diff --git a/module05/en.subject.tex b/module05/en.subject.tex index 4ab99615..67239027 100644 --- a/module05/en.subject.tex +++ b/module05/en.subject.tex @@ -507,7 +507,7 @@ \section*{Instructions} \newline Given a vector $x$ of dimension m * 1 representing the a sample of a data population, the mathematical formula of its variance is: $$ - \sigma^2 = \frac{\sum_{i = 1}^{m}{(x_i - \bar{x})^2}}{m - 1} = \frac{\sum_{i = 1}^{m}{[x_i - (\frac{1}{m}\sum_{j = 1}^{m}{x_j}})]^2}{m - 1} + \sigma^2 = \frac{\sum_{i = 1}^{m}(x_i - \bar{x})^2}{m - 1} = \frac{\sum_{i = 1}^{m - 1}(x_i - \bar{x})^2}{m - 1} $$ \item \texttt{std(x)}: computes the sample standard deviation of a given non-empty list or array $x$. @@ -517,7 +517,7 @@ \section*{Instructions} \newline Given a vector $x$ of dimension m * 1, the mathematical formula of the sample standard deviation is: $$ - \sigma = \sqrt{\frac{\sum_{i = 1}^{m}{(x_i - \bar{x})^2}}{m - 1}} = \sqrt{\frac{\sum_{i = 1}^{m}{[x_i - (\frac{1}{m}\sum_{j = 1}^{m}{x_j}})]^2}{m - 1}} + \sigma = \sqrt{\frac{\sum_{i = 1}^{m}{(x_i - \frac{\sum_{i = 1}^{m}{x_i}}{m})^2}}{m - 1}} = \sqrt{\frac{\sum_{i = 1}^{m - 1}{(x_i - \bar{x})^2}}{m-1}} $$ \end{itemize} @@ -543,13 +543,13 @@ \section*{Examples} # Output: 4.6 - TinyStatistician().percentile(a, 15) + TinyStatistician().percentile(a, 28) # Output: - 6.4 + 13.840000 - TinyStatistician().percentile(a, 20) + TinyStatistician().percentile(a, 83) # Output: - 8.2 + 136.119999... TinyStatistician().var(a) # Output: @@ -561,7 +561,7 @@ \section*{Examples} \end{minted} \info{ - numpy uses a different definition of percentile, it does linear interpolation between the two closest list element to the percentile. + numpy has different definitions for \texttt{percentile}, the one we are expecting is the linear interpolation method. Be sure to understand the difference between the population and the sample definition for the statistic metrics. } diff --git a/version b/version index c5c9ea80..35ca7bea 100644 --- a/version +++ b/version @@ -1 +1 @@ -v4.0.6 +v4.0.7