbrella -handbag -tie -suitcase -frisbee -skis -snowboard -sports ball -kite -baseball bat -baseball glove -skateboard -surfboard -tennis racket -bottle -wine glass -cup -fork -knife -spoon -bowl -banana -apple -sandwich -orange -broccoli -carrot -hot dog -pizza -donut -cake -chair -sofa -pottedplant -bed -diningtable -toilet -tvmonitor -laptop -mouse -remote -keyboard -cell phone -microwave -oven -toaster -sink -refrigerator -book -clock -vase -scissors -teddy bear -hair drier -toothbrush diff --git a/build/darknet/x64/data/coco9k.map b/build/darknet/x64/data/coco9k.map deleted file mode 100644 index 5155b652358..00000000000 --- a/build/darknet/x64/data/coco9k.map +++ /dev/null @@ -1,80 +0,0 @@ -5177 -3768 -3802 -3800 -4107 -4072 -4071 -3797 -4097 -2645 -5150 -2644 -3257 -2523 -6527 -6866 -6912 -7342 -7255 -7271 -7217 -6858 -7343 -7233 -3704 -4374 -3641 -5001 -3899 -2999 -2631 -5141 -2015 -1133 -1935 -1930 -5144 -5143 -2371 -3916 -3745 -3640 -4749 -4736 -4735 -3678 -58 -42 -771 -81 -152 -141 -786 -700 -218 -791 -2518 -2521 -3637 -2458 -2505 -2519 -3499 -2837 -3503 -2597 -3430 -2080 -5103 -5111 -5102 -3013 -5096 -1102 -3218 -4010 -2266 -1127 -5122 -2360 diff --git a/build/darknet/x64/data/combine9k.data b/build/darknet/x64/data/combine9k.data deleted file mode 100644 index 06a3e76aefa..00000000000 --- a/build/darknet/x64/data/combine9k.data +++ /dev/null @@ -1,10 +0,0 @@ -classes= 9418 -#train = /home/pjreddie/data/coco/trainvalno5k.txt -train = data/combine9k.train.list -valid = /home/pjreddie/data/imagenet/det.val.files -labels = data/9k.labels -names = data/9k.names -backup = backup/ -map = data/inet9k.map -eval = imagenet -results = results diff --git a/build/darknet/x64/data/dog.jpg b/build/darknet/x64/data/dog.jpg deleted file mode 100644 index 77b0381222e..00000000000 Binary files a/build/darknet/x64/data/dog.jpg and /dev/null differ diff --git a/build/darknet/x64/data/eagle.jpg b/build/darknet/x64/data/eagle.jpg deleted file mode 100644 index 8b7509505b0..00000000000 Binary files a/build/darknet/x64/data/eagle.jpg and /dev/null differ diff --git a/build/darknet/x64/data/giraffe.jpg b/build/darknet/x64/data/giraffe.jpg deleted file mode 100644 index a93e8b88398..00000000000 Binary files a/build/darknet/x64/data/giraffe.jpg and /dev/null differ diff --git a/build/darknet/x64/data/goal.txt b/build/darknet/x64/data/goal.txt deleted file mode 100644 index c63d157341d..00000000000 --- a/build/darknet/x64/data/goal.txt +++ /dev/null @@ -1,3 +0,0 @@ -+++++ -val_eq (Val.add (Val.add (r3 PC) Vone) Vone) (Val.add (x2 PC) Vone) -***** diff --git a/build/darknet/x64/data/horses.jpg b/build/darknet/x64/data/horses.jpg deleted file mode 100644 index 3a761f46ba0..00000000000 Binary files a/build/darknet/x64/data/horses.jpg and /dev/null differ diff --git a/build/darknet/x64/data/imagenet.labels.list b/build/darknet/x64/data/imagenet.labels.list deleted file mode 100644 index 23268724401..00000000000 --- a/build/darknet/x64/data/imagenet.labels.list +++ /dev/null @@ -1,21842 +0,0 @@ -n02119789 -n02100735 -n02110185 -n02096294 -n02102040 -n02066245 -n02509815 -n02124075 -n02417914 -n02123394 -n02125311 -n02423022 -n02346627 -n02077923 -n02110063 -n02447366 -n02109047 -n02089867 -n02102177 -n02091134 -n02092002 -n02071294 -n02442845 -n02504458 -n02092339 -n02098105 -n02096437 -n02114712 -n02105641 -n02128925 -n02091635 -n02088466 -n02096051 -n02117135 -n02138441 -n02097130 -n02493509 -n02457408 -n02389026 -n02443484 -n02110341 -n02089078 -n02086910 -n02445715 -n02093256 -n02113978 -n02106382 -n02441942 -n02113712 -n02113186 -n02105162 -n02415577 -n02356798 -n02488702 -n02123159 -n02098413 -n02422699 -n02114855 -n02094433 -n02111277 -n02132136 -n02119022 -n02091467 -n02106550 -n02422106 -n02091831 -n02120505 -n02104365 -n02086079 -n02112706 -n02098286 -n02095889 -n02484975 -n02137549 -n02500267 -n02129604 -n02090721 -n02396427 -n02108000 -n02391049 -n02412080 -n02108915 -n02480495 -n02110806 -n02128385 -n02107683 -n02085936 -n02094114 -n02087046 -n02100583 -n02096177 -n02494079 -n02105056 -n02101556 -n02123597 -n02481823 -n02105505 -n02088094 -n02085782 -n02489166 -n02364673 -n02114548 -n02134084 -n02480855 -n02090622 -n02113624 -n02093859 -n02403003 -n02097298 -n02108551 -n02493793 -n02107142 -n02096585 -n02107574 -n02107908 -n02086240 -n02102973 -n02112018 -n02093647 -n02397096 -n02437312 -n02483708 -n02097047 -n02106030 -n02099601 -n02093991 -n02110627 -n02106166 -n02326432 -n02108089 -n02097658 -n02088364 -n02111129 -n02100236 -n02486261 -n02115913 -n02486410 -n02487347 -n02099849 -n02108422 -n02104029 -n02492035 -n02110958 -n02099429 -n02094258 -n02099267 -n02395406 -n02112350 -n02109961 -n02101388 -n02113799 -n02095570 -n02128757 -n02101006 -n02115641 -n02097209 -n02342885 -n02097474 -n02120079 -n02095314 -n02088238 -n02408429 -n02133161 -n02328150 -n02410509 -n02492660 -n02398521 -n02112137 -n02510455 -n02093428 -n02105855 -n02111500 -n02085620 -n02123045 -n02490219 -n02099712 -n02109525 -n02454379 -n02111889 -n02088632 -n02090379 -n02443114 -n02361337 -n02105412 -n02483362 -n02437616 -n02107312 -n02325366 -n02091032 -n02129165 -n02102318 -n02100877 -n02074367 -n02504013 -n02363005 -n02102480 -n02113023 -n02086646 -n02497673 -n02087394 -n02127052 -n02116738 -n02488291 -n02091244 -n02114367 -n02130308 -n02089973 -n02105251 -n02134418 -n02093754 -n02106662 -n02444819 -n01882714 -n01871265 -n01872401 -n01877812 -n01873310 -n01883070 -n04086273 -n04507155 -n04147183 -n04254680 -n02672831 -n02219486 -n02317335 -n01968897 -n03452741 -n03642806 -n07745940 -n02690373 -n04552348 -n02692877 -n02782093 -n04266014 -n03344393 -n03447447 -n04273569 -n03662601 -n02951358 -n04612504 -n02981792 -n04483307 -n03095699 -n03673027 -n03947888 -n02687172 -n04347754 -n04606251 -n03478589 -n04389033 -n03773504 -n02860847 -n03218198 -n02835271 -n03792782 -n03393912 -n03895866 -n02797295 -n04204347 -n03791053 -n03384352 -n03272562 -n04310018 -n02704792 -n02701002 -n02814533 -n02930766 -n03100240 -n03594945 -n03670208 -n03770679 -n03777568 -n04037443 -n04285008 -n03444034 -n03445924 -n03785016 -n04252225 -n03345487 -n03417042 -n03930630 -n04461696 -n04467665 -n03796401 -n03977966 -n04065272 -n04335435 -n04252077 -n04465501 -n03776460 -n04482393 -n04509417 -n03538406 -n03599486 -n03868242 -n02804414 -n03125729 -n03131574 -n03388549 -n02870880 -n03018349 -n03742115 -n03016953 -n04380533 -n03337140 -n03891251 -n02791124 -n04429376 -n03376595 -n04099969 -n04344873 -n04447861 -n03179701 -n03982430 -n03201208 -n03290653 -n04550184 -n07742313 -n07747607 -n07749582 -n07753113 -n07753275 -n07753592 -n07754684 -n07760859 -n07768694 -n12267677 -n12620546 -n13133613 -n11879895 -n12144580 -n12768682 -n03854065 -n04515003 -n03017168 -n03249569 -n03447721 -n03720891 -n03721384 -n04311174 -n02787622 -n02992211 -n04536866 -n03495258 -n02676566 -n03272010 -n03110669 -n03394916 -n04487394 -n03494278 -n03840681 -n03884397 -n02804610 -n03838899 -n04141076 -n03372029 -n11939491 -n12057211 -n09246464 -n09468604 -n09193705 -n09472597 -n09399592 -n09421951 -n09256479 -n09332890 -n09428293 -n09288635 -n03498962 -n03041632 -n03658185 -n03954731 -n03995372 -n03649909 -n03481172 -n03109150 -n02951585 -n03970156 -n04154565 -n04208210 -n03967562 -n03000684 -n01514668 -n01514859 -n01518878 -n01530575 -n01531178 -n01532829 -n01534433 -n01537544 -n01558993 -n01560419 -n01580077 -n01582220 -n01592084 -n01601694 -n01608432 -n01614925 -n01616318 -n01622779 -n01795545 -n01796340 -n01797886 -n01798484 -n01806143 -n01806567 -n01807496 -n01817953 -n01818515 -n01819313 -n01820546 -n01824575 -n01828970 -n01829413 -n01833805 -n01843065 -n01843383 -n01847000 -n01855032 -n01855672 -n01860187 -n02002556 -n02002724 -n02006656 -n02007558 -n02009912 -n02009229 -n02011460 -n02012849 -n02013706 -n02018207 -n02018795 -n02025239 -n02027492 -n02028035 -n02033041 -n02037110 -n02017213 -n02051845 -n02056570 -n02058221 -n01484850 -n01491361 -n01494475 -n01496331 -n01498041 -n02514041 -n02536864 -n01440764 -n01443537 -n02526121 -n02606052 -n02607072 -n02643566 -n02655020 -n02640242 -n02641379 -n01664065 -n01665541 -n01667114 -n01667778 -n01669191 -n01675722 -n01677366 -n01682714 -n01685808 -n01687978 -n01688243 -n01689811 -n01692333 -n01693334 -n01694178 -n01695060 -n01704323 -n01697457 -n01698640 -n01728572 -n01728920 -n01729322 -n01729977 -n01734418 -n01735189 -n01737021 -n01739381 -n01740131 -n01742172 -n01744401 -n01748264 -n01749939 -n01751748 -n01753488 -n01755581 -n01756291 -n01629819 -n01630670 -n01631663 -n01632458 -n01632777 -n01641577 -n01644373 -n01644900 -n04579432 -n04592741 -n03876231 -n03483316 -n03868863 -n04251144 -n03691459 -n03759954 -n04152593 -n03793489 -n03271574 -n03843555 -n04332243 -n04265275 -n04330267 -n03467068 -n02794156 -n04118776 -n03841143 -n04141975 -n02708093 -n03196217 -n04548280 -n03544143 -n04355338 -n03891332 -n04328186 -n03197337 -n04317175 -n04376876 -n03706229 -n02841315 -n04009552 -n04356056 -n03692522 -n04044716 -n02879718 -n02950826 -n02749479 -n04090263 -n04008634 -n03085013 -n04505470 -n03126707 -n03666591 -n02666196 -n02977058 -n04238763 -n03180011 -n03485407 -n03832673 -n06359193 -n03496892 -n04428191 -n04004767 -n04243546 -n04525305 -n04179913 -n03602883 -n04372370 -n03532672 -n02974003 -n03874293 -n03944341 -n03992509 -n03425413 -n02966193 -n04371774 -n04067472 -n04040759 -n04019541 -n03492542 -n04355933 -n03929660 -n02965783 -n04258138 -n04074963 -n03208938 -n02910353 -n03476684 -n03627232 -n03075370 -n03874599 -n03804744 -n04127249 -n04153751 -n03803284 -n04162706 -n04228054 -n02948072 -n03590841 -n04286575 -n04456115 -n03814639 -n03933933 -n04485082 -n03733131 -n03794056 -n04275548 -n01768244 -n01770081 -n01770393 -n01773157 -n01773549 -n01773797 -n01774384 -n01774750 -n01775062 -n01776313 -n01784675 -n01990800 -n01978287 -n01978455 -n01980166 -n01981276 -n01983481 -n01984695 -n01985128 -n01986214 -n02165105 -n02165456 -n02167151 -n02168699 -n02169497 -n02172182 -n02174001 -n02177972 -n02190166 -n02206856 -n02226429 -n02229544 -n02231487 -n02233338 -n02236044 -n02256656 -n02259212 -n02264363 -n02268443 -n02268853 -n02276258 -n02277742 -n02279972 -n02280649 -n02281406 -n02281787 -n01910747 -n01914609 -n01917289 -n01924916 -n01930112 -n01943899 -n01944390 -n01945685 -n01950731 -n01955084 -n02319095 -n02321529 -n03584829 -n03297495 -n03761084 -n03259280 -n04111531 -n04442312 -n04542943 -n04517823 -n03207941 -n04070727 -n04554684 -n03133878 -n03400231 -n04596742 -n02939185 -n03063689 -n04398044 -n04270147 -n02699494 -n04486054 -n03899768 -n04311004 -n04366367 -n04532670 -n02793495 -n03457902 -n03877845 -n03781244 -n03661043 -n02727426 -n02859443 -n03028079 -n03788195 -n04346328 -n03956157 -n04081281 -n03032252 -n03529860 -n03697007 -n03065424 -n03837869 -n04458633 -n02980441 -n04005630 -n03461385 -n02776631 -n02791270 -n02871525 -n02927161 -n03089624 -n04200800 -n04443257 -n04462240 -n03388043 -n03042490 -n04613696 -n03216828 -n02892201 -n03743016 -n02788148 -n02894605 -n03160309 -n03000134 -n03930313 -n04604644 -n04326547 -n03459775 -n04239074 -n04501370 -n03792972 -n04149813 -n03530642 -n03961711 -n03903868 -n02814860 -n07711569 -n07720875 -n07714571 -n07714990 -n07715103 -n07716358 -n07716906 -n07717410 -n07717556 -n07718472 -n07718747 -n07730033 -n07734744 -n04209239 -n03594734 -n02971356 -n03485794 -n04133789 -n02747177 -n04125021 -n07579787 -n03814906 -n03134739 -n03404251 -n04423845 -n03877472 -n04120489 -n03062245 -n03014705 -n03717622 -n03777754 -n04493381 -n04476259 -n02777292 -n07693725 -n03998194 -n03617480 -n07590611 -n04579145 -n03623198 -n07248320 -n04277352 -n04229816 -n02823428 -n03127747 -n02877765 -n04435653 -n03724870 -n03710637 -n03920288 -n03379051 -n02807133 -n04399382 -n03527444 -n03983396 -n03924679 -n04532106 -n06785654 -n03445777 -n07613480 -n04350905 -n04562935 -n03325584 -n03045698 -n07892512 -n03250847 -n04192698 -n03026506 -n03534580 -n07565083 -n04296562 -n02869837 -n07871810 -n02799071 -n03314780 -n04141327 -n04357314 -n02823750 -n13052670 -n07583066 -n03637318 -n04599235 -n07802026 -n02883205 -n03709823 -n04560804 -n02909870 -n03207743 -n04263257 -n07932039 -n03786901 -n04479046 -n03873416 -n02999410 -n04367480 -n03775546 -n07875152 -n04591713 -n04201297 -n02916936 -n03240683 -n02840245 -n02963159 -n04370456 -n03991062 -n02843684 -n03482405 -n03942813 -n03908618 -n03902125 -n07584110 -n02730930 -n04023962 -n02769748 -n10148035 -n02817516 -n03908714 -n02906734 -n03788365 -n02667093 -n03787032 -n03980874 -n03141823 -n03976467 -n04264628 -n07930864 -n04039381 -n06874185 -n04033901 -n04041544 -n07860988 -n03146219 -n03763968 -n03676483 -n04209133 -n03782006 -n03857828 -n03775071 -n02892767 -n07684084 -n04522168 -n03764736 -n04118538 -n03887697 -n13044778 -n03291819 -n03770439 -n03124170 -n04487081 -n03916031 -n02808440 -n07697537 -n12985857 -n02917067 -n03938244 -n15075141 -n02978881 -n02966687 -n03633091 -n13040303 -n03690938 -n03476991 -n02669723 -n03220513 -n03127925 -n04584207 -n07880968 -n03937543 -n03000247 -n04418357 -n04590129 -n02795169 -n04553703 -n02783161 -n02802426 -n02808304 -n03124043 -n03450230 -n04589890 -n12998815 -n02992529 -n03825788 -n02790996 -n03710193 -n03630383 -n03347037 -n03769881 -n03871628 -n03733281 -n03976657 -n03535780 -n04259630 -n03929855 -n04049303 -n04548362 -n02979186 -n06596364 -n03935335 -n06794110 -n02825657 -n03388183 -n04591157 -n04540053 -n03866082 -n04136333 -n04026417 -n02865351 -n02834397 -n03888257 -n04235860 -n04404412 -n04371430 -n03733805 -n07920052 -n07873807 -n02895154 -n04204238 -n04597913 -n04131690 -n07836838 -n09835506 -n03443371 -n13037406 -n04336792 -n04557648 -n03187595 -n04254120 -n03595614 -n04146614 -n03598930 -n03958227 -n04069434 -n03188531 -n02786058 -n07615774 -n04525038 -n04409515 -n03424325 -n03223299 -n03680355 -n07614500 -n07695742 -n04033995 -n03710721 -n04392985 -n03047690 -n03584254 -n13054560 -n10565667 -n03950228 -n03729826 -n02837789 -n04254777 -n02988304 -n03657121 -n04417672 -n04523525 -n02815834 -n09229709 -n07697313 -n03888605 -n03355925 -n03063599 -n04116512 -n04325704 -n07831146 -n03255030 -n00483313 -n02432291 -n02356381 -n02377388 -n04028764 -n04381587 -n02279257 -n04168199 -n00445055 -n02461128 -n03626760 -n04313503 -n00451635 -n02509515 -n04224842 -n09403734 -n02769290 -n13054073 -n03163222 -n00464478 -n03087069 -n04477219 -n03445617 -n00449054 -n00483705 -n04395106 -n03389611 -n04285965 -n04166281 -n04003856 -n03696301 -n00475787 -n04587404 -n09218641 -n02276355 -n03592669 -n04459909 -n04492375 -n09447666 -n00463543 -n04148703 -n04591517 -n03970546 -n04297750 -n02782778 -n02383231 -n03693474 -n02277094 -n03766044 -n02056228 -n03394272 -n03047052 -n00434075 -n04185946 -n02411999 -n03858418 -n12833149 -n02836035 -n03108853 -n04587559 -n04138261 -n02278024 -n03063485 -n02774921 -n09475044 -n02811204 -n03329302 -n04026813 -n03986562 -n03379204 -n03426134 -n02790669 -n03487090 -n03548402 -n08614632 -n04054361 -n03421485 -n03302671 -n03098959 -n02970408 -n03772584 -n03064935 -n09415584 -n11715430 -n12024445 -n02710201 -n03475581 -n13142504 -n03396074 -n03211789 -n03914337 -n03678558 -n03233123 -n00453396 -n00454395 -n00440382 -n04289027 -n00445226 -n11953610 -n04128413 -n00480211 -n00470966 -n12547503 -n03085219 -n02275773 -n02692086 -n04257790 -n00448748 -n02686379 -n12328567 -n03432129 -n03859000 -n12091377 -n02124313 -n00442847 -n04603399 -n03114379 -n02920369 -n03818343 -n02946127 -n02978055 -n12914923 -n02705429 -n00448232 -n12882945 -n04289690 -n07606669 -n02056728 -n11848479 -n03046921 -n12282933 -n02867966 -n12821505 -n02812949 -n04545305 -n02699770 -n04395651 -n02900160 -n04099003 -n02054711 -n12606545 -n03356858 -n01859190 -n03643737 -n02962200 -n03123553 -n09361517 -n02793089 -n00449517 -n02783994 -n10117851 -n12038585 -n04383839 -n10142391 -n07719213 -n03536122 -n02472987 -n03454536 -n11728099 -n02392824 -n03795758 -n04282872 -n00448872 -n02404432 -n03797182 -n03029197 -n03665924 -n12477163 -n02769963 -n03863262 -n01532325 -n04165409 -n04593077 -n04473108 -n03577090 -n09988063 -n00446804 -n03931765 -n00475014 -n02700064 -n03240892 -n12475242 -n11735053 -n04053508 -n02852173 -n02382750 -n03823111 -n04543772 -n04112147 -n04433585 -n03175189 -n03596543 -n00445685 -n03307792 -n04589593 -n01814217 -n02993368 -n04303497 -n02811350 -n03355768 -n03699591 -n04590553 -n01893825 -n12726670 -n09916348 -n11544015 -n01318894 -n02133704 -n02367492 -n04506289 -n02069974 -n01900150 -n03207835 -n03363549 -n02831595 -n04970470 -n04160847 -n03767203 -n03928814 -n02302969 -n02918595 -n10401331 -n04231272 -n03717447 -n03063968 -n03380724 -n00825773 -n09988493 -n02740300 -n04539794 -n04121511 -n01323599 -n12937130 -n02428508 -n02980036 -n12061380 -n01887787 -n04214046 -n01787835 -n00466630 -n02979290 -n03927091 -n03231368 -n03904657 -n04469003 -n04196502 -n02122948 -n04544325 -n07868340 -n13876561 -n11925898 -n12158443 -n01595450 -n12454705 -n02069412 -n09618957 -n02357111 -n00451563 -n04197110 -n02276902 -n03111296 -n03909020 -n12303083 -n02082791 -n01956764 -n04269822 -n04207343 -n02433318 -n01888181 -n12682668 -n01592387 -n09793141 -n00466273 -n04026180 -n06255081 -n12172364 -n10145590 -n12311579 -n12173912 -n03822171 -n03140292 -n03027625 -n02739427 -n02060133 -n02431785 -n03219010 -n00447957 -n11910271 -n03620967 -n12547215 -n02409508 -n04290079 -n12329260 -n13901858 -n02008497 -n10304914 -n04524142 -n04279462 -n04233124 -n09733793 -n12822115 -n09475179 -n10151760 -n03418618 -n12858397 -n07735510 -n03549473 -n10098245 -n03653583 -n10604380 -n03375575 -n03885293 -n01527347 -n03237340 -n02760658 -n11953038 -n03187268 -n03004275 -n02393161 -n11965218 -n08580944 -n03938725 -n03900979 -n04144241 -n03760310 -n02376679 -n03237992 -n09432283 -n02379908 -n09918554 -n04041747 -n12012111 -n10331167 -n01612122 -n10147935 -n07691539 -n11669786 -n09403427 -n01935395 -n09903501 -n04439585 -n04459018 -n02780704 -n03720163 -n12899752 -n04118635 -n03404149 -n02429456 -n00449168 -n04516354 -n04317833 -n12075299 -n07878647 -n09438940 -n03361550 -n02027357 -n04317976 -n03092883 -n04526964 -n03985069 -n03610682 -n04028581 -n02277268 -n09433839 -n03846431 -n03919289 -n10146104 -n10260706 -n02686227 -n03321103 -n00444846 -n01558307 -n01595168 -n03919096 -n11844892 -n04260364 -n02750070 -n03034244 -n03002096 -n04273972 -n11814584 -n04605321 -n07745466 -n02922798 -n03361380 -n12651229 -n08521623 -n04498389 -n00453313 -n04967882 -n12024690 -n03934656 -n02685082 -n04501550 -n09972458 -n03055418 -n07763629 -n03902756 -n09938449 -n09712696 -n02387346 -n03133415 -n07711080 -n03129753 -n03524150 -n02275560 -n03993053 -n03438661 -n11939180 -n00466524 -n11753355 -n03456024 -n03421324 -n07890540 -n11720643 -n02057035 -n00453126 -n04453037 -n01540832 -n03546235 -n03370387 -n02041875 -n02871439 -n03262072 -n01786646 -n02430830 -n02799175 -n05262422 -n03854722 -n12817694 -n04449966 -n01564773 -n02034971 -n03490119 -n02822579 -n07879953 -n04110178 -n04963588 -n04252653 -n01565078 -n02389128 -n02779435 -n10645017 -n04582205 -n08573842 -n10146002 -n03892178 -n03119396 -n03813078 -n07866868 -n03160740 -n03371875 -n02417387 -n03904782 -n03098688 -n02902687 -n01828556 -n04401680 -n04590933 -n01575401 -n07693048 -n02901114 -n03047941 -n04355511 -n11849871 -n10738111 -n03122073 -n12052787 -n01594004 -n01549886 -n02824058 -n03506184 -n11487732 -n12574866 -n12948053 -n10091450 -n00470554 -n00326094 -n12093329 -n04438897 -n07818995 -n12828791 -n13901321 -n10613996 -n10159533 -n02669295 -n02843158 -n06415688 -n14858292 -n09813219 -n12485653 -n03200231 -n02089468 -n03935234 -n01539925 -n12428076 -n10439373 -n01536644 -n02694662 -n02123242 -n03002711 -n03363749 -n02669534 -n03451798 -n11927215 -n02679257 -n09475925 -n10015485 -n12422129 -n03946162 -n02377291 -n07871720 -n12622297 -n12782915 -n01579260 -n11838916 -n10267311 -n12824053 -n03340723 -n02276749 -n04439712 -n02126139 -n04188179 -n02386853 -n07942152 -n02499316 -n04324387 -n10635788 -n04234887 -n12237641 -n03713436 -n04960582 -n04076713 -n01646292 -n03947798 -n02840134 -n04476972 -n09822830 -n03551395 -n04533802 -n02918964 -n00474657 -n12932966 -n01615458 -n01806364 -n12458550 -n11784497 -n03557360 -n10638922 -n09889941 -n10689306 -n03358172 -n04295571 -n06596607 -n11853356 -n00482122 -n11760785 -n03150232 -n11778257 -n03059685 -n10105733 -n04104384 -n07691237 -n04326676 -n07684938 -n12666965 -n04177820 -n13918387 -n03398153 -n03914438 -n09932098 -n02988486 -n02977619 -n03317788 -n03484487 -n02988679 -n04062428 -n02568087 -n12866162 -n04227144 -n07875436 -n04082886 -n11753700 -n00470682 -n02122298 -n10145239 -n12755727 -n04214282 -n01852671 -n02378969 -n04108822 -n10382825 -n12392549 -n03973839 -n12258885 -n11782761 -n12389501 -n02940570 -n03405595 -n02969323 -n03207630 -n10169147 -n03805725 -n09847543 -n02415253 -n07880080 -n04305572 -n02042180 -n07565161 -n02871147 -n04438507 -n04445154 -n07842433 -n12029635 -n09750282 -n09621232 -n01858906 -n02761206 -n03986355 -n12591351 -n13916721 -n02905036 -n11894770 -n02377603 -n12924623 -n03950899 -n09454153 -n10247358 -n05261310 -n11943660 -n10804287 -n03560430 -n01756089 -n10618342 -n04283378 -n13926786 -n04238321 -n04393549 -n04461879 -n03502200 -n00440941 -n03494706 -n04148579 -n13902336 -n02780815 -n10726031 -n04124098 -n12344483 -n04384910 -n07681450 -n02030837 -n04059157 -n09247410 -n02714751 -n08633683 -n04520784 -n10141732 -n12371439 -n04499062 -n02931148 -n07609632 -n04536335 -n02874537 -n03013438 -n11786539 -n11690455 -n07600696 -n00478262 -n00466712 -n03399677 -n12441183 -n07895962 -n11966083 -n02990373 -n04241249 -n02068541 -n12513933 -n02356977 -n04252560 -n04087826 -n03455488 -n07619409 -n09787534 -n03680942 -n00446980 -n12384839 -n03416900 -n07821758 -n11853813 -n01606522 -n11780148 -n04969242 -n12413880 -n04130257 -n01322604 -n03061211 -n01959492 -n02842573 -n04313628 -n03815149 -n02445394 -n08547544 -n03222176 -n04070003 -n03075768 -n09695979 -n02877266 -n08583292 -n02870676 -n03657511 -n01621635 -n04284341 -n04136161 -n02836174 -n10247880 -n01744100 -n02882894 -n03408444 -n03411079 -n02366959 -n04399158 -n04542715 -n02787435 -n04251701 -n13863020 -n07890226 -n12245319 -n12849952 -n11626826 -n00887544 -n03140431 -n03519387 -n03855604 -n07906111 -n02054036 -n11954161 -n03038281 -n00450998 -n12136392 -n02119477 -n04356925 -n02406647 -n04450133 -n12545635 -n01565599 -n02028900 -n07817024 -n02971167 -n04309049 -n02678897 -n12795555 -n11769803 -n01904886 -n02079851 -n12189987 -n04581829 -n12098403 -n01839330 -n12587803 -n03652932 -n08628141 -n03544238 -n04513827 -n01847806 -n03132076 -n10243137 -n03621377 -n10530959 -n14765422 -n04968139 -n12950314 -n02064816 -n02846511 -n10513823 -n11772408 -n03341297 -n03492922 -n03683606 -n02894337 -n02365480 -n09846755 -n03495039 -n01317813 -n12610328 -n02157206 -n01588002 -n03914831 -n03659686 -n10406765 -n09205509 -n02870526 -n07954211 -n10578471 -n11646694 -n03115762 -n07762913 -n12056758 -n12305986 -n11845913 -n02835915 -n02831237 -n07927512 -n12171098 -n02073831 -n07605040 -n02885462 -n02768114 -n04450994 -n11844371 -n03963645 -n02956699 -n02029378 -n01528396 -n10005934 -n04465666 -n04390977 -n11882074 -n03831382 -n04605163 -n06276501 -n02944075 -n05258051 -n07901457 -n12683571 -n02205219 -n13235503 -n02388735 -n03941231 -n14919819 -n12816508 -n11536673 -n13895262 -n02903204 -n10137825 -n07841345 -n07893253 -n01850192 -n07769731 -n11773987 -n03539678 -n12938193 -n10802507 -n03089879 -n00477392 -n01828096 -n09263912 -n13653902 -n04579667 -n01322983 -n08579352 -n07587023 -n07756951 -n07870167 -n10588357 -n01606809 -n13864035 -n02802544 -n07591961 -n02979399 -n04144539 -n02416820 -n11769176 -n09743792 -n09732170 -n04972451 -n13918274 -n01847089 -n01859689 -n04208065 -n07617051 -n10674713 -n07914271 -n07887461 -n03736064 -n03644858 -n03878963 -n04040247 -n07891433 -n01611969 -n07587618 -n02689144 -n10049363 -n04059516 -n10313239 -n03115400 -n01519563 -n01533893 -n03850245 -n11733548 -n03372549 -n01884834 -n02839110 -n07887192 -n03617312 -n07886463 -n03103396 -n07764847 -n01855476 -n07808587 -n12858871 -n03632729 -n10209731 -n04141712 -n03978686 -n03225988 -n00475273 -n09224725 -n04966543 -n01322221 -n03649674 -n13154494 -n03948830 -n03320519 -n03723267 -n07869611 -n12342498 -n01827793 -n03145719 -n11821184 -n11956348 -n11857875 -n10339717 -n09450163 -n10756148 -n01591301 -n07915094 -n04422727 -n09719309 -n03349469 -n03389889 -n10718131 -n04298661 -n09747495 -n03676623 -n03547229 -n03062015 -n10734394 -n07817315 -n02852360 -n01850553 -n02952585 -n03587205 -n02009750 -n01540090 -n02947660 -n03656957 -n03378174 -n02508213 -n01572489 -n12008487 -n12185859 -n11691046 -n01323355 -n05262534 -n00448126 -n02432983 -n12038406 -n03883385 -n02411206 -n01643896 -n10159045 -n11675025 -n01803362 -n02009508 -n07920349 -n04098513 -n11617272 -n09913455 -n12390314 -n04171208 -n02995345 -n10634849 -n03173929 -n02749953 -n11845793 -n12796022 -n11955153 -n11816829 -n03032453 -n11984542 -n02992795 -n03712111 -n02873733 -n02759387 -n14915184 -n02381364 -n12686274 -n07857731 -n04518764 -n03010473 -n02418465 -n02359556 -n07894799 -n04104770 -n04335209 -n01848976 -n02006063 -n04454908 -n03002948 -n04220250 -n09923561 -n04102162 -n11958080 -n04598965 -n10173410 -n03067339 -n02003204 -n12686676 -n11986511 -n02311617 -n03367059 -n02761557 -n05578095 -n04041069 -n10575463 -n03325941 -n10082043 -n01806297 -n09691729 -n04593866 -n01813088 -n01625562 -n03906224 -n01652026 -n10236304 -n04102618 -n04321453 -n07820145 -n01575117 -n12788854 -n07823698 -n04206225 -n03216710 -n02421449 -n03343737 -n07560903 -n02872529 -n11989869 -n12071744 -n06278475 -n04492749 -n02920259 -n03798061 -n02420509 -n03316105 -n12052447 -n03974915 -n02904803 -n03430418 -n12291959 -n06892775 -n03875806 -n07903841 -n10282482 -n02683323 -n07862348 -n01849157 -n04469813 -n09944022 -n03342127 -n07592481 -n02936402 -n02405929 -n10002760 -n02537716 -n05259914 -n01560280 -n12694486 -n07879350 -n02377063 -n03637181 -n03409297 -n01607812 -n02808185 -n09239302 -n12055516 -n09712448 -n02859184 -n12772908 -n02735538 -n10333838 -n12336092 -n02386968 -n04613939 -n00452864 -n04535524 -n03174731 -n04189816 -n07607605 -n12909917 -n02387722 -n02960690 -n07715221 -n02407071 -n10667477 -n09398076 -n04236809 -n01904806 -n01610552 -n12373100 -n12771390 -n04122685 -n07804771 -n15102455 -n03469175 -n03746005 -n02536456 -n03505667 -n11816336 -n09376198 -n10572706 -n03464053 -n02869155 -n07816164 -n04969798 -n02942349 -n14820180 -n01623615 -n12676703 -n03369276 -n03650551 -n02010272 -n02976123 -n01852400 -n02196119 -n04132158 -n03238586 -n07639069 -n03313333 -n10542761 -n12215022 -n00455173 -n10019406 -n12899537 -n04277826 -n09906449 -n04549629 -n11508382 -n15090065 -n10289462 -n04540255 -n02723165 -n04335693 -n01536334 -n03107488 -n12782530 -n14785065 -n02974348 -n09874862 -n04479939 -n03309465 -n09902954 -n12092417 -n03425595 -n12433081 -n07806774 -n12462805 -n01314781 -n10192839 -n01622120 -n07807171 -n03261019 -n02843553 -n04287747 -n02324587 -n09915434 -n01818299 -n01592694 -n03826186 -n03607659 -n01527917 -n03628511 -n02005399 -n04204081 -n02052775 -n04403413 -n03914106 -n12811027 -n01872772 -n04555700 -n02004855 -n04602762 -n02713003 -n04406817 -n11934807 -n03336282 -n09684901 -n03836976 -n11959862 -n03062336 -n03506028 -n04503413 -n07819896 -n03205669 -n11902200 -n07685218 -n03046133 -n10261624 -n10303814 -n03676087 -n04023695 -n07587111 -n07764155 -n01504179 -n03794136 -n03389761 -n13901211 -n02784124 -n04488530 -n02807731 -n07898443 -n04981658 -n04177755 -n03649161 -n04125257 -n10135129 -n03653110 -n10560106 -n07735687 -n03511333 -n11960245 -n03301568 -n03878066 -n10746931 -n04223299 -n04237423 -n07888229 -n01819734 -n12312728 -n09981939 -n03727465 -n13882276 -n02993194 -n11971927 -n09713108 -n03581125 -n09718936 -n14698884 -n03005285 -n03540914 -n03359436 -n03934042 -n07569644 -n04964878 -n07890068 -n07580253 -n01538630 -n03132666 -n03259009 -n02796318 -n12703190 -n01464844 -n11792029 -n04270371 -n13102775 -n02933649 -n02387254 -n02890188 -n04335886 -n04358491 -n02786837 -n03885194 -n04001265 -n03438071 -n10375402 -n02997910 -n03326795 -n00470830 -n02734725 -n03494537 -n08376250 -n07743544 -n02991847 -n04246271 -n04156140 -n04381073 -n07732168 -n04951071 -n07977870 -n04334599 -n02838728 -n03326948 -n11723227 -n08182379 -n03686924 -n03821518 -n02382204 -n02080415 -n11788727 -n07732636 -n03860404 -n03898395 -n07867324 -n04392113 -n13237188 -n03263076 -n07843636 -n04968056 -n04397027 -n03320421 -n06267564 -n02880842 -n04115456 -n13862407 -n10289039 -n03128248 -n01457852 -n01536035 -n04579056 -n03937931 -n03036022 -n01804163 -n09913593 -n12841007 -n03115897 -n03256032 -n02475669 -n07924443 -n03061505 -n10001481 -n03600722 -n07842308 -n10696508 -n04215402 -n10588074 -n03614782 -n03995535 -n12091953 -n04113194 -n10092978 -n03011741 -n04381860 -n07819769 -n07905474 -n03288500 -n04225987 -n13223710 -n02879087 -n02920083 -n08640739 -n03362890 -n03996849 -n03849814 -n09694664 -n02407390 -n02910864 -n02388917 -n01668665 -n07616046 -n02932891 -n10553235 -n03652729 -n01615703 -n12801781 -n12164656 -n05302499 -n03801760 -n03332271 -n02901793 -n03941417 -n09833441 -n01623110 -n02807523 -n10598181 -n03725600 -n10368528 -n04116098 -n12719944 -n02045864 -n02173373 -n02811059 -n04479823 -n07816398 -n10572889 -n04142731 -n07687381 -n02799323 -n07865484 -n01858845 -n12684379 -n01842235 -n09242389 -n02028727 -n03527565 -n03438863 -n15019030 -n13907272 -n09659039 -n04251791 -n03683995 -n04137217 -n04389430 -n09785659 -n02016816 -n03124590 -n01859325 -n03138669 -n02999936 -n11926365 -n12686077 -n03517760 -n09734450 -n04563413 -n12074867 -n01564217 -n12521394 -n06267893 -n03594148 -n04139395 -n12369309 -n01544389 -n12048056 -n04524941 -n03016868 -n03653740 -n02795528 -n03687137 -n03766935 -n03361297 -n04263502 -n10043491 -n03446268 -n01994910 -n03891538 -n10091564 -n10226413 -n02755140 -n03500389 -n10237196 -n03625646 -n06596474 -n03360300 -n09730824 -n10732010 -n04469514 -n02904927 -n04961331 -n02936570 -n03680858 -n07585758 -n09199101 -n04050933 -n03712337 -n03911513 -n01556182 -n03102371 -n07928887 -n12133462 -n03974070 -n03971218 -n03292475 -n03425241 -n03440216 -n11995092 -n02894158 -n02918112 -n10568358 -n11524451 -n03169176 -n04100519 -n07588193 -n06883725 -n02860640 -n07762114 -n04082710 -n07896893 -n10167152 -n03287351 -n02788021 -n08494231 -n01560935 -n03249342 -n04564581 -n09349648 -n07704205 -n03510244 -n12127460 -n09945745 -n11719286 -n11613459 -n12656369 -n03824381 -n07655263 -n09894143 -n04964001 -n02161457 -n07654298 -n07930433 -n02979074 -n02026948 -n13914608 -n07611267 -n02843276 -n09827363 -n10259780 -n04432662 -n11715678 -n12388858 -n03057920 -n10465451 -n03855214 -n07728181 -n09835348 -n03549732 -n04589325 -n03491032 -n00452034 -n03948242 -n01456756 -n07921615 -n02809105 -n12889713 -n07586894 -n07734879 -n07905979 -n12847374 -n12129134 -n02122580 -n04028074 -n02911332 -n09251407 -n07697825 -n04597309 -n02800213 -n03480579 -n07621618 -n04170933 -n03743279 -n01916481 -n04037220 -n10748620 -n02708433 -n12007196 -n02561381 -n04103769 -n03030880 -n04413969 -n03911658 -n04590746 -n00476389 -n04331639 -n07725789 -n01792429 -n02949542 -n07686720 -n04064862 -n04447028 -n01713764 -n09854218 -n04032603 -n04405907 -n15093298 -n04385536 -n11954345 -n01560793 -n09249034 -n03784270 -n03436549 -n01324610 -n02379183 -n07616487 -n04119478 -n03309356 -n12865037 -n12850168 -n04250850 -n03024064 -n04412097 -n02982515 -n00450070 -n10175248 -n11847169 -n12276872 -n12870891 -n10229883 -n10505613 -n03482252 -n09300905 -n02919890 -n07617611 -n10283170 -n01607962 -n01671125 -n07894551 -n04561287 -n00005787 -n10025635 -n02850732 -n03732020 -n02036711 -n07907429 -n03797896 -n03004824 -n12011620 -n10300303 -n03105467 -n03767745 -n07868508 -n07868200 -n03788047 -n07886057 -n04559451 -n09845401 -n04373704 -n02676938 -n02565324 -n02667478 -n02122878 -n03244047 -n01747589 -n04320973 -n13205058 -n02379430 -n11959632 -n10183931 -n07683490 -n10055410 -n04370288 -n03273551 -n13900422 -n07899434 -n04053677 -n07740461 -n11879722 -n04282494 -n02981911 -n03449451 -n07581249 -n03965456 -n11808468 -n13881644 -n11725973 -n12091213 -n13193856 -n02873520 -n02754656 -n02431976 -n01324431 -n02385214 -n01888411 -n12680864 -n07731284 -n04337287 -n07631926 -n02549248 -n04395024 -n07585557 -n02776825 -n09460046 -n12023108 -n00475403 -n10098517 -n07902336 -n03683708 -n02412210 -n04397452 -n04583212 -n13869547 -n03632577 -n01616086 -n02763901 -n08256735 -n03015478 -n02084732 -n12178896 -n11966215 -n07605380 -n13869788 -n01847170 -n07744811 -n01854700 -n00444937 -n10422405 -n07801892 -n09688804 -n11879054 -n02802215 -n07908411 -n07822518 -n01558594 -n07935737 -n10730728 -n04436329 -n04294879 -n04972350 -n12911440 -n13886260 -n07578093 -n02537525 -n03703730 -n09607630 -n13865904 -n02360282 -n11731659 -n04126066 -n04212165 -n11618290 -n07588574 -n09269472 -n11896722 -n02892304 -n03487642 -n02028342 -n03321563 -n03135030 -n03522100 -n03253886 -n04095109 -n06470073 -n12603449 -n10644598 -n10260800 -n01535469 -n09696456 -n03553019 -n03963198 -n11918473 -n10314517 -n03002341 -n07574923 -n10421470 -n05716342 -n03244231 -n01730563 -n11691857 -n12807251 -n12345899 -n03142679 -n01531512 -n12307240 -n07835457 -n04535370 -n00451186 -n12481458 -n03434188 -n09734185 -n04578934 -n04167346 -n02747802 -n03459328 -n03301940 -n01562014 -n07690431 -n10642596 -n03696065 -n12781940 -n02759257 -n04392764 -n04218564 -n03499907 -n01536780 -n09751895 -n03235042 -n04570815 -n12070381 -n09448690 -n07625061 -n10178216 -n04560113 -n09457979 -n03858085 -n02421792 -n02944579 -n10085869 -n09718811 -n04103206 -n04239786 -n04501947 -n01321123 -n02390015 -n03964495 -n01554448 -n02925107 -n03028596 -n12483625 -n03227317 -n10701644 -n11968704 -n03900393 -n01851038 -n02276078 -n03132776 -n07585906 -n04480033 -n07880458 -n12887293 -n07921239 -n03307037 -n04595028 -n04244379 -n13131028 -n10313724 -n09436708 -n02694045 -n09941787 -n00449796 -n01817346 -n07928696 -n03401279 -n12901724 -n11646167 -n07682477 -n09415671 -n07900225 -n03607029 -n02692232 -n11834654 -n07935379 -n12437930 -n03762434 -n07922764 -n03595523 -n04546340 -n10686885 -n03516844 -n03767112 -n09896685 -n03859608 -n03149686 -n07920872 -n12388143 -n10406391 -n04233715 -n04373089 -n02023992 -n01947396 -n12115180 -n00479616 -n03962852 -n02392434 -n12414035 -n14976871 -n03201776 -n10665587 -n03600285 -n04402449 -n08539072 -n03629231 -n12860365 -n03488438 -n03337383 -n12455950 -n10384392 -n02953455 -n03101796 -n07919572 -n03233744 -n01578180 -n01756508 -n04556533 -n02962843 -n02882190 -n03731483 -n01850873 -n05260240 -n03111177 -n09836519 -n03030557 -n11789066 -n02788572 -n07903101 -n04067818 -n07840804 -n01567678 -n12427184 -n03333610 -n02416964 -n10607291 -n07936548 -n05451384 -n02968074 -n07605597 -n02704949 -n07609215 -n01951274 -n07696977 -n03180384 -n04303357 -n03291741 -n02207805 -n10123844 -n03420345 -n12384227 -n02758863 -n02047975 -n03978966 -n03549199 -n04275175 -n09294877 -n09836343 -n11970586 -n02010728 -n10369317 -n12681893 -n03192543 -n12413165 -n12174521 -n11916696 -n10042845 -n07822197 -n04968749 -n10323634 -n12849416 -n02814774 -n05538625 -n03078802 -n12230794 -n07726095 -n03051249 -n12005656 -n11876432 -n12164881 -n09711435 -n01622483 -n09896170 -n07684289 -n03368352 -n07910048 -n03159535 -n00466377 -n01541386 -n11647703 -n09752023 -n07903731 -n12249542 -n03794798 -n11786131 -n02852043 -n10493685 -n09846894 -n01752585 -n01536186 -n07618432 -n09859152 -n02065026 -n02382635 -n07867616 -n03885788 -n04255586 -n03275681 -n11961100 -n12485981 -n04495698 -n03293741 -n13902048 -n03254862 -n07903962 -n01594787 -n11962272 -n03284886 -n07842202 -n10157128 -n02405302 -n04443766 -n06266633 -n02519862 -n01487506 -n03373943 -n04247876 -n04327204 -n03349771 -n09260907 -n10092794 -n12223764 -n03504723 -n11926833 -n01820052 -n13032381 -n03889871 -n03209359 -n04608923 -n15093137 -n15091304 -n03688405 -n09905185 -n03543112 -n11611356 -n03885028 -n03234164 -n07594066 -n02396014 -n03456186 -n09874725 -n11601333 -n02917521 -n03055857 -n02804123 -n12352844 -n12866002 -n09858165 -n12037691 -n02565072 -n04477387 -n02008643 -n07867021 -n04119360 -n09893191 -n02944146 -n12435649 -n13197274 -n04974859 -n07751004 -n12003696 -n02762508 -n02680512 -n01743086 -n06998748 -n10607478 -n07613815 -n01559477 -n01859852 -n03239054 -n04466871 -n05263183 -n13173882 -n07897438 -n12427757 -n04400737 -n03291963 -n07682808 -n11692265 -n04130143 -n09445289 -n07696839 -n03835197 -n12821895 -n09734639 -n03365374 -n04305210 -n04962240 -n09871867 -n07897750 -n07616386 -n09443281 -n03641569 -n13882563 -n07680761 -n10498816 -n04034262 -n03533014 -n07928790 -n07690152 -n10060352 -n04124370 -n12453186 -n04509171 -n03013580 -n10604979 -n12515711 -n04971211 -n07693223 -n03786715 -n07894703 -n02761834 -n04232800 -n03437741 -n04045644 -n14976759 -n03042697 -n12557681 -n06275095 -n11678010 -n01586941 -n07684517 -n07822845 -n03483823 -n09951616 -n03180865 -n07861557 -n03644378 -n12848499 -n11962667 -n03886762 -n04238128 -n11979964 -n13915113 -n12791329 -n12457091 -n03341153 -n10267865 -n03484576 -n10186216 -n07612137 -n03843438 -n11807525 -n11931540 -n02027897 -n07614730 -n04116294 -n03469903 -n10017272 -n03688605 -n07860103 -n03981566 -n01888045 -n03345837 -n11998888 -n02071636 -n02726017 -n04310157 -n04607869 -n01622959 -n08524735 -n03119203 -n12031927 -n03610524 -n02807616 -n04056180 -n03233905 -n03374473 -n14810561 -n11944954 -n03121431 -n09750891 -n08505018 -n10727171 -n12357485 -n12571781 -n12067193 -n07586604 -n02086753 -n03548086 -n02560110 -n07804900 -n02880393 -n04208427 -n12931542 -n01594968 -n05218119 -n03520493 -n03727605 -n12687698 -n03612965 -n04135315 -n07730320 -n10540114 -n07599911 -n01323493 -n02115096 -n04590263 -n12043836 -n02861387 -n09836786 -n04966941 -n02816768 -n13131618 -n10701962 -n02919792 -n03442597 -n04325041 -n03333129 -n04091693 -n04950952 -n10631309 -n04177931 -n13234678 -n01970667 -n07748416 -n07893642 -n07691650 -n03660909 -n04145863 -n11945514 -n10334009 -n12336973 -n03954393 -n04558478 -n09899929 -n03487533 -n07816575 -n07877187 -n07863547 -n01603812 -n02098906 -n04973585 -n03674440 -n04371050 -n12243109 -n07871234 -n02928049 -n07574504 -n07889274 -n12141167 -n04543996 -n03080633 -n03423479 -n07879659 -n04380916 -n10514429 -n07584423 -n04009801 -n12479537 -n07606538 -n07698543 -n12353754 -n10132035 -n03367545 -n04245508 -n09811852 -n02024763 -n04052442 -n10120330 -n12352639 -n12606438 -n07752966 -n09772930 -n02535759 -n11737534 -n10345015 -n12427566 -n09705784 -n04112654 -n02985963 -n03758089 -n12953484 -n07906572 -n02881757 -n12739332 -n03718458 -n03407865 -n07775050 -n03210552 -n09452395 -n09789566 -n10566072 -n10559996 -n07826930 -n12414932 -n01887474 -n03026907 -n07751148 -n10223177 -n03957420 -n03788601 -n12244819 -n12421137 -n04266162 -n10038409 -n02981024 -n03228967 -n11825351 -n12058822 -n11963932 -n03041449 -n03046029 -n07590502 -n02932523 -n02152881 -n04970398 -n07887967 -n12812478 -n12421917 -n02708711 -n11870747 -n04290507 -n07934282 -n01608265 -n12070583 -n03205574 -n02305085 -n07866015 -n02960903 -n10098624 -n00481803 -n07938007 -n02693246 -n03923379 -n04103665 -n11792742 -n12489815 -n04971313 -n01668892 -n01055165 -n03215508 -n12104501 -n07899292 -n12822955 -n07713074 -n03842012 -n02449350 -n07868955 -n02835829 -n12283542 -n04525584 -n07910656 -n11625003 -n03987266 -n02805983 -n15091846 -n09736945 -n04973816 -n02439398 -n01519873 -n07899003 -n03019938 -n07582152 -n01885498 -n12108871 -n02934451 -n04327682 -n07696625 -n09750770 -n12084890 -n03960374 -n07585107 -n01570839 -n11905392 -n06277135 -n07842044 -n03751269 -n04398951 -n12861892 -n12649539 -n07596967 -n07580592 -n12845413 -n07690739 -n07804657 -n04334105 -n03779128 -n03268918 -n03066359 -n02744323 -n12596148 -n04272389 -n07832416 -n10210911 -n01548865 -n03221351 -n15091669 -n07878926 -n07607967 -n12171966 -n02846141 -n07576781 -n02922292 -n10092643 -n01732614 -n02578771 -n02864593 -n03537241 -n09635534 -n03268645 -n07852833 -n13873917 -n12640839 -n03506727 -n10536416 -n09976429 -n10692482 -n07600285 -n04156946 -n07818689 -n02605703 -n02710429 -n02890351 -n03408054 -n03121298 -n02731629 -n12450840 -n04061681 -n10153414 -n07648913 -n07891309 -n01562265 -n14973585 -n01610226 -n06267991 -n03302938 -n07822323 -n07826091 -n02764398 -n10406266 -n09282208 -n01734104 -n04283096 -n03530910 -n11542137 -n02610664 -n03856012 -n01531811 -n07862611 -n11625632 -n12643313 -n02469248 -n03333711 -n02907082 -n02122430 -n01559804 -n09744161 -n10187990 -n12015525 -n07844867 -n07887304 -n02878425 -n02009380 -n11448153 -n10655594 -n12566954 -n11901977 -n03999160 -n02389779 -n07928488 -n12785889 -n04281375 -n03745146 -n03224603 -n04594828 -n12835331 -n09715427 -n11615026 -n09972010 -n04038231 -n02379329 -n03445326 -n10753442 -n04249882 -n11727738 -n07866723 -n04282992 -n11621281 -n01566645 -n03919430 -n11980682 -n03480719 -n11625804 -n10467395 -n09436444 -n07867751 -n03684611 -n03788498 -n12062626 -n07808904 -n07690585 -n03865557 -n10711766 -n10465831 -n04380255 -n12166128 -n04432203 -n07892418 -n10432441 -n12991184 -n04209613 -n04459773 -n09666883 -n07807472 -n09873899 -n12939874 -n04545748 -n09637339 -n07919441 -n03987376 -n03645577 -n03437430 -n10671613 -n02964843 -n09707289 -n11700058 -n03877351 -n03518445 -n07643200 -n02140049 -n12683791 -n12418221 -n04154152 -n03397947 -n03238131 -n11851839 -n04545858 -n07744682 -n02995871 -n07593199 -n03543394 -n10293332 -n12658481 -n11599324 -n02705201 -n03920867 -n08249459 -n02876084 -n03937835 -n01397871 -n03849679 -n12016567 -n04208936 -n07696728 -n13148208 -n01904029 -n08659861 -n07878785 -n07827130 -n03390983 -n02624807 -n03319745 -n03994614 -n00446493 -n12477583 -n02920658 -n04602956 -n02688273 -n07577538 -n04350581 -n09283405 -n04074185 -n04495843 -n03538179 -n03454885 -n03878211 -n10308168 -n08518171 -n02660208 -n07904760 -n07928367 -n10174445 -n02137015 -n02863426 -n07700003 -n04015908 -n03946076 -n11725821 -n01794344 -n04364160 -n01663782 -n04283255 -n02822064 -n04406239 -n02782681 -n11990313 -n03563460 -n02957008 -n07889814 -n07896060 -n03683079 -n04278447 -n13011595 -n11810358 -n03836451 -n12827537 -n03545470 -n03213538 -n07929351 -n03471190 -n02882301 -n03625943 -n03397087 -n11955896 -n04097373 -n03145522 -n03034405 -n02889646 -n02928299 -n09652149 -n01641391 -n04593524 -n07651025 -n03719343 -n03884778 -n03452594 -n02174659 -n12345280 -n03039827 -n03309687 -n11635433 -n02057330 -n01664990 -n09779790 -n02011016 -n09689958 -n07770763 -n03010915 -n03443912 -n02946509 -n13050397 -n03031012 -n04217546 -n04124202 -n12766869 -n04177041 -n12050533 -n03251932 -n03086580 -n03918737 -n04386792 -n03176594 -n01577035 -n01669654 -n01818832 -n10441962 -n03885904 -n03724756 -n02925666 -n03549589 -n03062122 -n02828427 -n12604228 -n03624400 -n07725888 -n03873699 -n01503976 -n02887079 -n03610098 -n02940385 -n04610013 -n03652100 -n04496872 -n04008385 -n02583890 -n10476467 -n03395514 -n03306385 -n04228581 -n02389261 -n12576323 -n01579149 -n01623425 -n02593019 -n03995265 -n02124484 -n12745386 -n04355267 -n02643836 -n01614343 -n03810952 -n04058594 -n12278650 -n03474779 -n02823510 -n00442437 -n12039317 -n04574067 -n03762602 -n02153109 -n03518943 -n04289827 -n02288268 -n07749969 -n04132985 -n03213826 -n04307986 -n03567066 -n02049088 -n04408871 -n03522003 -n09305898 -n04266375 -n08571898 -n03039259 -n01587526 -n03261603 -n00464277 -n02627532 -n02992368 -n03640850 -n03037404 -n04525191 -n02106854 -n07772147 -n04173511 -n12761284 -n03257210 -n02813544 -n07740342 -n04066270 -n03070059 -n03616428 -n02904233 -n03209910 -n04389854 -n03078995 -n03193260 -n01488038 -n01754533 -n12629305 -n02055107 -n11664418 -n04228693 -n03353951 -n03440682 -n03025250 -n03300216 -n02042046 -n04226826 -n03342015 -n03090000 -n02050313 -n03492250 -n01535690 -n01572654 -n03465718 -n02879309 -n06278338 -n04113406 -n03695857 -n09720256 -n01860002 -n02851939 -n09828216 -n02564270 -n03528901 -n02542432 -n11978961 -n01670802 -n03956623 -n01612275 -n09376786 -n03222318 -n02813645 -n02213543 -n13898207 -n03616763 -n03616979 -n11904109 -n04212282 -n04608435 -n02042472 -n04198453 -n03216402 -n02015357 -n12282737 -n02699629 -n12866635 -n02048353 -n02933340 -n01793715 -n12001707 -n02878222 -n03187037 -n03105306 -n04080705 -n04254009 -n01623880 -n02839592 -n03436182 -n01591123 -n01318279 -n03002816 -n13155095 -n03141702 -n03775388 -n12165170 -n03322836 -n03259401 -n04471148 -n03911767 -n12585629 -n04317325 -n04257986 -n03133050 -n02035210 -n12891305 -n11882426 -n04491388 -n12948251 -n03498781 -n04262161 -n03775636 -n09915651 -n07584332 -n07852614 -n11626152 -n03901750 -n09723067 -n04265904 -n09920283 -n02397744 -n03253796 -n07712959 -n03898129 -n01743936 -n02075612 -n04560292 -n03479397 -n04334365 -n04357121 -n10145902 -n03844673 -n09854421 -n12687957 -n12598027 -n03944138 -n01839750 -n07722888 -n04258859 -n03088389 -n03351434 -n03509608 -n01677747 -n03145147 -n12046815 -n03505133 -n01629962 -n03333252 -n03993703 -n02962061 -n04529962 -n03463666 -n07681691 -n12160857 -n04187233 -n09331251 -n11614713 -n04376400 -n12301445 -n12633994 -n03883524 -n11614420 -n13062421 -n03645011 -n03293863 -n11640132 -n02579928 -n02854739 -n04461437 -n07729384 -n02977936 -n02836392 -n03593122 -n01666228 -n07820683 -n07568502 -n11910460 -n09348460 -n09712324 -n02403740 -n03482877 -n04370774 -n07750146 -n12992177 -n03152303 -n04134008 -n09805324 -n01611800 -n04374315 -n07586099 -n02032222 -n01979874 -n04350769 -n02907873 -n03016609 -n02543565 -n03256166 -n03016737 -n02419336 -n03268790 -n03559999 -n07765999 -n04607035 -n02416104 -n02123917 -n12484784 -n03225108 -n10739391 -n03506880 -n02918831 -n03045228 -n12516828 -n01314663 -n04172342 -n02768226 -n12368028 -n01500476 -n01558149 -n03604156 -n04035912 -n02359915 -n12261571 -n03875955 -n01887623 -n03871371 -n03390786 -n12494794 -n03826039 -n04465358 -n03838298 -n03165466 -n04229737 -n01321770 -n04354026 -n02998003 -n04114844 -n10611613 -n03600475 -n01909906 -n00466880 -n04284869 -n07722485 -n04496614 -n03298716 -n02285801 -n04081699 -n07765208 -n12659539 -n11618525 -n11757653 -n07727048 -n03913343 -n12070016 -n02697675 -n04284572 -n02595702 -n04482297 -n03516996 -n03704549 -n02040266 -n04476116 -n01323261 -n03823216 -n07696403 -n03226880 -n09734535 -n03950537 -n01671479 -n03049924 -n12593994 -n04568841 -n03604400 -n01837072 -n01754370 -n03122202 -n12338454 -n04094720 -n04150980 -n03429682 -n03884926 -n03378005 -n02434954 -n03461288 -n02893692 -n04472563 -n10472129 -n04590021 -n07739344 -n04162433 -n03395859 -n12059314 -n03498662 -n03678729 -n02927764 -n02770211 -n11710393 -n07730207 -n04178190 -n07772935 -n03801880 -n04414675 -n12729521 -n12203529 -n04122578 -n04575824 -n06267655 -n03698360 -n02804515 -n02431337 -n08598568 -n02893608 -n02270623 -n00479440 -n11616662 -n02884994 -n04305323 -n02407625 -n04476831 -n04222307 -n03179910 -n11623967 -n00446311 -n00454983 -n02886434 -n12279458 -n03723781 -n11816121 -n02403231 -n11808299 -n07816296 -n03219483 -n02657694 -n00453478 -n02816656 -n02625851 -n04112752 -n03339529 -n12171316 -n02044517 -n04137773 -n01486838 -n03015149 -n12911673 -n03967270 -n03498441 -n11672269 -n03386870 -n11615967 -n02580679 -n01681653 -n02793199 -n02824319 -n10727458 -n02555863 -n01533000 -n02175916 -n12064389 -n04383015 -n02469472 -n03101664 -n03623338 -n12295796 -n02869249 -n01792042 -n03447075 -n04453390 -n04382438 -n04112252 -n03332393 -n12729729 -n01851207 -n04269270 -n12333771 -n06272612 -n03135532 -n02927887 -n11711537 -n12301180 -n04107743 -n01813948 -n03282295 -n09714694 -n00483409 -n01504344 -n04279353 -n04040373 -n12658308 -n04134523 -n10104064 -n12056601 -n04525417 -n07819166 -n12263038 -n02072798 -n03125057 -n03367410 -n04000592 -n03549897 -n01877606 -n01564914 -n12307076 -n02855925 -n03176763 -n12271933 -n04121728 -n07690511 -n02825442 -n04442441 -n01630901 -n03088580 -n02499808 -n10675010 -n01531971 -n02273392 -n01526521 -n01531344 -n03667664 -n02888270 -n04412416 -n07733394 -n04559910 -n04105704 -n11792341 -n04201064 -n01693175 -n04555291 -n02908773 -n01976868 -n03529175 -n03365231 -n03622839 -n04258333 -n03327133 -n03425769 -n12477747 -n03718935 -n11727540 -n07933799 -n03030262 -n12043673 -n02619550 -n07937461 -n12198286 -n08560295 -n12402348 -n01733957 -n12344700 -n02763604 -n11925303 -n01557962 -n03927299 -n11611758 -n03035252 -n09454412 -n04004990 -n03456299 -n02175569 -n03668279 -n12352990 -n03507241 -n01534155 -n12278371 -n02499022 -n03822767 -n01318381 -n04024983 -n04277493 -n11934616 -n02027075 -n11611561 -n03454442 -n02236355 -n01732789 -n07722052 -n01489501 -n04409625 -n10563403 -n01817263 -n07757511 -n03770316 -n02977438 -n01840775 -n03607923 -n03322704 -n02375302 -n01614038 -n01646555 -n03952576 -n02946824 -n12847008 -n03016389 -n11809594 -n03165096 -n03839671 -n02687821 -n01689081 -n03822656 -n02597608 -n12336727 -n01579578 -n03631922 -n03904909 -n11658331 -n04224543 -n12621410 -n03870672 -n04252331 -n09720842 -n01396048 -n11988596 -n00483205 -n02871005 -n01597022 -n02382039 -n07743902 -n02358890 -n07877961 -n05263448 -n01862399 -n04136800 -n10624540 -n11990167 -n02731398 -n03366974 -n03490006 -n01561732 -n02626265 -n10627252 -n12402051 -n08517676 -n10488656 -n03099274 -n03718581 -n11806219 -n01830042 -n07728585 -n03732114 -n10755080 -n03359285 -n07720277 -n03354207 -n01596273 -n04416005 -n01847253 -n07733567 -n09725653 -n04274985 -n00449977 -n07772274 -n12063639 -n01530439 -n01322508 -n04397768 -n07273802 -n04261281 -n10524076 -n01678343 -n03410938 -n01797020 -n02388832 -n07719616 -n03639497 -n09787765 -n07721018 -n11818069 -n04185529 -n11644462 -n12074408 -n00483848 -n01583495 -n11891175 -n03347617 -n03308481 -n02535258 -n07750872 -n07748157 -n02855701 -n04584373 -n02461830 -n02912557 -n12277578 -n03604311 -n03643253 -n03031152 -n04039742 -n03435743 -n13908201 -n04150153 -n03250405 -n01410457 -n02357401 -n12588780 -n12729315 -n01690149 -n02538216 -n03171228 -n02424909 -n06274760 -n03775747 -n04211857 -n12429352 -n12272239 -n11759853 -n03401129 -n12649317 -n02625258 -n12651611 -n03603442 -n02803934 -n03861271 -n02605936 -n02018368 -n12711984 -n02811936 -n04612026 -n01339471 -n02923682 -n09194227 -n04346157 -n03939178 -n12635532 -n01593028 -n01793249 -n02380464 -n12400720 -n07708398 -n12020941 -n12492106 -n12850336 -n12749679 -n02892948 -n12591017 -n03193423 -n01791463 -n11979527 -n12134025 -n12167075 -n09308743 -n13108545 -n01618503 -n07827284 -n07724492 -n02338145 -n04533946 -n01586020 -n07598256 -n01603953 -n12646740 -n03067518 -n04046277 -n01532511 -n07769584 -n11644046 -n12753573 -n02681392 -n08492461 -n07749446 -n04409384 -n01791954 -n12330891 -n04560882 -n10145480 -n04250473 -n02655848 -n02903126 -n11736851 -n11901294 -n12865824 -n03870105 -n00449892 -n04240752 -n11851258 -n04200537 -n12049562 -n01521399 -n03565830 -n07860447 -n03067212 -n01664674 -n07561590 -n02727141 -n02324514 -n02372952 -n01584853 -n07766173 -n11811706 -n03097362 -n04200258 -n02732572 -n01853195 -n12282527 -n09838621 -n02764505 -n04256891 -n12337617 -n12635955 -n07831267 -n11628793 -n12316572 -n07807834 -n02037869 -n01821869 -n02820556 -n04517211 -n01839086 -n03842986 -n07698401 -n02386224 -n07841800 -n01830915 -n11616486 -n11902389 -n03427202 -n12727101 -n01851573 -n02125494 -n07746186 -n11628087 -n07746551 -n03943115 -n11892029 -n02861022 -n11733312 -n01852329 -n09392402 -n12336224 -n07887099 -n03403643 -n04414199 -n07895100 -n02264232 -n02317781 -n07823460 -n07755929 -n02524202 -n04324297 -n11627512 -n01585715 -n02922578 -n00479887 -n02687423 -n02416880 -n11784126 -n12073991 -n01853870 -n01561452 -n04187970 -n10300154 -n02520147 -n12294124 -n07743224 -n12066018 -n11634736 -n02041678 -n11626585 -n02386141 -n03986949 -n07860331 -n12356023 -n12072722 -n03082280 -n12083113 -n12979829 -n01448594 -n03007444 -n07858978 -n01641739 -n02043333 -n12020736 -n02751215 -n04528079 -n01538200 -n07925608 -n12091550 -n03742019 -n03518305 -n01642539 -n03414029 -n04363991 -n03767966 -n02596067 -n01586374 -n02885882 -n04080138 -n11617631 -n02033779 -n09451237 -n02310585 -n12648045 -n03955489 -n01752736 -n07899899 -n02299505 -n01579410 -n02156871 -n02998841 -n03759661 -n02050809 -n02683454 -n11621950 -n02910145 -n04967801 -n07896661 -n11906917 -n12275675 -n11611233 -n07736692 -n02312640 -n12588320 -n04399537 -n12757303 -n04197781 -n12717224 -n11635152 -n03122295 -n01792955 -n13133932 -n02518324 -n01584695 -n02915904 -n02967294 -n04345201 -n03019434 -n02470238 -n03049782 -n03101517 -n12709688 -n03716887 -n02422391 -n12638753 -n00288384 -n02162561 -n02053584 -n01317294 -n03334291 -n07814634 -n12273768 -n12406715 -n11644226 -n01646802 -n03460147 -n12338796 -n01972541 -n02147947 -n03890093 -n04127395 -n01581984 -n01681328 -n02213239 -n04582869 -n03254189 -n03274265 -n03186285 -n11839823 -n01624833 -n09792969 -n07891189 -n12023726 -n07619208 -n03466600 -n01849676 -n12190869 -n03079136 -n12317296 -n13001930 -n00477639 -n02944459 -n03903733 -n04131208 -n12710295 -n12180885 -n11612349 -n03443149 -n03982331 -n04264765 -n12642090 -n03237416 -n13868944 -n04046400 -n11705171 -n11979715 -n12597134 -n01609956 -n01568294 -n01469103 -n00443692 -n01606672 -n04556408 -n07690019 -n03977592 -n03358726 -n12696492 -n01573240 -n11632619 -n01772664 -n03453231 -n04179712 -n03646020 -n01812662 -n04306592 -n07724654 -n13908580 -n02903852 -n04284438 -n13132656 -n04317063 -n07829248 -n01589718 -n02654745 -n12294331 -n12515925 -n07900825 -n07721195 -n04189282 -n11907689 -n01624537 -n12333530 -n07762244 -n11757851 -n01599159 -n04038338 -n01568892 -n12691661 -n09744834 -n04307767 -n03120778 -n07920540 -n03781683 -n04185804 -n12080820 -n04354182 -n07574426 -n02579303 -n03046802 -n12078172 -n03210245 -n01614556 -n02304432 -n07713267 -n09724656 -n02861147 -n12755387 -n01483830 -n12921868 -n12026018 -n07817871 -n12062781 -n04241573 -n11621727 -n03376159 -n11815721 -n13007034 -n03540090 -n00450866 -n11619455 -n01528845 -n01568720 -n12743352 -n02871314 -n03606251 -n01490670 -n04246060 -n02053425 -n10780284 -n01915700 -n04510706 -n00456465 -n01563945 -n11809094 -n09855433 -n04112579 -n03855333 -n09809925 -n03413684 -n02123478 -n12070712 -n03651843 -n02032355 -n01591005 -n01646648 -n02752615 -n02415829 -n03283221 -n04368496 -n01573360 -n02321170 -n10348526 -n04446844 -n07763792 -n12077944 -n04431025 -n02895438 -n10082687 -n07714188 -n02262449 -n03090172 -n12491017 -n01558461 -n12754781 -n04070415 -n04297098 -n03424862 -n01970164 -n09833536 -n01793435 -n01670535 -n09894445 -n09676247 -n01548492 -n12501202 -n03250089 -n03358380 -n02578928 -n12020184 -n02301935 -n03393017 -n12340755 -n01849863 -n01748906 -n03075946 -n01810268 -n01984245 -n04555400 -n12286988 -n04097760 -n02050586 -n12104238 -n01679962 -n02709101 -n01569060 -n12790430 -n01757901 -n13199717 -n11815918 -n07827410 -n02970534 -n12942572 -n07924276 -n04103918 -n11704093 -n07908647 -n07601686 -n12172906 -n04084889 -n02381261 -n02299157 -n11978713 -n12460957 -n02963503 -n03272810 -n12469517 -n03443005 -n01797307 -n02952237 -n11908549 -n13912540 -n03428226 -n10276477 -n01757343 -n01443243 -n01607600 -n03580518 -n12709103 -n07579688 -n04329834 -n12710415 -n11808932 -n10583790 -n02213788 -n11622184 -n12596709 -n02216211 -n07721942 -n07765361 -n01848453 -n11724109 -n02028451 -n02935017 -n12046028 -n10629939 -n00441073 -n07900958 -n12451399 -n02823964 -n04210120 -n01848840 -n10485883 -n07767709 -n02432704 -n11622591 -n03210372 -n07848196 -n11992806 -n02953197 -n07620689 -n01521756 -n03571625 -n03158186 -n12647560 -n02065407 -n01572782 -n09890749 -n05581932 -n07754451 -n03350204 -n13044375 -n12294723 -n12482893 -n04434531 -n12989938 -n12196336 -n01701859 -n07746334 -n11941924 -n02047411 -n12650379 -n10486166 -n01599556 -n01567879 -n12675876 -n01682435 -n02043808 -n12362668 -n12306089 -n02999138 -n01679626 -n03557270 -n01546039 -n11901759 -n01549053 -n11883328 -n06596727 -n03193107 -n11612018 -n03300443 -n03612010 -n03668488 -n12648888 -n01448291 -n11632167 -n10262445 -n09742101 -n09717233 -n04299370 -n03094159 -n04536595 -n03514693 -n02029706 -n02886321 -n07816052 -n04045255 -n01851731 -n02627292 -n01841288 -n02739889 -n02932693 -n03784896 -n04569063 -n07902799 -n03863108 -n02607470 -n13200651 -n07916183 -n01573898 -n04347119 -n10076604 -n13033577 -n01824035 -n03630262 -n04426316 -n03064250 -n12262018 -n12048399 -n12279772 -n04143140 -n07829331 -n12891643 -n01826680 -n12646605 -n13103877 -n02023855 -n03086868 -n04163530 -n03736470 -n04358117 -n13872822 -n03159640 -n01680655 -n11611087 -n03980478 -n02978478 -n01555004 -n12402840 -n07763987 -n04387706 -n04979002 -n03258330 -n09856671 -n11624192 -n01538059 -n02003839 -n12552309 -n10469874 -n01576076 -n03643149 -n04419868 -n04586581 -n00483508 -n03131967 -n01847407 -n07929172 -n09683757 -n03786621 -n04369282 -n12733870 -n11612575 -n11619227 -n03301833 -n02176439 -n01569971 -n07935043 -n02563792 -n02051059 -n04482177 -n11859472 -n11710136 -n04115144 -n07864934 -n07691758 -n02620167 -n07748276 -n03415486 -n07835921 -n00452152 -n01848323 -n12906214 -n12075010 -n01563449 -n01499396 -n01570267 -n12047345 -n07920989 -n07601572 -n02683558 -n04428634 -n04345028 -n12161969 -n03460040 -n02561514 -n02006364 -n03582959 -n11812910 -n13185269 -n04297847 -n07896165 -n01552813 -n12361946 -n02031585 -n12766595 -n11622368 -n11695599 -n11615387 -n02509197 -n12409470 -n01314388 -n11758799 -n09846469 -n02675219 -n04253057 -n04041243 -n12276628 -n04381724 -n01855188 -n02203152 -n04403925 -n11895092 -n11924849 -n04172904 -n11888800 -n01546506 -n07906718 -n01489920 -n03436417 -n03615655 -n07765073 -n02434190 -n02004492 -n12282235 -n12406488 -n11981192 -n10373390 -n13183056 -n04332074 -n12818346 -n07731006 -n02598573 -n02438580 -n01957335 -n03356982 -n10288964 -n02629230 -n02042759 -n12319414 -n01451426 -n03521675 -n02016066 -n01813532 -n13207335 -n11805544 -n04401828 -n02952109 -n03963294 -n10013811 -n12058630 -n01551711 -n01574560 -n01858780 -n10093818 -n03858183 -n01550172 -n03571280 -n02309242 -n10258786 -n01569423 -n10134178 -n08578517 -n04445327 -n03250279 -n02584449 -n03223553 -n04523831 -n04485423 -n02050442 -n04474035 -n04528968 -n02649546 -n01913166 -n09971273 -n04517408 -n02437482 -n03824713 -n03778817 -n07643026 -n01613177 -n12022054 -n07714448 -n07592768 -n00454493 -n03296328 -n02305929 -n03084834 -n03698815 -n12093600 -n08649711 -n03466493 -n04067658 -n03041114 -n03514451 -n01491006 -n04178329 -n03790953 -n03938401 -n02048115 -n07768858 -n03273740 -n10333601 -n05418717 -n12754003 -n02098806 -n03314608 -n01565930 -n12113195 -n12284821 -n12483427 -n04332580 -n10382710 -n03416094 -n02837887 -n03917198 -n14131950 -n04414476 -n11861641 -n11903671 -n01841441 -n09872066 -n01806467 -n04964799 -n00467320 -n01595974 -n03220692 -n01339083 -n01825278 -n11727358 -n04518343 -n11984144 -n07724269 -n02292692 -n02324850 -n01753032 -n01624115 -n11816649 -n07930062 -n02460451 -n12319204 -n04340521 -n12325234 -n01541102 -n02979836 -n00141669 -n01822300 -n11658544 -n12272883 -n03334382 -n11726707 -n03639077 -n07904934 -n03516367 -n03698723 -n03553248 -n11812094 -n03724417 -n01540566 -n02341974 -n11819912 -n07734555 -n02987379 -n03580845 -n12546962 -n02548247 -n12753245 -n07768423 -n12849279 -n11617090 -n02912894 -n07840027 -n12295033 -n12703383 -n02696165 -n10419785 -n04426427 -n03694639 -n11712282 -n04142999 -n01597737 -n03801533 -n01495493 -n07774719 -n03267113 -n01742821 -n03859170 -n03416640 -n03320959 -n12733218 -n02017725 -n13229543 -n09344324 -n04965451 -n01490112 -n10069296 -n12084555 -n04554406 -n04086446 -n02976249 -n02656032 -n02424486 -n02381609 -n09934337 -n04573937 -n07685399 -n02800497 -n02905152 -n02951703 -n07760153 -n03609397 -n00447463 -n03680512 -n02046939 -n03288886 -n11870418 -n03386544 -n07767171 -n07847453 -n12687044 -n01664492 -n03099147 -n03463381 -n02125081 -n12920204 -n03517647 -n02603540 -n12267411 -n11933546 -n11947802 -n04387095 -n12975804 -n02973904 -n13195341 -n04048441 -n11753143 -n03212114 -n03298858 -n04366116 -n01424420 -n10450161 -n01442972 -n07877299 -n04503593 -n04349306 -n12969425 -n12597466 -n03092656 -n07914995 -n03487886 -n12223569 -n01756733 -n13919919 -n04175147 -n02029087 -n03530511 -n02425887 -n03572107 -n03927539 -n03383099 -n04130907 -n01632601 -n07823105 -n10378026 -n02382850 -n07613266 -n03235180 -n02810782 -n12708654 -n11636835 -n02823124 -n03402941 -n12121610 -n03715114 -n04052658 -n00480366 -n12493208 -n04255163 -n12145477 -n01489709 -n12402596 -n01598074 -n03837606 -n02628062 -n04103364 -n03247083 -n02032480 -n07736256 -n12578916 -n09218315 -n02218371 -n03730334 -n02080146 -n03836906 -n02868638 -n02198859 -n12744387 -n02942460 -n11754893 -n12274358 -n02725872 -n09218494 -n03942920 -n07574780 -n02921756 -n01757115 -n02763306 -n11758122 -n10508141 -n02303284 -n04083800 -n13879049 -n12765115 -n12075830 -n02666943 -n11980318 -n07907037 -n12794135 -n02333909 -n03870980 -n07586718 -n11923174 -n10782471 -n01493146 -n12294871 -n11726269 -n12932173 -n07825972 -n12732009 -n03572321 -n07682197 -n03423306 -n12495895 -n03545756 -n03557692 -n03785237 -n07902937 -n09899671 -n12061614 -n07902443 -n01449374 -n12632335 -n03474896 -n03539433 -n04310904 -n03902482 -n12006930 -n03285578 -n04200000 -n03912218 -n07821260 -n03548626 -n03223686 -n11826198 -n03165616 -n02104280 -n09981278 -n09382099 -n03732458 -n03987990 -n09946814 -n12270741 -n07737745 -n04172776 -n10189278 -n03543012 -n12629666 -n02180875 -n04087432 -n12961879 -n03321954 -n12528549 -n02424085 -n09843443 -n03846677 -n12304703 -n09873473 -n03410571 -n03041810 -n02425228 -n01562451 -n03615790 -n10081204 -n03985881 -n07842130 -n02890513 -n03649797 -n02381004 -n12560621 -n12523475 -n07687626 -n11905749 -n11759404 -n12905412 -n03542605 -n03983612 -n12573474 -n11972291 -n03767459 -n02698634 -n12713866 -n13084834 -n02202006 -n13108323 -n02631475 -n10737103 -n03637898 -n03069752 -n12400489 -n09692915 -n10242328 -n02794664 -n12465557 -n12085267 -n03348868 -n12754981 -n02745611 -n10504206 -n12073554 -n02835724 -n04605572 -n02825961 -n03528523 -n12116429 -n02973805 -n12708941 -n01544704 -n04180229 -n09403211 -n08242223 -n02146371 -n12127768 -n09770359 -n03295246 -n01757677 -n04385799 -n02584145 -n07909593 -n12587132 -n13029326 -n04184316 -n07903643 -n01848555 -n10750031 -n02332156 -n12703557 -n03196990 -n12406902 -n02768973 -n12416073 -n02147591 -n09724533 -n09693982 -n12687462 -n01982068 -n03435991 -n03272125 -n07713763 -n03018712 -n03648431 -n03336575 -n07854184 -n12806015 -n07879174 -n03984643 -n03147280 -n02699915 -n07617708 -n01533651 -n12483841 -n01697611 -n02576906 -n03724066 -n03935116 -n09782397 -n01599269 -n10672371 -n12066630 -n03178674 -n15086247 -n03523987 -n02826068 -n12580654 -n02358390 -n01647640 -n10259997 -n03738066 -n13915023 -n02639605 -n03174450 -n12269406 -n09874428 -n03432061 -n04386051 -n03923918 -n04592465 -n12480456 -n10333439 -n04206790 -n01443831 -n02967626 -n07733712 -n03746155 -n12947313 -n11690254 -n12244650 -n12670758 -n08658309 -n12710693 -n11860555 -n03485198 -n03047799 -n04461570 -n07600177 -n02126640 -n12704343 -n02866386 -n03008976 -n04532831 -n03465426 -n12691428 -n01641206 -n04962062 -n03254046 -n04425804 -n02014524 -n03439348 -n02538010 -n11603246 -n12265600 -n12277800 -n04016240 -n12086192 -n09650729 -n01549641 -n03112719 -n04961062 -n02710324 -n12049282 -n12362274 -n11969607 -n12856680 -n02201000 -n07863802 -n03360622 -n07601809 -n04354487 -n12898774 -n12939282 -n03109693 -n12867826 -n12441390 -n12915811 -n12879527 -n04137355 -n04131368 -n03527149 -n10164492 -n09932508 -n12426623 -n12575812 -n02557318 -n10263790 -n04309548 -n00476235 -n04194127 -n11876634 -n10327987 -n03499354 -n02616851 -n04464615 -n03615406 -n02744844 -n11732567 -n10347446 -n09752519 -n04228215 -n10004718 -n07899533 -n12030908 -n15102894 -n12044467 -n11711764 -n02610066 -n03415749 -n04562496 -n02034295 -n02297442 -n03566193 -n12506991 -n07774842 -n12827270 -n14908027 -n12242409 -n04072960 -n02829596 -n12496427 -n02266050 -n13108481 -n12473840 -n08677424 -n12076223 -n15091473 -n02815749 -n04549028 -n12558425 -n12023407 -n04179824 -n02378541 -n03188725 -n12517445 -n07573347 -n02004131 -n11921395 -n12570972 -n10602470 -n12095647 -n03854421 -n02450295 -n02792409 -n03543735 -n12836337 -n12204175 -n12152722 -n07900734 -n12517642 -n02775039 -n12607456 -n03376938 -n12179122 -n09873348 -n01847978 -n07888816 -n10453184 -n09675922 -n01851895 -n12865562 -n01797601 -n03711044 -n02738859 -n12064591 -n04033425 -n08551296 -n01650690 -n01537895 -n04207151 -n10087434 -n12261808 -n09438844 -n10364198 -n01814755 -n01583209 -n12270946 -n11892817 -n03344642 -n04117464 -n07847917 -n04003241 -n10362319 -n10477713 -n03495570 -n07560542 -n04363777 -n04534359 -n02404906 -n03349892 -n07712267 -n02960352 -n07866277 -n07857170 -n00324978 -n02755823 -n03150511 -n04211528 -n01899894 -n07588299 -n11874081 -n03425325 -n04506506 -n11949402 -n02952374 -n03309110 -n12159388 -n07591049 -n03068998 -n03228254 -n10279018 -n04173046 -n07728053 -n13052931 -n01597906 -n12368451 -n02767665 -n09435739 -n03915900 -n09728285 -n03292603 -n03331077 -n07817160 -n07917392 -n12540250 -n04153025 -n10209082 -n03968581 -n12676534 -n11824146 -n03521899 -n01853666 -n04292921 -n12332030 -n03984759 -n02863014 -n07801091 -n07723177 -n03289660 -n01533481 -n04488202 -n03468821 -n02382338 -n03543254 -n01961985 -n07915918 -n03703862 -n02771004 -n02047045 -n03877674 -n13141415 -n03529629 -n02240517 -n03675235 -n04491638 -n12384037 -n04419642 -n03019685 -n07591586 -n04496726 -n12985420 -n12927013 -n12196694 -n03473227 -n11621547 -n02988066 -n10451450 -n07729828 -n09618760 -n12196527 -n01555305 -n12830222 -n11950877 -n13190747 -n12160303 -n12390099 -n02818135 -n03163381 -n04554211 -n03244919 -n07897975 -n03386726 -n04290615 -n02011281 -n12407890 -n04123448 -n07904865 -n03447358 -n02393940 -n07931870 -n02937958 -n04318787 -n04587327 -n12807409 -n04112430 -n07560193 -n12774299 -n02618827 -n07854982 -n03757604 -n03817191 -n12793494 -n02324431 -n03013850 -n04113641 -n01612476 -n03127408 -n02038466 -n03799876 -n04257684 -n03382292 -n10449664 -n04394630 -n10275395 -n07698250 -n12329473 -n07694659 -n07642742 -n02563648 -n08583455 -n02557182 -n02775178 -n09274152 -n03189083 -n12570703 -n04211219 -n12486574 -n03073694 -n11969166 -n02475078 -n02976350 -n08584914 -n07899660 -n10116702 -n01613807 -n12461109 -n04025508 -n12451240 -n12596849 -n12079963 -n03541269 -n04561422 -n11699442 -n07725255 -n03460297 -n07616748 -n12757458 -n03103563 -n02813752 -n07698782 -n12840362 -n01543632 -n01602832 -n01875313 -n12472024 -n02926591 -n02872333 -n10728624 -n12532564 -n03882960 -n12333053 -n03684224 -n13146583 -n03436075 -n04154340 -n03868643 -n02598878 -n04139140 -n03266371 -n04083309 -n12506341 -n12200143 -n03503477 -n12807773 -n03123917 -n13029760 -n10173771 -n03659809 -n12047884 -n12759273 -n04193377 -n04258438 -n04597400 -n04579986 -n03719743 -n04299963 -n02864504 -n10510245 -n03417970 -n09719794 -n03138344 -n02085272 -n07694516 -n12665857 -n01642257 -n03229244 -n10581890 -n10318293 -n03635108 -n10652605 -n12189429 -n09934774 -n11709205 -n04207903 -n10296176 -n10603851 -n03450734 -n13223588 -n12754648 -n09886403 -n07751280 -n11950686 -n07814390 -n12799776 -n01646902 -n09796809 -n12819728 -n01938454 -n02410011 -n07607138 -n02119634 -n10332861 -n09230202 -n02757061 -n02849885 -n15092227 -n12151615 -n03111041 -n02413050 -n03506560 -n07744057 -n04030518 -n12544539 -n04089836 -n02038993 -n13882201 -n12099342 -n01946630 -n10095769 -n02982416 -n12957924 -n13215586 -n07726525 -n12452836 -n03801671 -n04598318 -n01449712 -n12428747 -n04119751 -n10509063 -n07694839 -n02782602 -n11626409 -n02573704 -n12399384 -n12388989 -n01601068 -n11971406 -n04367011 -n07930315 -n12925179 -n04967674 -n03497352 -n03653833 -n01819465 -n03688192 -n02802990 -n03393761 -n04430475 -n13107694 -n10384496 -n07867164 -n12449526 -n01515303 -n12574320 -n01444339 -n07919310 -n03453443 -n04173907 -n02887489 -n07772788 -n03629520 -n02580830 -n11705387 -n12069679 -n01956344 -n02406533 -n03973402 -n03938037 -n04969952 -n04103094 -n04393808 -n07715407 -n04172107 -n01917882 -n12085664 -n07608429 -n09835230 -n04135024 -n07842605 -n12568186 -n04339879 -n07691091 -n01801876 -n00474568 -n01807105 -n12128071 -n01673282 -n11948864 -n03991837 -n09659188 -n02070174 -n02670683 -n12454949 -n10385566 -n11631854 -n12305293 -n12002428 -n12948495 -n12757816 -n11852028 -n10690648 -n09283866 -n03214582 -n03423877 -n04127521 -n03006626 -n09283193 -n07712559 -n01447331 -n02981321 -n02658531 -n11947629 -n02419634 -n02420828 -n11923637 -n12570394 -n11968931 -n12731029 -n09749386 -n07736813 -n03967396 -n11908846 -n03029445 -n02426481 -n01964271 -n13198914 -n04484432 -n12656685 -n10806113 -n11849983 -n03236423 -n10649197 -n07688624 -n03057541 -n12015221 -n02094931 -n02014237 -n07560331 -n02801450 -n04206570 -n07556406 -n11627908 -n11889619 -n07852229 -n04063154 -n02713364 -n02783459 -n12877838 -n02930214 -n02125010 -n02407276 -n07815424 -n12855494 -n12530818 -n07750449 -n01963317 -n10082997 -n03245724 -n03012013 -n03555006 -n02421136 -n03332989 -n04375405 -n03746486 -n12636224 -n03278914 -n07917133 -n12504783 -n09416890 -n03896526 -n02258198 -n12983048 -n03837698 -n12869061 -n04541987 -n01637615 -n04401949 -n02241426 -n13220122 -n07876651 -n03729308 -n02364840 -n01339801 -n03418915 -n09257843 -n11614039 -n09731343 -n03809603 -n05399243 -n01569262 -n11901597 -n03124474 -n01566207 -n03796522 -n12595699 -n04573281 -n09689435 -n11859737 -n03201529 -n12902662 -n03374372 -n03760944 -n09189157 -n01517966 -n10431625 -n02898269 -n03693707 -n04369025 -n07834618 -n04095342 -n02786331 -n03822504 -n02284611 -n09862621 -n03436891 -n07688898 -n12435777 -n03949317 -n12443323 -n12273114 -n12623077 -n04333869 -n07907831 -n07774596 -n05450617 -n03320262 -n04190376 -n12671651 -n11819509 -n07588111 -n09756049 -n07611046 -n04973291 -n11602873 -n00120010 -n03500699 -n03844815 -n03708843 -n04452528 -n04387261 -n09889065 -n10147121 -n03318294 -n12599435 -n04164406 -n01965529 -n11636204 -n11791569 -n12275131 -n02977330 -n07851443 -n04132603 -n07824191 -n09760609 -n12190410 -n07915491 -n12665271 -n10120671 -n02570164 -n10208950 -n02163297 -n02244797 -n09842528 -n08645104 -n01841679 -n11603835 -n04488857 -n07814487 -n01953762 -n04612373 -n11877193 -n03198500 -n03981924 -n01943087 -n11552806 -n04414909 -n03005033 -n02457945 -n10500217 -n10375314 -n04607242 -n07914777 -n09832456 -n12915568 -n12813189 -n10578021 -n03519081 -n07801779 -n12026476 -n03296081 -n03850492 -n07902121 -n09881265 -n12562785 -n03290195 -n10131151 -n10078719 -n01558765 -n03917814 -n02045596 -n07734183 -n03414676 -n07933154 -n02126787 -n12148757 -n12263987 -n07684164 -n03406966 -n01492569 -n02988963 -n12963628 -n09964202 -n03417749 -n01854838 -n02921029 -n02183096 -n11762433 -n11722466 -n02387093 -n02768655 -n12519089 -n09871229 -n07938313 -n10502329 -n11989393 -n03768916 -n13145040 -n11813077 -n04457910 -n03655720 -n03703945 -n11876803 -n01438581 -n07910379 -n07847827 -n02300797 -n09245515 -n10754189 -n04581102 -n12513172 -n02458135 -n03762332 -n11789589 -n09695620 -n03850053 -n07911249 -n12342852 -n12753007 -n07748574 -n07727458 -n03696568 -n04304680 -n07723039 -n07775197 -n07577144 -n03043693 -n04374735 -n01858281 -n09228055 -n09466678 -n01949085 -n02024479 -n11623815 -n02704645 -n07894451 -n01751472 -n01646388 -n01317916 -n13880994 -n10300500 -n11794024 -n03735963 -n04610274 -n11854479 -n07754894 -n02639087 -n02122510 -n02262803 -n12732966 -n04529108 -n13194036 -n09990777 -n10009276 -n12088223 -n12155009 -n07886176 -n04278247 -n04222723 -n11707229 -n01999186 -n07851641 -n12741792 -n01315213 -n10033412 -n04249582 -n03586631 -n03237839 -n12037499 -n12014085 -n07756325 -n01636352 -n03905947 -n08611339 -n07693590 -n03724538 -n09791816 -n01666585 -n10588965 -n11613219 -n10542608 -n12913791 -n10528023 -n03171635 -n11923397 -n12854600 -n10410246 -n12698598 -n04135118 -n09844457 -n04441790 -n03882611 -n02337001 -n07907342 -n12561169 -n12027658 -n10719132 -n09851165 -n02801823 -n12330587 -n01683558 -n12162181 -n04387932 -n11704620 -n09679170 -n07601290 -n04028221 -n10277027 -n09877750 -n11758483 -n10027246 -n03819336 -n10205231 -n12478768 -n03451711 -n12973443 -n01923025 -n03262717 -n07807594 -n00475535 -n07744430 -n02341475 -n04614655 -n07924747 -n03388323 -n12680402 -n03202940 -n04534520 -n09661873 -n15092059 -n11832480 -n04198355 -n12529220 -n12389130 -n12304115 -n03234952 -n07610620 -n02868975 -n04442741 -n05282652 -n02820675 -n12795352 -n12675299 -n08547468 -n04189651 -n04141198 -n04513998 -n12273939 -n12482668 -n12858618 -n01958346 -n03172038 -n10280674 -n04301760 -n02631330 -n12433178 -n07763107 -n03068181 -n07565259 -n03605598 -n13177884 -n04005197 -n09751496 -n12737383 -n07648997 -n09839702 -n09442595 -n07925229 -n12150722 -n11898775 -n09904208 -n02207345 -n07642361 -n07685918 -n03205458 -n10574538 -n09742315 -n02599557 -n03585682 -n04273659 -n02200850 -n03410740 -n03391301 -n07726672 -n09782167 -n13155305 -n02067240 -n07561848 -n07728708 -n12463134 -n12228229 -n09743487 -n12225563 -n03421669 -n03226375 -n03973945 -n12498055 -n04483925 -n04564278 -n11890150 -n12519563 -n12754468 -n04353573 -n11615607 -n04430896 -n04585128 -n10395828 -n10773665 -n02772435 -n09881895 -n12663023 -n01615303 -n12803754 -n09445008 -n03955296 -n05245192 -n05486510 -n07899769 -n07575510 -n02307681 -n03814817 -n02670186 -n03598515 -n12797860 -n03518135 -n07587962 -n12630763 -n06273743 -n09843824 -n03226254 -n12407222 -n02961544 -n12951835 -n06417096 -n02016659 -n01441117 -n07735404 -n09411189 -n13896217 -n03262248 -n03451120 -n02525382 -n03375329 -n04155068 -n12916179 -n10297234 -n11907100 -n03423568 -n04360914 -n12027222 -n12199790 -n01744270 -n09896401 -n07925116 -n03693860 -n04414319 -n07767549 -n03555564 -n04043411 -n07872593 -n03774461 -n03129471 -n04497801 -n11756870 -n09776346 -n04530283 -n01520576 -n12828220 -n01583828 -n04120842 -n09676021 -n04344734 -n01916388 -n12513613 -n09861863 -n02310334 -n03318983 -n04533499 -n02427576 -n12727518 -n04502059 -n11725480 -n11987126 -n11876204 -n03504205 -n09720595 -n12315999 -n12935609 -n04452757 -n12201331 -n01603152 -n10772092 -n03156279 -n12723610 -n02003037 -n03244775 -n07802963 -n11954642 -n07770034 -n09931165 -n10559508 -n01745902 -n07654148 -n10070108 -n01585287 -n13196003 -n04389718 -n10253122 -n03730893 -n02983357 -n02783900 -n01680813 -n03072440 -n03109253 -n03274435 -n11655974 -n10048612 -n07849733 -n07896994 -n03792334 -n03035832 -n03819448 -n03105088 -n11943992 -n01485479 -n01699675 -n11795049 -n12086778 -n01840120 -n07753980 -n10685398 -n04346428 -n04532398 -n07709172 -n02146700 -n09461069 -n03853924 -n01321456 -n12068432 -n09757449 -n03206282 -n03751757 -n13053608 -n11695974 -n12123741 -n03500209 -n04367371 -n02890940 -n01917611 -n07835331 -n02907656 -n04136045 -n12059625 -n03862862 -n12864160 -n00440039 -n03448590 -n12628986 -n04115802 -n03949145 -n12916511 -n12647893 -n09706255 -n13181811 -n07752109 -n04375615 -n01648620 -n04403524 -n09967967 -n12911079 -n03857687 -n02803539 -n01551080 -n10734891 -n13235159 -n04127633 -n07935878 -n12853482 -n10191001 -n03126385 -n10076224 -n01812866 -n12919403 -n03769610 -n09283767 -n03462110 -n11770256 -n12038898 -n09889170 -n11894558 -n10298647 -n02592055 -n02795670 -n11701066 -n12762049 -n02890662 -n07918193 -n02976455 -n03100897 -n13127843 -n12184912 -n00468299 -n12407079 -n12496949 -n03541537 -n05260127 -n01535140 -n01541760 -n11945783 -n07687053 -n07745046 -n12083847 -n02382132 -n12270027 -n10140597 -n03788914 -n01790711 -n02197689 -n03173270 -n10368624 -n04449290 -n01579729 -n07834872 -n07734417 -n02379630 -n01636829 -n12549192 -n12951146 -n13579829 -n03268142 -n11761202 -n02769669 -n09452760 -n04095577 -n12031139 -n02003577 -n12891469 -n03931885 -n01577941 -n04176295 -n12046428 -n03418402 -n13145250 -n11865874 -n12473608 -n11797321 -n01798168 -n09923186 -n02786736 -n01698782 -n09976283 -n03975788 -n14685296 -n01682172 -n07838441 -n02771286 -n03429137 -n03948950 -n02512830 -n02298218 -n10141364 -n02823848 -n02077384 -n12584715 -n11748811 -n02214773 -n03667552 -n04121426 -n04135710 -n07579917 -n12275888 -n07826453 -n12167436 -n04586072 -n09877288 -n04248396 -n02761696 -n03038870 -n01490360 -n12353203 -n09785891 -n12057660 -n04146343 -n12557556 -n02081798 -n02917964 -n07898617 -n12597798 -n07574176 -n07764630 -n03008177 -n04255899 -n04434207 -n07897600 -n09929577 -n11811921 -n12415595 -n02893941 -n12276110 -n02821202 -n09690621 -n02508742 -n02077787 -n02390640 -n03764822 -n02257985 -n13033134 -n04559166 -n07865196 -n10506915 -n12051103 -n10473917 -n12775919 -n02971579 -n12880462 -n11837970 -n02063662 -n09840520 -n12019827 -n09208496 -n12836508 -n02982232 -n04219185 -n03332005 -n07914128 -n07862461 -n04250692 -n09267854 -n04561734 -n02076402 -n12344837 -n02919148 -n06592281 -n03668803 -n03062985 -n04246731 -n12112609 -n04012482 -n03558633 -n03982642 -n01998741 -n07665438 -n04209509 -n07913882 -n01749244 -n07801342 -n02611561 -n04488742 -n01897536 -n10624437 -n13128976 -n07931612 -n04300643 -n03727067 -n03360431 -n07593471 -n10253296 -n03297226 -n03854506 -n07879450 -n10562283 -n12557438 -n13154388 -n12862512 -n02126028 -n07752514 -n02387887 -n12066261 -n07666176 -n02806530 -n09988703 -n03721252 -n03221540 -n12195533 -n02682569 -n03622058 -n03943266 -n04207596 -n11721337 -n02427032 -n07910152 -n01551300 -n12861345 -n11660300 -n03786313 -n12966945 -n02046171 -n02797535 -n03546112 -n07711232 -n02044908 -n02998563 -n02652132 -n12634986 -n12187247 -n11645590 -n07582892 -n03065243 -n09911226 -n04396902 -n10763075 -n02359047 -n10400108 -n04294614 -n03991646 -n11728945 -n07766891 -n12277150 -n13141564 -n10563314 -n12426749 -n07827750 -n12403994 -n12627119 -n03420801 -n10203949 -n12830568 -n12280060 -n13180875 -n12659064 -n04239436 -n03823312 -n04367746 -n12448700 -n01896844 -n07581931 -n09384106 -n11625223 -n04198722 -n01477875 -n09932336 -n03477512 -n12281974 -n10117739 -n07759194 -n12281788 -n01405007 -n03077616 -n02304036 -n12947544 -n03140126 -n12356960 -n07807002 -n07877849 -n02956795 -n04373795 -n07925500 -n10359546 -n09730077 -n01694955 -n10611267 -n04316498 -n07849912 -n12841354 -n07903543 -n10026976 -n04050313 -n03939844 -n03260849 -n07917507 -n12228387 -n03199775 -n01569566 -n02403920 -n04261638 -n02986160 -n03724623 -n01960177 -n03783430 -n07877675 -n10401639 -n04215153 -n03077741 -n02589623 -n12934985 -n03233624 -n04506688 -n12194147 -n09975425 -n07818825 -n12641007 -n10036692 -n02771750 -n12285900 -n01472303 -n10033663 -n10707134 -n03219966 -n11772879 -n10146416 -n10435169 -n10304086 -n12385566 -n03126580 -n12904314 -n03619196 -n02299846 -n03574243 -n12368257 -n03690473 -n01748686 -n09834378 -n07750736 -n02930645 -n01679307 -n03721047 -n02710044 -n07563207 -n02930080 -n09309168 -n03127203 -n02863536 -n02536165 -n01559639 -n09654518 -n02961035 -n12007406 -n12773651 -n04351699 -n03114504 -n06273414 -n02017475 -n01733466 -n02175014 -n07920663 -n03953901 -n09670521 -n09400987 -n11791341 -n02284884 -n12919646 -n07880325 -n03801353 -n01982347 -n07828642 -n01570421 -n03998333 -n03449309 -n10482220 -n12850906 -n12805561 -n12926689 -n03232543 -n04248851 -n03195959 -n04082562 -n03846100 -n07682952 -n07695652 -n11809271 -n09895561 -n04287898 -n09740724 -n02859955 -n09830400 -n03674731 -n02825153 -n04571686 -n13107891 -n10318607 -n07848093 -n13226871 -n08555710 -n03137473 -n02776978 -n03141455 -n12514138 -n01809371 -n09405078 -n01753180 -n02184473 -n11610215 -n03539546 -n12731835 -n04485884 -n03590588 -n10221312 -n04049753 -n03441345 -n02302244 -n12262185 -n15092650 -n11877646 -n10377185 -n01684578 -n03796605 -n07897116 -n03164344 -n12135049 -n10757050 -n01692523 -n04566756 -n07697699 -n07575392 -n10262655 -n04064747 -n07914006 -n12433769 -n07873348 -n04457767 -n10019072 -n02921195 -n03856465 -n04041408 -n12639584 -n12920955 -n11781176 -n07864756 -n03941013 -n03646148 -n04401578 -n11692792 -n02757714 -n02286089 -n04253168 -n03890514 -n07855510 -n03507458 -n04123026 -n11661909 -n12435152 -n04330746 -n09481120 -n03731019 -n03717285 -n03271030 -n02772101 -n07740597 -n02847852 -n12825497 -n12263738 -n03342262 -n03603594 -n07804543 -n12932365 -n12695975 -n10297531 -n04054670 -n03175081 -n12703856 -n03832144 -n03966206 -n02414290 -n03619275 -n09738121 -n03290096 -n10585077 -n07731767 -n12409840 -n12026981 -n02278980 -n02752810 -n01654637 -n02654112 -n10314836 -n13023134 -n01823414 -n07461050 -n11902982 -n04543636 -n02204907 -n04049585 -n12304899 -n03073545 -n04272928 -n10315456 -n03975657 -n09899782 -n12288005 -n07005523 -n03795269 -n09823832 -n02242137 -n02907391 -n03643491 -n03245889 -n12285369 -n03061345 -n03797264 -n07838073 -n09219233 -n02859343 -n07608098 -n03920641 -n12578626 -n10688356 -n04542858 -n07834065 -n00443803 -n04181561 -n04570214 -n02047517 -n03295012 -n01633781 -n10610850 -n04035836 -n03001115 -n04593376 -n02393807 -n13061348 -n10123122 -n11800236 -n13207094 -n10140929 -n12167602 -n01809752 -n10421956 -n02764935 -n03424489 -n12889219 -n04046091 -n07714287 -n07708685 -n07736087 -n04142434 -n11961446 -n04521863 -n02414763 -n02901377 -n00467536 -n13085747 -n03855756 -n11846765 -n02530999 -n03063199 -n04258618 -n12204032 -n04424692 -n11758276 -n02653497 -n03766508 -n02026629 -n02572484 -n12339831 -n01635027 -n01668436 -n07821919 -n01543175 -n02689748 -n12528974 -n04024862 -n04184880 -n11720891 -n13869896 -n01678043 -n01647303 -n11532682 -n03236217 -n04963307 -n03012897 -n11682659 -n03191286 -n07643891 -n12737898 -n10680609 -n07924955 -n03879705 -n10461060 -n02523427 -n02013567 -n09893344 -n04124488 -n09863031 -n12454436 -n12305089 -n07709046 -n03805180 -n11940599 -n01691217 -n04198562 -n03978421 -n02357585 -n07818572 -n12870682 -n03798442 -n04154938 -n10550369 -n11957678 -n01958531 -n09936825 -n02334201 -n07910538 -n11978551 -n10562135 -n12700088 -n12784889 -n04480853 -n03281673 -n07588419 -n02968333 -n11935469 -n13046669 -n11730602 -n09643799 -n11849467 -n01758757 -n09638454 -n03267468 -n07914586 -n12104734 -n02961225 -n09827246 -n09917214 -n13079073 -n12634734 -n04089376 -n13034062 -n11714382 -n12753762 -n07683039 -n11840067 -n07689842 -n12173069 -n12172481 -n04182152 -n07869522 -n10356877 -n02771166 -n03154895 -n07615289 -n12986227 -n12361135 -n03456447 -n12706410 -n12895811 -n02988156 -n03130761 -n10639359 -n03628215 -n02738741 -n01643507 -n07730708 -n03232309 -n02846733 -n04969540 -n03051041 -n12890928 -n03235327 -n04289576 -n07588817 -n10325774 -n03973285 -n09703485 -n02358584 -n03061674 -n03195332 -n02901259 -n07849619 -n04486934 -n07908812 -n01588725 -n03682877 -n11949015 -n04146504 -n04146862 -n07898247 -n03318865 -n04367950 -n07880213 -n04247011 -n01447658 -n12711817 -n03146687 -n02926426 -n12856091 -n11966896 -n02413593 -n09764900 -n03009794 -n03314227 -n10499232 -n10075693 -n04451318 -n12320806 -n11933728 -n07764315 -n12133682 -n09904837 -n12832538 -n03816530 -n07802863 -n04391445 -n09728137 -n03887330 -n04436012 -n03957991 -n07771731 -n06266973 -n10407310 -n10290919 -n07862244 -n01842504 -n10262561 -n12726159 -n07691954 -n07618119 -n03437829 -n11966617 -n03629100 -n04231905 -n04208760 -n03344305 -n03684143 -n12934174 -n08645212 -n03556679 -n12109365 -n03751458 -n02380875 -n02025389 -n02770721 -n09830629 -n02800675 -n04951186 -n04483073 -n12710577 -n12789054 -n12058192 -n11777080 -n07716203 -n09618880 -n04525821 -n04016846 -n02918330 -n10375052 -n13158512 -n13090871 -n02929582 -n02308735 -n10487182 -n02213663 -n07608339 -n04384593 -n12890490 -n03992436 -n02994573 -n13231078 -n12880244 -n01651059 -n02925009 -n09686401 -n13219976 -n09981540 -n04582771 -n06267758 -n09893502 -n13214340 -n03272940 -n12554911 -n02214341 -n04137089 -n03874487 -n04573513 -n12003167 -n12004547 -n13065089 -n01903346 -n04373428 -n02216365 -n02024185 -n12577895 -n11698042 -n07586318 -n11705776 -n03030353 -n04486213 -n07885705 -n07928163 -n02356612 -n02767038 -n02897097 -n11662371 -n04128710 -n09842395 -n07683360 -n11533212 -n08495908 -n12841193 -n03669886 -n07768068 -n02381831 -n12081215 -n02757337 -n02811618 -n10144338 -n01379389 -n09698644 -n12779851 -n10400618 -n11801891 -n12322099 -n12408077 -n02767956 -n08640962 -n07816839 -n03021228 -n10346015 -n07868830 -n07917272 -n10076957 -n12865708 -n04290259 -n03595264 -n03986224 -n07825194 -n01610100 -n04417086 -n12995601 -n12734070 -n15091129 -n12428412 -n07587331 -n02405101 -n03108455 -n03594523 -n04489695 -n03892425 -n13032618 -n04409011 -n07590752 -n15092942 -n03914583 -n13066448 -n03532919 -n10639637 -n04566561 -n13223843 -n07904637 -n12347158 -n02720048 -n03901229 -n03936466 -n10574840 -n03782794 -n12397431 -n07908567 -n12580896 -n02697221 -n09791419 -n02577403 -n07870069 -n02136103 -n04318892 -n01462544 -n09747191 -n12287836 -n03067093 -n03934565 -n03543945 -n13126856 -n02240068 -n01585422 -n12413301 -n03246454 -n01876034 -n03635330 -n11680596 -n03228365 -n03082656 -n11609862 -n12859986 -n03934229 -n10233248 -n03166514 -n12166793 -n10115430 -n03327553 -n03373611 -n02967782 -n12338258 -n01604968 -n01323155 -n02590094 -n03044934 -n07866409 -n12291143 -n14900342 -n12094612 -n07845702 -n07926250 -n10750640 -n04359500 -n09797873 -n09953350 -n03561047 -n12122725 -n12725738 -n01453087 -n04977412 -n04575723 -n13219833 -n12161056 -n04273285 -n12482437 -n12863624 -n04953296 -n03390075 -n10188957 -n02874442 -n04236935 -n09990690 -n12866459 -n04075715 -n09725000 -n12794367 -n12461673 -n03050453 -n03677115 -n12427391 -n07736371 -n02973236 -n02406749 -n12322699 -n12815198 -n10680796 -n03268311 -n02405799 -n12302248 -n09791014 -n01545574 -n07740033 -n07862095 -n09901337 -n04390577 -n03597916 -n12110085 -n11802586 -n04205505 -n07696527 -n12076852 -n04344003 -n03326660 -n02823586 -n03042139 -n01565345 -n07905296 -n01454545 -n07650903 -n07905386 -n12530629 -n02841187 -n02943964 -n03329536 -n09681234 -n03479121 -n03770085 -n04147793 -n11552133 -n03774327 -n13197507 -n07901355 -n10400437 -n07837912 -n02310941 -n07845087 -n02239774 -n04976319 -n03960490 -n05239437 -n06275471 -n01633406 -n04257223 -n12009420 -n10483138 -n02775897 -n07866151 -n07922512 -n02666624 -n03944024 -n03842377 -n01832493 -n07855907 -n03968728 -n04492060 -n07879072 -n11635830 -n11802800 -n02357911 -n02431628 -n03730494 -n13099999 -n07768230 -n13147270 -n12331655 -n10237676 -n11855553 -n09759501 -n10620586 -n13181055 -n12309277 -n13183489 -n04382695 -n07679034 -n10495756 -n02173113 -n12764202 -n03683457 -n10298912 -n07680313 -n10160280 -n02205673 -n12053690 -n11653904 -n02931294 -n04093775 -n12856479 -n02427470 -n07608866 -n09954639 -n11639445 -n03364599 -n09924106 -n09683924 -n10419472 -n03089753 -n12620969 -n07604956 -n12940609 -n12564083 -n03514894 -n10343355 -n13068255 -n03805280 -n12793284 -n03140652 -n02666501 -n11717577 -n04267435 -n04593185 -n12820853 -n03934311 -n02630615 -n07767002 -n07723968 -n01631354 -n07931452 -n12414818 -n03097673 -n09944430 -n04457474 -n11850521 -n12227658 -n10131815 -n12408717 -n03566730 -n12777680 -n06273555 -n04357531 -n03759243 -n09861599 -n03015851 -n04175039 -n03392741 -n07859796 -n07741138 -n04474187 -n02266864 -n04553561 -n02667244 -n12720200 -n12432356 -n07806120 -n10362557 -n11929743 -n07765862 -n02963987 -n02762371 -n02747672 -n04289195 -n04056413 -n03039493 -n03894677 -n12338655 -n04422409 -n12079120 -n10252222 -n10168837 -n12919847 -n10297841 -n01340014 -n11710827 -n10167838 -n12278107 -n01384164 -n10498986 -n02742468 -n02899439 -n11752937 -n12107710 -n12315598 -n03985441 -n07605804 -n07686202 -n12884100 -n13121349 -n11725311 -n10420507 -n11706761 -n01381044 -n03331599 -n12336333 -n10185483 -n07880880 -n01782516 -n12615232 -n03175457 -n12657082 -n01750437 -n07918879 -n13213066 -n12927494 -n02910542 -n06273986 -n02161338 -n10235024 -n12180168 -n03659950 -n02160947 -n11861853 -n09866817 -n09279986 -n12393269 -n01552034 -n05526957 -n02956883 -n12818966 -n09753792 -n03114236 -n12273344 -n12546617 -n13177048 -n02129991 -n01731941 -n01628770 -n12774641 -n07685546 -n03253279 -n10678937 -n12579038 -n08673039 -n01392275 -n02379081 -n10530150 -n12851469 -n12414449 -n11694664 -n11877283 -n09708889 -n03585438 -n00483605 -n12332555 -n03323096 -n07851767 -n02417663 -n10667863 -n02856237 -n09269341 -n01596608 -n09720033 -n13160604 -n04443164 -n02814428 -n11622771 -n10328123 -n04338963 -n01794651 -n12069217 -n07762740 -n02935387 -n11897116 -n10569179 -n12749852 -n10745006 -n07823280 -n12162425 -n09801533 -n03772269 -n04518643 -n07916319 -n12771597 -n02147173 -n10342992 -n03795123 -n11646344 -n12847927 -n07686021 -n12383894 -n04465050 -n14564779 -n04212467 -n12274863 -n02380052 -n04329958 -n12034384 -n04213353 -n04366033 -n04955160 -n02778294 -n12890685 -n03028785 -n03097535 -n04533594 -n01750167 -n01415626 -n12276477 -n07729926 -n07711371 -n12843970 -n10500419 -n12891093 -n03840823 -n12509665 -n11878101 -n04315342 -n07685031 -n12305819 -n10039271 -n12264512 -n03911866 -n13919547 -n12413419 -n03785721 -n02599347 -n03786194 -n04018155 -n12856287 -n09607903 -n02396088 -n10212501 -n10313000 -n07683617 -n03586219 -n03890233 -n03156767 -n12033709 -n01648139 -n04399846 -n10671736 -n07698672 -n10791115 -n07708124 -n02709908 -n04266968 -n01758141 -n10058962 -n09444783 -n03668067 -n02838345 -n02388143 -n12893993 -n12590499 -n01462042 -n02689434 -n13209808 -n04075291 -n02412629 -n01953594 -n03906463 -n03043423 -n02200509 -n10152763 -n12504570 -n04396808 -n03382413 -n03618101 -n02767147 -n02390101 -n03450974 -n12778398 -n03625539 -n02574271 -n04113316 -n07572616 -n11809437 -n04119230 -n03829954 -n10500603 -n04258732 -n02731900 -n10174330 -n01574801 -n08663703 -n12558230 -n03981760 -n07732904 -n11875523 -n11823436 -n03238286 -n03079494 -n04281260 -n07873057 -n11686912 -n10568608 -n07593004 -n04271531 -n10037922 -n07838551 -n03615300 -n12624568 -n12940226 -n05242928 -n03680734 -n01589893 -n11652376 -n11893640 -n04119091 -n09696763 -n07851554 -n02660640 -n12124818 -n10370955 -n02663211 -n02414209 -n13187367 -n03258577 -n04375241 -n07617932 -n12240477 -n03417202 -n07595649 -n03839424 -n03087245 -n02431441 -n04396335 -n03484809 -n03426285 -n03592931 -n02912319 -n03488887 -n12187891 -n07592400 -n12918609 -n07858114 -n07567980 -n01548694 -n02726210 -n02406859 -n10147262 -n05458576 -n02848921 -n03503233 -n02587618 -n03465151 -n03582508 -n11654293 -n03695452 -n02197185 -n04223170 -n10243273 -n03149135 -n02842809 -n03669534 -n03857291 -n02147328 -n12278865 -n12733428 -n03264906 -n09924195 -n10432189 -n12203896 -n03892728 -n12360958 -n10418735 -n01650901 -n12420722 -n03341606 -n02557909 -n07751858 -n03483971 -n12019035 -n03991202 -n02072040 -n03129848 -n04505345 -n02405440 -n03901974 -n11656123 -n11552976 -n10291822 -n10108018 -n09902731 -n03325691 -n12646072 -n04134170 -n12097396 -n07564008 -n01624305 -n03421117 -n02776007 -n10792856 -n07818133 -n03227184 -n10198437 -n04157099 -n12743009 -n07820960 -n12749456 -n13035925 -n05262698 -n03422771 -n02878628 -n12140903 -n07820297 -n03524745 -n09901921 -n03170872 -n10039946 -n12638964 -n11989087 -n03461988 -n04287451 -n04298053 -n07882420 -n04002262 -n02734835 -n11707827 -n07756641 -n12808007 -n10069981 -n12637123 -n12947895 -n04363082 -n04292080 -n11858077 -n04535252 -n12646397 -n12283147 -n12321077 -n02746595 -n02895328 -n07624924 -n12537253 -n11952541 -n02181477 -n01440160 -n03878828 -n12861541 -n02869563 -n04242084 -n03197201 -n09396608 -n04291992 -n07845863 -n04314522 -n12843557 -n04029647 -n12146654 -n13147386 -n12954799 -n11920133 -n03038480 -n03213715 -n02971473 -n04149374 -n04230387 -n00444340 -n11859275 -n07564796 -n02948403 -n10186068 -n04315713 -n02366002 -n02670935 -n13208302 -n10225931 -n07826340 -n04102872 -n02259708 -n11855842 -n09941089 -n08896327 -n10237464 -n12084158 -n03764995 -n03627954 -n12384375 -n10341343 -n07876189 -n04573379 -n07904293 -n07840520 -n12038038 -n03005147 -n10483799 -n02978367 -n01484285 -n13094273 -n04539053 -n01748389 -n10146816 -n07815839 -n12991837 -n03294604 -n03588841 -n04055180 -n03209477 -n09917345 -n04393913 -n12337391 -n12126084 -n01882125 -n07688130 -n02814116 -n09640715 -n12679593 -n12596345 -n03029925 -n11761650 -n04457157 -n12683096 -n07709881 -n03841290 -n13157684 -n07927836 -n03523134 -n03690279 -n10187491 -n12451070 -n02682311 -n03978815 -n11806679 -n07808022 -n01386354 -n03622526 -n02369293 -n11885856 -n02289610 -n12663359 -n02624987 -n13173488 -n03027001 -n07896765 -n11935330 -n07814790 -n04242704 -n09959142 -n07589543 -n03551582 -n07843117 -n03556992 -n02060569 -n04000998 -n03825271 -n11946918 -n02874750 -n03479502 -n09919451 -n02176747 -n02080713 -n03400972 -n10222170 -n07926785 -n07852302 -n03012373 -n10438842 -n12868019 -n03634034 -n04210591 -n07853560 -n12374862 -n09248399 -n04355115 -n12908093 -n12906498 -n12875269 -n02791665 -n03146777 -n02854378 -n12414159 -n07821610 -n07595180 -n12238913 -n12141385 -n10761190 -n12165758 -n01653223 -n12956367 -n03695753 -n12416703 -n12346813 -n03405111 -n04304215 -n01624212 -n12674895 -n09850760 -n12407715 -n04156040 -n11610437 -n03395256 -n09970822 -n04229959 -n02530831 -n07870894 -n12098524 -n12828379 -n04057215 -n10751152 -n10053439 -n03674270 -n07869291 -n12256920 -n02535163 -n04282231 -n02136452 -n02365108 -n10328328 -n02315487 -n03325403 -n09231117 -n03342657 -n09980985 -n10702167 -n11961871 -n02065263 -n12857779 -n03219612 -n07805966 -n10699981 -n07691863 -n12831932 -n04179126 -n10208189 -n09765118 -n07922147 -n01631512 -n01947997 -n01405616 -n01892030 -n07827896 -n12964920 -n07749870 -n03276696 -n10020670 -n11828577 -n07624666 -n10590146 -n02407521 -n10253703 -n03270854 -n11610047 -n12981443 -n12413642 -n12302565 -n03177059 -n04594114 -n10227985 -n07728391 -n10395073 -n02810270 -n03569293 -n07812046 -n03843316 -n12477401 -n03802643 -n07618029 -n10755648 -n12837803 -n12454556 -n01636127 -n02809241 -n03270165 -n12035631 -n02962414 -n09750641 -n01793085 -n04346003 -n07922041 -n04164002 -n12499979 -n03301291 -n07921834 -n09656077 -n07599161 -n13155611 -n10194231 -n10063635 -n03601442 -n10366276 -n00475661 -n03943714 -n10377291 -n02624551 -n02568447 -n07589458 -n09691858 -n02685995 -n11919975 -n01690466 -n13211020 -n04114069 -n10530383 -n04200908 -n12631932 -n07916437 -n03219859 -n07918309 -n10368291 -n10253479 -n03317889 -n13206178 -n02821415 -n10592811 -n12557064 -n12872458 -n10212231 -n07926346 -n09695514 -n09741816 -n03964611 -n07812913 -n09703708 -n02587479 -n10593521 -n03485309 -n03776877 -n12289433 -n07716504 -n10580030 -n03061893 -n03206158 -n09710041 -n04266849 -n07864065 -n12767648 -n02333190 -n12295429 -n02406432 -n01799679 -n07861983 -n02201626 -n03441582 -n03653975 -n02834506 -n12263204 -n10672662 -n03072682 -n03410423 -n11620389 -n04542095 -n07910970 -n03697913 -n02706806 -n09736798 -n12318965 -n07938594 -n12032429 -n03191776 -n04210288 -n01422335 -n03236093 -n11881189 -n02247216 -n12338146 -n03104512 -n00474881 -n04172230 -n01461315 -n04400109 -n10646140 -n02215621 -n10096126 -n03019806 -n11809754 -n02492948 -n10741367 -n10308504 -n07875560 -n02523110 -n07738224 -n02015797 -n10499631 -n03025165 -n03284308 -n03508881 -n10441037 -n10757492 -n07608721 -n09755241 -n04264361 -n04394421 -n03776997 -n03175843 -n04476526 -n02523877 -n13196369 -n10190122 -n03172738 -n02709763 -n02070624 -n04563560 -n04017807 -n03824589 -n07817758 -n03222722 -n01542433 -n13173259 -n04458201 -n12869668 -n12580786 -n02407763 -n09760913 -n10530571 -n11752798 -n09612700 -n07601175 -n11632376 -n10641223 -n03158668 -n03411208 -n01413457 -n03684740 -n10248008 -n12656528 -n11849271 -n07771891 -n12067433 -n12389727 -n11734698 -n04042204 -n07825399 -n12621945 -n07624757 -n03180732 -n09741331 -n10246317 -n04030414 -n07821107 -n04524716 -n03789603 -n12867449 -n10249869 -n02434415 -n07614103 -n03333349 -n04602840 -n09923996 -n02658811 -n13033879 -n03663433 -n02873623 -n07837545 -n12436907 -n02675077 -n01500854 -n04435552 -n01790304 -n11687789 -n03443543 -n09733459 -n01606177 -n12245885 -n11721642 -n02201497 -n12010815 -n04594742 -n02755984 -n07927716 -n04245218 -n03134118 -n13214485 -n12294542 -n12713521 -n03556173 -n12650038 -n07719058 -n04319774 -n10443830 -n10019187 -n09720702 -n07926442 -n10402709 -n03989777 -n11699751 -n09613118 -n02965122 -n04221076 -n01861330 -n12837052 -n02975589 -n09668437 -n03012499 -n01418498 -n12451566 -n03585778 -n07692517 -n09672590 -n09741999 -n09748648 -n07621264 -n03482001 -n10185148 -n01542168 -n12536291 -n07846557 -n11840476 -n03130866 -n02631775 -n11730015 -n03715275 -n07680168 -n12175370 -n05427346 -n03665232 -n08611421 -n11730458 -n02413484 -n09783884 -n07888378 -n04611351 -n02247655 -n02136794 -n11649359 -n01382033 -n07889193 -n10405540 -n03510384 -n04420720 -n03585875 -n03812789 -n01835769 -n12139921 -n09762011 -n10103228 -n03477410 -n11930788 -n10064831 -n12311045 -n07681805 -n03136504 -n12887713 -n03886940 -n03130233 -n10197392 -n12333961 -n07672914 -n12723062 -n12599661 -n04268799 -n03696909 -n12809868 -n12452256 -n10710778 -n02571652 -n12117326 -n02450677 -n03041265 -n12544240 -n01966377 -n10252354 -n02378625 -n09814488 -n10569011 -n13067330 -n07928998 -n07890970 -n02187279 -n02592371 -n07846802 -n03475961 -n05448704 -n10410996 -n02851795 -n10093167 -n12468719 -n09876701 -n03057724 -n03469031 -n02344270 -n04248209 -n02687682 -n04467899 -n12897788 -n03436656 -n12539832 -n09906704 -n03190458 -n11843441 -n12130549 -n11823756 -n03153246 -n03684489 -n04160036 -n02908951 -n12855365 -n03518230 -n12225222 -n12933274 -n10432957 -n02921406 -n10156831 -n12239647 -n02826812 -n03411927 -n11602091 -n13200986 -n04244847 -n01330126 -n14938389 -n03001540 -n04387531 -n03423099 -n07608533 -n11723986 -n07600394 -n12529500 -n02403820 -n02587300 -n10333317 -n07935288 -n12680652 -n01449980 -n12153914 -n07803310 -n11741797 -n01881857 -n13081999 -n08644045 -n02061217 -n02173784 -n02660519 -n03104019 -n13137951 -n04538403 -n02621258 -n04515729 -n04165945 -n11919761 -n13078021 -n07861247 -n11959259 -n11801665 -n04070545 -n13210597 -n10218043 -n10717337 -n01365885 -n10718952 -n11979187 -n03880032 -n03798610 -n03477303 -n01876667 -n11860208 -n03401721 -n03360133 -n13230843 -n13194758 -n13190060 -n02564935 -n13894154 -n12754311 -n07697408 -n13171210 -n02035402 -n03736147 -n10396337 -n04554998 -n02793930 -n04126852 -n03654826 -n09411295 -n06255613 -n01680983 -n10261862 -n01581874 -n10378780 -n10646641 -n03539103 -n03351151 -n04349913 -n03906106 -n02370525 -n03319576 -n04113968 -n09693244 -n02945964 -n03344509 -n04117216 -n03889626 -n03557840 -n09800469 -n04280487 -n07890890 -n12147835 -n12295237 -n03883664 -n04436992 -n02922877 -n10099002 -n01988203 -n10056719 -n11646517 -n03672521 -n04568713 -n10111358 -n03606347 -n04047733 -n12320627 -n10251612 -n10460033 -n01742447 -n11917835 -n10443032 -n13079567 -n04363671 -n10788852 -n10482587 -n03308614 -n12741586 -n12938667 -n04539407 -n01630148 -n02303777 -n13050940 -n04552551 -n02341288 -n04098169 -n04110439 -n11625391 -n12259316 -n02822762 -n10631131 -n04089152 -n03571439 -n04558199 -n12656909 -n03170292 -n02877642 -n12771890 -n03033267 -n12658603 -n13354021 -n12855886 -n11840246 -n03619050 -n07727252 -n12932706 -n13874073 -n01315805 -n02948942 -n12048928 -n03146449 -n10656969 -n09872557 -n03906590 -n04454792 -n12500309 -n04239333 -n01815036 -n09644657 -n10497645 -n02918455 -n07812662 -n04240434 -n10804636 -n11967878 -n04184095 -n11834272 -n05244755 -n02299039 -n12665659 -n12144987 -n07607492 -n11887750 -n13083461 -n04577139 -n09670909 -n07876893 -n02875948 -n04069582 -n10458111 -n10361194 -n09389867 -n01651778 -n11933387 -n13193143 -n12834190 -n03516266 -n02184589 -n10041373 -n02809605 -n04064213 -n04957589 -n12643113 -n02582721 -n07911061 -n07921360 -n10369417 -n10527147 -n04104925 -n03707372 -n01386182 -n10374849 -n09902851 -n08559155 -n02332447 -n11649150 -n11722036 -n01823740 -n04592356 -n10002257 -n10661732 -n07562379 -n07597263 -n04036776 -n13112201 -n09842288 -n07738105 -n04545984 -n09635973 -n02885233 -n02756854 -n07808479 -n03029296 -n01543383 -n02884450 -n09843716 -n04224395 -n10576676 -n10140051 -n07919894 -n07806879 -n10212780 -n09478210 -n12017127 -n03770224 -n07606191 -n03555217 -n09715165 -n12270460 -n12129738 -n11739365 -n02303585 -n07818029 -n05314075 -n03019304 -n09859975 -n09454744 -n13151082 -n12586989 -n00455076 -n07741357 -n04957356 -n08659242 -n04577293 -n04126244 -n03131193 -n12428242 -n03569494 -n03781594 -n07743384 -n02892392 -n12576695 -n12199982 -n07693439 -n07719756 -n11884384 -n03043798 -n12351091 -n03690168 -n02214499 -n01839949 -n01831360 -n12642964 -n02957862 -n03125588 -n12883628 -n04002371 -n10747965 -n09744462 -n02853745 -n13030337 -n12156679 -n02761034 -n12587487 -n03374570 -n12728322 -n01731764 -n07918706 -n03696445 -n03185868 -n02805283 -n03868763 -n02202124 -n12369665 -n12449934 -n12650229 -n02656301 -n07743723 -n11702713 -n02927053 -n03916385 -n01486010 -n03986071 -n04188064 -n13897528 -n12414329 -n07718068 -n07837755 -n11735570 -n10464542 -n04091466 -n01315581 -n10374943 -n03989898 -n13220525 -n04076052 -n04062179 -n02414442 -n04414101 -n04446162 -n00480885 -n03536568 -n03773835 -n10728998 -n12643877 -n02255391 -n03799610 -n07847585 -n00446411 -n11910666 -n03139998 -n02296276 -n02889996 -n02786611 -n10363445 -n07854348 -n08583682 -n09912681 -n07896422 -n02368821 -n11935953 -n12185254 -n11738547 -n03809211 -n02448318 -n13066979 -n01987076 -n12009047 -n12839574 -n13174823 -n07902520 -n03369866 -n13209129 -n02593191 -n03853291 -n02620578 -n10071332 -n01813658 -n09895480 -n10134760 -n01316734 -n07845166 -n03175983 -n13132156 -n12814960 -n12883265 -n03637787 -n04310507 -n04133114 -n03900194 -n04129688 -n04449550 -n01805321 -n01717467 -n01573627 -n12271451 -n11722621 -n09976917 -n12232280 -n12905135 -n03451253 -n01655344 -n12346986 -n11987511 -n10517283 -n02941845 -n12730370 -n03121190 -n07917874 -n10023656 -n10151133 -n07695187 -n03258456 -n10639238 -n10682713 -n02085019 -n12343753 -n10749928 -n04595611 -n04410565 -n08500819 -n07719980 -n04016479 -n03232417 -n03469832 -n09834885 -n07925327 -n10094782 -n03632100 -n12734215 -n09845849 -n04047139 -n10743124 -n02604954 -n12270278 -n03036244 -n11991777 -n10168012 -n02561803 -n10531109 -n10344319 -n03804211 -n10513938 -n10732967 -n09917481 -n02950482 -n03148808 -n07910245 -n07925423 -n07889990 -n04302988 -n07745357 -n04346511 -n07573563 -n02564403 -n12084400 -n10030277 -n09815455 -n04388473 -n12404729 -n10576316 -n12072210 -n11811059 -n01824344 -n03556811 -n03175301 -n07586485 -n13137010 -n11986729 -n04967561 -n03881404 -n07692114 -n07874995 -n02770585 -n07853345 -n02775689 -n04328580 -n01323781 -n07773428 -n02414043 -n02794474 -n02352932 -n07569873 -n12374705 -n03606106 -n04267246 -n04369485 -n11934239 -n12705698 -n11841247 -n07868045 -n03525693 -n12358293 -n02937010 -n09658398 -n12711182 -n03516647 -n04591631 -n10228712 -n11930353 -n03471779 -n12594324 -n02251593 -n04455579 -n02542017 -n03381450 -n03320845 -n12364940 -n09657748 -n12412987 -n01840412 -n10570704 -n10117267 -n03251280 -n10195261 -n12178129 -n12285049 -n02177775 -n10117415 -n03707766 -n04475309 -n05604434 -n03999064 -n12127575 -n01972131 -n09793946 -n01635176 -n02791532 -n07564101 -n07876460 -n02813981 -n10764719 -n03638743 -n12761702 -n02125689 -n11657585 -n09923003 -n13069773 -n02683183 -n04324515 -n11936946 -n12862828 -n02659808 -n02619861 -n13175682 -n11648039 -n07768139 -n12512674 -n12108613 -n02947977 -n12899971 -n03845107 -n07689490 -n02081927 -n07619508 -n10248377 -n10300041 -n10761326 -n09655213 -n02675522 -n04963111 -n01995686 -n03256631 -n10684630 -n04471912 -n12728864 -n03870546 -n02829246 -n09725546 -n03409920 -n13194918 -n10055297 -n02513248 -n01462803 -n11782266 -n13094145 -n07839478 -n13916363 -n07932454 -n09722817 -n07774479 -n10386874 -n12832822 -n01599388 -n02964295 -n04349189 -n07689313 -n11653126 -n02309841 -n02064000 -n04410663 -n04562122 -n02358712 -n09901786 -n10441124 -n12882158 -n12815668 -n10159289 -n01641930 -n03315990 -n12271187 -n10277638 -n07815163 -n12903014 -n07915366 -n04412300 -n01324799 -n03408264 -n09452291 -n03019198 -n11890884 -n10355806 -n03186199 -n04013600 -n12541157 -n06259898 -n06273294 -n11946051 -n01671705 -n04415257 -n01905321 -n04050600 -n12604460 -n04051439 -n02929184 -n11765568 -n10025060 -n02396796 -n04033287 -n13027557 -n03127531 -n10308066 -n09729062 -n01593553 -n02476567 -n07609728 -n12970293 -n01419888 -n03215749 -n01684741 -n13067672 -n03870290 -n07846359 -n12961536 -n03356559 -n07727140 -n09843602 -n02378755 -n12044041 -n01977485 -n07718920 -n12060546 -n04265428 -n12237855 -n04006067 -n10227266 -n04361937 -n12134486 -n10097842 -n02264591 -n03912821 -n07594155 -n03116163 -n11771924 -n04155457 -n12394118 -n10507380 -n01844746 -n11901452 -n03024233 -n03383562 -n11806814 -n10062716 -n04204755 -n08613733 -n12907671 -n03533654 -n09826605 -n03109033 -n07606419 -n03537085 -n11615812 -n07695504 -n11694300 -n04520962 -n09971839 -n02664285 -n03402511 -n02061560 -n13133140 -n03548195 -n12877493 -n02425086 -n12845187 -n12488454 -n02975994 -n02071028 -n01457407 -n03685486 -n07605282 -n07771405 -n07827554 -n10538733 -n03438780 -n04379096 -n12686496 -n10001764 -n11848867 -n12125001 -n09886540 -n03275566 -n01442710 -n12789554 -n07858197 -n12722071 -n12868880 -n10441694 -n12409651 -n07727741 -n12289585 -n04069166 -n12686877 -n03723439 -n07815956 -n12543455 -n10778044 -n02200630 -n10074841 -n12640284 -n12589841 -n07592317 -n07866571 -n12712626 -n04228422 -n11711289 -n03590475 -n13081229 -n03045800 -n03639230 -n02874214 -n07615954 -n03204134 -n12053962 -n12769219 -n15006012 -n09873769 -n11818636 -n01959029 -n03349599 -n12227909 -n07576969 -n03638180 -n07742224 -n03390673 -n02344175 -n03770520 -n00447361 -n13235319 -n01983674 -n10061882 -n04267165 -n12493868 -n12713358 -n02930339 -n10493419 -n12918810 -n02582220 -n12248359 -n02644501 -n04596492 -n04538249 -n07905618 -n13230190 -n07808268 -n15005577 -n09351905 -n12730544 -n11937023 -n04024137 -n02238358 -n11646955 -n11618079 -n09849990 -n04060448 -n04220805 -n12725940 -n12004120 -n01484562 -n02669442 -n12132956 -n01756916 -n03980986 -n02256172 -n07716750 -n12119390 -n04047834 -n11934041 -n12828977 -n03648219 -n11873612 -n12909614 -n04397860 -n03908111 -n03261395 -n03695616 -n11668117 -n12014355 -n02896074 -n03988758 -n04426184 -n10328696 -n02477028 -n04507326 -n04320871 -n03256472 -n01919385 -n03988926 -n13182164 -n07826250 -n03207548 -n01396617 -n04369618 -n07913774 -n13229951 -n03410022 -n12728508 -n01997119 -n03598783 -n01341090 -n03879456 -n01736796 -n02864122 -n13879816 -n02684962 -n12246037 -n02433729 -n04364397 -n09881358 -n02950120 -n03326371 -n02243878 -n01790812 -n12990597 -n03330947 -n07764486 -n03332173 -n10006177 -n03347472 -n07619301 -n10106509 -n12365285 -n01732989 -n07678586 -n04098795 -n07733847 -n03994297 -n12872914 -n02762909 -n07766530 -n13198482 -n02395855 -n12273515 -n04487894 -n07847047 -n12488709 -n02859557 -n04255768 -n02360933 -n03267696 -n03152951 -n10188715 -n10520544 -n13065514 -n02900594 -n03699754 -n01319187 -n01949499 -n10417424 -n01603000 -n12062105 -n09683180 -n09863339 -n01880716 -n10702615 -n03893935 -n10495555 -n04131499 -n02957252 -n02113892 -n07724078 -n12246941 -n04303095 -n01751215 -n04213530 -n12117695 -n12418507 -n01922948 -n12131405 -n13188767 -n01481498 -n03174079 -n02407172 -n11613867 -n10152616 -n10119609 -n04158250 -n11695085 -n07855105 -n02854630 -n03768683 -n12739966 -n12266984 -n12819141 -n12732605 -n13205249 -n11917407 -n01607429 -n02694279 -n07815294 -n06614901 -n07846471 -n12119717 -n02595339 -n12366186 -n10693235 -n12263410 -n12484244 -n10337488 -n04146976 -n01469723 -n07872748 -n03238879 -n12000191 -n07846938 -n03116008 -n12139196 -n04013176 -n10317963 -n12140511 -n02065726 -n01649556 -n10316862 -n01755952 -n04385079 -n12770529 -n02814338 -n01675352 -n11874423 -n01369484 -n10537708 -n07618281 -n07821404 -n02297819 -n03238762 -n03357081 -n02628600 -n07830986 -n12507823 -n04431925 -n11955532 -n03429771 -n10281896 -n12383737 -n12760875 -n09673091 -n12892013 -n06625062 -n04503269 -n03674842 -n12338979 -n04268275 -n12033139 -n11767877 -n07812790 -n12676134 -n04037873 -n10097477 -n12310638 -n12258101 -n09391386 -n13196738 -n13866626 -n12720354 -n10106995 -n07843220 -n03878294 -n04101375 -n07733217 -n10220080 -n04601938 -n10778148 -n12973937 -n10556825 -n12256708 -n12583855 -n04259202 -n07628181 -n04226962 -n02777402 -n09674412 -n12188635 -n03776167 -n04504038 -n04156591 -n02270945 -n02264021 -n07826653 -n02980203 -n02059852 -n02102806 -n12921660 -n04477725 -n10107173 -n12837466 -n02697022 -n04350688 -n12110236 -n02177196 -n07899976 -n12639910 -n02368399 -n10009162 -n03950647 -n09248153 -n02425532 -n04044955 -n11933257 -n03460899 -n10147710 -n02379743 -n02413917 -n02890804 -n12915140 -n02146879 -n07915800 -n01787006 -n03646809 -n11677902 -n04065909 -n02088992 -n02887832 -n10115946 -n02306825 -n03719560 -n10456696 -n03758220 -n12625003 -n04021503 -n07563366 -n02531625 -n10304650 -n12855710 -n09735654 -n07853762 -n03512030 -n12898342 -n02297938 -n12618727 -n04082344 -n12953712 -n12617559 -n03035715 -n02532451 -n05399356 -n03602686 -n10082423 -n04607759 -n07581607 -n07594737 -n04030965 -n03464628 -n12103894 -n03039353 -n03522990 -n02964934 -n03169063 -n10153865 -n09653144 -n09941571 -n12907057 -n07768318 -n02600798 -n02187150 -n01811243 -n12252383 -n04495555 -n07678953 -n13181244 -n13069224 -n13184394 -n12765402 -n03471347 -n10208847 -n03697366 -n09840435 -n02506947 -n09709673 -n07928578 -n11935715 -n07848936 -n02757927 -n01999767 -n02245443 -n10260473 -n13898645 -n02701260 -n07840219 -n11785875 -n12385830 -n12017664 -n12145148 -n04530456 -n01929186 -n02384741 -n04113038 -n03296217 -n09723819 -n03766697 -n12143215 -n09929202 -n02684248 -n12119539 -n03566555 -n12941220 -n04124573 -n10750188 -n07733005 -n04230707 -n03829857 -n07756838 -n12244458 -n12543826 -n03514129 -n02762169 -n04435870 -n03342863 -n09745324 -n12369476 -n11652039 -n03915320 -n07746749 -n07608641 -n12642600 -n02389943 -n12137791 -n04111962 -n12493426 -n12454793 -n01455317 -n10728117 -n03281524 -n12195734 -n12353431 -n02477329 -n02678010 -n04557522 -n10162354 -n14942411 -n07806043 -n12274151 -n09835153 -n03983499 -n04086663 -n07851926 -n07868684 -n11926976 -n03972146 -n04310604 -n09675799 -n13880704 -n13173132 -n07577918 -n10720964 -n11937102 -n03349020 -n12340581 -n03725506 -n03477143 -n10578162 -n01731137 -n03382104 -n11616852 -n01493829 -n09327077 -n03856335 -n03321843 -n02375757 -n02118643 -n08500989 -n03496486 -n04140777 -n12858987 -n02845293 -n04093157 -n07819682 -n10394786 -n12289310 -n02901620 -n01559160 -n07919165 -n12648196 -n11774972 -n11995396 -n10543937 -n10154013 -n03977158 -n01884476 -n12266528 -n11906127 -n12661538 -n04396650 -n12761905 -n04175574 -n10181878 -n12017326 -n12876899 -n09744346 -n07741706 -n04451636 -n07735981 -n03751590 -n03140546 -n03070396 -n03091223 -n12071477 -n07562017 -n09981092 -n09847344 -n12552893 -n12371202 -n02245111 -n01598271 -n04400499 -n02298095 -n15048888 -n02967170 -n04030161 -n10676434 -n01556514 -n13235766 -n02538562 -n12603672 -n03941586 -n02449183 -n07567611 -n12923257 -n02296021 -n11730933 -n12497669 -n02917742 -n07875926 -n02714535 -n13142182 -n02878107 -n07861334 -n02682811 -n03730655 -n03681813 -n12970733 -n02132320 -n12436090 -n07931280 -n04295353 -n12982590 -n01783017 -n13164501 -n02424589 -n01499732 -n12650805 -n04543509 -n10369699 -n03439631 -n13160116 -n07831663 -n05449196 -n13025854 -n10169241 -n02847461 -n10734963 -n13213397 -n03343234 -n12275317 -n02793414 -n04300509 -n01803893 -n11617878 -n02179192 -n03637480 -n04514648 -n03087521 -n10478827 -n11757190 -n12919195 -n04532504 -n01736375 -n04015786 -n04545471 -n12668131 -n04472961 -n14786943 -n07584938 -n02498743 -n07744559 -n10010062 -n10101308 -n07832099 -n02601767 -n10473453 -n02451575 -n02496052 -n03696746 -n12669803 -n07904072 -n04290762 -n11737125 -n07760755 -n12553742 -n12068138 -n12630999 -n02390938 -n02202678 -n02216740 -n02679961 -n13173697 -n11828973 -n02287987 -n04585318 -n10360366 -n07745661 -n03474352 -n07934800 -n12677612 -n03692272 -n13092240 -n04230487 -n11846312 -n12433952 -n11793403 -n03056873 -n05454833 -n12517077 -n12682882 -n02649218 -n09425344 -n07878283 -n02795978 -n10064977 -n12754174 -n02945813 -n01750743 -n03150661 -n13880415 -n12337800 -n04017571 -n09754907 -n04456734 -n02967540 -n10621400 -n11744471 -n01971620 -n04148285 -n10781817 -n11991549 -n12305654 -n03943833 -n10330931 -n12918991 -n01783706 -n11933099 -n12931231 -n07589967 -n09666349 -n07853445 -n12714949 -n03548533 -n04158672 -n03809802 -n03080309 -n12800049 -n02578454 -n02834027 -n10067600 -n03044671 -n04198233 -n07930205 -n04357930 -n12221522 -n11957317 -n03085781 -n03723885 -n03614383 -n02661618 -n04292221 -n03426574 -n03838024 -n10442093 -n12399534 -n01450950 -n07876550 -n11937446 -n09870096 -n02631628 -n05460759 -n01710177 -n03660562 -n04283784 -n01497738 -n02232223 -n04209811 -n12837259 -n02864987 -n04499810 -n12654857 -n03493792 -n09688233 -n02312912 -n10057271 -n07606058 -n03258192 -n10507565 -n11930038 -n08679269 -n03812263 -n11662128 -n04085574 -n07643577 -n03981094 -n02796412 -n02513939 -n07686634 -n07936979 -n03168774 -n03816394 -n07625324 -n04138131 -n10383094 -n10222716 -n10381981 -n12254168 -n13223090 -n03056583 -n09910556 -n03277004 -n12649866 -n02089725 -n03688707 -n09665367 -n07849506 -n02843909 -n13141797 -n02477516 -n09710886 -n03835941 -n11734493 -n10778711 -n10007809 -n02038141 -n12766043 -n02353172 -n02030224 -n10762212 -n06274921 -n13033396 -n03560860 -n01961234 -n13868515 -n03216199 -n01553527 -n04429038 -n10211036 -n02150885 -n02435517 -n02755675 -n09699020 -n12566331 -n03909516 -n02903727 -n02594942 -n04173172 -n04125692 -n12251001 -n02412787 -n01649412 -n01411450 -n01774097 -n09912907 -n03162556 -n07566231 -n12267534 -n03928589 -n04142327 -n11771147 -n07832592 -n04155177 -n07937621 -n07839864 -n03201895 -n13095013 -n10298271 -n03059103 -n03784793 -n11925450 -n03288742 -n02809364 -n04108999 -n04449449 -n03726233 -n07854455 -n03692136 -n12018447 -n03374282 -n06008896 -n07598928 -n03577312 -n04604806 -n09892513 -n04370600 -n08238463 -n01793159 -n07822687 -n03242390 -n07685303 -n03822361 -n01996280 -n10505942 -n06596845 -n04219580 -n12056990 -n10579062 -n10240082 -n10298202 -n07711907 -n03905730 -n12222900 -n07598622 -n04415815 -n12389932 -n12154114 -n04210012 -n12500751 -n03729402 -n12122918 -n04572121 -n12804352 -n02415130 -n12780325 -n11639084 -n12768933 -n02253494 -n13217005 -n03567788 -n12304286 -n10703480 -n07766723 -n05455113 -n07741804 -n12186839 -n01687128 -n01350701 -n03260206 -n07876026 -n12528382 -n04125541 -n10457444 -n01606097 -n11717399 -n04598416 -n12899166 -n09748101 -n12160125 -n07608980 -n07843348 -n02409038 -n02571167 -n09980805 -n09706029 -n02495242 -n12765846 -n10373525 -n12321873 -n03047171 -n12365462 -n03752398 -n02662993 -n10316527 -n10728233 -n06273207 -n01733214 -n12297846 -n12755876 -n02428842 -n02289307 -n04536465 -n03253187 -n02297294 -n05584746 -n03117642 -n12189779 -n10338231 -n07599649 -n04559994 -n12710917 -n09966470 -n12470907 -n04499300 -n12403075 -n11837743 -n02269657 -n12599185 -n07618587 -n03996004 -n12851094 -n03392648 -n01319001 -n12826143 -n12369845 -n01814549 -n10056103 -n12854193 -n02267483 -n04019881 -n03490649 -n04268142 -n10801802 -n12315060 -n10149436 -n04563790 -n09865068 -n03000530 -n10657556 -n07840672 -n12118414 -n02856013 -n02900459 -n04094859 -n12079523 -n11827541 -n12236160 -n02904505 -n02846619 -n09842823 -n12926039 -n02146201 -n03195799 -n12815838 -n09899289 -n01483021 -n02519340 -n05453815 -n10329035 -n02494383 -n09742927 -n13220355 -n03212406 -n11759609 -n10061431 -n12095281 -n04262530 -n03799240 -n02426176 -n04608809 -n12230540 -n13880551 -n11741175 -n11858814 -n11723452 -n07590841 -n12604845 -n10342543 -n12760539 -n09270657 -n02563079 -n10643937 -n12843316 -n01651641 -n07838811 -n04359034 -n07758260 -n02762725 -n11726433 -n03114743 -n01952029 -n12321395 -n11930571 -n12337922 -n12427946 -n12001294 -n12551457 -n13235011 -n02290340 -n06419354 -n12408873 -n01741442 -n12308447 -n10243872 -n03658635 -n03694761 -n02570484 -n12912801 -n04158002 -n02417785 -n01332181 -n03703075 -n10283366 -n03142431 -n02779609 -n02300554 -n09868782 -n10323752 -n03166809 -n03394149 -n02827148 -n02186717 -n01350226 -n03344784 -n03555996 -n04498873 -n13157481 -n04519887 -n12028424 -n12349711 -n10471640 -n07741235 -n04032936 -n12357968 -n10228592 -n13178284 -n04168840 -n13239177 -n03561573 -n02566489 -n11807696 -n07681264 -n02566665 -n10456070 -n10063919 -n10492727 -n01788579 -n11977660 -n02036228 -n02738978 -n03989349 -n10332953 -n12949361 -n09901502 -n07839730 -n13146928 -n10152306 -n04170515 -n11602478 -n02522722 -n01333610 -n13030852 -n02143891 -n12807624 -n04542329 -n12243693 -n12036226 -n13917690 -n02553028 -n02752199 -n10594857 -n11627714 -n04348070 -n13171797 -n04612257 -n07934373 -n04536765 -n02244515 -n04526800 -n04546595 -n02551668 -n12143405 -n07871588 -n07858484 -n03628728 -n13179804 -n03242264 -n12089846 -n07588688 -n07620047 -n01647466 -n09685233 -n03467254 -n12666369 -n05449661 -n10694939 -n12886600 -n12256522 -n04006330 -n03317673 -n04316815 -n12222090 -n04022866 -n04088441 -n07617526 -n10782362 -n04355821 -n13901490 -n12508618 -n03849943 -n04503499 -n13193466 -n09754633 -n07583978 -n13911045 -n07643679 -n12054195 -n10692090 -n04032509 -n10146927 -n02031298 -n04002629 -n04035748 -n10712229 -n02866106 -n07909504 -n04540397 -n06266878 -n10219879 -n12567950 -n07853648 -n03191561 -n07856045 -n12646197 -n03317510 -n10515863 -n13198054 -n02808829 -n12889579 -n02698473 -n09924437 -n03595055 -n12306270 -n07857356 -n09715303 -n03024518 -n04323519 -n09629065 -n04178668 -n12748248 -n02308618 -n07873198 -n10564098 -n03007297 -n04036155 -n02143439 -n10507482 -n12267931 -n03956331 -n12888234 -n04066476 -n07813107 -n02736396 -n10306496 -n12324388 -n01744555 -n01649726 -n06596179 -n03616091 -n07754279 -n02072493 -n12408280 -n04314632 -n02412700 -n04030846 -n09833997 -n03599964 -n05258627 -n12572759 -n12136581 -n02419056 -n12453714 -n11652217 -n03878511 -n03907908 -n12223160 -n10514121 -n04153330 -n12163279 -n12623818 -n03495671 -n13222985 -n10354754 -n04365112 -n12384680 -n12538209 -n03105214 -n12534862 -n13869045 -n03945928 -n11613692 -n11892181 -n13002209 -n02685253 -n07598529 -n02629716 -n13202355 -n07927070 -n02176916 -n04370955 -n11988132 -n03246197 -n01440467 -n07620145 -n03940894 -n01897667 -n03408340 -n12602612 -n02539424 -n03863657 -n04559620 -n02604480 -n11822300 -n03518829 -n11619845 -n10504090 -n03341035 -n02908123 -n04281998 -n03277602 -n03865288 -n10074578 -n13902793 -n03054605 -n04404200 -n12786836 -n12235051 -n04035231 -n12009792 -n12705458 -n04378489 -n02476870 -n11954798 -n03573848 -n02087314 -n03162460 -n04363412 -n02261063 -n09953615 -n01947139 -n03044801 -n04287351 -n04479287 -n03861596 -n12510343 -n07854066 -n03027505 -n12161577 -n04197878 -n01812187 -n10015792 -n08685188 -n11737009 -n10333044 -n02730568 -n10290813 -n13096779 -n05257476 -n07917951 -n12121187 -n03517509 -n07932762 -n02336275 -n12159942 -n12105981 -n02562971 -n13882961 -n12016777 -n02793684 -n12717644 -n01380754 -n07724173 -n04055861 -n11831297 -n03059934 -n03370646 -n10065758 -n09459979 -n07913644 -n04322531 -n03457451 -n02567633 -n04240867 -n10693334 -n10556704 -n04614844 -n07909362 -n12082131 -n09268007 -n04359217 -n09883807 -n02292085 -n04052346 -n03431570 -n02843465 -n04584056 -n04432043 -n09846142 -n07864317 -n04475749 -n04227050 -n04280845 -n03535284 -n07890617 -n03217889 -n02806762 -n11967315 -n11762927 -n02501923 -n03442487 -n09690083 -n02964634 -n02920164 -n07855317 -n10196725 -n03042829 -n11662937 -n12183816 -n12311224 -n13884261 -n02243209 -n03140771 -n02385002 -n03071288 -n12936826 -n04583022 -n07859142 -n04578112 -n04467506 -n12938081 -n09982152 -n12555255 -n03335333 -n10104888 -n12151170 -n12709349 -n10456138 -n02237868 -n07620327 -n12561309 -n12341931 -n12350032 -n01775730 -n12950796 -n01440242 -n04261767 -n10568915 -n12285195 -n07589872 -n13112035 -n07840395 -n11750508 -n12286197 -n03336168 -n03325288 -n02551134 -n04293258 -n13130014 -n07733124 -n04451139 -n11985903 -n03602365 -n11722342 -n11944751 -n12897999 -n02277422 -n03101302 -n07608245 -n03531982 -n01997825 -n11713370 -n04442582 -n02833403 -n04427857 -n01648356 -n10645223 -n10414865 -n10696101 -n12885045 -n10037080 -n12218274 -n07570530 -n04493259 -n10659042 -n10577710 -n03141612 -n10582604 -n00446632 -n02834642 -n07568389 -n04583888 -n04096848 -n12879068 -n04495051 -n09837459 -n12216215 -n03702440 -n10174695 -n10559009 -n10577182 -n07686299 -n04269668 -n02404028 -n03720665 -n09885866 -n03082450 -n12492682 -n12780563 -n03703463 -n02644360 -n02307910 -n01374703 -n04402342 -n04264134 -n03158414 -n04443433 -n12522894 -n10803978 -n11706942 -n10751026 -n13143758 -n02972934 -n04174234 -n12718995 -n11994150 -n11545350 -n12526754 -n07753448 -n02870772 -n11942659 -n11744108 -n12735160 -n12229887 -n04970312 -n02874336 -n10721819 -n13193269 -n03330665 -n09865162 -n10306595 -n12161744 -n03303669 -n07846688 -n02168427 -n01961600 -n03559531 -n09826821 -n03413124 -n09695019 -n03783873 -n11863877 -n13874558 -n02283617 -n11895472 -n13182799 -n07854614 -n03283827 -n01397690 -n02650413 -n09809279 -n10290541 -n10383505 -n11724660 -n07689757 -n10181547 -n07620597 -n11979354 -n02771547 -n13061471 -n12631637 -n11966385 -n03969510 -n11735977 -n07621497 -n12956588 -n03217653 -n04546081 -n11696450 -n10300654 -n02032769 -n01654863 -n09779280 -n02390258 -n03887512 -n10489426 -n10745770 -n10713843 -n03602194 -n10710913 -n07864475 -n04486322 -n07915213 -n08663051 -n10236842 -n02390738 -n02388453 -n03598385 -n12228689 -n11771746 -n12803226 -n11242849 -n02378149 -n10427223 -n05448827 -n11870044 -n12477983 -n12311413 -n03500090 -n10280034 -n02685365 -n03652389 -n12728656 -n07695284 -n09961198 -n03780799 -n03935883 -n01612955 -n12475774 -n02701730 -n07833535 -n12584365 -n03902220 -n12727960 -n10619492 -n04450465 -n10646780 -n10110731 -n04142175 -n12296735 -n09337048 -n12681579 -n12819354 -n12541403 -n04305016 -n12798910 -n10321126 -n08618831 -n09721244 -n02225798 -n01637338 -n12218868 -n05545879 -n12022382 -n03972372 -n02505063 -n01694311 -n10695450 -n10081842 -n12297507 -n07592922 -n12118661 -n01952712 -n10517137 -n01340522 -n07719330 -n03729482 -n04168541 -n03090710 -n07873679 -n07828378 -n07728284 -n10343088 -n07869937 -n14585392 -n01453475 -n12095412 -n04973020 -n12810007 -n07564515 -n01599741 -n11629047 -n09937802 -n12450607 -n12460146 -n02292401 -n03632963 -n09617696 -n12545232 -n02874642 -n09934488 -n10091349 -n01447946 -n05469861 -n11830400 -n03382533 -n02608547 -n12697152 -n03542727 -n10716576 -n03664159 -n07568625 -n02976815 -n13147532 -n02336826 -n12432574 -n07686461 -n04107598 -n02505998 -n09849167 -n03688066 -n02836513 -n01576358 -n01893021 -n12017511 -n12065649 -n01714231 -n11662585 -n12827907 -n12954353 -n11936199 -n01368672 -n03843883 -n12184095 -n10058411 -n11684654 -n08506347 -n10579549 -n01423302 -n11604046 -n07613158 -n03605504 -n02090129 -n02284224 -n01958435 -n12664469 -n04459122 -n09617161 -n09780828 -n11830252 -n12870048 -n04247544 -n09871095 -n02962938 -n09933020 -n13064457 -n10341243 -n07694169 -n13200193 -n07765728 -n01524761 -n07730562 -n07751737 -n07740855 -n04192521 -n12593122 -n07841037 -n02809736 -n10604275 -n12512095 -n01907287 -n04592596 -n09823153 -n03181667 -n12449784 -n07908923 -n12365900 -n03053976 -n15060688 -n04165675 -n02530637 -n09816654 -n12540966 -n07934152 -n09290350 -n03455802 -n10111779 -n01351315 -n10281770 -n13862552 -n12435486 -n12370174 -n12296045 -n03493219 -n12363301 -n11973749 -n03939565 -n02938321 -n13209270 -n12604639 -n12657755 -n03604536 -n10328941 -n04278932 -n10376890 -n01884203 -n02061853 -n04256318 -n07831821 -n10585217 -n07591813 -n10210648 -n07739035 -n01632308 -n10319313 -n02861777 -n03821145 -n13029610 -n04239900 -n10313441 -n04951716 -n10628097 -n02368116 -n08571275 -n04433377 -n10458596 -n12435965 -n12448136 -n12129986 -n04295777 -n07898895 -n07854266 -n12327846 -n12318782 -n07825850 -n10414239 -n11731157 -n04409911 -n10655442 -n11829205 -n01738306 -n02840515 -n04150371 -n03369512 -n02645538 -n12773917 -n07818422 -n03227010 -n10303037 -n12942025 -n12406304 -n06616216 -n02435216 -n12981954 -n03683341 -n09703809 -n07722666 -n11817160 -n10110893 -n10228468 -n03572631 -n01378545 -n02130086 -n04388574 -n11960673 -n12956922 -n11924014 -n09895902 -n03426462 -n07759576 -n02563949 -n03466947 -n02522637 -n09480959 -n02033882 -n02451415 -n12677120 -n10580437 -n04425977 -n03057841 -n12285512 -n07614348 -n03144873 -n03391613 -n12366870 -n02304657 -n07863935 -n07909714 -n02413717 -n12591702 -n07838659 -n02967407 -n12016914 -n02735268 -n09470027 -n10222259 -n03899100 -n10513509 -n11620016 -n12600267 -n04368840 -n03016209 -n04085017 -n03215076 -n10238272 -n09782855 -n07586179 -n12434483 -n12452480 -n01990516 -n12030092 -n11739978 -n12714254 -n13036804 -n07727377 -n07879560 -n03710421 -n12128490 -n11968519 -n03250588 -n10173579 -n03114041 -n02942015 -n12729164 -n07871065 -n02591330 -n09353815 -n10138472 -n02712545 -n12866333 -n07835823 -n03508485 -n01758895 -n02925385 -n03321419 -n09931418 -n02846874 -n12500518 -n07587819 -n03160186 -n04974340 -n13067532 -n11940349 -n13027879 -n02878534 -n10055566 -n07925708 -n12628356 -n11958499 -n03472672 -n04233295 -n04563020 -n03426871 -n04330109 -n03677682 -n04129766 -n02884859 -n12692521 -n10188856 -n03500971 -n10355306 -n12407545 -n11955040 -n10028541 -n10345659 -n14720833 -n09641578 -n12613706 -n11718296 -n03380301 -n01334217 -n03890358 -n03583419 -n12447121 -n09660010 -n11826569 -n11837351 -n12096089 -n03871860 -n01821554 -n12834938 -n02738449 -n02644665 -n03316873 -n12548564 -n03605417 -n12094401 -n13152339 -n03004531 -n03080904 -n03535647 -n12349315 -n04213264 -n07860208 -n01526766 -n03710937 -n11806521 -n10618234 -n12306938 -n10473562 -n10050880 -n04596116 -n02577164 -n04479694 -n07936093 -n07834286 -n12175181 -n03986857 -n02919648 -n12055073 -n04567593 -n07585015 -n12771085 -n10551576 -n09778783 -n01593282 -n02406952 -n12331263 -n10629329 -n12287195 -n07729225 -n07828041 -n01880473 -n12257725 -n02696246 -n07853232 -n11936864 -n09745229 -n03364156 -n04503155 -n03194297 -n04003359 -n07607361 -n10106387 -n10306890 -n10455619 -n01647180 -n07740115 -n12106323 -n03626272 -n11685621 -n11866706 -n04321121 -n01606978 -n12621619 -n11615259 -n07840304 -n02841847 -n05459769 -n03432360 -n04604276 -n12356395 -n12468545 -n03645168 -n00477827 -n03459591 -n04202142 -n12959074 -n07881625 -n12382233 -n02405692 -n12299640 -n12247202 -n12628705 -n12534625 -n09264803 -n12176953 -n09835017 -n10390807 -n04975739 -n12474418 -n11931135 -n07917791 -n10636488 -n09690496 -n11993675 -n03703203 -n11794139 -n13015688 -n04168084 -n01948446 -n10169419 -n04455048 -n04973669 -n12840502 -n12120578 -n10448455 -n01386007 -n02288122 -n01441910 -n02278463 -n03108759 -n02753710 -n03143400 -n13080866 -n13917785 -n13124358 -n13220663 -n02475358 -n01925916 -n02684649 -n10451590 -n03869976 -n03881305 -n07928264 -n01422185 -n04035634 -n11996677 -n04261369 -n12925583 -n12764008 -n09972587 -n03708962 -n01791388 -n02892626 -n04098399 -n07823369 -n07752874 -n13225244 -n03376771 -n01771766 -n13146403 -n12157179 -n13897198 -n07770869 -n13240362 -n07610502 -n03688504 -n02896856 -n12543186 -n09967063 -n05453412 -n12590600 -n02378870 -n07568241 -n01687290 -n00474769 -n11694866 -n02338722 -n02637977 -n04567746 -n10586444 -n11907405 -n03421960 -n07605693 -n10384214 -n12877637 -n12018363 -n10056611 -n13882487 -n12140759 -n04114301 -n11762018 -n12678794 -n11817501 -n02116450 -n12018530 -n03324629 -n12726528 -n03155502 -n10493199 -n04181083 -n10609198 -n04328703 -n03045074 -n07769886 -n01892385 -n12828520 -n03165211 -n11800565 -n07567139 -n13877547 -n12829582 -n02949084 -n07589724 -n01746191 -n12395463 -n05459457 -n10565502 -n11981475 -n09310616 -n12327022 -n02313709 -n12957803 -n11865276 -n12955414 -n12939479 -n13225365 -n07936459 -n03139089 -n07577772 -n12057895 -n03620353 -n12152031 -n01885158 -n04096733 -n12626674 -n10464711 -n10675609 -n07752782 -n03709960 -n02540983 -n02285179 -n01903234 -n07835701 -n04421083 -n02352290 -n09421031 -n03349367 -n02539894 -n04052235 -n07922955 -n03941887 -n04234260 -n04423552 -n11975254 -n08501887 -n12489676 -n04574348 -n10602119 -n02163008 -n02748491 -n10024937 -n10033888 -n12605683 -n01790398 -n10128519 -n14977188 -n10293590 -n12077244 -n09741074 -n11694469 -n12692714 -n12159804 -n12533437 -n03831203 -n03692004 -n09462600 -n04537436 -n06618653 -n07913537 -n12783316 -n10038119 -n10236521 -n01486540 -n07875267 -n04345787 -n07681355 -n13028937 -n03607186 -n07863107 -n12387103 -n09830926 -n03574416 -n04478383 -n11685091 -n03197446 -n03225458 -n09741722 -n07736527 -n02857907 -n10177150 -n12711398 -n10308275 -n02418770 -n02577662 -n09935107 -n03362639 -n12446908 -n04329681 -n04114428 -n09624899 -n12913144 -n12338034 -n02341616 -n12360817 -n12907857 -n02414904 -n05482922 -n11974888 -n04127117 -n12581110 -n04368365 -n01699254 -n12525753 -n04254450 -n11951052 -n12458874 -n12721477 -n07562651 -n02239192 -n10533874 -n12006306 -n09537660 -n10008123 -n02788386 -n03248835 -n04491312 -n11795580 -n04025633 -n10166189 -n07703889 -n11824747 -n07605198 -n12134836 -n03591116 -n02946753 -n13212025 -n11742310 -n02328820 -n02985606 -n09955944 -n12679432 -n10020366 -n12013035 -n02942147 -n04172512 -n11802410 -n10789709 -n03385295 -n02039497 -n01416213 -n11940750 -n12178780 -n01967963 -n12662379 -n12217851 -n02812631 -n12432069 -n09991740 -n03089477 -n12458713 -n03876111 -n10311661 -n12286068 -n02838958 -n11936369 -n03716228 -n13228017 -n06276902 -n12677331 -n04330189 -n10488016 -n12011370 -n04343740 -n07893792 -n02171164 -n03963483 -n12080588 -n07577657 -n12936155 -n03809686 -n04223066 -n04086066 -n12776558 -n07813579 -n01841943 -n12285705 -n02581482 -n11653570 -n10010632 -n04305947 -n12228886 -n12797368 -n01404495 -n09697986 -n11882237 -n10077879 -n07607832 -n09779461 -n13212379 -n10769188 -n10715789 -n01480106 -n02145910 -n04275093 -n01983829 -n01978010 -n09937903 -n11976314 -n11785276 -n12386945 -n04445782 -n10712374 -n10706812 -n10194775 -n12655062 -n10739135 -n02597972 -n02307176 -n04121342 -n02350670 -n12698027 -n02805845 -n02895008 -n13149970 -n03451365 -n04542595 -n07803895 -n07864198 -n09690864 -n03844550 -n12378249 -n10345422 -n13163553 -n10457903 -n10783539 -n10539015 -n11757017 -n10274173 -n08652376 -n10283546 -n04541777 -n02824152 -n12945177 -n02082056 -n03695957 -n07936015 -n07591162 -n03628071 -n02990758 -n07685118 -n04023422 -n04951875 -n03541393 -n10289176 -n04039209 -n07913180 -n07910799 -n12017853 -n03732543 -n10656120 -n10512859 -n04556664 -n12464649 -n12927758 -n12078451 -n07878145 -n10561320 -n12467592 -n07689217 -n07619881 -n11935187 -n09837720 -n03642144 -n12220019 -n02983507 -n03271260 -n02778588 -n10193650 -n01654083 -n02746978 -n10202763 -n02953552 -n07924366 -n08583554 -n02905886 -n07855603 -n09745834 -n12366053 -n04140539 -n03383211 -n11648268 -n03352961 -n12116734 -n07771539 -n07836077 -n03842754 -n11683838 -n03004409 -n11730750 -n13098962 -n12292463 -n02867592 -n01653026 -n07583865 -n12548804 -n12702124 -n03917048 -n12677841 -n12511488 -n04217387 -n12495670 -n03554375 -n12403513 -n08558770 -n02781764 -n12339526 -n12742290 -n01404365 -n03591798 -n12446737 -n10494195 -n12110352 -n01672611 -n10493922 -n03638623 -n09910840 -n02238594 -n02575325 -n13186546 -n11873182 -n10344774 -n04094060 -n10417682 -n02749169 -n02428089 -n04549721 -n03824284 -n12107002 -n12784371 -n09986904 -n01634227 -n07826544 -n12253487 -n01679005 -n12516165 -n09339810 -n03126090 -n07803408 -n11883945 -n03842276 -n03397412 -n03280216 -n12264786 -n02545841 -n11877860 -n01830479 -n13207923 -n12490490 -n02542958 -n04114719 -n12590715 -n13226320 -n11644872 -n04119630 -n10176913 -n04213105 -n11652966 -n12546420 -n12625823 -n11897466 -n02092173 -n10567613 -n04953678 -n10059067 -n12408466 -n03056288 -n13036116 -n04169597 -n12467197 -n02569905 -n02758490 -n12623211 -n04077889 -n04959061 -n04183957 -n11689815 -n03777126 -n03306869 -n07720084 -n02659478 -n12947756 -n04341288 -n04448185 -n04037076 -n09828988 -n03346289 -n04174705 -n13126050 -n04255346 -n09764732 -n11773628 -n14891255 -n04314107 -n02184720 -n02646892 -n04320598 -n01979526 -n03191451 -n03662452 -n10290422 -n01739094 -n02305636 -n04202282 -n05459101 -n02766168 -n09994808 -n03528100 -n10475940 -n03005619 -n12639168 -n02144936 -n13202125 -n10703221 -n03770834 -n12324056 -n03474167 -n02609302 -n12166929 -n12852570 -n12920719 -n12508762 -n11983375 -n01422450 -n12616630 -n09681107 -n10486561 -n13038577 -n12266644 -n02478875 -n02547014 -n02249809 -n03336742 -n12038760 -n01672432 -n09861287 -n03678879 -n01949973 -n09928845 -n02310149 -n12648693 -n10533983 -n12812801 -n04550676 -n01800633 -n12128306 -n12744142 -n13140367 -n07803213 -n07688265 -n13068434 -n02030568 -n12955840 -n01625121 -n13215258 -n04270576 -n02680638 -n02817251 -n01539272 -n04066023 -n12969927 -n10280598 -n04001661 -n09774167 -n10358575 -n01836673 -n02290664 -n09940725 -n12447581 -n07803779 -n04561965 -n10151261 -n01538362 -n10170060 -n13160365 -n09823287 -n12554729 -n10620212 -n11935027 -n03465605 -n03227856 -n08519299 -n07785487 -n03522863 -n02861286 -n12200905 -n04269502 -n02104184 -n07612273 -n01390763 -n11872658 -n12981086 -n10244359 -n01738731 -n12117235 -n12846690 -n02861658 -n08782627 -n09832633 -n02531114 -n01394492 -n03269073 -n03077442 -n09794668 -n13884384 -n08659331 -n02556373 -n02587877 -n03523506 -n03723153 -n12024805 -n13061172 -n03978575 -n07914686 -n13134844 -n12183026 -n03573574 -n03765128 -n03319167 -n01920438 -n07852452 -n07680655 -n03017698 -n12959538 -n04261506 -n01793340 -n03292362 -n12817855 -n03593222 -n01962506 -n12453018 -n04027367 -n12518481 -n09223487 -n07871335 -n03779246 -n09668562 -n01889849 -n02492356 -n07830841 -n03277149 -n09968652 -n03092476 -n10400205 -n06263202 -n07595368 -n12767208 -n02196896 -n12580012 -n10265801 -n02103181 -n02922461 -n01731277 -n12422559 -n04278605 -n02250280 -n03283413 -n11829922 -n10191613 -n02493224 -n04427559 -n12181352 -n12742878 -n10683675 -n04503705 -n03785142 -n12816942 -n10723230 -n11936707 -n12360534 -n12909759 -n03766218 -n02696843 -n11935877 -n07828156 -n10617397 -n12921499 -n13158714 -n10166394 -n12370549 -n03505015 -n12769065 -n02636550 -n10781236 -n09869317 -n10275249 -n04234763 -n10735173 -n13137225 -n02070776 -n04232312 -n07575226 -n03471030 -n07909954 -n02633677 -n01662060 -n07563642 -n04263950 -n11824344 -n13178707 -n02972714 -n10417288 -n12092930 -n11993203 -n10170681 -n03726116 -n03215337 -n12564613 -n14975598 -n07758125 -n03123666 -n07717714 -n01421333 -n02359667 -n09403086 -n03857026 -n12759668 -n02628259 -n02307515 -n12146488 -n09777870 -n07819303 -n12105353 -n10784113 -n11802995 -n12561594 -n02845130 -n12100187 -n03507658 -n02141611 -n01800195 -n03470005 -n12444898 -n02203592 -n09707061 -n00475142 -n12216628 -n01732093 -n02581642 -n03803780 -n12114590 -n04541662 -n12267133 -n11652753 -n07859951 -n04524594 -n12843144 -n04040540 -n10604880 -n12559044 -n03063834 -n12394328 -n12704513 -n10230216 -n10756641 -n02101670 -n12309630 -n03070587 -n11626010 -n04239639 -n01638329 -n01928517 -n13144084 -n10420649 -n03102516 -n12395289 -n09833111 -n01651285 -n11688069 -n12881913 -n12783730 -n07716649 -n03618678 -n10344203 -n03626502 -n10718665 -n03577474 -n01683201 -n03246653 -n12153224 -n02519472 -n02470709 -n15090238 -n03129636 -n07774295 -n04577567 -n09995829 -n09662038 -n10297367 -n03555862 -n12531727 -n09947127 -n12533190 -n04062807 -n00479734 -n12860978 -n01884104 -n09866559 -n12069009 -n04595501 -n12088495 -n02909053 -n12283790 -n02180427 -n10697282 -n07562881 -n13092078 -n11706325 -n01746952 -n01978136 -n07731436 -n02386746 -n12648424 -n12726357 -n10314182 -n07839172 -n11753562 -n12903503 -n12589687 -n02375438 -n03604763 -n11549895 -n13202602 -n12304420 -n10738215 -n12220829 -n10095420 -n12177455 -n11887476 -n04006411 -n09838370 -n02853218 -n12688372 -n03335461 -n02800940 -n03036701 -n09885059 -n10206629 -n11922926 -n01678657 -n12192132 -n12248141 -n03108624 -n01936671 -n02417242 -n03222857 -n03768823 -n04343511 -n03538817 -n12655726 -n12521186 -n01330497 -n12767423 -n12965951 -n09695132 -n04410886 -n12599874 -n07865700 -n07596160 -n10227698 -n03224490 -n11598886 -n02948293 -n09906293 -n12247963 -n03301175 -n03895170 -n04259468 -n07808806 -n13147689 -n09856827 -n13882639 -n02241008 -n03842585 -n02883101 -n12182276 -n13918717 -n12728164 -n10634464 -n02477187 -n03107716 -n02342250 -n01479213 -n12793695 -n09808080 -n10707707 -n04161010 -n02836607 -n10076483 -n07726386 -n03872273 -n10250712 -n07688412 -n13884930 -n12301766 -n10196404 -n07591330 -n03814727 -n09610255 -n12757115 -n09814381 -n02397987 -n07886317 -n03959123 -n02185167 -n03533845 -n11838413 -n10227393 -n07704305 -n03580615 -n02663485 -n10101981 -n04346855 -n10067011 -n04464125 -n02829510 -n10007995 -n07845775 -n03004713 -n02450561 -n09905530 -n10361060 -n12394638 -n12095934 -n10479135 -n03145277 -n12246773 -n13194212 -n04475900 -n03252787 -n14867545 -n10485298 -n09961739 -n02149653 -n01553762 -n03931980 -n02344408 -n11676850 -n04034367 -n04235646 -n12867184 -n12625670 -n12763529 -n07593107 -n04351550 -n02571810 -n13899735 -n03652826 -n09495962 -n03421768 -n04205062 -n11918808 -n07745197 -n07752264 -n01892744 -n04609811 -n10278456 -n11790936 -n09754152 -n13234519 -n09820044 -n00440643 -n02350357 -n03779884 -n07803992 -n03305953 -n01836087 -n10068234 -n10690421 -n03134394 -n12380761 -n12801966 -n03134232 -n02596720 -n07591236 -n11882821 -n02312175 -n02387983 -n01912152 -n10805501 -n12718074 -n03188290 -n02776505 -n10528148 -n09971385 -n10524223 -n09958292 -n02721813 -n10300829 -n12007766 -n12107191 -n04449700 -n02987950 -n11878633 -n12328801 -n04551833 -n10567722 -n11654984 -n02808968 -n12066451 -n02964075 -n11633284 -n02434712 -n03070854 -n07926540 -n01543936 -n10091861 -n09938080 -n11976511 -n03342432 -n12886831 -n12509993 -n12958261 -n12730776 -n10066206 -n07846014 -n13176714 -n03332591 -n04607640 -n02513727 -n12138248 -n11964848 -n01318053 -n10553140 -n07839055 -n02632039 -n11865429 -n02286654 -n02367812 -n12093885 -n10774329 -n02296912 -n01729672 -n10353928 -n12033504 -n11936113 -n03263338 -n07822053 -n09737050 -n13875884 -n13212559 -n11690088 -n05468739 -n09344724 -n02507148 -n01377694 -n04172607 -n10464870 -n07804152 -n02825872 -n03139640 -n11858703 -n10227490 -n12334153 -n03616225 -n12018188 -n12399656 -n10235269 -n11840764 -n01995514 -n03326475 -n12704041 -n10684827 -n03006788 -n13906484 -n02868240 -n03614887 -n03491724 -n12124172 -n03675907 -n13170840 -n03983712 -n03254737 -n07836269 -n01784293 -n02095212 -n12470512 -n12219668 -n12920521 -n04492157 -n02950018 -n01922717 -n11797981 -n12601805 -n02744961 -n07814925 -n09798096 -n03939062 -n13891547 -n07564292 -n01590220 -n09295210 -n03997875 -n03479266 -n01491661 -n03781055 -n12528768 -n10657306 -n12014923 -n10094320 -n02532272 -n02224023 -n04541136 -n12067672 -n02661473 -n04233027 -n12399899 -n12889412 -n01736032 -n12551173 -n01337734 -n10104487 -n02921592 -n02148512 -n10216403 -n03276839 -n01781570 -n03999621 -n02505238 -n12537569 -n10433452 -n02351343 -n12365158 -n08539276 -n01897257 -n12221801 -n10557246 -n10437698 -n01803641 -n11836327 -n07813833 -n03468570 -n06277025 -n10040240 -n03692842 -n03017835 -n01881564 -n10487363 -n07937069 -n10597505 -n01638722 -n10160412 -n09825096 -n12611640 -n03098515 -n10654211 -n13196234 -n03436990 -n04058486 -n09814567 -n10758337 -n03515934 -n07688757 -n10269199 -n12627347 -n04521571 -n01636510 -n03220095 -n09982525 -n12768809 -n02340930 -n02473857 -n12336586 -n12125584 -n02833040 -n02498153 -n01467804 -n12120347 -n11650430 -n11953339 -n12592058 -n05102764 -n10575594 -n09722064 -n01966586 -n10619888 -n07852376 -n12650915 -n10321882 -n11974557 -n09847267 -n13201423 -n12337131 -n13185658 -n02150134 -n10538853 -n10471732 -n07836600 -n03526062 -n02512752 -n04232437 -n03367321 -n04308915 -n07600895 -n11539289 -n03539293 -n12699922 -n07817599 -n02781213 -n03594010 -n12035907 -n04075813 -n05233741 -n07863229 -n10735984 -n12095543 -n12272735 -n04229620 -n12240965 -n07768590 -n04420024 -n12111627 -n02861509 -n02595056 -n12183452 -n04607982 -n13213577 -n07741888 -n03750614 -n10043024 -n03372933 -n10051861 -n10199251 -n03249956 -n03984125 -n02956393 -n11619687 -n03356279 -n07833951 -n10715030 -n02340358 -n10768272 -n01494041 -n02592734 -n03323319 -n02136285 -n03995661 -n09945223 -n03547397 -n10044682 -n12878784 -n02803809 -n13160254 -n12726902 -n12196954 -n03161016 -n03105645 -n04218921 -n09493983 -n10719036 -n12263588 -n12565102 -n10684146 -n03148518 -n04287986 -n02340640 -n04331443 -n10727016 -n03369407 -n07824863 -n07844786 -n12467433 -n07582811 -n02964196 -n02197877 -n10758445 -n03271376 -n13212175 -n03260504 -n12777778 -n11973634 -n05467054 -n11946313 -n02462213 -n13906669 -n10520286 -n02074726 -n01771100 -n13880199 -n09811568 -n13883763 -n02334728 -n11831100 -n12025220 -n12751172 -n03858837 -n10127186 -n12831535 -n07823591 -n02513805 -n03662301 -n09913329 -n02749670 -n10655986 -n01787191 -n03199488 -n12732252 -n12253664 -n07735294 -n03440876 -n09650839 -n03844965 -n10341446 -n12688187 -n12961242 -n03423224 -n13157346 -n09802951 -n11948044 -n03489048 -n12279060 -n03664840 -n03731882 -n07742605 -n07870734 -n03949761 -n10759331 -n07739923 -n02737351 -n01788291 -n11780424 -n03722646 -n12297110 -n12363768 -n04495310 -n10008254 -n03934890 -n01318478 -n03609959 -n10070377 -n04123228 -n13068735 -n02909706 -n10671042 -n10491998 -n07650792 -n12664710 -n10213034 -n03455642 -n10411867 -n09903936 -n10121800 -n02622955 -n03647423 -n07596566 -n09654898 -n12248780 -n02684515 -n04255670 -n06273890 -n03495941 -n12960552 -n09724234 -n03861048 -n03293095 -n11835251 -n12852428 -n04084517 -n01814620 -n13159890 -n03147156 -n02311748 -n10237799 -n07584859 -n01946827 -n09651968 -n12241192 -n03669245 -n07858336 -n11932927 -n04444218 -n10526534 -n03642573 -n09470222 -n10731732 -n12001924 -n03786096 -n01359762 -n03824999 -n13877667 -n10591811 -n10574311 -n03275125 -n11631985 -n10539160 -n10502950 -n12499757 -n12432707 -n12068615 -n07689624 -n02610373 -n03204436 -n13051346 -n13134531 -n07610890 -n04021164 -n03502897 -n02299378 -n10417843 -n10050043 -n07929940 -n02593453 -n10577820 -n12870225 -n03333851 -n09463226 -n11741575 -n09193551 -n12012510 -n11987349 -n09215023 -n07924655 -n10060075 -n11999278 -n03933391 -n02602059 -n11993444 -n02337902 -n10149867 -n04441093 -n02868429 -n10629647 -n04192361 -n12029039 -n02768433 -n12078747 -n12730143 -n03255167 -n12492900 -n01709876 -n09672725 -n07870620 -n02315821 -n12277334 -n12204730 -n07852712 -n01319685 -n07802246 -n13031193 -n00812526 -n09658815 -n11982939 -n04264485 -n07893425 -n04094438 -n03285730 -n13182338 -n10724570 -n07832741 -n13210350 -n10654015 -n04058721 -n07875086 -n03462747 -n03994417 -n02889856 -n11957514 -n10109443 -n10478462 -n03064562 -n02477782 -n11920998 -n02138169 -n04227787 -n11797508 -n10753339 -n12928307 -n11921792 -n12643688 -n01833112 -n03919808 -n09817386 -n01903498 -n03848033 -n12031547 -n01035504 -n12324906 -n01911063 -n02588794 -n03749634 -n03539754 -n02242455 -n03079616 -n03246312 -n09705671 -n07860629 -n10458356 -n10051761 -n09709531 -n02867401 -n12522678 -n13150378 -n04462576 -n03462315 -n03712981 -n07607027 -n10581648 -n02957427 -n04271793 -n02253913 -n12824735 -n11697802 -n02161588 -n12463975 -n02361090 -n09784564 -n09680908 -n03512452 -n13214217 -n10712690 -n04023119 -n07814007 -n09833751 -n12885265 -n02259987 -n11933903 -n03628831 -n11967142 -n02533545 -n03900301 -n07919787 -n12793886 -n10768148 -n03071552 -n02780315 -n12193665 -n03378442 -n04486616 -n07832307 -n03164192 -n12786273 -n04261868 -n12655351 -n12320414 -n04371979 -n10630093 -n13052014 -n01357328 -n07879821 -n09753348 -n03796974 -n11701302 -n11678299 -n04022434 -n11610823 -n07726009 -n04117639 -n10474343 -n11888061 -n01842788 -n10435251 -n03343047 -n03383378 -n12750767 -n09662661 -n05241485 -n10000459 -n12220496 -n02246941 -n12676370 -n02253264 -n07766409 -n02940289 -n12089320 -n10363573 -n12922119 -n09783537 -n11695285 -n12331066 -n12573647 -n10218164 -n12509821 -n07862946 -n12818601 -n02589316 -n13191620 -n03758992 -n12112337 -n10733820 -n02898093 -n02645953 -n10150794 -n04595762 -n02344918 -n13132756 -n12859153 -n12138444 -n04211001 -n12935166 -n07830493 -n10142166 -n11951820 -n03018848 -n01453742 -n11985321 -n10000294 -n01362336 -n02328009 -n12639376 -n03090437 -n02204249 -n04312916 -n13127666 -n09684082 -n03432509 -n10274318 -n09704057 -n07593972 -n10074249 -n13157971 -n01638194 -n04036963 -n11708857 -n03418749 -n12589458 -n11899762 -n07683138 -n01601410 -n07854707 -n04279063 -n03239607 -n10302700 -n12520406 -n12576451 -n03881534 -n07565608 -n02349390 -n12569851 -n12249294 -n04059399 -n03530189 -n09357346 -n04325208 -n13159691 -n04045941 -n13898315 -n11992479 -n02353411 -n07825496 -n12922458 -n03115014 -n11761836 -n03323211 -n02793296 -n03492087 -n05241662 -n05491154 -n10419630 -n04506895 -n10546428 -n02907296 -n10769459 -n11647868 -n13188462 -n03825442 -n13209460 -n10742005 -n07599242 -n12361754 -n04570532 -n04131811 -n07756499 -n02598134 -n01910252 -n02910701 -n10129338 -n13871717 -n12673588 -n12565912 -n07562172 -n02711237 -n10775003 -n07695410 -n02637179 -n12930951 -n10261211 -n02906963 -n01366700 -n10642705 -n09846586 -n02779719 -n04978561 -n01369358 -n12114010 -n03521771 -n10667709 -n02296612 -n10722029 -n03500557 -n01365474 -n10472447 -n07585644 -n07609316 -n04013060 -n04505888 -n09726811 -n12692160 -n12378963 -n03585551 -n13139837 -n10167565 -n03799375 -n11990920 -n09640327 -n04502989 -n10108832 -n10561736 -n01897426 -n11766189 -n12462582 -n12913524 -n02684356 -n13200542 -n10466198 -n04331892 -n01478969 -n07837234 -n07692248 -n04552097 -n12382875 -n01484447 -n04120695 -n12681376 -n10293861 -n11965962 -n11788039 -n03959227 -n01832813 -n09918867 -n09942697 -n07587206 -n10459882 -n01347583 -n02267208 -n03951453 -n03006903 -n12126736 -n10286749 -n03395401 -n04605057 -n03467887 -n12755559 -n04020744 -n11629354 -n01647033 -n02780445 -n10205714 -n09439032 -n03138128 -n02763083 -n07835547 -n12251278 -n11949857 -n01635480 -n10675142 -n07845335 -n07751977 -n10332110 -n11871496 -n11764814 -n12229651 -n07760297 -n09865672 -n02919308 -n12218490 -n03782929 -n12231709 -n11909864 -n03144982 -n11799331 -n10433610 -n10483395 -n03206023 -n05442594 -n03626418 -n07870478 -n10171456 -n11964446 -n12796849 -n02126317 -n03797062 -n01412694 -n07610746 -n03581897 -n04479526 -n12447891 -n11906514 -n09699642 -n12873984 -n10586903 -n13234114 -n02436353 -n11889205 -n01460303 -n04400899 -n11884967 -n02140491 -n12215824 -n03586911 -n01394040 -n10691937 -n12371704 -n09668988 -n04362624 -n01740885 -n01337191 -n09714120 -n02185481 -n08555333 -n10704238 -n12430471 -n12034594 -n10012484 -n12088909 -n03205903 -n04129490 -n13090018 -n10712474 -n12234669 -n13016076 -n00454855 -n13882713 -n02644817 -n03192907 -n03519226 -n01561181 -n04583967 -n11732052 -n10732854 -n04480303 -n07934908 -n03825673 -n10621294 -n04354387 -n03374102 -n02922159 -n13158815 -n04000716 -n09685806 -n04427216 -n12051514 -n09712967 -n12081649 -n09748889 -n03252231 -n10704886 -n12897118 -n12525168 -n11728769 -n02731251 -n02548884 -n12403276 -n09627807 -n08679167 -n09663999 -n04247440 -n07711683 -n09909929 -n03415868 -n05244421 -n07680416 -n12757668 -n11935794 -n03483086 -n01860864 -n10755164 -n03675076 -n12004987 -n07566092 -n04078955 -n03379719 -n01916588 -n10138369 -n09755893 -n03649003 -n03977430 -n02309120 -n10616578 -n12242850 -n12388293 -n03292085 -n09919061 -n10302576 -n01497413 -n01936858 -n01377278 -n04358256 -n02667693 -n12125183 -n07758582 -n07813324 -n09737453 -n12745564 -n03855464 -n03166685 -n01446152 -n09801102 -n10561222 -n10576818 -n13915209 -n10474446 -n03845990 -n04237174 -n12531328 -n07855812 -n10763245 -n04614505 -n07905770 -n12051792 -n12653633 -n03593862 -n10359659 -n10436334 -n07853125 -n12911264 -n12265083 -n03638014 -n04444121 -n02706221 -n10563711 -n07808166 -n11799732 -n04093915 -n10451858 -n04410760 -n10075299 -n12740967 -n12635359 -n09611722 -n12902466 -n13915305 -n05542893 -n04440597 -n03675445 -n12315245 -n10646032 -n10047199 -n12775717 -n10365514 -n10590452 -n11616260 -n02812342 -n07856756 -n04570416 -n03565991 -n12215210 -n04330896 -n02388588 -n02266269 -n10760199 -n14714645 -n02742070 -n03565710 -n12609379 -n03420935 -n03441465 -n00453631 -n01963479 -n04362972 -n09863936 -n03961394 -n03009269 -n12297280 -n04561010 -n12192877 -n02981565 -n12134695 -n07855413 -n03232815 -n10180791 -n09932788 -n10571907 -n02109256 -n02660091 -n07865788 -n13228536 -n10306279 -n02635580 -n03634899 -n10262343 -n12296929 -n04393301 -n06281175 -n04485586 -n13103660 -n10510974 -n04166436 -n01634522 -n07596362 -n12700357 -n08597579 -n11744011 -n12238756 -n01790171 -n04571800 -n11867311 -n03464467 -n12241880 -n09961605 -n12592544 -n03170459 -n09938991 -n02692680 -n10295371 -n04331765 -n02612167 -n02520810 -n11977887 -n04094608 -n07722390 -n07832202 -n12448361 -n04612159 -n12186352 -n13161151 -n12654227 -n09868899 -n10104756 -n09920106 -n12981301 -n02610980 -n12545865 -n10673296 -n04110841 -n01704626 -n04055700 -n12117912 -n10519126 -n12443736 -n01697978 -n02148088 -n03012644 -n12091697 -n10395390 -n10509810 -n10462751 -n02896949 -n03836602 -n03928994 -n07718195 -n02473983 -n08571642 -n02648916 -n11970298 -n06274292 -n04613158 -n09856401 -n12811713 -n13111340 -n12122442 -n10095265 -n04445610 -n11631619 -n07863644 -n12022821 -n10315217 -n12549799 -n03386343 -n03121040 -n03558007 -n12272432 -n11798496 -n02522866 -n02952935 -n10741493 -n12143065 -n07883156 -n09616573 -n02289988 -n13161904 -n02588945 -n00451768 -n12375769 -n10777299 -n04495183 -n11930994 -n09970088 -n02254246 -n12276314 -n07857598 -n04428382 -n03789794 -n03383821 -n12980080 -n01447139 -n12880799 -n03501520 -n10764465 -n13143285 -n12727729 -n12444095 -n02354621 -n13174354 -n01691652 -n07732525 -n10437014 -n04368235 -n10371052 -n02611898 -n03597147 -n09912431 -n03135788 -n07888058 -n02409202 -n14582716 -n11934463 -n04395332 -n12558680 -n05257967 -n11798978 -n10617024 -n04102760 -n12132092 -n12988572 -n10390698 -n11887310 -n12063211 -n12952717 -n13141972 -n12176453 -n10245863 -n10509161 -n10389976 -n10333165 -n01474864 -n09274305 -n11888424 -n10368711 -n13222877 -n10469611 -n07582970 -n09700125 -n12805762 -n07865575 -n07853852 -n03628421 -n04482975 -n03099622 -n01349735 -n11943133 -n12736603 -n12197601 -n10597745 -n04418644 -n12689305 -n07755262 -n10598459 -n04312020 -n03195485 -n09776642 -n10596517 -n10223606 -n01923890 -n12703716 -n03465040 -n12372233 -n12528109 -n03571853 -n10802621 -n10204177 -n02320465 -n03976105 -n02214096 -n02148991 -n10377542 -n10697135 -n03538542 -n07582027 -n04517999 -n12180456 -n02838014 -n03977266 -n03818001 -n12191240 -n11648776 -n10773800 -n04475496 -n03945817 -n04682018 -n02994743 -n02787269 -n11650160 -n03834472 -n03389983 -n09797742 -n06209940 -n12525513 -n12672289 -n01893164 -n10710259 -n01892145 -n11773408 -n10554024 -n09864968 -n10699752 -n11631405 -n10414768 -n04430605 -n10742546 -n10738871 -n12857204 -n09309046 -n01724840 -n04123317 -n07881525 -n03868044 -n02140268 -n10708292 -n09838295 -n09797998 -n10710171 -n11814996 -n11938556 -n03543511 -n02151230 -n01515217 -n03533392 -n02039780 -n12810151 -n02335231 -n12152251 -n13225617 -n09801275 -n01978587 -n14821852 -n11742878 -n12679023 -n03521431 -n09679028 -n02021281 -n10784544 -n04421258 -n12492460 -n03720005 -n02541257 -n03889397 -n02888898 -n10659762 -n12045157 -n12712320 -n10369095 -n09721444 -n12769318 -n01703161 -n12697514 -n07836456 -n03905361 -n10660883 -n07769306 -n11893916 -n07846274 -n04110281 -n03655470 -n07740744 -n01363719 -n12540647 -n09896311 -n12842642 -n07755619 -n07754155 -n11548870 -n02868546 -n04215588 -n04288165 -n13201566 -n07721118 -n12018271 -n11903333 -n02909165 -n02662559 -n11658709 -n13063514 -n07725663 -n10179069 -n10776887 -n12637485 -n03814528 -n12542043 -n07833333 -n07820036 -n02746683 -n07925808 -n10349750 -n03154316 -n04155625 -n03232923 -n02116185 -n09998788 -n02821543 -n03410303 -n10656223 -n07916582 -n12880638 -n10408809 -n04612840 -n11805255 -n12044784 -n10497534 -n03458422 -n12873341 -n07808675 -n09476123 -n07611733 -n10598013 -n02214660 -n05469664 -n03952150 -n11855435 -n04375926 -n08523340 -n01642391 -n04007415 -n09756961 -n12891824 -n02894847 -n11698245 -n12906771 -n02894024 -n04131015 -n11882636 -n04386456 -n03291551 -n07837110 -n12462221 -n08540532 -n10299875 -n12705978 -n10448322 -n10487592 -n12175598 -n02272552 -n03833907 -n10383237 -n12758176 -n12729950 -n10061195 -n07816726 -n03241903 -n12239880 -n10380499 -n07855188 -n10207077 -n02770078 -n12961393 -n03778459 -n10734741 -n03485575 -n09958447 -n12337246 -n11830045 -n09866354 -n03209666 -n01470145 -n10395209 -n03872016 -n04267091 -n12888457 -n12104104 -n04088229 -n01964957 -n12002651 -n02503756 -n00481938 -n01908042 -n03378765 -n04193883 -n09862183 -n11861487 -n02520525 -n02081060 -n10386754 -n12693865 -n04514095 -n01325060 -n02460817 -n07568095 -n03651605 -n02561937 -n12844409 -n12888016 -n02974565 -n12439154 -n13018906 -n12071259 -n03897634 -n02863176 -n10603528 -n03493911 -n12887532 -n12944095 -n12794568 -n09980458 -n03503567 -n11783162 -n13123309 -n11729860 -n03702582 -n04280373 -n10086744 -n01790557 -n12627526 -n10552393 -n12092629 -n03888998 -n12751675 -n01442450 -n02479332 -n07726230 -n03642341 -n03142325 -n06263895 -n12088327 -n09703344 -n10528493 -n02820085 -n07737594 -n04090781 -n09901642 -n02328942 -n02724722 -n09866115 -n12658715 -n10481167 -n13135692 -n11850918 -n10205344 -n12361560 -n03698123 -n03284482 -n12106134 -n04441528 -n02591613 -n02581108 -n07856186 -n12197359 -n12900783 -n01725713 -n12012253 -n03907475 -n02170738 -n03694949 -n13238654 -n04611795 -n02782432 -n13191148 -n02741367 -n04170694 -n12770892 -n01973148 -n10080508 -n10161622 -n09808591 -n07912093 -n02059541 -n02779971 -n03857156 -n12945366 -n03055159 -n12758325 -n10067305 -n02597818 -n07808352 -n13147153 -n10679723 -n02271222 -n04012665 -n12942729 -n10349243 -n01377510 -n07800636 -n10654321 -n10219453 -n09961469 -n10732521 -n04479405 -n11632929 -n03856728 -n08658918 -n10327143 -n10754281 -n02085118 -n09691604 -n09952163 -n10082299 -n03872167 -n03733465 -n04138869 -n01425223 -n12066821 -n02177506 -n09892262 -n02896694 -n12983654 -n13224922 -n09658921 -n12744850 -n03639880 -n02943686 -n10660621 -n11936539 -n03698226 -n04519536 -n12392765 -n09319604 -n07567039 -n04160261 -n01802159 -n02838178 -n07746910 -n02266421 -n10240417 -n12542240 -n12550408 -n01445857 -n04132465 -n03569014 -n12666050 -n12362514 -n10676569 -n09702673 -n12885510 -n04447156 -n04396226 -n12240150 -n11639306 -n02249134 -n01340785 -n02833140 -n10027590 -n02142407 -n11996251 -n07874531 -n04340019 -n03166120 -n10420277 -n04465203 -n12738259 -n12831141 -n03998673 -n01385017 -n12842519 -n02587051 -n10753061 -n12505253 -n13906936 -n01989516 -n12640435 -n07852532 -n04243142 -n10261511 -n12853287 -n12239240 -n03973003 -n09983889 -n10345302 -n14804958 -n02354162 -n03049326 -n10443659 -n01318660 -n12787364 -n04253304 -n11941094 -n09283514 -n09393524 -n11865574 -n01531639 -n04409279 -n02859729 -n10712835 -n03694196 -n04343630 -n10331098 -n12929600 -n02826259 -n10171219 -n07735179 -n07594840 -n03709644 -n09950728 -n09859285 -n07718329 -n01418620 -n09858299 -n12395068 -n10011360 -n07763290 -n02643316 -n03596099 -n04422566 -n11958888 -n09650989 -n10318686 -n01333082 -n12886402 -n03781467 -n12667582 -n02923535 -n09988311 -n08663860 -n02508346 -n13885011 -n03939281 -n10772937 -n04485750 -n09871952 -n10291942 -n07759324 -n10174971 -n03666238 -n01937579 -n02308033 -n07847706 -n10371330 -n04124887 -n11853079 -n11941478 -n12647231 -n04601041 -n12718483 -n02902816 -n01941340 -n04066767 -n07617839 -n02254901 -n03488784 -n07834774 -n02524659 -n03367969 -n10783734 -n03422484 -n09776807 -n03970363 -n10131590 -n03433247 -n02622712 -n10206506 -n12061104 -n11936287 -n07874674 -n10061043 -n07828275 -n03764606 -n12236768 -n01826844 -n09741904 -n05454978 -n03591592 -n01441272 -n03736372 -n07585474 -n12762405 -n12943912 -n01894522 -n03218446 -n11846425 -n11689678 -n04147916 -n02375862 -n10409459 -n09287415 -n10113583 -n03261263 -n02817386 -n09869578 -n10550252 -n02532786 -n12031388 -n07937344 -n11612235 -n01571410 -n09402944 -n04234670 -n02603862 -n04196925 -n09999135 -n10468750 -n15093049 -n03003633 -n11650307 -n12312110 -n02525703 -n10501635 -n09751622 -n10114550 -n10103155 -n12829975 -n04004099 -n12419878 -n02082190 -n03328201 -n03093427 -n07845571 -n12655498 -n02558206 -n12563045 -n07573453 -n12324558 -n13016289 -n10601234 -n10310783 -n03531691 -n02135610 -n03168543 -n09985978 -n10615334 -n07839312 -n09985809 -n10142537 -n10417969 -n07869111 -n12514992 -n04327544 -n10326776 -n12583681 -n01476418 -n12840168 -n03852544 -n11713763 -n07824502 -n07858841 -n12256325 -n03036149 -n07883661 -n04500390 -n10170866 -n01835918 -n10760951 -n10720197 -n12330239 -n02135844 -n10210512 -n03217739 -n10802953 -n03136254 -n02161225 -n03961630 -n12927194 -n02251233 -n13891937 -n09945603 -n02695762 -n12181612 -n13234857 -n10175725 -n11346873 -n07934678 -n02318687 -n10251329 -n04112921 -n04001132 -n03042984 -n11704791 -n04246459 -n12193334 -n10718509 -n10371221 -n05278922 -n03265754 -n12186554 -n12481289 -n10521853 -n10748506 -n11729142 -n10143595 -n09422631 -n07562984 -n07850219 -n04193742 -n11997160 -n12002826 -n12820113 -n04132829 -n10272913 -n03358841 -n12610740 -n12384569 -n10725280 -n02746008 -n13148384 -n12635151 -n02337171 -n10350774 -n12308907 -n04542474 -n04339062 -n03549350 -n10240235 -n10556033 -n10214390 -n01791314 -n02801047 -n07817465 -n11610602 -n10315730 -n14592309 -n10249191 -n12453857 -n12579822 -n09833275 -n04051269 -n11552594 -n04088343 -n04565039 -n03930431 -n10679503 -n11899921 -n10295479 -n01357507 -n13036312 -n03404900 -n12523141 -n01816017 -n02020578 -n12661045 -n06262943 -n02775813 -n12921315 -n09751076 -n09834258 -n10585628 -n12885754 -n04411019 -n10342367 -n10368798 -n09672840 -n12729023 -n04578329 -n10325549 -n03680248 -n11920663 -n10416567 -n10011486 -n01643255 -n03193754 -n07823814 -n04055447 -n10660128 -n07765612 -n07612530 -n04205613 -n09677427 -n03989199 -n11100798 -n12721122 -n10000787 -n10382157 -n07724819 -n12928819 -n11631159 -n02608996 -n10516527 -n09703101 -n12290975 -n03470222 -n03810412 -n03729131 -n03356038 -n12692024 -n12614625 -n10789415 -n02333819 -n01722670 -n03885410 -n12038208 -n02294097 -n02608860 -n02500596 -n07909231 -n03254625 -n09681973 -n12221368 -n01893399 -n10025295 -n03194812 -n13181406 -n12249122 -n03447894 -n09795010 -n02187900 -n10139651 -n10631654 -n01792530 -n02569631 -n07853946 -n09907804 -n03263758 -n04214649 -n02450829 -n02431542 -n11998492 -n02651060 -n04101860 -n01806061 -n13901423 -n12903964 -n03968479 -n04268565 -n12601494 -n02083780 -n04570118 -n12247407 -n03337822 -n09878921 -n02369935 -n10022908 -n09667358 -n13160938 -n11937360 -n07741623 -n03705808 -n12241426 -n10478118 -n03805933 -n10343869 -n09391774 -n03482128 -n10357737 -n10334461 -n09675045 -n09662951 -n10174253 -n01815270 -n13873361 -n04432785 -n09778927 -n10671898 -n05571341 -n10033572 -n09864632 -n10618465 -n03437184 -n12786464 -n01723579 -n11798270 -n07742415 -n02143142 -n10548419 -n03695122 -n02518622 -n04605446 -n10218292 -n11832671 -n12646950 -n03382708 -n09844898 -n09674786 -n01472502 -n07616906 -n09763272 -n03982767 -n10005006 -n03059236 -n01816474 -n03725869 -n01979269 -n04226322 -n13236100 -n03920384 -n11852148 -n04373563 -n04324120 -n11686652 -n03036341 -n02142898 -n09783776 -n13147918 -n03465320 -n07855721 -n10336411 -n10438619 -n07750299 -n12237152 -n03559373 -n10077106 -n10169796 -n09828403 -n09959658 -n12464128 -n12934685 -n04221673 -n02617537 -n11689367 -n10180580 -n07813717 -n12529905 -n02340186 -n01400247 -n11749112 -n04404072 -n03135656 -n12098827 -n12481150 -n10023506 -n03500838 -n01564101 -n04009923 -n10023264 -n03908456 -n03206405 -n07590068 -n09958133 -n10755394 -n01423617 -n11511327 -n10536274 -n01965252 -n11549245 -n11935627 -n09635635 -n03752071 -n07585997 -n03147084 -n12666159 -n09748408 -n03796848 -n01501948 -n02345078 -n12430675 -n03103128 -n11710987 -n03393199 -n09233603 -n10465002 -n04298765 -n01351170 -n02720576 -n03966582 -n10643837 -n12420124 -n10793799 -n01652297 -n09281252 -n11983606 -n10222497 -n11832899 -n02391617 -n12434106 -n03987674 -n02140179 -n07896560 -n04325804 -n10647745 -n01924800 -n10156629 -n03545961 -n03906789 -n01890564 -n10699558 -n12332218 -n03247495 -n11839460 -n03527675 -n12586725 -n13208965 -n02714315 -n02750320 -n04615149 -n12679876 -n12863234 -n03304323 -n12139793 -n11922755 -n12321669 -n04979307 -n01921059 -n09657206 -n13042134 -n04045787 -n11700279 -n02337598 -n01415920 -n01400391 -n13207572 -n10785480 -n02515713 -n12018100 -n02634545 -n03292736 -n02881546 -n12655605 -n03105810 -n10545792 -n03894933 -n09796974 -n10320484 -n12308112 -n11549009 -n13047862 -n14941787 -n12379531 -n10540252 -n11696935 -n12184468 -n12851860 -n12908854 -n10586265 -n12369066 -n10426630 -n12523850 -n03916289 -n04538878 -n09908769 -n02828115 -n07560422 -n10266016 -n03569174 -n06423496 -n10495167 -n03617834 -n09327538 -n10195056 -n10508379 -n13031323 -n11659248 -n04242315 -n10742111 -n10700963 -n12032686 -n09877587 -n07825597 -n07568991 -n11736362 -n12169099 -n13103750 -n03263640 -n12248941 -n10665302 -n01920051 -n09704283 -n11533999 -n04503073 -n11645163 -n10639817 -n09920901 -n06340977 -n03251100 -n10378113 -n03226090 -n10131268 -n02877513 -n13191884 -n02787120 -n11709045 -n02740061 -n12323665 -n02831998 -n10342180 -n12716594 -n04498275 -n09905050 -n03745487 -n07642833 -n10294020 -n10211666 -n12205460 -n02981198 -n01642943 -n07679140 -n04390483 -n10432875 -n09214269 -n10792506 -n10243483 -n13099833 -n10221520 -n13177768 -n04091584 -n10672540 -n10200246 -n13889331 -n02345340 -n10237556 -n01833415 -n01335218 -n09804230 -n09957523 -n05235879 -n10070449 -n10308653 -n10721708 -n04312654 -n10394434 -n12201938 -n12434775 -n07601025 -n02672152 -n10157271 -n02635154 -n12572858 -n13182937 -n10160188 -n03396997 -n10344656 -n02968210 -n10190516 -n07684422 -n03706939 -n07618871 -n02290870 -n03817331 -n03275311 -n12698774 -n04375080 -n07837630 -n04314216 -n11833373 -n07618684 -n03742238 -n12532886 -n03712444 -n11750989 -n10038620 -n09617577 -n03807334 -n10108089 -n01816140 -n10715347 -n02648035 -n13127303 -n02809491 -n02430748 -n12235479 -n01451863 -n01514926 -n10010864 -n01913440 -n09660240 -n11806369 -n01470479 -n12655245 -n07655067 -n03436772 -n11778092 -n03951800 -n10277815 -n07931733 -n01479820 -n03576955 -n07609549 -n12568649 -n05263316 -n02636405 -n01384084 -n03298352 -n07617344 -n09987045 -n10573957 -n07801709 -n02589062 -n02534165 -n02748359 -n09607782 -n07590974 -n02199170 -n02696569 -n09678747 -n12795209 -n13176363 -n10663315 -n10588724 -n09772330 -n10174589 -n12366313 -n11883628 -n07617447 -n01334690 -n03168663 -n11764478 -n08599174 -n03942028 -n12153033 -n03448696 -n12096674 -n10037588 -n03548320 -n09760290 -n10374541 -n09653438 -n10294139 -n10276942 -n12279293 -n12764507 -n12803958 -n10764622 -n02140858 -n07599068 -n10245507 -n12351790 -n12818004 -n10118301 -n03945459 -n09912995 -n12176709 -n03873996 -n10339179 -n10614507 -n10114662 -n10784922 -n03821424 -n04959230 -n13015509 -n12573911 -n11948469 -n09775907 -n12758014 -n01780142 -n09956578 -n12165384 -n10088200 -n10382480 -n04131113 -n09930628 -n09784160 -n11750173 -n13064111 -n03817522 -n12662074 -n03176238 -n12310021 -n11679378 -n09961331 -n02385580 -n11904274 -n03113505 -n10244913 -n02836900 -n09986700 -n11963572 -n13158605 -n10321632 -n02179891 -n02189670 -n10097995 -n10774756 -n10783240 -n10605737 -n02530052 -n10386196 -n10184505 -n09788237 -n03589672 -n12509109 -n10658304 -n12966804 -n12559518 -n03189311 -n01451295 -n12179632 -n12301613 -n10496489 -n03402785 -n10244108 -n02385676 -n03552001 -n03092053 -n02313360 -n02547733 -n02109391 -n01327909 -n04574606 -n03060728 -n07840124 -n10567848 -n10062176 -n02703124 -n10804732 -n12699301 -n04515890 -n07919665 -n10457214 -n09663248 -n03165955 -n12988341 -n03987865 -n03031756 -n10277912 -n10172080 -n09325824 -n03198223 -n09605110 -n10113869 -n11603462 -n03352366 -n11930203 -n09769929 -n12979316 -n02579762 -n09953052 -n03105974 -n00476140 -n11598287 -n02830157 -n10512201 -n09746936 -n10668666 -n02919976 -n09993651 -n02149861 -n09705003 -n10389865 -n11655152 -n10010767 -n10070563 -n03688832 -n10590239 -n11936027 -n02939763 -n03163488 -n03171910 -n09955406 -n03266195 -n10217208 -n09338013 -n07594250 -n03215930 -n09725935 -n10592049 -n03732658 -n12498457 -n09966554 -n10668450 -n10361525 -n04060198 -n11936624 -n02602760 -n03942600 -n03708425 -n10020533 -n12067817 -n07590177 -n01891274 -n11837204 -n01419332 -n03860234 -n12616248 -n07834160 -n09867154 -n09788073 -n12222493 -n03388990 -n04245412 -n10182402 -n11675404 -n10450038 -n13045594 -n13158167 -n13082568 -n12052267 -n12707199 -n07810531 -n07914887 -n13127001 -n02573249 -n08619112 -n10471859 -n09919899 -n03635516 -n12067029 -n03352232 -n07765517 -n10519984 -n02742194 -n03062798 -n13124654 -n09958569 -n02370137 -n10121714 -n04019335 -n07732433 -n02559383 -n12585137 -n09729156 -n10744078 -n09954355 -n03078506 -n10062042 -n10688811 -n02668613 -n03142205 -n10347204 -n10518349 -n09898020 -n12563702 -n05468098 -n10116370 -n07838905 -n03127024 -n03545585 -n12801072 -n09940818 -n04480995 -n10466564 -n02606751 -n10032987 -n10771066 -n01587278 -n11852531 -n01455461 -n10397392 -n02349205 -n10180923 -n09778266 -n04366832 -n10051975 -n10538629 -n09865744 -n12554029 -n13118330 -n12952590 -n04187751 -n09924313 -n10062594 -n01980655 -n10028402 -n02567334 -n10590903 -n10265891 -n10739297 -n01457082 -n03437581 -n03713151 -n03475674 -n05464534 -n11863467 -n06592421 -n12491435 -n14914945 -n10279778 -n03388711 -n10483890 -n10612373 -n03332784 -n02332954 -n02952798 -n13041943 -n01607309 -n04356772 -n07711799 -n12670962 -n12229111 -n07878479 -n12401893 -n07772413 -n12138110 -n09781504 -n07902698 -n02750652 -n13042316 -n12400924 -n02304797 -n03066464 -n12852234 -n10155222 -n05541509 -n10711483 -n04210858 -n02835551 -n12859679 -n02935490 -n03540476 -n05279953 -n09807075 -n09617435 -n03566860 -n10549510 -n10025391 -n10754449 -n11927740 -n03554645 -n01837526 -n02656969 -n08648917 -n07860548 -n01452345 -n04021704 -n07783827 -n10080117 -n02187554 -n03214966 -n10036444 -n04291069 -n12407396 -n02170599 -n09896826 -n12417836 -n07845495 -n02749292 -n03061819 -n03682380 -n10756261 -n10369955 -n09692125 -n09978442 -n04277669 -n10539278 -n09703932 -n01879837 -n02746225 -n13159357 -n11763874 -n10540656 -n07933530 -n12987535 -n02371344 -n10654827 -n09723944 -n12775393 -n11856573 -n12626878 -n12716400 -n09903639 -n09784043 -n03906894 -n10775128 -n03124313 -n10396727 -n02841641 -n10211830 -n12283395 -n03490784 -n14175579 -n04027935 -n12396091 -n02609823 -n01414216 -n09880741 -n11976933 -n03073384 -n09270160 -n11768816 -n12073217 -n11597657 -n09994878 -n11756329 -n12579404 -n03161893 -n01451115 -n07736971 -n02949356 -n03878418 -n12653436 -n10626630 -n12777892 -n13061704 -n10498699 -n03609786 -n03199358 -n10776339 -n10762480 -n13179056 -n10113249 -n04029913 -n12640081 -n10493835 -n11683216 -n03524287 -n04585626 -n02969527 -n12976554 -n08569482 -n10204833 -n12442548 -n02577952 -n09357447 -n10202225 -n02198129 -n11882972 -n10404426 -n01600341 -n12016434 -n09867069 -n10576223 -n09893600 -n01702479 -n04274686 -n04406552 -n02848118 -n02258629 -n03260733 -n03685640 -n11751974 -n09967555 -n06274546 -n09649067 -n10681557 -n07606933 -n03110202 -n11982545 -n10803031 -n02679142 -n04086937 -n10514255 -n04506402 -n03884554 -n09970192 -n10117017 -n12642435 -n10186686 -n02097967 -n03956531 -n11834890 -n02677436 -n10040698 -n11796188 -n03348142 -n04168472 -n02294407 -n12483282 -n09429630 -n04423687 -n09819477 -n09755555 -n10157016 -n03344935 -n07762373 -n12871859 -n09853541 -n09875979 -n13050705 -n02251067 -n10637483 -n03823673 -n10357012 -n03424204 -n04431648 -n01475940 -n02339282 -n10248198 -n07683265 -n13150592 -n10359117 -n10096508 -n03473078 -n13052248 -n10743356 -n03710079 -n10634990 -n04507689 -n07921090 -n02352002 -n03924407 -n03609147 -n02837567 -n03406759 -n03909658 -n10286282 -n12135576 -n01912809 -n10801561 -n10717055 -n03473465 -n03761588 -n03144156 -n09474412 -n10253611 -n12549420 -n02499568 -n09910222 -n10431122 -n12699031 -n01697749 -n11786843 -n03888808 -n12089496 -n10066314 -n10302905 -n12696830 -n09965787 -n11969806 -n04066388 -n13080306 -n03913930 -n09968259 -n10490421 -n10714195 -n07570021 -n10343449 -n10401204 -n03472796 -n10779897 -n11787190 -n03503097 -n10439523 -n12123648 -n04279858 -n10511771 -n09755788 -n08253141 -n02616397 -n12248574 -n01645466 -n04334504 -n07729142 -n05451099 -n10503818 -n10354265 -n09707735 -n02633422 -n11999656 -n01324916 -n02088745 -n09354511 -n10705448 -n09756195 -n10136615 -n10427359 -n09702134 -n12600095 -n04122262 -n10791820 -n03330002 -n02713496 -n11710658 -n09664908 -n02550203 -n02349847 -n12835766 -n04098260 -n11536567 -n11686780 -n12875861 -n12758471 -n09806944 -n11810030 -n10400003 -n10098388 -n11663263 -n10559683 -n07833672 -n10753989 -n10643095 -n01988869 -n03112240 -n12911914 -n09979913 -n09785236 -n09790047 -n02676097 -n01653509 -n04601159 -n01938735 -n10748142 -n12978076 -n11990627 -n10437262 -n12972136 -n04077594 -n10148825 -n02269340 -n12886185 -n03608504 -n11677485 -n10612518 -n12267265 -n10649308 -n05458173 -n10650162 -n03213361 -n02747063 -n01611674 -n02322992 -n01554017 -n03512624 -n12773142 -n12747120 -n09902128 -n03162714 -n03924532 -n10299125 -n12378753 -n02778131 -n09976024 -n13093629 -n10778999 -n07721833 -n12232851 -n07876775 -n10097590 -n03194170 -n13029122 -n04573832 -n12859272 -n09639382 -n07688021 -n02878796 -n10751710 -n03633632 -n07762534 -n10779995 -n13914265 -n13093275 -n10729330 -n10433077 -n03663910 -n10499110 -n02272286 -n10371450 -n01967308 -n12633061 -n11659627 -n12982915 -n10344121 -n10268629 -n02697876 -n09879552 -n10167361 -n10719807 -n04042076 -n01632952 -n03243625 -n02125872 -n10105906 -n12194613 -n03149810 -n10721124 -n03947343 -n02020219 -n10122531 -n01315330 -n08647264 -n00452734 -n03607527 -n10010243 -n09863749 -n04473275 -n11782878 -n03585337 -n09655466 -n12989007 -n11711971 -n10716864 -n10475835 -n10704712 -n01894956 -n10568443 -n12881105 -n10387836 -n10403633 -n08645318 -n03500457 -n10377633 -n10108464 -n09933972 -n02618094 -n11798688 -n04155735 -n09780395 -n12822466 -n04302200 -n11899223 -n10633298 -n02760298 -n12142450 -n10803282 -n10769321 -n10514051 -n10597889 -n11837562 -n02261757 -n01458746 -n09830759 -n10003476 -n09817174 -n10738670 -n10118743 -n12096563 -n03054491 -n12155773 -n10439727 -n04170384 -n03223923 -n12632733 -n07845421 -n10062905 -n11831521 -n04267985 -n12796385 -n04154854 -n00444142 -n09778537 -n03115663 -n04385157 -n10109826 -n02337332 -n09996304 -n09880189 -n12871696 -n11823305 -n02516776 -n12377494 -n08511017 -n04421417 -n10765305 -n09675673 -n03488111 -n03076623 -n11829672 -n10292316 -n10758949 -n13031474 -n02829353 -n10090745 -n09186592 -n12736999 -n12715195 -n11684499 -n03168933 -n09890192 -n10596899 -n12527081 -n10496393 -n10497135 -n02137302 -n03266620 -n12958615 -n12664187 -n02633977 -n04262869 -n04215800 -n13133233 -n02392555 -n09858733 -n10186350 -n01715888 -n03142099 -n08573674 -n11687071 -n02690715 -n03146342 -n12331788 -n08079613 -n10609092 -n12943049 -n12234318 -n02312325 -n12618146 -n10135197 -n11705573 -n02794368 -n02850358 -n09464486 -n01993525 -n03187153 -n10097262 -n02976641 -n12198793 -n12941717 -n10219240 -n12434634 -n03827420 -n10437137 -n10342893 -n04174026 -n10265281 -n07757874 -n10765885 -n01470895 -n02349557 -n11716698 -n03765467 -n10227793 -n07824268 -n12994892 -n10486236 -n02974454 -n10718349 -n11726145 -n09909660 -n03378593 -n07805006 -n09875025 -n02645691 -n10223069 -n03722944 -n04389999 -n02544274 -n10239928 -n04456011 -n10382302 -n01552333 -n10082562 -n12952469 -n09883047 -n10442573 -n01891013 -n10690268 -n13111504 -n02287352 -n03567635 -n10331347 -n09762385 -n09933842 -n02369555 -n12291459 -n09919200 -n01492860 -n02067768 -n10713254 -n10550468 -n12846335 -n03835729 -n12467018 -n11676743 -n03629643 -n12987423 -n10655730 -n08678783 -n10349836 -n10087736 -n10246703 -n10338391 -n04585456 -n04158138 -n10500942 -n09850974 -n10791890 -n10020807 -n03315805 -n02752917 -n04033801 -n10492086 -n04427473 -n02940706 -n12110475 -n09832978 -n12515393 -n07800487 -n09848110 -n02659176 -n09967406 -n10536134 -n10760622 -n09736485 -n07830690 -n07835173 -n09814252 -n10311506 -n10341955 -n03869838 -n07760673 -n09970402 -n12526178 -n11687964 -n09968741 -n10719267 -n07851054 -n10116478 -n10599215 -n09951524 -n03855908 -n03997274 -n02986348 -n08599292 -n02474282 -n04155889 -n09983314 -n01987727 -n10280130 -n10404998 -n02294577 -n02998696 -n08586978 -n11652578 -n13867005 -n12663254 -n10524869 -n02287622 -n10220924 -n03279918 -n02626089 -n10291110 -n12820669 -n07861681 -n08643267 -n07720185 -n12555859 -n03225616 -n09769525 -n03295140 -n12489046 -n10615179 -n12150969 -n02888429 -n10753182 -n10267166 -n03675558 -n12693352 -n02378299 -n02788462 -n03622401 -n12236977 -n10730542 -n12758099 -n10502046 -n11937195 -n10366145 -n10307114 -n12984595 -n10128748 -n09362316 -n09789898 -n09654079 -n04260192 -n10114476 -n08623676 -n10331841 -n05265736 -n10269289 -n03090856 -n12764978 -n02825240 -n10358032 -n09825750 -n03062651 -n11196627 -n11825749 -n04148464 -n04439505 -n07572858 -n04561857 -n12904562 -n03643907 -n10723597 -n01492708 -n10071557 -n10140683 -n01739871 -n12984267 -n03072056 -n10772580 -n10462588 -n11936448 -n10494373 -n12845908 -n09793352 -n10717196 -n12577362 -n09779124 -n10663549 -n02286425 -n10380126 -n01890144 -n02751490 -n03361109 -n01781875 -n13128278 -n09994400 -n09883452 -n13881512 -n02833275 -n10362003 -n01376543 -n12366675 -n09984960 -n10173665 -n10673776 -n02057898 -n01934844 -n04057673 -n10018747 -n02916065 -n13024653 -n05539947 -n09648911 -n04150273 -n01393486 -n10411356 -n12232114 -n02436224 -n12757930 -n03095965 -n10555059 -n01577458 -n09666476 -n10598904 -n11656549 -n02591911 -n13092385 -n10506336 -n13103023 -n09658254 -n04095938 -n11936782 -n07824383 -n09781650 -n10240821 -n01780426 -n02850060 -n02863340 -n13914141 -n12138578 -n13034555 -n12291671 -n12133151 -n04515444 -n04591359 -n02589196 -n02689819 -n11740414 -n07610295 -n10246395 -n09921034 -n12447346 -n12641180 -n01419573 -n04242587 -n07760395 -n03399579 -n09866661 -n02549376 -n11861238 -n01588996 -n04319545 -n09789150 -n03288643 -n10312491 -n03353281 -n02345997 -n09711132 -n03043173 -n02558860 -n03703590 -n03188871 -n12589142 -n12113323 -n09987161 -n05242239 -n09686262 -n09780984 -n09668199 -n09716933 -n11675738 -n04459243 -n11833749 -n10646942 -n07760070 -n10286539 -n04469684 -n13030616 -n03939440 -n01725086 -n09967816 -n10500824 -n13026015 -n03983928 -n02936921 -n04115542 -n10245029 -n12105828 -n12452673 -n10498046 -n10737264 -n11766046 -n04079603 -n10072054 -n12569037 -n10153155 -n09867311 -n02806992 -n10258602 -n10164025 -n10520964 -n02258508 -n12199399 -n05266096 -n08496334 -n10351064 -n12441552 -n12878325 -n13102648 -n02980625 -n03462972 -n12395906 -n13022903 -n11895714 -n03324814 -n11318824 -n01728266 -n07883510 -n10731013 -n10181799 -n12142357 -n09671089 -n11531334 -n01718414 -n04573625 -n10390600 -n11553522 -n01314910 -n04227519 -n10514784 -n02944256 -n12103680 -n03081859 -n11655592 -n12569616 -n10700105 -n09755086 -n03865820 -n01456137 -n10442232 -n02900987 -n04491934 -n07849026 -n04519728 -n09986450 -n03305300 -n10186143 -n02879422 -n03018614 -n10747548 -n10562509 -n10068425 -n12593341 -n11937692 -n08679562 -n09613690 -n10646433 -n12251740 -n10994097 -n13048447 -n03848537 -n12153741 -n12614096 -n11654438 -n09985470 -n10562968 -n02923915 -n10740594 -n07802767 -n12514592 -n10335801 -n03878674 -n12586499 -n10255459 -n02413824 -n10312600 -n02616128 -n12644283 -n04238953 -n04526520 -n01898593 -n09737161 -n03372822 -n09781398 -n10339251 -n02502807 -n10198832 -n10679610 -n13136781 -n11974373 -n11680457 -n10083677 -n04037298 -n09945021 -n09987239 -n02708885 -n13107807 -n10130877 -n12507379 -n08651104 -n12116058 -n10135297 -n04269086 -n03858533 -n10477955 -n04394031 -n10442417 -n10074735 -n03618797 -n03460455 -n04374521 -n10756061 -n08517010 -n12923108 -n02362194 -n01704103 -n10062492 -n01394771 -n10473789 -n10330593 -n02748183 -n12562141 -n09745933 -n02505485 -n11922661 -n12018014 -n09866922 -n04067143 -n13161254 -n07813495 -n01374846 -n10213429 -n03253071 -n02546028 -n01642097 -n01475232 -n03212247 -n10155600 -n11689957 -n11738997 -n10525878 -n03301389 -n10589666 -n01908958 -n10289766 -n03900028 -n03437295 -n02987823 -n02739123 -n10505347 -n02546627 -n10381804 -n10132502 -n10336904 -n10189597 -n09786115 -n12875697 -n10761519 -n01470733 -n02875626 -n12111238 -n07862770 -n07856895 -n09996039 -n03368048 -n07913300 -n10062996 -n10555430 -n04302863 -n12758555 -n10740732 -n02385898 -n02385098 -n12162758 -n03887899 -n03976268 -n04234160 -n03641947 -n07857076 -n10578656 -n12135729 -n12675515 -n09032191 -n12969670 -n02600503 -n12518013 -n10227166 -n10121026 -n01801672 -n10661216 -n03244388 -n04147291 -n09664556 -n02539573 -n04480141 -n10601362 -n02613572 -n10537906 -n02613820 -n11656771 -n03841011 -n02845985 -n12534208 -n10241024 -n03645290 -n12743976 -n11922839 -n07709701 -n03066232 -n03467380 -n09266604 -n09663786 -n12775070 -n02427183 -n04083113 -n12896615 -n10501453 -n02345774 -n09965515 -n09704157 -n10666752 -n03846970 -n04167661 -n03991321 -n09556121 -n10686517 -n02586238 -n03594277 -n03591313 -n10391416 -n10756837 -n13163649 -n03971960 -n10245341 -n02577041 -n04481642 -n12373739 -n10214062 -n10091997 -n10275848 -n02090253 -n03514340 -n04593629 -n11795216 -n03126927 -n11871748 -n10272782 -n12056099 -n04484024 -n03101375 -n12255225 -n10724372 -n10531838 -n02354781 -n02389865 -n02853336 -n01477080 -n01779939 -n10776052 -n10724132 -n10284871 -n10554141 -n03898787 -n02366301 -n10721612 -n04421740 -n04256758 -n01445593 -n10103921 -n02729222 -n02530188 -n02387452 -n02601921 -n01711160 -n02474110 -n09869447 -n12789977 -n10158506 -n10396908 -n07839593 -n02662825 -n02473720 -n13034788 -n07752602 -n03762238 -n10262880 -n07770180 -n04030054 -n10151367 -n03525252 -n10252075 -n10747424 -n10191388 -n04130566 -n03951068 -n13239921 -n03733547 -n10358124 -n11549779 -n09203827 -n04043168 -n10359422 -n04286960 -n04237287 -n10130686 -n02338449 -n12912274 -n10586998 -n02812785 -n10364502 -n03955941 -n12324222 -n09743601 -n03766600 -n01427399 -n12968309 -n11776234 -n01501777 -n10051026 -n10397001 -n01516212 -n02596252 -n02225081 -n10479328 -n02109687 -n10181445 -n02248062 -n03802973 -n01639187 -n02142734 -n02342534 -n02410141 -n02743426 -n03950359 -n12253835 -n07805478 -n03706415 -n03578981 -n04560619 -n09761753 -n03524425 -n01962788 -n04350235 -n10686694 -n13139321 -n10195155 -n12335937 -n12758399 -n03805374 -n12895298 -n03800371 -n11972959 -n11530008 -n03178538 -n02217839 -n10591072 -n04033557 -n01880813 -n12292877 -n02430643 -n07599383 -n01954516 -n09894909 -n02474605 -n03576443 -n07595051 -n03367875 -n12945549 -n02360480 -n14583400 -n04208582 -n02405577 -n02550655 -n02513355 -n04381450 -n00444490 -n03567912 -n09937688 -n07932323 -n04029416 -n01913346 -n13237508 -n04437276 -n12938445 -n03042384 -n12543639 -n03194992 -n04094250 -n12045514 -n03825913 -n03504293 -n12758250 -n03547861 -n03649288 -n04572235 -n07569423 -n03534695 -n03253714 -n01501641 -n13906767 -n12578255 -n11749603 -n07742513 -n07609083 -n04214413 -n07595751 -n12013701 -n12592839 -n12949160 -n04093223 -n02983072 -n03510072 -n02966068 -n03867854 -n01747285 -n10691318 -n13091982 -n12574470 -n02255023 -n03449217 -n03153585 -n04006227 -n13140049 -n02965024 -n03805503 -n03911406 -n13120958 -n12203699 -n01456454 -n10397142 -n12920043 -n02412977 -n08674344 -n07801007 -n03037590 -n10361296 -n13133316 -n03483637 -n04435759 -n12983873 -n02627037 -n03783304 -n07725158 -n02921292 -n01788864 -n01705010 -n12616996 -n03903290 -n08662427 -n03667060 -n07856992 -n03252422 -n02449699 -n12137954 -n10024025 -n07891095 -n04337157 -n04368109 -n03015631 -n02363996 -n12824289 -n03206602 -n12799269 -n02333733 -n01793565 -n01721898 -n03178173 -n02844056 -n11688378 -n13889066 -n02637475 -n03750437 -n01403457 -n01717229 -n02677136 -n12512294 -n03736269 -n02838577 -n08661878 -n01993830 -n02777638 -n02900857 -n04023021 -n03843092 -n07770439 -n12928491 -n03697812 -n02639922 -n13139482 -n07771082 -n12487058 -n07774182 -n02122810 -n02856362 -n11686195 -n11687432 -n02853870 -n04239218 -n02665250 -n02938218 -n11746600 -n10183347 -n10681194 -n04164199 -n04407257 -n12549005 -n02331842 -n03862379 -n02863638 -n11962994 -n03091907 -n04177654 -n02252972 -n02403153 -n01376437 -n02848806 -n08579266 -n07616265 -n10331258 -n10765587 -n09433312 -n03412387 -n10178077 -n13123841 -n02532918 -n04144651 -n03296963 -n03450881 -n04348988 -n10425946 -n03257065 -n02354320 -n11689197 -n04084682 -n10140783 -n03637027 -n02346170 -n02559144 -n01705591 -n09400584 -n03840327 -n03918074 -n04053767 -n02406046 -n00288190 -n03160001 -n03366464 -n09249155 -n01324305 -n07556872 -n03381565 -n12705220 -n11874878 -n02632494 -n02502006 -n03146560 -n02179340 -n04312756 -n10162016 -n03800563 -n04140853 -n07933652 -n03075248 -n04421582 -n10652703 -n02218134 -n12233249 -n04578559 -n01781071 -n02615298 -n04436832 -n04054566 -n02608284 -n11674019 -n03505764 -n02662397 -n09422190 -n04382537 -n04355684 -n04383923 -n09888635 -n03783575 -n03228796 -n07772026 -n02381119 -n15060326 -n10586166 -n12647787 -n02458517 -n10281546 -n03498866 -n02485988 -n10121246 -n09391644 -n03103904 -n08676253 -n02203978 -n04092168 -n03213014 -n03138217 -n04135933 -n12612811 -n04478066 -n02157285 -n02543255 -n03863783 -n01502101 -n03930229 -n12439830 -n09425019 -n02618513 -n02910241 -n12261359 -n03648667 -n04365229 -n03461651 -n04388040 -n03295928 -n03581531 -n04203356 -n02622249 -n13142907 -n04497249 -n11678377 -n02366579 -n02931013 -n02837134 -n03132438 -n13092987 -n04196803 -n03056215 -n03255322 -n02130925 -n10291469 -n02971940 -n01718096 -n12510774 -n11766432 -n04271891 -n03366721 -n03154616 -n03694356 -n10478293 -n11763142 -n07763483 -n03037228 -n09201998 -n01517389 -n00443517 -n12693244 -n03580990 -n03519848 -n10238375 -n10783646 -n03564849 -n03975926 -n02473554 -n02450426 -n03464952 -n04411835 -n04573045 -n10505732 -n04337650 -n10621514 -n10334782 -n12434985 -n07769102 -n10594523 -n05475397 -n01875610 -n03299406 -n10507692 -n02593679 -n03317233 -n13239736 -n03550420 -n03247351 -n03819047 -n03633341 -n03154745 -n04073425 -n04532022 -n02910964 -n04301242 -n04378651 -n13098515 -n11775626 -n14603798 -n10263146 -n01886045 -n03761731 -n02224713 -n04591249 -n02144251 -n03849412 -n11548728 -n04051705 -n12298165 -n03150795 -n03989447 -n02826459 -n07602650 -n03155915 -n09891730 -n02067603 -n01523105 -n03618339 -n03897130 -n02711780 -n05285623 -n03533486 -n04085873 -n01923404 -n10139077 -n01709484 -n02183507 -n03216562 -n01971850 -n03136051 -n02948834 -n03589313 -n03665851 -n02937336 -n02035656 -n07769465 -n07849186 -n12585373 -n12280364 -n02846260 -n02511730 -n02614653 -n04193179 -n11718681 -n09467696 -n01522450 -n03040836 -n03162297 -n11896141 -n04000480 -n10350220 -n07746038 -n02124157 -n10655169 -n03476542 -n03895038 -n00443917 -n07757753 -n01726203 -n02987706 -n12750076 -n03012734 -n02941228 -n04194009 -n04501127 -n09794550 -n03510487 -n08589670 -n03166951 -n03673270 -n09792125 -n08492354 -n02396157 -n01628331 -n03993878 -n07833816 -n04958865 -n13650447 -n04339191 -n02826683 -n02893269 -n02810139 -n02626471 -n02589796 -n08677801 -n04325968 -n03275864 -n02622547 -n04406687 -n04097085 -n02998107 -n07831450 -n03658102 -n02575590 -n03523398 -n02412909 -n02953850 -n04337503 -n03510987 -n12664005 -n03710294 -n13138155 -n10110093 -n07831955 -n03932080 -n12971804 -n03943623 -n03726371 -n10531445 -n12984489 -n07835051 -n12097556 -n02685701 -n03038041 -n02451125 -n04594919 -n02372140 -n02665985 -n03496183 -n03961828 -n03802800 -n01713170 -n03602790 -n04974145 -n02780588 -n04031884 -n03588216 -n02614140 -n04578708 -n04501281 -n03166600 -n03992975 -n04206070 -n03227721 -n02582349 -n02664642 -n07805389 -n09226869 -n02459190 -n12216968 -n03628984 -n02524928 -n09209025 -n04078002 -n03167153 -n03562565 -n07599554 -n10252547 -n03279804 -n07692887 -n14909584 -n02529293 -n04444953 -n04156814 -n07616174 -n03415626 -n03331244 -n03868324 -n03644073 -n02818687 -n10085101 -n02953056 -n03202481 -n02118707 -n03591901 -n12602434 -n02943465 -n02818254 -n07922607 -n02597004 -n04212810 -n04056073 -n12327528 -n02207647 -n01792808 -n03002555 -n03951213 -n12242123 -n10062275 -n12325787 -n10048117 -n11937278 -n03624767 -n04039041 -n04059298 -n03707171 -n07758407 -n01333483 -n02219015 -n02436645 -n02478239 -n04457638 -n01781698 -n09474765 -n03686363 -n10769084 -n09456207 -n02385776 -n13555775 -n03962685 -n13129078 -n03463185 -n01429172 -n04243251 -n12177129 -n03143754 -n03958338 -n02791795 -n04560502 -n12776774 -n02745816 -n03009111 -n02976552 -n03008817 -n03211413 -n03537550 -n12200504 -n01909788 -n11790089 -n03480973 -n10507070 -n01707294 -n04374907 -n04281571 -n00006024 -n03823906 -n12603273 -n03503358 -n04027820 -n12645530 -n02535080 -n04143365 -n08385989 -n12661227 -n12814857 -n11871059 -n04268418 -n13128582 -n01928865 -n04359124 -n12670334 -n03610836 -n04543924 -n02252799 -n15102359 -n04437380 -n04316924 -n11872324 -n09330378 -n10122300 -n03784139 -n00443375 -n14993378 -n01721174 -n00004475 -n00006484 -n00007846 -n00015388 -n00017222 -n00021265 -n00021939 -n00288000 -n00433458 -n00433661 -n00433802 -n00439826 -n00440218 -n00440509 -n00440747 -n00441824 -n00442115 -n00442981 -n00443231 -n00444651 -n00445351 -n00445802 -n00447073 -n00447221 -n00447540 -n00448466 -n00448640 -n00448958 -n00449295 -n00449695 -n00450335 -n00450700 -n00451370 -n00451866 -n00452293 -n00453935 -n00454237 -n00454624 -n00463246 -n00464651 -n00464894 -n00467719 -n00467995 -n00468480 -n00469651 -n00471437 -n00471613 -n00479076 -n00480508 -n00480993 -n00482298 -n00523513 -n01035667 -n01316422 -n01316579 -n01316949 -n01317089 -n01317391 -n01317541 -n01319467 -n01320872 -n01321230 -n01321579 -n01321854 -n01322343 -n01322685 -n01322898 -n01323068 -n01326291 -n01329186 -n01338685 -n01339336 -n01340935 -n01342269 -n01358572 -n01367772 -n01375204 -n01376237 -n01380610 -n01384687 -n01385330 -n01387065 -n01389507 -n01390123 -n01392380 -n01395254 -n01397114 -n01402600 -n01407798 -n01421807 -n01438208 -n01439121 -n01439514 -n01439808 -n01441425 -n01444783 -n01445429 -n01446589 -n01446760 -n01448951 -n01450661 -n01454856 -n01455778 -n01458842 -n01459791 -n01461646 -n01466257 -n01467336 -n01468238 -n01468712 -n01471682 -n01473806 -n01474283 -n01477525 -n01478511 -n01480516 -n01480880 -n01481331 -n01482071 -n01482330 -n01483522 -n01484097 -n01488918 -n01491874 -n01492357 -n01493541 -n01494757 -n01494882 -n01495006 -n01495701 -n01497118 -n01498406 -n01498699 -n01498989 -n01500091 -n01501160 -n01503061 -n01514752 -n01515078 -n01517565 -n01524359 -n01525720 -n01527194 -n01527617 -n01528654 -n01529672 -n01533339 -n01534582 -n01534762 -n01537134 -n01538955 -n01539573 -n01540233 -n01541922 -n01542786 -n01544208 -n01546921 -n01547832 -n01548301 -n01549430 -n01550761 -n01553142 -n01555809 -n01557185 -n01560105 -n01560636 -n01563128 -n01563746 -n01564394 -n01567133 -n01568132 -n01569836 -n01570676 -n01571904 -n01572328 -n01573074 -n01574045 -n01574390 -n01575745 -n01576695 -n01577659 -n01578575 -n01579028 -n01580379 -n01580490 -n01580772 -n01580870 -n01581166 -n01581434 -n01581730 -n01582398 -n01582498 -n01582856 -n01584225 -n01585121 -n01587834 -n01588431 -n01589286 -n01591697 -n01592257 -n01592540 -n01594372 -n01595624 -n01597336 -n01598588 -n01598988 -n01600085 -n01600657 -n01602080 -n01602209 -n01602630 -n01603600 -n01604330 -n01605630 -n01608814 -n01609062 -n01609391 -n01609751 -n01610955 -n01611472 -n01612628 -n01613294 -n01613615 -n01615121 -n01616551 -n01616764 -n01617095 -n01617443 -n01617766 -n01618082 -n01618922 -n01619310 -n01619536 -n01619835 -n01620135 -n01620414 -n01620735 -n01621127 -n01622352 -n01623706 -n01627424 -n01629276 -n01630284 -n01631175 -n01632047 -n01637112 -n01637932 -n01639765 -n01640846 -n01645776 -n01649170 -n01650167 -n01651487 -n01653773 -n01661091 -n01661592 -n01661818 -n01662622 -n01662784 -n01663401 -n01664369 -n01665932 -n01667432 -n01668091 -n01669372 -n01670092 -n01672032 -n01674216 -n01674464 -n01674990 -n01676755 -n01680264 -n01680478 -n01681940 -n01684133 -n01685439 -n01686044 -n01686220 -n01686403 -n01686609 -n01686808 -n01687665 -n01688961 -n01689411 -n01691951 -n01692864 -n01693783 -n01694709 -n01696633 -n01697178 -n01698434 -n01699040 -n01701551 -n01702256 -n01703011 -n01703569 -n01705934 -n01708106 -n01708998 -n01712008 -n01712752 -n01717016 -n01719403 -n01722998 -n01724231 -n01726692 -n01727646 -n01730185 -n01730307 -n01730812 -n01730960 -n01731545 -n01732244 -n01733757 -n01734637 -n01734808 -n01735439 -n01735577 -n01735728 -n01737472 -n01737728 -n01737875 -n01738065 -n01738601 -n01739647 -n01740551 -n01741232 -n01741562 -n01741943 -n01743605 -n01745125 -n01745484 -n01746359 -n01747885 -n01749582 -n01749742 -n01751036 -n01752165 -n01753959 -n01754876 -n01755740 -n01767661 -n01769347 -n01770795 -n01771417 -n01772222 -n01775370 -n01776192 -n01776705 -n01777304 -n01777467 -n01777649 -n01777909 -n01778217 -n01778487 -n01778621 -n01778801 -n01779148 -n01779463 -n01779629 -n01780696 -n01782209 -n01785667 -n01789386 -n01789740 -n01791107 -n01791625 -n01792158 -n01792640 -n01794158 -n01795088 -n01795735 -n01795900 -n01796019 -n01796105 -n01796519 -n01796729 -n01798706 -n01798839 -n01798979 -n01799302 -n01800424 -n01801088 -n01801479 -n01802721 -n01803078 -n01804478 -n01804653 -n01804921 -n01805070 -n01805801 -n01806847 -n01807828 -n01808140 -n01808291 -n01808596 -n01809106 -n01810700 -n01811909 -n01812337 -n01813385 -n01814370 -n01814921 -n01815601 -n01816887 -n01819115 -n01820348 -n01820801 -n01821076 -n01821203 -n01822602 -n01823013 -n01824749 -n01825930 -n01826364 -n01827403 -n01829869 -n01831712 -n01832167 -n01834177 -n01834540 -n01835276 -n01838038 -n01838598 -n01839598 -n01841102 -n01843719 -n01844231 -n01844551 -n01844917 -n01845132 -n01845477 -n01846331 -n01848123 -n01848648 -n01849466 -n01850373 -n01851375 -n01852142 -n01852861 -n01853498 -n01854415 -n01856072 -n01856155 -n01856380 -n01856553 -n01856890 -n01857079 -n01857325 -n01857512 -n01857632 -n01857851 -n01858441 -n01859496 -n01860497 -n01861148 -n01861778 -n01871543 -n01871875 -n01874434 -n01874928 -n01876326 -n01877134 -n01878061 -n01878335 -n01878639 -n01878929 -n01879217 -n01879509 -n01880152 -n01881171 -n01883513 -n01883920 -n01886756 -n01887896 -n01888264 -n01889074 -n01889520 -n01890860 -n01891633 -n01892551 -n01894207 -n01905661 -n01906749 -n01907738 -n01909422 -n01911403 -n01911839 -n01912454 -n01914163 -n01914830 -n01915811 -n01916187 -n01916925 -n01918744 -n01922303 -n01925270 -n01925695 -n01926379 -n01926689 -n01927159 -n01927456 -n01927928 -n01928215 -n01930852 -n01931140 -n01931520 -n01931714 -n01932151 -n01932936 -n01933151 -n01933478 -n01933988 -n01934440 -n01935176 -n01936391 -n01937909 -n01940736 -n01941223 -n01942177 -n01942869 -n01943541 -n01944118 -n01944812 -n01944955 -n01945143 -n01945340 -n01945845 -n01946277 -n01948573 -n01951613 -n01953361 -n01955933 -n01956481 -n01958038 -n01959985 -n01960459 -n01963571 -n01964049 -n01964441 -n01965889 -n01967094 -n01968315 -n01969726 -n01971094 -n01971280 -n01974773 -n01975687 -n01976146 -n01976957 -n01978930 -n01981702 -n01982650 -n01983048 -n01985493 -n01985797 -n01986806 -n01987545 -n01988701 -n01989869 -n01990007 -n01991028 -n01991520 -n01992262 -n01992423 -n01992773 -n01996585 -n01998183 -n02000954 -n02002075 -n02005790 -n02006985 -n02007284 -n02008041 -n02008796 -n02010453 -n02011805 -n02011943 -n02012185 -n02013177 -n02014941 -n02015554 -n02016358 -n02016956 -n02018027 -n02019190 -n02019438 -n02019929 -n02021050 -n02021795 -n02022684 -n02023341 -n02025043 -n02026059 -n02028175 -n02030035 -n02030287 -n02030996 -n02031934 -n02033208 -n02033324 -n02033561 -n02034129 -n02034661 -n02036053 -n02037464 -n02039171 -n02040505 -n02041085 -n02041246 -n02043063 -n02044178 -n02044778 -n02045369 -n02046759 -n02047260 -n02047614 -n02048698 -n02049532 -n02050004 -n02051474 -n02052204 -n02052365 -n02053083 -n02054502 -n02055658 -n02055803 -n02057731 -n02058594 -n02058747 -n02059162 -n02060411 -n02060889 -n02062017 -n02062430 -n02062744 -n02063224 -n02064338 -n02066707 -n02068206 -n02068974 -n02069701 -n02070430 -n02073250 -n02075296 -n02075927 -n02076196 -n02076779 -n02077152 -n02077658 -n02078292 -n02078574 -n02078738 -n02079005 -n02079389 -n02081571 -n02083346 -n02083672 -n02084071 -n02084861 -n02085374 -n02086346 -n02086478 -n02087122 -n02087551 -n02088839 -n02089232 -n02089555 -n02090475 -n02090827 -n02092468 -n02093056 -n02094562 -n02094721 -n02095050 -n02095412 -n02095727 -n02096756 -n02097786 -n02098550 -n02099029 -n02099997 -n02100399 -n02101108 -n02101861 -n02102605 -n02103406 -n02103841 -n02104523 -n02104882 -n02106966 -n02107420 -n02108254 -n02108672 -n02109150 -n02109811 -n02110532 -n02111626 -n02112497 -n02112826 -n02113335 -n02114100 -n02115012 -n02115335 -n02117512 -n02117646 -n02117900 -n02118176 -n02118333 -n02119247 -n02119359 -n02120278 -n02120997 -n02121620 -n02121808 -n02122725 -n02123785 -n02124623 -n02127292 -n02127381 -n02127482 -n02127586 -n02127678 -n02127808 -n02128598 -n02128669 -n02129463 -n02129530 -n02129837 -n02129923 -n02130545 -n02131653 -n02132466 -n02132580 -n02132788 -n02133400 -n02134971 -n02135220 -n02137722 -n02137888 -n02138647 -n02138777 -n02139199 -n02139671 -n02141306 -n02141713 -n02144593 -n02145424 -n02148835 -n02149420 -n02150482 -n02152740 -n02152991 -n02153203 -n02153809 -n02156732 -n02159955 -n02164464 -n02165877 -n02166229 -n02166567 -n02166826 -n02167505 -n02167820 -n02167944 -n02168245 -n02169023 -n02169218 -n02169705 -n02169974 -n02170400 -n02170993 -n02171453 -n02171869 -n02172518 -n02172678 -n02172761 -n02172870 -n02174355 -n02176261 -n02178411 -n02178717 -n02179012 -n02180233 -n02181235 -n02181724 -n02182045 -n02182355 -n02182642 -n02182930 -n02183857 -n02186153 -n02188699 -n02189363 -n02190790 -n02191273 -n02191773 -n02191979 -n02192252 -n02192513 -n02192814 -n02193009 -n02193163 -n02194249 -n02194750 -n02195091 -n02195526 -n02195819 -n02196344 -n02198532 -n02199502 -n02200198 -n02202287 -n02204722 -n02206270 -n02207179 -n02207449 -n02208280 -n02208498 -n02208848 -n02208979 -n02209111 -n02209354 -n02209624 -n02209964 -n02210427 -n02210921 -n02211444 -n02211627 -n02211896 -n02212062 -n02212602 -n02212958 -n02213107 -n02215161 -n02215770 -n02217563 -n02218713 -n02220055 -n02220225 -n02220518 -n02220804 -n02221083 -n02221414 -n02221571 -n02221715 -n02221820 -n02222035 -n02222321 -n02222582 -n02223266 -n02223520 -n02226183 -n02226821 -n02226970 -n02227247 -n02227604 -n02227966 -n02228341 -n02228697 -n02229156 -n02229765 -n02230023 -n02230187 -n02230480 -n02230634 -n02231052 -n02231803 -n02233943 -n02234355 -n02234570 -n02234848 -n02235205 -n02236241 -n02236896 -n02237424 -n02237581 -n02238235 -n02238887 -n02239528 -n02241569 -n02241799 -n02243562 -n02244173 -n02246011 -n02246628 -n02247511 -n02248368 -n02248510 -n02248887 -n02249515 -n02250822 -n02251775 -n02252226 -n02253127 -n02253715 -n02254697 -n02257003 -n02257284 -n02257715 -n02259377 -n02260421 -n02260863 -n02261419 -n02262178 -n02263378 -n02264885 -n02265330 -n02268148 -n02269196 -n02269522 -n02270011 -n02270200 -n02271570 -n02271897 -n02272871 -n02274024 -n02274259 -n02274822 -n02278210 -n02278839 -n02279637 -n02280458 -n02281015 -n02281136 -n02281267 -n02282257 -n02282385 -n02282553 -n02282903 -n02283077 -n02283201 -n02283951 -n02285548 -n02287004 -n02287799 -n02288789 -n02291220 -n02291572 -n02291748 -n02293352 -n02293868 -n02295064 -n02295390 -n02295870 -n02298541 -n02300173 -n02301452 -n02302459 -n02302620 -n02305407 -n02306433 -n02307325 -n02308139 -n02308471 -n02309337 -n02310000 -n02310717 -n02311060 -n02312006 -n02312427 -n02313008 -n02316707 -n02318167 -n02319308 -n02319555 -n02319829 -n02320127 -n02322047 -n02323449 -n02323902 -n02324045 -n02325722 -n02325884 -n02326074 -n02326763 -n02326862 -n02327028 -n02327175 -n02327435 -n02327656 -n02327842 -n02328429 -n02329401 -n02330245 -n02331046 -n02331309 -n02332755 -n02333546 -n02334460 -n02335127 -n02336011 -n02336641 -n02338901 -n02339376 -n02339922 -n02343058 -n02343320 -n02343772 -n02344528 -n02345600 -n02346998 -n02347274 -n02347573 -n02347744 -n02348173 -n02348788 -n02350105 -n02350989 -n02351870 -n02352591 -n02353861 -n02355227 -n02355477 -n02358091 -n02359324 -n02360781 -n02361587 -n02361706 -n02361850 -n02363245 -n02363351 -n02364520 -n02369680 -n02370806 -n02372584 -n02373336 -n02374149 -n02374451 -n02376542 -n02376791 -n02376918 -n02377181 -n02377480 -n02377703 -n02378415 -n02380335 -n02380583 -n02380745 -n02381460 -n02382437 -n02382948 -n02384858 -n02386014 -n02386310 -n02386496 -n02388276 -n02389346 -n02389559 -n02390454 -n02390834 -n02391234 -n02391373 -n02391508 -n02391994 -n02393580 -n02394477 -n02395003 -n02395694 -n02395931 -n02397529 -n02399000 -n02401031 -n02402010 -n02402175 -n02402425 -n02403325 -n02403454 -n02404186 -n02404573 -n02406174 -n02407959 -n02408660 -n02408817 -n02409870 -n02410702 -n02410900 -n02411705 -n02412440 -n02413131 -n02414578 -n02415435 -n02416519 -n02417070 -n02417534 -n02418064 -n02419796 -n02423218 -n02423362 -n02423589 -n02424305 -n02424695 -n02426813 -n02427724 -n02428349 -n02430045 -n02430559 -n02431122 -n02432511 -n02433546 -n02433925 -n02435853 -n02437136 -n02437971 -n02438173 -n02438272 -n02439033 -n02441326 -n02442172 -n02442336 -n02442446 -n02442572 -n02442668 -n02443015 -n02443346 -n02443808 -n02443959 -n02444251 -n02445004 -n02445171 -n02446206 -n02446352 -n02446645 -n02447021 -n02447762 -n02448060 -n02448633 -n02448885 -n02450034 -n02453108 -n02453611 -n02454794 -n02455135 -n02455428 -n02455720 -n02456008 -n02456275 -n02456962 -n02460009 -n02469914 -n02470325 -n02470899 -n02471300 -n02471762 -n02472293 -n02473307 -n02474777 -n02476219 -n02480153 -n02481103 -n02481235 -n02481366 -n02481500 -n02482060 -n02482286 -n02482474 -n02482650 -n02483092 -n02484322 -n02484473 -n02485225 -n02485371 -n02485536 -n02485688 -n02486657 -n02486908 -n02487079 -n02487547 -n02487675 -n02487847 -n02488003 -n02488415 -n02488894 -n02489589 -n02490597 -n02490811 -n02491107 -n02491329 -n02491474 -n02496913 -n02501583 -n02502514 -n02503127 -n02503517 -n02504770 -n02507649 -n02508021 -n02512053 -n02512938 -n02513560 -n02515214 -n02516188 -n02517442 -n02517938 -n02519148 -n02519686 -n02521646 -n02522399 -n02524524 -n02526425 -n02526818 -n02527057 -n02527271 -n02527622 -n02528163 -n02529772 -n02530421 -n02532028 -n02532602 -n02533209 -n02533834 -n02534559 -n02534734 -n02535537 -n02537085 -n02537319 -n02538406 -n02538985 -n02540412 -n02541687 -n02546331 -n02548689 -n02549989 -n02550460 -n02552171 -n02554730 -n02556846 -n02557591 -n02557749 -n02559862 -n02561108 -n02561661 -n02562315 -n02562796 -n02563182 -n02564720 -n02565573 -n02566109 -n02568959 -n02569484 -n02570838 -n02572196 -n02574910 -n02576223 -n02576575 -n02578233 -n02579557 -n02580336 -n02581957 -n02583567 -n02585872 -n02586543 -n02588286 -n02590495 -n02590702 -n02590987 -n02594250 -n02596381 -n02597367 -n02599052 -n02599958 -n02600298 -n02601344 -n02602405 -n02603317 -n02604157 -n02605316 -n02606384 -n02607201 -n02607862 -n02613181 -n02614482 -n02614978 -n02619165 -n02621908 -n02623445 -n02624167 -n02625612 -n02626762 -n02627835 -n02630281 -n02630739 -n02631041 -n02636170 -n02636854 -n02638596 -n02640626 -n02640857 -n02642107 -n02642644 -n02643112 -n02644113 -n02646667 -n02648625 -n02650050 -n02650541 -n02652668 -n02653145 -n02653786 -n02654425 -n02655523 -n02656670 -n02657368 -n02658079 -n02661017 -n02662239 -n02663849 -n02667379 -n02667576 -n02668393 -n02670382 -n02671780 -n02672371 -n02676261 -n02676670 -n02677028 -n02677718 -n02678384 -n02680110 -n02680754 -n02682407 -n02682922 -n02683791 -n02686121 -n02686568 -n02687992 -n02688443 -n02689274 -n02691156 -n02692513 -n02693413 -n02693540 -n02694426 -n02694966 -n02695627 -n02697576 -n02698244 -n02700258 -n02700895 -n02702989 -n02703275 -n02705944 -n02708224 -n02708555 -n02709367 -n02709637 -n02710600 -n02712643 -n02713218 -n02715229 -n02715513 -n02715712 -n02716626 -n02726305 -n02726681 -n02727016 -n02727825 -n02728440 -n02729837 -n02729965 -n02730265 -n02732072 -n02732827 -n02733213 -n02733524 -n02735361 -n02735688 -n02736798 -n02737660 -n02738031 -n02738271 -n02738535 -n02739550 -n02739668 -n02740533 -n02740764 -n02741475 -n02742322 -n02742753 -n02745492 -n02746365 -n02749790 -n02750169 -n02751067 -n02751295 -n02752496 -n02753044 -n02753394 -n02754103 -n02755352 -n02755529 -n02756098 -n02756977 -n02757462 -n02757810 -n02758134 -n02758960 -n02759700 -n02759963 -n02760099 -n02760199 -n02760429 -n02760855 -n02761392 -n02763198 -n02763714 -n02764044 -n02764614 -n02764779 -n02765028 -n02766320 -n02766534 -n02766792 -n02767433 -n02769075 -n02770830 -n02772554 -n02772700 -n02773037 -n02773838 -n02774152 -n02774630 -n02775483 -n02776205 -n02777100 -n02777734 -n02777927 -n02778456 -n02778669 -n02781121 -n02781338 -n02781517 -n02783035 -n02783324 -n02784998 -n02785648 -n02786198 -n02786463 -n02788689 -n02789487 -n02790823 -n02792552 -n02792948 -n02793842 -n02794008 -n02794779 -n02794972 -n02795783 -n02796207 -n02796623 -n02796995 -n02797692 -n02797881 -n02799897 -n02801184 -n02801525 -n02801938 -n02802721 -n02803349 -n02803666 -n02804252 -n02806088 -n02806379 -n02806875 -n02810471 -n02811468 -n02811719 -n02812201 -n02813252 -n02813399 -n02815478 -n02815950 -n02816494 -n02817031 -n02817650 -n02817799 -n02818832 -n02819697 -n02820210 -n02821627 -n02821943 -n02822220 -n02822399 -n02822865 -n02823335 -n02824448 -n02826589 -n02826886 -n02827606 -n02828299 -n02828884 -n02831335 -n02831724 -n02831894 -n02833793 -n02834778 -n02835412 -n02836268 -n02839351 -n02839910 -n02840619 -n02841063 -n02841506 -n02842133 -n02843029 -n02843777 -n02844214 -n02844307 -n02844714 -n02847631 -n02848216 -n02848523 -n02849154 -n02850950 -n02851099 -n02853016 -n02854532 -n02854926 -n02855089 -n02855390 -n02855793 -n02857365 -n02857477 -n02857644 -n02858304 -n02860415 -n02861886 -n02862048 -n02862916 -n02863750 -n02865665 -n02865931 -n02866578 -n02867715 -n02869737 -n02871631 -n02871824 -n02871963 -n02872752 -n02873839 -n02874086 -n02875436 -n02876326 -n02876457 -n02876657 -n02877962 -n02879517 -n02880189 -n02880546 -n02880940 -n02881193 -n02881906 -n02882483 -n02882647 -n02883004 -n02883344 -n02884225 -n02885108 -n02885338 -n02886599 -n02887209 -n02887970 -n02888569 -n02889425 -n02891188 -n02891788 -n02892499 -n02893418 -n02896294 -n02896442 -n02897389 -n02897820 -n02898173 -n02898369 -n02898585 -n02898711 -n02900705 -n02901481 -n02901901 -n02902079 -n02902916 -n02903006 -n02904109 -n02904640 -n02908217 -n02909285 -n02911485 -n02912065 -n02913152 -n02914991 -n02916179 -n02916350 -n02917377 -n02917607 -n02919414 -n02920503 -n02921884 -n02923129 -n02924116 -n02925519 -n02928413 -n02928608 -n02929289 -n02929462 -n02929923 -n02931417 -n02931836 -n02932019 -n02932400 -n02933112 -n02933462 -n02933750 -n02933990 -n02934168 -n02935658 -n02935891 -n02936176 -n02936281 -n02936714 -n02938886 -n02939866 -n02941095 -n02942699 -n02943241 -n02943871 -n02944826 -n02945161 -n02946270 -n02946348 -n02946921 -n02947212 -n02947818 -n02948557 -n02949202 -n02950186 -n02950256 -n02950632 -n02950943 -n02951843 -n02952485 -n02952674 -n02953673 -n02954163 -n02954340 -n02954938 -n02955065 -n02955247 -n02955540 -n02955767 -n02957135 -n02957755 -n02958343 -n02959942 -n02961451 -n02961947 -n02963302 -n02963692 -n02963821 -n02965216 -n02965300 -n02965529 -n02966545 -n02966786 -n02966942 -n02967081 -n02967991 -n02968473 -n02969010 -n02969163 -n02969634 -n02969886 -n02970685 -n02970849 -n02971691 -n02972397 -n02973017 -n02974697 -n02975212 -n02976939 -n02978205 -n02978753 -n02979516 -n02982599 -n02983189 -n02983904 -n02984061 -n02984203 -n02984469 -n02984699 -n02985137 -n02985828 -n02986066 -n02987047 -n02987492 -n02989099 -n02991048 -n02991302 -n02992032 -n02993546 -n02995998 -n02997391 -n02997607 -n03001282 -n03001627 -n03002210 -n03003091 -n03004620 -n03005515 -n03007130 -n03007591 -n03010656 -n03010795 -n03011018 -n03011355 -n03012159 -n03013006 -n03014440 -n03015254 -n03017070 -n03018209 -n03020034 -n03020416 -n03020692 -n03024333 -n03025070 -n03025886 -n03027108 -n03027250 -n03029066 -n03031422 -n03032811 -n03033362 -n03033986 -n03034516 -n03034663 -n03035510 -n03036469 -n03036866 -n03037108 -n03037709 -n03038685 -n03039015 -n03039947 -n03040229 -n03040376 -n03043274 -n03043958 -n03045337 -n03046257 -n03048883 -n03049066 -n03049457 -n03050026 -n03050546 -n03050655 -n03050864 -n03051396 -n03051540 -n03052464 -n03052917 -n03053047 -n03054901 -n03055670 -n03056097 -n03056493 -n03057021 -n03057636 -n03058107 -n03058603 -n03058949 -n03059366 -n03061050 -n03063073 -n03063338 -n03064350 -n03064758 -n03065708 -n03066849 -n03070193 -n03071021 -n03071160 -n03072201 -n03073296 -n03073977 -n03074380 -n03074855 -n03075097 -n03075500 -n03075634 -n03076411 -n03076708 -n03078287 -n03078670 -n03079230 -n03079741 -n03080497 -n03080731 -n03081986 -n03082127 -n03082807 -n03082979 -n03084420 -n03085333 -n03085602 -n03085915 -n03086183 -n03086457 -n03086670 -n03087366 -n03087643 -n03087816 -n03088707 -n03091044 -n03091374 -n03092166 -n03092314 -n03093792 -n03094503 -n03096439 -n03096960 -n03098140 -n03098806 -n03099454 -n03099771 -n03099945 -n03100346 -n03100490 -n03101156 -n03101986 -n03102654 -n03102859 -n03106722 -n03106898 -n03107046 -n03109881 -n03111690 -n03112869 -n03113152 -n03113657 -n03113835 -n03114839 -n03115180 -n03116530 -n03116767 -n03117199 -n03118346 -n03118969 -n03119510 -n03120198 -n03120491 -n03121897 -n03122748 -n03123809 -n03125870 -n03128085 -n03128427 -n03128519 -n03129001 -n03130066 -n03130563 -n03131669 -n03132261 -n03134853 -n03135917 -n03136369 -n03137579 -n03139464 -n03140900 -n03141065 -n03141327 -n03143572 -n03145384 -n03145843 -n03146846 -n03147509 -n03148324 -n03148727 -n03149401 -n03151077 -n03153948 -n03154073 -n03154446 -n03155178 -n03156071 -n03156405 -n03157348 -n03158796 -n03158885 -n03161450 -n03162818 -n03163798 -n03163973 -n03164605 -n03164722 -n03164929 -n03165823 -n03167978 -n03168107 -n03168217 -n03170635 -n03171356 -n03172965 -n03173387 -n03175604 -n03176386 -n03177165 -n03177708 -n03178000 -n03178430 -n03180504 -n03180969 -n03181293 -n03182140 -n03182232 -n03182912 -n03183080 -n03186818 -n03187751 -n03189818 -n03193597 -n03196062 -n03196324 -n03196598 -n03199647 -n03199901 -n03200357 -n03200539 -n03200701 -n03200906 -n03201035 -n03201638 -n03201996 -n03202354 -n03202760 -n03203089 -n03203806 -n03204306 -n03204558 -n03204955 -n03205143 -n03205304 -n03206718 -n03206908 -n03207305 -n03208556 -n03210683 -n03211117 -n03211616 -n03212811 -n03214253 -n03214450 -n03215191 -n03219135 -n03220237 -n03221059 -n03221720 -n03222516 -n03223162 -n03223441 -n03224753 -n03224893 -n03225777 -n03226538 -n03228016 -n03228533 -n03228692 -n03229115 -n03229526 -n03231160 -n03231819 -n03235796 -n03235979 -n03236580 -n03236735 -n03237212 -n03237639 -n03239259 -n03239726 -n03240140 -n03241093 -n03241335 -n03241496 -n03242120 -n03242506 -n03242995 -n03243218 -n03245271 -n03245421 -n03246933 -n03250952 -n03251533 -n03251766 -n03252324 -n03252637 -n03254374 -n03255488 -n03255899 -n03256788 -n03256928 -n03257586 -n03258905 -n03259505 -n03261776 -n03262519 -n03262809 -n03262932 -n03265032 -n03266749 -n03267821 -n03269203 -n03269401 -n03270695 -n03271765 -n03271865 -n03272239 -n03272383 -n03273061 -n03273913 -n03274561 -n03274796 -n03276179 -n03277459 -n03277771 -n03278248 -n03279153 -n03279364 -n03279508 -n03280394 -n03280644 -n03281145 -n03282060 -n03282401 -n03284743 -n03284981 -n03285912 -n03286572 -n03287733 -n03288003 -n03289985 -n03291413 -n03292960 -n03294048 -n03294833 -n03296478 -n03297103 -n03297644 -n03297735 -n03298089 -n03302790 -n03303217 -n03303831 -n03304197 -n03304465 -n03305522 -n03307573 -n03308152 -n03309808 -n03314378 -n03314884 -n03315644 -n03316406 -n03318136 -n03319457 -n03320046 -n03322570 -n03322940 -n03323703 -n03324928 -n03325088 -n03326073 -n03327234 -n03327691 -n03327841 -n03329663 -n03330792 -n03334017 -n03334492 -n03334912 -n03335030 -n03335846 -n03336839 -n03337494 -n03338287 -n03338821 -n03339296 -n03339643 -n03340009 -n03340923 -n03342961 -n03343354 -n03343560 -n03343853 -n03346135 -n03346455 -n03349296 -n03350352 -n03350456 -n03350602 -n03351262 -n03351979 -n03352628 -n03354903 -n03355468 -n03356446 -n03357267 -n03357716 -n03359137 -n03359566 -n03360731 -n03361683 -n03362771 -n03363363 -n03364008 -n03364937 -n03365592 -n03365991 -n03366823 -n03373237 -n03374649 -n03374838 -n03375171 -n03376279 -n03378342 -n03379343 -n03379828 -n03379989 -n03380647 -n03380867 -n03381126 -n03381231 -n03381776 -n03382856 -n03382969 -n03383468 -n03384167 -n03384891 -n03385557 -n03386011 -n03387323 -n03387653 -n03390327 -n03391770 -n03393324 -n03394480 -n03394649 -n03396580 -n03396654 -n03397266 -n03397532 -n03398228 -n03399761 -n03399971 -n03402188 -n03402369 -n03404012 -n03404360 -n03404449 -n03405265 -n03405725 -n03407369 -n03409393 -n03409591 -n03410147 -n03411339 -n03412058 -n03412220 -n03412511 -n03412906 -n03413264 -n03413428 -n03413828 -n03414162 -n03415252 -n03416489 -n03416775 -n03417345 -n03418158 -n03418242 -n03419014 -n03422072 -n03422589 -n03423719 -n03424630 -n03427296 -n03428090 -n03428349 -n03429003 -n03429288 -n03429914 -n03430091 -n03430313 -n03430551 -n03430959 -n03431243 -n03431745 -n03433637 -n03433877 -n03434285 -n03434830 -n03435593 -n03437941 -n03438257 -n03439814 -n03441112 -n03442288 -n03442756 -n03446070 -n03446832 -n03448031 -n03448956 -n03449564 -n03449858 -n03450516 -n03452267 -n03452449 -n03453320 -n03454110 -n03454211 -n03454707 -n03455355 -n03456548 -n03456665 -n03457008 -n03457686 -n03458271 -n03459914 -n03461882 -n03465500 -n03465818 -n03466162 -n03466839 -n03467517 -n03467796 -n03467984 -n03468696 -n03469493 -n03470387 -n03470629 -n03470948 -n03472232 -n03472535 -n03472937 -n03473817 -n03473966 -n03475823 -n03476083 -n03476313 -n03477773 -n03477902 -n03478756 -n03478907 -n03481521 -n03482523 -n03483230 -n03483531 -n03484083 -n03484931 -n03487331 -n03487444 -n03487774 -n03488188 -n03488603 -n03489162 -n03490324 -n03490449 -n03490884 -n03491988 -n03496296 -n03496612 -n03497100 -n03497657 -n03498536 -n03499468 -n03500295 -n03501152 -n03501288 -n03501614 -n03502331 -n03502509 -n03502777 -n03503718 -n03503997 -n03505383 -n03505504 -n03506370 -n03507963 -n03508101 -n03509394 -n03509843 -n03510583 -n03510866 -n03511175 -n03512147 -n03512911 -n03513137 -n03513376 -n03515338 -n03517899 -n03517982 -n03518631 -n03519674 -n03521076 -n03521544 -n03522634 -n03524574 -n03524976 -n03525074 -n03525454 -n03525827 -n03528263 -n03529444 -n03531281 -n03531447 -n03531546 -n03532342 -n03534776 -n03535024 -n03536761 -n03537412 -n03538037 -n03538300 -n03538634 -n03538957 -n03540267 -n03540595 -n03541091 -n03541696 -n03541923 -n03542333 -n03542860 -n03543603 -n03544360 -n03545150 -n03546340 -n03547054 -n03547530 -n03548930 -n03550153 -n03550289 -n03551084 -n03551790 -n03552449 -n03552749 -n03553486 -n03554460 -n03555426 -n03555662 -n03557590 -n03558176 -n03558404 -n03558739 -n03561169 -n03563200 -n03563710 -n03563967 -n03565288 -n03565565 -n03566329 -n03568117 -n03568818 -n03571942 -n03572205 -n03574555 -n03574816 -n03575958 -n03576215 -n03577672 -n03577818 -n03578055 -n03578251 -n03578656 -n03579538 -n03579982 -n03583621 -n03584400 -n03585073 -n03588951 -n03589513 -n03589791 -n03590306 -n03590932 -n03592245 -n03592773 -n03593526 -n03595409 -n03595860 -n03596285 -n03597317 -n03598151 -n03598299 -n03598646 -n03600977 -n03601638 -n03601840 -n03602081 -n03603722 -n03604629 -n03604843 -n03605722 -n03605915 -n03606465 -n03609235 -n03609542 -n03610418 -n03610992 -n03612814 -n03613294 -n03613592 -n03614007 -n03614532 -n03615563 -n03617095 -n03617594 -n03618546 -n03618982 -n03619396 -n03619650 -n03619793 -n03619890 -n03620052 -n03621049 -n03621694 -n03622931 -n03623556 -n03624134 -n03625355 -n03626115 -n03631177 -n03631811 -n03632852 -n03633886 -n03635032 -n03635668 -n03635932 -n03636248 -n03636649 -n03638883 -n03639675 -n03640988 -n03642444 -n03646296 -n03646916 -n03647520 -n03651388 -n03653220 -n03653454 -n03654576 -n03655072 -n03656484 -n03657239 -n03658858 -n03659292 -n03660124 -n03661340 -n03662719 -n03662887 -n03663531 -n03664675 -n03664943 -n03665366 -n03666362 -n03666917 -n03667235 -n03667829 -n03671914 -n03672827 -n03673450 -n03673767 -n03676759 -n03677766 -n03679384 -n03679712 -n03681477 -n03682487 -n03684823 -n03685307 -n03685820 -n03686130 -n03686470 -n03687928 -n03688943 -n03689157 -n03689570 -n03690851 -n03691817 -n03692379 -n03693293 -n03697552 -n03698604 -n03699280 -n03699975 -n03700963 -n03701191 -n03701391 -n03701640 -n03701790 -n03702248 -n03704834 -n03705379 -n03706653 -n03707597 -n03708036 -n03709206 -n03709363 -n03709545 -n03710528 -n03711711 -n03711999 -n03712887 -n03713069 -n03714235 -n03715386 -n03715669 -n03715892 -n03716966 -n03717131 -n03718212 -n03718335 -n03718699 -n03718789 -n03719053 -n03721590 -n03722007 -n03722288 -n03724176 -n03725035 -n03725717 -n03726516 -n03726760 -n03726993 -n03727837 -n03727946 -n03728437 -n03728982 -n03729647 -n03729951 -n03730153 -n03730788 -n03731695 -n03733644 -n03733925 -n03735637 -n03736970 -n03738241 -n03738472 -n03739518 -n03739693 -n03743902 -n03744276 -n03744684 -n03744840 -n03745571 -n03746330 -n03748162 -n03749504 -n03749807 -n03750206 -n03751065 -n03752185 -n03752922 -n03753077 -n03753514 -n03758894 -n03759432 -n03760671 -n03762982 -n03763727 -n03764276 -n03765561 -n03765934 -n03766322 -n03768132 -n03769722 -n03770954 -n03772077 -n03772674 -n03773035 -n03775199 -n03775847 -n03779000 -n03779370 -n03780047 -n03781787 -n03782190 -n03785499 -n03787523 -n03789171 -n03789400 -n03789946 -n03790230 -n03790512 -n03790755 -n03791235 -n03792048 -n03792526 -n03793850 -n03795976 -n03796181 -n03797390 -n03798982 -n03799113 -n03800485 -n03800772 -n03800933 -n03802007 -n03802228 -n03802393 -n03803116 -n03809312 -n03811295 -n03811444 -n03811847 -n03811965 -n03812382 -n03812924 -n03813176 -n03813946 -n03815278 -n03815482 -n03815615 -n03816005 -n03816136 -n03816849 -n03817647 -n03819595 -n03819994 -n03820154 -n03820318 -n03820728 -n03820950 -n03824197 -n03825080 -n03827536 -n03828020 -n03829340 -n03831757 -n03834040 -n03834604 -n03836062 -n03837422 -n03838748 -n03839172 -n03839276 -n03839795 -n03841666 -n03842156 -n03844045 -n03844233 -n03845190 -n03846234 -n03846772 -n03847471 -n03847823 -n03848168 -n03848348 -n03849275 -n03850613 -n03851341 -n03851787 -n03852280 -n03852688 -n03854815 -n03859280 -n03859495 -n03859958 -n03861430 -n03861842 -n03862676 -n03863923 -n03864139 -n03864356 -n03864692 -n03865371 -n03865949 -n03868406 -n03871083 -n03871524 -n03871724 -n03873848 -n03874138 -n03874823 -n03875218 -n03880129 -n03880323 -n03880531 -n03883054 -n03883773 -n03883944 -n03884639 -n03885535 -n03885669 -n03886053 -n03886641 -n03887185 -n03888022 -n03889503 -n03889726 -n03891051 -n03892557 -n03894051 -n03894379 -n03896103 -n03896233 -n03896419 -n03896628 -n03896984 -n03897943 -n03898271 -n03898633 -n03899612 -n03899933 -n03901338 -n03903133 -n03903424 -n03904060 -n03904183 -n03904433 -n03905540 -n03906997 -n03907654 -n03908204 -n03909160 -n03909406 -n03915118 -n03915437 -n03916470 -n03916720 -n03917327 -n03918480 -n03920737 -n03923564 -n03923692 -n03924069 -n03926148 -n03926412 -n03926876 -n03927792 -n03928116 -n03929091 -n03929202 -n03929443 -n03930515 -n03932670 -n03936269 -n03938522 -n03939677 -n03940256 -n03941684 -n03943920 -n03945615 -n03947111 -n03947466 -n03948459 -n03951971 -n03953020 -n03953416 -n03955809 -n03956785 -n03956922 -n03957315 -n03957762 -n03958630 -n03958752 -n03959014 -n03959701 -n03961939 -n03962525 -n03962932 -n03963028 -n03965907 -n03966325 -n03966751 -n03966976 -n03967942 -n03968293 -n03971321 -n03972524 -n03973520 -n03973628 -n03975035 -n03979377 -n03979492 -n03980026 -n03981340 -n03982232 -n03982895 -n03984234 -n03984381 -n03985232 -n03986704 -n03988170 -n03989665 -n03990474 -n03991443 -n03992325 -n03992703 -n03993180 -n03993403 -n03994008 -n03994757 -n03995018 -n03995856 -n03996145 -n03996416 -n03997484 -n03999992 -n04000311 -n04001397 -n04001499 -n04001845 -n04004210 -n04004475 -n04005912 -n04007664 -n04010057 -n04010779 -n04010927 -n04011827 -n04012084 -n04013729 -n04014297 -n04015204 -n04016576 -n04016684 -n04018399 -n04018667 -n04019101 -n04019696 -n04020087 -n04020298 -n04020912 -n04021028 -n04021362 -n04021798 -n04022332 -n04022708 -n04023249 -n04024274 -n04026053 -n04026918 -n04027023 -n04027706 -n04028315 -n04029734 -n04030274 -n04036303 -n04037964 -n04038440 -n04038727 -n04039848 -n04042358 -n04042632 -n04042795 -n04042985 -n04043733 -n04044307 -n04044498 -n04045085 -n04045397 -n04046590 -n04046974 -n04047401 -n04049405 -n04050066 -n04051549 -n04051825 -n04052757 -n04056932 -n04057047 -n04057435 -n04057846 -n04057981 -n04058096 -n04058239 -n04059947 -n04060647 -n04060904 -n04061793 -n04061969 -n04062644 -n04063373 -n04063868 -n04064401 -n04065464 -n04065789 -n04067231 -n04067353 -n04067921 -n04068441 -n04068601 -n04069276 -n04069777 -n04070207 -n04070964 -n04071102 -n04071263 -n04071393 -n04072193 -n04072551 -n04073948 -n04075468 -n04075916 -n04076284 -n04077430 -n04077734 -n04078574 -n04079106 -n04079244 -n04079933 -n04080454 -n04080833 -n04081844 -n04083649 -n04086794 -n04087126 -n04087709 -n04088696 -n04088797 -n04089666 -n04089976 -n04090548 -n04091097 -n04093625 -n04095210 -n04096066 -n04097622 -n04097866 -n04099175 -n04099429 -n04100174 -n04101497 -n04101701 -n04102037 -n04102285 -n04102406 -n04102962 -n04104147 -n04104500 -n04105068 -n04105438 -n04105893 -n04107984 -n04108268 -n04110068 -n04110654 -n04110955 -n04111190 -n04111414 -n04111668 -n04113765 -n04114996 -n04115256 -n04115996 -n04116389 -n04118021 -n04121228 -n04122349 -n04122492 -n04122825 -n04123123 -n04123567 -n04123740 -n04125116 -n04125853 -n04126541 -n04126659 -n04126980 -n04127904 -n04128499 -n04128837 -n04131929 -n04134632 -n04136510 -n04137444 -n04137897 -n04138977 -n04139859 -n04140064 -n04140631 -n04141838 -n04143897 -n04146050 -n04147495 -n04148054 -n04149083 -n04151108 -n04151581 -n04151940 -n04152387 -n04154753 -n04156297 -n04156411 -n04157320 -n04158807 -n04158956 -n04160372 -n04160586 -n04161358 -n04161981 -n04164757 -n04164868 -n04166111 -n04167489 -n04169437 -n04170037 -n04171459 -n04171629 -n04171831 -n04174101 -n04174500 -n04176068 -n04176190 -n04176528 -n04177329 -n04177545 -n04180063 -n04180888 -n04181228 -n04181718 -n04182322 -n04183217 -n04183329 -n04184435 -n04184600 -n04185071 -n04186051 -n04186268 -n04186455 -n04186624 -n04186848 -n04187061 -n04187547 -n04187885 -n04189092 -n04190052 -n04190464 -n04190747 -n04190997 -n04191150 -n04191595 -n04191943 -n04192238 -n04192858 -n04194289 -n04196080 -n04197391 -n04198015 -n04198797 -n04199027 -n04201733 -n04202417 -n04205318 -n04206356 -n04207763 -n04210390 -n04211356 -n04211970 -n04215910 -n04216634 -n04216860 -n04216963 -n04217718 -n04217882 -n04219424 -n04221823 -n04222210 -n04222470 -n04222847 -n04225031 -n04225222 -n04225729 -n04226464 -n04226537 -n04227900 -n04229007 -n04229107 -n04229480 -n04230603 -n04230808 -n04231693 -n04232153 -n04233832 -n04234455 -n04235291 -n04235771 -n04236001 -n04236377 -n04236702 -n04238617 -n04241042 -n04241394 -n04242408 -n04243003 -n04243941 -n04244997 -n04245847 -n04246855 -n04247630 -n04247736 -n04248507 -n04249415 -n04250224 -n04250599 -n04253931 -n04255499 -n04256520 -n04260589 -n04261116 -n04262678 -n04263336 -n04263760 -n04264233 -n04264914 -n04266486 -n04267577 -n04269944 -n04270891 -n04271148 -n04272054 -n04272782 -n04273064 -n04273796 -n04275283 -n04275661 -n04275904 -n04278353 -n04279172 -n04279987 -n04280259 -n04280970 -n04283585 -n04283905 -n04284002 -n04285146 -n04285622 -n04285803 -n04286128 -n04288272 -n04288533 -n04288673 -n04289449 -n04291242 -n04291759 -n04292414 -n04292572 -n04293119 -n04293744 -n04294212 -n04294426 -n04295081 -n04295881 -n04299215 -n04300358 -n04301000 -n04301474 -n04303258 -n04304375 -n04305471 -n04306080 -n04306847 -n04307419 -n04307878 -n04308084 -n04308273 -n04308397 -n04308583 -n04308807 -n04309348 -n04309833 -n04310721 -n04311595 -n04312154 -n04312432 -n04313220 -n04314914 -n04315828 -n04315948 -n04317420 -n04318131 -n04318982 -n04319937 -n04320405 -n04322026 -n04322692 -n04322801 -n04323819 -n04326799 -n04326896 -n04328054 -n04328329 -n04328946 -n04329477 -n04330340 -n04330669 -n04330998 -n04331277 -n04332987 -n04333129 -n04338517 -n04339638 -n04340750 -n04340935 -n04341133 -n04341414 -n04341686 -n04346679 -n04347519 -n04348184 -n04348359 -n04349401 -n04350104 -n04350458 -n04354589 -n04356595 -n04358707 -n04358874 -n04359335 -n04359589 -n04360501 -n04360798 -n04361095 -n04361260 -n04362821 -n04363210 -n04363874 -n04364545 -n04364827 -n04364994 -n04365328 -n04365484 -n04365751 -n04368695 -n04370048 -n04371563 -n04373894 -n04375775 -n04377057 -n04378956 -n04379243 -n04379964 -n04380346 -n04381994 -n04382334 -n04382880 -n04383130 -n04383301 -n04386664 -n04387201 -n04387400 -n04388162 -n04388743 -n04389521 -n04390873 -n04391838 -n04392526 -n04393095 -n04394261 -n04395875 -n04397168 -n04397261 -n04397645 -n04398497 -n04398688 -n04398834 -n04399046 -n04400289 -n04401088 -n04402057 -n04402580 -n04402746 -n04402984 -n04403638 -n04404817 -n04404997 -n04405540 -n04405762 -n04407435 -n04407686 -n04409128 -n04409806 -n04410086 -n04410365 -n04410485 -n04411264 -n04411966 -n04413151 -n04413419 -n04415663 -n04416901 -n04417180 -n04417361 -n04417809 -n04419073 -n04421872 -n04422875 -n04427715 -n04428008 -n04431436 -n04431745 -n04434932 -n04435180 -n04436185 -n04436401 -n04436542 -n04437670 -n04437953 -n04438304 -n04438643 -n04440963 -n04441662 -n04444749 -n04445040 -n04445952 -n04446276 -n04447276 -n04447443 -n04448070 -n04448361 -n04450243 -n04450640 -n04450749 -n04451818 -n04452615 -n04452848 -n04453156 -n04453666 -n04453910 -n04454654 -n04455250 -n04455652 -n04456472 -n04457326 -n04458843 -n04459362 -n04459610 -n04460130 -n04462011 -n04463679 -n04464852 -n04467099 -n04467307 -n04468005 -n04469251 -n04470741 -n04471315 -n04471632 -n04472243 -n04472726 -n04473884 -n04474466 -n04475411 -n04475631 -n04477548 -n04478512 -n04478657 -n04480527 -n04481524 -n04487724 -n04488427 -n04489008 -n04489817 -n04490091 -n04491769 -n04493109 -n04494204 -n04495450 -n04497442 -n04497570 -n04498523 -n04499446 -n04499554 -n04500060 -n04501837 -n04502197 -n04502502 -n04502670 -n04502851 -n04504141 -n04504770 -n04505036 -n04506994 -n04507453 -n04508163 -n04508489 -n04508949 -n04509260 -n04509592 -n04511002 -n04514241 -n04516116 -n04516214 -n04516672 -n04518132 -n04519153 -n04520170 -n04520382 -n04521987 -n04524313 -n04527648 -n04529681 -n04530566 -n04531098 -n04531873 -n04533042 -n04533199 -n04533700 -n04534127 -n04534895 -n04536153 -n04538552 -n04539203 -n04540761 -n04541320 -n04543158 -n04544450 -n04546194 -n04546855 -n04547592 -n04549122 -n04549919 -n04551055 -n04552696 -n04553389 -n04554871 -n04555600 -n04555897 -n04556948 -n04557308 -n04557751 -n04558059 -n04558804 -n04559023 -n04559730 -n04562262 -n04563204 -n04565375 -n04566257 -n04567098 -n04568069 -n04568557 -n04569520 -n04569822 -n04570958 -n04571292 -n04571566 -n04571958 -n04572935 -n04574471 -n04574999 -n04576002 -n04576211 -n04576971 -n04577426 -n04577769 -n04578801 -n04579230 -n04580493 -n04581595 -n04582349 -n04583620 -n04585745 -n04585980 -n04586932 -n04587648 -n04588739 -n04589190 -n04589434 -n04591056 -n04591887 -n04592005 -n04592099 -n04594218 -n04594489 -n04595285 -n04595855 -n04596852 -n04597066 -n04597804 -n04598136 -n04598582 -n04599124 -n04600312 -n04600486 -n04600912 -n04603729 -n04603872 -n04605726 -n04606574 -n04608329 -n04608567 -n04609531 -n04609651 -n04610176 -n04610503 -n04610676 -n04611916 -n04613015 -n04615226 -n04615644 -n04950713 -n04951373 -n04958634 -n04959672 -n04960277 -n04961691 -n04963740 -n04965179 -n04965661 -n04967191 -n04968895 -n04970059 -n04970631 -n04970916 -n04972801 -n04973386 -n04976952 -n05238282 -n05241218 -n05242070 -n05244934 -n05266879 -n05399034 -n05447757 -n05449959 -n05453657 -n05467758 -n05586759 -n06254669 -n06262567 -n06263369 -n06263609 -n06263762 -n06266417 -n06266710 -n06267145 -n06271778 -n06272290 -n06272803 -n06274092 -n06275353 -n06276697 -n06277280 -n06281040 -n06359467 -n06359657 -n06418693 -n06591815 -n06592078 -n06595351 -n06613686 -n06793231 -n07556637 -n07556970 -n07557165 -n07557434 -n07560652 -n07561112 -n07562495 -n07563800 -n07564629 -n07564971 -n07565725 -n07565945 -n07566340 -n07566863 -n07567390 -n07567707 -n07568818 -n07569106 -n07569543 -n07570720 -n07572353 -n07572957 -n07573103 -n07573696 -n07574602 -n07575076 -n07575726 -n07575984 -n07576182 -n07576438 -n07576577 -n07577374 -n07579575 -n07580053 -n07580359 -n07580470 -n07581346 -n07581775 -n07582277 -n07582441 -n07582609 -n07583197 -n07584228 -n07584593 -n07585208 -n07587441 -n07587700 -n07588947 -n07590320 -n07591473 -n07592094 -n07592656 -n07593774 -n07595914 -n07596046 -n07596452 -n07596684 -n07597145 -n07597365 -n07598734 -n07599468 -n07599783 -n07599998 -n07600506 -n07601407 -n07605474 -n07605944 -n07606278 -n07606764 -n07607707 -n07609407 -n07609840 -n07611148 -n07611358 -n07611839 -n07611991 -n07612367 -n07612632 -n07612996 -n07613671 -n07614198 -n07614825 -n07615052 -n07615190 -n07615460 -n07615569 -n07615671 -n07616590 -n07617188 -n07619004 -n07623136 -n07624466 -n07627931 -n07628068 -n07641928 -n07642471 -n07642933 -n07643306 -n07643474 -n07643764 -n07643981 -n07644244 -n07663899 -n07678729 -n07679356 -n07680517 -n07680932 -n07681926 -n07682316 -n07682624 -n07683786 -n07684600 -n07685730 -n07686873 -n07687211 -n07687469 -n07687789 -n07689003 -n07690273 -n07690892 -n07692405 -n07692614 -n07693889 -n07693972 -n07694403 -n07695878 -n07695965 -n07697100 -n07704054 -n07705931 -n07707451 -n07708512 -n07708798 -n07709333 -n07710007 -n07710283 -n07710616 -n07710952 -n07712063 -n07712382 -n07712748 -n07712856 -n07713395 -n07713895 -n07714078 -n07714802 -n07714895 -n07715561 -n07715721 -n07716034 -n07717070 -n07717858 -n07718671 -n07719437 -n07719839 -n07720442 -n07720615 -n07721325 -n07721456 -n07721678 -n07722217 -n07722763 -n07723330 -n07723559 -n07723753 -n07724943 -n07725376 -n07725531 -n07726796 -n07727578 -n07727868 -n07728804 -n07729000 -n07729485 -n07730406 -n07730855 -n07731122 -n07731587 -n07731952 -n07732302 -n07732747 -n07734017 -n07734292 -n07735052 -n07735803 -n07737081 -n07739125 -n07739506 -n07740220 -n07740954 -n07741461 -n07742012 -n07742704 -n07744246 -n07747055 -n07747811 -n07747951 -n07748753 -n07748912 -n07749095 -n07749192 -n07749312 -n07749731 -n07750586 -n07751451 -n07752377 -n07752664 -n07753743 -n07755089 -n07755411 -n07755707 -n07756096 -n07757132 -n07757312 -n07757602 -n07757990 -n07758680 -n07758950 -n07759424 -n07759691 -n07759816 -n07760501 -n07761141 -n07761309 -n07761611 -n07761777 -n07761954 -n07767344 -n07767847 -n07770571 -n07771212 -n07800091 -n07800740 -n07801508 -n07802152 -n07802417 -n07803093 -n07803545 -n07804323 -n07805254 -n07805594 -n07805731 -n07806221 -n07806633 -n07807317 -n07807710 -n07807922 -n07809096 -n07809368 -n07810907 -n07811416 -n07812184 -n07814203 -n07815588 -n07818277 -n07819480 -n07820497 -n07820814 -n07823951 -n07824702 -n07824988 -n07825717 -n07828987 -n07829412 -n07830593 -n07832902 -n07834507 -n07836731 -n07837002 -n07837362 -n07838233 -n07841495 -n07841639 -n07841907 -n07842753 -n07842972 -n07843464 -n07843775 -n07844042 -n07844604 -n07846143 -n07847198 -n07848338 -n07848771 -n07849336 -n07850083 -n07850329 -n07851298 -n07852045 -n07852919 -n07854813 -n07856270 -n07857959 -n07858595 -n07859284 -n07859583 -n07860805 -n07861158 -n07861813 -n07863374 -n07864638 -n07865105 -n07867421 -n07867883 -n07869391 -n07869775 -n07870313 -n07871436 -n07873464 -n07874063 -n07874159 -n07874259 -n07874343 -n07874441 -n07874780 -n07875693 -n07875835 -n07876281 -n07880751 -n07881117 -n07881205 -n07881404 -n07881800 -n07882497 -n07882886 -n07883031 -n07883251 -n07883384 -n07884567 -n07886572 -n07886849 -n07887634 -n07888465 -n07888909 -n07889510 -n07890352 -n07890750 -n07891726 -n07892813 -n07893528 -n07893891 -n07894102 -n07894298 -n07894965 -n07895237 -n07895435 -n07895595 -n07895710 -n07895839 -n07896287 -n07897200 -n07897865 -n07898117 -n07898333 -n07898745 -n07899108 -n07900406 -n07900616 -n07901587 -n07903208 -n07904395 -n07905038 -n07906284 -n07906877 -n07907161 -n07907548 -n07907943 -n07909129 -n07909811 -n07911371 -n07911677 -n07912211 -n07913393 -n07914413 -n07915618 -n07916041 -n07917618 -n07918028 -n07920222 -n07921455 -n07921948 -n07923748 -n07924033 -n07924560 -n07924834 -n07925966 -n07926920 -n07927197 -n07927931 -n07929519 -n07930554 -n07931001 -n07931096 -n07932614 -n07932841 -n07933274 -n07933891 -n07934032 -n07934530 -n07935152 -n07935504 -n07936263 -n07936745 -n07938149 -n07951464 -n08554440 -n08558963 -n08596076 -n08598301 -n08616050 -n08640531 -n08659446 -n09191635 -n09206896 -n09206985 -n09210862 -n09213434 -n09213565 -n09214060 -n09214916 -n09215437 -n09217230 -n09230041 -n09233446 -n09238926 -n09255070 -n09259025 -n09259219 -n09262690 -n09265620 -n09269882 -n09270735 -n09287968 -n09289331 -n09289596 -n09290444 -n09295946 -n09300306 -n09302616 -n09303008 -n09303528 -n09304750 -n09305031 -n09308572 -n09309292 -n09315159 -n09326662 -n09335693 -n09335809 -n09336555 -n09337253 -n09344198 -n09352849 -n09359803 -n09362945 -n09366017 -n09366317 -n09375606 -n09376526 -n09381242 -n09393605 -n09396465 -n09398677 -n09405787 -n09406793 -n09409512 -n09409752 -n09410224 -n09416076 -n09421799 -n09428628 -n09432990 -n09433442 -n09437454 -n09439213 -n09443641 -n09453008 -n09458269 -n09472413 -n09474010 -n09505153 -n09606009 -n09606527 -n09608709 -n09610405 -n09613191 -n09615336 -n09616922 -n09619168 -n09619452 -n09620078 -n09620794 -n09622049 -n09622302 -n09624168 -n09624559 -n09625401 -n09626238 -n09627906 -n09629246 -n09629752 -n09631129 -n09632274 -n09632518 -n09633969 -n09636339 -n09638875 -n09639919 -n09641002 -n09644152 -n09648743 -n09651123 -n09665545 -n09669631 -n09670280 -n09676884 -n09679925 -n09690208 -n09694771 -n09696585 -n09697401 -n09700964 -n09701148 -n09701833 -n09705124 -n09708750 -n09710164 -n09716047 -n09718217 -n09722658 -n09724785 -n09725229 -n09725772 -n09726621 -n09727440 -n09727826 -n09730204 -n09731436 -n09731571 -n09735258 -n09738400 -n09744679 -n09754217 -n09758173 -n09758885 -n09761068 -n09763784 -n09764201 -n09764598 -n09765278 -n09767197 -n09769076 -n09770179 -n09771435 -n09772746 -n09773962 -n09774783 -n09790482 -n09792555 -n09795124 -n09795334 -n09800964 -n09802445 -n09802641 -n09805151 -n09805475 -n09809538 -n09809749 -n09810166 -n09811712 -n09814660 -n09815790 -n09816771 -n09818022 -n09820263 -n09821831 -n09823502 -n09824135 -n09824609 -n09826204 -n09830194 -n09831962 -n09834699 -n09836160 -n09840217 -n09841188 -n09841515 -n09841696 -n09842047 -n09848489 -n09851575 -n09853645 -n09853881 -n09854915 -n09857007 -n09861946 -n09865398 -n09868270 -n09871681 -n09877951 -n09889691 -n09892693 -n09894654 -n09895222 -n09895701 -n09902353 -n09903153 -n09910374 -n09917593 -n09918248 -n09923418 -n09923673 -n09924996 -n09927089 -n09927451 -n09928136 -n09928451 -n09929298 -n09930257 -n09930876 -n09931640 -n09933098 -n09935434 -n09936892 -n09937056 -n09941964 -n09942970 -n09943239 -n09943811 -n09944160 -n09945319 -n09950457 -n09951070 -n09951274 -n09960688 -n09962966 -n09964411 -n09968845 -n09974648 -n09976728 -n09979321 -n09983572 -n09989502 -n09990415 -n09991867 -n09992538 -n09992837 -n09993252 -n09994673 -n09996481 -n09997622 -n10001217 -n10006748 -n10007684 -n10009484 -n10009671 -n10015215 -n10015897 -n10017422 -n10018861 -n10020890 -n10024362 -n10029068 -n10034201 -n10034614 -n10035952 -n10036266 -n10036929 -n10037385 -n10040945 -n10041887 -n10042690 -n10043643 -n10044879 -n10047459 -n10048367 -n10048836 -n10052694 -n10053808 -n10054657 -n10055730 -n10055847 -n10060175 -n10067968 -n10070711 -n10077593 -n10078131 -n10078806 -n10079399 -n10079893 -n10080869 -n10083823 -n10084043 -n10084295 -n10086383 -n10091651 -n10092488 -n10093475 -n10094584 -n10095869 -n10098710 -n10098862 -n10099375 -n10101634 -n10102800 -n10105085 -n10107303 -n10109662 -n10111903 -n10112129 -n10118844 -n10126177 -n10126424 -n10126708 -n10127689 -n10129825 -n10134396 -n10134982 -n10136959 -n10142747 -n10142946 -n10143172 -n10143725 -n10145340 -n10145774 -n10148305 -n10150071 -n10150940 -n10151570 -n10153594 -n10154186 -n10154601 -n10155849 -n10162194 -n10164233 -n10165448 -n10168183 -n10168584 -n10171567 -n10182190 -n10185793 -n10186774 -n10187130 -n10195593 -n10200781 -n10202624 -n10205457 -n10206173 -n10207169 -n10210137 -n10215623 -n10216106 -n10224578 -n10225219 -n10228278 -n10235385 -n10237069 -n10241300 -n10243664 -n10245639 -n10249270 -n10249459 -n10249950 -n10257221 -n10259348 -n10263411 -n10266328 -n10266848 -n10271677 -n10273064 -n10274815 -n10276045 -n10282672 -n10284064 -n10284965 -n10296444 -n10299250 -n10299700 -n10305635 -n10305802 -n10306004 -n10308732 -n10312287 -n10314054 -n10315561 -n10316360 -n10317007 -n10317500 -n10320863 -n10321340 -n10322238 -n10323999 -n10324560 -n10328437 -n10332385 -n10335246 -n10335931 -n10340312 -n10341573 -n10343554 -n10345100 -n10353016 -n10353355 -n10355142 -n10355449 -n10355688 -n10356450 -n10357613 -n10360747 -n10366966 -n10369528 -n10370381 -n10376523 -n10377021 -n10379376 -n10380672 -n10383816 -n10386984 -n10387196 -n10387324 -n10393909 -n10396106 -n10399130 -n10400998 -n10402824 -n10403876 -n10405694 -n10407954 -n10409752 -n10411551 -n10415037 -n10417551 -n10418101 -n10419047 -n10420031 -n10421016 -n10426454 -n10427764 -n10428004 -n10433737 -n10435716 -n10435988 -n10438172 -n10439851 -n10444194 -n10450303 -n10462860 -n10464052 -n10466918 -n10467179 -n10470779 -n10474064 -n10474645 -n10478960 -n10481268 -n10482054 -n10482921 -n10484858 -n10488309 -n10495421 -n10499355 -n10499857 -n10506544 -n10508710 -n10512372 -n10512708 -n10519494 -n10521100 -n10521662 -n10522035 -n10522324 -n10522759 -n10523341 -n10525134 -n10525436 -n10525617 -n10527334 -n10529231 -n10541833 -n10542888 -n10543161 -n10544232 -n10544748 -n10546633 -n10548537 -n10548681 -n10554846 -n10556518 -n10557854 -n10559288 -n10560637 -n10568200 -n10570019 -n10575787 -n10576962 -n10577284 -n10580535 -n10582746 -n10583387 -n10594147 -n10595164 -n10595647 -n10599806 -n10602985 -n10604634 -n10605253 -n10610465 -n10612210 -n10614629 -n10617193 -n10618685 -n10618848 -n10619642 -n10620758 -n10622053 -n10624074 -n10624310 -n10625860 -n10628644 -n10630188 -n10632576 -n10633450 -n10648237 -n10648696 -n10654932 -n10657835 -n10661002 -n10661563 -n10665698 -n10669991 -n10674130 -n10676018 -n10679174 -n10682953 -n10686073 -n10692883 -n10693824 -n10694258 -n10698368 -n10700201 -n10700640 -n10701180 -n10703336 -n10703692 -n10705615 -n10707233 -n10708454 -n10709529 -n10713686 -n10720453 -n10721321 -n10722575 -n10722965 -n10726786 -n10735298 -n10740868 -n10741152 -n10742997 -n10744164 -n10747119 -n10751265 -n10752480 -n10759151 -n10759982 -n10763383 -n10763620 -n10765679 -n10766260 -n10768903 -n10779610 -n10780632 -n10782791 -n10782940 -n10787470 -n10791221 -n10792335 -n10793570 -n10794014 -n11531193 -n11537327 -n11542640 -n11545524 -n11545714 -n11547562 -n11547855 -n11552386 -n11553240 -n11596108 -n11598686 -n11600372 -n11601177 -n11601918 -n11608250 -n11609475 -n11609684 -n11612923 -n11614250 -n11618861 -n11620673 -n11621029 -n11623105 -n11624531 -n11627168 -n11628456 -n11630017 -n11630489 -n11643835 -n11645914 -n11647306 -n11649878 -n11650558 -n11650759 -n11661372 -n11665372 -n11666854 -n11669921 -n11672400 -n11674332 -n11676500 -n11684264 -n11689483 -n11693981 -n11697560 -n11700864 -n11703669 -n11708658 -n11709674 -n11713164 -n11720353 -n11722982 -n11723770 -n11725015 -n11725623 -n11727091 -n11729478 -n11733054 -n11736694 -n11741350 -n11745817 -n11747468 -n11748002 -n11751765 -n11752578 -n11756092 -n11756669 -n11759224 -n11763625 -n11767354 -n11769621 -n11771539 -n11774513 -n11775340 -n11779300 -n11782036 -n11783920 -n11785668 -n11789438 -n11789962 -n11790788 -n11793779 -n11794519 -n11796005 -n11801392 -n11805956 -n11807108 -n11807979 -n11808721 -n11811473 -n11815491 -n11817914 -n11820965 -n11823043 -n11830714 -n11830906 -n11832214 -n11836722 -n11839568 -n11845557 -n11851578 -n11855274 -n11857696 -n11862835 -n11865071 -n11866248 -n11868814 -n11869351 -n11869689 -n11872146 -n11875691 -n11875938 -n11877473 -n11878283 -n11887119 -n11890022 -n11892637 -n11894327 -n11898639 -n11900569 -n11902709 -n11915214 -n11915658 -n11915899 -n11916467 -n11918286 -n11919447 -n11920498 -n11924445 -n11928352 -n11928858 -n11931918 -n11932745 -n11939699 -n11940006 -n11943407 -n11944196 -n11945367 -n11946727 -n11947251 -n11948264 -n11950345 -n11951511 -n11952346 -n11953884 -n11954484 -n11956850 -n11965627 -n11967744 -n11970101 -n11971248 -n11971783 -n11972759 -n11973341 -n11976170 -n11977303 -n11978233 -n11982115 -n11985053 -n11985739 -n11988893 -n11991263 -n11997032 -n11997969 -n12006766 -n12008252 -n12008749 -n12010628 -n12013511 -n12015959 -n12018760 -n12020507 -n12024176 -n12030654 -n12034141 -n12036067 -n12036939 -n12041446 -n12043444 -n12045860 -n12050959 -n12053405 -n12056217 -n12057447 -n12062468 -n12065316 -n12065777 -n12075151 -n12076577 -n12080395 -n12083591 -n12086012 -n12086539 -n12087961 -n12090890 -n12092262 -n12094244 -n12095020 -n12096395 -n12101870 -n12102133 -n12105125 -n12107970 -n12108432 -n12109827 -n12110778 -n12112008 -n12112918 -n12113657 -n12117017 -n12119099 -n12119238 -n12121033 -n12124627 -n12126360 -n12131550 -n12135898 -n12136720 -n12137120 -n12137569 -n12139575 -n12141495 -n12142085 -n12143676 -n12144313 -n12146311 -n12147226 -n12152532 -n12153580 -n12154773 -n12155583 -n12156819 -n12157056 -n12157769 -n12158031 -n12158798 -n12159055 -n12159555 -n12160490 -n12161285 -n12163035 -n12164363 -n12166424 -n12168565 -n12170585 -n12173664 -n12174311 -n12174926 -n12182049 -n12187663 -n12188289 -n12195391 -n12196129 -n12199266 -n12201580 -n12202936 -n12205694 -n12214789 -n12215579 -n12217453 -n12221191 -n12224978 -n12225349 -n12226932 -n12231192 -n12236546 -n12237486 -n12244153 -n12245695 -n12246232 -n12252168 -n12252866 -n12253229 -n12256112 -n12257570 -n12260799 -n12262553 -n12265394 -n12266217 -n12266796 -n12268246 -n12269241 -n12269652 -n12271643 -n12274630 -n12275489 -n12281241 -n12284262 -n12286826 -n12287642 -n12288823 -n12290748 -n12293723 -n12296432 -n12300840 -n12302071 -n12303462 -n12305475 -n12306717 -n12307756 -n12310349 -n12316444 -n12318378 -n12320010 -n12322501 -n12328398 -n12330469 -n12334293 -n12334891 -n12335483 -n12335664 -n12335800 -n12340383 -n12341542 -n12342299 -n12343480 -n12344283 -n12346578 -n12350758 -n12352287 -n12355760 -n12360108 -n12360684 -n12364604 -n12367611 -n12374418 -n12377198 -n12381511 -n12385429 -n12387633 -n12387839 -n12392070 -n12396924 -n12399132 -n12401335 -n12401684 -n12405714 -n12409231 -n12411461 -n12412355 -n12412606 -n12416423 -n12419037 -n12420535 -n12421467 -n12421683 -n12425281 -n12430198 -n12431434 -n12437513 -n12437769 -n12441958 -n12446200 -n12446519 -n12449296 -n12450344 -n12451915 -n12454159 -n12459629 -n12460697 -n12461466 -n12462032 -n12463743 -n12464476 -n12466727 -n12470092 -n12474167 -n12475035 -n12476510 -n12480895 -n12491826 -n12495146 -n12499163 -n12506181 -n12508309 -n12509476 -n12511856 -n12516584 -n12522188 -n12524188 -n12526516 -n12527738 -n12539074 -n12539306 -n12546183 -n12548280 -n12550210 -n12554526 -n12556656 -n12560282 -n12560775 -n12562577 -n12572546 -n12573256 -n12575322 -n12582231 -n12582665 -n12582846 -n12583126 -n12583401 -n12584191 -n12586298 -n12590232 -n12594989 -n12595964 -n12602262 -n12602980 -n12612170 -n12614477 -n12615710 -n12620196 -n12622875 -n12624381 -n12625383 -n12631331 -n12633638 -n12634211 -n12634429 -n12635744 -n12636885 -n12638218 -n12638556 -n12639736 -n12640607 -n12641413 -n12641931 -n12642200 -n12643473 -n12644902 -n12645174 -n12647376 -n12649065 -n12650556 -n12651821 -n12653218 -n12655869 -n12658118 -n12658846 -n12659356 -n12660601 -n12662772 -n12663804 -n12665048 -n12667406 -n12667964 -n12674120 -n12674685 -n12682411 -n12683407 -n12685431 -n12685831 -n12688716 -n12690653 -n12695144 -n12698435 -n12705013 -n12707781 -n12708293 -n12709901 -n12711596 -n12713063 -n12714755 -n12715914 -n12717072 -n12719684 -n12724942 -n12725521 -n12727301 -n12731401 -n12732491 -n12732756 -n12733647 -n12741222 -n12742741 -n12743823 -n12746884 -n12749049 -n12752205 -n12755225 -n12756457 -n12762896 -n12768369 -n12771192 -n12772753 -n12777436 -n12778605 -n12779603 -n12785724 -n12791064 -n12793015 -n12794985 -n12798284 -n12800586 -n12801520 -n12805146 -n12806732 -n12810595 -n12812235 -n12814643 -n12817464 -n12822769 -n12823717 -n12823859 -n12832315 -n12833985 -n12834798 -n12836212 -n12836862 -n12839979 -n12840749 -n12842302 -n12842887 -n12844939 -n12849061 -n12853080 -n12854048 -n12858150 -n12866968 -n12869478 -n12870535 -n12871272 -n12877244 -n12878169 -n12879963 -n12882779 -n12884260 -n12890265 -n12893463 -n12903367 -n12904938 -n12908645 -n12909421 -n12912670 -n12917901 -n12922763 -n12926480 -n12928071 -n12929403 -n12930778 -n12931906 -n12934036 -n12934479 -n12939104 -n12941536 -n12942395 -n12943443 -n12946849 -n12950126 -n12952165 -n12953206 -n12956170 -n12957608 -n12960378 -n12960863 -n12965626 -n12968136 -n12969131 -n12970193 -n12971400 -n12973791 -n12974987 -n12976198 -n12980840 -n12982468 -n12983961 -n12985773 -n12987056 -n12988158 -n12992868 -n12997654 -n12997919 -n13000891 -n13001041 -n13001206 -n13001366 -n13001529 -n13002750 -n13002925 -n13003061 -n13003254 -n13003522 -n13003712 -n13004423 -n13004640 -n13004826 -n13004992 -n13005329 -n13005984 -n13006171 -n13006631 -n13006894 -n13007417 -n13007629 -n13008157 -n13008315 -n13008485 -n13008689 -n13008839 -n13009085 -n13009244 -n13009429 -n13009656 -n13010694 -n13010951 -n13011221 -n13012253 -n13012469 -n13012973 -n13013534 -n13013764 -n13013965 -n13014097 -n13014265 -n13014409 -n13014581 -n13014741 -n13014879 -n13017102 -n13017240 -n13017439 -n13017610 -n13017789 -n13017979 -n13018088 -n13018232 -n13018407 -n13019496 -n13019643 -n13019835 -n13020191 -n13020481 -n13020964 -n13021166 -n13021332 -n13021543 -n13021689 -n13021867 -n13022210 -n13022709 -n13024012 -n13024500 -n13025647 -n13028611 -n13032115 -n13032923 -n13035241 -n13035389 -n13035707 -n13037585 -n13037805 -n13038068 -n13038376 -n13038744 -n13039349 -n13040629 -n13040796 -n13041312 -n13042982 -n13043926 -n13045210 -n13045975 -n13046130 -n13049953 -n13055423 -n13055577 -n13055792 -n13055949 -n13056135 -n13056349 -n13056607 -n13056799 -n13057054 -n13057242 -n13057422 -n13057639 -n13058037 -n13058272 -n13058608 -n13059298 -n13059657 -n13060017 -n13060190 -n13063269 -n13066129 -n13067191 -n13068917 -n13070308 -n13070875 -n13071371 -n13071553 -n13071815 -n13072031 -n13072209 -n13072350 -n13072528 -n13072706 -n13072863 -n13073055 -n13073703 -n13074619 -n13074814 -n13075020 -n13075272 -n13075441 -n13075684 -n13075847 -n13076041 -n13076405 -n13076643 -n13076831 -n13077033 -n13077295 -n13079419 -n13083023 -n13084184 -n13085113 -n13091620 -n13091774 -n13100156 -n13100677 -n13104059 -n13108131 -n13108662 -n13108841 -n13109733 -n13110915 -n13111174 -n13111881 -n13118707 -n13119870 -n13120211 -n13121104 -n13122364 -n13123431 -n13125117 -n13130161 -n13130726 -n13132034 -n13132338 -n13132486 -n13132940 -n13134302 -n13134947 -n13135832 -n13136316 -n13136556 -n13137409 -n13137672 -n13138308 -n13138658 -n13138842 -n13139055 -n13139647 -n13141141 -n13145444 -n13149296 -n13150894 -n13154841 -n13156986 -n13157137 -n13160831 -n13163991 -n13172923 -n13174670 -n13177529 -n13180534 -n13186388 -n13188096 -n13188268 -n13192625 -n13193642 -n13194572 -n13195761 -n13199970 -n13201969 -n13206817 -n13207736 -n13208705 -n13211790 -n13219422 -n13221529 -n13224673 -n13230662 -n13231678 -n13231919 -n13232106 -n13232363 -n13232779 -n13233727 -n13238375 -n13238988 -n13252672 -n13862780 -n13863186 -n13863473 -n13863771 -n13864153 -n13864965 -n13865298 -n13865483 -n13866144 -n13866827 -n13867492 -n13868248 -n13868371 -n13872592 -n13873502 -n13875392 -n13875571 -n13878306 -n13879320 -n13883603 -n13888491 -n13893786 -n13894434 -n13896100 -n13897996 -n13900287 -n13903079 -n13905121 -n13905275 -n13905792 -n13912260 -n13915999 -n14633206 -n14696793 -n14844693 -n14853210 -n14899328 -n14900184 -n14974264 -n14977504 -n14992287 -n15062057 -n15067877 -n15089258 -n15089472 -n15089645 -n15089803 -n15090742 -n15092409 -n15092751 diff --git a/build/darknet/x64/data/imagenet.shortnames.list b/build/darknet/x64/data/imagenet.shortnames.list deleted file mode 100644 index e9600eb5b93..00000000000 --- a/build/darknet/x64/data/imagenet.shortnames.list +++ /dev/null @@ -1,21842 +0,0 @@ -kit fox -English setter -Siberian husky -Australian terrier -English springer -grey whale -lesser panda -Egyptian cat -ibex -Persian cat -cougar -gazelle -porcupine -sea lion -malamute -badger -Great Dane -Walker hound -Welsh springer spaniel -whippet -Scottish deerhound -killer whale -mink -African elephant -Weimaraner -soft-coated wheaten terrier -Dandie Dinmont -red wolf -Old English sheepdog -jaguar -otterhound -bloodhound -Airedale -hyena -meerkat -giant schnauzer -titi -three-toed sloth -sorrel -black-footed ferret -dalmatian -black-and-tan coonhound -papillon -skunk -Staffordshire bullterrier -Mexican hairless -Bouvier des Flandres -weasel -miniature poodle -Cardigan -malinois -bighorn -fox squirrel -colobus -tiger cat -Lhasa -impala -coyote -Yorkshire terrier -Newfoundland -brown bear -red fox -Norwegian elkhound -Rottweiler -hartebeest -Saluki -grey fox -schipperke -Pekinese -Brabancon griffon -West Highland white terrier -Sealyham terrier -guenon -mongoose -indri -tiger -Irish wolfhound -wild boar -EntleBucher -zebra -ram -French bulldog -orangutan -basenji -leopard -Bernese mountain dog -Maltese dog -Norfolk terrier -toy terrier -vizsla -cairn -squirrel monkey -groenendael -clumber -Siamese cat -chimpanzee -komondor -Afghan hound -Japanese spaniel -proboscis monkey -guinea pig -white wolf -ice bear -gorilla -borzoi -toy poodle -Kerry blue terrier -ox -Scotch terrier -Tibetan mastiff -spider monkey -Doberman -Boston bull -Greater Swiss Mountain dog -Appenzeller -Shih-Tzu -Irish water spaniel -Pomeranian -Bedlington terrier -warthog -Arabian camel -siamang -miniature schnauzer -collie -golden retriever -Irish terrier -affenpinscher -Border collie -hare -boxer -silky terrier -beagle -Leonberg -German short-haired pointer -patas -dhole -baboon -macaque -Chesapeake Bay retriever -bull mastiff -kuvasz -capuchin -pug -curly-coated retriever -Norwich terrier -flat-coated retriever -hog -keeshond -Eskimo dog -Brittany spaniel -standard poodle -Lakeland terrier -snow leopard -Gordon setter -dingo -standard schnauzer -hamster -Tibetan terrier -Arctic fox -wire-haired fox terrier -basset -water buffalo -American black bear -Angora -bison -howler monkey -hippopotamus -chow -giant panda -American Staffordshire terrier -Shetland sheepdog -Great Pyrenees -Chihuahua -tabby -marmoset -Labrador retriever -Saint Bernard -armadillo -Samoyed -bluetick -redbone -polecat -marmot -kelpie -gibbon -llama -miniature pinscher -wood rabbit -Italian greyhound -lion -cocker spaniel -Irish setter -dugong -Indian elephant -beaver -Sussex spaniel -Pembroke -Blenheim spaniel -Madagascar cat -Rhodesian ridgeback -lynx -African hunting dog -langur -Ibizan hound -timber wolf -cheetah -English foxhound -briard -sloth bear -Border terrier -German shepherd -otter -koala -tusker -echidna -wallaby -platypus -wombat -revolver -umbrella -schooner -soccer ball -accordion -ant -starfish -chambered nautilus -grand piano -laptop -strawberry -airliner -warplane -airship -balloon -space shuttle -fireboat -gondola -speedboat -lifeboat -canoe -yawl -catamaran -trimaran -container ship -liner -pirate -aircraft carrier -submarine -wreck -half track -tank -missile -bobsled -dogsled -bicycle-built-for-two -mountain bike -freight car -passenger car -barrow -shopping cart -motor scooter -forklift -electric locomotive -steam locomotive -amphibian -ambulance -beach wagon -cab -convertible -jeep -limousine -minivan -Model T -racer -sports car -go-kart -golfcart -moped -snowplow -fire engine -garbage truck -pickup -tow truck -trailer truck -moving van -police van -recreational vehicle -streetcar -snowmobile -tractor -mobile home -tricycle -unicycle -horse cart -jinrikisha -oxcart -bassinet -cradle -crib -four-poster -bookcase -china cabinet -medicine chest -chiffonier -table lamp -file -park bench -barber chair -throne -folding chair -rocking chair -studio couch -toilet seat -desk -pool table -dining table -entertainment center -wardrobe -Granny Smith -orange -lemon -fig -pineapple -banana -jackfruit -custard apple -pomegranate -acorn -hip -ear -rapeseed -corn -buckeye -organ -upright -chime -drum -gong -maraca -marimba -steel drum -banjo -cello -violin -harp -acoustic guitar -electric guitar -cornet -French horn -trombone -harmonica -ocarina -panpipe -bassoon -oboe -sax -flute -daisy -yellow lady's slipper -cliff -valley -alp -volcano -promontory -sandbar -coral reef -lakeside -seashore -geyser -hatchet -cleaver -letter opener -plane -power drill -lawn mower -hammer -corkscrew -can opener -plunger -screwdriver -shovel -plow -chain saw -cock -hen -ostrich -brambling -goldfinch -house finch -junco -indigo bunting -robin -bulbul -jay -magpie -chickadee -water ouzel -kite -bald eagle -vulture -great grey owl -black grouse -ptarmigan -ruffed grouse -prairie chicken -peacock -quail -partridge -African grey -macaw -sulphur-crested cockatoo -lorikeet -coucal -bee eater -hornbill -hummingbird -jacamar -toucan -drake -red-breasted merganser -goose -black swan -white stork -black stork -spoonbill -flamingo -American egret -little blue heron -bittern -crane -limpkin -American coot -bustard -ruddy turnstone -red-backed sandpiper -redshank -dowitcher -oystercatcher -European gallinule -pelican -king penguin -albatross -great white shark -tiger shark -hammerhead -electric ray -stingray -barracouta -coho -tench -goldfish -eel -rock beauty -anemone fish -lionfish -puffer -sturgeon -gar -loggerhead -leatherback turtle -mud turtle -terrapin -box turtle -banded gecko -common iguana -American chameleon -whiptail -agama -frilled lizard -alligator lizard -Gila monster -green lizard -African chameleon -Komodo dragon -triceratops -African crocodile -American alligator -thunder snake -ringneck snake -hognose snake -green snake -king snake -garter snake -water snake -vine snake -night snake -boa constrictor -rock python -Indian cobra -green mamba -sea snake -horned viper -diamondback -sidewinder -European fire salamander -common newt -eft -spotted salamander -axolotl -bullfrog -tree frog -tailed frog -whistle -wing -paintbrush -hand blower -oxygen mask -snorkel -loudspeaker -microphone -screen -mouse -electric fan -oil filter -strainer -space heater -stove -guillotine -barometer -rule -odometer -scale -analog clock -digital clock -wall clock -hourglass -sundial -parking meter -stopwatch -digital watch -stethoscope -syringe -magnetic compass -binoculars -projector -sunglasses -loupe -radio telescope -bow -cannon -assault rifle -rifle -projectile -computer keyboard -typewriter keyboard -crane -lighter -abacus -cash machine -slide rule -desktop computer -hand-held computer -notebook -web site -harvester -thresher -printer -slot -vending machine -sewing machine -joystick -switch -hook -car wheel -paddlewheel -pinwheel -potter's wheel -gas pump -carousel -swing -reel -radiator -puck -hard disc -sunglass -pick -car mirror -solar dish -remote control -disk brake -buckle -hair slide -knot -combination lock -padlock -nail -safety pin -screw -muzzle -seat belt -ski -candle -jack-o'-lantern -spotlight -torch -neck brace -pier -tripod -maypole -mousetrap -spider web -trilobite -harvestman -scorpion -black and gold garden spider -barn spider -garden spider -black widow -tarantula -wolf spider -tick -centipede -isopod -Dungeness crab -rock crab -fiddler crab -king crab -American lobster -spiny lobster -crayfish -hermit crab -tiger beetle -ladybug -ground beetle -long-horned beetle -leaf beetle -dung beetle -rhinoceros beetle -weevil -fly -bee -grasshopper -cricket -walking stick -cockroach -mantis -cicada -leafhopper -lacewing -dragonfly -damselfly -admiral -ringlet -monarch -cabbage butterfly -sulphur butterfly -lycaenid -jellyfish -sea anemone -brain coral -flatworm -nematode -conch -snail -slug -sea slug -chiton -sea urchin -sea cucumber -iron -espresso maker -microwave -Dutch oven -rotisserie -toaster -waffle iron -vacuum -dishwasher -refrigerator -washer -Crock Pot -frying pan -wok -caldron -coffeepot -teapot -spatula -altar -triumphal arch -patio -steel arch bridge -suspension bridge -viaduct -barn -greenhouse -palace -monastery -library -apiary -boathouse -church -mosque -stupa -planetarium -restaurant -cinema -home theater -lumbermill -coil -obelisk -totem pole -castle -prison -grocery store -bakery -barbershop -bookshop -butcher shop -confectionery -shoe shop -tobacco shop -toyshop -fountain -cliff dwelling -yurt -dock -brass -megalith -bannister -breakwater -dam -chainlink fence -picket fence -worm fence -stone wall -grille -sliding door -turnstile -mountain tent -scoreboard -honeycomb -plate rack -pedestal -beacon -mashed potato -bell pepper -head cabbage -broccoli -cauliflower -zucchini -spaghetti squash -acorn squash -butternut squash -cucumber -artichoke -cardoon -mushroom -shower curtain -jean -carton -handkerchief -sandal -ashcan -safe -plate -necklace -croquet ball -fur coat -thimble -pajama -running shoe -cocktail shaker -chest -manhole cover -modem -tub -tray -balance beam -bagel -prayer rug -kimono -hot pot -whiskey jug -knee pad -book jacket -spindle -ski mask -beer bottle -crash helmet -bottlecap -tile roof -mask -maillot -Petri dish -football helmet -bathing cap -teddy -holster -pop bottle -photocopier -vestment -crossword puzzle -golf ball -trifle -suit -water tower -feather boa -cloak -red wine -drumstick -shield -Christmas stocking -hoopskirt -menu -stage -bonnet -meat loaf -baseball -face powder -scabbard -sunscreen -beer glass -hen-of-the-woods -guacamole -lampshade -wool -hay -bow tie -mailbag -water jug -bucket -dishrag -soup bowl -eggnog -mortar -trench coat -paddle -chain -swab -mixing bowl -potpie -wine bottle -shoji -bulletproof vest -drilling platform -binder -cardigan -sweatshirt -pot -birdhouse -hamper -ping-pong ball -pencil box -pay-phone -consomme -apron -punching bag -backpack -groom -bearskin -pencil sharpener -broom -mosquito net -abaya -mortarboard -poncho -crutch -Polaroid camera -space bar -cup -racket -traffic light -quill -radio -dough -cuirass -military uniform -lipstick -shower cap -monitor -oscilloscope -mitten -brassiere -French loaf -vase -milk can -rugby ball -paper towel -earthstar -envelope -miniskirt -cowboy hat -trolleybus -perfume -bathtub -hotdog -coral fungus -bullet train -pillow -toilet tissue -cassette -carpenter's kit -ladle -stinkhorn -lotion -hair spray -academic gown -dome -crate -wig -burrito -pill bottle -chain mail -theater curtain -window shade -barrel -washbasin -ballpoint -basketball -bath towel -cowboy boot -gown -window screen -agaric -cellular telephone -nipple -barbell -mailbox -lab coat -fire screen -minibus -packet -maze -pole -horizontal bar -sombrero -pickelhaube -rain barrel -wallet -cassette player -comic book -piggy bank -street sign -bell cote -fountain pen -Windsor tie -volleyball -overskirt -sarong -purse -bolo tie -bib -parachute -sleeping bag -television -swimming trunks -measuring cup -espresso -pizza -breastplate -shopping basket -wooden spoon -saltshaker -chocolate sauce -ballplayer -goblet -gyromitra -stretcher -water bottle -dial telephone -soap dispenser -jersey -school bus -jigsaw puzzle -plastic bag -reflex camera -diaper -Band Aid -ice lolly -velvet -tennis ball -gasmask -doormat -Loafer -ice cream -pretzel -quilt -maillot -tape player -clog -iPod -bolete -scuba diver -pitcher -matchstick -bikini -sock -CD player -lens cap -thatch -vault -beaker -bubble -cheeseburger -parallel bars -flagpole -coffee mug -rubber eraser -stole -carbonara -dumbbell -singles -Virginia deer -eastern grey squirrel -gelding -pylon -table-tennis table -peacock -Segway -surfing -tamandua -knocker -steering wheel -motorcycling -coati -sitar -range -backhoe -agaric -dashboard -water polo -concrete mixer -treadmill -golf bag -skateboarding -royal tennis -tartan -four-wheel drive -sport utility -sedan -print -luggage rack -softball -windmill -ben -red admiral -jalousie -towel rail -truss -strand -ice hockey -sconce -wind turbine -plush -stained-glass window -ballpark -thoroughbred -love seat -red-spotted purple -miller -Adelie -freight liner -clock tower -acrobatics -shaving brush -ewe -ottoman -African violet -bicycle wheel -cork -windmill -satin -comma -coffee mill -baggage -wasp's nest -batting glove -Ferris wheel -push-bike -porthole -football stadium -gas tank -barbecue -handlebar -hula-hoop -fairground -rapier -garter stitch -exercise bike -control tower -carryall -minute hand -cog -riverbank -water nymph -common dandelion -android -hairbrush -redberry -fret -display window -pepper mill -litterbin -drapery -ducking -fly-fishing -broad jump -sprinkler -water-skiing -chicory -sail -volleyball -rugby -Texas bluebonnet -computer monitor -tortoiseshell -airplane propeller -solar array -figure skating -air conditioner -purple loosestrife -gearshift -outboard motor -cowslip -Abyssinian -dip -workstation -cosy -bunker -neon lamp -campanile -casket -verbena -amphora -sumo -common foxglove -sprocket -jelly bean -emperor penguin -night-blooming cereus -clock radio -black birch -bomber jacket -Virginia bluebell -bayonet -walker -altarpiece -tattoo -bridle -rocker arm -water turkey -spiderwort -flange -mute swan -laser printer -carburetor -coverlet -mountainside -baritone -auto racing -baluster -gal -peach bells -taffeta -grandfather -asparagus -horizontal stabilizer -world -grate -marsh marigold -white rhinoceros -movement -split rail -rollerblading -longhorn -muffler -church tower -light bulb -American agave -backpacking tent -overall -New World goldfinch -sectional -wing chair -transom -integrated circuit -dad -spar -picture frame -no-hit game -alternator -drill press -strawflower -hepatica -rangefinder -blinker -Welsh pony -nib -wagon wheel -rotor -tie -denim -jetliner -sculling -external drive -window frame -mourning dove -censer -stapler -batting helmet -flagon -machete -windshield -hedgehog -weeping willow -chief executive officer -hepatica -pet -Asiatic black bear -chinchilla -uke -Atlantic bottlenose dolphin -hair -dishtowel -flintlock -Bermuda shorts -lavender -searchlight -millwheel -piano keyboard -luna moth -bumper -parrot -skirt -manhole -coffee table -footstool -judo -Dalai Lama -armored personnel carrier -voile -saber -thoroughbred -wild carrot -gemsbok -caster -butterfly orchid -cow -sideboard -horseshoe crab -match play -cassette recorder -photomicrograph -drafting table -pediment -tramline -shipping -kitten -wainscoting -fried rice -helix -marguerite -pumpkin -white-bellied swallow -Tulipa gesneriana -common dolphin -face -red squirrel -bicycling -shipwreck -banded purple -cornice -pendant earring -forsythia -aardvark -seashell -spat -shoulder bag -fallow deer -yearling -common teasel -tufted titmouse -ancient -professional golf -purl -vehicle -okra -great grandmother -common lilac -rose mallow -newspaper -crucifix -chukka -armlet -fulmar -wapiti -doily -Greco-Roman wrestling -bleeding heart -kitchen table -bluebonnet -Cape buffalo -spun yarn -crape myrtle -dewdrop -great blue heron -medalist -vaulting horse -spinning wheel -skyscraper -Tahitian -forget-me-not -watercourse -guitarist -gargoyle -bee balm -pumpkin -hunting knife -flutist -lectern -skateboarder -foil -pant leg -hedge sparrow -dresser -automatic pistol -chicory -dialog box -chamberpot -black rhinoceros -fireweed -half-mast -pillow sham -pavilion -scarf joint -microprocessor -filly -dressing gown -shell -Arabian -child -radio antenna -butterweed -morris dancer -sparrow hawk -groom -brioche -floret -rainbow -earthworm -cellist -tine -toupee -balldress -map -angel's trumpet -ruin -fur -pronghorn -speed skating -used-car -stick -early spider orchid -stuffed peppers -snowdrift -flats -least sandpiper -stick -console table -ventilator -portable -kepi -pylon -viceroy -shoreline -Olympian Zeus -pestle -great-niece -life -air compressor -fanjet -scuba diving -fieldfare -tree swallow -personnel carrier -night-blooming cereus -sonogram -assembly hall -circuit breaker -chair -speed skate -soapwort -worsted -raspberry -burlap -flat panel display -Pyracantha -cemetery -turban -deer hunting -bottle green -dandelion green -pieta -aigrette -turntable -cover girl -clutch bag -kiwi -pea jacket -color guard -Malay -shire -crock -french fries -credenza -hockey stick -mourning cloak -potty seat -glass -balsamroot -medal play -red clover -gravy boat -garter belt -Guinness -meadow buttercup -jackass penguin -coursing -tooth -hawfinch -housetop -fluorescent lamp -black-backed gull -bookshelf -earplug -millipede -fawn -baseball bat -soup-strainer -organ loft -bugloss -tomahawk -blackcap -black-necked stilt -hand truck -bedstead -tempura -rose window -crimson -snow thrower -lesser whitethroat -palomino -ball -staff sergeant -wicker -garbage heap -great-nephew -parquet -coupe -nave -eggs Benedict -damask -flush toilet -Angora -pedometer -control room -bristle brush -kookaburra -telephone booth -Windsor chair -red-winged blackbird -cinnamon roll -briefs -cloister -sundress -mammillaria -unicyclist -covered bridge -coelogyne -fairy bluebird -phoebe -beer mug -headstock -parhelion -gorse -common European dogwood -fire-eater -professional football -rock climbing -cyclamen -tin -marjoram -Japanese morning glory -pipe -smasher -hang glider -abutment -birdbath -jotter -litter -artist's model -butterfly bush -dining area -sausage dog -piggery -English sparrow -Turk's-cap -platinum blond -song sparrow -alarm clock -tortoiseshell -chaise longue -flintlock -academic costume -graffito -Arnica montana -adding machine -waterside -director -jonquil -pipefitting -stud -Swedish meatball -musk rose -Venus's flytrap -raven -bougainvillea -little brother -field bindweed -finder -white admiral -tinfoil -serval -sheet -carthorse -people -potto -stockroom -sphinx -slate roof -mountain laurel -majolica -coal black -repository -bufo -pique -binder -tread -attorney general -hydraulic press -videocassette recorder -bumper car -professional baseball -cow parsley -ern -blue peafowl -common hyacinth -jack-in-the-pulpit -ice hockey rink -sport -camper -tailback -flash -stacks -pulp -Christmas cactus -netball -calliandra -curler -large periwinkle -cobweb -forward -Roman arch -cross bun -stoneware -banana bread -cape jasmine -settle -tongue -frock -pepper shaker -pitching coach -CD-R -casing -faience -hand cream -CD-ROM -recliner -striped bass -clary -sketch -risotto -reticle -white clover -touch football -kitty -great-aunt -Japanese maple -sidecar -muscovy duck -hack -rope bridge -organist -stinging nettle -pocket watch -Indian pipe -amorphophallus -bird's-foot violet -caller ID -furnishing -carriageway -dish rack -heiress -nail polish -beldam -Dall sheep -teriyaki -stateroom -laughing gull -chow -bookmark -timer -toga virilis -deviled egg -coltsfoot -Papuan -native -cygnet -automation -portfolio -cabbage palm -cube -broiler -radish -broodmare -castor-oil plant -pith hat -talus -lass -thatch -common marigold -young buck -igloo -prairie rattlesnake -soccer player -spoke -place -slide fastener -tapestry -toy -headboard -cross-country skiing -harness -sconce -rim -ballet skirt -transvestite -saddlebag -common evening primrose -taillight -challah -willet -ready-to-wear -cloud -answering machine -waterfront -vane -granddaughter -Chinese gooseberry -tureen -cab -truffle -viola -bootlace -chemise -taro -petal -candied apple -soccer -miniature golf -front porch -asparagus -Sauvignon blanc -daisy fleabane -ceiling -slip-on -bottle-nosed whale -redbud -black squirrel -snowsuit -ribbing -gravestone -creme brulee -ambassador -local -archery -love-in-a-mist -garbage -thyme -night-blooming cereus -goshawk -cuckoopint -azure -German iris -salad bowl -puppy -cockhorse -giant clam -biplane -stele -necklet -sea otter -crest -door -reformer -comforter -Byelorussian -bottle -hemline -book bag -leotard -owlet -spoon -sari -bidet -Latin -reticulated python -bowling shoe -futon -gaiter -coypu -tea urn -waders -bangle -snowbank -pencil -porter -azalea -English lavender -red spruce -team sport -cruet -high-rise -O ring -vodka -cormorant -Canada thistle -clasp -showjumping -rattan -red fox -sun parlor -Charolais -Tommy gun -bird's foot trefoil -sedge warbler -knot -chives -car tire -steam engine -adapter -spirea -common allamanda -oyster shell -harbor seal -baobab -wick -plumbago -downy woodpecker -coconut -leash -kasbah -hour hand -upholstery -mallard -cricket bat -lady -kitchenware -right-hander -leopard -olive green -common valerian -blue whale -blackboard -redhead -periwinkle -fingerboard -hard hat -locker -breakfast table -capybara -beekeeper -harness -feeder -water hyacinth -hexapod -brown thrasher -percale -lever -patriarch -arete -book -book -senator -bunya bunya -couch -durian -common lady's-slipper -mountain ash -golden barrel cactus -bicycle seat -beret -pop -musk mallow -manatee -cotton candy -boxing glove -backboard -tongue -saguaro -playground -capitol -sanderling -wagtail -deputy -tractor -tap -lady's smock -noseband -worsted -radiotelephone -camisole -forelock -muscat -sweet scabious -crane fly -butterfly weed -chestnut -pinata -inositol -borage -aquatic -belly -broadcaster -gondolier -egg yolk -blush wine -bufflehead -rambutan -oleander -horse-trail -sea holly -yard bird -conference room -lacrosse -belted kingfisher -defile -extremum -whistle -bear cub -grainfield -potage -watermelon -lasagna -sheik -Cooper's hawk -bulb -basketball court -paella -cassette tape -scatter rug -kid -impala lily -Minnesotan -Sudanese -chocolate -tail -quack-quack -whistling swan -shoulder patch -frozen custard -sumo wrestler -smoothie -bock -meat grinder -latch -palisade -radial -sake -kestrel -corn chowder -airframe -electrician -reamer -metropolitan -cotton flannel -cassowary -crossbill -operating room -winter aconite -flute -Tasmanian devil -billboard -suds -kilt -aperitif -cooling tower -avocado -hooded merganser -coleslaw -bee balm -ladder-back -insurance broker -scaffolding -polo mallet -double bed -two-hitter -bluff -gamboge -baby -lawn chair -frond -pistol grip -fancy dress -marquetry -jambalaya -fireweed -Eurasian kingfisher -cue ball -ice plant -horseweed -rose moss -musher -sun -viscount -white-breasted nuthatch -gin and tonic -thermos -Kenyan -first-aid kit -four-wheeler -tourist -stairwell -Gambian -liqueur glass -hovercraft -cocktail dress -twin -coriander -blister pack -Barrow's goldeneye -canteen -irrigation ditch -great white heron -tree sparrow -canal boat -lens -food processor -common raccoon -Baltimore oriole -black-eyed Susan -bush hibiscus -corolla -sire -mustachio -professional wrestling -elk -clustered bellflower -pannier -musk ox -crapaud -animal trainer -rosebud -ring-necked pheasant -little egret -cappuccino -rocker -bristlecone pine -cheerleader -hedge violet -semaphore -central processing unit -speedskater -delivery truck -assembly -hedgehog cactus -bergenia -bull thistle -bladder campion -cinquefoil -inula -cellulose tape -main rotor -bootee -autogiro -ice -grey -meadow cranesbill -hummus -valise -chassis -mountain goat -blacktail prairie dog -Chardonnay -romper -street -shoveler -wood ibis -topiary -chalice -silo -circus acrobat -Rollerblade -cosmos -woof -heroine -cold cream -marabou -herb robert -garden lettuce -nymph -floor lamp -automobile engine -heel -radiator -seeded player -fedora -father-in-law -peahen -Bahamian -wiper -wood pigeon -barn owl -pegboard -chorus frog -kin -roller skate -stob -rosemary -cowbird -hortensia -cranberry sauce -shot glass -Dixie cup -gnu -fire alarm -diet -booster -oxeye daisy -twayblade -high-definition television -truss bridge -bunk bed -mule -blackbuck -facsimile -frog orchid -point-and-shoot camera -brocade -gazebo -prairie gentian -concert -paintball -Cognac -maid -afghan -barbecued spareribs -pintail -tramway -commissioner -finger-painting -beef stew -caftan -Aberdeen Angus -demonstrator -sea trout -pigtail -thrush nightingale -barbados cherry -sashimi -ridgeling -lamppost -gabardine -red-shouldered hawk -bath salts -cavern -cymbid -Haitian -boater -southern buckthorn -arctic -motorcycle cop -red gum -Clydesdale -Zamboni -beagling -villa -demitasse -Sheetrock -lollipop -hybrid petunia -post horse -carabiner -brussels sprouts -Durham -stylist -pothole -sleigh bed -scallop shell -harrier eagle -papaya -Japanese persimmon -sachet -wild rice -chipboard -gun enclosure -menorah -chinook -headset -white campion -ocean -Secretary of State -G-string -bone china -basil -greenish blue -camcorder -concrete -screech owl -trumpet honeysuckle -flugelhorn -layette -cattle egret -case knife -mandarin duck -robber fly -salwar -dressing table -doughnut -facade -runner -honeypot -surf casting -diver -angel's trumpet -spin dryer -chameleon -wand -snow -vitamin A1 -manageress -volleyball net -antiperspirant -street clothes -tree sparrow -cords -sundew -bricks and mortar -caryatid -bridesmaid -trestle bridge -eyepiece -celebrant -scarlet pimpernel -gas range -onion -green salad -squill -creepy-crawly -hunk -little owl -salad nicoise -earflap -bird feeder -spray gun -bunny -Cheops -amazon -blue tit -Nissen hut -Kalashnikov -skylark -kremlin -shoebill -shopping bag -frigate bird -telephoto lens -peplum -moss pink -echidna -wastepaper basket -wood ibis -workroom -ankle brace -telpherage -Michaelmas daisy -figure skate -swami -nylons -cardoon -cocotte -headstall -twin bed -parsley -dirndl -corn poppy -nut bread -cloche -light heavyweight -mayor -lip-gloss -punch bowl -pottage -mango -fledgling -mousse -four-wheel drive -barrel -banana boat -trouser -bathroom -Sauterne -ring -settee -lavaliere -safe-deposit -godson -leatherette -schoolmate -radish -hedge trimmer -dahlia -euphonium -palace -vaulter -singlet -slicer -Pilsner -cockateel -kangaroo paw -Cub Scout -master bedroom -hexagon -cenotaph -Barberton daisy -Netherlander -intersection -Korean -gravel -chandelier -hospital bed -flash memory -pier -whole wheat flour -maroon -pale ale -special -snow bunting -crinoline -dustpan -barrette -common wood sorrel -yolk -pothos -speakerphone -tendril -cabinetwork -farm horse -brake disk -streetlight -superhighway -bandsaw -panting -pressure cooker -girdle -old man -cereal bowl -felt -hurling -architecture -harmonium -chain -blueberry -cellar -smocking -scrub brush -tablespoon -sweet corn -graining -library -street -bill -felt-tip pen -monkshood -crowd -log cabin -newel post -hack -elephant seal -golden pothos -popcorn -outhouse -patch pocket -fish and chips -tape -wax plant -eaves -fried egg -emerald -tea cart -fan blade -daily -Bowie knife -rowing boat -leaf shape -man -crayon -trumpetfish -chipping sparrow -whiskey bottle -pillion -city hall -golden pheasant -cheerleader -creeping bugle -couch -Dumpster -Homo sapiens sapiens -cranberry juice -cockpit -demagogue -joinery -scrambled eggs -technician -sidewalk -sheep -keyhole -power line -polyanthus -roulette -first lieutenant -checkout -tabletop -nasturtium -schnapps -engineering -skateboard -ground fir -bouquet -bunk -resort area -fleur-de-lis -power steering -opera -Bolivian -Friesian -buckskins -bay -slider -frozen yogurt -cabin cruiser -saunterer -lean-to -fishing eagle -bog star -cantaloupe -mouth -music stand -fiddlestick -brilliantine -pinball machine -bairn -barred owl -bath oil -signorina -Mason jar -nymph -rubber band -garden nasturtium -razorbill -Japanese beetle -batting cage -trestle -borage -Secretary of the Interior -scanner -baguet -baseball cap -chow mein -pen -jewelweed -barbet -chasm -pectoral sandpiper -holster -glasses case -sand -crevice -Kickapoo -snowboard -locket -satchel -tankard -alpinist -moorhen -cow pen -whooper -crown -chain -silversword -wild geranium -hi-fi -Tibetan -waterwheel -bee orchid -ruby-crowned kinglet -common broom -tabloid -javelin -sauna -klammath weed -zebra finch -spider orchid -velour -chiffon -lecture room -barrel -loggia -millstone -flatlet -soupspoon -econometrician -golf-club head -daphnia -parlor -fire-eater -juggler -attache case -hay bale -kisser -knitting needle -news magazine -flatbed -Senegalese -trumpeter -trampoline -brogan -bone -caftan -lobster pot -gazpacho -anthill -ramekin -mainsail -penitentiary -spotted flycatcher -cookstove -root beer -broom beard grass -pogo stick -plywood -epee -gas oven -Global Positioning System -sweet false chamomile -breakfast area -bullring -second cousin -wave -decolletage -rodeo -won ton -swastika -bobby pin -papaw -retaining wall -Muscadet -heavyweight -energizer -banner -amusement park -whinchat -drugstore -waxwork -meander -congee -heat sink -switch grass -commuter -peony -western white pine -wild raspberry -nightgown -saute -cardinal -claret -pollinator -biryani -pina colada -cassette deck -European sandpiper -block -flan -birdcage -baby -lieutenant colonel -ticking -European white lily -dog violet -coat hanger -premature baby -organza -string bean -balloonist -hurricane deck -window box -hang glider -bullfighting -piste -seahorse -hard cider -batik -common mullein -petite marmite -stuffed mushroom -tequila -ground ivy -fountain grass -stray -putter -buffer -comet -bomber -woodcarving -baseball glove -halter -garnish -selvage -megaphone -sea fan -rabbit hutch -very important person -analog watch -long-head coneflower -northern pike -roll-on -cigarette butt -terraced house -penknife -windshield wiper -cricket -straightener -snow pea -cockerel -canister -sour bread -recovery room -toilet bowl -tyrannosaur -big sister -quartz battery -television receiver -vitamin C -tailpipe -field thistle -stonechat -col -monstrance -gift wrapping -herbivore -quarter horse -ice-cream sundae -rumpus room -eyepatch -clary sage -French lavender -snorkel -choir -tent-fly -cat box -horse racing -high priest -barrel cactus -pin oak -wild thyme -keyboardist -raiser -hammock -hail -bungee -chocolate mousse -major -buzzard -gopher tortoise -Chablis -water meter -benthos -donna -blender -Mauser -avocet -rye -mulch -chancel -dusty miller -mate -corbel -minaret -frittata -French toast -mosaic -home brew -water faucet -beard -swivel chair -acropolis -largemouth -abbey -tabby -driver -copperhead -stirrup -Boston fern -Tennessee walker -artichoke -honor guard -chapatti -enchantress -sweat pants -electric organ -column -dry vermouth -range hood -Red Delicious -rape -splint -catapult -gourd -antipasto -plaza -carnation -star -wood anemone -English primrose -male fern -boot -atrium -Japanese deer -carnivore -yearling -doe -guelder rose -chicory -stretch pants -ice-cream cake -frogfish -tarpaulin -chicken soup -balaclava -tor -feverfew -three-hitter -flyweight -aqua vitae -locker room -wether -teacup -wide-angle lens -hook -ladder-back -osprey -awning -wedding -chest protector -pooch -rose mallow -orange daisy -fondant -envelope -duckling -blackberry -goosander -snorkeling -philatelist -broad bean -Frank -bok choy -basket -absinth -cayenne -blackbird -bottled water -trooper -timber -stable -chestnut -tomatillo -bell -banquet -rainbow trout -macrame -appointee -heart -chipmunk -purple clematis -safety bicycle -shuttle bus -Japanese black pine -lentil soup -downhill -field mustard -brass -hand-me-down -greater yellowlegs -fanny pack -croquet mallet -hip roof -duffel bag -Ritz -document -pie plant -staff member -lifeguard -white-throated sparrow -Cameroonian -hydrofoil -platter -common ageratum -middleweight -chairlift -brunch -pharmacist -lemon -driveshaft -green snake -lip -London plane -mangrove -crystal -siskin -common jasmine -hollandaise -villa -cross-country riding -mother-in-law's tongue -generator -Tanzanian -whisk -seeder -ashtray -griddle -evening bag -bluebird -bran muffin -square dancer -luggage compartment -tropical pitcher plant -autofocus -tape drive -silencer -Hawaiian guitar -swamp sparrow -Zimbabwean -drawing room -weekender -liparis -streambed -samosa -hitter -water heater -tidal basin -ossuary -dik-dik -camouflage -fiance -Jordanian -rolling pin -slingback -turret -hen -jennet -playpen -woodhewer -bushing -church bell -bear grass -double knit -tennis pro -Joe-Pye weed -pave -pochard -painted beauty -crinoline -gumbo -trestle table -schnitzel -balloon flower -Turkish coffee -extension cord -wireless local area network -sluice -umbel -microeconomist -sky -aisle -commander in chief -hydroplane racing -poll -Coca Cola -fuel injection -bird pepper -monkey puzzle -English muffin -riverbed -varietal -kachina -airport -saltwort -oolong -red-hot poker -mihrab -cocoa -jersey -Walkman -syndic -Hessian boot -millstone -carpenter -outfall -curbstone -mocha -field pansy -patriarch -slacks -switchblade -killdeer -whelk -pampas grass -racquetball -platform bed -Indian rhinoceros -Japanese iris -blacktop -dinner jacket -stud -jodhpurs -telephone pole -business district -kurta -basil -handset -file folder -gloriosa -orphan -cantle -cookie sheet -cafe au lait -drawbridge -hill myna -Western diamondback -watch case -cardcase -bowling alley -mattress cover -canvasback -pompadour -cornice -matador -cigar cutter -skunk cabbage -baptismal font -bitters -refectory -egg -parula warbler -tiger lily -field house -nanny -skin-diver -soda water -lymphocyte -carport -chocolate fudge -amphitheater -sugar candy -sea hare -open-face sandwich -dessert spoon -staple gun -envelope -worker bee -general -garment bag -maypop -autobahn -Atlantic puffin -polo shirt -Humvee -spice rack -grotto -banderillero -gaillardia -black-crowned night heron -oboist -weigela -Dictaphone -dwarf iris -marsh mallow -yarrow -eccentric -catsup -jade green -mistress -henbit -beachwear -head -commuter -strawberry tree -chickpea -clothespin -fleabane -brussels sprout -winter melon -Laconian -great horned owl -caricaturist -nan -flowerbed -triple sec -dairy -round of golf -cardinal -kauri -Zulu -Armagnac -cowberry -mouthpiece -wild calla -bling -puppeteer -beer drinker -adder -field sparrow -chocolate pudding -blacksmith -finback -Shetland pony -cheese fondue -panty girdle -soda can -electrolytic -florist's chrysanthemum -yellow jasmine -tudung -equalizer -ridge -dulcimer -grappa -barn swallow -coneflower -enamel -poached egg -halfback -yak -toby -Fleet Street -blue catfish -sand tiger -flying buttress -snaffle -stoop -first base -cultivated land -first lady -waratah -headquarters -arnica -lovebird -common morel -parasol -disk clutch -Xerox -vitamin P -vitamin B12 -long sleeve -certified public accountant -hot pants -pitch pine -pantie -drawers -cake mix -boar -grey -bride -false sago -bullion -coach house -bass guitar -Japanese banana -meadow clary -black belt -Canterbury bell -smallmouth -treadmill -great white heron -enchilada -rummer -captain -camisole -wild garlic -oak fern -ultramarine -peach -hawkweed -autostrada -adit -anaconda -artwork -skinhead -jello -hermit thrush -Bewick's swan -dress suit -trail bike -stubble -common polypody -Riesling -Easter lily -telegraph key -envelope -garlic bread -perianth -salad bar -steppe -club sandwich -nude -garden forget-me-not -Tuareg -flood -Statehouse -charcoal -boy scout -Rhone wine -parfait -spoor -lanyard -octagon -brown bread -quarterback -quilted bedspread -hookah -Pepsi -hamburger bun -entrepreneur -saddle oxford -snake's head fritillary -undies -chemise -skidder -chickpea -carnation -honey bun -mortar -Montrachet -automobile horn -skylight -gingham -rafter -pantile -climbing frame -scarlet runner -cable -cornstalk -mockingbird -raisin bread -chili sauce -hand calculator -concert-goer -detached house -coq au vin -lasso -hyssop -globe thistle -paper clip -slide -Jerusalem artichoke -tetrahedron -mock orange -lemon lily -finger -little sister -handcuff -horse wrangler -pavlova -oilcloth -snow-in-summer -common mugwort -greenshank -ice-cream cone -rubber boot -gunnysack -disk jockey -long trousers -sorghum -pontoon -calf -fire extinguisher -cotton thistle -pilot whale -ao dai -steamroller -wristwatch -tawny owl -city -country store -ironweed -kennel -bathrobe -rattan -drawer -fly tent -choline -musk thistle -courthouse -Yugoslav -bush -trawler -shellflower -jade vine -ragged orchid -pea soup -King Charles spaniel -hubcap -snook -paddy -bow and arrow -shovel -dill -cliff swallow -cadaver -hijab -masterpiece -fish geranium -kettle -sanitary napkin -carrot stick -Mountie -peanut brittle -dam -jackal -windowsill -butterfly orchid -bodice -picador -pale yellow -beanie -petiole -tenor saxophonist -bungalow -gnomon -stock saddle -field glass -rigging -wood grain -Speaker -settlement house -swamp milkweed -paper nautilus -tangerine -champagne -crescent roll -library -Schmidt telescope -stemless carline thistle -motorcyclist -alpine ash -planchet -water closet -casuist -hand luggage -hyssop -spaghetti and meatballs -cannelloni -cedar waxwing -water dog -brick red -linkage -sweep hand -purple heather -macaroni and cheese -butter knife -refreshment -malt -St. Augustine grass -wainscot -compass -gas heater -tamale -table saw -referee -borsch -projector -dracaena -peppermint -Reuben -Abyssinian banana -glassblower -floss -small stores -artilleryman -lapwing -ranch -garbage man -dwarf banana -commelina -currant -adulteress -landlocked salmon -pasqueflower -nan -tiger lily -Eritrean -rotunda -catsup bottle -mezzanine -royal fern -blended whiskey -bowler hat -mistletoe -manor -fusee drive -pistachio -dispensary -swamp -amputee -sculptor -schoolmaster -Chinese anise -dwarf iris -livestock -chronograph -nectarine -jockey -plaster -motel room -swamp azalea -hippeastrum -space station -duchess -catacomb -dovetail -cockscomb -common spotted orchid -brittlebush -cleats -cloche -hotchpotch -cabin car -prey -indigo -light beer -bear's breech -jonquil -analyzer -alyssum -spur gear -ice tea -honey buzzard -twayblade -dirndl -atlas moth -croquette -carafe -flyweight -professional basketball -multivitamin -air terminal -phial -roll-on -skunk cabbage -bird of paradise -rose -cooter -camping -divided highway -herbage -sweet vermouth -common comfrey -eggplant -office building -glutton -gefilte fish -bicycle rack -swamp birch -Venetian blind -Pernod -Norway spruce -portrait camera -bastion -vitamin Bc -Ugandan -Indian red -okapi -emu -vin ordinaire -chintz -shrimp cocktail -numbat -tall oat grass -cable car -stopcock -ham sandwich -Yemeni -stanhopea -plate -chicken broth -common yellowthroat -California poppy -radio -chocolate egg -mess jacket -tea table -physostegia -Japanese flowering cherry -confectionery -chicken cacciatore -painted nettle -popover -white rice -strapless -mohair -electrical cable -coil spring -arterial road -miniature fan palm -spectator pump -pesto -interlocutor -eastern kingbird -dongle -vitamin B6 -stuffed tomato -cough drop -okra -black -barbecue -burial mound -firstborn -corn snake -amberjack -bollard -horn -Black African -elbow pad -Camembert -circle -Japanese apricot -hearing aid -rock star -creature -taster -bubble gum -scull -lemon balm -chaetodon -anemometer -brake drum -fuselage -courthouse -aqualung -yellow adder's tongue -reception desk -guy -buffalo wing -ginger beer -robin -pantothenic acid -marsh hawk -yellow journalism -exhaust -cardamom -Tabasco -ax handle -patriarch -floor -pine snake -spoiler -hood -sphagnum -parrotfish -orphanage -redpoll -beef Wellington -white spruce -cherry plum -scapular -field lens -broomstick -mouser -wood thrush -Nebraskan -hotelier -milk thistle -soya milk -Munich beer -boucle -snowy egret -dust storm -steward -kudzu -oriental poppy -presbytery -burro -orange soda -stonecrop -splashboard -menagerie -dormer -wire cutter -yellow bells -Dubliner -shore pine -cousin -racing gig -Morgan -gold plate -villager -snifter -granny's bonnets -egg roll -Spode -amabilis fir -babbler -pestle -heliopsis -halter -black spruce -President of the United States -ski slope -chocolate fondue -lockstitch -motel -Epipactis helleborine -tabbouleh -Yorkshire pudding -overpass -Timorese -presbyter -tablefork -bottle gourd -tiara -vintage -pilgrim -reindeer moss -shower stall -towel rack -kachina -chef's salad -breeder -cow parsnip -walker -Black woman -Irish coffee -portrait lens -lateen -gilt -successor -cargo container -Lithuanian -mayapple -paisley -highchair -strawberry jam -flying fox -field scabious -blue-eyed grass -screw -Frisbee -dressing room -cholla -walkie-talkie -red currant -centrifugal pump -smorgasbord -hot rod -marcher -rowanberry -welwitschia -amphitheater -pew -concert band -bosom -pillbox -seagrass -openwork -meadow goldenrod -shower -chicken sandwich -Boston ivy -plastron -oilfield -stuffed tomato -juniper berries -frame -Spanish mackerel -family room -powder horn -fight -maguey -bunker -work-shirt -air filter -nosh -sugar bowl -foothill -reliquary -tugboat -horsebox -grater -palace -board member -campsite -halibut -geneva -ginger ale -high commissioner -genet -bodywork -spaghetti -protractor -pipe cutter -wood anemone -turkey cock -surge suppressor -green turtle -spoiler -bedsitting room -television room -ballot box -shasta daisy -impeller -capote -bitter -California wine -lock -spinnaker -gill fungus -baby's breath -nut and bolt -moonflower -houseboat -distributor cap -coffee bean -gusset -bowling ball -knitwear -frieze -mistflower -roadster -cue -circuitry -brake -butt hinge -Chickasaw -leopard frog -wing tip -puree -mantel -pantheon -grandfather clock -cockchafer -pomegranate -cleaners -eyeshadow -Oregon cedar -rock hopper -hawksbill turtle -agriculturist -yellow-crowned night heron -Albanian -pumpkin seed -chateau -goggles -camper trailer -bracket fungus -cigarette case -signal box -saddle blanket -poison ivy -set gun -cattleya -dry fly -concert hall -personal digital assistant -talcum -deodorant -common starling -painted turtle -kea -plenipotentiary -pantyhose -masjid -buskin -hurdle -cocktail lounge -belting -sour dock -knife blade -sugar snap pea -paddle -dickeybird -brace -keep -call center -yacht -lead pencil -tumbler -production line -tetra -private -French window -express -ski boot -pinto -broad bean -American crow -screech owl -snapper -power cord -Manx -rambutan -sun deck -stonefish -golden eagle -national monument -readout -cork oak -hacksaw -beer can -bathe -tussock bellflower -wet suit -mihrab -big game -highlighter -sprocket -measuring worm -grapefruit -samovar -distributor point -steak knife -incubator -loon -temporary hookup -hippodrome -hot spring -spacesuit -flea market -clay pigeon -catbird -earmuff -tetherball -yellowfin -cellophane -lanolin -clapperboard -velveteen -police dog -cashew -sequencer -mango -duplex house -bazaar -Golden Delicious -red carpet -collet -kickstand -broadloom -diskette -tank engine -compact -diesel-electric locomotive -whale shark -water moccasin -mountain avens -tropic bird -ginkgo -ski cap -fixative -glockenspiel -chopine -ethernet -herring gull -skeleton key -finger paint -conference table -great crested grebe -harbor -white-crowned sparrow -Bullock's oriole -guestroom -boutique -cable television -roulette wheel -Luger -Latin American -trumpeter -blindfold -baby -freshwater bass -home plate -bonefish -giant sunflower -giant tortoise -planking -pigeon hawk -oceanfront -door -bazaar -common wasp -conformation -kick starter -kid glove -corydalis -shuttlecock -writing desk -ivory gull -shirttail -diving suit -weka -downy birch -altar -wild sage -tufted puffin -cabinet -Orpington -cineraria -bottom -dial -coracle -resort hotel -soap dish -spotted owl -billiard room -ghetto blaster -red-breasted nuthatch -hatchling -chalet -bracteole -crusher -mixer -net melon -farmhouse -Dutch oven -transept -penlight -palmyra -stewing pan -solar cell -crochet needle -black-winged stilt -germander speedwell -crinkleroot -truncheon -bunchberry -hatchback -sounding board -mixing faucet -chess master -bisque -Brie -Sitka spruce -pawn -Mexican-American -space rocket -choreographer -collared peccary -duffel -nacho -patchcord -carpet snake -omnivore -watering can -hall of residence -streamer fly -sunroof -great grandson -oil refinery -billiard player -ivy geranium -key palm -pinwheel -yellow-shafted flicker -purple onion -soldering iron -condominium -fishing gear -heat pump -marine iguana -cuckoo clock -Bletilla striata -headrest -spotted salamander -field hockey ball -pound -carboy -vertical stabilizer -groundsheet -cinnamon bread -acorn squash -sheathing -lakefront -Jeffrey pine -synthesizer -olive -apple -pannier -ponderosa -Jew's-ear -latch -equatorial -metasequoia -permit -bloomers -town hall -fava bean -casino -bier -jampot -common snapping turtle -clary sage -oatmeal -Dutchman's breeches -massif -Guyanese -heifer -handball -sweat suit -pomelo -Iceland moss -customhouse -sandbag -archer -gyrfalcon -sword cane -marmite -whole snipe -blue crab -sugar spoon -brownstone -chicken wire -lizardfish -dump truck -chicken yard -chamois -electric -idle pulley -jujube -wrestling mat -aoudad -Burmese cat -water shamrock -dormitory -Unknown Soldier -hearse -bumper -clipper -desert pea -critter -semitrailer -backboard -common St John's wort -Atlantic manta -song thrush -jukebox -quoin -eastern chipmunk -copper beech -paintball gun -bull -package store -fraise -royal poinciana -niqab -traction engine -objective -day nursery -ski lodge -orphan -summer house -cereal box -router -sleuth -jodhpur -polyp -croquet -sport kite -green onion -tulle -etagere -tussock caterpillar -rest house -elderberry -bridal wreath -Torrey pine -silver wattle -kidney bean -pentode -laelia -Allen wrench -sporran -red drum -tricot -heterodyne receiver -magazine rack -stone curlew -trawler -suckling -niblick -sandwich plate -double door -Togolese -pitching wedge -desert tortoise -cloth cap -date palm -webbing -jumper -frogmouth -copperhead -covered couch -black mallee -riser -scraper -gauntlet -pantheon -food court -muntjac -grocery bag -bread-bin -transmission shaft -primigravida -window seat -crab apple -seat -Fresnel lens -dendrobium -hatchback -little theater -butter dish -back porch -umbrella tree -carrot -seventy-eight -coconut -music stool -Tesla coil -bay willow -American basswood -sabot -wheel and axle -gazette -lute -bassinet -hart -mecca -breadbasket -silverfish -handball -Scotch pine -box camera -stately home -Hereford -tread -single-breasted jacket -desk phone -deodar -professional boxing -fly casting -box wrench -black oak -martello tower -red campion -bullock -sweet William -bay leaf -dollhouse -flounder -fox hunting -beanbag -king mackerel -rouge -film advance -common mallow -parasitic jaeger -satellite receiver -nurse shark -chesterfield -tomatillo -plimsoll -hatbox -bloomer -foul-weather gear -longleaf pine -horse mackerel -tree lizard -bark -belfry -Treasury -perch -purple finch -stag beetle -fragrant orchid -tachymeter -tadpole -cookie jar -knee piece -agueweed -bones -chick -golf glove -toothpick -taboret -rotor blade -field artillery -purple willow -redhead -spark plug -guava -voice mail -cross -butterfly valve -star magnolia -olive -room light -Australian turtledove -embassy -Iraqi -singles -nestling -spinning rod -radial engine -rowan -sandbox -boss -moccasin flower -veneer -mint -American chestnut -white whale -CPU board -florist -press box -hurricane lamp -giant kangaroo -greater whitethroat -winter jasmine -blue -department store -southern red oak -saber saw -corn muffin -bellbottom trousers -toaster oven -red eft -condominium -galago -sunbather -redpoll -common European earwig -songbird -linnet -light meter -bracer -tepee -gumbo -water glass -roofing -spathiphyllum -shofar -sand lizard -washroom -Brussels carpet -brachyuran -home room -floatplane -knee brace -solar heater -felucca -gas ring -maguey -manse -blue columbine -cuppa -cigar band -male orchis -mudskipper -couscous -Chinese parasol tree -dude ranch -banyan -gopher snake -sundrops -aviary -African daisy -missel thrush -Photostat -stone pine -circus tent -tangle -printer cable -grease-gun -rose chafer -light pen -plantain -hearth -bullfinch -post oak -slow loris -Newtonian telescope -head -punt -spindle -New England aster -spotted sandpiper -pond pine -grass skirt -bug -black rat snake -tabasco -bull shark -tennis camp -scrambler -popinjay -bing cherry -ministry -cash register -redheaded woodpecker -kameez -farmer's market -roan -harpy -European toad -pizzeria -camshaft -hemp nettle -chicken coop -cottage pink -daybed -observatory -airdock -mountain devil -newsstand -kingfish -snow gum -jackdaw -lacquerware -peeler -miro -sister ship -damask rose -pack -snowshoe -Liberian -paramecium -tidytips -professional tennis -bookend -wood swallow -cayuse -cranberry -rock squirrel -steak au poivre -soul patch -female mammal -sash fastener -songwriter -oxeye daisy -apse -floor joist -hand towel -wheatear -cero -soul mate -golden fig -bus stop -psycholinguist -convenience store -manor hall -mountain sandwort -Euopean hoopoe -haricot vert -mausoleum -violist -flashlight battery -chard -fixer-upper -bank martin -testudo -diving duck -kohlrabi -Omani -sphygmomanometer -greyhound racing -chestnut -rattlesnake plantain -chaffinch -wolf pup -teakettle -cairn -souk -resident commissioner -chuckwalla -gaiter -capercaillie -liver chestnut -bean sprout -land line -ambassador -green pepper -common chickweed -Sharpie -Oriental arborvitae -oncidium -pallone -currawong -sweet alyssum -fire tower -eyebrow pencil -redfish -apricot -clementine -blucher -wigwam -pangolin -buggy -common oak -jumbojet -laser -cigarette holder -racquetball -georgette -cleft -scouring pad -drum printer -pond scum -American red squirrel -caranday -swamp willow -blindworm -brook trout -defense system -nyala -three-way calling -mizzen -shuttle -African lily -Oregon white oak -rain tree -fuel gauge -oriental cherry -wahoo -pear -jungle gym -bass fiddle -outrigger -angelfish -Old World coot -lime -battlement -yarmulke -herpes varicella zoster -burp gun -Alpine glacier -stun gun -pilot boat -Southern crab apple -bushtit -pullet -polo pony -jackfruit -raw vegetable -French marigold -golden shower tree -spike lavender -wahoo -brass knucks -cabbage palm -diesel-hydraulic locomotive -red jungle fowl -prairie sunflower -rye -loofa -icecap -shade tree -secretary bird -saffron -cos -muskrat -videodisk -Carolina wren -candy bar -Bohemian waxwing -flowering almond -cold frame -raglan -pine siskin -quince -western red cedar -red maple -adobe -agora -kumquat -tenement -bantam -bayberry -water jump -great granddaughter -snips -porcupinefish -brochette -love-in-a-mist -Iceland poppy -common sage -pace car -camel racing -slipcover -nopal -shoehorn -calypso -rhea -in-basket -maple syrup -cold chisel -Pacific ridley -dietary -aperture -lapin -rock hyrax -house wren -litchi -ragged robin -control center -shoebox -arabesque -eider -silver birch -bantamweight -ax head -softball -blue gum -Bechtel crab -tomato sauce -green douglas fir -sweet gum -macaroni salad -red phalarope -budgerigar -Bedford cord -Uzi -green woodpecker -ohmmeter -bacon-lettuce-tomato sandwich -hackney -Easter egg -motmot -red pine -opium poppy -gat -pussy willow -greater scaup -ocelot -persimmon -western hemlock -carambola -pinion -Malcolm stock -bobsled -larkspur -wood drake -pinetum -red gum -draft beer -funnel -terrarium -Pinot blanc -doodlebug -brittle star -salsa -cantaloup -pollack -stockpot -eastern hemlock -rock wren -burqa -squash -aircraft engine -billy -flamingo flower -odontoglossum -old squaw -redstart -sheepskin coat -mate -flathead catfish -gentianella -bilberry -bog rein orchid -incense cedar -mew -Colorado spruce -cob -portmanteau -grenadine -common ginger -masdevallia -compound microscope -sobralia -white fungus -guppy -chapterhouse -honey -green frog -sea swallow -African marigold -astrolabe -verdigris -yellowhammer -carrot juice -oxlip -medicine ball -highboy -grass frog -gamebag -surgery -mincer -mulloway -cactus wren -box office -resonator -table-mountain pine -European curlew -supernova -cabbageworm -peach -plane seat -asp -Yquem -tomato hornworm -rook -quadruped -chador -micrometer -dabchick -Afro-wig -balsam fir -bucket seat -sage green -macon -blue poppy -chinquapin oak -black pine -spinach -chrysalis -carnauba -tee -bearberry -shirt button -tree of heaven -southern white cedar -covered wagon -brood hen -spadix -European catfish -winter wren -bulldog clip -carpetbag -study hall -chino -simian -closeup lens -cookie cutter -grapefruit -mandola -sassaby -Allegheny plum -piaffe -scorpion fly -booby -draft animal -field tent -cumin -laurel oak -smooth-leaved elm -American arborvitae -American toad -grinding wheel -mountain ash -cuttlefish -pipistrelle -parer -safety rail -Clark's nutcracker -side-blotched lizard -giant hornet -wicket -dugout -electric toothbrush -dhow -common four-o'clock -long-eared owl -anchor -near beer -tansy -creme caramel -guided missile frigate -shelduck -durian -compact -iron tree -shiitake -polo -camouflage -pedal pusher -salon -tangerine -lacebark -Swiss mountain pine -goalpost -poolroom -space capsule -wild cherry -dress hat -wave -raglan sleeve -cassia -Jerusalem artichoke -cabbage palmetto -marsh harrier -American redstart -sea squirt -cliff diving -sparrow hawk -watch cap -frankfurter bun -police boat -flash camera -neem -eastern meadowlark -Italian cypress -orb-weaving spider -graniteware -sewing basket -latex paint -rock dove -stator -leaf lettuce -roulette -broadcloth -Spork -panicle -sternwheeler -cider vinegar -brown creeper -cowfish -closed gentian -chickpea -port -pimento -sheeting -matilija poppy -hawk owl -guava -papaya -huisache -European shrike -racing skiff -yellow warbler -gumbo-limbo -North Carolinian -staysail -court -iced coffee -money belt -shaver -Psychopsis papilio -sumo ring -refection -kingfish -clock pendulum -greater butterfly orchid -disk harrow -tawny eagle -polyphemus moth -pieplant -Nicaraguan -bocce ball -California box elder -porbeagle -crown of thorns -Mexican sunflower -fennel -stream orchid -slip ring -white fir -fold -moss campion -fairy ring -hose -pony-trekking -western larch -meadow pipit -Cape May warbler -longan -bookmobile -junk shop -lemon shark -smelling bottle -solan -widow -sea pen -universal joint -day game -goldcrest -maiden pink -biographer -rotunda -oriel -arranger -gambrel -Angora -fen orchid -leading rein -Wilson's snipe -European nuthatch -natterjack -athletic supporter -mouflon -emergency room -swallow-tailed coat -western meadowlark -feather star -Navy SEAL -toilet bag -loquat -lesser butterfly orchid -thumbhole -breathalyzer -featherweight -collards -mayfly -confessional -mountain ebony -redwing -Norway maple -refractometer -stagecoach -gasoline gauge -octopus -baker -Rhode Island red -European tortoise -cardiologist -Punjabi -Arkansas kingbird -tamarind -drum brake -flash -yellowtail -stokes' aster -emperor -free house -sour gum -ruddy duck -hamadryad -command module -tinamou -Norway lobster -washstand -European hornbeam -roaster -black-necked grebe -tallgrass -leopard lizard -anastigmat -Blackburn -deutzia -ground rattler -Christmas fern -wild pink -sesame seed -carrycot -Italian parsley -nectar -roll-on roll-off -true laurel -anisette -candy corn -flowering maple -revers -dun -tobacco hornworm -common sunflower -common grape hyacinth -cardiograph -electric meter -herb Paris -goalmouth -spruce grouse -canopy -wind poppy -stemma -gateleg table -lumper -speckled rattlesnake -gudgeon -rough-legged hawk -internal drive -pomelo -piece de resistance -storm door -clementine -Japanese pink -settler -yellow jacket -Fraser fir -royal palm -cicada killer -cayenne -guava -bluewing -red baneberry -lesser yellowlegs -cache -bog rose -sparring partner -ski jumping -sherry -glacier lily -beer mat -shredder -American widgeon -protectionist -green olive -black-tailed deer -Alpine fir -dispatch case -whipping cream -African daisy -cantilever bridge -maraschino -rhea -ink bottle -dacha -hagberry tree -lesser rorqual -orchard oriole -candidate -cuticle -breadfruit -fishbowl -giant puffball -closed gentian -Joshua tree -tie rod -beard lichen -flame tree -stegosaur -acerola -Swan River daisy -common murre -flowering almond -protegee -loggerhead shrike -Wilson's warbler -Japanese honeysuckle -basilisk -skimmer -hybrid tuberous begonia -pumpkin ash -chafing dish -collared lizard -iced-tea spoon -scrubbird -Iceland poppy -grey kingbird -wallflower -slick -diesel -Swiss pine -ethernet cable -ketch -lightship -black cherry -swordtail -Monterey cypress -lightweight -Floridian -Sabine -stall -contact -viola da gamba -hemstitch -upland sandpiper -box spring -sassafras -radome -lesser scaup -bluefin -yellow-bellied sapsucker -armored car -cabin class -Moorish arch -webcam -aquavit -overall -sergeant major -soft shield fern -gin and it -bobolink -subcompact -falconer -black morel -roadrunner -lab bench -thong -coffee urn -weeping beech -caladenia -southern live oak -scanner -wine vinegar -common speedwell -European roller -fuji -snag -piping plover -concertina -secateurs -meat thermometer -supercomputer -funnel -dais -western fence lizard -spruce pine -pommel horse -Cassegrainian telescope -pitta -India-rubber tree -mangosteen -tamp -aposematic coloration -dustcloth -birth -Atlas cedar -reed bunting -jabiru -sainfoin -press photographer -golden oriole -laryngoscope -thermal printer -winder -doubles -cricket ball -dabbling duck -tonic -Buddhist -Morris chair -swatter -quaking aspen -ancient pine -American larch -evaporative cooler -click beetle -yellow-breasted chat -souchong -bluegill -pied-billed grebe -tricorn -spring beauty -southern magnolia -rowel -chili -hard roll -flathead -satsuma -gangplank -bourguignon -cockfighting -greenwing -plum tomato -fly orchid -gnatcatcher -spotted eagle ray -ovenbird -brassavola -mocha -candy cane -afterburner -thriftshop -study -winter crookneck -grinder -muskellunge -sacred ibis -inverter -sandwort -deer fern -stair-carpet -Cotes de Provence -ovenbird -rex begonia -American woodcock -poison ash -lowland fir -pawpaw -loblolly pine -kinkajou -European hackberry -pest -coralwood -Bedouin -acetate rayon -snuffbox -radiator cap -basket oak -table-tennis racquet -smew -midge -telescopic sight -radish -great burdock -separate -damask violet -broadbill -bourbon -blacktip shark -gift shop -khimar -date -woodland caribou -policeman bird -grey birch -American elm -strawflower -officiant -hart's-tongue -straight razor -Spanish elm -radicchio -white croaker -vicuna -soft-shell clam -flannel -adonis -bonito -kittiwake -English walnut -soldierfish -hipflask -spotted crake -Streptopelia turtur -American maidenhair fern -corn cockle -telephone cord -canopy -playback -diocesan -marsh orchid -manakin -purple grackle -cob -fishmonger -otoscope -vermillion flycatcher -inhaler -instar -licentiate -myrtle warbler -goat herder -benthos -toggle -drumhead -piranha -doorplate -vault -triptych -red-necked grebe -transporter -vernier caliper -flathead -Portuguese man-of-war -countrywoman -vacation home -Bactrian camel -night-light -module -lemon curd -carancha -painted daisy -bok choy -ratatouille -troll -escarpment -cinnabar -computerized axial tomography scanner -lychgate -sowbread -bedside -guided missile cruiser -reel -cleat -hemostat -blue shark -Seven Wonders of the Ancient World -motorized wheelchair -pillow block -horned puffin -prickly pear -electric range -mother's daughter -vein -Oregon maple -bird dog -faceplate -wren warbler -feather reed grass -common alder -Adam's needle -straitjacket -organ-grinder -gantry -bikini pants -peristyle -herpes -terry -toad lily -celandine -red-breasted sapsucker -bragger -green peafowl -fuschia -quoits -house martin -dome -herpes simplex 1 -touraco -meeting house -vacuum gauge -cat's-ear -crisphead lettuce -carpet moth -European rabbit -puff adder -Old World scops owl -fire pink -fruit punch -ant bear -black walnut -stroboscope -white mangrove -pine grosbeak -cast -check-in -ring-necked parakeet -matai -shingle oak -fieldwork -rue anemone -landing net -ouzo -herringbone -lyceum -hydrogen bomb -mullein pink -masher -evening grosbeak -water vole -livingstone daisy -tomatillo -cavalier hat -interphone -wild lupine -goosefish -sugar maple -plantain -white dead nettle -Monterey pine -bugle -veloute -marsh gentian -Bermuda buttercup -alehouse -Peter Pan -thong -LP -tulip tree -scanner -scarlet tanager -music hall -angel shark -pecan -eight ball -rosy boa -outboard motorboat -garage -fanlight -black cottonwood -notornis -mountain fern -lunar crater -reddish orange -whitetip shark -executant -European ladies' tresses -washboard -revolving door -case knife -balloonfish -greater kudu -tarpan -cog -wet fly -Irish soda bread -basement -broken arch -canopic jar -muscat -kazoo -bobsledding -loaner -black guillemot -English saddle -garlic mustard -Foucault pendulum -mulberry -clotted cream -dove's foot geranium -Atlantic ridley -convector -ground floor -European wildcat -poinsettia -hideaway -great barracuda -black beech -bushy aster -cornflower -tam -true slime mold -carving knife -holly fern -railroad tunnel -crimson clover -disposal -etamine -suspension -plasmodium -political scientist -minnow -Spanish rice -twist bit -subway train -Scleroderma citrinum -saw palmetto -console -gimlet -hand pump -waratah -rock rattlesnake -keel -server -curlew sandpiper -hone -sable antelope -inkle -photostat -foresail -sallet -tiger salamander -chutney -onlooker -Exmoor -tiramisu -drawing room -battery -sour orange -juniper berry -beeper -funeral home -fescue -Maksutov telescope -ranch house -jai alai -carob -socket -popcorn -sandbar shark -pipal -summer tanager -oast -skipjack -rolling stock -dropper -great snipe -turnip greens -cowpea -honeycomb -ichneumon fly -maternity hospital -harp seal -nylon -bomb shelter -horse tick -litchi -camel's hair -mimosa -bur oak -anvil -belay -pinhead -continental breakfast -burglar alarm -Mojave rattlesnake -auxiliary storage -lightwood -ratepayer -cecropia -retractor -quadrate -pepper tree -Venus' slipper -abattoir -strawflower -firewater -purple saxifrage -black rat -pack -pepper pot -mayweed -winger -whitetip shark -great yellow gentian -snowdrop anemone -garden angelica -soy sauce -white poplar -inkwell -crouton -gas gun -honey locust -house of cards -ice maker -moquette -arrack -casualty -butterfly orchid -eau de vie -mosquitofish -prairie smoke -haft -horseshoe -steel -peach orchard -Mexican hat -encaustic -shoe -pennywhistle -sweet woodruff -hull -doorsill -globe amaranth -day school -housedog -crown princess -oxbow -maxi -positron emission tomography scanner -compere -European turkey oak -peanut -sentry box -house physician -hot line -loquat -rove beetle -riband -flowering fern -fan vaulting -ceibo -bongo -bat boy -omelet pan -European ash -breadwinner -gaff topsail -clerestory -bushbuck -bluethroat -khukuri -Father -portcullis -candy egg -brake lining -lawn furniture -buckskin -garden pea -Brazilian rosewood -Italian bread -horn poppy -silk tree -Christmasberry -hotel-casino -poplin -false lupine -desert sunflower -mimeograph -alpenstock -cork tree -cultivar -common mosquito -pollard -black marlin -understudy -lancet window -college -breadfruit -Herero -Labourite -bar printer -squaw grass -stelis -firing chamber -sycamore -artificial horizon -radiologist -pansy orchid -bicycle pump -wraparound -bell gable -home computer -orchard grass -carving fork -bergamot -honeycreeper -sewing room -radiator -core -brown bat -goose grass -adjutant general -Erlenmeyer flask -massasauga -tail rotor -cardinal tetra -Drambuie -wine palm -Sarcoscypha coccinea -shantung -Calvados -garganey -vicar -house mouse -creeping oxalis -digital subscriber line -cedar elm -backgammon board -blackberry-lily -pallid bat -New Zealander -Barbadian -rose geranium -European spider crab -gharry -electric hammer -mustard -Chinese lantern -laundry cart -filament -mozzarella -gooseberry -sukiyaki -porkpie -culvert -altazimuth -plum pudding -serin -Spanish dagger -Asian crocodile -crevalle jack -mascara -pig bed -alderman -northern shrike -Sufi -purple-fringed orchid -derringer -linseed -hockey skate -bell jar -Japanese wistaria -mantled ground squirrel -western toad -lieutenant commander -mechanical piano -ovoid -paddlefish -demijohn -coast live oak -brick -gearset -tailstock -phonograph needle -winery -tuberose -mother's boy -shot tower -crucian carp -carpet pad -lamb's-quarter -Menorah -common white dogwood -hypanthium -rosebay -wild medlar -soil horizon -sweet orange -bitterroot -hand glass -cloisonne -towpath -gum ball -margay -carambola -bolt cutter -charger -vibraphone -gueridon -elephant tree -wood-frog -ash grey -duffel coat -third base -chunga -glebe house -lake trout -encephalartos -Japanese oak -northern red oak -pruner -blue orchid -Biloxi -western wood pewee -corselet -alabaster -anechoic chamber -grass pink -wax begonia -blue daisy -pennyroyal -Asian tiger mosquito -cheese souffle -flat bench -caramel -sump pump -bush violet -common fennel -corner -skullcap -asparagus fern -white mangrove -calceolaria -sateen -saltbox -hollowware -head nurse -coal miner -mountain lily -tufted vetch -European perch -line officer -steamer -stickball -shin guard -cauliflower -Monegasque -hatpin -wolffish -trackball -khaki -arthrogram -rocket larkspur -naval commander -Gemini -ski binding -department head -Chenin blanc -wingstem -knothole -aerides -sweet bay -tautog -gangway -waterspout -Hudsonian godwit -armyworm -incinerator -kidney vetch -pine nut -cypress vine -hip tile -sorrel tree -relay -bench press -Kentucky coffee tree -dobson -sapling -false lily of the valley -veld -phaius -vitamin B2 -beaker -wall tent -sieva bean -dusty miller -sewing kit -cavalry horse -diaper -butterfly pea -Spam -saddlebill -pearly everlasting -kowhai -Sister -moneywort -organdy -pine marten -bareboat -hot-water bottle -baby blue-eyes -silver lime -common cotton grass -malmsey -blue pea -baggage car -pineapple -folding saw -cotton rose -brawler -black duck -Weizenbock -pool player -Gujarati -wild duck -purple sage -sage grouse -mail train -arm guard -short-spurred fragrant orchid -queen -eparchy -spring peeper -ortolan -shoulder -fighter pilot -American beech -snowcap -novitiate -roller -butcherbird -canyon oak -brompton stock -firebrick -rudder -light cream -Primus stove -nonsmoker -probationer -harp -kosher -surcoat -videotape -zebu -first class -yam -car -rissole -miso -funambulism -attic -curling iron -shutter -encolure -split-pea soup -yellow rocket -gas oven -ultracentrifuge -chamomile -canteen -eyeliner -yellow squash -Irish stew -collar -doublet -machinist -septic tank -snap bean -Polyporus squamosus -western tanager -creeping St John's wort -back -sinkhole -perforation -Romanian -epergne -fez -comfrey -sidecar -beach pea -screen door -instigator -plughole -woodbine -pigweed -hip pocket -common scoter -squeegee -Surinam cherry -porringer -body stocking -eatage -shallot -enlarger -common canary -trophy case -gun case -plow horse -hot plate -pearl oyster -margarita -madras -backspace key -pigeon guillemot -pajama -buckthorn berry -homestead -bedbug -Linotype -trundle bed -granadilla -theremin -chin rest -bouillabaisse -tumble-dryer -truffle -cassava -kurrajong -gyroscope -European silver fir -C-clamp -politician -green soybean -exponent -flame tree -scissortail -achimenes -crown daisy -soft tree fern -spaghetti squash -pale violet -beaver -dashiki -washboard -driving wheel -sack -foulard -sputnik -boatbill -English elm -sack coat -grog -golliwog -Malayan tapir -May wine -calash -stile -windjammer -American sycamore -rotor head -fast food -balata -dragonet -Emmenthal -metronome -negative -meadow saxifrage -rabbit ears -chenille -round -hobby -crankshaft -Wilson's phalarope -Murphy bed -soil pipe -forecourt -policyholder -tarmacadam -loyalist -gyro -Queen's crape myrtle -shortcake -apple butter -pumpkinseed -heronry -yellow perch -baggage claim -escarpment -diaphragm -mescal bean -shunter -flax -columbarium -Joe-Pye weed -Neandertal man -casement -hole-in-the-wall -Verdicchio -futurist -eaglet -tassel hyacinth -pup tent -fawn lily -cabbage palm -pogonia -hospital ship -water mill -Oregon grape -lentil -grindstone -banana split -inkberry -coonskin cap -bazooka -wrap -anise hyssop -Java sparrow -red-eyed vireo -common opossum -clintonia -bustle -booster -tribesman -soy -panhandle -jaboticaba -locking pliers -Sauvignon grape -ghat -screw -oximeter -white croaker -saucepot -eggbeater -reticule -cabbage bark -looking-glass plant -head gasket -California sycamore -cowbell -Aleuria aurantia -Herr -lever -spider orchid -cashew -shift key -solar house -wood chisel -white -mantilla -stamp -bolero -rear admiral -garden rake -Lao -crowbar -lapdog -buttermilk biscuit -yellow bedstraw -pickerel frog -dowel -serjeant-at-law -mill-hand -lambrequin -state treasurer -red silk-cotton tree -coiffeur -star anise -shoulder pad -marshal -sitar player -gown -ground cedar -hedge maple -caddie -pitahaya -corn marigold -stick cinnamon -woodland star -Eurasian green toad -anti -blueweed -medicinal leech -gaur -chocolate kiss -kit fox -mother -butte -audio CD -blast furnace -vitamin D -nutgrass -cornice -black sheep -hearing aid -lingonberry -quad -lentil -riding crop -pratincole -pentagon -sea lavender -nerita -flatmate -catboat -water clover -angiopteris -mushy peas -crown imperial -music school -woodshed -platy -Turk's-cap -rundle -reading teacher -hardtack -balloon sail -oriental spruce -bluefish -white mulberry -horned violet -satin bowerbird -treasure flower -sustaining pedal -mimosa -spurge nettle -sea green -hasp -lederhosen -pink cockatoo -long johns -basket weave -freewheel -thrust bearing -timber tree -orphan -falafel -common camas -bird of passage -bird's foot trefoil -electric eel -fizz -grape arbor -serape -brace -hazelnut -kylix -horse mackerel -cassia bark -lizard orchid -spat -Brown Swiss -pocket flap -pillory -purplish blue -rolling mill -tappet -broccoli rabe -semi-detached house -mushroom coral -fly orchid -nougat bar -ball hawk -sand wedge -shirred egg -black locust -strip lighting -drop scone -brush turkey -ball -tragopan -dallisgrass -tuatara -great knapweed -potentiometer -Kiliwa -Pacific bottlenose dolphin -accelerator -Darwin tulip -osteopath -Arizona cypress -manna ash -butterbur -cornelian cherry -American holly -nopal -tanker -foreshore -ditty bag -gas lamp -safety razor -chanter -fomite -chip -striped killifish -catalytic converter -plaice -dusty miller -takin -gerenuk -corn chamomile -Japanese pagoda tree -boneset -common osier -Guinean -taro -plotter -celandine poppy -churn -steenbok -edible mussel -sensitive fern -triode -black raspberry -zoo keeper -feather ball -dredger -starlet -cornpone -coat button -rosinweed -toy Manchester -crested cariama -finger food -basilisk -shotgun shell -comfort food -mountain hemlock -candytuft -Stilton -record changer -anklet -ball valve -Mediterranean snapdragon -BVD -sand cat -Galloway -nutmeg -water-mint -woodwaxen -citron -ark shell -federalist -drone -cheekpiece -hyperbaric chamber -addax -field-emission microscope -synchronous converter -men's room -medlar -electronic fetal monitor -Sazerac -false indigo -roof -passe-partout -meadow spittlebug -Phytophthora infestans -oast house -hedge nettle -voting booth -slender salamander -telephone jack -true bug -scouring rush -Scotch egg -matchbook -aperea -cytomegalovirus -garlic press -cove -whitebark pine -Slovene -narrow wale -mother's milk -Audubon's warbler -prickly poppy -cowl -tailorbird -mud brick -bamboo palm -welt -Afghan -Virginia spring beauty -dinner bell -night jasmine -fly rod -microtome -aerie -carinate -picker -brick trowel -loving cup -swathe -green mayonnaise -rivet -bandbox -newsroom -tea tortrix -bobby -gig -hush puppy -garlic chive -piston rod -aspidistra -bluejack oak -harvest-lice -strap hinge -sour mash -macadamia nut -histiocyte -fan belt -shelf bracket -abelia -Hottentot fig -fish chowder -abettor -compote -beige -dioon -hop -haymaker -oilskin -magnetometer -tool bag -tambour -call girl -gringo -fairy light -broad-leaved plantain -second base -zebra mussel -Japanese cedar -pistia -swamp chestnut oak -cashmere -double cream -samisen -lamb curry -companion -kapok -julep -sweet woodruff -gardener -jewfish -inspector general -collembolan -wheel bug -bass -scrubland -wryneck -macrozamia -trouser press -clove -tiger cowrie -yawl -collard -dildo -pony cart -ormer -annual -tessera -chancellery -two-toed sloth -queen -old lady -wringer -spritzer -baggage -black mangrove -black-eyed Susan -semifinalist -highlighter -alfalfa -Easter daisy -escapement -operating table -neutral spirits -bursar -roble -entablature -girl wonder -farm boy -ring ouzel -permanent press -auklet -beefsteak tomato -gaming table -tea bag -manul -giant bamboo -Ozark chinkapin -matzo -furrow -smoothhound -CD-ROM drive -powdery mildew -copilot -garden -American merganser -bunsen burner -Asian longhorned beetle -lead tree -creeping buttercup -Percheron -back brace -axseed -cub -soul food -rabbi -edelweiss -mineshaft -fox grape -sandwort -torque wrench -leisure wear -Mae West -broccoli -loach -maraschino -heavy cream -silkworm -cirque -vintner -whitewash -butterfly pea -two-toed sloth -midiron -ceriman -Bulgarian -operating microscope -sambuca -California fuchsia -silver maple -tangelo -black bean -lugsail -starting gate -leek -sunflower seed -fish fry -clinker -synagogue -coscoroba -brae -uphill -common limpet -golden plover -cedar of Lebanon -amphibian -Canary wine -taipan -agua -feeder -parallel -mater -pink calla -meat counter -yagi -crab cactus -cacao bean -bowfin -alley cat -stonefly -Eastern cottonwood -vernier scale -marginal wood fern -dancing-master -detective -yam -textile screw pine -hooch -spinet -single prop -sassafras -goose barnacle -triple cream -China tree -peeper -dressmaker -snatch block -ironmongery -dressing case -creeping bellflower -silver sage -honeydew -eastern red-backed salamander -peg -nombril -danish -mashie -anarchist -alligator snapping turtle -shepherd -American white pine -runner -chalice vine -rheumatologist -defibrillator -yellow chamomile -lemon balm -peacekeeper -native beech -sandwich board -Bavarian -titrator -paneling -deer mouse -poteen -sugar snap pea -meadow salsify -town crier -best -basinet -common myrtle -night lizard -cushaw -Tampax -camphor tree -gentile -orange peel -putty knife -pyromaniac -Brummie -fever tree -double -nest -inferior -cabbage tree -graduated cylinder -mucor -woodborer -earthwork -potato salad -four-hitter -gooseberry -water vole -ziggurat -grapefruit juice -four-in-hand -cranberry bush -diode -videotape -Mohican -niacin -beetroot -shirtsleeve -cork tree -two-eyed violet -white ash -drawing chalk -baked Alaska -bone-ash cup -toastrack -diastema -bed jacket -dwarf astilbe -yellow honeysuckle -cow pasture -sheet pile -saxhorn -upholstery material -California white oak -Spanish bayonet -horsemint -littleneck -deflector -magician -standard transmission -blue marlin -shallot -feijoa -collar -board -jump suit -common staghorn fern -priory -Xhosa -Loranthaceae -barbecued wing -barmaid -spit -lemon juice -umbrella plant -field pennycress -centenarian -queen bee -fish stick -black bread -dirk -secularist -German American -spotted weakfish -iron foundry -speed bump -yellow-fever mosquito -gag -frame -black-eyed pea -alcoholic -involucre -sperm whale -balanced diet -wax bean -butcher's broom -winter heath -Mainer -Australian pine -gas guzzler -double-breasted jacket -pod -palo verde -trimmer -wattmeter -dyer's woad -crotalaria -vine maple -sulky -jack pine -thumb -Wilton -Panchen Lama -welder -badminton court -business editor -Arabian coffee -Kamchatkan sea eagle -foamflower -steep -plane -freckle -cerebral cortex -Vouvray -tea -forest tent caterpillar -neckerchief -accelerator -jig -bridal wreath -highball glass -New England clam chowder -beach strawberry -call waiting -baton twirler -double boiler -Dutch elm -car bomb -filmy fern -breviary -Florida gallinule -dace -parsnip -riparian forest -crescent -earplug -grab bar -cusk -foglamp -screwtop -black mangrove -mascot -Welsh poppy -gas holder -support hose -salsify -red beech -Indian python -caroler -pineapple juice -lowboy -terra sigillata -black olive -hypodermic needle -radio-phonograph -moussaka -miter joint -creche -tuning fork -black wattle -affiliate -vertical tail -kiwi -red morning-glory -piping crow -runway -Kashmiri -studio apartment -sea feather -Judas tree -boatbuilder -corn earworm -fallboard -Victrola -lechwe -goat willow -turret clock -Canada anemone -leaf lettuce -savoy cabbage -headpiece -Lebanese -fothergilla -hemlock -toolshed -silver tree -blue-headed vireo -weatherman -cylinder -caltrop -adjutant bird -driving iron -millet -European woolly thistle -rose apple -clown -schoolfriend -eastern coral snake -barbecue -executive vice president -long-billed marsh wren -brittle bladder fern -tank destroyer -left-hander -matting -catchment -balsa raft -eastern fence lizard -color tube -corncrib -electric typewriter -westland pine -elder statesman -whey -plonk -mound -cittern -nest egg -copyholder -China aster -basking shark -gavial -common duckweed -vanilla orchid -red-shafted flicker -granadilla -sylph -sty -vest pocket -potherb -little brown bat -Trapezium -ordinary -adult -purple-fringed orchid -abseiler -disco -metal detector -beefsteak fungus -ilang-ilang -barley grass -hawser -suture -brake shoe -staghorn coral -barbecue sauce -Browning machine gun -sarcophagus -disa -oven thermometer -rosemary -track -gorget -quince -royal -piston ring -teak -pin cherry -Komi -walking fern -sloe -synchronous motor -fire-bellied toad -Teleprompter -co-star -cape gooseberry -oscillograph -bass clarinet -cock of the rock -Tyke -showy milkweed -safety valve -branch water -sweet marjoram -hugger -crampon -fairy godmother -band-tailed pigeon -snow-on-the-mountain -minibar -foreland -grosgrain -dita -rampion -calligrapher -jointed charlock -master -sheepshead -barrelhouse -Carolina allspice -mastic -brake pad -whiskey sour -casement window -conveyer belt -stolon -pavonia -shinny -witch elm -logwood -hostel -pageboy -vesper sparrow -pyrrhuloxia -common carline thistle -wafer -boysenberry -screw augur -hack -American white oak -governor general -Mother Hubbard -game fowl -drosophila -delft -nymphet -tollbooth -chough -Russian dressing -plum tomato -American saddle horse -dusky salamander -black medick -red valerian -cordage -Elastoplast -conacaste -backlighting -swell -riveting machine -cowpen daisy -openbill -water speedwell -picture hat -crested myna -servo -bletia -garden trowel -muscadine -common caper -false lily of the valley -aralia -sharp-tailed grouse -cigar smoker -bandoneon -Chinese alligator -crazy -point lace -charcoal -Texas horned lizard -marinara -backstay -Gatling gun -piston -game fish -fall armyworm -grammarian -beer hall -guadalupe fur seal -sugar palm -peanut -velvet ant -light machine gun -rya -cling film -adobo -myrtle oak -angelica -balsam apple -windbreak -brother-in-law -snap brim -automobile factory -clavichord -dusky shark -edible banana -altar boy -California lady's slipper -schoolbag -wax bean -Atlantic walrus -bullpen -straw wine -thatch palm -potluck -tamarind -charcuterie -sod house -tie rack -liebfraumilch -clinician -scarlet lychnis -Spanish iris -bread knife -water oak -bedpan -Angolan -bassarisk -Alaska fur seal -African wild ass -milk float -froghopper -Verpa bohemica -water cooler -chop suey -ranker -red helleborine -Prince of Wales -marmalade tree -car train -giant red paintbrush -desert sand verbena -right whale -baron -stevia -asterism -five-spot -catapult -Silex -fiberscope -refresher -beef Bourguignonne -snood -divot -waterproof -crabeater seal -Missouri primrose -bumper guard -rock opera -Lilo -coffee can -smokehouse -buffalo grass -propjet -ice tongs -poop deck -acorn barnacle -veal parmesan -shower room -collins -ringhals -silage -jawfish -trouser cuff -contour feather -songstress -rachis -White Russian -stanchion -mastaba -flatbed press -viand -legal representative -espalier -organic light-emitting diode -sushi -scorer -haricot -pinna -plectranthus -jungle cat -dried apricot -coach horse -white fringed orchis -veal cordon bleu -bath -dallier -marching order -donkey jacket -Panama tree -aerator -klaxon -pinnacle -shouldered arch -lesser celandine -common eland -Grand Marnier -cock of the rock -phlomis -Japanese umbrella pine -morning room -dead-man's-fingers -little auk -bascule -house paint -home fries -great skua -cesspool -flying gurnard -wild crab -checkerbloom -Wollemi pine -cheese dip -coif -charwoman -tea ball -waif -Arctic ground squirrel -parishioner -stabilizer bar -potentiometer -black cohosh -medlar -willow oak -cascara buckthorn -scoutmaster -Canada lily -poppy seed -paper mulberry -blackthorn -garrison cap -inductee -aeschynanthus -interior live oak -black spleenwort -wild service tree -sling -nicad -swab -sego lily -eiderdown -fruit cocktail -pallasite -weeping spruce -shiv -sea lamprey -coachman -half binding -American white birch -gainer -Concord grape -yellow birch -fucus -common room -io moth -red osier -crucible -galangal -salmagundi -pepper steak -cap opener -swizzle stick -tomato juice -Nobelist -Sarawakian -African monitor -sleeping beauty -stereoscope -curd -pyramid bugle -applejack -dosser -rake handle -pilot light -Eames chair -Scotch and soda -bell heather -dinette -blackpoll -dogie -sound camera -cattle guard -mashie niblick -edible cockle -monocle -steak tartare -partaker -sidesaddle -communications satellite -porkfish -water hemlock -drawbar -ultramicroscope -Jamaican cherry -craftsman -lovage -common apricot -drum majorette -backsword -smooth alder -Amniota -dribbler -theosophist -dolman -ivory tree -Green Beret -pipe smoker -mayoress -mignonette -crampon -henbane -kirtle -death's-head moth -instep -great St John's wort -lorry -black-necked cobra -ball carrier -Jordan almond -byway -earless lizard -marble -andiron -high-protein diet -buzzer -ice floe -crankcase -Bofors gun -sockeye -veery -Delaware -caravansary -prairie coneflower -star apple -suiting -cot -call forwarding -American gallinule -glossy snake -rose chafer -instant coffee -placket -Tarahumara -pulsar -philodendron -orange tortrix -cypress spurge -Welsh rarebit -music box -giant crab -vanilla bean -water thrush -prayer shawl -gouge -promoter -dagga -black currant -bitter cassava -drain basket -snare -digital audiotape -retainer -olive drab -gluten bread -graham cracker -cheddar pink -caregiver -spray paint -Anglo-American -boatyard -backbencher -Link trainer -bell arch -weir -arbor -millionairess -sour cream -earthtongue -crawlspace -crossjack -balalaika -crupper -western redbud -guinea hen -rangeland -gaboon viper -common louse -single-leaf -horseshoe -balsam poplar -triskelion -jack-in-the-box -jester -rain stick -glove compartment -imperial moth -Japanese beech -biotin -turnip -oligarch -western skink -mudguard -retsina -data system -green bristlegrass -visiting professor -beaded lizard -weathercock -Sloppy Joe -high tea -lightweight -record sleeve -cooler -nodding onion -pigs in blankets -torque converter -district attorney -bunting -orrery -radiator hose -common plum -wood spurge -calamus -chicken Kiev -pin -lath -telephone bell -thistledown -audiotape -gypsy moth -snuffer -pari-mutuel machine -peanut butter -hearthrug -sack -Old World yew -chives -stovepipe -xenolith -mattock -mangle -electric chair -backup system -Empire -blackwash -dodder -Allegheny chinkapin -finger plate -junk -brown rice -wild angelica -chinaberry -mason -rasp -den -violet wood sorrel -nosewheel -plenum -merino -kirtle -Igbo -ensign -sex symbol -Belgian endive -sugarberry -yellow salsify -purple emperor -atlas -African clawed frog -leatherjacket -midwife -sac fungus -European cuckoo -three-day event -Mexican poppy -wagon tire -armyworm -rain gauge -Oregon ash -columbarium -spectrophotometer -Milanese -pointing trowel -casualty -Eastern hop hornbeam -lobe -mouthpiece -au pair girl -giant water bug -Browning automatic rifle -laser-guided bomb -drone -white alder -cockleshell -mufti -gravy -berm -boat hook -marshmallow -pet shop -cowpea -tactician -wading pool -anchovy dressing -flip -shackle -Wedgwood -thick-billed murre -erecting prism -giant salamander -sleeper -quiver -chain store -wing tip -New World tapir -witches' butter -gendarme -ginseng -common maidenhair -graduate nurse -balsam pear -hoatzin -philanthropist -axle bar -gas meter -moth mullein -ragbag -Chinese cabbage -celery stick -rutabaga -scalpel -cape marigold -variometer -argali -brig -shuffleboard -wort -Orlon -epiphyllum -allice shad -coffee filter -solar telescope -Japanese linden -thinning shears -golden wattle -queen triggerfish -millinery -surfbird -flame fish -clove -dicamptodon -red-bellied terrapin -turmeric -baya -air horn -Indian coral tree -punnet -sharkskin -water crowfoot -bight -desert iguana -Texas toad -volva -dredge -Turkey red -chemical plant -gemma -dice cup -orange marmalade -mistletoe -surveyor -frozen orange juice -pallette -poultryman -burbot -courlan -captain -saddlery -bodyguard -dwarf tulip -black ash -pulse -nailbrush -tickseed sunflower -legless lizard -shirtwaist -polling booth -chickeree -garlic chive -common thyme -multichannel recorder -screw thread -sangoma -calliopsis -geoduck -colleen -bandicoot rat -pastis -swamp sunflower -scorekeeper -Honduras mahogany -Australian pitcher plant -triangle -elevator shaft -green pea soup -carrel -prairie aster -bird's-nest fungus -scarlet clematis -gook -mescal button -carcase -mulatto -ejection seat -strawberry daiquiri -goat grass -car battery -babu -chief of staff -monilia -Siberian crab -ridge rope -Morchella semilibera -nutmeg -moosewood -graham bread -California four o'clock -zwieback -velvetleaf -abelmosk -shadow box -corned beef hash -newsreader -backstairs -cutwork -sherbert -tooth fungus -angel-wing begonia -greasepaint -common milkwort -potato vine -CD drive -crepe de Chine -sporting man -koto -armet -barking frog -celeriac -drainage ditch -black box -steel blue -clotheshorse -corn speedwell -drawknife -spritsail -vichyssoise -modeler -pocketcomb -limey -suslik -cockpit -digester -brig -raita -troll -benedictine -rock wren -lock -Barnaby's thistle -school bell -school ship -Soave -falchion -swaddling clothes -terrine -smoke screen -rivulus -sweet lemon -cullis -bustier -peppermint -Philadelphia fleabane -Hampshire -active -charnel house -face guard -Quebecois -facilitator -tongue depressor -bitternut -heath aster -sapodilla -bluestem -centrist -Canterbury bell -needlenose pliers -groats -tapa -Qatari -paper feed -tilt-top table -plastering trowel -brazil nut -rotogravure -patriot -manicurist -bacon and eggs -puffbird -lightweight -golden willow -kaiser roll -duff -girandole -seaside daisy -Kurdistan -Skivvies -showboat -fire bell -lock-gate -greater masterwort -weald -ice ax -toetoe -mess kit -bucking bronco -black turnstone -backscratcher -backpacker -basement -marbleization -trigger -satsuma -fall-blooming hydrangea -mountain lady's slipper -yellow oleander -crookneck -ex-president -Venn diagram -psaltery -bulwark -old boy -linear leaf -aril -butt weld -fall webworm -pruner -bald-faced hornet -nougat -tailgate -field speedwell -potsherd -center punch -long beech fern -desert paintbrush -canyon treefrog -bushel basket -Eurasian -swamp horsetail -cryptanalyst -wicket -school newspaper -captive -spider brake -electric mixer -tumbleweed -mason wasp -sash window -paddock -wet bar -oxtongue -stevia -wheat rust -scute -switch engine -mud dauber -dotterel -snailflower -common barberry -mulligatawny -cinnamon bark -cigar box -trivet -proof spirit -cream soda -western grey squirrel -baby powder -Bren -Japanese yew -sailcloth -Basket Maker -bannock -basidiocarp -aphelion -erect bugle -limiter -bosc -Przewalski's horse -helmet orchid -audiometer -battle cruiser -grass widower -staphylococcus -Congolese -common pitcher plant -parliamentary agent -Virginia snakeroot -mockernut -Siberian elm -backbench -rough -chervil -chlamys -nationalist -galantine -screwdriver -falsifier -cancerweed -spur -jerkin -porte-cochere -dill pickle -Montagu's harrier -tetrode -true fungus -American quaking aspen -vitamin B1 -leopard lily -eggdrop soup -aurochs -core bit -Jaws of Life -trousseau -parquetry -Disciotis venosa -tender -beef goulash -vitamin K1 -pepper spray -covered smut -hook -sports announcer -weapons carrier -foxtail grass -sloe gin -mezereon -antifouling paint -pavior -pile driver -security consultant -monkey-wrench -Indian hemp -amaretto -American wistaria -A-line -market strategist -rainbow runner -souvlaki -binturong -stiletto -gastrula -Vietnamese -Old World hop hornbeam -cold cathode -pier table -houndstooth check -prop root -leaf-footed bug -sedge wren -Dutch iris -drop curtain -opossum rat -lame -pollen tube -doubletree -compression bandage -pinon pine -catmint -pier arch -kingmaker -deanery -loofah -fullback -fencing mask -flying boat -carpet sweeper -lemon-scented gum -Accipitriformes -kit -pigfish -clipper -dolmas -lesser centaury -blood agar -water violet -raw milk -lemonade -vicar-general -supply closet -Anzac -confectioner -ignition key -velvet grass -white willow -John Dory -ruddiness -wheel -common horsetail -hubbard squash -speculum -Spanish bayonet -mountain mint -glint -foxhole -housemate -bootjack -sleigh bell -clog dancer -Mexican mint -rendering -Hausa -star saxifrage -spring squill -clothesbrush -liquid metal reactor -Columbia tiger lily -sorrel -cartwheel -Jersey -Caucasian walnut -desert willow -surveyor -elbow -Santa Gertrudis -fringe bush -industry analyst -lyrebird -Cortland -arroz con pollo -catechist -tank top -jew's harp -cereal oat -heartleaf -short sleeve -butty -butterfly plant -stud finder -felloe -beer garden -clevis -wood warbler -demerara -cornetfish -mince -Jamaica rum -Spanish broom -binnacle -camise -ferrule -Copt -hall -minicar -scimitar -cryptogam -miter box -limestone fern -Marsala -Parliamentarian -gravy -woolly bear moth -formula -squash bug -pigmentation -plate -skin graft -radiotelegraph -hellbender -soft pedal -lavender cotton -propagator -Bailey bridge -cottage pie -rotgut -A battery -pintle -off-line equipment -European swift -shrimp butter -plumb bob -trunk lid -succotash -yellow cypress -heartleaf -antelope squirrel -sambar -maternity ward -deciduous plant -bartlett -Riesling -sour cherry -Klansman -poke -academician -sociolinguist -bird's nest fern -common privet -scale fern -tachograph -oyster stuffing -pusher -green June beetle -staghorn sumac -lockage -master -bap -harlequin -blackfly -spotted coral root -kahikatea -cabana -riot gun -apple mint -kob -praline -confidant -pahautea -float -city father -Zen Buddhist -pessimist -conference center -banksia rose -comfit -sweet cicely -winged bean -henroost -myope -bunt -nailfile -yellow mountain saxifrage -cruise control -abandoned ship -water chinquapin -spanker -wing nut -puccoon -pier glass -Atlantic sailfish -medlar -buttercrunch -rough-skinned newt -planter's punch -Dutch iris -control key -committeewoman -torpedo-boat destroyer -garambulla -tree heath -gladiator -September elm -inclinometer -snowbell -call-in -sunsuit -microfiche -bluestocking -cheval glass -server -franking machine -sugar syrup -Macoun -transport ship -alderfly -wash-and-wear -Abbe condenser -bush nasturtium -wild leek -canary seed -Northern Baptist -sweet wormwood -jaboticaba -cardroom -autoradiograph -ash-pan -sprinkler system -rattrap -claymore -parts bin -forest red gum -thermonuclear reactor -Indian crocus -lector -heir apparent -leafy spurge -masquerader -varicella zoster virus -cucumber tree -hedger -Shumard oak -zooplankton -quartermaster -arrester -bridge -hop clover -meadow foxtail -winter hazel -portable circular saw -penuche -limpa -blue toadflax -mesophyte -Alpine anemone -pet sitter -avocado -streptococcus -fiber optic cable -river red gum -hornist -chicken taco -red spider -tape grass -densitometer -salmonberry -tiger snake -hot toddy -silver fern -candlenut -buckram -local call -defoliator -king -mahoe -lever lock -social insect -winter purslane -bootblack -fireball -ramie -bellbird -prepuce -capote -Chinese forget-me-not -Pisces -costume -California black oak -tree lupine -golden polypody -liger -California whipsnake -urodele -sapodilla -skillet bread -duckpin -supremo -asparagus bean -kampong -endameba -cow pony -rider -motherwort -Persian iris -soursop -kohlrabi -Parisienne -irons -doubles -feijoa -farmplace -cottage cheese -bezoar goat -subcontractor -blunderbuss -down -purple martin -Lapp -crenate leaf -tobacco pouch -beach towel -Santa Lucia fir -monetarist -stringer -ocellated turkey -Texas purple spike -ackee -caddy -hedge mustard -second-rater -strawberry bush -valedictorian -steak sauce -prairie gourd -aspirant -mint -Valenciennes -vodka martini -American persimmon -big brown bat -Mycenaen -mouthpiece -norfolk island pine -pennyroyal -Jewish rye bread -granadilla -tract house -wall -shuttle helicopter -blackjack oak -Lippizan -storm window -white zinnia -sickle -sushi bar -polish -baldric -brooklime -church hat -control circuit -vicuna -death adder -eukaryote -durmast -field soybean -jacket potato -wild basil -queen consort -brooklime -octant -blue false indigo -broccoli raab -step-down transformer -date bread -blue ash -duffer -oak chestnut -pennant -wedge -Florentine iris -morion -weakfish -morning dress -public address system -spearmint -Ashkenazi -sow -interpreter -Metis -pita -iron lung -parfait glass -cylinder lock -immortelle -obstetrical toad -tee hinge -successor -western -working girl -julienne -AND circuit -spaghetti junction -fer-de-lance -enlisted woman -star -lightning rod -bilge pump -pacer -horse nettle -African oil palm -blastocyst -air hammer -bamboo fern -remote terminal -lambkin -money cowrie -Pelham -clinical thermometer -wiggler -guru -false indigo -tea bag -foredeck -king -baby shoe -mule -grab bag -silver-bell tree -knitting machine -cobia -roulette ball -larder -button pink -rumble seat -noria -queen mother -solar thermal system -aquaplane -highbrow -rusty blackbird -desktop -lima bean -pontoon bridge -watercress -wild cabbage -tumbleweed -dressing sack -compact-disk burner -spittoon -marrow -sporophyte -second fiddle -pot-au-feu -specialty store -dry -mole -khadi -japonica -lovage -squamous cell -lobe -European creeper -brown pine -bladderpod -rumble -French Canadian -mascarpone -Pacific halibut -perennial ryegrass -wine lover -turbot -longwool -silver tree fern -dust cover -synchromesh -corn pudding -alpine azalea -garboard -cane sugar -observation dome -condensation pump -hind -taximeter -hand drill -gas thermometer -jammer -buffing wheel -handstamp -prairie mallow -turkey stew -sun spurge -duck pate -kibble -Cassin's kingbird -apadana -Devon -grinner -oocyte -blank -header -schoolmaster -guard ship -intravenous pyelogram -rimu -luff -Mediterranean fruit fly -singlestick -lady-in-waiting -curb -birch -limekiln -orthoscope -serotine -Spanish oak -swamp cottonwood -edger -city man -picnicker -white basswood -Parsons table -Christmas begonia -perspirer -Pacific tree toad -Cape tulip -finger bowl -blue pike -greengage -handcar -milkweed -potbelly -river dolphin -creel -typewriter carriage -banteng -pawnbroker's shop -huon pine -biennial -man of action -foundress -caveman -featheredge -jordan almond -sandblaster -coralberry -low-calorie diet -hoot owl -garter -bain-marie -wrecker -fenugreek -double-hung window -idol -scullery -balloon vine -summer savory -winged spindle tree -Helvella crispa -walrus mustache -gas engine -boulle -rush grass -rue -hoe handle -cat fancier -deerstalker -dunker -American red plum -fall dandelion -groover -sprag -stair-rod -wish-wash -pricket -architrave -California laurel -net melon -Arizona sycamore -executive secretary -silverweed -silky cornel -surface ship -square sail -common purslane -villa -holly-leaved cherry -sweet birch -pecan -artillery shell -breast pocket -pirogi -scarlet runner -rabbit brush -mealworm -leather carp -palette knife -Jerusalem sage -boneshaker -slit lamp -digital voltmeter -polar glacier -square-rigger -homogenized milk -Sten gun -lesser calamint -pyrograph -Korean lawn grass -Zinfandel -crepe fern -western ragweed -clasp knife -distributor housing -cartouche -scooter -ski parka -jackknife -Carolina spring beauty -soft diet -candlesnuffer -horse trader -step stool -agouti -accelerometer -annual fern -judge advocate -angelica -roll film -treehopper -ombu -comer -sultanate -kitchen help -hooded ladies' tresses -milking machine -knuckle joint -Jamaica honeysuckle -music teacher -sauerkraut -Weston cell -slivovitz -Worcester sauce -tall bellflower -chancery -prophetess -casquet -shortfin mako -sorus -visual display unit -asp -grenadier -black pepper -crottle -erasable programmable read-only memory -jabot -ratchet -disk controller -chief petty officer -tap wrench -white mountain ash -cultivated rice -flying phalanger -skillet corn bread -BB gun -Elamite -European red elder -reed rhapis -ciderpress -inga -torpedo -wild teasel -bean curd -oeil de boeuf -acuminate leaf -bitter lemon -hitchrack -Lorraine cross -hostess -European dogtooth -adz -polonaise -rock sandwort -Waldorf salad -myrmecophile -klystron -mole rat -draba -corn borer -robusta coffee -chub mackerel -leatherleaf -chronometer -Moselle -sea aster -fennel -slop basin -constable -Brunswick stew -hydraulic pump -French omelet -icebreaker -Manx shearwater -press of sail -ninepin -blue succory -bootstrap -hallstand -chit -firefly -bearded seal -fuel filter -jezebel -mate -Roquefort -cheesecloth -plasterer -blue pimpernel -lake dwelling -shrink-wrap -goat cheese -common gum cistus -coastland -Sunday best -wild tobacco -mandrake -common unicorn plant -barbican -culotte -blockhouse -German iris -tarragon -caramel -wild rosemary -grain -voyager -squirting cucumber -eastern narrow-mouthed toad -creeping fern -luge -saffron -garland flower -furnace room -starship -Oriental scops owl -Italian honeysuckle -berserker -Chinese elm -scrubber -bishop pine -French polish -compromiser -skimmer -river shad -lobster thermidor -leadwort -man-of-the-earth -razorblade -vicegerent -empress -link -ham and eggs -wild lily of the valley -blackfish -splicer -fossa -mara -moneygrubber -brachiopod -fauteuil -caldera -finish coat -croupier -termer -leopard's-bane -sei whale -molucca balm -dolly -dog food -term infant -soft roll -episcia -sewer -inquiry agent -active citizen -perry -California newt -moon shell -bladderwrack -common shrew -dill -Dutch elm fungus -key lime -electrometer -divorce lawyer -lamb's-quarters -apple turnover -shipmate -Guernsey -legionnaire -electric blanket -Rocky mountain pinon -tobacco mildew -stinking iris -forestiera -departure lounge -wiper motor -jurist -scarlet runner -pallbearer -batter's box -inertial guidance system -fines herbes -oilcan -sisal -mustache cup -steamed pudding -Visayan -fiesta flower -lady tulip -lungless salamander -batiste -electrical system -blazing star -car carrier -Walloon -mother hen -stump -mulled cider -secondary coil -Alexandria senna -etui -scrumpy -Havasupai -jawbreaker -glume -ex-husband -Eskimo -Joint Direct Attack Munition -number theorist -five-hitter -pinstripe -Olympian -common mackerel -stone bass -bigos -Bahraini -airbrush -great ragweed -glass lizard -hand fern -roundel -riding master -shoetree -yellow avens -old fashioned -dolman -stinger -nursling -legate -faille -golden fern -bedpost -shop steward -kidney bean -bladderwort -internist -limeade -Bruneian -Coloradan -playsuit -wintergreen oil -Cantabrigian -mutton snapper -shot putter -hand grenade -moccasin -cobnut -marrow -separatist -cockscomb -discharge pipe -Gabonese -spade bit -chicken cordon bleu -varnish tree -European wood mouse -striped gentian -Ayrshire -curassow -moo goo gai pan -malarial mosquito -glow tube -ledger board -bib-and-tucker -European chestnut -suffragette -color wash -gaffsail -golden larch -voting machine -Kahlua -lungi -amusement arcade -Uzbek -butternut -mold -mule's ears -dickey -shrimper -trophozoite -dreadnought -shepherd's purse -greenhouse whitefly -spotted gum -copperware -perfect game -semigloss -spawn -telecom hotel -stakeholder -mason wasp -flibbertigibbet -chin strap -fringed pink -saki -urchin -memorizer -roulade -whiting -cling -corncrake -Queen of England -choo-choo -empty -heating pad -playmate -visualizer -popcorn ball -absconder -sou'wester -target acquisition system -mock-up -dental floss -tray cloth -haddock -bulblet fern -housing commissioner -delayed action -anchor light -harbor porpoise -water wings -PT boat -night latch -fennel -doorframe -green-tailed towhee -grey polypody -torture chamber -American germander -Chinese wistaria -cattalo -accompanist -rifleman -alpine clover -contrarian -lemon peel -Mexican cypress -sprog -dado -Galilean telescope -desmid -lockup -Latin -American raspberry -mescal -butternut -prairie orchid -downy yellow violet -green hellebore -radio compass -bread and butter pickle -Cherokee rose -knish -destroyer escort -Arkansan -langlaufer -pyxis -winter savory -velocipede -motley -winter savory -law student -barren ground caribou -apple dumpling -field hospital -works -city editor -European flatfish -Morchella crassipes -life office -boot camp -cream sauce -cape aloe -acetate disk -devil ray -tile cutter -Plymouth Rock -microspore -godown -Syrian -tiercel -American cranberry -lesser spearwort -anopheline -Spanish oyster plant -wire cloth -attic fan -birch beer -small computer system interface -crook -ribbon fern -explorer's gentian -nagami -I-beam -rosebud cherry -Jerusalem artichoke -Stillson wrench -pluralist -district manager -Levantine -orangeade -part-timer -post horn -Oregon grape -contadino -cargo helicopter -silverpoint -chaja -California bluebell -case -Shasta -cheese cutter -Leishmania -avalanche lily -iron horse -bialy -Yana -Delawarean -Prussian -nonpareil -hammer -hoper -chewink -anil -skim milk -desert four o'clock -crescent wrench -white marlin -blue jasmine -malacca -anadama bread -purple poppy mallow -ganglion cell -ligature -no-parking zone -golden clematis -Cotswold -aliterate -shebeen -yardarm -superbug -fanaloka -stinking cedar -spirochete -wort -pater -heaume -thermocouple -ironing -naval tactical data system -European goatsucker -prairie cordgrass -accused -foreign agent -halberd -western mugwort -esthetician -Persian lilac -cracked-wheat bread -crosscut saw -rock penstemon -paper cutter -crematory -ideologist -cattley guava -margarine -creosote bush -hoary plantain -spark gap -lumberjack -Greek valerian -mission bells -tight end -bigeye -large crabgrass -stone marten -cleat -lentil -bay scallop -lector -charger -assemblywoman -second lieutenant -boil smut -sarsaparilla -hydromel -cat flea -pinfish -whole milk -hairnet -myeloblast -peasant -blind curve -first offender -dwarf-white trillium -Brother -coatdress -gun emplacement -tamarisk gerbil -snap -air cushion -trailing edge -potato vine -gig -everlasting pea -champion -dibble -rattail cactus -timothy -prince's-feather -cutlas -lockring -sealing wax -Brussels lace -corn mint -highboard -she-oak -wild celery -pillar -Burberry -Hakka -leucothoe -bell tent -gallery -coontie -leather fern -smack -adenovirus -linoleum -chain wrench -tammy -gas fixture -nut bar -baneberry -butterscotch -goat's rue -bullock -grey snapper -mother-in-law -hyson -wayfaring tree -mollie -needle spike rush -buckwheat -bayberry -brush-tailed phalanger -dry rot -harborage -stormy petrel -Oriental beetle -Atlantic halibut -coping saw -simple fruit -viscose rayon -surgeonfish -upstairs -security system -common ragweed -verticillium -pancake batter -hawk's-beard -Dutchman's-pipe -refrigeration system -European parsley fern -Ivy Leaguer -totalitarian -gonococcus -towhead -showy sunflower -pallium -multiengine airplane -hair trigger -rabbit-eared bandicoot -siskiyou lewisia -fuel system -flat arch -broad beech fern -Alpine lady fern -bracken -Kentucky black bass -rut -mountain maple -tunaburger -umbrella fern -white-headed stilt -meat hook -panhandler -washhouse -barnyard -safety lamp -leg -ripple mark -paper -sagebrush lizard -light heavyweight -common nutcracker -operator -stalking-horse -horseless carriage -fishhook -suction cup -peg -Ungulata -false teeth -round-bottom flask -Luba -campaign hat -firebox -rudder -parapet -ice pack -appellant -spirit stove -metheglin -common bamboo -soapwort gentian -pannikin -time capsule -burn bag -folk poet -tropical prawn -end man -new caledonian pine -linen -web -free trader -jury box -railing -pignut -leaker -potboy -rubber boa -white snakeroot -plumber -Candida albicans -surfboat -woman -promulgator -eyecup -wild China tree -rattlesnake master -Viyella -alpine salamander -ailanthus silkworm -Albatrellus ovinus -war room -meadow vole -robotics equipment -rotary actuator -Engelmann spruce -pinesap -beefcake -native speaker -ridge -injector -water chute -salmonberry -decoupage -bottlebrush -date plum -circlet -American mountain ash -pocketbook -horsemint -sweet four o'clock -kirpan -pinto bean -chervil -equator -range animal -candy thermometer -calanthe -cul -stipendiary -brahman -pelican crossing -topgallant -wild senna -sliding window -carrier pigeon -Tatar -quadruplet -bumboat -spearmint oil -slip clutch -young Turk -golden yarrow -shank -glasswort -dental plaque -Manduca sexta -Northern bedstraw -dent corn -Life Saver -western wall flower -bedder -wherry -Tuscarora -scrapple -borstal -reflux condenser -problem solver -nondriver -perforation -eastern cricket frog -white wood aster -broad buckler-fern -Cape primrose -herringbone -head louse -earl -baton -recording system -primary color for light -cherry laurel -pomfret -ratafia -chocolate milk -obscurantist -revisionist -rood screen -magnetic needle -commensal -oil tycoon -celebrant -domicile -harvest mouse -California nutmeg -greater spearwort -black-billed cuckoo -winepress -demographer -straw boss -diabetic diet -sweetmeat -rabbet -ming tree -basketweaver -freestone -walk-in -Aryan -box coat -audio amplifier -chicken salad -churidars -whydah -box -batman -siren -selectman -gouger -drip coffee -Caesar salad -interpreter -whinstone -grey goldenrod -minicomputer -honey crisp -hypercoaster -Irishman -swamp white oak -reed canary grass -globeflower -cynthia moth -fennel seed -canthus -chino -blind date -tar pit -watermelon begonia -fishtail palm -overcast -Pearmain -primary color for pigments -coal seam -wherry -safety bolt -cretonne -Michigan lily -inflater -moneybag -huckleberry -brassard -bush vetch -looking glass tree -pinwheel roll -alfalfa sprout -sea kale -clinometer -achira -lorgnette -potter wasp -gilded flicker -tody -capulin -captain's chair -crackle -gerardia -prie-dieu -venture capitalist -New Jerseyan -block and tackle -elf cup -bur reed -automatic transmission -wax palm -flytrap -crack willow -coachwhip -swizzle -lugger -Dewar flask -baster -oxyacetylene torch -Culex quinquefasciatus -St Peter's wort -wild hyacinth -Russian almond -burrfish -wintergreen -katsura tree -butcher knife -perfumery -thresher -porte-cochere -sheepwalk -hypotenuse -Dalmatian iris -buttercup squash -demiglace -goldenseal -preceptor -rigger -poikilotherm -old-age pensioner -posthouse -wood horsetail -repeater -reciprocating engine -Rambouillet -terra cotta -togs -battledore -horizontal tail -missile defense system -trier -morello -woolly adelgid -munition -double creme -in-fighting -squirrel corn -crow's nest -antler moth -brake cylinder -bandoleer -noticer -Parmesan -hipline -cheapskate -Dubonnet -mole rat -bog aster -ribbon tree -meadow rue -nard -ratel -loose smut -snapping shrimp -golden glow -basil thyme -Florida strap fern -moonshine -flume -lace fern -black bream -orchestra pit -archerfish -exile -ringdove -career man -godfather -bottom-feeder -pasteurized milk -dental implant -pedicel -Catalpa speciosa -yellow foxglove -lancet arch -steam shovel -sampan -patrol boat -sailor cap -tollgate -monal -velociraptor -cacique -jack oak -cursed crowfoot -creep -Parry manzanita -common matrimony vine -grace cup -caecilian -spurge laurel -prickly lettuce -Regius professor -camail -Sitka willow -Courtelle -gin sling -dogmatist -guest -saltine -dust cover -sport -sweeper -feist -lady's-eardrop -vibist -wire stripper -tenpin -interplanetary space -beet green -pruning knife -drainage system -gunnery -ballet master -lime juice -flak catcher -lacrosse ball -Canadian aspen -beatnik -railhead -utilizer -spadefish -Arizona white oak -city university -dense blazing star -hedger -chain pickerel -right-hand man -namby-pamby -nacelle -redneck -tumbler -Chief Secretary -cannon -cupola -kummel -papaya juice -Burton -Stanley Steamer -loganberry -stylus -square meal -rock bass -western ladies' tresses -dramatist -assignee -tandoor -trumpetwood -segregator -green adder's mouth -coral necklace -ani -iceboat -densimeter -oxtail soup -kernel -cos lettuce -greenishness -panchromatic film -Parker House roll -oatmeal -backsaw -double Gloucester -bailey -storage cell -giant -coconut milk -broadtail -barouche -loir -soybean meal -white-leaved rockrose -junction barrier -spandrel -sweat bag -goldilocks -flowering wintergreen -cockspur -beef fondue -holding cell -cardamom -cagoule -Kamia -tangelo -Herschelian telescope -wine bar -kachina -sand sage -guy -ivory palm -citrus mealybug -topper -ladyfish -force pump -fanion -calaba -Iowa -orrisroot -ivorybill -Secretary of Agriculture -gagman -dry cell -hypnotist -kenaf -grey alder -deathwatch beetle -gagman -magnetic stripe -trap door -abdominal wall -prefab -broomcorn millet -architeuthis -angler -Pacific giant salamander -barbette carriage -low-fat diet -veal scallopini -B battery -wallah -landing flap -pistachio -jaguarundi -nagi -cicerone -felt fungus -Aertex -stocks -smooth aster -patchouli -lemon sole -sleeper -basket fern -dundathu pine -anjou -Moreton Bay chestnut -broom sedge -candid camera -red angel's trumpet -oilstone -cinnamon toast -Pacific walrus -fruit custard -Jehovah's Witness -mate -voyeur -Esselen -achromatic lens -sanguine -brine shrimp -dunce cap -swot -transit instrument -grey willow -pack -bench clamp -Nova Scotian -gadgetry -silvery spleenwort -enchantress -rough fish -morula -giant taro -sorus -roux -polyhedral angle -spruce beer -Chicano -cola extract -outfielder -kohleria -white-rumped shrike -car-ferry -subway token -spoon bread -totara -corn borer -bowhead -tensimeter -water scooter -flickertail -Catholicos -pleaser -blue-eyed Mary -calabash -handyman -cascades frog -facing -scarlet oak -lutist -ginger -tree tomato -Harvey Wallbanger -tent peg -insectivore -fusil -swale -chinning bar -bladderpod -New Dealer -dhoti -proscenium arch -common vetchling -channel -collect call -safflower -Texas tortoise -test equipment -theca -RAM disk -sheep sorrel -rammer -buttonhook -honey mesquite -dominus -babirusa -queen -Aspergillus fumigatus -crash barrier -nonmember -Muscovite -verdin -Australopithecus afarensis -Turkish Delight -stalked puffball -giardia -divider -mountain skink -head smut -pacemaker -evaporated milk -rattlesnake fern -flamethrower -navy bean -bather -steed -showy orchis -stone crab -artichoke heart -phantom orchid -space helmet -swamp laurel -privateer -junior -surcoat -bristlegrass -flower girl -aphid lion -penthouse -lemonade mix -coude telescope -natal plum -scriber -wood nettle -rape suspect -resplendent quetzel -western poppy -choir loft -fore-topsail -thyme-leaved sandwort -erotic -short circuit -outdoors -flowering tobacco -hookup -aviatrix -corker -horehound -horn -swamp pine -water biscuit -cherimoya -vaporizer -courtier -European sole -full skirt -Mother Carey's chicken -cymule -huck -white snapdragon -mountain nyala -country borage -bonduc -casein paint -grampus -shrimpfish -lodge -dragee -black walnut -caraway seed -roper -glass cutter -tab key -Richardson's geranium -demigod -chichipe -Italian ryegrass -cadet -electrograph -rudd -carpenteria -foie gras -lignum vitae -hedge nettle -pledger -American hackberry -flageolet -beaked hazelnut -reflectometer -sticky geranium -marriage bed -white pepper -japanese clover -whiteface -gnat -extrovert -Canada plum -talipot -chicken stew -egg foo yong -fraxinella -skibob -saucer magnolia -jacket -green smut fungus -cloakroom -landing skid -booth -ice milk -dipole -striped coral root -red buckeye -roughcast -breaststroker -cowherb -razor clam -first-aid station -briarroot -clambake -lander -Bramley's Seedling -frail -jird -minisub -luging -poison milkweed -European lobster -epidemiologist -spandex -paloverde -marumi -bypass condenser -punter -petty spurge -Coryphaena hippurus -bilberry -vermillion rockfish -witness box -viscometer -pulque -Massachusetts fern -herring salad -ridge tile -mesa -dwarf grey willow -southern aster -punch pliers -tarnished plant bug -hoop pine -Japanese red pine -benedick -rebozo -silver plate -silver willow -mouse-ear hawkweed -bonito shark -abutment arch -noble cane -tiger rattlesnake -pongee -jumping plant louse -pattypan squash -giant ryegrass -railroad bed -stiff aster -imperial Japanese morning glory -laundry -winter cress -large white petunia -tea maker -pen-and-ink -early warning system -lug -monocot -sea wormwood -breechblock -postage meter -third rail -Mongoloid -Australopithecus boisei -umbrella tent -stirrer -Dumpy level -beroe -post and lintel -green spleenwort -tomato paste -dishpan -stentor -sweatband -cobbler -New York fern -gaff -prairie willow -cyclops -jigsaw -rotavirus -pallet -eastern ground snake -boiling water reactor -acute triangle -agora -European cranberry -roebuck -surgical dressing -busboy -cannikin -feedlot -common pond-skater -cochin -horsehair lichen -fetter -sapote -fichu -dermatologist -fire tongs -creme anglais -foster-mother -laurelwood -chicken snake -mincemeat -rocker -wild spinach -powder and shot -butterwort -auxiliary engine -mamey -hart's-tongue -sucking pig -American turkey oak -troopship -buttermilk -divi-divi -boatswain's chair -soda fountain -southern flying squirrel -elastic -cutaway -housekeeper -renegade -apple rust -bridoon -machicolation -stunt -keyhole limpet -personality -solitary vireo -epidendron -Jihadist -boffin -bettong -terror -partial denture -pusher -saltcellar -capstan -large poodle -Bibb lettuce -low-bush blueberry -staple -banded krait -sickroom -barnyard grass -wandflower -woodworm -bluegrass -squirrel's-foot fern -rabbitfish -delta wing -milking shorthorn -limber pine -guru -gamine -scythe -sweetsop -Gruyere -bloodmobile -mine detector -American mistletoe -silver beech -hound's-tongue -Lombardy poplar -basket fern -pink-and-white everlasting -redtail -Aladdin's lamp -mace -outtake -condensed milk -Canada wild rye -silver perch -waxflower -taxer -Chinese chestnut -Our Lord's candle -mugwump -school system -salp -osso buco -dress shirt -butterweed -low-fat milk -couchette -broomcorn -proscenium -mill agent -smut grass -humpback -southern spadefoot -military leader -canebrake rattlesnake -tailor-made -ebony -beach house -flying gecko -hoary alison -typhoid bacillus -Romanov -vanilla pudding -sweet cicely -Spodoptera exigua -dress rack -flannel -skipjack -bolognese pasta sauce -rooibos -thunderer -blessed thistle -gauntlet -mahatma -granadilla -laurel sumac -Yuma -thyme-leaved speedwell -encyclical -twill -linocut -manna gum -spark arrester -cocklebur -Indian hemp -lemon oil -Hall's honeysuckle -raceway -flop -Himalayan lilac -one-flowered wintergreen -photosphere -silvery spleenwort -convex polygon -canarybird flower -foster-sister -fluffy omelet -palanquin -roll -dandelion green -Javanese -workpiece -Carmelite -bread mold -schlemiel -wild lily of the valley -grugru -solenoid -puff batter -skep -balance wheel -Gadaba -portia tree -mobcap -two-man tent -scuffle -firebrat -ant lion -anise -caster -giant petrel -American water spaniel -naboom -treasure ship -foster-son -fiddleneck -alidade -sugar refinery -wild oat -water beetle -generic -damson plum -abrocome -detainee -pitch pipe -coast -nilgai -radiotherapy equipment -heart-leaved aster -gristmill -grocer -Appaloosa -Cheviot -brake pedal -lantana -cave myotis -Rob Roy -sea spider -latrine -carpophore -recycling plant -coondog -brace and bit -funambulist -eggar -mantelet -postdoc -mezzanine -coco plum -pulse generator -high-vitamin diet -menhaden -mechanical engineer -bergamot mint -Chuvash -grated cheese -helicon -belladonna -beet armyworm -eelgrass -resuscitator -interrupted fern -arrow grass -cistern -Pacific herring -colostrum -journal bearing -Fauve -wrist pin -canape -choice morsel -quadraphony -guard boat -shortgrass -claymore mine -hitching post -cargo door -decoder -gym rat -Cocopa -commander -apple of Peru -seckel -yellow goatfish -dog flea -dodo -oconee bells -Tudor arch -turkey stuffing -ebony spleenwort -wheat flag smut -scolopendrium -Brazilian pepper tree -gusset -inspector -lunar excursion module -baron -plantigrade mammal -Creole -phosphate -aromatic aster -ghee -audiovisual -onychophoran -cotton stainer -lieutenant junior grade -spheroid -amen corner -caper sauce -Caladium bicolor -dyer's rocket -seaside goldenrod -flint corn -Very pistol -rotifer -steeplechaser -rouleau -escape wheel -Namibian -millivoltmeter -emmer -climatologist -agateware -sea lyme grass -inclinometer -water fennel -saddle seat -vicar -garden cress -ski rack -Norfolk jacket -casaba -coast rhododendron -sericea lespedeza -hematocrit -autopilot -tilter -finish coat -Pennsylvanian -shrubby St John's wort -podocarp -percussion cap -ceriman -peanut bar -gean -jack -durra -rotor -carob -cottage tulip -three-spined stickleback -trencher -elevator -kalumpang -abaca -Australopithecus robustus -active matrix screen -water bed -hatmaker -lodestone -cat food -overcup oak -balletomane -popgun -rheometer -process cheese -frog legs -heartleaf arnica -p-n-p transistor -steam turbine -Tulu -scalene triangle -licorice fern -coffee break -trade unionist -starved aster -firing pin -water gum -Masonite -hairspring -seminarian -blue racer -forecastle -scrub pine -Atlantic spiny dogfish -kopje -orphrey -fan tracery -gee-gee -vixen -interstellar space -Harris Tweed -sawmill -lemon mint -bitewing -ringlet -Chinese mustard -paleontologist -American hazel -brigantine -clay-colored robin -zombie -nectarine -West Indian jasmine -pineapple weed -rusher -gynecologist -pole -thylacine -myrtle beech -golden cup -woodruff -T-bar lift -terebinth -service club -homegirl -Blue Mountain tea -figwort -New Hampshirite -Stayman -tonometer -white turnip -messuage -cruet-stand -colliery -connecting room -lesser twayblade -bland diet -crown prince -beggarwoman -restharrow -bower actinidia -firebug -hepatic tanager -telegraph -Spodoptera frugiperda -spackle -carpenter's square -pyx -supermom -thickhead -whorled milkweed -Arctic char -Chinese rhubarb -pince-nez -wolverine -tomato concentrate -cascarilla bark -red underwing -leather flower -Jerusalem thorn -bullpen -Salisbury steak -anode -coffeeberry -bottling plant -fritter batter -aerial torpedo -matrix -local oscillator -stalked puffball -bruin -three-cornered leek -wassail -stabling -damping off fungus -myriapod -osier -lesser kudu -cownose ray -chokecherry -wagon -obstetrician -Glengarry -even-pinnate leaf -wine sauce -osteocyte -baker's yeast -heir presumptive -blackjack -tympanist -golden fern -fipple -Japanese oak -bar mask -stamping machine -argus -knobcone pine -oil beetle -lanai -upper berth -condenser -proctologist -catechu -wild spurge -vestry -ground snake -proton accelerator -walker -scarlet bush -transom -lagging -bouillon -slender loris -black currant -developer -football hero -plum sauce -striped mullet -prince charming -fictional animal -prosimian -lug wrench -lemonwood -kirsch -spy satellite -black caraway -Thompson Seedless -bead tree -purple fringeless orchid -Virginia strawberry -chigetai -punkie -gall wasp -addressing machine -rock polypody -good-king-henry -spring cankerworm -wimple -noncandidate -saskatoon -hacienda -Darjeeling -snowberry -lounging pajama -ascospore -ski-plane -hedgehog cereus -Welsh onion -yautia -coaster brake -sickle cell -parrot's beak -fuller's teasel -painted greenling -scablands -stuffed cabbage -barrel organ -etcher -dwarf maple -camp -Australian blacksnake -currycomb -obtuse triangle -rose gum -psychrometer -abridger -torpedo -carpet loom -sodalist -slender rush -loligo -sclerometer -wimp -dotted gayfeather -green ash -pinstripe -moralist -medusa's head -garden centipede -heath aster -fool's parsley -olla podrida -Potawatomi -Edam -toothache tree -hulk -seabag -narthex -compartment -prairie star -lookdown -B-flat clarinet -event planner -clip lead -shirting -milk punch -supercharger -macadamia nut -giant coreopsis -computer store -martingale -keyboard buffer -summer flounder -squash ball -gas turbine -object ball -plier -black mulberry -reef squirrelfish -scampi -willow aster -bowler -striped marlin -smooth muscle cell -diplodocus -Liberty ship -sponge cloth -guitarfish -walking leaf -showroom -California bluebell -bolo -turnbuckle -boysenberry -hardware -Gael -imago -endorser -jujube -dust bag -rapporteur -field wormwood -low-water mark -naval missile -Pacific yew -reversible -crabapple jelly -poniard -barricade -spawner -simnel -seltzer -deckle edge -needle -timbale -satellite transmitter -organization man -job candidate -orderly -native cranberry -fir clubmoss -coaming -chartered accountant -electron accelerator -Sierra plum -American foxhound -long underwear -Penobscot -blueberry yogurt -biretta -cascara -Paranthropus -Dorian -nun's habit -lenten rose -Augustinian -designer -northern phalarope -mombin -hazel mouse -reeve -waffler -telegraphy -Verpa conica -ignition coil -Japanese oyster -S-shape -divining rod -ant thrush -throat protector -interlocutor -Desmodus rotundus -pere david's deer -attenuator -Cypriot -red sandalwood -pendulum watch -broadcloth -striped drum -sequence -safety arch -diapensia -hog -western spadefoot -chlorella -comb-footed spider -Chechen -darning needle -C-ration -hard beech -piano action -scaling ladder -Nepal trumpet flower -ravigote -screw wrench -ramekin -Lyonnaise sauce -dinner napkin -partial veil -masseuse -coatrack -mooring tower -blue-eyed African daisy -English horn -baton -rope tow -toll bridge -massage parlor -quark cheese -lounging jacket -tall goldenrod -flying jib -coordinate axis -barley-sugar -integrator -worm gear -captain -sweatshop -class -layer -chili powder -dripping pan -oatcake -newsroom -tadpole shrimp -rake -trade magazine -silks -ram's-head -senior -knower -masseur -yam -peg -wheel tree -hardbake -test room -long-spurred violet -creeping spike rush -shrapnel -coffee senna -matchbox -creeping soft grass -welder's mask -pickaback plant -urial -hooded pitcher plant -incense cedar -Ohio buckeye -ant cow -skeleton fork fern -Indiaman -swamp ash -testatrix -marang -spherocyte -Winesap -Indian mallow -teju -Yersinia pestis -dye-works -sauerbraten -coral bean tree -safe house -postulator -eyas -lotus -wood vise -lady-of-the-night -East German -cymling -rock candy -western omelet -anoa -rainbow seaperch -crossover voter -Finn -tree shrew -hog plum -Federal -shagbark -clockwork -Alexandrian laurel -metal wood -brill -military chaplain -trend-setter -call-back -Indian rat snake -spurred gentian -Japanese maple -forest goat -bee moth -viola da braccio -duckboard -armyworm -hangnail -counterbore -cream-of-tartar tree -Mullah -bonbon -water hazard -temple orange -corporatist -rough bindweed -Turkish bath -mistletoe fig -beach sand verbena -caddisworm -English plantain -brown Betty -power pack -lion's-ear -Francis turbine -stayer -dichondra -marsh St-John's wort -squab -energizer -common horehound -mantispid -pullback -handwheel -spark arrester -yakuza -Virginian witch hazel -grunter -waterworks -bondwoman -chain printer -stockjobber -coconut milk -yardgrass -blue chip -bridle path -riser -pleurothallis -saltwort -salal -broadside -blackboard eraser -bastard -Para rubber tree -red bat -digital-analog converter -calabash -cashier -cow shark -horned pout -microphage -monologist -woolly monkey -Illinoisan -marsh horsetail -distaff -siris -eparch -gooseneck loosestrife -sounding rocket -multiprocessor -saiga -xerographic printer -madrona -right triangle -sweet gale -red maids -wolfsbane -pork-and-veal goulash -French sorrel -mutterer -Venetian sumac -drumlin -white crappie -squire -large-flowered calamint -northern cricket frog -mushroom sauce -supertanker -morello -auxiliary boiler -Virginia thimbleweed -cottage tent -bubble shell -big shellbark -wormwood sage -cider gum -coast lily -American feverfew -Peruvian balsam -purple silkweed -tobacco moth -desk dictionary -rock elm -eastern indigo snake -Japanese privet -lamb -levee -L-plate -soapfish -painted tongue -scuttle -markhor -Marburg virus -mackinaw -major -crypt -ball and chain -domestic silkworm moth -bottom feeder -mistress -death house -freight elevator -bellyband -Pulex irritans -Bacillus anthracis -fire control radar -hysterosalpingogram -turbogenerator -decompound leaf -vambrace -scentless camomile -Medinilla magnifica -prima ballerina -Northern Spy -quartz lamp -grains of paradise -justiciar -felt fern -seismograph -Madagascar jasmine -imaret -white perch -Alpine mouse-ear -tea bread -yellow bass -poseuse -espionage agent -punching bag -eurypterid -orange sneezeweed -banded stilt -armhole -postern -mother -kapuka -catechumen -Soubise -Sauvignon blanc -gunnery sergeant -self-starter -ceratozamia -Atlantic cod -Reoviridae -blood cup -horseshoe bat -oriental plane -voussoir -fetterbush -samara -truncated pyramid -lingcod -athenaeum -shyster -Carolina hemlock -submarine torpedo -floating fern -yataghan -sun tea -viola d'amore -conenose -ventilation shaft -walk-up apartment -saury -wild wheat -porcupine ball -tahini -kris -grass fern -drip pan -black bryony -Scotch broth -tapioca pudding -southwestern toad -Hare Krishna -guimpe -wild madder -megalocyte -teaching fellow -shrubby penstemon -lesser wintergreen -privet hedge -Fahrenheit thermometer -stern chaser -prickly ash -pump room -ricer -chicken mousse -wing commander -sun gear -bolus -alpine milk vetch -opera cloak -twinjet -Goldie's fern -abnegator -alphabet soup -node -grape jelly -early coral root -Tarzan -quarterstaff -greeter -Eurasian woodcock -primary coil -quirt -tinkerer -bolt -creme de fraise -voltage regulator -news photography -Jat -bristly locust -Gouda -dickey -lobster butter -dwarf flowering almond -fagot stitch -Reform Jew -ostrich fern -bathyscaphe -purple mullein -alpaca -civic leader -jellaba -Arizona ash -wasabi -Irishwoman -choke -stockinet -religionist -sewage disposal plant -bittersweet -Hyphantria cunea -pheasant under glass -screen actor -chapterhouse -quoit -horseshoe bat -rapper -cupule -planetary gear -cascade penstemon -redoubt -salt -areaway -megalomaniac -bush willow -amethystine python -plains spadefoot -colour supplement -kick pleat -bell apple -narwhal -slippery elm -stenograph -baa-lamb -quadrant -balker -jobcentre -spit curl -bastard indigo -malacca -serow -adobe lily -yacca -palestra -penalty box -scrub beefwood -reenactor -screening -white bryony -alderleaf Juneberry -harpoon -alpine clubmoss -neurosurgeon -surrey -sweet calabash -Scotch laburnum -coquille -French honeysuckle -extrados -pipe cleaner -southwestern white pine -Virginian stock -scaly lentinus -aileron -carob bar -swordfish -Alpine woodsia -negus -wireworm -sweep -goldfields -drop arch -European bream -roly-poly -pin -bastard wing -fustian -wild buckwheat -lake whitefish -overcoat -water filter -Bermuda chub -New Zealand spinach -high-hat cymbal -European larch -radiologic technologist -fine-tooth comb -brunch coat -splice -electronic converter -overmantel -extern -taper -cluster bomb -teletypewriter -pinwheel -trailing arbutus -quipu -creeping zinnia -orange milkwort -tabard -Australopithecus africanus -melancholy thistle -insole -courser -darkroom -surface-to-air missile system -bark-louse -Confederate -neritina -clip-on -spouter -trench knife -outside caliper -dhak -Limburger -chuck wagon -buttercup squash -shirtdress -pouter pigeon -dirty old man -zodiac -fennel flower -mother figure -appointment -Manichaean -lignum -bouffant -rum sling -Ravenna grass -hibachi -gin rickey -American harvest mouse -cocozelle -western wheatgrass -black crappie -rhombus -Missouri goldenrod -barndoor -wild mango -pneumococcus -Boston lettuce -ratline -desert holly -cobweb -fluoroscope -ethnologist -tor -bullshot -stockade -greave -rock sea bass -slip-joint pliers -taxi dancer -schizophrenic -zill -creme de menthe -orange-blossom orchid -divot -supplejack -busybody -casemaking clothes moth -ramrod -gearbox -birdcall -Wiffle -thwart -beauty consultant -chicken paprika -trawl -skep -spirometer -hopper -kvass -doggie bag -bath chair -showy daisy -wild tamarind -Tarsius syrichta -glyptics -Algerian -cargo area -bunk -Velveeta -iconoclast -clinch -New Caledonian yew -false mallow -Japanese tree lilac -convex polyhedron -water boatman -cruise missile -finisher -colonoscope -cumin -wickiup -saccharin -whipcord -trailer camp -eryngo -cuckold -yam bean -fighting chair -forewoman -galingale -citron -positivist -four-lined plant bug -suet pudding -field pea -Circaea lutetiana -deer grass -trap-door spider -common corn salad -mirror carp -sounder -second-in-command -seaside alder -burgoo -ming tree -curry sauce -courbaril -green alder -figure loom -fauld -halfbeak -squelch circuit -cladode -winter cress -tongue and groove joint -dwarf dandelion -joss house -western buttercup -welted thistle -potato tree -anglewing -cookfire -marzipan -hood latch -seed shrimp -common moonseed -toasting fork -bevel -three-quarter binding -midwife toad -stage director -Pentecostal -technical sergeant -golden-beard penstemon -drunk -silky oak -corn gluten feed -T-square -stoker -selling agent -cruse -server -rope-a-dope -bicorn -matzo meal -wide wale -roadblock -false foxglove -tuck box -bandsman -smoke bush -machinist's vise -Highlander -scholiast -self-starter -Swedish rye bread -spark transmitter -maverick -maquiladora -cabinetmaker -compress -rainbow shower -huntsman's horn -mackinaw -copper rockfish -lappet -nitrate bacterium -telephone plug -soutache -Dacron -toboggan -sissoo -yogi -laurel-tree -vice chancellor -Christ's-thorn -cartridge fuse -serial port -quassia -tarweed -pecopteris -beggarweed -anchovy pear -bookbindery -woodland oxeye -toad rush -sandalwood tree -marsh andromeda -Tyrian purple -boothose -tragedienne -fragrant cliff fern -festoon -bondwoman -melancholic -butternut squash -exhaust valve -semi-skimmed milk -glowworm -Virginia oyster -Identikit -ayah -gallows tree -Carioca -monoplane -jewels-of-opar -scallop -moth miller -marsh cress -lobed spleenwort -ricotta -emitter -arame -tub gurnard -army attache -maniac -organizer -pheasant's-eye -Melba toast -homeboy -Bavarian cream -Maximilian's sunflower -backstop -Tremella foliacea -yellow avens -spreading fleabane -plumb level -false rue anemone -zabaglione -climbing maidenhair -doeskin -walking shoe -lancewood -material -jacksnipe -South American poison toad -agonist -hinny -paper mill -psychophysicist -valley girl -toast mistress -jorum -tiler -chicken Tetrazzini -trivet -grasshopper -three-mile limit -kink -kiang -pole horse -jig -Cornish heath -hedge thorn -false alumroot -Popper -remount -photojournalist -sideroblast -stonecress -Agave tequilana -Japanese lilac -hawse -maenad -air bag -leaf spring -dwarf willow -soda cracker -contralto -moleskin -pilaster -Audubon's caracara -pia -American organ -bleu cheese dressing -betel palm -PC board -almond willow -socializer -tone arm -stammerer -free-liver -scaler -Gentianopsis crinita -leak -black haw -hound's-tongue -grass pea -Stassano furnace -coralbells -ministrant -perihelion -Luxemburger -powder-post termite -arboreal salamander -cushion flower -foramen magnum -pyrethrum -poacher -woolly mammoth -horned chameleon -tearaway -father-figure -tufted gentian -salmi -finger millet -physa -registrar -polyoma -bamboo shoot -matchlock -seine -congress boot -bulgur pilaf -monosodium glutamate -Kentucky wonder -mycologist -kedgeree -ragweed pollen -boarfish -yellow pimpernel -tan -northern Jacob's ladder -macrobiotic diet -migrant shrike -big-cone spruce -colonialist -white dogtooth violet -bath asparagus -webbing clothes moth -ladies' room -experimenter -prairie bird's-foot trefoil -bootleg -cognitive neuroscientist -fire chief -flagfish -dendrite -stinking goosefoot -fore edge -hogfish -Spanish cedar -hotel-casino -Tory -life-support system -pea flour -cash bar -Chenin blanc -white-footed mouse -Canada garlic -salt-rising bread -roomette -mastodon -bell founder -long iron -bi-fold door -fig-bird -European water shrew -dyer's weed -frog orchid -allosaur -Florida yew -wild potato vine -crape fern -flat-topped white aster -klebsiella -oil heater -waxmallow -enjoyer -mesocarp -semidesert -senior vice president -coccidium -burrawong -syllabub -jump suit -harrier -leaf roller -cherrystone -cinchona tree -touring car -eulogist -air force officer -red goosefoot -cat thyme -smoothbore -slugger -cardiac monitor -cobber -blister rust -musicologist -rolled biscuit -Braun's holly fern -hog plum -nonpasserine bird -pascal celery -damson -Jonathan -Sheraton -cohune palm -egg white -baton -sixth-former -Siberian pea tree -choanocyte -wineskin -auditor -detention home -Leichtlin's camas -Chartreuse -clusia -club car -wattle and daub -security blanket -common American shad -assistant professor -marsh pea -camomile tea -gopher hole -gravure -Freudian -spirillum -maharani -equilateral -crow garlic -mammee apple -felwort -hardtop -dillenia -curlycup gumweed -pilot engine -calcimine -wooly lip fern -bitter dock -wineberry -jumper -monolingual -spinning frame -old-timer -native cat -diving petrel -sodium-vapor lamp -marchand de vin -sexton -matelote -interior designer -windfall -mole salamander -minder -bodkin -neutron bomb -Caloscypha fulgens -slinger ring -mezzo-soprano -aura -Southern Baptist -viscacha -midfield -tie -prosthetist -round-headed leek -yellow mariposa tulip -canary grass -staddle -Tokay -Muenster -brazil nut -California black walnut -applesauce -penologist -virgin's bower -tenon -steward -Jerusalem oak -red-bellied snake -bindery -scow -fluid flywheel -bullhead -satinleaf -clove -double glazing -matron -wild parsnip -winged elm -shoot-'em-up -musk deer -white rust -lock -Cornishman -Vidalia onion -corn spurry -freeloader -justice of the peace -inlay -myxobacteria -tiglon -tangram -German ivy -scented fern -woolly daisy -caretaker -gastroscope -scuppernong -spotted sunfish -guilloche -codling -wormcast -Eskimo curlew -tayra -European fly honeysuckle -septuagenarian -third gear -coatee -red alder -water ice -cubitiere -frame buffer -gamboge tree -pernyi moth -chicken Marengo -Galliano -Lincoln -true sago palm -hunter's sauce -carpet beater -alpine goldenrod -arch support -vehicle-borne transmission -jilt -paternoster -redcap -Siberian larch -hoary plantain -swan's down -chicane -reverse -divan -kneeler -alexic -mock turtle soup -daffodil garlic -mission bells -squilla -ursinia -winter's bark -trifoliate orange -discina -frijole -Swiss steak -maildrop -knotgrass -dog fennel -drum sander -heroin addict -costume -camber arch -shining willow -lutefisk -red porgy -microfossil -good old boy -angle bracket -pitcher sage -bordelaise -heat exchanger -carrion -bush jacket -fanjet -coach -blackface -sicklepod -Manhattan clam chowder -daisywheel printer -olive -Sphacelotheca -Spanish needles -brown root rot fungus -boudoir -encyclopedist -V-8 juice -red haw -brass buttons -gym suit -skywalk -water wagon -gas-turbine ship -stoup -lisle -sailor suit -box beam -balm of gilead -housemaster -hayrack -neutralist -water elm -brook thistle -doyenne -nark -alpha-tocopheral -WASP -hydrilla -water-shield -footlocker -variola major -pargeting -ion engine -yellow globe lily -Malecite -bloodleaf -yellow sand verbena -whorled loosestrife -packinghouse -Carolina parakeet -Virginia waterleaf -armband -red rockfish -factory ship -moon trefoil -jump seat -water gillyflower -yerba mansa -chamfer bit -compass saw -hopsacking -Indian rhododendron -sickbed -treacle -honey eater -mailsorter -seabeach sandwort -sob sister -primrose jasmine -prince consort -elocutionist -wishing cap -runner -trestle -sugar water -half-and-half dressing -fringed poppy mallow -portiere -bung -swan orchid -weather satellite -beef broth -marblewood -sapper -agitator -wren-tit -grade -allspice tree -spacewalker -American hornbeam -sieva bean -dill seed -potoroo -love-in-winter -alembic -Cheshire cheese -small white aster -Oregonian -flipper -twill -differential gear -Prince Albert -licorice -foster-father -Melkite -portraitist -Yosemite toad -Cox's Orange Pippin -slender wheatgrass -knob -silique -Rocky Mountain bee plant -stirrup pump -chicken hawk -sweetbrier -Sierra lodgepole pine -poulette -biohazard suit -striated muscle cell -Geiger counter -World Wide Web -turmeric -prairie wake-robin -latchet -pushball -grill -shooting lodge -floating-moss -refried beans -boojum tree -red poll -toothbrush tree -rabbiteye blueberry -red haw -sweet vetch -delta -upland cotton -ballet mistress -padrone -complementary color -great Solomon's-seal -bud brush -brandy sling -spinster -Andorran -Mojave aster -mackinaw -golden calla -bottom rot fungus -segmental arch -periwinkle -hellion -topknot -copper -Mexican hyssop -weeping love grass -point woman -pathogen -fall cankerworm -common shiner -silverspot -corer -atomic pile -crystal detector -yellow spot fungus -truncated cone -saprobe -variegated horsetail -Cro-magnon -cercaria -aglet -pollster -oyster bed -pancake turner -egg cream -sporozoite -quirk molding -mutisia -sound bow -physic nut -sugar-bush -cow -magnetron -jungle hen -brassie -rock bit -taco sauce -seeded raisin -desert selaginella -folding door -vinegarroon -Pinot blanc -rye -ellipsoid -betel nut -tree of knowledge -ambrosia -long tom -breechloader -bicolor lespediza -cosmetician -monoblast -American oil palm -prancer -farina -caiman lizard -hardball -bullock's heart -cotton rat -whiting -weather ship -sharecropper -creamcups -gas bracket -divinity -ornithologist -yellow twining snapdragon -showy goldenrod -end man -heptagon -sand dropseed -round file -guama -blue elder -sand spurry -raccoon dog -zigzag goldenrod -fast reactor -arctic willow -cyclopean masonry -punter -sgraffito -slattern -storage ring -clipper -pulasan -short-tailed shrew -scammony -daybook -umbrella tree -coloring -element of a cone -gesneriad -cane -burgoo -western coral snake -friendship plant -Leydig cell -scrutineer -hairy golden aster -inclined fault -water milfoil -bryozoan -nardoo -native pomegranate -curly grass -Florence fennel -resurrection plant -ice water -crown -ploughman's lunch -clustered lady's slipper -kitchenette -sand sedge -pouched mouse -roadbed -parsley haw -predecessor -super heavyweight -seedless raisin -mailbag -sparling -codling moth -squama -Bercy -thermoelectric thermometer -Jaculus jaculus -saltpan -firmer chisel -round whitefish -ramrod -criollo -pinch bar -slash pocket -thigh pad -velvet plant -intergalactic space -brazilian ironwood -whaleboat -sirrah -hanging fly -aspirator -Dominican -dribbler -yellow-eyed grass -Cornish -geophysicist -tarmacadam -marchioness -rattlesnake orchid -Alaska Native -ilama -myrrh tree -zucchini -licorice root -nosebag -lounger -troposphere -virginal -spaghetti Western -Virgin Mary -waterwheel plant -dry nurse -enate -carpet shark -rijsttaffel -stuffing nut -caraway seed bread -Leotia lubrica -kaffiyeh -Boston baked beans -halophyte -backscratcher -instillator -trefoil arch -pip -digitizer -dosemeter -Carolinian -French sorrel -boards -historian -rangpur -clansman -goral -leatherjacket -coiner -fleece -white globe lily -storm cellar -roundhouse -mediatrix -butterfly flower -swamp gum -prairie vole -rhizomatous begonia -common tobacco -Marco Polo sheep -subarachnoid space -broomweed -safety net -silky wisteria -swagger stick -spectacled caiman -derris root -soap pad -chop-suey greens -summer hyacinth -palo santo -carbohydrate loading -chinch bug -roadman -sheep plant -messiah -desk officer -banquette -drugget -trumpet arch -great duckweed -purdah -heartbreaker -hasty pudding -alligator weed -dragee -yellow bristlegrass -Jacob's ladder -campstool -coffee fern -sweet fern -little chief hare -cat-o'-nine-tails -rep -American red elder -divorcee -black salsify -cambric -sennit -Canada ginger -wonderer -Formica -cream-colored courser -zooid -European beggar-ticks -sorrel tree -piddock -blolly -red-flowered silky oak -bay -Hooker's onion -dark horse -cone clutch -Roman hyacinth -paintbox -mestiza -green alder -bill -panicled aster -mammogram -snuffbox fern -Rediffusion -swamp fly honeysuckle -stoup -psychiatrist -nodding groundsel -student union -cold duck -bee beetle -playbox -Psychopsis krameriana -nosh-up -earthnut -narthex -single-rotor helicopter -revetment -sweetleaf -seasoned salt -piculet -speckled alder -mackerel scad -common yellowwood -devisee -static tube -Spanish heath -umbrella plant -fucoid -Chilean -coral-root bittercress -fanatic -cachou -agony aunt -bird's-foot fern -washwoman -torchbearer -placoderm -frosted bat -spicemill -Cape lobster -hard-shell crab -colonizer -camphor daisy -friar's-cowl -false tamarisk -toggle joint -tinsmith -theorist -hydrologist -loganberry -universal donor -northern whiting -tent-caterpillar moth -russet -kangaroo mouse -African scented mahogany -bastinado -breast implant -betel -grade separation -vox humana -stodge -Maryland chicken -Anguillan -oil pump -governor's plum -narcissist -deadwood -private citizen -winker -ropewalker -gidgee -Lothario -ski resort -major-domo -von Neumann machine -belaying pin -water parsnip -Fissipedia -luggage carrier -spring water -oyster stew -kohl -celesta -date-nut bread -punchboard -sunniness -hospital train -man -rack and pinion -mixer -pousse-cafe -narrow goldenrod -Maxim gun -stiff -recruiting-sergeant -watch glass -white hellebore -tung tree -prairie white-fringed orchid -beef Stroganoff -scoffer -grassy death camas -Shawnee cake -tapioca -Short's aster -banker -laparoscope -honeyflower -Caterpillar -electric clock -baling wire -huntress -Surinam toad -art school -incurable -Canton crepe -apple juice -hipline -bronchoscope -marshmallow fluff -Texan -wild fig -sawed-off shotgun -forestay -red kauri -fish slice -Egyptian grass -English walnut -brown sauce -ogee arch -nectary -chambray -leather flower -phloem -Persian violet -bomb calorimeter -western narrow-mouthed toad -soup du jour -sickle alfalfa -caracolito -periscope -coralberry -sword bean -sigmoidoscope -water locust -hygrodeik -sycamore -sheikdom -ballistocardiograph -clove -akee -fucoid -jacquard -cat's-ear -puritan -slender wild oat -smooth softshell -purchasing agent -landing craft -chartist -lace bug -sharksucker -Virginia chain fern -horseradish -namer -ripcord -personage -aspirin powder -puku -Wankel engine -nightcap -velvet bent -roridula -cytogeneticist -olm -almond extract -common heath -fringe-toed lizard -Kentucky yellowwood -lithosphere -cramp -bulgur -scurvy grass -officer's mess -frigate -electroscope -giant chinkapin -opah -rutabaga -wood hoopoe -Farley maidenhair -shingle tree -argentine -router -palm nut -quillwort -hiba arborvitae -runcible spoon -hireling -sickbay -alpine totara -white lupine -Cotoneaster horizontalis -desert plume -staghound -Sea Scout -opalescence -enophile -Jersey elm -coal house -Helvella acetabulum -selenium cell -white camas -creole-fish -auger -fragrant agrimony -research center -achromia -shank -cottonseed -mod con -extension -sugar beet -winter flounder -silky dogwood -strop -tokamak -rabbit ears -baby farmer -fireman's ax -serration -taproot -socket wrench -action officer -Chilean jasmine -Greek fire -stem-winder -body louse -lumpsucker -stink bomb -American lady crab -dicer -lie detector -maneuverer -black-headed snake -tiger moth -shooting stick -spermatid -babushka -deaconess -home -prior -chanfron -chickasaw plum -big-eared bat -rusty woodsia -tertigravida -miniver -combretum -habit -bluehead -angled loofah -gipsywort -fire-on-the-mountain -purple milk vetch -alpine gold -merozoite -loddon pondweed -Uniat -provost marshal -Gyromitra fastigiata -Coigue -proconsul -oarfish -San Jose scale -filature -chimney plant -spiny softshell -bluecoat -live axle -river limpet -clever Dick -pink bollworm -Japanese plum -roarer -caricature plant -wardroom -Texas chachalaca -Bahia grass -Moreton Bay tulipwood -accessory fruit -pearl barley -ashcake -bunt -Polynesian tattler -pine fern -laughing owl -potato fern -speaking trumpet -adjoining room -bearing rein -banana quit -redbrick university -Scleroderma bovista -magdalen -pressurized water reactor -advisee -NIMBY -poorwill -almond moth -comedian -star tulip -cracked wheat -water pump -guest of honor -yellow-breasted bunting -hire -pedate leaf -augur -purple locoweed -Socinian -upland white aster -guesthouse -double reed -detention basin -rollmops -hitch -bodega -mayeng -sparkplug wrench -attack dog -peach melba -heliozoan -tower mustard -blue mold fungus -lamplighter -banded sand snake -smooth crabgrass -elsholtzia -bodkin -Aegean island -bag lady -alewife -arcella -electrical contact -common ax -animist -concave polyhedron -coalface -climbing perch -yellowtail -hobble skirt -marquee -Russian dandelion -snow mushroom -polo ball -NADA daiquiri -cormous plant -chaparral mallow -inside caliper -milking stool -fallout shelter -sea gooseberry -Danish blue -grissino -chimney breast -mosquito fern -soundbox -spring chicken -epauliere -cape forget-me-not -japan -saddle oyster -white fritillary -push-button radio -bladder senna -bladder stone -macedoine -moire -Shawnee -starnose mole -douroucouli -horseradish sauce -electron gun -cotter -console -park commissioner -free press -lump sugar -western poison oak -apple maggot -keurboom -lisper -griffon -burin -horseshoe whipsnake -Jacobean lily -spinner -cochineal insect -emesis basin -sowbane -humanitarian -uakari -three-dimensional radar -wild hollyhock -heartseed -swinger -two-by-four -mop handle -common amsinckia -traitress -rush aster -fibrous-rooted begonia -violet-flowered petunia -milliammeter -alidade -azure aster -celery seed -snorer -scarlet plume -obtuse leaf -heathen -rose chestnut -headrace -dwarf buckeye -Pacific tripletail -wiggler -bounty hunter -Lowlander -slate pencil -typist -syconium -vaquita -skybox -business lunch -gusher -curacao -palometa -Diapsida -light diet -sourdine -thorny amaranth -potato fern -cartridge extractor -peshmerga -chaffweed -tahoka daisy -hematologist -massage parlor -diverging lens -breadroot -papyrus -amarelle -cover plate -hubbard squash -cryptomonad -whitetail prairie dog -rabbit burrow -orthochromatic film -goncalo alves -Chile bonito -tent-caterpillar moth -Manila grass -buck sergeant -mustard seed -crested wheatgrass -wise guy -asarabacca -field pea -bite plate -barbasco -heart-lung machine -mouse-eared bat -piping guan -gun pendulum -climbing onion -fungus gnat -Livonian -one-hitter -Chilean firebush -Sonoran whipsnake -round scad -myelogram -Rhodes grass -vomitory -roble beech -South-African yellowwood -molasses -Velcro -common calamint -radiation pyrometer -sketcher -chaparral pea -coffee stall -Australian nettle -bilimbi -Khedive -visionary -field spaniel -devilwood -collimator -Siberian spruce -sling -limestone salamander -ribbon worm -hazel -petter -coolant system -artillery plant -bailiff -chameleon tree frog -microsporophyll -maiden blue-eyed Mary -Drosophyllum lusitanicum -cocozelle -king post -nailer -knobkerrie -tovarich -Intelnet -worm lizard -drop forge -wool grass -brown bullhead -anthropoid -vitamin A2 -creche -hickory nut -whiffletree -deipnosophist -Muskhogean -masochist -hypsometer -gliricidia -complexifier -wild licorice -reconnaissance vehicle -fives -beefsteak plant -eastern dasyure -bookworm -crested coral root -wire recorder -cinnamon vine -bubble -Newfoundland dwarf birch -spruce bark beetle -teetotaler -fad diet -ascus -spicebush -African coral snake -soft-shell crab -Postum -packhorse -sand cherry -cricket-bat willow -middlebrow -Hungarian sauce -buffalo clover -jimsonweed -latanier -stablemate -jumper -zoospore -smooth woodsia -flowering ash -unilateralist -lomatia -flapper -wild cotton -Siberian wall flower -probe -bankrupt -blockade -lemon geranium -fig leaf -basic point defense missile system -clack valve -buttinsky -ingenue -mountain everlasting -zebra-tailed lizard -shaving-brush tree -evergreen huckleberry -core drill -lugworm -Cashmere goat -doorjamb -minelayer -student center -horsehair -European dewberry -white broom -arenavirus -eastern poison oak -rye ergot -Tupi -tensiometer -fleawort -coquille -icing sugar -junior lightweight -Doppler radar -mahuang -candlepin -chambermaid -evergreen blueberry -Eton jacket -parvis -solleret -molded salad -malvasia -birth-control campaigner -nonagon -backswimmer -ogee -bowstring -salt marsh mallow -trapezohedron -hoary willow -speech therapist -Zinjanthropus -core -red-backed mouse -eptatretus -mossy saxifrage -Aristotelian -Thessalonian -searing iron -bifocals -falangist -field pea -packsaddle -lay reader -hoecake -cuboid -white maire -iceman -lobscouse -neckcloth -color-blind person -Chinese holly -assemblyman -white-lipped peccary -kava -plastron -crab louse -hook wrench -trailing four o'clock -junior -skilly -internet -tonguefish -footman -sub-assembly -evangelist -track -bench lathe -desk clerk -scalded milk -chamois cloth -American marten -chachka -nondescript -pellitory-of-the-wall -swamp candles -procurator -cuddy -farkleberry -mountain male fern -trawl -dual scan display -fish meal -prospector -convener -guano bat -ant shrike -picture rail -sand rat -gynophore -quilting -sleeper -summer savory -Cotoneaster dammeri -smooth sumac -slumgullion -suite -catalufa -spherule -lean-to tent -gryphon -gas shell -short iron -sweet sultan -dewberry -Victoria plum -American water shrew -X-ray tube -macebearer -green arrow arum -abbe -poke milkweed -atheist -Fosbury flop -Ord kangaroo rat -moldboard -wheat germ -explosive trace detection -whippoorwill -examiner -tallyman -Crookes tube -wild peach -fringed grass of Parnassus -Crookes radiometer -Atlantic croaker -lobster stew -spring cress -maggot -pacer -hydra -Zionist -pepper tree -diamante -baize -Rhodesian man -county agent -respecter -Anglican -antimacassar -materialist -Swan River everlasting -cloud grass -toll line -C battery -chinese mustard -grass poly -warming pan -seasonal worker -common sickle pine -bathysphere -elegant Habenaria -card table -Chilean cedar -brocket -collimator -malted milk -avadavat -fire marshall -coloratura -yellow spiny daisy -fingerstall -narrow-leaf penstemon -indigo broom -pillwort -bearberry willow -Etonian -certified milk -climbing bird's nest fern -field coil -wrist pad -parr -kaoliang -engelmannia -stocker -satrap -Nantua -spearfish -caper tree -gold-tail moth -mountain chinchilla -sea milkwort -westerner -army cutworm -leaf-nosed snake -neurobiologist -xeranthemum -Eastern silvery aster -ecclesiastical attire -caper -Ukranian -bight -button fern -peach pit -oligodendrocyte -maar -digitigrade mammal -streptobacillus -sensitometer -preemptor -oat -bell foundry -crown lens -rock purslane -Junior -Brazilian guava -kicksorter -Ohio goldenrod -red mulberry -King's Counsel -mountain four o'clock -fairy shrimp -fell -oca -sycophant -chantry -dermatoglyphic -bomblet -keyhole saw -hangman's rope -little barley -lion-jaw forceps -giant scrambling fern -popper -dulcimer -Espagnole -tardigrade -smooth-haired fox terrier -bullbrier -rewa-rewa -Japanese poinsettia -trunk line -cannery -helminth -American spikenard -prince's-feather -arthroscope -ginger -aphakic -pilot bit -angle of refraction -low-sodium diet -wall creeper -growler -praetorium -Hall of Fame -soupfin shark -Molotov cocktail -kaffir boom -stitcher -sawwort -flagellant -Atlantic herring -Reticulitermes lucifugus -voltaic pile -snowy orchid -southern flounder -skysail -osage orange -white mullein -lined snake -tolu tree -poliovirus -foreman -burette -jackass bat -invigilator -electromyograph -acarus -presence chamber -columbian mammoth -hyacinth bean -pilot -meadow jumping mouse -Maria -outskirts -aftershaft -Queensland nut -schlockmeister -plainsman -afropavo -scarlet musk flower -five spice powder -gunboat -multiplex -Dutch uncle -louvered window -chimney corner -cuscus -psalmist -Vichy water -signer -amphiuma -harmonizer -authorizer -naiad -control rod -stentor -mountain bladder fern -gig -read-only memory chip -assenter -vixen -hermitage -corn dab -locksmith -cockspur thorn -variable-pitch propeller -western red-backed salamander -dolman sleeve -cultist -sweet buckeye -pine vole -Peking man -mountain swamp gum -nimblewill -bethel -aye-aye -lancelet -teff -Alpine celery pine -endive -nipa palm -center of curvature -seeder -Sabahan -sea scallop -social secretary -gorgonzola -western chokecherry -misanthrope -rabbitweed -beggarman -button fern -white mallee -doodia -mastiff bat -roper -prima donna -blanc -holding pen -fingerling -skyhook -flophouse -steam chest -crystallized ginger -acrocarp -horse pistol -true mahogany -costmary -ballistic galvanometer -jaunting car -bartonia -rep -mandibular notch -bubble and squeak -umpire -fringed loosestrife -bear oak -ski jump -staggerbush -plumcot -thermal reactor -field brome -bodkin -jackknife-fish -malope -writing arm -gold fern -Stayman Winesap -merlon -eclectic -fluxmeter -emeritus -imam -drum -pop tent -capital ship -subalpine larch -flail -Lorenzo dressing -tomboy -eastern woodrat -warrantee -Pacific spiny dogfish -sheepshead porgy -farthingale -Cryptoprocta -power loom -communicant -howdah -ectomorph -false foxglove -basset horn -odd-pinnate leaf -Wisconsin weeping willow -Queensland bottletree -dampener -corbel arch -silent butler -Circe -town clerk -Japanese chestnut -bloodwood tree -switcher -cup hook -spreader -rice rat -straightedge -traverser -fluid drive -Spanish paprika -sour milk -poison camas -bean dip -card table -vinegar fly -vizier -electric-discharge lamp -purple rock brake -dynamo -Japanese snowbell -Grindelia robusta -neuroglia -safflower seed -coronet -frown line -Renaissance man -Steller's sea cow -book scorpion -isosceles triangle -arthritic -spherical triangle -kangaroo mouse -garden orache -stemless hymenoxys -titi -out-basket -gent -columnea -mint sauce -mouthbreeder -Liebig condenser -cheerer -assegai -stickler -Merostomata -dimmer -grey poplar -common heath -scorzonera -glory hole -Blackfoot -oil slick -musketeer -apple geranium -daisyleaf grape fern -gas furnace -bijugate leaf -Arabist -star-thistle -hand throttle -huckleberry oak -lift pump -maulstick -Rome Beauty -Newburg sauce -pit -volunteer -Baldwin -ark -Asian horseshoe crab -black calla -marlinespike -Gentianopsid procera -guinea gold vine -tucker-bag -desk sergeant -piezometer -migrator -keelson -executrix -sackcloth -onion smut -buckboard -substitute -pudge -mess -cinchona -intervenor -gravimeter -pederast -censor -gastroenterologist -cutlassfish -launch -demerara -Diegueno -bog bilberry -aglet -soda fountain -crank call -harpoon gun -ribbon fern -Gurkha -output device -epilating wax -greasewood -water horehound -return key -fairy swallow -spatulate leaf -culverin -leptocephalus -kleptomaniac -barley water -bleeding tooth -Cheyenne -maleberry -limber -tapenade -whorled aster -toe -revenant -lap joint -vein -truant -florest's cineraria -morning dress -trichodesmium -nightshirt -element of a cylinder -shopaholic -section hand -electrodynamometer -Guadalupe cypress -rosebud -racist -avaram -keeled garlic -Alaska rein orchid -orange toast -cunner -dipstick -Neolentinus ponderosus -bulbil -charlotte -pull-through -header -Manduca quinquemaculata -persona grata -elegist -cafe royale -scup -semanticist -wood sage -field magnet -tundra -bay myrtle -alluvial flat -arrowleaf groundsel -celtuce -baryon -must -entrant -othonna -pied-a-terre -liza -sticky aster -grasshopper mouse -prison guard -tire iron -bomb rack -Spanish American -sheltered workshop -turfing daisy -backbone -tangle orchid -creeping willow -dumb bomb -horse cassia -barosaur -Yavapai -shrimp Newburg -peanut worm -dwarf chinkapin oak -corchorus -brick cheese -by-catch -stover -Urnula craterium -clasp -Kekchi -alpine coltsfoot -soybean future -altar wine -ripping chisel -encephalogram -mountain spleenwort -transferee -remoulade sauce -American rock brake -stenographer -read/write head -loblolly -ground -powdered mustard -brake band -sea dahlia -freak -proconsul -Coffey still -Sivapithecus -pellitory -palm cat -skew arch -American angelica tree -vigilante -candelilla -andryala -amarelle -swiftlet -petcock -associate professor -sclerite -open circuit -Virginia crownbeard -Last Supper -button tree -scyphozoan -margate -mercury cell -horsewhip -water scorpion -companionway -drop cloth -Amhara -miraculous food -pro-lifer -embryologist -Creole -bombazine -Indian blackwood -cubeb -trace detector -gros point -main-topsail -meringue kiss -spree killer -capstone -specimen bottle -woolly apple aphid -silverweed -American barberry -gallfly -European bog asphodel -northern flying squirrel -alliterator -Old Catholic -heliograph -Pteris cretica -tippler -pump well -allspice -balancer -scarlet bugler -lantern fly -white prairie aster -krummhorn -robin's plantain -Pacific sardine -patty-pan -decaffeinated coffee -western saxifrage -warrantee -colorimeter -ball bearing -makomako -foot -troika -apricot sauce -data multiplexer -rose-root -sound film -Northern dewberry -water hickory -swing door -spastic -Oligoporus leucospongia -botulinus -tamale pie -Sagittarius -muff -spicebush -petiolule -pump action -Parry's pinyon -split-pea -rudder blade -princess royal -wormseed mustard -honey guide -pip-squeak -fin keel -foretop -cyrilla -Navaho -melanocyte -deist -silver tree -citrus whitefly -Morrow's honeysuckle -green peach aphid -longanberry -call-board -wild yam -novelist -toothed spurge -alienee -pond apple -allspice -Carolina lupine -Jack of all trades -white false indigo -boiled dinner -princewood -sailor's-choice -false bracken -microbrewery -black grama -tutee -brickkiln -sea raven -guesser -wirework -European lemming -thyrse -plains lemon monarda -milo -shunt -spotted cowbane -anchovy sauce -grande dame -Maryland golden aster -Chinese puzzle -boarfish -burweed marsh elder -defense contractor -nitric bacteria -Belgian hare -beach plum -conformal projection -sand fly -steering linkage -quickset -Mahayanist -Geiger tube -loudmouth -Lancastrian -brownie mix -ex-spouse -deltoid leaf -Shasta salamander -rabbet joint -purple anise -garibaldi -gebang palm -bladderpod -Host -great bowerbird -string cheese -spinning jenny -drift net -matriarch -guar -bitter betch -panda car -mess -plains pocket mouse -scarlet wisteria tree -deerberry -reamer -homing torpedo -molehill -stockyard -reniform leaf -rag -symmetry -Texas star -lerot -pickle relish -three-seeded mercury -cotter pin -ice-cream bean -farmyard -bar magnet -hansom -prickle cell -renal cortex -pest -Ultrasuede -sailing master -brougham -wastrel -amboina pine -Canary Island hare's foot fern -ninepin ball -southwestern lip fern -usherette -lemon drop -star begonia -weeds -saltworks -Persian melon -corbina -medusa -bucksaw -Gibson girl -diameter -American twinflower -kino -clear liquid diet -angiocardiogram -wetter -oyster cracker -yellowfin mojarra -wild parsley -life tenant -broom closet -Corynebacterium diphtheriae -square shooter -bedwetter -ball-and-socket joint -nonsolid color -Salmonella typhimurium -buffel grass -hip pad -subaltern -heliothis moth -trail boss -hayloft -Francisella -primordial dwarf -cock-a-leekie -sugarplum -propulsion system -tyrolean -Carib -salai -ketembilla -ironclad -cornhusk -heckler -multistage rocket -north island edelweiss -Chaldean -twenty-two pistol -Francophobe -scofflaw -sickle feather -screw bean -sea squill -Scopolia carniolica -agglomerator -western holly fern -presenter -straight pin -Myxine glutinosa -Colbert -clover-leaf roll -war paint -bird's-eye bush -longfin mako -running suit -arrow wood -margrave -blue fleabane -dracontium -plastron -chimney swift -child prodigy -commissar -turtle soup -postulant -archaebacteria -snakefly -Pitot tube -chap -smilo -Malthusian -French roof -worm wheel -gulag -pointed-leaf maple -pull-off -Cathaya -American green toad -ball cartridge -infiltrator -snowfield -crotchet -auxiliary pump -bearnaise -galax -chaenactis -olympic salamander -sundowner -cows' milk -beach plum -moss-trooper -Arabidopsis thaliana -cat's-claw -bog rosemary -ribier -book agent -bumper jack -beefwood -monk's cloth -alpine bearberry -climbing fumitory -cucking stool -puka -Piltdown man -property man -discharge lamp -X chromosome -knobble -lobster Newburg -herbalist -sunray -golden saxifrage -leopard cat -muffle -stonewort -blancmange -intraocular lens -trepan -desert mariposa tulip -plume poppy -Dane -martynia -shaver -white milkweed -napu -tansy-leaved rocket -abortus -telemeter -tansy mustard -harpy -honeysuckle -ironworks -testacean -Tartuffe -silvervine -Sihasapa -surface gauge -western blind snake -paramyxovirus -Icelander -bird louse -stockbroker belt -test-tube baby -ague root -little golden zinnia -dietician -elephant's-foot -dirty bomb -sailing warship -brier -tinter -Connemara heath -potato fungus -bait casting -decagon -rosefish -die -high-pass filter -solitaire -widow's walk -goldthread -Tudor -trews -orange pekoe -ninon -soda jerk -sump -flying carpet -burial garment -oblanceolate leaf -press gallery -Shintoist -three-centered arch -spreading pogonia -Moro -foxtail orchid -Ghanian -dry kiln -thane -naranjilla -bitter pea -American bugbane -apron string -oyster fish -Port Jackson fig -prize winner -high-water mark -Oneida -smoking room -potato skin -charge d'affaires -gantlet -amyloid plaque -barmbrack -mate -arrow leaved aster -handbarrow -horned screamer -virago -linoleum knife -rattlesnake root -K ration -reset -foot brake -red coral -good guy -aberrant -lavalava -poleax -garden webworm -sneezer -mountain heath -American dog violet -eolith -chimneysweeper -matriarch -smalltooth sawfish -sea mouse -tubercle bacillus -superconducting supercollider -Abney level -darnel -gherkin -celery salt -Tungus -pulasan -oriflamme -death camp -redhorse -apprehender -scion -selectwoman -pentahedron -principal -old school tie -slice bar -chanar -pimento butter -wailer -zero -mescal -rosebud orchid -stone bramble -Jarvik heart -NOC -pitchman -rat cheese -strawberry tomato -dwarf golden chinkapin -landau -tocsin -ampulla -scratcher -crab Louis -ginseng -ripcord -polluter -tensiometer -eyewitness -aalii -Oregon crab apple -conservator -day jessamine -hexahedron -suture -tippet -linsey-woolsey -vernal witch hazel -stainer -egocentric -canistel -nudger -shipping agent -shortleaf pine -battle sight -cheese spread -weeder -incendiary bomb -honeyflower -stovepipe iron -stepper -hellgrammiate -votary -aflatoxin -arquebus -impulse turbine -pipewort -garrote -glow lamp -pigsticking -blood clam -surface search radar -Bolshevik -platen -chariot -Gentianopsis thermalis -water level -quandong -catalytic cracker -giant foxtail -nut butter -drainplug -holdover -coastguardsman -Secretary of Health and Human Services -Seeing Eye dog -American plaice -coquilles Saint-Jacques -christella -medium -clingfish -lally -light-o'-love -Gentianopsis detonsa -taper file -signal detection -trip wire -lignosae -receiver -sedan -mud puppy -corn sugar -Philippine mahogany -magnetic pole -jointed rush -trapper's tea -Dorking -welcome wagon -clammyweed -guard -false azalea -convalescent -babassu -dedicated file server -colossus -air search radar -marquess -straight flute -sand stargazer -sea catfish -rosilla -ripsaw -Bermuda onion -peach sauce -sagebrush mariposa tulip -yashmak -Virginia mallow -erose leaf -sand blackberry -boulevardier -forester -choragus -onion mildew -threadfin -winged pea -sugar daddy -rotary press -styracosaur -rathskeller -Japanese millet -anchorite -coral drops -false gavial -eastern pipistrel -cheese press -Chinese primrose -pamperer -real estate broker -power worker -breeder reactor -nutcracker -piano wire -cushaw -Sinanthropus -firebreak -kelp greenling -herba impia -toll call -yoke -bird fancier -evening-snow -fever tree -reed meadow grass -flanker back -toggle bolt -Santa Cruz cypress -carbonnade flamande -northern dune tansy -mikado -millettia -forty-five -court -icepick -holm oak -Japanese angelica tree -Pacific cod -cant hook -urologist -spelt -lekvar -enologist -Mediterranean flour moth -prickly-edged leaf -Spanish grunt -dune cycling -frostweed -whisperer -tucker -Roman wormwood -counterterrorist -woolly alder aphid -Nuttall oak -snail butter -threshing floor -motley -forge -water mold -mummichog -sulfur paintbrush -head -walking delegate -jujube -peachleaf willow -Christmas bells -valley pocket gopher -bear's-paw fern -Lanthanotus borneensis -pearl hominy -placeman -swage block -offerer -stargazer -jeweler's glass -male chauvinist -crossbar -Oktoberfest -tamarau -micronutrient -large-leaved aster -tasset -tepary bean -sausage curl -ivy -snob -roller towel -wood meadowgrass -archil -padrone -prairie rocket -tongueflower -kidney fern -Carolina buckthorn -sea island cotton -landscape architect -realist -oyabun -mother hen -ostracoderm -esker -heliophila -nympholept -shining clubmoss -press agent -clam dip -Djiboutian -white currant -codfish ball -hand cheese -kraal -trident -conventicle -bacteroid -Indian plantain -quandong -kola nut -signor -theater light -musk clover -canistel -silent partner -steel-wool pad -diggings -affluent -sightreader -John Doe -arrowworm -goatsfoot -guardroom -wild cinnamon -kaffir boom -ink eraser -yardie -industrialist -sea lily -polarimeter -Polistes annularis -western big-eared bat -omnivore -Ted -horsecloth -crab cocktail -vacuum chamber -flower-of-an-hour -bilge -poleax -neolith -Montezuma -plum-yew -welfare case -trave -pipe bomb -shading -Centigrade thermometer -bangalore torpedo -celery top pine -nuclear rocket -fowling piece -anti-Semite -landscape -derris -bush honeysuckle -Mediterranean water shrew -ticket collector -masked shrew -white dipladenia -Savoyard -bondman -tempter -pygmy cypress -pentathlete -thruster -usurper -Arminian -yerba buena -ice field -ichthyosaurus -sackcloth -bean tostada -Oxbridge -Pteropus hypomelanus -thinker -bank robber -ape-man -thurifer -knawel -mule fat -hot spot -hairy-legged vampire bat -night raven -hook and eye -crocodile bird -skunkweed -beaver rat -cypress sedge -florida selaginella -April fool -Jonah crab -glass wool -corkwood -dwarf elder -hinging post -gentile -Brazilian trumpeter -witch doctor -thermograph -pink shower -Mao jacket -capelin -parang -bradawl -stooper -jewel orchid -citrange -oarswoman -Macedonian -particolored buckeye -pachycephalosaur -satinwood -Chinese brown sauce -peep sight -straight man -quandong -chamois cress -nonfat dry milk -rosin bag -Leiden jar -Grimes' golden -spirillum -grass vetch -carillonneur -downy wood mint -melon ball -sweet calabash -chlamydospore -bombshell -sidewall -sprig -Indian button fern -globe pepper -rough-stemmed goldenrod -bocconia -bubble chamber -sand dab -plum-fruited yew -aecium -marrowfat pea -hobbyist -whipper-in -salad burnet -neckband -Tangier pea -sauce Louis -salad burnet -artist's loft -koumiss -Nazarene -cutter -scrim -drape -crab-eating dog -deckhand -bedroll -gaff -stifler -pink lady -great plains paintbrush -patternmaker -yoke -caryophyllaceous plant -angrecum -quadriplegic -grid -genlisea -aspic -water table -junket -signore -Mutillidae -proprioceptor -pivoting window -Indian poke -synchroscope -trichion -tarahumara frog -proctoscope -abomination -purslane speedwell -breast drill -Japanese barberry -mandrake root -breakable -salon -American watercress -take-up -entrenchment -cocktail sauce -Scotch asphodel -borough -matchmaker -Seneca snakeroot -pointsman -psephologist -clustered poppy mallow -onion thrips -nuclear-powered ship -organizer -deciduous holly -balsam willow -enzymologist -caraway -drip loop -dog laurel -Orangeman -sapsago -polymath -backplate -leathery grape fern -modillion -two-timer -handhold -consignee -white stringybark -nettle-leaved goosefoot -bookmaker -disk drive -doliolum -palmist -packinghouse -Spandau -Whipple's penstemon -sword grass -ribbon development -pearly-shelled mussel -winter heliotrope -rogue elephant -deck tennis -Venus's flower basket -football -shim -boatswain -blinks -armored catfish -hooded seal -outdoorswoman -water starwort -upholstery needle -pleurodont -silky anteater -cornmeal -lead-in -redfin pickerel -horse balm -Rydberg's penstemon -cascade transformer -fly poison -Volvaria bombycina -broad-leaved twayblade -pastry cart -body plethysmograph -waverer -hardware store -Parry's penstemon -European sanicle -strawberry geranium -cross-examiner -head gate -devil's tongue -hemiepiphyte -pine hyacinth -machmeter -spirit lamp -field judge -Rock Cornish -mayhaw -Sassenach -bog pimpernel -parallel interface -crowberry -roach -Aegyptopithecus -cajan pea -lapboard -cryostat -magnetic storage medium -white yam -Lombard -rhymer -bed and breakfast -bunya bunya -rifle grenade -caterer -collared pika -anti-submarine rocket -bookkeeper -Western mountain ash -profit taker -fruitlet -Knowlton's cactus -infernal -beefsteak begonia -lunula -emulsion -intermediate wheatgrass -titfer -European sea bream -bigeye scad -yak butter -kola -cone pepper -plesiosaur -ragwort -penal colony -black carpet beetle -lubber's hole -Stapelias asterias -yard marker -balloon bomb -Scythian lamb -armory -selsyn -marblewood -spirula -fatalist -hash head -armiger -Dom Pedro -white-chinned petrel -ballast -orthopter -greater water parsnip -clutch -largeleaf holly -Evangelist -king whiting -tuna fish salad -Muscadet -surpriser -jumping bristletail -proportional counter tube -Hamburg parsley -obstructionist -pus-forming bacteria -creep feed -stepbrother -janissary -control freak -trusty -trepan -King William pine -orthicon -geological horizon -molecular biologist -violator -pariah dog -Austrian -conciliator -Fauntleroy -packing needle -mazer -Saturday night special -leucocytozoan -coastal rein orchid -whirligig beetle -capitalist -breeches buoy -clubroot fungus -meadow spikemoss -Kichai -Spanish lime -land office -camera obscura -strafer -purple-stemmed aster -lusterware -valve -Roman nettle -isthmus -breadstuff -sealskin -maleo -bilge keel -carissa plum -fish fly -kolkhoznik -heath pea -cowage -hog sucker -Sam Browne belt -inductor -wild licorice -Socotra begonia -supernumerary -Angle -red shrubby penstemon -toilet kit -tawse -sweet bells -kawaka -brown soft scale -lyssavirus -betting shop -double-crosser -macrotus -climbing hempweed -poi -strip mall -deadhead -petit juror -tract housing -American mistletoe -lace-flower vine -precipitator -endoparasite -hairy wood mint -red snapper -Victorian -hog peanut -line of heart -opossum shrimp -plumcot -Bavarian blue -slops -light flyweight -oregano -sand myrtle -pocket battleship -curator -narc -hydraulic cement -plains pocket gopher -closed loop -pluralist -molter -Christmas bush -snuffers -slender knapweed -footwall -plage -caper tree -red siskin -tender -boat train -tipster -low-pass filter -student lamp -morosoph -japonica -bellows -herald -oyster plant -savory -mail -computational linguist -blade -winter crookneck squash -zoomastigote -blackmailer -richweed -dialectician -genip -plumed scorpionfish -jet bridge -thermopile -billy buttons -Brule -millwright -Arenaviridae -Jones' penstemon -monastic habit -genipap fruit -burnous -dairyman -top -crab-eating raccoon -quadrangular prism -pilot burner -weeder -trireme -boy wonder -man of letters -Catawba -high-muck-a-muck -light circuit -bloodworm -lappet caterpillar -half-and-half -office boy -saddle stitch -mistletoe cactus -false chamomile -Catalina cherry -workhouse -Jamaica quassia -britches -tooth shell -reduction gear -carrot pudding -balsam woolly aphid -handspike -aioli -silver hake -flour bin -wireman -gas-cooled reactor -aficionado -plus fours -gitano -gene chip -oilfish -ingenue -tulip orchid -late purple aster -pork and beans -envoy -lemon extract -milk bar -black huckleberry -ground roller -Connecticuter -siderocyte -Jacquard loom -chub -meat safe -stock cube -Australian sumac -purple sanicle -tailless tenrec -dog wrench -rainbow cactus -castor bean -scintillation counter -eohippus -pawnbroker -gauge boson -front man -early warning radar -bearing wall -Bourbon -sandwichman -sild -gravelweed -perishable -cembra nut -riflebird -quicksand -slate -sweeper -ship-towed long-range acoustic detection system -defamer -president -vitamin K3 -challis -tanekaha -bloodwort -grenadier -quietist -Zairese -fucker -foremother -gesneria -print buffer -salsilla -fissiped mammal -fender -consulate -acidophilus milk -Southern dewberry -snail darter -Panama redwood tree -dehydrated food -bush willow -coffee fungus -Sinologist -Mesoamerican -hood -large civet -deck-house -cyborg -smuggler -pepper sauce -cyberpunk -Grand Inquisitor -persona non grata -haggis -weeping tree broom -stop bath -modifier -coyol -conodont -yellow giant hyssop -optical pyrometer -Carolina moonseed -marinade -aspartame -false wintergreen -cityscape -philter -turnery -hemiplegic -chuck-will's-widow -vower -track star -myrtaceous tree -small civet -intelligence analyst -dogcart -yardman -cross bit -holometabola -platen -sweet cassava -Comstock mealybug -acute angle -Communist -alcohol thermometer -mountain hollyhock -Mead's milkweed -highjacker -Townes -congou -Astrophyton muricatum -lazybones -roughcast -pressure cabin -clinch -cinnamon -smoke bomb -quandong -tout -office-bearer -punctum -efficiency apartment -Queensland hemp -Ceylon bowstring hemp -newswoman -vermin -fetid bugbane -grantee -sanitary landfill -gluten-free diet -clabber -shillelagh -white lettuce -sweet coltsfoot -beggar's lice -samite -loser -flasher -water star grass -banana passion fruit -translator -artificial kidney -Virginia creeper -American crab apple -cactus mouse -nebbish -Ligustrum obtusifolium -vox angelica -stringer -hunter -know-it-all -scene painter -invalidator -jungle cock -basilica -coriander -California single-leaf pinyon -miles gloriosus -pina cloth -law agent -scarlet fritillary -keurboom -bailor -ramjet -seedling -rib joint pliers -ways -picket ship -Surgeon General -wasabi -marquis -clostridium perfringens -Helvella sulcata -furnace lining -kingwood -painted sandgrouse -plain wanderer -Indian madder -silver screen -bailey -dwarf spurge -Serbian -ball-buster -shaheed -Platte River penstemon -tensiometer -mute -nymphomaniac -Yokuts -arroyo willow -whipping post -class act -load -winged everlasting -periodontist -diarist -robber frog -diestock -curry powder -ratchet wheel -store detective -hog plum -prune whip -shortwave diathermy machine -Anabaptist -post chaise -Kennan -bean caper -delegate -orderly sergeant -celtuce -jumping bean -gowen cypress -puddingwife -registered nurse -West Saxon -rosita -gun room -nasotracheal tube -matchboard -flagship -Boswellia carteri -Canadian pondweed -wonder boy -sewer rat -dimetrodon -pantograph -marsh bellflower -angoumois moth -slippery dick -woolly indris -creme de cacao -dulciana -Jewess -Macadamia integrifolia -least shrew -don -diffuser -black-stem spleenwort -grouseberry -goniometer -annotator -sticktight -gossip columnist -speechwriter -capon -rock hind -Liederkranz -chandler -echocardiograph -sidelight -fisher -brocket -New Zealand daisybush -northern sea robin -roller bandage -peachick -pellet -pichi -plug fuse -spark coil -buckwheat -brood bitch -wedgie -dwarf bilberry -filigree -bull -queen -dodo -Salish -denticulate leaf -Western silvery aster -Prima -magnetic bottle -fetterbush -process-server -nainsook -mythologist -Piedmont glacier -hammerhead -niggard -Mound Builder -Kui -Nootka -highbinder -passenger pigeon -oblong -tickler coil -agnostic -succorer -esophagogastric junction -dressmaker's model -bombshell -social anthropologist -gildhall -orpine -pterodactyl -bristly sarsaparilla -Lane's Prince Albert -hognose bat -salesgirl -lubricating system -electric catfish -wrap -Jacksonian -chard -cherry laurel -foreground -beadsman -Kolam -amniote -frozen pudding -acid head -poor box -depositor -coattail -pallas's sandgrouse -mason's level -English lady crab -skeg -cruel plant -petrolatum gauze -tuna -swivel -stock-in-trade -perisperm -civies -Phyllostomus hastatus -alienor -Verdicchio -guard's van -onion butter -moviegoer -planter -citrange -box huckleberry -iconoscope -familiar -helmsman -baby boomer -constructivist -American bog asphodel -whorled caraway -simple pendulum -viviparous eelpout -Job's tears -holdout -sour salt -poison bush -dusky-footed woodrat -golden algae -granadilla tree -telethermometer -crossbar -thrift -African bowstring hemp -dog in the manger -hayrack -gold-crowned kinglet -prolonge -doge -pencil -discount house -mulligan stew -Nonconformist -virologist -gregarine -facula -rocket scientist -thin-shelled mussel -oospore -annual salt-marsh aster -Afrikaner -metallic -julienne -culverin -cleavers -Berliner -mudhif -thorny skate -brown lemming -yellow colicroot -cooling system -large-leaved magnolia -free-reed -canyonside -preemptor -stake -Brucella -anti-G suit -pleximeter -squire -salsilla -write-in candidate -lowland burrowing treefrog -flare star -dwarf hulsea -jobber -mangel-wurzel -quagga -red-skinned onion -positive pole -Pteropus capestratus -jug wine -stomacher -standee -bladder worm -hakim -house of correction -pelisse -golden mole -temporizer -rose apple -drove -umbrellawort -holy of holies -lawyer cane -smooth lip fern -anode -astatic coils -zip gun -feverroot -self-heal -expansion bit -salt reed grass -field pussytoes -nutmeg hickory -cryptic coloration -Venus's girdle -Hunkpapa -Calostoma cinnabarina -raft foundation -May apple -pygmy mouse -prokaryote -yellow-green algae -Bermuda maidenhair -withdrawer -coelacanth -Elliott's goldenrod -driftfish -epicyclic train -bowl -swamp dewberry -corbel step -sadist -party line -anti-American -mining engineer -Amur privet -conidium -Gastrocybe lateritia -lithia water -chaulmoogra -Rough Rider -Guinea pepper -glade mallow -pitcher sage -whitecup -shanghaier -low St Andrew's cross -phonologist -cocobolo -perfumery -visor -prison chaplain -belt -ingesta -literary critic -industrial watercourse -reckoner -pursuer -Kinetoscope -Kuiper belt -hyperope -raw recruit -Galiella rufa -Prince Albert yew -slit trench -usher -tenderfoot -white-rayed mule's ears -browser -piccalilli -bran -giant buttercup -water lobelia -arborescent plant -echinus -dryland blueberry -struggler -platyctenean -Geordie -domatium -twenty-two rifle -keteleeria -sports editor -chorus girl -Hakham -dry-bulb thermometer -onomancer -double-bitted ax -Girondist -bottle bank -thyrsopteris -bandwagon -star anise -armored car -dhawa -Bessemer converter -mutineer -paradise tree -tupik -centurion -mending -chowchow -margrave -International Grandmaster -African hemp -catafalque -leptodactylid frog -forcemeat -tank shell -pill -barbecue pit -worthy -lady's maid -evergreen -Jesuit -South American staghorn -rigger -suffragan -imperialist -spherical angle -grey lemming -kitchen police -tree swift -coliphage -archaist -Conservative -rib -exegete -Mendelian -tragedian -steerage -Paleo-American -obeche -garlic -grapefruit peel -accommodating lens implant -half blood -barrelfish -catgut -lanceolate spleenwort -hardliner -frieze -name dropper -carrack -huckster -onion bread -magnetic head -pease pudding -raisin moth -negative magnetic pole -electroencephalograph -bunji-bunji -synchroflash -Mornay sauce -stencil -winged pigweed -Nesselrode -MEDLINE -licorice -mainspring -melilotus -duke -experimenter -Napier's bones -four-minute man -pin-tailed sandgrouse -toolmaker -pogge -rootstock -baton -pricket -creeping snowberry -anomalops -nester -devourer -apolemia -Maricopa -pine-barren sandwort -larvacean -American dewberry -escalope de veau Orloff -gig -myrtle -pitsaw -Lutheran -fish house punch -gnathostome -intake valve -molasses taffy -clammy locust -vandyke beard -Atlantic tripletail -planktonic algae -estradiol patch -flummery -cytologist -sectarian -oil meal -tomtate -mediterranean anchovy -aspersorium -argonaut -porkholt -sheep ked -algometer -Adventist -false goatsbeard -snake polypody -streetwalker -shelver -adoptee -highflier -pitch apple -prairie rocket -fish mousse -viroid -deckle -manila tamarind -observer's meridian -pincurl clip -hardstem bulrush -gossamer -brookweed -Druze -hug-me-tight -accessory before the fact -oilman -Comanche -Marine -bedlamite -Chinese cork oak -squawbush -false miterwort -walk-on -Cynopterus sphinx -brandyball -landlubber -arrowroot -cape forget-me-not -galoot -tabor pipe -checker -Levant cotton -paddle box -murderess -smirker -fuddy-duddy -withdrawer -newel -shade -pink disease fungus -tipu -sweet sultan -aeronautical engineer -tall gallberry holly -acarid -conqueror -cucumber -film director -ordinary -salon -closet queen -allegorizer -tonka bean -flax rust -negative pole -dagame -dentist's drill -mock privet -micropyle -contributor -dark horse -climbing corydalis -cosmotron -land agent -Big Blue -Cynic -tassel flower -lyrate leaf -Minuteman -Dutch-elm beetle -Hessian fly -flower girl -West-sider -window dresser -skinny-dipper -whitebait -out-and-outer -hooker -amicus curiae -jack -camwood -stockist -black root rot fungus -Jamaica dogwood -diaphragm -Holocentrus ascensionis -roselle -black maire -Pygmy -fumigator -lame duck -mudder -hydraulic transmission -conning tower -phoronid -batfish -hearing dog -monohybrid -whaling gun -Cockcroft and Walton accelerator -allemande -seasoner -epileptic -ammonia clock -Young Turk -lanseh tree -urceole -cafe noir -poster girl -Oglala -deadeye -manna lichen -positive pole -cinch -lyricist -hermaphrodite -kidney stone -dilator -number one -frotteur -kaffir bread -fish knife -tarragon -adjuster -potato wart fungus -Florida pompano -conductor -corbie gable -rounders -Catha edulis -bender -recruit -Uruguayan -subject -bunghole -day boarder -pocketed bat -Oxonian -owner-occupier -yellow-leaf sickle pine -devisor -exhibitor -looking glass -shipowner -crooked-stemmed aster -calico -dash-pot -defilade -Confucian -egg-and-dart -irreligionist -lepton -self-rising flour -diving bell -Brahui -shop girl -maximum and minimum thermometer -Dalmatian laburnum -correspondent -subduer -nonperson -Reaumur thermometer -rough-leaved aster -jacksmelt -pinfold -magneto -ex-wife -round-leaved rein orchid -purloo -American shrew mole -sweet sand verbena -polymastigote -outfitter -curled leaf pondweed -Italian dressing -borderer -ambusher -geebung -four-stroke engine -small ship -homeopath -gynostegium -political prisoner -Radiigera fuscogleba -ensiform leaf -rhizoctinia -satyr orchid -rue -bouillon cube -flip -prophyll -tilefish -periselene -prima donna -choker -laminar flow clean room -Hooker's orchid -fish joint -mombin -remover -array -coelostat -autophyte -consigner -Damaraland mole rat -gasman -public works -lye hominy -pearlfish -piassava palm -Georgian -uxoricide -confessor -community center -epigone -tagger -abrading stone -cryoscope -nautch girl -reliever -Cartesian -Indian beech -protoplasmic astrocyte -fundamentalist -mustard sauce -crank -houselights -five-point bishop's cap -comedienne -triangle -presentist -beaugregory -dreamer -Wave -blue mockingbird -Barbados gooseberry -ten-spined stickleback -papoose -silky pocket mouse -holdup man -agent-in-place -suspensory -emigrant -ropemaker -bookbinder -jumby bead -undershrub -Killarney fern -sheep bell -city slicker -equerry -pea crab -down-and-out -blackmouth bass -shirtmaker -lister -UNIX guru -snipefish -gimbal -maisonette -haircloth -Ranvier's nodes -pigmy talinum -tribute album -msasa -hydroxide ion -madame -four-pounder -prophet -sloganeer -field-effect transistor -nude mouse -canteen -Calostoma lutescens -buteonine -sunlamp -Uruguay potato -Spanish tamarind -Prince-of-Wales'-heath -kishke -caprifig -chincapin -hegari -alarmist -bathtub gin -astatic galvanometer -Calostoma ravenelii -marang -tussah -coin box -bugleweed -hacker -frontal eminence -timekeeper -shunt -bicycle clip -mustang mint -caesium clock -hospice -glenoid fossa -archpriest -ex-gambler -incrustation -salvager -Donatist -violator -lamb succory -hygroscope -oilbird -sharptail mola -showplace -corn syrup -flashlight fish -pulse timing circuit -anchovy paste -fascista -chigoe -divan -Druid -squad room -Huntingdon elm -buffalo carpet beetle -carper -corn lily -goats' milk -assault gun -cockpit -Lochaber ax -Visigoth -occupier -Basotho -criminologist -spindle -Rosicrucian -Cornishwoman -musk kangaroo -artificial skin -pandurate leaf -Parkia javanica -roundhead -tea-like drink -basidiolichen -unguiculate -stepmother -Nauruan -gutta-percha tree -bloodberry -scarlet haw -marupa -censor -algebraist -pelvimeter -whaler -cowhide -paparazzo -biochip -internationalist -Yukon white birch -hangar queen -chlamydia -puttee -Pipturus albidus -pearly razorfish -sea moss -burglar -hoary golden bush -colter -drey -bushman's poison -maxillaria -gnetum -deadeye -shittah -swamp oak -damper block -deepwater squirrelfish -truffle -cangue -paleolith -lawyerbush -sorehead -Texas snowbell -Tremella reticulata -quarter -keelboat -dimity -whiner -Wagnerian -myrmecophyte -frontierswoman -pyrometric cone -big-tree plum -puppy -galbulus -hod -winceyette -carriage wrench -dictostylium -farmland -infanticide -Jacob's rod -threadfish -monocline -inamorato -leaf miner -purple cress -passer -black-fronted bush shrike -silverrod -bootmaker -segregate -captive -Edmontonia -spherometer -television transmitter -bladder -Saratoga spittlebug -dynamometer -lodge -smooth darling pea -Cossack -wake-up call -Olmec -sutler -molasses kiss -corner post -rattlesnake weed -yardmaster -adder -rhinoscope -referral -ulster -pantaloon -counterspy -gadgeteer -heart cherry -hospital chaplain -Clydesdale terrier -plank-bed -Russian thistle -actinometer -dyspeptic -common wolffia -firewall -seidel -potato moth -soapweed -seif dune -thill -cosmographer -absolver -halberdier -fire control system -kai apple -bastard pennyroyal -Big Brother -broadcast journalist -Albatrellus dispansus -citrophilous mealybug -split end -nickel-iron battery -Newtonian -gas maser -thumbstall -anaspid -dusky-footed wood rat -latitudinarian -flatbrod -schizocarp -niqaabi -flight surgeon -gyrocompass -Polyporus tenuiculus -Utopian -mailboat -spellbinder -undercoat -cassareep -typical jerboa -photocathode -katharometer -bight -fur-piece -penetration bomb -malik -Siberian millet -nanomia -Wykehamist -tosser -gyrostabilizer -microwave diathermy machine -crystal set -wall -legatee -alfalfa -angwantibo -charioteer -piano maker -African mahogany -Morlett's crocodile -taro -parallel circuit -cush-cush -etymologist -matriculate -neem seed -cornerback -kingfisher daisy -redoubt -blastomycete -peplos -costumier -publican -tobogganist -semolina -myrmidon -parricide -gymslip -whoremaster -cryptocoryne -header -platitudinarian -barleycorn -spiral bandage -reciter -abecedarian -dance -wrymouth -bilberry -Liopelma hamiltoni -streamliner -Fordhooks -fixed phagocyte -radiobiologist -neurologist -Selkup -dollarfish -cascade everlasting -acrodont -boarhound -midstream -theatrical producer -abhorrer -goldsmith -photometrist -Anglo-Saxon -rugel's plantain -sable -workmate -ferule -ankus -earleaved umbrella tree -Passamaquody -timucu -Mexican pocket mouse -yerba santa -Rochon prism -apomict -monocarp -sweet unicorn plant -common winterberry holly -archivist -drypis -paretic -fly-by-night -white-berry yew -Schoolman -blue cheese dressing -vintager -squatter -Euphausia pacifica -corrugated fastener -yellow henbane -Croesus -almoner -analphabet -acoustic delay line -sheep frog -workhouse -horseleech -venturer -pond-scum parasite -Pyrenees daisy -plagiarist -Truncocolumella citrina -rerebrace -group captain -caddis fly -hot-rock penstemon -kanzu -stylopodium -slopseller -rauli beech -starter -ootid -statesman -distributor cam -ascot -falcon-gentle -Duplicidentata -spotted antbird -heliometer -false buckthorn -Allegheny spurge -Cavalier -dart -photocoagulator -master-at-arms -kei apple -baldachin -crapshooter -gametangium -white hope -chipotle -spike heath -Scotch woodcock -Florentine -differential analyzer -Mitrula elegans -wet cell -basil balm -Circassian -corn cake -bouncing betty -vice-regent -lagerphone -ketembilla -whoremaster -fork -tetrasporangium -trifler -pill head -life-support system -quartermaster general -tobacco thrips -officeholder -teredo -toyon -Sundacarpus amara -Phytophthora citrophthora -naif -lobbyist -alligator wrench -bully -heavy -toxicologist -radio chassis -waterdog -drive line -kaffir cat -foster-brother -breakax -curette -traditionalist -pipe vise -striped button quail -gawker -homeotherm -schoolyard -battue -kalansuwa -deviationist -Bolshevik -transponder -pungapung -iron -Eyeish -roccella -manglietia -Tory -print seller -Texas Ranger -otter shrew -seconder -shellflower -outlier -party man -wold -hayfork -oncologist -framer -co-beneficiary -ocean pout -Chinese angelica -scrimshaw -air attache -false gromwell -standing press -fringepod -specifier -automatic choke -durum -yenta -wassailer -reeler -signora -beach pancake -common booklouse -pellicle -backroom boy -den mother -associate -Unitarian -gambist -brookweed -clubroom -cat's-tail -playboy -self-registering thermometer -doorstop -bennet -yak's milk -escapee -quail bush -sparge pipe -coast boykinia -screw key -half gainer -aggravator -cotton mill -tailor's chalk -free agent -cotton mouse -deadhead -bunny -turpentine camphor weed -amaranth -ceratodus -red lauan -beam-ends -thermograph -wally -Toda -handrest -commissary -oak-leaved goosefoot -manufacturer -voicer -Jafnea semitosta -bench hook -finder -abyssal zone -rabbitwood -Hercules'-club -epicarp -declinometer -camp follower -signaler -Australian pea -putz -qadi -banded palm civet -egg timer -regnellidium -calisaya -harvestfish -sound spectrograph -side-wheeler -glomerule -woolly rhinoceros -Black Muslim -horticulturist -ornithomimid -cryometer -battlefront -gametophyte -airmailer -cuisse -nakedwood -baseball club -slasher -anise -leatherleaf -leatherjacket -horned pondweed -gofer -Saigon cinnamon -barong -blazer -twinkler -skeleton shrimp -dial -floorwalker -case shot -flannelbush -cultivated parsnip -Jane Doe -few-flowered leek -nogging -placer miner -muzzler -serge -lion-hunter -capulin -Wandering Jew -ascidian tadpole -hispid pocket mouse -southern spatterdock -milk wagon -junior middleweight -duck sauce -promycelium -protozoologist -cascade liquefier -tout -longheaded thimbleweed -charcoal burner -footage -slop -bridge agent -miller's-thumb -Job's comforter -marocain -tanker plane -lancetfish -knocker -toque -ordinand -umbrella bird -favorite son -hare's-foot bristle fern -business traveler -plotter -Asiatic shrew mole -tallyman -stump -Paleacrita vernata -index register -mortgagee -accuser -codger -sand rat -seaside centaury -chiropractor -Florida smoothhound -dwarf sperm whale -T-man -sannup -dragonhead -numdah -alkali grass -gynobase -kymograph -ascolichen -steward -waterline -Nazarene -filer -lapidary -muncher -wincey -scyphus -question master -besieger -worldling -docent -facing -atmometer -quern -puerpera -three-decker -calliope -wild red oat -bailee -flame pea -cattle cake -theist -yellowtail flounder -cosmopolitan -rocket engineer -vouchee -Turkoman -hard sauce -Thousand Island dressing -assayer -messmate -mutilator -oyster bar -flame tokay -countess -prairie mimosa -microsporangium -cotter -townsman -paring -fundraiser -simperer -Comrade -orlop deck -power takeoff -cattleship -prime meridian -Javanthropus -scriptorium -curandera -long-clawed prawn -maestro -paster -potato tuberworm -chachka -junkyard -cape yellowwood -reentrant polygon -Liberian coffee -restaurateur -Alsophila pometaria -Jekyll and Hyde -electrophorus -Scomberomorus maculatus -manipulator -gromwell -chicken provencale -ashram -mangel-wurzel -shamrock pea -dossal -adducer -erection -Mysore thorn -smoothie -chufa -brace wrench -victualer -litterer -linstock -Protium guianense -palfrey -banyan -klieg light -dangleberry -trooper -yaupon holly -quitter -tradescant's aster -nullipara -melter -devil's urn -ghostwriter -mouth -analogist -Creek -sonic depth finder -fucker -locus of infection -mortician -esophageal smear -locum tenens -conic projection -aroeira blanca -bellarmine -night porter -automobile mechanic -codpiece -Munro -cottonweed -scoinson arch -tinderbox -frozen food -waterproofing -Egyptian henbane -lash -transactor -American smooth dogfish -existentialist -grabber -Sonoran lyre snake -Rufous rubber cup -colors -weekend warrior -power user -perennial salt marsh aster -Puritan -Apalachicola rosemary -anecdotist -tosser -moth bean -agnostic -stretcher-bearer -browntail -optimist -brewer's mole -astronomy satellite -flat file -rust mite -tuberous plant -day laborer -buster -trapezoid -bevatron -nonresident -Streptomyces griseus -mangosteen -customer agent -hero worshiper -suicide bomber -procellariiform seabird -archiannelid -reaction turbine -distortionist -bulldog wrench -grainy club -scalp -Aztec -scow -globigerina -pedant -heartleaf manzanita -kanchil -low gallberry holly -containment -scandalmonger -rose-colored starling -Powhatan -addle-head -Chilean rimu -Atlantic sea bream -arthrospore -ramrod -root climber -Kalapooia -roach clip -Schreiber's aster -horseradish -albino -Kshatriya -trombidiid -blasting cap -body pad -brachium -shallu -Wynnea americana -slender centaury -munj -upset -wind tunnel -cottonwick -airing cupboard -pepper shrub -ambrosia -languisher -chosen -rose globe lily -purple apricot -costia -sloop of war -sultana -frontlet -booster -sargassum fish -broad-leaved montia -rifleman bird -stillroom -amoralist -enginery -meter maid -fitment -southern bog lemming -Athenian -clincher -cusk-eel -mackintosh -diaphone -corozo -Australian reed grass -czar -spongioblast -Eurafrican -airhead -Shahaptian -Roman -pollinium -tourist class -halogeton -stamper -emperor -malingerer -tramp steamer -Peziza domicilina -pilot cloth -stenopterygius -cost accountant -Queen's Counsel -wine-maker's yeast -poppet -cage -rowlock arch -landgrave -bearded wheatgrass -stink bell -quaker -undesirable -algarroba -resistance pyrometer -exorcist -carib wood -guvnor -border patrolman -bathhouse -licenser -headman -rentier -pine spittlebug -nut-leaved screw tree -paraduodenal smear -apron -necker -smilax -Alpine besseya -creeper -castle -ground bait -Queensland grass-cloth plant -sclerotium -great yellowcress -fat farm -Stoker -hoop snake -elixir of life -Trotskyite -home buyer -wheat berry -Tutelo -semi-climber -utahraptor -wet-bulb thermometer -packrat -hygrophyte -darter -sketcher -refiner -camlet -midgrass -compound -tarwood -Colorado River hemp -toiler -abstractor -override -dwarf pipefish -plodder -briefcase computer -trunk hose -brown butter -valve-in-head engine -cymbalist -explosive detection system -horsewoman -boutonniere -chinchilla -venerator -scourer -exarch -cohune nut -ayapana -continental divide -cosigner -stalker -pyxie -Genet -Macowanites americanus -open-hearth furnace -water chestnut -American frogbit -tarwood -cutter -scout -burr -upsetter -grist -tagasaste -mouthpiece -palette -rattan -letterman -Exmoor -Methodist -eelblenny -marasca -slide valve -ventilation -saddle hackle -Yakut -flux applicator -air traveler -murder suspect -Cynocephalus variegatus -idolizer -Surgeon General -nutlet -little-head snakeweed -germ tube -fellow traveler -raceabout -commodore -czar -anamorphosis -treelet -girlfriend -groundnut -sideline -giant star grass -goffer -spark lever -oubliette -processor -tare -plodder -extremist -Kipp's apparatus -gripsack -S wrench -viscountess -bridgehead -cascarilla -Asiatic flying squirrel -protoceratops -equerry -difflugia -princeling -moonlighter -aspergill -common flat pea -Utahan -imperial mammoth -plantain-leaved pussytoes -Boott's goldenrod -bootlegger -reed pipe -runcinate leaf -onion salt -nitrite bacterium -introvert -duck -New World opah -goliath frog -heterostracan -disrupting explosive -haggler -candlenut -false bugbane -returning officer -eudiometer -ship-breaker -metazoan -mandarin -patka -gill net -cavity wall -armilla -rainmaker -dealfish -orderly -gleaner -muffin man -house sitter -alto -sand devil's claw -vulcanizer -appendicularia -boron chamber -chess -bitok -anchovy butter -dropout -flour mill -bishop -escapist -scapegrace -stanhope -smooth winterberry holly -upstager -stalking-horse -pony -prairie gourd -parabolic mirror -Polaroid -slasher -lap -garlic butter -sendee -German millet -hairy honeysuckle -Swiss canton -Scleroderma flavidium -red goatfish -telegraph plant -Jungian -garment cutter -mallee hen -stranger -driveway -schooner -Paiute -cisco -trestlework -sipper -shanny -romanticist -Molly Miller -mountain rimu -odd-leg caliper -bitumastic -Western Australia coral pea -labor coach -latchkey -harpulla -solitary pussytoes -chop-suey greens -coil -guimpe -diapir -Osage -gutta-percha tree -giant eland -reticulation -garden huckleberry -quick study -Hudson bay collared lemming -coreligionist -Lancastrian -stumblebum -omnirange -seersucker -Potemkin village -Rhea Silvia -symphonist -bolti -jaw -jaconet -page -visiting fireman -haulm -p-n junction -landlubber -yellow jack -triclinium -souari -invader -fire walker -Luddite -Plott hound -hemming-stitch -winker -star-duckweed -craniometer -Arabidopsis lyrata -loser -cypripedia -trimmer arch -cookhouse -pink fivecorner -transfer -ringleader -northern pocket gopher -moke -blockade-runner -cyclostome -web-spinning mite -Whig -transcriber -malahini -sawyer -patent log -paca -tragedian -thermojunction -soffit -black buffalo -foreigner -applecart -brit -pole horse -white mullet -argentinosaur -Homo soloensis -bounty hunter -decumary -hand -paperboy -Smitane -windowpane -Java man -Wynnea sparassoides -prune -middy -lilliputian -sorb -pyrostat -guest worker -hold -leaseholder -vegan -humanist -salinometer -piton -zygospore -means -night rider -tetraspore -archipelago -radiomicrometer -nitpicker -spot weld -slicer -girlfriend -round-tailed muskrat -cock's eggs -Shavian -bay -nuclear chemist -planetarium -hiccup nut -Marylander -milling -microsporidian -brown cup -Strophanthus kombe -little skate -emancipator -paperhanger -archaeopteryx -maigre -Mastotermes electrodominicus -procurer -seizure-alert dog -homeboy -cotton strain -mute -siren -spearnose bat -phenacomys -gayal -arsenal -pitchfork -Port Jackson heath -cud -magnetic core memory -interferometer -water jacket -account executive -hodoscope -window oyster -sudatorium -syncopator -loment -hypertensive -smoothbark -Geogia holly -nailhead -African holly -musette -chafeweed -microflora -derrick -strawworm -shogun -queen post -jerboa kangaroo -columbo -royal -sourball -solenogaster -cardsharp -Homo habilis -intaglio -calf's-foot jelly -flotsam -skirret -baronduki -chyme -shovel hat -Welsh -monoplane flying fish -groundfish -tablet-armed chair -swan dive -Indian club -colonial -cassiri -pyramidal tent -praya -silk vine -time clock -button snakeroot -clews -Korean lespedeza -diffuser -ripping bar -puttyroot -nipple shield -headpin -juneberry holly -hub-and-spoke -laver -weldment -plain flour -hoosegow -dudeen -grey skate -line of life -mung -arariba -Newtown Wonder -rock candy -side chapel -castor sugar -narrow-leaved white-topped aster -babassu nut -puka -rings -catchall -heat shield -caroche -oxbow -Australian coral snake -tapper -sporangiophore -fenugreek -spruce gall aphid -gouache -cutoff -private line -pod -cargo hatch -nailhead -penile implant -geophyte -small-leaved linden -deepwater pipefish -paperhanger -hairy spurge -Persian lamb -subtropics -feed grain -clarence -nonparticipant -scorpioid cyme -hand brake -tiller -Geglossaceae -albacore -monochrome -goa bean -bur -tongue worm -psittacosaur -frog's lettuce -pectoral -terreplein -light filter -fishpaste -dry point -grison -feterita -dolichocephalic -oenomel -stretcher -swag -cheval-de-frise -mountain beaver -scammony -discus -leatherleaf saxifrage -wharf rat -Dominique -pelycosaur -depth gauge -bishop -archespore -true anomaly -silver jenny -mercy seat -kelp -oviraptorid -acrylic -Chinese pea tree -meat house -bilge well -Temperate Zone -whale louse -balbriggan -briefcase bomb -pump-type pliers -oil -sour gourd -Jewbush -lunette -Chinese paddlefish -pyxidium -beechnut -calabar bean -grugru nut -gib -blunt file -cataphyll -megasporangium -blockbuster -sliding seat -hogchoker -calceus -Connarus guianensis -honest woman -survivor -second balcony -tempera -Calvary clover -murine -outwork -bogy -elephant's-foot -conning tower -set square -blackfly -stirk -Streptomyces erythreus -blade -goldfield -snowball -mortal enemy -waltzer -shoal -galley -hitchhiker -lithophyte -brisling -scauper -esophagoscope -grab -subtracter -philosopher -duplex apartment -southeastern pocket gopher -bonduc nut -reverberatory furnace -grader -lamp house -northern bog lemming -brotula -ornithopod -ptyalith -obturator -perpetual motion machine -range pole -Africander -curvet -daisy print wheel -floor -collector -mutant -tuck -fore-and-after -senega -buckler mustard -louvar -Tarsius glis -culdoscope -Spanish fly -steering gear -hatchet man -museum -saw set -cambric tea -comber -thermohydrometer -stationer -chalcis fly -bryanthus -whipstitch -harvest mite -rock gunnel -time bomb -rariora -pigfish -apetalous flower -head shop -horned whiff -sandpit -tachistoscope -sundries -taffrail -caller -monofocal lens implant -Dover's powder -souari nut -crowbait -render -Shakespearian -hagberry -megatherian -magus -hatchel -mangabey -garroter -piedmont -cope -barrio -psychodid -rigout -distributor -croupier's rake -sarcenet -narrow-leaved water plantain -treenail -biped -lanternfish -overdrive -barndoor skate -picket boat -amber lily -sawpit -sand lance -bucket shop -common beech -laundry truck -surtout -grogram -tampion -escape hatch -interstice -shop bell -snake mackerel -nakedwood -tumbrel -mericarp -mountain paca -cab -big board -cringle -eusporangium -shipping room -coal chute -dumbwaiter -Smiledon californicus -man-at-arms -cartridge -deinonychus -pigeon pea -screw bean -spectacle -floorboard -cutting room -low-warp-loom -proconsul -sabicu -genipap -clapper -aquifer -archaeornis -belly flop -Protium heptaphyllum -interrupter -high-warp loom -knight -wiper -impression -poker -Pithecanthropus -sable -guardroom -tenter -wellhead -raja -strickle -sodomite -mountebank -sand leek -Barbados gooseberry -shuffler -sensory fiber -crab-eating opossum -etching -rare bird -scup -fagot -negro vine -hutment -droshky -nephoscope -lady chapel -cutty stool -release -vestiture -buff -standard -Tabernacle -vascular ray -snakewood -chlorobenzylidenemalononitrile -limnologist -pouched mole -microwave linear accelerator -Mastotermes darwiniensis -wind tee -orange bat -open sight -carpospore -rampant arch -sabbatia -cursor -post exchange -bellpull -center -cyclostyle -canonist -pygmy sperm whale -moa -king -pass-through -angioscope -marrow -hookup -revetment -acanthocephalan -good Samaritan -apatosaur -web spinner -dixie -ommastrephes -crossbench -candlewick -jack -light arm -caisson -kaki -quandong nut -Meuniere butter -coquilla nut -mast -black -twitterer -bluethroat pikeblenny -shielding -water-shield -urolith -elephant bird -clearway -dark lantern -schizopetalon -press -Nazi -sugarberry -Maltese -stevedore -hair shirt -party wall -gainer -blackheart -nothosaur -cavetto -evergreen bittersweet -chemical bomb -calpac -shingle -turnpike -animator -heaver -isoclinic line -death knell -liner -anathema -aerie -razorback -Ichyostega -pound net -French dressing -mottle -yard -string tie -bell seat -brattice -battering ram -sierra -pompon -vertex -stomach pump -electrolytic cell -escolar -telpher -roadhouse -cerecloth -tartare sauce -letter case -whale sucker -hob -teg -canvas -strickle -hectograph -Cartagena bark -mail car -acinus -freedom rider -bread sauce -picture window -Rhizopogon idahoensis -pinprick -mass spectrograph -ringer -devil's cigar -salad cream -marlberry -airbrake -Clark cell -yellow-throated marten -wire gauge -dinoceras -aba -harpoon log -plate rail -mustard plaster -coelophysis -journal box -puce -ballcock -quartering -izar -clinid -whirler -turnspit -deathbed -pottle -shot -doubler -Coryphaena equisetis -English sole -chicken feed -borrow pit -mylodontid -Chilean nut -Kundt's tube -ling -asthenosphere -reseau -death seat -immovable bandage -peppermint patty -lecturer -electron multiplier -bear claw -hyacinth -beaked salmon -toehold -scull -snowball -gangsaw -fiber -oxeye -lashing -Beckman thermometer -fence -cantilever -dinner theater -Reynard -jag -umbrella plant -camera lucida -beaver -slug -yellowfin croaker -Sibley tent -rat-tail file -anchovy pear -soldier -cackler -chaise -Pitot-static tube -minniebush -Episcopalian -oleaster -ejaculator -wavy-leaved aster -knight -rack -real storage -magnetic mine -cocoa plum -vesiculovirus -birch leaf miner -water chevrotain -rudapithecus -torpedo tube -itch mite -warren -loft -washerman -terrace -nonstarter -shit -platform -caudex -ground control -Ostariophysi -slopshop -Peruvian cotton -crystal oscillator -plastic bomb -bar bit -watering cart -Asiatic sweetleaf -artificial joint -chariot -casern -charge-exchange accelerator -display adapter -hornpipe -honey bell -planula -Nephthytis afzelii -hame -ranter -trachodon -synchrocyclotron -splasher -heterotroph -Nicol prism -Himalayan rhubarb -headfast -put-put -bitter almond -parr -scantling -power breakfast -madder -Catalpa bignioides -rose of Jericho -spark chamber -rhizome -beard worm -supper club -negro peach -keratoscope -wain -apple aphid -planking -time-delay measuring instrument -sternpost -sicklepod -lake bed -gatherer -monotype -dead-man's float -poison gas -dicynodont -organism -cell -person -animal -plant -food -artifact -dressage -contact sport -outdoor sport -gymnastics -track and field -jumping -high jump -skiing -water sport -swimming -dive -floating -skin diving -rowing -boxing -sledding -tobogganing -wrestling -skating -ice skating -roller skating -racing -boat racing -riding -equestrian sport -cycling -blood sport -hunt -fishing -angling -casting -athletic game -outdoor game -golf -field game -field hockey -football -American football -ball game -baseball -court game -badminton -basketball -tennis -sport -Seder -scavenger -bottom-feeder -work animal -beast of burden -pack animal -domestic animal -marine animal -female -male -young -young mammal -pup -cub -lion cub -tiger cub -microorganism -arbovirus -herpes -herpes zoster -reovirus -moneran -cyanobacteria -enteric bacteria -actinomycete -streptomyces -diplococcus -parasite -ectoparasite -protoctist -protozoan -sarcodinian -ameba -ciliate -alga -brown algae -green algae -sporozoan -cypriniform fish -cyprinid -carp -domestic carp -shiner -catostomid -buffalo fish -cyprinodont -killifish -topminnow -squirrelfish -stickleback -pipefish -embryo -fetus -blastula -chordate -cephalochordate -tunicate -ascidian -vertebrate -aquatic vertebrate -jawless vertebrate -lamprey -hagfish -cartilaginous fish -holocephalan -chimaera -elasmobranch -shark -mackerel shark -mako -requiem shark -dogfish -smooth dogfish -spiny dogfish -smooth hammerhead -smalleye hammerhead -shovelhead -ray -sawfish -roughtail stingray -butterfly ray -eagle ray -manta -skate -bird -gamecock -night bird -ratite -passerine -oscine -accentor -lark -pipit -finch -canary -dark-eyed junco -New World sparrow -bunting -honeycreeper -sparrow -grosbeak -towhee -weaver -grassfinch -tyrannid -New World flycatcher -kingbird -pewee -cotinga -antbird -Old World flycatcher -thrush -nightingale -Old World chat -warbler -kinglet -Old World warbler -New World warbler -flycatching warbler -New World chat -yellowthroat -New World oriole -northern oriole -meadowlark -New World blackbird -grackle -Old World oriole -starling -myna -corvine bird -crow -Old World jay -common European jay -New World jay -blue jay -Canada jay -Rocky Mountain jay -nutcracker -European magpie -American magpie -Australian magpie -wren -marsh wren -thrasher -New Zealand wren -creeper -titmouse -black-capped chickadee -Carolina chickadee -swallow -martin -tanager -shrike -butcherbird -bush shrike -bowerbird -European water ouzel -American water ouzel -vireo -waxwing -bird of prey -hawk -black kite -swallow-tailed kite -white-tailed kite -harrier -falcon -peregrine -caracara -eagle -young bird -sea eagle -Aegypiidae -Old World vulture -griffon vulture -bearded vulture -Egyptian vulture -black vulture -New World vulture -buzzard -condor -Andean condor -California condor -black vulture -king vulture -owl -horned owl -scops owl -amphibian -salamander -newt -Pacific newt -ambystomid -climbing salamander -web-toed salamander -frog -true frog -true toad -spadefoot -tree toad -cricket frog -tongueless frog -reptile -anapsid -diapsid -chelonian -turtle -sea turtle -ridley -snapping turtle -musk turtle -diamondback terrapin -Western box turtle -tortoise -soft-shelled turtle -saurian -lizard -gecko -iguanid -spiny lizard -fence lizard -horned lizard -skink -teiid lizard -racerunner -plateau striped whiptail -Chihuahuan spotted whiptail -western whiptail -checkered whiptail -agamid -moloch -anguid lizard -venomous lizard -lacertid lizard -chameleon -monitor -crocodilian reptile -crocodile -alligator -caiman -armored dinosaur -ankylosaur -bone-headed dinosaur -ceratopsian -hadrosaur -saurischian -sauropod -theropod -ceratosaur -maniraptor -synapsid -pterosaur -ichthyosaur -snake -colubrid snake -smooth green snake -rough green snake -racer -blacksnake -whip-snake -rat snake -bull snake -common kingsnake -milk snake -common garter snake -ribbon snake -Western ribbon snake -common water snake -water moccasin -grass snake -viperine grass snake -sand snake -lyre snake -blind snake -indigo snake -constrictor -boa -python -elapid -coral snake -coral snake -cobra -mamba -black mamba -krait -viper -pit viper -rattlesnake -timber rattlesnake -arthropod -arachnid -false scorpion -whip-scorpion -spider -European wolf spider -acarine -hard tick -Ixodes dammini -Ixodes neotomae -Ixodes pacificus -Ixodes scapularis -sheep-tick -Ixodes persulcatus -Ixodes dentatus -Ixodes spinipalpis -wood tick -soft tick -mite -trombiculid -spider mite -house centipede -gallinaceous bird -domestic fowl -jungle fowl -chicken -cock -hen -turkey -grouse -European black grouse -Asian black grouse -blackcock -greyhen -red grouse -moorhen -greater prairie chicken -lesser prairie chicken -heath hen -guan -chachalaca -megapode -mallee fowl -phasianid -pheasant -bobwhite -northern bobwhite -Old World quail -migratory quail -peafowl -California quail -Hungarian partridge -red-legged partridge -Greek partridge -mountain quail -guinea fowl -columbiform bird -pigeon -dove -turtledove -domestic pigeon -homing pigeon -sandgrouse -parrot -cockatoo -lory -varied Lorikeet -rainbow lorikeet -parakeet -cuculiform bird -cuckoo -crow pheasant -coraciiform bird -roller -kingfisher -hoopoe -apodiform bird -swift -Archilochus colubris -thornbill -goatsucker -piciform bird -woodpecker -flicker -sapsucker -toucanet -trogon -quetzal -aquatic bird -waterfowl -anseriform bird -duck -teal -widgeon -sheldrake -goldeneye -scaup -wood duck -sea duck -scoter -merganser -gosling -gander -Chinese goose -greylag -blue goose -snow goose -brant -common brant goose -honker -barnacle goose -swan -tundra swan -screamer -crested screamer -mammal -prototherian -monotreme -marsupial -opossum -bandicoot -kangaroo -common wallaby -hare wallaby -nail-tailed wallaby -rock wallaby -pademelon -tree wallaby -rat kangaroo -phalanger -dasyurid marsupial -dasyure -placental -calf -buck -insectivore -mole -shrew mole -shrew -water shrew -tenrec -invertebrate -sponge -glass sponge -coelenterate -Chrysaora quinquecirrha -hydrozoan -siphonophore -anthozoan -actinia -coral -gorgonian -stony coral -ctenophore -worm -planarian -fluke -liver fluke -Fasciolopsis buski -schistosome -tapeworm -echinococcus -taenia -common roundworm -chicken roundworm -pinworm -eelworm -vinegar eel -trichina -hookworm -filaria -Guinea worm -annelid -oligochaete -polychaete -leech -mollusk -scaphopod -gastropod -abalone -scorpion shell -giant conch -edible snail -garden snail -brown snail -Helix hortensis -seasnail -neritid -limpet -Hermissenda crassicornis -cowrie -bivalve -clam -quahog -cockle -oyster -mussel -marine mussel -freshwater mussel -scallop -shipworm -cephalopod -octopod -decapod -squid -crustacean -malacostracan crustacean -decapod crustacean -crab -swimming crab -spider crab -lobster -true lobster -Old World crayfish -American crayfish -shrimp -prawn -krill -stomatopod -mantis shrimp -woodlouse -pill bug -sow bug -sea louse -amphipod -copepod -barnacle -wading bird -stork -ibis -common spoonbill -roseate spoonbill -heron -egret -night heron -American bittern -European bittern -least bittern -whooping crane -rail -crake -gallinule -purple gallinule -coot -great bustard -plain turkey -button quail -trumpeter -seabird -shorebird -plover -turnstone -sandpiper -yellowlegs -ruff -tattler -woodcock -snipe -greyback -red-breasted snipe -curlew -godwit -stilt -stilt -phalarope -courser -coastal diving bird -larid -gull -tern -jaeger -skua -auk -guillemot -murre -puffin -gaviiform seabird -podicipitiform seabird -grebe -pelecaniform seabird -white pelican -Old world white pelican -gannet -snakebird -sphenisciform seabird -penguin -pelagic bird -wandering albatross -black-footed albatross -petrel -shearwater -storm petrel -aquatic mammal -cetacean -whale -baleen whale -rorqual -toothed whale -beaked whale -dolphin -bottlenose dolphin -porpoise -sea cow -carnivore -pinniped mammal -seal -eared seal -fur seal -fur seal -South American sea lion -California sea lion -Australian sea lion -Steller sea lion -earless seal -walrus -canine -bitch -dog -cur -toy dog -toy spaniel -English toy spaniel -hunting dog -hound -coonhound -dachshund -foxhound -wolfhound -greyhound -terrier -bullterrier -rat terrier -Manchester terrier -fox terrier -wirehair -Welsh terrier -schnauzer -Skye terrier -sporting dog -retriever -pointer -setter -spaniel -springer spaniel -water spaniel -working dog -watchdog -shepherd dog -Belgian sheepdog -pinscher -Sennenhunde -mastiff -bulldog -guide dog -sled dog -liver-spotted dalmatian -spitz -griffon -corgi -poodle -wolf -coydog -wild dog -striped hyena -brown hyena -spotted hyena -aardwolf -fox -black fox -silver fox -blue fox -feline -cat -domestic cat -tom -blue point Siamese -wildcat -common lynx -Canada lynx -bobcat -spotted lynx -caracal -big cat -leopardess -panther -lioness -lionet -Bengal tiger -tigress -saber-toothed tiger -bear -Syrian bear -grizzly -Alaskan brown bear -cinnamon bear -viverrine -civet -Indian mongoose -ichneumon -slender-tailed meerkat -suricate -bat -fruit bat -carnivorous bat -leafnose bat -false vampire -vespertilian bat -long-eared bat -freetail -vampire bat -predator -game -game bird -fossorial mammal -tetrapod -insect -beetle -two-spotted ladybug -Mexican bean beetle -Hippodamia convergens -vedalia -bombardier beetle -calosoma -searcher -firefly -sawyer -pine sawyer -flea beetle -Colorado potato beetle -carpet beetle -clerid beetle -lamellicorn beetle -scarabaeid beetle -scarab -tumblebug -dorbeetle -June beetle -melolonthid beetle -elaterid beetle -snout beetle -boll weevil -blister beetle -bark beetle -darkling beetle -flour beetle -seed beetle -pea weevil -bean weevil -rice weevil -louse -flea -dipterous insect -gall midge -housefly -tsetse fly -blowfly -bluebottle -greenbottle -flesh fly -tachina fly -gadfly -botfly -human botfly -sheep botfly -warble fly -horsefly -bee fly -fruit fly -louse fly -horn fly -mosquito -gnat -fungus gnat -hymenopterous insect -drone -worker -honeybee -Africanized bee -black bee -Carniolan bee -Italian bee -carpenter bee -bumblebee -cuckoo-bumblebee -andrena -Nomia melanderi -leaf-cutting bee -mason bee -potter bee -wasp -vespid -paper wasp -hornet -sphecoid wasp -digger wasp -chalcid fly -sawfly -pharaoh ant -little black ant -army ant -carpenter ant -fire ant -wood ant -slave ant -Formica fusca -slave-making ant -sanguinary ant -bulldog ant -Amazon ant -termite -dry-wood termite -orthopterous insect -short-horned grasshopper -locust -migratory locust -migratory grasshopper -long-horned grasshopper -katydid -mormon cricket -sand cricket -mole cricket -European house cricket -field cricket -tree cricket -snowy tree cricket -phasmid -diapheromera -oriental cockroach -American cockroach -Australian cockroach -German cockroach -giant cockroach -praying mantis -hemipterous insect -leaf bug -mirid bug -lygus bug -lygaeid -coreid bug -heteropterous insect -water bug -water strider -assassin bug -homopterous insect -whitefly -sweet-potato whitefly -coccid insect -scale insect -soft scale -armored scale -mealybug -plant louse -aphid -greenfly -woolly aphid -adelgid -dog-day cicada -seventeen-year locust -spittle insect -plant hopper -psocopterous insect -psocid -booklouse -ephemerid -neuropteron -green lacewing -brown lacewing -odonate -trichopterous insect -caseworm -thysanuran insect -bristletail -thysanopter -thrips -earwig -lepidopterous insect -butterfly -nymphalid -fritillary -emperor butterfly -danaid -pierid -small white -large white -southern cabbage butterfly -blue -copper -American copper -hairstreak -Strymon melinus -moth -tortricid -lymantriid -geometrid -cankerworm -pyralid -tineoid -tineid -clothes moth -gelechiid -grain moth -noctuid moth -cutworm -underwing -hawkmoth -bombycid -saturniid -giant silkworm moth -silkworm -arctiid -lasiocampid -tent caterpillar -webworm -webworm moth -caterpillar -bollworm -woolly bear -larva -grub -pupa -queen -echinoderm -basket star -edible sea urchin -sand dollar -heart urchin -crinoid -trepang -lagomorph -leporid -rabbit -eastern cottontail -swamp rabbit -marsh hare -leveret -European hare -jackrabbit -white-tailed jackrabbit -blacktail jackrabbit -polar hare -snowshoe hare -pika -rodent -mouse -rat -pocket rat -field mouse -brown rat -jerboa rat -water rat -New World mouse -wood mouse -wood rat -vole -packrat -Eurasian hamster -golden hamster -gerbil -lemming -pied lemming -Old World porcupine -brush-tailed porcupine -long-tailed porcupine -New World porcupine -Canada porcupine -pocket mouse -kangaroo rat -jumping mouse -jerboa -dormouse -gopher -squirrel -tree squirrel -ground squirrel -prairie dog -American flying squirrel -groundhog -hoary marmot -yellowbelly marmot -Old World beaver -New World beaver -cavy -naked mole rat -ungulate -hyrax -odd-toed ungulate -equine -horse -foal -colt -male horse -stallion -mare -saddle horse -warhorse -pony -mustang -bronco -wild horse -pony -racehorse -racer -harness horse -workhorse -draft horse -trotting horse -ass -domestic ass -wild ass -onager -common zebra -mountain zebra -grevy's zebra -rhinoceros -tapir -even-toed ungulate -swine -piglet -porker -peccary -ruminant -bovid -bovine -ox -cattle -bull -cow -beef -Brahman -dairy cattle -Old World buffalo -Indian buffalo -carabao -Asian wild ox -American bison -wisent -sheep -lamb -domestic sheep -wild sheep -mountain sheep -goat -domestic goat -wild goat -goat antelope -antelope -Thomson's gazelle -Gazella subgutturosa -springbok -kudu -harnessed antelope -eland -waterbuck -oryx -deer -stag -red deer -mule deer -roe deer -caribou -chevrotain -camel -domestic llama -guanaco -alpaca -giraffe -musteline mammal -ermine -stoat -New World least weasel -Old World least weasel -longtail weasel -American mink -ferret -muishond -snake muishond -striped muishond -river otter -Eurasian otter -striped skunk -hooded skunk -hog-nosed skunk -spotted skunk -American badger -Eurasian badger -ferret badger -hog badger -marten -pachyderm -edentate -peba -apar -tatouay -peludo -giant armadillo -pichiciago -sloth -anteater -primate -ape -anthropoid ape -hominoid -hominid -homo -Homo erectus -Homo sapiens -australopithecine -great ape -western lowland gorilla -eastern lowland gorilla -mountain gorilla -silverback -western chimpanzee -eastern chimpanzee -central chimpanzee -pygmy chimpanzee -lesser ape -monkey -Old World monkey -talapoin -grivet -vervet -green monkey -chacma -mandrill -drill -rhesus -bonnet macaque -Barbary ape -crab-eating macaque -entellus -guereza -New World monkey -true marmoset -pygmy marmoset -tamarin -silky tamarin -pinche -lemur -tarsier -flying lemur -proboscidean -elephant -mammoth -procyonid -raccoon -fish -food fish -young fish -crossopterygian -lungfish -catfish -silurid -bullhead -channel catfish -gadoid -cod -hake -elver -common eel -tuna -moray -conger -teleost fish -clupeid fish -shad -herring -sardine -pilchard -anchovy -salmonid -salmon -Atlantic salmon -trout -brown trout -char -whitefish -smelt -tarpon -ribbonfish -toadfish -needlefish -flying fish -spiny-finned fish -percoid fish -perch -pike-perch -walleye -robalo -pike -pickerel -sunfish -crappie -freshwater bream -black bass -bass -serranid fish -grouper -hind -surfperch -cardinalfish -remora -carangid fish -jack -moonfish -pompano -scad -dolphinfish -characin -cichlid -snapper -grunt -sparid -sea bream -porgy -sciaenid fish -croaker -whiting -sea trout -mullet -goatfish -mullet -silversides -barracuda -sea chub -butterfly fish -damselfish -clown anemone fish -wrasse -blenny -pikeblenny -gunnel -goby -gempylid -scombroid -mackerel -Spanish mackerel -tuna -bonito -sailfish -billfish -marlin -tripletail -mojarra -ganoid -Pacific sturgeon -beluga -scorpaenoid -scorpaenid -scorpionfish -rockfish -lumpfish -greenling -gurnard -sea robin -plectognath -triggerfish -filefish -boxfish -spiny puffer -ocean sunfish -flatfish -righteye flounder -lefteye flounder -whiff -sole -abbey -abbey -abrader -accelerator -accessory -accommodation -acoustic device -acoustic modem -acrylic -action -actuator -adhesive bandage -adjustable wrench -aeolian harp -aerosol -after-shave -airbus -aircraft -airfield -airfoil -air gun -airplane -air pump -air-to-air missile -air-to-ground missile -alarm -alb -alcazar -Allen screw -alms dish -altimeter -Amati -ammeter -ammunition -amplifier -analog computer -analytical balance -anchor -anchor chain -aneroid barometer -angledozer -anklet -antenna -anteroom -antiaircraft -antiballistic missile -apartment -apartment building -aperture -apparatus -apparel -appliance -appliance -applicator -aquarium -arbor -arcade -arch -arc lamp -area -argyle -arm -armament -armature -armchair -armoire -armor -armored vehicle -armor plate -armrest -array -arrow -artificial heart -artillery -assembly -assembly plant -astrodome -astronomical telescope -athletic sock -atom bomb -atomic clock -atomizer -attachment -attack submarine -attire -audiocassette -audio system -audiotape -auditorium -autoclave -autoinjector -autoloader -automat -automat -automatic firearm -automatic rifle -automaton -auxiliary research submarine -awl -ax -axis -axle -axletree -baby bed -baby buggy -baby grand -back -background -backseat -badminton equipment -badminton racket -bag -bag -bag -baggage -bagpipe -bait -balance -balcony -balcony -bale -ball -ball gown -ballistic missile -ballistic pendulum -ball-peen hammer -ballroom -band -bandage -bandanna -banderilla -bar -bar -barbed wire -barge -barge pole -barn door -barograph -barrack -barrage balloon -barrel knot -barrel vault -barrier -barroom -base -base -baseball equipment -basilica -basin -basket -basketball equipment -bass -bass drum -bass horn -bastion -bat -bathhouse -battery -battle-ax -battle dress -battleship -bay rum -bay window -beading plane -beam -beam balance -bearing -beater -beating-reed instrument -bed -bed -bedclothes -bedroom -bedroom furniture -bedspread -bedspring -beehive -beer barrel -bell -bell push -bell tower -belt -belt buckle -bench -berlin -berth -besom -bevel gear -bicycle -bicycle chain -bier -billiard ball -bin -binding -bin liner -binocular microscope -bioscope -birchbark canoe -bird shot -bistro -bit -bit -black tie -blade -blade -blanket -blimp -blind -block -block plane -blouse -blower -blowtorch -bludgeon -boarding -boarding house -boardroom -boat -bobbin -body -body armor -body lotion -boiler -bolt -bolt -bomb -bomber -bongo -boom -boom -boomerang -boot -booth -booth -bore bit -Boston rocker -bota -bottle -bottle opener -bow -bow -bowed stringed instrument -bowl -bowl -bowline -bowling equipment -bowling pin -bowsprit -box -box -boxcar -boxing equipment -brace -brace -bracelet -bracket -brake -brake system -brass -brasserie -brazier -breechcloth -breeches -brewpub -brick -bricklayer's hammer -brickwork -bridal gown -bridge -briefcase -brigandine -brilliant pebble -brim -broad arrow -broadax -broad hatchet -broadsword -brush -bubble jet printer -buffer -buffet -building -building complex -bulldozer -bullet -bullhorn -bullnose -bundle -bunker -burial chamber -burner -bus -business suit -butt joint -button -buttress -butt shaft -buzz bomb -cabaret -caber -cabin -cabin -cabinet -cabinet -cabin liner -cable -cable -cafe -cafeteria -cafeteria tray -caff -cage -calculator -caliper -calorimeter -camera -camera lens -camera tripod -camp -camp -camp chair -camper -can -canal -candelabrum -candlestick -cane -cannikin -cannon -cannon -cannonball -canopy -canteen -canteen -canvas -canvas tent -cap -cap -cap -capacitor -caparison -cape -cap screw -capsule -car -car -carbine -carbon arc lamp -card index -cardioid microphone -car door -cargo liner -cargo ship -carillon -carpenter's hammer -carpenter's level -carpenter's mallet -carpenter's rule -carpet tack -carriage -carriage -carriage bolt -carrick bend -carrier -car seat -cart -cartridge -cartridge belt -cartridge holder -case -case -cashbox -casque -casserole -cassock -catch -catcher's mask -cathedra -cathedral -cathedral -catheter -cathode -cathode-ray tube -cat's-paw -cattle car -cautery -cavalry sword -cedar chest -cell -cell -cellblock -center -centrifuge -ceramic -ceramic ware -chain tongs -chair -chair of state -chalk -chamfer plane -chandlery -chapel -character printer -chassis -chasuble -chatelaine -checker -cheeseboard -chemical reactor -chessman -chest of drawers -child's room -china -chip -chip -chisel -choke -chokey -chordophone -chronoscope -chuck -church key -cigar lighter -circle -circuit -circuit board -circular plane -circular saw -cistern -civilian clothing -clamp -clamshell -clarinet -classroom -clavier -cleaning implement -cleaning pad -clean room -clinic -clip -cloak -clock -closed circuit -closed-circuit television -closet -cloth covering -clothes closet -clothes dryer -clothes hamper -clothes tree -clothing -clothing store -clout nail -clove hitch -clutch -coach -coal car -coal shovel -coat -coat closet -coating -coating -coat of paint -coaxial cable -cocked hat -coffee cup -coffee maker -coffer -coffin -coil -colander -collider -cologne -colonnade -color television -Colt -column -column -comb -comb -combination plane -combine -commissary -commodity -communication system -commutator -compact disk -compartment -compass -compass card -compound lens -compound lever -compressor -computer -computer circuit -computer network -computer screen -computer system -concentration camp -concert grand -concertina -condenser -condenser -condenser microphone -conductor -connecting rod -connection -conservatory -conservatory -contact -container -contrabassoon -control -control panel -control system -convent -converging lens -converter -convertible -conveyance -cooker -cooking utensil -cooler -cooling system -cord -cord -cordage -corner -correctional institution -corset -cosmetic -costume -costume -cotter -cotton -counter -counter -counter -counter tube -country house -coupling -court -court -coverall -covering -cowbarn -craft -cravat -crazy quilt -cream -cream pitcher -crematory -crepe -crib -cricket equipment -croquet equipment -crossbar -crossbow -crosspiece -crown jewels -cruiser -cruiser -cruise ship -crystal microphone -cudgel -cuff -cultivator -cup -cupboard -cupola -curb roof -curtain -cutout -cutter -cutting implement -cybercafe -cyclotron -cylinder -cymbal -dado plane -dagger -damper -dart -data converter -data input device -davenport -davenport -davit -dead axle -deck -deck -deck chair -deep-freeze -defensive structure -delay line -delicatessen -dental appliance -denture -depilatory -depressor -depth finder -derrick -destroyer -detector -detector -detonating fuse -detonator -developer -device -dial -dialyzer -diathermy machine -diesel locomotive -digital camera -digital computer -digital display -diner -dinghy -dining car -dining-hall -dining room -dining-room furniture -dining-room table -dinner dress -dinner pail -dinner table -diode -dip -diplomatic building -dipper -DIP switch -directional antenna -directional microphone -direction finder -disguise -dish -dish -disk -dispenser -display -display panel -distillery -ditch -ditch spade -dive bomber -doll -dolmen -domino -door -doorbell -doorlock -doornail -dormer window -dormitory -dot matrix printer -double-breasted suit -double-reed instrument -douche -dovecote -dovetail plane -downstage -drafting instrument -Dragunov -drawstring bag -dray -dredging bucket -dress -dress blues -dressing -dress uniform -drill -electric drill -drill rig -drinking fountain -drinking vessel -drip mat -drip pot -drive -drive -drogue -drogue parachute -drop-leaf table -dry battery -dry dock -dryer -dry masonry -dry wall -dugout canoe -dumdum -dumpcart -dune buggy -dungeon -duplicator -dustmop -dwelling -earphone -earthenware -easel -easy chair -edge tool -eiderdown -elastic bandage -electrical converter -electrical device -electric bell -electric frying pan -electric furnace -electric heater -electric lamp -electric motor -electric refrigerator -electro-acoustic transducer -electrode -electromagnet -electronic balance -electronic device -electronic equipment -electronic instrument -electronic voltmeter -electron microscope -electrostatic generator -electrostatic printer -elevator -embankment -embellishment -enamel -enamelware -enclosure -endoscope -engine -engine -ensemble -entrenching tool -epidiascope -equipment -eraser -escutcheon -espadrille -espresso shop -establishment -estaminet -exercise device -exhaust fan -exhibition hall -Exocet -expansion bolt -explosive device -external-combustion engine -extractor -fabric -face mask -face veil -facing -factory -fairlead -false face -fan -farm building -farm machine -fastener -fatigues -faucet -feedback circuit -fence -fencing sword -fender -ferry -fetoscope -field-sequential color television -fife -fifth wheel -fighter -figure eight -file -file server -filling -film -film -filter -filter -finery -finisher -fipple flute -fire -firearm -fire iron -fireplace -firkin -fisherman's bend -fisherman's knot -fisherman's lure -fishing boat -fishing rod -fishnet -flag -flageolet -flambeau -flannelette -flap -flashlight -flask -flatcar -flat tip screwdriver -fleet ballistic missile submarine -flight simulator -flip-flop -floating dock -floor -floor -floor cover -fly -flywheel -fob -foghorn -folder -food hamper -footbath -footbridge -foothold -foot rule -footwear -footwear -forceps -fore-and-aft sail -foremast -fore plane -fore-topmast -fork -formalwear -fortification -fortress -foundation garment -foundry -fragmentation bomb -framework -free-reed instrument -freight train -French door -friary -friction clutch -frigate -frill -frock coat -front projector -fruit machine -full-dress uniform -full metal jacket -funny wagon -fur hat -furnace -furnishing -furniture -fuse -gable -gable roof -gaff -galleon -gallery -galley -galley -gallows -galvanometer -gambling house -game -game equipment -gamp -garage -Garand rifle -garden -garden spade -garden tool -garment -gas burner -gas-discharge tube -gasket -gasoline engine -gate -gatehouse -gatepost -gathered skirt -gauge -gauze -gauze -gavel -gear -gear -gear -gearing -general-purpose bomb -generator -generator -Geneva gown -geodesic dome -girder -glass -glider -glove -glyptic art -goal -golf club -golf equipment -Gordian knot -Gothic arch -government building -government office -gown -gramophone -granary -granny knot -grapnel -grapnel -grate -graver -greasy spoon -greatcoat -great hall -greengrocery -grenade -grillroom -groined vault -Guarnerius -guidance system -guided missile -guildhall -guitar -guitar pick -gun -gun carriage -gunlock -gunsight -gun trigger -gurney -gymnastic apparatus -gym shoe -gypsy cab -habergeon -habit -hairdressing -hairpiece -hairpin -half hatchet -half hitch -hall -hall -hammer -hand -handbell -handbow -handcart -hand glass -handloom -hand lotion -hand mower -handsaw -hand shovel -hand tool -handwear -handwheel -hanger -hank -harpsichord -harrow -hash house -hat -hatch -hauberk -hawser bend -hazard -head -head -head covering -headdress -header -headgear -headlight -headsail -headscarf -health spa -heat engine -heater -heat lamp -heat-seeking missile -heavier-than-air craft -heckelphone -hedge -helicopter -helm -helmet -helmet -heraldry -high altar -high-angle gun -high gear -high table -hinge -hip boot -hitch -hoe -hogshead -hoist -holder -holding device -home appliance -homespun -hood -hood -hood -hook -Hoover -hope chest -horn -horn button -horse -horsecar -horse-drawn vehicle -horsehair wig -hosiery -hospital -hospital room -hostel -hot-air balloon -hotel -hotel room -hot tub -house -house -housing -hovel -huarache -humeral veil -hut -hutch -hydraulic brake -hydraulic system -hydroelectric turbine -hydrofoil -hydrometer -hygrometer -hypermarket -hypodermic syringe -ice machine -ice rink -ice skate -icetray -ignition switch -impact printer -implant -implement -imprint -improvised explosive device -inclined plane -indicator -induction coil -ink-jet printer -inkstand -institution -instrument -instrument of punishment -instrument of torture -interceptor -interchange -intercommunication system -intercontinental ballistic missile -interface -interior door -internal-combustion engine -ionization chamber -video iPod -iron -jack -jack -jacket -jacket -jack plane -jail -jamb -jar -jeroboam -jet -jet engine -jewelled headdress -jib -jibboom -jiggermast -joint -jointer -joist -jolly boat -jug -jumper -jumper cable -junction -junction -jury mast -kayak -keel -keg -kerchief -kettle -key -key -keyboard -keyboard instrument -khakis -kiln -kinescope -kingbolt -kirk -kit -kit -kitbag -kitchen -kitchen appliance -kitchen utensil -kite balloon -knee-high -knife -knife -knit -knob -lace -lacquer -ladder truck -lag screw -lamasery -laminate -lamination -lamp -lamp -landing gear -land mine -lantern -lapel -lathe -lattice -launcher -lead-acid battery -leather strip -Leclanche cell -leg -legging -lens -lens implant -level -lever -Levi's -lid -life buoy -life jacket -life preserver -lifting device -ligament -light -light-emitting diode -lighter-than-air craft -lighting -light microscope -linear accelerator -line printer -lingerie -lining -liquid crystal display -lister -living quarters -living room -local area network -lock -locomotive -lodge -lodging house -loft -loft -longbow -lookout -loom -loop knot -lota -lounge -loungewear -love knot -lunchroom -luxury liner -lyre -machine -machine -machine bolt -machine gun -machinery -machine screw -machine tool -magic lantern -magnet -magnetic disk -magnetic recorder -magnetic tape -magnifier -magnum -magnus hitch -mailer -mainframe -mainmast -main-topmast -main yard -makeup -mallet -mallet -mallet -mandolin -manger -man-of-war -manometer -MANPAD -mansard -mansion -marina -marker -marketplace -maser -mask -masonry -mass spectrometer -mast -mast -mat -mat -match -match -match plane -material -materiel -Matthew Walker -maul -measure -measuring instrument -measuring stick -mechanical device -mechanical system -mechanism -medical building -medical instrument -memorial -memory -memory chip -memory device -menhir -man's clothing -mercantile establishment -mercury barometer -mercury thermometer -mercury-vapor lamp -mess -metal screw -meteorological balloon -meter -meterstick -microbalance -microfilm -microscope -military hospital -military quarters -military vehicle -mill -milldam -millinery -mine -minibike -mink -minster -Minuteman -mirror -mixer -mizzenmast -module -mold -moldboard plow -monitor -monitor -morgue -mortise joint -motion-picture camera -motion-picture film -motor -motorboat -motorcycle -motor hotel -motor vehicle -mound -mount -mouse button -movie projector -moving-coil galvanometer -mug -multiplex -multiplexer -musette pipe -mushroom anchor -musical instrument -musket -musket ball -muslin -muzzle loader -narrowbody aircraft -nautilus -navigational system -naval equipment -naval gun -naval radar -naval weaponry -navigational instrument -nebuchadnezzar -neckline -neckpiece -necktie -neckwear -needle -needlework -negligee -net -net -net -net -network -network -night bell -nightwear -noisemaker -nonsmoker -non-volatile storage -nose flute -nuclear reactor -nuclear weapon -nursery -oar -oblique bandage -oboe da caccia -oboe d'amore -obstacle -office -office furniture -oil lamp -oil paint -oil tanker -olive drab -omnidirectional antenna -onion dome -open-air market -open-end wrench -opener -openside plane -ophthalmoscope -optical device -optical disk -optical instrument -optical telescope -organ pipe -outbuilding -outerwear -outfit -outrigger canoe -outside mirror -oven -overgarment -overhand knot -overhang -overhead projector -overnighter -overshoe -oxford -package -packaging -packing box -paddle -paddle steamer -page printer -paint -pallium -pan -pan -panic button -panopticon -panopticon -pantechnicon -pantry -pants suit -panzer -paper chain -paper fastener -parabolic reflector -parapet -parasail -parka -parsonage -particle detector -partition -passenger ship -passenger train -passenger van -passive matrix display -passkey -patch -patchouli -patchwork -patina -patisserie -pavis -peavey -pedal -pedestal table -pedestrian crossing -pedicab -peg -pen -penal institution -pencil -pendulum -pendulum clock -percolator -percussion instrument -perfumery -peripheral -periwig -personal computer -petticoat -Phillips screw -Phillips screwdriver -phonograph record -photographic equipment -photographic paper -photometer -physical pendulum -piano -piccolo -pick -pick -pickle barrel -piece of cloth -pile -pillow lace -pilothouse -pin -pincer -pinstripe -pipe -pipet -pipe wrench -pistol -pivot -place of business -place of worship -planetarium -planner -plant -planter -plasterboard -plastic laminate -plastic wrap -plastron -plate -platform -platform -platform rocker -plating -pleat -plethysmograph -plexor -pliers -plug -plug -pneumatic drill -pocket -pocket-handkerchief -pocketknife -pointed arch -polyester -polygraph -pomade -pontifical -pool ball -poorhouse -porcelain -porch -portable computer -portico -post -posthole digger -pot -potential divider -potpourri -pottery -pouch -poultice -powder -powder keg -power brake -power mower -power saw -power shovel -power tool -press -press -pressure dome -pressure gauge -pressure suit -printed circuit -printer -prison camp -prod -prolonge knot -prompter -prong -propeller -propeller plane -prosthesis -protective covering -protective garment -pruning saw -pruning shears -public house -public toilet -public transport -pull -pull chain -pulley -Pullman -pullover -pulse counter -pump -pump -pump house -punch -punch press -purifier -push broom -push button -pusher -puzzle -pyrometer -pyx -QWERTY keyboard -racing boat -rack -rack -radar -radiogram -radio interferometer -radio link -radiometer -radio receiver -radiotelegraph -radiotelephone -radio transmitter -raft -rail -rail fence -railing -raincoat -rake -ramp -rampart -random-access memory -rayon -razor -reaction-propulsion engine -reactor -reading lamp -reading room -read-only memory -rearview mirror -receiver -receptacle -reception room -recess -reconnaissance plane -recorder -recording -record player -recreation room -recycling bin -reed stop -reef knot -refectory table -refinery -reflecting telescope -reflector -reformatory -refracting telescope -refrigerator car -refuge -regalia -regimentals -regulator -rein -religious residence -removable disk -repair shop -repeating firearm -reproducer -rescue equipment -reservoir -reset button -residence -resistor -resonator -respirator -restraint -retort -rheostat -rib -ribbed vault -riddle -ride -riding boot -riding mower -rifle ball -rig -rink -river boat -road -roadway -robe -rocket -rocket -rod -roller -roller -in-line skate -roller blind -roller coaster -rolling hitch -Rolodex -Roman building -roof -roof -room -roost -rope -rose water -rotary engine -rotating mechanism -rotating shaft -rotisserie -rotor -round arch -router plane -row house -royal mast -rubber bullet -rug -rushlight -sable -sable coat -sack -sackbut -sacking -saddle -safe -safety belt -safety curtain -safety fuse -safety match -sail -sailboat -sailing vessel -salver -sandglass -sash -satellite -satellite television -saucepan -savings bank -saw -sawhorse -scale -scarf -school -scientific instrument -scissors -scoop -scratcher -screen -screen -screen -screw eye -scrub plane -scuffer -sculpture -sea boat -sea chest -seam -seaplane -seat -seat -second hand -secretary -security system -seeker -selector -self-propelled vehicle -semiautomatic firearm -semiautomatic pistol -semiconductor device -serger -serpent -serving cart -serving dish -set -setscrew -setscrew -sewing needle -sextant -shackle -shade -shaft -shag rug -shaker -shaper -shaping tool -sharpener -shaving cream -shaving foam -shawl -shawm -shears -sheath -shed -sheepshank -sheet bend -shelf -shell -shell -shell -shellac -shelter -shelter -shelter -shield -ship -shipboard system -shirt -shirtfront -shock absorber -shoe -shooting brake -shop -short pants -shotgun -shoulder holster -shrine -shutter -shuttle -sidewinder -sieve -sifter -sights -signaling device -signboard -silk -simulator -single bed -single-breasted suit -single-reed instrument -sitz bath -six-pack -skate -skein -skeleton -skewer -skidder -skid lid -skiff -ski pole -skirt -ski tow -skullcap -slack suit -slat -sled -sleeper -sleeping car -sleeve -sleeve -slide projector -slipknot -slipper -sloop -slop pail -slot machine -small boat -smart bomb -smoker -smooth plane -snack bar -snap-brim hat -snare drum -sniper rifle -Sno-cat -soapbox -socle -sofa -sonograph -sorter -sound recording -soup ladle -source of illumination -soutane -spacecraft -spade -spar -spatula -spear -spear -spectacles -spectrograph -spectroscope -speedometer -spider -spike -spike -spinet -spinning machine -spiral ratchet screwdriver -spiral spring -spit -spokeshave -sponge mop -spoon -sports equipment -sports implement -sportswear -spot -spring -spring balance -springboard -sprit -square -square knot -squash racket -squawk box -squeezer -squinch -stabilizer -stabilizer -stable gear -stadium -stall -stamp mill -stand -standard cell -staple -starter -state prison -station -statue -stay -steakhouse -stealth aircraft -stealth bomber -stealth fighter -steam bath -steamboat -steamer -steam iron -steam whistle -steel mill -steelyard -steeple -steering system -step -step-up transformer -stereo -stick -stick -still -stilt -Stinger -stock -stockcar -stock car -stocking -stonework -stool -stopper knot -storage battery -storage space -storeroom -stove -stove bolt -Stradavarius -straight chair -strap -strap -stringed instrument -strip -strongbox -stronghold -strongroom -structural member -structure -stylus -submachine gun -submersible -submersible -subwoofer -suction pump -suede cloth -sunbonnet -sunhat -supermarket -superstructure -supply chamber -support -support -support column -supporting structure -supporting tower -surface lift -surface-to-air missile -surgeon's knot -surgical instrument -surgical knife -surplice -surveillance system -surveying instrument -surveyor's level -swamp buggy -sweater -swimsuit -sword -synchrotron -system -tabi -table -table -table knife -tableware -tabor -tachometer -tack -tack hammer -talaria -tambour -tambourine -tampon -tank -tank car -tannoy -tape -tape deck -tape recorder -target -tavern -tea chest -teaching aid -tea gown -teashop -teaspoon -tea-strainer -tea tray -telecommunication system -telephone -telephone line -telephone receiver -telephone system -telephone wire -telescope -television antenna -television camera -television equipment -television monitor -temple -temple -tender -tennis racket -tenor drum -tenoroon -tenpenny nail -tent -tenterhook -terminal -terminal -test rocket -tetraskelion -textile machine -textile mill -theater -theodolite -thermometer -thermostat -three-piece suit -three-way switch -thumbscrew -thumbtack -tights -tile -timber -timber hitch -timbrel -time-fuse -timepiece -timer -time-switch -tire chain -tithe barn -toecap -toga -toggle switch -toilet -toilet powder -toiletry -toilet water -token -tomograph -toner -tongs -tool -toolbox -tooth -toothbrush -top -top -topgallant -topmast -topsail -torpedo -torpedo boat -touch screen -towel -toweling -tower -toy box -track -tracked vehicle -trailer -trailer -train -trammel -transdermal patch -transformer -transistor -transmission -transmitter -transporter -trap -trapeze -travel iron -treasure chest -trellis -trench -trial balloon -triclinium -troop carrier -trough -trouser -trowel -truck -trunk -try square -tube -tuck shop -tun -tunic -turbine -Turkish towel -Turk's head -turner -turntable -turtleneck -tweed -tweeter -twenty-two -two-piece -typesetting machine -typewriter -ultraviolet lamp -undercarriage -undergarment -underpants -underwear -uneven parallel bars -uniform -university -uplift -urn -urn -utensil -vacuum flask -valve -van -van -varnish -vehicle -veranda -vertical file -vessel -vessel -vest -vibrator -vibrator -videocassette -video recording -vigil light -viol -vise -vivarium -voltaic cell -voltmeter -wagon -waist pack -walking stick -wall -wall -wall unit -ward -warehouse -warship -wash -washer -washtub -watch -watchtower -water-base paint -water butt -water cart -watercolor -water-cooled reactor -water gauge -water ski -waterwheel -weapon -weaponry -weatherglass -weathervane -web -wedge -wedge -weighbridge -weight -weir -weld -well -whaler -wheel -wheelchair -wheeled vehicle -wheelwork -whetstone -whip -whisk -whispering gallery -white goods -whorehouse -wicker basket -widebody aircraft -winch -Winchester -wind instrument -window -window -window blind -window envelope -Windsor knot -wine bucket -wine cask -wineglass -wire -wire -wire matrix printer -wiring -woman's clothing -wood -woodenware -woodscrew -woodwind -woofer -workbasket -workbench -work-clothing -worktable -workwear -wrapping -wrench -writing desk -writing implement -X-ray film -X-ray machine -yacht chair -yard -yard -yardstick -yoke -zither -zoot suit -grain -light -colorlessness -chromatic color -black -gray -dark red -orange -yellow -green -blue -purple -reddish purple -pink -light brown -reddish brown -complexion -skin -epidermal cell -columnar cell -macule -specimen -milk -embryonic cell -leukocyte -neutrophil -astrocyte -exoskeleton -medium -film -press -print media -storage medium -journalism -photojournalism -newspaper -telecommunication -telephone -call -long distance -wireless -broadcasting -television -reception -chat room -portal site -wordbook -album -concept album -magazine -movie -sign -comestible -course -dainty -dish -fare -diet -dietary supplement -liquid diet -reducing diet -vegetarianism -ration -field ration -foodstuff -starches -concentrate -meal -roughage -flour -wheat flour -nutriment -commissariat -canned food -canned meat -meal -breakfast -lunch -dinner -supper -buffet -picnic -cookout -bite -entree -side dish -casserole -chicken casserole -appetizer -cocktail -hors d'oeuvre -relish -dip -soup -madrilene -broth -broth -chowder -clam chowder -stew -goulash -fish stew -fricassee -ragout -ready-mix -powdered sugar -granulated sugar -brown sugar -sweet -confiture -candy -hard candy -patty -brittle -chewing gum -candied fruit -candied citrus peel -fudge -gumdrop -mint -kiss -lozenge -taffy -dessert -dumpling -frozen dessert -mousse -mousse -whip -pudding -pudding -tipsy cake -ice -chocolate ice cream -Neapolitan ice cream -peach ice cream -strawberry ice cream -tutti-frutti -vanilla ice cream -split -pudding -custard -pastry -turnover -puff paste -phyllo -fish cake -conserve -jam -jelly -apple jelly -marmalade -gelatin -gelatin dessert -patty -stuffing -bread -breadstick -bun -cracker -dark bread -flatbread -loaf of bread -quick bread -rye bread -toast -white bread -French bread -cornbread -johnnycake -muffin -scone -onion roll -sweet roll -onion bagel -biscuit -baking-powder biscuit -soft pretzel -sandwich -hamburger -gruel -edible fruit -vegetable -crudites -legume -greens -solanaceous vegetable -root vegetable -potato -baked potato -sweet potato -snack food -corn chip -tortilla chip -cruciferous vegetable -cabbage -kale -red cabbage -savoy cabbage -squash -summer squash -yellow squash -winter squash -turban squash -gherkin -sprout -beet -pepper -sweet pepper -hot pepper -chili -jalapeno -onion -Spanish onion -salad green -lettuce -butterhead lettuce -bean -pea -green pea -common bean -fresh bean -green bean -shell bean -lima bean -soy -celery -chicory -coffee substitute -chicory escarole -corn -hominy -cress -tomato -cherry tomato -salsify -turnip -edible nut -apple -eating apple -Delicious -McIntosh -Pippin -cooking apple -berry -currant -citrus -temple orange -mandarin -bitter orange -sweet orange -Jaffa orange -navel orange -Valencia orange -lime -almond -plum -dried fruit -raisin -passion fruit -cocoa -melon -muskmelon -winter melon -cherry -sweet cherry -heart cherry -sour cherry -grape -fox grape -muscadine -slipskin grape -vinifera grape -Tokay -cherimoya -soursop -sweetsop -ilama -pond apple -olive -pear -edible seed -walnut -feed -fodder -oil cake -timothy -grain -barley -wheat -rice -mash -bird feed -petfood -salad -tossed salad -combination salad -pasta salad -fruit salad -ingredient -flavorer -condiment -herb -spice -cinnamon -pepper -garlic -mustard -sage -savory -curry -paprika -pickle -sweet pickle -vinegar -sauce -hot sauce -dressing -mayonnaise -cheese sauce -hot-fudge sauce -white sauce -spaghetti sauce -boiled egg -hard-boiled egg -Easter egg -omelet -firm omelet -souffle -dairy product -milk -milk -powdered milk -cream -butter -clarified butter -yogurt -curd -cheese -cream cheese -bleu -cheddar -Swiss cheese -spread -pate -sweetening -sugar -syrup -batter -bread dough -chicken and rice -pasta -Tetrazzini -chili dog -fondue -fondue -hash -kabob -seafood Newburg -meatball -pilaf -sausage pizza -pepperoni pizza -cheese pizza -anchovy pizza -Sicilian pizza -porridge -fish loaf -salmon loaf -scallopine -taco -beef burrito -quesadilla -tostada -beverage -concoction -mix -filling -potion -elixir -alcohol -brew -beer -lager -Weissbier -malt -ale -stout -mead -wine -white wine -sparkling wine -Burgundy -Beaujolais -Medoc -Pinot noir -Bordeaux -claret -Chianti -Cabernet -Merlot -dessert wine -Rhine wine -Rioja -Saint Emilion -zinfandel -table wine -vermouth -fortified wine -Madeira -liquor -brandy -gin -rum -whiskey -corn whiskey -Irish -Scotch -liqueur -coffee liqueur -orange liqueur -mixed drink -cocktail -highball -Bloody Mary -daiquiri -manhattan -martini -sling -sour -caffe latte -cider -sweet cider -juice -fruit juice -grape juice -orange juice -fruit drink -mulled wine -soft drink -cola -coffee -punch -champagne cup -claret cup -rickey -tea -tea -herb tea -tisane -black tea -green tea -water -drinking water -mineral water -vitamin pill -collection -suburb -residence -littoral -grassland -pasture -resort -field -air bubble -arroyo -ascent -atoll -bank -bank -bar -barrier reef -basin -beach -burrow -canyon -cave -continental glacier -crag -crater -dale -descent -draw -dune -geological formation -glacier -glen -gorge -gulch -gully -highland -hill -hillside -hole -hollow -iceberg -ice mass -ion -knoll -landfall -landfill -lather -ledge -lowland -meteorite -mountain -mull -natural depression -natural elevation -nullah -ocean floor -outcrop -plain -point -precipice -ravine -reef -ridge -ridge -rift valley -rock -sandbank -seaside -shiner -shore -slope -soapsuds -spume -tableland -tideland -volcanic crater -wadi -spiritual leader -adventurer -anomaly -benefactor -commoner -contestant -discussant -entertainer -female -finisher -inhabitant -native -juvenile -lover -male -mediator -national -peer -recipient -sensualist -traveler -unwelcome person -unskilled person -worker -wrongdoer -Black -White -Semite -white man -Mongol -Nahuatl -Caddo -Penutian -Teton -Taracahitian -Slav -Catholic -Altaic -Bornean -Canadian -Central American -Britisher -English person -Englishwoman -Ethiopian -Parisian -Greek -Italian -Japanese -Mexican -Nigerian -North American -Pakistani -South American Indian -Filipino -Polynesian -Scandinavian -South African -South American -Turki -American -New Yorker -abbess -abstainer -academic administrator -accomplice -acquaintance -acquirer -aerialist -actor -actor -addict -adjutant -admirer -adulterer -advertiser -advocate -analyst -ancestor -announcer -announcer -appointee -appreciator -appropriator -archbishop -architect -army engineer -army officer -arrival -articulator -asserter -assistant -associate -astronaut -athlete -attendant -aunt -authoritarian -authority -aviator -back -bad person -ballet dancer -bullfighter -baron -bartender -baseball coach -base runner -basketball player -believer -betrothed -bigot -big shot -biochemist -bisexual -boatman -bond servant -botanist -Boy Scout -buddy -campaigner -captain -card player -careerist -caretaker -cavalryman -celebrity -charmer -child -child -cipher -citizen -civil rights leader -cleaner -clergyman -cleric -clerk -climber -closer -clown -coach -cobbler -collaborator -college student -collegian -commanding officer -commissioned officer -commissioned military officer -commissioner -committee member -communist -compulsive -computer scientist -computer user -contractor -convict -copycat -counselor -craftsman -creditor -critic -curate -dancer -dancer -darling -date -daughter -dawdler -deacon -deaf person -debtor -deliveryman -descender -designated hitter -detective -detractor -director -disbeliever -dispatcher -distributor -doctor -domestic partner -draftsman -drinker -drinker -drug addict -drug user -drummer -drunkard -eager beaver -earner -eavesdropper -economist -editor -egotist -elder -elected official -emissary -employee -employer -endomorph -enemy -entrant -examiner -exhibitionist -fan -fancier -farmer -farmhand -fascist -father -female aristocrat -female offspring -female child -fielder -fireman -first baseman -first sergeant -flag officer -flatterer -foe -folk dancer -follower -football player -forefather -forger -founder -free agent -friar -monk -gambler -generator -geneticist -genitor -geologist -girl -godchild -godparent -golfer -grandma -grandmaster -grandparent -granter -great grandchild -great grandparent -grouch -guard -guest -guide -gymnast -Gypsy -hack -hairdresser -hater -headmaster -hearer -hedonist -heir -herder -homeless -horseman -host -host -hypocrite -important person -incumbent -infielder -informer -in-law -insurgent -investigator -investor -journalist -judge -juror -Counsel to the Crown -kinswoman -laborer -lama -landowner -lawgiver -lawman -lawyer -liberator -lieutenant -lineman -literate -litigant -Lord -failure -lowerclassman -lumberman -maid -maker -malcontent -martinet -master of ceremonies -masturbator -medical officer -medical practitioner -medical scientist -mender -meteorologist -middle-aged man -miler -military attache -military officer -military policeman -minister -minor leaguer -misfit -mixed-blood -model -moneymaker -mother -mourner -mover -musician -Muslimah -mystic -nanny -neonate -nephew -neutral -newcomer -newcomer -newspaper editor -niece -noncommissioned officer -nurse -observer -occultist -oldster -old woman -opportunist -orator -originator -outfielder -right fielder -right-handed pitcher -painter -panelist -pardoner -parodist -party -passenger -patient -patron -payer -peddler -percussionist -personal representative -personification -pervert -petitioner -Pharaoh -phonetician -physical therapist -physicist -pimp -pisser -pitcher -planner -player -poet -politician -practitioner -prayer -preserver -president -priest -princess -principal -proctor -programmer -promiser -propagandist -prosecutor -psychic -pusher -queen -queen -ranch hand -reader -recruit -recruiter -religious leader -repairman -reporter -representative -reprobate -rescuer -reservist -restrainer -retailer -retiree -revolutionist -rich person -civil authority -runner -running back -rustic -saboteur -sailor -salesman -salesperson -scalper -schemer -scholar -schoolchild -scientist -second baseman -secretary -seeker -selfish person -seller -serf -serviceman -settler -shrew -sibling -sick person -singer -sister -skeptic -skier -sleeper -slob -smith -snoop -social climber -socialist -social scientist -sociologist -soldier -son -songster -sorcerer -sovereign -speaker -specialist -spectator -stand-in -star -stepparent -stock trader -stranger -strategist -student -subordinate -suitor -superior -surgeon -sweetheart -sympathizer -tax assessor -taxonomist -teacher -television reporter -tenant -tenant -tennis player -testator -testee -theologian -therapist -thinker -thrower -toastmaster -trader -traffic cop -trainer -traitor -traveling salesman -tyrant -upstart -upstart -utility man -vacationer -vegetarian -vice president -victim -volunteer -votary -waiter -waitress -wanderer -wanton -washer -white supremacist -wife -winner -winner -woman -workman -worshiper -wright -writer -wilding -bryophyte -liverwort -pteridophyte -fern -fern ally -spore -spermatophyte -perennial -gymnosperm -ephedra -cycad -sago palm -zamia -pine -pinon -nut pine -white pine -yellow pine -larch -fir -silver fir -cedar -spruce -hemlock -douglas fir -cedar -cypress -arborvitae -araucaria -kauri pine -celery pine -yellowwood -gymnospermous yellowwood -yew -angiosperm -dicot -flower -wildflower -inflorescence -pistil -pericarp -oilseed -custard apple -barberry -allspice -laurel -anise tree -magnolia -moonseed -buttercup -aconite -baneberry -anemone -thimbleweed -columbine -clematis -delphinium -nigella -wax myrtle -zebrawood -legume -legume -darling pea -clover -acacia -wattle -albizzia -nitta tree -dogbane -allamanda -carissa -frangipani -rauwolfia -arum -alocasia -anthurium -caladium -monstera -nephthytis -arrow arum -calla lily -duckweed -watermeal -birthwort -sandwort -mouse-ear chickweed -pink -china pink -lychnis -silene -chickweed -fig marigold -amaranth -orach -saltbush -beet -sand verbena -four o'clock -echinocactus -prickly pear -pokeweed -portulaca -flame flower -caper -spiderflower -crucifer -cress -watercress -rock cress -cabbage -head cabbage -turnip plant -mustard -wallflower -woad -stock -radish plant -pennycress -poppy -prickly poppy -composite -compass plant -everlasting -achillea -ageratum -ragweed -ammobium -burdock -artemisia -mugwort -aster -wood aster -common daisy -bur marigold -calendula -thistle -carline thistle -catananche -centaury -knapweed -chrysanthemum -golden aster -goldenbush -plume thistle -woolly thistle -coreopsis -fleabane -woolly sunflower -cotton rose -gazania -African daisy -cudweed -gumweed -goldenbush -sneezeweed -sunflower -hawkweed -marsh elder -krigia -hawkbit -blazing star -rattlesnake root -daisybush -coneflower -coneflower -cutleaved coneflower -golden thistle -white-topped aster -goldenrod -sow thistle -marigold -dandelion -crownbeard -zinnia -achene -campanula -orchid -orchis -arethusa -helleborine -coral root -lady's slipper -large yellow lady's slipper -helleborine -fringed orchis -rein orchid -spider orchid -moth orchid -butterfly orchid -ladies' tresses -vanda -vanilla -yam -primrose -pimpernel -featherfoil -loosestrife -water pimpernel -gramineous plant -grass -wheatgrass -foxtail -broom grass -oat -brome -grama -reed grass -burgrass -crabgrass -lyme grass -wild rye -plume grass -rye grass -ricegrass -meadowgrass -millet -reed -sorghum -grain sorghum -cordgrass -cereal -wheat -corn -mealie -zoysia -bamboo -cotton grass -spike rush -pandanus -cattail -grain -kernel -gourd -gourd -squash -summer squash -marrow -winter squash -turban squash -bryony -sweet melon -luffa -lobelia -mallow -hollyhock -althea -poppy mallow -seashore mallow -globe mallow -tulipwood tree -sterculia -bottle-tree -screw tree -cacao -linden -herb -protea -banksia -grevillea -macadamia -casuarina -beefwood -heath -bearberry -huckleberry -kalmia -rhododendron -cranberry -blueberry -shortia -Australian heath -epacris -wintergreen -pipsissewa -beech -chestnut -tanbark oak -southern beech -New Zealand beech -oak -live oak -white oak -red oak -scrub oak -chestnut oak -birch -alder -hornbeam -hop hornbeam -hazelnut -centaury -gentian -fringed gentian -olive tree -fringe tree -ash -red ash -jasmine -privet -lilac -liquidambar -walnut -hickory -wing nut -loosestrife -myrtle -gum tree -eucalyptus -flooded gum -mallee -stringybark -tupelo -enchanter's nightshade -willowherb -fuchsia -evening primrose -daphne -canna -banana -ginger -begonia -tuberous begonia -poon -St John's wort -rockrose -dipterocarp -candlewood -reseda -viola -violet -nettle -cannabis -mulberry -fig tree -fig -elm -hackberry -iridaceous plant -bearded iris -beardless iris -crocus -amaryllis -blood lily -narcissus -daffodil -liliaceous plant -colicroot -alliaceous plant -kniphofia -poker plant -asphodel -mariposa -globe lily -camas -dogtooth violet -fritillary -tulip -star-of-Bethlehem -grape hyacinth -scilla -false asphodel -bog asphodel -hellebore -death camas -sarsaparilla -Solomon's-seal -bellwort -agave -sansevieria -cassia -locust tree -senna -angelim -milk vetch -wild indigo -pea tree -glory pea -rosewood -blackwood -tick trefoil -coral tree -vetchling -wild pea -lupine -medic -mucuna -locoweed -pole bean -pea -edible-pod pea -quira -hoary pea -bush pea -vetch -palm -sago palm -feather palm -fan palm -palmetto -areca -calamus -oil palm -raffia palm -lady palm -eriogonum -rhubarb -water plantain -waterweed -pondweed -rose -agrimonia -flowering quince -cotoneaster -avens -apple tree -wild apple -crab apple -Iowa crab -cinquefoil -plum -wild plum -bullace -apricot -cherry -wild cherry -sweet cherry -sour cherry -almond tree -almond -bird cherry -flowering cherry -chokecherry -fruit tree -bramble bush -raspberry -mountain ash -service tree -spirea -madderwort -coffee -cinchona -bedstraw -genipa -hamelia -honeysuckle -American fly honeysuckle -teasel -scabious -geranium -cranesbill -storksbill -incense tree -mahogany -silver ash -milkwort -citrus -orange -mandarin -lemon -kumquat -prickly ash -bitterwood tree -ailanthus -nasturtium -willow -osier -sallow -poplar -black poplar -cottonwood -aspen -soapberry -soapberry vine -harpullia -pachysandra -spindle tree -maple -box elder -holly -sumac -horse chestnut -persimmon -buckthorn -styrax -carnivorous plant -pitcher plant -sedum -philadelphus -saxifrage -astilbe -alumroot -miterwort -parnassia -currant -plane tree -phlox -acanthus -catalpa -anchusa -comfrey -convolvulus -bindweed -gloxinia -streptocarpus -waterleaf -nemophila -scorpionweed -giant hyssop -bugle -wood mint -calamint -coleus -dead nettle -origanum -horehound -monarda -savory -germander -thyme -blue curls -snapdragon -kitten-tails -Indian paintbrush -foxglove -toadflax -veronica -nightshade -thorn apple -matrimony vine -cupflower -petunia -salpiglossis -spurge -croton -cassava -slipper spurge -camellia -umbellifer -angelica -astrantia -caraway -fennel -parsnip -parsley -sanicle -dogwood -valerian -bristle fern -flowering fern -climbing fern -clover fern -adder's tongue -grape fern -ergot -sclerotinia -earthball -Podaxaceae -false truffle -rhizopus -slime mold -cellular slime mold -downy mildew -pythium -Sarcosomataceae -club fungus -lichen -lecanora -fungus -basidiomycete -mushroom -mushroom -mushroom -toadstool -horse mushroom -meadow mushroom -royal agaric -false deathcap -fly agaric -death cap -blushing mushroom -destroying angel -chanterelle -floccose chanterelle -pig's ears -cinnabar chanterelle -jack-o-lantern fungus -inky cap -shaggymane -milkcap -fairy-ring mushroom -oyster mushroom -olive-tree agaric -Pholiota astragalina -Pholiota aurea -Pholiota destruens -Pholiota flammans -Pholiota flavida -nameko -Pholiota squarrosa-adiposa -Pholiota squarrosa -Pholiota squarrosoides -Stropharia ambigua -Stropharia hornemannii -Stropharia rugoso-annulata -Entoloma lividum -Entoloma aprile -Chlorophyllum molybdites -lepiota -parasol mushroom -poisonous parasol -Lepiota naucina -Lepiota rhacodes -American parasol -Lepiota rubrotincta -Lepiota clypeolaria -onion stem -blewits -sandy mushroom -Tricholoma pessundatum -Tricholoma sejunctum -man-on-a-horse -Tricholoma venenata -Tricholoma pardinum -Tricholoma vaccinum -Tricholoma aurantium -Pluteus aurantiorugosus -Pluteus magnus -deer mushroom -straw mushroom -Volvariella bombycina -Clitocybe clavipes -Clitocybe dealbata -Clitocybe inornata -Clitocybe robusta -Clitocybe irina -Clitocybe subconnexa -winter mushroom -mycelium -ascomycete -Clavicipitaceae -yeast -discomycete -morel -Verpa -false morel -lorchel -helvella -Gyromitra californica -Gyromitra sphaerospora -Gyromitra esculenta -Gyromitra infula -Gyromitra gigas -gasteromycete -common stinkhorn -Phallus ravenelii -dog stinkhorn -stinky squid -puffball -Geastrum coronatum -Astreus pteridis -Astreus hygrometricus -polypore -Boletus chrysenteron -Boletus edulis -Frost's bolete -Boletus luridus -Boletus mirabilis -Boletus pallidus -Boletus pulcherrimus -Boletus pulverulentus -Boletus roxanae -Boletus subvelutipes -Boletus variipes -Boletus zelleri -Fuscoboletinus paluster -Fuscoboletinus serotinus -Leccinum fibrillosum -Suillus albivelatus -old-man-of-the-woods -Boletellus russellii -jelly fungus -rust -smut -cornsmut -flag smut fungus -waxycap -Hygrocybe acutoconica -Hygrophorus borealis -Hygrophorus caeruleus -Hygrophorus inocybiformis -Hygrophorus kauffmanii -Hygrophorus marzuolus -Hygrophorus purpurascens -Hygrophorus russula -Hygrophorus sordidus -Hygrophorus tennesseensis -Hygrophorus turundus -Neohygrophorus angelesianus -Cortinarius armillatus -Cortinarius atkinsonianus -Cortinarius corrugatus -Cortinarius gentilis -Cortinarius mutabilis -Cortinarius semisanguineus -Cortinarius subfoetidus -Cortinarius violaceus -Gymnopilus spectabilis -Gymnopilus validipes -Gymnopilus ventricosus -mold -mildew -candida -houseplant -succulent -weed -sporophyll -sporangium -poisonous plant -vine -tree -bean tree -gymnospermous tree -conifer -angiospermous tree -nut tree -spice tree -bonsai -subshrub -bramble -liana -desert plant -marsh plant -strangler -root -receptacle -scape -peduncle -flower cluster -raceme -cyme -bulbous plant -fruit -seed -bean -nut -berry -aggregate fruit -drupe -drupelet -pome -pod -husk -buckthorn -vinifera -true pepper -peperomia -bract -palmate leaf -pinnate leaf -dentate leaf -branchlet -polypody -strap fern -staghorn fern -spleenwort -chain fern -davallia -hare's-foot fern -shield fern -wood fern -lady fern -bladder fern -holly fern -woodsia -maidenhair -brittle maidenhair -lip fern -cliff brake -horsetail -club moss -spikemoss -beech fern -shoestring fungus -Armillaria caligata -Armillaria ponderosa -Armillaria zelleri -honey mushroom -milkweed -stapelia -stephanotis -orangery -figure -plane figure -solid figure -line -convex shape -concave shape -cylinder -round shape -polygon -concave polygon -amorphous shape -closed curve -simple closed curve -cone -circle -ring -loop -ellipse -triangle -spherical polygon -angular distance -groove -bulge -bow -balance -toroid -boundary -incisure -notch -wrinkle -tree -regular polyhedron -carbon -rock -soil -high explosive -culture medium -agar -paper -paving -plaster -stucco -tear gas -vitamin -fat-soluble vitamin -water-soluble vitamin -vitamin A -B-complex vitamin -vitamin E -vitamin K diff --git a/build/darknet/x64/data/inet9k.map b/build/darknet/x64/data/inet9k.map deleted file mode 100644 index c91b3c15acc..00000000000 --- a/build/darknet/x64/data/inet9k.map +++ /dev/null @@ -1,200 +0,0 @@ -2687 -4107 -8407 -7254 -42 -6797 -127 -2268 -2442 -3704 -260 -1970 -58 -4443 -2661 -2043 -2039 -4858 -4007 -6858 -8408 -166 -2523 -3768 -4347 -6527 -2446 -5005 -3274 -3678 -4918 -709 -4072 -8428 -7223 -2251 -3802 -3848 -7271 -2677 -8267 -2849 -2518 -2738 -3746 -5105 -3430 -3503 -2249 -1841 -2032 -2358 -122 -3984 -4865 -3246 -5095 -6912 -6878 -8467 -2741 -1973 -3057 -7217 -1872 -44 -2452 -3637 -2704 -6917 -2715 -6734 -2325 -6864 -6677 -2035 -1949 -338 -2664 -5122 -1844 -784 -2223 -7188 -2719 -2670 -4830 -158 -4818 -7228 -1965 -7342 -786 -2095 -8281 -8258 -7406 -3915 -8382 -2437 -2837 -82 -6871 -1876 -7447 -8285 -5007 -2740 -3463 -5103 -3755 -4910 -6809 -3800 -118 -3396 -3092 -2709 -81 -7105 -4036 -2366 -1846 -5177 -2684 -64 -2041 -3919 -700 -3724 -1742 -39 -807 -7184 -2256 -235 -2778 -2996 -2030 -3714 -7167 -2369 -6705 -6861 -5096 -2597 -2166 -2036 -3228 -3747 -2711 -8300 -2226 -7153 -7255 -2631 -7109 -8242 -7445 -3776 -3803 -3690 -2025 -2521 -2316 -7190 -8249 -3352 -2639 -2887 -100 -4219 -3344 -5008 -7224 -3351 -2434 -2074 -2034 -8304 -5004 -6868 -5102 -2645 -4071 -2716 -2717 -7420 -3499 -3763 -5084 -2676 -2046 -5107 -5097 -3944 -4097 -7132 -3956 -7343 diff --git a/build/darknet/x64/data/labels/100_0.png b/build/darknet/x64/data/labels/100_0.png deleted file mode 100644 index 77878ecc6f6..00000000000 Binary files a/build/darknet/x64/data/labels/100_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/100_1.png b/build/darknet/x64/data/labels/100_1.png deleted file mode 100644 index 86181c0b479..00000000000 Binary files a/build/darknet/x64/data/labels/100_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/100_2.png b/build/darknet/x64/data/labels/100_2.png deleted file mode 100644 index 5d430467d64..00000000000 Binary files a/build/darknet/x64/data/labels/100_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/100_3.png b/build/darknet/x64/data/labels/100_3.png deleted file mode 100644 index 353401fdbbf..00000000000 Binary files a/build/darknet/x64/data/labels/100_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/100_4.png b/build/darknet/x64/data/labels/100_4.png deleted file mode 100644 index d22f891c21e..00000000000 Binary files a/build/darknet/x64/data/labels/100_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/100_5.png b/build/darknet/x64/data/labels/100_5.png deleted file mode 100644 index 7f65183fda6..00000000000 Binary files a/build/darknet/x64/data/labels/100_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/100_6.png b/build/darknet/x64/data/labels/100_6.png deleted file mode 100644 index 18eb1730652..00000000000 Binary files a/build/darknet/x64/data/labels/100_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/100_7.png b/build/darknet/x64/data/labels/100_7.png deleted file mode 100644 index b45964b1aa2..00000000000 Binary files a/build/darknet/x64/data/labels/100_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/101_0.png b/build/darknet/x64/data/labels/101_0.png deleted file mode 100644 index 8739bc7ce95..00000000000 Binary files a/build/darknet/x64/data/labels/101_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/101_1.png b/build/darknet/x64/data/labels/101_1.png deleted file mode 100644 index 5a39331d337..00000000000 Binary files a/build/darknet/x64/data/labels/101_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/101_2.png b/build/darknet/x64/data/labels/101_2.png deleted file mode 100644 index c2234777aeb..00000000000 Binary files a/build/darknet/x64/data/labels/101_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/101_3.png b/build/darknet/x64/data/labels/101_3.png deleted file mode 100644 index 09f50e3838e..00000000000 Binary files a/build/darknet/x64/data/labels/101_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/101_4.png b/build/darknet/x64/data/labels/101_4.png deleted file mode 100644 index 7d7960bf326..00000000000 Binary files a/build/darknet/x64/data/labels/101_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/101_5.png b/build/darknet/x64/data/labels/101_5.png deleted file mode 100644 index 08d80033269..00000000000 Binary files a/build/darknet/x64/data/labels/101_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/101_6.png b/build/darknet/x64/data/labels/101_6.png deleted file mode 100644 index 9d554db3384..00000000000 Binary files a/build/darknet/x64/data/labels/101_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/101_7.png b/build/darknet/x64/data/labels/101_7.png deleted file mode 100644 index 37855f0d8f8..00000000000 Binary files a/build/darknet/x64/data/labels/101_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/102_0.png b/build/darknet/x64/data/labels/102_0.png deleted file mode 100644 index 7b8b0fb1eb1..00000000000 Binary files a/build/darknet/x64/data/labels/102_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/102_1.png b/build/darknet/x64/data/labels/102_1.png deleted file mode 100644 index ade5aa52766..00000000000 Binary files a/build/darknet/x64/data/labels/102_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/102_2.png b/build/darknet/x64/data/labels/102_2.png deleted file mode 100644 index 2068f0be835..00000000000 Binary files a/build/darknet/x64/data/labels/102_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/102_3.png b/build/darknet/x64/data/labels/102_3.png deleted file mode 100644 index 00e494e5bf4..00000000000 Binary files a/build/darknet/x64/data/labels/102_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/102_4.png b/build/darknet/x64/data/labels/102_4.png deleted file mode 100644 index 37637d36a4f..00000000000 Binary files a/build/darknet/x64/data/labels/102_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/102_5.png b/build/darknet/x64/data/labels/102_5.png deleted file mode 100644 index a86b69bf24f..00000000000 Binary files a/build/darknet/x64/data/labels/102_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/102_6.png b/build/darknet/x64/data/labels/102_6.png deleted file mode 100644 index 7d6889efe47..00000000000 Binary files a/build/darknet/x64/data/labels/102_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/102_7.png b/build/darknet/x64/data/labels/102_7.png deleted file mode 100644 index a9a73815d31..00000000000 Binary files a/build/darknet/x64/data/labels/102_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/103_0.png b/build/darknet/x64/data/labels/103_0.png deleted file mode 100644 index 17cc959e05c..00000000000 Binary files a/build/darknet/x64/data/labels/103_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/103_1.png b/build/darknet/x64/data/labels/103_1.png deleted file mode 100644 index 175794c43d1..00000000000 Binary files a/build/darknet/x64/data/labels/103_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/103_2.png b/build/darknet/x64/data/labels/103_2.png deleted file mode 100644 index 415038d4d42..00000000000 Binary files a/build/darknet/x64/data/labels/103_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/103_3.png b/build/darknet/x64/data/labels/103_3.png deleted file mode 100644 index 1101880ff08..00000000000 Binary files a/build/darknet/x64/data/labels/103_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/103_4.png b/build/darknet/x64/data/labels/103_4.png deleted file mode 100644 index b8bf32e00fe..00000000000 Binary files a/build/darknet/x64/data/labels/103_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/103_5.png b/build/darknet/x64/data/labels/103_5.png deleted file mode 100644 index 6c81a57ed60..00000000000 Binary files a/build/darknet/x64/data/labels/103_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/103_6.png b/build/darknet/x64/data/labels/103_6.png deleted file mode 100644 index ce580c0bf9f..00000000000 Binary files a/build/darknet/x64/data/labels/103_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/103_7.png b/build/darknet/x64/data/labels/103_7.png deleted file mode 100644 index 1919f01f877..00000000000 Binary files a/build/darknet/x64/data/labels/103_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/104_0.png b/build/darknet/x64/data/labels/104_0.png deleted file mode 100644 index 4ce801bc1b8..00000000000 Binary files a/build/darknet/x64/data/labels/104_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/104_1.png b/build/darknet/x64/data/labels/104_1.png deleted file mode 100644 index cdc2ba69bb4..00000000000 Binary files a/build/darknet/x64/data/labels/104_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/104_2.png b/build/darknet/x64/data/labels/104_2.png deleted file mode 100644 index aa88c847292..00000000000 Binary files a/build/darknet/x64/data/labels/104_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/104_3.png b/build/darknet/x64/data/labels/104_3.png deleted file mode 100644 index d574267590c..00000000000 Binary files a/build/darknet/x64/data/labels/104_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/104_4.png b/build/darknet/x64/data/labels/104_4.png deleted file mode 100644 index 71f96623eb4..00000000000 Binary files a/build/darknet/x64/data/labels/104_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/104_5.png b/build/darknet/x64/data/labels/104_5.png deleted file mode 100644 index 3159b0e9d83..00000000000 Binary files a/build/darknet/x64/data/labels/104_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/104_6.png b/build/darknet/x64/data/labels/104_6.png deleted file mode 100644 index 018e0e1bf16..00000000000 Binary files a/build/darknet/x64/data/labels/104_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/104_7.png b/build/darknet/x64/data/labels/104_7.png deleted file mode 100644 index 39fbe16675c..00000000000 Binary files a/build/darknet/x64/data/labels/104_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/105_0.png b/build/darknet/x64/data/labels/105_0.png deleted file mode 100644 index 388be1ae33f..00000000000 Binary files a/build/darknet/x64/data/labels/105_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/105_1.png b/build/darknet/x64/data/labels/105_1.png deleted file mode 100644 index 284a1305b4c..00000000000 Binary files a/build/darknet/x64/data/labels/105_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/105_2.png b/build/darknet/x64/data/labels/105_2.png deleted file mode 100644 index d378969f08e..00000000000 Binary files a/build/darknet/x64/data/labels/105_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/105_3.png b/build/darknet/x64/data/labels/105_3.png deleted file mode 100644 index f9ebb66f7a5..00000000000 Binary files a/build/darknet/x64/data/labels/105_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/105_4.png b/build/darknet/x64/data/labels/105_4.png deleted file mode 100644 index afb260bdeee..00000000000 Binary files a/build/darknet/x64/data/labels/105_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/105_5.png b/build/darknet/x64/data/labels/105_5.png deleted file mode 100644 index 53274dd7cee..00000000000 Binary files a/build/darknet/x64/data/labels/105_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/105_6.png b/build/darknet/x64/data/labels/105_6.png deleted file mode 100644 index 6b952eafcbd..00000000000 Binary files a/build/darknet/x64/data/labels/105_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/105_7.png b/build/darknet/x64/data/labels/105_7.png deleted file mode 100644 index 02b1b7d7a18..00000000000 Binary files a/build/darknet/x64/data/labels/105_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/106_0.png b/build/darknet/x64/data/labels/106_0.png deleted file mode 100644 index 70752591839..00000000000 Binary files a/build/darknet/x64/data/labels/106_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/106_1.png b/build/darknet/x64/data/labels/106_1.png deleted file mode 100644 index 66e73abce8d..00000000000 Binary files a/build/darknet/x64/data/labels/106_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/106_2.png b/build/darknet/x64/data/labels/106_2.png deleted file mode 100644 index aaf88c68af6..00000000000 Binary files a/build/darknet/x64/data/labels/106_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/106_3.png b/build/darknet/x64/data/labels/106_3.png deleted file mode 100644 index bc6b981c742..00000000000 Binary files a/build/darknet/x64/data/labels/106_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/106_4.png b/build/darknet/x64/data/labels/106_4.png deleted file mode 100644 index b662b7e2918..00000000000 Binary files a/build/darknet/x64/data/labels/106_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/106_5.png b/build/darknet/x64/data/labels/106_5.png deleted file mode 100644 index 43b45616089..00000000000 Binary files a/build/darknet/x64/data/labels/106_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/106_6.png b/build/darknet/x64/data/labels/106_6.png deleted file mode 100644 index e66766432c7..00000000000 Binary files a/build/darknet/x64/data/labels/106_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/106_7.png b/build/darknet/x64/data/labels/106_7.png deleted file mode 100644 index 727f3f6b677..00000000000 Binary files a/build/darknet/x64/data/labels/106_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/107_0.png b/build/darknet/x64/data/labels/107_0.png deleted file mode 100644 index 9c8d8361f67..00000000000 Binary files a/build/darknet/x64/data/labels/107_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/107_1.png b/build/darknet/x64/data/labels/107_1.png deleted file mode 100644 index 7dc3d2bc0c6..00000000000 Binary files a/build/darknet/x64/data/labels/107_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/107_2.png b/build/darknet/x64/data/labels/107_2.png deleted file mode 100644 index d27cf783ba2..00000000000 Binary files a/build/darknet/x64/data/labels/107_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/107_3.png b/build/darknet/x64/data/labels/107_3.png deleted file mode 100644 index 04b6c22b68d..00000000000 Binary files a/build/darknet/x64/data/labels/107_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/107_4.png b/build/darknet/x64/data/labels/107_4.png deleted file mode 100644 index cbc45156a48..00000000000 Binary files a/build/darknet/x64/data/labels/107_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/107_5.png b/build/darknet/x64/data/labels/107_5.png deleted file mode 100644 index bc9730c7cff..00000000000 Binary files a/build/darknet/x64/data/labels/107_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/107_6.png b/build/darknet/x64/data/labels/107_6.png deleted file mode 100644 index ffbe415fcbd..00000000000 Binary files a/build/darknet/x64/data/labels/107_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/107_7.png b/build/darknet/x64/data/labels/107_7.png deleted file mode 100644 index 95f81a590bb..00000000000 Binary files a/build/darknet/x64/data/labels/107_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/108_0.png b/build/darknet/x64/data/labels/108_0.png deleted file mode 100644 index ce05b224f3f..00000000000 Binary files a/build/darknet/x64/data/labels/108_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/108_1.png b/build/darknet/x64/data/labels/108_1.png deleted file mode 100644 index 70d389534a1..00000000000 Binary files a/build/darknet/x64/data/labels/108_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/108_2.png b/build/darknet/x64/data/labels/108_2.png deleted file mode 100644 index 7a95038efe8..00000000000 Binary files a/build/darknet/x64/data/labels/108_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/108_3.png b/build/darknet/x64/data/labels/108_3.png deleted file mode 100644 index 81637b38cc6..00000000000 Binary files a/build/darknet/x64/data/labels/108_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/108_4.png b/build/darknet/x64/data/labels/108_4.png deleted file mode 100644 index 0ea83f24b0d..00000000000 Binary files a/build/darknet/x64/data/labels/108_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/108_5.png b/build/darknet/x64/data/labels/108_5.png deleted file mode 100644 index 98d79d89675..00000000000 Binary files a/build/darknet/x64/data/labels/108_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/108_6.png b/build/darknet/x64/data/labels/108_6.png deleted file mode 100644 index 25303aa893c..00000000000 Binary files a/build/darknet/x64/data/labels/108_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/108_7.png b/build/darknet/x64/data/labels/108_7.png deleted file mode 100644 index 6fb03a5da69..00000000000 Binary files a/build/darknet/x64/data/labels/108_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/109_0.png b/build/darknet/x64/data/labels/109_0.png deleted file mode 100644 index 8169faf8872..00000000000 Binary files a/build/darknet/x64/data/labels/109_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/109_1.png b/build/darknet/x64/data/labels/109_1.png deleted file mode 100644 index 16bc989df9e..00000000000 Binary files a/build/darknet/x64/data/labels/109_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/109_2.png b/build/darknet/x64/data/labels/109_2.png deleted file mode 100644 index cf8cf63d65b..00000000000 Binary files a/build/darknet/x64/data/labels/109_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/109_3.png b/build/darknet/x64/data/labels/109_3.png deleted file mode 100644 index 5f6757b902e..00000000000 Binary files a/build/darknet/x64/data/labels/109_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/109_4.png b/build/darknet/x64/data/labels/109_4.png deleted file mode 100644 index 5d9fdab72ee..00000000000 Binary files a/build/darknet/x64/data/labels/109_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/109_5.png b/build/darknet/x64/data/labels/109_5.png deleted file mode 100644 index be6b733ebdb..00000000000 Binary files a/build/darknet/x64/data/labels/109_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/109_6.png b/build/darknet/x64/data/labels/109_6.png deleted file mode 100644 index a02a117596a..00000000000 Binary files a/build/darknet/x64/data/labels/109_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/109_7.png b/build/darknet/x64/data/labels/109_7.png deleted file mode 100644 index 1349d93aeff..00000000000 Binary files a/build/darknet/x64/data/labels/109_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/110_0.png b/build/darknet/x64/data/labels/110_0.png deleted file mode 100644 index 49a258238ad..00000000000 Binary files a/build/darknet/x64/data/labels/110_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/110_1.png b/build/darknet/x64/data/labels/110_1.png deleted file mode 100644 index 10630ccea62..00000000000 Binary files a/build/darknet/x64/data/labels/110_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/110_2.png b/build/darknet/x64/data/labels/110_2.png deleted file mode 100644 index f9004da45b8..00000000000 Binary files a/build/darknet/x64/data/labels/110_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/110_3.png b/build/darknet/x64/data/labels/110_3.png deleted file mode 100644 index b0d6ae1bde6..00000000000 Binary files a/build/darknet/x64/data/labels/110_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/110_4.png b/build/darknet/x64/data/labels/110_4.png deleted file mode 100644 index 8f57528a363..00000000000 Binary files a/build/darknet/x64/data/labels/110_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/110_5.png b/build/darknet/x64/data/labels/110_5.png deleted file mode 100644 index b335e497b96..00000000000 Binary files a/build/darknet/x64/data/labels/110_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/110_6.png b/build/darknet/x64/data/labels/110_6.png deleted file mode 100644 index 450fbb63534..00000000000 Binary files a/build/darknet/x64/data/labels/110_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/110_7.png b/build/darknet/x64/data/labels/110_7.png deleted file mode 100644 index c7b4754ac10..00000000000 Binary files a/build/darknet/x64/data/labels/110_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/111_0.png b/build/darknet/x64/data/labels/111_0.png deleted file mode 100644 index a0e58834cb5..00000000000 Binary files a/build/darknet/x64/data/labels/111_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/111_1.png b/build/darknet/x64/data/labels/111_1.png deleted file mode 100644 index 9c17d574b8c..00000000000 Binary files a/build/darknet/x64/data/labels/111_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/111_2.png b/build/darknet/x64/data/labels/111_2.png deleted file mode 100644 index 477108699c0..00000000000 Binary files a/build/darknet/x64/data/labels/111_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/111_3.png b/build/darknet/x64/data/labels/111_3.png deleted file mode 100644 index bfba021ed0a..00000000000 Binary files a/build/darknet/x64/data/labels/111_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/111_4.png b/build/darknet/x64/data/labels/111_4.png deleted file mode 100644 index 7a4aeda25fe..00000000000 Binary files a/build/darknet/x64/data/labels/111_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/111_5.png b/build/darknet/x64/data/labels/111_5.png deleted file mode 100644 index 180a9c58957..00000000000 Binary files a/build/darknet/x64/data/labels/111_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/111_6.png b/build/darknet/x64/data/labels/111_6.png deleted file mode 100644 index e1482cd3de6..00000000000 Binary files a/build/darknet/x64/data/labels/111_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/111_7.png b/build/darknet/x64/data/labels/111_7.png deleted file mode 100644 index c9355d06e73..00000000000 Binary files a/build/darknet/x64/data/labels/111_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/112_0.png b/build/darknet/x64/data/labels/112_0.png deleted file mode 100644 index d732efebfef..00000000000 Binary files a/build/darknet/x64/data/labels/112_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/112_1.png b/build/darknet/x64/data/labels/112_1.png deleted file mode 100644 index 11243af759f..00000000000 Binary files a/build/darknet/x64/data/labels/112_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/112_2.png b/build/darknet/x64/data/labels/112_2.png deleted file mode 100644 index c3c42209da8..00000000000 Binary files a/build/darknet/x64/data/labels/112_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/112_3.png b/build/darknet/x64/data/labels/112_3.png deleted file mode 100644 index f830185e693..00000000000 Binary files a/build/darknet/x64/data/labels/112_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/112_4.png b/build/darknet/x64/data/labels/112_4.png deleted file mode 100644 index a4b184a479a..00000000000 Binary files a/build/darknet/x64/data/labels/112_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/112_5.png b/build/darknet/x64/data/labels/112_5.png deleted file mode 100644 index 02f97a20162..00000000000 Binary files a/build/darknet/x64/data/labels/112_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/112_6.png b/build/darknet/x64/data/labels/112_6.png deleted file mode 100644 index 2001b39e50b..00000000000 Binary files a/build/darknet/x64/data/labels/112_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/112_7.png b/build/darknet/x64/data/labels/112_7.png deleted file mode 100644 index 9a14a71e563..00000000000 Binary files a/build/darknet/x64/data/labels/112_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/113_0.png b/build/darknet/x64/data/labels/113_0.png deleted file mode 100644 index e36c84ead25..00000000000 Binary files a/build/darknet/x64/data/labels/113_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/113_1.png b/build/darknet/x64/data/labels/113_1.png deleted file mode 100644 index 4c81c210b49..00000000000 Binary files a/build/darknet/x64/data/labels/113_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/113_2.png b/build/darknet/x64/data/labels/113_2.png deleted file mode 100644 index b29b8d01295..00000000000 Binary files a/build/darknet/x64/data/labels/113_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/113_3.png b/build/darknet/x64/data/labels/113_3.png deleted file mode 100644 index 623358492cb..00000000000 Binary files a/build/darknet/x64/data/labels/113_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/113_4.png b/build/darknet/x64/data/labels/113_4.png deleted file mode 100644 index d1373f93c0d..00000000000 Binary files a/build/darknet/x64/data/labels/113_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/113_5.png b/build/darknet/x64/data/labels/113_5.png deleted file mode 100644 index ecfa110bf1e..00000000000 Binary files a/build/darknet/x64/data/labels/113_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/113_6.png b/build/darknet/x64/data/labels/113_6.png deleted file mode 100644 index c4e0d989ddb..00000000000 Binary files a/build/darknet/x64/data/labels/113_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/113_7.png b/build/darknet/x64/data/labels/113_7.png deleted file mode 100644 index 55ac8cfe141..00000000000 Binary files a/build/darknet/x64/data/labels/113_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/114_0.png b/build/darknet/x64/data/labels/114_0.png deleted file mode 100644 index 9d42671db0a..00000000000 Binary files a/build/darknet/x64/data/labels/114_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/114_1.png b/build/darknet/x64/data/labels/114_1.png deleted file mode 100644 index 277eed4faaa..00000000000 Binary files a/build/darknet/x64/data/labels/114_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/114_2.png b/build/darknet/x64/data/labels/114_2.png deleted file mode 100644 index 9c18af38768..00000000000 Binary files a/build/darknet/x64/data/labels/114_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/114_3.png b/build/darknet/x64/data/labels/114_3.png deleted file mode 100644 index 412f32047cd..00000000000 Binary files a/build/darknet/x64/data/labels/114_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/114_4.png b/build/darknet/x64/data/labels/114_4.png deleted file mode 100644 index 65912f08141..00000000000 Binary files a/build/darknet/x64/data/labels/114_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/114_5.png b/build/darknet/x64/data/labels/114_5.png deleted file mode 100644 index fdf7bd2f6c3..00000000000 Binary files a/build/darknet/x64/data/labels/114_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/114_6.png b/build/darknet/x64/data/labels/114_6.png deleted file mode 100644 index 8f6b639ea67..00000000000 Binary files a/build/darknet/x64/data/labels/114_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/114_7.png b/build/darknet/x64/data/labels/114_7.png deleted file mode 100644 index acf9180cf3b..00000000000 Binary files a/build/darknet/x64/data/labels/114_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/115_0.png b/build/darknet/x64/data/labels/115_0.png deleted file mode 100644 index 4767c453c05..00000000000 Binary files a/build/darknet/x64/data/labels/115_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/115_1.png b/build/darknet/x64/data/labels/115_1.png deleted file mode 100644 index 79f5d39cd69..00000000000 Binary files a/build/darknet/x64/data/labels/115_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/115_2.png b/build/darknet/x64/data/labels/115_2.png deleted file mode 100644 index 963c0684b40..00000000000 Binary files a/build/darknet/x64/data/labels/115_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/115_3.png b/build/darknet/x64/data/labels/115_3.png deleted file mode 100644 index bc0d24f56d2..00000000000 Binary files a/build/darknet/x64/data/labels/115_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/115_4.png b/build/darknet/x64/data/labels/115_4.png deleted file mode 100644 index a39b0f0c809..00000000000 Binary files a/build/darknet/x64/data/labels/115_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/115_5.png b/build/darknet/x64/data/labels/115_5.png deleted file mode 100644 index 63e00783a5d..00000000000 Binary files a/build/darknet/x64/data/labels/115_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/115_6.png b/build/darknet/x64/data/labels/115_6.png deleted file mode 100644 index 344ef849307..00000000000 Binary files a/build/darknet/x64/data/labels/115_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/115_7.png b/build/darknet/x64/data/labels/115_7.png deleted file mode 100644 index c6e743c0af5..00000000000 Binary files a/build/darknet/x64/data/labels/115_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/116_0.png b/build/darknet/x64/data/labels/116_0.png deleted file mode 100644 index bf9b263de68..00000000000 Binary files a/build/darknet/x64/data/labels/116_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/116_1.png b/build/darknet/x64/data/labels/116_1.png deleted file mode 100644 index 2fb12a9d916..00000000000 Binary files a/build/darknet/x64/data/labels/116_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/116_2.png b/build/darknet/x64/data/labels/116_2.png deleted file mode 100644 index dd044917463..00000000000 Binary files a/build/darknet/x64/data/labels/116_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/116_3.png b/build/darknet/x64/data/labels/116_3.png deleted file mode 100644 index 0314e85e75e..00000000000 Binary files a/build/darknet/x64/data/labels/116_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/116_4.png b/build/darknet/x64/data/labels/116_4.png deleted file mode 100644 index cf919a6ba13..00000000000 Binary files a/build/darknet/x64/data/labels/116_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/116_5.png b/build/darknet/x64/data/labels/116_5.png deleted file mode 100644 index c9e04ed2ab4..00000000000 Binary files a/build/darknet/x64/data/labels/116_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/116_6.png b/build/darknet/x64/data/labels/116_6.png deleted file mode 100644 index 1d0ab79a6bd..00000000000 Binary files a/build/darknet/x64/data/labels/116_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/116_7.png b/build/darknet/x64/data/labels/116_7.png deleted file mode 100644 index 1fcdaa6e38c..00000000000 Binary files a/build/darknet/x64/data/labels/116_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/117_0.png b/build/darknet/x64/data/labels/117_0.png deleted file mode 100644 index 917b4a21311..00000000000 Binary files a/build/darknet/x64/data/labels/117_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/117_1.png b/build/darknet/x64/data/labels/117_1.png deleted file mode 100644 index 59cae8a9830..00000000000 Binary files a/build/darknet/x64/data/labels/117_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/117_2.png b/build/darknet/x64/data/labels/117_2.png deleted file mode 100644 index d7c7f33c096..00000000000 Binary files a/build/darknet/x64/data/labels/117_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/117_3.png b/build/darknet/x64/data/labels/117_3.png deleted file mode 100644 index 18679c3975b..00000000000 Binary files a/build/darknet/x64/data/labels/117_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/117_4.png b/build/darknet/x64/data/labels/117_4.png deleted file mode 100644 index bceedf94d92..00000000000 Binary files a/build/darknet/x64/data/labels/117_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/117_5.png b/build/darknet/x64/data/labels/117_5.png deleted file mode 100644 index c0bddab6e85..00000000000 Binary files a/build/darknet/x64/data/labels/117_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/117_6.png b/build/darknet/x64/data/labels/117_6.png deleted file mode 100644 index 731fd1448d5..00000000000 Binary files a/build/darknet/x64/data/labels/117_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/117_7.png b/build/darknet/x64/data/labels/117_7.png deleted file mode 100644 index c04ed0b1256..00000000000 Binary files a/build/darknet/x64/data/labels/117_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/118_0.png b/build/darknet/x64/data/labels/118_0.png deleted file mode 100644 index 4b8dfc6458f..00000000000 Binary files a/build/darknet/x64/data/labels/118_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/118_1.png b/build/darknet/x64/data/labels/118_1.png deleted file mode 100644 index fa886ac2f4f..00000000000 Binary files a/build/darknet/x64/data/labels/118_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/118_2.png b/build/darknet/x64/data/labels/118_2.png deleted file mode 100644 index 958ff5e7f52..00000000000 Binary files a/build/darknet/x64/data/labels/118_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/118_3.png b/build/darknet/x64/data/labels/118_3.png deleted file mode 100644 index 241b7880073..00000000000 Binary files a/build/darknet/x64/data/labels/118_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/118_4.png b/build/darknet/x64/data/labels/118_4.png deleted file mode 100644 index 93991521924..00000000000 Binary files a/build/darknet/x64/data/labels/118_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/118_5.png b/build/darknet/x64/data/labels/118_5.png deleted file mode 100644 index 279c954365d..00000000000 Binary files a/build/darknet/x64/data/labels/118_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/118_6.png b/build/darknet/x64/data/labels/118_6.png deleted file mode 100644 index 9379cb994f2..00000000000 Binary files a/build/darknet/x64/data/labels/118_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/118_7.png b/build/darknet/x64/data/labels/118_7.png deleted file mode 100644 index b34ca8a408a..00000000000 Binary files a/build/darknet/x64/data/labels/118_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/119_0.png b/build/darknet/x64/data/labels/119_0.png deleted file mode 100644 index ae03b912f34..00000000000 Binary files a/build/darknet/x64/data/labels/119_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/119_1.png b/build/darknet/x64/data/labels/119_1.png deleted file mode 100644 index 7794fb67d7a..00000000000 Binary files a/build/darknet/x64/data/labels/119_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/119_2.png b/build/darknet/x64/data/labels/119_2.png deleted file mode 100644 index 976c49b9264..00000000000 Binary files a/build/darknet/x64/data/labels/119_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/119_3.png b/build/darknet/x64/data/labels/119_3.png deleted file mode 100644 index 2e0160edf4f..00000000000 Binary files a/build/darknet/x64/data/labels/119_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/119_4.png b/build/darknet/x64/data/labels/119_4.png deleted file mode 100644 index 054092760e4..00000000000 Binary files a/build/darknet/x64/data/labels/119_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/119_5.png b/build/darknet/x64/data/labels/119_5.png deleted file mode 100644 index 4649a59051f..00000000000 Binary files a/build/darknet/x64/data/labels/119_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/119_6.png b/build/darknet/x64/data/labels/119_6.png deleted file mode 100644 index eb5e0fbf225..00000000000 Binary files a/build/darknet/x64/data/labels/119_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/119_7.png b/build/darknet/x64/data/labels/119_7.png deleted file mode 100644 index 5615e770e7b..00000000000 Binary files a/build/darknet/x64/data/labels/119_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/120_0.png b/build/darknet/x64/data/labels/120_0.png deleted file mode 100644 index 64fd621afde..00000000000 Binary files a/build/darknet/x64/data/labels/120_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/120_1.png b/build/darknet/x64/data/labels/120_1.png deleted file mode 100644 index e13ecef89b5..00000000000 Binary files a/build/darknet/x64/data/labels/120_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/120_2.png b/build/darknet/x64/data/labels/120_2.png deleted file mode 100644 index b6ae6049aeb..00000000000 Binary files a/build/darknet/x64/data/labels/120_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/120_3.png b/build/darknet/x64/data/labels/120_3.png deleted file mode 100644 index 13a4c3c845b..00000000000 Binary files a/build/darknet/x64/data/labels/120_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/120_4.png b/build/darknet/x64/data/labels/120_4.png deleted file mode 100644 index af550a877a4..00000000000 Binary files a/build/darknet/x64/data/labels/120_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/120_5.png b/build/darknet/x64/data/labels/120_5.png deleted file mode 100644 index 38474e433fa..00000000000 Binary files a/build/darknet/x64/data/labels/120_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/120_6.png b/build/darknet/x64/data/labels/120_6.png deleted file mode 100644 index e356cded706..00000000000 Binary files a/build/darknet/x64/data/labels/120_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/120_7.png b/build/darknet/x64/data/labels/120_7.png deleted file mode 100644 index 5a585b4e690..00000000000 Binary files a/build/darknet/x64/data/labels/120_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/121_0.png b/build/darknet/x64/data/labels/121_0.png deleted file mode 100644 index 2c203810118..00000000000 Binary files a/build/darknet/x64/data/labels/121_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/121_1.png b/build/darknet/x64/data/labels/121_1.png deleted file mode 100644 index 820c17d3bbd..00000000000 Binary files a/build/darknet/x64/data/labels/121_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/121_2.png b/build/darknet/x64/data/labels/121_2.png deleted file mode 100644 index fabda00773f..00000000000 Binary files a/build/darknet/x64/data/labels/121_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/121_3.png b/build/darknet/x64/data/labels/121_3.png deleted file mode 100644 index 79ac0b1d8f6..00000000000 Binary files a/build/darknet/x64/data/labels/121_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/121_4.png b/build/darknet/x64/data/labels/121_4.png deleted file mode 100644 index 7ded72973af..00000000000 Binary files a/build/darknet/x64/data/labels/121_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/121_5.png b/build/darknet/x64/data/labels/121_5.png deleted file mode 100644 index 5d59b5aa894..00000000000 Binary files a/build/darknet/x64/data/labels/121_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/121_6.png b/build/darknet/x64/data/labels/121_6.png deleted file mode 100644 index 49a63f3cedf..00000000000 Binary files a/build/darknet/x64/data/labels/121_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/121_7.png b/build/darknet/x64/data/labels/121_7.png deleted file mode 100644 index fea7b9e2291..00000000000 Binary files a/build/darknet/x64/data/labels/121_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/122_0.png b/build/darknet/x64/data/labels/122_0.png deleted file mode 100644 index 76ed2702386..00000000000 Binary files a/build/darknet/x64/data/labels/122_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/122_1.png b/build/darknet/x64/data/labels/122_1.png deleted file mode 100644 index 57f2857c494..00000000000 Binary files a/build/darknet/x64/data/labels/122_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/122_2.png b/build/darknet/x64/data/labels/122_2.png deleted file mode 100644 index d9f27cdd620..00000000000 Binary files a/build/darknet/x64/data/labels/122_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/122_3.png b/build/darknet/x64/data/labels/122_3.png deleted file mode 100644 index c06579023e2..00000000000 Binary files a/build/darknet/x64/data/labels/122_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/122_4.png b/build/darknet/x64/data/labels/122_4.png deleted file mode 100644 index 62b891e2cac..00000000000 Binary files a/build/darknet/x64/data/labels/122_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/122_5.png b/build/darknet/x64/data/labels/122_5.png deleted file mode 100644 index 276222eb015..00000000000 Binary files a/build/darknet/x64/data/labels/122_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/122_6.png b/build/darknet/x64/data/labels/122_6.png deleted file mode 100644 index 0b2924e30b3..00000000000 Binary files a/build/darknet/x64/data/labels/122_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/122_7.png b/build/darknet/x64/data/labels/122_7.png deleted file mode 100644 index 8708778478d..00000000000 Binary files a/build/darknet/x64/data/labels/122_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/123_0.png b/build/darknet/x64/data/labels/123_0.png deleted file mode 100644 index 95f92aaa3cb..00000000000 Binary files a/build/darknet/x64/data/labels/123_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/123_1.png b/build/darknet/x64/data/labels/123_1.png deleted file mode 100644 index e0e4fdd7338..00000000000 Binary files a/build/darknet/x64/data/labels/123_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/123_2.png b/build/darknet/x64/data/labels/123_2.png deleted file mode 100644 index 6a9c0b0ea56..00000000000 Binary files a/build/darknet/x64/data/labels/123_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/123_3.png b/build/darknet/x64/data/labels/123_3.png deleted file mode 100644 index 8783377b8d0..00000000000 Binary files a/build/darknet/x64/data/labels/123_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/123_4.png b/build/darknet/x64/data/labels/123_4.png deleted file mode 100644 index c9de4f7311e..00000000000 Binary files a/build/darknet/x64/data/labels/123_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/123_5.png b/build/darknet/x64/data/labels/123_5.png deleted file mode 100644 index 8deaa3c686c..00000000000 Binary files a/build/darknet/x64/data/labels/123_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/123_6.png b/build/darknet/x64/data/labels/123_6.png deleted file mode 100644 index 47ca880b967..00000000000 Binary files a/build/darknet/x64/data/labels/123_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/123_7.png b/build/darknet/x64/data/labels/123_7.png deleted file mode 100644 index bf3a5d726c7..00000000000 Binary files a/build/darknet/x64/data/labels/123_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/124_0.png b/build/darknet/x64/data/labels/124_0.png deleted file mode 100644 index a54db7c0d58..00000000000 Binary files a/build/darknet/x64/data/labels/124_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/124_1.png b/build/darknet/x64/data/labels/124_1.png deleted file mode 100644 index c54536103c3..00000000000 Binary files a/build/darknet/x64/data/labels/124_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/124_2.png b/build/darknet/x64/data/labels/124_2.png deleted file mode 100644 index c5a6a76b786..00000000000 Binary files a/build/darknet/x64/data/labels/124_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/124_3.png b/build/darknet/x64/data/labels/124_3.png deleted file mode 100644 index 37b9e82208c..00000000000 Binary files a/build/darknet/x64/data/labels/124_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/124_4.png b/build/darknet/x64/data/labels/124_4.png deleted file mode 100644 index 0521fe205de..00000000000 Binary files a/build/darknet/x64/data/labels/124_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/124_5.png b/build/darknet/x64/data/labels/124_5.png deleted file mode 100644 index a5ad765f7b1..00000000000 Binary files a/build/darknet/x64/data/labels/124_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/124_6.png b/build/darknet/x64/data/labels/124_6.png deleted file mode 100644 index 2dbf0f13a0b..00000000000 Binary files a/build/darknet/x64/data/labels/124_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/124_7.png b/build/darknet/x64/data/labels/124_7.png deleted file mode 100644 index 0730ca0ca0b..00000000000 Binary files a/build/darknet/x64/data/labels/124_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/125_0.png b/build/darknet/x64/data/labels/125_0.png deleted file mode 100644 index 67e37b29be9..00000000000 Binary files a/build/darknet/x64/data/labels/125_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/125_1.png b/build/darknet/x64/data/labels/125_1.png deleted file mode 100644 index 4dc1ea520b4..00000000000 Binary files a/build/darknet/x64/data/labels/125_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/125_2.png b/build/darknet/x64/data/labels/125_2.png deleted file mode 100644 index 6f3babed29e..00000000000 Binary files a/build/darknet/x64/data/labels/125_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/125_3.png b/build/darknet/x64/data/labels/125_3.png deleted file mode 100644 index 4c7a26c75f7..00000000000 Binary files a/build/darknet/x64/data/labels/125_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/125_4.png b/build/darknet/x64/data/labels/125_4.png deleted file mode 100644 index 149eaa9bfef..00000000000 Binary files a/build/darknet/x64/data/labels/125_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/125_5.png b/build/darknet/x64/data/labels/125_5.png deleted file mode 100644 index 8ae40f7aaa0..00000000000 Binary files a/build/darknet/x64/data/labels/125_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/125_6.png b/build/darknet/x64/data/labels/125_6.png deleted file mode 100644 index 589304318ea..00000000000 Binary files a/build/darknet/x64/data/labels/125_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/125_7.png b/build/darknet/x64/data/labels/125_7.png deleted file mode 100644 index 47bd85b9ca6..00000000000 Binary files a/build/darknet/x64/data/labels/125_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/126_0.png b/build/darknet/x64/data/labels/126_0.png deleted file mode 100644 index f602708c6bd..00000000000 Binary files a/build/darknet/x64/data/labels/126_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/126_1.png b/build/darknet/x64/data/labels/126_1.png deleted file mode 100644 index cb8b76ea018..00000000000 Binary files a/build/darknet/x64/data/labels/126_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/126_2.png b/build/darknet/x64/data/labels/126_2.png deleted file mode 100644 index ccef7a2c400..00000000000 Binary files a/build/darknet/x64/data/labels/126_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/126_3.png b/build/darknet/x64/data/labels/126_3.png deleted file mode 100644 index 9fcf7ab92ed..00000000000 Binary files a/build/darknet/x64/data/labels/126_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/126_4.png b/build/darknet/x64/data/labels/126_4.png deleted file mode 100644 index d3f01bfe0f4..00000000000 Binary files a/build/darknet/x64/data/labels/126_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/126_5.png b/build/darknet/x64/data/labels/126_5.png deleted file mode 100644 index 00c57f143ef..00000000000 Binary files a/build/darknet/x64/data/labels/126_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/126_6.png b/build/darknet/x64/data/labels/126_6.png deleted file mode 100644 index 2c2dbb194d7..00000000000 Binary files a/build/darknet/x64/data/labels/126_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/126_7.png b/build/darknet/x64/data/labels/126_7.png deleted file mode 100644 index 55ee5a799ec..00000000000 Binary files a/build/darknet/x64/data/labels/126_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/32_0.png b/build/darknet/x64/data/labels/32_0.png deleted file mode 100644 index 22be2ded8aa..00000000000 Binary files a/build/darknet/x64/data/labels/32_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/32_1.png b/build/darknet/x64/data/labels/32_1.png deleted file mode 100644 index 21abfa47e90..00000000000 Binary files a/build/darknet/x64/data/labels/32_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/32_2.png b/build/darknet/x64/data/labels/32_2.png deleted file mode 100644 index eae41b9c3ad..00000000000 Binary files a/build/darknet/x64/data/labels/32_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/32_3.png b/build/darknet/x64/data/labels/32_3.png deleted file mode 100644 index fcc007e1e63..00000000000 Binary files a/build/darknet/x64/data/labels/32_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/32_4.png b/build/darknet/x64/data/labels/32_4.png deleted file mode 100644 index f4c498cc37f..00000000000 Binary files a/build/darknet/x64/data/labels/32_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/32_5.png b/build/darknet/x64/data/labels/32_5.png deleted file mode 100644 index 16248c945ce..00000000000 Binary files a/build/darknet/x64/data/labels/32_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/32_6.png b/build/darknet/x64/data/labels/32_6.png deleted file mode 100644 index 1e50183faa2..00000000000 Binary files a/build/darknet/x64/data/labels/32_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/32_7.png b/build/darknet/x64/data/labels/32_7.png deleted file mode 100644 index 81bd1d5edfe..00000000000 Binary files a/build/darknet/x64/data/labels/32_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/33_0.png b/build/darknet/x64/data/labels/33_0.png deleted file mode 100644 index d1a1141842b..00000000000 Binary files a/build/darknet/x64/data/labels/33_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/33_1.png b/build/darknet/x64/data/labels/33_1.png deleted file mode 100644 index a13dd33a6cf..00000000000 Binary files a/build/darknet/x64/data/labels/33_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/33_2.png b/build/darknet/x64/data/labels/33_2.png deleted file mode 100644 index 57201b2e0ad..00000000000 Binary files a/build/darknet/x64/data/labels/33_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/33_3.png b/build/darknet/x64/data/labels/33_3.png deleted file mode 100644 index 02101603652..00000000000 Binary files a/build/darknet/x64/data/labels/33_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/33_4.png b/build/darknet/x64/data/labels/33_4.png deleted file mode 100644 index fd181d177c7..00000000000 Binary files a/build/darknet/x64/data/labels/33_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/33_5.png b/build/darknet/x64/data/labels/33_5.png deleted file mode 100644 index ed4387a6361..00000000000 Binary files a/build/darknet/x64/data/labels/33_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/33_6.png b/build/darknet/x64/data/labels/33_6.png deleted file mode 100644 index 11262923be2..00000000000 Binary files a/build/darknet/x64/data/labels/33_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/33_7.png b/build/darknet/x64/data/labels/33_7.png deleted file mode 100644 index 1d67d55a7b8..00000000000 Binary files a/build/darknet/x64/data/labels/33_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/34_0.png b/build/darknet/x64/data/labels/34_0.png deleted file mode 100644 index 7b24cfa0e3f..00000000000 Binary files a/build/darknet/x64/data/labels/34_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/34_1.png b/build/darknet/x64/data/labels/34_1.png deleted file mode 100644 index 39f7edc7765..00000000000 Binary files a/build/darknet/x64/data/labels/34_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/34_2.png b/build/darknet/x64/data/labels/34_2.png deleted file mode 100644 index 00c4e87e064..00000000000 Binary files a/build/darknet/x64/data/labels/34_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/34_3.png b/build/darknet/x64/data/labels/34_3.png deleted file mode 100644 index 79d51762e8c..00000000000 Binary files a/build/darknet/x64/data/labels/34_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/34_4.png b/build/darknet/x64/data/labels/34_4.png deleted file mode 100644 index d52483080d6..00000000000 Binary files a/build/darknet/x64/data/labels/34_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/34_5.png b/build/darknet/x64/data/labels/34_5.png deleted file mode 100644 index 25a7e43f1c6..00000000000 Binary files a/build/darknet/x64/data/labels/34_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/34_6.png b/build/darknet/x64/data/labels/34_6.png deleted file mode 100644 index bf3b61354b8..00000000000 Binary files a/build/darknet/x64/data/labels/34_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/34_7.png b/build/darknet/x64/data/labels/34_7.png deleted file mode 100644 index 1148f2d7a27..00000000000 Binary files a/build/darknet/x64/data/labels/34_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/35_0.png b/build/darknet/x64/data/labels/35_0.png deleted file mode 100644 index ff572a8d0b3..00000000000 Binary files a/build/darknet/x64/data/labels/35_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/35_1.png b/build/darknet/x64/data/labels/35_1.png deleted file mode 100644 index 1bba49452fb..00000000000 Binary files a/build/darknet/x64/data/labels/35_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/35_2.png b/build/darknet/x64/data/labels/35_2.png deleted file mode 100644 index b7d708ec442..00000000000 Binary files a/build/darknet/x64/data/labels/35_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/35_3.png b/build/darknet/x64/data/labels/35_3.png deleted file mode 100644 index 302cc73f02a..00000000000 Binary files a/build/darknet/x64/data/labels/35_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/35_4.png b/build/darknet/x64/data/labels/35_4.png deleted file mode 100644 index 9e11a20b877..00000000000 Binary files a/build/darknet/x64/data/labels/35_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/35_5.png b/build/darknet/x64/data/labels/35_5.png deleted file mode 100644 index 9ab56b3ac5d..00000000000 Binary files a/build/darknet/x64/data/labels/35_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/35_6.png b/build/darknet/x64/data/labels/35_6.png deleted file mode 100644 index d75876c6bb1..00000000000 Binary files a/build/darknet/x64/data/labels/35_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/35_7.png b/build/darknet/x64/data/labels/35_7.png deleted file mode 100644 index 1bbdc9fe886..00000000000 Binary files a/build/darknet/x64/data/labels/35_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/36_0.png b/build/darknet/x64/data/labels/36_0.png deleted file mode 100644 index 929660af70b..00000000000 Binary files a/build/darknet/x64/data/labels/36_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/36_1.png b/build/darknet/x64/data/labels/36_1.png deleted file mode 100644 index 646e7705427..00000000000 Binary files a/build/darknet/x64/data/labels/36_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/36_2.png b/build/darknet/x64/data/labels/36_2.png deleted file mode 100644 index ba6603cb8a0..00000000000 Binary files a/build/darknet/x64/data/labels/36_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/36_3.png b/build/darknet/x64/data/labels/36_3.png deleted file mode 100644 index 56e5ba3f986..00000000000 Binary files a/build/darknet/x64/data/labels/36_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/36_4.png b/build/darknet/x64/data/labels/36_4.png deleted file mode 100644 index e87046c95ae..00000000000 Binary files a/build/darknet/x64/data/labels/36_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/36_5.png b/build/darknet/x64/data/labels/36_5.png deleted file mode 100644 index 5a7672d237a..00000000000 Binary files a/build/darknet/x64/data/labels/36_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/36_6.png b/build/darknet/x64/data/labels/36_6.png deleted file mode 100644 index b16b2a26d0d..00000000000 Binary files a/build/darknet/x64/data/labels/36_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/36_7.png b/build/darknet/x64/data/labels/36_7.png deleted file mode 100644 index 1f943127b69..00000000000 Binary files a/build/darknet/x64/data/labels/36_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/37_0.png b/build/darknet/x64/data/labels/37_0.png deleted file mode 100644 index 44b7f4e59a2..00000000000 Binary files a/build/darknet/x64/data/labels/37_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/37_1.png b/build/darknet/x64/data/labels/37_1.png deleted file mode 100644 index 36712dcab29..00000000000 Binary files a/build/darknet/x64/data/labels/37_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/37_2.png b/build/darknet/x64/data/labels/37_2.png deleted file mode 100644 index 759aed9c0c9..00000000000 Binary files a/build/darknet/x64/data/labels/37_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/37_3.png b/build/darknet/x64/data/labels/37_3.png deleted file mode 100644 index 03253dd3843..00000000000 Binary files a/build/darknet/x64/data/labels/37_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/37_4.png b/build/darknet/x64/data/labels/37_4.png deleted file mode 100644 index ed5e4bd3589..00000000000 Binary files a/build/darknet/x64/data/labels/37_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/37_5.png b/build/darknet/x64/data/labels/37_5.png deleted file mode 100644 index fe2059083de..00000000000 Binary files a/build/darknet/x64/data/labels/37_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/37_6.png b/build/darknet/x64/data/labels/37_6.png deleted file mode 100644 index 11f34eb12f2..00000000000 Binary files a/build/darknet/x64/data/labels/37_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/37_7.png b/build/darknet/x64/data/labels/37_7.png deleted file mode 100644 index dee9ba35f78..00000000000 Binary files a/build/darknet/x64/data/labels/37_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/38_0.png b/build/darknet/x64/data/labels/38_0.png deleted file mode 100644 index 47c51e18518..00000000000 Binary files a/build/darknet/x64/data/labels/38_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/38_1.png b/build/darknet/x64/data/labels/38_1.png deleted file mode 100644 index 3abcc8bb7f2..00000000000 Binary files a/build/darknet/x64/data/labels/38_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/38_2.png b/build/darknet/x64/data/labels/38_2.png deleted file mode 100644 index 47a85e91666..00000000000 Binary files a/build/darknet/x64/data/labels/38_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/38_3.png b/build/darknet/x64/data/labels/38_3.png deleted file mode 100644 index 1af926efae7..00000000000 Binary files a/build/darknet/x64/data/labels/38_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/38_4.png b/build/darknet/x64/data/labels/38_4.png deleted file mode 100644 index 783342a5a9c..00000000000 Binary files a/build/darknet/x64/data/labels/38_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/38_5.png b/build/darknet/x64/data/labels/38_5.png deleted file mode 100644 index 20b92228287..00000000000 Binary files a/build/darknet/x64/data/labels/38_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/38_6.png b/build/darknet/x64/data/labels/38_6.png deleted file mode 100644 index f68e4d96f38..00000000000 Binary files a/build/darknet/x64/data/labels/38_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/38_7.png b/build/darknet/x64/data/labels/38_7.png deleted file mode 100644 index c6ffc54bc04..00000000000 Binary files a/build/darknet/x64/data/labels/38_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/39_0.png b/build/darknet/x64/data/labels/39_0.png deleted file mode 100644 index 860f831b719..00000000000 Binary files a/build/darknet/x64/data/labels/39_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/39_1.png b/build/darknet/x64/data/labels/39_1.png deleted file mode 100644 index 021b23271a3..00000000000 Binary files a/build/darknet/x64/data/labels/39_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/39_2.png b/build/darknet/x64/data/labels/39_2.png deleted file mode 100644 index 7ac7b15574d..00000000000 Binary files a/build/darknet/x64/data/labels/39_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/39_3.png b/build/darknet/x64/data/labels/39_3.png deleted file mode 100644 index 82baf947e02..00000000000 Binary files a/build/darknet/x64/data/labels/39_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/39_4.png b/build/darknet/x64/data/labels/39_4.png deleted file mode 100644 index 4fb41865be3..00000000000 Binary files a/build/darknet/x64/data/labels/39_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/39_5.png b/build/darknet/x64/data/labels/39_5.png deleted file mode 100644 index 1c613c5dc55..00000000000 Binary files a/build/darknet/x64/data/labels/39_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/39_6.png b/build/darknet/x64/data/labels/39_6.png deleted file mode 100644 index e570bcd37f1..00000000000 Binary files a/build/darknet/x64/data/labels/39_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/39_7.png b/build/darknet/x64/data/labels/39_7.png deleted file mode 100644 index 5cb309f829d..00000000000 Binary files a/build/darknet/x64/data/labels/39_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/40_0.png b/build/darknet/x64/data/labels/40_0.png deleted file mode 100644 index 346c633919b..00000000000 Binary files a/build/darknet/x64/data/labels/40_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/40_1.png b/build/darknet/x64/data/labels/40_1.png deleted file mode 100644 index 7dfa7b5e066..00000000000 Binary files a/build/darknet/x64/data/labels/40_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/40_2.png b/build/darknet/x64/data/labels/40_2.png deleted file mode 100644 index a2b0e0f0fef..00000000000 Binary files a/build/darknet/x64/data/labels/40_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/40_3.png b/build/darknet/x64/data/labels/40_3.png deleted file mode 100644 index f72742572c2..00000000000 Binary files a/build/darknet/x64/data/labels/40_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/40_4.png b/build/darknet/x64/data/labels/40_4.png deleted file mode 100644 index 4c89b55e1ac..00000000000 Binary files a/build/darknet/x64/data/labels/40_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/40_5.png b/build/darknet/x64/data/labels/40_5.png deleted file mode 100644 index 35b4fcd2798..00000000000 Binary files a/build/darknet/x64/data/labels/40_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/40_6.png b/build/darknet/x64/data/labels/40_6.png deleted file mode 100644 index 215972b7e21..00000000000 Binary files a/build/darknet/x64/data/labels/40_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/40_7.png b/build/darknet/x64/data/labels/40_7.png deleted file mode 100644 index 0d8eb552eab..00000000000 Binary files a/build/darknet/x64/data/labels/40_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/41_0.png b/build/darknet/x64/data/labels/41_0.png deleted file mode 100644 index 42dd3870ba7..00000000000 Binary files a/build/darknet/x64/data/labels/41_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/41_1.png b/build/darknet/x64/data/labels/41_1.png deleted file mode 100644 index 0e1da960134..00000000000 Binary files a/build/darknet/x64/data/labels/41_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/41_2.png b/build/darknet/x64/data/labels/41_2.png deleted file mode 100644 index 31cf47dacdd..00000000000 Binary files a/build/darknet/x64/data/labels/41_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/41_3.png b/build/darknet/x64/data/labels/41_3.png deleted file mode 100644 index e5121869909..00000000000 Binary files a/build/darknet/x64/data/labels/41_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/41_4.png b/build/darknet/x64/data/labels/41_4.png deleted file mode 100644 index 150cb579338..00000000000 Binary files a/build/darknet/x64/data/labels/41_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/41_5.png b/build/darknet/x64/data/labels/41_5.png deleted file mode 100644 index 7ac1a183532..00000000000 Binary files a/build/darknet/x64/data/labels/41_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/41_6.png b/build/darknet/x64/data/labels/41_6.png deleted file mode 100644 index 4bdd2f0522f..00000000000 Binary files a/build/darknet/x64/data/labels/41_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/41_7.png b/build/darknet/x64/data/labels/41_7.png deleted file mode 100644 index 50568ba208d..00000000000 Binary files a/build/darknet/x64/data/labels/41_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/42_0.png b/build/darknet/x64/data/labels/42_0.png deleted file mode 100644 index f41cd8450a2..00000000000 Binary files a/build/darknet/x64/data/labels/42_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/42_1.png b/build/darknet/x64/data/labels/42_1.png deleted file mode 100644 index 4aee8e67eae..00000000000 Binary files a/build/darknet/x64/data/labels/42_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/42_2.png b/build/darknet/x64/data/labels/42_2.png deleted file mode 100644 index e045f1dbccf..00000000000 Binary files a/build/darknet/x64/data/labels/42_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/42_3.png b/build/darknet/x64/data/labels/42_3.png deleted file mode 100644 index edc194bad0b..00000000000 Binary files a/build/darknet/x64/data/labels/42_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/42_4.png b/build/darknet/x64/data/labels/42_4.png deleted file mode 100644 index e417c3e5b1e..00000000000 Binary files a/build/darknet/x64/data/labels/42_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/42_5.png b/build/darknet/x64/data/labels/42_5.png deleted file mode 100644 index d6593c6ac6a..00000000000 Binary files a/build/darknet/x64/data/labels/42_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/42_6.png b/build/darknet/x64/data/labels/42_6.png deleted file mode 100644 index ffcaaed31c9..00000000000 Binary files a/build/darknet/x64/data/labels/42_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/42_7.png b/build/darknet/x64/data/labels/42_7.png deleted file mode 100644 index 4895af70fdf..00000000000 Binary files a/build/darknet/x64/data/labels/42_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/43_0.png b/build/darknet/x64/data/labels/43_0.png deleted file mode 100644 index af5295e5ebb..00000000000 Binary files a/build/darknet/x64/data/labels/43_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/43_1.png b/build/darknet/x64/data/labels/43_1.png deleted file mode 100644 index 0e20f345074..00000000000 Binary files a/build/darknet/x64/data/labels/43_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/43_2.png b/build/darknet/x64/data/labels/43_2.png deleted file mode 100644 index be2fbb30f99..00000000000 Binary files a/build/darknet/x64/data/labels/43_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/43_3.png b/build/darknet/x64/data/labels/43_3.png deleted file mode 100644 index 5183eb1f3ff..00000000000 Binary files a/build/darknet/x64/data/labels/43_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/43_4.png b/build/darknet/x64/data/labels/43_4.png deleted file mode 100644 index 526b5002141..00000000000 Binary files a/build/darknet/x64/data/labels/43_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/43_5.png b/build/darknet/x64/data/labels/43_5.png deleted file mode 100644 index 03d62ff7854..00000000000 Binary files a/build/darknet/x64/data/labels/43_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/43_6.png b/build/darknet/x64/data/labels/43_6.png deleted file mode 100644 index b245a4cbe19..00000000000 Binary files a/build/darknet/x64/data/labels/43_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/43_7.png b/build/darknet/x64/data/labels/43_7.png deleted file mode 100644 index e21688a9523..00000000000 Binary files a/build/darknet/x64/data/labels/43_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/44_0.png b/build/darknet/x64/data/labels/44_0.png deleted file mode 100644 index 63e66ffa164..00000000000 Binary files a/build/darknet/x64/data/labels/44_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/44_1.png b/build/darknet/x64/data/labels/44_1.png deleted file mode 100644 index 49f2fe2cdc2..00000000000 Binary files a/build/darknet/x64/data/labels/44_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/44_2.png b/build/darknet/x64/data/labels/44_2.png deleted file mode 100644 index 32fd2ded6b9..00000000000 Binary files a/build/darknet/x64/data/labels/44_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/44_3.png b/build/darknet/x64/data/labels/44_3.png deleted file mode 100644 index bb1118fac88..00000000000 Binary files a/build/darknet/x64/data/labels/44_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/44_4.png b/build/darknet/x64/data/labels/44_4.png deleted file mode 100644 index cd80bbdc660..00000000000 Binary files a/build/darknet/x64/data/labels/44_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/44_5.png b/build/darknet/x64/data/labels/44_5.png deleted file mode 100644 index f83e11514d1..00000000000 Binary files a/build/darknet/x64/data/labels/44_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/44_6.png b/build/darknet/x64/data/labels/44_6.png deleted file mode 100644 index 1f8ad892b36..00000000000 Binary files a/build/darknet/x64/data/labels/44_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/44_7.png b/build/darknet/x64/data/labels/44_7.png deleted file mode 100644 index 8c5d6328de4..00000000000 Binary files a/build/darknet/x64/data/labels/44_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/45_0.png b/build/darknet/x64/data/labels/45_0.png deleted file mode 100644 index 701bdc8df1e..00000000000 Binary files a/build/darknet/x64/data/labels/45_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/45_1.png b/build/darknet/x64/data/labels/45_1.png deleted file mode 100644 index 976103fcf25..00000000000 Binary files a/build/darknet/x64/data/labels/45_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/45_2.png b/build/darknet/x64/data/labels/45_2.png deleted file mode 100644 index 4bc50cf480f..00000000000 Binary files a/build/darknet/x64/data/labels/45_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/45_3.png b/build/darknet/x64/data/labels/45_3.png deleted file mode 100644 index 335c2c7500d..00000000000 Binary files a/build/darknet/x64/data/labels/45_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/45_4.png b/build/darknet/x64/data/labels/45_4.png deleted file mode 100644 index 8fc2738d7b6..00000000000 Binary files a/build/darknet/x64/data/labels/45_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/45_5.png b/build/darknet/x64/data/labels/45_5.png deleted file mode 100644 index acc4c09c11c..00000000000 Binary files a/build/darknet/x64/data/labels/45_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/45_6.png b/build/darknet/x64/data/labels/45_6.png deleted file mode 100644 index 00771044ced..00000000000 Binary files a/build/darknet/x64/data/labels/45_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/45_7.png b/build/darknet/x64/data/labels/45_7.png deleted file mode 100644 index d486ccd9c19..00000000000 Binary files a/build/darknet/x64/data/labels/45_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/46_0.png b/build/darknet/x64/data/labels/46_0.png deleted file mode 100644 index 44fa798b9c3..00000000000 Binary files a/build/darknet/x64/data/labels/46_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/46_1.png b/build/darknet/x64/data/labels/46_1.png deleted file mode 100644 index 0f35bbb931f..00000000000 Binary files a/build/darknet/x64/data/labels/46_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/46_2.png b/build/darknet/x64/data/labels/46_2.png deleted file mode 100644 index e3355f5f8cc..00000000000 Binary files a/build/darknet/x64/data/labels/46_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/46_3.png b/build/darknet/x64/data/labels/46_3.png deleted file mode 100644 index 9226458b243..00000000000 Binary files a/build/darknet/x64/data/labels/46_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/46_4.png b/build/darknet/x64/data/labels/46_4.png deleted file mode 100644 index 77a841c3f7a..00000000000 Binary files a/build/darknet/x64/data/labels/46_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/46_5.png b/build/darknet/x64/data/labels/46_5.png deleted file mode 100644 index e86cbaf91cb..00000000000 Binary files a/build/darknet/x64/data/labels/46_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/46_6.png b/build/darknet/x64/data/labels/46_6.png deleted file mode 100644 index 5011dedcf22..00000000000 Binary files a/build/darknet/x64/data/labels/46_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/46_7.png b/build/darknet/x64/data/labels/46_7.png deleted file mode 100644 index 53c8871d155..00000000000 Binary files a/build/darknet/x64/data/labels/46_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/47_0.png b/build/darknet/x64/data/labels/47_0.png deleted file mode 100644 index 9b7c05009e9..00000000000 Binary files a/build/darknet/x64/data/labels/47_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/47_1.png b/build/darknet/x64/data/labels/47_1.png deleted file mode 100644 index 75ba11204a0..00000000000 Binary files a/build/darknet/x64/data/labels/47_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/47_2.png b/build/darknet/x64/data/labels/47_2.png deleted file mode 100644 index 2f07656ceb6..00000000000 Binary files a/build/darknet/x64/data/labels/47_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/47_3.png b/build/darknet/x64/data/labels/47_3.png deleted file mode 100644 index 3fd07280b42..00000000000 Binary files a/build/darknet/x64/data/labels/47_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/47_4.png b/build/darknet/x64/data/labels/47_4.png deleted file mode 100644 index 9e503ebc7cb..00000000000 Binary files a/build/darknet/x64/data/labels/47_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/47_5.png b/build/darknet/x64/data/labels/47_5.png deleted file mode 100644 index fddef157acf..00000000000 Binary files a/build/darknet/x64/data/labels/47_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/47_6.png b/build/darknet/x64/data/labels/47_6.png deleted file mode 100644 index 0117b55a012..00000000000 Binary files a/build/darknet/x64/data/labels/47_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/47_7.png b/build/darknet/x64/data/labels/47_7.png deleted file mode 100644 index fff13237cf2..00000000000 Binary files a/build/darknet/x64/data/labels/47_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/48_0.png b/build/darknet/x64/data/labels/48_0.png deleted file mode 100644 index 4775310f5d6..00000000000 Binary files a/build/darknet/x64/data/labels/48_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/48_1.png b/build/darknet/x64/data/labels/48_1.png deleted file mode 100644 index 231cd3f6987..00000000000 Binary files a/build/darknet/x64/data/labels/48_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/48_2.png b/build/darknet/x64/data/labels/48_2.png deleted file mode 100644 index b653e9cc8e7..00000000000 Binary files a/build/darknet/x64/data/labels/48_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/48_3.png b/build/darknet/x64/data/labels/48_3.png deleted file mode 100644 index d148a75f6f8..00000000000 Binary files a/build/darknet/x64/data/labels/48_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/48_4.png b/build/darknet/x64/data/labels/48_4.png deleted file mode 100644 index 9e1b0d5d9f9..00000000000 Binary files a/build/darknet/x64/data/labels/48_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/48_5.png b/build/darknet/x64/data/labels/48_5.png deleted file mode 100644 index f554133a4fa..00000000000 Binary files a/build/darknet/x64/data/labels/48_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/48_6.png b/build/darknet/x64/data/labels/48_6.png deleted file mode 100644 index d84192850a5..00000000000 Binary files a/build/darknet/x64/data/labels/48_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/48_7.png b/build/darknet/x64/data/labels/48_7.png deleted file mode 100644 index 145ed36c21c..00000000000 Binary files a/build/darknet/x64/data/labels/48_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/49_0.png b/build/darknet/x64/data/labels/49_0.png deleted file mode 100644 index f979710b233..00000000000 Binary files a/build/darknet/x64/data/labels/49_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/49_1.png b/build/darknet/x64/data/labels/49_1.png deleted file mode 100644 index 0cb26d4bc5b..00000000000 Binary files a/build/darknet/x64/data/labels/49_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/49_2.png b/build/darknet/x64/data/labels/49_2.png deleted file mode 100644 index 0684a715a41..00000000000 Binary files a/build/darknet/x64/data/labels/49_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/49_3.png b/build/darknet/x64/data/labels/49_3.png deleted file mode 100644 index ce89eb78b84..00000000000 Binary files a/build/darknet/x64/data/labels/49_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/49_4.png b/build/darknet/x64/data/labels/49_4.png deleted file mode 100644 index a8f6b14b82b..00000000000 Binary files a/build/darknet/x64/data/labels/49_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/49_5.png b/build/darknet/x64/data/labels/49_5.png deleted file mode 100644 index c7e80337079..00000000000 Binary files a/build/darknet/x64/data/labels/49_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/49_6.png b/build/darknet/x64/data/labels/49_6.png deleted file mode 100644 index a091704d7c0..00000000000 Binary files a/build/darknet/x64/data/labels/49_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/49_7.png b/build/darknet/x64/data/labels/49_7.png deleted file mode 100644 index f385b75a3f1..00000000000 Binary files a/build/darknet/x64/data/labels/49_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/50_0.png b/build/darknet/x64/data/labels/50_0.png deleted file mode 100644 index 6af169d1607..00000000000 Binary files a/build/darknet/x64/data/labels/50_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/50_1.png b/build/darknet/x64/data/labels/50_1.png deleted file mode 100644 index a3c03009eee..00000000000 Binary files a/build/darknet/x64/data/labels/50_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/50_2.png b/build/darknet/x64/data/labels/50_2.png deleted file mode 100644 index 1ea6ff655f1..00000000000 Binary files a/build/darknet/x64/data/labels/50_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/50_3.png b/build/darknet/x64/data/labels/50_3.png deleted file mode 100644 index 3c0bf1d8209..00000000000 Binary files a/build/darknet/x64/data/labels/50_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/50_4.png b/build/darknet/x64/data/labels/50_4.png deleted file mode 100644 index eb6a9d9147b..00000000000 Binary files a/build/darknet/x64/data/labels/50_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/50_5.png b/build/darknet/x64/data/labels/50_5.png deleted file mode 100644 index acdb5ed7de5..00000000000 Binary files a/build/darknet/x64/data/labels/50_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/50_6.png b/build/darknet/x64/data/labels/50_6.png deleted file mode 100644 index c74ac5a2ad0..00000000000 Binary files a/build/darknet/x64/data/labels/50_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/50_7.png b/build/darknet/x64/data/labels/50_7.png deleted file mode 100644 index 6d3f530afb8..00000000000 Binary files a/build/darknet/x64/data/labels/50_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/51_0.png b/build/darknet/x64/data/labels/51_0.png deleted file mode 100644 index 48bad97f35e..00000000000 Binary files a/build/darknet/x64/data/labels/51_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/51_1.png b/build/darknet/x64/data/labels/51_1.png deleted file mode 100644 index 7703a747915..00000000000 Binary files a/build/darknet/x64/data/labels/51_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/51_2.png b/build/darknet/x64/data/labels/51_2.png deleted file mode 100644 index 804e21b3893..00000000000 Binary files a/build/darknet/x64/data/labels/51_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/51_3.png b/build/darknet/x64/data/labels/51_3.png deleted file mode 100644 index 5b0875788f6..00000000000 Binary files a/build/darknet/x64/data/labels/51_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/51_4.png b/build/darknet/x64/data/labels/51_4.png deleted file mode 100644 index 30727fb107e..00000000000 Binary files a/build/darknet/x64/data/labels/51_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/51_5.png b/build/darknet/x64/data/labels/51_5.png deleted file mode 100644 index de240eae0f7..00000000000 Binary files a/build/darknet/x64/data/labels/51_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/51_6.png b/build/darknet/x64/data/labels/51_6.png deleted file mode 100644 index c252b01e51e..00000000000 Binary files a/build/darknet/x64/data/labels/51_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/51_7.png b/build/darknet/x64/data/labels/51_7.png deleted file mode 100644 index 806f99b2cc6..00000000000 Binary files a/build/darknet/x64/data/labels/51_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/52_0.png b/build/darknet/x64/data/labels/52_0.png deleted file mode 100644 index a554b313701..00000000000 Binary files a/build/darknet/x64/data/labels/52_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/52_1.png b/build/darknet/x64/data/labels/52_1.png deleted file mode 100644 index 936c84fd5f4..00000000000 Binary files a/build/darknet/x64/data/labels/52_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/52_2.png b/build/darknet/x64/data/labels/52_2.png deleted file mode 100644 index 57e3f05c2f8..00000000000 Binary files a/build/darknet/x64/data/labels/52_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/52_3.png b/build/darknet/x64/data/labels/52_3.png deleted file mode 100644 index 6a8f99ef1f2..00000000000 Binary files a/build/darknet/x64/data/labels/52_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/52_4.png b/build/darknet/x64/data/labels/52_4.png deleted file mode 100644 index 91f97f0b6ea..00000000000 Binary files a/build/darknet/x64/data/labels/52_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/52_5.png b/build/darknet/x64/data/labels/52_5.png deleted file mode 100644 index a78504fe184..00000000000 Binary files a/build/darknet/x64/data/labels/52_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/52_6.png b/build/darknet/x64/data/labels/52_6.png deleted file mode 100644 index f52bd2c50f4..00000000000 Binary files a/build/darknet/x64/data/labels/52_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/52_7.png b/build/darknet/x64/data/labels/52_7.png deleted file mode 100644 index 621b8e0459a..00000000000 Binary files a/build/darknet/x64/data/labels/52_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/53_0.png b/build/darknet/x64/data/labels/53_0.png deleted file mode 100644 index a750615cca9..00000000000 Binary files a/build/darknet/x64/data/labels/53_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/53_1.png b/build/darknet/x64/data/labels/53_1.png deleted file mode 100644 index 1c4e097dd16..00000000000 Binary files a/build/darknet/x64/data/labels/53_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/53_2.png b/build/darknet/x64/data/labels/53_2.png deleted file mode 100644 index f5238560ef8..00000000000 Binary files a/build/darknet/x64/data/labels/53_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/53_3.png b/build/darknet/x64/data/labels/53_3.png deleted file mode 100644 index 85505f80bb2..00000000000 Binary files a/build/darknet/x64/data/labels/53_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/53_4.png b/build/darknet/x64/data/labels/53_4.png deleted file mode 100644 index 14e8da11a9d..00000000000 Binary files a/build/darknet/x64/data/labels/53_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/53_5.png b/build/darknet/x64/data/labels/53_5.png deleted file mode 100644 index 79781fc6b75..00000000000 Binary files a/build/darknet/x64/data/labels/53_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/53_6.png b/build/darknet/x64/data/labels/53_6.png deleted file mode 100644 index a6e18638d31..00000000000 Binary files a/build/darknet/x64/data/labels/53_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/53_7.png b/build/darknet/x64/data/labels/53_7.png deleted file mode 100644 index bff5eb68b59..00000000000 Binary files a/build/darknet/x64/data/labels/53_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/54_0.png b/build/darknet/x64/data/labels/54_0.png deleted file mode 100644 index 98ce42391ce..00000000000 Binary files a/build/darknet/x64/data/labels/54_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/54_1.png b/build/darknet/x64/data/labels/54_1.png deleted file mode 100644 index 643ef36b085..00000000000 Binary files a/build/darknet/x64/data/labels/54_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/54_2.png b/build/darknet/x64/data/labels/54_2.png deleted file mode 100644 index 2c3894eacf4..00000000000 Binary files a/build/darknet/x64/data/labels/54_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/54_3.png b/build/darknet/x64/data/labels/54_3.png deleted file mode 100644 index 6190fdc29d5..00000000000 Binary files a/build/darknet/x64/data/labels/54_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/54_4.png b/build/darknet/x64/data/labels/54_4.png deleted file mode 100644 index 92afc20c0fd..00000000000 Binary files a/build/darknet/x64/data/labels/54_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/54_5.png b/build/darknet/x64/data/labels/54_5.png deleted file mode 100644 index feab352eb46..00000000000 Binary files a/build/darknet/x64/data/labels/54_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/54_6.png b/build/darknet/x64/data/labels/54_6.png deleted file mode 100644 index c46698f3198..00000000000 Binary files a/build/darknet/x64/data/labels/54_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/54_7.png b/build/darknet/x64/data/labels/54_7.png deleted file mode 100644 index 175dbeb445f..00000000000 Binary files a/build/darknet/x64/data/labels/54_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/55_0.png b/build/darknet/x64/data/labels/55_0.png deleted file mode 100644 index 644838b017f..00000000000 Binary files a/build/darknet/x64/data/labels/55_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/55_1.png b/build/darknet/x64/data/labels/55_1.png deleted file mode 100644 index b84e0eb5a7f..00000000000 Binary files a/build/darknet/x64/data/labels/55_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/55_2.png b/build/darknet/x64/data/labels/55_2.png deleted file mode 100644 index 3896d08affc..00000000000 Binary files a/build/darknet/x64/data/labels/55_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/55_3.png b/build/darknet/x64/data/labels/55_3.png deleted file mode 100644 index 21e92663cf7..00000000000 Binary files a/build/darknet/x64/data/labels/55_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/55_4.png b/build/darknet/x64/data/labels/55_4.png deleted file mode 100644 index d6aed1b8dba..00000000000 Binary files a/build/darknet/x64/data/labels/55_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/55_5.png b/build/darknet/x64/data/labels/55_5.png deleted file mode 100644 index 1f60c36efbc..00000000000 Binary files a/build/darknet/x64/data/labels/55_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/55_6.png b/build/darknet/x64/data/labels/55_6.png deleted file mode 100644 index 2a7f1fbca4d..00000000000 Binary files a/build/darknet/x64/data/labels/55_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/55_7.png b/build/darknet/x64/data/labels/55_7.png deleted file mode 100644 index 80c527b29cd..00000000000 Binary files a/build/darknet/x64/data/labels/55_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/56_0.png b/build/darknet/x64/data/labels/56_0.png deleted file mode 100644 index 8a1e0c76eae..00000000000 Binary files a/build/darknet/x64/data/labels/56_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/56_1.png b/build/darknet/x64/data/labels/56_1.png deleted file mode 100644 index a0a81a07ada..00000000000 Binary files a/build/darknet/x64/data/labels/56_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/56_2.png b/build/darknet/x64/data/labels/56_2.png deleted file mode 100644 index 367f20ed92d..00000000000 Binary files a/build/darknet/x64/data/labels/56_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/56_3.png b/build/darknet/x64/data/labels/56_3.png deleted file mode 100644 index cf56f8f95e2..00000000000 Binary files a/build/darknet/x64/data/labels/56_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/56_4.png b/build/darknet/x64/data/labels/56_4.png deleted file mode 100644 index e57cce75ae9..00000000000 Binary files a/build/darknet/x64/data/labels/56_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/56_5.png b/build/darknet/x64/data/labels/56_5.png deleted file mode 100644 index c206547d264..00000000000 Binary files a/build/darknet/x64/data/labels/56_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/56_6.png b/build/darknet/x64/data/labels/56_6.png deleted file mode 100644 index 040692aff9d..00000000000 Binary files a/build/darknet/x64/data/labels/56_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/56_7.png b/build/darknet/x64/data/labels/56_7.png deleted file mode 100644 index 4c27c106807..00000000000 Binary files a/build/darknet/x64/data/labels/56_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/57_0.png b/build/darknet/x64/data/labels/57_0.png deleted file mode 100644 index e20a46f8fb9..00000000000 Binary files a/build/darknet/x64/data/labels/57_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/57_1.png b/build/darknet/x64/data/labels/57_1.png deleted file mode 100644 index 17cd2621314..00000000000 Binary files a/build/darknet/x64/data/labels/57_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/57_2.png b/build/darknet/x64/data/labels/57_2.png deleted file mode 100644 index 98fad29bb6d..00000000000 Binary files a/build/darknet/x64/data/labels/57_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/57_3.png b/build/darknet/x64/data/labels/57_3.png deleted file mode 100644 index ba80aa01938..00000000000 Binary files a/build/darknet/x64/data/labels/57_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/57_4.png b/build/darknet/x64/data/labels/57_4.png deleted file mode 100644 index e9822435bf0..00000000000 Binary files a/build/darknet/x64/data/labels/57_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/57_5.png b/build/darknet/x64/data/labels/57_5.png deleted file mode 100644 index e947ff8937d..00000000000 Binary files a/build/darknet/x64/data/labels/57_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/57_6.png b/build/darknet/x64/data/labels/57_6.png deleted file mode 100644 index c4ae076f85c..00000000000 Binary files a/build/darknet/x64/data/labels/57_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/57_7.png b/build/darknet/x64/data/labels/57_7.png deleted file mode 100644 index bd4ca16163b..00000000000 Binary files a/build/darknet/x64/data/labels/57_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/58_0.png b/build/darknet/x64/data/labels/58_0.png deleted file mode 100644 index d9e35f7cc10..00000000000 Binary files a/build/darknet/x64/data/labels/58_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/58_1.png b/build/darknet/x64/data/labels/58_1.png deleted file mode 100644 index 0dd6dd09ce2..00000000000 Binary files a/build/darknet/x64/data/labels/58_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/58_2.png b/build/darknet/x64/data/labels/58_2.png deleted file mode 100644 index b9f1319496c..00000000000 Binary files a/build/darknet/x64/data/labels/58_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/58_3.png b/build/darknet/x64/data/labels/58_3.png deleted file mode 100644 index 0604337732c..00000000000 Binary files a/build/darknet/x64/data/labels/58_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/58_4.png b/build/darknet/x64/data/labels/58_4.png deleted file mode 100644 index 7283e030bb5..00000000000 Binary files a/build/darknet/x64/data/labels/58_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/58_5.png b/build/darknet/x64/data/labels/58_5.png deleted file mode 100644 index 2df3db930b0..00000000000 Binary files a/build/darknet/x64/data/labels/58_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/58_6.png b/build/darknet/x64/data/labels/58_6.png deleted file mode 100644 index e12090929a3..00000000000 Binary files a/build/darknet/x64/data/labels/58_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/58_7.png b/build/darknet/x64/data/labels/58_7.png deleted file mode 100644 index e85fc0a575f..00000000000 Binary files a/build/darknet/x64/data/labels/58_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/59_0.png b/build/darknet/x64/data/labels/59_0.png deleted file mode 100644 index 09b212055bd..00000000000 Binary files a/build/darknet/x64/data/labels/59_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/59_1.png b/build/darknet/x64/data/labels/59_1.png deleted file mode 100644 index 4b918148499..00000000000 Binary files a/build/darknet/x64/data/labels/59_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/59_2.png b/build/darknet/x64/data/labels/59_2.png deleted file mode 100644 index cc302c2042f..00000000000 Binary files a/build/darknet/x64/data/labels/59_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/59_3.png b/build/darknet/x64/data/labels/59_3.png deleted file mode 100644 index 6921796cb8c..00000000000 Binary files a/build/darknet/x64/data/labels/59_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/59_4.png b/build/darknet/x64/data/labels/59_4.png deleted file mode 100644 index 4b77147b942..00000000000 Binary files a/build/darknet/x64/data/labels/59_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/59_5.png b/build/darknet/x64/data/labels/59_5.png deleted file mode 100644 index 4325e62c387..00000000000 Binary files a/build/darknet/x64/data/labels/59_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/59_6.png b/build/darknet/x64/data/labels/59_6.png deleted file mode 100644 index 135da331863..00000000000 Binary files a/build/darknet/x64/data/labels/59_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/59_7.png b/build/darknet/x64/data/labels/59_7.png deleted file mode 100644 index 353ae33402a..00000000000 Binary files a/build/darknet/x64/data/labels/59_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/60_0.png b/build/darknet/x64/data/labels/60_0.png deleted file mode 100644 index 210e77df4bc..00000000000 Binary files a/build/darknet/x64/data/labels/60_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/60_1.png b/build/darknet/x64/data/labels/60_1.png deleted file mode 100644 index 507c736d26b..00000000000 Binary files a/build/darknet/x64/data/labels/60_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/60_2.png b/build/darknet/x64/data/labels/60_2.png deleted file mode 100644 index 42273228772..00000000000 Binary files a/build/darknet/x64/data/labels/60_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/60_3.png b/build/darknet/x64/data/labels/60_3.png deleted file mode 100644 index ac4d0263c4f..00000000000 Binary files a/build/darknet/x64/data/labels/60_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/60_4.png b/build/darknet/x64/data/labels/60_4.png deleted file mode 100644 index 5cf89ed3845..00000000000 Binary files a/build/darknet/x64/data/labels/60_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/60_5.png b/build/darknet/x64/data/labels/60_5.png deleted file mode 100644 index 5ceb7fe16ba..00000000000 Binary files a/build/darknet/x64/data/labels/60_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/60_6.png b/build/darknet/x64/data/labels/60_6.png deleted file mode 100644 index 45121a7e183..00000000000 Binary files a/build/darknet/x64/data/labels/60_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/60_7.png b/build/darknet/x64/data/labels/60_7.png deleted file mode 100644 index 33eb9e30f50..00000000000 Binary files a/build/darknet/x64/data/labels/60_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/61_0.png b/build/darknet/x64/data/labels/61_0.png deleted file mode 100644 index 72bc6bfab2e..00000000000 Binary files a/build/darknet/x64/data/labels/61_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/61_1.png b/build/darknet/x64/data/labels/61_1.png deleted file mode 100644 index 50def57079c..00000000000 Binary files a/build/darknet/x64/data/labels/61_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/61_2.png b/build/darknet/x64/data/labels/61_2.png deleted file mode 100644 index a0e9a670e8b..00000000000 Binary files a/build/darknet/x64/data/labels/61_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/61_3.png b/build/darknet/x64/data/labels/61_3.png deleted file mode 100644 index 0b7d1492318..00000000000 Binary files a/build/darknet/x64/data/labels/61_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/61_4.png b/build/darknet/x64/data/labels/61_4.png deleted file mode 100644 index c0b71d85a36..00000000000 Binary files a/build/darknet/x64/data/labels/61_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/61_5.png b/build/darknet/x64/data/labels/61_5.png deleted file mode 100644 index cf39e63db48..00000000000 Binary files a/build/darknet/x64/data/labels/61_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/61_6.png b/build/darknet/x64/data/labels/61_6.png deleted file mode 100644 index 95282d4a2b4..00000000000 Binary files a/build/darknet/x64/data/labels/61_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/61_7.png b/build/darknet/x64/data/labels/61_7.png deleted file mode 100644 index 6da5c024f75..00000000000 Binary files a/build/darknet/x64/data/labels/61_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/62_0.png b/build/darknet/x64/data/labels/62_0.png deleted file mode 100644 index bb121097753..00000000000 Binary files a/build/darknet/x64/data/labels/62_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/62_1.png b/build/darknet/x64/data/labels/62_1.png deleted file mode 100644 index 5b82445c091..00000000000 Binary files a/build/darknet/x64/data/labels/62_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/62_2.png b/build/darknet/x64/data/labels/62_2.png deleted file mode 100644 index d4ca5a6df50..00000000000 Binary files a/build/darknet/x64/data/labels/62_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/62_3.png b/build/darknet/x64/data/labels/62_3.png deleted file mode 100644 index 24ddea86a9c..00000000000 Binary files a/build/darknet/x64/data/labels/62_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/62_4.png b/build/darknet/x64/data/labels/62_4.png deleted file mode 100644 index 34130a26b3b..00000000000 Binary files a/build/darknet/x64/data/labels/62_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/62_5.png b/build/darknet/x64/data/labels/62_5.png deleted file mode 100644 index 823d9969c94..00000000000 Binary files a/build/darknet/x64/data/labels/62_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/62_6.png b/build/darknet/x64/data/labels/62_6.png deleted file mode 100644 index 63dd85d3004..00000000000 Binary files a/build/darknet/x64/data/labels/62_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/62_7.png b/build/darknet/x64/data/labels/62_7.png deleted file mode 100644 index 7c6158f2314..00000000000 Binary files a/build/darknet/x64/data/labels/62_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/63_0.png b/build/darknet/x64/data/labels/63_0.png deleted file mode 100644 index 2d9571ea333..00000000000 Binary files a/build/darknet/x64/data/labels/63_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/63_1.png b/build/darknet/x64/data/labels/63_1.png deleted file mode 100644 index 5376e0706f3..00000000000 Binary files a/build/darknet/x64/data/labels/63_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/63_2.png b/build/darknet/x64/data/labels/63_2.png deleted file mode 100644 index 746ffa03270..00000000000 Binary files a/build/darknet/x64/data/labels/63_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/63_3.png b/build/darknet/x64/data/labels/63_3.png deleted file mode 100644 index 58bb35ac19a..00000000000 Binary files a/build/darknet/x64/data/labels/63_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/63_4.png b/build/darknet/x64/data/labels/63_4.png deleted file mode 100644 index ff1dc1a3070..00000000000 Binary files a/build/darknet/x64/data/labels/63_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/63_5.png b/build/darknet/x64/data/labels/63_5.png deleted file mode 100644 index 13e34ce4386..00000000000 Binary files a/build/darknet/x64/data/labels/63_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/63_6.png b/build/darknet/x64/data/labels/63_6.png deleted file mode 100644 index 9407c83341e..00000000000 Binary files a/build/darknet/x64/data/labels/63_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/63_7.png b/build/darknet/x64/data/labels/63_7.png deleted file mode 100644 index e9c3edf3a57..00000000000 Binary files a/build/darknet/x64/data/labels/63_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/64_0.png b/build/darknet/x64/data/labels/64_0.png deleted file mode 100644 index 0a3a101366e..00000000000 Binary files a/build/darknet/x64/data/labels/64_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/64_1.png b/build/darknet/x64/data/labels/64_1.png deleted file mode 100644 index 63139606b05..00000000000 Binary files a/build/darknet/x64/data/labels/64_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/64_2.png b/build/darknet/x64/data/labels/64_2.png deleted file mode 100644 index c49565c7b63..00000000000 Binary files a/build/darknet/x64/data/labels/64_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/64_3.png b/build/darknet/x64/data/labels/64_3.png deleted file mode 100644 index c697f9bd886..00000000000 Binary files a/build/darknet/x64/data/labels/64_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/64_4.png b/build/darknet/x64/data/labels/64_4.png deleted file mode 100644 index de194c73fe8..00000000000 Binary files a/build/darknet/x64/data/labels/64_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/64_5.png b/build/darknet/x64/data/labels/64_5.png deleted file mode 100644 index 99050043375..00000000000 Binary files a/build/darknet/x64/data/labels/64_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/64_6.png b/build/darknet/x64/data/labels/64_6.png deleted file mode 100644 index 7b915693594..00000000000 Binary files a/build/darknet/x64/data/labels/64_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/64_7.png b/build/darknet/x64/data/labels/64_7.png deleted file mode 100644 index b9ebcee20d3..00000000000 Binary files a/build/darknet/x64/data/labels/64_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/65_0.png b/build/darknet/x64/data/labels/65_0.png deleted file mode 100644 index c3880661090..00000000000 Binary files a/build/darknet/x64/data/labels/65_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/65_1.png b/build/darknet/x64/data/labels/65_1.png deleted file mode 100644 index 9f7d7f7e31d..00000000000 Binary files a/build/darknet/x64/data/labels/65_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/65_2.png b/build/darknet/x64/data/labels/65_2.png deleted file mode 100644 index 6f766948172..00000000000 Binary files a/build/darknet/x64/data/labels/65_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/65_3.png b/build/darknet/x64/data/labels/65_3.png deleted file mode 100644 index 35931288ece..00000000000 Binary files a/build/darknet/x64/data/labels/65_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/65_4.png b/build/darknet/x64/data/labels/65_4.png deleted file mode 100644 index 23f4814bc61..00000000000 Binary files a/build/darknet/x64/data/labels/65_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/65_5.png b/build/darknet/x64/data/labels/65_5.png deleted file mode 100644 index 8eae6d7e162..00000000000 Binary files a/build/darknet/x64/data/labels/65_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/65_6.png b/build/darknet/x64/data/labels/65_6.png deleted file mode 100644 index 02fec761b22..00000000000 Binary files a/build/darknet/x64/data/labels/65_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/65_7.png b/build/darknet/x64/data/labels/65_7.png deleted file mode 100644 index c80822e12cd..00000000000 Binary files a/build/darknet/x64/data/labels/65_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/66_0.png b/build/darknet/x64/data/labels/66_0.png deleted file mode 100644 index 278a401d69d..00000000000 Binary files a/build/darknet/x64/data/labels/66_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/66_1.png b/build/darknet/x64/data/labels/66_1.png deleted file mode 100644 index 47c3735ffac..00000000000 Binary files a/build/darknet/x64/data/labels/66_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/66_2.png b/build/darknet/x64/data/labels/66_2.png deleted file mode 100644 index dfcf8c4c7c0..00000000000 Binary files a/build/darknet/x64/data/labels/66_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/66_3.png b/build/darknet/x64/data/labels/66_3.png deleted file mode 100644 index d8d69a74d6a..00000000000 Binary files a/build/darknet/x64/data/labels/66_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/66_4.png b/build/darknet/x64/data/labels/66_4.png deleted file mode 100644 index 842976aec92..00000000000 Binary files a/build/darknet/x64/data/labels/66_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/66_5.png b/build/darknet/x64/data/labels/66_5.png deleted file mode 100644 index 991caf87d60..00000000000 Binary files a/build/darknet/x64/data/labels/66_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/66_6.png b/build/darknet/x64/data/labels/66_6.png deleted file mode 100644 index 32c52841ba4..00000000000 Binary files a/build/darknet/x64/data/labels/66_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/66_7.png b/build/darknet/x64/data/labels/66_7.png deleted file mode 100644 index 14e8609e987..00000000000 Binary files a/build/darknet/x64/data/labels/66_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/67_0.png b/build/darknet/x64/data/labels/67_0.png deleted file mode 100644 index 7f2786a9eef..00000000000 Binary files a/build/darknet/x64/data/labels/67_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/67_1.png b/build/darknet/x64/data/labels/67_1.png deleted file mode 100644 index 798b421c1d8..00000000000 Binary files a/build/darknet/x64/data/labels/67_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/67_2.png b/build/darknet/x64/data/labels/67_2.png deleted file mode 100644 index 802aaab4f37..00000000000 Binary files a/build/darknet/x64/data/labels/67_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/67_3.png b/build/darknet/x64/data/labels/67_3.png deleted file mode 100644 index 9d975ca11d6..00000000000 Binary files a/build/darknet/x64/data/labels/67_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/67_4.png b/build/darknet/x64/data/labels/67_4.png deleted file mode 100644 index 94ee5775922..00000000000 Binary files a/build/darknet/x64/data/labels/67_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/67_5.png b/build/darknet/x64/data/labels/67_5.png deleted file mode 100644 index 021a877f360..00000000000 Binary files a/build/darknet/x64/data/labels/67_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/67_6.png b/build/darknet/x64/data/labels/67_6.png deleted file mode 100644 index c35873234f8..00000000000 Binary files a/build/darknet/x64/data/labels/67_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/67_7.png b/build/darknet/x64/data/labels/67_7.png deleted file mode 100644 index 46acdf29555..00000000000 Binary files a/build/darknet/x64/data/labels/67_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/68_0.png b/build/darknet/x64/data/labels/68_0.png deleted file mode 100644 index 9e86a2fcf31..00000000000 Binary files a/build/darknet/x64/data/labels/68_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/68_1.png b/build/darknet/x64/data/labels/68_1.png deleted file mode 100644 index d7d3ac3ffdd..00000000000 Binary files a/build/darknet/x64/data/labels/68_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/68_2.png b/build/darknet/x64/data/labels/68_2.png deleted file mode 100644 index 3a48f050508..00000000000 Binary files a/build/darknet/x64/data/labels/68_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/68_3.png b/build/darknet/x64/data/labels/68_3.png deleted file mode 100644 index 808603a7564..00000000000 Binary files a/build/darknet/x64/data/labels/68_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/68_4.png b/build/darknet/x64/data/labels/68_4.png deleted file mode 100644 index d4f9bd4c6d6..00000000000 Binary files a/build/darknet/x64/data/labels/68_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/68_5.png b/build/darknet/x64/data/labels/68_5.png deleted file mode 100644 index 25d8a96221c..00000000000 Binary files a/build/darknet/x64/data/labels/68_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/68_6.png b/build/darknet/x64/data/labels/68_6.png deleted file mode 100644 index 0059c7f0c03..00000000000 Binary files a/build/darknet/x64/data/labels/68_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/68_7.png b/build/darknet/x64/data/labels/68_7.png deleted file mode 100644 index c2aa9228c01..00000000000 Binary files a/build/darknet/x64/data/labels/68_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/69_0.png b/build/darknet/x64/data/labels/69_0.png deleted file mode 100644 index 51140e0a5b3..00000000000 Binary files a/build/darknet/x64/data/labels/69_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/69_1.png b/build/darknet/x64/data/labels/69_1.png deleted file mode 100644 index bcf7311edf5..00000000000 Binary files a/build/darknet/x64/data/labels/69_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/69_2.png b/build/darknet/x64/data/labels/69_2.png deleted file mode 100644 index 582b289c070..00000000000 Binary files a/build/darknet/x64/data/labels/69_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/69_3.png b/build/darknet/x64/data/labels/69_3.png deleted file mode 100644 index e3311233468..00000000000 Binary files a/build/darknet/x64/data/labels/69_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/69_4.png b/build/darknet/x64/data/labels/69_4.png deleted file mode 100644 index a310f84cdd8..00000000000 Binary files a/build/darknet/x64/data/labels/69_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/69_5.png b/build/darknet/x64/data/labels/69_5.png deleted file mode 100644 index ad69668791f..00000000000 Binary files a/build/darknet/x64/data/labels/69_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/69_6.png b/build/darknet/x64/data/labels/69_6.png deleted file mode 100644 index a7b8f454fa8..00000000000 Binary files a/build/darknet/x64/data/labels/69_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/69_7.png b/build/darknet/x64/data/labels/69_7.png deleted file mode 100644 index 7f3200cbe6a..00000000000 Binary files a/build/darknet/x64/data/labels/69_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/70_0.png b/build/darknet/x64/data/labels/70_0.png deleted file mode 100644 index e0fb76c8f02..00000000000 Binary files a/build/darknet/x64/data/labels/70_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/70_1.png b/build/darknet/x64/data/labels/70_1.png deleted file mode 100644 index 40c8217cf2c..00000000000 Binary files a/build/darknet/x64/data/labels/70_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/70_2.png b/build/darknet/x64/data/labels/70_2.png deleted file mode 100644 index 63c811b1308..00000000000 Binary files a/build/darknet/x64/data/labels/70_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/70_3.png b/build/darknet/x64/data/labels/70_3.png deleted file mode 100644 index 7c93cf7ea42..00000000000 Binary files a/build/darknet/x64/data/labels/70_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/70_4.png b/build/darknet/x64/data/labels/70_4.png deleted file mode 100644 index 6033fb191ae..00000000000 Binary files a/build/darknet/x64/data/labels/70_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/70_5.png b/build/darknet/x64/data/labels/70_5.png deleted file mode 100644 index bfcf02895d4..00000000000 Binary files a/build/darknet/x64/data/labels/70_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/70_6.png b/build/darknet/x64/data/labels/70_6.png deleted file mode 100644 index 5fe9cdb2171..00000000000 Binary files a/build/darknet/x64/data/labels/70_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/70_7.png b/build/darknet/x64/data/labels/70_7.png deleted file mode 100644 index 027af86de31..00000000000 Binary files a/build/darknet/x64/data/labels/70_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/71_0.png b/build/darknet/x64/data/labels/71_0.png deleted file mode 100644 index 679b5e92632..00000000000 Binary files a/build/darknet/x64/data/labels/71_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/71_1.png b/build/darknet/x64/data/labels/71_1.png deleted file mode 100644 index 6f5271b06eb..00000000000 Binary files a/build/darknet/x64/data/labels/71_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/71_2.png b/build/darknet/x64/data/labels/71_2.png deleted file mode 100644 index 93dc749dc7d..00000000000 Binary files a/build/darknet/x64/data/labels/71_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/71_3.png b/build/darknet/x64/data/labels/71_3.png deleted file mode 100644 index 03a4bc6b982..00000000000 Binary files a/build/darknet/x64/data/labels/71_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/71_4.png b/build/darknet/x64/data/labels/71_4.png deleted file mode 100644 index 3976418cb66..00000000000 Binary files a/build/darknet/x64/data/labels/71_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/71_5.png b/build/darknet/x64/data/labels/71_5.png deleted file mode 100644 index b0c4295838a..00000000000 Binary files a/build/darknet/x64/data/labels/71_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/71_6.png b/build/darknet/x64/data/labels/71_6.png deleted file mode 100644 index bb8710d245b..00000000000 Binary files a/build/darknet/x64/data/labels/71_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/71_7.png b/build/darknet/x64/data/labels/71_7.png deleted file mode 100644 index 68148a94a2e..00000000000 Binary files a/build/darknet/x64/data/labels/71_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/72_0.png b/build/darknet/x64/data/labels/72_0.png deleted file mode 100644 index a2edd04ab07..00000000000 Binary files a/build/darknet/x64/data/labels/72_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/72_1.png b/build/darknet/x64/data/labels/72_1.png deleted file mode 100644 index f1e8bcd4a1f..00000000000 Binary files a/build/darknet/x64/data/labels/72_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/72_2.png b/build/darknet/x64/data/labels/72_2.png deleted file mode 100644 index a9516f1a041..00000000000 Binary files a/build/darknet/x64/data/labels/72_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/72_3.png b/build/darknet/x64/data/labels/72_3.png deleted file mode 100644 index 5b944907538..00000000000 Binary files a/build/darknet/x64/data/labels/72_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/72_4.png b/build/darknet/x64/data/labels/72_4.png deleted file mode 100644 index 83f7dbf0d24..00000000000 Binary files a/build/darknet/x64/data/labels/72_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/72_5.png b/build/darknet/x64/data/labels/72_5.png deleted file mode 100644 index 5a40ad331bb..00000000000 Binary files a/build/darknet/x64/data/labels/72_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/72_6.png b/build/darknet/x64/data/labels/72_6.png deleted file mode 100644 index b8898373a1d..00000000000 Binary files a/build/darknet/x64/data/labels/72_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/72_7.png b/build/darknet/x64/data/labels/72_7.png deleted file mode 100644 index 4ec34df5789..00000000000 Binary files a/build/darknet/x64/data/labels/72_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/73_0.png b/build/darknet/x64/data/labels/73_0.png deleted file mode 100644 index e5544322ac7..00000000000 Binary files a/build/darknet/x64/data/labels/73_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/73_1.png b/build/darknet/x64/data/labels/73_1.png deleted file mode 100644 index 08d1924e147..00000000000 Binary files a/build/darknet/x64/data/labels/73_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/73_2.png b/build/darknet/x64/data/labels/73_2.png deleted file mode 100644 index 3c8708569e7..00000000000 Binary files a/build/darknet/x64/data/labels/73_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/73_3.png b/build/darknet/x64/data/labels/73_3.png deleted file mode 100644 index 11d0f760d2b..00000000000 Binary files a/build/darknet/x64/data/labels/73_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/73_4.png b/build/darknet/x64/data/labels/73_4.png deleted file mode 100644 index ebacf1f3096..00000000000 Binary files a/build/darknet/x64/data/labels/73_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/73_5.png b/build/darknet/x64/data/labels/73_5.png deleted file mode 100644 index d58377d50ce..00000000000 Binary files a/build/darknet/x64/data/labels/73_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/73_6.png b/build/darknet/x64/data/labels/73_6.png deleted file mode 100644 index 293b96b2189..00000000000 Binary files a/build/darknet/x64/data/labels/73_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/73_7.png b/build/darknet/x64/data/labels/73_7.png deleted file mode 100644 index 80f409d9659..00000000000 Binary files a/build/darknet/x64/data/labels/73_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/74_0.png b/build/darknet/x64/data/labels/74_0.png deleted file mode 100644 index cc1d9f36e68..00000000000 Binary files a/build/darknet/x64/data/labels/74_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/74_1.png b/build/darknet/x64/data/labels/74_1.png deleted file mode 100644 index 91713328ab1..00000000000 Binary files a/build/darknet/x64/data/labels/74_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/74_2.png b/build/darknet/x64/data/labels/74_2.png deleted file mode 100644 index c08cea88996..00000000000 Binary files a/build/darknet/x64/data/labels/74_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/74_3.png b/build/darknet/x64/data/labels/74_3.png deleted file mode 100644 index ce8e8c84a8f..00000000000 Binary files a/build/darknet/x64/data/labels/74_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/74_4.png b/build/darknet/x64/data/labels/74_4.png deleted file mode 100644 index b112fa68397..00000000000 Binary files a/build/darknet/x64/data/labels/74_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/74_5.png b/build/darknet/x64/data/labels/74_5.png deleted file mode 100644 index c9a7bbb9ea1..00000000000 Binary files a/build/darknet/x64/data/labels/74_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/74_6.png b/build/darknet/x64/data/labels/74_6.png deleted file mode 100644 index 8f72aace501..00000000000 Binary files a/build/darknet/x64/data/labels/74_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/74_7.png b/build/darknet/x64/data/labels/74_7.png deleted file mode 100644 index f85a9f96434..00000000000 Binary files a/build/darknet/x64/data/labels/74_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/75_0.png b/build/darknet/x64/data/labels/75_0.png deleted file mode 100644 index b1f3ac4c36c..00000000000 Binary files a/build/darknet/x64/data/labels/75_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/75_1.png b/build/darknet/x64/data/labels/75_1.png deleted file mode 100644 index 9f061096153..00000000000 Binary files a/build/darknet/x64/data/labels/75_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/75_2.png b/build/darknet/x64/data/labels/75_2.png deleted file mode 100644 index 9224666c637..00000000000 Binary files a/build/darknet/x64/data/labels/75_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/75_3.png b/build/darknet/x64/data/labels/75_3.png deleted file mode 100644 index eb7648977e0..00000000000 Binary files a/build/darknet/x64/data/labels/75_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/75_4.png b/build/darknet/x64/data/labels/75_4.png deleted file mode 100644 index 7dfee155540..00000000000 Binary files a/build/darknet/x64/data/labels/75_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/75_5.png b/build/darknet/x64/data/labels/75_5.png deleted file mode 100644 index 8b081f65e9e..00000000000 Binary files a/build/darknet/x64/data/labels/75_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/75_6.png b/build/darknet/x64/data/labels/75_6.png deleted file mode 100644 index 95631cf9ae3..00000000000 Binary files a/build/darknet/x64/data/labels/75_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/75_7.png b/build/darknet/x64/data/labels/75_7.png deleted file mode 100644 index db915eab9c7..00000000000 Binary files a/build/darknet/x64/data/labels/75_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/76_0.png b/build/darknet/x64/data/labels/76_0.png deleted file mode 100644 index 5ceef1d55c7..00000000000 Binary files a/build/darknet/x64/data/labels/76_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/76_1.png b/build/darknet/x64/data/labels/76_1.png deleted file mode 100644 index 53868311810..00000000000 Binary files a/build/darknet/x64/data/labels/76_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/76_2.png b/build/darknet/x64/data/labels/76_2.png deleted file mode 100644 index 6c8393ab566..00000000000 Binary files a/build/darknet/x64/data/labels/76_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/76_3.png b/build/darknet/x64/data/labels/76_3.png deleted file mode 100644 index fbe5712272c..00000000000 Binary files a/build/darknet/x64/data/labels/76_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/76_4.png b/build/darknet/x64/data/labels/76_4.png deleted file mode 100644 index e47a6ebf6ac..00000000000 Binary files a/build/darknet/x64/data/labels/76_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/76_5.png b/build/darknet/x64/data/labels/76_5.png deleted file mode 100644 index f349490d10e..00000000000 Binary files a/build/darknet/x64/data/labels/76_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/76_6.png b/build/darknet/x64/data/labels/76_6.png deleted file mode 100644 index e661143134f..00000000000 Binary files a/build/darknet/x64/data/labels/76_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/76_7.png b/build/darknet/x64/data/labels/76_7.png deleted file mode 100644 index 64d0834041f..00000000000 Binary files a/build/darknet/x64/data/labels/76_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/77_0.png b/build/darknet/x64/data/labels/77_0.png deleted file mode 100644 index 05aab7db67c..00000000000 Binary files a/build/darknet/x64/data/labels/77_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/77_1.png b/build/darknet/x64/data/labels/77_1.png deleted file mode 100644 index 64cb6085a63..00000000000 Binary files a/build/darknet/x64/data/labels/77_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/77_2.png b/build/darknet/x64/data/labels/77_2.png deleted file mode 100644 index 2da938c7ced..00000000000 Binary files a/build/darknet/x64/data/labels/77_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/77_3.png b/build/darknet/x64/data/labels/77_3.png deleted file mode 100644 index 14179d90cc7..00000000000 Binary files a/build/darknet/x64/data/labels/77_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/77_4.png b/build/darknet/x64/data/labels/77_4.png deleted file mode 100644 index 894b4707162..00000000000 Binary files a/build/darknet/x64/data/labels/77_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/77_5.png b/build/darknet/x64/data/labels/77_5.png deleted file mode 100644 index a55e5b63bef..00000000000 Binary files a/build/darknet/x64/data/labels/77_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/77_6.png b/build/darknet/x64/data/labels/77_6.png deleted file mode 100644 index 4f0e7147a48..00000000000 Binary files a/build/darknet/x64/data/labels/77_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/77_7.png b/build/darknet/x64/data/labels/77_7.png deleted file mode 100644 index 804e8c26cf6..00000000000 Binary files a/build/darknet/x64/data/labels/77_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/78_0.png b/build/darknet/x64/data/labels/78_0.png deleted file mode 100644 index e1fede7b48a..00000000000 Binary files a/build/darknet/x64/data/labels/78_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/78_1.png b/build/darknet/x64/data/labels/78_1.png deleted file mode 100644 index 23b2a744232..00000000000 Binary files a/build/darknet/x64/data/labels/78_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/78_2.png b/build/darknet/x64/data/labels/78_2.png deleted file mode 100644 index 5471820fecd..00000000000 Binary files a/build/darknet/x64/data/labels/78_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/78_3.png b/build/darknet/x64/data/labels/78_3.png deleted file mode 100644 index bc9659a68c2..00000000000 Binary files a/build/darknet/x64/data/labels/78_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/78_4.png b/build/darknet/x64/data/labels/78_4.png deleted file mode 100644 index 54b95f95c89..00000000000 Binary files a/build/darknet/x64/data/labels/78_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/78_5.png b/build/darknet/x64/data/labels/78_5.png deleted file mode 100644 index 2c67a5134de..00000000000 Binary files a/build/darknet/x64/data/labels/78_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/78_6.png b/build/darknet/x64/data/labels/78_6.png deleted file mode 100644 index 44326f55ecd..00000000000 Binary files a/build/darknet/x64/data/labels/78_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/78_7.png b/build/darknet/x64/data/labels/78_7.png deleted file mode 100644 index 4d5d8dc480b..00000000000 Binary files a/build/darknet/x64/data/labels/78_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/79_0.png b/build/darknet/x64/data/labels/79_0.png deleted file mode 100644 index f3f4c1e5dab..00000000000 Binary files a/build/darknet/x64/data/labels/79_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/79_1.png b/build/darknet/x64/data/labels/79_1.png deleted file mode 100644 index 23d960e7f7d..00000000000 Binary files a/build/darknet/x64/data/labels/79_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/79_2.png b/build/darknet/x64/data/labels/79_2.png deleted file mode 100644 index ce5c52bef64..00000000000 Binary files a/build/darknet/x64/data/labels/79_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/79_3.png b/build/darknet/x64/data/labels/79_3.png deleted file mode 100644 index b80a4f2769e..00000000000 Binary files a/build/darknet/x64/data/labels/79_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/79_4.png b/build/darknet/x64/data/labels/79_4.png deleted file mode 100644 index 7fa16f88301..00000000000 Binary files a/build/darknet/x64/data/labels/79_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/79_5.png b/build/darknet/x64/data/labels/79_5.png deleted file mode 100644 index c67c5bbee63..00000000000 Binary files a/build/darknet/x64/data/labels/79_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/79_6.png b/build/darknet/x64/data/labels/79_6.png deleted file mode 100644 index e89ecd29a17..00000000000 Binary files a/build/darknet/x64/data/labels/79_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/79_7.png b/build/darknet/x64/data/labels/79_7.png deleted file mode 100644 index d964ae44658..00000000000 Binary files a/build/darknet/x64/data/labels/79_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/80_0.png b/build/darknet/x64/data/labels/80_0.png deleted file mode 100644 index 61403c9ccb5..00000000000 Binary files a/build/darknet/x64/data/labels/80_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/80_1.png b/build/darknet/x64/data/labels/80_1.png deleted file mode 100644 index 992338d2afa..00000000000 Binary files a/build/darknet/x64/data/labels/80_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/80_2.png b/build/darknet/x64/data/labels/80_2.png deleted file mode 100644 index cfbd431189f..00000000000 Binary files a/build/darknet/x64/data/labels/80_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/80_3.png b/build/darknet/x64/data/labels/80_3.png deleted file mode 100644 index 5de947232ce..00000000000 Binary files a/build/darknet/x64/data/labels/80_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/80_4.png b/build/darknet/x64/data/labels/80_4.png deleted file mode 100644 index 0fecaf1c068..00000000000 Binary files a/build/darknet/x64/data/labels/80_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/80_5.png b/build/darknet/x64/data/labels/80_5.png deleted file mode 100644 index cbf65bda036..00000000000 Binary files a/build/darknet/x64/data/labels/80_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/80_6.png b/build/darknet/x64/data/labels/80_6.png deleted file mode 100644 index ff54a387efc..00000000000 Binary files a/build/darknet/x64/data/labels/80_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/80_7.png b/build/darknet/x64/data/labels/80_7.png deleted file mode 100644 index 3d6f415b4b1..00000000000 Binary files a/build/darknet/x64/data/labels/80_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/81_0.png b/build/darknet/x64/data/labels/81_0.png deleted file mode 100644 index 5a2025f8ae6..00000000000 Binary files a/build/darknet/x64/data/labels/81_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/81_1.png b/build/darknet/x64/data/labels/81_1.png deleted file mode 100644 index 511aec02c41..00000000000 Binary files a/build/darknet/x64/data/labels/81_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/81_2.png b/build/darknet/x64/data/labels/81_2.png deleted file mode 100644 index 8e2f7e96d12..00000000000 Binary files a/build/darknet/x64/data/labels/81_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/81_3.png b/build/darknet/x64/data/labels/81_3.png deleted file mode 100644 index 52edfd4ff5e..00000000000 Binary files a/build/darknet/x64/data/labels/81_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/81_4.png b/build/darknet/x64/data/labels/81_4.png deleted file mode 100644 index e60c7a9158e..00000000000 Binary files a/build/darknet/x64/data/labels/81_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/81_5.png b/build/darknet/x64/data/labels/81_5.png deleted file mode 100644 index d58df4f353c..00000000000 Binary files a/build/darknet/x64/data/labels/81_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/81_6.png b/build/darknet/x64/data/labels/81_6.png deleted file mode 100644 index d31ba09d3be..00000000000 Binary files a/build/darknet/x64/data/labels/81_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/81_7.png b/build/darknet/x64/data/labels/81_7.png deleted file mode 100644 index 077057652a9..00000000000 Binary files a/build/darknet/x64/data/labels/81_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/82_0.png b/build/darknet/x64/data/labels/82_0.png deleted file mode 100644 index 1bc3a983835..00000000000 Binary files a/build/darknet/x64/data/labels/82_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/82_1.png b/build/darknet/x64/data/labels/82_1.png deleted file mode 100644 index e5931dc947e..00000000000 Binary files a/build/darknet/x64/data/labels/82_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/82_2.png b/build/darknet/x64/data/labels/82_2.png deleted file mode 100644 index a5f8bb7bdb4..00000000000 Binary files a/build/darknet/x64/data/labels/82_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/82_3.png b/build/darknet/x64/data/labels/82_3.png deleted file mode 100644 index 8b138a968c0..00000000000 Binary files a/build/darknet/x64/data/labels/82_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/82_4.png b/build/darknet/x64/data/labels/82_4.png deleted file mode 100644 index 8a570606330..00000000000 Binary files a/build/darknet/x64/data/labels/82_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/82_5.png b/build/darknet/x64/data/labels/82_5.png deleted file mode 100644 index f4dc04e1883..00000000000 Binary files a/build/darknet/x64/data/labels/82_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/82_6.png b/build/darknet/x64/data/labels/82_6.png deleted file mode 100644 index 2c7073a2d65..00000000000 Binary files a/build/darknet/x64/data/labels/82_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/82_7.png b/build/darknet/x64/data/labels/82_7.png deleted file mode 100644 index f4d966dda8c..00000000000 Binary files a/build/darknet/x64/data/labels/82_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/83_0.png b/build/darknet/x64/data/labels/83_0.png deleted file mode 100644 index c0487824ac8..00000000000 Binary files a/build/darknet/x64/data/labels/83_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/83_1.png b/build/darknet/x64/data/labels/83_1.png deleted file mode 100644 index 3515f98d5b4..00000000000 Binary files a/build/darknet/x64/data/labels/83_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/83_2.png b/build/darknet/x64/data/labels/83_2.png deleted file mode 100644 index 4a13b8d78b1..00000000000 Binary files a/build/darknet/x64/data/labels/83_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/83_3.png b/build/darknet/x64/data/labels/83_3.png deleted file mode 100644 index 0944ac8b01c..00000000000 Binary files a/build/darknet/x64/data/labels/83_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/83_4.png b/build/darknet/x64/data/labels/83_4.png deleted file mode 100644 index 8b9f82f089d..00000000000 Binary files a/build/darknet/x64/data/labels/83_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/83_5.png b/build/darknet/x64/data/labels/83_5.png deleted file mode 100644 index 67f70adc9e7..00000000000 Binary files a/build/darknet/x64/data/labels/83_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/83_6.png b/build/darknet/x64/data/labels/83_6.png deleted file mode 100644 index 0d3c0e1309d..00000000000 Binary files a/build/darknet/x64/data/labels/83_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/83_7.png b/build/darknet/x64/data/labels/83_7.png deleted file mode 100644 index 0daab32deca..00000000000 Binary files a/build/darknet/x64/data/labels/83_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/84_0.png b/build/darknet/x64/data/labels/84_0.png deleted file mode 100644 index ffc3eb4a226..00000000000 Binary files a/build/darknet/x64/data/labels/84_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/84_1.png b/build/darknet/x64/data/labels/84_1.png deleted file mode 100644 index 956e5eb88d7..00000000000 Binary files a/build/darknet/x64/data/labels/84_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/84_2.png b/build/darknet/x64/data/labels/84_2.png deleted file mode 100644 index a1e94fafd7d..00000000000 Binary files a/build/darknet/x64/data/labels/84_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/84_3.png b/build/darknet/x64/data/labels/84_3.png deleted file mode 100644 index 2369b0c20e5..00000000000 Binary files a/build/darknet/x64/data/labels/84_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/84_4.png b/build/darknet/x64/data/labels/84_4.png deleted file mode 100644 index 6d82ee80e96..00000000000 Binary files a/build/darknet/x64/data/labels/84_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/84_5.png b/build/darknet/x64/data/labels/84_5.png deleted file mode 100644 index 6e95b706f41..00000000000 Binary files a/build/darknet/x64/data/labels/84_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/84_6.png b/build/darknet/x64/data/labels/84_6.png deleted file mode 100644 index 9d62561dba3..00000000000 Binary files a/build/darknet/x64/data/labels/84_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/84_7.png b/build/darknet/x64/data/labels/84_7.png deleted file mode 100644 index accde304ea4..00000000000 Binary files a/build/darknet/x64/data/labels/84_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/85_0.png b/build/darknet/x64/data/labels/85_0.png deleted file mode 100644 index 48e9906f27b..00000000000 Binary files a/build/darknet/x64/data/labels/85_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/85_1.png b/build/darknet/x64/data/labels/85_1.png deleted file mode 100644 index 30807206795..00000000000 Binary files a/build/darknet/x64/data/labels/85_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/85_2.png b/build/darknet/x64/data/labels/85_2.png deleted file mode 100644 index e5a9369e898..00000000000 Binary files a/build/darknet/x64/data/labels/85_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/85_3.png b/build/darknet/x64/data/labels/85_3.png deleted file mode 100644 index 5816c66be68..00000000000 Binary files a/build/darknet/x64/data/labels/85_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/85_4.png b/build/darknet/x64/data/labels/85_4.png deleted file mode 100644 index 7d18ec0b057..00000000000 Binary files a/build/darknet/x64/data/labels/85_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/85_5.png b/build/darknet/x64/data/labels/85_5.png deleted file mode 100644 index f7b5550d013..00000000000 Binary files a/build/darknet/x64/data/labels/85_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/85_6.png b/build/darknet/x64/data/labels/85_6.png deleted file mode 100644 index 7106103ac94..00000000000 Binary files a/build/darknet/x64/data/labels/85_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/85_7.png b/build/darknet/x64/data/labels/85_7.png deleted file mode 100644 index 7179daf8985..00000000000 Binary files a/build/darknet/x64/data/labels/85_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/86_0.png b/build/darknet/x64/data/labels/86_0.png deleted file mode 100644 index 2412ea17e84..00000000000 Binary files a/build/darknet/x64/data/labels/86_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/86_1.png b/build/darknet/x64/data/labels/86_1.png deleted file mode 100644 index 7de1777b718..00000000000 Binary files a/build/darknet/x64/data/labels/86_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/86_2.png b/build/darknet/x64/data/labels/86_2.png deleted file mode 100644 index aae67daae1e..00000000000 Binary files a/build/darknet/x64/data/labels/86_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/86_3.png b/build/darknet/x64/data/labels/86_3.png deleted file mode 100644 index e932d2e75fe..00000000000 Binary files a/build/darknet/x64/data/labels/86_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/86_4.png b/build/darknet/x64/data/labels/86_4.png deleted file mode 100644 index 9a580c852d6..00000000000 Binary files a/build/darknet/x64/data/labels/86_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/86_5.png b/build/darknet/x64/data/labels/86_5.png deleted file mode 100644 index 6766a5df48d..00000000000 Binary files a/build/darknet/x64/data/labels/86_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/86_6.png b/build/darknet/x64/data/labels/86_6.png deleted file mode 100644 index 462e7290f1d..00000000000 Binary files a/build/darknet/x64/data/labels/86_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/86_7.png b/build/darknet/x64/data/labels/86_7.png deleted file mode 100644 index 7843c1258eb..00000000000 Binary files a/build/darknet/x64/data/labels/86_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/87_0.png b/build/darknet/x64/data/labels/87_0.png deleted file mode 100644 index e7c12856128..00000000000 Binary files a/build/darknet/x64/data/labels/87_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/87_1.png b/build/darknet/x64/data/labels/87_1.png deleted file mode 100644 index e0af6e0f140..00000000000 Binary files a/build/darknet/x64/data/labels/87_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/87_2.png b/build/darknet/x64/data/labels/87_2.png deleted file mode 100644 index 4bdce941615..00000000000 Binary files a/build/darknet/x64/data/labels/87_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/87_3.png b/build/darknet/x64/data/labels/87_3.png deleted file mode 100644 index 2d446b92df6..00000000000 Binary files a/build/darknet/x64/data/labels/87_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/87_4.png b/build/darknet/x64/data/labels/87_4.png deleted file mode 100644 index 2719131da55..00000000000 Binary files a/build/darknet/x64/data/labels/87_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/87_5.png b/build/darknet/x64/data/labels/87_5.png deleted file mode 100644 index f635def8421..00000000000 Binary files a/build/darknet/x64/data/labels/87_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/87_6.png b/build/darknet/x64/data/labels/87_6.png deleted file mode 100644 index 25ddeb78979..00000000000 Binary files a/build/darknet/x64/data/labels/87_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/87_7.png b/build/darknet/x64/data/labels/87_7.png deleted file mode 100644 index b26e7021816..00000000000 Binary files a/build/darknet/x64/data/labels/87_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/88_0.png b/build/darknet/x64/data/labels/88_0.png deleted file mode 100644 index 43b14276062..00000000000 Binary files a/build/darknet/x64/data/labels/88_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/88_1.png b/build/darknet/x64/data/labels/88_1.png deleted file mode 100644 index 5703b63087b..00000000000 Binary files a/build/darknet/x64/data/labels/88_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/88_2.png b/build/darknet/x64/data/labels/88_2.png deleted file mode 100644 index b3b565a8d83..00000000000 Binary files a/build/darknet/x64/data/labels/88_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/88_3.png b/build/darknet/x64/data/labels/88_3.png deleted file mode 100644 index 4afd6dd1c3c..00000000000 Binary files a/build/darknet/x64/data/labels/88_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/88_4.png b/build/darknet/x64/data/labels/88_4.png deleted file mode 100644 index 198f7b015e8..00000000000 Binary files a/build/darknet/x64/data/labels/88_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/88_5.png b/build/darknet/x64/data/labels/88_5.png deleted file mode 100644 index e46b6410712..00000000000 Binary files a/build/darknet/x64/data/labels/88_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/88_6.png b/build/darknet/x64/data/labels/88_6.png deleted file mode 100644 index 81830a098cd..00000000000 Binary files a/build/darknet/x64/data/labels/88_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/88_7.png b/build/darknet/x64/data/labels/88_7.png deleted file mode 100644 index a916e4ebad7..00000000000 Binary files a/build/darknet/x64/data/labels/88_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/89_0.png b/build/darknet/x64/data/labels/89_0.png deleted file mode 100644 index b6f9c4be410..00000000000 Binary files a/build/darknet/x64/data/labels/89_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/89_1.png b/build/darknet/x64/data/labels/89_1.png deleted file mode 100644 index e5e7a1e2d55..00000000000 Binary files a/build/darknet/x64/data/labels/89_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/89_2.png b/build/darknet/x64/data/labels/89_2.png deleted file mode 100644 index 9f9d361e0e4..00000000000 Binary files a/build/darknet/x64/data/labels/89_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/89_3.png b/build/darknet/x64/data/labels/89_3.png deleted file mode 100644 index 44048913c7f..00000000000 Binary files a/build/darknet/x64/data/labels/89_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/89_4.png b/build/darknet/x64/data/labels/89_4.png deleted file mode 100644 index 802bfe4b73b..00000000000 Binary files a/build/darknet/x64/data/labels/89_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/89_5.png b/build/darknet/x64/data/labels/89_5.png deleted file mode 100644 index d77e019dd7a..00000000000 Binary files a/build/darknet/x64/data/labels/89_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/89_6.png b/build/darknet/x64/data/labels/89_6.png deleted file mode 100644 index 4a4fa6b6eff..00000000000 Binary files a/build/darknet/x64/data/labels/89_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/89_7.png b/build/darknet/x64/data/labels/89_7.png deleted file mode 100644 index b3dd7980a60..00000000000 Binary files a/build/darknet/x64/data/labels/89_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/90_0.png b/build/darknet/x64/data/labels/90_0.png deleted file mode 100644 index 3e10db1ac53..00000000000 Binary files a/build/darknet/x64/data/labels/90_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/90_1.png b/build/darknet/x64/data/labels/90_1.png deleted file mode 100644 index 9c4e67e6a51..00000000000 Binary files a/build/darknet/x64/data/labels/90_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/90_2.png b/build/darknet/x64/data/labels/90_2.png deleted file mode 100644 index 92d0167af38..00000000000 Binary files a/build/darknet/x64/data/labels/90_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/90_3.png b/build/darknet/x64/data/labels/90_3.png deleted file mode 100644 index 9d346a20287..00000000000 Binary files a/build/darknet/x64/data/labels/90_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/90_4.png b/build/darknet/x64/data/labels/90_4.png deleted file mode 100644 index ba6012bbb9a..00000000000 Binary files a/build/darknet/x64/data/labels/90_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/90_5.png b/build/darknet/x64/data/labels/90_5.png deleted file mode 100644 index b664cd2062c..00000000000 Binary files a/build/darknet/x64/data/labels/90_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/90_6.png b/build/darknet/x64/data/labels/90_6.png deleted file mode 100644 index 500c099919a..00000000000 Binary files a/build/darknet/x64/data/labels/90_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/90_7.png b/build/darknet/x64/data/labels/90_7.png deleted file mode 100644 index 3e899a8a1f4..00000000000 Binary files a/build/darknet/x64/data/labels/90_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/91_0.png b/build/darknet/x64/data/labels/91_0.png deleted file mode 100644 index 0ad0d550bcf..00000000000 Binary files a/build/darknet/x64/data/labels/91_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/91_1.png b/build/darknet/x64/data/labels/91_1.png deleted file mode 100644 index afbe0f0db3f..00000000000 Binary files a/build/darknet/x64/data/labels/91_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/91_2.png b/build/darknet/x64/data/labels/91_2.png deleted file mode 100644 index d2c88991c80..00000000000 Binary files a/build/darknet/x64/data/labels/91_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/91_3.png b/build/darknet/x64/data/labels/91_3.png deleted file mode 100644 index 002032da7c0..00000000000 Binary files a/build/darknet/x64/data/labels/91_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/91_4.png b/build/darknet/x64/data/labels/91_4.png deleted file mode 100644 index 795ce7d7cfe..00000000000 Binary files a/build/darknet/x64/data/labels/91_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/91_5.png b/build/darknet/x64/data/labels/91_5.png deleted file mode 100644 index 1d1eb22b95b..00000000000 Binary files a/build/darknet/x64/data/labels/91_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/91_6.png b/build/darknet/x64/data/labels/91_6.png deleted file mode 100644 index bb31267680d..00000000000 Binary files a/build/darknet/x64/data/labels/91_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/91_7.png b/build/darknet/x64/data/labels/91_7.png deleted file mode 100644 index 70c2cf31f5f..00000000000 Binary files a/build/darknet/x64/data/labels/91_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/92_0.png b/build/darknet/x64/data/labels/92_0.png deleted file mode 100644 index e730aed47a0..00000000000 Binary files a/build/darknet/x64/data/labels/92_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/92_1.png b/build/darknet/x64/data/labels/92_1.png deleted file mode 100644 index 7f9b51d8d91..00000000000 Binary files a/build/darknet/x64/data/labels/92_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/92_2.png b/build/darknet/x64/data/labels/92_2.png deleted file mode 100644 index f01916f5aa3..00000000000 Binary files a/build/darknet/x64/data/labels/92_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/92_3.png b/build/darknet/x64/data/labels/92_3.png deleted file mode 100644 index b850533fedd..00000000000 Binary files a/build/darknet/x64/data/labels/92_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/92_4.png b/build/darknet/x64/data/labels/92_4.png deleted file mode 100644 index ece16826307..00000000000 Binary files a/build/darknet/x64/data/labels/92_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/92_5.png b/build/darknet/x64/data/labels/92_5.png deleted file mode 100644 index 82166907ce0..00000000000 Binary files a/build/darknet/x64/data/labels/92_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/92_6.png b/build/darknet/x64/data/labels/92_6.png deleted file mode 100644 index 9b581facc7f..00000000000 Binary files a/build/darknet/x64/data/labels/92_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/92_7.png b/build/darknet/x64/data/labels/92_7.png deleted file mode 100644 index e57b2e8ea81..00000000000 Binary files a/build/darknet/x64/data/labels/92_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/93_0.png b/build/darknet/x64/data/labels/93_0.png deleted file mode 100644 index c21f522003a..00000000000 Binary files a/build/darknet/x64/data/labels/93_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/93_1.png b/build/darknet/x64/data/labels/93_1.png deleted file mode 100644 index 64cbba6ea77..00000000000 Binary files a/build/darknet/x64/data/labels/93_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/93_2.png b/build/darknet/x64/data/labels/93_2.png deleted file mode 100644 index a81e1cdae71..00000000000 Binary files a/build/darknet/x64/data/labels/93_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/93_3.png b/build/darknet/x64/data/labels/93_3.png deleted file mode 100644 index 273f35cc841..00000000000 Binary files a/build/darknet/x64/data/labels/93_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/93_4.png b/build/darknet/x64/data/labels/93_4.png deleted file mode 100644 index b44e4c69218..00000000000 Binary files a/build/darknet/x64/data/labels/93_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/93_5.png b/build/darknet/x64/data/labels/93_5.png deleted file mode 100644 index 1e96e9b19ee..00000000000 Binary files a/build/darknet/x64/data/labels/93_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/93_6.png b/build/darknet/x64/data/labels/93_6.png deleted file mode 100644 index 3407e55241c..00000000000 Binary files a/build/darknet/x64/data/labels/93_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/93_7.png b/build/darknet/x64/data/labels/93_7.png deleted file mode 100644 index 428e0728a2c..00000000000 Binary files a/build/darknet/x64/data/labels/93_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/94_0.png b/build/darknet/x64/data/labels/94_0.png deleted file mode 100644 index baa512b6c6e..00000000000 Binary files a/build/darknet/x64/data/labels/94_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/94_1.png b/build/darknet/x64/data/labels/94_1.png deleted file mode 100644 index 5f1b1161adf..00000000000 Binary files a/build/darknet/x64/data/labels/94_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/94_2.png b/build/darknet/x64/data/labels/94_2.png deleted file mode 100644 index 1cd051ea3d6..00000000000 Binary files a/build/darknet/x64/data/labels/94_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/94_3.png b/build/darknet/x64/data/labels/94_3.png deleted file mode 100644 index a0a7264b057..00000000000 Binary files a/build/darknet/x64/data/labels/94_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/94_4.png b/build/darknet/x64/data/labels/94_4.png deleted file mode 100644 index 26e82bc6631..00000000000 Binary files a/build/darknet/x64/data/labels/94_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/94_5.png b/build/darknet/x64/data/labels/94_5.png deleted file mode 100644 index 19c32ecb887..00000000000 Binary files a/build/darknet/x64/data/labels/94_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/94_6.png b/build/darknet/x64/data/labels/94_6.png deleted file mode 100644 index e753cadebb8..00000000000 Binary files a/build/darknet/x64/data/labels/94_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/94_7.png b/build/darknet/x64/data/labels/94_7.png deleted file mode 100644 index 7d4dfb7ff5d..00000000000 Binary files a/build/darknet/x64/data/labels/94_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/95_0.png b/build/darknet/x64/data/labels/95_0.png deleted file mode 100644 index 2b255198c33..00000000000 Binary files a/build/darknet/x64/data/labels/95_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/95_1.png b/build/darknet/x64/data/labels/95_1.png deleted file mode 100644 index 6fea8c2b510..00000000000 Binary files a/build/darknet/x64/data/labels/95_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/95_2.png b/build/darknet/x64/data/labels/95_2.png deleted file mode 100644 index d170be10023..00000000000 Binary files a/build/darknet/x64/data/labels/95_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/95_3.png b/build/darknet/x64/data/labels/95_3.png deleted file mode 100644 index fe5501eb7f8..00000000000 Binary files a/build/darknet/x64/data/labels/95_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/95_4.png b/build/darknet/x64/data/labels/95_4.png deleted file mode 100644 index ec87fee7ed1..00000000000 Binary files a/build/darknet/x64/data/labels/95_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/95_5.png b/build/darknet/x64/data/labels/95_5.png deleted file mode 100644 index efa9f0bc7f1..00000000000 Binary files a/build/darknet/x64/data/labels/95_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/95_6.png b/build/darknet/x64/data/labels/95_6.png deleted file mode 100644 index 6840b824f34..00000000000 Binary files a/build/darknet/x64/data/labels/95_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/95_7.png b/build/darknet/x64/data/labels/95_7.png deleted file mode 100644 index 85f887d8425..00000000000 Binary files a/build/darknet/x64/data/labels/95_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/96_0.png b/build/darknet/x64/data/labels/96_0.png deleted file mode 100644 index 2033d9b9885..00000000000 Binary files a/build/darknet/x64/data/labels/96_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/96_1.png b/build/darknet/x64/data/labels/96_1.png deleted file mode 100644 index c60d36aae28..00000000000 Binary files a/build/darknet/x64/data/labels/96_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/96_2.png b/build/darknet/x64/data/labels/96_2.png deleted file mode 100644 index 878dd1bc5d2..00000000000 Binary files a/build/darknet/x64/data/labels/96_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/96_3.png b/build/darknet/x64/data/labels/96_3.png deleted file mode 100644 index f7429a2aad0..00000000000 Binary files a/build/darknet/x64/data/labels/96_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/96_4.png b/build/darknet/x64/data/labels/96_4.png deleted file mode 100644 index 6dff9dace48..00000000000 Binary files a/build/darknet/x64/data/labels/96_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/96_5.png b/build/darknet/x64/data/labels/96_5.png deleted file mode 100644 index 4869f9d21a7..00000000000 Binary files a/build/darknet/x64/data/labels/96_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/96_6.png b/build/darknet/x64/data/labels/96_6.png deleted file mode 100644 index f6a8a696b70..00000000000 Binary files a/build/darknet/x64/data/labels/96_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/96_7.png b/build/darknet/x64/data/labels/96_7.png deleted file mode 100644 index 89b19d456df..00000000000 Binary files a/build/darknet/x64/data/labels/96_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/97_0.png b/build/darknet/x64/data/labels/97_0.png deleted file mode 100644 index 64262248159..00000000000 Binary files a/build/darknet/x64/data/labels/97_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/97_1.png b/build/darknet/x64/data/labels/97_1.png deleted file mode 100644 index f9a61f4ab1f..00000000000 Binary files a/build/darknet/x64/data/labels/97_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/97_2.png b/build/darknet/x64/data/labels/97_2.png deleted file mode 100644 index d1d02acedfd..00000000000 Binary files a/build/darknet/x64/data/labels/97_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/97_3.png b/build/darknet/x64/data/labels/97_3.png deleted file mode 100644 index 7e9e936becd..00000000000 Binary files a/build/darknet/x64/data/labels/97_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/97_4.png b/build/darknet/x64/data/labels/97_4.png deleted file mode 100644 index 21dd17eacab..00000000000 Binary files a/build/darknet/x64/data/labels/97_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/97_5.png b/build/darknet/x64/data/labels/97_5.png deleted file mode 100644 index 5e59fa260a1..00000000000 Binary files a/build/darknet/x64/data/labels/97_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/97_6.png b/build/darknet/x64/data/labels/97_6.png deleted file mode 100644 index 6f279a455b2..00000000000 Binary files a/build/darknet/x64/data/labels/97_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/97_7.png b/build/darknet/x64/data/labels/97_7.png deleted file mode 100644 index 6447e6ddcaf..00000000000 Binary files a/build/darknet/x64/data/labels/97_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/98_0.png b/build/darknet/x64/data/labels/98_0.png deleted file mode 100644 index 3d259317783..00000000000 Binary files a/build/darknet/x64/data/labels/98_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/98_1.png b/build/darknet/x64/data/labels/98_1.png deleted file mode 100644 index c76706a7e36..00000000000 Binary files a/build/darknet/x64/data/labels/98_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/98_2.png b/build/darknet/x64/data/labels/98_2.png deleted file mode 100644 index 6dceadbfd47..00000000000 Binary files a/build/darknet/x64/data/labels/98_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/98_3.png b/build/darknet/x64/data/labels/98_3.png deleted file mode 100644 index d3cf1bc6225..00000000000 Binary files a/build/darknet/x64/data/labels/98_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/98_4.png b/build/darknet/x64/data/labels/98_4.png deleted file mode 100644 index 5d5addc7ea7..00000000000 Binary files a/build/darknet/x64/data/labels/98_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/98_5.png b/build/darknet/x64/data/labels/98_5.png deleted file mode 100644 index 55479d9415d..00000000000 Binary files a/build/darknet/x64/data/labels/98_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/98_6.png b/build/darknet/x64/data/labels/98_6.png deleted file mode 100644 index 4d8f3d92e9b..00000000000 Binary files a/build/darknet/x64/data/labels/98_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/98_7.png b/build/darknet/x64/data/labels/98_7.png deleted file mode 100644 index cec60174e2d..00000000000 Binary files a/build/darknet/x64/data/labels/98_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/99_0.png b/build/darknet/x64/data/labels/99_0.png deleted file mode 100644 index f5975c91fdb..00000000000 Binary files a/build/darknet/x64/data/labels/99_0.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/99_1.png b/build/darknet/x64/data/labels/99_1.png deleted file mode 100644 index 3cdfdec303b..00000000000 Binary files a/build/darknet/x64/data/labels/99_1.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/99_2.png b/build/darknet/x64/data/labels/99_2.png deleted file mode 100644 index a0dc573169e..00000000000 Binary files a/build/darknet/x64/data/labels/99_2.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/99_3.png b/build/darknet/x64/data/labels/99_3.png deleted file mode 100644 index e183f6a330b..00000000000 Binary files a/build/darknet/x64/data/labels/99_3.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/99_4.png b/build/darknet/x64/data/labels/99_4.png deleted file mode 100644 index bc1a490d5f9..00000000000 Binary files a/build/darknet/x64/data/labels/99_4.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/99_5.png b/build/darknet/x64/data/labels/99_5.png deleted file mode 100644 index c568d5e8f22..00000000000 Binary files a/build/darknet/x64/data/labels/99_5.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/99_6.png b/build/darknet/x64/data/labels/99_6.png deleted file mode 100644 index e274446ecb1..00000000000 Binary files a/build/darknet/x64/data/labels/99_6.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/99_7.png b/build/darknet/x64/data/labels/99_7.png deleted file mode 100644 index f7b9e098e9c..00000000000 Binary files a/build/darknet/x64/data/labels/99_7.png and /dev/null differ diff --git a/build/darknet/x64/data/labels/make_labels.py b/build/darknet/x64/data/labels/make_labels.py deleted file mode 100644 index c8146f6db02..00000000000 --- a/build/darknet/x64/data/labels/make_labels.py +++ /dev/null @@ -1,23 +0,0 @@ -import os -import string -import pipes - -font = 'futura-normal' - -def make_labels(s): - l = string.printable - for word in l: - if word == ' ': - os.system('convert -fill black -background white -bordercolor white -font %s -pointsize %d label:"\ " 32_%d.png'%(font,s,s/12-1)) - if word == '@': - os.system('convert -fill black -background white -bordercolor white -font %s -pointsize %d label:"\@" 64_%d.png'%(font,s,s/12-1)) - elif word == '\\': - os.system('convert -fill black -background white -bordercolor white -font %s -pointsize %d label:"\\\\\\\\" 92_%d.png'%(font,s,s/12-1)) - elif ord(word) in [9,10,11,12,13,14]: - pass - else: - os.system("convert -fill black -background white -bordercolor white -font %s -pointsize %d label:%s \"%d_%d.png\""%(font,s,pipes.quote(word), ord(word),s/12-1)) - -for i in [12,24,36,48,60,72,84,96]: - make_labels(i) - diff --git a/build/darknet/x64/data/openimages.data b/build/darknet/x64/data/openimages.data deleted file mode 100644 index fa80e5ab7d8..00000000000 --- a/build/darknet/x64/data/openimages.data +++ /dev/null @@ -1,8 +0,0 @@ -classes= 601 -train = /home/pjreddie/data/openimsv4/openimages.train.list -#valid = coco_testdev -valid = data/coco_val_5k.list -names = data/openimages.names -backup = /home/pjreddie/backup/ -eval=coco - diff --git a/build/darknet/x64/data/openimages.names b/build/darknet/x64/data/openimages.names deleted file mode 100644 index ddfd8f22649..00000000000 --- a/build/darknet/x64/data/openimages.names +++ /dev/null @@ -1,601 +0,0 @@ -Tortoise -Container -Magpie -Sea turtle -Football -Ambulance -Ladder -Toothbrush -Syringe -Sink -Toy -Organ -Cassette deck -Apple -Human eye -Cosmetics -Paddle -Snowman -Beer -Chopsticks -Human beard -Bird -Parking meter -Traffic light -Croissant -Cucumber -Radish -Towel -Doll -Skull -Washing machine -Glove -Tick -Belt -Sunglasses -Banjo -Cart -Ball -Backpack -Bicycle -Home appliance -Centipede -Boat -Surfboard -Boot -Headphones -Hot dog -Shorts -Fast food -Bus -Boy -Screwdriver -Bicycle wheel -Barge -Laptop -Miniskirt -Drill -Dress -Bear -Waffle -Pancake -Brown bear -Woodpecker -Blue jay -Pretzel -Bagel -Tower -Teapot -Person -Bow and arrow -Swimwear -Beehive -Brassiere -Bee -Bat -Starfish -Popcorn -Burrito -Chainsaw -Balloon -Wrench -Tent -Vehicle registration plate -Lantern -Toaster -Flashlight -Billboard -Tiara -Limousine -Necklace -Carnivore -Scissors -Stairs -Computer keyboard -Printer -Traffic sign -Chair -Shirt -Poster -Cheese -Sock -Fire hydrant -Land vehicle -Earrings -Tie -Watercraft -Cabinetry -Suitcase -Muffin -Bidet -Snack -Snowmobile -Clock -Medical equipment -Cattle -Cello -Jet ski -Camel -Coat -Suit -Desk -Cat -Bronze sculpture -Juice -Gondola -Beetle -Cannon -Computer mouse -Cookie -Office building -Fountain -Coin -Calculator -Cocktail -Computer monitor -Box -Stapler -Christmas tree -Cowboy hat -Hiking equipment -Studio couch -Drum -Dessert -Wine rack -Drink -Zucchini -Ladle -Human mouth -Dairy -Dice -Oven -Dinosaur -Ratchet -Couch -Cricket ball -Winter melon -Spatula -Whiteboard -Pencil sharpener -Door -Hat -Shower -Eraser -Fedora -Guacamole -Dagger -Scarf -Dolphin -Sombrero -Tin can -Mug -Tap -Harbor seal -Stretcher -Can opener -Goggles -Human body -Roller skates -Coffee cup -Cutting board -Blender -Plumbing fixture -Stop sign -Office supplies -Volleyball -Vase -Slow cooker -Wardrobe -Coffee -Whisk -Paper towel -Personal care -Food -Sun hat -Tree house -Flying disc -Skirt -Gas stove -Salt and pepper shakers -Mechanical fan -Face powder -Fax -Fruit -French fries -Nightstand -Barrel -Kite -Tart -Treadmill -Fox -Flag -Horn -Window blind -Human foot -Golf cart -Jacket -Egg -Street light -Guitar -Pillow -Human leg -Isopod -Grape -Human ear -Power plugs and sockets -Panda -Giraffe -Woman -Door handle -Rhinoceros -Bathtub -Goldfish -Houseplant -Goat -Baseball bat -Baseball glove -Mixing bowl -Marine invertebrates -Kitchen utensil -Light switch -House -Horse -Stationary bicycle -Hammer -Ceiling fan -Sofa bed -Adhesive tape -Harp -Sandal -Bicycle helmet -Saucer -Harpsichord -Human hair -Heater -Harmonica -Hamster -Curtain -Bed -Kettle -Fireplace -Scale -Drinking straw -Insect -Hair dryer -Kitchenware -Indoor rower -Invertebrate -Food processor -Bookcase -Refrigerator -Wood-burning stove -Punching bag -Common fig -Cocktail shaker -Jaguar -Golf ball -Fashion accessory -Alarm clock -Filing cabinet -Artichoke -Table -Tableware -Kangaroo -Koala -Knife -Bottle -Bottle opener -Lynx -Lavender -Lighthouse -Dumbbell -Human head -Bowl -Humidifier -Porch -Lizard -Billiard table -Mammal -Mouse -Motorcycle -Musical instrument -Swim cap -Frying pan -Snowplow -Bathroom cabinet -Missile -Bust -Man -Waffle iron -Milk -Ring binder -Plate -Mobile phone -Baked goods -Mushroom -Crutch -Pitcher -Mirror -Lifejacket -Table tennis racket -Pencil case -Musical keyboard -Scoreboard -Briefcase -Kitchen knife -Nail -Tennis ball -Plastic bag -Oboe -Chest of drawers -Ostrich -Piano -Girl -Plant -Potato -Hair spray -Sports equipment -Pasta -Penguin -Pumpkin -Pear -Infant bed -Polar bear -Mixer -Cupboard -Jacuzzi -Pizza -Digital clock -Pig -Reptile -Rifle -Lipstick -Skateboard -Raven -High heels -Red panda -Rose -Rabbit -Sculpture -Saxophone -Shotgun -Seafood -Submarine sandwich -Snowboard -Sword -Picture frame -Sushi -Loveseat -Ski -Squirrel -Tripod -Stethoscope -Submarine -Scorpion -Segway -Training bench -Snake -Coffee table -Skyscraper -Sheep -Television -Trombone -Tea -Tank -Taco -Telephone -Torch -Tiger -Strawberry -Trumpet -Tree -Tomato -Train -Tool -Picnic basket -Cooking spray -Trousers -Bowling equipment -Football helmet -Truck -Measuring cup -Coffeemaker -Violin -Vehicle -Handbag -Paper cutter -Wine -Weapon -Wheel -Worm -Wok -Whale -Zebra -Auto part -Jug -Pizza cutter -Cream -Monkey -Lion -Bread -Platter -Chicken -Eagle -Helicopter -Owl -Duck -Turtle -Hippopotamus -Crocodile -Toilet -Toilet paper -Squid -Clothing -Footwear -Lemon -Spider -Deer -Frog -Banana -Rocket -Wine glass -Countertop -Tablet computer -Waste container -Swimming pool -Dog -Book -Elephant -Shark -Candle -Leopard -Axe -Hand dryer -Soap dispenser -Porcupine -Flower -Canary -Cheetah -Palm tree -Hamburger -Maple -Building -Fish -Lobster -Asparagus -Furniture -Hedgehog -Airplane -Spoon -Otter -Bull -Oyster -Horizontal bar -Convenience store -Bomb -Bench -Ice cream -Caterpillar -Butterfly -Parachute -Orange -Antelope -Beaker -Moths and butterflies -Window -Closet -Castle -Jellyfish -Goose -Mule -Swan -Peach -Coconut -Seat belt -Raccoon -Chisel -Fork -Lamp -Camera -Squash -Racket -Human face -Human arm -Vegetable -Diaper -Unicycle -Falcon -Chime -Snail -Shellfish -Cabbage -Carrot -Mango -Jeans -Flowerpot -Pineapple -Drawer -Stool -Envelope -Cake -Dragonfly -Sunflower -Microwave oven -Honeycomb -Marine mammal -Sea lion -Ladybug -Shelf -Watch -Candy -Salad -Parrot -Handgun -Sparrow -Van -Grinder -Spice rack -Light bulb -Corded phone -Sports uniform -Tennis racket -Wall clock -Serving tray -Kitchen & dining room table -Dog bed -Cake stand -Cat furniture -Bathroom accessory -Facial tissue holder -Pressure cooker -Kitchen appliance -Tire -Ruler -Luggage and bags -Microphone -Broccoli -Umbrella -Pastry -Grapefruit -Band-aid -Animal -Bell pepper -Turkey -Lily -Pomegranate -Doughnut -Glasses -Human nose -Pen -Ant -Car -Aircraft -Human hand -Skunk -Teddy bear -Watermelon -Cantaloupe -Dishwasher -Flute -Balance beam -Sandwich -Shrimp -Sewing machine -Binoculars -Rays and skates -Ipod -Accordion -Willow -Crab -Crown -Seahorse -Perfume -Alpaca -Taxi -Canoe -Remote control -Wheelchair -Rugby ball -Armadillo -Maracas -Helmet diff --git a/build/darknet/x64/data/person.jpg b/build/darknet/x64/data/person.jpg deleted file mode 100644 index 61d377fff94..00000000000 Binary files a/build/darknet/x64/data/person.jpg and /dev/null differ diff --git a/build/darknet/x64/data/scream.jpg b/build/darknet/x64/data/scream.jpg deleted file mode 100644 index 43f2c36a8d4..00000000000 Binary files a/build/darknet/x64/data/scream.jpg and /dev/null differ diff --git a/build/darknet/x64/data/voc.data b/build/darknet/x64/data/voc.data deleted file mode 100644 index d6775870f65..00000000000 --- a/build/darknet/x64/data/voc.data +++ /dev/null @@ -1,7 +0,0 @@ -classes= 20 -train = data/train_voc.txt -valid = data/2007_test.txt -#difficult = data/difficult_2007_test.txt -names = data/voc.names -backup = backup/ - diff --git a/build/darknet/x64/data/voc.names b/build/darknet/x64/data/voc.names deleted file mode 100644 index 8420ab35ede..00000000000 --- a/build/darknet/x64/data/voc.names +++ /dev/null @@ -1,20 +0,0 @@ -aeroplane -bicycle -bird -boat -bottle -bus -car -cat -chair -cow -diningtable -dog -horse -motorbike -person -pottedplant -sheep -sofa -train -tvmonitor diff --git a/build/darknet/x64/data/voc/voc_label.py b/build/darknet/x64/data/voc/voc_label.py deleted file mode 100644 index d1e88236f2c..00000000000 --- a/build/darknet/x64/data/voc/voc_label.py +++ /dev/null @@ -1,56 +0,0 @@ -import xml.etree.ElementTree as ET -import pickle -import os -from os import listdir, getcwd -from os.path import join - -sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')] - -classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"] - - -def convert(size, box): - dw = 1./size[0] - dh = 1./size[1] - x = (box[0] + box[1])/2.0 - y = (box[2] + box[3])/2.0 - w = box[1] - box[0] - h = box[3] - box[2] - x = x*dw - w = w*dw - y = y*dh - h = h*dh - return (x,y,w,h) - -def convert_annotation(year, image_id): - in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id)) - out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w') - tree=ET.parse(in_file) - root = tree.getroot() - size = root.find('size') - w = int(size.find('width').text) - h = int(size.find('height').text) - - for obj in root.iter('object'): - difficult = obj.find('difficult').text - cls = obj.find('name').text - if cls not in classes or int(difficult) == 1: - continue - cls_id = classes.index(cls) - xmlbox = obj.find('bndbox') - b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text)) - bb = convert((w,h), b) - out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') - -wd = getcwd() - -for year, image_set in sets: - if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)): - os.makedirs('VOCdevkit/VOC%s/labels/'%(year)) - image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split() - list_file = open('%s_%s.txt'%(year, image_set), 'w') - for image_id in image_ids: - list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id)) - convert_annotation(year, image_id) - list_file.close() - diff --git a/build/darknet/x64/densenet201_yolo.cfg b/build/darknet/x64/densenet201_yolo.cfg deleted file mode 100644 index 2c78ec5d2a4..00000000000 --- a/build/darknet/x64/densenet201_yolo.cfg +++ /dev/null @@ -1,1978 +0,0 @@ -[net] -batch=64 -subdivisions=8 -height=416 -width=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.0001 -max_batches = 45000 -policy=steps -steps=100,25000,35000 -scales=10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[route] -layers=-1,-3 -#stopbackward=1 - - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1024 -activation=leaky - - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - - - - -[convolutional] -size=1 -stride=1 -pad=1 -filters=125 -activation=linear - - -[region] -anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071 -bias_match=1 -classes=20 -coords=4 -num=5 -softmax=1 -jitter=.3 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=0 - diff --git a/build/darknet/x64/dog.jpg b/build/darknet/x64/dog.jpg deleted file mode 100644 index 77b0381222e..00000000000 Binary files a/build/darknet/x64/dog.jpg and /dev/null differ diff --git a/build/darknet/x64/dogr.jpg b/build/darknet/x64/dogr.jpg deleted file mode 100644 index e9201231bdb..00000000000 Binary files a/build/darknet/x64/dogr.jpg and /dev/null differ diff --git a/build/darknet/x64/gen_anchors.py b/build/darknet/x64/gen_anchors.py deleted file mode 100644 index 709cb88adab..00000000000 --- a/build/darknet/x64/gen_anchors.py +++ /dev/null @@ -1,165 +0,0 @@ -''' -Created on Feb 20, 2017 - -@author: jumabek -''' -from os import listdir -from os.path import isfile, join -import argparse -#import cv2 -import numpy as np -import sys -import os -import shutil -import random -import math - -width_in_cfg_file = 416. -height_in_cfg_file = 416. - -def IOU(x,centroids): - similarities = [] - k = len(centroids) - for centroid in centroids: - c_w,c_h = centroid - w,h = x - if c_w>=w and c_h>=h: - similarity = w*h/(c_w*c_h) - elif c_w>=w and c_h<=h: - similarity = w*c_h/(w*h + (c_w-w)*c_h) - elif c_w<=w and c_h>=h: - similarity = c_w*h/(w*h + c_w*(c_h-h)) - else: #means both w,h are bigger than c_w and c_h respectively - similarity = (c_w*c_h)/(w*h) - similarities.append(similarity) # will become (k,) shape - return np.array(similarities) - -def avg_IOU(X,centroids): - n,d = X.shape - sum = 0. - for i in range(X.shape[0]): - #note IOU() will return array which contains IoU for each centroid and X[i] // slightly ineffective, but I am too lazy - sum+= max(IOU(X[i],centroids)) - return sum/n - -def write_anchors_to_file(centroids,X,anchor_file): - f = open(anchor_file,'w') - - anchors = centroids.copy() - print(anchors.shape) - - for i in range(anchors.shape[0]): - anchors[i][0]*=width_in_cfg_file/32. - anchors[i][1]*=height_in_cfg_file/32. - - - widths = anchors[:,0] - sorted_indices = np.argsort(widths) - - print('Anchors = ', anchors[sorted_indices]) - - for i in sorted_indices[:-1]: - f.write('%0.2f,%0.2f, '%(anchors[i,0],anchors[i,1])) - - #there should not be comma after last anchor, that's why - f.write('%0.2f,%0.2f\n'%(anchors[sorted_indices[-1:],0],anchors[sorted_indices[-1:],1])) - - f.write('%f\n'%(avg_IOU(X,centroids))) - print() - -def kmeans(X,centroids,eps,anchor_file): - - N = X.shape[0] - iterations = 0 - k,dim = centroids.shape - prev_assignments = np.ones(N)*(-1) - iter = 0 - old_D = np.zeros((N,k)) - - while True: - D = [] - iter+=1 - for i in range(N): - d = 1 - IOU(X[i],centroids) - D.append(d) - D = np.array(D) # D.shape = (N,k) - - print("iter {}: dists = {}".format(iter,np.sum(np.abs(old_D-D)))) - - #assign samples to centroids - assignments = np.argmin(D,axis=1) - - if (assignments == prev_assignments).all() : - print("Centroids = ",centroids) - write_anchors_to_file(centroids,X,anchor_file) - return - - #calculate new centroids - centroid_sums=np.zeros((k,dim),np.float) - for i in range(N): - centroid_sums[assignments[i]]+=X[i] - for j in range(k): - centroids[j] = centroid_sums[j]/(np.sum(assignments==j)) - - prev_assignments = assignments.copy() - old_D = D.copy() - -def main(argv): - parser = argparse.ArgumentParser() - parser.add_argument('-filelist', default = '\\path\\to\\voc\\filelist\\train.txt', - help='path to filelist\n' ) - parser.add_argument('-output_dir', default = 'generated_anchors/anchors', type = str, - help='Output anchor directory\n' ) - parser.add_argument('-num_clusters', default = 0, type = int, - help='number of clusters\n' ) - - - args = parser.parse_args() - - if not os.path.exists(args.output_dir): - os.mkdir(args.output_dir) - - f = open(args.filelist) - - lines = [line.rstrip('\n') for line in f.readlines()] - - annotation_dims = [] - - size = np.zeros((1,1,3)) - for line in lines: - - #line = line.replace('images','labels') - #line = line.replace('img1','labels') - line = line.replace('JPEGImages','labels') - - - line = line.replace('.jpg','.txt') - line = line.replace('.png','.txt') - print(line) - f2 = open(line) - for line in f2.readlines(): - line = line.rstrip('\n') - w,h = line.split(' ')[3:] - #print(w,h) - annotation_dims.append(tuple(map(float,(w,h)))) - annotation_dims = np.array(annotation_dims) - - eps = 0.005 - - if args.num_clusters == 0: - for num_clusters in range(1,11): #we make 1 through 10 clusters - anchor_file = join( args.output_dir,'anchors%d.txt'%(num_clusters)) - - indices = [ random.randrange(annotation_dims.shape[0]) for i in range(num_clusters)] - centroids = annotation_dims[indices] - kmeans(annotation_dims,centroids,eps,anchor_file) - print('centroids.shape', centroids.shape) - else: - anchor_file = join( args.output_dir,'anchors%d.txt'%(args.num_clusters)) - indices = [ random.randrange(annotation_dims.shape[0]) for i in range(args.num_clusters)] - centroids = annotation_dims[indices] - kmeans(annotation_dims,centroids,eps,anchor_file) - print('centroids.shape', centroids.shape) - -if __name__=="__main__": - main(sys.argv) diff --git a/build/darknet/x64/pthreadGC2.dll b/build/darknet/x64/pthreadGC2.dll deleted file mode 100644 index 841d4a21699..00000000000 Binary files a/build/darknet/x64/pthreadGC2.dll and /dev/null differ diff --git a/build/darknet/x64/pthreadVC2.dll b/build/darknet/x64/pthreadVC2.dll deleted file mode 100644 index 165b4d26ec4..00000000000 Binary files a/build/darknet/x64/pthreadVC2.dll and /dev/null differ diff --git a/build/darknet/x64/resnet152_yolo.cfg b/build/darknet/x64/resnet152_yolo.cfg deleted file mode 100644 index d766084d1ec..00000000000 --- a/build/darknet/x64/resnet152_yolo.cfg +++ /dev/null @@ -1,1473 +0,0 @@ -[net] -batch=64 -subdivisions=32 -height=416 -width=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.0001 -max_batches = 45000 -policy=steps -steps=100,25000,35000 -scales=10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -# Conv 4 -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -#Conv 5 -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky -#stopbackward=1 - - - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1024 -activation=leaky - - -[convolutional] -size=1 -stride=1 -pad=1 -filters=125 -activation=linear - - -[region] -anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071 -bias_match=1 -classes=20 -coords=4 -num=5 -softmax=1 -jitter=.3 -rescore=1 -#focal_loss=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/resnet50_yolo.cfg b/build/darknet/x64/resnet50_yolo.cfg deleted file mode 100644 index 44dc68e90d7..00000000000 --- a/build/darknet/x64/resnet50_yolo.cfg +++ /dev/null @@ -1,520 +0,0 @@ -[net] -batch=64 -subdivisions=32 -height=416 -width=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.0001 -max_batches = 45000 -policy=steps -steps=100,25000,35000 -scales=10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=64 -size=7 -stride=2 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - - -# Conv 4 -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -#Conv 5 -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=2048 -size=1 -stride=1 -pad=1 -activation=linear - -[shortcut] -from=-4 -activation=leaky -#stopbackward=1 - - - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=1024 -activation=leaky - - -[convolutional] -size=1 -stride=1 -pad=1 -filters=125 -activation=linear - - -[region] -anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071 -bias_match=1 -classes=20 -coords=4 -num=5 -softmax=1 -jitter=.3 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 \ No newline at end of file diff --git a/build/darknet/x64/results/tmp.txt b/build/darknet/x64/results/tmp.txt deleted file mode 100644 index e69de29bb2d..00000000000 diff --git a/build/darknet/x64/reval_voc_py3.py b/build/darknet/x64/reval_voc_py3.py deleted file mode 100644 index 23f9ce3fd06..00000000000 --- a/build/darknet/x64/reval_voc_py3.py +++ /dev/null @@ -1,104 +0,0 @@ -#!/usr/bin/env python - -# Adapt from -> -# -------------------------------------------------------- -# Fast R-CNN -# Copyright (c) 2015 Microsoft -# Licensed under The MIT License [see LICENSE for details] -# Written by Ross Girshick -# -------------------------------------------------------- -# <- Written by Yaping Sun - -"""Reval = re-eval. Re-evaluate saved detections.""" - -import os, sys, argparse -import numpy as np -import _pickle as cPickle -#import cPickle - -from voc_eval_py3 import voc_eval - -def parse_args(): - """ - Parse input arguments - """ - parser = argparse.ArgumentParser(description='Re-evaluate results') - parser.add_argument('output_dir', nargs=1, help='results directory', - type=str) - parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str) - parser.add_argument('--year', dest='year', default='2017', type=str) - parser.add_argument('--image_set', dest='image_set', default='test', type=str) - - parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str) - - if len(sys.argv) == 1: - parser.print_help() - sys.exit(1) - - args = parser.parse_args() - return args - -def get_voc_results_file_template(image_set, out_dir = 'results'): - filename = 'comp4_det_' + image_set + '_{:s}.txt' - path = os.path.join(out_dir, filename) - return path - -def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'): - annopath = os.path.join( - devkit_path, - 'VOC' + year, - 'Annotations', - '{}.xml') - imagesetfile = os.path.join( - devkit_path, - 'VOC' + year, - 'ImageSets', - 'Main', - image_set + '.txt') - cachedir = os.path.join(devkit_path, 'annotations_cache') - aps = [] - # The PASCAL VOC metric changed in 2010 - use_07_metric = True if int(year) < 2010 else False - print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No')) - print('devkit_path=',devkit_path,', year = ',year) - - if not os.path.isdir(output_dir): - os.mkdir(output_dir) - for i, cls in enumerate(classes): - if cls == '__background__': - continue - filename = get_voc_results_file_template(image_set).format(cls) - rec, prec, ap = voc_eval( - filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5, - use_07_metric=use_07_metric) - aps += [ap] - print('AP for {} = {:.4f}'.format(cls, ap)) - with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f: - cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) - print('Mean AP = {:.4f}'.format(np.mean(aps))) - print('~~~~~~~~') - print('Results:') - for ap in aps: - print('{:.3f}'.format(ap)) - print('{:.3f}'.format(np.mean(aps))) - print('~~~~~~~~') - print('') - print('--------------------------------------------------------------') - print('Results computed with the **unofficial** Python eval code.') - print('Results should be very close to the official MATLAB eval code.') - print('-- Thanks, The Management') - print('--------------------------------------------------------------') - - - -if __name__ == '__main__': - args = parse_args() - - output_dir = os.path.abspath(args.output_dir[0]) - with open(args.class_file, 'r') as f: - lines = f.readlines() - - classes = [t.strip('\n') for t in lines] - - print('Evaluating detections') - do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir) diff --git a/build/darknet/x64/tiny-yolo-voc.cfg b/build/darknet/x64/tiny-yolo-voc.cfg deleted file mode 100644 index ab2c066a216..00000000000 --- a/build/darknet/x64/tiny-yolo-voc.cfg +++ /dev/null @@ -1,134 +0,0 @@ -[net] -batch=64 -subdivisions=8 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -max_batches = 40200 -policy=steps -steps=-1,100,20000,30000 -scales=.1,10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=125 -activation=linear - -[region] -anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 -bias_match=1 -classes=20 -coords=4 -num=5 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/tiny-yolo.cfg b/build/darknet/x64/tiny-yolo.cfg deleted file mode 100644 index 5580098b45f..00000000000 --- a/build/darknet/x64/tiny-yolo.cfg +++ /dev/null @@ -1,134 +0,0 @@ -[net] -batch=64 -subdivisions=8 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -max_batches = 120000 -policy=steps -steps=-1,100,80000,100000 -scales=.1,10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=16 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=1 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -########### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=425 -activation=linear - -[region] -anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741 -bias_match=1 -classes=80 -coords=4 -num=5 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 diff --git a/build/darknet/x64/voc_eval_py3.py b/build/darknet/x64/voc_eval_py3.py deleted file mode 100644 index 13d07a9a7e7..00000000000 --- a/build/darknet/x64/voc_eval_py3.py +++ /dev/null @@ -1,201 +0,0 @@ -# -------------------------------------------------------- -# Fast/er R-CNN -# Licensed under The MIT License [see LICENSE for details] -# Written by Bharath Hariharan -# -------------------------------------------------------- - -import xml.etree.ElementTree as ET -import os -#import cPickle -import _pickle as cPickle -import numpy as np - -def parse_rec(filename): - """ Parse a PASCAL VOC xml file """ - tree = ET.parse(filename) - objects = [] - for obj in tree.findall('object'): - obj_struct = {} - obj_struct['name'] = obj.find('name').text - #obj_struct['pose'] = obj.find('pose').text - #obj_struct['truncated'] = int(obj.find('truncated').text) - obj_struct['difficult'] = int(obj.find('difficult').text) - bbox = obj.find('bndbox') - obj_struct['bbox'] = [int(bbox.find('xmin').text), - int(bbox.find('ymin').text), - int(bbox.find('xmax').text), - int(bbox.find('ymax').text)] - objects.append(obj_struct) - - return objects - -def voc_ap(rec, prec, use_07_metric=False): - """ ap = voc_ap(rec, prec, [use_07_metric]) - Compute VOC AP given precision and recall. - If use_07_metric is true, uses the - VOC 07 11 point method (default:False). - """ - if use_07_metric: - # 11 point metric - ap = 0. - for t in np.arange(0., 1.1, 0.1): - if np.sum(rec >= t) == 0: - p = 0 - else: - p = np.max(prec[rec >= t]) - ap = ap + p / 11. - else: - # correct AP calculation - # first append sentinel values at the end - mrec = np.concatenate(([0.], rec, [1.])) - mpre = np.concatenate(([0.], prec, [0.])) - - # compute the precision envelope - for i in range(mpre.size - 1, 0, -1): - mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) - - # to calculate area under PR curve, look for points - # where X axis (recall) changes value - i = np.where(mrec[1:] != mrec[:-1])[0] - - # and sum (\Delta recall) * prec - ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) - return ap - -def voc_eval(detpath, - annopath, - imagesetfile, - classname, - cachedir, - ovthresh=0.5, - use_07_metric=False): - """rec, prec, ap = voc_eval(detpath, - annopath, - imagesetfile, - classname, - [ovthresh], - [use_07_metric]) - - Top level function that does the PASCAL VOC evaluation. - - detpath: Path to detections - detpath.format(classname) should produce the detection results file. - annopath: Path to annotations - annopath.format(imagename) should be the xml annotations file. - imagesetfile: Text file containing the list of images, one image per line. - classname: Category name (duh) - cachedir: Directory for caching the annotations - [ovthresh]: Overlap threshold (default = 0.5) - [use_07_metric]: Whether to use VOC07's 11 point AP computation - (default False) - """ - # assumes detections are in detpath.format(classname) - # assumes annotations are in annopath.format(imagename) - # assumes imagesetfile is a text file with each line an image name - # cachedir caches the annotations in a pickle file - - # first load gt - if not os.path.isdir(cachedir): - os.mkdir(cachedir) - cachefile = os.path.join(cachedir, 'annots.pkl') - # read list of images - with open(imagesetfile, 'r') as f: - lines = f.readlines() - imagenames = [x.strip() for x in lines] - - if not os.path.isfile(cachefile): - # load annots - recs = {} - for i, imagename in enumerate(imagenames): - recs[imagename] = parse_rec(annopath.format(imagename)) - #if i % 100 == 0: - #print('Reading annotation for {:d}/{:d}').format(i + 1, len(imagenames)) - # save - #print('Saving cached annotations to {:s}').format(cachefile) - with open(cachefile, 'wb') as f: - cPickle.dump(recs, f) - else: - # load - print('!!! cachefile = ',cachefile) - with open(cachefile, 'rb') as f: - recs = cPickle.load(f) - - # extract gt objects for this class - class_recs = {} - npos = 0 - for imagename in imagenames: - R = [obj for obj in recs[imagename] if obj['name'] == classname] - bbox = np.array([x['bbox'] for x in R]) - difficult = np.array([x['difficult'] for x in R]).astype(np.bool) - det = [False] * len(R) - npos = npos + sum(~difficult) - class_recs[imagename] = {'bbox': bbox, - 'difficult': difficult, - 'det': det} - - # read dets - detfile = detpath.format(classname) - with open(detfile, 'r') as f: - lines = f.readlines() - - splitlines = [x.strip().split(' ') for x in lines] - image_ids = [x[0] for x in splitlines] - confidence = np.array([float(x[1]) for x in splitlines]) - BB = np.array([[float(z) for z in x[2:]] for x in splitlines]) - - # sort by confidence - sorted_ind = np.argsort(-confidence) - sorted_scores = np.sort(-confidence) - BB = BB[sorted_ind, :] - image_ids = [image_ids[x] for x in sorted_ind] - - # go down dets and mark TPs and FPs - nd = len(image_ids) - tp = np.zeros(nd) - fp = np.zeros(nd) - for d in range(nd): - R = class_recs[image_ids[d]] - bb = BB[d, :].astype(float) - ovmax = -np.inf - BBGT = R['bbox'].astype(float) - - if BBGT.size > 0: - # compute overlaps - # intersection - ixmin = np.maximum(BBGT[:, 0], bb[0]) - iymin = np.maximum(BBGT[:, 1], bb[1]) - ixmax = np.minimum(BBGT[:, 2], bb[2]) - iymax = np.minimum(BBGT[:, 3], bb[3]) - iw = np.maximum(ixmax - ixmin + 1., 0.) - ih = np.maximum(iymax - iymin + 1., 0.) - inters = iw * ih - - # union - uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + - (BBGT[:, 2] - BBGT[:, 0] + 1.) * - (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) - - overlaps = inters / uni - ovmax = np.max(overlaps) - jmax = np.argmax(overlaps) - - if ovmax > ovthresh: - if not R['difficult'][jmax]: - if not R['det'][jmax]: - tp[d] = 1. - R['det'][jmax] = 1 - else: - fp[d] = 1. - else: - fp[d] = 1. - - # compute precision recall - fp = np.cumsum(fp) - tp = np.cumsum(tp) - rec = tp / float(npos) - # avoid divide by zero in case the first detection matches a difficult - # ground truth - prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) - ap = voc_ap(rec, prec, use_07_metric) - - return rec, prec, ap diff --git a/build/darknet/x64/yolo-voc.2.0.cfg b/build/darknet/x64/yolo-voc.2.0.cfg deleted file mode 100644 index ceb3f2acf0b..00000000000 --- a/build/darknet/x64/yolo-voc.2.0.cfg +++ /dev/null @@ -1,244 +0,0 @@ -[net] -batch=64 -subdivisions=8 -height=416 -width=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.0001 -max_batches = 45000 -policy=steps -steps=100,25000,35000 -scales=10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - - -####### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[route] -layers=-9 - -[reorg] -stride=2 - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=125 -activation=linear - -[region] -anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 -bias_match=1 -classes=20 -coords=4 -num=5 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=0 diff --git a/build/darknet/x64/yolo-voc.cfg b/build/darknet/x64/yolo-voc.cfg deleted file mode 100644 index 5650b4c461e..00000000000 --- a/build/darknet/x64/yolo-voc.cfg +++ /dev/null @@ -1,259 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=8 -height=416 -width=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 80200 -policy=steps -steps=40000,60000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - - -####### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[route] -layers=-9 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=64 -activation=leaky - -[reorg] -stride=2 - -[route] -layers=-1,-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=125 -activation=linear - - -[region] -anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071 -bias_match=1 -classes=20 -coords=4 -num=5 -softmax=1 -jitter=.3 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 - diff --git a/build/darknet/x64/yolo.2.0.cfg b/build/darknet/x64/yolo.2.0.cfg deleted file mode 100644 index fda339a2b00..00000000000 --- a/build/darknet/x64/yolo.2.0.cfg +++ /dev/null @@ -1,244 +0,0 @@ -[net] -batch=1 -subdivisions=1 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -max_batches = 120000 -policy=steps -steps=-1,100,80000,100000 -scales=.1,10,.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - - -####### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[route] -layers=-9 - -[reorg] -stride=2 - -[route] -layers=-1,-3 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=425 -activation=linear - -[region] -anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741 -bias_match=1 -classes=80 -coords=4 -num=5 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=0 diff --git a/build/darknet/x64/yolo.cfg b/build/darknet/x64/yolo.cfg deleted file mode 100644 index e4d93e522d7..00000000000 --- a/build/darknet/x64/yolo.cfg +++ /dev/null @@ -1,259 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=8 -height=416 -width=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - - -####### - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[route] -layers=-9 - -[convolutional] -batch_normalize=1 -size=1 -stride=1 -pad=1 -filters=64 -activation=leaky - -[reorg] -stride=2 - -[route] -layers=-1,-4 - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=425 -activation=linear - - -[region] -anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828 -bias_match=1 -classes=80 -coords=4 -num=5 -softmax=1 -jitter=.3 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -absolute=1 -thresh = .6 -random=1 - diff --git a/build/darknet/x64/yolo9000.cfg b/build/darknet/x64/yolo9000.cfg deleted file mode 100644 index e745f78a6e3..00000000000 --- a/build/darknet/x64/yolo9000.cfg +++ /dev/null @@ -1,218 +0,0 @@ -[net] -# Testing -batch=1 -subdivisions=1 -# Training -# batch=64 -# subdivisions=8 -batch=1 -subdivisions=1 -height=544 -width=544 -channels=3 -momentum=0.9 -decay=0.0005 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -hue=.1 -saturation=.75 -exposure=.75 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[maxpool] -size=2 -stride=2 - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[convolutional] -filters=28269 -size=1 -stride=1 -pad=1 -activation=linear - -[region] -anchors = 0.77871, 1.14074, 3.00525, 4.31277, 9.22725, 9.61974 -bias_match=1 -classes=9418 -coords=4 -num=3 -softmax=1 -jitter=.2 -rescore=1 - -object_scale=5 -noobject_scale=1 -class_scale=1 -coord_scale=1 - -thresh = .6 -absolute=1 -random=1 - -tree=data/9k.tree -map = data/coco9k.map diff --git a/build/darknet/x64/yolov3-voc.cfg b/build/darknet/x64/yolov3-voc.cfg deleted file mode 100644 index 8f7ba54d0e3..00000000000 --- a/build/darknet/x64/yolov3-voc.cfg +++ /dev/null @@ -1,785 +0,0 @@ -[net] -# Testing -# batch=1 -# subdivisions=1 -# Training -batch=64 -subdivisions=32 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 50200 -policy=steps -steps=40000,45000 -scales=.1,.1 - - - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -###################### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=75 -activation=linear - -[yolo] -mask = 6,7,8 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=20 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 61 - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=75 -activation=linear - -[yolo] -mask = 3,4,5 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=20 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -random=1 - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 36 - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=75 -activation=linear - -[yolo] -mask = 0,1,2 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=20 -num=9 -jitter=.3 -ignore_thresh = .5 -truth_thresh = 1 -random=1 - diff --git a/build/darknet/x64/yolov3.cfg b/build/darknet/x64/yolov3.cfg deleted file mode 100644 index 1d94e666918..00000000000 --- a/build/darknet/x64/yolov3.cfg +++ /dev/null @@ -1,791 +0,0 @@ -[net] -# Testing -#batch=1 -#subdivisions=1 -# Training -batch=64 -subdivisions=16 -width=416 -height=416 -channels=3 -momentum=0.9 -decay=0.0005 -angle=0 -saturation = 1.5 -exposure = 1.5 -hue=.1 - -learning_rate=0.001 -burn_in=1000 -max_batches = 500200 -policy=steps -steps=400000,450000 -scales=.1,.1 - -show_receptive_field=1 - -[convolutional] -batch_normalize=1 -filters=32 -size=3 -stride=1 -pad=1 -activation=leaky - -# Downsample - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=32 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=64 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -# Downsample - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=2 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=1024 -size=3 -stride=1 -pad=1 -activation=leaky - -[shortcut] -from=-3 -activation=linear - -###################### - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=512 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=1024 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 6,7,8 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 61 - - - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=256 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=512 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 3,4,5 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - - - -[route] -layers = -4 - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[upsample] -stride=2 - -[route] -layers = -1, 36 - - - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -batch_normalize=1 -filters=128 -size=1 -stride=1 -pad=1 -activation=leaky - -[convolutional] -batch_normalize=1 -size=3 -stride=1 -pad=1 -filters=256 -activation=leaky - -[convolutional] -size=1 -stride=1 -pad=1 -filters=255 -activation=linear - - -[yolo] -mask = 0,1,2 -anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 -classes=80 -num=9 -jitter=.3 -ignore_thresh = .7 -truth_thresh = 1 -random=1 - diff --git a/build/darknet/yolo_console_dll.sln b/build/darknet/yolo_console_dll.sln deleted file mode 100644 index e06e5a26b7e..00000000000 --- a/build/darknet/yolo_console_dll.sln +++ /dev/null @@ -1,28 +0,0 @@ - -Microsoft Visual Studio Solution File, Format Version 12.00 -# Visual Studio 14 -VisualStudioVersion = 14.0.25420.1 -MinimumVisualStudioVersion = 10.0.40219.1 -Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "yolo_console_dll", "yolo_console_dll.vcxproj", "{4CFC8DC0-92A2-4311-B54B-2264E56A3B58}" -EndProject -Global - GlobalSection(SolutionConfigurationPlatforms) = preSolution - Debug|x64 = Debug|x64 - Debug|x86 = Debug|x86 - Release|x64 = Release|x64 - Release|x86 = Release|x86 - EndGlobalSection - GlobalSection(ProjectConfigurationPlatforms) = postSolution - {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Debug|x64.ActiveCfg = Debug|x64 - {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Debug|x64.Build.0 = Debug|x64 - {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Debug|x86.ActiveCfg = Debug|Win32 - {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Debug|x86.Build.0 = Debug|Win32 - {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Release|x64.ActiveCfg = Release|x64 - {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Release|x64.Build.0 = Release|x64 - {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Release|x86.ActiveCfg = Release|Win32 - {4CFC8DC0-92A2-4311-B54B-2264E56A3B58}.Release|x86.Build.0 = Release|Win32 - EndGlobalSection - GlobalSection(SolutionProperties) = preSolution - HideSolutionNode = FALSE - EndGlobalSection -EndGlobal diff --git a/build/darknet/yolo_console_dll.vcxproj b/build/darknet/yolo_console_dll.vcxproj deleted file mode 100644 index 20eb14acd20..00000000000 --- a/build/darknet/yolo_console_dll.vcxproj +++ /dev/null @@ -1,142 +0,0 @@ - - - - - Debug - Win32 - - - Release - Win32 - - - Debug - x64 - - - Release - x64 - - - - {4CFC8DC0-92A2-4311-B54B-2264E56A3B58} - yolo_console_dll - 8.1 - - - - Application - true - v140 - MultiByte - - - Application - false - v140 - true - MultiByte - - - Application - true - v140 - MultiByte - - - Application - false - v140 - true - MultiByte - - - - - - - - - - - - - - - - - - - - $(SolutionDir)$(Platform)\ - $(Platform)\$(Configuration)\ - - - $(SolutionDir)$(Platform)\ - - - - Level3 - Disabled - true - ..\..\include; - - - - - Level3 - Disabled - true - ..\..\include;$(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include - MultiThreadedDLL - _CRT_SECURE_NO_WARNINGS;_MBCS;%(PreprocessorDefinitions) - - - $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib;$(CUDA_PATH)\lib\x64\;$(ZED_SDK_ROOT_DIR)\lib - - - - - Level3 - MaxSpeed - true - true - true - ..\..\include; - - - true - true - - - - - Level3 - MaxSpeed - true - true - true - ..\..\include;$(OPENCV_DIR)\include;C:\opencv_source\opencv\bin\install\include;$(CUDA_PATH)\include;$(ZED_SDK_ROOT_DIR)\include - OPENCV;_CRT_SECURE_NO_WARNINGS;_MBCS;%(PreprocessorDefinitions) - Async - true - - - true - true - $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_source\opencv\bin\install\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib;$(CUDA_PATH)\lib\x64\;$(ZED_SDK_ROOT_DIR)\lib - kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies) - - - - - - - - - - - - - - \ No newline at end of file diff --git a/build/darknet/yolo_cpp_dll.sln b/build/darknet/yolo_cpp_dll.sln deleted file mode 100644 index 4d457760a21..00000000000 --- a/build/darknet/yolo_cpp_dll.sln +++ /dev/null @@ -1,28 +0,0 @@ - -Microsoft Visual Studio Solution File, Format Version 12.00 -# Visual Studio 14 -VisualStudioVersion = 14.0.25420.1 -MinimumVisualStudioVersion = 10.0.40219.1 -Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "yolo_cpp_dll", "yolo_cpp_dll.vcxproj", "{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}" -EndProject -Global - GlobalSection(SolutionConfigurationPlatforms) = preSolution - Debug|x64 = Debug|x64 - Debug|x86 = Debug|x86 - Release|x64 = Release|x64 - Release|x86 = Release|x86 - EndGlobalSection - GlobalSection(ProjectConfigurationPlatforms) = postSolution - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.ActiveCfg = Debug|x64 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.Build.0 = Debug|x64 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x86.ActiveCfg = Debug|Win32 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x86.Build.0 = Debug|Win32 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.ActiveCfg = Release|x64 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.Build.0 = Release|x64 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x86.ActiveCfg = Release|Win32 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x86.Build.0 = Release|Win32 - EndGlobalSection - GlobalSection(SolutionProperties) = preSolution - HideSolutionNode = FALSE - EndGlobalSection -EndGlobal diff --git a/build/darknet/yolo_cpp_dll.vcxproj b/build/darknet/yolo_cpp_dll.vcxproj deleted file mode 100644 index 35742aa2be4..00000000000 --- a/build/darknet/yolo_cpp_dll.vcxproj +++ /dev/null @@ -1,313 +0,0 @@ - - - - - Debug - Win32 - - - Debug - x64 - - - Release - Win32 - - - Release - x64 - - - - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5} - darknet - 8.1 - - - - Application - true - v140 - MultiByte - - - DynamicLibrary - true - v140 - MultiByte - - - Application - false - v140 - true - MultiByte - - - DynamicLibrary - false - v140 - true - MultiByte - - - - - - - - - - - - - - - - - - - - $(SolutionDir)$(Platform)\ - $(Platform)\DLL_$(Configuration)\ - - - $(SolutionDir)$(Platform)\ - $(Platform)\DLL_$(Configuration)\ - - - - Level3 - Disabled - true - ..\..\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir) - LIB_EXPORTS;_MBCS;%(PreprocessorDefinitions) - - - true - - - - - Level3 - Disabled - true - $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include;$(cudnn)\include - _MBCS;LIB_EXPORTS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;DEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - CUDNN_HALF;CUDNN - true - stdlib.h;crtdbg.h;%(ForcedIncludeFiles) - - - true - $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;$(cudnn)\lib\x64;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories) - $(OutDir)\$(TargetName)$(TargetExt) - pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cuda.lib;%(AdditionalDependencies) - true - - - compute_30,sm_30;compute_75,sm_75 - 64 - - - - - Level3 - MaxSpeed - true - true - true - C:\opencv_2.4.9\opencv\build\include;..\..\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include - LIB_EXPORTS;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - true - - - true - true - true - C:\opencv_2.4.9\opencv\build\x86\vc14\lib;C:\opencv_2.4.9\opencv\build\x86\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories) - ..\..\3rdparty\lib\x86\pthreadVC2.lib;cudart.lib;cublas.lib;curand.lib;%(AdditionalDependencies) - - - - - Level3 - MaxSpeed - true - true - true - $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include;$(cudnn)\include - CUDNN_HALF;CUDNN;GPU;LIB_EXPORTS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - c11 - c++1y - CompileAsCpp - Default - OPENCV; - true - - - true - true - true - $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;$(cudnn)\lib\x64;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories) - pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cuda.lib;%(AdditionalDependencies) - $(OutDir)\$(TargetName)$(TargetExt) - - - 64 - compute_35,sm_35;compute_75,sm_75 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/build/darknet/yolo_cpp_dll_no_gpu.sln b/build/darknet/yolo_cpp_dll_no_gpu.sln deleted file mode 100644 index ab54154a213..00000000000 --- a/build/darknet/yolo_cpp_dll_no_gpu.sln +++ /dev/null @@ -1,28 +0,0 @@ - -Microsoft Visual Studio Solution File, Format Version 12.00 -# Visual Studio 14 -VisualStudioVersion = 14.0.25420.1 -MinimumVisualStudioVersion = 10.0.40219.1 -Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "yolo_cpp_dll_no_gpu", "yolo_cpp_dll_no_gpu.vcxproj", "{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}" -EndProject -Global - GlobalSection(SolutionConfigurationPlatforms) = preSolution - Debug|x64 = Debug|x64 - Debug|x86 = Debug|x86 - Release|x64 = Release|x64 - Release|x86 = Release|x86 - EndGlobalSection - GlobalSection(ProjectConfigurationPlatforms) = postSolution - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.ActiveCfg = Debug|x64 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.Build.0 = Debug|x64 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x86.ActiveCfg = Debug|Win32 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x86.Build.0 = Debug|Win32 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.ActiveCfg = Release|x64 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.Build.0 = Release|x64 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x86.ActiveCfg = Release|Win32 - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x86.Build.0 = Release|Win32 - EndGlobalSection - GlobalSection(SolutionProperties) = preSolution - HideSolutionNode = FALSE - EndGlobalSection -EndGlobal diff --git a/build/darknet/yolo_cpp_dll_no_gpu.vcxproj b/build/darknet/yolo_cpp_dll_no_gpu.vcxproj deleted file mode 100644 index ea04b5497e6..00000000000 --- a/build/darknet/yolo_cpp_dll_no_gpu.vcxproj +++ /dev/null @@ -1,297 +0,0 @@ - - - - - Debug - Win32 - - - Debug - x64 - - - Release - Win32 - - - Release - x64 - - - - {4CF5694F-12A5-4012-8D94-9A0915E9FEB5} - darknet - 8.1 - - - - Application - true - v140 - MultiByte - - - DynamicLibrary - true - v140 - MultiByte - - - Application - false - v140 - true - MultiByte - - - DynamicLibrary - false - v140 - true - MultiByte - - - - - - - - - - - - - - - - - - $(SolutionDir)$(Platform)\ - - - $(SolutionDir)$(Platform)\ - yolo_cpp_dll - - - - Level3 - Disabled - true - ..\..\include; - LIB_EXPORTS;_MBCS;%(PreprocessorDefinitions) - - - true - - - - - Level3 - Disabled - true - $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories) - _MBCS;LIB_EXPORTS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - CUDNN - true - stdlib.h;crtdbg.h;%(ForcedIncludeFiles) - - - true - $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories) - $(OutDir)\$(TargetName)$(TargetExt) - pthreadVC2.lib;%(AdditionalDependencies) - true - - - compute_30,sm_30;compute_52,sm_52 - 64 - - - - - Level3 - MaxSpeed - true - true - true - C:\opencv_2.4.9\opencv\build\include;..\..\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include - LIB_EXPORTS;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - true - - - true - true - true - C:\opencv_2.4.9\opencv\build\x86\vc14\lib;C:\opencv_2.4.9\opencv\build\x86\vc12\lib;%(AdditionalLibraryDirectories) - ..\..\3rdparty\lib\x86\pthreadVC2.lib;%(AdditionalDependencies) - - - - - Level3 - MaxSpeed - true - true - true - $(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories) - LIB_EXPORTS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions) - c11 - c++1y - CompileAsCpp - Default - - - true - true - - - true - true - true - $(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories) - pthreadVC2.lib;%(AdditionalDependencies) - $(OutDir)\$(TargetName)$(TargetExt) - - - 64 - compute_30,sm_30;compute_52,sm_52 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/build/darknet/x64/calc_anchors.cmd b/scripts/windows/calc_anchors.cmd similarity index 100% rename from build/darknet/x64/calc_anchors.cmd rename to scripts/windows/calc_anchors.cmd diff --git a/build/darknet/x64/calc_mAP.cmd b/scripts/windows/calc_mAP.cmd similarity index 100% rename from build/darknet/x64/calc_mAP.cmd rename to scripts/windows/calc_mAP.cmd diff --git a/build/darknet/x64/calc_mAP_coco.cmd b/scripts/windows/calc_mAP_coco.cmd similarity index 100% rename from build/darknet/x64/calc_mAP_coco.cmd rename to scripts/windows/calc_mAP_coco.cmd diff --git a/build/darknet/x64/calc_mAP_voc_py.cmd b/scripts/windows/calc_mAP_voc_py.cmd similarity index 100% rename from build/darknet/x64/calc_mAP_voc_py.cmd rename to scripts/windows/calc_mAP_voc_py.cmd diff --git a/build/darknet/x64/classifier_densenet201.cmd b/scripts/windows/classifier_densenet201.cmd similarity index 100% rename from build/darknet/x64/classifier_densenet201.cmd rename to scripts/windows/classifier_densenet201.cmd diff --git a/build/darknet/x64/classifier_resnet50.cmd b/scripts/windows/classifier_resnet50.cmd similarity index 100% rename from build/darknet/x64/classifier_resnet50.cmd rename to scripts/windows/classifier_resnet50.cmd diff --git a/build/darknet/x64/darknet_coco.cmd b/scripts/windows/darknet_coco.cmd similarity index 100% rename from build/darknet/x64/darknet_coco.cmd rename to scripts/windows/darknet_coco.cmd diff --git a/build/darknet/x64/darknet_coco_9000.cmd b/scripts/windows/darknet_coco_9000.cmd similarity index 100% rename from build/darknet/x64/darknet_coco_9000.cmd rename to scripts/windows/darknet_coco_9000.cmd diff --git a/build/darknet/x64/darknet_coco_9000_demo.cmd b/scripts/windows/darknet_coco_9000_demo.cmd similarity index 100% rename from build/darknet/x64/darknet_coco_9000_demo.cmd rename to scripts/windows/darknet_coco_9000_demo.cmd diff --git a/build/darknet/x64/darknet_demo_coco.cmd b/scripts/windows/darknet_demo_coco.cmd similarity index 100% rename from build/darknet/x64/darknet_demo_coco.cmd rename to scripts/windows/darknet_demo_coco.cmd diff --git a/build/darknet/x64/darknet_demo_json_stream.cmd b/scripts/windows/darknet_demo_json_stream.cmd similarity index 100% rename from build/darknet/x64/darknet_demo_json_stream.cmd rename to scripts/windows/darknet_demo_json_stream.cmd diff --git a/build/darknet/x64/darknet_demo_mjpeg_stream.cmd b/scripts/windows/darknet_demo_mjpeg_stream.cmd similarity index 100% rename from build/darknet/x64/darknet_demo_mjpeg_stream.cmd rename to scripts/windows/darknet_demo_mjpeg_stream.cmd diff --git a/build/darknet/x64/darknet_demo_store.cmd b/scripts/windows/darknet_demo_store.cmd similarity index 100% rename from build/darknet/x64/darknet_demo_store.cmd rename to scripts/windows/darknet_demo_store.cmd diff --git a/build/darknet/x64/darknet_demo_voc.cmd b/scripts/windows/darknet_demo_voc.cmd similarity index 100% rename from build/darknet/x64/darknet_demo_voc.cmd rename to scripts/windows/darknet_demo_voc.cmd diff --git a/build/darknet/x64/darknet_demo_voc_param.cmd b/scripts/windows/darknet_demo_voc_param.cmd similarity index 100% rename from build/darknet/x64/darknet_demo_voc_param.cmd rename to scripts/windows/darknet_demo_voc_param.cmd diff --git a/build/darknet/x64/darknet_demo_voc_tiny.cmd b/scripts/windows/darknet_demo_voc_tiny.cmd similarity index 100% rename from build/darknet/x64/darknet_demo_voc_tiny.cmd rename to scripts/windows/darknet_demo_voc_tiny.cmd diff --git a/build/darknet/x64/darknet_json_reslut.cmd b/scripts/windows/darknet_json_reslut.cmd similarity index 100% rename from build/darknet/x64/darknet_json_reslut.cmd rename to scripts/windows/darknet_json_reslut.cmd diff --git a/build/darknet/x64/darknet_many_images.cmd b/scripts/windows/darknet_many_images.cmd similarity index 100% rename from build/darknet/x64/darknet_many_images.cmd rename to scripts/windows/darknet_many_images.cmd diff --git a/build/darknet/x64/darknet_net_cam_coco.cmd b/scripts/windows/darknet_net_cam_coco.cmd similarity index 100% rename from build/darknet/x64/darknet_net_cam_coco.cmd rename to scripts/windows/darknet_net_cam_coco.cmd diff --git a/build/darknet/x64/darknet_net_cam_voc.cmd b/scripts/windows/darknet_net_cam_voc.cmd similarity index 100% rename from build/darknet/x64/darknet_net_cam_voc.cmd rename to scripts/windows/darknet_net_cam_voc.cmd diff --git a/build/darknet/x64/darknet_python.cmd b/scripts/windows/darknet_python.cmd similarity index 100% rename from build/darknet/x64/darknet_python.cmd rename to scripts/windows/darknet_python.cmd diff --git a/build/darknet/x64/darknet_tiny_v2.cmd b/scripts/windows/darknet_tiny_v2.cmd similarity index 100% rename from build/darknet/x64/darknet_tiny_v2.cmd rename to scripts/windows/darknet_tiny_v2.cmd diff --git a/build/darknet/x64/darknet_video.cmd b/scripts/windows/darknet_video.cmd similarity index 100% rename from build/darknet/x64/darknet_video.cmd rename to scripts/windows/darknet_video.cmd diff --git a/build/darknet/x64/darknet_voc.cmd b/scripts/windows/darknet_voc.cmd similarity index 100% rename from build/darknet/x64/darknet_voc.cmd rename to scripts/windows/darknet_voc.cmd diff --git a/build/darknet/x64/darknet_voc_tiny_v2.cmd b/scripts/windows/darknet_voc_tiny_v2.cmd similarity index 100% rename from build/darknet/x64/darknet_voc_tiny_v2.cmd rename to scripts/windows/darknet_voc_tiny_v2.cmd diff --git a/build/darknet/x64/darknet_web_cam_voc.cmd b/scripts/windows/darknet_web_cam_voc.cmd similarity index 100% rename from build/darknet/x64/darknet_web_cam_voc.cmd rename to scripts/windows/darknet_web_cam_voc.cmd diff --git a/build/darknet/x64/darknet_yolo_v3.cmd b/scripts/windows/darknet_yolo_v3.cmd similarity index 100% rename from build/darknet/x64/darknet_yolo_v3.cmd rename to scripts/windows/darknet_yolo_v3.cmd diff --git a/build/darknet/x64/darknet_yolo_v3_openimages.cmd b/scripts/windows/darknet_yolo_v3_openimages.cmd similarity index 100% rename from build/darknet/x64/darknet_yolo_v3_openimages.cmd rename to scripts/windows/darknet_yolo_v3_openimages.cmd diff --git a/build/darknet/x64/darknet_yolo_v3_video.cmd b/scripts/windows/darknet_yolo_v3_video.cmd similarity index 100% rename from build/darknet/x64/darknet_yolo_v3_video.cmd rename to scripts/windows/darknet_yolo_v3_video.cmd diff --git a/build/darknet/x64/darknet_yolov3_pseudo_labeling.cmd b/scripts/windows/darknet_yolov3_pseudo_labeling.cmd similarity index 100% rename from build/darknet/x64/darknet_yolov3_pseudo_labeling.cmd rename to scripts/windows/darknet_yolov3_pseudo_labeling.cmd diff --git a/build/darknet/x64/partial.cmd b/scripts/windows/partial.cmd similarity index 100% rename from build/darknet/x64/partial.cmd rename to scripts/windows/partial.cmd diff --git a/build/darknet/x64/rnn_lstm.cmd b/scripts/windows/rnn_lstm.cmd similarity index 100% rename from build/darknet/x64/rnn_lstm.cmd rename to scripts/windows/rnn_lstm.cmd diff --git a/build/darknet/x64/rnn_tolstoy.cmd b/scripts/windows/rnn_tolstoy.cmd similarity index 100% rename from build/darknet/x64/rnn_tolstoy.cmd rename to scripts/windows/rnn_tolstoy.cmd diff --git a/build/darknet/x64/train_voc.cmd b/scripts/windows/train_voc.cmd similarity index 100% rename from build/darknet/x64/train_voc.cmd rename to scripts/windows/train_voc.cmd