-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREAL_TIME.py
62 lines (50 loc) · 1.79 KB
/
REAL_TIME.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# GRIP Internship
# TASK-1 : Implement an object detector which identifies the classes of the objects in a real time video.
# Name : Aarohi Verma
# Domain : Computer Vision and IOT
#import opencv and numpy library
import cv2
import numpy as np
# Threshold to detect object and nms is used for accuracy of boxes around objects
thres = 0.45
nms_threshold = 0.2
#Default Camera Capture
cap = cv2.VideoCapture(0)
cap.set(3, 1280)
cap.set(4, 720)
cap.set(10, 150)
##Importing the COCO dataset in a list
classNames= []
classFile = 'coco.names'
with open(classFile,'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
#print(classNames)
##Configuring both SSD model and weights (assigning)
configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightsPath = 'frozen_inference_graph.pb'
##dnn-Inbuilt method of OpenCV
net = cv2.dnn_DetectionModel(weightsPath,configPath)
net.setInputSize(320, 320)
net.setInputScale(1.0 / 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
## using Detect method
while True:
success, img = cap.read()
classIds, confs, bbox = net.detect(img, confThreshold=thres)
bbox = list(bbox)
confs = list(np.array(confs).reshape(1, -1)[0])
confs = list(map(float, confs))
#print(type(confs[0]))
#print(confs)
indices = cv2.dnn.NMSBoxes(bbox, confs, thres, nms_threshold)
#print(indices)
for i in indices:
i = i[0]
box = bbox[i]
x, y, w, h = box[0], box[1], box[2], box[3]
cv2.rectangle(img, (x, y),(x+w, h+y), color=(0, 255, 0), thickness=2)
cv2.putText(img,classNames[classIds[i][0]-1].upper(), (box[0]+10, box[1]+30),
cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("Output", img)
cv2.waitKey(1)